1 /* 2 * Copyright (C) 1993-2003 by Darren Reed. 3 * 4 * See the IPFILTER.LICENCE file for details on licencing. 5 * 6 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 7 * 8 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 9 */ 10 11 #if defined(KERNEL) || defined(_KERNEL) 12 # undef KERNEL 13 # undef _KERNEL 14 # define KERNEL 1 15 # define _KERNEL 1 16 #endif 17 #include <sys/errno.h> 18 #include <sys/types.h> 19 #include <sys/param.h> 20 #include <sys/time.h> 21 #if defined(__NetBSD__) 22 # if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL) 23 # include "opt_ipfilter_log.h" 24 # endif 25 #endif 26 #if defined(_KERNEL) && defined(__FreeBSD_version) && \ 27 (__FreeBSD_version >= 220000) 28 # if (__FreeBSD_version >= 400000) 29 # if !defined(IPFILTER_LKM) 30 # include "opt_inet6.h" 31 # endif 32 # if (__FreeBSD_version == 400019) 33 # define CSUM_DELAY_DATA 34 # endif 35 # endif 36 # include <sys/filio.h> 37 #else 38 # include <sys/ioctl.h> 39 #endif 40 #if !defined(_AIX51) 41 # include <sys/fcntl.h> 42 #endif 43 #if defined(_KERNEL) 44 # include <sys/systm.h> 45 # include <sys/file.h> 46 #else 47 # include <stdio.h> 48 # include <string.h> 49 # include <stdlib.h> 50 # include <stddef.h> 51 # include <sys/file.h> 52 # define _KERNEL 53 # ifdef __OpenBSD__ 54 struct file; 55 # endif 56 # include <sys/uio.h> 57 # undef _KERNEL 58 #endif 59 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \ 60 !defined(linux) 61 # include <sys/mbuf.h> 62 #else 63 # if !defined(linux) 64 # include <sys/byteorder.h> 65 # endif 66 # if (SOLARIS2 < 5) && defined(sun) 67 # include <sys/dditypes.h> 68 # endif 69 #endif 70 #ifdef __hpux 71 # define _NET_ROUTE_INCLUDED 72 #endif 73 #if !defined(linux) 74 # include <sys/protosw.h> 75 #endif 76 #include <sys/socket.h> 77 #include <net/if.h> 78 #ifdef sun 79 # include <net/af.h> 80 #endif 81 #if !defined(_KERNEL) && defined(__FreeBSD__) 82 # include "radix_ipf.h" 83 #endif 84 #include <net/route.h> 85 #include <netinet/in.h> 86 #include <netinet/in_systm.h> 87 #include <netinet/ip.h> 88 #if !defined(linux) 89 # include <netinet/ip_var.h> 90 #endif 91 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */ 92 # include <sys/hashing.h> 93 # include <netinet/in_var.h> 94 #endif 95 #include <netinet/tcp.h> 96 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL) 97 # include <netinet/udp.h> 98 # include <netinet/ip_icmp.h> 99 #endif 100 #ifdef __hpux 101 # undef _NET_ROUTE_INCLUDED 102 #endif 103 #include "netinet/ip_compat.h" 104 #ifdef USE_INET6 105 # include <netinet/icmp6.h> 106 # if !defined(SOLARIS) && defined(_KERNEL) && !defined(__osf__) && \ 107 !defined(__hpux) 108 # include <netinet6/in6_var.h> 109 # endif 110 #endif 111 #include <netinet/tcpip.h> 112 #include "netinet/ip_fil.h" 113 #include "netinet/ip_nat.h" 114 #include "netinet/ip_frag.h" 115 #include "netinet/ip_state.h" 116 #include "netinet/ip_proxy.h" 117 #include "netinet/ip_auth.h" 118 #include "netinet/ipf_stack.h" 119 #ifdef IPFILTER_SCAN 120 # include "netinet/ip_scan.h" 121 #endif 122 #ifdef IPFILTER_SYNC 123 # include "netinet/ip_sync.h" 124 #endif 125 #include "netinet/ip_pool.h" 126 #include "netinet/ip_htable.h" 127 #ifdef IPFILTER_COMPILED 128 # include "netinet/ip_rules.h" 129 #endif 130 #if defined(IPFILTER_BPF) && defined(_KERNEL) 131 # include <net/bpf.h> 132 #endif 133 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000) 134 # include <sys/malloc.h> 135 # if defined(_KERNEL) && !defined(IPFILTER_LKM) 136 # include "opt_ipfilter.h" 137 # endif 138 #endif 139 #include "netinet/ipl.h" 140 #if defined(_KERNEL) 141 #include <sys/sunddi.h> 142 #endif 143 /* END OF INCLUDES */ 144 145 #if !defined(lint) 146 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed"; 147 static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $"; 148 #endif 149 150 #ifndef _KERNEL 151 # include "ipf.h" 152 # include "ipt.h" 153 # include "bpf-ipf.h" 154 extern int opts; 155 156 # define FR_VERBOSE(verb_pr) verbose verb_pr 157 # define FR_DEBUG(verb_pr) debug verb_pr 158 #else /* #ifndef _KERNEL */ 159 # define FR_VERBOSE(verb_pr) 160 # define FR_DEBUG(verb_pr) 161 #endif /* _KERNEL */ 162 163 164 char ipfilter_version[] = IPL_VERSION; 165 int fr_features = 0 166 #ifdef IPFILTER_LKM 167 | IPF_FEAT_LKM 168 #endif 169 #ifdef IPFILTER_LOG 170 | IPF_FEAT_LOG 171 #endif 172 #ifdef IPFILTER_LOOKUP 173 | IPF_FEAT_LOOKUP 174 #endif 175 #ifdef IPFILTER_BPF 176 | IPF_FEAT_BPF 177 #endif 178 #ifdef IPFILTER_COMPILED 179 | IPF_FEAT_COMPILED 180 #endif 181 #ifdef IPFILTER_CKSUM 182 | IPF_FEAT_CKSUM 183 #endif 184 #ifdef IPFILTER_SYNC 185 | IPF_FEAT_SYNC 186 #endif 187 #ifdef IPFILTER_SCAN 188 | IPF_FEAT_SCAN 189 #endif 190 #ifdef USE_INET6 191 | IPF_FEAT_IPV6 192 #endif 193 ; 194 195 #define IPF_BUMP(x) (x)++ 196 197 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int)); 198 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int)); 199 static int fr_portcheck __P((frpcmp_t *, u_short *)); 200 static int frflushlist __P((int, minor_t, int *, frentry_t **, 201 ipf_stack_t *)); 202 static ipfunc_t fr_findfunc __P((ipfunc_t)); 203 static frentry_t *fr_firewall __P((fr_info_t *, u_32_t *)); 204 static int fr_funcinit __P((frentry_t *fr, ipf_stack_t *)); 205 static INLINE void frpr_ah __P((fr_info_t *)); 206 static INLINE void frpr_esp __P((fr_info_t *)); 207 static INLINE void frpr_gre __P((fr_info_t *)); 208 static INLINE void frpr_udp __P((fr_info_t *)); 209 static INLINE void frpr_tcp __P((fr_info_t *)); 210 static INLINE void frpr_icmp __P((fr_info_t *)); 211 static INLINE void frpr_ipv4hdr __P((fr_info_t *)); 212 static INLINE int frpr_pullup __P((fr_info_t *, int)); 213 static INLINE void frpr_short __P((fr_info_t *, int)); 214 static INLINE void frpr_tcpcommon __P((fr_info_t *)); 215 static INLINE void frpr_udpcommon __P((fr_info_t *)); 216 static INLINE int fr_updateipid __P((fr_info_t *)); 217 #ifdef IPFILTER_LOOKUP 218 static int fr_grpmapinit __P((frentry_t *fr, ipf_stack_t *)); 219 static INLINE void *fr_resolvelookup __P((u_int, u_int, lookupfunc_t *, 220 ipf_stack_t *)); 221 #endif 222 static void frsynclist __P((int, int, void *, char *, frentry_t *, 223 ipf_stack_t *)); 224 static void *fr_ifsync __P((int, int, char *, char *, 225 void *, void *, ipf_stack_t *)); 226 static ipftuneable_t *fr_findtunebyname __P((const char *, ipf_stack_t *)); 227 static ipftuneable_t *fr_findtunebycookie __P((void *, void **, ipf_stack_t *)); 228 229 /* 230 * bit values for identifying presence of individual IP options 231 * All of these tables should be ordered by increasing key value on the left 232 * hand side to allow for binary searching of the array and include a trailer 233 * with a 0 for the bitmask for linear searches to easily find the end with. 234 */ 235 const struct optlist ipopts[20] = { 236 { IPOPT_NOP, 0x000001 }, 237 { IPOPT_RR, 0x000002 }, 238 { IPOPT_ZSU, 0x000004 }, 239 { IPOPT_MTUP, 0x000008 }, 240 { IPOPT_MTUR, 0x000010 }, 241 { IPOPT_ENCODE, 0x000020 }, 242 { IPOPT_TS, 0x000040 }, 243 { IPOPT_TR, 0x000080 }, 244 { IPOPT_SECURITY, 0x000100 }, 245 { IPOPT_LSRR, 0x000200 }, 246 { IPOPT_E_SEC, 0x000400 }, 247 { IPOPT_CIPSO, 0x000800 }, 248 { IPOPT_SATID, 0x001000 }, 249 { IPOPT_SSRR, 0x002000 }, 250 { IPOPT_ADDEXT, 0x004000 }, 251 { IPOPT_VISA, 0x008000 }, 252 { IPOPT_IMITD, 0x010000 }, 253 { IPOPT_EIP, 0x020000 }, 254 { IPOPT_FINN, 0x040000 }, 255 { 0, 0x000000 } 256 }; 257 258 #ifdef USE_INET6 259 struct optlist ip6exthdr[] = { 260 { IPPROTO_HOPOPTS, 0x000001 }, 261 { IPPROTO_IPV6, 0x000002 }, 262 { IPPROTO_ROUTING, 0x000004 }, 263 { IPPROTO_FRAGMENT, 0x000008 }, 264 { IPPROTO_ESP, 0x000010 }, 265 { IPPROTO_AH, 0x000020 }, 266 { IPPROTO_NONE, 0x000040 }, 267 { IPPROTO_DSTOPTS, 0x000080 }, 268 { 0, 0 } 269 }; 270 #endif 271 272 struct optlist tcpopts[] = { 273 { TCPOPT_NOP, 0x000001 }, 274 { TCPOPT_MAXSEG, 0x000002 }, 275 { TCPOPT_WINDOW, 0x000004 }, 276 { TCPOPT_SACK_PERMITTED, 0x000008 }, 277 { TCPOPT_SACK, 0x000010 }, 278 { TCPOPT_TIMESTAMP, 0x000020 }, 279 { 0, 0x000000 } 280 }; 281 282 /* 283 * bit values for identifying presence of individual IP security options 284 */ 285 const struct optlist secopt[8] = { 286 { IPSO_CLASS_RES4, 0x01 }, 287 { IPSO_CLASS_TOPS, 0x02 }, 288 { IPSO_CLASS_SECR, 0x04 }, 289 { IPSO_CLASS_RES3, 0x08 }, 290 { IPSO_CLASS_CONF, 0x10 }, 291 { IPSO_CLASS_UNCL, 0x20 }, 292 { IPSO_CLASS_RES2, 0x40 }, 293 { IPSO_CLASS_RES1, 0x80 } 294 }; 295 296 297 /* 298 * Table of functions available for use with call rules. 299 */ 300 static ipfunc_resolve_t fr_availfuncs[] = { 301 #ifdef IPFILTER_LOOKUP 302 { "fr_srcgrpmap", fr_srcgrpmap, fr_grpmapinit }, 303 { "fr_dstgrpmap", fr_dstgrpmap, fr_grpmapinit }, 304 #endif 305 { "", NULL } 306 }; 307 308 309 /* 310 * Below we declare a list of constants used only by the ipf_extraflush() 311 * routine. We are placing it here, instead of in ipf_extraflush() itself, 312 * because we want to make it visible to tools such as mdb, nm etc., so the 313 * values can easily be altered during debugging. 314 */ 315 static const int idletime_tab[] = { 316 IPF_TTLVAL(30), /* 30 seconds */ 317 IPF_TTLVAL(1800), /* 30 minutes */ 318 IPF_TTLVAL(43200), /* 12 hours */ 319 IPF_TTLVAL(345600), /* 4 days */ 320 }; 321 322 323 /* 324 * The next section of code is a a collection of small routines that set 325 * fields in the fr_info_t structure passed based on properties of the 326 * current packet. There are different routines for the same protocol 327 * for each of IPv4 and IPv6. Adding a new protocol, for which there 328 * will "special" inspection for setup, is now more easily done by adding 329 * a new routine and expanding the frpr_ipinit*() function rather than by 330 * adding more code to a growing switch statement. 331 */ 332 #ifdef USE_INET6 333 static INLINE int frpr_ah6 __P((fr_info_t *)); 334 static INLINE void frpr_esp6 __P((fr_info_t *)); 335 static INLINE void frpr_gre6 __P((fr_info_t *)); 336 static INLINE void frpr_udp6 __P((fr_info_t *)); 337 static INLINE void frpr_tcp6 __P((fr_info_t *)); 338 static INLINE void frpr_icmp6 __P((fr_info_t *)); 339 static INLINE void frpr_ipv6hdr __P((fr_info_t *)); 340 static INLINE void frpr_short6 __P((fr_info_t *, int)); 341 static INLINE int frpr_hopopts6 __P((fr_info_t *)); 342 static INLINE int frpr_routing6 __P((fr_info_t *)); 343 static INLINE int frpr_dstopts6 __P((fr_info_t *)); 344 static INLINE int frpr_fragment6 __P((fr_info_t *)); 345 static INLINE int frpr_ipv6exthdr __P((fr_info_t *, int, int)); 346 347 348 /* ------------------------------------------------------------------------ */ 349 /* Function: frpr_short6 */ 350 /* Returns: void */ 351 /* Parameters: fin(I) - pointer to packet information */ 352 /* */ 353 /* IPv6 Only */ 354 /* This is function enforces the 'is a packet too short to be legit' rule */ 355 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */ 356 /* for frpr_short() for more details. */ 357 /* ------------------------------------------------------------------------ */ 358 static INLINE void frpr_short6(fin, xmin) 359 fr_info_t *fin; 360 int xmin; 361 { 362 363 if (fin->fin_dlen < xmin) 364 fin->fin_flx |= FI_SHORT; 365 } 366 367 368 /* ------------------------------------------------------------------------ */ 369 /* Function: frpr_ipv6hdr */ 370 /* Returns: Nil */ 371 /* Parameters: fin(I) - pointer to packet information */ 372 /* */ 373 /* IPv6 Only */ 374 /* Copy values from the IPv6 header into the fr_info_t struct and call the */ 375 /* per-protocol analyzer if it exists. */ 376 /* ------------------------------------------------------------------------ */ 377 static INLINE void frpr_ipv6hdr(fin) 378 fr_info_t *fin; 379 { 380 ip6_t *ip6 = (ip6_t *)fin->fin_ip; 381 int p, go = 1, i, hdrcount; 382 fr_ip_t *fi = &fin->fin_fi; 383 384 fin->fin_off = 0; 385 386 fi->fi_tos = 0; 387 fi->fi_optmsk = 0; 388 fi->fi_secmsk = 0; 389 fi->fi_auth = 0; 390 391 p = ip6->ip6_nxt; 392 fi->fi_ttl = ip6->ip6_hlim; 393 fi->fi_src.in6 = ip6->ip6_src; 394 fi->fi_dst.in6 = ip6->ip6_dst; 395 fin->fin_id = 0; 396 397 hdrcount = 0; 398 while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) { 399 switch (p) 400 { 401 case IPPROTO_UDP : 402 frpr_udp6(fin); 403 go = 0; 404 break; 405 406 case IPPROTO_TCP : 407 frpr_tcp6(fin); 408 go = 0; 409 break; 410 411 case IPPROTO_ICMPV6 : 412 frpr_icmp6(fin); 413 go = 0; 414 break; 415 416 case IPPROTO_GRE : 417 frpr_gre6(fin); 418 go = 0; 419 break; 420 421 case IPPROTO_HOPOPTS : 422 /* 423 * hop by hop ext header is only allowed 424 * right after IPv6 header. 425 */ 426 if (hdrcount != 0) { 427 fin->fin_flx |= FI_BAD; 428 p = IPPROTO_NONE; 429 } else { 430 p = frpr_hopopts6(fin); 431 } 432 break; 433 434 case IPPROTO_DSTOPTS : 435 p = frpr_dstopts6(fin); 436 break; 437 438 case IPPROTO_ROUTING : 439 p = frpr_routing6(fin); 440 break; 441 442 case IPPROTO_AH : 443 p = frpr_ah6(fin); 444 break; 445 446 case IPPROTO_ESP : 447 frpr_esp6(fin); 448 go = 0; 449 break; 450 451 case IPPROTO_IPV6 : 452 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 453 if (ip6exthdr[i].ol_val == p) { 454 fin->fin_flx |= ip6exthdr[i].ol_bit; 455 break; 456 } 457 go = 0; 458 break; 459 460 case IPPROTO_NONE : 461 go = 0; 462 break; 463 464 case IPPROTO_FRAGMENT : 465 p = frpr_fragment6(fin); 466 if (fin->fin_off != 0) /* Not the first frag */ 467 go = 0; 468 break; 469 470 default : 471 go = 0; 472 break; 473 } 474 hdrcount++; 475 476 /* 477 * It is important to note that at this point, for the 478 * extension headers (go != 0), the entire header may not have 479 * been pulled up when the code gets to this point. This is 480 * only done for "go != 0" because the other header handlers 481 * will all pullup their complete header. The other indicator 482 * of an incomplete packet is that this was just an extension 483 * header. 484 */ 485 if ((go != 0) && (p != IPPROTO_NONE) && 486 (frpr_pullup(fin, 0) == -1)) { 487 p = IPPROTO_NONE; 488 go = 0; 489 } 490 } 491 fi->fi_p = p; 492 } 493 494 495 /* ------------------------------------------------------------------------ */ 496 /* Function: frpr_ipv6exthdr */ 497 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 498 /* Parameters: fin(I) - pointer to packet information */ 499 /* multiple(I) - flag indicating yes/no if multiple occurances */ 500 /* of this extension header are allowed. */ 501 /* proto(I) - protocol number for this extension header */ 502 /* */ 503 /* IPv6 Only */ 504 /* This function expects to find an IPv6 extension header at fin_dp. */ 505 /* There must be at least 8 bytes of data at fin_dp for there to be a valid */ 506 /* extension header present. If a good one is found, fin_dp is advanced to */ 507 /* point at the first piece of data after the extension header, fin_exthdr */ 508 /* points to the start of the extension header and the "protocol" of the */ 509 /* *NEXT* header is returned. */ 510 /* ------------------------------------------------------------------------ */ 511 static INLINE int frpr_ipv6exthdr(fin, multiple, proto) 512 fr_info_t *fin; 513 int multiple, proto; 514 { 515 struct ip6_ext *hdr; 516 u_short shift; 517 int i; 518 519 fin->fin_flx |= FI_V6EXTHDR; 520 521 /* 8 is default length of extension hdr */ 522 if ((fin->fin_dlen - 8) < 0) { 523 fin->fin_flx |= FI_SHORT; 524 return IPPROTO_NONE; 525 } 526 527 if (frpr_pullup(fin, 8) == -1) 528 return IPPROTO_NONE; 529 530 hdr = fin->fin_dp; 531 shift = 8 + (hdr->ip6e_len << 3); 532 if (shift > fin->fin_dlen) { /* Nasty extension header length? */ 533 fin->fin_flx |= FI_BAD; 534 return IPPROTO_NONE; 535 } 536 537 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 538 if (ip6exthdr[i].ol_val == proto) { 539 /* 540 * Most IPv6 extension headers are only allowed once. 541 */ 542 if ((multiple == 0) && 543 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) 544 fin->fin_flx |= FI_BAD; 545 else 546 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 547 break; 548 } 549 550 fin->fin_dp = (char *)fin->fin_dp + shift; 551 fin->fin_dlen -= shift; 552 553 return hdr->ip6e_nxt; 554 } 555 556 557 /* ------------------------------------------------------------------------ */ 558 /* Function: frpr_hopopts6 */ 559 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 560 /* Parameters: fin(I) - pointer to packet information */ 561 /* */ 562 /* IPv6 Only */ 563 /* This is function checks pending hop by hop options extension header */ 564 /* ------------------------------------------------------------------------ */ 565 static INLINE int frpr_hopopts6(fin) 566 fr_info_t *fin; 567 { 568 return frpr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); 569 } 570 571 572 /* ------------------------------------------------------------------------ */ 573 /* Function: frpr_routing6 */ 574 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 575 /* Parameters: fin(I) - pointer to packet information */ 576 /* */ 577 /* IPv6 Only */ 578 /* This is function checks pending routing extension header */ 579 /* ------------------------------------------------------------------------ */ 580 static INLINE int frpr_routing6(fin) 581 fr_info_t *fin; 582 { 583 struct ip6_ext *hdr; 584 int shift; 585 586 hdr = fin->fin_dp; 587 if (frpr_ipv6exthdr(fin, 0, IPPROTO_ROUTING) == IPPROTO_NONE) 588 return IPPROTO_NONE; 589 590 shift = 8 + (hdr->ip6e_len << 3); 591 /* 592 * Nasty extension header length? 593 */ 594 if ((hdr->ip6e_len << 3) & 15) { 595 fin->fin_flx |= FI_BAD; 596 /* 597 * Compensate for the changes made in frpr_ipv6exthdr() 598 */ 599 fin->fin_dlen += shift; 600 fin->fin_dp = (char *)fin->fin_dp - shift; 601 return IPPROTO_NONE; 602 } 603 604 return hdr->ip6e_nxt; 605 } 606 607 608 /* ------------------------------------------------------------------------ */ 609 /* Function: frpr_fragment6 */ 610 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 611 /* Parameters: fin(I) - pointer to packet information */ 612 /* */ 613 /* IPv6 Only */ 614 /* Examine the IPv6 fragment header and extract fragment offset information.*/ 615 /* */ 616 /* We don't know where the transport layer header (or whatever is next is), */ 617 /* as it could be behind destination options (amongst others). Because */ 618 /* there is no fragment cache, there is no knowledge about whether or not an*/ 619 /* upper layer header has been seen (or where it ends) and thus we are not */ 620 /* able to continue processing beyond this header with any confidence. */ 621 /* ------------------------------------------------------------------------ */ 622 static INLINE int frpr_fragment6(fin) 623 fr_info_t *fin; 624 { 625 struct ip6_frag *frag; 626 627 fin->fin_flx |= FI_FRAG; 628 629 /* 630 * A fragmented IPv6 packet implies that there must be something 631 * else after the fragment. 632 */ 633 if (frpr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT) == IPPROTO_NONE) 634 return IPPROTO_NONE; 635 636 frag = (struct ip6_frag *)((char *)fin->fin_dp - sizeof(*frag)); 637 638 /* 639 * If this fragment isn't the last then the packet length must 640 * be a multiple of 8. 641 */ 642 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) { 643 fin->fin_flx |= FI_MOREFRAG; 644 645 if ((fin->fin_plen & 0x7) != 0) 646 fin->fin_flx |= FI_BAD; 647 } 648 649 fin->fin_id = frag->ip6f_ident; 650 fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK); 651 if (fin->fin_off != 0) 652 fin->fin_flx |= FI_FRAGBODY; 653 654 return frag->ip6f_nxt; 655 } 656 657 658 /* ------------------------------------------------------------------------ */ 659 /* Function: frpr_dstopts6 */ 660 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 661 /* Parameters: fin(I) - pointer to packet information */ 662 /* nextheader(I) - stores next header value */ 663 /* */ 664 /* IPv6 Only */ 665 /* This is function checks pending destination options extension header */ 666 /* ------------------------------------------------------------------------ */ 667 static INLINE int frpr_dstopts6(fin) 668 fr_info_t *fin; 669 { 670 return frpr_ipv6exthdr(fin, 1, IPPROTO_DSTOPTS); 671 } 672 673 674 /* ------------------------------------------------------------------------ */ 675 /* Function: frpr_icmp6 */ 676 /* Returns: void */ 677 /* Parameters: fin(I) - pointer to packet information */ 678 /* */ 679 /* IPv6 Only */ 680 /* This routine is mainly concerned with determining the minimum valid size */ 681 /* for an ICMPv6 packet. */ 682 /* ------------------------------------------------------------------------ */ 683 static INLINE void frpr_icmp6(fin) 684 fr_info_t *fin; 685 { 686 int minicmpsz = sizeof(struct icmp6_hdr); 687 struct icmp6_hdr *icmp6; 688 689 if (frpr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) 690 return; 691 692 if (fin->fin_dlen > 1) { 693 icmp6 = fin->fin_dp; 694 695 fin->fin_data[0] = *(u_short *)icmp6; 696 697 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0) 698 fin->fin_flx |= FI_ICMPQUERY; 699 700 switch (icmp6->icmp6_type) 701 { 702 case ICMP6_ECHO_REPLY : 703 case ICMP6_ECHO_REQUEST : 704 if (fin->fin_dlen >= 6) 705 fin->fin_data[1] = icmp6->icmp6_id; 706 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t); 707 break; 708 case ICMP6_DST_UNREACH : 709 case ICMP6_PACKET_TOO_BIG : 710 case ICMP6_TIME_EXCEEDED : 711 case ICMP6_PARAM_PROB : 712 if ((fin->fin_m != NULL) && 713 (M_LEN(fin->fin_m) < fin->fin_plen)) { 714 if (fr_coalesce(fin) != 1) 715 return; 716 } 717 fin->fin_flx |= FI_ICMPERR; 718 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t); 719 break; 720 default : 721 break; 722 } 723 } 724 725 frpr_short6(fin, minicmpsz); 726 } 727 728 729 /* ------------------------------------------------------------------------ */ 730 /* Function: frpr_udp6 */ 731 /* Returns: void */ 732 /* Parameters: fin(I) - pointer to packet information */ 733 /* */ 734 /* IPv6 Only */ 735 /* Analyse the packet for IPv6/UDP properties. */ 736 /* Is not expected to be called for fragmented packets. */ 737 /* ------------------------------------------------------------------------ */ 738 static INLINE void frpr_udp6(fin) 739 fr_info_t *fin; 740 { 741 742 fr_checkv6sum(fin); 743 744 frpr_short6(fin, sizeof(struct udphdr)); 745 if (frpr_pullup(fin, sizeof(struct udphdr)) == -1) 746 return; 747 748 frpr_udpcommon(fin); 749 } 750 751 752 /* ------------------------------------------------------------------------ */ 753 /* Function: frpr_tcp6 */ 754 /* Returns: void */ 755 /* Parameters: fin(I) - pointer to packet information */ 756 /* */ 757 /* IPv6 Only */ 758 /* Analyse the packet for IPv6/TCP properties. */ 759 /* Is not expected to be called for fragmented packets. */ 760 /* ------------------------------------------------------------------------ */ 761 static INLINE void frpr_tcp6(fin) 762 fr_info_t *fin; 763 { 764 765 fr_checkv6sum(fin); 766 767 frpr_short6(fin, sizeof(struct tcphdr)); 768 if (frpr_pullup(fin, sizeof(struct tcphdr)) == -1) 769 return; 770 771 frpr_tcpcommon(fin); 772 } 773 774 775 /* ------------------------------------------------------------------------ */ 776 /* Function: frpr_esp6 */ 777 /* Returns: void */ 778 /* Parameters: fin(I) - pointer to packet information */ 779 /* */ 780 /* IPv6 Only */ 781 /* Analyse the packet for ESP properties. */ 782 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 783 /* even though the newer ESP packets must also have a sequence number that */ 784 /* is 32bits as well, it is not possible(?) to determine the version from a */ 785 /* simple packet header. */ 786 /* ------------------------------------------------------------------------ */ 787 static INLINE void frpr_esp6(fin) 788 fr_info_t *fin; 789 { 790 int i; 791 frpr_short6(fin, sizeof(grehdr_t)); 792 793 (void) frpr_pullup(fin, 8); 794 795 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 796 if (ip6exthdr[i].ol_val == IPPROTO_ESP) { 797 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 798 break; 799 } 800 } 801 802 803 /* ------------------------------------------------------------------------ */ 804 /* Function: frpr_ah6 */ 805 /* Returns: void */ 806 /* Parameters: fin(I) - pointer to packet information */ 807 /* */ 808 /* IPv6 Only */ 809 /* Analyse the packet for AH properties. */ 810 /* The minimum length is taken to be the combination of all fields in the */ 811 /* header being present and no authentication data (null algorithm used.) */ 812 /* ------------------------------------------------------------------------ */ 813 static INLINE int frpr_ah6(fin) 814 fr_info_t *fin; 815 { 816 authhdr_t *ah; 817 int i, shift; 818 819 frpr_short6(fin, 12); 820 821 if (frpr_pullup(fin, sizeof(*ah)) == -1) 822 return IPPROTO_NONE; 823 824 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 825 if (ip6exthdr[i].ol_val == IPPROTO_AH) { 826 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 827 break; 828 } 829 830 ah = (authhdr_t *)fin->fin_dp; 831 832 shift = (ah->ah_plen + 2) * 4; 833 fin->fin_dlen -= shift; 834 fin->fin_dp = (char*)fin->fin_dp + shift; 835 836 return ah->ah_next; 837 } 838 839 840 /* ------------------------------------------------------------------------ */ 841 /* Function: frpr_gre6 */ 842 /* Returns: void */ 843 /* Parameters: fin(I) - pointer to packet information */ 844 /* */ 845 /* Analyse the packet for GRE properties. */ 846 /* ------------------------------------------------------------------------ */ 847 static INLINE void frpr_gre6(fin) 848 fr_info_t *fin; 849 { 850 grehdr_t *gre; 851 852 frpr_short6(fin, sizeof(grehdr_t)); 853 854 if (frpr_pullup(fin, sizeof(grehdr_t)) == -1) 855 return; 856 857 gre = fin->fin_dp; 858 if (GRE_REV(gre->gr_flags) == 1) 859 fin->fin_data[0] = gre->gr_call; 860 } 861 #endif /* USE_INET6 */ 862 863 864 /* ------------------------------------------------------------------------ */ 865 /* Function: frpr_pullup */ 866 /* Returns: int - 0 == pullup succeeded, -1 == failure */ 867 /* Parameters: fin(I) - pointer to packet information */ 868 /* plen(I) - length (excluding L3 header) to pullup */ 869 /* */ 870 /* Short inline function to cut down on code duplication to perform a call */ 871 /* to fr_pullup to ensure there is the required amount of data, */ 872 /* consecutively in the packet buffer. */ 873 /* ------------------------------------------------------------------------ */ 874 static INLINE int frpr_pullup(fin, plen) 875 fr_info_t *fin; 876 int plen; 877 { 878 #if defined(_KERNEL) 879 if (fin->fin_m != NULL) { 880 int ipoff; 881 882 ipoff = (char *)fin->fin_ip - MTOD(fin->fin_m, char *); 883 884 if (fin->fin_dp != NULL) 885 plen += (char *)fin->fin_dp - 886 ((char *)fin->fin_ip + fin->fin_hlen); 887 plen += fin->fin_hlen; 888 /* 889 * We don't do 'plen += ipoff;' here. The fr_pullup() will 890 * do it for us. 891 */ 892 if (M_LEN(fin->fin_m) < plen + ipoff) { 893 if (fr_pullup(fin->fin_m, fin, plen) == NULL) 894 return -1; 895 } 896 } 897 #endif 898 return 0; 899 } 900 901 902 /* ------------------------------------------------------------------------ */ 903 /* Function: frpr_short */ 904 /* Returns: void */ 905 /* Parameters: fin(I) - pointer to packet information */ 906 /* xmin(I) - minimum header size */ 907 /* */ 908 /* Check if a packet is "short" as defined by xmin. The rule we are */ 909 /* applying here is that the packet must not be fragmented within the layer */ 910 /* 4 header. That is, it must not be a fragment that has its offset set to */ 911 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */ 912 /* entire layer 4 header must be present (min). */ 913 /* ------------------------------------------------------------------------ */ 914 static INLINE void frpr_short(fin, xmin) 915 fr_info_t *fin; 916 int xmin; 917 { 918 919 if (fin->fin_off == 0) { 920 if (fin->fin_dlen < xmin) 921 fin->fin_flx |= FI_SHORT; 922 } else if (fin->fin_off < xmin) { 923 fin->fin_flx |= FI_SHORT; 924 } 925 } 926 927 928 /* ------------------------------------------------------------------------ */ 929 /* Function: frpr_icmp */ 930 /* Returns: void */ 931 /* Parameters: fin(I) - pointer to packet information */ 932 /* */ 933 /* IPv4 Only */ 934 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */ 935 /* except extrememly bad packets, both type and code will be present. */ 936 /* The expected minimum size of an ICMP packet is very much dependent on */ 937 /* the type of it. */ 938 /* */ 939 /* XXX - other ICMP sanity checks? */ 940 /* ------------------------------------------------------------------------ */ 941 static INLINE void frpr_icmp(fin) 942 fr_info_t *fin; 943 { 944 int minicmpsz = sizeof(struct icmp); 945 icmphdr_t *icmp; 946 ip_t *oip; 947 ipf_stack_t *ifs = fin->fin_ifs; 948 949 if (fin->fin_off != 0) { 950 frpr_short(fin, ICMPERR_ICMPHLEN); 951 return; 952 } 953 954 if (frpr_pullup(fin, ICMPERR_ICMPHLEN) == -1) 955 return; 956 957 fr_checkv4sum(fin); 958 959 /* 960 * This is a right place to set icmp pointer, since the memory 961 * referenced by fin_dp could get reallocated. The code down below can 962 * rely on fact icmp variable always points to ICMP header. 963 */ 964 icmp = fin->fin_dp; 965 fin->fin_data[0] = *(u_short *)icmp; 966 fin->fin_data[1] = icmp->icmp_id; 967 968 switch (icmp->icmp_type) 969 { 970 case ICMP_ECHOREPLY : 971 case ICMP_ECHO : 972 /* Router discovery messaes - RFC 1256 */ 973 case ICMP_ROUTERADVERT : 974 case ICMP_ROUTERSOLICIT : 975 minicmpsz = ICMP_MINLEN; 976 break; 977 /* 978 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 979 * 3 * timestamp(3 * 4) 980 */ 981 case ICMP_TSTAMP : 982 case ICMP_TSTAMPREPLY : 983 minicmpsz = 20; 984 break; 985 /* 986 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 987 * mask(4) 988 */ 989 case ICMP_MASKREQ : 990 case ICMP_MASKREPLY : 991 minicmpsz = 12; 992 break; 993 /* 994 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+) 995 */ 996 case ICMP_UNREACH : 997 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) { 998 if (icmp->icmp_nextmtu < ifs->ifs_fr_icmpminfragmtu) 999 fin->fin_flx |= FI_BAD; 1000 } 1001 /* FALLTHRU */ 1002 case ICMP_SOURCEQUENCH : 1003 case ICMP_REDIRECT : 1004 case ICMP_TIMXCEED : 1005 case ICMP_PARAMPROB : 1006 fin->fin_flx |= FI_ICMPERR; 1007 if (fr_coalesce(fin) != 1) 1008 return; 1009 /* 1010 * ICMP error packets should not be generated for IP 1011 * packets that are a fragment that isn't the first 1012 * fragment. 1013 */ 1014 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN); 1015 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) 1016 fin->fin_flx |= FI_BAD; 1017 break; 1018 default : 1019 break; 1020 } 1021 1022 frpr_short(fin, minicmpsz); 1023 } 1024 1025 1026 /* ------------------------------------------------------------------------ */ 1027 /* Function: frpr_tcpcommon */ 1028 /* Returns: void */ 1029 /* Parameters: fin(I) - pointer to packet information */ 1030 /* */ 1031 /* TCP header sanity checking. Look for bad combinations of TCP flags, */ 1032 /* and make some checks with how they interact with other fields. */ 1033 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */ 1034 /* valid and mark the packet as bad if not. */ 1035 /* ------------------------------------------------------------------------ */ 1036 static INLINE void frpr_tcpcommon(fin) 1037 fr_info_t *fin; 1038 { 1039 int flags, tlen; 1040 tcphdr_t *tcp; 1041 1042 fin->fin_flx |= FI_TCPUDP; 1043 if (fin->fin_off != 0) 1044 return; 1045 1046 if (frpr_pullup(fin, sizeof(*tcp)) == -1) 1047 return; 1048 tcp = fin->fin_dp; 1049 1050 if (fin->fin_dlen > 3) { 1051 fin->fin_sport = ntohs(tcp->th_sport); 1052 fin->fin_dport = ntohs(tcp->th_dport); 1053 } 1054 1055 if ((fin->fin_flx & FI_SHORT) != 0) 1056 return; 1057 1058 /* 1059 * Use of the TCP data offset *must* result in a value that is at 1060 * least the same size as the TCP header. 1061 */ 1062 tlen = TCP_OFF(tcp) << 2; 1063 if (tlen < sizeof(tcphdr_t)) { 1064 fin->fin_flx |= FI_BAD; 1065 return; 1066 } 1067 1068 flags = tcp->th_flags; 1069 fin->fin_tcpf = tcp->th_flags; 1070 1071 /* 1072 * If the urgent flag is set, then the urgent pointer must 1073 * also be set and vice versa. Good TCP packets do not have 1074 * just one of these set. 1075 */ 1076 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) { 1077 fin->fin_flx |= FI_BAD; 1078 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) { 1079 /* Ignore this case, it shows up in "real" traffic with */ 1080 /* bogus values in the urgent pointer field. */ 1081 flags = flags; /* LINT */ 1082 } else if (((flags & (TH_SYN|TH_FIN)) != 0) && 1083 ((flags & (TH_RST|TH_ACK)) == TH_RST)) { 1084 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */ 1085 fin->fin_flx |= FI_BAD; 1086 } else if (!(flags & TH_ACK)) { 1087 /* 1088 * If the ack bit isn't set, then either the SYN or 1089 * RST bit must be set. If the SYN bit is set, then 1090 * we expect the ACK field to be 0. If the ACK is 1091 * not set and if URG, PSH or FIN are set, consdier 1092 * that to indicate a bad TCP packet. 1093 */ 1094 if ((flags == TH_SYN) && (tcp->th_ack != 0)) { 1095 /* 1096 * Cisco PIX sets the ACK field to a random value. 1097 * In light of this, do not set FI_BAD until a patch 1098 * is available from Cisco to ensure that 1099 * interoperability between existing systems is 1100 * achieved. 1101 */ 1102 /*fin->fin_flx |= FI_BAD*/; 1103 flags = flags; /* LINT */ 1104 } else if (!(flags & (TH_RST|TH_SYN))) { 1105 fin->fin_flx |= FI_BAD; 1106 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) { 1107 fin->fin_flx |= FI_BAD; 1108 } 1109 } 1110 1111 /* 1112 * At this point, it's not exactly clear what is to be gained by 1113 * marking up which TCP options are and are not present. The one we 1114 * are most interested in is the TCP window scale. This is only in 1115 * a SYN packet [RFC1323] so we don't need this here...? 1116 * Now if we were to analyse the header for passive fingerprinting, 1117 * then that might add some weight to adding this... 1118 */ 1119 if (tlen == sizeof(tcphdr_t)) 1120 return; 1121 1122 if (frpr_pullup(fin, tlen) == -1) 1123 return; 1124 1125 #if 0 1126 ip = fin->fin_ip; 1127 s = (u_char *)(tcp + 1); 1128 off = IP_HL(ip) << 2; 1129 # ifdef _KERNEL 1130 if (fin->fin_mp != NULL) { 1131 mb_t *m = *fin->fin_mp; 1132 1133 if (off + tlen > M_LEN(m)) 1134 return; 1135 } 1136 # endif 1137 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) { 1138 opt = *s; 1139 if (opt == '\0') 1140 break; 1141 else if (opt == TCPOPT_NOP) 1142 ol = 1; 1143 else { 1144 if (tlen < 2) 1145 break; 1146 ol = (int)*(s + 1); 1147 if (ol < 2 || ol > tlen) 1148 break; 1149 } 1150 1151 for (i = 9, mv = 4; mv >= 0; ) { 1152 op = ipopts + i; 1153 if (opt == (u_char)op->ol_val) { 1154 optmsk |= op->ol_bit; 1155 break; 1156 } 1157 } 1158 tlen -= ol; 1159 s += ol; 1160 } 1161 #endif /* 0 */ 1162 } 1163 1164 1165 1166 /* ------------------------------------------------------------------------ */ 1167 /* Function: frpr_udpcommon */ 1168 /* Returns: void */ 1169 /* Parameters: fin(I) - pointer to packet information */ 1170 /* */ 1171 /* Extract the UDP source and destination ports, if present. If compiled */ 1172 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */ 1173 /* ------------------------------------------------------------------------ */ 1174 static INLINE void frpr_udpcommon(fin) 1175 fr_info_t *fin; 1176 { 1177 udphdr_t *udp; 1178 1179 fin->fin_flx |= FI_TCPUDP; 1180 1181 if (!fin->fin_off && (fin->fin_dlen > 3)) { 1182 if (frpr_pullup(fin, sizeof(*udp)) == -1) { 1183 fin->fin_flx |= FI_SHORT; 1184 return; 1185 } 1186 1187 udp = fin->fin_dp; 1188 1189 fin->fin_sport = ntohs(udp->uh_sport); 1190 fin->fin_dport = ntohs(udp->uh_dport); 1191 } 1192 } 1193 1194 1195 /* ------------------------------------------------------------------------ */ 1196 /* Function: frpr_tcp */ 1197 /* Returns: void */ 1198 /* Parameters: fin(I) - pointer to packet information */ 1199 /* */ 1200 /* IPv4 Only */ 1201 /* Analyse the packet for IPv4/TCP properties. */ 1202 /* ------------------------------------------------------------------------ */ 1203 static INLINE void frpr_tcp(fin) 1204 fr_info_t *fin; 1205 { 1206 1207 fr_checkv4sum(fin); 1208 1209 frpr_short(fin, sizeof(tcphdr_t)); 1210 1211 frpr_tcpcommon(fin); 1212 } 1213 1214 1215 /* ------------------------------------------------------------------------ */ 1216 /* Function: frpr_udp */ 1217 /* Returns: void */ 1218 /* Parameters: fin(I) - pointer to packet information */ 1219 /* */ 1220 /* IPv4 Only */ 1221 /* Analyse the packet for IPv4/UDP properties. */ 1222 /* ------------------------------------------------------------------------ */ 1223 static INLINE void frpr_udp(fin) 1224 fr_info_t *fin; 1225 { 1226 1227 fr_checkv4sum(fin); 1228 1229 frpr_short(fin, sizeof(udphdr_t)); 1230 1231 frpr_udpcommon(fin); 1232 } 1233 1234 1235 /* ------------------------------------------------------------------------ */ 1236 /* Function: frpr_esp */ 1237 /* Returns: void */ 1238 /* Parameters: fin(I) - pointer to packet information */ 1239 /* */ 1240 /* Analyse the packet for ESP properties. */ 1241 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 1242 /* even though the newer ESP packets must also have a sequence number that */ 1243 /* is 32bits as well, it is not possible(?) to determine the version from a */ 1244 /* simple packet header. */ 1245 /* ------------------------------------------------------------------------ */ 1246 static INLINE void frpr_esp(fin) 1247 fr_info_t *fin; 1248 { 1249 if ((fin->fin_off == 0) && (frpr_pullup(fin, 8) == -1)) 1250 return; 1251 1252 frpr_short(fin, 8); 1253 } 1254 1255 1256 /* ------------------------------------------------------------------------ */ 1257 /* Function: frpr_ah */ 1258 /* Returns: void */ 1259 /* Parameters: fin(I) - pointer to packet information */ 1260 /* */ 1261 /* Analyse the packet for AH properties. */ 1262 /* The minimum length is taken to be the combination of all fields in the */ 1263 /* header being present and no authentication data (null algorithm used.) */ 1264 /* ------------------------------------------------------------------------ */ 1265 static INLINE void frpr_ah(fin) 1266 fr_info_t *fin; 1267 { 1268 authhdr_t *ah; 1269 int len; 1270 1271 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(*ah)) == -1)) 1272 return; 1273 1274 ah = (authhdr_t *)fin->fin_dp; 1275 1276 len = (ah->ah_plen + 2) << 2; 1277 frpr_short(fin, len); 1278 } 1279 1280 1281 /* ------------------------------------------------------------------------ */ 1282 /* Function: frpr_gre */ 1283 /* Returns: void */ 1284 /* Parameters: fin(I) - pointer to packet information */ 1285 /* */ 1286 /* Analyse the packet for GRE properties. */ 1287 /* ------------------------------------------------------------------------ */ 1288 static INLINE void frpr_gre(fin) 1289 fr_info_t *fin; 1290 { 1291 grehdr_t *gre; 1292 1293 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(grehdr_t)) == -1)) 1294 return; 1295 1296 frpr_short(fin, sizeof(grehdr_t)); 1297 1298 if (fin->fin_off == 0) { 1299 gre = fin->fin_dp; 1300 if (GRE_REV(gre->gr_flags) == 1) 1301 fin->fin_data[0] = gre->gr_call; 1302 } 1303 } 1304 1305 1306 /* ------------------------------------------------------------------------ */ 1307 /* Function: frpr_ipv4hdr */ 1308 /* Returns: void */ 1309 /* Parameters: fin(I) - pointer to packet information */ 1310 /* */ 1311 /* IPv4 Only */ 1312 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */ 1313 /* Check all options present and flag their presence if any exist. */ 1314 /* ------------------------------------------------------------------------ */ 1315 static INLINE void frpr_ipv4hdr(fin) 1316 fr_info_t *fin; 1317 { 1318 u_short optmsk = 0, secmsk = 0, auth = 0; 1319 int hlen, ol, mv, p, i; 1320 const struct optlist *op; 1321 u_char *s, opt; 1322 u_short off; 1323 fr_ip_t *fi; 1324 ip_t *ip; 1325 1326 fi = &fin->fin_fi; 1327 hlen = fin->fin_hlen; 1328 1329 ip = fin->fin_ip; 1330 p = ip->ip_p; 1331 fi->fi_p = p; 1332 fi->fi_tos = ip->ip_tos; 1333 fin->fin_id = ip->ip_id; 1334 off = ip->ip_off; 1335 1336 /* Get both TTL and protocol */ 1337 fi->fi_p = ip->ip_p; 1338 fi->fi_ttl = ip->ip_ttl; 1339 #if 0 1340 (*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4)); 1341 #endif 1342 1343 /* Zero out bits not used in IPv6 address */ 1344 fi->fi_src.i6[1] = 0; 1345 fi->fi_src.i6[2] = 0; 1346 fi->fi_src.i6[3] = 0; 1347 fi->fi_dst.i6[1] = 0; 1348 fi->fi_dst.i6[2] = 0; 1349 fi->fi_dst.i6[3] = 0; 1350 1351 fi->fi_saddr = ip->ip_src.s_addr; 1352 fi->fi_daddr = ip->ip_dst.s_addr; 1353 1354 /* 1355 * set packet attribute flags based on the offset and 1356 * calculate the byte offset that it represents. 1357 */ 1358 off &= IP_MF|IP_OFFMASK; 1359 if (off != 0) { 1360 int morefrag = off & IP_MF; 1361 1362 fi->fi_flx |= FI_FRAG; 1363 if (morefrag) 1364 fi->fi_flx |= FI_MOREFRAG; 1365 off &= IP_OFFMASK; 1366 if (off != 0) { 1367 fin->fin_flx |= FI_FRAGBODY; 1368 off <<= 3; 1369 if ((off + fin->fin_dlen > 65535) || 1370 (fin->fin_dlen == 0) || 1371 ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) { 1372 /* 1373 * The length of the packet, starting at its 1374 * offset cannot exceed 65535 (0xffff) as the 1375 * length of an IP packet is only 16 bits. 1376 * 1377 * Any fragment that isn't the last fragment 1378 * must have a length greater than 0 and it 1379 * must be an even multiple of 8. 1380 */ 1381 fi->fi_flx |= FI_BAD; 1382 } 1383 } 1384 } 1385 fin->fin_off = off; 1386 1387 /* 1388 * Call per-protocol setup and checking 1389 */ 1390 switch (p) 1391 { 1392 case IPPROTO_UDP : 1393 frpr_udp(fin); 1394 break; 1395 case IPPROTO_TCP : 1396 frpr_tcp(fin); 1397 break; 1398 case IPPROTO_ICMP : 1399 frpr_icmp(fin); 1400 break; 1401 case IPPROTO_AH : 1402 frpr_ah(fin); 1403 break; 1404 case IPPROTO_ESP : 1405 frpr_esp(fin); 1406 break; 1407 case IPPROTO_GRE : 1408 frpr_gre(fin); 1409 break; 1410 } 1411 1412 ip = fin->fin_ip; 1413 if (ip == NULL) 1414 return; 1415 1416 /* 1417 * If it is a standard IP header (no options), set the flag fields 1418 * which relate to options to 0. 1419 */ 1420 if (hlen == sizeof(*ip)) { 1421 fi->fi_optmsk = 0; 1422 fi->fi_secmsk = 0; 1423 fi->fi_auth = 0; 1424 return; 1425 } 1426 1427 /* 1428 * So the IP header has some IP options attached. Walk the entire 1429 * list of options present with this packet and set flags to indicate 1430 * which ones are here and which ones are not. For the somewhat out 1431 * of date and obscure security classification options, set a flag to 1432 * represent which classification is present. 1433 */ 1434 fi->fi_flx |= FI_OPTIONS; 1435 1436 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) { 1437 opt = *s; 1438 if (opt == '\0') 1439 break; 1440 else if (opt == IPOPT_NOP) 1441 ol = 1; 1442 else { 1443 if (hlen < 2) 1444 break; 1445 ol = (int)*(s + 1); 1446 if (ol < 2 || ol > hlen) 1447 break; 1448 } 1449 for (i = 9, mv = 4; mv >= 0; ) { 1450 op = ipopts + i; 1451 if ((opt == (u_char)op->ol_val) && (ol > 4)) { 1452 optmsk |= op->ol_bit; 1453 if (opt == IPOPT_SECURITY) { 1454 const struct optlist *sp; 1455 u_char sec; 1456 int j, m; 1457 1458 sec = *(s + 2); /* classification */ 1459 for (j = 3, m = 2; m >= 0; ) { 1460 sp = secopt + j; 1461 if (sec == sp->ol_val) { 1462 secmsk |= sp->ol_bit; 1463 auth = *(s + 3); 1464 auth *= 256; 1465 auth += *(s + 4); 1466 break; 1467 } 1468 if (sec < sp->ol_val) 1469 j -= m; 1470 else 1471 j += m; 1472 m--; 1473 } 1474 } 1475 break; 1476 } 1477 if (opt < op->ol_val) 1478 i -= mv; 1479 else 1480 i += mv; 1481 mv--; 1482 } 1483 hlen -= ol; 1484 s += ol; 1485 } 1486 1487 /* 1488 * 1489 */ 1490 if (auth && !(auth & 0x0100)) 1491 auth &= 0xff00; 1492 fi->fi_optmsk = optmsk; 1493 fi->fi_secmsk = secmsk; 1494 fi->fi_auth = auth; 1495 } 1496 1497 1498 /* ------------------------------------------------------------------------ */ 1499 /* Function: fr_makefrip */ 1500 /* Returns: int - 1 == hdr checking error, 0 == OK */ 1501 /* Parameters: hlen(I) - length of IP packet header */ 1502 /* ip(I) - pointer to the IP header */ 1503 /* fin(IO) - pointer to packet information */ 1504 /* */ 1505 /* Compact the IP header into a structure which contains just the info. */ 1506 /* which is useful for comparing IP headers with and store this information */ 1507 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */ 1508 /* this function will be called with either an IPv4 or IPv6 packet. */ 1509 /* ------------------------------------------------------------------------ */ 1510 int fr_makefrip(hlen, ip, fin) 1511 int hlen; 1512 ip_t *ip; 1513 fr_info_t *fin; 1514 { 1515 int v; 1516 1517 fin->fin_depth = 0; 1518 fin->fin_hlen = (u_short)hlen; 1519 fin->fin_ip = ip; 1520 fin->fin_rule = 0xffffffff; 1521 fin->fin_group[0] = -1; 1522 fin->fin_group[1] = '\0'; 1523 fin->fin_dlen = fin->fin_plen - hlen; 1524 fin->fin_dp = (char *)ip + hlen; 1525 1526 v = fin->fin_v; 1527 if (v == 4) 1528 frpr_ipv4hdr(fin); 1529 #ifdef USE_INET6 1530 else if (v == 6) 1531 frpr_ipv6hdr(fin); 1532 #endif 1533 if (fin->fin_ip == NULL) 1534 return -1; 1535 return 0; 1536 } 1537 1538 1539 /* ------------------------------------------------------------------------ */ 1540 /* Function: fr_portcheck */ 1541 /* Returns: int - 1 == port matched, 0 == port match failed */ 1542 /* Parameters: frp(I) - pointer to port check `expression' */ 1543 /* pop(I) - pointer to port number to evaluate */ 1544 /* */ 1545 /* Perform a comparison of a port number against some other(s), using a */ 1546 /* structure with compare information stored in it. */ 1547 /* ------------------------------------------------------------------------ */ 1548 static INLINE int fr_portcheck(frp, pop) 1549 frpcmp_t *frp; 1550 u_short *pop; 1551 { 1552 u_short tup, po; 1553 int err = 1; 1554 1555 tup = *pop; 1556 po = frp->frp_port; 1557 1558 /* 1559 * Do opposite test to that required and continue if that succeeds. 1560 */ 1561 switch (frp->frp_cmp) 1562 { 1563 case FR_EQUAL : 1564 if (tup != po) /* EQUAL */ 1565 err = 0; 1566 break; 1567 case FR_NEQUAL : 1568 if (tup == po) /* NOTEQUAL */ 1569 err = 0; 1570 break; 1571 case FR_LESST : 1572 if (tup >= po) /* LESSTHAN */ 1573 err = 0; 1574 break; 1575 case FR_GREATERT : 1576 if (tup <= po) /* GREATERTHAN */ 1577 err = 0; 1578 break; 1579 case FR_LESSTE : 1580 if (tup > po) /* LT or EQ */ 1581 err = 0; 1582 break; 1583 case FR_GREATERTE : 1584 if (tup < po) /* GT or EQ */ 1585 err = 0; 1586 break; 1587 case FR_OUTRANGE : 1588 if (tup >= po && tup <= frp->frp_top) /* Out of range */ 1589 err = 0; 1590 break; 1591 case FR_INRANGE : 1592 if (tup <= po || tup >= frp->frp_top) /* In range */ 1593 err = 0; 1594 break; 1595 case FR_INCRANGE : 1596 if (tup < po || tup > frp->frp_top) /* Inclusive range */ 1597 err = 0; 1598 break; 1599 default : 1600 break; 1601 } 1602 return err; 1603 } 1604 1605 1606 /* ------------------------------------------------------------------------ */ 1607 /* Function: fr_tcpudpchk */ 1608 /* Returns: int - 1 == protocol matched, 0 == check failed */ 1609 /* Parameters: fin(I) - pointer to packet information */ 1610 /* ft(I) - pointer to structure with comparison data */ 1611 /* */ 1612 /* Compares the current pcket (assuming it is TCP/UDP) information with a */ 1613 /* structure containing information that we want to match against. */ 1614 /* ------------------------------------------------------------------------ */ 1615 int fr_tcpudpchk(fin, ft) 1616 fr_info_t *fin; 1617 frtuc_t *ft; 1618 { 1619 int err = 1; 1620 1621 /* 1622 * Both ports should *always* be in the first fragment. 1623 * So far, I cannot find any cases where they can not be. 1624 * 1625 * compare destination ports 1626 */ 1627 if (ft->ftu_dcmp) 1628 err = fr_portcheck(&ft->ftu_dst, &fin->fin_dport); 1629 1630 /* 1631 * compare source ports 1632 */ 1633 if (err && ft->ftu_scmp) 1634 err = fr_portcheck(&ft->ftu_src, &fin->fin_sport); 1635 1636 /* 1637 * If we don't have all the TCP/UDP header, then how can we 1638 * expect to do any sort of match on it ? If we were looking for 1639 * TCP flags, then NO match. If not, then match (which should 1640 * satisfy the "short" class too). 1641 */ 1642 if (err && (fin->fin_p == IPPROTO_TCP)) { 1643 if (fin->fin_flx & FI_SHORT) 1644 return !(ft->ftu_tcpf | ft->ftu_tcpfm); 1645 /* 1646 * Match the flags ? If not, abort this match. 1647 */ 1648 if (ft->ftu_tcpfm && 1649 ft->ftu_tcpf != (fin->fin_tcpf & ft->ftu_tcpfm)) { 1650 FR_DEBUG(("f. %#x & %#x != %#x\n", fin->fin_tcpf, 1651 ft->ftu_tcpfm, ft->ftu_tcpf)); 1652 err = 0; 1653 } 1654 } 1655 return err; 1656 } 1657 1658 1659 /* ------------------------------------------------------------------------ */ 1660 /* Function: fr_ipfcheck */ 1661 /* Returns: int - 0 == match, 1 == no match */ 1662 /* Parameters: fin(I) - pointer to packet information */ 1663 /* fr(I) - pointer to filter rule */ 1664 /* portcmp(I) - flag indicating whether to attempt matching on */ 1665 /* TCP/UDP port data. */ 1666 /* */ 1667 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */ 1668 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */ 1669 /* this function. */ 1670 /* ------------------------------------------------------------------------ */ 1671 static INLINE int fr_ipfcheck(fin, fr, portcmp) 1672 fr_info_t *fin; 1673 frentry_t *fr; 1674 int portcmp; 1675 { 1676 u_32_t *ld, *lm, *lip; 1677 fripf_t *fri; 1678 fr_ip_t *fi; 1679 int i; 1680 ipf_stack_t *ifs = fin->fin_ifs; 1681 1682 fi = &fin->fin_fi; 1683 fri = fr->fr_ipf; 1684 lip = (u_32_t *)fi; 1685 lm = (u_32_t *)&fri->fri_mip; 1686 ld = (u_32_t *)&fri->fri_ip; 1687 1688 /* 1689 * first 32 bits to check coversion: 1690 * IP version, TOS, TTL, protocol 1691 */ 1692 i = ((*lip & *lm) != *ld); 1693 FR_DEBUG(("0. %#08x & %#08x != %#08x\n", 1694 *lip, *lm, *ld)); 1695 if (i) 1696 return 1; 1697 1698 /* 1699 * Next 32 bits is a constructed bitmask indicating which IP options 1700 * are present (if any) in this packet. 1701 */ 1702 lip++, lm++, ld++; 1703 i |= ((*lip & *lm) != *ld); 1704 FR_DEBUG(("1. %#08x & %#08x != %#08x\n", 1705 *lip, *lm, *ld)); 1706 if (i) 1707 return 1; 1708 1709 lip++, lm++, ld++; 1710 /* 1711 * Unrolled loops (4 each, for 32 bits) for address checks. 1712 */ 1713 /* 1714 * Check the source address. 1715 */ 1716 #ifdef IPFILTER_LOOKUP 1717 if (fr->fr_satype == FRI_LOOKUP) { 1718 fin->fin_flx |= FI_DONTCACHE; 1719 i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip, fin, ifs); 1720 if (i == -1) 1721 return 1; 1722 lip += 3; 1723 lm += 3; 1724 ld += 3; 1725 } else { 1726 #endif 1727 i = ((*lip & *lm) != *ld); 1728 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n", 1729 *lip, *lm, *ld)); 1730 if (fi->fi_v == 6) { 1731 lip++, lm++, ld++; 1732 i |= ((*lip & *lm) != *ld); 1733 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n", 1734 *lip, *lm, *ld)); 1735 lip++, lm++, ld++; 1736 i |= ((*lip & *lm) != *ld); 1737 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n", 1738 *lip, *lm, *ld)); 1739 lip++, lm++, ld++; 1740 i |= ((*lip & *lm) != *ld); 1741 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n", 1742 *lip, *lm, *ld)); 1743 } else { 1744 lip += 3; 1745 lm += 3; 1746 ld += 3; 1747 } 1748 #ifdef IPFILTER_LOOKUP 1749 } 1750 #endif 1751 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6; 1752 if (i) 1753 return 1; 1754 1755 /* 1756 * Check the destination address. 1757 */ 1758 lip++, lm++, ld++; 1759 #ifdef IPFILTER_LOOKUP 1760 if (fr->fr_datype == FRI_LOOKUP) { 1761 fin->fin_flx |= FI_DONTCACHE; 1762 i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip, fin, ifs); 1763 if (i == -1) 1764 return 1; 1765 lip += 3; 1766 lm += 3; 1767 ld += 3; 1768 } else { 1769 #endif 1770 i = ((*lip & *lm) != *ld); 1771 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n", 1772 *lip, *lm, *ld)); 1773 if (fi->fi_v == 6) { 1774 lip++, lm++, ld++; 1775 i |= ((*lip & *lm) != *ld); 1776 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n", 1777 *lip, *lm, *ld)); 1778 lip++, lm++, ld++; 1779 i |= ((*lip & *lm) != *ld); 1780 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n", 1781 *lip, *lm, *ld)); 1782 lip++, lm++, ld++; 1783 i |= ((*lip & *lm) != *ld); 1784 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n", 1785 *lip, *lm, *ld)); 1786 } else { 1787 lip += 3; 1788 lm += 3; 1789 ld += 3; 1790 } 1791 #ifdef IPFILTER_LOOKUP 1792 } 1793 #endif 1794 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7; 1795 if (i) 1796 return 1; 1797 /* 1798 * IP addresses matched. The next 32bits contains: 1799 * mast of old IP header security & authentication bits. 1800 */ 1801 lip++, lm++, ld++; 1802 i |= ((*lip & *lm) != *ld); 1803 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", 1804 *lip, *lm, *ld)); 1805 1806 /* 1807 * Next we have 32 bits of packet flags. 1808 */ 1809 lip++, lm++, ld++; 1810 i |= ((*lip & *lm) != *ld); 1811 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", 1812 *lip, *lm, *ld)); 1813 1814 if (i == 0) { 1815 /* 1816 * If a fragment, then only the first has what we're 1817 * looking for here... 1818 */ 1819 if (portcmp) { 1820 if (!fr_tcpudpchk(fin, &fr->fr_tuc)) 1821 i = 1; 1822 } else { 1823 if (fr->fr_dcmp || fr->fr_scmp || 1824 fr->fr_tcpf || fr->fr_tcpfm) 1825 i = 1; 1826 if (fr->fr_icmpm || fr->fr_icmp) { 1827 if (((fi->fi_p != IPPROTO_ICMP) && 1828 (fi->fi_p != IPPROTO_ICMPV6)) || 1829 fin->fin_off || (fin->fin_dlen < 2)) 1830 i = 1; 1831 else if ((fin->fin_data[0] & fr->fr_icmpm) != 1832 fr->fr_icmp) { 1833 FR_DEBUG(("i. %#x & %#x != %#x\n", 1834 fin->fin_data[0], 1835 fr->fr_icmpm, fr->fr_icmp)); 1836 i = 1; 1837 } 1838 } 1839 } 1840 } 1841 return i; 1842 } 1843 1844 1845 /* ------------------------------------------------------------------------ */ 1846 /* Function: fr_scanlist */ 1847 /* Returns: int - result flags of scanning filter list */ 1848 /* Parameters: fin(I) - pointer to packet information */ 1849 /* pass(I) - default result to return for filtering */ 1850 /* */ 1851 /* Check the input/output list of rules for a match to the current packet. */ 1852 /* If a match is found, the value of fr_flags from the rule becomes the */ 1853 /* return value and fin->fin_fr points to the matched rule. */ 1854 /* */ 1855 /* This function may be called recusively upto 16 times (limit inbuilt.) */ 1856 /* When unwinding, it should finish up with fin_depth as 0. */ 1857 /* */ 1858 /* Could be per interface, but this gets real nasty when you don't have, */ 1859 /* or can't easily change, the kernel source code to . */ 1860 /* ------------------------------------------------------------------------ */ 1861 int fr_scanlist(fin, pass) 1862 fr_info_t *fin; 1863 u_32_t pass; 1864 { 1865 int rulen, portcmp, off, logged, skip; 1866 struct frentry *fr, *fnext; 1867 u_32_t passt, passo; 1868 ipf_stack_t *ifs = fin->fin_ifs; 1869 1870 /* 1871 * Do not allow nesting deeper than 16 levels. 1872 */ 1873 if (fin->fin_depth >= 16) 1874 return pass; 1875 1876 fr = fin->fin_fr; 1877 1878 /* 1879 * If there are no rules in this list, return now. 1880 */ 1881 if (fr == NULL) 1882 return pass; 1883 1884 skip = 0; 1885 logged = 0; 1886 portcmp = 0; 1887 fin->fin_depth++; 1888 fin->fin_fr = NULL; 1889 off = fin->fin_off; 1890 1891 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off) 1892 portcmp = 1; 1893 1894 for (rulen = 0; fr; fr = fnext, rulen++) { 1895 fnext = fr->fr_next; 1896 if (skip != 0) { 1897 FR_VERBOSE(("%d (%#x)\n", skip, fr->fr_flags)); 1898 skip--; 1899 continue; 1900 } 1901 1902 /* 1903 * In all checks below, a null (zero) value in the 1904 * filter struture is taken to mean a wildcard. 1905 * 1906 * check that we are working for the right interface 1907 */ 1908 #ifdef _KERNEL 1909 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 1910 continue; 1911 #else 1912 if (opts & (OPT_VERBOSE|OPT_DEBUG)) 1913 printf("\n"); 1914 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' : 1915 FR_ISPASS(pass) ? 'p' : 1916 FR_ISACCOUNT(pass) ? 'A' : 1917 FR_ISAUTH(pass) ? 'a' : 1918 (pass & FR_NOMATCH) ? 'n' :'b')); 1919 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 1920 continue; 1921 FR_VERBOSE((":i")); 1922 #endif 1923 1924 switch (fr->fr_type) 1925 { 1926 case FR_T_IPF : 1927 case FR_T_IPF|FR_T_BUILTIN : 1928 if (fr_ipfcheck(fin, fr, portcmp)) 1929 continue; 1930 break; 1931 #if defined(IPFILTER_BPF) 1932 case FR_T_BPFOPC : 1933 case FR_T_BPFOPC|FR_T_BUILTIN : 1934 { 1935 u_char *mc; 1936 1937 if (*fin->fin_mp == NULL) 1938 continue; 1939 if (fin->fin_v != fr->fr_v) 1940 continue; 1941 mc = (u_char *)fin->fin_m; 1942 if (!bpf_filter(fr->fr_data, mc, fin->fin_plen, 0)) 1943 continue; 1944 break; 1945 } 1946 #endif 1947 case FR_T_CALLFUNC|FR_T_BUILTIN : 1948 { 1949 frentry_t *f; 1950 1951 f = (*fr->fr_func)(fin, &pass); 1952 if (f != NULL) 1953 fr = f; 1954 else 1955 continue; 1956 break; 1957 } 1958 default : 1959 break; 1960 } 1961 1962 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { 1963 if (fin->fin_nattag == NULL) 1964 continue; 1965 if (fr_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0) 1966 continue; 1967 } 1968 FR_VERBOSE(("=%s.%d *", fr->fr_group, rulen)); 1969 1970 passt = fr->fr_flags; 1971 1972 /* 1973 * Allowing a rule with the "keep state" flag set to match 1974 * packets that have been tagged "out of window" by the TCP 1975 * state tracking is foolish as the attempt to add a new 1976 * state entry to the table will fail. 1977 */ 1978 if ((passt & FR_KEEPSTATE) && (fin->fin_flx & FI_OOW)) 1979 continue; 1980 1981 /* 1982 * If the rule is a "call now" rule, then call the function 1983 * in the rule, if it exists and use the results from that. 1984 * If the function pointer is bad, just make like we ignore 1985 * it, except for increasing the hit counter. 1986 */ 1987 IPF_BUMP(fr->fr_hits); 1988 fr->fr_bytes += (U_QUAD_T)fin->fin_plen; 1989 if ((passt & FR_CALLNOW) != 0) { 1990 if ((fr->fr_func != NULL) && 1991 (fr->fr_func != (ipfunc_t)-1)) { 1992 frentry_t *frs; 1993 1994 frs = fin->fin_fr; 1995 fin->fin_fr = fr; 1996 fr = (*fr->fr_func)(fin, &passt); 1997 if (fr == NULL) { 1998 fin->fin_fr = frs; 1999 continue; 2000 } 2001 passt = fr->fr_flags; 2002 fin->fin_fr = fr; 2003 } 2004 } else { 2005 fin->fin_fr = fr; 2006 } 2007 2008 #ifdef IPFILTER_LOG 2009 /* 2010 * Just log this packet... 2011 */ 2012 if ((passt & FR_LOGMASK) == FR_LOG) { 2013 if (ipflog(fin, passt) == -1) { 2014 if (passt & FR_LOGORBLOCK) { 2015 passt &= ~FR_CMDMASK; 2016 passt |= FR_BLOCK|FR_QUICK; 2017 } 2018 IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_skip); 2019 } 2020 IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_pkl); 2021 logged = 1; 2022 } 2023 #endif /* IPFILTER_LOG */ 2024 passo = pass; 2025 if (FR_ISSKIP(passt)) 2026 skip = fr->fr_arg; 2027 else if ((passt & FR_LOGMASK) != FR_LOG) 2028 pass = passt; 2029 if (passt & (FR_RETICMP|FR_FAKEICMP)) 2030 fin->fin_icode = fr->fr_icode; 2031 FR_DEBUG(("pass %#x\n", pass)); 2032 fin->fin_rule = rulen; 2033 (void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN); 2034 if (fr->fr_grp != NULL) { 2035 fin->fin_fr = *fr->fr_grp; 2036 pass = fr_scanlist(fin, pass); 2037 if (fin->fin_fr == NULL) { 2038 fin->fin_rule = rulen; 2039 (void) strncpy(fin->fin_group, fr->fr_group, 2040 FR_GROUPLEN); 2041 fin->fin_fr = fr; 2042 } 2043 if (fin->fin_flx & FI_DONTCACHE) 2044 logged = 1; 2045 } 2046 2047 if (pass & FR_QUICK) { 2048 /* 2049 * Finally, if we've asked to track state for this 2050 * packet, set it up. Add state for "quick" rules 2051 * here so that if the action fails we can consider 2052 * the rule to "not match" and keep on processing 2053 * filter rules. 2054 */ 2055 if ((pass & FR_KEEPSTATE) && 2056 !(fin->fin_flx & FI_STATE)) { 2057 int out = fin->fin_out; 2058 2059 if (fr_addstate(fin, NULL, 0) != NULL) { 2060 IPF_BUMP(ifs->ifs_frstats[out].fr_ads); 2061 } else { 2062 IPF_BUMP(ifs->ifs_frstats[out].fr_bads); 2063 pass = passo; 2064 continue; 2065 } 2066 } 2067 break; 2068 } 2069 } 2070 if (logged) 2071 fin->fin_flx |= FI_DONTCACHE; 2072 fin->fin_depth--; 2073 return pass; 2074 } 2075 2076 2077 /* ------------------------------------------------------------------------ */ 2078 /* Function: fr_acctpkt */ 2079 /* Returns: frentry_t* - always returns NULL */ 2080 /* Parameters: fin(I) - pointer to packet information */ 2081 /* passp(IO) - pointer to current/new filter decision (unused) */ 2082 /* */ 2083 /* Checks a packet against accounting rules, if there are any for the given */ 2084 /* IP protocol version. */ 2085 /* */ 2086 /* N.B.: this function returns NULL to match the prototype used by other */ 2087 /* functions called from the IPFilter "mainline" in fr_check(). */ 2088 /* ------------------------------------------------------------------------ */ 2089 frentry_t *fr_acctpkt(fin, passp) 2090 fr_info_t *fin; 2091 u_32_t *passp; 2092 { 2093 char group[FR_GROUPLEN]; 2094 frentry_t *fr, *frsave; 2095 u_32_t pass, rulen; 2096 ipf_stack_t *ifs = fin->fin_ifs; 2097 2098 passp = passp; 2099 #ifdef USE_INET6 2100 if (fin->fin_v == 6) 2101 fr = ifs->ifs_ipacct6[fin->fin_out][ifs->ifs_fr_active]; 2102 else 2103 #endif 2104 fr = ifs->ifs_ipacct[fin->fin_out][ifs->ifs_fr_active]; 2105 2106 if (fr != NULL) { 2107 frsave = fin->fin_fr; 2108 bcopy(fin->fin_group, group, FR_GROUPLEN); 2109 rulen = fin->fin_rule; 2110 fin->fin_fr = fr; 2111 pass = fr_scanlist(fin, FR_NOMATCH); 2112 if (FR_ISACCOUNT(pass)) { 2113 IPF_BUMP(ifs->ifs_frstats[0].fr_acct); 2114 } 2115 fin->fin_fr = frsave; 2116 bcopy(group, fin->fin_group, FR_GROUPLEN); 2117 fin->fin_rule = rulen; 2118 } 2119 return NULL; 2120 } 2121 2122 2123 /* ------------------------------------------------------------------------ */ 2124 /* Function: fr_firewall */ 2125 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */ 2126 /* were found, returns NULL. */ 2127 /* Parameters: fin(I) - pointer to packet information */ 2128 /* passp(IO) - pointer to current/new filter decision (unused) */ 2129 /* */ 2130 /* Applies an appropriate set of firewall rules to the packet, to see if */ 2131 /* there are any matches. The first check is to see if a match can be seen */ 2132 /* in the cache. If not, then search an appropriate list of rules. Once a */ 2133 /* matching rule is found, take any appropriate actions as defined by the */ 2134 /* rule - except logging. */ 2135 /* ------------------------------------------------------------------------ */ 2136 static frentry_t *fr_firewall(fin, passp) 2137 fr_info_t *fin; 2138 u_32_t *passp; 2139 { 2140 frentry_t *fr; 2141 fr_info_t *fc; 2142 u_32_t pass; 2143 int out; 2144 ipf_stack_t *ifs = fin->fin_ifs; 2145 2146 out = fin->fin_out; 2147 pass = *passp; 2148 2149 #ifdef USE_INET6 2150 if (fin->fin_v == 6) 2151 fin->fin_fr = ifs->ifs_ipfilter6[out][ifs->ifs_fr_active]; 2152 else 2153 #endif 2154 fin->fin_fr = ifs->ifs_ipfilter[out][ifs->ifs_fr_active]; 2155 2156 /* 2157 * If there are no rules loaded skip all checks and return. 2158 */ 2159 if (fin->fin_fr == NULL) { 2160 2161 if ((pass & FR_NOMATCH)) { 2162 IPF_BUMP(ifs->ifs_frstats[out].fr_nom); 2163 } 2164 2165 return (NULL); 2166 } 2167 2168 fc = &ifs->ifs_frcache[out][CACHE_HASH(fin)]; 2169 READ_ENTER(&ifs->ifs_ipf_frcache); 2170 if (!bcmp((char *)fin, (char *)fc, FI_CSIZE)) { 2171 /* 2172 * copy cached data so we can unlock the mutexes earlier. 2173 */ 2174 bcopy((char *)fc, (char *)fin, FI_COPYSIZE); 2175 RWLOCK_EXIT(&ifs->ifs_ipf_frcache); 2176 IPF_BUMP(ifs->ifs_frstats[out].fr_chit); 2177 2178 if ((fr = fin->fin_fr) != NULL) { 2179 IPF_BUMP(fr->fr_hits); 2180 fr->fr_bytes += (U_QUAD_T)fin->fin_plen; 2181 pass = fr->fr_flags; 2182 } 2183 } else { 2184 RWLOCK_EXIT(&ifs->ifs_ipf_frcache); 2185 2186 pass = fr_scanlist(fin, ifs->ifs_fr_pass); 2187 2188 if (((pass & FR_KEEPSTATE) == 0) && 2189 ((fin->fin_flx & FI_DONTCACHE) == 0)) { 2190 WRITE_ENTER(&ifs->ifs_ipf_frcache); 2191 bcopy((char *)fin, (char *)fc, FI_COPYSIZE); 2192 RWLOCK_EXIT(&ifs->ifs_ipf_frcache); 2193 } 2194 2195 fr = fin->fin_fr; 2196 } 2197 2198 if ((pass & FR_NOMATCH)) { 2199 IPF_BUMP(ifs->ifs_frstats[out].fr_nom); 2200 } 2201 2202 /* 2203 * Apply packets per second rate-limiting to a rule as required. 2204 */ 2205 if ((fr != NULL) && (fr->fr_pps != 0) && 2206 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) { 2207 pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST); 2208 pass |= FR_BLOCK; 2209 IPF_BUMP(ifs->ifs_frstats[out].fr_ppshit); 2210 } 2211 2212 /* 2213 * If we fail to add a packet to the authorization queue, then we 2214 * drop the packet later. However, if it was added then pretend 2215 * we've dropped it already. 2216 */ 2217 if (FR_ISAUTH(pass)) { 2218 if (fr_newauth(fin->fin_m, fin) != 0) { 2219 #ifdef _KERNEL 2220 fin->fin_m = *fin->fin_mp = NULL; 2221 #else 2222 ; 2223 #endif 2224 fin->fin_error = 0; 2225 } else 2226 fin->fin_error = ENOSPC; 2227 } 2228 2229 if ((fr != NULL) && (fr->fr_func != NULL) && 2230 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW)) 2231 (void) (*fr->fr_func)(fin, &pass); 2232 2233 /* 2234 * If a rule is a pre-auth rule, check again in the list of rules 2235 * loaded for authenticated use. It does not particulary matter 2236 * if this search fails because a "preauth" result, from a rule, 2237 * is treated as "not a pass", hence the packet is blocked. 2238 */ 2239 if (FR_ISPREAUTH(pass)) { 2240 if ((fin->fin_fr = ifs->ifs_ipauth) != NULL) 2241 pass = fr_scanlist(fin, ifs->ifs_fr_pass); 2242 } 2243 2244 /* 2245 * If the rule has "keep frag" and the packet is actually a fragment, 2246 * then create a fragment state entry. 2247 */ 2248 if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) { 2249 if (fin->fin_flx & FI_FRAG) { 2250 if (fr_newfrag(fin, pass) == -1) { 2251 IPF_BUMP(ifs->ifs_frstats[out].fr_bnfr); 2252 } else { 2253 IPF_BUMP(ifs->ifs_frstats[out].fr_nfr); 2254 } 2255 } else { 2256 IPF_BUMP(ifs->ifs_frstats[out].fr_cfr); 2257 } 2258 } 2259 2260 /* 2261 * Finally, if we've asked to track state for this packet, set it up. 2262 */ 2263 if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) { 2264 if (fr_addstate(fin, NULL, 0) != NULL) { 2265 IPF_BUMP(ifs->ifs_frstats[out].fr_ads); 2266 } else { 2267 IPF_BUMP(ifs->ifs_frstats[out].fr_bads); 2268 if (FR_ISPASS(pass)) { 2269 pass &= ~FR_CMDMASK; 2270 pass |= FR_BLOCK; 2271 } 2272 } 2273 } 2274 2275 fr = fin->fin_fr; 2276 2277 if (passp != NULL) 2278 *passp = pass; 2279 2280 return fr; 2281 } 2282 2283 /* ------------------------------------------------------------------------ */ 2284 /* Function: fr_check */ 2285 /* Returns: int - 0 == packet allowed through, */ 2286 /* User space: */ 2287 /* -1 == packet blocked */ 2288 /* 1 == packet not matched */ 2289 /* -2 == requires authentication */ 2290 /* Kernel: */ 2291 /* > 0 == filter error # for packet */ 2292 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */ 2293 /* hlen(I) - length of header */ 2294 /* ifp(I) - pointer to interface this packet is on */ 2295 /* out(I) - 0 == packet going in, 1 == packet going out */ 2296 /* mp(IO) - pointer to caller's buffer pointer that holds this */ 2297 /* IP packet. */ 2298 /* Solaris & HP-UX ONLY : */ 2299 /* qpi(I) - pointer to STREAMS queue information for this */ 2300 /* interface & direction. */ 2301 /* */ 2302 /* fr_check() is the master function for all IPFilter packet processing. */ 2303 /* It orchestrates: Network Address Translation (NAT), checking for packet */ 2304 /* authorisation (or pre-authorisation), presence of related state info., */ 2305 /* generating log entries, IP packet accounting, routing of packets as */ 2306 /* directed by firewall rules and of course whether or not to allow the */ 2307 /* packet to be further processed by the kernel. */ 2308 /* */ 2309 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */ 2310 /* freed. Packets passed may be returned with the pointer pointed to by */ 2311 /* by "mp" changed to a new buffer. */ 2312 /* ------------------------------------------------------------------------ */ 2313 int fr_check(ip, hlen, ifp, out 2314 #if defined(_KERNEL) && defined(MENTAT) 2315 , qif, mp, ifs) 2316 void *qif; 2317 #else 2318 , mp, ifs) 2319 #endif 2320 mb_t **mp; 2321 ip_t *ip; 2322 int hlen; 2323 void *ifp; 2324 int out; 2325 ipf_stack_t *ifs; 2326 { 2327 /* 2328 * The above really sucks, but short of writing a diff 2329 */ 2330 fr_info_t frinfo; 2331 fr_info_t *fin = &frinfo; 2332 u_32_t pass; 2333 frentry_t *fr = NULL; 2334 int v = IP_V(ip); 2335 mb_t *mc = NULL; 2336 mb_t *m; 2337 #ifdef USE_INET6 2338 ip6_t *ip6; 2339 #endif 2340 #ifdef _KERNEL 2341 # ifdef MENTAT 2342 qpktinfo_t *qpi = qif; 2343 #endif 2344 #endif 2345 2346 SPL_INT(s); 2347 pass = ifs->ifs_fr_pass; 2348 2349 /* 2350 * The first part of fr_check() deals with making sure that what goes 2351 * into the filtering engine makes some sense. Information about the 2352 * the packet is distilled, collected into a fr_info_t structure and 2353 * the an attempt to ensure the buffer the packet is in is big enough 2354 * to hold all the required packet headers. 2355 */ 2356 #ifdef _KERNEL 2357 # ifdef MENTAT 2358 if (!OK_32PTR(ip)) 2359 return 2; 2360 # endif 2361 2362 2363 if (ifs->ifs_fr_running <= 0) { 2364 return 0; 2365 } 2366 2367 bzero((char *)fin, sizeof(*fin)); 2368 2369 # ifdef MENTAT 2370 fin->fin_flx = qpi->qpi_flags & (FI_NOCKSUM|FI_MBCAST|FI_MULTICAST| 2371 FI_BROADCAST); 2372 m = qpi->qpi_m; 2373 fin->fin_qfm = m; 2374 fin->fin_qpi = qpi; 2375 # else /* MENTAT */ 2376 2377 m = *mp; 2378 2379 # if defined(M_MCAST) 2380 if ((m->m_flags & M_MCAST) != 0) 2381 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2382 # endif 2383 # if defined(M_MLOOP) 2384 if ((m->m_flags & M_MLOOP) != 0) 2385 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2386 # endif 2387 # if defined(M_BCAST) 2388 if ((m->m_flags & M_BCAST) != 0) 2389 fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2390 # endif 2391 # ifdef M_CANFASTFWD 2392 /* 2393 * XXX For now, IP Filter and fast-forwarding of cached flows 2394 * XXX are mutually exclusive. Eventually, IP Filter should 2395 * XXX get a "can-fast-forward" filter rule. 2396 */ 2397 m->m_flags &= ~M_CANFASTFWD; 2398 # endif /* M_CANFASTFWD */ 2399 # ifdef CSUM_DELAY_DATA 2400 /* 2401 * disable delayed checksums. 2402 */ 2403 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2404 in_delayed_cksum(m); 2405 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2406 } 2407 # endif /* CSUM_DELAY_DATA */ 2408 # endif /* MENTAT */ 2409 #else 2410 2411 bzero((char *)fin, sizeof(*fin)); 2412 m = *mp; 2413 #endif /* _KERNEL */ 2414 2415 fin->fin_v = v; 2416 fin->fin_m = m; 2417 fin->fin_ip = ip; 2418 fin->fin_mp = mp; 2419 fin->fin_out = out; 2420 fin->fin_ifp = ifp; 2421 fin->fin_error = ENETUNREACH; 2422 fin->fin_hlen = (u_short)hlen; 2423 fin->fin_dp = (char *)ip + hlen; 2424 fin->fin_ipoff = (char *)ip - MTOD(m, char *); 2425 fin->fin_ifs = ifs; 2426 2427 SPL_NET(s); 2428 2429 #ifdef USE_INET6 2430 if (v == 6) { 2431 IPF_BUMP(ifs->ifs_frstats[out].fr_ipv6); 2432 /* 2433 * Jumbo grams are quite likely too big for internal buffer 2434 * structures to handle comfortably, for now, so just drop 2435 * them. 2436 */ 2437 ip6 = (ip6_t *)ip; 2438 fin->fin_plen = ntohs(ip6->ip6_plen); 2439 if (fin->fin_plen == 0) { 2440 READ_ENTER(&ifs->ifs_ipf_mutex); 2441 pass = FR_BLOCK|FR_NOMATCH; 2442 goto filtered; 2443 } 2444 fin->fin_plen += sizeof(ip6_t); 2445 } else 2446 #endif 2447 { 2448 #if (OpenBSD >= 200311) && defined(_KERNEL) 2449 ip->ip_len = ntohs(ip->ip_len); 2450 ip->ip_off = ntohs(ip->ip_off); 2451 #endif 2452 fin->fin_plen = ip->ip_len; 2453 } 2454 2455 if (fr_makefrip(hlen, ip, fin) == -1) { 2456 READ_ENTER(&ifs->ifs_ipf_mutex); 2457 pass = FR_BLOCK; 2458 goto filtered; 2459 } 2460 2461 /* 2462 * For at least IPv6 packets, if a m_pullup() fails then this pointer 2463 * becomes NULL and so we have no packet to free. 2464 */ 2465 if (*fin->fin_mp == NULL) 2466 goto finished; 2467 2468 if (!out) { 2469 if (v == 4) { 2470 #ifdef _KERNEL 2471 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) { 2472 IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc); 2473 fin->fin_flx |= FI_BADSRC; 2474 } 2475 #endif 2476 if (fin->fin_ip->ip_ttl < ifs->ifs_fr_minttl) { 2477 IPF_BUMP(ifs->ifs_frstats[0].fr_badttl); 2478 fin->fin_flx |= FI_LOWTTL; 2479 } 2480 } 2481 #ifdef USE_INET6 2482 else if (v == 6) { 2483 ip6 = (ip6_t *)ip; 2484 #ifdef _KERNEL 2485 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) { 2486 IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc); 2487 fin->fin_flx |= FI_BADSRC; 2488 } 2489 #endif 2490 if (ip6->ip6_hlim < ifs->ifs_fr_minttl) { 2491 IPF_BUMP(ifs->ifs_frstats[0].fr_badttl); 2492 fin->fin_flx |= FI_LOWTTL; 2493 } 2494 } 2495 #endif 2496 } 2497 2498 if (fin->fin_flx & FI_SHORT) { 2499 IPF_BUMP(ifs->ifs_frstats[out].fr_short); 2500 } 2501 2502 READ_ENTER(&ifs->ifs_ipf_mutex); 2503 2504 /* 2505 * Check auth now. This, combined with the check below to see if apass 2506 * is 0 is to ensure that we don't count the packet twice, which can 2507 * otherwise occur when we reprocess it. As it is, we only count it 2508 * after it has no auth. table matchup. This also stops NAT from 2509 * occuring until after the packet has been auth'd. 2510 */ 2511 fr = fr_checkauth(fin, &pass); 2512 if (!out) { 2513 switch (fin->fin_v) 2514 { 2515 case 4 : 2516 if (fr_checknatin(fin, &pass) == -1) { 2517 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2518 goto finished; 2519 } 2520 break; 2521 #ifdef USE_INET6 2522 case 6 : 2523 if (fr_checknat6in(fin, &pass) == -1) { 2524 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2525 goto finished; 2526 } 2527 break; 2528 #endif 2529 default : 2530 break; 2531 } 2532 } 2533 if (!out) 2534 (void) fr_acctpkt(fin, NULL); 2535 2536 if (fr == NULL) 2537 if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG) 2538 fr = fr_knownfrag(fin, &pass); 2539 if (fr == NULL) 2540 fr = fr_checkstate(fin, &pass); 2541 2542 if ((pass & FR_NOMATCH) || (fr == NULL)) 2543 fr = fr_firewall(fin, &pass); 2544 2545 fin->fin_fr = fr; 2546 2547 /* 2548 * Only count/translate packets which will be passed on, out the 2549 * interface. 2550 */ 2551 if (out && FR_ISPASS(pass)) { 2552 (void) fr_acctpkt(fin, NULL); 2553 2554 switch (fin->fin_v) 2555 { 2556 case 4 : 2557 if (fr_checknatout(fin, &pass) == -1) { 2558 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2559 goto finished; 2560 } 2561 break; 2562 #ifdef USE_INET6 2563 case 6 : 2564 if (fr_checknat6out(fin, &pass) == -1) { 2565 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2566 goto finished; 2567 } 2568 break; 2569 #endif 2570 default : 2571 break; 2572 } 2573 2574 if ((ifs->ifs_fr_update_ipid != 0) && (v == 4)) { 2575 if (fr_updateipid(fin) == -1) { 2576 IPF_BUMP(ifs->ifs_frstats[1].fr_ipud); 2577 pass &= ~FR_CMDMASK; 2578 pass |= FR_BLOCK; 2579 } else { 2580 IPF_BUMP(ifs->ifs_frstats[0].fr_ipud); 2581 } 2582 } 2583 } 2584 2585 #ifdef IPFILTER_LOG 2586 if ((ifs->ifs_fr_flags & FF_LOGGING) || (pass & FR_LOGMASK)) { 2587 (void) fr_dolog(fin, &pass); 2588 } 2589 #endif 2590 2591 /* 2592 * The FI_STATE flag is cleared here so that calling fr_checkstate 2593 * will work when called from inside of fr_fastroute. Although 2594 * there is a similar flag, FI_NATED, for NAT, it does have the same 2595 * impact on code execution. 2596 */ 2597 fin->fin_flx &= ~FI_STATE; 2598 2599 /* 2600 * Only allow FR_DUP to work if a rule matched - it makes no sense to 2601 * set FR_DUP as a "default" as there are no instructions about where 2602 * to send the packet. Use fin_m here because it may have changed 2603 * (without an update of 'm') in prior processing. 2604 */ 2605 if ((fr != NULL) && (pass & FR_DUP)) { 2606 mc = M_DUPLICATE(fin->fin_m); 2607 #ifdef _KERNEL 2608 mc->b_rptr += fin->fin_ipoff; 2609 #endif 2610 } 2611 2612 /* 2613 * We don't want to send RST for packets, which are going to be 2614 * dropped, just because they don't fit into TCP window. Those packets 2615 * will be dropped silently. In other words, we want to drop packet, 2616 * while keeping session alive. 2617 */ 2618 if ((pass & (FR_RETRST|FR_RETICMP)) && ((fin->fin_flx & FI_OOW) == 0)) { 2619 /* 2620 * Should we return an ICMP packet to indicate error 2621 * status passing through the packet filter ? 2622 * WARNING: ICMP error packets AND TCP RST packets should 2623 * ONLY be sent in repsonse to incoming packets. Sending them 2624 * in response to outbound packets can result in a panic on 2625 * some operating systems. 2626 */ 2627 if (!out) { 2628 if (pass & FR_RETICMP) { 2629 int dst; 2630 2631 if ((pass & FR_RETMASK) == FR_FAKEICMP) 2632 dst = 1; 2633 else 2634 dst = 0; 2635 #if defined(_KERNEL) && (SOLARIS2 >= 10) 2636 /* 2637 * Assume it's possible to enter insane rule: 2638 * pass return-icmp in proto udp ... 2639 * then we have no other option than to forward 2640 * packet on loopback and give up any attempt 2641 * to create a fake response. 2642 */ 2643 if (IPF_IS_LOOPBACK(qpi->qpi_flags) && 2644 FR_ISBLOCK(pass)) { 2645 2646 if (fr_make_icmp(fin) == 0) { 2647 IPF_BUMP( 2648 ifs->ifs_frstats[out].fr_ret); 2649 } 2650 /* 2651 * we drop packet silently in case we 2652 * failed assemble fake response for it 2653 */ 2654 else if (*mp != NULL) { 2655 FREE_MB_T(*mp); 2656 m = *mp = NULL; 2657 } 2658 2659 IPF_BUMP( 2660 ifs->ifs_frstats[out].fr_block); 2661 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2662 2663 return (0); 2664 } 2665 #endif /* _KERNEL && SOLARIS2 >= 10 */ 2666 2667 (void) fr_send_icmp_err(ICMP_UNREACH, fin, dst); 2668 IPF_BUMP(ifs->ifs_frstats[out].fr_ret); 2669 2670 } else if (((pass & FR_RETMASK) == FR_RETRST) && 2671 !(fin->fin_flx & FI_SHORT)) { 2672 2673 #if defined(_KERNEL) && (SOLARIS2 >= 10) 2674 /* 2675 * Assume it's possible to enter insane rule: 2676 * pass return-rst in proto tcp ... 2677 * then we have no other option than to forward 2678 * packet on loopback and give up any attempt 2679 * to create a fake response. 2680 */ 2681 if (IPF_IS_LOOPBACK(qpi->qpi_flags) && 2682 FR_ISBLOCK(pass)) { 2683 if (fr_make_rst(fin) == 0) { 2684 IPF_BUMP( 2685 ifs->ifs_frstats[out].fr_ret); 2686 } 2687 else if (mp != NULL) { 2688 /* 2689 * we drop packet silently in case we 2690 * failed assemble fake response for it 2691 */ 2692 FREE_MB_T(*mp); 2693 m = *mp = NULL; 2694 } 2695 2696 IPF_BUMP( 2697 ifs->ifs_frstats[out].fr_block); 2698 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2699 2700 return (0); 2701 } 2702 #endif /* _KERNEL && _SOLARIS2 >= 10 */ 2703 if (fr_send_reset(fin) == 0) { 2704 IPF_BUMP(ifs->ifs_frstats[1].fr_ret); 2705 } 2706 } 2707 } else { 2708 if (pass & FR_RETRST) 2709 fin->fin_error = ECONNRESET; 2710 } 2711 } 2712 2713 /* 2714 * If we didn't drop off the bottom of the list of rules (and thus 2715 * the 'current' rule fr is not NULL), then we may have some extra 2716 * instructions about what to do with a packet. 2717 * Once we're finished return to our caller, freeing the packet if 2718 * we are dropping it (* BSD ONLY *). 2719 * Reassign m from fin_m as we may have a new buffer, now. 2720 */ 2721 filtered: 2722 m = fin->fin_m; 2723 2724 if (fr != NULL) { 2725 frdest_t *fdp; 2726 2727 fdp = &fr->fr_tifs[fin->fin_rev]; 2728 2729 if (!out && (pass & FR_FASTROUTE)) { 2730 /* 2731 * For fastroute rule, no destioation interface defined 2732 * so pass NULL as the frdest_t parameter 2733 */ 2734 (void) fr_fastroute(m, mp, fin, NULL); 2735 m = *mp = NULL; 2736 } else if ((fdp->fd_ifp != NULL) && 2737 (fdp->fd_ifp != (struct ifnet *)-1)) { 2738 /* this is for to rules: */ 2739 (void) fr_fastroute(m, mp, fin, fdp); 2740 m = *mp = NULL; 2741 } 2742 2743 /* 2744 * Send a duplicated packet. 2745 */ 2746 if (mc != NULL) { 2747 #if defined(_KERNEL) && (SOLARIS2 >= 10) 2748 /* 2749 * We are going to compute chksum for copies of loopback packets 2750 * only. IP stack does not compute chksums at all for loopback 2751 * packets. We want to get it fixed in their copies, since those 2752 * are going to be sent to network. 2753 */ 2754 if (IPF_IS_LOOPBACK(qpi->qpi_flags)) 2755 fr_calc_chksum(fin, mc); 2756 #endif 2757 (void) fr_fastroute(mc, &mc, fin, &fr->fr_dif); 2758 } 2759 } 2760 2761 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT)) 2762 nat_uncreate(fin); 2763 2764 /* 2765 * This late because the likes of fr_fastroute() use fin_fr. 2766 */ 2767 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2768 2769 finished: 2770 if (!FR_ISPASS(pass)) { 2771 IPF_BUMP(ifs->ifs_frstats[out].fr_block); 2772 if (*mp != NULL) { 2773 FREE_MB_T(*mp); 2774 m = *mp = NULL; 2775 } 2776 } else { 2777 IPF_BUMP(ifs->ifs_frstats[out].fr_pass); 2778 #if defined(_KERNEL) && defined(__sgi) 2779 if ((fin->fin_hbuf != NULL) && 2780 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) { 2781 COPYBACK(m, 0, fin->fin_plen, fin->fin_hbuf); 2782 } 2783 #endif 2784 } 2785 2786 SPL_X(s); 2787 2788 #ifdef _KERNEL 2789 # if OpenBSD >= 200311 2790 if (FR_ISPASS(pass) && (v == 4)) { 2791 ip = fin->fin_ip; 2792 ip->ip_len = ntohs(ip->ip_len); 2793 ip->ip_off = ntohs(ip->ip_off); 2794 } 2795 # endif 2796 return (FR_ISPASS(pass)) ? 0 : fin->fin_error; 2797 #else /* _KERNEL */ 2798 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass)); 2799 if ((pass & FR_NOMATCH) != 0) 2800 return 1; 2801 2802 if ((pass & FR_RETMASK) != 0) 2803 switch (pass & FR_RETMASK) 2804 { 2805 case FR_RETRST : 2806 return 3; 2807 case FR_RETICMP : 2808 return 4; 2809 case FR_FAKEICMP : 2810 return 5; 2811 } 2812 2813 switch (pass & FR_CMDMASK) 2814 { 2815 case FR_PASS : 2816 return 0; 2817 case FR_BLOCK : 2818 return -1; 2819 case FR_AUTH : 2820 return -2; 2821 case FR_ACCOUNT : 2822 return -3; 2823 case FR_PREAUTH : 2824 return -4; 2825 } 2826 return 2; 2827 #endif /* _KERNEL */ 2828 } 2829 2830 2831 #ifdef IPFILTER_LOG 2832 /* ------------------------------------------------------------------------ */ 2833 /* Function: fr_dolog */ 2834 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */ 2835 /* Parameters: fin(I) - pointer to packet information */ 2836 /* passp(IO) - pointer to current/new filter decision (unused) */ 2837 /* */ 2838 /* Checks flags set to see how a packet should be logged, if it is to be */ 2839 /* logged. Adjust statistics based on its success or not. */ 2840 /* ------------------------------------------------------------------------ */ 2841 frentry_t *fr_dolog(fin, passp) 2842 fr_info_t *fin; 2843 u_32_t *passp; 2844 { 2845 u_32_t pass; 2846 int out; 2847 ipf_stack_t *ifs = fin->fin_ifs; 2848 2849 out = fin->fin_out; 2850 pass = *passp; 2851 2852 if ((ifs->ifs_fr_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) { 2853 pass |= FF_LOGNOMATCH; 2854 IPF_BUMP(ifs->ifs_frstats[out].fr_npkl); 2855 goto logit; 2856 } else if (((pass & FR_LOGMASK) == FR_LOGP) || 2857 (FR_ISPASS(pass) && (ifs->ifs_fr_flags & FF_LOGPASS))) { 2858 if ((pass & FR_LOGMASK) != FR_LOGP) 2859 pass |= FF_LOGPASS; 2860 IPF_BUMP(ifs->ifs_frstats[out].fr_ppkl); 2861 goto logit; 2862 } else if (((pass & FR_LOGMASK) == FR_LOGB) || 2863 (FR_ISBLOCK(pass) && (ifs->ifs_fr_flags & FF_LOGBLOCK))) { 2864 if ((pass & FR_LOGMASK) != FR_LOGB) 2865 pass |= FF_LOGBLOCK; 2866 IPF_BUMP(ifs->ifs_frstats[out].fr_bpkl); 2867 logit: 2868 if (ipflog(fin, pass) == -1) { 2869 IPF_BUMP(ifs->ifs_frstats[out].fr_skip); 2870 2871 /* 2872 * If the "or-block" option has been used then 2873 * block the packet if we failed to log it. 2874 */ 2875 if ((pass & FR_LOGORBLOCK) && 2876 FR_ISPASS(pass)) { 2877 pass &= ~FR_CMDMASK; 2878 pass |= FR_BLOCK; 2879 } 2880 } 2881 *passp = pass; 2882 } 2883 2884 return fin->fin_fr; 2885 } 2886 #endif /* IPFILTER_LOG */ 2887 2888 2889 /* ------------------------------------------------------------------------ */ 2890 /* Function: ipf_cksum */ 2891 /* Returns: u_short - IP header checksum */ 2892 /* Parameters: addr(I) - pointer to start of buffer to checksum */ 2893 /* len(I) - length of buffer in bytes */ 2894 /* */ 2895 /* Calculate the two's complement 16 bit checksum of the buffer passed. */ 2896 /* */ 2897 /* N.B.: addr should be 16bit aligned. */ 2898 /* ------------------------------------------------------------------------ */ 2899 u_short ipf_cksum(addr, len) 2900 u_short *addr; 2901 int len; 2902 { 2903 u_32_t sum = 0; 2904 2905 for (sum = 0; len > 1; len -= 2) 2906 sum += *addr++; 2907 2908 /* mop up an odd byte, if necessary */ 2909 if (len == 1) 2910 sum += *(u_char *)addr; 2911 2912 /* 2913 * add back carry outs from top 16 bits to low 16 bits 2914 */ 2915 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */ 2916 sum += (sum >> 16); /* add carry */ 2917 return (u_short)(~sum); 2918 } 2919 2920 2921 /* ------------------------------------------------------------------------ */ 2922 /* Function: fr_cksum */ 2923 /* Returns: u_short - layer 4 checksum */ 2924 /* Parameters: m(I ) - pointer to buffer holding packet */ 2925 /* ip(I) - pointer to IP header */ 2926 /* l4proto(I) - protocol to caclulate checksum for */ 2927 /* l4hdr(I) - pointer to layer 4 header */ 2928 /* */ 2929 /* Calculates the TCP checksum for the packet held in "m", using the data */ 2930 /* in the IP header "ip" to seed it. */ 2931 /* */ 2932 /* NB: This function assumes we've pullup'd enough for all of the IP header */ 2933 /* and the TCP header. We also assume that data blocks aren't allocated in */ 2934 /* odd sizes. */ 2935 /* */ 2936 /* Expects ip_len to be in host byte order when called. */ 2937 /* ------------------------------------------------------------------------ */ 2938 u_short fr_cksum(m, ip, l4proto, l4hdr) 2939 mb_t *m; 2940 ip_t *ip; 2941 int l4proto; 2942 void *l4hdr; 2943 { 2944 u_short *sp, slen, sumsave, l4hlen, *csump; 2945 u_int sum, sum2; 2946 int hlen; 2947 #ifdef USE_INET6 2948 ip6_t *ip6; 2949 #endif 2950 2951 csump = NULL; 2952 sumsave = 0; 2953 l4hlen = 0; 2954 sp = NULL; 2955 slen = 0; 2956 hlen = 0; 2957 sum = 0; 2958 2959 /* 2960 * Add up IP Header portion 2961 */ 2962 #ifdef USE_INET6 2963 if (IP_V(ip) == 4) { 2964 #endif 2965 hlen = IP_HL(ip) << 2; 2966 slen = ip->ip_len - hlen; 2967 sum = htons((u_short)l4proto); 2968 sum += htons(slen); 2969 sp = (u_short *)&ip->ip_src; 2970 sum += *sp++; /* ip_src */ 2971 sum += *sp++; 2972 sum += *sp++; /* ip_dst */ 2973 sum += *sp++; 2974 #ifdef USE_INET6 2975 } else if (IP_V(ip) == 6) { 2976 ip6 = (ip6_t *)ip; 2977 hlen = sizeof(*ip6); 2978 slen = ntohs(ip6->ip6_plen); 2979 sum = htons((u_short)l4proto); 2980 sum += htons(slen); 2981 sp = (u_short *)&ip6->ip6_src; 2982 sum += *sp++; /* ip6_src */ 2983 sum += *sp++; 2984 sum += *sp++; 2985 sum += *sp++; 2986 sum += *sp++; 2987 sum += *sp++; 2988 sum += *sp++; 2989 sum += *sp++; 2990 sum += *sp++; /* ip6_dst */ 2991 sum += *sp++; 2992 sum += *sp++; 2993 sum += *sp++; 2994 sum += *sp++; 2995 sum += *sp++; 2996 sum += *sp++; 2997 sum += *sp++; 2998 } 2999 #endif 3000 3001 switch (l4proto) 3002 { 3003 case IPPROTO_UDP : 3004 csump = &((udphdr_t *)l4hdr)->uh_sum; 3005 l4hlen = sizeof(udphdr_t); 3006 break; 3007 3008 case IPPROTO_TCP : 3009 csump = &((tcphdr_t *)l4hdr)->th_sum; 3010 l4hlen = sizeof(tcphdr_t); 3011 break; 3012 case IPPROTO_ICMP : 3013 csump = &((icmphdr_t *)l4hdr)->icmp_cksum; 3014 l4hlen = 4; 3015 sum = 0; 3016 break; 3017 default : 3018 break; 3019 } 3020 3021 if (csump != NULL) { 3022 sumsave = *csump; 3023 *csump = 0; 3024 } 3025 3026 l4hlen = l4hlen; /* LINT */ 3027 3028 #ifdef _KERNEL 3029 # ifdef MENTAT 3030 { 3031 void *rp = m->b_rptr; 3032 3033 if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr) 3034 m->b_rptr = (u_char *)ip; 3035 sum2 = ip_cksum(m, hlen, sum); /* hlen == offset */ 3036 m->b_rptr = rp; 3037 sum2 = (sum2 & 0xffff) + (sum2 >> 16); 3038 sum2 = ~sum2 & 0xffff; 3039 } 3040 # else /* MENTAT */ 3041 # if defined(BSD) || defined(sun) 3042 # if BSD >= 199103 3043 m->m_data += hlen; 3044 # else 3045 m->m_off += hlen; 3046 # endif 3047 m->m_len -= hlen; 3048 sum2 = in_cksum(m, slen); 3049 m->m_len += hlen; 3050 # if BSD >= 199103 3051 m->m_data -= hlen; 3052 # else 3053 m->m_off -= hlen; 3054 # endif 3055 /* 3056 * Both sum and sum2 are partial sums, so combine them together. 3057 */ 3058 sum += ~sum2 & 0xffff; 3059 while (sum > 0xffff) 3060 sum = (sum & 0xffff) + (sum >> 16); 3061 sum2 = ~sum & 0xffff; 3062 # else /* defined(BSD) || defined(sun) */ 3063 { 3064 union { 3065 u_char c[2]; 3066 u_short s; 3067 } bytes; 3068 u_short len = ip->ip_len; 3069 # if defined(__sgi) 3070 int add; 3071 # endif 3072 3073 /* 3074 * Add up IP Header portion 3075 */ 3076 if (sp != (u_short *)l4hdr) 3077 sp = (u_short *)l4hdr; 3078 3079 switch (l4proto) 3080 { 3081 case IPPROTO_UDP : 3082 sum += *sp++; /* sport */ 3083 sum += *sp++; /* dport */ 3084 sum += *sp++; /* udp length */ 3085 sum += *sp++; /* checksum */ 3086 break; 3087 3088 case IPPROTO_TCP : 3089 sum += *sp++; /* sport */ 3090 sum += *sp++; /* dport */ 3091 sum += *sp++; /* seq */ 3092 sum += *sp++; 3093 sum += *sp++; /* ack */ 3094 sum += *sp++; 3095 sum += *sp++; /* off */ 3096 sum += *sp++; /* win */ 3097 sum += *sp++; /* checksum */ 3098 sum += *sp++; /* urp */ 3099 break; 3100 case IPPROTO_ICMP : 3101 sum = *sp++; /* type/code */ 3102 sum += *sp++; /* checksum */ 3103 break; 3104 } 3105 3106 # ifdef __sgi 3107 /* 3108 * In case we had to copy the IP & TCP header out of mbufs, 3109 * skip over the mbuf bits which are the header 3110 */ 3111 if ((caddr_t)ip != mtod(m, caddr_t)) { 3112 hlen = (caddr_t)sp - (caddr_t)ip; 3113 while (hlen) { 3114 add = MIN(hlen, m->m_len); 3115 sp = (u_short *)(mtod(m, caddr_t) + add); 3116 hlen -= add; 3117 if (add == m->m_len) { 3118 m = m->m_next; 3119 if (!hlen) { 3120 if (!m) 3121 break; 3122 sp = mtod(m, u_short *); 3123 } 3124 PANIC((!m),("fr_cksum(1): not enough data")); 3125 } 3126 } 3127 } 3128 # endif 3129 3130 len -= (l4hlen + hlen); 3131 if (len <= 0) 3132 goto nodata; 3133 3134 while (len > 1) { 3135 if (((caddr_t)sp - mtod(m, caddr_t)) >= m->m_len) { 3136 m = m->m_next; 3137 PANIC((!m),("fr_cksum(2): not enough data")); 3138 sp = mtod(m, u_short *); 3139 } 3140 if (((caddr_t)(sp + 1) - mtod(m, caddr_t)) > m->m_len) { 3141 bytes.c[0] = *(u_char *)sp; 3142 m = m->m_next; 3143 PANIC((!m),("fr_cksum(3): not enough data")); 3144 sp = mtod(m, u_short *); 3145 bytes.c[1] = *(u_char *)sp; 3146 sum += bytes.s; 3147 sp = (u_short *)((u_char *)sp + 1); 3148 } 3149 if ((u_long)sp & 1) { 3150 bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s)); 3151 sum += bytes.s; 3152 } else 3153 sum += *sp++; 3154 len -= 2; 3155 } 3156 3157 if (len != 0) 3158 sum += ntohs(*(u_char *)sp << 8); 3159 nodata: 3160 while (sum > 0xffff) 3161 sum = (sum & 0xffff) + (sum >> 16); 3162 sum2 = (u_short)(~sum & 0xffff); 3163 } 3164 # endif /* defined(BSD) || defined(sun) */ 3165 # endif /* MENTAT */ 3166 #else /* _KERNEL */ 3167 for (; slen > 1; slen -= 2) 3168 sum += *sp++; 3169 if (slen) 3170 sum += ntohs(*(u_char *)sp << 8); 3171 while (sum > 0xffff) 3172 sum = (sum & 0xffff) + (sum >> 16); 3173 sum2 = (u_short)(~sum & 0xffff); 3174 #endif /* _KERNEL */ 3175 if (csump != NULL) 3176 *csump = sumsave; 3177 return sum2; 3178 } 3179 3180 3181 #if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \ 3182 defined(__sgi) ) && !defined(linux) && !defined(_AIX51) 3183 /* 3184 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3185 * The Regents of the University of California. All rights reserved. 3186 * 3187 * Redistribution and use in source and binary forms, with or without 3188 * modification, are permitted provided that the following conditions 3189 * are met: 3190 * 1. Redistributions of source code must retain the above copyright 3191 * notice, this list of conditions and the following disclaimer. 3192 * 2. Redistributions in binary form must reproduce the above copyright 3193 * notice, this list of conditions and the following disclaimer in the 3194 * documentation and/or other materials provided with the distribution. 3195 * 3. Neither the name of the University nor the names of its contributors 3196 * may be used to endorse or promote products derived from this software 3197 * without specific prior written permission. 3198 * 3199 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3200 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3201 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3202 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3203 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3204 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3205 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3206 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3207 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3208 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3209 * SUCH DAMAGE. 3210 * 3211 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 3212 * $Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $ 3213 */ 3214 /* 3215 * Copy data from an mbuf chain starting "off" bytes from the beginning, 3216 * continuing for "len" bytes, into the indicated buffer. 3217 */ 3218 void 3219 m_copydata(m, off, len, cp) 3220 mb_t *m; 3221 int off; 3222 int len; 3223 caddr_t cp; 3224 { 3225 unsigned count; 3226 3227 if (off < 0 || len < 0) 3228 panic("m_copydata"); 3229 while (off > 0) { 3230 if (m == 0) 3231 panic("m_copydata"); 3232 if (off < m->m_len) 3233 break; 3234 off -= m->m_len; 3235 m = m->m_next; 3236 } 3237 while (len > 0) { 3238 if (m == 0) 3239 panic("m_copydata"); 3240 count = MIN(m->m_len - off, len); 3241 bcopy(mtod(m, caddr_t) + off, cp, count); 3242 len -= count; 3243 cp += count; 3244 off = 0; 3245 m = m->m_next; 3246 } 3247 } 3248 3249 3250 /* 3251 * Copy data from a buffer back into the indicated mbuf chain, 3252 * starting "off" bytes from the beginning, extending the mbuf 3253 * chain if necessary. 3254 */ 3255 void 3256 m_copyback(m0, off, len, cp) 3257 struct mbuf *m0; 3258 int off; 3259 int len; 3260 caddr_t cp; 3261 { 3262 int mlen; 3263 struct mbuf *m = m0, *n; 3264 int totlen = 0; 3265 3266 if (m0 == 0) 3267 return; 3268 while (off > (mlen = m->m_len)) { 3269 off -= mlen; 3270 totlen += mlen; 3271 if (m->m_next == 0) { 3272 n = m_getclr(M_DONTWAIT, m->m_type); 3273 if (n == 0) 3274 goto out; 3275 n->m_len = min(MLEN, len + off); 3276 m->m_next = n; 3277 } 3278 m = m->m_next; 3279 } 3280 while (len > 0) { 3281 mlen = min(m->m_len - off, len); 3282 bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen); 3283 cp += mlen; 3284 len -= mlen; 3285 mlen += off; 3286 off = 0; 3287 totlen += mlen; 3288 if (len == 0) 3289 break; 3290 if (m->m_next == 0) { 3291 n = m_get(M_DONTWAIT, m->m_type); 3292 if (n == 0) 3293 break; 3294 n->m_len = min(MLEN, len); 3295 m->m_next = n; 3296 } 3297 m = m->m_next; 3298 } 3299 out: 3300 #if 0 3301 if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 3302 m->m_pkthdr.len = totlen; 3303 #endif 3304 return; 3305 } 3306 #endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */ 3307 3308 3309 /* ------------------------------------------------------------------------ */ 3310 /* Function: fr_findgroup */ 3311 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */ 3312 /* Parameters: group(I) - group name to search for */ 3313 /* unit(I) - device to which this group belongs */ 3314 /* set(I) - which set of rules (inactive/inactive) this is */ 3315 /* fgpp(O) - pointer to place to store pointer to the pointer */ 3316 /* to where to add the next (last) group or where */ 3317 /* to delete group from. */ 3318 /* */ 3319 /* Search amongst the defined groups for a particular group number. */ 3320 /* ------------------------------------------------------------------------ */ 3321 frgroup_t *fr_findgroup(group, unit, set, fgpp, ifs) 3322 char *group; 3323 minor_t unit; 3324 int set; 3325 frgroup_t ***fgpp; 3326 ipf_stack_t *ifs; 3327 { 3328 frgroup_t *fg, **fgp; 3329 3330 /* 3331 * Which list of groups to search in is dependent on which list of 3332 * rules are being operated on. 3333 */ 3334 fgp = &ifs->ifs_ipfgroups[unit][set]; 3335 3336 while ((fg = *fgp) != NULL) { 3337 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0) 3338 break; 3339 else 3340 fgp = &fg->fg_next; 3341 } 3342 if (fgpp != NULL) 3343 *fgpp = fgp; 3344 return fg; 3345 } 3346 3347 3348 /* ------------------------------------------------------------------------ */ 3349 /* Function: fr_addgroup */ 3350 /* Returns: frgroup_t * - NULL == did not create group, */ 3351 /* != NULL == pointer to the group */ 3352 /* Parameters: num(I) - group number to add */ 3353 /* head(I) - rule pointer that is using this as the head */ 3354 /* flags(I) - rule flags which describe the type of rule it is */ 3355 /* unit(I) - device to which this group will belong to */ 3356 /* set(I) - which set of rules (inactive/inactive) this is */ 3357 /* Write Locks: ipf_mutex */ 3358 /* */ 3359 /* Add a new group head, or if it already exists, increase the reference */ 3360 /* count to it. */ 3361 /* ------------------------------------------------------------------------ */ 3362 frgroup_t *fr_addgroup(group, head, flags, unit, set, ifs) 3363 char *group; 3364 void *head; 3365 u_32_t flags; 3366 minor_t unit; 3367 int set; 3368 ipf_stack_t *ifs; 3369 { 3370 frgroup_t *fg, **fgp; 3371 u_32_t gflags; 3372 3373 if (group == NULL) 3374 return NULL; 3375 3376 if (unit == IPL_LOGIPF && *group == '\0') 3377 return NULL; 3378 3379 fgp = NULL; 3380 gflags = flags & FR_INOUT; 3381 3382 fg = fr_findgroup(group, unit, set, &fgp, ifs); 3383 if (fg != NULL) { 3384 if (fg->fg_flags == 0) 3385 fg->fg_flags = gflags; 3386 else if (gflags != fg->fg_flags) 3387 return NULL; 3388 fg->fg_ref++; 3389 return fg; 3390 } 3391 KMALLOC(fg, frgroup_t *); 3392 if (fg != NULL) { 3393 fg->fg_head = head; 3394 fg->fg_start = NULL; 3395 fg->fg_next = *fgp; 3396 bcopy(group, fg->fg_name, FR_GROUPLEN); 3397 fg->fg_flags = gflags; 3398 fg->fg_ref = 1; 3399 *fgp = fg; 3400 } 3401 return fg; 3402 } 3403 3404 3405 /* ------------------------------------------------------------------------ */ 3406 /* Function: fr_delgroup */ 3407 /* Returns: Nil */ 3408 /* Parameters: group(I) - group name to delete */ 3409 /* unit(I) - device to which this group belongs */ 3410 /* set(I) - which set of rules (inactive/inactive) this is */ 3411 /* Write Locks: ipf_mutex */ 3412 /* */ 3413 /* Attempt to delete a group head. */ 3414 /* Only do this when its reference count reaches 0. */ 3415 /* ------------------------------------------------------------------------ */ 3416 void fr_delgroup(group, unit, set, ifs) 3417 char *group; 3418 minor_t unit; 3419 int set; 3420 ipf_stack_t *ifs; 3421 { 3422 frgroup_t *fg, **fgp; 3423 3424 fg = fr_findgroup(group, unit, set, &fgp, ifs); 3425 if (fg == NULL) 3426 return; 3427 3428 fg->fg_ref--; 3429 if (fg->fg_ref == 0) { 3430 *fgp = fg->fg_next; 3431 KFREE(fg); 3432 } 3433 } 3434 3435 3436 /* ------------------------------------------------------------------------ */ 3437 /* Function: fr_getrulen */ 3438 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */ 3439 /* Parameters: unit(I) - device for which to count the rule's number */ 3440 /* flags(I) - which set of rules to find the rule in */ 3441 /* group(I) - group name */ 3442 /* n(I) - rule number to find */ 3443 /* */ 3444 /* Find rule # n in group # g and return a pointer to it. Return NULl if */ 3445 /* group # g doesn't exist or there are less than n rules in the group. */ 3446 /* ------------------------------------------------------------------------ */ 3447 frentry_t *fr_getrulen(unit, group, n, ifs) 3448 int unit; 3449 char *group; 3450 u_32_t n; 3451 ipf_stack_t *ifs; 3452 { 3453 frentry_t *fr; 3454 frgroup_t *fg; 3455 3456 fg = fr_findgroup(group, unit, ifs->ifs_fr_active, NULL, ifs); 3457 if (fg == NULL) 3458 return NULL; 3459 for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--) 3460 ; 3461 if (n != 0) 3462 return NULL; 3463 return fr; 3464 } 3465 3466 3467 /* ------------------------------------------------------------------------ */ 3468 /* Function: fr_rulen */ 3469 /* Returns: int - >= 0 - rule number, -1 == search failed */ 3470 /* Parameters: unit(I) - device for which to count the rule's number */ 3471 /* fr(I) - pointer to rule to match */ 3472 /* */ 3473 /* Return the number for a rule on a specific filtering device. */ 3474 /* ------------------------------------------------------------------------ */ 3475 int fr_rulen(unit, fr, ifs) 3476 int unit; 3477 frentry_t *fr; 3478 ipf_stack_t *ifs; 3479 { 3480 frentry_t *fh; 3481 frgroup_t *fg; 3482 u_32_t n = 0; 3483 3484 if (fr == NULL) 3485 return -1; 3486 fg = fr_findgroup(fr->fr_group, unit, ifs->ifs_fr_active, NULL, ifs); 3487 if (fg == NULL) 3488 return -1; 3489 for (fh = fg->fg_head; fh; n++, fh = fh->fr_next) 3490 if (fh == fr) 3491 break; 3492 if (fh == NULL) 3493 return -1; 3494 return n; 3495 } 3496 3497 3498 /* ------------------------------------------------------------------------ */ 3499 /* Function: frflushlist */ 3500 /* Returns: int - >= 0 - number of flushed rules */ 3501 /* Parameters: set(I) - which set of rules (inactive/inactive) this is */ 3502 /* unit(I) - device for which to flush rules */ 3503 /* flags(I) - which set of rules to flush */ 3504 /* nfreedp(O) - pointer to int where flush count is stored */ 3505 /* listp(I) - pointer to list to flush pointer */ 3506 /* Write Locks: ipf_mutex */ 3507 /* */ 3508 /* Recursively flush rules from the list, descending groups as they are */ 3509 /* encountered. if a rule is the head of a group and it has lost all its */ 3510 /* group members, then also delete the group reference. nfreedp is needed */ 3511 /* to store the accumulating count of rules removed, whereas the returned */ 3512 /* value is just the number removed from the current list. The latter is */ 3513 /* needed to correctly adjust reference counts on rules that define groups. */ 3514 /* */ 3515 /* NOTE: Rules not loaded from user space cannot be flushed. */ 3516 /* ------------------------------------------------------------------------ */ 3517 static int frflushlist(set, unit, nfreedp, listp, ifs) 3518 int set; 3519 minor_t unit; 3520 int *nfreedp; 3521 frentry_t **listp; 3522 ipf_stack_t *ifs; 3523 { 3524 int freed = 0; 3525 frentry_t *fp; 3526 3527 while ((fp = *listp) != NULL) { 3528 if ((fp->fr_type & FR_T_BUILTIN) || 3529 !(fp->fr_flags & FR_COPIED)) { 3530 listp = &fp->fr_next; 3531 continue; 3532 } 3533 *listp = fp->fr_next; 3534 if (fp->fr_grp != NULL) { 3535 (void) frflushlist(set, unit, nfreedp, fp->fr_grp, ifs); 3536 } 3537 3538 if (fp->fr_grhead != NULL) { 3539 fr_delgroup(fp->fr_grhead, unit, set, ifs); 3540 *fp->fr_grhead = '\0'; 3541 } 3542 3543 ASSERT(fp->fr_ref > 0); 3544 fp->fr_next = NULL; 3545 if (fr_derefrule(&fp, ifs) == 0) 3546 freed++; 3547 } 3548 *nfreedp += freed; 3549 return freed; 3550 } 3551 3552 3553 /* ------------------------------------------------------------------------ */ 3554 /* Function: frflush */ 3555 /* Returns: int - >= 0 - number of flushed rules */ 3556 /* Parameters: unit(I) - device for which to flush rules */ 3557 /* flags(I) - which set of rules to flush */ 3558 /* */ 3559 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */ 3560 /* and IPv6) as defined by the value of flags. */ 3561 /* ------------------------------------------------------------------------ */ 3562 int frflush(unit, proto, flags, ifs) 3563 minor_t unit; 3564 int proto, flags; 3565 ipf_stack_t *ifs; 3566 { 3567 int flushed = 0, set; 3568 3569 WRITE_ENTER(&ifs->ifs_ipf_mutex); 3570 bzero((char *)ifs->ifs_frcache, sizeof (ifs->ifs_frcache)); 3571 3572 set = ifs->ifs_fr_active; 3573 if ((flags & FR_INACTIVE) == FR_INACTIVE) 3574 set = 1 - set; 3575 3576 if (flags & FR_OUTQUE) { 3577 if (proto == 0 || proto == 6) { 3578 (void) frflushlist(set, unit, 3579 &flushed, &ifs->ifs_ipfilter6[1][set], ifs); 3580 (void) frflushlist(set, unit, 3581 &flushed, &ifs->ifs_ipacct6[1][set], ifs); 3582 } 3583 if (proto == 0 || proto == 4) { 3584 (void) frflushlist(set, unit, 3585 &flushed, &ifs->ifs_ipfilter[1][set], ifs); 3586 (void) frflushlist(set, unit, 3587 &flushed, &ifs->ifs_ipacct[1][set], ifs); 3588 } 3589 } 3590 if (flags & FR_INQUE) { 3591 if (proto == 0 || proto == 6) { 3592 (void) frflushlist(set, unit, 3593 &flushed, &ifs->ifs_ipfilter6[0][set], ifs); 3594 (void) frflushlist(set, unit, 3595 &flushed, &ifs->ifs_ipacct6[0][set], ifs); 3596 } 3597 if (proto == 0 || proto == 4) { 3598 (void) frflushlist(set, unit, 3599 &flushed, &ifs->ifs_ipfilter[0][set], ifs); 3600 (void) frflushlist(set, unit, 3601 &flushed, &ifs->ifs_ipacct[0][set], ifs); 3602 } 3603 } 3604 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 3605 3606 if (unit == IPL_LOGIPF) { 3607 int tmp; 3608 3609 tmp = frflush(IPL_LOGCOUNT, proto, flags, ifs); 3610 if (tmp >= 0) 3611 flushed += tmp; 3612 } 3613 return flushed; 3614 } 3615 3616 3617 /* ------------------------------------------------------------------------ */ 3618 /* Function: memstr */ 3619 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */ 3620 /* Parameters: src(I) - pointer to byte sequence to match */ 3621 /* dst(I) - pointer to byte sequence to search */ 3622 /* slen(I) - match length */ 3623 /* dlen(I) - length available to search in */ 3624 /* */ 3625 /* Search dst for a sequence of bytes matching those at src and extend for */ 3626 /* slen bytes. */ 3627 /* ------------------------------------------------------------------------ */ 3628 char *memstr(src, dst, slen, dlen) 3629 char *src, *dst; 3630 int slen, dlen; 3631 { 3632 char *s = NULL; 3633 3634 while (dlen >= slen) { 3635 if (bcmp(src, dst, slen) == 0) { 3636 s = dst; 3637 break; 3638 } 3639 dst++; 3640 dlen--; 3641 } 3642 return s; 3643 } 3644 /* ------------------------------------------------------------------------ */ 3645 /* Function: fr_fixskip */ 3646 /* Returns: Nil */ 3647 /* Parameters: listp(IO) - pointer to start of list with skip rule */ 3648 /* rp(I) - rule added/removed with skip in it. */ 3649 /* addremove(I) - adjustment (-1/+1) to make to skip count, */ 3650 /* depending on whether a rule was just added */ 3651 /* or removed. */ 3652 /* */ 3653 /* Adjust all the rules in a list which would have skip'd past the position */ 3654 /* where we are inserting to skip to the right place given the change. */ 3655 /* ------------------------------------------------------------------------ */ 3656 void fr_fixskip(listp, rp, addremove) 3657 frentry_t **listp, *rp; 3658 int addremove; 3659 { 3660 int rules, rn; 3661 frentry_t *fp; 3662 3663 rules = 0; 3664 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next) 3665 rules++; 3666 3667 if (!fp) 3668 return; 3669 3670 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++) 3671 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules)) 3672 fp->fr_arg += addremove; 3673 } 3674 3675 3676 #ifdef _KERNEL 3677 /* ------------------------------------------------------------------------ */ 3678 /* Function: count4bits */ 3679 /* Returns: int - >= 0 - number of consecutive bits in input */ 3680 /* Parameters: ip(I) - 32bit IP address */ 3681 /* */ 3682 /* IPv4 ONLY */ 3683 /* count consecutive 1's in bit mask. If the mask generated by counting */ 3684 /* consecutive 1's is different to that passed, return -1, else return # */ 3685 /* of bits. */ 3686 /* ------------------------------------------------------------------------ */ 3687 int count4bits(ip) 3688 u_32_t ip; 3689 { 3690 u_32_t ipn; 3691 int cnt = 0, i, j; 3692 3693 ip = ipn = ntohl(ip); 3694 for (i = 32; i; i--, ipn *= 2) 3695 if (ipn & 0x80000000) 3696 cnt++; 3697 else 3698 break; 3699 ipn = 0; 3700 for (i = 32, j = cnt; i; i--, j--) { 3701 ipn *= 2; 3702 if (j > 0) 3703 ipn++; 3704 } 3705 if (ipn == ip) 3706 return cnt; 3707 return -1; 3708 } 3709 3710 3711 #ifdef USE_INET6 3712 /* ------------------------------------------------------------------------ */ 3713 /* Function: count6bits */ 3714 /* Returns: int - >= 0 - number of consecutive bits in input */ 3715 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */ 3716 /* */ 3717 /* IPv6 ONLY */ 3718 /* count consecutive 1's in bit mask. */ 3719 /* ------------------------------------------------------------------------ */ 3720 int count6bits(msk) 3721 u_32_t *msk; 3722 { 3723 int i = 0, k; 3724 u_32_t j; 3725 3726 for (k = 3; k >= 0; k--) 3727 if (msk[k] == 0xffffffff) 3728 i += 32; 3729 else { 3730 for (j = msk[k]; j; j <<= 1) 3731 if (j & 0x80000000) 3732 i++; 3733 } 3734 return i; 3735 } 3736 # endif 3737 #endif /* _KERNEL */ 3738 3739 3740 /* ------------------------------------------------------------------------ */ 3741 /* Function: fr_ifsync */ 3742 /* Returns: void * - new interface identifier */ 3743 /* Parameters: action(I) - type of synchronisation to do */ 3744 /* v(I) - IP version being sync'd (v4 or v6) */ 3745 /* newifp(I) - interface identifier being introduced/removed */ 3746 /* oldifp(I) - interface identifier in a filter rule */ 3747 /* newname(I) - name associated with newifp interface */ 3748 /* oldname(I) - name associated with oldifp interface */ 3749 /* ifs - pointer to IPF stack instance */ 3750 /* */ 3751 /* This function returns what the new value for "oldifp" should be for its */ 3752 /* caller. In some cases it will not change, in some it will. */ 3753 /* action == IPFSYNC_RESYNC */ 3754 /* a new value for oldifp will always be looked up, according to oldname, */ 3755 /* the values of newname and newifp are ignored. */ 3756 /* action == IPFSYNC_NEWIFP */ 3757 /* if oldname matches newname then we are doing a sync for the matching */ 3758 /* interface, so we return newifp to be used in place of oldifp. If the */ 3759 /* the names don't match, just return oldifp. */ 3760 /* action == IPFSYNC_OLDIFP */ 3761 /* if oldifp matches newifp then we are are doing a sync to remove any */ 3762 /* references to oldifp, so we return "-1". */ 3763 /* ----- */ 3764 /* NOTE: */ 3765 /* This function processes NIC event from PF_HOOKS. The action parameter */ 3766 /* is set in ipf_nic_event_v4()/ipf_nic_event_v6() function. There is */ 3767 /* one single switch statement() in ipf_nic_event_vx() function, which */ 3768 /* translates the HOOK event type to action parameter passed to fr_ifsync. */ 3769 /* The translation table looks as follows: */ 3770 /* event | action */ 3771 /* ----------------+------------- */ 3772 /* NE_PLUMB | IPFSYNC_NEWIFP */ 3773 /* NE_UNPLUMB | IPFSYNC_OLDIFP */ 3774 /* NE_ADDRESS_CHANGE | IPFSYNC_RESYNC */ 3775 /* */ 3776 /* The oldname and oldifp parameters are taken from IPF entry (rule, state */ 3777 /* table entry, NAT table entry, fragment ...). The newname and newifp */ 3778 /* parameters come from hook event data, parameters are taken from event */ 3779 /* in ipf_nic_event_vx() functions. Any time NIC changes, the IPF is */ 3780 /* notified by hook function. */ 3781 /* */ 3782 /* We get NE_UNPLUMB event from PF_HOOKS even if someone coincidently tries */ 3783 /* to plumb the interface, which is already plumbed. In such case we always */ 3784 /* get the event from PF_HOOKS as follows: */ 3785 /* event: NE_PLUMB */ 3786 /* NIC: 0x0 */ 3787 /* ------------------------------------------------------------------------ */ 3788 static void *fr_ifsync(action, v, newname, oldname, newifp, oldifp, ifs) 3789 int action, v; 3790 char *newname, *oldname; 3791 void *newifp, *oldifp; 3792 ipf_stack_t *ifs; 3793 { 3794 void *rval = oldifp; 3795 3796 switch (action) 3797 { 3798 case IPFSYNC_RESYNC : 3799 if (oldname[0] != '\0') { 3800 rval = fr_resolvenic(oldname, v, ifs); 3801 } 3802 break; 3803 case IPFSYNC_NEWIFP : 3804 if (!strncmp(newname, oldname, LIFNAMSIZ)) 3805 rval = newifp; 3806 break; 3807 case IPFSYNC_OLDIFP : 3808 /* 3809 * If interface gets unplumbed it must be invalidated, which 3810 * means set all existing references to the interface to -1. 3811 * We don't want to invalidate references for wildcard 3812 * (unbound) rules (entries). 3813 */ 3814 if (newifp == oldifp) 3815 rval = (oldifp) ? (void *)-1 : NULL; 3816 break; 3817 } 3818 3819 return rval; 3820 } 3821 3822 3823 /* ------------------------------------------------------------------------ */ 3824 /* Function: frsynclist */ 3825 /* Returns: void */ 3826 /* Parameters: action(I) - type of synchronisation to do */ 3827 /* v(I) - IP version being sync'd (v4 or v6) */ 3828 /* ifp(I) - interface identifier associated with action */ 3829 /* ifname(I) - name associated with ifp parameter */ 3830 /* fr(I) - pointer to filter rule */ 3831 /* ifs - pointer to IPF stack instance */ 3832 /* Write Locks: ipf_mutex */ 3833 /* */ 3834 /* Walk through a list of filter rules and resolve any interface names into */ 3835 /* pointers. Where dynamic addresses are used, also update the IP address */ 3836 /* used in the rule. The interface pointer is used to limit the lookups to */ 3837 /* a specific set of matching names if it is non-NULL. */ 3838 /* ------------------------------------------------------------------------ */ 3839 static void frsynclist(action, v, ifp, ifname, fr, ifs) 3840 int action, v; 3841 void *ifp; 3842 char *ifname; 3843 frentry_t *fr; 3844 ipf_stack_t *ifs; 3845 { 3846 frdest_t *fdp; 3847 int rv, i; 3848 3849 for (; fr; fr = fr->fr_next) { 3850 rv = fr->fr_v; 3851 if (v != 0 && v != rv) 3852 continue; 3853 3854 /* 3855 * Lookup all the interface names that are part of the rule. 3856 */ 3857 for (i = 0; i < 4; i++) { 3858 fr->fr_ifas[i] = fr_ifsync(action, rv, ifname, 3859 fr->fr_ifnames[i], 3860 ifp, fr->fr_ifas[i], 3861 ifs); 3862 } 3863 3864 fdp = &fr->fr_tifs[0]; 3865 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3866 ifp, fdp->fd_ifp, ifs); 3867 3868 fdp = &fr->fr_tifs[1]; 3869 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3870 ifp, fdp->fd_ifp, ifs); 3871 3872 fdp = &fr->fr_dif; 3873 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3874 ifp, fdp->fd_ifp, ifs); 3875 3876 if (action != IPFSYNC_RESYNC) 3877 continue; 3878 3879 if (fr->fr_type == FR_T_IPF) { 3880 if (fr->fr_satype != FRI_NORMAL && 3881 fr->fr_satype != FRI_LOOKUP) { 3882 (void)fr_ifpaddr(rv, fr->fr_satype, 3883 fr->fr_ifas[fr->fr_sifpidx], 3884 &fr->fr_src, &fr->fr_smsk, 3885 ifs); 3886 } 3887 if (fr->fr_datype != FRI_NORMAL && 3888 fr->fr_datype != FRI_LOOKUP) { 3889 (void)fr_ifpaddr(rv, fr->fr_datype, 3890 fr->fr_ifas[fr->fr_difpidx], 3891 &fr->fr_dst, &fr->fr_dmsk, 3892 ifs); 3893 } 3894 } 3895 3896 #ifdef IPFILTER_LOOKUP 3897 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP && 3898 fr->fr_srcptr == NULL) { 3899 fr->fr_srcptr = fr_resolvelookup(fr->fr_srctype, 3900 fr->fr_srcnum, 3901 &fr->fr_srcfunc, ifs); 3902 } 3903 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP && 3904 fr->fr_dstptr == NULL) { 3905 fr->fr_dstptr = fr_resolvelookup(fr->fr_dsttype, 3906 fr->fr_dstnum, 3907 &fr->fr_dstfunc, ifs); 3908 } 3909 #endif 3910 } 3911 } 3912 3913 3914 #ifdef _KERNEL 3915 /* ------------------------------------------------------------------------ */ 3916 /* Function: frsync */ 3917 /* Returns: void */ 3918 /* Parameters: action(I) - type of synchronisation to do */ 3919 /* v(I) - IP version being sync'd (v4 or v6) */ 3920 /* ifp(I) - interface identifier associated with action */ 3921 /* name(I) - name associated with ifp parameter */ 3922 /* */ 3923 /* frsync() is called when we suspect that the interface list or */ 3924 /* information about interfaces (like IP#) has changed. Go through all */ 3925 /* filter rules, NAT entries and the state table and check if anything */ 3926 /* needs to be changed/updated. */ 3927 /* With the filtering hooks added to Solaris, we needed to change the manner*/ 3928 /* in which this was done to support three different types of sync: */ 3929 /* - complete resync of all interface name/identifiers */ 3930 /* - new interface being announced with its name and identifier */ 3931 /* - interface removal being announced by only its identifier */ 3932 /* ------------------------------------------------------------------------ */ 3933 void frsync(action, v, ifp, name, ifs) 3934 int action, v; 3935 void *ifp; 3936 char *name; 3937 ipf_stack_t *ifs; 3938 { 3939 int i; 3940 3941 WRITE_ENTER(&ifs->ifs_ipf_mutex); 3942 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[0][ifs->ifs_fr_active], ifs); 3943 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[1][ifs->ifs_fr_active], ifs); 3944 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[0][ifs->ifs_fr_active], ifs); 3945 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[1][ifs->ifs_fr_active], ifs); 3946 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[0][ifs->ifs_fr_active], ifs); 3947 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[1][ifs->ifs_fr_active], ifs); 3948 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[0][ifs->ifs_fr_active], ifs); 3949 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[1][ifs->ifs_fr_active], ifs); 3950 3951 for (i = 0; i < IPL_LOGSIZE; i++) { 3952 frgroup_t *g; 3953 3954 for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next) 3955 frsynclist(action, v, ifp, name, g->fg_start, ifs); 3956 for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next) 3957 frsynclist(action, v, ifp, name, g->fg_start, ifs); 3958 } 3959 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 3960 } 3961 3962 #if SOLARIS2 >= 10 3963 /* ------------------------------------------------------------------------ */ 3964 /* Function: fr_syncindex */ 3965 /* Returns: void */ 3966 /* Parameters: rules - list of rules to be sync'd */ 3967 /* ifp - interface, which is being sync'd */ 3968 /* newifp - new ifindex value for interface */ 3969 /* */ 3970 /* Function updates all NIC indecis, which match ifp, in every rule. Every */ 3971 /* NIC index matching ifp, will be updated to newifp. */ 3972 /* ------------------------------------------------------------------------ */ 3973 static void fr_syncindex(rules, ifp, newifp) 3974 frentry_t *rules; 3975 void *ifp; 3976 void *newifp; 3977 { 3978 int i; 3979 frentry_t *fr; 3980 3981 for (fr = rules; fr != NULL; fr = fr->fr_next) { 3982 /* 3983 * Lookup all the interface names that are part of the rule. 3984 */ 3985 for (i = 0; i < 4; i++) 3986 if (fr->fr_ifas[i] == ifp) 3987 fr->fr_ifas[i] = newifp; 3988 3989 for (i = 0; i < 2; i++) { 3990 if (fr->fr_tifs[i].fd_ifp == ifp) 3991 fr->fr_tifs[i].fd_ifp = newifp; 3992 } 3993 3994 if (fr->fr_dif.fd_ifp == ifp) 3995 fr->fr_dif.fd_ifp = newifp; 3996 } 3997 } 3998 3999 /* ------------------------------------------------------------------------ */ 4000 /* Function: fr_ifindexsync */ 4001 /* Returns: void */ 4002 /* Parameters: ifp - interface, which is being sync'd */ 4003 /* newifp - new ifindex value for interface */ 4004 /* ifs - IPF's stack */ 4005 /* */ 4006 /* Function assumes ipf_mutex is locked exclusively. */ 4007 /* */ 4008 /* Function updates the NIC references in rules with new interfaces index */ 4009 /* (newifp). Function must process active lists: */ 4010 /* with accounting rules (IPv6 and IPv4) */ 4011 /* with inbound rules (IPv6 and IPv4) */ 4012 /* with outbound rules (IPv6 and IPv4) */ 4013 /* Function also has to take care of rule groups. */ 4014 /* */ 4015 /* NOTE: The ipf_mutex is grabbed exclusively by caller (which is always */ 4016 /* nic_event_hook). The hook function also updates state entries, NAT rules */ 4017 /* and NAT entries. We want to do all these update atomically to keep the */ 4018 /* NIC references consistent. The ipf_mutex will synchronize event with */ 4019 /* fr_check(), which processes packets, so no packet will enter fr_check(), */ 4020 /* while NIC references will be synchronized. */ 4021 /* ------------------------------------------------------------------------ */ 4022 void fr_ifindexsync(ifp, newifp, ifs) 4023 void *ifp; 4024 void *newifp; 4025 ipf_stack_t *ifs; 4026 { 4027 unsigned int i; 4028 frentry_t *rule_lists[8]; 4029 unsigned int rules = sizeof (rule_lists) / sizeof (frentry_t *); 4030 4031 rule_lists[0] = ifs->ifs_ipacct[0][ifs->ifs_fr_active]; 4032 rule_lists[1] = ifs->ifs_ipacct[1][ifs->ifs_fr_active]; 4033 rule_lists[2] = ifs->ifs_ipfilter[0][ifs->ifs_fr_active]; 4034 rule_lists[3] = ifs->ifs_ipfilter[1][ifs->ifs_fr_active]; 4035 rule_lists[4] = ifs->ifs_ipacct6[0][ifs->ifs_fr_active]; 4036 rule_lists[5] = ifs->ifs_ipacct6[1][ifs->ifs_fr_active]; 4037 rule_lists[6] = ifs->ifs_ipfilter6[0][ifs->ifs_fr_active]; 4038 rule_lists[7] = ifs->ifs_ipfilter6[1][ifs->ifs_fr_active]; 4039 4040 for (i = 0; i < rules; i++) { 4041 fr_syncindex(rule_lists[i], ifp, newifp); 4042 } 4043 4044 /* 4045 * Update rule groups. 4046 */ 4047 for (i = 0; i < IPL_LOGSIZE; i++) { 4048 frgroup_t *g; 4049 4050 for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next) 4051 fr_syncindex(g->fg_start, ifp, newifp); 4052 for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next) 4053 fr_syncindex(g->fg_start, ifp, newifp); 4054 } 4055 } 4056 #endif 4057 4058 /* 4059 * In the functions below, bcopy() is called because the pointer being 4060 * copied _from_ in this instance is a pointer to a char buf (which could 4061 * end up being unaligned) and on the kernel's local stack. 4062 */ 4063 /* ------------------------------------------------------------------------ */ 4064 /* Function: copyinptr */ 4065 /* Returns: int - 0 = success, else failure */ 4066 /* Parameters: src(I) - pointer to the source address */ 4067 /* dst(I) - destination address */ 4068 /* size(I) - number of bytes to copy */ 4069 /* */ 4070 /* Copy a block of data in from user space, given a pointer to the pointer */ 4071 /* to start copying from (src) and a pointer to where to store it (dst). */ 4072 /* NB: src - pointer to user space pointer, dst - kernel space pointer */ 4073 /* ------------------------------------------------------------------------ */ 4074 int copyinptr(src, dst, size) 4075 void *src, *dst; 4076 size_t size; 4077 { 4078 caddr_t ca; 4079 int err; 4080 4081 # ifdef SOLARIS 4082 err = COPYIN(src, (caddr_t)&ca, sizeof(ca)); 4083 if (err != 0) 4084 return err; 4085 # else 4086 bcopy(src, (caddr_t)&ca, sizeof(ca)); 4087 # endif 4088 err = COPYIN(ca, dst, size); 4089 return err; 4090 } 4091 4092 4093 /* ------------------------------------------------------------------------ */ 4094 /* Function: copyoutptr */ 4095 /* Returns: int - 0 = success, else failure */ 4096 /* Parameters: src(I) - pointer to the source address */ 4097 /* dst(I) - destination address */ 4098 /* size(I) - number of bytes to copy */ 4099 /* */ 4100 /* Copy a block of data out to user space, given a pointer to the pointer */ 4101 /* to start copying from (src) and a pointer to where to store it (dst). */ 4102 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */ 4103 /* ------------------------------------------------------------------------ */ 4104 int copyoutptr(src, dst, size) 4105 void *src, *dst; 4106 size_t size; 4107 { 4108 caddr_t ca; 4109 int err; 4110 4111 # ifdef SOLARIS 4112 err = COPYIN(dst, (caddr_t)&ca, sizeof(ca)); 4113 if (err != 0) 4114 return err; 4115 # else 4116 bcopy(dst, (caddr_t)&ca, sizeof(ca)); 4117 # endif 4118 err = COPYOUT(src, ca, size); 4119 return err; 4120 } 4121 #endif 4122 4123 4124 /* ------------------------------------------------------------------------ */ 4125 /* Function: fr_lock */ 4126 /* Returns: int - 0 = success, else error */ 4127 /* Parameters: data(I) - pointer to lock value to set */ 4128 /* lockp(O) - pointer to location to store old lock value */ 4129 /* */ 4130 /* Get the new value for the lock integer, set it and return the old value */ 4131 /* in *lockp. */ 4132 /* ------------------------------------------------------------------------ */ 4133 int fr_lock(data, lockp) 4134 caddr_t data; 4135 int *lockp; 4136 { 4137 int arg, err; 4138 4139 err = BCOPYIN(data, (caddr_t)&arg, sizeof(arg)); 4140 if (err != 0) 4141 return (EFAULT); 4142 err = BCOPYOUT((caddr_t)lockp, data, sizeof(*lockp)); 4143 if (err != 0) 4144 return (EFAULT); 4145 *lockp = arg; 4146 return (0); 4147 } 4148 4149 4150 /* ------------------------------------------------------------------------ */ 4151 /* Function: fr_getstat */ 4152 /* Returns: Nil */ 4153 /* Parameters: fiop(I) - pointer to ipfilter stats structure */ 4154 /* */ 4155 /* Stores a copy of current pointers, counters, etc, in the friostat */ 4156 /* structure. */ 4157 /* ------------------------------------------------------------------------ */ 4158 void fr_getstat(fiop, ifs) 4159 friostat_t *fiop; 4160 ipf_stack_t *ifs; 4161 { 4162 int i, j; 4163 4164 bcopy((char *)&ifs->ifs_frstats, (char *)fiop->f_st, 4165 sizeof(filterstats_t) * 2); 4166 fiop->f_locks[IPL_LOGSTATE] = ifs->ifs_fr_state_lock; 4167 fiop->f_locks[IPL_LOGNAT] = ifs->ifs_fr_nat_lock; 4168 fiop->f_locks[IPL_LOGIPF] = ifs->ifs_fr_frag_lock; 4169 fiop->f_locks[IPL_LOGAUTH] = ifs->ifs_fr_auth_lock; 4170 4171 for (i = 0; i < 2; i++) 4172 for (j = 0; j < 2; j++) { 4173 fiop->f_ipf[i][j] = ifs->ifs_ipfilter[i][j]; 4174 fiop->f_acct[i][j] = ifs->ifs_ipacct[i][j]; 4175 fiop->f_ipf6[i][j] = ifs->ifs_ipfilter6[i][j]; 4176 fiop->f_acct6[i][j] = ifs->ifs_ipacct6[i][j]; 4177 } 4178 4179 fiop->f_ticks = ifs->ifs_fr_ticks; 4180 fiop->f_active = ifs->ifs_fr_active; 4181 fiop->f_froute[0] = ifs->ifs_fr_frouteok[0]; 4182 fiop->f_froute[1] = ifs->ifs_fr_frouteok[1]; 4183 4184 fiop->f_running = ifs->ifs_fr_running; 4185 for (i = 0; i < IPL_LOGSIZE; i++) { 4186 fiop->f_groups[i][0] = ifs->ifs_ipfgroups[i][0]; 4187 fiop->f_groups[i][1] = ifs->ifs_ipfgroups[i][1]; 4188 } 4189 #ifdef IPFILTER_LOG 4190 fiop->f_logging = 1; 4191 #else 4192 fiop->f_logging = 0; 4193 #endif 4194 fiop->f_defpass = ifs->ifs_fr_pass; 4195 fiop->f_features = fr_features; 4196 (void) strncpy(fiop->f_version, ipfilter_version, 4197 sizeof(fiop->f_version)); 4198 } 4199 4200 4201 #ifdef USE_INET6 4202 int icmptoicmp6types[ICMP_MAXTYPE+1] = { 4203 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */ 4204 -1, /* 1: UNUSED */ 4205 -1, /* 2: UNUSED */ 4206 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */ 4207 -1, /* 4: ICMP_SOURCEQUENCH */ 4208 ND_REDIRECT, /* 5: ICMP_REDIRECT */ 4209 -1, /* 6: UNUSED */ 4210 -1, /* 7: UNUSED */ 4211 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */ 4212 -1, /* 9: UNUSED */ 4213 -1, /* 10: UNUSED */ 4214 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */ 4215 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */ 4216 -1, /* 13: ICMP_TSTAMP */ 4217 -1, /* 14: ICMP_TSTAMPREPLY */ 4218 -1, /* 15: ICMP_IREQ */ 4219 -1, /* 16: ICMP_IREQREPLY */ 4220 -1, /* 17: ICMP_MASKREQ */ 4221 -1, /* 18: ICMP_MASKREPLY */ 4222 }; 4223 4224 4225 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = { 4226 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */ 4227 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */ 4228 -1, /* 2: ICMP_UNREACH_PROTOCOL */ 4229 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */ 4230 -1, /* 4: ICMP_UNREACH_NEEDFRAG */ 4231 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */ 4232 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */ 4233 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */ 4234 -1, /* 8: ICMP_UNREACH_ISOLATED */ 4235 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */ 4236 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */ 4237 -1, /* 11: ICMP_UNREACH_TOSNET */ 4238 -1, /* 12: ICMP_UNREACH_TOSHOST */ 4239 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */ 4240 }; 4241 int icmpreplytype6[ICMP6_MAXTYPE + 1]; 4242 #endif 4243 4244 int icmpreplytype4[ICMP_MAXTYPE + 1]; 4245 4246 4247 /* ------------------------------------------------------------------------ */ 4248 /* Function: fr_matchicmpqueryreply */ 4249 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */ 4250 /* Parameters: v(I) - IP protocol version (4 or 6) */ 4251 /* ic(I) - ICMP information */ 4252 /* icmp(I) - ICMP packet header */ 4253 /* rev(I) - direction (0 = forward/1 = reverse) of packet */ 4254 /* */ 4255 /* Check if the ICMP packet defined by the header pointed to by icmp is a */ 4256 /* reply to one as described by what's in ic. If it is a match, return 1, */ 4257 /* else return 0 for no match. */ 4258 /* ------------------------------------------------------------------------ */ 4259 int fr_matchicmpqueryreply(v, ic, icmp, rev) 4260 int v; 4261 icmpinfo_t *ic; 4262 icmphdr_t *icmp; 4263 int rev; 4264 { 4265 int ictype; 4266 4267 ictype = ic->ici_type; 4268 4269 if (v == 4) { 4270 /* 4271 * If we matched its type on the way in, then when going out 4272 * it will still be the same type. 4273 */ 4274 if ((!rev && (icmp->icmp_type == ictype)) || 4275 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) { 4276 if (icmp->icmp_type != ICMP_ECHOREPLY) 4277 return 1; 4278 if (icmp->icmp_id == ic->ici_id) 4279 return 1; 4280 } 4281 } 4282 #ifdef USE_INET6 4283 else if (v == 6) { 4284 if ((!rev && (icmp->icmp_type == ictype)) || 4285 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) { 4286 if (icmp->icmp_type != ICMP6_ECHO_REPLY) 4287 return 1; 4288 if (icmp->icmp_id == ic->ici_id) 4289 return 1; 4290 } 4291 } 4292 #endif 4293 return 0; 4294 } 4295 4296 4297 #ifdef IPFILTER_LOOKUP 4298 /* ------------------------------------------------------------------------ */ 4299 /* Function: fr_resolvelookup */ 4300 /* Returns: void * - NULL = failure, else success. */ 4301 /* Parameters: type(I) - type of lookup these parameters are for. */ 4302 /* number(I) - table number to use when searching */ 4303 /* funcptr(IO) - pointer to pointer for storing IP address */ 4304 /* searching function. */ 4305 /* ifs - ipf stack instance */ 4306 /* */ 4307 /* Search for the "table" number passed in amongst those configured for */ 4308 /* that particular type. If the type is recognised then the function to */ 4309 /* call to do the IP address search will be change, regardless of whether */ 4310 /* or not the "table" number exists. */ 4311 /* ------------------------------------------------------------------------ */ 4312 static void *fr_resolvelookup(type, number, funcptr, ifs) 4313 u_int type, number; 4314 lookupfunc_t *funcptr; 4315 ipf_stack_t *ifs; 4316 { 4317 char name[FR_GROUPLEN]; 4318 iphtable_t *iph; 4319 ip_pool_t *ipo; 4320 void *ptr; 4321 4322 #if defined(SNPRINTF) && defined(_KERNEL) 4323 (void) SNPRINTF(name, sizeof(name), "%u", number); 4324 #else 4325 (void) sprintf(name, "%u", number); 4326 #endif 4327 4328 READ_ENTER(&ifs->ifs_ip_poolrw); 4329 4330 switch (type) 4331 { 4332 case IPLT_POOL : 4333 # if (defined(__osf__) && defined(_KERNEL)) 4334 ptr = NULL; 4335 *funcptr = NULL; 4336 # else 4337 ipo = ip_pool_find(IPL_LOGIPF, name, ifs); 4338 ptr = ipo; 4339 if (ipo != NULL) { 4340 ATOMIC_INC32(ipo->ipo_ref); 4341 } 4342 *funcptr = ip_pool_search; 4343 # endif 4344 break; 4345 case IPLT_HASH : 4346 iph = fr_findhtable(IPL_LOGIPF, name, ifs); 4347 ptr = iph; 4348 if (iph != NULL) { 4349 ATOMIC_INC32(iph->iph_ref); 4350 } 4351 *funcptr = fr_iphmfindip; 4352 break; 4353 default: 4354 ptr = NULL; 4355 *funcptr = NULL; 4356 break; 4357 } 4358 RWLOCK_EXIT(&ifs->ifs_ip_poolrw); 4359 4360 return ptr; 4361 } 4362 #endif 4363 4364 4365 /* ------------------------------------------------------------------------ */ 4366 /* Function: frrequest */ 4367 /* Returns: int - 0 == success, > 0 == errno value */ 4368 /* Parameters: unit(I) - device for which this is for */ 4369 /* req(I) - ioctl command (SIOC*) */ 4370 /* data(I) - pointr to ioctl data */ 4371 /* set(I) - 1 or 0 (filter set) */ 4372 /* makecopy(I) - flag indicating whether data points to a rule */ 4373 /* in kernel space & hence doesn't need copying. */ 4374 /* */ 4375 /* This function handles all the requests which operate on the list of */ 4376 /* filter rules. This includes adding, deleting, insertion. It is also */ 4377 /* responsible for creating groups when a "head" rule is loaded. Interface */ 4378 /* names are resolved here and other sanity checks are made on the content */ 4379 /* of the rule structure being loaded. If a rule has user defined timeouts */ 4380 /* then make sure they are created and initialised before exiting. */ 4381 /* ------------------------------------------------------------------------ */ 4382 int frrequest(unit, req, data, set, makecopy, ifs) 4383 int unit; 4384 ioctlcmd_t req; 4385 int set, makecopy; 4386 caddr_t data; 4387 ipf_stack_t *ifs; 4388 { 4389 frentry_t frd, *fp, *f, **fprev, **ftail; 4390 int error = 0, in, v; 4391 void *ptr, *uptr; 4392 u_int *p, *pp; 4393 frgroup_t *fg; 4394 char *group; 4395 4396 fg = NULL; 4397 fp = &frd; 4398 if (makecopy != 0) { 4399 error = fr_inobj(data, fp, IPFOBJ_FRENTRY); 4400 if (error) 4401 return EFAULT; 4402 if ((fp->fr_flags & FR_T_BUILTIN) != 0) 4403 return EINVAL; 4404 fp->fr_ref = 0; 4405 fp->fr_flags |= FR_COPIED; 4406 } else { 4407 fp = (frentry_t *)data; 4408 if ((fp->fr_type & FR_T_BUILTIN) == 0) 4409 return EINVAL; 4410 fp->fr_flags &= ~FR_COPIED; 4411 } 4412 4413 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) || 4414 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) 4415 return EINVAL; 4416 4417 v = fp->fr_v; 4418 uptr = fp->fr_data; 4419 4420 /* 4421 * Only filter rules for IPv4 or IPv6 are accepted. 4422 */ 4423 if (v == 4) 4424 /*EMPTY*/; 4425 #ifdef USE_INET6 4426 else if (v == 6) 4427 /*EMPTY*/; 4428 #endif 4429 else { 4430 return EINVAL; 4431 } 4432 4433 /* 4434 * If the rule is being loaded from user space, i.e. we had to copy it 4435 * into kernel space, then do not trust the function pointer in the 4436 * rule. 4437 */ 4438 if ((makecopy == 1) && (fp->fr_func != NULL)) { 4439 if (fr_findfunc(fp->fr_func) == NULL) 4440 return ESRCH; 4441 error = fr_funcinit(fp, ifs); 4442 if (error != 0) 4443 return error; 4444 } 4445 4446 ptr = NULL; 4447 /* 4448 * Check that the group number does exist and that its use (in/out) 4449 * matches what the rule is. 4450 */ 4451 if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN)) 4452 *fp->fr_grhead = '\0'; 4453 group = fp->fr_group; 4454 if (!strncmp(group, "0", FR_GROUPLEN)) 4455 *group = '\0'; 4456 4457 if (FR_ISACCOUNT(fp->fr_flags)) 4458 unit = IPL_LOGCOUNT; 4459 4460 if ((req != (int)SIOCZRLST) && (*group != '\0')) { 4461 fg = fr_findgroup(group, unit, set, NULL, ifs); 4462 if (fg == NULL) 4463 return ESRCH; 4464 if (fg->fg_flags == 0) 4465 fg->fg_flags = fp->fr_flags & FR_INOUT; 4466 else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) 4467 return ESRCH; 4468 } 4469 4470 in = (fp->fr_flags & FR_INQUE) ? 0 : 1; 4471 4472 /* 4473 * Work out which rule list this change is being applied to. 4474 */ 4475 ftail = NULL; 4476 fprev = NULL; 4477 if (unit == IPL_LOGAUTH) 4478 fprev = &ifs->ifs_ipauth; 4479 else if (v == 4) { 4480 if (FR_ISACCOUNT(fp->fr_flags)) 4481 fprev = &ifs->ifs_ipacct[in][set]; 4482 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4483 fprev = &ifs->ifs_ipfilter[in][set]; 4484 } else if (v == 6) { 4485 if (FR_ISACCOUNT(fp->fr_flags)) 4486 fprev = &ifs->ifs_ipacct6[in][set]; 4487 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4488 fprev = &ifs->ifs_ipfilter6[in][set]; 4489 } 4490 if (fprev == NULL) 4491 return ESRCH; 4492 4493 if (*group != '\0') { 4494 if (!fg && !(fg = fr_findgroup(group, unit, set, NULL, ifs))) 4495 return ESRCH; 4496 fprev = &fg->fg_start; 4497 } 4498 4499 ftail = fprev; 4500 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) { 4501 if (fp->fr_collect <= f->fr_collect) { 4502 ftail = fprev; 4503 f = NULL; 4504 break; 4505 } 4506 fprev = ftail; 4507 } 4508 4509 /* 4510 * Copy in extra data for the rule. 4511 */ 4512 if (fp->fr_dsize != 0) { 4513 if (makecopy != 0) { 4514 KMALLOCS(ptr, void *, fp->fr_dsize); 4515 if (!ptr) 4516 return ENOMEM; 4517 error = COPYIN(uptr, ptr, fp->fr_dsize); 4518 } else { 4519 ptr = uptr; 4520 error = 0; 4521 } 4522 if (error != 0) { 4523 KFREES(ptr, fp->fr_dsize); 4524 return EFAULT; 4525 } 4526 fp->fr_data = ptr; 4527 } else 4528 fp->fr_data = NULL; 4529 4530 /* 4531 * Perform per-rule type sanity checks of their members. 4532 */ 4533 switch (fp->fr_type & ~FR_T_BUILTIN) 4534 { 4535 #if defined(IPFILTER_BPF) 4536 case FR_T_BPFOPC : 4537 if (fp->fr_dsize == 0) 4538 return EINVAL; 4539 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) { 4540 if (makecopy && fp->fr_data != NULL) { 4541 KFREES(fp->fr_data, fp->fr_dsize); 4542 } 4543 return EINVAL; 4544 } 4545 break; 4546 #endif 4547 case FR_T_IPF : 4548 if (fp->fr_dsize != sizeof(fripf_t)) { 4549 if (makecopy && fp->fr_data != NULL) { 4550 KFREES(fp->fr_data, fp->fr_dsize); 4551 } 4552 return EINVAL; 4553 } 4554 4555 /* 4556 * Allowing a rule with both "keep state" and "with oow" is 4557 * pointless because adding a state entry to the table will 4558 * fail with the out of window (oow) flag set. 4559 */ 4560 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) { 4561 if (makecopy && fp->fr_data != NULL) { 4562 KFREES(fp->fr_data, fp->fr_dsize); 4563 } 4564 return EINVAL; 4565 } 4566 4567 switch (fp->fr_satype) 4568 { 4569 case FRI_BROADCAST : 4570 case FRI_DYNAMIC : 4571 case FRI_NETWORK : 4572 case FRI_NETMASKED : 4573 case FRI_PEERADDR : 4574 if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) { 4575 if (makecopy && fp->fr_data != NULL) { 4576 KFREES(fp->fr_data, fp->fr_dsize); 4577 } 4578 return EINVAL; 4579 } 4580 break; 4581 #ifdef IPFILTER_LOOKUP 4582 case FRI_LOOKUP : 4583 fp->fr_srcptr = fr_resolvelookup(fp->fr_srctype, 4584 fp->fr_srcnum, 4585 &fp->fr_srcfunc, ifs); 4586 break; 4587 #endif 4588 default : 4589 break; 4590 } 4591 4592 switch (fp->fr_datype) 4593 { 4594 case FRI_BROADCAST : 4595 case FRI_DYNAMIC : 4596 case FRI_NETWORK : 4597 case FRI_NETMASKED : 4598 case FRI_PEERADDR : 4599 if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) { 4600 if (makecopy && fp->fr_data != NULL) { 4601 KFREES(fp->fr_data, fp->fr_dsize); 4602 } 4603 return EINVAL; 4604 } 4605 break; 4606 #ifdef IPFILTER_LOOKUP 4607 case FRI_LOOKUP : 4608 fp->fr_dstptr = fr_resolvelookup(fp->fr_dsttype, 4609 fp->fr_dstnum, 4610 &fp->fr_dstfunc, ifs); 4611 break; 4612 #endif 4613 default : 4614 break; 4615 } 4616 break; 4617 case FR_T_NONE : 4618 break; 4619 case FR_T_CALLFUNC : 4620 break; 4621 case FR_T_COMPIPF : 4622 break; 4623 default : 4624 if (makecopy && fp->fr_data != NULL) { 4625 KFREES(fp->fr_data, fp->fr_dsize); 4626 } 4627 return EINVAL; 4628 } 4629 4630 /* 4631 * Lookup all the interface names that are part of the rule. 4632 */ 4633 frsynclist(0, 0, NULL, NULL, fp, ifs); 4634 fp->fr_statecnt = 0; 4635 4636 /* 4637 * Look for an existing matching filter rule, but don't include the 4638 * next or interface pointer in the comparison (fr_next, fr_ifa). 4639 * This elminates rules which are indentical being loaded. Checksum 4640 * the constant part of the filter rule to make comparisons quicker 4641 * (this meaning no pointers are included). 4642 */ 4643 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum; 4644 p < pp; p++) 4645 fp->fr_cksum += *p; 4646 pp = (u_int *)(fp->fr_caddr + fp->fr_dsize); 4647 for (p = (u_int *)fp->fr_data; p < pp; p++) 4648 fp->fr_cksum += *p; 4649 4650 WRITE_ENTER(&ifs->ifs_ipf_mutex); 4651 bzero((char *)ifs->ifs_frcache, sizeof (ifs->ifs_frcache)); 4652 4653 for (; (f = *ftail) != NULL; ftail = &f->fr_next) { 4654 if ((fp->fr_cksum != f->fr_cksum) || 4655 (f->fr_dsize != fp->fr_dsize)) 4656 continue; 4657 if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ)) 4658 continue; 4659 if ((!ptr && !f->fr_data) || 4660 (ptr && f->fr_data && 4661 !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize))) 4662 break; 4663 } 4664 4665 /* 4666 * If zero'ing statistics, copy current to caller and zero. 4667 */ 4668 if (req == (ioctlcmd_t)SIOCZRLST) { 4669 if (f == NULL) 4670 error = ESRCH; 4671 else { 4672 /* 4673 * Copy and reduce lock because of impending copyout. 4674 * Well we should, but if we do then the atomicity of 4675 * this call and the correctness of fr_hits and 4676 * fr_bytes cannot be guaranteed. As it is, this code 4677 * only resets them to 0 if they are successfully 4678 * copied out into user space. 4679 */ 4680 bcopy((char *)f, (char *)fp, sizeof(*f)); 4681 4682 /* 4683 * When we copy this rule back out, set the data 4684 * pointer to be what it was in user space. 4685 */ 4686 fp->fr_data = uptr; 4687 error = fr_outobj(data, fp, IPFOBJ_FRENTRY); 4688 4689 if (error == 0) { 4690 if ((f->fr_dsize != 0) && (uptr != NULL)) 4691 error = COPYOUT(f->fr_data, uptr, 4692 f->fr_dsize); 4693 if (error == 0) { 4694 f->fr_hits = 0; 4695 f->fr_bytes = 0; 4696 } 4697 } 4698 } 4699 4700 if ((ptr != NULL) && (makecopy != 0)) { 4701 KFREES(ptr, fp->fr_dsize); 4702 } 4703 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 4704 return error; 4705 } 4706 4707 if (!f) { 4708 /* 4709 * At the end of this, ftail must point to the place where the 4710 * new rule is to be saved/inserted/added. 4711 * For SIOCAD*FR, this should be the last rule in the group of 4712 * rules that have equal fr_collect fields. 4713 * For SIOCIN*FR, ... 4714 */ 4715 if (req == (ioctlcmd_t)SIOCADAFR || 4716 req == (ioctlcmd_t)SIOCADIFR) { 4717 4718 for (ftail = fprev; (f = *ftail) != NULL; ) { 4719 if (f->fr_collect > fp->fr_collect) 4720 break; 4721 ftail = &f->fr_next; 4722 } 4723 f = NULL; 4724 ptr = NULL; 4725 error = 0; 4726 } else if (req == (ioctlcmd_t)SIOCINAFR || 4727 req == (ioctlcmd_t)SIOCINIFR) { 4728 while ((f = *fprev) != NULL) { 4729 if (f->fr_collect >= fp->fr_collect) 4730 break; 4731 fprev = &f->fr_next; 4732 } 4733 ftail = fprev; 4734 if (fp->fr_hits != 0) { 4735 while (fp->fr_hits && (f = *ftail)) { 4736 if (f->fr_collect != fp->fr_collect) 4737 break; 4738 fprev = ftail; 4739 ftail = &f->fr_next; 4740 fp->fr_hits--; 4741 } 4742 } 4743 f = NULL; 4744 ptr = NULL; 4745 error = 0; 4746 } 4747 } 4748 4749 /* 4750 * Request to remove a rule. 4751 */ 4752 if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) { 4753 if (!f) 4754 error = ESRCH; 4755 else { 4756 /* 4757 * Do not allow activity from user space to interfere 4758 * with rules not loaded that way. 4759 */ 4760 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) { 4761 error = EPERM; 4762 goto done; 4763 } 4764 4765 /* 4766 * Return EBUSY if the rule is being reference by 4767 * something else (eg state information. 4768 */ 4769 if (f->fr_ref > 1) { 4770 error = EBUSY; 4771 goto done; 4772 } 4773 #ifdef IPFILTER_SCAN 4774 if (f->fr_isctag[0] != '\0' && 4775 (f->fr_isc != (struct ipscan *)-1)) 4776 ipsc_detachfr(f); 4777 #endif 4778 if (unit == IPL_LOGAUTH) { 4779 error = fr_preauthcmd(req, f, ftail, ifs); 4780 goto done; 4781 } 4782 if (*f->fr_grhead != '\0') 4783 fr_delgroup(f->fr_grhead, unit, set, ifs); 4784 fr_fixskip(ftail, f, -1); 4785 *ftail = f->fr_next; 4786 f->fr_next = NULL; 4787 (void)fr_derefrule(&f, ifs); 4788 } 4789 } else { 4790 /* 4791 * Not removing, so we must be adding/inserting a rule. 4792 */ 4793 if (f) 4794 error = EEXIST; 4795 else { 4796 if (unit == IPL_LOGAUTH) { 4797 error = fr_preauthcmd(req, fp, ftail, ifs); 4798 goto done; 4799 } 4800 if (makecopy) { 4801 KMALLOC(f, frentry_t *); 4802 } else 4803 f = fp; 4804 if (f != NULL) { 4805 if (fp != f) 4806 bcopy((char *)fp, (char *)f, 4807 sizeof(*f)); 4808 MUTEX_NUKE(&f->fr_lock); 4809 MUTEX_INIT(&f->fr_lock, "filter rule lock"); 4810 #ifdef IPFILTER_SCAN 4811 if (f->fr_isctag[0] != '\0' && 4812 ipsc_attachfr(f)) 4813 f->fr_isc = (struct ipscan *)-1; 4814 #endif 4815 f->fr_hits = 0; 4816 if (makecopy != 0) 4817 f->fr_ref = 1; 4818 f->fr_next = *ftail; 4819 *ftail = f; 4820 if (req == (ioctlcmd_t)SIOCINIFR || 4821 req == (ioctlcmd_t)SIOCINAFR) 4822 fr_fixskip(ftail, f, 1); 4823 f->fr_grp = NULL; 4824 group = f->fr_grhead; 4825 if (*group != '\0') { 4826 fg = fr_addgroup(group, f, f->fr_flags, 4827 unit, set, ifs); 4828 if (fg != NULL) 4829 f->fr_grp = &fg->fg_start; 4830 } 4831 } else 4832 error = ENOMEM; 4833 } 4834 } 4835 done: 4836 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 4837 if ((ptr != NULL) && (error != 0) && (makecopy != 0)) { 4838 KFREES(ptr, fp->fr_dsize); 4839 } 4840 return (error); 4841 } 4842 4843 4844 /* ------------------------------------------------------------------------ */ 4845 /* Function: fr_funcinit */ 4846 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */ 4847 /* Parameters: fr(I) - pointer to filter rule */ 4848 /* */ 4849 /* If a rule is a call rule, then check if the function it points to needs */ 4850 /* an init function to be called now the rule has been loaded. */ 4851 /* ------------------------------------------------------------------------ */ 4852 static int fr_funcinit(fr, ifs) 4853 frentry_t *fr; 4854 ipf_stack_t *ifs; 4855 { 4856 ipfunc_resolve_t *ft; 4857 int err; 4858 4859 err = ESRCH; 4860 4861 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4862 if (ft->ipfu_addr == fr->fr_func) { 4863 err = 0; 4864 if (ft->ipfu_init != NULL) 4865 err = (*ft->ipfu_init)(fr, ifs); 4866 break; 4867 } 4868 return err; 4869 } 4870 4871 4872 /* ------------------------------------------------------------------------ */ 4873 /* Function: fr_findfunc */ 4874 /* Returns: ipfunc_t - pointer to function if found, else NULL */ 4875 /* Parameters: funcptr(I) - function pointer to lookup */ 4876 /* */ 4877 /* Look for a function in the table of known functions. */ 4878 /* ------------------------------------------------------------------------ */ 4879 static ipfunc_t fr_findfunc(funcptr) 4880 ipfunc_t funcptr; 4881 { 4882 ipfunc_resolve_t *ft; 4883 4884 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4885 if (ft->ipfu_addr == funcptr) 4886 return funcptr; 4887 return NULL; 4888 } 4889 4890 4891 /* ------------------------------------------------------------------------ */ 4892 /* Function: fr_resolvefunc */ 4893 /* Returns: int - 0 == success, else error */ 4894 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */ 4895 /* */ 4896 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */ 4897 /* This will either be the function name (if the pointer is set) or the */ 4898 /* function pointer if the name is set. When found, fill in the other one */ 4899 /* so that the entire, complete, structure can be copied back to user space.*/ 4900 /* ------------------------------------------------------------------------ */ 4901 int fr_resolvefunc(data) 4902 void *data; 4903 { 4904 ipfunc_resolve_t res, *ft; 4905 int err; 4906 4907 err = BCOPYIN(data, &res, sizeof(res)); 4908 if (err != 0) 4909 return EFAULT; 4910 4911 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') { 4912 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4913 if (strncmp(res.ipfu_name, ft->ipfu_name, 4914 sizeof(res.ipfu_name)) == 0) { 4915 res.ipfu_addr = ft->ipfu_addr; 4916 res.ipfu_init = ft->ipfu_init; 4917 if (COPYOUT(&res, data, sizeof(res)) != 0) 4918 return EFAULT; 4919 return 0; 4920 } 4921 } 4922 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') { 4923 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4924 if (ft->ipfu_addr == res.ipfu_addr) { 4925 (void) strncpy(res.ipfu_name, ft->ipfu_name, 4926 sizeof(res.ipfu_name)); 4927 res.ipfu_init = ft->ipfu_init; 4928 if (COPYOUT(&res, data, sizeof(res)) != 0) 4929 return EFAULT; 4930 return 0; 4931 } 4932 } 4933 return ESRCH; 4934 } 4935 4936 4937 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \ 4938 (defined(__FreeBSD__) && (__FreeBSD_version < 490000)) || \ 4939 (defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \ 4940 (defined(__OpenBSD__) && (OpenBSD < 200006)) 4941 /* 4942 * From: NetBSD 4943 * ppsratecheck(): packets (or events) per second limitation. 4944 */ 4945 int 4946 ppsratecheck(lasttime, curpps, maxpps) 4947 struct timeval *lasttime; 4948 int *curpps; 4949 int maxpps; /* maximum pps allowed */ 4950 { 4951 struct timeval tv, delta; 4952 int rv; 4953 4954 GETKTIME(&tv); 4955 4956 delta.tv_sec = tv.tv_sec - lasttime->tv_sec; 4957 delta.tv_usec = tv.tv_usec - lasttime->tv_usec; 4958 if (delta.tv_usec < 0) { 4959 delta.tv_sec--; 4960 delta.tv_usec += 1000000; 4961 } 4962 4963 /* 4964 * check for 0,0 is so that the message will be seen at least once. 4965 * if more than one second have passed since the last update of 4966 * lasttime, reset the counter. 4967 * 4968 * we do increment *curpps even in *curpps < maxpps case, as some may 4969 * try to use *curpps for stat purposes as well. 4970 */ 4971 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || 4972 delta.tv_sec >= 1) { 4973 *lasttime = tv; 4974 *curpps = 0; 4975 rv = 1; 4976 } else if (maxpps < 0) 4977 rv = 1; 4978 else if (*curpps < maxpps) 4979 rv = 1; 4980 else 4981 rv = 0; 4982 *curpps = *curpps + 1; 4983 4984 return (rv); 4985 } 4986 #endif 4987 4988 4989 /* ------------------------------------------------------------------------ */ 4990 /* Function: fr_derefrule */ 4991 /* Returns: int - 0 == rule freed up, else rule not freed */ 4992 /* Parameters: fr(I) - pointer to filter rule */ 4993 /* */ 4994 /* Decrement the reference counter to a rule by one. If it reaches zero, */ 4995 /* free it and any associated storage space being used by it. */ 4996 /* ------------------------------------------------------------------------ */ 4997 int fr_derefrule(frp, ifs) 4998 frentry_t **frp; 4999 ipf_stack_t *ifs; 5000 { 5001 frentry_t *fr; 5002 5003 fr = *frp; 5004 5005 MUTEX_ENTER(&fr->fr_lock); 5006 fr->fr_ref--; 5007 if (fr->fr_ref == 0) { 5008 MUTEX_EXIT(&fr->fr_lock); 5009 MUTEX_DESTROY(&fr->fr_lock); 5010 5011 #ifdef IPFILTER_LOOKUP 5012 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP) 5013 ip_lookup_deref(fr->fr_srctype, fr->fr_srcptr, ifs); 5014 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP) 5015 ip_lookup_deref(fr->fr_dsttype, fr->fr_dstptr, ifs); 5016 #endif 5017 5018 if (fr->fr_dsize) { 5019 KFREES(fr->fr_data, fr->fr_dsize); 5020 } 5021 if ((fr->fr_flags & FR_COPIED) != 0) { 5022 KFREE(fr); 5023 return 0; 5024 } 5025 return 1; 5026 } else { 5027 MUTEX_EXIT(&fr->fr_lock); 5028 } 5029 *frp = NULL; 5030 return -1; 5031 } 5032 5033 5034 #ifdef IPFILTER_LOOKUP 5035 /* ------------------------------------------------------------------------ */ 5036 /* Function: fr_grpmapinit */ 5037 /* Returns: int - 0 == success, else ESRCH because table entry not found*/ 5038 /* Parameters: fr(I) - pointer to rule to find hash table for */ 5039 /* */ 5040 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */ 5041 /* fr_ptr is later used by fr_srcgrpmap and fr_dstgrpmap. */ 5042 /* ------------------------------------------------------------------------ */ 5043 static int fr_grpmapinit(fr, ifs) 5044 frentry_t *fr; 5045 ipf_stack_t *ifs; 5046 { 5047 char name[FR_GROUPLEN]; 5048 iphtable_t *iph; 5049 5050 #if defined(SNPRINTF) && defined(_KERNEL) 5051 (void) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg); 5052 #else 5053 (void) sprintf(name, "%d", fr->fr_arg); 5054 #endif 5055 iph = fr_findhtable(IPL_LOGIPF, name, ifs); 5056 if (iph == NULL) 5057 return ESRCH; 5058 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) 5059 return ESRCH; 5060 fr->fr_ptr = iph; 5061 return 0; 5062 } 5063 5064 5065 /* ------------------------------------------------------------------------ */ 5066 /* Function: fr_srcgrpmap */ 5067 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 5068 /* Parameters: fin(I) - pointer to packet information */ 5069 /* passp(IO) - pointer to current/new filter decision (unused) */ 5070 /* */ 5071 /* Look for a rule group head in a hash table, using the source address as */ 5072 /* the key, and descend into that group and continue matching rules against */ 5073 /* the packet. */ 5074 /* ------------------------------------------------------------------------ */ 5075 frentry_t *fr_srcgrpmap(fin, passp) 5076 fr_info_t *fin; 5077 u_32_t *passp; 5078 { 5079 frgroup_t *fg; 5080 void *rval; 5081 ipf_stack_t *ifs = fin->fin_ifs; 5082 5083 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_src, ifs); 5084 if (rval == NULL) 5085 return NULL; 5086 5087 fg = rval; 5088 fin->fin_fr = fg->fg_start; 5089 (void) fr_scanlist(fin, *passp); 5090 return fin->fin_fr; 5091 } 5092 5093 5094 /* ------------------------------------------------------------------------ */ 5095 /* Function: fr_dstgrpmap */ 5096 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 5097 /* Parameters: fin(I) - pointer to packet information */ 5098 /* passp(IO) - pointer to current/new filter decision (unused) */ 5099 /* */ 5100 /* Look for a rule group head in a hash table, using the destination */ 5101 /* address as the key, and descend into that group and continue matching */ 5102 /* rules against the packet. */ 5103 /* ------------------------------------------------------------------------ */ 5104 frentry_t *fr_dstgrpmap(fin, passp) 5105 fr_info_t *fin; 5106 u_32_t *passp; 5107 { 5108 frgroup_t *fg; 5109 void *rval; 5110 ipf_stack_t *ifs = fin->fin_ifs; 5111 5112 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_dst, ifs); 5113 if (rval == NULL) 5114 return NULL; 5115 5116 fg = rval; 5117 fin->fin_fr = fg->fg_start; 5118 (void) fr_scanlist(fin, *passp); 5119 return fin->fin_fr; 5120 } 5121 #endif /* IPFILTER_LOOKUP */ 5122 5123 /* 5124 * Queue functions 5125 * =============== 5126 * These functions manage objects on queues for efficient timeouts. There are 5127 * a number of system defined queues as well as user defined timeouts. It is 5128 * expected that a lock is held in the domain in which the queue belongs 5129 * (i.e. either state or NAT) when calling any of these functions that prevents 5130 * fr_freetimeoutqueue() from being called at the same time as any other. 5131 */ 5132 5133 5134 /* ------------------------------------------------------------------------ */ 5135 /* Function: fr_addtimeoutqueue */ 5136 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */ 5137 /* timeout queue with given interval. */ 5138 /* Parameters: parent(I) - pointer to pointer to parent node of this list */ 5139 /* of interface queues. */ 5140 /* seconds(I) - timeout value in seconds for this queue. */ 5141 /* */ 5142 /* This routine first looks for a timeout queue that matches the interval */ 5143 /* being requested. If it finds one, increments the reference counter and */ 5144 /* returns a pointer to it. If none are found, it allocates a new one and */ 5145 /* inserts it at the top of the list. */ 5146 /* */ 5147 /* Locking. */ 5148 /* It is assumed that the caller of this function has an appropriate lock */ 5149 /* held (exclusively) in the domain that encompases 'parent'. */ 5150 /* ------------------------------------------------------------------------ */ 5151 ipftq_t *fr_addtimeoutqueue(parent, seconds, ifs) 5152 ipftq_t **parent; 5153 u_int seconds; 5154 ipf_stack_t *ifs; 5155 { 5156 ipftq_t *ifq; 5157 u_int period; 5158 5159 period = seconds * IPF_HZ_DIVIDE; 5160 5161 MUTEX_ENTER(&ifs->ifs_ipf_timeoutlock); 5162 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) { 5163 if (ifq->ifq_ttl == period) { 5164 /* 5165 * Reset the delete flag, if set, so the structure 5166 * gets reused rather than freed and reallocated. 5167 */ 5168 MUTEX_ENTER(&ifq->ifq_lock); 5169 ifq->ifq_flags &= ~IFQF_DELETE; 5170 ifq->ifq_ref++; 5171 MUTEX_EXIT(&ifq->ifq_lock); 5172 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock); 5173 5174 return ifq; 5175 } 5176 } 5177 5178 KMALLOC(ifq, ipftq_t *); 5179 if (ifq != NULL) { 5180 ifq->ifq_ttl = period; 5181 ifq->ifq_head = NULL; 5182 ifq->ifq_tail = &ifq->ifq_head; 5183 ifq->ifq_next = *parent; 5184 ifq->ifq_pnext = parent; 5185 ifq->ifq_ref = 1; 5186 ifq->ifq_flags = IFQF_USER; 5187 *parent = ifq; 5188 ifs->ifs_fr_userifqs++; 5189 MUTEX_NUKE(&ifq->ifq_lock); 5190 MUTEX_INIT(&ifq->ifq_lock, "ipftq mutex"); 5191 } 5192 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock); 5193 return ifq; 5194 } 5195 5196 5197 /* ------------------------------------------------------------------------ */ 5198 /* Function: fr_deletetimeoutqueue */ 5199 /* Returns: int - new reference count value of the timeout queue */ 5200 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5201 /* Locks: ifq->ifq_lock */ 5202 /* */ 5203 /* This routine must be called when we're discarding a pointer to a timeout */ 5204 /* queue object, taking care of the reference counter. */ 5205 /* */ 5206 /* Now that this just sets a DELETE flag, it requires the expire code to */ 5207 /* check the list of user defined timeout queues and call the free function */ 5208 /* below (currently commented out) to stop memory leaking. It is done this */ 5209 /* way because the locking may not be sufficient to safely do a free when */ 5210 /* this function is called. */ 5211 /* ------------------------------------------------------------------------ */ 5212 int fr_deletetimeoutqueue(ifq) 5213 ipftq_t *ifq; 5214 { 5215 5216 ifq->ifq_ref--; 5217 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) { 5218 ifq->ifq_flags |= IFQF_DELETE; 5219 } 5220 5221 return ifq->ifq_ref; 5222 } 5223 5224 5225 /* ------------------------------------------------------------------------ */ 5226 /* Function: fr_freetimeoutqueue */ 5227 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5228 /* Returns: Nil */ 5229 /* */ 5230 /* Locking: */ 5231 /* It is assumed that the caller of this function has an appropriate lock */ 5232 /* held (exclusively) in the domain that encompases the callers "domain". */ 5233 /* The ifq_lock for this structure should not be held. */ 5234 /* */ 5235 /* Remove a user definde timeout queue from the list of queues it is in and */ 5236 /* tidy up after this is done. */ 5237 /* ------------------------------------------------------------------------ */ 5238 void fr_freetimeoutqueue(ifq, ifs) 5239 ipftq_t *ifq; 5240 ipf_stack_t *ifs; 5241 { 5242 5243 5244 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) || 5245 ((ifq->ifq_flags & IFQF_USER) == 0)) { 5246 printf("fr_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n", 5247 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl, 5248 ifq->ifq_ref); 5249 return; 5250 } 5251 5252 /* 5253 * Remove from its position in the list. 5254 */ 5255 *ifq->ifq_pnext = ifq->ifq_next; 5256 if (ifq->ifq_next != NULL) 5257 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext; 5258 5259 MUTEX_DESTROY(&ifq->ifq_lock); 5260 ifs->ifs_fr_userifqs--; 5261 KFREE(ifq); 5262 } 5263 5264 5265 /* ------------------------------------------------------------------------ */ 5266 /* Function: fr_deletequeueentry */ 5267 /* Returns: Nil */ 5268 /* Parameters: tqe(I) - timeout queue entry to delete */ 5269 /* ifq(I) - timeout queue to remove entry from */ 5270 /* */ 5271 /* Remove a tail queue entry from its queue and make it an orphan. */ 5272 /* fr_deletetimeoutqueue is called to make sure the reference count on the */ 5273 /* queue is correct. We can't, however, call fr_freetimeoutqueue because */ 5274 /* the correct lock(s) may not be held that would make it safe to do so. */ 5275 /* ------------------------------------------------------------------------ */ 5276 void fr_deletequeueentry(tqe) 5277 ipftqent_t *tqe; 5278 { 5279 ipftq_t *ifq; 5280 5281 ifq = tqe->tqe_ifq; 5282 if (ifq == NULL) 5283 return; 5284 5285 MUTEX_ENTER(&ifq->ifq_lock); 5286 5287 if (tqe->tqe_pnext != NULL) { 5288 *tqe->tqe_pnext = tqe->tqe_next; 5289 if (tqe->tqe_next != NULL) 5290 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5291 else /* we must be the tail anyway */ 5292 ifq->ifq_tail = tqe->tqe_pnext; 5293 5294 tqe->tqe_pnext = NULL; 5295 tqe->tqe_ifq = NULL; 5296 } 5297 5298 (void) fr_deletetimeoutqueue(ifq); 5299 5300 MUTEX_EXIT(&ifq->ifq_lock); 5301 } 5302 5303 5304 /* ------------------------------------------------------------------------ */ 5305 /* Function: fr_queuefront */ 5306 /* Returns: Nil */ 5307 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5308 /* */ 5309 /* Move a queue entry to the front of the queue, if it isn't already there. */ 5310 /* ------------------------------------------------------------------------ */ 5311 void fr_queuefront(tqe) 5312 ipftqent_t *tqe; 5313 { 5314 ipftq_t *ifq; 5315 5316 ifq = tqe->tqe_ifq; 5317 if (ifq == NULL) 5318 return; 5319 5320 MUTEX_ENTER(&ifq->ifq_lock); 5321 if (ifq->ifq_head != tqe) { 5322 *tqe->tqe_pnext = tqe->tqe_next; 5323 if (tqe->tqe_next) 5324 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5325 else 5326 ifq->ifq_tail = tqe->tqe_pnext; 5327 5328 tqe->tqe_next = ifq->ifq_head; 5329 ifq->ifq_head->tqe_pnext = &tqe->tqe_next; 5330 ifq->ifq_head = tqe; 5331 tqe->tqe_pnext = &ifq->ifq_head; 5332 } 5333 MUTEX_EXIT(&ifq->ifq_lock); 5334 } 5335 5336 5337 /* ------------------------------------------------------------------------ */ 5338 /* Function: fr_queueback */ 5339 /* Returns: Nil */ 5340 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5341 /* */ 5342 /* Move a queue entry to the back of the queue, if it isn't already there. */ 5343 /* ------------------------------------------------------------------------ */ 5344 void fr_queueback(tqe, ifs) 5345 ipftqent_t *tqe; 5346 ipf_stack_t *ifs; 5347 { 5348 ipftq_t *ifq; 5349 5350 ifq = tqe->tqe_ifq; 5351 if (ifq == NULL) 5352 return; 5353 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl; 5354 5355 MUTEX_ENTER(&ifq->ifq_lock); 5356 if (tqe->tqe_next == NULL) { /* at the end already ? */ 5357 MUTEX_EXIT(&ifq->ifq_lock); 5358 return; 5359 } 5360 5361 /* 5362 * Remove from list 5363 */ 5364 *tqe->tqe_pnext = tqe->tqe_next; 5365 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5366 5367 /* 5368 * Make it the last entry. 5369 */ 5370 tqe->tqe_next = NULL; 5371 tqe->tqe_pnext = ifq->ifq_tail; 5372 *ifq->ifq_tail = tqe; 5373 ifq->ifq_tail = &tqe->tqe_next; 5374 MUTEX_EXIT(&ifq->ifq_lock); 5375 } 5376 5377 5378 /* ------------------------------------------------------------------------ */ 5379 /* Function: fr_queueappend */ 5380 /* Returns: Nil */ 5381 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5382 /* ifq(I) - pointer to timeout queue */ 5383 /* parent(I) - owing object pointer */ 5384 /* */ 5385 /* Add a new item to this queue and put it on the very end. */ 5386 /* ------------------------------------------------------------------------ */ 5387 void fr_queueappend(tqe, ifq, parent, ifs) 5388 ipftqent_t *tqe; 5389 ipftq_t *ifq; 5390 void *parent; 5391 ipf_stack_t *ifs; 5392 { 5393 5394 MUTEX_ENTER(&ifq->ifq_lock); 5395 tqe->tqe_parent = parent; 5396 tqe->tqe_pnext = ifq->ifq_tail; 5397 *ifq->ifq_tail = tqe; 5398 ifq->ifq_tail = &tqe->tqe_next; 5399 tqe->tqe_next = NULL; 5400 tqe->tqe_ifq = ifq; 5401 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl; 5402 ifq->ifq_ref++; 5403 MUTEX_EXIT(&ifq->ifq_lock); 5404 } 5405 5406 5407 /* ------------------------------------------------------------------------ */ 5408 /* Function: fr_movequeue */ 5409 /* Returns: Nil */ 5410 /* Parameters: tq(I) - pointer to timeout queue information */ 5411 /* oifp(I) - old timeout queue entry was on */ 5412 /* nifp(I) - new timeout queue to put entry on */ 5413 /* ifs - ipf stack instance */ 5414 /* */ 5415 /* Move a queue entry from one timeout queue to another timeout queue. */ 5416 /* If it notices that the current entry is already last and does not need */ 5417 /* to move queue, the return. */ 5418 /* ------------------------------------------------------------------------ */ 5419 void fr_movequeue(tqe, oifq, nifq, ifs) 5420 ipftqent_t *tqe; 5421 ipftq_t *oifq, *nifq; 5422 ipf_stack_t *ifs; 5423 { 5424 /* 5425 * If the queue isn't changing, and the clock hasn't ticked 5426 * since the last update, the operation will be a no-op. 5427 */ 5428 if (oifq == nifq && tqe->tqe_touched == ifs->ifs_fr_ticks) 5429 return; 5430 5431 /* 5432 * Grab the lock and update the timers. 5433 */ 5434 MUTEX_ENTER(&oifq->ifq_lock); 5435 tqe->tqe_touched = ifs->ifs_fr_ticks; 5436 tqe->tqe_die = ifs->ifs_fr_ticks + nifq->ifq_ttl; 5437 5438 /* 5439 * The remainder of the operation can still be a no-op. 5440 * 5441 * If the queue isn't changing, check to see if 5442 * an update would be meaningless. 5443 */ 5444 if (oifq == nifq) { 5445 if ((tqe->tqe_next == NULL) || 5446 (tqe->tqe_next->tqe_die == tqe->tqe_die)) { 5447 MUTEX_EXIT(&oifq->ifq_lock); 5448 return; 5449 } 5450 } 5451 5452 /* 5453 * Remove from the old queue 5454 */ 5455 *tqe->tqe_pnext = tqe->tqe_next; 5456 if (tqe->tqe_next) 5457 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5458 else 5459 oifq->ifq_tail = tqe->tqe_pnext; 5460 tqe->tqe_next = NULL; 5461 5462 /* 5463 * If we're moving from one queue to another, release the lock on the 5464 * old queue and get a lock on the new queue. For user defined queues, 5465 * if we're moving off it, call delete in case it can now be freed. 5466 */ 5467 if (oifq != nifq) { 5468 tqe->tqe_ifq = NULL; 5469 5470 (void) fr_deletetimeoutqueue(oifq); 5471 5472 MUTEX_EXIT(&oifq->ifq_lock); 5473 5474 MUTEX_ENTER(&nifq->ifq_lock); 5475 5476 tqe->tqe_ifq = nifq; 5477 nifq->ifq_ref++; 5478 } 5479 5480 /* 5481 * Add to the bottom of the new queue 5482 */ 5483 tqe->tqe_pnext = nifq->ifq_tail; 5484 *nifq->ifq_tail = tqe; 5485 nifq->ifq_tail = &tqe->tqe_next; 5486 MUTEX_EXIT(&nifq->ifq_lock); 5487 } 5488 5489 5490 /* ------------------------------------------------------------------------ */ 5491 /* Function: fr_updateipid */ 5492 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */ 5493 /* Parameters: fin(I) - pointer to packet information */ 5494 /* */ 5495 /* When we are doing NAT, change the IP of every packet to represent a */ 5496 /* single sequence of packets coming from the host, hiding any host */ 5497 /* specific sequencing that might otherwise be revealed. If the packet is */ 5498 /* a fragment, then store the 'new' IPid in the fragment cache and look up */ 5499 /* the fragment cache for non-leading fragments. If a non-leading fragment */ 5500 /* has no match in the cache, return an error. */ 5501 /* ------------------------------------------------------------------------ */ 5502 static INLINE int fr_updateipid(fin) 5503 fr_info_t *fin; 5504 { 5505 u_short id, ido, sums; 5506 u_32_t sumd, sum; 5507 ip_t *ip; 5508 5509 if (fin->fin_off != 0) { 5510 sum = fr_ipid_knownfrag(fin); 5511 if (sum == 0xffffffff) 5512 return -1; 5513 sum &= 0xffff; 5514 id = (u_short)sum; 5515 } else { 5516 id = fr_nextipid(fin); 5517 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0) 5518 (void) fr_ipid_newfrag(fin, (u_32_t)id); 5519 } 5520 5521 ip = fin->fin_ip; 5522 ido = ntohs(ip->ip_id); 5523 if (id == ido) 5524 return 0; 5525 ip->ip_id = htons(id); 5526 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */ 5527 sum = (~ntohs(ip->ip_sum)) & 0xffff; 5528 sum += sumd; 5529 sum = (sum >> 16) + (sum & 0xffff); 5530 sum = (sum >> 16) + (sum & 0xffff); 5531 sums = ~(u_short)sum; 5532 ip->ip_sum = htons(sums); 5533 return 0; 5534 } 5535 5536 5537 #ifdef NEED_FRGETIFNAME 5538 /* ------------------------------------------------------------------------ */ 5539 /* Function: fr_getifname */ 5540 /* Returns: char * - pointer to interface name */ 5541 /* Parameters: ifp(I) - pointer to network interface */ 5542 /* buffer(O) - pointer to where to store interface name */ 5543 /* */ 5544 /* Constructs an interface name in the buffer passed. The buffer passed is */ 5545 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */ 5546 /* as a NULL pointer then return a pointer to a static array. */ 5547 /* ------------------------------------------------------------------------ */ 5548 char *fr_getifname(ifp, buffer) 5549 struct ifnet *ifp; 5550 char *buffer; 5551 { 5552 static char namebuf[LIFNAMSIZ]; 5553 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5554 defined(__sgi) || defined(linux) || defined(_AIX51) || \ 5555 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5556 int unit, space; 5557 char temp[20]; 5558 char *s; 5559 # endif 5560 5561 ASSERT(buffer != NULL); 5562 #ifdef notdef 5563 if (buffer == NULL) 5564 buffer = namebuf; 5565 #endif 5566 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ); 5567 buffer[LIFNAMSIZ - 1] = '\0'; 5568 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5569 defined(__sgi) || defined(_AIX51) || \ 5570 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5571 for (s = buffer; *s; s++) 5572 ; 5573 unit = ifp->if_unit; 5574 space = LIFNAMSIZ - (s - buffer); 5575 if (space > 0) { 5576 # if defined(SNPRINTF) && defined(_KERNEL) 5577 (void) SNPRINTF(temp, sizeof(temp), "%d", unit); 5578 # else 5579 (void) sprintf(temp, "%d", unit); 5580 # endif 5581 (void) strncpy(s, temp, space); 5582 } 5583 # endif 5584 return buffer; 5585 } 5586 #endif 5587 5588 5589 /* ------------------------------------------------------------------------ */ 5590 /* Function: fr_ioctlswitch */ 5591 /* Returns: int - -1 continue processing, else ioctl return value */ 5592 /* Parameters: unit(I) - device unit opened */ 5593 /* data(I) - pointer to ioctl data */ 5594 /* cmd(I) - ioctl command */ 5595 /* mode(I) - mode value */ 5596 /* */ 5597 /* Based on the value of unit, call the appropriate ioctl handler or return */ 5598 /* EIO if ipfilter is not running. Also checks if write perms are req'd */ 5599 /* for the device in order to execute the ioctl. */ 5600 /* ------------------------------------------------------------------------ */ 5601 INLINE int fr_ioctlswitch(unit, data, cmd, mode, uid, ctx, ifs) 5602 int unit, mode, uid; 5603 ioctlcmd_t cmd; 5604 void *data, *ctx; 5605 ipf_stack_t *ifs; 5606 { 5607 int error = 0; 5608 5609 switch (unit) 5610 { 5611 case IPL_LOGIPF : 5612 error = -1; 5613 break; 5614 case IPL_LOGNAT : 5615 if (ifs->ifs_fr_running > 0) 5616 error = fr_nat_ioctl(data, cmd, mode, uid, ctx, ifs); 5617 else 5618 error = EIO; 5619 break; 5620 case IPL_LOGSTATE : 5621 if (ifs->ifs_fr_running > 0) 5622 error = fr_state_ioctl(data, cmd, mode, uid, ctx, ifs); 5623 else 5624 error = EIO; 5625 break; 5626 case IPL_LOGAUTH : 5627 if (ifs->ifs_fr_running > 0) { 5628 if ((cmd == (ioctlcmd_t)SIOCADAFR) || 5629 (cmd == (ioctlcmd_t)SIOCRMAFR)) { 5630 if (!(mode & FWRITE)) { 5631 error = EPERM; 5632 } else { 5633 error = frrequest(unit, cmd, data, 5634 ifs->ifs_fr_active, 1, ifs); 5635 } 5636 } else { 5637 error = fr_auth_ioctl(data, cmd, mode, uid, ctx, ifs); 5638 } 5639 } else 5640 error = EIO; 5641 break; 5642 case IPL_LOGSYNC : 5643 #ifdef IPFILTER_SYNC 5644 if (ifs->ifs_fr_running > 0) 5645 error = fr_sync_ioctl(data, cmd, mode, ifs); 5646 else 5647 #endif 5648 error = EIO; 5649 break; 5650 case IPL_LOGSCAN : 5651 #ifdef IPFILTER_SCAN 5652 if (ifs->ifs_fr_running > 0) 5653 error = fr_scan_ioctl(data, cmd, mode, ifs); 5654 else 5655 #endif 5656 error = EIO; 5657 break; 5658 case IPL_LOGLOOKUP : 5659 #ifdef IPFILTER_LOOKUP 5660 if (ifs->ifs_fr_running > 0) 5661 error = ip_lookup_ioctl(data, cmd, mode, uid, ctx, ifs); 5662 else 5663 #endif 5664 error = EIO; 5665 break; 5666 default : 5667 error = EIO; 5668 break; 5669 } 5670 5671 return error; 5672 } 5673 5674 5675 /* 5676 * This array defines the expected size of objects coming into the kernel 5677 * for the various recognised object types. 5678 */ 5679 #define NUM_OBJ_TYPES 19 5680 5681 static int fr_objbytes[NUM_OBJ_TYPES][2] = { 5682 { 1, sizeof(struct frentry) }, /* frentry */ 5683 { 0, sizeof(struct friostat) }, 5684 { 0, sizeof(struct fr_info) }, 5685 { 0, sizeof(struct fr_authstat) }, 5686 { 0, sizeof(struct ipfrstat) }, 5687 { 0, sizeof(struct ipnat) }, 5688 { 0, sizeof(struct natstat) }, 5689 { 0, sizeof(struct ipstate_save) }, 5690 { 1, sizeof(struct nat_save) }, /* nat_save */ 5691 { 0, sizeof(struct natlookup) }, 5692 { 1, sizeof(struct ipstate) }, /* ipstate */ 5693 { 0, sizeof(struct ips_stat) }, 5694 { 0, sizeof(struct frauth) }, 5695 { 0, sizeof(struct ipftune) }, 5696 { 0, sizeof(struct nat) }, /* nat_t */ 5697 { 0, sizeof(struct ipfruleiter) }, 5698 { 0, sizeof(struct ipfgeniter) }, 5699 { 0, sizeof(struct ipftable) }, 5700 { 0, sizeof(struct ipflookupiter) } 5701 }; 5702 5703 5704 /* ------------------------------------------------------------------------ */ 5705 /* Function: fr_getzoneid */ 5706 /* Returns: int - 0 = success, else failure */ 5707 /* Parameters: idsp(I) - pointer to ipf_devstate_t */ 5708 /* data(I) - pointer to ioctl data */ 5709 /* */ 5710 /* Set the zone ID in idsp based on the zone name in ipfzoneobj. Further */ 5711 /* ioctls will act on the IPF stack for that zone ID. */ 5712 /* ------------------------------------------------------------------------ */ 5713 #if defined(_KERNEL) 5714 int fr_setzoneid(idsp, data) 5715 ipf_devstate_t *idsp; 5716 void *data; 5717 { 5718 int error = 0; 5719 ipfzoneobj_t ipfzo; 5720 zone_t *zone; 5721 5722 error = BCOPYIN(data, &ipfzo, sizeof(ipfzo)); 5723 if (error != 0) 5724 return EFAULT; 5725 5726 if (memchr(ipfzo.ipfz_zonename, '\0', ZONENAME_MAX) == NULL) 5727 return EFAULT; 5728 5729 /* 5730 * The global zone doesn't have a GZ-controlled stack, so no 5731 * sense in going any further 5732 */ 5733 if (strcmp(ipfzo.ipfz_zonename, "global") == 0) 5734 return ENODEV; 5735 5736 if ((zone = zone_find_by_name(ipfzo.ipfz_zonename)) == NULL) 5737 return ENODEV; 5738 5739 /* 5740 * Store the zone ID that to control, and whether it's the 5741 * GZ-controlled stack that's wanted 5742 */ 5743 idsp->ipfs_zoneid = zone->zone_id; 5744 idsp->ipfs_gz = (ipfzo.ipfz_gz == 1) ? B_TRUE : B_FALSE; 5745 zone_rele(zone); 5746 5747 return error; 5748 } 5749 #endif 5750 5751 5752 /* ------------------------------------------------------------------------ */ 5753 /* Function: fr_inobj */ 5754 /* Returns: int - 0 = success, else failure */ 5755 /* Parameters: data(I) - pointer to ioctl data */ 5756 /* ptr(I) - pointer to store real data in */ 5757 /* type(I) - type of structure being moved */ 5758 /* */ 5759 /* Copy in the contents of what the ipfobj_t points to. In future, we */ 5760 /* add things to check for version numbers, sizes, etc, to make it backward */ 5761 /* compatible at the ABI for user land. */ 5762 /* ------------------------------------------------------------------------ */ 5763 int fr_inobj(data, ptr, type) 5764 void *data; 5765 void *ptr; 5766 int type; 5767 { 5768 ipfobj_t obj; 5769 int error = 0; 5770 5771 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5772 return EINVAL; 5773 5774 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5775 if (error != 0) 5776 return EFAULT; 5777 5778 if (obj.ipfo_type != type) 5779 return EINVAL; 5780 5781 #ifndef IPFILTER_COMPAT 5782 if ((fr_objbytes[type][0] & 1) != 0) { 5783 if (obj.ipfo_size < fr_objbytes[type][1]) 5784 return EINVAL; 5785 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5786 return EINVAL; 5787 #else 5788 if (obj.ipfo_rev != IPFILTER_VERSION) { 5789 error = fr_incomptrans(&obj, ptr); 5790 return error; 5791 } 5792 5793 if ((fr_objbytes[type][0] & 1) != 0 && 5794 obj.ipfo_size < fr_objbytes[type][1] || 5795 obj.ipfo_size != fr_objbytes[type][1]) 5796 return EINVAL; 5797 #endif 5798 5799 if ((fr_objbytes[type][0] & 1) != 0) { 5800 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, 5801 fr_objbytes[type][1]); 5802 } else { 5803 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, 5804 obj.ipfo_size); 5805 } 5806 return error; 5807 } 5808 5809 5810 /* ------------------------------------------------------------------------ */ 5811 /* Function: fr_inobjsz */ 5812 /* Returns: int - 0 = success, else failure */ 5813 /* Parameters: data(I) - pointer to ioctl data */ 5814 /* ptr(I) - pointer to store real data in */ 5815 /* type(I) - type of structure being moved */ 5816 /* sz(I) - size of data to copy */ 5817 /* */ 5818 /* As per fr_inobj, except the size of the object to copy in is passed in */ 5819 /* but it must not be smaller than the size defined for the type and the */ 5820 /* type must allow for varied sized objects. The extra requirement here is */ 5821 /* that sz must match the size of the object being passed in - this is not */ 5822 /* not possible nor required in fr_inobj(). */ 5823 /* ------------------------------------------------------------------------ */ 5824 int fr_inobjsz(data, ptr, type, sz) 5825 void *data; 5826 void *ptr; 5827 int type, sz; 5828 { 5829 ipfobj_t obj; 5830 int error; 5831 5832 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5833 return EINVAL; 5834 if (((fr_objbytes[type][0] & 1) == 0) || (sz < fr_objbytes[type][1])) 5835 return EINVAL; 5836 5837 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5838 if (error != 0) 5839 return EFAULT; 5840 5841 if (obj.ipfo_type != type) 5842 return EINVAL; 5843 5844 #ifndef IPFILTER_COMPAT 5845 if (obj.ipfo_size != sz) 5846 return EINVAL; 5847 #else 5848 if (obj.ipfo_rev != IPFILTER_VERSION) 5849 /*XXX compatibility hook here */ 5850 /*EMPTY*/; 5851 if (obj.ipfo_size != sz) 5852 /* XXX compatibility hook here */ 5853 return EINVAL; 5854 #endif 5855 5856 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, sz); 5857 return error; 5858 } 5859 5860 5861 /* ------------------------------------------------------------------------ */ 5862 /* Function: fr_outobjsz */ 5863 /* Returns: int - 0 = success, else failure */ 5864 /* Parameters: data(I) - pointer to ioctl data */ 5865 /* ptr(I) - pointer to store real data in */ 5866 /* type(I) - type of structure being moved */ 5867 /* sz(I) - size of data to copy */ 5868 /* */ 5869 /* As per fr_outobj, except the size of the object to copy out is passed in */ 5870 /* but it must not be smaller than the size defined for the type and the */ 5871 /* type must allow for varied sized objects. The extra requirement here is */ 5872 /* that sz must match the size of the object being passed in - this is not */ 5873 /* not possible nor required in fr_outobj(). */ 5874 /* ------------------------------------------------------------------------ */ 5875 int fr_outobjsz(data, ptr, type, sz) 5876 void *data; 5877 void *ptr; 5878 int type, sz; 5879 { 5880 ipfobj_t obj; 5881 int error; 5882 5883 if ((type < 0) || (type > NUM_OBJ_TYPES-1) || 5884 ((fr_objbytes[type][0] & 1) == 0) || 5885 (sz < fr_objbytes[type][1])) 5886 return EINVAL; 5887 5888 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5889 if (error != 0) 5890 return EFAULT; 5891 5892 if (obj.ipfo_type != type) 5893 return EINVAL; 5894 5895 #ifndef IPFILTER_COMPAT 5896 if (obj.ipfo_size != sz) 5897 return EINVAL; 5898 #else 5899 if (obj.ipfo_rev != IPFILTER_VERSION) 5900 /* XXX compatibility hook here */ 5901 /*EMPTY*/; 5902 if (obj.ipfo_size != sz) 5903 /* XXX compatibility hook here */ 5904 return EINVAL; 5905 #endif 5906 5907 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, sz); 5908 return error; 5909 } 5910 5911 5912 /* ------------------------------------------------------------------------ */ 5913 /* Function: fr_outobj */ 5914 /* Returns: int - 0 = success, else failure */ 5915 /* Parameters: data(I) - pointer to ioctl data */ 5916 /* ptr(I) - pointer to store real data in */ 5917 /* type(I) - type of structure being moved */ 5918 /* */ 5919 /* Copy out the contents of what ptr is to where ipfobj points to. In */ 5920 /* future, we add things to check for version numbers, sizes, etc, to make */ 5921 /* it backward compatible at the ABI for user land. */ 5922 /* ------------------------------------------------------------------------ */ 5923 int fr_outobj(data, ptr, type) 5924 void *data; 5925 void *ptr; 5926 int type; 5927 { 5928 ipfobj_t obj; 5929 int error; 5930 5931 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5932 return EINVAL; 5933 5934 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5935 if (error != 0) 5936 return EFAULT; 5937 5938 if (obj.ipfo_type != type) 5939 return EINVAL; 5940 5941 #ifndef IPFILTER_COMPAT 5942 if ((fr_objbytes[type][0] & 1) != 0) { 5943 if (obj.ipfo_size < fr_objbytes[type][1]) 5944 return EINVAL; 5945 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5946 return EINVAL; 5947 #else 5948 if (obj.ipfo_rev != IPFILTER_VERSION) { 5949 error = fr_outcomptrans(&obj, ptr); 5950 return error; 5951 } 5952 5953 if ((fr_objbytes[type][0] & 1) != 0 && 5954 obj.ipfo_size < fr_objbytes[type][1] || 5955 obj.ipfo_size != fr_objbytes[type][1]) 5956 return EINVAL; 5957 #endif 5958 5959 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, obj.ipfo_size); 5960 return error; 5961 } 5962 5963 5964 /* ------------------------------------------------------------------------ */ 5965 /* Function: fr_checkl4sum */ 5966 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */ 5967 /* Parameters: fin(I) - pointer to packet information */ 5968 /* */ 5969 /* If possible, calculate the layer 4 checksum for the packet. If this is */ 5970 /* not possible, return without indicating a failure or success but in a */ 5971 /* way that is ditinguishable. */ 5972 /* ------------------------------------------------------------------------ */ 5973 int fr_checkl4sum(fin) 5974 fr_info_t *fin; 5975 { 5976 u_short sum, hdrsum, *csump; 5977 udphdr_t *udp; 5978 int dosum; 5979 ipf_stack_t *ifs = fin->fin_ifs; 5980 5981 #if defined(SOLARIS) && defined(_KERNEL) && (SOLARIS2 >= 6) 5982 net_handle_t net_data_p; 5983 if (fin->fin_v == 4) 5984 net_data_p = ifs->ifs_ipf_ipv4; 5985 else 5986 net_data_p = ifs->ifs_ipf_ipv6; 5987 #endif 5988 5989 if ((fin->fin_flx & FI_NOCKSUM) != 0) 5990 return 0; 5991 5992 /* 5993 * If the TCP packet isn't a fragment, isn't too short and otherwise 5994 * isn't already considered "bad", then validate the checksum. If 5995 * this check fails then considered the packet to be "bad". 5996 */ 5997 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0) 5998 return 1; 5999 6000 csump = NULL; 6001 hdrsum = 0; 6002 dosum = 0; 6003 sum = 0; 6004 6005 #if defined(SOLARIS) && defined(_KERNEL) && (SOLARIS2 >= 6) 6006 ASSERT(fin->fin_m != NULL); 6007 if (NET_IS_HCK_L4_FULL(net_data_p, fin->fin_m) || 6008 NET_IS_HCK_L4_PART(net_data_p, fin->fin_m)) { 6009 hdrsum = 0; 6010 sum = 0; 6011 } else { 6012 #endif 6013 switch (fin->fin_p) 6014 { 6015 case IPPROTO_TCP : 6016 csump = &((tcphdr_t *)fin->fin_dp)->th_sum; 6017 dosum = 1; 6018 break; 6019 6020 case IPPROTO_UDP : 6021 udp = fin->fin_dp; 6022 if (udp->uh_sum != 0) { 6023 csump = &udp->uh_sum; 6024 dosum = 1; 6025 } 6026 break; 6027 6028 case IPPROTO_ICMP : 6029 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum; 6030 dosum = 1; 6031 break; 6032 6033 default : 6034 return 1; 6035 /*NOTREACHED*/ 6036 } 6037 6038 if (csump != NULL) 6039 hdrsum = *csump; 6040 6041 if (dosum) 6042 sum = fr_cksum(fin->fin_m, fin->fin_ip, 6043 fin->fin_p, fin->fin_dp); 6044 #if defined(SOLARIS) && defined(_KERNEL) && (SOLARIS2 >= 6) 6045 } 6046 #endif 6047 #if !defined(_KERNEL) 6048 if (sum == hdrsum) { 6049 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum)); 6050 } else { 6051 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum)); 6052 } 6053 #endif 6054 if (hdrsum == sum) 6055 return 0; 6056 return -1; 6057 } 6058 6059 6060 /* ------------------------------------------------------------------------ */ 6061 /* Function: fr_ifpfillv4addr */ 6062 /* Returns: int - 0 = address update, -1 = address not updated */ 6063 /* Parameters: atype(I) - type of network address update to perform */ 6064 /* sin(I) - pointer to source of address information */ 6065 /* mask(I) - pointer to source of netmask information */ 6066 /* inp(I) - pointer to destination address store */ 6067 /* inpmask(I) - pointer to destination netmask store */ 6068 /* */ 6069 /* Given a type of network address update (atype) to perform, copy */ 6070 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 6071 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 6072 /* which case the operation fails. For all values of atype other than */ 6073 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 6074 /* value. */ 6075 /* ------------------------------------------------------------------------ */ 6076 int fr_ifpfillv4addr(atype, sin, mask, inp, inpmask) 6077 int atype; 6078 struct sockaddr_in *sin, *mask; 6079 struct in_addr *inp, *inpmask; 6080 { 6081 if (inpmask != NULL && atype != FRI_NETMASKED) 6082 inpmask->s_addr = 0xffffffff; 6083 6084 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 6085 if (atype == FRI_NETMASKED) { 6086 if (inpmask == NULL) 6087 return -1; 6088 inpmask->s_addr = mask->sin_addr.s_addr; 6089 } 6090 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr; 6091 } else { 6092 inp->s_addr = sin->sin_addr.s_addr; 6093 } 6094 return 0; 6095 } 6096 6097 6098 #ifdef USE_INET6 6099 /* ------------------------------------------------------------------------ */ 6100 /* Function: fr_ifpfillv6addr */ 6101 /* Returns: int - 0 = address update, -1 = address not updated */ 6102 /* Parameters: atype(I) - type of network address update to perform */ 6103 /* sin(I) - pointer to source of address information */ 6104 /* mask(I) - pointer to source of netmask information */ 6105 /* inp(I) - pointer to destination address store */ 6106 /* inpmask(I) - pointer to destination netmask store */ 6107 /* */ 6108 /* Given a type of network address update (atype) to perform, copy */ 6109 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 6110 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 6111 /* which case the operation fails. For all values of atype other than */ 6112 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 6113 /* value. */ 6114 /* ------------------------------------------------------------------------ */ 6115 int fr_ifpfillv6addr(atype, sin, mask, inp, inpmask) 6116 int atype; 6117 struct sockaddr_in6 *sin, *mask; 6118 struct in_addr *inp, *inpmask; 6119 { 6120 i6addr_t *src, *dst, *and, *dmask; 6121 6122 src = (i6addr_t *)&sin->sin6_addr; 6123 and = (i6addr_t *)&mask->sin6_addr; 6124 dst = (i6addr_t *)inp; 6125 dmask = (i6addr_t *)inpmask; 6126 6127 if (inpmask != NULL && atype != FRI_NETMASKED) { 6128 dmask->i6[0] = 0xffffffff; 6129 dmask->i6[1] = 0xffffffff; 6130 dmask->i6[2] = 0xffffffff; 6131 dmask->i6[3] = 0xffffffff; 6132 } 6133 6134 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 6135 if (atype == FRI_NETMASKED) { 6136 if (inpmask == NULL) 6137 return -1; 6138 dmask->i6[0] = and->i6[0]; 6139 dmask->i6[1] = and->i6[1]; 6140 dmask->i6[2] = and->i6[2]; 6141 dmask->i6[3] = and->i6[3]; 6142 } 6143 6144 dst->i6[0] = src->i6[0] & and->i6[0]; 6145 dst->i6[1] = src->i6[1] & and->i6[1]; 6146 dst->i6[2] = src->i6[2] & and->i6[2]; 6147 dst->i6[3] = src->i6[3] & and->i6[3]; 6148 } else { 6149 dst->i6[0] = src->i6[0]; 6150 dst->i6[1] = src->i6[1]; 6151 dst->i6[2] = src->i6[2]; 6152 dst->i6[3] = src->i6[3]; 6153 } 6154 return 0; 6155 } 6156 #endif 6157 6158 6159 /* ------------------------------------------------------------------------ */ 6160 /* Function: fr_matchtag */ 6161 /* Returns: 0 == mismatch, 1 == match. */ 6162 /* Parameters: tag1(I) - pointer to first tag to compare */ 6163 /* tag2(I) - pointer to second tag to compare */ 6164 /* */ 6165 /* Returns true (non-zero) or false(0) if the two tag structures can be */ 6166 /* considered to be a match or not match, respectively. The tag is 16 */ 6167 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */ 6168 /* compare the ints instead, for speed. tag1 is the master of the */ 6169 /* comparison. This function should only be called with both tag1 and tag2 */ 6170 /* as non-NULL pointers. */ 6171 /* ------------------------------------------------------------------------ */ 6172 int fr_matchtag(tag1, tag2) 6173 ipftag_t *tag1, *tag2; 6174 { 6175 if (tag1 == tag2) 6176 return 1; 6177 6178 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0)) 6179 return 1; 6180 6181 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) && 6182 (tag1->ipt_num[1] == tag2->ipt_num[1]) && 6183 (tag1->ipt_num[2] == tag2->ipt_num[2]) && 6184 (tag1->ipt_num[3] == tag2->ipt_num[3])) 6185 return 1; 6186 return 0; 6187 } 6188 6189 6190 /* ------------------------------------------------------------------------ */ 6191 /* Function: fr_coalesce */ 6192 /* Returns: 1 == success, -1 == failure, 0 == no change */ 6193 /* Parameters: fin(I) - pointer to packet information */ 6194 /* */ 6195 /* Attempt to get all of the packet data into a single, contiguous buffer. */ 6196 /* If this call returns a failure then the buffers have also been freed. */ 6197 /* ------------------------------------------------------------------------ */ 6198 int fr_coalesce(fin) 6199 fr_info_t *fin; 6200 { 6201 ipf_stack_t *ifs = fin->fin_ifs; 6202 if ((fin->fin_flx & FI_COALESCE) != 0) 6203 return 1; 6204 6205 /* 6206 * If the mbuf pointers indicate that there is no mbuf to work with, 6207 * return but do not indicate success or failure. 6208 */ 6209 if (fin->fin_m == NULL || fin->fin_mp == NULL) 6210 return 0; 6211 6212 #if defined(_KERNEL) 6213 if (fr_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) { 6214 IPF_BUMP(ifs->ifs_fr_badcoalesces[fin->fin_out]); 6215 # ifdef MENTAT 6216 FREE_MB_T(*fin->fin_mp); 6217 # endif 6218 *fin->fin_mp = NULL; 6219 fin->fin_m = NULL; 6220 return -1; 6221 } 6222 #else 6223 fin = fin; /* LINT */ 6224 #endif 6225 return 1; 6226 } 6227 6228 6229 /* 6230 * The following table lists all of the tunable variables that can be 6231 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXT. The format of each row 6232 * in the table below is as follows: 6233 * 6234 * pointer to value, name of value, minimum, maximum, size of the value's 6235 * container, value attribute flags 6236 * 6237 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED 6238 * means the value can only be written to when IPFilter is loaded but disabled. 6239 * The obvious implication is if neither of these are set then the value can be 6240 * changed at any time without harm. 6241 */ 6242 ipftuneable_t lcl_ipf_tuneables[] = { 6243 /* filtering */ 6244 { { NULL }, "fr_flags", 0, 0xffffffff, 6245 0, 0 }, 6246 { { NULL }, "fr_active", 0, 0, 6247 0, IPFT_RDONLY }, 6248 { { NULL }, "fr_control_forwarding", 0, 1, 6249 0, 0 }, 6250 { { NULL }, "fr_update_ipid", 0, 1, 6251 0, 0 }, 6252 { { NULL }, "fr_chksrc", 0, 1, 6253 0, 0 }, 6254 { { NULL }, "fr_minttl", 0, 1, 6255 0, 0 }, 6256 { { NULL }, "fr_icmpminfragmtu", 0, 1, 6257 0, 0 }, 6258 { { NULL }, "fr_pass", 0, 0xffffffff, 6259 0, 0 }, 6260 #if SOLARIS2 >= 10 6261 { { NULL }, "ipf_loopback", 0, 1, 6262 0, IPFT_WRDISABLED }, 6263 #endif 6264 /* state */ 6265 { { NULL }, "fr_tcpidletimeout", 1, 0x7fffffff, 6266 0, IPFT_WRDISABLED }, 6267 { { NULL }, "fr_tcpclosewait", 1, 0x7fffffff, 6268 0, IPFT_WRDISABLED }, 6269 { { NULL }, "fr_tcplastack", 1, 0x7fffffff, 6270 0, IPFT_WRDISABLED }, 6271 { { NULL }, "fr_tcptimeout", 1, 0x7fffffff, 6272 0, IPFT_WRDISABLED }, 6273 { { NULL }, "fr_tcpclosed", 1, 0x7fffffff, 6274 0, IPFT_WRDISABLED }, 6275 { { NULL }, "fr_tcphalfclosed", 1, 0x7fffffff, 6276 0, IPFT_WRDISABLED }, 6277 { { NULL }, "fr_udptimeout", 1, 0x7fffffff, 6278 0, IPFT_WRDISABLED }, 6279 { { NULL }, "fr_udpacktimeout", 1, 0x7fffffff, 6280 0, IPFT_WRDISABLED }, 6281 { { NULL }, "fr_icmptimeout", 1, 0x7fffffff, 6282 0, IPFT_WRDISABLED }, 6283 { { NULL }, "fr_icmpacktimeout", 1, 0x7fffffff, 6284 0, IPFT_WRDISABLED }, 6285 { { NULL }, "fr_iptimeout", 1, 0x7fffffff, 6286 0, IPFT_WRDISABLED }, 6287 { { NULL }, "fr_statemax", 1, 0x7fffffff, 6288 0, 0 }, 6289 { { NULL }, "fr_statesize", 1, 0x7fffffff, 6290 0, IPFT_WRDISABLED }, 6291 { { NULL }, "fr_state_lock", 0, 1, 6292 0, IPFT_RDONLY }, 6293 { { NULL }, "fr_state_maxbucket", 1, 0x7fffffff, 6294 0, IPFT_WRDISABLED }, 6295 { { NULL }, "fr_state_maxbucket_reset", 0, 1, 6296 0, IPFT_WRDISABLED }, 6297 { { NULL }, "ipstate_logging", 0, 1, 6298 0, 0 }, 6299 { { NULL }, "state_flush_level_hi", 1, 100, 6300 0, 0 }, 6301 { { NULL }, "state_flush_level_lo", 1, 100, 6302 0, 0 }, 6303 /* nat */ 6304 { { NULL }, "fr_nat_lock", 0, 1, 6305 0, IPFT_RDONLY }, 6306 { { NULL }, "ipf_nattable_sz", 1, 0x7fffffff, 6307 0, IPFT_WRDISABLED }, 6308 { { NULL }, "ipf_nattable_max", 1, 0x7fffffff, 6309 0, 0 }, 6310 { { NULL }, "ipf_natrules_sz", 1, 0x7fffffff, 6311 0, IPFT_WRDISABLED }, 6312 { { NULL }, "ipf_rdrrules_sz", 1, 0x7fffffff, 6313 0, IPFT_WRDISABLED }, 6314 { { NULL }, "ipf_hostmap_sz", 1, 0x7fffffff, 6315 0, IPFT_WRDISABLED }, 6316 { { NULL }, "fr_nat_maxbucket", 1, 0x7fffffff, 6317 0, IPFT_WRDISABLED }, 6318 { { NULL }, "fr_nat_maxbucket_reset", 0, 1, 6319 0, IPFT_WRDISABLED }, 6320 { { NULL }, "nat_logging", 0, 1, 6321 0, 0 }, 6322 { { NULL }, "fr_defnatage", 1, 0x7fffffff, 6323 0, IPFT_WRDISABLED }, 6324 { { NULL }, "fr_defnatipage", 1, 0x7fffffff, 6325 0, IPFT_WRDISABLED }, 6326 { { NULL }, "fr_defnaticmpage", 1, 0x7fffffff, 6327 0, IPFT_WRDISABLED }, 6328 { { NULL }, "nat_flush_level_hi", 1, 100, 6329 0, 0 }, 6330 { { NULL }, "nat_flush_level_lo", 1, 100, 6331 0, 0 }, 6332 /* frag */ 6333 { { NULL }, "ipfr_size", 1, 0x7fffffff, 6334 0, IPFT_WRDISABLED }, 6335 { { NULL }, "fr_ipfrttl", 1, 0x7fffffff, 6336 0, IPFT_WRDISABLED }, 6337 #ifdef IPFILTER_LOG 6338 /* log */ 6339 { { NULL }, "ipl_suppress", 0, 1, 6340 0, 0 }, 6341 { { NULL }, "ipl_buffer_sz", 0, 0, 6342 0, IPFT_RDONLY }, 6343 { { NULL }, "ipl_logmax", 0, 0x7fffffff, 6344 0, IPFT_WRDISABLED }, 6345 { { NULL }, "ipl_logall", 0, 1, 6346 0, 0 }, 6347 { { NULL }, "ipl_logsize", 0, 0x80000, 6348 0, 0 }, 6349 #endif 6350 { { NULL }, NULL, 0, 0 } 6351 }; 6352 6353 static ipftuneable_t * 6354 tune_lookup(ipf_stack_t *ifs, char *name) 6355 { 6356 int i; 6357 6358 for (i = 0; ifs->ifs_ipf_tuneables[i].ipft_name != NULL; i++) { 6359 if (strcmp(ifs->ifs_ipf_tuneables[i].ipft_name, name) == 0) 6360 return (&ifs->ifs_ipf_tuneables[i]); 6361 } 6362 return (NULL); 6363 } 6364 6365 #ifdef _KERNEL 6366 extern dev_info_t *ipf_dev_info; 6367 extern int ipf_property_update __P((dev_info_t *, ipf_stack_t *)); 6368 #endif 6369 6370 /* -------------------------------------------------------------------- */ 6371 /* Function: ipftuneable_setdefs() */ 6372 /* Returns: void */ 6373 /* Parameters: ifs - pointer to newly allocated IPF instance */ 6374 /* assigned to IP instance */ 6375 /* */ 6376 /* Function initializes IPF instance variables. Function is invoked */ 6377 /* from ipftuneable_alloc(). ipftuneable_alloc() is called only one */ 6378 /* time during IP instance lifetime - at the time of IP instance */ 6379 /* creation. Anytime IP instance is being created new private IPF */ 6380 /* instance is allocated and assigned to it. The moment of IP */ 6381 /* instance creation is the right time to initialize those IPF */ 6382 /* variables. */ 6383 /* */ 6384 /* -------------------------------------------------------------------- */ 6385 static void ipftuneable_setdefs(ipf_stack_t *ifs) 6386 { 6387 ifs->ifs_ipfr_size = IPFT_SIZE; 6388 ifs->ifs_fr_ipfrttl = 120; /* 60 seconds */ 6389 6390 /* it comes from fr_authinit() in IPF auth */ 6391 ifs->ifs_fr_authsize = FR_NUMAUTH; 6392 ifs->ifs_fr_defaultauthage = 600; 6393 6394 /* it comes from fr_stateinit() in IPF state */ 6395 ifs->ifs_fr_tcpidletimeout = IPF_TTLVAL(3600 * 24 * 5); /* five days */ 6396 ifs->ifs_fr_tcpclosewait = IPF_TTLVAL(TCP_MSL); 6397 ifs->ifs_fr_tcplastack = IPF_TTLVAL(TCP_MSL); 6398 ifs->ifs_fr_tcptimeout = IPF_TTLVAL(TCP_MSL); 6399 ifs->ifs_fr_tcpclosed = IPF_TTLVAL(60); 6400 ifs->ifs_fr_tcphalfclosed = IPF_TTLVAL(2 * 3600); /* 2 hours */ 6401 ifs->ifs_fr_udptimeout = IPF_TTLVAL(120); 6402 ifs->ifs_fr_udpacktimeout = IPF_TTLVAL(12); 6403 ifs->ifs_fr_icmptimeout = IPF_TTLVAL(60); 6404 ifs->ifs_fr_icmpacktimeout = IPF_TTLVAL(6); 6405 ifs->ifs_fr_iptimeout = IPF_TTLVAL(60); 6406 ifs->ifs_fr_statemax = IPSTATE_MAX; 6407 ifs->ifs_fr_statesize = IPSTATE_SIZE; 6408 ifs->ifs_fr_state_maxbucket_reset = 1; 6409 ifs->ifs_state_flush_level_hi = ST_FLUSH_HI; 6410 ifs->ifs_state_flush_level_lo = ST_FLUSH_LO; 6411 6412 /* it comes from fr_natinit() in ipnat */ 6413 ifs->ifs_ipf_nattable_sz = NAT_TABLE_SZ; 6414 ifs->ifs_ipf_nattable_max = NAT_TABLE_MAX; 6415 ifs->ifs_ipf_natrules_sz = NAT_SIZE; 6416 ifs->ifs_ipf_rdrrules_sz = RDR_SIZE; 6417 ifs->ifs_ipf_hostmap_sz = HOSTMAP_SIZE; 6418 ifs->ifs_fr_nat_maxbucket_reset = 1; 6419 ifs->ifs_fr_defnatage = DEF_NAT_AGE; 6420 ifs->ifs_fr_defnatipage = 120; /* 60 seconds */ 6421 ifs->ifs_fr_defnaticmpage = 6; /* 3 seconds */ 6422 ifs->ifs_nat_flush_level_hi = NAT_FLUSH_HI; 6423 ifs->ifs_nat_flush_level_lo = NAT_FLUSH_LO; 6424 6425 #ifdef IPFILTER_LOG 6426 /* it comes from fr_loginit() in IPF log */ 6427 ifs->ifs_ipl_suppress = 1; 6428 ifs->ifs_ipl_logmax = IPL_LOGMAX; 6429 ifs->ifs_ipl_logsize = IPFILTER_LOGSIZE; 6430 6431 /* from fr_natinit() */ 6432 ifs->ifs_nat_logging = 1; 6433 6434 /* from fr_stateinit() */ 6435 ifs->ifs_ipstate_logging = 1; 6436 #else 6437 /* from fr_natinit() */ 6438 ifs->ifs_nat_logging = 0; 6439 6440 /* from fr_stateinit() */ 6441 ifs->ifs_ipstate_logging = 0; 6442 #endif 6443 ifs->ifs_ipf_loopback = 0; 6444 6445 } 6446 /* 6447 * Allocate a per-stack tuneable and copy in the names. Then 6448 * set it to point to each of the per-stack tunables. 6449 */ 6450 void 6451 ipftuneable_alloc(ipf_stack_t *ifs) 6452 { 6453 ipftuneable_t *item; 6454 6455 KMALLOCS(ifs->ifs_ipf_tuneables, ipftuneable_t *, 6456 sizeof (lcl_ipf_tuneables)); 6457 bcopy(lcl_ipf_tuneables, ifs->ifs_ipf_tuneables, 6458 sizeof (lcl_ipf_tuneables)); 6459 6460 #define TUNE_SET(_ifs, _name, _field) \ 6461 item = tune_lookup((_ifs), (_name)); \ 6462 if (item != NULL) { \ 6463 item->ipft_una.ipftp_int = (unsigned int *)&((_ifs)->_field); \ 6464 item->ipft_sz = sizeof ((_ifs)->_field); \ 6465 } 6466 6467 TUNE_SET(ifs, "fr_flags", ifs_fr_flags); 6468 TUNE_SET(ifs, "fr_active", ifs_fr_active); 6469 TUNE_SET(ifs, "fr_control_forwarding", ifs_fr_control_forwarding); 6470 TUNE_SET(ifs, "fr_update_ipid", ifs_fr_update_ipid); 6471 TUNE_SET(ifs, "fr_chksrc", ifs_fr_chksrc); 6472 TUNE_SET(ifs, "fr_minttl", ifs_fr_minttl); 6473 TUNE_SET(ifs, "fr_icmpminfragmtu", ifs_fr_icmpminfragmtu); 6474 TUNE_SET(ifs, "fr_pass", ifs_fr_pass); 6475 TUNE_SET(ifs, "fr_tcpidletimeout", ifs_fr_tcpidletimeout); 6476 TUNE_SET(ifs, "fr_tcpclosewait", ifs_fr_tcpclosewait); 6477 TUNE_SET(ifs, "fr_tcplastack", ifs_fr_tcplastack); 6478 TUNE_SET(ifs, "fr_tcptimeout", ifs_fr_tcptimeout); 6479 TUNE_SET(ifs, "fr_tcpclosed", ifs_fr_tcpclosed); 6480 TUNE_SET(ifs, "fr_tcphalfclosed", ifs_fr_tcphalfclosed); 6481 TUNE_SET(ifs, "fr_udptimeout", ifs_fr_udptimeout); 6482 TUNE_SET(ifs, "fr_udpacktimeout", ifs_fr_udpacktimeout); 6483 TUNE_SET(ifs, "fr_icmptimeout", ifs_fr_icmptimeout); 6484 TUNE_SET(ifs, "fr_icmpacktimeout", ifs_fr_icmpacktimeout); 6485 TUNE_SET(ifs, "fr_iptimeout", ifs_fr_iptimeout); 6486 TUNE_SET(ifs, "fr_statemax", ifs_fr_statemax); 6487 TUNE_SET(ifs, "fr_statesize", ifs_fr_statesize); 6488 TUNE_SET(ifs, "fr_state_lock", ifs_fr_state_lock); 6489 TUNE_SET(ifs, "fr_state_maxbucket", ifs_fr_state_maxbucket); 6490 TUNE_SET(ifs, "fr_state_maxbucket_reset", ifs_fr_state_maxbucket_reset); 6491 TUNE_SET(ifs, "ipstate_logging", ifs_ipstate_logging); 6492 TUNE_SET(ifs, "fr_nat_lock", ifs_fr_nat_lock); 6493 TUNE_SET(ifs, "ipf_nattable_sz", ifs_ipf_nattable_sz); 6494 TUNE_SET(ifs, "ipf_nattable_max", ifs_ipf_nattable_max); 6495 TUNE_SET(ifs, "ipf_natrules_sz", ifs_ipf_natrules_sz); 6496 TUNE_SET(ifs, "ipf_rdrrules_sz", ifs_ipf_rdrrules_sz); 6497 TUNE_SET(ifs, "ipf_hostmap_sz", ifs_ipf_hostmap_sz); 6498 TUNE_SET(ifs, "fr_nat_maxbucket", ifs_fr_nat_maxbucket); 6499 TUNE_SET(ifs, "fr_nat_maxbucket_reset", ifs_fr_nat_maxbucket_reset); 6500 TUNE_SET(ifs, "nat_logging", ifs_nat_logging); 6501 TUNE_SET(ifs, "fr_defnatage", ifs_fr_defnatage); 6502 TUNE_SET(ifs, "fr_defnatipage", ifs_fr_defnatipage); 6503 TUNE_SET(ifs, "fr_defnaticmpage", ifs_fr_defnaticmpage); 6504 TUNE_SET(ifs, "nat_flush_level_hi", ifs_nat_flush_level_hi); 6505 TUNE_SET(ifs, "nat_flush_level_lo", ifs_nat_flush_level_lo); 6506 TUNE_SET(ifs, "state_flush_level_hi", ifs_state_flush_level_hi); 6507 TUNE_SET(ifs, "state_flush_level_lo", ifs_state_flush_level_lo); 6508 TUNE_SET(ifs, "ipfr_size", ifs_ipfr_size); 6509 TUNE_SET(ifs, "fr_ipfrttl", ifs_fr_ipfrttl); 6510 TUNE_SET(ifs, "ipf_loopback", ifs_ipf_loopback); 6511 #ifdef IPFILTER_LOG 6512 TUNE_SET(ifs, "ipl_suppress", ifs_ipl_suppress); 6513 TUNE_SET(ifs, "ipl_buffer_sz", ifs_ipl_buffer_sz); 6514 TUNE_SET(ifs, "ipl_logmax", ifs_ipl_logmax); 6515 TUNE_SET(ifs, "ipl_logall", ifs_ipl_logall); 6516 TUNE_SET(ifs, "ipl_logsize", ifs_ipl_logsize); 6517 #endif 6518 #undef TUNE_SET 6519 6520 ipftuneable_setdefs(ifs); 6521 6522 #ifdef _KERNEL 6523 (void) ipf_property_update(ipf_dev_info, ifs); 6524 #endif 6525 } 6526 6527 void 6528 ipftuneable_free(ipf_stack_t *ifs) 6529 { 6530 KFREES(ifs->ifs_ipf_tuneables, sizeof (lcl_ipf_tuneables)); 6531 ifs->ifs_ipf_tuneables = NULL; 6532 } 6533 6534 /* ------------------------------------------------------------------------ */ 6535 /* Function: fr_findtunebycookie */ 6536 /* Returns: NULL = search failed, else pointer to tune struct */ 6537 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */ 6538 /* next(O) - pointer to place to store the cookie for the */ 6539 /* "next" tuneable, if it is desired. */ 6540 /* */ 6541 /* This function is used to walk through all of the existing tunables with */ 6542 /* successive calls. It searches the known tunables for the one which has */ 6543 /* a matching value for "cookie" - ie its address. When returning a match, */ 6544 /* the next one to be found may be returned inside next. */ 6545 /* ------------------------------------------------------------------------ */ 6546 static ipftuneable_t *fr_findtunebycookie(cookie, next, ifs) 6547 void *cookie, **next; 6548 ipf_stack_t * ifs; 6549 { 6550 ipftuneable_t *ta, **tap; 6551 6552 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++) 6553 if (ta == cookie) { 6554 if (next != NULL) { 6555 /* 6556 * If the next entry in the array has a name 6557 * present, then return a pointer to it for 6558 * where to go next, else return a pointer to 6559 * the dynaminc list as a key to search there 6560 * next. This facilitates a weak linking of 6561 * the two "lists" together. 6562 */ 6563 if ((ta + 1)->ipft_name != NULL) 6564 *next = ta + 1; 6565 else 6566 *next = &ifs->ifs_ipf_tunelist; 6567 } 6568 return ta; 6569 } 6570 6571 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) 6572 if (tap == cookie) { 6573 if (next != NULL) 6574 *next = &ta->ipft_next; 6575 return ta; 6576 } 6577 6578 if (next != NULL) 6579 *next = NULL; 6580 return NULL; 6581 } 6582 6583 6584 /* ------------------------------------------------------------------------ */ 6585 /* Function: fr_findtunebyname */ 6586 /* Returns: NULL = search failed, else pointer to tune struct */ 6587 /* Parameters: name(I) - name of the tuneable entry to find. */ 6588 /* */ 6589 /* Search the static array of tuneables and the list of dynamic tuneables */ 6590 /* for an entry with a matching name. If we can find one, return a pointer */ 6591 /* to the matching structure. */ 6592 /* ------------------------------------------------------------------------ */ 6593 static ipftuneable_t *fr_findtunebyname(name, ifs) 6594 const char *name; 6595 ipf_stack_t *ifs; 6596 { 6597 ipftuneable_t *ta; 6598 6599 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++) 6600 if (!strcmp(ta->ipft_name, name)) { 6601 return ta; 6602 } 6603 6604 for (ta = ifs->ifs_ipf_tunelist; ta != NULL; ta = ta->ipft_next) 6605 if (!strcmp(ta->ipft_name, name)) { 6606 return ta; 6607 } 6608 6609 return NULL; 6610 } 6611 6612 6613 /* ------------------------------------------------------------------------ */ 6614 /* Function: fr_addipftune */ 6615 /* Returns: int - 0 == success, else failure */ 6616 /* Parameters: newtune - pointer to new tune struct to add to tuneables */ 6617 /* */ 6618 /* Appends the tune structure pointer to by "newtune" to the end of the */ 6619 /* current list of "dynamic" tuneable parameters. Once added, the owner */ 6620 /* of the object is not expected to ever change "ipft_next". */ 6621 /* ------------------------------------------------------------------------ */ 6622 int fr_addipftune(newtune, ifs) 6623 ipftuneable_t *newtune; 6624 ipf_stack_t *ifs; 6625 { 6626 ipftuneable_t *ta, **tap; 6627 6628 ta = fr_findtunebyname(newtune->ipft_name, ifs); 6629 if (ta != NULL) 6630 return EEXIST; 6631 6632 for (tap = &ifs->ifs_ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next) 6633 ; 6634 6635 newtune->ipft_next = NULL; 6636 *tap = newtune; 6637 return 0; 6638 } 6639 6640 6641 /* ------------------------------------------------------------------------ */ 6642 /* Function: fr_delipftune */ 6643 /* Returns: int - 0 == success, else failure */ 6644 /* Parameters: oldtune - pointer to tune struct to remove from the list of */ 6645 /* current dynamic tuneables */ 6646 /* */ 6647 /* Search for the tune structure, by pointer, in the list of those that are */ 6648 /* dynamically added at run time. If found, adjust the list so that this */ 6649 /* structure is no longer part of it. */ 6650 /* ------------------------------------------------------------------------ */ 6651 int fr_delipftune(oldtune, ifs) 6652 ipftuneable_t *oldtune; 6653 ipf_stack_t *ifs; 6654 { 6655 ipftuneable_t *ta, **tap; 6656 6657 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) 6658 if (ta == oldtune) { 6659 *tap = oldtune->ipft_next; 6660 oldtune->ipft_next = NULL; 6661 return 0; 6662 } 6663 6664 return ESRCH; 6665 } 6666 6667 6668 /* ------------------------------------------------------------------------ */ 6669 /* Function: fr_ipftune */ 6670 /* Returns: int - 0 == success, else failure */ 6671 /* Parameters: cmd(I) - ioctl command number */ 6672 /* data(I) - pointer to ioctl data structure */ 6673 /* */ 6674 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */ 6675 /* three ioctls provide the means to access and control global variables */ 6676 /* within IPFilter, allowing (for example) timeouts and table sizes to be */ 6677 /* changed without rebooting, reloading or recompiling. The initialisation */ 6678 /* and 'destruction' routines of the various components of ipfilter are all */ 6679 /* each responsible for handling their own values being too big. */ 6680 /* ------------------------------------------------------------------------ */ 6681 int fr_ipftune(cmd, data, ifs) 6682 ioctlcmd_t cmd; 6683 void *data; 6684 ipf_stack_t *ifs; 6685 { 6686 ipftuneable_t *ta; 6687 ipftune_t tu; 6688 void *cookie; 6689 int error; 6690 6691 error = fr_inobj(data, &tu, IPFOBJ_TUNEABLE); 6692 if (error != 0) 6693 return error; 6694 6695 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0'; 6696 cookie = tu.ipft_cookie; 6697 ta = NULL; 6698 6699 switch (cmd) 6700 { 6701 case SIOCIPFGETNEXT : 6702 /* 6703 * If cookie is non-NULL, assume it to be a pointer to the last 6704 * entry we looked at, so find it (if possible) and return a 6705 * pointer to the next one after it. The last entry in the 6706 * the table is a NULL entry, so when we get to it, set cookie 6707 * to NULL and return that, indicating end of list, erstwhile 6708 * if we come in with cookie set to NULL, we are starting anew 6709 * at the front of the list. 6710 */ 6711 if (cookie != NULL) { 6712 ta = fr_findtunebycookie(cookie, &tu.ipft_cookie, ifs); 6713 } else { 6714 ta = ifs->ifs_ipf_tuneables; 6715 tu.ipft_cookie = ta + 1; 6716 } 6717 if (ta != NULL) { 6718 /* 6719 * Entry found, but does the data pointed to by that 6720 * row fit in what we can return? 6721 */ 6722 if (ta->ipft_sz > sizeof(tu.ipft_un)) 6723 return EINVAL; 6724 6725 tu.ipft_vlong = 0; 6726 if (ta->ipft_sz == sizeof(u_long)) 6727 tu.ipft_vlong = *ta->ipft_plong; 6728 else if (ta->ipft_sz == sizeof(u_int)) 6729 tu.ipft_vint = *ta->ipft_pint; 6730 else if (ta->ipft_sz == sizeof(u_short)) 6731 tu.ipft_vshort = *ta->ipft_pshort; 6732 else if (ta->ipft_sz == sizeof(u_char)) 6733 tu.ipft_vchar = *ta->ipft_pchar; 6734 6735 tu.ipft_sz = ta->ipft_sz; 6736 tu.ipft_min = ta->ipft_min; 6737 tu.ipft_max = ta->ipft_max; 6738 tu.ipft_flags = ta->ipft_flags; 6739 bcopy(ta->ipft_name, tu.ipft_name, 6740 MIN(sizeof(tu.ipft_name), 6741 strlen(ta->ipft_name) + 1)); 6742 } 6743 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6744 break; 6745 6746 case SIOCIPFGET : 6747 case SIOCIPFSET : 6748 /* 6749 * Search by name or by cookie value for a particular entry 6750 * in the tuning paramter table. 6751 */ 6752 error = ESRCH; 6753 if (cookie != NULL) { 6754 ta = fr_findtunebycookie(cookie, NULL, ifs); 6755 if (ta != NULL) 6756 error = 0; 6757 } else if (tu.ipft_name[0] != '\0') { 6758 ta = fr_findtunebyname(tu.ipft_name, ifs); 6759 if (ta != NULL) 6760 error = 0; 6761 } 6762 if (error != 0) 6763 break; 6764 6765 if (cmd == (ioctlcmd_t)SIOCIPFGET) { 6766 /* 6767 * Fetch the tuning parameters for a particular value 6768 */ 6769 tu.ipft_vlong = 0; 6770 if (ta->ipft_sz == sizeof(u_long)) 6771 tu.ipft_vlong = *ta->ipft_plong; 6772 else if (ta->ipft_sz == sizeof(u_int)) 6773 tu.ipft_vint = *ta->ipft_pint; 6774 else if (ta->ipft_sz == sizeof(u_short)) 6775 tu.ipft_vshort = *ta->ipft_pshort; 6776 else if (ta->ipft_sz == sizeof(u_char)) 6777 tu.ipft_vchar = *ta->ipft_pchar; 6778 tu.ipft_cookie = ta; 6779 tu.ipft_sz = ta->ipft_sz; 6780 tu.ipft_min = ta->ipft_min; 6781 tu.ipft_max = ta->ipft_max; 6782 tu.ipft_flags = ta->ipft_flags; 6783 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6784 6785 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) { 6786 /* 6787 * Set an internal parameter. The hard part here is 6788 * getting the new value safely and correctly out of 6789 * the kernel (given we only know its size, not type.) 6790 */ 6791 u_long in; 6792 6793 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) && 6794 (ifs->ifs_fr_running > 0)) { 6795 error = EBUSY; 6796 break; 6797 } 6798 6799 in = tu.ipft_vlong; 6800 if (in < ta->ipft_min || in > ta->ipft_max) { 6801 error = EINVAL; 6802 break; 6803 } 6804 6805 if (ta->ipft_sz == sizeof(u_long)) { 6806 tu.ipft_vlong = *ta->ipft_plong; 6807 *ta->ipft_plong = in; 6808 } else if (ta->ipft_sz == sizeof(u_int)) { 6809 tu.ipft_vint = *ta->ipft_pint; 6810 *ta->ipft_pint = (u_int)(in & 0xffffffff); 6811 } else if (ta->ipft_sz == sizeof(u_short)) { 6812 tu.ipft_vshort = *ta->ipft_pshort; 6813 *ta->ipft_pshort = (u_short)(in & 0xffff); 6814 } else if (ta->ipft_sz == sizeof(u_char)) { 6815 tu.ipft_vchar = *ta->ipft_pchar; 6816 *ta->ipft_pchar = (u_char)(in & 0xff); 6817 } 6818 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6819 } 6820 break; 6821 6822 default : 6823 error = EINVAL; 6824 break; 6825 } 6826 6827 return error; 6828 } 6829 6830 6831 /* ------------------------------------------------------------------------ */ 6832 /* Function: fr_initialise */ 6833 /* Returns: int - 0 == success, < 0 == failure */ 6834 /* Parameters: None. */ 6835 /* */ 6836 /* Call of the initialise functions for all the various subsystems inside */ 6837 /* of IPFilter. If any of them should fail, return immeadiately a failure */ 6838 /* BUT do not try to recover from the error here. */ 6839 /* ------------------------------------------------------------------------ */ 6840 int fr_initialise(ifs) 6841 ipf_stack_t *ifs; 6842 { 6843 int i; 6844 6845 #ifdef IPFILTER_LOG 6846 i = fr_loginit(ifs); 6847 if (i < 0) 6848 return -10 + i; 6849 #endif 6850 i = fr_natinit(ifs); 6851 if (i < 0) 6852 return -20 + i; 6853 6854 i = fr_stateinit(ifs); 6855 if (i < 0) 6856 return -30 + i; 6857 6858 i = fr_authinit(ifs); 6859 if (i < 0) 6860 return -40 + i; 6861 6862 i = fr_fraginit(ifs); 6863 if (i < 0) 6864 return -50 + i; 6865 6866 i = appr_init(ifs); 6867 if (i < 0) 6868 return -60 + i; 6869 6870 #ifdef IPFILTER_SYNC 6871 i = ipfsync_init(ifs); 6872 if (i < 0) 6873 return -70 + i; 6874 #endif 6875 #ifdef IPFILTER_SCAN 6876 i = ipsc_init(ifs); 6877 if (i < 0) 6878 return -80 + i; 6879 #endif 6880 #ifdef IPFILTER_LOOKUP 6881 i = ip_lookup_init(ifs); 6882 if (i < 0) 6883 return -90 + i; 6884 #endif 6885 #ifdef IPFILTER_COMPILED 6886 ipfrule_add(ifs); 6887 #endif 6888 return 0; 6889 } 6890 6891 6892 /* ------------------------------------------------------------------------ */ 6893 /* Function: fr_deinitialise */ 6894 /* Returns: None. */ 6895 /* Parameters: None. */ 6896 /* */ 6897 /* Call all the various subsystem cleanup routines to deallocate memory or */ 6898 /* destroy locks or whatever they've done that they need to now undo. */ 6899 /* The order here IS important as there are some cross references of */ 6900 /* internal data structures. */ 6901 /* ------------------------------------------------------------------------ */ 6902 void fr_deinitialise(ifs) 6903 ipf_stack_t *ifs; 6904 { 6905 fr_fragunload(ifs); 6906 fr_authunload(ifs); 6907 fr_natunload(ifs); 6908 fr_stateunload(ifs); 6909 #ifdef IPFILTER_SCAN 6910 fr_scanunload(ifs); 6911 #endif 6912 appr_unload(ifs); 6913 6914 #ifdef IPFILTER_COMPILED 6915 ipfrule_remove(ifs); 6916 #endif 6917 6918 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs); 6919 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs); 6920 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs); 6921 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE, ifs); 6922 6923 #ifdef IPFILTER_LOOKUP 6924 ip_lookup_unload(ifs); 6925 #endif 6926 6927 #ifdef IPFILTER_LOG 6928 fr_logunload(ifs); 6929 #endif 6930 } 6931 6932 6933 /* ------------------------------------------------------------------------ */ 6934 /* Function: fr_zerostats */ 6935 /* Returns: int - 0 = success, else failure */ 6936 /* Parameters: data(O) - pointer to pointer for copying data back to */ 6937 /* */ 6938 /* Copies the current statistics out to userspace and then zero's the */ 6939 /* current ones in the kernel. The lock is only held across the bzero() as */ 6940 /* the copyout may result in paging (ie network activity.) */ 6941 /* ------------------------------------------------------------------------ */ 6942 int fr_zerostats(data, ifs) 6943 caddr_t data; 6944 ipf_stack_t *ifs; 6945 { 6946 friostat_t fio; 6947 int error; 6948 6949 fr_getstat(&fio, ifs); 6950 error = copyoutptr(&fio, data, sizeof(fio)); 6951 if (error) 6952 return EFAULT; 6953 6954 WRITE_ENTER(&ifs->ifs_ipf_mutex); 6955 bzero((char *)ifs->ifs_frstats, sizeof(*ifs->ifs_frstats) * 2); 6956 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 6957 6958 return 0; 6959 } 6960 6961 6962 #ifdef _KERNEL 6963 /* ------------------------------------------------------------------------ */ 6964 /* Function: fr_resolvedest */ 6965 /* Returns: Nil */ 6966 /* Parameters: fdp(IO) - pointer to destination information to resolve */ 6967 /* v(I) - IP protocol version to match */ 6968 /* */ 6969 /* Looks up an interface name in the frdest structure pointed to by fdp and */ 6970 /* if a matching name can be found for the particular IP protocol version */ 6971 /* then store the interface pointer in the frdest struct. If no match is */ 6972 /* found, then set the interface pointer to be -1 as NULL is considered to */ 6973 /* indicate there is no information at all in the structure. */ 6974 /* ------------------------------------------------------------------------ */ 6975 void fr_resolvedest(fdp, v, ifs) 6976 frdest_t *fdp; 6977 int v; 6978 ipf_stack_t *ifs; 6979 { 6980 fdp->fd_ifp = NULL; 6981 6982 if (*fdp->fd_ifname != '\0') { 6983 fdp->fd_ifp = GETIFP(fdp->fd_ifname, v, ifs); 6984 if (fdp->fd_ifp == NULL) 6985 fdp->fd_ifp = (void *)-1; 6986 } 6987 } 6988 #endif /* _KERNEL */ 6989 6990 6991 /* ------------------------------------------------------------------------ */ 6992 /* Function: fr_resolvenic */ 6993 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */ 6994 /* pointer to interface structure for NIC */ 6995 /* Parameters: name(I) - complete interface name */ 6996 /* v(I) - IP protocol version */ 6997 /* */ 6998 /* Look for a network interface structure that firstly has a matching name */ 6999 /* to that passed in and that is also being used for that IP protocol */ 7000 /* version (necessary on some platforms where there are separate listings */ 7001 /* for both IPv4 and IPv6 on the same physical NIC. */ 7002 /* */ 7003 /* One might wonder why name gets terminated with a \0 byte in here. The */ 7004 /* reason is an interface name could get into the kernel structures of ipf */ 7005 /* in any number of ways and so long as they all use the same sized array */ 7006 /* to put the name in, it makes sense to ensure it gets null terminated */ 7007 /* before it is used for its intended purpose - finding its match in the */ 7008 /* kernel's list of configured interfaces. */ 7009 /* */ 7010 /* NOTE: This SHOULD ONLY be used with IPFilter structures that have an */ 7011 /* array for the name that is LIFNAMSIZ bytes (at least) in length. */ 7012 /* ------------------------------------------------------------------------ */ 7013 void *fr_resolvenic(name, v, ifs) 7014 char *name; 7015 int v; 7016 ipf_stack_t *ifs; 7017 { 7018 void *nic; 7019 7020 if (name[0] == '\0') 7021 return NULL; 7022 7023 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) { 7024 return NULL; 7025 } 7026 7027 name[LIFNAMSIZ - 1] = '\0'; 7028 7029 nic = GETIFP(name, v, ifs); 7030 if (nic == NULL) 7031 nic = (void *)-1; 7032 return nic; 7033 } 7034 7035 7036 /* ------------------------------------------------------------------------ */ 7037 /* Function: ipf_expiretokens */ 7038 /* Returns: None. */ 7039 /* Parameters: ifs - ipf stack instance */ 7040 /* */ 7041 /* This function is run every ipf tick to see if there are any tokens that */ 7042 /* have been held for too long and need to be freed up. */ 7043 /* ------------------------------------------------------------------------ */ 7044 void ipf_expiretokens(ifs) 7045 ipf_stack_t *ifs; 7046 { 7047 ipftoken_t *it; 7048 7049 WRITE_ENTER(&ifs->ifs_ipf_tokens); 7050 while ((it = ifs->ifs_ipftokenhead) != NULL) { 7051 if (it->ipt_die > ifs->ifs_fr_ticks) 7052 break; 7053 7054 ipf_freetoken(it, ifs); 7055 } 7056 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7057 } 7058 7059 7060 /* ------------------------------------------------------------------------ */ 7061 /* Function: ipf_deltoken */ 7062 /* Returns: int - 0 = success, else error */ 7063 /* Parameters: type(I) - the token type to match */ 7064 /* uid(I) - uid owning the token */ 7065 /* ptr(I) - context pointer for the token */ 7066 /* ifs - ipf stack instance */ 7067 /* */ 7068 /* This function looks for a a token in the current list that matches up */ 7069 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */ 7070 /* call ipf_freetoken() to remove it from the list. */ 7071 /* ------------------------------------------------------------------------ */ 7072 int ipf_deltoken(type, uid, ptr, ifs) 7073 int type, uid; 7074 void *ptr; 7075 ipf_stack_t *ifs; 7076 { 7077 ipftoken_t *it; 7078 int error = ESRCH; 7079 7080 WRITE_ENTER(&ifs->ifs_ipf_tokens); 7081 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) 7082 if (ptr == it->ipt_ctx && type == it->ipt_type && 7083 uid == it->ipt_uid) { 7084 ipf_freetoken(it, ifs); 7085 error = 0; 7086 break; 7087 } 7088 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7089 7090 return error; 7091 } 7092 7093 7094 /* ------------------------------------------------------------------------ */ 7095 /* Function: ipf_unlinktoken */ 7096 /* Returns: None. */ 7097 /* Parameters: token(I) - pointer to token structure */ 7098 /* ifs - ipf stack instance */ 7099 /* */ 7100 /* This function unlinks a token structure from the linked list of tokens */ 7101 /* that it belongs to. The head pointer never needs to be explicitly */ 7102 /* adjusted, but the tail does due to the linked list implementation. */ 7103 /* ------------------------------------------------------------------------ */ 7104 static void ipf_unlinktoken(token, ifs) 7105 ipftoken_t *token; 7106 ipf_stack_t *ifs; 7107 { 7108 7109 if (ifs->ifs_ipftokentail == &token->ipt_next) 7110 ifs->ifs_ipftokentail = token->ipt_pnext; 7111 7112 *token->ipt_pnext = token->ipt_next; 7113 if (token->ipt_next != NULL) 7114 token->ipt_next->ipt_pnext = token->ipt_pnext; 7115 } 7116 7117 7118 /* ------------------------------------------------------------------------ */ 7119 /* Function: ipf_findtoken */ 7120 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */ 7121 /* Parameters: type(I) - the token type to match */ 7122 /* uid(I) - uid owning the token */ 7123 /* ptr(I) - context pointer for the token */ 7124 /* ifs - ipf stack instance */ 7125 /* */ 7126 /* This function looks for a live token in the list of current tokens that */ 7127 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */ 7128 /* allocated. If one is found then it is moved to the top of the list of */ 7129 /* currently active tokens. */ 7130 /* */ 7131 /* NOTE: It is by design that this function returns holding a read lock on */ 7132 /* ipf_tokens. Callers must make sure they release it! */ 7133 /* ------------------------------------------------------------------------ */ 7134 ipftoken_t *ipf_findtoken(type, uid, ptr, ifs) 7135 int type, uid; 7136 void *ptr; 7137 ipf_stack_t *ifs; 7138 { 7139 ipftoken_t *it, *new; 7140 7141 KMALLOC(new, ipftoken_t *); 7142 7143 WRITE_ENTER(&ifs->ifs_ipf_tokens); 7144 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) { 7145 if (it->ipt_alive == 0) 7146 continue; 7147 if (ptr == it->ipt_ctx && type == it->ipt_type && 7148 uid == it->ipt_uid) 7149 break; 7150 } 7151 7152 if (it == NULL) { 7153 it = new; 7154 new = NULL; 7155 if (it == NULL) 7156 return NULL; 7157 it->ipt_data = NULL; 7158 it->ipt_ctx = ptr; 7159 it->ipt_uid = uid; 7160 it->ipt_type = type; 7161 it->ipt_next = NULL; 7162 it->ipt_alive = 1; 7163 } else { 7164 if (new != NULL) { 7165 KFREE(new); 7166 new = NULL; 7167 } 7168 7169 ipf_unlinktoken(it, ifs); 7170 } 7171 it->ipt_pnext = ifs->ifs_ipftokentail; 7172 *ifs->ifs_ipftokentail = it; 7173 ifs->ifs_ipftokentail = &it->ipt_next; 7174 it->ipt_next = NULL; 7175 7176 it->ipt_die = ifs->ifs_fr_ticks + 2; 7177 7178 MUTEX_DOWNGRADE(&ifs->ifs_ipf_tokens); 7179 7180 return it; 7181 } 7182 7183 7184 /* ------------------------------------------------------------------------ */ 7185 /* Function: ipf_freetoken */ 7186 /* Returns: None. */ 7187 /* Parameters: token(I) - pointer to token structure */ 7188 /* ifs - ipf stack instance */ 7189 /* */ 7190 /* This function unlinks a token from the linked list and on the path to */ 7191 /* free'ing the data, it calls the dereference function that is associated */ 7192 /* with the type of data pointed to by the token as it is considered to */ 7193 /* hold a reference to it. */ 7194 /* ------------------------------------------------------------------------ */ 7195 void ipf_freetoken(token, ifs) 7196 ipftoken_t *token; 7197 ipf_stack_t *ifs; 7198 { 7199 void *data, **datap; 7200 7201 ipf_unlinktoken(token, ifs); 7202 7203 data = token->ipt_data; 7204 datap = &data; 7205 7206 if ((data != NULL) && (data != (void *)-1)) { 7207 switch (token->ipt_type) 7208 { 7209 case IPFGENITER_IPF : 7210 (void)fr_derefrule((frentry_t **)datap, ifs); 7211 break; 7212 case IPFGENITER_IPNAT : 7213 WRITE_ENTER(&ifs->ifs_ipf_nat); 7214 fr_ipnatderef((ipnat_t **)datap, ifs); 7215 RWLOCK_EXIT(&ifs->ifs_ipf_nat); 7216 break; 7217 case IPFGENITER_NAT : 7218 fr_natderef((nat_t **)datap, ifs); 7219 break; 7220 case IPFGENITER_STATE : 7221 fr_statederef((ipstate_t **)datap, ifs); 7222 break; 7223 case IPFGENITER_FRAG : 7224 fr_fragderef((ipfr_t **)datap, &ifs->ifs_ipf_frag, ifs); 7225 break; 7226 case IPFGENITER_NATFRAG : 7227 fr_fragderef((ipfr_t **)datap, 7228 &ifs->ifs_ipf_natfrag, ifs); 7229 break; 7230 case IPFGENITER_HOSTMAP : 7231 WRITE_ENTER(&ifs->ifs_ipf_nat); 7232 fr_hostmapdel((hostmap_t **)datap); 7233 RWLOCK_EXIT(&ifs->ifs_ipf_nat); 7234 break; 7235 default : 7236 (void) ip_lookup_iterderef(token->ipt_type, data, ifs); 7237 break; 7238 } 7239 } 7240 7241 KFREE(token); 7242 } 7243 7244 7245 /* ------------------------------------------------------------------------ */ 7246 /* Function: ipf_getnextrule */ 7247 /* Returns: int - 0 = success, else error */ 7248 /* Parameters: t(I) - pointer to destination information to resolve */ 7249 /* ptr(I) - pointer to ipfobj_t to copyin from user space */ 7250 /* ifs - ipf stack instance */ 7251 /* */ 7252 /* This function's first job is to bring in the ipfruleiter_t structure via */ 7253 /* the ipfobj_t structure to determine what should be the next rule to */ 7254 /* return. Once the ipfruleiter_t has been brought in, it then tries to */ 7255 /* find the 'next rule'. This may include searching rule group lists or */ 7256 /* just be as simple as looking at the 'next' field in the rule structure. */ 7257 /* When we have found the rule to return, increase its reference count and */ 7258 /* if we used an existing rule to get here, decrease its reference count. */ 7259 /* ------------------------------------------------------------------------ */ 7260 int ipf_getnextrule(t, ptr, ifs) 7261 ipftoken_t *t; 7262 void *ptr; 7263 ipf_stack_t *ifs; 7264 { 7265 frentry_t *fr, *next, zero; 7266 int error, out, count; 7267 ipfruleiter_t it; 7268 frgroup_t *fg; 7269 char *dst; 7270 7271 if (t == NULL || ptr == NULL) 7272 return EFAULT; 7273 error = fr_inobj(ptr, &it, IPFOBJ_IPFITER); 7274 if (error != 0) 7275 return error; 7276 if ((it.iri_ver != AF_INET) && (it.iri_ver != AF_INET6)) 7277 return EINVAL; 7278 if ((it.iri_inout < 0) || (it.iri_inout > 3)) 7279 return EINVAL; 7280 if (it.iri_nrules == 0) 7281 return EINVAL; 7282 if ((it.iri_active != 0) && (it.iri_active != 1)) 7283 return EINVAL; 7284 if (it.iri_rule == NULL) 7285 return EFAULT; 7286 7287 /* 7288 * Use bitmask on it.iri_inout to determine direction. 7289 * F_OUT (1) and F_ACOUT (3) mask to out = 1, while 7290 * F_IN (0) and F_ACIN (2) mask to out = 0. 7291 */ 7292 out = it.iri_inout & F_OUT; 7293 READ_ENTER(&ifs->ifs_ipf_mutex); 7294 7295 /* 7296 * Retrieve "previous" entry from token and find the next entry. 7297 */ 7298 fr = t->ipt_data; 7299 if (fr == NULL) { 7300 if (*it.iri_group == '\0') { 7301 /* 7302 * Use bitmask again to determine accounting or not. 7303 * F_ACIN will mask to accounting cases F_ACIN (2) 7304 * or F_ACOUT (3), but not F_IN or F_OUT. 7305 */ 7306 if ((it.iri_inout & F_ACIN) != 0) { 7307 if (it.iri_ver == AF_INET) 7308 next = ifs->ifs_ipacct 7309 [out][it.iri_active]; 7310 else 7311 next = ifs->ifs_ipacct6 7312 [out][it.iri_active]; 7313 } else { 7314 if (it.iri_ver == AF_INET) 7315 next = ifs->ifs_ipfilter 7316 [out][it.iri_active]; 7317 else 7318 next = ifs->ifs_ipfilter6 7319 [out][it.iri_active]; 7320 } 7321 } else { 7322 fg = fr_findgroup(it.iri_group, IPL_LOGIPF, 7323 it.iri_active, NULL, ifs); 7324 if (fg != NULL) 7325 next = fg->fg_start; 7326 else 7327 next = NULL; 7328 } 7329 } else { 7330 next = fr->fr_next; 7331 } 7332 7333 dst = (char *)it.iri_rule; 7334 /* 7335 * The ipfruleiter may ask for more than 1 rule at a time to be 7336 * copied out, so long as that many exist in the list to start with! 7337 */ 7338 for (count = it.iri_nrules; count > 0; count--) { 7339 /* 7340 * If we found an entry, add reference to it and update token. 7341 * Otherwise, zero out data to be returned and NULL out token. 7342 */ 7343 if (next != NULL) { 7344 MUTEX_ENTER(&next->fr_lock); 7345 next->fr_ref++; 7346 MUTEX_EXIT(&next->fr_lock); 7347 t->ipt_data = next; 7348 } else { 7349 bzero(&zero, sizeof(zero)); 7350 next = &zero; 7351 t->ipt_data = NULL; 7352 } 7353 7354 /* 7355 * Now that we have ref, it's save to give up lock. 7356 */ 7357 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 7358 7359 /* 7360 * Copy out data and clean up references and token as needed. 7361 */ 7362 error = COPYOUT(next, dst, sizeof(*next)); 7363 if (error != 0) 7364 error = EFAULT; 7365 if (t->ipt_data == NULL) { 7366 ipf_freetoken(t, ifs); 7367 break; 7368 } else { 7369 if (fr != NULL) 7370 (void) fr_derefrule(&fr, ifs); 7371 if (next->fr_data != NULL) { 7372 dst += sizeof(*next); 7373 error = COPYOUT(next->fr_data, dst, 7374 next->fr_dsize); 7375 if (error != 0) 7376 error = EFAULT; 7377 else 7378 dst += next->fr_dsize; 7379 } 7380 if (next->fr_next == NULL) { 7381 ipf_freetoken(t, ifs); 7382 break; 7383 } 7384 } 7385 7386 if ((count == 1) || (error != 0)) 7387 break; 7388 7389 READ_ENTER(&ifs->ifs_ipf_mutex); 7390 fr = next; 7391 next = fr->fr_next; 7392 } 7393 7394 return error; 7395 } 7396 7397 7398 /* ------------------------------------------------------------------------ */ 7399 /* Function: fr_frruleiter */ 7400 /* Returns: int - 0 = success, else error */ 7401 /* Parameters: data(I) - the token type to match */ 7402 /* uid(I) - uid owning the token */ 7403 /* ptr(I) - context pointer for the token */ 7404 /* ifs - ipf stack instance */ 7405 /* */ 7406 /* This function serves as a stepping stone between fr_ipf_ioctl and */ 7407 /* ipf_getnextrule. It's role is to find the right token in the kernel for */ 7408 /* the process doing the ioctl and use that to ask for the next rule. */ 7409 /* ------------------------------------------------------------------------ */ 7410 int ipf_frruleiter(data, uid, ctx, ifs) 7411 void *data, *ctx; 7412 int uid; 7413 ipf_stack_t *ifs; 7414 { 7415 ipftoken_t *token; 7416 int error; 7417 7418 token = ipf_findtoken(IPFGENITER_IPF, uid, ctx, ifs); 7419 if (token != NULL) 7420 error = ipf_getnextrule(token, data, ifs); 7421 else 7422 error = EFAULT; 7423 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7424 7425 return error; 7426 } 7427 7428 7429 /* ------------------------------------------------------------------------ */ 7430 /* Function: ipf_geniter */ 7431 /* Returns: int - 0 = success, else error */ 7432 /* Parameters: token(I) - pointer to ipftoken structure */ 7433 /* itp(I) - pointer to ipfgeniter structure */ 7434 /* ifs - ipf stack instance */ 7435 /* */ 7436 /* Generic iterator called from ipf_genericiter. Currently only used for */ 7437 /* walking through list of fragments. */ 7438 /* ------------------------------------------------------------------------ */ 7439 int ipf_geniter(token, itp, ifs) 7440 ipftoken_t *token; 7441 ipfgeniter_t *itp; 7442 ipf_stack_t *ifs; 7443 { 7444 int error; 7445 7446 switch (itp->igi_type) 7447 { 7448 case IPFGENITER_FRAG : 7449 error = fr_nextfrag(token, itp, &ifs->ifs_ipfr_list, 7450 &ifs->ifs_ipfr_tail, &ifs->ifs_ipf_frag, 7451 ifs); 7452 break; 7453 default : 7454 error = EINVAL; 7455 break; 7456 } 7457 7458 return error; 7459 } 7460 7461 7462 /* ------------------------------------------------------------------------ */ 7463 /* Function: ipf_genericiter */ 7464 /* Returns: int - 0 = success, else error */ 7465 /* Parameters: data(I) - the token type to match */ 7466 /* uid(I) - uid owning the token */ 7467 /* ptr(I) - context pointer for the token */ 7468 /* ifs - ipf stack instance */ 7469 /* */ 7470 /* This function serves as a stepping stone between fr_ipf_ioctl and */ 7471 /* ipf_geniter when handling SIOCGENITER. It's role is to find the right */ 7472 /* token in the kernel for the process using the ioctl, and to use that */ 7473 /* token when calling ipf_geniter. */ 7474 /* ------------------------------------------------------------------------ */ 7475 int ipf_genericiter(data, uid, ctx, ifs) 7476 void *data, *ctx; 7477 int uid; 7478 ipf_stack_t *ifs; 7479 { 7480 ipftoken_t *token; 7481 ipfgeniter_t iter; 7482 int error; 7483 7484 error = fr_inobj(data, &iter, IPFOBJ_GENITER); 7485 if (error != 0) 7486 return error; 7487 7488 token = ipf_findtoken(iter.igi_type, uid, ctx, ifs); 7489 if (token != NULL) { 7490 token->ipt_subtype = iter.igi_type; 7491 error = ipf_geniter(token, &iter, ifs); 7492 } else 7493 error = EFAULT; 7494 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7495 7496 return error; 7497 } 7498 7499 7500 /* --------------------------------------------------------------------- */ 7501 /* Function: ipf_earlydrop */ 7502 /* Returns: number of dropped/removed entries from the queue */ 7503 /* Parameters: flushtype - which table we're cleaning (NAT or State) */ 7504 /* ifq - pointer to queue with entries to be deleted */ 7505 /* idletime - entry must be idle this long to be deleted */ 7506 /* ifs - ipf stack instance */ 7507 /* */ 7508 /* Function is invoked from state/NAT flush routines to remove entries */ 7509 /* from specified timeout queue, based on how long they've sat idle, */ 7510 /* without waiting for it to happen on its own. */ 7511 /* --------------------------------------------------------------------- */ 7512 int ipf_earlydrop(flushtype, ifq, idletime, ifs) 7513 int flushtype; 7514 ipftq_t *ifq; 7515 int idletime; 7516 ipf_stack_t *ifs; 7517 { 7518 ipftqent_t *tqe, *tqn; 7519 unsigned int dropped; 7520 int droptick; 7521 void *ent; 7522 7523 if (ifq == NULL) 7524 return (0); 7525 7526 dropped = 0; 7527 7528 /* 7529 * Determine the tick representing the idle time we're interested 7530 * in. If an entry exists in the queue, and it was touched before 7531 * that tick, then it's been idle longer than idletime, so it should 7532 * be deleted. 7533 */ 7534 droptick = ifs->ifs_fr_ticks - idletime; 7535 tqn = ifq->ifq_head; 7536 while ((tqe = tqn) != NULL && tqe->tqe_touched < droptick) { 7537 tqn = tqe->tqe_next; 7538 ent = tqe->tqe_parent; 7539 switch (flushtype) 7540 { 7541 case NAT_FLUSH: 7542 if (nat_delete((nat_t *)ent, NL_FLUSH, ifs) == 0) 7543 dropped++; 7544 break; 7545 case STATE_FLUSH: 7546 if (fr_delstate((ipstate_t *)ent, ISL_FLUSH, ifs) == 0) 7547 dropped++; 7548 break; 7549 default: 7550 return (0); 7551 } 7552 } 7553 return (dropped); 7554 } 7555 7556 7557 /* --------------------------------------------------------------------- */ 7558 /* Function: ipf_flushclosing */ 7559 /* Returns: int - number of entries deleted */ 7560 /* Parameters: flushtype - which table we're cleaning (NAT or State) */ 7561 /* stateval - TCP state at which to start removing entries */ 7562 /* ipfqs - pointer to timeout queues */ 7563 /* userqs - pointer to user defined queues */ 7564 /* ifs - ipf stack instance */ 7565 /* */ 7566 /* Remove state/NAT table entries for TCP connections which are in the */ 7567 /* process of closing, and have at least reached the state specified by */ 7568 /* the 'stateval' parameter. */ 7569 /* --------------------------------------------------------------------- */ 7570 int ipf_flushclosing(flushtype, stateval, ipfqs, userqs, ifs) 7571 int flushtype, stateval; 7572 ipftq_t *ipfqs, *userqs; 7573 ipf_stack_t *ifs; 7574 { 7575 ipftq_t *ifq, *ifqn; 7576 ipftqent_t *tqe, *tqn; 7577 int dropped; 7578 void *ent; 7579 nat_t *nat; 7580 ipstate_t *is; 7581 7582 dropped = 0; 7583 7584 /* 7585 * Start by deleting any entries in specific timeout queues. 7586 */ 7587 ifqn = &ipfqs[stateval]; 7588 while ((ifq = ifqn) != NULL) { 7589 ifqn = ifq->ifq_next; 7590 dropped += ipf_earlydrop(flushtype, ifq, (int)0, ifs); 7591 } 7592 7593 /* 7594 * Next, look through user defined queues for closing entries. 7595 */ 7596 ifqn = userqs; 7597 while ((ifq = ifqn) != NULL) { 7598 ifqn = ifq->ifq_next; 7599 tqn = ifq->ifq_head; 7600 while ((tqe = tqn) != NULL) { 7601 tqn = tqe->tqe_next; 7602 ent = tqe->tqe_parent; 7603 switch (flushtype) 7604 { 7605 case NAT_FLUSH: 7606 nat = (nat_t *)ent; 7607 if ((nat->nat_p == IPPROTO_TCP) && 7608 (nat->nat_tcpstate[0] >= stateval) && 7609 (nat->nat_tcpstate[1] >= stateval) && 7610 (nat_delete(nat, NL_EXPIRE, ifs) == 0)) 7611 dropped++; 7612 break; 7613 case STATE_FLUSH: 7614 is = (ipstate_t *)ent; 7615 if ((is->is_p == IPPROTO_TCP) && 7616 (is->is_state[0] >= stateval) && 7617 (is->is_state[1] >= stateval) && 7618 (fr_delstate(is, ISL_EXPIRE, ifs) == 0)) 7619 dropped++; 7620 break; 7621 default: 7622 return (0); 7623 } 7624 } 7625 } 7626 return (dropped); 7627 } 7628 7629 7630 /* --------------------------------------------------------------------- */ 7631 /* Function: ipf_extraflush */ 7632 /* Returns: int - number of entries flushed (0 = none) */ 7633 /* Parameters: flushtype - which table we're cleaning (NAT or State) */ 7634 /* ipfqs - pointer to 'established' timeout queue */ 7635 /* userqs - pointer to user defined queues */ 7636 /* ifs - ipf stack instance */ 7637 /* */ 7638 /* This function gets called when either NAT or state tables fill up. */ 7639 /* We need to try a bit harder to free up some space. The function will */ 7640 /* flush entries for TCP connections which have been idle a long time. */ 7641 /* */ 7642 /* Currently, the idle time is checked using values from ideltime_tab[] */ 7643 /* --------------------------------------------------------------------- */ 7644 int ipf_extraflush(flushtype, ipfqs, userqs, ifs) 7645 int flushtype; 7646 ipftq_t *ipfqs, *userqs; 7647 ipf_stack_t *ifs; 7648 { 7649 ipftq_t *ifq, *ifqn; 7650 int idletime, removed, idle_idx; 7651 7652 removed = 0; 7653 7654 /* 7655 * Determine initial threshold for minimum idle time based on 7656 * how long ipfilter has been running. Ipfilter needs to have 7657 * been up as long as the smallest interval to continue on. 7658 * 7659 * Minimum idle times stored in idletime_tab and indexed by 7660 * idle_idx. Start at upper end of array and work backwards. 7661 * 7662 * Once the index is found, set the initial idle time to the 7663 * first interval before the current ipfilter run time. 7664 */ 7665 if (ifs->ifs_fr_ticks < idletime_tab[0]) 7666 return (0); 7667 idle_idx = (sizeof (idletime_tab) / sizeof (int)) - 1; 7668 if (ifs->ifs_fr_ticks > idletime_tab[idle_idx]) { 7669 idletime = idletime_tab[idle_idx]; 7670 } else { 7671 while ((idle_idx > 0) && 7672 (ifs->ifs_fr_ticks < idletime_tab[idle_idx])) 7673 idle_idx--; 7674 7675 idletime = (ifs->ifs_fr_ticks / 7676 idletime_tab[idle_idx]) * 7677 idletime_tab[idle_idx]; 7678 } 7679 7680 while (idle_idx >= 0) { 7681 /* 7682 * Check to see if we need to delete more entries. 7683 * If we do, start with appropriate timeout queue. 7684 */ 7685 if (flushtype == NAT_FLUSH) { 7686 if (NAT_TAB_WATER_LEVEL(ifs) <= 7687 ifs->ifs_nat_flush_level_lo) 7688 break; 7689 } else if (flushtype == STATE_FLUSH) { 7690 if (ST_TAB_WATER_LEVEL(ifs) <= 7691 ifs->ifs_state_flush_level_lo) 7692 break; 7693 } else { 7694 break; 7695 } 7696 7697 removed += ipf_earlydrop(flushtype, ipfqs, idletime, ifs); 7698 7699 /* 7700 * Next, check the user defined queues. But first, make 7701 * certain that timeout queue deletions didn't do enough. 7702 */ 7703 if (flushtype == NAT_FLUSH) { 7704 if (NAT_TAB_WATER_LEVEL(ifs) <= 7705 ifs->ifs_nat_flush_level_lo) 7706 break; 7707 } else { 7708 if (ST_TAB_WATER_LEVEL(ifs) <= 7709 ifs->ifs_state_flush_level_lo) 7710 break; 7711 } 7712 ifqn = userqs; 7713 while ((ifq = ifqn) != NULL) { 7714 ifqn = ifq->ifq_next; 7715 removed += ipf_earlydrop(flushtype, ifq, idletime, ifs); 7716 } 7717 7718 /* 7719 * Adjust the granularity of idle time. 7720 * 7721 * If we reach an interval boundary, we need to 7722 * either adjust the idle time accordingly or exit 7723 * the loop altogether (if this is very last check). 7724 */ 7725 idletime -= idletime_tab[idle_idx]; 7726 if (idletime < idletime_tab[idle_idx]) { 7727 if (idle_idx != 0) { 7728 idletime = idletime_tab[idle_idx] - 7729 idletime_tab[idle_idx - 1]; 7730 idle_idx--; 7731 } else { 7732 break; 7733 } 7734 } 7735 } 7736 7737 return (removed); 7738 } 7739