xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision 56b56c0dc63eac41299ada6dcb890406f9063b1c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/strsun.h>
29 #include <sys/strsubr.h>
30 #include <sys/debug.h>
31 #include <sys/sdt.h>
32 #include <sys/cmn_err.h>
33 #include <sys/tihdr.h>
34 
35 #include <inet/common.h>
36 #include <inet/optcom.h>
37 #include <inet/ip.h>
38 #include <inet/ip_if.h>
39 #include <inet/ip_impl.h>
40 #include <inet/tcp.h>
41 #include <inet/tcp_impl.h>
42 #include <inet/ipsec_impl.h>
43 #include <inet/ipclassifier.h>
44 #include <inet/ipp_common.h>
45 #include <inet/ip_if.h>
46 
47 /*
48  * This file implements TCP fusion - a protocol-less data path for TCP
49  * loopback connections.  The fusion of two local TCP endpoints occurs
50  * at connection establishment time.  Various conditions (see details
51  * in tcp_fuse()) need to be met for fusion to be successful.  If it
52  * fails, we fall back to the regular TCP data path; if it succeeds,
53  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
54  * tcp_fuse_output() enqueues application data directly onto the peer's
55  * receive queue; no protocol processing is involved.
56  *
57  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
58  * One of the requirements for fusion to succeed is that both endpoints
59  * need to be using the same squeue.  This ensures that neither side
60  * can disappear while the other side is still sending data. Flow
61  * control information is manipulated outside the squeue, so the
62  * tcp_non_sq_lock must be held when touching tcp_flow_stopped.
63  */
64 
65 /*
66  * Setting this to false means we disable fusion altogether and
67  * loopback connections would go through the protocol paths.
68  */
69 boolean_t do_tcp_fusion = B_TRUE;
70 
71 /*
72  * Return true if this connection needs some IP functionality
73  */
74 static boolean_t
75 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns)
76 {
77 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
78 
79 	/*
80 	 * If ire is not cached, do not use fusion
81 	 */
82 	if (tcp->tcp_connp->conn_ire_cache == NULL) {
83 		/*
84 		 * There is no need to hold conn_lock here because when called
85 		 * from tcp_fuse() there can be no window where conn_ire_cache
86 		 * can change. This is not true when called from
87 		 * tcp_fuse_output() as conn_ire_cache can become null just
88 		 * after the check. It will be necessary to recheck for a NULL
89 		 * conn_ire_cache in tcp_fuse_output() to avoid passing a
90 		 * stale ill pointer to FW_HOOKS.
91 		 */
92 		return (B_TRUE);
93 	}
94 	if (tcp->tcp_ipversion == IPV4_VERSION) {
95 		if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH)
96 			return (B_TRUE);
97 		if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
98 			return (B_TRUE);
99 		if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
100 			return (B_TRUE);
101 	} else {
102 		if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)
103 			return (B_TRUE);
104 		if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
105 			return (B_TRUE);
106 		if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
107 			return (B_TRUE);
108 	}
109 	if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp))
110 		return (B_TRUE);
111 	return (B_FALSE);
112 }
113 
114 
115 /*
116  * This routine gets called by the eager tcp upon changing state from
117  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
118  * and the active connect tcp such that the regular tcp processings
119  * may be bypassed under allowable circumstances.  Because the fusion
120  * requires both endpoints to be in the same squeue, it does not work
121  * for simultaneous active connects because there is no easy way to
122  * switch from one squeue to another once the connection is created.
123  * This is different from the eager tcp case where we assign it the
124  * same squeue as the one given to the active connect tcp during open.
125  */
126 void
127 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
128 {
129 	conn_t *peer_connp, *connp = tcp->tcp_connp;
130 	tcp_t *peer_tcp;
131 	tcp_stack_t	*tcps = tcp->tcp_tcps;
132 	netstack_t	*ns;
133 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
134 
135 	ASSERT(!tcp->tcp_fused);
136 	ASSERT(tcp->tcp_loopback);
137 	ASSERT(tcp->tcp_loopback_peer == NULL);
138 	/*
139 	 * We need to inherit tcp_recv_hiwater of the listener tcp,
140 	 * but we can't really use tcp_listener since we get here after
141 	 * sending up T_CONN_IND and tcp_wput_accept() may be called
142 	 * independently, at which point tcp_listener is cleared;
143 	 * this is why we use tcp_saved_listener. The listener itself
144 	 * is guaranteed to be around until tcp_accept_finish() is called
145 	 * on this eager -- this won't happen until we're done since we're
146 	 * inside the eager's perimeter now.
147 	 *
148 	 * We can also get called in the case were a connection needs
149 	 * to be re-fused. In this case tcp_saved_listener will be
150 	 * NULL but tcp_refuse will be true.
151 	 */
152 	ASSERT(tcp->tcp_saved_listener != NULL || tcp->tcp_refuse);
153 	/*
154 	 * Lookup peer endpoint; search for the remote endpoint having
155 	 * the reversed address-port quadruplet in ESTABLISHED state,
156 	 * which is guaranteed to be unique in the system.  Zone check
157 	 * is applied accordingly for loopback address, but not for
158 	 * local address since we want fusion to happen across Zones.
159 	 */
160 	if (tcp->tcp_ipversion == IPV4_VERSION) {
161 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
162 		    (ipha_t *)iphdr, tcph, ipst);
163 	} else {
164 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
165 		    (ip6_t *)iphdr, tcph, ipst);
166 	}
167 
168 	/*
169 	 * We can only proceed if peer exists, resides in the same squeue
170 	 * as our conn and is not raw-socket. We also restrict fusion to
171 	 * endpoints of the same type (STREAMS or non-STREAMS). The squeue
172 	 * assignment of this eager tcp was done earlier at the time of SYN
173 	 * processing in ip_fanout_tcp{_v6}.  Note that similar squeues by
174 	 * itself doesn't guarantee a safe condition to fuse, hence we perform
175 	 * additional tests below.
176 	 */
177 	ASSERT(peer_connp == NULL || peer_connp != connp);
178 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
179 	    !IPCL_IS_TCP(peer_connp) ||
180 	    IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) {
181 		if (peer_connp != NULL) {
182 			TCP_STAT(tcps, tcp_fusion_unqualified);
183 			CONN_DEC_REF(peer_connp);
184 		}
185 		return;
186 	}
187 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
188 
189 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
190 	ASSERT(peer_tcp->tcp_loopback_peer == NULL);
191 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
192 
193 	/*
194 	 * Due to IRE changes the peer and us might not agree on tcp_loopback.
195 	 * We bail in that case.
196 	 */
197 	if (!peer_tcp->tcp_loopback) {
198 		TCP_STAT(tcps, tcp_fusion_unqualified);
199 		CONN_DEC_REF(peer_connp);
200 		return;
201 	}
202 	/*
203 	 * Fuse the endpoints; we perform further checks against both
204 	 * tcp endpoints to ensure that a fusion is allowed to happen.
205 	 * In particular we bail out for non-simple TCP/IP or if IPsec/
206 	 * IPQoS policy/kernel SSL exists. We also need to check if
207 	 * the connection is quiescent to cover the case when we are
208 	 * trying to re-enable fusion after IPobservability is turned off.
209 	 */
210 	ns = tcps->tcps_netstack;
211 	ipst = ns->netstack_ip;
212 
213 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
214 	    !tcp_loopback_needs_ip(tcp, ns) &&
215 	    !tcp_loopback_needs_ip(peer_tcp, ns) &&
216 	    tcp->tcp_kssl_ent == NULL &&
217 	    tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL &&
218 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
219 		mblk_t *mp;
220 		queue_t *peer_rq = peer_tcp->tcp_rq;
221 
222 		ASSERT(!TCP_IS_DETACHED(peer_tcp));
223 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL ||
224 		    (!IPCL_IS_NONSTR(connp) && tcp->tcp_refuse));
225 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL ||
226 		    (!IPCL_IS_NONSTR(peer_connp) && peer_tcp->tcp_refuse));
227 		ASSERT(tcp->tcp_kssl_ctx == NULL);
228 
229 		/*
230 		 * We need to drain data on both endpoints during unfuse.
231 		 * If we need to send up SIGURG at the time of draining,
232 		 * we want to be sure that an mblk is readily available.
233 		 * This is why we pre-allocate the M_PCSIG mblks for both
234 		 * endpoints which will only be used during/after unfuse.
235 		 * The mblk might already exist if we are doing a re-fuse.
236 		 */
237 		if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
238 			ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp));
239 
240 			if (tcp->tcp_fused_sigurg_mp == NULL) {
241 				if ((mp = allocb(1, BPRI_HI)) == NULL)
242 					goto failed;
243 				tcp->tcp_fused_sigurg_mp = mp;
244 			}
245 
246 			if (peer_tcp->tcp_fused_sigurg_mp == NULL) {
247 				if ((mp = allocb(1, BPRI_HI)) == NULL)
248 					goto failed;
249 				peer_tcp->tcp_fused_sigurg_mp = mp;
250 			}
251 
252 			if ((mp = allocb(sizeof (struct stroptions),
253 			    BPRI_HI)) == NULL)
254 				goto failed;
255 		}
256 
257 		/* Fuse both endpoints */
258 		peer_tcp->tcp_loopback_peer = tcp;
259 		tcp->tcp_loopback_peer = peer_tcp;
260 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
261 
262 		/*
263 		 * We never use regular tcp paths in fusion and should
264 		 * therefore clear tcp_unsent on both endpoints.  Having
265 		 * them set to non-zero values means asking for trouble
266 		 * especially after unfuse, where we may end up sending
267 		 * through regular tcp paths which expect xmit_list and
268 		 * friends to be correctly setup.
269 		 */
270 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
271 
272 		tcp_timers_stop(tcp);
273 		tcp_timers_stop(peer_tcp);
274 
275 		if (!tcp->tcp_refuse) {
276 			/*
277 			 * Set receive buffer and max packet size for the
278 			 * active open tcp.
279 			 * eager's values will be set in tcp_accept_finish.
280 			 */
281 
282 			(void) tcp_rwnd_set(peer_tcp,
283 			    peer_tcp->tcp_recv_hiwater);
284 
285 			/*
286 			 * Set the write offset value to zero since we won't
287 			 * be needing any room for TCP/IP headers.
288 			 */
289 			if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
290 				struct stroptions *stropt;
291 
292 				DB_TYPE(mp) = M_SETOPTS;
293 				mp->b_wptr += sizeof (*stropt);
294 
295 				stropt = (struct stroptions *)mp->b_rptr;
296 				stropt->so_flags = SO_WROFF;
297 				stropt->so_wroff = 0;
298 
299 				/* Send the options up */
300 				putnext(peer_rq, mp);
301 			} else {
302 				struct sock_proto_props sopp;
303 
304 				/* The peer is a non-STREAMS end point */
305 				ASSERT(IPCL_IS_TCP(peer_connp));
306 
307 				sopp.sopp_flags = SOCKOPT_WROFF;
308 				sopp.sopp_wroff = 0;
309 				(*peer_connp->conn_upcalls->su_set_proto_props)
310 				    (peer_connp->conn_upper_handle, &sopp);
311 			}
312 		} else {
313 			/*
314 			 * Endpoints are being re-fused, so options will not
315 			 * be sent up. In case of STREAMS, free the stroptions
316 			 * mblk.
317 			 */
318 			if (!IPCL_IS_NONSTR(connp))
319 				freemsg(mp);
320 		}
321 		tcp->tcp_refuse = B_FALSE;
322 		peer_tcp->tcp_refuse = B_FALSE;
323 	} else {
324 		TCP_STAT(tcps, tcp_fusion_unqualified);
325 	}
326 	CONN_DEC_REF(peer_connp);
327 	return;
328 
329 failed:
330 	if (tcp->tcp_fused_sigurg_mp != NULL) {
331 		freeb(tcp->tcp_fused_sigurg_mp);
332 		tcp->tcp_fused_sigurg_mp = NULL;
333 	}
334 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
335 		freeb(peer_tcp->tcp_fused_sigurg_mp);
336 		peer_tcp->tcp_fused_sigurg_mp = NULL;
337 	}
338 	CONN_DEC_REF(peer_connp);
339 }
340 
341 /*
342  * Unfuse a previously-fused pair of tcp loopback endpoints.
343  */
344 void
345 tcp_unfuse(tcp_t *tcp)
346 {
347 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
348 	tcp_stack_t *tcps = tcp->tcp_tcps;
349 
350 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
351 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
352 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
353 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
354 
355 	/*
356 	 * Cancel any pending push timers.
357 	 */
358 	if (tcp->tcp_push_tid != 0) {
359 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
360 		tcp->tcp_push_tid = 0;
361 	}
362 	if (peer_tcp->tcp_push_tid != 0) {
363 		(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
364 		peer_tcp->tcp_push_tid = 0;
365 	}
366 
367 	/*
368 	 * Drain any pending data; Note that in case of a detached tcp, the
369 	 * draining will happen later after the tcp is unfused.  For non-
370 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
371 	 * If we have urgent data sitting in the receive list, we will
372 	 * need to send up a SIGURG signal first before draining the data.
373 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
374 	 * when called from tcp_rcv_drain().
375 	 */
376 	if (!TCP_IS_DETACHED(tcp)) {
377 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
378 		    &tcp->tcp_fused_sigurg_mp);
379 	}
380 	if (!TCP_IS_DETACHED(peer_tcp)) {
381 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
382 		    &peer_tcp->tcp_fused_sigurg_mp);
383 	}
384 
385 	/* Lift up any flow-control conditions */
386 	mutex_enter(&tcp->tcp_non_sq_lock);
387 	if (tcp->tcp_flow_stopped) {
388 		tcp_clrqfull(tcp);
389 		TCP_STAT(tcps, tcp_fusion_backenabled);
390 	}
391 	mutex_exit(&tcp->tcp_non_sq_lock);
392 
393 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
394 	if (peer_tcp->tcp_flow_stopped) {
395 		tcp_clrqfull(peer_tcp);
396 		TCP_STAT(tcps, tcp_fusion_backenabled);
397 	}
398 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
399 
400 	/*
401 	 * Update th_seq and th_ack in the header template
402 	 */
403 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
404 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
405 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
406 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
407 
408 	/* Unfuse the endpoints */
409 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
410 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
411 }
412 
413 /*
414  * Fusion output routine used to handle urgent data sent by STREAMS based
415  * endpoints. This routine is called by tcp_fuse_output() for handling
416  * non-M_DATA mblks.
417  */
418 void
419 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
420 {
421 	mblk_t *mp1;
422 	struct T_exdata_ind *tei;
423 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
424 	mblk_t *head, *prev_head = NULL;
425 	tcp_stack_t	*tcps = tcp->tcp_tcps;
426 
427 	ASSERT(tcp->tcp_fused);
428 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
429 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
430 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
431 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
432 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
433 
434 	/*
435 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
436 	 * Each occurence denotes a new urgent pointer.  For each new
437 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
438 	 * that it needs to go into urgent mode.  This is similar to the
439 	 * urgent data handling in the regular tcp.  We don't need to keep
440 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
441 	 * "advances" the urgent pointer for us.
442 	 *
443 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
444 	 * by a T_EXDATA_IND before being enqueued behind any existing data
445 	 * destined for the receiving app.  There is only a single urgent
446 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
447 	 * data arrives before the receiving app reads some existing urgent
448 	 * data, the previous marker is lost.  This behavior is emulated
449 	 * accordingly below, by removing any existing T_EXDATA_IND messages
450 	 * and essentially converting old urgent data into non-urgent.
451 	 */
452 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
453 	/* Let sender get out of urgent mode */
454 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
455 
456 	/*
457 	 * This flag indicates that a signal needs to be sent up.
458 	 * This flag will only get cleared once SIGURG is delivered and
459 	 * is not affected by the tcp_fused flag -- delivery will still
460 	 * happen even after an endpoint is unfused, to handle the case
461 	 * where the sending endpoint immediately closes/unfuses after
462 	 * sending urgent data and the accept is not yet finished.
463 	 */
464 	peer_tcp->tcp_fused_sigurg = B_TRUE;
465 
466 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
467 	DB_TYPE(mp) = M_PROTO;
468 	tei = (struct T_exdata_ind *)mp->b_rptr;
469 	tei->PRIM_type = T_EXDATA_IND;
470 	tei->MORE_flag = 0;
471 	mp->b_wptr = (uchar_t *)&tei[1];
472 
473 	TCP_STAT(tcps, tcp_fusion_urg);
474 	BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
475 
476 	head = peer_tcp->tcp_rcv_list;
477 	while (head != NULL) {
478 		/*
479 		 * Remove existing T_EXDATA_IND, keep the data which follows
480 		 * it and relink our list.  Note that we don't modify the
481 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
482 		 */
483 		if (DB_TYPE(head) != M_DATA) {
484 			mp1 = head;
485 
486 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
487 			head = mp1->b_cont;
488 			mp1->b_cont = NULL;
489 			head->b_next = mp1->b_next;
490 			mp1->b_next = NULL;
491 			if (prev_head != NULL)
492 				prev_head->b_next = head;
493 			if (peer_tcp->tcp_rcv_list == mp1)
494 				peer_tcp->tcp_rcv_list = head;
495 			if (peer_tcp->tcp_rcv_last_head == mp1)
496 				peer_tcp->tcp_rcv_last_head = head;
497 			freeb(mp1);
498 		}
499 		prev_head = head;
500 		head = head->b_next;
501 	}
502 }
503 
504 /*
505  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
506  * If we are modifying any member that can be changed outside the squeue,
507  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
508  */
509 boolean_t
510 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
511 {
512 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
513 	boolean_t flow_stopped, peer_data_queued = B_FALSE;
514 	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
515 	boolean_t push = B_TRUE;
516 	mblk_t *mp1 = mp;
517 	ill_t *ilp, *olp;
518 	ipif_t *iifp, *oifp;
519 	ipha_t *ipha;
520 	ip6_t *ip6h;
521 	tcph_t *tcph;
522 	uint_t ip_hdr_len;
523 	uint32_t seq;
524 	uint32_t recv_size = send_size;
525 	tcp_stack_t	*tcps = tcp->tcp_tcps;
526 	netstack_t	*ns = tcps->tcps_netstack;
527 	ip_stack_t	*ipst = ns->netstack_ip;
528 
529 	ASSERT(tcp->tcp_fused);
530 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
531 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
532 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
533 	    DB_TYPE(mp) == M_PCPROTO);
534 
535 	/* If this connection requires IP, unfuse and use regular path */
536 	if (tcp_loopback_needs_ip(tcp, ns) ||
537 	    tcp_loopback_needs_ip(peer_tcp, ns) ||
538 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst) ||
539 	    list_head(&ipst->ips_ipobs_cb_list) != NULL) {
540 		TCP_STAT(tcps, tcp_fusion_aborted);
541 		tcp->tcp_refuse = B_TRUE;
542 		peer_tcp->tcp_refuse = B_TRUE;
543 
544 		bcopy(peer_tcp->tcp_tcph, &tcp->tcp_saved_tcph,
545 		    sizeof (tcph_t));
546 		bcopy(tcp->tcp_tcph, &peer_tcp->tcp_saved_tcph,
547 		    sizeof (tcph_t));
548 		if (tcp->tcp_ipversion == IPV4_VERSION) {
549 			bcopy(peer_tcp->tcp_ipha, &tcp->tcp_saved_ipha,
550 			    sizeof (ipha_t));
551 			bcopy(tcp->tcp_ipha, &peer_tcp->tcp_saved_ipha,
552 			    sizeof (ipha_t));
553 		} else {
554 			bcopy(peer_tcp->tcp_ip6h, &tcp->tcp_saved_ip6h,
555 			    sizeof (ip6_t));
556 			bcopy(tcp->tcp_ip6h, &peer_tcp->tcp_saved_ip6h,
557 			    sizeof (ip6_t));
558 		}
559 		goto unfuse;
560 	}
561 
562 	if (send_size == 0) {
563 		freemsg(mp);
564 		return (B_TRUE);
565 	}
566 
567 	/*
568 	 * Handle urgent data; we either send up SIGURG to the peer now
569 	 * or do it later when we drain, in case the peer is detached
570 	 * or if we're short of memory for M_PCSIG mblk.
571 	 */
572 	if (urgent) {
573 		tcp_fuse_output_urg(tcp, mp);
574 
575 		mp1 = mp->b_cont;
576 	}
577 
578 	if (tcp->tcp_ipversion == IPV4_VERSION &&
579 	    (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) ||
580 	    HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) ||
581 	    tcp->tcp_ipversion == IPV6_VERSION &&
582 	    (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) ||
583 	    HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) {
584 		/*
585 		 * Build ip and tcp header to satisfy FW_HOOKS.
586 		 * We only build it when any hook is present.
587 		 */
588 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
589 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
590 			/* If tcp_xmit_mp fails, use regular path */
591 			goto unfuse;
592 
593 		/*
594 		 * The ipif and ill can be safely referenced under the
595 		 * protection of conn_lock - see head of function comment for
596 		 * conn_get_held_ipif(). It is necessary to check that both
597 		 * the ipif and ill can be looked up (i.e. not condemned). If
598 		 * not, bail out and unfuse this connection.
599 		 */
600 		mutex_enter(&peer_tcp->tcp_connp->conn_lock);
601 		if ((peer_tcp->tcp_connp->conn_ire_cache == NULL) ||
602 		    (peer_tcp->tcp_connp->conn_ire_cache->ire_marks &
603 		    IRE_MARK_CONDEMNED) ||
604 		    ((oifp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif)
605 		    == NULL) ||
606 		    (!IPIF_CAN_LOOKUP(oifp)) ||
607 		    ((olp = oifp->ipif_ill) == NULL) ||
608 		    (ill_check_and_refhold(olp) != 0)) {
609 			mutex_exit(&peer_tcp->tcp_connp->conn_lock);
610 			goto unfuse;
611 		}
612 		mutex_exit(&peer_tcp->tcp_connp->conn_lock);
613 
614 		/* PFHooks: LOOPBACK_OUT */
615 		if (tcp->tcp_ipversion == IPV4_VERSION) {
616 			ipha = (ipha_t *)mp1->b_rptr;
617 
618 			DTRACE_PROBE4(ip4__loopback__out__start,
619 			    ill_t *, NULL, ill_t *, olp,
620 			    ipha_t *, ipha, mblk_t *, mp1);
621 			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
622 			    ipst->ips_ipv4firewall_loopback_out,
623 			    NULL, olp, ipha, mp1, mp1, 0, ipst);
624 			DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1);
625 		} else {
626 			ip6h = (ip6_t *)mp1->b_rptr;
627 
628 			DTRACE_PROBE4(ip6__loopback__out__start,
629 			    ill_t *, NULL, ill_t *, olp,
630 			    ip6_t *, ip6h, mblk_t *, mp1);
631 			FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
632 			    ipst->ips_ipv6firewall_loopback_out,
633 			    NULL, olp, ip6h, mp1, mp1, 0, ipst);
634 			DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1);
635 		}
636 		ill_refrele(olp);
637 
638 		if (mp1 == NULL)
639 			goto unfuse;
640 
641 		/*
642 		 * The ipif and ill can be safely referenced under the
643 		 * protection of conn_lock - see head of function comment for
644 		 * conn_get_held_ipif(). It is necessary to check that both
645 		 * the ipif and ill can be looked up (i.e. not condemned). If
646 		 * not, bail out and unfuse this connection.
647 		 */
648 		mutex_enter(&tcp->tcp_connp->conn_lock);
649 		if ((tcp->tcp_connp->conn_ire_cache == NULL) ||
650 		    (tcp->tcp_connp->conn_ire_cache->ire_marks &
651 		    IRE_MARK_CONDEMNED) ||
652 		    ((iifp = tcp->tcp_connp->conn_ire_cache->ire_ipif)
653 		    == NULL) ||
654 		    (!IPIF_CAN_LOOKUP(iifp)) ||
655 		    ((ilp = iifp->ipif_ill) == NULL) ||
656 		    (ill_check_and_refhold(ilp) != 0)) {
657 			mutex_exit(&tcp->tcp_connp->conn_lock);
658 			goto unfuse;
659 		}
660 		mutex_exit(&tcp->tcp_connp->conn_lock);
661 
662 		/* PFHooks: LOOPBACK_IN */
663 		if (tcp->tcp_ipversion == IPV4_VERSION) {
664 			DTRACE_PROBE4(ip4__loopback__in__start,
665 			    ill_t *, ilp, ill_t *, NULL,
666 			    ipha_t *, ipha, mblk_t *, mp1);
667 			FW_HOOKS(ipst->ips_ip4_loopback_in_event,
668 			    ipst->ips_ipv4firewall_loopback_in,
669 			    ilp, NULL, ipha, mp1, mp1, 0, ipst);
670 			DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1);
671 			ill_refrele(ilp);
672 			if (mp1 == NULL)
673 				goto unfuse;
674 
675 			ip_hdr_len = IPH_HDR_LENGTH(ipha);
676 		} else {
677 			DTRACE_PROBE4(ip6__loopback__in__start,
678 			    ill_t *, ilp, ill_t *, NULL,
679 			    ip6_t *, ip6h, mblk_t *, mp1);
680 			FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
681 			    ipst->ips_ipv6firewall_loopback_in,
682 			    ilp, NULL, ip6h, mp1, mp1, 0, ipst);
683 			DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1);
684 			ill_refrele(ilp);
685 			if (mp1 == NULL)
686 				goto unfuse;
687 
688 			ip_hdr_len = ip_hdr_length_v6(mp1, ip6h);
689 		}
690 
691 		/* Data length might be changed by FW_HOOKS */
692 		tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len];
693 		seq = ABE32_TO_U32(tcph->th_seq);
694 		recv_size += seq - tcp->tcp_snxt;
695 
696 		/*
697 		 * The message duplicated by tcp_xmit_mp is freed.
698 		 * Note: the original message passed in remains unchanged.
699 		 */
700 		freemsg(mp1);
701 	}
702 
703 	/*
704 	 * Enqueue data into the peer's receive list; we may or may not
705 	 * drain the contents depending on the conditions below.
706 	 *
707 	 * For non-STREAMS sockets we normally queue data directly in the
708 	 * socket by calling the su_recv upcall. However, if the peer is
709 	 * detached we use tcp_rcv_enqueue() instead. Queued data will be
710 	 * drained when the accept completes (in tcp_accept_finish()).
711 	 */
712 	if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
713 	    !TCP_IS_DETACHED(peer_tcp)) {
714 		int error;
715 		int flags = 0;
716 
717 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
718 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
719 			flags = MSG_OOB;
720 			(*peer_tcp->tcp_connp->conn_upcalls->su_signal_oob)
721 			    (peer_tcp->tcp_connp->conn_upper_handle, 0);
722 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
723 		}
724 		if ((*peer_tcp->tcp_connp->conn_upcalls->su_recv)(
725 		    peer_tcp->tcp_connp->conn_upper_handle, mp, recv_size,
726 		    flags, &error, &push) < 0) {
727 			ASSERT(error != EOPNOTSUPP);
728 			peer_data_queued = B_TRUE;
729 		}
730 	} else {
731 		if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
732 		    (tcp->tcp_valid_bits & TCP_URG_VALID) &&
733 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
734 			/*
735 			 * Can not deal with urgent pointers
736 			 * that arrive before the connection has been
737 			 * accept()ed.
738 			 */
739 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
740 			freemsg(mp);
741 			return (B_TRUE);
742 		}
743 
744 		tcp_rcv_enqueue(peer_tcp, mp, recv_size);
745 
746 		/* In case it wrapped around and also to keep it constant */
747 		peer_tcp->tcp_rwnd += recv_size;
748 	}
749 
750 	/*
751 	 * Exercise flow-control when needed; we will get back-enabled
752 	 * in either tcp_accept_finish(), tcp_unfuse(), or when data is
753 	 * consumed. If peer endpoint is detached, we emulate streams flow
754 	 * control by checking the peer's queue size and high water mark;
755 	 * otherwise we simply use canputnext() to decide if we need to stop
756 	 * our flow.
757 	 *
758 	 * Since we are accessing our tcp_flow_stopped and might modify it,
759 	 * we need to take tcp->tcp_non_sq_lock.
760 	 */
761 	mutex_enter(&tcp->tcp_non_sq_lock);
762 	flow_stopped = tcp->tcp_flow_stopped;
763 	if ((TCP_IS_DETACHED(peer_tcp) &&
764 	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_recv_hiwater)) ||
765 	    (!TCP_IS_DETACHED(peer_tcp) &&
766 	    !IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
767 	    !canputnext(peer_tcp->tcp_rq))) {
768 		peer_data_queued = B_TRUE;
769 	}
770 
771 	if (!flow_stopped && (peer_data_queued ||
772 	    (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) {
773 		tcp_setqfull(tcp);
774 		flow_stopped = B_TRUE;
775 		TCP_STAT(tcps, tcp_fusion_flowctl);
776 		DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp,
777 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt);
778 	} else if (flow_stopped && !peer_data_queued &&
779 	    (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) {
780 		tcp_clrqfull(tcp);
781 		TCP_STAT(tcps, tcp_fusion_backenabled);
782 		flow_stopped = B_FALSE;
783 	}
784 	mutex_exit(&tcp->tcp_non_sq_lock);
785 
786 	ipst->ips_loopback_packets++;
787 	tcp->tcp_last_sent_len = send_size;
788 
789 	/* Need to adjust the following SNMP MIB-related variables */
790 	tcp->tcp_snxt += send_size;
791 	tcp->tcp_suna = tcp->tcp_snxt;
792 	peer_tcp->tcp_rnxt += recv_size;
793 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
794 
795 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
796 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
797 
798 	BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
799 	BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
800 	UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
801 
802 	BUMP_LOCAL(tcp->tcp_obsegs);
803 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
804 
805 	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
806 
807 	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
808 	    !TCP_IS_DETACHED(peer_tcp)) {
809 		/*
810 		 * Drain the peer's receive queue it has urgent data or if
811 		 * we're not flow-controlled.
812 		 */
813 		if (urgent || !flow_stopped) {
814 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
815 			/*
816 			 * For TLI-based streams, a thread in tcp_accept_swap()
817 			 * can race with us.  That thread will ensure that the
818 			 * correct peer_tcp->tcp_rq is globally visible before
819 			 * peer_tcp->tcp_detached is visible as clear, but we
820 			 * must also ensure that the load of tcp_rq cannot be
821 			 * reordered to be before the tcp_detached check.
822 			 */
823 			membar_consumer();
824 			(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
825 			    NULL);
826 		}
827 	}
828 	return (B_TRUE);
829 unfuse:
830 	tcp_unfuse(tcp);
831 	return (B_FALSE);
832 }
833 
834 /*
835  * This routine gets called to deliver data upstream on a fused or
836  * previously fused tcp loopback endpoint; the latter happens only
837  * when there is a pending SIGURG signal plus urgent data that can't
838  * be sent upstream in the past.
839  */
840 boolean_t
841 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
842 {
843 	mblk_t *mp;
844 	conn_t	*connp = tcp->tcp_connp;
845 
846 #ifdef DEBUG
847 	uint_t cnt = 0;
848 #endif
849 	tcp_stack_t	*tcps = tcp->tcp_tcps;
850 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
851 
852 	ASSERT(tcp->tcp_loopback);
853 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
854 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
855 	ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);
856 
857 	/* No need for the push timer now, in case it was scheduled */
858 	if (tcp->tcp_push_tid != 0) {
859 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
860 		tcp->tcp_push_tid = 0;
861 	}
862 	/*
863 	 * If there's urgent data sitting in receive list and we didn't
864 	 * get a chance to send up a SIGURG signal, make sure we send
865 	 * it first before draining in order to ensure that SIOCATMARK
866 	 * works properly.
867 	 */
868 	if (tcp->tcp_fused_sigurg) {
869 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
870 
871 		tcp->tcp_fused_sigurg = B_FALSE;
872 		/*
873 		 * sigurg_mpp is normally NULL, i.e. when we're still
874 		 * fused and didn't get here because of tcp_unfuse().
875 		 * In this case try hard to allocate the M_PCSIG mblk.
876 		 */
877 		if (sigurg_mpp == NULL &&
878 		    (mp = allocb(1, BPRI_HI)) == NULL &&
879 		    (mp = allocb_tryhard(1)) == NULL) {
880 			/* Alloc failed; try again next time */
881 			tcp->tcp_push_tid = TCP_TIMER(tcp,
882 			    tcp_push_timer,
883 			    MSEC_TO_TICK(
884 			    tcps->tcps_push_timer_interval));
885 			return (B_TRUE);
886 		} else if (sigurg_mpp != NULL) {
887 			/*
888 			 * Use the supplied M_PCSIG mblk; it means we're
889 			 * either unfused or in the process of unfusing,
890 			 * and the drain must happen now.
891 			 */
892 			mp = *sigurg_mpp;
893 			*sigurg_mpp = NULL;
894 		}
895 		ASSERT(mp != NULL);
896 
897 		/* Send up the signal */
898 		DB_TYPE(mp) = M_PCSIG;
899 		*mp->b_wptr++ = (uchar_t)SIGURG;
900 		putnext(q, mp);
901 
902 		/*
903 		 * Let the regular tcp_rcv_drain() path handle
904 		 * draining the data if we're no longer fused.
905 		 */
906 		if (!tcp->tcp_fused)
907 			return (B_FALSE);
908 	}
909 
910 	/* Drain the data */
911 	while ((mp = tcp->tcp_rcv_list) != NULL) {
912 		tcp->tcp_rcv_list = mp->b_next;
913 		mp->b_next = NULL;
914 #ifdef DEBUG
915 		cnt += msgdsize(mp);
916 #endif
917 		ASSERT(!IPCL_IS_NONSTR(connp));
918 		putnext(q, mp);
919 		TCP_STAT(tcps, tcp_fusion_putnext);
920 	}
921 
922 #ifdef DEBUG
923 	ASSERT(cnt == tcp->tcp_rcv_cnt);
924 #endif
925 	tcp->tcp_rcv_last_head = NULL;
926 	tcp->tcp_rcv_last_tail = NULL;
927 	tcp->tcp_rcv_cnt = 0;
928 	tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
929 
930 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
931 	if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
932 	    peer_tcp->tcp_xmit_lowater)) {
933 		tcp_clrqfull(peer_tcp);
934 		TCP_STAT(tcps, tcp_fusion_backenabled);
935 	}
936 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
937 
938 	return (B_TRUE);
939 }
940 
941 /*
942  * Calculate the size of receive buffer for a fused tcp endpoint.
943  */
944 size_t
945 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
946 {
947 	tcp_stack_t	*tcps = tcp->tcp_tcps;
948 
949 	ASSERT(tcp->tcp_fused);
950 
951 	/* Ensure that value is within the maximum upper bound */
952 	if (rwnd > tcps->tcps_max_buf)
953 		rwnd = tcps->tcps_max_buf;
954 	/*
955 	 * Round up to system page size in case SO_RCVBUF is modified
956 	 * after SO_SNDBUF; the latter is also similarly rounded up.
957 	 */
958 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
959 
960 	/*
961 	 * Record high water mark, this is used for flow-control
962 	 * purposes in tcp_fuse_output().
963 	 */
964 	tcp->tcp_recv_hiwater = rwnd;
965 	tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
966 	return (rwnd);
967 }
968 
969 /*
970  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
971  */
972 int
973 tcp_fuse_maxpsz(tcp_t *tcp)
974 {
975 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
976 	uint_t sndbuf = tcp->tcp_xmit_hiwater;
977 	uint_t maxpsz = sndbuf;
978 
979 	ASSERT(tcp->tcp_fused);
980 	ASSERT(peer_tcp != NULL);
981 	ASSERT(peer_tcp->tcp_recv_hiwater != 0);
982 	/*
983 	 * In the fused loopback case, we want the stream head to split
984 	 * up larger writes into smaller chunks for a more accurate flow-
985 	 * control accounting.  Our maxpsz is half of the sender's send
986 	 * buffer or the receiver's receive buffer, whichever is smaller.
987 	 * We round up the buffer to system page size due to the lack of
988 	 * TCP MSS concept in Fusion.
989 	 */
990 	if (maxpsz > peer_tcp->tcp_recv_hiwater)
991 		maxpsz = peer_tcp->tcp_recv_hiwater;
992 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
993 
994 	return (maxpsz);
995 }
996 
997 /*
998  * Called to release flow control.
999  */
1000 void
1001 tcp_fuse_backenable(tcp_t *tcp)
1002 {
1003 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1004 
1005 	ASSERT(tcp->tcp_fused);
1006 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
1007 	ASSERT(peer_tcp->tcp_loopback_peer == tcp);
1008 	ASSERT(!TCP_IS_DETACHED(tcp));
1009 	ASSERT(tcp->tcp_connp->conn_sqp ==
1010 	    peer_tcp->tcp_connp->conn_sqp);
1011 
1012 	if (tcp->tcp_rcv_list != NULL)
1013 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, NULL);
1014 
1015 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
1016 	if (peer_tcp->tcp_flow_stopped &&
1017 	    (TCP_UNSENT_BYTES(peer_tcp) <=
1018 	    peer_tcp->tcp_xmit_lowater)) {
1019 		tcp_clrqfull(peer_tcp);
1020 	}
1021 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
1022 
1023 	TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled);
1024 }
1025