1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #ifndef _INET_IPSEC_IMPL_H 28 #define _INET_IPSEC_IMPL_H 29 30 #include <inet/ip.h> 31 #include <inet/ipdrop.h> 32 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 37 #define IPSEC_CONF_SRC_ADDRESS 0 /* Source Address */ 38 #define IPSEC_CONF_SRC_PORT 1 /* Source Port */ 39 #define IPSEC_CONF_DST_ADDRESS 2 /* Dest Address */ 40 #define IPSEC_CONF_DST_PORT 3 /* Dest Port */ 41 #define IPSEC_CONF_SRC_MASK 4 /* Source Address Mask */ 42 #define IPSEC_CONF_DST_MASK 5 /* Destination Address Mask */ 43 #define IPSEC_CONF_ULP 6 /* Upper layer Port */ 44 #define IPSEC_CONF_IPSEC_PROT 7 /* AH or ESP or AH_ESP */ 45 #define IPSEC_CONF_IPSEC_AALGS 8 /* Auth Algorithms - MD5 etc. */ 46 #define IPSEC_CONF_IPSEC_EALGS 9 /* Encr Algorithms - DES etc. */ 47 #define IPSEC_CONF_IPSEC_EAALGS 10 /* Encr Algorithms - MD5 etc. */ 48 #define IPSEC_CONF_IPSEC_SA 11 /* Shared or unique SA */ 49 #define IPSEC_CONF_IPSEC_DIR 12 /* Direction of traffic */ 50 #define IPSEC_CONF_ICMP_TYPE 13 /* ICMP type */ 51 #define IPSEC_CONF_ICMP_CODE 14 /* ICMP code */ 52 #define IPSEC_CONF_NEGOTIATE 15 /* Negotiation */ 53 #define IPSEC_CONF_TUNNEL 16 /* Tunnel */ 54 55 /* Type of an entry */ 56 57 #define IPSEC_NTYPES 0x02 58 #define IPSEC_TYPE_OUTBOUND 0x00 59 #define IPSEC_TYPE_INBOUND 0x01 60 61 /* Policy */ 62 #define IPSEC_POLICY_APPLY 0x01 63 #define IPSEC_POLICY_DISCARD 0x02 64 #define IPSEC_POLICY_BYPASS 0x03 65 66 /* Shared or unique SA */ 67 #define IPSEC_SHARED_SA 0x01 68 #define IPSEC_UNIQUE_SA 0x02 69 70 /* IPsec protocols and combinations */ 71 #define IPSEC_AH_ONLY 0x01 72 #define IPSEC_ESP_ONLY 0x02 73 #define IPSEC_AH_ESP 0x03 74 75 /* 76 * Internally defined "any" algorithm. 77 * Move to PF_KEY v3 when that RFC is released. 78 */ 79 #define SADB_AALG_ANY 255 80 81 #ifdef _KERNEL 82 83 #include <inet/common.h> 84 #include <netinet/ip6.h> 85 #include <netinet/icmp6.h> 86 #include <net/pfkeyv2.h> 87 #include <inet/ip.h> 88 #include <inet/sadb.h> 89 #include <inet/ipsecah.h> 90 #include <inet/ipsecesp.h> 91 #include <sys/crypto/common.h> 92 #include <sys/crypto/api.h> 93 #include <sys/avl.h> 94 95 /* 96 * Maximum number of authentication algorithms (can be indexed by one byte 97 * per PF_KEY and the IKE IPsec DOI. 98 */ 99 #define MAX_AALGS 256 100 101 /* 102 * IPsec task queue constants. 103 */ 104 #define IPSEC_TASKQ_MIN 10 105 #define IPSEC_TASKQ_MAX 20 106 107 /* 108 * So we can access IPsec global variables that live in keysock.c. 109 */ 110 extern boolean_t keysock_extended_reg(netstack_t *); 111 extern uint32_t keysock_next_seq(netstack_t *); 112 113 /* 114 * Locking for ipsec policy rules: 115 * 116 * policy heads: system policy is static; per-conn polheads are dynamic, 117 * and refcounted (and inherited); use atomic refcounts and "don't let 118 * go with both hands". 119 * 120 * policy: refcounted; references from polhead, ipsec_out 121 * 122 * actions: refcounted; referenced from: action hash table, policy, ipsec_out 123 * selectors: refcounted; referenced from: selector hash table, policy. 124 */ 125 126 /* 127 * the following are inspired by, but not directly based on, 128 * some of the sys/queue.h type-safe pseudo-polymorphic macros 129 * found in BSD. 130 * 131 * XXX If we use these more generally, we'll have to make the names 132 * less generic (HASH_* will probably clobber other namespaces). 133 */ 134 135 #define HASH_LOCK(table, hash) \ 136 mutex_enter(&(table)[hash].hash_lock) 137 #define HASH_UNLOCK(table, hash) \ 138 mutex_exit(&(table)[hash].hash_lock) 139 140 #define HASH_LOCKED(table, hash) \ 141 MUTEX_HELD(&(table)[hash].hash_lock) 142 143 #define HASH_ITERATE(var, field, table, hash) \ 144 var = table[hash].hash_head; var != NULL; var = var->field.hash_next 145 146 #define HASH_NEXT(var, field) \ 147 (var)->field.hash_next 148 149 #define HASH_INSERT(var, field, table, hash) \ 150 { \ 151 ASSERT(HASH_LOCKED(table, hash)); \ 152 (var)->field.hash_next = (table)[hash].hash_head; \ 153 (var)->field.hash_pp = &(table)[hash].hash_head; \ 154 (table)[hash].hash_head = var; \ 155 if ((var)->field.hash_next != NULL) \ 156 (var)->field.hash_next->field.hash_pp = \ 157 &((var)->field.hash_next); \ 158 } 159 160 161 #define HASH_UNCHAIN(var, field, table, hash) \ 162 { \ 163 ASSERT(MUTEX_HELD(&(table)[hash].hash_lock)); \ 164 HASHLIST_UNCHAIN(var, field); \ 165 } 166 167 #define HASHLIST_INSERT(var, field, head) \ 168 { \ 169 (var)->field.hash_next = head; \ 170 (var)->field.hash_pp = &(head); \ 171 head = var; \ 172 if ((var)->field.hash_next != NULL) \ 173 (var)->field.hash_next->field.hash_pp = \ 174 &((var)->field.hash_next); \ 175 } 176 177 #define HASHLIST_UNCHAIN(var, field) \ 178 { \ 179 *var->field.hash_pp = var->field.hash_next; \ 180 if (var->field.hash_next) \ 181 var->field.hash_next->field.hash_pp = \ 182 var->field.hash_pp; \ 183 HASH_NULL(var, field); \ 184 } 185 186 187 #define HASH_NULL(var, field) \ 188 { \ 189 var->field.hash_next = NULL; \ 190 var->field.hash_pp = NULL; \ 191 } 192 193 #define HASH_LINK(fieldname, type) \ 194 struct { \ 195 type *hash_next; \ 196 type **hash_pp; \ 197 } fieldname 198 199 200 #define HASH_HEAD(tag) \ 201 struct { \ 202 struct tag *hash_head; \ 203 kmutex_t hash_lock; \ 204 } 205 206 207 typedef struct ipsec_policy_s ipsec_policy_t; 208 209 typedef HASH_HEAD(ipsec_policy_s) ipsec_policy_hash_t; 210 211 /* 212 * When adding new fields to ipsec_prot_t, make sure to update 213 * ipsec_in_to_out_action() as well as other code in spd.c 214 */ 215 216 typedef struct ipsec_prot 217 { 218 unsigned int 219 ipp_use_ah : 1, 220 ipp_use_esp : 1, 221 ipp_use_se : 1, 222 ipp_use_unique : 1, 223 ipp_use_espa : 1, 224 ipp_pad : 27; 225 uint8_t ipp_auth_alg; /* DOI number */ 226 uint8_t ipp_encr_alg; /* DOI number */ 227 uint8_t ipp_esp_auth_alg; /* DOI number */ 228 uint16_t ipp_ah_minbits; /* AH: min keylen */ 229 uint16_t ipp_ah_maxbits; /* AH: max keylen */ 230 uint16_t ipp_espe_minbits; /* ESP encr: min keylen */ 231 uint16_t ipp_espe_maxbits; /* ESP encr: max keylen */ 232 uint16_t ipp_espa_minbits; /* ESP auth: min keylen */ 233 uint16_t ipp_espa_maxbits; /* ESP auth: max keylen */ 234 uint32_t ipp_km_proto; /* key mgmt protocol */ 235 uint32_t ipp_km_cookie; /* key mgmt cookie */ 236 uint32_t ipp_replay_depth; /* replay window */ 237 /* XXX add lifetimes */ 238 } ipsec_prot_t; 239 240 #define IPSEC_MAX_KEYBITS (0xffff) 241 242 /* 243 * An individual policy action, possibly a member of a chain. 244 * 245 * Action chains may be shared between multiple policy rules. 246 * 247 * With one exception (IPSEC_POLICY_LOG), a chain consists of an 248 * ordered list of alternative ways to handle a packet. 249 * 250 * All actions are also "interned" into a hash table (to allow 251 * multiple rules with the same action chain to share one copy in 252 * memory). 253 */ 254 255 typedef struct ipsec_act 256 { 257 uint8_t ipa_type; 258 uint8_t ipa_log; 259 union 260 { 261 ipsec_prot_t ipau_apply; 262 uint8_t ipau_reject_type; 263 uint32_t ipau_resolve_id; /* magic cookie */ 264 uint8_t ipau_log_type; 265 } ipa_u; 266 #define ipa_apply ipa_u.ipau_apply 267 #define ipa_reject_type ipa_u.ipau_reject_type 268 #define ipa_log_type ipa_u.ipau_log_type 269 #define ipa_resolve_type ipa_u.ipau_resolve_type 270 } ipsec_act_t; 271 272 #define IPSEC_ACT_APPLY 0x01 /* match IPSEC_POLICY_APPLY */ 273 #define IPSEC_ACT_DISCARD 0x02 /* match IPSEC_POLICY_DISCARD */ 274 #define IPSEC_ACT_BYPASS 0x03 /* match IPSEC_POLICY_BYPASS */ 275 #define IPSEC_ACT_REJECT 0x04 276 #define IPSEC_ACT_CLEAR 0x05 277 278 typedef struct ipsec_action_s 279 { 280 HASH_LINK(ipa_hash, struct ipsec_action_s); 281 struct ipsec_action_s *ipa_next; /* next alternative */ 282 uint32_t ipa_refs; /* refcount */ 283 ipsec_act_t ipa_act; 284 /* 285 * The following bits are equivalent to an OR of bits included in the 286 * ipau_apply fields of this and subsequent actions in an 287 * action chain; this is an optimization for the sake of 288 * ipsec_out_process() in ip.c and a few other places. 289 */ 290 unsigned int 291 ipa_hval: 8, 292 ipa_allow_clear:1, /* rule allows cleartext? */ 293 ipa_want_ah:1, /* an action wants ah */ 294 ipa_want_esp:1, /* an action wants esp */ 295 ipa_want_se:1, /* an action wants se */ 296 ipa_want_unique:1, /* want unique sa's */ 297 ipa_pad:19; 298 uint32_t ipa_ovhd; /* per-packet encap ovhd */ 299 } ipsec_action_t; 300 301 #define IPACT_REFHOLD(ipa) { \ 302 atomic_inc_32(&(ipa)->ipa_refs); \ 303 ASSERT((ipa)->ipa_refs != 0); \ 304 } 305 #define IPACT_REFRELE(ipa) { \ 306 ASSERT((ipa)->ipa_refs != 0); \ 307 membar_exit(); \ 308 if (atomic_dec_32_nv(&(ipa)->ipa_refs) == 0) \ 309 ipsec_action_free(ipa); \ 310 (ipa) = 0; \ 311 } 312 313 /* 314 * For now, use a trivially sized hash table for actions. 315 * In the future we can add the structure canonicalization necessary 316 * to get the hash function to behave correctly.. 317 */ 318 #define IPSEC_ACTION_HASH_SIZE 1 319 320 /* 321 * Merged address structure, for cheezy address-family independent 322 * matches in policy code. 323 */ 324 325 typedef union ipsec_addr 326 { 327 in6_addr_t ipsad_v6; 328 in_addr_t ipsad_v4; 329 } ipsec_addr_t; 330 331 /* 332 * ipsec selector set, as used by the kernel policy structures. 333 * Note that that we specify "local" and "remote" 334 * rather than "source" and "destination", which allows the selectors 335 * for symmetric policy rules to be shared between inbound and 336 * outbound rules. 337 * 338 * "local" means "destination" on inbound, and "source" on outbound. 339 * "remote" means "source" on inbound, and "destination" on outbound. 340 * XXX if we add a fifth policy enforcement point for forwarded packets, 341 * what do we do? 342 * 343 * The ipsl_valid mask is not done as a bitfield; this is so we 344 * can use "ffs()" to find the "most interesting" valid tag. 345 * 346 * XXX should we have multiple types for space-conservation reasons? 347 * (v4 vs v6? prefix vs. range)? 348 */ 349 350 typedef struct ipsec_selkey 351 { 352 uint32_t ipsl_valid; /* bitmask of valid entries */ 353 #define IPSL_REMOTE_ADDR 0x00000001 354 #define IPSL_LOCAL_ADDR 0x00000002 355 #define IPSL_REMOTE_PORT 0x00000004 356 #define IPSL_LOCAL_PORT 0x00000008 357 #define IPSL_PROTOCOL 0x00000010 358 #define IPSL_ICMP_TYPE 0x00000020 359 #define IPSL_ICMP_CODE 0x00000040 360 #define IPSL_IPV6 0x00000080 361 #define IPSL_IPV4 0x00000100 362 363 #define IPSL_WILDCARD 0x0000007f 364 365 ipsec_addr_t ipsl_local; 366 ipsec_addr_t ipsl_remote; 367 uint16_t ipsl_lport; 368 uint16_t ipsl_rport; 369 /* 370 * ICMP type and code selectors. Both have an end value to 371 * specify ranges, or * and *_end are equal for a single 372 * value 373 */ 374 uint8_t ipsl_icmp_type; 375 uint8_t ipsl_icmp_type_end; 376 uint8_t ipsl_icmp_code; 377 uint8_t ipsl_icmp_code_end; 378 379 uint8_t ipsl_proto; /* ip payload type */ 380 uint8_t ipsl_local_pfxlen; /* #bits of prefix */ 381 uint8_t ipsl_remote_pfxlen; /* #bits of prefix */ 382 uint8_t ipsl_mbz; 383 384 /* Insert new elements above this line */ 385 uint32_t ipsl_pol_hval; 386 uint32_t ipsl_sel_hval; 387 } ipsec_selkey_t; 388 389 typedef struct ipsec_sel 390 { 391 HASH_LINK(ipsl_hash, struct ipsec_sel); 392 uint32_t ipsl_refs; /* # refs to this sel */ 393 ipsec_selkey_t ipsl_key; /* actual selector guts */ 394 } ipsec_sel_t; 395 396 /* 397 * One policy rule. This will be linked into a single hash chain bucket in 398 * the parent rule structure. If the selector is simple enough to 399 * allow hashing, it gets filed under ipsec_policy_root_t->ipr_hash. 400 * Otherwise it goes onto a linked list in ipsec_policy_root_t->ipr_nonhash[af] 401 * 402 * In addition, we file the rule into an avl tree keyed by the rule index. 403 * (Duplicate rules are permitted; the comparison function breaks ties). 404 */ 405 struct ipsec_policy_s 406 { 407 HASH_LINK(ipsp_hash, struct ipsec_policy_s); 408 avl_node_t ipsp_byid; 409 uint64_t ipsp_index; /* unique id */ 410 uint32_t ipsp_prio; /* rule priority */ 411 uint32_t ipsp_refs; 412 ipsec_sel_t *ipsp_sel; /* selector set (shared) */ 413 ipsec_action_t *ipsp_act; /* action (may be shared) */ 414 netstack_t *ipsp_netstack; /* No netstack_hold */ 415 }; 416 417 #define IPPOL_REFHOLD(ipp) { \ 418 atomic_inc_32(&(ipp)->ipsp_refs); \ 419 ASSERT((ipp)->ipsp_refs != 0); \ 420 } 421 #define IPPOL_REFRELE(ipp) { \ 422 ASSERT((ipp)->ipsp_refs != 0); \ 423 membar_exit(); \ 424 if (atomic_dec_32_nv(&(ipp)->ipsp_refs) == 0) \ 425 ipsec_policy_free(ipp); \ 426 (ipp) = 0; \ 427 } 428 429 #define IPPOL_UNCHAIN(php, ip) \ 430 HASHLIST_UNCHAIN((ip), ipsp_hash); \ 431 avl_remove(&(php)->iph_rulebyid, (ip)); \ 432 IPPOL_REFRELE(ip); 433 434 /* 435 * Policy ruleset. One per (protocol * direction) for system policy. 436 */ 437 438 #define IPSEC_AF_V4 0 439 #define IPSEC_AF_V6 1 440 #define IPSEC_NAF 2 441 442 typedef struct ipsec_policy_root_s 443 { 444 ipsec_policy_t *ipr_nonhash[IPSEC_NAF]; 445 int ipr_nchains; 446 ipsec_policy_hash_t *ipr_hash; 447 } ipsec_policy_root_t; 448 449 /* 450 * Policy head. One for system policy; there may also be one present 451 * on ill_t's with interface-specific policy, as well as one present 452 * for sockets with per-socket policy allocated. 453 */ 454 455 typedef struct ipsec_policy_head_s 456 { 457 uint32_t iph_refs; 458 krwlock_t iph_lock; 459 uint64_t iph_gen; /* generation number */ 460 ipsec_policy_root_t iph_root[IPSEC_NTYPES]; 461 avl_tree_t iph_rulebyid; 462 } ipsec_policy_head_t; 463 464 #define IPPH_REFHOLD(iph) { \ 465 atomic_inc_32(&(iph)->iph_refs); \ 466 ASSERT((iph)->iph_refs != 0); \ 467 } 468 #define IPPH_REFRELE(iph, ns) { \ 469 ASSERT((iph)->iph_refs != 0); \ 470 membar_exit(); \ 471 if (atomic_dec_32_nv(&(iph)->iph_refs) == 0) \ 472 ipsec_polhead_free(iph, ns); \ 473 (iph) = 0; \ 474 } 475 476 /* 477 * IPsec fragment related structures 478 */ 479 480 typedef struct ipsec_fragcache_entry { 481 struct ipsec_fragcache_entry *itpfe_next; /* hash list chain */ 482 mblk_t *itpfe_fraglist; /* list of fragments */ 483 time_t itpfe_exp; /* time when entry is stale */ 484 int itpfe_depth; /* # of fragments in list */ 485 ipsec_addr_t itpfe_frag_src; 486 ipsec_addr_t itpfe_frag_dst; 487 #define itpfe_src itpfe_frag_src.ipsad_v4 488 #define itpfe_src6 itpfe_frag_src.ipsad_v6 489 #define itpfe_dst itpfe_frag_dst.ipsad_v4 490 #define itpfe_dst6 itpfe_frag_dst.ipsad_v6 491 uint32_t itpfe_id; /* IP datagram ID */ 492 uint8_t itpfe_proto; /* IP Protocol */ 493 uint8_t itpfe_last; /* Last packet */ 494 } ipsec_fragcache_entry_t; 495 496 typedef struct ipsec_fragcache { 497 kmutex_t itpf_lock; 498 struct ipsec_fragcache_entry **itpf_ptr; 499 struct ipsec_fragcache_entry *itpf_freelist; 500 time_t itpf_expire_hint; /* time when oldest entry is stale */ 501 } ipsec_fragcache_t; 502 503 /* 504 * Tunnel policies. We keep a minature of the transport-mode/global policy 505 * per each tunnel instance. 506 * 507 * People who need both an itp held down AND one of its polheads need to 508 * first lock the itp, THEN the polhead, otherwise deadlock WILL occur. 509 */ 510 typedef struct ipsec_tun_pol_s { 511 avl_node_t itp_node; 512 kmutex_t itp_lock; 513 uint64_t itp_next_policy_index; 514 ipsec_policy_head_t *itp_policy; 515 ipsec_policy_head_t *itp_inactive; 516 uint32_t itp_flags; 517 uint32_t itp_refcnt; 518 char itp_name[LIFNAMSIZ]; 519 ipsec_fragcache_t itp_fragcache; 520 } ipsec_tun_pol_t; 521 /* NOTE - Callers (tun code) synchronize their own instances for these flags. */ 522 #define ITPF_P_ACTIVE 0x1 /* Are we using IPsec right now? */ 523 #define ITPF_P_TUNNEL 0x2 /* Negotiate tunnel-mode */ 524 /* Optimization -> Do we have per-port security entries in this polhead? */ 525 #define ITPF_P_PER_PORT_SECURITY 0x4 526 #define ITPF_PFLAGS 0x7 527 #define ITPF_SHIFT 3 528 529 #define ITPF_I_ACTIVE 0x8 /* Is the inactive using IPsec right now? */ 530 #define ITPF_I_TUNNEL 0x10 /* Negotiate tunnel-mode (on inactive) */ 531 /* Optimization -> Do we have per-port security entries in this polhead? */ 532 #define ITPF_I_PER_PORT_SECURITY 0x20 533 #define ITPF_IFLAGS 0x38 534 535 /* NOTE: f cannot be an expression. */ 536 #define ITPF_CLONE(f) (f) = (((f) & ITPF_PFLAGS) | \ 537 (((f) & ITPF_PFLAGS) << ITPF_SHIFT)); 538 #define ITPF_SWAP(f) (f) = ((((f) & ITPF_PFLAGS) << ITPF_SHIFT) | \ 539 (((f) & ITPF_IFLAGS) >> ITPF_SHIFT)) 540 541 #define ITP_P_ISACTIVE(itp, iph) ((itp)->itp_flags & \ 542 (((itp)->itp_policy == (iph)) ? ITPF_P_ACTIVE : ITPF_I_ACTIVE)) 543 544 #define ITP_P_ISTUNNEL(itp, iph) ((itp)->itp_flags & \ 545 (((itp)->itp_policy == (iph)) ? ITPF_P_TUNNEL : ITPF_I_TUNNEL)) 546 547 #define ITP_P_ISPERPORT(itp, iph) ((itp)->itp_flags & \ 548 (((itp)->itp_policy == (iph)) ? ITPF_P_PER_PORT_SECURITY : \ 549 ITPF_I_PER_PORT_SECURITY)) 550 551 #define ITP_REFHOLD(itp) { \ 552 atomic_inc_32(&((itp)->itp_refcnt)); \ 553 ASSERT((itp)->itp_refcnt != 0); \ 554 } 555 556 #define ITP_REFRELE(itp, ns) { \ 557 ASSERT((itp)->itp_refcnt != 0); \ 558 membar_exit(); \ 559 if (atomic_dec_32_nv(&((itp)->itp_refcnt)) == 0) \ 560 itp_free(itp, ns); \ 561 } 562 563 /* 564 * Certificate identity. 565 */ 566 567 typedef struct ipsid_s 568 { 569 struct ipsid_s *ipsid_next; 570 struct ipsid_s **ipsid_ptpn; 571 uint32_t ipsid_refcnt; 572 int ipsid_type; /* id type */ 573 char *ipsid_cid; /* certificate id string */ 574 } ipsid_t; 575 576 /* 577 * ipsid_t reference hold/release macros, just like ipsa versions. 578 */ 579 580 #define IPSID_REFHOLD(ipsid) { \ 581 atomic_inc_32(&(ipsid)->ipsid_refcnt); \ 582 ASSERT((ipsid)->ipsid_refcnt != 0); \ 583 } 584 585 /* 586 * Decrement the reference count on the ID. Someone else will clean up 587 * after us later. 588 */ 589 590 #define IPSID_REFRELE(ipsid) { \ 591 membar_exit(); \ 592 atomic_dec_32(&(ipsid)->ipsid_refcnt); \ 593 } 594 595 /* 596 * Following are the estimates of what the maximum AH and ESP header size 597 * would be. This is used to tell the upper layer the right value of MSS 598 * it should use without consulting AH/ESP. If the size is something 599 * different from this, ULP will learn the right one through 600 * ICMP_FRAGMENTATION_NEEDED messages generated locally. 601 * 602 * AH : 12 bytes of constant header + 32 bytes of ICV checksum (SHA-512). 603 */ 604 #define IPSEC_MAX_AH_HDR_SIZE (44) 605 606 /* 607 * ESP : Is a bit more complex... 608 * 609 * A system of one inequality and one equation MUST be solved for proper ESP 610 * overhead. The inequality is: 611 * 612 * MTU - sizeof (IP header + options) >= 613 * sizeof (esph_t) + sizeof (IV or ctr) + data-size + 2 + ICV 614 * 615 * IV or counter is almost always the cipher's block size. The equation is: 616 * 617 * data-size % block-size = (block-size - 2) 618 * 619 * so we can put as much data into the datagram as possible. If we are 620 * pessimistic and include our largest overhead cipher (AES) and hash 621 * (SHA-512), and assume 1500-byte MTU minus IPv4 overhead of 20 bytes, we get: 622 * 623 * 1480 >= 8 + 16 + data-size + 2 + 32 624 * 1480 >= 58 + data-size 625 * 1422 >= data-size, 1422 % 16 = 14, so 58 is the overhead! 626 * 627 * But, let's re-run the numbers with the same algorithms, but with an IPv6 628 * header: 629 * 630 * 1460 >= 58 + data-size 631 * 1402 >= data-size, 1402 % 16 = 10, meaning shrink to 1390 to get 14, 632 * 633 * which means the overhead is now 70. 634 * 635 * Hmmm... IPv4 headers can never be anything other than multiples of 4-bytes, 636 * and IPv6 ones can never be anything other than multiples of 8-bytes. We've 637 * seen overheads of 58 and 70. 58 % 16 == 10, and 70 % 16 == 6. IPv4 could 638 * force us to have 62 ( % 16 == 14) or 66 ( % 16 == 2), or IPv6 could force us 639 * to have 78 ( % 16 = 14). Let's compute IPv6 + 8-bytes of options: 640 * 641 * 1452 >= 58 + data-size 642 * 1394 >= data-size, 1394 % 16 = 2, meaning shrink to 1390 to get 14, 643 * 644 * Aha! The "ESP overhead" shrinks to 62 (70 - 8). This is good. Let's try 645 * IPv4 + 8 bytes of IPv4 options: 646 * 647 * 1472 >= 58 + data-size 648 * 1414 >= data-size, 1414 % 16 = 6, meaning shrink to 1406, 649 * 650 * meaning 66 is the overhead. Let's try 12 bytes: 651 * 652 * 1468 >= 58 + data-size 653 * 1410 >= data-size, 1410 % 16 = 2, meaning also shrink to 1406, 654 * 655 * meaning 62 is the overhead. How about 16 bytes? 656 * 657 * 1464 >= 58 + data-size 658 * 1406 >= data-size, 1402 % 16 = 14, which is great! 659 * 660 * this means 58 is the overhead. If I wrap and add 20 bytes, it looks just 661 * like IPv6's 70 bytes. If I add 24, we go back to 66 bytes. 662 * 663 * So picking 70 is a sensible, conservative default. Optimal calculations 664 * will depend on knowing pre-ESP header length (called "divpoint" in the ESP 665 * code), which could be cached in the conn_t for connected endpoints, or 666 * which must be computed on every datagram otherwise. 667 */ 668 #define IPSEC_MAX_ESP_HDR_SIZE (70) 669 670 /* 671 * Alternate, when we know the crypto block size via the SA. Assume an ICV on 672 * the SA. Use: 673 * 674 * sizeof (esph_t) + 2 * (sizeof (IV/counter)) - 2 + sizeof (ICV). The "-2" 675 * discounts the overhead of the pad + padlen that gets swallowed up by the 676 * second (theoretically all-pad) cipher-block. If you use our examples of 677 * AES and SHA512, you get: 678 * 679 * 8 + 32 - 2 + 32 == 70. 680 * 681 * Which is our pre-computed maximum above. 682 */ 683 #include <inet/ipsecesp.h> 684 #define IPSEC_BASE_ESP_HDR_SIZE(sa) \ 685 (sizeof (esph_t) + ((sa)->ipsa_iv_len << 1) - 2 + (sa)->ipsa_mac_len) 686 687 /* 688 * Identity hash table. 689 * 690 * Identities are refcounted and "interned" into the hash table. 691 * Only references coming from other objects (SA's, latching state) 692 * are counted in ipsid_refcnt. 693 * 694 * Locking: IPSID_REFHOLD is safe only when (a) the object's hash bucket 695 * is locked, (b) we know that the refcount must be > 0. 696 * 697 * The ipsid_next and ipsid_ptpn fields are only to be referenced or 698 * modified when the bucket lock is held; in particular, we only 699 * delete objects while holding the bucket lock, and we only increase 700 * the refcount from 0 to 1 while the bucket lock is held. 701 */ 702 703 #define IPSID_HASHSIZE 64 704 705 typedef struct ipsif_s 706 { 707 ipsid_t *ipsif_head; 708 kmutex_t ipsif_lock; 709 } ipsif_t; 710 711 /* 712 * For call to the kernel crypto framework. State needed during 713 * the execution of a crypto request. 714 */ 715 typedef struct ipsec_crypto_s { 716 size_t ic_skip_len; /* len to skip for AH auth */ 717 crypto_data_t ic_crypto_data; /* single op crypto data */ 718 crypto_dual_data_t ic_crypto_dual_data; /* for dual ops */ 719 crypto_data_t ic_crypto_mac; /* to store the MAC */ 720 ipsa_cm_mech_t ic_cmm; 721 } ipsec_crypto_t; 722 723 /* 724 * IPsec stack instances 725 */ 726 struct ipsec_stack { 727 netstack_t *ipsec_netstack; /* Common netstack */ 728 729 /* Packet dropper for IP IPsec processing failures */ 730 ipdropper_t ipsec_dropper; 731 732 /* From spd.c */ 733 /* 734 * Policy rule index generator. We assume this won't wrap in the 735 * lifetime of a system. If we make 2^20 policy changes per second, 736 * this will last 2^44 seconds, or roughly 500,000 years, so we don't 737 * have to worry about reusing policy index values. 738 */ 739 uint64_t ipsec_next_policy_index; 740 741 HASH_HEAD(ipsec_action_s) ipsec_action_hash[IPSEC_ACTION_HASH_SIZE]; 742 HASH_HEAD(ipsec_sel) *ipsec_sel_hash; 743 uint32_t ipsec_spd_hashsize; 744 745 ipsif_t ipsec_ipsid_buckets[IPSID_HASHSIZE]; 746 747 /* 748 * Active & Inactive system policy roots 749 */ 750 ipsec_policy_head_t ipsec_system_policy; 751 ipsec_policy_head_t ipsec_inactive_policy; 752 753 /* Packet dropper for generic SPD drops. */ 754 ipdropper_t ipsec_spd_dropper; 755 756 /* ipdrop.c */ 757 kstat_t *ipsec_ip_drop_kstat; 758 struct ip_dropstats *ipsec_ip_drop_types; 759 760 /* spd.c */ 761 /* 762 * Have a counter for every possible policy message in 763 * ipsec_policy_failure_msgs 764 */ 765 uint32_t ipsec_policy_failure_count[IPSEC_POLICY_MAX]; 766 /* Time since last ipsec policy failure that printed a message. */ 767 hrtime_t ipsec_policy_failure_last; 768 769 /* ip_spd.c */ 770 /* stats */ 771 kstat_t *ipsec_ksp; 772 struct ipsec_kstats_s *ipsec_kstats; 773 774 /* sadb.c */ 775 /* Packet dropper for generic SADB drops. */ 776 ipdropper_t ipsec_sadb_dropper; 777 778 /* spd.c */ 779 boolean_t ipsec_inbound_v4_policy_present; 780 boolean_t ipsec_outbound_v4_policy_present; 781 boolean_t ipsec_inbound_v6_policy_present; 782 boolean_t ipsec_outbound_v6_policy_present; 783 784 /* spd.c */ 785 /* 786 * Because policy needs to know what algorithms are supported, keep the 787 * lists of algorithms here. 788 */ 789 krwlock_t ipsec_alg_lock; 790 791 uint8_t ipsec_nalgs[IPSEC_NALGTYPES]; 792 ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS]; 793 794 uint8_t ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS]; 795 796 int ipsec_algs_exec_mode[IPSEC_NALGTYPES]; 797 798 uint32_t ipsec_tun_spd_hashsize; 799 /* 800 * Tunnel policies - AVL tree indexed by tunnel name. 801 */ 802 krwlock_t ipsec_tunnel_policy_lock; 803 uint64_t ipsec_tunnel_policy_gen; 804 avl_tree_t ipsec_tunnel_policies; 805 806 /* ipsec_loader.c */ 807 kmutex_t ipsec_loader_lock; 808 int ipsec_loader_state; 809 int ipsec_loader_sig; 810 kt_did_t ipsec_loader_tid; 811 kcondvar_t ipsec_loader_sig_cv; /* For loader_sig conditions. */ 812 813 }; 814 typedef struct ipsec_stack ipsec_stack_t; 815 816 /* Handle the kstat_create in ip_drop_init() failing */ 817 #define DROPPER(_ipss, _dropper) \ 818 (((_ipss)->ipsec_ip_drop_types == NULL) ? NULL : \ 819 &((_ipss)->ipsec_ip_drop_types->_dropper)) 820 821 /* 822 * Loader states.. 823 */ 824 #define IPSEC_LOADER_WAIT 0 825 #define IPSEC_LOADER_FAILED -1 826 #define IPSEC_LOADER_SUCCEEDED 1 827 828 /* 829 * ipsec_loader entrypoints. 830 */ 831 extern void ipsec_loader_init(ipsec_stack_t *); 832 extern void ipsec_loader_start(ipsec_stack_t *); 833 extern void ipsec_loader_destroy(ipsec_stack_t *); 834 extern void ipsec_loader_loadnow(ipsec_stack_t *); 835 extern boolean_t ipsec_loader_wait(queue_t *q, ipsec_stack_t *); 836 extern boolean_t ipsec_loaded(ipsec_stack_t *); 837 extern boolean_t ipsec_failed(ipsec_stack_t *); 838 839 /* 840 * ipsec policy entrypoints (spd.c) 841 */ 842 843 extern void ipsec_policy_g_destroy(void); 844 extern void ipsec_policy_g_init(void); 845 846 extern mblk_t *ipsec_add_crypto_data(mblk_t *, ipsec_crypto_t **); 847 extern mblk_t *ipsec_remove_crypto_data(mblk_t *, ipsec_crypto_t **); 848 extern mblk_t *ipsec_free_crypto_data(mblk_t *); 849 extern int ipsec_alloc_table(ipsec_policy_head_t *, int, int, boolean_t, 850 netstack_t *); 851 extern void ipsec_polhead_init(ipsec_policy_head_t *, int); 852 extern void ipsec_polhead_destroy(ipsec_policy_head_t *); 853 extern void ipsec_polhead_free_table(ipsec_policy_head_t *); 854 extern mblk_t *ipsec_check_global_policy(mblk_t *, conn_t *, ipha_t *, 855 ip6_t *, ip_recv_attr_t *, netstack_t *ns); 856 extern mblk_t *ipsec_check_inbound_policy(mblk_t *, conn_t *, ipha_t *, ip6_t *, 857 ip_recv_attr_t *); 858 859 extern boolean_t ipsec_in_to_out(ip_recv_attr_t *, ip_xmit_attr_t *, 860 mblk_t *, ipha_t *, ip6_t *); 861 extern void ipsec_in_release_refs(ip_recv_attr_t *); 862 extern void ipsec_out_release_refs(ip_xmit_attr_t *); 863 extern void ipsec_log_policy_failure(int, char *, ipha_t *, ip6_t *, boolean_t, 864 netstack_t *); 865 extern boolean_t ipsec_inbound_accept_clear(mblk_t *, ipha_t *, ip6_t *); 866 extern int ipsec_conn_cache_policy(conn_t *, boolean_t); 867 extern void ipsec_cache_outbound_policy(const conn_t *, const in6_addr_t *, 868 const in6_addr_t *, in_port_t, ip_xmit_attr_t *); 869 extern boolean_t ipsec_outbound_policy_current(ip_xmit_attr_t *); 870 extern ipsec_action_t *ipsec_in_to_out_action(ip_recv_attr_t *); 871 extern void ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira); 872 873 extern void ipsec_policy_free(ipsec_policy_t *); 874 extern void ipsec_action_free(ipsec_action_t *); 875 extern void ipsec_polhead_free(ipsec_policy_head_t *, netstack_t *); 876 extern ipsec_policy_head_t *ipsec_polhead_split(ipsec_policy_head_t *, 877 netstack_t *); 878 extern ipsec_policy_head_t *ipsec_polhead_create(void); 879 extern ipsec_policy_head_t *ipsec_system_policy(netstack_t *); 880 extern ipsec_policy_head_t *ipsec_inactive_policy(netstack_t *); 881 extern void ipsec_swap_policy(ipsec_policy_head_t *, ipsec_policy_head_t *, 882 netstack_t *); 883 extern void ipsec_swap_global_policy(netstack_t *); 884 885 extern int ipsec_clone_system_policy(netstack_t *); 886 extern ipsec_policy_t *ipsec_policy_create(ipsec_selkey_t *, 887 const ipsec_act_t *, int, int, uint64_t *, netstack_t *); 888 extern boolean_t ipsec_policy_delete(ipsec_policy_head_t *, 889 ipsec_selkey_t *, int, netstack_t *); 890 extern int ipsec_policy_delete_index(ipsec_policy_head_t *, uint64_t, 891 netstack_t *); 892 extern boolean_t ipsec_polhead_insert(ipsec_policy_head_t *, ipsec_act_t *, 893 uint_t, int, int, netstack_t *); 894 extern void ipsec_polhead_flush(ipsec_policy_head_t *, netstack_t *); 895 extern int ipsec_copy_polhead(ipsec_policy_head_t *, ipsec_policy_head_t *, 896 netstack_t *); 897 extern void ipsec_actvec_from_req(const ipsec_req_t *, ipsec_act_t **, uint_t *, 898 netstack_t *); 899 extern void ipsec_actvec_free(ipsec_act_t *, uint_t); 900 extern int ipsec_req_from_head(ipsec_policy_head_t *, ipsec_req_t *, int); 901 extern mblk_t *ipsec_construct_inverse_acquire(sadb_msg_t *, sadb_ext_t **, 902 netstack_t *); 903 extern ipsec_policy_t *ipsec_find_policy(int, const conn_t *, 904 ipsec_selector_t *, netstack_t *); 905 extern ipsid_t *ipsid_lookup(int, char *, netstack_t *); 906 extern boolean_t ipsid_equal(ipsid_t *, ipsid_t *); 907 extern void ipsid_gc(netstack_t *); 908 extern void ipsec_latch_ids(ipsec_latch_t *, ipsid_t *, ipsid_t *); 909 910 extern void ipsec_config_flush(netstack_t *); 911 extern boolean_t ipsec_check_policy(ipsec_policy_head_t *, ipsec_policy_t *, 912 int); 913 extern void ipsec_enter_policy(ipsec_policy_head_t *, ipsec_policy_t *, int, 914 netstack_t *); 915 extern boolean_t ipsec_check_action(ipsec_act_t *, int *, netstack_t *); 916 917 extern void iplatch_free(ipsec_latch_t *); 918 extern ipsec_latch_t *iplatch_create(void); 919 extern int ipsec_set_req(cred_t *, conn_t *, ipsec_req_t *); 920 921 extern void ipsec_insert_always(avl_tree_t *tree, void *new_node); 922 923 extern int32_t ipsec_act_ovhd(const ipsec_act_t *act); 924 extern mblk_t *sadb_whack_label(mblk_t *, ipsa_t *, ip_xmit_attr_t *, 925 kstat_named_t *, ipdropper_t *); 926 extern mblk_t *sadb_whack_label_v4(mblk_t *, ipsa_t *, kstat_named_t *, 927 ipdropper_t *); 928 extern mblk_t *sadb_whack_label_v6(mblk_t *, ipsa_t *, kstat_named_t *, 929 ipdropper_t *); 930 extern boolean_t update_iv(uint8_t *, queue_t *, ipsa_t *, ipsecesp_stack_t *); 931 932 /* 933 * Tunnel-support SPD functions and variables. 934 */ 935 struct iptun_s; /* Defined in inet/iptun/iptun_impl.h. */ 936 extern mblk_t *ipsec_tun_inbound(ip_recv_attr_t *, mblk_t *, ipsec_tun_pol_t *, 937 ipha_t *, ip6_t *, ipha_t *, ip6_t *, int, netstack_t *); 938 extern mblk_t *ipsec_tun_outbound(mblk_t *, struct iptun_s *, ipha_t *, 939 ip6_t *, ipha_t *, ip6_t *, int, ip_xmit_attr_t *); 940 extern void itp_free(ipsec_tun_pol_t *, netstack_t *); 941 extern ipsec_tun_pol_t *create_tunnel_policy(char *, int *, uint64_t *, 942 netstack_t *); 943 extern ipsec_tun_pol_t *get_tunnel_policy(char *, netstack_t *); 944 extern void itp_unlink(ipsec_tun_pol_t *, netstack_t *); 945 extern void itp_walk(void (*)(ipsec_tun_pol_t *, void *, netstack_t *), 946 void *, netstack_t *); 947 948 extern ipsec_tun_pol_t *itp_get_byaddr(uint32_t *, uint32_t *, int, 949 ip_stack_t *); 950 951 /* 952 * IPsec AH/ESP functions called from IP or the common SADB code in AH. 953 */ 954 955 extern void ipsecah_in_assocfailure(mblk_t *, char, ushort_t, char *, 956 uint32_t, void *, int, ip_recv_attr_t *ira); 957 extern void ipsecesp_in_assocfailure(mblk_t *, char, ushort_t, char *, 958 uint32_t, void *, int, ip_recv_attr_t *ira); 959 extern void ipsecesp_send_keepalive(ipsa_t *); 960 961 /* 962 * Algorithm management helper functions. 963 */ 964 extern boolean_t ipsec_valid_key_size(uint16_t, ipsec_alginfo_t *); 965 966 /* 967 * Per-socket policy, for now, takes precedence... this priority value 968 * insures it. 969 */ 970 #define IPSEC_PRIO_SOCKET 0x1000000 971 972 /* DDI initialization functions. */ 973 extern boolean_t ipsecesp_ddi_init(void); 974 extern boolean_t ipsecah_ddi_init(void); 975 extern boolean_t keysock_ddi_init(void); 976 extern boolean_t spdsock_ddi_init(void); 977 978 extern void ipsecesp_ddi_destroy(void); 979 extern void ipsecah_ddi_destroy(void); 980 extern void keysock_ddi_destroy(void); 981 extern void spdsock_ddi_destroy(void); 982 983 /* 984 * AH- and ESP-specific functions that are called directly by other modules. 985 */ 986 extern void ipsecah_fill_defs(struct sadb_x_ecomb *, netstack_t *); 987 extern void ipsecesp_fill_defs(struct sadb_x_ecomb *, netstack_t *); 988 extern void ipsecah_algs_changed(netstack_t *); 989 extern void ipsecesp_algs_changed(netstack_t *); 990 extern void ipsecesp_init_funcs(ipsa_t *); 991 extern void ipsecah_init_funcs(ipsa_t *); 992 extern mblk_t *ipsecah_icmp_error(mblk_t *, ip_recv_attr_t *); 993 extern mblk_t *ipsecesp_icmp_error(mblk_t *, ip_recv_attr_t *); 994 995 /* 996 * spdsock functions that are called directly by IP. 997 */ 998 extern void spdsock_update_pending_algs(netstack_t *); 999 1000 /* 1001 * IP functions that are called from AH and ESP. 1002 */ 1003 extern boolean_t ipsec_outbound_sa(mblk_t *, ip_xmit_attr_t *, uint_t); 1004 extern mblk_t *ipsec_inbound_esp_sa(mblk_t *, ip_recv_attr_t *, esph_t **); 1005 extern mblk_t *ipsec_inbound_ah_sa(mblk_t *, ip_recv_attr_t *, ah_t **); 1006 extern ipsec_policy_t *ipsec_find_policy_head(ipsec_policy_t *, 1007 ipsec_policy_head_t *, int, ipsec_selector_t *); 1008 1009 /* 1010 * IP dropper init/destroy. 1011 */ 1012 void ip_drop_init(ipsec_stack_t *); 1013 void ip_drop_destroy(ipsec_stack_t *); 1014 1015 /* 1016 * Common functions 1017 */ 1018 extern boolean_t ip_addr_match(uint8_t *, int, in6_addr_t *); 1019 extern boolean_t ipsec_label_match(ts_label_t *, ts_label_t *); 1020 1021 /* 1022 * AH and ESP counters types. 1023 */ 1024 typedef uint32_t ah_counter; 1025 typedef uint32_t esp_counter; 1026 1027 #endif /* _KERNEL */ 1028 1029 #ifdef __cplusplus 1030 } 1031 #endif 1032 1033 #endif /* _INET_IPSEC_IMPL_H */ 1034