1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #ifndef _INET_SADB_H 28 #define _INET_SADB_H 29 30 #ifdef __cplusplus 31 extern "C" { 32 #endif 33 34 #include <inet/ipsec_info.h> 35 #include <sys/crypto/common.h> 36 #include <sys/crypto/api.h> 37 #include <sys/note.h> 38 39 #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */ 40 41 #define MAXSALTSIZE 8 42 43 /* 44 * For combined mode ciphers, store the crypto_mechanism_t in the 45 * per-packet ipsec_in_t/ipsec_out_t structures. This is because the PARAMS 46 * and nonce values change for each packet. For non-combined mode 47 * ciphers, these values are constant for the life of the SA. 48 */ 49 typedef struct ipsa_cm_mech_s { 50 crypto_mechanism_t combined_mech; 51 union { 52 CK_AES_CCM_PARAMS paramu_ccm; 53 CK_AES_GCM_PARAMS paramu_gcm; 54 } paramu; 55 uint8_t nonce[MAXSALTSIZE + sizeof (uint64_t)]; 56 #define param_ulMACSize paramu.paramu_ccm.ulMACSize 57 #define param_ulNonceSize paramu.paramu_ccm.ipsa_ulNonceSize 58 #define param_ulAuthDataSize paramu.paramu_ccm.ipsa_ulAuthDataSize 59 #define param_ulDataSize paramu.paramu_ccm.ipsa_ulDataSize 60 #define param_nonce paramu.paramu_ccm.nonce 61 #define param_authData paramu.paramu_ccm.authData 62 #define param_pIv paramu.paramu_gcm.ipsa_pIv 63 #define param_ulIvLen paramu.paramu_gcm.ulIvLen 64 #define param_ulIvBits paramu.paramu_gcm.ulIvBits 65 #define param_pAAD paramu.paramu_gcm.pAAD 66 #define param_ulAADLen paramu.paramu_gcm.ulAADLen 67 #define param_ulTagBits paramu.paramu_gcm.ulTagBits 68 } ipsa_cm_mech_t; 69 70 /* 71 * The Initialization Vector (also known as IV or Nonce) used to 72 * initialize the Block Cipher, is made up of a Counter and a Salt. 73 * The Counter is fixed at 64 bits and is incremented for each packet. 74 * The Salt value can be any whole byte value upto 64 bits. This is 75 * algorithm mode specific and can be configured with ipsecalgs(1m). 76 * 77 * We only support whole byte salt lengths, this is because the salt is 78 * stored in an array of uint8_t's. This is enforced by ipsecalgs(1m) 79 * which configures the salt length as a number of bytes. Checks are 80 * made to ensure the salt length defined in ipsecalgs(1m) fits in 81 * the ipsec_nonce_t. 82 * 83 * The Salt value remains constant for the life of the SA, the Salt is 84 * know to both peers, but NOT transmitted on the network. The Counter 85 * portion of the nonce is transmitted over the network with each packet 86 * and is confusingly described as the Initialization Vector by RFCs 87 * 4309/4106. 88 * 89 * The maximum Initialization Vector length is 128 bits, if the actual 90 * size is less, its padded internally by the algorithm. 91 * 92 * The nonce structure is defined like this in the SA (ipsa_t)to ensure 93 * the Initilization Vector (counter) is 64 bit aligned, because it will 94 * be incremented as an uint64_t. The nonce as used by the algorithms is 95 * a straight uint8_t array. 96 * 97 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 98 * | | | | |x|x|x|x| | 99 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 100 * salt_offset <------> 101 * ipsa_saltlen <-------> 102 * ipsa_nonce_buf------^ 103 * ipsa_salt-------------~~~~~~^ 104 * ipsa_nonce------------~~~~~~^ 105 * ipsa_iv-----------------------------^ 106 */ 107 typedef struct ipsec_nonce_s { 108 uint8_t salt[MAXSALTSIZE]; 109 uint64_t iv; 110 } ipsec_nonce_t; 111 112 /* 113 * IP security association. Synchronization assumes 32-bit loads, so 114 * the 64-bit quantities can't even be be read w/o locking it down! 115 */ 116 117 /* keying info */ 118 typedef struct ipsa_key_s { 119 uint8_t *sak_key; /* Algorithm key. */ 120 uint_t sak_keylen; /* Algorithm key length (in bytes). */ 121 uint_t sak_keybits; /* Algorithm key length (in bits) */ 122 uint_t sak_algid; /* Algorithm ID number. */ 123 } ipsa_key_t; 124 125 typedef struct ipsa_s { 126 struct ipsa_s *ipsa_next; /* Next in hash bucket */ 127 struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */ 128 kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */ 129 void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */ 130 void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *, 131 uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *); 132 /* 133 * NOTE: I may need more pointers, depending on future SA 134 * requirements. 135 */ 136 ipsa_key_t ipsa_authkeydata; 137 #define ipsa_authkey ipsa_authkeydata.sak_key 138 #define ipsa_authkeylen ipsa_authkeydata.sak_keylen 139 #define ipsa_authkeybits ipsa_authkeydata.sak_keybits 140 #define ipsa_auth_alg ipsa_authkeydata.sak_algid 141 ipsa_key_t ipsa_encrkeydata; 142 #define ipsa_encrkey ipsa_encrkeydata.sak_key 143 #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen 144 #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits 145 #define ipsa_encr_alg ipsa_encrkeydata.sak_algid 146 147 struct ipsid_s *ipsa_src_cid; /* Source certificate identity */ 148 struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */ 149 mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */ 150 mblk_t *ipsa_bpkt_head; /* Packets received while idle */ 151 mblk_t *ipsa_bpkt_tail; 152 #define SADB_MAX_IDLEPKTS 100 153 uint8_t ipsa_mblkcnt; /* Number of packets received while idle */ 154 155 /* 156 * PF_KEYv2 supports a replay window size of 255. Hence there is a 157 * need a bit vector to support a replay window of 255. 256 is a nice 158 * round number, so I support that. 159 * 160 * Use an array of uint64_t for best performance on 64-bit 161 * processors. (And hope that 32-bit compilers can handle things 162 * okay.) The " >> 6 " is to get the appropriate number of 64-bit 163 * ints. 164 */ 165 #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */ 166 uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6]; 167 168 uint64_t ipsa_unique_id; /* Non-zero for unique SAs */ 169 uint64_t ipsa_unique_mask; /* mask value for unique_id */ 170 171 /* 172 * Reference count semantics: 173 * 174 * An SA has a reference count of 1 if something's pointing 175 * to it. This includes being in a hash table. So if an 176 * SA is in a hash table, it has a reference count of at least 1. 177 * 178 * When a ptr. to an IPSA is assigned, you MUST REFHOLD after 179 * said assignment. When a ptr. to an IPSA is released 180 * you MUST REFRELE. When the refcount hits 0, REFRELE 181 * will free the IPSA. 182 */ 183 kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */ 184 /* Q: Since I may be doing refcnts differently, will I need cv? */ 185 uint_t ipsa_refcnt; /* Reference count. */ 186 187 /* 188 * The following four time fields are the ones monitored by ah_ager() 189 * and esp_ager() respectively. They are all absolute wall-clock 190 * times. The times of creation (i.e. add time) and first use are 191 * pretty straightforward. The soft and hard expire times are 192 * derived from the times of first use and creation, plus the minimum 193 * expiration times in the fields that follow this. 194 * 195 * For example, if I had a hard add time of 30 seconds, and a hard 196 * use time of 15, the ipsa_hardexpiretime would be time of add, plus 197 * 30 seconds. If I USE the SA such that time of first use plus 15 198 * seconds would be earlier than the add time plus 30 seconds, then 199 * ipsa_hardexpiretime would become this earlier time. 200 */ 201 time_t ipsa_addtime; /* Time I was added. */ 202 time_t ipsa_usetime; /* Time of my first use. */ 203 time_t ipsa_lastuse; /* Time of my last use. */ 204 time_t ipsa_idletime; /* Seconds of idle time */ 205 time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */ 206 time_t ipsa_softexpiretime; /* Time of my first soft expire. */ 207 time_t ipsa_hardexpiretime; /* Time of my first hard expire. */ 208 time_t ipsa_idleexpiretime; /* Time of my next idle expire time */ 209 210 struct ipsec_nonce_s *ipsa_nonce_buf; 211 uint8_t *ipsa_nonce; 212 uint_t ipsa_nonce_len; 213 uint8_t *ipsa_salt; 214 uint_t ipsa_saltbits; 215 uint_t ipsa_saltlen; 216 uint64_t *ipsa_iv; 217 218 uint64_t ipsa_iv_hardexpire; 219 uint64_t ipsa_iv_softexpire; 220 /* 221 * The following fields are directly reflected in PF_KEYv2 LIFETIME 222 * extensions. The time_ts are in number-of-seconds, and the bytes 223 * are in... bytes. 224 */ 225 time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */ 226 time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */ 227 time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */ 228 time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */ 229 time_t ipsa_idleaddlt; /* Seconds of idle time after add */ 230 time_t ipsa_idleuselt; /* Seconds of idle time after first use */ 231 uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */ 232 uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */ 233 uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */ 234 235 /* 236 * "Allocations" are a concept mentioned in PF_KEYv2. We do not 237 * support them, except to record them per the PF_KEYv2 spec. 238 */ 239 uint_t ipsa_softalloc; /* Allocations allowed (soft). */ 240 uint_t ipsa_hardalloc; /* Allocations allowed (hard). */ 241 uint_t ipsa_alloc; /* Allocations made. */ 242 243 uint_t ipsa_type; /* Type of security association. (AH/etc.) */ 244 uint_t ipsa_state; /* State of my association. */ 245 uint_t ipsa_replay_wsize; /* Size of replay window */ 246 uint32_t ipsa_flags; /* Flags for security association. */ 247 uint32_t ipsa_spi; /* Security parameters index. */ 248 uint32_t ipsa_replay; /* Highest seen replay value for this SA. */ 249 uint32_t ipsa_kmp; /* key management proto */ 250 uint32_t ipsa_kmc; /* key management cookie */ 251 252 boolean_t ipsa_haspeer; /* Has peer in another table. */ 253 254 /* 255 * Address storage. 256 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc. 257 * 258 * Address families (per sys/socket.h) guide us. We could have just 259 * used sockaddr_storage 260 */ 261 sa_family_t ipsa_addrfam; 262 sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */ 263 264 uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN]; 265 uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN]; 266 uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN]; 267 uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN]; 268 269 uint8_t ipsa_innersrcpfx; 270 uint8_t ipsa_innerdstpfx; 271 272 uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */ 273 uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */ 274 uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */ 275 276 /* these can only be v4 */ 277 uint32_t ipsa_natt_addr_loc; 278 uint32_t ipsa_natt_addr_rem; 279 280 /* 281 * icmp type and code. *_end are to specify ranges. if only 282 * a single value, * and *_end are the same value. 283 */ 284 uint8_t ipsa_icmp_type; 285 uint8_t ipsa_icmp_type_end; 286 uint8_t ipsa_icmp_code; 287 uint8_t ipsa_icmp_code_end; 288 289 /* 290 * For the kernel crypto framework. 291 */ 292 crypto_key_t ipsa_kcfauthkey; /* authentication key */ 293 crypto_key_t ipsa_kcfencrkey; /* encryption key */ 294 crypto_ctx_template_t ipsa_authtmpl; /* auth context template */ 295 crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */ 296 crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */ 297 crypto_mechanism_t ipsa_emech; /* encr mech type */ 298 size_t ipsa_mac_len; /* auth MAC/ICV length */ 299 size_t ipsa_iv_len; /* encr IV length */ 300 size_t ipsa_datalen; /* block length in bytes. */ 301 302 /* 303 * Input and output processing functions called from IP. 304 * The mblk_t is the data; the IPsec information is in the attributes 305 * Returns NULL if the mblk is consumed which it is if there was 306 * a failure or if pending. If failure then 307 * the ipIfInDiscards/OutDiscards counters are increased. 308 */ 309 mblk_t *(*ipsa_output_func)(mblk_t *, ip_xmit_attr_t *); 310 mblk_t *(*ipsa_input_func)(mblk_t *, void *, ip_recv_attr_t *); 311 312 /* 313 * Soft reference to paired SA 314 */ 315 uint32_t ipsa_otherspi; 316 netstack_t *ipsa_netstack; /* Does not have a netstack_hold */ 317 318 ts_label_t *ipsa_tsl; /* MLS: label attributes */ 319 ts_label_t *ipsa_otsl; /* MLS: outer label */ 320 uint8_t ipsa_mac_exempt; /* MLS: mac exempt flag */ 321 uchar_t ipsa_opt_storage[IP_MAX_OPT_LENGTH]; 322 } ipsa_t; 323 324 /* 325 * ipsa_t address handling macros. We want these to be inlined, and deal 326 * with 32-bit words to avoid bcmp/bcopy calls. 327 * 328 * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume 329 * that we have 32-bit alignment on everything. 330 */ 331 #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \ 332 (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \ 333 ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0))) 334 #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \ 335 ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \ 336 (((fam) == AF_INET) || \ 337 (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \ 338 ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \ 339 ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1]))) 340 #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \ 341 ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \ 342 if ((fam) == AF_INET6) {\ 343 ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \ 344 ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \ 345 ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } } 346 347 /* 348 * ipsa_t reference hold/release macros. 349 * 350 * If you have a pointer, you REFHOLD. If you are releasing a pointer, you 351 * REFRELE. An ipsa_t that is newly inserted into the table should have 352 * a reference count of 1 (for the table's pointer), plus 1 more for every 353 * pointer that is referencing the ipsa_t. 354 */ 355 356 #define IPSA_REFHOLD(ipsa) { \ 357 atomic_inc_32(&(ipsa)->ipsa_refcnt); \ 358 ASSERT((ipsa)->ipsa_refcnt != 0); \ 359 } 360 361 /* 362 * Decrement the reference count on the SA. 363 * In architectures e.g sun4u, where atomic_add_32_nv is just 364 * a cas, we need to maintain the right memory barrier semantics 365 * as that of mutex_exit i.e all the loads and stores should complete 366 * before the cas is executed. membar_exit() does that here. 367 */ 368 369 #define IPSA_REFRELE(ipsa) { \ 370 ASSERT((ipsa)->ipsa_refcnt != 0); \ 371 membar_exit(); \ 372 if (atomic_dec_32_nv(&(ipsa)->ipsa_refcnt) == 0) \ 373 ((ipsa)->ipsa_freefunc)(ipsa); \ 374 } 375 376 /* 377 * Security association hash macros and definitions. For now, assume the 378 * IPsec model, and hash outbounds on destination address, and inbounds on 379 * SPI. 380 */ 381 382 #define IPSEC_DEFAULT_HASH_SIZE 256 383 384 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize)) 385 #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize)) 386 #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \ 387 (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \ 388 (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3))) 389 390 /* 391 * Syntactic sugar to find the appropriate hash bucket directly. 392 */ 393 394 #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)]) 395 #define OUTBOUND_BUCKET_V4(sadb, v4addr) \ 396 &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)]) 397 #define OUTBOUND_BUCKET_V6(sadb, v6addr) \ 398 &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)]) 399 400 #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */ 401 #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */ 402 /* backward compat. */ 403 #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */ 404 #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */ 405 #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */ 406 #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */ 407 #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */ 408 #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */ 409 410 #define IPSA_F_ASYNC 0x200000 /* Call KCF asynchronously? */ 411 #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC 412 #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM 413 #define IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED 414 #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \ 415 SADB_X_SAFLAGS_NATTED) 416 #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */ 417 #define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */ 418 #define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */ 419 #define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */ 420 #define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL 421 /* 422 * These flags are only defined here to prevent a flag value collision. 423 */ 424 #define IPSA_F_COMBINED SADB_X_SAFLAGS_EALG1 /* Defined in pfkeyv2.h */ 425 #define IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2 /* Defined in pfkeyv2.h */ 426 427 /* 428 * Sets of flags that are allowed to by set or modified by PF_KEY apps. 429 */ 430 #define AH_UPDATE_SETTABLE_FLAGS \ 431 (SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \ 432 SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \ 433 SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \ 434 SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4) 435 436 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */ 437 #define ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT) 438 439 #define AH_ADD_SETTABLE_FLAGS \ 440 (AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \ 441 SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \ 442 SADB_SAFLAGS_NOREPLAY) 443 444 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */ 445 #define ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \ 446 SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2) 447 448 449 450 /* SA states are important for handling UPDATE PF_KEY messages. */ 451 #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL 452 #define IPSA_STATE_MATURE SADB_SASTATE_MATURE 453 #define IPSA_STATE_DYING SADB_SASTATE_DYING 454 #define IPSA_STATE_DEAD SADB_SASTATE_DEAD 455 #define IPSA_STATE_IDLE SADB_X_SASTATE_IDLE 456 #define IPSA_STATE_ACTIVE_ELSEWHERE SADB_X_SASTATE_ACTIVE_ELSEWHERE 457 458 /* 459 * NOTE: If the document authors do things right in defining algorithms, we'll 460 * probably have flags for what all is here w.r.t. replay, ESP w/HMAC, 461 * etc. 462 */ 463 464 #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */ 465 #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */ 466 #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */ 467 468 #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */ 469 #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */ 470 #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */ 471 472 #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */ 473 #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC 474 #define IPSA_EALG_3DES SADB_EALG_3DESCBC 475 476 /* 477 * Protect each ipsa_t bucket (and linkage) with a lock. 478 */ 479 480 typedef struct isaf_s { 481 ipsa_t *isaf_ipsa; 482 kmutex_t isaf_lock; 483 uint64_t isaf_gen; 484 } isaf_t; 485 486 /* 487 * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound 488 * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record. 489 */ 490 491 #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */ 492 /* waiting for an ACQUIRE to finish. */ 493 494 typedef struct ipsacq_s { 495 struct ipsacq_s *ipsacq_next; 496 struct ipsacq_s **ipsacq_ptpn; 497 kmutex_t *ipsacq_linklock; 498 struct ipsec_policy_s *ipsacq_policy; 499 struct ipsec_action_s *ipsacq_act; 500 501 sa_family_t ipsacq_addrfam; /* Address family. */ 502 sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */ 503 int ipsacq_numpackets; /* How many packets queued up so far. */ 504 uint32_t ipsacq_seq; /* PF_KEY sequence number. */ 505 uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */ 506 507 kmutex_t ipsacq_lock; /* Protects non-linkage fields. */ 508 time_t ipsacq_expire; /* Wall-clock time when this record expires. */ 509 mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */ 510 511 /* These two point inside the last mblk inserted. */ 512 uint32_t *ipsacq_srcaddr; 513 uint32_t *ipsacq_dstaddr; 514 515 /* Cache these instead of point so we can mask off accordingly */ 516 uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN]; 517 uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN]; 518 519 /* These may change per-acquire. */ 520 uint16_t ipsacq_srcport; 521 uint16_t ipsacq_dstport; 522 uint8_t ipsacq_proto; 523 uint8_t ipsacq_inner_proto; 524 uint8_t ipsacq_innersrcpfx; 525 uint8_t ipsacq_innerdstpfx; 526 527 /* icmp type and code of triggering packet (if applicable) */ 528 uint8_t ipsacq_icmp_type; 529 uint8_t ipsacq_icmp_code; 530 531 /* label associated with triggering packet */ 532 ts_label_t *ipsacq_tsl; 533 } ipsacq_t; 534 535 /* 536 * Kernel-generated sequence numbers will be no less than 0x80000000 to 537 * forestall any cretinous problems with manual keying accidentally updating 538 * an ACQUIRE entry. 539 */ 540 #define IACQF_LOWEST_SEQ 0x80000000 541 542 #define SADB_AGE_INTERVAL_DEFAULT 8000 543 544 /* 545 * ACQUIRE fanout. Protect each linkage with a lock. 546 */ 547 548 typedef struct iacqf_s { 549 ipsacq_t *iacqf_ipsacq; 550 kmutex_t iacqf_lock; 551 } iacqf_t; 552 553 /* 554 * A (network protocol, ipsec protocol) specific SADB. 555 * (i.e., one each for {ah, esp} and {v4, v6}. 556 * 557 * Keep outbound assocs in a simple hash table for now. 558 * One danger point, multiple SAs for a single dest will clog a bucket. 559 * For the future, consider two-level hashing (2nd hash on IPC?), then probe. 560 */ 561 562 typedef struct sadb_s 563 { 564 isaf_t *sdb_of; 565 isaf_t *sdb_if; 566 iacqf_t *sdb_acq; 567 int sdb_hashsize; 568 } sadb_t; 569 570 /* 571 * A pair of SADB's (one for v4, one for v6), and related state. 572 */ 573 574 typedef struct sadbp_s 575 { 576 uint32_t s_satype; 577 uint32_t *s_acquire_timeout; 578 sadb_t s_v4; 579 sadb_t s_v6; 580 uint32_t s_addflags; 581 uint32_t s_updateflags; 582 } sadbp_t; 583 584 /* 585 * A pair of SA's for a single connection, the structure contains a 586 * pointer to a SA and the SA its paired with (opposite direction) as well 587 * as the SA's respective hash buckets. 588 */ 589 typedef struct ipsap_s 590 { 591 boolean_t in_inbound_table; 592 isaf_t *ipsap_bucket; 593 ipsa_t *ipsap_sa_ptr; 594 isaf_t *ipsap_pbucket; 595 ipsa_t *ipsap_psa_ptr; 596 } ipsap_t; 597 598 typedef struct templist_s 599 { 600 ipsa_t *ipsa; 601 struct templist_s *next; 602 } templist_t; 603 604 /* Pointer to an all-zeroes IPv6 address. */ 605 #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros) 606 607 /* 608 * Form unique id from ip_xmit_attr_t. 609 */ 610 #define SA_FORM_UNIQUE_ID(ixa) \ 611 SA_UNIQUE_ID((ixa)->ixa_ipsec_src_port, (ixa)->ixa_ipsec_dst_port, \ 612 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \ 613 ((ixa)->ixa_ipsec_inaf == AF_INET6 ? \ 614 IPPROTO_IPV6 : IPPROTO_ENCAP) : \ 615 (ixa)->ixa_ipsec_proto), \ 616 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \ 617 (ixa)->ixa_ipsec_proto : 0)) 618 619 /* 620 * This macro is used to generate unique ids (along with the addresses, both 621 * inner and outer) for outbound datagrams that require unique SAs. 622 * 623 * N.B. casts and unsigned shift amounts discourage unwarranted 624 * sign extension of dstport, proto, and iproto. 625 * 626 * Unique ID is 64-bits allocated as follows (pardon my big-endian bias): 627 * 628 * 6 4 43 33 11 629 * 3 7 09 21 65 0 630 * +---------------*-------+-------+--------------+---------------+ 631 * | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> | 632 * +---------------*-------+-------+--------------+---------------+ 633 * 634 * If there are inner addresses (tunnel mode) the ports come from the 635 * inner addresses. If there are no inner addresses, the ports come from 636 * the outer addresses (transport mode). Tunnel mode MUST have <proto> 637 * set to either IPPROTO_ENCAP or IPPPROTO_IPV6. 638 */ 639 #define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \ 640 ((srcport) | ((uint64_t)(dstport) << 16U) | \ 641 ((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U)) 642 643 /* 644 * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value 645 * from a packet to an SA. 646 */ 647 648 #define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \ 649 SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \ 650 (dstport != 0) ? 0xffff : 0, \ 651 (proto != 0) ? 0xff : 0, \ 652 (iproto != 0) ? 0xff : 0) 653 654 /* 655 * Decompose unique id back into its original fields. 656 */ 657 #define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff 658 #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff 659 #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff) 660 #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff) 661 662 typedef struct ipsa_query_s ipsa_query_t; 663 664 typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *); 665 666 #define IPSA_NMATCH 10 667 668 /* 669 * SADB query structure. 670 * 671 * Provide a generalized mechanism for matching entries in the SADB; 672 * one of these structures is initialized using sadb_form_query(), 673 * and then can be used as a parameter to sadb_match_query() which returns 674 * B_TRUE if the SA matches the query. 675 * 676 * Under the covers, sadb_form_query populates the matchers[] array with 677 * functions which are called one at a time until one fails to match. 678 */ 679 struct ipsa_query_s { 680 uint32_t req, match; 681 sadb_address_t *srcext, *dstext; 682 sadb_ident_t *srcid, *dstid; 683 sadb_x_kmc_t *kmcext; 684 sadb_sa_t *assoc; 685 uint32_t spi; 686 struct sockaddr_in *src; 687 struct sockaddr_in6 *src6; 688 struct sockaddr_in *dst; 689 struct sockaddr_in6 *dst6; 690 sa_family_t af; 691 uint32_t *srcaddr, *dstaddr; 692 uint32_t ifindex; 693 uint32_t kmc, kmp; 694 char *didstr, *sidstr; 695 uint16_t didtype, sidtype; 696 sadbp_t *spp; 697 sadb_t *sp; 698 isaf_t *inbound, *outbound; 699 uint32_t outhash; 700 uint32_t inhash; 701 ipsa_match_fn_t matchers[IPSA_NMATCH]; 702 }; 703 704 #define IPSA_Q_SA 0x00000001 705 #define IPSA_Q_DST 0x00000002 706 #define IPSA_Q_SRC 0x00000004 707 #define IPSA_Q_DSTID 0x00000008 708 #define IPSA_Q_SRCID 0x00000010 709 #define IPSA_Q_KMC 0x00000020 710 #define IPSA_Q_INBOUND 0x00000040 /* fill in inbound isaf_t */ 711 #define IPSA_Q_OUTBOUND 0x00000080 /* fill in outbound isaf_t */ 712 713 int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *); 714 boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa); 715 716 717 /* 718 * All functions that return an ipsa_t will return it with IPSA_REFHOLD() 719 * already called. 720 */ 721 722 /* SA retrieval (inbound and outbound) */ 723 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *, 724 sa_family_t); 725 ipsa_t *ipsec_getassocbyconn(isaf_t *, ip_xmit_attr_t *, uint32_t *, uint32_t *, 726 sa_family_t, uint8_t, ts_label_t *); 727 728 /* SA insertion. */ 729 int sadb_insertassoc(ipsa_t *, isaf_t *); 730 731 /* SA table construction and destruction. */ 732 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *); 733 void sadbp_flush(sadbp_t *, netstack_t *); 734 void sadbp_destroy(sadbp_t *, netstack_t *); 735 736 /* SA insertion and deletion. */ 737 int sadb_insertassoc(ipsa_t *, isaf_t *); 738 void sadb_unlinkassoc(ipsa_t *); 739 740 /* Support routines to interface a keysock consumer to PF_KEY. */ 741 mblk_t *sadb_keysock_out(minor_t); 742 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *); 743 int sadb_labelchk(struct keysock_in_s *); 744 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *, 745 ipsa_t *); 746 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t); 747 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *), 748 void *, timeout_id_t *, int); 749 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *); 750 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *); 751 int sadb_addrset(ire_t *); 752 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *, 753 uint8_t); 754 755 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *); 756 int sadb_common_add(queue_t *, mblk_t *, sadb_msg_t *, 757 keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *, 758 netstack_t *, sadbp_t *); 759 void sadb_set_usetime(ipsa_t *); 760 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t); 761 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *, 762 int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *), 763 netstack_t *, uint8_t); 764 void sadb_acquire(mblk_t *, ip_xmit_attr_t *, boolean_t, boolean_t); 765 void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *, 766 crypto_data_t *); 767 void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *, 768 crypto_data_t *); 769 void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *, 770 crypto_data_t *); 771 772 void sadb_destroy_acquire(ipsacq_t *, netstack_t *); 773 struct ipsec_stack; 774 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t); 775 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *); 776 boolean_t sadb_replay_check(ipsa_t *, uint32_t); 777 boolean_t sadb_replay_peek(ipsa_t *, uint32_t); 778 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *); 779 void sadb_replay_delete(ipsa_t *); 780 void sadb_ager(sadb_t *, queue_t *, int, netstack_t *); 781 782 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *, 783 uint_t *, uint_t, short); 784 void sadb_sa_refrele(void *target); 785 mblk_t *sadb_set_lpkt(ipsa_t *, mblk_t *, ip_recv_attr_t *); 786 mblk_t *sadb_clear_lpkt(ipsa_t *); 787 void sadb_buf_pkt(ipsa_t *, mblk_t *, ip_recv_attr_t *); 788 void sadb_clear_buf_pkt(void *ipkt); 789 790 /* Note that buf_pkt is the product of ip_recv_attr_to_mblk() */ 791 #define HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt) \ 792 { \ 793 if (buf_pkt != NULL) { \ 794 if (taskq_dispatch(taskq, sadb_clear_buf_pkt, \ 795 (void *) buf_pkt, TQ_NOSLEEP) == 0) { \ 796 /* Dispatch was unsuccessful drop the packets. */ \ 797 mblk_t *tmp; \ 798 while (buf_pkt != NULL) { \ 799 tmp = buf_pkt->b_next; \ 800 buf_pkt->b_next = NULL; \ 801 buf_pkt = ip_recv_attr_free_mblk(buf_pkt); \ 802 ip_drop_packet(buf_pkt, B_TRUE, NULL, \ 803 DROPPER(stack, \ 804 ipds_sadb_inidle_timeout), \ 805 &dropper); \ 806 buf_pkt = tmp; \ 807 } \ 808 } \ 809 } \ 810 } \ 811 812 /* 813 * Two IPsec rate-limiting routines. 814 */ 815 /*PRINTFLIKE6*/ 816 extern void ipsec_rl_strlog(netstack_t *, short, short, char, 817 ushort_t, char *, ...) 818 __KPRINTFLIKE(6); 819 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t, 820 void *, int, netstack_t *); 821 822 /* 823 * Algorithm types. 824 */ 825 826 #define IPSEC_NALGTYPES 2 827 828 typedef enum ipsec_algtype { 829 IPSEC_ALG_AUTH = 0, 830 IPSEC_ALG_ENCR = 1, 831 IPSEC_ALG_ALL = 2 832 } ipsec_algtype_t; 833 834 /* 835 * Definitions as per IPsec/ISAKMP DOI. 836 */ 837 838 #define IPSEC_MAX_ALGS 256 839 #define PROTO_IPSEC_AH 2 840 #define PROTO_IPSEC_ESP 3 841 842 /* 843 * Common algorithm info. 844 */ 845 typedef struct ipsec_alginfo 846 { 847 uint8_t alg_id; 848 uint8_t alg_flags; 849 uint16_t *alg_key_sizes; 850 uint16_t *alg_block_sizes; 851 uint16_t *alg_params; 852 uint16_t alg_nkey_sizes; 853 uint16_t alg_ivlen; 854 uint16_t alg_icvlen; 855 uint8_t alg_saltlen; 856 uint16_t alg_nblock_sizes; 857 uint16_t alg_nparams; 858 uint16_t alg_minbits; 859 uint16_t alg_maxbits; 860 uint16_t alg_datalen; 861 /* 862 * increment: number of bits from keysize to keysize 863 * default: # of increments from min to default key len 864 */ 865 uint16_t alg_increment; 866 uint16_t alg_default; 867 uint16_t alg_default_bits; 868 /* 869 * Min, max, and default key sizes effectively supported 870 * by the encryption framework. 871 */ 872 uint16_t alg_ef_minbits; 873 uint16_t alg_ef_maxbits; 874 uint16_t alg_ef_default; 875 uint16_t alg_ef_default_bits; 876 877 crypto_mech_type_t alg_mech_type; /* KCF mechanism type */ 878 crypto_mech_name_t alg_mech_name; /* KCF mechanism name */ 879 } ipsec_alginfo_t; 880 881 #define alg_datalen alg_block_sizes[0] 882 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID) 883 884 /* 885 * Software crypto execution mode. 886 */ 887 typedef enum { 888 IPSEC_ALGS_EXEC_SYNC = 0, 889 IPSEC_ALGS_EXEC_ASYNC = 1 890 } ipsec_algs_exec_mode_t; 891 892 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *); 893 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *); 894 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t, 895 netstack_t *ns); 896 extern void alg_flag_check(ipsec_alginfo_t *); 897 extern void ipsec_alg_free(ipsec_alginfo_t *); 898 extern void ipsec_register_prov_update(void); 899 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, netstack_t *); 900 901 extern int sadb_sens_len_from_label(ts_label_t *); 902 extern void sadb_sens_from_label(sadb_sens_t *, int, ts_label_t *, int); 903 904 /* 905 * Context templates management. 906 */ 907 908 #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1) 909 #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \ 910 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \ 911 mutex_enter(&assoc->ipsa_lock); \ 912 if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \ 913 ipsec_stack_t *ipss; \ 914 \ 915 ipss = assoc->ipsa_netstack->netstack_ipsec; \ 916 rw_enter(&ipss->ipsec_alg_lock, RW_READER); \ 917 (void) ipsec_create_ctx_tmpl(_sa, _type); \ 918 rw_exit(&ipss->ipsec_alg_lock); \ 919 } \ 920 mutex_exit(&assoc->ipsa_lock); \ 921 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \ 922 _tmpl = NULL; \ 923 } \ 924 } 925 926 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t); 927 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t); 928 929 /* key checking */ 930 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *); 931 932 typedef struct ipsec_kstats_s { 933 kstat_named_t esp_stat_in_requests; 934 kstat_named_t esp_stat_in_discards; 935 kstat_named_t esp_stat_lookup_failure; 936 kstat_named_t ah_stat_in_requests; 937 kstat_named_t ah_stat_in_discards; 938 kstat_named_t ah_stat_lookup_failure; 939 kstat_named_t sadb_acquire_maxpackets; 940 kstat_named_t sadb_acquire_qhiwater; 941 } ipsec_kstats_t; 942 943 /* 944 * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if 945 * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it 946 * fails, it will be NULL. Note this is done for all stack instances, 947 * so it *could* fail. hence a non-NULL checking is done for 948 * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT 949 */ 950 #define IP_ESP_BUMP_STAT(ipss, x) \ 951 do { \ 952 if ((ipss)->ipsec_kstats != NULL) \ 953 ((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \ 954 _NOTE(CONSTCOND) \ 955 } while (0) 956 957 #define IP_AH_BUMP_STAT(ipss, x) \ 958 do { \ 959 if ((ipss)->ipsec_kstats != NULL) \ 960 ((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \ 961 _NOTE(CONSTCOND) \ 962 } while (0) 963 964 #define IP_ACQUIRE_STAT(ipss, val, new) \ 965 do { \ 966 if ((ipss)->ipsec_kstats != NULL && \ 967 ((uint64_t)(new)) > \ 968 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \ 969 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \ 970 ((uint64_t)(new)); \ 971 _NOTE(CONSTCOND) \ 972 } while (0) 973 974 975 #ifdef __cplusplus 976 } 977 #endif 978 979 #endif /* _INET_SADB_H */ 980