xref: /illumos-gate/usr/src/uts/common/inet/ip/spd.c (revision 78b6ed601aa3a251030edda42ce9770e9c21567a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * IPsec Security Policy Database.
31  *
32  * This module maintains the SPD and provides routines used by ip and ip6
33  * to apply IPsec policy to inbound and outbound datagrams.
34  *
35  * XXX TODO LIST
36  * Inbound policy:
37  * Put policy failure logging back in here (as policy action flag bit)
38  */
39 
40 #include <sys/types.h>
41 #include <sys/stream.h>
42 #include <sys/stropts.h>
43 #include <sys/sysmacros.h>
44 #include <sys/strsubr.h>
45 #include <sys/strlog.h>
46 #include <sys/cmn_err.h>
47 #include <sys/zone.h>
48 
49 #include <sys/systm.h>
50 #include <sys/param.h>
51 #include <sys/kmem.h>
52 
53 #include <sys/crypto/api.h>
54 
55 #include <inet/common.h>
56 #include <inet/mi.h>
57 
58 #include <netinet/ip6.h>
59 #include <netinet/icmp6.h>
60 #include <netinet/udp.h>
61 
62 #include <inet/ip.h>
63 #include <inet/ip6.h>
64 
65 #include <net/pfkeyv2.h>
66 #include <net/pfpolicy.h>
67 #include <inet/ipsec_info.h>
68 #include <inet/sadb.h>
69 #include <inet/ipsec_impl.h>
70 #include <inet/ipsecah.h>
71 #include <inet/ipsecesp.h>
72 #include <inet/ipdrop.h>
73 #include <inet/ipclassifier.h>
74 
75 static void ipsec_update_present_flags();
76 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *);
77 static void ipsec_out_free(void *);
78 static void ipsec_in_free(void *);
79 static boolean_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
80     ipha_t *, ip6_t *);
81 static mblk_t *ipsec_attach_global_policy(mblk_t *, conn_t *,
82     ipsec_selector_t *);
83 static mblk_t *ipsec_apply_global_policy(mblk_t *, conn_t *,
84     ipsec_selector_t *);
85 static mblk_t *ipsec_check_ipsecin_policy(queue_t *, mblk_t *,
86     ipsec_policy_t *, ipha_t *, ip6_t *);
87 static void ipsec_in_release_refs(ipsec_in_t *);
88 static void ipsec_out_release_refs(ipsec_out_t *);
89 static void ipsec_action_reclaim(void *);
90 static void ipsid_init(void);
91 static void ipsid_fini(void);
92 static boolean_t ipsec_check_ipsecin_action(struct ipsec_in_s *, mblk_t *,
93     struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
94     kstat_named_t **);
95 static int32_t ipsec_act_ovhd(const ipsec_act_t *act);
96 static void ipsec_unregister_prov_update(void);
97 static boolean_t ipsec_compare_action(ipsec_policy_t *p1,
98     ipsec_policy_t *p2);
99 
100 /*
101  * Policy rule index generator.  We assume this won't wrap in the
102  * lifetime of a system.  If we make 2^20 policy changes per second,
103  * this will last 2^44 seconds, or roughly 500,000 years, so we don't
104  * have to worry about reusing policy index values.
105  *
106  * Protected by ipsec_conf_lock.
107  */
108 uint64_t	ipsec_next_policy_index = 1;
109 
110 /*
111  * Active & Inactive system policy roots
112  */
113 static ipsec_policy_head_t system_policy;
114 static ipsec_policy_head_t inactive_policy;
115 
116 /* Packet dropper for generic SPD drops. */
117 static ipdropper_t spd_dropper;
118 
119 /*
120  * For now, use a trivially sized hash table.
121  * In the future we can add the structure canonicalization necessary
122  * to get the hash function to behave correctly..
123  */
124 #define	IPSEC_ACTION_HASH_SIZE 1
125 #define	IPSEC_SEL_HASH_SIZE 1
126 
127 static HASH_HEAD(ipsec_action_s) ipsec_action_hash[IPSEC_ACTION_HASH_SIZE];
128 static HASH_HEAD(ipsec_sel) ipsec_sel_hash[IPSEC_SEL_HASH_SIZE];
129 static kmem_cache_t *ipsec_action_cache;
130 static kmem_cache_t *ipsec_sel_cache;
131 static kmem_cache_t *ipsec_pol_cache;
132 static kmem_cache_t *ipsec_info_cache;
133 
134 boolean_t ipsec_inbound_v4_policy_present = B_FALSE;
135 boolean_t ipsec_outbound_v4_policy_present = B_FALSE;
136 boolean_t ipsec_inbound_v6_policy_present = B_FALSE;
137 boolean_t ipsec_outbound_v6_policy_present = B_FALSE;
138 
139 /*
140  * Because policy needs to know what algorithms are supported, keep the
141  * lists of algorithms here.
142  */
143 
144 kmutex_t alg_lock;
145 uint8_t ipsec_nalgs[IPSEC_NALGTYPES];
146 ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
147 uint8_t ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
148 ipsec_algs_exec_mode_t ipsec_algs_exec_mode[IPSEC_NALGTYPES];
149 static crypto_notify_handle_t prov_update_handle = NULL;
150 
151 #define	ALGBITS_ROUND_DOWN(x, align)	(((x)/(align))*(align))
152 #define	ALGBITS_ROUND_UP(x, align)	ALGBITS_ROUND_DOWN((x)+(align)-1, align)
153 
154 /*
155  * Inbound traffic should have matching identities for both SA's.
156  */
157 
158 #define	SA_IDS_MATCH(sa1, sa2) 						\
159 	(((sa1) == NULL) || ((sa2) == NULL) ||				\
160 	(((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) &&		\
161 	    (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
162 /*
163  * Policy failure messages.
164  */
165 static char *ipsec_policy_failure_msgs[] = {
166 
167 	/* IPSEC_POLICY_NOT_NEEDED */
168 	"%s: Dropping the datagram because the incoming packet "
169 	"is %s, but the recipient expects clear; Source %s, "
170 	"Destination %s.\n",
171 
172 	/* IPSEC_POLICY_MISMATCH */
173 	"%s: Policy Failure for the incoming packet (%s); Source %s, "
174 	"Destination %s.\n",
175 
176 	/* IPSEC_POLICY_AUTH_NOT_NEEDED	*/
177 	"%s: Authentication present while not expected in the "
178 	"incoming %s packet; Source %s, Destination %s.\n",
179 
180 	/* IPSEC_POLICY_ENCR_NOT_NEEDED */
181 	"%s: Encryption present while not expected in the "
182 	"incoming %s packet; Source %s, Destination %s.\n",
183 
184 	/* IPSEC_POLICY_SE_NOT_NEEDED */
185 	"%s: Self-Encapsulation present while not expected in the "
186 	"incoming %s packet; Source %s, Destination %s.\n",
187 };
188 /*
189  * Have a counter for every possible policy message in the previous array.
190  */
191 static uint32_t ipsec_policy_failure_count[IPSEC_POLICY_MAX];
192 /* Time since last ipsec policy failure that printed a message. */
193 hrtime_t ipsec_policy_failure_last = 0;
194 
195 /*
196  * General overviews:
197  *
198  * Locking:
199  *
200  *	All of the system policy structures are protected by a single
201  *	rwlock, ipsec_conf_lock.  These structures are threaded in a
202  *	fairly complex fashion and are not expected to change on a
203  *	regular basis, so this should not cause scaling/contention
204  *	problems.  As a result, policy checks should (hopefully) be MT-hot.
205  *
206  * Allocation policy:
207  *
208  *	We use custom kmem cache types for the various
209  *	bits & pieces of the policy data structures.  All allocations
210  *	use KM_NOSLEEP instead of KM_SLEEP for policy allocation.  The
211  *	policy table is of potentially unbounded size, so we don't
212  *	want to provide a way to hog all system memory with policy
213  *	entries..
214  */
215 
216 /*
217  * Module unload hook.
218  */
219 void
220 ipsec_policy_destroy(void)
221 {
222 	int i;
223 
224 	ip_drop_unregister(&spd_dropper);
225 	ip_drop_destroy();
226 
227 	rw_destroy(&system_policy.iph_lock);
228 	rw_destroy(&inactive_policy.iph_lock);
229 
230 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
231 		mutex_destroy(&(ipsec_action_hash[i].hash_lock));
232 
233 	for (i = 0; i < IPSEC_SEL_HASH_SIZE; i++)
234 		mutex_destroy(&(ipsec_sel_hash[i].hash_lock));
235 
236 	ipsec_unregister_prov_update();
237 
238 	mutex_destroy(&alg_lock);
239 
240 	kmem_cache_destroy(ipsec_action_cache);
241 	kmem_cache_destroy(ipsec_sel_cache);
242 	kmem_cache_destroy(ipsec_pol_cache);
243 	kmem_cache_destroy(ipsec_info_cache);
244 	ipsid_gc();
245 	ipsid_fini();
246 }
247 
248 /*
249  * Module load hook.
250  */
251 void
252 ipsec_policy_init()
253 {
254 	int i;
255 	ipsid_init();
256 
257 	rw_init(&system_policy.iph_lock, NULL, RW_DEFAULT, NULL);
258 	rw_init(&inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL);
259 
260 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
261 		mutex_init(&(ipsec_action_hash[i].hash_lock),
262 		    NULL, MUTEX_DEFAULT, NULL);
263 
264 	for (i = 0; i < IPSEC_SEL_HASH_SIZE; i++)
265 		mutex_init(&(ipsec_sel_hash[i].hash_lock),
266 		    NULL, MUTEX_DEFAULT, NULL);
267 
268 	mutex_init(&alg_lock, NULL, MUTEX_DEFAULT, NULL);
269 
270 	for (i = 0; i < IPSEC_NALGTYPES; i++)
271 		ipsec_nalgs[i] = 0;
272 
273 	ipsec_action_cache = kmem_cache_create("ipsec_actions",
274 	    sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
275 	    ipsec_action_reclaim, NULL, NULL, 0);
276 	ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
277 	    sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
278 	    NULL, NULL, NULL, 0);
279 	ipsec_pol_cache = kmem_cache_create("ipsec_policy",
280 	    sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
281 	    NULL, NULL, NULL, 0);
282 	ipsec_info_cache = kmem_cache_create("ipsec_info",
283 	    sizeof (ipsec_info_t), _POINTER_ALIGNMENT, NULL, NULL,
284 	    NULL, NULL, NULL, 0);
285 
286 	ip_drop_init();
287 	ip_drop_register(&spd_dropper, "IPsec SPD");
288 }
289 
290 /*
291  * Sort algorithm lists.
292  *	EXPORT DELETE START
293  * I may need to split this based on
294  * authentication/encryption, and I may wish to have an administrator
295  * configure this list.  Hold on to some NDD variables...
296  *	EXPORT DELETE END
297  *
298  * XXX For now, sort on minimum key size (GAG!).  While minimum key size is
299  * not the ideal metric, it's the only quantifiable measure available in the
300  * AUTH/ENCR PI.  We need a better metric for sorting algorithms by preference.
301  */
302 static void
303 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid)
304 {
305 	ipsec_alginfo_t *ai = ipsec_alglists[at][algid];
306 	uint8_t holder, swap;
307 	uint_t i;
308 	uint_t count = ipsec_nalgs[at];
309 	ASSERT(ai != NULL);
310 	ASSERT(algid == ai->alg_id);
311 
312 	ASSERT(MUTEX_HELD(&alg_lock));
313 
314 	holder = algid;
315 
316 	for (i = 0; i < count - 1; i++) {
317 		ipsec_alginfo_t *alt;
318 
319 		alt = ipsec_alglists[at][ipsec_sortlist[at][i]];
320 		/*
321 		 * If you want to give precedence to newly added algs,
322 		 * add the = in the > comparison.
323 		 */
324 		if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
325 			/* Swap sortlist[i] and holder. */
326 			swap = ipsec_sortlist[at][i];
327 			ipsec_sortlist[at][i] = holder;
328 			holder = swap;
329 			ai = alt;
330 		} /* Else just continue. */
331 	}
332 
333 	/* Store holder in last slot. */
334 	ipsec_sortlist[at][i] = holder;
335 }
336 
337 /*
338  * Remove an algorithm from a sorted algorithm list.
339  * This should be considerably easier, even with complex sorting.
340  */
341 static void
342 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid)
343 {
344 	boolean_t copyback = B_FALSE;
345 	int i;
346 	int newcount = ipsec_nalgs[at];
347 
348 	ASSERT(MUTEX_HELD(&alg_lock));
349 
350 	for (i = 0; i <= newcount; i++) {
351 		if (copyback)
352 			ipsec_sortlist[at][i-1] = ipsec_sortlist[at][i];
353 		else if (ipsec_sortlist[at][i] == algid)
354 			copyback = B_TRUE;
355 	}
356 }
357 
358 /*
359  * Add the specified algorithm to the algorithm tables.
360  * Must be called while holding the algorithm table writer lock.
361  */
362 void
363 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg)
364 {
365 	ASSERT(MUTEX_HELD(&alg_lock));
366 
367 	ASSERT(ipsec_alglists[algtype][alg->alg_id] == NULL);
368 	ipsec_alg_fix_min_max(alg, algtype);
369 	ipsec_alglists[algtype][alg->alg_id] = alg;
370 
371 	ipsec_nalgs[algtype]++;
372 	alg_insert_sortlist(algtype, alg->alg_id);
373 }
374 
375 /*
376  * Remove the specified algorithm from the algorithm tables.
377  * Must be called while holding the algorithm table writer lock.
378  */
379 void
380 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid)
381 {
382 	ASSERT(MUTEX_HELD(&alg_lock));
383 
384 	ASSERT(ipsec_alglists[algtype][algid] != NULL);
385 	ipsec_alg_free(ipsec_alglists[algtype][algid]);
386 	ipsec_alglists[algtype][algid] = NULL;
387 
388 	ipsec_nalgs[algtype]--;
389 	alg_remove_sortlist(algtype, algid);
390 }
391 
392 /*
393  * Hooks for spdsock to get a grip on system policy.
394  */
395 
396 ipsec_policy_head_t *
397 ipsec_system_policy(void)
398 {
399 	ipsec_policy_head_t *h = &system_policy;
400 	IPPH_REFHOLD(h);
401 	return (h);
402 }
403 
404 ipsec_policy_head_t *
405 ipsec_inactive_policy(void)
406 {
407 	ipsec_policy_head_t *h = &inactive_policy;
408 	IPPH_REFHOLD(h);
409 	return (h);
410 }
411 
412 /*
413  * Lock inactive policy, then active policy, then exchange policy root
414  * pointers.
415  */
416 void
417 ipsec_swap_policy(void)
418 {
419 	int af, dir;
420 	ipsec_policy_t *t1, *t2;
421 
422 	rw_enter(&inactive_policy.iph_lock, RW_WRITER);
423 	rw_enter(&system_policy.iph_lock, RW_WRITER);
424 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
425 		for (af = 0; af < IPSEC_NAF; af++) {
426 			t1 = system_policy.iph_root[dir].ipr[af];
427 			t2 = inactive_policy.iph_root[dir].ipr[af];
428 			system_policy.iph_root[dir].ipr[af] = t2;
429 			inactive_policy.iph_root[dir].ipr[af] = t1;
430 		}
431 	}
432 	system_policy.iph_gen++;
433 	inactive_policy.iph_gen++;
434 	ipsec_update_present_flags();
435 	rw_exit(&system_policy.iph_lock);
436 	rw_exit(&inactive_policy.iph_lock);
437 }
438 
439 /*
440  * Clone one policy rule..
441  */
442 static ipsec_policy_t *
443 ipsec_copy_policy(const ipsec_policy_t *src)
444 {
445 	ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
446 
447 	if (dst == NULL)
448 		return (NULL);
449 
450 	/*
451 	 * Adjust refcounts of cloned state.
452 	 */
453 	IPACT_REFHOLD(src->ipsp_act);
454 	src->ipsp_sel->ipsl_refs++;
455 
456 	dst->ipsp_links.itl_next = NULL;
457 	dst->ipsp_refs = 1;
458 	dst->ipsp_sel = src->ipsp_sel;
459 	dst->ipsp_act = src->ipsp_act;
460 	dst->ipsp_prio = src->ipsp_prio;
461 	dst->ipsp_index = src->ipsp_index;
462 
463 	return (dst);
464 }
465 
466 /*
467  * Make one policy head look exactly like another.
468  *
469  * As with ipsec_swap_policy, we lock the destination policy head first, then
470  * the source policy head. Note that we only need to read-lock the source
471  * policy head as we are not changing it.
472  */
473 static int
474 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph)
475 {
476 	int af, dir;
477 	ipsec_policy_t *src, *dst, **dstp;
478 
479 	rw_enter(&dph->iph_lock, RW_WRITER);
480 
481 	ipsec_polhead_flush(dph);
482 
483 	rw_enter(&sph->iph_lock, RW_READER);
484 
485 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
486 		for (af = 0; af < IPSEC_NAF; af++) {
487 			dstp = &dph->iph_root[dir].ipr[af];
488 			for (src = sph->iph_root[dir].ipr[af];
489 			    src != NULL; src = src->ipsp_links.itl_next) {
490 				dst = ipsec_copy_policy(src);
491 				if (dst == NULL) {
492 					rw_exit(&sph->iph_lock);
493 					rw_exit(&dph->iph_lock);
494 					return (ENOMEM);
495 				}
496 				*dstp = dst;
497 				dstp = &dst->ipsp_links.itl_next;
498 			}
499 		}
500 	}
501 
502 	dph->iph_gen++;
503 
504 	rw_exit(&sph->iph_lock);
505 	rw_exit(&dph->iph_lock);
506 	return (0);
507 }
508 
509 /*
510  * Clone currently active policy to the inactive policy list.
511  */
512 int
513 ipsec_clone_system_policy(void)
514 {
515 	return (ipsec_copy_polhead(&system_policy, &inactive_policy));
516 }
517 
518 
519 /*
520  * Extract the string from ipsec_policy_failure_msgs[type] and
521  * log it.
522  *
523  * This function needs to be kept in synch with ipsec_rl_strlog() in
524  * sadb.c.
525  * XXX this function should be combined with the ipsec_rl_strlog() function.
526  */
527 void
528 ipsec_log_policy_failure(queue_t *q, int type, char *func_name, ipha_t *ipha,
529     ip6_t *ip6h, boolean_t secure)
530 {
531 	char	sbuf[INET6_ADDRSTRLEN];
532 	char	dbuf[INET6_ADDRSTRLEN];
533 	char	*s;
534 	char	*d;
535 	hrtime_t current = gethrtime();
536 
537 	ASSERT((ipha == NULL && ip6h != NULL) ||
538 	    (ip6h == NULL && ipha != NULL));
539 
540 	if (ipha != NULL) {
541 		s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
542 		d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
543 	} else {
544 		s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
545 		d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
546 
547 	}
548 
549 	/* Always bump the policy failure counter. */
550 	ipsec_policy_failure_count[type]++;
551 
552 	/* Convert interval (in msec) to hrtime (in nsec), which means * 10^6 */
553 	if (ipsec_policy_failure_last +
554 	    ((hrtime_t)ipsec_policy_log_interval * (hrtime_t)1000000) <=
555 	    current) {
556 		/*
557 		 * Throttle the logging such that I only log one message
558 		 * every 'ipsec_policy_log_interval' amount of time.
559 		 */
560 		(void) mi_strlog(q, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
561 		    ipsec_policy_failure_msgs[type],
562 		    func_name,
563 		    (secure ? "secure" : "not secure"), s, d);
564 		ipsec_policy_failure_last = current;
565 	}
566 }
567 
568 void
569 ipsec_config_flush()
570 {
571 	rw_enter(&system_policy.iph_lock, RW_WRITER);
572 	ipsec_polhead_flush(&system_policy);
573 	ipsec_next_policy_index = 1;
574 	rw_exit(&system_policy.iph_lock);
575 	ipsec_action_reclaim(0);
576 }
577 
578 /*
579  * Clip a policy's min/max keybits vs. the capabilities of the
580  * algorithm.
581  */
582 static void
583 act_alg_adjust(uint_t algtype, uint_t algid,
584     uint16_t *minbits, uint16_t *maxbits)
585 {
586 	ipsec_alginfo_t *algp = ipsec_alglists[algtype][algid];
587 	if (algp != NULL) {
588 		/*
589 		 * If passed-in minbits is zero, we assume the caller trusts
590 		 * us with setting the minimum key size.  We pick the
591 		 * algorithms DEFAULT key size for the minimum in this case.
592 		 */
593 		if (*minbits == 0) {
594 			*minbits = algp->alg_default_bits;
595 			ASSERT(*minbits >= algp->alg_minbits);
596 		} else {
597 			*minbits = MAX(*minbits, algp->alg_minbits);
598 		}
599 		if (*maxbits == 0)
600 			*maxbits = algp->alg_maxbits;
601 		else
602 			*maxbits = MIN(*maxbits, algp->alg_maxbits);
603 		ASSERT(*minbits <= *maxbits);
604 	} else {
605 		*minbits = 0;
606 		*maxbits = 0;
607 	}
608 }
609 
610 /*
611  * Check an action's requested algorithms against the algorithms currently
612  * loaded in the system.
613  */
614 boolean_t
615 ipsec_check_action(ipsec_act_t *act, int *diag)
616 {
617 	ipsec_prot_t *ipp;
618 
619 	ipp = &act->ipa_apply;
620 
621 	if (ipp->ipp_use_ah &&
622 	    ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
623 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
624 		return (B_FALSE);
625 	}
626 	if (ipp->ipp_use_espa &&
627 	    ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] == NULL) {
628 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
629 		return (B_FALSE);
630 	}
631 	if (ipp->ipp_use_esp &&
632 	    ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
633 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
634 		return (B_FALSE);
635 	}
636 
637 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
638 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits);
639 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
640 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits);
641 	act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
642 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits);
643 
644 	if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
645 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
646 		return (B_FALSE);
647 	}
648 	if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
649 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
650 		return (B_FALSE);
651 	}
652 	if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
653 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
654 		return (B_FALSE);
655 	}
656 	/* TODO: sanity check lifetimes */
657 	return (B_TRUE);
658 }
659 
660 /*
661  * Set up a single action during wildcard expansion..
662  */
663 static void
664 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
665     uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg)
666 {
667 	ipsec_prot_t *ipp;
668 
669 	*outact = *act;
670 	ipp = &outact->ipa_apply;
671 	ipp->ipp_auth_alg = (uint8_t)auth_alg;
672 	ipp->ipp_encr_alg = (uint8_t)encr_alg;
673 	ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
674 
675 	act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
676 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits);
677 	act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
678 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits);
679 	act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
680 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits);
681 }
682 
683 /*
684  * combinatoric expansion time: expand a wildcarded action into an
685  * array of wildcarded actions; we return the exploded action list,
686  * and return a count in *nact (output only).
687  */
688 static ipsec_act_t *
689 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact)
690 {
691 	boolean_t use_ah, use_esp, use_espa;
692 	boolean_t wild_auth, wild_encr, wild_eauth;
693 	uint_t	auth_alg, auth_idx, auth_min, auth_max;
694 	uint_t	eauth_alg, eauth_idx, eauth_min, eauth_max;
695 	uint_t  encr_alg, encr_idx, encr_min, encr_max;
696 	uint_t	action_count, ai;
697 	ipsec_act_t *outact;
698 
699 	if (act->ipa_type != IPSEC_ACT_APPLY) {
700 		outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
701 		*nact = 1;
702 		if (outact != NULL)
703 			bcopy(act, outact, sizeof (*act));
704 		return (outact);
705 	}
706 	/*
707 	 * compute the combinatoric explosion..
708 	 *
709 	 * we assume a request for encr if esp_req is PREF_REQUIRED
710 	 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
711 	 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
712 	 */
713 
714 	use_ah = act->ipa_apply.ipp_use_ah;
715 	use_esp = act->ipa_apply.ipp_use_esp;
716 	use_espa = act->ipa_apply.ipp_use_espa;
717 	auth_alg = act->ipa_apply.ipp_auth_alg;
718 	eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
719 	encr_alg = act->ipa_apply.ipp_encr_alg;
720 
721 	wild_auth = use_ah && (auth_alg == 0);
722 	wild_eauth = use_espa && (eauth_alg == 0);
723 	wild_encr = use_esp && (encr_alg == 0);
724 
725 	action_count = 1;
726 	auth_min = auth_max = auth_alg;
727 	eauth_min = eauth_max = eauth_alg;
728 	encr_min = encr_max = encr_alg;
729 
730 	/*
731 	 * set up for explosion.. for each dimension, expand output
732 	 * size by the explosion factor.
733 	 *
734 	 * Don't include the "any" algorithms, if defined, as no
735 	 * kernel policies should be set for these algorithms.
736 	 */
737 
738 #define	SET_EXP_MINMAX(type, wild, alg, min, max) if (wild) {	\
739 		int nalgs = ipsec_nalgs[type];			\
740 		if (ipsec_alglists[type][alg] != NULL)		\
741 			nalgs--;				\
742 		action_count *= nalgs;				\
743 		min = 0;					\
744 		max = ipsec_nalgs[type] - 1;			\
745 	}
746 
747 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
748 	    auth_min, auth_max);
749 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
750 	    eauth_min, eauth_max);
751 	SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
752 	    encr_min, encr_max);
753 
754 #undef	SET_EXP_MINMAX
755 
756 	/*
757 	 * ok, allocate the whole mess..
758 	 */
759 
760 	outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
761 	if (outact == NULL)
762 		return (NULL);
763 
764 	/*
765 	 * Now compute all combinations.  Note that non-wildcarded
766 	 * dimensions just get a single value from auth_min, while
767 	 * wildcarded dimensions indirect through the sortlist.
768 	 *
769 	 * We do encryption outermost since, at this time, there's
770 	 * greater difference in security and performance between
771 	 * encryption algorithms vs. authentication algorithms.
772 	 */
773 
774 	ai = 0;
775 
776 #define	WHICH_ALG(type, wild, idx) ((wild)?(ipsec_sortlist[type][idx]):(idx))
777 
778 	for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
779 		encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx);
780 		if (wild_encr && encr_alg == SADB_EALG_NONE)
781 			continue;
782 		for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
783 			auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
784 			    auth_idx);
785 			if (wild_auth && auth_alg == SADB_AALG_NONE)
786 				continue;
787 			for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
788 			    eauth_idx++) {
789 				eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
790 				    wild_eauth, eauth_idx);
791 				if (wild_eauth && eauth_alg == SADB_AALG_NONE)
792 					continue;
793 
794 				ipsec_setup_act(&outact[ai], act,
795 				    auth_alg, encr_alg, eauth_alg);
796 				ai++;
797 			}
798 		}
799 	}
800 
801 #undef WHICH_ALG
802 
803 	ASSERT(ai == action_count);
804 	*nact = action_count;
805 	return (outact);
806 }
807 
808 /*
809  * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
810  */
811 static void
812 ipsec_prot_from_req(ipsec_req_t *req, ipsec_prot_t *ipp)
813 {
814 	bzero(ipp, sizeof (*ipp));
815 	/*
816 	 * ipp_use_* are bitfields.  Look at "!!" in the following as a
817 	 * "boolean canonicalization" operator.
818 	 */
819 	ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
820 	ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
821 	ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg) || !ipp->ipp_use_ah;
822 	ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
823 	ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
824 	    IPSEC_PREF_UNIQUE);
825 	ipp->ipp_encr_alg = req->ipsr_esp_alg;
826 	ipp->ipp_auth_alg = req->ipsr_auth_alg;
827 	ipp->ipp_esp_auth_alg = req->ipsr_esp_auth_alg;
828 }
829 
830 /*
831  * Extract a new-style action from a request.
832  */
833 void
834 ipsec_actvec_from_req(ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp)
835 {
836 	struct ipsec_act act;
837 	bzero(&act, sizeof (act));
838 	if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
839 	    (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
840 		act.ipa_type = IPSEC_ACT_BYPASS;
841 	} else {
842 		act.ipa_type = IPSEC_ACT_APPLY;
843 		ipsec_prot_from_req(req, &act.ipa_apply);
844 	}
845 	*actp = ipsec_act_wildcard_expand(&act, nactp);
846 }
847 
848 /*
849  * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
850  * We assume caller has already zero'ed *req for us.
851  */
852 static int
853 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
854 {
855 	req->ipsr_esp_alg = ipp->ipp_encr_alg;
856 	req->ipsr_auth_alg = ipp->ipp_auth_alg;
857 	req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
858 
859 	if (ipp->ipp_use_unique) {
860 		req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
861 		req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
862 	}
863 	if (ipp->ipp_use_se)
864 		req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
865 	if (ipp->ipp_use_ah)
866 		req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
867 	if (ipp->ipp_use_esp)
868 		req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
869 	return (sizeof (*req));
870 }
871 
872 /*
873  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
874  * We assume caller has already zero'ed *req for us.
875  */
876 static int
877 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
878 {
879 	switch (ap->ipa_act.ipa_type) {
880 	case IPSEC_ACT_BYPASS:
881 		req->ipsr_ah_req = IPSEC_PREF_NEVER;
882 		req->ipsr_esp_req = IPSEC_PREF_NEVER;
883 		return (sizeof (*req));
884 	case IPSEC_ACT_APPLY:
885 		return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
886 	}
887 	return (sizeof (*req));
888 }
889 
890 /*
891  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
892  * We assume caller has already zero'ed *req for us.
893  */
894 static int
895 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
896 {
897 	ipsec_policy_t *p;
898 
899 	for (p = ph->iph_root[IPSEC_INBOUND].ipr[af];
900 	    p != NULL;
901 	    p = p->ipsp_links.itl_next) {
902 		if ((p->ipsp_sel->ipsl_key.ipsl_valid&IPSL_WILDCARD) == 0)
903 			return (ipsec_req_from_act(p->ipsp_act, req));
904 	}
905 	return (sizeof (*req));
906 }
907 
908 /*
909  * Based on per-socket or latched policy, convert to an appropriate
910  * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
911  * be tail-called from ip.
912  */
913 int
914 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
915 {
916 	ipsec_latch_t *ipl;
917 	int rv = sizeof (ipsec_req_t);
918 
919 	bzero(req, sizeof (*req));
920 
921 	mutex_enter(&connp->conn_lock);
922 	ipl = connp->conn_latch;
923 
924 	/*
925 	 * Find appropriate policy.  First choice is latched action;
926 	 * failing that, see latched policy; failing that,
927 	 * look at configured policy.
928 	 */
929 	if (ipl != NULL) {
930 		if (ipl->ipl_in_action != NULL) {
931 			rv = ipsec_req_from_act(ipl->ipl_in_action, req);
932 			goto done;
933 		}
934 		if (ipl->ipl_in_policy != NULL) {
935 			rv = ipsec_req_from_act(ipl->ipl_in_policy->ipsp_act,
936 			    req);
937 			goto done;
938 		}
939 	}
940 	if (connp->conn_policy != NULL)
941 		rv = ipsec_req_from_head(connp->conn_policy, req, af);
942 done:
943 	mutex_exit(&connp->conn_lock);
944 	return (rv);
945 }
946 
947 void
948 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
949 {
950 	kmem_free(act, nact * sizeof (*act));
951 }
952 
953 /*
954  * When outbound policy is not cached, look it up the hard way and attach
955  * an ipsec_out_t to the packet..
956  */
957 static mblk_t *
958 ipsec_attach_global_policy(mblk_t *mp, conn_t *connp, ipsec_selector_t *sel)
959 {
960 	ipsec_policy_t *p;
961 
962 	p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel);
963 
964 	if (p == NULL)
965 		return (NULL);
966 	return (ipsec_attach_ipsec_out(mp, connp, p, sel->ips_protocol));
967 }
968 
969 /*
970  * We have an ipsec_out already, but don't have cached policy; fill it in
971  * with the right actions.
972  */
973 static mblk_t *
974 ipsec_apply_global_policy(mblk_t *ipsec_mp, conn_t *connp,
975     ipsec_selector_t *sel)
976 {
977 	ipsec_out_t *io;
978 	ipsec_policy_t *p;
979 
980 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
981 	ASSERT(ipsec_mp->b_cont->b_datap->db_type == M_DATA);
982 
983 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
984 
985 	if (io->ipsec_out_policy == NULL) {
986 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, io, sel);
987 		io->ipsec_out_policy = p;
988 	}
989 	return (ipsec_mp);
990 }
991 
992 
993 /* ARGSUSED */
994 /*
995  * Consumes a reference to ipsp.
996  */
997 static mblk_t *
998 ipsec_check_loopback_policy(queue_t *q, mblk_t *first_mp,
999     boolean_t mctl_present, ipsec_policy_t *ipsp)
1000 {
1001 	mblk_t *ipsec_mp;
1002 	ipsec_in_t *ii;
1003 
1004 	if (!mctl_present)
1005 		return (first_mp);
1006 
1007 	ipsec_mp = first_mp;
1008 
1009 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1010 	ASSERT(ii->ipsec_in_loopback);
1011 	IPPOL_REFRELE(ipsp);
1012 
1013 	/*
1014 	 * We should do an actual policy check here.  Revisit this
1015 	 * when we revisit the IPsec API.
1016 	 */
1017 
1018 	return (first_mp);
1019 }
1020 
1021 static boolean_t
1022 ipsec_check_ipsecin_action(ipsec_in_t *ii, mblk_t *mp, ipsec_action_t *ap,
1023     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter)
1024 {
1025 	boolean_t ret = B_TRUE;
1026 	ipsec_prot_t *ipp;
1027 	ipsa_t *ah_assoc;
1028 	ipsa_t *esp_assoc;
1029 	boolean_t decaps;
1030 
1031 	ASSERT((ipha == NULL && ip6h != NULL) ||
1032 	    (ip6h == NULL && ipha != NULL));
1033 
1034 	if (ii->ipsec_in_loopback) {
1035 		/*
1036 		 * Besides accepting pointer-equivalent actions, we also
1037 		 * accept any ICMP errors we generated for ourselves,
1038 		 * regardless of policy.  If we do not wish to make this
1039 		 * assumption in the future, check here, and where
1040 		 * icmp_loopback is initialized in ip.c and ip6.c.  (Look for
1041 		 * ipsec_out_icmp_loopback.)
1042 		 */
1043 		if (ap == ii->ipsec_in_action || ii->ipsec_in_icmp_loopback)
1044 			return (B_TRUE);
1045 
1046 		/* Deep compare necessary here?? */
1047 		*counter = &ipdrops_spd_loopback_mismatch;
1048 		*reason = "loopback policy mismatch";
1049 		return (B_FALSE);
1050 	}
1051 	ASSERT(!ii->ipsec_in_icmp_loopback);
1052 
1053 	ah_assoc = ii->ipsec_in_ah_sa;
1054 	esp_assoc = ii->ipsec_in_esp_sa;
1055 
1056 	decaps = ii->ipsec_in_decaps;
1057 
1058 	switch (ap->ipa_act.ipa_type) {
1059 	case IPSEC_ACT_DISCARD:
1060 	case IPSEC_ACT_REJECT:
1061 		/* Should "fail hard" */
1062 		*counter = &ipdrops_spd_explicit;
1063 		*reason = "blocked by policy";
1064 		return (B_FALSE);
1065 
1066 	case IPSEC_ACT_BYPASS:
1067 	case IPSEC_ACT_CLEAR:
1068 		*counter = &ipdrops_spd_got_secure;
1069 		*reason = "expected clear, got protected";
1070 		return (B_FALSE);
1071 
1072 	case IPSEC_ACT_APPLY:
1073 		ipp = &ap->ipa_act.ipa_apply;
1074 		/*
1075 		 * As of now we do the simple checks of whether
1076 		 * the datagram has gone through the required IPSEC
1077 		 * protocol constraints or not. We might have more
1078 		 * in the future like sensitive levels, key bits, etc.
1079 		 * If it fails the constraints, check whether we would
1080 		 * have accepted this if it had come in clear.
1081 		 */
1082 		if (ipp->ipp_use_ah) {
1083 			if (ah_assoc == NULL) {
1084 				ret = ipsec_inbound_accept_clear(mp, ipha,
1085 				    ip6h);
1086 				*counter = &ipdrops_spd_got_clear;
1087 				*reason = "unprotected not accepted";
1088 				break;
1089 			}
1090 			ASSERT(ah_assoc != NULL);
1091 			ASSERT(ipp->ipp_auth_alg != 0);
1092 
1093 			if (ah_assoc->ipsa_auth_alg !=
1094 			    ipp->ipp_auth_alg) {
1095 				*counter = &ipdrops_spd_bad_ahalg;
1096 				*reason = "unacceptable ah alg";
1097 				ret = B_FALSE;
1098 				break;
1099 			}
1100 		} else if (ah_assoc != NULL) {
1101 			/*
1102 			 * Don't allow this. Check IPSEC NOTE above
1103 			 * ip_fanout_proto().
1104 			 */
1105 			*counter = &ipdrops_spd_got_ah;
1106 			*reason = "unexpected AH";
1107 			ret = B_FALSE;
1108 			break;
1109 		}
1110 		if (ipp->ipp_use_esp) {
1111 			if (esp_assoc == NULL) {
1112 				ret = ipsec_inbound_accept_clear(mp, ipha,
1113 				    ip6h);
1114 				*counter = &ipdrops_spd_got_clear;
1115 				*reason = "unprotected not accepted";
1116 				break;
1117 			}
1118 			ASSERT(esp_assoc != NULL);
1119 			ASSERT(ipp->ipp_encr_alg != 0);
1120 
1121 			if (esp_assoc->ipsa_encr_alg !=
1122 			    ipp->ipp_encr_alg) {
1123 				*counter = &ipdrops_spd_bad_espealg;
1124 				*reason = "unacceptable esp alg";
1125 				ret = B_FALSE;
1126 				break;
1127 			}
1128 			/*
1129 			 * If the client does not need authentication,
1130 			 * we don't verify the alogrithm.
1131 			 */
1132 			if (ipp->ipp_use_espa) {
1133 				if (esp_assoc->ipsa_auth_alg !=
1134 				    ipp->ipp_esp_auth_alg) {
1135 					*counter = &ipdrops_spd_bad_espaalg;
1136 					*reason = "unacceptable esp auth alg";
1137 					ret = B_FALSE;
1138 					break;
1139 				}
1140 			}
1141 		} else if (esp_assoc != NULL) {
1142 				/*
1143 				 * Don't allow this. Check IPSEC NOTE above
1144 				 * ip_fanout_proto().
1145 				 */
1146 			*counter = &ipdrops_spd_got_esp;
1147 			*reason = "unexpected ESP";
1148 			ret = B_FALSE;
1149 			break;
1150 		}
1151 		if (ipp->ipp_use_se) {
1152 			if (!decaps) {
1153 				ret = ipsec_inbound_accept_clear(mp, ipha,
1154 				    ip6h);
1155 				if (!ret) {
1156 					/* XXX mutant? */
1157 					*counter = &ipdrops_spd_bad_selfencap;
1158 					*reason = "self encap not found";
1159 					break;
1160 				}
1161 			}
1162 		} else if (decaps) {
1163 			/*
1164 			 * XXX If the packet comes in tunneled and the
1165 			 * recipient does not expect it to be tunneled, it
1166 			 * is okay. But we drop to be consistent with the
1167 			 * other cases.
1168 			 */
1169 			*counter = &ipdrops_spd_got_selfencap;
1170 			*reason = "unexpected self encap";
1171 			ret = B_FALSE;
1172 			break;
1173 		}
1174 		if (ii->ipsec_in_action != NULL) {
1175 			/*
1176 			 * This can happen if we do a double policy-check on
1177 			 * a packet
1178 			 * XXX XXX should fix this case!
1179 			 */
1180 			IPACT_REFRELE(ii->ipsec_in_action);
1181 		}
1182 		ASSERT(ii->ipsec_in_action == NULL);
1183 		IPACT_REFHOLD(ap);
1184 		ii->ipsec_in_action = ap;
1185 		break;	/* from switch */
1186 	}
1187 	return (ret);
1188 }
1189 
1190 static boolean_t
1191 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1192 {
1193 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1194 	return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1195 	    ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1196 }
1197 
1198 /*
1199  * Called to check policy on a latched connection, both from this file
1200  * and from tcp.c
1201  */
1202 boolean_t
1203 ipsec_check_ipsecin_latch(ipsec_in_t *ii, mblk_t *mp, ipsec_latch_t *ipl,
1204     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter)
1205 {
1206 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1207 
1208 	if ((ii->ipsec_in_ah_sa != NULL) &&
1209 	    (!spd_match_inbound_ids(ipl, ii->ipsec_in_ah_sa))) {
1210 		*counter = &ipdrops_spd_ah_badid;
1211 		*reason = "AH identity mismatch";
1212 		return (B_FALSE);
1213 	}
1214 
1215 	if ((ii->ipsec_in_esp_sa != NULL) &&
1216 	    (!spd_match_inbound_ids(ipl, ii->ipsec_in_esp_sa))) {
1217 		*counter = &ipdrops_spd_esp_badid;
1218 		*reason = "ESP identity mismatch";
1219 		return (B_FALSE);
1220 	}
1221 
1222 	return (ipsec_check_ipsecin_action(ii, mp, ipl->ipl_in_action,
1223 	    ipha, ip6h, reason, counter));
1224 }
1225 
1226 /*
1227  * Check to see whether this secured datagram meets the policy
1228  * constraints specified in ipsp.
1229  *
1230  * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1231  *
1232  * Consumes a reference to ipsp.
1233  */
1234 static mblk_t *
1235 ipsec_check_ipsecin_policy(queue_t *q, mblk_t *first_mp, ipsec_policy_t *ipsp,
1236     ipha_t *ipha, ip6_t *ip6h)
1237 {
1238 	ipsec_in_t *ii;
1239 	ipsec_action_t *ap;
1240 	const char *reason = "no policy actions found";
1241 	mblk_t *data_mp, *ipsec_mp;
1242 	kstat_named_t *counter = &ipdrops_spd_got_secure;
1243 
1244 	data_mp = first_mp->b_cont;
1245 	ipsec_mp = first_mp;
1246 
1247 	ASSERT(ipsp != NULL);
1248 
1249 	ASSERT((ipha == NULL && ip6h != NULL) ||
1250 	    (ip6h == NULL && ipha != NULL));
1251 
1252 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1253 
1254 	if (ii->ipsec_in_loopback)
1255 		return (ipsec_check_loopback_policy(q, first_mp, B_TRUE, ipsp));
1256 
1257 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
1258 	if (ii->ipsec_in_action != NULL) {
1259 		/*
1260 		 * this can happen if we do a double policy-check on a packet
1261 		 * Would be nice to be able to delete this test..
1262 		 */
1263 		IPACT_REFRELE(ii->ipsec_in_action);
1264 	}
1265 	ASSERT(ii->ipsec_in_action == NULL);
1266 
1267 	if (!SA_IDS_MATCH(ii->ipsec_in_ah_sa, ii->ipsec_in_esp_sa)) {
1268 		reason = "inbound AH and ESP identities differ";
1269 		counter = &ipdrops_spd_ahesp_diffid;
1270 		goto drop;
1271 	}
1272 
1273 	/*
1274 	 * Ok, now loop through the possible actions and see if any
1275 	 * of them work for us.
1276 	 */
1277 
1278 	for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
1279 		if (ipsec_check_ipsecin_action(ii, data_mp, ap,
1280 		    ipha, ip6h, &reason, &counter)) {
1281 			BUMP_MIB(&ip_mib, ipsecInSucceeded);
1282 			IPPOL_REFRELE(ipsp);
1283 			return (first_mp);
1284 		}
1285 	}
1286 drop:
1287 	(void) mi_strlog(q, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1288 	    "ipsec inbound policy mismatch: %s, packet dropped\n",
1289 	    reason);
1290 	IPPOL_REFRELE(ipsp);
1291 	ASSERT(ii->ipsec_in_action == NULL);
1292 	BUMP_MIB(&ip_mib, ipsecInFailed);
1293 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &spd_dropper);
1294 	return (NULL);
1295 }
1296 
1297 /*
1298  * sleazy prefix-length-based compare.
1299  * another inlining candidate..
1300  */
1301 static boolean_t
1302 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
1303 {
1304 	int offset = pfxlen>>3;
1305 	int bitsleft = pfxlen & 7;
1306 	uint8_t *addr2 = (uint8_t *)addr2p;
1307 
1308 	/*
1309 	 * and there was much evil..
1310 	 * XXX should inline-expand the bcmp here and do this 32 bits
1311 	 * or 64 bits at a time..
1312 	 */
1313 	return ((bcmp(addr1, addr2, offset) == 0) &&
1314 	    ((bitsleft == 0) ||
1315 		(((addr1[offset] ^ addr2[offset]) &
1316 		    (0xff<<(8-bitsleft))) == 0)));
1317 }
1318 
1319 /*
1320  * Try to find and return the best policy entry under a given policy
1321  * root for a given set of selectors; the first parameter "best" is
1322  * the current best policy so far.  If "best" is non-null, we have a
1323  * reference to it.  We return a reference to a policy; if that policy
1324  * is not the original "best", we need to release that reference
1325  * before returning.
1326  */
1327 static ipsec_policy_t *
1328 ipsec_find_policy_head(ipsec_policy_t *best,
1329     ipsec_policy_head_t *head, int direction, ipsec_selector_t *sel)
1330 {
1331 	ipsec_policy_t *p, *curbest;
1332 	ipsec_selkey_t *isel;
1333 	uint32_t valid;
1334 	ipsec_policy_root_t *root;
1335 	uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
1336 	int bpri = best ? best->ipsp_prio : 0;
1337 	int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
1338 
1339 	curbest = best;
1340 	root = &head->iph_root[direction];
1341 
1342 #ifdef DEBUG
1343 	if (is_icmp_inv_acq) {
1344 		if (sel->ips_isv4) {
1345 			if (sel->ips_protocol != IPPROTO_ICMP) {
1346 			    cmn_err(CE_WARN, "ipsec_find_policy_head:"
1347 			    " expecting icmp, got %d", sel->ips_protocol);
1348 			}
1349 		} else {
1350 			if (sel->ips_protocol != IPPROTO_ICMP) {
1351 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
1352 				" expecting icmpv6, got %d", sel->ips_protocol);
1353 			}
1354 		}
1355 	}
1356 #endif
1357 
1358 	rw_enter(&head->iph_lock, RW_READER);
1359 
1360 	for (p = root->ipr[af]; p != NULL; p = p->ipsp_links.itl_next) {
1361 		if (p->ipsp_prio <= bpri)
1362 			continue;
1363 		isel = &p->ipsp_sel->ipsl_key;
1364 		valid = isel->ipsl_valid;
1365 
1366 		if ((valid & IPSL_PROTOCOL) &&
1367 		    (isel->ipsl_proto != sel->ips_protocol))
1368 			continue;
1369 
1370 		if ((valid & IPSL_REMOTE_ADDR) &&
1371 		    !ip_addr_match((uint8_t *)&isel->ipsl_remote,
1372 			isel->ipsl_remote_pfxlen,
1373 			&sel->ips_remote_addr_v6))
1374 			continue;
1375 
1376 		if ((valid & IPSL_LOCAL_ADDR) &&
1377 		    !ip_addr_match((uint8_t *)&isel->ipsl_local,
1378 			isel->ipsl_local_pfxlen,
1379 			&sel->ips_local_addr_v6))
1380 			continue;
1381 
1382 		if ((valid & IPSL_REMOTE_PORT) &&
1383 		    isel->ipsl_rport != sel->ips_remote_port)
1384 			continue;
1385 
1386 		if ((valid & IPSL_LOCAL_PORT) &&
1387 		    isel->ipsl_lport != sel->ips_local_port)
1388 			continue;
1389 
1390 		if (!is_icmp_inv_acq) {
1391 			if ((valid & IPSL_ICMP_TYPE) &&
1392 			    (isel->ipsl_icmp_type > sel->ips_icmp_type ||
1393 			    isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
1394 				continue;
1395 			}
1396 
1397 			if ((valid & IPSL_ICMP_CODE) &&
1398 			    (isel->ipsl_icmp_code > sel->ips_icmp_code ||
1399 			    isel->ipsl_icmp_code_end <
1400 			    sel->ips_icmp_code)) {
1401 				continue;
1402 			}
1403 		} else {
1404 			/*
1405 			 * special case for icmp inverse acquire
1406 			 * we only want policies that aren't drop/pass
1407 			 */
1408 			if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
1409 				continue;
1410 		}
1411 
1412 		/* we matched all the packet-port-field selectors! */
1413 		curbest = p;
1414 		bpri = p->ipsp_prio;
1415 	}
1416 
1417 	/*
1418 	 * Adjust reference counts if we found anything.
1419 	 */
1420 	if (curbest != best) {
1421 		if (curbest != NULL) {
1422 			IPPOL_REFHOLD(curbest);
1423 		}
1424 		if (best != NULL) {
1425 			IPPOL_REFRELE(best);
1426 		}
1427 	}
1428 
1429 	rw_exit(&head->iph_lock);
1430 
1431 	return (curbest);
1432 }
1433 
1434 /*
1435  * Find the best system policy (either global or per-interface) which
1436  * applies to the given selector; look in all the relevant policy roots
1437  * to figure out which policy wins.
1438  *
1439  * Returns a reference to a policy; caller must release this
1440  * reference when done.
1441  */
1442 ipsec_policy_t *
1443 ipsec_find_policy(int direction, conn_t *connp, ipsec_out_t *io,
1444     ipsec_selector_t *sel)
1445 {
1446 	ipsec_policy_t *p;
1447 
1448 	p = ipsec_find_policy_head(NULL, &system_policy, direction, sel);
1449 	if ((connp != NULL) && (connp->conn_policy != NULL)) {
1450 		p = ipsec_find_policy_head(p, connp->conn_policy,
1451 		    direction, sel);
1452 	} else if ((io != NULL) && (io->ipsec_out_polhead != NULL)) {
1453 		p = ipsec_find_policy_head(p, io->ipsec_out_polhead,
1454 		    direction, sel);
1455 	}
1456 
1457 	return (p);
1458 }
1459 
1460 /*
1461  * Check with global policy and see whether this inbound
1462  * packet meets the policy constraints.
1463  *
1464  * Locate appropriate policy from global policy, supplemented by the
1465  * conn's configured and/or cached policy if the conn is supplied.
1466  *
1467  * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
1468  * encrypted packet to see if they match.
1469  *
1470  * Otherwise, see if the policy allows cleartext; if not, drop it on the
1471  * floor.
1472  */
1473 mblk_t *
1474 ipsec_check_global_policy(mblk_t *first_mp, conn_t *connp,
1475     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present)
1476 {
1477 	ipsec_policy_t *p;
1478 	ipsec_selector_t sel;
1479 	queue_t *q = NULL;
1480 	mblk_t *data_mp, *ipsec_mp;
1481 	boolean_t policy_present;
1482 	kstat_named_t *counter;
1483 
1484 	data_mp = mctl_present ? first_mp->b_cont : first_mp;
1485 	ipsec_mp = mctl_present ? first_mp : NULL;
1486 
1487 	sel.ips_is_icmp_inv_acq = 0;
1488 
1489 	ASSERT((ipha == NULL && ip6h != NULL) ||
1490 	    (ip6h == NULL && ipha != NULL));
1491 
1492 	if (ipha != NULL)
1493 		policy_present = ipsec_inbound_v4_policy_present;
1494 	else
1495 		policy_present = ipsec_inbound_v6_policy_present;
1496 
1497 	if (!policy_present && connp == NULL) {
1498 		/*
1499 		 * No global policy and no per-socket policy;
1500 		 * just pass it back (but we shouldn't get here in that case)
1501 		 */
1502 		return (first_mp);
1503 	}
1504 
1505 	if (connp != NULL)
1506 		q = CONNP_TO_WQ(connp);
1507 
1508 	if (ipsec_mp != NULL) {
1509 		ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
1510 		ASSERT(((ipsec_in_t *)ipsec_mp->b_rptr)->ipsec_in_type ==
1511 		    IPSEC_IN);
1512 	}
1513 
1514 	/*
1515 	 * If we have cached policy, use it.
1516 	 * Otherwise consult system policy.
1517 	 */
1518 	if ((connp != NULL) && (connp->conn_latch != NULL)) {
1519 		p = connp->conn_latch->ipl_in_policy;
1520 		if (p != NULL) {
1521 			IPPOL_REFHOLD(p);
1522 		}
1523 	} else {
1524 		/* Initialize the ports in the selector */
1525 		if (!ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h)) {
1526 			/*
1527 			 * Technically not a policy mismatch, but it is
1528 			 * an internal failure.
1529 			 */
1530 			ipsec_log_policy_failure(q, IPSEC_POLICY_MISMATCH,
1531 			    "ipsec_init_inbound_sel", ipha, ip6h, B_FALSE);
1532 			counter = &ipdrops_spd_nomem;
1533 			goto fail;
1534 		}
1535 
1536 		/*
1537 		 * Find the policy which best applies.
1538 		 *
1539 		 * If we find global policy, we should look at both
1540 		 * local policy and global policy and see which is
1541 		 * stronger and match accordingly.
1542 		 *
1543 		 * If we don't find a global policy, check with
1544 		 * local policy alone.
1545 		 */
1546 
1547 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel);
1548 	}
1549 
1550 	if (p == NULL) {
1551 		if (ipsec_mp == NULL) {
1552 			/*
1553 			 * We have no policy; default to succeeding.
1554 			 * XXX paranoid system design doesn't do this.
1555 			 */
1556 			BUMP_MIB(&ip_mib, ipsecInSucceeded);
1557 			return (first_mp);
1558 		} else {
1559 			counter = &ipdrops_spd_got_secure;
1560 			ipsec_log_policy_failure(q, IPSEC_POLICY_NOT_NEEDED,
1561 			    "ipsec_check_global_policy", ipha, ip6h, B_TRUE);
1562 			goto fail;
1563 		}
1564 	}
1565 	if (ipsec_mp != NULL)
1566 		return (ipsec_check_ipsecin_policy(q, ipsec_mp, p, ipha, ip6h));
1567 	if (p->ipsp_act->ipa_allow_clear) {
1568 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
1569 		IPPOL_REFRELE(p);
1570 		return (first_mp);
1571 	}
1572 	IPPOL_REFRELE(p);
1573 	/*
1574 	 * If we reach here, we will drop the packet because it failed the
1575 	 * global policy check because the packet was cleartext, and it
1576 	 * should not have been.
1577 	 */
1578 	ipsec_log_policy_failure(q, IPSEC_POLICY_MISMATCH,
1579 	    "ipsec_check_global_policy", ipha, ip6h, B_FALSE);
1580 	counter = &ipdrops_spd_got_clear;
1581 
1582 fail:
1583 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &spd_dropper);
1584 	BUMP_MIB(&ip_mib, ipsecInFailed);
1585 	return (NULL);
1586 }
1587 
1588 /*
1589  * We check whether an inbound datagram is a valid one
1590  * to accept in clear. If it is secure, it is the job
1591  * of IPSEC to log information appropriately if it
1592  * suspects that it may not be the real one.
1593  *
1594  * It is called only while fanning out to the ULP
1595  * where ULP accepts only secure data and the incoming
1596  * is clear. Usually we never accept clear datagrams in
1597  * such cases. ICMP is the only exception.
1598  *
1599  * NOTE : We don't call this function if the client (ULP)
1600  * is willing to accept things in clear.
1601  */
1602 boolean_t
1603 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
1604 {
1605 	ushort_t iph_hdr_length;
1606 	icmph_t *icmph;
1607 	icmp6_t *icmp6;
1608 	uint8_t *nexthdrp;
1609 
1610 	ASSERT((ipha != NULL && ip6h == NULL) ||
1611 	    (ipha == NULL && ip6h != NULL));
1612 
1613 	if (ip6h != NULL) {
1614 		iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
1615 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
1616 		    &nexthdrp)) {
1617 			return (B_FALSE);
1618 		}
1619 		if (*nexthdrp != IPPROTO_ICMPV6)
1620 			return (B_FALSE);
1621 		icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
1622 		/* Match IPv6 ICMP policy as closely as IPv4 as possible. */
1623 		switch (icmp6->icmp6_type) {
1624 		case ICMP6_PARAM_PROB:
1625 			/* Corresponds to port/proto unreach in IPv4. */
1626 		case ICMP6_ECHO_REQUEST:
1627 			/* Just like IPv4. */
1628 			return (B_FALSE);
1629 
1630 		case MLD_LISTENER_QUERY:
1631 		case MLD_LISTENER_REPORT:
1632 		case MLD_LISTENER_REDUCTION:
1633 			/*
1634 			 * XXX Seperate NDD in IPv4 what about here?
1635 			 * Plus, mcast is important to ND.
1636 			 */
1637 		case ICMP6_DST_UNREACH:
1638 			/* Corresponds to HOST/NET unreachable in IPv4. */
1639 		case ICMP6_PACKET_TOO_BIG:
1640 		case ICMP6_ECHO_REPLY:
1641 			/* These are trusted in IPv4. */
1642 		case ND_ROUTER_SOLICIT:
1643 		case ND_ROUTER_ADVERT:
1644 		case ND_NEIGHBOR_SOLICIT:
1645 		case ND_NEIGHBOR_ADVERT:
1646 		case ND_REDIRECT:
1647 			/* Trust ND messages for now. */
1648 		case ICMP6_TIME_EXCEEDED:
1649 		default:
1650 			return (B_TRUE);
1651 		}
1652 	} else {
1653 		/*
1654 		 * If it is not ICMP, fail this request.
1655 		 */
1656 		if (ipha->ipha_protocol != IPPROTO_ICMP)
1657 			return (B_FALSE);
1658 		iph_hdr_length = IPH_HDR_LENGTH(ipha);
1659 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1660 		/*
1661 		 * It is an insecure icmp message. Check to see whether we are
1662 		 * willing to accept this one.
1663 		 */
1664 
1665 		switch (icmph->icmph_type) {
1666 		case ICMP_ECHO_REPLY:
1667 		case ICMP_TIME_STAMP_REPLY:
1668 		case ICMP_INFO_REPLY:
1669 		case ICMP_ROUTER_ADVERTISEMENT:
1670 			/*
1671 			 * We should not encourage clear replies if this
1672 			 * client expects secure. If somebody is replying
1673 			 * in clear some mailicious user watching both the
1674 			 * request and reply, can do chosen-plain-text attacks.
1675 			 * With global policy we might be just expecting secure
1676 			 * but sending out clear. We don't know what the right
1677 			 * thing is. We can't do much here as we can't control
1678 			 * the sender here. Till we are sure of what to do,
1679 			 * accept them.
1680 			 */
1681 			return (B_TRUE);
1682 		case ICMP_ECHO_REQUEST:
1683 		case ICMP_TIME_STAMP_REQUEST:
1684 		case ICMP_INFO_REQUEST:
1685 		case ICMP_ADDRESS_MASK_REQUEST:
1686 		case ICMP_ROUTER_SOLICITATION:
1687 		case ICMP_ADDRESS_MASK_REPLY:
1688 			/*
1689 			 * Don't accept this as somebody could be sending
1690 			 * us plain text to get encrypted data. If we reply,
1691 			 * it will lead to chosen plain text attack.
1692 			 */
1693 			return (B_FALSE);
1694 		case ICMP_DEST_UNREACHABLE:
1695 			switch (icmph->icmph_code) {
1696 			case ICMP_FRAGMENTATION_NEEDED:
1697 				/*
1698 				 * Be in sync with icmp_inbound, where we have
1699 				 * already set ire_max_frag.
1700 				 */
1701 				return (B_TRUE);
1702 			case ICMP_HOST_UNREACHABLE:
1703 			case ICMP_NET_UNREACHABLE:
1704 				/*
1705 				 * By accepting, we could reset a connection.
1706 				 * How do we solve the problem of some
1707 				 * intermediate router sending in-secure ICMP
1708 				 * messages ?
1709 				 */
1710 				return (B_TRUE);
1711 			case ICMP_PORT_UNREACHABLE:
1712 			case ICMP_PROTOCOL_UNREACHABLE:
1713 			default :
1714 				return (B_FALSE);
1715 			}
1716 		case ICMP_SOURCE_QUENCH:
1717 			/*
1718 			 * If this is an attack, TCP will slow start
1719 			 * because of this. Is it very harmful ?
1720 			 */
1721 			return (B_TRUE);
1722 		case ICMP_PARAM_PROBLEM:
1723 			return (B_FALSE);
1724 		case ICMP_TIME_EXCEEDED:
1725 			return (B_TRUE);
1726 		case ICMP_REDIRECT:
1727 			return (B_FALSE);
1728 		default :
1729 			return (B_FALSE);
1730 		}
1731 	}
1732 }
1733 
1734 void
1735 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
1736 {
1737 	mutex_enter(&ipl->ipl_lock);
1738 
1739 	if (ipl->ipl_ids_latched) {
1740 		/* I lost, someone else got here before me */
1741 		mutex_exit(&ipl->ipl_lock);
1742 		return;
1743 	}
1744 
1745 	if (local != NULL)
1746 		IPSID_REFHOLD(local);
1747 	if (remote != NULL)
1748 		IPSID_REFHOLD(remote);
1749 
1750 	ipl->ipl_local_cid = local;
1751 	ipl->ipl_remote_cid = remote;
1752 	ipl->ipl_ids_latched = B_TRUE;
1753 	mutex_exit(&ipl->ipl_lock);
1754 }
1755 
1756 void
1757 ipsec_latch_inbound(ipsec_latch_t *ipl, ipsec_in_t *ii)
1758 {
1759 	ipsa_t *sa;
1760 
1761 	if (!ipl->ipl_ids_latched) {
1762 		ipsid_t *local = NULL;
1763 		ipsid_t *remote = NULL;
1764 
1765 		if (!ii->ipsec_in_loopback) {
1766 			if (ii->ipsec_in_esp_sa != NULL)
1767 				sa = ii->ipsec_in_esp_sa;
1768 			else
1769 				sa = ii->ipsec_in_ah_sa;
1770 			ASSERT(sa != NULL);
1771 			local = sa->ipsa_dst_cid;
1772 			remote = sa->ipsa_src_cid;
1773 		}
1774 		ipsec_latch_ids(ipl, local, remote);
1775 	}
1776 	ipl->ipl_in_action = ii->ipsec_in_action;
1777 	IPACT_REFHOLD(ipl->ipl_in_action);
1778 }
1779 
1780 /*
1781  * Check whether the policy constraints are met either for an
1782  * inbound datagram; called from IP in numerous places.
1783  *
1784  * Note that this is not a chokepoint for inbound policy checks;
1785  * see also ipsec_check_ipsecin_latch()
1786  */
1787 mblk_t *
1788 ipsec_check_inbound_policy(mblk_t *first_mp, conn_t *connp,
1789     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present)
1790 {
1791 	ipsec_in_t *ii;
1792 	boolean_t ret;
1793 	mblk_t *mp = mctl_present ? first_mp->b_cont : first_mp;
1794 	mblk_t *ipsec_mp = mctl_present ? first_mp : NULL;
1795 	ipsec_latch_t *ipl;
1796 
1797 	ASSERT(connp != NULL);
1798 	ipl = connp->conn_latch;
1799 
1800 	if (ipsec_mp == NULL) {
1801 		/*
1802 		 * This is the case where the incoming datagram is
1803 		 * cleartext and we need to see whether this client
1804 		 * would like to receive such untrustworthy things from
1805 		 * the wire.
1806 		 */
1807 		ASSERT(mp != NULL);
1808 
1809 		if (ipl != NULL) {
1810 			/*
1811 			 * Policy is cached in the conn.
1812 			 */
1813 			if ((ipl->ipl_in_policy != NULL) &&
1814 			    (!ipl->ipl_in_policy->ipsp_act->ipa_allow_clear)) {
1815 				ret = ipsec_inbound_accept_clear(mp,
1816 				    ipha, ip6h);
1817 				if (ret) {
1818 					BUMP_MIB(&ip_mib, ipsecInSucceeded);
1819 					return (first_mp);
1820 				} else {
1821 					ip_drop_packet(first_mp, B_TRUE, NULL,
1822 					    NULL, &ipdrops_spd_got_clear,
1823 					    &spd_dropper);
1824 					ipsec_log_policy_failure(
1825 					    CONNP_TO_WQ(connp),
1826 					    IPSEC_POLICY_MISMATCH,
1827 					    "ipsec_check_inbound_policy", ipha,
1828 					    ip6h, B_FALSE);
1829 					BUMP_MIB(&ip_mib, ipsecInFailed);
1830 					return (NULL);
1831 				}
1832 			} else {
1833 				BUMP_MIB(&ip_mib, ipsecInSucceeded);
1834 				return (first_mp);
1835 			}
1836 		} else {
1837 			/*
1838 			 * As this is a non-hardbound connection we need
1839 			 * to look at both per-socket policy and global
1840 			 * policy. As this is cleartext, mark the mp as
1841 			 * M_DATA in case if it is an ICMP error being
1842 			 * reported before calling ipsec_check_global_policy
1843 			 * so that it does not mistake it for IPSEC_IN.
1844 			 */
1845 			uchar_t db_type = mp->b_datap->db_type;
1846 			mp->b_datap->db_type = M_DATA;
1847 			first_mp = ipsec_check_global_policy(first_mp, connp,
1848 			    ipha, ip6h, mctl_present);
1849 			if (first_mp != NULL)
1850 				mp->b_datap->db_type = db_type;
1851 			return (first_mp);
1852 		}
1853 	}
1854 	/*
1855 	 * If it is inbound check whether the attached message
1856 	 * is secure or not. We have a special case for ICMP,
1857 	 * where we have a IPSEC_IN message and the attached
1858 	 * message is not secure. See icmp_inbound_error_fanout
1859 	 * for details.
1860 	 */
1861 	ASSERT(ipsec_mp != NULL);
1862 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
1863 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1864 
1865 	/*
1866 	 * mp->b_cont could be either a M_CTL message
1867 	 * for icmp errors being sent up or a M_DATA message.
1868 	 */
1869 	ASSERT(mp->b_datap->db_type == M_CTL ||
1870 	    mp->b_datap->db_type == M_DATA);
1871 
1872 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
1873 
1874 	if (ipl == NULL) {
1875 		/*
1876 		 * We don't have policies cached in the conn's
1877 		 * for this stream. So, look at the global
1878 		 * policy. It will check against conn or global
1879 		 * depending on whichever is stronger.
1880 		 */
1881 		return (ipsec_check_global_policy(first_mp, connp,
1882 		    ipha, ip6h, mctl_present));
1883 	} else if (ipl->ipl_in_action != NULL) {
1884 		/* Policy is cached & latched; fast(er) path */
1885 		const char *reason;
1886 		kstat_named_t *counter;
1887 		if (ipsec_check_ipsecin_latch(ii, mp, ipl,
1888 		    ipha, ip6h, &reason, &counter)) {
1889 			BUMP_MIB(&ip_mib, ipsecInSucceeded);
1890 			return (first_mp);
1891 		}
1892 		(void) mi_strlog(CONNP_TO_WQ(connp), 0,
1893 		    SL_ERROR|SL_WARN|SL_CONSOLE,
1894 		    "ipsec inbound policy mismatch: %s, packet dropped\n",
1895 		    reason);
1896 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
1897 		    &spd_dropper);
1898 		BUMP_MIB(&ip_mib, ipsecInFailed);
1899 		return (NULL);
1900 	} else if (ipl->ipl_in_policy == NULL)
1901 		return (first_mp);
1902 
1903 	IPPOL_REFHOLD(ipl->ipl_in_policy);
1904 	first_mp = ipsec_check_ipsecin_policy(CONNP_TO_WQ(connp), first_mp,
1905 	    ipl->ipl_in_policy, ipha, ip6h);
1906 	/*
1907 	 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
1908 	 * ipsec_check_ipsecin_policy().
1909 	 */
1910 	if (first_mp != NULL)
1911 		ipsec_latch_inbound(ipl, ii);
1912 	return (first_mp);
1913 }
1914 
1915 boolean_t
1916 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp,
1917     ipha_t *ipha, ip6_t *ip6h)
1918 {
1919 	uint16_t *ports;
1920 	ushort_t hdr_len;
1921 	mblk_t *spare_mp = NULL;
1922 	uint8_t *nexthdrp;
1923 	uint8_t nexthdr;
1924 	uint8_t *typecode;
1925 	uint8_t check_proto;
1926 
1927 	ASSERT((ipha == NULL && ip6h != NULL) ||
1928 	    (ipha != NULL && ip6h == NULL));
1929 
1930 	if (ip6h != NULL) {
1931 		check_proto = IPPROTO_ICMPV6;
1932 		sel->ips_isv4 = B_FALSE;
1933 		sel->ips_local_addr_v6 = ip6h->ip6_dst;
1934 		sel->ips_remote_addr_v6 = ip6h->ip6_src;
1935 
1936 		nexthdr = ip6h->ip6_nxt;
1937 		switch (nexthdr) {
1938 		case IPPROTO_HOPOPTS:
1939 		case IPPROTO_ROUTING:
1940 		case IPPROTO_DSTOPTS:
1941 			/*
1942 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
1943 			 * mblk that's contiguous to feed it
1944 			 */
1945 			if ((spare_mp = msgpullup(mp, -1)) == NULL)
1946 				return (B_FALSE);
1947 			if (!ip_hdr_length_nexthdr_v6(spare_mp,
1948 			    (ip6_t *)spare_mp->b_rptr, &hdr_len, &nexthdrp)) {
1949 				/* Malformed packet - XXX ip_drop_packet()? */
1950 				freemsg(spare_mp);
1951 				return (B_FALSE);
1952 			}
1953 			nexthdr = *nexthdrp;
1954 			/* We can just extract based on hdr_len now. */
1955 			break;
1956 		default:
1957 			hdr_len = IPV6_HDR_LEN;
1958 			break;
1959 		}
1960 	} else {
1961 		check_proto = IPPROTO_ICMP;
1962 		sel->ips_isv4 = B_TRUE;
1963 		sel->ips_local_addr_v4 = ipha->ipha_dst;
1964 		sel->ips_remote_addr_v4 = ipha->ipha_src;
1965 		nexthdr = ipha->ipha_protocol;
1966 		hdr_len = IPH_HDR_LENGTH(ipha);
1967 	}
1968 	sel->ips_protocol = nexthdr;
1969 
1970 	if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
1971 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
1972 		sel->ips_remote_port = sel->ips_local_port = 0;
1973 		freemsg(spare_mp);	/* Always works, even if NULL. */
1974 		return (B_TRUE);
1975 	}
1976 
1977 	if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) {
1978 		/* If we didn't pullup a copy already, do so now. */
1979 		/*
1980 		 * XXX performance, will upper-layers frequently split TCP/UDP
1981 		 * apart from IP or options?  If so, perhaps we should revisit
1982 		 * the spare_mp strategy.
1983 		 */
1984 		if (spare_mp == NULL &&
1985 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
1986 			return (B_FALSE);
1987 		}
1988 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len];
1989 	} else {
1990 		ports = (uint16_t *)&mp->b_rptr[hdr_len];
1991 	}
1992 
1993 	if (nexthdr == check_proto) {
1994 		typecode = (uint8_t *)ports;
1995 		sel->ips_icmp_type = *typecode++;
1996 		sel->ips_icmp_code = *typecode;
1997 		sel->ips_remote_port = sel->ips_local_port = 0;
1998 		freemsg(spare_mp);	/* Always works, even if NULL */
1999 		return (B_TRUE);
2000 	}
2001 
2002 	sel->ips_remote_port = *ports++;
2003 	sel->ips_local_port = *ports;
2004 	freemsg(spare_mp);	/* Always works, even if NULL */
2005 	return (B_TRUE);
2006 }
2007 
2008 static boolean_t
2009 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2010     ip6_t *ip6h)
2011 {
2012 	/*
2013 	 * XXX cut&paste shared with ipsec_init_inbound_sel
2014 	 */
2015 	uint16_t *ports;
2016 	ushort_t hdr_len;
2017 	mblk_t *spare_mp = NULL;
2018 	uint8_t *nexthdrp;
2019 	uint8_t nexthdr;
2020 	uint8_t *typecode;
2021 	uint8_t check_proto;
2022 
2023 	ASSERT((ipha == NULL && ip6h != NULL) ||
2024 	    (ipha != NULL && ip6h == NULL));
2025 
2026 	if (ip6h != NULL) {
2027 		check_proto = IPPROTO_ICMPV6;
2028 		nexthdr = ip6h->ip6_nxt;
2029 		switch (nexthdr) {
2030 		case IPPROTO_HOPOPTS:
2031 		case IPPROTO_ROUTING:
2032 		case IPPROTO_DSTOPTS:
2033 			/*
2034 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2035 			 * mblk that's contiguous to feed it
2036 			 */
2037 			spare_mp = msgpullup(mp, -1);
2038 			if (spare_mp == NULL ||
2039 			    !ip_hdr_length_nexthdr_v6(spare_mp,
2040 				(ip6_t *)spare_mp->b_rptr, &hdr_len,
2041 				&nexthdrp)) {
2042 				/* Always works, even if NULL. */
2043 				freemsg(spare_mp);
2044 				freemsg(mp);
2045 				return (B_FALSE);
2046 			} else {
2047 				nexthdr = *nexthdrp;
2048 				/* We can just extract based on hdr_len now. */
2049 			}
2050 			break;
2051 		default:
2052 			hdr_len = IPV6_HDR_LEN;
2053 			break;
2054 		}
2055 	} else {
2056 		check_proto = IPPROTO_ICMP;
2057 		hdr_len = IPH_HDR_LENGTH(ipha);
2058 		nexthdr = ipha->ipha_protocol;
2059 	}
2060 
2061 	sel->ips_protocol = nexthdr;
2062 	if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2063 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2064 		sel->ips_local_port = sel->ips_remote_port = 0;
2065 		freemsg(spare_mp);  /* Always works, even if NULL. */
2066 		return (B_TRUE);
2067 	}
2068 
2069 	if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) {
2070 		/* If we didn't pullup a copy already, do so now. */
2071 		/*
2072 		 * XXX performance, will upper-layers frequently split TCP/UDP
2073 		 * apart from IP or options?  If so, perhaps we should revisit
2074 		 * the spare_mp strategy.
2075 		 *
2076 		 * XXX should this be msgpullup(mp, hdr_len+4) ???
2077 		 */
2078 		if (spare_mp == NULL &&
2079 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2080 			freemsg(mp);
2081 			return (B_FALSE);
2082 		}
2083 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len];
2084 	} else {
2085 		ports = (uint16_t *)&mp->b_rptr[hdr_len];
2086 	}
2087 
2088 	if (nexthdr == check_proto) {
2089 		typecode = (uint8_t *)ports;
2090 		sel->ips_icmp_type = *typecode++;
2091 		sel->ips_icmp_code = *typecode;
2092 		sel->ips_remote_port = sel->ips_local_port = 0;
2093 		freemsg(spare_mp);	/* Always works, even if NULL */
2094 		return (B_TRUE);
2095 	}
2096 
2097 	sel->ips_local_port = *ports++;
2098 	sel->ips_remote_port = *ports;
2099 	freemsg(spare_mp);	/* Always works, even if NULL */
2100 	return (B_TRUE);
2101 }
2102 
2103 /*
2104  * Create an ipsec_action_t based on the way an inbound packet was protected.
2105  * Used to reflect traffic back to a sender.
2106  *
2107  * We don't bother interning the action into the hash table.
2108  */
2109 ipsec_action_t *
2110 ipsec_in_to_out_action(ipsec_in_t *ii)
2111 {
2112 	ipsa_t *ah_assoc, *esp_assoc;
2113 	uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2114 	ipsec_action_t *ap;
2115 	boolean_t unique;
2116 
2117 	ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2118 
2119 	if (ap == NULL)
2120 		return (NULL);
2121 
2122 	bzero(ap, sizeof (*ap));
2123 	ap->ipa_hash.hash_next = NULL;
2124 	ap->ipa_hash.hash_pp = NULL;
2125 	ap->ipa_next = NULL;
2126 	ap->ipa_refs = 1;
2127 
2128 	/*
2129 	 * Get the algorithms that were used for this packet.
2130 	 */
2131 	ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2132 	ap->ipa_act.ipa_log = 0;
2133 	ah_assoc = ii->ipsec_in_ah_sa;
2134 	ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
2135 
2136 	esp_assoc = ii->ipsec_in_esp_sa;
2137 	ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
2138 
2139 	if (esp_assoc != NULL) {
2140 		encr_alg = esp_assoc->ipsa_encr_alg;
2141 		espa_alg = esp_assoc->ipsa_auth_alg;
2142 		ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
2143 	}
2144 	if (ah_assoc != NULL)
2145 		auth_alg = ah_assoc->ipsa_auth_alg;
2146 
2147 	ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
2148 	ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
2149 	ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
2150 	ap->ipa_act.ipa_apply.ipp_use_se = ii->ipsec_in_decaps;
2151 	unique = B_FALSE;
2152 
2153 	if (esp_assoc != NULL) {
2154 		ap->ipa_act.ipa_apply.ipp_espa_minbits =
2155 		    esp_assoc->ipsa_authkeybits;
2156 		ap->ipa_act.ipa_apply.ipp_espa_maxbits =
2157 		    esp_assoc->ipsa_authkeybits;
2158 		ap->ipa_act.ipa_apply.ipp_espe_minbits =
2159 		    esp_assoc->ipsa_encrkeybits;
2160 		ap->ipa_act.ipa_apply.ipp_espe_maxbits =
2161 		    esp_assoc->ipsa_encrkeybits;
2162 		ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
2163 		ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
2164 		if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
2165 			unique = B_TRUE;
2166 	}
2167 	if (ah_assoc != NULL) {
2168 		ap->ipa_act.ipa_apply.ipp_ah_minbits =
2169 		    ah_assoc->ipsa_authkeybits;
2170 		ap->ipa_act.ipa_apply.ipp_ah_maxbits =
2171 		    ah_assoc->ipsa_authkeybits;
2172 		ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
2173 		ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
2174 		if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
2175 			unique = B_TRUE;
2176 	}
2177 	ap->ipa_act.ipa_apply.ipp_use_unique = unique;
2178 	ap->ipa_want_unique = unique;
2179 	ap->ipa_allow_clear = B_FALSE;
2180 	ap->ipa_want_se = ii->ipsec_in_decaps;
2181 	ap->ipa_want_ah = (ah_assoc != NULL);
2182 	ap->ipa_want_esp = (esp_assoc != NULL);
2183 
2184 	ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
2185 
2186 	ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
2187 
2188 	return (ap);
2189 }
2190 
2191 
2192 /*
2193  * Compute the worst-case amount of extra space required by an action.
2194  * Note that, because of the ESP considerations listed below, this is
2195  * actually not the same as the best-case reduction in the MTU; in the
2196  * future, we should pass additional information to this function to
2197  * allow the actual MTU impact to be computed.
2198  *
2199  * AH: Revisit this if we implement algorithms with
2200  * a verifier size of more than 12 bytes.
2201  *
2202  * ESP: A more exact but more messy computation would take into
2203  * account the interaction between the cipher block size and the
2204  * effective MTU, yielding the inner payload size which reflects a
2205  * packet with *minimum* ESP padding..
2206  */
2207 static int32_t
2208 ipsec_act_ovhd(const ipsec_act_t *act)
2209 {
2210 	int32_t overhead = 0;
2211 
2212 	if (act->ipa_type == IPSEC_ACT_APPLY) {
2213 		const ipsec_prot_t *ipp = &act->ipa_apply;
2214 
2215 		if (ipp->ipp_use_ah)
2216 			overhead += IPSEC_MAX_AH_HDR_SIZE;
2217 		if (ipp->ipp_use_esp) {
2218 			overhead += IPSEC_MAX_ESP_HDR_SIZE;
2219 			overhead += sizeof (struct udphdr);
2220 		}
2221 		if (ipp->ipp_use_se)
2222 			overhead += IP_SIMPLE_HDR_LENGTH;
2223 	}
2224 	return (overhead);
2225 }
2226 
2227 /*
2228  * This hash function is used only when creating policies and thus is not
2229  * performance-critical for packet flows.
2230  *
2231  * Future work: canonicalize the structures hashed with this (i.e.,
2232  * zeroize padding) so the hash works correctly.
2233  */
2234 /* ARGSUSED */
2235 static uint32_t
2236 policy_hash(int size, const void *start, const void *end)
2237 {
2238 	return (0);
2239 }
2240 
2241 /*
2242  * Intern actions into the action hash table.
2243  */
2244 ipsec_action_t *
2245 ipsec_act_find(const ipsec_act_t *a, int n)
2246 {
2247 	int i;
2248 	uint32_t hval;
2249 	ipsec_action_t *ap;
2250 	ipsec_action_t *prev = NULL;
2251 	int32_t overhead, maxovhd = 0;
2252 	boolean_t allow_clear = B_FALSE;
2253 	boolean_t want_ah = B_FALSE;
2254 	boolean_t want_esp = B_FALSE;
2255 	boolean_t want_se = B_FALSE;
2256 	boolean_t want_unique = B_FALSE;
2257 
2258 	/*
2259 	 * TODO: should canonicalize a[] (i.e., zeroize any padding)
2260 	 * so we can use a non-trivial policy_hash function.
2261 	 */
2262 	for (i = n-1; i >= 0; i--) {
2263 		hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
2264 
2265 		HASH_LOCK(ipsec_action_hash, hval);
2266 
2267 		for (HASH_ITERATE(ap, ipa_hash, ipsec_action_hash, hval)) {
2268 			if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
2269 				continue;
2270 			if (ap->ipa_next != prev)
2271 				continue;
2272 			break;
2273 		}
2274 		if (ap != NULL) {
2275 			HASH_UNLOCK(ipsec_action_hash, hval);
2276 			prev = ap;
2277 			continue;
2278 		}
2279 		/*
2280 		 * need to allocate a new one..
2281 		 */
2282 		ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2283 		if (ap == NULL) {
2284 			HASH_UNLOCK(ipsec_action_hash, hval);
2285 			if (prev != NULL)
2286 				ipsec_action_free(prev);
2287 			return (NULL);
2288 		}
2289 		HASH_INSERT(ap, ipa_hash, ipsec_action_hash, hval);
2290 
2291 		ap->ipa_next = prev;
2292 		ap->ipa_act = a[i];
2293 
2294 		overhead = ipsec_act_ovhd(&a[i]);
2295 		if (maxovhd < overhead)
2296 			maxovhd = overhead;
2297 
2298 		if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
2299 		    (a[i].ipa_type == IPSEC_ACT_CLEAR))
2300 			allow_clear = B_TRUE;
2301 		if (a[i].ipa_type == IPSEC_ACT_APPLY) {
2302 			const ipsec_prot_t *ipp = &a[i].ipa_apply;
2303 
2304 			ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
2305 			want_ah |= ipp->ipp_use_ah;
2306 			want_esp |= ipp->ipp_use_esp;
2307 			want_se |= ipp->ipp_use_se;
2308 			want_unique |= ipp->ipp_use_unique;
2309 		}
2310 		ap->ipa_allow_clear = allow_clear;
2311 		ap->ipa_want_ah = want_ah;
2312 		ap->ipa_want_esp = want_esp;
2313 		ap->ipa_want_se = want_se;
2314 		ap->ipa_want_unique = want_unique;
2315 		ap->ipa_refs = 1; /* from the hash table */
2316 		ap->ipa_ovhd = maxovhd;
2317 		if (prev)
2318 			prev->ipa_refs++;
2319 		prev = ap;
2320 		HASH_UNLOCK(ipsec_action_hash, hval);
2321 	}
2322 
2323 	ap->ipa_refs++;		/* caller's reference */
2324 
2325 	return (ap);
2326 }
2327 
2328 /*
2329  * Called when refcount goes to 0, indicating that all references to this
2330  * node are gone.
2331  *
2332  * This does not unchain the action from the hash table.
2333  */
2334 void
2335 ipsec_action_free(ipsec_action_t *ap)
2336 {
2337 	for (;;) {
2338 		ipsec_action_t *np = ap->ipa_next;
2339 		ASSERT(ap->ipa_refs == 0);
2340 		ASSERT(ap->ipa_hash.hash_pp == NULL);
2341 		kmem_cache_free(ipsec_action_cache, ap);
2342 		ap = np;
2343 		/* Inlined IPACT_REFRELE -- avoid recursion */
2344 		if (ap == NULL)
2345 			break;
2346 		membar_exit();
2347 		if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0)
2348 			break;
2349 		/* End inlined IPACT_REFRELE */
2350 	}
2351 }
2352 
2353 /*
2354  * Periodically sweep action hash table for actions with refcount==1, and
2355  * nuke them.  We cannot do this "on demand" (i.e., from IPACT_REFRELE)
2356  * because we can't close the race between another thread finding the action
2357  * in the hash table without holding the bucket lock during IPACT_REFRELE.
2358  * Instead, we run this function sporadically to clean up after ourselves;
2359  * we also set it as the "reclaim" function for the action kmem_cache.
2360  *
2361  * Note that it may take several passes of ipsec_action_gc() to free all
2362  * "stale" actions.
2363  */
2364 /* ARGSUSED */
2365 static void
2366 ipsec_action_reclaim(void *dummy)
2367 {
2368 	int i;
2369 
2370 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
2371 		ipsec_action_t *ap, *np;
2372 
2373 		/* skip the lock if nobody home */
2374 		if (ipsec_action_hash[i].hash_head == NULL)
2375 			continue;
2376 
2377 		HASH_LOCK(ipsec_action_hash, i);
2378 		for (ap = ipsec_action_hash[i].hash_head;
2379 		    ap != NULL; ap = np) {
2380 			ASSERT(ap->ipa_refs > 0);
2381 			np = ap->ipa_hash.hash_next;
2382 			if (ap->ipa_refs > 1)
2383 				continue;
2384 			HASH_UNCHAIN(ap, ipa_hash, ipsec_action_hash, i);
2385 			IPACT_REFRELE(ap);
2386 		}
2387 		HASH_UNLOCK(ipsec_action_hash, i);
2388 	}
2389 }
2390 
2391 /*
2392  * Intern a selector set into the selector set hash table.
2393  * This is simpler than the actions case..
2394  */
2395 ipsec_sel_t *
2396 ipsec_find_sel(const ipsec_selkey_t *selkey)
2397 {
2398 	ipsec_sel_t *sp;
2399 	uint32_t hval;
2400 
2401 	/*
2402 	 * Exactly one AF bit should be set in selkey.
2403 	 */
2404 	ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
2405 	    !(selkey->ipsl_valid & IPSL_IPV6));
2406 
2407 	/*
2408 	 * TODO: should canonicalize selkey (i.e., zeroize any padding)
2409 	 * so we can use a non-trivial policy_hash function.
2410 	 */
2411 	hval = policy_hash(IPSEC_SEL_HASH_SIZE, selkey, selkey+1);
2412 
2413 	ASSERT(!HASH_LOCKED(ipsec_sel_hash, hval));
2414 	HASH_LOCK(ipsec_sel_hash, hval);
2415 
2416 	for (HASH_ITERATE(sp, ipsl_hash, ipsec_sel_hash, hval)) {
2417 		if (bcmp(&sp->ipsl_key, selkey, sizeof (*selkey)) == 0)
2418 			break;
2419 	}
2420 	if (sp != NULL) {
2421 		sp->ipsl_refs++;
2422 
2423 		HASH_UNLOCK(ipsec_sel_hash, hval);
2424 		return (sp);
2425 	}
2426 	sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
2427 	if (sp == NULL) {
2428 		HASH_UNLOCK(ipsec_sel_hash, hval);
2429 		return (NULL);
2430 	}
2431 
2432 	HASH_INSERT(sp, ipsl_hash, ipsec_sel_hash, hval);
2433 	sp->ipsl_refs = 2;	/* one for hash table, one for caller */
2434 	sp->ipsl_key = *selkey;
2435 	sp->ipsl_key.ipsl_hval = (uint8_t)hval;
2436 
2437 	HASH_UNLOCK(ipsec_sel_hash, hval);
2438 
2439 	return (sp);
2440 }
2441 
2442 static void
2443 ipsec_sel_rel(ipsec_sel_t **spp)
2444 {
2445 	ipsec_sel_t *sp = *spp;
2446 	int hval = sp->ipsl_key.ipsl_hval;
2447 	*spp = NULL;
2448 
2449 	ASSERT(!HASH_LOCKED(ipsec_sel_hash, hval));
2450 	HASH_LOCK(ipsec_sel_hash, hval);
2451 	if (--sp->ipsl_refs == 1) {
2452 		HASH_UNCHAIN(sp, ipsl_hash, ipsec_sel_hash, hval);
2453 		sp->ipsl_refs--;
2454 		HASH_UNLOCK(ipsec_sel_hash, hval);
2455 		ASSERT(sp->ipsl_refs == 0);
2456 		kmem_cache_free(ipsec_sel_cache, sp);
2457 		/* Caller unlocks */
2458 		return;
2459 	}
2460 
2461 	HASH_UNLOCK(ipsec_sel_hash, hval);
2462 }
2463 
2464 /*
2465  * Free a policy rule which we know is no longer being referenced.
2466  */
2467 void
2468 ipsec_policy_free(ipsec_policy_t *ipp)
2469 {
2470 	ASSERT(ipp->ipsp_refs == 0);
2471 	ASSERT(ipp->ipsp_sel != NULL);
2472 	ASSERT(ipp->ipsp_act != NULL);
2473 	ipsec_sel_rel(&ipp->ipsp_sel);
2474 	IPACT_REFRELE(ipp->ipsp_act);
2475 	kmem_cache_free(ipsec_pol_cache, ipp);
2476 }
2477 
2478 /*
2479  * Construction of new policy rules; construct a policy, and add it to
2480  * the appropriate tables.
2481  */
2482 ipsec_policy_t *
2483 ipsec_policy_create(const ipsec_selkey_t *keys,
2484     const ipsec_act_t *a, int nacts, int prio)
2485 {
2486 	ipsec_action_t *ap;
2487 	ipsec_sel_t *sp;
2488 	ipsec_policy_t *ipp;
2489 
2490 	ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
2491 	ap = ipsec_act_find(a, nacts);
2492 	sp = ipsec_find_sel(keys);
2493 
2494 	if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
2495 		if (ap != NULL) {
2496 			IPACT_REFRELE(ap);
2497 		}
2498 		if (sp != NULL)
2499 			ipsec_sel_rel(&sp);
2500 		if (ipp != NULL)
2501 			kmem_cache_free(ipsec_pol_cache, ipp);
2502 		return (NULL);
2503 	}
2504 
2505 	ipp->ipsp_links.itl_next = NULL;
2506 
2507 	ipp->ipsp_refs = 1;	/* caller's reference */
2508 	ipp->ipsp_sel = sp;
2509 	ipp->ipsp_act = ap;
2510 	ipp->ipsp_prio = prio;	/* rule priority */
2511 	ipp->ipsp_index = ipsec_next_policy_index++;
2512 
2513 	return (ipp);
2514 }
2515 
2516 static void
2517 ipsec_update_present_flags()
2518 {
2519 	ipsec_outbound_v4_policy_present = (NULL !=
2520 	    system_policy.iph_root[IPSEC_TYPE_OUTBOUND].ipr[IPSEC_AF_V4]);
2521 	ipsec_outbound_v6_policy_present = (NULL !=
2522 	    system_policy.iph_root[IPSEC_TYPE_OUTBOUND].ipr[IPSEC_AF_V6]);
2523 	ipsec_inbound_v4_policy_present = (NULL !=
2524 	    system_policy.iph_root[IPSEC_TYPE_INBOUND].ipr[IPSEC_AF_V4]);
2525 	ipsec_inbound_v6_policy_present = (NULL !=
2526 	    system_policy.iph_root[IPSEC_TYPE_INBOUND].ipr[IPSEC_AF_V6]);
2527 }
2528 
2529 boolean_t
2530 ipsec_policy_delete(ipsec_policy_head_t *php,
2531     const ipsec_selkey_t *keys, int dir)
2532 {
2533 	ipsec_sel_t *sp;
2534 	ipsec_policy_t **pptr;
2535 	ipsec_policy_t *ip;
2536 	int af;
2537 
2538 	sp = ipsec_find_sel(keys);
2539 
2540 	if (sp == NULL)
2541 		return (B_FALSE);
2542 
2543 	af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
2544 
2545 	rw_enter(&php->iph_lock, RW_WRITER);
2546 
2547 	for (pptr = &php->iph_root[dir].ipr[af], ip = *pptr;
2548 	    ip != NULL; ip = *pptr) {
2549 		if (ip->ipsp_sel != sp) {
2550 			pptr = &ip->ipsp_links.itl_next;
2551 			continue;
2552 		}
2553 		*pptr = ip->ipsp_links.itl_next;
2554 		rw_exit(&php->iph_lock);
2555 		IPPOL_REFRELE(ip);
2556 		ipsec_sel_rel(&sp);
2557 		php->iph_gen++;
2558 		return (B_TRUE);
2559 	}
2560 	ipsec_update_present_flags();
2561 	rw_exit(&php->iph_lock);
2562 	ipsec_sel_rel(&sp);
2563 	return (B_FALSE);
2564 }
2565 
2566 int
2567 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index)
2568 {
2569 	int dir;
2570 	boolean_t found;
2571 
2572 	found = B_FALSE;
2573 
2574 	rw_enter(&php->iph_lock, RW_WRITER);
2575 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
2576 		ipsec_policy_t **pptr;
2577 		ipsec_policy_t *ip;
2578 		int af;
2579 
2580 		for (af = 0; af < IPSEC_NAF; af++) {
2581 			for (pptr = &php->iph_root[dir].ipr[af], ip = *pptr;
2582 			    ip != NULL; ip = *pptr) {
2583 				if (ip->ipsp_index != policy_index) {
2584 					pptr = &ip->ipsp_links.itl_next;
2585 					continue;
2586 				}
2587 				*pptr = ip->ipsp_links.itl_next;
2588 				php->iph_gen++;
2589 				IPPOL_REFRELE(ip);
2590 				found = B_TRUE;
2591 			}
2592 		}
2593 	}
2594 	ipsec_update_present_flags();
2595 	rw_exit(&php->iph_lock);
2596 	return (found ? 0 : ENOENT);
2597 }
2598 
2599 /*
2600  * Given a constructed ipsec_policy_t policy rule, see if it can be entered
2601  * into the correct policy ruleset.
2602  *
2603  * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
2604  * duplicate policy exists with exactly the same selectors), or an icmp
2605  * rule exists with a different encryption/authentication action.
2606  */
2607 boolean_t
2608 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
2609 {
2610 	ipsec_policy_root_t *pr = &php->iph_root[direction];
2611 	int af = -1;
2612 	ipsec_policy_t *p2;
2613 	uint8_t check_proto;
2614 
2615 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
2616 
2617 	if (ipp->ipsp_sel->ipsl_key.ipsl_valid & IPSL_IPV6) {
2618 		ASSERT(!(ipp->ipsp_sel->ipsl_key.ipsl_valid & IPSL_IPV4));
2619 		af = IPSEC_AF_V6;
2620 		check_proto = IPPROTO_ICMPV6;
2621 	} else {
2622 		ASSERT(ipp->ipsp_sel->ipsl_key.ipsl_valid & IPSL_IPV4);
2623 		af = IPSEC_AF_V4;
2624 		check_proto = IPPROTO_ICMP;
2625 	}
2626 
2627 	/*
2628 	 * Double-check that we don't have any duplicate selectors here.
2629 	 * Because selectors are interned below, we need only compare pointers
2630 	 * for equality.
2631 	 */
2632 
2633 	for (p2 = pr->ipr[af]; p2 != NULL; p2 = p2->ipsp_links.itl_next) {
2634 		if (p2->ipsp_sel == ipp->ipsp_sel)
2635 			return (B_FALSE);
2636 	}
2637 
2638 	/*
2639 	 * If it's ICMP and not a drop or pass rule, run through the ICMP
2640 	 * rules and make sure the action is either new or the same as any
2641 	 * other actions.  We don't have to check the full chain because
2642 	 * discard and bypass will override all other actions
2643 	 */
2644 
2645 	if (ipp->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
2646 	    ipp->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
2647 	    (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
2648 		for (p2 = pr->ipr[af]; p2 != NULL;
2649 		    p2 = p2->ipsp_links.itl_next) {
2650 			if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
2651 			    p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
2652 			    (p2->ipsp_act->ipa_act.ipa_type ==
2653 				IPSEC_ACT_APPLY)) {
2654 				return (ipsec_compare_action(p2, ipp));
2655 			}
2656 		}
2657 	}
2658 
2659 	return (B_TRUE);
2660 }
2661 
2662 /*
2663  * compare the action chains of two policies for equality
2664  * B_TRUE -> effective equality
2665  */
2666 
2667 static boolean_t
2668 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
2669 {
2670 
2671 	ipsec_action_t *act1, *act2;
2672 
2673 	/* We have a valid rule. Let's compare the actions */
2674 	if (p1->ipsp_act == p2->ipsp_act) {
2675 		/* same action. We are good */
2676 		return (B_TRUE);
2677 	}
2678 
2679 	/* we have to walk the chain */
2680 
2681 	act1 = p1->ipsp_act;
2682 	act2 = p2->ipsp_act;
2683 
2684 	while (act1 != NULL && act2 != NULL) {
2685 
2686 		/* otherwise, Are we close enough? */
2687 		if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
2688 		    act1->ipa_want_ah != act2->ipa_want_ah ||
2689 		    act1->ipa_want_esp != act2->ipa_want_esp ||
2690 		    act1->ipa_want_se != act2->ipa_want_se) {
2691 			/* Nope, we aren't */
2692 			return (B_FALSE);
2693 		}
2694 
2695 		if (act1->ipa_want_ah) {
2696 			if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
2697 			    act2->ipa_act.ipa_apply.ipp_auth_alg) {
2698 				return (B_FALSE);
2699 			}
2700 
2701 			if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
2702 			    act2->ipa_act.ipa_apply.ipp_ah_minbits ||
2703 			    act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
2704 			    act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
2705 				return (B_FALSE);
2706 			}
2707 		}
2708 
2709 		if (act1->ipa_want_esp) {
2710 			if (act1->ipa_act.ipa_apply.ipp_use_esp !=
2711 			    act2->ipa_act.ipa_apply.ipp_use_esp ||
2712 			    act1->ipa_act.ipa_apply.ipp_use_espa !=
2713 			    act2->ipa_act.ipa_apply.ipp_use_espa) {
2714 				return (B_FALSE);
2715 			}
2716 
2717 			if (act1->ipa_act.ipa_apply.ipp_use_esp) {
2718 				if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
2719 				    act2->ipa_act.ipa_apply.ipp_encr_alg) {
2720 					return (B_FALSE);
2721 				}
2722 
2723 				if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
2724 				    act2->ipa_act.ipa_apply.ipp_espe_minbits ||
2725 				    act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
2726 				    act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
2727 					return (B_FALSE);
2728 				}
2729 			}
2730 
2731 			if (act1->ipa_act.ipa_apply.ipp_use_espa) {
2732 				if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
2733 				    act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
2734 					return (B_FALSE);
2735 				}
2736 
2737 				if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
2738 				    act2->ipa_act.ipa_apply.ipp_espa_minbits ||
2739 				    act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
2740 				    act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
2741 					return (B_FALSE);
2742 				}
2743 			}
2744 
2745 		}
2746 
2747 		act1 = act1->ipa_next;
2748 		act2 = act2->ipa_next;
2749 	}
2750 
2751 	if (act1 != NULL || act2 != NULL) {
2752 		return (B_FALSE);
2753 	}
2754 
2755 	return (B_TRUE);
2756 }
2757 
2758 
2759 /*
2760  * Given a constructed ipsec_policy_t policy rule, enter it into
2761  * the correct policy ruleset.
2762  *
2763  * ipsec_check_policy() is assumed to have succeeded first (to check for
2764  * duplicates).
2765  */
2766 void
2767 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
2768 {
2769 	ipsec_policy_root_t *pr = &php->iph_root[direction];
2770 	int af = -1;
2771 
2772 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
2773 
2774 	if (ipp->ipsp_sel->ipsl_key.ipsl_valid & IPSL_IPV6) {
2775 		ASSERT(!(ipp->ipsp_sel->ipsl_key.ipsl_valid & IPSL_IPV4));
2776 		af = IPSEC_AF_V6;
2777 	} else {
2778 		ASSERT(ipp->ipsp_sel->ipsl_key.ipsl_valid & IPSL_IPV4);
2779 		af = IPSEC_AF_V4;
2780 	}
2781 
2782 	php->iph_gen++;
2783 
2784 	ipp->ipsp_links.itl_next = pr->ipr[af];
2785 	pr->ipr[af] = ipp;
2786 	ipsec_update_present_flags();
2787 }
2788 
2789 void
2790 ipsec_polhead_flush(ipsec_policy_head_t *php)
2791 {
2792 	ipsec_policy_t *ip, *nip;
2793 	int dir, af;
2794 
2795 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
2796 
2797 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
2798 		for (af = 0; af < IPSEC_NAF; af++) {
2799 			for (ip = php->iph_root[dir].ipr[af];
2800 			    ip != NULL; ip = nip) {
2801 				nip = ip->ipsp_links.itl_next;
2802 				IPPOL_REFRELE(ip);
2803 			}
2804 			php->iph_root[dir].ipr[af] = NULL;
2805 		}
2806 	}
2807 	ipsec_update_present_flags();
2808 }
2809 
2810 void
2811 ipsec_polhead_free(ipsec_policy_head_t *php)
2812 {
2813 	ASSERT(php->iph_refs == 0);
2814 	rw_enter(&php->iph_lock, RW_WRITER);
2815 	ipsec_polhead_flush(php);
2816 	rw_exit(&php->iph_lock);
2817 	rw_destroy(&php->iph_lock);
2818 	kmem_free(php, sizeof (*php));
2819 }
2820 
2821 extern ipsec_policy_head_t *
2822 ipsec_polhead_create(void)
2823 {
2824 	ipsec_policy_head_t *php;
2825 	int af;
2826 
2827 	php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
2828 	if (php != NULL) {
2829 		rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
2830 		for (af = 0; af < IPSEC_NAF; af++) {
2831 			php->iph_root[IPSEC_TYPE_INBOUND].ipr[af] = NULL;
2832 			php->iph_root[IPSEC_TYPE_OUTBOUND].ipr[af] = NULL;
2833 		}
2834 		php->iph_refs = 1;
2835 	}
2836 	return (php);
2837 }
2838 
2839 /*
2840  * Clone the policy head into a new polhead; release one reference to the
2841  * old one and return the only reference to the new one.
2842  * If the old one had a refcount of 1, just return it.
2843  */
2844 
2845 extern ipsec_policy_head_t *
2846 ipsec_polhead_split(ipsec_policy_head_t *php)
2847 {
2848 	ipsec_policy_head_t *nphp;
2849 
2850 	if (php == NULL)
2851 		return (ipsec_polhead_create());
2852 	else if (php->iph_refs == 1)
2853 		return (php);
2854 
2855 	nphp = ipsec_polhead_create();
2856 	if (nphp == NULL)
2857 		return (NULL);
2858 
2859 	if (ipsec_copy_polhead(php, nphp) != 0) {
2860 		ipsec_polhead_free(nphp);
2861 		return (NULL);
2862 	}
2863 	IPPH_REFRELE(php);
2864 	return (nphp);
2865 }
2866 
2867 /*
2868  * When sending a response to a ICMP request or generating a RST
2869  * in the TCP case, the outbound packets need to go at the same level
2870  * of protection as the incoming ones i.e we associate our outbound
2871  * policy with how the packet came in. We call this after we have
2872  * accepted the incoming packet which may or may not have been in
2873  * clear and hence we are sending the reply back with the policy
2874  * matching the incoming datagram's policy.
2875  *
2876  * NOTE : This technology serves two purposes :
2877  *
2878  * 1) If we have multiple outbound policies, we send out a reply
2879  *    matching with how it came in rather than matching the outbound
2880  *    policy.
2881  *
2882  * 2) For assymetric policies, we want to make sure that incoming
2883  *    and outgoing has the same level of protection. Assymetric
2884  *    policies exist only with global policy where we may not have
2885  *    both outbound and inbound at the same time.
2886  *
2887  * NOTE2:	This function is called by cleartext cases, so it needs to be
2888  *		in IP proper.
2889  */
2890 boolean_t
2891 ipsec_in_to_out(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h)
2892 {
2893 	ipsec_in_t  *ii;
2894 	ipsec_out_t  *io;
2895 	boolean_t v4;
2896 	mblk_t *mp;
2897 	boolean_t secure, attach_if;
2898 	uint_t ifindex;
2899 	ipsec_selector_t sel;
2900 	ipsec_action_t *reflect_action = NULL;
2901 	zoneid_t zoneid;
2902 
2903 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2904 
2905 	bzero((void*)&sel, sizeof (sel));
2906 
2907 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
2908 
2909 	mp = ipsec_mp->b_cont;
2910 	ASSERT(mp != NULL);
2911 
2912 	if (ii->ipsec_in_action != NULL) {
2913 		/* transfer reference.. */
2914 		reflect_action = ii->ipsec_in_action;
2915 		ii->ipsec_in_action = NULL;
2916 	} else if (!ii->ipsec_in_loopback)
2917 		reflect_action = ipsec_in_to_out_action(ii);
2918 	secure = ii->ipsec_in_secure;
2919 	attach_if = ii->ipsec_in_attach_if;
2920 	ifindex = ii->ipsec_in_ill_index;
2921 	zoneid = ii->ipsec_in_zoneid;
2922 	v4 = ii->ipsec_in_v4;
2923 
2924 	ipsec_in_release_refs(ii);
2925 
2926 	/*
2927 	 * The caller is going to send the datagram out which might
2928 	 * go on the wire or delivered locally through ip_wput_local.
2929 	 *
2930 	 * 1) If it goes out on the wire, new associations will be
2931 	 *    obtained.
2932 	 * 2) If it is delivered locally, ip_wput_local will convert
2933 	 *    this IPSEC_OUT to a IPSEC_IN looking at the requests.
2934 	 */
2935 
2936 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
2937 	bzero(io, sizeof (ipsec_out_t));
2938 	io->ipsec_out_type = IPSEC_OUT;
2939 	io->ipsec_out_len = sizeof (ipsec_out_t);
2940 	io->ipsec_out_frtn.free_func = ipsec_out_free;
2941 	io->ipsec_out_frtn.free_arg = (char *)io;
2942 	io->ipsec_out_act = reflect_action;
2943 
2944 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h))
2945 		return (B_FALSE);
2946 
2947 	io->ipsec_out_src_port = sel.ips_local_port;
2948 	io->ipsec_out_dst_port = sel.ips_remote_port;
2949 	io->ipsec_out_proto = sel.ips_protocol;
2950 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
2951 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
2952 
2953 	/*
2954 	 * Don't use global policy for this, as we want
2955 	 * to use the same protection that was applied to the inbound packet.
2956 	 */
2957 	io->ipsec_out_use_global_policy = B_FALSE;
2958 	io->ipsec_out_proc_begin = B_FALSE;
2959 	io->ipsec_out_secure = secure;
2960 	io->ipsec_out_v4 = v4;
2961 	io->ipsec_out_attach_if = attach_if;
2962 	io->ipsec_out_ill_index = ifindex;
2963 	io->ipsec_out_zoneid = zoneid;
2964 	return (B_TRUE);
2965 }
2966 
2967 mblk_t *
2968 ipsec_in_tag(mblk_t *mp, mblk_t *cont)
2969 {
2970 	ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
2971 	ipsec_in_t *nii;
2972 	mblk_t *nmp;
2973 	frtn_t nfrtn;
2974 
2975 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
2976 	ASSERT(ii->ipsec_in_len == sizeof (ipsec_in_t));
2977 
2978 	nmp = ipsec_in_alloc(ii->ipsec_in_v4);
2979 
2980 	ASSERT(nmp->b_datap->db_type == M_CTL);
2981 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
2982 
2983 	/*
2984 	 * Bump refcounts.
2985 	 */
2986 	if (ii->ipsec_in_ah_sa != NULL)
2987 		IPSA_REFHOLD(ii->ipsec_in_ah_sa);
2988 	if (ii->ipsec_in_esp_sa != NULL)
2989 		IPSA_REFHOLD(ii->ipsec_in_esp_sa);
2990 	if (ii->ipsec_in_policy != NULL)
2991 		IPPH_REFHOLD(ii->ipsec_in_policy);
2992 
2993 	/*
2994 	 * Copy everything, but preserve the free routine provided by
2995 	 * ipsec_in_alloc().
2996 	 */
2997 	nii = (ipsec_in_t *)nmp->b_rptr;
2998 	nfrtn = nii->ipsec_in_frtn;
2999 	bcopy(ii, nii, sizeof (*ii));
3000 	nii->ipsec_in_frtn = nfrtn;
3001 
3002 	nmp->b_cont = cont;
3003 
3004 	return (nmp);
3005 }
3006 
3007 mblk_t *
3008 ipsec_out_tag(mblk_t *mp, mblk_t *cont)
3009 {
3010 	ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr;
3011 	ipsec_out_t *nio;
3012 	mblk_t *nmp;
3013 	frtn_t nfrtn;
3014 
3015 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
3016 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
3017 
3018 	nmp = ipsec_alloc_ipsec_out();
3019 	if (nmp == NULL) {
3020 		freemsg(cont);	/* XXX ip_drop_packet() ? */
3021 		return (NULL);
3022 	}
3023 	ASSERT(nmp->b_datap->db_type == M_CTL);
3024 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
3025 
3026 	/*
3027 	 * Bump refcounts.
3028 	 */
3029 	if (io->ipsec_out_ah_sa != NULL)
3030 		IPSA_REFHOLD(io->ipsec_out_ah_sa);
3031 	if (io->ipsec_out_esp_sa != NULL)
3032 		IPSA_REFHOLD(io->ipsec_out_esp_sa);
3033 	if (io->ipsec_out_polhead != NULL)
3034 		IPPH_REFHOLD(io->ipsec_out_polhead);
3035 	if (io->ipsec_out_policy != NULL)
3036 		IPPOL_REFHOLD(io->ipsec_out_policy);
3037 	if (io->ipsec_out_act != NULL)
3038 		IPACT_REFHOLD(io->ipsec_out_act);
3039 	if (io->ipsec_out_latch != NULL)
3040 		IPLATCH_REFHOLD(io->ipsec_out_latch);
3041 	if (io->ipsec_out_cred != NULL)
3042 		crhold(io->ipsec_out_cred);
3043 
3044 	/*
3045 	 * Copy everything, but preserve the free routine provided by
3046 	 * ipsec_alloc_ipsec_out().
3047 	 */
3048 	nio = (ipsec_out_t *)nmp->b_rptr;
3049 	nfrtn = nio->ipsec_out_frtn;
3050 	bcopy(io, nio, sizeof (*io));
3051 	nio->ipsec_out_frtn = nfrtn;
3052 
3053 	nmp->b_cont = cont;
3054 
3055 	return (nmp);
3056 }
3057 
3058 static void
3059 ipsec_out_release_refs(ipsec_out_t *io)
3060 {
3061 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
3062 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
3063 
3064 	/* Note: IPSA_REFRELE is multi-line macro */
3065 	if (io->ipsec_out_ah_sa != NULL)
3066 		IPSA_REFRELE(io->ipsec_out_ah_sa);
3067 	if (io->ipsec_out_esp_sa != NULL)
3068 		IPSA_REFRELE(io->ipsec_out_esp_sa);
3069 	if (io->ipsec_out_polhead != NULL)
3070 		IPPH_REFRELE(io->ipsec_out_polhead);
3071 	if (io->ipsec_out_policy != NULL)
3072 		IPPOL_REFRELE(io->ipsec_out_policy);
3073 	if (io->ipsec_out_act != NULL)
3074 		IPACT_REFRELE(io->ipsec_out_act);
3075 	if (io->ipsec_out_cred != NULL) {
3076 		crfree(io->ipsec_out_cred);
3077 		io->ipsec_out_cred = NULL;
3078 	}
3079 	if (io->ipsec_out_latch) {
3080 		IPLATCH_REFRELE(io->ipsec_out_latch);
3081 		io->ipsec_out_latch = NULL;
3082 	}
3083 }
3084 
3085 static void
3086 ipsec_out_free(void *arg)
3087 {
3088 	ipsec_out_t *io = (ipsec_out_t *)arg;
3089 	ipsec_out_release_refs(io);
3090 	kmem_cache_free(ipsec_info_cache, arg);
3091 }
3092 
3093 static void
3094 ipsec_in_release_refs(ipsec_in_t *ii)
3095 {
3096 	/* Note: IPSA_REFRELE is multi-line macro */
3097 	if (ii->ipsec_in_ah_sa != NULL)
3098 		IPSA_REFRELE(ii->ipsec_in_ah_sa);
3099 	if (ii->ipsec_in_esp_sa != NULL)
3100 		IPSA_REFRELE(ii->ipsec_in_esp_sa);
3101 	if (ii->ipsec_in_policy != NULL)
3102 		IPPH_REFRELE(ii->ipsec_in_policy);
3103 	if (ii->ipsec_in_da != NULL) {
3104 		freeb(ii->ipsec_in_da);
3105 		ii->ipsec_in_da = NULL;
3106 	}
3107 }
3108 
3109 static void
3110 ipsec_in_free(void *arg)
3111 {
3112 	ipsec_in_t *ii = (ipsec_in_t *)arg;
3113 	ipsec_in_release_refs(ii);
3114 	kmem_cache_free(ipsec_info_cache, arg);
3115 }
3116 
3117 /*
3118  * This is called only for outbound datagrams if the datagram needs to
3119  * go out secure.  A NULL mp can be passed to get an ipsec_out. This
3120  * facility is used by ip_unbind.
3121  *
3122  * NOTE : o As the data part could be modified by ipsec_out_process etc.
3123  *	    we can't make it fast by calling a dup.
3124  */
3125 mblk_t *
3126 ipsec_alloc_ipsec_out()
3127 {
3128 	mblk_t *ipsec_mp;
3129 
3130 	ipsec_out_t *io = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
3131 
3132 	if (io == NULL)
3133 		return (NULL);
3134 
3135 	bzero(io, sizeof (ipsec_out_t));
3136 
3137 	io->ipsec_out_type = IPSEC_OUT;
3138 	io->ipsec_out_len = sizeof (ipsec_out_t);
3139 	io->ipsec_out_frtn.free_func = ipsec_out_free;
3140 	io->ipsec_out_frtn.free_arg = (char *)io;
3141 
3142 	/*
3143 	 * Set the zoneid to ALL_ZONES which is used as an invalid value. Code
3144 	 * using ipsec_out_zoneid should assert that the zoneid has been set to
3145 	 * a sane value.
3146 	 */
3147 	io->ipsec_out_zoneid = ALL_ZONES;
3148 
3149 	ipsec_mp = desballoc((uint8_t *)io, sizeof (ipsec_info_t), BPRI_HI,
3150 	    &io->ipsec_out_frtn);
3151 	if (ipsec_mp == NULL) {
3152 		ipsec_out_free(io);
3153 
3154 		return (NULL);
3155 	}
3156 	ipsec_mp->b_datap->db_type = M_CTL;
3157 	ipsec_mp->b_wptr = ipsec_mp->b_rptr + sizeof (ipsec_info_t);
3158 
3159 	return (ipsec_mp);
3160 }
3161 
3162 /*
3163  * Attach an IPSEC_OUT; use pol for policy if it is non-null.
3164  * Otherwise initialize using conn.
3165  *
3166  * If pol is non-null, we consume a reference to it.
3167  */
3168 mblk_t *
3169 ipsec_attach_ipsec_out(mblk_t *mp, conn_t *connp, ipsec_policy_t *pol,
3170     uint8_t proto)
3171 {
3172 	mblk_t *ipsec_mp;
3173 
3174 	ASSERT((pol != NULL) || (connp != NULL));
3175 
3176 	ipsec_mp = ipsec_alloc_ipsec_out();
3177 	if (ipsec_mp == NULL) {
3178 		(void) mi_strlog(CONNP_TO_WQ(connp), 0, SL_ERROR|SL_NOTE,
3179 		    "ipsec_attach_ipsec_out: Allocation failure\n");
3180 		BUMP_MIB(&ip_mib, ipOutDiscards);
3181 		ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_spd_nomem,
3182 		    &spd_dropper);
3183 		return (NULL);
3184 	}
3185 	ipsec_mp->b_cont = mp;
3186 	return (ipsec_init_ipsec_out(ipsec_mp, connp, pol, proto));
3187 }
3188 
3189 /*
3190  * Initialize the IPSEC_OUT (ipsec_mp) using pol if it is non-null.
3191  * Otherwise initialize using conn.
3192  *
3193  * If pol is non-null, we consume a reference to it.
3194  */
3195 mblk_t *
3196 ipsec_init_ipsec_out(mblk_t *ipsec_mp, conn_t *connp, ipsec_policy_t *pol,
3197     uint8_t proto)
3198 {
3199 	mblk_t *mp;
3200 	ipsec_out_t *io;
3201 	ipsec_policy_t *p;
3202 	ipha_t *ipha;
3203 	ip6_t *ip6h;
3204 
3205 	ASSERT((pol != NULL) || (connp != NULL));
3206 
3207 	/*
3208 	 * If mp is NULL, we won't/should not be using it.
3209 	 */
3210 	mp = ipsec_mp->b_cont;
3211 
3212 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
3213 	ASSERT(ipsec_mp->b_wptr == (ipsec_mp->b_rptr + sizeof (ipsec_info_t)));
3214 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
3215 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
3216 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
3217 	io->ipsec_out_latch = NULL;
3218 	/*
3219 	 * Set the zoneid when we have the connp.
3220 	 * Otherwise, we're called from ip_wput_attach_policy() who will take
3221 	 * care of setting the zoneid.
3222 	 */
3223 	if (connp != NULL)
3224 		io->ipsec_out_zoneid = connp->conn_zoneid;
3225 
3226 	if (mp != NULL) {
3227 		ipha = (ipha_t *)mp->b_rptr;
3228 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
3229 			io->ipsec_out_v4 = B_TRUE;
3230 			ip6h = NULL;
3231 		} else {
3232 			io->ipsec_out_v4 = B_FALSE;
3233 			ip6h = (ip6_t *)ipha;
3234 			ipha = NULL;
3235 		}
3236 	} else {
3237 		ASSERT(connp != NULL && connp->conn_policy_cached);
3238 		ip6h = NULL;
3239 		ipha = NULL;
3240 		io->ipsec_out_v4 = !connp->conn_pkt_isv6;
3241 	}
3242 
3243 	p = NULL;
3244 
3245 	/*
3246 	 * Take latched policies over global policy.  Check here again for
3247 	 * this, in case we had conn_latch set while the packet was flying
3248 	 * around in IP.
3249 	 */
3250 	if (connp != NULL && connp->conn_latch != NULL) {
3251 		p = connp->conn_latch->ipl_out_policy;
3252 		io->ipsec_out_latch = connp->conn_latch;
3253 		IPLATCH_REFHOLD(connp->conn_latch);
3254 		if (p != NULL) {
3255 			IPPOL_REFHOLD(p);
3256 		}
3257 		io->ipsec_out_src_port = connp->conn_lport;
3258 		io->ipsec_out_dst_port = connp->conn_fport;
3259 		io->ipsec_out_icmp_type = io->ipsec_out_icmp_code = 0;
3260 		if (pol != NULL)
3261 			IPPOL_REFRELE(pol);
3262 	} else if (pol != NULL) {
3263 		ipsec_selector_t sel;
3264 
3265 		bzero((void*)&sel, sizeof (sel));
3266 
3267 		p = pol;
3268 		/*
3269 		 * conn does not have the port information. Get
3270 		 * it from the packet.
3271 		 */
3272 
3273 		if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h)) {
3274 			/* XXX any cleanup required here?? */
3275 			return (NULL);
3276 		}
3277 		io->ipsec_out_src_port = sel.ips_local_port;
3278 		io->ipsec_out_dst_port = sel.ips_remote_port;
3279 		io->ipsec_out_icmp_type = sel.ips_icmp_type;
3280 		io->ipsec_out_icmp_code = sel.ips_icmp_code;
3281 	}
3282 
3283 	io->ipsec_out_proto = proto;
3284 	io->ipsec_out_use_global_policy = B_TRUE;
3285 	io->ipsec_out_secure = (p != NULL);
3286 	io->ipsec_out_policy = p;
3287 
3288 	if (p == NULL) {
3289 		if (connp->conn_policy != NULL) {
3290 			io->ipsec_out_secure = B_TRUE;
3291 			ASSERT(io->ipsec_out_latch == NULL);
3292 			ASSERT(io->ipsec_out_use_global_policy == B_TRUE);
3293 			io->ipsec_out_need_policy = B_TRUE;
3294 			ASSERT(io->ipsec_out_polhead == NULL);
3295 			IPPH_REFHOLD(connp->conn_policy);
3296 			io->ipsec_out_polhead = connp->conn_policy;
3297 		}
3298 	}
3299 	return (ipsec_mp);
3300 }
3301 
3302 /*
3303  * Allocate an IPSEC_IN mblk.  This will be prepended to an inbound datagram
3304  * and keep track of what-if-any IPsec processing will be applied to the
3305  * datagram.
3306  */
3307 mblk_t *
3308 ipsec_in_alloc(boolean_t isv4)
3309 {
3310 	mblk_t *ipsec_in;
3311 	ipsec_in_t *ii = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
3312 
3313 	if (ii == NULL)
3314 		return (NULL);
3315 
3316 	bzero(ii, sizeof (ipsec_info_t));
3317 	ii->ipsec_in_type = IPSEC_IN;
3318 	ii->ipsec_in_len = sizeof (ipsec_in_t);
3319 
3320 	ii->ipsec_in_v4 = isv4;
3321 	ii->ipsec_in_secure = B_TRUE;
3322 
3323 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
3324 	ii->ipsec_in_frtn.free_arg = (char *)ii;
3325 
3326 	ipsec_in = desballoc((uint8_t *)ii, sizeof (ipsec_info_t), BPRI_HI,
3327 	    &ii->ipsec_in_frtn);
3328 	if (ipsec_in == NULL) {
3329 		ip1dbg(("ipsec_in_alloc: IPSEC_IN allocation failure.\n"));
3330 		ipsec_in_free(ii);
3331 		return (NULL);
3332 	}
3333 
3334 	ipsec_in->b_datap->db_type = M_CTL;
3335 	ipsec_in->b_wptr += sizeof (ipsec_info_t);
3336 
3337 	return (ipsec_in);
3338 }
3339 
3340 /*
3341  * This is called from ip_wput_local when a packet which needs
3342  * security is looped back, to convert the IPSEC_OUT to a IPSEC_IN
3343  * before fanout, where the policy check happens.  In most of the
3344  * cases, IPSEC processing has *never* been done.  There is one case
3345  * (ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed) where
3346  * the packet is destined for localhost, IPSEC processing has already
3347  * been done.
3348  *
3349  * Future: This could happen after SA selection has occurred for
3350  * outbound.. which will tell us who the src and dst identities are..
3351  * Then it's just a matter of splicing the ah/esp SA pointers from the
3352  * ipsec_out_t to the ipsec_in_t.
3353  */
3354 void
3355 ipsec_out_to_in(mblk_t *ipsec_mp)
3356 {
3357 	ipsec_in_t  *ii;
3358 	ipsec_out_t *io;
3359 	ipsec_policy_t *pol;
3360 	ipsec_action_t *act;
3361 	boolean_t v4, icmp_loopback;
3362 
3363 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
3364 
3365 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
3366 
3367 	v4 = io->ipsec_out_v4;
3368 	icmp_loopback = io->ipsec_out_icmp_loopback;
3369 
3370 	act = io->ipsec_out_act;
3371 	if (act == NULL) {
3372 		pol = io->ipsec_out_policy;
3373 		if (pol != NULL) {
3374 			act = pol->ipsp_act;
3375 			IPACT_REFHOLD(act);
3376 		}
3377 	}
3378 	io->ipsec_out_act = NULL;
3379 
3380 	ipsec_out_release_refs(io);
3381 
3382 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
3383 	bzero(ii, sizeof (ipsec_in_t));
3384 	ii->ipsec_in_type = IPSEC_IN;
3385 	ii->ipsec_in_len = sizeof (ipsec_in_t);
3386 	ii->ipsec_in_loopback = B_TRUE;
3387 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
3388 	ii->ipsec_in_frtn.free_arg = (char *)ii;
3389 	ii->ipsec_in_action = act;
3390 
3391 	/*
3392 	 * In most of the cases, we can't look at the ipsec_out_XXX_sa
3393 	 * because this never went through IPSEC processing. So, look at
3394 	 * the requests and infer whether it would have gone through
3395 	 * IPSEC processing or not. Initialize the "done" fields with
3396 	 * the requests. The possible values for "done" fields are :
3397 	 *
3398 	 * 1) zero, indicates that a particular preference was never
3399 	 *    requested.
3400 	 * 2) non-zero, indicates that it could be IPSEC_PREF_REQUIRED/
3401 	 *    IPSEC_PREF_NEVER. If IPSEC_REQ_DONE is set, it means that
3402 	 *    IPSEC processing has been completed.
3403 	 */
3404 	ii->ipsec_in_secure = B_TRUE;
3405 	ii->ipsec_in_v4 = v4;
3406 	ii->ipsec_in_icmp_loopback = icmp_loopback;
3407 	ii->ipsec_in_attach_if = B_FALSE;
3408 }
3409 
3410 /*
3411  * Consults global policy to see whether this datagram should
3412  * go out secure. If so it attaches a ipsec_mp in front and
3413  * returns.
3414  */
3415 mblk_t *
3416 ip_wput_attach_policy(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire,
3417     conn_t *connp, boolean_t unspec_src)
3418 {
3419 	mblk_t *mp;
3420 	ipsec_out_t *io = NULL;
3421 	ipsec_selector_t sel;
3422 	uint_t	ill_index;
3423 	boolean_t conn_dontroutex;
3424 	boolean_t conn_multicast_loopx;
3425 	boolean_t policy_present;
3426 
3427 	ASSERT((ipha != NULL && ip6h == NULL) ||
3428 	    (ip6h != NULL && ipha == NULL));
3429 
3430 	bzero((void*)&sel, sizeof (sel));
3431 
3432 	if (ipha != NULL)
3433 		policy_present = ipsec_outbound_v4_policy_present;
3434 	else
3435 		policy_present = ipsec_outbound_v6_policy_present;
3436 	/*
3437 	 * Fast Path to see if there is any policy.
3438 	 */
3439 	if (!policy_present) {
3440 		if (ipsec_mp->b_datap->db_type == M_CTL) {
3441 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
3442 			if (!io->ipsec_out_secure) {
3443 				/*
3444 				 * If there is no global policy and ip_wput
3445 				 * or ip_wput_multicast has attached this mp
3446 				 * for multicast case, free the ipsec_mp and
3447 				 * return the original mp.
3448 				 */
3449 				mp = ipsec_mp->b_cont;
3450 				freeb(ipsec_mp);
3451 				ipsec_mp = mp;
3452 				io = NULL;
3453 			}
3454 		}
3455 		if (((io == NULL) || (io->ipsec_out_polhead == NULL)) &&
3456 		    ((connp == NULL) || (connp->conn_policy == NULL)))
3457 			return (ipsec_mp);
3458 	}
3459 
3460 	ill_index = 0;
3461 	conn_multicast_loopx = conn_dontroutex = B_FALSE;
3462 	mp = ipsec_mp;
3463 	if (ipsec_mp->b_datap->db_type == M_CTL) {
3464 		mp = ipsec_mp->b_cont;
3465 		/*
3466 		 * This is a connection where we have some per-socket
3467 		 * policy or ip_wput has attached an ipsec_mp for
3468 		 * the multicast datagram.
3469 		 */
3470 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
3471 		if (!io->ipsec_out_secure) {
3472 			/*
3473 			 * This ipsec_mp was allocated in ip_wput or
3474 			 * ip_wput_multicast so that we will know the
3475 			 * value of ill_index, conn_dontroute,
3476 			 * conn_multicast_loop in the multicast case if
3477 			 * we inherit global policy here.
3478 			 */
3479 			ill_index = io->ipsec_out_ill_index;
3480 			conn_dontroutex = io->ipsec_out_dontroute;
3481 			conn_multicast_loopx = io->ipsec_out_multicast_loop;
3482 			freeb(ipsec_mp);
3483 			ipsec_mp = mp;
3484 			io = NULL;
3485 		}
3486 	}
3487 
3488 	if (ipha != NULL) {
3489 		sel.ips_local_addr_v4 = (ipha->ipha_src != 0 ?
3490 		    ipha->ipha_src : ire->ire_src_addr);
3491 		sel.ips_remote_addr_v4 = ip_get_dst(ipha);
3492 		sel.ips_protocol = (uint8_t)ipha->ipha_protocol;
3493 		sel.ips_isv4 = B_TRUE;
3494 	} else {
3495 		ushort_t hdr_len;
3496 		uint8_t	*nexthdrp;
3497 		boolean_t is_fragment;
3498 
3499 		sel.ips_isv4 = B_FALSE;
3500 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
3501 			if (!unspec_src)
3502 				sel.ips_local_addr_v6 = ire->ire_src_addr_v6;
3503 		} else {
3504 			sel.ips_local_addr_v6 = ip6h->ip6_src;
3505 		}
3506 
3507 		sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, &is_fragment);
3508 		if (is_fragment) {
3509 			/*
3510 			 * It's a packet fragment for a packet that
3511 			 * we have already processed (since IPsec processing
3512 			 * is done before fragmentation), so we don't
3513 			 * have to do policy checks again. Fragments can
3514 			 * come back to us for processing if they have
3515 			 * been queued up due to flow control.
3516 			 */
3517 			if (ipsec_mp->b_datap->db_type == M_CTL) {
3518 				mp = ipsec_mp->b_cont;
3519 				freeb(ipsec_mp);
3520 				ipsec_mp = mp;
3521 			}
3522 			return (ipsec_mp);
3523 		}
3524 
3525 		/* IPv6 common-case. */
3526 		sel.ips_protocol = ip6h->ip6_nxt;
3527 		switch (ip6h->ip6_nxt) {
3528 		case IPPROTO_TCP:
3529 		case IPPROTO_UDP:
3530 		case IPPROTO_SCTP:
3531 		case IPPROTO_ICMPV6:
3532 			break;
3533 		default:
3534 			if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
3535 			    &hdr_len, &nexthdrp)) {
3536 				BUMP_MIB(&ip6_mib, ipv6OutDiscards);
3537 				freemsg(ipsec_mp); /* Not IPsec-related drop. */
3538 				return (NULL);
3539 			}
3540 			sel.ips_protocol = *nexthdrp;
3541 			break;
3542 		}
3543 	}
3544 
3545 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h)) {
3546 		if (ipha != NULL) {
3547 			BUMP_MIB(&ip_mib, ipOutDiscards);
3548 		} else {
3549 			BUMP_MIB(&ip6_mib, ipv6OutDiscards);
3550 		}
3551 
3552 		ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
3553 		    &ipdrops_spd_nomem, &spd_dropper);
3554 		return (NULL);
3555 	}
3556 
3557 	if (io != NULL) {
3558 		/*
3559 		 * We seem to have some local policy (we already have
3560 		 * an ipsec_out).  Look at global policy and see
3561 		 * whether we have to inherit or not.
3562 		 */
3563 		io->ipsec_out_need_policy = B_FALSE;
3564 		ipsec_mp = ipsec_apply_global_policy(ipsec_mp, connp, &sel);
3565 		ASSERT((io->ipsec_out_policy != NULL) ||
3566 		    (io->ipsec_out_act != NULL));
3567 		ASSERT(io->ipsec_out_need_policy == B_FALSE);
3568 		return (ipsec_mp);
3569 	}
3570 	ipsec_mp = ipsec_attach_global_policy(mp, connp, &sel);
3571 	if (ipsec_mp == NULL)
3572 		return (mp);
3573 
3574 	/*
3575 	 * Copy the right port information.
3576 	 */
3577 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
3578 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
3579 
3580 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
3581 	ASSERT((io->ipsec_out_policy != NULL) ||
3582 	    (io->ipsec_out_act != NULL));
3583 	io->ipsec_out_src_port = sel.ips_local_port;
3584 	io->ipsec_out_dst_port = sel.ips_remote_port;
3585 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
3586 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
3587 	/*
3588 	 * Set ill_index, conn_dontroute and conn_multicast_loop
3589 	 * for multicast datagrams.
3590 	 */
3591 	io->ipsec_out_ill_index = ill_index;
3592 	io->ipsec_out_dontroute = conn_dontroutex;
3593 	io->ipsec_out_multicast_loop = conn_multicast_loopx;
3594 	/*
3595 	 * When conn is non-NULL, the zoneid is set by ipsec_init_ipsec_out().
3596 	 * Otherwise set the zoneid based on the ire.
3597 	 */
3598 	if (connp == NULL)
3599 		io->ipsec_out_zoneid = ire->ire_zoneid;
3600 	return (ipsec_mp);
3601 }
3602 
3603 /*
3604  * When appropriate, this function caches inbound and outbound policy
3605  * for this connection.
3606  *
3607  * XXX need to work out more details about per-interface policy and
3608  * caching here!
3609  *
3610  * XXX may want to split inbound and outbound caching for ill..
3611  */
3612 int
3613 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
3614 {
3615 	boolean_t global_policy_present;
3616 
3617 	/*
3618 	 * There is no policy latching for ICMP sockets because we can't
3619 	 * decide on which policy to use until we see the packet and get
3620 	 * type/code selectors.
3621 	 */
3622 	if (connp->conn_ulp == IPPROTO_ICMP ||
3623 	    connp->conn_ulp == IPPROTO_ICMPV6) {
3624 		connp->conn_in_enforce_policy =
3625 		    connp->conn_out_enforce_policy = B_TRUE;
3626 		if (connp->conn_latch != NULL) {
3627 			IPLATCH_REFRELE(connp->conn_latch);
3628 			connp->conn_latch = NULL;
3629 		}
3630 		connp->conn_flags |= IPCL_CHECK_POLICY;
3631 		return (0);
3632 	}
3633 
3634 	global_policy_present = isv4 ?
3635 	    (ipsec_outbound_v4_policy_present ||
3636 		ipsec_inbound_v4_policy_present) :
3637 	    (ipsec_outbound_v6_policy_present ||
3638 		ipsec_inbound_v6_policy_present);
3639 
3640 	if ((connp->conn_policy != NULL) || global_policy_present) {
3641 		ipsec_selector_t sel;
3642 		ipsec_policy_t	*p;
3643 
3644 		if (connp->conn_latch == NULL &&
3645 		    (connp->conn_latch = iplatch_create()) == NULL) {
3646 			return (ENOMEM);
3647 		}
3648 
3649 		sel.ips_protocol = connp->conn_ulp;
3650 		sel.ips_local_port = connp->conn_lport;
3651 		sel.ips_remote_port = connp->conn_fport;
3652 		sel.ips_is_icmp_inv_acq = 0;
3653 		sel.ips_isv4 = isv4;
3654 		if (isv4) {
3655 			sel.ips_local_addr_v4 = connp->conn_src;
3656 			sel.ips_remote_addr_v4 = connp->conn_rem;
3657 		} else {
3658 			sel.ips_local_addr_v6 = connp->conn_srcv6;
3659 			sel.ips_remote_addr_v6 = connp->conn_remv6;
3660 		}
3661 
3662 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel);
3663 		if (connp->conn_latch->ipl_in_policy != NULL)
3664 			IPPOL_REFRELE(connp->conn_latch->ipl_in_policy);
3665 		connp->conn_latch->ipl_in_policy = p;
3666 		connp->conn_in_enforce_policy = (p != NULL);
3667 
3668 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, &sel);
3669 		if (connp->conn_latch->ipl_out_policy != NULL)
3670 			IPPOL_REFRELE(connp->conn_latch->ipl_out_policy);
3671 		connp->conn_latch->ipl_out_policy = p;
3672 		connp->conn_out_enforce_policy = (p != NULL);
3673 
3674 		/* Clear the latched actions too, in case we're recaching. */
3675 		if (connp->conn_latch->ipl_out_action != NULL)
3676 			IPACT_REFRELE(connp->conn_latch->ipl_out_action);
3677 		if (connp->conn_latch->ipl_in_action != NULL)
3678 			IPACT_REFRELE(connp->conn_latch->ipl_in_action);
3679 	}
3680 
3681 	/*
3682 	 * We may or may not have policy for this endpoint.  We still set
3683 	 * conn_policy_cached so that inbound datagrams don't have to look
3684 	 * at global policy as policy is considered latched for these
3685 	 * endpoints.  We should not set conn_policy_cached until the conn
3686 	 * reflects the actual policy. If we *set* this before inheriting
3687 	 * the policy there is a window where the check
3688 	 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
3689 	 * on the conn (because we have not yet copied the policy on to
3690 	 * conn and hence not set conn_in_enforce_policy) nor with the
3691 	 * global policy (because conn_policy_cached is already set).
3692 	 */
3693 	connp->conn_policy_cached = B_TRUE;
3694 	if (connp->conn_in_enforce_policy)
3695 		connp->conn_flags |= IPCL_CHECK_POLICY;
3696 	return (0);
3697 }
3698 
3699 void
3700 iplatch_free(ipsec_latch_t *ipl)
3701 {
3702 	if (ipl->ipl_out_policy != NULL)
3703 		IPPOL_REFRELE(ipl->ipl_out_policy);
3704 	if (ipl->ipl_in_policy != NULL)
3705 		IPPOL_REFRELE(ipl->ipl_in_policy);
3706 	if (ipl->ipl_in_action != NULL)
3707 		IPACT_REFRELE(ipl->ipl_in_action);
3708 	if (ipl->ipl_out_action != NULL)
3709 		IPACT_REFRELE(ipl->ipl_out_action);
3710 	if (ipl->ipl_local_cid != NULL)
3711 		IPSID_REFRELE(ipl->ipl_local_cid);
3712 	if (ipl->ipl_remote_cid != NULL)
3713 		IPSID_REFRELE(ipl->ipl_remote_cid);
3714 	if (ipl->ipl_local_id != NULL)
3715 		crfree(ipl->ipl_local_id);
3716 	mutex_destroy(&ipl->ipl_lock);
3717 	kmem_free(ipl, sizeof (*ipl));
3718 }
3719 
3720 ipsec_latch_t *
3721 iplatch_create()
3722 {
3723 	ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP);
3724 	if (ipl == NULL)
3725 		return (ipl);
3726 	bzero(ipl, sizeof (*ipl));
3727 	mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
3728 	ipl->ipl_refcnt = 1;
3729 	return (ipl);
3730 }
3731 
3732 /*
3733  * Identity hash table.
3734  *
3735  * Identities are refcounted and "interned" into the hash table.
3736  * Only references coming from other objects (SA's, latching state)
3737  * are counted in ipsid_refcnt.
3738  *
3739  * Locking: IPSID_REFHOLD is safe only when (a) the object's hash bucket
3740  * is locked, (b) we know that the refcount must be > 0.
3741  *
3742  * The ipsid_next and ipsid_ptpn fields are only to be referenced or
3743  * modified when the bucket lock is held; in particular, we only
3744  * delete objects while holding the bucket lock, and we only increase
3745  * the refcount from 0 to 1 while the bucket lock is held.
3746  */
3747 
3748 #define	IPSID_HASHSIZE 64
3749 
3750 typedef struct ipsif_s
3751 {
3752 	ipsid_t *ipsif_head;
3753 	kmutex_t ipsif_lock;
3754 } ipsif_t;
3755 
3756 ipsif_t ipsid_buckets[IPSID_HASHSIZE];
3757 
3758 /*
3759  * Hash function for ID hash table.
3760  */
3761 static uint32_t
3762 ipsid_hash(int idtype, char *idstring)
3763 {
3764 	uint32_t hval = idtype;
3765 	unsigned char c;
3766 
3767 	while ((c = *idstring++) != 0) {
3768 		hval = (hval << 4) | (hval >> 28);
3769 		hval ^= c;
3770 	}
3771 	hval = hval ^ (hval >> 16);
3772 	return (hval & (IPSID_HASHSIZE-1));
3773 }
3774 
3775 /*
3776  * Look up identity string in hash table.  Return identity object
3777  * corresponding to the name -- either preexisting, or newly allocated.
3778  *
3779  * Return NULL if we need to allocate a new one and can't get memory.
3780  */
3781 ipsid_t *
3782 ipsid_lookup(int idtype, char *idstring)
3783 {
3784 	ipsid_t *retval;
3785 	char *nstr;
3786 	int idlen = strlen(idstring) + 1;
3787 
3788 	ipsif_t *bucket = &ipsid_buckets[ipsid_hash(idtype, idstring)];
3789 
3790 	mutex_enter(&bucket->ipsif_lock);
3791 
3792 	for (retval = bucket->ipsif_head; retval != NULL;
3793 	    retval = retval->ipsid_next) {
3794 		if (idtype != retval->ipsid_type)
3795 			continue;
3796 		if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
3797 			continue;
3798 
3799 		IPSID_REFHOLD(retval);
3800 		mutex_exit(&bucket->ipsif_lock);
3801 		return (retval);
3802 	}
3803 
3804 	retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
3805 	if (!retval) {
3806 		mutex_exit(&bucket->ipsif_lock);
3807 		return (NULL);
3808 	}
3809 
3810 	nstr = kmem_alloc(idlen, KM_NOSLEEP);
3811 	if (!nstr) {
3812 		mutex_exit(&bucket->ipsif_lock);
3813 		kmem_free(retval, sizeof (*retval));
3814 		return (NULL);
3815 	}
3816 
3817 	retval->ipsid_refcnt = 1;
3818 	retval->ipsid_next = bucket->ipsif_head;
3819 	if (retval->ipsid_next != NULL)
3820 		retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
3821 	retval->ipsid_ptpn = &bucket->ipsif_head;
3822 	retval->ipsid_type = idtype;
3823 	retval->ipsid_cid = nstr;
3824 	bucket->ipsif_head = retval;
3825 	bcopy(idstring, nstr, idlen);
3826 	mutex_exit(&bucket->ipsif_lock);
3827 
3828 	return (retval);
3829 }
3830 
3831 /*
3832  * Garbage collect the identity hash table.
3833  */
3834 void
3835 ipsid_gc()
3836 {
3837 	int i, len;
3838 	ipsid_t *id, *nid;
3839 	ipsif_t *bucket;
3840 
3841 	for (i = 0; i < IPSID_HASHSIZE; i++) {
3842 		bucket = &ipsid_buckets[i];
3843 		mutex_enter(&bucket->ipsif_lock);
3844 		for (id = bucket->ipsif_head; id != NULL; id = nid) {
3845 			nid = id->ipsid_next;
3846 			if (id->ipsid_refcnt == 0) {
3847 				*id->ipsid_ptpn = nid;
3848 				if (nid != NULL)
3849 					nid->ipsid_ptpn = id->ipsid_ptpn;
3850 				len = strlen(id->ipsid_cid) + 1;
3851 				kmem_free(id->ipsid_cid, len);
3852 				kmem_free(id, sizeof (*id));
3853 			}
3854 		}
3855 		mutex_exit(&bucket->ipsif_lock);
3856 	}
3857 }
3858 
3859 /*
3860  * Return true if two identities are the same.
3861  */
3862 boolean_t
3863 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
3864 {
3865 	if (id1 == id2)
3866 		return (B_TRUE);
3867 #ifdef DEBUG
3868 	if ((id1 == NULL) || (id2 == NULL))
3869 		return (B_FALSE);
3870 	/*
3871 	 * test that we're interning id's correctly..
3872 	 */
3873 	ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
3874 	    (id1->ipsid_type != id2->ipsid_type));
3875 #endif
3876 	return (B_FALSE);
3877 }
3878 
3879 /*
3880  * Initialize identity table; called during module initialization.
3881  */
3882 static void
3883 ipsid_init()
3884 {
3885 	ipsif_t *bucket;
3886 	int i;
3887 
3888 	for (i = 0; i < IPSID_HASHSIZE; i++) {
3889 		bucket = &ipsid_buckets[i];
3890 		mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
3891 	}
3892 }
3893 
3894 /*
3895  * Free identity table (preparatory to module unload)
3896  */
3897 static void
3898 ipsid_fini()
3899 {
3900 	ipsif_t *bucket;
3901 	int i;
3902 
3903 	for (i = 0; i < IPSID_HASHSIZE; i++) {
3904 		bucket = &ipsid_buckets[i];
3905 		mutex_destroy(&bucket->ipsif_lock);
3906 	}
3907 }
3908 
3909 /*
3910  * Update the minimum and maximum supported key sizes for the
3911  * specified algorithm. Must be called while holding the algorithms lock.
3912  */
3913 void
3914 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type)
3915 {
3916 	size_t crypto_min = (size_t)-1, crypto_max = 0;
3917 	size_t cur_crypto_min, cur_crypto_max;
3918 	boolean_t is_valid;
3919 	crypto_mechanism_info_t *mech_infos;
3920 	uint_t nmech_infos;
3921 	int crypto_rc, i;
3922 	crypto_mech_usage_t mask;
3923 
3924 	ASSERT(MUTEX_HELD(&alg_lock));
3925 
3926 	/*
3927 	 * Compute the min, max, and default key sizes (in number of
3928 	 * increments to the default key size in bits) as defined
3929 	 * by the algorithm mappings. This range of key sizes is used
3930 	 * for policy related operations. The effective key sizes
3931 	 * supported by the framework could be more limited than
3932 	 * those defined for an algorithm.
3933 	 */
3934 	alg->alg_default_bits = alg->alg_key_sizes[0];
3935 	if (alg->alg_increment != 0) {
3936 		/* key sizes are defined by range & increment */
3937 		alg->alg_minbits = alg->alg_key_sizes[1];
3938 		alg->alg_maxbits = alg->alg_key_sizes[2];
3939 
3940 		alg->alg_default = SADB_ALG_DEFAULT_INCR(alg->alg_minbits,
3941 		    alg->alg_increment, alg->alg_default_bits);
3942 	} else if (alg->alg_nkey_sizes == 0) {
3943 		/* no specified key size for algorithm */
3944 		alg->alg_minbits = alg->alg_maxbits = 0;
3945 	} else {
3946 		/* key sizes are defined by enumeration */
3947 		alg->alg_minbits = (uint16_t)-1;
3948 		alg->alg_maxbits = 0;
3949 
3950 		for (i = 0; i < alg->alg_nkey_sizes; i++) {
3951 			if (alg->alg_key_sizes[i] < alg->alg_minbits)
3952 				alg->alg_minbits = alg->alg_key_sizes[i];
3953 			if (alg->alg_key_sizes[i] > alg->alg_maxbits)
3954 				alg->alg_maxbits = alg->alg_key_sizes[i];
3955 		}
3956 		alg->alg_default = 0;
3957 	}
3958 
3959 	if (!(alg->alg_flags & ALG_FLAG_VALID))
3960 		return;
3961 
3962 	/*
3963 	 * Mechanisms do not apply to the NULL encryption
3964 	 * algorithm, so simply return for this case.
3965 	 */
3966 	if (alg->alg_id == SADB_EALG_NULL)
3967 		return;
3968 
3969 	/*
3970 	 * Find the min and max key sizes supported by the cryptographic
3971 	 * framework providers.
3972 	 */
3973 
3974 	/* get the key sizes supported by the framework */
3975 	crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
3976 	    &mech_infos, &nmech_infos, KM_SLEEP);
3977 	if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
3978 		alg->alg_flags &= ~ALG_FLAG_VALID;
3979 		return;
3980 	}
3981 
3982 	/* min and max key sizes supported by framework */
3983 	for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
3984 		int unit_bits;
3985 
3986 		/*
3987 		 * Ignore entries that do not support the operations
3988 		 * needed for the algorithm type.
3989 		 */
3990 		if (alg_type == IPSEC_ALG_AUTH)
3991 			mask = CRYPTO_MECH_USAGE_MAC;
3992 		else
3993 			mask = CRYPTO_MECH_USAGE_ENCRYPT |
3994 				CRYPTO_MECH_USAGE_DECRYPT;
3995 		if ((mech_infos[i].mi_usage & mask) != mask)
3996 			continue;
3997 
3998 		unit_bits = (mech_infos[i].mi_keysize_unit ==
3999 		    CRYPTO_KEYSIZE_UNIT_IN_BYTES)  ? 8 : 1;
4000 		/* adjust min/max supported by framework */
4001 		cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
4002 		cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
4003 
4004 		if (cur_crypto_min < crypto_min)
4005 			crypto_min = cur_crypto_min;
4006 
4007 		/*
4008 		 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
4009 		 * the crypto framework which means "no upper limit".
4010 		 */
4011 		if (mech_infos[i].mi_max_key_size ==
4012 		    CRYPTO_EFFECTIVELY_INFINITE)
4013 			crypto_max = (size_t)-1;
4014 		else if (cur_crypto_max > crypto_max)
4015 			crypto_max = cur_crypto_max;
4016 
4017 		is_valid = B_TRUE;
4018 	}
4019 
4020 	kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
4021 	    nmech_infos);
4022 
4023 	if (!is_valid) {
4024 		/* no key sizes supported by framework */
4025 		alg->alg_flags &= ~ALG_FLAG_VALID;
4026 		return;
4027 	}
4028 
4029 	/*
4030 	 * Determine min and max key sizes from alg_key_sizes[].
4031 	 * defined for the algorithm entry. Adjust key sizes based on
4032 	 * those supported by the framework.
4033 	 */
4034 	alg->alg_ef_default_bits = alg->alg_key_sizes[0];
4035 	if (alg->alg_increment != 0) {
4036 		/* supported key sizes are defined by range  & increment */
4037 		crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
4038 		crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
4039 
4040 		alg->alg_ef_minbits = MAX(alg->alg_minbits,
4041 		    (uint16_t)crypto_min);
4042 		alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
4043 		    (uint16_t)crypto_max);
4044 
4045 		/*
4046 		 * If the sizes supported by the framework are outside
4047 		 * the range of sizes defined by the algorithm mappings,
4048 		 * the algorithm cannot be used. Check for this
4049 		 * condition here.
4050 		 */
4051 		if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
4052 			alg->alg_flags &= ~ALG_FLAG_VALID;
4053 			return;
4054 		}
4055 
4056 		if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
4057 		    alg->alg_ef_default_bits = alg->alg_ef_minbits;
4058 		if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
4059 		    alg->alg_ef_default_bits = alg->alg_ef_maxbits;
4060 
4061 		alg->alg_ef_default = SADB_ALG_DEFAULT_INCR(alg->alg_ef_minbits,
4062 		    alg->alg_increment, alg->alg_ef_default_bits);
4063 	} else if (alg->alg_nkey_sizes == 0) {
4064 		/* no specified key size for algorithm */
4065 		alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
4066 	} else {
4067 		/* supported key sizes are defined by enumeration */
4068 		alg->alg_ef_minbits = (uint16_t)-1;
4069 		alg->alg_ef_maxbits = 0;
4070 
4071 		for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
4072 			/*
4073 			 * Ignore the current key size if it is not in the
4074 			 * range of sizes supported by the framework.
4075 			 */
4076 			if (alg->alg_key_sizes[i] < crypto_min ||
4077 			    alg->alg_key_sizes[i] > crypto_max)
4078 				continue;
4079 			if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
4080 				alg->alg_ef_minbits = alg->alg_key_sizes[i];
4081 			if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
4082 				alg->alg_ef_maxbits = alg->alg_key_sizes[i];
4083 			is_valid = B_TRUE;
4084 		}
4085 
4086 		if (!is_valid) {
4087 			alg->alg_flags &= ~ALG_FLAG_VALID;
4088 			return;
4089 		}
4090 		alg->alg_ef_default = 0;
4091 	}
4092 }
4093 
4094 /*
4095  * Free the memory used by the specified algorithm.
4096  */
4097 void
4098 ipsec_alg_free(ipsec_alginfo_t *alg)
4099 {
4100 	if (alg == NULL)
4101 		return;
4102 
4103 	if (alg->alg_key_sizes != NULL)
4104 		kmem_free(alg->alg_key_sizes,
4105 		    (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
4106 
4107 	if (alg->alg_block_sizes != NULL)
4108 		kmem_free(alg->alg_block_sizes,
4109 		    (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
4110 
4111 	kmem_free(alg, sizeof (*alg));
4112 }
4113 
4114 /*
4115  * Check the validity of the specified key size for an algorithm.
4116  * Returns B_TRUE if key size is valid, B_FALSE otherwise.
4117  */
4118 boolean_t
4119 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
4120 {
4121 	if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
4122 		return (B_FALSE);
4123 
4124 	if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
4125 		/*
4126 		 * If the key sizes are defined by enumeration, the new
4127 		 * key size must be equal to one of the supported values.
4128 		 */
4129 		int i;
4130 
4131 		for (i = 0; i < alg->alg_nkey_sizes; i++)
4132 			if (key_size == alg->alg_key_sizes[i])
4133 				break;
4134 		if (i == alg->alg_nkey_sizes)
4135 			return (B_FALSE);
4136 	}
4137 
4138 	return (B_TRUE);
4139 }
4140 
4141 /*
4142  * Callback function invoked by the crypto framework when a provider
4143  * registers or unregisters. This callback updates the algorithms
4144  * tables when a crypto algorithm is no longer available or becomes
4145  * available, and triggers the freeing/creation of context templates
4146  * associated with existing SAs, if needed.
4147  */
4148 void
4149 ipsec_prov_update_callback(uint32_t event, void *event_arg)
4150 {
4151 	crypto_notify_event_change_t *prov_change =
4152 	    (crypto_notify_event_change_t *)event_arg;
4153 	uint_t algidx, algid, algtype, mech_count, mech_idx;
4154 	ipsec_alginfo_t *alg;
4155 	ipsec_alginfo_t oalg;
4156 	crypto_mech_name_t *mechs;
4157 	boolean_t alg_changed = B_FALSE;
4158 
4159 	/* ignore events for which we didn't register */
4160 	if (event != CRYPTO_EVENT_PROVIDERS_CHANGE) {
4161 		ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
4162 			" received from crypto framework\n", event));
4163 		return;
4164 	}
4165 
4166 	mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
4167 	if (mechs == NULL)
4168 		return;
4169 
4170 	/*
4171 	 * Walk the list of currently defined IPsec algorithm. Update
4172 	 * the algorithm valid flag and trigger an update of the
4173 	 * SAs that depend on that algorithm.
4174 	 */
4175 	mutex_enter(&alg_lock);
4176 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
4177 		for (algidx = 0; algidx < ipsec_nalgs[algtype]; algidx++) {
4178 
4179 			algid = ipsec_sortlist[algtype][algidx];
4180 			alg = ipsec_alglists[algtype][algid];
4181 			ASSERT(alg != NULL);
4182 
4183 			/*
4184 			 * Skip the algorithms which do not map to the
4185 			 * crypto framework provider being added or removed.
4186 			 */
4187 			if (strncmp(alg->alg_mech_name,
4188 			    prov_change->ec_mech_name,
4189 			    CRYPTO_MAX_MECH_NAME) != 0)
4190 				continue;
4191 
4192 			/*
4193 			 * Determine if the mechanism is valid. If it
4194 			 * is not, mark the algorithm as being invalid. If
4195 			 * it is, mark the algorithm as being valid.
4196 			 */
4197 			for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
4198 				if (strncmp(alg->alg_mech_name,
4199 				    mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
4200 					break;
4201 			if (mech_idx == mech_count &&
4202 			    alg->alg_flags & ALG_FLAG_VALID) {
4203 				alg->alg_flags &= ~ALG_FLAG_VALID;
4204 				alg_changed = B_TRUE;
4205 			} else if (mech_idx < mech_count &&
4206 			    !(alg->alg_flags & ALG_FLAG_VALID)) {
4207 				alg->alg_flags |= ALG_FLAG_VALID;
4208 				alg_changed = B_TRUE;
4209 			}
4210 
4211 			/*
4212 			 * Update the supported key sizes, regardless
4213 			 * of whether a crypto provider was added or
4214 			 * removed.
4215 			 */
4216 			oalg = *alg;
4217 			ipsec_alg_fix_min_max(alg, algtype);
4218 			if (!alg_changed &&
4219 			    alg->alg_ef_minbits != oalg.alg_ef_minbits ||
4220 			    alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
4221 			    alg->alg_ef_default != oalg.alg_ef_default ||
4222 			    alg->alg_ef_default_bits !=
4223 			    oalg.alg_ef_default_bits)
4224 				alg_changed = B_TRUE;
4225 
4226 			/*
4227 			 * Update the affected SAs if a software provider is
4228 			 * being added or removed.
4229 			 */
4230 			if (prov_change->ec_provider_type ==
4231 			    CRYPTO_SW_PROVIDER)
4232 				sadb_alg_update(algtype, alg->alg_id,
4233 				    prov_change->ec_change ==
4234 				    CRYPTO_EVENT_CHANGE_ADDED);
4235 		}
4236 	}
4237 	mutex_exit(&alg_lock);
4238 	crypto_free_mech_list(mechs, mech_count);
4239 
4240 	if (alg_changed) {
4241 		/*
4242 		 * An algorithm has changed, i.e. it became valid or
4243 		 * invalid, or its support key sizes have changed.
4244 		 * Notify ipsecah and ipsecesp of this change so
4245 		 * that they can send a SADB_REGISTER to their consumers.
4246 		 */
4247 		ipsecah_algs_changed();
4248 		ipsecesp_algs_changed();
4249 	}
4250 }
4251 
4252 /*
4253  * Registers with the crypto framework to be notified of crypto
4254  * providers changes. Used to update the algorithm tables and
4255  * to free or create context templates if needed. Invoked after IPsec
4256  * is loaded successfully.
4257  */
4258 void
4259 ipsec_register_prov_update(void)
4260 {
4261 	prov_update_handle = crypto_notify_events(
4262 	    ipsec_prov_update_callback, CRYPTO_EVENT_PROVIDERS_CHANGE);
4263 }
4264 
4265 /*
4266  * Unregisters from the framework to be notified of crypto providers
4267  * changes. Called from ipsec_policy_destroy().
4268  */
4269 static void
4270 ipsec_unregister_prov_update(void)
4271 {
4272 	if (prov_update_handle != NULL)
4273 		crypto_unnotify_events(prov_update_handle);
4274 }
4275