xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision 5fbc1fe0da7f34cf8155bf7624c94583cc98e47c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2015 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/strsun.h>
29 #include <sys/strsubr.h>
30 #include <sys/debug.h>
31 #include <sys/sdt.h>
32 #include <sys/cmn_err.h>
33 #include <sys/tihdr.h>
34 
35 #include <inet/common.h>
36 #include <inet/optcom.h>
37 #include <inet/ip.h>
38 #include <inet/ip_if.h>
39 #include <inet/ip_impl.h>
40 #include <inet/tcp.h>
41 #include <inet/tcp_impl.h>
42 #include <inet/ipsec_impl.h>
43 #include <inet/ipclassifier.h>
44 #include <inet/ipp_common.h>
45 #include <inet/ip_if.h>
46 
47 /*
48  * This file implements TCP fusion - a protocol-less data path for TCP
49  * loopback connections.  The fusion of two local TCP endpoints occurs
50  * at connection establishment time.  Various conditions (see details
51  * in tcp_fuse()) need to be met for fusion to be successful.  If it
52  * fails, we fall back to the regular TCP data path; if it succeeds,
53  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
54  * tcp_fuse_output() enqueues application data directly onto the peer's
55  * receive queue; no protocol processing is involved.
56  *
57  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
58  * One of the requirements for fusion to succeed is that both endpoints
59  * need to be using the same squeue.  This ensures that neither side
60  * can disappear while the other side is still sending data. Flow
61  * control information is manipulated outside the squeue, so the
62  * tcp_non_sq_lock must be held when touching tcp_flow_stopped.
63  */
64 
65 /*
66  * Setting this to false means we disable fusion altogether and
67  * loopback connections would go through the protocol paths.
68  */
69 boolean_t do_tcp_fusion = B_TRUE;
70 
71 /*
72  * This routine gets called by the eager tcp upon changing state from
73  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
74  * and the active connect tcp such that the regular tcp processings
75  * may be bypassed under allowable circumstances.  Because the fusion
76  * requires both endpoints to be in the same squeue, it does not work
77  * for simultaneous active connects because there is no easy way to
78  * switch from one squeue to another once the connection is created.
79  * This is different from the eager tcp case where we assign it the
80  * same squeue as the one given to the active connect tcp during open.
81  */
82 void
83 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha)
84 {
85 	conn_t		*peer_connp, *connp = tcp->tcp_connp;
86 	tcp_t		*peer_tcp;
87 	tcp_stack_t	*tcps = tcp->tcp_tcps;
88 	netstack_t	*ns;
89 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
90 
91 	ASSERT(!tcp->tcp_fused);
92 	ASSERT(tcp->tcp_loopback);
93 	ASSERT(tcp->tcp_loopback_peer == NULL);
94 	/*
95 	 * We need to inherit conn_rcvbuf of the listener tcp,
96 	 * but we can't really use tcp_listener since we get here after
97 	 * sending up T_CONN_IND and tcp_tli_accept() may be called
98 	 * independently, at which point tcp_listener is cleared;
99 	 * this is why we use tcp_saved_listener. The listener itself
100 	 * is guaranteed to be around until tcp_accept_finish() is called
101 	 * on this eager -- this won't happen until we're done since we're
102 	 * inside the eager's perimeter now.
103 	 */
104 	ASSERT(tcp->tcp_saved_listener != NULL);
105 	/*
106 	 * Lookup peer endpoint; search for the remote endpoint having
107 	 * the reversed address-port quadruplet in ESTABLISHED state,
108 	 * which is guaranteed to be unique in the system.  Zone check
109 	 * is applied accordingly for loopback address, but not for
110 	 * local address since we want fusion to happen across Zones.
111 	 */
112 	if (connp->conn_ipversion == IPV4_VERSION) {
113 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
114 		    (ipha_t *)iphdr, tcpha, ipst);
115 	} else {
116 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
117 		    (ip6_t *)iphdr, tcpha, ipst);
118 	}
119 
120 	/*
121 	 * We can only proceed if peer exists, resides in the same squeue
122 	 * as our conn and is not raw-socket. We also restrict fusion to
123 	 * endpoints of the same type (STREAMS or non-STREAMS). The squeue
124 	 * assignment of this eager tcp was done earlier at the time of SYN
125 	 * processing in ip_fanout_tcp{_v6}.  Note that similar squeues by
126 	 * itself doesn't guarantee a safe condition to fuse, hence we perform
127 	 * additional tests below.
128 	 */
129 	ASSERT(peer_connp == NULL || peer_connp != connp);
130 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
131 	    !IPCL_IS_TCP(peer_connp) ||
132 	    IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) {
133 		if (peer_connp != NULL) {
134 			TCP_STAT(tcps, tcp_fusion_unqualified);
135 			CONN_DEC_REF(peer_connp);
136 		}
137 		return;
138 	}
139 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
140 
141 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
142 	ASSERT(peer_tcp->tcp_loopback_peer == NULL);
143 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
144 
145 	/*
146 	 * Due to IRE changes the peer and us might not agree on tcp_loopback.
147 	 * We bail in that case.
148 	 */
149 	if (!peer_tcp->tcp_loopback) {
150 		TCP_STAT(tcps, tcp_fusion_unqualified);
151 		CONN_DEC_REF(peer_connp);
152 		return;
153 	}
154 	/*
155 	 * Fuse the endpoints; we perform further checks against both
156 	 * tcp endpoints to ensure that a fusion is allowed to happen.
157 	 */
158 	ns = tcps->tcps_netstack;
159 	ipst = ns->netstack_ip;
160 
161 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
162 	    tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL) {
163 		mblk_t *mp = NULL;
164 		queue_t *peer_rq = peer_connp->conn_rq;
165 
166 		ASSERT(!TCP_IS_DETACHED(peer_tcp));
167 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
168 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
169 
170 		/*
171 		 * We need to drain data on both endpoints during unfuse.
172 		 * If we need to send up SIGURG at the time of draining,
173 		 * we want to be sure that an mblk is readily available.
174 		 * This is why we pre-allocate the M_PCSIG mblks for both
175 		 * endpoints which will only be used during/after unfuse.
176 		 * The mblk might already exist if we are doing a re-fuse.
177 		 */
178 		if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
179 			ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp));
180 
181 			if (tcp->tcp_fused_sigurg_mp == NULL) {
182 				if ((mp = allocb(1, BPRI_HI)) == NULL)
183 					goto failed;
184 				tcp->tcp_fused_sigurg_mp = mp;
185 			}
186 
187 			if (peer_tcp->tcp_fused_sigurg_mp == NULL) {
188 				if ((mp = allocb(1, BPRI_HI)) == NULL)
189 					goto failed;
190 				peer_tcp->tcp_fused_sigurg_mp = mp;
191 			}
192 
193 			if ((mp = allocb(sizeof (struct stroptions),
194 			    BPRI_HI)) == NULL)
195 				goto failed;
196 		}
197 
198 		/* Fuse both endpoints */
199 		peer_tcp->tcp_loopback_peer = tcp;
200 		tcp->tcp_loopback_peer = peer_tcp;
201 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
202 
203 		/*
204 		 * We never use regular tcp paths in fusion and should
205 		 * therefore clear tcp_unsent on both endpoints.  Having
206 		 * them set to non-zero values means asking for trouble
207 		 * especially after unfuse, where we may end up sending
208 		 * through regular tcp paths which expect xmit_list and
209 		 * friends to be correctly setup.
210 		 */
211 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
212 
213 		tcp_timers_stop(tcp);
214 		tcp_timers_stop(peer_tcp);
215 
216 		/*
217 		 * Set receive buffer and max packet size for the
218 		 * active open tcp.
219 		 * eager's values will be set in tcp_accept_finish.
220 		 */
221 		(void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf);
222 
223 		/*
224 		 * Set the write offset value to zero since we won't
225 		 * be needing any room for TCP/IP headers.
226 		 */
227 		if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
228 			struct stroptions *stropt;
229 
230 			DB_TYPE(mp) = M_SETOPTS;
231 			mp->b_wptr += sizeof (*stropt);
232 
233 			stropt = (struct stroptions *)mp->b_rptr;
234 			stropt->so_flags = SO_WROFF | SO_MAXBLK;
235 			stropt->so_wroff = 0;
236 			stropt->so_maxblk = INFPSZ;
237 
238 			/* Send the options up */
239 			putnext(peer_rq, mp);
240 		} else {
241 			struct sock_proto_props sopp;
242 
243 			/* The peer is a non-STREAMS end point */
244 			ASSERT(IPCL_IS_TCP(peer_connp));
245 
246 			sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_MAXBLK;
247 			sopp.sopp_wroff = 0;
248 			sopp.sopp_maxblk = INFPSZ;
249 			(*peer_connp->conn_upcalls->su_set_proto_props)
250 			    (peer_connp->conn_upper_handle, &sopp);
251 		}
252 	} else {
253 		TCP_STAT(tcps, tcp_fusion_unqualified);
254 	}
255 	CONN_DEC_REF(peer_connp);
256 	return;
257 
258 failed:
259 	if (tcp->tcp_fused_sigurg_mp != NULL) {
260 		freeb(tcp->tcp_fused_sigurg_mp);
261 		tcp->tcp_fused_sigurg_mp = NULL;
262 	}
263 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
264 		freeb(peer_tcp->tcp_fused_sigurg_mp);
265 		peer_tcp->tcp_fused_sigurg_mp = NULL;
266 	}
267 	CONN_DEC_REF(peer_connp);
268 }
269 
270 /*
271  * Unfuse a previously-fused pair of tcp loopback endpoints.
272  */
273 void
274 tcp_unfuse(tcp_t *tcp)
275 {
276 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
277 	tcp_stack_t *tcps = tcp->tcp_tcps;
278 
279 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
280 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
281 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
282 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
283 
284 	/*
285 	 * Cancel any pending push timers.
286 	 */
287 	if (tcp->tcp_push_tid != 0) {
288 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
289 		tcp->tcp_push_tid = 0;
290 	}
291 	if (peer_tcp->tcp_push_tid != 0) {
292 		(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
293 		peer_tcp->tcp_push_tid = 0;
294 	}
295 
296 	/*
297 	 * Drain any pending data; Note that in case of a detached tcp, the
298 	 * draining will happen later after the tcp is unfused.  For non-
299 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
300 	 * If we have urgent data sitting in the receive list, we will
301 	 * need to send up a SIGURG signal first before draining the data.
302 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
303 	 * when called from tcp_rcv_drain().
304 	 */
305 	if (!TCP_IS_DETACHED(tcp)) {
306 		(void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp,
307 		    &tcp->tcp_fused_sigurg_mp);
308 	}
309 	if (!TCP_IS_DETACHED(peer_tcp)) {
310 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq,
311 		    peer_tcp,  &peer_tcp->tcp_fused_sigurg_mp);
312 	}
313 
314 	/* Lift up any flow-control conditions */
315 	mutex_enter(&tcp->tcp_non_sq_lock);
316 	if (tcp->tcp_flow_stopped) {
317 		tcp_clrqfull(tcp);
318 		TCP_STAT(tcps, tcp_fusion_backenabled);
319 	}
320 	mutex_exit(&tcp->tcp_non_sq_lock);
321 
322 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
323 	if (peer_tcp->tcp_flow_stopped) {
324 		tcp_clrqfull(peer_tcp);
325 		TCP_STAT(tcps, tcp_fusion_backenabled);
326 	}
327 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
328 
329 	/*
330 	 * Update tha_seq and tha_ack in the header template
331 	 */
332 	tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt);
333 	tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
334 	peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt);
335 	peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt);
336 
337 	/* Unfuse the endpoints */
338 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
339 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
340 }
341 
342 /*
343  * Fusion output routine used to handle urgent data sent by STREAMS based
344  * endpoints. This routine is called by tcp_fuse_output() for handling
345  * non-M_DATA mblks.
346  */
347 void
348 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
349 {
350 	mblk_t *mp1;
351 	struct T_exdata_ind *tei;
352 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
353 	mblk_t *head, *prev_head = NULL;
354 	tcp_stack_t	*tcps = tcp->tcp_tcps;
355 
356 	ASSERT(tcp->tcp_fused);
357 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
358 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
359 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
360 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
361 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
362 
363 	/*
364 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
365 	 * Each occurence denotes a new urgent pointer.  For each new
366 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
367 	 * that it needs to go into urgent mode.  This is similar to the
368 	 * urgent data handling in the regular tcp.  We don't need to keep
369 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
370 	 * "advances" the urgent pointer for us.
371 	 *
372 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
373 	 * by a T_EXDATA_IND before being enqueued behind any existing data
374 	 * destined for the receiving app.  There is only a single urgent
375 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
376 	 * data arrives before the receiving app reads some existing urgent
377 	 * data, the previous marker is lost.  This behavior is emulated
378 	 * accordingly below, by removing any existing T_EXDATA_IND messages
379 	 * and essentially converting old urgent data into non-urgent.
380 	 */
381 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
382 	/* Let sender get out of urgent mode */
383 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
384 
385 	/*
386 	 * This flag indicates that a signal needs to be sent up.
387 	 * This flag will only get cleared once SIGURG is delivered and
388 	 * is not affected by the tcp_fused flag -- delivery will still
389 	 * happen even after an endpoint is unfused, to handle the case
390 	 * where the sending endpoint immediately closes/unfuses after
391 	 * sending urgent data and the accept is not yet finished.
392 	 */
393 	peer_tcp->tcp_fused_sigurg = B_TRUE;
394 
395 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
396 	DB_TYPE(mp) = M_PROTO;
397 	tei = (struct T_exdata_ind *)mp->b_rptr;
398 	tei->PRIM_type = T_EXDATA_IND;
399 	tei->MORE_flag = 0;
400 	mp->b_wptr = (uchar_t *)&tei[1];
401 
402 	TCP_STAT(tcps, tcp_fusion_urg);
403 	TCPS_BUMP_MIB(tcps, tcpOutUrg);
404 
405 	head = peer_tcp->tcp_rcv_list;
406 	while (head != NULL) {
407 		/*
408 		 * Remove existing T_EXDATA_IND, keep the data which follows
409 		 * it and relink our list.  Note that we don't modify the
410 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
411 		 */
412 		if (DB_TYPE(head) != M_DATA) {
413 			mp1 = head;
414 
415 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
416 			head = mp1->b_cont;
417 			mp1->b_cont = NULL;
418 			head->b_next = mp1->b_next;
419 			mp1->b_next = NULL;
420 			if (prev_head != NULL)
421 				prev_head->b_next = head;
422 			if (peer_tcp->tcp_rcv_list == mp1)
423 				peer_tcp->tcp_rcv_list = head;
424 			if (peer_tcp->tcp_rcv_last_head == mp1)
425 				peer_tcp->tcp_rcv_last_head = head;
426 			freeb(mp1);
427 		}
428 		prev_head = head;
429 		head = head->b_next;
430 	}
431 }
432 
433 /*
434  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
435  * If we are modifying any member that can be changed outside the squeue,
436  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
437  */
438 boolean_t
439 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
440 {
441 	conn_t		*connp = tcp->tcp_connp;
442 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
443 	conn_t		*peer_connp = peer_tcp->tcp_connp;
444 	boolean_t	flow_stopped, peer_data_queued = B_FALSE;
445 	boolean_t	urgent = (DB_TYPE(mp) != M_DATA);
446 	boolean_t	push = B_TRUE;
447 	mblk_t		*mp1 = mp;
448 	uint_t		ip_hdr_len;
449 	uint32_t	recv_size = send_size;
450 	tcp_stack_t	*tcps = tcp->tcp_tcps;
451 	netstack_t	*ns = tcps->tcps_netstack;
452 	ip_stack_t	*ipst = ns->netstack_ip;
453 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
454 	iaflags_t	ixaflags = connp->conn_ixa->ixa_flags;
455 	boolean_t	do_ipsec, hooks_out, hooks_in, ipobs_enabled;
456 
457 	ASSERT(tcp->tcp_fused);
458 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
459 	ASSERT(connp->conn_sqp == peer_connp->conn_sqp);
460 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
461 	    DB_TYPE(mp) == M_PCPROTO);
462 
463 	if (send_size == 0) {
464 		freemsg(mp);
465 		return (B_TRUE);
466 	}
467 
468 	/*
469 	 * Handle urgent data; we either send up SIGURG to the peer now
470 	 * or do it later when we drain, in case the peer is detached
471 	 * or if we're short of memory for M_PCSIG mblk.
472 	 */
473 	if (urgent) {
474 		tcp_fuse_output_urg(tcp, mp);
475 
476 		mp1 = mp->b_cont;
477 	}
478 
479 	/*
480 	 * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before
481 	 * further processes.
482 	 */
483 	if (!ip_output_verify_local(connp->conn_ixa))
484 		goto unfuse;
485 
486 	/*
487 	 * Build IP and TCP header in case we have something that needs the
488 	 * headers. Those cases are:
489 	 * 1. IPsec
490 	 * 2. IPobs
491 	 * 3. FW_HOOKS
492 	 *
493 	 * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection
494 	 * and back to regular path.
495 	 */
496 	if (ixaflags & IXAF_IS_IPV4) {
497 		do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
498 		    CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss);
499 
500 		hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst);
501 		hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst);
502 		ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0);
503 	} else {
504 		do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
505 		    CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss);
506 
507 		hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst);
508 		hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst);
509 		ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0);
510 	}
511 
512 	/* We do logical 'or' for efficiency */
513 	if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) {
514 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
515 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
516 			/* If tcp_xmit_mp fails, use regular path */
517 			goto unfuse;
518 
519 		/*
520 		 * Leave all IP relevant processes to ip_output_process_local(),
521 		 * which handles IPsec, IPobs, and FW_HOOKS.
522 		 */
523 		mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out,
524 		    hooks_in, do_ipsec ? peer_connp : NULL);
525 
526 		/* If the message is dropped for any reason. */
527 		if (mp1 == NULL)
528 			goto unfuse;
529 
530 		/*
531 		 * Data length might have been changed by FW_HOOKS.
532 		 * We assume that the first mblk contains the TCP/IP headers.
533 		 */
534 		if (hooks_in || hooks_out) {
535 			tcpha_t *tcpha;
536 
537 			ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ?
538 			    IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) :
539 			    ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr);
540 
541 			tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len];
542 			ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <=
543 			    mp1->b_wptr);
544 			recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt;
545 
546 		}
547 
548 		/*
549 		 * The message duplicated by tcp_xmit_mp is freed.
550 		 * Note: the original message passed in remains unchanged.
551 		 */
552 		freemsg(mp1);
553 	}
554 
555 	/*
556 	 * Enqueue data into the peer's receive list; we may or may not
557 	 * drain the contents depending on the conditions below.
558 	 *
559 	 * For non-STREAMS sockets we normally queue data directly in the
560 	 * socket by calling the su_recv upcall. However, if the peer is
561 	 * detached we use tcp_rcv_enqueue() instead. Queued data will be
562 	 * drained when the accept completes (in tcp_accept_finish()).
563 	 */
564 	if (IPCL_IS_NONSTR(peer_connp) &&
565 	    !TCP_IS_DETACHED(peer_tcp)) {
566 		int error;
567 		int flags = 0;
568 
569 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
570 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
571 			flags = MSG_OOB;
572 			(*peer_connp->conn_upcalls->su_signal_oob)
573 			    (peer_connp->conn_upper_handle, 0);
574 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
575 		}
576 		if ((*peer_connp->conn_upcalls->su_recv)(
577 		    peer_connp->conn_upper_handle, mp, recv_size,
578 		    flags, &error, &push) < 0) {
579 			ASSERT(error != EOPNOTSUPP);
580 			peer_data_queued = B_TRUE;
581 		}
582 	} else {
583 		if (IPCL_IS_NONSTR(peer_connp) &&
584 		    (tcp->tcp_valid_bits & TCP_URG_VALID) &&
585 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
586 			/*
587 			 * Can not deal with urgent pointers
588 			 * that arrive before the connection has been
589 			 * accept()ed.
590 			 */
591 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
592 			freemsg(mp);
593 			return (B_TRUE);
594 		}
595 
596 		tcp_rcv_enqueue(peer_tcp, mp, recv_size,
597 		    tcp->tcp_connp->conn_cred);
598 
599 		/* In case it wrapped around and also to keep it constant */
600 		peer_tcp->tcp_rwnd += recv_size;
601 	}
602 
603 	/*
604 	 * Exercise flow-control when needed; we will get back-enabled
605 	 * in either tcp_accept_finish(), tcp_unfuse(), or when data is
606 	 * consumed. If peer endpoint is detached, we emulate streams flow
607 	 * control by checking the peer's queue size and high water mark;
608 	 * otherwise we simply use canputnext() to decide if we need to stop
609 	 * our flow.
610 	 *
611 	 * Since we are accessing our tcp_flow_stopped and might modify it,
612 	 * we need to take tcp->tcp_non_sq_lock.
613 	 */
614 	mutex_enter(&tcp->tcp_non_sq_lock);
615 	flow_stopped = tcp->tcp_flow_stopped;
616 	if ((TCP_IS_DETACHED(peer_tcp) &&
617 	    (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) ||
618 	    (!TCP_IS_DETACHED(peer_tcp) &&
619 	    !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) {
620 		peer_data_queued = B_TRUE;
621 	}
622 
623 	if (!flow_stopped && (peer_data_queued ||
624 	    (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) {
625 		tcp_setqfull(tcp);
626 		flow_stopped = B_TRUE;
627 		TCP_STAT(tcps, tcp_fusion_flowctl);
628 		DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp,
629 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt);
630 	} else if (flow_stopped && !peer_data_queued &&
631 	    (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) {
632 		tcp_clrqfull(tcp);
633 		TCP_STAT(tcps, tcp_fusion_backenabled);
634 		flow_stopped = B_FALSE;
635 	}
636 	mutex_exit(&tcp->tcp_non_sq_lock);
637 
638 	ipst->ips_loopback_packets++;
639 	tcp->tcp_last_sent_len = send_size;
640 
641 	/* Need to adjust the following SNMP MIB-related variables */
642 	tcp->tcp_snxt += send_size;
643 	tcp->tcp_suna = tcp->tcp_snxt;
644 	peer_tcp->tcp_rnxt += recv_size;
645 	peer_tcp->tcp_last_recv_len = recv_size;
646 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
647 
648 	TCPS_BUMP_MIB(tcps, tcpOutDataSegs);
649 	TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
650 	TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size);
651 	tcp->tcp_cs.tcp_out_data_bytes += send_size;
652 	tcp->tcp_cs.tcp_out_data_segs++;
653 
654 	TCPS_BUMP_MIB(tcps, tcpHCInSegs);
655 	TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
656 	TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size);
657 	peer_tcp->tcp_cs.tcp_in_data_inorder_bytes += send_size;
658 	peer_tcp->tcp_cs.tcp_in_data_inorder_segs++;
659 
660 	DTRACE_TCP5(send, void, NULL, ip_xmit_attr_t *, connp->conn_ixa,
661 	    __dtrace_tcp_void_ip_t *, NULL, tcp_t *, tcp,
662 	    __dtrace_tcp_tcph_t *, NULL);
663 	DTRACE_TCP5(receive, void, NULL, ip_xmit_attr_t *,
664 	    peer_connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL,
665 	    tcp_t *, peer_tcp, __dtrace_tcp_tcph_t *, NULL);
666 
667 	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
668 	    !TCP_IS_DETACHED(peer_tcp)) {
669 		/*
670 		 * Drain the peer's receive queue it has urgent data or if
671 		 * we're not flow-controlled.
672 		 */
673 		if (urgent || !flow_stopped) {
674 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
675 			/*
676 			 * For TLI-based streams, a thread in tcp_accept_swap()
677 			 * can race with us.  That thread will ensure that the
678 			 * correct peer_connp->conn_rq is globally visible
679 			 * before peer_tcp->tcp_detached is visible as clear,
680 			 * but we must also ensure that the load of conn_rq
681 			 * cannot be reordered to be before the tcp_detached
682 			 * check.
683 			 */
684 			membar_consumer();
685 			(void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp,
686 			    NULL);
687 		}
688 	}
689 	return (B_TRUE);
690 unfuse:
691 	tcp_unfuse(tcp);
692 	return (B_FALSE);
693 }
694 
695 /*
696  * This routine gets called to deliver data upstream on a fused or
697  * previously fused tcp loopback endpoint; the latter happens only
698  * when there is a pending SIGURG signal plus urgent data that can't
699  * be sent upstream in the past.
700  */
701 boolean_t
702 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
703 {
704 	mblk_t *mp;
705 	conn_t	*connp = tcp->tcp_connp;
706 
707 #ifdef DEBUG
708 	uint_t cnt = 0;
709 #endif
710 	tcp_stack_t	*tcps = tcp->tcp_tcps;
711 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
712 
713 	ASSERT(tcp->tcp_loopback);
714 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
715 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
716 	ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);
717 
718 	/* No need for the push timer now, in case it was scheduled */
719 	if (tcp->tcp_push_tid != 0) {
720 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
721 		tcp->tcp_push_tid = 0;
722 	}
723 	/*
724 	 * If there's urgent data sitting in receive list and we didn't
725 	 * get a chance to send up a SIGURG signal, make sure we send
726 	 * it first before draining in order to ensure that SIOCATMARK
727 	 * works properly.
728 	 */
729 	if (tcp->tcp_fused_sigurg) {
730 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
731 
732 		tcp->tcp_fused_sigurg = B_FALSE;
733 		/*
734 		 * sigurg_mpp is normally NULL, i.e. when we're still
735 		 * fused and didn't get here because of tcp_unfuse().
736 		 * In this case try hard to allocate the M_PCSIG mblk.
737 		 */
738 		if (sigurg_mpp == NULL &&
739 		    (mp = allocb(1, BPRI_HI)) == NULL &&
740 		    (mp = allocb_tryhard(1)) == NULL) {
741 			/* Alloc failed; try again next time */
742 			tcp->tcp_push_tid = TCP_TIMER(tcp,
743 			    tcp_push_timer, tcps->tcps_push_timer_interval);
744 			return (B_TRUE);
745 		} else if (sigurg_mpp != NULL) {
746 			/*
747 			 * Use the supplied M_PCSIG mblk; it means we're
748 			 * either unfused or in the process of unfusing,
749 			 * and the drain must happen now.
750 			 */
751 			mp = *sigurg_mpp;
752 			*sigurg_mpp = NULL;
753 		}
754 		ASSERT(mp != NULL);
755 
756 		/* Send up the signal */
757 		DB_TYPE(mp) = M_PCSIG;
758 		*mp->b_wptr++ = (uchar_t)SIGURG;
759 		putnext(q, mp);
760 
761 		/*
762 		 * Let the regular tcp_rcv_drain() path handle
763 		 * draining the data if we're no longer fused.
764 		 */
765 		if (!tcp->tcp_fused)
766 			return (B_FALSE);
767 	}
768 
769 	/* Drain the data */
770 	while ((mp = tcp->tcp_rcv_list) != NULL) {
771 		tcp->tcp_rcv_list = mp->b_next;
772 		mp->b_next = NULL;
773 #ifdef DEBUG
774 		cnt += msgdsize(mp);
775 #endif
776 		ASSERT(!IPCL_IS_NONSTR(connp));
777 		putnext(q, mp);
778 		TCP_STAT(tcps, tcp_fusion_putnext);
779 	}
780 
781 #ifdef DEBUG
782 	ASSERT(cnt == tcp->tcp_rcv_cnt);
783 #endif
784 	tcp->tcp_rcv_last_head = NULL;
785 	tcp->tcp_rcv_last_tail = NULL;
786 	tcp->tcp_rcv_cnt = 0;
787 	tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf;
788 
789 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
790 	if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
791 	    peer_tcp->tcp_connp->conn_sndlowat)) {
792 		tcp_clrqfull(peer_tcp);
793 		TCP_STAT(tcps, tcp_fusion_backenabled);
794 	}
795 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
796 
797 	return (B_TRUE);
798 }
799 
800 /*
801  * Calculate the size of receive buffer for a fused tcp endpoint.
802  */
803 size_t
804 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
805 {
806 	tcp_stack_t	*tcps = tcp->tcp_tcps;
807 	uint32_t	max_win;
808 
809 	ASSERT(tcp->tcp_fused);
810 
811 	/* Ensure that value is within the maximum upper bound */
812 	if (rwnd > tcps->tcps_max_buf)
813 		rwnd = tcps->tcps_max_buf;
814 	/*
815 	 * Round up to system page size in case SO_RCVBUF is modified
816 	 * after SO_SNDBUF; the latter is also similarly rounded up.
817 	 */
818 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
819 	max_win = TCP_MAXWIN << tcp->tcp_rcv_ws;
820 	if (rwnd > max_win) {
821 		rwnd = max_win - (max_win % tcp->tcp_mss);
822 		if (rwnd < tcp->tcp_mss)
823 			rwnd = max_win;
824 	}
825 
826 	/*
827 	 * Record high water mark, this is used for flow-control
828 	 * purposes in tcp_fuse_output().
829 	 */
830 	tcp->tcp_connp->conn_rcvbuf = rwnd;
831 	tcp->tcp_rwnd = rwnd;
832 	return (rwnd);
833 }
834 
835 /*
836  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
837  */
838 int
839 tcp_fuse_maxpsz(tcp_t *tcp)
840 {
841 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
842 	conn_t *connp = tcp->tcp_connp;
843 	uint_t sndbuf = connp->conn_sndbuf;
844 	uint_t maxpsz = sndbuf;
845 
846 	ASSERT(tcp->tcp_fused);
847 	ASSERT(peer_tcp != NULL);
848 	ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0);
849 	/*
850 	 * In the fused loopback case, we want the stream head to split
851 	 * up larger writes into smaller chunks for a more accurate flow-
852 	 * control accounting.  Our maxpsz is half of the sender's send
853 	 * buffer or the receiver's receive buffer, whichever is smaller.
854 	 * We round up the buffer to system page size due to the lack of
855 	 * TCP MSS concept in Fusion.
856 	 */
857 	if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf)
858 		maxpsz = peer_tcp->tcp_connp->conn_rcvbuf;
859 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
860 
861 	return (maxpsz);
862 }
863 
864 /*
865  * Called to release flow control.
866  */
867 void
868 tcp_fuse_backenable(tcp_t *tcp)
869 {
870 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
871 
872 	ASSERT(tcp->tcp_fused);
873 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
874 	ASSERT(peer_tcp->tcp_loopback_peer == tcp);
875 	ASSERT(!TCP_IS_DETACHED(tcp));
876 	ASSERT(tcp->tcp_connp->conn_sqp ==
877 	    peer_tcp->tcp_connp->conn_sqp);
878 
879 	if (tcp->tcp_rcv_list != NULL)
880 		(void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL);
881 
882 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
883 	if (peer_tcp->tcp_flow_stopped &&
884 	    (TCP_UNSENT_BYTES(peer_tcp) <=
885 	    peer_tcp->tcp_connp->conn_sndlowat)) {
886 		tcp_clrqfull(peer_tcp);
887 	}
888 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
889 
890 	TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled);
891 }
892