xref: /illumos-gate/usr/src/uts/common/inet/sadb.h (revision d042c5a26452797afc4fe8c2ceddebff94d88745)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 #ifndef	_INET_SADB_H
28 #define	_INET_SADB_H
29 
30 #ifdef	__cplusplus
31 extern "C" {
32 #endif
33 
34 #include <inet/ipsec_info.h>
35 #include <sys/crypto/common.h>
36 #include <sys/crypto/api.h>
37 #include <sys/note.h>
38 
39 #define	IPSA_MAX_ADDRLEN 4	/* Max address len. (in 32-bits) for an SA. */
40 
41 #define	MAXSALTSIZE 8
42 
43 /*
44  * For combined mode ciphers, store the crypto_mechanism_t in the
45  * per-packet ipsec_in_t/ipsec_out_t structures. This is because the PARAMS
46  * and nonce values change for each packet. For non-combined mode
47  * ciphers, these values are constant for the life of the SA.
48  */
49 typedef struct ipsa_cm_mech_s {
50 	crypto_mechanism_t combined_mech;
51 	union {
52 		CK_AES_CCM_PARAMS paramu_ccm;
53 		CK_AES_GCM_PARAMS paramu_gcm;
54 	} paramu;
55 	uint8_t nonce[MAXSALTSIZE + sizeof (uint64_t)];
56 #define	param_ulMACSize paramu.paramu_ccm.ulMACSize
57 #define	param_ulNonceSize paramu.paramu_ccm.ipsa_ulNonceSize
58 #define	param_ulAuthDataSize paramu.paramu_ccm.ipsa_ulAuthDataSize
59 #define	param_ulDataSize paramu.paramu_ccm.ipsa_ulDataSize
60 #define	param_nonce paramu.paramu_ccm.nonce
61 #define	param_authData paramu.paramu_ccm.authData
62 #define	param_pIv paramu.paramu_gcm.ipsa_pIv
63 #define	param_ulIvLen paramu.paramu_gcm.ulIvLen
64 #define	param_ulIvBits paramu.paramu_gcm.ulIvBits
65 #define	param_pAAD paramu.paramu_gcm.pAAD
66 #define	param_ulAADLen paramu.paramu_gcm.ulAADLen
67 #define	param_ulTagBits paramu.paramu_gcm.ulTagBits
68 } ipsa_cm_mech_t;
69 
70 /*
71  * The Initialization Vector (also known as IV or Nonce) used to
72  * initialize the Block Cipher, is made up of a Counter and a Salt.
73  * The Counter is fixed at 64 bits and is incremented for each packet.
74  * The Salt value can be any whole byte value upto 64 bits. This is
75  * algorithm mode specific and can be configured with ipsecalgs(1m).
76  *
77  * We only support whole byte salt lengths, this is because the salt is
78  * stored in an array of uint8_t's. This is enforced by ipsecalgs(1m)
79  * which configures the salt length as a number of bytes. Checks are
80  * made to ensure the salt length defined in ipsecalgs(1m) fits in
81  * the ipsec_nonce_t.
82  *
83  * The Salt value remains constant for the life of the SA, the Salt is
84  * know to both peers, but NOT transmitted on the network. The Counter
85  * portion of the nonce is transmitted over the network with each packet
86  * and is confusingly described as the Initialization Vector by RFCs
87  * 4309/4106.
88  *
89  * The maximum Initialization Vector length is 128 bits, if the actual
90  * size is less, its padded internally by the algorithm.
91  *
92  * The nonce structure is defined like this in the SA (ipsa_t)to ensure
93  * the Initilization Vector (counter) is 64 bit aligned, because it will
94  * be incremented as an uint64_t. The nonce as used by the algorithms is
95  * a straight uint8_t array.
96  *
97  *                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
98  *                     | | | | |x|x|x|x|               |
99  *                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
100  * salt_offset         <------>
101  * ipsa_saltlen                <------->
102  * ipsa_nonce_buf------^
103  * ipsa_salt-------------~~~~~~^
104  * ipsa_nonce------------~~~~~~^
105  * ipsa_iv-----------------------------^
106  */
107 typedef struct ipsec_nonce_s {
108 	uint8_t		salt[MAXSALTSIZE];
109 	uint64_t	iv;
110 } ipsec_nonce_t;
111 
112 /*
113  * IP security association.  Synchronization assumes 32-bit loads, so
114  * the 64-bit quantities can't even be be read w/o locking it down!
115  */
116 
117 /* keying info */
118 typedef struct ipsa_key_s {
119 	uint8_t *sak_key;		/* Algorithm key. */
120 	uint_t sak_keylen;	/* Algorithm key length (in bytes). */
121 	uint_t sak_keybits;	/* Algorithm key length (in bits) */
122 	uint_t sak_algid;	/* Algorithm ID number. */
123 } ipsa_key_t;
124 
125 typedef struct ipsa_s {
126 	struct ipsa_s *ipsa_next;	/* Next in hash bucket */
127 	struct ipsa_s **ipsa_ptpn;	/* Pointer to previous next pointer. */
128 	kmutex_t *ipsa_linklock;	/* Pointer to hash-chain lock. */
129 	void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
130 	void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *,
131 	    uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *);
132 	/*
133 	 * NOTE: I may need more pointers, depending on future SA
134 	 * requirements.
135 	 */
136 	ipsa_key_t ipsa_authkeydata;
137 #define	ipsa_authkey ipsa_authkeydata.sak_key
138 #define	ipsa_authkeylen ipsa_authkeydata.sak_keylen
139 #define	ipsa_authkeybits ipsa_authkeydata.sak_keybits
140 #define	ipsa_auth_alg ipsa_authkeydata.sak_algid
141 	ipsa_key_t ipsa_encrkeydata;
142 #define	ipsa_encrkey ipsa_encrkeydata.sak_key
143 #define	ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
144 #define	ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
145 #define	ipsa_encr_alg ipsa_encrkeydata.sak_algid
146 
147 	struct ipsid_s *ipsa_src_cid;	/* Source certificate identity */
148 	struct ipsid_s *ipsa_dst_cid;	/* Destination certificate identity */
149 	mblk_t	*ipsa_lpkt;	/* Packet received while larval (CAS me) */
150 	mblk_t	*ipsa_bpkt_head;	/* Packets received while idle */
151 	mblk_t	*ipsa_bpkt_tail;
152 #define	SADB_MAX_IDLEPKTS	100
153 	uint8_t	ipsa_mblkcnt;	/* Number of packets received while idle */
154 
155 	/*
156 	 * PF_KEYv2 supports a replay window size of 255.  Hence there is a
157 	 * need a bit vector to support a replay window of 255.  256 is a nice
158 	 * round number, so I support that.
159 	 *
160 	 * Use an array of uint64_t for best performance on 64-bit
161 	 * processors.  (And hope that 32-bit compilers can handle things
162 	 * okay.)  The " >> 6 " is to get the appropriate number of 64-bit
163 	 * ints.
164 	 */
165 #define	SADB_MAX_REPLAY 256	/* Must be 0 mod 64. */
166 	uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
167 
168 	uint64_t ipsa_unique_id;	/* Non-zero for unique SAs */
169 	uint64_t ipsa_unique_mask;	/* mask value for unique_id */
170 
171 	/*
172 	 * Reference count semantics:
173 	 *
174 	 *	An SA has a reference count of 1 if something's pointing
175 	 *	to it.  This includes being in a hash table.  So if an
176 	 *	SA is in a hash table, it has a reference count of at least 1.
177 	 *
178 	 *	When a ptr. to an IPSA is assigned, you MUST REFHOLD after
179 	 *	said assignment.  When a ptr. to an IPSA is released
180 	 *	you MUST REFRELE.  When the refcount hits 0, REFRELE
181 	 *	will free the IPSA.
182 	 */
183 	kmutex_t ipsa_lock;	/* Locks non-linkage/refcnt fields. */
184 	/* Q:  Since I may be doing refcnts differently, will I need cv? */
185 	uint_t ipsa_refcnt;	/* Reference count. */
186 
187 	/*
188 	 * The following four time fields are the ones monitored by ah_ager()
189 	 * and esp_ager() respectively.  They are all absolute wall-clock
190 	 * times.  The times of creation (i.e. add time) and first use are
191 	 * pretty straightforward.  The soft and hard expire times are
192 	 * derived from the times of first use and creation, plus the minimum
193 	 * expiration times in the fields that follow this.
194 	 *
195 	 * For example, if I had a hard add time of 30 seconds, and a hard
196 	 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
197 	 * 30 seconds.  If I USE the SA such that time of first use plus 15
198 	 * seconds would be earlier than the add time plus 30 seconds, then
199 	 * ipsa_hardexpiretime would become this earlier time.
200 	 */
201 	time_t ipsa_addtime;	/* Time I was added. */
202 	time_t ipsa_usetime;	/* Time of my first use. */
203 	time_t ipsa_lastuse;	/* Time of my last use. */
204 	time_t ipsa_idletime;	/* Seconds of idle time */
205 	time_t ipsa_last_nat_t_ka;	/* Time of my last NAT-T keepalive. */
206 	time_t ipsa_softexpiretime;	/* Time of my first soft expire. */
207 	time_t ipsa_hardexpiretime;	/* Time of my first hard expire. */
208 	time_t ipsa_idleexpiretime;	/* Time of my next idle expire time */
209 
210 	struct ipsec_nonce_s *ipsa_nonce_buf;
211 	uint8_t	*ipsa_nonce;
212 	uint_t ipsa_nonce_len;
213 	uint8_t	*ipsa_salt;
214 	uint_t ipsa_saltbits;
215 	uint_t ipsa_saltlen;
216 	uint64_t *ipsa_iv;
217 
218 	uint64_t ipsa_iv_hardexpire;
219 	uint64_t ipsa_iv_softexpire;
220 	/*
221 	 * The following fields are directly reflected in PF_KEYv2 LIFETIME
222 	 * extensions.  The time_ts are in number-of-seconds, and the bytes
223 	 * are in... bytes.
224 	 */
225 	time_t ipsa_softaddlt;	/* Seconds of soft lifetime after add. */
226 	time_t ipsa_softuselt;	/* Seconds of soft lifetime after first use. */
227 	time_t ipsa_hardaddlt;	/* Seconds of hard lifetime after add. */
228 	time_t ipsa_harduselt;	/* Seconds of hard lifetime after first use. */
229 	time_t ipsa_idleaddlt;	/* Seconds of idle time after add */
230 	time_t ipsa_idleuselt;	/* Seconds of idle time after first use */
231 	uint64_t ipsa_softbyteslt;	/* Bytes of soft lifetime. */
232 	uint64_t ipsa_hardbyteslt;	/* Bytes of hard lifetime. */
233 	uint64_t ipsa_bytes;	/* Bytes encrypted/authed by this SA. */
234 
235 	/*
236 	 * "Allocations" are a concept mentioned in PF_KEYv2.  We do not
237 	 * support them, except to record them per the PF_KEYv2 spec.
238 	 */
239 	uint_t ipsa_softalloc;	/* Allocations allowed (soft). */
240 	uint_t ipsa_hardalloc;	/* Allocations allowed (hard). */
241 	uint_t ipsa_alloc;	/* Allocations made. */
242 
243 	uint_t ipsa_type;	/* Type of security association. (AH/etc.) */
244 	uint_t ipsa_state;	/* State of my association. */
245 	uint_t ipsa_replay_wsize; /* Size of replay window */
246 	uint32_t ipsa_flags;	/* Flags for security association. */
247 	uint32_t ipsa_spi;	/* Security parameters index. */
248 	uint32_t ipsa_replay;	/* Highest seen replay value for this SA. */
249 	uint32_t ipsa_kmp;	/* key management proto */
250 	uint32_t ipsa_kmc;	/* key management cookie */
251 
252 	boolean_t ipsa_haspeer;		/* Has peer in another table. */
253 
254 	/*
255 	 * Address storage.
256 	 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
257 	 *
258 	 * Address families (per sys/socket.h) guide us.  We could have just
259 	 * used sockaddr_storage
260 	 */
261 	sa_family_t ipsa_addrfam;
262 	sa_family_t ipsa_innerfam;	/* Inner AF can be != src/dst AF. */
263 
264 	uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
265 	uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
266 	uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
267 	uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
268 
269 	uint8_t ipsa_innersrcpfx;
270 	uint8_t ipsa_innerdstpfx;
271 
272 	uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
273 	uint16_t ipsa_local_nat_port;	/* Local NAT-T port.  (0 --> 4500) */
274 	uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
275 
276 	/* these can only be v4 */
277 	uint32_t ipsa_natt_addr_loc;
278 	uint32_t ipsa_natt_addr_rem;
279 
280 	/*
281 	 * icmp type and code. *_end are to specify ranges. if only
282 	 * a single value, * and *_end are the same value.
283 	 */
284 	uint8_t ipsa_icmp_type;
285 	uint8_t ipsa_icmp_type_end;
286 	uint8_t ipsa_icmp_code;
287 	uint8_t ipsa_icmp_code_end;
288 
289 	/*
290 	 * For the kernel crypto framework.
291 	 */
292 	crypto_key_t ipsa_kcfauthkey;		/* authentication key */
293 	crypto_key_t ipsa_kcfencrkey;		/* encryption key */
294 	crypto_ctx_template_t ipsa_authtmpl;	/* auth context template */
295 	crypto_ctx_template_t ipsa_encrtmpl;	/* encr context template */
296 	crypto_mechanism_t ipsa_amech;		/* auth mech type and ICV len */
297 	crypto_mechanism_t ipsa_emech;		/* encr mech type */
298 	size_t ipsa_mac_len;			/* auth MAC/ICV length */
299 	size_t ipsa_iv_len;			/* encr IV length */
300 	size_t ipsa_datalen;			/* block length in bytes. */
301 
302 	/*
303 	 * Input and output processing functions called from IP.
304 	 * The mblk_t is the data; the IPsec information is in the attributes
305 	 * Returns NULL if the mblk is consumed which it is if there was
306 	 * a failure or if pending. If failure then
307 	 * the ipIfInDiscards/OutDiscards counters are increased.
308 	 */
309 	mblk_t *(*ipsa_output_func)(mblk_t *, ip_xmit_attr_t *);
310 	mblk_t *(*ipsa_input_func)(mblk_t *, void *, ip_recv_attr_t *);
311 
312 	/*
313 	 * Soft reference to paired SA
314 	 */
315 	uint32_t	ipsa_otherspi;
316 	netstack_t	*ipsa_netstack;	/* Does not have a netstack_hold */
317 
318 	ts_label_t *ipsa_tsl;			/* MLS: label attributes */
319 	ts_label_t *ipsa_otsl;			/* MLS: outer label */
320 	uint8_t	ipsa_mac_exempt;		/* MLS: mac exempt flag */
321 	uchar_t	ipsa_opt_storage[IP_MAX_OPT_LENGTH];
322 } ipsa_t;
323 
324 /*
325  * ipsa_t address handling macros.  We want these to be inlined, and deal
326  * with 32-bit words to avoid bcmp/bcopy calls.
327  *
328  * Assume we only have AF_INET and AF_INET6 addresses for now.  Also assume
329  * that we have 32-bit alignment on everything.
330  */
331 #define	IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
332 	(((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
333 	((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
334 #define	IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
335 	((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
336 	(((fam) == AF_INET) || \
337 	(((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
338 	((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
339 	((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
340 #define	IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
341 	((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
342 	if ((fam) == AF_INET6) {\
343 		((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
344 		((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
345 		((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
346 
347 /*
348  * ipsa_t reference hold/release macros.
349  *
350  * If you have a pointer, you REFHOLD.  If you are releasing a pointer, you
351  * REFRELE.  An ipsa_t that is newly inserted into the table should have
352  * a reference count of 1 (for the table's pointer), plus 1 more for every
353  * pointer that is referencing the ipsa_t.
354  */
355 
356 #define	IPSA_REFHOLD(ipsa) {			\
357 	atomic_inc_32(&(ipsa)->ipsa_refcnt);	\
358 	ASSERT((ipsa)->ipsa_refcnt != 0);	\
359 }
360 
361 /*
362  * Decrement the reference count on the SA.
363  * In architectures e.g sun4u, where atomic_add_32_nv is just
364  * a cas, we need to maintain the right memory barrier semantics
365  * as that of mutex_exit i.e all the loads and stores should complete
366  * before the cas is executed. membar_exit() does that here.
367  */
368 
369 #define	IPSA_REFRELE(ipsa) {					\
370 	ASSERT((ipsa)->ipsa_refcnt != 0);			\
371 	membar_exit();						\
372 	if (atomic_dec_32_nv(&(ipsa)->ipsa_refcnt) == 0)	\
373 		((ipsa)->ipsa_freefunc)(ipsa);			\
374 }
375 
376 /*
377  * Security association hash macros and definitions.  For now, assume the
378  * IPsec model, and hash outbounds on destination address, and inbounds on
379  * SPI.
380  */
381 
382 #define	IPSEC_DEFAULT_HASH_SIZE 256
383 
384 #define	INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
385 #define	OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
386 #define	OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
387 	(*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
388 	(*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
389 
390 /*
391  * Syntactic sugar to find the appropriate hash bucket directly.
392  */
393 
394 #define	INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
395 #define	OUTBOUND_BUCKET_V4(sadb, v4addr) \
396 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
397 #define	OUTBOUND_BUCKET_V6(sadb, v6addr) \
398 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
399 
400 #define	IPSA_F_PFS	SADB_SAFLAGS_PFS	/* PFS in use for this SA? */
401 #define	IPSA_F_NOREPFLD	SADB_SAFLAGS_NOREPLAY	/* No replay field, for */
402 						/* backward compat. */
403 #define	IPSA_F_USED	SADB_X_SAFLAGS_USED	/* SA has been used. */
404 #define	IPSA_F_UNIQUE	SADB_X_SAFLAGS_UNIQUE	/* SA is unique */
405 #define	IPSA_F_AALG1	SADB_X_SAFLAGS_AALG1	/* Auth alg flag 1 */
406 #define	IPSA_F_AALG2	SADB_X_SAFLAGS_AALG2	/* Auth alg flag 2 */
407 #define	IPSA_F_EALG1	SADB_X_SAFLAGS_EALG1	/* Encrypt alg flag 1 */
408 #define	IPSA_F_EALG2	SADB_X_SAFLAGS_EALG2	/* Encrypt alg flag 2 */
409 
410 #define	IPSA_F_ASYNC	0x200000		/* Call KCF asynchronously? */
411 #define	IPSA_F_NATT_LOC	SADB_X_SAFLAGS_NATT_LOC
412 #define	IPSA_F_NATT_REM	SADB_X_SAFLAGS_NATT_REM
413 #define	IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED
414 #define	IPSA_F_NATT	(SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \
415 	SADB_X_SAFLAGS_NATTED)
416 #define	IPSA_F_CINVALID	0x40000		/* SA shouldn't be cached */
417 #define	IPSA_F_PAIRED	SADB_X_SAFLAGS_PAIRED	/* SA is one of a pair */
418 #define	IPSA_F_OUTBOUND	SADB_X_SAFLAGS_OUTBOUND	/* SA direction bit */
419 #define	IPSA_F_INBOUND	SADB_X_SAFLAGS_INBOUND	/* SA direction bit */
420 #define	IPSA_F_TUNNEL	SADB_X_SAFLAGS_TUNNEL
421 /*
422  * These flags are only defined here to prevent a flag value collision.
423  */
424 #define	IPSA_F_COMBINED	SADB_X_SAFLAGS_EALG1	/* Defined in pfkeyv2.h */
425 #define	IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2	/* Defined in pfkeyv2.h */
426 
427 /*
428  * Sets of flags that are allowed to by set or modified by PF_KEY apps.
429  */
430 #define	AH_UPDATE_SETTABLE_FLAGS \
431 	(SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \
432 	SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \
433 	SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \
434 	SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4)
435 
436 /* AH can't set NAT flags (or even use NAT).  Add NAT flags to the ESP set. */
437 #define	ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT)
438 
439 #define	AH_ADD_SETTABLE_FLAGS \
440 	(AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \
441 	SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \
442 	SADB_SAFLAGS_NOREPLAY)
443 
444 /* AH can't set NAT flags (or even use NAT).  Add NAT flags to the ESP set. */
445 #define	ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \
446 	SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2)
447 
448 
449 
450 /* SA states are important for handling UPDATE PF_KEY messages. */
451 #define	IPSA_STATE_LARVAL		SADB_SASTATE_LARVAL
452 #define	IPSA_STATE_MATURE		SADB_SASTATE_MATURE
453 #define	IPSA_STATE_DYING		SADB_SASTATE_DYING
454 #define	IPSA_STATE_DEAD			SADB_SASTATE_DEAD
455 #define	IPSA_STATE_IDLE			SADB_X_SASTATE_IDLE
456 #define	IPSA_STATE_ACTIVE_ELSEWHERE	SADB_X_SASTATE_ACTIVE_ELSEWHERE
457 
458 /*
459  * NOTE:  If the document authors do things right in defining algorithms, we'll
460  *	  probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
461  *	  etc.
462  */
463 
464 #define	IPSA_T_ACQUIRE	SEC_TYPE_NONE	/* If this typed returned, sa needed */
465 #define	IPSA_T_AH	SEC_TYPE_AH	/* IPsec AH association */
466 #define	IPSA_T_ESP	SEC_TYPE_ESP	/* IPsec ESP association */
467 
468 #define	IPSA_AALG_NONE	SADB_AALG_NONE		/* No auth. algorithm */
469 #define	IPSA_AALG_MD5H	SADB_AALG_MD5HMAC	/* MD5-HMAC algorithm */
470 #define	IPSA_AALG_SHA1H	SADB_AALG_SHA1HMAC	/* SHA1-HMAC algorithm */
471 
472 #define	IPSA_EALG_NONE		SADB_EALG_NONE	/* No encryption algorithm */
473 #define	IPSA_EALG_DES_CBC	SADB_EALG_DESCBC
474 #define	IPSA_EALG_3DES		SADB_EALG_3DESCBC
475 
476 /*
477  * Protect each ipsa_t bucket (and linkage) with a lock.
478  */
479 
480 typedef struct isaf_s {
481 	ipsa_t *isaf_ipsa;
482 	kmutex_t isaf_lock;
483 	uint64_t isaf_gen;
484 } isaf_t;
485 
486 /*
487  * ACQUIRE record.  If AH/ESP/whatever cannot find an association for outbound
488  * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
489  */
490 
491 #define	IPSACQ_MAXPACKETS 4	/* Number of packets that can be queued up */
492 				/* waiting for an ACQUIRE to finish. */
493 
494 typedef struct ipsacq_s {
495 	struct ipsacq_s *ipsacq_next;
496 	struct ipsacq_s **ipsacq_ptpn;
497 	kmutex_t *ipsacq_linklock;
498 	struct ipsec_policy_s  *ipsacq_policy;
499 	struct ipsec_action_s  *ipsacq_act;
500 
501 	sa_family_t ipsacq_addrfam;	/* Address family. */
502 	sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
503 	int ipsacq_numpackets;		/* How many packets queued up so far. */
504 	uint32_t ipsacq_seq;		/* PF_KEY sequence number. */
505 	uint64_t ipsacq_unique_id;	/* Unique ID for SAs that need it. */
506 
507 	kmutex_t ipsacq_lock;	/* Protects non-linkage fields. */
508 	time_t ipsacq_expire;	/* Wall-clock time when this record expires. */
509 	mblk_t *ipsacq_mp;	/* List of datagrams waiting for an SA. */
510 
511 	/* These two point inside the last mblk inserted. */
512 	uint32_t *ipsacq_srcaddr;
513 	uint32_t *ipsacq_dstaddr;
514 
515 	/* Cache these instead of point so we can mask off accordingly */
516 	uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
517 	uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
518 
519 	/* These may change per-acquire. */
520 	uint16_t ipsacq_srcport;
521 	uint16_t ipsacq_dstport;
522 	uint8_t ipsacq_proto;
523 	uint8_t ipsacq_inner_proto;
524 	uint8_t ipsacq_innersrcpfx;
525 	uint8_t ipsacq_innerdstpfx;
526 
527 	/* icmp type and code of triggering packet (if applicable) */
528 	uint8_t	ipsacq_icmp_type;
529 	uint8_t ipsacq_icmp_code;
530 
531 	/* label associated with triggering packet */
532 	ts_label_t	*ipsacq_tsl;
533 } ipsacq_t;
534 
535 /*
536  * Kernel-generated sequence numbers will be no less than 0x80000000 to
537  * forestall any cretinous problems with manual keying accidentally updating
538  * an ACQUIRE entry.
539  */
540 #define	IACQF_LOWEST_SEQ 0x80000000
541 
542 #define	SADB_AGE_INTERVAL_DEFAULT 8000
543 
544 /*
545  * ACQUIRE fanout.  Protect each linkage with a lock.
546  */
547 
548 typedef struct iacqf_s {
549 	ipsacq_t *iacqf_ipsacq;
550 	kmutex_t iacqf_lock;
551 } iacqf_t;
552 
553 /*
554  * A (network protocol, ipsec protocol) specific SADB.
555  * (i.e., one each for {ah, esp} and {v4, v6}.
556  *
557  * Keep outbound assocs in a simple hash table for now.
558  * One danger point, multiple SAs for a single dest will clog a bucket.
559  * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
560  */
561 
562 typedef struct sadb_s
563 {
564 	isaf_t	*sdb_of;
565 	isaf_t	*sdb_if;
566 	iacqf_t	*sdb_acq;
567 	int	sdb_hashsize;
568 } sadb_t;
569 
570 /*
571  * A pair of SADB's (one for v4, one for v6), and related state.
572  */
573 
574 typedef struct sadbp_s
575 {
576 	uint32_t	s_satype;
577 	uint32_t	*s_acquire_timeout;
578 	sadb_t		s_v4;
579 	sadb_t		s_v6;
580 	uint32_t	s_addflags;
581 	uint32_t	s_updateflags;
582 } sadbp_t;
583 
584 /*
585  * A pair of SA's for a single connection, the structure contains a
586  * pointer to a SA and the SA its paired with (opposite direction) as well
587  * as the SA's respective hash buckets.
588  */
589 typedef struct ipsap_s
590 {
591 	boolean_t	in_inbound_table;
592 	isaf_t		*ipsap_bucket;
593 	ipsa_t		*ipsap_sa_ptr;
594 	isaf_t		*ipsap_pbucket;
595 	ipsa_t		*ipsap_psa_ptr;
596 } ipsap_t;
597 
598 typedef struct templist_s
599 {
600 	ipsa_t		*ipsa;
601 	struct templist_s	*next;
602 } templist_t;
603 
604 /* Pointer to an all-zeroes IPv6 address. */
605 #define	ALL_ZEROES_PTR	((uint32_t *)&ipv6_all_zeros)
606 
607 /*
608  * Form unique id from ip_xmit_attr_t.
609  */
610 #define	SA_FORM_UNIQUE_ID(ixa)					\
611 	SA_UNIQUE_ID((ixa)->ixa_ipsec_src_port, (ixa)->ixa_ipsec_dst_port, \
612 	    (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ?			\
613 	    ((ixa)->ixa_ipsec_inaf == AF_INET6 ? \
614 	    IPPROTO_IPV6 : IPPROTO_ENCAP) :				\
615 	    (ixa)->ixa_ipsec_proto),					\
616 	    (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
617 	    (ixa)->ixa_ipsec_proto : 0))
618 
619 /*
620  * This macro is used to generate unique ids (along with the addresses, both
621  * inner and outer) for outbound datagrams that require unique SAs.
622  *
623  * N.B. casts and unsigned shift amounts discourage unwarranted
624  * sign extension of dstport, proto, and iproto.
625  *
626  * Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
627  *
628  *   6               4      43      33              11
629  *   3               7      09      21              65              0
630  *   +---------------*-------+-------+--------------+---------------+
631  *   |  MUST-BE-ZERO |<iprot>|<proto>| <src port>   |  <dest port>  |
632  *   +---------------*-------+-------+--------------+---------------+
633  *
634  * If there are inner addresses (tunnel mode) the ports come from the
635  * inner addresses.  If there are no inner addresses, the ports come from
636  * the outer addresses (transport mode).  Tunnel mode MUST have <proto>
637  * set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
638  */
639 #define	SA_UNIQUE_ID(srcport, dstport, proto, iproto) 	\
640 	((srcport) | ((uint64_t)(dstport) << 16U) | \
641 	((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
642 
643 /*
644  * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
645  * from a packet to an SA.
646  */
647 
648 #define	SA_UNIQUE_MASK(srcport, dstport, proto, iproto) 	\
649 	SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0,		\
650 		    (dstport != 0) ? 0xffff : 0,		\
651 		    (proto != 0) ? 0xff : 0,			\
652 		    (iproto != 0) ? 0xff : 0)
653 
654 /*
655  * Decompose unique id back into its original fields.
656  */
657 #define	SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
658 #define	SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
659 #define	SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
660 #define	SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
661 
662 typedef struct ipsa_query_s ipsa_query_t;
663 
664 typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *);
665 
666 #define	IPSA_NMATCH	10
667 
668 /*
669  * SADB query structure.
670  *
671  * Provide a generalized mechanism for matching entries in the SADB;
672  * one of these structures is initialized using sadb_form_query(),
673  * and then can be used as a parameter to sadb_match_query() which returns
674  * B_TRUE if the SA matches the query.
675  *
676  * Under the covers, sadb_form_query populates the matchers[] array with
677  * functions which are called one at a time until one fails to match.
678  */
679 struct ipsa_query_s {
680 	uint32_t req, match;
681 	sadb_address_t *srcext, *dstext;
682 	sadb_ident_t *srcid, *dstid;
683 	sadb_x_kmc_t *kmcext;
684 	sadb_sa_t *assoc;
685 	uint32_t spi;
686 	struct sockaddr_in *src;
687 	struct sockaddr_in6 *src6;
688 	struct sockaddr_in *dst;
689 	struct sockaddr_in6 *dst6;
690 	sa_family_t af;
691 	uint32_t *srcaddr, *dstaddr;
692 	uint32_t ifindex;
693 	uint32_t kmc, kmp;
694 	char *didstr, *sidstr;
695 	uint16_t didtype, sidtype;
696 	sadbp_t *spp;
697 	sadb_t *sp;
698 	isaf_t	*inbound, *outbound;
699 	uint32_t outhash;
700 	uint32_t inhash;
701 	ipsa_match_fn_t matchers[IPSA_NMATCH];
702 };
703 
704 #define	IPSA_Q_SA		0x00000001
705 #define	IPSA_Q_DST		0x00000002
706 #define	IPSA_Q_SRC		0x00000004
707 #define	IPSA_Q_DSTID		0x00000008
708 #define	IPSA_Q_SRCID		0x00000010
709 #define	IPSA_Q_KMC		0x00000020
710 #define	IPSA_Q_INBOUND		0x00000040 /* fill in inbound isaf_t */
711 #define	IPSA_Q_OUTBOUND		0x00000080 /* fill in outbound isaf_t */
712 
713 int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *);
714 boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa);
715 
716 
717 /*
718  * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
719  * already called.
720  */
721 
722 /* SA retrieval (inbound and outbound) */
723 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
724     sa_family_t);
725 ipsa_t *ipsec_getassocbyconn(isaf_t *, ip_xmit_attr_t *, uint32_t *, uint32_t *,
726     sa_family_t, uint8_t, ts_label_t *);
727 
728 /* SA insertion. */
729 int sadb_insertassoc(ipsa_t *, isaf_t *);
730 
731 /* SA table construction and destruction. */
732 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
733 void sadbp_flush(sadbp_t *, netstack_t *);
734 void sadbp_destroy(sadbp_t *, netstack_t *);
735 
736 /* SA insertion and deletion. */
737 int sadb_insertassoc(ipsa_t *, isaf_t *);
738 void sadb_unlinkassoc(ipsa_t *);
739 
740 /* Support routines to interface a keysock consumer to PF_KEY. */
741 mblk_t *sadb_keysock_out(minor_t);
742 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *);
743 int sadb_labelchk(struct keysock_in_s *);
744 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
745     ipsa_t *);
746 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
747 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
748     void *, timeout_id_t *, int);
749 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
750 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
751 int sadb_addrset(ire_t *);
752 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
753     uint8_t);
754 
755 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *);
756 int sadb_common_add(queue_t *, mblk_t *, sadb_msg_t *,
757     keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
758     netstack_t *, sadbp_t *);
759 void sadb_set_usetime(ipsa_t *);
760 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
761 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *,
762     int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
763     netstack_t *, uint8_t);
764 void sadb_acquire(mblk_t *, ip_xmit_attr_t *, boolean_t, boolean_t);
765 void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
766     crypto_data_t *);
767 void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
768     crypto_data_t *);
769 void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
770     crypto_data_t *);
771 
772 void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
773 struct ipsec_stack;
774 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t);
775 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
776 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
777 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
778 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *);
779 void sadb_replay_delete(ipsa_t *);
780 void sadb_ager(sadb_t *, queue_t *, int, netstack_t *);
781 
782 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
783     uint_t *, uint_t, short);
784 void sadb_sa_refrele(void *target);
785 mblk_t *sadb_set_lpkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
786 mblk_t *sadb_clear_lpkt(ipsa_t *);
787 void sadb_buf_pkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
788 void sadb_clear_buf_pkt(void *ipkt);
789 
790 /* Note that buf_pkt is the product of ip_recv_attr_to_mblk() */
791 #define	HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt)			\
792 {									\
793 	if (buf_pkt != NULL) {						\
794 		if (taskq_dispatch(taskq, sadb_clear_buf_pkt,		\
795 		    (void *) buf_pkt, TQ_NOSLEEP) == 0) {		\
796 		    /* Dispatch was unsuccessful drop the packets. */	\
797 			mblk_t		*tmp;				\
798 			while (buf_pkt != NULL) {			\
799 				tmp = buf_pkt->b_next;			\
800 				buf_pkt->b_next = NULL;			\
801 				buf_pkt = ip_recv_attr_free_mblk(buf_pkt); \
802 				ip_drop_packet(buf_pkt, B_TRUE, NULL,	\
803 				    DROPPER(stack,			\
804 				    ipds_sadb_inidle_timeout),		\
805 				    &dropper);				\
806 				buf_pkt = tmp;				\
807 			}						\
808 		}							\
809 	}								\
810 }									\
811 
812 /*
813  * Two IPsec rate-limiting routines.
814  */
815 /*PRINTFLIKE6*/
816 extern void ipsec_rl_strlog(netstack_t *, short, short, char,
817     ushort_t, char *, ...)
818     __KPRINTFLIKE(6);
819 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
820     void *, int, netstack_t *);
821 
822 /*
823  * Algorithm types.
824  */
825 
826 #define	IPSEC_NALGTYPES 	2
827 
828 typedef enum ipsec_algtype {
829 	IPSEC_ALG_AUTH = 0,
830 	IPSEC_ALG_ENCR = 1,
831 	IPSEC_ALG_ALL = 2
832 } ipsec_algtype_t;
833 
834 /*
835  * Definitions as per IPsec/ISAKMP DOI.
836  */
837 
838 #define	IPSEC_MAX_ALGS		256
839 #define	PROTO_IPSEC_AH		2
840 #define	PROTO_IPSEC_ESP		3
841 
842 /*
843  * Common algorithm info.
844  */
845 typedef struct ipsec_alginfo
846 {
847 	uint8_t		alg_id;
848 	uint8_t		alg_flags;
849 	uint16_t	*alg_key_sizes;
850 	uint16_t	*alg_block_sizes;
851 	uint16_t	*alg_params;
852 	uint16_t	alg_nkey_sizes;
853 	uint16_t	alg_ivlen;
854 	uint16_t	alg_icvlen;
855 	uint8_t		alg_saltlen;
856 	uint16_t	alg_nblock_sizes;
857 	uint16_t	alg_nparams;
858 	uint16_t	alg_minbits;
859 	uint16_t	alg_maxbits;
860 	uint16_t	alg_datalen;
861 	/*
862 	 * increment: number of bits from keysize to keysize
863 	 * default: # of increments from min to default key len
864 	 */
865 	uint16_t	alg_increment;
866 	uint16_t	alg_default;
867 	uint16_t	alg_default_bits;
868 	/*
869 	 * Min, max, and default key sizes effectively supported
870 	 * by the encryption framework.
871 	 */
872 	uint16_t	alg_ef_minbits;
873 	uint16_t	alg_ef_maxbits;
874 	uint16_t	alg_ef_default;
875 	uint16_t	alg_ef_default_bits;
876 
877 	crypto_mech_type_t alg_mech_type;	/* KCF mechanism type */
878 	crypto_mech_name_t alg_mech_name;	/* KCF mechanism name */
879 } ipsec_alginfo_t;
880 
881 #define	alg_datalen alg_block_sizes[0]
882 #define	ALG_VALID(_alg)	((_alg)->alg_flags & ALG_FLAG_VALID)
883 
884 /*
885  * Software crypto execution mode.
886  */
887 typedef enum {
888 	IPSEC_ALGS_EXEC_SYNC = 0,
889 	IPSEC_ALGS_EXEC_ASYNC = 1
890 } ipsec_algs_exec_mode_t;
891 
892 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
893 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
894 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
895     netstack_t *ns);
896 extern void alg_flag_check(ipsec_alginfo_t *);
897 extern void ipsec_alg_free(ipsec_alginfo_t *);
898 extern void ipsec_register_prov_update(void);
899 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, netstack_t *);
900 
901 extern int sadb_sens_len_from_label(ts_label_t *);
902 extern void sadb_sens_from_label(sadb_sens_t *, int, ts_label_t *, int);
903 
904 /*
905  * Context templates management.
906  */
907 
908 #define	IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
909 #define	IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) {			\
910 	if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) {		\
911 		mutex_enter(&assoc->ipsa_lock);				\
912 		if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) {		\
913 			ipsec_stack_t *ipss;				\
914 									\
915 			ipss = assoc->ipsa_netstack->netstack_ipsec;	\
916 			rw_enter(&ipss->ipsec_alg_lock, RW_READER);	\
917 			(void) ipsec_create_ctx_tmpl(_sa, _type);	\
918 			rw_exit(&ipss->ipsec_alg_lock);			\
919 		}							\
920 		mutex_exit(&assoc->ipsa_lock);				\
921 		if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC)	\
922 			_tmpl = NULL;					\
923 	}								\
924 }
925 
926 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
927 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
928 
929 /* key checking */
930 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
931 
932 typedef struct ipsec_kstats_s {
933 	kstat_named_t esp_stat_in_requests;
934 	kstat_named_t esp_stat_in_discards;
935 	kstat_named_t esp_stat_lookup_failure;
936 	kstat_named_t ah_stat_in_requests;
937 	kstat_named_t ah_stat_in_discards;
938 	kstat_named_t ah_stat_lookup_failure;
939 	kstat_named_t sadb_acquire_maxpackets;
940 	kstat_named_t sadb_acquire_qhiwater;
941 } ipsec_kstats_t;
942 
943 /*
944  * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
945  * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
946  * fails, it will be NULL. Note this is done for all stack instances,
947  * so it *could* fail. hence a non-NULL checking is done for
948  * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
949  */
950 #define	IP_ESP_BUMP_STAT(ipss, x)					\
951 do {									\
952 	if ((ipss)->ipsec_kstats != NULL)				\
953 		((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++;	\
954 _NOTE(CONSTCOND)							\
955 } while (0)
956 
957 #define	IP_AH_BUMP_STAT(ipss, x)					\
958 do {									\
959 	if ((ipss)->ipsec_kstats != NULL)				\
960 		((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++;	\
961 _NOTE(CONSTCOND)							\
962 } while (0)
963 
964 #define	IP_ACQUIRE_STAT(ipss, val, new)					\
965 do {									\
966 	if ((ipss)->ipsec_kstats != NULL &&				\
967 	    ((uint64_t)(new)) >						\
968 	    ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64)	\
969 		((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
970 			((uint64_t)(new));				\
971 _NOTE(CONSTCOND)							\
972 } while (0)
973 
974 
975 #ifdef	__cplusplus
976 }
977 #endif
978 
979 #endif /* _INET_SADB_H */
980