1 /* 2 * Copyright (C) 1993-2003 by Darren Reed. 3 * 4 * See the IPFILTER.LICENCE file for details on licencing. 5 * 6 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 7 * Use is subject to license terms. 8 */ 9 10 #if defined(KERNEL) || defined(_KERNEL) 11 # undef KERNEL 12 # undef _KERNEL 13 # define KERNEL 1 14 # define _KERNEL 1 15 #endif 16 #include <sys/errno.h> 17 #include <sys/types.h> 18 #include <sys/param.h> 19 #include <sys/time.h> 20 #if defined(__NetBSD__) 21 # if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL) 22 # include "opt_ipfilter_log.h" 23 # endif 24 #endif 25 #if defined(_KERNEL) && defined(__FreeBSD_version) && \ 26 (__FreeBSD_version >= 220000) 27 # if (__FreeBSD_version >= 400000) 28 # if !defined(IPFILTER_LKM) 29 # include "opt_inet6.h" 30 # endif 31 # if (__FreeBSD_version == 400019) 32 # define CSUM_DELAY_DATA 33 # endif 34 # endif 35 # include <sys/filio.h> 36 #else 37 # include <sys/ioctl.h> 38 #endif 39 #if !defined(_AIX51) 40 # include <sys/fcntl.h> 41 #endif 42 #if defined(_KERNEL) 43 # include <sys/systm.h> 44 # include <sys/file.h> 45 #else 46 # include <stdio.h> 47 # include <string.h> 48 # include <stdlib.h> 49 # include <stddef.h> 50 # include <sys/file.h> 51 # define _KERNEL 52 # ifdef __OpenBSD__ 53 struct file; 54 # endif 55 # include <sys/uio.h> 56 # undef _KERNEL 57 #endif 58 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \ 59 !defined(linux) 60 # include <sys/mbuf.h> 61 #else 62 # if !defined(linux) 63 # include <sys/byteorder.h> 64 # endif 65 # if (SOLARIS2 < 5) && defined(sun) 66 # include <sys/dditypes.h> 67 # endif 68 #endif 69 #ifdef __hpux 70 # define _NET_ROUTE_INCLUDED 71 #endif 72 #if !defined(linux) 73 # include <sys/protosw.h> 74 #endif 75 #include <sys/socket.h> 76 #include <net/if.h> 77 #ifdef sun 78 # include <net/af.h> 79 #endif 80 #if !defined(_KERNEL) && defined(__FreeBSD__) 81 # include "radix_ipf.h" 82 #endif 83 #include <net/route.h> 84 #include <netinet/in.h> 85 #include <netinet/in_systm.h> 86 #include <netinet/ip.h> 87 #if !defined(linux) 88 # include <netinet/ip_var.h> 89 #endif 90 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */ 91 # include <sys/hashing.h> 92 # include <netinet/in_var.h> 93 #endif 94 #include <netinet/tcp.h> 95 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL) 96 # include <netinet/udp.h> 97 # include <netinet/ip_icmp.h> 98 #endif 99 #ifdef __hpux 100 # undef _NET_ROUTE_INCLUDED 101 #endif 102 #include "netinet/ip_compat.h" 103 #ifdef USE_INET6 104 # include <netinet/icmp6.h> 105 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux) 106 # include <netinet6/in6_var.h> 107 # endif 108 #endif 109 #include <netinet/tcpip.h> 110 #include "netinet/ip_fil.h" 111 #include "netinet/ip_nat.h" 112 #include "netinet/ip_frag.h" 113 #include "netinet/ip_state.h" 114 #include "netinet/ip_proxy.h" 115 #include "netinet/ip_auth.h" 116 #include "netinet/ipf_stack.h" 117 #ifdef IPFILTER_SCAN 118 # include "netinet/ip_scan.h" 119 #endif 120 #ifdef IPFILTER_SYNC 121 # include "netinet/ip_sync.h" 122 #endif 123 #include "netinet/ip_pool.h" 124 #include "netinet/ip_htable.h" 125 #ifdef IPFILTER_COMPILED 126 # include "netinet/ip_rules.h" 127 #endif 128 #if defined(IPFILTER_BPF) && defined(_KERNEL) 129 # include <net/bpf.h> 130 #endif 131 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000) 132 # include <sys/malloc.h> 133 # if defined(_KERNEL) && !defined(IPFILTER_LKM) 134 # include "opt_ipfilter.h" 135 # endif 136 #endif 137 #include "netinet/ipl.h" 138 /* END OF INCLUDES */ 139 140 #if !defined(lint) 141 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed"; 142 static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $"; 143 #endif 144 145 #ifndef _KERNEL 146 # include "ipf.h" 147 # include "ipt.h" 148 # include "bpf-ipf.h" 149 extern int opts; 150 151 # define FR_VERBOSE(verb_pr) verbose verb_pr 152 # define FR_DEBUG(verb_pr) debug verb_pr 153 #else /* #ifndef _KERNEL */ 154 # define FR_VERBOSE(verb_pr) 155 # define FR_DEBUG(verb_pr) 156 #endif /* _KERNEL */ 157 158 159 char ipfilter_version[] = IPL_VERSION; 160 int fr_features = 0 161 #ifdef IPFILTER_LKM 162 | IPF_FEAT_LKM 163 #endif 164 #ifdef IPFILTER_LOG 165 | IPF_FEAT_LOG 166 #endif 167 #ifdef IPFILTER_LOOKUP 168 | IPF_FEAT_LOOKUP 169 #endif 170 #ifdef IPFILTER_BPF 171 | IPF_FEAT_BPF 172 #endif 173 #ifdef IPFILTER_COMPILED 174 | IPF_FEAT_COMPILED 175 #endif 176 #ifdef IPFILTER_CKSUM 177 | IPF_FEAT_CKSUM 178 #endif 179 #ifdef IPFILTER_SYNC 180 | IPF_FEAT_SYNC 181 #endif 182 #ifdef IPFILTER_SCAN 183 | IPF_FEAT_SCAN 184 #endif 185 #ifdef USE_INET6 186 | IPF_FEAT_IPV6 187 #endif 188 ; 189 190 #define IPF_BUMP(x) (x)++ 191 192 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int)); 193 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int)); 194 static int fr_portcheck __P((frpcmp_t *, u_short *)); 195 static int frflushlist __P((int, minor_t, int *, frentry_t **, 196 ipf_stack_t *)); 197 static ipfunc_t fr_findfunc __P((ipfunc_t)); 198 static frentry_t *fr_firewall __P((fr_info_t *, u_32_t *)); 199 static int fr_funcinit __P((frentry_t *fr, ipf_stack_t *)); 200 static INLINE void frpr_ah __P((fr_info_t *)); 201 static INLINE void frpr_esp __P((fr_info_t *)); 202 static INLINE void frpr_gre __P((fr_info_t *)); 203 static INLINE void frpr_udp __P((fr_info_t *)); 204 static INLINE void frpr_tcp __P((fr_info_t *)); 205 static INLINE void frpr_icmp __P((fr_info_t *)); 206 static INLINE void frpr_ipv4hdr __P((fr_info_t *)); 207 static INLINE int frpr_pullup __P((fr_info_t *, int)); 208 static INLINE void frpr_short __P((fr_info_t *, int)); 209 static INLINE void frpr_tcpcommon __P((fr_info_t *)); 210 static INLINE void frpr_udpcommon __P((fr_info_t *)); 211 static INLINE int fr_updateipid __P((fr_info_t *)); 212 #ifdef IPFILTER_LOOKUP 213 static int fr_grpmapinit __P((frentry_t *fr, ipf_stack_t *)); 214 static INLINE void *fr_resolvelookup __P((u_int, u_int, lookupfunc_t *, 215 ipf_stack_t *)); 216 #endif 217 static void frsynclist __P((int, int, void *, char *, frentry_t *, 218 ipf_stack_t *)); 219 static void *fr_ifsync __P((int, int, char *, char *, 220 void *, void *, ipf_stack_t *)); 221 static ipftuneable_t *fr_findtunebyname __P((const char *, ipf_stack_t *)); 222 static ipftuneable_t *fr_findtunebycookie __P((void *, void **, ipf_stack_t *)); 223 224 /* 225 * bit values for identifying presence of individual IP options 226 * All of these tables should be ordered by increasing key value on the left 227 * hand side to allow for binary searching of the array and include a trailer 228 * with a 0 for the bitmask for linear searches to easily find the end with. 229 */ 230 const struct optlist ipopts[20] = { 231 { IPOPT_NOP, 0x000001 }, 232 { IPOPT_RR, 0x000002 }, 233 { IPOPT_ZSU, 0x000004 }, 234 { IPOPT_MTUP, 0x000008 }, 235 { IPOPT_MTUR, 0x000010 }, 236 { IPOPT_ENCODE, 0x000020 }, 237 { IPOPT_TS, 0x000040 }, 238 { IPOPT_TR, 0x000080 }, 239 { IPOPT_SECURITY, 0x000100 }, 240 { IPOPT_LSRR, 0x000200 }, 241 { IPOPT_E_SEC, 0x000400 }, 242 { IPOPT_CIPSO, 0x000800 }, 243 { IPOPT_SATID, 0x001000 }, 244 { IPOPT_SSRR, 0x002000 }, 245 { IPOPT_ADDEXT, 0x004000 }, 246 { IPOPT_VISA, 0x008000 }, 247 { IPOPT_IMITD, 0x010000 }, 248 { IPOPT_EIP, 0x020000 }, 249 { IPOPT_FINN, 0x040000 }, 250 { 0, 0x000000 } 251 }; 252 253 #ifdef USE_INET6 254 struct optlist ip6exthdr[] = { 255 { IPPROTO_HOPOPTS, 0x000001 }, 256 { IPPROTO_IPV6, 0x000002 }, 257 { IPPROTO_ROUTING, 0x000004 }, 258 { IPPROTO_FRAGMENT, 0x000008 }, 259 { IPPROTO_ESP, 0x000010 }, 260 { IPPROTO_AH, 0x000020 }, 261 { IPPROTO_NONE, 0x000040 }, 262 { IPPROTO_DSTOPTS, 0x000080 }, 263 { 0, 0 } 264 }; 265 #endif 266 267 struct optlist tcpopts[] = { 268 { TCPOPT_NOP, 0x000001 }, 269 { TCPOPT_MAXSEG, 0x000002 }, 270 { TCPOPT_WINDOW, 0x000004 }, 271 { TCPOPT_SACK_PERMITTED, 0x000008 }, 272 { TCPOPT_SACK, 0x000010 }, 273 { TCPOPT_TIMESTAMP, 0x000020 }, 274 { 0, 0x000000 } 275 }; 276 277 /* 278 * bit values for identifying presence of individual IP security options 279 */ 280 const struct optlist secopt[8] = { 281 { IPSO_CLASS_RES4, 0x01 }, 282 { IPSO_CLASS_TOPS, 0x02 }, 283 { IPSO_CLASS_SECR, 0x04 }, 284 { IPSO_CLASS_RES3, 0x08 }, 285 { IPSO_CLASS_CONF, 0x10 }, 286 { IPSO_CLASS_UNCL, 0x20 }, 287 { IPSO_CLASS_RES2, 0x40 }, 288 { IPSO_CLASS_RES1, 0x80 } 289 }; 290 291 292 /* 293 * Table of functions available for use with call rules. 294 */ 295 static ipfunc_resolve_t fr_availfuncs[] = { 296 #ifdef IPFILTER_LOOKUP 297 { "fr_srcgrpmap", fr_srcgrpmap, fr_grpmapinit }, 298 { "fr_dstgrpmap", fr_dstgrpmap, fr_grpmapinit }, 299 #endif 300 { "", NULL } 301 }; 302 303 304 /* 305 * Below we declare a list of constants used only by the ipf_extraflush() 306 * routine. We are placing it here, instead of in ipf_extraflush() itself, 307 * because we want to make it visible to tools such as mdb, nm etc., so the 308 * values can easily be altered during debugging. 309 */ 310 static const int idletime_tab[] = { 311 IPF_TTLVAL(30), /* 30 seconds */ 312 IPF_TTLVAL(1800), /* 30 minutes */ 313 IPF_TTLVAL(43200), /* 12 hours */ 314 IPF_TTLVAL(345600), /* 4 days */ 315 }; 316 317 318 /* 319 * The next section of code is a a collection of small routines that set 320 * fields in the fr_info_t structure passed based on properties of the 321 * current packet. There are different routines for the same protocol 322 * for each of IPv4 and IPv6. Adding a new protocol, for which there 323 * will "special" inspection for setup, is now more easily done by adding 324 * a new routine and expanding the frpr_ipinit*() function rather than by 325 * adding more code to a growing switch statement. 326 */ 327 #ifdef USE_INET6 328 static INLINE int frpr_ah6 __P((fr_info_t *)); 329 static INLINE void frpr_esp6 __P((fr_info_t *)); 330 static INLINE void frpr_gre6 __P((fr_info_t *)); 331 static INLINE void frpr_udp6 __P((fr_info_t *)); 332 static INLINE void frpr_tcp6 __P((fr_info_t *)); 333 static INLINE void frpr_icmp6 __P((fr_info_t *)); 334 static INLINE void frpr_ipv6hdr __P((fr_info_t *)); 335 static INLINE void frpr_short6 __P((fr_info_t *, int)); 336 static INLINE int frpr_hopopts6 __P((fr_info_t *)); 337 static INLINE int frpr_routing6 __P((fr_info_t *)); 338 static INLINE int frpr_dstopts6 __P((fr_info_t *)); 339 static INLINE int frpr_fragment6 __P((fr_info_t *)); 340 static INLINE int frpr_ipv6exthdr __P((fr_info_t *, int, int)); 341 342 343 /* ------------------------------------------------------------------------ */ 344 /* Function: frpr_short6 */ 345 /* Returns: void */ 346 /* Parameters: fin(I) - pointer to packet information */ 347 /* */ 348 /* IPv6 Only */ 349 /* This is function enforces the 'is a packet too short to be legit' rule */ 350 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */ 351 /* for frpr_short() for more details. */ 352 /* ------------------------------------------------------------------------ */ 353 static INLINE void frpr_short6(fin, xmin) 354 fr_info_t *fin; 355 int xmin; 356 { 357 358 if (fin->fin_dlen < xmin) 359 fin->fin_flx |= FI_SHORT; 360 } 361 362 363 /* ------------------------------------------------------------------------ */ 364 /* Function: frpr_ipv6hdr */ 365 /* Returns: Nil */ 366 /* Parameters: fin(I) - pointer to packet information */ 367 /* */ 368 /* IPv6 Only */ 369 /* Copy values from the IPv6 header into the fr_info_t struct and call the */ 370 /* per-protocol analyzer if it exists. */ 371 /* ------------------------------------------------------------------------ */ 372 static INLINE void frpr_ipv6hdr(fin) 373 fr_info_t *fin; 374 { 375 ip6_t *ip6 = (ip6_t *)fin->fin_ip; 376 int p, go = 1, i, hdrcount; 377 fr_ip_t *fi = &fin->fin_fi; 378 379 fin->fin_off = 0; 380 381 fi->fi_tos = 0; 382 fi->fi_optmsk = 0; 383 fi->fi_secmsk = 0; 384 fi->fi_auth = 0; 385 386 p = ip6->ip6_nxt; 387 fi->fi_ttl = ip6->ip6_hlim; 388 fi->fi_src.in6 = ip6->ip6_src; 389 fi->fi_dst.in6 = ip6->ip6_dst; 390 fin->fin_id = 0; 391 392 hdrcount = 0; 393 while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) { 394 switch (p) 395 { 396 case IPPROTO_UDP : 397 frpr_udp6(fin); 398 go = 0; 399 break; 400 401 case IPPROTO_TCP : 402 frpr_tcp6(fin); 403 go = 0; 404 break; 405 406 case IPPROTO_ICMPV6 : 407 frpr_icmp6(fin); 408 go = 0; 409 break; 410 411 case IPPROTO_GRE : 412 frpr_gre6(fin); 413 go = 0; 414 break; 415 416 case IPPROTO_HOPOPTS : 417 /* 418 * hop by hop ext header is only allowed 419 * right after IPv6 header. 420 */ 421 if (hdrcount != 0) { 422 fin->fin_flx |= FI_BAD; 423 p = IPPROTO_NONE; 424 } else { 425 p = frpr_hopopts6(fin); 426 } 427 break; 428 429 case IPPROTO_DSTOPTS : 430 p = frpr_dstopts6(fin); 431 break; 432 433 case IPPROTO_ROUTING : 434 p = frpr_routing6(fin); 435 break; 436 437 case IPPROTO_AH : 438 p = frpr_ah6(fin); 439 break; 440 441 case IPPROTO_ESP : 442 frpr_esp6(fin); 443 go = 0; 444 break; 445 446 case IPPROTO_IPV6 : 447 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 448 if (ip6exthdr[i].ol_val == p) { 449 fin->fin_flx |= ip6exthdr[i].ol_bit; 450 break; 451 } 452 go = 0; 453 break; 454 455 case IPPROTO_NONE : 456 go = 0; 457 break; 458 459 case IPPROTO_FRAGMENT : 460 p = frpr_fragment6(fin); 461 if (fin->fin_off != 0) /* Not the first frag */ 462 go = 0; 463 break; 464 465 default : 466 go = 0; 467 break; 468 } 469 hdrcount++; 470 471 /* 472 * It is important to note that at this point, for the 473 * extension headers (go != 0), the entire header may not have 474 * been pulled up when the code gets to this point. This is 475 * only done for "go != 0" because the other header handlers 476 * will all pullup their complete header. The other indicator 477 * of an incomplete packet is that this was just an extension 478 * header. 479 */ 480 if ((go != 0) && (p != IPPROTO_NONE) && 481 (frpr_pullup(fin, 0) == -1)) { 482 p = IPPROTO_NONE; 483 go = 0; 484 } 485 } 486 fi->fi_p = p; 487 } 488 489 490 /* ------------------------------------------------------------------------ */ 491 /* Function: frpr_ipv6exthdr */ 492 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 493 /* Parameters: fin(I) - pointer to packet information */ 494 /* multiple(I) - flag indicating yes/no if multiple occurances */ 495 /* of this extension header are allowed. */ 496 /* proto(I) - protocol number for this extension header */ 497 /* */ 498 /* IPv6 Only */ 499 /* This function expects to find an IPv6 extension header at fin_dp. */ 500 /* There must be at least 8 bytes of data at fin_dp for there to be a valid */ 501 /* extension header present. If a good one is found, fin_dp is advanced to */ 502 /* point at the first piece of data after the extension header, fin_exthdr */ 503 /* points to the start of the extension header and the "protocol" of the */ 504 /* *NEXT* header is returned. */ 505 /* ------------------------------------------------------------------------ */ 506 static INLINE int frpr_ipv6exthdr(fin, multiple, proto) 507 fr_info_t *fin; 508 int multiple, proto; 509 { 510 struct ip6_ext *hdr; 511 u_short shift; 512 int i; 513 514 fin->fin_flx |= FI_V6EXTHDR; 515 516 /* 8 is default length of extension hdr */ 517 if ((fin->fin_dlen - 8) < 0) { 518 fin->fin_flx |= FI_SHORT; 519 return IPPROTO_NONE; 520 } 521 522 if (frpr_pullup(fin, 8) == -1) 523 return IPPROTO_NONE; 524 525 hdr = fin->fin_dp; 526 shift = 8 + (hdr->ip6e_len << 3); 527 if (shift > fin->fin_dlen) { /* Nasty extension header length? */ 528 fin->fin_flx |= FI_BAD; 529 return IPPROTO_NONE; 530 } 531 532 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 533 if (ip6exthdr[i].ol_val == proto) { 534 /* 535 * Most IPv6 extension headers are only allowed once. 536 */ 537 if ((multiple == 0) && 538 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) 539 fin->fin_flx |= FI_BAD; 540 else 541 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 542 break; 543 } 544 545 fin->fin_dp = (char *)fin->fin_dp + shift; 546 fin->fin_dlen -= shift; 547 548 return hdr->ip6e_nxt; 549 } 550 551 552 /* ------------------------------------------------------------------------ */ 553 /* Function: frpr_hopopts6 */ 554 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 555 /* Parameters: fin(I) - pointer to packet information */ 556 /* */ 557 /* IPv6 Only */ 558 /* This is function checks pending hop by hop options extension header */ 559 /* ------------------------------------------------------------------------ */ 560 static INLINE int frpr_hopopts6(fin) 561 fr_info_t *fin; 562 { 563 return frpr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); 564 } 565 566 567 /* ------------------------------------------------------------------------ */ 568 /* Function: frpr_routing6 */ 569 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 570 /* Parameters: fin(I) - pointer to packet information */ 571 /* */ 572 /* IPv6 Only */ 573 /* This is function checks pending routing extension header */ 574 /* ------------------------------------------------------------------------ */ 575 static INLINE int frpr_routing6(fin) 576 fr_info_t *fin; 577 { 578 struct ip6_ext *hdr; 579 int shift; 580 581 hdr = fin->fin_dp; 582 if (frpr_ipv6exthdr(fin, 0, IPPROTO_ROUTING) == IPPROTO_NONE) 583 return IPPROTO_NONE; 584 585 shift = 8 + (hdr->ip6e_len << 3); 586 /* 587 * Nasty extension header length? 588 */ 589 if ((hdr->ip6e_len << 3) & 15) { 590 fin->fin_flx |= FI_BAD; 591 /* 592 * Compensate for the changes made in frpr_ipv6exthdr() 593 */ 594 fin->fin_dlen += shift; 595 fin->fin_dp = (char *)fin->fin_dp - shift; 596 return IPPROTO_NONE; 597 } 598 599 return hdr->ip6e_nxt; 600 } 601 602 603 /* ------------------------------------------------------------------------ */ 604 /* Function: frpr_fragment6 */ 605 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 606 /* Parameters: fin(I) - pointer to packet information */ 607 /* */ 608 /* IPv6 Only */ 609 /* Examine the IPv6 fragment header and extract fragment offset information.*/ 610 /* */ 611 /* We don't know where the transport layer header (or whatever is next is), */ 612 /* as it could be behind destination options (amongst others). Because */ 613 /* there is no fragment cache, there is no knowledge about whether or not an*/ 614 /* upper layer header has been seen (or where it ends) and thus we are not */ 615 /* able to continue processing beyond this header with any confidence. */ 616 /* ------------------------------------------------------------------------ */ 617 static INLINE int frpr_fragment6(fin) 618 fr_info_t *fin; 619 { 620 struct ip6_frag *frag; 621 int extoff = 0; 622 623 fin->fin_flx |= FI_FRAG; 624 625 /* 626 * A fragmented IPv6 packet implies that there must be something 627 * else after the fragment. 628 */ 629 if (frpr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT) == IPPROTO_NONE) 630 goto badv6frag; 631 632 if (frpr_pullup(fin, sizeof(*frag)) == -1) 633 goto badv6frag; 634 635 frag = (struct ip6_frag *)((char *)fin->fin_dp - sizeof(*frag)); 636 /* 637 * Fragment but no fragmentation info set? Bad packet... 638 */ 639 if (frag->ip6f_offlg == 0) 640 goto badv6frag; 641 642 fin->fin_id = frag->ip6f_ident; 643 fin->fin_dp = (char *)frag + sizeof(*frag); 644 fin->fin_dlen -= sizeof(*frag); 645 /* length of hdrs(after frag hdr) + data */ 646 extoff = sizeof(*frag); 647 648 /* 649 * If the frag is not the last one and the payload length 650 * is not multiple of 8, it must be dropped. 651 */ 652 if (((frag->ip6f_offlg & IP6F_MORE_FRAG) && (fin->fin_dlen & 7)) || 653 (frag->ip6f_offlg == 0)) { 654 badv6frag: 655 fin->fin_dp = (char *)fin->fin_dp - extoff; 656 fin->fin_dlen += extoff; 657 fin->fin_flx |= FI_BAD; 658 return IPPROTO_NONE; 659 } 660 661 fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK); 662 if (fin->fin_off != 0) 663 fin->fin_flx |= FI_FRAGBODY; 664 665 if (frag->ip6f_offlg & IP6F_MORE_FRAG) 666 fin->fin_flx |= FI_MOREFRAG; 667 668 return frag->ip6f_nxt; 669 } 670 671 672 /* ------------------------------------------------------------------------ */ 673 /* Function: frpr_dstopts6 */ 674 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 675 /* Parameters: fin(I) - pointer to packet information */ 676 /* nextheader(I) - stores next header value */ 677 /* */ 678 /* IPv6 Only */ 679 /* This is function checks pending destination options extension header */ 680 /* ------------------------------------------------------------------------ */ 681 static INLINE int frpr_dstopts6(fin) 682 fr_info_t *fin; 683 { 684 return frpr_ipv6exthdr(fin, 1, IPPROTO_DSTOPTS); 685 } 686 687 688 /* ------------------------------------------------------------------------ */ 689 /* Function: frpr_icmp6 */ 690 /* Returns: void */ 691 /* Parameters: fin(I) - pointer to packet information */ 692 /* */ 693 /* IPv6 Only */ 694 /* This routine is mainly concerned with determining the minimum valid size */ 695 /* for an ICMPv6 packet. */ 696 /* ------------------------------------------------------------------------ */ 697 static INLINE void frpr_icmp6(fin) 698 fr_info_t *fin; 699 { 700 int minicmpsz = sizeof(struct icmp6_hdr); 701 struct icmp6_hdr *icmp6; 702 703 if (frpr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) 704 return; 705 706 if (fin->fin_dlen > 1) { 707 icmp6 = fin->fin_dp; 708 709 fin->fin_data[0] = *(u_short *)icmp6; 710 711 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0) 712 fin->fin_flx |= FI_ICMPQUERY; 713 714 switch (icmp6->icmp6_type) 715 { 716 case ICMP6_ECHO_REPLY : 717 case ICMP6_ECHO_REQUEST : 718 if (fin->fin_dlen >= 6) 719 fin->fin_data[1] = icmp6->icmp6_id; 720 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t); 721 break; 722 case ICMP6_DST_UNREACH : 723 case ICMP6_PACKET_TOO_BIG : 724 case ICMP6_TIME_EXCEEDED : 725 case ICMP6_PARAM_PROB : 726 if ((fin->fin_m != NULL) && 727 (M_LEN(fin->fin_m) < fin->fin_plen)) { 728 if (fr_coalesce(fin) != 1) 729 return; 730 } 731 fin->fin_flx |= FI_ICMPERR; 732 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t); 733 break; 734 default : 735 break; 736 } 737 } 738 739 frpr_short6(fin, minicmpsz); 740 } 741 742 743 /* ------------------------------------------------------------------------ */ 744 /* Function: frpr_udp6 */ 745 /* Returns: void */ 746 /* Parameters: fin(I) - pointer to packet information */ 747 /* */ 748 /* IPv6 Only */ 749 /* Analyse the packet for IPv6/UDP properties. */ 750 /* Is not expected to be called for fragmented packets. */ 751 /* ------------------------------------------------------------------------ */ 752 static INLINE void frpr_udp6(fin) 753 fr_info_t *fin; 754 { 755 756 fr_checkv6sum(fin); 757 758 frpr_short6(fin, sizeof(struct udphdr)); 759 if (frpr_pullup(fin, sizeof(struct udphdr)) == -1) 760 return; 761 762 frpr_udpcommon(fin); 763 } 764 765 766 /* ------------------------------------------------------------------------ */ 767 /* Function: frpr_tcp6 */ 768 /* Returns: void */ 769 /* Parameters: fin(I) - pointer to packet information */ 770 /* */ 771 /* IPv6 Only */ 772 /* Analyse the packet for IPv6/TCP properties. */ 773 /* Is not expected to be called for fragmented packets. */ 774 /* ------------------------------------------------------------------------ */ 775 static INLINE void frpr_tcp6(fin) 776 fr_info_t *fin; 777 { 778 779 fr_checkv6sum(fin); 780 781 frpr_short6(fin, sizeof(struct tcphdr)); 782 if (frpr_pullup(fin, sizeof(struct tcphdr)) == -1) 783 return; 784 785 frpr_tcpcommon(fin); 786 } 787 788 789 /* ------------------------------------------------------------------------ */ 790 /* Function: frpr_esp6 */ 791 /* Returns: void */ 792 /* Parameters: fin(I) - pointer to packet information */ 793 /* */ 794 /* IPv6 Only */ 795 /* Analyse the packet for ESP properties. */ 796 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 797 /* even though the newer ESP packets must also have a sequence number that */ 798 /* is 32bits as well, it is not possible(?) to determine the version from a */ 799 /* simple packet header. */ 800 /* ------------------------------------------------------------------------ */ 801 static INLINE void frpr_esp6(fin) 802 fr_info_t *fin; 803 { 804 int i; 805 frpr_short6(fin, sizeof(grehdr_t)); 806 807 (void) frpr_pullup(fin, 8); 808 809 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 810 if (ip6exthdr[i].ol_val == IPPROTO_ESP) { 811 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 812 break; 813 } 814 } 815 816 817 /* ------------------------------------------------------------------------ */ 818 /* Function: frpr_ah6 */ 819 /* Returns: void */ 820 /* Parameters: fin(I) - pointer to packet information */ 821 /* */ 822 /* IPv6 Only */ 823 /* Analyse the packet for AH properties. */ 824 /* The minimum length is taken to be the combination of all fields in the */ 825 /* header being present and no authentication data (null algorithm used.) */ 826 /* ------------------------------------------------------------------------ */ 827 static INLINE int frpr_ah6(fin) 828 fr_info_t *fin; 829 { 830 authhdr_t *ah; 831 int i, shift; 832 833 frpr_short6(fin, 12); 834 835 if (frpr_pullup(fin, sizeof(*ah)) == -1) 836 return IPPROTO_NONE; 837 838 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 839 if (ip6exthdr[i].ol_val == IPPROTO_AH) { 840 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 841 break; 842 } 843 844 ah = (authhdr_t *)fin->fin_dp; 845 846 shift = (ah->ah_plen + 2) * 4; 847 fin->fin_dlen -= shift; 848 fin->fin_dp = (char*)fin->fin_dp + shift; 849 850 return ah->ah_next; 851 } 852 853 854 /* ------------------------------------------------------------------------ */ 855 /* Function: frpr_gre6 */ 856 /* Returns: void */ 857 /* Parameters: fin(I) - pointer to packet information */ 858 /* */ 859 /* Analyse the packet for GRE properties. */ 860 /* ------------------------------------------------------------------------ */ 861 static INLINE void frpr_gre6(fin) 862 fr_info_t *fin; 863 { 864 grehdr_t *gre; 865 866 frpr_short6(fin, sizeof(grehdr_t)); 867 868 if (frpr_pullup(fin, sizeof(grehdr_t)) == -1) 869 return; 870 871 gre = fin->fin_dp; 872 if (GRE_REV(gre->gr_flags) == 1) 873 fin->fin_data[0] = gre->gr_call; 874 } 875 #endif /* USE_INET6 */ 876 877 878 /* ------------------------------------------------------------------------ */ 879 /* Function: frpr_pullup */ 880 /* Returns: int - 0 == pullup succeeded, -1 == failure */ 881 /* Parameters: fin(I) - pointer to packet information */ 882 /* plen(I) - length (excluding L3 header) to pullup */ 883 /* */ 884 /* Short inline function to cut down on code duplication to perform a call */ 885 /* to fr_pullup to ensure there is the required amount of data, */ 886 /* consecutively in the packet buffer. */ 887 /* ------------------------------------------------------------------------ */ 888 static INLINE int frpr_pullup(fin, plen) 889 fr_info_t *fin; 890 int plen; 891 { 892 #if defined(_KERNEL) 893 if (fin->fin_m != NULL) { 894 int ipoff; 895 896 ipoff = (char *)fin->fin_ip - MTOD(fin->fin_m, char *); 897 898 if (fin->fin_dp != NULL) 899 plen += (char *)fin->fin_dp - 900 ((char *)fin->fin_ip + fin->fin_hlen); 901 plen += fin->fin_hlen; 902 /* 903 * We don't do 'plen += ipoff;' here. The fr_pullup() will 904 * do it for us. 905 */ 906 if (M_LEN(fin->fin_m) < plen + ipoff) { 907 if (fr_pullup(fin->fin_m, fin, plen) == NULL) 908 return -1; 909 } 910 } 911 #endif 912 return 0; 913 } 914 915 916 /* ------------------------------------------------------------------------ */ 917 /* Function: frpr_short */ 918 /* Returns: void */ 919 /* Parameters: fin(I) - pointer to packet information */ 920 /* xmin(I) - minimum header size */ 921 /* */ 922 /* Check if a packet is "short" as defined by xmin. The rule we are */ 923 /* applying here is that the packet must not be fragmented within the layer */ 924 /* 4 header. That is, it must not be a fragment that has its offset set to */ 925 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */ 926 /* entire layer 4 header must be present (min). */ 927 /* ------------------------------------------------------------------------ */ 928 static INLINE void frpr_short(fin, xmin) 929 fr_info_t *fin; 930 int xmin; 931 { 932 933 if (fin->fin_off == 0) { 934 if (fin->fin_dlen < xmin) 935 fin->fin_flx |= FI_SHORT; 936 } else if (fin->fin_off < xmin) { 937 fin->fin_flx |= FI_SHORT; 938 } 939 } 940 941 942 /* ------------------------------------------------------------------------ */ 943 /* Function: frpr_icmp */ 944 /* Returns: void */ 945 /* Parameters: fin(I) - pointer to packet information */ 946 /* */ 947 /* IPv4 Only */ 948 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */ 949 /* except extrememly bad packets, both type and code will be present. */ 950 /* The expected minimum size of an ICMP packet is very much dependent on */ 951 /* the type of it. */ 952 /* */ 953 /* XXX - other ICMP sanity checks? */ 954 /* ------------------------------------------------------------------------ */ 955 static INLINE void frpr_icmp(fin) 956 fr_info_t *fin; 957 { 958 int minicmpsz = sizeof(struct icmp); 959 icmphdr_t *icmp; 960 ip_t *oip; 961 ipf_stack_t *ifs = fin->fin_ifs; 962 963 if (fin->fin_off != 0) { 964 frpr_short(fin, ICMPERR_ICMPHLEN); 965 return; 966 } 967 968 if (frpr_pullup(fin, ICMPERR_ICMPHLEN) == -1) 969 return; 970 971 fr_checkv4sum(fin); 972 973 /* 974 * This is a right place to set icmp pointer, since the memory 975 * referenced by fin_dp could get reallocated. The code down below can 976 * rely on fact icmp variable always points to ICMP header. 977 */ 978 icmp = fin->fin_dp; 979 fin->fin_data[0] = *(u_short *)icmp; 980 fin->fin_data[1] = icmp->icmp_id; 981 982 switch (icmp->icmp_type) 983 { 984 case ICMP_ECHOREPLY : 985 case ICMP_ECHO : 986 /* Router discovery messaes - RFC 1256 */ 987 case ICMP_ROUTERADVERT : 988 case ICMP_ROUTERSOLICIT : 989 minicmpsz = ICMP_MINLEN; 990 break; 991 /* 992 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 993 * 3 * timestamp(3 * 4) 994 */ 995 case ICMP_TSTAMP : 996 case ICMP_TSTAMPREPLY : 997 minicmpsz = 20; 998 break; 999 /* 1000 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 1001 * mask(4) 1002 */ 1003 case ICMP_MASKREQ : 1004 case ICMP_MASKREPLY : 1005 minicmpsz = 12; 1006 break; 1007 /* 1008 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+) 1009 */ 1010 case ICMP_UNREACH : 1011 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) { 1012 if (icmp->icmp_nextmtu < ifs->ifs_fr_icmpminfragmtu) 1013 fin->fin_flx |= FI_BAD; 1014 } 1015 /* FALLTHRU */ 1016 case ICMP_SOURCEQUENCH : 1017 case ICMP_REDIRECT : 1018 case ICMP_TIMXCEED : 1019 case ICMP_PARAMPROB : 1020 fin->fin_flx |= FI_ICMPERR; 1021 if (fr_coalesce(fin) != 1) 1022 return; 1023 /* 1024 * ICMP error packets should not be generated for IP 1025 * packets that are a fragment that isn't the first 1026 * fragment. 1027 */ 1028 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN); 1029 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) 1030 fin->fin_flx |= FI_BAD; 1031 break; 1032 default : 1033 break; 1034 } 1035 1036 frpr_short(fin, minicmpsz); 1037 } 1038 1039 1040 /* ------------------------------------------------------------------------ */ 1041 /* Function: frpr_tcpcommon */ 1042 /* Returns: void */ 1043 /* Parameters: fin(I) - pointer to packet information */ 1044 /* */ 1045 /* TCP header sanity checking. Look for bad combinations of TCP flags, */ 1046 /* and make some checks with how they interact with other fields. */ 1047 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */ 1048 /* valid and mark the packet as bad if not. */ 1049 /* ------------------------------------------------------------------------ */ 1050 static INLINE void frpr_tcpcommon(fin) 1051 fr_info_t *fin; 1052 { 1053 int flags, tlen; 1054 tcphdr_t *tcp; 1055 1056 fin->fin_flx |= FI_TCPUDP; 1057 if (fin->fin_off != 0) 1058 return; 1059 1060 if (frpr_pullup(fin, sizeof(*tcp)) == -1) 1061 return; 1062 tcp = fin->fin_dp; 1063 1064 if (fin->fin_dlen > 3) { 1065 fin->fin_sport = ntohs(tcp->th_sport); 1066 fin->fin_dport = ntohs(tcp->th_dport); 1067 } 1068 1069 if ((fin->fin_flx & FI_SHORT) != 0) 1070 return; 1071 1072 /* 1073 * Use of the TCP data offset *must* result in a value that is at 1074 * least the same size as the TCP header. 1075 */ 1076 tlen = TCP_OFF(tcp) << 2; 1077 if (tlen < sizeof(tcphdr_t)) { 1078 fin->fin_flx |= FI_BAD; 1079 return; 1080 } 1081 1082 flags = tcp->th_flags; 1083 fin->fin_tcpf = tcp->th_flags; 1084 1085 /* 1086 * If the urgent flag is set, then the urgent pointer must 1087 * also be set and vice versa. Good TCP packets do not have 1088 * just one of these set. 1089 */ 1090 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) { 1091 fin->fin_flx |= FI_BAD; 1092 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) { 1093 /* Ignore this case, it shows up in "real" traffic with */ 1094 /* bogus values in the urgent pointer field. */ 1095 flags = flags; /* LINT */ 1096 } else if (((flags & (TH_SYN|TH_FIN)) != 0) && 1097 ((flags & (TH_RST|TH_ACK)) == TH_RST)) { 1098 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */ 1099 fin->fin_flx |= FI_BAD; 1100 } else if (!(flags & TH_ACK)) { 1101 /* 1102 * If the ack bit isn't set, then either the SYN or 1103 * RST bit must be set. If the SYN bit is set, then 1104 * we expect the ACK field to be 0. If the ACK is 1105 * not set and if URG, PSH or FIN are set, consdier 1106 * that to indicate a bad TCP packet. 1107 */ 1108 if ((flags == TH_SYN) && (tcp->th_ack != 0)) { 1109 /* 1110 * Cisco PIX sets the ACK field to a random value. 1111 * In light of this, do not set FI_BAD until a patch 1112 * is available from Cisco to ensure that 1113 * interoperability between existing systems is 1114 * achieved. 1115 */ 1116 /*fin->fin_flx |= FI_BAD*/; 1117 flags = flags; /* LINT */ 1118 } else if (!(flags & (TH_RST|TH_SYN))) { 1119 fin->fin_flx |= FI_BAD; 1120 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) { 1121 fin->fin_flx |= FI_BAD; 1122 } 1123 } 1124 1125 /* 1126 * At this point, it's not exactly clear what is to be gained by 1127 * marking up which TCP options are and are not present. The one we 1128 * are most interested in is the TCP window scale. This is only in 1129 * a SYN packet [RFC1323] so we don't need this here...? 1130 * Now if we were to analyse the header for passive fingerprinting, 1131 * then that might add some weight to adding this... 1132 */ 1133 if (tlen == sizeof(tcphdr_t)) 1134 return; 1135 1136 if (frpr_pullup(fin, tlen) == -1) 1137 return; 1138 1139 #if 0 1140 ip = fin->fin_ip; 1141 s = (u_char *)(tcp + 1); 1142 off = IP_HL(ip) << 2; 1143 # ifdef _KERNEL 1144 if (fin->fin_mp != NULL) { 1145 mb_t *m = *fin->fin_mp; 1146 1147 if (off + tlen > M_LEN(m)) 1148 return; 1149 } 1150 # endif 1151 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) { 1152 opt = *s; 1153 if (opt == '\0') 1154 break; 1155 else if (opt == TCPOPT_NOP) 1156 ol = 1; 1157 else { 1158 if (tlen < 2) 1159 break; 1160 ol = (int)*(s + 1); 1161 if (ol < 2 || ol > tlen) 1162 break; 1163 } 1164 1165 for (i = 9, mv = 4; mv >= 0; ) { 1166 op = ipopts + i; 1167 if (opt == (u_char)op->ol_val) { 1168 optmsk |= op->ol_bit; 1169 break; 1170 } 1171 } 1172 tlen -= ol; 1173 s += ol; 1174 } 1175 #endif /* 0 */ 1176 } 1177 1178 1179 1180 /* ------------------------------------------------------------------------ */ 1181 /* Function: frpr_udpcommon */ 1182 /* Returns: void */ 1183 /* Parameters: fin(I) - pointer to packet information */ 1184 /* */ 1185 /* Extract the UDP source and destination ports, if present. If compiled */ 1186 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */ 1187 /* ------------------------------------------------------------------------ */ 1188 static INLINE void frpr_udpcommon(fin) 1189 fr_info_t *fin; 1190 { 1191 udphdr_t *udp; 1192 1193 fin->fin_flx |= FI_TCPUDP; 1194 1195 if (!fin->fin_off && (fin->fin_dlen > 3)) { 1196 if (frpr_pullup(fin, sizeof(*udp)) == -1) { 1197 fin->fin_flx |= FI_SHORT; 1198 return; 1199 } 1200 1201 udp = fin->fin_dp; 1202 1203 fin->fin_sport = ntohs(udp->uh_sport); 1204 fin->fin_dport = ntohs(udp->uh_dport); 1205 } 1206 } 1207 1208 1209 /* ------------------------------------------------------------------------ */ 1210 /* Function: frpr_tcp */ 1211 /* Returns: void */ 1212 /* Parameters: fin(I) - pointer to packet information */ 1213 /* */ 1214 /* IPv4 Only */ 1215 /* Analyse the packet for IPv4/TCP properties. */ 1216 /* ------------------------------------------------------------------------ */ 1217 static INLINE void frpr_tcp(fin) 1218 fr_info_t *fin; 1219 { 1220 1221 fr_checkv4sum(fin); 1222 1223 frpr_short(fin, sizeof(tcphdr_t)); 1224 1225 frpr_tcpcommon(fin); 1226 } 1227 1228 1229 /* ------------------------------------------------------------------------ */ 1230 /* Function: frpr_udp */ 1231 /* Returns: void */ 1232 /* Parameters: fin(I) - pointer to packet information */ 1233 /* */ 1234 /* IPv4 Only */ 1235 /* Analyse the packet for IPv4/UDP properties. */ 1236 /* ------------------------------------------------------------------------ */ 1237 static INLINE void frpr_udp(fin) 1238 fr_info_t *fin; 1239 { 1240 1241 fr_checkv4sum(fin); 1242 1243 frpr_short(fin, sizeof(udphdr_t)); 1244 1245 frpr_udpcommon(fin); 1246 } 1247 1248 1249 /* ------------------------------------------------------------------------ */ 1250 /* Function: frpr_esp */ 1251 /* Returns: void */ 1252 /* Parameters: fin(I) - pointer to packet information */ 1253 /* */ 1254 /* Analyse the packet for ESP properties. */ 1255 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 1256 /* even though the newer ESP packets must also have a sequence number that */ 1257 /* is 32bits as well, it is not possible(?) to determine the version from a */ 1258 /* simple packet header. */ 1259 /* ------------------------------------------------------------------------ */ 1260 static INLINE void frpr_esp(fin) 1261 fr_info_t *fin; 1262 { 1263 if ((fin->fin_off == 0) && (frpr_pullup(fin, 8) == -1)) 1264 return; 1265 1266 frpr_short(fin, 8); 1267 } 1268 1269 1270 /* ------------------------------------------------------------------------ */ 1271 /* Function: frpr_ah */ 1272 /* Returns: void */ 1273 /* Parameters: fin(I) - pointer to packet information */ 1274 /* */ 1275 /* Analyse the packet for AH properties. */ 1276 /* The minimum length is taken to be the combination of all fields in the */ 1277 /* header being present and no authentication data (null algorithm used.) */ 1278 /* ------------------------------------------------------------------------ */ 1279 static INLINE void frpr_ah(fin) 1280 fr_info_t *fin; 1281 { 1282 authhdr_t *ah; 1283 int len; 1284 1285 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(*ah)) == -1)) 1286 return; 1287 1288 ah = (authhdr_t *)fin->fin_dp; 1289 1290 len = (ah->ah_plen + 2) << 2; 1291 frpr_short(fin, len); 1292 } 1293 1294 1295 /* ------------------------------------------------------------------------ */ 1296 /* Function: frpr_gre */ 1297 /* Returns: void */ 1298 /* Parameters: fin(I) - pointer to packet information */ 1299 /* */ 1300 /* Analyse the packet for GRE properties. */ 1301 /* ------------------------------------------------------------------------ */ 1302 static INLINE void frpr_gre(fin) 1303 fr_info_t *fin; 1304 { 1305 grehdr_t *gre; 1306 1307 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(grehdr_t)) == -1)) 1308 return; 1309 1310 frpr_short(fin, sizeof(grehdr_t)); 1311 1312 if (fin->fin_off == 0) { 1313 gre = fin->fin_dp; 1314 if (GRE_REV(gre->gr_flags) == 1) 1315 fin->fin_data[0] = gre->gr_call; 1316 } 1317 } 1318 1319 1320 /* ------------------------------------------------------------------------ */ 1321 /* Function: frpr_ipv4hdr */ 1322 /* Returns: void */ 1323 /* Parameters: fin(I) - pointer to packet information */ 1324 /* */ 1325 /* IPv4 Only */ 1326 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */ 1327 /* Check all options present and flag their presence if any exist. */ 1328 /* ------------------------------------------------------------------------ */ 1329 static INLINE void frpr_ipv4hdr(fin) 1330 fr_info_t *fin; 1331 { 1332 u_short optmsk = 0, secmsk = 0, auth = 0; 1333 int hlen, ol, mv, p, i; 1334 const struct optlist *op; 1335 u_char *s, opt; 1336 u_short off; 1337 fr_ip_t *fi; 1338 ip_t *ip; 1339 1340 fi = &fin->fin_fi; 1341 hlen = fin->fin_hlen; 1342 1343 ip = fin->fin_ip; 1344 p = ip->ip_p; 1345 fi->fi_p = p; 1346 fi->fi_tos = ip->ip_tos; 1347 fin->fin_id = ip->ip_id; 1348 off = ip->ip_off; 1349 1350 /* Get both TTL and protocol */ 1351 fi->fi_p = ip->ip_p; 1352 fi->fi_ttl = ip->ip_ttl; 1353 #if 0 1354 (*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4)); 1355 #endif 1356 1357 /* Zero out bits not used in IPv6 address */ 1358 fi->fi_src.i6[1] = 0; 1359 fi->fi_src.i6[2] = 0; 1360 fi->fi_src.i6[3] = 0; 1361 fi->fi_dst.i6[1] = 0; 1362 fi->fi_dst.i6[2] = 0; 1363 fi->fi_dst.i6[3] = 0; 1364 1365 fi->fi_saddr = ip->ip_src.s_addr; 1366 fi->fi_daddr = ip->ip_dst.s_addr; 1367 1368 /* 1369 * set packet attribute flags based on the offset and 1370 * calculate the byte offset that it represents. 1371 */ 1372 off &= IP_MF|IP_OFFMASK; 1373 if (off != 0) { 1374 int morefrag = off & IP_MF; 1375 1376 fi->fi_flx |= FI_FRAG; 1377 if (morefrag) 1378 fi->fi_flx |= FI_MOREFRAG; 1379 off &= IP_OFFMASK; 1380 if (off != 0) { 1381 fin->fin_flx |= FI_FRAGBODY; 1382 off <<= 3; 1383 if ((off + fin->fin_dlen > 65535) || 1384 (fin->fin_dlen == 0) || 1385 ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) { 1386 /* 1387 * The length of the packet, starting at its 1388 * offset cannot exceed 65535 (0xffff) as the 1389 * length of an IP packet is only 16 bits. 1390 * 1391 * Any fragment that isn't the last fragment 1392 * must have a length greater than 0 and it 1393 * must be an even multiple of 8. 1394 */ 1395 fi->fi_flx |= FI_BAD; 1396 } 1397 } 1398 } 1399 fin->fin_off = off; 1400 1401 /* 1402 * Call per-protocol setup and checking 1403 */ 1404 switch (p) 1405 { 1406 case IPPROTO_UDP : 1407 frpr_udp(fin); 1408 break; 1409 case IPPROTO_TCP : 1410 frpr_tcp(fin); 1411 break; 1412 case IPPROTO_ICMP : 1413 frpr_icmp(fin); 1414 break; 1415 case IPPROTO_AH : 1416 frpr_ah(fin); 1417 break; 1418 case IPPROTO_ESP : 1419 frpr_esp(fin); 1420 break; 1421 case IPPROTO_GRE : 1422 frpr_gre(fin); 1423 break; 1424 } 1425 1426 ip = fin->fin_ip; 1427 if (ip == NULL) 1428 return; 1429 1430 /* 1431 * If it is a standard IP header (no options), set the flag fields 1432 * which relate to options to 0. 1433 */ 1434 if (hlen == sizeof(*ip)) { 1435 fi->fi_optmsk = 0; 1436 fi->fi_secmsk = 0; 1437 fi->fi_auth = 0; 1438 return; 1439 } 1440 1441 /* 1442 * So the IP header has some IP options attached. Walk the entire 1443 * list of options present with this packet and set flags to indicate 1444 * which ones are here and which ones are not. For the somewhat out 1445 * of date and obscure security classification options, set a flag to 1446 * represent which classification is present. 1447 */ 1448 fi->fi_flx |= FI_OPTIONS; 1449 1450 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) { 1451 opt = *s; 1452 if (opt == '\0') 1453 break; 1454 else if (opt == IPOPT_NOP) 1455 ol = 1; 1456 else { 1457 if (hlen < 2) 1458 break; 1459 ol = (int)*(s + 1); 1460 if (ol < 2 || ol > hlen) 1461 break; 1462 } 1463 for (i = 9, mv = 4; mv >= 0; ) { 1464 op = ipopts + i; 1465 if ((opt == (u_char)op->ol_val) && (ol > 4)) { 1466 optmsk |= op->ol_bit; 1467 if (opt == IPOPT_SECURITY) { 1468 const struct optlist *sp; 1469 u_char sec; 1470 int j, m; 1471 1472 sec = *(s + 2); /* classification */ 1473 for (j = 3, m = 2; m >= 0; ) { 1474 sp = secopt + j; 1475 if (sec == sp->ol_val) { 1476 secmsk |= sp->ol_bit; 1477 auth = *(s + 3); 1478 auth *= 256; 1479 auth += *(s + 4); 1480 break; 1481 } 1482 if (sec < sp->ol_val) 1483 j -= m; 1484 else 1485 j += m; 1486 m--; 1487 } 1488 } 1489 break; 1490 } 1491 if (opt < op->ol_val) 1492 i -= mv; 1493 else 1494 i += mv; 1495 mv--; 1496 } 1497 hlen -= ol; 1498 s += ol; 1499 } 1500 1501 /* 1502 * 1503 */ 1504 if (auth && !(auth & 0x0100)) 1505 auth &= 0xff00; 1506 fi->fi_optmsk = optmsk; 1507 fi->fi_secmsk = secmsk; 1508 fi->fi_auth = auth; 1509 } 1510 1511 1512 /* ------------------------------------------------------------------------ */ 1513 /* Function: fr_makefrip */ 1514 /* Returns: int - 1 == hdr checking error, 0 == OK */ 1515 /* Parameters: hlen(I) - length of IP packet header */ 1516 /* ip(I) - pointer to the IP header */ 1517 /* fin(IO) - pointer to packet information */ 1518 /* */ 1519 /* Compact the IP header into a structure which contains just the info. */ 1520 /* which is useful for comparing IP headers with and store this information */ 1521 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */ 1522 /* this function will be called with either an IPv4 or IPv6 packet. */ 1523 /* ------------------------------------------------------------------------ */ 1524 int fr_makefrip(hlen, ip, fin) 1525 int hlen; 1526 ip_t *ip; 1527 fr_info_t *fin; 1528 { 1529 int v; 1530 1531 fin->fin_depth = 0; 1532 fin->fin_hlen = (u_short)hlen; 1533 fin->fin_ip = ip; 1534 fin->fin_rule = 0xffffffff; 1535 fin->fin_group[0] = -1; 1536 fin->fin_group[1] = '\0'; 1537 fin->fin_dlen = fin->fin_plen - hlen; 1538 fin->fin_dp = (char *)ip + hlen; 1539 1540 v = fin->fin_v; 1541 if (v == 4) 1542 frpr_ipv4hdr(fin); 1543 #ifdef USE_INET6 1544 else if (v == 6) 1545 frpr_ipv6hdr(fin); 1546 #endif 1547 if (fin->fin_ip == NULL) 1548 return -1; 1549 return 0; 1550 } 1551 1552 1553 /* ------------------------------------------------------------------------ */ 1554 /* Function: fr_portcheck */ 1555 /* Returns: int - 1 == port matched, 0 == port match failed */ 1556 /* Parameters: frp(I) - pointer to port check `expression' */ 1557 /* pop(I) - pointer to port number to evaluate */ 1558 /* */ 1559 /* Perform a comparison of a port number against some other(s), using a */ 1560 /* structure with compare information stored in it. */ 1561 /* ------------------------------------------------------------------------ */ 1562 static INLINE int fr_portcheck(frp, pop) 1563 frpcmp_t *frp; 1564 u_short *pop; 1565 { 1566 u_short tup, po; 1567 int err = 1; 1568 1569 tup = *pop; 1570 po = frp->frp_port; 1571 1572 /* 1573 * Do opposite test to that required and continue if that succeeds. 1574 */ 1575 switch (frp->frp_cmp) 1576 { 1577 case FR_EQUAL : 1578 if (tup != po) /* EQUAL */ 1579 err = 0; 1580 break; 1581 case FR_NEQUAL : 1582 if (tup == po) /* NOTEQUAL */ 1583 err = 0; 1584 break; 1585 case FR_LESST : 1586 if (tup >= po) /* LESSTHAN */ 1587 err = 0; 1588 break; 1589 case FR_GREATERT : 1590 if (tup <= po) /* GREATERTHAN */ 1591 err = 0; 1592 break; 1593 case FR_LESSTE : 1594 if (tup > po) /* LT or EQ */ 1595 err = 0; 1596 break; 1597 case FR_GREATERTE : 1598 if (tup < po) /* GT or EQ */ 1599 err = 0; 1600 break; 1601 case FR_OUTRANGE : 1602 if (tup >= po && tup <= frp->frp_top) /* Out of range */ 1603 err = 0; 1604 break; 1605 case FR_INRANGE : 1606 if (tup <= po || tup >= frp->frp_top) /* In range */ 1607 err = 0; 1608 break; 1609 case FR_INCRANGE : 1610 if (tup < po || tup > frp->frp_top) /* Inclusive range */ 1611 err = 0; 1612 break; 1613 default : 1614 break; 1615 } 1616 return err; 1617 } 1618 1619 1620 /* ------------------------------------------------------------------------ */ 1621 /* Function: fr_tcpudpchk */ 1622 /* Returns: int - 1 == protocol matched, 0 == check failed */ 1623 /* Parameters: fin(I) - pointer to packet information */ 1624 /* ft(I) - pointer to structure with comparison data */ 1625 /* */ 1626 /* Compares the current pcket (assuming it is TCP/UDP) information with a */ 1627 /* structure containing information that we want to match against. */ 1628 /* ------------------------------------------------------------------------ */ 1629 int fr_tcpudpchk(fin, ft) 1630 fr_info_t *fin; 1631 frtuc_t *ft; 1632 { 1633 int err = 1; 1634 1635 /* 1636 * Both ports should *always* be in the first fragment. 1637 * So far, I cannot find any cases where they can not be. 1638 * 1639 * compare destination ports 1640 */ 1641 if (ft->ftu_dcmp) 1642 err = fr_portcheck(&ft->ftu_dst, &fin->fin_dport); 1643 1644 /* 1645 * compare source ports 1646 */ 1647 if (err && ft->ftu_scmp) 1648 err = fr_portcheck(&ft->ftu_src, &fin->fin_sport); 1649 1650 /* 1651 * If we don't have all the TCP/UDP header, then how can we 1652 * expect to do any sort of match on it ? If we were looking for 1653 * TCP flags, then NO match. If not, then match (which should 1654 * satisfy the "short" class too). 1655 */ 1656 if (err && (fin->fin_p == IPPROTO_TCP)) { 1657 if (fin->fin_flx & FI_SHORT) 1658 return !(ft->ftu_tcpf | ft->ftu_tcpfm); 1659 /* 1660 * Match the flags ? If not, abort this match. 1661 */ 1662 if (ft->ftu_tcpfm && 1663 ft->ftu_tcpf != (fin->fin_tcpf & ft->ftu_tcpfm)) { 1664 FR_DEBUG(("f. %#x & %#x != %#x\n", fin->fin_tcpf, 1665 ft->ftu_tcpfm, ft->ftu_tcpf)); 1666 err = 0; 1667 } 1668 } 1669 return err; 1670 } 1671 1672 1673 /* ------------------------------------------------------------------------ */ 1674 /* Function: fr_ipfcheck */ 1675 /* Returns: int - 0 == match, 1 == no match */ 1676 /* Parameters: fin(I) - pointer to packet information */ 1677 /* fr(I) - pointer to filter rule */ 1678 /* portcmp(I) - flag indicating whether to attempt matching on */ 1679 /* TCP/UDP port data. */ 1680 /* */ 1681 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */ 1682 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */ 1683 /* this function. */ 1684 /* ------------------------------------------------------------------------ */ 1685 static INLINE int fr_ipfcheck(fin, fr, portcmp) 1686 fr_info_t *fin; 1687 frentry_t *fr; 1688 int portcmp; 1689 { 1690 u_32_t *ld, *lm, *lip; 1691 fripf_t *fri; 1692 fr_ip_t *fi; 1693 int i; 1694 ipf_stack_t *ifs = fin->fin_ifs; 1695 1696 fi = &fin->fin_fi; 1697 fri = fr->fr_ipf; 1698 lip = (u_32_t *)fi; 1699 lm = (u_32_t *)&fri->fri_mip; 1700 ld = (u_32_t *)&fri->fri_ip; 1701 1702 /* 1703 * first 32 bits to check coversion: 1704 * IP version, TOS, TTL, protocol 1705 */ 1706 i = ((*lip & *lm) != *ld); 1707 FR_DEBUG(("0. %#08x & %#08x != %#08x\n", 1708 *lip, *lm, *ld)); 1709 if (i) 1710 return 1; 1711 1712 /* 1713 * Next 32 bits is a constructed bitmask indicating which IP options 1714 * are present (if any) in this packet. 1715 */ 1716 lip++, lm++, ld++; 1717 i |= ((*lip & *lm) != *ld); 1718 FR_DEBUG(("1. %#08x & %#08x != %#08x\n", 1719 *lip, *lm, *ld)); 1720 if (i) 1721 return 1; 1722 1723 lip++, lm++, ld++; 1724 /* 1725 * Unrolled loops (4 each, for 32 bits) for address checks. 1726 */ 1727 /* 1728 * Check the source address. 1729 */ 1730 #ifdef IPFILTER_LOOKUP 1731 if (fr->fr_satype == FRI_LOOKUP) { 1732 i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip, ifs); 1733 if (i == -1) 1734 return 1; 1735 lip += 3; 1736 lm += 3; 1737 ld += 3; 1738 } else { 1739 #endif 1740 i = ((*lip & *lm) != *ld); 1741 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n", 1742 *lip, *lm, *ld)); 1743 if (fi->fi_v == 6) { 1744 lip++, lm++, ld++; 1745 i |= ((*lip & *lm) != *ld); 1746 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n", 1747 *lip, *lm, *ld)); 1748 lip++, lm++, ld++; 1749 i |= ((*lip & *lm) != *ld); 1750 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n", 1751 *lip, *lm, *ld)); 1752 lip++, lm++, ld++; 1753 i |= ((*lip & *lm) != *ld); 1754 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n", 1755 *lip, *lm, *ld)); 1756 } else { 1757 lip += 3; 1758 lm += 3; 1759 ld += 3; 1760 } 1761 #ifdef IPFILTER_LOOKUP 1762 } 1763 #endif 1764 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6; 1765 if (i) 1766 return 1; 1767 1768 /* 1769 * Check the destination address. 1770 */ 1771 lip++, lm++, ld++; 1772 #ifdef IPFILTER_LOOKUP 1773 if (fr->fr_datype == FRI_LOOKUP) { 1774 i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip, ifs); 1775 if (i == -1) 1776 return 1; 1777 lip += 3; 1778 lm += 3; 1779 ld += 3; 1780 } else { 1781 #endif 1782 i = ((*lip & *lm) != *ld); 1783 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n", 1784 *lip, *lm, *ld)); 1785 if (fi->fi_v == 6) { 1786 lip++, lm++, ld++; 1787 i |= ((*lip & *lm) != *ld); 1788 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n", 1789 *lip, *lm, *ld)); 1790 lip++, lm++, ld++; 1791 i |= ((*lip & *lm) != *ld); 1792 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n", 1793 *lip, *lm, *ld)); 1794 lip++, lm++, ld++; 1795 i |= ((*lip & *lm) != *ld); 1796 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n", 1797 *lip, *lm, *ld)); 1798 } else { 1799 lip += 3; 1800 lm += 3; 1801 ld += 3; 1802 } 1803 #ifdef IPFILTER_LOOKUP 1804 } 1805 #endif 1806 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7; 1807 if (i) 1808 return 1; 1809 /* 1810 * IP addresses matched. The next 32bits contains: 1811 * mast of old IP header security & authentication bits. 1812 */ 1813 lip++, lm++, ld++; 1814 i |= ((*lip & *lm) != *ld); 1815 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", 1816 *lip, *lm, *ld)); 1817 1818 /* 1819 * Next we have 32 bits of packet flags. 1820 */ 1821 lip++, lm++, ld++; 1822 i |= ((*lip & *lm) != *ld); 1823 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", 1824 *lip, *lm, *ld)); 1825 1826 if (i == 0) { 1827 /* 1828 * If a fragment, then only the first has what we're 1829 * looking for here... 1830 */ 1831 if (portcmp) { 1832 if (!fr_tcpudpchk(fin, &fr->fr_tuc)) 1833 i = 1; 1834 } else { 1835 if (fr->fr_dcmp || fr->fr_scmp || 1836 fr->fr_tcpf || fr->fr_tcpfm) 1837 i = 1; 1838 if (fr->fr_icmpm || fr->fr_icmp) { 1839 if (((fi->fi_p != IPPROTO_ICMP) && 1840 (fi->fi_p != IPPROTO_ICMPV6)) || 1841 fin->fin_off || (fin->fin_dlen < 2)) 1842 i = 1; 1843 else if ((fin->fin_data[0] & fr->fr_icmpm) != 1844 fr->fr_icmp) { 1845 FR_DEBUG(("i. %#x & %#x != %#x\n", 1846 fin->fin_data[0], 1847 fr->fr_icmpm, fr->fr_icmp)); 1848 i = 1; 1849 } 1850 } 1851 } 1852 } 1853 return i; 1854 } 1855 1856 1857 /* ------------------------------------------------------------------------ */ 1858 /* Function: fr_scanlist */ 1859 /* Returns: int - result flags of scanning filter list */ 1860 /* Parameters: fin(I) - pointer to packet information */ 1861 /* pass(I) - default result to return for filtering */ 1862 /* */ 1863 /* Check the input/output list of rules for a match to the current packet. */ 1864 /* If a match is found, the value of fr_flags from the rule becomes the */ 1865 /* return value and fin->fin_fr points to the matched rule. */ 1866 /* */ 1867 /* This function may be called recusively upto 16 times (limit inbuilt.) */ 1868 /* When unwinding, it should finish up with fin_depth as 0. */ 1869 /* */ 1870 /* Could be per interface, but this gets real nasty when you don't have, */ 1871 /* or can't easily change, the kernel source code to . */ 1872 /* ------------------------------------------------------------------------ */ 1873 int fr_scanlist(fin, pass) 1874 fr_info_t *fin; 1875 u_32_t pass; 1876 { 1877 int rulen, portcmp, off, logged, skip; 1878 struct frentry *fr, *fnext; 1879 u_32_t passt, passo; 1880 ipf_stack_t *ifs = fin->fin_ifs; 1881 1882 /* 1883 * Do not allow nesting deeper than 16 levels. 1884 */ 1885 if (fin->fin_depth >= 16) 1886 return pass; 1887 1888 fr = fin->fin_fr; 1889 1890 /* 1891 * If there are no rules in this list, return now. 1892 */ 1893 if (fr == NULL) 1894 return pass; 1895 1896 skip = 0; 1897 logged = 0; 1898 portcmp = 0; 1899 fin->fin_depth++; 1900 fin->fin_fr = NULL; 1901 off = fin->fin_off; 1902 1903 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off) 1904 portcmp = 1; 1905 1906 for (rulen = 0; fr; fr = fnext, rulen++) { 1907 fnext = fr->fr_next; 1908 if (skip != 0) { 1909 FR_VERBOSE(("%d (%#x)\n", skip, fr->fr_flags)); 1910 skip--; 1911 continue; 1912 } 1913 1914 /* 1915 * In all checks below, a null (zero) value in the 1916 * filter struture is taken to mean a wildcard. 1917 * 1918 * check that we are working for the right interface 1919 */ 1920 #ifdef _KERNEL 1921 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 1922 continue; 1923 #else 1924 if (opts & (OPT_VERBOSE|OPT_DEBUG)) 1925 printf("\n"); 1926 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' : 1927 FR_ISPASS(pass) ? 'p' : 1928 FR_ISACCOUNT(pass) ? 'A' : 1929 FR_ISAUTH(pass) ? 'a' : 1930 (pass & FR_NOMATCH) ? 'n' :'b')); 1931 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 1932 continue; 1933 FR_VERBOSE((":i")); 1934 #endif 1935 1936 switch (fr->fr_type) 1937 { 1938 case FR_T_IPF : 1939 case FR_T_IPF|FR_T_BUILTIN : 1940 if (fr_ipfcheck(fin, fr, portcmp)) 1941 continue; 1942 break; 1943 #if defined(IPFILTER_BPF) 1944 case FR_T_BPFOPC : 1945 case FR_T_BPFOPC|FR_T_BUILTIN : 1946 { 1947 u_char *mc; 1948 1949 if (*fin->fin_mp == NULL) 1950 continue; 1951 if (fin->fin_v != fr->fr_v) 1952 continue; 1953 mc = (u_char *)fin->fin_m; 1954 if (!bpf_filter(fr->fr_data, mc, fin->fin_plen, 0)) 1955 continue; 1956 break; 1957 } 1958 #endif 1959 case FR_T_CALLFUNC|FR_T_BUILTIN : 1960 { 1961 frentry_t *f; 1962 1963 f = (*fr->fr_func)(fin, &pass); 1964 if (f != NULL) 1965 fr = f; 1966 else 1967 continue; 1968 break; 1969 } 1970 default : 1971 break; 1972 } 1973 1974 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { 1975 if (fin->fin_nattag == NULL) 1976 continue; 1977 if (fr_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0) 1978 continue; 1979 } 1980 FR_VERBOSE(("=%s.%d *", fr->fr_group, rulen)); 1981 1982 passt = fr->fr_flags; 1983 1984 /* 1985 * Allowing a rule with the "keep state" flag set to match 1986 * packets that have been tagged "out of window" by the TCP 1987 * state tracking is foolish as the attempt to add a new 1988 * state entry to the table will fail. 1989 */ 1990 if ((passt & FR_KEEPSTATE) && (fin->fin_flx & FI_OOW)) 1991 continue; 1992 1993 /* 1994 * If the rule is a "call now" rule, then call the function 1995 * in the rule, if it exists and use the results from that. 1996 * If the function pointer is bad, just make like we ignore 1997 * it, except for increasing the hit counter. 1998 */ 1999 if ((passt & FR_CALLNOW) != 0) { 2000 IPF_BUMP(fr->fr_hits); 2001 if ((fr->fr_func != NULL) && 2002 (fr->fr_func != (ipfunc_t)-1)) { 2003 frentry_t *frs; 2004 2005 frs = fin->fin_fr; 2006 fin->fin_fr = fr; 2007 fr = (*fr->fr_func)(fin, &passt); 2008 if (fr == NULL) { 2009 fin->fin_fr = frs; 2010 continue; 2011 } 2012 passt = fr->fr_flags; 2013 fin->fin_fr = fr; 2014 } 2015 } else { 2016 fin->fin_fr = fr; 2017 } 2018 2019 #ifdef IPFILTER_LOG 2020 /* 2021 * Just log this packet... 2022 */ 2023 if ((passt & FR_LOGMASK) == FR_LOG) { 2024 if (ipflog(fin, passt) == -1) { 2025 if (passt & FR_LOGORBLOCK) { 2026 passt &= ~FR_CMDMASK; 2027 passt |= FR_BLOCK|FR_QUICK; 2028 } 2029 IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_skip); 2030 } 2031 IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_pkl); 2032 logged = 1; 2033 } 2034 #endif /* IPFILTER_LOG */ 2035 fr->fr_bytes += (U_QUAD_T)fin->fin_plen; 2036 passo = pass; 2037 if (FR_ISSKIP(passt)) 2038 skip = fr->fr_arg; 2039 else if ((passt & FR_LOGMASK) != FR_LOG) 2040 pass = passt; 2041 if (passt & (FR_RETICMP|FR_FAKEICMP)) 2042 fin->fin_icode = fr->fr_icode; 2043 FR_DEBUG(("pass %#x\n", pass)); 2044 IPF_BUMP(fr->fr_hits); 2045 fin->fin_rule = rulen; 2046 (void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN); 2047 if (fr->fr_grp != NULL) { 2048 fin->fin_fr = *fr->fr_grp; 2049 pass = fr_scanlist(fin, pass); 2050 if (fin->fin_fr == NULL) { 2051 fin->fin_rule = rulen; 2052 (void) strncpy(fin->fin_group, fr->fr_group, 2053 FR_GROUPLEN); 2054 fin->fin_fr = fr; 2055 } 2056 if (fin->fin_flx & FI_DONTCACHE) 2057 logged = 1; 2058 } 2059 2060 if (pass & FR_QUICK) { 2061 /* 2062 * Finally, if we've asked to track state for this 2063 * packet, set it up. Add state for "quick" rules 2064 * here so that if the action fails we can consider 2065 * the rule to "not match" and keep on processing 2066 * filter rules. 2067 */ 2068 if ((pass & FR_KEEPSTATE) && 2069 !(fin->fin_flx & FI_STATE)) { 2070 int out = fin->fin_out; 2071 2072 if (fr_addstate(fin, NULL, 0) != NULL) { 2073 IPF_BUMP(ifs->ifs_frstats[out].fr_ads); 2074 } else { 2075 IPF_BUMP(ifs->ifs_frstats[out].fr_bads); 2076 pass = passo; 2077 continue; 2078 } 2079 } 2080 break; 2081 } 2082 } 2083 if (logged) 2084 fin->fin_flx |= FI_DONTCACHE; 2085 fin->fin_depth--; 2086 return pass; 2087 } 2088 2089 2090 /* ------------------------------------------------------------------------ */ 2091 /* Function: fr_acctpkt */ 2092 /* Returns: frentry_t* - always returns NULL */ 2093 /* Parameters: fin(I) - pointer to packet information */ 2094 /* passp(IO) - pointer to current/new filter decision (unused) */ 2095 /* */ 2096 /* Checks a packet against accounting rules, if there are any for the given */ 2097 /* IP protocol version. */ 2098 /* */ 2099 /* N.B.: this function returns NULL to match the prototype used by other */ 2100 /* functions called from the IPFilter "mainline" in fr_check(). */ 2101 /* ------------------------------------------------------------------------ */ 2102 frentry_t *fr_acctpkt(fin, passp) 2103 fr_info_t *fin; 2104 u_32_t *passp; 2105 { 2106 char group[FR_GROUPLEN]; 2107 frentry_t *fr, *frsave; 2108 u_32_t pass, rulen; 2109 ipf_stack_t *ifs = fin->fin_ifs; 2110 2111 passp = passp; 2112 #ifdef USE_INET6 2113 if (fin->fin_v == 6) 2114 fr = ifs->ifs_ipacct6[fin->fin_out][ifs->ifs_fr_active]; 2115 else 2116 #endif 2117 fr = ifs->ifs_ipacct[fin->fin_out][ifs->ifs_fr_active]; 2118 2119 if (fr != NULL) { 2120 frsave = fin->fin_fr; 2121 bcopy(fin->fin_group, group, FR_GROUPLEN); 2122 rulen = fin->fin_rule; 2123 fin->fin_fr = fr; 2124 pass = fr_scanlist(fin, FR_NOMATCH); 2125 if (FR_ISACCOUNT(pass)) { 2126 IPF_BUMP(ifs->ifs_frstats[0].fr_acct); 2127 } 2128 fin->fin_fr = frsave; 2129 bcopy(group, fin->fin_group, FR_GROUPLEN); 2130 fin->fin_rule = rulen; 2131 } 2132 return NULL; 2133 } 2134 2135 2136 /* ------------------------------------------------------------------------ */ 2137 /* Function: fr_firewall */ 2138 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */ 2139 /* were found, returns NULL. */ 2140 /* Parameters: fin(I) - pointer to packet information */ 2141 /* passp(IO) - pointer to current/new filter decision (unused) */ 2142 /* */ 2143 /* Applies an appropriate set of firewall rules to the packet, to see if */ 2144 /* there are any matches. The first check is to see if a match can be seen */ 2145 /* in the cache. If not, then search an appropriate list of rules. Once a */ 2146 /* matching rule is found, take any appropriate actions as defined by the */ 2147 /* rule - except logging. */ 2148 /* ------------------------------------------------------------------------ */ 2149 static frentry_t *fr_firewall(fin, passp) 2150 fr_info_t *fin; 2151 u_32_t *passp; 2152 { 2153 frentry_t *fr; 2154 u_32_t pass; 2155 int out; 2156 ipf_stack_t *ifs = fin->fin_ifs; 2157 2158 out = fin->fin_out; 2159 pass = *passp; 2160 2161 #ifdef USE_INET6 2162 if (fin->fin_v == 6) 2163 fin->fin_fr = ifs->ifs_ipfilter6[out][ifs->ifs_fr_active]; 2164 else 2165 #endif 2166 fin->fin_fr = ifs->ifs_ipfilter[out][ifs->ifs_fr_active]; 2167 if (fin->fin_fr != NULL) 2168 pass = fr_scanlist(fin, ifs->ifs_fr_pass); 2169 2170 if ((pass & FR_NOMATCH)) { 2171 IPF_BUMP(ifs->ifs_frstats[out].fr_nom); 2172 } 2173 fr = fin->fin_fr; 2174 2175 /* 2176 * Apply packets per second rate-limiting to a rule as required. 2177 */ 2178 if ((fr != NULL) && (fr->fr_pps != 0) && 2179 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) { 2180 pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST); 2181 pass |= FR_BLOCK; 2182 IPF_BUMP(ifs->ifs_frstats[out].fr_ppshit); 2183 } 2184 2185 /* 2186 * If we fail to add a packet to the authorization queue, then we 2187 * drop the packet later. However, if it was added then pretend 2188 * we've dropped it already. 2189 */ 2190 if (FR_ISAUTH(pass)) { 2191 if (fr_newauth(fin->fin_m, fin) != 0) { 2192 #ifdef _KERNEL 2193 fin->fin_m = *fin->fin_mp = NULL; 2194 #else 2195 ; 2196 #endif 2197 fin->fin_error = 0; 2198 } else 2199 fin->fin_error = ENOSPC; 2200 } 2201 2202 if ((fr != NULL) && (fr->fr_func != NULL) && 2203 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW)) 2204 (void) (*fr->fr_func)(fin, &pass); 2205 2206 /* 2207 * If a rule is a pre-auth rule, check again in the list of rules 2208 * loaded for authenticated use. It does not particulary matter 2209 * if this search fails because a "preauth" result, from a rule, 2210 * is treated as "not a pass", hence the packet is blocked. 2211 */ 2212 if (FR_ISPREAUTH(pass)) { 2213 if ((fin->fin_fr = ifs->ifs_ipauth) != NULL) 2214 pass = fr_scanlist(fin, ifs->ifs_fr_pass); 2215 } 2216 2217 /* 2218 * If the rule has "keep frag" and the packet is actually a fragment, 2219 * then create a fragment state entry. 2220 */ 2221 if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) { 2222 if (fin->fin_flx & FI_FRAG) { 2223 if (fr_newfrag(fin, pass) == -1) { 2224 IPF_BUMP(ifs->ifs_frstats[out].fr_bnfr); 2225 } else { 2226 IPF_BUMP(ifs->ifs_frstats[out].fr_nfr); 2227 } 2228 } else { 2229 IPF_BUMP(ifs->ifs_frstats[out].fr_cfr); 2230 } 2231 } 2232 2233 /* 2234 * Finally, if we've asked to track state for this packet, set it up. 2235 */ 2236 if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) { 2237 if (fr_addstate(fin, NULL, 0) != NULL) { 2238 IPF_BUMP(ifs->ifs_frstats[out].fr_ads); 2239 } else { 2240 IPF_BUMP(ifs->ifs_frstats[out].fr_bads); 2241 if (FR_ISPASS(pass)) { 2242 pass &= ~FR_CMDMASK; 2243 pass |= FR_BLOCK; 2244 } 2245 } 2246 } 2247 2248 fr = fin->fin_fr; 2249 2250 if (passp != NULL) 2251 *passp = pass; 2252 2253 return fr; 2254 } 2255 2256 /* ------------------------------------------------------------------------ */ 2257 /* Function: fr_check */ 2258 /* Returns: int - 0 == packet allowed through, */ 2259 /* User space: */ 2260 /* -1 == packet blocked */ 2261 /* 1 == packet not matched */ 2262 /* -2 == requires authentication */ 2263 /* Kernel: */ 2264 /* > 0 == filter error # for packet */ 2265 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */ 2266 /* hlen(I) - length of header */ 2267 /* ifp(I) - pointer to interface this packet is on */ 2268 /* out(I) - 0 == packet going in, 1 == packet going out */ 2269 /* mp(IO) - pointer to caller's buffer pointer that holds this */ 2270 /* IP packet. */ 2271 /* Solaris & HP-UX ONLY : */ 2272 /* qpi(I) - pointer to STREAMS queue information for this */ 2273 /* interface & direction. */ 2274 /* */ 2275 /* fr_check() is the master function for all IPFilter packet processing. */ 2276 /* It orchestrates: Network Address Translation (NAT), checking for packet */ 2277 /* authorisation (or pre-authorisation), presence of related state info., */ 2278 /* generating log entries, IP packet accounting, routing of packets as */ 2279 /* directed by firewall rules and of course whether or not to allow the */ 2280 /* packet to be further processed by the kernel. */ 2281 /* */ 2282 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */ 2283 /* freed. Packets passed may be returned with the pointer pointed to by */ 2284 /* by "mp" changed to a new buffer. */ 2285 /* ------------------------------------------------------------------------ */ 2286 int fr_check(ip, hlen, ifp, out 2287 #if defined(_KERNEL) && defined(MENTAT) 2288 , qif, mp, ifs) 2289 void *qif; 2290 #else 2291 , mp, ifs) 2292 #endif 2293 mb_t **mp; 2294 ip_t *ip; 2295 int hlen; 2296 void *ifp; 2297 int out; 2298 ipf_stack_t *ifs; 2299 { 2300 /* 2301 * The above really sucks, but short of writing a diff 2302 */ 2303 fr_info_t frinfo; 2304 fr_info_t *fin = &frinfo; 2305 u_32_t pass; 2306 frentry_t *fr = NULL; 2307 int v = IP_V(ip); 2308 mb_t *mc = NULL; 2309 mb_t *m; 2310 #ifdef USE_INET6 2311 ip6_t *ip6; 2312 #endif 2313 #ifdef _KERNEL 2314 # ifdef MENTAT 2315 qpktinfo_t *qpi = qif; 2316 #endif 2317 #endif 2318 2319 SPL_INT(s); 2320 pass = ifs->ifs_fr_pass; 2321 2322 /* 2323 * The first part of fr_check() deals with making sure that what goes 2324 * into the filtering engine makes some sense. Information about the 2325 * the packet is distilled, collected into a fr_info_t structure and 2326 * the an attempt to ensure the buffer the packet is in is big enough 2327 * to hold all the required packet headers. 2328 */ 2329 #ifdef _KERNEL 2330 # ifdef MENTAT 2331 if (!OK_32PTR(ip)) 2332 return 2; 2333 # endif 2334 2335 2336 if (ifs->ifs_fr_running <= 0) { 2337 return 0; 2338 } 2339 2340 bzero((char *)fin, sizeof(*fin)); 2341 2342 # ifdef MENTAT 2343 fin->fin_flx = qpi->qpi_flags & (FI_NOCKSUM|FI_MBCAST|FI_MULTICAST| 2344 FI_BROADCAST); 2345 m = qpi->qpi_m; 2346 fin->fin_qfm = m; 2347 fin->fin_qpi = qpi; 2348 # else /* MENTAT */ 2349 2350 m = *mp; 2351 2352 # if defined(M_MCAST) 2353 if ((m->m_flags & M_MCAST) != 0) 2354 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2355 # endif 2356 # if defined(M_MLOOP) 2357 if ((m->m_flags & M_MLOOP) != 0) 2358 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2359 # endif 2360 # if defined(M_BCAST) 2361 if ((m->m_flags & M_BCAST) != 0) 2362 fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2363 # endif 2364 # ifdef M_CANFASTFWD 2365 /* 2366 * XXX For now, IP Filter and fast-forwarding of cached flows 2367 * XXX are mutually exclusive. Eventually, IP Filter should 2368 * XXX get a "can-fast-forward" filter rule. 2369 */ 2370 m->m_flags &= ~M_CANFASTFWD; 2371 # endif /* M_CANFASTFWD */ 2372 # ifdef CSUM_DELAY_DATA 2373 /* 2374 * disable delayed checksums. 2375 */ 2376 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2377 in_delayed_cksum(m); 2378 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2379 } 2380 # endif /* CSUM_DELAY_DATA */ 2381 # endif /* MENTAT */ 2382 #else 2383 2384 bzero((char *)fin, sizeof(*fin)); 2385 m = *mp; 2386 #endif /* _KERNEL */ 2387 2388 fin->fin_v = v; 2389 fin->fin_m = m; 2390 fin->fin_ip = ip; 2391 fin->fin_mp = mp; 2392 fin->fin_out = out; 2393 fin->fin_ifp = ifp; 2394 fin->fin_error = ENETUNREACH; 2395 fin->fin_hlen = (u_short)hlen; 2396 fin->fin_dp = (char *)ip + hlen; 2397 fin->fin_ipoff = (char *)ip - MTOD(m, char *); 2398 fin->fin_ifs = ifs; 2399 2400 SPL_NET(s); 2401 2402 #ifdef USE_INET6 2403 if (v == 6) { 2404 IPF_BUMP(ifs->ifs_frstats[out].fr_ipv6); 2405 /* 2406 * Jumbo grams are quite likely too big for internal buffer 2407 * structures to handle comfortably, for now, so just drop 2408 * them. 2409 */ 2410 ip6 = (ip6_t *)ip; 2411 fin->fin_plen = ntohs(ip6->ip6_plen); 2412 if (fin->fin_plen == 0) { 2413 READ_ENTER(&ifs->ifs_ipf_mutex); 2414 pass = FR_BLOCK|FR_NOMATCH; 2415 goto filtered; 2416 } 2417 fin->fin_plen += sizeof(ip6_t); 2418 } else 2419 #endif 2420 { 2421 #if (OpenBSD >= 200311) && defined(_KERNEL) 2422 ip->ip_len = ntohs(ip->ip_len); 2423 ip->ip_off = ntohs(ip->ip_off); 2424 #endif 2425 fin->fin_plen = ip->ip_len; 2426 } 2427 2428 if (fr_makefrip(hlen, ip, fin) == -1) { 2429 READ_ENTER(&ifs->ifs_ipf_mutex); 2430 pass = FR_BLOCK; 2431 goto filtered; 2432 } 2433 2434 /* 2435 * For at least IPv6 packets, if a m_pullup() fails then this pointer 2436 * becomes NULL and so we have no packet to free. 2437 */ 2438 if (*fin->fin_mp == NULL) 2439 goto finished; 2440 2441 if (!out) { 2442 if (v == 4) { 2443 #ifdef _KERNEL 2444 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) { 2445 IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc); 2446 fin->fin_flx |= FI_BADSRC; 2447 } 2448 #endif 2449 if (fin->fin_ip->ip_ttl < ifs->ifs_fr_minttl) { 2450 IPF_BUMP(ifs->ifs_frstats[0].fr_badttl); 2451 fin->fin_flx |= FI_LOWTTL; 2452 } 2453 } 2454 #ifdef USE_INET6 2455 else if (v == 6) { 2456 ip6 = (ip6_t *)ip; 2457 #ifdef _KERNEL 2458 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) { 2459 IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc); 2460 fin->fin_flx |= FI_BADSRC; 2461 } 2462 #endif 2463 if (ip6->ip6_hlim < ifs->ifs_fr_minttl) { 2464 IPF_BUMP(ifs->ifs_frstats[0].fr_badttl); 2465 fin->fin_flx |= FI_LOWTTL; 2466 } 2467 } 2468 #endif 2469 } 2470 2471 if (fin->fin_flx & FI_SHORT) { 2472 IPF_BUMP(ifs->ifs_frstats[out].fr_short); 2473 } 2474 2475 READ_ENTER(&ifs->ifs_ipf_mutex); 2476 2477 /* 2478 * Check auth now. This, combined with the check below to see if apass 2479 * is 0 is to ensure that we don't count the packet twice, which can 2480 * otherwise occur when we reprocess it. As it is, we only count it 2481 * after it has no auth. table matchup. This also stops NAT from 2482 * occuring until after the packet has been auth'd. 2483 */ 2484 fr = fr_checkauth(fin, &pass); 2485 if (!out) { 2486 switch (fin->fin_v) 2487 { 2488 case 4 : 2489 if (fr_checknatin(fin, &pass) == -1) { 2490 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2491 goto finished; 2492 } 2493 break; 2494 #ifdef USE_INET6 2495 case 6 : 2496 if (fr_checknat6in(fin, &pass) == -1) { 2497 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2498 goto finished; 2499 } 2500 break; 2501 #endif 2502 default : 2503 break; 2504 } 2505 } 2506 if (!out) 2507 (void) fr_acctpkt(fin, NULL); 2508 2509 if (fr == NULL) 2510 if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG) 2511 fr = fr_knownfrag(fin, &pass); 2512 if (fr == NULL) 2513 fr = fr_checkstate(fin, &pass); 2514 2515 if ((pass & FR_NOMATCH) || (fr == NULL)) 2516 fr = fr_firewall(fin, &pass); 2517 2518 fin->fin_fr = fr; 2519 2520 /* 2521 * Only count/translate packets which will be passed on, out the 2522 * interface. 2523 */ 2524 if (out && FR_ISPASS(pass)) { 2525 (void) fr_acctpkt(fin, NULL); 2526 2527 switch (fin->fin_v) 2528 { 2529 case 4 : 2530 if (fr_checknatout(fin, &pass) == -1) { 2531 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2532 goto finished; 2533 } 2534 break; 2535 #ifdef USE_INET6 2536 case 6 : 2537 if (fr_checknat6out(fin, &pass) == -1) { 2538 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2539 goto finished; 2540 } 2541 break; 2542 #endif 2543 default : 2544 break; 2545 } 2546 2547 if ((ifs->ifs_fr_update_ipid != 0) && (v == 4)) { 2548 if (fr_updateipid(fin) == -1) { 2549 IPF_BUMP(ifs->ifs_frstats[1].fr_ipud); 2550 pass &= ~FR_CMDMASK; 2551 pass |= FR_BLOCK; 2552 } else { 2553 IPF_BUMP(ifs->ifs_frstats[0].fr_ipud); 2554 } 2555 } 2556 } 2557 2558 #ifdef IPFILTER_LOG 2559 if ((ifs->ifs_fr_flags & FF_LOGGING) || (pass & FR_LOGMASK)) { 2560 (void) fr_dolog(fin, &pass); 2561 } 2562 #endif 2563 2564 /* 2565 * The FI_STATE flag is cleared here so that calling fr_checkstate 2566 * will work when called from inside of fr_fastroute. Although 2567 * there is a similar flag, FI_NATED, for NAT, it does have the same 2568 * impact on code execution. 2569 */ 2570 fin->fin_flx &= ~FI_STATE; 2571 2572 /* 2573 * Only allow FR_DUP to work if a rule matched - it makes no sense to 2574 * set FR_DUP as a "default" as there are no instructions about where 2575 * to send the packet. Use fin_m here because it may have changed 2576 * (without an update of 'm') in prior processing. 2577 */ 2578 if ((fr != NULL) && (pass & FR_DUP)) { 2579 mc = M_DUPLICATE(fin->fin_m); 2580 } 2581 2582 if (pass & (FR_RETRST|FR_RETICMP)) { 2583 /* 2584 * Should we return an ICMP packet to indicate error 2585 * status passing through the packet filter ? 2586 * WARNING: ICMP error packets AND TCP RST packets should 2587 * ONLY be sent in repsonse to incoming packets. Sending them 2588 * in response to outbound packets can result in a panic on 2589 * some operating systems. 2590 */ 2591 if (!out) { 2592 if (pass & FR_RETICMP) { 2593 int dst; 2594 2595 if ((pass & FR_RETMASK) == FR_FAKEICMP) 2596 dst = 1; 2597 else 2598 dst = 0; 2599 #if defined(_KERNEL) && (SOLARIS2 >= 10) 2600 /* 2601 * Assume it's possible to enter insane rule: 2602 * pass return-icmp in proto udp ... 2603 * then we have no other option than to forward 2604 * packet on loopback and give up any attempt 2605 * to create a fake response. 2606 */ 2607 if (IPF_IS_LOOPBACK(qpi->qpi_flags) && 2608 FR_ISBLOCK(pass)) { 2609 2610 if (fr_make_icmp(fin) == 0) { 2611 IPF_BUMP( 2612 ifs->ifs_frstats[out].fr_ret); 2613 } 2614 /* 2615 * we drop packet silently in case we 2616 * failed assemble fake response for it 2617 */ 2618 else if (*mp != NULL) { 2619 FREE_MB_T(*mp); 2620 m = *mp = NULL; 2621 } 2622 2623 IPF_BUMP( 2624 ifs->ifs_frstats[out].fr_block); 2625 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2626 2627 return (0); 2628 } 2629 #endif /* _KERNEL && SOLARIS2 >= 10 */ 2630 2631 (void) fr_send_icmp_err(ICMP_UNREACH, fin, dst); 2632 IPF_BUMP(ifs->ifs_frstats[out].fr_ret); 2633 2634 } else if (((pass & FR_RETMASK) == FR_RETRST) && 2635 !(fin->fin_flx & FI_SHORT)) { 2636 2637 #if defined(_KERNEL) && (SOLARIS2 >= 10) 2638 /* 2639 * Assume it's possible to enter insane rule: 2640 * pass return-rst in proto tcp ... 2641 * then we have no other option than to forward 2642 * packet on loopback and give up any attempt 2643 * to create a fake response. 2644 */ 2645 if (IPF_IS_LOOPBACK(qpi->qpi_flags) && 2646 FR_ISBLOCK(pass)) { 2647 if (fr_make_rst(fin) == 0) { 2648 IPF_BUMP( 2649 ifs->ifs_frstats[out].fr_ret); 2650 } 2651 else if (mp != NULL) { 2652 /* 2653 * we drop packet silently in case we 2654 * failed assemble fake response for it 2655 */ 2656 FREE_MB_T(*mp); 2657 m = *mp = NULL; 2658 } 2659 2660 IPF_BUMP( 2661 ifs->ifs_frstats[out].fr_block); 2662 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2663 2664 return (0); 2665 } 2666 #endif /* _KERNEL && _SOLARIS2 >= 10 */ 2667 if (fr_send_reset(fin) == 0) { 2668 IPF_BUMP(ifs->ifs_frstats[1].fr_ret); 2669 } 2670 } 2671 } else { 2672 if (pass & FR_RETRST) 2673 fin->fin_error = ECONNRESET; 2674 } 2675 } 2676 2677 /* 2678 * If we didn't drop off the bottom of the list of rules (and thus 2679 * the 'current' rule fr is not NULL), then we may have some extra 2680 * instructions about what to do with a packet. 2681 * Once we're finished return to our caller, freeing the packet if 2682 * we are dropping it (* BSD ONLY *). 2683 * Reassign m from fin_m as we may have a new buffer, now. 2684 */ 2685 filtered: 2686 m = fin->fin_m; 2687 2688 if (fr != NULL) { 2689 frdest_t *fdp; 2690 2691 fdp = &fr->fr_tifs[fin->fin_rev]; 2692 2693 if (!out && (pass & FR_FASTROUTE)) { 2694 /* 2695 * For fastroute rule, no destioation interface defined 2696 * so pass NULL as the frdest_t parameter 2697 */ 2698 (void) fr_fastroute(m, mp, fin, NULL); 2699 m = *mp = NULL; 2700 } else if ((fdp->fd_ifp != NULL) && 2701 (fdp->fd_ifp != (struct ifnet *)-1)) { 2702 /* this is for to rules: */ 2703 (void) fr_fastroute(m, mp, fin, fdp); 2704 m = *mp = NULL; 2705 } 2706 2707 /* 2708 * Generate a duplicated packet. 2709 */ 2710 if (mc != NULL) 2711 (void) fr_fastroute(mc, &mc, fin, &fr->fr_dif); 2712 } 2713 2714 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT)) 2715 nat_uncreate(fin); 2716 2717 /* 2718 * This late because the likes of fr_fastroute() use fin_fr. 2719 */ 2720 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2721 2722 finished: 2723 if (!FR_ISPASS(pass)) { 2724 IPF_BUMP(ifs->ifs_frstats[out].fr_block); 2725 if (*mp != NULL) { 2726 FREE_MB_T(*mp); 2727 m = *mp = NULL; 2728 } 2729 } else { 2730 IPF_BUMP(ifs->ifs_frstats[out].fr_pass); 2731 #if defined(_KERNEL) && defined(__sgi) 2732 if ((fin->fin_hbuf != NULL) && 2733 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) { 2734 COPYBACK(m, 0, fin->fin_plen, fin->fin_hbuf); 2735 } 2736 #endif 2737 } 2738 2739 SPL_X(s); 2740 2741 #ifdef _KERNEL 2742 # if OpenBSD >= 200311 2743 if (FR_ISPASS(pass) && (v == 4)) { 2744 ip = fin->fin_ip; 2745 ip->ip_len = ntohs(ip->ip_len); 2746 ip->ip_off = ntohs(ip->ip_off); 2747 } 2748 # endif 2749 return (FR_ISPASS(pass)) ? 0 : fin->fin_error; 2750 #else /* _KERNEL */ 2751 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass)); 2752 if ((pass & FR_NOMATCH) != 0) 2753 return 1; 2754 2755 if ((pass & FR_RETMASK) != 0) 2756 switch (pass & FR_RETMASK) 2757 { 2758 case FR_RETRST : 2759 return 3; 2760 case FR_RETICMP : 2761 return 4; 2762 case FR_FAKEICMP : 2763 return 5; 2764 } 2765 2766 switch (pass & FR_CMDMASK) 2767 { 2768 case FR_PASS : 2769 return 0; 2770 case FR_BLOCK : 2771 return -1; 2772 case FR_AUTH : 2773 return -2; 2774 case FR_ACCOUNT : 2775 return -3; 2776 case FR_PREAUTH : 2777 return -4; 2778 } 2779 return 2; 2780 #endif /* _KERNEL */ 2781 } 2782 2783 2784 #ifdef IPFILTER_LOG 2785 /* ------------------------------------------------------------------------ */ 2786 /* Function: fr_dolog */ 2787 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */ 2788 /* Parameters: fin(I) - pointer to packet information */ 2789 /* passp(IO) - pointer to current/new filter decision (unused) */ 2790 /* */ 2791 /* Checks flags set to see how a packet should be logged, if it is to be */ 2792 /* logged. Adjust statistics based on its success or not. */ 2793 /* ------------------------------------------------------------------------ */ 2794 frentry_t *fr_dolog(fin, passp) 2795 fr_info_t *fin; 2796 u_32_t *passp; 2797 { 2798 u_32_t pass; 2799 int out; 2800 ipf_stack_t *ifs = fin->fin_ifs; 2801 2802 out = fin->fin_out; 2803 pass = *passp; 2804 2805 if ((ifs->ifs_fr_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) { 2806 pass |= FF_LOGNOMATCH; 2807 IPF_BUMP(ifs->ifs_frstats[out].fr_npkl); 2808 goto logit; 2809 } else if (((pass & FR_LOGMASK) == FR_LOGP) || 2810 (FR_ISPASS(pass) && (ifs->ifs_fr_flags & FF_LOGPASS))) { 2811 if ((pass & FR_LOGMASK) != FR_LOGP) 2812 pass |= FF_LOGPASS; 2813 IPF_BUMP(ifs->ifs_frstats[out].fr_ppkl); 2814 goto logit; 2815 } else if (((pass & FR_LOGMASK) == FR_LOGB) || 2816 (FR_ISBLOCK(pass) && (ifs->ifs_fr_flags & FF_LOGBLOCK))) { 2817 if ((pass & FR_LOGMASK) != FR_LOGB) 2818 pass |= FF_LOGBLOCK; 2819 IPF_BUMP(ifs->ifs_frstats[out].fr_bpkl); 2820 logit: 2821 if (ipflog(fin, pass) == -1) { 2822 IPF_BUMP(ifs->ifs_frstats[out].fr_skip); 2823 2824 /* 2825 * If the "or-block" option has been used then 2826 * block the packet if we failed to log it. 2827 */ 2828 if ((pass & FR_LOGORBLOCK) && 2829 FR_ISPASS(pass)) { 2830 pass &= ~FR_CMDMASK; 2831 pass |= FR_BLOCK; 2832 } 2833 } 2834 *passp = pass; 2835 } 2836 2837 return fin->fin_fr; 2838 } 2839 #endif /* IPFILTER_LOG */ 2840 2841 2842 /* ------------------------------------------------------------------------ */ 2843 /* Function: ipf_cksum */ 2844 /* Returns: u_short - IP header checksum */ 2845 /* Parameters: addr(I) - pointer to start of buffer to checksum */ 2846 /* len(I) - length of buffer in bytes */ 2847 /* */ 2848 /* Calculate the two's complement 16 bit checksum of the buffer passed. */ 2849 /* */ 2850 /* N.B.: addr should be 16bit aligned. */ 2851 /* ------------------------------------------------------------------------ */ 2852 u_short ipf_cksum(addr, len) 2853 u_short *addr; 2854 int len; 2855 { 2856 u_32_t sum = 0; 2857 2858 for (sum = 0; len > 1; len -= 2) 2859 sum += *addr++; 2860 2861 /* mop up an odd byte, if necessary */ 2862 if (len == 1) 2863 sum += *(u_char *)addr; 2864 2865 /* 2866 * add back carry outs from top 16 bits to low 16 bits 2867 */ 2868 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */ 2869 sum += (sum >> 16); /* add carry */ 2870 return (u_short)(~sum); 2871 } 2872 2873 2874 /* ------------------------------------------------------------------------ */ 2875 /* Function: fr_cksum */ 2876 /* Returns: u_short - layer 4 checksum */ 2877 /* Parameters: m(I ) - pointer to buffer holding packet */ 2878 /* ip(I) - pointer to IP header */ 2879 /* l4proto(I) - protocol to caclulate checksum for */ 2880 /* l4hdr(I) - pointer to layer 4 header */ 2881 /* */ 2882 /* Calculates the TCP checksum for the packet held in "m", using the data */ 2883 /* in the IP header "ip" to seed it. */ 2884 /* */ 2885 /* NB: This function assumes we've pullup'd enough for all of the IP header */ 2886 /* and the TCP header. We also assume that data blocks aren't allocated in */ 2887 /* odd sizes. */ 2888 /* */ 2889 /* Expects ip_len to be in host byte order when called. */ 2890 /* ------------------------------------------------------------------------ */ 2891 u_short fr_cksum(m, ip, l4proto, l4hdr) 2892 mb_t *m; 2893 ip_t *ip; 2894 int l4proto; 2895 void *l4hdr; 2896 { 2897 u_short *sp, slen, sumsave, l4hlen, *csump; 2898 u_int sum, sum2; 2899 int hlen; 2900 #ifdef USE_INET6 2901 ip6_t *ip6; 2902 #endif 2903 2904 csump = NULL; 2905 sumsave = 0; 2906 l4hlen = 0; 2907 sp = NULL; 2908 slen = 0; 2909 hlen = 0; 2910 sum = 0; 2911 2912 /* 2913 * Add up IP Header portion 2914 */ 2915 #ifdef USE_INET6 2916 if (IP_V(ip) == 4) { 2917 #endif 2918 hlen = IP_HL(ip) << 2; 2919 slen = ip->ip_len - hlen; 2920 sum = htons((u_short)l4proto); 2921 sum += htons(slen); 2922 sp = (u_short *)&ip->ip_src; 2923 sum += *sp++; /* ip_src */ 2924 sum += *sp++; 2925 sum += *sp++; /* ip_dst */ 2926 sum += *sp++; 2927 #ifdef USE_INET6 2928 } else if (IP_V(ip) == 6) { 2929 ip6 = (ip6_t *)ip; 2930 hlen = sizeof(*ip6); 2931 slen = ntohs(ip6->ip6_plen); 2932 sum = htons((u_short)l4proto); 2933 sum += htons(slen); 2934 sp = (u_short *)&ip6->ip6_src; 2935 sum += *sp++; /* ip6_src */ 2936 sum += *sp++; 2937 sum += *sp++; 2938 sum += *sp++; 2939 sum += *sp++; 2940 sum += *sp++; 2941 sum += *sp++; 2942 sum += *sp++; 2943 sum += *sp++; /* ip6_dst */ 2944 sum += *sp++; 2945 sum += *sp++; 2946 sum += *sp++; 2947 sum += *sp++; 2948 sum += *sp++; 2949 sum += *sp++; 2950 sum += *sp++; 2951 } 2952 #endif 2953 2954 switch (l4proto) 2955 { 2956 case IPPROTO_UDP : 2957 csump = &((udphdr_t *)l4hdr)->uh_sum; 2958 l4hlen = sizeof(udphdr_t); 2959 break; 2960 2961 case IPPROTO_TCP : 2962 csump = &((tcphdr_t *)l4hdr)->th_sum; 2963 l4hlen = sizeof(tcphdr_t); 2964 break; 2965 case IPPROTO_ICMP : 2966 csump = &((icmphdr_t *)l4hdr)->icmp_cksum; 2967 l4hlen = 4; 2968 sum = 0; 2969 break; 2970 default : 2971 break; 2972 } 2973 2974 if (csump != NULL) { 2975 sumsave = *csump; 2976 *csump = 0; 2977 } 2978 2979 l4hlen = l4hlen; /* LINT */ 2980 2981 #ifdef _KERNEL 2982 # ifdef MENTAT 2983 { 2984 void *rp = m->b_rptr; 2985 2986 if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr) 2987 m->b_rptr = (u_char *)ip; 2988 sum2 = ip_cksum(m, hlen, sum); /* hlen == offset */ 2989 m->b_rptr = rp; 2990 sum2 = (sum2 & 0xffff) + (sum2 >> 16); 2991 sum2 = ~sum2 & 0xffff; 2992 } 2993 # else /* MENTAT */ 2994 # if defined(BSD) || defined(sun) 2995 # if BSD >= 199103 2996 m->m_data += hlen; 2997 # else 2998 m->m_off += hlen; 2999 # endif 3000 m->m_len -= hlen; 3001 sum2 = in_cksum(m, slen); 3002 m->m_len += hlen; 3003 # if BSD >= 199103 3004 m->m_data -= hlen; 3005 # else 3006 m->m_off -= hlen; 3007 # endif 3008 /* 3009 * Both sum and sum2 are partial sums, so combine them together. 3010 */ 3011 sum += ~sum2 & 0xffff; 3012 while (sum > 0xffff) 3013 sum = (sum & 0xffff) + (sum >> 16); 3014 sum2 = ~sum & 0xffff; 3015 # else /* defined(BSD) || defined(sun) */ 3016 { 3017 union { 3018 u_char c[2]; 3019 u_short s; 3020 } bytes; 3021 u_short len = ip->ip_len; 3022 # if defined(__sgi) 3023 int add; 3024 # endif 3025 3026 /* 3027 * Add up IP Header portion 3028 */ 3029 if (sp != (u_short *)l4hdr) 3030 sp = (u_short *)l4hdr; 3031 3032 switch (l4proto) 3033 { 3034 case IPPROTO_UDP : 3035 sum += *sp++; /* sport */ 3036 sum += *sp++; /* dport */ 3037 sum += *sp++; /* udp length */ 3038 sum += *sp++; /* checksum */ 3039 break; 3040 3041 case IPPROTO_TCP : 3042 sum += *sp++; /* sport */ 3043 sum += *sp++; /* dport */ 3044 sum += *sp++; /* seq */ 3045 sum += *sp++; 3046 sum += *sp++; /* ack */ 3047 sum += *sp++; 3048 sum += *sp++; /* off */ 3049 sum += *sp++; /* win */ 3050 sum += *sp++; /* checksum */ 3051 sum += *sp++; /* urp */ 3052 break; 3053 case IPPROTO_ICMP : 3054 sum = *sp++; /* type/code */ 3055 sum += *sp++; /* checksum */ 3056 break; 3057 } 3058 3059 # ifdef __sgi 3060 /* 3061 * In case we had to copy the IP & TCP header out of mbufs, 3062 * skip over the mbuf bits which are the header 3063 */ 3064 if ((caddr_t)ip != mtod(m, caddr_t)) { 3065 hlen = (caddr_t)sp - (caddr_t)ip; 3066 while (hlen) { 3067 add = MIN(hlen, m->m_len); 3068 sp = (u_short *)(mtod(m, caddr_t) + add); 3069 hlen -= add; 3070 if (add == m->m_len) { 3071 m = m->m_next; 3072 if (!hlen) { 3073 if (!m) 3074 break; 3075 sp = mtod(m, u_short *); 3076 } 3077 PANIC((!m),("fr_cksum(1): not enough data")); 3078 } 3079 } 3080 } 3081 # endif 3082 3083 len -= (l4hlen + hlen); 3084 if (len <= 0) 3085 goto nodata; 3086 3087 while (len > 1) { 3088 if (((caddr_t)sp - mtod(m, caddr_t)) >= m->m_len) { 3089 m = m->m_next; 3090 PANIC((!m),("fr_cksum(2): not enough data")); 3091 sp = mtod(m, u_short *); 3092 } 3093 if (((caddr_t)(sp + 1) - mtod(m, caddr_t)) > m->m_len) { 3094 bytes.c[0] = *(u_char *)sp; 3095 m = m->m_next; 3096 PANIC((!m),("fr_cksum(3): not enough data")); 3097 sp = mtod(m, u_short *); 3098 bytes.c[1] = *(u_char *)sp; 3099 sum += bytes.s; 3100 sp = (u_short *)((u_char *)sp + 1); 3101 } 3102 if ((u_long)sp & 1) { 3103 bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s)); 3104 sum += bytes.s; 3105 } else 3106 sum += *sp++; 3107 len -= 2; 3108 } 3109 3110 if (len != 0) 3111 sum += ntohs(*(u_char *)sp << 8); 3112 nodata: 3113 while (sum > 0xffff) 3114 sum = (sum & 0xffff) + (sum >> 16); 3115 sum2 = (u_short)(~sum & 0xffff); 3116 } 3117 # endif /* defined(BSD) || defined(sun) */ 3118 # endif /* MENTAT */ 3119 #else /* _KERNEL */ 3120 for (; slen > 1; slen -= 2) 3121 sum += *sp++; 3122 if (slen) 3123 sum += ntohs(*(u_char *)sp << 8); 3124 while (sum > 0xffff) 3125 sum = (sum & 0xffff) + (sum >> 16); 3126 sum2 = (u_short)(~sum & 0xffff); 3127 #endif /* _KERNEL */ 3128 if (csump != NULL) 3129 *csump = sumsave; 3130 return sum2; 3131 } 3132 3133 3134 #if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \ 3135 defined(__sgi) ) && !defined(linux) && !defined(_AIX51) 3136 /* 3137 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3138 * The Regents of the University of California. All rights reserved. 3139 * 3140 * Redistribution and use in source and binary forms, with or without 3141 * modification, are permitted provided that the following conditions 3142 * are met: 3143 * 1. Redistributions of source code must retain the above copyright 3144 * notice, this list of conditions and the following disclaimer. 3145 * 2. Redistributions in binary form must reproduce the above copyright 3146 * notice, this list of conditions and the following disclaimer in the 3147 * documentation and/or other materials provided with the distribution. 3148 * 3. Neither the name of the University nor the names of its contributors 3149 * may be used to endorse or promote products derived from this software 3150 * without specific prior written permission. 3151 * 3152 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3153 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3154 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3155 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3156 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3157 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3158 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3159 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3160 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3161 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3162 * SUCH DAMAGE. 3163 * 3164 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 3165 * $Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $ 3166 */ 3167 /* 3168 * Copy data from an mbuf chain starting "off" bytes from the beginning, 3169 * continuing for "len" bytes, into the indicated buffer. 3170 */ 3171 void 3172 m_copydata(m, off, len, cp) 3173 mb_t *m; 3174 int off; 3175 int len; 3176 caddr_t cp; 3177 { 3178 unsigned count; 3179 3180 if (off < 0 || len < 0) 3181 panic("m_copydata"); 3182 while (off > 0) { 3183 if (m == 0) 3184 panic("m_copydata"); 3185 if (off < m->m_len) 3186 break; 3187 off -= m->m_len; 3188 m = m->m_next; 3189 } 3190 while (len > 0) { 3191 if (m == 0) 3192 panic("m_copydata"); 3193 count = MIN(m->m_len - off, len); 3194 bcopy(mtod(m, caddr_t) + off, cp, count); 3195 len -= count; 3196 cp += count; 3197 off = 0; 3198 m = m->m_next; 3199 } 3200 } 3201 3202 3203 /* 3204 * Copy data from a buffer back into the indicated mbuf chain, 3205 * starting "off" bytes from the beginning, extending the mbuf 3206 * chain if necessary. 3207 */ 3208 void 3209 m_copyback(m0, off, len, cp) 3210 struct mbuf *m0; 3211 int off; 3212 int len; 3213 caddr_t cp; 3214 { 3215 int mlen; 3216 struct mbuf *m = m0, *n; 3217 int totlen = 0; 3218 3219 if (m0 == 0) 3220 return; 3221 while (off > (mlen = m->m_len)) { 3222 off -= mlen; 3223 totlen += mlen; 3224 if (m->m_next == 0) { 3225 n = m_getclr(M_DONTWAIT, m->m_type); 3226 if (n == 0) 3227 goto out; 3228 n->m_len = min(MLEN, len + off); 3229 m->m_next = n; 3230 } 3231 m = m->m_next; 3232 } 3233 while (len > 0) { 3234 mlen = min(m->m_len - off, len); 3235 bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen); 3236 cp += mlen; 3237 len -= mlen; 3238 mlen += off; 3239 off = 0; 3240 totlen += mlen; 3241 if (len == 0) 3242 break; 3243 if (m->m_next == 0) { 3244 n = m_get(M_DONTWAIT, m->m_type); 3245 if (n == 0) 3246 break; 3247 n->m_len = min(MLEN, len); 3248 m->m_next = n; 3249 } 3250 m = m->m_next; 3251 } 3252 out: 3253 #if 0 3254 if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 3255 m->m_pkthdr.len = totlen; 3256 #endif 3257 return; 3258 } 3259 #endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */ 3260 3261 3262 /* ------------------------------------------------------------------------ */ 3263 /* Function: fr_findgroup */ 3264 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */ 3265 /* Parameters: group(I) - group name to search for */ 3266 /* unit(I) - device to which this group belongs */ 3267 /* set(I) - which set of rules (inactive/inactive) this is */ 3268 /* fgpp(O) - pointer to place to store pointer to the pointer */ 3269 /* to where to add the next (last) group or where */ 3270 /* to delete group from. */ 3271 /* */ 3272 /* Search amongst the defined groups for a particular group number. */ 3273 /* ------------------------------------------------------------------------ */ 3274 frgroup_t *fr_findgroup(group, unit, set, fgpp, ifs) 3275 char *group; 3276 minor_t unit; 3277 int set; 3278 frgroup_t ***fgpp; 3279 ipf_stack_t *ifs; 3280 { 3281 frgroup_t *fg, **fgp; 3282 3283 /* 3284 * Which list of groups to search in is dependent on which list of 3285 * rules are being operated on. 3286 */ 3287 fgp = &ifs->ifs_ipfgroups[unit][set]; 3288 3289 while ((fg = *fgp) != NULL) { 3290 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0) 3291 break; 3292 else 3293 fgp = &fg->fg_next; 3294 } 3295 if (fgpp != NULL) 3296 *fgpp = fgp; 3297 return fg; 3298 } 3299 3300 3301 /* ------------------------------------------------------------------------ */ 3302 /* Function: fr_addgroup */ 3303 /* Returns: frgroup_t * - NULL == did not create group, */ 3304 /* != NULL == pointer to the group */ 3305 /* Parameters: num(I) - group number to add */ 3306 /* head(I) - rule pointer that is using this as the head */ 3307 /* flags(I) - rule flags which describe the type of rule it is */ 3308 /* unit(I) - device to which this group will belong to */ 3309 /* set(I) - which set of rules (inactive/inactive) this is */ 3310 /* Write Locks: ipf_mutex */ 3311 /* */ 3312 /* Add a new group head, or if it already exists, increase the reference */ 3313 /* count to it. */ 3314 /* ------------------------------------------------------------------------ */ 3315 frgroup_t *fr_addgroup(group, head, flags, unit, set, ifs) 3316 char *group; 3317 void *head; 3318 u_32_t flags; 3319 minor_t unit; 3320 int set; 3321 ipf_stack_t *ifs; 3322 { 3323 frgroup_t *fg, **fgp; 3324 u_32_t gflags; 3325 3326 if (group == NULL) 3327 return NULL; 3328 3329 if (unit == IPL_LOGIPF && *group == '\0') 3330 return NULL; 3331 3332 fgp = NULL; 3333 gflags = flags & FR_INOUT; 3334 3335 fg = fr_findgroup(group, unit, set, &fgp, ifs); 3336 if (fg != NULL) { 3337 if (fg->fg_flags == 0) 3338 fg->fg_flags = gflags; 3339 else if (gflags != fg->fg_flags) 3340 return NULL; 3341 fg->fg_ref++; 3342 return fg; 3343 } 3344 KMALLOC(fg, frgroup_t *); 3345 if (fg != NULL) { 3346 fg->fg_head = head; 3347 fg->fg_start = NULL; 3348 fg->fg_next = *fgp; 3349 bcopy(group, fg->fg_name, FR_GROUPLEN); 3350 fg->fg_flags = gflags; 3351 fg->fg_ref = 1; 3352 *fgp = fg; 3353 } 3354 return fg; 3355 } 3356 3357 3358 /* ------------------------------------------------------------------------ */ 3359 /* Function: fr_delgroup */ 3360 /* Returns: Nil */ 3361 /* Parameters: group(I) - group name to delete */ 3362 /* unit(I) - device to which this group belongs */ 3363 /* set(I) - which set of rules (inactive/inactive) this is */ 3364 /* Write Locks: ipf_mutex */ 3365 /* */ 3366 /* Attempt to delete a group head. */ 3367 /* Only do this when its reference count reaches 0. */ 3368 /* ------------------------------------------------------------------------ */ 3369 void fr_delgroup(group, unit, set, ifs) 3370 char *group; 3371 minor_t unit; 3372 int set; 3373 ipf_stack_t *ifs; 3374 { 3375 frgroup_t *fg, **fgp; 3376 3377 fg = fr_findgroup(group, unit, set, &fgp, ifs); 3378 if (fg == NULL) 3379 return; 3380 3381 fg->fg_ref--; 3382 if (fg->fg_ref == 0) { 3383 *fgp = fg->fg_next; 3384 KFREE(fg); 3385 } 3386 } 3387 3388 3389 /* ------------------------------------------------------------------------ */ 3390 /* Function: fr_getrulen */ 3391 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */ 3392 /* Parameters: unit(I) - device for which to count the rule's number */ 3393 /* flags(I) - which set of rules to find the rule in */ 3394 /* group(I) - group name */ 3395 /* n(I) - rule number to find */ 3396 /* */ 3397 /* Find rule # n in group # g and return a pointer to it. Return NULl if */ 3398 /* group # g doesn't exist or there are less than n rules in the group. */ 3399 /* ------------------------------------------------------------------------ */ 3400 frentry_t *fr_getrulen(unit, group, n, ifs) 3401 int unit; 3402 char *group; 3403 u_32_t n; 3404 ipf_stack_t *ifs; 3405 { 3406 frentry_t *fr; 3407 frgroup_t *fg; 3408 3409 fg = fr_findgroup(group, unit, ifs->ifs_fr_active, NULL, ifs); 3410 if (fg == NULL) 3411 return NULL; 3412 for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--) 3413 ; 3414 if (n != 0) 3415 return NULL; 3416 return fr; 3417 } 3418 3419 3420 /* ------------------------------------------------------------------------ */ 3421 /* Function: fr_rulen */ 3422 /* Returns: int - >= 0 - rule number, -1 == search failed */ 3423 /* Parameters: unit(I) - device for which to count the rule's number */ 3424 /* fr(I) - pointer to rule to match */ 3425 /* */ 3426 /* Return the number for a rule on a specific filtering device. */ 3427 /* ------------------------------------------------------------------------ */ 3428 int fr_rulen(unit, fr, ifs) 3429 int unit; 3430 frentry_t *fr; 3431 ipf_stack_t *ifs; 3432 { 3433 frentry_t *fh; 3434 frgroup_t *fg; 3435 u_32_t n = 0; 3436 3437 if (fr == NULL) 3438 return -1; 3439 fg = fr_findgroup(fr->fr_group, unit, ifs->ifs_fr_active, NULL, ifs); 3440 if (fg == NULL) 3441 return -1; 3442 for (fh = fg->fg_head; fh; n++, fh = fh->fr_next) 3443 if (fh == fr) 3444 break; 3445 if (fh == NULL) 3446 return -1; 3447 return n; 3448 } 3449 3450 3451 /* ------------------------------------------------------------------------ */ 3452 /* Function: frflushlist */ 3453 /* Returns: int - >= 0 - number of flushed rules */ 3454 /* Parameters: set(I) - which set of rules (inactive/inactive) this is */ 3455 /* unit(I) - device for which to flush rules */ 3456 /* flags(I) - which set of rules to flush */ 3457 /* nfreedp(O) - pointer to int where flush count is stored */ 3458 /* listp(I) - pointer to list to flush pointer */ 3459 /* Write Locks: ipf_mutex */ 3460 /* */ 3461 /* Recursively flush rules from the list, descending groups as they are */ 3462 /* encountered. if a rule is the head of a group and it has lost all its */ 3463 /* group members, then also delete the group reference. nfreedp is needed */ 3464 /* to store the accumulating count of rules removed, whereas the returned */ 3465 /* value is just the number removed from the current list. The latter is */ 3466 /* needed to correctly adjust reference counts on rules that define groups. */ 3467 /* */ 3468 /* NOTE: Rules not loaded from user space cannot be flushed. */ 3469 /* ------------------------------------------------------------------------ */ 3470 static int frflushlist(set, unit, nfreedp, listp, ifs) 3471 int set; 3472 minor_t unit; 3473 int *nfreedp; 3474 frentry_t **listp; 3475 ipf_stack_t *ifs; 3476 { 3477 int freed = 0; 3478 frentry_t *fp; 3479 3480 while ((fp = *listp) != NULL) { 3481 if ((fp->fr_type & FR_T_BUILTIN) || 3482 !(fp->fr_flags & FR_COPIED)) { 3483 listp = &fp->fr_next; 3484 continue; 3485 } 3486 *listp = fp->fr_next; 3487 if (fp->fr_grp != NULL) { 3488 (void) frflushlist(set, unit, nfreedp, fp->fr_grp, ifs); 3489 } 3490 3491 if (fp->fr_grhead != NULL) { 3492 fr_delgroup(fp->fr_grhead, unit, set, ifs); 3493 *fp->fr_grhead = '\0'; 3494 } 3495 3496 ASSERT(fp->fr_ref > 0); 3497 fp->fr_next = NULL; 3498 if (fr_derefrule(&fp, ifs) == 0) 3499 freed++; 3500 } 3501 *nfreedp += freed; 3502 return freed; 3503 } 3504 3505 3506 /* ------------------------------------------------------------------------ */ 3507 /* Function: frflush */ 3508 /* Returns: int - >= 0 - number of flushed rules */ 3509 /* Parameters: unit(I) - device for which to flush rules */ 3510 /* flags(I) - which set of rules to flush */ 3511 /* */ 3512 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */ 3513 /* and IPv6) as defined by the value of flags. */ 3514 /* ------------------------------------------------------------------------ */ 3515 int frflush(unit, proto, flags, ifs) 3516 minor_t unit; 3517 int proto, flags; 3518 ipf_stack_t *ifs; 3519 { 3520 int flushed = 0, set; 3521 3522 WRITE_ENTER(&ifs->ifs_ipf_mutex); 3523 3524 set = ifs->ifs_fr_active; 3525 if ((flags & FR_INACTIVE) == FR_INACTIVE) 3526 set = 1 - set; 3527 3528 if (flags & FR_OUTQUE) { 3529 if (proto == 0 || proto == 6) { 3530 (void) frflushlist(set, unit, 3531 &flushed, &ifs->ifs_ipfilter6[1][set], ifs); 3532 (void) frflushlist(set, unit, 3533 &flushed, &ifs->ifs_ipacct6[1][set], ifs); 3534 } 3535 if (proto == 0 || proto == 4) { 3536 (void) frflushlist(set, unit, 3537 &flushed, &ifs->ifs_ipfilter[1][set], ifs); 3538 (void) frflushlist(set, unit, 3539 &flushed, &ifs->ifs_ipacct[1][set], ifs); 3540 } 3541 } 3542 if (flags & FR_INQUE) { 3543 if (proto == 0 || proto == 6) { 3544 (void) frflushlist(set, unit, 3545 &flushed, &ifs->ifs_ipfilter6[0][set], ifs); 3546 (void) frflushlist(set, unit, 3547 &flushed, &ifs->ifs_ipacct6[0][set], ifs); 3548 } 3549 if (proto == 0 || proto == 4) { 3550 (void) frflushlist(set, unit, 3551 &flushed, &ifs->ifs_ipfilter[0][set], ifs); 3552 (void) frflushlist(set, unit, 3553 &flushed, &ifs->ifs_ipacct[0][set], ifs); 3554 } 3555 } 3556 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 3557 3558 if (unit == IPL_LOGIPF) { 3559 int tmp; 3560 3561 tmp = frflush(IPL_LOGCOUNT, proto, flags, ifs); 3562 if (tmp >= 0) 3563 flushed += tmp; 3564 } 3565 return flushed; 3566 } 3567 3568 3569 /* ------------------------------------------------------------------------ */ 3570 /* Function: memstr */ 3571 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */ 3572 /* Parameters: src(I) - pointer to byte sequence to match */ 3573 /* dst(I) - pointer to byte sequence to search */ 3574 /* slen(I) - match length */ 3575 /* dlen(I) - length available to search in */ 3576 /* */ 3577 /* Search dst for a sequence of bytes matching those at src and extend for */ 3578 /* slen bytes. */ 3579 /* ------------------------------------------------------------------------ */ 3580 char *memstr(src, dst, slen, dlen) 3581 char *src, *dst; 3582 int slen, dlen; 3583 { 3584 char *s = NULL; 3585 3586 while (dlen >= slen) { 3587 if (bcmp(src, dst, slen) == 0) { 3588 s = dst; 3589 break; 3590 } 3591 dst++; 3592 dlen--; 3593 } 3594 return s; 3595 } 3596 /* ------------------------------------------------------------------------ */ 3597 /* Function: fr_fixskip */ 3598 /* Returns: Nil */ 3599 /* Parameters: listp(IO) - pointer to start of list with skip rule */ 3600 /* rp(I) - rule added/removed with skip in it. */ 3601 /* addremove(I) - adjustment (-1/+1) to make to skip count, */ 3602 /* depending on whether a rule was just added */ 3603 /* or removed. */ 3604 /* */ 3605 /* Adjust all the rules in a list which would have skip'd past the position */ 3606 /* where we are inserting to skip to the right place given the change. */ 3607 /* ------------------------------------------------------------------------ */ 3608 void fr_fixskip(listp, rp, addremove) 3609 frentry_t **listp, *rp; 3610 int addremove; 3611 { 3612 int rules, rn; 3613 frentry_t *fp; 3614 3615 rules = 0; 3616 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next) 3617 rules++; 3618 3619 if (!fp) 3620 return; 3621 3622 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++) 3623 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules)) 3624 fp->fr_arg += addremove; 3625 } 3626 3627 3628 #ifdef _KERNEL 3629 /* ------------------------------------------------------------------------ */ 3630 /* Function: count4bits */ 3631 /* Returns: int - >= 0 - number of consecutive bits in input */ 3632 /* Parameters: ip(I) - 32bit IP address */ 3633 /* */ 3634 /* IPv4 ONLY */ 3635 /* count consecutive 1's in bit mask. If the mask generated by counting */ 3636 /* consecutive 1's is different to that passed, return -1, else return # */ 3637 /* of bits. */ 3638 /* ------------------------------------------------------------------------ */ 3639 int count4bits(ip) 3640 u_32_t ip; 3641 { 3642 u_32_t ipn; 3643 int cnt = 0, i, j; 3644 3645 ip = ipn = ntohl(ip); 3646 for (i = 32; i; i--, ipn *= 2) 3647 if (ipn & 0x80000000) 3648 cnt++; 3649 else 3650 break; 3651 ipn = 0; 3652 for (i = 32, j = cnt; i; i--, j--) { 3653 ipn *= 2; 3654 if (j > 0) 3655 ipn++; 3656 } 3657 if (ipn == ip) 3658 return cnt; 3659 return -1; 3660 } 3661 3662 3663 #ifdef USE_INET6 3664 /* ------------------------------------------------------------------------ */ 3665 /* Function: count6bits */ 3666 /* Returns: int - >= 0 - number of consecutive bits in input */ 3667 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */ 3668 /* */ 3669 /* IPv6 ONLY */ 3670 /* count consecutive 1's in bit mask. */ 3671 /* ------------------------------------------------------------------------ */ 3672 int count6bits(msk) 3673 u_32_t *msk; 3674 { 3675 int i = 0, k; 3676 u_32_t j; 3677 3678 for (k = 3; k >= 0; k--) 3679 if (msk[k] == 0xffffffff) 3680 i += 32; 3681 else { 3682 for (j = msk[k]; j; j <<= 1) 3683 if (j & 0x80000000) 3684 i++; 3685 } 3686 return i; 3687 } 3688 # endif 3689 #endif /* _KERNEL */ 3690 3691 3692 /* ------------------------------------------------------------------------ */ 3693 /* Function: fr_ifsync */ 3694 /* Returns: void * - new interface identifier */ 3695 /* Parameters: action(I) - type of synchronisation to do */ 3696 /* v(I) - IP version being sync'd (v4 or v6) */ 3697 /* newifp(I) - interface identifier being introduced/removed */ 3698 /* oldifp(I) - interface identifier in a filter rule */ 3699 /* newname(I) - name associated with newifp interface */ 3700 /* oldname(I) - name associated with oldifp interface */ 3701 /* ifs - pointer to IPF stack instance */ 3702 /* */ 3703 /* This function returns what the new value for "oldifp" should be for its */ 3704 /* caller. In some cases it will not change, in some it will. */ 3705 /* action == IPFSYNC_RESYNC */ 3706 /* a new value for oldifp will always be looked up, according to oldname, */ 3707 /* the values of newname and newifp are ignored. */ 3708 /* action == IPFSYNC_NEWIFP */ 3709 /* if oldname matches newname then we are doing a sync for the matching */ 3710 /* interface, so we return newifp to be used in place of oldifp. If the */ 3711 /* the names don't match, just return oldifp. */ 3712 /* action == IPFSYNC_OLDIFP */ 3713 /* if oldifp matches newifp then we are are doing a sync to remove any */ 3714 /* references to oldifp, so we return "-1". */ 3715 /* ----- */ 3716 /* NOTE: */ 3717 /* This function processes NIC event from PF_HOOKS. The action parameter */ 3718 /* is set in ipf_nic_event_v4()/ipf_nic_event_v6() function. There is */ 3719 /* one single switch statement() in ipf_nic_event_vx() function, which */ 3720 /* translates the HOOK event type to action parameter passed to fr_ifsync. */ 3721 /* The translation table looks as follows: */ 3722 /* event | action */ 3723 /* ----------------+------------- */ 3724 /* NE_PLUMB | IPFSYNC_NEWIFP */ 3725 /* NE_UNPLUMB | IPFSYNC_OLDIFP */ 3726 /* NE_ADDRESS_CHANGE | IPFSYNC_RESYNC */ 3727 /* */ 3728 /* The oldname and oldifp parameters are taken from IPF entry (rule, state */ 3729 /* table entry, NAT table entry, fragment ...). The newname and newifp */ 3730 /* parameters come from hook event data, parameters are taken from event */ 3731 /* in ipf_nic_event_vx() functions. Any time NIC changes, the IPF is */ 3732 /* notified by hook function. */ 3733 /* */ 3734 /* We get NE_UNPLUMB event from PF_HOOKS even if someone coincidently tries */ 3735 /* to plumb the interface, which is already plumbed. In such case we always */ 3736 /* get the event from PF_HOOKS as follows: */ 3737 /* event: NE_PLUMB */ 3738 /* NIC: 0x0 */ 3739 /* ------------------------------------------------------------------------ */ 3740 static void *fr_ifsync(action, v, newname, oldname, newifp, oldifp, ifs) 3741 int action, v; 3742 char *newname, *oldname; 3743 void *newifp, *oldifp; 3744 ipf_stack_t *ifs; 3745 { 3746 void *rval = oldifp; 3747 3748 switch (action) 3749 { 3750 case IPFSYNC_RESYNC : 3751 if (oldname[0] != '\0') { 3752 rval = fr_resolvenic(oldname, v, ifs); 3753 } 3754 break; 3755 case IPFSYNC_NEWIFP : 3756 if (!strncmp(newname, oldname, LIFNAMSIZ)) 3757 rval = newifp; 3758 break; 3759 case IPFSYNC_OLDIFP : 3760 /* 3761 * If interface gets unplumbed it must be invalidated, which 3762 * means set all existing references to the interface to -1. 3763 * We don't want to invalidate references for wildcard 3764 * (unbound) rules (entries). 3765 */ 3766 if (newifp == oldifp) 3767 rval = (oldifp) ? (void *)-1 : NULL; 3768 break; 3769 } 3770 3771 return rval; 3772 } 3773 3774 3775 /* ------------------------------------------------------------------------ */ 3776 /* Function: frsynclist */ 3777 /* Returns: void */ 3778 /* Parameters: action(I) - type of synchronisation to do */ 3779 /* v(I) - IP version being sync'd (v4 or v6) */ 3780 /* ifp(I) - interface identifier associated with action */ 3781 /* ifname(I) - name associated with ifp parameter */ 3782 /* fr(I) - pointer to filter rule */ 3783 /* ifs - pointer to IPF stack instance */ 3784 /* Write Locks: ipf_mutex */ 3785 /* */ 3786 /* Walk through a list of filter rules and resolve any interface names into */ 3787 /* pointers. Where dynamic addresses are used, also update the IP address */ 3788 /* used in the rule. The interface pointer is used to limit the lookups to */ 3789 /* a specific set of matching names if it is non-NULL. */ 3790 /* ------------------------------------------------------------------------ */ 3791 static void frsynclist(action, v, ifp, ifname, fr, ifs) 3792 int action, v; 3793 void *ifp; 3794 char *ifname; 3795 frentry_t *fr; 3796 ipf_stack_t *ifs; 3797 { 3798 frdest_t *fdp; 3799 int rv, i; 3800 3801 for (; fr; fr = fr->fr_next) { 3802 rv = fr->fr_v; 3803 if (v != 0 && v != rv) 3804 continue; 3805 3806 /* 3807 * Lookup all the interface names that are part of the rule. 3808 */ 3809 for (i = 0; i < 4; i++) { 3810 fr->fr_ifas[i] = fr_ifsync(action, rv, ifname, 3811 fr->fr_ifnames[i], 3812 ifp, fr->fr_ifas[i], 3813 ifs); 3814 } 3815 3816 fdp = &fr->fr_tifs[0]; 3817 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3818 ifp, fdp->fd_ifp, ifs); 3819 3820 fdp = &fr->fr_tifs[1]; 3821 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3822 ifp, fdp->fd_ifp, ifs); 3823 3824 fdp = &fr->fr_dif; 3825 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3826 ifp, fdp->fd_ifp, ifs); 3827 3828 if (action != IPFSYNC_RESYNC) 3829 continue; 3830 3831 if (fr->fr_type == FR_T_IPF) { 3832 if (fr->fr_satype != FRI_NORMAL && 3833 fr->fr_satype != FRI_LOOKUP) { 3834 (void)fr_ifpaddr(rv, fr->fr_satype, 3835 fr->fr_ifas[fr->fr_sifpidx], 3836 &fr->fr_src, &fr->fr_smsk, 3837 ifs); 3838 } 3839 if (fr->fr_datype != FRI_NORMAL && 3840 fr->fr_datype != FRI_LOOKUP) { 3841 (void)fr_ifpaddr(rv, fr->fr_datype, 3842 fr->fr_ifas[fr->fr_difpidx], 3843 &fr->fr_dst, &fr->fr_dmsk, 3844 ifs); 3845 } 3846 } 3847 3848 #ifdef IPFILTER_LOOKUP 3849 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP && 3850 fr->fr_srcptr == NULL) { 3851 fr->fr_srcptr = fr_resolvelookup(fr->fr_srctype, 3852 fr->fr_srcnum, 3853 &fr->fr_srcfunc, ifs); 3854 } 3855 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP && 3856 fr->fr_dstptr == NULL) { 3857 fr->fr_dstptr = fr_resolvelookup(fr->fr_dsttype, 3858 fr->fr_dstnum, 3859 &fr->fr_dstfunc, ifs); 3860 } 3861 #endif 3862 } 3863 } 3864 3865 3866 #ifdef _KERNEL 3867 /* ------------------------------------------------------------------------ */ 3868 /* Function: frsync */ 3869 /* Returns: void */ 3870 /* Parameters: action(I) - type of synchronisation to do */ 3871 /* v(I) - IP version being sync'd (v4 or v6) */ 3872 /* ifp(I) - interface identifier associated with action */ 3873 /* name(I) - name associated with ifp parameter */ 3874 /* */ 3875 /* frsync() is called when we suspect that the interface list or */ 3876 /* information about interfaces (like IP#) has changed. Go through all */ 3877 /* filter rules, NAT entries and the state table and check if anything */ 3878 /* needs to be changed/updated. */ 3879 /* With the filtering hooks added to Solaris, we needed to change the manner*/ 3880 /* in which this was done to support three different types of sync: */ 3881 /* - complete resync of all interface name/identifiers */ 3882 /* - new interface being announced with its name and identifier */ 3883 /* - interface removal being announced by only its identifier */ 3884 /* ------------------------------------------------------------------------ */ 3885 void frsync(action, v, ifp, name, ifs) 3886 int action, v; 3887 void *ifp; 3888 char *name; 3889 ipf_stack_t *ifs; 3890 { 3891 int i; 3892 3893 WRITE_ENTER(&ifs->ifs_ipf_mutex); 3894 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[0][ifs->ifs_fr_active], ifs); 3895 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[1][ifs->ifs_fr_active], ifs); 3896 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[0][ifs->ifs_fr_active], ifs); 3897 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[1][ifs->ifs_fr_active], ifs); 3898 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[0][ifs->ifs_fr_active], ifs); 3899 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[1][ifs->ifs_fr_active], ifs); 3900 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[0][ifs->ifs_fr_active], ifs); 3901 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[1][ifs->ifs_fr_active], ifs); 3902 3903 for (i = 0; i < IPL_LOGSIZE; i++) { 3904 frgroup_t *g; 3905 3906 for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next) 3907 frsynclist(action, v, ifp, name, g->fg_start, ifs); 3908 for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next) 3909 frsynclist(action, v, ifp, name, g->fg_start, ifs); 3910 } 3911 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 3912 } 3913 3914 3915 /* 3916 * In the functions below, bcopy() is called because the pointer being 3917 * copied _from_ in this instance is a pointer to a char buf (which could 3918 * end up being unaligned) and on the kernel's local stack. 3919 */ 3920 /* ------------------------------------------------------------------------ */ 3921 /* Function: copyinptr */ 3922 /* Returns: int - 0 = success, else failure */ 3923 /* Parameters: src(I) - pointer to the source address */ 3924 /* dst(I) - destination address */ 3925 /* size(I) - number of bytes to copy */ 3926 /* */ 3927 /* Copy a block of data in from user space, given a pointer to the pointer */ 3928 /* to start copying from (src) and a pointer to where to store it (dst). */ 3929 /* NB: src - pointer to user space pointer, dst - kernel space pointer */ 3930 /* ------------------------------------------------------------------------ */ 3931 int copyinptr(src, dst, size) 3932 void *src, *dst; 3933 size_t size; 3934 { 3935 caddr_t ca; 3936 int err; 3937 3938 # if SOLARIS 3939 err = COPYIN(src, (caddr_t)&ca, sizeof(ca)); 3940 if (err != 0) 3941 return err; 3942 # else 3943 bcopy(src, (caddr_t)&ca, sizeof(ca)); 3944 # endif 3945 err = COPYIN(ca, dst, size); 3946 return err; 3947 } 3948 3949 3950 /* ------------------------------------------------------------------------ */ 3951 /* Function: copyoutptr */ 3952 /* Returns: int - 0 = success, else failure */ 3953 /* Parameters: src(I) - pointer to the source address */ 3954 /* dst(I) - destination address */ 3955 /* size(I) - number of bytes to copy */ 3956 /* */ 3957 /* Copy a block of data out to user space, given a pointer to the pointer */ 3958 /* to start copying from (src) and a pointer to where to store it (dst). */ 3959 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */ 3960 /* ------------------------------------------------------------------------ */ 3961 int copyoutptr(src, dst, size) 3962 void *src, *dst; 3963 size_t size; 3964 { 3965 caddr_t ca; 3966 int err; 3967 3968 # if SOLARIS 3969 err = COPYIN(dst, (caddr_t)&ca, sizeof(ca)); 3970 if (err != 0) 3971 return err; 3972 # else 3973 bcopy(dst, (caddr_t)&ca, sizeof(ca)); 3974 # endif 3975 err = COPYOUT(src, ca, size); 3976 return err; 3977 } 3978 #endif 3979 3980 3981 /* ------------------------------------------------------------------------ */ 3982 /* Function: fr_lock */ 3983 /* Returns: int - 0 = success, else error */ 3984 /* Parameters: data(I) - pointer to lock value to set */ 3985 /* lockp(O) - pointer to location to store old lock value */ 3986 /* */ 3987 /* Get the new value for the lock integer, set it and return the old value */ 3988 /* in *lockp. */ 3989 /* ------------------------------------------------------------------------ */ 3990 int fr_lock(data, lockp) 3991 caddr_t data; 3992 int *lockp; 3993 { 3994 int arg, err; 3995 3996 err = BCOPYIN(data, (caddr_t)&arg, sizeof(arg)); 3997 if (err != 0) 3998 return (EFAULT); 3999 err = BCOPYOUT((caddr_t)lockp, data, sizeof(*lockp)); 4000 if (err != 0) 4001 return (EFAULT); 4002 *lockp = arg; 4003 return (0); 4004 } 4005 4006 4007 /* ------------------------------------------------------------------------ */ 4008 /* Function: fr_getstat */ 4009 /* Returns: Nil */ 4010 /* Parameters: fiop(I) - pointer to ipfilter stats structure */ 4011 /* */ 4012 /* Stores a copy of current pointers, counters, etc, in the friostat */ 4013 /* structure. */ 4014 /* ------------------------------------------------------------------------ */ 4015 void fr_getstat(fiop, ifs) 4016 friostat_t *fiop; 4017 ipf_stack_t *ifs; 4018 { 4019 int i, j; 4020 4021 bcopy((char *)&ifs->ifs_frstats, (char *)fiop->f_st, 4022 sizeof(filterstats_t) * 2); 4023 fiop->f_locks[IPL_LOGSTATE] = ifs->ifs_fr_state_lock; 4024 fiop->f_locks[IPL_LOGNAT] = ifs->ifs_fr_nat_lock; 4025 fiop->f_locks[IPL_LOGIPF] = ifs->ifs_fr_frag_lock; 4026 fiop->f_locks[IPL_LOGAUTH] = ifs->ifs_fr_auth_lock; 4027 4028 for (i = 0; i < 2; i++) 4029 for (j = 0; j < 2; j++) { 4030 fiop->f_ipf[i][j] = ifs->ifs_ipfilter[i][j]; 4031 fiop->f_acct[i][j] = ifs->ifs_ipacct[i][j]; 4032 fiop->f_ipf6[i][j] = ifs->ifs_ipfilter6[i][j]; 4033 fiop->f_acct6[i][j] = ifs->ifs_ipacct6[i][j]; 4034 } 4035 4036 fiop->f_ticks = ifs->ifs_fr_ticks; 4037 fiop->f_active = ifs->ifs_fr_active; 4038 fiop->f_froute[0] = ifs->ifs_fr_frouteok[0]; 4039 fiop->f_froute[1] = ifs->ifs_fr_frouteok[1]; 4040 4041 fiop->f_running = ifs->ifs_fr_running; 4042 for (i = 0; i < IPL_LOGSIZE; i++) { 4043 fiop->f_groups[i][0] = ifs->ifs_ipfgroups[i][0]; 4044 fiop->f_groups[i][1] = ifs->ifs_ipfgroups[i][1]; 4045 } 4046 #ifdef IPFILTER_LOG 4047 fiop->f_logging = 1; 4048 #else 4049 fiop->f_logging = 0; 4050 #endif 4051 fiop->f_defpass = ifs->ifs_fr_pass; 4052 fiop->f_features = fr_features; 4053 (void) strncpy(fiop->f_version, ipfilter_version, 4054 sizeof(fiop->f_version)); 4055 } 4056 4057 4058 #ifdef USE_INET6 4059 int icmptoicmp6types[ICMP_MAXTYPE+1] = { 4060 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */ 4061 -1, /* 1: UNUSED */ 4062 -1, /* 2: UNUSED */ 4063 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */ 4064 -1, /* 4: ICMP_SOURCEQUENCH */ 4065 ND_REDIRECT, /* 5: ICMP_REDIRECT */ 4066 -1, /* 6: UNUSED */ 4067 -1, /* 7: UNUSED */ 4068 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */ 4069 -1, /* 9: UNUSED */ 4070 -1, /* 10: UNUSED */ 4071 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */ 4072 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */ 4073 -1, /* 13: ICMP_TSTAMP */ 4074 -1, /* 14: ICMP_TSTAMPREPLY */ 4075 -1, /* 15: ICMP_IREQ */ 4076 -1, /* 16: ICMP_IREQREPLY */ 4077 -1, /* 17: ICMP_MASKREQ */ 4078 -1, /* 18: ICMP_MASKREPLY */ 4079 }; 4080 4081 4082 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = { 4083 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */ 4084 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */ 4085 -1, /* 2: ICMP_UNREACH_PROTOCOL */ 4086 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */ 4087 -1, /* 4: ICMP_UNREACH_NEEDFRAG */ 4088 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */ 4089 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */ 4090 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */ 4091 -1, /* 8: ICMP_UNREACH_ISOLATED */ 4092 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */ 4093 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */ 4094 -1, /* 11: ICMP_UNREACH_TOSNET */ 4095 -1, /* 12: ICMP_UNREACH_TOSHOST */ 4096 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */ 4097 }; 4098 int icmpreplytype6[ICMP6_MAXTYPE + 1]; 4099 #endif 4100 4101 int icmpreplytype4[ICMP_MAXTYPE + 1]; 4102 4103 4104 /* ------------------------------------------------------------------------ */ 4105 /* Function: fr_matchicmpqueryreply */ 4106 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */ 4107 /* Parameters: v(I) - IP protocol version (4 or 6) */ 4108 /* ic(I) - ICMP information */ 4109 /* icmp(I) - ICMP packet header */ 4110 /* rev(I) - direction (0 = forward/1 = reverse) of packet */ 4111 /* */ 4112 /* Check if the ICMP packet defined by the header pointed to by icmp is a */ 4113 /* reply to one as described by what's in ic. If it is a match, return 1, */ 4114 /* else return 0 for no match. */ 4115 /* ------------------------------------------------------------------------ */ 4116 int fr_matchicmpqueryreply(v, ic, icmp, rev) 4117 int v; 4118 icmpinfo_t *ic; 4119 icmphdr_t *icmp; 4120 int rev; 4121 { 4122 int ictype; 4123 4124 ictype = ic->ici_type; 4125 4126 if (v == 4) { 4127 /* 4128 * If we matched its type on the way in, then when going out 4129 * it will still be the same type. 4130 */ 4131 if ((!rev && (icmp->icmp_type == ictype)) || 4132 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) { 4133 if (icmp->icmp_type != ICMP_ECHOREPLY) 4134 return 1; 4135 if (icmp->icmp_id == ic->ici_id) 4136 return 1; 4137 } 4138 } 4139 #ifdef USE_INET6 4140 else if (v == 6) { 4141 if ((!rev && (icmp->icmp_type == ictype)) || 4142 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) { 4143 if (icmp->icmp_type != ICMP6_ECHO_REPLY) 4144 return 1; 4145 if (icmp->icmp_id == ic->ici_id) 4146 return 1; 4147 } 4148 } 4149 #endif 4150 return 0; 4151 } 4152 4153 4154 #ifdef IPFILTER_LOOKUP 4155 /* ------------------------------------------------------------------------ */ 4156 /* Function: fr_resolvelookup */ 4157 /* Returns: void * - NULL = failure, else success. */ 4158 /* Parameters: type(I) - type of lookup these parameters are for. */ 4159 /* number(I) - table number to use when searching */ 4160 /* funcptr(IO) - pointer to pointer for storing IP address */ 4161 /* searching function. */ 4162 /* */ 4163 /* Search for the "table" number passed in amongst those configured for */ 4164 /* that particular type. If the type is recognised then the function to */ 4165 /* call to do the IP address search will be change, regardless of whether */ 4166 /* or not the "table" number exists. */ 4167 /* ------------------------------------------------------------------------ */ 4168 static void *fr_resolvelookup(type, number, funcptr, ifs) 4169 u_int type, number; 4170 lookupfunc_t *funcptr; 4171 ipf_stack_t *ifs; 4172 { 4173 char name[FR_GROUPLEN]; 4174 iphtable_t *iph; 4175 ip_pool_t *ipo; 4176 void *ptr; 4177 4178 #if defined(SNPRINTF) && defined(_KERNEL) 4179 (void) SNPRINTF(name, sizeof(name), "%u", number); 4180 #else 4181 (void) sprintf(name, "%u", number); 4182 #endif 4183 4184 READ_ENTER(&ifs->ifs_ip_poolrw); 4185 4186 switch (type) 4187 { 4188 case IPLT_POOL : 4189 # if (defined(__osf__) && defined(_KERNEL)) 4190 ptr = NULL; 4191 *funcptr = NULL; 4192 # else 4193 ipo = ip_pool_find(IPL_LOGIPF, name, ifs); 4194 ptr = ipo; 4195 if (ipo != NULL) { 4196 ATOMIC_INC32(ipo->ipo_ref); 4197 } 4198 *funcptr = ip_pool_search; 4199 # endif 4200 break; 4201 case IPLT_HASH : 4202 iph = fr_findhtable(IPL_LOGIPF, name, ifs); 4203 ptr = iph; 4204 if (iph != NULL) { 4205 ATOMIC_INC32(iph->iph_ref); 4206 } 4207 *funcptr = fr_iphmfindip; 4208 break; 4209 default: 4210 ptr = NULL; 4211 *funcptr = NULL; 4212 break; 4213 } 4214 RWLOCK_EXIT(&ifs->ifs_ip_poolrw); 4215 4216 return ptr; 4217 } 4218 #endif 4219 4220 4221 /* ------------------------------------------------------------------------ */ 4222 /* Function: frrequest */ 4223 /* Returns: int - 0 == success, > 0 == errno value */ 4224 /* Parameters: unit(I) - device for which this is for */ 4225 /* req(I) - ioctl command (SIOC*) */ 4226 /* data(I) - pointr to ioctl data */ 4227 /* set(I) - 1 or 0 (filter set) */ 4228 /* makecopy(I) - flag indicating whether data points to a rule */ 4229 /* in kernel space & hence doesn't need copying. */ 4230 /* */ 4231 /* This function handles all the requests which operate on the list of */ 4232 /* filter rules. This includes adding, deleting, insertion. It is also */ 4233 /* responsible for creating groups when a "head" rule is loaded. Interface */ 4234 /* names are resolved here and other sanity checks are made on the content */ 4235 /* of the rule structure being loaded. If a rule has user defined timeouts */ 4236 /* then make sure they are created and initialised before exiting. */ 4237 /* ------------------------------------------------------------------------ */ 4238 int frrequest(unit, req, data, set, makecopy, ifs) 4239 int unit; 4240 ioctlcmd_t req; 4241 int set, makecopy; 4242 caddr_t data; 4243 ipf_stack_t *ifs; 4244 { 4245 frentry_t frd, *fp, *f, **fprev, **ftail; 4246 int error = 0, in, v; 4247 void *ptr, *uptr; 4248 u_int *p, *pp; 4249 frgroup_t *fg; 4250 char *group; 4251 4252 fg = NULL; 4253 fp = &frd; 4254 if (makecopy != 0) { 4255 error = fr_inobj(data, fp, IPFOBJ_FRENTRY); 4256 if (error) 4257 return EFAULT; 4258 if ((fp->fr_flags & FR_T_BUILTIN) != 0) 4259 return EINVAL; 4260 fp->fr_ref = 0; 4261 fp->fr_flags |= FR_COPIED; 4262 } else { 4263 fp = (frentry_t *)data; 4264 if ((fp->fr_type & FR_T_BUILTIN) == 0) 4265 return EINVAL; 4266 fp->fr_flags &= ~FR_COPIED; 4267 } 4268 4269 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) || 4270 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) 4271 return EINVAL; 4272 4273 v = fp->fr_v; 4274 uptr = fp->fr_data; 4275 4276 /* 4277 * Only filter rules for IPv4 or IPv6 are accepted. 4278 */ 4279 if (v == 4) 4280 /*EMPTY*/; 4281 #ifdef USE_INET6 4282 else if (v == 6) 4283 /*EMPTY*/; 4284 #endif 4285 else { 4286 return EINVAL; 4287 } 4288 4289 /* 4290 * If the rule is being loaded from user space, i.e. we had to copy it 4291 * into kernel space, then do not trust the function pointer in the 4292 * rule. 4293 */ 4294 if ((makecopy == 1) && (fp->fr_func != NULL)) { 4295 if (fr_findfunc(fp->fr_func) == NULL) 4296 return ESRCH; 4297 error = fr_funcinit(fp, ifs); 4298 if (error != 0) 4299 return error; 4300 } 4301 4302 ptr = NULL; 4303 /* 4304 * Check that the group number does exist and that its use (in/out) 4305 * matches what the rule is. 4306 */ 4307 if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN)) 4308 *fp->fr_grhead = '\0'; 4309 group = fp->fr_group; 4310 if (!strncmp(group, "0", FR_GROUPLEN)) 4311 *group = '\0'; 4312 4313 if (FR_ISACCOUNT(fp->fr_flags)) 4314 unit = IPL_LOGCOUNT; 4315 4316 if ((req != (int)SIOCZRLST) && (*group != '\0')) { 4317 fg = fr_findgroup(group, unit, set, NULL, ifs); 4318 if (fg == NULL) 4319 return ESRCH; 4320 if (fg->fg_flags == 0) 4321 fg->fg_flags = fp->fr_flags & FR_INOUT; 4322 else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) 4323 return ESRCH; 4324 } 4325 4326 in = (fp->fr_flags & FR_INQUE) ? 0 : 1; 4327 4328 /* 4329 * Work out which rule list this change is being applied to. 4330 */ 4331 ftail = NULL; 4332 fprev = NULL; 4333 if (unit == IPL_LOGAUTH) 4334 fprev = &ifs->ifs_ipauth; 4335 else if (v == 4) { 4336 if (FR_ISACCOUNT(fp->fr_flags)) 4337 fprev = &ifs->ifs_ipacct[in][set]; 4338 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4339 fprev = &ifs->ifs_ipfilter[in][set]; 4340 } else if (v == 6) { 4341 if (FR_ISACCOUNT(fp->fr_flags)) 4342 fprev = &ifs->ifs_ipacct6[in][set]; 4343 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4344 fprev = &ifs->ifs_ipfilter6[in][set]; 4345 } 4346 if (fprev == NULL) 4347 return ESRCH; 4348 4349 if (*group != '\0') { 4350 if (!fg && !(fg = fr_findgroup(group, unit, set, NULL, ifs))) 4351 return ESRCH; 4352 fprev = &fg->fg_start; 4353 } 4354 4355 ftail = fprev; 4356 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) { 4357 if (fp->fr_collect <= f->fr_collect) { 4358 ftail = fprev; 4359 f = NULL; 4360 break; 4361 } 4362 fprev = ftail; 4363 } 4364 4365 /* 4366 * Copy in extra data for the rule. 4367 */ 4368 if (fp->fr_dsize != 0) { 4369 if (makecopy != 0) { 4370 KMALLOCS(ptr, void *, fp->fr_dsize); 4371 if (!ptr) 4372 return ENOMEM; 4373 error = COPYIN(uptr, ptr, fp->fr_dsize); 4374 } else { 4375 ptr = uptr; 4376 error = 0; 4377 } 4378 if (error != 0) { 4379 KFREES(ptr, fp->fr_dsize); 4380 return EFAULT; 4381 } 4382 fp->fr_data = ptr; 4383 } else 4384 fp->fr_data = NULL; 4385 4386 /* 4387 * Perform per-rule type sanity checks of their members. 4388 */ 4389 switch (fp->fr_type & ~FR_T_BUILTIN) 4390 { 4391 #if defined(IPFILTER_BPF) 4392 case FR_T_BPFOPC : 4393 if (fp->fr_dsize == 0) 4394 return EINVAL; 4395 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) { 4396 if (makecopy && fp->fr_data != NULL) { 4397 KFREES(fp->fr_data, fp->fr_dsize); 4398 } 4399 return EINVAL; 4400 } 4401 break; 4402 #endif 4403 case FR_T_IPF : 4404 if (fp->fr_dsize != sizeof(fripf_t)) { 4405 if (makecopy && fp->fr_data != NULL) { 4406 KFREES(fp->fr_data, fp->fr_dsize); 4407 } 4408 return EINVAL; 4409 } 4410 4411 /* 4412 * Allowing a rule with both "keep state" and "with oow" is 4413 * pointless because adding a state entry to the table will 4414 * fail with the out of window (oow) flag set. 4415 */ 4416 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) { 4417 if (makecopy && fp->fr_data != NULL) { 4418 KFREES(fp->fr_data, fp->fr_dsize); 4419 } 4420 return EINVAL; 4421 } 4422 4423 switch (fp->fr_satype) 4424 { 4425 case FRI_BROADCAST : 4426 case FRI_DYNAMIC : 4427 case FRI_NETWORK : 4428 case FRI_NETMASKED : 4429 case FRI_PEERADDR : 4430 if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) { 4431 if (makecopy && fp->fr_data != NULL) { 4432 KFREES(fp->fr_data, fp->fr_dsize); 4433 } 4434 return EINVAL; 4435 } 4436 break; 4437 #ifdef IPFILTER_LOOKUP 4438 case FRI_LOOKUP : 4439 fp->fr_srcptr = fr_resolvelookup(fp->fr_srctype, 4440 fp->fr_srcnum, 4441 &fp->fr_srcfunc, ifs); 4442 break; 4443 #endif 4444 default : 4445 break; 4446 } 4447 4448 switch (fp->fr_datype) 4449 { 4450 case FRI_BROADCAST : 4451 case FRI_DYNAMIC : 4452 case FRI_NETWORK : 4453 case FRI_NETMASKED : 4454 case FRI_PEERADDR : 4455 if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) { 4456 if (makecopy && fp->fr_data != NULL) { 4457 KFREES(fp->fr_data, fp->fr_dsize); 4458 } 4459 return EINVAL; 4460 } 4461 break; 4462 #ifdef IPFILTER_LOOKUP 4463 case FRI_LOOKUP : 4464 fp->fr_dstptr = fr_resolvelookup(fp->fr_dsttype, 4465 fp->fr_dstnum, 4466 &fp->fr_dstfunc, ifs); 4467 break; 4468 #endif 4469 default : 4470 break; 4471 } 4472 break; 4473 case FR_T_NONE : 4474 break; 4475 case FR_T_CALLFUNC : 4476 break; 4477 case FR_T_COMPIPF : 4478 break; 4479 default : 4480 if (makecopy && fp->fr_data != NULL) { 4481 KFREES(fp->fr_data, fp->fr_dsize); 4482 } 4483 return EINVAL; 4484 } 4485 4486 /* 4487 * Lookup all the interface names that are part of the rule. 4488 */ 4489 frsynclist(0, 0, NULL, NULL, fp, ifs); 4490 fp->fr_statecnt = 0; 4491 4492 /* 4493 * Look for an existing matching filter rule, but don't include the 4494 * next or interface pointer in the comparison (fr_next, fr_ifa). 4495 * This elminates rules which are indentical being loaded. Checksum 4496 * the constant part of the filter rule to make comparisons quicker 4497 * (this meaning no pointers are included). 4498 */ 4499 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum; 4500 p < pp; p++) 4501 fp->fr_cksum += *p; 4502 pp = (u_int *)(fp->fr_caddr + fp->fr_dsize); 4503 for (p = (u_int *)fp->fr_data; p < pp; p++) 4504 fp->fr_cksum += *p; 4505 4506 WRITE_ENTER(&ifs->ifs_ipf_mutex); 4507 4508 for (; (f = *ftail) != NULL; ftail = &f->fr_next) { 4509 if ((fp->fr_cksum != f->fr_cksum) || 4510 (f->fr_dsize != fp->fr_dsize)) 4511 continue; 4512 if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ)) 4513 continue; 4514 if ((!ptr && !f->fr_data) || 4515 (ptr && f->fr_data && 4516 !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize))) 4517 break; 4518 } 4519 4520 /* 4521 * If zero'ing statistics, copy current to caller and zero. 4522 */ 4523 if (req == (ioctlcmd_t)SIOCZRLST) { 4524 if (f == NULL) 4525 error = ESRCH; 4526 else { 4527 /* 4528 * Copy and reduce lock because of impending copyout. 4529 * Well we should, but if we do then the atomicity of 4530 * this call and the correctness of fr_hits and 4531 * fr_bytes cannot be guaranteed. As it is, this code 4532 * only resets them to 0 if they are successfully 4533 * copied out into user space. 4534 */ 4535 bcopy((char *)f, (char *)fp, sizeof(*f)); 4536 4537 /* 4538 * When we copy this rule back out, set the data 4539 * pointer to be what it was in user space. 4540 */ 4541 fp->fr_data = uptr; 4542 error = fr_outobj(data, fp, IPFOBJ_FRENTRY); 4543 4544 if (error == 0) { 4545 if ((f->fr_dsize != 0) && (uptr != NULL)) 4546 error = COPYOUT(f->fr_data, uptr, 4547 f->fr_dsize); 4548 if (error == 0) { 4549 f->fr_hits = 0; 4550 f->fr_bytes = 0; 4551 } 4552 } 4553 } 4554 4555 if ((ptr != NULL) && (makecopy != 0)) { 4556 KFREES(ptr, fp->fr_dsize); 4557 } 4558 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 4559 return error; 4560 } 4561 4562 if (!f) { 4563 /* 4564 * At the end of this, ftail must point to the place where the 4565 * new rule is to be saved/inserted/added. 4566 * For SIOCAD*FR, this should be the last rule in the group of 4567 * rules that have equal fr_collect fields. 4568 * For SIOCIN*FR, ... 4569 */ 4570 if (req == (ioctlcmd_t)SIOCADAFR || 4571 req == (ioctlcmd_t)SIOCADIFR) { 4572 4573 for (ftail = fprev; (f = *ftail) != NULL; ) { 4574 if (f->fr_collect > fp->fr_collect) 4575 break; 4576 ftail = &f->fr_next; 4577 } 4578 f = NULL; 4579 ptr = NULL; 4580 error = 0; 4581 } else if (req == (ioctlcmd_t)SIOCINAFR || 4582 req == (ioctlcmd_t)SIOCINIFR) { 4583 while ((f = *fprev) != NULL) { 4584 if (f->fr_collect >= fp->fr_collect) 4585 break; 4586 fprev = &f->fr_next; 4587 } 4588 ftail = fprev; 4589 if (fp->fr_hits != 0) { 4590 while (fp->fr_hits && (f = *ftail)) { 4591 if (f->fr_collect != fp->fr_collect) 4592 break; 4593 fprev = ftail; 4594 ftail = &f->fr_next; 4595 fp->fr_hits--; 4596 } 4597 } 4598 f = NULL; 4599 ptr = NULL; 4600 error = 0; 4601 } 4602 } 4603 4604 /* 4605 * Request to remove a rule. 4606 */ 4607 if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) { 4608 if (!f) 4609 error = ESRCH; 4610 else { 4611 /* 4612 * Do not allow activity from user space to interfere 4613 * with rules not loaded that way. 4614 */ 4615 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) { 4616 error = EPERM; 4617 goto done; 4618 } 4619 4620 /* 4621 * Return EBUSY if the rule is being reference by 4622 * something else (eg state information. 4623 */ 4624 if (f->fr_ref > 1) { 4625 error = EBUSY; 4626 goto done; 4627 } 4628 #ifdef IPFILTER_SCAN 4629 if (f->fr_isctag[0] != '\0' && 4630 (f->fr_isc != (struct ipscan *)-1)) 4631 ipsc_detachfr(f); 4632 #endif 4633 if (unit == IPL_LOGAUTH) { 4634 error = fr_preauthcmd(req, f, ftail, ifs); 4635 goto done; 4636 } 4637 if (*f->fr_grhead != '\0') 4638 fr_delgroup(f->fr_grhead, unit, set, ifs); 4639 fr_fixskip(ftail, f, -1); 4640 *ftail = f->fr_next; 4641 f->fr_next = NULL; 4642 (void)fr_derefrule(&f, ifs); 4643 } 4644 } else { 4645 /* 4646 * Not removing, so we must be adding/inserting a rule. 4647 */ 4648 if (f) 4649 error = EEXIST; 4650 else { 4651 if (unit == IPL_LOGAUTH) { 4652 error = fr_preauthcmd(req, fp, ftail, ifs); 4653 goto done; 4654 } 4655 if (makecopy) { 4656 KMALLOC(f, frentry_t *); 4657 } else 4658 f = fp; 4659 if (f != NULL) { 4660 if (fp != f) 4661 bcopy((char *)fp, (char *)f, 4662 sizeof(*f)); 4663 MUTEX_NUKE(&f->fr_lock); 4664 MUTEX_INIT(&f->fr_lock, "filter rule lock"); 4665 #ifdef IPFILTER_SCAN 4666 if (f->fr_isctag[0] != '\0' && 4667 ipsc_attachfr(f)) 4668 f->fr_isc = (struct ipscan *)-1; 4669 #endif 4670 f->fr_hits = 0; 4671 if (makecopy != 0) 4672 f->fr_ref = 1; 4673 f->fr_next = *ftail; 4674 *ftail = f; 4675 if (req == (ioctlcmd_t)SIOCINIFR || 4676 req == (ioctlcmd_t)SIOCINAFR) 4677 fr_fixskip(ftail, f, 1); 4678 f->fr_grp = NULL; 4679 group = f->fr_grhead; 4680 if (*group != '\0') { 4681 fg = fr_addgroup(group, f, f->fr_flags, 4682 unit, set, ifs); 4683 if (fg != NULL) 4684 f->fr_grp = &fg->fg_start; 4685 } 4686 } else 4687 error = ENOMEM; 4688 } 4689 } 4690 done: 4691 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 4692 if ((ptr != NULL) && (error != 0) && (makecopy != 0)) { 4693 KFREES(ptr, fp->fr_dsize); 4694 } 4695 return (error); 4696 } 4697 4698 4699 /* ------------------------------------------------------------------------ */ 4700 /* Function: fr_funcinit */ 4701 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */ 4702 /* Parameters: fr(I) - pointer to filter rule */ 4703 /* */ 4704 /* If a rule is a call rule, then check if the function it points to needs */ 4705 /* an init function to be called now the rule has been loaded. */ 4706 /* ------------------------------------------------------------------------ */ 4707 static int fr_funcinit(fr, ifs) 4708 frentry_t *fr; 4709 ipf_stack_t *ifs; 4710 { 4711 ipfunc_resolve_t *ft; 4712 int err; 4713 4714 err = ESRCH; 4715 4716 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4717 if (ft->ipfu_addr == fr->fr_func) { 4718 err = 0; 4719 if (ft->ipfu_init != NULL) 4720 err = (*ft->ipfu_init)(fr, ifs); 4721 break; 4722 } 4723 return err; 4724 } 4725 4726 4727 /* ------------------------------------------------------------------------ */ 4728 /* Function: fr_findfunc */ 4729 /* Returns: ipfunc_t - pointer to function if found, else NULL */ 4730 /* Parameters: funcptr(I) - function pointer to lookup */ 4731 /* */ 4732 /* Look for a function in the table of known functions. */ 4733 /* ------------------------------------------------------------------------ */ 4734 static ipfunc_t fr_findfunc(funcptr) 4735 ipfunc_t funcptr; 4736 { 4737 ipfunc_resolve_t *ft; 4738 4739 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4740 if (ft->ipfu_addr == funcptr) 4741 return funcptr; 4742 return NULL; 4743 } 4744 4745 4746 /* ------------------------------------------------------------------------ */ 4747 /* Function: fr_resolvefunc */ 4748 /* Returns: int - 0 == success, else error */ 4749 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */ 4750 /* */ 4751 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */ 4752 /* This will either be the function name (if the pointer is set) or the */ 4753 /* function pointer if the name is set. When found, fill in the other one */ 4754 /* so that the entire, complete, structure can be copied back to user space.*/ 4755 /* ------------------------------------------------------------------------ */ 4756 int fr_resolvefunc(data) 4757 void *data; 4758 { 4759 ipfunc_resolve_t res, *ft; 4760 int err; 4761 4762 err = BCOPYIN(data, &res, sizeof(res)); 4763 if (err != 0) 4764 return EFAULT; 4765 4766 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') { 4767 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4768 if (strncmp(res.ipfu_name, ft->ipfu_name, 4769 sizeof(res.ipfu_name)) == 0) { 4770 res.ipfu_addr = ft->ipfu_addr; 4771 res.ipfu_init = ft->ipfu_init; 4772 if (COPYOUT(&res, data, sizeof(res)) != 0) 4773 return EFAULT; 4774 return 0; 4775 } 4776 } 4777 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') { 4778 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4779 if (ft->ipfu_addr == res.ipfu_addr) { 4780 (void) strncpy(res.ipfu_name, ft->ipfu_name, 4781 sizeof(res.ipfu_name)); 4782 res.ipfu_init = ft->ipfu_init; 4783 if (COPYOUT(&res, data, sizeof(res)) != 0) 4784 return EFAULT; 4785 return 0; 4786 } 4787 } 4788 return ESRCH; 4789 } 4790 4791 4792 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \ 4793 (defined(__FreeBSD__) && (__FreeBSD_version < 490000)) || \ 4794 (defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \ 4795 (defined(__OpenBSD__) && (OpenBSD < 200006)) 4796 /* 4797 * From: NetBSD 4798 * ppsratecheck(): packets (or events) per second limitation. 4799 */ 4800 int 4801 ppsratecheck(lasttime, curpps, maxpps) 4802 struct timeval *lasttime; 4803 int *curpps; 4804 int maxpps; /* maximum pps allowed */ 4805 { 4806 struct timeval tv, delta; 4807 int rv; 4808 4809 GETKTIME(&tv); 4810 4811 delta.tv_sec = tv.tv_sec - lasttime->tv_sec; 4812 delta.tv_usec = tv.tv_usec - lasttime->tv_usec; 4813 if (delta.tv_usec < 0) { 4814 delta.tv_sec--; 4815 delta.tv_usec += 1000000; 4816 } 4817 4818 /* 4819 * check for 0,0 is so that the message will be seen at least once. 4820 * if more than one second have passed since the last update of 4821 * lasttime, reset the counter. 4822 * 4823 * we do increment *curpps even in *curpps < maxpps case, as some may 4824 * try to use *curpps for stat purposes as well. 4825 */ 4826 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || 4827 delta.tv_sec >= 1) { 4828 *lasttime = tv; 4829 *curpps = 0; 4830 rv = 1; 4831 } else if (maxpps < 0) 4832 rv = 1; 4833 else if (*curpps < maxpps) 4834 rv = 1; 4835 else 4836 rv = 0; 4837 *curpps = *curpps + 1; 4838 4839 return (rv); 4840 } 4841 #endif 4842 4843 4844 /* ------------------------------------------------------------------------ */ 4845 /* Function: fr_derefrule */ 4846 /* Returns: int - 0 == rule freed up, else rule not freed */ 4847 /* Parameters: fr(I) - pointer to filter rule */ 4848 /* */ 4849 /* Decrement the reference counter to a rule by one. If it reaches zero, */ 4850 /* free it and any associated storage space being used by it. */ 4851 /* ------------------------------------------------------------------------ */ 4852 int fr_derefrule(frp, ifs) 4853 frentry_t **frp; 4854 ipf_stack_t *ifs; 4855 { 4856 frentry_t *fr; 4857 4858 fr = *frp; 4859 4860 MUTEX_ENTER(&fr->fr_lock); 4861 fr->fr_ref--; 4862 if (fr->fr_ref == 0) { 4863 MUTEX_EXIT(&fr->fr_lock); 4864 MUTEX_DESTROY(&fr->fr_lock); 4865 4866 #ifdef IPFILTER_LOOKUP 4867 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP) 4868 ip_lookup_deref(fr->fr_srctype, fr->fr_srcptr, ifs); 4869 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP) 4870 ip_lookup_deref(fr->fr_dsttype, fr->fr_dstptr, ifs); 4871 #endif 4872 4873 if (fr->fr_dsize) { 4874 KFREES(fr->fr_data, fr->fr_dsize); 4875 } 4876 if ((fr->fr_flags & FR_COPIED) != 0) { 4877 KFREE(fr); 4878 return 0; 4879 } 4880 return 1; 4881 } else { 4882 MUTEX_EXIT(&fr->fr_lock); 4883 } 4884 *frp = NULL; 4885 return -1; 4886 } 4887 4888 4889 #ifdef IPFILTER_LOOKUP 4890 /* ------------------------------------------------------------------------ */ 4891 /* Function: fr_grpmapinit */ 4892 /* Returns: int - 0 == success, else ESRCH because table entry not found*/ 4893 /* Parameters: fr(I) - pointer to rule to find hash table for */ 4894 /* */ 4895 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */ 4896 /* fr_ptr is later used by fr_srcgrpmap and fr_dstgrpmap. */ 4897 /* ------------------------------------------------------------------------ */ 4898 static int fr_grpmapinit(fr, ifs) 4899 frentry_t *fr; 4900 ipf_stack_t *ifs; 4901 { 4902 char name[FR_GROUPLEN]; 4903 iphtable_t *iph; 4904 4905 #if defined(SNPRINTF) && defined(_KERNEL) 4906 (void) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg); 4907 #else 4908 (void) sprintf(name, "%d", fr->fr_arg); 4909 #endif 4910 iph = fr_findhtable(IPL_LOGIPF, name, ifs); 4911 if (iph == NULL) 4912 return ESRCH; 4913 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) 4914 return ESRCH; 4915 fr->fr_ptr = iph; 4916 return 0; 4917 } 4918 4919 4920 /* ------------------------------------------------------------------------ */ 4921 /* Function: fr_srcgrpmap */ 4922 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 4923 /* Parameters: fin(I) - pointer to packet information */ 4924 /* passp(IO) - pointer to current/new filter decision (unused) */ 4925 /* */ 4926 /* Look for a rule group head in a hash table, using the source address as */ 4927 /* the key, and descend into that group and continue matching rules against */ 4928 /* the packet. */ 4929 /* ------------------------------------------------------------------------ */ 4930 frentry_t *fr_srcgrpmap(fin, passp) 4931 fr_info_t *fin; 4932 u_32_t *passp; 4933 { 4934 frgroup_t *fg; 4935 void *rval; 4936 ipf_stack_t *ifs = fin->fin_ifs; 4937 4938 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_src, ifs); 4939 if (rval == NULL) 4940 return NULL; 4941 4942 fg = rval; 4943 fin->fin_fr = fg->fg_start; 4944 (void) fr_scanlist(fin, *passp); 4945 return fin->fin_fr; 4946 } 4947 4948 4949 /* ------------------------------------------------------------------------ */ 4950 /* Function: fr_dstgrpmap */ 4951 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 4952 /* Parameters: fin(I) - pointer to packet information */ 4953 /* passp(IO) - pointer to current/new filter decision (unused) */ 4954 /* */ 4955 /* Look for a rule group head in a hash table, using the destination */ 4956 /* address as the key, and descend into that group and continue matching */ 4957 /* rules against the packet. */ 4958 /* ------------------------------------------------------------------------ */ 4959 frentry_t *fr_dstgrpmap(fin, passp) 4960 fr_info_t *fin; 4961 u_32_t *passp; 4962 { 4963 frgroup_t *fg; 4964 void *rval; 4965 ipf_stack_t *ifs = fin->fin_ifs; 4966 4967 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_dst, ifs); 4968 if (rval == NULL) 4969 return NULL; 4970 4971 fg = rval; 4972 fin->fin_fr = fg->fg_start; 4973 (void) fr_scanlist(fin, *passp); 4974 return fin->fin_fr; 4975 } 4976 #endif /* IPFILTER_LOOKUP */ 4977 4978 /* 4979 * Queue functions 4980 * =============== 4981 * These functions manage objects on queues for efficient timeouts. There are 4982 * a number of system defined queues as well as user defined timeouts. It is 4983 * expected that a lock is held in the domain in which the queue belongs 4984 * (i.e. either state or NAT) when calling any of these functions that prevents 4985 * fr_freetimeoutqueue() from being called at the same time as any other. 4986 */ 4987 4988 4989 /* ------------------------------------------------------------------------ */ 4990 /* Function: fr_addtimeoutqueue */ 4991 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */ 4992 /* timeout queue with given interval. */ 4993 /* Parameters: parent(I) - pointer to pointer to parent node of this list */ 4994 /* of interface queues. */ 4995 /* seconds(I) - timeout value in seconds for this queue. */ 4996 /* */ 4997 /* This routine first looks for a timeout queue that matches the interval */ 4998 /* being requested. If it finds one, increments the reference counter and */ 4999 /* returns a pointer to it. If none are found, it allocates a new one and */ 5000 /* inserts it at the top of the list. */ 5001 /* */ 5002 /* Locking. */ 5003 /* It is assumed that the caller of this function has an appropriate lock */ 5004 /* held (exclusively) in the domain that encompases 'parent'. */ 5005 /* ------------------------------------------------------------------------ */ 5006 ipftq_t *fr_addtimeoutqueue(parent, seconds, ifs) 5007 ipftq_t **parent; 5008 u_int seconds; 5009 ipf_stack_t *ifs; 5010 { 5011 ipftq_t *ifq; 5012 u_int period; 5013 5014 period = seconds * IPF_HZ_DIVIDE; 5015 5016 MUTEX_ENTER(&ifs->ifs_ipf_timeoutlock); 5017 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) { 5018 if (ifq->ifq_ttl == period) { 5019 /* 5020 * Reset the delete flag, if set, so the structure 5021 * gets reused rather than freed and reallocated. 5022 */ 5023 MUTEX_ENTER(&ifq->ifq_lock); 5024 ifq->ifq_flags &= ~IFQF_DELETE; 5025 ifq->ifq_ref++; 5026 MUTEX_EXIT(&ifq->ifq_lock); 5027 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock); 5028 5029 return ifq; 5030 } 5031 } 5032 5033 KMALLOC(ifq, ipftq_t *); 5034 if (ifq != NULL) { 5035 ifq->ifq_ttl = period; 5036 ifq->ifq_head = NULL; 5037 ifq->ifq_tail = &ifq->ifq_head; 5038 ifq->ifq_next = *parent; 5039 ifq->ifq_pnext = parent; 5040 ifq->ifq_ref = 1; 5041 ifq->ifq_flags = IFQF_USER; 5042 *parent = ifq; 5043 ifs->ifs_fr_userifqs++; 5044 MUTEX_NUKE(&ifq->ifq_lock); 5045 MUTEX_INIT(&ifq->ifq_lock, "ipftq mutex"); 5046 } 5047 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock); 5048 return ifq; 5049 } 5050 5051 5052 /* ------------------------------------------------------------------------ */ 5053 /* Function: fr_deletetimeoutqueue */ 5054 /* Returns: int - new reference count value of the timeout queue */ 5055 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5056 /* Locks: ifq->ifq_lock */ 5057 /* */ 5058 /* This routine must be called when we're discarding a pointer to a timeout */ 5059 /* queue object, taking care of the reference counter. */ 5060 /* */ 5061 /* Now that this just sets a DELETE flag, it requires the expire code to */ 5062 /* check the list of user defined timeout queues and call the free function */ 5063 /* below (currently commented out) to stop memory leaking. It is done this */ 5064 /* way because the locking may not be sufficient to safely do a free when */ 5065 /* this function is called. */ 5066 /* ------------------------------------------------------------------------ */ 5067 int fr_deletetimeoutqueue(ifq) 5068 ipftq_t *ifq; 5069 { 5070 5071 ifq->ifq_ref--; 5072 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) { 5073 ifq->ifq_flags |= IFQF_DELETE; 5074 } 5075 5076 return ifq->ifq_ref; 5077 } 5078 5079 5080 /* ------------------------------------------------------------------------ */ 5081 /* Function: fr_freetimeoutqueue */ 5082 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5083 /* Returns: Nil */ 5084 /* */ 5085 /* Locking: */ 5086 /* It is assumed that the caller of this function has an appropriate lock */ 5087 /* held (exclusively) in the domain that encompases the callers "domain". */ 5088 /* The ifq_lock for this structure should not be held. */ 5089 /* */ 5090 /* Remove a user definde timeout queue from the list of queues it is in and */ 5091 /* tidy up after this is done. */ 5092 /* ------------------------------------------------------------------------ */ 5093 void fr_freetimeoutqueue(ifq, ifs) 5094 ipftq_t *ifq; 5095 ipf_stack_t *ifs; 5096 { 5097 5098 5099 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) || 5100 ((ifq->ifq_flags & IFQF_USER) == 0)) { 5101 printf("fr_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n", 5102 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl, 5103 ifq->ifq_ref); 5104 return; 5105 } 5106 5107 /* 5108 * Remove from its position in the list. 5109 */ 5110 *ifq->ifq_pnext = ifq->ifq_next; 5111 if (ifq->ifq_next != NULL) 5112 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext; 5113 5114 MUTEX_DESTROY(&ifq->ifq_lock); 5115 ifs->ifs_fr_userifqs--; 5116 KFREE(ifq); 5117 } 5118 5119 5120 /* ------------------------------------------------------------------------ */ 5121 /* Function: fr_deletequeueentry */ 5122 /* Returns: Nil */ 5123 /* Parameters: tqe(I) - timeout queue entry to delete */ 5124 /* ifq(I) - timeout queue to remove entry from */ 5125 /* */ 5126 /* Remove a tail queue entry from its queue and make it an orphan. */ 5127 /* fr_deletetimeoutqueue is called to make sure the reference count on the */ 5128 /* queue is correct. We can't, however, call fr_freetimeoutqueue because */ 5129 /* the correct lock(s) may not be held that would make it safe to do so. */ 5130 /* ------------------------------------------------------------------------ */ 5131 void fr_deletequeueentry(tqe) 5132 ipftqent_t *tqe; 5133 { 5134 ipftq_t *ifq; 5135 5136 ifq = tqe->tqe_ifq; 5137 if (ifq == NULL) 5138 return; 5139 5140 MUTEX_ENTER(&ifq->ifq_lock); 5141 5142 if (tqe->tqe_pnext != NULL) { 5143 *tqe->tqe_pnext = tqe->tqe_next; 5144 if (tqe->tqe_next != NULL) 5145 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5146 else /* we must be the tail anyway */ 5147 ifq->ifq_tail = tqe->tqe_pnext; 5148 5149 tqe->tqe_pnext = NULL; 5150 tqe->tqe_ifq = NULL; 5151 } 5152 5153 (void) fr_deletetimeoutqueue(ifq); 5154 5155 MUTEX_EXIT(&ifq->ifq_lock); 5156 } 5157 5158 5159 /* ------------------------------------------------------------------------ */ 5160 /* Function: fr_queuefront */ 5161 /* Returns: Nil */ 5162 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5163 /* */ 5164 /* Move a queue entry to the front of the queue, if it isn't already there. */ 5165 /* ------------------------------------------------------------------------ */ 5166 void fr_queuefront(tqe) 5167 ipftqent_t *tqe; 5168 { 5169 ipftq_t *ifq; 5170 5171 ifq = tqe->tqe_ifq; 5172 if (ifq == NULL) 5173 return; 5174 5175 MUTEX_ENTER(&ifq->ifq_lock); 5176 if (ifq->ifq_head != tqe) { 5177 *tqe->tqe_pnext = tqe->tqe_next; 5178 if (tqe->tqe_next) 5179 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5180 else 5181 ifq->ifq_tail = tqe->tqe_pnext; 5182 5183 tqe->tqe_next = ifq->ifq_head; 5184 ifq->ifq_head->tqe_pnext = &tqe->tqe_next; 5185 ifq->ifq_head = tqe; 5186 tqe->tqe_pnext = &ifq->ifq_head; 5187 } 5188 MUTEX_EXIT(&ifq->ifq_lock); 5189 } 5190 5191 5192 /* ------------------------------------------------------------------------ */ 5193 /* Function: fr_queueback */ 5194 /* Returns: Nil */ 5195 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5196 /* */ 5197 /* Move a queue entry to the back of the queue, if it isn't already there. */ 5198 /* ------------------------------------------------------------------------ */ 5199 void fr_queueback(tqe, ifs) 5200 ipftqent_t *tqe; 5201 ipf_stack_t *ifs; 5202 { 5203 ipftq_t *ifq; 5204 5205 ifq = tqe->tqe_ifq; 5206 if (ifq == NULL) 5207 return; 5208 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl; 5209 5210 MUTEX_ENTER(&ifq->ifq_lock); 5211 if (tqe->tqe_next == NULL) { /* at the end already ? */ 5212 MUTEX_EXIT(&ifq->ifq_lock); 5213 return; 5214 } 5215 5216 /* 5217 * Remove from list 5218 */ 5219 *tqe->tqe_pnext = tqe->tqe_next; 5220 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5221 5222 /* 5223 * Make it the last entry. 5224 */ 5225 tqe->tqe_next = NULL; 5226 tqe->tqe_pnext = ifq->ifq_tail; 5227 *ifq->ifq_tail = tqe; 5228 ifq->ifq_tail = &tqe->tqe_next; 5229 MUTEX_EXIT(&ifq->ifq_lock); 5230 } 5231 5232 5233 /* ------------------------------------------------------------------------ */ 5234 /* Function: fr_queueappend */ 5235 /* Returns: Nil */ 5236 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5237 /* ifq(I) - pointer to timeout queue */ 5238 /* parent(I) - owing object pointer */ 5239 /* */ 5240 /* Add a new item to this queue and put it on the very end. */ 5241 /* ------------------------------------------------------------------------ */ 5242 void fr_queueappend(tqe, ifq, parent, ifs) 5243 ipftqent_t *tqe; 5244 ipftq_t *ifq; 5245 void *parent; 5246 ipf_stack_t *ifs; 5247 { 5248 5249 MUTEX_ENTER(&ifq->ifq_lock); 5250 tqe->tqe_parent = parent; 5251 tqe->tqe_pnext = ifq->ifq_tail; 5252 *ifq->ifq_tail = tqe; 5253 ifq->ifq_tail = &tqe->tqe_next; 5254 tqe->tqe_next = NULL; 5255 tqe->tqe_ifq = ifq; 5256 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl; 5257 ifq->ifq_ref++; 5258 MUTEX_EXIT(&ifq->ifq_lock); 5259 } 5260 5261 5262 /* ------------------------------------------------------------------------ */ 5263 /* Function: fr_movequeue */ 5264 /* Returns: Nil */ 5265 /* Parameters: tq(I) - pointer to timeout queue information */ 5266 /* oifp(I) - old timeout queue entry was on */ 5267 /* nifp(I) - new timeout queue to put entry on */ 5268 /* ifs - ipf stack instance */ 5269 /* */ 5270 /* Move a queue entry from one timeout queue to another timeout queue. */ 5271 /* If it notices that the current entry is already last and does not need */ 5272 /* to move queue, the return. */ 5273 /* ------------------------------------------------------------------------ */ 5274 void fr_movequeue(tqe, oifq, nifq, ifs) 5275 ipftqent_t *tqe; 5276 ipftq_t *oifq, *nifq; 5277 ipf_stack_t *ifs; 5278 { 5279 /* 5280 * If the queue isn't changing, and the clock hasn't ticked 5281 * since the last update, the operation will be a no-op. 5282 */ 5283 if (oifq == nifq && tqe->tqe_touched == ifs->ifs_fr_ticks) 5284 return; 5285 5286 /* 5287 * Grab the lock and update the timers. 5288 */ 5289 MUTEX_ENTER(&oifq->ifq_lock); 5290 tqe->tqe_touched = ifs->ifs_fr_ticks; 5291 tqe->tqe_die = ifs->ifs_fr_ticks + nifq->ifq_ttl; 5292 5293 /* 5294 * The remainder of the operation can still be a no-op. 5295 * 5296 * If the queue isn't changing, check to see if 5297 * an update would be meaningless. 5298 */ 5299 if (oifq == nifq) { 5300 if ((tqe->tqe_next == NULL) || 5301 (tqe->tqe_next->tqe_die == tqe->tqe_die)) { 5302 MUTEX_EXIT(&oifq->ifq_lock); 5303 return; 5304 } 5305 } 5306 5307 /* 5308 * Remove from the old queue 5309 */ 5310 *tqe->tqe_pnext = tqe->tqe_next; 5311 if (tqe->tqe_next) 5312 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5313 else 5314 oifq->ifq_tail = tqe->tqe_pnext; 5315 tqe->tqe_next = NULL; 5316 5317 /* 5318 * If we're moving from one queue to another, release the lock on the 5319 * old queue and get a lock on the new queue. For user defined queues, 5320 * if we're moving off it, call delete in case it can now be freed. 5321 */ 5322 if (oifq != nifq) { 5323 tqe->tqe_ifq = NULL; 5324 5325 (void) fr_deletetimeoutqueue(oifq); 5326 5327 MUTEX_EXIT(&oifq->ifq_lock); 5328 5329 MUTEX_ENTER(&nifq->ifq_lock); 5330 5331 tqe->tqe_ifq = nifq; 5332 nifq->ifq_ref++; 5333 } 5334 5335 /* 5336 * Add to the bottom of the new queue 5337 */ 5338 tqe->tqe_pnext = nifq->ifq_tail; 5339 *nifq->ifq_tail = tqe; 5340 nifq->ifq_tail = &tqe->tqe_next; 5341 MUTEX_EXIT(&nifq->ifq_lock); 5342 } 5343 5344 5345 /* ------------------------------------------------------------------------ */ 5346 /* Function: fr_updateipid */ 5347 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */ 5348 /* Parameters: fin(I) - pointer to packet information */ 5349 /* */ 5350 /* When we are doing NAT, change the IP of every packet to represent a */ 5351 /* single sequence of packets coming from the host, hiding any host */ 5352 /* specific sequencing that might otherwise be revealed. If the packet is */ 5353 /* a fragment, then store the 'new' IPid in the fragment cache and look up */ 5354 /* the fragment cache for non-leading fragments. If a non-leading fragment */ 5355 /* has no match in the cache, return an error. */ 5356 /* ------------------------------------------------------------------------ */ 5357 static INLINE int fr_updateipid(fin) 5358 fr_info_t *fin; 5359 { 5360 u_short id, ido, sums; 5361 u_32_t sumd, sum; 5362 ip_t *ip; 5363 5364 if (fin->fin_off != 0) { 5365 sum = fr_ipid_knownfrag(fin); 5366 if (sum == 0xffffffff) 5367 return -1; 5368 sum &= 0xffff; 5369 id = (u_short)sum; 5370 } else { 5371 id = fr_nextipid(fin); 5372 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0) 5373 (void) fr_ipid_newfrag(fin, (u_32_t)id); 5374 } 5375 5376 ip = fin->fin_ip; 5377 ido = ntohs(ip->ip_id); 5378 if (id == ido) 5379 return 0; 5380 ip->ip_id = htons(id); 5381 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */ 5382 sum = (~ntohs(ip->ip_sum)) & 0xffff; 5383 sum += sumd; 5384 sum = (sum >> 16) + (sum & 0xffff); 5385 sum = (sum >> 16) + (sum & 0xffff); 5386 sums = ~(u_short)sum; 5387 ip->ip_sum = htons(sums); 5388 return 0; 5389 } 5390 5391 5392 #ifdef NEED_FRGETIFNAME 5393 /* ------------------------------------------------------------------------ */ 5394 /* Function: fr_getifname */ 5395 /* Returns: char * - pointer to interface name */ 5396 /* Parameters: ifp(I) - pointer to network interface */ 5397 /* buffer(O) - pointer to where to store interface name */ 5398 /* */ 5399 /* Constructs an interface name in the buffer passed. The buffer passed is */ 5400 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */ 5401 /* as a NULL pointer then return a pointer to a static array. */ 5402 /* ------------------------------------------------------------------------ */ 5403 char *fr_getifname(ifp, buffer) 5404 struct ifnet *ifp; 5405 char *buffer; 5406 { 5407 static char namebuf[LIFNAMSIZ]; 5408 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5409 defined(__sgi) || defined(linux) || defined(_AIX51) || \ 5410 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5411 int unit, space; 5412 char temp[20]; 5413 char *s; 5414 # endif 5415 5416 ASSERT(buffer != NULL); 5417 #ifdef notdef 5418 if (buffer == NULL) 5419 buffer = namebuf; 5420 #endif 5421 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ); 5422 buffer[LIFNAMSIZ - 1] = '\0'; 5423 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5424 defined(__sgi) || defined(_AIX51) || \ 5425 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5426 for (s = buffer; *s; s++) 5427 ; 5428 unit = ifp->if_unit; 5429 space = LIFNAMSIZ - (s - buffer); 5430 if (space > 0) { 5431 # if defined(SNPRINTF) && defined(_KERNEL) 5432 (void) SNPRINTF(temp, sizeof(temp), "%d", unit); 5433 # else 5434 (void) sprintf(temp, "%d", unit); 5435 # endif 5436 (void) strncpy(s, temp, space); 5437 } 5438 # endif 5439 return buffer; 5440 } 5441 #endif 5442 5443 5444 /* ------------------------------------------------------------------------ */ 5445 /* Function: fr_ioctlswitch */ 5446 /* Returns: int - -1 continue processing, else ioctl return value */ 5447 /* Parameters: unit(I) - device unit opened */ 5448 /* data(I) - pointer to ioctl data */ 5449 /* cmd(I) - ioctl command */ 5450 /* mode(I) - mode value */ 5451 /* */ 5452 /* Based on the value of unit, call the appropriate ioctl handler or return */ 5453 /* EIO if ipfilter is not running. Also checks if write perms are req'd */ 5454 /* for the device in order to execute the ioctl. */ 5455 /* ------------------------------------------------------------------------ */ 5456 INLINE int fr_ioctlswitch(unit, data, cmd, mode, uid, ctx, ifs) 5457 int unit, mode, uid; 5458 ioctlcmd_t cmd; 5459 void *data, *ctx; 5460 ipf_stack_t *ifs; 5461 { 5462 int error = 0; 5463 5464 switch (unit) 5465 { 5466 case IPL_LOGIPF : 5467 error = -1; 5468 break; 5469 case IPL_LOGNAT : 5470 if (ifs->ifs_fr_running > 0) 5471 error = fr_nat_ioctl(data, cmd, mode, uid, ctx, ifs); 5472 else 5473 error = EIO; 5474 break; 5475 case IPL_LOGSTATE : 5476 if (ifs->ifs_fr_running > 0) 5477 error = fr_state_ioctl(data, cmd, mode, uid, ctx, ifs); 5478 else 5479 error = EIO; 5480 break; 5481 case IPL_LOGAUTH : 5482 if (ifs->ifs_fr_running > 0) { 5483 if ((cmd == (ioctlcmd_t)SIOCADAFR) || 5484 (cmd == (ioctlcmd_t)SIOCRMAFR)) { 5485 if (!(mode & FWRITE)) { 5486 error = EPERM; 5487 } else { 5488 error = frrequest(unit, cmd, data, 5489 ifs->ifs_fr_active, 1, ifs); 5490 } 5491 } else { 5492 error = fr_auth_ioctl(data, cmd, mode, uid, ctx, ifs); 5493 } 5494 } else 5495 error = EIO; 5496 break; 5497 case IPL_LOGSYNC : 5498 #ifdef IPFILTER_SYNC 5499 if (ifs->ifs_fr_running > 0) 5500 error = fr_sync_ioctl(data, cmd, mode, ifs); 5501 else 5502 #endif 5503 error = EIO; 5504 break; 5505 case IPL_LOGSCAN : 5506 #ifdef IPFILTER_SCAN 5507 if (ifs->ifs_fr_running > 0) 5508 error = fr_scan_ioctl(data, cmd, mode, ifs); 5509 else 5510 #endif 5511 error = EIO; 5512 break; 5513 case IPL_LOGLOOKUP : 5514 #ifdef IPFILTER_LOOKUP 5515 if (ifs->ifs_fr_running > 0) 5516 error = ip_lookup_ioctl(data, cmd, mode, uid, ctx, ifs); 5517 else 5518 #endif 5519 error = EIO; 5520 break; 5521 default : 5522 error = EIO; 5523 break; 5524 } 5525 5526 return error; 5527 } 5528 5529 5530 /* 5531 * This array defines the expected size of objects coming into the kernel 5532 * for the various recognised object types. 5533 */ 5534 #define NUM_OBJ_TYPES 19 5535 5536 static int fr_objbytes[NUM_OBJ_TYPES][2] = { 5537 { 1, sizeof(struct frentry) }, /* frentry */ 5538 { 0, sizeof(struct friostat) }, 5539 { 0, sizeof(struct fr_info) }, 5540 { 0, sizeof(struct fr_authstat) }, 5541 { 0, sizeof(struct ipfrstat) }, 5542 { 0, sizeof(struct ipnat) }, 5543 { 0, sizeof(struct natstat) }, 5544 { 0, sizeof(struct ipstate_save) }, 5545 { 1, sizeof(struct nat_save) }, /* nat_save */ 5546 { 0, sizeof(struct natlookup) }, 5547 { 1, sizeof(struct ipstate) }, /* ipstate */ 5548 { 0, sizeof(struct ips_stat) }, 5549 { 0, sizeof(struct frauth) }, 5550 { 0, sizeof(struct ipftune) }, 5551 { 0, sizeof(struct nat) }, /* nat_t */ 5552 { 0, sizeof(struct ipfruleiter) }, 5553 { 0, sizeof(struct ipfgeniter) }, 5554 { 0, sizeof(struct ipftable) }, 5555 { 0, sizeof(struct ipflookupiter) } 5556 }; 5557 5558 5559 /* ------------------------------------------------------------------------ */ 5560 /* Function: fr_inobj */ 5561 /* Returns: int - 0 = success, else failure */ 5562 /* Parameters: data(I) - pointer to ioctl data */ 5563 /* ptr(I) - pointer to store real data in */ 5564 /* type(I) - type of structure being moved */ 5565 /* */ 5566 /* Copy in the contents of what the ipfobj_t points to. In future, we */ 5567 /* add things to check for version numbers, sizes, etc, to make it backward */ 5568 /* compatible at the ABI for user land. */ 5569 /* ------------------------------------------------------------------------ */ 5570 int fr_inobj(data, ptr, type) 5571 void *data; 5572 void *ptr; 5573 int type; 5574 { 5575 ipfobj_t obj; 5576 int error = 0; 5577 5578 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5579 return EINVAL; 5580 5581 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5582 if (error != 0) 5583 return EFAULT; 5584 5585 if (obj.ipfo_type != type) 5586 return EINVAL; 5587 5588 #ifndef IPFILTER_COMPAT 5589 if ((fr_objbytes[type][0] & 1) != 0) { 5590 if (obj.ipfo_size < fr_objbytes[type][1]) 5591 return EINVAL; 5592 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5593 return EINVAL; 5594 #else 5595 if (obj.ipfo_rev != IPFILTER_VERSION) { 5596 error = fr_incomptrans(&obj, ptr); 5597 return error; 5598 } 5599 5600 if ((fr_objbytes[type][0] & 1) != 0 && 5601 obj.ipfo_size < fr_objbytes[type][1] || 5602 obj.ipfo_size != fr_objbytes[type][1]) 5603 return EINVAL; 5604 #endif 5605 5606 if ((fr_objbytes[type][0] & 1) != 0) { 5607 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, 5608 fr_objbytes[type][1]); 5609 } else { 5610 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, 5611 obj.ipfo_size); 5612 } 5613 return error; 5614 } 5615 5616 5617 /* ------------------------------------------------------------------------ */ 5618 /* Function: fr_inobjsz */ 5619 /* Returns: int - 0 = success, else failure */ 5620 /* Parameters: data(I) - pointer to ioctl data */ 5621 /* ptr(I) - pointer to store real data in */ 5622 /* type(I) - type of structure being moved */ 5623 /* sz(I) - size of data to copy */ 5624 /* */ 5625 /* As per fr_inobj, except the size of the object to copy in is passed in */ 5626 /* but it must not be smaller than the size defined for the type and the */ 5627 /* type must allow for varied sized objects. The extra requirement here is */ 5628 /* that sz must match the size of the object being passed in - this is not */ 5629 /* not possible nor required in fr_inobj(). */ 5630 /* ------------------------------------------------------------------------ */ 5631 int fr_inobjsz(data, ptr, type, sz) 5632 void *data; 5633 void *ptr; 5634 int type, sz; 5635 { 5636 ipfobj_t obj; 5637 int error; 5638 5639 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5640 return EINVAL; 5641 if (((fr_objbytes[type][0] & 1) == 0) || (sz < fr_objbytes[type][1])) 5642 return EINVAL; 5643 5644 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5645 if (error != 0) 5646 return EFAULT; 5647 5648 if (obj.ipfo_type != type) 5649 return EINVAL; 5650 5651 #ifndef IPFILTER_COMPAT 5652 if (obj.ipfo_size != sz) 5653 return EINVAL; 5654 #else 5655 if (obj.ipfo_rev != IPFILTER_VERSION) 5656 /*XXX compatibility hook here */ 5657 /*EMPTY*/; 5658 if (obj.ipfo_size != sz) 5659 /* XXX compatibility hook here */ 5660 return EINVAL; 5661 #endif 5662 5663 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, sz); 5664 return error; 5665 } 5666 5667 5668 /* ------------------------------------------------------------------------ */ 5669 /* Function: fr_outobjsz */ 5670 /* Returns: int - 0 = success, else failure */ 5671 /* Parameters: data(I) - pointer to ioctl data */ 5672 /* ptr(I) - pointer to store real data in */ 5673 /* type(I) - type of structure being moved */ 5674 /* sz(I) - size of data to copy */ 5675 /* */ 5676 /* As per fr_outobj, except the size of the object to copy out is passed in */ 5677 /* but it must not be smaller than the size defined for the type and the */ 5678 /* type must allow for varied sized objects. The extra requirement here is */ 5679 /* that sz must match the size of the object being passed in - this is not */ 5680 /* not possible nor required in fr_outobj(). */ 5681 /* ------------------------------------------------------------------------ */ 5682 int fr_outobjsz(data, ptr, type, sz) 5683 void *data; 5684 void *ptr; 5685 int type, sz; 5686 { 5687 ipfobj_t obj; 5688 int error; 5689 5690 if ((type < 0) || (type > NUM_OBJ_TYPES-1) || 5691 ((fr_objbytes[type][0] & 1) == 0) || 5692 (sz < fr_objbytes[type][1])) 5693 return EINVAL; 5694 5695 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5696 if (error != 0) 5697 return EFAULT; 5698 5699 if (obj.ipfo_type != type) 5700 return EINVAL; 5701 5702 #ifndef IPFILTER_COMPAT 5703 if (obj.ipfo_size != sz) 5704 return EINVAL; 5705 #else 5706 if (obj.ipfo_rev != IPFILTER_VERSION) 5707 /* XXX compatibility hook here */ 5708 /*EMPTY*/; 5709 if (obj.ipfo_size != sz) 5710 /* XXX compatibility hook here */ 5711 return EINVAL; 5712 #endif 5713 5714 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, sz); 5715 return error; 5716 } 5717 5718 5719 /* ------------------------------------------------------------------------ */ 5720 /* Function: fr_outobj */ 5721 /* Returns: int - 0 = success, else failure */ 5722 /* Parameters: data(I) - pointer to ioctl data */ 5723 /* ptr(I) - pointer to store real data in */ 5724 /* type(I) - type of structure being moved */ 5725 /* */ 5726 /* Copy out the contents of what ptr is to where ipfobj points to. In */ 5727 /* future, we add things to check for version numbers, sizes, etc, to make */ 5728 /* it backward compatible at the ABI for user land. */ 5729 /* ------------------------------------------------------------------------ */ 5730 int fr_outobj(data, ptr, type) 5731 void *data; 5732 void *ptr; 5733 int type; 5734 { 5735 ipfobj_t obj; 5736 int error; 5737 5738 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5739 return EINVAL; 5740 5741 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5742 if (error != 0) 5743 return EFAULT; 5744 5745 if (obj.ipfo_type != type) 5746 return EINVAL; 5747 5748 #ifndef IPFILTER_COMPAT 5749 if ((fr_objbytes[type][0] & 1) != 0) { 5750 if (obj.ipfo_size < fr_objbytes[type][1]) 5751 return EINVAL; 5752 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5753 return EINVAL; 5754 #else 5755 if (obj.ipfo_rev != IPFILTER_VERSION) { 5756 error = fr_outcomptrans(&obj, ptr); 5757 return error; 5758 } 5759 5760 if ((fr_objbytes[type][0] & 1) != 0 && 5761 obj.ipfo_size < fr_objbytes[type][1] || 5762 obj.ipfo_size != fr_objbytes[type][1]) 5763 return EINVAL; 5764 #endif 5765 5766 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, obj.ipfo_size); 5767 return error; 5768 } 5769 5770 5771 /* ------------------------------------------------------------------------ */ 5772 /* Function: fr_checkl4sum */ 5773 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */ 5774 /* Parameters: fin(I) - pointer to packet information */ 5775 /* */ 5776 /* If possible, calculate the layer 4 checksum for the packet. If this is */ 5777 /* not possible, return without indicating a failure or success but in a */ 5778 /* way that is ditinguishable. */ 5779 /* ------------------------------------------------------------------------ */ 5780 int fr_checkl4sum(fin) 5781 fr_info_t *fin; 5782 { 5783 u_short sum, hdrsum, *csump; 5784 udphdr_t *udp; 5785 int dosum; 5786 ipf_stack_t *ifs = fin->fin_ifs; 5787 5788 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) 5789 net_handle_t net_data_p; 5790 if (fin->fin_v == 4) 5791 net_data_p = ifs->ifs_ipf_ipv4; 5792 else 5793 net_data_p = ifs->ifs_ipf_ipv6; 5794 #endif 5795 5796 if ((fin->fin_flx & FI_NOCKSUM) != 0) 5797 return 0; 5798 5799 /* 5800 * If the TCP packet isn't a fragment, isn't too short and otherwise 5801 * isn't already considered "bad", then validate the checksum. If 5802 * this check fails then considered the packet to be "bad". 5803 */ 5804 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0) 5805 return 1; 5806 5807 csump = NULL; 5808 hdrsum = 0; 5809 dosum = 0; 5810 sum = 0; 5811 5812 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) 5813 ASSERT(fin->fin_m != NULL); 5814 if (NET_IS_HCK_L4_FULL(net_data_p, fin->fin_m) || 5815 NET_IS_HCK_L4_PART(net_data_p, fin->fin_m)) { 5816 hdrsum = 0; 5817 sum = 0; 5818 } else { 5819 #endif 5820 switch (fin->fin_p) 5821 { 5822 case IPPROTO_TCP : 5823 csump = &((tcphdr_t *)fin->fin_dp)->th_sum; 5824 dosum = 1; 5825 break; 5826 5827 case IPPROTO_UDP : 5828 udp = fin->fin_dp; 5829 if (udp->uh_sum != 0) { 5830 csump = &udp->uh_sum; 5831 dosum = 1; 5832 } 5833 break; 5834 5835 case IPPROTO_ICMP : 5836 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum; 5837 dosum = 1; 5838 break; 5839 5840 default : 5841 return 1; 5842 /*NOTREACHED*/ 5843 } 5844 5845 if (csump != NULL) 5846 hdrsum = *csump; 5847 5848 if (dosum) 5849 sum = fr_cksum(fin->fin_m, fin->fin_ip, 5850 fin->fin_p, fin->fin_dp); 5851 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) 5852 } 5853 #endif 5854 #if !defined(_KERNEL) 5855 if (sum == hdrsum) { 5856 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum)); 5857 } else { 5858 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum)); 5859 } 5860 #endif 5861 if (hdrsum == sum) 5862 return 0; 5863 return -1; 5864 } 5865 5866 5867 /* ------------------------------------------------------------------------ */ 5868 /* Function: fr_ifpfillv4addr */ 5869 /* Returns: int - 0 = address update, -1 = address not updated */ 5870 /* Parameters: atype(I) - type of network address update to perform */ 5871 /* sin(I) - pointer to source of address information */ 5872 /* mask(I) - pointer to source of netmask information */ 5873 /* inp(I) - pointer to destination address store */ 5874 /* inpmask(I) - pointer to destination netmask store */ 5875 /* */ 5876 /* Given a type of network address update (atype) to perform, copy */ 5877 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 5878 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 5879 /* which case the operation fails. For all values of atype other than */ 5880 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 5881 /* value. */ 5882 /* ------------------------------------------------------------------------ */ 5883 int fr_ifpfillv4addr(atype, sin, mask, inp, inpmask) 5884 int atype; 5885 struct sockaddr_in *sin, *mask; 5886 struct in_addr *inp, *inpmask; 5887 { 5888 if (inpmask != NULL && atype != FRI_NETMASKED) 5889 inpmask->s_addr = 0xffffffff; 5890 5891 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 5892 if (atype == FRI_NETMASKED) { 5893 if (inpmask == NULL) 5894 return -1; 5895 inpmask->s_addr = mask->sin_addr.s_addr; 5896 } 5897 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr; 5898 } else { 5899 inp->s_addr = sin->sin_addr.s_addr; 5900 } 5901 return 0; 5902 } 5903 5904 5905 #ifdef USE_INET6 5906 /* ------------------------------------------------------------------------ */ 5907 /* Function: fr_ifpfillv6addr */ 5908 /* Returns: int - 0 = address update, -1 = address not updated */ 5909 /* Parameters: atype(I) - type of network address update to perform */ 5910 /* sin(I) - pointer to source of address information */ 5911 /* mask(I) - pointer to source of netmask information */ 5912 /* inp(I) - pointer to destination address store */ 5913 /* inpmask(I) - pointer to destination netmask store */ 5914 /* */ 5915 /* Given a type of network address update (atype) to perform, copy */ 5916 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 5917 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 5918 /* which case the operation fails. For all values of atype other than */ 5919 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 5920 /* value. */ 5921 /* ------------------------------------------------------------------------ */ 5922 int fr_ifpfillv6addr(atype, sin, mask, inp, inpmask) 5923 int atype; 5924 struct sockaddr_in6 *sin, *mask; 5925 struct in_addr *inp, *inpmask; 5926 { 5927 i6addr_t *src, *dst, *and, *dmask; 5928 5929 src = (i6addr_t *)&sin->sin6_addr; 5930 and = (i6addr_t *)&mask->sin6_addr; 5931 dst = (i6addr_t *)inp; 5932 dmask = (i6addr_t *)inpmask; 5933 5934 if (inpmask != NULL && atype != FRI_NETMASKED) { 5935 dmask->i6[0] = 0xffffffff; 5936 dmask->i6[1] = 0xffffffff; 5937 dmask->i6[2] = 0xffffffff; 5938 dmask->i6[3] = 0xffffffff; 5939 } 5940 5941 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 5942 if (atype == FRI_NETMASKED) { 5943 if (inpmask == NULL) 5944 return -1; 5945 dmask->i6[0] = and->i6[0]; 5946 dmask->i6[1] = and->i6[1]; 5947 dmask->i6[2] = and->i6[2]; 5948 dmask->i6[3] = and->i6[3]; 5949 } 5950 5951 dst->i6[0] = src->i6[0] & and->i6[0]; 5952 dst->i6[1] = src->i6[1] & and->i6[1]; 5953 dst->i6[2] = src->i6[2] & and->i6[2]; 5954 dst->i6[3] = src->i6[3] & and->i6[3]; 5955 } else { 5956 dst->i6[0] = src->i6[0]; 5957 dst->i6[1] = src->i6[1]; 5958 dst->i6[2] = src->i6[2]; 5959 dst->i6[3] = src->i6[3]; 5960 } 5961 return 0; 5962 } 5963 #endif 5964 5965 5966 /* ------------------------------------------------------------------------ */ 5967 /* Function: fr_matchtag */ 5968 /* Returns: 0 == mismatch, 1 == match. */ 5969 /* Parameters: tag1(I) - pointer to first tag to compare */ 5970 /* tag2(I) - pointer to second tag to compare */ 5971 /* */ 5972 /* Returns true (non-zero) or false(0) if the two tag structures can be */ 5973 /* considered to be a match or not match, respectively. The tag is 16 */ 5974 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */ 5975 /* compare the ints instead, for speed. tag1 is the master of the */ 5976 /* comparison. This function should only be called with both tag1 and tag2 */ 5977 /* as non-NULL pointers. */ 5978 /* ------------------------------------------------------------------------ */ 5979 int fr_matchtag(tag1, tag2) 5980 ipftag_t *tag1, *tag2; 5981 { 5982 if (tag1 == tag2) 5983 return 1; 5984 5985 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0)) 5986 return 1; 5987 5988 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) && 5989 (tag1->ipt_num[1] == tag2->ipt_num[1]) && 5990 (tag1->ipt_num[2] == tag2->ipt_num[2]) && 5991 (tag1->ipt_num[3] == tag2->ipt_num[3])) 5992 return 1; 5993 return 0; 5994 } 5995 5996 5997 /* ------------------------------------------------------------------------ */ 5998 /* Function: fr_coalesce */ 5999 /* Returns: 1 == success, -1 == failure, 0 == no change */ 6000 /* Parameters: fin(I) - pointer to packet information */ 6001 /* */ 6002 /* Attempt to get all of the packet data into a single, contiguous buffer. */ 6003 /* If this call returns a failure then the buffers have also been freed. */ 6004 /* ------------------------------------------------------------------------ */ 6005 int fr_coalesce(fin) 6006 fr_info_t *fin; 6007 { 6008 ipf_stack_t *ifs = fin->fin_ifs; 6009 if ((fin->fin_flx & FI_COALESCE) != 0) 6010 return 1; 6011 6012 /* 6013 * If the mbuf pointers indicate that there is no mbuf to work with, 6014 * return but do not indicate success or failure. 6015 */ 6016 if (fin->fin_m == NULL || fin->fin_mp == NULL) 6017 return 0; 6018 6019 #if defined(_KERNEL) 6020 if (fr_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) { 6021 IPF_BUMP(ifs->ifs_fr_badcoalesces[fin->fin_out]); 6022 # ifdef MENTAT 6023 FREE_MB_T(*fin->fin_mp); 6024 # endif 6025 *fin->fin_mp = NULL; 6026 fin->fin_m = NULL; 6027 return -1; 6028 } 6029 #else 6030 fin = fin; /* LINT */ 6031 #endif 6032 return 1; 6033 } 6034 6035 6036 /* 6037 * The following table lists all of the tunable variables that can be 6038 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXT. The format of each row 6039 * in the table below is as follows: 6040 * 6041 * pointer to value, name of value, minimum, maximum, size of the value's 6042 * container, value attribute flags 6043 * 6044 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED 6045 * means the value can only be written to when IPFilter is loaded but disabled. 6046 * The obvious implication is if neither of these are set then the value can be 6047 * changed at any time without harm. 6048 */ 6049 ipftuneable_t lcl_ipf_tuneables[] = { 6050 /* filtering */ 6051 { { NULL }, "fr_flags", 0, 0xffffffff, 6052 0, 0 }, 6053 { { NULL }, "fr_active", 0, 0, 6054 0, IPFT_RDONLY }, 6055 { { NULL }, "fr_control_forwarding", 0, 1, 6056 0, 0 }, 6057 { { NULL }, "fr_update_ipid", 0, 1, 6058 0, 0 }, 6059 { { NULL }, "fr_chksrc", 0, 1, 6060 0, 0 }, 6061 { { NULL }, "fr_minttl", 0, 1, 6062 0, 0 }, 6063 { { NULL }, "fr_icmpminfragmtu", 0, 1, 6064 0, 0 }, 6065 { { NULL }, "fr_pass", 0, 0xffffffff, 6066 0, 0 }, 6067 #if SOLARIS2 >= 10 6068 { { NULL }, "ipf_loopback", 0, 1, 6069 0, IPFT_WRDISABLED }, 6070 #endif 6071 /* state */ 6072 { { NULL }, "fr_tcpidletimeout", 1, 0x7fffffff, 6073 0, IPFT_WRDISABLED }, 6074 { { NULL }, "fr_tcpclosewait", 1, 0x7fffffff, 6075 0, IPFT_WRDISABLED }, 6076 { { NULL }, "fr_tcplastack", 1, 0x7fffffff, 6077 0, IPFT_WRDISABLED }, 6078 { { NULL }, "fr_tcptimeout", 1, 0x7fffffff, 6079 0, IPFT_WRDISABLED }, 6080 { { NULL }, "fr_tcpclosed", 1, 0x7fffffff, 6081 0, IPFT_WRDISABLED }, 6082 { { NULL }, "fr_tcphalfclosed", 1, 0x7fffffff, 6083 0, IPFT_WRDISABLED }, 6084 { { NULL }, "fr_udptimeout", 1, 0x7fffffff, 6085 0, IPFT_WRDISABLED }, 6086 { { NULL }, "fr_udpacktimeout", 1, 0x7fffffff, 6087 0, IPFT_WRDISABLED }, 6088 { { NULL }, "fr_icmptimeout", 1, 0x7fffffff, 6089 0, IPFT_WRDISABLED }, 6090 { { NULL }, "fr_icmpacktimeout", 1, 0x7fffffff, 6091 0, IPFT_WRDISABLED }, 6092 { { NULL }, "fr_iptimeout", 1, 0x7fffffff, 6093 0, IPFT_WRDISABLED }, 6094 { { NULL }, "fr_statemax", 1, 0x7fffffff, 6095 0, 0 }, 6096 { { NULL }, "fr_statesize", 1, 0x7fffffff, 6097 0, IPFT_WRDISABLED }, 6098 { { NULL }, "fr_state_lock", 0, 1, 6099 0, IPFT_RDONLY }, 6100 { { NULL }, "fr_state_maxbucket", 1, 0x7fffffff, 6101 0, IPFT_WRDISABLED }, 6102 { { NULL }, "fr_state_maxbucket_reset", 0, 1, 6103 0, IPFT_WRDISABLED }, 6104 { { NULL }, "ipstate_logging", 0, 1, 6105 0, 0 }, 6106 { { NULL }, "state_flush_level_hi", 1, 100, 6107 0, 0 }, 6108 { { NULL }, "state_flush_level_lo", 1, 100, 6109 0, 0 }, 6110 /* nat */ 6111 { { NULL }, "fr_nat_lock", 0, 1, 6112 0, IPFT_RDONLY }, 6113 { { NULL }, "ipf_nattable_sz", 1, 0x7fffffff, 6114 0, IPFT_WRDISABLED }, 6115 { { NULL }, "ipf_nattable_max", 1, 0x7fffffff, 6116 0, 0 }, 6117 { { NULL }, "ipf_natrules_sz", 1, 0x7fffffff, 6118 0, IPFT_WRDISABLED }, 6119 { { NULL }, "ipf_rdrrules_sz", 1, 0x7fffffff, 6120 0, IPFT_WRDISABLED }, 6121 { { NULL }, "ipf_hostmap_sz", 1, 0x7fffffff, 6122 0, IPFT_WRDISABLED }, 6123 { { NULL }, "fr_nat_maxbucket", 1, 0x7fffffff, 6124 0, IPFT_WRDISABLED }, 6125 { { NULL }, "fr_nat_maxbucket_reset", 0, 1, 6126 0, IPFT_WRDISABLED }, 6127 { { NULL }, "nat_logging", 0, 1, 6128 0, 0 }, 6129 { { NULL }, "fr_defnatage", 1, 0x7fffffff, 6130 0, IPFT_WRDISABLED }, 6131 { { NULL }, "fr_defnatipage", 1, 0x7fffffff, 6132 0, IPFT_WRDISABLED }, 6133 { { NULL }, "fr_defnaticmpage", 1, 0x7fffffff, 6134 0, IPFT_WRDISABLED }, 6135 { { NULL }, "nat_flush_level_hi", 1, 100, 6136 0, 0 }, 6137 { { NULL }, "nat_flush_level_lo", 1, 100, 6138 0, 0 }, 6139 /* frag */ 6140 { { NULL }, "ipfr_size", 1, 0x7fffffff, 6141 0, IPFT_WRDISABLED }, 6142 { { NULL }, "fr_ipfrttl", 1, 0x7fffffff, 6143 0, IPFT_WRDISABLED }, 6144 #ifdef IPFILTER_LOG 6145 /* log */ 6146 { { NULL }, "ipl_suppress", 0, 1, 6147 0, 0 }, 6148 { { NULL }, "ipl_buffer_sz", 0, 0, 6149 0, IPFT_RDONLY }, 6150 { { NULL }, "ipl_logmax", 0, 0x7fffffff, 6151 0, IPFT_WRDISABLED }, 6152 { { NULL }, "ipl_logall", 0, 1, 6153 0, 0 }, 6154 { { NULL }, "ipl_logsize", 0, 0x80000, 6155 0, 0 }, 6156 #endif 6157 { { NULL }, NULL, 0, 0 } 6158 }; 6159 6160 static ipftuneable_t * 6161 tune_lookup(ipf_stack_t *ifs, char *name) 6162 { 6163 int i; 6164 6165 for (i = 0; ifs->ifs_ipf_tuneables[i].ipft_name != NULL; i++) { 6166 if (strcmp(ifs->ifs_ipf_tuneables[i].ipft_name, name) == 0) 6167 return (&ifs->ifs_ipf_tuneables[i]); 6168 } 6169 return (NULL); 6170 } 6171 6172 #ifdef _KERNEL 6173 extern dev_info_t *ipf_dev_info; 6174 extern int ipf_property_update __P((dev_info_t *, ipf_stack_t *)); 6175 #endif 6176 6177 /* -------------------------------------------------------------------- */ 6178 /* Function: ipftuneable_setdefs() */ 6179 /* Returns: void */ 6180 /* Parameters: ifs - pointer to newly allocated IPF instance */ 6181 /* assigned to IP instance */ 6182 /* */ 6183 /* Function initializes IPF instance variables. Function is invoked */ 6184 /* from ipftuneable_alloc(). ipftuneable_alloc() is called only one */ 6185 /* time during IP instance lifetime - at the time of IP instance */ 6186 /* creation. Anytime IP instance is being created new private IPF */ 6187 /* instance is allocated and assigned to it. The moment of IP */ 6188 /* instance creation is the right time to initialize those IPF */ 6189 /* variables. */ 6190 /* */ 6191 /* -------------------------------------------------------------------- */ 6192 static void ipftuneable_setdefs(ipf_stack_t *ifs) 6193 { 6194 ifs->ifs_ipfr_size = IPFT_SIZE; 6195 ifs->ifs_fr_ipfrttl = 120; /* 60 seconds */ 6196 6197 /* it comes from fr_authinit() in IPF auth */ 6198 ifs->ifs_fr_authsize = FR_NUMAUTH; 6199 ifs->ifs_fr_defaultauthage = 600; 6200 6201 /* it comes from fr_stateinit() in IPF state */ 6202 ifs->ifs_fr_tcpidletimeout = IPF_TTLVAL(3600 * 24 * 5); /* five days */ 6203 ifs->ifs_fr_tcpclosewait = IPF_TTLVAL(TCP_MSL); 6204 ifs->ifs_fr_tcplastack = IPF_TTLVAL(TCP_MSL); 6205 ifs->ifs_fr_tcptimeout = IPF_TTLVAL(TCP_MSL); 6206 ifs->ifs_fr_tcpclosed = IPF_TTLVAL(60); 6207 ifs->ifs_fr_tcphalfclosed = IPF_TTLVAL(2 * 3600); /* 2 hours */ 6208 ifs->ifs_fr_udptimeout = IPF_TTLVAL(120); 6209 ifs->ifs_fr_udpacktimeout = IPF_TTLVAL(12); 6210 ifs->ifs_fr_icmptimeout = IPF_TTLVAL(60); 6211 ifs->ifs_fr_icmpacktimeout = IPF_TTLVAL(6); 6212 ifs->ifs_fr_iptimeout = IPF_TTLVAL(60); 6213 ifs->ifs_fr_statemax = IPSTATE_MAX; 6214 ifs->ifs_fr_statesize = IPSTATE_SIZE; 6215 ifs->ifs_fr_state_maxbucket_reset = 1; 6216 ifs->ifs_state_flush_level_hi = ST_FLUSH_HI; 6217 ifs->ifs_state_flush_level_lo = ST_FLUSH_LO; 6218 6219 /* it comes from fr_natinit() in ipnat */ 6220 ifs->ifs_ipf_nattable_sz = NAT_TABLE_SZ; 6221 ifs->ifs_ipf_nattable_max = NAT_TABLE_MAX; 6222 ifs->ifs_ipf_natrules_sz = NAT_SIZE; 6223 ifs->ifs_ipf_rdrrules_sz = RDR_SIZE; 6224 ifs->ifs_ipf_hostmap_sz = HOSTMAP_SIZE; 6225 ifs->ifs_fr_nat_maxbucket_reset = 1; 6226 ifs->ifs_fr_defnatage = DEF_NAT_AGE; 6227 ifs->ifs_fr_defnatipage = 120; /* 60 seconds */ 6228 ifs->ifs_fr_defnaticmpage = 6; /* 3 seconds */ 6229 ifs->ifs_nat_flush_level_hi = NAT_FLUSH_HI; 6230 ifs->ifs_nat_flush_level_lo = NAT_FLUSH_LO; 6231 6232 #ifdef IPFILTER_LOG 6233 /* it comes from fr_loginit() in IPF log */ 6234 ifs->ifs_ipl_suppress = 1; 6235 ifs->ifs_ipl_logmax = IPL_LOGMAX; 6236 ifs->ifs_ipl_logsize = IPFILTER_LOGSIZE; 6237 6238 /* from fr_natinit() */ 6239 ifs->ifs_nat_logging = 1; 6240 6241 /* from fr_stateinit() */ 6242 ifs->ifs_ipstate_logging = 1; 6243 #else 6244 /* from fr_natinit() */ 6245 ifs->ifs_nat_logging = 0; 6246 6247 /* from fr_stateinit() */ 6248 ifs->ifs_ipstate_logging = 0; 6249 #endif 6250 ifs->ifs_ipf_loopback = 0; 6251 6252 } 6253 /* 6254 * Allocate a per-stack tuneable and copy in the names. Then 6255 * set it to point to each of the per-stack tunables. 6256 */ 6257 void 6258 ipftuneable_alloc(ipf_stack_t *ifs) 6259 { 6260 ipftuneable_t *item; 6261 6262 KMALLOCS(ifs->ifs_ipf_tuneables, ipftuneable_t *, 6263 sizeof (lcl_ipf_tuneables)); 6264 bcopy(lcl_ipf_tuneables, ifs->ifs_ipf_tuneables, 6265 sizeof (lcl_ipf_tuneables)); 6266 6267 #define TUNE_SET(_ifs, _name, _field) \ 6268 item = tune_lookup((_ifs), (_name)); \ 6269 if (item != NULL) { \ 6270 item->ipft_una.ipftp_int = (unsigned int *)&((_ifs)->_field); \ 6271 item->ipft_sz = sizeof ((_ifs)->_field); \ 6272 } 6273 6274 TUNE_SET(ifs, "fr_flags", ifs_fr_flags); 6275 TUNE_SET(ifs, "fr_active", ifs_fr_active); 6276 TUNE_SET(ifs, "fr_control_forwarding", ifs_fr_control_forwarding); 6277 TUNE_SET(ifs, "fr_update_ipid", ifs_fr_update_ipid); 6278 TUNE_SET(ifs, "fr_chksrc", ifs_fr_chksrc); 6279 TUNE_SET(ifs, "fr_minttl", ifs_fr_minttl); 6280 TUNE_SET(ifs, "fr_icmpminfragmtu", ifs_fr_icmpminfragmtu); 6281 TUNE_SET(ifs, "fr_pass", ifs_fr_pass); 6282 TUNE_SET(ifs, "fr_tcpidletimeout", ifs_fr_tcpidletimeout); 6283 TUNE_SET(ifs, "fr_tcpclosewait", ifs_fr_tcpclosewait); 6284 TUNE_SET(ifs, "fr_tcplastack", ifs_fr_tcplastack); 6285 TUNE_SET(ifs, "fr_tcptimeout", ifs_fr_tcptimeout); 6286 TUNE_SET(ifs, "fr_tcpclosed", ifs_fr_tcpclosed); 6287 TUNE_SET(ifs, "fr_tcphalfclosed", ifs_fr_tcphalfclosed); 6288 TUNE_SET(ifs, "fr_udptimeout", ifs_fr_udptimeout); 6289 TUNE_SET(ifs, "fr_udpacktimeout", ifs_fr_udpacktimeout); 6290 TUNE_SET(ifs, "fr_icmptimeout", ifs_fr_icmptimeout); 6291 TUNE_SET(ifs, "fr_icmpacktimeout", ifs_fr_icmpacktimeout); 6292 TUNE_SET(ifs, "fr_iptimeout", ifs_fr_iptimeout); 6293 TUNE_SET(ifs, "fr_statemax", ifs_fr_statemax); 6294 TUNE_SET(ifs, "fr_statesize", ifs_fr_statesize); 6295 TUNE_SET(ifs, "fr_state_lock", ifs_fr_state_lock); 6296 TUNE_SET(ifs, "fr_state_maxbucket", ifs_fr_state_maxbucket); 6297 TUNE_SET(ifs, "fr_state_maxbucket_reset", ifs_fr_state_maxbucket_reset); 6298 TUNE_SET(ifs, "ipstate_logging", ifs_ipstate_logging); 6299 TUNE_SET(ifs, "fr_nat_lock", ifs_fr_nat_lock); 6300 TUNE_SET(ifs, "ipf_nattable_sz", ifs_ipf_nattable_sz); 6301 TUNE_SET(ifs, "ipf_nattable_max", ifs_ipf_nattable_max); 6302 TUNE_SET(ifs, "ipf_natrules_sz", ifs_ipf_natrules_sz); 6303 TUNE_SET(ifs, "ipf_rdrrules_sz", ifs_ipf_rdrrules_sz); 6304 TUNE_SET(ifs, "ipf_hostmap_sz", ifs_ipf_hostmap_sz); 6305 TUNE_SET(ifs, "fr_nat_maxbucket", ifs_fr_nat_maxbucket); 6306 TUNE_SET(ifs, "fr_nat_maxbucket_reset", ifs_fr_nat_maxbucket_reset); 6307 TUNE_SET(ifs, "nat_logging", ifs_nat_logging); 6308 TUNE_SET(ifs, "fr_defnatage", ifs_fr_defnatage); 6309 TUNE_SET(ifs, "fr_defnatipage", ifs_fr_defnatipage); 6310 TUNE_SET(ifs, "fr_defnaticmpage", ifs_fr_defnaticmpage); 6311 TUNE_SET(ifs, "nat_flush_level_hi", ifs_nat_flush_level_hi); 6312 TUNE_SET(ifs, "nat_flush_level_lo", ifs_nat_flush_level_lo); 6313 TUNE_SET(ifs, "state_flush_level_hi", ifs_state_flush_level_hi); 6314 TUNE_SET(ifs, "state_flush_level_lo", ifs_state_flush_level_lo); 6315 TUNE_SET(ifs, "ipfr_size", ifs_ipfr_size); 6316 TUNE_SET(ifs, "fr_ipfrttl", ifs_fr_ipfrttl); 6317 TUNE_SET(ifs, "ipf_loopback", ifs_ipf_loopback); 6318 #ifdef IPFILTER_LOG 6319 TUNE_SET(ifs, "ipl_suppress", ifs_ipl_suppress); 6320 TUNE_SET(ifs, "ipl_buffer_sz", ifs_ipl_buffer_sz); 6321 TUNE_SET(ifs, "ipl_logmax", ifs_ipl_logmax); 6322 TUNE_SET(ifs, "ipl_logall", ifs_ipl_logall); 6323 TUNE_SET(ifs, "ipl_logsize", ifs_ipl_logsize); 6324 #endif 6325 #undef TUNE_SET 6326 6327 ipftuneable_setdefs(ifs); 6328 6329 #ifdef _KERNEL 6330 (void) ipf_property_update(ipf_dev_info, ifs); 6331 #endif 6332 } 6333 6334 void 6335 ipftuneable_free(ipf_stack_t *ifs) 6336 { 6337 KFREES(ifs->ifs_ipf_tuneables, sizeof (lcl_ipf_tuneables)); 6338 ifs->ifs_ipf_tuneables = NULL; 6339 } 6340 6341 /* ------------------------------------------------------------------------ */ 6342 /* Function: fr_findtunebycookie */ 6343 /* Returns: NULL = search failed, else pointer to tune struct */ 6344 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */ 6345 /* next(O) - pointer to place to store the cookie for the */ 6346 /* "next" tuneable, if it is desired. */ 6347 /* */ 6348 /* This function is used to walk through all of the existing tunables with */ 6349 /* successive calls. It searches the known tunables for the one which has */ 6350 /* a matching value for "cookie" - ie its address. When returning a match, */ 6351 /* the next one to be found may be returned inside next. */ 6352 /* ------------------------------------------------------------------------ */ 6353 static ipftuneable_t *fr_findtunebycookie(cookie, next, ifs) 6354 void *cookie, **next; 6355 ipf_stack_t * ifs; 6356 { 6357 ipftuneable_t *ta, **tap; 6358 6359 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++) 6360 if (ta == cookie) { 6361 if (next != NULL) { 6362 /* 6363 * If the next entry in the array has a name 6364 * present, then return a pointer to it for 6365 * where to go next, else return a pointer to 6366 * the dynaminc list as a key to search there 6367 * next. This facilitates a weak linking of 6368 * the two "lists" together. 6369 */ 6370 if ((ta + 1)->ipft_name != NULL) 6371 *next = ta + 1; 6372 else 6373 *next = &ifs->ifs_ipf_tunelist; 6374 } 6375 return ta; 6376 } 6377 6378 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) 6379 if (tap == cookie) { 6380 if (next != NULL) 6381 *next = &ta->ipft_next; 6382 return ta; 6383 } 6384 6385 if (next != NULL) 6386 *next = NULL; 6387 return NULL; 6388 } 6389 6390 6391 /* ------------------------------------------------------------------------ */ 6392 /* Function: fr_findtunebyname */ 6393 /* Returns: NULL = search failed, else pointer to tune struct */ 6394 /* Parameters: name(I) - name of the tuneable entry to find. */ 6395 /* */ 6396 /* Search the static array of tuneables and the list of dynamic tuneables */ 6397 /* for an entry with a matching name. If we can find one, return a pointer */ 6398 /* to the matching structure. */ 6399 /* ------------------------------------------------------------------------ */ 6400 static ipftuneable_t *fr_findtunebyname(name, ifs) 6401 const char *name; 6402 ipf_stack_t *ifs; 6403 { 6404 ipftuneable_t *ta; 6405 6406 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++) 6407 if (!strcmp(ta->ipft_name, name)) { 6408 return ta; 6409 } 6410 6411 for (ta = ifs->ifs_ipf_tunelist; ta != NULL; ta = ta->ipft_next) 6412 if (!strcmp(ta->ipft_name, name)) { 6413 return ta; 6414 } 6415 6416 return NULL; 6417 } 6418 6419 6420 /* ------------------------------------------------------------------------ */ 6421 /* Function: fr_addipftune */ 6422 /* Returns: int - 0 == success, else failure */ 6423 /* Parameters: newtune - pointer to new tune struct to add to tuneables */ 6424 /* */ 6425 /* Appends the tune structure pointer to by "newtune" to the end of the */ 6426 /* current list of "dynamic" tuneable parameters. Once added, the owner */ 6427 /* of the object is not expected to ever change "ipft_next". */ 6428 /* ------------------------------------------------------------------------ */ 6429 int fr_addipftune(newtune, ifs) 6430 ipftuneable_t *newtune; 6431 ipf_stack_t *ifs; 6432 { 6433 ipftuneable_t *ta, **tap; 6434 6435 ta = fr_findtunebyname(newtune->ipft_name, ifs); 6436 if (ta != NULL) 6437 return EEXIST; 6438 6439 for (tap = &ifs->ifs_ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next) 6440 ; 6441 6442 newtune->ipft_next = NULL; 6443 *tap = newtune; 6444 return 0; 6445 } 6446 6447 6448 /* ------------------------------------------------------------------------ */ 6449 /* Function: fr_delipftune */ 6450 /* Returns: int - 0 == success, else failure */ 6451 /* Parameters: oldtune - pointer to tune struct to remove from the list of */ 6452 /* current dynamic tuneables */ 6453 /* */ 6454 /* Search for the tune structure, by pointer, in the list of those that are */ 6455 /* dynamically added at run time. If found, adjust the list so that this */ 6456 /* structure is no longer part of it. */ 6457 /* ------------------------------------------------------------------------ */ 6458 int fr_delipftune(oldtune, ifs) 6459 ipftuneable_t *oldtune; 6460 ipf_stack_t *ifs; 6461 { 6462 ipftuneable_t *ta, **tap; 6463 6464 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) 6465 if (ta == oldtune) { 6466 *tap = oldtune->ipft_next; 6467 oldtune->ipft_next = NULL; 6468 return 0; 6469 } 6470 6471 return ESRCH; 6472 } 6473 6474 6475 /* ------------------------------------------------------------------------ */ 6476 /* Function: fr_ipftune */ 6477 /* Returns: int - 0 == success, else failure */ 6478 /* Parameters: cmd(I) - ioctl command number */ 6479 /* data(I) - pointer to ioctl data structure */ 6480 /* */ 6481 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */ 6482 /* three ioctls provide the means to access and control global variables */ 6483 /* within IPFilter, allowing (for example) timeouts and table sizes to be */ 6484 /* changed without rebooting, reloading or recompiling. The initialisation */ 6485 /* and 'destruction' routines of the various components of ipfilter are all */ 6486 /* each responsible for handling their own values being too big. */ 6487 /* ------------------------------------------------------------------------ */ 6488 int fr_ipftune(cmd, data, ifs) 6489 ioctlcmd_t cmd; 6490 void *data; 6491 ipf_stack_t *ifs; 6492 { 6493 ipftuneable_t *ta; 6494 ipftune_t tu; 6495 void *cookie; 6496 int error; 6497 6498 error = fr_inobj(data, &tu, IPFOBJ_TUNEABLE); 6499 if (error != 0) 6500 return error; 6501 6502 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0'; 6503 cookie = tu.ipft_cookie; 6504 ta = NULL; 6505 6506 switch (cmd) 6507 { 6508 case SIOCIPFGETNEXT : 6509 /* 6510 * If cookie is non-NULL, assume it to be a pointer to the last 6511 * entry we looked at, so find it (if possible) and return a 6512 * pointer to the next one after it. The last entry in the 6513 * the table is a NULL entry, so when we get to it, set cookie 6514 * to NULL and return that, indicating end of list, erstwhile 6515 * if we come in with cookie set to NULL, we are starting anew 6516 * at the front of the list. 6517 */ 6518 if (cookie != NULL) { 6519 ta = fr_findtunebycookie(cookie, &tu.ipft_cookie, ifs); 6520 } else { 6521 ta = ifs->ifs_ipf_tuneables; 6522 tu.ipft_cookie = ta + 1; 6523 } 6524 if (ta != NULL) { 6525 /* 6526 * Entry found, but does the data pointed to by that 6527 * row fit in what we can return? 6528 */ 6529 if (ta->ipft_sz > sizeof(tu.ipft_un)) 6530 return EINVAL; 6531 6532 tu.ipft_vlong = 0; 6533 if (ta->ipft_sz == sizeof(u_long)) 6534 tu.ipft_vlong = *ta->ipft_plong; 6535 else if (ta->ipft_sz == sizeof(u_int)) 6536 tu.ipft_vint = *ta->ipft_pint; 6537 else if (ta->ipft_sz == sizeof(u_short)) 6538 tu.ipft_vshort = *ta->ipft_pshort; 6539 else if (ta->ipft_sz == sizeof(u_char)) 6540 tu.ipft_vchar = *ta->ipft_pchar; 6541 6542 tu.ipft_sz = ta->ipft_sz; 6543 tu.ipft_min = ta->ipft_min; 6544 tu.ipft_max = ta->ipft_max; 6545 tu.ipft_flags = ta->ipft_flags; 6546 bcopy(ta->ipft_name, tu.ipft_name, 6547 MIN(sizeof(tu.ipft_name), 6548 strlen(ta->ipft_name) + 1)); 6549 } 6550 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6551 break; 6552 6553 case SIOCIPFGET : 6554 case SIOCIPFSET : 6555 /* 6556 * Search by name or by cookie value for a particular entry 6557 * in the tuning paramter table. 6558 */ 6559 error = ESRCH; 6560 if (cookie != NULL) { 6561 ta = fr_findtunebycookie(cookie, NULL, ifs); 6562 if (ta != NULL) 6563 error = 0; 6564 } else if (tu.ipft_name[0] != '\0') { 6565 ta = fr_findtunebyname(tu.ipft_name, ifs); 6566 if (ta != NULL) 6567 error = 0; 6568 } 6569 if (error != 0) 6570 break; 6571 6572 if (cmd == (ioctlcmd_t)SIOCIPFGET) { 6573 /* 6574 * Fetch the tuning parameters for a particular value 6575 */ 6576 tu.ipft_vlong = 0; 6577 if (ta->ipft_sz == sizeof(u_long)) 6578 tu.ipft_vlong = *ta->ipft_plong; 6579 else if (ta->ipft_sz == sizeof(u_int)) 6580 tu.ipft_vint = *ta->ipft_pint; 6581 else if (ta->ipft_sz == sizeof(u_short)) 6582 tu.ipft_vshort = *ta->ipft_pshort; 6583 else if (ta->ipft_sz == sizeof(u_char)) 6584 tu.ipft_vchar = *ta->ipft_pchar; 6585 tu.ipft_cookie = ta; 6586 tu.ipft_sz = ta->ipft_sz; 6587 tu.ipft_min = ta->ipft_min; 6588 tu.ipft_max = ta->ipft_max; 6589 tu.ipft_flags = ta->ipft_flags; 6590 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6591 6592 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) { 6593 /* 6594 * Set an internal parameter. The hard part here is 6595 * getting the new value safely and correctly out of 6596 * the kernel (given we only know its size, not type.) 6597 */ 6598 u_long in; 6599 6600 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) && 6601 (ifs->ifs_fr_running > 0)) { 6602 error = EBUSY; 6603 break; 6604 } 6605 6606 in = tu.ipft_vlong; 6607 if (in < ta->ipft_min || in > ta->ipft_max) { 6608 error = EINVAL; 6609 break; 6610 } 6611 6612 if (ta->ipft_sz == sizeof(u_long)) { 6613 tu.ipft_vlong = *ta->ipft_plong; 6614 *ta->ipft_plong = in; 6615 } else if (ta->ipft_sz == sizeof(u_int)) { 6616 tu.ipft_vint = *ta->ipft_pint; 6617 *ta->ipft_pint = (u_int)(in & 0xffffffff); 6618 } else if (ta->ipft_sz == sizeof(u_short)) { 6619 tu.ipft_vshort = *ta->ipft_pshort; 6620 *ta->ipft_pshort = (u_short)(in & 0xffff); 6621 } else if (ta->ipft_sz == sizeof(u_char)) { 6622 tu.ipft_vchar = *ta->ipft_pchar; 6623 *ta->ipft_pchar = (u_char)(in & 0xff); 6624 } 6625 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6626 } 6627 break; 6628 6629 default : 6630 error = EINVAL; 6631 break; 6632 } 6633 6634 return error; 6635 } 6636 6637 6638 /* ------------------------------------------------------------------------ */ 6639 /* Function: fr_initialise */ 6640 /* Returns: int - 0 == success, < 0 == failure */ 6641 /* Parameters: None. */ 6642 /* */ 6643 /* Call of the initialise functions for all the various subsystems inside */ 6644 /* of IPFilter. If any of them should fail, return immeadiately a failure */ 6645 /* BUT do not try to recover from the error here. */ 6646 /* ------------------------------------------------------------------------ */ 6647 int fr_initialise(ifs) 6648 ipf_stack_t *ifs; 6649 { 6650 int i; 6651 6652 #ifdef IPFILTER_LOG 6653 i = fr_loginit(ifs); 6654 if (i < 0) 6655 return -10 + i; 6656 #endif 6657 i = fr_natinit(ifs); 6658 if (i < 0) 6659 return -20 + i; 6660 6661 i = fr_stateinit(ifs); 6662 if (i < 0) 6663 return -30 + i; 6664 6665 i = fr_authinit(ifs); 6666 if (i < 0) 6667 return -40 + i; 6668 6669 i = fr_fraginit(ifs); 6670 if (i < 0) 6671 return -50 + i; 6672 6673 i = appr_init(ifs); 6674 if (i < 0) 6675 return -60 + i; 6676 6677 #ifdef IPFILTER_SYNC 6678 i = ipfsync_init(ifs); 6679 if (i < 0) 6680 return -70 + i; 6681 #endif 6682 #ifdef IPFILTER_SCAN 6683 i = ipsc_init(ifs); 6684 if (i < 0) 6685 return -80 + i; 6686 #endif 6687 #ifdef IPFILTER_LOOKUP 6688 i = ip_lookup_init(ifs); 6689 if (i < 0) 6690 return -90 + i; 6691 #endif 6692 #ifdef IPFILTER_COMPILED 6693 ipfrule_add(ifs); 6694 #endif 6695 return 0; 6696 } 6697 6698 6699 /* ------------------------------------------------------------------------ */ 6700 /* Function: fr_deinitialise */ 6701 /* Returns: None. */ 6702 /* Parameters: None. */ 6703 /* */ 6704 /* Call all the various subsystem cleanup routines to deallocate memory or */ 6705 /* destroy locks or whatever they've done that they need to now undo. */ 6706 /* The order here IS important as there are some cross references of */ 6707 /* internal data structures. */ 6708 /* ------------------------------------------------------------------------ */ 6709 void fr_deinitialise(ifs) 6710 ipf_stack_t *ifs; 6711 { 6712 fr_fragunload(ifs); 6713 fr_authunload(ifs); 6714 fr_natunload(ifs); 6715 fr_stateunload(ifs); 6716 #ifdef IPFILTER_SCAN 6717 fr_scanunload(ifs); 6718 #endif 6719 appr_unload(ifs); 6720 6721 #ifdef IPFILTER_COMPILED 6722 ipfrule_remove(ifs); 6723 #endif 6724 6725 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs); 6726 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs); 6727 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs); 6728 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE, ifs); 6729 6730 #ifdef IPFILTER_LOOKUP 6731 ip_lookup_unload(ifs); 6732 #endif 6733 6734 #ifdef IPFILTER_LOG 6735 fr_logunload(ifs); 6736 #endif 6737 } 6738 6739 6740 /* ------------------------------------------------------------------------ */ 6741 /* Function: fr_zerostats */ 6742 /* Returns: int - 0 = success, else failure */ 6743 /* Parameters: data(O) - pointer to pointer for copying data back to */ 6744 /* */ 6745 /* Copies the current statistics out to userspace and then zero's the */ 6746 /* current ones in the kernel. The lock is only held across the bzero() as */ 6747 /* the copyout may result in paging (ie network activity.) */ 6748 /* ------------------------------------------------------------------------ */ 6749 int fr_zerostats(data, ifs) 6750 caddr_t data; 6751 ipf_stack_t *ifs; 6752 { 6753 friostat_t fio; 6754 int error; 6755 6756 fr_getstat(&fio, ifs); 6757 error = copyoutptr(&fio, data, sizeof(fio)); 6758 if (error) 6759 return EFAULT; 6760 6761 WRITE_ENTER(&ifs->ifs_ipf_mutex); 6762 bzero((char *)ifs->ifs_frstats, sizeof(*ifs->ifs_frstats) * 2); 6763 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 6764 6765 return 0; 6766 } 6767 6768 6769 #ifdef _KERNEL 6770 /* ------------------------------------------------------------------------ */ 6771 /* Function: fr_resolvedest */ 6772 /* Returns: Nil */ 6773 /* Parameters: fdp(IO) - pointer to destination information to resolve */ 6774 /* v(I) - IP protocol version to match */ 6775 /* */ 6776 /* Looks up an interface name in the frdest structure pointed to by fdp and */ 6777 /* if a matching name can be found for the particular IP protocol version */ 6778 /* then store the interface pointer in the frdest struct. If no match is */ 6779 /* found, then set the interface pointer to be -1 as NULL is considered to */ 6780 /* indicate there is no information at all in the structure. */ 6781 /* ------------------------------------------------------------------------ */ 6782 void fr_resolvedest(fdp, v, ifs) 6783 frdest_t *fdp; 6784 int v; 6785 ipf_stack_t *ifs; 6786 { 6787 fdp->fd_ifp = NULL; 6788 6789 if (*fdp->fd_ifname != '\0') { 6790 fdp->fd_ifp = GETIFP(fdp->fd_ifname, v, ifs); 6791 if (fdp->fd_ifp == NULL) 6792 fdp->fd_ifp = (void *)-1; 6793 } 6794 } 6795 #endif /* _KERNEL */ 6796 6797 6798 /* ------------------------------------------------------------------------ */ 6799 /* Function: fr_resolvenic */ 6800 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */ 6801 /* pointer to interface structure for NIC */ 6802 /* Parameters: name(I) - complete interface name */ 6803 /* v(I) - IP protocol version */ 6804 /* */ 6805 /* Look for a network interface structure that firstly has a matching name */ 6806 /* to that passed in and that is also being used for that IP protocol */ 6807 /* version (necessary on some platforms where there are separate listings */ 6808 /* for both IPv4 and IPv6 on the same physical NIC. */ 6809 /* */ 6810 /* One might wonder why name gets terminated with a \0 byte in here. The */ 6811 /* reason is an interface name could get into the kernel structures of ipf */ 6812 /* in any number of ways and so long as they all use the same sized array */ 6813 /* to put the name in, it makes sense to ensure it gets null terminated */ 6814 /* before it is used for its intended purpose - finding its match in the */ 6815 /* kernel's list of configured interfaces. */ 6816 /* */ 6817 /* NOTE: This SHOULD ONLY be used with IPFilter structures that have an */ 6818 /* array for the name that is LIFNAMSIZ bytes (at least) in length. */ 6819 /* ------------------------------------------------------------------------ */ 6820 void *fr_resolvenic(name, v, ifs) 6821 char *name; 6822 int v; 6823 ipf_stack_t *ifs; 6824 { 6825 void *nic; 6826 6827 if (name[0] == '\0') 6828 return NULL; 6829 6830 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) { 6831 return NULL; 6832 } 6833 6834 name[LIFNAMSIZ - 1] = '\0'; 6835 6836 nic = GETIFP(name, v, ifs); 6837 if (nic == NULL) 6838 nic = (void *)-1; 6839 return nic; 6840 } 6841 6842 6843 /* ------------------------------------------------------------------------ */ 6844 /* Function: ipf_expiretokens */ 6845 /* Returns: None. */ 6846 /* Parameters: ifs - ipf stack instance */ 6847 /* */ 6848 /* This function is run every ipf tick to see if there are any tokens that */ 6849 /* have been held for too long and need to be freed up. */ 6850 /* ------------------------------------------------------------------------ */ 6851 void ipf_expiretokens(ifs) 6852 ipf_stack_t *ifs; 6853 { 6854 ipftoken_t *it; 6855 6856 WRITE_ENTER(&ifs->ifs_ipf_tokens); 6857 while ((it = ifs->ifs_ipftokenhead) != NULL) { 6858 if (it->ipt_die > ifs->ifs_fr_ticks) 6859 break; 6860 6861 ipf_freetoken(it, ifs); 6862 } 6863 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 6864 } 6865 6866 6867 /* ------------------------------------------------------------------------ */ 6868 /* Function: ipf_deltoken */ 6869 /* Returns: int - 0 = success, else error */ 6870 /* Parameters: type(I) - the token type to match */ 6871 /* uid(I) - uid owning the token */ 6872 /* ptr(I) - context pointer for the token */ 6873 /* ifs - ipf stack instance */ 6874 /* */ 6875 /* This function looks for a a token in the current list that matches up */ 6876 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */ 6877 /* call ipf_freetoken() to remove it from the list. */ 6878 /* ------------------------------------------------------------------------ */ 6879 int ipf_deltoken(type, uid, ptr, ifs) 6880 int type, uid; 6881 void *ptr; 6882 ipf_stack_t *ifs; 6883 { 6884 ipftoken_t *it; 6885 int error = ESRCH; 6886 6887 WRITE_ENTER(&ifs->ifs_ipf_tokens); 6888 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) 6889 if (ptr == it->ipt_ctx && type == it->ipt_type && 6890 uid == it->ipt_uid) { 6891 ipf_freetoken(it, ifs); 6892 error = 0; 6893 break; 6894 } 6895 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 6896 6897 return error; 6898 } 6899 6900 6901 /* ------------------------------------------------------------------------ */ 6902 /* Function: ipf_unlinktoken */ 6903 /* Returns: None. */ 6904 /* Parameters: token(I) - pointer to token structure */ 6905 /* ifs - ipf stack instance */ 6906 /* */ 6907 /* This function unlinks a token structure from the linked list of tokens */ 6908 /* that it belongs to. The head pointer never needs to be explicitly */ 6909 /* adjusted, but the tail does due to the linked list implementation. */ 6910 /* ------------------------------------------------------------------------ */ 6911 static void ipf_unlinktoken(token, ifs) 6912 ipftoken_t *token; 6913 ipf_stack_t *ifs; 6914 { 6915 6916 if (ifs->ifs_ipftokentail == &token->ipt_next) 6917 ifs->ifs_ipftokentail = token->ipt_pnext; 6918 6919 *token->ipt_pnext = token->ipt_next; 6920 if (token->ipt_next != NULL) 6921 token->ipt_next->ipt_pnext = token->ipt_pnext; 6922 } 6923 6924 6925 /* ------------------------------------------------------------------------ */ 6926 /* Function: ipf_findtoken */ 6927 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */ 6928 /* Parameters: type(I) - the token type to match */ 6929 /* uid(I) - uid owning the token */ 6930 /* ptr(I) - context pointer for the token */ 6931 /* ifs - ipf stack instance */ 6932 /* */ 6933 /* This function looks for a live token in the list of current tokens that */ 6934 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */ 6935 /* allocated. If one is found then it is moved to the top of the list of */ 6936 /* currently active tokens. */ 6937 /* */ 6938 /* NOTE: It is by design that this function returns holding a read lock on */ 6939 /* ipf_tokens. Callers must make sure they release it! */ 6940 /* ------------------------------------------------------------------------ */ 6941 ipftoken_t *ipf_findtoken(type, uid, ptr, ifs) 6942 int type, uid; 6943 void *ptr; 6944 ipf_stack_t *ifs; 6945 { 6946 ipftoken_t *it, *new; 6947 6948 KMALLOC(new, ipftoken_t *); 6949 6950 WRITE_ENTER(&ifs->ifs_ipf_tokens); 6951 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) { 6952 if (it->ipt_alive == 0) 6953 continue; 6954 if (ptr == it->ipt_ctx && type == it->ipt_type && 6955 uid == it->ipt_uid) 6956 break; 6957 } 6958 6959 if (it == NULL) { 6960 it = new; 6961 new = NULL; 6962 if (it == NULL) 6963 return NULL; 6964 it->ipt_data = NULL; 6965 it->ipt_ctx = ptr; 6966 it->ipt_uid = uid; 6967 it->ipt_type = type; 6968 it->ipt_next = NULL; 6969 it->ipt_alive = 1; 6970 } else { 6971 if (new != NULL) { 6972 KFREE(new); 6973 new = NULL; 6974 } 6975 6976 ipf_unlinktoken(it, ifs); 6977 } 6978 it->ipt_pnext = ifs->ifs_ipftokentail; 6979 *ifs->ifs_ipftokentail = it; 6980 ifs->ifs_ipftokentail = &it->ipt_next; 6981 it->ipt_next = NULL; 6982 6983 it->ipt_die = ifs->ifs_fr_ticks + 2; 6984 6985 MUTEX_DOWNGRADE(&ifs->ifs_ipf_tokens); 6986 6987 return it; 6988 } 6989 6990 6991 /* ------------------------------------------------------------------------ */ 6992 /* Function: ipf_freetoken */ 6993 /* Returns: None. */ 6994 /* Parameters: token(I) - pointer to token structure */ 6995 /* ifs - ipf stack instance */ 6996 /* */ 6997 /* This function unlinks a token from the linked list and on the path to */ 6998 /* free'ing the data, it calls the dereference function that is associated */ 6999 /* with the type of data pointed to by the token as it is considered to */ 7000 /* hold a reference to it. */ 7001 /* ------------------------------------------------------------------------ */ 7002 void ipf_freetoken(token, ifs) 7003 ipftoken_t *token; 7004 ipf_stack_t *ifs; 7005 { 7006 void *data, **datap; 7007 7008 ipf_unlinktoken(token, ifs); 7009 7010 data = token->ipt_data; 7011 datap = &data; 7012 7013 if ((data != NULL) && (data != (void *)-1)) { 7014 switch (token->ipt_type) 7015 { 7016 case IPFGENITER_IPF : 7017 (void)fr_derefrule((frentry_t **)datap, ifs); 7018 break; 7019 case IPFGENITER_IPNAT : 7020 WRITE_ENTER(&ifs->ifs_ipf_nat); 7021 fr_ipnatderef((ipnat_t **)datap, ifs); 7022 RWLOCK_EXIT(&ifs->ifs_ipf_nat); 7023 break; 7024 case IPFGENITER_NAT : 7025 fr_natderef((nat_t **)datap, ifs); 7026 break; 7027 case IPFGENITER_STATE : 7028 fr_statederef((ipstate_t **)datap, ifs); 7029 break; 7030 case IPFGENITER_FRAG : 7031 fr_fragderef((ipfr_t **)datap, &ifs->ifs_ipf_frag, ifs); 7032 break; 7033 case IPFGENITER_NATFRAG : 7034 fr_fragderef((ipfr_t **)datap, 7035 &ifs->ifs_ipf_natfrag, ifs); 7036 break; 7037 case IPFGENITER_HOSTMAP : 7038 WRITE_ENTER(&ifs->ifs_ipf_nat); 7039 fr_hostmapdel((hostmap_t **)datap); 7040 RWLOCK_EXIT(&ifs->ifs_ipf_nat); 7041 break; 7042 default : 7043 (void) ip_lookup_iterderef(token->ipt_type, data, ifs); 7044 break; 7045 } 7046 } 7047 7048 KFREE(token); 7049 } 7050 7051 7052 /* ------------------------------------------------------------------------ */ 7053 /* Function: ipf_getnextrule */ 7054 /* Returns: int - 0 = success, else error */ 7055 /* Parameters: t(I) - pointer to destination information to resolve */ 7056 /* ptr(I) - pointer to ipfobj_t to copyin from user space */ 7057 /* ifs - ipf stack instance */ 7058 /* */ 7059 /* This function's first job is to bring in the ipfruleiter_t structure via */ 7060 /* the ipfobj_t structure to determine what should be the next rule to */ 7061 /* return. Once the ipfruleiter_t has been brought in, it then tries to */ 7062 /* find the 'next rule'. This may include searching rule group lists or */ 7063 /* just be as simple as looking at the 'next' field in the rule structure. */ 7064 /* When we have found the rule to return, increase its reference count and */ 7065 /* if we used an existing rule to get here, decrease its reference count. */ 7066 /* ------------------------------------------------------------------------ */ 7067 int ipf_getnextrule(t, ptr, ifs) 7068 ipftoken_t *t; 7069 void *ptr; 7070 ipf_stack_t *ifs; 7071 { 7072 frentry_t *fr, *next, zero; 7073 int error, out, count; 7074 ipfruleiter_t it; 7075 frgroup_t *fg; 7076 char *dst; 7077 7078 if (t == NULL || ptr == NULL) 7079 return EFAULT; 7080 error = fr_inobj(ptr, &it, IPFOBJ_IPFITER); 7081 if (error != 0) 7082 return error; 7083 if ((it.iri_ver != AF_INET) && (it.iri_ver != AF_INET6)) 7084 return EINVAL; 7085 if ((it.iri_inout < 0) || (it.iri_inout > 3)) 7086 return EINVAL; 7087 if (it.iri_nrules == 0) 7088 return EINVAL; 7089 if ((it.iri_active != 0) && (it.iri_active != 1)) 7090 return EINVAL; 7091 if (it.iri_rule == NULL) 7092 return EFAULT; 7093 7094 /* 7095 * Use bitmask on it.iri_inout to determine direction. 7096 * F_OUT (1) and F_ACOUT (3) mask to out = 1, while 7097 * F_IN (0) and F_ACIN (2) mask to out = 0. 7098 */ 7099 out = it.iri_inout & F_OUT; 7100 READ_ENTER(&ifs->ifs_ipf_mutex); 7101 7102 /* 7103 * Retrieve "previous" entry from token and find the next entry. 7104 */ 7105 fr = t->ipt_data; 7106 if (fr == NULL) { 7107 if (*it.iri_group == '\0') { 7108 /* 7109 * Use bitmask again to determine accounting or not. 7110 * F_ACIN will mask to accounting cases F_ACIN (2) 7111 * or F_ACOUT (3), but not F_IN or F_OUT. 7112 */ 7113 if ((it.iri_inout & F_ACIN) != 0) { 7114 if (it.iri_ver == AF_INET) 7115 next = ifs->ifs_ipacct 7116 [out][it.iri_active]; 7117 else 7118 next = ifs->ifs_ipacct6 7119 [out][it.iri_active]; 7120 } else { 7121 if (it.iri_ver == AF_INET) 7122 next = ifs->ifs_ipfilter 7123 [out][it.iri_active]; 7124 else 7125 next = ifs->ifs_ipfilter6 7126 [out][it.iri_active]; 7127 } 7128 } else { 7129 fg = fr_findgroup(it.iri_group, IPL_LOGIPF, 7130 it.iri_active, NULL, ifs); 7131 if (fg != NULL) 7132 next = fg->fg_start; 7133 else 7134 next = NULL; 7135 } 7136 } else { 7137 next = fr->fr_next; 7138 } 7139 7140 dst = (char *)it.iri_rule; 7141 /* 7142 * The ipfruleiter may ask for more than 1 rule at a time to be 7143 * copied out, so long as that many exist in the list to start with! 7144 */ 7145 for (count = it.iri_nrules; count > 0; count--) { 7146 /* 7147 * If we found an entry, add reference to it and update token. 7148 * Otherwise, zero out data to be returned and NULL out token. 7149 */ 7150 if (next != NULL) { 7151 MUTEX_ENTER(&next->fr_lock); 7152 next->fr_ref++; 7153 MUTEX_EXIT(&next->fr_lock); 7154 t->ipt_data = next; 7155 } else { 7156 bzero(&zero, sizeof(zero)); 7157 next = &zero; 7158 t->ipt_data = NULL; 7159 } 7160 7161 /* 7162 * Now that we have ref, it's save to give up lock. 7163 */ 7164 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 7165 7166 /* 7167 * Copy out data and clean up references and token as needed. 7168 */ 7169 error = COPYOUT(next, dst, sizeof(*next)); 7170 if (error != 0) 7171 error = EFAULT; 7172 if (t->ipt_data == NULL) { 7173 ipf_freetoken(t, ifs); 7174 break; 7175 } else { 7176 if (fr != NULL) 7177 (void) fr_derefrule(&fr, ifs); 7178 if (next->fr_data != NULL) { 7179 dst += sizeof(*next); 7180 error = COPYOUT(next->fr_data, dst, 7181 next->fr_dsize); 7182 if (error != 0) 7183 error = EFAULT; 7184 else 7185 dst += next->fr_dsize; 7186 } 7187 if (next->fr_next == NULL) { 7188 ipf_freetoken(t, ifs); 7189 break; 7190 } 7191 } 7192 7193 if ((count == 1) || (error != 0)) 7194 break; 7195 7196 READ_ENTER(&ifs->ifs_ipf_mutex); 7197 fr = next; 7198 next = fr->fr_next; 7199 } 7200 7201 return error; 7202 } 7203 7204 7205 /* ------------------------------------------------------------------------ */ 7206 /* Function: fr_frruleiter */ 7207 /* Returns: int - 0 = success, else error */ 7208 /* Parameters: data(I) - the token type to match */ 7209 /* uid(I) - uid owning the token */ 7210 /* ptr(I) - context pointer for the token */ 7211 /* ifs - ipf stack instance */ 7212 /* */ 7213 /* This function serves as a stepping stone between fr_ipf_ioctl and */ 7214 /* ipf_getnextrule. It's role is to find the right token in the kernel for */ 7215 /* the process doing the ioctl and use that to ask for the next rule. */ 7216 /* ------------------------------------------------------------------------ */ 7217 int ipf_frruleiter(data, uid, ctx, ifs) 7218 void *data, *ctx; 7219 int uid; 7220 ipf_stack_t *ifs; 7221 { 7222 ipftoken_t *token; 7223 int error; 7224 7225 token = ipf_findtoken(IPFGENITER_IPF, uid, ctx, ifs); 7226 if (token != NULL) 7227 error = ipf_getnextrule(token, data, ifs); 7228 else 7229 error = EFAULT; 7230 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7231 7232 return error; 7233 } 7234 7235 7236 /* ------------------------------------------------------------------------ */ 7237 /* Function: ipf_geniter */ 7238 /* Returns: int - 0 = success, else error */ 7239 /* Parameters: token(I) - pointer to ipftoken structure */ 7240 /* itp(I) - pointer to ipfgeniter structure */ 7241 /* ifs - ipf stack instance */ 7242 /* */ 7243 /* Generic iterator called from ipf_genericiter. Currently only used for */ 7244 /* walking through list of fragments. */ 7245 /* ------------------------------------------------------------------------ */ 7246 int ipf_geniter(token, itp, ifs) 7247 ipftoken_t *token; 7248 ipfgeniter_t *itp; 7249 ipf_stack_t *ifs; 7250 { 7251 int error; 7252 7253 switch (itp->igi_type) 7254 { 7255 case IPFGENITER_FRAG : 7256 error = fr_nextfrag(token, itp, &ifs->ifs_ipfr_list, 7257 &ifs->ifs_ipfr_tail, &ifs->ifs_ipf_frag, 7258 ifs); 7259 break; 7260 default : 7261 error = EINVAL; 7262 break; 7263 } 7264 7265 return error; 7266 } 7267 7268 7269 /* ------------------------------------------------------------------------ */ 7270 /* Function: ipf_genericiter */ 7271 /* Returns: int - 0 = success, else error */ 7272 /* Parameters: data(I) - the token type to match */ 7273 /* uid(I) - uid owning the token */ 7274 /* ptr(I) - context pointer for the token */ 7275 /* ifs - ipf stack instance */ 7276 /* */ 7277 /* This function serves as a stepping stone between fr_ipf_ioctl and */ 7278 /* ipf_geniter when handling SIOCGENITER. It's role is to find the right */ 7279 /* token in the kernel for the process using the ioctl, and to use that */ 7280 /* token when calling ipf_geniter. */ 7281 /* ------------------------------------------------------------------------ */ 7282 int ipf_genericiter(data, uid, ctx, ifs) 7283 void *data, *ctx; 7284 int uid; 7285 ipf_stack_t *ifs; 7286 { 7287 ipftoken_t *token; 7288 ipfgeniter_t iter; 7289 int error; 7290 7291 error = fr_inobj(data, &iter, IPFOBJ_GENITER); 7292 if (error != 0) 7293 return error; 7294 7295 token = ipf_findtoken(iter.igi_type, uid, ctx, ifs); 7296 if (token != NULL) { 7297 token->ipt_subtype = iter.igi_type; 7298 error = ipf_geniter(token, &iter, ifs); 7299 } else 7300 error = EFAULT; 7301 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7302 7303 return error; 7304 } 7305 7306 7307 /* --------------------------------------------------------------------- */ 7308 /* Function: ipf_earlydrop */ 7309 /* Returns: number of dropped/removed entries from the queue */ 7310 /* Parameters: flushtype - which table we're cleaning (NAT or State) */ 7311 /* ifq - pointer to queue with entries to be deleted */ 7312 /* idletime - entry must be idle this long to be deleted */ 7313 /* ifs - ipf stack instance */ 7314 /* */ 7315 /* Function is invoked from state/NAT flush routines to remove entries */ 7316 /* from specified timeout queue, based on how long they've sat idle, */ 7317 /* without waiting for it to happen on its own. */ 7318 /* --------------------------------------------------------------------- */ 7319 int ipf_earlydrop(flushtype, ifq, idletime, ifs) 7320 int flushtype; 7321 ipftq_t *ifq; 7322 int idletime; 7323 ipf_stack_t *ifs; 7324 { 7325 ipftqent_t *tqe, *tqn; 7326 unsigned int dropped; 7327 int droptick; 7328 void *ent; 7329 7330 if (ifq == NULL) 7331 return (0); 7332 7333 dropped = 0; 7334 7335 /* 7336 * Determine the tick representing the idle time we're interested 7337 * in. If an entry exists in the queue, and it was touched before 7338 * that tick, then it's been idle longer than idletime, so it should 7339 * be deleted. 7340 */ 7341 droptick = ifs->ifs_fr_ticks - idletime; 7342 tqn = ifq->ifq_head; 7343 while ((tqe = tqn) != NULL && tqe->tqe_touched < droptick) { 7344 tqn = tqe->tqe_next; 7345 ent = tqe->tqe_parent; 7346 switch (flushtype) 7347 { 7348 case NAT_FLUSH: 7349 if (nat_delete((nat_t *)ent, NL_FLUSH, ifs) == 0) 7350 dropped++; 7351 break; 7352 case STATE_FLUSH: 7353 if (fr_delstate((ipstate_t *)ent, ISL_FLUSH, ifs) == 0) 7354 dropped++; 7355 break; 7356 default: 7357 return (0); 7358 } 7359 } 7360 return (dropped); 7361 } 7362 7363 7364 /* --------------------------------------------------------------------- */ 7365 /* Function: ipf_flushclosing */ 7366 /* Returns: int - number of entries deleted */ 7367 /* Parameters: flushtype - which table we're cleaning (NAT or State) */ 7368 /* stateval - TCP state at which to start removing entries */ 7369 /* ipfqs - pointer to timeout queues */ 7370 /* userqs - pointer to user defined queues */ 7371 /* ifs - ipf stack instance */ 7372 /* */ 7373 /* Remove state/NAT table entries for TCP connections which are in the */ 7374 /* process of closing, and have at least reached the state specified by */ 7375 /* the 'stateval' parameter. */ 7376 /* --------------------------------------------------------------------- */ 7377 int ipf_flushclosing(flushtype, stateval, ipfqs, userqs, ifs) 7378 int flushtype, stateval; 7379 ipftq_t *ipfqs, *userqs; 7380 ipf_stack_t *ifs; 7381 { 7382 ipftq_t *ifq, *ifqn; 7383 ipftqent_t *tqe, *tqn; 7384 int dropped; 7385 void *ent; 7386 nat_t *nat; 7387 ipstate_t *is; 7388 7389 dropped = 0; 7390 7391 /* 7392 * Start by deleting any entries in specific timeout queues. 7393 */ 7394 ifqn = &ipfqs[stateval]; 7395 while ((ifq = ifqn) != NULL) { 7396 ifqn = ifq->ifq_next; 7397 dropped += ipf_earlydrop(flushtype, ifq, (int)0, ifs); 7398 } 7399 7400 /* 7401 * Next, look through user defined queues for closing entries. 7402 */ 7403 ifqn = userqs; 7404 while ((ifq = ifqn) != NULL) { 7405 ifqn = ifq->ifq_next; 7406 tqn = ifq->ifq_head; 7407 while ((tqe = tqn) != NULL) { 7408 tqn = tqe->tqe_next; 7409 ent = tqe->tqe_parent; 7410 switch (flushtype) 7411 { 7412 case NAT_FLUSH: 7413 nat = (nat_t *)ent; 7414 if ((nat->nat_p == IPPROTO_TCP) && 7415 (nat->nat_tcpstate[0] >= stateval) && 7416 (nat->nat_tcpstate[1] >= stateval) && 7417 (nat_delete(nat, NL_EXPIRE, ifs) == 0)) 7418 dropped++; 7419 break; 7420 case STATE_FLUSH: 7421 is = (ipstate_t *)ent; 7422 if ((is->is_p == IPPROTO_TCP) && 7423 (is->is_state[0] >= stateval) && 7424 (is->is_state[1] >= stateval) && 7425 (fr_delstate(is, ISL_EXPIRE, ifs) == 0)) 7426 dropped++; 7427 break; 7428 default: 7429 return (0); 7430 } 7431 } 7432 } 7433 return (dropped); 7434 } 7435 7436 7437 /* --------------------------------------------------------------------- */ 7438 /* Function: ipf_extraflush */ 7439 /* Returns: int - number of entries flushed (0 = none) */ 7440 /* Parameters: flushtype - which table we're cleaning (NAT or State) */ 7441 /* ipfqs - pointer to 'established' timeout queue */ 7442 /* userqs - pointer to user defined queues */ 7443 /* ifs - ipf stack instance */ 7444 /* */ 7445 /* This function gets called when either NAT or state tables fill up. */ 7446 /* We need to try a bit harder to free up some space. The function will */ 7447 /* flush entries for TCP connections which have been idle a long time. */ 7448 /* */ 7449 /* Currently, the idle time is checked using values from ideltime_tab[] */ 7450 /* --------------------------------------------------------------------- */ 7451 int ipf_extraflush(flushtype, ipfqs, userqs, ifs) 7452 int flushtype; 7453 ipftq_t *ipfqs, *userqs; 7454 ipf_stack_t *ifs; 7455 { 7456 ipftq_t *ifq, *ifqn; 7457 int idletime, removed, idle_idx; 7458 7459 removed = 0; 7460 7461 /* 7462 * Determine initial threshold for minimum idle time based on 7463 * how long ipfilter has been running. Ipfilter needs to have 7464 * been up as long as the smallest interval to continue on. 7465 * 7466 * Minimum idle times stored in idletime_tab and indexed by 7467 * idle_idx. Start at upper end of array and work backwards. 7468 * 7469 * Once the index is found, set the initial idle time to the 7470 * first interval before the current ipfilter run time. 7471 */ 7472 if (ifs->ifs_fr_ticks < idletime_tab[0]) 7473 return (0); 7474 idle_idx = (sizeof (idletime_tab) / sizeof (int)) - 1; 7475 if (ifs->ifs_fr_ticks > idletime_tab[idle_idx]) { 7476 idletime = idletime_tab[idle_idx]; 7477 } else { 7478 while ((idle_idx > 0) && 7479 (ifs->ifs_fr_ticks < idletime_tab[idle_idx])) 7480 idle_idx--; 7481 7482 idletime = (ifs->ifs_fr_ticks / 7483 idletime_tab[idle_idx]) * 7484 idletime_tab[idle_idx]; 7485 } 7486 7487 while (idle_idx >= 0) { 7488 /* 7489 * Check to see if we need to delete more entries. 7490 * If we do, start with appropriate timeout queue. 7491 */ 7492 if (flushtype == NAT_FLUSH) { 7493 if (NAT_TAB_WATER_LEVEL(ifs) <= 7494 ifs->ifs_nat_flush_level_lo) 7495 break; 7496 } else if (flushtype == STATE_FLUSH) { 7497 if (ST_TAB_WATER_LEVEL(ifs) <= 7498 ifs->ifs_state_flush_level_lo) 7499 break; 7500 } else { 7501 break; 7502 } 7503 7504 removed += ipf_earlydrop(flushtype, ipfqs, idletime, ifs); 7505 7506 /* 7507 * Next, check the user defined queues. But first, make 7508 * certain that timeout queue deletions didn't do enough. 7509 */ 7510 if (flushtype == NAT_FLUSH) { 7511 if (NAT_TAB_WATER_LEVEL(ifs) <= 7512 ifs->ifs_nat_flush_level_lo) 7513 break; 7514 } else { 7515 if (ST_TAB_WATER_LEVEL(ifs) <= 7516 ifs->ifs_state_flush_level_lo) 7517 break; 7518 } 7519 ifqn = userqs; 7520 while ((ifq = ifqn) != NULL) { 7521 ifqn = ifq->ifq_next; 7522 removed += ipf_earlydrop(flushtype, ifq, idletime, ifs); 7523 } 7524 7525 /* 7526 * Adjust the granularity of idle time. 7527 * 7528 * If we reach an interval boundary, we need to 7529 * either adjust the idle time accordingly or exit 7530 * the loop altogether (if this is very last check). 7531 */ 7532 idletime -= idletime_tab[idle_idx]; 7533 if (idletime < idletime_tab[idle_idx]) { 7534 if (idle_idx != 0) { 7535 idletime = idletime_tab[idle_idx] - 7536 idletime_tab[idle_idx - 1]; 7537 idle_idx--; 7538 } else { 7539 break; 7540 } 7541 } 7542 } 7543 7544 return (removed); 7545 } 7546