xref: /illumos-gate/usr/src/uts/common/inet/ipsec_impl.h (revision 5bbb4db2c3f208d12bf0fd11769728f9e5ba66a2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #ifndef _INET_IPSEC_IMPL_H
27 #define	_INET_IPSEC_IMPL_H
28 
29 #include <inet/ip.h>
30 #include <inet/ipdrop.h>
31 
32 #ifdef	__cplusplus
33 extern "C" {
34 #endif
35 
36 #define	IPSEC_CONF_SRC_ADDRESS	0	/* Source Address */
37 #define	IPSEC_CONF_SRC_PORT		1	/* Source Port */
38 #define	IPSEC_CONF_DST_ADDRESS	2	/* Dest Address */
39 #define	IPSEC_CONF_DST_PORT		3	/* Dest Port */
40 #define	IPSEC_CONF_SRC_MASK		4	/* Source Address Mask */
41 #define	IPSEC_CONF_DST_MASK		5	/* Destination Address Mask */
42 #define	IPSEC_CONF_ULP			6	/* Upper layer Port */
43 #define	IPSEC_CONF_IPSEC_PROT	7	/* AH or ESP or AH_ESP */
44 #define	IPSEC_CONF_IPSEC_AALGS	8	/* Auth Algorithms - MD5 etc. */
45 #define	IPSEC_CONF_IPSEC_EALGS	9	/* Encr Algorithms - DES etc. */
46 #define	IPSEC_CONF_IPSEC_EAALGS	10	/* Encr Algorithms - MD5 etc. */
47 #define	IPSEC_CONF_IPSEC_SA		11	/* Shared or unique SA */
48 #define	IPSEC_CONF_IPSEC_DIR 		12	/* Direction of traffic */
49 #define	IPSEC_CONF_ICMP_TYPE 		13	/* ICMP type */
50 #define	IPSEC_CONF_ICMP_CODE 		14	/* ICMP code */
51 #define	IPSEC_CONF_NEGOTIATE		15	/* Negotiation */
52 #define	IPSEC_CONF_TUNNEL		16	/* Tunnel */
53 
54 /* Type of an entry */
55 
56 #define	IPSEC_NTYPES			0x02
57 #define	IPSEC_TYPE_OUTBOUND		0x00
58 #define	IPSEC_TYPE_INBOUND		0x01
59 
60 /* Policy */
61 #define	IPSEC_POLICY_APPLY	0x01
62 #define	IPSEC_POLICY_DISCARD	0x02
63 #define	IPSEC_POLICY_BYPASS	0x03
64 
65 /* Shared or unique SA */
66 #define	IPSEC_SHARED_SA		0x01
67 #define	IPSEC_UNIQUE_SA		0x02
68 
69 /* IPsec protocols and combinations */
70 #define	IPSEC_AH_ONLY		0x01
71 #define	IPSEC_ESP_ONLY		0x02
72 #define	IPSEC_AH_ESP		0x03
73 
74 /*
75  * Internally defined "any" algorithm.
76  * Move to PF_KEY v3 when that RFC is released.
77  */
78 #define	SADB_AALG_ANY 255
79 
80 #ifdef _KERNEL
81 
82 #include <inet/common.h>
83 #include <netinet/ip6.h>
84 #include <netinet/icmp6.h>
85 #include <net/pfkeyv2.h>
86 #include <inet/ip.h>
87 #include <inet/sadb.h>
88 #include <inet/ipsecah.h>
89 #include <inet/ipsecesp.h>
90 #include <sys/crypto/common.h>
91 #include <sys/crypto/api.h>
92 #include <sys/avl.h>
93 
94 /*
95  * Maximum number of authentication algorithms (can be indexed by one byte
96  * per PF_KEY and the IKE IPsec DOI.
97  */
98 #define	MAX_AALGS 256
99 
100 /*
101  * IPsec task queue constants.
102  */
103 #define	IPSEC_TASKQ_MIN 10
104 #define	IPSEC_TASKQ_MAX 20
105 
106 /*
107  * So we can access IPsec global variables that live in keysock.c.
108  */
109 extern boolean_t keysock_extended_reg(netstack_t *);
110 extern uint32_t keysock_next_seq(netstack_t *);
111 
112 /*
113  * Locking for ipsec policy rules:
114  *
115  * policy heads: system policy is static; per-conn polheads are dynamic,
116  * and refcounted (and inherited); use atomic refcounts and "don't let
117  * go with both hands".
118  *
119  * policy: refcounted; references from polhead, ipsec_out
120  *
121  * actions: refcounted; referenced from: action hash table, policy, ipsec_out
122  * selectors: refcounted; referenced from: selector hash table, policy.
123  */
124 
125 /*
126  * the following are inspired by, but not directly based on,
127  * some of the sys/queue.h type-safe pseudo-polymorphic macros
128  * found in BSD.
129  *
130  * XXX If we use these more generally, we'll have to make the names
131  * less generic (HASH_* will probably clobber other namespaces).
132  */
133 
134 #define	HASH_LOCK(table, hash) \
135 	mutex_enter(&(table)[hash].hash_lock)
136 #define	HASH_UNLOCK(table, hash) \
137 	mutex_exit(&(table)[hash].hash_lock)
138 
139 #define	HASH_LOCKED(table, hash) \
140 	MUTEX_HELD(&(table)[hash].hash_lock)
141 
142 #define	HASH_ITERATE(var, field, table, hash) 		\
143 	var = table[hash].hash_head; var != NULL; var = var->field.hash_next
144 
145 #define	HASH_NEXT(var, field) 		\
146 	(var)->field.hash_next
147 
148 #define	HASH_INSERT(var, field, table, hash)			\
149 {								\
150 	ASSERT(HASH_LOCKED(table, hash));			\
151 	(var)->field.hash_next = (table)[hash].hash_head;	\
152 	(var)->field.hash_pp = &(table)[hash].hash_head;	\
153 	(table)[hash].hash_head = var;				\
154 	if ((var)->field.hash_next != NULL)			\
155 		(var)->field.hash_next->field.hash_pp = 	\
156 			&((var)->field.hash_next); 		\
157 }
158 
159 
160 #define	HASH_UNCHAIN(var, field, table, hash)			\
161 {								\
162 	ASSERT(MUTEX_HELD(&(table)[hash].hash_lock));		\
163 	HASHLIST_UNCHAIN(var, field);				\
164 }
165 
166 #define	HASHLIST_INSERT(var, field, head)			\
167 {								\
168 	(var)->field.hash_next = head;				\
169 	(var)->field.hash_pp = &(head);				\
170 	head = var;						\
171 	if ((var)->field.hash_next != NULL)			\
172 		(var)->field.hash_next->field.hash_pp = 	\
173 			&((var)->field.hash_next); 		\
174 }
175 
176 #define	HASHLIST_UNCHAIN(var, field) 				\
177 {								\
178 	*var->field.hash_pp = var->field.hash_next;		\
179 	if (var->field.hash_next)				\
180 		var->field.hash_next->field.hash_pp = 		\
181 			var->field.hash_pp;			\
182 	HASH_NULL(var, field);					\
183 }
184 
185 
186 #define	HASH_NULL(var, field) 					\
187 {								\
188 	var->field.hash_next = NULL;				\
189 	var->field.hash_pp = NULL;				\
190 }
191 
192 #define	HASH_LINK(fieldname, type)				\
193 	struct {						\
194 		type *hash_next;				\
195 		type **hash_pp;					\
196 	} fieldname
197 
198 
199 #define	HASH_HEAD(tag)						\
200 	struct {						\
201 		struct tag *hash_head;				\
202 		kmutex_t hash_lock;				\
203 	}
204 
205 
206 typedef struct ipsec_policy_s ipsec_policy_t;
207 
208 typedef HASH_HEAD(ipsec_policy_s) ipsec_policy_hash_t;
209 
210 /*
211  * When adding new fields to ipsec_prot_t, make sure to update
212  * ipsec_in_to_out_action() as well as other code in spd.c
213  */
214 
215 typedef struct ipsec_prot
216 {
217 	unsigned int
218 		ipp_use_ah : 1,
219 		ipp_use_esp : 1,
220 		ipp_use_se : 1,
221 		ipp_use_unique : 1,
222 		ipp_use_espa : 1,
223 		ipp_pad : 27;
224 	uint8_t		ipp_auth_alg;		 /* DOI number */
225 	uint8_t		ipp_encr_alg;		 /* DOI number */
226 	uint8_t		ipp_esp_auth_alg;	 /* DOI number */
227 	uint16_t 	ipp_ah_minbits;		 /* AH: min keylen */
228 	uint16_t 	ipp_ah_maxbits;		 /* AH: max keylen */
229 	uint16_t	ipp_espe_minbits;	 /* ESP encr: min keylen */
230 	uint16_t	ipp_espe_maxbits;	 /* ESP encr: max keylen */
231 	uint16_t	ipp_espa_minbits;	 /* ESP auth: min keylen */
232 	uint16_t	ipp_espa_maxbits;	 /* ESP auth: max keylen */
233 	uint32_t	ipp_km_proto;		 /* key mgmt protocol */
234 	uint32_t	ipp_km_cookie;		 /* key mgmt cookie */
235 	uint32_t	ipp_replay_depth;	 /* replay window */
236 	/* XXX add lifetimes */
237 } ipsec_prot_t;
238 
239 #define	IPSEC_MAX_KEYBITS (0xffff)
240 
241 /*
242  * An individual policy action, possibly a member of a chain.
243  *
244  * Action chains may be shared between multiple policy rules.
245  *
246  * With one exception (IPSEC_POLICY_LOG), a chain consists of an
247  * ordered list of alternative ways to handle a packet.
248  *
249  * All actions are also "interned" into a hash table (to allow
250  * multiple rules with the same action chain to share one copy in
251  * memory).
252  */
253 
254 typedef struct ipsec_act
255 {
256 	uint8_t		ipa_type;
257 	uint8_t		ipa_log;
258 	union
259 	{
260 		ipsec_prot_t	ipau_apply;
261 		uint8_t		ipau_reject_type;
262 		uint32_t	ipau_resolve_id; /* magic cookie */
263 		uint8_t		ipau_log_type;
264 	} ipa_u;
265 #define	ipa_apply ipa_u.ipau_apply
266 #define	ipa_reject_type ipa_u.ipau_reject_type
267 #define	ipa_log_type ipa_u.ipau_log_type
268 #define	ipa_resolve_type ipa_u.ipau_resolve_type
269 } ipsec_act_t;
270 
271 #define	IPSEC_ACT_APPLY		0x01 /* match IPSEC_POLICY_APPLY */
272 #define	IPSEC_ACT_DISCARD	0x02 /* match IPSEC_POLICY_DISCARD */
273 #define	IPSEC_ACT_BYPASS	0x03 /* match IPSEC_POLICY_BYPASS */
274 #define	IPSEC_ACT_REJECT	0x04
275 #define	IPSEC_ACT_CLEAR		0x05
276 
277 typedef struct ipsec_action_s
278 {
279 	HASH_LINK(ipa_hash, struct ipsec_action_s);
280 	struct ipsec_action_s	*ipa_next;	/* next alternative */
281 	uint32_t		ipa_refs;		/* refcount */
282 	ipsec_act_t		ipa_act;
283 	/*
284 	 * The following bits are equivalent to an OR of bits included in the
285 	 * ipau_apply fields of this and subsequent actions in an
286 	 * action chain; this is an optimization for the sake of
287 	 * ipsec_out_process() in ip.c and a few other places.
288 	 */
289 	unsigned int
290 		ipa_hval: 8,
291 		ipa_allow_clear:1,		/* rule allows cleartext? */
292 		ipa_want_ah:1,			/* an action wants ah */
293 		ipa_want_esp:1,			/* an action wants esp */
294 		ipa_want_se:1,			/* an action wants se */
295 		ipa_want_unique:1,		/* want unique sa's */
296 		ipa_pad:19;
297 	uint32_t		ipa_ovhd;	/* per-packet encap ovhd */
298 } ipsec_action_t;
299 
300 #define	IPACT_REFHOLD(ipa) {			\
301 	atomic_add_32(&(ipa)->ipa_refs, 1);	\
302 	ASSERT((ipa)->ipa_refs != 0);	\
303 }
304 #define	IPACT_REFRELE(ipa) {					\
305 	ASSERT((ipa)->ipa_refs != 0);				\
306 	membar_exit();						\
307 	if (atomic_add_32_nv(&(ipa)->ipa_refs, -1) == 0)	\
308 		ipsec_action_free(ipa);				\
309 	(ipa) = 0;						\
310 }
311 
312 /*
313  * For now, use a trivially sized hash table for actions.
314  * In the future we can add the structure canonicalization necessary
315  * to get the hash function to behave correctly..
316  */
317 #define	IPSEC_ACTION_HASH_SIZE 1
318 
319 /*
320  * Merged address structure, for cheezy address-family independent
321  * matches in policy code.
322  */
323 
324 typedef union ipsec_addr
325 {
326 	in6_addr_t	ipsad_v6;
327 	in_addr_t	ipsad_v4;
328 } ipsec_addr_t;
329 
330 /*
331  * ipsec selector set, as used by the kernel policy structures.
332  * Note that that we specify "local" and "remote"
333  * rather than "source" and "destination", which allows the selectors
334  * for symmetric policy rules to be shared between inbound and
335  * outbound rules.
336  *
337  * "local" means "destination" on inbound, and "source" on outbound.
338  * "remote" means "source" on inbound, and "destination" on outbound.
339  * XXX if we add a fifth policy enforcement point for forwarded packets,
340  * what do we do?
341  *
342  * The ipsl_valid mask is not done as a bitfield; this is so we
343  * can use "ffs()" to find the "most interesting" valid tag.
344  *
345  * XXX should we have multiple types for space-conservation reasons?
346  * (v4 vs v6?  prefix vs. range)?
347  */
348 
349 typedef struct ipsec_selkey
350 {
351 	uint32_t	ipsl_valid;		/* bitmask of valid entries */
352 #define	IPSL_REMOTE_ADDR		0x00000001
353 #define	IPSL_LOCAL_ADDR			0x00000002
354 #define	IPSL_REMOTE_PORT		0x00000004
355 #define	IPSL_LOCAL_PORT			0x00000008
356 #define	IPSL_PROTOCOL			0x00000010
357 #define	IPSL_ICMP_TYPE			0x00000020
358 #define	IPSL_ICMP_CODE			0x00000040
359 #define	IPSL_IPV6			0x00000080
360 #define	IPSL_IPV4			0x00000100
361 
362 #define	IPSL_WILDCARD			0x0000007f
363 
364 	ipsec_addr_t	ipsl_local;
365 	ipsec_addr_t	ipsl_remote;
366 	uint16_t	ipsl_lport;
367 	uint16_t	ipsl_rport;
368 	/*
369 	 * ICMP type and code selectors. Both have an end value to
370 	 * specify ranges, or * and *_end are equal for a single
371 	 * value
372 	 */
373 	uint8_t		ipsl_icmp_type;
374 	uint8_t		ipsl_icmp_type_end;
375 	uint8_t		ipsl_icmp_code;
376 	uint8_t		ipsl_icmp_code_end;
377 
378 	uint8_t		ipsl_proto;		/* ip payload type */
379 	uint8_t		ipsl_local_pfxlen;	/* #bits of prefix */
380 	uint8_t		ipsl_remote_pfxlen;	/* #bits of prefix */
381 	uint8_t		ipsl_mbz;
382 
383 	/* Insert new elements above this line */
384 	uint32_t	ipsl_pol_hval;
385 	uint32_t	ipsl_sel_hval;
386 } ipsec_selkey_t;
387 
388 typedef struct ipsec_sel
389 {
390 	HASH_LINK(ipsl_hash, struct ipsec_sel);
391 	uint32_t	ipsl_refs;		/* # refs to this sel */
392 	ipsec_selkey_t	ipsl_key;		/* actual selector guts */
393 } ipsec_sel_t;
394 
395 /*
396  * One policy rule.  This will be linked into a single hash chain bucket in
397  * the parent rule structure.  If the selector is simple enough to
398  * allow hashing, it gets filed under ipsec_policy_root_t->ipr_hash.
399  * Otherwise it goes onto a linked list in ipsec_policy_root_t->ipr_nonhash[af]
400  *
401  * In addition, we file the rule into an avl tree keyed by the rule index.
402  * (Duplicate rules are permitted; the comparison function breaks ties).
403  */
404 struct ipsec_policy_s
405 {
406 	HASH_LINK(ipsp_hash, struct ipsec_policy_s);
407 	avl_node_t		ipsp_byid;
408 	uint64_t		ipsp_index;	/* unique id */
409 	uint32_t		ipsp_prio; 	/* rule priority */
410 	uint32_t		ipsp_refs;
411 	ipsec_sel_t		*ipsp_sel;	/* selector set (shared) */
412 	ipsec_action_t		*ipsp_act; 	/* action (may be shared) */
413 };
414 
415 #define	IPPOL_REFHOLD(ipp) {			\
416 	atomic_add_32(&(ipp)->ipsp_refs, 1);	\
417 	ASSERT((ipp)->ipsp_refs != 0);		\
418 }
419 #define	IPPOL_REFRELE(ipp, ns) {				\
420 	ASSERT((ipp)->ipsp_refs != 0);				\
421 	membar_exit();						\
422 	if (atomic_add_32_nv(&(ipp)->ipsp_refs, -1) == 0)	\
423 		ipsec_policy_free(ipp, ns);			\
424 	(ipp) = 0;						\
425 }
426 
427 #define	IPPOL_UNCHAIN(php, ip, ns)					\
428 	HASHLIST_UNCHAIN((ip), ipsp_hash);				\
429 	avl_remove(&(php)->iph_rulebyid, (ip));				\
430 	IPPOL_REFRELE(ip, ns);
431 
432 /*
433  * Policy ruleset.  One per (protocol * direction) for system policy.
434  */
435 
436 #define	IPSEC_AF_V4	0
437 #define	IPSEC_AF_V6	1
438 #define	IPSEC_NAF	2
439 
440 typedef struct ipsec_policy_root_s
441 {
442 	ipsec_policy_t		*ipr_nonhash[IPSEC_NAF];
443 	int			ipr_nchains;
444 	ipsec_policy_hash_t 	*ipr_hash;
445 } ipsec_policy_root_t;
446 
447 /*
448  * Policy head.  One for system policy; there may also be one present
449  * on ill_t's with interface-specific policy, as well as one present
450  * for sockets with per-socket policy allocated.
451  */
452 
453 typedef struct ipsec_policy_head_s
454 {
455 	uint32_t	iph_refs;
456 	krwlock_t	iph_lock;
457 	uint64_t	iph_gen; /* generation number */
458 	ipsec_policy_root_t iph_root[IPSEC_NTYPES];
459 	avl_tree_t	iph_rulebyid;
460 } ipsec_policy_head_t;
461 
462 #define	IPPH_REFHOLD(iph) {			\
463 	atomic_add_32(&(iph)->iph_refs, 1);	\
464 	ASSERT((iph)->iph_refs != 0);		\
465 }
466 #define	IPPH_REFRELE(iph, ns) {					\
467 	ASSERT((iph)->iph_refs != 0);				\
468 	membar_exit();						\
469 	if (atomic_add_32_nv(&(iph)->iph_refs, -1) == 0)	\
470 		ipsec_polhead_free(iph, ns);			\
471 	(iph) = 0;						\
472 }
473 
474 /*
475  * IPsec fragment related structures
476  */
477 
478 typedef struct ipsec_fragcache_entry {
479 	struct ipsec_fragcache_entry *itpfe_next;	/* hash list chain */
480 	mblk_t *itpfe_fraglist;			/* list of fragments */
481 	time_t itpfe_exp;			/* time when entry is stale */
482 	int itpfe_depth;			/* # of fragments in list */
483 	ipsec_addr_t itpfe_frag_src;
484 	ipsec_addr_t itpfe_frag_dst;
485 #define	itpfe_src itpfe_frag_src.ipsad_v4
486 #define	itpfe_src6 itpfe_frag_src.ipsad_v6
487 #define	itpfe_dst itpfe_frag_dst.ipsad_v4
488 #define	itpfe_dst6 itpfe_frag_dst.ipsad_v6
489 	uint32_t itpfe_id;			/* IP datagram ID */
490 	uint8_t itpfe_proto;			/* IP Protocol */
491 	uint8_t itpfe_last;			/* Last packet */
492 } ipsec_fragcache_entry_t;
493 
494 typedef struct ipsec_fragcache {
495 	kmutex_t itpf_lock;
496 	struct ipsec_fragcache_entry **itpf_ptr;
497 	struct ipsec_fragcache_entry *itpf_freelist;
498 	time_t itpf_expire_hint;	/* time when oldest entry is stale */
499 } ipsec_fragcache_t;
500 
501 /*
502  * Tunnel policies.  We keep a minature of the transport-mode/global policy
503  * per each tunnel instance.
504  *
505  * People who need both an itp held down AND one of its polheads need to
506  * first lock the itp, THEN the polhead, otherwise deadlock WILL occur.
507  */
508 typedef struct ipsec_tun_pol_s {
509 	avl_node_t itp_node;
510 	kmutex_t itp_lock;
511 	uint64_t itp_next_policy_index;
512 	ipsec_policy_head_t *itp_policy;
513 	ipsec_policy_head_t *itp_inactive;
514 	uint32_t itp_flags;
515 	uint32_t itp_refcnt;
516 	char itp_name[LIFNAMSIZ];
517 	ipsec_fragcache_t itp_fragcache;
518 } ipsec_tun_pol_t;
519 /* NOTE - Callers (tun code) synchronize their own instances for these flags. */
520 #define	ITPF_P_ACTIVE 0x1	/* Are we using IPsec right now? */
521 #define	ITPF_P_TUNNEL 0x2	/* Negotiate tunnel-mode */
522 /* Optimization -> Do we have per-port security entries in this polhead? */
523 #define	ITPF_P_PER_PORT_SECURITY 0x4
524 #define	ITPF_PFLAGS 0x7
525 #define	ITPF_SHIFT 3
526 
527 #define	ITPF_I_ACTIVE 0x8	/* Is the inactive using IPsec right now? */
528 #define	ITPF_I_TUNNEL 0x10	/* Negotiate tunnel-mode (on inactive) */
529 /* Optimization -> Do we have per-port security entries in this polhead? */
530 #define	ITPF_I_PER_PORT_SECURITY 0x20
531 #define	ITPF_IFLAGS 0x38
532 
533 /* NOTE:  f cannot be an expression. */
534 #define	ITPF_CLONE(f) (f) = (((f) & ITPF_PFLAGS) | \
535 	    (((f) & ITPF_PFLAGS) << ITPF_SHIFT));
536 #define	ITPF_SWAP(f) (f) = ((((f) & ITPF_PFLAGS) << ITPF_SHIFT) | \
537 	    (((f) & ITPF_IFLAGS) >> ITPF_SHIFT))
538 
539 #define	ITP_P_ISACTIVE(itp, iph) ((itp)->itp_flags & \
540 	(((itp)->itp_policy == (iph)) ? ITPF_P_ACTIVE : ITPF_I_ACTIVE))
541 
542 #define	ITP_P_ISTUNNEL(itp, iph) ((itp)->itp_flags & \
543 	(((itp)->itp_policy == (iph)) ? ITPF_P_TUNNEL : ITPF_I_TUNNEL))
544 
545 #define	ITP_P_ISPERPORT(itp, iph) ((itp)->itp_flags & \
546 	(((itp)->itp_policy == (iph)) ? ITPF_P_PER_PORT_SECURITY : \
547 	ITPF_I_PER_PORT_SECURITY))
548 
549 #define	ITP_REFHOLD(itp) { \
550 	atomic_add_32(&((itp)->itp_refcnt), 1);	\
551 	ASSERT((itp)->itp_refcnt != 0); \
552 }
553 
554 #define	ITP_REFRELE(itp, ns) { \
555 	ASSERT((itp)->itp_refcnt != 0); \
556 	membar_exit(); \
557 	if (atomic_add_32_nv(&((itp)->itp_refcnt), -1) == 0) \
558 		itp_free(itp, ns); \
559 }
560 
561 /*
562  * Certificate identity.
563  */
564 
565 typedef struct ipsid_s
566 {
567 	struct ipsid_s *ipsid_next;
568 	struct ipsid_s **ipsid_ptpn;
569 	uint32_t	ipsid_refcnt;
570 	int		ipsid_type;	/* id type */
571 	char 		*ipsid_cid;	/* certificate id string */
572 } ipsid_t;
573 
574 /*
575  * ipsid_t reference hold/release macros, just like ipsa versions.
576  */
577 
578 #define	IPSID_REFHOLD(ipsid) {			\
579 	atomic_add_32(&(ipsid)->ipsid_refcnt, 1);	\
580 	ASSERT((ipsid)->ipsid_refcnt != 0);	\
581 }
582 
583 /*
584  * Decrement the reference count on the ID.  Someone else will clean up
585  * after us later.
586  */
587 
588 #define	IPSID_REFRELE(ipsid) {					\
589 	membar_exit();						\
590 	atomic_add_32(&(ipsid)->ipsid_refcnt, -1);		\
591 }
592 
593 struct ipsec_out_s;
594 
595 /*
596  * Following are the estimates of what the maximum AH and ESP header size
597  * would be. This is used to tell the upper layer the right value of MSS
598  * it should use without consulting AH/ESP. If the size is something
599  * different from this, ULP will learn the right one through
600  * ICMP_FRAGMENTATION_NEEDED messages generated locally.
601  *
602  * AH : 12 bytes of constant header + 32 bytes of ICV checksum (SHA-512).
603  */
604 #define	IPSEC_MAX_AH_HDR_SIZE   (44)
605 
606 /*
607  * ESP : Is a bit more complex...
608  *
609  * A system of one inequality and one equation MUST be solved for proper ESP
610  * overhead.  The inequality is:
611  *
612  *    MTU - sizeof (IP header + options) >=
613  *		sizeof (esph_t) + sizeof (IV or ctr) + data-size + 2 + ICV
614  *
615  * IV or counter is almost always the cipher's block size.  The equation is:
616  *
617  *    data-size % block-size = (block-size - 2)
618  *
619  * so we can put as much data into the datagram as possible.  If we are
620  * pessimistic and include our largest overhead cipher (AES) and hash
621  * (SHA-512), and assume 1500-byte MTU minus IPv4 overhead of 20 bytes, we get:
622  *
623  *    1480 >= 8 + 16 + data-size + 2 + 32
624  *    1480 >= 58 + data-size
625  *    1422 >= data-size,      1422 % 16 = 14, so 58 is the overhead!
626  *
627  * But, let's re-run the numbers with the same algorithms, but with an IPv6
628  * header:
629  *
630  *    1460 >= 58 + data-size
631  *    1402 >= data-size,     1402 % 16 = 10, meaning shrink to 1390 to get 14,
632  *
633  * which means the overhead is now 70.
634  *
635  * Hmmm... IPv4 headers can never be anything other than multiples of 4-bytes,
636  * and IPv6 ones can never be anything other than multiples of 8-bytes.  We've
637  * seen overheads of 58 and 70.  58 % 16 == 10, and 70 % 16 == 6.  IPv4 could
638  * force us to have 62 ( % 16 == 14) or 66 ( % 16 == 2), or IPv6 could force us
639  * to have 78 ( % 16 = 14).  Let's compute IPv6 + 8-bytes of options:
640  *
641  *    1452 >= 58 + data-size
642  *    1394 >= data-size,     1394 % 16 = 2, meaning shrink to 1390 to get 14,
643  *
644  * Aha!  The "ESP overhead" shrinks to 62 (70 - 8).  This is good.  Let's try
645  * IPv4 + 8 bytes of IPv4 options:
646  *
647  *    1472 >= 58 + data-size
648  *    1414 >= data-size,      1414 % 16 = 6, meaning shrink to 1406,
649  *
650  * meaning 66 is the overhead.  Let's try 12 bytes:
651  *
652  *    1468 >= 58 + data-size
653  *    1410 >= data-size,      1410 % 16 = 2, meaning also shrink to 1406,
654  *
655  * meaning 62 is the overhead.  How about 16 bytes?
656  *
657  *    1464 >= 58 + data-size
658  *    1406 >= data-size,      1402 % 16 = 14, which is great!
659  *
660  * this means 58 is the overhead.  If I wrap and add 20 bytes, it looks just
661  * like IPv6's 70 bytes.  If I add 24, we go back to 66 bytes.
662  *
663  * So picking 70 is a sensible, conservative default.  Optimal calculations
664  * will depend on knowing pre-ESP header length (called "divpoint" in the ESP
665  * code), which could be cached in the conn_t for connected endpoints, or
666  * which must be computed on every datagram otherwise.
667  */
668 #define	IPSEC_MAX_ESP_HDR_SIZE  (70)
669 
670 /*
671  * Alternate, when we know the crypto block size via the SA.  Assume an ICV on
672  * the SA.  Use:
673  *
674  * sizeof (esph_t) + 2 * (sizeof (IV/counter)) - 2 + sizeof (ICV).  The "-2"
675  * discounts the overhead of the pad + padlen that gets swallowed up by the
676  * second (theoretically all-pad) cipher-block.  If you use our examples of
677  * AES and SHA512, you get:
678  *
679  *    8 + 32 - 2 + 32 == 70.
680  *
681  * Which is our pre-computed maximum above.
682  */
683 #include <inet/ipsecesp.h>
684 #define	IPSEC_BASE_ESP_HDR_SIZE(sa) \
685 	(sizeof (esph_t) + ((sa)->ipsa_iv_len << 1) - 2 + (sa)->ipsa_mac_len)
686 
687 /*
688  * Identity hash table.
689  *
690  * Identities are refcounted and "interned" into the hash table.
691  * Only references coming from other objects (SA's, latching state)
692  * are counted in ipsid_refcnt.
693  *
694  * Locking: IPSID_REFHOLD is safe only when (a) the object's hash bucket
695  * is locked, (b) we know that the refcount must be > 0.
696  *
697  * The ipsid_next and ipsid_ptpn fields are only to be referenced or
698  * modified when the bucket lock is held; in particular, we only
699  * delete objects while holding the bucket lock, and we only increase
700  * the refcount from 0 to 1 while the bucket lock is held.
701  */
702 
703 #define	IPSID_HASHSIZE 64
704 
705 typedef struct ipsif_s
706 {
707 	ipsid_t *ipsif_head;
708 	kmutex_t ipsif_lock;
709 } ipsif_t;
710 
711 
712 /*
713  * IPsec stack instances
714  */
715 struct ipsec_stack {
716 	netstack_t		*ipsec_netstack;	/* Common netstack */
717 
718 	/* Packet dropper for IP IPsec processing failures */
719 	ipdropper_t		ipsec_dropper;
720 
721 /* From spd.c */
722 	/*
723 	 * Policy rule index generator.  We assume this won't wrap in the
724 	 * lifetime of a system.  If we make 2^20 policy changes per second,
725 	 * this will last 2^44 seconds, or roughly 500,000 years, so we don't
726 	 * have to worry about reusing policy index values.
727 	 */
728 	uint64_t		ipsec_next_policy_index;
729 
730 	HASH_HEAD(ipsec_action_s) ipsec_action_hash[IPSEC_ACTION_HASH_SIZE];
731 	HASH_HEAD(ipsec_sel)	  *ipsec_sel_hash;
732 	uint32_t		ipsec_spd_hashsize;
733 
734 	ipsif_t			ipsec_ipsid_buckets[IPSID_HASHSIZE];
735 
736 	/*
737 	 * Active & Inactive system policy roots
738 	 */
739 	ipsec_policy_head_t	ipsec_system_policy;
740 	ipsec_policy_head_t	ipsec_inactive_policy;
741 
742 	/* Packet dropper for generic SPD drops. */
743 	ipdropper_t		ipsec_spd_dropper;
744 
745 /* ipdrop.c */
746 	kstat_t			*ipsec_ip_drop_kstat;
747 	struct ip_dropstats	*ipsec_ip_drop_types;
748 
749 /* spd.c */
750 	/*
751 	 * Have a counter for every possible policy message in
752 	 * ipsec_policy_failure_msgs
753 	 */
754 	uint32_t		ipsec_policy_failure_count[IPSEC_POLICY_MAX];
755 	/* Time since last ipsec policy failure that printed a message. */
756 	hrtime_t		ipsec_policy_failure_last;
757 
758 /* ip_spd.c */
759 	/* stats */
760 	kstat_t			*ipsec_ksp;
761 	struct ipsec_kstats_s	*ipsec_kstats;
762 
763 /* sadb.c */
764 	/* Packet dropper for generic SADB drops. */
765 	ipdropper_t		ipsec_sadb_dropper;
766 
767 /* spd.c */
768 	boolean_t		ipsec_inbound_v4_policy_present;
769 	boolean_t		ipsec_outbound_v4_policy_present;
770 	boolean_t		ipsec_inbound_v6_policy_present;
771 	boolean_t		ipsec_outbound_v6_policy_present;
772 
773 /* spd.c */
774 	/*
775 	 * Because policy needs to know what algorithms are supported, keep the
776 	 * lists of algorithms here.
777 	 */
778 	kmutex_t 		ipsec_alg_lock;
779 
780 	uint8_t			ipsec_nalgs[IPSEC_NALGTYPES];
781 	ipsec_alginfo_t	*ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
782 
783 	uint8_t		ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
784 
785 	int		ipsec_algs_exec_mode[IPSEC_NALGTYPES];
786 
787 	uint32_t 	ipsec_tun_spd_hashsize;
788 	/*
789 	 * Tunnel policies - AVL tree indexed by tunnel name.
790 	 */
791 	krwlock_t 	ipsec_tunnel_policy_lock;
792 	uint64_t	ipsec_tunnel_policy_gen;
793 	avl_tree_t	ipsec_tunnel_policies;
794 
795 /* ipsec_loader.c */
796 	kmutex_t	ipsec_loader_lock;
797 	int		ipsec_loader_state;
798 	int		ipsec_loader_sig;
799 	kt_did_t	ipsec_loader_tid;
800 	kcondvar_t	ipsec_loader_sig_cv;	/* For loader_sig conditions. */
801 
802 };
803 typedef struct ipsec_stack ipsec_stack_t;
804 
805 /* Handle the kstat_create in ip_drop_init() failing */
806 #define	DROPPER(_ipss, _dropper) \
807 	(((_ipss)->ipsec_ip_drop_types == NULL) ? NULL : \
808 	&((_ipss)->ipsec_ip_drop_types->_dropper))
809 
810 /*
811  * Loader states..
812  */
813 #define	IPSEC_LOADER_WAIT	0
814 #define	IPSEC_LOADER_FAILED	-1
815 #define	IPSEC_LOADER_SUCCEEDED	1
816 
817 /*
818  * ipsec_loader entrypoints.
819  */
820 extern void ipsec_loader_init(ipsec_stack_t *);
821 extern void ipsec_loader_start(ipsec_stack_t *);
822 extern void ipsec_loader_destroy(ipsec_stack_t *);
823 extern void ipsec_loader_loadnow(ipsec_stack_t *);
824 extern boolean_t ipsec_loader_wait(queue_t *q, ipsec_stack_t *);
825 extern boolean_t ipsec_loaded(ipsec_stack_t *);
826 extern boolean_t ipsec_failed(ipsec_stack_t *);
827 
828 /*
829  * callback from ipsec_loader to ip
830  */
831 extern void ip_ipsec_load_complete(ipsec_stack_t *);
832 
833 /*
834  * ipsec policy entrypoints (spd.c)
835  */
836 
837 extern void ipsec_policy_g_destroy(void);
838 extern void ipsec_policy_g_init(void);
839 
840 extern int ipsec_alloc_table(ipsec_policy_head_t *, int, int, boolean_t,
841     netstack_t *);
842 extern void ipsec_polhead_init(ipsec_policy_head_t *, int);
843 extern void ipsec_polhead_destroy(ipsec_policy_head_t *);
844 extern void ipsec_polhead_free_table(ipsec_policy_head_t *);
845 extern mblk_t *ipsec_check_global_policy(mblk_t *, conn_t *, ipha_t *,
846 		    ip6_t *, boolean_t, netstack_t *);
847 extern mblk_t *ipsec_check_inbound_policy(mblk_t *, conn_t *, ipha_t *, ip6_t *,
848     boolean_t);
849 
850 extern boolean_t ipsec_in_to_out(mblk_t *, ipha_t *, ip6_t *);
851 extern void ipsec_log_policy_failure(int, char *, ipha_t *, ip6_t *, boolean_t,
852 		    netstack_t *);
853 extern boolean_t ipsec_inbound_accept_clear(mblk_t *, ipha_t *, ip6_t *);
854 extern int ipsec_conn_cache_policy(conn_t *, boolean_t);
855 extern mblk_t *ipsec_alloc_ipsec_out(netstack_t *);
856 extern mblk_t	*ipsec_attach_ipsec_out(mblk_t **, conn_t *, ipsec_policy_t *,
857     uint8_t, netstack_t *);
858 extern mblk_t	*ipsec_init_ipsec_out(mblk_t *, mblk_t **, conn_t *,
859     ipsec_policy_t *, uint8_t, netstack_t *);
860 struct ipsec_in_s;
861 extern ipsec_action_t *ipsec_in_to_out_action(struct ipsec_in_s *);
862 extern boolean_t ipsec_check_ipsecin_latch(struct ipsec_in_s *, mblk_t *,
863     struct ipsec_latch_s *, ipha_t *, ip6_t *, const char **, kstat_named_t **,
864     conn_t *);
865 extern void ipsec_latch_inbound(ipsec_latch_t *ipl, struct ipsec_in_s *ii);
866 
867 extern void ipsec_policy_free(ipsec_policy_t *, netstack_t *);
868 extern void ipsec_action_free(ipsec_action_t *);
869 extern void ipsec_polhead_free(ipsec_policy_head_t *, netstack_t *);
870 extern ipsec_policy_head_t *ipsec_polhead_split(ipsec_policy_head_t *,
871     netstack_t *);
872 extern ipsec_policy_head_t *ipsec_polhead_create(void);
873 extern ipsec_policy_head_t *ipsec_system_policy(netstack_t *);
874 extern ipsec_policy_head_t *ipsec_inactive_policy(netstack_t *);
875 extern void ipsec_swap_policy(ipsec_policy_head_t *, ipsec_policy_head_t *,
876     netstack_t *);
877 extern void ipsec_swap_global_policy(netstack_t *);
878 
879 extern int ipsec_clone_system_policy(netstack_t *);
880 extern ipsec_policy_t *ipsec_policy_create(ipsec_selkey_t *,
881     const ipsec_act_t *, int, int, uint64_t *, netstack_t *);
882 extern boolean_t ipsec_policy_delete(ipsec_policy_head_t *,
883     ipsec_selkey_t *, int, netstack_t *);
884 extern int ipsec_policy_delete_index(ipsec_policy_head_t *, uint64_t,
885     netstack_t *);
886 extern boolean_t ipsec_polhead_insert(ipsec_policy_head_t *, ipsec_act_t *,
887     uint_t, int, int, netstack_t *);
888 extern void ipsec_polhead_flush(ipsec_policy_head_t *, netstack_t *);
889 extern int ipsec_copy_polhead(ipsec_policy_head_t *, ipsec_policy_head_t *,
890     netstack_t *);
891 extern void ipsec_actvec_from_req(const ipsec_req_t *, ipsec_act_t **, uint_t *,
892     netstack_t *);
893 extern void ipsec_actvec_free(ipsec_act_t *, uint_t);
894 extern int ipsec_req_from_head(ipsec_policy_head_t *, ipsec_req_t *, int);
895 extern mblk_t *ipsec_construct_inverse_acquire(sadb_msg_t *, sadb_ext_t **,
896     netstack_t *);
897 extern mblk_t *ip_wput_attach_policy(mblk_t *, ipha_t *, ip6_t *, ire_t *,
898     conn_t *, boolean_t, zoneid_t);
899 extern mblk_t	*ip_wput_ire_parse_ipsec_out(mblk_t *, ipha_t *, ip6_t *,
900     ire_t *, conn_t *, boolean_t, zoneid_t);
901 extern ipsec_policy_t *ipsec_find_policy(int, conn_t *,
902     struct ipsec_out_s *, ipsec_selector_t *, netstack_t *);
903 extern ipsid_t *ipsid_lookup(int, char *, netstack_t *);
904 extern boolean_t ipsid_equal(ipsid_t *, ipsid_t *);
905 extern void ipsid_gc(netstack_t *);
906 extern void ipsec_latch_ids(ipsec_latch_t *, ipsid_t *, ipsid_t *);
907 
908 extern void ipsec_config_flush(netstack_t *);
909 extern boolean_t ipsec_check_policy(ipsec_policy_head_t *, ipsec_policy_t *,
910     int);
911 extern void ipsec_enter_policy(ipsec_policy_head_t *, ipsec_policy_t *, int,
912     netstack_t *);
913 extern boolean_t ipsec_check_action(ipsec_act_t *, int *, netstack_t *);
914 
915 extern mblk_t *ipsec_out_tag(mblk_t *, mblk_t *, netstack_t *);
916 extern mblk_t *ipsec_in_tag(mblk_t *, mblk_t *, netstack_t *);
917 extern mblk_t *ip_copymsg(mblk_t *mp);
918 
919 extern void iplatch_free(ipsec_latch_t *, netstack_t *);
920 extern ipsec_latch_t *iplatch_create(void);
921 extern int ipsec_set_req(cred_t *, conn_t *, ipsec_req_t *);
922 
923 extern void ipsec_insert_always(avl_tree_t *tree, void *new_node);
924 
925 extern int32_t ipsec_act_ovhd(const ipsec_act_t *act);
926 
927 /*
928  * Tunnel-support SPD functions and variables.
929  */
930 struct iptun_s;	/* Defined in inet/iptun/iptun_impl.h. */
931 extern boolean_t ipsec_tun_inbound(mblk_t *, mblk_t **,  ipsec_tun_pol_t *,
932     ipha_t *, ip6_t *, ipha_t *, ip6_t *, int, netstack_t *);
933 extern mblk_t *ipsec_tun_outbound(mblk_t *, struct iptun_s *, ipha_t *,
934     ip6_t *, ipha_t *, ip6_t *, int);
935 extern void itp_free(ipsec_tun_pol_t *, netstack_t *);
936 extern ipsec_tun_pol_t *create_tunnel_policy(char *, int *, uint64_t *,
937     netstack_t *);
938 extern ipsec_tun_pol_t *get_tunnel_policy(char *, netstack_t *);
939 extern void itp_unlink(ipsec_tun_pol_t *, netstack_t *);
940 extern void itp_walk(void (*)(ipsec_tun_pol_t *, void *, netstack_t *),
941     void *, netstack_t *);
942 
943 extern ipsec_tun_pol_t *itp_get_byaddr(uint32_t *, uint32_t *, int,
944     ip_stack_t *);
945 
946 /*
947  * IPsec AH/ESP functions called from IP or the common SADB code in AH.
948  */
949 
950 extern void ipsecah_in_assocfailure(mblk_t *, char, ushort_t, char *,
951     uint32_t, void *, int, ipsecah_stack_t *);
952 extern void ipsecesp_in_assocfailure(mblk_t *, char, ushort_t, char *,
953     uint32_t, void *, int, ipsecesp_stack_t *);
954 extern void ipsecesp_send_keepalive(ipsa_t *);
955 
956 /*
957  * Algorithm management helper functions.
958  */
959 extern boolean_t ipsec_valid_key_size(uint16_t, ipsec_alginfo_t *);
960 
961 /*
962  * Per-socket policy, for now, takes precedence... this priority value
963  * insures it.
964  */
965 #define	IPSEC_PRIO_SOCKET		0x1000000
966 
967 /* DDI initialization functions. */
968 extern	boolean_t    ipsecesp_ddi_init(void);
969 extern	boolean_t    ipsecah_ddi_init(void);
970 extern	boolean_t    keysock_ddi_init(void);
971 extern	boolean_t    spdsock_ddi_init(void);
972 
973 extern	void    ipsecesp_ddi_destroy(void);
974 extern	void    ipsecah_ddi_destroy(void);
975 extern	void	keysock_ddi_destroy(void);
976 extern	void    spdsock_ddi_destroy(void);
977 
978 /*
979  * AH- and ESP-specific functions that are called directly by other modules.
980  */
981 extern void ipsecah_fill_defs(struct sadb_x_ecomb *, netstack_t *);
982 extern void ipsecesp_fill_defs(struct sadb_x_ecomb *, netstack_t *);
983 extern void ipsecah_algs_changed(netstack_t *);
984 extern void ipsecesp_algs_changed(netstack_t *);
985 extern void ipsecesp_init_funcs(ipsa_t *);
986 extern void ipsecah_init_funcs(ipsa_t *);
987 extern ipsec_status_t ipsecah_icmp_error(mblk_t *);
988 extern ipsec_status_t ipsecesp_icmp_error(mblk_t *);
989 
990 /*
991  * Wrapper for putnext() to ipsec accelerated interface.
992  */
993 extern void ipsec_hw_putnext(queue_t *, mblk_t *);
994 
995 /*
996  * spdsock functions that are called directly by IP.
997  */
998 extern void spdsock_update_pending_algs(netstack_t *);
999 
1000 /*
1001  * IP functions that are called from AH and ESP.
1002  */
1003 extern boolean_t ipsec_outbound_sa(mblk_t *, uint_t);
1004 extern esph_t *ipsec_inbound_esp_sa(mblk_t *, netstack_t *);
1005 extern ah_t *ipsec_inbound_ah_sa(mblk_t *, netstack_t *);
1006 extern ipsec_policy_t *ipsec_find_policy_head(ipsec_policy_t *,
1007     ipsec_policy_head_t *, int, ipsec_selector_t *, netstack_t *);
1008 
1009 /*
1010  * IP dropper init/destroy.
1011  */
1012 void ip_drop_init(ipsec_stack_t *);
1013 void ip_drop_destroy(ipsec_stack_t *);
1014 
1015 /*
1016  * Common functions
1017  */
1018 extern boolean_t ip_addr_match(uint8_t *, int, in6_addr_t *);
1019 
1020 /*
1021  * AH and ESP counters types.
1022  */
1023 typedef uint32_t ah_counter;
1024 typedef uint32_t esp_counter;
1025 
1026 #endif /* _KERNEL */
1027 
1028 #ifdef	__cplusplus
1029 }
1030 #endif
1031 
1032 #endif	/* _INET_IPSEC_IMPL_H */
1033