xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision 2833423dc59f4c35fe4713dbb942950c82df0437)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2015 by Delphix. All rights reserved.
24  * Copyright 2024 Oxide Computer Company
25  */
26 
27 #include <sys/types.h>
28 #include <sys/stream.h>
29 #include <sys/strsun.h>
30 #include <sys/strsubr.h>
31 #include <sys/debug.h>
32 #include <sys/sdt.h>
33 #include <sys/cmn_err.h>
34 #include <sys/tihdr.h>
35 
36 #include <inet/common.h>
37 #include <inet/optcom.h>
38 #include <inet/ip.h>
39 #include <inet/ip_if.h>
40 #include <inet/ip_impl.h>
41 #include <inet/tcp.h>
42 #include <inet/tcp_impl.h>
43 #include <inet/ipsec_impl.h>
44 #include <inet/ipclassifier.h>
45 #include <inet/ipp_common.h>
46 #include <inet/ip_if.h>
47 
48 /*
49  * This file implements TCP fusion - a protocol-less data path for TCP
50  * loopback connections.  The fusion of two local TCP endpoints occurs
51  * at connection establishment time.  Various conditions (see details
52  * in tcp_fuse()) need to be met for fusion to be successful.  If it
53  * fails, we fall back to the regular TCP data path; if it succeeds,
54  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
55  * tcp_fuse_output() enqueues application data directly onto the peer's
56  * receive queue; no protocol processing is involved.
57  *
58  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
59  * One of the requirements for fusion to succeed is that both endpoints
60  * need to be using the same squeue.  This ensures that neither side
61  * can disappear while the other side is still sending data. Flow
62  * control information is manipulated outside the squeue, so the
63  * tcp_non_sq_lock must be held when touching tcp_flow_stopped.
64  */
65 
66 /*
67  * Setting this to false means we disable fusion altogether and
68  * loopback connections would go through the protocol paths.
69  */
70 boolean_t do_tcp_fusion = B_TRUE;
71 
72 /*
73  * This routine gets called by the eager tcp upon changing state from
74  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
75  * and the active connect tcp such that the regular tcp processings
76  * may be bypassed under allowable circumstances.  Because the fusion
77  * requires both endpoints to be in the same squeue, it does not work
78  * for simultaneous active connects because there is no easy way to
79  * switch from one squeue to another once the connection is created.
80  * This is different from the eager tcp case where we assign it the
81  * same squeue as the one given to the active connect tcp during open.
82  */
83 void
84 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha)
85 {
86 	conn_t		*peer_connp, *connp = tcp->tcp_connp;
87 	tcp_t		*peer_tcp;
88 	tcp_stack_t	*tcps = tcp->tcp_tcps;
89 	netstack_t	*ns;
90 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
91 
92 	ASSERT(!tcp->tcp_fused);
93 	ASSERT(tcp->tcp_loopback);
94 	ASSERT(tcp->tcp_loopback_peer == NULL);
95 	/*
96 	 * We need to inherit conn_rcvbuf of the listener tcp,
97 	 * but we can't really use tcp_listener since we get here after
98 	 * sending up T_CONN_IND and tcp_tli_accept() may be called
99 	 * independently, at which point tcp_listener is cleared;
100 	 * this is why we use tcp_saved_listener. The listener itself
101 	 * is guaranteed to be around until tcp_accept_finish() is called
102 	 * on this eager -- this won't happen until we're done since we're
103 	 * inside the eager's perimeter now.
104 	 */
105 	ASSERT(tcp->tcp_saved_listener != NULL);
106 	/*
107 	 * Lookup peer endpoint; search for the remote endpoint having
108 	 * the reversed address-port quadruplet in ESTABLISHED state,
109 	 * which is guaranteed to be unique in the system.  Zone check
110 	 * is applied accordingly for loopback address, but not for
111 	 * local address since we want fusion to happen across Zones.
112 	 */
113 	if (connp->conn_ipversion == IPV4_VERSION) {
114 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
115 		    (ipha_t *)iphdr, tcpha, ipst);
116 	} else {
117 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
118 		    (ip6_t *)iphdr, tcpha, ipst);
119 	}
120 
121 	/*
122 	 * We can only proceed if peer exists, resides in the same squeue
123 	 * as our conn and is not raw-socket. We also restrict fusion to
124 	 * endpoints of the same type (STREAMS or non-STREAMS). The squeue
125 	 * assignment of this eager tcp was done earlier at the time of SYN
126 	 * processing in ip_fanout_tcp{_v6}.  Note that similar squeues by
127 	 * itself doesn't guarantee a safe condition to fuse, hence we perform
128 	 * additional tests below.
129 	 */
130 	ASSERT(peer_connp == NULL || peer_connp != connp);
131 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
132 	    !IPCL_IS_TCP(peer_connp) ||
133 	    IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) {
134 		if (peer_connp != NULL) {
135 			TCP_STAT(tcps, tcp_fusion_unqualified);
136 			CONN_DEC_REF(peer_connp);
137 		}
138 		return;
139 	}
140 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
141 
142 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
143 	ASSERT(peer_tcp->tcp_loopback_peer == NULL);
144 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
145 
146 	/*
147 	 * Due to IRE changes the peer and us might not agree on tcp_loopback.
148 	 * We bail in that case.
149 	 */
150 	if (!peer_tcp->tcp_loopback) {
151 		TCP_STAT(tcps, tcp_fusion_unqualified);
152 		CONN_DEC_REF(peer_connp);
153 		return;
154 	}
155 
156 	/*
157 	 * If we need to add MD5 Signature options, don't allow fusion.
158 	 */
159 	if (tcp->tcp_md5sig || peer_tcp->tcp_md5sig) {
160 		TCP_STAT(tcps, tcp_fusion_unqualified);
161 		CONN_DEC_REF(peer_connp);
162 		return;
163 	}
164 
165 	/*
166 	 * Fuse the endpoints; we perform further checks against both
167 	 * tcp endpoints to ensure that a fusion is allowed to happen.
168 	 */
169 	ns = tcps->tcps_netstack;
170 	ipst = ns->netstack_ip;
171 
172 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
173 	    tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL) {
174 		mblk_t *mp = NULL;
175 		queue_t *peer_rq = peer_connp->conn_rq;
176 
177 		ASSERT(!TCP_IS_DETACHED(peer_tcp));
178 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
179 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
180 
181 		/*
182 		 * We need to drain data on both endpoints during unfuse.
183 		 * If we need to send up SIGURG at the time of draining,
184 		 * we want to be sure that an mblk is readily available.
185 		 * This is why we pre-allocate the M_PCSIG mblks for both
186 		 * endpoints which will only be used during/after unfuse.
187 		 * The mblk might already exist if we are doing a re-fuse.
188 		 */
189 		if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
190 			ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp));
191 
192 			if (tcp->tcp_fused_sigurg_mp == NULL) {
193 				if ((mp = allocb(1, BPRI_HI)) == NULL)
194 					goto failed;
195 				tcp->tcp_fused_sigurg_mp = mp;
196 			}
197 
198 			if (peer_tcp->tcp_fused_sigurg_mp == NULL) {
199 				if ((mp = allocb(1, BPRI_HI)) == NULL)
200 					goto failed;
201 				peer_tcp->tcp_fused_sigurg_mp = mp;
202 			}
203 
204 			if ((mp = allocb(sizeof (struct stroptions),
205 			    BPRI_HI)) == NULL)
206 				goto failed;
207 		}
208 
209 		/* Fuse both endpoints */
210 		peer_tcp->tcp_loopback_peer = tcp;
211 		tcp->tcp_loopback_peer = peer_tcp;
212 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
213 
214 		/*
215 		 * We never use regular tcp paths in fusion and should
216 		 * therefore clear tcp_unsent on both endpoints.  Having
217 		 * them set to non-zero values means asking for trouble
218 		 * especially after unfuse, where we may end up sending
219 		 * through regular tcp paths which expect xmit_list and
220 		 * friends to be correctly setup.
221 		 */
222 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
223 
224 		tcp_timers_stop(tcp);
225 		tcp_timers_stop(peer_tcp);
226 
227 		/*
228 		 * Set receive buffer and max packet size for the
229 		 * active open tcp.
230 		 * eager's values will be set in tcp_accept_finish.
231 		 */
232 		(void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf);
233 
234 		/*
235 		 * Set the write offset value to zero since we won't
236 		 * be needing any room for TCP/IP headers.
237 		 */
238 		if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
239 			struct stroptions *stropt;
240 
241 			DB_TYPE(mp) = M_SETOPTS;
242 			mp->b_wptr += sizeof (*stropt);
243 
244 			stropt = (struct stroptions *)mp->b_rptr;
245 			stropt->so_flags = SO_WROFF | SO_MAXBLK;
246 			stropt->so_wroff = 0;
247 			stropt->so_maxblk = INFPSZ;
248 
249 			/* Send the options up */
250 			putnext(peer_rq, mp);
251 		} else {
252 			struct sock_proto_props sopp;
253 
254 			/* The peer is a non-STREAMS end point */
255 			ASSERT(IPCL_IS_TCP(peer_connp));
256 
257 			sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_MAXBLK;
258 			sopp.sopp_wroff = 0;
259 			sopp.sopp_maxblk = INFPSZ;
260 			(*peer_connp->conn_upcalls->su_set_proto_props)
261 			    (peer_connp->conn_upper_handle, &sopp);
262 		}
263 	} else {
264 		TCP_STAT(tcps, tcp_fusion_unqualified);
265 	}
266 	CONN_DEC_REF(peer_connp);
267 	return;
268 
269 failed:
270 	if (tcp->tcp_fused_sigurg_mp != NULL) {
271 		freeb(tcp->tcp_fused_sigurg_mp);
272 		tcp->tcp_fused_sigurg_mp = NULL;
273 	}
274 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
275 		freeb(peer_tcp->tcp_fused_sigurg_mp);
276 		peer_tcp->tcp_fused_sigurg_mp = NULL;
277 	}
278 	CONN_DEC_REF(peer_connp);
279 }
280 
281 /*
282  * Unfuse a previously-fused pair of tcp loopback endpoints.
283  */
284 void
285 tcp_unfuse(tcp_t *tcp)
286 {
287 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
288 	tcp_stack_t *tcps = tcp->tcp_tcps;
289 
290 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
291 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
292 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
293 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
294 
295 	/*
296 	 * Cancel any pending push timers.
297 	 */
298 	if (tcp->tcp_push_tid != 0) {
299 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
300 		tcp->tcp_push_tid = 0;
301 	}
302 	if (peer_tcp->tcp_push_tid != 0) {
303 		(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
304 		peer_tcp->tcp_push_tid = 0;
305 	}
306 
307 	/*
308 	 * Drain any pending data; Note that in case of a detached tcp, the
309 	 * draining will happen later after the tcp is unfused.  For non-
310 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
311 	 * If we have urgent data sitting in the receive list, we will
312 	 * need to send up a SIGURG signal first before draining the data.
313 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
314 	 * when called from tcp_rcv_drain().
315 	 */
316 	if (!TCP_IS_DETACHED(tcp)) {
317 		(void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp,
318 		    &tcp->tcp_fused_sigurg_mp);
319 	}
320 	if (!TCP_IS_DETACHED(peer_tcp)) {
321 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq,
322 		    peer_tcp,  &peer_tcp->tcp_fused_sigurg_mp);
323 	}
324 
325 	/* Lift up any flow-control conditions */
326 	mutex_enter(&tcp->tcp_non_sq_lock);
327 	if (tcp->tcp_flow_stopped) {
328 		tcp_clrqfull(tcp);
329 		TCP_STAT(tcps, tcp_fusion_backenabled);
330 	}
331 	mutex_exit(&tcp->tcp_non_sq_lock);
332 
333 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
334 	if (peer_tcp->tcp_flow_stopped) {
335 		tcp_clrqfull(peer_tcp);
336 		TCP_STAT(tcps, tcp_fusion_backenabled);
337 	}
338 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
339 
340 	/*
341 	 * Update tha_seq and tha_ack in the header template
342 	 */
343 	tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt);
344 	tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
345 	peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt);
346 	peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt);
347 
348 	/* Unfuse the endpoints */
349 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
350 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
351 }
352 
353 /*
354  * Fusion output routine used to handle urgent data sent by STREAMS based
355  * endpoints. This routine is called by tcp_fuse_output() for handling
356  * non-M_DATA mblks.
357  */
358 void
359 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
360 {
361 	mblk_t *mp1;
362 	struct T_exdata_ind *tei;
363 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
364 	mblk_t *head, *prev_head = NULL;
365 	tcp_stack_t	*tcps = tcp->tcp_tcps;
366 
367 	ASSERT(tcp->tcp_fused);
368 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
369 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
370 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
371 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
372 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
373 
374 	/*
375 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
376 	 * Each occurence denotes a new urgent pointer.  For each new
377 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
378 	 * that it needs to go into urgent mode.  This is similar to the
379 	 * urgent data handling in the regular tcp.  We don't need to keep
380 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
381 	 * "advances" the urgent pointer for us.
382 	 *
383 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
384 	 * by a T_EXDATA_IND before being enqueued behind any existing data
385 	 * destined for the receiving app.  There is only a single urgent
386 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
387 	 * data arrives before the receiving app reads some existing urgent
388 	 * data, the previous marker is lost.  This behavior is emulated
389 	 * accordingly below, by removing any existing T_EXDATA_IND messages
390 	 * and essentially converting old urgent data into non-urgent.
391 	 */
392 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
393 	/* Let sender get out of urgent mode */
394 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
395 
396 	/*
397 	 * This flag indicates that a signal needs to be sent up.
398 	 * This flag will only get cleared once SIGURG is delivered and
399 	 * is not affected by the tcp_fused flag -- delivery will still
400 	 * happen even after an endpoint is unfused, to handle the case
401 	 * where the sending endpoint immediately closes/unfuses after
402 	 * sending urgent data and the accept is not yet finished.
403 	 */
404 	peer_tcp->tcp_fused_sigurg = B_TRUE;
405 
406 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
407 	DB_TYPE(mp) = M_PROTO;
408 	tei = (struct T_exdata_ind *)mp->b_rptr;
409 	tei->PRIM_type = T_EXDATA_IND;
410 	tei->MORE_flag = 0;
411 	mp->b_wptr = (uchar_t *)&tei[1];
412 
413 	TCP_STAT(tcps, tcp_fusion_urg);
414 	TCPS_BUMP_MIB(tcps, tcpOutUrg);
415 
416 	head = peer_tcp->tcp_rcv_list;
417 	while (head != NULL) {
418 		/*
419 		 * Remove existing T_EXDATA_IND, keep the data which follows
420 		 * it and relink our list.  Note that we don't modify the
421 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
422 		 */
423 		if (DB_TYPE(head) != M_DATA) {
424 			mp1 = head;
425 
426 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
427 			head = mp1->b_cont;
428 			mp1->b_cont = NULL;
429 			head->b_next = mp1->b_next;
430 			mp1->b_next = NULL;
431 			if (prev_head != NULL)
432 				prev_head->b_next = head;
433 			if (peer_tcp->tcp_rcv_list == mp1)
434 				peer_tcp->tcp_rcv_list = head;
435 			if (peer_tcp->tcp_rcv_last_head == mp1)
436 				peer_tcp->tcp_rcv_last_head = head;
437 			freeb(mp1);
438 		}
439 		prev_head = head;
440 		head = head->b_next;
441 	}
442 }
443 
444 /*
445  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
446  * If we are modifying any member that can be changed outside the squeue,
447  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
448  */
449 boolean_t
450 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
451 {
452 	conn_t		*connp = tcp->tcp_connp;
453 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
454 	conn_t		*peer_connp = peer_tcp->tcp_connp;
455 	boolean_t	flow_stopped, peer_data_queued = B_FALSE;
456 	boolean_t	urgent = (DB_TYPE(mp) != M_DATA);
457 	boolean_t	push = B_TRUE;
458 	mblk_t		*mp1 = mp;
459 	uint_t		ip_hdr_len;
460 	uint32_t	recv_size = send_size;
461 	tcp_stack_t	*tcps = tcp->tcp_tcps;
462 	netstack_t	*ns = tcps->tcps_netstack;
463 	ip_stack_t	*ipst = ns->netstack_ip;
464 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
465 	iaflags_t	ixaflags = connp->conn_ixa->ixa_flags;
466 	boolean_t	do_ipsec, hooks_out, hooks_in, ipobs_enabled;
467 
468 	ASSERT(tcp->tcp_fused);
469 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
470 	ASSERT(connp->conn_sqp == peer_connp->conn_sqp);
471 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
472 	    DB_TYPE(mp) == M_PCPROTO);
473 
474 	if (send_size == 0) {
475 		freemsg(mp);
476 		return (B_TRUE);
477 	}
478 
479 	/*
480 	 * Check enforcement of the minimum TTL policy differences in the
481 	 * connection as this can change even after fusion. If we detect a
482 	 * mismatch, unfuse and allow normal stack processing to handle this.
483 	 */
484 	if (peer_connp->conn_min_ttl != 0 && peer_connp->conn_min_ttl >
485 	    connp->conn_xmit_ipp.ipp_unicast_hops) {
486 		goto unfuse;
487 	}
488 
489 	/*
490 	 * Handle urgent data; we either send up SIGURG to the peer now
491 	 * or do it later when we drain, in case the peer is detached
492 	 * or if we're short of memory for M_PCSIG mblk.
493 	 */
494 	if (urgent) {
495 		tcp_fuse_output_urg(tcp, mp);
496 
497 		mp1 = mp->b_cont;
498 	}
499 
500 	/*
501 	 * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before
502 	 * further processes.
503 	 */
504 	if (!ip_output_verify_local(connp->conn_ixa))
505 		goto unfuse;
506 
507 	/*
508 	 * Build IP and TCP header in case we have something that needs the
509 	 * headers. Those cases are:
510 	 * 1. IPsec
511 	 * 2. IPobs
512 	 * 3. FW_HOOKS
513 	 *
514 	 * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection
515 	 * and back to regular path.
516 	 */
517 	if (ixaflags & IXAF_IS_IPV4) {
518 		do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
519 		    CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss);
520 
521 		hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst);
522 		hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst);
523 		ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0);
524 	} else {
525 		do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
526 		    CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss);
527 
528 		hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst);
529 		hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst);
530 		ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0);
531 	}
532 
533 	/* We do logical 'or' for efficiency */
534 	if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) {
535 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
536 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
537 			/* If tcp_xmit_mp fails, use regular path */
538 			goto unfuse;
539 
540 		/*
541 		 * Leave all IP relevant processes to ip_output_process_local(),
542 		 * which handles IPsec, IPobs, and FW_HOOKS.
543 		 */
544 		mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out,
545 		    hooks_in, do_ipsec ? peer_connp : NULL);
546 
547 		/* If the message is dropped for any reason. */
548 		if (mp1 == NULL)
549 			goto unfuse;
550 
551 		/*
552 		 * Data length might have been changed by FW_HOOKS.
553 		 * We assume that the first mblk contains the TCP/IP headers.
554 		 */
555 		if (hooks_in || hooks_out) {
556 			tcpha_t *tcpha;
557 
558 			ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ?
559 			    IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) :
560 			    ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr);
561 
562 			tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len];
563 			ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <=
564 			    mp1->b_wptr);
565 			recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt;
566 
567 		}
568 
569 		/*
570 		 * The message duplicated by tcp_xmit_mp is freed.
571 		 * Note: the original message passed in remains unchanged.
572 		 */
573 		freemsg(mp1);
574 	}
575 
576 	/*
577 	 * Enqueue data into the peer's receive list; we may or may not
578 	 * drain the contents depending on the conditions below.
579 	 *
580 	 * For non-STREAMS sockets we normally queue data directly in the
581 	 * socket by calling the su_recv upcall. However, if the peer is
582 	 * detached we use tcp_rcv_enqueue() instead. Queued data will be
583 	 * drained when the accept completes (in tcp_accept_finish()).
584 	 */
585 	if (IPCL_IS_NONSTR(peer_connp) &&
586 	    !TCP_IS_DETACHED(peer_tcp)) {
587 		int error;
588 		int flags = 0;
589 
590 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
591 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
592 			flags = MSG_OOB;
593 			(*peer_connp->conn_upcalls->su_signal_oob)
594 			    (peer_connp->conn_upper_handle, 0);
595 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
596 		}
597 		if ((*peer_connp->conn_upcalls->su_recv)(
598 		    peer_connp->conn_upper_handle, mp, recv_size,
599 		    flags, &error, &push) < 0) {
600 			ASSERT(error != EOPNOTSUPP);
601 			peer_data_queued = B_TRUE;
602 		}
603 	} else {
604 		if (IPCL_IS_NONSTR(peer_connp) &&
605 		    (tcp->tcp_valid_bits & TCP_URG_VALID) &&
606 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
607 			/*
608 			 * Can not deal with urgent pointers
609 			 * that arrive before the connection has been
610 			 * accept()ed.
611 			 */
612 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
613 			freemsg(mp);
614 			return (B_TRUE);
615 		}
616 
617 		tcp_rcv_enqueue(peer_tcp, mp, recv_size,
618 		    tcp->tcp_connp->conn_cred);
619 
620 		/* In case it wrapped around and also to keep it constant */
621 		peer_tcp->tcp_rwnd += recv_size;
622 	}
623 
624 	/*
625 	 * Exercise flow-control when needed; we will get back-enabled
626 	 * in either tcp_accept_finish(), tcp_unfuse(), or when data is
627 	 * consumed. If peer endpoint is detached, we emulate streams flow
628 	 * control by checking the peer's queue size and high water mark;
629 	 * otherwise we simply use canputnext() to decide if we need to stop
630 	 * our flow.
631 	 *
632 	 * Since we are accessing our tcp_flow_stopped and might modify it,
633 	 * we need to take tcp->tcp_non_sq_lock.
634 	 */
635 	mutex_enter(&tcp->tcp_non_sq_lock);
636 	flow_stopped = tcp->tcp_flow_stopped;
637 	if ((TCP_IS_DETACHED(peer_tcp) &&
638 	    (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) ||
639 	    (!TCP_IS_DETACHED(peer_tcp) &&
640 	    !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) {
641 		peer_data_queued = B_TRUE;
642 	}
643 
644 	if (!flow_stopped && (peer_data_queued ||
645 	    (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) {
646 		tcp_setqfull(tcp);
647 		flow_stopped = B_TRUE;
648 		TCP_STAT(tcps, tcp_fusion_flowctl);
649 		DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp,
650 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt);
651 	} else if (flow_stopped && !peer_data_queued &&
652 	    (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) {
653 		tcp_clrqfull(tcp);
654 		TCP_STAT(tcps, tcp_fusion_backenabled);
655 		flow_stopped = B_FALSE;
656 	}
657 	mutex_exit(&tcp->tcp_non_sq_lock);
658 
659 	ipst->ips_loopback_packets++;
660 	tcp->tcp_last_sent_len = send_size;
661 
662 	/* Need to adjust the following SNMP MIB-related variables */
663 	tcp->tcp_snxt += send_size;
664 	tcp->tcp_suna = tcp->tcp_snxt;
665 	peer_tcp->tcp_rnxt += recv_size;
666 	peer_tcp->tcp_last_recv_len = recv_size;
667 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
668 
669 	TCPS_BUMP_MIB(tcps, tcpOutDataSegs);
670 	TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
671 	TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size);
672 	tcp->tcp_cs.tcp_out_data_bytes += send_size;
673 	tcp->tcp_cs.tcp_out_data_segs++;
674 
675 	TCPS_BUMP_MIB(tcps, tcpHCInSegs);
676 	TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
677 	TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size);
678 	peer_tcp->tcp_cs.tcp_in_data_inorder_bytes += send_size;
679 	peer_tcp->tcp_cs.tcp_in_data_inorder_segs++;
680 
681 	DTRACE_TCP5(send, void, NULL, ip_xmit_attr_t *, connp->conn_ixa,
682 	    __dtrace_tcp_void_ip_t *, NULL, tcp_t *, tcp,
683 	    __dtrace_tcp_tcph_t *, NULL);
684 	DTRACE_TCP5(receive, void, NULL, ip_xmit_attr_t *,
685 	    peer_connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL,
686 	    tcp_t *, peer_tcp, __dtrace_tcp_tcph_t *, NULL);
687 
688 	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
689 	    !TCP_IS_DETACHED(peer_tcp)) {
690 		/*
691 		 * Drain the peer's receive queue it has urgent data or if
692 		 * we're not flow-controlled.
693 		 */
694 		if (urgent || !flow_stopped) {
695 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
696 			/*
697 			 * For TLI-based streams, a thread in tcp_accept_swap()
698 			 * can race with us.  That thread will ensure that the
699 			 * correct peer_connp->conn_rq is globally visible
700 			 * before peer_tcp->tcp_detached is visible as clear,
701 			 * but we must also ensure that the load of conn_rq
702 			 * cannot be reordered to be before the tcp_detached
703 			 * check.
704 			 */
705 			membar_consumer();
706 			(void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp,
707 			    NULL);
708 		}
709 	}
710 	return (B_TRUE);
711 unfuse:
712 	tcp_unfuse(tcp);
713 	return (B_FALSE);
714 }
715 
716 /*
717  * This routine gets called to deliver data upstream on a fused or
718  * previously fused tcp loopback endpoint; the latter happens only
719  * when there is a pending SIGURG signal plus urgent data that can't
720  * be sent upstream in the past.
721  */
722 boolean_t
723 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
724 {
725 	mblk_t *mp;
726 	conn_t	*connp = tcp->tcp_connp;
727 
728 #ifdef DEBUG
729 	uint_t cnt = 0;
730 #endif
731 	tcp_stack_t	*tcps = tcp->tcp_tcps;
732 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
733 
734 	ASSERT(tcp->tcp_loopback);
735 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
736 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
737 	ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);
738 
739 	/* No need for the push timer now, in case it was scheduled */
740 	if (tcp->tcp_push_tid != 0) {
741 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
742 		tcp->tcp_push_tid = 0;
743 	}
744 	/*
745 	 * If there's urgent data sitting in receive list and we didn't
746 	 * get a chance to send up a SIGURG signal, make sure we send
747 	 * it first before draining in order to ensure that SIOCATMARK
748 	 * works properly.
749 	 */
750 	if (tcp->tcp_fused_sigurg) {
751 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
752 
753 		tcp->tcp_fused_sigurg = B_FALSE;
754 		/*
755 		 * sigurg_mpp is normally NULL, i.e. when we're still
756 		 * fused and didn't get here because of tcp_unfuse().
757 		 * In this case try hard to allocate the M_PCSIG mblk.
758 		 */
759 		if (sigurg_mpp == NULL &&
760 		    (mp = allocb(1, BPRI_HI)) == NULL &&
761 		    (mp = allocb_tryhard(1)) == NULL) {
762 			/* Alloc failed; try again next time */
763 			tcp->tcp_push_tid = TCP_TIMER(tcp,
764 			    tcp_push_timer, tcps->tcps_push_timer_interval);
765 			return (B_TRUE);
766 		} else if (sigurg_mpp != NULL) {
767 			/*
768 			 * Use the supplied M_PCSIG mblk; it means we're
769 			 * either unfused or in the process of unfusing,
770 			 * and the drain must happen now.
771 			 */
772 			mp = *sigurg_mpp;
773 			*sigurg_mpp = NULL;
774 		}
775 		ASSERT(mp != NULL);
776 
777 		/* Send up the signal */
778 		DB_TYPE(mp) = M_PCSIG;
779 		*mp->b_wptr++ = (uchar_t)SIGURG;
780 		putnext(q, mp);
781 
782 		/*
783 		 * Let the regular tcp_rcv_drain() path handle
784 		 * draining the data if we're no longer fused.
785 		 */
786 		if (!tcp->tcp_fused)
787 			return (B_FALSE);
788 	}
789 
790 	/* Drain the data */
791 	while ((mp = tcp->tcp_rcv_list) != NULL) {
792 		tcp->tcp_rcv_list = mp->b_next;
793 		mp->b_next = NULL;
794 #ifdef DEBUG
795 		cnt += msgdsize(mp);
796 #endif
797 		ASSERT(!IPCL_IS_NONSTR(connp));
798 		putnext(q, mp);
799 		TCP_STAT(tcps, tcp_fusion_putnext);
800 	}
801 
802 #ifdef DEBUG
803 	ASSERT(cnt == tcp->tcp_rcv_cnt);
804 #endif
805 	tcp->tcp_rcv_last_head = NULL;
806 	tcp->tcp_rcv_last_tail = NULL;
807 	tcp->tcp_rcv_cnt = 0;
808 	tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf;
809 
810 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
811 	if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
812 	    peer_tcp->tcp_connp->conn_sndlowat)) {
813 		tcp_clrqfull(peer_tcp);
814 		TCP_STAT(tcps, tcp_fusion_backenabled);
815 	}
816 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
817 
818 	return (B_TRUE);
819 }
820 
821 /*
822  * Calculate the size of receive buffer for a fused tcp endpoint.
823  */
824 size_t
825 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
826 {
827 	tcp_stack_t	*tcps = tcp->tcp_tcps;
828 	uint32_t	max_win;
829 
830 	ASSERT(tcp->tcp_fused);
831 
832 	/* Ensure that value is within the maximum upper bound */
833 	if (rwnd > tcps->tcps_max_buf)
834 		rwnd = tcps->tcps_max_buf;
835 	/*
836 	 * Round up to system page size in case SO_RCVBUF is modified
837 	 * after SO_SNDBUF; the latter is also similarly rounded up.
838 	 */
839 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
840 	max_win = TCP_MAXWIN << tcp->tcp_rcv_ws;
841 	if (rwnd > max_win) {
842 		rwnd = max_win - (max_win % tcp->tcp_mss);
843 		if (rwnd < tcp->tcp_mss)
844 			rwnd = max_win;
845 	}
846 
847 	/*
848 	 * Record high water mark, this is used for flow-control
849 	 * purposes in tcp_fuse_output().
850 	 */
851 	tcp->tcp_connp->conn_rcvbuf = rwnd;
852 	tcp->tcp_rwnd = rwnd;
853 	return (rwnd);
854 }
855 
856 /*
857  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
858  */
859 int
860 tcp_fuse_maxpsz(tcp_t *tcp)
861 {
862 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
863 	conn_t *connp = tcp->tcp_connp;
864 	uint_t sndbuf = connp->conn_sndbuf;
865 	uint_t maxpsz = sndbuf;
866 
867 	ASSERT(tcp->tcp_fused);
868 	ASSERT(peer_tcp != NULL);
869 	ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0);
870 	/*
871 	 * In the fused loopback case, we want the stream head to split
872 	 * up larger writes into smaller chunks for a more accurate flow-
873 	 * control accounting.  Our maxpsz is half of the sender's send
874 	 * buffer or the receiver's receive buffer, whichever is smaller.
875 	 * We round up the buffer to system page size due to the lack of
876 	 * TCP MSS concept in Fusion.
877 	 */
878 	if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf)
879 		maxpsz = peer_tcp->tcp_connp->conn_rcvbuf;
880 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
881 
882 	return (maxpsz);
883 }
884 
885 /*
886  * Called to release flow control.
887  */
888 void
889 tcp_fuse_backenable(tcp_t *tcp)
890 {
891 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
892 
893 	ASSERT(tcp->tcp_fused);
894 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
895 	ASSERT(peer_tcp->tcp_loopback_peer == tcp);
896 	ASSERT(!TCP_IS_DETACHED(tcp));
897 	ASSERT(tcp->tcp_connp->conn_sqp ==
898 	    peer_tcp->tcp_connp->conn_sqp);
899 
900 	if (tcp->tcp_rcv_list != NULL)
901 		(void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL);
902 
903 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
904 	if (peer_tcp->tcp_flow_stopped &&
905 	    (TCP_UNSENT_BYTES(peer_tcp) <=
906 	    peer_tcp->tcp_connp->conn_sndlowat)) {
907 		tcp_clrqfull(peer_tcp);
908 	}
909 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
910 
911 	TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled);
912 }
913