xref: /illumos-gate/usr/src/uts/common/inet/ipf/ip_fil_solaris.c (revision c386eb9c22c7c00fc48a982f238576e16b113bda)
1 /*
2  * Copyright (C) 1993-2001, 2003 by Darren Reed.
3  *
4  * See the IPFILTER.LICENCE file for details on licencing.
5  *
6  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
7  * Use is subject to license terms.
8  */
9 
10 #if !defined(lint)
11 static const char sccsid[] = "@(#)ip_fil_solaris.c	1.7 07/22/06 (C) 1993-2000 Darren Reed";
12 static const char rcsid[] = "@(#)$Id: ip_fil_solaris.c,v 2.62.2.19 2005/07/13 21:40:46 darrenr Exp $";
13 #endif
14 
15 #include <sys/types.h>
16 #include <sys/errno.h>
17 #include <sys/param.h>
18 #include <sys/cpuvar.h>
19 #include <sys/open.h>
20 #include <sys/ioctl.h>
21 #include <sys/filio.h>
22 #include <sys/systm.h>
23 #include <sys/strsubr.h>
24 #include <sys/cred.h>
25 #include <sys/cred_impl.h>
26 #include <sys/ddi.h>
27 #include <sys/sunddi.h>
28 #include <sys/ksynch.h>
29 #include <sys/kmem.h>
30 #include <sys/mkdev.h>
31 #include <sys/protosw.h>
32 #include <sys/socket.h>
33 #include <sys/dditypes.h>
34 #include <sys/cmn_err.h>
35 #include <sys/zone.h>
36 #include <net/if.h>
37 #include <net/af.h>
38 #include <net/route.h>
39 #include <netinet/in.h>
40 #include <netinet/in_systm.h>
41 #include <netinet/ip.h>
42 #include <netinet/ip_var.h>
43 #include <netinet/tcp.h>
44 #include <netinet/udp.h>
45 #include <netinet/tcpip.h>
46 #include <netinet/ip_icmp.h>
47 #include "netinet/ip_compat.h"
48 #ifdef	USE_INET6
49 # include <netinet/icmp6.h>
50 #endif
51 #include "netinet/ip_fil.h"
52 #include "netinet/ip_nat.h"
53 #include "netinet/ip_frag.h"
54 #include "netinet/ip_state.h"
55 #include "netinet/ip_auth.h"
56 #include "netinet/ip_proxy.h"
57 #include "netinet/ipf_stack.h"
58 #ifdef	IPFILTER_LOOKUP
59 # include "netinet/ip_lookup.h"
60 #endif
61 #include <inet/ip_ire.h>
62 
63 #include <sys/md5.h>
64 #include <sys/neti.h>
65 
66 static	int	frzerostats __P((caddr_t, ipf_stack_t *));
67 static	int	fr_setipfloopback __P((int, ipf_stack_t *));
68 static	int	fr_enableipf __P((ipf_stack_t *, int));
69 static	int	fr_send_ip __P((fr_info_t *fin, mblk_t *m, mblk_t **mp));
70 static	int	ipf_nic_event_v4 __P((hook_event_token_t, hook_data_t, void *));
71 static	int	ipf_nic_event_v6 __P((hook_event_token_t, hook_data_t, void *));
72 static	int	ipf_hook __P((hook_data_t, int, int, void *));
73 static	int	ipf_hook4_in __P((hook_event_token_t, hook_data_t, void *));
74 static	int	ipf_hook4_out __P((hook_event_token_t, hook_data_t, void *));
75 static	int	ipf_hook4_loop_out __P((hook_event_token_t, hook_data_t,
76     void *));
77 static	int	ipf_hook4_loop_in __P((hook_event_token_t, hook_data_t, void *));
78 static	int	ipf_hook4 __P((hook_data_t, int, int, void *));
79 static	int	ipf_hook6_out __P((hook_event_token_t, hook_data_t, void *));
80 static	int	ipf_hook6_in __P((hook_event_token_t, hook_data_t, void *));
81 static	int	ipf_hook6_loop_out __P((hook_event_token_t, hook_data_t,
82     void *));
83 static	int	ipf_hook6_loop_in __P((hook_event_token_t, hook_data_t,
84     void *));
85 static	int     ipf_hook6 __P((hook_data_t, int, int, void *));
86 extern	int	ipf_geniter __P((ipftoken_t *, ipfgeniter_t *, ipf_stack_t *));
87 extern	int	ipf_frruleiter __P((void *, int, void *, ipf_stack_t *));
88 
89 #if SOLARIS2 < 10
90 #if SOLARIS2 >= 7
91 u_int		*ip_ttl_ptr = NULL;
92 u_int		*ip_mtudisc = NULL;
93 # if SOLARIS2 >= 8
94 int		*ip_forwarding = NULL;
95 u_int		*ip6_forwarding = NULL;
96 # else
97 u_int		*ip_forwarding = NULL;
98 # endif
99 #else
100 u_long		*ip_ttl_ptr = NULL;
101 u_long		*ip_mtudisc = NULL;
102 u_long		*ip_forwarding = NULL;
103 #endif
104 #endif
105 
106 
107 /* ------------------------------------------------------------------------ */
108 /* Function:    ipldetach                                                   */
109 /* Returns:     int - 0 == success, else error.                             */
110 /* Parameters:  Nil                                                         */
111 /*                                                                          */
112 /* This function is responsible for undoing anything that might have been   */
113 /* done in a call to iplattach().  It must be able to clean up from a call  */
114 /* to iplattach() that did not succeed.  Why might that happen?  Someone    */
115 /* configures a table to be so large that we cannot allocate enough memory  */
116 /* for it.                                                                  */
117 /* ------------------------------------------------------------------------ */
118 int ipldetach(ifs)
119 ipf_stack_t *ifs;
120 {
121 
122 	ASSERT(rw_read_locked(&ifs->ifs_ipf_global.ipf_lk) == 0);
123 
124 #if SOLARIS2 < 10
125 
126 	if (ifs->ifs_fr_control_forwarding & 2) {
127 		if (ip_forwarding != NULL)
128 			*ip_forwarding = 0;
129 #if SOLARIS2 >= 8
130 		if (ip6_forwarding != NULL)
131 			*ip6_forwarding = 0;
132 #endif
133 	}
134 #endif
135 
136 	/*
137 	 * This lock needs to be dropped around the net_hook_unregister calls
138 	 * because we can deadlock here with:
139 	 * W(ipf_global)->R(hook_family)->W(hei_lock) (this code path) vs
140 	 * R(hook_family)->R(hei_lock)->R(ipf_global) (active hook running)
141 	 */
142 	RWLOCK_EXIT(&ifs->ifs_ipf_global);
143 
144 #define	UNDO_HOOK(_f, _b, _e, _h)					\
145 	do {								\
146 		if (ifs->_f != NULL) {					\
147 			if (ifs->_b) {					\
148 				ifs->_b = (net_hook_unregister(ifs->_f,	\
149 					   _e, ifs->_h) != 0);		\
150 				if (!ifs->_b) {				\
151 					hook_free(ifs->_h);		\
152 					ifs->_h = NULL;			\
153 				}					\
154 			} else if (ifs->_h != NULL) {			\
155 				hook_free(ifs->_h);			\
156 				ifs->_h = NULL;				\
157 			}						\
158 		}							\
159 		_NOTE(CONSTCOND)					\
160 	} while (0)
161 
162 	/*
163 	 * Remove IPv6 Hooks
164 	 */
165 	if (ifs->ifs_ipf_ipv6 != NULL) {
166 		UNDO_HOOK(ifs_ipf_ipv6, ifs_hook6_physical_in,
167 			  NH_PHYSICAL_IN, ifs_ipfhook6_in);
168 		UNDO_HOOK(ifs_ipf_ipv6, ifs_hook6_physical_out,
169 			  NH_PHYSICAL_OUT, ifs_ipfhook6_out);
170 		UNDO_HOOK(ifs_ipf_ipv6, ifs_hook6_nic_events,
171 			  NH_NIC_EVENTS, ifs_ipfhook6_nicevents);
172 		UNDO_HOOK(ifs_ipf_ipv6, ifs_hook6_loopback_in,
173 			  NH_LOOPBACK_IN, ifs_ipfhook6_loop_in);
174 		UNDO_HOOK(ifs_ipf_ipv6, ifs_hook6_loopback_out,
175 			  NH_LOOPBACK_OUT, ifs_ipfhook6_loop_out);
176 
177 		if (net_protocol_release(ifs->ifs_ipf_ipv6) != 0)
178 			goto detach_failed;
179 		ifs->ifs_ipf_ipv6 = NULL;
180         }
181 
182 	/*
183 	 * Remove IPv4 Hooks
184 	 */
185 	if (ifs->ifs_ipf_ipv4 != NULL) {
186 		UNDO_HOOK(ifs_ipf_ipv4, ifs_hook4_physical_in,
187 			  NH_PHYSICAL_IN, ifs_ipfhook4_in);
188 		UNDO_HOOK(ifs_ipf_ipv4, ifs_hook4_physical_out,
189 			  NH_PHYSICAL_OUT, ifs_ipfhook4_out);
190 		UNDO_HOOK(ifs_ipf_ipv4, ifs_hook4_nic_events,
191 			  NH_NIC_EVENTS, ifs_ipfhook4_nicevents);
192 		UNDO_HOOK(ifs_ipf_ipv4, ifs_hook4_loopback_in,
193 			  NH_LOOPBACK_IN, ifs_ipfhook4_loop_in);
194 		UNDO_HOOK(ifs_ipf_ipv4, ifs_hook4_loopback_out,
195 			  NH_LOOPBACK_OUT, ifs_ipfhook4_loop_out);
196 
197 		if (net_protocol_release(ifs->ifs_ipf_ipv4) != 0)
198 			goto detach_failed;
199 		ifs->ifs_ipf_ipv4 = NULL;
200 	}
201 
202 #undef UNDO_HOOK
203 
204 #ifdef	IPFDEBUG
205 	cmn_err(CE_CONT, "ipldetach()\n");
206 #endif
207 
208 	WRITE_ENTER(&ifs->ifs_ipf_global);
209 	fr_deinitialise(ifs);
210 
211 	(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
212 	(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs);
213 
214 	if (ifs->ifs_ipf_locks_done == 1) {
215 		MUTEX_DESTROY(&ifs->ifs_ipf_timeoutlock);
216 		MUTEX_DESTROY(&ifs->ifs_ipf_rw);
217 		RW_DESTROY(&ifs->ifs_ipf_tokens);
218 		RW_DESTROY(&ifs->ifs_ipf_ipidfrag);
219 		ifs->ifs_ipf_locks_done = 0;
220 	}
221 
222 	if (ifs->ifs_hook4_physical_in || ifs->ifs_hook4_physical_out ||
223 	    ifs->ifs_hook4_nic_events || ifs->ifs_hook4_loopback_in ||
224 	    ifs->ifs_hook4_loopback_out || ifs->ifs_hook6_nic_events ||
225 	    ifs->ifs_hook6_physical_in || ifs->ifs_hook6_physical_out ||
226 	    ifs->ifs_hook6_loopback_in || ifs->ifs_hook6_loopback_out)
227 		return -1;
228 
229 	return 0;
230 
231 detach_failed:
232 	WRITE_ENTER(&ifs->ifs_ipf_global);
233 	return -1;
234 }
235 
236 int iplattach(ifs)
237 ipf_stack_t *ifs;
238 {
239 #if SOLARIS2 < 10
240 	int i;
241 #endif
242 	netid_t id = ifs->ifs_netid;
243 
244 #ifdef	IPFDEBUG
245 	cmn_err(CE_CONT, "iplattach()\n");
246 #endif
247 
248 	ASSERT(rw_read_locked(&ifs->ifs_ipf_global.ipf_lk) == 0);
249 	ifs->ifs_fr_flags = IPF_LOGGING;
250 #ifdef _KERNEL
251 	ifs->ifs_fr_update_ipid = 0;
252 #else
253 	ifs->ifs_fr_update_ipid = 1;
254 #endif
255 	ifs->ifs_fr_minttl = 4;
256 	ifs->ifs_fr_icmpminfragmtu = 68;
257 #if defined(IPFILTER_DEFAULT_BLOCK)
258 	ifs->ifs_fr_pass = FR_BLOCK|FR_NOMATCH;
259 #else
260 	ifs->ifs_fr_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
261 #endif
262 
263 	MUTEX_INIT(&ifs->ifs_ipf_rw, "ipf rw mutex");
264 	MUTEX_INIT(&ifs->ifs_ipf_timeoutlock, "ipf timeout lock mutex");
265 	RWLOCK_INIT(&ifs->ifs_ipf_ipidfrag, "ipf IP NAT-Frag rwlock");
266 	RWLOCK_INIT(&ifs->ifs_ipf_tokens, "ipf token rwlock");
267 	ifs->ifs_ipf_locks_done = 1;
268 
269 	if (fr_initialise(ifs) < 0)
270 		return -1;
271 
272 	HOOK_INIT(ifs->ifs_ipfhook4_nicevents, ipf_nic_event_v4,
273 		  "ipfilter_hook4_nicevents", ifs);
274 	HOOK_INIT(ifs->ifs_ipfhook4_in, ipf_hook4_in,
275 		  "ipfilter_hook4_in", ifs);
276 	HOOK_INIT(ifs->ifs_ipfhook4_out, ipf_hook4_out,
277 		  "ipfilter_hook4_out", ifs);
278 	HOOK_INIT(ifs->ifs_ipfhook4_loop_in, ipf_hook4_loop_in,
279 		  "ipfilter_hook4_loop_in", ifs);
280 	HOOK_INIT(ifs->ifs_ipfhook4_loop_out, ipf_hook4_loop_out,
281 		  "ipfilter_hook4_loop_out", ifs);
282 
283 	/*
284 	 * If we hold this lock over all of the net_hook_register calls, we
285 	 * can cause a deadlock to occur with the following lock ordering:
286 	 * W(ipf_global)->R(hook_family)->W(hei_lock) (this code path) vs
287 	 * R(hook_family)->R(hei_lock)->R(ipf_global) (packet path)
288 	 */
289 	RWLOCK_EXIT(&ifs->ifs_ipf_global);
290 
291 	/*
292 	 * Add IPv4 hooks
293 	 */
294 	ifs->ifs_ipf_ipv4 = net_protocol_lookup(id, NHF_INET);
295 	if (ifs->ifs_ipf_ipv4 == NULL)
296 		goto hookup_failed;
297 
298 	ifs->ifs_hook4_nic_events = (net_hook_register(ifs->ifs_ipf_ipv4,
299 	    NH_NIC_EVENTS, ifs->ifs_ipfhook4_nicevents) == 0);
300 	if (!ifs->ifs_hook4_nic_events)
301 		goto hookup_failed;
302 
303 	ifs->ifs_hook4_physical_in = (net_hook_register(ifs->ifs_ipf_ipv4,
304 	    NH_PHYSICAL_IN, ifs->ifs_ipfhook4_in) == 0);
305 	if (!ifs->ifs_hook4_physical_in)
306 		goto hookup_failed;
307 
308 	ifs->ifs_hook4_physical_out = (net_hook_register(ifs->ifs_ipf_ipv4,
309 	    NH_PHYSICAL_OUT, ifs->ifs_ipfhook4_out) == 0);
310 	if (!ifs->ifs_hook4_physical_out)
311 		goto hookup_failed;
312 
313 	if (ifs->ifs_ipf_loopback) {
314 		ifs->ifs_hook4_loopback_in = (net_hook_register(
315 		    ifs->ifs_ipf_ipv4, NH_LOOPBACK_IN,
316 		    ifs->ifs_ipfhook4_loop_in) == 0);
317 		if (!ifs->ifs_hook4_loopback_in)
318 			goto hookup_failed;
319 
320 		ifs->ifs_hook4_loopback_out = (net_hook_register(
321 		    ifs->ifs_ipf_ipv4, NH_LOOPBACK_OUT,
322 		    ifs->ifs_ipfhook4_loop_out) == 0);
323 		if (!ifs->ifs_hook4_loopback_out)
324 			goto hookup_failed;
325 	}
326 	/*
327 	 * Add IPv6 hooks
328 	 */
329 	ifs->ifs_ipf_ipv6 = net_protocol_lookup(id, NHF_INET6);
330 	if (ifs->ifs_ipf_ipv6 == NULL)
331 		goto hookup_failed;
332 
333 	HOOK_INIT(ifs->ifs_ipfhook6_nicevents, ipf_nic_event_v6,
334 		  "ipfilter_hook6_nicevents", ifs);
335 	HOOK_INIT(ifs->ifs_ipfhook6_in, ipf_hook6_in,
336 		  "ipfilter_hook6_in", ifs);
337 	HOOK_INIT(ifs->ifs_ipfhook6_out, ipf_hook6_out,
338 		  "ipfilter_hook6_out", ifs);
339 	HOOK_INIT(ifs->ifs_ipfhook6_loop_in, ipf_hook6_loop_in,
340 		  "ipfilter_hook6_loop_in", ifs);
341 	HOOK_INIT(ifs->ifs_ipfhook6_loop_out, ipf_hook6_loop_out,
342 		  "ipfilter_hook6_loop_out", ifs);
343 
344 	ifs->ifs_hook6_nic_events = (net_hook_register(ifs->ifs_ipf_ipv6,
345 	    NH_NIC_EVENTS, ifs->ifs_ipfhook6_nicevents) == 0);
346 	if (!ifs->ifs_hook6_nic_events)
347 		goto hookup_failed;
348 
349 	ifs->ifs_hook6_physical_in = (net_hook_register(ifs->ifs_ipf_ipv6,
350 	    NH_PHYSICAL_IN, ifs->ifs_ipfhook6_in) == 0);
351 	if (!ifs->ifs_hook6_physical_in)
352 		goto hookup_failed;
353 
354 	ifs->ifs_hook6_physical_out = (net_hook_register(ifs->ifs_ipf_ipv6,
355 	    NH_PHYSICAL_OUT, ifs->ifs_ipfhook6_out) == 0);
356 	if (!ifs->ifs_hook6_physical_out)
357 		goto hookup_failed;
358 
359 	if (ifs->ifs_ipf_loopback) {
360 		ifs->ifs_hook6_loopback_in = (net_hook_register(
361 		    ifs->ifs_ipf_ipv6, NH_LOOPBACK_IN,
362 		    ifs->ifs_ipfhook6_loop_in) == 0);
363 		if (!ifs->ifs_hook6_loopback_in)
364 			goto hookup_failed;
365 
366 		ifs->ifs_hook6_loopback_out = (net_hook_register(
367 		    ifs->ifs_ipf_ipv6, NH_LOOPBACK_OUT,
368 		    ifs->ifs_ipfhook6_loop_out) == 0);
369 		if (!ifs->ifs_hook6_loopback_out)
370 			goto hookup_failed;
371 	}
372 
373 	/*
374 	 * Reacquire ipf_global, now it is safe.
375 	 */
376 	WRITE_ENTER(&ifs->ifs_ipf_global);
377 
378 /* Do not use private interface ip_params_arr[] in Solaris 10 */
379 #if SOLARIS2 < 10
380 
381 #if SOLARIS2 >= 8
382 	ip_forwarding = &ip_g_forward;
383 #endif
384 	/*
385 	 * XXX - There is no terminator for this array, so it is not possible
386 	 * to tell if what we are looking for is missing and go off the end
387 	 * of the array.
388 	 */
389 
390 #if SOLARIS2 <= 8
391 	for (i = 0; ; i++) {
392 		if (!strcmp(ip_param_arr[i].ip_param_name, "ip_def_ttl")) {
393 			ip_ttl_ptr = &ip_param_arr[i].ip_param_value;
394 		} else if (!strcmp(ip_param_arr[i].ip_param_name,
395 			    "ip_path_mtu_discovery")) {
396 			ip_mtudisc = &ip_param_arr[i].ip_param_value;
397 		}
398 #if SOLARIS2 < 8
399 		else if (!strcmp(ip_param_arr[i].ip_param_name,
400 			    "ip_forwarding")) {
401 			ip_forwarding = &ip_param_arr[i].ip_param_value;
402 		}
403 #else
404 		else if (!strcmp(ip_param_arr[i].ip_param_name,
405 			    "ip6_forwarding")) {
406 			ip6_forwarding = &ip_param_arr[i].ip_param_value;
407 		}
408 #endif
409 
410 		if (ip_mtudisc != NULL && ip_ttl_ptr != NULL &&
411 #if SOLARIS2 >= 8
412 		    ip6_forwarding != NULL &&
413 #endif
414 		    ip_forwarding != NULL)
415 			break;
416 	}
417 #endif
418 
419 	if (ifs->ifs_fr_control_forwarding & 1) {
420 		if (ip_forwarding != NULL)
421 			*ip_forwarding = 1;
422 #if SOLARIS2 >= 8
423 		if (ip6_forwarding != NULL)
424 			*ip6_forwarding = 1;
425 #endif
426 	}
427 
428 #endif
429 
430 	return 0;
431 hookup_failed:
432 	WRITE_ENTER(&ifs->ifs_ipf_global);
433 	return -1;
434 }
435 
436 static	int	fr_setipfloopback(set, ifs)
437 int set;
438 ipf_stack_t *ifs;
439 {
440 	if (ifs->ifs_ipf_ipv4 == NULL || ifs->ifs_ipf_ipv6 == NULL)
441 		return EFAULT;
442 
443 	if (set && !ifs->ifs_ipf_loopback) {
444 		ifs->ifs_ipf_loopback = 1;
445 
446 		ifs->ifs_hook4_loopback_in = (net_hook_register(
447 		    ifs->ifs_ipf_ipv4, NH_LOOPBACK_IN,
448 		    ifs->ifs_ipfhook4_loop_in) == 0);
449 		if (!ifs->ifs_hook4_loopback_in)
450 			return EINVAL;
451 
452 		ifs->ifs_hook4_loopback_out = (net_hook_register(
453 		    ifs->ifs_ipf_ipv4, NH_LOOPBACK_OUT,
454 		    ifs->ifs_ipfhook4_loop_out) == 0);
455 		if (!ifs->ifs_hook4_loopback_out)
456 			return EINVAL;
457 
458 		ifs->ifs_hook6_loopback_in = (net_hook_register(
459 		    ifs->ifs_ipf_ipv6, NH_LOOPBACK_IN,
460 		    ifs->ifs_ipfhook6_loop_in) == 0);
461 		if (!ifs->ifs_hook6_loopback_in)
462 			return EINVAL;
463 
464 		ifs->ifs_hook6_loopback_out = (net_hook_register(
465 		    ifs->ifs_ipf_ipv6, NH_LOOPBACK_OUT,
466 		    ifs->ifs_ipfhook6_loop_out) == 0);
467 		if (!ifs->ifs_hook6_loopback_out)
468 			return EINVAL;
469 
470 	} else if (!set && ifs->ifs_ipf_loopback) {
471 		ifs->ifs_ipf_loopback = 0;
472 
473 		ifs->ifs_hook4_loopback_in =
474 		    (net_hook_unregister(ifs->ifs_ipf_ipv4,
475 		    NH_LOOPBACK_IN, ifs->ifs_ipfhook4_loop_in) != 0);
476 		if (ifs->ifs_hook4_loopback_in)
477 			return EBUSY;
478 
479 		ifs->ifs_hook4_loopback_out =
480 		    (net_hook_unregister(ifs->ifs_ipf_ipv4,
481 		    NH_LOOPBACK_OUT, ifs->ifs_ipfhook4_loop_out) != 0);
482 		if (ifs->ifs_hook4_loopback_out)
483 			return EBUSY;
484 
485 		ifs->ifs_hook6_loopback_in =
486 		    (net_hook_unregister(ifs->ifs_ipf_ipv6,
487 		    NH_LOOPBACK_IN, ifs->ifs_ipfhook4_loop_in) != 0);
488 		if (ifs->ifs_hook6_loopback_in)
489 			return EBUSY;
490 
491 		ifs->ifs_hook6_loopback_out =
492 		    (net_hook_unregister(ifs->ifs_ipf_ipv6,
493 		    NH_LOOPBACK_OUT, ifs->ifs_ipfhook6_loop_out) != 0);
494 		if (ifs->ifs_hook6_loopback_out)
495 			return EBUSY;
496 	}
497 	return 0;
498 }
499 
500 
501 /*
502  * Filter ioctl interface.
503  */
504 /*ARGSUSED*/
505 int iplioctl(dev, cmd, data, mode, cp, rp)
506 dev_t dev;
507 int cmd;
508 #if SOLARIS2 >= 7
509 intptr_t data;
510 #else
511 int *data;
512 #endif
513 int mode;
514 cred_t *cp;
515 int *rp;
516 {
517 	int error = 0, tmp;
518 	friostat_t fio;
519 	minor_t unit;
520 	u_int enable;
521 	ipf_stack_t *ifs;
522 
523 #ifdef	IPFDEBUG
524 	cmn_err(CE_CONT, "iplioctl(%x,%x,%x,%d,%x,%d)\n",
525 		dev, cmd, data, mode, cp, rp);
526 #endif
527 	unit = getminor(dev);
528 	if (IPL_LOGMAX < unit)
529 		return ENXIO;
530 
531         /*
532 	 * As we're calling ipf_find_stack in user space, from a given zone
533 	 * to find the stack pointer for this zone, there is no need to have
534 	 * a hold/refence count here.
535 	 */
536 	ifs = ipf_find_stack(crgetzoneid(cp));
537 	ASSERT(ifs != NULL);
538 
539 	if (ifs->ifs_fr_running <= 0) {
540 		if (unit != IPL_LOGIPF) {
541 			return EIO;
542 		}
543 		if (cmd != SIOCIPFGETNEXT && cmd != SIOCIPFGET &&
544 		    cmd != SIOCIPFSET && cmd != SIOCFRENB &&
545 		    cmd != SIOCGETFS && cmd != SIOCGETFF) {
546 			return EIO;
547 		}
548 	}
549 
550 	READ_ENTER(&ifs->ifs_ipf_global);
551 
552 	error = fr_ioctlswitch(unit, (caddr_t)data, cmd, mode, cp->cr_uid,
553 			       curproc, ifs);
554 	if (error != -1) {
555 		RWLOCK_EXIT(&ifs->ifs_ipf_global);
556 		return error;
557 	}
558 	error = 0;
559 
560 	switch (cmd)
561 	{
562 	case SIOCFRENB :
563 		if (!(mode & FWRITE))
564 			error = EPERM;
565 		else {
566 			error = COPYIN((caddr_t)data, (caddr_t)&enable,
567 				       sizeof(enable));
568 			if (error != 0) {
569 				error = EFAULT;
570 				break;
571 			}
572 
573 			RWLOCK_EXIT(&ifs->ifs_ipf_global);
574 			WRITE_ENTER(&ifs->ifs_ipf_global);
575 			error = fr_enableipf(ifs, enable);
576 		}
577 		break;
578 	case SIOCIPFSET :
579 		if (!(mode & FWRITE)) {
580 			error = EPERM;
581 			break;
582 		}
583 		/* FALLTHRU */
584 	case SIOCIPFGETNEXT :
585 	case SIOCIPFGET :
586 		error = fr_ipftune(cmd, (void *)data, ifs);
587 		break;
588 	case SIOCSETFF :
589 		if (!(mode & FWRITE))
590 			error = EPERM;
591 		else {
592 			error = COPYIN((caddr_t)data,
593 				       (caddr_t)&ifs->ifs_fr_flags,
594 				       sizeof(ifs->ifs_fr_flags));
595 			if (error != 0)
596 				error = EFAULT;
597 		}
598 		break;
599 	case SIOCIPFLP :
600 		error = COPYIN((caddr_t)data, (caddr_t)&tmp,
601 			       sizeof(tmp));
602 		if (error != 0)
603 			error = EFAULT;
604 		else
605 			error = fr_setipfloopback(tmp, ifs);
606 		break;
607 	case SIOCGETFF :
608 		error = COPYOUT((caddr_t)&ifs->ifs_fr_flags, (caddr_t)data,
609 				sizeof(ifs->ifs_fr_flags));
610 		if (error != 0)
611 			error = EFAULT;
612 		break;
613 	case SIOCFUNCL :
614 		error = fr_resolvefunc((void *)data);
615 		break;
616 	case SIOCINAFR :
617 	case SIOCRMAFR :
618 	case SIOCADAFR :
619 	case SIOCZRLST :
620 		if (!(mode & FWRITE))
621 			error = EPERM;
622 		else
623 			error = frrequest(unit, cmd, (caddr_t)data,
624 					  ifs->ifs_fr_active, 1, ifs);
625 		break;
626 	case SIOCINIFR :
627 	case SIOCRMIFR :
628 	case SIOCADIFR :
629 		if (!(mode & FWRITE))
630 			error = EPERM;
631 		else
632 			error = frrequest(unit, cmd, (caddr_t)data,
633 					  1 - ifs->ifs_fr_active, 1, ifs);
634 		break;
635 	case SIOCSWAPA :
636 		if (!(mode & FWRITE))
637 			error = EPERM;
638 		else {
639 			WRITE_ENTER(&ifs->ifs_ipf_mutex);
640 			error = COPYOUT((caddr_t)&ifs->ifs_fr_active,
641 					(caddr_t)data,
642 					sizeof(ifs->ifs_fr_active));
643 			if (error != 0)
644 				error = EFAULT;
645 			else
646 				ifs->ifs_fr_active = 1 - ifs->ifs_fr_active;
647 			RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
648 		}
649 		break;
650 	case SIOCGETFS :
651 		fr_getstat(&fio, ifs);
652 		error = fr_outobj((void *)data, &fio, IPFOBJ_IPFSTAT);
653 		break;
654 	case SIOCFRZST :
655 		if (!(mode & FWRITE))
656 			error = EPERM;
657 		else
658 			error = fr_zerostats((caddr_t)data, ifs);
659 		break;
660 	case	SIOCIPFFL :
661 		if (!(mode & FWRITE))
662 			error = EPERM;
663 		else {
664 			error = COPYIN((caddr_t)data, (caddr_t)&tmp,
665 				       sizeof(tmp));
666 			if (!error) {
667 				tmp = frflush(unit, 4, tmp, ifs);
668 				error = COPYOUT((caddr_t)&tmp, (caddr_t)data,
669 						sizeof(tmp));
670 				if (error != 0)
671 					error = EFAULT;
672 			} else
673 				error = EFAULT;
674 		}
675 		break;
676 #ifdef USE_INET6
677 	case	SIOCIPFL6 :
678 		if (!(mode & FWRITE))
679 			error = EPERM;
680 		else {
681 			error = COPYIN((caddr_t)data, (caddr_t)&tmp,
682 				       sizeof(tmp));
683 			if (!error) {
684 				tmp = frflush(unit, 6, tmp, ifs);
685 				error = COPYOUT((caddr_t)&tmp, (caddr_t)data,
686 						sizeof(tmp));
687 				if (error != 0)
688 					error = EFAULT;
689 			} else
690 				error = EFAULT;
691 		}
692 		break;
693 #endif
694 	case SIOCSTLCK :
695 		error = COPYIN((caddr_t)data, (caddr_t)&tmp, sizeof(tmp));
696 		if (error == 0) {
697 			ifs->ifs_fr_state_lock = tmp;
698 			ifs->ifs_fr_nat_lock = tmp;
699 			ifs->ifs_fr_frag_lock = tmp;
700 			ifs->ifs_fr_auth_lock = tmp;
701 		} else
702 			error = EFAULT;
703 	break;
704 #ifdef	IPFILTER_LOG
705 	case	SIOCIPFFB :
706 		if (!(mode & FWRITE))
707 			error = EPERM;
708 		else {
709 			tmp = ipflog_clear(unit, ifs);
710 			error = COPYOUT((caddr_t)&tmp, (caddr_t)data,
711 				       sizeof(tmp));
712 			if (error)
713 				error = EFAULT;
714 		}
715 		break;
716 #endif /* IPFILTER_LOG */
717 	case SIOCFRSYN :
718 		if (!(mode & FWRITE))
719 			error = EPERM;
720 		else {
721 			RWLOCK_EXIT(&ifs->ifs_ipf_global);
722 			WRITE_ENTER(&ifs->ifs_ipf_global);
723 
724 			frsync(IPFSYNC_RESYNC, 0, NULL, NULL, ifs);
725 			fr_natifpsync(IPFSYNC_RESYNC, 0, NULL, NULL, ifs);
726 			fr_nataddrsync(0, NULL, NULL, ifs);
727 			fr_statesync(IPFSYNC_RESYNC, 0, NULL, NULL, ifs);
728 			error = 0;
729 		}
730 		break;
731 	case SIOCGFRST :
732 		error = fr_outobj((void *)data, fr_fragstats(ifs),
733 				  IPFOBJ_FRAGSTAT);
734 		break;
735 	case FIONREAD :
736 #ifdef	IPFILTER_LOG
737 		tmp = (int)ifs->ifs_iplused[IPL_LOGIPF];
738 
739 		error = COPYOUT((caddr_t)&tmp, (caddr_t)data, sizeof(tmp));
740 		if (error != 0)
741 			error = EFAULT;
742 #endif
743 		break;
744 	case SIOCIPFITER :
745 		error = ipf_frruleiter((caddr_t)data, cp->cr_uid,
746 				       curproc, ifs);
747 		break;
748 
749 	case SIOCGENITER :
750 		error = ipf_genericiter((caddr_t)data, cp->cr_uid,
751 					curproc, ifs);
752 		break;
753 
754 	case SIOCIPFDELTOK :
755 		error = BCOPYIN((caddr_t)data, (caddr_t)&tmp, sizeof(tmp));
756 		if (error != 0) {
757 			error = EFAULT;
758 		} else {
759 			error = ipf_deltoken(tmp, cp->cr_uid, curproc, ifs);
760 		}
761 		break;
762 
763 	default :
764 #ifdef	IPFDEBUG
765 		cmn_err(CE_NOTE, "Unknown: cmd 0x%x data %p",
766 			cmd, (void *)data);
767 #endif
768 		error = EINVAL;
769 		break;
770 	}
771 	RWLOCK_EXIT(&ifs->ifs_ipf_global);
772 	return error;
773 }
774 
775 
776 static int fr_enableipf(ifs, enable)
777 ipf_stack_t *ifs;
778 int enable;
779 {
780 	int error;
781 
782 	if (!enable) {
783 		error = ipldetach(ifs);
784 		if (error == 0)
785 			ifs->ifs_fr_running = -1;
786 		return error;
787 	}
788 
789 	if (ifs->ifs_fr_running > 0)
790 		return 0;
791 
792 	error = iplattach(ifs);
793 	if (error == 0) {
794 		if (ifs->ifs_fr_timer_id == NULL) {
795 			int hz = drv_usectohz(500000);
796 
797 			ifs->ifs_fr_timer_id = timeout(fr_slowtimer,
798 						       (void *)ifs,
799 						       hz);
800 		}
801 		ifs->ifs_fr_running = 1;
802 	} else {
803 		(void) ipldetach(ifs);
804 	}
805 	return error;
806 }
807 
808 
809 phy_if_t get_unit(name, v, ifs)
810 char *name;
811 int v;
812 ipf_stack_t *ifs;
813 {
814 	net_handle_t nif;
815 
816   	if (v == 4)
817  		nif = ifs->ifs_ipf_ipv4;
818   	else if (v == 6)
819  		nif = ifs->ifs_ipf_ipv6;
820   	else
821  		return 0;
822 
823  	return (net_phylookup(nif, name));
824 }
825 
826 /*
827  * routines below for saving IP headers to buffer
828  */
829 /*ARGSUSED*/
830 int iplopen(devp, flags, otype, cred)
831 dev_t *devp;
832 int flags, otype;
833 cred_t *cred;
834 {
835 	minor_t min = getminor(*devp);
836 
837 #ifdef	IPFDEBUG
838 	cmn_err(CE_CONT, "iplopen(%x,%x,%x,%x)\n", devp, flags, otype, cred);
839 #endif
840 	if (!(otype & OTYP_CHR))
841 		return ENXIO;
842 
843 	min = (IPL_LOGMAX < min) ? ENXIO : 0;
844 	return min;
845 }
846 
847 
848 /*ARGSUSED*/
849 int iplclose(dev, flags, otype, cred)
850 dev_t dev;
851 int flags, otype;
852 cred_t *cred;
853 {
854 	minor_t	min = getminor(dev);
855 
856 #ifdef	IPFDEBUG
857 	cmn_err(CE_CONT, "iplclose(%x,%x,%x,%x)\n", dev, flags, otype, cred);
858 #endif
859 
860 	min = (IPL_LOGMAX < min) ? ENXIO : 0;
861 	return min;
862 }
863 
864 #ifdef	IPFILTER_LOG
865 /*
866  * iplread/ipllog
867  * both of these must operate with at least splnet() lest they be
868  * called during packet processing and cause an inconsistancy to appear in
869  * the filter lists.
870  */
871 /*ARGSUSED*/
872 int iplread(dev, uio, cp)
873 dev_t dev;
874 register struct uio *uio;
875 cred_t *cp;
876 {
877 	ipf_stack_t *ifs;
878 	int ret;
879 
880         /*
881 	 * As we're calling ipf_find_stack in user space, from a given zone
882 	 * to find the stack pointer for this zone, there is no need to have
883 	 * a hold/refence count here.
884 	 */
885 	ifs = ipf_find_stack(crgetzoneid(cp));
886 	ASSERT(ifs != NULL);
887 
888 # ifdef	IPFDEBUG
889 	cmn_err(CE_CONT, "iplread(%x,%x,%x)\n", dev, uio, cp);
890 # endif
891 
892 	if (ifs->ifs_fr_running < 1) {
893 		return EIO;
894 	}
895 
896 # ifdef	IPFILTER_SYNC
897 	if (getminor(dev) == IPL_LOGSYNC) {
898 		return ipfsync_read(uio);
899 	}
900 # endif
901 
902 	ret = ipflog_read(getminor(dev), uio, ifs);
903 	return ret;
904 }
905 #endif /* IPFILTER_LOG */
906 
907 
908 /*
909  * iplread/ipllog
910  * both of these must operate with at least splnet() lest they be
911  * called during packet processing and cause an inconsistancy to appear in
912  * the filter lists.
913  */
914 int iplwrite(dev, uio, cp)
915 dev_t dev;
916 register struct uio *uio;
917 cred_t *cp;
918 {
919 	ipf_stack_t *ifs;
920 
921         /*
922 	 * As we're calling ipf_find_stack in user space, from a given zone
923 	 * to find the stack pointer for this zone, there is no need to have
924 	 * a hold/refence count here.
925 	 */
926 	ifs = ipf_find_stack(crgetzoneid(cp));
927 	ASSERT(ifs != NULL);
928 
929 #ifdef	IPFDEBUG
930 	cmn_err(CE_CONT, "iplwrite(%x,%x,%x)\n", dev, uio, cp);
931 #endif
932 
933 	if (ifs->ifs_fr_running < 1) {
934 		return EIO;
935 	}
936 
937 #ifdef	IPFILTER_SYNC
938 	if (getminor(dev) == IPL_LOGSYNC)
939 		return ipfsync_write(uio);
940 #endif /* IPFILTER_SYNC */
941 	dev = dev;	/* LINT */
942 	uio = uio;	/* LINT */
943 	cp = cp;	/* LINT */
944 	return ENXIO;
945 }
946 
947 
948 /*
949  * fr_send_reset - this could conceivably be a call to tcp_respond(), but that
950  * requires a large amount of setting up and isn't any more efficient.
951  */
952 int fr_send_reset(fin)
953 fr_info_t *fin;
954 {
955 	tcphdr_t *tcp, *tcp2;
956 	int tlen, hlen;
957 	mblk_t *m;
958 #ifdef	USE_INET6
959 	ip6_t *ip6;
960 #endif
961 	ip_t *ip;
962 
963 	tcp = fin->fin_dp;
964 	if (tcp->th_flags & TH_RST)
965 		return -1;
966 
967 #ifndef	IPFILTER_CKSUM
968 	if (fr_checkl4sum(fin) == -1)
969 		return -1;
970 #endif
971 
972 	tlen = (tcp->th_flags & (TH_SYN|TH_FIN)) ? 1 : 0;
973 #ifdef	USE_INET6
974 	if (fin->fin_v == 6)
975 		hlen = sizeof(ip6_t);
976 	else
977 #endif
978 		hlen = sizeof(ip_t);
979 	hlen += sizeof(*tcp2);
980 	if ((m = (mblk_t *)allocb(hlen + 64, BPRI_HI)) == NULL)
981 		return -1;
982 
983 	m->b_rptr += 64;
984 	MTYPE(m) = M_DATA;
985 	m->b_wptr = m->b_rptr + hlen;
986 	ip = (ip_t *)m->b_rptr;
987 	bzero((char *)ip, hlen);
988 	tcp2 = (struct tcphdr *)(m->b_rptr + hlen - sizeof(*tcp2));
989 	tcp2->th_dport = tcp->th_sport;
990 	tcp2->th_sport = tcp->th_dport;
991 	if (tcp->th_flags & TH_ACK) {
992 		tcp2->th_seq = tcp->th_ack;
993 		tcp2->th_flags = TH_RST;
994 	} else {
995 		tcp2->th_ack = ntohl(tcp->th_seq);
996 		tcp2->th_ack += tlen;
997 		tcp2->th_ack = htonl(tcp2->th_ack);
998 		tcp2->th_flags = TH_RST|TH_ACK;
999 	}
1000 	tcp2->th_off = sizeof(struct tcphdr) >> 2;
1001 
1002 	ip->ip_v = fin->fin_v;
1003 #ifdef	USE_INET6
1004 	if (fin->fin_v == 6) {
1005 		ip6 = (ip6_t *)m->b_rptr;
1006 		ip6->ip6_flow = ((ip6_t *)fin->fin_ip)->ip6_flow;
1007 		ip6->ip6_src = fin->fin_dst6.in6;
1008 		ip6->ip6_dst = fin->fin_src6.in6;
1009 		ip6->ip6_plen = htons(sizeof(*tcp));
1010 		ip6->ip6_nxt = IPPROTO_TCP;
1011 		tcp2->th_sum = fr_cksum(m, (ip_t *)ip6, IPPROTO_TCP, tcp2);
1012 	} else
1013 #endif
1014 	{
1015 		ip->ip_src.s_addr = fin->fin_daddr;
1016 		ip->ip_dst.s_addr = fin->fin_saddr;
1017 		ip->ip_id = fr_nextipid(fin);
1018 		ip->ip_hl = sizeof(*ip) >> 2;
1019 		ip->ip_p = IPPROTO_TCP;
1020 		ip->ip_len = sizeof(*ip) + sizeof(*tcp);
1021 		ip->ip_tos = fin->fin_ip->ip_tos;
1022 		tcp2->th_sum = fr_cksum(m, ip, IPPROTO_TCP, tcp2);
1023 	}
1024 	return fr_send_ip(fin, m, &m);
1025 }
1026 
1027 /*
1028  * Function:	fr_send_ip
1029  * Returns:	 0: success
1030  *		-1: failed
1031  * Parameters:
1032  *	fin: packet information
1033  *	m: the message block where ip head starts
1034  *
1035  * Send a new packet through the IP stack.
1036  *
1037  * For IPv4 packets, ip_len must be in host byte order, and ip_v,
1038  * ip_ttl, ip_off, and ip_sum are ignored (filled in by this
1039  * function).
1040  *
1041  * For IPv6 packets, ip6_flow, ip6_vfc, and ip6_hlim are filled
1042  * in by this function.
1043  *
1044  * All other portions of the packet must be in on-the-wire format.
1045  */
1046 /*ARGSUSED*/
1047 static int fr_send_ip(fin, m, mpp)
1048 fr_info_t *fin;
1049 mblk_t *m, **mpp;
1050 {
1051 	qpktinfo_t qpi, *qpip;
1052 	fr_info_t fnew;
1053 	ip_t *ip;
1054 	int i, hlen;
1055 	ipf_stack_t *ifs = fin->fin_ifs;
1056 
1057 	ip = (ip_t *)m->b_rptr;
1058 	bzero((char *)&fnew, sizeof(fnew));
1059 
1060 #ifdef	USE_INET6
1061 	if (fin->fin_v == 6) {
1062 		ip6_t *ip6;
1063 
1064 		ip6 = (ip6_t *)ip;
1065 		ip6->ip6_vfc = 0x60;
1066 		ip6->ip6_hlim = 127;
1067 		fnew.fin_v = 6;
1068 		hlen = sizeof(*ip6);
1069 		fnew.fin_plen = ntohs(ip6->ip6_plen) + hlen;
1070 	} else
1071 #endif
1072 	{
1073 		fnew.fin_v = 4;
1074 #if SOLARIS2 >= 10
1075 		ip->ip_ttl = 255;
1076 		if (net_getpmtuenabled(ifs->ifs_ipf_ipv4) == 1)
1077 			ip->ip_off = htons(IP_DF);
1078 #else
1079 		if (ip_ttl_ptr != NULL)
1080 			ip->ip_ttl = (u_char)(*ip_ttl_ptr);
1081 		else
1082 			ip->ip_ttl = 63;
1083 		if (ip_mtudisc != NULL)
1084 			ip->ip_off = htons(*ip_mtudisc ? IP_DF : 0);
1085 		else
1086 			ip->ip_off = htons(IP_DF);
1087 #endif
1088 		/*
1089 		 * The dance with byte order and ip_len/ip_off is because in
1090 		 * fr_fastroute, it expects them to be in host byte order but
1091 		 * ipf_cksum expects them to be in network byte order.
1092 		 */
1093 		ip->ip_len = htons(ip->ip_len);
1094 		ip->ip_sum = ipf_cksum((u_short *)ip, sizeof(*ip));
1095 		ip->ip_len = ntohs(ip->ip_len);
1096 		ip->ip_off = ntohs(ip->ip_off);
1097 		hlen = sizeof(*ip);
1098 		fnew.fin_plen = ip->ip_len;
1099 	}
1100 
1101 	qpip = fin->fin_qpi;
1102 	qpi.qpi_off = 0;
1103 	qpi.qpi_ill = qpip->qpi_ill;
1104 	qpi.qpi_m = m;
1105 	qpi.qpi_data = ip;
1106 	fnew.fin_qpi = &qpi;
1107 	fnew.fin_ifp = fin->fin_ifp;
1108 	fnew.fin_flx = FI_NOCKSUM;
1109 	fnew.fin_m = m;
1110 	fnew.fin_qfm = m;
1111 	fnew.fin_ip = ip;
1112 	fnew.fin_mp = mpp;
1113 	fnew.fin_hlen = hlen;
1114 	fnew.fin_dp = (char *)ip + hlen;
1115 	fnew.fin_ifs = fin->fin_ifs;
1116 	(void) fr_makefrip(hlen, ip, &fnew);
1117 
1118 	i = fr_fastroute(m, mpp, &fnew, NULL);
1119 	return i;
1120 }
1121 
1122 
1123 int fr_send_icmp_err(type, fin, dst)
1124 int type;
1125 fr_info_t *fin;
1126 int dst;
1127 {
1128 	struct in_addr dst4;
1129 	struct icmp *icmp;
1130 	qpktinfo_t *qpi;
1131 	int hlen, code;
1132 	phy_if_t phy;
1133 	u_short sz;
1134 #ifdef	USE_INET6
1135 	mblk_t *mb;
1136 #endif
1137 	mblk_t *m;
1138 #ifdef	USE_INET6
1139 	ip6_t *ip6;
1140 #endif
1141 	ip_t *ip;
1142 	ipf_stack_t *ifs = fin->fin_ifs;
1143 
1144 	if ((type < 0) || (type > ICMP_MAXTYPE))
1145 		return -1;
1146 
1147 	code = fin->fin_icode;
1148 #ifdef USE_INET6
1149 	if ((code < 0) || (code >= ICMP_MAX_UNREACH))
1150 		return -1;
1151 #endif
1152 
1153 #ifndef	IPFILTER_CKSUM
1154 	if (fr_checkl4sum(fin) == -1)
1155 		return -1;
1156 #endif
1157 
1158 	qpi = fin->fin_qpi;
1159 
1160 #ifdef	USE_INET6
1161 	mb = fin->fin_qfm;
1162 
1163 	if (fin->fin_v == 6) {
1164 		sz = sizeof(ip6_t);
1165 		sz += MIN(mb->b_wptr - mb->b_rptr, 512);
1166 		hlen = sizeof(ip6_t);
1167 		type = icmptoicmp6types[type];
1168 		if (type == ICMP6_DST_UNREACH)
1169 			code = icmptoicmp6unreach[code];
1170 	} else
1171 #endif
1172 	{
1173 		if ((fin->fin_p == IPPROTO_ICMP) &&
1174 		    !(fin->fin_flx & FI_SHORT))
1175 			switch (ntohs(fin->fin_data[0]) >> 8)
1176 			{
1177 			case ICMP_ECHO :
1178 			case ICMP_TSTAMP :
1179 			case ICMP_IREQ :
1180 			case ICMP_MASKREQ :
1181 				break;
1182 			default :
1183 				return 0;
1184 			}
1185 
1186 		sz = sizeof(ip_t) * 2;
1187 		sz += 8;		/* 64 bits of data */
1188 		hlen = sizeof(ip_t);
1189 	}
1190 
1191 	sz += offsetof(struct icmp, icmp_ip);
1192 	if ((m = (mblk_t *)allocb((size_t)sz + 64, BPRI_HI)) == NULL)
1193 		return -1;
1194 	MTYPE(m) = M_DATA;
1195 	m->b_rptr += 64;
1196 	m->b_wptr = m->b_rptr + sz;
1197 	bzero((char *)m->b_rptr, (size_t)sz);
1198 	ip = (ip_t *)m->b_rptr;
1199 	ip->ip_v = fin->fin_v;
1200 	icmp = (struct icmp *)(m->b_rptr + hlen);
1201 	icmp->icmp_type = type & 0xff;
1202 	icmp->icmp_code = code & 0xff;
1203 	phy = (phy_if_t)qpi->qpi_ill;
1204 	if (type == ICMP_UNREACH && (phy != 0) &&
1205 	    fin->fin_icode == ICMP_UNREACH_NEEDFRAG)
1206 		icmp->icmp_nextmtu = net_getmtu(ifs->ifs_ipf_ipv4, phy,0 );
1207 
1208 #ifdef	USE_INET6
1209 	if (fin->fin_v == 6) {
1210 		struct in6_addr dst6;
1211 		int csz;
1212 
1213 		if (dst == 0) {
1214 			ipf_stack_t *ifs = fin->fin_ifs;
1215 
1216 			if (fr_ifpaddr(6, FRI_NORMAL, (void *)phy,
1217 				       (void *)&dst6, NULL, ifs) == -1) {
1218 				FREE_MB_T(m);
1219 				return -1;
1220 			}
1221 		} else
1222 			dst6 = fin->fin_dst6.in6;
1223 
1224 		csz = sz;
1225 		sz -= sizeof(ip6_t);
1226 		ip6 = (ip6_t *)m->b_rptr;
1227 		ip6->ip6_flow = ((ip6_t *)fin->fin_ip)->ip6_flow;
1228 		ip6->ip6_plen = htons((u_short)sz);
1229 		ip6->ip6_nxt = IPPROTO_ICMPV6;
1230 		ip6->ip6_src = dst6;
1231 		ip6->ip6_dst = fin->fin_src6.in6;
1232 		sz -= offsetof(struct icmp, icmp_ip);
1233 		bcopy((char *)mb->b_rptr, (char *)&icmp->icmp_ip, sz);
1234 		icmp->icmp_cksum = csz - sizeof(ip6_t);
1235 	} else
1236 #endif
1237 	{
1238 		ip->ip_hl = sizeof(*ip) >> 2;
1239 		ip->ip_p = IPPROTO_ICMP;
1240 		ip->ip_id = fin->fin_ip->ip_id;
1241 		ip->ip_tos = fin->fin_ip->ip_tos;
1242 		ip->ip_len = (u_short)sz;
1243 		if (dst == 0) {
1244 			ipf_stack_t *ifs = fin->fin_ifs;
1245 
1246 			if (fr_ifpaddr(4, FRI_NORMAL, (void *)phy,
1247 				       (void *)&dst4, NULL, ifs) == -1) {
1248 				FREE_MB_T(m);
1249 				return -1;
1250 			}
1251 		} else {
1252 			dst4 = fin->fin_dst;
1253 		}
1254 		ip->ip_src = dst4;
1255 		ip->ip_dst = fin->fin_src;
1256 		bcopy((char *)fin->fin_ip, (char *)&icmp->icmp_ip,
1257 		      sizeof(*fin->fin_ip));
1258 		bcopy((char *)fin->fin_ip + fin->fin_hlen,
1259 		      (char *)&icmp->icmp_ip + sizeof(*fin->fin_ip), 8);
1260 		icmp->icmp_ip.ip_len = htons(icmp->icmp_ip.ip_len);
1261 		icmp->icmp_ip.ip_off = htons(icmp->icmp_ip.ip_off);
1262 		icmp->icmp_cksum = ipf_cksum((u_short *)icmp,
1263 					     sz - sizeof(ip_t));
1264 	}
1265 
1266 	/*
1267 	 * Need to exit out of these so we don't recursively call rw_enter
1268 	 * from fr_qout.
1269 	 */
1270 	return fr_send_ip(fin, m, &m);
1271 }
1272 
1273 #include <sys/time.h>
1274 #include <sys/varargs.h>
1275 
1276 #ifndef _KERNEL
1277 #include <stdio.h>
1278 #endif
1279 
1280 #define	NULLADDR_RATE_LIMIT 10	/* 10 seconds */
1281 
1282 
1283 /*
1284  * Print out warning message at rate-limited speed.
1285  */
1286 static void rate_limit_message(ipf_stack_t *ifs,
1287 			       int rate, const char *message, ...)
1288 {
1289 	static time_t last_time = 0;
1290 	time_t now;
1291 	va_list args;
1292 	char msg_buf[256];
1293 	int  need_printed = 0;
1294 
1295 	now = ddi_get_time();
1296 
1297 	/* make sure, no multiple entries */
1298 	ASSERT(MUTEX_NOT_HELD(&(ifs->ifs_ipf_rw.ipf_lk)));
1299 	MUTEX_ENTER(&ifs->ifs_ipf_rw);
1300 	if (now - last_time >= rate) {
1301 		need_printed = 1;
1302 		last_time = now;
1303 	}
1304 	MUTEX_EXIT(&ifs->ifs_ipf_rw);
1305 
1306 	if (need_printed) {
1307 		va_start(args, message);
1308 		(void)vsnprintf(msg_buf, 255, message, args);
1309 		va_end(args);
1310 #ifdef _KERNEL
1311 		cmn_err(CE_WARN, msg_buf);
1312 #else
1313 		fprintf(std_err, msg_buf);
1314 #endif
1315 	}
1316 }
1317 
1318 /*
1319  * return the first IP Address associated with an interface
1320  */
1321 /*ARGSUSED*/
1322 int fr_ifpaddr(v, atype, ifptr, inp, inpmask, ifs)
1323 int v, atype;
1324 void *ifptr;
1325 struct in_addr  *inp, *inpmask;
1326 ipf_stack_t *ifs;
1327 {
1328 	struct sockaddr_in6 v6addr[2];
1329 	struct sockaddr_in v4addr[2];
1330 	net_ifaddr_t type[2];
1331 	net_handle_t net_data;
1332 	phy_if_t phyif;
1333 	void *array;
1334 
1335 	switch (v)
1336 	{
1337 	case 4:
1338 		net_data = ifs->ifs_ipf_ipv4;
1339 		array = v4addr;
1340 		break;
1341 	case 6:
1342 		net_data = ifs->ifs_ipf_ipv6;
1343 		array = v6addr;
1344 		break;
1345 	default:
1346 		net_data = NULL;
1347 		break;
1348 	}
1349 
1350 	if (net_data == NULL)
1351 		return -1;
1352 
1353 	phyif = (phy_if_t)ifptr;
1354 
1355 	switch (atype)
1356 	{
1357 	case FRI_PEERADDR :
1358 		type[0] = NA_PEER;
1359 		break;
1360 
1361 	case FRI_BROADCAST :
1362 		type[0] = NA_BROADCAST;
1363 		break;
1364 
1365 	default :
1366 		type[0] = NA_ADDRESS;
1367 		break;
1368 	}
1369 
1370 	type[1] = NA_NETMASK;
1371 
1372 	if (net_getlifaddr(net_data, phyif, 0, 2, type, array) < 0)
1373 		return -1;
1374 
1375 	if (v == 6) {
1376 		return fr_ifpfillv6addr(atype, &v6addr[0], &v6addr[1],
1377 					inp, inpmask);
1378 	}
1379 	return fr_ifpfillv4addr(atype, &v4addr[0], &v4addr[1], inp, inpmask);
1380 }
1381 
1382 
1383 u_32_t fr_newisn(fin)
1384 fr_info_t *fin;
1385 {
1386 	static int iss_seq_off = 0;
1387 	u_char hash[16];
1388 	u_32_t newiss;
1389 	MD5_CTX ctx;
1390 	ipf_stack_t *ifs = fin->fin_ifs;
1391 
1392 	/*
1393 	 * Compute the base value of the ISS.  It is a hash
1394 	 * of (saddr, sport, daddr, dport, secret).
1395 	 */
1396 	MD5Init(&ctx);
1397 
1398 	MD5Update(&ctx, (u_char *) &fin->fin_fi.fi_src,
1399 		  sizeof(fin->fin_fi.fi_src));
1400 	MD5Update(&ctx, (u_char *) &fin->fin_fi.fi_dst,
1401 		  sizeof(fin->fin_fi.fi_dst));
1402 	MD5Update(&ctx, (u_char *) &fin->fin_dat, sizeof(fin->fin_dat));
1403 
1404 	MD5Update(&ctx, ifs->ifs_ipf_iss_secret, sizeof(ifs->ifs_ipf_iss_secret));
1405 
1406 	MD5Final(hash, &ctx);
1407 
1408 	bcopy(hash, &newiss, sizeof(newiss));
1409 
1410 	/*
1411 	 * Now increment our "timer", and add it in to
1412 	 * the computed value.
1413 	 *
1414 	 * XXX Use `addin'?
1415 	 * XXX TCP_ISSINCR too large to use?
1416 	 */
1417 	iss_seq_off += 0x00010000;
1418 	newiss += iss_seq_off;
1419 	return newiss;
1420 }
1421 
1422 
1423 /* ------------------------------------------------------------------------ */
1424 /* Function:    fr_nextipid                                                 */
1425 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
1426 /* Parameters:  fin(I) - pointer to packet information                      */
1427 /*                                                                          */
1428 /* Returns the next IPv4 ID to use for this packet.                         */
1429 /* ------------------------------------------------------------------------ */
1430 u_short fr_nextipid(fin)
1431 fr_info_t *fin;
1432 {
1433 	static u_short ipid = 0;
1434 	u_short id;
1435 	ipf_stack_t *ifs = fin->fin_ifs;
1436 
1437 	MUTEX_ENTER(&ifs->ifs_ipf_rw);
1438 	if (fin->fin_pktnum != 0) {
1439 		id = fin->fin_pktnum & 0xffff;
1440 	} else {
1441 		id = ipid++;
1442 	}
1443 	MUTEX_EXIT(&ifs->ifs_ipf_rw);
1444 
1445 	return id;
1446 }
1447 
1448 
1449 #ifndef IPFILTER_CKSUM
1450 /* ARGSUSED */
1451 #endif
1452 INLINE void fr_checkv4sum(fin)
1453 fr_info_t *fin;
1454 {
1455 #ifdef IPFILTER_CKSUM
1456 	if (fr_checkl4sum(fin) == -1)
1457 		fin->fin_flx |= FI_BAD;
1458 #endif
1459 }
1460 
1461 
1462 #ifdef USE_INET6
1463 # ifndef IPFILTER_CKSUM
1464 /* ARGSUSED */
1465 # endif
1466 INLINE void fr_checkv6sum(fin)
1467 fr_info_t *fin;
1468 {
1469 # ifdef IPFILTER_CKSUM
1470 	if (fr_checkl4sum(fin) == -1)
1471 		fin->fin_flx |= FI_BAD;
1472 # endif
1473 }
1474 #endif /* USE_INET6 */
1475 
1476 
1477 #if (SOLARIS2 < 7)
1478 void fr_slowtimer()
1479 #else
1480 /*ARGSUSED*/
1481 void fr_slowtimer __P((void *arg))
1482 #endif
1483 {
1484 	ipf_stack_t *ifs = arg;
1485 
1486 	READ_ENTER(&ifs->ifs_ipf_global);
1487 	if (ifs->ifs_fr_running != 1) {
1488 		ifs->ifs_fr_timer_id = NULL;
1489 		RWLOCK_EXIT(&ifs->ifs_ipf_global);
1490 		return;
1491 	}
1492 	ipf_expiretokens(ifs);
1493 	fr_fragexpire(ifs);
1494 	fr_timeoutstate(ifs);
1495 	fr_natexpire(ifs);
1496 	fr_authexpire(ifs);
1497 	ifs->ifs_fr_ticks++;
1498 	if (ifs->ifs_fr_running == 1)
1499 		ifs->ifs_fr_timer_id = timeout(fr_slowtimer, arg,
1500 		    drv_usectohz(500000));
1501 	else
1502 		ifs->ifs_fr_timer_id = NULL;
1503 	RWLOCK_EXIT(&ifs->ifs_ipf_global);
1504 }
1505 
1506 
1507 /* ------------------------------------------------------------------------ */
1508 /* Function:    fr_pullup                                                   */
1509 /* Returns:     NULL == pullup failed, else pointer to protocol header      */
1510 /* Parameters:  m(I)   - pointer to buffer where data packet starts         */
1511 /*              fin(I) - pointer to packet information                      */
1512 /*              len(I) - number of bytes to pullup                          */
1513 /*                                                                          */
1514 /* Attempt to move at least len bytes (from the start of the buffer) into a */
1515 /* single buffer for ease of access.  Operating system native functions are */
1516 /* used to manage buffers - if necessary.  If the entire packet ends up in  */
1517 /* a single buffer, set the FI_COALESCE flag even though fr_coalesce() has  */
1518 /* not been called.  Both fin_ip and fin_dp are updated before exiting _IF_ */
1519 /* and ONLY if the pullup succeeds.                                         */
1520 /*                                                                          */
1521 /* We assume that 'min' is a pointer to a buffer that is part of the chain  */
1522 /* of buffers that starts at *fin->fin_mp.                                  */
1523 /* ------------------------------------------------------------------------ */
1524 void *fr_pullup(min, fin, len)
1525 mb_t *min;
1526 fr_info_t *fin;
1527 int len;
1528 {
1529 	qpktinfo_t *qpi = fin->fin_qpi;
1530 	int out = fin->fin_out, dpoff, ipoff;
1531 	mb_t *m = min, *m1, *m2;
1532 	char *ip;
1533 	uint32_t start, stuff, end, value, flags;
1534 	ipf_stack_t *ifs = fin->fin_ifs;
1535 
1536 	if (m == NULL)
1537 		return NULL;
1538 
1539 	ip = (char *)fin->fin_ip;
1540 	if ((fin->fin_flx & FI_COALESCE) != 0)
1541 		return ip;
1542 
1543 	ipoff = fin->fin_ipoff;
1544 	if (fin->fin_dp != NULL)
1545 		dpoff = (char *)fin->fin_dp - (char *)ip;
1546 	else
1547 		dpoff = 0;
1548 
1549 	if (M_LEN(m) < len + ipoff) {
1550 
1551 		/*
1552 		 * pfil_precheck ensures the IP header is on a 32bit
1553 		 * aligned address so simply fail if that isn't currently
1554 		 * the case (should never happen).
1555 		 */
1556 		int inc = 0;
1557 
1558 		if (ipoff > 0) {
1559 			if ((ipoff & 3) != 0) {
1560 				inc = 4 - (ipoff & 3);
1561 				if (m->b_rptr - inc >= m->b_datap->db_base)
1562 					m->b_rptr -= inc;
1563 				else
1564 					inc = 0;
1565 			}
1566 		}
1567 
1568 		/*
1569 		 * XXX This is here as a work around for a bug with DEBUG
1570 		 * XXX Solaris kernels.  The problem is b_prev is used by IP
1571 		 * XXX code as a way to stash the phyint_index for a packet,
1572 		 * XXX this doesn't get reset by IP but freeb does an ASSERT()
1573 		 * XXX for both of these to be NULL.  See 6442390.
1574 		 */
1575 		m1 = m;
1576 		m2 = m->b_prev;
1577 
1578 		do {
1579 			m1->b_next = NULL;
1580 			m1->b_prev = NULL;
1581 			m1 = m1->b_cont;
1582 		} while (m1);
1583 
1584 		/*
1585 		 * Need to preserve checksum information by copying them
1586 		 * to newmp which heads the pulluped message.
1587 		 */
1588 		hcksum_retrieve(m, NULL, NULL, &start, &stuff, &end,
1589 		    &value, &flags);
1590 
1591 		if (pullupmsg(m, len + ipoff + inc) == 0) {
1592 			ATOMIC_INCL(ifs->ifs_frstats[out].fr_pull[1]);
1593 			FREE_MB_T(*fin->fin_mp);
1594 			*fin->fin_mp = NULL;
1595 			fin->fin_m = NULL;
1596 			fin->fin_ip = NULL;
1597 			fin->fin_dp = NULL;
1598 			qpi->qpi_data = NULL;
1599 			return NULL;
1600 		}
1601 
1602 		(void) hcksum_assoc(m, NULL, NULL, start, stuff, end,
1603 		    value, flags, 0);
1604 
1605 		m->b_prev = m2;
1606 		m->b_rptr += inc;
1607 		fin->fin_m = m;
1608 		ip = MTOD(m, char *) + ipoff;
1609 		qpi->qpi_data = ip;
1610 	}
1611 
1612 	ATOMIC_INCL(ifs->ifs_frstats[out].fr_pull[0]);
1613 	fin->fin_ip = (ip_t *)ip;
1614 	if (fin->fin_dp != NULL)
1615 		fin->fin_dp = (char *)fin->fin_ip + dpoff;
1616 
1617 	if (len == fin->fin_plen)
1618 		fin->fin_flx |= FI_COALESCE;
1619 	return ip;
1620 }
1621 
1622 
1623 /*
1624  * Function:	fr_verifysrc
1625  * Returns:	int (really boolean)
1626  * Parameters:	fin - packet information
1627  *
1628  * Check whether the packet has a valid source address for the interface on
1629  * which the packet arrived, implementing the "fr_chksrc" feature.
1630  * Returns true iff the packet's source address is valid.
1631  */
1632 int fr_verifysrc(fin)
1633 fr_info_t *fin;
1634 {
1635 	net_handle_t net_data_p;
1636 	phy_if_t phy_ifdata_routeto;
1637 	struct sockaddr	sin;
1638 	ipf_stack_t *ifs = fin->fin_ifs;
1639 
1640 	if (fin->fin_v == 4) {
1641 		net_data_p = ifs->ifs_ipf_ipv4;
1642 	} else if (fin->fin_v == 6) {
1643 		net_data_p = ifs->ifs_ipf_ipv6;
1644 	} else {
1645 		return (0);
1646 	}
1647 
1648 	/* Get the index corresponding to the if name */
1649 	sin.sa_family = (fin->fin_v == 4) ? AF_INET : AF_INET6;
1650 	bcopy(&fin->fin_saddr, &sin.sa_data, sizeof (struct in_addr));
1651 	phy_ifdata_routeto = net_routeto(net_data_p, &sin, NULL);
1652 
1653 	return (((phy_if_t)fin->fin_ifp == phy_ifdata_routeto) ? 1 : 0);
1654 }
1655 
1656 
1657 /*
1658  * Function:	fr_fastroute
1659  * Returns:	 0: success;
1660  *		-1: failed
1661  * Parameters:
1662  *	mb: the message block where ip head starts
1663  *	mpp: the pointer to the pointer of the orignal
1664  *		packet message
1665  *	fin: packet information
1666  *	fdp: destination interface information
1667  *	if it is NULL, no interface information provided.
1668  *
1669  * This function is for fastroute/to/dup-to rules. It calls
1670  * pfil_make_lay2_packet to search route, make lay-2 header
1671  * ,and identify output queue for the IP packet.
1672  * The destination address depends on the following conditions:
1673  * 1: for fastroute rule, fdp is passed in as NULL, so the
1674  *	destination address is the IP Packet's destination address
1675  * 2: for to/dup-to rule, if an ip address is specified after
1676  *	the interface name, this address is the as destination
1677  *	address. Otherwise IP Packet's destination address is used
1678  */
1679 int fr_fastroute(mb, mpp, fin, fdp)
1680 mblk_t *mb, **mpp;
1681 fr_info_t *fin;
1682 frdest_t *fdp;
1683 {
1684         net_handle_t net_data_p;
1685 	net_inject_t *inj;
1686 	mblk_t *mp = NULL;
1687 	frentry_t *fr = fin->fin_fr;
1688 	qpktinfo_t *qpi;
1689 	ip_t *ip;
1690 
1691 	struct sockaddr_in *sin;
1692 	struct sockaddr_in6 *sin6;
1693 	struct sockaddr *sinp;
1694 	ipf_stack_t *ifs = fin->fin_ifs;
1695 #ifndef	sparc
1696 	u_short __iplen, __ipoff;
1697 #endif
1698 
1699 	if (fin->fin_v == 4) {
1700 		net_data_p = ifs->ifs_ipf_ipv4;
1701 	} else if (fin->fin_v == 6) {
1702 		net_data_p = ifs->ifs_ipf_ipv6;
1703 	} else {
1704 		return (-1);
1705 	}
1706 
1707 	inj = net_inject_alloc(NETINFO_VERSION);
1708 	if (inj == NULL)
1709 		return -1;
1710 
1711 	ip = fin->fin_ip;
1712 	qpi = fin->fin_qpi;
1713 
1714 	/*
1715 	 * If this is a duplicate mblk then we want ip to point at that
1716 	 * data, not the original, if and only if it is already pointing at
1717 	 * the current mblk data.
1718 	 *
1719 	 * Otherwise, if it's not a duplicate, and we're not already pointing
1720 	 * at the current mblk data, then we want to ensure that the data
1721 	 * points at ip.
1722 	 */
1723 
1724 	if ((ip == (ip_t *)qpi->qpi_m->b_rptr) && (qpi->qpi_m != mb)) {
1725 		ip = (ip_t *)mb->b_rptr;
1726 	} else if ((qpi->qpi_m == mb) && (ip != (ip_t *)qpi->qpi_m->b_rptr)) {
1727 		qpi->qpi_m->b_rptr = (uchar_t *)ip;
1728 		qpi->qpi_off = 0;
1729 	}
1730 
1731 	/*
1732 	 * If there is another M_PROTO, we don't want it
1733 	 */
1734 	if (*mpp != mb) {
1735 		mp = unlinkb(*mpp);
1736 		freeb(*mpp);
1737 		*mpp = mp;
1738 	}
1739 
1740 	sinp = (struct sockaddr *)&inj->ni_addr;
1741 	sin = (struct sockaddr_in *)sinp;
1742 	sin6 = (struct sockaddr_in6 *)sinp;
1743 	bzero((char *)&inj->ni_addr, sizeof (inj->ni_addr));
1744 	inj->ni_addr.ss_family = (fin->fin_v == 4) ? AF_INET : AF_INET6;
1745 	inj->ni_packet = mb;
1746 
1747 	/*
1748 	 * In case we're here due to "to <if>" being used with
1749 	 * "keep state", check that we're going in the correct
1750 	 * direction.
1751 	 */
1752 	if (fdp != NULL) {
1753 		if ((fr != NULL) && (fdp->fd_ifp != NULL) &&
1754 			(fin->fin_rev != 0) && (fdp == &fr->fr_tif))
1755 			goto bad_fastroute;
1756 		inj->ni_physical = (phy_if_t)fdp->fd_ifp;
1757 		if (fin->fin_v == 4) {
1758 			sin->sin_addr = fdp->fd_ip;
1759 		} else {
1760 			sin6->sin6_addr = fdp->fd_ip6.in6;
1761 		}
1762 	} else {
1763 		if (fin->fin_v == 4) {
1764 			sin->sin_addr = ip->ip_dst;
1765 		} else {
1766 			sin6->sin6_addr = ((ip6_t *)ip)->ip6_dst;
1767 		}
1768 		inj->ni_physical = net_routeto(net_data_p, sinp, NULL);
1769 	}
1770 
1771 	/*
1772 	 * Clear the hardware checksum flags from packets that we are doing
1773 	 * input processing on as leaving them set will cause the outgoing
1774 	 * NIC (if it supports hardware checksum) to calculate them anew,
1775 	 * using the old (correct) checksums as the pseudo value to start
1776 	 * from.
1777 	 */
1778 	if (fin->fin_out == 0) {
1779 		DB_CKSUMFLAGS(mb) = 0;
1780 	}
1781 
1782 	*mpp = mb;
1783 
1784 	if (fin->fin_out == 0) {
1785 		void *saveifp;
1786 		u_32_t pass;
1787 
1788 		saveifp = fin->fin_ifp;
1789 		fin->fin_ifp = (void *)inj->ni_physical;
1790 		fin->fin_flx &= ~FI_STATE;
1791 		fin->fin_out = 1;
1792 		(void) fr_acctpkt(fin, &pass);
1793 		fin->fin_fr = NULL;
1794 		if (!fr || !(fr->fr_flags & FR_RETMASK))
1795 			(void) fr_checkstate(fin, &pass);
1796 		if (fr_checknatout(fin, NULL) == -1)
1797 			goto bad_fastroute;
1798 		fin->fin_out = 0;
1799 		fin->fin_ifp = saveifp;
1800 	}
1801 #ifndef	sparc
1802 	if (fin->fin_v == 4) {
1803 		__iplen = (u_short)ip->ip_len,
1804 		__ipoff = (u_short)ip->ip_off;
1805 
1806 		ip->ip_len = htons(__iplen);
1807 		ip->ip_off = htons(__ipoff);
1808 	}
1809 #endif
1810 
1811 	if (net_data_p) {
1812 		if (net_inject(net_data_p, NI_DIRECT_OUT, inj) < 0) {
1813 			net_inject_free(inj);
1814 			return (-1);
1815 		}
1816 	}
1817 
1818 	ifs->ifs_fr_frouteok[0]++;
1819 	net_inject_free(inj);
1820 	return 0;
1821 bad_fastroute:
1822 	net_inject_free(inj);
1823 	freemsg(mb);
1824 	ifs->ifs_fr_frouteok[1]++;
1825 	return -1;
1826 }
1827 
1828 
1829 /* ------------------------------------------------------------------------ */
1830 /* Function:    ipf_hook4_out                                               */
1831 /* Returns:     int - 0 == packet ok, else problem, free packet if not done */
1832 /* Parameters:  event(I)     - pointer to event                             */
1833 /*              info(I)      - pointer to hook information for firewalling  */
1834 /*                                                                          */
1835 /* Calling ipf_hook.                                                        */
1836 /* ------------------------------------------------------------------------ */
1837 /*ARGSUSED*/
1838 int ipf_hook4_out(hook_event_token_t token, hook_data_t info, void *arg)
1839 {
1840 	return ipf_hook(info, 1, 0, arg);
1841 }
1842 /*ARGSUSED*/
1843 int ipf_hook6_out(hook_event_token_t token, hook_data_t info, void *arg)
1844 {
1845 	return ipf_hook6(info, 1, 0, arg);
1846 }
1847 
1848 /* ------------------------------------------------------------------------ */
1849 /* Function:    ipf_hook4_in                                                */
1850 /* Returns:     int - 0 == packet ok, else problem, free packet if not done */
1851 /* Parameters:  event(I)     - pointer to event                             */
1852 /*              info(I)      - pointer to hook information for firewalling  */
1853 /*                                                                          */
1854 /* Calling ipf_hook.                                                        */
1855 /* ------------------------------------------------------------------------ */
1856 /*ARGSUSED*/
1857 int ipf_hook4_in(hook_event_token_t token, hook_data_t info, void *arg)
1858 {
1859 	return ipf_hook(info, 0, 0, arg);
1860 }
1861 /*ARGSUSED*/
1862 int ipf_hook6_in(hook_event_token_t token, hook_data_t info, void *arg)
1863 {
1864 	return ipf_hook6(info, 0, 0, arg);
1865 }
1866 
1867 
1868 /* ------------------------------------------------------------------------ */
1869 /* Function:    ipf_hook4_loop_out                                          */
1870 /* Returns:     int - 0 == packet ok, else problem, free packet if not done */
1871 /* Parameters:  event(I)     - pointer to event                             */
1872 /*              info(I)      - pointer to hook information for firewalling  */
1873 /*                                                                          */
1874 /* Calling ipf_hook.                                                        */
1875 /* ------------------------------------------------------------------------ */
1876 /*ARGSUSED*/
1877 int ipf_hook4_loop_out(hook_event_token_t token, hook_data_t info, void *arg)
1878 {
1879 	return ipf_hook(info, 1, FI_NOCKSUM, arg);
1880 }
1881 /*ARGSUSED*/
1882 int ipf_hook6_loop_out(hook_event_token_t token, hook_data_t info, void *arg)
1883 {
1884 	return ipf_hook6(info, 1, FI_NOCKSUM, arg);
1885 }
1886 
1887 /* ------------------------------------------------------------------------ */
1888 /* Function:    ipf_hook4_loop_in                                           */
1889 /* Returns:     int - 0 == packet ok, else problem, free packet if not done */
1890 /* Parameters:  event(I)     - pointer to event                             */
1891 /*              info(I)      - pointer to hook information for firewalling  */
1892 /*                                                                          */
1893 /* Calling ipf_hook.                                                        */
1894 /* ------------------------------------------------------------------------ */
1895 /*ARGSUSED*/
1896 int ipf_hook4_loop_in(hook_event_token_t token, hook_data_t info, void *arg)
1897 {
1898 	return ipf_hook(info, 0, FI_NOCKSUM, arg);
1899 }
1900 /*ARGSUSED*/
1901 int ipf_hook6_loop_in(hook_event_token_t token, hook_data_t info, void *arg)
1902 {
1903 	return ipf_hook6(info, 0, FI_NOCKSUM, arg);
1904 }
1905 
1906 /* ------------------------------------------------------------------------ */
1907 /* Function:    ipf_hook                                                    */
1908 /* Returns:     int - 0 == packet ok, else problem, free packet if not done */
1909 /* Parameters:  info(I)      - pointer to hook information for firewalling  */
1910 /*              out(I)       - whether packet is going in or out            */
1911 /*              loopback(I)  - whether packet is a loopback packet or not   */
1912 /*                                                                          */
1913 /* Stepping stone function between the IP mainline and IPFilter.  Extracts  */
1914 /* parameters out of the info structure and forms them up to be useful for  */
1915 /* calling ipfilter.                                                        */
1916 /* ------------------------------------------------------------------------ */
1917 int ipf_hook(hook_data_t info, int out, int loopback, void *arg)
1918 {
1919 	hook_pkt_event_t *fw;
1920 	ipf_stack_t *ifs;
1921 	qpktinfo_t qpi;
1922 	int rval, hlen;
1923 	u_short swap;
1924 	phy_if_t phy;
1925 	ip_t *ip;
1926 
1927 	ifs = arg;
1928 	fw = (hook_pkt_event_t *)info;
1929 
1930 	ASSERT(fw != NULL);
1931 	phy = (out == 0) ? fw->hpe_ifp : fw->hpe_ofp;
1932 
1933 	ip = fw->hpe_hdr;
1934 	swap = ntohs(ip->ip_len);
1935 	ip->ip_len = swap;
1936 	swap = ntohs(ip->ip_off);
1937 	ip->ip_off = swap;
1938 	hlen = IPH_HDR_LENGTH(ip);
1939 
1940 	qpi.qpi_m = fw->hpe_mb;
1941 	qpi.qpi_data = fw->hpe_hdr;
1942 	qpi.qpi_off = (char *)qpi.qpi_data - (char *)fw->hpe_mb->b_rptr;
1943 	qpi.qpi_ill = (void *)phy;
1944 	qpi.qpi_flags = fw->hpe_flags & (HPE_MULTICAST|HPE_BROADCAST);
1945 	if (qpi.qpi_flags)
1946 		qpi.qpi_flags |= FI_MBCAST;
1947 	qpi.qpi_flags |= loopback;
1948 
1949 	rval = fr_check(fw->hpe_hdr, hlen, qpi.qpi_ill, out,
1950 	    &qpi, fw->hpe_mp, ifs);
1951 
1952 	/* For fastroute cases, fr_check returns 0 with mp set to NULL */
1953 	if (rval == 0 && *(fw->hpe_mp) == NULL)
1954 		rval = 1;
1955 
1956 	/* Notify IP the packet mblk_t and IP header pointers. */
1957 	fw->hpe_mb = qpi.qpi_m;
1958 	fw->hpe_hdr = qpi.qpi_data;
1959 	if (rval == 0) {
1960 		ip = qpi.qpi_data;
1961 		swap = ntohs(ip->ip_len);
1962 		ip->ip_len = swap;
1963 		swap = ntohs(ip->ip_off);
1964 		ip->ip_off = swap;
1965 	}
1966 	return rval;
1967 
1968 }
1969 int ipf_hook6(hook_data_t info, int out, int loopback, void *arg)
1970 {
1971 	hook_pkt_event_t *fw;
1972 	int rval, hlen;
1973 	qpktinfo_t qpi;
1974 	phy_if_t phy;
1975 
1976 	fw = (hook_pkt_event_t *)info;
1977 
1978 	ASSERT(fw != NULL);
1979 	phy = (out == 0) ? fw->hpe_ifp : fw->hpe_ofp;
1980 
1981 	hlen = sizeof (ip6_t);
1982 
1983 	qpi.qpi_m = fw->hpe_mb;
1984 	qpi.qpi_data = fw->hpe_hdr;
1985 	qpi.qpi_off = (char *)qpi.qpi_data - (char *)fw->hpe_mb->b_rptr;
1986 	qpi.qpi_ill = (void *)phy;
1987 	qpi.qpi_flags = fw->hpe_flags & (HPE_MULTICAST|HPE_BROADCAST);
1988 	if (qpi.qpi_flags)
1989 		qpi.qpi_flags |= FI_MBCAST;
1990 	qpi.qpi_flags |= loopback;
1991 
1992 	rval = fr_check(fw->hpe_hdr, hlen, qpi.qpi_ill, out,
1993 	    &qpi, fw->hpe_mp, arg);
1994 
1995 	/* For fastroute cases, fr_check returns 0 with mp set to NULL */
1996 	if (rval == 0 && *(fw->hpe_mp) == NULL)
1997 		rval = 1;
1998 
1999 	/* Notify IP the packet mblk_t and IP header pointers. */
2000 	fw->hpe_mb = qpi.qpi_m;
2001 	fw->hpe_hdr = qpi.qpi_data;
2002 	return rval;
2003 
2004 }
2005 
2006 
2007 /* ------------------------------------------------------------------------ */
2008 /* Function:    ipf_nic_event_v4                                            */
2009 /* Returns:     int - 0 == no problems encountered                          */
2010 /* Parameters:  event(I)     - pointer to event                             */
2011 /*              info(I)      - pointer to information about a NIC event     */
2012 /*                                                                          */
2013 /* Function to receive asynchronous NIC events from IP                      */
2014 /* ------------------------------------------------------------------------ */
2015 /*ARGSUSED*/
2016 int ipf_nic_event_v4(hook_event_token_t event, hook_data_t info, void *arg)
2017 {
2018 	struct sockaddr_in *sin;
2019 	hook_nic_event_t *hn;
2020 	ipf_stack_t *ifs = arg;
2021 
2022 	hn = (hook_nic_event_t *)info;
2023 
2024 	switch (hn->hne_event)
2025 	{
2026 	case NE_PLUMB :
2027 		frsync(IPFSYNC_NEWIFP, 4, (void *)hn->hne_nic, hn->hne_data,
2028 		       ifs);
2029 		fr_natifpsync(IPFSYNC_NEWIFP, 4, (void *)hn->hne_nic,
2030 			      hn->hne_data, ifs);
2031 		fr_statesync(IPFSYNC_NEWIFP, 4, (void *)hn->hne_nic,
2032 			     hn->hne_data, ifs);
2033 		break;
2034 
2035 	case NE_UNPLUMB :
2036 		frsync(IPFSYNC_OLDIFP, 4, (void *)hn->hne_nic, NULL, ifs);
2037 		fr_natifpsync(IPFSYNC_OLDIFP, 4, (void *)hn->hne_nic, NULL,
2038 			      ifs);
2039 		fr_statesync(IPFSYNC_OLDIFP, 4, (void *)hn->hne_nic, NULL, ifs);
2040 		break;
2041 
2042 	case NE_ADDRESS_CHANGE :
2043 		/*
2044 		 * We only respond to events for logical interface 0 because
2045 		 * IPFilter only uses the first address given to a network
2046 		 * interface.  We check for hne_lif==1 because the netinfo
2047 		 * code maps adds 1 to the lif number so that it can return
2048 		 * 0 to indicate "no more lifs" when walking them.
2049 		 */
2050 		if (hn->hne_lif == 1) {
2051 			frsync(IPFSYNC_RESYNC, 4, (void *)hn->hne_nic, NULL,
2052 			    ifs);
2053 			sin = hn->hne_data;
2054 			fr_nataddrsync(4, (void *)hn->hne_nic, &sin->sin_addr,
2055 			    ifs);
2056 		}
2057 		break;
2058 
2059 	default :
2060 		break;
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 
2067 /* ------------------------------------------------------------------------ */
2068 /* Function:    ipf_nic_event_v6                                            */
2069 /* Returns:     int - 0 == no problems encountered                          */
2070 /* Parameters:  event(I)     - pointer to event                             */
2071 /*              info(I)      - pointer to information about a NIC event     */
2072 /*                                                                          */
2073 /* Function to receive asynchronous NIC events from IP                      */
2074 /* ------------------------------------------------------------------------ */
2075 /*ARGSUSED*/
2076 int ipf_nic_event_v6(hook_event_token_t event, hook_data_t info, void *arg)
2077 {
2078 	struct sockaddr_in6 *sin6;
2079 	hook_nic_event_t *hn;
2080 	ipf_stack_t *ifs = arg;
2081 
2082 	hn = (hook_nic_event_t *)info;
2083 
2084 	switch (hn->hne_event)
2085 	{
2086 	case NE_PLUMB :
2087 		frsync(IPFSYNC_NEWIFP, 6, (void *)hn->hne_nic,
2088 		       hn->hne_data, ifs);
2089 		fr_natifpsync(IPFSYNC_NEWIFP, 6, (void *)hn->hne_nic,
2090 			      hn->hne_data, ifs);
2091 		fr_statesync(IPFSYNC_NEWIFP, 6, (void *)hn->hne_nic,
2092 			     hn->hne_data, ifs);
2093 		break;
2094 
2095 	case NE_UNPLUMB :
2096 		frsync(IPFSYNC_OLDIFP, 6, (void *)hn->hne_nic, NULL, ifs);
2097 		fr_natifpsync(IPFSYNC_OLDIFP, 6, (void *)hn->hne_nic, NULL,
2098 			      ifs);
2099 		fr_statesync(IPFSYNC_OLDIFP, 6, (void *)hn->hne_nic, NULL, ifs);
2100 		break;
2101 
2102 	case NE_ADDRESS_CHANGE :
2103 		if (hn->hne_lif == 1) {
2104 			sin6 = hn->hne_data;
2105 			fr_nataddrsync(6, (void *)hn->hne_nic, &sin6->sin6_addr,
2106 				       ifs);
2107 		}
2108 		break;
2109 	default :
2110 		break;
2111 	}
2112 
2113 	return 0;
2114 }
2115 
2116 /*
2117  * Functions fr_make_rst(), fr_make_icmp_v4(), fr_make_icmp_v6()
2118  * are needed in Solaris kernel only. We don't need them in
2119  * ipftest to pretend the ICMP/RST packet was sent as a response.
2120  */
2121 #if defined(_KERNEL) && (SOLARIS2 >= 10)
2122 /* ------------------------------------------------------------------------ */
2123 /* Function:    fr_make_rst                                                 */
2124 /* Returns:     int - 0 on success, -1 on failure			    */
2125 /* Parameters:  fin(I) - pointer to packet information                      */
2126 /*                                                                          */
2127 /* We must alter the original mblks passed to IPF from IP stack via	    */
2128 /* FW_HOOKS. FW_HOOKS interface is powerfull, but it has some limitations.  */
2129 /* IPF can basicaly do only these things with mblk representing the packet: */
2130 /*	leave it as it is (pass the packet)				    */
2131 /*                                                                          */
2132 /*	discard it (block the packet)					    */
2133 /*                                                                          */
2134 /*	alter it (i.e. NAT)						    */
2135 /*                                                                          */
2136 /* As you can see IPF can not simply discard the mblk and supply a new one  */
2137 /* instead to IP stack via FW_HOOKS.					    */
2138 /*                                                                          */
2139 /* The return-rst action for packets coming via NIC is handled as follows:  */
2140 /*	mblk with packet is discarded					    */
2141 /*                                                                          */
2142 /*	new mblk with RST response is constructed and injected to network   */
2143 /*                                                                          */
2144 /* IPF can't inject packets to loopback interface, this is just another	    */
2145 /* limitation we have to deal with here. The only option to send RST	    */
2146 /* response to offending TCP packet coming via loopback is to alter it.	    */
2147 /*									    */
2148 /* The fr_make_rst() function alters TCP SYN/FIN packet intercepted on	    */
2149 /* loopback interface into TCP RST packet. fin->fin_mp is pointer to	    */
2150 /* mblk L3 (IP) and L4 (TCP/UDP) packet headers.			    */
2151 /* ------------------------------------------------------------------------ */
2152 int fr_make_rst(fin)
2153 fr_info_t *fin;
2154 {
2155 	uint16_t tmp_port;
2156 	int rv = -1;
2157 	uint32_t old_ack;
2158 	tcphdr_t *tcp = NULL;
2159 	struct in_addr tmp_src;
2160 #ifdef USE_INET6
2161 	struct in6_addr	tmp_src6;
2162 #endif
2163 
2164 	ASSERT(fin->fin_p == IPPROTO_TCP);
2165 
2166 	/*
2167 	 * We do not need to adjust chksum, since it is not being checked by
2168 	 * Solaris IP stack for loopback clients.
2169 	 */
2170 	if ((fin->fin_v == 4) && (fin->fin_p == IPPROTO_TCP) &&
2171 	    ((tcp = (tcphdr_t *) fin->fin_dp) != NULL)) {
2172 
2173 		if (tcp->th_flags & (TH_SYN | TH_FIN)) {
2174 			/* Swap IPv4 addresses. */
2175 			tmp_src = fin->fin_ip->ip_src;
2176 			fin->fin_ip->ip_src = fin->fin_ip->ip_dst;
2177 			fin->fin_ip->ip_dst = tmp_src;
2178 
2179 			rv = 0;
2180 		}
2181 		else
2182 			tcp = NULL;
2183 	}
2184 #ifdef USE_INET6
2185 	else if ((fin->fin_v == 6) && (fin->fin_p == IPPROTO_TCP) &&
2186 	    ((tcp = (tcphdr_t *) fin->fin_dp) != NULL)) {
2187 		/*
2188 		 * We are relying on fact the next header is TCP, which is true
2189 		 * for regular TCP packets coming in over loopback.
2190 		 */
2191 		if (tcp->th_flags & (TH_SYN | TH_FIN)) {
2192 			/* Swap IPv6 addresses. */
2193 			tmp_src6 = fin->fin_ip6->ip6_src;
2194 			fin->fin_ip6->ip6_src = fin->fin_ip6->ip6_dst;
2195 			fin->fin_ip6->ip6_dst = tmp_src6;
2196 
2197 			rv = 0;
2198 		}
2199 		else
2200 			tcp = NULL;
2201 	}
2202 #endif
2203 
2204 	if (tcp != NULL) {
2205 		/*
2206 		 * Adjust TCP header:
2207 		 *	swap ports,
2208 		 *	set flags,
2209 		 *	set correct ACK number
2210 		 */
2211 		tmp_port = tcp->th_sport;
2212 		tcp->th_sport = tcp->th_dport;
2213 		tcp->th_dport = tmp_port;
2214 		old_ack = tcp->th_ack;
2215 		tcp->th_ack = htonl(ntohl(tcp->th_seq) + 1);
2216 		tcp->th_seq = old_ack;
2217 		tcp->th_flags = TH_RST | TH_ACK;
2218 	}
2219 
2220 	return (rv);
2221 }
2222 
2223 /* ------------------------------------------------------------------------ */
2224 /* Function:    fr_make_icmp_v4                                             */
2225 /* Returns:     int - 0 on success, -1 on failure			    */
2226 /* Parameters:  fin(I) - pointer to packet information                      */
2227 /*                                                                          */
2228 /* Please read comment at fr_make_icmp() wrapper function to get an idea    */
2229 /* what is going to happen here and why. Once you read the comment there,   */
2230 /* continue here with next paragraph.					    */
2231 /*									    */
2232 /* To turn IPv4 packet into ICMPv4 response packet, these things must	    */
2233 /* happen here:								    */
2234 /*	(1) Original mblk is copied (duplicated).			    */
2235 /*                                                                          */
2236 /*	(2) ICMP header is created.					    */
2237 /*                                                                          */
2238 /*	(3) Link ICMP header with copy of original mblk, we have ICMPv4	    */
2239 /*	    data ready then.						    */
2240 /*                                                                          */
2241 /*      (4) Swap IP addresses in original mblk and adjust IP header data.   */
2242 /*                                                                          */
2243 /*	(5) The mblk containing original packet is trimmed to contain IP    */
2244 /*	    header only and ICMP chksum is computed.			    */
2245 /*                                                                          */
2246 /*	(6) The ICMP header we have from (3) is linked to original mblk,    */
2247 /*	    which now contains new IP header. If original packet was spread */
2248 /*	    over several mblks, only the first mblk is kept.		    */
2249 /* ------------------------------------------------------------------------ */
2250 static int fr_make_icmp_v4(fin)
2251 fr_info_t *fin;
2252 {
2253 	struct in_addr tmp_src;
2254 	struct icmp *icmp;
2255 	mblk_t *mblk_icmp;
2256 	mblk_t *mblk_ip;
2257 	size_t icmp_pld_len;	/* octets to append to ICMP header */
2258 	size_t orig_iphdr_len;	/* length of IP header only */
2259 	uint32_t sum;
2260 	uint16_t *buf;
2261 	int len;
2262 
2263 
2264 	if (fin->fin_v != 4)
2265 		return (-1);
2266 
2267 	/*
2268 	 * If we are dealing with TCP, then packet must be SYN/FIN to be routed
2269 	 * by IP stack. If it is not SYN/FIN, then we must drop it silently.
2270 	 */
2271 	if ((fin->fin_p == IPPROTO_TCP) &&
2272 	    !(fin->fin_flx & (TH_SYN | TH_FIN)))
2273 		return (-1);
2274 
2275 	/*
2276 	 * Step (1)
2277 	 *
2278 	 * Make copy of original mblk.
2279 	 *
2280 	 * We want to copy as much data as necessary, not less, not more.  The
2281 	 * ICMPv4 payload length for unreachable messages is:
2282 	 *	original IP header + 8 bytes of L4 (if there are any).
2283 	 *
2284 	 * We determine if there are at least 8 bytes of L4 data following IP
2285 	 * header first.
2286 	 */
2287 	icmp_pld_len = (fin->fin_dlen > ICMPERR_ICMPHLEN) ?
2288 		ICMPERR_ICMPHLEN : fin->fin_dlen;
2289 	/*
2290 	 * Since we don't want to copy more data than necessary, we must trim
2291 	 * the original mblk here.  The right way (STREAMish) would be to use
2292 	 * adjmsg() to trim it.  However we would have to calculate the length
2293 	 * argument for adjmsg() from pointers we already have here.
2294 	 *
2295 	 * Since we have pointers and offsets, it's faster and easier for
2296 	 * us to just adjust pointers by hand instead of using adjmsg().
2297 	 */
2298 	fin->fin_m->b_wptr = (unsigned char *) fin->fin_dp;
2299 	fin->fin_m->b_wptr += icmp_pld_len;
2300 	icmp_pld_len = fin->fin_m->b_wptr - (unsigned char *) fin->fin_ip;
2301 
2302 	/*
2303 	 * Also we don't want to copy any L2 stuff, which might precede IP
2304 	 * header, so we have have to set b_rptr to point to the start of IP
2305 	 * header.
2306 	 */
2307 	fin->fin_m->b_rptr += fin->fin_ipoff;
2308 	if ((mblk_ip = copyb(fin->fin_m)) == NULL)
2309 		return (-1);
2310 	fin->fin_m->b_rptr -= fin->fin_ipoff;
2311 
2312 	/*
2313 	 * Step (2)
2314 	 *
2315 	 * Create an ICMP header, which will be appened to original mblk later.
2316 	 * ICMP header is just another mblk.
2317 	 */
2318 	mblk_icmp = (mblk_t *) allocb(ICMPERR_ICMPHLEN, BPRI_HI);
2319 	if (mblk_icmp == NULL) {
2320 		FREE_MB_T(mblk_ip);
2321 		return (-1);
2322 	}
2323 
2324 	MTYPE(mblk_icmp) = M_DATA;
2325 	icmp = (struct icmp *) mblk_icmp->b_wptr;
2326 	icmp->icmp_type = ICMP_UNREACH;
2327 	icmp->icmp_code = fin->fin_icode & 0xFF;
2328 	icmp->icmp_void = 0;
2329 	icmp->icmp_cksum = 0;
2330 	mblk_icmp->b_wptr += ICMPERR_ICMPHLEN;
2331 
2332 	/*
2333 	 * Step (3)
2334 	 *
2335 	 * Complete ICMP packet - link ICMP header with L4 data from original
2336 	 * IP packet.
2337 	 */
2338 	linkb(mblk_icmp, mblk_ip);
2339 
2340 	/*
2341 	 * Step (4)
2342 	 *
2343 	 * Swap IP addresses and change IP header fields accordingly in
2344 	 * original IP packet.
2345 	 *
2346 	 * There is a rule option return-icmp as a dest for physical
2347 	 * interfaces. This option becomes useless for loopback, since IPF box
2348 	 * uses same address as a loopback destination. We ignore the option
2349 	 * here, the ICMP packet will always look like as it would have been
2350 	 * sent from the original destination host.
2351 	 */
2352 	tmp_src = fin->fin_ip->ip_src;
2353 	fin->fin_ip->ip_src = fin->fin_ip->ip_dst;
2354 	fin->fin_ip->ip_dst = tmp_src;
2355 	fin->fin_ip->ip_p = IPPROTO_ICMP;
2356 	fin->fin_ip->ip_sum = 0;
2357 
2358 	/*
2359 	 * Step (5)
2360 	 *
2361 	 * We trim the orignal mblk to hold IP header only.
2362 	 */
2363 	fin->fin_m->b_wptr = fin->fin_dp;
2364 	orig_iphdr_len = fin->fin_m->b_wptr -
2365 			    (fin->fin_m->b_rptr + fin->fin_ipoff);
2366 	fin->fin_ip->ip_len = htons(icmp_pld_len + ICMPERR_ICMPHLEN +
2367 			    orig_iphdr_len);
2368 
2369 	/*
2370 	 * ICMP chksum calculation. The data we are calculating chksum for are
2371 	 * spread over two mblks, therefore we have to use two for loops.
2372 	 *
2373 	 * First for loop computes chksum part for ICMP header.
2374 	 */
2375 	buf = (uint16_t *) icmp;
2376 	len = ICMPERR_ICMPHLEN;
2377 	for (sum = 0; len > 1; len -= 2)
2378 		sum += *buf++;
2379 
2380 	/*
2381 	 * Here we add chksum part for ICMP payload.
2382 	 */
2383 	len = icmp_pld_len;
2384 	buf = (uint16_t *) mblk_ip->b_rptr;
2385 	for (; len > 1; len -= 2)
2386 		sum += *buf++;
2387 
2388 	/*
2389 	 * Chksum is done.
2390 	 */
2391 	sum = (sum >> 16) + (sum & 0xffff);
2392 	sum += (sum >> 16);
2393 	icmp->icmp_cksum = ~sum;
2394 
2395 	/*
2396 	 * Step (6)
2397 	 *
2398 	 * Release all packet mblks, except the first one.
2399 	 */
2400 	if (fin->fin_m->b_cont != NULL) {
2401 		FREE_MB_T(fin->fin_m->b_cont);
2402 	}
2403 
2404 	/*
2405 	 * Append ICMP payload to first mblk, which already contains new IP
2406 	 * header.
2407 	 */
2408 	linkb(fin->fin_m, mblk_icmp);
2409 
2410 	return (0);
2411 }
2412 
2413 #ifdef USE_INET6
2414 /* ------------------------------------------------------------------------ */
2415 /* Function:    fr_make_icmp_v6                                             */
2416 /* Returns:     int - 0 on success, -1 on failure			    */
2417 /* Parameters:  fin(I) - pointer to packet information                      */
2418 /*									    */
2419 /* Please read comment at fr_make_icmp() wrapper function to get an idea    */
2420 /* what and why is going to happen here. Once you read the comment there,   */
2421 /* continue here with next paragraph.					    */
2422 /*									    */
2423 /* This function turns IPv6 packet (UDP, TCP, ...) into ICMPv6 response.    */
2424 /* The algorithm is fairly simple:					    */
2425 /*	1) We need to get copy of complete mblk.			    */
2426 /*									    */
2427 /*	2) New ICMPv6 header is created.				    */
2428 /*									    */
2429 /*	3) The copy of original mblk with packet is linked to ICMPv6	    */
2430 /*	   header.							    */
2431 /*									    */
2432 /*	4) The checksum must be adjusted.				    */
2433 /*									    */
2434 /*	5) IP addresses in original mblk are swapped and IP header data	    */
2435 /*	   are adjusted (protocol number).				    */
2436 /*									    */
2437 /*	6) Original mblk is trimmed to hold IPv6 header only, then it is    */
2438 /*	   linked with the ICMPv6 data we got from (3).			    */
2439 /* ------------------------------------------------------------------------ */
2440 static int fr_make_icmp_v6(fin)
2441 fr_info_t *fin;
2442 {
2443 	struct icmp6_hdr *icmp6;
2444 	struct in6_addr	tmp_src6;
2445 	size_t icmp_pld_len;
2446 	mblk_t *mblk_ip, *mblk_icmp;
2447 
2448 	if (fin->fin_v != 6)
2449 		return (-1);
2450 
2451 	/*
2452 	 * If we are dealing with TCP, then packet must SYN/FIN to be routed by
2453 	 * IP stack. If it is not SYN/FIN, then we must drop it silently.
2454 	 */
2455 	if (fin->fin_p == IPPROTO_TCP &&
2456 	    !(fin->fin_flx & (TH_SYN | TH_FIN)))
2457 		return (-1);
2458 
2459 	/*
2460 	 * Step (1)
2461 	 *
2462 	 * We need to copy complete packet in case of IPv6, no trimming is
2463 	 * needed (except the L2 headers).
2464 	 */
2465 	icmp_pld_len = M_LEN(fin->fin_m);
2466 	fin->fin_m->b_rptr += fin->fin_ipoff;
2467 	if ((mblk_ip = copyb(fin->fin_m)) == NULL)
2468 		return (-1);
2469 	fin->fin_m->b_rptr -= fin->fin_ipoff;
2470 
2471 	/*
2472 	 * Step (2)
2473 	 *
2474 	 * Allocate and create ICMP header.
2475 	 */
2476 	mblk_icmp = (mblk_t *) allocb(sizeof (struct icmp6_hdr),
2477 			BPRI_HI);
2478 
2479 	if (mblk_icmp == NULL)
2480 		return (-1);
2481 
2482 	MTYPE(mblk_icmp) = M_DATA;
2483 	icmp6 =  (struct icmp6_hdr *) mblk_icmp->b_wptr;
2484 	icmp6->icmp6_type = ICMP6_DST_UNREACH;
2485 	icmp6->icmp6_code = fin->fin_icode & 0xFF;
2486 	icmp6->icmp6_data32[0] = 0;
2487 	mblk_icmp->b_wptr += sizeof (struct icmp6_hdr);
2488 
2489 	/*
2490 	 * Step (3)
2491 	 *
2492 	 * Link the copy of IP packet to ICMP header.
2493 	 */
2494 	linkb(mblk_icmp, mblk_ip);
2495 
2496 	/*
2497 	 * Step (4)
2498 	 *
2499 	 * Calculate chksum - this is much more easier task than in case of
2500 	 * IPv4  - ICMPv6 chksum only covers IP addresses, and payload length.
2501 	 * We are making compensation just for change of packet length.
2502 	 */
2503 	icmp6->icmp6_cksum = icmp_pld_len + sizeof (struct icmp6_hdr);
2504 
2505 	/*
2506 	 * Step (5)
2507 	 *
2508 	 * Swap IP addresses.
2509 	 */
2510 	tmp_src6 = fin->fin_ip6->ip6_src;
2511 	fin->fin_ip6->ip6_src = fin->fin_ip6->ip6_dst;
2512 	fin->fin_ip6->ip6_dst = tmp_src6;
2513 
2514 	/*
2515 	 * and adjust IP header data.
2516 	 */
2517 	fin->fin_ip6->ip6_nxt = IPPROTO_ICMPV6;
2518 	fin->fin_ip6->ip6_plen = htons(icmp_pld_len + sizeof (struct icmp6_hdr));
2519 
2520 	/*
2521 	 * Step (6)
2522 	 *
2523 	 * We must release all linked mblks from original packet and keep only
2524 	 * the first mblk with IP header to link ICMP data.
2525 	 */
2526 	fin->fin_m->b_wptr = (unsigned char *) fin->fin_ip6 + sizeof (ip6_t);
2527 
2528 	if (fin->fin_m->b_cont != NULL) {
2529 		FREE_MB_T(fin->fin_m->b_cont);
2530 	}
2531 
2532 	/*
2533 	 * Append ICMP payload to IP header.
2534 	 */
2535 	linkb(fin->fin_m, mblk_icmp);
2536 
2537 	return (0);
2538 }
2539 #endif	/* USE_INET6 */
2540 
2541 /* ------------------------------------------------------------------------ */
2542 /* Function:    fr_make_icmp                                                */
2543 /* Returns:     int - 0 on success, -1 on failure			    */
2544 /* Parameters:  fin(I) - pointer to packet information                      */
2545 /*                                                                          */
2546 /* We must alter the original mblks passed to IPF from IP stack via	    */
2547 /* FW_HOOKS. The reasons why we must alter packet are discussed within	    */
2548 /* comment at fr_make_rst() function.					    */
2549 /*									    */
2550 /* The fr_make_icmp() function acts as a wrapper, which passes the code	    */
2551 /* execution to	fr_make_icmp_v4() or fr_make_icmp_v6() depending on	    */
2552 /* protocol version. However there are some details, which are common to    */
2553 /* both IP versions. The details are going to be explained here.	    */
2554 /*                                                                          */
2555 /* The packet looks as follows:						    */
2556 /*    xxx | IP hdr | IP payload    ...	| 				    */
2557 /*    ^   ^        ^            	^				    */
2558 /*    |   |        |            	|				    */
2559 /*    |   |        |		fin_m->b_wptr = fin->fin_dp + fin->fin_dlen */
2560 /*    |   |        |							    */
2561 /*    |   |        `- fin_m->fin_dp (in case of IPv4 points to L4 header)   */
2562 /*    |   |								    */
2563 /*    |   `- fin_m->b_rptr + fin_ipoff (fin_ipoff is most likely 0 in case  */
2564 /*    |      of loopback)						    */
2565 /*    |   								    */
2566 /*    `- fin_m->b_rptr -  points to L2 header in case of physical NIC	    */
2567 /*                                                                          */
2568 /* All relevant IP headers are pulled up into the first mblk. It happened   */
2569 /* well in advance before the matching rule was found (the rule, which took */
2570 /* us here, to fr_make_icmp() function).				    */
2571 /*                                                                          */
2572 /* Both functions will turn packet passed in fin->fin_m mblk into a new	    */
2573 /* packet. New packet will be represented as chain of mblks.		    */
2574 /* orig mblk |- b_cont ---.						    */
2575 /*    ^                    `-> ICMP hdr |- b_cont--.			    */
2576 /*    |	                          ^	            `-> duped orig mblk	    */
2577 /*    |                           |				^	    */
2578 /*    `- The original mblk        |				|	    */
2579 /*       will be trimmed to       |				|	    */
2580 /*       to contain IP header     |				|	    */
2581 /*       only                     |				|	    */
2582 /*                                |				|	    */
2583 /*                                `- This is newly		|           */
2584 /*                                   allocated mblk to		|	    */
2585 /*                                   hold ICMPv6 data.		|	    */
2586 /*								|	    */
2587 /*								|	    */
2588 /*								|	    */
2589 /*	    This is the copy of original mblk, it will contain -'	    */
2590 /*	    orignal IP  packet in case of ICMPv6. In case of		    */
2591 /*	    ICMPv4 it will contain up to 8 bytes of IP payload		    */
2592 /*	    (TCP/UDP/L4) data from original packet.			    */
2593 /* ------------------------------------------------------------------------ */
2594 int fr_make_icmp(fin)
2595 fr_info_t *fin;
2596 {
2597 	int rv;
2598 
2599 	if (fin->fin_v == 4)
2600 		rv = fr_make_icmp_v4(fin);
2601 #ifdef USE_INET6
2602 	else if (fin->fin_v == 6)
2603 		rv = fr_make_icmp_v6(fin);
2604 #endif
2605 	else
2606 		rv = -1;
2607 
2608 	return (rv);
2609 }
2610 #endif	/* _KERNEL && SOLARIS2 >= 10 */
2611