1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2016 by Delphix. All rights reserved. 26 * Copyright (c) 2018, Joyent, Inc. 27 */ 28 29 /* 30 * IPsec Security Policy Database. 31 * 32 * This module maintains the SPD and provides routines used by ip and ip6 33 * to apply IPsec policy to inbound and outbound datagrams. 34 */ 35 36 #include <sys/types.h> 37 #include <sys/stream.h> 38 #include <sys/stropts.h> 39 #include <sys/sysmacros.h> 40 #include <sys/strsubr.h> 41 #include <sys/strsun.h> 42 #include <sys/strlog.h> 43 #include <sys/strsun.h> 44 #include <sys/cmn_err.h> 45 #include <sys/zone.h> 46 47 #include <sys/systm.h> 48 #include <sys/param.h> 49 #include <sys/kmem.h> 50 #include <sys/ddi.h> 51 52 #include <sys/crypto/api.h> 53 54 #include <inet/common.h> 55 #include <inet/mi.h> 56 57 #include <netinet/ip6.h> 58 #include <netinet/icmp6.h> 59 #include <netinet/udp.h> 60 61 #include <inet/ip.h> 62 #include <inet/ip6.h> 63 64 #include <net/pfkeyv2.h> 65 #include <net/pfpolicy.h> 66 #include <inet/sadb.h> 67 #include <inet/ipsec_impl.h> 68 69 #include <inet/ip_impl.h> /* For IP_MOD_ID */ 70 71 #include <inet/ipsecah.h> 72 #include <inet/ipsecesp.h> 73 #include <inet/ipdrop.h> 74 #include <inet/ipclassifier.h> 75 #include <inet/iptun.h> 76 #include <inet/iptun/iptun_impl.h> 77 78 static void ipsec_update_present_flags(ipsec_stack_t *); 79 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *, 80 netstack_t *); 81 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *, 82 ipha_t *, ip6_t *, uint64_t, ip_recv_attr_t *, netstack_t *); 83 static void ipsec_action_free_table(ipsec_action_t *); 84 static void ipsec_action_reclaim(void *); 85 static void ipsec_action_reclaim_stack(ipsec_stack_t *); 86 static void ipsid_init(netstack_t *); 87 static void ipsid_fini(netstack_t *); 88 89 /* sel_flags values for ipsec_init_inbound_sel(). */ 90 #define SEL_NONE 0x0000 91 #define SEL_PORT_POLICY 0x0001 92 #define SEL_IS_ICMP 0x0002 93 #define SEL_TUNNEL_MODE 0x0004 94 #define SEL_POST_FRAG 0x0008 95 96 /* Return values for ipsec_init_inbound_sel(). */ 97 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG} 98 selret_t; 99 100 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *, 101 ipha_t *, ip6_t *, uint8_t); 102 103 static boolean_t ipsec_check_ipsecin_action(ip_recv_attr_t *, mblk_t *, 104 struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **, 105 kstat_named_t **, netstack_t *); 106 static void ipsec_unregister_prov_update(void); 107 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *); 108 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *); 109 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *); 110 static boolean_t ipsec_kstat_init(ipsec_stack_t *); 111 static void ipsec_kstat_destroy(ipsec_stack_t *); 112 static int ipsec_free_tables(ipsec_stack_t *); 113 static int tunnel_compare(const void *, const void *); 114 static void ipsec_freemsg_chain(mblk_t *); 115 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, 116 struct kstat_named *, ipdropper_t *); 117 static boolean_t ipsec_kstat_init(ipsec_stack_t *); 118 static void ipsec_kstat_destroy(ipsec_stack_t *); 119 static int ipsec_free_tables(ipsec_stack_t *); 120 static int tunnel_compare(const void *, const void *); 121 static void ipsec_freemsg_chain(mblk_t *); 122 123 /* 124 * Selector hash table is statically sized at module load time. 125 * we default to 251 buckets, which is the largest prime number under 255 126 */ 127 128 #define IPSEC_SPDHASH_DEFAULT 251 129 130 /* SPD hash-size tunable per tunnel. */ 131 #define TUN_SPDHASH_DEFAULT 5 132 133 uint32_t ipsec_spd_hashsize; 134 uint32_t tun_spd_hashsize; 135 136 #define IPSEC_SEL_NOHASH ((uint32_t)(~0)) 137 138 /* 139 * Handle global across all stack instances 140 */ 141 static crypto_notify_handle_t prov_update_handle = NULL; 142 143 static kmem_cache_t *ipsec_action_cache; 144 static kmem_cache_t *ipsec_sel_cache; 145 static kmem_cache_t *ipsec_pol_cache; 146 147 /* Frag cache prototypes */ 148 static void ipsec_fragcache_clean(ipsec_fragcache_t *, ipsec_stack_t *); 149 static ipsec_fragcache_entry_t *fragcache_delentry(int, 150 ipsec_fragcache_entry_t *, ipsec_fragcache_t *, ipsec_stack_t *); 151 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *); 152 void ipsec_fragcache_uninit(ipsec_fragcache_t *, ipsec_stack_t *ipss); 153 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *, 154 int, ipsec_stack_t *); 155 156 int ipsec_hdr_pullup_needed = 0; 157 int ipsec_weird_null_inbound_policy = 0; 158 159 #define ALGBITS_ROUND_DOWN(x, align) (((x)/(align))*(align)) 160 #define ALGBITS_ROUND_UP(x, align) ALGBITS_ROUND_DOWN((x)+(align)-1, align) 161 162 /* 163 * Inbound traffic should have matching identities for both SA's. 164 */ 165 166 #define SA_IDS_MATCH(sa1, sa2) \ 167 (((sa1) == NULL) || ((sa2) == NULL) || \ 168 (((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) && \ 169 (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid)))) 170 171 /* 172 * IPv6 Fragments 173 */ 174 #define IS_V6_FRAGMENT(ipp) (ipp.ipp_fields & IPPF_FRAGHDR) 175 176 /* 177 * Policy failure messages. 178 */ 179 static char *ipsec_policy_failure_msgs[] = { 180 181 /* IPSEC_POLICY_NOT_NEEDED */ 182 "%s: Dropping the datagram because the incoming packet " 183 "is %s, but the recipient expects clear; Source %s, " 184 "Destination %s.\n", 185 186 /* IPSEC_POLICY_MISMATCH */ 187 "%s: Policy Failure for the incoming packet (%s); Source %s, " 188 "Destination %s.\n", 189 190 /* IPSEC_POLICY_AUTH_NOT_NEEDED */ 191 "%s: Authentication present while not expected in the " 192 "incoming %s packet; Source %s, Destination %s.\n", 193 194 /* IPSEC_POLICY_ENCR_NOT_NEEDED */ 195 "%s: Encryption present while not expected in the " 196 "incoming %s packet; Source %s, Destination %s.\n", 197 198 /* IPSEC_POLICY_SE_NOT_NEEDED */ 199 "%s: Self-Encapsulation present while not expected in the " 200 "incoming %s packet; Source %s, Destination %s.\n", 201 }; 202 203 /* 204 * General overviews: 205 * 206 * Locking: 207 * 208 * All of the system policy structures are protected by a single 209 * rwlock. These structures are threaded in a 210 * fairly complex fashion and are not expected to change on a 211 * regular basis, so this should not cause scaling/contention 212 * problems. As a result, policy checks should (hopefully) be MT-hot. 213 * 214 * Allocation policy: 215 * 216 * We use custom kmem cache types for the various 217 * bits & pieces of the policy data structures. All allocations 218 * use KM_NOSLEEP instead of KM_SLEEP for policy allocation. The 219 * policy table is of potentially unbounded size, so we don't 220 * want to provide a way to hog all system memory with policy 221 * entries.. 222 */ 223 224 /* Convenient functions for freeing or dropping a b_next linked mblk chain */ 225 226 /* Free all messages in an mblk chain */ 227 static void 228 ipsec_freemsg_chain(mblk_t *mp) 229 { 230 mblk_t *mpnext; 231 while (mp != NULL) { 232 ASSERT(mp->b_prev == NULL); 233 mpnext = mp->b_next; 234 mp->b_next = NULL; 235 freemsg(mp); 236 mp = mpnext; 237 } 238 } 239 240 /* 241 * ip_drop all messages in an mblk chain 242 * Can handle a b_next chain of ip_recv_attr_t mblks, or just a b_next chain 243 * of data. 244 */ 245 static void 246 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *ill, 247 struct kstat_named *counter, ipdropper_t *who_called) 248 { 249 mblk_t *mpnext; 250 while (mp != NULL) { 251 ASSERT(mp->b_prev == NULL); 252 mpnext = mp->b_next; 253 mp->b_next = NULL; 254 if (ip_recv_attr_is_mblk(mp)) 255 mp = ip_recv_attr_free_mblk(mp); 256 ip_drop_packet(mp, inbound, ill, counter, who_called); 257 mp = mpnext; 258 } 259 } 260 261 /* 262 * AVL tree comparison function. 263 * the in-kernel avl assumes unique keys for all objects. 264 * Since sometimes policy will duplicate rules, we may insert 265 * multiple rules with the same rule id, so we need a tie-breaker. 266 */ 267 static int 268 ipsec_policy_cmpbyid(const void *a, const void *b) 269 { 270 const ipsec_policy_t *ipa, *ipb; 271 uint64_t idxa, idxb; 272 273 ipa = (const ipsec_policy_t *)a; 274 ipb = (const ipsec_policy_t *)b; 275 idxa = ipa->ipsp_index; 276 idxb = ipb->ipsp_index; 277 278 if (idxa < idxb) 279 return (-1); 280 if (idxa > idxb) 281 return (1); 282 /* 283 * Tie-breaker #1: All installed policy rules have a non-NULL 284 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not 285 * actually in-tree but rather a template node being used in 286 * an avl_find query; see ipsec_policy_delete(). This gives us 287 * a placeholder in the ordering just before the first entry with 288 * a key >= the one we're looking for, so we can walk forward from 289 * that point to get the remaining entries with the same id. 290 */ 291 if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL)) 292 return (-1); 293 if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL)) 294 return (1); 295 /* 296 * At most one of the arguments to the comparison should have a 297 * NULL selector pointer; if not, the tree is broken. 298 */ 299 ASSERT(ipa->ipsp_sel != NULL); 300 ASSERT(ipb->ipsp_sel != NULL); 301 /* 302 * Tie-breaker #2: use the virtual address of the policy node 303 * to arbitrarily break ties. Since we use the new tree node in 304 * the avl_find() in ipsec_insert_always, the new node will be 305 * inserted into the tree in the right place in the sequence. 306 */ 307 if (ipa < ipb) 308 return (-1); 309 if (ipa > ipb) 310 return (1); 311 return (0); 312 } 313 314 /* 315 * Free what ipsec_alloc_table allocated. 316 */ 317 void 318 ipsec_polhead_free_table(ipsec_policy_head_t *iph) 319 { 320 int dir; 321 int i; 322 323 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 324 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 325 326 if (ipr->ipr_hash == NULL) 327 continue; 328 329 for (i = 0; i < ipr->ipr_nchains; i++) { 330 ASSERT(ipr->ipr_hash[i].hash_head == NULL); 331 } 332 kmem_free(ipr->ipr_hash, ipr->ipr_nchains * 333 sizeof (ipsec_policy_hash_t)); 334 ipr->ipr_hash = NULL; 335 } 336 } 337 338 void 339 ipsec_polhead_destroy(ipsec_policy_head_t *iph) 340 { 341 int dir; 342 343 avl_destroy(&iph->iph_rulebyid); 344 rw_destroy(&iph->iph_lock); 345 346 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 347 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 348 int chain; 349 350 for (chain = 0; chain < ipr->ipr_nchains; chain++) 351 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock)); 352 353 } 354 ipsec_polhead_free_table(iph); 355 } 356 357 /* 358 * Free the IPsec stack instance. 359 */ 360 /* ARGSUSED */ 361 static void 362 ipsec_stack_fini(netstackid_t stackid, void *arg) 363 { 364 ipsec_stack_t *ipss = (ipsec_stack_t *)arg; 365 void *cookie; 366 ipsec_tun_pol_t *node; 367 netstack_t *ns = ipss->ipsec_netstack; 368 int i; 369 ipsec_algtype_t algtype; 370 371 ipsec_loader_destroy(ipss); 372 373 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER); 374 /* 375 * It's possible we can just ASSERT() the tree is empty. After all, 376 * we aren't called until IP is ready to unload (and presumably all 377 * tunnels have been unplumbed). But we'll play it safe for now, the 378 * loop will just exit immediately if it's empty. 379 */ 380 cookie = NULL; 381 while ((node = (ipsec_tun_pol_t *) 382 avl_destroy_nodes(&ipss->ipsec_tunnel_policies, 383 &cookie)) != NULL) { 384 ITP_REFRELE(node, ns); 385 } 386 avl_destroy(&ipss->ipsec_tunnel_policies); 387 rw_exit(&ipss->ipsec_tunnel_policy_lock); 388 rw_destroy(&ipss->ipsec_tunnel_policy_lock); 389 390 ipsec_config_flush(ns); 391 392 ipsec_kstat_destroy(ipss); 393 394 ip_drop_unregister(&ipss->ipsec_dropper); 395 396 ip_drop_unregister(&ipss->ipsec_spd_dropper); 397 ip_drop_destroy(ipss); 398 /* 399 * Globals start with ref == 1 to prevent IPPH_REFRELE() from 400 * attempting to free them, hence they should have 1 now. 401 */ 402 ipsec_polhead_destroy(&ipss->ipsec_system_policy); 403 ASSERT(ipss->ipsec_system_policy.iph_refs == 1); 404 ipsec_polhead_destroy(&ipss->ipsec_inactive_policy); 405 ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1); 406 407 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) { 408 ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head); 409 ipss->ipsec_action_hash[i].hash_head = NULL; 410 mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock)); 411 } 412 413 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) { 414 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL); 415 mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock)); 416 } 417 418 rw_enter(&ipss->ipsec_alg_lock, RW_WRITER); 419 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) { 420 for (i = 0; i < IPSEC_MAX_ALGS; i++) { 421 if (ipss->ipsec_alglists[algtype][i] != NULL) 422 ipsec_alg_unreg(algtype, i, ns); 423 } 424 } 425 rw_exit(&ipss->ipsec_alg_lock); 426 rw_destroy(&ipss->ipsec_alg_lock); 427 428 ipsid_gc(ns); 429 ipsid_fini(ns); 430 431 (void) ipsec_free_tables(ipss); 432 kmem_free(ipss, sizeof (*ipss)); 433 } 434 435 void 436 ipsec_policy_g_destroy(void) 437 { 438 kmem_cache_destroy(ipsec_action_cache); 439 kmem_cache_destroy(ipsec_sel_cache); 440 kmem_cache_destroy(ipsec_pol_cache); 441 442 ipsec_unregister_prov_update(); 443 444 netstack_unregister(NS_IPSEC); 445 } 446 447 448 /* 449 * Free what ipsec_alloc_tables allocated. 450 * Called when table allocation fails to free the table. 451 */ 452 static int 453 ipsec_free_tables(ipsec_stack_t *ipss) 454 { 455 int i; 456 457 if (ipss->ipsec_sel_hash != NULL) { 458 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) { 459 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL); 460 } 461 kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize * 462 sizeof (*ipss->ipsec_sel_hash)); 463 ipss->ipsec_sel_hash = NULL; 464 ipss->ipsec_spd_hashsize = 0; 465 } 466 ipsec_polhead_free_table(&ipss->ipsec_system_policy); 467 ipsec_polhead_free_table(&ipss->ipsec_inactive_policy); 468 469 return (ENOMEM); 470 } 471 472 /* 473 * Attempt to allocate the tables in a single policy head. 474 * Return nonzero on failure after cleaning up any work in progress. 475 */ 476 int 477 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag, 478 boolean_t global_cleanup, netstack_t *ns) 479 { 480 int dir; 481 482 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 483 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 484 485 ipr->ipr_nchains = nchains; 486 ipr->ipr_hash = kmem_zalloc(nchains * 487 sizeof (ipsec_policy_hash_t), kmflag); 488 if (ipr->ipr_hash == NULL) 489 return (global_cleanup ? 490 ipsec_free_tables(ns->netstack_ipsec) : 491 ENOMEM); 492 } 493 return (0); 494 } 495 496 /* 497 * Attempt to allocate the various tables. Return nonzero on failure 498 * after cleaning up any work in progress. 499 */ 500 static int 501 ipsec_alloc_tables(int kmflag, netstack_t *ns) 502 { 503 int error; 504 ipsec_stack_t *ipss = ns->netstack_ipsec; 505 506 error = ipsec_alloc_table(&ipss->ipsec_system_policy, 507 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns); 508 if (error != 0) 509 return (error); 510 511 error = ipsec_alloc_table(&ipss->ipsec_inactive_policy, 512 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns); 513 if (error != 0) 514 return (error); 515 516 ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize * 517 sizeof (*ipss->ipsec_sel_hash), kmflag); 518 519 if (ipss->ipsec_sel_hash == NULL) 520 return (ipsec_free_tables(ipss)); 521 522 return (0); 523 } 524 525 /* 526 * After table allocation, initialize a policy head. 527 */ 528 void 529 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains) 530 { 531 int dir, chain; 532 533 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL); 534 avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid, 535 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid)); 536 537 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 538 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 539 ipr->ipr_nchains = nchains; 540 541 for (chain = 0; chain < nchains; chain++) { 542 mutex_init(&(ipr->ipr_hash[chain].hash_lock), 543 NULL, MUTEX_DEFAULT, NULL); 544 } 545 } 546 } 547 548 static boolean_t 549 ipsec_kstat_init(ipsec_stack_t *ipss) 550 { 551 ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net", 552 KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t), 553 KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid); 554 555 if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL) 556 return (B_FALSE); 557 558 ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data; 559 560 #define KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64) 561 KI(esp_stat_in_requests); 562 KI(esp_stat_in_discards); 563 KI(esp_stat_lookup_failure); 564 KI(ah_stat_in_requests); 565 KI(ah_stat_in_discards); 566 KI(ah_stat_lookup_failure); 567 KI(sadb_acquire_maxpackets); 568 KI(sadb_acquire_qhiwater); 569 #undef KI 570 571 kstat_install(ipss->ipsec_ksp); 572 return (B_TRUE); 573 } 574 575 static void 576 ipsec_kstat_destroy(ipsec_stack_t *ipss) 577 { 578 kstat_delete_netstack(ipss->ipsec_ksp, 579 ipss->ipsec_netstack->netstack_stackid); 580 ipss->ipsec_kstats = NULL; 581 582 } 583 584 /* 585 * Initialize the IPsec stack instance. 586 */ 587 /* ARGSUSED */ 588 static void * 589 ipsec_stack_init(netstackid_t stackid, netstack_t *ns) 590 { 591 ipsec_stack_t *ipss; 592 int i; 593 594 ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP); 595 ipss->ipsec_netstack = ns; 596 597 /* 598 * FIXME: netstack_ipsec is used by some of the routines we call 599 * below, but it isn't set until this routine returns. 600 * Either we introduce optional xxx_stack_alloc() functions 601 * that will be called by the netstack framework before xxx_stack_init, 602 * or we switch spd.c and sadb.c to operate on ipsec_stack_t 603 * (latter has some include file order issues for sadb.h, but makes 604 * sense if we merge some of the ipsec related stack_t's together. 605 */ 606 ns->netstack_ipsec = ipss; 607 608 /* 609 * Make two attempts to allocate policy hash tables; try it at 610 * the "preferred" size (may be set in /etc/system) first, 611 * then fall back to the default size. 612 */ 613 ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ? 614 IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize; 615 616 if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) { 617 cmn_err(CE_WARN, 618 "Unable to allocate %d entry IPsec policy hash table", 619 ipss->ipsec_spd_hashsize); 620 ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT; 621 cmn_err(CE_WARN, "Falling back to %d entries", 622 ipss->ipsec_spd_hashsize); 623 (void) ipsec_alloc_tables(KM_SLEEP, ns); 624 } 625 626 /* Just set a default for tunnels. */ 627 ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ? 628 TUN_SPDHASH_DEFAULT : tun_spd_hashsize; 629 630 ipsid_init(ns); 631 /* 632 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting 633 * to free them. 634 */ 635 ipss->ipsec_system_policy.iph_refs = 1; 636 ipss->ipsec_inactive_policy.iph_refs = 1; 637 ipsec_polhead_init(&ipss->ipsec_system_policy, 638 ipss->ipsec_spd_hashsize); 639 ipsec_polhead_init(&ipss->ipsec_inactive_policy, 640 ipss->ipsec_spd_hashsize); 641 rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL); 642 avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare, 643 sizeof (ipsec_tun_pol_t), 0); 644 645 ipss->ipsec_next_policy_index = 1; 646 647 rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL); 648 rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL); 649 650 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) 651 mutex_init(&(ipss->ipsec_action_hash[i].hash_lock), 652 NULL, MUTEX_DEFAULT, NULL); 653 654 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) 655 mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock), 656 NULL, MUTEX_DEFAULT, NULL); 657 658 rw_init(&ipss->ipsec_alg_lock, NULL, RW_DEFAULT, NULL); 659 for (i = 0; i < IPSEC_NALGTYPES; i++) { 660 ipss->ipsec_nalgs[i] = 0; 661 } 662 663 ip_drop_init(ipss); 664 ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD"); 665 666 /* IP's IPsec code calls the packet dropper */ 667 ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing"); 668 669 (void) ipsec_kstat_init(ipss); 670 671 ipsec_loader_init(ipss); 672 ipsec_loader_start(ipss); 673 674 return (ipss); 675 } 676 677 /* Global across all stack instances */ 678 void 679 ipsec_policy_g_init(void) 680 { 681 ipsec_action_cache = kmem_cache_create("ipsec_actions", 682 sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL, 683 ipsec_action_reclaim, NULL, NULL, 0); 684 ipsec_sel_cache = kmem_cache_create("ipsec_selectors", 685 sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL, 686 NULL, NULL, NULL, 0); 687 ipsec_pol_cache = kmem_cache_create("ipsec_policy", 688 sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL, 689 NULL, NULL, NULL, 0); 690 691 /* 692 * We want to be informed each time a stack is created or 693 * destroyed in the kernel, so we can maintain the 694 * set of ipsec_stack_t's. 695 */ 696 netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini); 697 } 698 699 /* 700 * Sort algorithm lists. 701 * 702 * I may need to split this based on 703 * authentication/encryption, and I may wish to have an administrator 704 * configure this list. Hold on to some NDD variables... 705 * 706 * XXX For now, sort on minimum key size (GAG!). While minimum key size is 707 * not the ideal metric, it's the only quantifiable measure available. 708 * We need a better metric for sorting algorithms by preference. 709 */ 710 static void 711 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns) 712 { 713 ipsec_stack_t *ipss = ns->netstack_ipsec; 714 ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid]; 715 uint8_t holder, swap; 716 uint_t i; 717 uint_t count = ipss->ipsec_nalgs[at]; 718 ASSERT(ai != NULL); 719 ASSERT(algid == ai->alg_id); 720 721 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock)); 722 723 holder = algid; 724 725 for (i = 0; i < count - 1; i++) { 726 ipsec_alginfo_t *alt; 727 728 alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]]; 729 /* 730 * If you want to give precedence to newly added algs, 731 * add the = in the > comparison. 732 */ 733 if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) { 734 /* Swap sortlist[i] and holder. */ 735 swap = ipss->ipsec_sortlist[at][i]; 736 ipss->ipsec_sortlist[at][i] = holder; 737 holder = swap; 738 ai = alt; 739 } /* Else just continue. */ 740 } 741 742 /* Store holder in last slot. */ 743 ipss->ipsec_sortlist[at][i] = holder; 744 } 745 746 /* 747 * Remove an algorithm from a sorted algorithm list. 748 * This should be considerably easier, even with complex sorting. 749 */ 750 static void 751 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns) 752 { 753 boolean_t copyback = B_FALSE; 754 int i; 755 ipsec_stack_t *ipss = ns->netstack_ipsec; 756 int newcount = ipss->ipsec_nalgs[at]; 757 758 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock)); 759 760 for (i = 0; i <= newcount; i++) { 761 if (copyback) { 762 ipss->ipsec_sortlist[at][i-1] = 763 ipss->ipsec_sortlist[at][i]; 764 } else if (ipss->ipsec_sortlist[at][i] == algid) { 765 copyback = B_TRUE; 766 } 767 } 768 } 769 770 /* 771 * Add the specified algorithm to the algorithm tables. 772 * Must be called while holding the algorithm table writer lock. 773 */ 774 void 775 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns) 776 { 777 ipsec_stack_t *ipss = ns->netstack_ipsec; 778 779 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock)); 780 781 ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL); 782 ipsec_alg_fix_min_max(alg, algtype, ns); 783 ipss->ipsec_alglists[algtype][alg->alg_id] = alg; 784 785 ipss->ipsec_nalgs[algtype]++; 786 alg_insert_sortlist(algtype, alg->alg_id, ns); 787 } 788 789 /* 790 * Remove the specified algorithm from the algorithm tables. 791 * Must be called while holding the algorithm table writer lock. 792 */ 793 void 794 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns) 795 { 796 ipsec_stack_t *ipss = ns->netstack_ipsec; 797 798 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock)); 799 800 ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL); 801 ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]); 802 ipss->ipsec_alglists[algtype][algid] = NULL; 803 804 ipss->ipsec_nalgs[algtype]--; 805 alg_remove_sortlist(algtype, algid, ns); 806 } 807 808 /* 809 * Hooks for spdsock to get a grip on system policy. 810 */ 811 812 ipsec_policy_head_t * 813 ipsec_system_policy(netstack_t *ns) 814 { 815 ipsec_stack_t *ipss = ns->netstack_ipsec; 816 ipsec_policy_head_t *h = &ipss->ipsec_system_policy; 817 818 IPPH_REFHOLD(h); 819 return (h); 820 } 821 822 ipsec_policy_head_t * 823 ipsec_inactive_policy(netstack_t *ns) 824 { 825 ipsec_stack_t *ipss = ns->netstack_ipsec; 826 ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy; 827 828 IPPH_REFHOLD(h); 829 return (h); 830 } 831 832 /* 833 * Lock inactive policy, then active policy, then exchange policy root 834 * pointers. 835 */ 836 void 837 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive, 838 netstack_t *ns) 839 { 840 int af, dir; 841 avl_tree_t r1, r2; 842 843 rw_enter(&inactive->iph_lock, RW_WRITER); 844 rw_enter(&active->iph_lock, RW_WRITER); 845 846 r1 = active->iph_rulebyid; 847 r2 = inactive->iph_rulebyid; 848 active->iph_rulebyid = r2; 849 inactive->iph_rulebyid = r1; 850 851 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 852 ipsec_policy_hash_t *h1, *h2; 853 854 h1 = active->iph_root[dir].ipr_hash; 855 h2 = inactive->iph_root[dir].ipr_hash; 856 active->iph_root[dir].ipr_hash = h2; 857 inactive->iph_root[dir].ipr_hash = h1; 858 859 for (af = 0; af < IPSEC_NAF; af++) { 860 ipsec_policy_t *t1, *t2; 861 862 t1 = active->iph_root[dir].ipr_nonhash[af]; 863 t2 = inactive->iph_root[dir].ipr_nonhash[af]; 864 active->iph_root[dir].ipr_nonhash[af] = t2; 865 inactive->iph_root[dir].ipr_nonhash[af] = t1; 866 if (t1 != NULL) { 867 t1->ipsp_hash.hash_pp = 868 &(inactive->iph_root[dir].ipr_nonhash[af]); 869 } 870 if (t2 != NULL) { 871 t2->ipsp_hash.hash_pp = 872 &(active->iph_root[dir].ipr_nonhash[af]); 873 } 874 875 } 876 } 877 active->iph_gen++; 878 inactive->iph_gen++; 879 ipsec_update_present_flags(ns->netstack_ipsec); 880 rw_exit(&active->iph_lock); 881 rw_exit(&inactive->iph_lock); 882 } 883 884 /* 885 * Swap global policy primary/secondary. 886 */ 887 void 888 ipsec_swap_global_policy(netstack_t *ns) 889 { 890 ipsec_stack_t *ipss = ns->netstack_ipsec; 891 892 ipsec_swap_policy(&ipss->ipsec_system_policy, 893 &ipss->ipsec_inactive_policy, ns); 894 } 895 896 /* 897 * Clone one policy rule.. 898 */ 899 static ipsec_policy_t * 900 ipsec_copy_policy(const ipsec_policy_t *src) 901 { 902 ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP); 903 904 if (dst == NULL) 905 return (NULL); 906 907 /* 908 * Adjust refcounts of cloned state. 909 */ 910 IPACT_REFHOLD(src->ipsp_act); 911 src->ipsp_sel->ipsl_refs++; 912 913 HASH_NULL(dst, ipsp_hash); 914 dst->ipsp_netstack = src->ipsp_netstack; 915 dst->ipsp_refs = 1; 916 dst->ipsp_sel = src->ipsp_sel; 917 dst->ipsp_act = src->ipsp_act; 918 dst->ipsp_prio = src->ipsp_prio; 919 dst->ipsp_index = src->ipsp_index; 920 921 return (dst); 922 } 923 924 void 925 ipsec_insert_always(avl_tree_t *tree, void *new_node) 926 { 927 void *node; 928 avl_index_t where; 929 930 node = avl_find(tree, new_node, &where); 931 ASSERT(node == NULL); 932 avl_insert(tree, new_node, where); 933 } 934 935 936 static int 937 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src, 938 ipsec_policy_t **dstp) 939 { 940 for (; src != NULL; src = src->ipsp_hash.hash_next) { 941 ipsec_policy_t *dst = ipsec_copy_policy(src); 942 if (dst == NULL) 943 return (ENOMEM); 944 945 HASHLIST_INSERT(dst, ipsp_hash, *dstp); 946 ipsec_insert_always(&dph->iph_rulebyid, dst); 947 } 948 return (0); 949 } 950 951 952 953 /* 954 * Make one policy head look exactly like another. 955 * 956 * As with ipsec_swap_policy, we lock the destination policy head first, then 957 * the source policy head. Note that we only need to read-lock the source 958 * policy head as we are not changing it. 959 */ 960 int 961 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph, 962 netstack_t *ns) 963 { 964 int af, dir, chain, nchains; 965 966 rw_enter(&dph->iph_lock, RW_WRITER); 967 968 ipsec_polhead_flush(dph, ns); 969 970 rw_enter(&sph->iph_lock, RW_READER); 971 972 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 973 ipsec_policy_root_t *dpr = &dph->iph_root[dir]; 974 ipsec_policy_root_t *spr = &sph->iph_root[dir]; 975 nchains = dpr->ipr_nchains; 976 977 ASSERT(dpr->ipr_nchains == spr->ipr_nchains); 978 979 for (af = 0; af < IPSEC_NAF; af++) { 980 if (ipsec_copy_chain(dph, spr->ipr_nonhash[af], 981 &dpr->ipr_nonhash[af])) 982 goto abort_copy; 983 } 984 985 for (chain = 0; chain < nchains; chain++) { 986 if (ipsec_copy_chain(dph, 987 spr->ipr_hash[chain].hash_head, 988 &dpr->ipr_hash[chain].hash_head)) 989 goto abort_copy; 990 } 991 } 992 993 dph->iph_gen++; 994 995 rw_exit(&sph->iph_lock); 996 rw_exit(&dph->iph_lock); 997 return (0); 998 999 abort_copy: 1000 ipsec_polhead_flush(dph, ns); 1001 rw_exit(&sph->iph_lock); 1002 rw_exit(&dph->iph_lock); 1003 return (ENOMEM); 1004 } 1005 1006 /* 1007 * Clone currently active policy to the inactive policy list. 1008 */ 1009 int 1010 ipsec_clone_system_policy(netstack_t *ns) 1011 { 1012 ipsec_stack_t *ipss = ns->netstack_ipsec; 1013 1014 return (ipsec_copy_polhead(&ipss->ipsec_system_policy, 1015 &ipss->ipsec_inactive_policy, ns)); 1016 } 1017 1018 /* 1019 * Extract the string from ipsec_policy_failure_msgs[type] and 1020 * log it. 1021 * 1022 */ 1023 void 1024 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h, 1025 boolean_t secure, netstack_t *ns) 1026 { 1027 char sbuf[INET6_ADDRSTRLEN]; 1028 char dbuf[INET6_ADDRSTRLEN]; 1029 char *s; 1030 char *d; 1031 ipsec_stack_t *ipss = ns->netstack_ipsec; 1032 1033 ASSERT((ipha == NULL && ip6h != NULL) || 1034 (ip6h == NULL && ipha != NULL)); 1035 1036 if (ipha != NULL) { 1037 s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf)); 1038 d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf)); 1039 } else { 1040 s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf)); 1041 d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf)); 1042 1043 } 1044 1045 /* Always bump the policy failure counter. */ 1046 ipss->ipsec_policy_failure_count[type]++; 1047 1048 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 1049 ipsec_policy_failure_msgs[type], func_name, 1050 (secure ? "secure" : "not secure"), s, d); 1051 } 1052 1053 /* 1054 * Rate-limiting front-end to strlog() for AH and ESP. Uses the ndd variables 1055 * in /dev/ip and the same rate-limiting clock so that there's a single 1056 * knob to turn to throttle the rate of messages. 1057 */ 1058 void 1059 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl, 1060 char *fmt, ...) 1061 { 1062 va_list adx; 1063 hrtime_t current = gethrtime(); 1064 ip_stack_t *ipst = ns->netstack_ip; 1065 ipsec_stack_t *ipss = ns->netstack_ipsec; 1066 1067 sl |= SL_CONSOLE; 1068 /* 1069 * Throttle logging to stop syslog from being swamped. If variable 1070 * 'ipsec_policy_log_interval' is zero, don't log any messages at 1071 * all, otherwise log only one message every 'ipsec_policy_log_interval' 1072 * msec. Convert interval (in msec) to hrtime (in nsec). 1073 */ 1074 1075 if (ipst->ips_ipsec_policy_log_interval) { 1076 if (ipss->ipsec_policy_failure_last + 1077 MSEC2NSEC(ipst->ips_ipsec_policy_log_interval) <= current) { 1078 va_start(adx, fmt); 1079 (void) vstrlog(mid, sid, level, sl, fmt, adx); 1080 va_end(adx); 1081 ipss->ipsec_policy_failure_last = current; 1082 } 1083 } 1084 } 1085 1086 void 1087 ipsec_config_flush(netstack_t *ns) 1088 { 1089 ipsec_stack_t *ipss = ns->netstack_ipsec; 1090 1091 rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER); 1092 ipsec_polhead_flush(&ipss->ipsec_system_policy, ns); 1093 ipss->ipsec_next_policy_index = 1; 1094 rw_exit(&ipss->ipsec_system_policy.iph_lock); 1095 ipsec_action_reclaim_stack(ipss); 1096 } 1097 1098 /* 1099 * Clip a policy's min/max keybits vs. the capabilities of the 1100 * algorithm. 1101 */ 1102 static void 1103 act_alg_adjust(uint_t algtype, uint_t algid, 1104 uint16_t *minbits, uint16_t *maxbits, netstack_t *ns) 1105 { 1106 ipsec_stack_t *ipss = ns->netstack_ipsec; 1107 ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid]; 1108 1109 if (algp != NULL) { 1110 /* 1111 * If passed-in minbits is zero, we assume the caller trusts 1112 * us with setting the minimum key size. We pick the 1113 * algorithms DEFAULT key size for the minimum in this case. 1114 */ 1115 if (*minbits == 0) { 1116 *minbits = algp->alg_default_bits; 1117 ASSERT(*minbits >= algp->alg_minbits); 1118 } else { 1119 *minbits = MAX(MIN(*minbits, algp->alg_maxbits), 1120 algp->alg_minbits); 1121 } 1122 if (*maxbits == 0) 1123 *maxbits = algp->alg_maxbits; 1124 else 1125 *maxbits = MIN(MAX(*maxbits, algp->alg_minbits), 1126 algp->alg_maxbits); 1127 ASSERT(*minbits <= *maxbits); 1128 } else { 1129 *minbits = 0; 1130 *maxbits = 0; 1131 } 1132 } 1133 1134 /* 1135 * Check an action's requested algorithms against the algorithms currently 1136 * loaded in the system. 1137 */ 1138 boolean_t 1139 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns) 1140 { 1141 ipsec_prot_t *ipp; 1142 ipsec_stack_t *ipss = ns->netstack_ipsec; 1143 1144 ipp = &act->ipa_apply; 1145 1146 if (ipp->ipp_use_ah && 1147 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) { 1148 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG; 1149 return (B_FALSE); 1150 } 1151 if (ipp->ipp_use_espa && 1152 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] == 1153 NULL) { 1154 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG; 1155 return (B_FALSE); 1156 } 1157 if (ipp->ipp_use_esp && 1158 ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) { 1159 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG; 1160 return (B_FALSE); 1161 } 1162 1163 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg, 1164 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns); 1165 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg, 1166 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns); 1167 act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg, 1168 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns); 1169 1170 if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) { 1171 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE; 1172 return (B_FALSE); 1173 } 1174 if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) { 1175 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE; 1176 return (B_FALSE); 1177 } 1178 if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) { 1179 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE; 1180 return (B_FALSE); 1181 } 1182 /* TODO: sanity check lifetimes */ 1183 return (B_TRUE); 1184 } 1185 1186 /* 1187 * Set up a single action during wildcard expansion.. 1188 */ 1189 static void 1190 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act, 1191 uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns) 1192 { 1193 ipsec_prot_t *ipp; 1194 1195 *outact = *act; 1196 ipp = &outact->ipa_apply; 1197 ipp->ipp_auth_alg = (uint8_t)auth_alg; 1198 ipp->ipp_encr_alg = (uint8_t)encr_alg; 1199 ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg; 1200 1201 act_alg_adjust(IPSEC_ALG_AUTH, auth_alg, 1202 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns); 1203 act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg, 1204 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns); 1205 act_alg_adjust(IPSEC_ALG_ENCR, encr_alg, 1206 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns); 1207 } 1208 1209 /* 1210 * combinatoric expansion time: expand a wildcarded action into an 1211 * array of wildcarded actions; we return the exploded action list, 1212 * and return a count in *nact (output only). 1213 */ 1214 static ipsec_act_t * 1215 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns) 1216 { 1217 boolean_t use_ah, use_esp, use_espa; 1218 boolean_t wild_auth, wild_encr, wild_eauth; 1219 uint_t auth_alg, auth_idx, auth_min, auth_max; 1220 uint_t eauth_alg, eauth_idx, eauth_min, eauth_max; 1221 uint_t encr_alg, encr_idx, encr_min, encr_max; 1222 uint_t action_count, ai; 1223 ipsec_act_t *outact; 1224 ipsec_stack_t *ipss = ns->netstack_ipsec; 1225 1226 if (act->ipa_type != IPSEC_ACT_APPLY) { 1227 outact = kmem_alloc(sizeof (*act), KM_NOSLEEP); 1228 *nact = 1; 1229 if (outact != NULL) 1230 bcopy(act, outact, sizeof (*act)); 1231 return (outact); 1232 } 1233 /* 1234 * compute the combinatoric explosion.. 1235 * 1236 * we assume a request for encr if esp_req is PREF_REQUIRED 1237 * we assume a request for ah auth if ah_req is PREF_REQUIRED. 1238 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED 1239 */ 1240 1241 use_ah = act->ipa_apply.ipp_use_ah; 1242 use_esp = act->ipa_apply.ipp_use_esp; 1243 use_espa = act->ipa_apply.ipp_use_espa; 1244 auth_alg = act->ipa_apply.ipp_auth_alg; 1245 eauth_alg = act->ipa_apply.ipp_esp_auth_alg; 1246 encr_alg = act->ipa_apply.ipp_encr_alg; 1247 1248 wild_auth = use_ah && (auth_alg == 0); 1249 wild_eauth = use_espa && (eauth_alg == 0); 1250 wild_encr = use_esp && (encr_alg == 0); 1251 1252 action_count = 1; 1253 auth_min = auth_max = auth_alg; 1254 eauth_min = eauth_max = eauth_alg; 1255 encr_min = encr_max = encr_alg; 1256 1257 /* 1258 * set up for explosion.. for each dimension, expand output 1259 * size by the explosion factor. 1260 * 1261 * Don't include the "any" algorithms, if defined, as no 1262 * kernel policies should be set for these algorithms. 1263 */ 1264 1265 #define SET_EXP_MINMAX(type, wild, alg, min, max, ipss) \ 1266 if (wild) { \ 1267 int nalgs = ipss->ipsec_nalgs[type]; \ 1268 if (ipss->ipsec_alglists[type][alg] != NULL) \ 1269 nalgs--; \ 1270 action_count *= nalgs; \ 1271 min = 0; \ 1272 max = ipss->ipsec_nalgs[type] - 1; \ 1273 } 1274 1275 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE, 1276 auth_min, auth_max, ipss); 1277 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE, 1278 eauth_min, eauth_max, ipss); 1279 SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE, 1280 encr_min, encr_max, ipss); 1281 1282 #undef SET_EXP_MINMAX 1283 1284 /* 1285 * ok, allocate the whole mess.. 1286 */ 1287 1288 outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP); 1289 if (outact == NULL) 1290 return (NULL); 1291 1292 /* 1293 * Now compute all combinations. Note that non-wildcarded 1294 * dimensions just get a single value from auth_min, while 1295 * wildcarded dimensions indirect through the sortlist. 1296 * 1297 * We do encryption outermost since, at this time, there's 1298 * greater difference in security and performance between 1299 * encryption algorithms vs. authentication algorithms. 1300 */ 1301 1302 ai = 0; 1303 1304 #define WHICH_ALG(type, wild, idx, ipss) \ 1305 ((wild)?(ipss->ipsec_sortlist[type][idx]):(idx)) 1306 1307 for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) { 1308 encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss); 1309 if (wild_encr && encr_alg == SADB_EALG_NONE) 1310 continue; 1311 for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) { 1312 auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth, 1313 auth_idx, ipss); 1314 if (wild_auth && auth_alg == SADB_AALG_NONE) 1315 continue; 1316 for (eauth_idx = eauth_min; eauth_idx <= eauth_max; 1317 eauth_idx++) { 1318 eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH, 1319 wild_eauth, eauth_idx, ipss); 1320 if (wild_eauth && eauth_alg == SADB_AALG_NONE) 1321 continue; 1322 1323 ipsec_setup_act(&outact[ai], act, 1324 auth_alg, encr_alg, eauth_alg, ns); 1325 ai++; 1326 } 1327 } 1328 } 1329 1330 #undef WHICH_ALG 1331 1332 ASSERT(ai == action_count); 1333 *nact = action_count; 1334 return (outact); 1335 } 1336 1337 /* 1338 * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t. 1339 */ 1340 static void 1341 ipsec_prot_from_req(const ipsec_req_t *req, ipsec_prot_t *ipp) 1342 { 1343 bzero(ipp, sizeof (*ipp)); 1344 /* 1345 * ipp_use_* are bitfields. Look at "!!" in the following as a 1346 * "boolean canonicalization" operator. 1347 */ 1348 ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED); 1349 ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED); 1350 ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg); 1351 ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED); 1352 ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) & 1353 IPSEC_PREF_UNIQUE); 1354 ipp->ipp_encr_alg = req->ipsr_esp_alg; 1355 /* 1356 * SADB_AALG_ANY is a placeholder to distinguish "any" from 1357 * "none" above. If auth is required, as determined above, 1358 * SADB_AALG_ANY becomes 0, which is the representation 1359 * of "any" and "none" in PF_KEY v2. 1360 */ 1361 ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ? 1362 req->ipsr_auth_alg : 0; 1363 ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ? 1364 req->ipsr_esp_auth_alg : 0; 1365 } 1366 1367 /* 1368 * Extract a new-style action from a request. 1369 */ 1370 void 1371 ipsec_actvec_from_req(const ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp, 1372 netstack_t *ns) 1373 { 1374 struct ipsec_act act; 1375 1376 bzero(&act, sizeof (act)); 1377 if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) && 1378 (req->ipsr_esp_req & IPSEC_PREF_NEVER)) { 1379 act.ipa_type = IPSEC_ACT_BYPASS; 1380 } else { 1381 act.ipa_type = IPSEC_ACT_APPLY; 1382 ipsec_prot_from_req(req, &act.ipa_apply); 1383 } 1384 *actp = ipsec_act_wildcard_expand(&act, nactp, ns); 1385 } 1386 1387 /* 1388 * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat). 1389 * We assume caller has already zero'ed *req for us. 1390 */ 1391 static int 1392 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req) 1393 { 1394 req->ipsr_esp_alg = ipp->ipp_encr_alg; 1395 req->ipsr_auth_alg = ipp->ipp_auth_alg; 1396 req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg; 1397 1398 if (ipp->ipp_use_unique) { 1399 req->ipsr_ah_req |= IPSEC_PREF_UNIQUE; 1400 req->ipsr_esp_req |= IPSEC_PREF_UNIQUE; 1401 } 1402 if (ipp->ipp_use_se) 1403 req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED; 1404 if (ipp->ipp_use_ah) 1405 req->ipsr_ah_req |= IPSEC_PREF_REQUIRED; 1406 if (ipp->ipp_use_esp) 1407 req->ipsr_esp_req |= IPSEC_PREF_REQUIRED; 1408 return (sizeof (*req)); 1409 } 1410 1411 /* 1412 * Convert a new-style action back to an ipsec_req_t (more backwards compat). 1413 * We assume caller has already zero'ed *req for us. 1414 */ 1415 static int 1416 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req) 1417 { 1418 switch (ap->ipa_act.ipa_type) { 1419 case IPSEC_ACT_BYPASS: 1420 req->ipsr_ah_req = IPSEC_PREF_NEVER; 1421 req->ipsr_esp_req = IPSEC_PREF_NEVER; 1422 return (sizeof (*req)); 1423 case IPSEC_ACT_APPLY: 1424 return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req)); 1425 } 1426 return (sizeof (*req)); 1427 } 1428 1429 /* 1430 * Convert a new-style action back to an ipsec_req_t (more backwards compat). 1431 * We assume caller has already zero'ed *req for us. 1432 */ 1433 int 1434 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af) 1435 { 1436 ipsec_policy_t *p; 1437 1438 /* 1439 * FULL-PERSOCK: consult hash table, too? 1440 */ 1441 for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af]; 1442 p != NULL; 1443 p = p->ipsp_hash.hash_next) { 1444 if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0) 1445 return (ipsec_req_from_act(p->ipsp_act, req)); 1446 } 1447 return (sizeof (*req)); 1448 } 1449 1450 /* 1451 * Based on per-socket or latched policy, convert to an appropriate 1452 * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can 1453 * be tail-called from ip. 1454 */ 1455 int 1456 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af) 1457 { 1458 ipsec_latch_t *ipl; 1459 int rv = sizeof (ipsec_req_t); 1460 1461 bzero(req, sizeof (*req)); 1462 1463 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1464 ipl = connp->conn_latch; 1465 1466 /* 1467 * Find appropriate policy. First choice is latched action; 1468 * failing that, see latched policy; failing that, 1469 * look at configured policy. 1470 */ 1471 if (ipl != NULL) { 1472 if (connp->conn_latch_in_action != NULL) { 1473 rv = ipsec_req_from_act(connp->conn_latch_in_action, 1474 req); 1475 goto done; 1476 } 1477 if (connp->conn_latch_in_policy != NULL) { 1478 rv = ipsec_req_from_act( 1479 connp->conn_latch_in_policy->ipsp_act, req); 1480 goto done; 1481 } 1482 } 1483 if (connp->conn_policy != NULL) 1484 rv = ipsec_req_from_head(connp->conn_policy, req, af); 1485 done: 1486 return (rv); 1487 } 1488 1489 void 1490 ipsec_actvec_free(ipsec_act_t *act, uint_t nact) 1491 { 1492 kmem_free(act, nact * sizeof (*act)); 1493 } 1494 1495 /* 1496 * Consumes a reference to ipsp. 1497 */ 1498 static mblk_t * 1499 ipsec_check_loopback_policy(mblk_t *data_mp, ip_recv_attr_t *ira, 1500 ipsec_policy_t *ipsp) 1501 { 1502 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) 1503 return (data_mp); 1504 1505 ASSERT(ira->ira_flags & IRAF_LOOPBACK); 1506 1507 IPPOL_REFRELE(ipsp); 1508 1509 /* 1510 * We should do an actual policy check here. Revisit this 1511 * when we revisit the IPsec API. (And pass a conn_t in when we 1512 * get there.) 1513 */ 1514 1515 return (data_mp); 1516 } 1517 1518 /* 1519 * Check that packet's inbound ports & proto match the selectors 1520 * expected by the SAs it traversed on the way in. 1521 */ 1522 static boolean_t 1523 ipsec_check_ipsecin_unique(ip_recv_attr_t *ira, const char **reason, 1524 kstat_named_t **counter, uint64_t pkt_unique, netstack_t *ns) 1525 { 1526 uint64_t ah_mask, esp_mask; 1527 ipsa_t *ah_assoc; 1528 ipsa_t *esp_assoc; 1529 ipsec_stack_t *ipss = ns->netstack_ipsec; 1530 1531 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 1532 ASSERT(!(ira->ira_flags & IRAF_LOOPBACK)); 1533 1534 ah_assoc = ira->ira_ipsec_ah_sa; 1535 esp_assoc = ira->ira_ipsec_esp_sa; 1536 ASSERT((ah_assoc != NULL) || (esp_assoc != NULL)); 1537 1538 ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0; 1539 esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0; 1540 1541 if ((ah_mask == 0) && (esp_mask == 0)) 1542 return (B_TRUE); 1543 1544 /* 1545 * The pkt_unique check will also check for tunnel mode on the SA 1546 * vs. the tunneled_packet boolean. "Be liberal in what you receive" 1547 * should not apply in this case. ;) 1548 */ 1549 1550 if (ah_mask != 0 && 1551 ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) { 1552 *reason = "AH inner header mismatch"; 1553 *counter = DROPPER(ipss, ipds_spd_ah_innermismatch); 1554 return (B_FALSE); 1555 } 1556 if (esp_mask != 0 && 1557 esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) { 1558 *reason = "ESP inner header mismatch"; 1559 *counter = DROPPER(ipss, ipds_spd_esp_innermismatch); 1560 return (B_FALSE); 1561 } 1562 return (B_TRUE); 1563 } 1564 1565 static boolean_t 1566 ipsec_check_ipsecin_action(ip_recv_attr_t *ira, mblk_t *mp, ipsec_action_t *ap, 1567 ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter, 1568 netstack_t *ns) 1569 { 1570 boolean_t ret = B_TRUE; 1571 ipsec_prot_t *ipp; 1572 ipsa_t *ah_assoc; 1573 ipsa_t *esp_assoc; 1574 boolean_t decaps; 1575 ipsec_stack_t *ipss = ns->netstack_ipsec; 1576 1577 ASSERT((ipha == NULL && ip6h != NULL) || 1578 (ip6h == NULL && ipha != NULL)); 1579 1580 if (ira->ira_flags & IRAF_LOOPBACK) { 1581 /* 1582 * Besides accepting pointer-equivalent actions, we also 1583 * accept any ICMP errors we generated for ourselves, 1584 * regardless of policy. If we do not wish to make this 1585 * assumption in the future, check here, and where 1586 * IXAF_TRUSTED_ICMP is initialized in ip.c and ip6.c. 1587 */ 1588 if (ap == ira->ira_ipsec_action || 1589 (ira->ira_flags & IRAF_TRUSTED_ICMP)) 1590 return (B_TRUE); 1591 1592 /* Deep compare necessary here?? */ 1593 *counter = DROPPER(ipss, ipds_spd_loopback_mismatch); 1594 *reason = "loopback policy mismatch"; 1595 return (B_FALSE); 1596 } 1597 ASSERT(!(ira->ira_flags & IRAF_TRUSTED_ICMP)); 1598 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 1599 1600 ah_assoc = ira->ira_ipsec_ah_sa; 1601 esp_assoc = ira->ira_ipsec_esp_sa; 1602 1603 decaps = (ira->ira_flags & IRAF_IPSEC_DECAPS); 1604 1605 switch (ap->ipa_act.ipa_type) { 1606 case IPSEC_ACT_DISCARD: 1607 case IPSEC_ACT_REJECT: 1608 /* Should "fail hard" */ 1609 *counter = DROPPER(ipss, ipds_spd_explicit); 1610 *reason = "blocked by policy"; 1611 return (B_FALSE); 1612 1613 case IPSEC_ACT_BYPASS: 1614 case IPSEC_ACT_CLEAR: 1615 *counter = DROPPER(ipss, ipds_spd_got_secure); 1616 *reason = "expected clear, got protected"; 1617 return (B_FALSE); 1618 1619 case IPSEC_ACT_APPLY: 1620 ipp = &ap->ipa_act.ipa_apply; 1621 /* 1622 * As of now we do the simple checks of whether 1623 * the datagram has gone through the required IPSEC 1624 * protocol constraints or not. We might have more 1625 * in the future like sensitive levels, key bits, etc. 1626 * If it fails the constraints, check whether we would 1627 * have accepted this if it had come in clear. 1628 */ 1629 if (ipp->ipp_use_ah) { 1630 if (ah_assoc == NULL) { 1631 ret = ipsec_inbound_accept_clear(mp, ipha, 1632 ip6h); 1633 *counter = DROPPER(ipss, ipds_spd_got_clear); 1634 *reason = "unprotected not accepted"; 1635 break; 1636 } 1637 ASSERT(ah_assoc != NULL); 1638 ASSERT(ipp->ipp_auth_alg != 0); 1639 1640 if (ah_assoc->ipsa_auth_alg != 1641 ipp->ipp_auth_alg) { 1642 *counter = DROPPER(ipss, ipds_spd_bad_ahalg); 1643 *reason = "unacceptable ah alg"; 1644 ret = B_FALSE; 1645 break; 1646 } 1647 } else if (ah_assoc != NULL) { 1648 /* 1649 * Don't allow this. Check IPSEC NOTE above 1650 * ip_fanout_proto(). 1651 */ 1652 *counter = DROPPER(ipss, ipds_spd_got_ah); 1653 *reason = "unexpected AH"; 1654 ret = B_FALSE; 1655 break; 1656 } 1657 if (ipp->ipp_use_esp) { 1658 if (esp_assoc == NULL) { 1659 ret = ipsec_inbound_accept_clear(mp, ipha, 1660 ip6h); 1661 *counter = DROPPER(ipss, ipds_spd_got_clear); 1662 *reason = "unprotected not accepted"; 1663 break; 1664 } 1665 ASSERT(esp_assoc != NULL); 1666 ASSERT(ipp->ipp_encr_alg != 0); 1667 1668 if (esp_assoc->ipsa_encr_alg != 1669 ipp->ipp_encr_alg) { 1670 *counter = DROPPER(ipss, ipds_spd_bad_espealg); 1671 *reason = "unacceptable esp alg"; 1672 ret = B_FALSE; 1673 break; 1674 } 1675 /* 1676 * If the client does not need authentication, 1677 * we don't verify the alogrithm. 1678 */ 1679 if (ipp->ipp_use_espa) { 1680 if (esp_assoc->ipsa_auth_alg != 1681 ipp->ipp_esp_auth_alg) { 1682 *counter = DROPPER(ipss, 1683 ipds_spd_bad_espaalg); 1684 *reason = "unacceptable esp auth alg"; 1685 ret = B_FALSE; 1686 break; 1687 } 1688 } 1689 } else if (esp_assoc != NULL) { 1690 /* 1691 * Don't allow this. Check IPSEC NOTE above 1692 * ip_fanout_proto(). 1693 */ 1694 *counter = DROPPER(ipss, ipds_spd_got_esp); 1695 *reason = "unexpected ESP"; 1696 ret = B_FALSE; 1697 break; 1698 } 1699 if (ipp->ipp_use_se) { 1700 if (!decaps) { 1701 ret = ipsec_inbound_accept_clear(mp, ipha, 1702 ip6h); 1703 if (!ret) { 1704 /* XXX mutant? */ 1705 *counter = DROPPER(ipss, 1706 ipds_spd_bad_selfencap); 1707 *reason = "self encap not found"; 1708 break; 1709 } 1710 } 1711 } else if (decaps) { 1712 /* 1713 * XXX If the packet comes in tunneled and the 1714 * recipient does not expect it to be tunneled, it 1715 * is okay. But we drop to be consistent with the 1716 * other cases. 1717 */ 1718 *counter = DROPPER(ipss, ipds_spd_got_selfencap); 1719 *reason = "unexpected self encap"; 1720 ret = B_FALSE; 1721 break; 1722 } 1723 if (ira->ira_ipsec_action != NULL) { 1724 /* 1725 * This can happen if we do a double policy-check on 1726 * a packet 1727 * XXX XXX should fix this case! 1728 */ 1729 IPACT_REFRELE(ira->ira_ipsec_action); 1730 } 1731 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 1732 ASSERT(ira->ira_ipsec_action == NULL); 1733 IPACT_REFHOLD(ap); 1734 ira->ira_ipsec_action = ap; 1735 break; /* from switch */ 1736 } 1737 return (ret); 1738 } 1739 1740 static boolean_t 1741 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa) 1742 { 1743 ASSERT(ipl->ipl_ids_latched == B_TRUE); 1744 return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) && 1745 ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid); 1746 } 1747 1748 /* 1749 * Takes a latched conn and an inbound packet and returns a unique_id suitable 1750 * for SA comparisons. Most of the time we will copy from the conn_t, but 1751 * there are cases when the conn_t is latched but it has wildcard selectors, 1752 * and then we need to fallback to scooping them out of the packet. 1753 * 1754 * Assume we'll never have 0 with a conn_t present, so use 0 as a failure. We 1755 * can get away with this because we only have non-zero ports/proto for 1756 * latched conn_ts. 1757 * 1758 * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough 1759 * to not be a nice macro. 1760 */ 1761 static uint64_t 1762 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h) 1763 { 1764 ipsec_selector_t sel; 1765 uint8_t ulp = connp->conn_proto; 1766 1767 ASSERT(connp->conn_latch_in_policy != NULL); 1768 1769 if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) && 1770 (connp->conn_fport == 0 || connp->conn_lport == 0)) { 1771 /* Slow path - we gotta grab from the packet. */ 1772 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, 1773 SEL_NONE) != SELRET_SUCCESS) { 1774 /* Failure -> have caller free packet with ENOMEM. */ 1775 return (0); 1776 } 1777 return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port, 1778 sel.ips_protocol, 0)); 1779 } 1780 1781 #ifdef DEBUG_NOT_UNTIL_6478464 1782 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) == 1783 SELRET_SUCCESS) { 1784 ASSERT(sel.ips_local_port == connp->conn_lport); 1785 ASSERT(sel.ips_remote_port == connp->conn_fport); 1786 ASSERT(sel.ips_protocol == connp->conn_proto); 1787 } 1788 ASSERT(connp->conn_proto != 0); 1789 #endif 1790 1791 return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0)); 1792 } 1793 1794 /* 1795 * Called to check policy on a latched connection. 1796 * Note that we don't dereference conn_latch or conn_ihere since the conn might 1797 * be closing. The caller passes a held ipsec_latch_t instead. 1798 */ 1799 static boolean_t 1800 ipsec_check_ipsecin_latch(ip_recv_attr_t *ira, mblk_t *mp, ipsec_latch_t *ipl, 1801 ipsec_action_t *ap, ipha_t *ipha, ip6_t *ip6h, const char **reason, 1802 kstat_named_t **counter, conn_t *connp, netstack_t *ns) 1803 { 1804 ipsec_stack_t *ipss = ns->netstack_ipsec; 1805 1806 ASSERT(ipl->ipl_ids_latched == B_TRUE); 1807 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 1808 1809 if (!(ira->ira_flags & IRAF_LOOPBACK)) { 1810 /* 1811 * Over loopback, there aren't real security associations, 1812 * so there are neither identities nor "unique" values 1813 * for us to check the packet against. 1814 */ 1815 if (ira->ira_ipsec_ah_sa != NULL) { 1816 if (!spd_match_inbound_ids(ipl, 1817 ira->ira_ipsec_ah_sa)) { 1818 *counter = DROPPER(ipss, ipds_spd_ah_badid); 1819 *reason = "AH identity mismatch"; 1820 return (B_FALSE); 1821 } 1822 } 1823 1824 if (ira->ira_ipsec_esp_sa != NULL) { 1825 if (!spd_match_inbound_ids(ipl, 1826 ira->ira_ipsec_esp_sa)) { 1827 *counter = DROPPER(ipss, ipds_spd_esp_badid); 1828 *reason = "ESP identity mismatch"; 1829 return (B_FALSE); 1830 } 1831 } 1832 1833 /* 1834 * Can fudge pkt_unique from connp because we're latched. 1835 * In DEBUG kernels (see conn_to_unique()'s implementation), 1836 * verify this even if it REALLY slows things down. 1837 */ 1838 if (!ipsec_check_ipsecin_unique(ira, reason, counter, 1839 conn_to_unique(connp, mp, ipha, ip6h), ns)) { 1840 return (B_FALSE); 1841 } 1842 } 1843 return (ipsec_check_ipsecin_action(ira, mp, ap, ipha, ip6h, reason, 1844 counter, ns)); 1845 } 1846 1847 /* 1848 * Check to see whether this secured datagram meets the policy 1849 * constraints specified in ipsp. 1850 * 1851 * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy. 1852 * 1853 * Consumes a reference to ipsp. 1854 * Returns the mblk if ok. 1855 */ 1856 static mblk_t * 1857 ipsec_check_ipsecin_policy(mblk_t *data_mp, ipsec_policy_t *ipsp, 1858 ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, ip_recv_attr_t *ira, 1859 netstack_t *ns) 1860 { 1861 ipsec_action_t *ap; 1862 const char *reason = "no policy actions found"; 1863 ip_stack_t *ipst = ns->netstack_ip; 1864 ipsec_stack_t *ipss = ns->netstack_ipsec; 1865 kstat_named_t *counter; 1866 1867 counter = DROPPER(ipss, ipds_spd_got_secure); 1868 1869 ASSERT(ipsp != NULL); 1870 1871 ASSERT((ipha == NULL && ip6h != NULL) || 1872 (ip6h == NULL && ipha != NULL)); 1873 1874 if (ira->ira_flags & IRAF_LOOPBACK) 1875 return (ipsec_check_loopback_policy(data_mp, ira, ipsp)); 1876 1877 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 1878 1879 if (ira->ira_ipsec_action != NULL) { 1880 /* 1881 * this can happen if we do a double policy-check on a packet 1882 * Would be nice to be able to delete this test.. 1883 */ 1884 IPACT_REFRELE(ira->ira_ipsec_action); 1885 } 1886 ASSERT(ira->ira_ipsec_action == NULL); 1887 1888 if (!SA_IDS_MATCH(ira->ira_ipsec_ah_sa, ira->ira_ipsec_esp_sa)) { 1889 reason = "inbound AH and ESP identities differ"; 1890 counter = DROPPER(ipss, ipds_spd_ahesp_diffid); 1891 goto drop; 1892 } 1893 1894 if (!ipsec_check_ipsecin_unique(ira, &reason, &counter, pkt_unique, 1895 ns)) 1896 goto drop; 1897 1898 /* 1899 * Ok, now loop through the possible actions and see if any 1900 * of them work for us. 1901 */ 1902 1903 for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) { 1904 if (ipsec_check_ipsecin_action(ira, data_mp, ap, 1905 ipha, ip6h, &reason, &counter, ns)) { 1906 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 1907 IPPOL_REFRELE(ipsp); 1908 return (data_mp); 1909 } 1910 } 1911 drop: 1912 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 1913 "ipsec inbound policy mismatch: %s, packet dropped\n", 1914 reason); 1915 IPPOL_REFRELE(ipsp); 1916 ASSERT(ira->ira_ipsec_action == NULL); 1917 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 1918 ip_drop_packet(data_mp, B_TRUE, NULL, counter, 1919 &ipss->ipsec_spd_dropper); 1920 return (NULL); 1921 } 1922 1923 /* 1924 * sleazy prefix-length-based compare. 1925 * another inlining candidate.. 1926 */ 1927 boolean_t 1928 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p) 1929 { 1930 int offset = pfxlen>>3; 1931 int bitsleft = pfxlen & 7; 1932 uint8_t *addr2 = (uint8_t *)addr2p; 1933 1934 /* 1935 * and there was much evil.. 1936 * XXX should inline-expand the bcmp here and do this 32 bits 1937 * or 64 bits at a time.. 1938 */ 1939 return ((bcmp(addr1, addr2, offset) == 0) && 1940 ((bitsleft == 0) || 1941 (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0))); 1942 } 1943 1944 static ipsec_policy_t * 1945 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain, 1946 ipsec_selector_t *sel, boolean_t is_icmp_inv_acq) 1947 { 1948 ipsec_selkey_t *isel; 1949 ipsec_policy_t *p; 1950 int bpri = best ? best->ipsp_prio : 0; 1951 1952 for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) { 1953 uint32_t valid; 1954 1955 if (p->ipsp_prio <= bpri) 1956 continue; 1957 isel = &p->ipsp_sel->ipsl_key; 1958 valid = isel->ipsl_valid; 1959 1960 if ((valid & IPSL_PROTOCOL) && 1961 (isel->ipsl_proto != sel->ips_protocol)) 1962 continue; 1963 1964 if ((valid & IPSL_REMOTE_ADDR) && 1965 !ip_addr_match((uint8_t *)&isel->ipsl_remote, 1966 isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6)) 1967 continue; 1968 1969 if ((valid & IPSL_LOCAL_ADDR) && 1970 !ip_addr_match((uint8_t *)&isel->ipsl_local, 1971 isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6)) 1972 continue; 1973 1974 if ((valid & IPSL_REMOTE_PORT) && 1975 isel->ipsl_rport != sel->ips_remote_port) 1976 continue; 1977 1978 if ((valid & IPSL_LOCAL_PORT) && 1979 isel->ipsl_lport != sel->ips_local_port) 1980 continue; 1981 1982 if (!is_icmp_inv_acq) { 1983 if ((valid & IPSL_ICMP_TYPE) && 1984 (isel->ipsl_icmp_type > sel->ips_icmp_type || 1985 isel->ipsl_icmp_type_end < sel->ips_icmp_type)) { 1986 continue; 1987 } 1988 1989 if ((valid & IPSL_ICMP_CODE) && 1990 (isel->ipsl_icmp_code > sel->ips_icmp_code || 1991 isel->ipsl_icmp_code_end < 1992 sel->ips_icmp_code)) { 1993 continue; 1994 } 1995 } else { 1996 /* 1997 * special case for icmp inverse acquire 1998 * we only want policies that aren't drop/pass 1999 */ 2000 if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY) 2001 continue; 2002 } 2003 2004 /* we matched all the packet-port-field selectors! */ 2005 best = p; 2006 bpri = p->ipsp_prio; 2007 } 2008 2009 return (best); 2010 } 2011 2012 /* 2013 * Try to find and return the best policy entry under a given policy 2014 * root for a given set of selectors; the first parameter "best" is 2015 * the current best policy so far. If "best" is non-null, we have a 2016 * reference to it. We return a reference to a policy; if that policy 2017 * is not the original "best", we need to release that reference 2018 * before returning. 2019 */ 2020 ipsec_policy_t * 2021 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head, 2022 int direction, ipsec_selector_t *sel) 2023 { 2024 ipsec_policy_t *curbest; 2025 ipsec_policy_root_t *root; 2026 uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq; 2027 int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6; 2028 2029 curbest = best; 2030 root = &head->iph_root[direction]; 2031 2032 #ifdef DEBUG 2033 if (is_icmp_inv_acq) { 2034 if (sel->ips_isv4) { 2035 if (sel->ips_protocol != IPPROTO_ICMP) { 2036 cmn_err(CE_WARN, "ipsec_find_policy_head:" 2037 " expecting icmp, got %d", 2038 sel->ips_protocol); 2039 } 2040 } else { 2041 if (sel->ips_protocol != IPPROTO_ICMPV6) { 2042 cmn_err(CE_WARN, "ipsec_find_policy_head:" 2043 " expecting icmpv6, got %d", 2044 sel->ips_protocol); 2045 } 2046 } 2047 } 2048 #endif 2049 2050 rw_enter(&head->iph_lock, RW_READER); 2051 2052 if (root->ipr_nchains > 0) { 2053 curbest = ipsec_find_policy_chain(curbest, 2054 root->ipr_hash[selector_hash(sel, root)].hash_head, sel, 2055 is_icmp_inv_acq); 2056 } 2057 curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel, 2058 is_icmp_inv_acq); 2059 2060 /* 2061 * Adjust reference counts if we found anything new. 2062 */ 2063 if (curbest != best) { 2064 ASSERT(curbest != NULL); 2065 IPPOL_REFHOLD(curbest); 2066 2067 if (best != NULL) { 2068 IPPOL_REFRELE(best); 2069 } 2070 } 2071 2072 rw_exit(&head->iph_lock); 2073 2074 return (curbest); 2075 } 2076 2077 /* 2078 * Find the best system policy (either global or per-interface) which 2079 * applies to the given selector; look in all the relevant policy roots 2080 * to figure out which policy wins. 2081 * 2082 * Returns a reference to a policy; caller must release this 2083 * reference when done. 2084 */ 2085 ipsec_policy_t * 2086 ipsec_find_policy(int direction, const conn_t *connp, ipsec_selector_t *sel, 2087 netstack_t *ns) 2088 { 2089 ipsec_policy_t *p; 2090 ipsec_stack_t *ipss = ns->netstack_ipsec; 2091 2092 p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy, 2093 direction, sel); 2094 if ((connp != NULL) && (connp->conn_policy != NULL)) { 2095 p = ipsec_find_policy_head(p, connp->conn_policy, 2096 direction, sel); 2097 } 2098 2099 return (p); 2100 } 2101 2102 /* 2103 * Check with global policy and see whether this inbound 2104 * packet meets the policy constraints. 2105 * 2106 * Locate appropriate policy from global policy, supplemented by the 2107 * conn's configured and/or cached policy if the conn is supplied. 2108 * 2109 * Dispatch to ipsec_check_ipsecin_policy if we have policy and an 2110 * encrypted packet to see if they match. 2111 * 2112 * Otherwise, see if the policy allows cleartext; if not, drop it on the 2113 * floor. 2114 */ 2115 mblk_t * 2116 ipsec_check_global_policy(mblk_t *data_mp, conn_t *connp, 2117 ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira, netstack_t *ns) 2118 { 2119 ipsec_policy_t *p; 2120 ipsec_selector_t sel; 2121 boolean_t policy_present; 2122 kstat_named_t *counter; 2123 uint64_t pkt_unique; 2124 ip_stack_t *ipst = ns->netstack_ip; 2125 ipsec_stack_t *ipss = ns->netstack_ipsec; 2126 2127 sel.ips_is_icmp_inv_acq = 0; 2128 2129 ASSERT((ipha == NULL && ip6h != NULL) || 2130 (ip6h == NULL && ipha != NULL)); 2131 2132 if (ipha != NULL) 2133 policy_present = ipss->ipsec_inbound_v4_policy_present; 2134 else 2135 policy_present = ipss->ipsec_inbound_v6_policy_present; 2136 2137 if (!policy_present && connp == NULL) { 2138 /* 2139 * No global policy and no per-socket policy; 2140 * just pass it back (but we shouldn't get here in that case) 2141 */ 2142 return (data_mp); 2143 } 2144 2145 /* 2146 * If we have cached policy, use it. 2147 * Otherwise consult system policy. 2148 */ 2149 if ((connp != NULL) && (connp->conn_latch != NULL)) { 2150 p = connp->conn_latch_in_policy; 2151 if (p != NULL) { 2152 IPPOL_REFHOLD(p); 2153 } 2154 /* 2155 * Fudge sel for UNIQUE_ID setting below. 2156 */ 2157 pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h); 2158 } else { 2159 /* Initialize the ports in the selector */ 2160 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, 2161 SEL_NONE) == SELRET_NOMEM) { 2162 /* 2163 * Technically not a policy mismatch, but it is 2164 * an internal failure. 2165 */ 2166 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 2167 "ipsec_init_inbound_sel", ipha, ip6h, B_TRUE, ns); 2168 counter = DROPPER(ipss, ipds_spd_nomem); 2169 goto fail; 2170 } 2171 2172 /* 2173 * Find the policy which best applies. 2174 * 2175 * If we find global policy, we should look at both 2176 * local policy and global policy and see which is 2177 * stronger and match accordingly. 2178 * 2179 * If we don't find a global policy, check with 2180 * local policy alone. 2181 */ 2182 2183 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns); 2184 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port, 2185 sel.ips_local_port, sel.ips_protocol, 0); 2186 } 2187 2188 if (p == NULL) { 2189 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 2190 /* 2191 * We have no policy; default to succeeding. 2192 * XXX paranoid system design doesn't do this. 2193 */ 2194 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2195 return (data_mp); 2196 } else { 2197 counter = DROPPER(ipss, ipds_spd_got_secure); 2198 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 2199 "ipsec_check_global_policy", ipha, ip6h, B_TRUE, 2200 ns); 2201 goto fail; 2202 } 2203 } 2204 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2205 return (ipsec_check_ipsecin_policy(data_mp, p, ipha, ip6h, 2206 pkt_unique, ira, ns)); 2207 } 2208 if (p->ipsp_act->ipa_allow_clear) { 2209 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2210 IPPOL_REFRELE(p); 2211 return (data_mp); 2212 } 2213 IPPOL_REFRELE(p); 2214 /* 2215 * If we reach here, we will drop the packet because it failed the 2216 * global policy check because the packet was cleartext, and it 2217 * should not have been. 2218 */ 2219 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 2220 "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns); 2221 counter = DROPPER(ipss, ipds_spd_got_clear); 2222 2223 fail: 2224 ip_drop_packet(data_mp, B_TRUE, NULL, counter, 2225 &ipss->ipsec_spd_dropper); 2226 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2227 return (NULL); 2228 } 2229 2230 /* 2231 * We check whether an inbound datagram is a valid one 2232 * to accept in clear. If it is secure, it is the job 2233 * of IPSEC to log information appropriately if it 2234 * suspects that it may not be the real one. 2235 * 2236 * It is called only while fanning out to the ULP 2237 * where ULP accepts only secure data and the incoming 2238 * is clear. Usually we never accept clear datagrams in 2239 * such cases. ICMP is the only exception. 2240 * 2241 * NOTE : We don't call this function if the client (ULP) 2242 * is willing to accept things in clear. 2243 */ 2244 boolean_t 2245 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h) 2246 { 2247 ushort_t iph_hdr_length; 2248 icmph_t *icmph; 2249 icmp6_t *icmp6; 2250 uint8_t *nexthdrp; 2251 2252 ASSERT((ipha != NULL && ip6h == NULL) || 2253 (ipha == NULL && ip6h != NULL)); 2254 2255 if (ip6h != NULL) { 2256 iph_hdr_length = ip_hdr_length_v6(mp, ip6h); 2257 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 2258 &nexthdrp)) { 2259 return (B_FALSE); 2260 } 2261 if (*nexthdrp != IPPROTO_ICMPV6) 2262 return (B_FALSE); 2263 icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]); 2264 /* Match IPv6 ICMP policy as closely as IPv4 as possible. */ 2265 switch (icmp6->icmp6_type) { 2266 case ICMP6_PARAM_PROB: 2267 /* Corresponds to port/proto unreach in IPv4. */ 2268 case ICMP6_ECHO_REQUEST: 2269 /* Just like IPv4. */ 2270 return (B_FALSE); 2271 2272 case MLD_LISTENER_QUERY: 2273 case MLD_LISTENER_REPORT: 2274 case MLD_LISTENER_REDUCTION: 2275 /* 2276 * XXX Seperate NDD in IPv4 what about here? 2277 * Plus, mcast is important to ND. 2278 */ 2279 case ICMP6_DST_UNREACH: 2280 /* Corresponds to HOST/NET unreachable in IPv4. */ 2281 case ICMP6_PACKET_TOO_BIG: 2282 case ICMP6_ECHO_REPLY: 2283 /* These are trusted in IPv4. */ 2284 case ND_ROUTER_SOLICIT: 2285 case ND_ROUTER_ADVERT: 2286 case ND_NEIGHBOR_SOLICIT: 2287 case ND_NEIGHBOR_ADVERT: 2288 case ND_REDIRECT: 2289 /* Trust ND messages for now. */ 2290 case ICMP6_TIME_EXCEEDED: 2291 default: 2292 return (B_TRUE); 2293 } 2294 } else { 2295 /* 2296 * If it is not ICMP, fail this request. 2297 */ 2298 if (ipha->ipha_protocol != IPPROTO_ICMP) { 2299 #ifdef FRAGCACHE_DEBUG 2300 cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n", 2301 ipha->ipha_protocol); 2302 #endif 2303 return (B_FALSE); 2304 } 2305 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2306 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2307 /* 2308 * It is an insecure icmp message. Check to see whether we are 2309 * willing to accept this one. 2310 */ 2311 2312 switch (icmph->icmph_type) { 2313 case ICMP_ECHO_REPLY: 2314 case ICMP_TIME_STAMP_REPLY: 2315 case ICMP_INFO_REPLY: 2316 case ICMP_ROUTER_ADVERTISEMENT: 2317 /* 2318 * We should not encourage clear replies if this 2319 * client expects secure. If somebody is replying 2320 * in clear some mailicious user watching both the 2321 * request and reply, can do chosen-plain-text attacks. 2322 * With global policy we might be just expecting secure 2323 * but sending out clear. We don't know what the right 2324 * thing is. We can't do much here as we can't control 2325 * the sender here. Till we are sure of what to do, 2326 * accept them. 2327 */ 2328 return (B_TRUE); 2329 case ICMP_ECHO_REQUEST: 2330 case ICMP_TIME_STAMP_REQUEST: 2331 case ICMP_INFO_REQUEST: 2332 case ICMP_ADDRESS_MASK_REQUEST: 2333 case ICMP_ROUTER_SOLICITATION: 2334 case ICMP_ADDRESS_MASK_REPLY: 2335 /* 2336 * Don't accept this as somebody could be sending 2337 * us plain text to get encrypted data. If we reply, 2338 * it will lead to chosen plain text attack. 2339 */ 2340 return (B_FALSE); 2341 case ICMP_DEST_UNREACHABLE: 2342 switch (icmph->icmph_code) { 2343 case ICMP_FRAGMENTATION_NEEDED: 2344 /* 2345 * Be in sync with icmp_inbound, where we have 2346 * already set dce_pmtu 2347 */ 2348 #ifdef FRAGCACHE_DEBUG 2349 cmn_err(CE_WARN, "ICMP frag needed\n"); 2350 #endif 2351 return (B_TRUE); 2352 case ICMP_HOST_UNREACHABLE: 2353 case ICMP_NET_UNREACHABLE: 2354 /* 2355 * By accepting, we could reset a connection. 2356 * How do we solve the problem of some 2357 * intermediate router sending in-secure ICMP 2358 * messages ? 2359 */ 2360 return (B_TRUE); 2361 case ICMP_PORT_UNREACHABLE: 2362 case ICMP_PROTOCOL_UNREACHABLE: 2363 default : 2364 return (B_FALSE); 2365 } 2366 case ICMP_SOURCE_QUENCH: 2367 /* 2368 * If this is an attack, TCP will slow start 2369 * because of this. Is it very harmful ? 2370 */ 2371 return (B_TRUE); 2372 case ICMP_PARAM_PROBLEM: 2373 return (B_FALSE); 2374 case ICMP_TIME_EXCEEDED: 2375 return (B_TRUE); 2376 case ICMP_REDIRECT: 2377 return (B_FALSE); 2378 default : 2379 return (B_FALSE); 2380 } 2381 } 2382 } 2383 2384 void 2385 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote) 2386 { 2387 mutex_enter(&ipl->ipl_lock); 2388 2389 if (ipl->ipl_ids_latched) { 2390 /* I lost, someone else got here before me */ 2391 mutex_exit(&ipl->ipl_lock); 2392 return; 2393 } 2394 2395 if (local != NULL) 2396 IPSID_REFHOLD(local); 2397 if (remote != NULL) 2398 IPSID_REFHOLD(remote); 2399 2400 ipl->ipl_local_cid = local; 2401 ipl->ipl_remote_cid = remote; 2402 ipl->ipl_ids_latched = B_TRUE; 2403 mutex_exit(&ipl->ipl_lock); 2404 } 2405 2406 void 2407 ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira) 2408 { 2409 ipsa_t *sa; 2410 ipsec_latch_t *ipl = connp->conn_latch; 2411 2412 if (!ipl->ipl_ids_latched) { 2413 ipsid_t *local = NULL; 2414 ipsid_t *remote = NULL; 2415 2416 if (!(ira->ira_flags & IRAF_LOOPBACK)) { 2417 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 2418 if (ira->ira_ipsec_esp_sa != NULL) 2419 sa = ira->ira_ipsec_esp_sa; 2420 else 2421 sa = ira->ira_ipsec_ah_sa; 2422 ASSERT(sa != NULL); 2423 local = sa->ipsa_dst_cid; 2424 remote = sa->ipsa_src_cid; 2425 } 2426 ipsec_latch_ids(ipl, local, remote); 2427 } 2428 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2429 if (connp->conn_latch_in_action != NULL) { 2430 /* 2431 * Previously cached action. This is probably 2432 * harmless, but in DEBUG kernels, check for 2433 * action equality. 2434 * 2435 * Preserve the existing action to preserve latch 2436 * invariance. 2437 */ 2438 ASSERT(connp->conn_latch_in_action == 2439 ira->ira_ipsec_action); 2440 return; 2441 } 2442 connp->conn_latch_in_action = ira->ira_ipsec_action; 2443 IPACT_REFHOLD(connp->conn_latch_in_action); 2444 } 2445 } 2446 2447 /* 2448 * Check whether the policy constraints are met either for an 2449 * inbound datagram; called from IP in numerous places. 2450 * 2451 * Note that this is not a chokepoint for inbound policy checks; 2452 * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy() 2453 */ 2454 mblk_t * 2455 ipsec_check_inbound_policy(mblk_t *mp, conn_t *connp, 2456 ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira) 2457 { 2458 boolean_t ret; 2459 ipsec_latch_t *ipl; 2460 ipsec_action_t *ap; 2461 uint64_t unique_id; 2462 ipsec_stack_t *ipss; 2463 ip_stack_t *ipst; 2464 netstack_t *ns; 2465 ipsec_policy_head_t *policy_head; 2466 ipsec_policy_t *p = NULL; 2467 2468 ASSERT(connp != NULL); 2469 ns = connp->conn_netstack; 2470 ipss = ns->netstack_ipsec; 2471 ipst = ns->netstack_ip; 2472 2473 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 2474 /* 2475 * This is the case where the incoming datagram is 2476 * cleartext and we need to see whether this client 2477 * would like to receive such untrustworthy things from 2478 * the wire. 2479 */ 2480 ASSERT(mp != NULL); 2481 2482 mutex_enter(&connp->conn_lock); 2483 if (connp->conn_state_flags & CONN_CONDEMNED) { 2484 mutex_exit(&connp->conn_lock); 2485 ip_drop_packet(mp, B_TRUE, NULL, 2486 DROPPER(ipss, ipds_spd_got_clear), 2487 &ipss->ipsec_spd_dropper); 2488 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2489 return (NULL); 2490 } 2491 if (connp->conn_latch != NULL) { 2492 /* Hold a reference in case the conn is closing */ 2493 p = connp->conn_latch_in_policy; 2494 if (p != NULL) 2495 IPPOL_REFHOLD(p); 2496 mutex_exit(&connp->conn_lock); 2497 /* 2498 * Policy is cached in the conn. 2499 */ 2500 if (p != NULL && !p->ipsp_act->ipa_allow_clear) { 2501 ret = ipsec_inbound_accept_clear(mp, 2502 ipha, ip6h); 2503 if (ret) { 2504 BUMP_MIB(&ipst->ips_ip_mib, 2505 ipsecInSucceeded); 2506 IPPOL_REFRELE(p); 2507 return (mp); 2508 } else { 2509 ipsec_log_policy_failure( 2510 IPSEC_POLICY_MISMATCH, 2511 "ipsec_check_inbound_policy", ipha, 2512 ip6h, B_FALSE, ns); 2513 ip_drop_packet(mp, B_TRUE, NULL, 2514 DROPPER(ipss, ipds_spd_got_clear), 2515 &ipss->ipsec_spd_dropper); 2516 BUMP_MIB(&ipst->ips_ip_mib, 2517 ipsecInFailed); 2518 IPPOL_REFRELE(p); 2519 return (NULL); 2520 } 2521 } else { 2522 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2523 if (p != NULL) 2524 IPPOL_REFRELE(p); 2525 return (mp); 2526 } 2527 } else { 2528 policy_head = connp->conn_policy; 2529 2530 /* Hold a reference in case the conn is closing */ 2531 if (policy_head != NULL) 2532 IPPH_REFHOLD(policy_head); 2533 mutex_exit(&connp->conn_lock); 2534 /* 2535 * As this is a non-hardbound connection we need 2536 * to look at both per-socket policy and global 2537 * policy. 2538 */ 2539 mp = ipsec_check_global_policy(mp, connp, 2540 ipha, ip6h, ira, ns); 2541 if (policy_head != NULL) 2542 IPPH_REFRELE(policy_head, ns); 2543 return (mp); 2544 } 2545 } 2546 2547 mutex_enter(&connp->conn_lock); 2548 /* Connection is closing */ 2549 if (connp->conn_state_flags & CONN_CONDEMNED) { 2550 mutex_exit(&connp->conn_lock); 2551 ip_drop_packet(mp, B_TRUE, NULL, 2552 DROPPER(ipss, ipds_spd_got_clear), 2553 &ipss->ipsec_spd_dropper); 2554 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2555 return (NULL); 2556 } 2557 2558 /* 2559 * Once a connection is latched it remains so for life, the conn_latch 2560 * pointer on the conn has not changed, simply initializing ipl here 2561 * as the earlier initialization was done only in the cleartext case. 2562 */ 2563 if ((ipl = connp->conn_latch) == NULL) { 2564 mblk_t *retmp; 2565 policy_head = connp->conn_policy; 2566 2567 /* Hold a reference in case the conn is closing */ 2568 if (policy_head != NULL) 2569 IPPH_REFHOLD(policy_head); 2570 mutex_exit(&connp->conn_lock); 2571 /* 2572 * We don't have policies cached in the conn 2573 * for this stream. So, look at the global 2574 * policy. It will check against conn or global 2575 * depending on whichever is stronger. 2576 */ 2577 retmp = ipsec_check_global_policy(mp, connp, 2578 ipha, ip6h, ira, ns); 2579 if (policy_head != NULL) 2580 IPPH_REFRELE(policy_head, ns); 2581 return (retmp); 2582 } 2583 2584 IPLATCH_REFHOLD(ipl); 2585 /* Hold reference on conn_latch_in_action in case conn is closing */ 2586 ap = connp->conn_latch_in_action; 2587 if (ap != NULL) 2588 IPACT_REFHOLD(ap); 2589 mutex_exit(&connp->conn_lock); 2590 2591 if (ap != NULL) { 2592 /* Policy is cached & latched; fast(er) path */ 2593 const char *reason; 2594 kstat_named_t *counter; 2595 2596 if (ipsec_check_ipsecin_latch(ira, mp, ipl, ap, 2597 ipha, ip6h, &reason, &counter, connp, ns)) { 2598 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2599 IPLATCH_REFRELE(ipl); 2600 IPACT_REFRELE(ap); 2601 return (mp); 2602 } 2603 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, 2604 SL_ERROR|SL_WARN|SL_CONSOLE, 2605 "ipsec inbound policy mismatch: %s, packet dropped\n", 2606 reason); 2607 ip_drop_packet(mp, B_TRUE, NULL, counter, 2608 &ipss->ipsec_spd_dropper); 2609 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2610 IPLATCH_REFRELE(ipl); 2611 IPACT_REFRELE(ap); 2612 return (NULL); 2613 } 2614 if ((p = connp->conn_latch_in_policy) == NULL) { 2615 ipsec_weird_null_inbound_policy++; 2616 IPLATCH_REFRELE(ipl); 2617 return (mp); 2618 } 2619 2620 unique_id = conn_to_unique(connp, mp, ipha, ip6h); 2621 IPPOL_REFHOLD(p); 2622 mp = ipsec_check_ipsecin_policy(mp, p, ipha, ip6h, unique_id, ira, ns); 2623 /* 2624 * NOTE: ipsecIn{Failed,Succeeeded} bumped by 2625 * ipsec_check_ipsecin_policy(). 2626 */ 2627 if (mp != NULL) 2628 ipsec_latch_inbound(connp, ira); 2629 IPLATCH_REFRELE(ipl); 2630 return (mp); 2631 } 2632 2633 /* 2634 * Handle all sorts of cases like tunnel-mode and ICMP. 2635 */ 2636 static int 2637 prepended_length(mblk_t *mp, uintptr_t hptr) 2638 { 2639 int rc = 0; 2640 2641 while (mp != NULL) { 2642 if (hptr >= (uintptr_t)mp->b_rptr && hptr < 2643 (uintptr_t)mp->b_wptr) { 2644 rc += (int)(hptr - (uintptr_t)mp->b_rptr); 2645 break; /* out of while loop */ 2646 } 2647 rc += (int)MBLKL(mp); 2648 mp = mp->b_cont; 2649 } 2650 2651 if (mp == NULL) { 2652 /* 2653 * IF (big IF) we make it here by naturally exiting the loop, 2654 * then ip6h isn't in the mblk chain "mp" at all. 2655 * 2656 * The only case where this happens is with a reversed IP 2657 * header that gets passed up by inbound ICMP processing. 2658 * This unfortunately triggers longstanding bug 6478464. For 2659 * now, just pass up 0 for the answer. 2660 */ 2661 #ifdef DEBUG_NOT_UNTIL_6478464 2662 ASSERT(mp != NULL); 2663 #endif 2664 rc = 0; 2665 } 2666 2667 return (rc); 2668 } 2669 2670 /* 2671 * Returns: 2672 * 2673 * SELRET_NOMEM --> msgpullup() needed to gather things failed. 2674 * SELRET_BADPKT --> If we're being called after tunnel-mode fragment 2675 * gathering, the initial fragment is too short for 2676 * useful data. Only returned if SEL_TUNNEL_FIRSTFRAG is 2677 * set. 2678 * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data. 2679 * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet. Caller 2680 * should put this packet in a fragment-gathering queue. 2681 * Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY 2682 * is set. 2683 * 2684 * Note that ipha/ip6h can be in a different mblk (mp->b_cont) in the case 2685 * of tunneled packets. 2686 * Also, mp->b_rptr can be an ICMP error where ipha/ip6h is the packet in 2687 * error past the ICMP error. 2688 */ 2689 static selret_t 2690 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha, 2691 ip6_t *ip6h, uint8_t sel_flags) 2692 { 2693 uint16_t *ports; 2694 int outer_hdr_len = 0; /* For ICMP or tunnel-mode cases... */ 2695 ushort_t hdr_len; 2696 mblk_t *spare_mp = NULL; 2697 uint8_t *nexthdrp, *transportp; 2698 uint8_t nexthdr; 2699 uint8_t icmp_proto; 2700 ip_pkt_t ipp; 2701 boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY); 2702 boolean_t is_icmp = (sel_flags & SEL_IS_ICMP); 2703 boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE); 2704 boolean_t post_frag = (sel_flags & SEL_POST_FRAG); 2705 2706 ASSERT((ipha == NULL && ip6h != NULL) || 2707 (ipha != NULL && ip6h == NULL)); 2708 2709 if (ip6h != NULL) { 2710 outer_hdr_len = prepended_length(mp, (uintptr_t)ip6h); 2711 nexthdr = ip6h->ip6_nxt; 2712 icmp_proto = IPPROTO_ICMPV6; 2713 sel->ips_isv4 = B_FALSE; 2714 sel->ips_local_addr_v6 = ip6h->ip6_dst; 2715 sel->ips_remote_addr_v6 = ip6h->ip6_src; 2716 2717 bzero(&ipp, sizeof (ipp)); 2718 2719 switch (nexthdr) { 2720 case IPPROTO_HOPOPTS: 2721 case IPPROTO_ROUTING: 2722 case IPPROTO_DSTOPTS: 2723 case IPPROTO_FRAGMENT: 2724 /* 2725 * Use ip_hdr_length_nexthdr_v6(). And have a spare 2726 * mblk that's contiguous to feed it 2727 */ 2728 if ((spare_mp = msgpullup(mp, -1)) == NULL) 2729 return (SELRET_NOMEM); 2730 if (!ip_hdr_length_nexthdr_v6(spare_mp, 2731 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len), 2732 &hdr_len, &nexthdrp)) { 2733 /* Malformed packet - caller frees. */ 2734 ipsec_freemsg_chain(spare_mp); 2735 return (SELRET_BADPKT); 2736 } 2737 /* Repopulate now that we have the whole packet */ 2738 ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len); 2739 (void) ip_find_hdr_v6(spare_mp, ip6h, B_FALSE, &ipp, 2740 NULL); 2741 nexthdr = *nexthdrp; 2742 /* We can just extract based on hdr_len now. */ 2743 break; 2744 default: 2745 (void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL); 2746 hdr_len = IPV6_HDR_LEN; 2747 break; 2748 } 2749 if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) { 2750 /* IPv6 Fragment */ 2751 ipsec_freemsg_chain(spare_mp); 2752 return (SELRET_TUNFRAG); 2753 } 2754 transportp = (uint8_t *)ip6h + hdr_len; 2755 } else { 2756 outer_hdr_len = prepended_length(mp, (uintptr_t)ipha); 2757 icmp_proto = IPPROTO_ICMP; 2758 sel->ips_isv4 = B_TRUE; 2759 sel->ips_local_addr_v4 = ipha->ipha_dst; 2760 sel->ips_remote_addr_v4 = ipha->ipha_src; 2761 nexthdr = ipha->ipha_protocol; 2762 hdr_len = IPH_HDR_LENGTH(ipha); 2763 2764 if (port_policy_present && 2765 IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) && 2766 !is_icmp) { 2767 /* IPv4 Fragment */ 2768 ipsec_freemsg_chain(spare_mp); 2769 return (SELRET_TUNFRAG); 2770 } 2771 transportp = (uint8_t *)ipha + hdr_len; 2772 } 2773 sel->ips_protocol = nexthdr; 2774 2775 if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP && 2776 nexthdr != IPPROTO_SCTP && nexthdr != icmp_proto) || 2777 (!port_policy_present && !post_frag && tunnel_mode)) { 2778 sel->ips_remote_port = sel->ips_local_port = 0; 2779 ipsec_freemsg_chain(spare_mp); 2780 return (SELRET_SUCCESS); 2781 } 2782 2783 if (transportp + 4 > mp->b_wptr) { 2784 /* If we didn't pullup a copy already, do so now. */ 2785 /* 2786 * XXX performance, will upper-layers frequently split TCP/UDP 2787 * apart from IP or options? If so, perhaps we should revisit 2788 * the spare_mp strategy. 2789 */ 2790 ipsec_hdr_pullup_needed++; 2791 if (spare_mp == NULL && 2792 (spare_mp = msgpullup(mp, -1)) == NULL) { 2793 return (SELRET_NOMEM); 2794 } 2795 transportp = &spare_mp->b_rptr[hdr_len + outer_hdr_len]; 2796 } 2797 2798 if (nexthdr == icmp_proto) { 2799 sel->ips_icmp_type = *transportp++; 2800 sel->ips_icmp_code = *transportp; 2801 sel->ips_remote_port = sel->ips_local_port = 0; 2802 } else { 2803 ports = (uint16_t *)transportp; 2804 sel->ips_remote_port = *ports++; 2805 sel->ips_local_port = *ports; 2806 } 2807 ipsec_freemsg_chain(spare_mp); 2808 return (SELRET_SUCCESS); 2809 } 2810 2811 /* 2812 * This is called with a b_next chain of messages from the fragcache code, 2813 * hence it needs to discard a chain on error. 2814 */ 2815 static boolean_t 2816 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha, 2817 ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss) 2818 { 2819 /* 2820 * XXX cut&paste shared with ipsec_init_inbound_sel 2821 */ 2822 uint16_t *ports; 2823 ushort_t hdr_len; 2824 mblk_t *spare_mp = NULL; 2825 uint8_t *nexthdrp; 2826 uint8_t nexthdr; 2827 uint8_t *typecode; 2828 uint8_t check_proto; 2829 2830 ASSERT((ipha == NULL && ip6h != NULL) || 2831 (ipha != NULL && ip6h == NULL)); 2832 2833 if (ip6h != NULL) { 2834 check_proto = IPPROTO_ICMPV6; 2835 nexthdr = ip6h->ip6_nxt; 2836 switch (nexthdr) { 2837 case IPPROTO_HOPOPTS: 2838 case IPPROTO_ROUTING: 2839 case IPPROTO_DSTOPTS: 2840 case IPPROTO_FRAGMENT: 2841 /* 2842 * Use ip_hdr_length_nexthdr_v6(). And have a spare 2843 * mblk that's contiguous to feed it 2844 */ 2845 spare_mp = msgpullup(mp, -1); 2846 if (spare_mp == NULL || 2847 !ip_hdr_length_nexthdr_v6(spare_mp, 2848 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len), 2849 &hdr_len, &nexthdrp)) { 2850 /* Always works, even if NULL. */ 2851 ipsec_freemsg_chain(spare_mp); 2852 ip_drop_packet_chain(mp, B_FALSE, NULL, 2853 DROPPER(ipss, ipds_spd_nomem), 2854 &ipss->ipsec_spd_dropper); 2855 return (B_FALSE); 2856 } else { 2857 nexthdr = *nexthdrp; 2858 /* We can just extract based on hdr_len now. */ 2859 } 2860 break; 2861 default: 2862 hdr_len = IPV6_HDR_LEN; 2863 break; 2864 } 2865 } else { 2866 check_proto = IPPROTO_ICMP; 2867 hdr_len = IPH_HDR_LENGTH(ipha); 2868 nexthdr = ipha->ipha_protocol; 2869 } 2870 2871 sel->ips_protocol = nexthdr; 2872 if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP && 2873 nexthdr != IPPROTO_SCTP && nexthdr != check_proto) { 2874 sel->ips_local_port = sel->ips_remote_port = 0; 2875 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */ 2876 return (B_TRUE); 2877 } 2878 2879 if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) { 2880 /* If we didn't pullup a copy already, do so now. */ 2881 /* 2882 * XXX performance, will upper-layers frequently split TCP/UDP 2883 * apart from IP or options? If so, perhaps we should revisit 2884 * the spare_mp strategy. 2885 * 2886 * XXX should this be msgpullup(mp, hdr_len+4) ??? 2887 */ 2888 if (spare_mp == NULL && 2889 (spare_mp = msgpullup(mp, -1)) == NULL) { 2890 ip_drop_packet_chain(mp, B_FALSE, NULL, 2891 DROPPER(ipss, ipds_spd_nomem), 2892 &ipss->ipsec_spd_dropper); 2893 return (B_FALSE); 2894 } 2895 ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len]; 2896 } else { 2897 ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len]; 2898 } 2899 2900 if (nexthdr == check_proto) { 2901 typecode = (uint8_t *)ports; 2902 sel->ips_icmp_type = *typecode++; 2903 sel->ips_icmp_code = *typecode; 2904 sel->ips_remote_port = sel->ips_local_port = 0; 2905 } else { 2906 sel->ips_local_port = *ports++; 2907 sel->ips_remote_port = *ports; 2908 } 2909 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */ 2910 return (B_TRUE); 2911 } 2912 2913 /* 2914 * Prepend an mblk with a ipsec_crypto_t to the message chain. 2915 * Frees the argument and returns NULL should the allocation fail. 2916 * Returns the pointer to the crypto data part. 2917 */ 2918 mblk_t * 2919 ipsec_add_crypto_data(mblk_t *data_mp, ipsec_crypto_t **icp) 2920 { 2921 mblk_t *mp; 2922 2923 mp = allocb(sizeof (ipsec_crypto_t), BPRI_MED); 2924 if (mp == NULL) { 2925 freemsg(data_mp); 2926 return (NULL); 2927 } 2928 bzero(mp->b_rptr, sizeof (ipsec_crypto_t)); 2929 mp->b_wptr += sizeof (ipsec_crypto_t); 2930 mp->b_cont = data_mp; 2931 mp->b_datap->db_type = M_EVENT; /* For ASSERT */ 2932 *icp = (ipsec_crypto_t *)mp->b_rptr; 2933 return (mp); 2934 } 2935 2936 /* 2937 * Remove what was prepended above. Return b_cont and a pointer to the 2938 * crypto data. 2939 * The caller must call ipsec_free_crypto_data for mblk once it is done 2940 * with the crypto data. 2941 */ 2942 mblk_t * 2943 ipsec_remove_crypto_data(mblk_t *crypto_mp, ipsec_crypto_t **icp) 2944 { 2945 ASSERT(crypto_mp->b_datap->db_type == M_EVENT); 2946 ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t)); 2947 2948 *icp = (ipsec_crypto_t *)crypto_mp->b_rptr; 2949 return (crypto_mp->b_cont); 2950 } 2951 2952 /* 2953 * Free what was prepended above. Return b_cont. 2954 */ 2955 mblk_t * 2956 ipsec_free_crypto_data(mblk_t *crypto_mp) 2957 { 2958 mblk_t *mp; 2959 2960 ASSERT(crypto_mp->b_datap->db_type == M_EVENT); 2961 ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t)); 2962 2963 mp = crypto_mp->b_cont; 2964 freeb(crypto_mp); 2965 return (mp); 2966 } 2967 2968 /* 2969 * Create an ipsec_action_t based on the way an inbound packet was protected. 2970 * Used to reflect traffic back to a sender. 2971 * 2972 * We don't bother interning the action into the hash table. 2973 */ 2974 ipsec_action_t * 2975 ipsec_in_to_out_action(ip_recv_attr_t *ira) 2976 { 2977 ipsa_t *ah_assoc, *esp_assoc; 2978 uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0; 2979 ipsec_action_t *ap; 2980 boolean_t unique; 2981 2982 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP); 2983 2984 if (ap == NULL) 2985 return (NULL); 2986 2987 bzero(ap, sizeof (*ap)); 2988 HASH_NULL(ap, ipa_hash); 2989 ap->ipa_next = NULL; 2990 ap->ipa_refs = 1; 2991 2992 /* 2993 * Get the algorithms that were used for this packet. 2994 */ 2995 ap->ipa_act.ipa_type = IPSEC_ACT_APPLY; 2996 ap->ipa_act.ipa_log = 0; 2997 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 2998 2999 ah_assoc = ira->ira_ipsec_ah_sa; 3000 ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL); 3001 3002 esp_assoc = ira->ira_ipsec_esp_sa; 3003 ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL); 3004 3005 if (esp_assoc != NULL) { 3006 encr_alg = esp_assoc->ipsa_encr_alg; 3007 espa_alg = esp_assoc->ipsa_auth_alg; 3008 ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0); 3009 } 3010 if (ah_assoc != NULL) 3011 auth_alg = ah_assoc->ipsa_auth_alg; 3012 3013 ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg; 3014 ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg; 3015 ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg; 3016 ap->ipa_act.ipa_apply.ipp_use_se = 3017 !!(ira->ira_flags & IRAF_IPSEC_DECAPS); 3018 unique = B_FALSE; 3019 3020 if (esp_assoc != NULL) { 3021 ap->ipa_act.ipa_apply.ipp_espa_minbits = 3022 esp_assoc->ipsa_authkeybits; 3023 ap->ipa_act.ipa_apply.ipp_espa_maxbits = 3024 esp_assoc->ipsa_authkeybits; 3025 ap->ipa_act.ipa_apply.ipp_espe_minbits = 3026 esp_assoc->ipsa_encrkeybits; 3027 ap->ipa_act.ipa_apply.ipp_espe_maxbits = 3028 esp_assoc->ipsa_encrkeybits; 3029 ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp; 3030 ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc; 3031 if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE) 3032 unique = B_TRUE; 3033 } 3034 if (ah_assoc != NULL) { 3035 ap->ipa_act.ipa_apply.ipp_ah_minbits = 3036 ah_assoc->ipsa_authkeybits; 3037 ap->ipa_act.ipa_apply.ipp_ah_maxbits = 3038 ah_assoc->ipsa_authkeybits; 3039 ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp; 3040 ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc; 3041 if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE) 3042 unique = B_TRUE; 3043 } 3044 ap->ipa_act.ipa_apply.ipp_use_unique = unique; 3045 ap->ipa_want_unique = unique; 3046 ap->ipa_allow_clear = B_FALSE; 3047 ap->ipa_want_se = !!(ira->ira_flags & IRAF_IPSEC_DECAPS); 3048 ap->ipa_want_ah = (ah_assoc != NULL); 3049 ap->ipa_want_esp = (esp_assoc != NULL); 3050 3051 ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act); 3052 3053 ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */ 3054 3055 return (ap); 3056 } 3057 3058 3059 /* 3060 * Compute the worst-case amount of extra space required by an action. 3061 * Note that, because of the ESP considerations listed below, this is 3062 * actually not the same as the best-case reduction in the MTU; in the 3063 * future, we should pass additional information to this function to 3064 * allow the actual MTU impact to be computed. 3065 * 3066 * AH: Revisit this if we implement algorithms with 3067 * a verifier size of more than 12 bytes. 3068 * 3069 * ESP: A more exact but more messy computation would take into 3070 * account the interaction between the cipher block size and the 3071 * effective MTU, yielding the inner payload size which reflects a 3072 * packet with *minimum* ESP padding.. 3073 */ 3074 int32_t 3075 ipsec_act_ovhd(const ipsec_act_t *act) 3076 { 3077 int32_t overhead = 0; 3078 3079 if (act->ipa_type == IPSEC_ACT_APPLY) { 3080 const ipsec_prot_t *ipp = &act->ipa_apply; 3081 3082 if (ipp->ipp_use_ah) 3083 overhead += IPSEC_MAX_AH_HDR_SIZE; 3084 if (ipp->ipp_use_esp) { 3085 overhead += IPSEC_MAX_ESP_HDR_SIZE; 3086 overhead += sizeof (struct udphdr); 3087 } 3088 if (ipp->ipp_use_se) 3089 overhead += IP_SIMPLE_HDR_LENGTH; 3090 } 3091 return (overhead); 3092 } 3093 3094 /* 3095 * This hash function is used only when creating policies and thus is not 3096 * performance-critical for packet flows. 3097 * 3098 * Future work: canonicalize the structures hashed with this (i.e., 3099 * zeroize padding) so the hash works correctly. 3100 */ 3101 /* ARGSUSED */ 3102 static uint32_t 3103 policy_hash(int size, const void *start, const void *end) 3104 { 3105 return (0); 3106 } 3107 3108 3109 /* 3110 * Hash function macros for each address type. 3111 * 3112 * The IPV6 hash function assumes that the low order 32-bits of the 3113 * address (typically containing the low order 24 bits of the mac 3114 * address) are reasonably well-distributed. Revisit this if we run 3115 * into trouble from lots of collisions on ::1 addresses and the like 3116 * (seems unlikely). 3117 */ 3118 #define IPSEC_IPV4_HASH(a, n) ((a) % (n)) 3119 #define IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n)) 3120 3121 /* 3122 * These two hash functions should produce coordinated values 3123 * but have slightly different roles. 3124 */ 3125 static uint32_t 3126 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns) 3127 { 3128 uint32_t valid = selkey->ipsl_valid; 3129 ipsec_stack_t *ipss = ns->netstack_ipsec; 3130 3131 if (!(valid & IPSL_REMOTE_ADDR)) 3132 return (IPSEC_SEL_NOHASH); 3133 3134 if (valid & IPSL_IPV4) { 3135 if (selkey->ipsl_remote_pfxlen == 32) { 3136 return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4, 3137 ipss->ipsec_spd_hashsize)); 3138 } 3139 } 3140 if (valid & IPSL_IPV6) { 3141 if (selkey->ipsl_remote_pfxlen == 128) { 3142 return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6, 3143 ipss->ipsec_spd_hashsize)); 3144 } 3145 } 3146 return (IPSEC_SEL_NOHASH); 3147 } 3148 3149 static uint32_t 3150 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root) 3151 { 3152 if (sel->ips_isv4) { 3153 return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4, 3154 root->ipr_nchains)); 3155 } 3156 return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains)); 3157 } 3158 3159 /* 3160 * Intern actions into the action hash table. 3161 */ 3162 ipsec_action_t * 3163 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns) 3164 { 3165 int i; 3166 uint32_t hval; 3167 ipsec_action_t *ap; 3168 ipsec_action_t *prev = NULL; 3169 int32_t overhead, maxovhd = 0; 3170 boolean_t allow_clear = B_FALSE; 3171 boolean_t want_ah = B_FALSE; 3172 boolean_t want_esp = B_FALSE; 3173 boolean_t want_se = B_FALSE; 3174 boolean_t want_unique = B_FALSE; 3175 ipsec_stack_t *ipss = ns->netstack_ipsec; 3176 3177 /* 3178 * TODO: should canonicalize a[] (i.e., zeroize any padding) 3179 * so we can use a non-trivial policy_hash function. 3180 */ 3181 for (i = n-1; i >= 0; i--) { 3182 hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]); 3183 3184 HASH_LOCK(ipss->ipsec_action_hash, hval); 3185 3186 for (HASH_ITERATE(ap, ipa_hash, 3187 ipss->ipsec_action_hash, hval)) { 3188 if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0) 3189 continue; 3190 if (ap->ipa_next != prev) 3191 continue; 3192 break; 3193 } 3194 if (ap != NULL) { 3195 HASH_UNLOCK(ipss->ipsec_action_hash, hval); 3196 prev = ap; 3197 continue; 3198 } 3199 /* 3200 * need to allocate a new one.. 3201 */ 3202 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP); 3203 if (ap == NULL) { 3204 HASH_UNLOCK(ipss->ipsec_action_hash, hval); 3205 if (prev != NULL) 3206 ipsec_action_free(prev); 3207 return (NULL); 3208 } 3209 HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval); 3210 3211 ap->ipa_next = prev; 3212 ap->ipa_act = a[i]; 3213 3214 overhead = ipsec_act_ovhd(&a[i]); 3215 if (maxovhd < overhead) 3216 maxovhd = overhead; 3217 3218 if ((a[i].ipa_type == IPSEC_ACT_BYPASS) || 3219 (a[i].ipa_type == IPSEC_ACT_CLEAR)) 3220 allow_clear = B_TRUE; 3221 if (a[i].ipa_type == IPSEC_ACT_APPLY) { 3222 const ipsec_prot_t *ipp = &a[i].ipa_apply; 3223 3224 ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp); 3225 want_ah |= ipp->ipp_use_ah; 3226 want_esp |= ipp->ipp_use_esp; 3227 want_se |= ipp->ipp_use_se; 3228 want_unique |= ipp->ipp_use_unique; 3229 } 3230 ap->ipa_allow_clear = allow_clear; 3231 ap->ipa_want_ah = want_ah; 3232 ap->ipa_want_esp = want_esp; 3233 ap->ipa_want_se = want_se; 3234 ap->ipa_want_unique = want_unique; 3235 ap->ipa_refs = 1; /* from the hash table */ 3236 ap->ipa_ovhd = maxovhd; 3237 if (prev) 3238 prev->ipa_refs++; 3239 prev = ap; 3240 HASH_UNLOCK(ipss->ipsec_action_hash, hval); 3241 } 3242 3243 ap->ipa_refs++; /* caller's reference */ 3244 3245 return (ap); 3246 } 3247 3248 /* 3249 * Called when refcount goes to 0, indicating that all references to this 3250 * node are gone. 3251 * 3252 * This does not unchain the action from the hash table. 3253 */ 3254 void 3255 ipsec_action_free(ipsec_action_t *ap) 3256 { 3257 for (;;) { 3258 ipsec_action_t *np = ap->ipa_next; 3259 ASSERT(ap->ipa_refs == 0); 3260 ASSERT(ap->ipa_hash.hash_pp == NULL); 3261 kmem_cache_free(ipsec_action_cache, ap); 3262 ap = np; 3263 /* Inlined IPACT_REFRELE -- avoid recursion */ 3264 if (ap == NULL) 3265 break; 3266 membar_exit(); 3267 if (atomic_dec_32_nv(&(ap)->ipa_refs) != 0) 3268 break; 3269 /* End inlined IPACT_REFRELE */ 3270 } 3271 } 3272 3273 /* 3274 * Called when the action hash table goes away. 3275 * 3276 * The actions can be queued on an mblk with ipsec_in or 3277 * ipsec_out, hence the actions might still be around. 3278 * But we decrement ipa_refs here since we no longer have 3279 * a reference to the action from the hash table. 3280 */ 3281 static void 3282 ipsec_action_free_table(ipsec_action_t *ap) 3283 { 3284 while (ap != NULL) { 3285 ipsec_action_t *np = ap->ipa_next; 3286 3287 /* FIXME: remove? */ 3288 (void) printf("ipsec_action_free_table(%p) ref %d\n", 3289 (void *)ap, ap->ipa_refs); 3290 ASSERT(ap->ipa_refs > 0); 3291 IPACT_REFRELE(ap); 3292 ap = np; 3293 } 3294 } 3295 3296 /* 3297 * Need to walk all stack instances since the reclaim function 3298 * is global for all instances 3299 */ 3300 /* ARGSUSED */ 3301 static void 3302 ipsec_action_reclaim(void *arg) 3303 { 3304 netstack_handle_t nh; 3305 netstack_t *ns; 3306 ipsec_stack_t *ipss; 3307 3308 netstack_next_init(&nh); 3309 while ((ns = netstack_next(&nh)) != NULL) { 3310 /* 3311 * netstack_next() can return a netstack_t with a NULL 3312 * netstack_ipsec at boot time. 3313 */ 3314 if ((ipss = ns->netstack_ipsec) == NULL) { 3315 netstack_rele(ns); 3316 continue; 3317 } 3318 ipsec_action_reclaim_stack(ipss); 3319 netstack_rele(ns); 3320 } 3321 netstack_next_fini(&nh); 3322 } 3323 3324 /* 3325 * Periodically sweep action hash table for actions with refcount==1, and 3326 * nuke them. We cannot do this "on demand" (i.e., from IPACT_REFRELE) 3327 * because we can't close the race between another thread finding the action 3328 * in the hash table without holding the bucket lock during IPACT_REFRELE. 3329 * Instead, we run this function sporadically to clean up after ourselves; 3330 * we also set it as the "reclaim" function for the action kmem_cache. 3331 * 3332 * Note that it may take several passes of ipsec_action_gc() to free all 3333 * "stale" actions. 3334 */ 3335 static void 3336 ipsec_action_reclaim_stack(ipsec_stack_t *ipss) 3337 { 3338 int i; 3339 3340 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) { 3341 ipsec_action_t *ap, *np; 3342 3343 /* skip the lock if nobody home */ 3344 if (ipss->ipsec_action_hash[i].hash_head == NULL) 3345 continue; 3346 3347 HASH_LOCK(ipss->ipsec_action_hash, i); 3348 for (ap = ipss->ipsec_action_hash[i].hash_head; 3349 ap != NULL; ap = np) { 3350 ASSERT(ap->ipa_refs > 0); 3351 np = ap->ipa_hash.hash_next; 3352 if (ap->ipa_refs > 1) 3353 continue; 3354 HASH_UNCHAIN(ap, ipa_hash, 3355 ipss->ipsec_action_hash, i); 3356 IPACT_REFRELE(ap); 3357 } 3358 HASH_UNLOCK(ipss->ipsec_action_hash, i); 3359 } 3360 } 3361 3362 /* 3363 * Intern a selector set into the selector set hash table. 3364 * This is simpler than the actions case.. 3365 */ 3366 static ipsec_sel_t * 3367 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns) 3368 { 3369 ipsec_sel_t *sp; 3370 uint32_t hval, bucket; 3371 ipsec_stack_t *ipss = ns->netstack_ipsec; 3372 3373 /* 3374 * Exactly one AF bit should be set in selkey. 3375 */ 3376 ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^ 3377 !(selkey->ipsl_valid & IPSL_IPV6)); 3378 3379 hval = selkey_hash(selkey, ns); 3380 /* Set pol_hval to uninitialized until we put it in a polhead. */ 3381 selkey->ipsl_sel_hval = hval; 3382 3383 bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval; 3384 3385 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket)); 3386 HASH_LOCK(ipss->ipsec_sel_hash, bucket); 3387 3388 for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) { 3389 if (bcmp(&sp->ipsl_key, selkey, 3390 offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0) 3391 break; 3392 } 3393 if (sp != NULL) { 3394 sp->ipsl_refs++; 3395 3396 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket); 3397 return (sp); 3398 } 3399 3400 sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP); 3401 if (sp == NULL) { 3402 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket); 3403 return (NULL); 3404 } 3405 3406 HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket); 3407 sp->ipsl_refs = 2; /* one for hash table, one for caller */ 3408 sp->ipsl_key = *selkey; 3409 /* Set to uninitalized and have insertion into polhead fix things. */ 3410 if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH) 3411 sp->ipsl_key.ipsl_pol_hval = 0; 3412 else 3413 sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH; 3414 3415 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket); 3416 3417 return (sp); 3418 } 3419 3420 static void 3421 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns) 3422 { 3423 ipsec_sel_t *sp = *spp; 3424 int hval = sp->ipsl_key.ipsl_sel_hval; 3425 ipsec_stack_t *ipss = ns->netstack_ipsec; 3426 3427 *spp = NULL; 3428 3429 if (hval == IPSEC_SEL_NOHASH) 3430 hval = 0; 3431 3432 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval)); 3433 HASH_LOCK(ipss->ipsec_sel_hash, hval); 3434 if (--sp->ipsl_refs == 1) { 3435 HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval); 3436 sp->ipsl_refs--; 3437 HASH_UNLOCK(ipss->ipsec_sel_hash, hval); 3438 ASSERT(sp->ipsl_refs == 0); 3439 kmem_cache_free(ipsec_sel_cache, sp); 3440 /* Caller unlocks */ 3441 return; 3442 } 3443 3444 HASH_UNLOCK(ipss->ipsec_sel_hash, hval); 3445 } 3446 3447 /* 3448 * Free a policy rule which we know is no longer being referenced. 3449 */ 3450 void 3451 ipsec_policy_free(ipsec_policy_t *ipp) 3452 { 3453 ASSERT(ipp->ipsp_refs == 0); 3454 ASSERT(ipp->ipsp_sel != NULL); 3455 ASSERT(ipp->ipsp_act != NULL); 3456 ASSERT(ipp->ipsp_netstack != NULL); 3457 3458 ipsec_sel_rel(&ipp->ipsp_sel, ipp->ipsp_netstack); 3459 IPACT_REFRELE(ipp->ipsp_act); 3460 kmem_cache_free(ipsec_pol_cache, ipp); 3461 } 3462 3463 /* 3464 * Construction of new policy rules; construct a policy, and add it to 3465 * the appropriate tables. 3466 */ 3467 ipsec_policy_t * 3468 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a, 3469 int nacts, int prio, uint64_t *index_ptr, netstack_t *ns) 3470 { 3471 ipsec_action_t *ap; 3472 ipsec_sel_t *sp; 3473 ipsec_policy_t *ipp; 3474 ipsec_stack_t *ipss = ns->netstack_ipsec; 3475 3476 if (index_ptr == NULL) 3477 index_ptr = &ipss->ipsec_next_policy_index; 3478 3479 ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP); 3480 ap = ipsec_act_find(a, nacts, ns); 3481 sp = ipsec_find_sel(keys, ns); 3482 3483 if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) { 3484 if (ap != NULL) { 3485 IPACT_REFRELE(ap); 3486 } 3487 if (sp != NULL) 3488 ipsec_sel_rel(&sp, ns); 3489 if (ipp != NULL) 3490 kmem_cache_free(ipsec_pol_cache, ipp); 3491 return (NULL); 3492 } 3493 3494 HASH_NULL(ipp, ipsp_hash); 3495 3496 ipp->ipsp_netstack = ns; /* Needed for ipsec_policy_free */ 3497 ipp->ipsp_refs = 1; /* caller's reference */ 3498 ipp->ipsp_sel = sp; 3499 ipp->ipsp_act = ap; 3500 ipp->ipsp_prio = prio; /* rule priority */ 3501 ipp->ipsp_index = *index_ptr; 3502 (*index_ptr)++; 3503 3504 return (ipp); 3505 } 3506 3507 static void 3508 ipsec_update_present_flags(ipsec_stack_t *ipss) 3509 { 3510 boolean_t hashpol; 3511 3512 hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0); 3513 3514 if (hashpol) { 3515 ipss->ipsec_outbound_v4_policy_present = B_TRUE; 3516 ipss->ipsec_outbound_v6_policy_present = B_TRUE; 3517 ipss->ipsec_inbound_v4_policy_present = B_TRUE; 3518 ipss->ipsec_inbound_v6_policy_present = B_TRUE; 3519 return; 3520 } 3521 3522 ipss->ipsec_outbound_v4_policy_present = (NULL != 3523 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND]. 3524 ipr_nonhash[IPSEC_AF_V4]); 3525 ipss->ipsec_outbound_v6_policy_present = (NULL != 3526 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND]. 3527 ipr_nonhash[IPSEC_AF_V6]); 3528 ipss->ipsec_inbound_v4_policy_present = (NULL != 3529 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND]. 3530 ipr_nonhash[IPSEC_AF_V4]); 3531 ipss->ipsec_inbound_v6_policy_present = (NULL != 3532 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND]. 3533 ipr_nonhash[IPSEC_AF_V6]); 3534 } 3535 3536 boolean_t 3537 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir, 3538 netstack_t *ns) 3539 { 3540 ipsec_sel_t *sp; 3541 ipsec_policy_t *ip, *nip, *head; 3542 int af; 3543 ipsec_policy_root_t *pr = &php->iph_root[dir]; 3544 3545 sp = ipsec_find_sel(keys, ns); 3546 3547 if (sp == NULL) 3548 return (B_FALSE); 3549 3550 af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6; 3551 3552 rw_enter(&php->iph_lock, RW_WRITER); 3553 3554 if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) { 3555 head = pr->ipr_nonhash[af]; 3556 } else { 3557 head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head; 3558 } 3559 3560 for (ip = head; ip != NULL; ip = nip) { 3561 nip = ip->ipsp_hash.hash_next; 3562 if (ip->ipsp_sel != sp) { 3563 continue; 3564 } 3565 3566 IPPOL_UNCHAIN(php, ip); 3567 3568 php->iph_gen++; 3569 ipsec_update_present_flags(ns->netstack_ipsec); 3570 3571 rw_exit(&php->iph_lock); 3572 3573 ipsec_sel_rel(&sp, ns); 3574 3575 return (B_TRUE); 3576 } 3577 3578 rw_exit(&php->iph_lock); 3579 ipsec_sel_rel(&sp, ns); 3580 return (B_FALSE); 3581 } 3582 3583 int 3584 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index, 3585 netstack_t *ns) 3586 { 3587 boolean_t found = B_FALSE; 3588 ipsec_policy_t ipkey; 3589 ipsec_policy_t *ip; 3590 avl_index_t where; 3591 3592 bzero(&ipkey, sizeof (ipkey)); 3593 ipkey.ipsp_index = policy_index; 3594 3595 rw_enter(&php->iph_lock, RW_WRITER); 3596 3597 /* 3598 * We could be cleverer here about the walk. 3599 * but well, (k+1)*log(N) will do for now (k==number of matches, 3600 * N==number of table entries 3601 */ 3602 for (;;) { 3603 ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid, 3604 (void *)&ipkey, &where); 3605 ASSERT(ip == NULL); 3606 3607 ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER); 3608 3609 if (ip == NULL) 3610 break; 3611 3612 if (ip->ipsp_index != policy_index) { 3613 ASSERT(ip->ipsp_index > policy_index); 3614 break; 3615 } 3616 3617 IPPOL_UNCHAIN(php, ip); 3618 found = B_TRUE; 3619 } 3620 3621 if (found) { 3622 php->iph_gen++; 3623 ipsec_update_present_flags(ns->netstack_ipsec); 3624 } 3625 3626 rw_exit(&php->iph_lock); 3627 3628 return (found ? 0 : ENOENT); 3629 } 3630 3631 /* 3632 * Given a constructed ipsec_policy_t policy rule, see if it can be entered 3633 * into the correct policy ruleset. As a side-effect, it sets the hash 3634 * entries on "ipp"'s ipsp_pol_hval. 3635 * 3636 * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a 3637 * duplicate policy exists with exactly the same selectors), or an icmp 3638 * rule exists with a different encryption/authentication action. 3639 */ 3640 boolean_t 3641 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction) 3642 { 3643 ipsec_policy_root_t *pr = &php->iph_root[direction]; 3644 int af = -1; 3645 ipsec_policy_t *p2, *head; 3646 uint8_t check_proto; 3647 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key; 3648 uint32_t valid = selkey->ipsl_valid; 3649 3650 if (valid & IPSL_IPV6) { 3651 ASSERT(!(valid & IPSL_IPV4)); 3652 af = IPSEC_AF_V6; 3653 check_proto = IPPROTO_ICMPV6; 3654 } else { 3655 ASSERT(valid & IPSL_IPV4); 3656 af = IPSEC_AF_V4; 3657 check_proto = IPPROTO_ICMP; 3658 } 3659 3660 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3661 3662 /* 3663 * Double-check that we don't have any duplicate selectors here. 3664 * Because selectors are interned below, we need only compare pointers 3665 * for equality. 3666 */ 3667 if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) { 3668 head = pr->ipr_nonhash[af]; 3669 } else { 3670 selkey->ipsl_pol_hval = 3671 (selkey->ipsl_valid & IPSL_IPV4) ? 3672 IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4, 3673 pr->ipr_nchains) : 3674 IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6, 3675 pr->ipr_nchains); 3676 3677 head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head; 3678 } 3679 3680 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) { 3681 if (p2->ipsp_sel == ipp->ipsp_sel) 3682 return (B_FALSE); 3683 } 3684 3685 /* 3686 * If it's ICMP and not a drop or pass rule, run through the ICMP 3687 * rules and make sure the action is either new or the same as any 3688 * other actions. We don't have to check the full chain because 3689 * discard and bypass will override all other actions 3690 */ 3691 3692 if (valid & IPSL_PROTOCOL && 3693 selkey->ipsl_proto == check_proto && 3694 (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) { 3695 3696 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) { 3697 3698 if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL && 3699 p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto && 3700 (p2->ipsp_act->ipa_act.ipa_type == 3701 IPSEC_ACT_APPLY)) { 3702 return (ipsec_compare_action(p2, ipp)); 3703 } 3704 } 3705 } 3706 3707 return (B_TRUE); 3708 } 3709 3710 /* 3711 * compare the action chains of two policies for equality 3712 * B_TRUE -> effective equality 3713 */ 3714 3715 static boolean_t 3716 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2) 3717 { 3718 3719 ipsec_action_t *act1, *act2; 3720 3721 /* We have a valid rule. Let's compare the actions */ 3722 if (p1->ipsp_act == p2->ipsp_act) { 3723 /* same action. We are good */ 3724 return (B_TRUE); 3725 } 3726 3727 /* we have to walk the chain */ 3728 3729 act1 = p1->ipsp_act; 3730 act2 = p2->ipsp_act; 3731 3732 while (act1 != NULL && act2 != NULL) { 3733 3734 /* otherwise, Are we close enough? */ 3735 if (act1->ipa_allow_clear != act2->ipa_allow_clear || 3736 act1->ipa_want_ah != act2->ipa_want_ah || 3737 act1->ipa_want_esp != act2->ipa_want_esp || 3738 act1->ipa_want_se != act2->ipa_want_se) { 3739 /* Nope, we aren't */ 3740 return (B_FALSE); 3741 } 3742 3743 if (act1->ipa_want_ah) { 3744 if (act1->ipa_act.ipa_apply.ipp_auth_alg != 3745 act2->ipa_act.ipa_apply.ipp_auth_alg) { 3746 return (B_FALSE); 3747 } 3748 3749 if (act1->ipa_act.ipa_apply.ipp_ah_minbits != 3750 act2->ipa_act.ipa_apply.ipp_ah_minbits || 3751 act1->ipa_act.ipa_apply.ipp_ah_maxbits != 3752 act2->ipa_act.ipa_apply.ipp_ah_maxbits) { 3753 return (B_FALSE); 3754 } 3755 } 3756 3757 if (act1->ipa_want_esp) { 3758 if (act1->ipa_act.ipa_apply.ipp_use_esp != 3759 act2->ipa_act.ipa_apply.ipp_use_esp || 3760 act1->ipa_act.ipa_apply.ipp_use_espa != 3761 act2->ipa_act.ipa_apply.ipp_use_espa) { 3762 return (B_FALSE); 3763 } 3764 3765 if (act1->ipa_act.ipa_apply.ipp_use_esp) { 3766 if (act1->ipa_act.ipa_apply.ipp_encr_alg != 3767 act2->ipa_act.ipa_apply.ipp_encr_alg) { 3768 return (B_FALSE); 3769 } 3770 3771 if (act1->ipa_act.ipa_apply.ipp_espe_minbits != 3772 act2->ipa_act.ipa_apply.ipp_espe_minbits || 3773 act1->ipa_act.ipa_apply.ipp_espe_maxbits != 3774 act2->ipa_act.ipa_apply.ipp_espe_maxbits) { 3775 return (B_FALSE); 3776 } 3777 } 3778 3779 if (act1->ipa_act.ipa_apply.ipp_use_espa) { 3780 if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg != 3781 act2->ipa_act.ipa_apply.ipp_esp_auth_alg) { 3782 return (B_FALSE); 3783 } 3784 3785 if (act1->ipa_act.ipa_apply.ipp_espa_minbits != 3786 act2->ipa_act.ipa_apply.ipp_espa_minbits || 3787 act1->ipa_act.ipa_apply.ipp_espa_maxbits != 3788 act2->ipa_act.ipa_apply.ipp_espa_maxbits) { 3789 return (B_FALSE); 3790 } 3791 } 3792 3793 } 3794 3795 act1 = act1->ipa_next; 3796 act2 = act2->ipa_next; 3797 } 3798 3799 if (act1 != NULL || act2 != NULL) { 3800 return (B_FALSE); 3801 } 3802 3803 return (B_TRUE); 3804 } 3805 3806 3807 /* 3808 * Given a constructed ipsec_policy_t policy rule, enter it into 3809 * the correct policy ruleset. 3810 * 3811 * ipsec_check_policy() is assumed to have succeeded first (to check for 3812 * duplicates). 3813 */ 3814 void 3815 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction, 3816 netstack_t *ns) 3817 { 3818 ipsec_policy_root_t *pr = &php->iph_root[direction]; 3819 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key; 3820 uint32_t valid = selkey->ipsl_valid; 3821 uint32_t hval = selkey->ipsl_pol_hval; 3822 int af = -1; 3823 3824 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3825 3826 if (valid & IPSL_IPV6) { 3827 ASSERT(!(valid & IPSL_IPV4)); 3828 af = IPSEC_AF_V6; 3829 } else { 3830 ASSERT(valid & IPSL_IPV4); 3831 af = IPSEC_AF_V4; 3832 } 3833 3834 php->iph_gen++; 3835 3836 if (hval == IPSEC_SEL_NOHASH) { 3837 HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]); 3838 } else { 3839 HASH_LOCK(pr->ipr_hash, hval); 3840 HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval); 3841 HASH_UNLOCK(pr->ipr_hash, hval); 3842 } 3843 3844 ipsec_insert_always(&php->iph_rulebyid, ipp); 3845 3846 ipsec_update_present_flags(ns->netstack_ipsec); 3847 } 3848 3849 static void 3850 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr) 3851 { 3852 ipsec_policy_t *ip, *nip; 3853 int af, chain, nchain; 3854 3855 for (af = 0; af < IPSEC_NAF; af++) { 3856 for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) { 3857 nip = ip->ipsp_hash.hash_next; 3858 IPPOL_UNCHAIN(php, ip); 3859 } 3860 ipr->ipr_nonhash[af] = NULL; 3861 } 3862 nchain = ipr->ipr_nchains; 3863 3864 for (chain = 0; chain < nchain; chain++) { 3865 for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL; 3866 ip = nip) { 3867 nip = ip->ipsp_hash.hash_next; 3868 IPPOL_UNCHAIN(php, ip); 3869 } 3870 ipr->ipr_hash[chain].hash_head = NULL; 3871 } 3872 } 3873 3874 /* 3875 * Create and insert inbound or outbound policy associated with actp for the 3876 * address family fam into the policy head ph. Returns B_TRUE if policy was 3877 * inserted, and B_FALSE otherwise. 3878 */ 3879 boolean_t 3880 ipsec_polhead_insert(ipsec_policy_head_t *ph, ipsec_act_t *actp, uint_t nact, 3881 int fam, int ptype, netstack_t *ns) 3882 { 3883 ipsec_selkey_t sel; 3884 ipsec_policy_t *pol; 3885 ipsec_policy_root_t *pr; 3886 3887 bzero(&sel, sizeof (sel)); 3888 sel.ipsl_valid = (fam == IPSEC_AF_V4 ? IPSL_IPV4 : IPSL_IPV6); 3889 if ((pol = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, 3890 NULL, ns)) != NULL) { 3891 pr = &ph->iph_root[ptype]; 3892 HASHLIST_INSERT(pol, ipsp_hash, pr->ipr_nonhash[fam]); 3893 ipsec_insert_always(&ph->iph_rulebyid, pol); 3894 } 3895 return (pol != NULL); 3896 } 3897 3898 void 3899 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns) 3900 { 3901 int dir; 3902 3903 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3904 3905 for (dir = 0; dir < IPSEC_NTYPES; dir++) 3906 ipsec_ipr_flush(php, &php->iph_root[dir]); 3907 3908 php->iph_gen++; 3909 ipsec_update_present_flags(ns->netstack_ipsec); 3910 } 3911 3912 void 3913 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns) 3914 { 3915 int dir; 3916 3917 ASSERT(php->iph_refs == 0); 3918 3919 rw_enter(&php->iph_lock, RW_WRITER); 3920 ipsec_polhead_flush(php, ns); 3921 rw_exit(&php->iph_lock); 3922 rw_destroy(&php->iph_lock); 3923 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 3924 ipsec_policy_root_t *ipr = &php->iph_root[dir]; 3925 int chain; 3926 3927 for (chain = 0; chain < ipr->ipr_nchains; chain++) 3928 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock)); 3929 3930 } 3931 ipsec_polhead_free_table(php); 3932 kmem_free(php, sizeof (*php)); 3933 } 3934 3935 static void 3936 ipsec_ipr_init(ipsec_policy_root_t *ipr) 3937 { 3938 int af; 3939 3940 ipr->ipr_nchains = 0; 3941 ipr->ipr_hash = NULL; 3942 3943 for (af = 0; af < IPSEC_NAF; af++) { 3944 ipr->ipr_nonhash[af] = NULL; 3945 } 3946 } 3947 3948 ipsec_policy_head_t * 3949 ipsec_polhead_create(void) 3950 { 3951 ipsec_policy_head_t *php; 3952 3953 php = kmem_alloc(sizeof (*php), KM_NOSLEEP); 3954 if (php == NULL) 3955 return (php); 3956 3957 rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL); 3958 php->iph_refs = 1; 3959 php->iph_gen = 0; 3960 3961 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]); 3962 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]); 3963 3964 avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid, 3965 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid)); 3966 3967 return (php); 3968 } 3969 3970 /* 3971 * Clone the policy head into a new polhead; release one reference to the 3972 * old one and return the only reference to the new one. 3973 * If the old one had a refcount of 1, just return it. 3974 */ 3975 ipsec_policy_head_t * 3976 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns) 3977 { 3978 ipsec_policy_head_t *nphp; 3979 3980 if (php == NULL) 3981 return (ipsec_polhead_create()); 3982 else if (php->iph_refs == 1) 3983 return (php); 3984 3985 nphp = ipsec_polhead_create(); 3986 if (nphp == NULL) 3987 return (NULL); 3988 3989 if (ipsec_copy_polhead(php, nphp, ns) != 0) { 3990 ipsec_polhead_free(nphp, ns); 3991 return (NULL); 3992 } 3993 IPPH_REFRELE(php, ns); 3994 return (nphp); 3995 } 3996 3997 /* 3998 * When sending a response to a ICMP request or generating a RST 3999 * in the TCP case, the outbound packets need to go at the same level 4000 * of protection as the incoming ones i.e we associate our outbound 4001 * policy with how the packet came in. We call this after we have 4002 * accepted the incoming packet which may or may not have been in 4003 * clear and hence we are sending the reply back with the policy 4004 * matching the incoming datagram's policy. 4005 * 4006 * NOTE : This technology serves two purposes : 4007 * 4008 * 1) If we have multiple outbound policies, we send out a reply 4009 * matching with how it came in rather than matching the outbound 4010 * policy. 4011 * 4012 * 2) For assymetric policies, we want to make sure that incoming 4013 * and outgoing has the same level of protection. Assymetric 4014 * policies exist only with global policy where we may not have 4015 * both outbound and inbound at the same time. 4016 * 4017 * NOTE2: This function is called by cleartext cases, so it needs to be 4018 * in IP proper. 4019 * 4020 * Note: the caller has moved other parts of ira into ixa already. 4021 */ 4022 boolean_t 4023 ipsec_in_to_out(ip_recv_attr_t *ira, ip_xmit_attr_t *ixa, mblk_t *data_mp, 4024 ipha_t *ipha, ip6_t *ip6h) 4025 { 4026 ipsec_selector_t sel; 4027 ipsec_action_t *reflect_action = NULL; 4028 netstack_t *ns = ixa->ixa_ipst->ips_netstack; 4029 4030 bzero((void*)&sel, sizeof (sel)); 4031 4032 if (ira->ira_ipsec_action != NULL) { 4033 /* transfer reference.. */ 4034 reflect_action = ira->ira_ipsec_action; 4035 ira->ira_ipsec_action = NULL; 4036 } else if (!(ira->ira_flags & IRAF_LOOPBACK)) 4037 reflect_action = ipsec_in_to_out_action(ira); 4038 4039 /* 4040 * The caller is going to send the datagram out which might 4041 * go on the wire or delivered locally through ire_send_local. 4042 * 4043 * 1) If it goes out on the wire, new associations will be 4044 * obtained. 4045 * 2) If it is delivered locally, ire_send_local will convert 4046 * this ip_xmit_attr_t back to a ip_recv_attr_t looking at the 4047 * requests. 4048 */ 4049 ixa->ixa_ipsec_action = reflect_action; 4050 4051 if (!ipsec_init_outbound_ports(&sel, data_mp, ipha, ip6h, 0, 4052 ns->netstack_ipsec)) { 4053 /* Note: data_mp already consumed and ip_drop_packet done */ 4054 return (B_FALSE); 4055 } 4056 ixa->ixa_ipsec_src_port = sel.ips_local_port; 4057 ixa->ixa_ipsec_dst_port = sel.ips_remote_port; 4058 ixa->ixa_ipsec_proto = sel.ips_protocol; 4059 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type; 4060 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code; 4061 4062 /* 4063 * Don't use global policy for this, as we want 4064 * to use the same protection that was applied to the inbound packet. 4065 * Thus we set IXAF_NO_IPSEC is it arrived in the clear to make 4066 * it be sent in the clear. 4067 */ 4068 if (ira->ira_flags & IRAF_IPSEC_SECURE) 4069 ixa->ixa_flags |= IXAF_IPSEC_SECURE; 4070 else 4071 ixa->ixa_flags |= IXAF_NO_IPSEC; 4072 4073 return (B_TRUE); 4074 } 4075 4076 void 4077 ipsec_out_release_refs(ip_xmit_attr_t *ixa) 4078 { 4079 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 4080 return; 4081 4082 if (ixa->ixa_ipsec_ah_sa != NULL) { 4083 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 4084 ixa->ixa_ipsec_ah_sa = NULL; 4085 } 4086 if (ixa->ixa_ipsec_esp_sa != NULL) { 4087 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 4088 ixa->ixa_ipsec_esp_sa = NULL; 4089 } 4090 if (ixa->ixa_ipsec_policy != NULL) { 4091 IPPOL_REFRELE(ixa->ixa_ipsec_policy); 4092 ixa->ixa_ipsec_policy = NULL; 4093 } 4094 if (ixa->ixa_ipsec_action != NULL) { 4095 IPACT_REFRELE(ixa->ixa_ipsec_action); 4096 ixa->ixa_ipsec_action = NULL; 4097 } 4098 if (ixa->ixa_ipsec_latch) { 4099 IPLATCH_REFRELE(ixa->ixa_ipsec_latch); 4100 ixa->ixa_ipsec_latch = NULL; 4101 } 4102 /* Clear the soft references to the SAs */ 4103 ixa->ixa_ipsec_ref[0].ipsr_sa = NULL; 4104 ixa->ixa_ipsec_ref[0].ipsr_bucket = NULL; 4105 ixa->ixa_ipsec_ref[0].ipsr_gen = 0; 4106 ixa->ixa_ipsec_ref[1].ipsr_sa = NULL; 4107 ixa->ixa_ipsec_ref[1].ipsr_bucket = NULL; 4108 ixa->ixa_ipsec_ref[1].ipsr_gen = 0; 4109 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4110 } 4111 4112 void 4113 ipsec_in_release_refs(ip_recv_attr_t *ira) 4114 { 4115 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) 4116 return; 4117 4118 if (ira->ira_ipsec_ah_sa != NULL) { 4119 IPSA_REFRELE(ira->ira_ipsec_ah_sa); 4120 ira->ira_ipsec_ah_sa = NULL; 4121 } 4122 if (ira->ira_ipsec_esp_sa != NULL) { 4123 IPSA_REFRELE(ira->ira_ipsec_esp_sa); 4124 ira->ira_ipsec_esp_sa = NULL; 4125 } 4126 if (ira->ira_ipsec_action != NULL) { 4127 IPACT_REFRELE(ira->ira_ipsec_action); 4128 ira->ira_ipsec_action = NULL; 4129 } 4130 4131 ira->ira_flags &= ~IRAF_IPSEC_SECURE; 4132 } 4133 4134 /* 4135 * This is called from ire_send_local when a packet 4136 * is looped back. We setup the ip_recv_attr_t "borrowing" the references 4137 * held by the callers. 4138 * Note that we don't do any IPsec but we carry the actions and IPSEC flags 4139 * across so that the fanout policy checks see that IPsec was applied. 4140 * 4141 * The caller should do ipsec_in_release_refs() on the ira by calling 4142 * ira_cleanup(). 4143 */ 4144 void 4145 ipsec_out_to_in(ip_xmit_attr_t *ixa, ill_t *ill, ip_recv_attr_t *ira) 4146 { 4147 ipsec_policy_t *pol; 4148 ipsec_action_t *act; 4149 4150 /* Non-IPsec operations */ 4151 ira->ira_free_flags = 0; 4152 ira->ira_zoneid = ixa->ixa_zoneid; 4153 ira->ira_cred = ixa->ixa_cred; 4154 ira->ira_cpid = ixa->ixa_cpid; 4155 ira->ira_tsl = ixa->ixa_tsl; 4156 ira->ira_ill = ira->ira_rill = ill; 4157 ira->ira_flags = ixa->ixa_flags & IAF_MASK; 4158 ira->ira_no_loop_zoneid = ixa->ixa_no_loop_zoneid; 4159 ira->ira_pktlen = ixa->ixa_pktlen; 4160 ira->ira_ip_hdr_length = ixa->ixa_ip_hdr_length; 4161 ira->ira_protocol = ixa->ixa_protocol; 4162 ira->ira_mhip = NULL; 4163 4164 ira->ira_flags |= IRAF_LOOPBACK | IRAF_L2SRC_LOOPBACK; 4165 4166 ira->ira_sqp = ixa->ixa_sqp; 4167 ira->ira_ring = NULL; 4168 4169 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex; 4170 ira->ira_rifindex = ira->ira_ruifindex; 4171 4172 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 4173 return; 4174 4175 ira->ira_flags |= IRAF_IPSEC_SECURE; 4176 4177 ira->ira_ipsec_ah_sa = NULL; 4178 ira->ira_ipsec_esp_sa = NULL; 4179 4180 act = ixa->ixa_ipsec_action; 4181 if (act == NULL) { 4182 pol = ixa->ixa_ipsec_policy; 4183 if (pol != NULL) { 4184 act = pol->ipsp_act; 4185 IPACT_REFHOLD(act); 4186 } 4187 } 4188 ixa->ixa_ipsec_action = NULL; 4189 ira->ira_ipsec_action = act; 4190 } 4191 4192 /* 4193 * Consults global policy and per-socket policy to see whether this datagram 4194 * should go out secure. If so it updates the ip_xmit_attr_t 4195 * Should not be used when connecting, since then we want to latch the policy. 4196 * 4197 * If connp is NULL we just look at the global policy. 4198 * 4199 * Returns NULL if the packet was dropped, in which case the MIB has 4200 * been incremented and ip_drop_packet done. 4201 */ 4202 mblk_t * 4203 ip_output_attach_policy(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4204 const conn_t *connp, ip_xmit_attr_t *ixa) 4205 { 4206 ipsec_selector_t sel; 4207 boolean_t policy_present; 4208 ip_stack_t *ipst = ixa->ixa_ipst; 4209 netstack_t *ns = ipst->ips_netstack; 4210 ipsec_stack_t *ipss = ns->netstack_ipsec; 4211 ipsec_policy_t *p; 4212 4213 ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen; 4214 ASSERT((ipha != NULL && ip6h == NULL) || 4215 (ip6h != NULL && ipha == NULL)); 4216 4217 if (ipha != NULL) 4218 policy_present = ipss->ipsec_outbound_v4_policy_present; 4219 else 4220 policy_present = ipss->ipsec_outbound_v6_policy_present; 4221 4222 if (!policy_present && (connp == NULL || connp->conn_policy == NULL)) 4223 return (mp); 4224 4225 bzero((void*)&sel, sizeof (sel)); 4226 4227 if (ipha != NULL) { 4228 sel.ips_local_addr_v4 = ipha->ipha_src; 4229 sel.ips_remote_addr_v4 = ip_get_dst(ipha); 4230 sel.ips_isv4 = B_TRUE; 4231 } else { 4232 sel.ips_isv4 = B_FALSE; 4233 sel.ips_local_addr_v6 = ip6h->ip6_src; 4234 sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, mp, NULL); 4235 } 4236 sel.ips_protocol = ixa->ixa_protocol; 4237 4238 if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) { 4239 if (ipha != NULL) { 4240 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 4241 } else { 4242 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 4243 } 4244 /* Note: mp already consumed and ip_drop_packet done */ 4245 return (NULL); 4246 } 4247 4248 ASSERT(ixa->ixa_ipsec_policy == NULL); 4249 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns); 4250 ixa->ixa_ipsec_policy = p; 4251 if (p != NULL) { 4252 ixa->ixa_flags |= IXAF_IPSEC_SECURE; 4253 if (connp == NULL || connp->conn_policy == NULL) 4254 ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY; 4255 } else { 4256 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4257 } 4258 4259 /* 4260 * Copy the right port information. 4261 */ 4262 ixa->ixa_ipsec_src_port = sel.ips_local_port; 4263 ixa->ixa_ipsec_dst_port = sel.ips_remote_port; 4264 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type; 4265 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code; 4266 ixa->ixa_ipsec_proto = sel.ips_protocol; 4267 return (mp); 4268 } 4269 4270 /* 4271 * When appropriate, this function caches inbound and outbound policy 4272 * for this connection. The outbound policy is stored in conn_ixa. 4273 * Note that it can not be used for SCTP since conn_faddr isn't set for SCTP. 4274 * 4275 * XXX need to work out more details about per-interface policy and 4276 * caching here! 4277 * 4278 * XXX may want to split inbound and outbound caching for ill.. 4279 */ 4280 int 4281 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4) 4282 { 4283 boolean_t global_policy_present; 4284 netstack_t *ns = connp->conn_netstack; 4285 ipsec_stack_t *ipss = ns->netstack_ipsec; 4286 4287 connp->conn_ixa->ixa_ipsec_policy_gen = 4288 ipss->ipsec_system_policy.iph_gen; 4289 /* 4290 * There is no policy latching for ICMP sockets because we can't 4291 * decide on which policy to use until we see the packet and get 4292 * type/code selectors. 4293 */ 4294 if (connp->conn_proto == IPPROTO_ICMP || 4295 connp->conn_proto == IPPROTO_ICMPV6) { 4296 connp->conn_in_enforce_policy = 4297 connp->conn_out_enforce_policy = B_TRUE; 4298 if (connp->conn_latch != NULL) { 4299 IPLATCH_REFRELE(connp->conn_latch); 4300 connp->conn_latch = NULL; 4301 } 4302 if (connp->conn_latch_in_policy != NULL) { 4303 IPPOL_REFRELE(connp->conn_latch_in_policy); 4304 connp->conn_latch_in_policy = NULL; 4305 } 4306 if (connp->conn_latch_in_action != NULL) { 4307 IPACT_REFRELE(connp->conn_latch_in_action); 4308 connp->conn_latch_in_action = NULL; 4309 } 4310 if (connp->conn_ixa->ixa_ipsec_policy != NULL) { 4311 IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy); 4312 connp->conn_ixa->ixa_ipsec_policy = NULL; 4313 } 4314 if (connp->conn_ixa->ixa_ipsec_action != NULL) { 4315 IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action); 4316 connp->conn_ixa->ixa_ipsec_action = NULL; 4317 } 4318 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4319 return (0); 4320 } 4321 4322 global_policy_present = isv4 ? 4323 (ipss->ipsec_outbound_v4_policy_present || 4324 ipss->ipsec_inbound_v4_policy_present) : 4325 (ipss->ipsec_outbound_v6_policy_present || 4326 ipss->ipsec_inbound_v6_policy_present); 4327 4328 if ((connp->conn_policy != NULL) || global_policy_present) { 4329 ipsec_selector_t sel; 4330 ipsec_policy_t *p; 4331 4332 if (connp->conn_latch == NULL && 4333 (connp->conn_latch = iplatch_create()) == NULL) { 4334 return (ENOMEM); 4335 } 4336 4337 bzero((void*)&sel, sizeof (sel)); 4338 4339 sel.ips_protocol = connp->conn_proto; 4340 sel.ips_local_port = connp->conn_lport; 4341 sel.ips_remote_port = connp->conn_fport; 4342 sel.ips_is_icmp_inv_acq = 0; 4343 sel.ips_isv4 = isv4; 4344 if (isv4) { 4345 sel.ips_local_addr_v4 = connp->conn_laddr_v4; 4346 sel.ips_remote_addr_v4 = connp->conn_faddr_v4; 4347 } else { 4348 sel.ips_local_addr_v6 = connp->conn_laddr_v6; 4349 sel.ips_remote_addr_v6 = connp->conn_faddr_v6; 4350 } 4351 4352 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns); 4353 if (connp->conn_latch_in_policy != NULL) 4354 IPPOL_REFRELE(connp->conn_latch_in_policy); 4355 connp->conn_latch_in_policy = p; 4356 connp->conn_in_enforce_policy = (p != NULL); 4357 4358 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns); 4359 if (connp->conn_ixa->ixa_ipsec_policy != NULL) 4360 IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy); 4361 connp->conn_ixa->ixa_ipsec_policy = p; 4362 connp->conn_out_enforce_policy = (p != NULL); 4363 if (p != NULL) { 4364 connp->conn_ixa->ixa_flags |= IXAF_IPSEC_SECURE; 4365 if (connp->conn_policy == NULL) { 4366 connp->conn_ixa->ixa_flags |= 4367 IXAF_IPSEC_GLOBAL_POLICY; 4368 } 4369 } else { 4370 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4371 } 4372 /* Clear the latched actions too, in case we're recaching. */ 4373 if (connp->conn_ixa->ixa_ipsec_action != NULL) { 4374 IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action); 4375 connp->conn_ixa->ixa_ipsec_action = NULL; 4376 } 4377 if (connp->conn_latch_in_action != NULL) { 4378 IPACT_REFRELE(connp->conn_latch_in_action); 4379 connp->conn_latch_in_action = NULL; 4380 } 4381 connp->conn_ixa->ixa_ipsec_src_port = sel.ips_local_port; 4382 connp->conn_ixa->ixa_ipsec_dst_port = sel.ips_remote_port; 4383 connp->conn_ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type; 4384 connp->conn_ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code; 4385 connp->conn_ixa->ixa_ipsec_proto = sel.ips_protocol; 4386 } else { 4387 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4388 } 4389 4390 /* 4391 * We may or may not have policy for this endpoint. We still set 4392 * conn_policy_cached so that inbound datagrams don't have to look 4393 * at global policy as policy is considered latched for these 4394 * endpoints. We should not set conn_policy_cached until the conn 4395 * reflects the actual policy. If we *set* this before inheriting 4396 * the policy there is a window where the check 4397 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy 4398 * on the conn (because we have not yet copied the policy on to 4399 * conn and hence not set conn_in_enforce_policy) nor with the 4400 * global policy (because conn_policy_cached is already set). 4401 */ 4402 connp->conn_policy_cached = B_TRUE; 4403 return (0); 4404 } 4405 4406 /* 4407 * When appropriate, this function caches outbound policy for faddr/fport. 4408 * It is used when we are not connected i.e., when we can not latch the 4409 * policy. 4410 */ 4411 void 4412 ipsec_cache_outbound_policy(const conn_t *connp, const in6_addr_t *v6src, 4413 const in6_addr_t *v6dst, in_port_t dstport, ip_xmit_attr_t *ixa) 4414 { 4415 boolean_t isv4 = (ixa->ixa_flags & IXAF_IS_IPV4) != 0; 4416 boolean_t global_policy_present; 4417 netstack_t *ns = connp->conn_netstack; 4418 ipsec_stack_t *ipss = ns->netstack_ipsec; 4419 4420 ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen; 4421 4422 /* 4423 * There is no policy caching for ICMP sockets because we can't 4424 * decide on which policy to use until we see the packet and get 4425 * type/code selectors. 4426 */ 4427 if (connp->conn_proto == IPPROTO_ICMP || 4428 connp->conn_proto == IPPROTO_ICMPV6) { 4429 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4430 if (ixa->ixa_ipsec_policy != NULL) { 4431 IPPOL_REFRELE(ixa->ixa_ipsec_policy); 4432 ixa->ixa_ipsec_policy = NULL; 4433 } 4434 if (ixa->ixa_ipsec_action != NULL) { 4435 IPACT_REFRELE(ixa->ixa_ipsec_action); 4436 ixa->ixa_ipsec_action = NULL; 4437 } 4438 return; 4439 } 4440 4441 global_policy_present = isv4 ? 4442 (ipss->ipsec_outbound_v4_policy_present || 4443 ipss->ipsec_inbound_v4_policy_present) : 4444 (ipss->ipsec_outbound_v6_policy_present || 4445 ipss->ipsec_inbound_v6_policy_present); 4446 4447 if ((connp->conn_policy != NULL) || global_policy_present) { 4448 ipsec_selector_t sel; 4449 ipsec_policy_t *p; 4450 4451 bzero((void*)&sel, sizeof (sel)); 4452 4453 sel.ips_protocol = connp->conn_proto; 4454 sel.ips_local_port = connp->conn_lport; 4455 sel.ips_remote_port = dstport; 4456 sel.ips_is_icmp_inv_acq = 0; 4457 sel.ips_isv4 = isv4; 4458 if (isv4) { 4459 IN6_V4MAPPED_TO_IPADDR(v6src, sel.ips_local_addr_v4); 4460 IN6_V4MAPPED_TO_IPADDR(v6dst, sel.ips_remote_addr_v4); 4461 } else { 4462 sel.ips_local_addr_v6 = *v6src; 4463 sel.ips_remote_addr_v6 = *v6dst; 4464 } 4465 4466 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns); 4467 if (ixa->ixa_ipsec_policy != NULL) 4468 IPPOL_REFRELE(ixa->ixa_ipsec_policy); 4469 ixa->ixa_ipsec_policy = p; 4470 if (p != NULL) { 4471 ixa->ixa_flags |= IXAF_IPSEC_SECURE; 4472 if (connp->conn_policy == NULL) 4473 ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY; 4474 } else { 4475 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4476 } 4477 /* Clear the latched actions too, in case we're recaching. */ 4478 if (ixa->ixa_ipsec_action != NULL) { 4479 IPACT_REFRELE(ixa->ixa_ipsec_action); 4480 ixa->ixa_ipsec_action = NULL; 4481 } 4482 4483 ixa->ixa_ipsec_src_port = sel.ips_local_port; 4484 ixa->ixa_ipsec_dst_port = sel.ips_remote_port; 4485 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type; 4486 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code; 4487 ixa->ixa_ipsec_proto = sel.ips_protocol; 4488 } else { 4489 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4490 if (ixa->ixa_ipsec_policy != NULL) { 4491 IPPOL_REFRELE(ixa->ixa_ipsec_policy); 4492 ixa->ixa_ipsec_policy = NULL; 4493 } 4494 if (ixa->ixa_ipsec_action != NULL) { 4495 IPACT_REFRELE(ixa->ixa_ipsec_action); 4496 ixa->ixa_ipsec_action = NULL; 4497 } 4498 } 4499 } 4500 4501 /* 4502 * Returns B_FALSE if the policy has gone stale. 4503 */ 4504 boolean_t 4505 ipsec_outbound_policy_current(ip_xmit_attr_t *ixa) 4506 { 4507 ipsec_stack_t *ipss = ixa->ixa_ipst->ips_netstack->netstack_ipsec; 4508 4509 if (!(ixa->ixa_flags & IXAF_IPSEC_GLOBAL_POLICY)) 4510 return (B_TRUE); 4511 4512 return (ixa->ixa_ipsec_policy_gen == ipss->ipsec_system_policy.iph_gen); 4513 } 4514 4515 void 4516 iplatch_free(ipsec_latch_t *ipl) 4517 { 4518 if (ipl->ipl_local_cid != NULL) 4519 IPSID_REFRELE(ipl->ipl_local_cid); 4520 if (ipl->ipl_remote_cid != NULL) 4521 IPSID_REFRELE(ipl->ipl_remote_cid); 4522 mutex_destroy(&ipl->ipl_lock); 4523 kmem_free(ipl, sizeof (*ipl)); 4524 } 4525 4526 ipsec_latch_t * 4527 iplatch_create() 4528 { 4529 ipsec_latch_t *ipl = kmem_zalloc(sizeof (*ipl), KM_NOSLEEP); 4530 if (ipl == NULL) 4531 return (ipl); 4532 mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL); 4533 ipl->ipl_refcnt = 1; 4534 return (ipl); 4535 } 4536 4537 /* 4538 * Hash function for ID hash table. 4539 */ 4540 static uint32_t 4541 ipsid_hash(int idtype, char *idstring) 4542 { 4543 uint32_t hval = idtype; 4544 unsigned char c; 4545 4546 while ((c = *idstring++) != 0) { 4547 hval = (hval << 4) | (hval >> 28); 4548 hval ^= c; 4549 } 4550 hval = hval ^ (hval >> 16); 4551 return (hval & (IPSID_HASHSIZE-1)); 4552 } 4553 4554 /* 4555 * Look up identity string in hash table. Return identity object 4556 * corresponding to the name -- either preexisting, or newly allocated. 4557 * 4558 * Return NULL if we need to allocate a new one and can't get memory. 4559 */ 4560 ipsid_t * 4561 ipsid_lookup(int idtype, char *idstring, netstack_t *ns) 4562 { 4563 ipsid_t *retval; 4564 char *nstr; 4565 int idlen = strlen(idstring) + 1; 4566 ipsec_stack_t *ipss = ns->netstack_ipsec; 4567 ipsif_t *bucket; 4568 4569 bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)]; 4570 4571 mutex_enter(&bucket->ipsif_lock); 4572 4573 for (retval = bucket->ipsif_head; retval != NULL; 4574 retval = retval->ipsid_next) { 4575 if (idtype != retval->ipsid_type) 4576 continue; 4577 if (bcmp(idstring, retval->ipsid_cid, idlen) != 0) 4578 continue; 4579 4580 IPSID_REFHOLD(retval); 4581 mutex_exit(&bucket->ipsif_lock); 4582 return (retval); 4583 } 4584 4585 retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP); 4586 if (!retval) { 4587 mutex_exit(&bucket->ipsif_lock); 4588 return (NULL); 4589 } 4590 4591 nstr = kmem_alloc(idlen, KM_NOSLEEP); 4592 if (!nstr) { 4593 mutex_exit(&bucket->ipsif_lock); 4594 kmem_free(retval, sizeof (*retval)); 4595 return (NULL); 4596 } 4597 4598 retval->ipsid_refcnt = 1; 4599 retval->ipsid_next = bucket->ipsif_head; 4600 if (retval->ipsid_next != NULL) 4601 retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next; 4602 retval->ipsid_ptpn = &bucket->ipsif_head; 4603 retval->ipsid_type = idtype; 4604 retval->ipsid_cid = nstr; 4605 bucket->ipsif_head = retval; 4606 bcopy(idstring, nstr, idlen); 4607 mutex_exit(&bucket->ipsif_lock); 4608 4609 return (retval); 4610 } 4611 4612 /* 4613 * Garbage collect the identity hash table. 4614 */ 4615 void 4616 ipsid_gc(netstack_t *ns) 4617 { 4618 int i, len; 4619 ipsid_t *id, *nid; 4620 ipsif_t *bucket; 4621 ipsec_stack_t *ipss = ns->netstack_ipsec; 4622 4623 for (i = 0; i < IPSID_HASHSIZE; i++) { 4624 bucket = &ipss->ipsec_ipsid_buckets[i]; 4625 mutex_enter(&bucket->ipsif_lock); 4626 for (id = bucket->ipsif_head; id != NULL; id = nid) { 4627 nid = id->ipsid_next; 4628 if (id->ipsid_refcnt == 0) { 4629 *id->ipsid_ptpn = nid; 4630 if (nid != NULL) 4631 nid->ipsid_ptpn = id->ipsid_ptpn; 4632 len = strlen(id->ipsid_cid) + 1; 4633 kmem_free(id->ipsid_cid, len); 4634 kmem_free(id, sizeof (*id)); 4635 } 4636 } 4637 mutex_exit(&bucket->ipsif_lock); 4638 } 4639 } 4640 4641 /* 4642 * Return true if two identities are the same. 4643 */ 4644 boolean_t 4645 ipsid_equal(ipsid_t *id1, ipsid_t *id2) 4646 { 4647 if (id1 == id2) 4648 return (B_TRUE); 4649 #ifdef DEBUG 4650 if ((id1 == NULL) || (id2 == NULL)) 4651 return (B_FALSE); 4652 /* 4653 * test that we're interning id's correctly.. 4654 */ 4655 ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) || 4656 (id1->ipsid_type != id2->ipsid_type)); 4657 #endif 4658 return (B_FALSE); 4659 } 4660 4661 /* 4662 * Initialize identity table; called during module initialization. 4663 */ 4664 static void 4665 ipsid_init(netstack_t *ns) 4666 { 4667 ipsif_t *bucket; 4668 int i; 4669 ipsec_stack_t *ipss = ns->netstack_ipsec; 4670 4671 for (i = 0; i < IPSID_HASHSIZE; i++) { 4672 bucket = &ipss->ipsec_ipsid_buckets[i]; 4673 mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL); 4674 } 4675 } 4676 4677 /* 4678 * Free identity table (preparatory to module unload) 4679 */ 4680 static void 4681 ipsid_fini(netstack_t *ns) 4682 { 4683 ipsif_t *bucket; 4684 int i; 4685 ipsec_stack_t *ipss = ns->netstack_ipsec; 4686 4687 for (i = 0; i < IPSID_HASHSIZE; i++) { 4688 bucket = &ipss->ipsec_ipsid_buckets[i]; 4689 ASSERT(bucket->ipsif_head == NULL); 4690 mutex_destroy(&bucket->ipsif_lock); 4691 } 4692 } 4693 4694 /* 4695 * Update the minimum and maximum supported key sizes for the specified 4696 * algorithm, which is either a member of a netstack alg array or about to be, 4697 * and therefore must be called holding ipsec_alg_lock for write. 4698 */ 4699 void 4700 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type, 4701 netstack_t *ns) 4702 { 4703 size_t crypto_min = (size_t)-1, crypto_max = 0; 4704 size_t cur_crypto_min, cur_crypto_max; 4705 boolean_t is_valid; 4706 crypto_mechanism_info_t *mech_infos; 4707 uint_t nmech_infos; 4708 int crypto_rc, i; 4709 crypto_mech_usage_t mask; 4710 ipsec_stack_t *ipss = ns->netstack_ipsec; 4711 4712 ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock)); 4713 4714 /* 4715 * Compute the min, max, and default key sizes (in number of 4716 * increments to the default key size in bits) as defined 4717 * by the algorithm mappings. This range of key sizes is used 4718 * for policy related operations. The effective key sizes 4719 * supported by the framework could be more limited than 4720 * those defined for an algorithm. 4721 */ 4722 alg->alg_default_bits = alg->alg_key_sizes[0]; 4723 alg->alg_default = 0; 4724 if (alg->alg_increment != 0) { 4725 /* key sizes are defined by range & increment */ 4726 alg->alg_minbits = alg->alg_key_sizes[1]; 4727 alg->alg_maxbits = alg->alg_key_sizes[2]; 4728 } else if (alg->alg_nkey_sizes == 0) { 4729 /* no specified key size for algorithm */ 4730 alg->alg_minbits = alg->alg_maxbits = 0; 4731 } else { 4732 /* key sizes are defined by enumeration */ 4733 alg->alg_minbits = (uint16_t)-1; 4734 alg->alg_maxbits = 0; 4735 4736 for (i = 0; i < alg->alg_nkey_sizes; i++) { 4737 if (alg->alg_key_sizes[i] < alg->alg_minbits) 4738 alg->alg_minbits = alg->alg_key_sizes[i]; 4739 if (alg->alg_key_sizes[i] > alg->alg_maxbits) 4740 alg->alg_maxbits = alg->alg_key_sizes[i]; 4741 } 4742 } 4743 4744 if (!(alg->alg_flags & ALG_FLAG_VALID)) 4745 return; 4746 4747 /* 4748 * Mechanisms do not apply to the NULL encryption 4749 * algorithm, so simply return for this case. 4750 */ 4751 if (alg->alg_id == SADB_EALG_NULL) 4752 return; 4753 4754 /* 4755 * Find the min and max key sizes supported by the cryptographic 4756 * framework providers. 4757 */ 4758 4759 /* get the key sizes supported by the framework */ 4760 crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type, 4761 &mech_infos, &nmech_infos, KM_SLEEP); 4762 if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) { 4763 alg->alg_flags &= ~ALG_FLAG_VALID; 4764 return; 4765 } 4766 4767 /* min and max key sizes supported by framework */ 4768 for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) { 4769 int unit_bits; 4770 4771 /* 4772 * Ignore entries that do not support the operations 4773 * needed for the algorithm type. 4774 */ 4775 if (alg_type == IPSEC_ALG_AUTH) { 4776 mask = CRYPTO_MECH_USAGE_MAC; 4777 } else { 4778 mask = CRYPTO_MECH_USAGE_ENCRYPT | 4779 CRYPTO_MECH_USAGE_DECRYPT; 4780 } 4781 if ((mech_infos[i].mi_usage & mask) != mask) 4782 continue; 4783 4784 unit_bits = (mech_infos[i].mi_keysize_unit == 4785 CRYPTO_KEYSIZE_UNIT_IN_BYTES) ? 8 : 1; 4786 /* adjust min/max supported by framework */ 4787 cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits; 4788 cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits; 4789 4790 if (cur_crypto_min < crypto_min) 4791 crypto_min = cur_crypto_min; 4792 4793 /* 4794 * CRYPTO_EFFECTIVELY_INFINITE is a special value of 4795 * the crypto framework which means "no upper limit". 4796 */ 4797 if (mech_infos[i].mi_max_key_size == 4798 CRYPTO_EFFECTIVELY_INFINITE) { 4799 crypto_max = (size_t)-1; 4800 } else if (cur_crypto_max > crypto_max) { 4801 crypto_max = cur_crypto_max; 4802 } 4803 4804 is_valid = B_TRUE; 4805 } 4806 4807 kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) * 4808 nmech_infos); 4809 4810 if (!is_valid) { 4811 /* no key sizes supported by framework */ 4812 alg->alg_flags &= ~ALG_FLAG_VALID; 4813 return; 4814 } 4815 4816 /* 4817 * Determine min and max key sizes from alg_key_sizes[]. 4818 * defined for the algorithm entry. Adjust key sizes based on 4819 * those supported by the framework. 4820 */ 4821 alg->alg_ef_default_bits = alg->alg_key_sizes[0]; 4822 4823 /* 4824 * For backwards compatability, assume that the IV length 4825 * is the same as the data length. 4826 */ 4827 alg->alg_ivlen = alg->alg_datalen; 4828 4829 /* 4830 * Copy any algorithm parameters (if provided) into dedicated 4831 * elements in the ipsec_alginfo_t structure. 4832 * There may be a better place to put this code. 4833 */ 4834 for (i = 0; i < alg->alg_nparams; i++) { 4835 switch (i) { 4836 case 0: 4837 /* Initialisation Vector length (bytes) */ 4838 alg->alg_ivlen = alg->alg_params[0]; 4839 break; 4840 case 1: 4841 /* Integrity Check Vector length (bytes) */ 4842 alg->alg_icvlen = alg->alg_params[1]; 4843 break; 4844 case 2: 4845 /* Salt length (bytes) */ 4846 alg->alg_saltlen = (uint8_t)alg->alg_params[2]; 4847 break; 4848 default: 4849 break; 4850 } 4851 } 4852 4853 /* Default if the IV length is not specified. */ 4854 if (alg_type == IPSEC_ALG_ENCR && alg->alg_ivlen == 0) 4855 alg->alg_ivlen = alg->alg_datalen; 4856 4857 alg_flag_check(alg); 4858 4859 if (alg->alg_increment != 0) { 4860 /* supported key sizes are defined by range & increment */ 4861 crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment); 4862 crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment); 4863 4864 alg->alg_ef_minbits = MAX(alg->alg_minbits, 4865 (uint16_t)crypto_min); 4866 alg->alg_ef_maxbits = MIN(alg->alg_maxbits, 4867 (uint16_t)crypto_max); 4868 4869 /* 4870 * If the sizes supported by the framework are outside 4871 * the range of sizes defined by the algorithm mappings, 4872 * the algorithm cannot be used. Check for this 4873 * condition here. 4874 */ 4875 if (alg->alg_ef_minbits > alg->alg_ef_maxbits) { 4876 alg->alg_flags &= ~ALG_FLAG_VALID; 4877 return; 4878 } 4879 if (alg->alg_ef_default_bits < alg->alg_ef_minbits) 4880 alg->alg_ef_default_bits = alg->alg_ef_minbits; 4881 if (alg->alg_ef_default_bits > alg->alg_ef_maxbits) 4882 alg->alg_ef_default_bits = alg->alg_ef_maxbits; 4883 } else if (alg->alg_nkey_sizes == 0) { 4884 /* no specified key size for algorithm */ 4885 alg->alg_ef_minbits = alg->alg_ef_maxbits = 0; 4886 } else { 4887 /* supported key sizes are defined by enumeration */ 4888 alg->alg_ef_minbits = (uint16_t)-1; 4889 alg->alg_ef_maxbits = 0; 4890 4891 for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) { 4892 /* 4893 * Ignore the current key size if it is not in the 4894 * range of sizes supported by the framework. 4895 */ 4896 if (alg->alg_key_sizes[i] < crypto_min || 4897 alg->alg_key_sizes[i] > crypto_max) 4898 continue; 4899 if (alg->alg_key_sizes[i] < alg->alg_ef_minbits) 4900 alg->alg_ef_minbits = alg->alg_key_sizes[i]; 4901 if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits) 4902 alg->alg_ef_maxbits = alg->alg_key_sizes[i]; 4903 is_valid = B_TRUE; 4904 } 4905 4906 if (!is_valid) { 4907 alg->alg_flags &= ~ALG_FLAG_VALID; 4908 return; 4909 } 4910 alg->alg_ef_default = 0; 4911 } 4912 } 4913 4914 /* 4915 * Sanity check parameters provided by ipsecalgs(1m). Assume that 4916 * the algoritm is marked as valid, there is a check at the top 4917 * of this function. If any of the checks below fail, the algorithm 4918 * entry is invalid. 4919 */ 4920 void 4921 alg_flag_check(ipsec_alginfo_t *alg) 4922 { 4923 alg->alg_flags &= ~ALG_FLAG_VALID; 4924 4925 /* 4926 * Can't have the algorithm marked as CCM and GCM. 4927 * Check the ALG_FLAG_COMBINED and ALG_FLAG_COUNTERMODE 4928 * flags are set for CCM & GCM. 4929 */ 4930 if ((alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) == 4931 (ALG_FLAG_CCM|ALG_FLAG_GCM)) 4932 return; 4933 if (alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) { 4934 if (!(alg->alg_flags & ALG_FLAG_COUNTERMODE)) 4935 return; 4936 if (!(alg->alg_flags & ALG_FLAG_COMBINED)) 4937 return; 4938 } 4939 4940 /* 4941 * For ALG_FLAG_COUNTERMODE, check the parameters 4942 * fit in the ipsec_nonce_t structure. 4943 */ 4944 if (alg->alg_flags & ALG_FLAG_COUNTERMODE) { 4945 if (alg->alg_ivlen != sizeof (((ipsec_nonce_t *)NULL)->iv)) 4946 return; 4947 if (alg->alg_saltlen > sizeof (((ipsec_nonce_t *)NULL)->salt)) 4948 return; 4949 } 4950 if ((alg->alg_flags & ALG_FLAG_COMBINED) && 4951 (alg->alg_icvlen == 0)) 4952 return; 4953 4954 /* all is well. */ 4955 alg->alg_flags |= ALG_FLAG_VALID; 4956 } 4957 4958 /* 4959 * Free the memory used by the specified algorithm. 4960 */ 4961 void 4962 ipsec_alg_free(ipsec_alginfo_t *alg) 4963 { 4964 if (alg == NULL) 4965 return; 4966 4967 if (alg->alg_key_sizes != NULL) { 4968 kmem_free(alg->alg_key_sizes, 4969 (alg->alg_nkey_sizes + 1) * sizeof (uint16_t)); 4970 alg->alg_key_sizes = NULL; 4971 } 4972 if (alg->alg_block_sizes != NULL) { 4973 kmem_free(alg->alg_block_sizes, 4974 (alg->alg_nblock_sizes + 1) * sizeof (uint16_t)); 4975 alg->alg_block_sizes = NULL; 4976 } 4977 if (alg->alg_params != NULL) { 4978 kmem_free(alg->alg_params, 4979 (alg->alg_nparams + 1) * sizeof (uint16_t)); 4980 alg->alg_params = NULL; 4981 } 4982 kmem_free(alg, sizeof (*alg)); 4983 } 4984 4985 /* 4986 * Check the validity of the specified key size for an algorithm. 4987 * Returns B_TRUE if key size is valid, B_FALSE otherwise. 4988 */ 4989 boolean_t 4990 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg) 4991 { 4992 if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits) 4993 return (B_FALSE); 4994 4995 if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) { 4996 /* 4997 * If the key sizes are defined by enumeration, the new 4998 * key size must be equal to one of the supported values. 4999 */ 5000 int i; 5001 5002 for (i = 0; i < alg->alg_nkey_sizes; i++) 5003 if (key_size == alg->alg_key_sizes[i]) 5004 break; 5005 if (i == alg->alg_nkey_sizes) 5006 return (B_FALSE); 5007 } 5008 5009 return (B_TRUE); 5010 } 5011 5012 /* 5013 * Callback function invoked by the crypto framework when a provider 5014 * registers or unregisters. This callback updates the algorithms 5015 * tables when a crypto algorithm is no longer available or becomes 5016 * available, and triggers the freeing/creation of context templates 5017 * associated with existing SAs, if needed. 5018 * 5019 * Need to walk all stack instances since the callback is global 5020 * for all instances 5021 */ 5022 void 5023 ipsec_prov_update_callback(uint32_t event, void *event_arg) 5024 { 5025 netstack_handle_t nh; 5026 netstack_t *ns; 5027 5028 netstack_next_init(&nh); 5029 while ((ns = netstack_next(&nh)) != NULL) { 5030 ipsec_prov_update_callback_stack(event, event_arg, ns); 5031 netstack_rele(ns); 5032 } 5033 netstack_next_fini(&nh); 5034 } 5035 5036 static void 5037 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg, 5038 netstack_t *ns) 5039 { 5040 crypto_notify_event_change_t *prov_change = 5041 (crypto_notify_event_change_t *)event_arg; 5042 uint_t algidx, algid, algtype, mech_count, mech_idx; 5043 ipsec_alginfo_t *alg; 5044 ipsec_alginfo_t oalg; 5045 crypto_mech_name_t *mechs; 5046 boolean_t alg_changed = B_FALSE; 5047 ipsec_stack_t *ipss = ns->netstack_ipsec; 5048 5049 /* ignore events for which we didn't register */ 5050 if (event != CRYPTO_EVENT_MECHS_CHANGED) { 5051 ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x " 5052 " received from crypto framework\n", event)); 5053 return; 5054 } 5055 5056 mechs = crypto_get_mech_list(&mech_count, KM_SLEEP); 5057 if (mechs == NULL) 5058 return; 5059 5060 /* 5061 * Walk the list of currently defined IPsec algorithm. Update 5062 * the algorithm valid flag and trigger an update of the 5063 * SAs that depend on that algorithm. 5064 */ 5065 rw_enter(&ipss->ipsec_alg_lock, RW_WRITER); 5066 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) { 5067 for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype]; 5068 algidx++) { 5069 5070 algid = ipss->ipsec_sortlist[algtype][algidx]; 5071 alg = ipss->ipsec_alglists[algtype][algid]; 5072 ASSERT(alg != NULL); 5073 5074 /* 5075 * Skip the algorithms which do not map to the 5076 * crypto framework provider being added or removed. 5077 */ 5078 if (strncmp(alg->alg_mech_name, 5079 prov_change->ec_mech_name, 5080 CRYPTO_MAX_MECH_NAME) != 0) 5081 continue; 5082 5083 /* 5084 * Determine if the mechanism is valid. If it 5085 * is not, mark the algorithm as being invalid. If 5086 * it is, mark the algorithm as being valid. 5087 */ 5088 for (mech_idx = 0; mech_idx < mech_count; mech_idx++) 5089 if (strncmp(alg->alg_mech_name, 5090 mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0) 5091 break; 5092 if (mech_idx == mech_count && 5093 alg->alg_flags & ALG_FLAG_VALID) { 5094 alg->alg_flags &= ~ALG_FLAG_VALID; 5095 alg_changed = B_TRUE; 5096 } else if (mech_idx < mech_count && 5097 !(alg->alg_flags & ALG_FLAG_VALID)) { 5098 alg->alg_flags |= ALG_FLAG_VALID; 5099 alg_changed = B_TRUE; 5100 } 5101 5102 /* 5103 * Update the supported key sizes, regardless 5104 * of whether a crypto provider was added or 5105 * removed. 5106 */ 5107 oalg = *alg; 5108 ipsec_alg_fix_min_max(alg, algtype, ns); 5109 if (!alg_changed && 5110 alg->alg_ef_minbits != oalg.alg_ef_minbits || 5111 alg->alg_ef_maxbits != oalg.alg_ef_maxbits || 5112 alg->alg_ef_default != oalg.alg_ef_default || 5113 alg->alg_ef_default_bits != 5114 oalg.alg_ef_default_bits) 5115 alg_changed = B_TRUE; 5116 5117 /* 5118 * Update the affected SAs if a software provider is 5119 * being added or removed. 5120 */ 5121 if (prov_change->ec_provider_type == 5122 CRYPTO_SW_PROVIDER) 5123 sadb_alg_update(algtype, alg->alg_id, 5124 prov_change->ec_change == 5125 CRYPTO_MECH_ADDED, ns); 5126 } 5127 } 5128 rw_exit(&ipss->ipsec_alg_lock); 5129 crypto_free_mech_list(mechs, mech_count); 5130 5131 if (alg_changed) { 5132 /* 5133 * An algorithm has changed, i.e. it became valid or 5134 * invalid, or its support key sizes have changed. 5135 * Notify ipsecah and ipsecesp of this change so 5136 * that they can send a SADB_REGISTER to their consumers. 5137 */ 5138 ipsecah_algs_changed(ns); 5139 ipsecesp_algs_changed(ns); 5140 } 5141 } 5142 5143 /* 5144 * Registers with the crypto framework to be notified of crypto 5145 * providers changes. Used to update the algorithm tables and 5146 * to free or create context templates if needed. Invoked after IPsec 5147 * is loaded successfully. 5148 * 5149 * This is called separately for each IP instance, so we ensure we only 5150 * register once. 5151 */ 5152 void 5153 ipsec_register_prov_update(void) 5154 { 5155 if (prov_update_handle != NULL) 5156 return; 5157 5158 prov_update_handle = crypto_notify_events( 5159 ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED); 5160 } 5161 5162 /* 5163 * Unregisters from the framework to be notified of crypto providers 5164 * changes. Called from ipsec_policy_g_destroy(). 5165 */ 5166 static void 5167 ipsec_unregister_prov_update(void) 5168 { 5169 if (prov_update_handle != NULL) 5170 crypto_unnotify_events(prov_update_handle); 5171 } 5172 5173 /* 5174 * Tunnel-mode support routines. 5175 */ 5176 5177 /* 5178 * Returns an mblk chain suitable for putnext() if policies match and IPsec 5179 * SAs are available. If there's no per-tunnel policy, or a match comes back 5180 * with no match, then still return the packet and have global policy take 5181 * a crack at it in IP. 5182 * This updates the ip_xmit_attr with the IPsec policy. 5183 * 5184 * Remember -> we can be forwarding packets. Keep that in mind w.r.t. 5185 * inner-packet contents. 5186 */ 5187 mblk_t * 5188 ipsec_tun_outbound(mblk_t *mp, iptun_t *iptun, ipha_t *inner_ipv4, 5189 ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len, 5190 ip_xmit_attr_t *ixa) 5191 { 5192 ipsec_policy_head_t *polhead; 5193 ipsec_selector_t sel; 5194 mblk_t *nmp; 5195 boolean_t is_fragment; 5196 ipsec_policy_t *pol; 5197 ipsec_tun_pol_t *itp = iptun->iptun_itp; 5198 netstack_t *ns = iptun->iptun_ns; 5199 ipsec_stack_t *ipss = ns->netstack_ipsec; 5200 5201 ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL || 5202 outer_ipv4 != NULL && outer_ipv6 == NULL); 5203 /* We take care of inners in a bit. */ 5204 5205 /* Are the IPsec fields initialized at all? */ 5206 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) { 5207 ASSERT(ixa->ixa_ipsec_policy == NULL); 5208 ASSERT(ixa->ixa_ipsec_latch == NULL); 5209 ASSERT(ixa->ixa_ipsec_action == NULL); 5210 ASSERT(ixa->ixa_ipsec_ah_sa == NULL); 5211 ASSERT(ixa->ixa_ipsec_esp_sa == NULL); 5212 } 5213 5214 ASSERT(itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)); 5215 polhead = itp->itp_policy; 5216 5217 bzero(&sel, sizeof (sel)); 5218 if (inner_ipv4 != NULL) { 5219 ASSERT(inner_ipv6 == NULL); 5220 sel.ips_isv4 = B_TRUE; 5221 sel.ips_local_addr_v4 = inner_ipv4->ipha_src; 5222 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst; 5223 sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol; 5224 } else { 5225 ASSERT(inner_ipv6 != NULL); 5226 sel.ips_isv4 = B_FALSE; 5227 sel.ips_local_addr_v6 = inner_ipv6->ip6_src; 5228 /* 5229 * We don't care about routing-header dests in the 5230 * forwarding/tunnel path, so just grab ip6_dst. 5231 */ 5232 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst; 5233 } 5234 5235 if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) { 5236 /* 5237 * Caller can prepend the outer header, which means 5238 * inner_ipv[46] may be stuck in the middle. Pullup the whole 5239 * mess now if need-be, for easier processing later. Don't 5240 * forget to rewire the outer header too. 5241 */ 5242 if (mp->b_cont != NULL) { 5243 nmp = msgpullup(mp, -1); 5244 if (nmp == NULL) { 5245 ip_drop_packet(mp, B_FALSE, NULL, 5246 DROPPER(ipss, ipds_spd_nomem), 5247 &ipss->ipsec_spd_dropper); 5248 return (NULL); 5249 } 5250 freemsg(mp); 5251 mp = nmp; 5252 if (outer_ipv4 != NULL) 5253 outer_ipv4 = (ipha_t *)mp->b_rptr; 5254 else 5255 outer_ipv6 = (ip6_t *)mp->b_rptr; 5256 if (inner_ipv4 != NULL) { 5257 inner_ipv4 = 5258 (ipha_t *)(mp->b_rptr + outer_hdr_len); 5259 } else { 5260 inner_ipv6 = 5261 (ip6_t *)(mp->b_rptr + outer_hdr_len); 5262 } 5263 } 5264 if (inner_ipv4 != NULL) { 5265 is_fragment = IS_V4_FRAGMENT( 5266 inner_ipv4->ipha_fragment_offset_and_flags); 5267 } else { 5268 sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6, mp, 5269 &is_fragment); 5270 } 5271 5272 if (is_fragment) { 5273 ipha_t *oiph; 5274 ipha_t *iph = NULL; 5275 ip6_t *ip6h = NULL; 5276 int hdr_len; 5277 uint16_t ip6_hdr_length; 5278 uint8_t v6_proto; 5279 uint8_t *v6_proto_p; 5280 5281 /* 5282 * We have a fragment we need to track! 5283 */ 5284 mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp, 5285 outer_hdr_len, ipss); 5286 if (mp == NULL) 5287 return (NULL); 5288 ASSERT(mp->b_cont == NULL); 5289 5290 /* 5291 * If we get here, we have a full fragment chain 5292 */ 5293 5294 oiph = (ipha_t *)mp->b_rptr; 5295 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) { 5296 hdr_len = ((outer_hdr_len != 0) ? 5297 IPH_HDR_LENGTH(oiph) : 0); 5298 iph = (ipha_t *)(mp->b_rptr + hdr_len); 5299 } else { 5300 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION); 5301 ip6h = (ip6_t *)mp->b_rptr; 5302 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, 5303 &ip6_hdr_length, &v6_proto_p)) { 5304 ip_drop_packet_chain(mp, B_FALSE, NULL, 5305 DROPPER(ipss, 5306 ipds_spd_malformed_packet), 5307 &ipss->ipsec_spd_dropper); 5308 return (NULL); 5309 } 5310 hdr_len = ip6_hdr_length; 5311 } 5312 outer_hdr_len = hdr_len; 5313 5314 if (sel.ips_isv4) { 5315 if (iph == NULL) { 5316 /* Was v6 outer */ 5317 iph = (ipha_t *)(mp->b_rptr + hdr_len); 5318 } 5319 inner_ipv4 = iph; 5320 sel.ips_local_addr_v4 = inner_ipv4->ipha_src; 5321 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst; 5322 sel.ips_protocol = 5323 (uint8_t)inner_ipv4->ipha_protocol; 5324 } else { 5325 inner_ipv6 = (ip6_t *)(mp->b_rptr + 5326 hdr_len); 5327 sel.ips_local_addr_v6 = inner_ipv6->ip6_src; 5328 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst; 5329 if (!ip_hdr_length_nexthdr_v6(mp, 5330 inner_ipv6, &ip6_hdr_length, &v6_proto_p)) { 5331 ip_drop_packet_chain(mp, B_FALSE, NULL, 5332 DROPPER(ipss, 5333 ipds_spd_malformed_frag), 5334 &ipss->ipsec_spd_dropper); 5335 return (NULL); 5336 } 5337 v6_proto = *v6_proto_p; 5338 sel.ips_protocol = v6_proto; 5339 #ifdef FRAGCACHE_DEBUG 5340 cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n", 5341 sel.ips_protocol); 5342 #endif 5343 } 5344 /* Ports are extracted below */ 5345 } 5346 5347 /* Get ports... */ 5348 if (!ipsec_init_outbound_ports(&sel, mp, 5349 inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) { 5350 /* callee did ip_drop_packet_chain() on mp. */ 5351 return (NULL); 5352 } 5353 #ifdef FRAGCACHE_DEBUG 5354 if (inner_ipv4 != NULL) 5355 cmn_err(CE_WARN, 5356 "(v4) sel.ips_protocol = %d, " 5357 "sel.ips_local_port = %d, " 5358 "sel.ips_remote_port = %d\n", 5359 sel.ips_protocol, ntohs(sel.ips_local_port), 5360 ntohs(sel.ips_remote_port)); 5361 if (inner_ipv6 != NULL) 5362 cmn_err(CE_WARN, 5363 "(v6) sel.ips_protocol = %d, " 5364 "sel.ips_local_port = %d, " 5365 "sel.ips_remote_port = %d\n", 5366 sel.ips_protocol, ntohs(sel.ips_local_port), 5367 ntohs(sel.ips_remote_port)); 5368 #endif 5369 /* Success so far! */ 5370 } 5371 rw_enter(&polhead->iph_lock, RW_READER); 5372 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, &sel); 5373 rw_exit(&polhead->iph_lock); 5374 if (pol == NULL) { 5375 /* 5376 * No matching policy on this tunnel, drop the packet. 5377 * 5378 * NOTE: Tunnel-mode tunnels are different from the 5379 * IP global transport mode policy head. For a tunnel-mode 5380 * tunnel, we drop the packet in lieu of passing it 5381 * along accepted the way a global-policy miss would. 5382 * 5383 * NOTE2: "negotiate transport" tunnels should match ALL 5384 * inbound packets, but we do not uncomment the ASSERT() 5385 * below because if/when we open PF_POLICY, a user can 5386 * shoot themself in the foot with a 0 priority. 5387 */ 5388 5389 /* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */ 5390 #ifdef FRAGCACHE_DEBUG 5391 cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel " 5392 "per-port policy\n"); 5393 #endif 5394 ip_drop_packet_chain(mp, B_FALSE, NULL, 5395 DROPPER(ipss, ipds_spd_explicit), 5396 &ipss->ipsec_spd_dropper); 5397 return (NULL); 5398 } 5399 5400 #ifdef FRAGCACHE_DEBUG 5401 cmn_err(CE_WARN, "Having matching tunnel per-port policy\n"); 5402 #endif 5403 5404 /* 5405 * NOTE: ixa_cleanup() function will release pol references. 5406 */ 5407 ixa->ixa_ipsec_policy = pol; 5408 /* 5409 * NOTE: There is a subtle difference between iptun_zoneid and 5410 * iptun_connp->conn_zoneid explained in iptun_conn_create(). When 5411 * interacting with the ip module, we must use conn_zoneid. 5412 */ 5413 ixa->ixa_zoneid = iptun->iptun_connp->conn_zoneid; 5414 5415 ASSERT((outer_ipv4 != NULL) ? (ixa->ixa_flags & IXAF_IS_IPV4) : 5416 !(ixa->ixa_flags & IXAF_IS_IPV4)); 5417 ASSERT(ixa->ixa_ipsec_policy != NULL); 5418 ixa->ixa_flags |= IXAF_IPSEC_SECURE; 5419 5420 if (!(itp->itp_flags & ITPF_P_TUNNEL)) { 5421 /* Set up transport mode for tunnelled packets. */ 5422 ixa->ixa_ipsec_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP : 5423 IPPROTO_IPV6; 5424 return (mp); 5425 } 5426 5427 /* Fill in tunnel-mode goodies here. */ 5428 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 5429 /* XXX Do I need to fill in all of the goodies here? */ 5430 if (inner_ipv4) { 5431 ixa->ixa_ipsec_inaf = AF_INET; 5432 ixa->ixa_ipsec_insrc[0] = 5433 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4; 5434 ixa->ixa_ipsec_indst[0] = 5435 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4; 5436 } else { 5437 ixa->ixa_ipsec_inaf = AF_INET6; 5438 ixa->ixa_ipsec_insrc[0] = 5439 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0]; 5440 ixa->ixa_ipsec_insrc[1] = 5441 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1]; 5442 ixa->ixa_ipsec_insrc[2] = 5443 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2]; 5444 ixa->ixa_ipsec_insrc[3] = 5445 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3]; 5446 ixa->ixa_ipsec_indst[0] = 5447 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0]; 5448 ixa->ixa_ipsec_indst[1] = 5449 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1]; 5450 ixa->ixa_ipsec_indst[2] = 5451 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2]; 5452 ixa->ixa_ipsec_indst[3] = 5453 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3]; 5454 } 5455 ixa->ixa_ipsec_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen; 5456 ixa->ixa_ipsec_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen; 5457 /* NOTE: These are used for transport mode too. */ 5458 ixa->ixa_ipsec_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport; 5459 ixa->ixa_ipsec_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport; 5460 ixa->ixa_ipsec_proto = pol->ipsp_sel->ipsl_key.ipsl_proto; 5461 5462 return (mp); 5463 } 5464 5465 /* 5466 * NOTE: The following releases pol's reference and 5467 * calls ip_drop_packet() for me on NULL returns. 5468 */ 5469 mblk_t * 5470 ipsec_check_ipsecin_policy_reasm(mblk_t *attr_mp, ipsec_policy_t *pol, 5471 ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns) 5472 { 5473 /* Assume attr_mp is a chain of b_next-linked ip_recv_attr mblk. */ 5474 mblk_t *data_chain = NULL, *data_tail = NULL; 5475 mblk_t *next; 5476 mblk_t *data_mp; 5477 ip_recv_attr_t iras; 5478 5479 while (attr_mp != NULL) { 5480 ASSERT(ip_recv_attr_is_mblk(attr_mp)); 5481 next = attr_mp->b_next; 5482 attr_mp->b_next = NULL; /* No tripping asserts. */ 5483 5484 data_mp = attr_mp->b_cont; 5485 attr_mp->b_cont = NULL; 5486 if (!ip_recv_attr_from_mblk(attr_mp, &iras)) { 5487 /* The ill or ip_stack_t disappeared on us */ 5488 freemsg(data_mp); /* ip_drop_packet?? */ 5489 ira_cleanup(&iras, B_TRUE); 5490 goto fail; 5491 } 5492 5493 /* 5494 * Need IPPOL_REFHOLD(pol) for extras because 5495 * ipsecin_policy does the refrele. 5496 */ 5497 IPPOL_REFHOLD(pol); 5498 5499 data_mp = ipsec_check_ipsecin_policy(data_mp, pol, inner_ipv4, 5500 inner_ipv6, pkt_unique, &iras, ns); 5501 ira_cleanup(&iras, B_TRUE); 5502 5503 if (data_mp == NULL) 5504 goto fail; 5505 5506 if (data_tail == NULL) { 5507 /* First one */ 5508 data_chain = data_tail = data_mp; 5509 } else { 5510 data_tail->b_next = data_mp; 5511 data_tail = data_mp; 5512 } 5513 attr_mp = next; 5514 } 5515 /* 5516 * One last release because either the loop bumped it up, or we never 5517 * called ipsec_check_ipsecin_policy(). 5518 */ 5519 IPPOL_REFRELE(pol); 5520 5521 /* data_chain is ready for return to tun module. */ 5522 return (data_chain); 5523 5524 fail: 5525 /* 5526 * Need to get rid of any extra pol 5527 * references, and any remaining bits as well. 5528 */ 5529 IPPOL_REFRELE(pol); 5530 ipsec_freemsg_chain(data_chain); 5531 ipsec_freemsg_chain(next); /* ipdrop stats? */ 5532 return (NULL); 5533 } 5534 5535 /* 5536 * Return a message if the inbound packet passed an IPsec policy check. Returns 5537 * NULL if it failed or if it is a fragment needing its friends before a 5538 * policy check can be performed. 5539 * 5540 * Expects a non-NULL data_mp, and a non-NULL polhead. 5541 * The returned mblk may be a b_next chain of packets if fragments 5542 * neeeded to be collected for a proper policy check. 5543 * 5544 * This function calls ip_drop_packet() on data_mp if need be. 5545 * 5546 * NOTE: outer_hdr_len is signed. If it's a negative value, the caller 5547 * is inspecting an ICMP packet. 5548 */ 5549 mblk_t * 5550 ipsec_tun_inbound(ip_recv_attr_t *ira, mblk_t *data_mp, ipsec_tun_pol_t *itp, 5551 ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4, 5552 ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns) 5553 { 5554 ipsec_policy_head_t *polhead; 5555 ipsec_selector_t sel; 5556 ipsec_policy_t *pol; 5557 uint16_t tmpport; 5558 selret_t rc; 5559 boolean_t port_policy_present, is_icmp, global_present; 5560 in6_addr_t tmpaddr; 5561 ipaddr_t tmp4; 5562 uint8_t flags, *inner_hdr; 5563 ipsec_stack_t *ipss = ns->netstack_ipsec; 5564 5565 sel.ips_is_icmp_inv_acq = 0; 5566 5567 if (outer_ipv4 != NULL) { 5568 ASSERT(outer_ipv6 == NULL); 5569 global_present = ipss->ipsec_inbound_v4_policy_present; 5570 } else { 5571 ASSERT(outer_ipv6 != NULL); 5572 global_present = ipss->ipsec_inbound_v6_policy_present; 5573 } 5574 5575 ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL || 5576 inner_ipv4 == NULL && inner_ipv6 != NULL); 5577 5578 if (outer_hdr_len < 0) { 5579 outer_hdr_len = (-outer_hdr_len); 5580 is_icmp = B_TRUE; 5581 } else { 5582 is_icmp = B_FALSE; 5583 } 5584 5585 if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) { 5586 mblk_t *mp = data_mp; 5587 5588 polhead = itp->itp_policy; 5589 /* 5590 * We need to perform full Tunnel-Mode enforcement, 5591 * and we need to have inner-header data for such enforcement. 5592 * 5593 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound 5594 * and on return. 5595 */ 5596 5597 port_policy_present = ((itp->itp_flags & 5598 ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE); 5599 /* 5600 * NOTE: Even if our policy is transport mode, set the 5601 * SEL_TUNNEL_MODE flag so ipsec_init_inbound_sel() can 5602 * do the right thing w.r.t. outer headers. 5603 */ 5604 flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) | 5605 (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE); 5606 5607 rc = ipsec_init_inbound_sel(&sel, data_mp, inner_ipv4, 5608 inner_ipv6, flags); 5609 5610 switch (rc) { 5611 case SELRET_NOMEM: 5612 ip_drop_packet(data_mp, B_TRUE, NULL, 5613 DROPPER(ipss, ipds_spd_nomem), 5614 &ipss->ipsec_spd_dropper); 5615 return (NULL); 5616 case SELRET_TUNFRAG: 5617 /* 5618 * At this point, if we're cleartext, we don't want 5619 * to go there. 5620 */ 5621 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 5622 ip_drop_packet(data_mp, B_TRUE, NULL, 5623 DROPPER(ipss, ipds_spd_got_clear), 5624 &ipss->ipsec_spd_dropper); 5625 return (NULL); 5626 } 5627 5628 /* 5629 * Inner and outer headers may not be contiguous. 5630 * Pullup the data_mp now to satisfy assumptions of 5631 * ipsec_fragcache_add() 5632 */ 5633 if (data_mp->b_cont != NULL) { 5634 mblk_t *nmp; 5635 5636 nmp = msgpullup(data_mp, -1); 5637 if (nmp == NULL) { 5638 ip_drop_packet(data_mp, B_TRUE, NULL, 5639 DROPPER(ipss, ipds_spd_nomem), 5640 &ipss->ipsec_spd_dropper); 5641 return (NULL); 5642 } 5643 freemsg(data_mp); 5644 data_mp = nmp; 5645 if (outer_ipv4 != NULL) 5646 outer_ipv4 = 5647 (ipha_t *)data_mp->b_rptr; 5648 else 5649 outer_ipv6 = 5650 (ip6_t *)data_mp->b_rptr; 5651 if (inner_ipv4 != NULL) { 5652 inner_ipv4 = 5653 (ipha_t *)(data_mp->b_rptr + 5654 outer_hdr_len); 5655 } else { 5656 inner_ipv6 = 5657 (ip6_t *)(data_mp->b_rptr + 5658 outer_hdr_len); 5659 } 5660 } 5661 5662 /* 5663 * If we need to queue the packet. First we 5664 * get an mblk with the attributes. ipsec_fragcache_add 5665 * will prepend that to the queued data and return 5666 * a list of b_next messages each of which starts with 5667 * the attribute mblk. 5668 */ 5669 mp = ip_recv_attr_to_mblk(ira); 5670 if (mp == NULL) { 5671 ip_drop_packet(data_mp, B_TRUE, NULL, 5672 DROPPER(ipss, ipds_spd_nomem), 5673 &ipss->ipsec_spd_dropper); 5674 return (NULL); 5675 } 5676 5677 mp = ipsec_fragcache_add(&itp->itp_fragcache, 5678 mp, data_mp, outer_hdr_len, ipss); 5679 5680 if (mp == NULL) { 5681 /* 5682 * Data is cached, fragment chain is not 5683 * complete. 5684 */ 5685 return (NULL); 5686 } 5687 5688 /* 5689 * If we get here, we have a full fragment chain. 5690 * Reacquire headers and selectors from first fragment. 5691 */ 5692 ASSERT(ip_recv_attr_is_mblk(mp)); 5693 data_mp = mp->b_cont; 5694 inner_hdr = data_mp->b_rptr; 5695 if (outer_ipv4 != NULL) { 5696 inner_hdr += IPH_HDR_LENGTH( 5697 (ipha_t *)data_mp->b_rptr); 5698 } else { 5699 inner_hdr += ip_hdr_length_v6(data_mp, 5700 (ip6_t *)data_mp->b_rptr); 5701 } 5702 ASSERT(inner_hdr <= data_mp->b_wptr); 5703 5704 if (inner_ipv4 != NULL) { 5705 inner_ipv4 = (ipha_t *)inner_hdr; 5706 inner_ipv6 = NULL; 5707 } else { 5708 inner_ipv6 = (ip6_t *)inner_hdr; 5709 inner_ipv4 = NULL; 5710 } 5711 5712 /* 5713 * Use SEL_TUNNEL_MODE to take into account the outer 5714 * header. Use SEL_POST_FRAG so we always get ports. 5715 */ 5716 rc = ipsec_init_inbound_sel(&sel, data_mp, 5717 inner_ipv4, inner_ipv6, 5718 SEL_TUNNEL_MODE | SEL_POST_FRAG); 5719 switch (rc) { 5720 case SELRET_SUCCESS: 5721 /* 5722 * Get to same place as first caller's 5723 * SELRET_SUCCESS case. 5724 */ 5725 break; 5726 case SELRET_NOMEM: 5727 ip_drop_packet_chain(mp, B_TRUE, NULL, 5728 DROPPER(ipss, ipds_spd_nomem), 5729 &ipss->ipsec_spd_dropper); 5730 return (NULL); 5731 case SELRET_BADPKT: 5732 ip_drop_packet_chain(mp, B_TRUE, NULL, 5733 DROPPER(ipss, ipds_spd_malformed_frag), 5734 &ipss->ipsec_spd_dropper); 5735 return (NULL); 5736 case SELRET_TUNFRAG: 5737 cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)"); 5738 /* FALLTHRU */ 5739 default: 5740 cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)" 5741 " returns bizarro 0x%x", rc); 5742 /* Guaranteed panic! */ 5743 ASSERT(rc == SELRET_NOMEM); 5744 return (NULL); 5745 } 5746 /* FALLTHRU */ 5747 case SELRET_SUCCESS: 5748 /* 5749 * Common case: 5750 * No per-port policy or a non-fragment. Keep going. 5751 */ 5752 break; 5753 case SELRET_BADPKT: 5754 /* 5755 * We may receive ICMP (with IPv6 inner) packets that 5756 * trigger this return value. Send 'em in for 5757 * enforcement checking. 5758 */ 5759 cmn_err(CE_NOTE, "ipsec_tun_inbound(): " 5760 "sending 'bad packet' in for enforcement"); 5761 break; 5762 default: 5763 cmn_err(CE_WARN, 5764 "ipsec_init_inbound_sel() returns bizarro 0x%x", 5765 rc); 5766 ASSERT(rc == SELRET_NOMEM); /* Guaranteed panic! */ 5767 return (NULL); 5768 } 5769 5770 if (is_icmp) { 5771 /* 5772 * Swap local/remote because this is an ICMP packet. 5773 */ 5774 tmpaddr = sel.ips_local_addr_v6; 5775 sel.ips_local_addr_v6 = sel.ips_remote_addr_v6; 5776 sel.ips_remote_addr_v6 = tmpaddr; 5777 tmpport = sel.ips_local_port; 5778 sel.ips_local_port = sel.ips_remote_port; 5779 sel.ips_remote_port = tmpport; 5780 } 5781 5782 /* find_policy_head() */ 5783 rw_enter(&polhead->iph_lock, RW_READER); 5784 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND, 5785 &sel); 5786 rw_exit(&polhead->iph_lock); 5787 if (pol != NULL) { 5788 uint64_t pkt_unique; 5789 5790 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 5791 if (!pol->ipsp_act->ipa_allow_clear) { 5792 /* 5793 * XXX should never get here with 5794 * tunnel reassembled fragments? 5795 */ 5796 ASSERT(mp == data_mp); 5797 ip_drop_packet(data_mp, B_TRUE, NULL, 5798 DROPPER(ipss, ipds_spd_got_clear), 5799 &ipss->ipsec_spd_dropper); 5800 IPPOL_REFRELE(pol); 5801 return (NULL); 5802 } else { 5803 IPPOL_REFRELE(pol); 5804 return (mp); 5805 } 5806 } 5807 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port, 5808 sel.ips_local_port, 5809 (inner_ipv4 == NULL) ? IPPROTO_IPV6 : 5810 IPPROTO_ENCAP, sel.ips_protocol); 5811 5812 /* 5813 * NOTE: The following releases pol's reference and 5814 * calls ip_drop_packet() for me on NULL returns. 5815 * 5816 * "sel" is still good here, so let's use it! 5817 */ 5818 if (data_mp == mp) { 5819 /* A single packet without attributes */ 5820 data_mp = ipsec_check_ipsecin_policy(data_mp, 5821 pol, inner_ipv4, inner_ipv6, pkt_unique, 5822 ira, ns); 5823 } else { 5824 /* 5825 * We pass in the b_next chain of attr_mp's 5826 * and get back a b_next chain of data_mp's. 5827 */ 5828 data_mp = ipsec_check_ipsecin_policy_reasm(mp, 5829 pol, inner_ipv4, inner_ipv6, pkt_unique, 5830 ns); 5831 } 5832 return (data_mp); 5833 } 5834 5835 /* 5836 * Else fallthru and check the global policy on the outer 5837 * header(s) if this tunnel is an old-style transport-mode 5838 * one. Drop the packet explicitly (no policy entry) for 5839 * a new-style tunnel-mode tunnel. 5840 */ 5841 if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) { 5842 ip_drop_packet_chain(data_mp, B_TRUE, NULL, 5843 DROPPER(ipss, ipds_spd_explicit), 5844 &ipss->ipsec_spd_dropper); 5845 return (NULL); 5846 } 5847 } 5848 5849 /* 5850 * NOTE: If we reach here, we will not have packet chains from 5851 * fragcache_add(), because the only way I get chains is on a 5852 * tunnel-mode tunnel, which either returns with a pass, or gets 5853 * hit by the ip_drop_packet_chain() call right above here. 5854 */ 5855 ASSERT(data_mp->b_next == NULL); 5856 5857 /* If no per-tunnel security, check global policy now. */ 5858 if ((ira->ira_flags & IRAF_IPSEC_SECURE) && !global_present) { 5859 if (ira->ira_flags & IRAF_TRUSTED_ICMP) { 5860 /* 5861 * This is an ICMP message that was geenrated locally. 5862 * We should accept it. 5863 */ 5864 return (data_mp); 5865 } 5866 5867 ip_drop_packet(data_mp, B_TRUE, NULL, 5868 DROPPER(ipss, ipds_spd_got_secure), 5869 &ipss->ipsec_spd_dropper); 5870 return (NULL); 5871 } 5872 5873 if (is_icmp) { 5874 /* 5875 * For ICMP packets, "outer_ipvN" is set to the outer header 5876 * that is *INSIDE* the ICMP payload. For global policy 5877 * checking, we need to reverse src/dst on the payload in 5878 * order to construct selectors appropriately. See "ripha" 5879 * constructions in ip.c. To avoid a bug like 6478464 (see 5880 * earlier in this file), we will actually exchange src/dst 5881 * in the packet, and reverse if after the call to 5882 * ipsec_check_global_policy(). 5883 */ 5884 if (outer_ipv4 != NULL) { 5885 tmp4 = outer_ipv4->ipha_src; 5886 outer_ipv4->ipha_src = outer_ipv4->ipha_dst; 5887 outer_ipv4->ipha_dst = tmp4; 5888 } else { 5889 ASSERT(outer_ipv6 != NULL); 5890 tmpaddr = outer_ipv6->ip6_src; 5891 outer_ipv6->ip6_src = outer_ipv6->ip6_dst; 5892 outer_ipv6->ip6_dst = tmpaddr; 5893 } 5894 } 5895 5896 data_mp = ipsec_check_global_policy(data_mp, NULL, outer_ipv4, 5897 outer_ipv6, ira, ns); 5898 if (data_mp == NULL) 5899 return (NULL); 5900 5901 if (is_icmp) { 5902 /* Set things back to normal. */ 5903 if (outer_ipv4 != NULL) { 5904 tmp4 = outer_ipv4->ipha_src; 5905 outer_ipv4->ipha_src = outer_ipv4->ipha_dst; 5906 outer_ipv4->ipha_dst = tmp4; 5907 } else { 5908 /* No need for ASSERT()s now. */ 5909 tmpaddr = outer_ipv6->ip6_src; 5910 outer_ipv6->ip6_src = outer_ipv6->ip6_dst; 5911 outer_ipv6->ip6_dst = tmpaddr; 5912 } 5913 } 5914 5915 /* 5916 * At this point, we pretend it's a cleartext accepted 5917 * packet. 5918 */ 5919 return (data_mp); 5920 } 5921 5922 /* 5923 * AVL comparison routine for our list of tunnel polheads. 5924 */ 5925 static int 5926 tunnel_compare(const void *arg1, const void *arg2) 5927 { 5928 ipsec_tun_pol_t *left, *right; 5929 int rc; 5930 5931 left = (ipsec_tun_pol_t *)arg1; 5932 right = (ipsec_tun_pol_t *)arg2; 5933 5934 rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ); 5935 return (rc == 0 ? rc : (rc > 0 ? 1 : -1)); 5936 } 5937 5938 /* 5939 * Free a tunnel policy node. 5940 */ 5941 void 5942 itp_free(ipsec_tun_pol_t *node, netstack_t *ns) 5943 { 5944 if (node->itp_policy != NULL) { 5945 IPPH_REFRELE(node->itp_policy, ns); 5946 node->itp_policy = NULL; 5947 } 5948 if (node->itp_inactive != NULL) { 5949 IPPH_REFRELE(node->itp_inactive, ns); 5950 node->itp_inactive = NULL; 5951 } 5952 mutex_destroy(&node->itp_lock); 5953 kmem_free(node, sizeof (*node)); 5954 } 5955 5956 void 5957 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns) 5958 { 5959 ipsec_stack_t *ipss = ns->netstack_ipsec; 5960 5961 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER); 5962 ipss->ipsec_tunnel_policy_gen++; 5963 ipsec_fragcache_uninit(&node->itp_fragcache, ipss); 5964 avl_remove(&ipss->ipsec_tunnel_policies, node); 5965 rw_exit(&ipss->ipsec_tunnel_policy_lock); 5966 ITP_REFRELE(node, ns); 5967 } 5968 5969 /* 5970 * Public interface to look up a tunnel security policy by name. Used by 5971 * spdsock mostly. Returns "node" with a bumped refcnt. 5972 */ 5973 ipsec_tun_pol_t * 5974 get_tunnel_policy(char *name, netstack_t *ns) 5975 { 5976 ipsec_tun_pol_t *node, lookup; 5977 ipsec_stack_t *ipss = ns->netstack_ipsec; 5978 5979 (void) strncpy(lookup.itp_name, name, LIFNAMSIZ); 5980 5981 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER); 5982 node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies, 5983 &lookup, NULL); 5984 if (node != NULL) { 5985 ITP_REFHOLD(node); 5986 } 5987 rw_exit(&ipss->ipsec_tunnel_policy_lock); 5988 5989 return (node); 5990 } 5991 5992 /* 5993 * Public interface to walk all tunnel security polcies. Useful for spdsock 5994 * DUMP operations. iterator() will not consume a reference. 5995 */ 5996 void 5997 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *), 5998 void *arg, netstack_t *ns) 5999 { 6000 ipsec_tun_pol_t *node; 6001 ipsec_stack_t *ipss = ns->netstack_ipsec; 6002 6003 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER); 6004 for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL; 6005 node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) { 6006 iterator(node, arg, ns); 6007 } 6008 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6009 } 6010 6011 /* 6012 * Initialize policy head. This can only fail if there's a memory problem. 6013 */ 6014 static boolean_t 6015 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns) 6016 { 6017 ipsec_stack_t *ipss = ns->netstack_ipsec; 6018 6019 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL); 6020 iph->iph_refs = 1; 6021 iph->iph_gen = 0; 6022 if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize, 6023 KM_SLEEP, B_FALSE, ns) != 0) { 6024 ipsec_polhead_free_table(iph); 6025 return (B_FALSE); 6026 } 6027 ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize); 6028 return (B_TRUE); 6029 } 6030 6031 /* 6032 * Create a tunnel policy node with "name". Set errno with 6033 * ENOMEM if there's a memory problem, and EEXIST if there's an existing 6034 * node. 6035 */ 6036 ipsec_tun_pol_t * 6037 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns) 6038 { 6039 ipsec_tun_pol_t *newbie, *existing; 6040 avl_index_t where; 6041 ipsec_stack_t *ipss = ns->netstack_ipsec; 6042 6043 newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP); 6044 if (newbie == NULL) { 6045 *errno = ENOMEM; 6046 return (NULL); 6047 } 6048 if (!ipsec_fragcache_init(&newbie->itp_fragcache)) { 6049 kmem_free(newbie, sizeof (*newbie)); 6050 *errno = ENOMEM; 6051 return (NULL); 6052 } 6053 6054 (void) strncpy(newbie->itp_name, name, LIFNAMSIZ); 6055 6056 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER); 6057 existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies, 6058 newbie, &where); 6059 if (existing != NULL) { 6060 itp_free(newbie, ns); 6061 *errno = EEXIST; 6062 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6063 return (NULL); 6064 } 6065 ipss->ipsec_tunnel_policy_gen++; 6066 *gen = ipss->ipsec_tunnel_policy_gen; 6067 newbie->itp_refcnt = 2; /* One for the caller, one for the tree. */ 6068 newbie->itp_next_policy_index = 1; 6069 avl_insert(&ipss->ipsec_tunnel_policies, newbie, where); 6070 mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL); 6071 newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t), 6072 KM_NOSLEEP); 6073 if (newbie->itp_policy == NULL) 6074 goto nomem; 6075 newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t), 6076 KM_NOSLEEP); 6077 if (newbie->itp_inactive == NULL) { 6078 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t)); 6079 goto nomem; 6080 } 6081 6082 if (!tunnel_polhead_init(newbie->itp_policy, ns)) { 6083 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t)); 6084 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t)); 6085 goto nomem; 6086 } else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) { 6087 IPPH_REFRELE(newbie->itp_policy, ns); 6088 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t)); 6089 goto nomem; 6090 } 6091 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6092 6093 return (newbie); 6094 nomem: 6095 *errno = ENOMEM; 6096 kmem_free(newbie, sizeof (*newbie)); 6097 return (NULL); 6098 } 6099 6100 /* 6101 * Given two addresses, find a tunnel instance's IPsec policy heads. 6102 * Returns NULL on failure. 6103 */ 6104 ipsec_tun_pol_t * 6105 itp_get_byaddr(uint32_t *laddr, uint32_t *faddr, int af, ip_stack_t *ipst) 6106 { 6107 conn_t *connp; 6108 iptun_t *iptun; 6109 ipsec_tun_pol_t *itp = NULL; 6110 6111 /* Classifiers are used to "src" being foreign. */ 6112 if (af == AF_INET) { 6113 connp = ipcl_iptun_classify_v4((ipaddr_t *)faddr, 6114 (ipaddr_t *)laddr, ipst); 6115 } else { 6116 ASSERT(af == AF_INET6); 6117 ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)laddr)); 6118 ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)faddr)); 6119 connp = ipcl_iptun_classify_v6((in6_addr_t *)faddr, 6120 (in6_addr_t *)laddr, ipst); 6121 } 6122 6123 if (connp == NULL) 6124 return (NULL); 6125 6126 if (IPCL_IS_IPTUN(connp)) { 6127 iptun = connp->conn_iptun; 6128 if (iptun != NULL) { 6129 itp = iptun->iptun_itp; 6130 if (itp != NULL) { 6131 /* Braces due to the macro's nature... */ 6132 ITP_REFHOLD(itp); 6133 } 6134 } /* Else itp is already NULL. */ 6135 } 6136 6137 CONN_DEC_REF(connp); 6138 return (itp); 6139 } 6140 6141 /* 6142 * Frag cache code, based on SunScreen 3.2 source 6143 * screen/kernel/common/screen_fragcache.c 6144 */ 6145 6146 #define IPSEC_FRAG_TTL_MAX 5 6147 /* 6148 * Note that the following parameters create 256 hash buckets 6149 * with 1024 free entries to be distributed. Things are cleaned 6150 * periodically and are attempted to be cleaned when there is no 6151 * free space, but this system errs on the side of dropping packets 6152 * over creating memory exhaustion. We may decide to make hash 6153 * factor a tunable if this proves to be a bad decision. 6154 */ 6155 #define IPSEC_FRAG_HASH_SLOTS (1<<8) 6156 #define IPSEC_FRAG_HASH_FACTOR 4 6157 #define IPSEC_FRAG_HASH_SIZE (IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR) 6158 6159 #define IPSEC_FRAG_HASH_MASK (IPSEC_FRAG_HASH_SLOTS - 1) 6160 #define IPSEC_FRAG_HASH_FUNC(id) (((id) & IPSEC_FRAG_HASH_MASK) ^ \ 6161 (((id) / \ 6162 (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \ 6163 IPSEC_FRAG_HASH_MASK)) 6164 6165 /* Maximum fragments per packet. 48 bytes payload x 1366 packets > 64KB */ 6166 #define IPSEC_MAX_FRAGS 1366 6167 6168 #define V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \ 6169 IPH_OFFSET) << 3) 6170 #define V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \ 6171 IPH_MF) 6172 6173 /* 6174 * Initialize an ipsec fragcache instance. 6175 * Returns B_FALSE if memory allocation fails. 6176 */ 6177 boolean_t 6178 ipsec_fragcache_init(ipsec_fragcache_t *frag) 6179 { 6180 ipsec_fragcache_entry_t *ftemp; 6181 int i; 6182 6183 mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL); 6184 frag->itpf_ptr = (ipsec_fragcache_entry_t **) 6185 kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) * 6186 IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP); 6187 if (frag->itpf_ptr == NULL) 6188 return (B_FALSE); 6189 6190 ftemp = (ipsec_fragcache_entry_t *) 6191 kmem_zalloc(sizeof (ipsec_fragcache_entry_t) * 6192 IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP); 6193 if (ftemp == NULL) { 6194 kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) * 6195 IPSEC_FRAG_HASH_SLOTS); 6196 return (B_FALSE); 6197 } 6198 6199 frag->itpf_freelist = NULL; 6200 6201 for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) { 6202 ftemp->itpfe_next = frag->itpf_freelist; 6203 frag->itpf_freelist = ftemp; 6204 ftemp++; 6205 } 6206 6207 frag->itpf_expire_hint = 0; 6208 6209 return (B_TRUE); 6210 } 6211 6212 void 6213 ipsec_fragcache_uninit(ipsec_fragcache_t *frag, ipsec_stack_t *ipss) 6214 { 6215 ipsec_fragcache_entry_t *fep; 6216 int i; 6217 6218 mutex_enter(&frag->itpf_lock); 6219 if (frag->itpf_ptr) { 6220 /* Delete any existing fragcache entry chains */ 6221 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) { 6222 fep = (frag->itpf_ptr)[i]; 6223 while (fep != NULL) { 6224 /* Returned fep is next in chain or NULL */ 6225 fep = fragcache_delentry(i, fep, frag, ipss); 6226 } 6227 } 6228 /* 6229 * Chase the pointers back to the beginning 6230 * of the memory allocation and then 6231 * get rid of the allocated freelist 6232 */ 6233 while (frag->itpf_freelist->itpfe_next != NULL) 6234 frag->itpf_freelist = frag->itpf_freelist->itpfe_next; 6235 /* 6236 * XXX - If we ever dynamically grow the freelist 6237 * then we'll have to free entries individually 6238 * or determine how many entries or chunks we have 6239 * grown since the initial allocation. 6240 */ 6241 kmem_free(frag->itpf_freelist, 6242 sizeof (ipsec_fragcache_entry_t) * 6243 IPSEC_FRAG_HASH_SIZE); 6244 /* Free the fragcache structure */ 6245 kmem_free(frag->itpf_ptr, 6246 sizeof (ipsec_fragcache_entry_t *) * 6247 IPSEC_FRAG_HASH_SLOTS); 6248 } 6249 mutex_exit(&frag->itpf_lock); 6250 mutex_destroy(&frag->itpf_lock); 6251 } 6252 6253 /* 6254 * Add a fragment to the fragment cache. Consumes mp if NULL is returned. 6255 * Returns mp if a whole fragment has been assembled, NULL otherwise 6256 * The returned mp could be a b_next chain of fragments. 6257 * 6258 * The iramp argument is set on inbound; NULL if outbound. 6259 */ 6260 mblk_t * 6261 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *iramp, mblk_t *mp, 6262 int outer_hdr_len, ipsec_stack_t *ipss) 6263 { 6264 boolean_t is_v4; 6265 time_t itpf_time; 6266 ipha_t *iph; 6267 ipha_t *oiph; 6268 ip6_t *ip6h = NULL; 6269 uint8_t v6_proto; 6270 uint8_t *v6_proto_p; 6271 uint16_t ip6_hdr_length; 6272 ip_pkt_t ipp; 6273 ip6_frag_t *fraghdr; 6274 ipsec_fragcache_entry_t *fep; 6275 int i; 6276 mblk_t *nmp, *prevmp; 6277 int firstbyte, lastbyte; 6278 int offset; 6279 int last; 6280 boolean_t inbound = (iramp != NULL); 6281 6282 #ifdef FRAGCACHE_DEBUG 6283 cmn_err(CE_WARN, "Fragcache: %s\n", inbound ? "INBOUND" : "OUTBOUND"); 6284 #endif 6285 /* 6286 * You're on the slow path, so insure that every packet in the 6287 * cache is a single-mblk one. 6288 */ 6289 if (mp->b_cont != NULL) { 6290 nmp = msgpullup(mp, -1); 6291 if (nmp == NULL) { 6292 ip_drop_packet(mp, inbound, NULL, 6293 DROPPER(ipss, ipds_spd_nomem), 6294 &ipss->ipsec_spd_dropper); 6295 if (inbound) 6296 (void) ip_recv_attr_free_mblk(iramp); 6297 return (NULL); 6298 } 6299 freemsg(mp); 6300 mp = nmp; 6301 } 6302 6303 mutex_enter(&frag->itpf_lock); 6304 6305 oiph = (ipha_t *)mp->b_rptr; 6306 iph = (ipha_t *)(mp->b_rptr + outer_hdr_len); 6307 6308 if (IPH_HDR_VERSION(iph) == IPV4_VERSION) { 6309 is_v4 = B_TRUE; 6310 } else { 6311 ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION); 6312 ip6h = (ip6_t *)(mp->b_rptr + outer_hdr_len); 6313 6314 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip6_hdr_length, 6315 &v6_proto_p)) { 6316 /* 6317 * Find upper layer protocol. 6318 * If it fails we have a malformed packet 6319 */ 6320 mutex_exit(&frag->itpf_lock); 6321 ip_drop_packet(mp, inbound, NULL, 6322 DROPPER(ipss, ipds_spd_malformed_packet), 6323 &ipss->ipsec_spd_dropper); 6324 if (inbound) 6325 (void) ip_recv_attr_free_mblk(iramp); 6326 return (NULL); 6327 } else { 6328 v6_proto = *v6_proto_p; 6329 } 6330 6331 6332 bzero(&ipp, sizeof (ipp)); 6333 (void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL); 6334 if (!(ipp.ipp_fields & IPPF_FRAGHDR)) { 6335 /* 6336 * We think this is a fragment, but didn't find 6337 * a fragment header. Something is wrong. 6338 */ 6339 mutex_exit(&frag->itpf_lock); 6340 ip_drop_packet(mp, inbound, NULL, 6341 DROPPER(ipss, ipds_spd_malformed_frag), 6342 &ipss->ipsec_spd_dropper); 6343 if (inbound) 6344 (void) ip_recv_attr_free_mblk(iramp); 6345 return (NULL); 6346 } 6347 fraghdr = ipp.ipp_fraghdr; 6348 is_v4 = B_FALSE; 6349 } 6350 6351 /* Anything to cleanup? */ 6352 6353 /* 6354 * This cleanup call could be put in a timer loop 6355 * but it may actually be just as reasonable a decision to 6356 * leave it here. The disadvantage is this only gets called when 6357 * frags are added. The advantage is that it is not 6358 * susceptible to race conditions like a time-based cleanup 6359 * may be. 6360 */ 6361 itpf_time = gethrestime_sec(); 6362 if (itpf_time >= frag->itpf_expire_hint) 6363 ipsec_fragcache_clean(frag, ipss); 6364 6365 /* Lookup to see if there is an existing entry */ 6366 6367 if (is_v4) 6368 i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident); 6369 else 6370 i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident); 6371 6372 for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) { 6373 if (is_v4) { 6374 ASSERT(iph != NULL); 6375 if ((fep->itpfe_id == iph->ipha_ident) && 6376 (fep->itpfe_src == iph->ipha_src) && 6377 (fep->itpfe_dst == iph->ipha_dst) && 6378 (fep->itpfe_proto == iph->ipha_protocol)) 6379 break; 6380 } else { 6381 ASSERT(fraghdr != NULL); 6382 ASSERT(fep != NULL); 6383 if ((fep->itpfe_id == fraghdr->ip6f_ident) && 6384 IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6, 6385 &ip6h->ip6_src) && 6386 IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6, 6387 &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto)) 6388 break; 6389 } 6390 } 6391 6392 if (is_v4) { 6393 firstbyte = V4_FRAG_OFFSET(iph); 6394 lastbyte = firstbyte + ntohs(iph->ipha_length) - 6395 IPH_HDR_LENGTH(iph); 6396 last = (V4_MORE_FRAGS(iph) == 0); 6397 #ifdef FRAGCACHE_DEBUG 6398 cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, " 6399 "is_last_frag = %d, id = %d, mp = %p\n", firstbyte, 6400 lastbyte, last, iph->ipha_ident, mp); 6401 #endif 6402 } else { 6403 firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK); 6404 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) + 6405 sizeof (ip6_t) - ip6_hdr_length; 6406 last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0; 6407 #ifdef FRAGCACHE_DEBUG 6408 cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, " 6409 "is_last_frag = %d, id = %d, fraghdr = %p, mp = %p\n", 6410 firstbyte, lastbyte, last, fraghdr->ip6f_ident, fraghdr, 6411 mp); 6412 #endif 6413 } 6414 6415 /* check for bogus fragments and delete the entry */ 6416 if (firstbyte > 0 && firstbyte <= 8) { 6417 if (fep != NULL) 6418 (void) fragcache_delentry(i, fep, frag, ipss); 6419 mutex_exit(&frag->itpf_lock); 6420 ip_drop_packet(mp, inbound, NULL, 6421 DROPPER(ipss, ipds_spd_malformed_frag), 6422 &ipss->ipsec_spd_dropper); 6423 if (inbound) 6424 (void) ip_recv_attr_free_mblk(iramp); 6425 return (NULL); 6426 } 6427 6428 /* Not found, allocate a new entry */ 6429 if (fep == NULL) { 6430 if (frag->itpf_freelist == NULL) { 6431 /* see if there is some space */ 6432 ipsec_fragcache_clean(frag, ipss); 6433 if (frag->itpf_freelist == NULL) { 6434 mutex_exit(&frag->itpf_lock); 6435 ip_drop_packet(mp, inbound, NULL, 6436 DROPPER(ipss, ipds_spd_nomem), 6437 &ipss->ipsec_spd_dropper); 6438 if (inbound) 6439 (void) ip_recv_attr_free_mblk(iramp); 6440 return (NULL); 6441 } 6442 } 6443 6444 fep = frag->itpf_freelist; 6445 frag->itpf_freelist = fep->itpfe_next; 6446 6447 if (is_v4) { 6448 bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src, 6449 sizeof (struct in_addr)); 6450 bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst, 6451 sizeof (struct in_addr)); 6452 fep->itpfe_id = iph->ipha_ident; 6453 fep->itpfe_proto = iph->ipha_protocol; 6454 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id); 6455 } else { 6456 bcopy((in6_addr_t *)&ip6h->ip6_src, 6457 (in6_addr_t *)&fep->itpfe_src6, 6458 sizeof (struct in6_addr)); 6459 bcopy((in6_addr_t *)&ip6h->ip6_dst, 6460 (in6_addr_t *)&fep->itpfe_dst6, 6461 sizeof (struct in6_addr)); 6462 fep->itpfe_id = fraghdr->ip6f_ident; 6463 fep->itpfe_proto = v6_proto; 6464 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id); 6465 } 6466 itpf_time = gethrestime_sec(); 6467 fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1; 6468 fep->itpfe_last = 0; 6469 fep->itpfe_fraglist = NULL; 6470 fep->itpfe_depth = 0; 6471 fep->itpfe_next = (frag->itpf_ptr)[i]; 6472 (frag->itpf_ptr)[i] = fep; 6473 6474 if (frag->itpf_expire_hint > fep->itpfe_exp) 6475 frag->itpf_expire_hint = fep->itpfe_exp; 6476 6477 } 6478 6479 /* Insert it in the frag list */ 6480 /* List is in order by starting offset of fragments */ 6481 6482 prevmp = NULL; 6483 for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) { 6484 ipha_t *niph; 6485 ipha_t *oniph; 6486 ip6_t *nip6h; 6487 ip_pkt_t nipp; 6488 ip6_frag_t *nfraghdr; 6489 uint16_t nip6_hdr_length; 6490 uint8_t *nv6_proto_p; 6491 int nfirstbyte, nlastbyte; 6492 char *data, *ndata; 6493 mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp); 6494 int hdr_len; 6495 6496 oniph = (ipha_t *)mp->b_rptr; 6497 nip6h = NULL; 6498 niph = NULL; 6499 6500 /* 6501 * Determine outer header type and length and set 6502 * pointers appropriately 6503 */ 6504 6505 if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) { 6506 hdr_len = ((outer_hdr_len != 0) ? 6507 IPH_HDR_LENGTH(oiph) : 0); 6508 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len); 6509 } else { 6510 ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION); 6511 ASSERT(ndata_mp->b_cont == NULL); 6512 nip6h = (ip6_t *)ndata_mp->b_rptr; 6513 (void) ip_hdr_length_nexthdr_v6(ndata_mp, nip6h, 6514 &nip6_hdr_length, &v6_proto_p); 6515 hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0); 6516 } 6517 6518 /* 6519 * Determine inner header type and length and set 6520 * pointers appropriately 6521 */ 6522 6523 if (is_v4) { 6524 if (niph == NULL) { 6525 /* Was v6 outer */ 6526 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len); 6527 } 6528 nfirstbyte = V4_FRAG_OFFSET(niph); 6529 nlastbyte = nfirstbyte + ntohs(niph->ipha_length) - 6530 IPH_HDR_LENGTH(niph); 6531 } else { 6532 ASSERT(ndata_mp->b_cont == NULL); 6533 nip6h = (ip6_t *)(ndata_mp->b_rptr + hdr_len); 6534 if (!ip_hdr_length_nexthdr_v6(ndata_mp, nip6h, 6535 &nip6_hdr_length, &nv6_proto_p)) { 6536 mutex_exit(&frag->itpf_lock); 6537 ip_drop_packet_chain(nmp, inbound, NULL, 6538 DROPPER(ipss, ipds_spd_malformed_frag), 6539 &ipss->ipsec_spd_dropper); 6540 ipsec_freemsg_chain(ndata_mp); 6541 if (inbound) 6542 (void) ip_recv_attr_free_mblk(iramp); 6543 return (NULL); 6544 } 6545 bzero(&nipp, sizeof (nipp)); 6546 (void) ip_find_hdr_v6(ndata_mp, nip6h, B_FALSE, &nipp, 6547 NULL); 6548 nfraghdr = nipp.ipp_fraghdr; 6549 nfirstbyte = ntohs(nfraghdr->ip6f_offlg & 6550 IP6F_OFF_MASK); 6551 nlastbyte = nfirstbyte + ntohs(nip6h->ip6_plen) + 6552 sizeof (ip6_t) - nip6_hdr_length; 6553 } 6554 6555 /* Check for overlapping fragments */ 6556 if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) { 6557 /* 6558 * Overlap Check: 6559 * ~~~~--------- # Check if the newly 6560 * ~ ndata_mp| # received fragment 6561 * ~~~~--------- # overlaps with the 6562 * ---------~~~~~~ # current fragment. 6563 * | mp ~ 6564 * ---------~~~~~~ 6565 */ 6566 if (is_v4) { 6567 data = (char *)iph + IPH_HDR_LENGTH(iph) + 6568 firstbyte - nfirstbyte; 6569 ndata = (char *)niph + IPH_HDR_LENGTH(niph); 6570 } else { 6571 data = (char *)ip6h + 6572 nip6_hdr_length + firstbyte - 6573 nfirstbyte; 6574 ndata = (char *)nip6h + nip6_hdr_length; 6575 } 6576 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) - 6577 firstbyte)) { 6578 /* Overlapping data does not match */ 6579 (void) fragcache_delentry(i, fep, frag, ipss); 6580 mutex_exit(&frag->itpf_lock); 6581 ip_drop_packet(mp, inbound, NULL, 6582 DROPPER(ipss, ipds_spd_overlap_frag), 6583 &ipss->ipsec_spd_dropper); 6584 if (inbound) 6585 (void) ip_recv_attr_free_mblk(iramp); 6586 return (NULL); 6587 } 6588 /* Part of defense for jolt2.c fragmentation attack */ 6589 if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) { 6590 /* 6591 * Check for identical or subset fragments: 6592 * ---------- ~~~~--------~~~~~ 6593 * | nmp | or ~ nmp ~ 6594 * ---------- ~~~~--------~~~~~ 6595 * ---------- ------ 6596 * | mp | | mp | 6597 * ---------- ------ 6598 */ 6599 mutex_exit(&frag->itpf_lock); 6600 ip_drop_packet(mp, inbound, NULL, 6601 DROPPER(ipss, ipds_spd_evil_frag), 6602 &ipss->ipsec_spd_dropper); 6603 if (inbound) 6604 (void) ip_recv_attr_free_mblk(iramp); 6605 return (NULL); 6606 } 6607 6608 } 6609 6610 /* Correct location for this fragment? */ 6611 if (firstbyte <= nfirstbyte) { 6612 /* 6613 * Check if the tail end of the new fragment overlaps 6614 * with the head of the current fragment. 6615 * --------~~~~~~~ 6616 * | nmp ~ 6617 * --------~~~~~~~ 6618 * ~~~~~-------- 6619 * ~ mp | 6620 * ~~~~~-------- 6621 */ 6622 if (lastbyte > nfirstbyte) { 6623 /* Fragments overlap */ 6624 data = (char *)iph + IPH_HDR_LENGTH(iph) + 6625 firstbyte - nfirstbyte; 6626 ndata = (char *)niph + IPH_HDR_LENGTH(niph); 6627 if (is_v4) { 6628 data = (char *)iph + 6629 IPH_HDR_LENGTH(iph) + firstbyte - 6630 nfirstbyte; 6631 ndata = (char *)niph + 6632 IPH_HDR_LENGTH(niph); 6633 } else { 6634 data = (char *)ip6h + 6635 nip6_hdr_length + firstbyte - 6636 nfirstbyte; 6637 ndata = (char *)nip6h + nip6_hdr_length; 6638 } 6639 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) 6640 - nfirstbyte)) { 6641 /* Overlap mismatch */ 6642 (void) fragcache_delentry(i, fep, frag, 6643 ipss); 6644 mutex_exit(&frag->itpf_lock); 6645 ip_drop_packet(mp, inbound, NULL, 6646 DROPPER(ipss, 6647 ipds_spd_overlap_frag), 6648 &ipss->ipsec_spd_dropper); 6649 if (inbound) { 6650 (void) ip_recv_attr_free_mblk( 6651 iramp); 6652 } 6653 return (NULL); 6654 } 6655 } 6656 6657 /* 6658 * Fragment does not illegally overlap and can now 6659 * be inserted into the chain 6660 */ 6661 break; 6662 } 6663 6664 prevmp = nmp; 6665 } 6666 /* Prepend the attributes before we link it in */ 6667 if (iramp != NULL) { 6668 ASSERT(iramp->b_cont == NULL); 6669 iramp->b_cont = mp; 6670 mp = iramp; 6671 iramp = NULL; 6672 } 6673 mp->b_next = nmp; 6674 6675 if (prevmp == NULL) { 6676 fep->itpfe_fraglist = mp; 6677 } else { 6678 prevmp->b_next = mp; 6679 } 6680 if (last) 6681 fep->itpfe_last = 1; 6682 6683 /* Part of defense for jolt2.c fragmentation attack */ 6684 if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) { 6685 (void) fragcache_delentry(i, fep, frag, ipss); 6686 mutex_exit(&frag->itpf_lock); 6687 if (inbound) 6688 mp = ip_recv_attr_free_mblk(mp); 6689 6690 ip_drop_packet(mp, inbound, NULL, 6691 DROPPER(ipss, ipds_spd_max_frags), 6692 &ipss->ipsec_spd_dropper); 6693 return (NULL); 6694 } 6695 6696 /* Check for complete packet */ 6697 6698 if (!fep->itpfe_last) { 6699 mutex_exit(&frag->itpf_lock); 6700 #ifdef FRAGCACHE_DEBUG 6701 cmn_err(CE_WARN, "Fragment cached, last not yet seen.\n"); 6702 #endif 6703 return (NULL); 6704 } 6705 6706 offset = 0; 6707 for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) { 6708 mblk_t *data_mp = (inbound ? mp->b_cont : mp); 6709 int hdr_len; 6710 6711 oiph = (ipha_t *)data_mp->b_rptr; 6712 ip6h = NULL; 6713 iph = NULL; 6714 6715 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) { 6716 hdr_len = ((outer_hdr_len != 0) ? 6717 IPH_HDR_LENGTH(oiph) : 0); 6718 iph = (ipha_t *)(data_mp->b_rptr + hdr_len); 6719 } else { 6720 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION); 6721 ASSERT(data_mp->b_cont == NULL); 6722 ip6h = (ip6_t *)data_mp->b_rptr; 6723 (void) ip_hdr_length_nexthdr_v6(data_mp, ip6h, 6724 &ip6_hdr_length, &v6_proto_p); 6725 hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0); 6726 } 6727 6728 /* Calculate current fragment start/end */ 6729 if (is_v4) { 6730 if (iph == NULL) { 6731 /* Was v6 outer */ 6732 iph = (ipha_t *)(data_mp->b_rptr + hdr_len); 6733 } 6734 firstbyte = V4_FRAG_OFFSET(iph); 6735 lastbyte = firstbyte + ntohs(iph->ipha_length) - 6736 IPH_HDR_LENGTH(iph); 6737 } else { 6738 ASSERT(data_mp->b_cont == NULL); 6739 ip6h = (ip6_t *)(data_mp->b_rptr + hdr_len); 6740 if (!ip_hdr_length_nexthdr_v6(data_mp, ip6h, 6741 &ip6_hdr_length, &v6_proto_p)) { 6742 mutex_exit(&frag->itpf_lock); 6743 ip_drop_packet_chain(mp, inbound, NULL, 6744 DROPPER(ipss, ipds_spd_malformed_frag), 6745 &ipss->ipsec_spd_dropper); 6746 return (NULL); 6747 } 6748 v6_proto = *v6_proto_p; 6749 bzero(&ipp, sizeof (ipp)); 6750 (void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp, 6751 NULL); 6752 fraghdr = ipp.ipp_fraghdr; 6753 firstbyte = ntohs(fraghdr->ip6f_offlg & 6754 IP6F_OFF_MASK); 6755 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) + 6756 sizeof (ip6_t) - ip6_hdr_length; 6757 } 6758 6759 /* 6760 * If this fragment is greater than current offset, 6761 * we have a missing fragment so return NULL 6762 */ 6763 if (firstbyte > offset) { 6764 mutex_exit(&frag->itpf_lock); 6765 #ifdef FRAGCACHE_DEBUG 6766 /* 6767 * Note, this can happen when the last frag 6768 * gets sent through because it is smaller 6769 * than the MTU. It is not necessarily an 6770 * error condition. 6771 */ 6772 cmn_err(CE_WARN, "Frag greater than offset! : " 6773 "missing fragment: firstbyte = %d, offset = %d, " 6774 "mp = %p\n", firstbyte, offset, mp); 6775 #endif 6776 return (NULL); 6777 } 6778 #ifdef FRAGCACHE_DEBUG 6779 cmn_err(CE_WARN, "Frag offsets : " 6780 "firstbyte = %d, offset = %d, mp = %p\n", 6781 firstbyte, offset, mp); 6782 #endif 6783 6784 /* 6785 * If we are at the last fragment, we have the complete 6786 * packet, so rechain things and return it to caller 6787 * for processing 6788 */ 6789 6790 if ((is_v4 && !V4_MORE_FRAGS(iph)) || 6791 (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) { 6792 mp = fep->itpfe_fraglist; 6793 fep->itpfe_fraglist = NULL; 6794 (void) fragcache_delentry(i, fep, frag, ipss); 6795 mutex_exit(&frag->itpf_lock); 6796 6797 if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) > 6798 65535)) || (!is_v4 && (firstbyte + 6799 ntohs(ip6h->ip6_plen) > 65535))) { 6800 /* It is an invalid "ping-o-death" packet */ 6801 /* Discard it */ 6802 ip_drop_packet_chain(mp, inbound, NULL, 6803 DROPPER(ipss, ipds_spd_evil_frag), 6804 &ipss->ipsec_spd_dropper); 6805 return (NULL); 6806 } 6807 #ifdef FRAGCACHE_DEBUG 6808 cmn_err(CE_WARN, "Fragcache returning mp = %p, " 6809 "mp->b_next = %p", mp, mp->b_next); 6810 #endif 6811 /* 6812 * For inbound case, mp has attrmp b_next'd chain 6813 * For outbound case, it is just data mp chain 6814 */ 6815 return (mp); 6816 } 6817 6818 /* 6819 * Update new ending offset if this 6820 * fragment extends the packet 6821 */ 6822 if (offset < lastbyte) 6823 offset = lastbyte; 6824 } 6825 6826 mutex_exit(&frag->itpf_lock); 6827 6828 /* Didn't find last fragment, so return NULL */ 6829 return (NULL); 6830 } 6831 6832 static void 6833 ipsec_fragcache_clean(ipsec_fragcache_t *frag, ipsec_stack_t *ipss) 6834 { 6835 ipsec_fragcache_entry_t *fep; 6836 int i; 6837 ipsec_fragcache_entry_t *earlyfep = NULL; 6838 time_t itpf_time; 6839 int earlyexp; 6840 int earlyi = 0; 6841 6842 ASSERT(MUTEX_HELD(&frag->itpf_lock)); 6843 6844 itpf_time = gethrestime_sec(); 6845 earlyexp = itpf_time + 10000; 6846 6847 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) { 6848 fep = (frag->itpf_ptr)[i]; 6849 while (fep) { 6850 if (fep->itpfe_exp < itpf_time) { 6851 /* found */ 6852 fep = fragcache_delentry(i, fep, frag, ipss); 6853 } else { 6854 if (fep->itpfe_exp < earlyexp) { 6855 earlyfep = fep; 6856 earlyexp = fep->itpfe_exp; 6857 earlyi = i; 6858 } 6859 fep = fep->itpfe_next; 6860 } 6861 } 6862 } 6863 6864 frag->itpf_expire_hint = earlyexp; 6865 6866 /* if (!found) */ 6867 if (frag->itpf_freelist == NULL) 6868 (void) fragcache_delentry(earlyi, earlyfep, frag, ipss); 6869 } 6870 6871 static ipsec_fragcache_entry_t * 6872 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep, 6873 ipsec_fragcache_t *frag, ipsec_stack_t *ipss) 6874 { 6875 ipsec_fragcache_entry_t *targp; 6876 ipsec_fragcache_entry_t *nextp = fep->itpfe_next; 6877 6878 ASSERT(MUTEX_HELD(&frag->itpf_lock)); 6879 6880 /* Free up any fragment list still in cache entry */ 6881 if (fep->itpfe_fraglist != NULL) { 6882 ip_drop_packet_chain(fep->itpfe_fraglist, 6883 ip_recv_attr_is_mblk(fep->itpfe_fraglist), NULL, 6884 DROPPER(ipss, ipds_spd_expired_frags), 6885 &ipss->ipsec_spd_dropper); 6886 } 6887 fep->itpfe_fraglist = NULL; 6888 6889 targp = (frag->itpf_ptr)[slot]; 6890 ASSERT(targp != 0); 6891 6892 if (targp == fep) { 6893 /* unlink from head of hash chain */ 6894 (frag->itpf_ptr)[slot] = nextp; 6895 /* link into free list */ 6896 fep->itpfe_next = frag->itpf_freelist; 6897 frag->itpf_freelist = fep; 6898 return (nextp); 6899 } 6900 6901 /* maybe should use double linked list to make update faster */ 6902 /* must be past front of chain */ 6903 while (targp) { 6904 if (targp->itpfe_next == fep) { 6905 /* unlink from hash chain */ 6906 targp->itpfe_next = nextp; 6907 /* link into free list */ 6908 fep->itpfe_next = frag->itpf_freelist; 6909 frag->itpf_freelist = fep; 6910 return (nextp); 6911 } 6912 targp = targp->itpfe_next; 6913 ASSERT(targp != 0); 6914 } 6915 /* NOTREACHED */ 6916 return (NULL); 6917 } 6918