1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/strsun.h> 29 #include <sys/strsubr.h> 30 #include <sys/debug.h> 31 #include <sys/sdt.h> 32 #include <sys/cmn_err.h> 33 #include <sys/tihdr.h> 34 35 #include <inet/common.h> 36 #include <inet/optcom.h> 37 #include <inet/ip.h> 38 #include <inet/ip_if.h> 39 #include <inet/ip_impl.h> 40 #include <inet/tcp.h> 41 #include <inet/tcp_impl.h> 42 #include <inet/ipsec_impl.h> 43 #include <inet/ipclassifier.h> 44 #include <inet/ipp_common.h> 45 #include <inet/ip_if.h> 46 47 /* 48 * This file implements TCP fusion - a protocol-less data path for TCP 49 * loopback connections. The fusion of two local TCP endpoints occurs 50 * at connection establishment time. Various conditions (see details 51 * in tcp_fuse()) need to be met for fusion to be successful. If it 52 * fails, we fall back to the regular TCP data path; if it succeeds, 53 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 54 * tcp_fuse_output() enqueues application data directly onto the peer's 55 * receive queue; no protocol processing is involved. After enqueueing 56 * the data, the sender can either push (putnext) data up the receiver's 57 * read queue; or the sender can simply return and let the receiver 58 * retrieve the enqueued data via the synchronous streams entry point 59 * tcp_fuse_rrw(). The latter path is taken if synchronous streams is 60 * enabled (the default). It is disabled if sockfs no longer resides 61 * directly on top of tcp module due to a module insertion or removal. 62 * It also needs to be temporarily disabled when sending urgent data 63 * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done 64 * by strsock_proto() hook. 65 * 66 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. 67 * One of the requirements for fusion to succeed is that both endpoints 68 * need to be using the same squeue. This ensures that neither side 69 * can disappear while the other side is still sending data. By itself, 70 * squeue is not sufficient for guaranteeing safety when synchronous 71 * streams is enabled. The reason is that tcp_fuse_rrw() doesn't enter 72 * the squeue and its access to tcp_rcv_list and other fusion-related 73 * fields needs to be sychronized with the sender. tcp_non_sq_lock is 74 * used for this purpose. When there is urgent data, the sender needs 75 * to push the data up the receiver's streams read queue. In order to 76 * avoid holding the tcp_non_sq_lock across putnext(), the sender sets 77 * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock 78 * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()). If tcp_fuse_rrw() enters 79 * after this point, it will see that synchronous streams is plugged and 80 * will wait on tcp_fuse_plugcv. After the sender has finished pushing up 81 * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using 82 * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(). This will cause any threads waiting 83 * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call 84 * getq_noenab() to dequeue data from the stream head instead. Once the 85 * data on the stream head has been consumed, tcp_fuse_rrw() may again 86 * be used to process tcp_rcv_list. However, if TCP_FUSE_SYNCSTR_STOP() 87 * has been called, all future calls to tcp_fuse_rrw() will return EBUSY, 88 * effectively disabling synchronous streams. 89 * 90 * The following note applies only to the synchronous streams mode. 91 * 92 * Flow control is done by checking the size of receive buffer and 93 * the number of data blocks, both set to different limits. This is 94 * different than regular streams flow control where cumulative size 95 * check dominates block count check -- streams queue high water mark 96 * typically represents bytes. Each enqueue triggers notifications 97 * to the receiving process; a build up of data blocks indicates a 98 * slow receiver and the sender should be blocked or informed at the 99 * earliest moment instead of further wasting system resources. In 100 * effect, this is equivalent to limiting the number of outstanding 101 * segments in flight. 102 */ 103 104 /* 105 * Setting this to false means we disable fusion altogether and 106 * loopback connections would go through the protocol paths. 107 */ 108 boolean_t do_tcp_fusion = B_TRUE; 109 110 /* 111 * Enabling this flag allows sockfs to retrieve data directly 112 * from a fused tcp endpoint using synchronous streams interface. 113 */ 114 boolean_t do_tcp_direct_sockfs = B_TRUE; 115 116 /* 117 * This is the minimum amount of outstanding writes allowed on 118 * a synchronous streams-enabled receiving endpoint before the 119 * sender gets flow-controlled. Setting this value to 0 means 120 * that the data block limit is equivalent to the byte count 121 * limit, which essentially disables the check. 122 */ 123 #define TCP_FUSION_RCV_UNREAD_MIN 8 124 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN; 125 126 static void tcp_fuse_syncstr_enable(tcp_t *); 127 static void tcp_fuse_syncstr_disable(tcp_t *); 128 static boolean_t strrput_sig(queue_t *, boolean_t); 129 130 /* 131 * Return true if this connection needs some IP functionality 132 */ 133 static boolean_t 134 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns) 135 { 136 ipsec_stack_t *ipss = ns->netstack_ipsec; 137 138 /* 139 * If ire is not cached, do not use fusion 140 */ 141 if (tcp->tcp_connp->conn_ire_cache == NULL) { 142 /* 143 * There is no need to hold conn_lock here because when called 144 * from tcp_fuse() there can be no window where conn_ire_cache 145 * can change. This is not true when called from 146 * tcp_fuse_output() as conn_ire_cache can become null just 147 * after the check. It will be necessary to recheck for a NULL 148 * conn_ire_cache in tcp_fuse_output() to avoid passing a 149 * stale ill pointer to FW_HOOKS. 150 */ 151 return (B_TRUE); 152 } 153 if (tcp->tcp_ipversion == IPV4_VERSION) { 154 if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) 155 return (B_TRUE); 156 if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss)) 157 return (B_TRUE); 158 if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss)) 159 return (B_TRUE); 160 } else { 161 if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) 162 return (B_TRUE); 163 if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss)) 164 return (B_TRUE); 165 if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss)) 166 return (B_TRUE); 167 } 168 if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)) 169 return (B_TRUE); 170 return (B_FALSE); 171 } 172 173 174 /* 175 * This routine gets called by the eager tcp upon changing state from 176 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 177 * and the active connect tcp such that the regular tcp processings 178 * may be bypassed under allowable circumstances. Because the fusion 179 * requires both endpoints to be in the same squeue, it does not work 180 * for simultaneous active connects because there is no easy way to 181 * switch from one squeue to another once the connection is created. 182 * This is different from the eager tcp case where we assign it the 183 * same squeue as the one given to the active connect tcp during open. 184 */ 185 void 186 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph) 187 { 188 conn_t *peer_connp, *connp = tcp->tcp_connp; 189 tcp_t *peer_tcp; 190 tcp_stack_t *tcps = tcp->tcp_tcps; 191 netstack_t *ns; 192 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 193 194 ASSERT(!tcp->tcp_fused); 195 ASSERT(tcp->tcp_loopback); 196 ASSERT(tcp->tcp_loopback_peer == NULL); 197 /* 198 * We need to inherit q_hiwat of the listener tcp, but we can't 199 * really use tcp_listener since we get here after sending up 200 * T_CONN_IND and tcp_wput_accept() may be called independently, 201 * at which point tcp_listener is cleared; this is why we use 202 * tcp_saved_listener. The listener itself is guaranteed to be 203 * around until tcp_accept_finish() is called on this eager -- 204 * this won't happen until we're done since we're inside the 205 * eager's perimeter now. 206 * 207 * We can also get called in the case were a connection needs 208 * to be re-fused. In this case tcp_saved_listener will be 209 * NULL but tcp_refuse will be true. 210 */ 211 ASSERT(tcp->tcp_saved_listener != NULL || tcp->tcp_refuse); 212 /* 213 * Lookup peer endpoint; search for the remote endpoint having 214 * the reversed address-port quadruplet in ESTABLISHED state, 215 * which is guaranteed to be unique in the system. Zone check 216 * is applied accordingly for loopback address, but not for 217 * local address since we want fusion to happen across Zones. 218 */ 219 if (tcp->tcp_ipversion == IPV4_VERSION) { 220 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 221 (ipha_t *)iphdr, tcph, ipst); 222 } else { 223 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 224 (ip6_t *)iphdr, tcph, ipst); 225 } 226 227 /* 228 * We can only proceed if peer exists, resides in the same squeue 229 * as our conn and is not raw-socket. The squeue assignment of 230 * this eager tcp was done earlier at the time of SYN processing 231 * in ip_fanout_tcp{_v6}. Note that similar squeues by itself 232 * doesn't guarantee a safe condition to fuse, hence we perform 233 * additional tests below. 234 */ 235 ASSERT(peer_connp == NULL || peer_connp != connp); 236 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 237 !IPCL_IS_TCP(peer_connp)) { 238 if (peer_connp != NULL) { 239 TCP_STAT(tcps, tcp_fusion_unqualified); 240 CONN_DEC_REF(peer_connp); 241 } 242 return; 243 } 244 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 245 246 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 247 ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL); 248 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 249 250 /* 251 * Fuse the endpoints; we perform further checks against both 252 * tcp endpoints to ensure that a fusion is allowed to happen. 253 * In particular we bail out for non-simple TCP/IP or if IPsec/ 254 * IPQoS policy/kernel SSL exists. 255 */ 256 ns = tcps->tcps_netstack; 257 ipst = ns->netstack_ip; 258 259 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 260 !tcp_loopback_needs_ip(tcp, ns) && 261 !tcp_loopback_needs_ip(peer_tcp, ns) && 262 tcp->tcp_kssl_ent == NULL && 263 !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) { 264 mblk_t *mp; 265 queue_t *peer_rq = peer_tcp->tcp_rq; 266 267 ASSERT(!TCP_IS_DETACHED(peer_tcp)); 268 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 269 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 270 ASSERT(tcp->tcp_kssl_ctx == NULL); 271 272 /* 273 * We need to drain data on both endpoints during unfuse. 274 * If we need to send up SIGURG at the time of draining, 275 * we want to be sure that an mblk is readily available. 276 * This is why we pre-allocate the M_PCSIG mblks for both 277 * endpoints which will only be used during/after unfuse. 278 */ 279 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 280 if ((mp = allocb(1, BPRI_HI)) == NULL) 281 goto failed; 282 283 tcp->tcp_fused_sigurg_mp = mp; 284 } 285 286 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 287 if ((mp = allocb(1, BPRI_HI)) == NULL) 288 goto failed; 289 290 peer_tcp->tcp_fused_sigurg_mp = mp; 291 } 292 293 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 294 (mp = allocb(sizeof (struct stroptions), 295 BPRI_HI)) == NULL) { 296 goto failed; 297 } 298 299 /* If either tcp or peer_tcp sodirect enabled then disable */ 300 if (tcp->tcp_sodirect != NULL) { 301 mutex_enter(tcp->tcp_sodirect->sod_lockp); 302 SOD_DISABLE(tcp->tcp_sodirect); 303 mutex_exit(tcp->tcp_sodirect->sod_lockp); 304 tcp->tcp_sodirect = NULL; 305 } 306 if (peer_tcp->tcp_sodirect != NULL) { 307 mutex_enter(peer_tcp->tcp_sodirect->sod_lockp); 308 SOD_DISABLE(peer_tcp->tcp_sodirect); 309 mutex_exit(peer_tcp->tcp_sodirect->sod_lockp); 310 peer_tcp->tcp_sodirect = NULL; 311 } 312 313 /* Fuse both endpoints */ 314 peer_tcp->tcp_loopback_peer = tcp; 315 tcp->tcp_loopback_peer = peer_tcp; 316 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 317 318 /* 319 * We never use regular tcp paths in fusion and should 320 * therefore clear tcp_unsent on both endpoints. Having 321 * them set to non-zero values means asking for trouble 322 * especially after unfuse, where we may end up sending 323 * through regular tcp paths which expect xmit_list and 324 * friends to be correctly setup. 325 */ 326 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 327 328 tcp_timers_stop(tcp); 329 tcp_timers_stop(peer_tcp); 330 331 /* 332 * At this point we are a detached eager tcp and therefore 333 * don't have a queue assigned to us until accept happens. 334 * In the mean time the peer endpoint may immediately send 335 * us data as soon as fusion is finished, and we need to be 336 * able to flow control it in case it sends down huge amount 337 * of data while we're still detached. To prevent that we 338 * inherit the listener's recv_hiwater value; this is temporary 339 * since we'll repeat the process intcp_accept_finish(). 340 */ 341 if (!tcp->tcp_refuse) { 342 (void) tcp_fuse_set_rcv_hiwat(tcp, 343 tcp->tcp_saved_listener->tcp_recv_hiwater); 344 345 /* 346 * Set the stream head's write offset value to zero 347 * since we won't be needing any room for TCP/IP 348 * headers; tell it to not break up the writes (this 349 * would reduce the amount of work done by kmem); and 350 * configure our receive buffer. Note that we can only 351 * do this for the active connect tcp since our eager is 352 * still detached; it will be dealt with later in 353 * tcp_accept_finish(). 354 */ 355 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 356 struct stroptions *stropt; 357 358 DB_TYPE(mp) = M_SETOPTS; 359 mp->b_wptr += sizeof (*stropt); 360 361 stropt = (struct stroptions *)mp->b_rptr; 362 stropt->so_flags = SO_MAXBLK|SO_WROFF|SO_HIWAT; 363 stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, 364 B_FALSE); 365 stropt->so_wroff = 0; 366 367 /* 368 * Record the stream head's high water mark for 369 * peer endpoint; this is used for flow-control 370 * purposes in tcp_fuse_output(). 371 */ 372 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat( 373 peer_tcp, peer_rq->q_hiwat); 374 375 tcp->tcp_refuse = B_FALSE; 376 peer_tcp->tcp_refuse = B_FALSE; 377 /* Send the options up */ 378 putnext(peer_rq, mp); 379 } else { 380 struct sock_proto_props sopp; 381 382 /* The peer is a non-STREAMS end point */ 383 ASSERT(IPCL_IS_TCP(peer_connp)); 384 385 (void) tcp_fuse_set_rcv_hiwat(tcp, 386 tcp->tcp_saved_listener->tcp_recv_hiwater); 387 388 sopp.sopp_flags = SOCKOPT_MAXBLK | 389 SOCKOPT_WROFF | SOCKOPT_RCVHIWAT; 390 sopp.sopp_maxblk = tcp_maxpsz_set(peer_tcp, 391 B_FALSE); 392 sopp.sopp_wroff = 0; 393 sopp.sopp_rxhiwat = tcp_fuse_set_rcv_hiwat( 394 peer_tcp, peer_tcp->tcp_recv_hiwater); 395 (*peer_connp->conn_upcalls->su_set_proto_props) 396 (peer_connp->conn_upper_handle, &sopp); 397 } 398 } 399 tcp->tcp_refuse = B_FALSE; 400 peer_tcp->tcp_refuse = B_FALSE; 401 } else { 402 TCP_STAT(tcps, tcp_fusion_unqualified); 403 } 404 CONN_DEC_REF(peer_connp); 405 return; 406 407 failed: 408 if (tcp->tcp_fused_sigurg_mp != NULL) { 409 freeb(tcp->tcp_fused_sigurg_mp); 410 tcp->tcp_fused_sigurg_mp = NULL; 411 } 412 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 413 freeb(peer_tcp->tcp_fused_sigurg_mp); 414 peer_tcp->tcp_fused_sigurg_mp = NULL; 415 } 416 CONN_DEC_REF(peer_connp); 417 } 418 419 /* 420 * Unfuse a previously-fused pair of tcp loopback endpoints. 421 */ 422 void 423 tcp_unfuse(tcp_t *tcp) 424 { 425 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 426 427 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 428 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 429 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 430 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 431 432 /* 433 * We disable synchronous streams, drain any queued data and 434 * clear tcp_direct_sockfs. The synchronous streams entry 435 * points will become no-ops after this point. 436 */ 437 tcp_fuse_disable_pair(tcp, B_TRUE); 438 439 /* 440 * Update th_seq and th_ack in the header template 441 */ 442 U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq); 443 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 444 U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq); 445 U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack); 446 447 /* Unfuse the endpoints */ 448 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 449 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 450 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 451 ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL); 452 freeb(peer_tcp->tcp_fused_sigurg_mp); 453 peer_tcp->tcp_fused_sigurg_mp = NULL; 454 } 455 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 456 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 457 freeb(tcp->tcp_fused_sigurg_mp); 458 tcp->tcp_fused_sigurg_mp = NULL; 459 } 460 } 461 462 /* 463 * Fusion output routine for urgent data. This routine is called by 464 * tcp_fuse_output() for handling non-M_DATA mblks. 465 */ 466 void 467 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 468 { 469 mblk_t *mp1; 470 struct T_exdata_ind *tei; 471 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 472 mblk_t *head, *prev_head = NULL; 473 tcp_stack_t *tcps = tcp->tcp_tcps; 474 475 ASSERT(tcp->tcp_fused); 476 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 477 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 478 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 479 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 480 481 /* 482 * Urgent data arrives in the form of T_EXDATA_REQ from above. 483 * Each occurence denotes a new urgent pointer. For each new 484 * urgent pointer we signal (SIGURG) the receiving app to indicate 485 * that it needs to go into urgent mode. This is similar to the 486 * urgent data handling in the regular tcp. We don't need to keep 487 * track of where the urgent pointer is, because each T_EXDATA_REQ 488 * "advances" the urgent pointer for us. 489 * 490 * The actual urgent data carried by T_EXDATA_REQ is then prepended 491 * by a T_EXDATA_IND before being enqueued behind any existing data 492 * destined for the receiving app. There is only a single urgent 493 * pointer (out-of-band mark) for a given tcp. If the new urgent 494 * data arrives before the receiving app reads some existing urgent 495 * data, the previous marker is lost. This behavior is emulated 496 * accordingly below, by removing any existing T_EXDATA_IND messages 497 * and essentially converting old urgent data into non-urgent. 498 */ 499 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 500 /* Let sender get out of urgent mode */ 501 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 502 503 /* 504 * This flag indicates that a signal needs to be sent up. 505 * This flag will only get cleared once SIGURG is delivered and 506 * is not affected by the tcp_fused flag -- delivery will still 507 * happen even after an endpoint is unfused, to handle the case 508 * where the sending endpoint immediately closes/unfuses after 509 * sending urgent data and the accept is not yet finished. 510 */ 511 peer_tcp->tcp_fused_sigurg = B_TRUE; 512 513 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 514 DB_TYPE(mp) = M_PROTO; 515 tei = (struct T_exdata_ind *)mp->b_rptr; 516 tei->PRIM_type = T_EXDATA_IND; 517 tei->MORE_flag = 0; 518 mp->b_wptr = (uchar_t *)&tei[1]; 519 520 TCP_STAT(tcps, tcp_fusion_urg); 521 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 522 523 head = peer_tcp->tcp_rcv_list; 524 while (head != NULL) { 525 /* 526 * Remove existing T_EXDATA_IND, keep the data which follows 527 * it and relink our list. Note that we don't modify the 528 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 529 */ 530 if (DB_TYPE(head) != M_DATA) { 531 mp1 = head; 532 533 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 534 head = mp1->b_cont; 535 mp1->b_cont = NULL; 536 head->b_next = mp1->b_next; 537 mp1->b_next = NULL; 538 if (prev_head != NULL) 539 prev_head->b_next = head; 540 if (peer_tcp->tcp_rcv_list == mp1) 541 peer_tcp->tcp_rcv_list = head; 542 if (peer_tcp->tcp_rcv_last_head == mp1) 543 peer_tcp->tcp_rcv_last_head = head; 544 freeb(mp1); 545 } 546 prev_head = head; 547 head = head->b_next; 548 } 549 } 550 551 /* 552 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 553 * If we are modifying any member that can be changed outside the squeue, 554 * like tcp_flow_stopped, we need to take tcp_non_sq_lock. 555 */ 556 boolean_t 557 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 558 { 559 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 560 uint_t max_unread; 561 boolean_t flow_stopped, peer_data_queued = B_FALSE; 562 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 563 boolean_t push = B_TRUE; 564 mblk_t *mp1 = mp; 565 ill_t *ilp, *olp; 566 ipif_t *iifp, *oifp; 567 ipha_t *ipha; 568 ip6_t *ip6h; 569 tcph_t *tcph; 570 uint_t ip_hdr_len; 571 uint32_t seq; 572 uint32_t recv_size = send_size; 573 tcp_stack_t *tcps = tcp->tcp_tcps; 574 netstack_t *ns = tcps->tcps_netstack; 575 ip_stack_t *ipst = ns->netstack_ip; 576 577 ASSERT(tcp->tcp_fused); 578 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 579 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 580 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 581 DB_TYPE(mp) == M_PCPROTO); 582 583 /* If this connection requires IP, unfuse and use regular path */ 584 if (tcp_loopback_needs_ip(tcp, ns) || 585 tcp_loopback_needs_ip(peer_tcp, ns) || 586 IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst) || 587 list_head(&ipst->ips_ipobs_cb_list) != NULL) { 588 TCP_STAT(tcps, tcp_fusion_aborted); 589 tcp->tcp_refuse = B_TRUE; 590 peer_tcp->tcp_refuse = B_TRUE; 591 592 bcopy(peer_tcp->tcp_tcph, &tcp->tcp_saved_tcph, 593 sizeof (tcph_t)); 594 bcopy(tcp->tcp_tcph, &peer_tcp->tcp_saved_tcph, 595 sizeof (tcph_t)); 596 if (tcp->tcp_ipversion == IPV4_VERSION) { 597 bcopy(peer_tcp->tcp_ipha, &tcp->tcp_saved_ipha, 598 sizeof (ipha_t)); 599 bcopy(tcp->tcp_ipha, &peer_tcp->tcp_saved_ipha, 600 sizeof (ipha_t)); 601 } else { 602 bcopy(peer_tcp->tcp_ip6h, &tcp->tcp_saved_ip6h, 603 sizeof (ip6_t)); 604 bcopy(tcp->tcp_ip6h, &peer_tcp->tcp_saved_ip6h, 605 sizeof (ip6_t)); 606 } 607 goto unfuse; 608 } 609 610 if (send_size == 0) { 611 freemsg(mp); 612 return (B_TRUE); 613 } 614 max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater; 615 616 /* 617 * Handle urgent data; we either send up SIGURG to the peer now 618 * or do it later when we drain, in case the peer is detached 619 * or if we're short of memory for M_PCSIG mblk. 620 */ 621 if (urgent) { 622 /* 623 * We stop synchronous streams when we have urgent data 624 * queued to prevent tcp_fuse_rrw() from pulling it. If 625 * for some reasons the urgent data can't be delivered 626 * below, synchronous streams will remain stopped until 627 * someone drains the tcp_rcv_list. 628 */ 629 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 630 tcp_fuse_output_urg(tcp, mp); 631 632 mp1 = mp->b_cont; 633 } 634 635 if (tcp->tcp_ipversion == IPV4_VERSION && 636 (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) || 637 HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) || 638 tcp->tcp_ipversion == IPV6_VERSION && 639 (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) || 640 HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) { 641 /* 642 * Build ip and tcp header to satisfy FW_HOOKS. 643 * We only build it when any hook is present. 644 */ 645 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, 646 tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) 647 /* If tcp_xmit_mp fails, use regular path */ 648 goto unfuse; 649 650 /* 651 * The ipif and ill can be safely referenced under the 652 * protection of conn_lock - see head of function comment for 653 * conn_get_held_ipif(). It is necessary to check that both 654 * the ipif and ill can be looked up (i.e. not condemned). If 655 * not, bail out and unfuse this connection. 656 */ 657 mutex_enter(&peer_tcp->tcp_connp->conn_lock); 658 if ((peer_tcp->tcp_connp->conn_ire_cache == NULL) || 659 (peer_tcp->tcp_connp->conn_ire_cache->ire_marks & 660 IRE_MARK_CONDEMNED) || 661 ((oifp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif) 662 == NULL) || 663 (!IPIF_CAN_LOOKUP(oifp)) || 664 ((olp = oifp->ipif_ill) == NULL) || 665 (ill_check_and_refhold(olp) != 0)) { 666 mutex_exit(&peer_tcp->tcp_connp->conn_lock); 667 goto unfuse; 668 } 669 mutex_exit(&peer_tcp->tcp_connp->conn_lock); 670 671 /* PFHooks: LOOPBACK_OUT */ 672 if (tcp->tcp_ipversion == IPV4_VERSION) { 673 ipha = (ipha_t *)mp1->b_rptr; 674 675 DTRACE_PROBE4(ip4__loopback__out__start, 676 ill_t *, NULL, ill_t *, olp, 677 ipha_t *, ipha, mblk_t *, mp1); 678 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 679 ipst->ips_ipv4firewall_loopback_out, 680 NULL, olp, ipha, mp1, mp1, 0, ipst); 681 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1); 682 } else { 683 ip6h = (ip6_t *)mp1->b_rptr; 684 685 DTRACE_PROBE4(ip6__loopback__out__start, 686 ill_t *, NULL, ill_t *, olp, 687 ip6_t *, ip6h, mblk_t *, mp1); 688 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 689 ipst->ips_ipv6firewall_loopback_out, 690 NULL, olp, ip6h, mp1, mp1, 0, ipst); 691 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1); 692 } 693 ill_refrele(olp); 694 695 if (mp1 == NULL) 696 goto unfuse; 697 698 /* 699 * The ipif and ill can be safely referenced under the 700 * protection of conn_lock - see head of function comment for 701 * conn_get_held_ipif(). It is necessary to check that both 702 * the ipif and ill can be looked up (i.e. not condemned). If 703 * not, bail out and unfuse this connection. 704 */ 705 mutex_enter(&tcp->tcp_connp->conn_lock); 706 if ((tcp->tcp_connp->conn_ire_cache == NULL) || 707 (tcp->tcp_connp->conn_ire_cache->ire_marks & 708 IRE_MARK_CONDEMNED) || 709 ((iifp = tcp->tcp_connp->conn_ire_cache->ire_ipif) 710 == NULL) || 711 (!IPIF_CAN_LOOKUP(iifp)) || 712 ((ilp = iifp->ipif_ill) == NULL) || 713 (ill_check_and_refhold(ilp) != 0)) { 714 mutex_exit(&tcp->tcp_connp->conn_lock); 715 goto unfuse; 716 } 717 mutex_exit(&tcp->tcp_connp->conn_lock); 718 719 /* PFHooks: LOOPBACK_IN */ 720 if (tcp->tcp_ipversion == IPV4_VERSION) { 721 DTRACE_PROBE4(ip4__loopback__in__start, 722 ill_t *, ilp, ill_t *, NULL, 723 ipha_t *, ipha, mblk_t *, mp1); 724 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 725 ipst->ips_ipv4firewall_loopback_in, 726 ilp, NULL, ipha, mp1, mp1, 0, ipst); 727 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1); 728 ill_refrele(ilp); 729 if (mp1 == NULL) 730 goto unfuse; 731 732 ip_hdr_len = IPH_HDR_LENGTH(ipha); 733 } else { 734 DTRACE_PROBE4(ip6__loopback__in__start, 735 ill_t *, ilp, ill_t *, NULL, 736 ip6_t *, ip6h, mblk_t *, mp1); 737 FW_HOOKS6(ipst->ips_ip6_loopback_in_event, 738 ipst->ips_ipv6firewall_loopback_in, 739 ilp, NULL, ip6h, mp1, mp1, 0, ipst); 740 DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1); 741 ill_refrele(ilp); 742 if (mp1 == NULL) 743 goto unfuse; 744 745 ip_hdr_len = ip_hdr_length_v6(mp1, ip6h); 746 } 747 748 /* Data length might be changed by FW_HOOKS */ 749 tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len]; 750 seq = ABE32_TO_U32(tcph->th_seq); 751 recv_size += seq - tcp->tcp_snxt; 752 753 /* 754 * The message duplicated by tcp_xmit_mp is freed. 755 * Note: the original message passed in remains unchanged. 756 */ 757 freemsg(mp1); 758 } 759 760 mutex_enter(&peer_tcp->tcp_non_sq_lock); 761 /* 762 * Wake up and signal the peer; it is okay to do this before 763 * enqueueing because we are holding the lock. One of the 764 * advantages of synchronous streams is the ability for us to 765 * find out when the application performs a read on the socket, 766 * by way of tcp_fuse_rrw() entry point being called. Every 767 * data that gets enqueued onto the receiver is treated as if 768 * it has arrived at the receiving endpoint, thus generating 769 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput() 770 * case. However, we only wake up the application when necessary, 771 * i.e. during the first enqueue. When tcp_fuse_rrw() is called 772 * it will send everything upstream. 773 */ 774 if (peer_tcp->tcp_direct_sockfs && !urgent && 775 !TCP_IS_DETACHED(peer_tcp)) { 776 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 777 STR_WAKEUP_SENDSIG(STREAM(peer_tcp->tcp_rq), 778 peer_tcp->tcp_rcv_list); 779 } 780 781 /* 782 * Enqueue data into the peer's receive list; we may or may not 783 * drain the contents depending on the conditions below. 784 * 785 * tcp_hard_binding indicates that accept has not yet completed, 786 * in which case we use tcp_rcv_enqueue() instead of calling 787 * su_recv directly. Queued data will be drained when the accept 788 * completes (in tcp_accept_finish()). 789 */ 790 if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 791 !peer_tcp->tcp_hard_binding) { 792 int error; 793 int flags = 0; 794 795 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 796 (tcp->tcp_urg == tcp->tcp_snxt)) { 797 flags = MSG_OOB; 798 (*peer_tcp->tcp_connp->conn_upcalls->su_signal_oob) 799 (peer_tcp->tcp_connp->conn_upper_handle, 0); 800 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 801 } 802 (*peer_tcp->tcp_connp->conn_upcalls->su_recv)( 803 peer_tcp->tcp_connp->conn_upper_handle, mp, recv_size, 804 flags, &error, &push); 805 } else { 806 if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 807 (tcp->tcp_valid_bits & TCP_URG_VALID) && 808 (tcp->tcp_urg == tcp->tcp_snxt)) { 809 /* 810 * Can not deal with urgent pointers 811 * that arrive before the connection has been 812 * accept()ed. 813 */ 814 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 815 freemsg(mp); 816 mutex_exit(&peer_tcp->tcp_non_sq_lock); 817 return (B_TRUE); 818 } 819 820 tcp_rcv_enqueue(peer_tcp, mp, recv_size); 821 } 822 823 /* In case it wrapped around and also to keep it constant */ 824 peer_tcp->tcp_rwnd += recv_size; 825 /* 826 * We increase the peer's unread message count here whilst still 827 * holding it's tcp_non_sq_lock. This ensures that the increment 828 * occurs in the same lock acquisition perimeter as the enqueue. 829 * Depending on lock hierarchy, we can release these locks which 830 * creates a window in which we can race with tcp_fuse_rrw() 831 */ 832 peer_tcp->tcp_fuse_rcv_unread_cnt++; 833 834 /* 835 * Exercise flow-control when needed; we will get back-enabled 836 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw(). 837 * If tcp_direct_sockfs is on or if the peer endpoint is detached, 838 * we emulate streams flow control by checking the peer's queue 839 * size and high water mark; otherwise we simply use canputnext() 840 * to decide if we need to stop our flow. 841 * 842 * The outstanding unread data block check does not apply for a 843 * detached receiver; this is to avoid unnecessary blocking of the 844 * sender while the accept is currently in progress and is quite 845 * similar to the regular tcp. 846 */ 847 if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0) 848 max_unread = UINT_MAX; 849 850 /* 851 * Since we are accessing our tcp_flow_stopped and might modify it, 852 * we need to take tcp->tcp_non_sq_lock. The lock for the highest 853 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should 854 * not be an issue here since we are within the squeue and the peer 855 * won't disappear. 856 */ 857 if (tcp > peer_tcp) { 858 mutex_exit(&peer_tcp->tcp_non_sq_lock); 859 mutex_enter(&tcp->tcp_non_sq_lock); 860 mutex_enter(&peer_tcp->tcp_non_sq_lock); 861 } else { 862 mutex_enter(&tcp->tcp_non_sq_lock); 863 } 864 flow_stopped = tcp->tcp_flow_stopped; 865 if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) && 866 (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater || 867 peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) || 868 (!peer_tcp->tcp_direct_sockfs && !TCP_IS_DETACHED(peer_tcp) && 869 !IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 870 !canputnext(peer_tcp->tcp_rq))) { 871 peer_data_queued = B_TRUE; 872 } 873 874 if (!flow_stopped && (peer_data_queued || 875 (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) { 876 tcp_setqfull(tcp); 877 flow_stopped = B_TRUE; 878 TCP_STAT(tcps, tcp_fusion_flowctl); 879 DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp, 880 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt, 881 uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt); 882 } else if (flow_stopped && !peer_data_queued && 883 (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) { 884 tcp_clrqfull(tcp); 885 TCP_STAT(tcps, tcp_fusion_backenabled); 886 flow_stopped = B_FALSE; 887 } 888 mutex_exit(&tcp->tcp_non_sq_lock); 889 890 /* 891 * If we are in synchronous streams mode and the peer read queue is 892 * not full then schedule a push timer if one is not scheduled 893 * already. This is needed for applications which use MSG_PEEK to 894 * determine the number of bytes available before issuing a 'real' 895 * read. It also makes flow control more deterministic, particularly 896 * for smaller message sizes. 897 */ 898 if (!urgent && peer_tcp->tcp_direct_sockfs && 899 peer_tcp->tcp_push_tid == 0 && !TCP_IS_DETACHED(peer_tcp) && 900 canputnext(peer_tcp->tcp_rq)) { 901 peer_tcp->tcp_push_tid = TCP_TIMER(peer_tcp, tcp_push_timer, 902 MSEC_TO_TICK(tcps->tcps_push_timer_interval)); 903 } 904 mutex_exit(&peer_tcp->tcp_non_sq_lock); 905 ipst->ips_loopback_packets++; 906 tcp->tcp_last_sent_len = send_size; 907 908 /* Need to adjust the following SNMP MIB-related variables */ 909 tcp->tcp_snxt += send_size; 910 tcp->tcp_suna = tcp->tcp_snxt; 911 peer_tcp->tcp_rnxt += recv_size; 912 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 913 914 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 915 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size); 916 917 BUMP_MIB(&tcps->tcps_mib, tcpInSegs); 918 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 919 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size); 920 921 BUMP_LOCAL(tcp->tcp_obsegs); 922 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 923 924 DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size); 925 926 if (!TCP_IS_DETACHED(peer_tcp)) { 927 /* 928 * Drain the peer's receive queue it has urgent data or if 929 * we're not flow-controlled. There is no need for draining 930 * normal data when tcp_direct_sockfs is on because the peer 931 * will pull the data via tcp_fuse_rrw(). 932 */ 933 if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) { 934 ASSERT(IPCL_IS_NONSTR(peer_tcp->tcp_connp) || 935 peer_tcp->tcp_rcv_list != NULL); 936 /* 937 * For TLI-based streams, a thread in tcp_accept_swap() 938 * can race with us. That thread will ensure that the 939 * correct peer_tcp->tcp_rq is globally visible before 940 * peer_tcp->tcp_detached is visible as clear, but we 941 * must also ensure that the load of tcp_rq cannot be 942 * reordered to be before the tcp_detached check. 943 */ 944 membar_consumer(); 945 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 946 NULL); 947 /* 948 * If synchronous streams was stopped above due 949 * to the presence of urgent data, re-enable it. 950 */ 951 if (urgent) 952 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 953 } 954 } 955 return (B_TRUE); 956 unfuse: 957 tcp_unfuse(tcp); 958 return (B_FALSE); 959 } 960 961 /* 962 * This routine gets called to deliver data upstream on a fused or 963 * previously fused tcp loopback endpoint; the latter happens only 964 * when there is a pending SIGURG signal plus urgent data that can't 965 * be sent upstream in the past. 966 */ 967 boolean_t 968 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 969 { 970 mblk_t *mp; 971 conn_t *connp = tcp->tcp_connp; 972 973 #ifdef DEBUG 974 uint_t cnt = 0; 975 #endif 976 tcp_stack_t *tcps = tcp->tcp_tcps; 977 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 978 boolean_t sd_rd_eof = B_FALSE; 979 980 ASSERT(tcp->tcp_loopback); 981 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 982 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 983 ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused); 984 985 /* No need for the push timer now, in case it was scheduled */ 986 if (tcp->tcp_push_tid != 0) { 987 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 988 tcp->tcp_push_tid = 0; 989 } 990 /* 991 * If there's urgent data sitting in receive list and we didn't 992 * get a chance to send up a SIGURG signal, make sure we send 993 * it first before draining in order to ensure that SIOCATMARK 994 * works properly. 995 */ 996 if (tcp->tcp_fused_sigurg) { 997 tcp->tcp_fused_sigurg = B_FALSE; 998 if (IPCL_IS_NONSTR(connp)) { 999 (*connp->conn_upcalls->su_signal_oob) 1000 (connp->conn_upper_handle, 0); 1001 } else { 1002 /* 1003 * sigurg_mpp is normally NULL, i.e. when we're still 1004 * fused and didn't get here because of tcp_unfuse(). 1005 * In this case try hard to allocate the M_PCSIG mblk. 1006 */ 1007 if (sigurg_mpp == NULL && 1008 (mp = allocb(1, BPRI_HI)) == NULL && 1009 (mp = allocb_tryhard(1)) == NULL) { 1010 /* Alloc failed; try again next time */ 1011 tcp->tcp_push_tid = TCP_TIMER(tcp, 1012 tcp_push_timer, 1013 MSEC_TO_TICK( 1014 tcps->tcps_push_timer_interval)); 1015 return (B_TRUE); 1016 } else if (sigurg_mpp != NULL) { 1017 /* 1018 * Use the supplied M_PCSIG mblk; it means we're 1019 * either unfused or in the process of unfusing, 1020 * and the drain must happen now. 1021 */ 1022 mp = *sigurg_mpp; 1023 *sigurg_mpp = NULL; 1024 } 1025 ASSERT(mp != NULL); 1026 1027 /* Send up the signal */ 1028 DB_TYPE(mp) = M_PCSIG; 1029 *mp->b_wptr++ = (uchar_t)SIGURG; 1030 putnext(q, mp); 1031 } 1032 /* 1033 * Let the regular tcp_rcv_drain() path handle 1034 * draining the data if we're no longer fused. 1035 */ 1036 if (!tcp->tcp_fused) 1037 return (B_FALSE); 1038 } 1039 1040 /* 1041 * In the synchronous streams case, we generate SIGPOLL/SIGIO for 1042 * each M_DATA that gets enqueued onto the receiver. At this point 1043 * we are about to drain any queued data via putnext(). In order 1044 * to avoid extraneous signal generation from strrput(), we set 1045 * STRGETINPROG flag at the stream head prior to the draining and 1046 * restore it afterwards. This masks out signal generation only 1047 * for M_DATA messages and does not affect urgent data. We only do 1048 * this if the STREOF flag is not set which can happen if the 1049 * application shuts down the read side of a stream. In this case 1050 * we simply free these messages to approximate the flushq behavior 1051 * which normally occurs when STREOF is on the stream head read queue. 1052 */ 1053 if (tcp->tcp_direct_sockfs) 1054 sd_rd_eof = strrput_sig(q, B_FALSE); 1055 1056 /* Drain the data */ 1057 while ((mp = tcp->tcp_rcv_list) != NULL) { 1058 tcp->tcp_rcv_list = mp->b_next; 1059 mp->b_next = NULL; 1060 #ifdef DEBUG 1061 cnt += msgdsize(mp); 1062 #endif 1063 ASSERT(!IPCL_IS_NONSTR(connp)); 1064 if (sd_rd_eof) { 1065 freemsg(mp); 1066 } else { 1067 putnext(q, mp); 1068 TCP_STAT(tcps, tcp_fusion_putnext); 1069 } 1070 } 1071 1072 if (tcp->tcp_direct_sockfs && !sd_rd_eof) 1073 (void) strrput_sig(q, B_TRUE); 1074 1075 #ifdef DEBUG 1076 ASSERT(cnt == tcp->tcp_rcv_cnt); 1077 #endif 1078 tcp->tcp_rcv_last_head = NULL; 1079 tcp->tcp_rcv_last_tail = NULL; 1080 tcp->tcp_rcv_cnt = 0; 1081 tcp->tcp_fuse_rcv_unread_cnt = 0; 1082 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 1083 1084 if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= 1085 peer_tcp->tcp_xmit_lowater)) { 1086 tcp_clrqfull(peer_tcp); 1087 TCP_STAT(tcps, tcp_fusion_backenabled); 1088 } 1089 1090 return (B_TRUE); 1091 } 1092 1093 /* 1094 * Synchronous stream entry point for sockfs to retrieve 1095 * data directly from tcp_rcv_list. 1096 * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped, 1097 * for which it must take the tcp_non_sq_lock of the peer as well 1098 * making any change. The order of taking the locks is based on 1099 * the TCP pointer itself. Before we get the peer we need to take 1100 * our tcp_non_sq_lock so that the peer doesn't disappear. However, 1101 * we cannot drop the lock if we have to grab the peer's lock (because 1102 * of ordering), since the peer might disappear in the interim. So, 1103 * we take our tcp_non_sq_lock, get the peer, increment the ref on the 1104 * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the 1105 * desired order. Incrementing the conn ref on the peer means that the 1106 * peer won't disappear when we drop our tcp_non_sq_lock. 1107 */ 1108 int 1109 tcp_fuse_rrw(queue_t *q, struiod_t *dp) 1110 { 1111 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 1112 mblk_t *mp; 1113 tcp_t *peer_tcp; 1114 tcp_stack_t *tcps = tcp->tcp_tcps; 1115 1116 mutex_enter(&tcp->tcp_non_sq_lock); 1117 1118 /* 1119 * If tcp_fuse_syncstr_plugged is set, then another thread is moving 1120 * the underlying data to the stream head. We need to wait until it's 1121 * done, then return EBUSY so that strget() will dequeue data from the 1122 * stream head to ensure data is drained in-order. 1123 */ 1124 plugged: 1125 if (tcp->tcp_fuse_syncstr_plugged) { 1126 do { 1127 cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock); 1128 } while (tcp->tcp_fuse_syncstr_plugged); 1129 1130 mutex_exit(&tcp->tcp_non_sq_lock); 1131 TCP_STAT(tcps, tcp_fusion_rrw_plugged); 1132 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1133 return (EBUSY); 1134 } 1135 1136 peer_tcp = tcp->tcp_loopback_peer; 1137 1138 /* 1139 * If someone had turned off tcp_direct_sockfs or if synchronous 1140 * streams is stopped, we return EBUSY. This causes strget() to 1141 * dequeue data from the stream head instead. 1142 */ 1143 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 1144 mutex_exit(&tcp->tcp_non_sq_lock); 1145 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1146 return (EBUSY); 1147 } 1148 1149 /* 1150 * Grab lock in order. The highest addressed tcp is locked first. 1151 * We don't do this within the tcp_rcv_list check since if we 1152 * have to drop the lock, for ordering, then the tcp_rcv_list 1153 * could change. 1154 */ 1155 if (peer_tcp > tcp) { 1156 CONN_INC_REF(peer_tcp->tcp_connp); 1157 mutex_exit(&tcp->tcp_non_sq_lock); 1158 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1159 mutex_enter(&tcp->tcp_non_sq_lock); 1160 /* 1161 * This might have changed in the interim 1162 * Once read-side tcp_non_sq_lock is dropped above 1163 * anything can happen, we need to check all 1164 * known conditions again once we reaquire 1165 * read-side tcp_non_sq_lock. 1166 */ 1167 if (tcp->tcp_fuse_syncstr_plugged) { 1168 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1169 CONN_DEC_REF(peer_tcp->tcp_connp); 1170 goto plugged; 1171 } 1172 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) { 1173 mutex_exit(&tcp->tcp_non_sq_lock); 1174 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1175 CONN_DEC_REF(peer_tcp->tcp_connp); 1176 TCP_STAT(tcps, tcp_fusion_rrw_busy); 1177 return (EBUSY); 1178 } 1179 CONN_DEC_REF(peer_tcp->tcp_connp); 1180 } else { 1181 mutex_enter(&peer_tcp->tcp_non_sq_lock); 1182 } 1183 1184 if ((mp = tcp->tcp_rcv_list) != NULL) { 1185 1186 DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp, 1187 uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid); 1188 1189 tcp->tcp_rcv_list = NULL; 1190 TCP_STAT(tcps, tcp_fusion_rrw_msgcnt); 1191 1192 /* 1193 * At this point nothing should be left in tcp_rcv_list. 1194 * The only possible case where we would have a chain of 1195 * b_next-linked messages is urgent data, but we wouldn't 1196 * be here if that's true since urgent data is delivered 1197 * via putnext() and synchronous streams is stopped until 1198 * tcp_fuse_rcv_drain() is finished. 1199 */ 1200 ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL); 1201 1202 tcp->tcp_rcv_last_head = NULL; 1203 tcp->tcp_rcv_last_tail = NULL; 1204 tcp->tcp_rcv_cnt = 0; 1205 tcp->tcp_fuse_rcv_unread_cnt = 0; 1206 1207 if (peer_tcp->tcp_flow_stopped && 1208 (TCP_UNSENT_BYTES(peer_tcp) <= 1209 peer_tcp->tcp_xmit_lowater)) { 1210 tcp_clrqfull(peer_tcp); 1211 TCP_STAT(tcps, tcp_fusion_backenabled); 1212 } 1213 } 1214 mutex_exit(&peer_tcp->tcp_non_sq_lock); 1215 /* 1216 * Either we just dequeued everything or we get here from sockfs 1217 * and have nothing to return; in this case clear RSLEEP. 1218 */ 1219 ASSERT(tcp->tcp_rcv_last_head == NULL); 1220 ASSERT(tcp->tcp_rcv_last_tail == NULL); 1221 ASSERT(tcp->tcp_rcv_cnt == 0); 1222 ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0); 1223 STR_WAKEUP_CLEAR(STREAM(q)); 1224 1225 mutex_exit(&tcp->tcp_non_sq_lock); 1226 dp->d_mp = mp; 1227 return (0); 1228 } 1229 1230 /* 1231 * Synchronous stream entry point used by certain ioctls to retrieve 1232 * information about or peek into the tcp_rcv_list. 1233 */ 1234 int 1235 tcp_fuse_rinfop(queue_t *q, infod_t *dp) 1236 { 1237 tcp_t *tcp = Q_TO_CONN(q)->conn_tcp; 1238 mblk_t *mp; 1239 uint_t cmd = dp->d_cmd; 1240 int res = 0; 1241 int error = 0; 1242 struct stdata *stp = STREAM(q); 1243 1244 mutex_enter(&tcp->tcp_non_sq_lock); 1245 /* If shutdown on read has happened, return nothing */ 1246 mutex_enter(&stp->sd_lock); 1247 if (stp->sd_flag & STREOF) { 1248 mutex_exit(&stp->sd_lock); 1249 goto done; 1250 } 1251 mutex_exit(&stp->sd_lock); 1252 1253 /* 1254 * It is OK not to return an answer if tcp_rcv_list is 1255 * currently not accessible. 1256 */ 1257 if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped || 1258 tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL) 1259 goto done; 1260 1261 if (cmd & INFOD_COUNT) { 1262 /* 1263 * We have at least one message and 1264 * could return only one at a time. 1265 */ 1266 dp->d_count++; 1267 res |= INFOD_COUNT; 1268 } 1269 if (cmd & INFOD_BYTES) { 1270 /* 1271 * Return size of all data messages. 1272 */ 1273 dp->d_bytes += tcp->tcp_rcv_cnt; 1274 res |= INFOD_BYTES; 1275 } 1276 if (cmd & INFOD_FIRSTBYTES) { 1277 /* 1278 * Return size of first data message. 1279 */ 1280 dp->d_bytes = msgdsize(mp); 1281 res |= INFOD_FIRSTBYTES; 1282 dp->d_cmd &= ~INFOD_FIRSTBYTES; 1283 } 1284 if (cmd & INFOD_COPYOUT) { 1285 mblk_t *mp1; 1286 int n; 1287 1288 if (DB_TYPE(mp) == M_DATA) { 1289 mp1 = mp; 1290 } else { 1291 mp1 = mp->b_cont; 1292 ASSERT(mp1 != NULL); 1293 } 1294 1295 /* 1296 * Return data contents of first message. 1297 */ 1298 ASSERT(DB_TYPE(mp1) == M_DATA); 1299 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 1300 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 1301 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 1302 UIO_READ, dp->d_uiop)) != 0) { 1303 goto done; 1304 } 1305 mp1 = mp1->b_cont; 1306 } 1307 res |= INFOD_COPYOUT; 1308 dp->d_cmd &= ~INFOD_COPYOUT; 1309 } 1310 done: 1311 mutex_exit(&tcp->tcp_non_sq_lock); 1312 1313 dp->d_res |= res; 1314 1315 return (error); 1316 } 1317 1318 /* 1319 * Enable synchronous streams on a fused tcp loopback endpoint. 1320 */ 1321 static void 1322 tcp_fuse_syncstr_enable(tcp_t *tcp) 1323 { 1324 queue_t *rq = tcp->tcp_rq; 1325 struct stdata *stp = STREAM(rq); 1326 1327 /* We can only enable synchronous streams for sockfs mode */ 1328 tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs; 1329 1330 if (!tcp->tcp_direct_sockfs) 1331 return; 1332 1333 mutex_enter(&stp->sd_lock); 1334 mutex_enter(QLOCK(rq)); 1335 1336 /* 1337 * We replace our q_qinfo with one that has the qi_rwp entry point. 1338 * Clear SR_SIGALLDATA because we generate the equivalent signal(s) 1339 * for every enqueued data in tcp_fuse_output(). 1340 */ 1341 rq->q_qinfo = &tcp_loopback_rinit; 1342 rq->q_struiot = tcp_loopback_rinit.qi_struiot; 1343 stp->sd_struiordq = rq; 1344 stp->sd_rput_opt &= ~SR_SIGALLDATA; 1345 1346 mutex_exit(QLOCK(rq)); 1347 mutex_exit(&stp->sd_lock); 1348 } 1349 1350 /* 1351 * Disable synchronous streams on a fused tcp loopback endpoint. 1352 */ 1353 static void 1354 tcp_fuse_syncstr_disable(tcp_t *tcp) 1355 { 1356 queue_t *rq = tcp->tcp_rq; 1357 struct stdata *stp = STREAM(rq); 1358 1359 if (!tcp->tcp_direct_sockfs) 1360 return; 1361 1362 mutex_enter(&stp->sd_lock); 1363 mutex_enter(QLOCK(rq)); 1364 1365 /* 1366 * Reset q_qinfo to point to the default tcp entry points. 1367 * Also restore SR_SIGALLDATA so that strrput() can generate 1368 * the signals again for future M_DATA messages. 1369 */ 1370 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 1371 rq->q_struiot = tcp_rinitv4.qi_struiot; 1372 stp->sd_struiordq = NULL; 1373 stp->sd_rput_opt |= SR_SIGALLDATA; 1374 tcp->tcp_direct_sockfs = B_FALSE; 1375 1376 mutex_exit(QLOCK(rq)); 1377 mutex_exit(&stp->sd_lock); 1378 } 1379 1380 /* 1381 * Enable synchronous streams on a pair of fused tcp endpoints. 1382 */ 1383 void 1384 tcp_fuse_syncstr_enable_pair(tcp_t *tcp) 1385 { 1386 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1387 1388 ASSERT(tcp->tcp_fused); 1389 ASSERT(peer_tcp != NULL); 1390 1391 tcp_fuse_syncstr_enable(tcp); 1392 tcp_fuse_syncstr_enable(peer_tcp); 1393 } 1394 1395 /* 1396 * Used to enable/disable signal generation at the stream head. We already 1397 * generated the signal(s) for these messages when they were enqueued on the 1398 * receiver. We also check if STREOF is set here. If it is, we return false 1399 * and let the caller decide what to do. 1400 */ 1401 static boolean_t 1402 strrput_sig(queue_t *q, boolean_t on) 1403 { 1404 struct stdata *stp = STREAM(q); 1405 1406 mutex_enter(&stp->sd_lock); 1407 if (stp->sd_flag == STREOF) { 1408 mutex_exit(&stp->sd_lock); 1409 return (B_TRUE); 1410 } 1411 if (on) 1412 stp->sd_flag &= ~STRGETINPROG; 1413 else 1414 stp->sd_flag |= STRGETINPROG; 1415 mutex_exit(&stp->sd_lock); 1416 1417 return (B_FALSE); 1418 } 1419 1420 /* 1421 * Disable synchronous streams on a pair of fused tcp endpoints and drain 1422 * any queued data; called either during unfuse or upon transitioning from 1423 * a socket to a stream endpoint due to _SIOCSOCKFALLBACK. 1424 */ 1425 void 1426 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing) 1427 { 1428 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1429 tcp_stack_t *tcps = tcp->tcp_tcps; 1430 1431 ASSERT(tcp->tcp_fused); 1432 ASSERT(peer_tcp != NULL); 1433 1434 /* 1435 * Force any tcp_fuse_rrw() calls to block until we've moved the data 1436 * onto the stream head. 1437 */ 1438 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 1439 TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp); 1440 1441 /* 1442 * Cancel any pending push timers. 1443 */ 1444 if (tcp->tcp_push_tid != 0) { 1445 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 1446 tcp->tcp_push_tid = 0; 1447 } 1448 if (peer_tcp->tcp_push_tid != 0) { 1449 (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid); 1450 peer_tcp->tcp_push_tid = 0; 1451 } 1452 1453 /* 1454 * Drain any pending data; the detached check is needed because 1455 * we may be called as a result of a tcp_unfuse() triggered by 1456 * tcp_fuse_output(). Note that in case of a detached tcp, the 1457 * draining will happen later after the tcp is unfused. For non- 1458 * urgent data, this can be handled by the regular tcp_rcv_drain(). 1459 * If we have urgent data sitting in the receive list, we will 1460 * need to send up a SIGURG signal first before draining the data. 1461 * All of these will be handled by the code in tcp_fuse_rcv_drain() 1462 * when called from tcp_rcv_drain(). 1463 */ 1464 if (!TCP_IS_DETACHED(tcp)) { 1465 (void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, 1466 (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL)); 1467 } 1468 if (!TCP_IS_DETACHED(peer_tcp)) { 1469 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 1470 (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL)); 1471 } 1472 1473 /* 1474 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY. 1475 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(), 1476 * a given stream must be stopped prior to being unplugged (but the 1477 * ordering of operations between the streams is unimportant). 1478 */ 1479 TCP_FUSE_SYNCSTR_STOP(tcp); 1480 TCP_FUSE_SYNCSTR_STOP(peer_tcp); 1481 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 1482 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp); 1483 1484 /* Lift up any flow-control conditions */ 1485 if (tcp->tcp_flow_stopped) { 1486 tcp_clrqfull(tcp); 1487 TCP_STAT(tcps, tcp_fusion_backenabled); 1488 } 1489 if (peer_tcp->tcp_flow_stopped) { 1490 tcp_clrqfull(peer_tcp); 1491 TCP_STAT(tcps, tcp_fusion_backenabled); 1492 } 1493 1494 /* Disable synchronous streams */ 1495 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 1496 tcp_fuse_syncstr_disable(tcp); 1497 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) 1498 tcp_fuse_syncstr_disable(peer_tcp); 1499 } 1500 1501 /* 1502 * Calculate the size of receive buffer for a fused tcp endpoint. 1503 */ 1504 size_t 1505 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 1506 { 1507 tcp_stack_t *tcps = tcp->tcp_tcps; 1508 1509 ASSERT(tcp->tcp_fused); 1510 1511 /* Ensure that value is within the maximum upper bound */ 1512 if (rwnd > tcps->tcps_max_buf) 1513 rwnd = tcps->tcps_max_buf; 1514 1515 /* Obey the absolute minimum tcp receive high water mark */ 1516 if (rwnd < tcps->tcps_sth_rcv_hiwat) 1517 rwnd = tcps->tcps_sth_rcv_hiwat; 1518 1519 /* 1520 * Round up to system page size in case SO_RCVBUF is modified 1521 * after SO_SNDBUF; the latter is also similarly rounded up. 1522 */ 1523 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 1524 tcp->tcp_fuse_rcv_hiwater = rwnd; 1525 return (rwnd); 1526 } 1527 1528 /* 1529 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 1530 */ 1531 int 1532 tcp_fuse_maxpsz_set(tcp_t *tcp) 1533 { 1534 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1535 uint_t sndbuf = tcp->tcp_xmit_hiwater; 1536 uint_t maxpsz = sndbuf; 1537 1538 ASSERT(tcp->tcp_fused); 1539 ASSERT(peer_tcp != NULL); 1540 ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0); 1541 /* 1542 * In the fused loopback case, we want the stream head to split 1543 * up larger writes into smaller chunks for a more accurate flow- 1544 * control accounting. Our maxpsz is half of the sender's send 1545 * buffer or the receiver's receive buffer, whichever is smaller. 1546 * We round up the buffer to system page size due to the lack of 1547 * TCP MSS concept in Fusion. 1548 */ 1549 if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater) 1550 maxpsz = peer_tcp->tcp_fuse_rcv_hiwater; 1551 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 1552 1553 /* 1554 * Calculate the peer's limit for the number of outstanding unread 1555 * data block. This is the amount of data blocks that are allowed 1556 * to reside in the receiver's queue before the sender gets flow 1557 * controlled. It is used only in the synchronous streams mode as 1558 * a way to throttle the sender when it performs consecutive writes 1559 * faster than can be read. The value is derived from SO_SNDBUF in 1560 * order to give the sender some control; we divide it with a large 1561 * value (16KB) to produce a fairly low initial limit. 1562 */ 1563 if (tcp_fusion_rcv_unread_min == 0) { 1564 /* A value of 0 means that we disable the check */ 1565 peer_tcp->tcp_fuse_rcv_unread_hiwater = 0; 1566 } else { 1567 peer_tcp->tcp_fuse_rcv_unread_hiwater = 1568 MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min); 1569 } 1570 return (maxpsz); 1571 } 1572