1 /* 2 * Copyright (C) 1993-2003 by Darren Reed. 3 * 4 * See the IPFILTER.LICENCE file for details on licencing. 5 * 6 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 7 * 8 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 9 */ 10 11 #if defined(KERNEL) || defined(_KERNEL) 12 # undef KERNEL 13 # undef _KERNEL 14 # define KERNEL 1 15 # define _KERNEL 1 16 #endif 17 #include <sys/errno.h> 18 #include <sys/types.h> 19 #include <sys/param.h> 20 #include <sys/time.h> 21 #if defined(__NetBSD__) 22 # if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL) 23 # include "opt_ipfilter_log.h" 24 # endif 25 #endif 26 #if defined(_KERNEL) && defined(__FreeBSD_version) && \ 27 (__FreeBSD_version >= 220000) 28 # if (__FreeBSD_version >= 400000) 29 # if !defined(IPFILTER_LKM) 30 # include "opt_inet6.h" 31 # endif 32 # if (__FreeBSD_version == 400019) 33 # define CSUM_DELAY_DATA 34 # endif 35 # endif 36 # include <sys/filio.h> 37 #else 38 # include <sys/ioctl.h> 39 #endif 40 #if !defined(_AIX51) 41 # include <sys/fcntl.h> 42 #endif 43 #if defined(_KERNEL) 44 # include <sys/systm.h> 45 # include <sys/file.h> 46 #else 47 # include <stdio.h> 48 # include <string.h> 49 # include <stdlib.h> 50 # include <stddef.h> 51 # include <sys/file.h> 52 # define _KERNEL 53 # ifdef __OpenBSD__ 54 struct file; 55 # endif 56 # include <sys/uio.h> 57 # undef _KERNEL 58 #endif 59 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \ 60 !defined(linux) 61 # include <sys/mbuf.h> 62 #else 63 # if !defined(linux) 64 # include <sys/byteorder.h> 65 # endif 66 # if (SOLARIS2 < 5) && defined(sun) 67 # include <sys/dditypes.h> 68 # endif 69 #endif 70 #ifdef __hpux 71 # define _NET_ROUTE_INCLUDED 72 #endif 73 #if !defined(linux) 74 # include <sys/protosw.h> 75 #endif 76 #include <sys/socket.h> 77 #include <net/if.h> 78 #ifdef sun 79 # include <net/af.h> 80 #endif 81 #if !defined(_KERNEL) && defined(__FreeBSD__) 82 # include "radix_ipf.h" 83 #endif 84 #include <net/route.h> 85 #include <netinet/in.h> 86 #include <netinet/in_systm.h> 87 #include <netinet/ip.h> 88 #if !defined(linux) 89 # include <netinet/ip_var.h> 90 #endif 91 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */ 92 # include <sys/hashing.h> 93 # include <netinet/in_var.h> 94 #endif 95 #include <netinet/tcp.h> 96 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL) 97 # include <netinet/udp.h> 98 # include <netinet/ip_icmp.h> 99 #endif 100 #ifdef __hpux 101 # undef _NET_ROUTE_INCLUDED 102 #endif 103 #include "netinet/ip_compat.h" 104 #ifdef USE_INET6 105 # include <netinet/icmp6.h> 106 # if !defined(SOLARIS) && defined(_KERNEL) && !defined(__osf__) && \ 107 !defined(__hpux) 108 # include <netinet6/in6_var.h> 109 # endif 110 #endif 111 #include <netinet/tcpip.h> 112 #include "netinet/ip_fil.h" 113 #include "netinet/ip_nat.h" 114 #include "netinet/ip_frag.h" 115 #include "netinet/ip_state.h" 116 #include "netinet/ip_proxy.h" 117 #include "netinet/ip_auth.h" 118 #include "netinet/ipf_stack.h" 119 #ifdef IPFILTER_SCAN 120 # include "netinet/ip_scan.h" 121 #endif 122 #ifdef IPFILTER_SYNC 123 # include "netinet/ip_sync.h" 124 #endif 125 #include "netinet/ip_pool.h" 126 #include "netinet/ip_htable.h" 127 #ifdef IPFILTER_COMPILED 128 # include "netinet/ip_rules.h" 129 #endif 130 #if defined(IPFILTER_BPF) && defined(_KERNEL) 131 # include <net/bpf.h> 132 #endif 133 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000) 134 # include <sys/malloc.h> 135 # if defined(_KERNEL) && !defined(IPFILTER_LKM) 136 # include "opt_ipfilter.h" 137 # endif 138 #endif 139 #include "netinet/ipl.h" 140 #if defined(_KERNEL) 141 #include <sys/sunddi.h> 142 #endif 143 /* END OF INCLUDES */ 144 145 #if !defined(lint) 146 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed"; 147 static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $"; 148 #endif 149 150 #ifndef _KERNEL 151 # include "ipf.h" 152 # include "ipt.h" 153 # include "bpf-ipf.h" 154 extern int opts; 155 156 # define FR_VERBOSE(verb_pr) verbose verb_pr 157 # define FR_DEBUG(verb_pr) debug verb_pr 158 #else /* #ifndef _KERNEL */ 159 # define FR_VERBOSE(verb_pr) 160 # define FR_DEBUG(verb_pr) 161 #endif /* _KERNEL */ 162 163 164 char ipfilter_version[] = IPL_VERSION; 165 int fr_features = 0 166 #ifdef IPFILTER_LKM 167 | IPF_FEAT_LKM 168 #endif 169 #ifdef IPFILTER_LOG 170 | IPF_FEAT_LOG 171 #endif 172 #ifdef IPFILTER_LOOKUP 173 | IPF_FEAT_LOOKUP 174 #endif 175 #ifdef IPFILTER_BPF 176 | IPF_FEAT_BPF 177 #endif 178 #ifdef IPFILTER_COMPILED 179 | IPF_FEAT_COMPILED 180 #endif 181 #ifdef IPFILTER_CKSUM 182 | IPF_FEAT_CKSUM 183 #endif 184 #ifdef IPFILTER_SYNC 185 | IPF_FEAT_SYNC 186 #endif 187 #ifdef IPFILTER_SCAN 188 | IPF_FEAT_SCAN 189 #endif 190 #ifdef USE_INET6 191 | IPF_FEAT_IPV6 192 #endif 193 ; 194 195 #define IPF_BUMP(x) (x)++ 196 197 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int)); 198 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int)); 199 static int fr_portcheck __P((frpcmp_t *, u_short *)); 200 static int frflushlist __P((int, minor_t, int *, frentry_t **, 201 ipf_stack_t *)); 202 static ipfunc_t fr_findfunc __P((ipfunc_t)); 203 static frentry_t *fr_firewall __P((fr_info_t *, u_32_t *)); 204 static int fr_funcinit __P((frentry_t *fr, ipf_stack_t *)); 205 static INLINE void frpr_ah __P((fr_info_t *)); 206 static INLINE void frpr_esp __P((fr_info_t *)); 207 static INLINE void frpr_gre __P((fr_info_t *)); 208 static INLINE void frpr_udp __P((fr_info_t *)); 209 static INLINE void frpr_tcp __P((fr_info_t *)); 210 static INLINE void frpr_icmp __P((fr_info_t *)); 211 static INLINE void frpr_ipv4hdr __P((fr_info_t *)); 212 static INLINE int frpr_pullup __P((fr_info_t *, int)); 213 static INLINE void frpr_short __P((fr_info_t *, int)); 214 static INLINE void frpr_tcpcommon __P((fr_info_t *)); 215 static INLINE void frpr_udpcommon __P((fr_info_t *)); 216 static INLINE int fr_updateipid __P((fr_info_t *)); 217 #ifdef IPFILTER_LOOKUP 218 static int fr_grpmapinit __P((frentry_t *fr, ipf_stack_t *)); 219 static INLINE void *fr_resolvelookup __P((u_int, u_int, lookupfunc_t *, 220 ipf_stack_t *)); 221 #endif 222 static void frsynclist __P((int, int, void *, char *, frentry_t *, 223 ipf_stack_t *)); 224 static void *fr_ifsync __P((int, int, char *, char *, 225 void *, void *, ipf_stack_t *)); 226 static ipftuneable_t *fr_findtunebyname __P((const char *, ipf_stack_t *)); 227 static ipftuneable_t *fr_findtunebycookie __P((void *, void **, ipf_stack_t *)); 228 229 /* 230 * bit values for identifying presence of individual IP options 231 * All of these tables should be ordered by increasing key value on the left 232 * hand side to allow for binary searching of the array and include a trailer 233 * with a 0 for the bitmask for linear searches to easily find the end with. 234 */ 235 const struct optlist ipopts[20] = { 236 { IPOPT_NOP, 0x000001 }, 237 { IPOPT_RR, 0x000002 }, 238 { IPOPT_ZSU, 0x000004 }, 239 { IPOPT_MTUP, 0x000008 }, 240 { IPOPT_MTUR, 0x000010 }, 241 { IPOPT_ENCODE, 0x000020 }, 242 { IPOPT_TS, 0x000040 }, 243 { IPOPT_TR, 0x000080 }, 244 { IPOPT_SECURITY, 0x000100 }, 245 { IPOPT_LSRR, 0x000200 }, 246 { IPOPT_E_SEC, 0x000400 }, 247 { IPOPT_CIPSO, 0x000800 }, 248 { IPOPT_SATID, 0x001000 }, 249 { IPOPT_SSRR, 0x002000 }, 250 { IPOPT_ADDEXT, 0x004000 }, 251 { IPOPT_VISA, 0x008000 }, 252 { IPOPT_IMITD, 0x010000 }, 253 { IPOPT_EIP, 0x020000 }, 254 { IPOPT_FINN, 0x040000 }, 255 { 0, 0x000000 } 256 }; 257 258 #ifdef USE_INET6 259 struct optlist ip6exthdr[] = { 260 { IPPROTO_HOPOPTS, 0x000001 }, 261 { IPPROTO_IPV6, 0x000002 }, 262 { IPPROTO_ROUTING, 0x000004 }, 263 { IPPROTO_FRAGMENT, 0x000008 }, 264 { IPPROTO_ESP, 0x000010 }, 265 { IPPROTO_AH, 0x000020 }, 266 { IPPROTO_NONE, 0x000040 }, 267 { IPPROTO_DSTOPTS, 0x000080 }, 268 { 0, 0 } 269 }; 270 #endif 271 272 struct optlist tcpopts[] = { 273 { TCPOPT_NOP, 0x000001 }, 274 { TCPOPT_MAXSEG, 0x000002 }, 275 { TCPOPT_WINDOW, 0x000004 }, 276 { TCPOPT_SACK_PERMITTED, 0x000008 }, 277 { TCPOPT_SACK, 0x000010 }, 278 { TCPOPT_TIMESTAMP, 0x000020 }, 279 { 0, 0x000000 } 280 }; 281 282 /* 283 * bit values for identifying presence of individual IP security options 284 */ 285 const struct optlist secopt[8] = { 286 { IPSO_CLASS_RES4, 0x01 }, 287 { IPSO_CLASS_TOPS, 0x02 }, 288 { IPSO_CLASS_SECR, 0x04 }, 289 { IPSO_CLASS_RES3, 0x08 }, 290 { IPSO_CLASS_CONF, 0x10 }, 291 { IPSO_CLASS_UNCL, 0x20 }, 292 { IPSO_CLASS_RES2, 0x40 }, 293 { IPSO_CLASS_RES1, 0x80 } 294 }; 295 296 297 /* 298 * Table of functions available for use with call rules. 299 */ 300 static ipfunc_resolve_t fr_availfuncs[] = { 301 #ifdef IPFILTER_LOOKUP 302 { "fr_srcgrpmap", fr_srcgrpmap, fr_grpmapinit }, 303 { "fr_dstgrpmap", fr_dstgrpmap, fr_grpmapinit }, 304 #endif 305 { "", NULL } 306 }; 307 308 309 /* 310 * Below we declare a list of constants used only by the ipf_extraflush() 311 * routine. We are placing it here, instead of in ipf_extraflush() itself, 312 * because we want to make it visible to tools such as mdb, nm etc., so the 313 * values can easily be altered during debugging. 314 */ 315 static const int idletime_tab[] = { 316 IPF_TTLVAL(30), /* 30 seconds */ 317 IPF_TTLVAL(1800), /* 30 minutes */ 318 IPF_TTLVAL(43200), /* 12 hours */ 319 IPF_TTLVAL(345600), /* 4 days */ 320 }; 321 322 323 /* 324 * The next section of code is a a collection of small routines that set 325 * fields in the fr_info_t structure passed based on properties of the 326 * current packet. There are different routines for the same protocol 327 * for each of IPv4 and IPv6. Adding a new protocol, for which there 328 * will "special" inspection for setup, is now more easily done by adding 329 * a new routine and expanding the frpr_ipinit*() function rather than by 330 * adding more code to a growing switch statement. 331 */ 332 #ifdef USE_INET6 333 static INLINE int frpr_ah6 __P((fr_info_t *)); 334 static INLINE void frpr_esp6 __P((fr_info_t *)); 335 static INLINE void frpr_gre6 __P((fr_info_t *)); 336 static INLINE void frpr_udp6 __P((fr_info_t *)); 337 static INLINE void frpr_tcp6 __P((fr_info_t *)); 338 static INLINE void frpr_icmp6 __P((fr_info_t *)); 339 static INLINE void frpr_ipv6hdr __P((fr_info_t *)); 340 static INLINE void frpr_short6 __P((fr_info_t *, int)); 341 static INLINE int frpr_hopopts6 __P((fr_info_t *)); 342 static INLINE int frpr_routing6 __P((fr_info_t *)); 343 static INLINE int frpr_dstopts6 __P((fr_info_t *)); 344 static INLINE int frpr_fragment6 __P((fr_info_t *)); 345 static INLINE int frpr_ipv6exthdr __P((fr_info_t *, int, int)); 346 347 348 /* ------------------------------------------------------------------------ */ 349 /* Function: frpr_short6 */ 350 /* Returns: void */ 351 /* Parameters: fin(I) - pointer to packet information */ 352 /* */ 353 /* IPv6 Only */ 354 /* This is function enforces the 'is a packet too short to be legit' rule */ 355 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */ 356 /* for frpr_short() for more details. */ 357 /* ------------------------------------------------------------------------ */ 358 static INLINE void frpr_short6(fin, xmin) 359 fr_info_t *fin; 360 int xmin; 361 { 362 363 if (fin->fin_dlen < xmin) 364 fin->fin_flx |= FI_SHORT; 365 } 366 367 368 /* ------------------------------------------------------------------------ */ 369 /* Function: frpr_ipv6hdr */ 370 /* Returns: Nil */ 371 /* Parameters: fin(I) - pointer to packet information */ 372 /* */ 373 /* IPv6 Only */ 374 /* Copy values from the IPv6 header into the fr_info_t struct and call the */ 375 /* per-protocol analyzer if it exists. */ 376 /* ------------------------------------------------------------------------ */ 377 static INLINE void frpr_ipv6hdr(fin) 378 fr_info_t *fin; 379 { 380 ip6_t *ip6 = (ip6_t *)fin->fin_ip; 381 int p, go = 1, i, hdrcount; 382 fr_ip_t *fi = &fin->fin_fi; 383 384 fin->fin_off = 0; 385 386 fi->fi_tos = 0; 387 fi->fi_optmsk = 0; 388 fi->fi_secmsk = 0; 389 fi->fi_auth = 0; 390 391 p = ip6->ip6_nxt; 392 fi->fi_ttl = ip6->ip6_hlim; 393 fi->fi_src.in6 = ip6->ip6_src; 394 fi->fi_dst.in6 = ip6->ip6_dst; 395 fin->fin_id = 0; 396 397 hdrcount = 0; 398 while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) { 399 switch (p) 400 { 401 case IPPROTO_UDP : 402 frpr_udp6(fin); 403 go = 0; 404 break; 405 406 case IPPROTO_TCP : 407 frpr_tcp6(fin); 408 go = 0; 409 break; 410 411 case IPPROTO_ICMPV6 : 412 frpr_icmp6(fin); 413 go = 0; 414 break; 415 416 case IPPROTO_GRE : 417 frpr_gre6(fin); 418 go = 0; 419 break; 420 421 case IPPROTO_HOPOPTS : 422 /* 423 * hop by hop ext header is only allowed 424 * right after IPv6 header. 425 */ 426 if (hdrcount != 0) { 427 fin->fin_flx |= FI_BAD; 428 p = IPPROTO_NONE; 429 } else { 430 p = frpr_hopopts6(fin); 431 } 432 break; 433 434 case IPPROTO_DSTOPTS : 435 p = frpr_dstopts6(fin); 436 break; 437 438 case IPPROTO_ROUTING : 439 p = frpr_routing6(fin); 440 break; 441 442 case IPPROTO_AH : 443 p = frpr_ah6(fin); 444 break; 445 446 case IPPROTO_ESP : 447 frpr_esp6(fin); 448 go = 0; 449 break; 450 451 case IPPROTO_IPV6 : 452 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 453 if (ip6exthdr[i].ol_val == p) { 454 fin->fin_flx |= ip6exthdr[i].ol_bit; 455 break; 456 } 457 go = 0; 458 break; 459 460 case IPPROTO_NONE : 461 go = 0; 462 break; 463 464 case IPPROTO_FRAGMENT : 465 p = frpr_fragment6(fin); 466 if (fin->fin_off != 0) /* Not the first frag */ 467 go = 0; 468 break; 469 470 default : 471 go = 0; 472 break; 473 } 474 hdrcount++; 475 476 /* 477 * It is important to note that at this point, for the 478 * extension headers (go != 0), the entire header may not have 479 * been pulled up when the code gets to this point. This is 480 * only done for "go != 0" because the other header handlers 481 * will all pullup their complete header. The other indicator 482 * of an incomplete packet is that this was just an extension 483 * header. 484 */ 485 if ((go != 0) && (p != IPPROTO_NONE) && 486 (frpr_pullup(fin, 0) == -1)) { 487 p = IPPROTO_NONE; 488 go = 0; 489 } 490 } 491 fi->fi_p = p; 492 } 493 494 495 /* ------------------------------------------------------------------------ */ 496 /* Function: frpr_ipv6exthdr */ 497 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 498 /* Parameters: fin(I) - pointer to packet information */ 499 /* multiple(I) - flag indicating yes/no if multiple occurances */ 500 /* of this extension header are allowed. */ 501 /* proto(I) - protocol number for this extension header */ 502 /* */ 503 /* IPv6 Only */ 504 /* This function expects to find an IPv6 extension header at fin_dp. */ 505 /* There must be at least 8 bytes of data at fin_dp for there to be a valid */ 506 /* extension header present. If a good one is found, fin_dp is advanced to */ 507 /* point at the first piece of data after the extension header, fin_exthdr */ 508 /* points to the start of the extension header and the "protocol" of the */ 509 /* *NEXT* header is returned. */ 510 /* ------------------------------------------------------------------------ */ 511 static INLINE int frpr_ipv6exthdr(fin, multiple, proto) 512 fr_info_t *fin; 513 int multiple, proto; 514 { 515 struct ip6_ext *hdr; 516 u_short shift; 517 int i; 518 519 fin->fin_flx |= FI_V6EXTHDR; 520 521 /* 8 is default length of extension hdr */ 522 if ((fin->fin_dlen - 8) < 0) { 523 fin->fin_flx |= FI_SHORT; 524 return IPPROTO_NONE; 525 } 526 527 if (frpr_pullup(fin, 8) == -1) 528 return IPPROTO_NONE; 529 530 hdr = fin->fin_dp; 531 shift = 8 + (hdr->ip6e_len << 3); 532 if (shift > fin->fin_dlen) { /* Nasty extension header length? */ 533 fin->fin_flx |= FI_BAD; 534 return IPPROTO_NONE; 535 } 536 537 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 538 if (ip6exthdr[i].ol_val == proto) { 539 /* 540 * Most IPv6 extension headers are only allowed once. 541 */ 542 if ((multiple == 0) && 543 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) 544 fin->fin_flx |= FI_BAD; 545 else 546 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 547 break; 548 } 549 550 fin->fin_dp = (char *)fin->fin_dp + shift; 551 fin->fin_dlen -= shift; 552 553 return hdr->ip6e_nxt; 554 } 555 556 557 /* ------------------------------------------------------------------------ */ 558 /* Function: frpr_hopopts6 */ 559 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 560 /* Parameters: fin(I) - pointer to packet information */ 561 /* */ 562 /* IPv6 Only */ 563 /* This is function checks pending hop by hop options extension header */ 564 /* ------------------------------------------------------------------------ */ 565 static INLINE int frpr_hopopts6(fin) 566 fr_info_t *fin; 567 { 568 return frpr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); 569 } 570 571 572 /* ------------------------------------------------------------------------ */ 573 /* Function: frpr_routing6 */ 574 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 575 /* Parameters: fin(I) - pointer to packet information */ 576 /* */ 577 /* IPv6 Only */ 578 /* This is function checks pending routing extension header */ 579 /* ------------------------------------------------------------------------ */ 580 static INLINE int frpr_routing6(fin) 581 fr_info_t *fin; 582 { 583 struct ip6_ext *hdr; 584 int shift; 585 586 hdr = fin->fin_dp; 587 if (frpr_ipv6exthdr(fin, 0, IPPROTO_ROUTING) == IPPROTO_NONE) 588 return IPPROTO_NONE; 589 590 shift = 8 + (hdr->ip6e_len << 3); 591 /* 592 * Nasty extension header length? 593 */ 594 if ((hdr->ip6e_len << 3) & 15) { 595 fin->fin_flx |= FI_BAD; 596 /* 597 * Compensate for the changes made in frpr_ipv6exthdr() 598 */ 599 fin->fin_dlen += shift; 600 fin->fin_dp = (char *)fin->fin_dp - shift; 601 return IPPROTO_NONE; 602 } 603 604 return hdr->ip6e_nxt; 605 } 606 607 608 /* ------------------------------------------------------------------------ */ 609 /* Function: frpr_fragment6 */ 610 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 611 /* Parameters: fin(I) - pointer to packet information */ 612 /* */ 613 /* IPv6 Only */ 614 /* Examine the IPv6 fragment header and extract fragment offset information.*/ 615 /* */ 616 /* We don't know where the transport layer header (or whatever is next is), */ 617 /* as it could be behind destination options (amongst others). Because */ 618 /* there is no fragment cache, there is no knowledge about whether or not an*/ 619 /* upper layer header has been seen (or where it ends) and thus we are not */ 620 /* able to continue processing beyond this header with any confidence. */ 621 /* ------------------------------------------------------------------------ */ 622 static INLINE int frpr_fragment6(fin) 623 fr_info_t *fin; 624 { 625 struct ip6_frag *frag; 626 627 fin->fin_flx |= FI_FRAG; 628 629 /* 630 * A fragmented IPv6 packet implies that there must be something 631 * else after the fragment. 632 */ 633 if (frpr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT) == IPPROTO_NONE) 634 return IPPROTO_NONE; 635 636 frag = (struct ip6_frag *)((char *)fin->fin_dp - sizeof(*frag)); 637 638 /* 639 * If this fragment isn't the last then the packet length must 640 * be a multiple of 8. 641 */ 642 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) { 643 fin->fin_flx |= FI_MOREFRAG; 644 645 if ((fin->fin_plen & 0x7) != 0) 646 fin->fin_flx |= FI_BAD; 647 } 648 649 fin->fin_id = frag->ip6f_ident; 650 fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK); 651 if (fin->fin_off != 0) 652 fin->fin_flx |= FI_FRAGBODY; 653 654 return frag->ip6f_nxt; 655 } 656 657 658 /* ------------------------------------------------------------------------ */ 659 /* Function: frpr_dstopts6 */ 660 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 661 /* Parameters: fin(I) - pointer to packet information */ 662 /* nextheader(I) - stores next header value */ 663 /* */ 664 /* IPv6 Only */ 665 /* This is function checks pending destination options extension header */ 666 /* ------------------------------------------------------------------------ */ 667 static INLINE int frpr_dstopts6(fin) 668 fr_info_t *fin; 669 { 670 return frpr_ipv6exthdr(fin, 1, IPPROTO_DSTOPTS); 671 } 672 673 674 /* ------------------------------------------------------------------------ */ 675 /* Function: frpr_icmp6 */ 676 /* Returns: void */ 677 /* Parameters: fin(I) - pointer to packet information */ 678 /* */ 679 /* IPv6 Only */ 680 /* This routine is mainly concerned with determining the minimum valid size */ 681 /* for an ICMPv6 packet. */ 682 /* ------------------------------------------------------------------------ */ 683 static INLINE void frpr_icmp6(fin) 684 fr_info_t *fin; 685 { 686 int minicmpsz = sizeof(struct icmp6_hdr); 687 struct icmp6_hdr *icmp6; 688 689 if (frpr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) 690 return; 691 692 if (fin->fin_dlen > 1) { 693 icmp6 = fin->fin_dp; 694 695 fin->fin_data[0] = *(u_short *)icmp6; 696 697 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0) 698 fin->fin_flx |= FI_ICMPQUERY; 699 700 switch (icmp6->icmp6_type) 701 { 702 case ICMP6_ECHO_REPLY : 703 case ICMP6_ECHO_REQUEST : 704 if (fin->fin_dlen >= 6) 705 fin->fin_data[1] = icmp6->icmp6_id; 706 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t); 707 break; 708 case ICMP6_DST_UNREACH : 709 case ICMP6_PACKET_TOO_BIG : 710 case ICMP6_TIME_EXCEEDED : 711 case ICMP6_PARAM_PROB : 712 if ((fin->fin_m != NULL) && 713 (M_LEN(fin->fin_m) < fin->fin_plen)) { 714 if (fr_coalesce(fin) != 1) 715 return; 716 } 717 fin->fin_flx |= FI_ICMPERR; 718 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t); 719 break; 720 default : 721 break; 722 } 723 } 724 725 frpr_short6(fin, minicmpsz); 726 } 727 728 729 /* ------------------------------------------------------------------------ */ 730 /* Function: frpr_udp6 */ 731 /* Returns: void */ 732 /* Parameters: fin(I) - pointer to packet information */ 733 /* */ 734 /* IPv6 Only */ 735 /* Analyse the packet for IPv6/UDP properties. */ 736 /* Is not expected to be called for fragmented packets. */ 737 /* ------------------------------------------------------------------------ */ 738 static INLINE void frpr_udp6(fin) 739 fr_info_t *fin; 740 { 741 742 fr_checkv6sum(fin); 743 744 frpr_short6(fin, sizeof(struct udphdr)); 745 if (frpr_pullup(fin, sizeof(struct udphdr)) == -1) 746 return; 747 748 frpr_udpcommon(fin); 749 } 750 751 752 /* ------------------------------------------------------------------------ */ 753 /* Function: frpr_tcp6 */ 754 /* Returns: void */ 755 /* Parameters: fin(I) - pointer to packet information */ 756 /* */ 757 /* IPv6 Only */ 758 /* Analyse the packet for IPv6/TCP properties. */ 759 /* Is not expected to be called for fragmented packets. */ 760 /* ------------------------------------------------------------------------ */ 761 static INLINE void frpr_tcp6(fin) 762 fr_info_t *fin; 763 { 764 765 fr_checkv6sum(fin); 766 767 frpr_short6(fin, sizeof(struct tcphdr)); 768 if (frpr_pullup(fin, sizeof(struct tcphdr)) == -1) 769 return; 770 771 frpr_tcpcommon(fin); 772 } 773 774 775 /* ------------------------------------------------------------------------ */ 776 /* Function: frpr_esp6 */ 777 /* Returns: void */ 778 /* Parameters: fin(I) - pointer to packet information */ 779 /* */ 780 /* IPv6 Only */ 781 /* Analyse the packet for ESP properties. */ 782 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 783 /* even though the newer ESP packets must also have a sequence number that */ 784 /* is 32bits as well, it is not possible(?) to determine the version from a */ 785 /* simple packet header. */ 786 /* ------------------------------------------------------------------------ */ 787 static INLINE void frpr_esp6(fin) 788 fr_info_t *fin; 789 { 790 int i; 791 frpr_short6(fin, sizeof(grehdr_t)); 792 793 (void) frpr_pullup(fin, 8); 794 795 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 796 if (ip6exthdr[i].ol_val == IPPROTO_ESP) { 797 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 798 break; 799 } 800 } 801 802 803 /* ------------------------------------------------------------------------ */ 804 /* Function: frpr_ah6 */ 805 /* Returns: void */ 806 /* Parameters: fin(I) - pointer to packet information */ 807 /* */ 808 /* IPv6 Only */ 809 /* Analyse the packet for AH properties. */ 810 /* The minimum length is taken to be the combination of all fields in the */ 811 /* header being present and no authentication data (null algorithm used.) */ 812 /* ------------------------------------------------------------------------ */ 813 static INLINE int frpr_ah6(fin) 814 fr_info_t *fin; 815 { 816 authhdr_t *ah; 817 int i, shift; 818 819 frpr_short6(fin, 12); 820 821 if (frpr_pullup(fin, sizeof(*ah)) == -1) 822 return IPPROTO_NONE; 823 824 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 825 if (ip6exthdr[i].ol_val == IPPROTO_AH) { 826 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 827 break; 828 } 829 830 ah = (authhdr_t *)fin->fin_dp; 831 832 shift = (ah->ah_plen + 2) * 4; 833 fin->fin_dlen -= shift; 834 fin->fin_dp = (char*)fin->fin_dp + shift; 835 836 return ah->ah_next; 837 } 838 839 840 /* ------------------------------------------------------------------------ */ 841 /* Function: frpr_gre6 */ 842 /* Returns: void */ 843 /* Parameters: fin(I) - pointer to packet information */ 844 /* */ 845 /* Analyse the packet for GRE properties. */ 846 /* ------------------------------------------------------------------------ */ 847 static INLINE void frpr_gre6(fin) 848 fr_info_t *fin; 849 { 850 grehdr_t *gre; 851 852 frpr_short6(fin, sizeof(grehdr_t)); 853 854 if (frpr_pullup(fin, sizeof(grehdr_t)) == -1) 855 return; 856 857 gre = fin->fin_dp; 858 if (GRE_REV(gre->gr_flags) == 1) 859 fin->fin_data[0] = gre->gr_call; 860 } 861 #endif /* USE_INET6 */ 862 863 864 /* ------------------------------------------------------------------------ */ 865 /* Function: frpr_pullup */ 866 /* Returns: int - 0 == pullup succeeded, -1 == failure */ 867 /* Parameters: fin(I) - pointer to packet information */ 868 /* plen(I) - length (excluding L3 header) to pullup */ 869 /* */ 870 /* Short inline function to cut down on code duplication to perform a call */ 871 /* to fr_pullup to ensure there is the required amount of data, */ 872 /* consecutively in the packet buffer. */ 873 /* ------------------------------------------------------------------------ */ 874 static INLINE int frpr_pullup(fin, plen) 875 fr_info_t *fin; 876 int plen; 877 { 878 #if defined(_KERNEL) 879 if (fin->fin_m != NULL) { 880 int ipoff; 881 882 ipoff = (char *)fin->fin_ip - MTOD(fin->fin_m, char *); 883 884 if (fin->fin_dp != NULL) 885 plen += (char *)fin->fin_dp - 886 ((char *)fin->fin_ip + fin->fin_hlen); 887 plen += fin->fin_hlen; 888 /* 889 * We don't do 'plen += ipoff;' here. The fr_pullup() will 890 * do it for us. 891 */ 892 if (M_LEN(fin->fin_m) < plen + ipoff) { 893 if (fr_pullup(fin->fin_m, fin, plen) == NULL) 894 return -1; 895 } 896 } 897 #endif 898 return 0; 899 } 900 901 902 /* ------------------------------------------------------------------------ */ 903 /* Function: frpr_short */ 904 /* Returns: void */ 905 /* Parameters: fin(I) - pointer to packet information */ 906 /* xmin(I) - minimum header size */ 907 /* */ 908 /* Check if a packet is "short" as defined by xmin. The rule we are */ 909 /* applying here is that the packet must not be fragmented within the layer */ 910 /* 4 header. That is, it must not be a fragment that has its offset set to */ 911 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */ 912 /* entire layer 4 header must be present (min). */ 913 /* ------------------------------------------------------------------------ */ 914 static INLINE void frpr_short(fin, xmin) 915 fr_info_t *fin; 916 int xmin; 917 { 918 919 if (fin->fin_off == 0) { 920 if (fin->fin_dlen < xmin) 921 fin->fin_flx |= FI_SHORT; 922 } else if (fin->fin_off < xmin) { 923 fin->fin_flx |= FI_SHORT; 924 } 925 } 926 927 928 /* ------------------------------------------------------------------------ */ 929 /* Function: frpr_icmp */ 930 /* Returns: void */ 931 /* Parameters: fin(I) - pointer to packet information */ 932 /* */ 933 /* IPv4 Only */ 934 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */ 935 /* except extrememly bad packets, both type and code will be present. */ 936 /* The expected minimum size of an ICMP packet is very much dependent on */ 937 /* the type of it. */ 938 /* */ 939 /* XXX - other ICMP sanity checks? */ 940 /* ------------------------------------------------------------------------ */ 941 static INLINE void frpr_icmp(fin) 942 fr_info_t *fin; 943 { 944 int minicmpsz = sizeof(struct icmp); 945 icmphdr_t *icmp; 946 ip_t *oip; 947 ipf_stack_t *ifs = fin->fin_ifs; 948 949 if (fin->fin_off != 0) { 950 frpr_short(fin, ICMPERR_ICMPHLEN); 951 return; 952 } 953 954 if (frpr_pullup(fin, ICMPERR_ICMPHLEN) == -1) 955 return; 956 957 fr_checkv4sum(fin); 958 959 /* 960 * This is a right place to set icmp pointer, since the memory 961 * referenced by fin_dp could get reallocated. The code down below can 962 * rely on fact icmp variable always points to ICMP header. 963 */ 964 icmp = fin->fin_dp; 965 fin->fin_data[0] = *(u_short *)icmp; 966 fin->fin_data[1] = icmp->icmp_id; 967 968 switch (icmp->icmp_type) 969 { 970 case ICMP_ECHOREPLY : 971 case ICMP_ECHO : 972 /* Router discovery messaes - RFC 1256 */ 973 case ICMP_ROUTERADVERT : 974 case ICMP_ROUTERSOLICIT : 975 minicmpsz = ICMP_MINLEN; 976 break; 977 /* 978 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 979 * 3 * timestamp(3 * 4) 980 */ 981 case ICMP_TSTAMP : 982 case ICMP_TSTAMPREPLY : 983 minicmpsz = 20; 984 break; 985 /* 986 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 987 * mask(4) 988 */ 989 case ICMP_MASKREQ : 990 case ICMP_MASKREPLY : 991 minicmpsz = 12; 992 break; 993 /* 994 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+) 995 */ 996 case ICMP_UNREACH : 997 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) { 998 if (icmp->icmp_nextmtu < ifs->ifs_fr_icmpminfragmtu) 999 fin->fin_flx |= FI_BAD; 1000 } 1001 /* FALLTHRU */ 1002 case ICMP_SOURCEQUENCH : 1003 case ICMP_REDIRECT : 1004 case ICMP_TIMXCEED : 1005 case ICMP_PARAMPROB : 1006 fin->fin_flx |= FI_ICMPERR; 1007 if (fr_coalesce(fin) != 1) 1008 return; 1009 /* 1010 * ICMP error packets should not be generated for IP 1011 * packets that are a fragment that isn't the first 1012 * fragment. 1013 */ 1014 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN); 1015 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) 1016 fin->fin_flx |= FI_BAD; 1017 break; 1018 default : 1019 break; 1020 } 1021 1022 frpr_short(fin, minicmpsz); 1023 } 1024 1025 1026 /* ------------------------------------------------------------------------ */ 1027 /* Function: frpr_tcpcommon */ 1028 /* Returns: void */ 1029 /* Parameters: fin(I) - pointer to packet information */ 1030 /* */ 1031 /* TCP header sanity checking. Look for bad combinations of TCP flags, */ 1032 /* and make some checks with how they interact with other fields. */ 1033 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */ 1034 /* valid and mark the packet as bad if not. */ 1035 /* ------------------------------------------------------------------------ */ 1036 static INLINE void frpr_tcpcommon(fin) 1037 fr_info_t *fin; 1038 { 1039 int flags, tlen; 1040 tcphdr_t *tcp; 1041 1042 fin->fin_flx |= FI_TCPUDP; 1043 if (fin->fin_off != 0) 1044 return; 1045 1046 if (frpr_pullup(fin, sizeof(*tcp)) == -1) 1047 return; 1048 tcp = fin->fin_dp; 1049 1050 if (fin->fin_dlen > 3) { 1051 fin->fin_sport = ntohs(tcp->th_sport); 1052 fin->fin_dport = ntohs(tcp->th_dport); 1053 } 1054 1055 if ((fin->fin_flx & FI_SHORT) != 0) 1056 return; 1057 1058 /* 1059 * Use of the TCP data offset *must* result in a value that is at 1060 * least the same size as the TCP header. 1061 */ 1062 tlen = TCP_OFF(tcp) << 2; 1063 if (tlen < sizeof(tcphdr_t)) { 1064 fin->fin_flx |= FI_BAD; 1065 return; 1066 } 1067 1068 flags = tcp->th_flags; 1069 fin->fin_tcpf = tcp->th_flags; 1070 1071 /* 1072 * If the urgent flag is set, then the urgent pointer must 1073 * also be set and vice versa. Good TCP packets do not have 1074 * just one of these set. 1075 */ 1076 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) { 1077 fin->fin_flx |= FI_BAD; 1078 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) { 1079 /* Ignore this case, it shows up in "real" traffic with */ 1080 /* bogus values in the urgent pointer field. */ 1081 flags = flags; /* LINT */ 1082 } else if (((flags & (TH_SYN|TH_FIN)) != 0) && 1083 ((flags & (TH_RST|TH_ACK)) == TH_RST)) { 1084 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */ 1085 fin->fin_flx |= FI_BAD; 1086 } else if (!(flags & TH_ACK)) { 1087 /* 1088 * If the ack bit isn't set, then either the SYN or 1089 * RST bit must be set. If the SYN bit is set, then 1090 * we expect the ACK field to be 0. If the ACK is 1091 * not set and if URG, PSH or FIN are set, consdier 1092 * that to indicate a bad TCP packet. 1093 */ 1094 if ((flags == TH_SYN) && (tcp->th_ack != 0)) { 1095 /* 1096 * Cisco PIX sets the ACK field to a random value. 1097 * In light of this, do not set FI_BAD until a patch 1098 * is available from Cisco to ensure that 1099 * interoperability between existing systems is 1100 * achieved. 1101 */ 1102 /*fin->fin_flx |= FI_BAD*/; 1103 flags = flags; /* LINT */ 1104 } else if (!(flags & (TH_RST|TH_SYN))) { 1105 fin->fin_flx |= FI_BAD; 1106 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) { 1107 fin->fin_flx |= FI_BAD; 1108 } 1109 } 1110 1111 /* 1112 * At this point, it's not exactly clear what is to be gained by 1113 * marking up which TCP options are and are not present. The one we 1114 * are most interested in is the TCP window scale. This is only in 1115 * a SYN packet [RFC1323] so we don't need this here...? 1116 * Now if we were to analyse the header for passive fingerprinting, 1117 * then that might add some weight to adding this... 1118 */ 1119 if (tlen == sizeof(tcphdr_t)) 1120 return; 1121 1122 if (frpr_pullup(fin, tlen) == -1) 1123 return; 1124 1125 #if 0 1126 ip = fin->fin_ip; 1127 s = (u_char *)(tcp + 1); 1128 off = IP_HL(ip) << 2; 1129 # ifdef _KERNEL 1130 if (fin->fin_mp != NULL) { 1131 mb_t *m = *fin->fin_mp; 1132 1133 if (off + tlen > M_LEN(m)) 1134 return; 1135 } 1136 # endif 1137 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) { 1138 opt = *s; 1139 if (opt == '\0') 1140 break; 1141 else if (opt == TCPOPT_NOP) 1142 ol = 1; 1143 else { 1144 if (tlen < 2) 1145 break; 1146 ol = (int)*(s + 1); 1147 if (ol < 2 || ol > tlen) 1148 break; 1149 } 1150 1151 for (i = 9, mv = 4; mv >= 0; ) { 1152 op = ipopts + i; 1153 if (opt == (u_char)op->ol_val) { 1154 optmsk |= op->ol_bit; 1155 break; 1156 } 1157 } 1158 tlen -= ol; 1159 s += ol; 1160 } 1161 #endif /* 0 */ 1162 } 1163 1164 1165 1166 /* ------------------------------------------------------------------------ */ 1167 /* Function: frpr_udpcommon */ 1168 /* Returns: void */ 1169 /* Parameters: fin(I) - pointer to packet information */ 1170 /* */ 1171 /* Extract the UDP source and destination ports, if present. If compiled */ 1172 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */ 1173 /* ------------------------------------------------------------------------ */ 1174 static INLINE void frpr_udpcommon(fin) 1175 fr_info_t *fin; 1176 { 1177 udphdr_t *udp; 1178 1179 fin->fin_flx |= FI_TCPUDP; 1180 1181 if (!fin->fin_off && (fin->fin_dlen > 3)) { 1182 if (frpr_pullup(fin, sizeof(*udp)) == -1) { 1183 fin->fin_flx |= FI_SHORT; 1184 return; 1185 } 1186 1187 udp = fin->fin_dp; 1188 1189 fin->fin_sport = ntohs(udp->uh_sport); 1190 fin->fin_dport = ntohs(udp->uh_dport); 1191 } 1192 } 1193 1194 1195 /* ------------------------------------------------------------------------ */ 1196 /* Function: frpr_tcp */ 1197 /* Returns: void */ 1198 /* Parameters: fin(I) - pointer to packet information */ 1199 /* */ 1200 /* IPv4 Only */ 1201 /* Analyse the packet for IPv4/TCP properties. */ 1202 /* ------------------------------------------------------------------------ */ 1203 static INLINE void frpr_tcp(fin) 1204 fr_info_t *fin; 1205 { 1206 1207 fr_checkv4sum(fin); 1208 1209 frpr_short(fin, sizeof(tcphdr_t)); 1210 1211 frpr_tcpcommon(fin); 1212 } 1213 1214 1215 /* ------------------------------------------------------------------------ */ 1216 /* Function: frpr_udp */ 1217 /* Returns: void */ 1218 /* Parameters: fin(I) - pointer to packet information */ 1219 /* */ 1220 /* IPv4 Only */ 1221 /* Analyse the packet for IPv4/UDP properties. */ 1222 /* ------------------------------------------------------------------------ */ 1223 static INLINE void frpr_udp(fin) 1224 fr_info_t *fin; 1225 { 1226 1227 fr_checkv4sum(fin); 1228 1229 frpr_short(fin, sizeof(udphdr_t)); 1230 1231 frpr_udpcommon(fin); 1232 } 1233 1234 1235 /* ------------------------------------------------------------------------ */ 1236 /* Function: frpr_esp */ 1237 /* Returns: void */ 1238 /* Parameters: fin(I) - pointer to packet information */ 1239 /* */ 1240 /* Analyse the packet for ESP properties. */ 1241 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 1242 /* even though the newer ESP packets must also have a sequence number that */ 1243 /* is 32bits as well, it is not possible(?) to determine the version from a */ 1244 /* simple packet header. */ 1245 /* ------------------------------------------------------------------------ */ 1246 static INLINE void frpr_esp(fin) 1247 fr_info_t *fin; 1248 { 1249 if ((fin->fin_off == 0) && (frpr_pullup(fin, 8) == -1)) 1250 return; 1251 1252 frpr_short(fin, 8); 1253 } 1254 1255 1256 /* ------------------------------------------------------------------------ */ 1257 /* Function: frpr_ah */ 1258 /* Returns: void */ 1259 /* Parameters: fin(I) - pointer to packet information */ 1260 /* */ 1261 /* Analyse the packet for AH properties. */ 1262 /* The minimum length is taken to be the combination of all fields in the */ 1263 /* header being present and no authentication data (null algorithm used.) */ 1264 /* ------------------------------------------------------------------------ */ 1265 static INLINE void frpr_ah(fin) 1266 fr_info_t *fin; 1267 { 1268 authhdr_t *ah; 1269 int len; 1270 1271 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(*ah)) == -1)) 1272 return; 1273 1274 ah = (authhdr_t *)fin->fin_dp; 1275 1276 len = (ah->ah_plen + 2) << 2; 1277 frpr_short(fin, len); 1278 } 1279 1280 1281 /* ------------------------------------------------------------------------ */ 1282 /* Function: frpr_gre */ 1283 /* Returns: void */ 1284 /* Parameters: fin(I) - pointer to packet information */ 1285 /* */ 1286 /* Analyse the packet for GRE properties. */ 1287 /* ------------------------------------------------------------------------ */ 1288 static INLINE void frpr_gre(fin) 1289 fr_info_t *fin; 1290 { 1291 grehdr_t *gre; 1292 1293 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(grehdr_t)) == -1)) 1294 return; 1295 1296 frpr_short(fin, sizeof(grehdr_t)); 1297 1298 if (fin->fin_off == 0) { 1299 gre = fin->fin_dp; 1300 if (GRE_REV(gre->gr_flags) == 1) 1301 fin->fin_data[0] = gre->gr_call; 1302 } 1303 } 1304 1305 1306 /* ------------------------------------------------------------------------ */ 1307 /* Function: frpr_ipv4hdr */ 1308 /* Returns: void */ 1309 /* Parameters: fin(I) - pointer to packet information */ 1310 /* */ 1311 /* IPv4 Only */ 1312 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */ 1313 /* Check all options present and flag their presence if any exist. */ 1314 /* ------------------------------------------------------------------------ */ 1315 static INLINE void frpr_ipv4hdr(fin) 1316 fr_info_t *fin; 1317 { 1318 u_short optmsk = 0, secmsk = 0, auth = 0; 1319 int hlen, ol, mv, p, i; 1320 const struct optlist *op; 1321 u_char *s, opt; 1322 u_short off; 1323 fr_ip_t *fi; 1324 ip_t *ip; 1325 1326 fi = &fin->fin_fi; 1327 hlen = fin->fin_hlen; 1328 1329 ip = fin->fin_ip; 1330 p = ip->ip_p; 1331 fi->fi_p = p; 1332 fi->fi_tos = ip->ip_tos; 1333 fin->fin_id = ip->ip_id; 1334 off = ip->ip_off; 1335 1336 /* Get both TTL and protocol */ 1337 fi->fi_p = ip->ip_p; 1338 fi->fi_ttl = ip->ip_ttl; 1339 #if 0 1340 (*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4)); 1341 #endif 1342 1343 /* Zero out bits not used in IPv6 address */ 1344 fi->fi_src.i6[1] = 0; 1345 fi->fi_src.i6[2] = 0; 1346 fi->fi_src.i6[3] = 0; 1347 fi->fi_dst.i6[1] = 0; 1348 fi->fi_dst.i6[2] = 0; 1349 fi->fi_dst.i6[3] = 0; 1350 1351 fi->fi_saddr = ip->ip_src.s_addr; 1352 fi->fi_daddr = ip->ip_dst.s_addr; 1353 1354 /* 1355 * set packet attribute flags based on the offset and 1356 * calculate the byte offset that it represents. 1357 */ 1358 off &= IP_MF|IP_OFFMASK; 1359 if (off != 0) { 1360 int morefrag = off & IP_MF; 1361 1362 fi->fi_flx |= FI_FRAG; 1363 if (morefrag) 1364 fi->fi_flx |= FI_MOREFRAG; 1365 off &= IP_OFFMASK; 1366 if (off != 0) { 1367 fin->fin_flx |= FI_FRAGBODY; 1368 off <<= 3; 1369 if ((off + fin->fin_dlen > 65535) || 1370 (fin->fin_dlen == 0) || 1371 ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) { 1372 /* 1373 * The length of the packet, starting at its 1374 * offset cannot exceed 65535 (0xffff) as the 1375 * length of an IP packet is only 16 bits. 1376 * 1377 * Any fragment that isn't the last fragment 1378 * must have a length greater than 0 and it 1379 * must be an even multiple of 8. 1380 */ 1381 fi->fi_flx |= FI_BAD; 1382 } 1383 } 1384 } 1385 fin->fin_off = off; 1386 1387 /* 1388 * Call per-protocol setup and checking 1389 */ 1390 switch (p) 1391 { 1392 case IPPROTO_UDP : 1393 frpr_udp(fin); 1394 break; 1395 case IPPROTO_TCP : 1396 frpr_tcp(fin); 1397 break; 1398 case IPPROTO_ICMP : 1399 frpr_icmp(fin); 1400 break; 1401 case IPPROTO_AH : 1402 frpr_ah(fin); 1403 break; 1404 case IPPROTO_ESP : 1405 frpr_esp(fin); 1406 break; 1407 case IPPROTO_GRE : 1408 frpr_gre(fin); 1409 break; 1410 } 1411 1412 ip = fin->fin_ip; 1413 if (ip == NULL) 1414 return; 1415 1416 /* 1417 * If it is a standard IP header (no options), set the flag fields 1418 * which relate to options to 0. 1419 */ 1420 if (hlen == sizeof(*ip)) { 1421 fi->fi_optmsk = 0; 1422 fi->fi_secmsk = 0; 1423 fi->fi_auth = 0; 1424 return; 1425 } 1426 1427 /* 1428 * So the IP header has some IP options attached. Walk the entire 1429 * list of options present with this packet and set flags to indicate 1430 * which ones are here and which ones are not. For the somewhat out 1431 * of date and obscure security classification options, set a flag to 1432 * represent which classification is present. 1433 */ 1434 fi->fi_flx |= FI_OPTIONS; 1435 1436 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) { 1437 opt = *s; 1438 if (opt == '\0') 1439 break; 1440 else if (opt == IPOPT_NOP) 1441 ol = 1; 1442 else { 1443 if (hlen < 2) 1444 break; 1445 ol = (int)*(s + 1); 1446 if (ol < 2 || ol > hlen) 1447 break; 1448 } 1449 for (i = 9, mv = 4; mv >= 0; ) { 1450 op = ipopts + i; 1451 if ((opt == (u_char)op->ol_val) && (ol > 4)) { 1452 optmsk |= op->ol_bit; 1453 if (opt == IPOPT_SECURITY) { 1454 const struct optlist *sp; 1455 u_char sec; 1456 int j, m; 1457 1458 sec = *(s + 2); /* classification */ 1459 for (j = 3, m = 2; m >= 0; ) { 1460 sp = secopt + j; 1461 if (sec == sp->ol_val) { 1462 secmsk |= sp->ol_bit; 1463 auth = *(s + 3); 1464 auth *= 256; 1465 auth += *(s + 4); 1466 break; 1467 } 1468 if (sec < sp->ol_val) 1469 j -= m; 1470 else 1471 j += m; 1472 m--; 1473 } 1474 } 1475 break; 1476 } 1477 if (opt < op->ol_val) 1478 i -= mv; 1479 else 1480 i += mv; 1481 mv--; 1482 } 1483 hlen -= ol; 1484 s += ol; 1485 } 1486 1487 /* 1488 * 1489 */ 1490 if (auth && !(auth & 0x0100)) 1491 auth &= 0xff00; 1492 fi->fi_optmsk = optmsk; 1493 fi->fi_secmsk = secmsk; 1494 fi->fi_auth = auth; 1495 } 1496 1497 1498 /* ------------------------------------------------------------------------ */ 1499 /* Function: fr_makefrip */ 1500 /* Returns: int - 1 == hdr checking error, 0 == OK */ 1501 /* Parameters: hlen(I) - length of IP packet header */ 1502 /* ip(I) - pointer to the IP header */ 1503 /* fin(IO) - pointer to packet information */ 1504 /* */ 1505 /* Compact the IP header into a structure which contains just the info. */ 1506 /* which is useful for comparing IP headers with and store this information */ 1507 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */ 1508 /* this function will be called with either an IPv4 or IPv6 packet. */ 1509 /* ------------------------------------------------------------------------ */ 1510 int fr_makefrip(hlen, ip, fin) 1511 int hlen; 1512 ip_t *ip; 1513 fr_info_t *fin; 1514 { 1515 int v; 1516 1517 fin->fin_depth = 0; 1518 fin->fin_hlen = (u_short)hlen; 1519 fin->fin_ip = ip; 1520 fin->fin_rule = 0xffffffff; 1521 fin->fin_group[0] = -1; 1522 fin->fin_group[1] = '\0'; 1523 fin->fin_dlen = fin->fin_plen - hlen; 1524 fin->fin_dp = (char *)ip + hlen; 1525 1526 v = fin->fin_v; 1527 if (v == 4) 1528 frpr_ipv4hdr(fin); 1529 #ifdef USE_INET6 1530 else if (v == 6) 1531 frpr_ipv6hdr(fin); 1532 #endif 1533 if (fin->fin_ip == NULL) 1534 return -1; 1535 return 0; 1536 } 1537 1538 1539 /* ------------------------------------------------------------------------ */ 1540 /* Function: fr_portcheck */ 1541 /* Returns: int - 1 == port matched, 0 == port match failed */ 1542 /* Parameters: frp(I) - pointer to port check `expression' */ 1543 /* pop(I) - pointer to port number to evaluate */ 1544 /* */ 1545 /* Perform a comparison of a port number against some other(s), using a */ 1546 /* structure with compare information stored in it. */ 1547 /* ------------------------------------------------------------------------ */ 1548 static INLINE int fr_portcheck(frp, pop) 1549 frpcmp_t *frp; 1550 u_short *pop; 1551 { 1552 u_short tup, po; 1553 int err = 1; 1554 1555 tup = *pop; 1556 po = frp->frp_port; 1557 1558 /* 1559 * Do opposite test to that required and continue if that succeeds. 1560 */ 1561 switch (frp->frp_cmp) 1562 { 1563 case FR_EQUAL : 1564 if (tup != po) /* EQUAL */ 1565 err = 0; 1566 break; 1567 case FR_NEQUAL : 1568 if (tup == po) /* NOTEQUAL */ 1569 err = 0; 1570 break; 1571 case FR_LESST : 1572 if (tup >= po) /* LESSTHAN */ 1573 err = 0; 1574 break; 1575 case FR_GREATERT : 1576 if (tup <= po) /* GREATERTHAN */ 1577 err = 0; 1578 break; 1579 case FR_LESSTE : 1580 if (tup > po) /* LT or EQ */ 1581 err = 0; 1582 break; 1583 case FR_GREATERTE : 1584 if (tup < po) /* GT or EQ */ 1585 err = 0; 1586 break; 1587 case FR_OUTRANGE : 1588 if (tup >= po && tup <= frp->frp_top) /* Out of range */ 1589 err = 0; 1590 break; 1591 case FR_INRANGE : 1592 if (tup <= po || tup >= frp->frp_top) /* In range */ 1593 err = 0; 1594 break; 1595 case FR_INCRANGE : 1596 if (tup < po || tup > frp->frp_top) /* Inclusive range */ 1597 err = 0; 1598 break; 1599 default : 1600 break; 1601 } 1602 return err; 1603 } 1604 1605 1606 /* ------------------------------------------------------------------------ */ 1607 /* Function: fr_tcpudpchk */ 1608 /* Returns: int - 1 == protocol matched, 0 == check failed */ 1609 /* Parameters: fin(I) - pointer to packet information */ 1610 /* ft(I) - pointer to structure with comparison data */ 1611 /* */ 1612 /* Compares the current pcket (assuming it is TCP/UDP) information with a */ 1613 /* structure containing information that we want to match against. */ 1614 /* ------------------------------------------------------------------------ */ 1615 int fr_tcpudpchk(fin, ft) 1616 fr_info_t *fin; 1617 frtuc_t *ft; 1618 { 1619 int err = 1; 1620 1621 /* 1622 * Both ports should *always* be in the first fragment. 1623 * So far, I cannot find any cases where they can not be. 1624 * 1625 * compare destination ports 1626 */ 1627 if (ft->ftu_dcmp) 1628 err = fr_portcheck(&ft->ftu_dst, &fin->fin_dport); 1629 1630 /* 1631 * compare source ports 1632 */ 1633 if (err && ft->ftu_scmp) 1634 err = fr_portcheck(&ft->ftu_src, &fin->fin_sport); 1635 1636 /* 1637 * If we don't have all the TCP/UDP header, then how can we 1638 * expect to do any sort of match on it ? If we were looking for 1639 * TCP flags, then NO match. If not, then match (which should 1640 * satisfy the "short" class too). 1641 */ 1642 if (err && (fin->fin_p == IPPROTO_TCP)) { 1643 if (fin->fin_flx & FI_SHORT) 1644 return !(ft->ftu_tcpf | ft->ftu_tcpfm); 1645 /* 1646 * Match the flags ? If not, abort this match. 1647 */ 1648 if (ft->ftu_tcpfm && 1649 ft->ftu_tcpf != (fin->fin_tcpf & ft->ftu_tcpfm)) { 1650 FR_DEBUG(("f. %#x & %#x != %#x\n", fin->fin_tcpf, 1651 ft->ftu_tcpfm, ft->ftu_tcpf)); 1652 err = 0; 1653 } 1654 } 1655 return err; 1656 } 1657 1658 1659 /* ------------------------------------------------------------------------ */ 1660 /* Function: fr_ipfcheck */ 1661 /* Returns: int - 0 == match, 1 == no match */ 1662 /* Parameters: fin(I) - pointer to packet information */ 1663 /* fr(I) - pointer to filter rule */ 1664 /* portcmp(I) - flag indicating whether to attempt matching on */ 1665 /* TCP/UDP port data. */ 1666 /* */ 1667 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */ 1668 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */ 1669 /* this function. */ 1670 /* ------------------------------------------------------------------------ */ 1671 static INLINE int fr_ipfcheck(fin, fr, portcmp) 1672 fr_info_t *fin; 1673 frentry_t *fr; 1674 int portcmp; 1675 { 1676 u_32_t *ld, *lm, *lip; 1677 fripf_t *fri; 1678 fr_ip_t *fi; 1679 int i; 1680 ipf_stack_t *ifs = fin->fin_ifs; 1681 1682 fi = &fin->fin_fi; 1683 fri = fr->fr_ipf; 1684 lip = (u_32_t *)fi; 1685 lm = (u_32_t *)&fri->fri_mip; 1686 ld = (u_32_t *)&fri->fri_ip; 1687 1688 /* 1689 * first 32 bits to check coversion: 1690 * IP version, TOS, TTL, protocol 1691 */ 1692 i = ((*lip & *lm) != *ld); 1693 FR_DEBUG(("0. %#08x & %#08x != %#08x\n", 1694 *lip, *lm, *ld)); 1695 if (i) 1696 return 1; 1697 1698 /* 1699 * Next 32 bits is a constructed bitmask indicating which IP options 1700 * are present (if any) in this packet. 1701 */ 1702 lip++, lm++, ld++; 1703 i |= ((*lip & *lm) != *ld); 1704 FR_DEBUG(("1. %#08x & %#08x != %#08x\n", 1705 *lip, *lm, *ld)); 1706 if (i) 1707 return 1; 1708 1709 lip++, lm++, ld++; 1710 /* 1711 * Unrolled loops (4 each, for 32 bits) for address checks. 1712 */ 1713 /* 1714 * Check the source address. 1715 */ 1716 #ifdef IPFILTER_LOOKUP 1717 if (fr->fr_satype == FRI_LOOKUP) { 1718 fin->fin_flx |= FI_DONTCACHE; 1719 i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip, fin, ifs); 1720 if (i == -1) 1721 return 1; 1722 lip += 3; 1723 lm += 3; 1724 ld += 3; 1725 } else { 1726 #endif 1727 i = ((*lip & *lm) != *ld); 1728 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n", 1729 *lip, *lm, *ld)); 1730 if (fi->fi_v == 6) { 1731 lip++, lm++, ld++; 1732 i |= ((*lip & *lm) != *ld); 1733 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n", 1734 *lip, *lm, *ld)); 1735 lip++, lm++, ld++; 1736 i |= ((*lip & *lm) != *ld); 1737 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n", 1738 *lip, *lm, *ld)); 1739 lip++, lm++, ld++; 1740 i |= ((*lip & *lm) != *ld); 1741 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n", 1742 *lip, *lm, *ld)); 1743 } else { 1744 lip += 3; 1745 lm += 3; 1746 ld += 3; 1747 } 1748 #ifdef IPFILTER_LOOKUP 1749 } 1750 #endif 1751 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6; 1752 if (i) 1753 return 1; 1754 1755 /* 1756 * Check the destination address. 1757 */ 1758 lip++, lm++, ld++; 1759 #ifdef IPFILTER_LOOKUP 1760 if (fr->fr_datype == FRI_LOOKUP) { 1761 fin->fin_flx |= FI_DONTCACHE; 1762 i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip, fin, ifs); 1763 if (i == -1) 1764 return 1; 1765 lip += 3; 1766 lm += 3; 1767 ld += 3; 1768 } else { 1769 #endif 1770 i = ((*lip & *lm) != *ld); 1771 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n", 1772 *lip, *lm, *ld)); 1773 if (fi->fi_v == 6) { 1774 lip++, lm++, ld++; 1775 i |= ((*lip & *lm) != *ld); 1776 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n", 1777 *lip, *lm, *ld)); 1778 lip++, lm++, ld++; 1779 i |= ((*lip & *lm) != *ld); 1780 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n", 1781 *lip, *lm, *ld)); 1782 lip++, lm++, ld++; 1783 i |= ((*lip & *lm) != *ld); 1784 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n", 1785 *lip, *lm, *ld)); 1786 } else { 1787 lip += 3; 1788 lm += 3; 1789 ld += 3; 1790 } 1791 #ifdef IPFILTER_LOOKUP 1792 } 1793 #endif 1794 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7; 1795 if (i) 1796 return 1; 1797 /* 1798 * IP addresses matched. The next 32bits contains: 1799 * mast of old IP header security & authentication bits. 1800 */ 1801 lip++, lm++, ld++; 1802 i |= ((*lip & *lm) != *ld); 1803 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", 1804 *lip, *lm, *ld)); 1805 1806 /* 1807 * Next we have 32 bits of packet flags. 1808 */ 1809 lip++, lm++, ld++; 1810 i |= ((*lip & *lm) != *ld); 1811 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", 1812 *lip, *lm, *ld)); 1813 1814 if (i == 0) { 1815 /* 1816 * If a fragment, then only the first has what we're 1817 * looking for here... 1818 */ 1819 if (portcmp) { 1820 if (!fr_tcpudpchk(fin, &fr->fr_tuc)) 1821 i = 1; 1822 } else { 1823 if (fr->fr_dcmp || fr->fr_scmp || 1824 fr->fr_tcpf || fr->fr_tcpfm) 1825 i = 1; 1826 if (fr->fr_icmpm || fr->fr_icmp) { 1827 if (((fi->fi_p != IPPROTO_ICMP) && 1828 (fi->fi_p != IPPROTO_ICMPV6)) || 1829 fin->fin_off || (fin->fin_dlen < 2)) 1830 i = 1; 1831 else if ((fin->fin_data[0] & fr->fr_icmpm) != 1832 fr->fr_icmp) { 1833 FR_DEBUG(("i. %#x & %#x != %#x\n", 1834 fin->fin_data[0], 1835 fr->fr_icmpm, fr->fr_icmp)); 1836 i = 1; 1837 } 1838 } 1839 } 1840 } 1841 return i; 1842 } 1843 1844 1845 /* ------------------------------------------------------------------------ */ 1846 /* Function: fr_scanlist */ 1847 /* Returns: int - result flags of scanning filter list */ 1848 /* Parameters: fin(I) - pointer to packet information */ 1849 /* pass(I) - default result to return for filtering */ 1850 /* */ 1851 /* Check the input/output list of rules for a match to the current packet. */ 1852 /* If a match is found, the value of fr_flags from the rule becomes the */ 1853 /* return value and fin->fin_fr points to the matched rule. */ 1854 /* */ 1855 /* This function may be called recusively upto 16 times (limit inbuilt.) */ 1856 /* When unwinding, it should finish up with fin_depth as 0. */ 1857 /* */ 1858 /* Could be per interface, but this gets real nasty when you don't have, */ 1859 /* or can't easily change, the kernel source code to . */ 1860 /* ------------------------------------------------------------------------ */ 1861 int fr_scanlist(fin, pass) 1862 fr_info_t *fin; 1863 u_32_t pass; 1864 { 1865 int rulen, portcmp, off, logged, skip; 1866 struct frentry *fr, *fnext; 1867 u_32_t passt, passo; 1868 ipf_stack_t *ifs = fin->fin_ifs; 1869 1870 /* 1871 * Do not allow nesting deeper than 16 levels. 1872 */ 1873 if (fin->fin_depth >= 16) 1874 return pass; 1875 1876 fr = fin->fin_fr; 1877 1878 /* 1879 * If there are no rules in this list, return now. 1880 */ 1881 if (fr == NULL) 1882 return pass; 1883 1884 skip = 0; 1885 logged = 0; 1886 portcmp = 0; 1887 fin->fin_depth++; 1888 fin->fin_fr = NULL; 1889 off = fin->fin_off; 1890 1891 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off) 1892 portcmp = 1; 1893 1894 for (rulen = 0; fr; fr = fnext, rulen++) { 1895 fnext = fr->fr_next; 1896 if (skip != 0) { 1897 FR_VERBOSE(("%d (%#x)\n", skip, fr->fr_flags)); 1898 skip--; 1899 continue; 1900 } 1901 1902 /* 1903 * In all checks below, a null (zero) value in the 1904 * filter struture is taken to mean a wildcard. 1905 * 1906 * check that we are working for the right interface 1907 */ 1908 #ifdef _KERNEL 1909 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 1910 continue; 1911 #else 1912 if (opts & (OPT_VERBOSE|OPT_DEBUG)) 1913 printf("\n"); 1914 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' : 1915 FR_ISPASS(pass) ? 'p' : 1916 FR_ISACCOUNT(pass) ? 'A' : 1917 FR_ISAUTH(pass) ? 'a' : 1918 (pass & FR_NOMATCH) ? 'n' :'b')); 1919 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 1920 continue; 1921 FR_VERBOSE((":i")); 1922 #endif 1923 1924 switch (fr->fr_type) 1925 { 1926 case FR_T_IPF : 1927 case FR_T_IPF|FR_T_BUILTIN : 1928 if (fr_ipfcheck(fin, fr, portcmp)) 1929 continue; 1930 break; 1931 #if defined(IPFILTER_BPF) 1932 case FR_T_BPFOPC : 1933 case FR_T_BPFOPC|FR_T_BUILTIN : 1934 { 1935 u_char *mc; 1936 1937 if (*fin->fin_mp == NULL) 1938 continue; 1939 if (fin->fin_v != fr->fr_v) 1940 continue; 1941 mc = (u_char *)fin->fin_m; 1942 if (!bpf_filter(fr->fr_data, mc, fin->fin_plen, 0)) 1943 continue; 1944 break; 1945 } 1946 #endif 1947 case FR_T_CALLFUNC|FR_T_BUILTIN : 1948 { 1949 frentry_t *f; 1950 1951 f = (*fr->fr_func)(fin, &pass); 1952 if (f != NULL) 1953 fr = f; 1954 else 1955 continue; 1956 break; 1957 } 1958 default : 1959 break; 1960 } 1961 1962 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { 1963 if (fin->fin_nattag == NULL) 1964 continue; 1965 if (fr_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0) 1966 continue; 1967 } 1968 FR_VERBOSE(("=%s.%d *", fr->fr_group, rulen)); 1969 1970 passt = fr->fr_flags; 1971 1972 /* 1973 * Allowing a rule with the "keep state" flag set to match 1974 * packets that have been tagged "out of window" by the TCP 1975 * state tracking is foolish as the attempt to add a new 1976 * state entry to the table will fail. 1977 */ 1978 if ((passt & FR_KEEPSTATE) && (fin->fin_flx & FI_OOW)) 1979 continue; 1980 1981 /* 1982 * If the rule is a "call now" rule, then call the function 1983 * in the rule, if it exists and use the results from that. 1984 * If the function pointer is bad, just make like we ignore 1985 * it, except for increasing the hit counter. 1986 */ 1987 IPF_BUMP(fr->fr_hits); 1988 fr->fr_bytes += (U_QUAD_T)fin->fin_plen; 1989 if ((passt & FR_CALLNOW) != 0) { 1990 if ((fr->fr_func != NULL) && 1991 (fr->fr_func != (ipfunc_t)-1)) { 1992 frentry_t *frs; 1993 1994 frs = fin->fin_fr; 1995 fin->fin_fr = fr; 1996 fr = (*fr->fr_func)(fin, &passt); 1997 if (fr == NULL) { 1998 fin->fin_fr = frs; 1999 continue; 2000 } 2001 passt = fr->fr_flags; 2002 fin->fin_fr = fr; 2003 } 2004 } else { 2005 fin->fin_fr = fr; 2006 } 2007 2008 #ifdef IPFILTER_LOG 2009 /* 2010 * Just log this packet... 2011 */ 2012 if ((passt & FR_LOGMASK) == FR_LOG) { 2013 if (ipflog(fin, passt) == -1) { 2014 if (passt & FR_LOGORBLOCK) { 2015 passt &= ~FR_CMDMASK; 2016 passt |= FR_BLOCK|FR_QUICK; 2017 } 2018 IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_skip); 2019 } 2020 IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_pkl); 2021 logged = 1; 2022 } 2023 #endif /* IPFILTER_LOG */ 2024 passo = pass; 2025 if (FR_ISSKIP(passt)) 2026 skip = fr->fr_arg; 2027 else if ((passt & FR_LOGMASK) != FR_LOG) 2028 pass = passt; 2029 if (passt & (FR_RETICMP|FR_FAKEICMP)) 2030 fin->fin_icode = fr->fr_icode; 2031 FR_DEBUG(("pass %#x\n", pass)); 2032 fin->fin_rule = rulen; 2033 (void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN); 2034 if (fr->fr_grp != NULL) { 2035 fin->fin_fr = *fr->fr_grp; 2036 pass = fr_scanlist(fin, pass); 2037 if (fin->fin_fr == NULL) { 2038 fin->fin_rule = rulen; 2039 (void) strncpy(fin->fin_group, fr->fr_group, 2040 FR_GROUPLEN); 2041 fin->fin_fr = fr; 2042 } 2043 if (fin->fin_flx & FI_DONTCACHE) 2044 logged = 1; 2045 } 2046 2047 if (pass & FR_QUICK) { 2048 /* 2049 * Finally, if we've asked to track state for this 2050 * packet, set it up. Add state for "quick" rules 2051 * here so that if the action fails we can consider 2052 * the rule to "not match" and keep on processing 2053 * filter rules. 2054 */ 2055 if ((pass & FR_KEEPSTATE) && 2056 !(fin->fin_flx & FI_STATE)) { 2057 int out = fin->fin_out; 2058 2059 if (fr_addstate(fin, NULL, 0) != NULL) { 2060 IPF_BUMP(ifs->ifs_frstats[out].fr_ads); 2061 } else { 2062 IPF_BUMP(ifs->ifs_frstats[out].fr_bads); 2063 pass = passo; 2064 continue; 2065 } 2066 } 2067 break; 2068 } 2069 } 2070 if (logged) 2071 fin->fin_flx |= FI_DONTCACHE; 2072 fin->fin_depth--; 2073 return pass; 2074 } 2075 2076 2077 /* ------------------------------------------------------------------------ */ 2078 /* Function: fr_acctpkt */ 2079 /* Returns: frentry_t* - always returns NULL */ 2080 /* Parameters: fin(I) - pointer to packet information */ 2081 /* passp(IO) - pointer to current/new filter decision (unused) */ 2082 /* */ 2083 /* Checks a packet against accounting rules, if there are any for the given */ 2084 /* IP protocol version. */ 2085 /* */ 2086 /* N.B.: this function returns NULL to match the prototype used by other */ 2087 /* functions called from the IPFilter "mainline" in fr_check(). */ 2088 /* ------------------------------------------------------------------------ */ 2089 frentry_t *fr_acctpkt(fin, passp) 2090 fr_info_t *fin; 2091 u_32_t *passp; 2092 { 2093 char group[FR_GROUPLEN]; 2094 frentry_t *fr, *frsave; 2095 u_32_t pass, rulen; 2096 ipf_stack_t *ifs = fin->fin_ifs; 2097 2098 passp = passp; 2099 #ifdef USE_INET6 2100 if (fin->fin_v == 6) 2101 fr = ifs->ifs_ipacct6[fin->fin_out][ifs->ifs_fr_active]; 2102 else 2103 #endif 2104 fr = ifs->ifs_ipacct[fin->fin_out][ifs->ifs_fr_active]; 2105 2106 if (fr != NULL) { 2107 frsave = fin->fin_fr; 2108 bcopy(fin->fin_group, group, FR_GROUPLEN); 2109 rulen = fin->fin_rule; 2110 fin->fin_fr = fr; 2111 pass = fr_scanlist(fin, FR_NOMATCH); 2112 if (FR_ISACCOUNT(pass)) { 2113 IPF_BUMP(ifs->ifs_frstats[0].fr_acct); 2114 } 2115 fin->fin_fr = frsave; 2116 bcopy(group, fin->fin_group, FR_GROUPLEN); 2117 fin->fin_rule = rulen; 2118 } 2119 return NULL; 2120 } 2121 2122 2123 /* ------------------------------------------------------------------------ */ 2124 /* Function: fr_firewall */ 2125 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */ 2126 /* were found, returns NULL. */ 2127 /* Parameters: fin(I) - pointer to packet information */ 2128 /* passp(IO) - pointer to current/new filter decision (unused) */ 2129 /* */ 2130 /* Applies an appropriate set of firewall rules to the packet, to see if */ 2131 /* there are any matches. The first check is to see if a match can be seen */ 2132 /* in the cache. If not, then search an appropriate list of rules. Once a */ 2133 /* matching rule is found, take any appropriate actions as defined by the */ 2134 /* rule - except logging. */ 2135 /* ------------------------------------------------------------------------ */ 2136 static frentry_t *fr_firewall(fin, passp) 2137 fr_info_t *fin; 2138 u_32_t *passp; 2139 { 2140 frentry_t *fr; 2141 fr_info_t *fc; 2142 u_32_t pass; 2143 int out; 2144 ipf_stack_t *ifs = fin->fin_ifs; 2145 2146 out = fin->fin_out; 2147 pass = *passp; 2148 2149 #ifdef USE_INET6 2150 if (fin->fin_v == 6) 2151 fin->fin_fr = ifs->ifs_ipfilter6[out][ifs->ifs_fr_active]; 2152 else 2153 #endif 2154 fin->fin_fr = ifs->ifs_ipfilter[out][ifs->ifs_fr_active]; 2155 2156 /* 2157 * If there are no rules loaded skip all checks and return. 2158 */ 2159 if (fin->fin_fr == NULL) { 2160 2161 if ((pass & FR_NOMATCH)) { 2162 IPF_BUMP(ifs->ifs_frstats[out].fr_nom); 2163 } 2164 2165 return (NULL); 2166 } 2167 2168 fc = &ifs->ifs_frcache[out][CACHE_HASH(fin)]; 2169 READ_ENTER(&ifs->ifs_ipf_frcache); 2170 if (!bcmp((char *)fin, (char *)fc, FI_CSIZE)) { 2171 /* 2172 * copy cached data so we can unlock the mutexes earlier. 2173 */ 2174 bcopy((char *)fc, (char *)fin, FI_COPYSIZE); 2175 RWLOCK_EXIT(&ifs->ifs_ipf_frcache); 2176 IPF_BUMP(ifs->ifs_frstats[out].fr_chit); 2177 2178 if ((fr = fin->fin_fr) != NULL) { 2179 IPF_BUMP(fr->fr_hits); 2180 fr->fr_bytes += (U_QUAD_T)fin->fin_plen; 2181 pass = fr->fr_flags; 2182 } 2183 } else { 2184 RWLOCK_EXIT(&ifs->ifs_ipf_frcache); 2185 2186 pass = fr_scanlist(fin, ifs->ifs_fr_pass); 2187 2188 if (((pass & FR_KEEPSTATE) == 0) && 2189 ((fin->fin_flx & FI_DONTCACHE) == 0)) { 2190 WRITE_ENTER(&ifs->ifs_ipf_frcache); 2191 bcopy((char *)fin, (char *)fc, FI_COPYSIZE); 2192 RWLOCK_EXIT(&ifs->ifs_ipf_frcache); 2193 } 2194 2195 fr = fin->fin_fr; 2196 } 2197 2198 if ((pass & FR_NOMATCH)) { 2199 IPF_BUMP(ifs->ifs_frstats[out].fr_nom); 2200 } 2201 2202 /* 2203 * Apply packets per second rate-limiting to a rule as required. 2204 */ 2205 if ((fr != NULL) && (fr->fr_pps != 0) && 2206 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) { 2207 pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST); 2208 pass |= FR_BLOCK; 2209 IPF_BUMP(ifs->ifs_frstats[out].fr_ppshit); 2210 } 2211 2212 /* 2213 * If we fail to add a packet to the authorization queue, then we 2214 * drop the packet later. However, if it was added then pretend 2215 * we've dropped it already. 2216 */ 2217 if (FR_ISAUTH(pass)) { 2218 if (fr_newauth(fin->fin_m, fin) != 0) { 2219 #ifdef _KERNEL 2220 fin->fin_m = *fin->fin_mp = NULL; 2221 #else 2222 ; 2223 #endif 2224 fin->fin_error = 0; 2225 } else 2226 fin->fin_error = ENOSPC; 2227 } 2228 2229 if ((fr != NULL) && (fr->fr_func != NULL) && 2230 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW)) 2231 (void) (*fr->fr_func)(fin, &pass); 2232 2233 /* 2234 * If a rule is a pre-auth rule, check again in the list of rules 2235 * loaded for authenticated use. It does not particulary matter 2236 * if this search fails because a "preauth" result, from a rule, 2237 * is treated as "not a pass", hence the packet is blocked. 2238 */ 2239 if (FR_ISPREAUTH(pass)) { 2240 if ((fin->fin_fr = ifs->ifs_ipauth) != NULL) 2241 pass = fr_scanlist(fin, ifs->ifs_fr_pass); 2242 } 2243 2244 /* 2245 * If the rule has "keep frag" and the packet is actually a fragment, 2246 * then create a fragment state entry. 2247 */ 2248 if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) { 2249 if (fin->fin_flx & FI_FRAG) { 2250 if (fr_newfrag(fin, pass) == -1) { 2251 IPF_BUMP(ifs->ifs_frstats[out].fr_bnfr); 2252 } else { 2253 IPF_BUMP(ifs->ifs_frstats[out].fr_nfr); 2254 } 2255 } else { 2256 IPF_BUMP(ifs->ifs_frstats[out].fr_cfr); 2257 } 2258 } 2259 2260 /* 2261 * Finally, if we've asked to track state for this packet, set it up. 2262 */ 2263 if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) { 2264 if (fr_addstate(fin, NULL, 0) != NULL) { 2265 IPF_BUMP(ifs->ifs_frstats[out].fr_ads); 2266 } else { 2267 IPF_BUMP(ifs->ifs_frstats[out].fr_bads); 2268 if (FR_ISPASS(pass)) { 2269 pass &= ~FR_CMDMASK; 2270 pass |= FR_BLOCK; 2271 } 2272 } 2273 } 2274 2275 fr = fin->fin_fr; 2276 2277 if (passp != NULL) 2278 *passp = pass; 2279 2280 return fr; 2281 } 2282 2283 /* ------------------------------------------------------------------------ */ 2284 /* Function: fr_check */ 2285 /* Returns: int - 0 == packet allowed through, */ 2286 /* User space: */ 2287 /* -1 == packet blocked */ 2288 /* 1 == packet not matched */ 2289 /* -2 == requires authentication */ 2290 /* Kernel: */ 2291 /* > 0 == filter error # for packet */ 2292 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */ 2293 /* hlen(I) - length of header */ 2294 /* ifp(I) - pointer to interface this packet is on */ 2295 /* out(I) - 0 == packet going in, 1 == packet going out */ 2296 /* mp(IO) - pointer to caller's buffer pointer that holds this */ 2297 /* IP packet. */ 2298 /* Solaris & HP-UX ONLY : */ 2299 /* qpi(I) - pointer to STREAMS queue information for this */ 2300 /* interface & direction. */ 2301 /* */ 2302 /* fr_check() is the master function for all IPFilter packet processing. */ 2303 /* It orchestrates: Network Address Translation (NAT), checking for packet */ 2304 /* authorisation (or pre-authorisation), presence of related state info., */ 2305 /* generating log entries, IP packet accounting, routing of packets as */ 2306 /* directed by firewall rules and of course whether or not to allow the */ 2307 /* packet to be further processed by the kernel. */ 2308 /* */ 2309 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */ 2310 /* freed. Packets passed may be returned with the pointer pointed to by */ 2311 /* by "mp" changed to a new buffer. */ 2312 /* ------------------------------------------------------------------------ */ 2313 int fr_check(ip, hlen, ifp, out 2314 #if defined(_KERNEL) && defined(MENTAT) 2315 , qif, mp, ifs) 2316 void *qif; 2317 #else 2318 , mp, ifs) 2319 #endif 2320 mb_t **mp; 2321 ip_t *ip; 2322 int hlen; 2323 void *ifp; 2324 int out; 2325 ipf_stack_t *ifs; 2326 { 2327 /* 2328 * The above really sucks, but short of writing a diff 2329 */ 2330 fr_info_t frinfo; 2331 fr_info_t *fin = &frinfo; 2332 u_32_t pass; 2333 frentry_t *fr = NULL; 2334 int v = IP_V(ip); 2335 mb_t *mc = NULL; 2336 mb_t *m; 2337 #ifdef USE_INET6 2338 ip6_t *ip6; 2339 #endif 2340 #ifdef _KERNEL 2341 # ifdef MENTAT 2342 qpktinfo_t *qpi = qif; 2343 #endif 2344 #endif 2345 2346 SPL_INT(s); 2347 pass = ifs->ifs_fr_pass; 2348 2349 /* 2350 * The first part of fr_check() deals with making sure that what goes 2351 * into the filtering engine makes some sense. Information about the 2352 * the packet is distilled, collected into a fr_info_t structure and 2353 * the an attempt to ensure the buffer the packet is in is big enough 2354 * to hold all the required packet headers. 2355 */ 2356 #ifdef _KERNEL 2357 # ifdef MENTAT 2358 if (!OK_32PTR(ip)) 2359 return 2; 2360 # endif 2361 2362 2363 if (ifs->ifs_fr_running <= 0) { 2364 return 0; 2365 } 2366 2367 bzero((char *)fin, sizeof(*fin)); 2368 2369 # ifdef MENTAT 2370 fin->fin_flx = qpi->qpi_flags & (FI_NOCKSUM|FI_MBCAST|FI_MULTICAST| 2371 FI_BROADCAST); 2372 m = qpi->qpi_m; 2373 fin->fin_qfm = m; 2374 fin->fin_qpi = qpi; 2375 # else /* MENTAT */ 2376 2377 m = *mp; 2378 2379 # if defined(M_MCAST) 2380 if ((m->m_flags & M_MCAST) != 0) 2381 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2382 # endif 2383 # if defined(M_MLOOP) 2384 if ((m->m_flags & M_MLOOP) != 0) 2385 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2386 # endif 2387 # if defined(M_BCAST) 2388 if ((m->m_flags & M_BCAST) != 0) 2389 fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2390 # endif 2391 # ifdef M_CANFASTFWD 2392 /* 2393 * XXX For now, IP Filter and fast-forwarding of cached flows 2394 * XXX are mutually exclusive. Eventually, IP Filter should 2395 * XXX get a "can-fast-forward" filter rule. 2396 */ 2397 m->m_flags &= ~M_CANFASTFWD; 2398 # endif /* M_CANFASTFWD */ 2399 # ifdef CSUM_DELAY_DATA 2400 /* 2401 * disable delayed checksums. 2402 */ 2403 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2404 in_delayed_cksum(m); 2405 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2406 } 2407 # endif /* CSUM_DELAY_DATA */ 2408 # endif /* MENTAT */ 2409 #else 2410 2411 bzero((char *)fin, sizeof(*fin)); 2412 m = *mp; 2413 #endif /* _KERNEL */ 2414 2415 fin->fin_v = v; 2416 fin->fin_m = m; 2417 fin->fin_ip = ip; 2418 fin->fin_mp = mp; 2419 fin->fin_out = out; 2420 fin->fin_ifp = ifp; 2421 fin->fin_error = ENETUNREACH; 2422 fin->fin_hlen = (u_short)hlen; 2423 fin->fin_dp = (char *)ip + hlen; 2424 fin->fin_ipoff = (char *)ip - MTOD(m, char *); 2425 fin->fin_ifs = ifs; 2426 2427 SPL_NET(s); 2428 2429 #ifdef USE_INET6 2430 if (v == 6) { 2431 IPF_BUMP(ifs->ifs_frstats[out].fr_ipv6); 2432 /* 2433 * Jumbo grams are quite likely too big for internal buffer 2434 * structures to handle comfortably, for now, so just drop 2435 * them. 2436 */ 2437 ip6 = (ip6_t *)ip; 2438 fin->fin_plen = ntohs(ip6->ip6_plen); 2439 if (fin->fin_plen == 0) { 2440 READ_ENTER(&ifs->ifs_ipf_mutex); 2441 pass = FR_BLOCK|FR_NOMATCH; 2442 goto filtered; 2443 } 2444 fin->fin_plen += sizeof(ip6_t); 2445 } else 2446 #endif 2447 { 2448 #if (OpenBSD >= 200311) && defined(_KERNEL) 2449 ip->ip_len = ntohs(ip->ip_len); 2450 ip->ip_off = ntohs(ip->ip_off); 2451 #endif 2452 fin->fin_plen = ip->ip_len; 2453 } 2454 2455 if (fr_makefrip(hlen, ip, fin) == -1) { 2456 READ_ENTER(&ifs->ifs_ipf_mutex); 2457 pass = FR_BLOCK; 2458 goto filtered; 2459 } 2460 2461 /* 2462 * For at least IPv6 packets, if a m_pullup() fails then this pointer 2463 * becomes NULL and so we have no packet to free. 2464 */ 2465 if (*fin->fin_mp == NULL) 2466 goto finished; 2467 2468 if (!out) { 2469 if (v == 4) { 2470 #ifdef _KERNEL 2471 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) { 2472 IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc); 2473 fin->fin_flx |= FI_BADSRC; 2474 } 2475 #endif 2476 if (fin->fin_ip->ip_ttl < ifs->ifs_fr_minttl) { 2477 IPF_BUMP(ifs->ifs_frstats[0].fr_badttl); 2478 fin->fin_flx |= FI_LOWTTL; 2479 } 2480 } 2481 #ifdef USE_INET6 2482 else if (v == 6) { 2483 ip6 = (ip6_t *)ip; 2484 #ifdef _KERNEL 2485 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) { 2486 IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc); 2487 fin->fin_flx |= FI_BADSRC; 2488 } 2489 #endif 2490 if (ip6->ip6_hlim < ifs->ifs_fr_minttl) { 2491 IPF_BUMP(ifs->ifs_frstats[0].fr_badttl); 2492 fin->fin_flx |= FI_LOWTTL; 2493 } 2494 } 2495 #endif 2496 } 2497 2498 if (fin->fin_flx & FI_SHORT) { 2499 IPF_BUMP(ifs->ifs_frstats[out].fr_short); 2500 } 2501 2502 READ_ENTER(&ifs->ifs_ipf_mutex); 2503 2504 /* 2505 * Check auth now. This, combined with the check below to see if apass 2506 * is 0 is to ensure that we don't count the packet twice, which can 2507 * otherwise occur when we reprocess it. As it is, we only count it 2508 * after it has no auth. table matchup. This also stops NAT from 2509 * occuring until after the packet has been auth'd. 2510 */ 2511 fr = fr_checkauth(fin, &pass); 2512 if (!out) { 2513 switch (fin->fin_v) 2514 { 2515 case 4 : 2516 if (fr_checknatin(fin, &pass) == -1) { 2517 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2518 goto finished; 2519 } 2520 break; 2521 #ifdef USE_INET6 2522 case 6 : 2523 if (fr_checknat6in(fin, &pass) == -1) { 2524 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2525 goto finished; 2526 } 2527 break; 2528 #endif 2529 default : 2530 break; 2531 } 2532 } 2533 if (!out) 2534 (void) fr_acctpkt(fin, NULL); 2535 2536 if (fr == NULL) 2537 if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG) 2538 fr = fr_knownfrag(fin, &pass); 2539 if (fr == NULL) 2540 fr = fr_checkstate(fin, &pass); 2541 2542 if ((pass & FR_NOMATCH) || (fr == NULL)) 2543 fr = fr_firewall(fin, &pass); 2544 2545 fin->fin_fr = fr; 2546 2547 /* 2548 * Only count/translate packets which will be passed on, out the 2549 * interface. 2550 */ 2551 if (out && FR_ISPASS(pass)) { 2552 (void) fr_acctpkt(fin, NULL); 2553 2554 switch (fin->fin_v) 2555 { 2556 case 4 : 2557 if (fr_checknatout(fin, &pass) == -1) { 2558 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2559 goto finished; 2560 } 2561 break; 2562 #ifdef USE_INET6 2563 case 6 : 2564 if (fr_checknat6out(fin, &pass) == -1) { 2565 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2566 goto finished; 2567 } 2568 break; 2569 #endif 2570 default : 2571 break; 2572 } 2573 2574 if ((ifs->ifs_fr_update_ipid != 0) && (v == 4)) { 2575 if (fr_updateipid(fin) == -1) { 2576 IPF_BUMP(ifs->ifs_frstats[1].fr_ipud); 2577 pass &= ~FR_CMDMASK; 2578 pass |= FR_BLOCK; 2579 } else { 2580 IPF_BUMP(ifs->ifs_frstats[0].fr_ipud); 2581 } 2582 } 2583 } 2584 2585 #ifdef IPFILTER_LOG 2586 if ((ifs->ifs_fr_flags & FF_LOGGING) || (pass & FR_LOGMASK)) { 2587 (void) fr_dolog(fin, &pass); 2588 } 2589 #endif 2590 2591 /* 2592 * The FI_STATE flag is cleared here so that calling fr_checkstate 2593 * will work when called from inside of fr_fastroute. Although 2594 * there is a similar flag, FI_NATED, for NAT, it does have the same 2595 * impact on code execution. 2596 */ 2597 fin->fin_flx &= ~FI_STATE; 2598 2599 /* 2600 * Only allow FR_DUP to work if a rule matched - it makes no sense to 2601 * set FR_DUP as a "default" as there are no instructions about where 2602 * to send the packet. Use fin_m here because it may have changed 2603 * (without an update of 'm') in prior processing. 2604 */ 2605 if ((fr != NULL) && (pass & FR_DUP)) { 2606 mc = M_DUPLICATE(fin->fin_m); 2607 #ifdef _KERNEL 2608 mc->b_rptr += fin->fin_ipoff; 2609 #endif 2610 } 2611 2612 /* 2613 * We don't want to send RST for packets, which are going to be 2614 * dropped, just because they don't fit into TCP window. Those packets 2615 * will be dropped silently. In other words, we want to drop packet, 2616 * while keeping session alive. 2617 */ 2618 if ((pass & (FR_RETRST|FR_RETICMP)) && ((fin->fin_flx & FI_OOW) == 0)) { 2619 /* 2620 * Should we return an ICMP packet to indicate error 2621 * status passing through the packet filter ? 2622 * WARNING: ICMP error packets AND TCP RST packets should 2623 * ONLY be sent in repsonse to incoming packets. Sending them 2624 * in response to outbound packets can result in a panic on 2625 * some operating systems. 2626 */ 2627 if (!out) { 2628 if (pass & FR_RETICMP) { 2629 int dst; 2630 2631 if ((pass & FR_RETMASK) == FR_FAKEICMP) 2632 dst = 1; 2633 else 2634 dst = 0; 2635 #if defined(_KERNEL) && (SOLARIS2 >= 10) 2636 /* 2637 * Assume it's possible to enter insane rule: 2638 * pass return-icmp in proto udp ... 2639 * then we have no other option than to forward 2640 * packet on loopback and give up any attempt 2641 * to create a fake response. 2642 */ 2643 if (IPF_IS_LOOPBACK(qpi->qpi_flags) && 2644 FR_ISBLOCK(pass)) { 2645 2646 if (fr_make_icmp(fin) == 0) { 2647 IPF_BUMP( 2648 ifs->ifs_frstats[out].fr_ret); 2649 } 2650 /* 2651 * we drop packet silently in case we 2652 * failed assemble fake response for it 2653 */ 2654 else if (*mp != NULL) { 2655 FREE_MB_T(*mp); 2656 m = *mp = NULL; 2657 } 2658 2659 IPF_BUMP( 2660 ifs->ifs_frstats[out].fr_block); 2661 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2662 2663 return (0); 2664 } 2665 #endif /* _KERNEL && SOLARIS2 >= 10 */ 2666 2667 (void) fr_send_icmp_err(ICMP_UNREACH, fin, dst); 2668 IPF_BUMP(ifs->ifs_frstats[out].fr_ret); 2669 2670 } else if (((pass & FR_RETMASK) == FR_RETRST) && 2671 !(fin->fin_flx & FI_SHORT)) { 2672 2673 #if defined(_KERNEL) && (SOLARIS2 >= 10) 2674 /* 2675 * Assume it's possible to enter insane rule: 2676 * pass return-rst in proto tcp ... 2677 * then we have no other option than to forward 2678 * packet on loopback and give up any attempt 2679 * to create a fake response. 2680 */ 2681 if (IPF_IS_LOOPBACK(qpi->qpi_flags) && 2682 FR_ISBLOCK(pass)) { 2683 if (fr_make_rst(fin) == 0) { 2684 IPF_BUMP( 2685 ifs->ifs_frstats[out].fr_ret); 2686 } 2687 else if (mp != NULL) { 2688 /* 2689 * we drop packet silently in case we 2690 * failed assemble fake response for it 2691 */ 2692 FREE_MB_T(*mp); 2693 m = *mp = NULL; 2694 } 2695 2696 IPF_BUMP( 2697 ifs->ifs_frstats[out].fr_block); 2698 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2699 2700 return (0); 2701 } 2702 #endif /* _KERNEL && _SOLARIS2 >= 10 */ 2703 if (fr_send_reset(fin) == 0) { 2704 IPF_BUMP(ifs->ifs_frstats[1].fr_ret); 2705 } 2706 } 2707 } else { 2708 if (pass & FR_RETRST) 2709 fin->fin_error = ECONNRESET; 2710 } 2711 } 2712 2713 /* 2714 * If we didn't drop off the bottom of the list of rules (and thus 2715 * the 'current' rule fr is not NULL), then we may have some extra 2716 * instructions about what to do with a packet. 2717 * Once we're finished return to our caller, freeing the packet if 2718 * we are dropping it (* BSD ONLY *). 2719 * Reassign m from fin_m as we may have a new buffer, now. 2720 */ 2721 filtered: 2722 m = fin->fin_m; 2723 2724 if (fr != NULL) { 2725 frdest_t *fdp; 2726 2727 fdp = &fr->fr_tifs[fin->fin_rev]; 2728 2729 if (!out && (pass & FR_FASTROUTE)) { 2730 /* 2731 * For fastroute rule, no destioation interface defined 2732 * so pass NULL as the frdest_t parameter 2733 */ 2734 (void) fr_fastroute(m, mp, fin, NULL); 2735 m = *mp = NULL; 2736 } else if ((fdp->fd_ifp != NULL) && 2737 (fdp->fd_ifp != (struct ifnet *)-1)) { 2738 /* this is for to rules: */ 2739 (void) fr_fastroute(m, mp, fin, fdp); 2740 m = *mp = NULL; 2741 } 2742 2743 /* 2744 * Send a duplicated packet. 2745 */ 2746 if (mc != NULL) { 2747 #if defined(_KERNEL) && (SOLARIS2 >= 10) 2748 /* 2749 * We are going to compute chksum for copies of loopback packets 2750 * only. IP stack does not compute chksums at all for loopback 2751 * packets. We want to get it fixed in their copies, since those 2752 * are going to be sent to network. 2753 */ 2754 if (IPF_IS_LOOPBACK(qpi->qpi_flags)) 2755 fr_calc_chksum(fin, mc); 2756 #endif 2757 (void) fr_fastroute(mc, &mc, fin, &fr->fr_dif); 2758 } 2759 } 2760 2761 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT)) 2762 nat_uncreate(fin); 2763 2764 /* 2765 * This late because the likes of fr_fastroute() use fin_fr. 2766 */ 2767 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2768 2769 finished: 2770 if (!FR_ISPASS(pass)) { 2771 IPF_BUMP(ifs->ifs_frstats[out].fr_block); 2772 if (*mp != NULL) { 2773 FREE_MB_T(*mp); 2774 m = *mp = NULL; 2775 } 2776 } else { 2777 IPF_BUMP(ifs->ifs_frstats[out].fr_pass); 2778 #if defined(_KERNEL) && defined(__sgi) 2779 if ((fin->fin_hbuf != NULL) && 2780 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) { 2781 COPYBACK(m, 0, fin->fin_plen, fin->fin_hbuf); 2782 } 2783 #endif 2784 } 2785 2786 SPL_X(s); 2787 2788 #ifdef _KERNEL 2789 # if OpenBSD >= 200311 2790 if (FR_ISPASS(pass) && (v == 4)) { 2791 ip = fin->fin_ip; 2792 ip->ip_len = ntohs(ip->ip_len); 2793 ip->ip_off = ntohs(ip->ip_off); 2794 } 2795 # endif 2796 return (FR_ISPASS(pass)) ? 0 : fin->fin_error; 2797 #else /* _KERNEL */ 2798 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass)); 2799 if ((pass & FR_NOMATCH) != 0) 2800 return 1; 2801 2802 if ((pass & FR_RETMASK) != 0) 2803 switch (pass & FR_RETMASK) 2804 { 2805 case FR_RETRST : 2806 return 3; 2807 case FR_RETICMP : 2808 return 4; 2809 case FR_FAKEICMP : 2810 return 5; 2811 } 2812 2813 switch (pass & FR_CMDMASK) 2814 { 2815 case FR_PASS : 2816 return 0; 2817 case FR_BLOCK : 2818 return -1; 2819 case FR_AUTH : 2820 return -2; 2821 case FR_ACCOUNT : 2822 return -3; 2823 case FR_PREAUTH : 2824 return -4; 2825 } 2826 return 2; 2827 #endif /* _KERNEL */ 2828 } 2829 2830 2831 #ifdef IPFILTER_LOG 2832 /* ------------------------------------------------------------------------ */ 2833 /* Function: fr_dolog */ 2834 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */ 2835 /* Parameters: fin(I) - pointer to packet information */ 2836 /* passp(IO) - pointer to current/new filter decision (unused) */ 2837 /* */ 2838 /* Checks flags set to see how a packet should be logged, if it is to be */ 2839 /* logged. Adjust statistics based on its success or not. */ 2840 /* ------------------------------------------------------------------------ */ 2841 frentry_t *fr_dolog(fin, passp) 2842 fr_info_t *fin; 2843 u_32_t *passp; 2844 { 2845 u_32_t pass; 2846 int out; 2847 ipf_stack_t *ifs = fin->fin_ifs; 2848 2849 out = fin->fin_out; 2850 pass = *passp; 2851 2852 if ((ifs->ifs_fr_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) { 2853 pass |= FF_LOGNOMATCH; 2854 IPF_BUMP(ifs->ifs_frstats[out].fr_npkl); 2855 goto logit; 2856 } else if (((pass & FR_LOGMASK) == FR_LOGP) || 2857 (FR_ISPASS(pass) && (ifs->ifs_fr_flags & FF_LOGPASS))) { 2858 if ((pass & FR_LOGMASK) != FR_LOGP) 2859 pass |= FF_LOGPASS; 2860 IPF_BUMP(ifs->ifs_frstats[out].fr_ppkl); 2861 goto logit; 2862 } else if (((pass & FR_LOGMASK) == FR_LOGB) || 2863 (FR_ISBLOCK(pass) && (ifs->ifs_fr_flags & FF_LOGBLOCK))) { 2864 if ((pass & FR_LOGMASK) != FR_LOGB) 2865 pass |= FF_LOGBLOCK; 2866 IPF_BUMP(ifs->ifs_frstats[out].fr_bpkl); 2867 logit: 2868 if (ipflog(fin, pass) == -1) { 2869 IPF_BUMP(ifs->ifs_frstats[out].fr_skip); 2870 2871 /* 2872 * If the "or-block" option has been used then 2873 * block the packet if we failed to log it. 2874 */ 2875 if ((pass & FR_LOGORBLOCK) && 2876 FR_ISPASS(pass)) { 2877 pass &= ~FR_CMDMASK; 2878 pass |= FR_BLOCK; 2879 } 2880 } 2881 *passp = pass; 2882 } 2883 2884 return fin->fin_fr; 2885 } 2886 #endif /* IPFILTER_LOG */ 2887 2888 2889 /* ------------------------------------------------------------------------ */ 2890 /* Function: ipf_cksum */ 2891 /* Returns: u_short - IP header checksum */ 2892 /* Parameters: addr(I) - pointer to start of buffer to checksum */ 2893 /* len(I) - length of buffer in bytes */ 2894 /* */ 2895 /* Calculate the two's complement 16 bit checksum of the buffer passed. */ 2896 /* */ 2897 /* N.B.: addr should be 16bit aligned. */ 2898 /* ------------------------------------------------------------------------ */ 2899 u_short ipf_cksum(addr, len) 2900 u_short *addr; 2901 int len; 2902 { 2903 u_32_t sum = 0; 2904 2905 for (sum = 0; len > 1; len -= 2) 2906 sum += *addr++; 2907 2908 /* mop up an odd byte, if necessary */ 2909 if (len == 1) 2910 sum += *(u_char *)addr; 2911 2912 /* 2913 * add back carry outs from top 16 bits to low 16 bits 2914 */ 2915 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */ 2916 sum += (sum >> 16); /* add carry */ 2917 return (u_short)(~sum); 2918 } 2919 2920 2921 /* ------------------------------------------------------------------------ */ 2922 /* Function: fr_cksum */ 2923 /* Returns: u_short - layer 4 checksum */ 2924 /* Parameters: m(I ) - pointer to buffer holding packet */ 2925 /* ip(I) - pointer to IP header */ 2926 /* l4proto(I) - protocol to caclulate checksum for */ 2927 /* l4hdr(I) - pointer to layer 4 header */ 2928 /* */ 2929 /* Calculates the TCP checksum for the packet held in "m", using the data */ 2930 /* in the IP header "ip" to seed it. */ 2931 /* */ 2932 /* NB: This function assumes we've pullup'd enough for all of the IP header */ 2933 /* and the TCP header. We also assume that data blocks aren't allocated in */ 2934 /* odd sizes. */ 2935 /* */ 2936 /* Expects ip_len to be in host byte order when called. */ 2937 /* ------------------------------------------------------------------------ */ 2938 u_short fr_cksum(m, ip, l4proto, l4hdr) 2939 mb_t *m; 2940 ip_t *ip; 2941 int l4proto; 2942 void *l4hdr; 2943 { 2944 u_short *sp, slen, sumsave, l4hlen, *csump; 2945 u_int sum, sum2; 2946 int hlen; 2947 #ifdef USE_INET6 2948 ip6_t *ip6; 2949 #endif 2950 2951 csump = NULL; 2952 sumsave = 0; 2953 l4hlen = 0; 2954 sp = NULL; 2955 slen = 0; 2956 hlen = 0; 2957 sum = 0; 2958 2959 /* 2960 * Add up IP Header portion 2961 */ 2962 #ifdef USE_INET6 2963 if (IP_V(ip) == 4) { 2964 #endif 2965 hlen = IP_HL(ip) << 2; 2966 slen = ip->ip_len - hlen; 2967 sum = htons((u_short)l4proto); 2968 sum += htons(slen); 2969 sp = (u_short *)&ip->ip_src; 2970 sum += *sp++; /* ip_src */ 2971 sum += *sp++; 2972 sum += *sp++; /* ip_dst */ 2973 sum += *sp++; 2974 #ifdef USE_INET6 2975 } else if (IP_V(ip) == 6) { 2976 ip6 = (ip6_t *)ip; 2977 hlen = sizeof(*ip6); 2978 slen = ntohs(ip6->ip6_plen); 2979 sum = htons((u_short)l4proto); 2980 sum += htons(slen); 2981 sp = (u_short *)&ip6->ip6_src; 2982 sum += *sp++; /* ip6_src */ 2983 sum += *sp++; 2984 sum += *sp++; 2985 sum += *sp++; 2986 sum += *sp++; 2987 sum += *sp++; 2988 sum += *sp++; 2989 sum += *sp++; 2990 sum += *sp++; /* ip6_dst */ 2991 sum += *sp++; 2992 sum += *sp++; 2993 sum += *sp++; 2994 sum += *sp++; 2995 sum += *sp++; 2996 sum += *sp++; 2997 sum += *sp++; 2998 } 2999 #endif 3000 3001 switch (l4proto) 3002 { 3003 case IPPROTO_UDP : 3004 csump = &((udphdr_t *)l4hdr)->uh_sum; 3005 l4hlen = sizeof(udphdr_t); 3006 break; 3007 3008 case IPPROTO_TCP : 3009 csump = &((tcphdr_t *)l4hdr)->th_sum; 3010 l4hlen = sizeof(tcphdr_t); 3011 break; 3012 case IPPROTO_ICMP : 3013 csump = &((icmphdr_t *)l4hdr)->icmp_cksum; 3014 l4hlen = 4; 3015 sum = 0; 3016 break; 3017 default : 3018 break; 3019 } 3020 3021 if (csump != NULL) { 3022 sumsave = *csump; 3023 *csump = 0; 3024 } 3025 3026 l4hlen = l4hlen; /* LINT */ 3027 3028 #ifdef _KERNEL 3029 # ifdef MENTAT 3030 { 3031 void *rp = m->b_rptr; 3032 3033 if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr) 3034 m->b_rptr = (u_char *)ip; 3035 sum2 = ip_cksum(m, hlen, sum); /* hlen == offset */ 3036 m->b_rptr = rp; 3037 sum2 = (sum2 & 0xffff) + (sum2 >> 16); 3038 sum2 = ~sum2 & 0xffff; 3039 } 3040 # else /* MENTAT */ 3041 # if defined(BSD) || defined(sun) 3042 # if BSD >= 199103 3043 m->m_data += hlen; 3044 # else 3045 m->m_off += hlen; 3046 # endif 3047 m->m_len -= hlen; 3048 sum2 = in_cksum(m, slen); 3049 m->m_len += hlen; 3050 # if BSD >= 199103 3051 m->m_data -= hlen; 3052 # else 3053 m->m_off -= hlen; 3054 # endif 3055 /* 3056 * Both sum and sum2 are partial sums, so combine them together. 3057 */ 3058 sum += ~sum2 & 0xffff; 3059 while (sum > 0xffff) 3060 sum = (sum & 0xffff) + (sum >> 16); 3061 sum2 = ~sum & 0xffff; 3062 # else /* defined(BSD) || defined(sun) */ 3063 { 3064 union { 3065 u_char c[2]; 3066 u_short s; 3067 } bytes; 3068 u_short len = ip->ip_len; 3069 # if defined(__sgi) 3070 int add; 3071 # endif 3072 3073 /* 3074 * Add up IP Header portion 3075 */ 3076 if (sp != (u_short *)l4hdr) 3077 sp = (u_short *)l4hdr; 3078 3079 switch (l4proto) 3080 { 3081 case IPPROTO_UDP : 3082 sum += *sp++; /* sport */ 3083 sum += *sp++; /* dport */ 3084 sum += *sp++; /* udp length */ 3085 sum += *sp++; /* checksum */ 3086 break; 3087 3088 case IPPROTO_TCP : 3089 sum += *sp++; /* sport */ 3090 sum += *sp++; /* dport */ 3091 sum += *sp++; /* seq */ 3092 sum += *sp++; 3093 sum += *sp++; /* ack */ 3094 sum += *sp++; 3095 sum += *sp++; /* off */ 3096 sum += *sp++; /* win */ 3097 sum += *sp++; /* checksum */ 3098 sum += *sp++; /* urp */ 3099 break; 3100 case IPPROTO_ICMP : 3101 sum = *sp++; /* type/code */ 3102 sum += *sp++; /* checksum */ 3103 break; 3104 } 3105 3106 # ifdef __sgi 3107 /* 3108 * In case we had to copy the IP & TCP header out of mbufs, 3109 * skip over the mbuf bits which are the header 3110 */ 3111 if ((caddr_t)ip != mtod(m, caddr_t)) { 3112 hlen = (caddr_t)sp - (caddr_t)ip; 3113 while (hlen) { 3114 add = MIN(hlen, m->m_len); 3115 sp = (u_short *)(mtod(m, caddr_t) + add); 3116 hlen -= add; 3117 if (add == m->m_len) { 3118 m = m->m_next; 3119 if (!hlen) { 3120 if (!m) 3121 break; 3122 sp = mtod(m, u_short *); 3123 } 3124 PANIC((!m),("fr_cksum(1): not enough data")); 3125 } 3126 } 3127 } 3128 # endif 3129 3130 len -= (l4hlen + hlen); 3131 if (len <= 0) 3132 goto nodata; 3133 3134 while (len > 1) { 3135 if (((caddr_t)sp - mtod(m, caddr_t)) >= m->m_len) { 3136 m = m->m_next; 3137 PANIC((!m),("fr_cksum(2): not enough data")); 3138 sp = mtod(m, u_short *); 3139 } 3140 if (((caddr_t)(sp + 1) - mtod(m, caddr_t)) > m->m_len) { 3141 bytes.c[0] = *(u_char *)sp; 3142 m = m->m_next; 3143 PANIC((!m),("fr_cksum(3): not enough data")); 3144 sp = mtod(m, u_short *); 3145 bytes.c[1] = *(u_char *)sp; 3146 sum += bytes.s; 3147 sp = (u_short *)((u_char *)sp + 1); 3148 } 3149 if ((u_long)sp & 1) { 3150 bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s)); 3151 sum += bytes.s; 3152 } else 3153 sum += *sp++; 3154 len -= 2; 3155 } 3156 3157 if (len != 0) 3158 sum += ntohs(*(u_char *)sp << 8); 3159 nodata: 3160 while (sum > 0xffff) 3161 sum = (sum & 0xffff) + (sum >> 16); 3162 sum2 = (u_short)(~sum & 0xffff); 3163 } 3164 # endif /* defined(BSD) || defined(sun) */ 3165 # endif /* MENTAT */ 3166 #else /* _KERNEL */ 3167 for (; slen > 1; slen -= 2) 3168 sum += *sp++; 3169 if (slen) 3170 sum += ntohs(*(u_char *)sp << 8); 3171 while (sum > 0xffff) 3172 sum = (sum & 0xffff) + (sum >> 16); 3173 sum2 = (u_short)(~sum & 0xffff); 3174 #endif /* _KERNEL */ 3175 if (csump != NULL) 3176 *csump = sumsave; 3177 return sum2; 3178 } 3179 3180 3181 #if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \ 3182 defined(__sgi) ) && !defined(linux) && !defined(_AIX51) 3183 /* 3184 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3185 * The Regents of the University of California. All rights reserved. 3186 * 3187 * Redistribution and use in source and binary forms, with or without 3188 * modification, are permitted provided that the following conditions 3189 * are met: 3190 * 1. Redistributions of source code must retain the above copyright 3191 * notice, this list of conditions and the following disclaimer. 3192 * 2. Redistributions in binary form must reproduce the above copyright 3193 * notice, this list of conditions and the following disclaimer in the 3194 * documentation and/or other materials provided with the distribution. 3195 * 3. Neither the name of the University nor the names of its contributors 3196 * may be used to endorse or promote products derived from this software 3197 * without specific prior written permission. 3198 * 3199 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3200 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3201 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3202 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3203 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3204 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3205 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3206 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3207 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3208 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3209 * SUCH DAMAGE. 3210 * 3211 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 3212 * $Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $ 3213 */ 3214 /* 3215 * Copy data from an mbuf chain starting "off" bytes from the beginning, 3216 * continuing for "len" bytes, into the indicated buffer. 3217 */ 3218 void 3219 m_copydata(m, off, len, cp) 3220 mb_t *m; 3221 int off; 3222 int len; 3223 caddr_t cp; 3224 { 3225 unsigned count; 3226 3227 if (off < 0 || len < 0) 3228 panic("m_copydata"); 3229 while (off > 0) { 3230 if (m == 0) 3231 panic("m_copydata"); 3232 if (off < m->m_len) 3233 break; 3234 off -= m->m_len; 3235 m = m->m_next; 3236 } 3237 while (len > 0) { 3238 if (m == 0) 3239 panic("m_copydata"); 3240 count = MIN(m->m_len - off, len); 3241 bcopy(mtod(m, caddr_t) + off, cp, count); 3242 len -= count; 3243 cp += count; 3244 off = 0; 3245 m = m->m_next; 3246 } 3247 } 3248 3249 3250 /* 3251 * Copy data from a buffer back into the indicated mbuf chain, 3252 * starting "off" bytes from the beginning, extending the mbuf 3253 * chain if necessary. 3254 */ 3255 void 3256 m_copyback(m0, off, len, cp) 3257 struct mbuf *m0; 3258 int off; 3259 int len; 3260 caddr_t cp; 3261 { 3262 int mlen; 3263 struct mbuf *m = m0, *n; 3264 int totlen = 0; 3265 3266 if (m0 == 0) 3267 return; 3268 while (off > (mlen = m->m_len)) { 3269 off -= mlen; 3270 totlen += mlen; 3271 if (m->m_next == 0) { 3272 n = m_getclr(M_DONTWAIT, m->m_type); 3273 if (n == 0) 3274 goto out; 3275 n->m_len = min(MLEN, len + off); 3276 m->m_next = n; 3277 } 3278 m = m->m_next; 3279 } 3280 while (len > 0) { 3281 mlen = min(m->m_len - off, len); 3282 bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen); 3283 cp += mlen; 3284 len -= mlen; 3285 mlen += off; 3286 off = 0; 3287 totlen += mlen; 3288 if (len == 0) 3289 break; 3290 if (m->m_next == 0) { 3291 n = m_get(M_DONTWAIT, m->m_type); 3292 if (n == 0) 3293 break; 3294 n->m_len = min(MLEN, len); 3295 m->m_next = n; 3296 } 3297 m = m->m_next; 3298 } 3299 out: 3300 #if 0 3301 if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 3302 m->m_pkthdr.len = totlen; 3303 #endif 3304 return; 3305 } 3306 #endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */ 3307 3308 3309 /* ------------------------------------------------------------------------ */ 3310 /* Function: fr_findgroup */ 3311 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */ 3312 /* Parameters: group(I) - group name to search for */ 3313 /* unit(I) - device to which this group belongs */ 3314 /* set(I) - which set of rules (inactive/inactive) this is */ 3315 /* fgpp(O) - pointer to place to store pointer to the pointer */ 3316 /* to where to add the next (last) group or where */ 3317 /* to delete group from. */ 3318 /* */ 3319 /* Search amongst the defined groups for a particular group number. */ 3320 /* ------------------------------------------------------------------------ */ 3321 frgroup_t *fr_findgroup(group, unit, set, fgpp, ifs) 3322 char *group; 3323 minor_t unit; 3324 int set; 3325 frgroup_t ***fgpp; 3326 ipf_stack_t *ifs; 3327 { 3328 frgroup_t *fg, **fgp; 3329 3330 /* 3331 * Which list of groups to search in is dependent on which list of 3332 * rules are being operated on. 3333 */ 3334 fgp = &ifs->ifs_ipfgroups[unit][set]; 3335 3336 while ((fg = *fgp) != NULL) { 3337 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0) 3338 break; 3339 else 3340 fgp = &fg->fg_next; 3341 } 3342 if (fgpp != NULL) 3343 *fgpp = fgp; 3344 return fg; 3345 } 3346 3347 3348 /* ------------------------------------------------------------------------ */ 3349 /* Function: fr_addgroup */ 3350 /* Returns: frgroup_t * - NULL == did not create group, */ 3351 /* != NULL == pointer to the group */ 3352 /* Parameters: num(I) - group number to add */ 3353 /* head(I) - rule pointer that is using this as the head */ 3354 /* flags(I) - rule flags which describe the type of rule it is */ 3355 /* unit(I) - device to which this group will belong to */ 3356 /* set(I) - which set of rules (inactive/inactive) this is */ 3357 /* Write Locks: ipf_mutex */ 3358 /* */ 3359 /* Add a new group head, or if it already exists, increase the reference */ 3360 /* count to it. */ 3361 /* ------------------------------------------------------------------------ */ 3362 frgroup_t *fr_addgroup(group, head, flags, unit, set, ifs) 3363 char *group; 3364 void *head; 3365 u_32_t flags; 3366 minor_t unit; 3367 int set; 3368 ipf_stack_t *ifs; 3369 { 3370 frgroup_t *fg, **fgp; 3371 u_32_t gflags; 3372 3373 if (group == NULL) 3374 return NULL; 3375 3376 if (unit == IPL_LOGIPF && *group == '\0') 3377 return NULL; 3378 3379 fgp = NULL; 3380 gflags = flags & FR_INOUT; 3381 3382 fg = fr_findgroup(group, unit, set, &fgp, ifs); 3383 if (fg != NULL) { 3384 if (fg->fg_flags == 0) 3385 fg->fg_flags = gflags; 3386 else if (gflags != fg->fg_flags) 3387 return NULL; 3388 fg->fg_ref++; 3389 return fg; 3390 } 3391 KMALLOC(fg, frgroup_t *); 3392 if (fg != NULL) { 3393 fg->fg_head = head; 3394 fg->fg_start = NULL; 3395 fg->fg_next = *fgp; 3396 bcopy(group, fg->fg_name, FR_GROUPLEN); 3397 fg->fg_flags = gflags; 3398 fg->fg_ref = 1; 3399 *fgp = fg; 3400 } 3401 return fg; 3402 } 3403 3404 3405 /* ------------------------------------------------------------------------ */ 3406 /* Function: fr_delgroup */ 3407 /* Returns: Nil */ 3408 /* Parameters: group(I) - group name to delete */ 3409 /* unit(I) - device to which this group belongs */ 3410 /* set(I) - which set of rules (inactive/inactive) this is */ 3411 /* Write Locks: ipf_mutex */ 3412 /* */ 3413 /* Attempt to delete a group head. */ 3414 /* Only do this when its reference count reaches 0. */ 3415 /* ------------------------------------------------------------------------ */ 3416 void fr_delgroup(group, unit, set, ifs) 3417 char *group; 3418 minor_t unit; 3419 int set; 3420 ipf_stack_t *ifs; 3421 { 3422 frgroup_t *fg, **fgp; 3423 3424 fg = fr_findgroup(group, unit, set, &fgp, ifs); 3425 if (fg == NULL) 3426 return; 3427 3428 fg->fg_ref--; 3429 if (fg->fg_ref == 0) { 3430 *fgp = fg->fg_next; 3431 KFREE(fg); 3432 } 3433 } 3434 3435 3436 /* ------------------------------------------------------------------------ */ 3437 /* Function: fr_getrulen */ 3438 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */ 3439 /* Parameters: unit(I) - device for which to count the rule's number */ 3440 /* flags(I) - which set of rules to find the rule in */ 3441 /* group(I) - group name */ 3442 /* n(I) - rule number to find */ 3443 /* */ 3444 /* Find rule # n in group # g and return a pointer to it. Return NULl if */ 3445 /* group # g doesn't exist or there are less than n rules in the group. */ 3446 /* ------------------------------------------------------------------------ */ 3447 frentry_t *fr_getrulen(unit, group, n, ifs) 3448 int unit; 3449 char *group; 3450 u_32_t n; 3451 ipf_stack_t *ifs; 3452 { 3453 frentry_t *fr; 3454 frgroup_t *fg; 3455 3456 fg = fr_findgroup(group, unit, ifs->ifs_fr_active, NULL, ifs); 3457 if (fg == NULL) 3458 return NULL; 3459 for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--) 3460 ; 3461 if (n != 0) 3462 return NULL; 3463 return fr; 3464 } 3465 3466 3467 /* ------------------------------------------------------------------------ */ 3468 /* Function: fr_rulen */ 3469 /* Returns: int - >= 0 - rule number, -1 == search failed */ 3470 /* Parameters: unit(I) - device for which to count the rule's number */ 3471 /* fr(I) - pointer to rule to match */ 3472 /* */ 3473 /* Return the number for a rule on a specific filtering device. */ 3474 /* ------------------------------------------------------------------------ */ 3475 int fr_rulen(unit, fr, ifs) 3476 int unit; 3477 frentry_t *fr; 3478 ipf_stack_t *ifs; 3479 { 3480 frentry_t *fh; 3481 frgroup_t *fg; 3482 u_32_t n = 0; 3483 3484 if (fr == NULL) 3485 return -1; 3486 fg = fr_findgroup(fr->fr_group, unit, ifs->ifs_fr_active, NULL, ifs); 3487 if (fg == NULL) 3488 return -1; 3489 for (fh = fg->fg_head; fh; n++, fh = fh->fr_next) 3490 if (fh == fr) 3491 break; 3492 if (fh == NULL) 3493 return -1; 3494 return n; 3495 } 3496 3497 3498 /* ------------------------------------------------------------------------ */ 3499 /* Function: frflushlist */ 3500 /* Returns: int - >= 0 - number of flushed rules */ 3501 /* Parameters: set(I) - which set of rules (inactive/inactive) this is */ 3502 /* unit(I) - device for which to flush rules */ 3503 /* flags(I) - which set of rules to flush */ 3504 /* nfreedp(O) - pointer to int where flush count is stored */ 3505 /* listp(I) - pointer to list to flush pointer */ 3506 /* Write Locks: ipf_mutex */ 3507 /* */ 3508 /* Recursively flush rules from the list, descending groups as they are */ 3509 /* encountered. if a rule is the head of a group and it has lost all its */ 3510 /* group members, then also delete the group reference. nfreedp is needed */ 3511 /* to store the accumulating count of rules removed, whereas the returned */ 3512 /* value is just the number removed from the current list. The latter is */ 3513 /* needed to correctly adjust reference counts on rules that define groups. */ 3514 /* */ 3515 /* NOTE: Rules not loaded from user space cannot be flushed. */ 3516 /* ------------------------------------------------------------------------ */ 3517 static int frflushlist(set, unit, nfreedp, listp, ifs) 3518 int set; 3519 minor_t unit; 3520 int *nfreedp; 3521 frentry_t **listp; 3522 ipf_stack_t *ifs; 3523 { 3524 int freed = 0; 3525 frentry_t *fp; 3526 3527 while ((fp = *listp) != NULL) { 3528 if ((fp->fr_type & FR_T_BUILTIN) || 3529 !(fp->fr_flags & FR_COPIED)) { 3530 listp = &fp->fr_next; 3531 continue; 3532 } 3533 *listp = fp->fr_next; 3534 if (fp->fr_grp != NULL) { 3535 (void) frflushlist(set, unit, nfreedp, fp->fr_grp, ifs); 3536 } 3537 3538 fr_delgroup(fp->fr_grhead, unit, set, ifs); 3539 *fp->fr_grhead = '\0'; 3540 3541 ASSERT(fp->fr_ref > 0); 3542 fp->fr_next = NULL; 3543 if (fr_derefrule(&fp, ifs) == 0) 3544 freed++; 3545 } 3546 *nfreedp += freed; 3547 return freed; 3548 } 3549 3550 3551 /* ------------------------------------------------------------------------ */ 3552 /* Function: frflush */ 3553 /* Returns: int - >= 0 - number of flushed rules */ 3554 /* Parameters: unit(I) - device for which to flush rules */ 3555 /* flags(I) - which set of rules to flush */ 3556 /* */ 3557 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */ 3558 /* and IPv6) as defined by the value of flags. */ 3559 /* ------------------------------------------------------------------------ */ 3560 int frflush(unit, proto, flags, ifs) 3561 minor_t unit; 3562 int proto, flags; 3563 ipf_stack_t *ifs; 3564 { 3565 int flushed = 0, set; 3566 3567 WRITE_ENTER(&ifs->ifs_ipf_mutex); 3568 bzero((char *)ifs->ifs_frcache, sizeof (ifs->ifs_frcache)); 3569 3570 set = ifs->ifs_fr_active; 3571 if ((flags & FR_INACTIVE) == FR_INACTIVE) 3572 set = 1 - set; 3573 3574 if (flags & FR_OUTQUE) { 3575 if (proto == 0 || proto == 6) { 3576 (void) frflushlist(set, unit, 3577 &flushed, &ifs->ifs_ipfilter6[1][set], ifs); 3578 (void) frflushlist(set, unit, 3579 &flushed, &ifs->ifs_ipacct6[1][set], ifs); 3580 } 3581 if (proto == 0 || proto == 4) { 3582 (void) frflushlist(set, unit, 3583 &flushed, &ifs->ifs_ipfilter[1][set], ifs); 3584 (void) frflushlist(set, unit, 3585 &flushed, &ifs->ifs_ipacct[1][set], ifs); 3586 } 3587 } 3588 if (flags & FR_INQUE) { 3589 if (proto == 0 || proto == 6) { 3590 (void) frflushlist(set, unit, 3591 &flushed, &ifs->ifs_ipfilter6[0][set], ifs); 3592 (void) frflushlist(set, unit, 3593 &flushed, &ifs->ifs_ipacct6[0][set], ifs); 3594 } 3595 if (proto == 0 || proto == 4) { 3596 (void) frflushlist(set, unit, 3597 &flushed, &ifs->ifs_ipfilter[0][set], ifs); 3598 (void) frflushlist(set, unit, 3599 &flushed, &ifs->ifs_ipacct[0][set], ifs); 3600 } 3601 } 3602 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 3603 3604 if (unit == IPL_LOGIPF) { 3605 int tmp; 3606 3607 tmp = frflush(IPL_LOGCOUNT, proto, flags, ifs); 3608 if (tmp >= 0) 3609 flushed += tmp; 3610 } 3611 return flushed; 3612 } 3613 3614 3615 /* ------------------------------------------------------------------------ */ 3616 /* Function: memstr */ 3617 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */ 3618 /* Parameters: src(I) - pointer to byte sequence to match */ 3619 /* dst(I) - pointer to byte sequence to search */ 3620 /* slen(I) - match length */ 3621 /* dlen(I) - length available to search in */ 3622 /* */ 3623 /* Search dst for a sequence of bytes matching those at src and extend for */ 3624 /* slen bytes. */ 3625 /* ------------------------------------------------------------------------ */ 3626 char *memstr(src, dst, slen, dlen) 3627 char *src, *dst; 3628 int slen, dlen; 3629 { 3630 char *s = NULL; 3631 3632 while (dlen >= slen) { 3633 if (bcmp(src, dst, slen) == 0) { 3634 s = dst; 3635 break; 3636 } 3637 dst++; 3638 dlen--; 3639 } 3640 return s; 3641 } 3642 /* ------------------------------------------------------------------------ */ 3643 /* Function: fr_fixskip */ 3644 /* Returns: Nil */ 3645 /* Parameters: listp(IO) - pointer to start of list with skip rule */ 3646 /* rp(I) - rule added/removed with skip in it. */ 3647 /* addremove(I) - adjustment (-1/+1) to make to skip count, */ 3648 /* depending on whether a rule was just added */ 3649 /* or removed. */ 3650 /* */ 3651 /* Adjust all the rules in a list which would have skip'd past the position */ 3652 /* where we are inserting to skip to the right place given the change. */ 3653 /* ------------------------------------------------------------------------ */ 3654 void fr_fixskip(listp, rp, addremove) 3655 frentry_t **listp, *rp; 3656 int addremove; 3657 { 3658 int rules, rn; 3659 frentry_t *fp; 3660 3661 rules = 0; 3662 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next) 3663 rules++; 3664 3665 if (!fp) 3666 return; 3667 3668 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++) 3669 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules)) 3670 fp->fr_arg += addremove; 3671 } 3672 3673 3674 #ifdef _KERNEL 3675 /* ------------------------------------------------------------------------ */ 3676 /* Function: count4bits */ 3677 /* Returns: int - >= 0 - number of consecutive bits in input */ 3678 /* Parameters: ip(I) - 32bit IP address */ 3679 /* */ 3680 /* IPv4 ONLY */ 3681 /* count consecutive 1's in bit mask. If the mask generated by counting */ 3682 /* consecutive 1's is different to that passed, return -1, else return # */ 3683 /* of bits. */ 3684 /* ------------------------------------------------------------------------ */ 3685 int count4bits(ip) 3686 u_32_t ip; 3687 { 3688 u_32_t ipn; 3689 int cnt = 0, i, j; 3690 3691 ip = ipn = ntohl(ip); 3692 for (i = 32; i; i--, ipn *= 2) 3693 if (ipn & 0x80000000) 3694 cnt++; 3695 else 3696 break; 3697 ipn = 0; 3698 for (i = 32, j = cnt; i; i--, j--) { 3699 ipn *= 2; 3700 if (j > 0) 3701 ipn++; 3702 } 3703 if (ipn == ip) 3704 return cnt; 3705 return -1; 3706 } 3707 3708 3709 #ifdef USE_INET6 3710 /* ------------------------------------------------------------------------ */ 3711 /* Function: count6bits */ 3712 /* Returns: int - >= 0 - number of consecutive bits in input */ 3713 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */ 3714 /* */ 3715 /* IPv6 ONLY */ 3716 /* count consecutive 1's in bit mask. */ 3717 /* ------------------------------------------------------------------------ */ 3718 int count6bits(msk) 3719 u_32_t *msk; 3720 { 3721 int i = 0, k; 3722 u_32_t j; 3723 3724 for (k = 3; k >= 0; k--) 3725 if (msk[k] == 0xffffffff) 3726 i += 32; 3727 else { 3728 for (j = msk[k]; j; j <<= 1) 3729 if (j & 0x80000000) 3730 i++; 3731 } 3732 return i; 3733 } 3734 # endif 3735 #endif /* _KERNEL */ 3736 3737 3738 /* ------------------------------------------------------------------------ */ 3739 /* Function: fr_ifsync */ 3740 /* Returns: void * - new interface identifier */ 3741 /* Parameters: action(I) - type of synchronisation to do */ 3742 /* v(I) - IP version being sync'd (v4 or v6) */ 3743 /* newifp(I) - interface identifier being introduced/removed */ 3744 /* oldifp(I) - interface identifier in a filter rule */ 3745 /* newname(I) - name associated with newifp interface */ 3746 /* oldname(I) - name associated with oldifp interface */ 3747 /* ifs - pointer to IPF stack instance */ 3748 /* */ 3749 /* This function returns what the new value for "oldifp" should be for its */ 3750 /* caller. In some cases it will not change, in some it will. */ 3751 /* action == IPFSYNC_RESYNC */ 3752 /* a new value for oldifp will always be looked up, according to oldname, */ 3753 /* the values of newname and newifp are ignored. */ 3754 /* action == IPFSYNC_NEWIFP */ 3755 /* if oldname matches newname then we are doing a sync for the matching */ 3756 /* interface, so we return newifp to be used in place of oldifp. If the */ 3757 /* the names don't match, just return oldifp. */ 3758 /* action == IPFSYNC_OLDIFP */ 3759 /* if oldifp matches newifp then we are are doing a sync to remove any */ 3760 /* references to oldifp, so we return "-1". */ 3761 /* ----- */ 3762 /* NOTE: */ 3763 /* This function processes NIC event from PF_HOOKS. The action parameter */ 3764 /* is set in ipf_nic_event_v4()/ipf_nic_event_v6() function. There is */ 3765 /* one single switch statement() in ipf_nic_event_vx() function, which */ 3766 /* translates the HOOK event type to action parameter passed to fr_ifsync. */ 3767 /* The translation table looks as follows: */ 3768 /* event | action */ 3769 /* ----------------+------------- */ 3770 /* NE_PLUMB | IPFSYNC_NEWIFP */ 3771 /* NE_UNPLUMB | IPFSYNC_OLDIFP */ 3772 /* NE_ADDRESS_CHANGE | IPFSYNC_RESYNC */ 3773 /* */ 3774 /* The oldname and oldifp parameters are taken from IPF entry (rule, state */ 3775 /* table entry, NAT table entry, fragment ...). The newname and newifp */ 3776 /* parameters come from hook event data, parameters are taken from event */ 3777 /* in ipf_nic_event_vx() functions. Any time NIC changes, the IPF is */ 3778 /* notified by hook function. */ 3779 /* */ 3780 /* We get NE_UNPLUMB event from PF_HOOKS even if someone coincidently tries */ 3781 /* to plumb the interface, which is already plumbed. In such case we always */ 3782 /* get the event from PF_HOOKS as follows: */ 3783 /* event: NE_PLUMB */ 3784 /* NIC: 0x0 */ 3785 /* ------------------------------------------------------------------------ */ 3786 static void *fr_ifsync(action, v, newname, oldname, newifp, oldifp, ifs) 3787 int action, v; 3788 char *newname, *oldname; 3789 void *newifp, *oldifp; 3790 ipf_stack_t *ifs; 3791 { 3792 void *rval = oldifp; 3793 3794 switch (action) 3795 { 3796 case IPFSYNC_RESYNC : 3797 if (oldname[0] != '\0') { 3798 rval = fr_resolvenic(oldname, v, ifs); 3799 } 3800 break; 3801 case IPFSYNC_NEWIFP : 3802 if (!strncmp(newname, oldname, LIFNAMSIZ)) 3803 rval = newifp; 3804 break; 3805 case IPFSYNC_OLDIFP : 3806 /* 3807 * If interface gets unplumbed it must be invalidated, which 3808 * means set all existing references to the interface to -1. 3809 * We don't want to invalidate references for wildcard 3810 * (unbound) rules (entries). 3811 */ 3812 if (newifp == oldifp) 3813 rval = (oldifp) ? (void *)-1 : NULL; 3814 break; 3815 } 3816 3817 return rval; 3818 } 3819 3820 3821 /* ------------------------------------------------------------------------ */ 3822 /* Function: frsynclist */ 3823 /* Returns: void */ 3824 /* Parameters: action(I) - type of synchronisation to do */ 3825 /* v(I) - IP version being sync'd (v4 or v6) */ 3826 /* ifp(I) - interface identifier associated with action */ 3827 /* ifname(I) - name associated with ifp parameter */ 3828 /* fr(I) - pointer to filter rule */ 3829 /* ifs - pointer to IPF stack instance */ 3830 /* Write Locks: ipf_mutex */ 3831 /* */ 3832 /* Walk through a list of filter rules and resolve any interface names into */ 3833 /* pointers. Where dynamic addresses are used, also update the IP address */ 3834 /* used in the rule. The interface pointer is used to limit the lookups to */ 3835 /* a specific set of matching names if it is non-NULL. */ 3836 /* ------------------------------------------------------------------------ */ 3837 static void frsynclist(action, v, ifp, ifname, fr, ifs) 3838 int action, v; 3839 void *ifp; 3840 char *ifname; 3841 frentry_t *fr; 3842 ipf_stack_t *ifs; 3843 { 3844 frdest_t *fdp; 3845 int rv, i; 3846 3847 for (; fr; fr = fr->fr_next) { 3848 rv = fr->fr_v; 3849 if (v != 0 && v != rv) 3850 continue; 3851 3852 /* 3853 * Lookup all the interface names that are part of the rule. 3854 */ 3855 for (i = 0; i < 4; i++) { 3856 fr->fr_ifas[i] = fr_ifsync(action, rv, ifname, 3857 fr->fr_ifnames[i], 3858 ifp, fr->fr_ifas[i], 3859 ifs); 3860 } 3861 3862 fdp = &fr->fr_tifs[0]; 3863 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3864 ifp, fdp->fd_ifp, ifs); 3865 3866 fdp = &fr->fr_tifs[1]; 3867 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3868 ifp, fdp->fd_ifp, ifs); 3869 3870 fdp = &fr->fr_dif; 3871 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3872 ifp, fdp->fd_ifp, ifs); 3873 3874 if (action != IPFSYNC_RESYNC) 3875 continue; 3876 3877 if (fr->fr_type == FR_T_IPF) { 3878 if (fr->fr_satype != FRI_NORMAL && 3879 fr->fr_satype != FRI_LOOKUP) { 3880 (void)fr_ifpaddr(rv, fr->fr_satype, 3881 fr->fr_ifas[fr->fr_sifpidx], 3882 &fr->fr_src, &fr->fr_smsk, 3883 ifs); 3884 } 3885 if (fr->fr_datype != FRI_NORMAL && 3886 fr->fr_datype != FRI_LOOKUP) { 3887 (void)fr_ifpaddr(rv, fr->fr_datype, 3888 fr->fr_ifas[fr->fr_difpidx], 3889 &fr->fr_dst, &fr->fr_dmsk, 3890 ifs); 3891 } 3892 } 3893 3894 #ifdef IPFILTER_LOOKUP 3895 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP && 3896 fr->fr_srcptr == NULL) { 3897 fr->fr_srcptr = fr_resolvelookup(fr->fr_srctype, 3898 fr->fr_srcnum, 3899 &fr->fr_srcfunc, ifs); 3900 } 3901 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP && 3902 fr->fr_dstptr == NULL) { 3903 fr->fr_dstptr = fr_resolvelookup(fr->fr_dsttype, 3904 fr->fr_dstnum, 3905 &fr->fr_dstfunc, ifs); 3906 } 3907 #endif 3908 } 3909 } 3910 3911 3912 #ifdef _KERNEL 3913 /* ------------------------------------------------------------------------ */ 3914 /* Function: frsync */ 3915 /* Returns: void */ 3916 /* Parameters: action(I) - type of synchronisation to do */ 3917 /* v(I) - IP version being sync'd (v4 or v6) */ 3918 /* ifp(I) - interface identifier associated with action */ 3919 /* name(I) - name associated with ifp parameter */ 3920 /* */ 3921 /* frsync() is called when we suspect that the interface list or */ 3922 /* information about interfaces (like IP#) has changed. Go through all */ 3923 /* filter rules, NAT entries and the state table and check if anything */ 3924 /* needs to be changed/updated. */ 3925 /* With the filtering hooks added to Solaris, we needed to change the manner*/ 3926 /* in which this was done to support three different types of sync: */ 3927 /* - complete resync of all interface name/identifiers */ 3928 /* - new interface being announced with its name and identifier */ 3929 /* - interface removal being announced by only its identifier */ 3930 /* ------------------------------------------------------------------------ */ 3931 void frsync(action, v, ifp, name, ifs) 3932 int action, v; 3933 void *ifp; 3934 char *name; 3935 ipf_stack_t *ifs; 3936 { 3937 int i; 3938 3939 WRITE_ENTER(&ifs->ifs_ipf_mutex); 3940 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[0][ifs->ifs_fr_active], ifs); 3941 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[1][ifs->ifs_fr_active], ifs); 3942 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[0][ifs->ifs_fr_active], ifs); 3943 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[1][ifs->ifs_fr_active], ifs); 3944 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[0][ifs->ifs_fr_active], ifs); 3945 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[1][ifs->ifs_fr_active], ifs); 3946 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[0][ifs->ifs_fr_active], ifs); 3947 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[1][ifs->ifs_fr_active], ifs); 3948 3949 for (i = 0; i < IPL_LOGSIZE; i++) { 3950 frgroup_t *g; 3951 3952 for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next) 3953 frsynclist(action, v, ifp, name, g->fg_start, ifs); 3954 for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next) 3955 frsynclist(action, v, ifp, name, g->fg_start, ifs); 3956 } 3957 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 3958 } 3959 3960 #if SOLARIS2 >= 10 3961 /* ------------------------------------------------------------------------ */ 3962 /* Function: fr_syncindex */ 3963 /* Returns: void */ 3964 /* Parameters: rules - list of rules to be sync'd */ 3965 /* ifp - interface, which is being sync'd */ 3966 /* newifp - new ifindex value for interface */ 3967 /* */ 3968 /* Function updates all NIC indecis, which match ifp, in every rule. Every */ 3969 /* NIC index matching ifp, will be updated to newifp. */ 3970 /* ------------------------------------------------------------------------ */ 3971 static void fr_syncindex(rules, ifp, newifp) 3972 frentry_t *rules; 3973 void *ifp; 3974 void *newifp; 3975 { 3976 int i; 3977 frentry_t *fr; 3978 3979 for (fr = rules; fr != NULL; fr = fr->fr_next) { 3980 /* 3981 * Lookup all the interface names that are part of the rule. 3982 */ 3983 for (i = 0; i < 4; i++) 3984 if (fr->fr_ifas[i] == ifp) 3985 fr->fr_ifas[i] = newifp; 3986 3987 for (i = 0; i < 2; i++) { 3988 if (fr->fr_tifs[i].fd_ifp == ifp) 3989 fr->fr_tifs[i].fd_ifp = newifp; 3990 } 3991 3992 if (fr->fr_dif.fd_ifp == ifp) 3993 fr->fr_dif.fd_ifp = newifp; 3994 } 3995 } 3996 3997 /* ------------------------------------------------------------------------ */ 3998 /* Function: fr_ifindexsync */ 3999 /* Returns: void */ 4000 /* Parameters: ifp - interface, which is being sync'd */ 4001 /* newifp - new ifindex value for interface */ 4002 /* ifs - IPF's stack */ 4003 /* */ 4004 /* Function assumes ipf_mutex is locked exclusively. */ 4005 /* */ 4006 /* Function updates the NIC references in rules with new interfaces index */ 4007 /* (newifp). Function must process active lists: */ 4008 /* with accounting rules (IPv6 and IPv4) */ 4009 /* with inbound rules (IPv6 and IPv4) */ 4010 /* with outbound rules (IPv6 and IPv4) */ 4011 /* Function also has to take care of rule groups. */ 4012 /* */ 4013 /* NOTE: The ipf_mutex is grabbed exclusively by caller (which is always */ 4014 /* nic_event_hook). The hook function also updates state entries, NAT rules */ 4015 /* and NAT entries. We want to do all these update atomically to keep the */ 4016 /* NIC references consistent. The ipf_mutex will synchronize event with */ 4017 /* fr_check(), which processes packets, so no packet will enter fr_check(), */ 4018 /* while NIC references will be synchronized. */ 4019 /* ------------------------------------------------------------------------ */ 4020 void fr_ifindexsync(ifp, newifp, ifs) 4021 void *ifp; 4022 void *newifp; 4023 ipf_stack_t *ifs; 4024 { 4025 unsigned int i; 4026 frentry_t *rule_lists[8]; 4027 unsigned int rules = sizeof (rule_lists) / sizeof (frentry_t *); 4028 4029 rule_lists[0] = ifs->ifs_ipacct[0][ifs->ifs_fr_active]; 4030 rule_lists[1] = ifs->ifs_ipacct[1][ifs->ifs_fr_active]; 4031 rule_lists[2] = ifs->ifs_ipfilter[0][ifs->ifs_fr_active]; 4032 rule_lists[3] = ifs->ifs_ipfilter[1][ifs->ifs_fr_active]; 4033 rule_lists[4] = ifs->ifs_ipacct6[0][ifs->ifs_fr_active]; 4034 rule_lists[5] = ifs->ifs_ipacct6[1][ifs->ifs_fr_active]; 4035 rule_lists[6] = ifs->ifs_ipfilter6[0][ifs->ifs_fr_active]; 4036 rule_lists[7] = ifs->ifs_ipfilter6[1][ifs->ifs_fr_active]; 4037 4038 for (i = 0; i < rules; i++) { 4039 fr_syncindex(rule_lists[i], ifp, newifp); 4040 } 4041 4042 /* 4043 * Update rule groups. 4044 */ 4045 for (i = 0; i < IPL_LOGSIZE; i++) { 4046 frgroup_t *g; 4047 4048 for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next) 4049 fr_syncindex(g->fg_start, ifp, newifp); 4050 for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next) 4051 fr_syncindex(g->fg_start, ifp, newifp); 4052 } 4053 } 4054 #endif 4055 4056 /* 4057 * In the functions below, bcopy() is called because the pointer being 4058 * copied _from_ in this instance is a pointer to a char buf (which could 4059 * end up being unaligned) and on the kernel's local stack. 4060 */ 4061 /* ------------------------------------------------------------------------ */ 4062 /* Function: copyinptr */ 4063 /* Returns: int - 0 = success, else failure */ 4064 /* Parameters: src(I) - pointer to the source address */ 4065 /* dst(I) - destination address */ 4066 /* size(I) - number of bytes to copy */ 4067 /* */ 4068 /* Copy a block of data in from user space, given a pointer to the pointer */ 4069 /* to start copying from (src) and a pointer to where to store it (dst). */ 4070 /* NB: src - pointer to user space pointer, dst - kernel space pointer */ 4071 /* ------------------------------------------------------------------------ */ 4072 int copyinptr(src, dst, size) 4073 void *src, *dst; 4074 size_t size; 4075 { 4076 caddr_t ca; 4077 int err; 4078 4079 # ifdef SOLARIS 4080 err = COPYIN(src, (caddr_t)&ca, sizeof(ca)); 4081 if (err != 0) 4082 return err; 4083 # else 4084 bcopy(src, (caddr_t)&ca, sizeof(ca)); 4085 # endif 4086 err = COPYIN(ca, dst, size); 4087 return err; 4088 } 4089 4090 4091 /* ------------------------------------------------------------------------ */ 4092 /* Function: copyoutptr */ 4093 /* Returns: int - 0 = success, else failure */ 4094 /* Parameters: src(I) - pointer to the source address */ 4095 /* dst(I) - destination address */ 4096 /* size(I) - number of bytes to copy */ 4097 /* */ 4098 /* Copy a block of data out to user space, given a pointer to the pointer */ 4099 /* to start copying from (src) and a pointer to where to store it (dst). */ 4100 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */ 4101 /* ------------------------------------------------------------------------ */ 4102 int copyoutptr(src, dst, size) 4103 void *src, *dst; 4104 size_t size; 4105 { 4106 caddr_t ca; 4107 int err; 4108 4109 # ifdef SOLARIS 4110 err = COPYIN(dst, (caddr_t)&ca, sizeof(ca)); 4111 if (err != 0) 4112 return err; 4113 # else 4114 bcopy(dst, (caddr_t)&ca, sizeof(ca)); 4115 # endif 4116 err = COPYOUT(src, ca, size); 4117 return err; 4118 } 4119 #endif 4120 4121 4122 /* ------------------------------------------------------------------------ */ 4123 /* Function: fr_lock */ 4124 /* Returns: int - 0 = success, else error */ 4125 /* Parameters: data(I) - pointer to lock value to set */ 4126 /* lockp(O) - pointer to location to store old lock value */ 4127 /* */ 4128 /* Get the new value for the lock integer, set it and return the old value */ 4129 /* in *lockp. */ 4130 /* ------------------------------------------------------------------------ */ 4131 int fr_lock(data, lockp) 4132 caddr_t data; 4133 int *lockp; 4134 { 4135 int arg, err; 4136 4137 err = BCOPYIN(data, (caddr_t)&arg, sizeof(arg)); 4138 if (err != 0) 4139 return (EFAULT); 4140 err = BCOPYOUT((caddr_t)lockp, data, sizeof(*lockp)); 4141 if (err != 0) 4142 return (EFAULT); 4143 *lockp = arg; 4144 return (0); 4145 } 4146 4147 4148 /* ------------------------------------------------------------------------ */ 4149 /* Function: fr_getstat */ 4150 /* Returns: Nil */ 4151 /* Parameters: fiop(I) - pointer to ipfilter stats structure */ 4152 /* */ 4153 /* Stores a copy of current pointers, counters, etc, in the friostat */ 4154 /* structure. */ 4155 /* ------------------------------------------------------------------------ */ 4156 void fr_getstat(fiop, ifs) 4157 friostat_t *fiop; 4158 ipf_stack_t *ifs; 4159 { 4160 int i, j; 4161 4162 bcopy((char *)&ifs->ifs_frstats, (char *)fiop->f_st, 4163 sizeof(filterstats_t) * 2); 4164 fiop->f_locks[IPL_LOGSTATE] = ifs->ifs_fr_state_lock; 4165 fiop->f_locks[IPL_LOGNAT] = ifs->ifs_fr_nat_lock; 4166 fiop->f_locks[IPL_LOGIPF] = ifs->ifs_fr_frag_lock; 4167 fiop->f_locks[IPL_LOGAUTH] = ifs->ifs_fr_auth_lock; 4168 4169 for (i = 0; i < 2; i++) 4170 for (j = 0; j < 2; j++) { 4171 fiop->f_ipf[i][j] = ifs->ifs_ipfilter[i][j]; 4172 fiop->f_acct[i][j] = ifs->ifs_ipacct[i][j]; 4173 fiop->f_ipf6[i][j] = ifs->ifs_ipfilter6[i][j]; 4174 fiop->f_acct6[i][j] = ifs->ifs_ipacct6[i][j]; 4175 } 4176 4177 fiop->f_ticks = ifs->ifs_fr_ticks; 4178 fiop->f_active = ifs->ifs_fr_active; 4179 fiop->f_froute[0] = ifs->ifs_fr_frouteok[0]; 4180 fiop->f_froute[1] = ifs->ifs_fr_frouteok[1]; 4181 4182 fiop->f_running = ifs->ifs_fr_running; 4183 for (i = 0; i < IPL_LOGSIZE; i++) { 4184 fiop->f_groups[i][0] = ifs->ifs_ipfgroups[i][0]; 4185 fiop->f_groups[i][1] = ifs->ifs_ipfgroups[i][1]; 4186 } 4187 #ifdef IPFILTER_LOG 4188 fiop->f_logging = 1; 4189 #else 4190 fiop->f_logging = 0; 4191 #endif 4192 fiop->f_defpass = ifs->ifs_fr_pass; 4193 fiop->f_features = fr_features; 4194 (void) strncpy(fiop->f_version, ipfilter_version, 4195 sizeof(fiop->f_version)); 4196 } 4197 4198 4199 #ifdef USE_INET6 4200 int icmptoicmp6types[ICMP_MAXTYPE+1] = { 4201 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */ 4202 -1, /* 1: UNUSED */ 4203 -1, /* 2: UNUSED */ 4204 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */ 4205 -1, /* 4: ICMP_SOURCEQUENCH */ 4206 ND_REDIRECT, /* 5: ICMP_REDIRECT */ 4207 -1, /* 6: UNUSED */ 4208 -1, /* 7: UNUSED */ 4209 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */ 4210 -1, /* 9: UNUSED */ 4211 -1, /* 10: UNUSED */ 4212 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */ 4213 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */ 4214 -1, /* 13: ICMP_TSTAMP */ 4215 -1, /* 14: ICMP_TSTAMPREPLY */ 4216 -1, /* 15: ICMP_IREQ */ 4217 -1, /* 16: ICMP_IREQREPLY */ 4218 -1, /* 17: ICMP_MASKREQ */ 4219 -1, /* 18: ICMP_MASKREPLY */ 4220 }; 4221 4222 4223 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = { 4224 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */ 4225 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */ 4226 -1, /* 2: ICMP_UNREACH_PROTOCOL */ 4227 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */ 4228 -1, /* 4: ICMP_UNREACH_NEEDFRAG */ 4229 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */ 4230 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */ 4231 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */ 4232 -1, /* 8: ICMP_UNREACH_ISOLATED */ 4233 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */ 4234 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */ 4235 -1, /* 11: ICMP_UNREACH_TOSNET */ 4236 -1, /* 12: ICMP_UNREACH_TOSHOST */ 4237 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */ 4238 }; 4239 int icmpreplytype6[ICMP6_MAXTYPE + 1]; 4240 #endif 4241 4242 int icmpreplytype4[ICMP_MAXTYPE + 1]; 4243 4244 4245 /* ------------------------------------------------------------------------ */ 4246 /* Function: fr_matchicmpqueryreply */ 4247 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */ 4248 /* Parameters: v(I) - IP protocol version (4 or 6) */ 4249 /* ic(I) - ICMP information */ 4250 /* icmp(I) - ICMP packet header */ 4251 /* rev(I) - direction (0 = forward/1 = reverse) of packet */ 4252 /* */ 4253 /* Check if the ICMP packet defined by the header pointed to by icmp is a */ 4254 /* reply to one as described by what's in ic. If it is a match, return 1, */ 4255 /* else return 0 for no match. */ 4256 /* ------------------------------------------------------------------------ */ 4257 int fr_matchicmpqueryreply(v, ic, icmp, rev) 4258 int v; 4259 icmpinfo_t *ic; 4260 icmphdr_t *icmp; 4261 int rev; 4262 { 4263 int ictype; 4264 4265 ictype = ic->ici_type; 4266 4267 if (v == 4) { 4268 /* 4269 * If we matched its type on the way in, then when going out 4270 * it will still be the same type. 4271 */ 4272 if ((!rev && (icmp->icmp_type == ictype)) || 4273 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) { 4274 if (icmp->icmp_type != ICMP_ECHOREPLY) 4275 return 1; 4276 if (icmp->icmp_id == ic->ici_id) 4277 return 1; 4278 } 4279 } 4280 #ifdef USE_INET6 4281 else if (v == 6) { 4282 if ((!rev && (icmp->icmp_type == ictype)) || 4283 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) { 4284 if (icmp->icmp_type != ICMP6_ECHO_REPLY) 4285 return 1; 4286 if (icmp->icmp_id == ic->ici_id) 4287 return 1; 4288 } 4289 } 4290 #endif 4291 return 0; 4292 } 4293 4294 4295 #ifdef IPFILTER_LOOKUP 4296 /* ------------------------------------------------------------------------ */ 4297 /* Function: fr_resolvelookup */ 4298 /* Returns: void * - NULL = failure, else success. */ 4299 /* Parameters: type(I) - type of lookup these parameters are for. */ 4300 /* number(I) - table number to use when searching */ 4301 /* funcptr(IO) - pointer to pointer for storing IP address */ 4302 /* searching function. */ 4303 /* ifs - ipf stack instance */ 4304 /* */ 4305 /* Search for the "table" number passed in amongst those configured for */ 4306 /* that particular type. If the type is recognised then the function to */ 4307 /* call to do the IP address search will be change, regardless of whether */ 4308 /* or not the "table" number exists. */ 4309 /* ------------------------------------------------------------------------ */ 4310 static void *fr_resolvelookup(type, number, funcptr, ifs) 4311 u_int type, number; 4312 lookupfunc_t *funcptr; 4313 ipf_stack_t *ifs; 4314 { 4315 char name[FR_GROUPLEN]; 4316 iphtable_t *iph; 4317 ip_pool_t *ipo; 4318 void *ptr; 4319 4320 #if defined(SNPRINTF) && defined(_KERNEL) 4321 (void) SNPRINTF(name, sizeof(name), "%u", number); 4322 #else 4323 (void) sprintf(name, "%u", number); 4324 #endif 4325 4326 READ_ENTER(&ifs->ifs_ip_poolrw); 4327 4328 switch (type) 4329 { 4330 case IPLT_POOL : 4331 # if (defined(__osf__) && defined(_KERNEL)) 4332 ptr = NULL; 4333 *funcptr = NULL; 4334 # else 4335 ipo = ip_pool_find(IPL_LOGIPF, name, ifs); 4336 ptr = ipo; 4337 if (ipo != NULL) { 4338 ATOMIC_INC32(ipo->ipo_ref); 4339 } 4340 *funcptr = ip_pool_search; 4341 # endif 4342 break; 4343 case IPLT_HASH : 4344 iph = fr_findhtable(IPL_LOGIPF, name, ifs); 4345 ptr = iph; 4346 if (iph != NULL) { 4347 ATOMIC_INC32(iph->iph_ref); 4348 } 4349 *funcptr = fr_iphmfindip; 4350 break; 4351 default: 4352 ptr = NULL; 4353 *funcptr = NULL; 4354 break; 4355 } 4356 RWLOCK_EXIT(&ifs->ifs_ip_poolrw); 4357 4358 return ptr; 4359 } 4360 #endif 4361 4362 4363 /* ------------------------------------------------------------------------ */ 4364 /* Function: frrequest */ 4365 /* Returns: int - 0 == success, > 0 == errno value */ 4366 /* Parameters: unit(I) - device for which this is for */ 4367 /* req(I) - ioctl command (SIOC*) */ 4368 /* data(I) - pointr to ioctl data */ 4369 /* set(I) - 1 or 0 (filter set) */ 4370 /* makecopy(I) - flag indicating whether data points to a rule */ 4371 /* in kernel space & hence doesn't need copying. */ 4372 /* */ 4373 /* This function handles all the requests which operate on the list of */ 4374 /* filter rules. This includes adding, deleting, insertion. It is also */ 4375 /* responsible for creating groups when a "head" rule is loaded. Interface */ 4376 /* names are resolved here and other sanity checks are made on the content */ 4377 /* of the rule structure being loaded. If a rule has user defined timeouts */ 4378 /* then make sure they are created and initialised before exiting. */ 4379 /* ------------------------------------------------------------------------ */ 4380 int frrequest(unit, req, data, set, makecopy, ifs) 4381 int unit; 4382 ioctlcmd_t req; 4383 int set, makecopy; 4384 caddr_t data; 4385 ipf_stack_t *ifs; 4386 { 4387 frentry_t frd, *fp, *f, **fprev, **ftail; 4388 int error = 0, in, v; 4389 void *ptr, *uptr; 4390 u_int *p, *pp; 4391 frgroup_t *fg; 4392 char *group; 4393 4394 fg = NULL; 4395 fp = &frd; 4396 if (makecopy != 0) { 4397 error = fr_inobj(data, fp, IPFOBJ_FRENTRY); 4398 if (error) 4399 return EFAULT; 4400 if ((fp->fr_flags & FR_T_BUILTIN) != 0) 4401 return EINVAL; 4402 fp->fr_ref = 0; 4403 fp->fr_flags |= FR_COPIED; 4404 } else { 4405 fp = (frentry_t *)data; 4406 if ((fp->fr_type & FR_T_BUILTIN) == 0) 4407 return EINVAL; 4408 fp->fr_flags &= ~FR_COPIED; 4409 } 4410 4411 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) || 4412 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) 4413 return EINVAL; 4414 4415 v = fp->fr_v; 4416 uptr = fp->fr_data; 4417 4418 /* 4419 * Only filter rules for IPv4 or IPv6 are accepted. 4420 */ 4421 if (v == 4) 4422 /*EMPTY*/; 4423 #ifdef USE_INET6 4424 else if (v == 6) 4425 /*EMPTY*/; 4426 #endif 4427 else { 4428 return EINVAL; 4429 } 4430 4431 /* 4432 * If the rule is being loaded from user space, i.e. we had to copy it 4433 * into kernel space, then do not trust the function pointer in the 4434 * rule. 4435 */ 4436 if ((makecopy == 1) && (fp->fr_func != NULL)) { 4437 if (fr_findfunc(fp->fr_func) == NULL) 4438 return ESRCH; 4439 error = fr_funcinit(fp, ifs); 4440 if (error != 0) 4441 return error; 4442 } 4443 4444 ptr = NULL; 4445 /* 4446 * Check that the group number does exist and that its use (in/out) 4447 * matches what the rule is. 4448 */ 4449 if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN)) 4450 *fp->fr_grhead = '\0'; 4451 group = fp->fr_group; 4452 if (!strncmp(group, "0", FR_GROUPLEN)) 4453 *group = '\0'; 4454 4455 if (FR_ISACCOUNT(fp->fr_flags)) 4456 unit = IPL_LOGCOUNT; 4457 4458 if ((req != (int)SIOCZRLST) && (*group != '\0')) { 4459 fg = fr_findgroup(group, unit, set, NULL, ifs); 4460 if (fg == NULL) 4461 return ESRCH; 4462 if (fg->fg_flags == 0) 4463 fg->fg_flags = fp->fr_flags & FR_INOUT; 4464 else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) 4465 return ESRCH; 4466 } 4467 4468 in = (fp->fr_flags & FR_INQUE) ? 0 : 1; 4469 4470 /* 4471 * Work out which rule list this change is being applied to. 4472 */ 4473 ftail = NULL; 4474 fprev = NULL; 4475 if (unit == IPL_LOGAUTH) 4476 fprev = &ifs->ifs_ipauth; 4477 else if (v == 4) { 4478 if (FR_ISACCOUNT(fp->fr_flags)) 4479 fprev = &ifs->ifs_ipacct[in][set]; 4480 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4481 fprev = &ifs->ifs_ipfilter[in][set]; 4482 } else if (v == 6) { 4483 if (FR_ISACCOUNT(fp->fr_flags)) 4484 fprev = &ifs->ifs_ipacct6[in][set]; 4485 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4486 fprev = &ifs->ifs_ipfilter6[in][set]; 4487 } 4488 if (fprev == NULL) 4489 return ESRCH; 4490 4491 if (*group != '\0') { 4492 if (!fg && !(fg = fr_findgroup(group, unit, set, NULL, ifs))) 4493 return ESRCH; 4494 fprev = &fg->fg_start; 4495 } 4496 4497 ftail = fprev; 4498 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) { 4499 if (fp->fr_collect <= f->fr_collect) { 4500 ftail = fprev; 4501 f = NULL; 4502 break; 4503 } 4504 fprev = ftail; 4505 } 4506 4507 /* 4508 * Copy in extra data for the rule. 4509 */ 4510 if (fp->fr_dsize != 0) { 4511 if (makecopy != 0) { 4512 KMALLOCS(ptr, void *, fp->fr_dsize); 4513 if (!ptr) 4514 return ENOMEM; 4515 error = COPYIN(uptr, ptr, fp->fr_dsize); 4516 } else { 4517 ptr = uptr; 4518 error = 0; 4519 } 4520 if (error != 0) { 4521 KFREES(ptr, fp->fr_dsize); 4522 return EFAULT; 4523 } 4524 fp->fr_data = ptr; 4525 } else 4526 fp->fr_data = NULL; 4527 4528 /* 4529 * Perform per-rule type sanity checks of their members. 4530 */ 4531 switch (fp->fr_type & ~FR_T_BUILTIN) 4532 { 4533 #if defined(IPFILTER_BPF) 4534 case FR_T_BPFOPC : 4535 if (fp->fr_dsize == 0) 4536 return EINVAL; 4537 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) { 4538 if (makecopy && fp->fr_data != NULL) { 4539 KFREES(fp->fr_data, fp->fr_dsize); 4540 } 4541 return EINVAL; 4542 } 4543 break; 4544 #endif 4545 case FR_T_IPF : 4546 if (fp->fr_dsize != sizeof(fripf_t)) { 4547 if (makecopy && fp->fr_data != NULL) { 4548 KFREES(fp->fr_data, fp->fr_dsize); 4549 } 4550 return EINVAL; 4551 } 4552 4553 /* 4554 * Allowing a rule with both "keep state" and "with oow" is 4555 * pointless because adding a state entry to the table will 4556 * fail with the out of window (oow) flag set. 4557 */ 4558 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) { 4559 if (makecopy && fp->fr_data != NULL) { 4560 KFREES(fp->fr_data, fp->fr_dsize); 4561 } 4562 return EINVAL; 4563 } 4564 4565 switch (fp->fr_satype) 4566 { 4567 case FRI_BROADCAST : 4568 case FRI_DYNAMIC : 4569 case FRI_NETWORK : 4570 case FRI_NETMASKED : 4571 case FRI_PEERADDR : 4572 if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) { 4573 if (makecopy && fp->fr_data != NULL) { 4574 KFREES(fp->fr_data, fp->fr_dsize); 4575 } 4576 return EINVAL; 4577 } 4578 break; 4579 #ifdef IPFILTER_LOOKUP 4580 case FRI_LOOKUP : 4581 fp->fr_srcptr = fr_resolvelookup(fp->fr_srctype, 4582 fp->fr_srcnum, 4583 &fp->fr_srcfunc, ifs); 4584 break; 4585 #endif 4586 default : 4587 break; 4588 } 4589 4590 switch (fp->fr_datype) 4591 { 4592 case FRI_BROADCAST : 4593 case FRI_DYNAMIC : 4594 case FRI_NETWORK : 4595 case FRI_NETMASKED : 4596 case FRI_PEERADDR : 4597 if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) { 4598 if (makecopy && fp->fr_data != NULL) { 4599 KFREES(fp->fr_data, fp->fr_dsize); 4600 } 4601 return EINVAL; 4602 } 4603 break; 4604 #ifdef IPFILTER_LOOKUP 4605 case FRI_LOOKUP : 4606 fp->fr_dstptr = fr_resolvelookup(fp->fr_dsttype, 4607 fp->fr_dstnum, 4608 &fp->fr_dstfunc, ifs); 4609 break; 4610 #endif 4611 default : 4612 break; 4613 } 4614 break; 4615 case FR_T_NONE : 4616 break; 4617 case FR_T_CALLFUNC : 4618 break; 4619 case FR_T_COMPIPF : 4620 break; 4621 default : 4622 if (makecopy && fp->fr_data != NULL) { 4623 KFREES(fp->fr_data, fp->fr_dsize); 4624 } 4625 return EINVAL; 4626 } 4627 4628 /* 4629 * Lookup all the interface names that are part of the rule. 4630 */ 4631 frsynclist(0, 0, NULL, NULL, fp, ifs); 4632 fp->fr_statecnt = 0; 4633 4634 /* 4635 * Look for an existing matching filter rule, but don't include the 4636 * next or interface pointer in the comparison (fr_next, fr_ifa). 4637 * This elminates rules which are indentical being loaded. Checksum 4638 * the constant part of the filter rule to make comparisons quicker 4639 * (this meaning no pointers are included). 4640 */ 4641 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum; 4642 p < pp; p++) 4643 fp->fr_cksum += *p; 4644 pp = (u_int *)(fp->fr_caddr + fp->fr_dsize); 4645 for (p = (u_int *)fp->fr_data; p < pp; p++) 4646 fp->fr_cksum += *p; 4647 4648 WRITE_ENTER(&ifs->ifs_ipf_mutex); 4649 bzero((char *)ifs->ifs_frcache, sizeof (ifs->ifs_frcache)); 4650 4651 for (; (f = *ftail) != NULL; ftail = &f->fr_next) { 4652 if ((fp->fr_cksum != f->fr_cksum) || 4653 (f->fr_dsize != fp->fr_dsize)) 4654 continue; 4655 if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ)) 4656 continue; 4657 if ((!ptr && !f->fr_data) || 4658 (ptr && f->fr_data && 4659 !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize))) 4660 break; 4661 } 4662 4663 /* 4664 * If zero'ing statistics, copy current to caller and zero. 4665 */ 4666 if (req == (ioctlcmd_t)SIOCZRLST) { 4667 if (f == NULL) 4668 error = ESRCH; 4669 else { 4670 /* 4671 * Copy and reduce lock because of impending copyout. 4672 * Well we should, but if we do then the atomicity of 4673 * this call and the correctness of fr_hits and 4674 * fr_bytes cannot be guaranteed. As it is, this code 4675 * only resets them to 0 if they are successfully 4676 * copied out into user space. 4677 */ 4678 bcopy((char *)f, (char *)fp, sizeof(*f)); 4679 4680 /* 4681 * When we copy this rule back out, set the data 4682 * pointer to be what it was in user space. 4683 */ 4684 fp->fr_data = uptr; 4685 error = fr_outobj(data, fp, IPFOBJ_FRENTRY); 4686 4687 if (error == 0) { 4688 if ((f->fr_dsize != 0) && (uptr != NULL)) 4689 error = COPYOUT(f->fr_data, uptr, 4690 f->fr_dsize); 4691 if (error == 0) { 4692 f->fr_hits = 0; 4693 f->fr_bytes = 0; 4694 } 4695 } 4696 } 4697 4698 if ((ptr != NULL) && (makecopy != 0)) { 4699 KFREES(ptr, fp->fr_dsize); 4700 } 4701 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 4702 return error; 4703 } 4704 4705 if (!f) { 4706 /* 4707 * At the end of this, ftail must point to the place where the 4708 * new rule is to be saved/inserted/added. 4709 * For SIOCAD*FR, this should be the last rule in the group of 4710 * rules that have equal fr_collect fields. 4711 * For SIOCIN*FR, ... 4712 */ 4713 if (req == (ioctlcmd_t)SIOCADAFR || 4714 req == (ioctlcmd_t)SIOCADIFR) { 4715 4716 for (ftail = fprev; (f = *ftail) != NULL; ) { 4717 if (f->fr_collect > fp->fr_collect) 4718 break; 4719 ftail = &f->fr_next; 4720 } 4721 f = NULL; 4722 ptr = NULL; 4723 error = 0; 4724 } else if (req == (ioctlcmd_t)SIOCINAFR || 4725 req == (ioctlcmd_t)SIOCINIFR) { 4726 while ((f = *fprev) != NULL) { 4727 if (f->fr_collect >= fp->fr_collect) 4728 break; 4729 fprev = &f->fr_next; 4730 } 4731 ftail = fprev; 4732 if (fp->fr_hits != 0) { 4733 while (fp->fr_hits && (f = *ftail)) { 4734 if (f->fr_collect != fp->fr_collect) 4735 break; 4736 fprev = ftail; 4737 ftail = &f->fr_next; 4738 fp->fr_hits--; 4739 } 4740 } 4741 f = NULL; 4742 ptr = NULL; 4743 error = 0; 4744 } 4745 } 4746 4747 /* 4748 * Request to remove a rule. 4749 */ 4750 if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) { 4751 if (!f) 4752 error = ESRCH; 4753 else { 4754 /* 4755 * Do not allow activity from user space to interfere 4756 * with rules not loaded that way. 4757 */ 4758 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) { 4759 error = EPERM; 4760 goto done; 4761 } 4762 4763 /* 4764 * Return EBUSY if the rule is being reference by 4765 * something else (eg state information. 4766 */ 4767 if (f->fr_ref > 1) { 4768 error = EBUSY; 4769 goto done; 4770 } 4771 #ifdef IPFILTER_SCAN 4772 if (f->fr_isctag[0] != '\0' && 4773 (f->fr_isc != (struct ipscan *)-1)) 4774 ipsc_detachfr(f); 4775 #endif 4776 if (unit == IPL_LOGAUTH) { 4777 error = fr_preauthcmd(req, f, ftail, ifs); 4778 goto done; 4779 } 4780 if (*f->fr_grhead != '\0') 4781 fr_delgroup(f->fr_grhead, unit, set, ifs); 4782 fr_fixskip(ftail, f, -1); 4783 *ftail = f->fr_next; 4784 f->fr_next = NULL; 4785 (void)fr_derefrule(&f, ifs); 4786 } 4787 } else { 4788 /* 4789 * Not removing, so we must be adding/inserting a rule. 4790 */ 4791 if (f) 4792 error = EEXIST; 4793 else { 4794 if (unit == IPL_LOGAUTH) { 4795 error = fr_preauthcmd(req, fp, ftail, ifs); 4796 goto done; 4797 } 4798 if (makecopy) { 4799 KMALLOC(f, frentry_t *); 4800 } else 4801 f = fp; 4802 if (f != NULL) { 4803 if (fp != f) 4804 bcopy((char *)fp, (char *)f, 4805 sizeof(*f)); 4806 MUTEX_NUKE(&f->fr_lock); 4807 MUTEX_INIT(&f->fr_lock, "filter rule lock"); 4808 #ifdef IPFILTER_SCAN 4809 if (f->fr_isctag[0] != '\0' && 4810 ipsc_attachfr(f)) 4811 f->fr_isc = (struct ipscan *)-1; 4812 #endif 4813 f->fr_hits = 0; 4814 if (makecopy != 0) 4815 f->fr_ref = 1; 4816 f->fr_next = *ftail; 4817 *ftail = f; 4818 if (req == (ioctlcmd_t)SIOCINIFR || 4819 req == (ioctlcmd_t)SIOCINAFR) 4820 fr_fixskip(ftail, f, 1); 4821 f->fr_grp = NULL; 4822 group = f->fr_grhead; 4823 if (*group != '\0') { 4824 fg = fr_addgroup(group, f, f->fr_flags, 4825 unit, set, ifs); 4826 if (fg != NULL) 4827 f->fr_grp = &fg->fg_start; 4828 } 4829 } else 4830 error = ENOMEM; 4831 } 4832 } 4833 done: 4834 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 4835 if ((ptr != NULL) && (error != 0) && (makecopy != 0)) { 4836 KFREES(ptr, fp->fr_dsize); 4837 } 4838 return (error); 4839 } 4840 4841 4842 /* ------------------------------------------------------------------------ */ 4843 /* Function: fr_funcinit */ 4844 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */ 4845 /* Parameters: fr(I) - pointer to filter rule */ 4846 /* */ 4847 /* If a rule is a call rule, then check if the function it points to needs */ 4848 /* an init function to be called now the rule has been loaded. */ 4849 /* ------------------------------------------------------------------------ */ 4850 static int fr_funcinit(fr, ifs) 4851 frentry_t *fr; 4852 ipf_stack_t *ifs; 4853 { 4854 ipfunc_resolve_t *ft; 4855 int err; 4856 4857 err = ESRCH; 4858 4859 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4860 if (ft->ipfu_addr == fr->fr_func) { 4861 err = 0; 4862 if (ft->ipfu_init != NULL) 4863 err = (*ft->ipfu_init)(fr, ifs); 4864 break; 4865 } 4866 return err; 4867 } 4868 4869 4870 /* ------------------------------------------------------------------------ */ 4871 /* Function: fr_findfunc */ 4872 /* Returns: ipfunc_t - pointer to function if found, else NULL */ 4873 /* Parameters: funcptr(I) - function pointer to lookup */ 4874 /* */ 4875 /* Look for a function in the table of known functions. */ 4876 /* ------------------------------------------------------------------------ */ 4877 static ipfunc_t fr_findfunc(funcptr) 4878 ipfunc_t funcptr; 4879 { 4880 ipfunc_resolve_t *ft; 4881 4882 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4883 if (ft->ipfu_addr == funcptr) 4884 return funcptr; 4885 return NULL; 4886 } 4887 4888 4889 /* ------------------------------------------------------------------------ */ 4890 /* Function: fr_resolvefunc */ 4891 /* Returns: int - 0 == success, else error */ 4892 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */ 4893 /* */ 4894 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */ 4895 /* This will either be the function name (if the pointer is set) or the */ 4896 /* function pointer if the name is set. When found, fill in the other one */ 4897 /* so that the entire, complete, structure can be copied back to user space.*/ 4898 /* ------------------------------------------------------------------------ */ 4899 int fr_resolvefunc(data) 4900 void *data; 4901 { 4902 ipfunc_resolve_t res, *ft; 4903 int err; 4904 4905 err = BCOPYIN(data, &res, sizeof(res)); 4906 if (err != 0) 4907 return EFAULT; 4908 4909 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') { 4910 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4911 if (strncmp(res.ipfu_name, ft->ipfu_name, 4912 sizeof(res.ipfu_name)) == 0) { 4913 res.ipfu_addr = ft->ipfu_addr; 4914 res.ipfu_init = ft->ipfu_init; 4915 if (COPYOUT(&res, data, sizeof(res)) != 0) 4916 return EFAULT; 4917 return 0; 4918 } 4919 } 4920 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') { 4921 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4922 if (ft->ipfu_addr == res.ipfu_addr) { 4923 (void) strncpy(res.ipfu_name, ft->ipfu_name, 4924 sizeof(res.ipfu_name)); 4925 res.ipfu_init = ft->ipfu_init; 4926 if (COPYOUT(&res, data, sizeof(res)) != 0) 4927 return EFAULT; 4928 return 0; 4929 } 4930 } 4931 return ESRCH; 4932 } 4933 4934 4935 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \ 4936 (defined(__FreeBSD__) && (__FreeBSD_version < 490000)) || \ 4937 (defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \ 4938 (defined(__OpenBSD__) && (OpenBSD < 200006)) 4939 /* 4940 * From: NetBSD 4941 * ppsratecheck(): packets (or events) per second limitation. 4942 */ 4943 int 4944 ppsratecheck(lasttime, curpps, maxpps) 4945 struct timeval *lasttime; 4946 int *curpps; 4947 int maxpps; /* maximum pps allowed */ 4948 { 4949 struct timeval tv, delta; 4950 int rv; 4951 4952 GETKTIME(&tv); 4953 4954 delta.tv_sec = tv.tv_sec - lasttime->tv_sec; 4955 delta.tv_usec = tv.tv_usec - lasttime->tv_usec; 4956 if (delta.tv_usec < 0) { 4957 delta.tv_sec--; 4958 delta.tv_usec += 1000000; 4959 } 4960 4961 /* 4962 * check for 0,0 is so that the message will be seen at least once. 4963 * if more than one second have passed since the last update of 4964 * lasttime, reset the counter. 4965 * 4966 * we do increment *curpps even in *curpps < maxpps case, as some may 4967 * try to use *curpps for stat purposes as well. 4968 */ 4969 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || 4970 delta.tv_sec >= 1) { 4971 *lasttime = tv; 4972 *curpps = 0; 4973 rv = 1; 4974 } else if (maxpps < 0) 4975 rv = 1; 4976 else if (*curpps < maxpps) 4977 rv = 1; 4978 else 4979 rv = 0; 4980 *curpps = *curpps + 1; 4981 4982 return (rv); 4983 } 4984 #endif 4985 4986 4987 /* ------------------------------------------------------------------------ */ 4988 /* Function: fr_derefrule */ 4989 /* Returns: int - 0 == rule freed up, else rule not freed */ 4990 /* Parameters: fr(I) - pointer to filter rule */ 4991 /* */ 4992 /* Decrement the reference counter to a rule by one. If it reaches zero, */ 4993 /* free it and any associated storage space being used by it. */ 4994 /* ------------------------------------------------------------------------ */ 4995 int fr_derefrule(frp, ifs) 4996 frentry_t **frp; 4997 ipf_stack_t *ifs; 4998 { 4999 frentry_t *fr; 5000 5001 fr = *frp; 5002 5003 MUTEX_ENTER(&fr->fr_lock); 5004 fr->fr_ref--; 5005 if (fr->fr_ref == 0) { 5006 MUTEX_EXIT(&fr->fr_lock); 5007 MUTEX_DESTROY(&fr->fr_lock); 5008 5009 #ifdef IPFILTER_LOOKUP 5010 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP) 5011 ip_lookup_deref(fr->fr_srctype, fr->fr_srcptr, ifs); 5012 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP) 5013 ip_lookup_deref(fr->fr_dsttype, fr->fr_dstptr, ifs); 5014 #endif 5015 5016 if (fr->fr_dsize) { 5017 KFREES(fr->fr_data, fr->fr_dsize); 5018 } 5019 if ((fr->fr_flags & FR_COPIED) != 0) { 5020 KFREE(fr); 5021 return 0; 5022 } 5023 return 1; 5024 } else { 5025 MUTEX_EXIT(&fr->fr_lock); 5026 } 5027 *frp = NULL; 5028 return -1; 5029 } 5030 5031 5032 #ifdef IPFILTER_LOOKUP 5033 /* ------------------------------------------------------------------------ */ 5034 /* Function: fr_grpmapinit */ 5035 /* Returns: int - 0 == success, else ESRCH because table entry not found*/ 5036 /* Parameters: fr(I) - pointer to rule to find hash table for */ 5037 /* */ 5038 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */ 5039 /* fr_ptr is later used by fr_srcgrpmap and fr_dstgrpmap. */ 5040 /* ------------------------------------------------------------------------ */ 5041 static int fr_grpmapinit(fr, ifs) 5042 frentry_t *fr; 5043 ipf_stack_t *ifs; 5044 { 5045 char name[FR_GROUPLEN]; 5046 iphtable_t *iph; 5047 5048 #if defined(SNPRINTF) && defined(_KERNEL) 5049 (void) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg); 5050 #else 5051 (void) sprintf(name, "%d", fr->fr_arg); 5052 #endif 5053 iph = fr_findhtable(IPL_LOGIPF, name, ifs); 5054 if (iph == NULL) 5055 return ESRCH; 5056 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) 5057 return ESRCH; 5058 fr->fr_ptr = iph; 5059 return 0; 5060 } 5061 5062 5063 /* ------------------------------------------------------------------------ */ 5064 /* Function: fr_srcgrpmap */ 5065 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 5066 /* Parameters: fin(I) - pointer to packet information */ 5067 /* passp(IO) - pointer to current/new filter decision (unused) */ 5068 /* */ 5069 /* Look for a rule group head in a hash table, using the source address as */ 5070 /* the key, and descend into that group and continue matching rules against */ 5071 /* the packet. */ 5072 /* ------------------------------------------------------------------------ */ 5073 frentry_t *fr_srcgrpmap(fin, passp) 5074 fr_info_t *fin; 5075 u_32_t *passp; 5076 { 5077 frgroup_t *fg; 5078 void *rval; 5079 ipf_stack_t *ifs = fin->fin_ifs; 5080 5081 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_src, ifs); 5082 if (rval == NULL) 5083 return NULL; 5084 5085 fg = rval; 5086 fin->fin_fr = fg->fg_start; 5087 (void) fr_scanlist(fin, *passp); 5088 return fin->fin_fr; 5089 } 5090 5091 5092 /* ------------------------------------------------------------------------ */ 5093 /* Function: fr_dstgrpmap */ 5094 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 5095 /* Parameters: fin(I) - pointer to packet information */ 5096 /* passp(IO) - pointer to current/new filter decision (unused) */ 5097 /* */ 5098 /* Look for a rule group head in a hash table, using the destination */ 5099 /* address as the key, and descend into that group and continue matching */ 5100 /* rules against the packet. */ 5101 /* ------------------------------------------------------------------------ */ 5102 frentry_t *fr_dstgrpmap(fin, passp) 5103 fr_info_t *fin; 5104 u_32_t *passp; 5105 { 5106 frgroup_t *fg; 5107 void *rval; 5108 ipf_stack_t *ifs = fin->fin_ifs; 5109 5110 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_dst, ifs); 5111 if (rval == NULL) 5112 return NULL; 5113 5114 fg = rval; 5115 fin->fin_fr = fg->fg_start; 5116 (void) fr_scanlist(fin, *passp); 5117 return fin->fin_fr; 5118 } 5119 #endif /* IPFILTER_LOOKUP */ 5120 5121 /* 5122 * Queue functions 5123 * =============== 5124 * These functions manage objects on queues for efficient timeouts. There are 5125 * a number of system defined queues as well as user defined timeouts. It is 5126 * expected that a lock is held in the domain in which the queue belongs 5127 * (i.e. either state or NAT) when calling any of these functions that prevents 5128 * fr_freetimeoutqueue() from being called at the same time as any other. 5129 */ 5130 5131 5132 /* ------------------------------------------------------------------------ */ 5133 /* Function: fr_addtimeoutqueue */ 5134 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */ 5135 /* timeout queue with given interval. */ 5136 /* Parameters: parent(I) - pointer to pointer to parent node of this list */ 5137 /* of interface queues. */ 5138 /* seconds(I) - timeout value in seconds for this queue. */ 5139 /* */ 5140 /* This routine first looks for a timeout queue that matches the interval */ 5141 /* being requested. If it finds one, increments the reference counter and */ 5142 /* returns a pointer to it. If none are found, it allocates a new one and */ 5143 /* inserts it at the top of the list. */ 5144 /* */ 5145 /* Locking. */ 5146 /* It is assumed that the caller of this function has an appropriate lock */ 5147 /* held (exclusively) in the domain that encompases 'parent'. */ 5148 /* ------------------------------------------------------------------------ */ 5149 ipftq_t *fr_addtimeoutqueue(parent, seconds, ifs) 5150 ipftq_t **parent; 5151 u_int seconds; 5152 ipf_stack_t *ifs; 5153 { 5154 ipftq_t *ifq; 5155 u_int period; 5156 5157 period = seconds * IPF_HZ_DIVIDE; 5158 5159 MUTEX_ENTER(&ifs->ifs_ipf_timeoutlock); 5160 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) { 5161 if (ifq->ifq_ttl == period) { 5162 /* 5163 * Reset the delete flag, if set, so the structure 5164 * gets reused rather than freed and reallocated. 5165 */ 5166 MUTEX_ENTER(&ifq->ifq_lock); 5167 ifq->ifq_flags &= ~IFQF_DELETE; 5168 ifq->ifq_ref++; 5169 MUTEX_EXIT(&ifq->ifq_lock); 5170 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock); 5171 5172 return ifq; 5173 } 5174 } 5175 5176 KMALLOC(ifq, ipftq_t *); 5177 if (ifq != NULL) { 5178 ifq->ifq_ttl = period; 5179 ifq->ifq_head = NULL; 5180 ifq->ifq_tail = &ifq->ifq_head; 5181 ifq->ifq_next = *parent; 5182 ifq->ifq_pnext = parent; 5183 ifq->ifq_ref = 1; 5184 ifq->ifq_flags = IFQF_USER; 5185 *parent = ifq; 5186 ifs->ifs_fr_userifqs++; 5187 MUTEX_NUKE(&ifq->ifq_lock); 5188 MUTEX_INIT(&ifq->ifq_lock, "ipftq mutex"); 5189 } 5190 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock); 5191 return ifq; 5192 } 5193 5194 5195 /* ------------------------------------------------------------------------ */ 5196 /* Function: fr_deletetimeoutqueue */ 5197 /* Returns: int - new reference count value of the timeout queue */ 5198 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5199 /* Locks: ifq->ifq_lock */ 5200 /* */ 5201 /* This routine must be called when we're discarding a pointer to a timeout */ 5202 /* queue object, taking care of the reference counter. */ 5203 /* */ 5204 /* Now that this just sets a DELETE flag, it requires the expire code to */ 5205 /* check the list of user defined timeout queues and call the free function */ 5206 /* below (currently commented out) to stop memory leaking. It is done this */ 5207 /* way because the locking may not be sufficient to safely do a free when */ 5208 /* this function is called. */ 5209 /* ------------------------------------------------------------------------ */ 5210 int fr_deletetimeoutqueue(ifq) 5211 ipftq_t *ifq; 5212 { 5213 5214 ifq->ifq_ref--; 5215 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) { 5216 ifq->ifq_flags |= IFQF_DELETE; 5217 } 5218 5219 return ifq->ifq_ref; 5220 } 5221 5222 5223 /* ------------------------------------------------------------------------ */ 5224 /* Function: fr_freetimeoutqueue */ 5225 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5226 /* Returns: Nil */ 5227 /* */ 5228 /* Locking: */ 5229 /* It is assumed that the caller of this function has an appropriate lock */ 5230 /* held (exclusively) in the domain that encompases the callers "domain". */ 5231 /* The ifq_lock for this structure should not be held. */ 5232 /* */ 5233 /* Remove a user definde timeout queue from the list of queues it is in and */ 5234 /* tidy up after this is done. */ 5235 /* ------------------------------------------------------------------------ */ 5236 void fr_freetimeoutqueue(ifq, ifs) 5237 ipftq_t *ifq; 5238 ipf_stack_t *ifs; 5239 { 5240 5241 5242 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) || 5243 ((ifq->ifq_flags & IFQF_USER) == 0)) { 5244 printf("fr_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n", 5245 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl, 5246 ifq->ifq_ref); 5247 return; 5248 } 5249 5250 /* 5251 * Remove from its position in the list. 5252 */ 5253 *ifq->ifq_pnext = ifq->ifq_next; 5254 if (ifq->ifq_next != NULL) 5255 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext; 5256 5257 MUTEX_DESTROY(&ifq->ifq_lock); 5258 ifs->ifs_fr_userifqs--; 5259 KFREE(ifq); 5260 } 5261 5262 5263 /* ------------------------------------------------------------------------ */ 5264 /* Function: fr_deletequeueentry */ 5265 /* Returns: Nil */ 5266 /* Parameters: tqe(I) - timeout queue entry to delete */ 5267 /* ifq(I) - timeout queue to remove entry from */ 5268 /* */ 5269 /* Remove a tail queue entry from its queue and make it an orphan. */ 5270 /* fr_deletetimeoutqueue is called to make sure the reference count on the */ 5271 /* queue is correct. We can't, however, call fr_freetimeoutqueue because */ 5272 /* the correct lock(s) may not be held that would make it safe to do so. */ 5273 /* ------------------------------------------------------------------------ */ 5274 void fr_deletequeueentry(tqe) 5275 ipftqent_t *tqe; 5276 { 5277 ipftq_t *ifq; 5278 5279 ifq = tqe->tqe_ifq; 5280 if (ifq == NULL) 5281 return; 5282 5283 MUTEX_ENTER(&ifq->ifq_lock); 5284 5285 if (tqe->tqe_pnext != NULL) { 5286 *tqe->tqe_pnext = tqe->tqe_next; 5287 if (tqe->tqe_next != NULL) 5288 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5289 else /* we must be the tail anyway */ 5290 ifq->ifq_tail = tqe->tqe_pnext; 5291 5292 tqe->tqe_pnext = NULL; 5293 tqe->tqe_ifq = NULL; 5294 } 5295 5296 (void) fr_deletetimeoutqueue(ifq); 5297 5298 MUTEX_EXIT(&ifq->ifq_lock); 5299 } 5300 5301 5302 /* ------------------------------------------------------------------------ */ 5303 /* Function: fr_queuefront */ 5304 /* Returns: Nil */ 5305 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5306 /* */ 5307 /* Move a queue entry to the front of the queue, if it isn't already there. */ 5308 /* ------------------------------------------------------------------------ */ 5309 void fr_queuefront(tqe) 5310 ipftqent_t *tqe; 5311 { 5312 ipftq_t *ifq; 5313 5314 ifq = tqe->tqe_ifq; 5315 if (ifq == NULL) 5316 return; 5317 5318 MUTEX_ENTER(&ifq->ifq_lock); 5319 if (ifq->ifq_head != tqe) { 5320 *tqe->tqe_pnext = tqe->tqe_next; 5321 if (tqe->tqe_next) 5322 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5323 else 5324 ifq->ifq_tail = tqe->tqe_pnext; 5325 5326 tqe->tqe_next = ifq->ifq_head; 5327 ifq->ifq_head->tqe_pnext = &tqe->tqe_next; 5328 ifq->ifq_head = tqe; 5329 tqe->tqe_pnext = &ifq->ifq_head; 5330 } 5331 MUTEX_EXIT(&ifq->ifq_lock); 5332 } 5333 5334 5335 /* ------------------------------------------------------------------------ */ 5336 /* Function: fr_queueback */ 5337 /* Returns: Nil */ 5338 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5339 /* */ 5340 /* Move a queue entry to the back of the queue, if it isn't already there. */ 5341 /* ------------------------------------------------------------------------ */ 5342 void fr_queueback(tqe, ifs) 5343 ipftqent_t *tqe; 5344 ipf_stack_t *ifs; 5345 { 5346 ipftq_t *ifq; 5347 5348 ifq = tqe->tqe_ifq; 5349 if (ifq == NULL) 5350 return; 5351 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl; 5352 5353 MUTEX_ENTER(&ifq->ifq_lock); 5354 if (tqe->tqe_next == NULL) { /* at the end already ? */ 5355 MUTEX_EXIT(&ifq->ifq_lock); 5356 return; 5357 } 5358 5359 /* 5360 * Remove from list 5361 */ 5362 *tqe->tqe_pnext = tqe->tqe_next; 5363 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5364 5365 /* 5366 * Make it the last entry. 5367 */ 5368 tqe->tqe_next = NULL; 5369 tqe->tqe_pnext = ifq->ifq_tail; 5370 *ifq->ifq_tail = tqe; 5371 ifq->ifq_tail = &tqe->tqe_next; 5372 MUTEX_EXIT(&ifq->ifq_lock); 5373 } 5374 5375 5376 /* ------------------------------------------------------------------------ */ 5377 /* Function: fr_queueappend */ 5378 /* Returns: Nil */ 5379 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5380 /* ifq(I) - pointer to timeout queue */ 5381 /* parent(I) - owing object pointer */ 5382 /* */ 5383 /* Add a new item to this queue and put it on the very end. */ 5384 /* ------------------------------------------------------------------------ */ 5385 void fr_queueappend(tqe, ifq, parent, ifs) 5386 ipftqent_t *tqe; 5387 ipftq_t *ifq; 5388 void *parent; 5389 ipf_stack_t *ifs; 5390 { 5391 5392 MUTEX_ENTER(&ifq->ifq_lock); 5393 tqe->tqe_parent = parent; 5394 tqe->tqe_pnext = ifq->ifq_tail; 5395 *ifq->ifq_tail = tqe; 5396 ifq->ifq_tail = &tqe->tqe_next; 5397 tqe->tqe_next = NULL; 5398 tqe->tqe_ifq = ifq; 5399 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl; 5400 ifq->ifq_ref++; 5401 MUTEX_EXIT(&ifq->ifq_lock); 5402 } 5403 5404 5405 /* ------------------------------------------------------------------------ */ 5406 /* Function: fr_movequeue */ 5407 /* Returns: Nil */ 5408 /* Parameters: tq(I) - pointer to timeout queue information */ 5409 /* oifp(I) - old timeout queue entry was on */ 5410 /* nifp(I) - new timeout queue to put entry on */ 5411 /* ifs - ipf stack instance */ 5412 /* */ 5413 /* Move a queue entry from one timeout queue to another timeout queue. */ 5414 /* If it notices that the current entry is already last and does not need */ 5415 /* to move queue, the return. */ 5416 /* ------------------------------------------------------------------------ */ 5417 void fr_movequeue(tqe, oifq, nifq, ifs) 5418 ipftqent_t *tqe; 5419 ipftq_t *oifq, *nifq; 5420 ipf_stack_t *ifs; 5421 { 5422 /* 5423 * If the queue isn't changing, and the clock hasn't ticked 5424 * since the last update, the operation will be a no-op. 5425 */ 5426 if (oifq == nifq && tqe->tqe_touched == ifs->ifs_fr_ticks) 5427 return; 5428 5429 /* 5430 * Grab the lock and update the timers. 5431 */ 5432 MUTEX_ENTER(&oifq->ifq_lock); 5433 tqe->tqe_touched = ifs->ifs_fr_ticks; 5434 tqe->tqe_die = ifs->ifs_fr_ticks + nifq->ifq_ttl; 5435 5436 /* 5437 * The remainder of the operation can still be a no-op. 5438 * 5439 * If the queue isn't changing, check to see if 5440 * an update would be meaningless. 5441 */ 5442 if (oifq == nifq) { 5443 if ((tqe->tqe_next == NULL) || 5444 (tqe->tqe_next->tqe_die == tqe->tqe_die)) { 5445 MUTEX_EXIT(&oifq->ifq_lock); 5446 return; 5447 } 5448 } 5449 5450 /* 5451 * Remove from the old queue 5452 */ 5453 *tqe->tqe_pnext = tqe->tqe_next; 5454 if (tqe->tqe_next) 5455 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5456 else 5457 oifq->ifq_tail = tqe->tqe_pnext; 5458 tqe->tqe_next = NULL; 5459 5460 /* 5461 * If we're moving from one queue to another, release the lock on the 5462 * old queue and get a lock on the new queue. For user defined queues, 5463 * if we're moving off it, call delete in case it can now be freed. 5464 */ 5465 if (oifq != nifq) { 5466 tqe->tqe_ifq = NULL; 5467 5468 (void) fr_deletetimeoutqueue(oifq); 5469 5470 MUTEX_EXIT(&oifq->ifq_lock); 5471 5472 MUTEX_ENTER(&nifq->ifq_lock); 5473 5474 tqe->tqe_ifq = nifq; 5475 nifq->ifq_ref++; 5476 } 5477 5478 /* 5479 * Add to the bottom of the new queue 5480 */ 5481 tqe->tqe_pnext = nifq->ifq_tail; 5482 *nifq->ifq_tail = tqe; 5483 nifq->ifq_tail = &tqe->tqe_next; 5484 MUTEX_EXIT(&nifq->ifq_lock); 5485 } 5486 5487 5488 /* ------------------------------------------------------------------------ */ 5489 /* Function: fr_updateipid */ 5490 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */ 5491 /* Parameters: fin(I) - pointer to packet information */ 5492 /* */ 5493 /* When we are doing NAT, change the IP of every packet to represent a */ 5494 /* single sequence of packets coming from the host, hiding any host */ 5495 /* specific sequencing that might otherwise be revealed. If the packet is */ 5496 /* a fragment, then store the 'new' IPid in the fragment cache and look up */ 5497 /* the fragment cache for non-leading fragments. If a non-leading fragment */ 5498 /* has no match in the cache, return an error. */ 5499 /* ------------------------------------------------------------------------ */ 5500 static INLINE int fr_updateipid(fin) 5501 fr_info_t *fin; 5502 { 5503 u_short id, ido, sums; 5504 u_32_t sumd, sum; 5505 ip_t *ip; 5506 5507 if (fin->fin_off != 0) { 5508 sum = fr_ipid_knownfrag(fin); 5509 if (sum == 0xffffffff) 5510 return -1; 5511 sum &= 0xffff; 5512 id = (u_short)sum; 5513 } else { 5514 id = fr_nextipid(fin); 5515 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0) 5516 (void) fr_ipid_newfrag(fin, (u_32_t)id); 5517 } 5518 5519 ip = fin->fin_ip; 5520 ido = ntohs(ip->ip_id); 5521 if (id == ido) 5522 return 0; 5523 ip->ip_id = htons(id); 5524 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */ 5525 sum = (~ntohs(ip->ip_sum)) & 0xffff; 5526 sum += sumd; 5527 sum = (sum >> 16) + (sum & 0xffff); 5528 sum = (sum >> 16) + (sum & 0xffff); 5529 sums = ~(u_short)sum; 5530 ip->ip_sum = htons(sums); 5531 return 0; 5532 } 5533 5534 5535 #ifdef NEED_FRGETIFNAME 5536 /* ------------------------------------------------------------------------ */ 5537 /* Function: fr_getifname */ 5538 /* Returns: char * - pointer to interface name */ 5539 /* Parameters: ifp(I) - pointer to network interface */ 5540 /* buffer(O) - pointer to where to store interface name */ 5541 /* */ 5542 /* Constructs an interface name in the buffer passed. The buffer passed is */ 5543 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */ 5544 /* as a NULL pointer then return a pointer to a static array. */ 5545 /* ------------------------------------------------------------------------ */ 5546 char *fr_getifname(ifp, buffer) 5547 struct ifnet *ifp; 5548 char *buffer; 5549 { 5550 static char namebuf[LIFNAMSIZ]; 5551 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5552 defined(__sgi) || defined(linux) || defined(_AIX51) || \ 5553 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5554 int unit, space; 5555 char temp[20]; 5556 char *s; 5557 # endif 5558 5559 ASSERT(buffer != NULL); 5560 #ifdef notdef 5561 if (buffer == NULL) 5562 buffer = namebuf; 5563 #endif 5564 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ); 5565 buffer[LIFNAMSIZ - 1] = '\0'; 5566 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5567 defined(__sgi) || defined(_AIX51) || \ 5568 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5569 for (s = buffer; *s; s++) 5570 ; 5571 unit = ifp->if_unit; 5572 space = LIFNAMSIZ - (s - buffer); 5573 if (space > 0) { 5574 # if defined(SNPRINTF) && defined(_KERNEL) 5575 (void) SNPRINTF(temp, sizeof(temp), "%d", unit); 5576 # else 5577 (void) sprintf(temp, "%d", unit); 5578 # endif 5579 (void) strncpy(s, temp, space); 5580 } 5581 # endif 5582 return buffer; 5583 } 5584 #endif 5585 5586 5587 /* ------------------------------------------------------------------------ */ 5588 /* Function: fr_ioctlswitch */ 5589 /* Returns: int - -1 continue processing, else ioctl return value */ 5590 /* Parameters: unit(I) - device unit opened */ 5591 /* data(I) - pointer to ioctl data */ 5592 /* cmd(I) - ioctl command */ 5593 /* mode(I) - mode value */ 5594 /* */ 5595 /* Based on the value of unit, call the appropriate ioctl handler or return */ 5596 /* EIO if ipfilter is not running. Also checks if write perms are req'd */ 5597 /* for the device in order to execute the ioctl. */ 5598 /* ------------------------------------------------------------------------ */ 5599 INLINE int fr_ioctlswitch(unit, data, cmd, mode, uid, ctx, ifs) 5600 int unit, mode, uid; 5601 ioctlcmd_t cmd; 5602 void *data, *ctx; 5603 ipf_stack_t *ifs; 5604 { 5605 int error = 0; 5606 5607 switch (unit) 5608 { 5609 case IPL_LOGIPF : 5610 error = -1; 5611 break; 5612 case IPL_LOGNAT : 5613 if (ifs->ifs_fr_running > 0) 5614 error = fr_nat_ioctl(data, cmd, mode, uid, ctx, ifs); 5615 else 5616 error = EIO; 5617 break; 5618 case IPL_LOGSTATE : 5619 if (ifs->ifs_fr_running > 0) 5620 error = fr_state_ioctl(data, cmd, mode, uid, ctx, ifs); 5621 else 5622 error = EIO; 5623 break; 5624 case IPL_LOGAUTH : 5625 if (ifs->ifs_fr_running > 0) { 5626 if ((cmd == (ioctlcmd_t)SIOCADAFR) || 5627 (cmd == (ioctlcmd_t)SIOCRMAFR)) { 5628 if (!(mode & FWRITE)) { 5629 error = EPERM; 5630 } else { 5631 error = frrequest(unit, cmd, data, 5632 ifs->ifs_fr_active, 1, ifs); 5633 } 5634 } else { 5635 error = fr_auth_ioctl(data, cmd, mode, uid, ctx, ifs); 5636 } 5637 } else 5638 error = EIO; 5639 break; 5640 case IPL_LOGSYNC : 5641 #ifdef IPFILTER_SYNC 5642 if (ifs->ifs_fr_running > 0) 5643 error = fr_sync_ioctl(data, cmd, mode, ifs); 5644 else 5645 #endif 5646 error = EIO; 5647 break; 5648 case IPL_LOGSCAN : 5649 #ifdef IPFILTER_SCAN 5650 if (ifs->ifs_fr_running > 0) 5651 error = fr_scan_ioctl(data, cmd, mode, ifs); 5652 else 5653 #endif 5654 error = EIO; 5655 break; 5656 case IPL_LOGLOOKUP : 5657 #ifdef IPFILTER_LOOKUP 5658 if (ifs->ifs_fr_running > 0) 5659 error = ip_lookup_ioctl(data, cmd, mode, uid, ctx, ifs); 5660 else 5661 #endif 5662 error = EIO; 5663 break; 5664 default : 5665 error = EIO; 5666 break; 5667 } 5668 5669 return error; 5670 } 5671 5672 5673 /* 5674 * This array defines the expected size of objects coming into the kernel 5675 * for the various recognised object types. 5676 */ 5677 #define NUM_OBJ_TYPES 19 5678 5679 static int fr_objbytes[NUM_OBJ_TYPES][2] = { 5680 { 1, sizeof(struct frentry) }, /* frentry */ 5681 { 0, sizeof(struct friostat) }, 5682 { 0, sizeof(struct fr_info) }, 5683 { 0, sizeof(struct fr_authstat) }, 5684 { 0, sizeof(struct ipfrstat) }, 5685 { 0, sizeof(struct ipnat) }, 5686 { 0, sizeof(struct natstat) }, 5687 { 0, sizeof(struct ipstate_save) }, 5688 { 1, sizeof(struct nat_save) }, /* nat_save */ 5689 { 0, sizeof(struct natlookup) }, 5690 { 1, sizeof(struct ipstate) }, /* ipstate */ 5691 { 0, sizeof(struct ips_stat) }, 5692 { 0, sizeof(struct frauth) }, 5693 { 0, sizeof(struct ipftune) }, 5694 { 0, sizeof(struct nat) }, /* nat_t */ 5695 { 0, sizeof(struct ipfruleiter) }, 5696 { 0, sizeof(struct ipfgeniter) }, 5697 { 0, sizeof(struct ipftable) }, 5698 { 0, sizeof(struct ipflookupiter) } 5699 }; 5700 5701 5702 /* ------------------------------------------------------------------------ */ 5703 /* Function: fr_getzoneid */ 5704 /* Returns: int - 0 = success, else failure */ 5705 /* Parameters: idsp(I) - pointer to ipf_devstate_t */ 5706 /* data(I) - pointer to ioctl data */ 5707 /* */ 5708 /* Set the zone ID in idsp based on the zone name in ipfzoneobj. Further */ 5709 /* ioctls will act on the IPF stack for that zone ID. */ 5710 /* ------------------------------------------------------------------------ */ 5711 #if defined(_KERNEL) 5712 int fr_setzoneid(idsp, data) 5713 ipf_devstate_t *idsp; 5714 void *data; 5715 { 5716 int error = 0; 5717 ipfzoneobj_t ipfzo; 5718 zone_t *zone; 5719 5720 error = BCOPYIN(data, &ipfzo, sizeof(ipfzo)); 5721 if (error != 0) 5722 return EFAULT; 5723 5724 if (memchr(ipfzo.ipfz_zonename, '\0', ZONENAME_MAX) == NULL) 5725 return EFAULT; 5726 5727 /* 5728 * The global zone doesn't have a GZ-controlled stack, so no 5729 * sense in going any further 5730 */ 5731 if (strcmp(ipfzo.ipfz_zonename, "global") == 0) 5732 return ENODEV; 5733 5734 if ((zone = zone_find_by_name(ipfzo.ipfz_zonename)) == NULL) 5735 return ENODEV; 5736 5737 /* 5738 * Store the zone ID that to control, and whether it's the 5739 * GZ-controlled stack that's wanted 5740 */ 5741 idsp->ipfs_zoneid = zone->zone_id; 5742 idsp->ipfs_gz = (ipfzo.ipfz_gz == 1) ? B_TRUE : B_FALSE; 5743 zone_rele(zone); 5744 5745 return error; 5746 } 5747 #endif 5748 5749 5750 /* ------------------------------------------------------------------------ */ 5751 /* Function: fr_inobj */ 5752 /* Returns: int - 0 = success, else failure */ 5753 /* Parameters: data(I) - pointer to ioctl data */ 5754 /* ptr(I) - pointer to store real data in */ 5755 /* type(I) - type of structure being moved */ 5756 /* */ 5757 /* Copy in the contents of what the ipfobj_t points to. In future, we */ 5758 /* add things to check for version numbers, sizes, etc, to make it backward */ 5759 /* compatible at the ABI for user land. */ 5760 /* ------------------------------------------------------------------------ */ 5761 int fr_inobj(data, ptr, type) 5762 void *data; 5763 void *ptr; 5764 int type; 5765 { 5766 ipfobj_t obj; 5767 int error = 0; 5768 5769 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5770 return EINVAL; 5771 5772 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5773 if (error != 0) 5774 return EFAULT; 5775 5776 if (obj.ipfo_type != type) 5777 return EINVAL; 5778 5779 #ifndef IPFILTER_COMPAT 5780 if ((fr_objbytes[type][0] & 1) != 0) { 5781 if (obj.ipfo_size < fr_objbytes[type][1]) 5782 return EINVAL; 5783 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5784 return EINVAL; 5785 #else 5786 if (obj.ipfo_rev != IPFILTER_VERSION) { 5787 error = fr_incomptrans(&obj, ptr); 5788 return error; 5789 } 5790 5791 if ((fr_objbytes[type][0] & 1) != 0 && 5792 obj.ipfo_size < fr_objbytes[type][1] || 5793 obj.ipfo_size != fr_objbytes[type][1]) 5794 return EINVAL; 5795 #endif 5796 5797 if ((fr_objbytes[type][0] & 1) != 0) { 5798 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, 5799 fr_objbytes[type][1]); 5800 } else { 5801 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, 5802 obj.ipfo_size); 5803 } 5804 return error; 5805 } 5806 5807 5808 /* ------------------------------------------------------------------------ */ 5809 /* Function: fr_inobjsz */ 5810 /* Returns: int - 0 = success, else failure */ 5811 /* Parameters: data(I) - pointer to ioctl data */ 5812 /* ptr(I) - pointer to store real data in */ 5813 /* type(I) - type of structure being moved */ 5814 /* sz(I) - size of data to copy */ 5815 /* */ 5816 /* As per fr_inobj, except the size of the object to copy in is passed in */ 5817 /* but it must not be smaller than the size defined for the type and the */ 5818 /* type must allow for varied sized objects. The extra requirement here is */ 5819 /* that sz must match the size of the object being passed in - this is not */ 5820 /* not possible nor required in fr_inobj(). */ 5821 /* ------------------------------------------------------------------------ */ 5822 int fr_inobjsz(data, ptr, type, sz) 5823 void *data; 5824 void *ptr; 5825 int type, sz; 5826 { 5827 ipfobj_t obj; 5828 int error; 5829 5830 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5831 return EINVAL; 5832 if (((fr_objbytes[type][0] & 1) == 0) || (sz < fr_objbytes[type][1])) 5833 return EINVAL; 5834 5835 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5836 if (error != 0) 5837 return EFAULT; 5838 5839 if (obj.ipfo_type != type) 5840 return EINVAL; 5841 5842 #ifndef IPFILTER_COMPAT 5843 if (obj.ipfo_size != sz) 5844 return EINVAL; 5845 #else 5846 if (obj.ipfo_rev != IPFILTER_VERSION) 5847 /*XXX compatibility hook here */ 5848 /*EMPTY*/; 5849 if (obj.ipfo_size != sz) 5850 /* XXX compatibility hook here */ 5851 return EINVAL; 5852 #endif 5853 5854 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, sz); 5855 return error; 5856 } 5857 5858 5859 /* ------------------------------------------------------------------------ */ 5860 /* Function: fr_outobjsz */ 5861 /* Returns: int - 0 = success, else failure */ 5862 /* Parameters: data(I) - pointer to ioctl data */ 5863 /* ptr(I) - pointer to store real data in */ 5864 /* type(I) - type of structure being moved */ 5865 /* sz(I) - size of data to copy */ 5866 /* */ 5867 /* As per fr_outobj, except the size of the object to copy out is passed in */ 5868 /* but it must not be smaller than the size defined for the type and the */ 5869 /* type must allow for varied sized objects. The extra requirement here is */ 5870 /* that sz must match the size of the object being passed in - this is not */ 5871 /* not possible nor required in fr_outobj(). */ 5872 /* ------------------------------------------------------------------------ */ 5873 int fr_outobjsz(data, ptr, type, sz) 5874 void *data; 5875 void *ptr; 5876 int type, sz; 5877 { 5878 ipfobj_t obj; 5879 int error; 5880 5881 if ((type < 0) || (type > NUM_OBJ_TYPES-1) || 5882 ((fr_objbytes[type][0] & 1) == 0) || 5883 (sz < fr_objbytes[type][1])) 5884 return EINVAL; 5885 5886 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5887 if (error != 0) 5888 return EFAULT; 5889 5890 if (obj.ipfo_type != type) 5891 return EINVAL; 5892 5893 #ifndef IPFILTER_COMPAT 5894 if (obj.ipfo_size != sz) 5895 return EINVAL; 5896 #else 5897 if (obj.ipfo_rev != IPFILTER_VERSION) 5898 /* XXX compatibility hook here */ 5899 /*EMPTY*/; 5900 if (obj.ipfo_size != sz) 5901 /* XXX compatibility hook here */ 5902 return EINVAL; 5903 #endif 5904 5905 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, sz); 5906 return error; 5907 } 5908 5909 5910 /* ------------------------------------------------------------------------ */ 5911 /* Function: fr_outobj */ 5912 /* Returns: int - 0 = success, else failure */ 5913 /* Parameters: data(I) - pointer to ioctl data */ 5914 /* ptr(I) - pointer to store real data in */ 5915 /* type(I) - type of structure being moved */ 5916 /* */ 5917 /* Copy out the contents of what ptr is to where ipfobj points to. In */ 5918 /* future, we add things to check for version numbers, sizes, etc, to make */ 5919 /* it backward compatible at the ABI for user land. */ 5920 /* ------------------------------------------------------------------------ */ 5921 int fr_outobj(data, ptr, type) 5922 void *data; 5923 void *ptr; 5924 int type; 5925 { 5926 ipfobj_t obj; 5927 int error; 5928 5929 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5930 return EINVAL; 5931 5932 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5933 if (error != 0) 5934 return EFAULT; 5935 5936 if (obj.ipfo_type != type) 5937 return EINVAL; 5938 5939 #ifndef IPFILTER_COMPAT 5940 if ((fr_objbytes[type][0] & 1) != 0) { 5941 if (obj.ipfo_size < fr_objbytes[type][1]) 5942 return EINVAL; 5943 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5944 return EINVAL; 5945 #else 5946 if (obj.ipfo_rev != IPFILTER_VERSION) { 5947 error = fr_outcomptrans(&obj, ptr); 5948 return error; 5949 } 5950 5951 if ((fr_objbytes[type][0] & 1) != 0 && 5952 obj.ipfo_size < fr_objbytes[type][1] || 5953 obj.ipfo_size != fr_objbytes[type][1]) 5954 return EINVAL; 5955 #endif 5956 5957 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, obj.ipfo_size); 5958 return error; 5959 } 5960 5961 5962 /* ------------------------------------------------------------------------ */ 5963 /* Function: fr_checkl4sum */ 5964 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */ 5965 /* Parameters: fin(I) - pointer to packet information */ 5966 /* */ 5967 /* If possible, calculate the layer 4 checksum for the packet. If this is */ 5968 /* not possible, return without indicating a failure or success but in a */ 5969 /* way that is ditinguishable. */ 5970 /* ------------------------------------------------------------------------ */ 5971 int fr_checkl4sum(fin) 5972 fr_info_t *fin; 5973 { 5974 u_short sum, hdrsum, *csump; 5975 udphdr_t *udp; 5976 int dosum; 5977 ipf_stack_t *ifs = fin->fin_ifs; 5978 5979 #if defined(SOLARIS) && defined(_KERNEL) && (SOLARIS2 >= 6) 5980 net_handle_t net_data_p; 5981 if (fin->fin_v == 4) 5982 net_data_p = ifs->ifs_ipf_ipv4; 5983 else 5984 net_data_p = ifs->ifs_ipf_ipv6; 5985 #endif 5986 5987 if ((fin->fin_flx & FI_NOCKSUM) != 0) 5988 return 0; 5989 5990 /* 5991 * If the TCP packet isn't a fragment, isn't too short and otherwise 5992 * isn't already considered "bad", then validate the checksum. If 5993 * this check fails then considered the packet to be "bad". 5994 */ 5995 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0) 5996 return 1; 5997 5998 csump = NULL; 5999 hdrsum = 0; 6000 dosum = 0; 6001 sum = 0; 6002 6003 #if defined(SOLARIS) && defined(_KERNEL) && (SOLARIS2 >= 6) 6004 ASSERT(fin->fin_m != NULL); 6005 if (NET_IS_HCK_L4_FULL(net_data_p, fin->fin_m) || 6006 NET_IS_HCK_L4_PART(net_data_p, fin->fin_m)) { 6007 hdrsum = 0; 6008 sum = 0; 6009 } else { 6010 #endif 6011 switch (fin->fin_p) 6012 { 6013 case IPPROTO_TCP : 6014 csump = &((tcphdr_t *)fin->fin_dp)->th_sum; 6015 dosum = 1; 6016 break; 6017 6018 case IPPROTO_UDP : 6019 udp = fin->fin_dp; 6020 if (udp->uh_sum != 0) { 6021 csump = &udp->uh_sum; 6022 dosum = 1; 6023 } 6024 break; 6025 6026 case IPPROTO_ICMP : 6027 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum; 6028 dosum = 1; 6029 break; 6030 6031 default : 6032 return 1; 6033 /*NOTREACHED*/ 6034 } 6035 6036 if (csump != NULL) 6037 hdrsum = *csump; 6038 6039 if (dosum) 6040 sum = fr_cksum(fin->fin_m, fin->fin_ip, 6041 fin->fin_p, fin->fin_dp); 6042 #if defined(SOLARIS) && defined(_KERNEL) && (SOLARIS2 >= 6) 6043 } 6044 #endif 6045 #if !defined(_KERNEL) 6046 if (sum == hdrsum) { 6047 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum)); 6048 } else { 6049 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum)); 6050 } 6051 #endif 6052 if (hdrsum == sum) 6053 return 0; 6054 return -1; 6055 } 6056 6057 6058 /* ------------------------------------------------------------------------ */ 6059 /* Function: fr_ifpfillv4addr */ 6060 /* Returns: int - 0 = address update, -1 = address not updated */ 6061 /* Parameters: atype(I) - type of network address update to perform */ 6062 /* sin(I) - pointer to source of address information */ 6063 /* mask(I) - pointer to source of netmask information */ 6064 /* inp(I) - pointer to destination address store */ 6065 /* inpmask(I) - pointer to destination netmask store */ 6066 /* */ 6067 /* Given a type of network address update (atype) to perform, copy */ 6068 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 6069 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 6070 /* which case the operation fails. For all values of atype other than */ 6071 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 6072 /* value. */ 6073 /* ------------------------------------------------------------------------ */ 6074 int fr_ifpfillv4addr(atype, sin, mask, inp, inpmask) 6075 int atype; 6076 struct sockaddr_in *sin, *mask; 6077 struct in_addr *inp, *inpmask; 6078 { 6079 if (inpmask != NULL && atype != FRI_NETMASKED) 6080 inpmask->s_addr = 0xffffffff; 6081 6082 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 6083 if (atype == FRI_NETMASKED) { 6084 if (inpmask == NULL) 6085 return -1; 6086 inpmask->s_addr = mask->sin_addr.s_addr; 6087 } 6088 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr; 6089 } else { 6090 inp->s_addr = sin->sin_addr.s_addr; 6091 } 6092 return 0; 6093 } 6094 6095 6096 #ifdef USE_INET6 6097 /* ------------------------------------------------------------------------ */ 6098 /* Function: fr_ifpfillv6addr */ 6099 /* Returns: int - 0 = address update, -1 = address not updated */ 6100 /* Parameters: atype(I) - type of network address update to perform */ 6101 /* sin(I) - pointer to source of address information */ 6102 /* mask(I) - pointer to source of netmask information */ 6103 /* inp(I) - pointer to destination address store */ 6104 /* inpmask(I) - pointer to destination netmask store */ 6105 /* */ 6106 /* Given a type of network address update (atype) to perform, copy */ 6107 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 6108 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 6109 /* which case the operation fails. For all values of atype other than */ 6110 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 6111 /* value. */ 6112 /* ------------------------------------------------------------------------ */ 6113 int fr_ifpfillv6addr(atype, sin, mask, inp, inpmask) 6114 int atype; 6115 struct sockaddr_in6 *sin, *mask; 6116 struct in_addr *inp, *inpmask; 6117 { 6118 i6addr_t *src, *dst, *and, *dmask; 6119 6120 src = (i6addr_t *)&sin->sin6_addr; 6121 and = (i6addr_t *)&mask->sin6_addr; 6122 dst = (i6addr_t *)inp; 6123 dmask = (i6addr_t *)inpmask; 6124 6125 if (inpmask != NULL && atype != FRI_NETMASKED) { 6126 dmask->i6[0] = 0xffffffff; 6127 dmask->i6[1] = 0xffffffff; 6128 dmask->i6[2] = 0xffffffff; 6129 dmask->i6[3] = 0xffffffff; 6130 } 6131 6132 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 6133 if (atype == FRI_NETMASKED) { 6134 if (inpmask == NULL) 6135 return -1; 6136 dmask->i6[0] = and->i6[0]; 6137 dmask->i6[1] = and->i6[1]; 6138 dmask->i6[2] = and->i6[2]; 6139 dmask->i6[3] = and->i6[3]; 6140 } 6141 6142 dst->i6[0] = src->i6[0] & and->i6[0]; 6143 dst->i6[1] = src->i6[1] & and->i6[1]; 6144 dst->i6[2] = src->i6[2] & and->i6[2]; 6145 dst->i6[3] = src->i6[3] & and->i6[3]; 6146 } else { 6147 dst->i6[0] = src->i6[0]; 6148 dst->i6[1] = src->i6[1]; 6149 dst->i6[2] = src->i6[2]; 6150 dst->i6[3] = src->i6[3]; 6151 } 6152 return 0; 6153 } 6154 #endif 6155 6156 6157 /* ------------------------------------------------------------------------ */ 6158 /* Function: fr_matchtag */ 6159 /* Returns: 0 == mismatch, 1 == match. */ 6160 /* Parameters: tag1(I) - pointer to first tag to compare */ 6161 /* tag2(I) - pointer to second tag to compare */ 6162 /* */ 6163 /* Returns true (non-zero) or false(0) if the two tag structures can be */ 6164 /* considered to be a match or not match, respectively. The tag is 16 */ 6165 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */ 6166 /* compare the ints instead, for speed. tag1 is the master of the */ 6167 /* comparison. This function should only be called with both tag1 and tag2 */ 6168 /* as non-NULL pointers. */ 6169 /* ------------------------------------------------------------------------ */ 6170 int fr_matchtag(tag1, tag2) 6171 ipftag_t *tag1, *tag2; 6172 { 6173 if (tag1 == tag2) 6174 return 1; 6175 6176 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0)) 6177 return 1; 6178 6179 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) && 6180 (tag1->ipt_num[1] == tag2->ipt_num[1]) && 6181 (tag1->ipt_num[2] == tag2->ipt_num[2]) && 6182 (tag1->ipt_num[3] == tag2->ipt_num[3])) 6183 return 1; 6184 return 0; 6185 } 6186 6187 6188 /* ------------------------------------------------------------------------ */ 6189 /* Function: fr_coalesce */ 6190 /* Returns: 1 == success, -1 == failure, 0 == no change */ 6191 /* Parameters: fin(I) - pointer to packet information */ 6192 /* */ 6193 /* Attempt to get all of the packet data into a single, contiguous buffer. */ 6194 /* If this call returns a failure then the buffers have also been freed. */ 6195 /* ------------------------------------------------------------------------ */ 6196 int fr_coalesce(fin) 6197 fr_info_t *fin; 6198 { 6199 ipf_stack_t *ifs = fin->fin_ifs; 6200 if ((fin->fin_flx & FI_COALESCE) != 0) 6201 return 1; 6202 6203 /* 6204 * If the mbuf pointers indicate that there is no mbuf to work with, 6205 * return but do not indicate success or failure. 6206 */ 6207 if (fin->fin_m == NULL || fin->fin_mp == NULL) 6208 return 0; 6209 6210 #if defined(_KERNEL) 6211 if (fr_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) { 6212 IPF_BUMP(ifs->ifs_fr_badcoalesces[fin->fin_out]); 6213 # ifdef MENTAT 6214 FREE_MB_T(*fin->fin_mp); 6215 # endif 6216 *fin->fin_mp = NULL; 6217 fin->fin_m = NULL; 6218 return -1; 6219 } 6220 #else 6221 fin = fin; /* LINT */ 6222 #endif 6223 return 1; 6224 } 6225 6226 6227 /* 6228 * The following table lists all of the tunable variables that can be 6229 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXT. The format of each row 6230 * in the table below is as follows: 6231 * 6232 * pointer to value, name of value, minimum, maximum, size of the value's 6233 * container, value attribute flags 6234 * 6235 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED 6236 * means the value can only be written to when IPFilter is loaded but disabled. 6237 * The obvious implication is if neither of these are set then the value can be 6238 * changed at any time without harm. 6239 */ 6240 ipftuneable_t lcl_ipf_tuneables[] = { 6241 /* filtering */ 6242 { { NULL }, "fr_flags", 0, 0xffffffff, 6243 0, 0 }, 6244 { { NULL }, "fr_active", 0, 0, 6245 0, IPFT_RDONLY }, 6246 { { NULL }, "fr_control_forwarding", 0, 1, 6247 0, 0 }, 6248 { { NULL }, "fr_update_ipid", 0, 1, 6249 0, 0 }, 6250 { { NULL }, "fr_chksrc", 0, 1, 6251 0, 0 }, 6252 { { NULL }, "fr_minttl", 0, 1, 6253 0, 0 }, 6254 { { NULL }, "fr_icmpminfragmtu", 0, 1, 6255 0, 0 }, 6256 { { NULL }, "fr_pass", 0, 0xffffffff, 6257 0, 0 }, 6258 #if SOLARIS2 >= 10 6259 { { NULL }, "ipf_loopback", 0, 1, 6260 0, IPFT_WRDISABLED }, 6261 #endif 6262 /* state */ 6263 { { NULL }, "fr_tcpidletimeout", 1, 0x7fffffff, 6264 0, IPFT_WRDISABLED }, 6265 { { NULL }, "fr_tcpclosewait", 1, 0x7fffffff, 6266 0, IPFT_WRDISABLED }, 6267 { { NULL }, "fr_tcplastack", 1, 0x7fffffff, 6268 0, IPFT_WRDISABLED }, 6269 { { NULL }, "fr_tcptimeout", 1, 0x7fffffff, 6270 0, IPFT_WRDISABLED }, 6271 { { NULL }, "fr_tcpclosed", 1, 0x7fffffff, 6272 0, IPFT_WRDISABLED }, 6273 { { NULL }, "fr_tcphalfclosed", 1, 0x7fffffff, 6274 0, IPFT_WRDISABLED }, 6275 { { NULL }, "fr_udptimeout", 1, 0x7fffffff, 6276 0, IPFT_WRDISABLED }, 6277 { { NULL }, "fr_udpacktimeout", 1, 0x7fffffff, 6278 0, IPFT_WRDISABLED }, 6279 { { NULL }, "fr_icmptimeout", 1, 0x7fffffff, 6280 0, IPFT_WRDISABLED }, 6281 { { NULL }, "fr_icmpacktimeout", 1, 0x7fffffff, 6282 0, IPFT_WRDISABLED }, 6283 { { NULL }, "fr_iptimeout", 1, 0x7fffffff, 6284 0, IPFT_WRDISABLED }, 6285 { { NULL }, "fr_statemax", 1, 0x7fffffff, 6286 0, 0 }, 6287 { { NULL }, "fr_statesize", 1, 0x7fffffff, 6288 0, IPFT_WRDISABLED }, 6289 { { NULL }, "fr_state_lock", 0, 1, 6290 0, IPFT_RDONLY }, 6291 { { NULL }, "fr_state_maxbucket", 1, 0x7fffffff, 6292 0, IPFT_WRDISABLED }, 6293 { { NULL }, "fr_state_maxbucket_reset", 0, 1, 6294 0, IPFT_WRDISABLED }, 6295 { { NULL }, "ipstate_logging", 0, 1, 6296 0, 0 }, 6297 { { NULL }, "state_flush_level_hi", 1, 100, 6298 0, 0 }, 6299 { { NULL }, "state_flush_level_lo", 1, 100, 6300 0, 0 }, 6301 /* nat */ 6302 { { NULL }, "fr_nat_lock", 0, 1, 6303 0, IPFT_RDONLY }, 6304 { { NULL }, "ipf_nattable_sz", 1, 0x7fffffff, 6305 0, IPFT_WRDISABLED }, 6306 { { NULL }, "ipf_nattable_max", 1, 0x7fffffff, 6307 0, 0 }, 6308 { { NULL }, "ipf_natrules_sz", 1, 0x7fffffff, 6309 0, IPFT_WRDISABLED }, 6310 { { NULL }, "ipf_rdrrules_sz", 1, 0x7fffffff, 6311 0, IPFT_WRDISABLED }, 6312 { { NULL }, "ipf_hostmap_sz", 1, 0x7fffffff, 6313 0, IPFT_WRDISABLED }, 6314 { { NULL }, "fr_nat_maxbucket", 1, 0x7fffffff, 6315 0, IPFT_WRDISABLED }, 6316 { { NULL }, "fr_nat_maxbucket_reset", 0, 1, 6317 0, IPFT_WRDISABLED }, 6318 { { NULL }, "nat_logging", 0, 1, 6319 0, 0 }, 6320 { { NULL }, "fr_defnatage", 1, 0x7fffffff, 6321 0, IPFT_WRDISABLED }, 6322 { { NULL }, "fr_defnatipage", 1, 0x7fffffff, 6323 0, IPFT_WRDISABLED }, 6324 { { NULL }, "fr_defnaticmpage", 1, 0x7fffffff, 6325 0, IPFT_WRDISABLED }, 6326 { { NULL }, "nat_flush_level_hi", 1, 100, 6327 0, 0 }, 6328 { { NULL }, "nat_flush_level_lo", 1, 100, 6329 0, 0 }, 6330 /* frag */ 6331 { { NULL }, "ipfr_size", 1, 0x7fffffff, 6332 0, IPFT_WRDISABLED }, 6333 { { NULL }, "fr_ipfrttl", 1, 0x7fffffff, 6334 0, IPFT_WRDISABLED }, 6335 #ifdef IPFILTER_LOG 6336 /* log */ 6337 { { NULL }, "ipl_suppress", 0, 1, 6338 0, 0 }, 6339 { { NULL }, "ipl_buffer_sz", 0, 0, 6340 0, IPFT_RDONLY }, 6341 { { NULL }, "ipl_logmax", 0, 0x7fffffff, 6342 0, IPFT_WRDISABLED }, 6343 { { NULL }, "ipl_logall", 0, 1, 6344 0, 0 }, 6345 { { NULL }, "ipl_logsize", 0, 0x80000, 6346 0, 0 }, 6347 #endif 6348 { { NULL }, NULL, 0, 0 } 6349 }; 6350 6351 static ipftuneable_t * 6352 tune_lookup(ipf_stack_t *ifs, char *name) 6353 { 6354 int i; 6355 6356 for (i = 0; ifs->ifs_ipf_tuneables[i].ipft_name != NULL; i++) { 6357 if (strcmp(ifs->ifs_ipf_tuneables[i].ipft_name, name) == 0) 6358 return (&ifs->ifs_ipf_tuneables[i]); 6359 } 6360 return (NULL); 6361 } 6362 6363 #ifdef _KERNEL 6364 extern dev_info_t *ipf_dev_info; 6365 extern int ipf_property_update __P((dev_info_t *, ipf_stack_t *)); 6366 #endif 6367 6368 /* -------------------------------------------------------------------- */ 6369 /* Function: ipftuneable_setdefs() */ 6370 /* Returns: void */ 6371 /* Parameters: ifs - pointer to newly allocated IPF instance */ 6372 /* assigned to IP instance */ 6373 /* */ 6374 /* Function initializes IPF instance variables. Function is invoked */ 6375 /* from ipftuneable_alloc(). ipftuneable_alloc() is called only one */ 6376 /* time during IP instance lifetime - at the time of IP instance */ 6377 /* creation. Anytime IP instance is being created new private IPF */ 6378 /* instance is allocated and assigned to it. The moment of IP */ 6379 /* instance creation is the right time to initialize those IPF */ 6380 /* variables. */ 6381 /* */ 6382 /* -------------------------------------------------------------------- */ 6383 static void ipftuneable_setdefs(ipf_stack_t *ifs) 6384 { 6385 ifs->ifs_ipfr_size = IPFT_SIZE; 6386 ifs->ifs_fr_ipfrttl = 120; /* 60 seconds */ 6387 6388 /* it comes from fr_authinit() in IPF auth */ 6389 ifs->ifs_fr_authsize = FR_NUMAUTH; 6390 ifs->ifs_fr_defaultauthage = 600; 6391 6392 /* it comes from fr_stateinit() in IPF state */ 6393 ifs->ifs_fr_tcpidletimeout = IPF_TTLVAL(3600 * 24 * 5); /* five days */ 6394 ifs->ifs_fr_tcpclosewait = IPF_TTLVAL(TCP_MSL); 6395 ifs->ifs_fr_tcplastack = IPF_TTLVAL(TCP_MSL); 6396 ifs->ifs_fr_tcptimeout = IPF_TTLVAL(TCP_MSL); 6397 ifs->ifs_fr_tcpclosed = IPF_TTLVAL(60); 6398 ifs->ifs_fr_tcphalfclosed = IPF_TTLVAL(2 * 3600); /* 2 hours */ 6399 ifs->ifs_fr_udptimeout = IPF_TTLVAL(120); 6400 ifs->ifs_fr_udpacktimeout = IPF_TTLVAL(12); 6401 ifs->ifs_fr_icmptimeout = IPF_TTLVAL(60); 6402 ifs->ifs_fr_icmpacktimeout = IPF_TTLVAL(6); 6403 ifs->ifs_fr_iptimeout = IPF_TTLVAL(60); 6404 ifs->ifs_fr_statemax = IPSTATE_MAX; 6405 ifs->ifs_fr_statesize = IPSTATE_SIZE; 6406 ifs->ifs_fr_state_maxbucket_reset = 1; 6407 ifs->ifs_state_flush_level_hi = ST_FLUSH_HI; 6408 ifs->ifs_state_flush_level_lo = ST_FLUSH_LO; 6409 6410 /* it comes from fr_natinit() in ipnat */ 6411 ifs->ifs_ipf_nattable_sz = NAT_TABLE_SZ; 6412 ifs->ifs_ipf_nattable_max = NAT_TABLE_MAX; 6413 ifs->ifs_ipf_natrules_sz = NAT_SIZE; 6414 ifs->ifs_ipf_rdrrules_sz = RDR_SIZE; 6415 ifs->ifs_ipf_hostmap_sz = HOSTMAP_SIZE; 6416 ifs->ifs_fr_nat_maxbucket_reset = 1; 6417 ifs->ifs_fr_defnatage = DEF_NAT_AGE; 6418 ifs->ifs_fr_defnatipage = 120; /* 60 seconds */ 6419 ifs->ifs_fr_defnaticmpage = 6; /* 3 seconds */ 6420 ifs->ifs_nat_flush_level_hi = NAT_FLUSH_HI; 6421 ifs->ifs_nat_flush_level_lo = NAT_FLUSH_LO; 6422 6423 #ifdef IPFILTER_LOG 6424 /* it comes from fr_loginit() in IPF log */ 6425 ifs->ifs_ipl_suppress = 1; 6426 ifs->ifs_ipl_logmax = IPL_LOGMAX; 6427 ifs->ifs_ipl_logsize = IPFILTER_LOGSIZE; 6428 6429 /* from fr_natinit() */ 6430 ifs->ifs_nat_logging = 1; 6431 6432 /* from fr_stateinit() */ 6433 ifs->ifs_ipstate_logging = 1; 6434 #else 6435 /* from fr_natinit() */ 6436 ifs->ifs_nat_logging = 0; 6437 6438 /* from fr_stateinit() */ 6439 ifs->ifs_ipstate_logging = 0; 6440 #endif 6441 ifs->ifs_ipf_loopback = 0; 6442 6443 } 6444 /* 6445 * Allocate a per-stack tuneable and copy in the names. Then 6446 * set it to point to each of the per-stack tunables. 6447 */ 6448 void 6449 ipftuneable_alloc(ipf_stack_t *ifs) 6450 { 6451 ipftuneable_t *item; 6452 6453 /* 6454 * We are being called as part of netstack creation and may not return 6455 * NULL; use a sleeping allocation. 6456 */ 6457 SLEEPING_KMALLOCS(ifs->ifs_ipf_tuneables, ipftuneable_t *, 6458 sizeof (lcl_ipf_tuneables)); 6459 bcopy(lcl_ipf_tuneables, ifs->ifs_ipf_tuneables, 6460 sizeof (lcl_ipf_tuneables)); 6461 6462 #define TUNE_SET(_ifs, _name, _field) \ 6463 item = tune_lookup((_ifs), (_name)); \ 6464 if (item != NULL) { \ 6465 item->ipft_una.ipftp_int = (unsigned int *)&((_ifs)->_field); \ 6466 item->ipft_sz = sizeof ((_ifs)->_field); \ 6467 } 6468 6469 TUNE_SET(ifs, "fr_flags", ifs_fr_flags); 6470 TUNE_SET(ifs, "fr_active", ifs_fr_active); 6471 TUNE_SET(ifs, "fr_control_forwarding", ifs_fr_control_forwarding); 6472 TUNE_SET(ifs, "fr_update_ipid", ifs_fr_update_ipid); 6473 TUNE_SET(ifs, "fr_chksrc", ifs_fr_chksrc); 6474 TUNE_SET(ifs, "fr_minttl", ifs_fr_minttl); 6475 TUNE_SET(ifs, "fr_icmpminfragmtu", ifs_fr_icmpminfragmtu); 6476 TUNE_SET(ifs, "fr_pass", ifs_fr_pass); 6477 TUNE_SET(ifs, "fr_tcpidletimeout", ifs_fr_tcpidletimeout); 6478 TUNE_SET(ifs, "fr_tcpclosewait", ifs_fr_tcpclosewait); 6479 TUNE_SET(ifs, "fr_tcplastack", ifs_fr_tcplastack); 6480 TUNE_SET(ifs, "fr_tcptimeout", ifs_fr_tcptimeout); 6481 TUNE_SET(ifs, "fr_tcpclosed", ifs_fr_tcpclosed); 6482 TUNE_SET(ifs, "fr_tcphalfclosed", ifs_fr_tcphalfclosed); 6483 TUNE_SET(ifs, "fr_udptimeout", ifs_fr_udptimeout); 6484 TUNE_SET(ifs, "fr_udpacktimeout", ifs_fr_udpacktimeout); 6485 TUNE_SET(ifs, "fr_icmptimeout", ifs_fr_icmptimeout); 6486 TUNE_SET(ifs, "fr_icmpacktimeout", ifs_fr_icmpacktimeout); 6487 TUNE_SET(ifs, "fr_iptimeout", ifs_fr_iptimeout); 6488 TUNE_SET(ifs, "fr_statemax", ifs_fr_statemax); 6489 TUNE_SET(ifs, "fr_statesize", ifs_fr_statesize); 6490 TUNE_SET(ifs, "fr_state_lock", ifs_fr_state_lock); 6491 TUNE_SET(ifs, "fr_state_maxbucket", ifs_fr_state_maxbucket); 6492 TUNE_SET(ifs, "fr_state_maxbucket_reset", ifs_fr_state_maxbucket_reset); 6493 TUNE_SET(ifs, "ipstate_logging", ifs_ipstate_logging); 6494 TUNE_SET(ifs, "fr_nat_lock", ifs_fr_nat_lock); 6495 TUNE_SET(ifs, "ipf_nattable_sz", ifs_ipf_nattable_sz); 6496 TUNE_SET(ifs, "ipf_nattable_max", ifs_ipf_nattable_max); 6497 TUNE_SET(ifs, "ipf_natrules_sz", ifs_ipf_natrules_sz); 6498 TUNE_SET(ifs, "ipf_rdrrules_sz", ifs_ipf_rdrrules_sz); 6499 TUNE_SET(ifs, "ipf_hostmap_sz", ifs_ipf_hostmap_sz); 6500 TUNE_SET(ifs, "fr_nat_maxbucket", ifs_fr_nat_maxbucket); 6501 TUNE_SET(ifs, "fr_nat_maxbucket_reset", ifs_fr_nat_maxbucket_reset); 6502 TUNE_SET(ifs, "nat_logging", ifs_nat_logging); 6503 TUNE_SET(ifs, "fr_defnatage", ifs_fr_defnatage); 6504 TUNE_SET(ifs, "fr_defnatipage", ifs_fr_defnatipage); 6505 TUNE_SET(ifs, "fr_defnaticmpage", ifs_fr_defnaticmpage); 6506 TUNE_SET(ifs, "nat_flush_level_hi", ifs_nat_flush_level_hi); 6507 TUNE_SET(ifs, "nat_flush_level_lo", ifs_nat_flush_level_lo); 6508 TUNE_SET(ifs, "state_flush_level_hi", ifs_state_flush_level_hi); 6509 TUNE_SET(ifs, "state_flush_level_lo", ifs_state_flush_level_lo); 6510 TUNE_SET(ifs, "ipfr_size", ifs_ipfr_size); 6511 TUNE_SET(ifs, "fr_ipfrttl", ifs_fr_ipfrttl); 6512 TUNE_SET(ifs, "ipf_loopback", ifs_ipf_loopback); 6513 #ifdef IPFILTER_LOG 6514 TUNE_SET(ifs, "ipl_suppress", ifs_ipl_suppress); 6515 TUNE_SET(ifs, "ipl_buffer_sz", ifs_ipl_buffer_sz); 6516 TUNE_SET(ifs, "ipl_logmax", ifs_ipl_logmax); 6517 TUNE_SET(ifs, "ipl_logall", ifs_ipl_logall); 6518 TUNE_SET(ifs, "ipl_logsize", ifs_ipl_logsize); 6519 #endif 6520 #undef TUNE_SET 6521 6522 ipftuneable_setdefs(ifs); 6523 6524 #ifdef _KERNEL 6525 (void) ipf_property_update(ipf_dev_info, ifs); 6526 #endif 6527 } 6528 6529 void 6530 ipftuneable_free(ipf_stack_t *ifs) 6531 { 6532 KFREES(ifs->ifs_ipf_tuneables, sizeof (lcl_ipf_tuneables)); 6533 ifs->ifs_ipf_tuneables = NULL; 6534 } 6535 6536 /* ------------------------------------------------------------------------ */ 6537 /* Function: fr_findtunebycookie */ 6538 /* Returns: NULL = search failed, else pointer to tune struct */ 6539 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */ 6540 /* next(O) - pointer to place to store the cookie for the */ 6541 /* "next" tuneable, if it is desired. */ 6542 /* */ 6543 /* This function is used to walk through all of the existing tunables with */ 6544 /* successive calls. It searches the known tunables for the one which has */ 6545 /* a matching value for "cookie" - ie its address. When returning a match, */ 6546 /* the next one to be found may be returned inside next. */ 6547 /* ------------------------------------------------------------------------ */ 6548 static ipftuneable_t *fr_findtunebycookie(cookie, next, ifs) 6549 void *cookie, **next; 6550 ipf_stack_t * ifs; 6551 { 6552 ipftuneable_t *ta, **tap; 6553 6554 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++) 6555 if (ta == cookie) { 6556 if (next != NULL) { 6557 /* 6558 * If the next entry in the array has a name 6559 * present, then return a pointer to it for 6560 * where to go next, else return a pointer to 6561 * the dynaminc list as a key to search there 6562 * next. This facilitates a weak linking of 6563 * the two "lists" together. 6564 */ 6565 if ((ta + 1)->ipft_name != NULL) 6566 *next = ta + 1; 6567 else 6568 *next = &ifs->ifs_ipf_tunelist; 6569 } 6570 return ta; 6571 } 6572 6573 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) 6574 if (tap == cookie) { 6575 if (next != NULL) 6576 *next = &ta->ipft_next; 6577 return ta; 6578 } 6579 6580 if (next != NULL) 6581 *next = NULL; 6582 return NULL; 6583 } 6584 6585 6586 /* ------------------------------------------------------------------------ */ 6587 /* Function: fr_findtunebyname */ 6588 /* Returns: NULL = search failed, else pointer to tune struct */ 6589 /* Parameters: name(I) - name of the tuneable entry to find. */ 6590 /* */ 6591 /* Search the static array of tuneables and the list of dynamic tuneables */ 6592 /* for an entry with a matching name. If we can find one, return a pointer */ 6593 /* to the matching structure. */ 6594 /* ------------------------------------------------------------------------ */ 6595 static ipftuneable_t *fr_findtunebyname(name, ifs) 6596 const char *name; 6597 ipf_stack_t *ifs; 6598 { 6599 ipftuneable_t *ta; 6600 6601 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++) 6602 if (!strcmp(ta->ipft_name, name)) { 6603 return ta; 6604 } 6605 6606 for (ta = ifs->ifs_ipf_tunelist; ta != NULL; ta = ta->ipft_next) 6607 if (!strcmp(ta->ipft_name, name)) { 6608 return ta; 6609 } 6610 6611 return NULL; 6612 } 6613 6614 6615 /* ------------------------------------------------------------------------ */ 6616 /* Function: fr_addipftune */ 6617 /* Returns: int - 0 == success, else failure */ 6618 /* Parameters: newtune - pointer to new tune struct to add to tuneables */ 6619 /* */ 6620 /* Appends the tune structure pointer to by "newtune" to the end of the */ 6621 /* current list of "dynamic" tuneable parameters. Once added, the owner */ 6622 /* of the object is not expected to ever change "ipft_next". */ 6623 /* ------------------------------------------------------------------------ */ 6624 int fr_addipftune(newtune, ifs) 6625 ipftuneable_t *newtune; 6626 ipf_stack_t *ifs; 6627 { 6628 ipftuneable_t *ta, **tap; 6629 6630 ta = fr_findtunebyname(newtune->ipft_name, ifs); 6631 if (ta != NULL) 6632 return EEXIST; 6633 6634 for (tap = &ifs->ifs_ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next) 6635 ; 6636 6637 newtune->ipft_next = NULL; 6638 *tap = newtune; 6639 return 0; 6640 } 6641 6642 6643 /* ------------------------------------------------------------------------ */ 6644 /* Function: fr_delipftune */ 6645 /* Returns: int - 0 == success, else failure */ 6646 /* Parameters: oldtune - pointer to tune struct to remove from the list of */ 6647 /* current dynamic tuneables */ 6648 /* */ 6649 /* Search for the tune structure, by pointer, in the list of those that are */ 6650 /* dynamically added at run time. If found, adjust the list so that this */ 6651 /* structure is no longer part of it. */ 6652 /* ------------------------------------------------------------------------ */ 6653 int fr_delipftune(oldtune, ifs) 6654 ipftuneable_t *oldtune; 6655 ipf_stack_t *ifs; 6656 { 6657 ipftuneable_t *ta, **tap; 6658 6659 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) 6660 if (ta == oldtune) { 6661 *tap = oldtune->ipft_next; 6662 oldtune->ipft_next = NULL; 6663 return 0; 6664 } 6665 6666 return ESRCH; 6667 } 6668 6669 6670 /* ------------------------------------------------------------------------ */ 6671 /* Function: fr_ipftune */ 6672 /* Returns: int - 0 == success, else failure */ 6673 /* Parameters: cmd(I) - ioctl command number */ 6674 /* data(I) - pointer to ioctl data structure */ 6675 /* */ 6676 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */ 6677 /* three ioctls provide the means to access and control global variables */ 6678 /* within IPFilter, allowing (for example) timeouts and table sizes to be */ 6679 /* changed without rebooting, reloading or recompiling. The initialisation */ 6680 /* and 'destruction' routines of the various components of ipfilter are all */ 6681 /* each responsible for handling their own values being too big. */ 6682 /* ------------------------------------------------------------------------ */ 6683 int fr_ipftune(cmd, data, ifs) 6684 ioctlcmd_t cmd; 6685 void *data; 6686 ipf_stack_t *ifs; 6687 { 6688 ipftuneable_t *ta; 6689 ipftune_t tu; 6690 void *cookie; 6691 int error; 6692 6693 error = fr_inobj(data, &tu, IPFOBJ_TUNEABLE); 6694 if (error != 0) 6695 return error; 6696 6697 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0'; 6698 cookie = tu.ipft_cookie; 6699 ta = NULL; 6700 6701 switch (cmd) 6702 { 6703 case SIOCIPFGETNEXT : 6704 /* 6705 * If cookie is non-NULL, assume it to be a pointer to the last 6706 * entry we looked at, so find it (if possible) and return a 6707 * pointer to the next one after it. The last entry in the 6708 * the table is a NULL entry, so when we get to it, set cookie 6709 * to NULL and return that, indicating end of list, erstwhile 6710 * if we come in with cookie set to NULL, we are starting anew 6711 * at the front of the list. 6712 */ 6713 if (cookie != NULL) { 6714 ta = fr_findtunebycookie(cookie, &tu.ipft_cookie, ifs); 6715 } else { 6716 ta = ifs->ifs_ipf_tuneables; 6717 tu.ipft_cookie = ta + 1; 6718 } 6719 if (ta != NULL) { 6720 /* 6721 * Entry found, but does the data pointed to by that 6722 * row fit in what we can return? 6723 */ 6724 if (ta->ipft_sz > sizeof(tu.ipft_un)) 6725 return EINVAL; 6726 6727 tu.ipft_vlong = 0; 6728 if (ta->ipft_sz == sizeof(u_long)) 6729 tu.ipft_vlong = *ta->ipft_plong; 6730 else if (ta->ipft_sz == sizeof(u_int)) 6731 tu.ipft_vint = *ta->ipft_pint; 6732 else if (ta->ipft_sz == sizeof(u_short)) 6733 tu.ipft_vshort = *ta->ipft_pshort; 6734 else if (ta->ipft_sz == sizeof(u_char)) 6735 tu.ipft_vchar = *ta->ipft_pchar; 6736 6737 tu.ipft_sz = ta->ipft_sz; 6738 tu.ipft_min = ta->ipft_min; 6739 tu.ipft_max = ta->ipft_max; 6740 tu.ipft_flags = ta->ipft_flags; 6741 bcopy(ta->ipft_name, tu.ipft_name, 6742 MIN(sizeof(tu.ipft_name), 6743 strlen(ta->ipft_name) + 1)); 6744 } 6745 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6746 break; 6747 6748 case SIOCIPFGET : 6749 case SIOCIPFSET : 6750 /* 6751 * Search by name or by cookie value for a particular entry 6752 * in the tuning paramter table. 6753 */ 6754 error = ESRCH; 6755 if (cookie != NULL) { 6756 ta = fr_findtunebycookie(cookie, NULL, ifs); 6757 if (ta != NULL) 6758 error = 0; 6759 } else if (tu.ipft_name[0] != '\0') { 6760 ta = fr_findtunebyname(tu.ipft_name, ifs); 6761 if (ta != NULL) 6762 error = 0; 6763 } 6764 if (error != 0) 6765 break; 6766 6767 if (cmd == (ioctlcmd_t)SIOCIPFGET) { 6768 /* 6769 * Fetch the tuning parameters for a particular value 6770 */ 6771 tu.ipft_vlong = 0; 6772 if (ta->ipft_sz == sizeof(u_long)) 6773 tu.ipft_vlong = *ta->ipft_plong; 6774 else if (ta->ipft_sz == sizeof(u_int)) 6775 tu.ipft_vint = *ta->ipft_pint; 6776 else if (ta->ipft_sz == sizeof(u_short)) 6777 tu.ipft_vshort = *ta->ipft_pshort; 6778 else if (ta->ipft_sz == sizeof(u_char)) 6779 tu.ipft_vchar = *ta->ipft_pchar; 6780 tu.ipft_cookie = ta; 6781 tu.ipft_sz = ta->ipft_sz; 6782 tu.ipft_min = ta->ipft_min; 6783 tu.ipft_max = ta->ipft_max; 6784 tu.ipft_flags = ta->ipft_flags; 6785 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6786 6787 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) { 6788 /* 6789 * Set an internal parameter. The hard part here is 6790 * getting the new value safely and correctly out of 6791 * the kernel (given we only know its size, not type.) 6792 */ 6793 u_long in; 6794 6795 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) && 6796 (ifs->ifs_fr_running > 0)) { 6797 error = EBUSY; 6798 break; 6799 } 6800 6801 in = tu.ipft_vlong; 6802 if (in < ta->ipft_min || in > ta->ipft_max) { 6803 error = EINVAL; 6804 break; 6805 } 6806 6807 if (ta->ipft_sz == sizeof(u_long)) { 6808 tu.ipft_vlong = *ta->ipft_plong; 6809 *ta->ipft_plong = in; 6810 } else if (ta->ipft_sz == sizeof(u_int)) { 6811 tu.ipft_vint = *ta->ipft_pint; 6812 *ta->ipft_pint = (u_int)(in & 0xffffffff); 6813 } else if (ta->ipft_sz == sizeof(u_short)) { 6814 tu.ipft_vshort = *ta->ipft_pshort; 6815 *ta->ipft_pshort = (u_short)(in & 0xffff); 6816 } else if (ta->ipft_sz == sizeof(u_char)) { 6817 tu.ipft_vchar = *ta->ipft_pchar; 6818 *ta->ipft_pchar = (u_char)(in & 0xff); 6819 } 6820 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6821 } 6822 break; 6823 6824 default : 6825 error = EINVAL; 6826 break; 6827 } 6828 6829 return error; 6830 } 6831 6832 6833 /* ------------------------------------------------------------------------ */ 6834 /* Function: fr_initialise */ 6835 /* Returns: int - 0 == success, < 0 == failure */ 6836 /* Parameters: None. */ 6837 /* */ 6838 /* Call of the initialise functions for all the various subsystems inside */ 6839 /* of IPFilter. If any of them should fail, return immeadiately a failure */ 6840 /* BUT do not try to recover from the error here. */ 6841 /* ------------------------------------------------------------------------ */ 6842 int fr_initialise(ifs) 6843 ipf_stack_t *ifs; 6844 { 6845 int i; 6846 6847 #ifdef IPFILTER_LOG 6848 i = fr_loginit(ifs); 6849 if (i < 0) 6850 return -10 + i; 6851 #endif 6852 i = fr_natinit(ifs); 6853 if (i < 0) 6854 return -20 + i; 6855 6856 i = fr_stateinit(ifs); 6857 if (i < 0) 6858 return -30 + i; 6859 6860 i = fr_authinit(ifs); 6861 if (i < 0) 6862 return -40 + i; 6863 6864 i = fr_fraginit(ifs); 6865 if (i < 0) 6866 return -50 + i; 6867 6868 i = appr_init(ifs); 6869 if (i < 0) 6870 return -60 + i; 6871 6872 #ifdef IPFILTER_SYNC 6873 i = ipfsync_init(ifs); 6874 if (i < 0) 6875 return -70 + i; 6876 #endif 6877 #ifdef IPFILTER_SCAN 6878 i = ipsc_init(ifs); 6879 if (i < 0) 6880 return -80 + i; 6881 #endif 6882 #ifdef IPFILTER_LOOKUP 6883 i = ip_lookup_init(ifs); 6884 if (i < 0) 6885 return -90 + i; 6886 #endif 6887 #ifdef IPFILTER_COMPILED 6888 ipfrule_add(ifs); 6889 #endif 6890 return 0; 6891 } 6892 6893 6894 /* ------------------------------------------------------------------------ */ 6895 /* Function: fr_deinitialise */ 6896 /* Returns: None. */ 6897 /* Parameters: None. */ 6898 /* */ 6899 /* Call all the various subsystem cleanup routines to deallocate memory or */ 6900 /* destroy locks or whatever they've done that they need to now undo. */ 6901 /* The order here IS important as there are some cross references of */ 6902 /* internal data structures. */ 6903 /* ------------------------------------------------------------------------ */ 6904 void fr_deinitialise(ifs) 6905 ipf_stack_t *ifs; 6906 { 6907 fr_fragunload(ifs); 6908 fr_authunload(ifs); 6909 fr_natunload(ifs); 6910 fr_stateunload(ifs); 6911 #ifdef IPFILTER_SCAN 6912 fr_scanunload(ifs); 6913 #endif 6914 appr_unload(ifs); 6915 6916 #ifdef IPFILTER_COMPILED 6917 ipfrule_remove(ifs); 6918 #endif 6919 6920 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs); 6921 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs); 6922 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs); 6923 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE, ifs); 6924 6925 #ifdef IPFILTER_LOOKUP 6926 ip_lookup_unload(ifs); 6927 #endif 6928 6929 #ifdef IPFILTER_LOG 6930 fr_logunload(ifs); 6931 #endif 6932 } 6933 6934 6935 /* ------------------------------------------------------------------------ */ 6936 /* Function: fr_zerostats */ 6937 /* Returns: int - 0 = success, else failure */ 6938 /* Parameters: data(O) - pointer to pointer for copying data back to */ 6939 /* */ 6940 /* Copies the current statistics out to userspace and then zero's the */ 6941 /* current ones in the kernel. The lock is only held across the bzero() as */ 6942 /* the copyout may result in paging (ie network activity.) */ 6943 /* ------------------------------------------------------------------------ */ 6944 int fr_zerostats(data, ifs) 6945 caddr_t data; 6946 ipf_stack_t *ifs; 6947 { 6948 friostat_t fio; 6949 int error; 6950 6951 fr_getstat(&fio, ifs); 6952 error = copyoutptr(&fio, data, sizeof(fio)); 6953 if (error) 6954 return EFAULT; 6955 6956 WRITE_ENTER(&ifs->ifs_ipf_mutex); 6957 bzero((char *)ifs->ifs_frstats, sizeof(*ifs->ifs_frstats) * 2); 6958 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 6959 6960 return 0; 6961 } 6962 6963 6964 #ifdef _KERNEL 6965 /* ------------------------------------------------------------------------ */ 6966 /* Function: fr_resolvedest */ 6967 /* Returns: Nil */ 6968 /* Parameters: fdp(IO) - pointer to destination information to resolve */ 6969 /* v(I) - IP protocol version to match */ 6970 /* */ 6971 /* Looks up an interface name in the frdest structure pointed to by fdp and */ 6972 /* if a matching name can be found for the particular IP protocol version */ 6973 /* then store the interface pointer in the frdest struct. If no match is */ 6974 /* found, then set the interface pointer to be -1 as NULL is considered to */ 6975 /* indicate there is no information at all in the structure. */ 6976 /* ------------------------------------------------------------------------ */ 6977 void fr_resolvedest(fdp, v, ifs) 6978 frdest_t *fdp; 6979 int v; 6980 ipf_stack_t *ifs; 6981 { 6982 fdp->fd_ifp = NULL; 6983 6984 if (*fdp->fd_ifname != '\0') { 6985 fdp->fd_ifp = GETIFP(fdp->fd_ifname, v, ifs); 6986 if (fdp->fd_ifp == NULL) 6987 fdp->fd_ifp = (void *)-1; 6988 } 6989 } 6990 #endif /* _KERNEL */ 6991 6992 6993 /* ------------------------------------------------------------------------ */ 6994 /* Function: fr_resolvenic */ 6995 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */ 6996 /* pointer to interface structure for NIC */ 6997 /* Parameters: name(I) - complete interface name */ 6998 /* v(I) - IP protocol version */ 6999 /* */ 7000 /* Look for a network interface structure that firstly has a matching name */ 7001 /* to that passed in and that is also being used for that IP protocol */ 7002 /* version (necessary on some platforms where there are separate listings */ 7003 /* for both IPv4 and IPv6 on the same physical NIC. */ 7004 /* */ 7005 /* One might wonder why name gets terminated with a \0 byte in here. The */ 7006 /* reason is an interface name could get into the kernel structures of ipf */ 7007 /* in any number of ways and so long as they all use the same sized array */ 7008 /* to put the name in, it makes sense to ensure it gets null terminated */ 7009 /* before it is used for its intended purpose - finding its match in the */ 7010 /* kernel's list of configured interfaces. */ 7011 /* */ 7012 /* NOTE: This SHOULD ONLY be used with IPFilter structures that have an */ 7013 /* array for the name that is LIFNAMSIZ bytes (at least) in length. */ 7014 /* ------------------------------------------------------------------------ */ 7015 void *fr_resolvenic(name, v, ifs) 7016 char *name; 7017 int v; 7018 ipf_stack_t *ifs; 7019 { 7020 void *nic; 7021 7022 if (name[0] == '\0') 7023 return NULL; 7024 7025 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) { 7026 return NULL; 7027 } 7028 7029 name[LIFNAMSIZ - 1] = '\0'; 7030 7031 nic = GETIFP(name, v, ifs); 7032 if (nic == NULL) 7033 nic = (void *)-1; 7034 return nic; 7035 } 7036 7037 7038 /* ------------------------------------------------------------------------ */ 7039 /* Function: ipf_expiretokens */ 7040 /* Returns: None. */ 7041 /* Parameters: ifs - ipf stack instance */ 7042 /* */ 7043 /* This function is run every ipf tick to see if there are any tokens that */ 7044 /* have been held for too long and need to be freed up. */ 7045 /* ------------------------------------------------------------------------ */ 7046 void ipf_expiretokens(ifs) 7047 ipf_stack_t *ifs; 7048 { 7049 ipftoken_t *it; 7050 7051 WRITE_ENTER(&ifs->ifs_ipf_tokens); 7052 while ((it = ifs->ifs_ipftokenhead) != NULL) { 7053 if (it->ipt_die > ifs->ifs_fr_ticks) 7054 break; 7055 7056 ipf_freetoken(it, ifs); 7057 } 7058 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7059 } 7060 7061 7062 /* ------------------------------------------------------------------------ */ 7063 /* Function: ipf_deltoken */ 7064 /* Returns: int - 0 = success, else error */ 7065 /* Parameters: type(I) - the token type to match */ 7066 /* uid(I) - uid owning the token */ 7067 /* ptr(I) - context pointer for the token */ 7068 /* ifs - ipf stack instance */ 7069 /* */ 7070 /* This function looks for a a token in the current list that matches up */ 7071 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */ 7072 /* call ipf_freetoken() to remove it from the list. */ 7073 /* ------------------------------------------------------------------------ */ 7074 int ipf_deltoken(type, uid, ptr, ifs) 7075 int type, uid; 7076 void *ptr; 7077 ipf_stack_t *ifs; 7078 { 7079 ipftoken_t *it; 7080 int error = ESRCH; 7081 7082 WRITE_ENTER(&ifs->ifs_ipf_tokens); 7083 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) 7084 if (ptr == it->ipt_ctx && type == it->ipt_type && 7085 uid == it->ipt_uid) { 7086 ipf_freetoken(it, ifs); 7087 error = 0; 7088 break; 7089 } 7090 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7091 7092 return error; 7093 } 7094 7095 7096 /* ------------------------------------------------------------------------ */ 7097 /* Function: ipf_unlinktoken */ 7098 /* Returns: None. */ 7099 /* Parameters: token(I) - pointer to token structure */ 7100 /* ifs - ipf stack instance */ 7101 /* */ 7102 /* This function unlinks a token structure from the linked list of tokens */ 7103 /* that it belongs to. The head pointer never needs to be explicitly */ 7104 /* adjusted, but the tail does due to the linked list implementation. */ 7105 /* ------------------------------------------------------------------------ */ 7106 static void ipf_unlinktoken(token, ifs) 7107 ipftoken_t *token; 7108 ipf_stack_t *ifs; 7109 { 7110 7111 if (ifs->ifs_ipftokentail == &token->ipt_next) 7112 ifs->ifs_ipftokentail = token->ipt_pnext; 7113 7114 *token->ipt_pnext = token->ipt_next; 7115 if (token->ipt_next != NULL) 7116 token->ipt_next->ipt_pnext = token->ipt_pnext; 7117 } 7118 7119 7120 /* ------------------------------------------------------------------------ */ 7121 /* Function: ipf_findtoken */ 7122 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */ 7123 /* Parameters: type(I) - the token type to match */ 7124 /* uid(I) - uid owning the token */ 7125 /* ptr(I) - context pointer for the token */ 7126 /* ifs - ipf stack instance */ 7127 /* */ 7128 /* This function looks for a live token in the list of current tokens that */ 7129 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */ 7130 /* allocated. If one is found then it is moved to the top of the list of */ 7131 /* currently active tokens. */ 7132 /* */ 7133 /* NOTE: It is by design that this function returns holding a read lock on */ 7134 /* ipf_tokens. Callers must make sure they release it! */ 7135 /* ------------------------------------------------------------------------ */ 7136 ipftoken_t *ipf_findtoken(type, uid, ptr, ifs) 7137 int type, uid; 7138 void *ptr; 7139 ipf_stack_t *ifs; 7140 { 7141 ipftoken_t *it, *new; 7142 7143 KMALLOC(new, ipftoken_t *); 7144 7145 WRITE_ENTER(&ifs->ifs_ipf_tokens); 7146 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) { 7147 if (it->ipt_alive == 0) 7148 continue; 7149 if (ptr == it->ipt_ctx && type == it->ipt_type && 7150 uid == it->ipt_uid) 7151 break; 7152 } 7153 7154 if (it == NULL) { 7155 it = new; 7156 new = NULL; 7157 if (it == NULL) 7158 return NULL; 7159 it->ipt_data = NULL; 7160 it->ipt_ctx = ptr; 7161 it->ipt_uid = uid; 7162 it->ipt_type = type; 7163 it->ipt_next = NULL; 7164 it->ipt_alive = 1; 7165 } else { 7166 if (new != NULL) { 7167 KFREE(new); 7168 new = NULL; 7169 } 7170 7171 ipf_unlinktoken(it, ifs); 7172 } 7173 it->ipt_pnext = ifs->ifs_ipftokentail; 7174 *ifs->ifs_ipftokentail = it; 7175 ifs->ifs_ipftokentail = &it->ipt_next; 7176 it->ipt_next = NULL; 7177 7178 it->ipt_die = ifs->ifs_fr_ticks + 2; 7179 7180 MUTEX_DOWNGRADE(&ifs->ifs_ipf_tokens); 7181 7182 return it; 7183 } 7184 7185 7186 /* ------------------------------------------------------------------------ */ 7187 /* Function: ipf_freetoken */ 7188 /* Returns: None. */ 7189 /* Parameters: token(I) - pointer to token structure */ 7190 /* ifs - ipf stack instance */ 7191 /* */ 7192 /* This function unlinks a token from the linked list and on the path to */ 7193 /* free'ing the data, it calls the dereference function that is associated */ 7194 /* with the type of data pointed to by the token as it is considered to */ 7195 /* hold a reference to it. */ 7196 /* ------------------------------------------------------------------------ */ 7197 void ipf_freetoken(token, ifs) 7198 ipftoken_t *token; 7199 ipf_stack_t *ifs; 7200 { 7201 void *data, **datap; 7202 7203 ipf_unlinktoken(token, ifs); 7204 7205 data = token->ipt_data; 7206 datap = &data; 7207 7208 if ((data != NULL) && (data != (void *)-1)) { 7209 switch (token->ipt_type) 7210 { 7211 case IPFGENITER_IPF : 7212 (void)fr_derefrule((frentry_t **)datap, ifs); 7213 break; 7214 case IPFGENITER_IPNAT : 7215 WRITE_ENTER(&ifs->ifs_ipf_nat); 7216 fr_ipnatderef((ipnat_t **)datap, ifs); 7217 RWLOCK_EXIT(&ifs->ifs_ipf_nat); 7218 break; 7219 case IPFGENITER_NAT : 7220 fr_natderef((nat_t **)datap, ifs); 7221 break; 7222 case IPFGENITER_STATE : 7223 fr_statederef((ipstate_t **)datap, ifs); 7224 break; 7225 case IPFGENITER_FRAG : 7226 fr_fragderef((ipfr_t **)datap, &ifs->ifs_ipf_frag, ifs); 7227 break; 7228 case IPFGENITER_NATFRAG : 7229 fr_fragderef((ipfr_t **)datap, 7230 &ifs->ifs_ipf_natfrag, ifs); 7231 break; 7232 case IPFGENITER_HOSTMAP : 7233 WRITE_ENTER(&ifs->ifs_ipf_nat); 7234 fr_hostmapdel((hostmap_t **)datap); 7235 RWLOCK_EXIT(&ifs->ifs_ipf_nat); 7236 break; 7237 default : 7238 (void) ip_lookup_iterderef(token->ipt_type, data, ifs); 7239 break; 7240 } 7241 } 7242 7243 KFREE(token); 7244 } 7245 7246 7247 /* ------------------------------------------------------------------------ */ 7248 /* Function: ipf_getnextrule */ 7249 /* Returns: int - 0 = success, else error */ 7250 /* Parameters: t(I) - pointer to destination information to resolve */ 7251 /* ptr(I) - pointer to ipfobj_t to copyin from user space */ 7252 /* ifs - ipf stack instance */ 7253 /* */ 7254 /* This function's first job is to bring in the ipfruleiter_t structure via */ 7255 /* the ipfobj_t structure to determine what should be the next rule to */ 7256 /* return. Once the ipfruleiter_t has been brought in, it then tries to */ 7257 /* find the 'next rule'. This may include searching rule group lists or */ 7258 /* just be as simple as looking at the 'next' field in the rule structure. */ 7259 /* When we have found the rule to return, increase its reference count and */ 7260 /* if we used an existing rule to get here, decrease its reference count. */ 7261 /* ------------------------------------------------------------------------ */ 7262 int ipf_getnextrule(t, ptr, ifs) 7263 ipftoken_t *t; 7264 void *ptr; 7265 ipf_stack_t *ifs; 7266 { 7267 frentry_t *fr, *next, zero; 7268 int error, out, count; 7269 ipfruleiter_t it; 7270 frgroup_t *fg; 7271 char *dst; 7272 7273 if (t == NULL || ptr == NULL) 7274 return EFAULT; 7275 error = fr_inobj(ptr, &it, IPFOBJ_IPFITER); 7276 if (error != 0) 7277 return error; 7278 if ((it.iri_ver != AF_INET) && (it.iri_ver != AF_INET6)) 7279 return EINVAL; 7280 if ((it.iri_inout < 0) || (it.iri_inout > 3)) 7281 return EINVAL; 7282 if (it.iri_nrules == 0) 7283 return EINVAL; 7284 if ((it.iri_active != 0) && (it.iri_active != 1)) 7285 return EINVAL; 7286 if (it.iri_rule == NULL) 7287 return EFAULT; 7288 7289 /* 7290 * Use bitmask on it.iri_inout to determine direction. 7291 * F_OUT (1) and F_ACOUT (3) mask to out = 1, while 7292 * F_IN (0) and F_ACIN (2) mask to out = 0. 7293 */ 7294 out = it.iri_inout & F_OUT; 7295 READ_ENTER(&ifs->ifs_ipf_mutex); 7296 7297 /* 7298 * Retrieve "previous" entry from token and find the next entry. 7299 */ 7300 fr = t->ipt_data; 7301 if (fr == NULL) { 7302 if (*it.iri_group == '\0') { 7303 /* 7304 * Use bitmask again to determine accounting or not. 7305 * F_ACIN will mask to accounting cases F_ACIN (2) 7306 * or F_ACOUT (3), but not F_IN or F_OUT. 7307 */ 7308 if ((it.iri_inout & F_ACIN) != 0) { 7309 if (it.iri_ver == AF_INET) 7310 next = ifs->ifs_ipacct 7311 [out][it.iri_active]; 7312 else 7313 next = ifs->ifs_ipacct6 7314 [out][it.iri_active]; 7315 } else { 7316 if (it.iri_ver == AF_INET) 7317 next = ifs->ifs_ipfilter 7318 [out][it.iri_active]; 7319 else 7320 next = ifs->ifs_ipfilter6 7321 [out][it.iri_active]; 7322 } 7323 } else { 7324 fg = fr_findgroup(it.iri_group, IPL_LOGIPF, 7325 it.iri_active, NULL, ifs); 7326 if (fg != NULL) 7327 next = fg->fg_start; 7328 else 7329 next = NULL; 7330 } 7331 } else { 7332 next = fr->fr_next; 7333 } 7334 7335 dst = (char *)it.iri_rule; 7336 /* 7337 * The ipfruleiter may ask for more than 1 rule at a time to be 7338 * copied out, so long as that many exist in the list to start with! 7339 */ 7340 for (count = it.iri_nrules; count > 0; count--) { 7341 /* 7342 * If we found an entry, add reference to it and update token. 7343 * Otherwise, zero out data to be returned and NULL out token. 7344 */ 7345 if (next != NULL) { 7346 MUTEX_ENTER(&next->fr_lock); 7347 next->fr_ref++; 7348 MUTEX_EXIT(&next->fr_lock); 7349 t->ipt_data = next; 7350 } else { 7351 bzero(&zero, sizeof(zero)); 7352 next = &zero; 7353 t->ipt_data = NULL; 7354 } 7355 7356 /* 7357 * Now that we have ref, it's save to give up lock. 7358 */ 7359 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 7360 7361 /* 7362 * Copy out data and clean up references and token as needed. 7363 */ 7364 error = COPYOUT(next, dst, sizeof(*next)); 7365 if (error != 0) 7366 error = EFAULT; 7367 if (t->ipt_data == NULL) { 7368 ipf_freetoken(t, ifs); 7369 break; 7370 } else { 7371 if (fr != NULL) 7372 (void) fr_derefrule(&fr, ifs); 7373 if (next->fr_data != NULL) { 7374 dst += sizeof(*next); 7375 error = COPYOUT(next->fr_data, dst, 7376 next->fr_dsize); 7377 if (error != 0) 7378 error = EFAULT; 7379 else 7380 dst += next->fr_dsize; 7381 } 7382 if (next->fr_next == NULL) { 7383 ipf_freetoken(t, ifs); 7384 break; 7385 } 7386 } 7387 7388 if ((count == 1) || (error != 0)) 7389 break; 7390 7391 READ_ENTER(&ifs->ifs_ipf_mutex); 7392 fr = next; 7393 next = fr->fr_next; 7394 } 7395 7396 return error; 7397 } 7398 7399 7400 /* ------------------------------------------------------------------------ */ 7401 /* Function: fr_frruleiter */ 7402 /* Returns: int - 0 = success, else error */ 7403 /* Parameters: data(I) - the token type to match */ 7404 /* uid(I) - uid owning the token */ 7405 /* ptr(I) - context pointer for the token */ 7406 /* ifs - ipf stack instance */ 7407 /* */ 7408 /* This function serves as a stepping stone between fr_ipf_ioctl and */ 7409 /* ipf_getnextrule. It's role is to find the right token in the kernel for */ 7410 /* the process doing the ioctl and use that to ask for the next rule. */ 7411 /* ------------------------------------------------------------------------ */ 7412 int ipf_frruleiter(data, uid, ctx, ifs) 7413 void *data, *ctx; 7414 int uid; 7415 ipf_stack_t *ifs; 7416 { 7417 ipftoken_t *token; 7418 int error; 7419 7420 token = ipf_findtoken(IPFGENITER_IPF, uid, ctx, ifs); 7421 if (token != NULL) 7422 error = ipf_getnextrule(token, data, ifs); 7423 else 7424 error = EFAULT; 7425 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7426 7427 return error; 7428 } 7429 7430 7431 /* ------------------------------------------------------------------------ */ 7432 /* Function: ipf_geniter */ 7433 /* Returns: int - 0 = success, else error */ 7434 /* Parameters: token(I) - pointer to ipftoken structure */ 7435 /* itp(I) - pointer to ipfgeniter structure */ 7436 /* ifs - ipf stack instance */ 7437 /* */ 7438 /* Generic iterator called from ipf_genericiter. Currently only used for */ 7439 /* walking through list of fragments. */ 7440 /* ------------------------------------------------------------------------ */ 7441 int ipf_geniter(token, itp, ifs) 7442 ipftoken_t *token; 7443 ipfgeniter_t *itp; 7444 ipf_stack_t *ifs; 7445 { 7446 int error; 7447 7448 switch (itp->igi_type) 7449 { 7450 case IPFGENITER_FRAG : 7451 error = fr_nextfrag(token, itp, &ifs->ifs_ipfr_list, 7452 &ifs->ifs_ipfr_tail, &ifs->ifs_ipf_frag, 7453 ifs); 7454 break; 7455 default : 7456 error = EINVAL; 7457 break; 7458 } 7459 7460 return error; 7461 } 7462 7463 7464 /* ------------------------------------------------------------------------ */ 7465 /* Function: ipf_genericiter */ 7466 /* Returns: int - 0 = success, else error */ 7467 /* Parameters: data(I) - the token type to match */ 7468 /* uid(I) - uid owning the token */ 7469 /* ptr(I) - context pointer for the token */ 7470 /* ifs - ipf stack instance */ 7471 /* */ 7472 /* This function serves as a stepping stone between fr_ipf_ioctl and */ 7473 /* ipf_geniter when handling SIOCGENITER. It's role is to find the right */ 7474 /* token in the kernel for the process using the ioctl, and to use that */ 7475 /* token when calling ipf_geniter. */ 7476 /* ------------------------------------------------------------------------ */ 7477 int ipf_genericiter(data, uid, ctx, ifs) 7478 void *data, *ctx; 7479 int uid; 7480 ipf_stack_t *ifs; 7481 { 7482 ipftoken_t *token; 7483 ipfgeniter_t iter; 7484 int error; 7485 7486 error = fr_inobj(data, &iter, IPFOBJ_GENITER); 7487 if (error != 0) 7488 return error; 7489 7490 token = ipf_findtoken(iter.igi_type, uid, ctx, ifs); 7491 if (token != NULL) { 7492 token->ipt_subtype = iter.igi_type; 7493 error = ipf_geniter(token, &iter, ifs); 7494 } else 7495 error = EFAULT; 7496 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7497 7498 return error; 7499 } 7500 7501 7502 /* --------------------------------------------------------------------- */ 7503 /* Function: ipf_earlydrop */ 7504 /* Returns: number of dropped/removed entries from the queue */ 7505 /* Parameters: flushtype - which table we're cleaning (NAT or State) */ 7506 /* ifq - pointer to queue with entries to be deleted */ 7507 /* idletime - entry must be idle this long to be deleted */ 7508 /* ifs - ipf stack instance */ 7509 /* */ 7510 /* Function is invoked from state/NAT flush routines to remove entries */ 7511 /* from specified timeout queue, based on how long they've sat idle, */ 7512 /* without waiting for it to happen on its own. */ 7513 /* --------------------------------------------------------------------- */ 7514 int ipf_earlydrop(flushtype, ifq, idletime, ifs) 7515 int flushtype; 7516 ipftq_t *ifq; 7517 int idletime; 7518 ipf_stack_t *ifs; 7519 { 7520 ipftqent_t *tqe, *tqn; 7521 unsigned int dropped; 7522 int droptick; 7523 void *ent; 7524 7525 if (ifq == NULL) 7526 return (0); 7527 7528 dropped = 0; 7529 7530 /* 7531 * Determine the tick representing the idle time we're interested 7532 * in. If an entry exists in the queue, and it was touched before 7533 * that tick, then it's been idle longer than idletime, so it should 7534 * be deleted. 7535 */ 7536 droptick = ifs->ifs_fr_ticks - idletime; 7537 tqn = ifq->ifq_head; 7538 while ((tqe = tqn) != NULL && tqe->tqe_touched < droptick) { 7539 tqn = tqe->tqe_next; 7540 ent = tqe->tqe_parent; 7541 switch (flushtype) 7542 { 7543 case NAT_FLUSH: 7544 if (nat_delete((nat_t *)ent, NL_FLUSH, ifs) == 0) 7545 dropped++; 7546 break; 7547 case STATE_FLUSH: 7548 if (fr_delstate((ipstate_t *)ent, ISL_FLUSH, ifs) == 0) 7549 dropped++; 7550 break; 7551 default: 7552 return (0); 7553 } 7554 } 7555 return (dropped); 7556 } 7557 7558 7559 /* --------------------------------------------------------------------- */ 7560 /* Function: ipf_flushclosing */ 7561 /* Returns: int - number of entries deleted */ 7562 /* Parameters: flushtype - which table we're cleaning (NAT or State) */ 7563 /* stateval - TCP state at which to start removing entries */ 7564 /* ipfqs - pointer to timeout queues */ 7565 /* userqs - pointer to user defined queues */ 7566 /* ifs - ipf stack instance */ 7567 /* */ 7568 /* Remove state/NAT table entries for TCP connections which are in the */ 7569 /* process of closing, and have at least reached the state specified by */ 7570 /* the 'stateval' parameter. */ 7571 /* --------------------------------------------------------------------- */ 7572 int ipf_flushclosing(flushtype, stateval, ipfqs, userqs, ifs) 7573 int flushtype, stateval; 7574 ipftq_t *ipfqs, *userqs; 7575 ipf_stack_t *ifs; 7576 { 7577 ipftq_t *ifq, *ifqn; 7578 ipftqent_t *tqe, *tqn; 7579 int dropped; 7580 void *ent; 7581 nat_t *nat; 7582 ipstate_t *is; 7583 7584 dropped = 0; 7585 7586 /* 7587 * Start by deleting any entries in specific timeout queues. 7588 */ 7589 ifqn = &ipfqs[stateval]; 7590 while ((ifq = ifqn) != NULL) { 7591 ifqn = ifq->ifq_next; 7592 dropped += ipf_earlydrop(flushtype, ifq, (int)0, ifs); 7593 } 7594 7595 /* 7596 * Next, look through user defined queues for closing entries. 7597 */ 7598 ifqn = userqs; 7599 while ((ifq = ifqn) != NULL) { 7600 ifqn = ifq->ifq_next; 7601 tqn = ifq->ifq_head; 7602 while ((tqe = tqn) != NULL) { 7603 tqn = tqe->tqe_next; 7604 ent = tqe->tqe_parent; 7605 switch (flushtype) 7606 { 7607 case NAT_FLUSH: 7608 nat = (nat_t *)ent; 7609 if ((nat->nat_p == IPPROTO_TCP) && 7610 (nat->nat_tcpstate[0] >= stateval) && 7611 (nat->nat_tcpstate[1] >= stateval) && 7612 (nat_delete(nat, NL_EXPIRE, ifs) == 0)) 7613 dropped++; 7614 break; 7615 case STATE_FLUSH: 7616 is = (ipstate_t *)ent; 7617 if ((is->is_p == IPPROTO_TCP) && 7618 (is->is_state[0] >= stateval) && 7619 (is->is_state[1] >= stateval) && 7620 (fr_delstate(is, ISL_EXPIRE, ifs) == 0)) 7621 dropped++; 7622 break; 7623 default: 7624 return (0); 7625 } 7626 } 7627 } 7628 return (dropped); 7629 } 7630 7631 7632 /* --------------------------------------------------------------------- */ 7633 /* Function: ipf_extraflush */ 7634 /* Returns: int - number of entries flushed (0 = none) */ 7635 /* Parameters: flushtype - which table we're cleaning (NAT or State) */ 7636 /* ipfqs - pointer to 'established' timeout queue */ 7637 /* userqs - pointer to user defined queues */ 7638 /* ifs - ipf stack instance */ 7639 /* */ 7640 /* This function gets called when either NAT or state tables fill up. */ 7641 /* We need to try a bit harder to free up some space. The function will */ 7642 /* flush entries for TCP connections which have been idle a long time. */ 7643 /* */ 7644 /* Currently, the idle time is checked using values from ideltime_tab[] */ 7645 /* --------------------------------------------------------------------- */ 7646 int ipf_extraflush(flushtype, ipfqs, userqs, ifs) 7647 int flushtype; 7648 ipftq_t *ipfqs, *userqs; 7649 ipf_stack_t *ifs; 7650 { 7651 ipftq_t *ifq, *ifqn; 7652 int idletime, removed, idle_idx; 7653 7654 removed = 0; 7655 7656 /* 7657 * Determine initial threshold for minimum idle time based on 7658 * how long ipfilter has been running. Ipfilter needs to have 7659 * been up as long as the smallest interval to continue on. 7660 * 7661 * Minimum idle times stored in idletime_tab and indexed by 7662 * idle_idx. Start at upper end of array and work backwards. 7663 * 7664 * Once the index is found, set the initial idle time to the 7665 * first interval before the current ipfilter run time. 7666 */ 7667 if (ifs->ifs_fr_ticks < idletime_tab[0]) 7668 return (0); 7669 idle_idx = (sizeof (idletime_tab) / sizeof (int)) - 1; 7670 if (ifs->ifs_fr_ticks > idletime_tab[idle_idx]) { 7671 idletime = idletime_tab[idle_idx]; 7672 } else { 7673 while ((idle_idx > 0) && 7674 (ifs->ifs_fr_ticks < idletime_tab[idle_idx])) 7675 idle_idx--; 7676 7677 idletime = (ifs->ifs_fr_ticks / 7678 idletime_tab[idle_idx]) * 7679 idletime_tab[idle_idx]; 7680 } 7681 7682 while (idle_idx >= 0) { 7683 /* 7684 * Check to see if we need to delete more entries. 7685 * If we do, start with appropriate timeout queue. 7686 */ 7687 if (flushtype == NAT_FLUSH) { 7688 if (NAT_TAB_WATER_LEVEL(ifs) <= 7689 ifs->ifs_nat_flush_level_lo) 7690 break; 7691 } else if (flushtype == STATE_FLUSH) { 7692 if (ST_TAB_WATER_LEVEL(ifs) <= 7693 ifs->ifs_state_flush_level_lo) 7694 break; 7695 } else { 7696 break; 7697 } 7698 7699 removed += ipf_earlydrop(flushtype, ipfqs, idletime, ifs); 7700 7701 /* 7702 * Next, check the user defined queues. But first, make 7703 * certain that timeout queue deletions didn't do enough. 7704 */ 7705 if (flushtype == NAT_FLUSH) { 7706 if (NAT_TAB_WATER_LEVEL(ifs) <= 7707 ifs->ifs_nat_flush_level_lo) 7708 break; 7709 } else { 7710 if (ST_TAB_WATER_LEVEL(ifs) <= 7711 ifs->ifs_state_flush_level_lo) 7712 break; 7713 } 7714 ifqn = userqs; 7715 while ((ifq = ifqn) != NULL) { 7716 ifqn = ifq->ifq_next; 7717 removed += ipf_earlydrop(flushtype, ifq, idletime, ifs); 7718 } 7719 7720 /* 7721 * Adjust the granularity of idle time. 7722 * 7723 * If we reach an interval boundary, we need to 7724 * either adjust the idle time accordingly or exit 7725 * the loop altogether (if this is very last check). 7726 */ 7727 idletime -= idletime_tab[idle_idx]; 7728 if (idletime < idletime_tab[idle_idx]) { 7729 if (idle_idx != 0) { 7730 idletime = idletime_tab[idle_idx] - 7731 idletime_tab[idle_idx - 1]; 7732 idle_idx--; 7733 } else { 7734 break; 7735 } 7736 } 7737 } 7738 7739 return (removed); 7740 } 7741