xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision 35551380472894a564e057962b701af78f719377)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/stream.h>
31 #include <sys/strsun.h>
32 #include <sys/strsubr.h>
33 #include <sys/debug.h>
34 #include <sys/cmn_err.h>
35 #include <sys/tihdr.h>
36 
37 #include <inet/common.h>
38 #include <inet/ip.h>
39 #include <inet/ip_impl.h>
40 #include <inet/tcp.h>
41 #include <inet/tcp_impl.h>
42 #include <inet/ipsec_impl.h>
43 #include <inet/ipclassifier.h>
44 #include <inet/ipp_common.h>
45 
46 /*
47  * This file implements TCP fusion - a protocol-less data path for TCP
48  * loopback connections.  The fusion of two local TCP endpoints occurs
49  * at connection establishment time.  Various conditions (see details
50  * in tcp_fuse()) need to be met for fusion to be successful.  If it
51  * fails, we fall back to the regular TCP data path; if it succeeds,
52  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
53  * tcp_fuse_output() enqueues application data directly onto the peer's
54  * receive queue; no protocol processing is involved.  After enqueueing
55  * the data, the sender can either push (putnext) data up the receiver's
56  * read queue; or the sender can simply return and let the receiver
57  * retrieve the enqueued data via the synchronous streams entry point
58  * tcp_fuse_rrw().  The latter path is taken if synchronous streams is
59  * enabled (the default).  It is disabled if sockfs no longer resides
60  * directly on top of tcp module due to a module insertion or removal.
61  * It also needs to be temporarily disabled when sending urgent data
62  * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done
63  * by strsock_proto() hook.
64  *
65  * Sychronization is handled by squeue and the mutex tcp_fuse_lock.
66  * One of the requirements for fusion to succeed is that both endpoints
67  * need to be using the same squeue.  This ensures that neither side
68  * can disappear while the other side is still sending data.  By itself,
69  * squeue is not sufficient for guaranteeing safety when synchronous
70  * streams is enabled.  The reason is that tcp_fuse_rrw() doesn't enter
71  * the squeue and its access to tcp_rcv_list and other fusion-related
72  * fields needs to be sychronized with the sender.  tcp_fuse_lock is
73  * used for this purpose.  When there is urgent data, the sender needs
74  * to push the data up the receiver's streams read queue.  In order to
75  * avoid holding the tcp_fuse_lock across putnext(), the sender sets
76  * the peer tcp's tcp_fuse_syncstr_stopped bit and releases tcp_fuse_lock
77  * (see macro TCP_FUSE_SYNCSTR_STOP()).  If tcp_fuse_rrw() enters after
78  * this point, it will see that synchronous streams is temporarily
79  * stopped and it will immediately return EBUSY without accessing the
80  * tcp_rcv_list or other fields protected by the tcp_fuse_lock.  This
81  * will result in strget() calling getq_noenab() to dequeue data from
82  * the stream head instead.  After the sender has finished pushing up
83  * all urgent data, it will clear the tcp_fuse_syncstr_stopped bit using
84  * TCP_FUSE_SYNCSTR_RESUME and the receiver may then resume using
85  * tcp_fuse_rrw() to retrieve data from tcp_rcv_list.
86  *
87  * The following note applies only to the synchronous streams mode.
88  *
89  * Flow control is done by checking the size of receive buffer and
90  * the number of data blocks, both set to different limits.  This is
91  * different than regular streams flow control where cumulative size
92  * check dominates block count check -- streams queue high water mark
93  * typically represents bytes.  Each enqueue triggers notifications
94  * to the receiving process; a build up of data blocks indicates a
95  * slow receiver and the sender should be blocked or informed at the
96  * earliest moment instead of further wasting system resources.  In
97  * effect, this is equivalent to limiting the number of outstanding
98  * segments in flight.
99  */
100 
101 /*
102  * Macros that determine whether or not IP processing is needed for TCP.
103  */
104 #define	TCP_IPOPT_POLICY_V4(tcp)					\
105 	((tcp)->tcp_ipversion == IPV4_VERSION &&			\
106 	((tcp)->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH ||		\
107 	CONN_OUTBOUND_POLICY_PRESENT((tcp)->tcp_connp) ||		\
108 	CONN_INBOUND_POLICY_PRESENT((tcp)->tcp_connp)))
109 
110 #define	TCP_IPOPT_POLICY_V6(tcp)					\
111 	((tcp)->tcp_ipversion == IPV6_VERSION &&			\
112 	((tcp)->tcp_ip_hdr_len != IPV6_HDR_LEN ||			\
113 	CONN_OUTBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp) ||		\
114 	CONN_INBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp)))
115 
116 #define	TCP_LOOPBACK_IP(tcp)						\
117 	(TCP_IPOPT_POLICY_V4(tcp) || TCP_IPOPT_POLICY_V6(tcp) ||	\
118 	!CONN_IS_MD_FASTPATH((tcp)->tcp_connp))
119 
120 /*
121  * Setting this to false means we disable fusion altogether and
122  * loopback connections would go through the protocol paths.
123  */
124 boolean_t do_tcp_fusion = B_TRUE;
125 
126 /*
127  * Enabling this flag allows sockfs to retrieve data directly
128  * from a fused tcp endpoint using synchronous streams interface.
129  */
130 boolean_t do_tcp_direct_sockfs = B_TRUE;
131 
132 /*
133  * This is the minimum amount of outstanding writes allowed on
134  * a synchronous streams-enabled receiving endpoint before the
135  * sender gets flow-controlled.  Setting this value to 0 means
136  * that the data block limit is equivalent to the byte count
137  * limit, which essentially disables the check.
138  */
139 #define	TCP_FUSION_RCV_UNREAD_MIN	8
140 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN;
141 
142 static void	tcp_fuse_syncstr_enable(tcp_t *);
143 static void	tcp_fuse_syncstr_disable(tcp_t *);
144 static void	strrput_sig(queue_t *, boolean_t);
145 
146 /*
147  * This routine gets called by the eager tcp upon changing state from
148  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
149  * and the active connect tcp such that the regular tcp processings
150  * may be bypassed under allowable circumstances.  Because the fusion
151  * requires both endpoints to be in the same squeue, it does not work
152  * for simultaneous active connects because there is no easy way to
153  * switch from one squeue to another once the connection is created.
154  * This is different from the eager tcp case where we assign it the
155  * same squeue as the one given to the active connect tcp during open.
156  */
157 void
158 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
159 {
160 	conn_t *peer_connp, *connp = tcp->tcp_connp;
161 	tcp_t *peer_tcp;
162 
163 	ASSERT(!tcp->tcp_fused);
164 	ASSERT(tcp->tcp_loopback);
165 	ASSERT(tcp->tcp_loopback_peer == NULL);
166 	/*
167 	 * We need to inherit q_hiwat of the listener tcp, but we can't
168 	 * really use tcp_listener since we get here after sending up
169 	 * T_CONN_IND and tcp_wput_accept() may be called independently,
170 	 * at which point tcp_listener is cleared; this is why we use
171 	 * tcp_saved_listener.  The listener itself is guaranteed to be
172 	 * around until tcp_accept_finish() is called on this eager --
173 	 * this won't happen until we're done since we're inside the
174 	 * eager's perimeter now.
175 	 */
176 	ASSERT(tcp->tcp_saved_listener != NULL);
177 
178 	/*
179 	 * Lookup peer endpoint; search for the remote endpoint having
180 	 * the reversed address-port quadruplet in ESTABLISHED state,
181 	 * which is guaranteed to be unique in the system.  Zone check
182 	 * is applied accordingly for loopback address, but not for
183 	 * local address since we want fusion to happen across Zones.
184 	 */
185 	if (tcp->tcp_ipversion == IPV4_VERSION) {
186 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
187 		    (ipha_t *)iphdr, tcph);
188 	} else {
189 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
190 		    (ip6_t *)iphdr, tcph);
191 	}
192 
193 	/*
194 	 * We can only proceed if peer exists, resides in the same squeue
195 	 * as our conn and is not raw-socket.  The squeue assignment of
196 	 * this eager tcp was done earlier at the time of SYN processing
197 	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
198 	 * doesn't guarantee a safe condition to fuse, hence we perform
199 	 * additional tests below.
200 	 */
201 	ASSERT(peer_connp == NULL || peer_connp != connp);
202 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
203 	    !IPCL_IS_TCP(peer_connp)) {
204 		if (peer_connp != NULL) {
205 			TCP_STAT(tcp_fusion_unqualified);
206 			CONN_DEC_REF(peer_connp);
207 		}
208 		return;
209 	}
210 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
211 
212 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
213 	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
214 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
215 
216 	/*
217 	 * Fuse the endpoints; we perform further checks against both
218 	 * tcp endpoints to ensure that a fusion is allowed to happen.
219 	 * In particular we bail out for non-simple TCP/IP or if IPsec/
220 	 * IPQoS policy exists.
221 	 */
222 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
223 	    !TCP_LOOPBACK_IP(tcp) && !TCP_LOOPBACK_IP(peer_tcp) &&
224 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) {
225 		mblk_t *mp;
226 		struct stroptions *stropt;
227 		queue_t *peer_rq = peer_tcp->tcp_rq;
228 
229 		ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL);
230 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
231 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
232 
233 		/*
234 		 * We need to drain data on both endpoints during unfuse.
235 		 * If we need to send up SIGURG at the time of draining,
236 		 * we want to be sure that an mblk is readily available.
237 		 * This is why we pre-allocate the M_PCSIG mblks for both
238 		 * endpoints which will only be used during/after unfuse.
239 		 */
240 		if ((mp = allocb(1, BPRI_HI)) == NULL)
241 			goto failed;
242 
243 		tcp->tcp_fused_sigurg_mp = mp;
244 
245 		if ((mp = allocb(1, BPRI_HI)) == NULL)
246 			goto failed;
247 
248 		peer_tcp->tcp_fused_sigurg_mp = mp;
249 
250 		/* Allocate M_SETOPTS mblk */
251 		if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL)
252 			goto failed;
253 
254 		/* Fuse both endpoints */
255 		peer_tcp->tcp_loopback_peer = tcp;
256 		tcp->tcp_loopback_peer = peer_tcp;
257 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
258 
259 		/*
260 		 * We never use regular tcp paths in fusion and should
261 		 * therefore clear tcp_unsent on both endpoints.  Having
262 		 * them set to non-zero values means asking for trouble
263 		 * especially after unfuse, where we may end up sending
264 		 * through regular tcp paths which expect xmit_list and
265 		 * friends to be correctly setup.
266 		 */
267 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
268 
269 		tcp_timers_stop(tcp);
270 		tcp_timers_stop(peer_tcp);
271 
272 		/*
273 		 * At this point we are a detached eager tcp and therefore
274 		 * don't have a queue assigned to us until accept happens.
275 		 * In the mean time the peer endpoint may immediately send
276 		 * us data as soon as fusion is finished, and we need to be
277 		 * able to flow control it in case it sends down huge amount
278 		 * of data while we're still detached.  To prevent that we
279 		 * inherit the listener's q_hiwat value; this is temporary
280 		 * since we'll repeat the process in tcp_accept_finish().
281 		 */
282 		(void) tcp_fuse_set_rcv_hiwat(tcp,
283 		    tcp->tcp_saved_listener->tcp_rq->q_hiwat);
284 
285 		/*
286 		 * Set the stream head's write offset value to zero since we
287 		 * won't be needing any room for TCP/IP headers; tell it to
288 		 * not break up the writes (this would reduce the amount of
289 		 * work done by kmem); and configure our receive buffer.
290 		 * Note that we can only do this for the active connect tcp
291 		 * since our eager is still detached; it will be dealt with
292 		 * later in tcp_accept_finish().
293 		 */
294 		DB_TYPE(mp) = M_SETOPTS;
295 		mp->b_wptr += sizeof (*stropt);
296 
297 		stropt = (struct stroptions *)mp->b_rptr;
298 		stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT;
299 		stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE);
300 		stropt->so_wroff = 0;
301 
302 		/*
303 		 * Record the stream head's high water mark for
304 		 * peer endpoint; this is used for flow-control
305 		 * purposes in tcp_fuse_output().
306 		 */
307 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp,
308 		    peer_rq->q_hiwat);
309 
310 		/* Send the options up */
311 		putnext(peer_rq, mp);
312 	} else {
313 		TCP_STAT(tcp_fusion_unqualified);
314 	}
315 	CONN_DEC_REF(peer_connp);
316 	return;
317 
318 failed:
319 	if (tcp->tcp_fused_sigurg_mp != NULL) {
320 		freeb(tcp->tcp_fused_sigurg_mp);
321 		tcp->tcp_fused_sigurg_mp = NULL;
322 	}
323 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
324 		freeb(peer_tcp->tcp_fused_sigurg_mp);
325 		peer_tcp->tcp_fused_sigurg_mp = NULL;
326 	}
327 	CONN_DEC_REF(peer_connp);
328 }
329 
330 /*
331  * Unfuse a previously-fused pair of tcp loopback endpoints.
332  */
333 void
334 tcp_unfuse(tcp_t *tcp)
335 {
336 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
337 
338 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
339 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
340 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
341 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
342 	ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
343 	ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
344 
345 	/*
346 	 * We disable synchronous streams, drain any queued data and
347 	 * clear tcp_direct_sockfs.  The synchronous streams entry
348 	 * points will become no-ops after this point.
349 	 */
350 	tcp_fuse_disable_pair(tcp, B_TRUE);
351 
352 	/*
353 	 * Update th_seq and th_ack in the header template
354 	 */
355 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
356 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
357 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
358 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
359 
360 	/* Unfuse the endpoints */
361 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
362 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
363 }
364 
365 /*
366  * Fusion output routine for urgent data.  This routine is called by
367  * tcp_fuse_output() for handling non-M_DATA mblks.
368  */
369 void
370 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
371 {
372 	mblk_t *mp1;
373 	struct T_exdata_ind *tei;
374 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
375 	mblk_t *head, *prev_head = NULL;
376 
377 	ASSERT(tcp->tcp_fused);
378 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
379 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
380 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
381 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
382 
383 	/*
384 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
385 	 * Each occurence denotes a new urgent pointer.  For each new
386 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
387 	 * that it needs to go into urgent mode.  This is similar to the
388 	 * urgent data handling in the regular tcp.  We don't need to keep
389 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
390 	 * "advances" the urgent pointer for us.
391 	 *
392 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
393 	 * by a T_EXDATA_IND before being enqueued behind any existing data
394 	 * destined for the receiving app.  There is only a single urgent
395 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
396 	 * data arrives before the receiving app reads some existing urgent
397 	 * data, the previous marker is lost.  This behavior is emulated
398 	 * accordingly below, by removing any existing T_EXDATA_IND messages
399 	 * and essentially converting old urgent data into non-urgent.
400 	 */
401 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
402 	/* Let sender get out of urgent mode */
403 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
404 
405 	/*
406 	 * This flag indicates that a signal needs to be sent up.
407 	 * This flag will only get cleared once SIGURG is delivered and
408 	 * is not affected by the tcp_fused flag -- delivery will still
409 	 * happen even after an endpoint is unfused, to handle the case
410 	 * where the sending endpoint immediately closes/unfuses after
411 	 * sending urgent data and the accept is not yet finished.
412 	 */
413 	peer_tcp->tcp_fused_sigurg = B_TRUE;
414 
415 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
416 	DB_TYPE(mp) = M_PROTO;
417 	tei = (struct T_exdata_ind *)mp->b_rptr;
418 	tei->PRIM_type = T_EXDATA_IND;
419 	tei->MORE_flag = 0;
420 	mp->b_wptr = (uchar_t *)&tei[1];
421 
422 	TCP_STAT(tcp_fusion_urg);
423 	BUMP_MIB(&tcp_mib, tcpOutUrg);
424 
425 	head = peer_tcp->tcp_rcv_list;
426 	while (head != NULL) {
427 		/*
428 		 * Remove existing T_EXDATA_IND, keep the data which follows
429 		 * it and relink our list.  Note that we don't modify the
430 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
431 		 */
432 		if (DB_TYPE(head) != M_DATA) {
433 			mp1 = head;
434 
435 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
436 			head = mp1->b_cont;
437 			mp1->b_cont = NULL;
438 			head->b_next = mp1->b_next;
439 			mp1->b_next = NULL;
440 			if (prev_head != NULL)
441 				prev_head->b_next = head;
442 			if (peer_tcp->tcp_rcv_list == mp1)
443 				peer_tcp->tcp_rcv_list = head;
444 			if (peer_tcp->tcp_rcv_last_head == mp1)
445 				peer_tcp->tcp_rcv_last_head = head;
446 			freeb(mp1);
447 		}
448 		prev_head = head;
449 		head = head->b_next;
450 	}
451 }
452 
453 /*
454  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
455  */
456 boolean_t
457 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
458 {
459 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
460 	queue_t *peer_rq;
461 	uint_t max_unread;
462 	boolean_t flow_stopped;
463 	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
464 
465 	ASSERT(tcp->tcp_fused);
466 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
467 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
468 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
469 	    DB_TYPE(mp) == M_PCPROTO);
470 
471 	peer_rq = peer_tcp->tcp_rq;
472 	max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater;
473 
474 	/* If this connection requires IP, unfuse and use regular path */
475 	if (TCP_LOOPBACK_IP(tcp) || TCP_LOOPBACK_IP(peer_tcp) ||
476 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) {
477 		TCP_STAT(tcp_fusion_aborted);
478 		tcp_unfuse(tcp);
479 		return (B_FALSE);
480 	}
481 
482 	if (send_size == 0) {
483 		freemsg(mp);
484 		return (B_TRUE);
485 	}
486 
487 	/*
488 	 * Handle urgent data; we either send up SIGURG to the peer now
489 	 * or do it later when we drain, in case the peer is detached
490 	 * or if we're short of memory for M_PCSIG mblk.
491 	 */
492 	if (urgent) {
493 		/*
494 		 * We stop synchronous streams when we have urgent data
495 		 * queued to prevent tcp_fuse_rrw() from pulling it.  If
496 		 * for some reasons the urgent data can't be delivered
497 		 * below, synchronous streams will remain stopped until
498 		 * someone drains the tcp_rcv_list.
499 		 */
500 		TCP_FUSE_SYNCSTR_STOP(peer_tcp);
501 		tcp_fuse_output_urg(tcp, mp);
502 	}
503 
504 	mutex_enter(&peer_tcp->tcp_fuse_lock);
505 	/*
506 	 * Wake up and signal the peer; it is okay to do this before
507 	 * enqueueing because we are holding the lock.  One of the
508 	 * advantages of synchronous streams is the ability for us to
509 	 * find out when the application performs a read on the socket,
510 	 * by way of tcp_fuse_rrw() entry point being called.  Every
511 	 * data that gets enqueued onto the receiver is treated as if
512 	 * it has arrived at the receiving endpoint, thus generating
513 	 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput()
514 	 * case.  However, we only wake up the application when necessary,
515 	 * i.e. during the first enqueue.  When tcp_fuse_rrw() is called
516 	 * it will send everything upstream.
517 	 */
518 	if (peer_tcp->tcp_direct_sockfs && !urgent &&
519 	    !TCP_IS_DETACHED(peer_tcp)) {
520 		if (peer_tcp->tcp_rcv_list == NULL)
521 			STR_WAKEUP_SET(STREAM(peer_tcp->tcp_rq));
522 		/* Update poll events and send SIGPOLL/SIGIO if necessary */
523 		STR_SENDSIG(STREAM(peer_tcp->tcp_rq));
524 	}
525 
526 	/*
527 	 * Enqueue data into the peer's receive list; we may or may not
528 	 * drain the contents depending on the conditions below.
529 	 */
530 	tcp_rcv_enqueue(peer_tcp, mp, send_size);
531 
532 	/* In case it wrapped around and also to keep it constant */
533 	peer_tcp->tcp_rwnd += send_size;
534 
535 	/*
536 	 * Exercise flow-control when needed; we will get back-enabled
537 	 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw().
538 	 * If tcp_direct_sockfs is on or if the peer endpoint is detached,
539 	 * we emulate streams flow control by checking the peer's queue
540 	 * size and high water mark; otherwise we simply use canputnext()
541 	 * to decide if we need to stop our flow.
542 	 *
543 	 * The outstanding unread data block check does not apply for a
544 	 * detached receiver; this is to avoid unnecessary blocking of the
545 	 * sender while the accept is currently in progress and is quite
546 	 * similar to the regular tcp.
547 	 */
548 	if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0)
549 		max_unread = UINT_MAX;
550 
551 	flow_stopped = tcp->tcp_flow_stopped;
552 	if (!flow_stopped &&
553 	    (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) &&
554 	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater ||
555 	    ++peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) ||
556 	    (!peer_tcp->tcp_direct_sockfs &&
557 	    !TCP_IS_DETACHED(peer_tcp) && !canputnext(peer_tcp->tcp_rq)))) {
558 		tcp_setqfull(tcp);
559 		flow_stopped = B_TRUE;
560 		TCP_STAT(tcp_fusion_flowctl);
561 		DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp,
562 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt,
563 		    uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt);
564 	} else if (flow_stopped &&
565 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
566 		tcp_clrqfull(tcp);
567 	}
568 
569 	loopback_packets++;
570 	tcp->tcp_last_sent_len = send_size;
571 
572 	/* Need to adjust the following SNMP MIB-related variables */
573 	tcp->tcp_snxt += send_size;
574 	tcp->tcp_suna = tcp->tcp_snxt;
575 	peer_tcp->tcp_rnxt += send_size;
576 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
577 
578 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
579 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, send_size);
580 
581 	BUMP_MIB(&tcp_mib, tcpInSegs);
582 	BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
583 	UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, send_size);
584 
585 	BUMP_LOCAL(tcp->tcp_obsegs);
586 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
587 
588 	mutex_exit(&peer_tcp->tcp_fuse_lock);
589 
590 	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
591 
592 	if (!TCP_IS_DETACHED(peer_tcp)) {
593 		/*
594 		 * Drain the peer's receive queue it has urgent data or if
595 		 * we're not flow-controlled.  There is no need for draining
596 		 * normal data when tcp_direct_sockfs is on because the peer
597 		 * will pull the data via tcp_fuse_rrw().
598 		 */
599 		if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) {
600 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
601 			(void) tcp_fuse_rcv_drain(peer_rq, peer_tcp, NULL);
602 			/*
603 			 * If synchronous streams was stopped above due
604 			 * to the presence of urgent data, re-enable it.
605 			 */
606 			if (urgent)
607 				TCP_FUSE_SYNCSTR_RESUME(peer_tcp);
608 		}
609 	}
610 	return (B_TRUE);
611 }
612 
613 /*
614  * This routine gets called to deliver data upstream on a fused or
615  * previously fused tcp loopback endpoint; the latter happens only
616  * when there is a pending SIGURG signal plus urgent data that can't
617  * be sent upstream in the past.
618  */
619 boolean_t
620 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
621 {
622 	mblk_t *mp;
623 #ifdef DEBUG
624 	uint_t cnt = 0;
625 #endif
626 
627 	ASSERT(tcp->tcp_loopback);
628 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
629 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
630 	ASSERT(sigurg_mpp != NULL || tcp->tcp_fused);
631 
632 	/* No need for the push timer now, in case it was scheduled */
633 	if (tcp->tcp_push_tid != 0) {
634 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
635 		tcp->tcp_push_tid = 0;
636 	}
637 	/*
638 	 * If there's urgent data sitting in receive list and we didn't
639 	 * get a chance to send up a SIGURG signal, make sure we send
640 	 * it first before draining in order to ensure that SIOCATMARK
641 	 * works properly.
642 	 */
643 	if (tcp->tcp_fused_sigurg) {
644 		/*
645 		 * sigurg_mpp is normally NULL, i.e. when we're still
646 		 * fused and didn't get here because of tcp_unfuse().
647 		 * In this case try hard to allocate the M_PCSIG mblk.
648 		 */
649 		if (sigurg_mpp == NULL &&
650 		    (mp = allocb(1, BPRI_HI)) == NULL &&
651 		    (mp = allocb_tryhard(1)) == NULL) {
652 			/* Alloc failed; try again next time */
653 			tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer,
654 			    MSEC_TO_TICK(tcp_push_timer_interval));
655 			return (B_TRUE);
656 		} else if (sigurg_mpp != NULL) {
657 			/*
658 			 * Use the supplied M_PCSIG mblk; it means we're
659 			 * either unfused or in the process of unfusing,
660 			 * and the drain must happen now.
661 			 */
662 			mp = *sigurg_mpp;
663 			*sigurg_mpp = NULL;
664 		}
665 		ASSERT(mp != NULL);
666 
667 		tcp->tcp_fused_sigurg = B_FALSE;
668 		/* Send up the signal */
669 		DB_TYPE(mp) = M_PCSIG;
670 		*mp->b_wptr++ = (uchar_t)SIGURG;
671 		putnext(q, mp);
672 		/*
673 		 * Let the regular tcp_rcv_drain() path handle
674 		 * draining the data if we're no longer fused.
675 		 */
676 		if (!tcp->tcp_fused)
677 			return (B_FALSE);
678 	}
679 
680 	/*
681 	 * In the synchronous streams case, we generate SIGPOLL/SIGIO for
682 	 * each M_DATA that gets enqueued onto the receiver.  At this point
683 	 * we are about to drain any queued data via putnext().  In order
684 	 * to avoid extraneous signal generation from strrput(), we set
685 	 * STRGETINPROG flag at the stream head prior to the draining and
686 	 * restore it afterwards.  This masks out signal generation only
687 	 * for M_DATA messages and does not affect urgent data.
688 	 */
689 	if (tcp->tcp_direct_sockfs)
690 		strrput_sig(q, B_FALSE);
691 
692 	/* Drain the data */
693 	while ((mp = tcp->tcp_rcv_list) != NULL) {
694 		tcp->tcp_rcv_list = mp->b_next;
695 		mp->b_next = NULL;
696 #ifdef DEBUG
697 		cnt += msgdsize(mp);
698 #endif
699 		putnext(q, mp);
700 		TCP_STAT(tcp_fusion_putnext);
701 	}
702 
703 	if (tcp->tcp_direct_sockfs)
704 		strrput_sig(q, B_TRUE);
705 
706 	ASSERT(cnt == tcp->tcp_rcv_cnt);
707 	tcp->tcp_rcv_last_head = NULL;
708 	tcp->tcp_rcv_last_tail = NULL;
709 	tcp->tcp_rcv_cnt = 0;
710 	tcp->tcp_fuse_rcv_unread_cnt = 0;
711 	tcp->tcp_rwnd = q->q_hiwat;
712 
713 	return (B_TRUE);
714 }
715 
716 /*
717  * Synchronous stream entry point for sockfs to retrieve
718  * data directly from tcp_rcv_list.
719  */
720 int
721 tcp_fuse_rrw(queue_t *q, struiod_t *dp)
722 {
723 	tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
724 	mblk_t *mp;
725 
726 	mutex_enter(&tcp->tcp_fuse_lock);
727 	/*
728 	 * If someone had turned off tcp_direct_sockfs or if synchronous
729 	 * streams is temporarily disabled, we return EBUSY.  This causes
730 	 * strget() to dequeue data from the stream head instead.
731 	 */
732 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
733 		mutex_exit(&tcp->tcp_fuse_lock);
734 		TCP_STAT(tcp_fusion_rrw_busy);
735 		return (EBUSY);
736 	}
737 
738 	if ((mp = tcp->tcp_rcv_list) != NULL) {
739 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
740 
741 		DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp,
742 		    uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid);
743 
744 		tcp->tcp_rcv_list = NULL;
745 		TCP_STAT(tcp_fusion_rrw_msgcnt);
746 
747 		/*
748 		 * At this point nothing should be left in tcp_rcv_list.
749 		 * The only possible case where we would have a chain of
750 		 * b_next-linked messages is urgent data, but we wouldn't
751 		 * be here if that's true since urgent data is delivered
752 		 * via putnext() and synchronous streams is stopped until
753 		 * tcp_fuse_rcv_drain() is finished.
754 		 */
755 		ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL);
756 
757 		tcp->tcp_rcv_last_head = NULL;
758 		tcp->tcp_rcv_last_tail = NULL;
759 		tcp->tcp_rcv_cnt = 0;
760 		tcp->tcp_fuse_rcv_unread_cnt = 0;
761 
762 		if (peer_tcp->tcp_flow_stopped) {
763 			tcp_clrqfull(peer_tcp);
764 			TCP_STAT(tcp_fusion_backenabled);
765 		}
766 	}
767 
768 	/*
769 	 * Either we just dequeued everything or we get here from sockfs
770 	 * and have nothing to return; in this case clear RSLEEP.
771 	 */
772 	ASSERT(tcp->tcp_rcv_last_head == NULL);
773 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
774 	ASSERT(tcp->tcp_rcv_cnt == 0);
775 	ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0);
776 	STR_WAKEUP_CLEAR(STREAM(q));
777 
778 	mutex_exit(&tcp->tcp_fuse_lock);
779 	dp->d_mp = mp;
780 	return (0);
781 }
782 
783 /*
784  * Synchronous stream entry point used by certain ioctls to retrieve
785  * information about or peek into the tcp_rcv_list.
786  */
787 int
788 tcp_fuse_rinfop(queue_t *q, infod_t *dp)
789 {
790 	tcp_t	*tcp = Q_TO_CONN(q)->conn_tcp;
791 	mblk_t	*mp;
792 	uint_t	cmd = dp->d_cmd;
793 	int	res = 0;
794 	int	error = 0;
795 	struct stdata *stp = STREAM(q);
796 
797 	mutex_enter(&tcp->tcp_fuse_lock);
798 	/* If shutdown on read has happened, return nothing */
799 	mutex_enter(&stp->sd_lock);
800 	if (stp->sd_flag & STREOF) {
801 		mutex_exit(&stp->sd_lock);
802 		goto done;
803 	}
804 	mutex_exit(&stp->sd_lock);
805 
806 	/*
807 	 * It is OK not to return an answer if tcp_rcv_list is
808 	 * currently not accessible.
809 	 */
810 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped ||
811 	    (mp = tcp->tcp_rcv_list) == NULL)
812 		goto done;
813 
814 	if (cmd & INFOD_COUNT) {
815 		/*
816 		 * We have at least one message and
817 		 * could return only one at a time.
818 		 */
819 		dp->d_count++;
820 		res |= INFOD_COUNT;
821 	}
822 	if (cmd & INFOD_BYTES) {
823 		/*
824 		 * Return size of all data messages.
825 		 */
826 		dp->d_bytes += tcp->tcp_rcv_cnt;
827 		res |= INFOD_BYTES;
828 	}
829 	if (cmd & INFOD_FIRSTBYTES) {
830 		/*
831 		 * Return size of first data message.
832 		 */
833 		dp->d_bytes = msgdsize(mp);
834 		res |= INFOD_FIRSTBYTES;
835 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
836 	}
837 	if (cmd & INFOD_COPYOUT) {
838 		mblk_t *mp1;
839 		int n;
840 
841 		if (DB_TYPE(mp) == M_DATA) {
842 			mp1 = mp;
843 		} else {
844 			mp1 = mp->b_cont;
845 			ASSERT(mp1 != NULL);
846 		}
847 
848 		/*
849 		 * Return data contents of first message.
850 		 */
851 		ASSERT(DB_TYPE(mp1) == M_DATA);
852 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
853 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
854 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
855 			    UIO_READ, dp->d_uiop)) != 0) {
856 				goto done;
857 			}
858 			mp1 = mp1->b_cont;
859 		}
860 		res |= INFOD_COPYOUT;
861 		dp->d_cmd &= ~INFOD_COPYOUT;
862 	}
863 done:
864 	mutex_exit(&tcp->tcp_fuse_lock);
865 
866 	dp->d_res |= res;
867 
868 	return (error);
869 }
870 
871 /*
872  * Enable synchronous streams on a fused tcp loopback endpoint.
873  */
874 static void
875 tcp_fuse_syncstr_enable(tcp_t *tcp)
876 {
877 	queue_t *rq = tcp->tcp_rq;
878 	struct stdata *stp = STREAM(rq);
879 
880 	/* We can only enable synchronous streams for sockfs mode */
881 	tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs;
882 
883 	if (!tcp->tcp_direct_sockfs)
884 		return;
885 
886 	mutex_enter(&stp->sd_lock);
887 	mutex_enter(QLOCK(rq));
888 
889 	/*
890 	 * We replace our q_qinfo with one that has the qi_rwp entry point.
891 	 * Clear SR_SIGALLDATA because we generate the equivalent signal(s)
892 	 * for every enqueued data in tcp_fuse_output().
893 	 */
894 	rq->q_qinfo = &tcp_loopback_rinit;
895 	rq->q_struiot = tcp_loopback_rinit.qi_struiot;
896 	stp->sd_struiordq = rq;
897 	stp->sd_rput_opt &= ~SR_SIGALLDATA;
898 
899 	mutex_exit(QLOCK(rq));
900 	mutex_exit(&stp->sd_lock);
901 }
902 
903 /*
904  * Disable synchronous streams on a fused tcp loopback endpoint.
905  */
906 static void
907 tcp_fuse_syncstr_disable(tcp_t *tcp)
908 {
909 	queue_t *rq = tcp->tcp_rq;
910 	struct stdata *stp = STREAM(rq);
911 
912 	if (!tcp->tcp_direct_sockfs)
913 		return;
914 
915 	mutex_enter(&stp->sd_lock);
916 	mutex_enter(QLOCK(rq));
917 
918 	/*
919 	 * Reset q_qinfo to point to the default tcp entry points.
920 	 * Also restore SR_SIGALLDATA so that strrput() can generate
921 	 * the signals again for future M_DATA messages.
922 	 */
923 	rq->q_qinfo = &tcp_rinit;
924 	rq->q_struiot = tcp_rinit.qi_struiot;
925 	stp->sd_struiordq = NULL;
926 	stp->sd_rput_opt |= SR_SIGALLDATA;
927 	tcp->tcp_direct_sockfs = B_FALSE;
928 
929 	mutex_exit(QLOCK(rq));
930 	mutex_exit(&stp->sd_lock);
931 }
932 
933 /*
934  * Enable synchronous streams on a pair of fused tcp endpoints.
935  */
936 void
937 tcp_fuse_syncstr_enable_pair(tcp_t *tcp)
938 {
939 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
940 
941 	ASSERT(tcp->tcp_fused);
942 	ASSERT(peer_tcp != NULL);
943 
944 	tcp_fuse_syncstr_enable(tcp);
945 	tcp_fuse_syncstr_enable(peer_tcp);
946 }
947 
948 /*
949  * Allow or disallow signals to be generated by strrput().
950  */
951 static void
952 strrput_sig(queue_t *q, boolean_t on)
953 {
954 	struct stdata *stp = STREAM(q);
955 
956 	mutex_enter(&stp->sd_lock);
957 	if (on)
958 		stp->sd_flag &= ~STRGETINPROG;
959 	else
960 		stp->sd_flag |= STRGETINPROG;
961 	mutex_exit(&stp->sd_lock);
962 }
963 
964 /*
965  * Disable synchronous streams on a pair of fused tcp endpoints and drain
966  * any queued data; called either during unfuse or upon transitioning from
967  * a socket to a stream endpoint due to _SIOCSOCKFALLBACK.
968  */
969 void
970 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing)
971 {
972 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
973 
974 	ASSERT(tcp->tcp_fused);
975 	ASSERT(peer_tcp != NULL);
976 
977 	/*
978 	 * We need to prevent tcp_fuse_rrw() from entering before
979 	 * we can disable synchronous streams.
980 	 */
981 	TCP_FUSE_SYNCSTR_STOP(tcp);
982 	TCP_FUSE_SYNCSTR_STOP(peer_tcp);
983 
984 	/*
985 	 * Drain any pending data; the detached check is needed because
986 	 * we may be called as a result of a tcp_unfuse() triggered by
987 	 * tcp_fuse_output().  Note that in case of a detached tcp, the
988 	 * draining will happen later after the tcp is unfused.  For non-
989 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
990 	 * If we have urgent data sitting in the receive list, we will
991 	 * need to send up a SIGURG signal first before draining the data.
992 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
993 	 * when called from tcp_rcv_drain().
994 	 */
995 	if (!TCP_IS_DETACHED(tcp)) {
996 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
997 		    (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL));
998 	}
999 	if (!TCP_IS_DETACHED(peer_tcp)) {
1000 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
1001 		    (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL));
1002 	}
1003 
1004 	/* Lift up any flow-control conditions */
1005 	if (tcp->tcp_flow_stopped) {
1006 		tcp_clrqfull(tcp);
1007 		TCP_STAT(tcp_fusion_backenabled);
1008 	}
1009 	if (peer_tcp->tcp_flow_stopped) {
1010 		tcp_clrqfull(peer_tcp);
1011 		TCP_STAT(tcp_fusion_backenabled);
1012 	}
1013 
1014 	/* Disable synchronous streams */
1015 	tcp_fuse_syncstr_disable(tcp);
1016 	tcp_fuse_syncstr_disable(peer_tcp);
1017 }
1018 
1019 /*
1020  * Calculate the size of receive buffer for a fused tcp endpoint.
1021  */
1022 size_t
1023 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
1024 {
1025 	ASSERT(tcp->tcp_fused);
1026 
1027 	/* Ensure that value is within the maximum upper bound */
1028 	if (rwnd > tcp_max_buf)
1029 		rwnd = tcp_max_buf;
1030 
1031 	/* Obey the absolute minimum tcp receive high water mark */
1032 	if (rwnd < tcp_sth_rcv_hiwat)
1033 		rwnd = tcp_sth_rcv_hiwat;
1034 
1035 	/*
1036 	 * Round up to system page size in case SO_RCVBUF is modified
1037 	 * after SO_SNDBUF; the latter is also similarly rounded up.
1038 	 */
1039 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
1040 	tcp->tcp_fuse_rcv_hiwater = rwnd;
1041 	return (rwnd);
1042 }
1043 
1044 /*
1045  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
1046  */
1047 int
1048 tcp_fuse_maxpsz_set(tcp_t *tcp)
1049 {
1050 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1051 	uint_t sndbuf = tcp->tcp_xmit_hiwater;
1052 	uint_t maxpsz = sndbuf;
1053 
1054 	ASSERT(tcp->tcp_fused);
1055 	ASSERT(peer_tcp != NULL);
1056 	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
1057 	/*
1058 	 * In the fused loopback case, we want the stream head to split
1059 	 * up larger writes into smaller chunks for a more accurate flow-
1060 	 * control accounting.  Our maxpsz is half of the sender's send
1061 	 * buffer or the receiver's receive buffer, whichever is smaller.
1062 	 * We round up the buffer to system page size due to the lack of
1063 	 * TCP MSS concept in Fusion.
1064 	 */
1065 	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
1066 		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
1067 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
1068 
1069 	/*
1070 	 * Calculate the peer's limit for the number of outstanding unread
1071 	 * data block.  This is the amount of data blocks that are allowed
1072 	 * to reside in the receiver's queue before the sender gets flow
1073 	 * controlled.  It is used only in the synchronous streams mode as
1074 	 * a way to throttle the sender when it performs consecutive writes
1075 	 * faster than can be read.  The value is derived from SO_SNDBUF in
1076 	 * order to give the sender some control; we divide it with a large
1077 	 * value (16KB) to produce a fairly low initial limit.
1078 	 */
1079 	if (tcp_fusion_rcv_unread_min == 0) {
1080 		/* A value of 0 means that we disable the check */
1081 		peer_tcp->tcp_fuse_rcv_unread_hiwater = 0;
1082 	} else {
1083 		peer_tcp->tcp_fuse_rcv_unread_hiwater =
1084 		    MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min);
1085 	}
1086 	return (maxpsz);
1087 }
1088