xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision 3e95bd4ab92abca814bd28e854607d1975c7dc88)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/types.h>
26 #include <sys/stream.h>
27 #include <sys/strsun.h>
28 #include <sys/strsubr.h>
29 #include <sys/debug.h>
30 #include <sys/sdt.h>
31 #include <sys/cmn_err.h>
32 #include <sys/tihdr.h>
33 
34 #include <inet/common.h>
35 #include <inet/optcom.h>
36 #include <inet/ip.h>
37 #include <inet/ip_if.h>
38 #include <inet/ip_impl.h>
39 #include <inet/tcp.h>
40 #include <inet/tcp_impl.h>
41 #include <inet/ipsec_impl.h>
42 #include <inet/ipclassifier.h>
43 #include <inet/ipp_common.h>
44 #include <inet/ip_if.h>
45 
46 /*
47  * This file implements TCP fusion - a protocol-less data path for TCP
48  * loopback connections.  The fusion of two local TCP endpoints occurs
49  * at connection establishment time.  Various conditions (see details
50  * in tcp_fuse()) need to be met for fusion to be successful.  If it
51  * fails, we fall back to the regular TCP data path; if it succeeds,
52  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
53  * tcp_fuse_output() enqueues application data directly onto the peer's
54  * receive queue; no protocol processing is involved.
55  *
56  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
57  * One of the requirements for fusion to succeed is that both endpoints
58  * need to be using the same squeue.  This ensures that neither side
59  * can disappear while the other side is still sending data. Flow
60  * control information is manipulated outside the squeue, so the
61  * tcp_non_sq_lock must be held when touching tcp_flow_stopped.
62  */
63 
64 /*
65  * Setting this to false means we disable fusion altogether and
66  * loopback connections would go through the protocol paths.
67  */
68 boolean_t do_tcp_fusion = B_TRUE;
69 
70 /*
71  * This routine gets called by the eager tcp upon changing state from
72  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
73  * and the active connect tcp such that the regular tcp processings
74  * may be bypassed under allowable circumstances.  Because the fusion
75  * requires both endpoints to be in the same squeue, it does not work
76  * for simultaneous active connects because there is no easy way to
77  * switch from one squeue to another once the connection is created.
78  * This is different from the eager tcp case where we assign it the
79  * same squeue as the one given to the active connect tcp during open.
80  */
81 void
82 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha)
83 {
84 	conn_t		*peer_connp, *connp = tcp->tcp_connp;
85 	tcp_t		*peer_tcp;
86 	tcp_stack_t	*tcps = tcp->tcp_tcps;
87 	netstack_t	*ns;
88 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
89 
90 	ASSERT(!tcp->tcp_fused);
91 	ASSERT(tcp->tcp_loopback);
92 	ASSERT(tcp->tcp_loopback_peer == NULL);
93 	/*
94 	 * We need to inherit conn_rcvbuf of the listener tcp,
95 	 * but we can't really use tcp_listener since we get here after
96 	 * sending up T_CONN_IND and tcp_tli_accept() may be called
97 	 * independently, at which point tcp_listener is cleared;
98 	 * this is why we use tcp_saved_listener. The listener itself
99 	 * is guaranteed to be around until tcp_accept_finish() is called
100 	 * on this eager -- this won't happen until we're done since we're
101 	 * inside the eager's perimeter now.
102 	 */
103 	ASSERT(tcp->tcp_saved_listener != NULL);
104 	/*
105 	 * Lookup peer endpoint; search for the remote endpoint having
106 	 * the reversed address-port quadruplet in ESTABLISHED state,
107 	 * which is guaranteed to be unique in the system.  Zone check
108 	 * is applied accordingly for loopback address, but not for
109 	 * local address since we want fusion to happen across Zones.
110 	 */
111 	if (connp->conn_ipversion == IPV4_VERSION) {
112 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
113 		    (ipha_t *)iphdr, tcpha, ipst);
114 	} else {
115 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
116 		    (ip6_t *)iphdr, tcpha, ipst);
117 	}
118 
119 	/*
120 	 * We can only proceed if peer exists, resides in the same squeue
121 	 * as our conn and is not raw-socket. We also restrict fusion to
122 	 * endpoints of the same type (STREAMS or non-STREAMS). The squeue
123 	 * assignment of this eager tcp was done earlier at the time of SYN
124 	 * processing in ip_fanout_tcp{_v6}.  Note that similar squeues by
125 	 * itself doesn't guarantee a safe condition to fuse, hence we perform
126 	 * additional tests below.
127 	 */
128 	ASSERT(peer_connp == NULL || peer_connp != connp);
129 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
130 	    !IPCL_IS_TCP(peer_connp) ||
131 	    IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) {
132 		if (peer_connp != NULL) {
133 			TCP_STAT(tcps, tcp_fusion_unqualified);
134 			CONN_DEC_REF(peer_connp);
135 		}
136 		return;
137 	}
138 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
139 
140 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
141 	ASSERT(peer_tcp->tcp_loopback_peer == NULL);
142 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
143 
144 	/*
145 	 * Due to IRE changes the peer and us might not agree on tcp_loopback.
146 	 * We bail in that case.
147 	 */
148 	if (!peer_tcp->tcp_loopback) {
149 		TCP_STAT(tcps, tcp_fusion_unqualified);
150 		CONN_DEC_REF(peer_connp);
151 		return;
152 	}
153 	/*
154 	 * Fuse the endpoints; we perform further checks against both
155 	 * tcp endpoints to ensure that a fusion is allowed to happen.
156 	 * In particular we bail out if kernel SSL exists.
157 	 */
158 	ns = tcps->tcps_netstack;
159 	ipst = ns->netstack_ip;
160 
161 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
162 	    (tcp->tcp_kssl_ent == NULL) && (tcp->tcp_xmit_head == NULL) &&
163 	    (peer_tcp->tcp_xmit_head == NULL)) {
164 		mblk_t *mp;
165 		queue_t *peer_rq = peer_connp->conn_rq;
166 
167 		ASSERT(!TCP_IS_DETACHED(peer_tcp));
168 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
169 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
170 		ASSERT(tcp->tcp_kssl_ctx == NULL);
171 
172 		/*
173 		 * We need to drain data on both endpoints during unfuse.
174 		 * If we need to send up SIGURG at the time of draining,
175 		 * we want to be sure that an mblk is readily available.
176 		 * This is why we pre-allocate the M_PCSIG mblks for both
177 		 * endpoints which will only be used during/after unfuse.
178 		 * The mblk might already exist if we are doing a re-fuse.
179 		 */
180 		if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
181 			ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp));
182 
183 			if (tcp->tcp_fused_sigurg_mp == NULL) {
184 				if ((mp = allocb(1, BPRI_HI)) == NULL)
185 					goto failed;
186 				tcp->tcp_fused_sigurg_mp = mp;
187 			}
188 
189 			if (peer_tcp->tcp_fused_sigurg_mp == NULL) {
190 				if ((mp = allocb(1, BPRI_HI)) == NULL)
191 					goto failed;
192 				peer_tcp->tcp_fused_sigurg_mp = mp;
193 			}
194 
195 			if ((mp = allocb(sizeof (struct stroptions),
196 			    BPRI_HI)) == NULL)
197 				goto failed;
198 		}
199 
200 		/* Fuse both endpoints */
201 		peer_tcp->tcp_loopback_peer = tcp;
202 		tcp->tcp_loopback_peer = peer_tcp;
203 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
204 
205 		/*
206 		 * We never use regular tcp paths in fusion and should
207 		 * therefore clear tcp_unsent on both endpoints.  Having
208 		 * them set to non-zero values means asking for trouble
209 		 * especially after unfuse, where we may end up sending
210 		 * through regular tcp paths which expect xmit_list and
211 		 * friends to be correctly setup.
212 		 */
213 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
214 
215 		tcp_timers_stop(tcp);
216 		tcp_timers_stop(peer_tcp);
217 
218 		/*
219 		 * Set receive buffer and max packet size for the
220 		 * active open tcp.
221 		 * eager's values will be set in tcp_accept_finish.
222 		 */
223 		(void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf);
224 
225 		/*
226 		 * Set the write offset value to zero since we won't
227 		 * be needing any room for TCP/IP headers.
228 		 */
229 		if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
230 			struct stroptions *stropt;
231 
232 			DB_TYPE(mp) = M_SETOPTS;
233 			mp->b_wptr += sizeof (*stropt);
234 
235 			stropt = (struct stroptions *)mp->b_rptr;
236 			stropt->so_flags = SO_WROFF | SO_MAXBLK;
237 			stropt->so_wroff = 0;
238 			stropt->so_maxblk = INFPSZ;
239 
240 			/* Send the options up */
241 			putnext(peer_rq, mp);
242 		} else {
243 			struct sock_proto_props sopp;
244 
245 			/* The peer is a non-STREAMS end point */
246 			ASSERT(IPCL_IS_TCP(peer_connp));
247 
248 			sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_MAXBLK;
249 			sopp.sopp_wroff = 0;
250 			sopp.sopp_maxblk = INFPSZ;
251 			(*peer_connp->conn_upcalls->su_set_proto_props)
252 			    (peer_connp->conn_upper_handle, &sopp);
253 		}
254 	} else {
255 		TCP_STAT(tcps, tcp_fusion_unqualified);
256 	}
257 	CONN_DEC_REF(peer_connp);
258 	return;
259 
260 failed:
261 	if (tcp->tcp_fused_sigurg_mp != NULL) {
262 		freeb(tcp->tcp_fused_sigurg_mp);
263 		tcp->tcp_fused_sigurg_mp = NULL;
264 	}
265 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
266 		freeb(peer_tcp->tcp_fused_sigurg_mp);
267 		peer_tcp->tcp_fused_sigurg_mp = NULL;
268 	}
269 	CONN_DEC_REF(peer_connp);
270 }
271 
272 /*
273  * Unfuse a previously-fused pair of tcp loopback endpoints.
274  */
275 void
276 tcp_unfuse(tcp_t *tcp)
277 {
278 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
279 	tcp_stack_t *tcps = tcp->tcp_tcps;
280 
281 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
282 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
283 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
284 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
285 
286 	/*
287 	 * Cancel any pending push timers.
288 	 */
289 	if (tcp->tcp_push_tid != 0) {
290 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
291 		tcp->tcp_push_tid = 0;
292 	}
293 	if (peer_tcp->tcp_push_tid != 0) {
294 		(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
295 		peer_tcp->tcp_push_tid = 0;
296 	}
297 
298 	/*
299 	 * Drain any pending data; Note that in case of a detached tcp, the
300 	 * draining will happen later after the tcp is unfused.  For non-
301 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
302 	 * If we have urgent data sitting in the receive list, we will
303 	 * need to send up a SIGURG signal first before draining the data.
304 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
305 	 * when called from tcp_rcv_drain().
306 	 */
307 	if (!TCP_IS_DETACHED(tcp)) {
308 		(void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp,
309 		    &tcp->tcp_fused_sigurg_mp);
310 	}
311 	if (!TCP_IS_DETACHED(peer_tcp)) {
312 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq,
313 		    peer_tcp,  &peer_tcp->tcp_fused_sigurg_mp);
314 	}
315 
316 	/* Lift up any flow-control conditions */
317 	mutex_enter(&tcp->tcp_non_sq_lock);
318 	if (tcp->tcp_flow_stopped) {
319 		tcp_clrqfull(tcp);
320 		TCP_STAT(tcps, tcp_fusion_backenabled);
321 	}
322 	mutex_exit(&tcp->tcp_non_sq_lock);
323 
324 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
325 	if (peer_tcp->tcp_flow_stopped) {
326 		tcp_clrqfull(peer_tcp);
327 		TCP_STAT(tcps, tcp_fusion_backenabled);
328 	}
329 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
330 
331 	/*
332 	 * Update tha_seq and tha_ack in the header template
333 	 */
334 	tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt);
335 	tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
336 	peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt);
337 	peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt);
338 
339 	/* Unfuse the endpoints */
340 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
341 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
342 }
343 
344 /*
345  * Fusion output routine used to handle urgent data sent by STREAMS based
346  * endpoints. This routine is called by tcp_fuse_output() for handling
347  * non-M_DATA mblks.
348  */
349 void
350 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
351 {
352 	mblk_t *mp1;
353 	struct T_exdata_ind *tei;
354 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
355 	mblk_t *head, *prev_head = NULL;
356 	tcp_stack_t	*tcps = tcp->tcp_tcps;
357 
358 	ASSERT(tcp->tcp_fused);
359 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
360 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
361 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
362 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
363 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
364 
365 	/*
366 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
367 	 * Each occurence denotes a new urgent pointer.  For each new
368 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
369 	 * that it needs to go into urgent mode.  This is similar to the
370 	 * urgent data handling in the regular tcp.  We don't need to keep
371 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
372 	 * "advances" the urgent pointer for us.
373 	 *
374 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
375 	 * by a T_EXDATA_IND before being enqueued behind any existing data
376 	 * destined for the receiving app.  There is only a single urgent
377 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
378 	 * data arrives before the receiving app reads some existing urgent
379 	 * data, the previous marker is lost.  This behavior is emulated
380 	 * accordingly below, by removing any existing T_EXDATA_IND messages
381 	 * and essentially converting old urgent data into non-urgent.
382 	 */
383 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
384 	/* Let sender get out of urgent mode */
385 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
386 
387 	/*
388 	 * This flag indicates that a signal needs to be sent up.
389 	 * This flag will only get cleared once SIGURG is delivered and
390 	 * is not affected by the tcp_fused flag -- delivery will still
391 	 * happen even after an endpoint is unfused, to handle the case
392 	 * where the sending endpoint immediately closes/unfuses after
393 	 * sending urgent data and the accept is not yet finished.
394 	 */
395 	peer_tcp->tcp_fused_sigurg = B_TRUE;
396 
397 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
398 	DB_TYPE(mp) = M_PROTO;
399 	tei = (struct T_exdata_ind *)mp->b_rptr;
400 	tei->PRIM_type = T_EXDATA_IND;
401 	tei->MORE_flag = 0;
402 	mp->b_wptr = (uchar_t *)&tei[1];
403 
404 	TCP_STAT(tcps, tcp_fusion_urg);
405 	TCPS_BUMP_MIB(tcps, tcpOutUrg);
406 
407 	head = peer_tcp->tcp_rcv_list;
408 	while (head != NULL) {
409 		/*
410 		 * Remove existing T_EXDATA_IND, keep the data which follows
411 		 * it and relink our list.  Note that we don't modify the
412 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
413 		 */
414 		if (DB_TYPE(head) != M_DATA) {
415 			mp1 = head;
416 
417 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
418 			head = mp1->b_cont;
419 			mp1->b_cont = NULL;
420 			head->b_next = mp1->b_next;
421 			mp1->b_next = NULL;
422 			if (prev_head != NULL)
423 				prev_head->b_next = head;
424 			if (peer_tcp->tcp_rcv_list == mp1)
425 				peer_tcp->tcp_rcv_list = head;
426 			if (peer_tcp->tcp_rcv_last_head == mp1)
427 				peer_tcp->tcp_rcv_last_head = head;
428 			freeb(mp1);
429 		}
430 		prev_head = head;
431 		head = head->b_next;
432 	}
433 }
434 
435 /*
436  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
437  * If we are modifying any member that can be changed outside the squeue,
438  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
439  */
440 boolean_t
441 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
442 {
443 	conn_t		*connp = tcp->tcp_connp;
444 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
445 	conn_t		*peer_connp = peer_tcp->tcp_connp;
446 	boolean_t	flow_stopped, peer_data_queued = B_FALSE;
447 	boolean_t	urgent = (DB_TYPE(mp) != M_DATA);
448 	boolean_t	push = B_TRUE;
449 	mblk_t		*mp1 = mp;
450 	uint_t		ip_hdr_len;
451 	uint32_t	recv_size = send_size;
452 	tcp_stack_t	*tcps = tcp->tcp_tcps;
453 	netstack_t	*ns = tcps->tcps_netstack;
454 	ip_stack_t	*ipst = ns->netstack_ip;
455 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
456 	iaflags_t	ixaflags = connp->conn_ixa->ixa_flags;
457 	boolean_t	do_ipsec, hooks_out, hooks_in, ipobs_enabled;
458 
459 	ASSERT(tcp->tcp_fused);
460 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
461 	ASSERT(connp->conn_sqp == peer_connp->conn_sqp);
462 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
463 	    DB_TYPE(mp) == M_PCPROTO);
464 
465 	if (send_size == 0) {
466 		freemsg(mp);
467 		return (B_TRUE);
468 	}
469 
470 	/*
471 	 * Handle urgent data; we either send up SIGURG to the peer now
472 	 * or do it later when we drain, in case the peer is detached
473 	 * or if we're short of memory for M_PCSIG mblk.
474 	 */
475 	if (urgent) {
476 		tcp_fuse_output_urg(tcp, mp);
477 
478 		mp1 = mp->b_cont;
479 	}
480 
481 	/*
482 	 * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before
483 	 * further processes.
484 	 */
485 	if (!ip_output_verify_local(connp->conn_ixa))
486 		goto unfuse;
487 
488 	/*
489 	 * Build IP and TCP header in case we have something that needs the
490 	 * headers. Those cases are:
491 	 * 1. IPsec
492 	 * 2. IPobs
493 	 * 3. FW_HOOKS
494 	 *
495 	 * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection
496 	 * and back to regular path.
497 	 */
498 	if (ixaflags & IXAF_IS_IPV4) {
499 		do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
500 		    CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss);
501 
502 		hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst);
503 		hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst);
504 		ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0);
505 	} else {
506 		do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
507 		    CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss);
508 
509 		hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst);
510 		hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst);
511 		ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0);
512 	}
513 
514 	/* We do logical 'or' for efficiency */
515 	if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) {
516 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
517 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
518 			/* If tcp_xmit_mp fails, use regular path */
519 			goto unfuse;
520 
521 		/*
522 		 * Leave all IP relevant processes to ip_output_process_local(),
523 		 * which handles IPsec, IPobs, and FW_HOOKS.
524 		 */
525 		mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out,
526 		    hooks_in, do_ipsec ? peer_connp : NULL);
527 
528 		/* If the message is dropped for any reason. */
529 		if (mp1 == NULL)
530 			goto unfuse;
531 
532 		/*
533 		 * Data length might have been changed by FW_HOOKS.
534 		 * We assume that the first mblk contains the TCP/IP headers.
535 		 */
536 		if (hooks_in || hooks_out) {
537 			tcpha_t *tcpha;
538 
539 			ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ?
540 			    IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) :
541 			    ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr);
542 
543 			tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len];
544 			ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <=
545 			    mp1->b_wptr);
546 			recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt;
547 
548 		}
549 
550 		/*
551 		 * The message duplicated by tcp_xmit_mp is freed.
552 		 * Note: the original message passed in remains unchanged.
553 		 */
554 		freemsg(mp1);
555 	}
556 
557 	/*
558 	 * Enqueue data into the peer's receive list; we may or may not
559 	 * drain the contents depending on the conditions below.
560 	 *
561 	 * For non-STREAMS sockets we normally queue data directly in the
562 	 * socket by calling the su_recv upcall. However, if the peer is
563 	 * detached we use tcp_rcv_enqueue() instead. Queued data will be
564 	 * drained when the accept completes (in tcp_accept_finish()).
565 	 */
566 	if (IPCL_IS_NONSTR(peer_connp) &&
567 	    !TCP_IS_DETACHED(peer_tcp)) {
568 		int error;
569 		int flags = 0;
570 
571 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
572 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
573 			flags = MSG_OOB;
574 			(*peer_connp->conn_upcalls->su_signal_oob)
575 			    (peer_connp->conn_upper_handle, 0);
576 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
577 		}
578 		if ((*peer_connp->conn_upcalls->su_recv)(
579 		    peer_connp->conn_upper_handle, mp, recv_size,
580 		    flags, &error, &push) < 0) {
581 			ASSERT(error != EOPNOTSUPP);
582 			peer_data_queued = B_TRUE;
583 		}
584 	} else {
585 		if (IPCL_IS_NONSTR(peer_connp) &&
586 		    (tcp->tcp_valid_bits & TCP_URG_VALID) &&
587 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
588 			/*
589 			 * Can not deal with urgent pointers
590 			 * that arrive before the connection has been
591 			 * accept()ed.
592 			 */
593 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
594 			freemsg(mp);
595 			return (B_TRUE);
596 		}
597 
598 		tcp_rcv_enqueue(peer_tcp, mp, recv_size,
599 		    tcp->tcp_connp->conn_cred);
600 
601 		/* In case it wrapped around and also to keep it constant */
602 		peer_tcp->tcp_rwnd += recv_size;
603 	}
604 
605 	/*
606 	 * Exercise flow-control when needed; we will get back-enabled
607 	 * in either tcp_accept_finish(), tcp_unfuse(), or when data is
608 	 * consumed. If peer endpoint is detached, we emulate streams flow
609 	 * control by checking the peer's queue size and high water mark;
610 	 * otherwise we simply use canputnext() to decide if we need to stop
611 	 * our flow.
612 	 *
613 	 * Since we are accessing our tcp_flow_stopped and might modify it,
614 	 * we need to take tcp->tcp_non_sq_lock.
615 	 */
616 	mutex_enter(&tcp->tcp_non_sq_lock);
617 	flow_stopped = tcp->tcp_flow_stopped;
618 	if ((TCP_IS_DETACHED(peer_tcp) &&
619 	    (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) ||
620 	    (!TCP_IS_DETACHED(peer_tcp) &&
621 	    !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) {
622 		peer_data_queued = B_TRUE;
623 	}
624 
625 	if (!flow_stopped && (peer_data_queued ||
626 	    (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) {
627 		tcp_setqfull(tcp);
628 		flow_stopped = B_TRUE;
629 		TCP_STAT(tcps, tcp_fusion_flowctl);
630 		DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp,
631 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt);
632 	} else if (flow_stopped && !peer_data_queued &&
633 	    (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) {
634 		tcp_clrqfull(tcp);
635 		TCP_STAT(tcps, tcp_fusion_backenabled);
636 		flow_stopped = B_FALSE;
637 	}
638 	mutex_exit(&tcp->tcp_non_sq_lock);
639 
640 	ipst->ips_loopback_packets++;
641 	tcp->tcp_last_sent_len = send_size;
642 
643 	/* Need to adjust the following SNMP MIB-related variables */
644 	tcp->tcp_snxt += send_size;
645 	tcp->tcp_suna = tcp->tcp_snxt;
646 	peer_tcp->tcp_rnxt += recv_size;
647 	peer_tcp->tcp_last_recv_len = recv_size;
648 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
649 
650 	TCPS_BUMP_MIB(tcps, tcpOutDataSegs);
651 	TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size);
652 
653 	TCPS_BUMP_MIB(tcps, tcpHCInSegs);
654 	TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
655 	TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size);
656 
657 	BUMP_LOCAL(tcp->tcp_obsegs);
658 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
659 
660 	DTRACE_TCP5(send, void, NULL, ip_xmit_attr_t *, connp->conn_ixa,
661 	    __dtrace_tcp_void_ip_t *, NULL, tcp_t *, tcp,
662 	    __dtrace_tcp_tcph_t *, NULL);
663 	DTRACE_TCP5(receive, void, NULL, ip_xmit_attr_t *,
664 	    peer_connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL,
665 	    tcp_t *, peer_tcp, __dtrace_tcp_tcph_t *, NULL);
666 
667 	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
668 	    !TCP_IS_DETACHED(peer_tcp)) {
669 		/*
670 		 * Drain the peer's receive queue it has urgent data or if
671 		 * we're not flow-controlled.
672 		 */
673 		if (urgent || !flow_stopped) {
674 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
675 			/*
676 			 * For TLI-based streams, a thread in tcp_accept_swap()
677 			 * can race with us.  That thread will ensure that the
678 			 * correct peer_connp->conn_rq is globally visible
679 			 * before peer_tcp->tcp_detached is visible as clear,
680 			 * but we must also ensure that the load of conn_rq
681 			 * cannot be reordered to be before the tcp_detached
682 			 * check.
683 			 */
684 			membar_consumer();
685 			(void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp,
686 			    NULL);
687 		}
688 	}
689 	return (B_TRUE);
690 unfuse:
691 	tcp_unfuse(tcp);
692 	return (B_FALSE);
693 }
694 
695 /*
696  * This routine gets called to deliver data upstream on a fused or
697  * previously fused tcp loopback endpoint; the latter happens only
698  * when there is a pending SIGURG signal plus urgent data that can't
699  * be sent upstream in the past.
700  */
701 boolean_t
702 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
703 {
704 	mblk_t *mp;
705 	conn_t	*connp = tcp->tcp_connp;
706 
707 #ifdef DEBUG
708 	uint_t cnt = 0;
709 #endif
710 	tcp_stack_t	*tcps = tcp->tcp_tcps;
711 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
712 
713 	ASSERT(tcp->tcp_loopback);
714 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
715 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
716 	ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);
717 
718 	/* No need for the push timer now, in case it was scheduled */
719 	if (tcp->tcp_push_tid != 0) {
720 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
721 		tcp->tcp_push_tid = 0;
722 	}
723 	/*
724 	 * If there's urgent data sitting in receive list and we didn't
725 	 * get a chance to send up a SIGURG signal, make sure we send
726 	 * it first before draining in order to ensure that SIOCATMARK
727 	 * works properly.
728 	 */
729 	if (tcp->tcp_fused_sigurg) {
730 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
731 
732 		tcp->tcp_fused_sigurg = B_FALSE;
733 		/*
734 		 * sigurg_mpp is normally NULL, i.e. when we're still
735 		 * fused and didn't get here because of tcp_unfuse().
736 		 * In this case try hard to allocate the M_PCSIG mblk.
737 		 */
738 		if (sigurg_mpp == NULL &&
739 		    (mp = allocb(1, BPRI_HI)) == NULL &&
740 		    (mp = allocb_tryhard(1)) == NULL) {
741 			/* Alloc failed; try again next time */
742 			tcp->tcp_push_tid = TCP_TIMER(tcp,
743 			    tcp_push_timer, tcps->tcps_push_timer_interval);
744 			return (B_TRUE);
745 		} else if (sigurg_mpp != NULL) {
746 			/*
747 			 * Use the supplied M_PCSIG mblk; it means we're
748 			 * either unfused or in the process of unfusing,
749 			 * and the drain must happen now.
750 			 */
751 			mp = *sigurg_mpp;
752 			*sigurg_mpp = NULL;
753 		}
754 		ASSERT(mp != NULL);
755 
756 		/* Send up the signal */
757 		DB_TYPE(mp) = M_PCSIG;
758 		*mp->b_wptr++ = (uchar_t)SIGURG;
759 		putnext(q, mp);
760 
761 		/*
762 		 * Let the regular tcp_rcv_drain() path handle
763 		 * draining the data if we're no longer fused.
764 		 */
765 		if (!tcp->tcp_fused)
766 			return (B_FALSE);
767 	}
768 
769 	/* Drain the data */
770 	while ((mp = tcp->tcp_rcv_list) != NULL) {
771 		tcp->tcp_rcv_list = mp->b_next;
772 		mp->b_next = NULL;
773 #ifdef DEBUG
774 		cnt += msgdsize(mp);
775 #endif
776 		ASSERT(!IPCL_IS_NONSTR(connp));
777 		putnext(q, mp);
778 		TCP_STAT(tcps, tcp_fusion_putnext);
779 	}
780 
781 #ifdef DEBUG
782 	ASSERT(cnt == tcp->tcp_rcv_cnt);
783 #endif
784 	tcp->tcp_rcv_last_head = NULL;
785 	tcp->tcp_rcv_last_tail = NULL;
786 	tcp->tcp_rcv_cnt = 0;
787 	tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf;
788 
789 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
790 	if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
791 	    peer_tcp->tcp_connp->conn_sndlowat)) {
792 		tcp_clrqfull(peer_tcp);
793 		TCP_STAT(tcps, tcp_fusion_backenabled);
794 	}
795 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
796 
797 	return (B_TRUE);
798 }
799 
800 /*
801  * Calculate the size of receive buffer for a fused tcp endpoint.
802  */
803 size_t
804 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
805 {
806 	tcp_stack_t	*tcps = tcp->tcp_tcps;
807 	uint32_t	max_win;
808 
809 	ASSERT(tcp->tcp_fused);
810 
811 	/* Ensure that value is within the maximum upper bound */
812 	if (rwnd > tcps->tcps_max_buf)
813 		rwnd = tcps->tcps_max_buf;
814 	/*
815 	 * Round up to system page size in case SO_RCVBUF is modified
816 	 * after SO_SNDBUF; the latter is also similarly rounded up.
817 	 */
818 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
819 	max_win = TCP_MAXWIN << tcp->tcp_rcv_ws;
820 	if (rwnd > max_win) {
821 		rwnd = max_win - (max_win % tcp->tcp_mss);
822 		if (rwnd < tcp->tcp_mss)
823 			rwnd = max_win;
824 	}
825 
826 	/*
827 	 * Record high water mark, this is used for flow-control
828 	 * purposes in tcp_fuse_output().
829 	 */
830 	tcp->tcp_connp->conn_rcvbuf = rwnd;
831 	tcp->tcp_rwnd = rwnd;
832 	return (rwnd);
833 }
834 
835 /*
836  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
837  */
838 int
839 tcp_fuse_maxpsz(tcp_t *tcp)
840 {
841 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
842 	conn_t *connp = tcp->tcp_connp;
843 	uint_t sndbuf = connp->conn_sndbuf;
844 	uint_t maxpsz = sndbuf;
845 
846 	ASSERT(tcp->tcp_fused);
847 	ASSERT(peer_tcp != NULL);
848 	ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0);
849 	/*
850 	 * In the fused loopback case, we want the stream head to split
851 	 * up larger writes into smaller chunks for a more accurate flow-
852 	 * control accounting.  Our maxpsz is half of the sender's send
853 	 * buffer or the receiver's receive buffer, whichever is smaller.
854 	 * We round up the buffer to system page size due to the lack of
855 	 * TCP MSS concept in Fusion.
856 	 */
857 	if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf)
858 		maxpsz = peer_tcp->tcp_connp->conn_rcvbuf;
859 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
860 
861 	return (maxpsz);
862 }
863 
864 /*
865  * Called to release flow control.
866  */
867 void
868 tcp_fuse_backenable(tcp_t *tcp)
869 {
870 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
871 
872 	ASSERT(tcp->tcp_fused);
873 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
874 	ASSERT(peer_tcp->tcp_loopback_peer == tcp);
875 	ASSERT(!TCP_IS_DETACHED(tcp));
876 	ASSERT(tcp->tcp_connp->conn_sqp ==
877 	    peer_tcp->tcp_connp->conn_sqp);
878 
879 	if (tcp->tcp_rcv_list != NULL)
880 		(void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL);
881 
882 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
883 	if (peer_tcp->tcp_flow_stopped &&
884 	    (TCP_UNSENT_BYTES(peer_tcp) <=
885 	    peer_tcp->tcp_connp->conn_sndlowat)) {
886 		tcp_clrqfull(peer_tcp);
887 	}
888 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
889 
890 	TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled);
891 }
892