xref: /illumos-gate/usr/src/uts/common/inet/ip/spd.c (revision 72a500659c3f44bbdccd0f1edf8e290ab0f1a9b6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * IPsec Security Policy Database.
31  *
32  * This module maintains the SPD and provides routines used by ip and ip6
33  * to apply IPsec policy to inbound and outbound datagrams.
34  *
35  * XXX TODO LIST
36  * Inbound policy:
37  * Put policy failure logging back in here (as policy action flag bit)
38  */
39 
40 #include <sys/types.h>
41 #include <sys/stream.h>
42 #include <sys/stropts.h>
43 #include <sys/sysmacros.h>
44 #include <sys/strsubr.h>
45 #include <sys/strlog.h>
46 #include <sys/cmn_err.h>
47 #include <sys/zone.h>
48 
49 #include <sys/systm.h>
50 #include <sys/param.h>
51 #include <sys/kmem.h>
52 
53 #include <sys/crypto/api.h>
54 
55 #include <inet/common.h>
56 #include <inet/mi.h>
57 
58 #include <netinet/ip6.h>
59 #include <netinet/icmp6.h>
60 #include <netinet/udp.h>
61 
62 #include <inet/ip.h>
63 #include <inet/ip6.h>
64 
65 #include <net/pfkeyv2.h>
66 #include <net/pfpolicy.h>
67 #include <inet/ipsec_info.h>
68 #include <inet/sadb.h>
69 #include <inet/ipsec_impl.h>
70 #include <inet/ipsecah.h>
71 #include <inet/ipsecesp.h>
72 #include <inet/ipdrop.h>
73 #include <inet/ipclassifier.h>
74 
75 static void ipsec_update_present_flags();
76 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *);
77 static void ipsec_out_free(void *);
78 static void ipsec_in_free(void *);
79 static boolean_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
80     ipha_t *, ip6_t *);
81 static mblk_t *ipsec_attach_global_policy(mblk_t *, conn_t *,
82     ipsec_selector_t *);
83 static mblk_t *ipsec_apply_global_policy(mblk_t *, conn_t *,
84     ipsec_selector_t *);
85 static mblk_t *ipsec_check_ipsecin_policy(queue_t *, mblk_t *,
86     ipsec_policy_t *, ipha_t *, ip6_t *);
87 static void ipsec_in_release_refs(ipsec_in_t *);
88 static void ipsec_out_release_refs(ipsec_out_t *);
89 static void ipsec_action_reclaim(void *);
90 static void ipsid_init(void);
91 static void ipsid_fini(void);
92 static boolean_t ipsec_check_ipsecin_action(struct ipsec_in_s *, mblk_t *,
93     struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
94     kstat_named_t **);
95 static int32_t ipsec_act_ovhd(const ipsec_act_t *act);
96 static void ipsec_unregister_prov_update(void);
97 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
98 static uint32_t selector_hash(ipsec_selector_t *);
99 
100 /*
101  * Policy rule index generator.  We assume this won't wrap in the
102  * lifetime of a system.  If we make 2^20 policy changes per second,
103  * this will last 2^44 seconds, or roughly 500,000 years, so we don't
104  * have to worry about reusing policy index values.
105  *
106  * Protected by ipsec_conf_lock.
107  */
108 uint64_t	ipsec_next_policy_index = 1;
109 
110 /*
111  * Active & Inactive system policy roots
112  */
113 static ipsec_policy_head_t system_policy;
114 static ipsec_policy_head_t inactive_policy;
115 
116 /* Packet dropper for generic SPD drops. */
117 static ipdropper_t spd_dropper;
118 
119 /*
120  * For now, use a trivially sized hash table for actions.
121  * In the future we can add the structure canonicalization necessary
122  * to get the hash function to behave correctly..
123  */
124 #define	IPSEC_ACTION_HASH_SIZE 1
125 
126 /*
127  * Selector hash table is statically sized at module load time.
128  * we default to 251 buckets, which is the largest prime number under 255
129  */
130 
131 #define	IPSEC_SPDHASH_DEFAULT 251
132 uint32_t ipsec_spd_hashsize = 0;
133 
134 #define	IPSEC_SEL_NOHASH ((uint32_t)(~0))
135 
136 static HASH_HEAD(ipsec_action_s) ipsec_action_hash[IPSEC_ACTION_HASH_SIZE];
137 static HASH_HEAD(ipsec_sel) *ipsec_sel_hash;
138 
139 static kmem_cache_t *ipsec_action_cache;
140 static kmem_cache_t *ipsec_sel_cache;
141 static kmem_cache_t *ipsec_pol_cache;
142 static kmem_cache_t *ipsec_info_cache;
143 
144 boolean_t ipsec_inbound_v4_policy_present = B_FALSE;
145 boolean_t ipsec_outbound_v4_policy_present = B_FALSE;
146 boolean_t ipsec_inbound_v6_policy_present = B_FALSE;
147 boolean_t ipsec_outbound_v6_policy_present = B_FALSE;
148 
149 /*
150  * Because policy needs to know what algorithms are supported, keep the
151  * lists of algorithms here.
152  */
153 
154 kmutex_t alg_lock;
155 uint8_t ipsec_nalgs[IPSEC_NALGTYPES];
156 ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
157 uint8_t ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
158 ipsec_algs_exec_mode_t ipsec_algs_exec_mode[IPSEC_NALGTYPES];
159 static crypto_notify_handle_t prov_update_handle = NULL;
160 
161 #define	ALGBITS_ROUND_DOWN(x, align)	(((x)/(align))*(align))
162 #define	ALGBITS_ROUND_UP(x, align)	ALGBITS_ROUND_DOWN((x)+(align)-1, align)
163 
164 /*
165  * Inbound traffic should have matching identities for both SA's.
166  */
167 
168 #define	SA_IDS_MATCH(sa1, sa2) 						\
169 	(((sa1) == NULL) || ((sa2) == NULL) ||				\
170 	(((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) &&		\
171 	    (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
172 
173 #define	IPPOL_UNCHAIN(php, ip) 						\
174 	HASHLIST_UNCHAIN((ip), ipsp_hash);				\
175 	avl_remove(&(php)->iph_rulebyid, (ip));				\
176 	IPPOL_REFRELE(ip);
177 
178 /*
179  * Policy failure messages.
180  */
181 static char *ipsec_policy_failure_msgs[] = {
182 
183 	/* IPSEC_POLICY_NOT_NEEDED */
184 	"%s: Dropping the datagram because the incoming packet "
185 	"is %s, but the recipient expects clear; Source %s, "
186 	"Destination %s.\n",
187 
188 	/* IPSEC_POLICY_MISMATCH */
189 	"%s: Policy Failure for the incoming packet (%s); Source %s, "
190 	"Destination %s.\n",
191 
192 	/* IPSEC_POLICY_AUTH_NOT_NEEDED	*/
193 	"%s: Authentication present while not expected in the "
194 	"incoming %s packet; Source %s, Destination %s.\n",
195 
196 	/* IPSEC_POLICY_ENCR_NOT_NEEDED */
197 	"%s: Encryption present while not expected in the "
198 	"incoming %s packet; Source %s, Destination %s.\n",
199 
200 	/* IPSEC_POLICY_SE_NOT_NEEDED */
201 	"%s: Self-Encapsulation present while not expected in the "
202 	"incoming %s packet; Source %s, Destination %s.\n",
203 };
204 /*
205  * Have a counter for every possible policy message in the previous array.
206  */
207 static uint32_t ipsec_policy_failure_count[IPSEC_POLICY_MAX];
208 /* Time since last ipsec policy failure that printed a message. */
209 hrtime_t ipsec_policy_failure_last = 0;
210 
211 /*
212  * General overviews:
213  *
214  * Locking:
215  *
216  *	All of the system policy structures are protected by a single
217  *	rwlock, ipsec_conf_lock.  These structures are threaded in a
218  *	fairly complex fashion and are not expected to change on a
219  *	regular basis, so this should not cause scaling/contention
220  *	problems.  As a result, policy checks should (hopefully) be MT-hot.
221  *
222  * Allocation policy:
223  *
224  *	We use custom kmem cache types for the various
225  *	bits & pieces of the policy data structures.  All allocations
226  *	use KM_NOSLEEP instead of KM_SLEEP for policy allocation.  The
227  *	policy table is of potentially unbounded size, so we don't
228  *	want to provide a way to hog all system memory with policy
229  *	entries..
230  */
231 
232 
233 /*
234  * AVL tree comparison function.
235  * the in-kernel avl assumes unique keys for all objects.
236  * Since sometimes policy will duplicate rules, we may insert
237  * multiple rules with the same rule id, so we need a tie-breaker.
238  */
239 static int
240 ipsec_policy_cmpbyid(const void *a, const void *b)
241 {
242 	const ipsec_policy_t *ipa, *ipb;
243 	uint64_t idxa, idxb;
244 
245 	ipa = (const ipsec_policy_t *)a;
246 	ipb = (const ipsec_policy_t *)b;
247 	idxa = ipa->ipsp_index;
248 	idxb = ipb->ipsp_index;
249 
250 	if (idxa < idxb)
251 		return (-1);
252 	if (idxa > idxb)
253 		return (1);
254 	/*
255 	 * Tie-breaker #1: All installed policy rules have a non-NULL
256 	 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
257 	 * actually in-tree but rather a template node being used in
258 	 * an avl_find query; see ipsec_policy_delete().  This gives us
259 	 * a placeholder in the ordering just before the the first entry with
260 	 * a key >= the one we're looking for, so we can walk forward from
261 	 * that point to get the remaining entries with the same id.
262 	 */
263 	if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
264 		return (-1);
265 	if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
266 		return (1);
267 	/*
268 	 * At most one of the arguments to the comparison should have a
269 	 * NULL selector pointer; if not, the tree is broken.
270 	 */
271 	ASSERT(ipa->ipsp_sel != NULL);
272 	ASSERT(ipb->ipsp_sel != NULL);
273 	/*
274 	 * Tie-breaker #2: use the virtual address of the policy node
275 	 * to arbitrarily break ties.  Since we use the new tree node in
276 	 * the avl_find() in ipsec_insert_always, the new node will be
277 	 * inserted into the tree in the right place in the sequence.
278 	 */
279 	if (ipa < ipb)
280 		return (-1);
281 	if (ipa > ipb)
282 		return (1);
283 	return (0);
284 }
285 
286 static void
287 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
288 {
289 	int dir, nchains;
290 
291 	nchains = ipsec_spd_hashsize;
292 
293 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
294 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
295 
296 		if (ipr->ipr_hash == NULL)
297 			continue;
298 
299 		kmem_free(ipr->ipr_hash, nchains *
300 		    sizeof (ipsec_policy_hash_t));
301 	}
302 }
303 
304 static void
305 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
306 {
307 	int dir;
308 
309 	avl_destroy(&iph->iph_rulebyid);
310 	rw_destroy(&iph->iph_lock);
311 
312 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
313 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
314 		int nchains = ipr->ipr_nchains;
315 		int chain;
316 
317 		for (chain = 0; chain < nchains; chain++)
318 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
319 
320 	}
321 	ipsec_polhead_free_table(iph);
322 }
323 
324 /*
325  * Module unload hook.
326  */
327 void
328 ipsec_policy_destroy(void)
329 {
330 	int i;
331 
332 	ip_drop_unregister(&spd_dropper);
333 	ip_drop_destroy();
334 
335 	ipsec_polhead_destroy(&system_policy);
336 	ipsec_polhead_destroy(&inactive_policy);
337 
338 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
339 		mutex_destroy(&(ipsec_action_hash[i].hash_lock));
340 
341 	for (i = 0; i < ipsec_spd_hashsize; i++)
342 		mutex_destroy(&(ipsec_sel_hash[i].hash_lock));
343 
344 	ipsec_unregister_prov_update();
345 
346 	mutex_destroy(&alg_lock);
347 
348 	kmem_cache_destroy(ipsec_action_cache);
349 	kmem_cache_destroy(ipsec_sel_cache);
350 	kmem_cache_destroy(ipsec_pol_cache);
351 	kmem_cache_destroy(ipsec_info_cache);
352 	ipsid_gc();
353 	ipsid_fini();
354 }
355 
356 
357 /*
358  * Called when table allocation fails to free the table.
359  */
360 static int
361 ipsec_alloc_tables_failed()
362 {
363 	if (ipsec_sel_hash != NULL) {
364 		kmem_free(ipsec_sel_hash, ipsec_spd_hashsize *
365 		    sizeof (*ipsec_sel_hash));
366 		ipsec_sel_hash = NULL;
367 	}
368 	ipsec_polhead_free_table(&system_policy);
369 	ipsec_polhead_free_table(&inactive_policy);
370 
371 	return (ENOMEM);
372 }
373 
374 /*
375  * Attempt to allocate the tables in a single policy head.
376  * Return nonzero on failure after cleaning up any work in progress.
377  */
378 static int
379 ipsec_alloc_table(ipsec_policy_head_t *iph, int kmflag)
380 {
381 	int dir, nchains;
382 
383 	nchains = ipsec_spd_hashsize;
384 
385 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
386 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
387 
388 		ipr->ipr_hash = kmem_zalloc(nchains *
389 		    sizeof (ipsec_policy_hash_t), kmflag);
390 		if (ipr->ipr_hash == NULL)
391 			return (ipsec_alloc_tables_failed());
392 	}
393 	return (0);
394 }
395 
396 /*
397  * Attempt to allocate the various tables.  Return nonzero on failure
398  * after cleaning up any work in progress.
399  */
400 static int
401 ipsec_alloc_tables(int kmflag)
402 {
403 	int error;
404 
405 	error = ipsec_alloc_table(&system_policy, kmflag);
406 	if (error != 0)
407 		return (error);
408 
409 	error = ipsec_alloc_table(&inactive_policy, kmflag);
410 	if (error != 0)
411 		return (error);
412 
413 	ipsec_sel_hash = kmem_zalloc(ipsec_spd_hashsize *
414 	    sizeof (*ipsec_sel_hash), kmflag);
415 
416 	if (ipsec_sel_hash == NULL)
417 		return (ipsec_alloc_tables_failed());
418 
419 	return (0);
420 }
421 
422 /*
423  * After table allocation, initialize a policy head.
424  */
425 static void
426 ipsec_polhead_init(ipsec_policy_head_t *iph)
427 {
428 	int dir, chain, nchains;
429 
430 	nchains = ipsec_spd_hashsize;
431 
432 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
433 	avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
434 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
435 
436 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
437 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
438 		ipr->ipr_nchains = nchains;
439 
440 		for (chain = 0; chain < nchains; chain++) {
441 			mutex_init(&(ipr->ipr_hash[chain].hash_lock),
442 			    NULL, MUTEX_DEFAULT, NULL);
443 		}
444 	}
445 }
446 
447 /*
448  * Module load hook.
449  */
450 void
451 ipsec_policy_init()
452 {
453 	int i;
454 
455 	/*
456 	 * Make two attempts to allocate policy hash tables; try it at
457 	 * the "preferred" size (may be set in /etc/system) first,
458 	 * then fall back to the default size.
459 	 */
460 	if (ipsec_spd_hashsize == 0)
461 		ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
462 
463 	if (ipsec_alloc_tables(KM_NOSLEEP) != 0) {
464 		cmn_err(CE_WARN,
465 		    "Unable to allocate %d entry IPsec policy hash table",
466 		    ipsec_spd_hashsize);
467 		ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
468 		cmn_err(CE_WARN, "Falling back to %d entries",
469 		    ipsec_spd_hashsize);
470 		(void) ipsec_alloc_tables(KM_SLEEP);
471 	}
472 
473 	ipsid_init();
474 	ipsec_polhead_init(&system_policy);
475 	ipsec_polhead_init(&inactive_policy);
476 
477 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
478 		mutex_init(&(ipsec_action_hash[i].hash_lock),
479 		    NULL, MUTEX_DEFAULT, NULL);
480 
481 	for (i = 0; i < ipsec_spd_hashsize; i++)
482 		mutex_init(&(ipsec_sel_hash[i].hash_lock),
483 		    NULL, MUTEX_DEFAULT, NULL);
484 
485 	mutex_init(&alg_lock, NULL, MUTEX_DEFAULT, NULL);
486 
487 	for (i = 0; i < IPSEC_NALGTYPES; i++)
488 		ipsec_nalgs[i] = 0;
489 
490 	ipsec_action_cache = kmem_cache_create("ipsec_actions",
491 	    sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
492 	    ipsec_action_reclaim, NULL, NULL, 0);
493 	ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
494 	    sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
495 	    NULL, NULL, NULL, 0);
496 	ipsec_pol_cache = kmem_cache_create("ipsec_policy",
497 	    sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
498 	    NULL, NULL, NULL, 0);
499 	ipsec_info_cache = kmem_cache_create("ipsec_info",
500 	    sizeof (ipsec_info_t), _POINTER_ALIGNMENT, NULL, NULL,
501 	    NULL, NULL, NULL, 0);
502 
503 	ip_drop_init();
504 	ip_drop_register(&spd_dropper, "IPsec SPD");
505 }
506 
507 /*
508  * Sort algorithm lists.
509  *	EXPORT DELETE START
510  * I may need to split this based on
511  * authentication/encryption, and I may wish to have an administrator
512  * configure this list.  Hold on to some NDD variables...
513  *	EXPORT DELETE END
514  *
515  * XXX For now, sort on minimum key size (GAG!).  While minimum key size is
516  * not the ideal metric, it's the only quantifiable measure available in the
517  * AUTH/ENCR PI.  We need a better metric for sorting algorithms by preference.
518  */
519 static void
520 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid)
521 {
522 	ipsec_alginfo_t *ai = ipsec_alglists[at][algid];
523 	uint8_t holder, swap;
524 	uint_t i;
525 	uint_t count = ipsec_nalgs[at];
526 	ASSERT(ai != NULL);
527 	ASSERT(algid == ai->alg_id);
528 
529 	ASSERT(MUTEX_HELD(&alg_lock));
530 
531 	holder = algid;
532 
533 	for (i = 0; i < count - 1; i++) {
534 		ipsec_alginfo_t *alt;
535 
536 		alt = ipsec_alglists[at][ipsec_sortlist[at][i]];
537 		/*
538 		 * If you want to give precedence to newly added algs,
539 		 * add the = in the > comparison.
540 		 */
541 		if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
542 			/* Swap sortlist[i] and holder. */
543 			swap = ipsec_sortlist[at][i];
544 			ipsec_sortlist[at][i] = holder;
545 			holder = swap;
546 			ai = alt;
547 		} /* Else just continue. */
548 	}
549 
550 	/* Store holder in last slot. */
551 	ipsec_sortlist[at][i] = holder;
552 }
553 
554 /*
555  * Remove an algorithm from a sorted algorithm list.
556  * This should be considerably easier, even with complex sorting.
557  */
558 static void
559 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid)
560 {
561 	boolean_t copyback = B_FALSE;
562 	int i;
563 	int newcount = ipsec_nalgs[at];
564 
565 	ASSERT(MUTEX_HELD(&alg_lock));
566 
567 	for (i = 0; i <= newcount; i++) {
568 		if (copyback)
569 			ipsec_sortlist[at][i-1] = ipsec_sortlist[at][i];
570 		else if (ipsec_sortlist[at][i] == algid)
571 			copyback = B_TRUE;
572 	}
573 }
574 
575 /*
576  * Add the specified algorithm to the algorithm tables.
577  * Must be called while holding the algorithm table writer lock.
578  */
579 void
580 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg)
581 {
582 	ASSERT(MUTEX_HELD(&alg_lock));
583 
584 	ASSERT(ipsec_alglists[algtype][alg->alg_id] == NULL);
585 	ipsec_alg_fix_min_max(alg, algtype);
586 	ipsec_alglists[algtype][alg->alg_id] = alg;
587 
588 	ipsec_nalgs[algtype]++;
589 	alg_insert_sortlist(algtype, alg->alg_id);
590 }
591 
592 /*
593  * Remove the specified algorithm from the algorithm tables.
594  * Must be called while holding the algorithm table writer lock.
595  */
596 void
597 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid)
598 {
599 	ASSERT(MUTEX_HELD(&alg_lock));
600 
601 	ASSERT(ipsec_alglists[algtype][algid] != NULL);
602 	ipsec_alg_free(ipsec_alglists[algtype][algid]);
603 	ipsec_alglists[algtype][algid] = NULL;
604 
605 	ipsec_nalgs[algtype]--;
606 	alg_remove_sortlist(algtype, algid);
607 }
608 
609 /*
610  * Hooks for spdsock to get a grip on system policy.
611  */
612 
613 ipsec_policy_head_t *
614 ipsec_system_policy(void)
615 {
616 	ipsec_policy_head_t *h = &system_policy;
617 	IPPH_REFHOLD(h);
618 	return (h);
619 }
620 
621 ipsec_policy_head_t *
622 ipsec_inactive_policy(void)
623 {
624 	ipsec_policy_head_t *h = &inactive_policy;
625 	IPPH_REFHOLD(h);
626 	return (h);
627 }
628 
629 /*
630  * Lock inactive policy, then active policy, then exchange policy root
631  * pointers.
632  */
633 void
634 ipsec_swap_policy(void)
635 {
636 	int af, dir;
637 	avl_tree_t r1, r2;
638 
639 	rw_enter(&inactive_policy.iph_lock, RW_WRITER);
640 	rw_enter(&system_policy.iph_lock, RW_WRITER);
641 
642 	r1 = system_policy.iph_rulebyid;
643 	r2 = inactive_policy.iph_rulebyid;
644 	system_policy.iph_rulebyid = r2;
645 	inactive_policy.iph_rulebyid = r1;
646 
647 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
648 		ipsec_policy_hash_t *h1, *h2;
649 
650 		h1 = system_policy.iph_root[dir].ipr_hash;
651 		h2 = inactive_policy.iph_root[dir].ipr_hash;
652 		system_policy.iph_root[dir].ipr_hash = h2;
653 		inactive_policy.iph_root[dir].ipr_hash = h1;
654 
655 		for (af = 0; af < IPSEC_NAF; af++) {
656 			ipsec_policy_t *t1, *t2;
657 
658 			t1 = system_policy.iph_root[dir].ipr_nonhash[af];
659 			t2 = inactive_policy.iph_root[dir].ipr_nonhash[af];
660 			system_policy.iph_root[dir].ipr_nonhash[af] = t2;
661 			inactive_policy.iph_root[dir].ipr_nonhash[af] = t1;
662 			if (t1 != NULL) {
663 				t1->ipsp_hash.hash_pp =
664 				    &(inactive_policy.iph_root[dir].
665 				    ipr_nonhash[af]);
666 			}
667 			if (t2 != NULL) {
668 				t2->ipsp_hash.hash_pp =
669 				    &(system_policy.iph_root[dir].
670 				    ipr_nonhash[af]);
671 			}
672 
673 		}
674 	}
675 	system_policy.iph_gen++;
676 	inactive_policy.iph_gen++;
677 	ipsec_update_present_flags();
678 	rw_exit(&system_policy.iph_lock);
679 	rw_exit(&inactive_policy.iph_lock);
680 }
681 
682 /*
683  * Clone one policy rule..
684  */
685 static ipsec_policy_t *
686 ipsec_copy_policy(const ipsec_policy_t *src)
687 {
688 	ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
689 
690 	if (dst == NULL)
691 		return (NULL);
692 
693 	/*
694 	 * Adjust refcounts of cloned state.
695 	 */
696 	IPACT_REFHOLD(src->ipsp_act);
697 	src->ipsp_sel->ipsl_refs++;
698 
699 	HASH_NULL(dst, ipsp_hash);
700 	dst->ipsp_refs = 1;
701 	dst->ipsp_sel = src->ipsp_sel;
702 	dst->ipsp_act = src->ipsp_act;
703 	dst->ipsp_prio = src->ipsp_prio;
704 	dst->ipsp_index = src->ipsp_index;
705 
706 	return (dst);
707 }
708 
709 void
710 ipsec_insert_always(avl_tree_t *tree, void *new_node)
711 {
712 	void *node;
713 	avl_index_t where;
714 
715 	node = avl_find(tree, new_node, &where);
716 	ASSERT(node == NULL);
717 	avl_insert(tree, new_node, where);
718 }
719 
720 
721 static int
722 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
723     ipsec_policy_t **dstp)
724 {
725 	for (; src != NULL; src = src->ipsp_hash.hash_next) {
726 		ipsec_policy_t *dst = ipsec_copy_policy(src);
727 		if (dst == NULL)
728 			return (ENOMEM);
729 
730 		HASHLIST_INSERT(dst, ipsp_hash, *dstp);
731 		ipsec_insert_always(&dph->iph_rulebyid, dst);
732 	}
733 	return (0);
734 }
735 
736 
737 
738 /*
739  * Make one policy head look exactly like another.
740  *
741  * As with ipsec_swap_policy, we lock the destination policy head first, then
742  * the source policy head. Note that we only need to read-lock the source
743  * policy head as we are not changing it.
744  */
745 static int
746 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph)
747 {
748 	int af, dir, chain, nchains;
749 
750 	rw_enter(&dph->iph_lock, RW_WRITER);
751 
752 	ipsec_polhead_flush(dph);
753 
754 	rw_enter(&sph->iph_lock, RW_READER);
755 
756 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
757 		ipsec_policy_root_t *dpr = &dph->iph_root[dir];
758 		ipsec_policy_root_t *spr = &sph->iph_root[dir];
759 		nchains = dpr->ipr_nchains;
760 
761 		ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
762 
763 		for (af = 0; af < IPSEC_NAF; af++) {
764 			if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
765 			    &dpr->ipr_nonhash[af]))
766 				goto abort_copy;
767 		}
768 
769 		for (chain = 0; chain < nchains; chain++) {
770 			if (ipsec_copy_chain(dph,
771 			    spr->ipr_hash[chain].hash_head,
772 			    &dpr->ipr_hash[chain].hash_head))
773 				goto abort_copy;
774 		}
775 	}
776 
777 	dph->iph_gen++;
778 
779 	rw_exit(&sph->iph_lock);
780 	rw_exit(&dph->iph_lock);
781 	return (0);
782 
783 abort_copy:
784 	ipsec_polhead_flush(dph);
785 	rw_exit(&sph->iph_lock);
786 	rw_exit(&dph->iph_lock);
787 	return (ENOMEM);
788 }
789 
790 /*
791  * Clone currently active policy to the inactive policy list.
792  */
793 int
794 ipsec_clone_system_policy(void)
795 {
796 	return (ipsec_copy_polhead(&system_policy, &inactive_policy));
797 }
798 
799 
800 /*
801  * Extract the string from ipsec_policy_failure_msgs[type] and
802  * log it.
803  *
804  * This function needs to be kept in synch with ipsec_rl_strlog() in
805  * sadb.c.
806  * XXX this function should be combined with the ipsec_rl_strlog() function.
807  */
808 void
809 ipsec_log_policy_failure(queue_t *q, int type, char *func_name, ipha_t *ipha,
810     ip6_t *ip6h, boolean_t secure)
811 {
812 	char	sbuf[INET6_ADDRSTRLEN];
813 	char	dbuf[INET6_ADDRSTRLEN];
814 	char	*s;
815 	char	*d;
816 	hrtime_t current = gethrtime();
817 
818 	ASSERT((ipha == NULL && ip6h != NULL) ||
819 	    (ip6h == NULL && ipha != NULL));
820 
821 	if (ipha != NULL) {
822 		s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
823 		d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
824 	} else {
825 		s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
826 		d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
827 
828 	}
829 
830 	/* Always bump the policy failure counter. */
831 	ipsec_policy_failure_count[type]++;
832 
833 	/* Convert interval (in msec) to hrtime (in nsec), which means * 10^6 */
834 	if (ipsec_policy_failure_last +
835 	    ((hrtime_t)ipsec_policy_log_interval * (hrtime_t)1000000) <=
836 	    current) {
837 		/*
838 		 * Throttle the logging such that I only log one message
839 		 * every 'ipsec_policy_log_interval' amount of time.
840 		 */
841 		(void) mi_strlog(q, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
842 		    ipsec_policy_failure_msgs[type],
843 		    func_name,
844 		    (secure ? "secure" : "not secure"), s, d);
845 		ipsec_policy_failure_last = current;
846 	}
847 }
848 
849 void
850 ipsec_config_flush()
851 {
852 	rw_enter(&system_policy.iph_lock, RW_WRITER);
853 	ipsec_polhead_flush(&system_policy);
854 	ipsec_next_policy_index = 1;
855 	rw_exit(&system_policy.iph_lock);
856 	ipsec_action_reclaim(0);
857 }
858 
859 /*
860  * Clip a policy's min/max keybits vs. the capabilities of the
861  * algorithm.
862  */
863 static void
864 act_alg_adjust(uint_t algtype, uint_t algid,
865     uint16_t *minbits, uint16_t *maxbits)
866 {
867 	ipsec_alginfo_t *algp = ipsec_alglists[algtype][algid];
868 	if (algp != NULL) {
869 		/*
870 		 * If passed-in minbits is zero, we assume the caller trusts
871 		 * us with setting the minimum key size.  We pick the
872 		 * algorithms DEFAULT key size for the minimum in this case.
873 		 */
874 		if (*minbits == 0) {
875 			*minbits = algp->alg_default_bits;
876 			ASSERT(*minbits >= algp->alg_minbits);
877 		} else {
878 			*minbits = MAX(*minbits, algp->alg_minbits);
879 		}
880 		if (*maxbits == 0)
881 			*maxbits = algp->alg_maxbits;
882 		else
883 			*maxbits = MIN(*maxbits, algp->alg_maxbits);
884 		ASSERT(*minbits <= *maxbits);
885 	} else {
886 		*minbits = 0;
887 		*maxbits = 0;
888 	}
889 }
890 
891 /*
892  * Check an action's requested algorithms against the algorithms currently
893  * loaded in the system.
894  */
895 boolean_t
896 ipsec_check_action(ipsec_act_t *act, int *diag)
897 {
898 	ipsec_prot_t *ipp;
899 
900 	ipp = &act->ipa_apply;
901 
902 	if (ipp->ipp_use_ah &&
903 	    ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
904 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
905 		return (B_FALSE);
906 	}
907 	if (ipp->ipp_use_espa &&
908 	    ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] == NULL) {
909 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
910 		return (B_FALSE);
911 	}
912 	if (ipp->ipp_use_esp &&
913 	    ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
914 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
915 		return (B_FALSE);
916 	}
917 
918 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
919 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits);
920 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
921 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits);
922 	act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
923 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits);
924 
925 	if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
926 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
927 		return (B_FALSE);
928 	}
929 	if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
930 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
931 		return (B_FALSE);
932 	}
933 	if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
934 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
935 		return (B_FALSE);
936 	}
937 	/* TODO: sanity check lifetimes */
938 	return (B_TRUE);
939 }
940 
941 /*
942  * Set up a single action during wildcard expansion..
943  */
944 static void
945 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
946     uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg)
947 {
948 	ipsec_prot_t *ipp;
949 
950 	*outact = *act;
951 	ipp = &outact->ipa_apply;
952 	ipp->ipp_auth_alg = (uint8_t)auth_alg;
953 	ipp->ipp_encr_alg = (uint8_t)encr_alg;
954 	ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
955 
956 	act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
957 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits);
958 	act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
959 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits);
960 	act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
961 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits);
962 }
963 
964 /*
965  * combinatoric expansion time: expand a wildcarded action into an
966  * array of wildcarded actions; we return the exploded action list,
967  * and return a count in *nact (output only).
968  */
969 static ipsec_act_t *
970 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact)
971 {
972 	boolean_t use_ah, use_esp, use_espa;
973 	boolean_t wild_auth, wild_encr, wild_eauth;
974 	uint_t	auth_alg, auth_idx, auth_min, auth_max;
975 	uint_t	eauth_alg, eauth_idx, eauth_min, eauth_max;
976 	uint_t  encr_alg, encr_idx, encr_min, encr_max;
977 	uint_t	action_count, ai;
978 	ipsec_act_t *outact;
979 
980 	if (act->ipa_type != IPSEC_ACT_APPLY) {
981 		outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
982 		*nact = 1;
983 		if (outact != NULL)
984 			bcopy(act, outact, sizeof (*act));
985 		return (outact);
986 	}
987 	/*
988 	 * compute the combinatoric explosion..
989 	 *
990 	 * we assume a request for encr if esp_req is PREF_REQUIRED
991 	 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
992 	 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
993 	 */
994 
995 	use_ah = act->ipa_apply.ipp_use_ah;
996 	use_esp = act->ipa_apply.ipp_use_esp;
997 	use_espa = act->ipa_apply.ipp_use_espa;
998 	auth_alg = act->ipa_apply.ipp_auth_alg;
999 	eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1000 	encr_alg = act->ipa_apply.ipp_encr_alg;
1001 
1002 	wild_auth = use_ah && (auth_alg == 0);
1003 	wild_eauth = use_espa && (eauth_alg == 0);
1004 	wild_encr = use_esp && (encr_alg == 0);
1005 
1006 	action_count = 1;
1007 	auth_min = auth_max = auth_alg;
1008 	eauth_min = eauth_max = eauth_alg;
1009 	encr_min = encr_max = encr_alg;
1010 
1011 	/*
1012 	 * set up for explosion.. for each dimension, expand output
1013 	 * size by the explosion factor.
1014 	 *
1015 	 * Don't include the "any" algorithms, if defined, as no
1016 	 * kernel policies should be set for these algorithms.
1017 	 */
1018 
1019 #define	SET_EXP_MINMAX(type, wild, alg, min, max) if (wild) {	\
1020 		int nalgs = ipsec_nalgs[type];			\
1021 		if (ipsec_alglists[type][alg] != NULL)		\
1022 			nalgs--;				\
1023 		action_count *= nalgs;				\
1024 		min = 0;					\
1025 		max = ipsec_nalgs[type] - 1;			\
1026 	}
1027 
1028 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1029 	    auth_min, auth_max);
1030 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1031 	    eauth_min, eauth_max);
1032 	SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1033 	    encr_min, encr_max);
1034 
1035 #undef	SET_EXP_MINMAX
1036 
1037 	/*
1038 	 * ok, allocate the whole mess..
1039 	 */
1040 
1041 	outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1042 	if (outact == NULL)
1043 		return (NULL);
1044 
1045 	/*
1046 	 * Now compute all combinations.  Note that non-wildcarded
1047 	 * dimensions just get a single value from auth_min, while
1048 	 * wildcarded dimensions indirect through the sortlist.
1049 	 *
1050 	 * We do encryption outermost since, at this time, there's
1051 	 * greater difference in security and performance between
1052 	 * encryption algorithms vs. authentication algorithms.
1053 	 */
1054 
1055 	ai = 0;
1056 
1057 #define	WHICH_ALG(type, wild, idx) ((wild)?(ipsec_sortlist[type][idx]):(idx))
1058 
1059 	for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1060 		encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx);
1061 		if (wild_encr && encr_alg == SADB_EALG_NONE)
1062 			continue;
1063 		for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1064 			auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1065 			    auth_idx);
1066 			if (wild_auth && auth_alg == SADB_AALG_NONE)
1067 				continue;
1068 			for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1069 			    eauth_idx++) {
1070 				eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1071 				    wild_eauth, eauth_idx);
1072 				if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1073 					continue;
1074 
1075 				ipsec_setup_act(&outact[ai], act,
1076 				    auth_alg, encr_alg, eauth_alg);
1077 				ai++;
1078 			}
1079 		}
1080 	}
1081 
1082 #undef WHICH_ALG
1083 
1084 	ASSERT(ai == action_count);
1085 	*nact = action_count;
1086 	return (outact);
1087 }
1088 
1089 /*
1090  * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1091  */
1092 static void
1093 ipsec_prot_from_req(ipsec_req_t *req, ipsec_prot_t *ipp)
1094 {
1095 	bzero(ipp, sizeof (*ipp));
1096 	/*
1097 	 * ipp_use_* are bitfields.  Look at "!!" in the following as a
1098 	 * "boolean canonicalization" operator.
1099 	 */
1100 	ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1101 	ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1102 	ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg) || !ipp->ipp_use_ah;
1103 	ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1104 	ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1105 	    IPSEC_PREF_UNIQUE);
1106 	ipp->ipp_encr_alg = req->ipsr_esp_alg;
1107 	ipp->ipp_auth_alg = req->ipsr_auth_alg;
1108 	ipp->ipp_esp_auth_alg = req->ipsr_esp_auth_alg;
1109 }
1110 
1111 /*
1112  * Extract a new-style action from a request.
1113  */
1114 void
1115 ipsec_actvec_from_req(ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp)
1116 {
1117 	struct ipsec_act act;
1118 	bzero(&act, sizeof (act));
1119 	if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1120 	    (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1121 		act.ipa_type = IPSEC_ACT_BYPASS;
1122 	} else {
1123 		act.ipa_type = IPSEC_ACT_APPLY;
1124 		ipsec_prot_from_req(req, &act.ipa_apply);
1125 	}
1126 	*actp = ipsec_act_wildcard_expand(&act, nactp);
1127 }
1128 
1129 /*
1130  * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1131  * We assume caller has already zero'ed *req for us.
1132  */
1133 static int
1134 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1135 {
1136 	req->ipsr_esp_alg = ipp->ipp_encr_alg;
1137 	req->ipsr_auth_alg = ipp->ipp_auth_alg;
1138 	req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1139 
1140 	if (ipp->ipp_use_unique) {
1141 		req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1142 		req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1143 	}
1144 	if (ipp->ipp_use_se)
1145 		req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1146 	if (ipp->ipp_use_ah)
1147 		req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1148 	if (ipp->ipp_use_esp)
1149 		req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1150 	return (sizeof (*req));
1151 }
1152 
1153 /*
1154  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1155  * We assume caller has already zero'ed *req for us.
1156  */
1157 static int
1158 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1159 {
1160 	switch (ap->ipa_act.ipa_type) {
1161 	case IPSEC_ACT_BYPASS:
1162 		req->ipsr_ah_req = IPSEC_PREF_NEVER;
1163 		req->ipsr_esp_req = IPSEC_PREF_NEVER;
1164 		return (sizeof (*req));
1165 	case IPSEC_ACT_APPLY:
1166 		return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1167 	}
1168 	return (sizeof (*req));
1169 }
1170 
1171 /*
1172  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1173  * We assume caller has already zero'ed *req for us.
1174  */
1175 static int
1176 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1177 {
1178 	ipsec_policy_t *p;
1179 
1180 	/*
1181 	 * FULL-PERSOCK: consult hash table, too?
1182 	 */
1183 	for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1184 	    p != NULL;
1185 	    p = p->ipsp_hash.hash_next) {
1186 		if ((p->ipsp_sel->ipsl_key.ipsl_valid&IPSL_WILDCARD) == 0)
1187 			return (ipsec_req_from_act(p->ipsp_act, req));
1188 	}
1189 	return (sizeof (*req));
1190 }
1191 
1192 /*
1193  * Based on per-socket or latched policy, convert to an appropriate
1194  * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1195  * be tail-called from ip.
1196  */
1197 int
1198 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1199 {
1200 	ipsec_latch_t *ipl;
1201 	int rv = sizeof (ipsec_req_t);
1202 
1203 	bzero(req, sizeof (*req));
1204 
1205 	mutex_enter(&connp->conn_lock);
1206 	ipl = connp->conn_latch;
1207 
1208 	/*
1209 	 * Find appropriate policy.  First choice is latched action;
1210 	 * failing that, see latched policy; failing that,
1211 	 * look at configured policy.
1212 	 */
1213 	if (ipl != NULL) {
1214 		if (ipl->ipl_in_action != NULL) {
1215 			rv = ipsec_req_from_act(ipl->ipl_in_action, req);
1216 			goto done;
1217 		}
1218 		if (ipl->ipl_in_policy != NULL) {
1219 			rv = ipsec_req_from_act(ipl->ipl_in_policy->ipsp_act,
1220 			    req);
1221 			goto done;
1222 		}
1223 	}
1224 	if (connp->conn_policy != NULL)
1225 		rv = ipsec_req_from_head(connp->conn_policy, req, af);
1226 done:
1227 	mutex_exit(&connp->conn_lock);
1228 	return (rv);
1229 }
1230 
1231 void
1232 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1233 {
1234 	kmem_free(act, nact * sizeof (*act));
1235 }
1236 
1237 /*
1238  * When outbound policy is not cached, look it up the hard way and attach
1239  * an ipsec_out_t to the packet..
1240  */
1241 static mblk_t *
1242 ipsec_attach_global_policy(mblk_t *mp, conn_t *connp, ipsec_selector_t *sel)
1243 {
1244 	ipsec_policy_t *p;
1245 
1246 	p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel);
1247 
1248 	if (p == NULL)
1249 		return (NULL);
1250 	return (ipsec_attach_ipsec_out(mp, connp, p, sel->ips_protocol));
1251 }
1252 
1253 /*
1254  * We have an ipsec_out already, but don't have cached policy; fill it in
1255  * with the right actions.
1256  */
1257 static mblk_t *
1258 ipsec_apply_global_policy(mblk_t *ipsec_mp, conn_t *connp,
1259     ipsec_selector_t *sel)
1260 {
1261 	ipsec_out_t *io;
1262 	ipsec_policy_t *p;
1263 
1264 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
1265 	ASSERT(ipsec_mp->b_cont->b_datap->db_type == M_DATA);
1266 
1267 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
1268 
1269 	if (io->ipsec_out_policy == NULL) {
1270 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, io, sel);
1271 		io->ipsec_out_policy = p;
1272 	}
1273 	return (ipsec_mp);
1274 }
1275 
1276 
1277 /* ARGSUSED */
1278 /*
1279  * Consumes a reference to ipsp.
1280  */
1281 static mblk_t *
1282 ipsec_check_loopback_policy(queue_t *q, mblk_t *first_mp,
1283     boolean_t mctl_present, ipsec_policy_t *ipsp)
1284 {
1285 	mblk_t *ipsec_mp;
1286 	ipsec_in_t *ii;
1287 
1288 	if (!mctl_present)
1289 		return (first_mp);
1290 
1291 	ipsec_mp = first_mp;
1292 
1293 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1294 	ASSERT(ii->ipsec_in_loopback);
1295 	IPPOL_REFRELE(ipsp);
1296 
1297 	/*
1298 	 * We should do an actual policy check here.  Revisit this
1299 	 * when we revisit the IPsec API.
1300 	 */
1301 
1302 	return (first_mp);
1303 }
1304 
1305 static boolean_t
1306 ipsec_check_ipsecin_action(ipsec_in_t *ii, mblk_t *mp, ipsec_action_t *ap,
1307     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter)
1308 {
1309 	boolean_t ret = B_TRUE;
1310 	ipsec_prot_t *ipp;
1311 	ipsa_t *ah_assoc;
1312 	ipsa_t *esp_assoc;
1313 	boolean_t decaps;
1314 
1315 	ASSERT((ipha == NULL && ip6h != NULL) ||
1316 	    (ip6h == NULL && ipha != NULL));
1317 
1318 	if (ii->ipsec_in_loopback) {
1319 		/*
1320 		 * Besides accepting pointer-equivalent actions, we also
1321 		 * accept any ICMP errors we generated for ourselves,
1322 		 * regardless of policy.  If we do not wish to make this
1323 		 * assumption in the future, check here, and where
1324 		 * icmp_loopback is initialized in ip.c and ip6.c.  (Look for
1325 		 * ipsec_out_icmp_loopback.)
1326 		 */
1327 		if (ap == ii->ipsec_in_action || ii->ipsec_in_icmp_loopback)
1328 			return (B_TRUE);
1329 
1330 		/* Deep compare necessary here?? */
1331 		*counter = &ipdrops_spd_loopback_mismatch;
1332 		*reason = "loopback policy mismatch";
1333 		return (B_FALSE);
1334 	}
1335 	ASSERT(!ii->ipsec_in_icmp_loopback);
1336 
1337 	ah_assoc = ii->ipsec_in_ah_sa;
1338 	esp_assoc = ii->ipsec_in_esp_sa;
1339 
1340 	decaps = ii->ipsec_in_decaps;
1341 
1342 	switch (ap->ipa_act.ipa_type) {
1343 	case IPSEC_ACT_DISCARD:
1344 	case IPSEC_ACT_REJECT:
1345 		/* Should "fail hard" */
1346 		*counter = &ipdrops_spd_explicit;
1347 		*reason = "blocked by policy";
1348 		return (B_FALSE);
1349 
1350 	case IPSEC_ACT_BYPASS:
1351 	case IPSEC_ACT_CLEAR:
1352 		*counter = &ipdrops_spd_got_secure;
1353 		*reason = "expected clear, got protected";
1354 		return (B_FALSE);
1355 
1356 	case IPSEC_ACT_APPLY:
1357 		ipp = &ap->ipa_act.ipa_apply;
1358 		/*
1359 		 * As of now we do the simple checks of whether
1360 		 * the datagram has gone through the required IPSEC
1361 		 * protocol constraints or not. We might have more
1362 		 * in the future like sensitive levels, key bits, etc.
1363 		 * If it fails the constraints, check whether we would
1364 		 * have accepted this if it had come in clear.
1365 		 */
1366 		if (ipp->ipp_use_ah) {
1367 			if (ah_assoc == NULL) {
1368 				ret = ipsec_inbound_accept_clear(mp, ipha,
1369 				    ip6h);
1370 				*counter = &ipdrops_spd_got_clear;
1371 				*reason = "unprotected not accepted";
1372 				break;
1373 			}
1374 			ASSERT(ah_assoc != NULL);
1375 			ASSERT(ipp->ipp_auth_alg != 0);
1376 
1377 			if (ah_assoc->ipsa_auth_alg !=
1378 			    ipp->ipp_auth_alg) {
1379 				*counter = &ipdrops_spd_bad_ahalg;
1380 				*reason = "unacceptable ah alg";
1381 				ret = B_FALSE;
1382 				break;
1383 			}
1384 		} else if (ah_assoc != NULL) {
1385 			/*
1386 			 * Don't allow this. Check IPSEC NOTE above
1387 			 * ip_fanout_proto().
1388 			 */
1389 			*counter = &ipdrops_spd_got_ah;
1390 			*reason = "unexpected AH";
1391 			ret = B_FALSE;
1392 			break;
1393 		}
1394 		if (ipp->ipp_use_esp) {
1395 			if (esp_assoc == NULL) {
1396 				ret = ipsec_inbound_accept_clear(mp, ipha,
1397 				    ip6h);
1398 				*counter = &ipdrops_spd_got_clear;
1399 				*reason = "unprotected not accepted";
1400 				break;
1401 			}
1402 			ASSERT(esp_assoc != NULL);
1403 			ASSERT(ipp->ipp_encr_alg != 0);
1404 
1405 			if (esp_assoc->ipsa_encr_alg !=
1406 			    ipp->ipp_encr_alg) {
1407 				*counter = &ipdrops_spd_bad_espealg;
1408 				*reason = "unacceptable esp alg";
1409 				ret = B_FALSE;
1410 				break;
1411 			}
1412 			/*
1413 			 * If the client does not need authentication,
1414 			 * we don't verify the alogrithm.
1415 			 */
1416 			if (ipp->ipp_use_espa) {
1417 				if (esp_assoc->ipsa_auth_alg !=
1418 				    ipp->ipp_esp_auth_alg) {
1419 					*counter = &ipdrops_spd_bad_espaalg;
1420 					*reason = "unacceptable esp auth alg";
1421 					ret = B_FALSE;
1422 					break;
1423 				}
1424 			}
1425 		} else if (esp_assoc != NULL) {
1426 				/*
1427 				 * Don't allow this. Check IPSEC NOTE above
1428 				 * ip_fanout_proto().
1429 				 */
1430 			*counter = &ipdrops_spd_got_esp;
1431 			*reason = "unexpected ESP";
1432 			ret = B_FALSE;
1433 			break;
1434 		}
1435 		if (ipp->ipp_use_se) {
1436 			if (!decaps) {
1437 				ret = ipsec_inbound_accept_clear(mp, ipha,
1438 				    ip6h);
1439 				if (!ret) {
1440 					/* XXX mutant? */
1441 					*counter = &ipdrops_spd_bad_selfencap;
1442 					*reason = "self encap not found";
1443 					break;
1444 				}
1445 			}
1446 		} else if (decaps) {
1447 			/*
1448 			 * XXX If the packet comes in tunneled and the
1449 			 * recipient does not expect it to be tunneled, it
1450 			 * is okay. But we drop to be consistent with the
1451 			 * other cases.
1452 			 */
1453 			*counter = &ipdrops_spd_got_selfencap;
1454 			*reason = "unexpected self encap";
1455 			ret = B_FALSE;
1456 			break;
1457 		}
1458 		if (ii->ipsec_in_action != NULL) {
1459 			/*
1460 			 * This can happen if we do a double policy-check on
1461 			 * a packet
1462 			 * XXX XXX should fix this case!
1463 			 */
1464 			IPACT_REFRELE(ii->ipsec_in_action);
1465 		}
1466 		ASSERT(ii->ipsec_in_action == NULL);
1467 		IPACT_REFHOLD(ap);
1468 		ii->ipsec_in_action = ap;
1469 		break;	/* from switch */
1470 	}
1471 	return (ret);
1472 }
1473 
1474 static boolean_t
1475 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1476 {
1477 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1478 	return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1479 	    ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1480 }
1481 
1482 /*
1483  * Called to check policy on a latched connection, both from this file
1484  * and from tcp.c
1485  */
1486 boolean_t
1487 ipsec_check_ipsecin_latch(ipsec_in_t *ii, mblk_t *mp, ipsec_latch_t *ipl,
1488     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter)
1489 {
1490 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1491 
1492 	if ((ii->ipsec_in_ah_sa != NULL) &&
1493 	    (!spd_match_inbound_ids(ipl, ii->ipsec_in_ah_sa))) {
1494 		*counter = &ipdrops_spd_ah_badid;
1495 		*reason = "AH identity mismatch";
1496 		return (B_FALSE);
1497 	}
1498 
1499 	if ((ii->ipsec_in_esp_sa != NULL) &&
1500 	    (!spd_match_inbound_ids(ipl, ii->ipsec_in_esp_sa))) {
1501 		*counter = &ipdrops_spd_esp_badid;
1502 		*reason = "ESP identity mismatch";
1503 		return (B_FALSE);
1504 	}
1505 
1506 	return (ipsec_check_ipsecin_action(ii, mp, ipl->ipl_in_action,
1507 	    ipha, ip6h, reason, counter));
1508 }
1509 
1510 /*
1511  * Check to see whether this secured datagram meets the policy
1512  * constraints specified in ipsp.
1513  *
1514  * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1515  *
1516  * Consumes a reference to ipsp.
1517  */
1518 static mblk_t *
1519 ipsec_check_ipsecin_policy(queue_t *q, mblk_t *first_mp, ipsec_policy_t *ipsp,
1520     ipha_t *ipha, ip6_t *ip6h)
1521 {
1522 	ipsec_in_t *ii;
1523 	ipsec_action_t *ap;
1524 	const char *reason = "no policy actions found";
1525 	mblk_t *data_mp, *ipsec_mp;
1526 	kstat_named_t *counter = &ipdrops_spd_got_secure;
1527 
1528 	data_mp = first_mp->b_cont;
1529 	ipsec_mp = first_mp;
1530 
1531 	ASSERT(ipsp != NULL);
1532 
1533 	ASSERT((ipha == NULL && ip6h != NULL) ||
1534 	    (ip6h == NULL && ipha != NULL));
1535 
1536 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1537 
1538 	if (ii->ipsec_in_loopback)
1539 		return (ipsec_check_loopback_policy(q, first_mp, B_TRUE, ipsp));
1540 
1541 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
1542 	if (ii->ipsec_in_action != NULL) {
1543 		/*
1544 		 * this can happen if we do a double policy-check on a packet
1545 		 * Would be nice to be able to delete this test..
1546 		 */
1547 		IPACT_REFRELE(ii->ipsec_in_action);
1548 	}
1549 	ASSERT(ii->ipsec_in_action == NULL);
1550 
1551 	if (!SA_IDS_MATCH(ii->ipsec_in_ah_sa, ii->ipsec_in_esp_sa)) {
1552 		reason = "inbound AH and ESP identities differ";
1553 		counter = &ipdrops_spd_ahesp_diffid;
1554 		goto drop;
1555 	}
1556 
1557 	/*
1558 	 * Ok, now loop through the possible actions and see if any
1559 	 * of them work for us.
1560 	 */
1561 
1562 	for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
1563 		if (ipsec_check_ipsecin_action(ii, data_mp, ap,
1564 		    ipha, ip6h, &reason, &counter)) {
1565 			BUMP_MIB(&ip_mib, ipsecInSucceeded);
1566 			IPPOL_REFRELE(ipsp);
1567 			return (first_mp);
1568 		}
1569 	}
1570 drop:
1571 	(void) mi_strlog(q, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1572 	    "ipsec inbound policy mismatch: %s, packet dropped\n",
1573 	    reason);
1574 	IPPOL_REFRELE(ipsp);
1575 	ASSERT(ii->ipsec_in_action == NULL);
1576 	BUMP_MIB(&ip_mib, ipsecInFailed);
1577 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &spd_dropper);
1578 	return (NULL);
1579 }
1580 
1581 /*
1582  * sleazy prefix-length-based compare.
1583  * another inlining candidate..
1584  */
1585 static boolean_t
1586 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
1587 {
1588 	int offset = pfxlen>>3;
1589 	int bitsleft = pfxlen & 7;
1590 	uint8_t *addr2 = (uint8_t *)addr2p;
1591 
1592 	/*
1593 	 * and there was much evil..
1594 	 * XXX should inline-expand the bcmp here and do this 32 bits
1595 	 * or 64 bits at a time..
1596 	 */
1597 	return ((bcmp(addr1, addr2, offset) == 0) &&
1598 	    ((bitsleft == 0) ||
1599 		(((addr1[offset] ^ addr2[offset]) &
1600 		    (0xff<<(8-bitsleft))) == 0)));
1601 }
1602 
1603 static ipsec_policy_t *
1604 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
1605     ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
1606 {
1607 	ipsec_selkey_t *isel;
1608 	ipsec_policy_t *p;
1609 	int bpri = best ? best->ipsp_prio : 0;
1610 
1611 	for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
1612 		uint32_t valid;
1613 
1614 		if (p->ipsp_prio <= bpri)
1615 			continue;
1616 		isel = &p->ipsp_sel->ipsl_key;
1617 		valid = isel->ipsl_valid;
1618 
1619 		if ((valid & IPSL_PROTOCOL) &&
1620 		    (isel->ipsl_proto != sel->ips_protocol))
1621 			continue;
1622 
1623 		if ((valid & IPSL_REMOTE_ADDR) &&
1624 		    !ip_addr_match((uint8_t *)&isel->ipsl_remote,
1625 			isel->ipsl_remote_pfxlen,
1626 			&sel->ips_remote_addr_v6))
1627 			continue;
1628 
1629 		if ((valid & IPSL_LOCAL_ADDR) &&
1630 		    !ip_addr_match((uint8_t *)&isel->ipsl_local,
1631 			isel->ipsl_local_pfxlen,
1632 			&sel->ips_local_addr_v6))
1633 			continue;
1634 
1635 		if ((valid & IPSL_REMOTE_PORT) &&
1636 		    isel->ipsl_rport != sel->ips_remote_port)
1637 			continue;
1638 
1639 		if ((valid & IPSL_LOCAL_PORT) &&
1640 		    isel->ipsl_lport != sel->ips_local_port)
1641 			continue;
1642 
1643 		if (!is_icmp_inv_acq) {
1644 			if ((valid & IPSL_ICMP_TYPE) &&
1645 			    (isel->ipsl_icmp_type > sel->ips_icmp_type ||
1646 			    isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
1647 				continue;
1648 			}
1649 
1650 			if ((valid & IPSL_ICMP_CODE) &&
1651 			    (isel->ipsl_icmp_code > sel->ips_icmp_code ||
1652 			    isel->ipsl_icmp_code_end <
1653 			    sel->ips_icmp_code)) {
1654 				continue;
1655 			}
1656 		} else {
1657 			/*
1658 			 * special case for icmp inverse acquire
1659 			 * we only want policies that aren't drop/pass
1660 			 */
1661 			if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
1662 				continue;
1663 		}
1664 
1665 		/* we matched all the packet-port-field selectors! */
1666 		best = p;
1667 		bpri = p->ipsp_prio;
1668 	}
1669 
1670 	return (best);
1671 }
1672 
1673 /*
1674  * Try to find and return the best policy entry under a given policy
1675  * root for a given set of selectors; the first parameter "best" is
1676  * the current best policy so far.  If "best" is non-null, we have a
1677  * reference to it.  We return a reference to a policy; if that policy
1678  * is not the original "best", we need to release that reference
1679  * before returning.
1680  */
1681 static ipsec_policy_t *
1682 ipsec_find_policy_head(ipsec_policy_t *best,
1683     ipsec_policy_head_t *head, int direction, ipsec_selector_t *sel,
1684     int selhash)
1685 {
1686 	ipsec_policy_t *curbest;
1687 	ipsec_policy_root_t *root;
1688 	uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
1689 	int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
1690 
1691 	curbest = best;
1692 	root = &head->iph_root[direction];
1693 
1694 #ifdef DEBUG
1695 	if (is_icmp_inv_acq) {
1696 		if (sel->ips_isv4) {
1697 			if (sel->ips_protocol != IPPROTO_ICMP) {
1698 			    cmn_err(CE_WARN, "ipsec_find_policy_head:"
1699 			    " expecting icmp, got %d", sel->ips_protocol);
1700 			}
1701 		} else {
1702 			if (sel->ips_protocol != IPPROTO_ICMPV6) {
1703 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
1704 				" expecting icmpv6, got %d", sel->ips_protocol);
1705 			}
1706 		}
1707 	}
1708 #endif
1709 
1710 	rw_enter(&head->iph_lock, RW_READER);
1711 
1712 	if (root->ipr_nchains > 0) {
1713 		curbest = ipsec_find_policy_chain(curbest,
1714 		    root->ipr_hash[selhash].hash_head, sel, is_icmp_inv_acq);
1715 	}
1716 	curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
1717 	    is_icmp_inv_acq);
1718 
1719 	/*
1720 	 * Adjust reference counts if we found anything new.
1721 	 */
1722 	if (curbest != best) {
1723 		ASSERT(curbest != NULL);
1724 		IPPOL_REFHOLD(curbest);
1725 
1726 		if (best != NULL) {
1727 			IPPOL_REFRELE(best);
1728 		}
1729 	}
1730 
1731 	rw_exit(&head->iph_lock);
1732 
1733 	return (curbest);
1734 }
1735 
1736 /*
1737  * Find the best system policy (either global or per-interface) which
1738  * applies to the given selector; look in all the relevant policy roots
1739  * to figure out which policy wins.
1740  *
1741  * Returns a reference to a policy; caller must release this
1742  * reference when done.
1743  */
1744 ipsec_policy_t *
1745 ipsec_find_policy(int direction, conn_t *connp, ipsec_out_t *io,
1746     ipsec_selector_t *sel)
1747 {
1748 	ipsec_policy_t *p;
1749 	int selhash = selector_hash(sel);
1750 
1751 	p = ipsec_find_policy_head(NULL, &system_policy, direction, sel,
1752 	    selhash);
1753 	if ((connp != NULL) && (connp->conn_policy != NULL)) {
1754 		p = ipsec_find_policy_head(p, connp->conn_policy,
1755 		    direction, sel, selhash);
1756 	} else if ((io != NULL) && (io->ipsec_out_polhead != NULL)) {
1757 		p = ipsec_find_policy_head(p, io->ipsec_out_polhead,
1758 		    direction, sel, selhash);
1759 	}
1760 
1761 	return (p);
1762 }
1763 
1764 /*
1765  * Check with global policy and see whether this inbound
1766  * packet meets the policy constraints.
1767  *
1768  * Locate appropriate policy from global policy, supplemented by the
1769  * conn's configured and/or cached policy if the conn is supplied.
1770  *
1771  * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
1772  * encrypted packet to see if they match.
1773  *
1774  * Otherwise, see if the policy allows cleartext; if not, drop it on the
1775  * floor.
1776  */
1777 mblk_t *
1778 ipsec_check_global_policy(mblk_t *first_mp, conn_t *connp,
1779     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present)
1780 {
1781 	ipsec_policy_t *p;
1782 	ipsec_selector_t sel;
1783 	queue_t *q = NULL;
1784 	mblk_t *data_mp, *ipsec_mp;
1785 	boolean_t policy_present;
1786 	kstat_named_t *counter;
1787 
1788 	data_mp = mctl_present ? first_mp->b_cont : first_mp;
1789 	ipsec_mp = mctl_present ? first_mp : NULL;
1790 
1791 	sel.ips_is_icmp_inv_acq = 0;
1792 
1793 	ASSERT((ipha == NULL && ip6h != NULL) ||
1794 	    (ip6h == NULL && ipha != NULL));
1795 
1796 	if (ipha != NULL)
1797 		policy_present = ipsec_inbound_v4_policy_present;
1798 	else
1799 		policy_present = ipsec_inbound_v6_policy_present;
1800 
1801 	if (!policy_present && connp == NULL) {
1802 		/*
1803 		 * No global policy and no per-socket policy;
1804 		 * just pass it back (but we shouldn't get here in that case)
1805 		 */
1806 		return (first_mp);
1807 	}
1808 
1809 	if (connp != NULL)
1810 		q = CONNP_TO_WQ(connp);
1811 
1812 	if (ipsec_mp != NULL) {
1813 		ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
1814 		ASSERT(((ipsec_in_t *)ipsec_mp->b_rptr)->ipsec_in_type ==
1815 		    IPSEC_IN);
1816 	}
1817 
1818 	/*
1819 	 * If we have cached policy, use it.
1820 	 * Otherwise consult system policy.
1821 	 */
1822 	if ((connp != NULL) && (connp->conn_latch != NULL)) {
1823 		p = connp->conn_latch->ipl_in_policy;
1824 		if (p != NULL) {
1825 			IPPOL_REFHOLD(p);
1826 		}
1827 	} else {
1828 		/* Initialize the ports in the selector */
1829 		if (!ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h)) {
1830 			/*
1831 			 * Technically not a policy mismatch, but it is
1832 			 * an internal failure.
1833 			 */
1834 			ipsec_log_policy_failure(q, IPSEC_POLICY_MISMATCH,
1835 			    "ipsec_init_inbound_sel", ipha, ip6h, B_FALSE);
1836 			counter = &ipdrops_spd_nomem;
1837 			goto fail;
1838 		}
1839 
1840 		/*
1841 		 * Find the policy which best applies.
1842 		 *
1843 		 * If we find global policy, we should look at both
1844 		 * local policy and global policy and see which is
1845 		 * stronger and match accordingly.
1846 		 *
1847 		 * If we don't find a global policy, check with
1848 		 * local policy alone.
1849 		 */
1850 
1851 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel);
1852 	}
1853 
1854 	if (p == NULL) {
1855 		if (ipsec_mp == NULL) {
1856 			/*
1857 			 * We have no policy; default to succeeding.
1858 			 * XXX paranoid system design doesn't do this.
1859 			 */
1860 			BUMP_MIB(&ip_mib, ipsecInSucceeded);
1861 			return (first_mp);
1862 		} else {
1863 			counter = &ipdrops_spd_got_secure;
1864 			ipsec_log_policy_failure(q, IPSEC_POLICY_NOT_NEEDED,
1865 			    "ipsec_check_global_policy", ipha, ip6h, B_TRUE);
1866 			goto fail;
1867 		}
1868 	}
1869 	if (ipsec_mp != NULL)
1870 		return (ipsec_check_ipsecin_policy(q, ipsec_mp, p, ipha, ip6h));
1871 	if (p->ipsp_act->ipa_allow_clear) {
1872 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
1873 		IPPOL_REFRELE(p);
1874 		return (first_mp);
1875 	}
1876 	IPPOL_REFRELE(p);
1877 	/*
1878 	 * If we reach here, we will drop the packet because it failed the
1879 	 * global policy check because the packet was cleartext, and it
1880 	 * should not have been.
1881 	 */
1882 	ipsec_log_policy_failure(q, IPSEC_POLICY_MISMATCH,
1883 	    "ipsec_check_global_policy", ipha, ip6h, B_FALSE);
1884 	counter = &ipdrops_spd_got_clear;
1885 
1886 fail:
1887 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &spd_dropper);
1888 	BUMP_MIB(&ip_mib, ipsecInFailed);
1889 	return (NULL);
1890 }
1891 
1892 /*
1893  * We check whether an inbound datagram is a valid one
1894  * to accept in clear. If it is secure, it is the job
1895  * of IPSEC to log information appropriately if it
1896  * suspects that it may not be the real one.
1897  *
1898  * It is called only while fanning out to the ULP
1899  * where ULP accepts only secure data and the incoming
1900  * is clear. Usually we never accept clear datagrams in
1901  * such cases. ICMP is the only exception.
1902  *
1903  * NOTE : We don't call this function if the client (ULP)
1904  * is willing to accept things in clear.
1905  */
1906 boolean_t
1907 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
1908 {
1909 	ushort_t iph_hdr_length;
1910 	icmph_t *icmph;
1911 	icmp6_t *icmp6;
1912 	uint8_t *nexthdrp;
1913 
1914 	ASSERT((ipha != NULL && ip6h == NULL) ||
1915 	    (ipha == NULL && ip6h != NULL));
1916 
1917 	if (ip6h != NULL) {
1918 		iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
1919 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
1920 		    &nexthdrp)) {
1921 			return (B_FALSE);
1922 		}
1923 		if (*nexthdrp != IPPROTO_ICMPV6)
1924 			return (B_FALSE);
1925 		icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
1926 		/* Match IPv6 ICMP policy as closely as IPv4 as possible. */
1927 		switch (icmp6->icmp6_type) {
1928 		case ICMP6_PARAM_PROB:
1929 			/* Corresponds to port/proto unreach in IPv4. */
1930 		case ICMP6_ECHO_REQUEST:
1931 			/* Just like IPv4. */
1932 			return (B_FALSE);
1933 
1934 		case MLD_LISTENER_QUERY:
1935 		case MLD_LISTENER_REPORT:
1936 		case MLD_LISTENER_REDUCTION:
1937 			/*
1938 			 * XXX Seperate NDD in IPv4 what about here?
1939 			 * Plus, mcast is important to ND.
1940 			 */
1941 		case ICMP6_DST_UNREACH:
1942 			/* Corresponds to HOST/NET unreachable in IPv4. */
1943 		case ICMP6_PACKET_TOO_BIG:
1944 		case ICMP6_ECHO_REPLY:
1945 			/* These are trusted in IPv4. */
1946 		case ND_ROUTER_SOLICIT:
1947 		case ND_ROUTER_ADVERT:
1948 		case ND_NEIGHBOR_SOLICIT:
1949 		case ND_NEIGHBOR_ADVERT:
1950 		case ND_REDIRECT:
1951 			/* Trust ND messages for now. */
1952 		case ICMP6_TIME_EXCEEDED:
1953 		default:
1954 			return (B_TRUE);
1955 		}
1956 	} else {
1957 		/*
1958 		 * If it is not ICMP, fail this request.
1959 		 */
1960 		if (ipha->ipha_protocol != IPPROTO_ICMP)
1961 			return (B_FALSE);
1962 		iph_hdr_length = IPH_HDR_LENGTH(ipha);
1963 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1964 		/*
1965 		 * It is an insecure icmp message. Check to see whether we are
1966 		 * willing to accept this one.
1967 		 */
1968 
1969 		switch (icmph->icmph_type) {
1970 		case ICMP_ECHO_REPLY:
1971 		case ICMP_TIME_STAMP_REPLY:
1972 		case ICMP_INFO_REPLY:
1973 		case ICMP_ROUTER_ADVERTISEMENT:
1974 			/*
1975 			 * We should not encourage clear replies if this
1976 			 * client expects secure. If somebody is replying
1977 			 * in clear some mailicious user watching both the
1978 			 * request and reply, can do chosen-plain-text attacks.
1979 			 * With global policy we might be just expecting secure
1980 			 * but sending out clear. We don't know what the right
1981 			 * thing is. We can't do much here as we can't control
1982 			 * the sender here. Till we are sure of what to do,
1983 			 * accept them.
1984 			 */
1985 			return (B_TRUE);
1986 		case ICMP_ECHO_REQUEST:
1987 		case ICMP_TIME_STAMP_REQUEST:
1988 		case ICMP_INFO_REQUEST:
1989 		case ICMP_ADDRESS_MASK_REQUEST:
1990 		case ICMP_ROUTER_SOLICITATION:
1991 		case ICMP_ADDRESS_MASK_REPLY:
1992 			/*
1993 			 * Don't accept this as somebody could be sending
1994 			 * us plain text to get encrypted data. If we reply,
1995 			 * it will lead to chosen plain text attack.
1996 			 */
1997 			return (B_FALSE);
1998 		case ICMP_DEST_UNREACHABLE:
1999 			switch (icmph->icmph_code) {
2000 			case ICMP_FRAGMENTATION_NEEDED:
2001 				/*
2002 				 * Be in sync with icmp_inbound, where we have
2003 				 * already set ire_max_frag.
2004 				 */
2005 				return (B_TRUE);
2006 			case ICMP_HOST_UNREACHABLE:
2007 			case ICMP_NET_UNREACHABLE:
2008 				/*
2009 				 * By accepting, we could reset a connection.
2010 				 * How do we solve the problem of some
2011 				 * intermediate router sending in-secure ICMP
2012 				 * messages ?
2013 				 */
2014 				return (B_TRUE);
2015 			case ICMP_PORT_UNREACHABLE:
2016 			case ICMP_PROTOCOL_UNREACHABLE:
2017 			default :
2018 				return (B_FALSE);
2019 			}
2020 		case ICMP_SOURCE_QUENCH:
2021 			/*
2022 			 * If this is an attack, TCP will slow start
2023 			 * because of this. Is it very harmful ?
2024 			 */
2025 			return (B_TRUE);
2026 		case ICMP_PARAM_PROBLEM:
2027 			return (B_FALSE);
2028 		case ICMP_TIME_EXCEEDED:
2029 			return (B_TRUE);
2030 		case ICMP_REDIRECT:
2031 			return (B_FALSE);
2032 		default :
2033 			return (B_FALSE);
2034 		}
2035 	}
2036 }
2037 
2038 void
2039 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2040 {
2041 	mutex_enter(&ipl->ipl_lock);
2042 
2043 	if (ipl->ipl_ids_latched) {
2044 		/* I lost, someone else got here before me */
2045 		mutex_exit(&ipl->ipl_lock);
2046 		return;
2047 	}
2048 
2049 	if (local != NULL)
2050 		IPSID_REFHOLD(local);
2051 	if (remote != NULL)
2052 		IPSID_REFHOLD(remote);
2053 
2054 	ipl->ipl_local_cid = local;
2055 	ipl->ipl_remote_cid = remote;
2056 	ipl->ipl_ids_latched = B_TRUE;
2057 	mutex_exit(&ipl->ipl_lock);
2058 }
2059 
2060 void
2061 ipsec_latch_inbound(ipsec_latch_t *ipl, ipsec_in_t *ii)
2062 {
2063 	ipsa_t *sa;
2064 
2065 	if (!ipl->ipl_ids_latched) {
2066 		ipsid_t *local = NULL;
2067 		ipsid_t *remote = NULL;
2068 
2069 		if (!ii->ipsec_in_loopback) {
2070 			if (ii->ipsec_in_esp_sa != NULL)
2071 				sa = ii->ipsec_in_esp_sa;
2072 			else
2073 				sa = ii->ipsec_in_ah_sa;
2074 			ASSERT(sa != NULL);
2075 			local = sa->ipsa_dst_cid;
2076 			remote = sa->ipsa_src_cid;
2077 		}
2078 		ipsec_latch_ids(ipl, local, remote);
2079 	}
2080 	ipl->ipl_in_action = ii->ipsec_in_action;
2081 	IPACT_REFHOLD(ipl->ipl_in_action);
2082 }
2083 
2084 /*
2085  * Check whether the policy constraints are met either for an
2086  * inbound datagram; called from IP in numerous places.
2087  *
2088  * Note that this is not a chokepoint for inbound policy checks;
2089  * see also ipsec_check_ipsecin_latch()
2090  */
2091 mblk_t *
2092 ipsec_check_inbound_policy(mblk_t *first_mp, conn_t *connp,
2093     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present)
2094 {
2095 	ipsec_in_t *ii;
2096 	boolean_t ret;
2097 	mblk_t *mp = mctl_present ? first_mp->b_cont : first_mp;
2098 	mblk_t *ipsec_mp = mctl_present ? first_mp : NULL;
2099 	ipsec_latch_t *ipl;
2100 
2101 	ASSERT(connp != NULL);
2102 	ipl = connp->conn_latch;
2103 
2104 	if (ipsec_mp == NULL) {
2105 		/*
2106 		 * This is the case where the incoming datagram is
2107 		 * cleartext and we need to see whether this client
2108 		 * would like to receive such untrustworthy things from
2109 		 * the wire.
2110 		 */
2111 		ASSERT(mp != NULL);
2112 
2113 		if (ipl != NULL) {
2114 			/*
2115 			 * Policy is cached in the conn.
2116 			 */
2117 			if ((ipl->ipl_in_policy != NULL) &&
2118 			    (!ipl->ipl_in_policy->ipsp_act->ipa_allow_clear)) {
2119 				ret = ipsec_inbound_accept_clear(mp,
2120 				    ipha, ip6h);
2121 				if (ret) {
2122 					BUMP_MIB(&ip_mib, ipsecInSucceeded);
2123 					return (first_mp);
2124 				} else {
2125 					ip_drop_packet(first_mp, B_TRUE, NULL,
2126 					    NULL, &ipdrops_spd_got_clear,
2127 					    &spd_dropper);
2128 					ipsec_log_policy_failure(
2129 					    CONNP_TO_WQ(connp),
2130 					    IPSEC_POLICY_MISMATCH,
2131 					    "ipsec_check_inbound_policy", ipha,
2132 					    ip6h, B_FALSE);
2133 					BUMP_MIB(&ip_mib, ipsecInFailed);
2134 					return (NULL);
2135 				}
2136 			} else {
2137 				BUMP_MIB(&ip_mib, ipsecInSucceeded);
2138 				return (first_mp);
2139 			}
2140 		} else {
2141 			/*
2142 			 * As this is a non-hardbound connection we need
2143 			 * to look at both per-socket policy and global
2144 			 * policy. As this is cleartext, mark the mp as
2145 			 * M_DATA in case if it is an ICMP error being
2146 			 * reported before calling ipsec_check_global_policy
2147 			 * so that it does not mistake it for IPSEC_IN.
2148 			 */
2149 			uchar_t db_type = mp->b_datap->db_type;
2150 			mp->b_datap->db_type = M_DATA;
2151 			first_mp = ipsec_check_global_policy(first_mp, connp,
2152 			    ipha, ip6h, mctl_present);
2153 			if (first_mp != NULL)
2154 				mp->b_datap->db_type = db_type;
2155 			return (first_mp);
2156 		}
2157 	}
2158 	/*
2159 	 * If it is inbound check whether the attached message
2160 	 * is secure or not. We have a special case for ICMP,
2161 	 * where we have a IPSEC_IN message and the attached
2162 	 * message is not secure. See icmp_inbound_error_fanout
2163 	 * for details.
2164 	 */
2165 	ASSERT(ipsec_mp != NULL);
2166 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2167 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
2168 
2169 	/*
2170 	 * mp->b_cont could be either a M_CTL message
2171 	 * for icmp errors being sent up or a M_DATA message.
2172 	 */
2173 	ASSERT(mp->b_datap->db_type == M_CTL ||
2174 	    mp->b_datap->db_type == M_DATA);
2175 
2176 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
2177 
2178 	if (ipl == NULL) {
2179 		/*
2180 		 * We don't have policies cached in the conn's
2181 		 * for this stream. So, look at the global
2182 		 * policy. It will check against conn or global
2183 		 * depending on whichever is stronger.
2184 		 */
2185 		return (ipsec_check_global_policy(first_mp, connp,
2186 		    ipha, ip6h, mctl_present));
2187 	} else if (ipl->ipl_in_action != NULL) {
2188 		/* Policy is cached & latched; fast(er) path */
2189 		const char *reason;
2190 		kstat_named_t *counter;
2191 		if (ipsec_check_ipsecin_latch(ii, mp, ipl,
2192 		    ipha, ip6h, &reason, &counter)) {
2193 			BUMP_MIB(&ip_mib, ipsecInSucceeded);
2194 			return (first_mp);
2195 		}
2196 		(void) mi_strlog(CONNP_TO_WQ(connp), 0,
2197 		    SL_ERROR|SL_WARN|SL_CONSOLE,
2198 		    "ipsec inbound policy mismatch: %s, packet dropped\n",
2199 		    reason);
2200 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2201 		    &spd_dropper);
2202 		BUMP_MIB(&ip_mib, ipsecInFailed);
2203 		return (NULL);
2204 	} else if (ipl->ipl_in_policy == NULL)
2205 		return (first_mp);
2206 
2207 	IPPOL_REFHOLD(ipl->ipl_in_policy);
2208 	first_mp = ipsec_check_ipsecin_policy(CONNP_TO_WQ(connp), first_mp,
2209 	    ipl->ipl_in_policy, ipha, ip6h);
2210 	/*
2211 	 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2212 	 * ipsec_check_ipsecin_policy().
2213 	 */
2214 	if (first_mp != NULL)
2215 		ipsec_latch_inbound(ipl, ii);
2216 	return (first_mp);
2217 }
2218 
2219 boolean_t
2220 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp,
2221     ipha_t *ipha, ip6_t *ip6h)
2222 {
2223 	uint16_t *ports;
2224 	ushort_t hdr_len;
2225 	mblk_t *spare_mp = NULL;
2226 	uint8_t *nexthdrp;
2227 	uint8_t nexthdr;
2228 	uint8_t *typecode;
2229 	uint8_t check_proto;
2230 
2231 	ASSERT((ipha == NULL && ip6h != NULL) ||
2232 	    (ipha != NULL && ip6h == NULL));
2233 
2234 	if (ip6h != NULL) {
2235 		check_proto = IPPROTO_ICMPV6;
2236 		sel->ips_isv4 = B_FALSE;
2237 		sel->ips_local_addr_v6 = ip6h->ip6_dst;
2238 		sel->ips_remote_addr_v6 = ip6h->ip6_src;
2239 
2240 		nexthdr = ip6h->ip6_nxt;
2241 		switch (nexthdr) {
2242 		case IPPROTO_HOPOPTS:
2243 		case IPPROTO_ROUTING:
2244 		case IPPROTO_DSTOPTS:
2245 			/*
2246 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2247 			 * mblk that's contiguous to feed it
2248 			 */
2249 			if ((spare_mp = msgpullup(mp, -1)) == NULL)
2250 				return (B_FALSE);
2251 			if (!ip_hdr_length_nexthdr_v6(spare_mp,
2252 			    (ip6_t *)spare_mp->b_rptr, &hdr_len, &nexthdrp)) {
2253 				/* Malformed packet - XXX ip_drop_packet()? */
2254 				freemsg(spare_mp);
2255 				return (B_FALSE);
2256 			}
2257 			nexthdr = *nexthdrp;
2258 			/* We can just extract based on hdr_len now. */
2259 			break;
2260 		default:
2261 			hdr_len = IPV6_HDR_LEN;
2262 			break;
2263 		}
2264 	} else {
2265 		check_proto = IPPROTO_ICMP;
2266 		sel->ips_isv4 = B_TRUE;
2267 		sel->ips_local_addr_v4 = ipha->ipha_dst;
2268 		sel->ips_remote_addr_v4 = ipha->ipha_src;
2269 		nexthdr = ipha->ipha_protocol;
2270 		hdr_len = IPH_HDR_LENGTH(ipha);
2271 	}
2272 	sel->ips_protocol = nexthdr;
2273 
2274 	if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2275 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2276 		sel->ips_remote_port = sel->ips_local_port = 0;
2277 		freemsg(spare_mp);	/* Always works, even if NULL. */
2278 		return (B_TRUE);
2279 	}
2280 
2281 	if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) {
2282 		/* If we didn't pullup a copy already, do so now. */
2283 		/*
2284 		 * XXX performance, will upper-layers frequently split TCP/UDP
2285 		 * apart from IP or options?  If so, perhaps we should revisit
2286 		 * the spare_mp strategy.
2287 		 */
2288 		if (spare_mp == NULL &&
2289 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2290 			return (B_FALSE);
2291 		}
2292 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len];
2293 	} else {
2294 		ports = (uint16_t *)&mp->b_rptr[hdr_len];
2295 	}
2296 
2297 	if (nexthdr == check_proto) {
2298 		typecode = (uint8_t *)ports;
2299 		sel->ips_icmp_type = *typecode++;
2300 		sel->ips_icmp_code = *typecode;
2301 		sel->ips_remote_port = sel->ips_local_port = 0;
2302 		freemsg(spare_mp);	/* Always works, even if NULL */
2303 		return (B_TRUE);
2304 	}
2305 
2306 	sel->ips_remote_port = *ports++;
2307 	sel->ips_local_port = *ports;
2308 	freemsg(spare_mp);	/* Always works, even if NULL */
2309 	return (B_TRUE);
2310 }
2311 
2312 static boolean_t
2313 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2314     ip6_t *ip6h)
2315 {
2316 	/*
2317 	 * XXX cut&paste shared with ipsec_init_inbound_sel
2318 	 */
2319 	uint16_t *ports;
2320 	ushort_t hdr_len;
2321 	mblk_t *spare_mp = NULL;
2322 	uint8_t *nexthdrp;
2323 	uint8_t nexthdr;
2324 	uint8_t *typecode;
2325 	uint8_t check_proto;
2326 
2327 	ASSERT((ipha == NULL && ip6h != NULL) ||
2328 	    (ipha != NULL && ip6h == NULL));
2329 
2330 	if (ip6h != NULL) {
2331 		check_proto = IPPROTO_ICMPV6;
2332 		nexthdr = ip6h->ip6_nxt;
2333 		switch (nexthdr) {
2334 		case IPPROTO_HOPOPTS:
2335 		case IPPROTO_ROUTING:
2336 		case IPPROTO_DSTOPTS:
2337 			/*
2338 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2339 			 * mblk that's contiguous to feed it
2340 			 */
2341 			spare_mp = msgpullup(mp, -1);
2342 			if (spare_mp == NULL ||
2343 			    !ip_hdr_length_nexthdr_v6(spare_mp,
2344 				(ip6_t *)spare_mp->b_rptr, &hdr_len,
2345 				&nexthdrp)) {
2346 				/* Always works, even if NULL. */
2347 				freemsg(spare_mp);
2348 				freemsg(mp);
2349 				return (B_FALSE);
2350 			} else {
2351 				nexthdr = *nexthdrp;
2352 				/* We can just extract based on hdr_len now. */
2353 			}
2354 			break;
2355 		default:
2356 			hdr_len = IPV6_HDR_LEN;
2357 			break;
2358 		}
2359 	} else {
2360 		check_proto = IPPROTO_ICMP;
2361 		hdr_len = IPH_HDR_LENGTH(ipha);
2362 		nexthdr = ipha->ipha_protocol;
2363 	}
2364 
2365 	sel->ips_protocol = nexthdr;
2366 	if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2367 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2368 		sel->ips_local_port = sel->ips_remote_port = 0;
2369 		freemsg(spare_mp);  /* Always works, even if NULL. */
2370 		return (B_TRUE);
2371 	}
2372 
2373 	if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) {
2374 		/* If we didn't pullup a copy already, do so now. */
2375 		/*
2376 		 * XXX performance, will upper-layers frequently split TCP/UDP
2377 		 * apart from IP or options?  If so, perhaps we should revisit
2378 		 * the spare_mp strategy.
2379 		 *
2380 		 * XXX should this be msgpullup(mp, hdr_len+4) ???
2381 		 */
2382 		if (spare_mp == NULL &&
2383 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2384 			freemsg(mp);
2385 			return (B_FALSE);
2386 		}
2387 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len];
2388 	} else {
2389 		ports = (uint16_t *)&mp->b_rptr[hdr_len];
2390 	}
2391 
2392 	if (nexthdr == check_proto) {
2393 		typecode = (uint8_t *)ports;
2394 		sel->ips_icmp_type = *typecode++;
2395 		sel->ips_icmp_code = *typecode;
2396 		sel->ips_remote_port = sel->ips_local_port = 0;
2397 		freemsg(spare_mp);	/* Always works, even if NULL */
2398 		return (B_TRUE);
2399 	}
2400 
2401 	sel->ips_local_port = *ports++;
2402 	sel->ips_remote_port = *ports;
2403 	freemsg(spare_mp);	/* Always works, even if NULL */
2404 	return (B_TRUE);
2405 }
2406 
2407 /*
2408  * Create an ipsec_action_t based on the way an inbound packet was protected.
2409  * Used to reflect traffic back to a sender.
2410  *
2411  * We don't bother interning the action into the hash table.
2412  */
2413 ipsec_action_t *
2414 ipsec_in_to_out_action(ipsec_in_t *ii)
2415 {
2416 	ipsa_t *ah_assoc, *esp_assoc;
2417 	uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2418 	ipsec_action_t *ap;
2419 	boolean_t unique;
2420 
2421 	ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2422 
2423 	if (ap == NULL)
2424 		return (NULL);
2425 
2426 	bzero(ap, sizeof (*ap));
2427 	HASH_NULL(ap, ipa_hash);
2428 	ap->ipa_next = NULL;
2429 	ap->ipa_refs = 1;
2430 
2431 	/*
2432 	 * Get the algorithms that were used for this packet.
2433 	 */
2434 	ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2435 	ap->ipa_act.ipa_log = 0;
2436 	ah_assoc = ii->ipsec_in_ah_sa;
2437 	ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
2438 
2439 	esp_assoc = ii->ipsec_in_esp_sa;
2440 	ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
2441 
2442 	if (esp_assoc != NULL) {
2443 		encr_alg = esp_assoc->ipsa_encr_alg;
2444 		espa_alg = esp_assoc->ipsa_auth_alg;
2445 		ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
2446 	}
2447 	if (ah_assoc != NULL)
2448 		auth_alg = ah_assoc->ipsa_auth_alg;
2449 
2450 	ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
2451 	ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
2452 	ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
2453 	ap->ipa_act.ipa_apply.ipp_use_se = ii->ipsec_in_decaps;
2454 	unique = B_FALSE;
2455 
2456 	if (esp_assoc != NULL) {
2457 		ap->ipa_act.ipa_apply.ipp_espa_minbits =
2458 		    esp_assoc->ipsa_authkeybits;
2459 		ap->ipa_act.ipa_apply.ipp_espa_maxbits =
2460 		    esp_assoc->ipsa_authkeybits;
2461 		ap->ipa_act.ipa_apply.ipp_espe_minbits =
2462 		    esp_assoc->ipsa_encrkeybits;
2463 		ap->ipa_act.ipa_apply.ipp_espe_maxbits =
2464 		    esp_assoc->ipsa_encrkeybits;
2465 		ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
2466 		ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
2467 		if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
2468 			unique = B_TRUE;
2469 	}
2470 	if (ah_assoc != NULL) {
2471 		ap->ipa_act.ipa_apply.ipp_ah_minbits =
2472 		    ah_assoc->ipsa_authkeybits;
2473 		ap->ipa_act.ipa_apply.ipp_ah_maxbits =
2474 		    ah_assoc->ipsa_authkeybits;
2475 		ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
2476 		ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
2477 		if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
2478 			unique = B_TRUE;
2479 	}
2480 	ap->ipa_act.ipa_apply.ipp_use_unique = unique;
2481 	ap->ipa_want_unique = unique;
2482 	ap->ipa_allow_clear = B_FALSE;
2483 	ap->ipa_want_se = ii->ipsec_in_decaps;
2484 	ap->ipa_want_ah = (ah_assoc != NULL);
2485 	ap->ipa_want_esp = (esp_assoc != NULL);
2486 
2487 	ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
2488 
2489 	ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
2490 
2491 	return (ap);
2492 }
2493 
2494 
2495 /*
2496  * Compute the worst-case amount of extra space required by an action.
2497  * Note that, because of the ESP considerations listed below, this is
2498  * actually not the same as the best-case reduction in the MTU; in the
2499  * future, we should pass additional information to this function to
2500  * allow the actual MTU impact to be computed.
2501  *
2502  * AH: Revisit this if we implement algorithms with
2503  * a verifier size of more than 12 bytes.
2504  *
2505  * ESP: A more exact but more messy computation would take into
2506  * account the interaction between the cipher block size and the
2507  * effective MTU, yielding the inner payload size which reflects a
2508  * packet with *minimum* ESP padding..
2509  */
2510 static int32_t
2511 ipsec_act_ovhd(const ipsec_act_t *act)
2512 {
2513 	int32_t overhead = 0;
2514 
2515 	if (act->ipa_type == IPSEC_ACT_APPLY) {
2516 		const ipsec_prot_t *ipp = &act->ipa_apply;
2517 
2518 		if (ipp->ipp_use_ah)
2519 			overhead += IPSEC_MAX_AH_HDR_SIZE;
2520 		if (ipp->ipp_use_esp) {
2521 			overhead += IPSEC_MAX_ESP_HDR_SIZE;
2522 			overhead += sizeof (struct udphdr);
2523 		}
2524 		if (ipp->ipp_use_se)
2525 			overhead += IP_SIMPLE_HDR_LENGTH;
2526 	}
2527 	return (overhead);
2528 }
2529 
2530 /*
2531  * This hash function is used only when creating policies and thus is not
2532  * performance-critical for packet flows.
2533  *
2534  * Future work: canonicalize the structures hashed with this (i.e.,
2535  * zeroize padding) so the hash works correctly.
2536  */
2537 /* ARGSUSED */
2538 static uint32_t
2539 policy_hash(int size, const void *start, const void *end)
2540 {
2541 	return (0);
2542 }
2543 
2544 
2545 /*
2546  * Hash function macros for each address type.
2547  *
2548  * The IPV6 hash function assumes that the low order 32-bits of the
2549  * address (typically containing the low order 24 bits of the mac
2550  * address) are reasonably well-distributed.  Revisit this if we run
2551  * into trouble from lots of collisions on ::1 addresses and the like
2552  * (seems unlikely).
2553  */
2554 #define	IPSEC_IPV4_HASH(a) ((a) % ipsec_spd_hashsize)
2555 #define	IPSEC_IPV6_HASH(a) ((a.s6_addr32[3]) % ipsec_spd_hashsize)
2556 
2557 /*
2558  * These two hash functions should produce coordinated values
2559  * but have slightly different roles.
2560  */
2561 static uint32_t
2562 selkey_hash(const ipsec_selkey_t *selkey)
2563 {
2564 	uint32_t valid = selkey->ipsl_valid;
2565 
2566 	if (!(valid & IPSL_REMOTE_ADDR))
2567 		return (IPSEC_SEL_NOHASH);
2568 
2569 	if (valid & IPSL_IPV4) {
2570 		if (selkey->ipsl_remote_pfxlen == 32)
2571 			return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4));
2572 	}
2573 	if (valid & IPSL_IPV6) {
2574 		if (selkey->ipsl_remote_pfxlen == 128)
2575 			return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6));
2576 	}
2577 	return (IPSEC_SEL_NOHASH);
2578 }
2579 
2580 static uint32_t
2581 selector_hash(ipsec_selector_t *sel)
2582 {
2583 	if (sel->ips_isv4) {
2584 		return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4));
2585 	}
2586 	return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6));
2587 }
2588 
2589 /*
2590  * Intern actions into the action hash table.
2591  */
2592 ipsec_action_t *
2593 ipsec_act_find(const ipsec_act_t *a, int n)
2594 {
2595 	int i;
2596 	uint32_t hval;
2597 	ipsec_action_t *ap;
2598 	ipsec_action_t *prev = NULL;
2599 	int32_t overhead, maxovhd = 0;
2600 	boolean_t allow_clear = B_FALSE;
2601 	boolean_t want_ah = B_FALSE;
2602 	boolean_t want_esp = B_FALSE;
2603 	boolean_t want_se = B_FALSE;
2604 	boolean_t want_unique = B_FALSE;
2605 
2606 	/*
2607 	 * TODO: should canonicalize a[] (i.e., zeroize any padding)
2608 	 * so we can use a non-trivial policy_hash function.
2609 	 */
2610 	for (i = n-1; i >= 0; i--) {
2611 		hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
2612 
2613 		HASH_LOCK(ipsec_action_hash, hval);
2614 
2615 		for (HASH_ITERATE(ap, ipa_hash, ipsec_action_hash, hval)) {
2616 			if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
2617 				continue;
2618 			if (ap->ipa_next != prev)
2619 				continue;
2620 			break;
2621 		}
2622 		if (ap != NULL) {
2623 			HASH_UNLOCK(ipsec_action_hash, hval);
2624 			prev = ap;
2625 			continue;
2626 		}
2627 		/*
2628 		 * need to allocate a new one..
2629 		 */
2630 		ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2631 		if (ap == NULL) {
2632 			HASH_UNLOCK(ipsec_action_hash, hval);
2633 			if (prev != NULL)
2634 				ipsec_action_free(prev);
2635 			return (NULL);
2636 		}
2637 		HASH_INSERT(ap, ipa_hash, ipsec_action_hash, hval);
2638 
2639 		ap->ipa_next = prev;
2640 		ap->ipa_act = a[i];
2641 
2642 		overhead = ipsec_act_ovhd(&a[i]);
2643 		if (maxovhd < overhead)
2644 			maxovhd = overhead;
2645 
2646 		if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
2647 		    (a[i].ipa_type == IPSEC_ACT_CLEAR))
2648 			allow_clear = B_TRUE;
2649 		if (a[i].ipa_type == IPSEC_ACT_APPLY) {
2650 			const ipsec_prot_t *ipp = &a[i].ipa_apply;
2651 
2652 			ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
2653 			want_ah |= ipp->ipp_use_ah;
2654 			want_esp |= ipp->ipp_use_esp;
2655 			want_se |= ipp->ipp_use_se;
2656 			want_unique |= ipp->ipp_use_unique;
2657 		}
2658 		ap->ipa_allow_clear = allow_clear;
2659 		ap->ipa_want_ah = want_ah;
2660 		ap->ipa_want_esp = want_esp;
2661 		ap->ipa_want_se = want_se;
2662 		ap->ipa_want_unique = want_unique;
2663 		ap->ipa_refs = 1; /* from the hash table */
2664 		ap->ipa_ovhd = maxovhd;
2665 		if (prev)
2666 			prev->ipa_refs++;
2667 		prev = ap;
2668 		HASH_UNLOCK(ipsec_action_hash, hval);
2669 	}
2670 
2671 	ap->ipa_refs++;		/* caller's reference */
2672 
2673 	return (ap);
2674 }
2675 
2676 /*
2677  * Called when refcount goes to 0, indicating that all references to this
2678  * node are gone.
2679  *
2680  * This does not unchain the action from the hash table.
2681  */
2682 void
2683 ipsec_action_free(ipsec_action_t *ap)
2684 {
2685 	for (;;) {
2686 		ipsec_action_t *np = ap->ipa_next;
2687 		ASSERT(ap->ipa_refs == 0);
2688 		ASSERT(ap->ipa_hash.hash_pp == NULL);
2689 		kmem_cache_free(ipsec_action_cache, ap);
2690 		ap = np;
2691 		/* Inlined IPACT_REFRELE -- avoid recursion */
2692 		if (ap == NULL)
2693 			break;
2694 		membar_exit();
2695 		if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0)
2696 			break;
2697 		/* End inlined IPACT_REFRELE */
2698 	}
2699 }
2700 
2701 /*
2702  * Periodically sweep action hash table for actions with refcount==1, and
2703  * nuke them.  We cannot do this "on demand" (i.e., from IPACT_REFRELE)
2704  * because we can't close the race between another thread finding the action
2705  * in the hash table without holding the bucket lock during IPACT_REFRELE.
2706  * Instead, we run this function sporadically to clean up after ourselves;
2707  * we also set it as the "reclaim" function for the action kmem_cache.
2708  *
2709  * Note that it may take several passes of ipsec_action_gc() to free all
2710  * "stale" actions.
2711  */
2712 /* ARGSUSED */
2713 static void
2714 ipsec_action_reclaim(void *dummy)
2715 {
2716 	int i;
2717 
2718 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
2719 		ipsec_action_t *ap, *np;
2720 
2721 		/* skip the lock if nobody home */
2722 		if (ipsec_action_hash[i].hash_head == NULL)
2723 			continue;
2724 
2725 		HASH_LOCK(ipsec_action_hash, i);
2726 		for (ap = ipsec_action_hash[i].hash_head;
2727 		    ap != NULL; ap = np) {
2728 			ASSERT(ap->ipa_refs > 0);
2729 			np = ap->ipa_hash.hash_next;
2730 			if (ap->ipa_refs > 1)
2731 				continue;
2732 			HASH_UNCHAIN(ap, ipa_hash, ipsec_action_hash, i);
2733 			IPACT_REFRELE(ap);
2734 		}
2735 		HASH_UNLOCK(ipsec_action_hash, i);
2736 	}
2737 }
2738 
2739 /*
2740  * Intern a selector set into the selector set hash table.
2741  * This is simpler than the actions case..
2742  */
2743 static ipsec_sel_t *
2744 ipsec_find_sel(ipsec_selkey_t *selkey)
2745 {
2746 	ipsec_sel_t *sp;
2747 	uint32_t hval, bucket;
2748 
2749 	/*
2750 	 * Exactly one AF bit should be set in selkey.
2751 	 */
2752 	ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
2753 	    !(selkey->ipsl_valid & IPSL_IPV6));
2754 
2755 	hval = selkey_hash(selkey);
2756 	selkey->ipsl_hval = hval;
2757 
2758 	bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
2759 
2760 	ASSERT(!HASH_LOCKED(ipsec_sel_hash, bucket));
2761 	HASH_LOCK(ipsec_sel_hash, bucket);
2762 
2763 	for (HASH_ITERATE(sp, ipsl_hash, ipsec_sel_hash, bucket)) {
2764 		if (bcmp(&sp->ipsl_key, selkey, sizeof (*selkey)) == 0)
2765 			break;
2766 	}
2767 	if (sp != NULL) {
2768 		sp->ipsl_refs++;
2769 
2770 		HASH_UNLOCK(ipsec_sel_hash, bucket);
2771 		return (sp);
2772 	}
2773 
2774 	sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
2775 	if (sp == NULL) {
2776 		HASH_UNLOCK(ipsec_sel_hash, bucket);
2777 		return (NULL);
2778 	}
2779 
2780 	HASH_INSERT(sp, ipsl_hash, ipsec_sel_hash, bucket);
2781 	sp->ipsl_refs = 2;	/* one for hash table, one for caller */
2782 	sp->ipsl_key = *selkey;
2783 
2784 	HASH_UNLOCK(ipsec_sel_hash, bucket);
2785 
2786 	return (sp);
2787 }
2788 
2789 static void
2790 ipsec_sel_rel(ipsec_sel_t **spp)
2791 {
2792 	ipsec_sel_t *sp = *spp;
2793 	int hval = sp->ipsl_key.ipsl_hval;
2794 	*spp = NULL;
2795 
2796 	if (hval == IPSEC_SEL_NOHASH)
2797 		hval = 0;
2798 
2799 	ASSERT(!HASH_LOCKED(ipsec_sel_hash, hval));
2800 	HASH_LOCK(ipsec_sel_hash, hval);
2801 	if (--sp->ipsl_refs == 1) {
2802 		HASH_UNCHAIN(sp, ipsl_hash, ipsec_sel_hash, hval);
2803 		sp->ipsl_refs--;
2804 		HASH_UNLOCK(ipsec_sel_hash, hval);
2805 		ASSERT(sp->ipsl_refs == 0);
2806 		kmem_cache_free(ipsec_sel_cache, sp);
2807 		/* Caller unlocks */
2808 		return;
2809 	}
2810 
2811 	HASH_UNLOCK(ipsec_sel_hash, hval);
2812 }
2813 
2814 /*
2815  * Free a policy rule which we know is no longer being referenced.
2816  */
2817 void
2818 ipsec_policy_free(ipsec_policy_t *ipp)
2819 {
2820 	ASSERT(ipp->ipsp_refs == 0);
2821 	ASSERT(ipp->ipsp_sel != NULL);
2822 	ASSERT(ipp->ipsp_act != NULL);
2823 	ipsec_sel_rel(&ipp->ipsp_sel);
2824 	IPACT_REFRELE(ipp->ipsp_act);
2825 	kmem_cache_free(ipsec_pol_cache, ipp);
2826 }
2827 
2828 /*
2829  * Construction of new policy rules; construct a policy, and add it to
2830  * the appropriate tables.
2831  */
2832 ipsec_policy_t *
2833 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
2834     int nacts, int prio)
2835 {
2836 	ipsec_action_t *ap;
2837 	ipsec_sel_t *sp;
2838 	ipsec_policy_t *ipp;
2839 
2840 	ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
2841 	ap = ipsec_act_find(a, nacts);
2842 	sp = ipsec_find_sel(keys);
2843 
2844 	if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
2845 		if (ap != NULL) {
2846 			IPACT_REFRELE(ap);
2847 		}
2848 		if (sp != NULL)
2849 			ipsec_sel_rel(&sp);
2850 		if (ipp != NULL)
2851 			kmem_cache_free(ipsec_pol_cache, ipp);
2852 		return (NULL);
2853 	}
2854 
2855 	HASH_NULL(ipp, ipsp_hash);
2856 
2857 	ipp->ipsp_refs = 1;	/* caller's reference */
2858 	ipp->ipsp_sel = sp;
2859 	ipp->ipsp_act = ap;
2860 	ipp->ipsp_prio = prio;	/* rule priority */
2861 	ipp->ipsp_index = ipsec_next_policy_index++;
2862 
2863 	return (ipp);
2864 }
2865 
2866 static void
2867 ipsec_update_present_flags()
2868 {
2869 	boolean_t hashpol = (avl_numnodes(&system_policy.iph_rulebyid) > 0);
2870 
2871 	if (hashpol) {
2872 		ipsec_outbound_v4_policy_present = B_TRUE;
2873 		ipsec_outbound_v6_policy_present = B_TRUE;
2874 		ipsec_inbound_v4_policy_present = B_TRUE;
2875 		ipsec_inbound_v6_policy_present = B_TRUE;
2876 		return;
2877 	}
2878 
2879 	ipsec_outbound_v4_policy_present = (NULL !=
2880 	    system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
2881 	    ipr_nonhash[IPSEC_AF_V4]);
2882 	ipsec_outbound_v6_policy_present = (NULL !=
2883 	    system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
2884 	    ipr_nonhash[IPSEC_AF_V6]);
2885 	ipsec_inbound_v4_policy_present = (NULL !=
2886 	    system_policy.iph_root[IPSEC_TYPE_INBOUND].
2887 	    ipr_nonhash[IPSEC_AF_V4]);
2888 	ipsec_inbound_v6_policy_present = (NULL !=
2889 	    system_policy.iph_root[IPSEC_TYPE_INBOUND].
2890 	    ipr_nonhash[IPSEC_AF_V6]);
2891 }
2892 
2893 boolean_t
2894 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir)
2895 {
2896 	ipsec_sel_t *sp;
2897 	ipsec_policy_t *ip, *nip, *head;
2898 	int af;
2899 	ipsec_policy_root_t *pr = &php->iph_root[dir];
2900 
2901 	sp = ipsec_find_sel(keys);
2902 
2903 	if (sp == NULL)
2904 		return (B_FALSE);
2905 
2906 	af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
2907 
2908 	rw_enter(&php->iph_lock, RW_WRITER);
2909 
2910 	if (keys->ipsl_hval == IPSEC_SEL_NOHASH) {
2911 		head = pr->ipr_nonhash[af];
2912 	} else {
2913 		head = pr->ipr_hash[keys->ipsl_hval].hash_head;
2914 	}
2915 
2916 	for (ip = head; ip != NULL; ip = nip) {
2917 		nip = ip->ipsp_hash.hash_next;
2918 		if (ip->ipsp_sel != sp) {
2919 			continue;
2920 		}
2921 
2922 		IPPOL_UNCHAIN(php, ip);
2923 
2924 		php->iph_gen++;
2925 		ipsec_update_present_flags();
2926 
2927 		rw_exit(&php->iph_lock);
2928 
2929 		ipsec_sel_rel(&sp);
2930 
2931 		return (B_TRUE);
2932 	}
2933 
2934 	rw_exit(&php->iph_lock);
2935 	ipsec_sel_rel(&sp);
2936 	return (B_FALSE);
2937 }
2938 
2939 int
2940 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index)
2941 {
2942 	boolean_t found = B_FALSE;
2943 	ipsec_policy_t ipkey;
2944 	ipsec_policy_t *ip;
2945 	avl_index_t where;
2946 
2947 	(void) memset(&ipkey, 0, sizeof (ipkey));
2948 	ipkey.ipsp_index = policy_index;
2949 
2950 	rw_enter(&php->iph_lock, RW_WRITER);
2951 
2952 	/*
2953 	 * We could be cleverer here about the walk.
2954 	 * but well, (k+1)*log(N) will do for now (k==number of matches,
2955 	 * N==number of table entries
2956 	 */
2957 	for (;;) {
2958 		ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
2959 		    (void *)&ipkey, &where);
2960 		ASSERT(ip == NULL);
2961 
2962 		ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
2963 
2964 		if (ip == NULL)
2965 			break;
2966 
2967 		if (ip->ipsp_index != policy_index) {
2968 			ASSERT(ip->ipsp_index > policy_index);
2969 			break;
2970 		}
2971 
2972 		IPPOL_UNCHAIN(php, ip);
2973 		found = B_TRUE;
2974 	}
2975 
2976 	if (found) {
2977 		php->iph_gen++;
2978 		ipsec_update_present_flags();
2979 	}
2980 
2981 	rw_exit(&php->iph_lock);
2982 
2983 	return (found ? 0 : ENOENT);
2984 }
2985 
2986 /*
2987  * Given a constructed ipsec_policy_t policy rule, see if it can be entered
2988  * into the correct policy ruleset.
2989  *
2990  * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
2991  * duplicate policy exists with exactly the same selectors), or an icmp
2992  * rule exists with a different encryption/authentication action.
2993  */
2994 boolean_t
2995 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
2996 {
2997 	ipsec_policy_root_t *pr = &php->iph_root[direction];
2998 	int af = -1;
2999 	ipsec_policy_t *p2, *head;
3000 	uint8_t check_proto;
3001 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3002 	uint32_t	valid = selkey->ipsl_valid;
3003 
3004 	if (valid & IPSL_IPV6) {
3005 		ASSERT(!(valid & IPSL_IPV4));
3006 		af = IPSEC_AF_V6;
3007 		check_proto = IPPROTO_ICMPV6;
3008 	} else {
3009 		ASSERT(valid & IPSL_IPV4);
3010 		af = IPSEC_AF_V4;
3011 		check_proto = IPPROTO_ICMP;
3012 	}
3013 
3014 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3015 
3016 	/*
3017 	 * Double-check that we don't have any duplicate selectors here.
3018 	 * Because selectors are interned below, we need only compare pointers
3019 	 * for equality.
3020 	 */
3021 	if (selkey->ipsl_hval == IPSEC_SEL_NOHASH) {
3022 		head = pr->ipr_nonhash[af];
3023 	} else {
3024 		head = pr->ipr_hash[selkey->ipsl_hval].hash_head;
3025 	}
3026 
3027 	for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3028 		if (p2->ipsp_sel == ipp->ipsp_sel)
3029 			return (B_FALSE);
3030 	}
3031 
3032 	/*
3033 	 * If it's ICMP and not a drop or pass rule, run through the ICMP
3034 	 * rules and make sure the action is either new or the same as any
3035 	 * other actions.  We don't have to check the full chain because
3036 	 * discard and bypass will override all other actions
3037 	 */
3038 
3039 	if (valid & IPSL_PROTOCOL &&
3040 	    selkey->ipsl_proto == check_proto &&
3041 	    (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3042 
3043 		for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3044 
3045 			if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3046 			    p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3047 			    (p2->ipsp_act->ipa_act.ipa_type ==
3048 				IPSEC_ACT_APPLY)) {
3049 				return (ipsec_compare_action(p2, ipp));
3050 			}
3051 		}
3052 	}
3053 
3054 	return (B_TRUE);
3055 }
3056 
3057 /*
3058  * compare the action chains of two policies for equality
3059  * B_TRUE -> effective equality
3060  */
3061 
3062 static boolean_t
3063 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3064 {
3065 
3066 	ipsec_action_t *act1, *act2;
3067 
3068 	/* We have a valid rule. Let's compare the actions */
3069 	if (p1->ipsp_act == p2->ipsp_act) {
3070 		/* same action. We are good */
3071 		return (B_TRUE);
3072 	}
3073 
3074 	/* we have to walk the chain */
3075 
3076 	act1 = p1->ipsp_act;
3077 	act2 = p2->ipsp_act;
3078 
3079 	while (act1 != NULL && act2 != NULL) {
3080 
3081 		/* otherwise, Are we close enough? */
3082 		if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3083 		    act1->ipa_want_ah != act2->ipa_want_ah ||
3084 		    act1->ipa_want_esp != act2->ipa_want_esp ||
3085 		    act1->ipa_want_se != act2->ipa_want_se) {
3086 			/* Nope, we aren't */
3087 			return (B_FALSE);
3088 		}
3089 
3090 		if (act1->ipa_want_ah) {
3091 			if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3092 			    act2->ipa_act.ipa_apply.ipp_auth_alg) {
3093 				return (B_FALSE);
3094 			}
3095 
3096 			if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3097 			    act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3098 			    act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3099 			    act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3100 				return (B_FALSE);
3101 			}
3102 		}
3103 
3104 		if (act1->ipa_want_esp) {
3105 			if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3106 			    act2->ipa_act.ipa_apply.ipp_use_esp ||
3107 			    act1->ipa_act.ipa_apply.ipp_use_espa !=
3108 			    act2->ipa_act.ipa_apply.ipp_use_espa) {
3109 				return (B_FALSE);
3110 			}
3111 
3112 			if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3113 				if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3114 				    act2->ipa_act.ipa_apply.ipp_encr_alg) {
3115 					return (B_FALSE);
3116 				}
3117 
3118 				if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3119 				    act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3120 				    act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3121 				    act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3122 					return (B_FALSE);
3123 				}
3124 			}
3125 
3126 			if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3127 				if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3128 				    act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3129 					return (B_FALSE);
3130 				}
3131 
3132 				if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3133 				    act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3134 				    act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3135 				    act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3136 					return (B_FALSE);
3137 				}
3138 			}
3139 
3140 		}
3141 
3142 		act1 = act1->ipa_next;
3143 		act2 = act2->ipa_next;
3144 	}
3145 
3146 	if (act1 != NULL || act2 != NULL) {
3147 		return (B_FALSE);
3148 	}
3149 
3150 	return (B_TRUE);
3151 }
3152 
3153 
3154 /*
3155  * Given a constructed ipsec_policy_t policy rule, enter it into
3156  * the correct policy ruleset.
3157  *
3158  * ipsec_check_policy() is assumed to have succeeded first (to check for
3159  * duplicates).
3160  */
3161 void
3162 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3163 {
3164 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3165 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3166 	uint32_t valid = selkey->ipsl_valid;
3167 	uint32_t hval = selkey->ipsl_hval;
3168 	int af = -1;
3169 
3170 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3171 
3172 	if (valid & IPSL_IPV6) {
3173 		ASSERT(!(valid & IPSL_IPV4));
3174 		af = IPSEC_AF_V6;
3175 	} else {
3176 		ASSERT(valid & IPSL_IPV4);
3177 		af = IPSEC_AF_V4;
3178 	}
3179 
3180 	php->iph_gen++;
3181 
3182 	if (hval == IPSEC_SEL_NOHASH) {
3183 		HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3184 	} else {
3185 		HASH_LOCK(pr->ipr_hash, hval);
3186 		HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3187 		HASH_UNLOCK(pr->ipr_hash, hval);
3188 	}
3189 
3190 	ipsec_insert_always(&php->iph_rulebyid, ipp);
3191 
3192 	ipsec_update_present_flags();
3193 }
3194 
3195 static void
3196 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr)
3197 {
3198 	ipsec_policy_t *ip, *nip;
3199 
3200 	int af, chain, nchain;
3201 
3202 	for (af = 0; af < IPSEC_NAF; af++) {
3203 		for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3204 			nip = ip->ipsp_hash.hash_next;
3205 			IPPOL_UNCHAIN(php, ip);
3206 		}
3207 		ipr->ipr_nonhash[af] = NULL;
3208 	}
3209 	nchain = ipr->ipr_nchains;
3210 
3211 	for (chain = 0; chain < nchain; chain++) {
3212 		for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3213 		    ip = nip) {
3214 			nip = ip->ipsp_hash.hash_next;
3215 			IPPOL_UNCHAIN(php, ip);
3216 		}
3217 		ipr->ipr_hash[chain].hash_head = NULL;
3218 	}
3219 }
3220 
3221 
3222 void
3223 ipsec_polhead_flush(ipsec_policy_head_t *php)
3224 {
3225 	int dir;
3226 
3227 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3228 
3229 	for (dir = 0; dir < IPSEC_NTYPES; dir++)
3230 		ipsec_ipr_flush(php, &php->iph_root[dir]);
3231 
3232 	ipsec_update_present_flags();
3233 }
3234 
3235 void
3236 ipsec_polhead_free(ipsec_policy_head_t *php)
3237 {
3238 	ASSERT(php->iph_refs == 0);
3239 	rw_enter(&php->iph_lock, RW_WRITER);
3240 	ipsec_polhead_flush(php);
3241 	rw_exit(&php->iph_lock);
3242 	rw_destroy(&php->iph_lock);
3243 	kmem_free(php, sizeof (*php));
3244 }
3245 
3246 static void
3247 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3248 {
3249 	int af;
3250 
3251 	ipr->ipr_nchains = 0;
3252 	ipr->ipr_hash = NULL;
3253 
3254 	for (af = 0; af < IPSEC_NAF; af++) {
3255 		ipr->ipr_nonhash[af] = NULL;
3256 	}
3257 }
3258 
3259 extern ipsec_policy_head_t *
3260 ipsec_polhead_create(void)
3261 {
3262 	ipsec_policy_head_t *php;
3263 
3264 	php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3265 	if (php == NULL)
3266 		return (php);
3267 
3268 	rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3269 	php->iph_refs = 1;
3270 	php->iph_gen = 0;
3271 
3272 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3273 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3274 
3275 	avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3276 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3277 
3278 	return (php);
3279 }
3280 
3281 /*
3282  * Clone the policy head into a new polhead; release one reference to the
3283  * old one and return the only reference to the new one.
3284  * If the old one had a refcount of 1, just return it.
3285  */
3286 extern ipsec_policy_head_t *
3287 ipsec_polhead_split(ipsec_policy_head_t *php)
3288 {
3289 	ipsec_policy_head_t *nphp;
3290 
3291 	if (php == NULL)
3292 		return (ipsec_polhead_create());
3293 	else if (php->iph_refs == 1)
3294 		return (php);
3295 
3296 	nphp = ipsec_polhead_create();
3297 	if (nphp == NULL)
3298 		return (NULL);
3299 
3300 	if (ipsec_copy_polhead(php, nphp) != 0) {
3301 		ipsec_polhead_free(nphp);
3302 		return (NULL);
3303 	}
3304 	IPPH_REFRELE(php);
3305 	return (nphp);
3306 }
3307 
3308 /*
3309  * When sending a response to a ICMP request or generating a RST
3310  * in the TCP case, the outbound packets need to go at the same level
3311  * of protection as the incoming ones i.e we associate our outbound
3312  * policy with how the packet came in. We call this after we have
3313  * accepted the incoming packet which may or may not have been in
3314  * clear and hence we are sending the reply back with the policy
3315  * matching the incoming datagram's policy.
3316  *
3317  * NOTE : This technology serves two purposes :
3318  *
3319  * 1) If we have multiple outbound policies, we send out a reply
3320  *    matching with how it came in rather than matching the outbound
3321  *    policy.
3322  *
3323  * 2) For assymetric policies, we want to make sure that incoming
3324  *    and outgoing has the same level of protection. Assymetric
3325  *    policies exist only with global policy where we may not have
3326  *    both outbound and inbound at the same time.
3327  *
3328  * NOTE2:	This function is called by cleartext cases, so it needs to be
3329  *		in IP proper.
3330  */
3331 boolean_t
3332 ipsec_in_to_out(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h)
3333 {
3334 	ipsec_in_t  *ii;
3335 	ipsec_out_t  *io;
3336 	boolean_t v4;
3337 	mblk_t *mp;
3338 	boolean_t secure, attach_if;
3339 	uint_t ifindex;
3340 	ipsec_selector_t sel;
3341 	ipsec_action_t *reflect_action = NULL;
3342 	zoneid_t zoneid;
3343 
3344 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
3345 
3346 	bzero((void*)&sel, sizeof (sel));
3347 
3348 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
3349 
3350 	mp = ipsec_mp->b_cont;
3351 	ASSERT(mp != NULL);
3352 
3353 	if (ii->ipsec_in_action != NULL) {
3354 		/* transfer reference.. */
3355 		reflect_action = ii->ipsec_in_action;
3356 		ii->ipsec_in_action = NULL;
3357 	} else if (!ii->ipsec_in_loopback)
3358 		reflect_action = ipsec_in_to_out_action(ii);
3359 	secure = ii->ipsec_in_secure;
3360 	attach_if = ii->ipsec_in_attach_if;
3361 	ifindex = ii->ipsec_in_ill_index;
3362 	zoneid = ii->ipsec_in_zoneid;
3363 	v4 = ii->ipsec_in_v4;
3364 
3365 	ipsec_in_release_refs(ii);
3366 
3367 	/*
3368 	 * The caller is going to send the datagram out which might
3369 	 * go on the wire or delivered locally through ip_wput_local.
3370 	 *
3371 	 * 1) If it goes out on the wire, new associations will be
3372 	 *    obtained.
3373 	 * 2) If it is delivered locally, ip_wput_local will convert
3374 	 *    this IPSEC_OUT to a IPSEC_IN looking at the requests.
3375 	 */
3376 
3377 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
3378 	bzero(io, sizeof (ipsec_out_t));
3379 	io->ipsec_out_type = IPSEC_OUT;
3380 	io->ipsec_out_len = sizeof (ipsec_out_t);
3381 	io->ipsec_out_frtn.free_func = ipsec_out_free;
3382 	io->ipsec_out_frtn.free_arg = (char *)io;
3383 	io->ipsec_out_act = reflect_action;
3384 
3385 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h))
3386 		return (B_FALSE);
3387 
3388 	io->ipsec_out_src_port = sel.ips_local_port;
3389 	io->ipsec_out_dst_port = sel.ips_remote_port;
3390 	io->ipsec_out_proto = sel.ips_protocol;
3391 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
3392 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
3393 
3394 	/*
3395 	 * Don't use global policy for this, as we want
3396 	 * to use the same protection that was applied to the inbound packet.
3397 	 */
3398 	io->ipsec_out_use_global_policy = B_FALSE;
3399 	io->ipsec_out_proc_begin = B_FALSE;
3400 	io->ipsec_out_secure = secure;
3401 	io->ipsec_out_v4 = v4;
3402 	io->ipsec_out_attach_if = attach_if;
3403 	io->ipsec_out_ill_index = ifindex;
3404 	io->ipsec_out_zoneid = zoneid;
3405 	return (B_TRUE);
3406 }
3407 
3408 mblk_t *
3409 ipsec_in_tag(mblk_t *mp, mblk_t *cont)
3410 {
3411 	ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
3412 	ipsec_in_t *nii;
3413 	mblk_t *nmp;
3414 	frtn_t nfrtn;
3415 
3416 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
3417 	ASSERT(ii->ipsec_in_len == sizeof (ipsec_in_t));
3418 
3419 	nmp = ipsec_in_alloc(ii->ipsec_in_v4);
3420 
3421 	ASSERT(nmp->b_datap->db_type == M_CTL);
3422 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
3423 
3424 	/*
3425 	 * Bump refcounts.
3426 	 */
3427 	if (ii->ipsec_in_ah_sa != NULL)
3428 		IPSA_REFHOLD(ii->ipsec_in_ah_sa);
3429 	if (ii->ipsec_in_esp_sa != NULL)
3430 		IPSA_REFHOLD(ii->ipsec_in_esp_sa);
3431 	if (ii->ipsec_in_policy != NULL)
3432 		IPPH_REFHOLD(ii->ipsec_in_policy);
3433 
3434 	/*
3435 	 * Copy everything, but preserve the free routine provided by
3436 	 * ipsec_in_alloc().
3437 	 */
3438 	nii = (ipsec_in_t *)nmp->b_rptr;
3439 	nfrtn = nii->ipsec_in_frtn;
3440 	bcopy(ii, nii, sizeof (*ii));
3441 	nii->ipsec_in_frtn = nfrtn;
3442 
3443 	nmp->b_cont = cont;
3444 
3445 	return (nmp);
3446 }
3447 
3448 mblk_t *
3449 ipsec_out_tag(mblk_t *mp, mblk_t *cont)
3450 {
3451 	ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr;
3452 	ipsec_out_t *nio;
3453 	mblk_t *nmp;
3454 	frtn_t nfrtn;
3455 
3456 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
3457 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
3458 
3459 	nmp = ipsec_alloc_ipsec_out();
3460 	if (nmp == NULL) {
3461 		freemsg(cont);	/* XXX ip_drop_packet() ? */
3462 		return (NULL);
3463 	}
3464 	ASSERT(nmp->b_datap->db_type == M_CTL);
3465 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
3466 
3467 	/*
3468 	 * Bump refcounts.
3469 	 */
3470 	if (io->ipsec_out_ah_sa != NULL)
3471 		IPSA_REFHOLD(io->ipsec_out_ah_sa);
3472 	if (io->ipsec_out_esp_sa != NULL)
3473 		IPSA_REFHOLD(io->ipsec_out_esp_sa);
3474 	if (io->ipsec_out_polhead != NULL)
3475 		IPPH_REFHOLD(io->ipsec_out_polhead);
3476 	if (io->ipsec_out_policy != NULL)
3477 		IPPOL_REFHOLD(io->ipsec_out_policy);
3478 	if (io->ipsec_out_act != NULL)
3479 		IPACT_REFHOLD(io->ipsec_out_act);
3480 	if (io->ipsec_out_latch != NULL)
3481 		IPLATCH_REFHOLD(io->ipsec_out_latch);
3482 	if (io->ipsec_out_cred != NULL)
3483 		crhold(io->ipsec_out_cred);
3484 
3485 	/*
3486 	 * Copy everything, but preserve the free routine provided by
3487 	 * ipsec_alloc_ipsec_out().
3488 	 */
3489 	nio = (ipsec_out_t *)nmp->b_rptr;
3490 	nfrtn = nio->ipsec_out_frtn;
3491 	bcopy(io, nio, sizeof (*io));
3492 	nio->ipsec_out_frtn = nfrtn;
3493 
3494 	nmp->b_cont = cont;
3495 
3496 	return (nmp);
3497 }
3498 
3499 static void
3500 ipsec_out_release_refs(ipsec_out_t *io)
3501 {
3502 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
3503 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
3504 
3505 	/* Note: IPSA_REFRELE is multi-line macro */
3506 	if (io->ipsec_out_ah_sa != NULL)
3507 		IPSA_REFRELE(io->ipsec_out_ah_sa);
3508 	if (io->ipsec_out_esp_sa != NULL)
3509 		IPSA_REFRELE(io->ipsec_out_esp_sa);
3510 	if (io->ipsec_out_polhead != NULL)
3511 		IPPH_REFRELE(io->ipsec_out_polhead);
3512 	if (io->ipsec_out_policy != NULL)
3513 		IPPOL_REFRELE(io->ipsec_out_policy);
3514 	if (io->ipsec_out_act != NULL)
3515 		IPACT_REFRELE(io->ipsec_out_act);
3516 	if (io->ipsec_out_cred != NULL) {
3517 		crfree(io->ipsec_out_cred);
3518 		io->ipsec_out_cred = NULL;
3519 	}
3520 	if (io->ipsec_out_latch) {
3521 		IPLATCH_REFRELE(io->ipsec_out_latch);
3522 		io->ipsec_out_latch = NULL;
3523 	}
3524 }
3525 
3526 static void
3527 ipsec_out_free(void *arg)
3528 {
3529 	ipsec_out_t *io = (ipsec_out_t *)arg;
3530 	ipsec_out_release_refs(io);
3531 	kmem_cache_free(ipsec_info_cache, arg);
3532 }
3533 
3534 static void
3535 ipsec_in_release_refs(ipsec_in_t *ii)
3536 {
3537 	/* Note: IPSA_REFRELE is multi-line macro */
3538 	if (ii->ipsec_in_ah_sa != NULL)
3539 		IPSA_REFRELE(ii->ipsec_in_ah_sa);
3540 	if (ii->ipsec_in_esp_sa != NULL)
3541 		IPSA_REFRELE(ii->ipsec_in_esp_sa);
3542 	if (ii->ipsec_in_policy != NULL)
3543 		IPPH_REFRELE(ii->ipsec_in_policy);
3544 	if (ii->ipsec_in_da != NULL) {
3545 		freeb(ii->ipsec_in_da);
3546 		ii->ipsec_in_da = NULL;
3547 	}
3548 }
3549 
3550 static void
3551 ipsec_in_free(void *arg)
3552 {
3553 	ipsec_in_t *ii = (ipsec_in_t *)arg;
3554 	ipsec_in_release_refs(ii);
3555 	kmem_cache_free(ipsec_info_cache, arg);
3556 }
3557 
3558 /*
3559  * This is called only for outbound datagrams if the datagram needs to
3560  * go out secure.  A NULL mp can be passed to get an ipsec_out. This
3561  * facility is used by ip_unbind.
3562  *
3563  * NOTE : o As the data part could be modified by ipsec_out_process etc.
3564  *	    we can't make it fast by calling a dup.
3565  */
3566 mblk_t *
3567 ipsec_alloc_ipsec_out()
3568 {
3569 	mblk_t *ipsec_mp;
3570 
3571 	ipsec_out_t *io = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
3572 
3573 	if (io == NULL)
3574 		return (NULL);
3575 
3576 	bzero(io, sizeof (ipsec_out_t));
3577 
3578 	io->ipsec_out_type = IPSEC_OUT;
3579 	io->ipsec_out_len = sizeof (ipsec_out_t);
3580 	io->ipsec_out_frtn.free_func = ipsec_out_free;
3581 	io->ipsec_out_frtn.free_arg = (char *)io;
3582 
3583 	/*
3584 	 * Set the zoneid to ALL_ZONES which is used as an invalid value. Code
3585 	 * using ipsec_out_zoneid should assert that the zoneid has been set to
3586 	 * a sane value.
3587 	 */
3588 	io->ipsec_out_zoneid = ALL_ZONES;
3589 
3590 	ipsec_mp = desballoc((uint8_t *)io, sizeof (ipsec_info_t), BPRI_HI,
3591 	    &io->ipsec_out_frtn);
3592 	if (ipsec_mp == NULL) {
3593 		ipsec_out_free(io);
3594 
3595 		return (NULL);
3596 	}
3597 	ipsec_mp->b_datap->db_type = M_CTL;
3598 	ipsec_mp->b_wptr = ipsec_mp->b_rptr + sizeof (ipsec_info_t);
3599 
3600 	return (ipsec_mp);
3601 }
3602 
3603 /*
3604  * Attach an IPSEC_OUT; use pol for policy if it is non-null.
3605  * Otherwise initialize using conn.
3606  *
3607  * If pol is non-null, we consume a reference to it.
3608  */
3609 mblk_t *
3610 ipsec_attach_ipsec_out(mblk_t *mp, conn_t *connp, ipsec_policy_t *pol,
3611     uint8_t proto)
3612 {
3613 	mblk_t *ipsec_mp;
3614 
3615 	ASSERT((pol != NULL) || (connp != NULL));
3616 
3617 	ipsec_mp = ipsec_alloc_ipsec_out();
3618 	if (ipsec_mp == NULL) {
3619 		(void) mi_strlog(CONNP_TO_WQ(connp), 0, SL_ERROR|SL_NOTE,
3620 		    "ipsec_attach_ipsec_out: Allocation failure\n");
3621 		BUMP_MIB(&ip_mib, ipOutDiscards);
3622 		ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_spd_nomem,
3623 		    &spd_dropper);
3624 		return (NULL);
3625 	}
3626 	ipsec_mp->b_cont = mp;
3627 	return (ipsec_init_ipsec_out(ipsec_mp, connp, pol, proto));
3628 }
3629 
3630 /*
3631  * Initialize the IPSEC_OUT (ipsec_mp) using pol if it is non-null.
3632  * Otherwise initialize using conn.
3633  *
3634  * If pol is non-null, we consume a reference to it.
3635  */
3636 mblk_t *
3637 ipsec_init_ipsec_out(mblk_t *ipsec_mp, conn_t *connp, ipsec_policy_t *pol,
3638     uint8_t proto)
3639 {
3640 	mblk_t *mp;
3641 	ipsec_out_t *io;
3642 	ipsec_policy_t *p;
3643 	ipha_t *ipha;
3644 	ip6_t *ip6h;
3645 
3646 	ASSERT((pol != NULL) || (connp != NULL));
3647 
3648 	/*
3649 	 * If mp is NULL, we won't/should not be using it.
3650 	 */
3651 	mp = ipsec_mp->b_cont;
3652 
3653 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
3654 	ASSERT(ipsec_mp->b_wptr == (ipsec_mp->b_rptr + sizeof (ipsec_info_t)));
3655 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
3656 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
3657 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
3658 	io->ipsec_out_latch = NULL;
3659 	/*
3660 	 * Set the zoneid when we have the connp.
3661 	 * Otherwise, we're called from ip_wput_attach_policy() who will take
3662 	 * care of setting the zoneid.
3663 	 */
3664 	if (connp != NULL)
3665 		io->ipsec_out_zoneid = connp->conn_zoneid;
3666 
3667 	if (mp != NULL) {
3668 		ipha = (ipha_t *)mp->b_rptr;
3669 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
3670 			io->ipsec_out_v4 = B_TRUE;
3671 			ip6h = NULL;
3672 		} else {
3673 			io->ipsec_out_v4 = B_FALSE;
3674 			ip6h = (ip6_t *)ipha;
3675 			ipha = NULL;
3676 		}
3677 	} else {
3678 		ASSERT(connp != NULL && connp->conn_policy_cached);
3679 		ip6h = NULL;
3680 		ipha = NULL;
3681 		io->ipsec_out_v4 = !connp->conn_pkt_isv6;
3682 	}
3683 
3684 	p = NULL;
3685 
3686 	/*
3687 	 * Take latched policies over global policy.  Check here again for
3688 	 * this, in case we had conn_latch set while the packet was flying
3689 	 * around in IP.
3690 	 */
3691 	if (connp != NULL && connp->conn_latch != NULL) {
3692 		p = connp->conn_latch->ipl_out_policy;
3693 		io->ipsec_out_latch = connp->conn_latch;
3694 		IPLATCH_REFHOLD(connp->conn_latch);
3695 		if (p != NULL) {
3696 			IPPOL_REFHOLD(p);
3697 		}
3698 		io->ipsec_out_src_port = connp->conn_lport;
3699 		io->ipsec_out_dst_port = connp->conn_fport;
3700 		io->ipsec_out_icmp_type = io->ipsec_out_icmp_code = 0;
3701 		if (pol != NULL)
3702 			IPPOL_REFRELE(pol);
3703 	} else if (pol != NULL) {
3704 		ipsec_selector_t sel;
3705 
3706 		bzero((void*)&sel, sizeof (sel));
3707 
3708 		p = pol;
3709 		/*
3710 		 * conn does not have the port information. Get
3711 		 * it from the packet.
3712 		 */
3713 
3714 		if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h)) {
3715 			/* XXX any cleanup required here?? */
3716 			return (NULL);
3717 		}
3718 		io->ipsec_out_src_port = sel.ips_local_port;
3719 		io->ipsec_out_dst_port = sel.ips_remote_port;
3720 		io->ipsec_out_icmp_type = sel.ips_icmp_type;
3721 		io->ipsec_out_icmp_code = sel.ips_icmp_code;
3722 	}
3723 
3724 	io->ipsec_out_proto = proto;
3725 	io->ipsec_out_use_global_policy = B_TRUE;
3726 	io->ipsec_out_secure = (p != NULL);
3727 	io->ipsec_out_policy = p;
3728 
3729 	if (p == NULL) {
3730 		if (connp->conn_policy != NULL) {
3731 			io->ipsec_out_secure = B_TRUE;
3732 			ASSERT(io->ipsec_out_latch == NULL);
3733 			ASSERT(io->ipsec_out_use_global_policy == B_TRUE);
3734 			io->ipsec_out_need_policy = B_TRUE;
3735 			ASSERT(io->ipsec_out_polhead == NULL);
3736 			IPPH_REFHOLD(connp->conn_policy);
3737 			io->ipsec_out_polhead = connp->conn_policy;
3738 		}
3739 	}
3740 	return (ipsec_mp);
3741 }
3742 
3743 /*
3744  * Allocate an IPSEC_IN mblk.  This will be prepended to an inbound datagram
3745  * and keep track of what-if-any IPsec processing will be applied to the
3746  * datagram.
3747  */
3748 mblk_t *
3749 ipsec_in_alloc(boolean_t isv4)
3750 {
3751 	mblk_t *ipsec_in;
3752 	ipsec_in_t *ii = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
3753 
3754 	if (ii == NULL)
3755 		return (NULL);
3756 
3757 	bzero(ii, sizeof (ipsec_info_t));
3758 	ii->ipsec_in_type = IPSEC_IN;
3759 	ii->ipsec_in_len = sizeof (ipsec_in_t);
3760 
3761 	ii->ipsec_in_v4 = isv4;
3762 	ii->ipsec_in_secure = B_TRUE;
3763 
3764 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
3765 	ii->ipsec_in_frtn.free_arg = (char *)ii;
3766 
3767 	ipsec_in = desballoc((uint8_t *)ii, sizeof (ipsec_info_t), BPRI_HI,
3768 	    &ii->ipsec_in_frtn);
3769 	if (ipsec_in == NULL) {
3770 		ip1dbg(("ipsec_in_alloc: IPSEC_IN allocation failure.\n"));
3771 		ipsec_in_free(ii);
3772 		return (NULL);
3773 	}
3774 
3775 	ipsec_in->b_datap->db_type = M_CTL;
3776 	ipsec_in->b_wptr += sizeof (ipsec_info_t);
3777 
3778 	return (ipsec_in);
3779 }
3780 
3781 /*
3782  * This is called from ip_wput_local when a packet which needs
3783  * security is looped back, to convert the IPSEC_OUT to a IPSEC_IN
3784  * before fanout, where the policy check happens.  In most of the
3785  * cases, IPSEC processing has *never* been done.  There is one case
3786  * (ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed) where
3787  * the packet is destined for localhost, IPSEC processing has already
3788  * been done.
3789  *
3790  * Future: This could happen after SA selection has occurred for
3791  * outbound.. which will tell us who the src and dst identities are..
3792  * Then it's just a matter of splicing the ah/esp SA pointers from the
3793  * ipsec_out_t to the ipsec_in_t.
3794  */
3795 void
3796 ipsec_out_to_in(mblk_t *ipsec_mp)
3797 {
3798 	ipsec_in_t  *ii;
3799 	ipsec_out_t *io;
3800 	ipsec_policy_t *pol;
3801 	ipsec_action_t *act;
3802 	boolean_t v4, icmp_loopback;
3803 
3804 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
3805 
3806 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
3807 
3808 	v4 = io->ipsec_out_v4;
3809 	icmp_loopback = io->ipsec_out_icmp_loopback;
3810 
3811 	act = io->ipsec_out_act;
3812 	if (act == NULL) {
3813 		pol = io->ipsec_out_policy;
3814 		if (pol != NULL) {
3815 			act = pol->ipsp_act;
3816 			IPACT_REFHOLD(act);
3817 		}
3818 	}
3819 	io->ipsec_out_act = NULL;
3820 
3821 	ipsec_out_release_refs(io);
3822 
3823 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
3824 	bzero(ii, sizeof (ipsec_in_t));
3825 	ii->ipsec_in_type = IPSEC_IN;
3826 	ii->ipsec_in_len = sizeof (ipsec_in_t);
3827 	ii->ipsec_in_loopback = B_TRUE;
3828 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
3829 	ii->ipsec_in_frtn.free_arg = (char *)ii;
3830 	ii->ipsec_in_action = act;
3831 
3832 	/*
3833 	 * In most of the cases, we can't look at the ipsec_out_XXX_sa
3834 	 * because this never went through IPSEC processing. So, look at
3835 	 * the requests and infer whether it would have gone through
3836 	 * IPSEC processing or not. Initialize the "done" fields with
3837 	 * the requests. The possible values for "done" fields are :
3838 	 *
3839 	 * 1) zero, indicates that a particular preference was never
3840 	 *    requested.
3841 	 * 2) non-zero, indicates that it could be IPSEC_PREF_REQUIRED/
3842 	 *    IPSEC_PREF_NEVER. If IPSEC_REQ_DONE is set, it means that
3843 	 *    IPSEC processing has been completed.
3844 	 */
3845 	ii->ipsec_in_secure = B_TRUE;
3846 	ii->ipsec_in_v4 = v4;
3847 	ii->ipsec_in_icmp_loopback = icmp_loopback;
3848 	ii->ipsec_in_attach_if = B_FALSE;
3849 }
3850 
3851 /*
3852  * Consults global policy to see whether this datagram should
3853  * go out secure. If so it attaches a ipsec_mp in front and
3854  * returns.
3855  */
3856 mblk_t *
3857 ip_wput_attach_policy(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire,
3858     conn_t *connp, boolean_t unspec_src)
3859 {
3860 	mblk_t *mp;
3861 	ipsec_out_t *io = NULL;
3862 	ipsec_selector_t sel;
3863 	uint_t	ill_index;
3864 	boolean_t conn_dontroutex;
3865 	boolean_t conn_multicast_loopx;
3866 	boolean_t policy_present;
3867 
3868 	ASSERT((ipha != NULL && ip6h == NULL) ||
3869 	    (ip6h != NULL && ipha == NULL));
3870 
3871 	bzero((void*)&sel, sizeof (sel));
3872 
3873 	if (ipha != NULL)
3874 		policy_present = ipsec_outbound_v4_policy_present;
3875 	else
3876 		policy_present = ipsec_outbound_v6_policy_present;
3877 	/*
3878 	 * Fast Path to see if there is any policy.
3879 	 */
3880 	if (!policy_present) {
3881 		if (ipsec_mp->b_datap->db_type == M_CTL) {
3882 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
3883 			if (!io->ipsec_out_secure) {
3884 				/*
3885 				 * If there is no global policy and ip_wput
3886 				 * or ip_wput_multicast has attached this mp
3887 				 * for multicast case, free the ipsec_mp and
3888 				 * return the original mp.
3889 				 */
3890 				mp = ipsec_mp->b_cont;
3891 				freeb(ipsec_mp);
3892 				ipsec_mp = mp;
3893 				io = NULL;
3894 			}
3895 		}
3896 		if (((io == NULL) || (io->ipsec_out_polhead == NULL)) &&
3897 		    ((connp == NULL) || (connp->conn_policy == NULL)))
3898 			return (ipsec_mp);
3899 	}
3900 
3901 	ill_index = 0;
3902 	conn_multicast_loopx = conn_dontroutex = B_FALSE;
3903 	mp = ipsec_mp;
3904 	if (ipsec_mp->b_datap->db_type == M_CTL) {
3905 		mp = ipsec_mp->b_cont;
3906 		/*
3907 		 * This is a connection where we have some per-socket
3908 		 * policy or ip_wput has attached an ipsec_mp for
3909 		 * the multicast datagram.
3910 		 */
3911 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
3912 		if (!io->ipsec_out_secure) {
3913 			/*
3914 			 * This ipsec_mp was allocated in ip_wput or
3915 			 * ip_wput_multicast so that we will know the
3916 			 * value of ill_index, conn_dontroute,
3917 			 * conn_multicast_loop in the multicast case if
3918 			 * we inherit global policy here.
3919 			 */
3920 			ill_index = io->ipsec_out_ill_index;
3921 			conn_dontroutex = io->ipsec_out_dontroute;
3922 			conn_multicast_loopx = io->ipsec_out_multicast_loop;
3923 			freeb(ipsec_mp);
3924 			ipsec_mp = mp;
3925 			io = NULL;
3926 		}
3927 	}
3928 
3929 	if (ipha != NULL) {
3930 		sel.ips_local_addr_v4 = (ipha->ipha_src != 0 ?
3931 		    ipha->ipha_src : ire->ire_src_addr);
3932 		sel.ips_remote_addr_v4 = ip_get_dst(ipha);
3933 		sel.ips_protocol = (uint8_t)ipha->ipha_protocol;
3934 		sel.ips_isv4 = B_TRUE;
3935 	} else {
3936 		ushort_t hdr_len;
3937 		uint8_t	*nexthdrp;
3938 		boolean_t is_fragment;
3939 
3940 		sel.ips_isv4 = B_FALSE;
3941 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
3942 			if (!unspec_src)
3943 				sel.ips_local_addr_v6 = ire->ire_src_addr_v6;
3944 		} else {
3945 			sel.ips_local_addr_v6 = ip6h->ip6_src;
3946 		}
3947 
3948 		sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, &is_fragment);
3949 		if (is_fragment) {
3950 			/*
3951 			 * It's a packet fragment for a packet that
3952 			 * we have already processed (since IPsec processing
3953 			 * is done before fragmentation), so we don't
3954 			 * have to do policy checks again. Fragments can
3955 			 * come back to us for processing if they have
3956 			 * been queued up due to flow control.
3957 			 */
3958 			if (ipsec_mp->b_datap->db_type == M_CTL) {
3959 				mp = ipsec_mp->b_cont;
3960 				freeb(ipsec_mp);
3961 				ipsec_mp = mp;
3962 			}
3963 			return (ipsec_mp);
3964 		}
3965 
3966 		/* IPv6 common-case. */
3967 		sel.ips_protocol = ip6h->ip6_nxt;
3968 		switch (ip6h->ip6_nxt) {
3969 		case IPPROTO_TCP:
3970 		case IPPROTO_UDP:
3971 		case IPPROTO_SCTP:
3972 		case IPPROTO_ICMPV6:
3973 			break;
3974 		default:
3975 			if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
3976 			    &hdr_len, &nexthdrp)) {
3977 				BUMP_MIB(&ip6_mib, ipv6OutDiscards);
3978 				freemsg(ipsec_mp); /* Not IPsec-related drop. */
3979 				return (NULL);
3980 			}
3981 			sel.ips_protocol = *nexthdrp;
3982 			break;
3983 		}
3984 	}
3985 
3986 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h)) {
3987 		if (ipha != NULL) {
3988 			BUMP_MIB(&ip_mib, ipOutDiscards);
3989 		} else {
3990 			BUMP_MIB(&ip6_mib, ipv6OutDiscards);
3991 		}
3992 
3993 		ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
3994 		    &ipdrops_spd_nomem, &spd_dropper);
3995 		return (NULL);
3996 	}
3997 
3998 	if (io != NULL) {
3999 		/*
4000 		 * We seem to have some local policy (we already have
4001 		 * an ipsec_out).  Look at global policy and see
4002 		 * whether we have to inherit or not.
4003 		 */
4004 		io->ipsec_out_need_policy = B_FALSE;
4005 		ipsec_mp = ipsec_apply_global_policy(ipsec_mp, connp, &sel);
4006 		ASSERT((io->ipsec_out_policy != NULL) ||
4007 		    (io->ipsec_out_act != NULL));
4008 		ASSERT(io->ipsec_out_need_policy == B_FALSE);
4009 		return (ipsec_mp);
4010 	}
4011 	ipsec_mp = ipsec_attach_global_policy(mp, connp, &sel);
4012 	if (ipsec_mp == NULL)
4013 		return (mp);
4014 
4015 	/*
4016 	 * Copy the right port information.
4017 	 */
4018 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4019 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4020 
4021 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
4022 	ASSERT((io->ipsec_out_policy != NULL) ||
4023 	    (io->ipsec_out_act != NULL));
4024 	io->ipsec_out_src_port = sel.ips_local_port;
4025 	io->ipsec_out_dst_port = sel.ips_remote_port;
4026 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
4027 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
4028 	/*
4029 	 * Set ill_index, conn_dontroute and conn_multicast_loop
4030 	 * for multicast datagrams.
4031 	 */
4032 	io->ipsec_out_ill_index = ill_index;
4033 	io->ipsec_out_dontroute = conn_dontroutex;
4034 	io->ipsec_out_multicast_loop = conn_multicast_loopx;
4035 	/*
4036 	 * When conn is non-NULL, the zoneid is set by ipsec_init_ipsec_out().
4037 	 * Otherwise set the zoneid based on the ire.
4038 	 */
4039 	if (connp == NULL)
4040 		io->ipsec_out_zoneid = ire->ire_zoneid;
4041 	return (ipsec_mp);
4042 }
4043 
4044 /*
4045  * When appropriate, this function caches inbound and outbound policy
4046  * for this connection.
4047  *
4048  * XXX need to work out more details about per-interface policy and
4049  * caching here!
4050  *
4051  * XXX may want to split inbound and outbound caching for ill..
4052  */
4053 int
4054 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4055 {
4056 	boolean_t global_policy_present;
4057 
4058 	/*
4059 	 * There is no policy latching for ICMP sockets because we can't
4060 	 * decide on which policy to use until we see the packet and get
4061 	 * type/code selectors.
4062 	 */
4063 	if (connp->conn_ulp == IPPROTO_ICMP ||
4064 	    connp->conn_ulp == IPPROTO_ICMPV6) {
4065 		connp->conn_in_enforce_policy =
4066 		    connp->conn_out_enforce_policy = B_TRUE;
4067 		if (connp->conn_latch != NULL) {
4068 			IPLATCH_REFRELE(connp->conn_latch);
4069 			connp->conn_latch = NULL;
4070 		}
4071 		connp->conn_flags |= IPCL_CHECK_POLICY;
4072 		return (0);
4073 	}
4074 
4075 	global_policy_present = isv4 ?
4076 	    (ipsec_outbound_v4_policy_present ||
4077 		ipsec_inbound_v4_policy_present) :
4078 	    (ipsec_outbound_v6_policy_present ||
4079 		ipsec_inbound_v6_policy_present);
4080 
4081 	if ((connp->conn_policy != NULL) || global_policy_present) {
4082 		ipsec_selector_t sel;
4083 		ipsec_policy_t	*p;
4084 
4085 		if (connp->conn_latch == NULL &&
4086 		    (connp->conn_latch = iplatch_create()) == NULL) {
4087 			return (ENOMEM);
4088 		}
4089 
4090 		sel.ips_protocol = connp->conn_ulp;
4091 		sel.ips_local_port = connp->conn_lport;
4092 		sel.ips_remote_port = connp->conn_fport;
4093 		sel.ips_is_icmp_inv_acq = 0;
4094 		sel.ips_isv4 = isv4;
4095 		if (isv4) {
4096 			sel.ips_local_addr_v4 = connp->conn_src;
4097 			sel.ips_remote_addr_v4 = connp->conn_rem;
4098 		} else {
4099 			sel.ips_local_addr_v6 = connp->conn_srcv6;
4100 			sel.ips_remote_addr_v6 = connp->conn_remv6;
4101 		}
4102 
4103 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel);
4104 		if (connp->conn_latch->ipl_in_policy != NULL)
4105 			IPPOL_REFRELE(connp->conn_latch->ipl_in_policy);
4106 		connp->conn_latch->ipl_in_policy = p;
4107 		connp->conn_in_enforce_policy = (p != NULL);
4108 
4109 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, &sel);
4110 		if (connp->conn_latch->ipl_out_policy != NULL)
4111 			IPPOL_REFRELE(connp->conn_latch->ipl_out_policy);
4112 		connp->conn_latch->ipl_out_policy = p;
4113 		connp->conn_out_enforce_policy = (p != NULL);
4114 
4115 		/* Clear the latched actions too, in case we're recaching. */
4116 		if (connp->conn_latch->ipl_out_action != NULL)
4117 			IPACT_REFRELE(connp->conn_latch->ipl_out_action);
4118 		if (connp->conn_latch->ipl_in_action != NULL)
4119 			IPACT_REFRELE(connp->conn_latch->ipl_in_action);
4120 	}
4121 
4122 	/*
4123 	 * We may or may not have policy for this endpoint.  We still set
4124 	 * conn_policy_cached so that inbound datagrams don't have to look
4125 	 * at global policy as policy is considered latched for these
4126 	 * endpoints.  We should not set conn_policy_cached until the conn
4127 	 * reflects the actual policy. If we *set* this before inheriting
4128 	 * the policy there is a window where the check
4129 	 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4130 	 * on the conn (because we have not yet copied the policy on to
4131 	 * conn and hence not set conn_in_enforce_policy) nor with the
4132 	 * global policy (because conn_policy_cached is already set).
4133 	 */
4134 	connp->conn_policy_cached = B_TRUE;
4135 	if (connp->conn_in_enforce_policy)
4136 		connp->conn_flags |= IPCL_CHECK_POLICY;
4137 	return (0);
4138 }
4139 
4140 void
4141 iplatch_free(ipsec_latch_t *ipl)
4142 {
4143 	if (ipl->ipl_out_policy != NULL)
4144 		IPPOL_REFRELE(ipl->ipl_out_policy);
4145 	if (ipl->ipl_in_policy != NULL)
4146 		IPPOL_REFRELE(ipl->ipl_in_policy);
4147 	if (ipl->ipl_in_action != NULL)
4148 		IPACT_REFRELE(ipl->ipl_in_action);
4149 	if (ipl->ipl_out_action != NULL)
4150 		IPACT_REFRELE(ipl->ipl_out_action);
4151 	if (ipl->ipl_local_cid != NULL)
4152 		IPSID_REFRELE(ipl->ipl_local_cid);
4153 	if (ipl->ipl_remote_cid != NULL)
4154 		IPSID_REFRELE(ipl->ipl_remote_cid);
4155 	if (ipl->ipl_local_id != NULL)
4156 		crfree(ipl->ipl_local_id);
4157 	mutex_destroy(&ipl->ipl_lock);
4158 	kmem_free(ipl, sizeof (*ipl));
4159 }
4160 
4161 ipsec_latch_t *
4162 iplatch_create()
4163 {
4164 	ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP);
4165 	if (ipl == NULL)
4166 		return (ipl);
4167 	bzero(ipl, sizeof (*ipl));
4168 	mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4169 	ipl->ipl_refcnt = 1;
4170 	return (ipl);
4171 }
4172 
4173 /*
4174  * Identity hash table.
4175  *
4176  * Identities are refcounted and "interned" into the hash table.
4177  * Only references coming from other objects (SA's, latching state)
4178  * are counted in ipsid_refcnt.
4179  *
4180  * Locking: IPSID_REFHOLD is safe only when (a) the object's hash bucket
4181  * is locked, (b) we know that the refcount must be > 0.
4182  *
4183  * The ipsid_next and ipsid_ptpn fields are only to be referenced or
4184  * modified when the bucket lock is held; in particular, we only
4185  * delete objects while holding the bucket lock, and we only increase
4186  * the refcount from 0 to 1 while the bucket lock is held.
4187  */
4188 
4189 #define	IPSID_HASHSIZE 64
4190 
4191 typedef struct ipsif_s
4192 {
4193 	ipsid_t *ipsif_head;
4194 	kmutex_t ipsif_lock;
4195 } ipsif_t;
4196 
4197 ipsif_t ipsid_buckets[IPSID_HASHSIZE];
4198 
4199 /*
4200  * Hash function for ID hash table.
4201  */
4202 static uint32_t
4203 ipsid_hash(int idtype, char *idstring)
4204 {
4205 	uint32_t hval = idtype;
4206 	unsigned char c;
4207 
4208 	while ((c = *idstring++) != 0) {
4209 		hval = (hval << 4) | (hval >> 28);
4210 		hval ^= c;
4211 	}
4212 	hval = hval ^ (hval >> 16);
4213 	return (hval & (IPSID_HASHSIZE-1));
4214 }
4215 
4216 /*
4217  * Look up identity string in hash table.  Return identity object
4218  * corresponding to the name -- either preexisting, or newly allocated.
4219  *
4220  * Return NULL if we need to allocate a new one and can't get memory.
4221  */
4222 ipsid_t *
4223 ipsid_lookup(int idtype, char *idstring)
4224 {
4225 	ipsid_t *retval;
4226 	char *nstr;
4227 	int idlen = strlen(idstring) + 1;
4228 
4229 	ipsif_t *bucket = &ipsid_buckets[ipsid_hash(idtype, idstring)];
4230 
4231 	mutex_enter(&bucket->ipsif_lock);
4232 
4233 	for (retval = bucket->ipsif_head; retval != NULL;
4234 	    retval = retval->ipsid_next) {
4235 		if (idtype != retval->ipsid_type)
4236 			continue;
4237 		if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4238 			continue;
4239 
4240 		IPSID_REFHOLD(retval);
4241 		mutex_exit(&bucket->ipsif_lock);
4242 		return (retval);
4243 	}
4244 
4245 	retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4246 	if (!retval) {
4247 		mutex_exit(&bucket->ipsif_lock);
4248 		return (NULL);
4249 	}
4250 
4251 	nstr = kmem_alloc(idlen, KM_NOSLEEP);
4252 	if (!nstr) {
4253 		mutex_exit(&bucket->ipsif_lock);
4254 		kmem_free(retval, sizeof (*retval));
4255 		return (NULL);
4256 	}
4257 
4258 	retval->ipsid_refcnt = 1;
4259 	retval->ipsid_next = bucket->ipsif_head;
4260 	if (retval->ipsid_next != NULL)
4261 		retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4262 	retval->ipsid_ptpn = &bucket->ipsif_head;
4263 	retval->ipsid_type = idtype;
4264 	retval->ipsid_cid = nstr;
4265 	bucket->ipsif_head = retval;
4266 	bcopy(idstring, nstr, idlen);
4267 	mutex_exit(&bucket->ipsif_lock);
4268 
4269 	return (retval);
4270 }
4271 
4272 /*
4273  * Garbage collect the identity hash table.
4274  */
4275 void
4276 ipsid_gc()
4277 {
4278 	int i, len;
4279 	ipsid_t *id, *nid;
4280 	ipsif_t *bucket;
4281 
4282 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4283 		bucket = &ipsid_buckets[i];
4284 		mutex_enter(&bucket->ipsif_lock);
4285 		for (id = bucket->ipsif_head; id != NULL; id = nid) {
4286 			nid = id->ipsid_next;
4287 			if (id->ipsid_refcnt == 0) {
4288 				*id->ipsid_ptpn = nid;
4289 				if (nid != NULL)
4290 					nid->ipsid_ptpn = id->ipsid_ptpn;
4291 				len = strlen(id->ipsid_cid) + 1;
4292 				kmem_free(id->ipsid_cid, len);
4293 				kmem_free(id, sizeof (*id));
4294 			}
4295 		}
4296 		mutex_exit(&bucket->ipsif_lock);
4297 	}
4298 }
4299 
4300 /*
4301  * Return true if two identities are the same.
4302  */
4303 boolean_t
4304 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
4305 {
4306 	if (id1 == id2)
4307 		return (B_TRUE);
4308 #ifdef DEBUG
4309 	if ((id1 == NULL) || (id2 == NULL))
4310 		return (B_FALSE);
4311 	/*
4312 	 * test that we're interning id's correctly..
4313 	 */
4314 	ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
4315 	    (id1->ipsid_type != id2->ipsid_type));
4316 #endif
4317 	return (B_FALSE);
4318 }
4319 
4320 /*
4321  * Initialize identity table; called during module initialization.
4322  */
4323 static void
4324 ipsid_init()
4325 {
4326 	ipsif_t *bucket;
4327 	int i;
4328 
4329 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4330 		bucket = &ipsid_buckets[i];
4331 		mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
4332 	}
4333 }
4334 
4335 /*
4336  * Free identity table (preparatory to module unload)
4337  */
4338 static void
4339 ipsid_fini()
4340 {
4341 	ipsif_t *bucket;
4342 	int i;
4343 
4344 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4345 		bucket = &ipsid_buckets[i];
4346 		mutex_destroy(&bucket->ipsif_lock);
4347 	}
4348 }
4349 
4350 /*
4351  * Update the minimum and maximum supported key sizes for the
4352  * specified algorithm. Must be called while holding the algorithms lock.
4353  */
4354 void
4355 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type)
4356 {
4357 	size_t crypto_min = (size_t)-1, crypto_max = 0;
4358 	size_t cur_crypto_min, cur_crypto_max;
4359 	boolean_t is_valid;
4360 	crypto_mechanism_info_t *mech_infos;
4361 	uint_t nmech_infos;
4362 	int crypto_rc, i;
4363 	crypto_mech_usage_t mask;
4364 
4365 	ASSERT(MUTEX_HELD(&alg_lock));
4366 
4367 	/*
4368 	 * Compute the min, max, and default key sizes (in number of
4369 	 * increments to the default key size in bits) as defined
4370 	 * by the algorithm mappings. This range of key sizes is used
4371 	 * for policy related operations. The effective key sizes
4372 	 * supported by the framework could be more limited than
4373 	 * those defined for an algorithm.
4374 	 */
4375 	alg->alg_default_bits = alg->alg_key_sizes[0];
4376 	if (alg->alg_increment != 0) {
4377 		/* key sizes are defined by range & increment */
4378 		alg->alg_minbits = alg->alg_key_sizes[1];
4379 		alg->alg_maxbits = alg->alg_key_sizes[2];
4380 
4381 		alg->alg_default = SADB_ALG_DEFAULT_INCR(alg->alg_minbits,
4382 		    alg->alg_increment, alg->alg_default_bits);
4383 	} else if (alg->alg_nkey_sizes == 0) {
4384 		/* no specified key size for algorithm */
4385 		alg->alg_minbits = alg->alg_maxbits = 0;
4386 	} else {
4387 		/* key sizes are defined by enumeration */
4388 		alg->alg_minbits = (uint16_t)-1;
4389 		alg->alg_maxbits = 0;
4390 
4391 		for (i = 0; i < alg->alg_nkey_sizes; i++) {
4392 			if (alg->alg_key_sizes[i] < alg->alg_minbits)
4393 				alg->alg_minbits = alg->alg_key_sizes[i];
4394 			if (alg->alg_key_sizes[i] > alg->alg_maxbits)
4395 				alg->alg_maxbits = alg->alg_key_sizes[i];
4396 		}
4397 		alg->alg_default = 0;
4398 	}
4399 
4400 	if (!(alg->alg_flags & ALG_FLAG_VALID))
4401 		return;
4402 
4403 	/*
4404 	 * Mechanisms do not apply to the NULL encryption
4405 	 * algorithm, so simply return for this case.
4406 	 */
4407 	if (alg->alg_id == SADB_EALG_NULL)
4408 		return;
4409 
4410 	/*
4411 	 * Find the min and max key sizes supported by the cryptographic
4412 	 * framework providers.
4413 	 */
4414 
4415 	/* get the key sizes supported by the framework */
4416 	crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
4417 	    &mech_infos, &nmech_infos, KM_SLEEP);
4418 	if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
4419 		alg->alg_flags &= ~ALG_FLAG_VALID;
4420 		return;
4421 	}
4422 
4423 	/* min and max key sizes supported by framework */
4424 	for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
4425 		int unit_bits;
4426 
4427 		/*
4428 		 * Ignore entries that do not support the operations
4429 		 * needed for the algorithm type.
4430 		 */
4431 		if (alg_type == IPSEC_ALG_AUTH)
4432 			mask = CRYPTO_MECH_USAGE_MAC;
4433 		else
4434 			mask = CRYPTO_MECH_USAGE_ENCRYPT |
4435 				CRYPTO_MECH_USAGE_DECRYPT;
4436 		if ((mech_infos[i].mi_usage & mask) != mask)
4437 			continue;
4438 
4439 		unit_bits = (mech_infos[i].mi_keysize_unit ==
4440 		    CRYPTO_KEYSIZE_UNIT_IN_BYTES)  ? 8 : 1;
4441 		/* adjust min/max supported by framework */
4442 		cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
4443 		cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
4444 
4445 		if (cur_crypto_min < crypto_min)
4446 			crypto_min = cur_crypto_min;
4447 
4448 		/*
4449 		 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
4450 		 * the crypto framework which means "no upper limit".
4451 		 */
4452 		if (mech_infos[i].mi_max_key_size ==
4453 		    CRYPTO_EFFECTIVELY_INFINITE)
4454 			crypto_max = (size_t)-1;
4455 		else if (cur_crypto_max > crypto_max)
4456 			crypto_max = cur_crypto_max;
4457 
4458 		is_valid = B_TRUE;
4459 	}
4460 
4461 	kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
4462 	    nmech_infos);
4463 
4464 	if (!is_valid) {
4465 		/* no key sizes supported by framework */
4466 		alg->alg_flags &= ~ALG_FLAG_VALID;
4467 		return;
4468 	}
4469 
4470 	/*
4471 	 * Determine min and max key sizes from alg_key_sizes[].
4472 	 * defined for the algorithm entry. Adjust key sizes based on
4473 	 * those supported by the framework.
4474 	 */
4475 	alg->alg_ef_default_bits = alg->alg_key_sizes[0];
4476 	if (alg->alg_increment != 0) {
4477 		/* supported key sizes are defined by range  & increment */
4478 		crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
4479 		crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
4480 
4481 		alg->alg_ef_minbits = MAX(alg->alg_minbits,
4482 		    (uint16_t)crypto_min);
4483 		alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
4484 		    (uint16_t)crypto_max);
4485 
4486 		/*
4487 		 * If the sizes supported by the framework are outside
4488 		 * the range of sizes defined by the algorithm mappings,
4489 		 * the algorithm cannot be used. Check for this
4490 		 * condition here.
4491 		 */
4492 		if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
4493 			alg->alg_flags &= ~ALG_FLAG_VALID;
4494 			return;
4495 		}
4496 
4497 		if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
4498 		    alg->alg_ef_default_bits = alg->alg_ef_minbits;
4499 		if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
4500 		    alg->alg_ef_default_bits = alg->alg_ef_maxbits;
4501 
4502 		alg->alg_ef_default = SADB_ALG_DEFAULT_INCR(alg->alg_ef_minbits,
4503 		    alg->alg_increment, alg->alg_ef_default_bits);
4504 	} else if (alg->alg_nkey_sizes == 0) {
4505 		/* no specified key size for algorithm */
4506 		alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
4507 	} else {
4508 		/* supported key sizes are defined by enumeration */
4509 		alg->alg_ef_minbits = (uint16_t)-1;
4510 		alg->alg_ef_maxbits = 0;
4511 
4512 		for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
4513 			/*
4514 			 * Ignore the current key size if it is not in the
4515 			 * range of sizes supported by the framework.
4516 			 */
4517 			if (alg->alg_key_sizes[i] < crypto_min ||
4518 			    alg->alg_key_sizes[i] > crypto_max)
4519 				continue;
4520 			if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
4521 				alg->alg_ef_minbits = alg->alg_key_sizes[i];
4522 			if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
4523 				alg->alg_ef_maxbits = alg->alg_key_sizes[i];
4524 			is_valid = B_TRUE;
4525 		}
4526 
4527 		if (!is_valid) {
4528 			alg->alg_flags &= ~ALG_FLAG_VALID;
4529 			return;
4530 		}
4531 		alg->alg_ef_default = 0;
4532 	}
4533 }
4534 
4535 /*
4536  * Free the memory used by the specified algorithm.
4537  */
4538 void
4539 ipsec_alg_free(ipsec_alginfo_t *alg)
4540 {
4541 	if (alg == NULL)
4542 		return;
4543 
4544 	if (alg->alg_key_sizes != NULL)
4545 		kmem_free(alg->alg_key_sizes,
4546 		    (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
4547 
4548 	if (alg->alg_block_sizes != NULL)
4549 		kmem_free(alg->alg_block_sizes,
4550 		    (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
4551 
4552 	kmem_free(alg, sizeof (*alg));
4553 }
4554 
4555 /*
4556  * Check the validity of the specified key size for an algorithm.
4557  * Returns B_TRUE if key size is valid, B_FALSE otherwise.
4558  */
4559 boolean_t
4560 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
4561 {
4562 	if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
4563 		return (B_FALSE);
4564 
4565 	if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
4566 		/*
4567 		 * If the key sizes are defined by enumeration, the new
4568 		 * key size must be equal to one of the supported values.
4569 		 */
4570 		int i;
4571 
4572 		for (i = 0; i < alg->alg_nkey_sizes; i++)
4573 			if (key_size == alg->alg_key_sizes[i])
4574 				break;
4575 		if (i == alg->alg_nkey_sizes)
4576 			return (B_FALSE);
4577 	}
4578 
4579 	return (B_TRUE);
4580 }
4581 
4582 /*
4583  * Callback function invoked by the crypto framework when a provider
4584  * registers or unregisters. This callback updates the algorithms
4585  * tables when a crypto algorithm is no longer available or becomes
4586  * available, and triggers the freeing/creation of context templates
4587  * associated with existing SAs, if needed.
4588  */
4589 void
4590 ipsec_prov_update_callback(uint32_t event, void *event_arg)
4591 {
4592 	crypto_notify_event_change_t *prov_change =
4593 	    (crypto_notify_event_change_t *)event_arg;
4594 	uint_t algidx, algid, algtype, mech_count, mech_idx;
4595 	ipsec_alginfo_t *alg;
4596 	ipsec_alginfo_t oalg;
4597 	crypto_mech_name_t *mechs;
4598 	boolean_t alg_changed = B_FALSE;
4599 
4600 	/* ignore events for which we didn't register */
4601 	if (event != CRYPTO_EVENT_PROVIDERS_CHANGE) {
4602 		ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
4603 			" received from crypto framework\n", event));
4604 		return;
4605 	}
4606 
4607 	mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
4608 	if (mechs == NULL)
4609 		return;
4610 
4611 	/*
4612 	 * Walk the list of currently defined IPsec algorithm. Update
4613 	 * the algorithm valid flag and trigger an update of the
4614 	 * SAs that depend on that algorithm.
4615 	 */
4616 	mutex_enter(&alg_lock);
4617 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
4618 		for (algidx = 0; algidx < ipsec_nalgs[algtype]; algidx++) {
4619 
4620 			algid = ipsec_sortlist[algtype][algidx];
4621 			alg = ipsec_alglists[algtype][algid];
4622 			ASSERT(alg != NULL);
4623 
4624 			/*
4625 			 * Skip the algorithms which do not map to the
4626 			 * crypto framework provider being added or removed.
4627 			 */
4628 			if (strncmp(alg->alg_mech_name,
4629 			    prov_change->ec_mech_name,
4630 			    CRYPTO_MAX_MECH_NAME) != 0)
4631 				continue;
4632 
4633 			/*
4634 			 * Determine if the mechanism is valid. If it
4635 			 * is not, mark the algorithm as being invalid. If
4636 			 * it is, mark the algorithm as being valid.
4637 			 */
4638 			for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
4639 				if (strncmp(alg->alg_mech_name,
4640 				    mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
4641 					break;
4642 			if (mech_idx == mech_count &&
4643 			    alg->alg_flags & ALG_FLAG_VALID) {
4644 				alg->alg_flags &= ~ALG_FLAG_VALID;
4645 				alg_changed = B_TRUE;
4646 			} else if (mech_idx < mech_count &&
4647 			    !(alg->alg_flags & ALG_FLAG_VALID)) {
4648 				alg->alg_flags |= ALG_FLAG_VALID;
4649 				alg_changed = B_TRUE;
4650 			}
4651 
4652 			/*
4653 			 * Update the supported key sizes, regardless
4654 			 * of whether a crypto provider was added or
4655 			 * removed.
4656 			 */
4657 			oalg = *alg;
4658 			ipsec_alg_fix_min_max(alg, algtype);
4659 			if (!alg_changed &&
4660 			    alg->alg_ef_minbits != oalg.alg_ef_minbits ||
4661 			    alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
4662 			    alg->alg_ef_default != oalg.alg_ef_default ||
4663 			    alg->alg_ef_default_bits !=
4664 			    oalg.alg_ef_default_bits)
4665 				alg_changed = B_TRUE;
4666 
4667 			/*
4668 			 * Update the affected SAs if a software provider is
4669 			 * being added or removed.
4670 			 */
4671 			if (prov_change->ec_provider_type ==
4672 			    CRYPTO_SW_PROVIDER)
4673 				sadb_alg_update(algtype, alg->alg_id,
4674 				    prov_change->ec_change ==
4675 				    CRYPTO_EVENT_CHANGE_ADDED);
4676 		}
4677 	}
4678 	mutex_exit(&alg_lock);
4679 	crypto_free_mech_list(mechs, mech_count);
4680 
4681 	if (alg_changed) {
4682 		/*
4683 		 * An algorithm has changed, i.e. it became valid or
4684 		 * invalid, or its support key sizes have changed.
4685 		 * Notify ipsecah and ipsecesp of this change so
4686 		 * that they can send a SADB_REGISTER to their consumers.
4687 		 */
4688 		ipsecah_algs_changed();
4689 		ipsecesp_algs_changed();
4690 	}
4691 }
4692 
4693 /*
4694  * Registers with the crypto framework to be notified of crypto
4695  * providers changes. Used to update the algorithm tables and
4696  * to free or create context templates if needed. Invoked after IPsec
4697  * is loaded successfully.
4698  */
4699 void
4700 ipsec_register_prov_update(void)
4701 {
4702 	prov_update_handle = crypto_notify_events(
4703 	    ipsec_prov_update_callback, CRYPTO_EVENT_PROVIDERS_CHANGE);
4704 }
4705 
4706 /*
4707  * Unregisters from the framework to be notified of crypto providers
4708  * changes. Called from ipsec_policy_destroy().
4709  */
4710 static void
4711 ipsec_unregister_prov_update(void)
4712 {
4713 	if (prov_update_handle != NULL)
4714 		crypto_unnotify_events(prov_update_handle);
4715 }
4716