xref: /illumos-gate/usr/src/uts/common/inet/ip/spd.c (revision 63f91fbc3c024870d86dc3332a4a0080fb29bc40)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2016 by Delphix. All rights reserved.
26  * Copyright (c) 2018, Joyent, Inc.
27  */
28 
29 /*
30  * IPsec Security Policy Database.
31  *
32  * This module maintains the SPD and provides routines used by ip and ip6
33  * to apply IPsec policy to inbound and outbound datagrams.
34  */
35 
36 #include <sys/types.h>
37 #include <sys/stream.h>
38 #include <sys/stropts.h>
39 #include <sys/sysmacros.h>
40 #include <sys/strsubr.h>
41 #include <sys/strsun.h>
42 #include <sys/strlog.h>
43 #include <sys/strsun.h>
44 #include <sys/cmn_err.h>
45 #include <sys/zone.h>
46 
47 #include <sys/systm.h>
48 #include <sys/param.h>
49 #include <sys/kmem.h>
50 #include <sys/ddi.h>
51 
52 #include <sys/crypto/api.h>
53 
54 #include <inet/common.h>
55 #include <inet/mi.h>
56 
57 #include <netinet/ip6.h>
58 #include <netinet/icmp6.h>
59 #include <netinet/udp.h>
60 
61 #include <inet/ip.h>
62 #include <inet/ip6.h>
63 
64 #include <net/pfkeyv2.h>
65 #include <net/pfpolicy.h>
66 #include <inet/sadb.h>
67 #include <inet/ipsec_impl.h>
68 
69 #include <inet/ip_impl.h>	/* For IP_MOD_ID */
70 
71 #include <inet/ipsecah.h>
72 #include <inet/ipsecesp.h>
73 #include <inet/ipdrop.h>
74 #include <inet/ipclassifier.h>
75 #include <inet/iptun.h>
76 #include <inet/iptun/iptun_impl.h>
77 
78 static void ipsec_update_present_flags(ipsec_stack_t *);
79 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *,
80     netstack_t *);
81 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *,
82     ipha_t *, ip6_t *, uint64_t, ip_recv_attr_t *, netstack_t *);
83 static void ipsec_action_free_table(ipsec_action_t *);
84 static void ipsec_action_reclaim(void *);
85 static void ipsec_action_reclaim_stack(ipsec_stack_t *);
86 static void ipsid_init(netstack_t *);
87 static void ipsid_fini(netstack_t *);
88 
89 /* sel_flags values for ipsec_init_inbound_sel(). */
90 #define	SEL_NONE	0x0000
91 #define	SEL_PORT_POLICY	0x0001
92 #define	SEL_IS_ICMP	0x0002
93 #define	SEL_TUNNEL_MODE	0x0004
94 #define	SEL_POST_FRAG	0x0008
95 
96 /* Return values for ipsec_init_inbound_sel(). */
97 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
98     selret_t;
99 
100 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
101     ipha_t *, ip6_t *, uint8_t);
102 
103 static boolean_t ipsec_check_ipsecin_action(ip_recv_attr_t *, mblk_t *,
104     struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
105     kstat_named_t **, netstack_t *);
106 static void ipsec_unregister_prov_update(void);
107 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *);
108 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
109 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
110 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
111 static void ipsec_kstat_destroy(ipsec_stack_t *);
112 static int ipsec_free_tables(ipsec_stack_t *);
113 static int tunnel_compare(const void *, const void *);
114 static void ipsec_freemsg_chain(mblk_t *);
115 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *,
116     struct kstat_named *, ipdropper_t *);
117 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
118 static void ipsec_kstat_destroy(ipsec_stack_t *);
119 static int ipsec_free_tables(ipsec_stack_t *);
120 static int tunnel_compare(const void *, const void *);
121 static void ipsec_freemsg_chain(mblk_t *);
122 
123 /*
124  * Selector hash table is statically sized at module load time.
125  * we default to 251 buckets, which is the largest prime number under 255
126  */
127 
128 #define	IPSEC_SPDHASH_DEFAULT 251
129 
130 /* SPD hash-size tunable per tunnel. */
131 #define	TUN_SPDHASH_DEFAULT 5
132 
133 uint32_t ipsec_spd_hashsize;
134 uint32_t tun_spd_hashsize;
135 
136 #define	IPSEC_SEL_NOHASH ((uint32_t)(~0))
137 
138 /*
139  * Handle global across all stack instances
140  */
141 static crypto_notify_handle_t prov_update_handle = NULL;
142 
143 static kmem_cache_t *ipsec_action_cache;
144 static kmem_cache_t *ipsec_sel_cache;
145 static kmem_cache_t *ipsec_pol_cache;
146 
147 /* Frag cache prototypes */
148 static void ipsec_fragcache_clean(ipsec_fragcache_t *, ipsec_stack_t *);
149 static ipsec_fragcache_entry_t *fragcache_delentry(int,
150     ipsec_fragcache_entry_t *, ipsec_fragcache_t *, ipsec_stack_t *);
151 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
152 void ipsec_fragcache_uninit(ipsec_fragcache_t *, ipsec_stack_t *ipss);
153 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *,
154     int, ipsec_stack_t *);
155 
156 int ipsec_hdr_pullup_needed = 0;
157 int ipsec_weird_null_inbound_policy = 0;
158 
159 #define	ALGBITS_ROUND_DOWN(x, align)	(((x)/(align))*(align))
160 #define	ALGBITS_ROUND_UP(x, align)	ALGBITS_ROUND_DOWN((x)+(align)-1, align)
161 
162 /*
163  * Inbound traffic should have matching identities for both SA's.
164  */
165 
166 #define	SA_IDS_MATCH(sa1, sa2)						\
167 	(((sa1) == NULL) || ((sa2) == NULL) ||				\
168 	(((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) &&		\
169 	    (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
170 
171 /*
172  * IPv6 Fragments
173  */
174 #define	IS_V6_FRAGMENT(ipp)	(ipp.ipp_fields & IPPF_FRAGHDR)
175 
176 /*
177  * Policy failure messages.
178  */
179 static char *ipsec_policy_failure_msgs[] = {
180 
181 	/* IPSEC_POLICY_NOT_NEEDED */
182 	"%s: Dropping the datagram because the incoming packet "
183 	"is %s, but the recipient expects clear; Source %s, "
184 	"Destination %s.\n",
185 
186 	/* IPSEC_POLICY_MISMATCH */
187 	"%s: Policy Failure for the incoming packet (%s); Source %s, "
188 	"Destination %s.\n",
189 
190 	/* IPSEC_POLICY_AUTH_NOT_NEEDED	*/
191 	"%s: Authentication present while not expected in the "
192 	"incoming %s packet; Source %s, Destination %s.\n",
193 
194 	/* IPSEC_POLICY_ENCR_NOT_NEEDED */
195 	"%s: Encryption present while not expected in the "
196 	"incoming %s packet; Source %s, Destination %s.\n",
197 
198 	/* IPSEC_POLICY_SE_NOT_NEEDED */
199 	"%s: Self-Encapsulation present while not expected in the "
200 	"incoming %s packet; Source %s, Destination %s.\n",
201 };
202 
203 /*
204  * General overviews:
205  *
206  * Locking:
207  *
208  *	All of the system policy structures are protected by a single
209  *	rwlock.  These structures are threaded in a
210  *	fairly complex fashion and are not expected to change on a
211  *	regular basis, so this should not cause scaling/contention
212  *	problems.  As a result, policy checks should (hopefully) be MT-hot.
213  *
214  * Allocation policy:
215  *
216  *	We use custom kmem cache types for the various
217  *	bits & pieces of the policy data structures.  All allocations
218  *	use KM_NOSLEEP instead of KM_SLEEP for policy allocation.  The
219  *	policy table is of potentially unbounded size, so we don't
220  *	want to provide a way to hog all system memory with policy
221  *	entries..
222  */
223 
224 /* Convenient functions for freeing or dropping a b_next linked mblk chain */
225 
226 /* Free all messages in an mblk chain */
227 static void
228 ipsec_freemsg_chain(mblk_t *mp)
229 {
230 	mblk_t *mpnext;
231 	while (mp != NULL) {
232 		ASSERT(mp->b_prev == NULL);
233 		mpnext = mp->b_next;
234 		mp->b_next = NULL;
235 		freemsg(mp);
236 		mp = mpnext;
237 	}
238 }
239 
240 /*
241  * ip_drop all messages in an mblk chain
242  * Can handle a b_next chain of ip_recv_attr_t mblks, or just a b_next chain
243  * of data.
244  */
245 static void
246 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *ill,
247     struct kstat_named *counter, ipdropper_t *who_called)
248 {
249 	mblk_t *mpnext;
250 	while (mp != NULL) {
251 		ASSERT(mp->b_prev == NULL);
252 		mpnext = mp->b_next;
253 		mp->b_next = NULL;
254 		if (ip_recv_attr_is_mblk(mp))
255 			mp = ip_recv_attr_free_mblk(mp);
256 		ip_drop_packet(mp, inbound, ill, counter, who_called);
257 		mp = mpnext;
258 	}
259 }
260 
261 /*
262  * AVL tree comparison function.
263  * the in-kernel avl assumes unique keys for all objects.
264  * Since sometimes policy will duplicate rules, we may insert
265  * multiple rules with the same rule id, so we need a tie-breaker.
266  */
267 static int
268 ipsec_policy_cmpbyid(const void *a, const void *b)
269 {
270 	const ipsec_policy_t *ipa, *ipb;
271 	uint64_t idxa, idxb;
272 
273 	ipa = (const ipsec_policy_t *)a;
274 	ipb = (const ipsec_policy_t *)b;
275 	idxa = ipa->ipsp_index;
276 	idxb = ipb->ipsp_index;
277 
278 	if (idxa < idxb)
279 		return (-1);
280 	if (idxa > idxb)
281 		return (1);
282 	/*
283 	 * Tie-breaker #1: All installed policy rules have a non-NULL
284 	 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
285 	 * actually in-tree but rather a template node being used in
286 	 * an avl_find query; see ipsec_policy_delete().  This gives us
287 	 * a placeholder in the ordering just before the first entry with
288 	 * a key >= the one we're looking for, so we can walk forward from
289 	 * that point to get the remaining entries with the same id.
290 	 */
291 	if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
292 		return (-1);
293 	if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
294 		return (1);
295 	/*
296 	 * At most one of the arguments to the comparison should have a
297 	 * NULL selector pointer; if not, the tree is broken.
298 	 */
299 	ASSERT(ipa->ipsp_sel != NULL);
300 	ASSERT(ipb->ipsp_sel != NULL);
301 	/*
302 	 * Tie-breaker #2: use the virtual address of the policy node
303 	 * to arbitrarily break ties.  Since we use the new tree node in
304 	 * the avl_find() in ipsec_insert_always, the new node will be
305 	 * inserted into the tree in the right place in the sequence.
306 	 */
307 	if (ipa < ipb)
308 		return (-1);
309 	if (ipa > ipb)
310 		return (1);
311 	return (0);
312 }
313 
314 /*
315  * Free what ipsec_alloc_table allocated.
316  */
317 void
318 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
319 {
320 	int dir;
321 	int i;
322 
323 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
324 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
325 
326 		if (ipr->ipr_hash == NULL)
327 			continue;
328 
329 		for (i = 0; i < ipr->ipr_nchains; i++) {
330 			ASSERT(ipr->ipr_hash[i].hash_head == NULL);
331 		}
332 		kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
333 		    sizeof (ipsec_policy_hash_t));
334 		ipr->ipr_hash = NULL;
335 	}
336 }
337 
338 void
339 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
340 {
341 	int dir;
342 
343 	avl_destroy(&iph->iph_rulebyid);
344 	rw_destroy(&iph->iph_lock);
345 
346 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
347 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
348 		int chain;
349 
350 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
351 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
352 
353 	}
354 	ipsec_polhead_free_table(iph);
355 }
356 
357 /*
358  * Free the IPsec stack instance.
359  */
360 /* ARGSUSED */
361 static void
362 ipsec_stack_fini(netstackid_t stackid, void *arg)
363 {
364 	ipsec_stack_t	*ipss = (ipsec_stack_t *)arg;
365 	void *cookie;
366 	ipsec_tun_pol_t *node;
367 	netstack_t	*ns = ipss->ipsec_netstack;
368 	int		i;
369 	ipsec_algtype_t	algtype;
370 
371 	ipsec_loader_destroy(ipss);
372 
373 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
374 	/*
375 	 * It's possible we can just ASSERT() the tree is empty.  After all,
376 	 * we aren't called until IP is ready to unload (and presumably all
377 	 * tunnels have been unplumbed).  But we'll play it safe for now, the
378 	 * loop will just exit immediately if it's empty.
379 	 */
380 	cookie = NULL;
381 	while ((node = (ipsec_tun_pol_t *)
382 	    avl_destroy_nodes(&ipss->ipsec_tunnel_policies,
383 	    &cookie)) != NULL) {
384 		ITP_REFRELE(node, ns);
385 	}
386 	avl_destroy(&ipss->ipsec_tunnel_policies);
387 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
388 	rw_destroy(&ipss->ipsec_tunnel_policy_lock);
389 
390 	ipsec_config_flush(ns);
391 
392 	ipsec_kstat_destroy(ipss);
393 
394 	ip_drop_unregister(&ipss->ipsec_dropper);
395 
396 	ip_drop_unregister(&ipss->ipsec_spd_dropper);
397 	ip_drop_destroy(ipss);
398 	/*
399 	 * Globals start with ref == 1 to prevent IPPH_REFRELE() from
400 	 * attempting to free them, hence they should have 1 now.
401 	 */
402 	ipsec_polhead_destroy(&ipss->ipsec_system_policy);
403 	ASSERT(ipss->ipsec_system_policy.iph_refs == 1);
404 	ipsec_polhead_destroy(&ipss->ipsec_inactive_policy);
405 	ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1);
406 
407 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
408 		ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head);
409 		ipss->ipsec_action_hash[i].hash_head = NULL;
410 		mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock));
411 	}
412 
413 	for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
414 		ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
415 		mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock));
416 	}
417 
418 	rw_enter(&ipss->ipsec_alg_lock, RW_WRITER);
419 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) {
420 		for (i = 0; i < IPSEC_MAX_ALGS; i++) {
421 			if (ipss->ipsec_alglists[algtype][i] != NULL)
422 				ipsec_alg_unreg(algtype, i, ns);
423 		}
424 	}
425 	rw_exit(&ipss->ipsec_alg_lock);
426 	rw_destroy(&ipss->ipsec_alg_lock);
427 
428 	ipsid_gc(ns);
429 	ipsid_fini(ns);
430 
431 	(void) ipsec_free_tables(ipss);
432 	kmem_free(ipss, sizeof (*ipss));
433 }
434 
435 void
436 ipsec_policy_g_destroy(void)
437 {
438 	kmem_cache_destroy(ipsec_action_cache);
439 	kmem_cache_destroy(ipsec_sel_cache);
440 	kmem_cache_destroy(ipsec_pol_cache);
441 
442 	ipsec_unregister_prov_update();
443 
444 	netstack_unregister(NS_IPSEC);
445 }
446 
447 
448 /*
449  * Free what ipsec_alloc_tables allocated.
450  * Called when table allocation fails to free the table.
451  */
452 static int
453 ipsec_free_tables(ipsec_stack_t *ipss)
454 {
455 	int i;
456 
457 	if (ipss->ipsec_sel_hash != NULL) {
458 		for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
459 			ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
460 		}
461 		kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize *
462 		    sizeof (*ipss->ipsec_sel_hash));
463 		ipss->ipsec_sel_hash = NULL;
464 		ipss->ipsec_spd_hashsize = 0;
465 	}
466 	ipsec_polhead_free_table(&ipss->ipsec_system_policy);
467 	ipsec_polhead_free_table(&ipss->ipsec_inactive_policy);
468 
469 	return (ENOMEM);
470 }
471 
472 /*
473  * Attempt to allocate the tables in a single policy head.
474  * Return nonzero on failure after cleaning up any work in progress.
475  */
476 int
477 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
478     boolean_t global_cleanup, netstack_t *ns)
479 {
480 	int dir;
481 
482 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
483 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
484 
485 		ipr->ipr_nchains = nchains;
486 		ipr->ipr_hash = kmem_zalloc(nchains *
487 		    sizeof (ipsec_policy_hash_t), kmflag);
488 		if (ipr->ipr_hash == NULL)
489 			return (global_cleanup ?
490 			    ipsec_free_tables(ns->netstack_ipsec) :
491 			    ENOMEM);
492 	}
493 	return (0);
494 }
495 
496 /*
497  * Attempt to allocate the various tables.  Return nonzero on failure
498  * after cleaning up any work in progress.
499  */
500 static int
501 ipsec_alloc_tables(int kmflag, netstack_t *ns)
502 {
503 	int error;
504 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
505 
506 	error = ipsec_alloc_table(&ipss->ipsec_system_policy,
507 	    ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
508 	if (error != 0)
509 		return (error);
510 
511 	error = ipsec_alloc_table(&ipss->ipsec_inactive_policy,
512 	    ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
513 	if (error != 0)
514 		return (error);
515 
516 	ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize *
517 	    sizeof (*ipss->ipsec_sel_hash), kmflag);
518 
519 	if (ipss->ipsec_sel_hash == NULL)
520 		return (ipsec_free_tables(ipss));
521 
522 	return (0);
523 }
524 
525 /*
526  * After table allocation, initialize a policy head.
527  */
528 void
529 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
530 {
531 	int dir, chain;
532 
533 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
534 	avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
535 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
536 
537 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
538 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
539 		ipr->ipr_nchains = nchains;
540 
541 		for (chain = 0; chain < nchains; chain++) {
542 			mutex_init(&(ipr->ipr_hash[chain].hash_lock),
543 			    NULL, MUTEX_DEFAULT, NULL);
544 		}
545 	}
546 }
547 
548 static boolean_t
549 ipsec_kstat_init(ipsec_stack_t *ipss)
550 {
551 	ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net",
552 	    KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t),
553 	    KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid);
554 
555 	if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL)
556 		return (B_FALSE);
557 
558 	ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data;
559 
560 #define	KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64)
561 	KI(esp_stat_in_requests);
562 	KI(esp_stat_in_discards);
563 	KI(esp_stat_lookup_failure);
564 	KI(ah_stat_in_requests);
565 	KI(ah_stat_in_discards);
566 	KI(ah_stat_lookup_failure);
567 	KI(sadb_acquire_maxpackets);
568 	KI(sadb_acquire_qhiwater);
569 #undef KI
570 
571 	kstat_install(ipss->ipsec_ksp);
572 	return (B_TRUE);
573 }
574 
575 static void
576 ipsec_kstat_destroy(ipsec_stack_t *ipss)
577 {
578 	kstat_delete_netstack(ipss->ipsec_ksp,
579 	    ipss->ipsec_netstack->netstack_stackid);
580 	ipss->ipsec_kstats = NULL;
581 
582 }
583 
584 /*
585  * Initialize the IPsec stack instance.
586  */
587 /* ARGSUSED */
588 static void *
589 ipsec_stack_init(netstackid_t stackid, netstack_t *ns)
590 {
591 	ipsec_stack_t	*ipss;
592 	int i;
593 
594 	ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP);
595 	ipss->ipsec_netstack = ns;
596 
597 	/*
598 	 * FIXME: netstack_ipsec is used by some of the routines we call
599 	 * below, but it isn't set until this routine returns.
600 	 * Either we introduce optional xxx_stack_alloc() functions
601 	 * that will be called by the netstack framework before xxx_stack_init,
602 	 * or we switch spd.c and sadb.c to operate on ipsec_stack_t
603 	 * (latter has some include file order issues for sadb.h, but makes
604 	 * sense if we merge some of the ipsec related stack_t's together.
605 	 */
606 	ns->netstack_ipsec = ipss;
607 
608 	/*
609 	 * Make two attempts to allocate policy hash tables; try it at
610 	 * the "preferred" size (may be set in /etc/system) first,
611 	 * then fall back to the default size.
612 	 */
613 	ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ?
614 	    IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize;
615 
616 	if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) {
617 		cmn_err(CE_WARN,
618 		    "Unable to allocate %d entry IPsec policy hash table",
619 		    ipss->ipsec_spd_hashsize);
620 		ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
621 		cmn_err(CE_WARN, "Falling back to %d entries",
622 		    ipss->ipsec_spd_hashsize);
623 		(void) ipsec_alloc_tables(KM_SLEEP, ns);
624 	}
625 
626 	/* Just set a default for tunnels. */
627 	ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ?
628 	    TUN_SPDHASH_DEFAULT : tun_spd_hashsize;
629 
630 	ipsid_init(ns);
631 	/*
632 	 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
633 	 * to free them.
634 	 */
635 	ipss->ipsec_system_policy.iph_refs = 1;
636 	ipss->ipsec_inactive_policy.iph_refs = 1;
637 	ipsec_polhead_init(&ipss->ipsec_system_policy,
638 	    ipss->ipsec_spd_hashsize);
639 	ipsec_polhead_init(&ipss->ipsec_inactive_policy,
640 	    ipss->ipsec_spd_hashsize);
641 	rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
642 	avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare,
643 	    sizeof (ipsec_tun_pol_t), 0);
644 
645 	ipss->ipsec_next_policy_index = 1;
646 
647 	rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL);
648 	rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL);
649 
650 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
651 		mutex_init(&(ipss->ipsec_action_hash[i].hash_lock),
652 		    NULL, MUTEX_DEFAULT, NULL);
653 
654 	for (i = 0; i < ipss->ipsec_spd_hashsize; i++)
655 		mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock),
656 		    NULL, MUTEX_DEFAULT, NULL);
657 
658 	rw_init(&ipss->ipsec_alg_lock, NULL, RW_DEFAULT, NULL);
659 	for (i = 0; i < IPSEC_NALGTYPES; i++) {
660 		ipss->ipsec_nalgs[i] = 0;
661 	}
662 
663 	ip_drop_init(ipss);
664 	ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD");
665 
666 	/* IP's IPsec code calls the packet dropper */
667 	ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing");
668 
669 	(void) ipsec_kstat_init(ipss);
670 
671 	ipsec_loader_init(ipss);
672 	ipsec_loader_start(ipss);
673 
674 	return (ipss);
675 }
676 
677 /* Global across all stack instances */
678 void
679 ipsec_policy_g_init(void)
680 {
681 	ipsec_action_cache = kmem_cache_create("ipsec_actions",
682 	    sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
683 	    ipsec_action_reclaim, NULL, NULL, 0);
684 	ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
685 	    sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
686 	    NULL, NULL, NULL, 0);
687 	ipsec_pol_cache = kmem_cache_create("ipsec_policy",
688 	    sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
689 	    NULL, NULL, NULL, 0);
690 
691 	/*
692 	 * We want to be informed each time a stack is created or
693 	 * destroyed in the kernel, so we can maintain the
694 	 * set of ipsec_stack_t's.
695 	 */
696 	netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini);
697 }
698 
699 /*
700  * Sort algorithm lists.
701  *
702  * I may need to split this based on
703  * authentication/encryption, and I may wish to have an administrator
704  * configure this list.  Hold on to some NDD variables...
705  *
706  * XXX For now, sort on minimum key size (GAG!).  While minimum key size is
707  * not the ideal metric, it's the only quantifiable measure available.
708  * We need a better metric for sorting algorithms by preference.
709  */
710 static void
711 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
712 {
713 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
714 	ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid];
715 	uint8_t holder, swap;
716 	uint_t i;
717 	uint_t count = ipss->ipsec_nalgs[at];
718 	ASSERT(ai != NULL);
719 	ASSERT(algid == ai->alg_id);
720 
721 	ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
722 
723 	holder = algid;
724 
725 	for (i = 0; i < count - 1; i++) {
726 		ipsec_alginfo_t *alt;
727 
728 		alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]];
729 		/*
730 		 * If you want to give precedence to newly added algs,
731 		 * add the = in the > comparison.
732 		 */
733 		if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
734 			/* Swap sortlist[i] and holder. */
735 			swap = ipss->ipsec_sortlist[at][i];
736 			ipss->ipsec_sortlist[at][i] = holder;
737 			holder = swap;
738 			ai = alt;
739 		} /* Else just continue. */
740 	}
741 
742 	/* Store holder in last slot. */
743 	ipss->ipsec_sortlist[at][i] = holder;
744 }
745 
746 /*
747  * Remove an algorithm from a sorted algorithm list.
748  * This should be considerably easier, even with complex sorting.
749  */
750 static void
751 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
752 {
753 	boolean_t copyback = B_FALSE;
754 	int i;
755 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
756 	int newcount = ipss->ipsec_nalgs[at];
757 
758 	ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
759 
760 	for (i = 0; i <= newcount; i++) {
761 		if (copyback) {
762 			ipss->ipsec_sortlist[at][i-1] =
763 			    ipss->ipsec_sortlist[at][i];
764 		} else if (ipss->ipsec_sortlist[at][i] == algid) {
765 			copyback = B_TRUE;
766 		}
767 	}
768 }
769 
770 /*
771  * Add the specified algorithm to the algorithm tables.
772  * Must be called while holding the algorithm table writer lock.
773  */
774 void
775 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns)
776 {
777 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
778 
779 	ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
780 
781 	ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL);
782 	ipsec_alg_fix_min_max(alg, algtype, ns);
783 	ipss->ipsec_alglists[algtype][alg->alg_id] = alg;
784 
785 	ipss->ipsec_nalgs[algtype]++;
786 	alg_insert_sortlist(algtype, alg->alg_id, ns);
787 }
788 
789 /*
790  * Remove the specified algorithm from the algorithm tables.
791  * Must be called while holding the algorithm table writer lock.
792  */
793 void
794 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns)
795 {
796 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
797 
798 	ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
799 
800 	ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL);
801 	ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]);
802 	ipss->ipsec_alglists[algtype][algid] = NULL;
803 
804 	ipss->ipsec_nalgs[algtype]--;
805 	alg_remove_sortlist(algtype, algid, ns);
806 }
807 
808 /*
809  * Hooks for spdsock to get a grip on system policy.
810  */
811 
812 ipsec_policy_head_t *
813 ipsec_system_policy(netstack_t *ns)
814 {
815 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
816 	ipsec_policy_head_t *h = &ipss->ipsec_system_policy;
817 
818 	IPPH_REFHOLD(h);
819 	return (h);
820 }
821 
822 ipsec_policy_head_t *
823 ipsec_inactive_policy(netstack_t *ns)
824 {
825 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
826 	ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy;
827 
828 	IPPH_REFHOLD(h);
829 	return (h);
830 }
831 
832 /*
833  * Lock inactive policy, then active policy, then exchange policy root
834  * pointers.
835  */
836 void
837 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive,
838     netstack_t *ns)
839 {
840 	int af, dir;
841 	avl_tree_t r1, r2;
842 
843 	rw_enter(&inactive->iph_lock, RW_WRITER);
844 	rw_enter(&active->iph_lock, RW_WRITER);
845 
846 	r1 = active->iph_rulebyid;
847 	r2 = inactive->iph_rulebyid;
848 	active->iph_rulebyid = r2;
849 	inactive->iph_rulebyid = r1;
850 
851 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
852 		ipsec_policy_hash_t *h1, *h2;
853 
854 		h1 = active->iph_root[dir].ipr_hash;
855 		h2 = inactive->iph_root[dir].ipr_hash;
856 		active->iph_root[dir].ipr_hash = h2;
857 		inactive->iph_root[dir].ipr_hash = h1;
858 
859 		for (af = 0; af < IPSEC_NAF; af++) {
860 			ipsec_policy_t *t1, *t2;
861 
862 			t1 = active->iph_root[dir].ipr_nonhash[af];
863 			t2 = inactive->iph_root[dir].ipr_nonhash[af];
864 			active->iph_root[dir].ipr_nonhash[af] = t2;
865 			inactive->iph_root[dir].ipr_nonhash[af] = t1;
866 			if (t1 != NULL) {
867 				t1->ipsp_hash.hash_pp =
868 				    &(inactive->iph_root[dir].ipr_nonhash[af]);
869 			}
870 			if (t2 != NULL) {
871 				t2->ipsp_hash.hash_pp =
872 				    &(active->iph_root[dir].ipr_nonhash[af]);
873 			}
874 
875 		}
876 	}
877 	active->iph_gen++;
878 	inactive->iph_gen++;
879 	ipsec_update_present_flags(ns->netstack_ipsec);
880 	rw_exit(&active->iph_lock);
881 	rw_exit(&inactive->iph_lock);
882 }
883 
884 /*
885  * Swap global policy primary/secondary.
886  */
887 void
888 ipsec_swap_global_policy(netstack_t *ns)
889 {
890 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
891 
892 	ipsec_swap_policy(&ipss->ipsec_system_policy,
893 	    &ipss->ipsec_inactive_policy, ns);
894 }
895 
896 /*
897  * Clone one policy rule..
898  */
899 static ipsec_policy_t *
900 ipsec_copy_policy(const ipsec_policy_t *src)
901 {
902 	ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
903 
904 	if (dst == NULL)
905 		return (NULL);
906 
907 	/*
908 	 * Adjust refcounts of cloned state.
909 	 */
910 	IPACT_REFHOLD(src->ipsp_act);
911 	src->ipsp_sel->ipsl_refs++;
912 
913 	HASH_NULL(dst, ipsp_hash);
914 	dst->ipsp_netstack = src->ipsp_netstack;
915 	dst->ipsp_refs = 1;
916 	dst->ipsp_sel = src->ipsp_sel;
917 	dst->ipsp_act = src->ipsp_act;
918 	dst->ipsp_prio = src->ipsp_prio;
919 	dst->ipsp_index = src->ipsp_index;
920 
921 	return (dst);
922 }
923 
924 void
925 ipsec_insert_always(avl_tree_t *tree, void *new_node)
926 {
927 	void *node;
928 	avl_index_t where;
929 
930 	node = avl_find(tree, new_node, &where);
931 	ASSERT(node == NULL);
932 	avl_insert(tree, new_node, where);
933 }
934 
935 
936 static int
937 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
938     ipsec_policy_t **dstp)
939 {
940 	for (; src != NULL; src = src->ipsp_hash.hash_next) {
941 		ipsec_policy_t *dst = ipsec_copy_policy(src);
942 		if (dst == NULL)
943 			return (ENOMEM);
944 
945 		HASHLIST_INSERT(dst, ipsp_hash, *dstp);
946 		ipsec_insert_always(&dph->iph_rulebyid, dst);
947 	}
948 	return (0);
949 }
950 
951 
952 
953 /*
954  * Make one policy head look exactly like another.
955  *
956  * As with ipsec_swap_policy, we lock the destination policy head first, then
957  * the source policy head. Note that we only need to read-lock the source
958  * policy head as we are not changing it.
959  */
960 int
961 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph,
962     netstack_t *ns)
963 {
964 	int af, dir, chain, nchains;
965 
966 	rw_enter(&dph->iph_lock, RW_WRITER);
967 
968 	ipsec_polhead_flush(dph, ns);
969 
970 	rw_enter(&sph->iph_lock, RW_READER);
971 
972 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
973 		ipsec_policy_root_t *dpr = &dph->iph_root[dir];
974 		ipsec_policy_root_t *spr = &sph->iph_root[dir];
975 		nchains = dpr->ipr_nchains;
976 
977 		ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
978 
979 		for (af = 0; af < IPSEC_NAF; af++) {
980 			if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
981 			    &dpr->ipr_nonhash[af]))
982 				goto abort_copy;
983 		}
984 
985 		for (chain = 0; chain < nchains; chain++) {
986 			if (ipsec_copy_chain(dph,
987 			    spr->ipr_hash[chain].hash_head,
988 			    &dpr->ipr_hash[chain].hash_head))
989 				goto abort_copy;
990 		}
991 	}
992 
993 	dph->iph_gen++;
994 
995 	rw_exit(&sph->iph_lock);
996 	rw_exit(&dph->iph_lock);
997 	return (0);
998 
999 abort_copy:
1000 	ipsec_polhead_flush(dph, ns);
1001 	rw_exit(&sph->iph_lock);
1002 	rw_exit(&dph->iph_lock);
1003 	return (ENOMEM);
1004 }
1005 
1006 /*
1007  * Clone currently active policy to the inactive policy list.
1008  */
1009 int
1010 ipsec_clone_system_policy(netstack_t *ns)
1011 {
1012 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1013 
1014 	return (ipsec_copy_polhead(&ipss->ipsec_system_policy,
1015 	    &ipss->ipsec_inactive_policy, ns));
1016 }
1017 
1018 /*
1019  * Extract the string from ipsec_policy_failure_msgs[type] and
1020  * log it.
1021  *
1022  */
1023 void
1024 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h,
1025     boolean_t secure, netstack_t *ns)
1026 {
1027 	char	sbuf[INET6_ADDRSTRLEN];
1028 	char	dbuf[INET6_ADDRSTRLEN];
1029 	char	*s;
1030 	char	*d;
1031 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1032 
1033 	ASSERT((ipha == NULL && ip6h != NULL) ||
1034 	    (ip6h == NULL && ipha != NULL));
1035 
1036 	if (ipha != NULL) {
1037 		s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
1038 		d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
1039 	} else {
1040 		s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
1041 		d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
1042 
1043 	}
1044 
1045 	/* Always bump the policy failure counter. */
1046 	ipss->ipsec_policy_failure_count[type]++;
1047 
1048 	ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1049 	    ipsec_policy_failure_msgs[type], func_name,
1050 	    (secure ? "secure" : "not secure"), s, d);
1051 }
1052 
1053 /*
1054  * Rate-limiting front-end to strlog() for AH and ESP.	Uses the ndd variables
1055  * in /dev/ip and the same rate-limiting clock so that there's a single
1056  * knob to turn to throttle the rate of messages.
1057  */
1058 void
1059 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl,
1060     char *fmt, ...)
1061 {
1062 	va_list adx;
1063 	hrtime_t current = gethrtime();
1064 	ip_stack_t	*ipst = ns->netstack_ip;
1065 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1066 
1067 	sl |= SL_CONSOLE;
1068 	/*
1069 	 * Throttle logging to stop syslog from being swamped. If variable
1070 	 * 'ipsec_policy_log_interval' is zero, don't log any messages at
1071 	 * all, otherwise log only one message every 'ipsec_policy_log_interval'
1072 	 * msec. Convert interval (in msec) to hrtime (in nsec).
1073 	 */
1074 
1075 	if (ipst->ips_ipsec_policy_log_interval) {
1076 		if (ipss->ipsec_policy_failure_last +
1077 		    MSEC2NSEC(ipst->ips_ipsec_policy_log_interval) <= current) {
1078 			va_start(adx, fmt);
1079 			(void) vstrlog(mid, sid, level, sl, fmt, adx);
1080 			va_end(adx);
1081 			ipss->ipsec_policy_failure_last = current;
1082 		}
1083 	}
1084 }
1085 
1086 void
1087 ipsec_config_flush(netstack_t *ns)
1088 {
1089 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1090 
1091 	rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER);
1092 	ipsec_polhead_flush(&ipss->ipsec_system_policy, ns);
1093 	ipss->ipsec_next_policy_index = 1;
1094 	rw_exit(&ipss->ipsec_system_policy.iph_lock);
1095 	ipsec_action_reclaim_stack(ipss);
1096 }
1097 
1098 /*
1099  * Clip a policy's min/max keybits vs. the capabilities of the
1100  * algorithm.
1101  */
1102 static void
1103 act_alg_adjust(uint_t algtype, uint_t algid,
1104     uint16_t *minbits, uint16_t *maxbits, netstack_t *ns)
1105 {
1106 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1107 	ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid];
1108 
1109 	if (algp != NULL) {
1110 		/*
1111 		 * If passed-in minbits is zero, we assume the caller trusts
1112 		 * us with setting the minimum key size.  We pick the
1113 		 * algorithms DEFAULT key size for the minimum in this case.
1114 		 */
1115 		if (*minbits == 0) {
1116 			*minbits = algp->alg_default_bits;
1117 			ASSERT(*minbits >= algp->alg_minbits);
1118 		} else {
1119 			*minbits = MAX(MIN(*minbits, algp->alg_maxbits),
1120 			    algp->alg_minbits);
1121 		}
1122 		if (*maxbits == 0)
1123 			*maxbits = algp->alg_maxbits;
1124 		else
1125 			*maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
1126 			    algp->alg_maxbits);
1127 		ASSERT(*minbits <= *maxbits);
1128 	} else {
1129 		*minbits = 0;
1130 		*maxbits = 0;
1131 	}
1132 }
1133 
1134 /*
1135  * Check an action's requested algorithms against the algorithms currently
1136  * loaded in the system.
1137  */
1138 boolean_t
1139 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns)
1140 {
1141 	ipsec_prot_t *ipp;
1142 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1143 
1144 	ipp = &act->ipa_apply;
1145 
1146 	if (ipp->ipp_use_ah &&
1147 	    ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
1148 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
1149 		return (B_FALSE);
1150 	}
1151 	if (ipp->ipp_use_espa &&
1152 	    ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] ==
1153 	    NULL) {
1154 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
1155 		return (B_FALSE);
1156 	}
1157 	if (ipp->ipp_use_esp &&
1158 	    ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
1159 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
1160 		return (B_FALSE);
1161 	}
1162 
1163 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
1164 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1165 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
1166 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1167 	act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
1168 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1169 
1170 	if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
1171 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
1172 		return (B_FALSE);
1173 	}
1174 	if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
1175 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
1176 		return (B_FALSE);
1177 	}
1178 	if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
1179 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
1180 		return (B_FALSE);
1181 	}
1182 	/* TODO: sanity check lifetimes */
1183 	return (B_TRUE);
1184 }
1185 
1186 /*
1187  * Set up a single action during wildcard expansion..
1188  */
1189 static void
1190 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
1191     uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns)
1192 {
1193 	ipsec_prot_t *ipp;
1194 
1195 	*outact = *act;
1196 	ipp = &outact->ipa_apply;
1197 	ipp->ipp_auth_alg = (uint8_t)auth_alg;
1198 	ipp->ipp_encr_alg = (uint8_t)encr_alg;
1199 	ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
1200 
1201 	act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
1202 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1203 	act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
1204 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1205 	act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
1206 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1207 }
1208 
1209 /*
1210  * combinatoric expansion time: expand a wildcarded action into an
1211  * array of wildcarded actions; we return the exploded action list,
1212  * and return a count in *nact (output only).
1213  */
1214 static ipsec_act_t *
1215 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns)
1216 {
1217 	boolean_t use_ah, use_esp, use_espa;
1218 	boolean_t wild_auth, wild_encr, wild_eauth;
1219 	uint_t	auth_alg, auth_idx, auth_min, auth_max;
1220 	uint_t	eauth_alg, eauth_idx, eauth_min, eauth_max;
1221 	uint_t  encr_alg, encr_idx, encr_min, encr_max;
1222 	uint_t	action_count, ai;
1223 	ipsec_act_t *outact;
1224 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1225 
1226 	if (act->ipa_type != IPSEC_ACT_APPLY) {
1227 		outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
1228 		*nact = 1;
1229 		if (outact != NULL)
1230 			bcopy(act, outact, sizeof (*act));
1231 		return (outact);
1232 	}
1233 	/*
1234 	 * compute the combinatoric explosion..
1235 	 *
1236 	 * we assume a request for encr if esp_req is PREF_REQUIRED
1237 	 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
1238 	 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
1239 	 */
1240 
1241 	use_ah = act->ipa_apply.ipp_use_ah;
1242 	use_esp = act->ipa_apply.ipp_use_esp;
1243 	use_espa = act->ipa_apply.ipp_use_espa;
1244 	auth_alg = act->ipa_apply.ipp_auth_alg;
1245 	eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1246 	encr_alg = act->ipa_apply.ipp_encr_alg;
1247 
1248 	wild_auth = use_ah && (auth_alg == 0);
1249 	wild_eauth = use_espa && (eauth_alg == 0);
1250 	wild_encr = use_esp && (encr_alg == 0);
1251 
1252 	action_count = 1;
1253 	auth_min = auth_max = auth_alg;
1254 	eauth_min = eauth_max = eauth_alg;
1255 	encr_min = encr_max = encr_alg;
1256 
1257 	/*
1258 	 * set up for explosion.. for each dimension, expand output
1259 	 * size by the explosion factor.
1260 	 *
1261 	 * Don't include the "any" algorithms, if defined, as no
1262 	 * kernel policies should be set for these algorithms.
1263 	 */
1264 
1265 #define	SET_EXP_MINMAX(type, wild, alg, min, max, ipss)		\
1266 	if (wild) {						\
1267 		int nalgs = ipss->ipsec_nalgs[type];		\
1268 		if (ipss->ipsec_alglists[type][alg] != NULL)	\
1269 			nalgs--;				\
1270 		action_count *= nalgs;				\
1271 		min = 0;					\
1272 		max = ipss->ipsec_nalgs[type] - 1;		\
1273 	}
1274 
1275 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1276 	    auth_min, auth_max, ipss);
1277 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1278 	    eauth_min, eauth_max, ipss);
1279 	SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1280 	    encr_min, encr_max, ipss);
1281 
1282 #undef	SET_EXP_MINMAX
1283 
1284 	/*
1285 	 * ok, allocate the whole mess..
1286 	 */
1287 
1288 	outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1289 	if (outact == NULL)
1290 		return (NULL);
1291 
1292 	/*
1293 	 * Now compute all combinations.  Note that non-wildcarded
1294 	 * dimensions just get a single value from auth_min, while
1295 	 * wildcarded dimensions indirect through the sortlist.
1296 	 *
1297 	 * We do encryption outermost since, at this time, there's
1298 	 * greater difference in security and performance between
1299 	 * encryption algorithms vs. authentication algorithms.
1300 	 */
1301 
1302 	ai = 0;
1303 
1304 #define	WHICH_ALG(type, wild, idx, ipss) \
1305 	((wild)?(ipss->ipsec_sortlist[type][idx]):(idx))
1306 
1307 	for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1308 		encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss);
1309 		if (wild_encr && encr_alg == SADB_EALG_NONE)
1310 			continue;
1311 		for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1312 			auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1313 			    auth_idx, ipss);
1314 			if (wild_auth && auth_alg == SADB_AALG_NONE)
1315 				continue;
1316 			for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1317 			    eauth_idx++) {
1318 				eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1319 				    wild_eauth, eauth_idx, ipss);
1320 				if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1321 					continue;
1322 
1323 				ipsec_setup_act(&outact[ai], act,
1324 				    auth_alg, encr_alg, eauth_alg, ns);
1325 				ai++;
1326 			}
1327 		}
1328 	}
1329 
1330 #undef WHICH_ALG
1331 
1332 	ASSERT(ai == action_count);
1333 	*nact = action_count;
1334 	return (outact);
1335 }
1336 
1337 /*
1338  * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1339  */
1340 static void
1341 ipsec_prot_from_req(const ipsec_req_t *req, ipsec_prot_t *ipp)
1342 {
1343 	bzero(ipp, sizeof (*ipp));
1344 	/*
1345 	 * ipp_use_* are bitfields.  Look at "!!" in the following as a
1346 	 * "boolean canonicalization" operator.
1347 	 */
1348 	ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1349 	ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1350 	ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg);
1351 	ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1352 	ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1353 	    IPSEC_PREF_UNIQUE);
1354 	ipp->ipp_encr_alg = req->ipsr_esp_alg;
1355 	/*
1356 	 * SADB_AALG_ANY is a placeholder to distinguish "any" from
1357 	 * "none" above.  If auth is required, as determined above,
1358 	 * SADB_AALG_ANY becomes 0, which is the representation
1359 	 * of "any" and "none" in PF_KEY v2.
1360 	 */
1361 	ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ?
1362 	    req->ipsr_auth_alg : 0;
1363 	ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ?
1364 	    req->ipsr_esp_auth_alg : 0;
1365 }
1366 
1367 /*
1368  * Extract a new-style action from a request.
1369  */
1370 void
1371 ipsec_actvec_from_req(const ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp,
1372     netstack_t *ns)
1373 {
1374 	struct ipsec_act act;
1375 
1376 	bzero(&act, sizeof (act));
1377 	if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1378 	    (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1379 		act.ipa_type = IPSEC_ACT_BYPASS;
1380 	} else {
1381 		act.ipa_type = IPSEC_ACT_APPLY;
1382 		ipsec_prot_from_req(req, &act.ipa_apply);
1383 	}
1384 	*actp = ipsec_act_wildcard_expand(&act, nactp, ns);
1385 }
1386 
1387 /*
1388  * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1389  * We assume caller has already zero'ed *req for us.
1390  */
1391 static int
1392 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1393 {
1394 	req->ipsr_esp_alg = ipp->ipp_encr_alg;
1395 	req->ipsr_auth_alg = ipp->ipp_auth_alg;
1396 	req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1397 
1398 	if (ipp->ipp_use_unique) {
1399 		req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1400 		req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1401 	}
1402 	if (ipp->ipp_use_se)
1403 		req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1404 	if (ipp->ipp_use_ah)
1405 		req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1406 	if (ipp->ipp_use_esp)
1407 		req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1408 	return (sizeof (*req));
1409 }
1410 
1411 /*
1412  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1413  * We assume caller has already zero'ed *req for us.
1414  */
1415 static int
1416 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1417 {
1418 	switch (ap->ipa_act.ipa_type) {
1419 	case IPSEC_ACT_BYPASS:
1420 		req->ipsr_ah_req = IPSEC_PREF_NEVER;
1421 		req->ipsr_esp_req = IPSEC_PREF_NEVER;
1422 		return (sizeof (*req));
1423 	case IPSEC_ACT_APPLY:
1424 		return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1425 	}
1426 	return (sizeof (*req));
1427 }
1428 
1429 /*
1430  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1431  * We assume caller has already zero'ed *req for us.
1432  */
1433 int
1434 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1435 {
1436 	ipsec_policy_t *p;
1437 
1438 	/*
1439 	 * FULL-PERSOCK: consult hash table, too?
1440 	 */
1441 	for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1442 	    p != NULL;
1443 	    p = p->ipsp_hash.hash_next) {
1444 		if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
1445 			return (ipsec_req_from_act(p->ipsp_act, req));
1446 	}
1447 	return (sizeof (*req));
1448 }
1449 
1450 /*
1451  * Based on per-socket or latched policy, convert to an appropriate
1452  * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1453  * be tail-called from ip.
1454  */
1455 int
1456 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1457 {
1458 	ipsec_latch_t *ipl;
1459 	int rv = sizeof (ipsec_req_t);
1460 
1461 	bzero(req, sizeof (*req));
1462 
1463 	ASSERT(MUTEX_HELD(&connp->conn_lock));
1464 	ipl = connp->conn_latch;
1465 
1466 	/*
1467 	 * Find appropriate policy.  First choice is latched action;
1468 	 * failing that, see latched policy; failing that,
1469 	 * look at configured policy.
1470 	 */
1471 	if (ipl != NULL) {
1472 		if (connp->conn_latch_in_action != NULL) {
1473 			rv = ipsec_req_from_act(connp->conn_latch_in_action,
1474 			    req);
1475 			goto done;
1476 		}
1477 		if (connp->conn_latch_in_policy != NULL) {
1478 			rv = ipsec_req_from_act(
1479 			    connp->conn_latch_in_policy->ipsp_act, req);
1480 			goto done;
1481 		}
1482 	}
1483 	if (connp->conn_policy != NULL)
1484 		rv = ipsec_req_from_head(connp->conn_policy, req, af);
1485 done:
1486 	return (rv);
1487 }
1488 
1489 void
1490 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1491 {
1492 	kmem_free(act, nact * sizeof (*act));
1493 }
1494 
1495 /*
1496  * Consumes a reference to ipsp.
1497  */
1498 static mblk_t *
1499 ipsec_check_loopback_policy(mblk_t *data_mp, ip_recv_attr_t *ira,
1500     ipsec_policy_t *ipsp)
1501 {
1502 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
1503 		return (data_mp);
1504 
1505 	ASSERT(ira->ira_flags & IRAF_LOOPBACK);
1506 
1507 	IPPOL_REFRELE(ipsp);
1508 
1509 	/*
1510 	 * We should do an actual policy check here.  Revisit this
1511 	 * when we revisit the IPsec API.  (And pass a conn_t in when we
1512 	 * get there.)
1513 	 */
1514 
1515 	return (data_mp);
1516 }
1517 
1518 /*
1519  * Check that packet's inbound ports & proto match the selectors
1520  * expected by the SAs it traversed on the way in.
1521  */
1522 static boolean_t
1523 ipsec_check_ipsecin_unique(ip_recv_attr_t *ira, const char **reason,
1524     kstat_named_t **counter, uint64_t pkt_unique, netstack_t *ns)
1525 {
1526 	uint64_t ah_mask, esp_mask;
1527 	ipsa_t *ah_assoc;
1528 	ipsa_t *esp_assoc;
1529 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1530 
1531 	ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1532 	ASSERT(!(ira->ira_flags & IRAF_LOOPBACK));
1533 
1534 	ah_assoc = ira->ira_ipsec_ah_sa;
1535 	esp_assoc = ira->ira_ipsec_esp_sa;
1536 	ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
1537 
1538 	ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
1539 	esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
1540 
1541 	if ((ah_mask == 0) && (esp_mask == 0))
1542 		return (B_TRUE);
1543 
1544 	/*
1545 	 * The pkt_unique check will also check for tunnel mode on the SA
1546 	 * vs. the tunneled_packet boolean.  "Be liberal in what you receive"
1547 	 * should not apply in this case.  ;)
1548 	 */
1549 
1550 	if (ah_mask != 0 &&
1551 	    ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
1552 		*reason = "AH inner header mismatch";
1553 		*counter = DROPPER(ipss, ipds_spd_ah_innermismatch);
1554 		return (B_FALSE);
1555 	}
1556 	if (esp_mask != 0 &&
1557 	    esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
1558 		*reason = "ESP inner header mismatch";
1559 		*counter = DROPPER(ipss, ipds_spd_esp_innermismatch);
1560 		return (B_FALSE);
1561 	}
1562 	return (B_TRUE);
1563 }
1564 
1565 static boolean_t
1566 ipsec_check_ipsecin_action(ip_recv_attr_t *ira, mblk_t *mp, ipsec_action_t *ap,
1567     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
1568     netstack_t *ns)
1569 {
1570 	boolean_t ret = B_TRUE;
1571 	ipsec_prot_t *ipp;
1572 	ipsa_t *ah_assoc;
1573 	ipsa_t *esp_assoc;
1574 	boolean_t decaps;
1575 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1576 
1577 	ASSERT((ipha == NULL && ip6h != NULL) ||
1578 	    (ip6h == NULL && ipha != NULL));
1579 
1580 	if (ira->ira_flags & IRAF_LOOPBACK) {
1581 		/*
1582 		 * Besides accepting pointer-equivalent actions, we also
1583 		 * accept any ICMP errors we generated for ourselves,
1584 		 * regardless of policy.  If we do not wish to make this
1585 		 * assumption in the future, check here, and where
1586 		 * IXAF_TRUSTED_ICMP is initialized in ip.c and ip6.c.
1587 		 */
1588 		if (ap == ira->ira_ipsec_action ||
1589 		    (ira->ira_flags & IRAF_TRUSTED_ICMP))
1590 			return (B_TRUE);
1591 
1592 		/* Deep compare necessary here?? */
1593 		*counter = DROPPER(ipss, ipds_spd_loopback_mismatch);
1594 		*reason = "loopback policy mismatch";
1595 		return (B_FALSE);
1596 	}
1597 	ASSERT(!(ira->ira_flags & IRAF_TRUSTED_ICMP));
1598 	ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1599 
1600 	ah_assoc = ira->ira_ipsec_ah_sa;
1601 	esp_assoc = ira->ira_ipsec_esp_sa;
1602 
1603 	decaps = (ira->ira_flags & IRAF_IPSEC_DECAPS);
1604 
1605 	switch (ap->ipa_act.ipa_type) {
1606 	case IPSEC_ACT_DISCARD:
1607 	case IPSEC_ACT_REJECT:
1608 		/* Should "fail hard" */
1609 		*counter = DROPPER(ipss, ipds_spd_explicit);
1610 		*reason = "blocked by policy";
1611 		return (B_FALSE);
1612 
1613 	case IPSEC_ACT_BYPASS:
1614 	case IPSEC_ACT_CLEAR:
1615 		*counter = DROPPER(ipss, ipds_spd_got_secure);
1616 		*reason = "expected clear, got protected";
1617 		return (B_FALSE);
1618 
1619 	case IPSEC_ACT_APPLY:
1620 		ipp = &ap->ipa_act.ipa_apply;
1621 		/*
1622 		 * As of now we do the simple checks of whether
1623 		 * the datagram has gone through the required IPSEC
1624 		 * protocol constraints or not. We might have more
1625 		 * in the future like sensitive levels, key bits, etc.
1626 		 * If it fails the constraints, check whether we would
1627 		 * have accepted this if it had come in clear.
1628 		 */
1629 		if (ipp->ipp_use_ah) {
1630 			if (ah_assoc == NULL) {
1631 				ret = ipsec_inbound_accept_clear(mp, ipha,
1632 				    ip6h);
1633 				*counter = DROPPER(ipss, ipds_spd_got_clear);
1634 				*reason = "unprotected not accepted";
1635 				break;
1636 			}
1637 			ASSERT(ah_assoc != NULL);
1638 			ASSERT(ipp->ipp_auth_alg != 0);
1639 
1640 			if (ah_assoc->ipsa_auth_alg !=
1641 			    ipp->ipp_auth_alg) {
1642 				*counter = DROPPER(ipss, ipds_spd_bad_ahalg);
1643 				*reason = "unacceptable ah alg";
1644 				ret = B_FALSE;
1645 				break;
1646 			}
1647 		} else if (ah_assoc != NULL) {
1648 			/*
1649 			 * Don't allow this. Check IPSEC NOTE above
1650 			 * ip_fanout_proto().
1651 			 */
1652 			*counter = DROPPER(ipss, ipds_spd_got_ah);
1653 			*reason = "unexpected AH";
1654 			ret = B_FALSE;
1655 			break;
1656 		}
1657 		if (ipp->ipp_use_esp) {
1658 			if (esp_assoc == NULL) {
1659 				ret = ipsec_inbound_accept_clear(mp, ipha,
1660 				    ip6h);
1661 				*counter = DROPPER(ipss, ipds_spd_got_clear);
1662 				*reason = "unprotected not accepted";
1663 				break;
1664 			}
1665 			ASSERT(esp_assoc != NULL);
1666 			ASSERT(ipp->ipp_encr_alg != 0);
1667 
1668 			if (esp_assoc->ipsa_encr_alg !=
1669 			    ipp->ipp_encr_alg) {
1670 				*counter = DROPPER(ipss, ipds_spd_bad_espealg);
1671 				*reason = "unacceptable esp alg";
1672 				ret = B_FALSE;
1673 				break;
1674 			}
1675 			/*
1676 			 * If the client does not need authentication,
1677 			 * we don't verify the alogrithm.
1678 			 */
1679 			if (ipp->ipp_use_espa) {
1680 				if (esp_assoc->ipsa_auth_alg !=
1681 				    ipp->ipp_esp_auth_alg) {
1682 					*counter = DROPPER(ipss,
1683 					    ipds_spd_bad_espaalg);
1684 					*reason = "unacceptable esp auth alg";
1685 					ret = B_FALSE;
1686 					break;
1687 				}
1688 			}
1689 		} else if (esp_assoc != NULL) {
1690 			/*
1691 			 * Don't allow this. Check IPSEC NOTE above
1692 			 * ip_fanout_proto().
1693 			 */
1694 			*counter = DROPPER(ipss, ipds_spd_got_esp);
1695 			*reason = "unexpected ESP";
1696 			ret = B_FALSE;
1697 			break;
1698 		}
1699 		if (ipp->ipp_use_se) {
1700 			if (!decaps) {
1701 				ret = ipsec_inbound_accept_clear(mp, ipha,
1702 				    ip6h);
1703 				if (!ret) {
1704 					/* XXX mutant? */
1705 					*counter = DROPPER(ipss,
1706 					    ipds_spd_bad_selfencap);
1707 					*reason = "self encap not found";
1708 					break;
1709 				}
1710 			}
1711 		} else if (decaps) {
1712 			/*
1713 			 * XXX If the packet comes in tunneled and the
1714 			 * recipient does not expect it to be tunneled, it
1715 			 * is okay. But we drop to be consistent with the
1716 			 * other cases.
1717 			 */
1718 			*counter = DROPPER(ipss, ipds_spd_got_selfencap);
1719 			*reason = "unexpected self encap";
1720 			ret = B_FALSE;
1721 			break;
1722 		}
1723 		if (ira->ira_ipsec_action != NULL) {
1724 			/*
1725 			 * This can happen if we do a double policy-check on
1726 			 * a packet
1727 			 * XXX XXX should fix this case!
1728 			 */
1729 			IPACT_REFRELE(ira->ira_ipsec_action);
1730 		}
1731 		ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1732 		ASSERT(ira->ira_ipsec_action == NULL);
1733 		IPACT_REFHOLD(ap);
1734 		ira->ira_ipsec_action = ap;
1735 		break;	/* from switch */
1736 	}
1737 	return (ret);
1738 }
1739 
1740 static boolean_t
1741 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1742 {
1743 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1744 	return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1745 	    ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1746 }
1747 
1748 /*
1749  * Takes a latched conn and an inbound packet and returns a unique_id suitable
1750  * for SA comparisons.  Most of the time we will copy from the conn_t, but
1751  * there are cases when the conn_t is latched but it has wildcard selectors,
1752  * and then we need to fallback to scooping them out of the packet.
1753  *
1754  * Assume we'll never have 0 with a conn_t present, so use 0 as a failure.  We
1755  * can get away with this because we only have non-zero ports/proto for
1756  * latched conn_ts.
1757  *
1758  * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
1759  * to not be a nice macro.
1760  */
1761 static uint64_t
1762 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
1763 {
1764 	ipsec_selector_t sel;
1765 	uint8_t ulp = connp->conn_proto;
1766 
1767 	ASSERT(connp->conn_latch_in_policy != NULL);
1768 
1769 	if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
1770 	    (connp->conn_fport == 0 || connp->conn_lport == 0)) {
1771 		/* Slow path - we gotta grab from the packet. */
1772 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
1773 		    SEL_NONE) != SELRET_SUCCESS) {
1774 			/* Failure -> have caller free packet with ENOMEM. */
1775 			return (0);
1776 		}
1777 		return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
1778 		    sel.ips_protocol, 0));
1779 	}
1780 
1781 #ifdef DEBUG_NOT_UNTIL_6478464
1782 	if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
1783 	    SELRET_SUCCESS) {
1784 		ASSERT(sel.ips_local_port == connp->conn_lport);
1785 		ASSERT(sel.ips_remote_port == connp->conn_fport);
1786 		ASSERT(sel.ips_protocol == connp->conn_proto);
1787 	}
1788 	ASSERT(connp->conn_proto != 0);
1789 #endif
1790 
1791 	return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
1792 }
1793 
1794 /*
1795  * Called to check policy on a latched connection.
1796  * Note that we don't dereference conn_latch or conn_ihere since the conn might
1797  * be closing. The caller passes a held ipsec_latch_t instead.
1798  */
1799 static boolean_t
1800 ipsec_check_ipsecin_latch(ip_recv_attr_t *ira, mblk_t *mp, ipsec_latch_t *ipl,
1801     ipsec_action_t *ap, ipha_t *ipha, ip6_t *ip6h, const char **reason,
1802     kstat_named_t **counter, conn_t *connp, netstack_t *ns)
1803 {
1804 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1805 
1806 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1807 	ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1808 
1809 	if (!(ira->ira_flags & IRAF_LOOPBACK)) {
1810 		/*
1811 		 * Over loopback, there aren't real security associations,
1812 		 * so there are neither identities nor "unique" values
1813 		 * for us to check the packet against.
1814 		 */
1815 		if (ira->ira_ipsec_ah_sa != NULL) {
1816 			if (!spd_match_inbound_ids(ipl,
1817 			    ira->ira_ipsec_ah_sa)) {
1818 				*counter = DROPPER(ipss, ipds_spd_ah_badid);
1819 				*reason = "AH identity mismatch";
1820 				return (B_FALSE);
1821 			}
1822 		}
1823 
1824 		if (ira->ira_ipsec_esp_sa != NULL) {
1825 			if (!spd_match_inbound_ids(ipl,
1826 			    ira->ira_ipsec_esp_sa)) {
1827 				*counter = DROPPER(ipss, ipds_spd_esp_badid);
1828 				*reason = "ESP identity mismatch";
1829 				return (B_FALSE);
1830 			}
1831 		}
1832 
1833 		/*
1834 		 * Can fudge pkt_unique from connp because we're latched.
1835 		 * In DEBUG kernels (see conn_to_unique()'s implementation),
1836 		 * verify this even if it REALLY slows things down.
1837 		 */
1838 		if (!ipsec_check_ipsecin_unique(ira, reason, counter,
1839 		    conn_to_unique(connp, mp, ipha, ip6h), ns)) {
1840 			return (B_FALSE);
1841 		}
1842 	}
1843 	return (ipsec_check_ipsecin_action(ira, mp, ap, ipha, ip6h, reason,
1844 	    counter, ns));
1845 }
1846 
1847 /*
1848  * Check to see whether this secured datagram meets the policy
1849  * constraints specified in ipsp.
1850  *
1851  * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1852  *
1853  * Consumes a reference to ipsp.
1854  * Returns the mblk if ok.
1855  */
1856 static mblk_t *
1857 ipsec_check_ipsecin_policy(mblk_t *data_mp, ipsec_policy_t *ipsp,
1858     ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, ip_recv_attr_t *ira,
1859     netstack_t *ns)
1860 {
1861 	ipsec_action_t *ap;
1862 	const char *reason = "no policy actions found";
1863 	ip_stack_t	*ipst = ns->netstack_ip;
1864 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1865 	kstat_named_t *counter;
1866 
1867 	counter = DROPPER(ipss, ipds_spd_got_secure);
1868 
1869 	ASSERT(ipsp != NULL);
1870 
1871 	ASSERT((ipha == NULL && ip6h != NULL) ||
1872 	    (ip6h == NULL && ipha != NULL));
1873 
1874 	if (ira->ira_flags & IRAF_LOOPBACK)
1875 		return (ipsec_check_loopback_policy(data_mp, ira, ipsp));
1876 
1877 	ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1878 
1879 	if (ira->ira_ipsec_action != NULL) {
1880 		/*
1881 		 * this can happen if we do a double policy-check on a packet
1882 		 * Would be nice to be able to delete this test..
1883 		 */
1884 		IPACT_REFRELE(ira->ira_ipsec_action);
1885 	}
1886 	ASSERT(ira->ira_ipsec_action == NULL);
1887 
1888 	if (!SA_IDS_MATCH(ira->ira_ipsec_ah_sa, ira->ira_ipsec_esp_sa)) {
1889 		reason = "inbound AH and ESP identities differ";
1890 		counter = DROPPER(ipss, ipds_spd_ahesp_diffid);
1891 		goto drop;
1892 	}
1893 
1894 	if (!ipsec_check_ipsecin_unique(ira, &reason, &counter, pkt_unique,
1895 	    ns))
1896 		goto drop;
1897 
1898 	/*
1899 	 * Ok, now loop through the possible actions and see if any
1900 	 * of them work for us.
1901 	 */
1902 
1903 	for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
1904 		if (ipsec_check_ipsecin_action(ira, data_mp, ap,
1905 		    ipha, ip6h, &reason, &counter, ns)) {
1906 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
1907 			IPPOL_REFRELE(ipsp);
1908 			return (data_mp);
1909 		}
1910 	}
1911 drop:
1912 	ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1913 	    "ipsec inbound policy mismatch: %s, packet dropped\n",
1914 	    reason);
1915 	IPPOL_REFRELE(ipsp);
1916 	ASSERT(ira->ira_ipsec_action == NULL);
1917 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
1918 	ip_drop_packet(data_mp, B_TRUE, NULL, counter,
1919 	    &ipss->ipsec_spd_dropper);
1920 	return (NULL);
1921 }
1922 
1923 /*
1924  * sleazy prefix-length-based compare.
1925  * another inlining candidate..
1926  */
1927 boolean_t
1928 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
1929 {
1930 	int offset = pfxlen>>3;
1931 	int bitsleft = pfxlen & 7;
1932 	uint8_t *addr2 = (uint8_t *)addr2p;
1933 
1934 	/*
1935 	 * and there was much evil..
1936 	 * XXX should inline-expand the bcmp here and do this 32 bits
1937 	 * or 64 bits at a time..
1938 	 */
1939 	return ((bcmp(addr1, addr2, offset) == 0) &&
1940 	    ((bitsleft == 0) ||
1941 	    (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0)));
1942 }
1943 
1944 static ipsec_policy_t *
1945 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
1946     ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
1947 {
1948 	ipsec_selkey_t *isel;
1949 	ipsec_policy_t *p;
1950 	int bpri = best ? best->ipsp_prio : 0;
1951 
1952 	for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
1953 		uint32_t valid;
1954 
1955 		if (p->ipsp_prio <= bpri)
1956 			continue;
1957 		isel = &p->ipsp_sel->ipsl_key;
1958 		valid = isel->ipsl_valid;
1959 
1960 		if ((valid & IPSL_PROTOCOL) &&
1961 		    (isel->ipsl_proto != sel->ips_protocol))
1962 			continue;
1963 
1964 		if ((valid & IPSL_REMOTE_ADDR) &&
1965 		    !ip_addr_match((uint8_t *)&isel->ipsl_remote,
1966 		    isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6))
1967 			continue;
1968 
1969 		if ((valid & IPSL_LOCAL_ADDR) &&
1970 		    !ip_addr_match((uint8_t *)&isel->ipsl_local,
1971 		    isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6))
1972 			continue;
1973 
1974 		if ((valid & IPSL_REMOTE_PORT) &&
1975 		    isel->ipsl_rport != sel->ips_remote_port)
1976 			continue;
1977 
1978 		if ((valid & IPSL_LOCAL_PORT) &&
1979 		    isel->ipsl_lport != sel->ips_local_port)
1980 			continue;
1981 
1982 		if (!is_icmp_inv_acq) {
1983 			if ((valid & IPSL_ICMP_TYPE) &&
1984 			    (isel->ipsl_icmp_type > sel->ips_icmp_type ||
1985 			    isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
1986 				continue;
1987 			}
1988 
1989 			if ((valid & IPSL_ICMP_CODE) &&
1990 			    (isel->ipsl_icmp_code > sel->ips_icmp_code ||
1991 			    isel->ipsl_icmp_code_end <
1992 			    sel->ips_icmp_code)) {
1993 				continue;
1994 			}
1995 		} else {
1996 			/*
1997 			 * special case for icmp inverse acquire
1998 			 * we only want policies that aren't drop/pass
1999 			 */
2000 			if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
2001 				continue;
2002 		}
2003 
2004 		/* we matched all the packet-port-field selectors! */
2005 		best = p;
2006 		bpri = p->ipsp_prio;
2007 	}
2008 
2009 	return (best);
2010 }
2011 
2012 /*
2013  * Try to find and return the best policy entry under a given policy
2014  * root for a given set of selectors; the first parameter "best" is
2015  * the current best policy so far.  If "best" is non-null, we have a
2016  * reference to it.  We return a reference to a policy; if that policy
2017  * is not the original "best", we need to release that reference
2018  * before returning.
2019  */
2020 ipsec_policy_t *
2021 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
2022     int direction, ipsec_selector_t *sel)
2023 {
2024 	ipsec_policy_t *curbest;
2025 	ipsec_policy_root_t *root;
2026 	uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
2027 	int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
2028 
2029 	curbest = best;
2030 	root = &head->iph_root[direction];
2031 
2032 #ifdef DEBUG
2033 	if (is_icmp_inv_acq) {
2034 		if (sel->ips_isv4) {
2035 			if (sel->ips_protocol != IPPROTO_ICMP) {
2036 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
2037 				    " expecting icmp, got %d",
2038 				    sel->ips_protocol);
2039 			}
2040 		} else {
2041 			if (sel->ips_protocol != IPPROTO_ICMPV6) {
2042 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
2043 				    " expecting icmpv6, got %d",
2044 				    sel->ips_protocol);
2045 			}
2046 		}
2047 	}
2048 #endif
2049 
2050 	rw_enter(&head->iph_lock, RW_READER);
2051 
2052 	if (root->ipr_nchains > 0) {
2053 		curbest = ipsec_find_policy_chain(curbest,
2054 		    root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
2055 		    is_icmp_inv_acq);
2056 	}
2057 	curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
2058 	    is_icmp_inv_acq);
2059 
2060 	/*
2061 	 * Adjust reference counts if we found anything new.
2062 	 */
2063 	if (curbest != best) {
2064 		ASSERT(curbest != NULL);
2065 		IPPOL_REFHOLD(curbest);
2066 
2067 		if (best != NULL) {
2068 			IPPOL_REFRELE(best);
2069 		}
2070 	}
2071 
2072 	rw_exit(&head->iph_lock);
2073 
2074 	return (curbest);
2075 }
2076 
2077 /*
2078  * Find the best system policy (either global or per-interface) which
2079  * applies to the given selector; look in all the relevant policy roots
2080  * to figure out which policy wins.
2081  *
2082  * Returns a reference to a policy; caller must release this
2083  * reference when done.
2084  */
2085 ipsec_policy_t *
2086 ipsec_find_policy(int direction, const conn_t *connp, ipsec_selector_t *sel,
2087     netstack_t *ns)
2088 {
2089 	ipsec_policy_t *p;
2090 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2091 
2092 	p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy,
2093 	    direction, sel);
2094 	if ((connp != NULL) && (connp->conn_policy != NULL)) {
2095 		p = ipsec_find_policy_head(p, connp->conn_policy,
2096 		    direction, sel);
2097 	}
2098 
2099 	return (p);
2100 }
2101 
2102 /*
2103  * Check with global policy and see whether this inbound
2104  * packet meets the policy constraints.
2105  *
2106  * Locate appropriate policy from global policy, supplemented by the
2107  * conn's configured and/or cached policy if the conn is supplied.
2108  *
2109  * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
2110  * encrypted packet to see if they match.
2111  *
2112  * Otherwise, see if the policy allows cleartext; if not, drop it on the
2113  * floor.
2114  */
2115 mblk_t *
2116 ipsec_check_global_policy(mblk_t *data_mp, conn_t *connp,
2117     ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira, netstack_t *ns)
2118 {
2119 	ipsec_policy_t *p;
2120 	ipsec_selector_t sel;
2121 	boolean_t policy_present;
2122 	kstat_named_t *counter;
2123 	uint64_t pkt_unique;
2124 	ip_stack_t	*ipst = ns->netstack_ip;
2125 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2126 
2127 	sel.ips_is_icmp_inv_acq = 0;
2128 
2129 	ASSERT((ipha == NULL && ip6h != NULL) ||
2130 	    (ip6h == NULL && ipha != NULL));
2131 
2132 	if (ipha != NULL)
2133 		policy_present = ipss->ipsec_inbound_v4_policy_present;
2134 	else
2135 		policy_present = ipss->ipsec_inbound_v6_policy_present;
2136 
2137 	if (!policy_present && connp == NULL) {
2138 		/*
2139 		 * No global policy and no per-socket policy;
2140 		 * just pass it back (but we shouldn't get here in that case)
2141 		 */
2142 		return (data_mp);
2143 	}
2144 
2145 	/*
2146 	 * If we have cached policy, use it.
2147 	 * Otherwise consult system policy.
2148 	 */
2149 	if ((connp != NULL) && (connp->conn_latch != NULL)) {
2150 		p = connp->conn_latch_in_policy;
2151 		if (p != NULL) {
2152 			IPPOL_REFHOLD(p);
2153 		}
2154 		/*
2155 		 * Fudge sel for UNIQUE_ID setting below.
2156 		 */
2157 		pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
2158 	} else {
2159 		/* Initialize the ports in the selector */
2160 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
2161 		    SEL_NONE) == SELRET_NOMEM) {
2162 			/*
2163 			 * Technically not a policy mismatch, but it is
2164 			 * an internal failure.
2165 			 */
2166 			ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2167 			    "ipsec_init_inbound_sel", ipha, ip6h, B_TRUE, ns);
2168 			counter = DROPPER(ipss, ipds_spd_nomem);
2169 			goto fail;
2170 		}
2171 
2172 		/*
2173 		 * Find the policy which best applies.
2174 		 *
2175 		 * If we find global policy, we should look at both
2176 		 * local policy and global policy and see which is
2177 		 * stronger and match accordingly.
2178 		 *
2179 		 * If we don't find a global policy, check with
2180 		 * local policy alone.
2181 		 */
2182 
2183 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
2184 		pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
2185 		    sel.ips_local_port, sel.ips_protocol, 0);
2186 	}
2187 
2188 	if (p == NULL) {
2189 		if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
2190 			/*
2191 			 * We have no policy; default to succeeding.
2192 			 * XXX paranoid system design doesn't do this.
2193 			 */
2194 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2195 			return (data_mp);
2196 		} else {
2197 			counter = DROPPER(ipss, ipds_spd_got_secure);
2198 			ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
2199 			    "ipsec_check_global_policy", ipha, ip6h, B_TRUE,
2200 			    ns);
2201 			goto fail;
2202 		}
2203 	}
2204 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2205 		return (ipsec_check_ipsecin_policy(data_mp, p, ipha, ip6h,
2206 		    pkt_unique, ira, ns));
2207 	}
2208 	if (p->ipsp_act->ipa_allow_clear) {
2209 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2210 		IPPOL_REFRELE(p);
2211 		return (data_mp);
2212 	}
2213 	IPPOL_REFRELE(p);
2214 	/*
2215 	 * If we reach here, we will drop the packet because it failed the
2216 	 * global policy check because the packet was cleartext, and it
2217 	 * should not have been.
2218 	 */
2219 	ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2220 	    "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns);
2221 	counter = DROPPER(ipss, ipds_spd_got_clear);
2222 
2223 fail:
2224 	ip_drop_packet(data_mp, B_TRUE, NULL, counter,
2225 	    &ipss->ipsec_spd_dropper);
2226 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2227 	return (NULL);
2228 }
2229 
2230 /*
2231  * We check whether an inbound datagram is a valid one
2232  * to accept in clear. If it is secure, it is the job
2233  * of IPSEC to log information appropriately if it
2234  * suspects that it may not be the real one.
2235  *
2236  * It is called only while fanning out to the ULP
2237  * where ULP accepts only secure data and the incoming
2238  * is clear. Usually we never accept clear datagrams in
2239  * such cases. ICMP is the only exception.
2240  *
2241  * NOTE : We don't call this function if the client (ULP)
2242  * is willing to accept things in clear.
2243  */
2244 boolean_t
2245 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2246 {
2247 	ushort_t iph_hdr_length;
2248 	icmph_t *icmph;
2249 	icmp6_t *icmp6;
2250 	uint8_t *nexthdrp;
2251 
2252 	ASSERT((ipha != NULL && ip6h == NULL) ||
2253 	    (ipha == NULL && ip6h != NULL));
2254 
2255 	if (ip6h != NULL) {
2256 		iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
2257 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
2258 		    &nexthdrp)) {
2259 			return (B_FALSE);
2260 		}
2261 		if (*nexthdrp != IPPROTO_ICMPV6)
2262 			return (B_FALSE);
2263 		icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
2264 		/* Match IPv6 ICMP policy as closely as IPv4 as possible. */
2265 		switch (icmp6->icmp6_type) {
2266 		case ICMP6_PARAM_PROB:
2267 			/* Corresponds to port/proto unreach in IPv4. */
2268 		case ICMP6_ECHO_REQUEST:
2269 			/* Just like IPv4. */
2270 			return (B_FALSE);
2271 
2272 		case MLD_LISTENER_QUERY:
2273 		case MLD_LISTENER_REPORT:
2274 		case MLD_LISTENER_REDUCTION:
2275 			/*
2276 			 * XXX Seperate NDD in IPv4 what about here?
2277 			 * Plus, mcast is important to ND.
2278 			 */
2279 		case ICMP6_DST_UNREACH:
2280 			/* Corresponds to HOST/NET unreachable in IPv4. */
2281 		case ICMP6_PACKET_TOO_BIG:
2282 		case ICMP6_ECHO_REPLY:
2283 			/* These are trusted in IPv4. */
2284 		case ND_ROUTER_SOLICIT:
2285 		case ND_ROUTER_ADVERT:
2286 		case ND_NEIGHBOR_SOLICIT:
2287 		case ND_NEIGHBOR_ADVERT:
2288 		case ND_REDIRECT:
2289 			/* Trust ND messages for now. */
2290 		case ICMP6_TIME_EXCEEDED:
2291 		default:
2292 			return (B_TRUE);
2293 		}
2294 	} else {
2295 		/*
2296 		 * If it is not ICMP, fail this request.
2297 		 */
2298 		if (ipha->ipha_protocol != IPPROTO_ICMP) {
2299 #ifdef FRAGCACHE_DEBUG
2300 			cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
2301 			    ipha->ipha_protocol);
2302 #endif
2303 			return (B_FALSE);
2304 		}
2305 		iph_hdr_length = IPH_HDR_LENGTH(ipha);
2306 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2307 		/*
2308 		 * It is an insecure icmp message. Check to see whether we are
2309 		 * willing to accept this one.
2310 		 */
2311 
2312 		switch (icmph->icmph_type) {
2313 		case ICMP_ECHO_REPLY:
2314 		case ICMP_TIME_STAMP_REPLY:
2315 		case ICMP_INFO_REPLY:
2316 		case ICMP_ROUTER_ADVERTISEMENT:
2317 			/*
2318 			 * We should not encourage clear replies if this
2319 			 * client expects secure. If somebody is replying
2320 			 * in clear some mailicious user watching both the
2321 			 * request and reply, can do chosen-plain-text attacks.
2322 			 * With global policy we might be just expecting secure
2323 			 * but sending out clear. We don't know what the right
2324 			 * thing is. We can't do much here as we can't control
2325 			 * the sender here. Till we are sure of what to do,
2326 			 * accept them.
2327 			 */
2328 			return (B_TRUE);
2329 		case ICMP_ECHO_REQUEST:
2330 		case ICMP_TIME_STAMP_REQUEST:
2331 		case ICMP_INFO_REQUEST:
2332 		case ICMP_ADDRESS_MASK_REQUEST:
2333 		case ICMP_ROUTER_SOLICITATION:
2334 		case ICMP_ADDRESS_MASK_REPLY:
2335 			/*
2336 			 * Don't accept this as somebody could be sending
2337 			 * us plain text to get encrypted data. If we reply,
2338 			 * it will lead to chosen plain text attack.
2339 			 */
2340 			return (B_FALSE);
2341 		case ICMP_DEST_UNREACHABLE:
2342 			switch (icmph->icmph_code) {
2343 			case ICMP_FRAGMENTATION_NEEDED:
2344 				/*
2345 				 * Be in sync with icmp_inbound, where we have
2346 				 * already set dce_pmtu
2347 				 */
2348 #ifdef FRAGCACHE_DEBUG
2349 			cmn_err(CE_WARN, "ICMP frag needed\n");
2350 #endif
2351 				return (B_TRUE);
2352 			case ICMP_HOST_UNREACHABLE:
2353 			case ICMP_NET_UNREACHABLE:
2354 				/*
2355 				 * By accepting, we could reset a connection.
2356 				 * How do we solve the problem of some
2357 				 * intermediate router sending in-secure ICMP
2358 				 * messages ?
2359 				 */
2360 				return (B_TRUE);
2361 			case ICMP_PORT_UNREACHABLE:
2362 			case ICMP_PROTOCOL_UNREACHABLE:
2363 			default :
2364 				return (B_FALSE);
2365 			}
2366 		case ICMP_SOURCE_QUENCH:
2367 			/*
2368 			 * If this is an attack, TCP will slow start
2369 			 * because of this. Is it very harmful ?
2370 			 */
2371 			return (B_TRUE);
2372 		case ICMP_PARAM_PROBLEM:
2373 			return (B_FALSE);
2374 		case ICMP_TIME_EXCEEDED:
2375 			return (B_TRUE);
2376 		case ICMP_REDIRECT:
2377 			return (B_FALSE);
2378 		default :
2379 			return (B_FALSE);
2380 		}
2381 	}
2382 }
2383 
2384 void
2385 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2386 {
2387 	mutex_enter(&ipl->ipl_lock);
2388 
2389 	if (ipl->ipl_ids_latched) {
2390 		/* I lost, someone else got here before me */
2391 		mutex_exit(&ipl->ipl_lock);
2392 		return;
2393 	}
2394 
2395 	if (local != NULL)
2396 		IPSID_REFHOLD(local);
2397 	if (remote != NULL)
2398 		IPSID_REFHOLD(remote);
2399 
2400 	ipl->ipl_local_cid = local;
2401 	ipl->ipl_remote_cid = remote;
2402 	ipl->ipl_ids_latched = B_TRUE;
2403 	mutex_exit(&ipl->ipl_lock);
2404 }
2405 
2406 void
2407 ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira)
2408 {
2409 	ipsa_t *sa;
2410 	ipsec_latch_t *ipl = connp->conn_latch;
2411 
2412 	if (!ipl->ipl_ids_latched) {
2413 		ipsid_t *local = NULL;
2414 		ipsid_t *remote = NULL;
2415 
2416 		if (!(ira->ira_flags & IRAF_LOOPBACK)) {
2417 			ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2418 			if (ira->ira_ipsec_esp_sa != NULL)
2419 				sa = ira->ira_ipsec_esp_sa;
2420 			else
2421 				sa = ira->ira_ipsec_ah_sa;
2422 			ASSERT(sa != NULL);
2423 			local = sa->ipsa_dst_cid;
2424 			remote = sa->ipsa_src_cid;
2425 		}
2426 		ipsec_latch_ids(ipl, local, remote);
2427 	}
2428 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2429 		if (connp->conn_latch_in_action != NULL) {
2430 			/*
2431 			 * Previously cached action.  This is probably
2432 			 * harmless, but in DEBUG kernels, check for
2433 			 * action equality.
2434 			 *
2435 			 * Preserve the existing action to preserve latch
2436 			 * invariance.
2437 			 */
2438 			ASSERT(connp->conn_latch_in_action ==
2439 			    ira->ira_ipsec_action);
2440 			return;
2441 		}
2442 		connp->conn_latch_in_action = ira->ira_ipsec_action;
2443 		IPACT_REFHOLD(connp->conn_latch_in_action);
2444 	}
2445 }
2446 
2447 /*
2448  * Check whether the policy constraints are met either for an
2449  * inbound datagram; called from IP in numerous places.
2450  *
2451  * Note that this is not a chokepoint for inbound policy checks;
2452  * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
2453  */
2454 mblk_t *
2455 ipsec_check_inbound_policy(mblk_t *mp, conn_t *connp,
2456     ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira)
2457 {
2458 	boolean_t	ret;
2459 	ipsec_latch_t	*ipl;
2460 	ipsec_action_t	*ap;
2461 	uint64_t	unique_id;
2462 	ipsec_stack_t	*ipss;
2463 	ip_stack_t	*ipst;
2464 	netstack_t	*ns;
2465 	ipsec_policy_head_t *policy_head;
2466 	ipsec_policy_t	*p = NULL;
2467 
2468 	ASSERT(connp != NULL);
2469 	ns = connp->conn_netstack;
2470 	ipss = ns->netstack_ipsec;
2471 	ipst = ns->netstack_ip;
2472 
2473 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
2474 		/*
2475 		 * This is the case where the incoming datagram is
2476 		 * cleartext and we need to see whether this client
2477 		 * would like to receive such untrustworthy things from
2478 		 * the wire.
2479 		 */
2480 		ASSERT(mp != NULL);
2481 
2482 		mutex_enter(&connp->conn_lock);
2483 		if (connp->conn_state_flags & CONN_CONDEMNED) {
2484 			mutex_exit(&connp->conn_lock);
2485 			ip_drop_packet(mp, B_TRUE, NULL,
2486 			    DROPPER(ipss, ipds_spd_got_clear),
2487 			    &ipss->ipsec_spd_dropper);
2488 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2489 			return (NULL);
2490 		}
2491 		if (connp->conn_latch != NULL) {
2492 			/* Hold a reference in case the conn is closing */
2493 			p = connp->conn_latch_in_policy;
2494 			if (p != NULL)
2495 				IPPOL_REFHOLD(p);
2496 			mutex_exit(&connp->conn_lock);
2497 			/*
2498 			 * Policy is cached in the conn.
2499 			 */
2500 			if (p != NULL && !p->ipsp_act->ipa_allow_clear) {
2501 				ret = ipsec_inbound_accept_clear(mp,
2502 				    ipha, ip6h);
2503 				if (ret) {
2504 					BUMP_MIB(&ipst->ips_ip_mib,
2505 					    ipsecInSucceeded);
2506 					IPPOL_REFRELE(p);
2507 					return (mp);
2508 				} else {
2509 					ipsec_log_policy_failure(
2510 					    IPSEC_POLICY_MISMATCH,
2511 					    "ipsec_check_inbound_policy", ipha,
2512 					    ip6h, B_FALSE, ns);
2513 					ip_drop_packet(mp, B_TRUE, NULL,
2514 					    DROPPER(ipss, ipds_spd_got_clear),
2515 					    &ipss->ipsec_spd_dropper);
2516 					BUMP_MIB(&ipst->ips_ip_mib,
2517 					    ipsecInFailed);
2518 					IPPOL_REFRELE(p);
2519 					return (NULL);
2520 				}
2521 			} else {
2522 				BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2523 				if (p != NULL)
2524 					IPPOL_REFRELE(p);
2525 				return (mp);
2526 			}
2527 		} else {
2528 			policy_head = connp->conn_policy;
2529 
2530 			/* Hold a reference in case the conn is closing */
2531 			if (policy_head != NULL)
2532 				IPPH_REFHOLD(policy_head);
2533 			mutex_exit(&connp->conn_lock);
2534 			/*
2535 			 * As this is a non-hardbound connection we need
2536 			 * to look at both per-socket policy and global
2537 			 * policy.
2538 			 */
2539 			mp = ipsec_check_global_policy(mp, connp,
2540 			    ipha, ip6h, ira, ns);
2541 			if (policy_head != NULL)
2542 				IPPH_REFRELE(policy_head, ns);
2543 			return (mp);
2544 		}
2545 	}
2546 
2547 	mutex_enter(&connp->conn_lock);
2548 	/* Connection is closing */
2549 	if (connp->conn_state_flags & CONN_CONDEMNED) {
2550 		mutex_exit(&connp->conn_lock);
2551 		ip_drop_packet(mp, B_TRUE, NULL,
2552 		    DROPPER(ipss, ipds_spd_got_clear),
2553 		    &ipss->ipsec_spd_dropper);
2554 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2555 		return (NULL);
2556 	}
2557 
2558 	/*
2559 	 * Once a connection is latched it remains so for life, the conn_latch
2560 	 * pointer on the conn has not changed, simply initializing ipl here
2561 	 * as the earlier initialization was done only in the cleartext case.
2562 	 */
2563 	if ((ipl = connp->conn_latch) == NULL) {
2564 		mblk_t *retmp;
2565 		policy_head = connp->conn_policy;
2566 
2567 		/* Hold a reference in case the conn is closing */
2568 		if (policy_head != NULL)
2569 			IPPH_REFHOLD(policy_head);
2570 		mutex_exit(&connp->conn_lock);
2571 		/*
2572 		 * We don't have policies cached in the conn
2573 		 * for this stream. So, look at the global
2574 		 * policy. It will check against conn or global
2575 		 * depending on whichever is stronger.
2576 		 */
2577 		retmp = ipsec_check_global_policy(mp, connp,
2578 		    ipha, ip6h, ira, ns);
2579 		if (policy_head != NULL)
2580 			IPPH_REFRELE(policy_head, ns);
2581 		return (retmp);
2582 	}
2583 
2584 	IPLATCH_REFHOLD(ipl);
2585 	/* Hold reference on conn_latch_in_action in case conn is closing */
2586 	ap = connp->conn_latch_in_action;
2587 	if (ap != NULL)
2588 		IPACT_REFHOLD(ap);
2589 	mutex_exit(&connp->conn_lock);
2590 
2591 	if (ap != NULL) {
2592 		/* Policy is cached & latched; fast(er) path */
2593 		const char *reason;
2594 		kstat_named_t *counter;
2595 
2596 		if (ipsec_check_ipsecin_latch(ira, mp, ipl, ap,
2597 		    ipha, ip6h, &reason, &counter, connp, ns)) {
2598 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2599 			IPLATCH_REFRELE(ipl);
2600 			IPACT_REFRELE(ap);
2601 			return (mp);
2602 		}
2603 		ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0,
2604 		    SL_ERROR|SL_WARN|SL_CONSOLE,
2605 		    "ipsec inbound policy mismatch: %s, packet dropped\n",
2606 		    reason);
2607 		ip_drop_packet(mp, B_TRUE, NULL, counter,
2608 		    &ipss->ipsec_spd_dropper);
2609 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2610 		IPLATCH_REFRELE(ipl);
2611 		IPACT_REFRELE(ap);
2612 		return (NULL);
2613 	}
2614 	if ((p = connp->conn_latch_in_policy) == NULL) {
2615 		ipsec_weird_null_inbound_policy++;
2616 		IPLATCH_REFRELE(ipl);
2617 		return (mp);
2618 	}
2619 
2620 	unique_id = conn_to_unique(connp, mp, ipha, ip6h);
2621 	IPPOL_REFHOLD(p);
2622 	mp = ipsec_check_ipsecin_policy(mp, p, ipha, ip6h, unique_id, ira, ns);
2623 	/*
2624 	 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2625 	 * ipsec_check_ipsecin_policy().
2626 	 */
2627 	if (mp != NULL)
2628 		ipsec_latch_inbound(connp, ira);
2629 	IPLATCH_REFRELE(ipl);
2630 	return (mp);
2631 }
2632 
2633 /*
2634  * Handle all sorts of cases like tunnel-mode and ICMP.
2635  */
2636 static int
2637 prepended_length(mblk_t *mp, uintptr_t hptr)
2638 {
2639 	int rc = 0;
2640 
2641 	while (mp != NULL) {
2642 		if (hptr >= (uintptr_t)mp->b_rptr && hptr <
2643 		    (uintptr_t)mp->b_wptr) {
2644 			rc += (int)(hptr - (uintptr_t)mp->b_rptr);
2645 			break;	/* out of while loop */
2646 		}
2647 		rc += (int)MBLKL(mp);
2648 		mp = mp->b_cont;
2649 	}
2650 
2651 	if (mp == NULL) {
2652 		/*
2653 		 * IF (big IF) we make it here by naturally exiting the loop,
2654 		 * then ip6h isn't in the mblk chain "mp" at all.
2655 		 *
2656 		 * The only case where this happens is with a reversed IP
2657 		 * header that gets passed up by inbound ICMP processing.
2658 		 * This unfortunately triggers longstanding bug 6478464.  For
2659 		 * now, just pass up 0 for the answer.
2660 		 */
2661 #ifdef DEBUG_NOT_UNTIL_6478464
2662 		ASSERT(mp != NULL);
2663 #endif
2664 		rc = 0;
2665 	}
2666 
2667 	return (rc);
2668 }
2669 
2670 /*
2671  * Returns:
2672  *
2673  * SELRET_NOMEM --> msgpullup() needed to gather things failed.
2674  * SELRET_BADPKT --> If we're being called after tunnel-mode fragment
2675  *		     gathering, the initial fragment is too short for
2676  *		     useful data.  Only returned if SEL_TUNNEL_FIRSTFRAG is
2677  *		     set.
2678  * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
2679  * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet.  Caller
2680  *		      should put this packet in a fragment-gathering queue.
2681  *		      Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
2682  *		      is set.
2683  *
2684  * Note that ipha/ip6h can be in a different mblk (mp->b_cont) in the case
2685  * of tunneled packets.
2686  * Also, mp->b_rptr can be an ICMP error where ipha/ip6h is the packet in
2687  * error past the ICMP error.
2688  */
2689 static selret_t
2690 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2691     ip6_t *ip6h, uint8_t sel_flags)
2692 {
2693 	uint16_t *ports;
2694 	int outer_hdr_len = 0;	/* For ICMP or tunnel-mode cases... */
2695 	ushort_t hdr_len;
2696 	mblk_t *spare_mp = NULL;
2697 	uint8_t *nexthdrp, *transportp;
2698 	uint8_t nexthdr;
2699 	uint8_t icmp_proto;
2700 	ip_pkt_t ipp;
2701 	boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
2702 	boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
2703 	boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
2704 	boolean_t post_frag = (sel_flags & SEL_POST_FRAG);
2705 
2706 	ASSERT((ipha == NULL && ip6h != NULL) ||
2707 	    (ipha != NULL && ip6h == NULL));
2708 
2709 	if (ip6h != NULL) {
2710 		outer_hdr_len = prepended_length(mp, (uintptr_t)ip6h);
2711 		nexthdr = ip6h->ip6_nxt;
2712 		icmp_proto = IPPROTO_ICMPV6;
2713 		sel->ips_isv4 = B_FALSE;
2714 		sel->ips_local_addr_v6 = ip6h->ip6_dst;
2715 		sel->ips_remote_addr_v6 = ip6h->ip6_src;
2716 
2717 		bzero(&ipp, sizeof (ipp));
2718 
2719 		switch (nexthdr) {
2720 		case IPPROTO_HOPOPTS:
2721 		case IPPROTO_ROUTING:
2722 		case IPPROTO_DSTOPTS:
2723 		case IPPROTO_FRAGMENT:
2724 			/*
2725 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2726 			 * mblk that's contiguous to feed it
2727 			 */
2728 			if ((spare_mp = msgpullup(mp, -1)) == NULL)
2729 				return (SELRET_NOMEM);
2730 			if (!ip_hdr_length_nexthdr_v6(spare_mp,
2731 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2732 			    &hdr_len, &nexthdrp)) {
2733 				/* Malformed packet - caller frees. */
2734 				ipsec_freemsg_chain(spare_mp);
2735 				return (SELRET_BADPKT);
2736 			}
2737 			/* Repopulate now that we have the whole packet */
2738 			ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
2739 			(void) ip_find_hdr_v6(spare_mp, ip6h, B_FALSE, &ipp,
2740 			    NULL);
2741 			nexthdr = *nexthdrp;
2742 			/* We can just extract based on hdr_len now. */
2743 			break;
2744 		default:
2745 			(void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
2746 			hdr_len = IPV6_HDR_LEN;
2747 			break;
2748 		}
2749 		if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
2750 			/* IPv6 Fragment */
2751 			ipsec_freemsg_chain(spare_mp);
2752 			return (SELRET_TUNFRAG);
2753 		}
2754 		transportp = (uint8_t *)ip6h + hdr_len;
2755 	} else {
2756 		outer_hdr_len = prepended_length(mp, (uintptr_t)ipha);
2757 		icmp_proto = IPPROTO_ICMP;
2758 		sel->ips_isv4 = B_TRUE;
2759 		sel->ips_local_addr_v4 = ipha->ipha_dst;
2760 		sel->ips_remote_addr_v4 = ipha->ipha_src;
2761 		nexthdr = ipha->ipha_protocol;
2762 		hdr_len = IPH_HDR_LENGTH(ipha);
2763 
2764 		if (port_policy_present &&
2765 		    IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
2766 		    !is_icmp) {
2767 			/* IPv4 Fragment */
2768 			ipsec_freemsg_chain(spare_mp);
2769 			return (SELRET_TUNFRAG);
2770 		}
2771 		transportp = (uint8_t *)ipha + hdr_len;
2772 	}
2773 	sel->ips_protocol = nexthdr;
2774 
2775 	if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2776 	    nexthdr != IPPROTO_SCTP && nexthdr != icmp_proto) ||
2777 	    (!port_policy_present && !post_frag && tunnel_mode)) {
2778 		sel->ips_remote_port = sel->ips_local_port = 0;
2779 		ipsec_freemsg_chain(spare_mp);
2780 		return (SELRET_SUCCESS);
2781 	}
2782 
2783 	if (transportp + 4 > mp->b_wptr) {
2784 		/* If we didn't pullup a copy already, do so now. */
2785 		/*
2786 		 * XXX performance, will upper-layers frequently split TCP/UDP
2787 		 * apart from IP or options?  If so, perhaps we should revisit
2788 		 * the spare_mp strategy.
2789 		 */
2790 		ipsec_hdr_pullup_needed++;
2791 		if (spare_mp == NULL &&
2792 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2793 			return (SELRET_NOMEM);
2794 		}
2795 		transportp = &spare_mp->b_rptr[hdr_len + outer_hdr_len];
2796 	}
2797 
2798 	if (nexthdr == icmp_proto) {
2799 		sel->ips_icmp_type = *transportp++;
2800 		sel->ips_icmp_code = *transportp;
2801 		sel->ips_remote_port = sel->ips_local_port = 0;
2802 	} else {
2803 		ports = (uint16_t *)transportp;
2804 		sel->ips_remote_port = *ports++;
2805 		sel->ips_local_port = *ports;
2806 	}
2807 	ipsec_freemsg_chain(spare_mp);
2808 	return (SELRET_SUCCESS);
2809 }
2810 
2811 /*
2812  * This is called with a b_next chain of messages from the fragcache code,
2813  * hence it needs to discard a chain on error.
2814  */
2815 static boolean_t
2816 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2817     ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss)
2818 {
2819 	/*
2820 	 * XXX cut&paste shared with ipsec_init_inbound_sel
2821 	 */
2822 	uint16_t *ports;
2823 	ushort_t hdr_len;
2824 	mblk_t *spare_mp = NULL;
2825 	uint8_t *nexthdrp;
2826 	uint8_t nexthdr;
2827 	uint8_t *typecode;
2828 	uint8_t check_proto;
2829 
2830 	ASSERT((ipha == NULL && ip6h != NULL) ||
2831 	    (ipha != NULL && ip6h == NULL));
2832 
2833 	if (ip6h != NULL) {
2834 		check_proto = IPPROTO_ICMPV6;
2835 		nexthdr = ip6h->ip6_nxt;
2836 		switch (nexthdr) {
2837 		case IPPROTO_HOPOPTS:
2838 		case IPPROTO_ROUTING:
2839 		case IPPROTO_DSTOPTS:
2840 		case IPPROTO_FRAGMENT:
2841 			/*
2842 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2843 			 * mblk that's contiguous to feed it
2844 			 */
2845 			spare_mp = msgpullup(mp, -1);
2846 			if (spare_mp == NULL ||
2847 			    !ip_hdr_length_nexthdr_v6(spare_mp,
2848 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2849 			    &hdr_len, &nexthdrp)) {
2850 				/* Always works, even if NULL. */
2851 				ipsec_freemsg_chain(spare_mp);
2852 				ip_drop_packet_chain(mp, B_FALSE, NULL,
2853 				    DROPPER(ipss, ipds_spd_nomem),
2854 				    &ipss->ipsec_spd_dropper);
2855 				return (B_FALSE);
2856 			} else {
2857 				nexthdr = *nexthdrp;
2858 				/* We can just extract based on hdr_len now. */
2859 			}
2860 			break;
2861 		default:
2862 			hdr_len = IPV6_HDR_LEN;
2863 			break;
2864 		}
2865 	} else {
2866 		check_proto = IPPROTO_ICMP;
2867 		hdr_len = IPH_HDR_LENGTH(ipha);
2868 		nexthdr = ipha->ipha_protocol;
2869 	}
2870 
2871 	sel->ips_protocol = nexthdr;
2872 	if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2873 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2874 		sel->ips_local_port = sel->ips_remote_port = 0;
2875 		ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2876 		return (B_TRUE);
2877 	}
2878 
2879 	if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
2880 		/* If we didn't pullup a copy already, do so now. */
2881 		/*
2882 		 * XXX performance, will upper-layers frequently split TCP/UDP
2883 		 * apart from IP or options?  If so, perhaps we should revisit
2884 		 * the spare_mp strategy.
2885 		 *
2886 		 * XXX should this be msgpullup(mp, hdr_len+4) ???
2887 		 */
2888 		if (spare_mp == NULL &&
2889 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2890 			ip_drop_packet_chain(mp, B_FALSE, NULL,
2891 			    DROPPER(ipss, ipds_spd_nomem),
2892 			    &ipss->ipsec_spd_dropper);
2893 			return (B_FALSE);
2894 		}
2895 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2896 	} else {
2897 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2898 	}
2899 
2900 	if (nexthdr == check_proto) {
2901 		typecode = (uint8_t *)ports;
2902 		sel->ips_icmp_type = *typecode++;
2903 		sel->ips_icmp_code = *typecode;
2904 		sel->ips_remote_port = sel->ips_local_port = 0;
2905 	} else {
2906 		sel->ips_local_port = *ports++;
2907 		sel->ips_remote_port = *ports;
2908 	}
2909 	ipsec_freemsg_chain(spare_mp);	/* Always works, even if NULL */
2910 	return (B_TRUE);
2911 }
2912 
2913 /*
2914  * Prepend an mblk with a ipsec_crypto_t to the message chain.
2915  * Frees the argument and returns NULL should the allocation fail.
2916  * Returns the pointer to the crypto data part.
2917  */
2918 mblk_t *
2919 ipsec_add_crypto_data(mblk_t *data_mp, ipsec_crypto_t **icp)
2920 {
2921 	mblk_t	*mp;
2922 
2923 	mp = allocb(sizeof (ipsec_crypto_t), BPRI_MED);
2924 	if (mp == NULL) {
2925 		freemsg(data_mp);
2926 		return (NULL);
2927 	}
2928 	bzero(mp->b_rptr, sizeof (ipsec_crypto_t));
2929 	mp->b_wptr += sizeof (ipsec_crypto_t);
2930 	mp->b_cont = data_mp;
2931 	mp->b_datap->db_type = M_EVENT;	/* For ASSERT */
2932 	*icp = (ipsec_crypto_t *)mp->b_rptr;
2933 	return (mp);
2934 }
2935 
2936 /*
2937  * Remove what was prepended above. Return b_cont and a pointer to the
2938  * crypto data.
2939  * The caller must call ipsec_free_crypto_data for mblk once it is done
2940  * with the crypto data.
2941  */
2942 mblk_t *
2943 ipsec_remove_crypto_data(mblk_t *crypto_mp, ipsec_crypto_t **icp)
2944 {
2945 	ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
2946 	ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
2947 
2948 	*icp = (ipsec_crypto_t *)crypto_mp->b_rptr;
2949 	return (crypto_mp->b_cont);
2950 }
2951 
2952 /*
2953  * Free what was prepended above. Return b_cont.
2954  */
2955 mblk_t *
2956 ipsec_free_crypto_data(mblk_t *crypto_mp)
2957 {
2958 	mblk_t	*mp;
2959 
2960 	ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
2961 	ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
2962 
2963 	mp = crypto_mp->b_cont;
2964 	freeb(crypto_mp);
2965 	return (mp);
2966 }
2967 
2968 /*
2969  * Create an ipsec_action_t based on the way an inbound packet was protected.
2970  * Used to reflect traffic back to a sender.
2971  *
2972  * We don't bother interning the action into the hash table.
2973  */
2974 ipsec_action_t *
2975 ipsec_in_to_out_action(ip_recv_attr_t *ira)
2976 {
2977 	ipsa_t *ah_assoc, *esp_assoc;
2978 	uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2979 	ipsec_action_t *ap;
2980 	boolean_t unique;
2981 
2982 	ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2983 
2984 	if (ap == NULL)
2985 		return (NULL);
2986 
2987 	bzero(ap, sizeof (*ap));
2988 	HASH_NULL(ap, ipa_hash);
2989 	ap->ipa_next = NULL;
2990 	ap->ipa_refs = 1;
2991 
2992 	/*
2993 	 * Get the algorithms that were used for this packet.
2994 	 */
2995 	ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2996 	ap->ipa_act.ipa_log = 0;
2997 	ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2998 
2999 	ah_assoc = ira->ira_ipsec_ah_sa;
3000 	ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
3001 
3002 	esp_assoc = ira->ira_ipsec_esp_sa;
3003 	ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
3004 
3005 	if (esp_assoc != NULL) {
3006 		encr_alg = esp_assoc->ipsa_encr_alg;
3007 		espa_alg = esp_assoc->ipsa_auth_alg;
3008 		ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
3009 	}
3010 	if (ah_assoc != NULL)
3011 		auth_alg = ah_assoc->ipsa_auth_alg;
3012 
3013 	ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
3014 	ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
3015 	ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
3016 	ap->ipa_act.ipa_apply.ipp_use_se =
3017 	    !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
3018 	unique = B_FALSE;
3019 
3020 	if (esp_assoc != NULL) {
3021 		ap->ipa_act.ipa_apply.ipp_espa_minbits =
3022 		    esp_assoc->ipsa_authkeybits;
3023 		ap->ipa_act.ipa_apply.ipp_espa_maxbits =
3024 		    esp_assoc->ipsa_authkeybits;
3025 		ap->ipa_act.ipa_apply.ipp_espe_minbits =
3026 		    esp_assoc->ipsa_encrkeybits;
3027 		ap->ipa_act.ipa_apply.ipp_espe_maxbits =
3028 		    esp_assoc->ipsa_encrkeybits;
3029 		ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
3030 		ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
3031 		if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
3032 			unique = B_TRUE;
3033 	}
3034 	if (ah_assoc != NULL) {
3035 		ap->ipa_act.ipa_apply.ipp_ah_minbits =
3036 		    ah_assoc->ipsa_authkeybits;
3037 		ap->ipa_act.ipa_apply.ipp_ah_maxbits =
3038 		    ah_assoc->ipsa_authkeybits;
3039 		ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
3040 		ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
3041 		if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
3042 			unique = B_TRUE;
3043 	}
3044 	ap->ipa_act.ipa_apply.ipp_use_unique = unique;
3045 	ap->ipa_want_unique = unique;
3046 	ap->ipa_allow_clear = B_FALSE;
3047 	ap->ipa_want_se = !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
3048 	ap->ipa_want_ah = (ah_assoc != NULL);
3049 	ap->ipa_want_esp = (esp_assoc != NULL);
3050 
3051 	ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
3052 
3053 	ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
3054 
3055 	return (ap);
3056 }
3057 
3058 
3059 /*
3060  * Compute the worst-case amount of extra space required by an action.
3061  * Note that, because of the ESP considerations listed below, this is
3062  * actually not the same as the best-case reduction in the MTU; in the
3063  * future, we should pass additional information to this function to
3064  * allow the actual MTU impact to be computed.
3065  *
3066  * AH: Revisit this if we implement algorithms with
3067  * a verifier size of more than 12 bytes.
3068  *
3069  * ESP: A more exact but more messy computation would take into
3070  * account the interaction between the cipher block size and the
3071  * effective MTU, yielding the inner payload size which reflects a
3072  * packet with *minimum* ESP padding..
3073  */
3074 int32_t
3075 ipsec_act_ovhd(const ipsec_act_t *act)
3076 {
3077 	int32_t overhead = 0;
3078 
3079 	if (act->ipa_type == IPSEC_ACT_APPLY) {
3080 		const ipsec_prot_t *ipp = &act->ipa_apply;
3081 
3082 		if (ipp->ipp_use_ah)
3083 			overhead += IPSEC_MAX_AH_HDR_SIZE;
3084 		if (ipp->ipp_use_esp) {
3085 			overhead += IPSEC_MAX_ESP_HDR_SIZE;
3086 			overhead += sizeof (struct udphdr);
3087 		}
3088 		if (ipp->ipp_use_se)
3089 			overhead += IP_SIMPLE_HDR_LENGTH;
3090 	}
3091 	return (overhead);
3092 }
3093 
3094 /*
3095  * This hash function is used only when creating policies and thus is not
3096  * performance-critical for packet flows.
3097  *
3098  * Future work: canonicalize the structures hashed with this (i.e.,
3099  * zeroize padding) so the hash works correctly.
3100  */
3101 /* ARGSUSED */
3102 static uint32_t
3103 policy_hash(int size, const void *start, const void *end)
3104 {
3105 	return (0);
3106 }
3107 
3108 
3109 /*
3110  * Hash function macros for each address type.
3111  *
3112  * The IPV6 hash function assumes that the low order 32-bits of the
3113  * address (typically containing the low order 24 bits of the mac
3114  * address) are reasonably well-distributed.  Revisit this if we run
3115  * into trouble from lots of collisions on ::1 addresses and the like
3116  * (seems unlikely).
3117  */
3118 #define	IPSEC_IPV4_HASH(a, n) ((a) % (n))
3119 #define	IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
3120 
3121 /*
3122  * These two hash functions should produce coordinated values
3123  * but have slightly different roles.
3124  */
3125 static uint32_t
3126 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns)
3127 {
3128 	uint32_t valid = selkey->ipsl_valid;
3129 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3130 
3131 	if (!(valid & IPSL_REMOTE_ADDR))
3132 		return (IPSEC_SEL_NOHASH);
3133 
3134 	if (valid & IPSL_IPV4) {
3135 		if (selkey->ipsl_remote_pfxlen == 32) {
3136 			return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3137 			    ipss->ipsec_spd_hashsize));
3138 		}
3139 	}
3140 	if (valid & IPSL_IPV6) {
3141 		if (selkey->ipsl_remote_pfxlen == 128) {
3142 			return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3143 			    ipss->ipsec_spd_hashsize));
3144 		}
3145 	}
3146 	return (IPSEC_SEL_NOHASH);
3147 }
3148 
3149 static uint32_t
3150 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
3151 {
3152 	if (sel->ips_isv4) {
3153 		return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
3154 		    root->ipr_nchains));
3155 	}
3156 	return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
3157 }
3158 
3159 /*
3160  * Intern actions into the action hash table.
3161  */
3162 ipsec_action_t *
3163 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns)
3164 {
3165 	int i;
3166 	uint32_t hval;
3167 	ipsec_action_t *ap;
3168 	ipsec_action_t *prev = NULL;
3169 	int32_t overhead, maxovhd = 0;
3170 	boolean_t allow_clear = B_FALSE;
3171 	boolean_t want_ah = B_FALSE;
3172 	boolean_t want_esp = B_FALSE;
3173 	boolean_t want_se = B_FALSE;
3174 	boolean_t want_unique = B_FALSE;
3175 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3176 
3177 	/*
3178 	 * TODO: should canonicalize a[] (i.e., zeroize any padding)
3179 	 * so we can use a non-trivial policy_hash function.
3180 	 */
3181 	ap = NULL;
3182 	for (i = n-1; i >= 0; i--) {
3183 		hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
3184 
3185 		HASH_LOCK(ipss->ipsec_action_hash, hval);
3186 
3187 		for (HASH_ITERATE(ap, ipa_hash,
3188 		    ipss->ipsec_action_hash, hval)) {
3189 			if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
3190 				continue;
3191 			if (ap->ipa_next != prev)
3192 				continue;
3193 			break;
3194 		}
3195 		if (ap != NULL) {
3196 			HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3197 			prev = ap;
3198 			continue;
3199 		}
3200 		/*
3201 		 * need to allocate a new one..
3202 		 */
3203 		ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
3204 		if (ap == NULL) {
3205 			HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3206 			if (prev != NULL)
3207 				ipsec_action_free(prev);
3208 			return (NULL);
3209 		}
3210 		HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval);
3211 
3212 		ap->ipa_next = prev;
3213 		ap->ipa_act = a[i];
3214 
3215 		overhead = ipsec_act_ovhd(&a[i]);
3216 		if (maxovhd < overhead)
3217 			maxovhd = overhead;
3218 
3219 		if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
3220 		    (a[i].ipa_type == IPSEC_ACT_CLEAR))
3221 			allow_clear = B_TRUE;
3222 		if (a[i].ipa_type == IPSEC_ACT_APPLY) {
3223 			const ipsec_prot_t *ipp = &a[i].ipa_apply;
3224 
3225 			ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
3226 			want_ah |= ipp->ipp_use_ah;
3227 			want_esp |= ipp->ipp_use_esp;
3228 			want_se |= ipp->ipp_use_se;
3229 			want_unique |= ipp->ipp_use_unique;
3230 		}
3231 		ap->ipa_allow_clear = allow_clear;
3232 		ap->ipa_want_ah = want_ah;
3233 		ap->ipa_want_esp = want_esp;
3234 		ap->ipa_want_se = want_se;
3235 		ap->ipa_want_unique = want_unique;
3236 		ap->ipa_refs = 1; /* from the hash table */
3237 		ap->ipa_ovhd = maxovhd;
3238 		if (prev)
3239 			prev->ipa_refs++;
3240 		prev = ap;
3241 		HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3242 	}
3243 
3244 	ap->ipa_refs++;		/* caller's reference */
3245 
3246 	return (ap);
3247 }
3248 
3249 /*
3250  * Called when refcount goes to 0, indicating that all references to this
3251  * node are gone.
3252  *
3253  * This does not unchain the action from the hash table.
3254  */
3255 void
3256 ipsec_action_free(ipsec_action_t *ap)
3257 {
3258 	for (;;) {
3259 		ipsec_action_t *np = ap->ipa_next;
3260 		ASSERT(ap->ipa_refs == 0);
3261 		ASSERT(ap->ipa_hash.hash_pp == NULL);
3262 		kmem_cache_free(ipsec_action_cache, ap);
3263 		ap = np;
3264 		/* Inlined IPACT_REFRELE -- avoid recursion */
3265 		if (ap == NULL)
3266 			break;
3267 		membar_exit();
3268 		if (atomic_dec_32_nv(&(ap)->ipa_refs) != 0)
3269 			break;
3270 		/* End inlined IPACT_REFRELE */
3271 	}
3272 }
3273 
3274 /*
3275  * Called when the action hash table goes away.
3276  *
3277  * The actions can be queued on an mblk with ipsec_in or
3278  * ipsec_out, hence the actions might still be around.
3279  * But we decrement ipa_refs here since we no longer have
3280  * a reference to the action from the hash table.
3281  */
3282 static void
3283 ipsec_action_free_table(ipsec_action_t *ap)
3284 {
3285 	while (ap != NULL) {
3286 		ipsec_action_t *np = ap->ipa_next;
3287 
3288 		/* FIXME: remove? */
3289 		(void) printf("ipsec_action_free_table(%p) ref %d\n",
3290 		    (void *)ap, ap->ipa_refs);
3291 		ASSERT(ap->ipa_refs > 0);
3292 		IPACT_REFRELE(ap);
3293 		ap = np;
3294 	}
3295 }
3296 
3297 /*
3298  * Need to walk all stack instances since the reclaim function
3299  * is global for all instances
3300  */
3301 /* ARGSUSED */
3302 static void
3303 ipsec_action_reclaim(void *arg)
3304 {
3305 	netstack_handle_t nh;
3306 	netstack_t *ns;
3307 	ipsec_stack_t *ipss;
3308 
3309 	netstack_next_init(&nh);
3310 	while ((ns = netstack_next(&nh)) != NULL) {
3311 		/*
3312 		 * netstack_next() can return a netstack_t with a NULL
3313 		 * netstack_ipsec at boot time.
3314 		 */
3315 		if ((ipss = ns->netstack_ipsec) == NULL) {
3316 			netstack_rele(ns);
3317 			continue;
3318 		}
3319 		ipsec_action_reclaim_stack(ipss);
3320 		netstack_rele(ns);
3321 	}
3322 	netstack_next_fini(&nh);
3323 }
3324 
3325 /*
3326  * Periodically sweep action hash table for actions with refcount==1, and
3327  * nuke them.  We cannot do this "on demand" (i.e., from IPACT_REFRELE)
3328  * because we can't close the race between another thread finding the action
3329  * in the hash table without holding the bucket lock during IPACT_REFRELE.
3330  * Instead, we run this function sporadically to clean up after ourselves;
3331  * we also set it as the "reclaim" function for the action kmem_cache.
3332  *
3333  * Note that it may take several passes of ipsec_action_gc() to free all
3334  * "stale" actions.
3335  */
3336 static void
3337 ipsec_action_reclaim_stack(ipsec_stack_t *ipss)
3338 {
3339 	int i;
3340 
3341 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
3342 		ipsec_action_t *ap, *np;
3343 
3344 		/* skip the lock if nobody home */
3345 		if (ipss->ipsec_action_hash[i].hash_head == NULL)
3346 			continue;
3347 
3348 		HASH_LOCK(ipss->ipsec_action_hash, i);
3349 		for (ap = ipss->ipsec_action_hash[i].hash_head;
3350 		    ap != NULL; ap = np) {
3351 			ASSERT(ap->ipa_refs > 0);
3352 			np = ap->ipa_hash.hash_next;
3353 			if (ap->ipa_refs > 1)
3354 				continue;
3355 			HASH_UNCHAIN(ap, ipa_hash,
3356 			    ipss->ipsec_action_hash, i);
3357 			IPACT_REFRELE(ap);
3358 		}
3359 		HASH_UNLOCK(ipss->ipsec_action_hash, i);
3360 	}
3361 }
3362 
3363 /*
3364  * Intern a selector set into the selector set hash table.
3365  * This is simpler than the actions case..
3366  */
3367 static ipsec_sel_t *
3368 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns)
3369 {
3370 	ipsec_sel_t *sp;
3371 	uint32_t hval, bucket;
3372 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3373 
3374 	/*
3375 	 * Exactly one AF bit should be set in selkey.
3376 	 */
3377 	ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
3378 	    !(selkey->ipsl_valid & IPSL_IPV6));
3379 
3380 	hval = selkey_hash(selkey, ns);
3381 	/* Set pol_hval to uninitialized until we put it in a polhead. */
3382 	selkey->ipsl_sel_hval = hval;
3383 
3384 	bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
3385 
3386 	ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket));
3387 	HASH_LOCK(ipss->ipsec_sel_hash, bucket);
3388 
3389 	for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) {
3390 		if (bcmp(&sp->ipsl_key, selkey,
3391 		    offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
3392 			break;
3393 	}
3394 	if (sp != NULL) {
3395 		sp->ipsl_refs++;
3396 
3397 		HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3398 		return (sp);
3399 	}
3400 
3401 	sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
3402 	if (sp == NULL) {
3403 		HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3404 		return (NULL);
3405 	}
3406 
3407 	HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket);
3408 	sp->ipsl_refs = 2;	/* one for hash table, one for caller */
3409 	sp->ipsl_key = *selkey;
3410 	/* Set to uninitalized and have insertion into polhead fix things. */
3411 	if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
3412 		sp->ipsl_key.ipsl_pol_hval = 0;
3413 	else
3414 		sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
3415 
3416 	HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3417 
3418 	return (sp);
3419 }
3420 
3421 static void
3422 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns)
3423 {
3424 	ipsec_sel_t *sp = *spp;
3425 	int hval = sp->ipsl_key.ipsl_sel_hval;
3426 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3427 
3428 	*spp = NULL;
3429 
3430 	if (hval == IPSEC_SEL_NOHASH)
3431 		hval = 0;
3432 
3433 	ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval));
3434 	HASH_LOCK(ipss->ipsec_sel_hash, hval);
3435 	if (--sp->ipsl_refs == 1) {
3436 		HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval);
3437 		sp->ipsl_refs--;
3438 		HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3439 		ASSERT(sp->ipsl_refs == 0);
3440 		kmem_cache_free(ipsec_sel_cache, sp);
3441 		/* Caller unlocks */
3442 		return;
3443 	}
3444 
3445 	HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3446 }
3447 
3448 /*
3449  * Free a policy rule which we know is no longer being referenced.
3450  */
3451 void
3452 ipsec_policy_free(ipsec_policy_t *ipp)
3453 {
3454 	ASSERT(ipp->ipsp_refs == 0);
3455 	ASSERT(ipp->ipsp_sel != NULL);
3456 	ASSERT(ipp->ipsp_act != NULL);
3457 	ASSERT(ipp->ipsp_netstack != NULL);
3458 
3459 	ipsec_sel_rel(&ipp->ipsp_sel, ipp->ipsp_netstack);
3460 	IPACT_REFRELE(ipp->ipsp_act);
3461 	kmem_cache_free(ipsec_pol_cache, ipp);
3462 }
3463 
3464 /*
3465  * Construction of new policy rules; construct a policy, and add it to
3466  * the appropriate tables.
3467  */
3468 ipsec_policy_t *
3469 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
3470     int nacts, int prio, uint64_t *index_ptr, netstack_t *ns)
3471 {
3472 	ipsec_action_t *ap;
3473 	ipsec_sel_t *sp;
3474 	ipsec_policy_t *ipp;
3475 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3476 
3477 	if (index_ptr == NULL)
3478 		index_ptr = &ipss->ipsec_next_policy_index;
3479 
3480 	ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
3481 	ap = ipsec_act_find(a, nacts, ns);
3482 	sp = ipsec_find_sel(keys, ns);
3483 
3484 	if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
3485 		if (ap != NULL) {
3486 			IPACT_REFRELE(ap);
3487 		}
3488 		if (sp != NULL)
3489 			ipsec_sel_rel(&sp, ns);
3490 		if (ipp != NULL)
3491 			kmem_cache_free(ipsec_pol_cache, ipp);
3492 		return (NULL);
3493 	}
3494 
3495 	HASH_NULL(ipp, ipsp_hash);
3496 
3497 	ipp->ipsp_netstack = ns;	/* Needed for ipsec_policy_free */
3498 	ipp->ipsp_refs = 1;	/* caller's reference */
3499 	ipp->ipsp_sel = sp;
3500 	ipp->ipsp_act = ap;
3501 	ipp->ipsp_prio = prio;	/* rule priority */
3502 	ipp->ipsp_index = *index_ptr;
3503 	(*index_ptr)++;
3504 
3505 	return (ipp);
3506 }
3507 
3508 static void
3509 ipsec_update_present_flags(ipsec_stack_t *ipss)
3510 {
3511 	boolean_t hashpol;
3512 
3513 	hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0);
3514 
3515 	if (hashpol) {
3516 		ipss->ipsec_outbound_v4_policy_present = B_TRUE;
3517 		ipss->ipsec_outbound_v6_policy_present = B_TRUE;
3518 		ipss->ipsec_inbound_v4_policy_present = B_TRUE;
3519 		ipss->ipsec_inbound_v6_policy_present = B_TRUE;
3520 		return;
3521 	}
3522 
3523 	ipss->ipsec_outbound_v4_policy_present = (NULL !=
3524 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3525 	    ipr_nonhash[IPSEC_AF_V4]);
3526 	ipss->ipsec_outbound_v6_policy_present = (NULL !=
3527 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3528 	    ipr_nonhash[IPSEC_AF_V6]);
3529 	ipss->ipsec_inbound_v4_policy_present = (NULL !=
3530 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3531 	    ipr_nonhash[IPSEC_AF_V4]);
3532 	ipss->ipsec_inbound_v6_policy_present = (NULL !=
3533 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3534 	    ipr_nonhash[IPSEC_AF_V6]);
3535 }
3536 
3537 boolean_t
3538 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir,
3539     netstack_t *ns)
3540 {
3541 	ipsec_sel_t *sp;
3542 	ipsec_policy_t *ip, *nip, *head;
3543 	int af;
3544 	ipsec_policy_root_t *pr = &php->iph_root[dir];
3545 
3546 	sp = ipsec_find_sel(keys, ns);
3547 
3548 	if (sp == NULL)
3549 		return (B_FALSE);
3550 
3551 	af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
3552 
3553 	rw_enter(&php->iph_lock, RW_WRITER);
3554 
3555 	if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
3556 		head = pr->ipr_nonhash[af];
3557 	} else {
3558 		head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
3559 	}
3560 
3561 	for (ip = head; ip != NULL; ip = nip) {
3562 		nip = ip->ipsp_hash.hash_next;
3563 		if (ip->ipsp_sel != sp) {
3564 			continue;
3565 		}
3566 
3567 		IPPOL_UNCHAIN(php, ip);
3568 
3569 		php->iph_gen++;
3570 		ipsec_update_present_flags(ns->netstack_ipsec);
3571 
3572 		rw_exit(&php->iph_lock);
3573 
3574 		ipsec_sel_rel(&sp, ns);
3575 
3576 		return (B_TRUE);
3577 	}
3578 
3579 	rw_exit(&php->iph_lock);
3580 	ipsec_sel_rel(&sp, ns);
3581 	return (B_FALSE);
3582 }
3583 
3584 int
3585 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index,
3586     netstack_t *ns)
3587 {
3588 	boolean_t found = B_FALSE;
3589 	ipsec_policy_t ipkey;
3590 	ipsec_policy_t *ip;
3591 	avl_index_t where;
3592 
3593 	bzero(&ipkey, sizeof (ipkey));
3594 	ipkey.ipsp_index = policy_index;
3595 
3596 	rw_enter(&php->iph_lock, RW_WRITER);
3597 
3598 	/*
3599 	 * We could be cleverer here about the walk.
3600 	 * but well, (k+1)*log(N) will do for now (k==number of matches,
3601 	 * N==number of table entries
3602 	 */
3603 	for (;;) {
3604 		ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
3605 		    (void *)&ipkey, &where);
3606 		ASSERT(ip == NULL);
3607 
3608 		ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
3609 
3610 		if (ip == NULL)
3611 			break;
3612 
3613 		if (ip->ipsp_index != policy_index) {
3614 			ASSERT(ip->ipsp_index > policy_index);
3615 			break;
3616 		}
3617 
3618 		IPPOL_UNCHAIN(php, ip);
3619 		found = B_TRUE;
3620 	}
3621 
3622 	if (found) {
3623 		php->iph_gen++;
3624 		ipsec_update_present_flags(ns->netstack_ipsec);
3625 	}
3626 
3627 	rw_exit(&php->iph_lock);
3628 
3629 	return (found ? 0 : ENOENT);
3630 }
3631 
3632 /*
3633  * Given a constructed ipsec_policy_t policy rule, see if it can be entered
3634  * into the correct policy ruleset.  As a side-effect, it sets the hash
3635  * entries on "ipp"'s ipsp_pol_hval.
3636  *
3637  * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
3638  * duplicate policy exists with exactly the same selectors), or an icmp
3639  * rule exists with a different encryption/authentication action.
3640  */
3641 boolean_t
3642 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3643 {
3644 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3645 	int af = -1;
3646 	ipsec_policy_t *p2, *head;
3647 	uint8_t check_proto;
3648 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3649 	uint32_t	valid = selkey->ipsl_valid;
3650 
3651 	if (valid & IPSL_IPV6) {
3652 		ASSERT(!(valid & IPSL_IPV4));
3653 		af = IPSEC_AF_V6;
3654 		check_proto = IPPROTO_ICMPV6;
3655 	} else {
3656 		ASSERT(valid & IPSL_IPV4);
3657 		af = IPSEC_AF_V4;
3658 		check_proto = IPPROTO_ICMP;
3659 	}
3660 
3661 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3662 
3663 	/*
3664 	 * Double-check that we don't have any duplicate selectors here.
3665 	 * Because selectors are interned below, we need only compare pointers
3666 	 * for equality.
3667 	 */
3668 	if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
3669 		head = pr->ipr_nonhash[af];
3670 	} else {
3671 		selkey->ipsl_pol_hval =
3672 		    (selkey->ipsl_valid & IPSL_IPV4) ?
3673 		    IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3674 		    pr->ipr_nchains) :
3675 		    IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3676 		    pr->ipr_nchains);
3677 
3678 		head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
3679 	}
3680 
3681 	for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3682 		if (p2->ipsp_sel == ipp->ipsp_sel)
3683 			return (B_FALSE);
3684 	}
3685 
3686 	/*
3687 	 * If it's ICMP and not a drop or pass rule, run through the ICMP
3688 	 * rules and make sure the action is either new or the same as any
3689 	 * other actions.  We don't have to check the full chain because
3690 	 * discard and bypass will override all other actions
3691 	 */
3692 
3693 	if (valid & IPSL_PROTOCOL &&
3694 	    selkey->ipsl_proto == check_proto &&
3695 	    (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3696 
3697 		for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3698 
3699 			if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3700 			    p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3701 			    (p2->ipsp_act->ipa_act.ipa_type ==
3702 			    IPSEC_ACT_APPLY)) {
3703 				return (ipsec_compare_action(p2, ipp));
3704 			}
3705 		}
3706 	}
3707 
3708 	return (B_TRUE);
3709 }
3710 
3711 /*
3712  * compare the action chains of two policies for equality
3713  * B_TRUE -> effective equality
3714  */
3715 
3716 static boolean_t
3717 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3718 {
3719 
3720 	ipsec_action_t *act1, *act2;
3721 
3722 	/* We have a valid rule. Let's compare the actions */
3723 	if (p1->ipsp_act == p2->ipsp_act) {
3724 		/* same action. We are good */
3725 		return (B_TRUE);
3726 	}
3727 
3728 	/* we have to walk the chain */
3729 
3730 	act1 = p1->ipsp_act;
3731 	act2 = p2->ipsp_act;
3732 
3733 	while (act1 != NULL && act2 != NULL) {
3734 
3735 		/* otherwise, Are we close enough? */
3736 		if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3737 		    act1->ipa_want_ah != act2->ipa_want_ah ||
3738 		    act1->ipa_want_esp != act2->ipa_want_esp ||
3739 		    act1->ipa_want_se != act2->ipa_want_se) {
3740 			/* Nope, we aren't */
3741 			return (B_FALSE);
3742 		}
3743 
3744 		if (act1->ipa_want_ah) {
3745 			if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3746 			    act2->ipa_act.ipa_apply.ipp_auth_alg) {
3747 				return (B_FALSE);
3748 			}
3749 
3750 			if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3751 			    act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3752 			    act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3753 			    act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3754 				return (B_FALSE);
3755 			}
3756 		}
3757 
3758 		if (act1->ipa_want_esp) {
3759 			if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3760 			    act2->ipa_act.ipa_apply.ipp_use_esp ||
3761 			    act1->ipa_act.ipa_apply.ipp_use_espa !=
3762 			    act2->ipa_act.ipa_apply.ipp_use_espa) {
3763 				return (B_FALSE);
3764 			}
3765 
3766 			if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3767 				if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3768 				    act2->ipa_act.ipa_apply.ipp_encr_alg) {
3769 					return (B_FALSE);
3770 				}
3771 
3772 				if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3773 				    act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3774 				    act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3775 				    act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3776 					return (B_FALSE);
3777 				}
3778 			}
3779 
3780 			if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3781 				if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3782 				    act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3783 					return (B_FALSE);
3784 				}
3785 
3786 				if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3787 				    act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3788 				    act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3789 				    act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3790 					return (B_FALSE);
3791 				}
3792 			}
3793 
3794 		}
3795 
3796 		act1 = act1->ipa_next;
3797 		act2 = act2->ipa_next;
3798 	}
3799 
3800 	if (act1 != NULL || act2 != NULL) {
3801 		return (B_FALSE);
3802 	}
3803 
3804 	return (B_TRUE);
3805 }
3806 
3807 
3808 /*
3809  * Given a constructed ipsec_policy_t policy rule, enter it into
3810  * the correct policy ruleset.
3811  *
3812  * ipsec_check_policy() is assumed to have succeeded first (to check for
3813  * duplicates).
3814  */
3815 void
3816 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction,
3817     netstack_t *ns)
3818 {
3819 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3820 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3821 	uint32_t valid = selkey->ipsl_valid;
3822 	uint32_t hval = selkey->ipsl_pol_hval;
3823 	int af = -1;
3824 
3825 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3826 
3827 	if (valid & IPSL_IPV6) {
3828 		ASSERT(!(valid & IPSL_IPV4));
3829 		af = IPSEC_AF_V6;
3830 	} else {
3831 		ASSERT(valid & IPSL_IPV4);
3832 		af = IPSEC_AF_V4;
3833 	}
3834 
3835 	php->iph_gen++;
3836 
3837 	if (hval == IPSEC_SEL_NOHASH) {
3838 		HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3839 	} else {
3840 		HASH_LOCK(pr->ipr_hash, hval);
3841 		HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3842 		HASH_UNLOCK(pr->ipr_hash, hval);
3843 	}
3844 
3845 	ipsec_insert_always(&php->iph_rulebyid, ipp);
3846 
3847 	ipsec_update_present_flags(ns->netstack_ipsec);
3848 }
3849 
3850 static void
3851 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr)
3852 {
3853 	ipsec_policy_t *ip, *nip;
3854 	int af, chain, nchain;
3855 
3856 	for (af = 0; af < IPSEC_NAF; af++) {
3857 		for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3858 			nip = ip->ipsp_hash.hash_next;
3859 			IPPOL_UNCHAIN(php, ip);
3860 		}
3861 		ipr->ipr_nonhash[af] = NULL;
3862 	}
3863 	nchain = ipr->ipr_nchains;
3864 
3865 	for (chain = 0; chain < nchain; chain++) {
3866 		for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3867 		    ip = nip) {
3868 			nip = ip->ipsp_hash.hash_next;
3869 			IPPOL_UNCHAIN(php, ip);
3870 		}
3871 		ipr->ipr_hash[chain].hash_head = NULL;
3872 	}
3873 }
3874 
3875 /*
3876  * Create and insert inbound or outbound policy associated with actp for the
3877  * address family fam into the policy head ph.  Returns B_TRUE if policy was
3878  * inserted, and B_FALSE otherwise.
3879  */
3880 boolean_t
3881 ipsec_polhead_insert(ipsec_policy_head_t *ph, ipsec_act_t *actp, uint_t nact,
3882     int fam, int ptype, netstack_t *ns)
3883 {
3884 	ipsec_selkey_t		sel;
3885 	ipsec_policy_t		*pol;
3886 	ipsec_policy_root_t	*pr;
3887 
3888 	bzero(&sel, sizeof (sel));
3889 	sel.ipsl_valid = (fam == IPSEC_AF_V4 ? IPSL_IPV4 : IPSL_IPV6);
3890 	if ((pol = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET,
3891 	    NULL, ns)) != NULL) {
3892 		pr = &ph->iph_root[ptype];
3893 		HASHLIST_INSERT(pol, ipsp_hash, pr->ipr_nonhash[fam]);
3894 		ipsec_insert_always(&ph->iph_rulebyid, pol);
3895 	}
3896 	return (pol != NULL);
3897 }
3898 
3899 void
3900 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns)
3901 {
3902 	int dir;
3903 
3904 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3905 
3906 	for (dir = 0; dir < IPSEC_NTYPES; dir++)
3907 		ipsec_ipr_flush(php, &php->iph_root[dir]);
3908 
3909 	php->iph_gen++;
3910 	ipsec_update_present_flags(ns->netstack_ipsec);
3911 }
3912 
3913 void
3914 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns)
3915 {
3916 	int dir;
3917 
3918 	ASSERT(php->iph_refs == 0);
3919 
3920 	rw_enter(&php->iph_lock, RW_WRITER);
3921 	ipsec_polhead_flush(php, ns);
3922 	rw_exit(&php->iph_lock);
3923 	rw_destroy(&php->iph_lock);
3924 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
3925 		ipsec_policy_root_t *ipr = &php->iph_root[dir];
3926 		int chain;
3927 
3928 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
3929 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
3930 
3931 	}
3932 	ipsec_polhead_free_table(php);
3933 	kmem_free(php, sizeof (*php));
3934 }
3935 
3936 static void
3937 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3938 {
3939 	int af;
3940 
3941 	ipr->ipr_nchains = 0;
3942 	ipr->ipr_hash = NULL;
3943 
3944 	for (af = 0; af < IPSEC_NAF; af++) {
3945 		ipr->ipr_nonhash[af] = NULL;
3946 	}
3947 }
3948 
3949 ipsec_policy_head_t *
3950 ipsec_polhead_create(void)
3951 {
3952 	ipsec_policy_head_t *php;
3953 
3954 	php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3955 	if (php == NULL)
3956 		return (php);
3957 
3958 	rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3959 	php->iph_refs = 1;
3960 	php->iph_gen = 0;
3961 
3962 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3963 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3964 
3965 	avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3966 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3967 
3968 	return (php);
3969 }
3970 
3971 /*
3972  * Clone the policy head into a new polhead; release one reference to the
3973  * old one and return the only reference to the new one.
3974  * If the old one had a refcount of 1, just return it.
3975  */
3976 ipsec_policy_head_t *
3977 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns)
3978 {
3979 	ipsec_policy_head_t *nphp;
3980 
3981 	if (php == NULL)
3982 		return (ipsec_polhead_create());
3983 	else if (php->iph_refs == 1)
3984 		return (php);
3985 
3986 	nphp = ipsec_polhead_create();
3987 	if (nphp == NULL)
3988 		return (NULL);
3989 
3990 	if (ipsec_copy_polhead(php, nphp, ns) != 0) {
3991 		ipsec_polhead_free(nphp, ns);
3992 		return (NULL);
3993 	}
3994 	IPPH_REFRELE(php, ns);
3995 	return (nphp);
3996 }
3997 
3998 /*
3999  * When sending a response to a ICMP request or generating a RST
4000  * in the TCP case, the outbound packets need to go at the same level
4001  * of protection as the incoming ones i.e we associate our outbound
4002  * policy with how the packet came in. We call this after we have
4003  * accepted the incoming packet which may or may not have been in
4004  * clear and hence we are sending the reply back with the policy
4005  * matching the incoming datagram's policy.
4006  *
4007  * NOTE : This technology serves two purposes :
4008  *
4009  * 1) If we have multiple outbound policies, we send out a reply
4010  *    matching with how it came in rather than matching the outbound
4011  *    policy.
4012  *
4013  * 2) For assymetric policies, we want to make sure that incoming
4014  *    and outgoing has the same level of protection. Assymetric
4015  *    policies exist only with global policy where we may not have
4016  *    both outbound and inbound at the same time.
4017  *
4018  * NOTE2:	This function is called by cleartext cases, so it needs to be
4019  *		in IP proper.
4020  *
4021  * Note: the caller has moved other parts of ira into ixa already.
4022  */
4023 boolean_t
4024 ipsec_in_to_out(ip_recv_attr_t *ira, ip_xmit_attr_t *ixa, mblk_t *data_mp,
4025     ipha_t *ipha, ip6_t *ip6h)
4026 {
4027 	ipsec_selector_t sel;
4028 	ipsec_action_t	*reflect_action = NULL;
4029 	netstack_t	*ns = ixa->ixa_ipst->ips_netstack;
4030 
4031 	bzero((void*)&sel, sizeof (sel));
4032 
4033 	if (ira->ira_ipsec_action != NULL) {
4034 		/* transfer reference.. */
4035 		reflect_action = ira->ira_ipsec_action;
4036 		ira->ira_ipsec_action = NULL;
4037 	} else if (!(ira->ira_flags & IRAF_LOOPBACK))
4038 		reflect_action = ipsec_in_to_out_action(ira);
4039 
4040 	/*
4041 	 * The caller is going to send the datagram out which might
4042 	 * go on the wire or delivered locally through ire_send_local.
4043 	 *
4044 	 * 1) If it goes out on the wire, new associations will be
4045 	 *    obtained.
4046 	 * 2) If it is delivered locally, ire_send_local will convert
4047 	 *    this ip_xmit_attr_t back to a ip_recv_attr_t looking at the
4048 	 *    requests.
4049 	 */
4050 	ixa->ixa_ipsec_action = reflect_action;
4051 
4052 	if (!ipsec_init_outbound_ports(&sel, data_mp, ipha, ip6h, 0,
4053 	    ns->netstack_ipsec)) {
4054 		/* Note: data_mp already consumed and ip_drop_packet done */
4055 		return (B_FALSE);
4056 	}
4057 	ixa->ixa_ipsec_src_port = sel.ips_local_port;
4058 	ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4059 	ixa->ixa_ipsec_proto = sel.ips_protocol;
4060 	ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4061 	ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4062 
4063 	/*
4064 	 * Don't use global policy for this, as we want
4065 	 * to use the same protection that was applied to the inbound packet.
4066 	 * Thus we set IXAF_NO_IPSEC is it arrived in the clear to make
4067 	 * it be sent in the clear.
4068 	 */
4069 	if (ira->ira_flags & IRAF_IPSEC_SECURE)
4070 		ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4071 	else
4072 		ixa->ixa_flags |= IXAF_NO_IPSEC;
4073 
4074 	return (B_TRUE);
4075 }
4076 
4077 void
4078 ipsec_out_release_refs(ip_xmit_attr_t *ixa)
4079 {
4080 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
4081 		return;
4082 
4083 	if (ixa->ixa_ipsec_ah_sa != NULL) {
4084 		IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
4085 		ixa->ixa_ipsec_ah_sa = NULL;
4086 	}
4087 	if (ixa->ixa_ipsec_esp_sa != NULL) {
4088 		IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
4089 		ixa->ixa_ipsec_esp_sa = NULL;
4090 	}
4091 	if (ixa->ixa_ipsec_policy != NULL) {
4092 		IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4093 		ixa->ixa_ipsec_policy = NULL;
4094 	}
4095 	if (ixa->ixa_ipsec_action != NULL) {
4096 		IPACT_REFRELE(ixa->ixa_ipsec_action);
4097 		ixa->ixa_ipsec_action = NULL;
4098 	}
4099 	if (ixa->ixa_ipsec_latch) {
4100 		IPLATCH_REFRELE(ixa->ixa_ipsec_latch);
4101 		ixa->ixa_ipsec_latch = NULL;
4102 	}
4103 	/* Clear the soft references to the SAs */
4104 	ixa->ixa_ipsec_ref[0].ipsr_sa = NULL;
4105 	ixa->ixa_ipsec_ref[0].ipsr_bucket = NULL;
4106 	ixa->ixa_ipsec_ref[0].ipsr_gen = 0;
4107 	ixa->ixa_ipsec_ref[1].ipsr_sa = NULL;
4108 	ixa->ixa_ipsec_ref[1].ipsr_bucket = NULL;
4109 	ixa->ixa_ipsec_ref[1].ipsr_gen = 0;
4110 	ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4111 }
4112 
4113 void
4114 ipsec_in_release_refs(ip_recv_attr_t *ira)
4115 {
4116 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
4117 		return;
4118 
4119 	if (ira->ira_ipsec_ah_sa != NULL) {
4120 		IPSA_REFRELE(ira->ira_ipsec_ah_sa);
4121 		ira->ira_ipsec_ah_sa = NULL;
4122 	}
4123 	if (ira->ira_ipsec_esp_sa != NULL) {
4124 		IPSA_REFRELE(ira->ira_ipsec_esp_sa);
4125 		ira->ira_ipsec_esp_sa = NULL;
4126 	}
4127 	if (ira->ira_ipsec_action != NULL) {
4128 		IPACT_REFRELE(ira->ira_ipsec_action);
4129 		ira->ira_ipsec_action = NULL;
4130 	}
4131 
4132 	ira->ira_flags &= ~IRAF_IPSEC_SECURE;
4133 }
4134 
4135 /*
4136  * This is called from ire_send_local when a packet
4137  * is looped back. We setup the ip_recv_attr_t "borrowing" the references
4138  * held by the callers.
4139  * Note that we don't do any IPsec but we carry the actions and IPSEC flags
4140  * across so that the fanout policy checks see that IPsec was applied.
4141  *
4142  * The caller should do ipsec_in_release_refs() on the ira by calling
4143  * ira_cleanup().
4144  */
4145 void
4146 ipsec_out_to_in(ip_xmit_attr_t *ixa, ill_t *ill, ip_recv_attr_t *ira)
4147 {
4148 	ipsec_policy_t *pol;
4149 	ipsec_action_t *act;
4150 
4151 	/* Non-IPsec operations */
4152 	ira->ira_free_flags = 0;
4153 	ira->ira_zoneid = ixa->ixa_zoneid;
4154 	ira->ira_cred = ixa->ixa_cred;
4155 	ira->ira_cpid = ixa->ixa_cpid;
4156 	ira->ira_tsl = ixa->ixa_tsl;
4157 	ira->ira_ill = ira->ira_rill = ill;
4158 	ira->ira_flags = ixa->ixa_flags & IAF_MASK;
4159 	ira->ira_no_loop_zoneid = ixa->ixa_no_loop_zoneid;
4160 	ira->ira_pktlen = ixa->ixa_pktlen;
4161 	ira->ira_ip_hdr_length = ixa->ixa_ip_hdr_length;
4162 	ira->ira_protocol = ixa->ixa_protocol;
4163 	ira->ira_mhip = NULL;
4164 
4165 	ira->ira_flags |= IRAF_LOOPBACK | IRAF_L2SRC_LOOPBACK;
4166 
4167 	ira->ira_sqp = ixa->ixa_sqp;
4168 	ira->ira_ring = NULL;
4169 
4170 	ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
4171 	ira->ira_rifindex = ira->ira_ruifindex;
4172 
4173 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
4174 		return;
4175 
4176 	ira->ira_flags |= IRAF_IPSEC_SECURE;
4177 
4178 	ira->ira_ipsec_ah_sa = NULL;
4179 	ira->ira_ipsec_esp_sa = NULL;
4180 
4181 	act = ixa->ixa_ipsec_action;
4182 	if (act == NULL) {
4183 		pol = ixa->ixa_ipsec_policy;
4184 		if (pol != NULL) {
4185 			act = pol->ipsp_act;
4186 			IPACT_REFHOLD(act);
4187 		}
4188 	}
4189 	ixa->ixa_ipsec_action = NULL;
4190 	ira->ira_ipsec_action = act;
4191 }
4192 
4193 /*
4194  * Consults global policy and per-socket policy to see whether this datagram
4195  * should go out secure. If so it updates the ip_xmit_attr_t
4196  * Should not be used when connecting, since then we want to latch the policy.
4197  *
4198  * If connp is NULL we just look at the global policy.
4199  *
4200  * Returns NULL if the packet was dropped, in which case the MIB has
4201  * been incremented and ip_drop_packet done.
4202  */
4203 mblk_t *
4204 ip_output_attach_policy(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4205     const conn_t *connp, ip_xmit_attr_t *ixa)
4206 {
4207 	ipsec_selector_t sel;
4208 	boolean_t	policy_present;
4209 	ip_stack_t	*ipst = ixa->ixa_ipst;
4210 	netstack_t	*ns = ipst->ips_netstack;
4211 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4212 	ipsec_policy_t	*p;
4213 
4214 	ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
4215 	ASSERT((ipha != NULL && ip6h == NULL) ||
4216 	    (ip6h != NULL && ipha == NULL));
4217 
4218 	if (ipha != NULL)
4219 		policy_present = ipss->ipsec_outbound_v4_policy_present;
4220 	else
4221 		policy_present = ipss->ipsec_outbound_v6_policy_present;
4222 
4223 	if (!policy_present && (connp == NULL || connp->conn_policy == NULL))
4224 		return (mp);
4225 
4226 	bzero((void*)&sel, sizeof (sel));
4227 
4228 	if (ipha != NULL) {
4229 		sel.ips_local_addr_v4 = ipha->ipha_src;
4230 		sel.ips_remote_addr_v4 = ip_get_dst(ipha);
4231 		sel.ips_isv4 = B_TRUE;
4232 	} else {
4233 		sel.ips_isv4 = B_FALSE;
4234 		sel.ips_local_addr_v6 = ip6h->ip6_src;
4235 		sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, mp, NULL);
4236 	}
4237 	sel.ips_protocol = ixa->ixa_protocol;
4238 
4239 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) {
4240 		if (ipha != NULL) {
4241 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
4242 		} else {
4243 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
4244 		}
4245 		/* Note: mp already consumed and ip_drop_packet done */
4246 		return (NULL);
4247 	}
4248 
4249 	ASSERT(ixa->ixa_ipsec_policy == NULL);
4250 	p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4251 	ixa->ixa_ipsec_policy = p;
4252 	if (p != NULL) {
4253 		ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4254 		if (connp == NULL || connp->conn_policy == NULL)
4255 			ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
4256 	} else {
4257 		ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4258 	}
4259 
4260 	/*
4261 	 * Copy the right port information.
4262 	 */
4263 	ixa->ixa_ipsec_src_port = sel.ips_local_port;
4264 	ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4265 	ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4266 	ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4267 	ixa->ixa_ipsec_proto = sel.ips_protocol;
4268 	return (mp);
4269 }
4270 
4271 /*
4272  * When appropriate, this function caches inbound and outbound policy
4273  * for this connection. The outbound policy is stored in conn_ixa.
4274  * Note that it can not be used for SCTP since conn_faddr isn't set for SCTP.
4275  *
4276  * XXX need to work out more details about per-interface policy and
4277  * caching here!
4278  *
4279  * XXX may want to split inbound and outbound caching for ill..
4280  */
4281 int
4282 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4283 {
4284 	boolean_t global_policy_present;
4285 	netstack_t	*ns = connp->conn_netstack;
4286 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4287 
4288 	connp->conn_ixa->ixa_ipsec_policy_gen =
4289 	    ipss->ipsec_system_policy.iph_gen;
4290 	/*
4291 	 * There is no policy latching for ICMP sockets because we can't
4292 	 * decide on which policy to use until we see the packet and get
4293 	 * type/code selectors.
4294 	 */
4295 	if (connp->conn_proto == IPPROTO_ICMP ||
4296 	    connp->conn_proto == IPPROTO_ICMPV6) {
4297 		connp->conn_in_enforce_policy =
4298 		    connp->conn_out_enforce_policy = B_TRUE;
4299 		if (connp->conn_latch != NULL) {
4300 			IPLATCH_REFRELE(connp->conn_latch);
4301 			connp->conn_latch = NULL;
4302 		}
4303 		if (connp->conn_latch_in_policy != NULL) {
4304 			IPPOL_REFRELE(connp->conn_latch_in_policy);
4305 			connp->conn_latch_in_policy = NULL;
4306 		}
4307 		if (connp->conn_latch_in_action != NULL) {
4308 			IPACT_REFRELE(connp->conn_latch_in_action);
4309 			connp->conn_latch_in_action = NULL;
4310 		}
4311 		if (connp->conn_ixa->ixa_ipsec_policy != NULL) {
4312 			IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
4313 			connp->conn_ixa->ixa_ipsec_policy = NULL;
4314 		}
4315 		if (connp->conn_ixa->ixa_ipsec_action != NULL) {
4316 			IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
4317 			connp->conn_ixa->ixa_ipsec_action = NULL;
4318 		}
4319 		connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4320 		return (0);
4321 	}
4322 
4323 	global_policy_present = isv4 ?
4324 	    (ipss->ipsec_outbound_v4_policy_present ||
4325 	    ipss->ipsec_inbound_v4_policy_present) :
4326 	    (ipss->ipsec_outbound_v6_policy_present ||
4327 	    ipss->ipsec_inbound_v6_policy_present);
4328 
4329 	if ((connp->conn_policy != NULL) || global_policy_present) {
4330 		ipsec_selector_t sel;
4331 		ipsec_policy_t	*p;
4332 
4333 		if (connp->conn_latch == NULL &&
4334 		    (connp->conn_latch = iplatch_create()) == NULL) {
4335 			return (ENOMEM);
4336 		}
4337 
4338 		bzero((void*)&sel, sizeof (sel));
4339 
4340 		sel.ips_protocol = connp->conn_proto;
4341 		sel.ips_local_port = connp->conn_lport;
4342 		sel.ips_remote_port = connp->conn_fport;
4343 		sel.ips_is_icmp_inv_acq = 0;
4344 		sel.ips_isv4 = isv4;
4345 		if (isv4) {
4346 			sel.ips_local_addr_v4 = connp->conn_laddr_v4;
4347 			sel.ips_remote_addr_v4 = connp->conn_faddr_v4;
4348 		} else {
4349 			sel.ips_local_addr_v6 = connp->conn_laddr_v6;
4350 			sel.ips_remote_addr_v6 = connp->conn_faddr_v6;
4351 		}
4352 
4353 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
4354 		if (connp->conn_latch_in_policy != NULL)
4355 			IPPOL_REFRELE(connp->conn_latch_in_policy);
4356 		connp->conn_latch_in_policy = p;
4357 		connp->conn_in_enforce_policy = (p != NULL);
4358 
4359 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4360 		if (connp->conn_ixa->ixa_ipsec_policy != NULL)
4361 			IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
4362 		connp->conn_ixa->ixa_ipsec_policy = p;
4363 		connp->conn_out_enforce_policy = (p != NULL);
4364 		if (p != NULL) {
4365 			connp->conn_ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4366 			if (connp->conn_policy == NULL) {
4367 				connp->conn_ixa->ixa_flags |=
4368 				    IXAF_IPSEC_GLOBAL_POLICY;
4369 			}
4370 		} else {
4371 			connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4372 		}
4373 		/* Clear the latched actions too, in case we're recaching. */
4374 		if (connp->conn_ixa->ixa_ipsec_action != NULL) {
4375 			IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
4376 			connp->conn_ixa->ixa_ipsec_action = NULL;
4377 		}
4378 		if (connp->conn_latch_in_action != NULL) {
4379 			IPACT_REFRELE(connp->conn_latch_in_action);
4380 			connp->conn_latch_in_action = NULL;
4381 		}
4382 		connp->conn_ixa->ixa_ipsec_src_port = sel.ips_local_port;
4383 		connp->conn_ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4384 		connp->conn_ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4385 		connp->conn_ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4386 		connp->conn_ixa->ixa_ipsec_proto = sel.ips_protocol;
4387 	} else {
4388 		connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4389 	}
4390 
4391 	/*
4392 	 * We may or may not have policy for this endpoint.  We still set
4393 	 * conn_policy_cached so that inbound datagrams don't have to look
4394 	 * at global policy as policy is considered latched for these
4395 	 * endpoints.  We should not set conn_policy_cached until the conn
4396 	 * reflects the actual policy. If we *set* this before inheriting
4397 	 * the policy there is a window where the check
4398 	 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4399 	 * on the conn (because we have not yet copied the policy on to
4400 	 * conn and hence not set conn_in_enforce_policy) nor with the
4401 	 * global policy (because conn_policy_cached is already set).
4402 	 */
4403 	connp->conn_policy_cached = B_TRUE;
4404 	return (0);
4405 }
4406 
4407 /*
4408  * When appropriate, this function caches outbound policy for faddr/fport.
4409  * It is used when we are not connected i.e., when we can not latch the
4410  * policy.
4411  */
4412 void
4413 ipsec_cache_outbound_policy(const conn_t *connp, const in6_addr_t *v6src,
4414     const in6_addr_t *v6dst, in_port_t dstport, ip_xmit_attr_t *ixa)
4415 {
4416 	boolean_t	isv4 = (ixa->ixa_flags & IXAF_IS_IPV4) != 0;
4417 	boolean_t	global_policy_present;
4418 	netstack_t	*ns = connp->conn_netstack;
4419 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4420 
4421 	ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
4422 
4423 	/*
4424 	 * There is no policy caching for ICMP sockets because we can't
4425 	 * decide on which policy to use until we see the packet and get
4426 	 * type/code selectors.
4427 	 */
4428 	if (connp->conn_proto == IPPROTO_ICMP ||
4429 	    connp->conn_proto == IPPROTO_ICMPV6) {
4430 		ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4431 		if (ixa->ixa_ipsec_policy != NULL) {
4432 			IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4433 			ixa->ixa_ipsec_policy = NULL;
4434 		}
4435 		if (ixa->ixa_ipsec_action != NULL) {
4436 			IPACT_REFRELE(ixa->ixa_ipsec_action);
4437 			ixa->ixa_ipsec_action = NULL;
4438 		}
4439 		return;
4440 	}
4441 
4442 	global_policy_present = isv4 ?
4443 	    (ipss->ipsec_outbound_v4_policy_present ||
4444 	    ipss->ipsec_inbound_v4_policy_present) :
4445 	    (ipss->ipsec_outbound_v6_policy_present ||
4446 	    ipss->ipsec_inbound_v6_policy_present);
4447 
4448 	if ((connp->conn_policy != NULL) || global_policy_present) {
4449 		ipsec_selector_t sel;
4450 		ipsec_policy_t	*p;
4451 
4452 		bzero((void*)&sel, sizeof (sel));
4453 
4454 		sel.ips_protocol = connp->conn_proto;
4455 		sel.ips_local_port = connp->conn_lport;
4456 		sel.ips_remote_port = dstport;
4457 		sel.ips_is_icmp_inv_acq = 0;
4458 		sel.ips_isv4 = isv4;
4459 		if (isv4) {
4460 			IN6_V4MAPPED_TO_IPADDR(v6src, sel.ips_local_addr_v4);
4461 			IN6_V4MAPPED_TO_IPADDR(v6dst, sel.ips_remote_addr_v4);
4462 		} else {
4463 			sel.ips_local_addr_v6 = *v6src;
4464 			sel.ips_remote_addr_v6 = *v6dst;
4465 		}
4466 
4467 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4468 		if (ixa->ixa_ipsec_policy != NULL)
4469 			IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4470 		ixa->ixa_ipsec_policy = p;
4471 		if (p != NULL) {
4472 			ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4473 			if (connp->conn_policy == NULL)
4474 				ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
4475 		} else {
4476 			ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4477 		}
4478 		/* Clear the latched actions too, in case we're recaching. */
4479 		if (ixa->ixa_ipsec_action != NULL) {
4480 			IPACT_REFRELE(ixa->ixa_ipsec_action);
4481 			ixa->ixa_ipsec_action = NULL;
4482 		}
4483 
4484 		ixa->ixa_ipsec_src_port = sel.ips_local_port;
4485 		ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4486 		ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4487 		ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4488 		ixa->ixa_ipsec_proto = sel.ips_protocol;
4489 	} else {
4490 		ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4491 		if (ixa->ixa_ipsec_policy != NULL) {
4492 			IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4493 			ixa->ixa_ipsec_policy = NULL;
4494 		}
4495 		if (ixa->ixa_ipsec_action != NULL) {
4496 			IPACT_REFRELE(ixa->ixa_ipsec_action);
4497 			ixa->ixa_ipsec_action = NULL;
4498 		}
4499 	}
4500 }
4501 
4502 /*
4503  * Returns B_FALSE if the policy has gone stale.
4504  */
4505 boolean_t
4506 ipsec_outbound_policy_current(ip_xmit_attr_t *ixa)
4507 {
4508 	ipsec_stack_t	*ipss = ixa->ixa_ipst->ips_netstack->netstack_ipsec;
4509 
4510 	if (!(ixa->ixa_flags & IXAF_IPSEC_GLOBAL_POLICY))
4511 		return (B_TRUE);
4512 
4513 	return (ixa->ixa_ipsec_policy_gen == ipss->ipsec_system_policy.iph_gen);
4514 }
4515 
4516 void
4517 iplatch_free(ipsec_latch_t *ipl)
4518 {
4519 	if (ipl->ipl_local_cid != NULL)
4520 		IPSID_REFRELE(ipl->ipl_local_cid);
4521 	if (ipl->ipl_remote_cid != NULL)
4522 		IPSID_REFRELE(ipl->ipl_remote_cid);
4523 	mutex_destroy(&ipl->ipl_lock);
4524 	kmem_free(ipl, sizeof (*ipl));
4525 }
4526 
4527 ipsec_latch_t *
4528 iplatch_create()
4529 {
4530 	ipsec_latch_t *ipl = kmem_zalloc(sizeof (*ipl), KM_NOSLEEP);
4531 	if (ipl == NULL)
4532 		return (ipl);
4533 	mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4534 	ipl->ipl_refcnt = 1;
4535 	return (ipl);
4536 }
4537 
4538 /*
4539  * Hash function for ID hash table.
4540  */
4541 static uint32_t
4542 ipsid_hash(int idtype, char *idstring)
4543 {
4544 	uint32_t hval = idtype;
4545 	unsigned char c;
4546 
4547 	while ((c = *idstring++) != 0) {
4548 		hval = (hval << 4) | (hval >> 28);
4549 		hval ^= c;
4550 	}
4551 	hval = hval ^ (hval >> 16);
4552 	return (hval & (IPSID_HASHSIZE-1));
4553 }
4554 
4555 /*
4556  * Look up identity string in hash table.  Return identity object
4557  * corresponding to the name -- either preexisting, or newly allocated.
4558  *
4559  * Return NULL if we need to allocate a new one and can't get memory.
4560  */
4561 ipsid_t *
4562 ipsid_lookup(int idtype, char *idstring, netstack_t *ns)
4563 {
4564 	ipsid_t *retval;
4565 	char *nstr;
4566 	int idlen = strlen(idstring) + 1;
4567 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4568 	ipsif_t *bucket;
4569 
4570 	bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)];
4571 
4572 	mutex_enter(&bucket->ipsif_lock);
4573 
4574 	for (retval = bucket->ipsif_head; retval != NULL;
4575 	    retval = retval->ipsid_next) {
4576 		if (idtype != retval->ipsid_type)
4577 			continue;
4578 		if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4579 			continue;
4580 
4581 		IPSID_REFHOLD(retval);
4582 		mutex_exit(&bucket->ipsif_lock);
4583 		return (retval);
4584 	}
4585 
4586 	retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4587 	if (!retval) {
4588 		mutex_exit(&bucket->ipsif_lock);
4589 		return (NULL);
4590 	}
4591 
4592 	nstr = kmem_alloc(idlen, KM_NOSLEEP);
4593 	if (!nstr) {
4594 		mutex_exit(&bucket->ipsif_lock);
4595 		kmem_free(retval, sizeof (*retval));
4596 		return (NULL);
4597 	}
4598 
4599 	retval->ipsid_refcnt = 1;
4600 	retval->ipsid_next = bucket->ipsif_head;
4601 	if (retval->ipsid_next != NULL)
4602 		retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4603 	retval->ipsid_ptpn = &bucket->ipsif_head;
4604 	retval->ipsid_type = idtype;
4605 	retval->ipsid_cid = nstr;
4606 	bucket->ipsif_head = retval;
4607 	bcopy(idstring, nstr, idlen);
4608 	mutex_exit(&bucket->ipsif_lock);
4609 
4610 	return (retval);
4611 }
4612 
4613 /*
4614  * Garbage collect the identity hash table.
4615  */
4616 void
4617 ipsid_gc(netstack_t *ns)
4618 {
4619 	int i, len;
4620 	ipsid_t *id, *nid;
4621 	ipsif_t *bucket;
4622 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4623 
4624 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4625 		bucket = &ipss->ipsec_ipsid_buckets[i];
4626 		mutex_enter(&bucket->ipsif_lock);
4627 		for (id = bucket->ipsif_head; id != NULL; id = nid) {
4628 			nid = id->ipsid_next;
4629 			if (id->ipsid_refcnt == 0) {
4630 				*id->ipsid_ptpn = nid;
4631 				if (nid != NULL)
4632 					nid->ipsid_ptpn = id->ipsid_ptpn;
4633 				len = strlen(id->ipsid_cid) + 1;
4634 				kmem_free(id->ipsid_cid, len);
4635 				kmem_free(id, sizeof (*id));
4636 			}
4637 		}
4638 		mutex_exit(&bucket->ipsif_lock);
4639 	}
4640 }
4641 
4642 /*
4643  * Return true if two identities are the same.
4644  */
4645 boolean_t
4646 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
4647 {
4648 	if (id1 == id2)
4649 		return (B_TRUE);
4650 #ifdef DEBUG
4651 	if ((id1 == NULL) || (id2 == NULL))
4652 		return (B_FALSE);
4653 	/*
4654 	 * test that we're interning id's correctly..
4655 	 */
4656 	ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
4657 	    (id1->ipsid_type != id2->ipsid_type));
4658 #endif
4659 	return (B_FALSE);
4660 }
4661 
4662 /*
4663  * Initialize identity table; called during module initialization.
4664  */
4665 static void
4666 ipsid_init(netstack_t *ns)
4667 {
4668 	ipsif_t *bucket;
4669 	int i;
4670 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4671 
4672 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4673 		bucket = &ipss->ipsec_ipsid_buckets[i];
4674 		mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
4675 	}
4676 }
4677 
4678 /*
4679  * Free identity table (preparatory to module unload)
4680  */
4681 static void
4682 ipsid_fini(netstack_t *ns)
4683 {
4684 	ipsif_t *bucket;
4685 	int i;
4686 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4687 
4688 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4689 		bucket = &ipss->ipsec_ipsid_buckets[i];
4690 		ASSERT(bucket->ipsif_head == NULL);
4691 		mutex_destroy(&bucket->ipsif_lock);
4692 	}
4693 }
4694 
4695 /*
4696  * Update the minimum and maximum supported key sizes for the specified
4697  * algorithm, which is either a member of a netstack alg array or about to be,
4698  * and therefore must be called holding ipsec_alg_lock for write.
4699  */
4700 void
4701 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type,
4702     netstack_t *ns)
4703 {
4704 	size_t crypto_min = (size_t)-1, crypto_max = 0;
4705 	size_t cur_crypto_min, cur_crypto_max;
4706 	boolean_t is_valid;
4707 	crypto_mechanism_info_t *mech_infos;
4708 	uint_t nmech_infos;
4709 	int crypto_rc, i;
4710 	crypto_mech_usage_t mask;
4711 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4712 
4713 	ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
4714 
4715 	/*
4716 	 * Compute the min, max, and default key sizes (in number of
4717 	 * increments to the default key size in bits) as defined
4718 	 * by the algorithm mappings. This range of key sizes is used
4719 	 * for policy related operations. The effective key sizes
4720 	 * supported by the framework could be more limited than
4721 	 * those defined for an algorithm.
4722 	 */
4723 	alg->alg_default_bits = alg->alg_key_sizes[0];
4724 	alg->alg_default = 0;
4725 	if (alg->alg_increment != 0) {
4726 		/* key sizes are defined by range & increment */
4727 		alg->alg_minbits = alg->alg_key_sizes[1];
4728 		alg->alg_maxbits = alg->alg_key_sizes[2];
4729 	} else if (alg->alg_nkey_sizes == 0) {
4730 		/* no specified key size for algorithm */
4731 		alg->alg_minbits = alg->alg_maxbits = 0;
4732 	} else {
4733 		/* key sizes are defined by enumeration */
4734 		alg->alg_minbits = (uint16_t)-1;
4735 		alg->alg_maxbits = 0;
4736 
4737 		for (i = 0; i < alg->alg_nkey_sizes; i++) {
4738 			if (alg->alg_key_sizes[i] < alg->alg_minbits)
4739 				alg->alg_minbits = alg->alg_key_sizes[i];
4740 			if (alg->alg_key_sizes[i] > alg->alg_maxbits)
4741 				alg->alg_maxbits = alg->alg_key_sizes[i];
4742 		}
4743 	}
4744 
4745 	if (!(alg->alg_flags & ALG_FLAG_VALID))
4746 		return;
4747 
4748 	/*
4749 	 * Mechanisms do not apply to the NULL encryption
4750 	 * algorithm, so simply return for this case.
4751 	 */
4752 	if (alg->alg_id == SADB_EALG_NULL)
4753 		return;
4754 
4755 	/*
4756 	 * Find the min and max key sizes supported by the cryptographic
4757 	 * framework providers.
4758 	 */
4759 
4760 	/* get the key sizes supported by the framework */
4761 	crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
4762 	    &mech_infos, &nmech_infos, KM_SLEEP);
4763 	if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
4764 		alg->alg_flags &= ~ALG_FLAG_VALID;
4765 		return;
4766 	}
4767 
4768 	/* min and max key sizes supported by framework */
4769 	for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
4770 		int unit_bits;
4771 
4772 		/*
4773 		 * Ignore entries that do not support the operations
4774 		 * needed for the algorithm type.
4775 		 */
4776 		if (alg_type == IPSEC_ALG_AUTH) {
4777 			mask = CRYPTO_MECH_USAGE_MAC;
4778 		} else {
4779 			mask = CRYPTO_MECH_USAGE_ENCRYPT |
4780 			    CRYPTO_MECH_USAGE_DECRYPT;
4781 		}
4782 		if ((mech_infos[i].mi_usage & mask) != mask)
4783 			continue;
4784 
4785 		unit_bits = (mech_infos[i].mi_keysize_unit ==
4786 		    CRYPTO_KEYSIZE_UNIT_IN_BYTES)  ? 8 : 1;
4787 		/* adjust min/max supported by framework */
4788 		cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
4789 		cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
4790 
4791 		if (cur_crypto_min < crypto_min)
4792 			crypto_min = cur_crypto_min;
4793 
4794 		/*
4795 		 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
4796 		 * the crypto framework which means "no upper limit".
4797 		 */
4798 		if (mech_infos[i].mi_max_key_size ==
4799 		    CRYPTO_EFFECTIVELY_INFINITE) {
4800 			crypto_max = (size_t)-1;
4801 		} else if (cur_crypto_max > crypto_max) {
4802 			crypto_max = cur_crypto_max;
4803 		}
4804 
4805 		is_valid = B_TRUE;
4806 	}
4807 
4808 	kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
4809 	    nmech_infos);
4810 
4811 	if (!is_valid) {
4812 		/* no key sizes supported by framework */
4813 		alg->alg_flags &= ~ALG_FLAG_VALID;
4814 		return;
4815 	}
4816 
4817 	/*
4818 	 * Determine min and max key sizes from alg_key_sizes[].
4819 	 * defined for the algorithm entry. Adjust key sizes based on
4820 	 * those supported by the framework.
4821 	 */
4822 	alg->alg_ef_default_bits = alg->alg_key_sizes[0];
4823 
4824 	/*
4825 	 * For backwards compatability, assume that the IV length
4826 	 * is the same as the data length.
4827 	 */
4828 	alg->alg_ivlen = alg->alg_datalen;
4829 
4830 	/*
4831 	 * Copy any algorithm parameters (if provided) into dedicated
4832 	 * elements in the ipsec_alginfo_t structure.
4833 	 * There may be a better place to put this code.
4834 	 */
4835 	for (i = 0; i < alg->alg_nparams; i++) {
4836 		switch (i) {
4837 		case 0:
4838 			/* Initialisation Vector length (bytes) */
4839 			alg->alg_ivlen =  alg->alg_params[0];
4840 			break;
4841 		case 1:
4842 			/* Integrity Check Vector length (bytes) */
4843 			alg->alg_icvlen = alg->alg_params[1];
4844 			break;
4845 		case 2:
4846 			/* Salt length (bytes) */
4847 			alg->alg_saltlen = (uint8_t)alg->alg_params[2];
4848 			break;
4849 		default:
4850 			break;
4851 		}
4852 	}
4853 
4854 	/* Default if the IV length is not specified. */
4855 	if (alg_type == IPSEC_ALG_ENCR && alg->alg_ivlen == 0)
4856 		alg->alg_ivlen = alg->alg_datalen;
4857 
4858 	alg_flag_check(alg);
4859 
4860 	if (alg->alg_increment != 0) {
4861 		/* supported key sizes are defined by range  & increment */
4862 		crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
4863 		crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
4864 
4865 		alg->alg_ef_minbits = MAX(alg->alg_minbits,
4866 		    (uint16_t)crypto_min);
4867 		alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
4868 		    (uint16_t)crypto_max);
4869 
4870 		/*
4871 		 * If the sizes supported by the framework are outside
4872 		 * the range of sizes defined by the algorithm mappings,
4873 		 * the algorithm cannot be used. Check for this
4874 		 * condition here.
4875 		 */
4876 		if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
4877 			alg->alg_flags &= ~ALG_FLAG_VALID;
4878 			return;
4879 		}
4880 		if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
4881 			alg->alg_ef_default_bits = alg->alg_ef_minbits;
4882 		if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
4883 			alg->alg_ef_default_bits = alg->alg_ef_maxbits;
4884 	} else if (alg->alg_nkey_sizes == 0) {
4885 		/* no specified key size for algorithm */
4886 		alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
4887 	} else {
4888 		/* supported key sizes are defined by enumeration */
4889 		alg->alg_ef_minbits = (uint16_t)-1;
4890 		alg->alg_ef_maxbits = 0;
4891 
4892 		for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
4893 			/*
4894 			 * Ignore the current key size if it is not in the
4895 			 * range of sizes supported by the framework.
4896 			 */
4897 			if (alg->alg_key_sizes[i] < crypto_min ||
4898 			    alg->alg_key_sizes[i] > crypto_max)
4899 				continue;
4900 			if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
4901 				alg->alg_ef_minbits = alg->alg_key_sizes[i];
4902 			if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
4903 				alg->alg_ef_maxbits = alg->alg_key_sizes[i];
4904 			is_valid = B_TRUE;
4905 		}
4906 
4907 		if (!is_valid) {
4908 			alg->alg_flags &= ~ALG_FLAG_VALID;
4909 			return;
4910 		}
4911 		alg->alg_ef_default = 0;
4912 	}
4913 }
4914 
4915 /*
4916  * Sanity check parameters provided by ipsecalgs(8). Assume that
4917  * the algoritm is marked as valid, there is a check at the top
4918  * of this function. If any of the checks below fail, the algorithm
4919  * entry is invalid.
4920  */
4921 void
4922 alg_flag_check(ipsec_alginfo_t *alg)
4923 {
4924 	alg->alg_flags &= ~ALG_FLAG_VALID;
4925 
4926 	/*
4927 	 * Can't have the algorithm marked as CCM and GCM.
4928 	 * Check the ALG_FLAG_COMBINED and ALG_FLAG_COUNTERMODE
4929 	 * flags are set for CCM & GCM.
4930 	 */
4931 	if ((alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) ==
4932 	    (ALG_FLAG_CCM|ALG_FLAG_GCM))
4933 		return;
4934 	if (alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) {
4935 		if (!(alg->alg_flags & ALG_FLAG_COUNTERMODE))
4936 			return;
4937 		if (!(alg->alg_flags & ALG_FLAG_COMBINED))
4938 			return;
4939 	}
4940 
4941 	/*
4942 	 * For ALG_FLAG_COUNTERMODE, check the parameters
4943 	 * fit in the ipsec_nonce_t structure.
4944 	 */
4945 	if (alg->alg_flags & ALG_FLAG_COUNTERMODE) {
4946 		if (alg->alg_ivlen != sizeof (((ipsec_nonce_t *)NULL)->iv))
4947 			return;
4948 		if (alg->alg_saltlen > sizeof (((ipsec_nonce_t *)NULL)->salt))
4949 			return;
4950 	}
4951 	if ((alg->alg_flags & ALG_FLAG_COMBINED) &&
4952 	    (alg->alg_icvlen == 0))
4953 		return;
4954 
4955 	/* all is well. */
4956 	alg->alg_flags |= ALG_FLAG_VALID;
4957 }
4958 
4959 /*
4960  * Free the memory used by the specified algorithm.
4961  */
4962 void
4963 ipsec_alg_free(ipsec_alginfo_t *alg)
4964 {
4965 	if (alg == NULL)
4966 		return;
4967 
4968 	if (alg->alg_key_sizes != NULL) {
4969 		kmem_free(alg->alg_key_sizes,
4970 		    (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
4971 		alg->alg_key_sizes = NULL;
4972 	}
4973 	if (alg->alg_block_sizes != NULL) {
4974 		kmem_free(alg->alg_block_sizes,
4975 		    (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
4976 		alg->alg_block_sizes = NULL;
4977 	}
4978 	if (alg->alg_params != NULL) {
4979 		kmem_free(alg->alg_params,
4980 		    (alg->alg_nparams + 1) * sizeof (uint16_t));
4981 		alg->alg_params = NULL;
4982 	}
4983 	kmem_free(alg, sizeof (*alg));
4984 }
4985 
4986 /*
4987  * Check the validity of the specified key size for an algorithm.
4988  * Returns B_TRUE if key size is valid, B_FALSE otherwise.
4989  */
4990 boolean_t
4991 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
4992 {
4993 	if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
4994 		return (B_FALSE);
4995 
4996 	if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
4997 		/*
4998 		 * If the key sizes are defined by enumeration, the new
4999 		 * key size must be equal to one of the supported values.
5000 		 */
5001 		int i;
5002 
5003 		for (i = 0; i < alg->alg_nkey_sizes; i++)
5004 			if (key_size == alg->alg_key_sizes[i])
5005 				break;
5006 		if (i == alg->alg_nkey_sizes)
5007 			return (B_FALSE);
5008 	}
5009 
5010 	return (B_TRUE);
5011 }
5012 
5013 /*
5014  * Callback function invoked by the crypto framework when a provider
5015  * registers or unregisters. This callback updates the algorithms
5016  * tables when a crypto algorithm is no longer available or becomes
5017  * available, and triggers the freeing/creation of context templates
5018  * associated with existing SAs, if needed.
5019  *
5020  * Need to walk all stack instances since the callback is global
5021  * for all instances
5022  */
5023 void
5024 ipsec_prov_update_callback(uint32_t event, void *event_arg)
5025 {
5026 	netstack_handle_t nh;
5027 	netstack_t *ns;
5028 
5029 	netstack_next_init(&nh);
5030 	while ((ns = netstack_next(&nh)) != NULL) {
5031 		ipsec_prov_update_callback_stack(event, event_arg, ns);
5032 		netstack_rele(ns);
5033 	}
5034 	netstack_next_fini(&nh);
5035 }
5036 
5037 static void
5038 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg,
5039     netstack_t *ns)
5040 {
5041 	crypto_notify_event_change_t *prov_change =
5042 	    (crypto_notify_event_change_t *)event_arg;
5043 	uint_t algidx, algid, algtype, mech_count, mech_idx;
5044 	ipsec_alginfo_t *alg;
5045 	ipsec_alginfo_t oalg;
5046 	crypto_mech_name_t *mechs;
5047 	boolean_t alg_changed = B_FALSE;
5048 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5049 
5050 	/* ignore events for which we didn't register */
5051 	if (event != CRYPTO_EVENT_MECHS_CHANGED) {
5052 		ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
5053 		    " received from crypto framework\n", event));
5054 		return;
5055 	}
5056 
5057 	mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
5058 	if (mechs == NULL)
5059 		return;
5060 
5061 	/*
5062 	 * Walk the list of currently defined IPsec algorithm. Update
5063 	 * the algorithm valid flag and trigger an update of the
5064 	 * SAs that depend on that algorithm.
5065 	 */
5066 	rw_enter(&ipss->ipsec_alg_lock, RW_WRITER);
5067 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
5068 		for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype];
5069 		    algidx++) {
5070 
5071 			algid = ipss->ipsec_sortlist[algtype][algidx];
5072 			alg = ipss->ipsec_alglists[algtype][algid];
5073 			ASSERT(alg != NULL);
5074 
5075 			/*
5076 			 * Skip the algorithms which do not map to the
5077 			 * crypto framework provider being added or removed.
5078 			 */
5079 			if (strncmp(alg->alg_mech_name,
5080 			    prov_change->ec_mech_name,
5081 			    CRYPTO_MAX_MECH_NAME) != 0)
5082 				continue;
5083 
5084 			/*
5085 			 * Determine if the mechanism is valid. If it
5086 			 * is not, mark the algorithm as being invalid. If
5087 			 * it is, mark the algorithm as being valid.
5088 			 */
5089 			for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
5090 				if (strncmp(alg->alg_mech_name,
5091 				    mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
5092 					break;
5093 			if (mech_idx == mech_count &&
5094 			    alg->alg_flags & ALG_FLAG_VALID) {
5095 				alg->alg_flags &= ~ALG_FLAG_VALID;
5096 				alg_changed = B_TRUE;
5097 			} else if (mech_idx < mech_count &&
5098 			    !(alg->alg_flags & ALG_FLAG_VALID)) {
5099 				alg->alg_flags |= ALG_FLAG_VALID;
5100 				alg_changed = B_TRUE;
5101 			}
5102 
5103 			/*
5104 			 * Update the supported key sizes, regardless
5105 			 * of whether a crypto provider was added or
5106 			 * removed.
5107 			 */
5108 			oalg = *alg;
5109 			ipsec_alg_fix_min_max(alg, algtype, ns);
5110 			if (!alg_changed &&
5111 			    alg->alg_ef_minbits != oalg.alg_ef_minbits ||
5112 			    alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
5113 			    alg->alg_ef_default != oalg.alg_ef_default ||
5114 			    alg->alg_ef_default_bits !=
5115 			    oalg.alg_ef_default_bits)
5116 				alg_changed = B_TRUE;
5117 
5118 			/*
5119 			 * Update the affected SAs if a software provider is
5120 			 * being added or removed.
5121 			 */
5122 			if (prov_change->ec_provider_type ==
5123 			    CRYPTO_SW_PROVIDER)
5124 				sadb_alg_update(algtype, alg->alg_id,
5125 				    prov_change->ec_change ==
5126 				    CRYPTO_MECH_ADDED, ns);
5127 		}
5128 	}
5129 	rw_exit(&ipss->ipsec_alg_lock);
5130 	crypto_free_mech_list(mechs, mech_count);
5131 
5132 	if (alg_changed) {
5133 		/*
5134 		 * An algorithm has changed, i.e. it became valid or
5135 		 * invalid, or its support key sizes have changed.
5136 		 * Notify ipsecah and ipsecesp of this change so
5137 		 * that they can send a SADB_REGISTER to their consumers.
5138 		 */
5139 		ipsecah_algs_changed(ns);
5140 		ipsecesp_algs_changed(ns);
5141 	}
5142 }
5143 
5144 /*
5145  * Registers with the crypto framework to be notified of crypto
5146  * providers changes. Used to update the algorithm tables and
5147  * to free or create context templates if needed. Invoked after IPsec
5148  * is loaded successfully.
5149  *
5150  * This is called separately for each IP instance, so we ensure we only
5151  * register once.
5152  */
5153 void
5154 ipsec_register_prov_update(void)
5155 {
5156 	if (prov_update_handle != NULL)
5157 		return;
5158 
5159 	prov_update_handle = crypto_notify_events(
5160 	    ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
5161 }
5162 
5163 /*
5164  * Unregisters from the framework to be notified of crypto providers
5165  * changes. Called from ipsec_policy_g_destroy().
5166  */
5167 static void
5168 ipsec_unregister_prov_update(void)
5169 {
5170 	if (prov_update_handle != NULL)
5171 		crypto_unnotify_events(prov_update_handle);
5172 }
5173 
5174 /*
5175  * Tunnel-mode support routines.
5176  */
5177 
5178 /*
5179  * Returns an mblk chain suitable for putnext() if policies match and IPsec
5180  * SAs are available.  If there's no per-tunnel policy, or a match comes back
5181  * with no match, then still return the packet and have global policy take
5182  * a crack at it in IP.
5183  * This updates the ip_xmit_attr with the IPsec policy.
5184  *
5185  * Remember -> we can be forwarding packets.  Keep that in mind w.r.t.
5186  * inner-packet contents.
5187  */
5188 mblk_t *
5189 ipsec_tun_outbound(mblk_t *mp, iptun_t *iptun, ipha_t *inner_ipv4,
5190     ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len,
5191     ip_xmit_attr_t *ixa)
5192 {
5193 	ipsec_policy_head_t *polhead;
5194 	ipsec_selector_t sel;
5195 	mblk_t *nmp;
5196 	boolean_t is_fragment;
5197 	ipsec_policy_t *pol;
5198 	ipsec_tun_pol_t *itp = iptun->iptun_itp;
5199 	netstack_t *ns = iptun->iptun_ns;
5200 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5201 
5202 	ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
5203 	    outer_ipv4 != NULL && outer_ipv6 == NULL);
5204 	/* We take care of inners in a bit. */
5205 
5206 	/* Are the IPsec fields initialized at all? */
5207 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) {
5208 		ASSERT(ixa->ixa_ipsec_policy == NULL);
5209 		ASSERT(ixa->ixa_ipsec_latch == NULL);
5210 		ASSERT(ixa->ixa_ipsec_action == NULL);
5211 		ASSERT(ixa->ixa_ipsec_ah_sa == NULL);
5212 		ASSERT(ixa->ixa_ipsec_esp_sa == NULL);
5213 	}
5214 
5215 	ASSERT(itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE));
5216 	polhead = itp->itp_policy;
5217 
5218 	bzero(&sel, sizeof (sel));
5219 	if (inner_ipv4 != NULL) {
5220 		ASSERT(inner_ipv6 == NULL);
5221 		sel.ips_isv4 = B_TRUE;
5222 		sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5223 		sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5224 		sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
5225 	} else {
5226 		ASSERT(inner_ipv6 != NULL);
5227 		sel.ips_isv4 = B_FALSE;
5228 		sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5229 		/*
5230 		 * We don't care about routing-header dests in the
5231 		 * forwarding/tunnel path, so just grab ip6_dst.
5232 		 */
5233 		sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5234 	}
5235 
5236 	if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
5237 		/*
5238 		 * Caller can prepend the outer header, which means
5239 		 * inner_ipv[46] may be stuck in the middle.  Pullup the whole
5240 		 * mess now if need-be, for easier processing later.  Don't
5241 		 * forget to rewire the outer header too.
5242 		 */
5243 		if (mp->b_cont != NULL) {
5244 			nmp = msgpullup(mp, -1);
5245 			if (nmp == NULL) {
5246 				ip_drop_packet(mp, B_FALSE, NULL,
5247 				    DROPPER(ipss, ipds_spd_nomem),
5248 				    &ipss->ipsec_spd_dropper);
5249 				return (NULL);
5250 			}
5251 			freemsg(mp);
5252 			mp = nmp;
5253 			if (outer_ipv4 != NULL)
5254 				outer_ipv4 = (ipha_t *)mp->b_rptr;
5255 			else
5256 				outer_ipv6 = (ip6_t *)mp->b_rptr;
5257 			if (inner_ipv4 != NULL) {
5258 				inner_ipv4 =
5259 				    (ipha_t *)(mp->b_rptr + outer_hdr_len);
5260 			} else {
5261 				inner_ipv6 =
5262 				    (ip6_t *)(mp->b_rptr + outer_hdr_len);
5263 			}
5264 		}
5265 		if (inner_ipv4 != NULL) {
5266 			is_fragment = IS_V4_FRAGMENT(
5267 			    inner_ipv4->ipha_fragment_offset_and_flags);
5268 		} else {
5269 			sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6, mp,
5270 			    &is_fragment);
5271 		}
5272 
5273 		if (is_fragment) {
5274 			ipha_t *oiph;
5275 			ipha_t *iph = NULL;
5276 			ip6_t *ip6h = NULL;
5277 			int hdr_len;
5278 			uint16_t ip6_hdr_length;
5279 			uint8_t v6_proto;
5280 			uint8_t *v6_proto_p;
5281 
5282 			/*
5283 			 * We have a fragment we need to track!
5284 			 */
5285 			mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
5286 			    outer_hdr_len, ipss);
5287 			if (mp == NULL)
5288 				return (NULL);
5289 			ASSERT(mp->b_cont == NULL);
5290 
5291 			/*
5292 			 * If we get here, we have a full fragment chain
5293 			 */
5294 
5295 			oiph = (ipha_t *)mp->b_rptr;
5296 			if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
5297 				hdr_len = ((outer_hdr_len != 0) ?
5298 				    IPH_HDR_LENGTH(oiph) : 0);
5299 				iph = (ipha_t *)(mp->b_rptr + hdr_len);
5300 			} else {
5301 				ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
5302 				ip6h = (ip6_t *)mp->b_rptr;
5303 				if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
5304 				    &ip6_hdr_length, &v6_proto_p)) {
5305 					ip_drop_packet_chain(mp, B_FALSE, NULL,
5306 					    DROPPER(ipss,
5307 					    ipds_spd_malformed_packet),
5308 					    &ipss->ipsec_spd_dropper);
5309 					return (NULL);
5310 				}
5311 				hdr_len = ip6_hdr_length;
5312 			}
5313 			outer_hdr_len = hdr_len;
5314 
5315 			if (sel.ips_isv4) {
5316 				if (iph == NULL) {
5317 					/* Was v6 outer */
5318 					iph = (ipha_t *)(mp->b_rptr + hdr_len);
5319 				}
5320 				inner_ipv4 = iph;
5321 				sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5322 				sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5323 				sel.ips_protocol =
5324 				    (uint8_t)inner_ipv4->ipha_protocol;
5325 			} else {
5326 				inner_ipv6 = (ip6_t *)(mp->b_rptr +
5327 				    hdr_len);
5328 				sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5329 				sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5330 				if (!ip_hdr_length_nexthdr_v6(mp,
5331 				    inner_ipv6, &ip6_hdr_length, &v6_proto_p)) {
5332 					ip_drop_packet_chain(mp, B_FALSE, NULL,
5333 					    DROPPER(ipss,
5334 					    ipds_spd_malformed_frag),
5335 					    &ipss->ipsec_spd_dropper);
5336 					return (NULL);
5337 				}
5338 				v6_proto = *v6_proto_p;
5339 				sel.ips_protocol = v6_proto;
5340 #ifdef FRAGCACHE_DEBUG
5341 				cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
5342 				    sel.ips_protocol);
5343 #endif
5344 			}
5345 			/* Ports are extracted below */
5346 		}
5347 
5348 		/* Get ports... */
5349 		if (!ipsec_init_outbound_ports(&sel, mp,
5350 		    inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5351 			/* callee did ip_drop_packet_chain() on mp. */
5352 			return (NULL);
5353 		}
5354 #ifdef FRAGCACHE_DEBUG
5355 		if (inner_ipv4 != NULL)
5356 			cmn_err(CE_WARN,
5357 			    "(v4) sel.ips_protocol = %d, "
5358 			    "sel.ips_local_port = %d, "
5359 			    "sel.ips_remote_port = %d\n",
5360 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5361 			    ntohs(sel.ips_remote_port));
5362 		if (inner_ipv6 != NULL)
5363 			cmn_err(CE_WARN,
5364 			    "(v6) sel.ips_protocol = %d, "
5365 			    "sel.ips_local_port = %d, "
5366 			    "sel.ips_remote_port = %d\n",
5367 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5368 			    ntohs(sel.ips_remote_port));
5369 #endif
5370 		/* Success so far! */
5371 	}
5372 	rw_enter(&polhead->iph_lock, RW_READER);
5373 	pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, &sel);
5374 	rw_exit(&polhead->iph_lock);
5375 	if (pol == NULL) {
5376 		/*
5377 		 * No matching policy on this tunnel, drop the packet.
5378 		 *
5379 		 * NOTE:  Tunnel-mode tunnels are different from the
5380 		 * IP global transport mode policy head.  For a tunnel-mode
5381 		 * tunnel, we drop the packet in lieu of passing it
5382 		 * along accepted the way a global-policy miss would.
5383 		 *
5384 		 * NOTE2:  "negotiate transport" tunnels should match ALL
5385 		 * inbound packets, but we do not uncomment the ASSERT()
5386 		 * below because if/when we open PF_POLICY, a user can
5387 		 * shoot themself in the foot with a 0 priority.
5388 		 */
5389 
5390 		/* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
5391 #ifdef FRAGCACHE_DEBUG
5392 		cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
5393 		    "per-port policy\n");
5394 #endif
5395 		ip_drop_packet_chain(mp, B_FALSE, NULL,
5396 		    DROPPER(ipss, ipds_spd_explicit),
5397 		    &ipss->ipsec_spd_dropper);
5398 		return (NULL);
5399 	}
5400 
5401 #ifdef FRAGCACHE_DEBUG
5402 	cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
5403 #endif
5404 
5405 	/*
5406 	 * NOTE: ixa_cleanup() function will release pol references.
5407 	 */
5408 	ixa->ixa_ipsec_policy = pol;
5409 	/*
5410 	 * NOTE: There is a subtle difference between iptun_zoneid and
5411 	 * iptun_connp->conn_zoneid explained in iptun_conn_create().  When
5412 	 * interacting with the ip module, we must use conn_zoneid.
5413 	 */
5414 	ixa->ixa_zoneid = iptun->iptun_connp->conn_zoneid;
5415 
5416 	ASSERT((outer_ipv4 != NULL) ? (ixa->ixa_flags & IXAF_IS_IPV4) :
5417 	    !(ixa->ixa_flags & IXAF_IS_IPV4));
5418 	ASSERT(ixa->ixa_ipsec_policy != NULL);
5419 	ixa->ixa_flags |= IXAF_IPSEC_SECURE;
5420 
5421 	if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
5422 		/* Set up transport mode for tunnelled packets. */
5423 		ixa->ixa_ipsec_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
5424 		    IPPROTO_IPV6;
5425 		return (mp);
5426 	}
5427 
5428 	/* Fill in tunnel-mode goodies here. */
5429 	ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
5430 	/* XXX Do I need to fill in all of the goodies here? */
5431 	if (inner_ipv4) {
5432 		ixa->ixa_ipsec_inaf = AF_INET;
5433 		ixa->ixa_ipsec_insrc[0] =
5434 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
5435 		ixa->ixa_ipsec_indst[0] =
5436 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
5437 	} else {
5438 		ixa->ixa_ipsec_inaf = AF_INET6;
5439 		ixa->ixa_ipsec_insrc[0] =
5440 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
5441 		ixa->ixa_ipsec_insrc[1] =
5442 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
5443 		ixa->ixa_ipsec_insrc[2] =
5444 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
5445 		ixa->ixa_ipsec_insrc[3] =
5446 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
5447 		ixa->ixa_ipsec_indst[0] =
5448 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
5449 		ixa->ixa_ipsec_indst[1] =
5450 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
5451 		ixa->ixa_ipsec_indst[2] =
5452 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
5453 		ixa->ixa_ipsec_indst[3] =
5454 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
5455 	}
5456 	ixa->ixa_ipsec_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
5457 	ixa->ixa_ipsec_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
5458 	/* NOTE:  These are used for transport mode too. */
5459 	ixa->ixa_ipsec_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
5460 	ixa->ixa_ipsec_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
5461 	ixa->ixa_ipsec_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
5462 
5463 	return (mp);
5464 }
5465 
5466 /*
5467  * NOTE: The following releases pol's reference and
5468  * calls ip_drop_packet() for me on NULL returns.
5469  */
5470 mblk_t *
5471 ipsec_check_ipsecin_policy_reasm(mblk_t *attr_mp, ipsec_policy_t *pol,
5472     ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns)
5473 {
5474 	/* Assume attr_mp is a chain of b_next-linked ip_recv_attr mblk. */
5475 	mblk_t *data_chain = NULL, *data_tail = NULL;
5476 	mblk_t *next;
5477 	mblk_t *data_mp;
5478 	ip_recv_attr_t	iras;
5479 
5480 	while (attr_mp != NULL) {
5481 		ASSERT(ip_recv_attr_is_mblk(attr_mp));
5482 		next = attr_mp->b_next;
5483 		attr_mp->b_next = NULL;  /* No tripping asserts. */
5484 
5485 		data_mp = attr_mp->b_cont;
5486 		attr_mp->b_cont = NULL;
5487 		if (!ip_recv_attr_from_mblk(attr_mp, &iras)) {
5488 			/* The ill or ip_stack_t disappeared on us */
5489 			freemsg(data_mp);	/* ip_drop_packet?? */
5490 			ira_cleanup(&iras, B_TRUE);
5491 			goto fail;
5492 		}
5493 
5494 		/*
5495 		 * Need IPPOL_REFHOLD(pol) for extras because
5496 		 * ipsecin_policy does the refrele.
5497 		 */
5498 		IPPOL_REFHOLD(pol);
5499 
5500 		data_mp = ipsec_check_ipsecin_policy(data_mp, pol, inner_ipv4,
5501 		    inner_ipv6, pkt_unique, &iras, ns);
5502 		ira_cleanup(&iras, B_TRUE);
5503 
5504 		if (data_mp == NULL)
5505 			goto fail;
5506 
5507 		if (data_tail == NULL) {
5508 			/* First one */
5509 			data_chain = data_tail = data_mp;
5510 		} else {
5511 			data_tail->b_next = data_mp;
5512 			data_tail = data_mp;
5513 		}
5514 		attr_mp = next;
5515 	}
5516 	/*
5517 	 * One last release because either the loop bumped it up, or we never
5518 	 * called ipsec_check_ipsecin_policy().
5519 	 */
5520 	IPPOL_REFRELE(pol);
5521 
5522 	/* data_chain is ready for return to tun module. */
5523 	return (data_chain);
5524 
5525 fail:
5526 	/*
5527 	 * Need to get rid of any extra pol
5528 	 * references, and any remaining bits as well.
5529 	 */
5530 	IPPOL_REFRELE(pol);
5531 	ipsec_freemsg_chain(data_chain);
5532 	ipsec_freemsg_chain(next);	/* ipdrop stats? */
5533 	return (NULL);
5534 }
5535 
5536 /*
5537  * Return a message if the inbound packet passed an IPsec policy check.  Returns
5538  * NULL if it failed or if it is a fragment needing its friends before a
5539  * policy check can be performed.
5540  *
5541  * Expects a non-NULL data_mp, and a non-NULL polhead.
5542  * The returned mblk may be a b_next chain of packets if fragments
5543  * neeeded to be collected for a proper policy check.
5544  *
5545  * This function calls ip_drop_packet() on data_mp if need be.
5546  *
5547  * NOTE:  outer_hdr_len is signed.  If it's a negative value, the caller
5548  * is inspecting an ICMP packet.
5549  */
5550 mblk_t *
5551 ipsec_tun_inbound(ip_recv_attr_t *ira, mblk_t *data_mp, ipsec_tun_pol_t *itp,
5552     ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
5553     ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns)
5554 {
5555 	ipsec_policy_head_t *polhead;
5556 	ipsec_selector_t sel;
5557 	ipsec_policy_t *pol;
5558 	uint16_t tmpport;
5559 	selret_t rc;
5560 	boolean_t port_policy_present, is_icmp, global_present;
5561 	in6_addr_t tmpaddr;
5562 	ipaddr_t tmp4;
5563 	uint8_t flags, *inner_hdr;
5564 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5565 
5566 	sel.ips_is_icmp_inv_acq = 0;
5567 
5568 	if (outer_ipv4 != NULL) {
5569 		ASSERT(outer_ipv6 == NULL);
5570 		global_present = ipss->ipsec_inbound_v4_policy_present;
5571 	} else {
5572 		ASSERT(outer_ipv6 != NULL);
5573 		global_present = ipss->ipsec_inbound_v6_policy_present;
5574 	}
5575 
5576 	ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
5577 	    inner_ipv4 == NULL && inner_ipv6 != NULL);
5578 
5579 	if (outer_hdr_len < 0) {
5580 		outer_hdr_len = (-outer_hdr_len);
5581 		is_icmp = B_TRUE;
5582 	} else {
5583 		is_icmp = B_FALSE;
5584 	}
5585 
5586 	if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
5587 		mblk_t *mp = data_mp;
5588 
5589 		polhead = itp->itp_policy;
5590 		/*
5591 		 * We need to perform full Tunnel-Mode enforcement,
5592 		 * and we need to have inner-header data for such enforcement.
5593 		 *
5594 		 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound
5595 		 * and on return.
5596 		 */
5597 
5598 		port_policy_present = ((itp->itp_flags &
5599 		    ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
5600 		/*
5601 		 * NOTE:  Even if our policy is transport mode, set the
5602 		 * SEL_TUNNEL_MODE flag so ipsec_init_inbound_sel() can
5603 		 * do the right thing w.r.t. outer headers.
5604 		 */
5605 		flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
5606 		    (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
5607 
5608 		rc = ipsec_init_inbound_sel(&sel, data_mp, inner_ipv4,
5609 		    inner_ipv6, flags);
5610 
5611 		switch (rc) {
5612 		case SELRET_NOMEM:
5613 			ip_drop_packet(data_mp, B_TRUE, NULL,
5614 			    DROPPER(ipss, ipds_spd_nomem),
5615 			    &ipss->ipsec_spd_dropper);
5616 			return (NULL);
5617 		case SELRET_TUNFRAG:
5618 			/*
5619 			 * At this point, if we're cleartext, we don't want
5620 			 * to go there.
5621 			 */
5622 			if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
5623 				ip_drop_packet(data_mp, B_TRUE, NULL,
5624 				    DROPPER(ipss, ipds_spd_got_clear),
5625 				    &ipss->ipsec_spd_dropper);
5626 				return (NULL);
5627 			}
5628 
5629 			/*
5630 			 * Inner and outer headers may not be contiguous.
5631 			 * Pullup the data_mp now to satisfy assumptions of
5632 			 * ipsec_fragcache_add()
5633 			 */
5634 			if (data_mp->b_cont != NULL) {
5635 				mblk_t *nmp;
5636 
5637 				nmp = msgpullup(data_mp, -1);
5638 				if (nmp == NULL) {
5639 					ip_drop_packet(data_mp, B_TRUE, NULL,
5640 					    DROPPER(ipss, ipds_spd_nomem),
5641 					    &ipss->ipsec_spd_dropper);
5642 					return (NULL);
5643 				}
5644 				freemsg(data_mp);
5645 				data_mp = nmp;
5646 				if (outer_ipv4 != NULL)
5647 					outer_ipv4 =
5648 					    (ipha_t *)data_mp->b_rptr;
5649 				else
5650 					outer_ipv6 =
5651 					    (ip6_t *)data_mp->b_rptr;
5652 				if (inner_ipv4 != NULL) {
5653 					inner_ipv4 =
5654 					    (ipha_t *)(data_mp->b_rptr +
5655 					    outer_hdr_len);
5656 				} else {
5657 					inner_ipv6 =
5658 					    (ip6_t *)(data_mp->b_rptr +
5659 					    outer_hdr_len);
5660 				}
5661 			}
5662 
5663 			/*
5664 			 * If we need to queue the packet. First we
5665 			 * get an mblk with the attributes. ipsec_fragcache_add
5666 			 * will prepend that to the queued data and return
5667 			 * a list of b_next messages each of which starts with
5668 			 * the attribute mblk.
5669 			 */
5670 			mp = ip_recv_attr_to_mblk(ira);
5671 			if (mp == NULL) {
5672 				ip_drop_packet(data_mp, B_TRUE, NULL,
5673 				    DROPPER(ipss, ipds_spd_nomem),
5674 				    &ipss->ipsec_spd_dropper);
5675 				return (NULL);
5676 			}
5677 
5678 			mp = ipsec_fragcache_add(&itp->itp_fragcache,
5679 			    mp, data_mp, outer_hdr_len, ipss);
5680 
5681 			if (mp == NULL) {
5682 				/*
5683 				 * Data is cached, fragment chain is not
5684 				 * complete.
5685 				 */
5686 				return (NULL);
5687 			}
5688 
5689 			/*
5690 			 * If we get here, we have a full fragment chain.
5691 			 * Reacquire headers and selectors from first fragment.
5692 			 */
5693 			ASSERT(ip_recv_attr_is_mblk(mp));
5694 			data_mp = mp->b_cont;
5695 			inner_hdr = data_mp->b_rptr;
5696 			if (outer_ipv4 != NULL) {
5697 				inner_hdr += IPH_HDR_LENGTH(
5698 				    (ipha_t *)data_mp->b_rptr);
5699 			} else {
5700 				inner_hdr += ip_hdr_length_v6(data_mp,
5701 				    (ip6_t *)data_mp->b_rptr);
5702 			}
5703 			ASSERT(inner_hdr <= data_mp->b_wptr);
5704 
5705 			if (inner_ipv4 != NULL) {
5706 				inner_ipv4 = (ipha_t *)inner_hdr;
5707 				inner_ipv6 = NULL;
5708 			} else {
5709 				inner_ipv6 = (ip6_t *)inner_hdr;
5710 				inner_ipv4 = NULL;
5711 			}
5712 
5713 			/*
5714 			 * Use SEL_TUNNEL_MODE to take into account the outer
5715 			 * header.  Use SEL_POST_FRAG so we always get ports.
5716 			 */
5717 			rc = ipsec_init_inbound_sel(&sel, data_mp,
5718 			    inner_ipv4, inner_ipv6,
5719 			    SEL_TUNNEL_MODE | SEL_POST_FRAG);
5720 			switch (rc) {
5721 			case SELRET_SUCCESS:
5722 				/*
5723 				 * Get to same place as first caller's
5724 				 * SELRET_SUCCESS case.
5725 				 */
5726 				break;
5727 			case SELRET_NOMEM:
5728 				ip_drop_packet_chain(mp, B_TRUE, NULL,
5729 				    DROPPER(ipss, ipds_spd_nomem),
5730 				    &ipss->ipsec_spd_dropper);
5731 				return (NULL);
5732 			case SELRET_BADPKT:
5733 				ip_drop_packet_chain(mp, B_TRUE, NULL,
5734 				    DROPPER(ipss, ipds_spd_malformed_frag),
5735 				    &ipss->ipsec_spd_dropper);
5736 				return (NULL);
5737 			case SELRET_TUNFRAG:
5738 				cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
5739 				/* FALLTHRU */
5740 			default:
5741 				cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
5742 				    " returns bizarro 0x%x", rc);
5743 				/* Guaranteed panic! */
5744 				ASSERT(rc == SELRET_NOMEM);
5745 				return (NULL);
5746 			}
5747 			/* FALLTHRU */
5748 		case SELRET_SUCCESS:
5749 			/*
5750 			 * Common case:
5751 			 * No per-port policy or a non-fragment.  Keep going.
5752 			 */
5753 			break;
5754 		case SELRET_BADPKT:
5755 			/*
5756 			 * We may receive ICMP (with IPv6 inner) packets that
5757 			 * trigger this return value.  Send 'em in for
5758 			 * enforcement checking.
5759 			 */
5760 			cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
5761 			    "sending 'bad packet' in for enforcement");
5762 			break;
5763 		default:
5764 			cmn_err(CE_WARN,
5765 			    "ipsec_init_inbound_sel() returns bizarro 0x%x",
5766 			    rc);
5767 			ASSERT(rc == SELRET_NOMEM);	/* Guaranteed panic! */
5768 			return (NULL);
5769 		}
5770 
5771 		if (is_icmp) {
5772 			/*
5773 			 * Swap local/remote because this is an ICMP packet.
5774 			 */
5775 			tmpaddr = sel.ips_local_addr_v6;
5776 			sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
5777 			sel.ips_remote_addr_v6 = tmpaddr;
5778 			tmpport = sel.ips_local_port;
5779 			sel.ips_local_port = sel.ips_remote_port;
5780 			sel.ips_remote_port = tmpport;
5781 		}
5782 
5783 		/* find_policy_head() */
5784 		rw_enter(&polhead->iph_lock, RW_READER);
5785 		pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
5786 		    &sel);
5787 		rw_exit(&polhead->iph_lock);
5788 		if (pol != NULL) {
5789 			uint64_t pkt_unique;
5790 
5791 			if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
5792 				if (!pol->ipsp_act->ipa_allow_clear) {
5793 					/*
5794 					 * XXX should never get here with
5795 					 * tunnel reassembled fragments?
5796 					 */
5797 					ASSERT(mp == data_mp);
5798 					ip_drop_packet(data_mp, B_TRUE, NULL,
5799 					    DROPPER(ipss, ipds_spd_got_clear),
5800 					    &ipss->ipsec_spd_dropper);
5801 					IPPOL_REFRELE(pol);
5802 					return (NULL);
5803 				} else {
5804 					IPPOL_REFRELE(pol);
5805 					return (mp);
5806 				}
5807 			}
5808 			pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
5809 			    sel.ips_local_port,
5810 			    (inner_ipv4 == NULL) ? IPPROTO_IPV6 :
5811 			    IPPROTO_ENCAP, sel.ips_protocol);
5812 
5813 			/*
5814 			 * NOTE: The following releases pol's reference and
5815 			 * calls ip_drop_packet() for me on NULL returns.
5816 			 *
5817 			 * "sel" is still good here, so let's use it!
5818 			 */
5819 			if (data_mp == mp) {
5820 				/* A single packet without attributes */
5821 				data_mp = ipsec_check_ipsecin_policy(data_mp,
5822 				    pol, inner_ipv4, inner_ipv6, pkt_unique,
5823 				    ira, ns);
5824 			} else {
5825 				/*
5826 				 * We pass in the b_next chain of attr_mp's
5827 				 * and get back a b_next chain of data_mp's.
5828 				 */
5829 				data_mp = ipsec_check_ipsecin_policy_reasm(mp,
5830 				    pol, inner_ipv4, inner_ipv6, pkt_unique,
5831 				    ns);
5832 			}
5833 			return (data_mp);
5834 		}
5835 
5836 		/*
5837 		 * Else fallthru and check the global policy on the outer
5838 		 * header(s) if this tunnel is an old-style transport-mode
5839 		 * one.  Drop the packet explicitly (no policy entry) for
5840 		 * a new-style tunnel-mode tunnel.
5841 		 */
5842 		if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
5843 			ip_drop_packet_chain(data_mp, B_TRUE, NULL,
5844 			    DROPPER(ipss, ipds_spd_explicit),
5845 			    &ipss->ipsec_spd_dropper);
5846 			return (NULL);
5847 		}
5848 	}
5849 
5850 	/*
5851 	 * NOTE:  If we reach here, we will not have packet chains from
5852 	 * fragcache_add(), because the only way I get chains is on a
5853 	 * tunnel-mode tunnel, which either returns with a pass, or gets
5854 	 * hit by the ip_drop_packet_chain() call right above here.
5855 	 */
5856 	ASSERT(data_mp->b_next == NULL);
5857 
5858 	/* If no per-tunnel security, check global policy now. */
5859 	if ((ira->ira_flags & IRAF_IPSEC_SECURE) && !global_present) {
5860 		if (ira->ira_flags & IRAF_TRUSTED_ICMP) {
5861 			/*
5862 			 * This is an ICMP message that was geenrated locally.
5863 			 * We should accept it.
5864 			 */
5865 			return (data_mp);
5866 		}
5867 
5868 		ip_drop_packet(data_mp, B_TRUE, NULL,
5869 		    DROPPER(ipss, ipds_spd_got_secure),
5870 		    &ipss->ipsec_spd_dropper);
5871 		return (NULL);
5872 	}
5873 
5874 	if (is_icmp) {
5875 		/*
5876 		 * For ICMP packets, "outer_ipvN" is set to the outer header
5877 		 * that is *INSIDE* the ICMP payload.  For global policy
5878 		 * checking, we need to reverse src/dst on the payload in
5879 		 * order to construct selectors appropriately.  See "ripha"
5880 		 * constructions in ip.c.  To avoid a bug like 6478464 (see
5881 		 * earlier in this file), we will actually exchange src/dst
5882 		 * in the packet, and reverse if after the call to
5883 		 * ipsec_check_global_policy().
5884 		 */
5885 		if (outer_ipv4 != NULL) {
5886 			tmp4 = outer_ipv4->ipha_src;
5887 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5888 			outer_ipv4->ipha_dst = tmp4;
5889 		} else {
5890 			ASSERT(outer_ipv6 != NULL);
5891 			tmpaddr = outer_ipv6->ip6_src;
5892 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5893 			outer_ipv6->ip6_dst = tmpaddr;
5894 		}
5895 	}
5896 
5897 	data_mp = ipsec_check_global_policy(data_mp, NULL, outer_ipv4,
5898 	    outer_ipv6, ira, ns);
5899 	if (data_mp == NULL)
5900 		return (NULL);
5901 
5902 	if (is_icmp) {
5903 		/* Set things back to normal. */
5904 		if (outer_ipv4 != NULL) {
5905 			tmp4 = outer_ipv4->ipha_src;
5906 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5907 			outer_ipv4->ipha_dst = tmp4;
5908 		} else {
5909 			/* No need for ASSERT()s now. */
5910 			tmpaddr = outer_ipv6->ip6_src;
5911 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5912 			outer_ipv6->ip6_dst = tmpaddr;
5913 		}
5914 	}
5915 
5916 	/*
5917 	 * At this point, we pretend it's a cleartext accepted
5918 	 * packet.
5919 	 */
5920 	return (data_mp);
5921 }
5922 
5923 /*
5924  * AVL comparison routine for our list of tunnel polheads.
5925  */
5926 static int
5927 tunnel_compare(const void *arg1, const void *arg2)
5928 {
5929 	ipsec_tun_pol_t *left, *right;
5930 	int rc;
5931 
5932 	left = (ipsec_tun_pol_t *)arg1;
5933 	right = (ipsec_tun_pol_t *)arg2;
5934 
5935 	rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
5936 	return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
5937 }
5938 
5939 /*
5940  * Free a tunnel policy node.
5941  */
5942 void
5943 itp_free(ipsec_tun_pol_t *node, netstack_t *ns)
5944 {
5945 	if (node->itp_policy != NULL) {
5946 		IPPH_REFRELE(node->itp_policy, ns);
5947 		node->itp_policy = NULL;
5948 	}
5949 	if (node->itp_inactive != NULL) {
5950 		IPPH_REFRELE(node->itp_inactive, ns);
5951 		node->itp_inactive = NULL;
5952 	}
5953 	mutex_destroy(&node->itp_lock);
5954 	kmem_free(node, sizeof (*node));
5955 }
5956 
5957 void
5958 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns)
5959 {
5960 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5961 
5962 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
5963 	ipss->ipsec_tunnel_policy_gen++;
5964 	ipsec_fragcache_uninit(&node->itp_fragcache, ipss);
5965 	avl_remove(&ipss->ipsec_tunnel_policies, node);
5966 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
5967 	ITP_REFRELE(node, ns);
5968 }
5969 
5970 /*
5971  * Public interface to look up a tunnel security policy by name.  Used by
5972  * spdsock mostly.  Returns "node" with a bumped refcnt.
5973  */
5974 ipsec_tun_pol_t *
5975 get_tunnel_policy(char *name, netstack_t *ns)
5976 {
5977 	ipsec_tun_pol_t *node, lookup;
5978 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5979 
5980 	(void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
5981 
5982 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
5983 	node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
5984 	    &lookup, NULL);
5985 	if (node != NULL) {
5986 		ITP_REFHOLD(node);
5987 	}
5988 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
5989 
5990 	return (node);
5991 }
5992 
5993 /*
5994  * Public interface to walk all tunnel security polcies.  Useful for spdsock
5995  * DUMP operations.  iterator() will not consume a reference.
5996  */
5997 void
5998 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *),
5999     void *arg, netstack_t *ns)
6000 {
6001 	ipsec_tun_pol_t *node;
6002 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6003 
6004 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
6005 	for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL;
6006 	    node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) {
6007 		iterator(node, arg, ns);
6008 	}
6009 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6010 }
6011 
6012 /*
6013  * Initialize policy head.  This can only fail if there's a memory problem.
6014  */
6015 static boolean_t
6016 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns)
6017 {
6018 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6019 
6020 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
6021 	iph->iph_refs = 1;
6022 	iph->iph_gen = 0;
6023 	if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize,
6024 	    KM_SLEEP, B_FALSE, ns) != 0) {
6025 		ipsec_polhead_free_table(iph);
6026 		return (B_FALSE);
6027 	}
6028 	ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize);
6029 	return (B_TRUE);
6030 }
6031 
6032 /*
6033  * Create a tunnel policy node with "name".  Set errno with
6034  * ENOMEM if there's a memory problem, and EEXIST if there's an existing
6035  * node.
6036  */
6037 ipsec_tun_pol_t *
6038 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns)
6039 {
6040 	ipsec_tun_pol_t *newbie, *existing;
6041 	avl_index_t where;
6042 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6043 
6044 	newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
6045 	if (newbie == NULL) {
6046 		*errno = ENOMEM;
6047 		return (NULL);
6048 	}
6049 	if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
6050 		kmem_free(newbie, sizeof (*newbie));
6051 		*errno = ENOMEM;
6052 		return (NULL);
6053 	}
6054 
6055 	(void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
6056 
6057 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6058 	existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6059 	    newbie, &where);
6060 	if (existing != NULL) {
6061 		itp_free(newbie, ns);
6062 		*errno = EEXIST;
6063 		rw_exit(&ipss->ipsec_tunnel_policy_lock);
6064 		return (NULL);
6065 	}
6066 	ipss->ipsec_tunnel_policy_gen++;
6067 	*gen = ipss->ipsec_tunnel_policy_gen;
6068 	newbie->itp_refcnt = 2;	/* One for the caller, one for the tree. */
6069 	newbie->itp_next_policy_index = 1;
6070 	avl_insert(&ipss->ipsec_tunnel_policies, newbie, where);
6071 	mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
6072 	newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
6073 	    KM_NOSLEEP);
6074 	if (newbie->itp_policy == NULL)
6075 		goto nomem;
6076 	newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
6077 	    KM_NOSLEEP);
6078 	if (newbie->itp_inactive == NULL) {
6079 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6080 		goto nomem;
6081 	}
6082 
6083 	if (!tunnel_polhead_init(newbie->itp_policy, ns)) {
6084 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6085 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6086 		goto nomem;
6087 	} else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) {
6088 		IPPH_REFRELE(newbie->itp_policy, ns);
6089 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6090 		goto nomem;
6091 	}
6092 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6093 
6094 	return (newbie);
6095 nomem:
6096 	*errno = ENOMEM;
6097 	kmem_free(newbie, sizeof (*newbie));
6098 	return (NULL);
6099 }
6100 
6101 /*
6102  * Given two addresses, find a tunnel instance's IPsec policy heads.
6103  * Returns NULL on failure.
6104  */
6105 ipsec_tun_pol_t *
6106 itp_get_byaddr(uint32_t *laddr, uint32_t *faddr, int af, ip_stack_t *ipst)
6107 {
6108 	conn_t *connp;
6109 	iptun_t *iptun;
6110 	ipsec_tun_pol_t *itp = NULL;
6111 
6112 	/* Classifiers are used to "src" being foreign. */
6113 	if (af == AF_INET) {
6114 		connp = ipcl_iptun_classify_v4((ipaddr_t *)faddr,
6115 		    (ipaddr_t *)laddr, ipst);
6116 	} else {
6117 		ASSERT(af == AF_INET6);
6118 		ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)laddr));
6119 		ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)faddr));
6120 		connp = ipcl_iptun_classify_v6((in6_addr_t *)faddr,
6121 		    (in6_addr_t *)laddr, ipst);
6122 	}
6123 
6124 	if (connp == NULL)
6125 		return (NULL);
6126 
6127 	if (IPCL_IS_IPTUN(connp)) {
6128 		iptun = connp->conn_iptun;
6129 		if (iptun != NULL) {
6130 			itp = iptun->iptun_itp;
6131 			if (itp != NULL) {
6132 				/* Braces due to the macro's nature... */
6133 				ITP_REFHOLD(itp);
6134 			}
6135 		}  /* Else itp is already NULL. */
6136 	}
6137 
6138 	CONN_DEC_REF(connp);
6139 	return (itp);
6140 }
6141 
6142 /*
6143  * Frag cache code, based on SunScreen 3.2 source
6144  *	screen/kernel/common/screen_fragcache.c
6145  */
6146 
6147 #define	IPSEC_FRAG_TTL_MAX	5
6148 /*
6149  * Note that the following parameters create 256 hash buckets
6150  * with 1024 free entries to be distributed.  Things are cleaned
6151  * periodically and are attempted to be cleaned when there is no
6152  * free space, but this system errs on the side of dropping packets
6153  * over creating memory exhaustion.  We may decide to make hash
6154  * factor a tunable if this proves to be a bad decision.
6155  */
6156 #define	IPSEC_FRAG_HASH_SLOTS	(1<<8)
6157 #define	IPSEC_FRAG_HASH_FACTOR	4
6158 #define	IPSEC_FRAG_HASH_SIZE	(IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
6159 
6160 #define	IPSEC_FRAG_HASH_MASK		(IPSEC_FRAG_HASH_SLOTS - 1)
6161 #define	IPSEC_FRAG_HASH_FUNC(id)	(((id) & IPSEC_FRAG_HASH_MASK) ^ \
6162 					    (((id) / \
6163 					    (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
6164 					    IPSEC_FRAG_HASH_MASK))
6165 
6166 /* Maximum fragments per packet.  48 bytes payload x 1366 packets > 64KB */
6167 #define	IPSEC_MAX_FRAGS		1366
6168 
6169 #define	V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
6170 				    IPH_OFFSET) << 3)
6171 #define	V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
6172 		IPH_MF)
6173 
6174 /*
6175  * Initialize an ipsec fragcache instance.
6176  * Returns B_FALSE if memory allocation fails.
6177  */
6178 boolean_t
6179 ipsec_fragcache_init(ipsec_fragcache_t *frag)
6180 {
6181 	ipsec_fragcache_entry_t *ftemp;
6182 	int i;
6183 
6184 	mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
6185 	frag->itpf_ptr = (ipsec_fragcache_entry_t **)
6186 	    kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) *
6187 	    IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
6188 	if (frag->itpf_ptr == NULL)
6189 		return (B_FALSE);
6190 
6191 	ftemp = (ipsec_fragcache_entry_t *)
6192 	    kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
6193 	    IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
6194 	if (ftemp == NULL) {
6195 		kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) *
6196 		    IPSEC_FRAG_HASH_SLOTS);
6197 		return (B_FALSE);
6198 	}
6199 
6200 	frag->itpf_freelist = NULL;
6201 
6202 	for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
6203 		ftemp->itpfe_next = frag->itpf_freelist;
6204 		frag->itpf_freelist = ftemp;
6205 		ftemp++;
6206 	}
6207 
6208 	frag->itpf_expire_hint = 0;
6209 
6210 	return (B_TRUE);
6211 }
6212 
6213 void
6214 ipsec_fragcache_uninit(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6215 {
6216 	ipsec_fragcache_entry_t *fep;
6217 	int i;
6218 
6219 	mutex_enter(&frag->itpf_lock);
6220 	if (frag->itpf_ptr) {
6221 		/* Delete any existing fragcache entry chains */
6222 		for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6223 			fep = (frag->itpf_ptr)[i];
6224 			while (fep != NULL) {
6225 				/* Returned fep is next in chain or NULL */
6226 				fep = fragcache_delentry(i, fep, frag, ipss);
6227 			}
6228 		}
6229 		/*
6230 		 * Chase the pointers back to the beginning
6231 		 * of the memory allocation and then
6232 		 * get rid of the allocated freelist
6233 		 */
6234 		while (frag->itpf_freelist->itpfe_next != NULL)
6235 			frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
6236 		/*
6237 		 * XXX - If we ever dynamically grow the freelist
6238 		 * then we'll have to free entries individually
6239 		 * or determine how many entries or chunks we have
6240 		 * grown since the initial allocation.
6241 		 */
6242 		kmem_free(frag->itpf_freelist,
6243 		    sizeof (ipsec_fragcache_entry_t) *
6244 		    IPSEC_FRAG_HASH_SIZE);
6245 		/* Free the fragcache structure */
6246 		kmem_free(frag->itpf_ptr,
6247 		    sizeof (ipsec_fragcache_entry_t *) *
6248 		    IPSEC_FRAG_HASH_SLOTS);
6249 	}
6250 	mutex_exit(&frag->itpf_lock);
6251 	mutex_destroy(&frag->itpf_lock);
6252 }
6253 
6254 /*
6255  * Add a fragment to the fragment cache.   Consumes mp if NULL is returned.
6256  * Returns mp if a whole fragment has been assembled, NULL otherwise
6257  * The returned mp could be a b_next chain of fragments.
6258  *
6259  * The iramp argument is set on inbound; NULL if outbound.
6260  */
6261 mblk_t *
6262 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *iramp, mblk_t *mp,
6263     int outer_hdr_len, ipsec_stack_t *ipss)
6264 {
6265 	boolean_t is_v4;
6266 	time_t itpf_time;
6267 	ipha_t *iph;
6268 	ipha_t *oiph;
6269 	ip6_t *ip6h = NULL;
6270 	uint8_t v6_proto;
6271 	uint8_t *v6_proto_p;
6272 	uint16_t ip6_hdr_length;
6273 	ip_pkt_t ipp;
6274 	ip6_frag_t *fraghdr;
6275 	ipsec_fragcache_entry_t *fep;
6276 	int i;
6277 	mblk_t *nmp, *prevmp;
6278 	int firstbyte, lastbyte;
6279 	int offset;
6280 	int last;
6281 	boolean_t inbound = (iramp != NULL);
6282 
6283 #ifdef FRAGCACHE_DEBUG
6284 	cmn_err(CE_WARN, "Fragcache: %s\n", inbound ? "INBOUND" : "OUTBOUND");
6285 #endif
6286 	v6_proto = 0;
6287 	fraghdr = NULL;
6288 
6289 	/*
6290 	 * You're on the slow path, so insure that every packet in the
6291 	 * cache is a single-mblk one.
6292 	 */
6293 	if (mp->b_cont != NULL) {
6294 		nmp = msgpullup(mp, -1);
6295 		if (nmp == NULL) {
6296 			ip_drop_packet(mp, inbound, NULL,
6297 			    DROPPER(ipss, ipds_spd_nomem),
6298 			    &ipss->ipsec_spd_dropper);
6299 			if (inbound)
6300 				(void) ip_recv_attr_free_mblk(iramp);
6301 			return (NULL);
6302 		}
6303 		freemsg(mp);
6304 		mp = nmp;
6305 	}
6306 
6307 	mutex_enter(&frag->itpf_lock);
6308 
6309 	oiph  = (ipha_t *)mp->b_rptr;
6310 	iph  = (ipha_t *)(mp->b_rptr + outer_hdr_len);
6311 
6312 	if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
6313 		is_v4 = B_TRUE;
6314 	} else {
6315 		ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
6316 		ip6h = (ip6_t *)(mp->b_rptr + outer_hdr_len);
6317 
6318 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip6_hdr_length,
6319 		    &v6_proto_p)) {
6320 			/*
6321 			 * Find upper layer protocol.
6322 			 * If it fails we have a malformed packet
6323 			 */
6324 			mutex_exit(&frag->itpf_lock);
6325 			ip_drop_packet(mp, inbound, NULL,
6326 			    DROPPER(ipss, ipds_spd_malformed_packet),
6327 			    &ipss->ipsec_spd_dropper);
6328 			if (inbound)
6329 				(void) ip_recv_attr_free_mblk(iramp);
6330 			return (NULL);
6331 		} else {
6332 			v6_proto = *v6_proto_p;
6333 		}
6334 
6335 
6336 		bzero(&ipp, sizeof (ipp));
6337 		(void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
6338 		if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
6339 			/*
6340 			 * We think this is a fragment, but didn't find
6341 			 * a fragment header.  Something is wrong.
6342 			 */
6343 			mutex_exit(&frag->itpf_lock);
6344 			ip_drop_packet(mp, inbound, NULL,
6345 			    DROPPER(ipss, ipds_spd_malformed_frag),
6346 			    &ipss->ipsec_spd_dropper);
6347 			if (inbound)
6348 				(void) ip_recv_attr_free_mblk(iramp);
6349 			return (NULL);
6350 		}
6351 		fraghdr = ipp.ipp_fraghdr;
6352 		is_v4 = B_FALSE;
6353 	}
6354 
6355 	/* Anything to cleanup? */
6356 
6357 	/*
6358 	 * This cleanup call could be put in a timer loop
6359 	 * but it may actually be just as reasonable a decision to
6360 	 * leave it here.  The disadvantage is this only gets called when
6361 	 * frags are added.  The advantage is that it is not
6362 	 * susceptible to race conditions like a time-based cleanup
6363 	 * may be.
6364 	 */
6365 	itpf_time = gethrestime_sec();
6366 	if (itpf_time >= frag->itpf_expire_hint)
6367 		ipsec_fragcache_clean(frag, ipss);
6368 
6369 	/* Lookup to see if there is an existing entry */
6370 
6371 	if (is_v4)
6372 		i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
6373 	else
6374 		i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
6375 
6376 	for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
6377 		if (is_v4) {
6378 			ASSERT(iph != NULL);
6379 			if ((fep->itpfe_id == iph->ipha_ident) &&
6380 			    (fep->itpfe_src == iph->ipha_src) &&
6381 			    (fep->itpfe_dst == iph->ipha_dst) &&
6382 			    (fep->itpfe_proto == iph->ipha_protocol))
6383 				break;
6384 		} else {
6385 			ASSERT(fraghdr != NULL);
6386 			ASSERT(fep != NULL);
6387 			if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
6388 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
6389 			    &ip6h->ip6_src) &&
6390 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
6391 			    &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
6392 				break;
6393 		}
6394 	}
6395 
6396 	if (is_v4) {
6397 		firstbyte = V4_FRAG_OFFSET(iph);
6398 		lastbyte  = firstbyte + ntohs(iph->ipha_length) -
6399 		    IPH_HDR_LENGTH(iph);
6400 		last = (V4_MORE_FRAGS(iph) == 0);
6401 #ifdef FRAGCACHE_DEBUG
6402 		cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
6403 		    "is_last_frag = %d, id = %d, mp = %p\n", firstbyte,
6404 		    lastbyte, last, iph->ipha_ident, mp);
6405 #endif
6406 	} else {
6407 		firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
6408 		lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6409 		    sizeof (ip6_t) - ip6_hdr_length;
6410 		last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
6411 #ifdef FRAGCACHE_DEBUG
6412 		cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
6413 		    "is_last_frag = %d, id = %d, fraghdr = %p, mp = %p\n",
6414 		    firstbyte, lastbyte, last, fraghdr->ip6f_ident, fraghdr,
6415 		    mp);
6416 #endif
6417 	}
6418 
6419 	/* check for bogus fragments and delete the entry */
6420 	if (firstbyte > 0 && firstbyte <= 8) {
6421 		if (fep != NULL)
6422 			(void) fragcache_delentry(i, fep, frag, ipss);
6423 		mutex_exit(&frag->itpf_lock);
6424 		ip_drop_packet(mp, inbound, NULL,
6425 		    DROPPER(ipss, ipds_spd_malformed_frag),
6426 		    &ipss->ipsec_spd_dropper);
6427 		if (inbound)
6428 			(void) ip_recv_attr_free_mblk(iramp);
6429 		return (NULL);
6430 	}
6431 
6432 	/* Not found, allocate a new entry */
6433 	if (fep == NULL) {
6434 		if (frag->itpf_freelist == NULL) {
6435 			/* see if there is some space */
6436 			ipsec_fragcache_clean(frag, ipss);
6437 			if (frag->itpf_freelist == NULL) {
6438 				mutex_exit(&frag->itpf_lock);
6439 				ip_drop_packet(mp, inbound, NULL,
6440 				    DROPPER(ipss, ipds_spd_nomem),
6441 				    &ipss->ipsec_spd_dropper);
6442 				if (inbound)
6443 					(void) ip_recv_attr_free_mblk(iramp);
6444 				return (NULL);
6445 			}
6446 		}
6447 
6448 		fep = frag->itpf_freelist;
6449 		frag->itpf_freelist = fep->itpfe_next;
6450 
6451 		if (is_v4) {
6452 			bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
6453 			    sizeof (struct in_addr));
6454 			bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
6455 			    sizeof (struct in_addr));
6456 			fep->itpfe_id = iph->ipha_ident;
6457 			fep->itpfe_proto = iph->ipha_protocol;
6458 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6459 		} else {
6460 			bcopy((in6_addr_t *)&ip6h->ip6_src,
6461 			    (in6_addr_t *)&fep->itpfe_src6,
6462 			    sizeof (struct in6_addr));
6463 			bcopy((in6_addr_t *)&ip6h->ip6_dst,
6464 			    (in6_addr_t *)&fep->itpfe_dst6,
6465 			    sizeof (struct in6_addr));
6466 			fep->itpfe_id = fraghdr->ip6f_ident;
6467 			fep->itpfe_proto = v6_proto;
6468 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6469 		}
6470 		itpf_time = gethrestime_sec();
6471 		fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
6472 		fep->itpfe_last = 0;
6473 		fep->itpfe_fraglist = NULL;
6474 		fep->itpfe_depth = 0;
6475 		fep->itpfe_next = (frag->itpf_ptr)[i];
6476 		(frag->itpf_ptr)[i] = fep;
6477 
6478 		if (frag->itpf_expire_hint > fep->itpfe_exp)
6479 			frag->itpf_expire_hint = fep->itpfe_exp;
6480 
6481 	}
6482 
6483 	/* Insert it in the frag list */
6484 	/* List is in order by starting offset of fragments */
6485 
6486 	prevmp = NULL;
6487 	for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
6488 		ipha_t *niph;
6489 		ipha_t *oniph;
6490 		ip6_t *nip6h;
6491 		ip_pkt_t nipp;
6492 		ip6_frag_t *nfraghdr;
6493 		uint16_t nip6_hdr_length;
6494 		uint8_t *nv6_proto_p;
6495 		int nfirstbyte, nlastbyte;
6496 		char *data, *ndata;
6497 		mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
6498 		int hdr_len;
6499 
6500 		oniph  = (ipha_t *)mp->b_rptr;
6501 		nip6h = NULL;
6502 		niph = NULL;
6503 
6504 		/*
6505 		 * Determine outer header type and length and set
6506 		 * pointers appropriately
6507 		 */
6508 
6509 		if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
6510 			hdr_len = ((outer_hdr_len != 0) ?
6511 			    IPH_HDR_LENGTH(oiph) : 0);
6512 			niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6513 		} else {
6514 			ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
6515 			ASSERT(ndata_mp->b_cont == NULL);
6516 			nip6h = (ip6_t *)ndata_mp->b_rptr;
6517 			(void) ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
6518 			    &nip6_hdr_length, &v6_proto_p);
6519 			hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
6520 		}
6521 
6522 		/*
6523 		 * Determine inner header type and length and set
6524 		 * pointers appropriately
6525 		 */
6526 
6527 		if (is_v4) {
6528 			if (niph == NULL) {
6529 				/* Was v6 outer */
6530 				niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6531 			}
6532 			nfirstbyte = V4_FRAG_OFFSET(niph);
6533 			nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
6534 			    IPH_HDR_LENGTH(niph);
6535 		} else {
6536 			ASSERT(ndata_mp->b_cont == NULL);
6537 			nip6h = (ip6_t *)(ndata_mp->b_rptr + hdr_len);
6538 			if (!ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
6539 			    &nip6_hdr_length, &nv6_proto_p)) {
6540 				mutex_exit(&frag->itpf_lock);
6541 				ip_drop_packet_chain(nmp, inbound, NULL,
6542 				    DROPPER(ipss, ipds_spd_malformed_frag),
6543 				    &ipss->ipsec_spd_dropper);
6544 				ipsec_freemsg_chain(ndata_mp);
6545 				if (inbound)
6546 					(void) ip_recv_attr_free_mblk(iramp);
6547 				return (NULL);
6548 			}
6549 			bzero(&nipp, sizeof (nipp));
6550 			(void) ip_find_hdr_v6(ndata_mp, nip6h, B_FALSE, &nipp,
6551 			    NULL);
6552 			nfraghdr = nipp.ipp_fraghdr;
6553 			nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
6554 			    IP6F_OFF_MASK);
6555 			nlastbyte  = nfirstbyte + ntohs(nip6h->ip6_plen) +
6556 			    sizeof (ip6_t) - nip6_hdr_length;
6557 		}
6558 
6559 		/* Check for overlapping fragments */
6560 		if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
6561 			/*
6562 			 * Overlap Check:
6563 			 *  ~~~~---------		# Check if the newly
6564 			 * ~	ndata_mp|		# received fragment
6565 			 *  ~~~~---------		# overlaps with the
6566 			 *	 ---------~~~~~~	# current fragment.
6567 			 *	|    mp		~
6568 			 *	 ---------~~~~~~
6569 			 */
6570 			if (is_v4) {
6571 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6572 				    firstbyte - nfirstbyte;
6573 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6574 			} else {
6575 				data  = (char *)ip6h  +
6576 				    nip6_hdr_length + firstbyte -
6577 				    nfirstbyte;
6578 				ndata = (char *)nip6h + nip6_hdr_length;
6579 			}
6580 			if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) -
6581 			    firstbyte)) {
6582 				/* Overlapping data does not match */
6583 				(void) fragcache_delentry(i, fep, frag, ipss);
6584 				mutex_exit(&frag->itpf_lock);
6585 				ip_drop_packet(mp, inbound, NULL,
6586 				    DROPPER(ipss, ipds_spd_overlap_frag),
6587 				    &ipss->ipsec_spd_dropper);
6588 				if (inbound)
6589 					(void) ip_recv_attr_free_mblk(iramp);
6590 				return (NULL);
6591 			}
6592 			/* Part of defense for jolt2.c fragmentation attack */
6593 			if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
6594 				/*
6595 				 * Check for identical or subset fragments:
6596 				 *  ----------	    ~~~~--------~~~~~
6597 				 * |    nmp   | or  ~	   nmp	    ~
6598 				 *  ----------	    ~~~~--------~~~~~
6599 				 *  ----------		  ------
6600 				 * |	mp    |		 |  mp  |
6601 				 *  ----------		  ------
6602 				 */
6603 				mutex_exit(&frag->itpf_lock);
6604 				ip_drop_packet(mp, inbound, NULL,
6605 				    DROPPER(ipss, ipds_spd_evil_frag),
6606 				    &ipss->ipsec_spd_dropper);
6607 				if (inbound)
6608 					(void) ip_recv_attr_free_mblk(iramp);
6609 				return (NULL);
6610 			}
6611 
6612 		}
6613 
6614 		/* Correct location for this fragment? */
6615 		if (firstbyte <= nfirstbyte) {
6616 			/*
6617 			 * Check if the tail end of the new fragment overlaps
6618 			 * with the head of the current fragment.
6619 			 *	  --------~~~~~~~
6620 			 *	 |    nmp	~
6621 			 *	  --------~~~~~~~
6622 			 *  ~~~~~--------
6623 			 *  ~	mp	 |
6624 			 *  ~~~~~--------
6625 			 */
6626 			if (lastbyte > nfirstbyte) {
6627 				/* Fragments overlap */
6628 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6629 				    firstbyte - nfirstbyte;
6630 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6631 				if (is_v4) {
6632 					data  = (char *)iph +
6633 					    IPH_HDR_LENGTH(iph) + firstbyte -
6634 					    nfirstbyte;
6635 					ndata = (char *)niph +
6636 					    IPH_HDR_LENGTH(niph);
6637 				} else {
6638 					data  = (char *)ip6h  +
6639 					    nip6_hdr_length + firstbyte -
6640 					    nfirstbyte;
6641 					ndata = (char *)nip6h + nip6_hdr_length;
6642 				}
6643 				if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6644 				    - nfirstbyte)) {
6645 					/* Overlap mismatch */
6646 					(void) fragcache_delentry(i, fep, frag,
6647 					    ipss);
6648 					mutex_exit(&frag->itpf_lock);
6649 					ip_drop_packet(mp, inbound, NULL,
6650 					    DROPPER(ipss,
6651 					    ipds_spd_overlap_frag),
6652 					    &ipss->ipsec_spd_dropper);
6653 					if (inbound) {
6654 						(void) ip_recv_attr_free_mblk(
6655 						    iramp);
6656 					}
6657 					return (NULL);
6658 				}
6659 			}
6660 
6661 			/*
6662 			 * Fragment does not illegally overlap and can now
6663 			 * be inserted into the chain
6664 			 */
6665 			break;
6666 		}
6667 
6668 		prevmp = nmp;
6669 	}
6670 	/* Prepend the attributes before we link it in */
6671 	if (iramp != NULL) {
6672 		ASSERT(iramp->b_cont == NULL);
6673 		iramp->b_cont = mp;
6674 		mp = iramp;
6675 		iramp = NULL;
6676 	}
6677 	mp->b_next = nmp;
6678 
6679 	if (prevmp == NULL) {
6680 		fep->itpfe_fraglist = mp;
6681 	} else {
6682 		prevmp->b_next = mp;
6683 	}
6684 	if (last)
6685 		fep->itpfe_last = 1;
6686 
6687 	/* Part of defense for jolt2.c fragmentation attack */
6688 	if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
6689 		(void) fragcache_delentry(i, fep, frag, ipss);
6690 		mutex_exit(&frag->itpf_lock);
6691 		if (inbound)
6692 			mp = ip_recv_attr_free_mblk(mp);
6693 
6694 		ip_drop_packet(mp, inbound, NULL,
6695 		    DROPPER(ipss, ipds_spd_max_frags),
6696 		    &ipss->ipsec_spd_dropper);
6697 		return (NULL);
6698 	}
6699 
6700 	/* Check for complete packet */
6701 
6702 	if (!fep->itpfe_last) {
6703 		mutex_exit(&frag->itpf_lock);
6704 #ifdef FRAGCACHE_DEBUG
6705 		cmn_err(CE_WARN, "Fragment cached, last not yet seen.\n");
6706 #endif
6707 		return (NULL);
6708 	}
6709 
6710 	offset = 0;
6711 	for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
6712 		mblk_t *data_mp = (inbound ? mp->b_cont : mp);
6713 		int hdr_len;
6714 
6715 		oiph  = (ipha_t *)data_mp->b_rptr;
6716 		ip6h = NULL;
6717 		iph = NULL;
6718 
6719 		if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
6720 			hdr_len = ((outer_hdr_len != 0) ?
6721 			    IPH_HDR_LENGTH(oiph) : 0);
6722 			iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6723 		} else {
6724 			ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
6725 			ASSERT(data_mp->b_cont == NULL);
6726 			ip6h = (ip6_t *)data_mp->b_rptr;
6727 			(void) ip_hdr_length_nexthdr_v6(data_mp, ip6h,
6728 			    &ip6_hdr_length, &v6_proto_p);
6729 			hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
6730 		}
6731 
6732 		/* Calculate current fragment start/end */
6733 		if (is_v4) {
6734 			if (iph == NULL) {
6735 				/* Was v6 outer */
6736 				iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6737 			}
6738 			firstbyte = V4_FRAG_OFFSET(iph);
6739 			lastbyte = firstbyte + ntohs(iph->ipha_length) -
6740 			    IPH_HDR_LENGTH(iph);
6741 		} else {
6742 			ASSERT(data_mp->b_cont == NULL);
6743 			ip6h = (ip6_t *)(data_mp->b_rptr + hdr_len);
6744 			if (!ip_hdr_length_nexthdr_v6(data_mp, ip6h,
6745 			    &ip6_hdr_length, &v6_proto_p)) {
6746 				mutex_exit(&frag->itpf_lock);
6747 				ip_drop_packet_chain(mp, inbound, NULL,
6748 				    DROPPER(ipss, ipds_spd_malformed_frag),
6749 				    &ipss->ipsec_spd_dropper);
6750 				return (NULL);
6751 			}
6752 			v6_proto = *v6_proto_p;
6753 			bzero(&ipp, sizeof (ipp));
6754 			(void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp,
6755 			    NULL);
6756 			fraghdr = ipp.ipp_fraghdr;
6757 			firstbyte = ntohs(fraghdr->ip6f_offlg &
6758 			    IP6F_OFF_MASK);
6759 			lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6760 			    sizeof (ip6_t) - ip6_hdr_length;
6761 		}
6762 
6763 		/*
6764 		 * If this fragment is greater than current offset,
6765 		 * we have a missing fragment so return NULL
6766 		 */
6767 		if (firstbyte > offset) {
6768 			mutex_exit(&frag->itpf_lock);
6769 #ifdef FRAGCACHE_DEBUG
6770 			/*
6771 			 * Note, this can happen when the last frag
6772 			 * gets sent through because it is smaller
6773 			 * than the MTU.  It is not necessarily an
6774 			 * error condition.
6775 			 */
6776 			cmn_err(CE_WARN, "Frag greater than offset! : "
6777 			    "missing fragment: firstbyte = %d, offset = %d, "
6778 			    "mp = %p\n", firstbyte, offset, mp);
6779 #endif
6780 			return (NULL);
6781 		}
6782 #ifdef FRAGCACHE_DEBUG
6783 		cmn_err(CE_WARN, "Frag offsets : "
6784 		    "firstbyte = %d, offset = %d, mp = %p\n",
6785 		    firstbyte, offset, mp);
6786 #endif
6787 
6788 		/*
6789 		 * If we are at the last fragment, we have the complete
6790 		 * packet, so rechain things and return it to caller
6791 		 * for processing
6792 		 */
6793 
6794 		if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
6795 		    (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
6796 			mp = fep->itpfe_fraglist;
6797 			fep->itpfe_fraglist = NULL;
6798 			(void) fragcache_delentry(i, fep, frag, ipss);
6799 			mutex_exit(&frag->itpf_lock);
6800 
6801 			if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
6802 			    65535)) || (!is_v4 && (firstbyte +
6803 			    ntohs(ip6h->ip6_plen) > 65535))) {
6804 				/* It is an invalid "ping-o-death" packet */
6805 				/* Discard it */
6806 				ip_drop_packet_chain(mp, inbound, NULL,
6807 				    DROPPER(ipss, ipds_spd_evil_frag),
6808 				    &ipss->ipsec_spd_dropper);
6809 				return (NULL);
6810 			}
6811 #ifdef FRAGCACHE_DEBUG
6812 			cmn_err(CE_WARN, "Fragcache returning mp = %p, "
6813 			    "mp->b_next = %p", mp, mp->b_next);
6814 #endif
6815 			/*
6816 			 * For inbound case, mp has attrmp b_next'd chain
6817 			 * For outbound case, it is just data mp chain
6818 			 */
6819 			return (mp);
6820 		}
6821 
6822 		/*
6823 		 * Update new ending offset if this
6824 		 * fragment extends the packet
6825 		 */
6826 		if (offset < lastbyte)
6827 			offset = lastbyte;
6828 	}
6829 
6830 	mutex_exit(&frag->itpf_lock);
6831 
6832 	/* Didn't find last fragment, so return NULL */
6833 	return (NULL);
6834 }
6835 
6836 static void
6837 ipsec_fragcache_clean(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6838 {
6839 	ipsec_fragcache_entry_t *fep;
6840 	int i;
6841 	ipsec_fragcache_entry_t *earlyfep = NULL;
6842 	time_t itpf_time;
6843 	int earlyexp;
6844 	int earlyi = 0;
6845 
6846 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
6847 
6848 	itpf_time = gethrestime_sec();
6849 	earlyexp = itpf_time + 10000;
6850 
6851 	for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6852 		fep = (frag->itpf_ptr)[i];
6853 		while (fep) {
6854 			if (fep->itpfe_exp < itpf_time) {
6855 				/* found */
6856 				fep = fragcache_delentry(i, fep, frag, ipss);
6857 			} else {
6858 				if (fep->itpfe_exp < earlyexp) {
6859 					earlyfep = fep;
6860 					earlyexp = fep->itpfe_exp;
6861 					earlyi = i;
6862 				}
6863 				fep = fep->itpfe_next;
6864 			}
6865 		}
6866 	}
6867 
6868 	frag->itpf_expire_hint = earlyexp;
6869 
6870 	/* if (!found) */
6871 	if (frag->itpf_freelist == NULL)
6872 		(void) fragcache_delentry(earlyi, earlyfep, frag, ipss);
6873 }
6874 
6875 static ipsec_fragcache_entry_t *
6876 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
6877     ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6878 {
6879 	ipsec_fragcache_entry_t *targp;
6880 	ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
6881 
6882 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
6883 
6884 	/* Free up any fragment list still in cache entry */
6885 	if (fep->itpfe_fraglist != NULL) {
6886 		ip_drop_packet_chain(fep->itpfe_fraglist,
6887 		    ip_recv_attr_is_mblk(fep->itpfe_fraglist), NULL,
6888 		    DROPPER(ipss, ipds_spd_expired_frags),
6889 		    &ipss->ipsec_spd_dropper);
6890 	}
6891 	fep->itpfe_fraglist = NULL;
6892 
6893 	targp = (frag->itpf_ptr)[slot];
6894 	ASSERT(targp != 0);
6895 
6896 	if (targp == fep) {
6897 		/* unlink from head of hash chain */
6898 		(frag->itpf_ptr)[slot] = nextp;
6899 		/* link into free list */
6900 		fep->itpfe_next = frag->itpf_freelist;
6901 		frag->itpf_freelist = fep;
6902 		return (nextp);
6903 	}
6904 
6905 	/* maybe should use double linked list to make update faster */
6906 	/* must be past front of chain */
6907 	while (targp) {
6908 		if (targp->itpfe_next == fep) {
6909 			/* unlink from hash chain */
6910 			targp->itpfe_next = nextp;
6911 			/* link into free list */
6912 			fep->itpfe_next = frag->itpf_freelist;
6913 			frag->itpf_freelist = fep;
6914 			return (nextp);
6915 		}
6916 		targp = targp->itpfe_next;
6917 		ASSERT(targp != 0);
6918 	}
6919 	/* NOTREACHED */
6920 	return (NULL);
6921 }
6922