1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/debug.h> 33 #include <sys/sdt.h> 34 #include <sys/cmn_err.h> 35 #include <sys/tihdr.h> 36 37 #include <inet/common.h> 38 #include <inet/ip.h> 39 #include <inet/ip_impl.h> 40 #include <inet/tcp.h> 41 #include <inet/tcp_impl.h> 42 #include <inet/ipsec_impl.h> 43 #include <inet/ipclassifier.h> 44 #include <inet/ipp_common.h> 45 46 /* 47 * This file implements TCP fusion - a protocol-less data path for TCP 48 * loopback connections. The fusion of two local TCP endpoints occurs 49 * at connection establishment time. Various conditions (see details 50 * in tcp_fuse()) need to be met for fusion to be successful. If it 51 * fails, we fall back to the regular TCP data path; if it succeeds, 52 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 53 * tcp_fuse_output() enqueues application data directly onto the peer's 54 * receive queue; no protocol processing is involved. After enqueueing 55 * the data, the sender can either push (putnext) data up the receiver's 56 * read queue; or the sender can simply return and let the receiver 57 * retrieve the enqueued data via the synchronous streams entry point 58 * tcp_fuse_rrw(). The latter path is taken if synchronous streams is 59 * enabled (the default). It is disabled if sockfs no longer resides 60 * directly on top of tcp module due to a module insertion or removal. 61 * It also needs to be temporarily disabled when sending urgent data 62 * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done 63 * by strsock_proto() hook. 64 * 65 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. 66 * One of the requirements for fusion to succeed is that both endpoints 67 * need to be using the same squeue. This ensures that neither side 68 * can disappear while the other side is still sending data. By itself, 69 * squeue is not sufficient for guaranteeing safety when synchronous 70 * streams is enabled. The reason is that tcp_fuse_rrw() doesn't enter 71 * the squeue and its access to tcp_rcv_list and other fusion-related 72 * fields needs to be sychronized with the sender. tcp_non_sq_lock is 73 * used for this purpose. When there is urgent data, the sender needs 74 * to push the data up the receiver's streams read queue. In order to 75 * avoid holding the tcp_non_sq_lock across putnext(), the sender sets 76 * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock 77 * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()). If tcp_fuse_rrw() enters 78 * after this point, it will see that synchronous streams is plugged and 79 * will wait on tcp_fuse_plugcv. After the sender has finished pushing up 80 * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using 81 * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(). This will cause any threads waiting 82 * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call 83 * getq_noenab() to dequeue data from the stream head instead. Once the 84 * data on the stream head has been consumed, tcp_fuse_rrw() may again 85 * be used to process tcp_rcv_list. However, if TCP_FUSE_SYNCSTR_STOP() 86 * has been called, all future calls to tcp_fuse_rrw() will return EBUSY, 87 * effectively disabling synchronous streams. 88 * 89 * The following note applies only to the synchronous streams mode. 90 * 91 * Flow control is done by checking the size of receive buffer and 92 * the number of data blocks, both set to different limits. This is 93 * different than regular streams flow control where cumulative size 94 * check dominates block count check -- streams queue high water mark 95 * typically represents bytes. Each enqueue triggers notifications 96 * to the receiving process; a build up of data blocks indicates a 97 * slow receiver and the sender should be blocked or informed at the 98 * earliest moment instead of further wasting system resources. In 99 * effect, this is equivalent to limiting the number of outstanding 100 * segments in flight. 101 */ 102 103 /* 104 * Macros that determine whether or not IP processing is needed for TCP. 105 */ 106 #define TCP_IPOPT_POLICY_V4(tcp) \ 107 ((tcp)->tcp_ipversion == IPV4_VERSION && \ 108 ((tcp)->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH || \ 109 CONN_OUTBOUND_POLICY_PRESENT((tcp)->tcp_connp) || \ 110 CONN_INBOUND_POLICY_PRESENT((tcp)->tcp_connp))) 111 112 #define TCP_IPOPT_POLICY_V6(tcp) \ 113 ((tcp)->tcp_ipversion == IPV6_VERSION && \ 114 ((tcp)->tcp_ip_hdr_len != IPV6_HDR_LEN || \ 115 CONN_OUTBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp) || \ 116 CONN_INBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp))) 117 118 #define TCP_LOOPBACK_IP(tcp) \ 119 (TCP_IPOPT_POLICY_V4(tcp) || TCP_IPOPT_POLICY_V6(tcp) || \ 120 !CONN_IS_LSO_MD_FASTPATH((tcp)->tcp_connp)) 121 122 /* 123 * Setting this to false means we disable fusion altogether and 124 * loopback connections would go through the protocol paths. 125 */ 126 boolean_t do_tcp_fusion = B_TRUE; 127 128 /* 129 * Enabling this flag allows sockfs to retrieve data directly 130 * from a fused tcp endpoint using synchronous streams interface. 131 */ 132 boolean_t do_tcp_direct_sockfs = B_TRUE; 133 134 /* 135 * This is the minimum amount of outstanding writes allowed on 136 * a synchronous streams-enabled receiving endpoint before the 137 * sender gets flow-controlled. Setting this value to 0 means 138 * that the data block limit is equivalent to the byte count 139 * limit, which essentially disables the check. 140 */ 141 #define TCP_FUSION_RCV_UNREAD_MIN 8 142 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN; 143 144 static void tcp_fuse_syncstr_enable(tcp_t *); 145 static void tcp_fuse_syncstr_disable(tcp_t *); 146 static void strrput_sig(queue_t *, boolean_t); 147 148 /* 149 * This routine gets called by the eager tcp upon changing state from 150 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 151 * and the active connect tcp such that the regular tcp processings 152 * may be bypassed under allowable circumstances. Because the fusion 153 * requires both endpoints to be in the same squeue, it does not work 154 * for simultaneous active connects because there is no easy way to 155 * switch from one squeue to another once the connection is created. 156 * This is different from the eager tcp case where we assign it the 157 * same squeue as the one given to the active connect tcp during open. 158 */ 159 void 160 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph) 161 { 162 conn_t *peer_connp, *connp = tcp->tcp_connp; 163 tcp_t *peer_tcp; 164 165 ASSERT(!tcp->tcp_fused); 166 ASSERT(tcp->tcp_loopback); 167 ASSERT(tcp->tcp_loopback_peer == NULL); 168 /* 169 * We need to inherit q_hiwat of the listener tcp, but we can't 170 * really use tcp_listener since we get here after sending up 171 * T_CONN_IND and tcp_wput_accept() may be called independently, 172 * at which point tcp_listener is cleared; this is why we use 173 * tcp_saved_listener. The listener itself is guaranteed to be 174 * around until tcp_accept_finish() is called on this eager -- 175 * this won't happen until we're done since we're inside the 176 * eager's perimeter now. 177 */ 178 ASSERT(tcp->tcp_saved_listener != NULL); 179 180 /* 181 * Lookup peer endpoint; search for the remote endpoint having 182 * the reversed address-port quadruplet in ESTABLISHED state, 183 * which is guaranteed to be unique in the system. Zone check 184 * is applied accordingly for loopback address, but not for 185 * local address since we want fusion to happen across Zones. 186 */ 187 if (tcp->tcp_ipversion == IPV4_VERSION) { 188 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 189 (ipha_t *)iphdr, tcph); 190 } else { 191 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 192 (ip6_t *)iphdr, tcph); 193 } 194 195 /* 196 * We can only proceed if peer exists, resides in the same squeue 197 * as our conn and is not raw-socket. The squeue assignment of 198 * this eager tcp was done earlier at the time of SYN processing 199 * in ip_fanout_tcp{_v6}. Note that similar squeues by itself 200 * doesn't guarantee a safe condition to fuse, hence we perform 201 * additional tests below. 202 */ 203 ASSERT(peer_connp == NULL || peer_connp != connp); 204 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 205 !IPCL_IS_TCP(peer_connp)) { 206 if (peer_connp != NULL) { 207 TCP_STAT(tcp_fusion_unqualified); 208 CONN_DEC_REF(peer_connp); 209 } 210 return; 211 } 212 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 213 214 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 215 ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL); 216 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 217 218 /* 219 * Fuse the endpoints; we perform further checks against both 220 * tcp endpoints to ensure that a fusion is allowed to happen. 221 * In particular we bail out for non-simple TCP/IP or if IPsec/ 222 * IPQoS policy/kernel SSL exists. 223 */ 224 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 225 !TCP_LOOPBACK_IP(tcp) && !TCP_LOOPBACK_IP(peer_tcp) && 226 tcp->tcp_kssl_ent == NULL && 227 !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) { 228 mblk_t *mp; 229 struct stroptions *stropt; 230 queue_t *peer_rq = peer_tcp->tcp_rq; 231 232 ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL); 233 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 234 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 235 ASSERT(tcp->tcp_kssl_ctx == NULL); 236 237 /* 238 * We need to drain data on both endpoints during unfuse. 239 * If we need to send up SIGURG at the time of draining, 240 * we want to be sure that an mblk is readily available. 241 * This is why we pre-allocate the M_PCSIG mblks for both 242 * endpoints which will only be used during/after unfuse. 243 */ 244 if ((mp = allocb(1, BPRI_HI)) == NULL) 245 goto failed; 246 247 tcp->tcp_fused_sigurg_mp = mp; 248 249 if ((mp = allocb(1, BPRI_HI)) == NULL) 250 goto failed; 251 252 peer_tcp->tcp_fused_sigurg_mp = mp; 253 254 /* Allocate M_SETOPTS mblk */ 255 if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL) 256 goto failed; 257 258 /* Fuse both endpoints */ 259 peer_tcp->tcp_loopback_peer = tcp; 260 tcp->tcp_loopback_peer = peer_tcp; 261 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 262 263 /* 264 * We never use regular tcp paths in fusion and should 265 * therefore clear tcp_unsent on both endpoints. Having 266 * them set to non-zero values means asking for trouble 267 * especially after unfuse, where we may end up sending 268 * through regular tcp paths which expect xmit_list and 269 * friends to be correctly setup. 270 */ 271 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 272 273 tcp_timers_stop(tcp); 274 tcp_timers_stop(peer_tcp); 275 276 /* 277 * At this point we are a detached eager tcp and therefore 278 * don't have a queue assigned to us until accept happens. 279 * In the mean time the peer endpoint may immediately send 280 * us data as soon as fusion is finished, and we need to be 281 * able to flow control it in case it sends down huge amount 282 * of data while we're still detached. To prevent that we 283 * inherit the listener's q_hiwat value; this is temporary 284 * since we'll repeat the process in tcp_accept_finish(). 285 */ 286 (void) tcp_fuse_set_rcv_hiwat(tcp, 287 tcp->tcp_saved_listener->tcp_rq->q_hiwat); 288 289 /* 290 * Set the stream head's write offset value to zero since we 291 * won't be needing any room for TCP/IP headers; tell it to 292 * not break up the writes (this would reduce the amount of 293 * work done by kmem); and configure our receive buffer. 294 * Note that we can only do this for the active connect tcp 295 * since our eager is still detached; it will be dealt with 296 * later in tcp_accept_finish(). 297 */ 298 DB_TYPE(mp) = M_SETOPTS; 299 mp->b_wptr += sizeof (*stropt); 300 301 stropt = (struct stroptions *)mp->b_rptr; 302 stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT; 303 stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE); 304 stropt->so_wroff = 0; 305 306 /* 307 * Record the stream head's high water mark for 308 * peer endpoint; this is used for flow-control 309 * purposes in tcp_fuse_output(). 310 */ 311 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp, 312 peer_rq->q_hiwat); 313 314 /* Send the options up */ 315 putnext(peer_rq, mp); 316 } else { 317 TCP_STAT(tcp_fusion_unqualified); 318 } 319 CONN_DEC_REF(peer_connp); 320 return; 321 322 failed: 323 if (tcp->tcp_fused_sigurg_mp != NULL) { 324 freeb(tcp->tcp_fused_sigurg_mp); 325 tcp->tcp_fused_sigurg_mp = NULL; 326 } 327 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 328 freeb(peer_tcp->tcp_fused_sigurg_mp); 329 peer_tcp->tcp_fused_sigurg_mp = NULL; 330 } 331 CONN_DEC_REF(peer_connp); 332 } 333 334 /* 335 * Unfuse a previously-fused pair of tcp loopback endpoints. 336 */ 337 void 338 tcp_unfuse(tcp_t *tcp) 339 { 340 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 341 342 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 343 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 344 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 345 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 346 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 347 ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL); 348 349 /* 350 * We disable synchronous streams, drain any queued data and 351 * clear tcp_direct_sockfs. The synchronous streams entry 352 * points will become no-ops after this point. 353 */ 354 tcp_fuse_disable_pair(tcp, B_TRUE); 355 356 /* 357 * Update th_seq and th_ack in the header template 358 */ 359 U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq); 360 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 361 U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq); 362 U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack); 363 364 /* Unfuse the endpoints */ 365 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 366 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 367 } 368 369 /* 370 * Fusion output routine for urgent data. This routine is called by 371 * tcp_fuse_output() for handling non-M_DATA mblks. 372 */ 373 void 374 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 375 { 376 mblk_t *mp1; 377 struct T_exdata_ind *tei; 378 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 379 mblk_t *head, *prev_head = NULL; 380 381 ASSERT(tcp->tcp_fused); 382 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 383 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 384 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 385 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 386 387 /* 388 * Urgent data arrives in the form of T_EXDATA_REQ from above. 389 * Each occurence denotes a new urgent pointer. For each new 390 * urgent pointer we signal (SIGURG) the receiving app to indicate 391 * that it needs to go into urgent mode. This is similar to the 392 * urgent data handling in the regular tcp. We don't need to keep 393 * track of where the urgent pointer is, because each T_EXDATA_REQ 394 * "advances" the urgent pointer for us. 395 * 396 * The actual urgent data carried by T_EXDATA_REQ is then prepended 397 * by a T_EXDATA_IND before being enqueued behind any existing data 398 * destined for the receiving app. There is only a single urgent 399 * pointer (out-of-band mark) for a given tcp. If the new urgent 400 * data arrives before the receiving app reads some existing urgent 401 * data, the previous marker is lost. This behavior is emulated 402 * accordingly below, by removing any existing T_EXDATA_IND messages 403 * and essentially converting old urgent data into non-urgent. 404 */ 405 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 406 /* Let sender get out of urgent mode */ 407 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 408 409 /* 410 * This flag indicates that a signal needs to be sent up. 411 * This flag will only get cleared once SIGURG is delivered and 412 * is not affected by the tcp_fused flag -- delivery will still 413 * happen even after an endpoint is unfused, to handle the case 414 * where the sending endpoint immediately closes/unfuses after 415 * sending urgent data and the accept is not yet finished. 416 */ 417 peer_tcp->tcp_fused_sigurg = B_TRUE; 418 419 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 420 DB_TYPE(mp) = M_PROTO; 421 tei = (struct T_exdata_ind *)mp->b_rptr; 422 tei->PRIM_type = T_EXDATA_IND; 423 tei->MORE_flag = 0; 424 mp->b_wptr = (uchar_t *)&tei[1]; 425 426 TCP_STAT(tcp_fusion_urg); 427 BUMP_MIB(&tcp_mib, tcpOutUrg); 428 429 head = peer_tcp->tcp_rcv_list; 430 while (head != NULL) { 431 /* 432 * Remove existing T_EXDATA_IND, keep the data which follows 433 * it and relink our list. Note that we don't modify the 434 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 435 */ 436 if (DB_TYPE(head) != M_DATA) { 437 mp1 = head; 438 439 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 440 head = mp1->b_cont; 441 mp1->b_cont = NULL; 442 head->b_next = mp1->b_next; 443 mp1->b_next = NULL; 444 if (prev_head != NULL) 445 prev_head->b_next = head; 446 if (peer_tcp->tcp_rcv_list == mp1) 447 peer_tcp->tcp_rcv_list = head; 448 if (peer_tcp->tcp_rcv_last_head == mp1) 449 peer_tcp->tcp_rcv_last_head = head; 450 freeb(mp1); 451 } 452 prev_head = head; 453 head = head->b_next; 454 } 455 } 456 457 /* 458 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 459 * If we are modifying any member that can be changed outside the squeue, 460 * like tcp_flow_stopped, we need to take tcp_non_sq_lock. 461 */ 462 boolean_t 463 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 464 { 465 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 466 uint_t max_unread; 467 boolean_t flow_stopped; 468 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 469 mblk_t *mp1 = mp; 470 ill_t *ilp, *olp; 471 ipha_t *ipha; 472 ip6_t *ip6h; 473 tcph_t *tcph; 474 uint_t ip_hdr_len; 475 uint32_t seq; 476 uint32_t recv_size = send_size; 477 478 ASSERT(tcp->tcp_fused); 479 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 480 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 481 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 482 DB_TYPE(mp) == M_PCPROTO); 483 484 max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater; 485 486 /* If this connection requires IP, unfuse and use regular path */ 487 if (TCP_LOOPBACK_IP(tcp) || TCP_LOOPBACK_IP(peer_tcp) || 488 IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) { 489 TCP_STAT(tcp_fusion_aborted); 490 goto unfuse; 491 } 492 493 if (send_size == 0) { 494 freemsg(mp); 495 return (B_TRUE); 496 } 497 498 /* 499 * Handle urgent data; we either send up SIGURG to the peer now 500 * or do it later when we drain, in case the peer is detached 501 * or if we're short of memory for M_PCSIG mblk. 502 */ 503 if (urgent) { 504 /* 505 * We stop synchronous streams when we have urgent data 506 * queued to prevent tcp_fuse_rrw() from pulling it. If 507 * for some reasons the urgent data can't be delivered 508 * below, synchronous streams will remain stopped until 509 * someone drains the tcp_rcv_list. 510 */ 511 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 512 tcp_fuse_output_urg(tcp, mp); 513 514 mp1 = mp->b_cont; 515 } 516 517 if (tcp->tcp_ipversion == IPV4_VERSION && 518 (HOOKS4_INTERESTED_LOOPBACK_IN || 519 HOOKS4_INTERESTED_LOOPBACK_OUT) || 520 tcp->tcp_ipversion == IPV6_VERSION && 521 (HOOKS6_INTERESTED_LOOPBACK_IN || 522 HOOKS6_INTERESTED_LOOPBACK_OUT)) { 523 /* 524 * Build ip and tcp header to satisfy FW_HOOKS. 525 * We only build it when any hook is present. 526 */ 527 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, 528 tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) 529 /* If tcp_xmit_mp fails, use regular path */ 530 goto unfuse; 531 532 ASSERT(peer_tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL); 533 olp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill; 534 /* PFHooks: LOOPBACK_OUT */ 535 if (tcp->tcp_ipversion == IPV4_VERSION) { 536 ipha = (ipha_t *)mp1->b_rptr; 537 538 DTRACE_PROBE4(ip4__loopback__out__start, 539 ill_t *, NULL, ill_t *, olp, 540 ipha_t *, ipha, mblk_t *, mp1); 541 FW_HOOKS(ip4_loopback_out_event, 542 ipv4firewall_loopback_out, 543 NULL, olp, ipha, mp1, mp1); 544 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1); 545 } else { 546 ip6h = (ip6_t *)mp1->b_rptr; 547 548 DTRACE_PROBE4(ip6__loopback__out__start, 549 ill_t *, NULL, ill_t *, olp, 550 ip6_t *, ip6h, mblk_t *, mp1); 551 FW_HOOKS6(ip6_loopback_out_event, 552 ipv6firewall_loopback_out, 553 NULL, olp, ip6h, mp1, mp1); 554 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1); 555 } 556 if (mp1 == NULL) 557 goto unfuse; 558 559 560 /* PFHooks: LOOPBACK_IN */ 561 ASSERT(tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL); 562 ilp = tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill; 563 564 if (tcp->tcp_ipversion == IPV4_VERSION) { 565 DTRACE_PROBE4(ip4__loopback__in__start, 566 ill_t *, ilp, ill_t *, NULL, 567 ipha_t *, ipha, mblk_t *, mp1); 568 FW_HOOKS(ip4_loopback_in_event, 569 ipv4firewall_loopback_in, 570 ilp, NULL, ipha, mp1, mp1); 571 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1); 572 if (mp1 == NULL) 573 goto unfuse; 574 575 ip_hdr_len = IPH_HDR_LENGTH(ipha); 576 } else { 577 DTRACE_PROBE4(ip6__loopback__in__start, 578 ill_t *, ilp, ill_t *, NULL, 579 ip6_t *, ip6h, mblk_t *, mp1); 580 FW_HOOKS6(ip6_loopback_in_event, 581 ipv6firewall_loopback_in, 582 ilp, NULL, ip6h, mp1, mp1); 583 DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1); 584 if (mp1 == NULL) 585 goto unfuse; 586 587 ip_hdr_len = ip_hdr_length_v6(mp1, ip6h); 588 } 589 590 /* Data length might be changed by FW_HOOKS */ 591 tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len]; 592 seq = ABE32_TO_U32(tcph->th_seq); 593 recv_size += seq - tcp->tcp_snxt; 594 595 /* 596 * The message duplicated by tcp_xmit_mp is freed. 597 * Note: the original message passed in remains unchanged. 598 */ 599 freemsg(mp1); 600 } 601 602 mutex_enter(&peer_tcp->tcp_non_sq_lock); 603 /* 604 * Wake up and signal the peer; it is okay to do this before 605 * enqueueing because we are holding the lock. One of the 606 * advantages of synchronous streams is the ability for us to 607 * find out when the application performs a read on the socket, 608 * by way of tcp_fuse_rrw() entry point being called. Every 609 * data that gets enqueued onto the receiver is treated as if 610 * it has arrived at the receiving endpoint, thus generating 611 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput() 612 * case. However, we only wake up the application when necessary, 613 * i.e. during the first enqueue. When tcp_fuse_rrw() is called 614 * it will send everything upstream. 615 */ 616 if (peer_tcp->tcp_direct_sockfs && !urgent && 617 !TCP_IS_DETACHED(peer_tcp)) { 618 if (peer_tcp->tcp_rcv_list == NULL) 619 STR_WAKEUP_SET(STREAM(peer_tcp->tcp_rq)); 620 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 621 STR_SENDSIG(STREAM(peer_tcp->tcp_rq)); 622 } 623 624 /* 625 * Enqueue data into the peer's receive list; we may or may not 626 * drain the contents depending on the conditions below. 627 */ 628 tcp_rcv_enqueue(peer_tcp, mp, recv_size); 629 630 /* In case it wrapped around and also to keep it constant */ 631 peer_tcp->tcp_rwnd += recv_size; 632 633 /* 634 * Exercise flow-control when needed; we will get back-enabled 635 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw(). 636 * If tcp_direct_sockfs is on or if the peer endpoint is detached, 637 * we emulate streams flow control by checking the peer's queue 638 * size and high water mark; otherwise we simply use canputnext() 639 * to decide if we need to stop our flow. 640 * 641 * The outstanding unread data block check does not apply for a 642 * detached receiver; this is to avoid unnecessary blocking of the 643 * sender while the accept is currently in progress and is quite 644 * similar to the regular tcp. 645 */ 646 if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0) 647 max_unread = UINT_MAX; 648 649 /* 650 * Since we are accessing our tcp_flow_stopped and might modify it, 651 * we need to take tcp->tcp_non_sq_lock. The lock for the highest 652 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should 653 * not be an issue here since we are within the squeue and the peer 654 * won't disappear. 655 */ 656 if (tcp > peer_tcp) { 657 mutex_exit(&peer_tcp->tcp_non_sq_lock); 658 mutex_enter(&tcp->tcp_non_sq_lock); 659 mutex_enter(&peer_tcp->tcp_non_sq_lock); 660 } else { 661 mutex_enter(&tcp->tcp_non_sq_lock); 662 } 663 flow_stopped = tcp->tcp_flow_stopped; 664 if (!flow_stopped && 665 (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) && 666 (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater || 667 ++peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) || 668 (!peer_tcp->tcp_direct_sockfs && 669 !TCP_IS_DETACHED(peer_tcp) && !canputnext(peer_tcp->tcp_rq)))) { 670 tcp_setqfull(tcp); 671 flow_stopped = B_TRUE; 672 TCP_STAT(tcp_fusion_flowctl); 673 DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp, 674 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt, 675 uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt); 676 } else if (flow_stopped && 677 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 678 tcp_clrqfull(tcp); 679 flow_stopped = B_FALSE; 680 } 681 mutex_exit(&tcp->tcp_non_sq_lock); 682 loopback_packets++; 683 tcp->tcp_last_sent_len = send_size; 684 685 /* Need to adjust the following SNMP MIB-related variables */ 686 tcp->tcp_snxt += send_size; 687 tcp->tcp_suna = tcp->tcp_snxt; 688 peer_tcp->tcp_rnxt += recv_size; 689 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 690 691 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 692 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, send_size); 693 694 BUMP_MIB(&tcp_mib, tcpInSegs); 695 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 696 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, send_size); 697 698 BUMP_LOCAL(tcp->tcp_obsegs); 699 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 700 701 mutex_exit(&peer_tcp->tcp_non_sq_lock); 702 703 DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size); 704 705 if (!TCP_IS_DETACHED(peer_tcp)) { 706 /* 707 * Drain the peer's receive queue it has urgent data or if 708 * we're not flow-controlled. There is no need for draining 709 * normal data when tcp_direct_sockfs is on because the peer 710 * will pull the data via tcp_fuse_rrw(). 711 */ 712 if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) { 713 ASSERT(peer_tcp->tcp_rcv_list != NULL); 714 /* 715 * For TLI-based streams, a thread in tcp_accept_swap() 716 * can race with us. That thread will ensure that the 717 * correct peer_tcp->tcp_rq is globally visible before 718 * peer_tcp->tcp_detached is visible as clear, but we 719 * must also ensure that the load of tcp_rq cannot be 720 * reordered to be before the tcp_detached check. 721 */ 722 membar_consumer(); 723 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 724 NULL); 725 /* 726 * If synchronous streams was stopped above due 727 * to the presence of urgent data, re-enable it. 728 */ 729 if (urgent) 730 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 731 } 732 } 733 return (B_TRUE); 734 unfuse: 735 tcp_unfuse(tcp); 736 return (B_FALSE); 737 } 738 739 /* 740 * This routine gets called to deliver data upstream on a fused or 741 * previously fused tcp loopback endpoint; the latter happens only 742 * when there is a pending SIGURG signal plus urgent data that can't 743 * be sent upstream in the past. 744 */ 745 boolean_t 746 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 747 { 748 mblk_t *mp; 749 #ifdef DEBUG 750 uint_t cnt = 0; 751 #endif 752 753 ASSERT(tcp->tcp_loopback); 754 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 755 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 756 ASSERT(sigurg_mpp != NULL || tcp->tcp_fused); 757 758 /* No need for the push timer now, in case it was scheduled */ 759 if (tcp->tcp_push_tid != 0) { 760 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 761 tcp->tcp_push_tid = 0; 762 } 763 /* 764 * If there's urgent data sitting in receive list and we didn't 765 * get a chance to send up a SIGURG signal, make sure we send 766 * it first before draining in order to ensure that SIOCATMARK 767 * works properly. 768 */ 769 if (tcp->tcp_fused_sigurg) { 770 /* 771 * sigurg_mpp is normally NULL, i.e. when we're still 772 * fused and didn't get here because of tcp_unfuse(). 773 * In this case try hard to allocate the M_PCSIG mblk. 774 */ 775 if (sigurg_mpp == NULL && 776 (mp = allocb(1, BPRI_HI)) == NULL && 777 (mp = allocb_tryhard(1)) == NULL) { 778 /* Alloc failed; try again next time */ 779 tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer, 780 MSEC_TO_TICK(tcp_push_timer_interval)); 781 return (B_TRUE); 782 } else if (sigurg_mpp != NULL) { 783 /* 784 * Use the supplied M_PCSIG mblk; it means we're 785 * either unfused or in the process of unfusing, 786 * and the drain must happen now. 787 */ 788 mp = *sigurg_mpp; 789 *sigurg_mpp = NULL; 790 } 791 ASSERT(mp != NULL); 792 793 tcp->tcp_fused_sigurg = B_FALSE; 794 /* Send up the signal */ 795 DB_TYPE(mp) = M_PCSIG; 796 *mp->b_wptr++ = (uchar_t)SIGURG; 797 putnext(q, mp); 798 /* 799 * Let the regular tcp_rcv_drain() path handle 800 * draining the data if we're no longer fused. 801 */ 802 if (!tcp->tcp_fused) 803 return (B_FALSE); 804 } 805 806 /* 807 * In the synchronous streams case, we generate SIGPOLL/SIGIO for 808 * each M_DATA that gets enqueued onto the receiver. At this point 809 * we are about to drain any queued data via putnext(). In order 810 * to avoid extraneous signal generation from strrput(), we set 811 * STRGETINPROG flag at the stream head prior to the draining and 812 * restore it afterwards. This masks out signal generation only 813 * for M_DATA messages and does not affect urgent data. 814 */ 815 if (tcp->tcp_direct_sockfs) 816 strrput_sig(q, B_FALSE); 817 818 /* Drain the data */ 819 while ((mp = tcp->tcp_rcv_list) != NULL) { 820 tcp->tcp_rcv_list = mp->b_next; 821 mp->b_next = NULL; 822 #ifdef DEBUG 823 cnt += msgdsize(mp); 824 #endif 825 putnext(q, mp); 826 TCP_STAT(tcp_fusion_putnext); 827 } 828 829 if (tcp->tcp_direct_sockfs) 830 strrput_sig(q, B_TRUE); 831 832 ASSERT(cnt == tcp->tcp_rcv_cnt); 833 tcp->tcp_rcv_last_head = NULL; 834 tcp->tcp_rcv_last_tail = NULL; 835 tcp->tcp_rcv_cnt = 0; 836 tcp->tcp_fuse_rcv_unread_cnt = 0; 837 tcp->tcp_rwnd = q->q_hiwat; 838 839 return (B_TRUE); 840 } 841 842 /* 843 * Synchronous stream entry point for sockfs to retrieve 844 * data directly from tcp_rcv_list. 845 * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped, 846 * for which it must take the tcp_non_sq_lock of the peer as well 847 * making any change. The order of taking the locks is based on 848 * the TCP pointer itself. Before we get the peer we need to take 849 * our tcp_non_sq_lock so that the peer doesn't disappear. However, 850 * we cannot drop the lock if we have to grab the peer's lock (because 851 * of ordering), since the peer might disappear in the interim. So, 852 * we take our tcp_non_sq_lock, get the peer, increment the ref on the 853 * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the 854 * desired order. Incrementing the conn ref on the peer means that the 855 * peer won't disappear when we drop our tcp_non_sq_lock. 856 */ 857 int 858 tcp_fuse_rrw(queue_t *q, struiod_t *dp) 859 { 860 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 861 mblk_t *mp; 862 tcp_t *peer_tcp; 863 864 mutex_enter(&tcp->tcp_non_sq_lock); 865 866 /* 867 * If tcp_fuse_syncstr_plugged is set, then another thread is moving 868 * the underlying data to the stream head. We need to wait until it's 869 * done, then return EBUSY so that strget() will dequeue data from the 870 * stream head to ensure data is drained in-order. 871 */ 872 plugged: 873 if (tcp->tcp_fuse_syncstr_plugged) { 874 do { 875 cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock); 876 } while (tcp->tcp_fuse_syncstr_plugged); 877 878 mutex_exit(&tcp->tcp_non_sq_lock); 879 TCP_STAT(tcp_fusion_rrw_plugged); 880 TCP_STAT(tcp_fusion_rrw_busy); 881 return (EBUSY); 882 } 883 884 peer_tcp = tcp->tcp_loopback_peer; 885 886 /* 887 * If someone had turned off tcp_direct_sockfs or if synchronous 888 * streams is stopped, we return EBUSY. This causes strget() to 889 * dequeue data from the stream head instead. 890 */ 891 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 892 mutex_exit(&tcp->tcp_non_sq_lock); 893 TCP_STAT(tcp_fusion_rrw_busy); 894 return (EBUSY); 895 } 896 897 /* 898 * Grab lock in order. The highest addressed tcp is locked first. 899 * We don't do this within the tcp_rcv_list check since if we 900 * have to drop the lock, for ordering, then the tcp_rcv_list 901 * could change. 902 */ 903 if (peer_tcp > tcp) { 904 CONN_INC_REF(peer_tcp->tcp_connp); 905 mutex_exit(&tcp->tcp_non_sq_lock); 906 mutex_enter(&peer_tcp->tcp_non_sq_lock); 907 mutex_enter(&tcp->tcp_non_sq_lock); 908 CONN_DEC_REF(peer_tcp->tcp_connp); 909 /* This might have changed in the interim */ 910 if (tcp->tcp_fuse_syncstr_plugged) { 911 mutex_exit(&peer_tcp->tcp_non_sq_lock); 912 goto plugged; 913 } 914 } else { 915 mutex_enter(&peer_tcp->tcp_non_sq_lock); 916 } 917 918 if ((mp = tcp->tcp_rcv_list) != NULL) { 919 920 DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp, 921 uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid); 922 923 tcp->tcp_rcv_list = NULL; 924 TCP_STAT(tcp_fusion_rrw_msgcnt); 925 926 /* 927 * At this point nothing should be left in tcp_rcv_list. 928 * The only possible case where we would have a chain of 929 * b_next-linked messages is urgent data, but we wouldn't 930 * be here if that's true since urgent data is delivered 931 * via putnext() and synchronous streams is stopped until 932 * tcp_fuse_rcv_drain() is finished. 933 */ 934 ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL); 935 936 tcp->tcp_rcv_last_head = NULL; 937 tcp->tcp_rcv_last_tail = NULL; 938 tcp->tcp_rcv_cnt = 0; 939 tcp->tcp_fuse_rcv_unread_cnt = 0; 940 941 if (peer_tcp->tcp_flow_stopped) { 942 tcp_clrqfull(peer_tcp); 943 TCP_STAT(tcp_fusion_backenabled); 944 } 945 } 946 mutex_exit(&peer_tcp->tcp_non_sq_lock); 947 /* 948 * Either we just dequeued everything or we get here from sockfs 949 * and have nothing to return; in this case clear RSLEEP. 950 */ 951 ASSERT(tcp->tcp_rcv_last_head == NULL); 952 ASSERT(tcp->tcp_rcv_last_tail == NULL); 953 ASSERT(tcp->tcp_rcv_cnt == 0); 954 ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0); 955 STR_WAKEUP_CLEAR(STREAM(q)); 956 957 mutex_exit(&tcp->tcp_non_sq_lock); 958 dp->d_mp = mp; 959 return (0); 960 } 961 962 /* 963 * Synchronous stream entry point used by certain ioctls to retrieve 964 * information about or peek into the tcp_rcv_list. 965 */ 966 int 967 tcp_fuse_rinfop(queue_t *q, infod_t *dp) 968 { 969 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 970 mblk_t *mp; 971 uint_t cmd = dp->d_cmd; 972 int res = 0; 973 int error = 0; 974 struct stdata *stp = STREAM(q); 975 976 mutex_enter(&tcp->tcp_non_sq_lock); 977 /* If shutdown on read has happened, return nothing */ 978 mutex_enter(&stp->sd_lock); 979 if (stp->sd_flag & STREOF) { 980 mutex_exit(&stp->sd_lock); 981 goto done; 982 } 983 mutex_exit(&stp->sd_lock); 984 985 /* 986 * It is OK not to return an answer if tcp_rcv_list is 987 * currently not accessible. 988 */ 989 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped || 990 tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL) 991 goto done; 992 993 if (cmd & INFOD_COUNT) { 994 /* 995 * We have at least one message and 996 * could return only one at a time. 997 */ 998 dp->d_count++; 999 res |= INFOD_COUNT; 1000 } 1001 if (cmd & INFOD_BYTES) { 1002 /* 1003 * Return size of all data messages. 1004 */ 1005 dp->d_bytes += tcp->tcp_rcv_cnt; 1006 res |= INFOD_BYTES; 1007 } 1008 if (cmd & INFOD_FIRSTBYTES) { 1009 /* 1010 * Return size of first data message. 1011 */ 1012 dp->d_bytes = msgdsize(mp); 1013 res |= INFOD_FIRSTBYTES; 1014 dp->d_cmd &= ~INFOD_FIRSTBYTES; 1015 } 1016 if (cmd & INFOD_COPYOUT) { 1017 mblk_t *mp1; 1018 int n; 1019 1020 if (DB_TYPE(mp) == M_DATA) { 1021 mp1 = mp; 1022 } else { 1023 mp1 = mp->b_cont; 1024 ASSERT(mp1 != NULL); 1025 } 1026 1027 /* 1028 * Return data contents of first message. 1029 */ 1030 ASSERT(DB_TYPE(mp1) == M_DATA); 1031 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 1032 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 1033 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 1034 UIO_READ, dp->d_uiop)) != 0) { 1035 goto done; 1036 } 1037 mp1 = mp1->b_cont; 1038 } 1039 res |= INFOD_COPYOUT; 1040 dp->d_cmd &= ~INFOD_COPYOUT; 1041 } 1042 done: 1043 mutex_exit(&tcp->tcp_non_sq_lock); 1044 1045 dp->d_res |= res; 1046 1047 return (error); 1048 } 1049 1050 /* 1051 * Enable synchronous streams on a fused tcp loopback endpoint. 1052 */ 1053 static void 1054 tcp_fuse_syncstr_enable(tcp_t *tcp) 1055 { 1056 queue_t *rq = tcp->tcp_rq; 1057 struct stdata *stp = STREAM(rq); 1058 1059 /* We can only enable synchronous streams for sockfs mode */ 1060 tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs; 1061 1062 if (!tcp->tcp_direct_sockfs) 1063 return; 1064 1065 mutex_enter(&stp->sd_lock); 1066 mutex_enter(QLOCK(rq)); 1067 1068 /* 1069 * We replace our q_qinfo with one that has the qi_rwp entry point. 1070 * Clear SR_SIGALLDATA because we generate the equivalent signal(s) 1071 * for every enqueued data in tcp_fuse_output(). 1072 */ 1073 rq->q_qinfo = &tcp_loopback_rinit; 1074 rq->q_struiot = tcp_loopback_rinit.qi_struiot; 1075 stp->sd_struiordq = rq; 1076 stp->sd_rput_opt &= ~SR_SIGALLDATA; 1077 1078 mutex_exit(QLOCK(rq)); 1079 mutex_exit(&stp->sd_lock); 1080 } 1081 1082 /* 1083 * Disable synchronous streams on a fused tcp loopback endpoint. 1084 */ 1085 static void 1086 tcp_fuse_syncstr_disable(tcp_t *tcp) 1087 { 1088 queue_t *rq = tcp->tcp_rq; 1089 struct stdata *stp = STREAM(rq); 1090 1091 if (!tcp->tcp_direct_sockfs) 1092 return; 1093 1094 mutex_enter(&stp->sd_lock); 1095 mutex_enter(QLOCK(rq)); 1096 1097 /* 1098 * Reset q_qinfo to point to the default tcp entry points. 1099 * Also restore SR_SIGALLDATA so that strrput() can generate 1100 * the signals again for future M_DATA messages. 1101 */ 1102 rq->q_qinfo = &tcp_rinit; 1103 rq->q_struiot = tcp_rinit.qi_struiot; 1104 stp->sd_struiordq = NULL; 1105 stp->sd_rput_opt |= SR_SIGALLDATA; 1106 tcp->tcp_direct_sockfs = B_FALSE; 1107 1108 mutex_exit(QLOCK(rq)); 1109 mutex_exit(&stp->sd_lock); 1110 } 1111 1112 /* 1113 * Enable synchronous streams on a pair of fused tcp endpoints. 1114 */ 1115 void 1116 tcp_fuse_syncstr_enable_pair(tcp_t *tcp) 1117 { 1118 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1119 1120 ASSERT(tcp->tcp_fused); 1121 ASSERT(peer_tcp != NULL); 1122 1123 tcp_fuse_syncstr_enable(tcp); 1124 tcp_fuse_syncstr_enable(peer_tcp); 1125 } 1126 1127 /* 1128 * Allow or disallow signals to be generated by strrput(). 1129 */ 1130 static void 1131 strrput_sig(queue_t *q, boolean_t on) 1132 { 1133 struct stdata *stp = STREAM(q); 1134 1135 mutex_enter(&stp->sd_lock); 1136 if (on) 1137 stp->sd_flag &= ~STRGETINPROG; 1138 else 1139 stp->sd_flag |= STRGETINPROG; 1140 mutex_exit(&stp->sd_lock); 1141 } 1142 1143 /* 1144 * Disable synchronous streams on a pair of fused tcp endpoints and drain 1145 * any queued data; called either during unfuse or upon transitioning from 1146 * a socket to a stream endpoint due to _SIOCSOCKFALLBACK. 1147 */ 1148 void 1149 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing) 1150 { 1151 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1152 1153 ASSERT(tcp->tcp_fused); 1154 ASSERT(peer_tcp != NULL); 1155 1156 /* 1157 * Force any tcp_fuse_rrw() calls to block until we've moved the data 1158 * onto the stream head. 1159 */ 1160 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 1161 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 1162 1163 /* 1164 * Drain any pending data; the detached check is needed because 1165 * we may be called as a result of a tcp_unfuse() triggered by 1166 * tcp_fuse_output(). Note that in case of a detached tcp, the 1167 * draining will happen later after the tcp is unfused. For non- 1168 * urgent data, this can be handled by the regular tcp_rcv_drain(). 1169 * If we have urgent data sitting in the receive list, we will 1170 * need to send up a SIGURG signal first before draining the data. 1171 * All of these will be handled by the code in tcp_fuse_rcv_drain() 1172 * when called from tcp_rcv_drain(). 1173 */ 1174 if (!TCP_IS_DETACHED(tcp)) { 1175 (void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, 1176 (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL)); 1177 } 1178 if (!TCP_IS_DETACHED(peer_tcp)) { 1179 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 1180 (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL)); 1181 } 1182 1183 /* 1184 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY. 1185 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(), 1186 * a given stream must be stopped prior to being unplugged (but the 1187 * ordering of operations between the streams is unimportant). 1188 */ 1189 TCP_FUSE_SYNCSTR_STOP(tcp); 1190 TCP_FUSE_SYNCSTR_STOP(peer_tcp); 1191 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 1192 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 1193 1194 /* Lift up any flow-control conditions */ 1195 if (tcp->tcp_flow_stopped) { 1196 tcp_clrqfull(tcp); 1197 TCP_STAT(tcp_fusion_backenabled); 1198 } 1199 if (peer_tcp->tcp_flow_stopped) { 1200 tcp_clrqfull(peer_tcp); 1201 TCP_STAT(tcp_fusion_backenabled); 1202 } 1203 1204 /* Disable synchronous streams */ 1205 tcp_fuse_syncstr_disable(tcp); 1206 tcp_fuse_syncstr_disable(peer_tcp); 1207 } 1208 1209 /* 1210 * Calculate the size of receive buffer for a fused tcp endpoint. 1211 */ 1212 size_t 1213 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 1214 { 1215 ASSERT(tcp->tcp_fused); 1216 1217 /* Ensure that value is within the maximum upper bound */ 1218 if (rwnd > tcp_max_buf) 1219 rwnd = tcp_max_buf; 1220 1221 /* Obey the absolute minimum tcp receive high water mark */ 1222 if (rwnd < tcp_sth_rcv_hiwat) 1223 rwnd = tcp_sth_rcv_hiwat; 1224 1225 /* 1226 * Round up to system page size in case SO_RCVBUF is modified 1227 * after SO_SNDBUF; the latter is also similarly rounded up. 1228 */ 1229 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 1230 tcp->tcp_fuse_rcv_hiwater = rwnd; 1231 return (rwnd); 1232 } 1233 1234 /* 1235 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 1236 */ 1237 int 1238 tcp_fuse_maxpsz_set(tcp_t *tcp) 1239 { 1240 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1241 uint_t sndbuf = tcp->tcp_xmit_hiwater; 1242 uint_t maxpsz = sndbuf; 1243 1244 ASSERT(tcp->tcp_fused); 1245 ASSERT(peer_tcp != NULL); 1246 ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0); 1247 /* 1248 * In the fused loopback case, we want the stream head to split 1249 * up larger writes into smaller chunks for a more accurate flow- 1250 * control accounting. Our maxpsz is half of the sender's send 1251 * buffer or the receiver's receive buffer, whichever is smaller. 1252 * We round up the buffer to system page size due to the lack of 1253 * TCP MSS concept in Fusion. 1254 */ 1255 if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater) 1256 maxpsz = peer_tcp->tcp_fuse_rcv_hiwater; 1257 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 1258 1259 /* 1260 * Calculate the peer's limit for the number of outstanding unread 1261 * data block. This is the amount of data blocks that are allowed 1262 * to reside in the receiver's queue before the sender gets flow 1263 * controlled. It is used only in the synchronous streams mode as 1264 * a way to throttle the sender when it performs consecutive writes 1265 * faster than can be read. The value is derived from SO_SNDBUF in 1266 * order to give the sender some control; we divide it with a large 1267 * value (16KB) to produce a fairly low initial limit. 1268 */ 1269 if (tcp_fusion_rcv_unread_min == 0) { 1270 /* A value of 0 means that we disable the check */ 1271 peer_tcp->tcp_fuse_rcv_unread_hiwater = 0; 1272 } else { 1273 peer_tcp->tcp_fuse_rcv_unread_hiwater = 1274 MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min); 1275 } 1276 return (maxpsz); 1277 } 1278