1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2015 by Delphix. All rights reserved. 24 * Copyright 2024 Oxide Computer Company 25 */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/strsun.h> 30 #include <sys/strsubr.h> 31 #include <sys/debug.h> 32 #include <sys/sdt.h> 33 #include <sys/cmn_err.h> 34 #include <sys/tihdr.h> 35 36 #include <inet/common.h> 37 #include <inet/optcom.h> 38 #include <inet/ip.h> 39 #include <inet/ip_if.h> 40 #include <inet/ip_impl.h> 41 #include <inet/tcp.h> 42 #include <inet/tcp_impl.h> 43 #include <inet/ipsec_impl.h> 44 #include <inet/ipclassifier.h> 45 #include <inet/ipp_common.h> 46 #include <inet/ip_if.h> 47 48 /* 49 * This file implements TCP fusion - a protocol-less data path for TCP 50 * loopback connections. The fusion of two local TCP endpoints occurs 51 * at connection establishment time. Various conditions (see details 52 * in tcp_fuse()) need to be met for fusion to be successful. If it 53 * fails, we fall back to the regular TCP data path; if it succeeds, 54 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 55 * tcp_fuse_output() enqueues application data directly onto the peer's 56 * receive queue; no protocol processing is involved. 57 * 58 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. 59 * One of the requirements for fusion to succeed is that both endpoints 60 * need to be using the same squeue. This ensures that neither side 61 * can disappear while the other side is still sending data. Flow 62 * control information is manipulated outside the squeue, so the 63 * tcp_non_sq_lock must be held when touching tcp_flow_stopped. 64 */ 65 66 /* 67 * Setting this to false means we disable fusion altogether and 68 * loopback connections would go through the protocol paths. 69 */ 70 boolean_t do_tcp_fusion = B_TRUE; 71 72 /* 73 * This routine gets called by the eager tcp upon changing state from 74 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 75 * and the active connect tcp such that the regular tcp processings 76 * may be bypassed under allowable circumstances. Because the fusion 77 * requires both endpoints to be in the same squeue, it does not work 78 * for simultaneous active connects because there is no easy way to 79 * switch from one squeue to another once the connection is created. 80 * This is different from the eager tcp case where we assign it the 81 * same squeue as the one given to the active connect tcp during open. 82 */ 83 void 84 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha) 85 { 86 conn_t *peer_connp, *connp = tcp->tcp_connp; 87 tcp_t *peer_tcp; 88 tcp_stack_t *tcps = tcp->tcp_tcps; 89 netstack_t *ns; 90 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 91 92 ASSERT(!tcp->tcp_fused); 93 ASSERT(tcp->tcp_loopback); 94 ASSERT(tcp->tcp_loopback_peer == NULL); 95 /* 96 * We need to inherit conn_rcvbuf of the listener tcp, 97 * but we can't really use tcp_listener since we get here after 98 * sending up T_CONN_IND and tcp_tli_accept() may be called 99 * independently, at which point tcp_listener is cleared; 100 * this is why we use tcp_saved_listener. The listener itself 101 * is guaranteed to be around until tcp_accept_finish() is called 102 * on this eager -- this won't happen until we're done since we're 103 * inside the eager's perimeter now. 104 */ 105 ASSERT(tcp->tcp_saved_listener != NULL); 106 /* 107 * Lookup peer endpoint; search for the remote endpoint having 108 * the reversed address-port quadruplet in ESTABLISHED state, 109 * which is guaranteed to be unique in the system. Zone check 110 * is applied accordingly for loopback address, but not for 111 * local address since we want fusion to happen across Zones. 112 */ 113 if (connp->conn_ipversion == IPV4_VERSION) { 114 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 115 (ipha_t *)iphdr, tcpha, ipst); 116 } else { 117 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 118 (ip6_t *)iphdr, tcpha, ipst); 119 } 120 121 /* 122 * We can only proceed if peer exists, resides in the same squeue 123 * as our conn and is not raw-socket. We also restrict fusion to 124 * endpoints of the same type (STREAMS or non-STREAMS). The squeue 125 * assignment of this eager tcp was done earlier at the time of SYN 126 * processing in ip_fanout_tcp{_v6}. Note that similar squeues by 127 * itself doesn't guarantee a safe condition to fuse, hence we perform 128 * additional tests below. 129 */ 130 ASSERT(peer_connp == NULL || peer_connp != connp); 131 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 132 !IPCL_IS_TCP(peer_connp) || 133 IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) { 134 if (peer_connp != NULL) { 135 TCP_STAT(tcps, tcp_fusion_unqualified); 136 CONN_DEC_REF(peer_connp); 137 } 138 return; 139 } 140 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 141 142 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 143 ASSERT(peer_tcp->tcp_loopback_peer == NULL); 144 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 145 146 /* 147 * Due to IRE changes the peer and us might not agree on tcp_loopback. 148 * We bail in that case. 149 */ 150 if (!peer_tcp->tcp_loopback) { 151 TCP_STAT(tcps, tcp_fusion_unqualified); 152 CONN_DEC_REF(peer_connp); 153 return; 154 } 155 156 /* 157 * If we need to add MD5 Signature options, don't allow fusion. 158 */ 159 if (tcp->tcp_md5sig || peer_tcp->tcp_md5sig) { 160 TCP_STAT(tcps, tcp_fusion_unqualified); 161 CONN_DEC_REF(peer_connp); 162 return; 163 } 164 165 /* 166 * Fuse the endpoints; we perform further checks against both 167 * tcp endpoints to ensure that a fusion is allowed to happen. 168 */ 169 ns = tcps->tcps_netstack; 170 ipst = ns->netstack_ip; 171 172 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 173 tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL) { 174 mblk_t *mp = NULL; 175 queue_t *peer_rq = peer_connp->conn_rq; 176 177 ASSERT(!TCP_IS_DETACHED(peer_tcp)); 178 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 179 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 180 181 /* 182 * We need to drain data on both endpoints during unfuse. 183 * If we need to send up SIGURG at the time of draining, 184 * we want to be sure that an mblk is readily available. 185 * This is why we pre-allocate the M_PCSIG mblks for both 186 * endpoints which will only be used during/after unfuse. 187 * The mblk might already exist if we are doing a re-fuse. 188 */ 189 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 190 ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp)); 191 192 if (tcp->tcp_fused_sigurg_mp == NULL) { 193 if ((mp = allocb(1, BPRI_HI)) == NULL) 194 goto failed; 195 tcp->tcp_fused_sigurg_mp = mp; 196 } 197 198 if (peer_tcp->tcp_fused_sigurg_mp == NULL) { 199 if ((mp = allocb(1, BPRI_HI)) == NULL) 200 goto failed; 201 peer_tcp->tcp_fused_sigurg_mp = mp; 202 } 203 204 if ((mp = allocb(sizeof (struct stroptions), 205 BPRI_HI)) == NULL) 206 goto failed; 207 } 208 209 /* Fuse both endpoints */ 210 peer_tcp->tcp_loopback_peer = tcp; 211 tcp->tcp_loopback_peer = peer_tcp; 212 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 213 214 /* 215 * We never use regular tcp paths in fusion and should 216 * therefore clear tcp_unsent on both endpoints. Having 217 * them set to non-zero values means asking for trouble 218 * especially after unfuse, where we may end up sending 219 * through regular tcp paths which expect xmit_list and 220 * friends to be correctly setup. 221 */ 222 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 223 224 tcp_timers_stop(tcp); 225 tcp_timers_stop(peer_tcp); 226 227 /* 228 * Set receive buffer and max packet size for the 229 * active open tcp. 230 * eager's values will be set in tcp_accept_finish. 231 */ 232 (void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf); 233 234 /* 235 * Set the write offset value to zero since we won't 236 * be needing any room for TCP/IP headers. 237 */ 238 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 239 struct stroptions *stropt; 240 241 DB_TYPE(mp) = M_SETOPTS; 242 mp->b_wptr += sizeof (*stropt); 243 244 stropt = (struct stroptions *)mp->b_rptr; 245 stropt->so_flags = SO_WROFF | SO_MAXBLK; 246 stropt->so_wroff = 0; 247 stropt->so_maxblk = INFPSZ; 248 249 /* Send the options up */ 250 putnext(peer_rq, mp); 251 } else { 252 struct sock_proto_props sopp; 253 254 /* The peer is a non-STREAMS end point */ 255 ASSERT(IPCL_IS_TCP(peer_connp)); 256 257 sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_MAXBLK; 258 sopp.sopp_wroff = 0; 259 sopp.sopp_maxblk = INFPSZ; 260 (*peer_connp->conn_upcalls->su_set_proto_props) 261 (peer_connp->conn_upper_handle, &sopp); 262 } 263 } else { 264 TCP_STAT(tcps, tcp_fusion_unqualified); 265 } 266 CONN_DEC_REF(peer_connp); 267 return; 268 269 failed: 270 if (tcp->tcp_fused_sigurg_mp != NULL) { 271 freeb(tcp->tcp_fused_sigurg_mp); 272 tcp->tcp_fused_sigurg_mp = NULL; 273 } 274 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 275 freeb(peer_tcp->tcp_fused_sigurg_mp); 276 peer_tcp->tcp_fused_sigurg_mp = NULL; 277 } 278 CONN_DEC_REF(peer_connp); 279 } 280 281 /* 282 * Unfuse a previously-fused pair of tcp loopback endpoints. 283 */ 284 void 285 tcp_unfuse(tcp_t *tcp) 286 { 287 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 288 tcp_stack_t *tcps = tcp->tcp_tcps; 289 290 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 291 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 292 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 293 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 294 295 /* 296 * Cancel any pending push timers. 297 */ 298 if (tcp->tcp_push_tid != 0) { 299 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 300 tcp->tcp_push_tid = 0; 301 } 302 if (peer_tcp->tcp_push_tid != 0) { 303 (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid); 304 peer_tcp->tcp_push_tid = 0; 305 } 306 307 /* 308 * Drain any pending data; Note that in case of a detached tcp, the 309 * draining will happen later after the tcp is unfused. For non- 310 * urgent data, this can be handled by the regular tcp_rcv_drain(). 311 * If we have urgent data sitting in the receive list, we will 312 * need to send up a SIGURG signal first before draining the data. 313 * All of these will be handled by the code in tcp_fuse_rcv_drain() 314 * when called from tcp_rcv_drain(). 315 */ 316 if (!TCP_IS_DETACHED(tcp)) { 317 (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, 318 &tcp->tcp_fused_sigurg_mp); 319 } 320 if (!TCP_IS_DETACHED(peer_tcp)) { 321 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq, 322 peer_tcp, &peer_tcp->tcp_fused_sigurg_mp); 323 } 324 325 /* Lift up any flow-control conditions */ 326 mutex_enter(&tcp->tcp_non_sq_lock); 327 if (tcp->tcp_flow_stopped) { 328 tcp_clrqfull(tcp); 329 TCP_STAT(tcps, tcp_fusion_backenabled); 330 } 331 mutex_exit(&tcp->tcp_non_sq_lock); 332 333 mutex_enter(&peer_tcp->tcp_non_sq_lock); 334 if (peer_tcp->tcp_flow_stopped) { 335 tcp_clrqfull(peer_tcp); 336 TCP_STAT(tcps, tcp_fusion_backenabled); 337 } 338 mutex_exit(&peer_tcp->tcp_non_sq_lock); 339 340 /* 341 * Update tha_seq and tha_ack in the header template 342 */ 343 tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt); 344 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 345 peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt); 346 peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt); 347 348 /* Unfuse the endpoints */ 349 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 350 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 351 } 352 353 /* 354 * Fusion output routine used to handle urgent data sent by STREAMS based 355 * endpoints. This routine is called by tcp_fuse_output() for handling 356 * non-M_DATA mblks. 357 */ 358 void 359 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 360 { 361 mblk_t *mp1; 362 struct T_exdata_ind *tei; 363 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 364 mblk_t *head, *prev_head = NULL; 365 tcp_stack_t *tcps = tcp->tcp_tcps; 366 367 ASSERT(tcp->tcp_fused); 368 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 369 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 370 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 371 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 372 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 373 374 /* 375 * Urgent data arrives in the form of T_EXDATA_REQ from above. 376 * Each occurence denotes a new urgent pointer. For each new 377 * urgent pointer we signal (SIGURG) the receiving app to indicate 378 * that it needs to go into urgent mode. This is similar to the 379 * urgent data handling in the regular tcp. We don't need to keep 380 * track of where the urgent pointer is, because each T_EXDATA_REQ 381 * "advances" the urgent pointer for us. 382 * 383 * The actual urgent data carried by T_EXDATA_REQ is then prepended 384 * by a T_EXDATA_IND before being enqueued behind any existing data 385 * destined for the receiving app. There is only a single urgent 386 * pointer (out-of-band mark) for a given tcp. If the new urgent 387 * data arrives before the receiving app reads some existing urgent 388 * data, the previous marker is lost. This behavior is emulated 389 * accordingly below, by removing any existing T_EXDATA_IND messages 390 * and essentially converting old urgent data into non-urgent. 391 */ 392 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 393 /* Let sender get out of urgent mode */ 394 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 395 396 /* 397 * This flag indicates that a signal needs to be sent up. 398 * This flag will only get cleared once SIGURG is delivered and 399 * is not affected by the tcp_fused flag -- delivery will still 400 * happen even after an endpoint is unfused, to handle the case 401 * where the sending endpoint immediately closes/unfuses after 402 * sending urgent data and the accept is not yet finished. 403 */ 404 peer_tcp->tcp_fused_sigurg = B_TRUE; 405 406 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 407 DB_TYPE(mp) = M_PROTO; 408 tei = (struct T_exdata_ind *)mp->b_rptr; 409 tei->PRIM_type = T_EXDATA_IND; 410 tei->MORE_flag = 0; 411 mp->b_wptr = (uchar_t *)&tei[1]; 412 413 TCP_STAT(tcps, tcp_fusion_urg); 414 TCPS_BUMP_MIB(tcps, tcpOutUrg); 415 416 head = peer_tcp->tcp_rcv_list; 417 while (head != NULL) { 418 /* 419 * Remove existing T_EXDATA_IND, keep the data which follows 420 * it and relink our list. Note that we don't modify the 421 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 422 */ 423 if (DB_TYPE(head) != M_DATA) { 424 mp1 = head; 425 426 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 427 head = mp1->b_cont; 428 mp1->b_cont = NULL; 429 head->b_next = mp1->b_next; 430 mp1->b_next = NULL; 431 if (prev_head != NULL) 432 prev_head->b_next = head; 433 if (peer_tcp->tcp_rcv_list == mp1) 434 peer_tcp->tcp_rcv_list = head; 435 if (peer_tcp->tcp_rcv_last_head == mp1) 436 peer_tcp->tcp_rcv_last_head = head; 437 freeb(mp1); 438 } 439 prev_head = head; 440 head = head->b_next; 441 } 442 } 443 444 /* 445 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 446 * If we are modifying any member that can be changed outside the squeue, 447 * like tcp_flow_stopped, we need to take tcp_non_sq_lock. 448 */ 449 boolean_t 450 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 451 { 452 conn_t *connp = tcp->tcp_connp; 453 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 454 conn_t *peer_connp = peer_tcp->tcp_connp; 455 boolean_t flow_stopped, peer_data_queued = B_FALSE; 456 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 457 boolean_t push = B_TRUE; 458 mblk_t *mp1 = mp; 459 uint_t ip_hdr_len; 460 uint32_t recv_size = send_size; 461 tcp_stack_t *tcps = tcp->tcp_tcps; 462 netstack_t *ns = tcps->tcps_netstack; 463 ip_stack_t *ipst = ns->netstack_ip; 464 ipsec_stack_t *ipss = ns->netstack_ipsec; 465 iaflags_t ixaflags = connp->conn_ixa->ixa_flags; 466 boolean_t do_ipsec, hooks_out, hooks_in, ipobs_enabled; 467 468 ASSERT(tcp->tcp_fused); 469 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 470 ASSERT(connp->conn_sqp == peer_connp->conn_sqp); 471 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 472 DB_TYPE(mp) == M_PCPROTO); 473 474 if (send_size == 0) { 475 freemsg(mp); 476 return (B_TRUE); 477 } 478 479 /* 480 * Check enforcement of the minimum TTL policy differences in the 481 * connection as this can change even after fusion. If we detect a 482 * mismatch, unfuse and allow normal stack processing to handle this. 483 */ 484 if (peer_connp->conn_min_ttl != 0 && peer_connp->conn_min_ttl > 485 connp->conn_xmit_ipp.ipp_unicast_hops) { 486 goto unfuse; 487 } 488 489 /* 490 * Handle urgent data; we either send up SIGURG to the peer now 491 * or do it later when we drain, in case the peer is detached 492 * or if we're short of memory for M_PCSIG mblk. 493 */ 494 if (urgent) { 495 tcp_fuse_output_urg(tcp, mp); 496 497 mp1 = mp->b_cont; 498 } 499 500 /* 501 * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before 502 * further processes. 503 */ 504 if (!ip_output_verify_local(connp->conn_ixa)) 505 goto unfuse; 506 507 /* 508 * Build IP and TCP header in case we have something that needs the 509 * headers. Those cases are: 510 * 1. IPsec 511 * 2. IPobs 512 * 3. FW_HOOKS 513 * 514 * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection 515 * and back to regular path. 516 */ 517 if (ixaflags & IXAF_IS_IPV4) { 518 do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) || 519 CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss); 520 521 hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst); 522 hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst); 523 ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0); 524 } else { 525 do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) || 526 CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss); 527 528 hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst); 529 hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst); 530 ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0); 531 } 532 533 /* We do logical 'or' for efficiency */ 534 if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) { 535 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, 536 tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) 537 /* If tcp_xmit_mp fails, use regular path */ 538 goto unfuse; 539 540 /* 541 * Leave all IP relevant processes to ip_output_process_local(), 542 * which handles IPsec, IPobs, and FW_HOOKS. 543 */ 544 mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out, 545 hooks_in, do_ipsec ? peer_connp : NULL); 546 547 /* If the message is dropped for any reason. */ 548 if (mp1 == NULL) 549 goto unfuse; 550 551 /* 552 * Data length might have been changed by FW_HOOKS. 553 * We assume that the first mblk contains the TCP/IP headers. 554 */ 555 if (hooks_in || hooks_out) { 556 tcpha_t *tcpha; 557 558 ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ? 559 IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) : 560 ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr); 561 562 tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len]; 563 ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <= 564 mp1->b_wptr); 565 recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt; 566 567 } 568 569 /* 570 * The message duplicated by tcp_xmit_mp is freed. 571 * Note: the original message passed in remains unchanged. 572 */ 573 freemsg(mp1); 574 } 575 576 /* 577 * Enqueue data into the peer's receive list; we may or may not 578 * drain the contents depending on the conditions below. 579 * 580 * For non-STREAMS sockets we normally queue data directly in the 581 * socket by calling the su_recv upcall. However, if the peer is 582 * detached we use tcp_rcv_enqueue() instead. Queued data will be 583 * drained when the accept completes (in tcp_accept_finish()). 584 */ 585 if (IPCL_IS_NONSTR(peer_connp) && 586 !TCP_IS_DETACHED(peer_tcp)) { 587 int error; 588 int flags = 0; 589 590 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 591 (tcp->tcp_urg == tcp->tcp_snxt)) { 592 flags = MSG_OOB; 593 (*peer_connp->conn_upcalls->su_signal_oob) 594 (peer_connp->conn_upper_handle, 0); 595 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 596 } 597 if ((*peer_connp->conn_upcalls->su_recv)( 598 peer_connp->conn_upper_handle, mp, recv_size, 599 flags, &error, &push) < 0) { 600 ASSERT(error != EOPNOTSUPP); 601 peer_data_queued = B_TRUE; 602 } 603 } else { 604 if (IPCL_IS_NONSTR(peer_connp) && 605 (tcp->tcp_valid_bits & TCP_URG_VALID) && 606 (tcp->tcp_urg == tcp->tcp_snxt)) { 607 /* 608 * Can not deal with urgent pointers 609 * that arrive before the connection has been 610 * accept()ed. 611 */ 612 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 613 freemsg(mp); 614 return (B_TRUE); 615 } 616 617 tcp_rcv_enqueue(peer_tcp, mp, recv_size, 618 tcp->tcp_connp->conn_cred); 619 620 /* In case it wrapped around and also to keep it constant */ 621 peer_tcp->tcp_rwnd += recv_size; 622 } 623 624 /* 625 * Exercise flow-control when needed; we will get back-enabled 626 * in either tcp_accept_finish(), tcp_unfuse(), or when data is 627 * consumed. If peer endpoint is detached, we emulate streams flow 628 * control by checking the peer's queue size and high water mark; 629 * otherwise we simply use canputnext() to decide if we need to stop 630 * our flow. 631 * 632 * Since we are accessing our tcp_flow_stopped and might modify it, 633 * we need to take tcp->tcp_non_sq_lock. 634 */ 635 mutex_enter(&tcp->tcp_non_sq_lock); 636 flow_stopped = tcp->tcp_flow_stopped; 637 if ((TCP_IS_DETACHED(peer_tcp) && 638 (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) || 639 (!TCP_IS_DETACHED(peer_tcp) && 640 !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) { 641 peer_data_queued = B_TRUE; 642 } 643 644 if (!flow_stopped && (peer_data_queued || 645 (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) { 646 tcp_setqfull(tcp); 647 flow_stopped = B_TRUE; 648 TCP_STAT(tcps, tcp_fusion_flowctl); 649 DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp, 650 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt); 651 } else if (flow_stopped && !peer_data_queued && 652 (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) { 653 tcp_clrqfull(tcp); 654 TCP_STAT(tcps, tcp_fusion_backenabled); 655 flow_stopped = B_FALSE; 656 } 657 mutex_exit(&tcp->tcp_non_sq_lock); 658 659 ipst->ips_loopback_packets++; 660 tcp->tcp_last_sent_len = send_size; 661 662 /* Need to adjust the following SNMP MIB-related variables */ 663 tcp->tcp_snxt += send_size; 664 tcp->tcp_suna = tcp->tcp_snxt; 665 peer_tcp->tcp_rnxt += recv_size; 666 peer_tcp->tcp_last_recv_len = recv_size; 667 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 668 669 TCPS_BUMP_MIB(tcps, tcpOutDataSegs); 670 TCPS_BUMP_MIB(tcps, tcpHCOutSegs); 671 TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size); 672 tcp->tcp_cs.tcp_out_data_bytes += send_size; 673 tcp->tcp_cs.tcp_out_data_segs++; 674 675 TCPS_BUMP_MIB(tcps, tcpHCInSegs); 676 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); 677 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size); 678 peer_tcp->tcp_cs.tcp_in_data_inorder_bytes += send_size; 679 peer_tcp->tcp_cs.tcp_in_data_inorder_segs++; 680 681 DTRACE_TCP5(send, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, 682 __dtrace_tcp_void_ip_t *, NULL, tcp_t *, tcp, 683 __dtrace_tcp_tcph_t *, NULL); 684 DTRACE_TCP5(receive, void, NULL, ip_xmit_attr_t *, 685 peer_connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL, 686 tcp_t *, peer_tcp, __dtrace_tcp_tcph_t *, NULL); 687 688 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 689 !TCP_IS_DETACHED(peer_tcp)) { 690 /* 691 * Drain the peer's receive queue it has urgent data or if 692 * we're not flow-controlled. 693 */ 694 if (urgent || !flow_stopped) { 695 ASSERT(peer_tcp->tcp_rcv_list != NULL); 696 /* 697 * For TLI-based streams, a thread in tcp_accept_swap() 698 * can race with us. That thread will ensure that the 699 * correct peer_connp->conn_rq is globally visible 700 * before peer_tcp->tcp_detached is visible as clear, 701 * but we must also ensure that the load of conn_rq 702 * cannot be reordered to be before the tcp_detached 703 * check. 704 */ 705 membar_consumer(); 706 (void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp, 707 NULL); 708 } 709 } 710 return (B_TRUE); 711 unfuse: 712 tcp_unfuse(tcp); 713 return (B_FALSE); 714 } 715 716 /* 717 * This routine gets called to deliver data upstream on a fused or 718 * previously fused tcp loopback endpoint; the latter happens only 719 * when there is a pending SIGURG signal plus urgent data that can't 720 * be sent upstream in the past. 721 */ 722 boolean_t 723 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 724 { 725 mblk_t *mp; 726 conn_t *connp = tcp->tcp_connp; 727 728 #ifdef DEBUG 729 uint_t cnt = 0; 730 #endif 731 tcp_stack_t *tcps = tcp->tcp_tcps; 732 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 733 734 ASSERT(tcp->tcp_loopback); 735 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 736 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 737 ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused); 738 739 /* No need for the push timer now, in case it was scheduled */ 740 if (tcp->tcp_push_tid != 0) { 741 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 742 tcp->tcp_push_tid = 0; 743 } 744 /* 745 * If there's urgent data sitting in receive list and we didn't 746 * get a chance to send up a SIGURG signal, make sure we send 747 * it first before draining in order to ensure that SIOCATMARK 748 * works properly. 749 */ 750 if (tcp->tcp_fused_sigurg) { 751 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 752 753 tcp->tcp_fused_sigurg = B_FALSE; 754 /* 755 * sigurg_mpp is normally NULL, i.e. when we're still 756 * fused and didn't get here because of tcp_unfuse(). 757 * In this case try hard to allocate the M_PCSIG mblk. 758 */ 759 if (sigurg_mpp == NULL && 760 (mp = allocb(1, BPRI_HI)) == NULL && 761 (mp = allocb_tryhard(1)) == NULL) { 762 /* Alloc failed; try again next time */ 763 tcp->tcp_push_tid = TCP_TIMER(tcp, 764 tcp_push_timer, tcps->tcps_push_timer_interval); 765 return (B_TRUE); 766 } else if (sigurg_mpp != NULL) { 767 /* 768 * Use the supplied M_PCSIG mblk; it means we're 769 * either unfused or in the process of unfusing, 770 * and the drain must happen now. 771 */ 772 mp = *sigurg_mpp; 773 *sigurg_mpp = NULL; 774 } 775 ASSERT(mp != NULL); 776 777 /* Send up the signal */ 778 DB_TYPE(mp) = M_PCSIG; 779 *mp->b_wptr++ = (uchar_t)SIGURG; 780 putnext(q, mp); 781 782 /* 783 * Let the regular tcp_rcv_drain() path handle 784 * draining the data if we're no longer fused. 785 */ 786 if (!tcp->tcp_fused) 787 return (B_FALSE); 788 } 789 790 /* Drain the data */ 791 while ((mp = tcp->tcp_rcv_list) != NULL) { 792 tcp->tcp_rcv_list = mp->b_next; 793 mp->b_next = NULL; 794 #ifdef DEBUG 795 cnt += msgdsize(mp); 796 #endif 797 ASSERT(!IPCL_IS_NONSTR(connp)); 798 putnext(q, mp); 799 TCP_STAT(tcps, tcp_fusion_putnext); 800 } 801 802 #ifdef DEBUG 803 ASSERT(cnt == tcp->tcp_rcv_cnt); 804 #endif 805 tcp->tcp_rcv_last_head = NULL; 806 tcp->tcp_rcv_last_tail = NULL; 807 tcp->tcp_rcv_cnt = 0; 808 tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf; 809 810 mutex_enter(&peer_tcp->tcp_non_sq_lock); 811 if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= 812 peer_tcp->tcp_connp->conn_sndlowat)) { 813 tcp_clrqfull(peer_tcp); 814 TCP_STAT(tcps, tcp_fusion_backenabled); 815 } 816 mutex_exit(&peer_tcp->tcp_non_sq_lock); 817 818 return (B_TRUE); 819 } 820 821 /* 822 * Calculate the size of receive buffer for a fused tcp endpoint. 823 */ 824 size_t 825 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 826 { 827 tcp_stack_t *tcps = tcp->tcp_tcps; 828 uint32_t max_win; 829 830 ASSERT(tcp->tcp_fused); 831 832 /* Ensure that value is within the maximum upper bound */ 833 if (rwnd > tcps->tcps_max_buf) 834 rwnd = tcps->tcps_max_buf; 835 /* 836 * Round up to system page size in case SO_RCVBUF is modified 837 * after SO_SNDBUF; the latter is also similarly rounded up. 838 */ 839 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 840 max_win = TCP_MAXWIN << tcp->tcp_rcv_ws; 841 if (rwnd > max_win) { 842 rwnd = max_win - (max_win % tcp->tcp_mss); 843 if (rwnd < tcp->tcp_mss) 844 rwnd = max_win; 845 } 846 847 /* 848 * Record high water mark, this is used for flow-control 849 * purposes in tcp_fuse_output(). 850 */ 851 tcp->tcp_connp->conn_rcvbuf = rwnd; 852 tcp->tcp_rwnd = rwnd; 853 return (rwnd); 854 } 855 856 /* 857 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 858 */ 859 int 860 tcp_fuse_maxpsz(tcp_t *tcp) 861 { 862 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 863 conn_t *connp = tcp->tcp_connp; 864 uint_t sndbuf = connp->conn_sndbuf; 865 uint_t maxpsz = sndbuf; 866 867 ASSERT(tcp->tcp_fused); 868 ASSERT(peer_tcp != NULL); 869 ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0); 870 /* 871 * In the fused loopback case, we want the stream head to split 872 * up larger writes into smaller chunks for a more accurate flow- 873 * control accounting. Our maxpsz is half of the sender's send 874 * buffer or the receiver's receive buffer, whichever is smaller. 875 * We round up the buffer to system page size due to the lack of 876 * TCP MSS concept in Fusion. 877 */ 878 if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf) 879 maxpsz = peer_tcp->tcp_connp->conn_rcvbuf; 880 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 881 882 return (maxpsz); 883 } 884 885 /* 886 * Called to release flow control. 887 */ 888 void 889 tcp_fuse_backenable(tcp_t *tcp) 890 { 891 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 892 893 ASSERT(tcp->tcp_fused); 894 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 895 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 896 ASSERT(!TCP_IS_DETACHED(tcp)); 897 ASSERT(tcp->tcp_connp->conn_sqp == 898 peer_tcp->tcp_connp->conn_sqp); 899 900 if (tcp->tcp_rcv_list != NULL) 901 (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL); 902 903 mutex_enter(&peer_tcp->tcp_non_sq_lock); 904 if (peer_tcp->tcp_flow_stopped && 905 (TCP_UNSENT_BYTES(peer_tcp) <= 906 peer_tcp->tcp_connp->conn_sndlowat)) { 907 tcp_clrqfull(peer_tcp); 908 } 909 mutex_exit(&peer_tcp->tcp_non_sq_lock); 910 911 TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled); 912 } 913