xref: /illumos-gate/usr/src/uts/common/inet/sadb.h (revision f2dbfd322ec9cd157a6e2cd8a53569e718a4b0af)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25  * Copyright 2017 Joyent, Inc.
26  */
27 
28 #ifndef	_INET_SADB_H
29 #define	_INET_SADB_H
30 
31 #ifdef	__cplusplus
32 extern "C" {
33 #endif
34 
35 #include <inet/ipsec_info.h>
36 #include <sys/crypto/common.h>
37 #include <sys/crypto/api.h>
38 #include <sys/note.h>
39 
40 #define	IPSA_MAX_ADDRLEN 4	/* Max address len. (in 32-bits) for an SA. */
41 
42 #define	MAXSALTSIZE 8
43 
44 /*
45  * For combined mode ciphers, store the crypto_mechanism_t in the
46  * per-packet ipsec_in_t/ipsec_out_t structures. This is because the PARAMS
47  * and nonce values change for each packet. For non-combined mode
48  * ciphers, these values are constant for the life of the SA.
49  */
50 typedef struct ipsa_cm_mech_s {
51 	crypto_mechanism_t combined_mech;
52 	union {
53 		CK_AES_CCM_PARAMS paramu_ccm;
54 		CK_AES_GCM_PARAMS paramu_gcm;
55 	} paramu;
56 	uint8_t nonce[MAXSALTSIZE + sizeof (uint64_t)];
57 #define	param_ulMACSize paramu.paramu_ccm.ulMACSize
58 #define	param_ulNonceSize paramu.paramu_ccm.ipsa_ulNonceSize
59 #define	param_ulAuthDataSize paramu.paramu_ccm.ipsa_ulAuthDataSize
60 #define	param_ulDataSize paramu.paramu_ccm.ipsa_ulDataSize
61 #define	param_nonce paramu.paramu_ccm.nonce
62 #define	param_authData paramu.paramu_ccm.authData
63 #define	param_pIv paramu.paramu_gcm.ipsa_pIv
64 #define	param_ulIvLen paramu.paramu_gcm.ulIvLen
65 #define	param_ulIvBits paramu.paramu_gcm.ulIvBits
66 #define	param_pAAD paramu.paramu_gcm.pAAD
67 #define	param_ulAADLen paramu.paramu_gcm.ulAADLen
68 #define	param_ulTagBits paramu.paramu_gcm.ulTagBits
69 } ipsa_cm_mech_t;
70 
71 /*
72  * The Initialization Vector (also known as IV or Nonce) used to
73  * initialize the Block Cipher, is made up of a Counter and a Salt.
74  * The Counter is fixed at 64 bits and is incremented for each packet.
75  * The Salt value can be any whole byte value upto 64 bits. This is
76  * algorithm mode specific and can be configured with ipsecalgs(1m).
77  *
78  * We only support whole byte salt lengths, this is because the salt is
79  * stored in an array of uint8_t's. This is enforced by ipsecalgs(1m)
80  * which configures the salt length as a number of bytes. Checks are
81  * made to ensure the salt length defined in ipsecalgs(1m) fits in
82  * the ipsec_nonce_t.
83  *
84  * The Salt value remains constant for the life of the SA, the Salt is
85  * know to both peers, but NOT transmitted on the network. The Counter
86  * portion of the nonce is transmitted over the network with each packet
87  * and is confusingly described as the Initialization Vector by RFCs
88  * 4309/4106.
89  *
90  * The maximum Initialization Vector length is 128 bits, if the actual
91  * size is less, its padded internally by the algorithm.
92  *
93  * The nonce structure is defined like this in the SA (ipsa_t)to ensure
94  * the Initilization Vector (counter) is 64 bit aligned, because it will
95  * be incremented as an uint64_t. The nonce as used by the algorithms is
96  * a straight uint8_t array.
97  *
98  *                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
99  *                     | | | | |x|x|x|x|               |
100  *                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
101  * salt_offset         <------>
102  * ipsa_saltlen                <------->
103  * ipsa_nonce_buf------^
104  * ipsa_salt-------------~~~~~~^
105  * ipsa_nonce------------~~~~~~^
106  * ipsa_iv-----------------------------^
107  */
108 typedef struct ipsec_nonce_s {
109 	uint8_t		salt[MAXSALTSIZE];
110 	uint64_t	iv;
111 } ipsec_nonce_t;
112 
113 /*
114  * IP security association.  Synchronization assumes 32-bit loads, so
115  * the 64-bit quantities can't even be be read w/o locking it down!
116  */
117 
118 /* keying info */
119 typedef struct ipsa_key_s {
120 	uint8_t *sak_key;		/* Algorithm key. */
121 	uint_t sak_keylen;	/* Algorithm key length (in bytes). */
122 	uint_t sak_keybits;	/* Algorithm key length (in bits) */
123 	uint_t sak_algid;	/* Algorithm ID number. */
124 } ipsa_key_t;
125 
126 typedef struct ipsa_s {
127 	struct ipsa_s *ipsa_next;	/* Next in hash bucket */
128 	struct ipsa_s **ipsa_ptpn;	/* Pointer to previous next pointer. */
129 	kmutex_t *ipsa_linklock;	/* Pointer to hash-chain lock. */
130 	void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
131 	void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *,
132 	    uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *);
133 	/*
134 	 * NOTE: I may need more pointers, depending on future SA
135 	 * requirements.
136 	 */
137 	ipsa_key_t ipsa_authkeydata;
138 #define	ipsa_authkey ipsa_authkeydata.sak_key
139 #define	ipsa_authkeylen ipsa_authkeydata.sak_keylen
140 #define	ipsa_authkeybits ipsa_authkeydata.sak_keybits
141 #define	ipsa_auth_alg ipsa_authkeydata.sak_algid
142 	ipsa_key_t ipsa_encrkeydata;
143 #define	ipsa_encrkey ipsa_encrkeydata.sak_key
144 #define	ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
145 #define	ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
146 #define	ipsa_encr_alg ipsa_encrkeydata.sak_algid
147 
148 	struct ipsid_s *ipsa_src_cid;	/* Source certificate identity */
149 	struct ipsid_s *ipsa_dst_cid;	/* Destination certificate identity */
150 	mblk_t	*ipsa_lpkt;	/* Packet received while larval (CAS me) */
151 	mblk_t	*ipsa_bpkt_head;	/* Packets received while idle */
152 	mblk_t	*ipsa_bpkt_tail;
153 #define	SADB_MAX_IDLEPKTS	100
154 	uint8_t	ipsa_mblkcnt;	/* Number of packets received while idle */
155 
156 	/*
157 	 * PF_KEYv2 supports a replay window size of 255.  Hence there is a
158 	 * need a bit vector to support a replay window of 255.  256 is a nice
159 	 * round number, so I support that.
160 	 *
161 	 * Use an array of uint64_t for best performance on 64-bit
162 	 * processors.  (And hope that 32-bit compilers can handle things
163 	 * okay.)  The " >> 6 " is to get the appropriate number of 64-bit
164 	 * ints.
165 	 */
166 #define	SADB_MAX_REPLAY 256	/* Must be 0 mod 64. */
167 	uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
168 
169 	uint64_t ipsa_unique_id;	/* Non-zero for unique SAs */
170 	uint64_t ipsa_unique_mask;	/* mask value for unique_id */
171 
172 	/*
173 	 * Reference count semantics:
174 	 *
175 	 *	An SA has a reference count of 1 if something's pointing
176 	 *	to it.  This includes being in a hash table.  So if an
177 	 *	SA is in a hash table, it has a reference count of at least 1.
178 	 *
179 	 *	When a ptr. to an IPSA is assigned, you MUST REFHOLD after
180 	 *	said assignment.  When a ptr. to an IPSA is released
181 	 *	you MUST REFRELE.  When the refcount hits 0, REFRELE
182 	 *	will free the IPSA.
183 	 */
184 	kmutex_t ipsa_lock;	/* Locks non-linkage/refcnt fields. */
185 	/* Q:  Since I may be doing refcnts differently, will I need cv? */
186 	uint_t ipsa_refcnt;	/* Reference count. */
187 
188 	/*
189 	 * The following four time fields are the ones monitored by ah_ager()
190 	 * and esp_ager() respectively.  They are all absolute wall-clock
191 	 * times.  The times of creation (i.e. add time) and first use are
192 	 * pretty straightforward.  The soft and hard expire times are
193 	 * derived from the times of first use and creation, plus the minimum
194 	 * expiration times in the fields that follow this.
195 	 *
196 	 * For example, if I had a hard add time of 30 seconds, and a hard
197 	 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
198 	 * 30 seconds.  If I USE the SA such that time of first use plus 15
199 	 * seconds would be earlier than the add time plus 30 seconds, then
200 	 * ipsa_hardexpiretime would become this earlier time.
201 	 */
202 	time_t ipsa_addtime;	/* Time I was added. */
203 	time_t ipsa_usetime;	/* Time of my first use. */
204 	time_t ipsa_lastuse;	/* Time of my last use. */
205 	time_t ipsa_idletime;	/* Seconds of idle time */
206 	time_t ipsa_last_nat_t_ka;	/* Time of my last NAT-T keepalive. */
207 	time_t ipsa_softexpiretime;	/* Time of my first soft expire. */
208 	time_t ipsa_hardexpiretime;	/* Time of my first hard expire. */
209 	time_t ipsa_idleexpiretime;	/* Time of my next idle expire time */
210 
211 	struct ipsec_nonce_s *ipsa_nonce_buf;
212 	uint8_t	*ipsa_nonce;
213 	uint_t ipsa_nonce_len;
214 	uint8_t	*ipsa_salt;
215 	uint_t ipsa_saltbits;
216 	uint_t ipsa_saltlen;
217 	uint64_t *ipsa_iv;
218 
219 	uint64_t ipsa_iv_hardexpire;
220 	uint64_t ipsa_iv_softexpire;
221 	/*
222 	 * The following fields are directly reflected in PF_KEYv2 LIFETIME
223 	 * extensions.  The time_ts are in number-of-seconds, and the bytes
224 	 * are in... bytes.
225 	 */
226 	time_t ipsa_softaddlt;	/* Seconds of soft lifetime after add. */
227 	time_t ipsa_softuselt;	/* Seconds of soft lifetime after first use. */
228 	time_t ipsa_hardaddlt;	/* Seconds of hard lifetime after add. */
229 	time_t ipsa_harduselt;	/* Seconds of hard lifetime after first use. */
230 	time_t ipsa_idleaddlt;	/* Seconds of idle time after add */
231 	time_t ipsa_idleuselt;	/* Seconds of idle time after first use */
232 	uint64_t ipsa_softbyteslt;	/* Bytes of soft lifetime. */
233 	uint64_t ipsa_hardbyteslt;	/* Bytes of hard lifetime. */
234 	uint64_t ipsa_bytes;	/* Bytes encrypted/authed by this SA. */
235 
236 	/*
237 	 * "Allocations" are a concept mentioned in PF_KEYv2.  We do not
238 	 * support them, except to record them per the PF_KEYv2 spec.
239 	 */
240 	uint_t ipsa_softalloc;	/* Allocations allowed (soft). */
241 	uint_t ipsa_hardalloc;	/* Allocations allowed (hard). */
242 	uint_t ipsa_alloc;	/* Allocations made. */
243 
244 	uint_t ipsa_type;	/* Type of security association. (AH/etc.) */
245 	uint_t ipsa_state;	/* State of my association. */
246 	uint_t ipsa_replay_wsize; /* Size of replay window */
247 	uint32_t ipsa_flags;	/* Flags for security association. */
248 	uint32_t ipsa_spi;	/* Security parameters index. */
249 	uint32_t ipsa_replay;	/* Highest seen replay value for this SA. */
250 	uint32_t ipsa_kmp;	/* key management proto */
251 	uint64_t ipsa_kmc;	/* key management cookie (now 64-bit) */
252 
253 	boolean_t ipsa_haspeer;		/* Has peer in another table. */
254 
255 	/*
256 	 * Address storage.
257 	 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
258 	 *
259 	 * Address families (per sys/socket.h) guide us.  We could have just
260 	 * used sockaddr_storage
261 	 */
262 	sa_family_t ipsa_addrfam;
263 	sa_family_t ipsa_innerfam;	/* Inner AF can be != src/dst AF. */
264 
265 	uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
266 	uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
267 	uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
268 	uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
269 
270 	uint8_t ipsa_innersrcpfx;
271 	uint8_t ipsa_innerdstpfx;
272 
273 	uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
274 	uint16_t ipsa_local_nat_port;	/* Local NAT-T port.  (0 --> 4500) */
275 	uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
276 
277 	/* these can only be v4 */
278 	uint32_t ipsa_natt_addr_loc;
279 	uint32_t ipsa_natt_addr_rem;
280 
281 	/*
282 	 * icmp type and code. *_end are to specify ranges. if only
283 	 * a single value, * and *_end are the same value.
284 	 */
285 	uint8_t ipsa_icmp_type;
286 	uint8_t ipsa_icmp_type_end;
287 	uint8_t ipsa_icmp_code;
288 	uint8_t ipsa_icmp_code_end;
289 
290 	/*
291 	 * For the kernel crypto framework.
292 	 */
293 	crypto_key_t ipsa_kcfauthkey;		/* authentication key */
294 	crypto_key_t ipsa_kcfencrkey;		/* encryption key */
295 	crypto_ctx_template_t ipsa_authtmpl;	/* auth context template */
296 	crypto_ctx_template_t ipsa_encrtmpl;	/* encr context template */
297 	crypto_mechanism_t ipsa_amech;		/* auth mech type and ICV len */
298 	crypto_mechanism_t ipsa_emech;		/* encr mech type */
299 	size_t ipsa_mac_len;			/* auth MAC/ICV length */
300 	size_t ipsa_iv_len;			/* encr IV length */
301 	size_t ipsa_datalen;			/* block length in bytes. */
302 
303 	/*
304 	 * Input and output processing functions called from IP.
305 	 * The mblk_t is the data; the IPsec information is in the attributes
306 	 * Returns NULL if the mblk is consumed which it is if there was
307 	 * a failure or if pending. If failure then
308 	 * the ipIfInDiscards/OutDiscards counters are increased.
309 	 */
310 	mblk_t *(*ipsa_output_func)(mblk_t *, ip_xmit_attr_t *);
311 	mblk_t *(*ipsa_input_func)(mblk_t *, void *, ip_recv_attr_t *);
312 
313 	/*
314 	 * Soft reference to paired SA
315 	 */
316 	uint32_t	ipsa_otherspi;
317 	netstack_t	*ipsa_netstack;	/* Does not have a netstack_hold */
318 
319 	ts_label_t *ipsa_tsl;			/* MLS: label attributes */
320 	ts_label_t *ipsa_otsl;			/* MLS: outer label */
321 	uint8_t	ipsa_mac_exempt;		/* MLS: mac exempt flag */
322 	uchar_t	ipsa_opt_storage[IP_MAX_OPT_LENGTH];
323 } ipsa_t;
324 
325 /*
326  * ipsa_t address handling macros.  We want these to be inlined, and deal
327  * with 32-bit words to avoid bcmp/bcopy calls.
328  *
329  * Assume we only have AF_INET and AF_INET6 addresses for now.  Also assume
330  * that we have 32-bit alignment on everything.
331  */
332 #define	IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
333 	(((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
334 	((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
335 #define	IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
336 	((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
337 	(((fam) == AF_INET) || \
338 	(((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
339 	((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
340 	((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
341 #define	IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
342 	((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
343 	if ((fam) == AF_INET6) {\
344 		((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
345 		((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
346 		((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
347 
348 /*
349  * ipsa_t reference hold/release macros.
350  *
351  * If you have a pointer, you REFHOLD.  If you are releasing a pointer, you
352  * REFRELE.  An ipsa_t that is newly inserted into the table should have
353  * a reference count of 1 (for the table's pointer), plus 1 more for every
354  * pointer that is referencing the ipsa_t.
355  */
356 
357 #define	IPSA_REFHOLD(ipsa) {			\
358 	atomic_inc_32(&(ipsa)->ipsa_refcnt);	\
359 	ASSERT((ipsa)->ipsa_refcnt != 0);	\
360 }
361 
362 /*
363  * Decrement the reference count on the SA.
364  * In architectures e.g sun4u, where atomic_add_32_nv is just
365  * a cas, we need to maintain the right memory barrier semantics
366  * as that of mutex_exit i.e all the loads and stores should complete
367  * before the cas is executed. membar_exit() does that here.
368  */
369 
370 #define	IPSA_REFRELE(ipsa) {					\
371 	ASSERT((ipsa)->ipsa_refcnt != 0);			\
372 	membar_exit();						\
373 	if (atomic_dec_32_nv(&(ipsa)->ipsa_refcnt) == 0)	\
374 		((ipsa)->ipsa_freefunc)(ipsa);			\
375 }
376 
377 /*
378  * Security association hash macros and definitions.  For now, assume the
379  * IPsec model, and hash outbounds on destination address, and inbounds on
380  * SPI.
381  */
382 
383 #define	IPSEC_DEFAULT_HASH_SIZE 256
384 
385 #define	INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
386 #define	OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
387 #define	OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
388 	(*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
389 	(*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
390 
391 /*
392  * Syntactic sugar to find the appropriate hash bucket directly.
393  */
394 
395 #define	INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
396 #define	OUTBOUND_BUCKET_V4(sadb, v4addr) \
397 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
398 #define	OUTBOUND_BUCKET_V6(sadb, v6addr) \
399 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
400 
401 #define	IPSA_F_PFS	SADB_SAFLAGS_PFS	/* PFS in use for this SA? */
402 #define	IPSA_F_NOREPFLD	SADB_SAFLAGS_NOREPLAY	/* No replay field, for */
403 						/* backward compat. */
404 #define	IPSA_F_USED	SADB_X_SAFLAGS_USED	/* SA has been used. */
405 #define	IPSA_F_UNIQUE	SADB_X_SAFLAGS_UNIQUE	/* SA is unique */
406 #define	IPSA_F_AALG1	SADB_X_SAFLAGS_AALG1	/* Auth alg flag 1 */
407 #define	IPSA_F_AALG2	SADB_X_SAFLAGS_AALG2	/* Auth alg flag 2 */
408 #define	IPSA_F_EALG1	SADB_X_SAFLAGS_EALG1	/* Encrypt alg flag 1 */
409 #define	IPSA_F_EALG2	SADB_X_SAFLAGS_EALG2	/* Encrypt alg flag 2 */
410 
411 #define	IPSA_F_ASYNC	0x200000		/* Call KCF asynchronously? */
412 #define	IPSA_F_NATT_LOC	SADB_X_SAFLAGS_NATT_LOC
413 #define	IPSA_F_NATT_REM	SADB_X_SAFLAGS_NATT_REM
414 #define	IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED
415 #define	IPSA_F_NATT	(SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \
416 	SADB_X_SAFLAGS_NATTED)
417 #define	IPSA_F_CINVALID	0x40000		/* SA shouldn't be cached */
418 #define	IPSA_F_PAIRED	SADB_X_SAFLAGS_PAIRED	/* SA is one of a pair */
419 #define	IPSA_F_OUTBOUND	SADB_X_SAFLAGS_OUTBOUND	/* SA direction bit */
420 #define	IPSA_F_INBOUND	SADB_X_SAFLAGS_INBOUND	/* SA direction bit */
421 #define	IPSA_F_TUNNEL	SADB_X_SAFLAGS_TUNNEL
422 /*
423  * These flags are only defined here to prevent a flag value collision.
424  */
425 #define	IPSA_F_COMBINED	SADB_X_SAFLAGS_EALG1	/* Defined in pfkeyv2.h */
426 #define	IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2	/* Defined in pfkeyv2.h */
427 
428 /*
429  * Sets of flags that are allowed to by set or modified by PF_KEY apps.
430  */
431 #define	AH_UPDATE_SETTABLE_FLAGS \
432 	(SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \
433 	SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \
434 	SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \
435 	SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4)
436 
437 /* AH can't set NAT flags (or even use NAT).  Add NAT flags to the ESP set. */
438 #define	ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT)
439 
440 #define	AH_ADD_SETTABLE_FLAGS \
441 	(AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \
442 	SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \
443 	SADB_SAFLAGS_NOREPLAY)
444 
445 /* AH can't set NAT flags (or even use NAT).  Add NAT flags to the ESP set. */
446 #define	ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \
447 	SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2)
448 
449 
450 
451 /* SA states are important for handling UPDATE PF_KEY messages. */
452 #define	IPSA_STATE_LARVAL		SADB_SASTATE_LARVAL
453 #define	IPSA_STATE_MATURE		SADB_SASTATE_MATURE
454 #define	IPSA_STATE_DYING		SADB_SASTATE_DYING
455 #define	IPSA_STATE_DEAD			SADB_SASTATE_DEAD
456 #define	IPSA_STATE_IDLE			SADB_X_SASTATE_IDLE
457 #define	IPSA_STATE_ACTIVE_ELSEWHERE	SADB_X_SASTATE_ACTIVE_ELSEWHERE
458 
459 /*
460  * NOTE:  If the document authors do things right in defining algorithms, we'll
461  *	  probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
462  *	  etc.
463  */
464 
465 #define	IPSA_T_ACQUIRE	SEC_TYPE_NONE	/* If this typed returned, sa needed */
466 #define	IPSA_T_AH	SEC_TYPE_AH	/* IPsec AH association */
467 #define	IPSA_T_ESP	SEC_TYPE_ESP	/* IPsec ESP association */
468 
469 #define	IPSA_AALG_NONE	SADB_AALG_NONE		/* No auth. algorithm */
470 #define	IPSA_AALG_MD5H	SADB_AALG_MD5HMAC	/* MD5-HMAC algorithm */
471 #define	IPSA_AALG_SHA1H	SADB_AALG_SHA1HMAC	/* SHA1-HMAC algorithm */
472 
473 #define	IPSA_EALG_NONE		SADB_EALG_NONE	/* No encryption algorithm */
474 #define	IPSA_EALG_DES_CBC	SADB_EALG_DESCBC
475 #define	IPSA_EALG_3DES		SADB_EALG_3DESCBC
476 
477 /*
478  * Protect each ipsa_t bucket (and linkage) with a lock.
479  */
480 
481 typedef struct isaf_s {
482 	ipsa_t *isaf_ipsa;
483 	kmutex_t isaf_lock;
484 	uint64_t isaf_gen;
485 } isaf_t;
486 
487 /*
488  * ACQUIRE record.  If AH/ESP/whatever cannot find an association for outbound
489  * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
490  */
491 
492 #define	IPSACQ_MAXPACKETS 4	/* Number of packets that can be queued up */
493 				/* waiting for an ACQUIRE to finish. */
494 
495 typedef struct ipsacq_s {
496 	struct ipsacq_s *ipsacq_next;
497 	struct ipsacq_s **ipsacq_ptpn;
498 	kmutex_t *ipsacq_linklock;
499 	struct ipsec_policy_s  *ipsacq_policy;
500 	struct ipsec_action_s  *ipsacq_act;
501 
502 	sa_family_t ipsacq_addrfam;	/* Address family. */
503 	sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
504 	int ipsacq_numpackets;		/* How many packets queued up so far. */
505 	uint32_t ipsacq_seq;		/* PF_KEY sequence number. */
506 	uint64_t ipsacq_unique_id;	/* Unique ID for SAs that need it. */
507 
508 	kmutex_t ipsacq_lock;	/* Protects non-linkage fields. */
509 	time_t ipsacq_expire;	/* Wall-clock time when this record expires. */
510 	mblk_t *ipsacq_mp;	/* List of datagrams waiting for an SA. */
511 
512 	/* These two point inside the last mblk inserted. */
513 	uint32_t *ipsacq_srcaddr;
514 	uint32_t *ipsacq_dstaddr;
515 
516 	/* Cache these instead of point so we can mask off accordingly */
517 	uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
518 	uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
519 
520 	/* These may change per-acquire. */
521 	uint16_t ipsacq_srcport;
522 	uint16_t ipsacq_dstport;
523 	uint8_t ipsacq_proto;
524 	uint8_t ipsacq_inner_proto;
525 	uint8_t ipsacq_innersrcpfx;
526 	uint8_t ipsacq_innerdstpfx;
527 
528 	/* icmp type and code of triggering packet (if applicable) */
529 	uint8_t	ipsacq_icmp_type;
530 	uint8_t ipsacq_icmp_code;
531 
532 	/* label associated with triggering packet */
533 	ts_label_t	*ipsacq_tsl;
534 } ipsacq_t;
535 
536 /*
537  * Kernel-generated sequence numbers will be no less than 0x80000000 to
538  * forestall any cretinous problems with manual keying accidentally updating
539  * an ACQUIRE entry.
540  */
541 #define	IACQF_LOWEST_SEQ 0x80000000
542 
543 #define	SADB_AGE_INTERVAL_DEFAULT 8000
544 
545 /*
546  * ACQUIRE fanout.  Protect each linkage with a lock.
547  */
548 
549 typedef struct iacqf_s {
550 	ipsacq_t *iacqf_ipsacq;
551 	kmutex_t iacqf_lock;
552 } iacqf_t;
553 
554 /*
555  * A (network protocol, ipsec protocol) specific SADB.
556  * (i.e., one each for {ah, esp} and {v4, v6}.
557  *
558  * Keep outbound assocs in a simple hash table for now.
559  * One danger point, multiple SAs for a single dest will clog a bucket.
560  * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
561  */
562 
563 typedef struct sadb_s
564 {
565 	isaf_t	*sdb_of;
566 	isaf_t	*sdb_if;
567 	iacqf_t	*sdb_acq;
568 	int	sdb_hashsize;
569 } sadb_t;
570 
571 /*
572  * A pair of SADB's (one for v4, one for v6), and related state.
573  */
574 
575 typedef struct sadbp_s
576 {
577 	uint32_t	s_satype;
578 	uint32_t	*s_acquire_timeout;
579 	sadb_t		s_v4;
580 	sadb_t		s_v6;
581 	uint32_t	s_addflags;
582 	uint32_t	s_updateflags;
583 } sadbp_t;
584 
585 /*
586  * A pair of SA's for a single connection, the structure contains a
587  * pointer to a SA and the SA its paired with (opposite direction) as well
588  * as the SA's respective hash buckets.
589  */
590 typedef struct ipsap_s
591 {
592 	boolean_t	in_inbound_table;
593 	isaf_t		*ipsap_bucket;
594 	ipsa_t		*ipsap_sa_ptr;
595 	isaf_t		*ipsap_pbucket;
596 	ipsa_t		*ipsap_psa_ptr;
597 } ipsap_t;
598 
599 typedef struct templist_s
600 {
601 	ipsa_t		*ipsa;
602 	struct templist_s	*next;
603 } templist_t;
604 
605 /* Pointer to an all-zeroes IPv6 address. */
606 #define	ALL_ZEROES_PTR	((uint32_t *)&ipv6_all_zeros)
607 
608 /*
609  * Form unique id from ip_xmit_attr_t.
610  */
611 #define	SA_FORM_UNIQUE_ID(ixa)					\
612 	SA_UNIQUE_ID((ixa)->ixa_ipsec_src_port, (ixa)->ixa_ipsec_dst_port, \
613 	    (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ?			\
614 	    ((ixa)->ixa_ipsec_inaf == AF_INET6 ? \
615 	    IPPROTO_IPV6 : IPPROTO_ENCAP) :				\
616 	    (ixa)->ixa_ipsec_proto),					\
617 	    (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
618 	    (ixa)->ixa_ipsec_proto : 0))
619 
620 /*
621  * This macro is used to generate unique ids (along with the addresses, both
622  * inner and outer) for outbound datagrams that require unique SAs.
623  *
624  * N.B. casts and unsigned shift amounts discourage unwarranted
625  * sign extension of dstport, proto, and iproto.
626  *
627  * Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
628  *
629  *   6               4      43      33              11
630  *   3               7      09      21              65              0
631  *   +---------------*-------+-------+--------------+---------------+
632  *   |  MUST-BE-ZERO |<iprot>|<proto>| <src port>   |  <dest port>  |
633  *   +---------------*-------+-------+--------------+---------------+
634  *
635  * If there are inner addresses (tunnel mode) the ports come from the
636  * inner addresses.  If there are no inner addresses, the ports come from
637  * the outer addresses (transport mode).  Tunnel mode MUST have <proto>
638  * set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
639  */
640 #define	SA_UNIQUE_ID(srcport, dstport, proto, iproto) 	\
641 	((srcport) | ((uint64_t)(dstport) << 16U) | \
642 	((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
643 
644 /*
645  * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
646  * from a packet to an SA.
647  */
648 
649 #define	SA_UNIQUE_MASK(srcport, dstport, proto, iproto) 	\
650 	SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0,		\
651 		    (dstport != 0) ? 0xffff : 0,		\
652 		    (proto != 0) ? 0xff : 0,			\
653 		    (iproto != 0) ? 0xff : 0)
654 
655 /*
656  * Decompose unique id back into its original fields.
657  */
658 #define	SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
659 #define	SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
660 #define	SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
661 #define	SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
662 
663 typedef struct ipsa_query_s ipsa_query_t;
664 
665 typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *);
666 
667 #define	IPSA_NMATCH	10
668 
669 /*
670  * SADB query structure.
671  *
672  * Provide a generalized mechanism for matching entries in the SADB;
673  * one of these structures is initialized using sadb_form_query(),
674  * and then can be used as a parameter to sadb_match_query() which returns
675  * B_TRUE if the SA matches the query.
676  *
677  * Under the covers, sadb_form_query populates the matchers[] array with
678  * functions which are called one at a time until one fails to match.
679  */
680 struct ipsa_query_s {
681 	uint32_t req, match;
682 	sadb_address_t *srcext, *dstext;
683 	sadb_ident_t *srcid, *dstid;
684 	sadb_x_kmc_t *kmcext;
685 	sadb_sa_t *assoc;
686 	uint32_t spi;
687 	struct sockaddr_in *src;
688 	struct sockaddr_in6 *src6;
689 	struct sockaddr_in *dst;
690 	struct sockaddr_in6 *dst6;
691 	sa_family_t af;
692 	uint32_t *srcaddr, *dstaddr;
693 	uint32_t ifindex;
694 	uint32_t kmp;
695 	uint64_t kmc;
696 	char *didstr, *sidstr;
697 	uint16_t didtype, sidtype;
698 	sadbp_t *spp;
699 	sadb_t *sp;
700 	isaf_t	*inbound, *outbound;
701 	uint32_t outhash;
702 	uint32_t inhash;
703 	ipsa_match_fn_t matchers[IPSA_NMATCH];
704 };
705 
706 #define	IPSA_Q_SA		0x00000001
707 #define	IPSA_Q_DST		0x00000002
708 #define	IPSA_Q_SRC		0x00000004
709 #define	IPSA_Q_DSTID		0x00000008
710 #define	IPSA_Q_SRCID		0x00000010
711 #define	IPSA_Q_KMC		0x00000020
712 #define	IPSA_Q_INBOUND		0x00000040 /* fill in inbound isaf_t */
713 #define	IPSA_Q_OUTBOUND		0x00000080 /* fill in outbound isaf_t */
714 
715 int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *);
716 boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa);
717 
718 
719 /*
720  * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
721  * already called.
722  */
723 
724 /* SA retrieval (inbound and outbound) */
725 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
726     sa_family_t);
727 ipsa_t *ipsec_getassocbyconn(isaf_t *, ip_xmit_attr_t *, uint32_t *, uint32_t *,
728     sa_family_t, uint8_t, ts_label_t *);
729 
730 /* SA insertion. */
731 int sadb_insertassoc(ipsa_t *, isaf_t *);
732 
733 /* SA table construction and destruction. */
734 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
735 void sadbp_flush(sadbp_t *, netstack_t *);
736 void sadbp_destroy(sadbp_t *, netstack_t *);
737 
738 /* SA insertion and deletion. */
739 int sadb_insertassoc(ipsa_t *, isaf_t *);
740 void sadb_unlinkassoc(ipsa_t *);
741 
742 /* Support routines to interface a keysock consumer to PF_KEY. */
743 mblk_t *sadb_keysock_out(minor_t);
744 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *);
745 int sadb_labelchk(struct keysock_in_s *);
746 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
747     ipsa_t *);
748 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
749 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
750     void *, timeout_id_t *, int);
751 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
752 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
753 int sadb_addrset(ire_t *);
754 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
755     uint8_t);
756 
757 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *);
758 int sadb_common_add(queue_t *, mblk_t *, sadb_msg_t *,
759     keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
760     netstack_t *, sadbp_t *);
761 void sadb_set_usetime(ipsa_t *);
762 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
763 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *,
764     int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
765     netstack_t *, uint8_t);
766 void sadb_acquire(mblk_t *, ip_xmit_attr_t *, boolean_t, boolean_t);
767 void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
768     crypto_data_t *);
769 void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
770     crypto_data_t *);
771 void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
772     crypto_data_t *);
773 
774 void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
775 struct ipsec_stack;
776 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t);
777 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
778 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
779 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
780 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *);
781 void sadb_replay_delete(ipsa_t *);
782 void sadb_ager(sadb_t *, queue_t *, int, netstack_t *);
783 
784 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
785     uint_t *, uint_t, short);
786 void sadb_sa_refrele(void *target);
787 mblk_t *sadb_set_lpkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
788 mblk_t *sadb_clear_lpkt(ipsa_t *);
789 void sadb_buf_pkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
790 void sadb_clear_buf_pkt(void *ipkt);
791 
792 /* Note that buf_pkt is the product of ip_recv_attr_to_mblk() */
793 #define	HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt)			\
794 {									\
795 	if (buf_pkt != NULL) {						\
796 		if (taskq_dispatch(taskq, sadb_clear_buf_pkt,		\
797 		    (void *) buf_pkt, TQ_NOSLEEP) == TASKQID_INVALID) {	\
798 		    /* Dispatch was unsuccessful drop the packets. */	\
799 			mblk_t		*tmp;				\
800 			while (buf_pkt != NULL) {			\
801 				tmp = buf_pkt->b_next;			\
802 				buf_pkt->b_next = NULL;			\
803 				buf_pkt = ip_recv_attr_free_mblk(buf_pkt); \
804 				ip_drop_packet(buf_pkt, B_TRUE, NULL,	\
805 				    DROPPER(stack,			\
806 				    ipds_sadb_inidle_timeout),		\
807 				    &dropper);				\
808 				buf_pkt = tmp;				\
809 			}						\
810 		}							\
811 	}								\
812 }									\
813 
814 /*
815  * Two IPsec rate-limiting routines.
816  */
817 /*PRINTFLIKE6*/
818 extern void ipsec_rl_strlog(netstack_t *, short, short, char,
819     ushort_t, char *, ...)
820     __KPRINTFLIKE(6);
821 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
822     void *, int, netstack_t *);
823 
824 /*
825  * Algorithm types.
826  */
827 
828 #define	IPSEC_NALGTYPES 	2
829 
830 typedef enum ipsec_algtype {
831 	IPSEC_ALG_AUTH = 0,
832 	IPSEC_ALG_ENCR = 1,
833 	IPSEC_ALG_ALL = 2
834 } ipsec_algtype_t;
835 
836 /*
837  * Definitions as per IPsec/ISAKMP DOI.
838  */
839 
840 #define	IPSEC_MAX_ALGS		256
841 #define	PROTO_IPSEC_AH		2
842 #define	PROTO_IPSEC_ESP		3
843 
844 /*
845  * Common algorithm info.
846  */
847 typedef struct ipsec_alginfo
848 {
849 	uint8_t		alg_id;
850 	uint8_t		alg_flags;
851 	uint16_t	*alg_key_sizes;
852 	uint16_t	*alg_block_sizes;
853 	uint16_t	*alg_params;
854 	uint16_t	alg_nkey_sizes;
855 	uint16_t	alg_ivlen;
856 	uint16_t	alg_icvlen;
857 	uint8_t		alg_saltlen;
858 	uint16_t	alg_nblock_sizes;
859 	uint16_t	alg_nparams;
860 	uint16_t	alg_minbits;
861 	uint16_t	alg_maxbits;
862 	uint16_t	alg_datalen;
863 	/*
864 	 * increment: number of bits from keysize to keysize
865 	 * default: # of increments from min to default key len
866 	 */
867 	uint16_t	alg_increment;
868 	uint16_t	alg_default;
869 	uint16_t	alg_default_bits;
870 	/*
871 	 * Min, max, and default key sizes effectively supported
872 	 * by the encryption framework.
873 	 */
874 	uint16_t	alg_ef_minbits;
875 	uint16_t	alg_ef_maxbits;
876 	uint16_t	alg_ef_default;
877 	uint16_t	alg_ef_default_bits;
878 
879 	crypto_mech_type_t alg_mech_type;	/* KCF mechanism type */
880 	crypto_mech_name_t alg_mech_name;	/* KCF mechanism name */
881 } ipsec_alginfo_t;
882 
883 #define	alg_datalen alg_block_sizes[0]
884 #define	ALG_VALID(_alg)	((_alg)->alg_flags & ALG_FLAG_VALID)
885 
886 /*
887  * Software crypto execution mode.
888  */
889 typedef enum {
890 	IPSEC_ALGS_EXEC_SYNC = 0,
891 	IPSEC_ALGS_EXEC_ASYNC = 1
892 } ipsec_algs_exec_mode_t;
893 
894 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
895 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
896 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
897     netstack_t *ns);
898 extern void alg_flag_check(ipsec_alginfo_t *);
899 extern void ipsec_alg_free(ipsec_alginfo_t *);
900 extern void ipsec_register_prov_update(void);
901 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, netstack_t *);
902 
903 extern int sadb_sens_len_from_label(ts_label_t *);
904 extern void sadb_sens_from_label(sadb_sens_t *, int, ts_label_t *, int);
905 
906 /*
907  * Context templates management.
908  */
909 
910 #define	IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
911 #define	IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) {			\
912 	if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) {		\
913 		mutex_enter(&assoc->ipsa_lock);				\
914 		if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) {		\
915 			ipsec_stack_t *ipss;				\
916 									\
917 			ipss = assoc->ipsa_netstack->netstack_ipsec;	\
918 			rw_enter(&ipss->ipsec_alg_lock, RW_READER);	\
919 			(void) ipsec_create_ctx_tmpl(_sa, _type);	\
920 			rw_exit(&ipss->ipsec_alg_lock);			\
921 		}							\
922 		mutex_exit(&assoc->ipsa_lock);				\
923 		if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC)	\
924 			_tmpl = NULL;					\
925 	}								\
926 }
927 
928 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
929 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
930 
931 /* key checking */
932 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
933 
934 typedef struct ipsec_kstats_s {
935 	kstat_named_t esp_stat_in_requests;
936 	kstat_named_t esp_stat_in_discards;
937 	kstat_named_t esp_stat_lookup_failure;
938 	kstat_named_t ah_stat_in_requests;
939 	kstat_named_t ah_stat_in_discards;
940 	kstat_named_t ah_stat_lookup_failure;
941 	kstat_named_t sadb_acquire_maxpackets;
942 	kstat_named_t sadb_acquire_qhiwater;
943 } ipsec_kstats_t;
944 
945 /*
946  * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
947  * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
948  * fails, it will be NULL. Note this is done for all stack instances,
949  * so it *could* fail. hence a non-NULL checking is done for
950  * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
951  */
952 #define	IP_ESP_BUMP_STAT(ipss, x)					\
953 do {									\
954 	if ((ipss)->ipsec_kstats != NULL)				\
955 		((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++;	\
956 _NOTE(CONSTCOND)							\
957 } while (0)
958 
959 #define	IP_AH_BUMP_STAT(ipss, x)					\
960 do {									\
961 	if ((ipss)->ipsec_kstats != NULL)				\
962 		((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++;	\
963 _NOTE(CONSTCOND)							\
964 } while (0)
965 
966 #define	IP_ACQUIRE_STAT(ipss, val, new)					\
967 do {									\
968 	if ((ipss)->ipsec_kstats != NULL &&				\
969 	    ((uint64_t)(new)) >						\
970 	    ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64)	\
971 		((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
972 			((uint64_t)(new));				\
973 _NOTE(CONSTCOND)							\
974 } while (0)
975 
976 
977 #ifdef	__cplusplus
978 }
979 #endif
980 
981 #endif /* _INET_SADB_H */
982