1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2017 Joyent, Inc. 26 */ 27 28 #ifndef _INET_SADB_H 29 #define _INET_SADB_H 30 31 #ifdef __cplusplus 32 extern "C" { 33 #endif 34 35 #include <inet/ipsec_info.h> 36 #include <sys/crypto/common.h> 37 #include <sys/crypto/api.h> 38 #include <sys/note.h> 39 40 #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */ 41 42 #define MAXSALTSIZE 8 43 44 /* 45 * For combined mode ciphers, store the crypto_mechanism_t in the 46 * per-packet ipsec_in_t/ipsec_out_t structures. This is because the PARAMS 47 * and nonce values change for each packet. For non-combined mode 48 * ciphers, these values are constant for the life of the SA. 49 */ 50 typedef struct ipsa_cm_mech_s { 51 crypto_mechanism_t combined_mech; 52 union { 53 CK_AES_CCM_PARAMS paramu_ccm; 54 CK_AES_GCM_PARAMS paramu_gcm; 55 } paramu; 56 uint8_t nonce[MAXSALTSIZE + sizeof (uint64_t)]; 57 #define param_ulMACSize paramu.paramu_ccm.ulMACSize 58 #define param_ulNonceSize paramu.paramu_ccm.ipsa_ulNonceSize 59 #define param_ulAuthDataSize paramu.paramu_ccm.ipsa_ulAuthDataSize 60 #define param_ulDataSize paramu.paramu_ccm.ipsa_ulDataSize 61 #define param_nonce paramu.paramu_ccm.nonce 62 #define param_authData paramu.paramu_ccm.authData 63 #define param_pIv paramu.paramu_gcm.ipsa_pIv 64 #define param_ulIvLen paramu.paramu_gcm.ulIvLen 65 #define param_ulIvBits paramu.paramu_gcm.ulIvBits 66 #define param_pAAD paramu.paramu_gcm.pAAD 67 #define param_ulAADLen paramu.paramu_gcm.ulAADLen 68 #define param_ulTagBits paramu.paramu_gcm.ulTagBits 69 } ipsa_cm_mech_t; 70 71 /* 72 * The Initialization Vector (also known as IV or Nonce) used to 73 * initialize the Block Cipher, is made up of a Counter and a Salt. 74 * The Counter is fixed at 64 bits and is incremented for each packet. 75 * The Salt value can be any whole byte value upto 64 bits. This is 76 * algorithm mode specific and can be configured with ipsecalgs(1m). 77 * 78 * We only support whole byte salt lengths, this is because the salt is 79 * stored in an array of uint8_t's. This is enforced by ipsecalgs(1m) 80 * which configures the salt length as a number of bytes. Checks are 81 * made to ensure the salt length defined in ipsecalgs(1m) fits in 82 * the ipsec_nonce_t. 83 * 84 * The Salt value remains constant for the life of the SA, the Salt is 85 * know to both peers, but NOT transmitted on the network. The Counter 86 * portion of the nonce is transmitted over the network with each packet 87 * and is confusingly described as the Initialization Vector by RFCs 88 * 4309/4106. 89 * 90 * The maximum Initialization Vector length is 128 bits, if the actual 91 * size is less, its padded internally by the algorithm. 92 * 93 * The nonce structure is defined like this in the SA (ipsa_t)to ensure 94 * the Initilization Vector (counter) is 64 bit aligned, because it will 95 * be incremented as an uint64_t. The nonce as used by the algorithms is 96 * a straight uint8_t array. 97 * 98 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 99 * | | | | |x|x|x|x| | 100 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 101 * salt_offset <------> 102 * ipsa_saltlen <-------> 103 * ipsa_nonce_buf------^ 104 * ipsa_salt-------------~~~~~~^ 105 * ipsa_nonce------------~~~~~~^ 106 * ipsa_iv-----------------------------^ 107 */ 108 typedef struct ipsec_nonce_s { 109 uint8_t salt[MAXSALTSIZE]; 110 uint64_t iv; 111 } ipsec_nonce_t; 112 113 /* 114 * IP security association. Synchronization assumes 32-bit loads, so 115 * the 64-bit quantities can't even be be read w/o locking it down! 116 */ 117 118 /* keying info */ 119 typedef struct ipsa_key_s { 120 uint8_t *sak_key; /* Algorithm key. */ 121 uint_t sak_keylen; /* Algorithm key length (in bytes). */ 122 uint_t sak_keybits; /* Algorithm key length (in bits) */ 123 uint_t sak_algid; /* Algorithm ID number. */ 124 } ipsa_key_t; 125 126 typedef struct ipsa_s { 127 struct ipsa_s *ipsa_next; /* Next in hash bucket */ 128 struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */ 129 kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */ 130 void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */ 131 void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *, 132 uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *); 133 /* 134 * NOTE: I may need more pointers, depending on future SA 135 * requirements. 136 */ 137 ipsa_key_t ipsa_authkeydata; 138 #define ipsa_authkey ipsa_authkeydata.sak_key 139 #define ipsa_authkeylen ipsa_authkeydata.sak_keylen 140 #define ipsa_authkeybits ipsa_authkeydata.sak_keybits 141 #define ipsa_auth_alg ipsa_authkeydata.sak_algid 142 ipsa_key_t ipsa_encrkeydata; 143 #define ipsa_encrkey ipsa_encrkeydata.sak_key 144 #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen 145 #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits 146 #define ipsa_encr_alg ipsa_encrkeydata.sak_algid 147 148 struct ipsid_s *ipsa_src_cid; /* Source certificate identity */ 149 struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */ 150 mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */ 151 mblk_t *ipsa_bpkt_head; /* Packets received while idle */ 152 mblk_t *ipsa_bpkt_tail; 153 #define SADB_MAX_IDLEPKTS 100 154 uint8_t ipsa_mblkcnt; /* Number of packets received while idle */ 155 156 /* 157 * PF_KEYv2 supports a replay window size of 255. Hence there is a 158 * need a bit vector to support a replay window of 255. 256 is a nice 159 * round number, so I support that. 160 * 161 * Use an array of uint64_t for best performance on 64-bit 162 * processors. (And hope that 32-bit compilers can handle things 163 * okay.) The " >> 6 " is to get the appropriate number of 64-bit 164 * ints. 165 */ 166 #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */ 167 uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6]; 168 169 uint64_t ipsa_unique_id; /* Non-zero for unique SAs */ 170 uint64_t ipsa_unique_mask; /* mask value for unique_id */ 171 172 /* 173 * Reference count semantics: 174 * 175 * An SA has a reference count of 1 if something's pointing 176 * to it. This includes being in a hash table. So if an 177 * SA is in a hash table, it has a reference count of at least 1. 178 * 179 * When a ptr. to an IPSA is assigned, you MUST REFHOLD after 180 * said assignment. When a ptr. to an IPSA is released 181 * you MUST REFRELE. When the refcount hits 0, REFRELE 182 * will free the IPSA. 183 */ 184 kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */ 185 /* Q: Since I may be doing refcnts differently, will I need cv? */ 186 uint_t ipsa_refcnt; /* Reference count. */ 187 188 /* 189 * The following four time fields are the ones monitored by ah_ager() 190 * and esp_ager() respectively. They are all absolute wall-clock 191 * times. The times of creation (i.e. add time) and first use are 192 * pretty straightforward. The soft and hard expire times are 193 * derived from the times of first use and creation, plus the minimum 194 * expiration times in the fields that follow this. 195 * 196 * For example, if I had a hard add time of 30 seconds, and a hard 197 * use time of 15, the ipsa_hardexpiretime would be time of add, plus 198 * 30 seconds. If I USE the SA such that time of first use plus 15 199 * seconds would be earlier than the add time plus 30 seconds, then 200 * ipsa_hardexpiretime would become this earlier time. 201 */ 202 time_t ipsa_addtime; /* Time I was added. */ 203 time_t ipsa_usetime; /* Time of my first use. */ 204 time_t ipsa_lastuse; /* Time of my last use. */ 205 time_t ipsa_idletime; /* Seconds of idle time */ 206 time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */ 207 time_t ipsa_softexpiretime; /* Time of my first soft expire. */ 208 time_t ipsa_hardexpiretime; /* Time of my first hard expire. */ 209 time_t ipsa_idleexpiretime; /* Time of my next idle expire time */ 210 211 struct ipsec_nonce_s *ipsa_nonce_buf; 212 uint8_t *ipsa_nonce; 213 uint_t ipsa_nonce_len; 214 uint8_t *ipsa_salt; 215 uint_t ipsa_saltbits; 216 uint_t ipsa_saltlen; 217 uint64_t *ipsa_iv; 218 219 uint64_t ipsa_iv_hardexpire; 220 uint64_t ipsa_iv_softexpire; 221 /* 222 * The following fields are directly reflected in PF_KEYv2 LIFETIME 223 * extensions. The time_ts are in number-of-seconds, and the bytes 224 * are in... bytes. 225 */ 226 time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */ 227 time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */ 228 time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */ 229 time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */ 230 time_t ipsa_idleaddlt; /* Seconds of idle time after add */ 231 time_t ipsa_idleuselt; /* Seconds of idle time after first use */ 232 uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */ 233 uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */ 234 uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */ 235 236 /* 237 * "Allocations" are a concept mentioned in PF_KEYv2. We do not 238 * support them, except to record them per the PF_KEYv2 spec. 239 */ 240 uint_t ipsa_softalloc; /* Allocations allowed (soft). */ 241 uint_t ipsa_hardalloc; /* Allocations allowed (hard). */ 242 uint_t ipsa_alloc; /* Allocations made. */ 243 244 uint_t ipsa_type; /* Type of security association. (AH/etc.) */ 245 uint_t ipsa_state; /* State of my association. */ 246 uint_t ipsa_replay_wsize; /* Size of replay window */ 247 uint32_t ipsa_flags; /* Flags for security association. */ 248 uint32_t ipsa_spi; /* Security parameters index. */ 249 uint32_t ipsa_replay; /* Highest seen replay value for this SA. */ 250 uint32_t ipsa_kmp; /* key management proto */ 251 uint64_t ipsa_kmc; /* key management cookie (now 64-bit) */ 252 253 boolean_t ipsa_haspeer; /* Has peer in another table. */ 254 255 /* 256 * Address storage. 257 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc. 258 * 259 * Address families (per sys/socket.h) guide us. We could have just 260 * used sockaddr_storage 261 */ 262 sa_family_t ipsa_addrfam; 263 sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */ 264 265 uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN]; 266 uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN]; 267 uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN]; 268 uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN]; 269 270 uint8_t ipsa_innersrcpfx; 271 uint8_t ipsa_innerdstpfx; 272 273 uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */ 274 uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */ 275 uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */ 276 277 /* these can only be v4 */ 278 uint32_t ipsa_natt_addr_loc; 279 uint32_t ipsa_natt_addr_rem; 280 281 /* 282 * icmp type and code. *_end are to specify ranges. if only 283 * a single value, * and *_end are the same value. 284 */ 285 uint8_t ipsa_icmp_type; 286 uint8_t ipsa_icmp_type_end; 287 uint8_t ipsa_icmp_code; 288 uint8_t ipsa_icmp_code_end; 289 290 /* 291 * For the kernel crypto framework. 292 */ 293 crypto_key_t ipsa_kcfauthkey; /* authentication key */ 294 crypto_key_t ipsa_kcfencrkey; /* encryption key */ 295 crypto_ctx_template_t ipsa_authtmpl; /* auth context template */ 296 crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */ 297 crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */ 298 crypto_mechanism_t ipsa_emech; /* encr mech type */ 299 size_t ipsa_mac_len; /* auth MAC/ICV length */ 300 size_t ipsa_iv_len; /* encr IV length */ 301 size_t ipsa_datalen; /* block length in bytes. */ 302 303 /* 304 * Input and output processing functions called from IP. 305 * The mblk_t is the data; the IPsec information is in the attributes 306 * Returns NULL if the mblk is consumed which it is if there was 307 * a failure or if pending. If failure then 308 * the ipIfInDiscards/OutDiscards counters are increased. 309 */ 310 mblk_t *(*ipsa_output_func)(mblk_t *, ip_xmit_attr_t *); 311 mblk_t *(*ipsa_input_func)(mblk_t *, void *, ip_recv_attr_t *); 312 313 /* 314 * Soft reference to paired SA 315 */ 316 uint32_t ipsa_otherspi; 317 netstack_t *ipsa_netstack; /* Does not have a netstack_hold */ 318 319 ts_label_t *ipsa_tsl; /* MLS: label attributes */ 320 ts_label_t *ipsa_otsl; /* MLS: outer label */ 321 uint8_t ipsa_mac_exempt; /* MLS: mac exempt flag */ 322 uchar_t ipsa_opt_storage[IP_MAX_OPT_LENGTH]; 323 } ipsa_t; 324 325 /* 326 * ipsa_t address handling macros. We want these to be inlined, and deal 327 * with 32-bit words to avoid bcmp/bcopy calls. 328 * 329 * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume 330 * that we have 32-bit alignment on everything. 331 */ 332 #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \ 333 (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \ 334 ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0))) 335 #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \ 336 ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \ 337 (((fam) == AF_INET) || \ 338 (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \ 339 ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \ 340 ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1]))) 341 #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \ 342 ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \ 343 if ((fam) == AF_INET6) {\ 344 ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \ 345 ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \ 346 ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } } 347 348 /* 349 * ipsa_t reference hold/release macros. 350 * 351 * If you have a pointer, you REFHOLD. If you are releasing a pointer, you 352 * REFRELE. An ipsa_t that is newly inserted into the table should have 353 * a reference count of 1 (for the table's pointer), plus 1 more for every 354 * pointer that is referencing the ipsa_t. 355 */ 356 357 #define IPSA_REFHOLD(ipsa) { \ 358 atomic_inc_32(&(ipsa)->ipsa_refcnt); \ 359 ASSERT((ipsa)->ipsa_refcnt != 0); \ 360 } 361 362 /* 363 * Decrement the reference count on the SA. 364 * In architectures e.g sun4u, where atomic_add_32_nv is just 365 * a cas, we need to maintain the right memory barrier semantics 366 * as that of mutex_exit i.e all the loads and stores should complete 367 * before the cas is executed. membar_exit() does that here. 368 */ 369 370 #define IPSA_REFRELE(ipsa) { \ 371 ASSERT((ipsa)->ipsa_refcnt != 0); \ 372 membar_exit(); \ 373 if (atomic_dec_32_nv(&(ipsa)->ipsa_refcnt) == 0) \ 374 ((ipsa)->ipsa_freefunc)(ipsa); \ 375 } 376 377 /* 378 * Security association hash macros and definitions. For now, assume the 379 * IPsec model, and hash outbounds on destination address, and inbounds on 380 * SPI. 381 */ 382 383 #define IPSEC_DEFAULT_HASH_SIZE 256 384 385 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize)) 386 #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize)) 387 #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \ 388 (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \ 389 (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3))) 390 391 /* 392 * Syntactic sugar to find the appropriate hash bucket directly. 393 */ 394 395 #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)]) 396 #define OUTBOUND_BUCKET_V4(sadb, v4addr) \ 397 &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)]) 398 #define OUTBOUND_BUCKET_V6(sadb, v6addr) \ 399 &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)]) 400 401 #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */ 402 #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */ 403 /* backward compat. */ 404 #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */ 405 #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */ 406 #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */ 407 #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */ 408 #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */ 409 #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */ 410 411 #define IPSA_F_ASYNC 0x200000 /* Call KCF asynchronously? */ 412 #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC 413 #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM 414 #define IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED 415 #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \ 416 SADB_X_SAFLAGS_NATTED) 417 #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */ 418 #define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */ 419 #define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */ 420 #define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */ 421 #define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL 422 /* 423 * These flags are only defined here to prevent a flag value collision. 424 */ 425 #define IPSA_F_COMBINED SADB_X_SAFLAGS_EALG1 /* Defined in pfkeyv2.h */ 426 #define IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2 /* Defined in pfkeyv2.h */ 427 428 /* 429 * Sets of flags that are allowed to by set or modified by PF_KEY apps. 430 */ 431 #define AH_UPDATE_SETTABLE_FLAGS \ 432 (SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \ 433 SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \ 434 SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \ 435 SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4) 436 437 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */ 438 #define ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT) 439 440 #define AH_ADD_SETTABLE_FLAGS \ 441 (AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \ 442 SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \ 443 SADB_SAFLAGS_NOREPLAY) 444 445 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */ 446 #define ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \ 447 SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2) 448 449 450 451 /* SA states are important for handling UPDATE PF_KEY messages. */ 452 #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL 453 #define IPSA_STATE_MATURE SADB_SASTATE_MATURE 454 #define IPSA_STATE_DYING SADB_SASTATE_DYING 455 #define IPSA_STATE_DEAD SADB_SASTATE_DEAD 456 #define IPSA_STATE_IDLE SADB_X_SASTATE_IDLE 457 #define IPSA_STATE_ACTIVE_ELSEWHERE SADB_X_SASTATE_ACTIVE_ELSEWHERE 458 459 /* 460 * NOTE: If the document authors do things right in defining algorithms, we'll 461 * probably have flags for what all is here w.r.t. replay, ESP w/HMAC, 462 * etc. 463 */ 464 465 #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */ 466 #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */ 467 #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */ 468 469 #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */ 470 #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */ 471 #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */ 472 473 #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */ 474 #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC 475 #define IPSA_EALG_3DES SADB_EALG_3DESCBC 476 477 /* 478 * Protect each ipsa_t bucket (and linkage) with a lock. 479 */ 480 481 typedef struct isaf_s { 482 ipsa_t *isaf_ipsa; 483 kmutex_t isaf_lock; 484 uint64_t isaf_gen; 485 } isaf_t; 486 487 /* 488 * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound 489 * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record. 490 */ 491 492 #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */ 493 /* waiting for an ACQUIRE to finish. */ 494 495 typedef struct ipsacq_s { 496 struct ipsacq_s *ipsacq_next; 497 struct ipsacq_s **ipsacq_ptpn; 498 kmutex_t *ipsacq_linklock; 499 struct ipsec_policy_s *ipsacq_policy; 500 struct ipsec_action_s *ipsacq_act; 501 502 sa_family_t ipsacq_addrfam; /* Address family. */ 503 sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */ 504 int ipsacq_numpackets; /* How many packets queued up so far. */ 505 uint32_t ipsacq_seq; /* PF_KEY sequence number. */ 506 uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */ 507 508 kmutex_t ipsacq_lock; /* Protects non-linkage fields. */ 509 time_t ipsacq_expire; /* Wall-clock time when this record expires. */ 510 mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */ 511 512 /* These two point inside the last mblk inserted. */ 513 uint32_t *ipsacq_srcaddr; 514 uint32_t *ipsacq_dstaddr; 515 516 /* Cache these instead of point so we can mask off accordingly */ 517 uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN]; 518 uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN]; 519 520 /* These may change per-acquire. */ 521 uint16_t ipsacq_srcport; 522 uint16_t ipsacq_dstport; 523 uint8_t ipsacq_proto; 524 uint8_t ipsacq_inner_proto; 525 uint8_t ipsacq_innersrcpfx; 526 uint8_t ipsacq_innerdstpfx; 527 528 /* icmp type and code of triggering packet (if applicable) */ 529 uint8_t ipsacq_icmp_type; 530 uint8_t ipsacq_icmp_code; 531 532 /* label associated with triggering packet */ 533 ts_label_t *ipsacq_tsl; 534 } ipsacq_t; 535 536 /* 537 * Kernel-generated sequence numbers will be no less than 0x80000000 to 538 * forestall any cretinous problems with manual keying accidentally updating 539 * an ACQUIRE entry. 540 */ 541 #define IACQF_LOWEST_SEQ 0x80000000 542 543 #define SADB_AGE_INTERVAL_DEFAULT 8000 544 545 /* 546 * ACQUIRE fanout. Protect each linkage with a lock. 547 */ 548 549 typedef struct iacqf_s { 550 ipsacq_t *iacqf_ipsacq; 551 kmutex_t iacqf_lock; 552 } iacqf_t; 553 554 /* 555 * A (network protocol, ipsec protocol) specific SADB. 556 * (i.e., one each for {ah, esp} and {v4, v6}. 557 * 558 * Keep outbound assocs in a simple hash table for now. 559 * One danger point, multiple SAs for a single dest will clog a bucket. 560 * For the future, consider two-level hashing (2nd hash on IPC?), then probe. 561 */ 562 563 typedef struct sadb_s 564 { 565 isaf_t *sdb_of; 566 isaf_t *sdb_if; 567 iacqf_t *sdb_acq; 568 int sdb_hashsize; 569 } sadb_t; 570 571 /* 572 * A pair of SADB's (one for v4, one for v6), and related state. 573 */ 574 575 typedef struct sadbp_s 576 { 577 uint32_t s_satype; 578 uint32_t *s_acquire_timeout; 579 sadb_t s_v4; 580 sadb_t s_v6; 581 uint32_t s_addflags; 582 uint32_t s_updateflags; 583 } sadbp_t; 584 585 /* 586 * A pair of SA's for a single connection, the structure contains a 587 * pointer to a SA and the SA its paired with (opposite direction) as well 588 * as the SA's respective hash buckets. 589 */ 590 typedef struct ipsap_s 591 { 592 boolean_t in_inbound_table; 593 isaf_t *ipsap_bucket; 594 ipsa_t *ipsap_sa_ptr; 595 isaf_t *ipsap_pbucket; 596 ipsa_t *ipsap_psa_ptr; 597 } ipsap_t; 598 599 typedef struct templist_s 600 { 601 ipsa_t *ipsa; 602 struct templist_s *next; 603 } templist_t; 604 605 /* Pointer to an all-zeroes IPv6 address. */ 606 #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros) 607 608 /* 609 * Form unique id from ip_xmit_attr_t. 610 */ 611 #define SA_FORM_UNIQUE_ID(ixa) \ 612 SA_UNIQUE_ID((ixa)->ixa_ipsec_src_port, (ixa)->ixa_ipsec_dst_port, \ 613 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \ 614 ((ixa)->ixa_ipsec_inaf == AF_INET6 ? \ 615 IPPROTO_IPV6 : IPPROTO_ENCAP) : \ 616 (ixa)->ixa_ipsec_proto), \ 617 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \ 618 (ixa)->ixa_ipsec_proto : 0)) 619 620 /* 621 * This macro is used to generate unique ids (along with the addresses, both 622 * inner and outer) for outbound datagrams that require unique SAs. 623 * 624 * N.B. casts and unsigned shift amounts discourage unwarranted 625 * sign extension of dstport, proto, and iproto. 626 * 627 * Unique ID is 64-bits allocated as follows (pardon my big-endian bias): 628 * 629 * 6 4 43 33 11 630 * 3 7 09 21 65 0 631 * +---------------*-------+-------+--------------+---------------+ 632 * | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> | 633 * +---------------*-------+-------+--------------+---------------+ 634 * 635 * If there are inner addresses (tunnel mode) the ports come from the 636 * inner addresses. If there are no inner addresses, the ports come from 637 * the outer addresses (transport mode). Tunnel mode MUST have <proto> 638 * set to either IPPROTO_ENCAP or IPPPROTO_IPV6. 639 */ 640 #define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \ 641 ((srcport) | ((uint64_t)(dstport) << 16U) | \ 642 ((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U)) 643 644 /* 645 * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value 646 * from a packet to an SA. 647 */ 648 649 #define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \ 650 SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \ 651 (dstport != 0) ? 0xffff : 0, \ 652 (proto != 0) ? 0xff : 0, \ 653 (iproto != 0) ? 0xff : 0) 654 655 /* 656 * Decompose unique id back into its original fields. 657 */ 658 #define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff 659 #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff 660 #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff) 661 #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff) 662 663 typedef struct ipsa_query_s ipsa_query_t; 664 665 typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *); 666 667 #define IPSA_NMATCH 10 668 669 /* 670 * SADB query structure. 671 * 672 * Provide a generalized mechanism for matching entries in the SADB; 673 * one of these structures is initialized using sadb_form_query(), 674 * and then can be used as a parameter to sadb_match_query() which returns 675 * B_TRUE if the SA matches the query. 676 * 677 * Under the covers, sadb_form_query populates the matchers[] array with 678 * functions which are called one at a time until one fails to match. 679 */ 680 struct ipsa_query_s { 681 uint32_t req, match; 682 sadb_address_t *srcext, *dstext; 683 sadb_ident_t *srcid, *dstid; 684 sadb_x_kmc_t *kmcext; 685 sadb_sa_t *assoc; 686 uint32_t spi; 687 struct sockaddr_in *src; 688 struct sockaddr_in6 *src6; 689 struct sockaddr_in *dst; 690 struct sockaddr_in6 *dst6; 691 sa_family_t af; 692 uint32_t *srcaddr, *dstaddr; 693 uint32_t ifindex; 694 uint32_t kmp; 695 uint64_t kmc; 696 char *didstr, *sidstr; 697 uint16_t didtype, sidtype; 698 sadbp_t *spp; 699 sadb_t *sp; 700 isaf_t *inbound, *outbound; 701 uint32_t outhash; 702 uint32_t inhash; 703 ipsa_match_fn_t matchers[IPSA_NMATCH]; 704 }; 705 706 #define IPSA_Q_SA 0x00000001 707 #define IPSA_Q_DST 0x00000002 708 #define IPSA_Q_SRC 0x00000004 709 #define IPSA_Q_DSTID 0x00000008 710 #define IPSA_Q_SRCID 0x00000010 711 #define IPSA_Q_KMC 0x00000020 712 #define IPSA_Q_INBOUND 0x00000040 /* fill in inbound isaf_t */ 713 #define IPSA_Q_OUTBOUND 0x00000080 /* fill in outbound isaf_t */ 714 715 int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *); 716 boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa); 717 718 719 /* 720 * All functions that return an ipsa_t will return it with IPSA_REFHOLD() 721 * already called. 722 */ 723 724 /* SA retrieval (inbound and outbound) */ 725 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *, 726 sa_family_t); 727 ipsa_t *ipsec_getassocbyconn(isaf_t *, ip_xmit_attr_t *, uint32_t *, uint32_t *, 728 sa_family_t, uint8_t, ts_label_t *); 729 730 /* SA insertion. */ 731 int sadb_insertassoc(ipsa_t *, isaf_t *); 732 733 /* SA table construction and destruction. */ 734 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *); 735 void sadbp_flush(sadbp_t *, netstack_t *); 736 void sadbp_destroy(sadbp_t *, netstack_t *); 737 738 /* SA insertion and deletion. */ 739 int sadb_insertassoc(ipsa_t *, isaf_t *); 740 void sadb_unlinkassoc(ipsa_t *); 741 742 /* Support routines to interface a keysock consumer to PF_KEY. */ 743 mblk_t *sadb_keysock_out(minor_t); 744 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *); 745 int sadb_labelchk(struct keysock_in_s *); 746 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *, 747 ipsa_t *); 748 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t); 749 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *), 750 void *, timeout_id_t *, int); 751 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *); 752 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *); 753 int sadb_addrset(ire_t *); 754 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *, 755 uint8_t); 756 757 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *); 758 int sadb_common_add(queue_t *, mblk_t *, sadb_msg_t *, 759 keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *, 760 netstack_t *, sadbp_t *); 761 void sadb_set_usetime(ipsa_t *); 762 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t); 763 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *, 764 int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *), 765 netstack_t *, uint8_t); 766 void sadb_acquire(mblk_t *, ip_xmit_attr_t *, boolean_t, boolean_t); 767 void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *, 768 crypto_data_t *); 769 void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *, 770 crypto_data_t *); 771 void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *, 772 crypto_data_t *); 773 774 void sadb_destroy_acquire(ipsacq_t *, netstack_t *); 775 struct ipsec_stack; 776 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t); 777 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *); 778 boolean_t sadb_replay_check(ipsa_t *, uint32_t); 779 boolean_t sadb_replay_peek(ipsa_t *, uint32_t); 780 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *); 781 void sadb_replay_delete(ipsa_t *); 782 void sadb_ager(sadb_t *, queue_t *, int, netstack_t *); 783 784 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *, 785 uint_t *, uint_t, short); 786 void sadb_sa_refrele(void *target); 787 mblk_t *sadb_set_lpkt(ipsa_t *, mblk_t *, ip_recv_attr_t *); 788 mblk_t *sadb_clear_lpkt(ipsa_t *); 789 void sadb_buf_pkt(ipsa_t *, mblk_t *, ip_recv_attr_t *); 790 void sadb_clear_buf_pkt(void *ipkt); 791 792 /* Note that buf_pkt is the product of ip_recv_attr_to_mblk() */ 793 #define HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt) \ 794 { \ 795 if (buf_pkt != NULL) { \ 796 if (taskq_dispatch(taskq, sadb_clear_buf_pkt, \ 797 (void *) buf_pkt, TQ_NOSLEEP) == 0) { \ 798 /* Dispatch was unsuccessful drop the packets. */ \ 799 mblk_t *tmp; \ 800 while (buf_pkt != NULL) { \ 801 tmp = buf_pkt->b_next; \ 802 buf_pkt->b_next = NULL; \ 803 buf_pkt = ip_recv_attr_free_mblk(buf_pkt); \ 804 ip_drop_packet(buf_pkt, B_TRUE, NULL, \ 805 DROPPER(stack, \ 806 ipds_sadb_inidle_timeout), \ 807 &dropper); \ 808 buf_pkt = tmp; \ 809 } \ 810 } \ 811 } \ 812 } \ 813 814 /* 815 * Two IPsec rate-limiting routines. 816 */ 817 /*PRINTFLIKE6*/ 818 extern void ipsec_rl_strlog(netstack_t *, short, short, char, 819 ushort_t, char *, ...) 820 __KPRINTFLIKE(6); 821 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t, 822 void *, int, netstack_t *); 823 824 /* 825 * Algorithm types. 826 */ 827 828 #define IPSEC_NALGTYPES 2 829 830 typedef enum ipsec_algtype { 831 IPSEC_ALG_AUTH = 0, 832 IPSEC_ALG_ENCR = 1, 833 IPSEC_ALG_ALL = 2 834 } ipsec_algtype_t; 835 836 /* 837 * Definitions as per IPsec/ISAKMP DOI. 838 */ 839 840 #define IPSEC_MAX_ALGS 256 841 #define PROTO_IPSEC_AH 2 842 #define PROTO_IPSEC_ESP 3 843 844 /* 845 * Common algorithm info. 846 */ 847 typedef struct ipsec_alginfo 848 { 849 uint8_t alg_id; 850 uint8_t alg_flags; 851 uint16_t *alg_key_sizes; 852 uint16_t *alg_block_sizes; 853 uint16_t *alg_params; 854 uint16_t alg_nkey_sizes; 855 uint16_t alg_ivlen; 856 uint16_t alg_icvlen; 857 uint8_t alg_saltlen; 858 uint16_t alg_nblock_sizes; 859 uint16_t alg_nparams; 860 uint16_t alg_minbits; 861 uint16_t alg_maxbits; 862 uint16_t alg_datalen; 863 /* 864 * increment: number of bits from keysize to keysize 865 * default: # of increments from min to default key len 866 */ 867 uint16_t alg_increment; 868 uint16_t alg_default; 869 uint16_t alg_default_bits; 870 /* 871 * Min, max, and default key sizes effectively supported 872 * by the encryption framework. 873 */ 874 uint16_t alg_ef_minbits; 875 uint16_t alg_ef_maxbits; 876 uint16_t alg_ef_default; 877 uint16_t alg_ef_default_bits; 878 879 crypto_mech_type_t alg_mech_type; /* KCF mechanism type */ 880 crypto_mech_name_t alg_mech_name; /* KCF mechanism name */ 881 } ipsec_alginfo_t; 882 883 #define alg_datalen alg_block_sizes[0] 884 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID) 885 886 /* 887 * Software crypto execution mode. 888 */ 889 typedef enum { 890 IPSEC_ALGS_EXEC_SYNC = 0, 891 IPSEC_ALGS_EXEC_ASYNC = 1 892 } ipsec_algs_exec_mode_t; 893 894 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *); 895 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *); 896 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t, 897 netstack_t *ns); 898 extern void alg_flag_check(ipsec_alginfo_t *); 899 extern void ipsec_alg_free(ipsec_alginfo_t *); 900 extern void ipsec_register_prov_update(void); 901 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, netstack_t *); 902 903 extern int sadb_sens_len_from_label(ts_label_t *); 904 extern void sadb_sens_from_label(sadb_sens_t *, int, ts_label_t *, int); 905 906 /* 907 * Context templates management. 908 */ 909 910 #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1) 911 #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \ 912 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \ 913 mutex_enter(&assoc->ipsa_lock); \ 914 if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \ 915 ipsec_stack_t *ipss; \ 916 \ 917 ipss = assoc->ipsa_netstack->netstack_ipsec; \ 918 rw_enter(&ipss->ipsec_alg_lock, RW_READER); \ 919 (void) ipsec_create_ctx_tmpl(_sa, _type); \ 920 rw_exit(&ipss->ipsec_alg_lock); \ 921 } \ 922 mutex_exit(&assoc->ipsa_lock); \ 923 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \ 924 _tmpl = NULL; \ 925 } \ 926 } 927 928 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t); 929 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t); 930 931 /* key checking */ 932 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *); 933 934 typedef struct ipsec_kstats_s { 935 kstat_named_t esp_stat_in_requests; 936 kstat_named_t esp_stat_in_discards; 937 kstat_named_t esp_stat_lookup_failure; 938 kstat_named_t ah_stat_in_requests; 939 kstat_named_t ah_stat_in_discards; 940 kstat_named_t ah_stat_lookup_failure; 941 kstat_named_t sadb_acquire_maxpackets; 942 kstat_named_t sadb_acquire_qhiwater; 943 } ipsec_kstats_t; 944 945 /* 946 * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if 947 * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it 948 * fails, it will be NULL. Note this is done for all stack instances, 949 * so it *could* fail. hence a non-NULL checking is done for 950 * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT 951 */ 952 #define IP_ESP_BUMP_STAT(ipss, x) \ 953 do { \ 954 if ((ipss)->ipsec_kstats != NULL) \ 955 ((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \ 956 _NOTE(CONSTCOND) \ 957 } while (0) 958 959 #define IP_AH_BUMP_STAT(ipss, x) \ 960 do { \ 961 if ((ipss)->ipsec_kstats != NULL) \ 962 ((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \ 963 _NOTE(CONSTCOND) \ 964 } while (0) 965 966 #define IP_ACQUIRE_STAT(ipss, val, new) \ 967 do { \ 968 if ((ipss)->ipsec_kstats != NULL && \ 969 ((uint64_t)(new)) > \ 970 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \ 971 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \ 972 ((uint64_t)(new)); \ 973 _NOTE(CONSTCOND) \ 974 } while (0) 975 976 977 #ifdef __cplusplus 978 } 979 #endif 980 981 #endif /* _INET_SADB_H */ 982