1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "@(#)spd.c 1.61 08/07/15 SMI" 27 28 /* 29 * IPsec Security Policy Database. 30 * 31 * This module maintains the SPD and provides routines used by ip and ip6 32 * to apply IPsec policy to inbound and outbound datagrams. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/stream.h> 37 #include <sys/stropts.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strsubr.h> 40 #include <sys/strlog.h> 41 #include <sys/cmn_err.h> 42 #include <sys/zone.h> 43 44 #include <sys/systm.h> 45 #include <sys/param.h> 46 #include <sys/kmem.h> 47 #include <sys/ddi.h> 48 49 #include <sys/crypto/api.h> 50 51 #include <inet/common.h> 52 #include <inet/mi.h> 53 54 #include <netinet/ip6.h> 55 #include <netinet/icmp6.h> 56 #include <netinet/udp.h> 57 58 #include <inet/ip.h> 59 #include <inet/ip6.h> 60 61 #include <net/pfkeyv2.h> 62 #include <net/pfpolicy.h> 63 #include <inet/ipsec_info.h> 64 #include <inet/sadb.h> 65 #include <inet/ipsec_impl.h> 66 67 #include <inet/ip_impl.h> /* For IP_MOD_ID */ 68 69 #include <inet/ipsecah.h> 70 #include <inet/ipsecesp.h> 71 #include <inet/ipdrop.h> 72 #include <inet/ipclassifier.h> 73 #include <inet/tun.h> 74 75 static void ipsec_update_present_flags(ipsec_stack_t *); 76 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *, 77 netstack_t *); 78 static void ipsec_out_free(void *); 79 static void ipsec_in_free(void *); 80 static mblk_t *ipsec_attach_global_policy(mblk_t **, conn_t *, 81 ipsec_selector_t *, netstack_t *); 82 static mblk_t *ipsec_apply_global_policy(mblk_t *, conn_t *, 83 ipsec_selector_t *, netstack_t *); 84 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *, 85 ipha_t *, ip6_t *, uint64_t, netstack_t *); 86 static void ipsec_in_release_refs(ipsec_in_t *); 87 static void ipsec_out_release_refs(ipsec_out_t *); 88 static void ipsec_action_free_table(ipsec_action_t *); 89 static void ipsec_action_reclaim(void *); 90 static void ipsec_action_reclaim_stack(netstack_t *); 91 static void ipsid_init(netstack_t *); 92 static void ipsid_fini(netstack_t *); 93 94 /* sel_flags values for ipsec_init_inbound_sel(). */ 95 #define SEL_NONE 0x0000 96 #define SEL_PORT_POLICY 0x0001 97 #define SEL_IS_ICMP 0x0002 98 #define SEL_TUNNEL_MODE 0x0004 99 100 /* Return values for ipsec_init_inbound_sel(). */ 101 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG} 102 selret_t; 103 104 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *, 105 ipha_t *, ip6_t *, uint8_t); 106 107 static boolean_t ipsec_check_ipsecin_action(struct ipsec_in_s *, mblk_t *, 108 struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **, 109 kstat_named_t **); 110 static void ipsec_unregister_prov_update(void); 111 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *); 112 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *); 113 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *); 114 static boolean_t ipsec_kstat_init(ipsec_stack_t *); 115 static void ipsec_kstat_destroy(ipsec_stack_t *); 116 static int ipsec_free_tables(ipsec_stack_t *); 117 static int tunnel_compare(const void *, const void *); 118 static void ipsec_freemsg_chain(mblk_t *); 119 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *, 120 struct kstat_named *, ipdropper_t *); 121 static boolean_t ipsec_kstat_init(ipsec_stack_t *); 122 static void ipsec_kstat_destroy(ipsec_stack_t *); 123 static int ipsec_free_tables(ipsec_stack_t *); 124 static int tunnel_compare(const void *, const void *); 125 static void ipsec_freemsg_chain(mblk_t *); 126 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *, 127 struct kstat_named *, ipdropper_t *); 128 129 /* 130 * Selector hash table is statically sized at module load time. 131 * we default to 251 buckets, which is the largest prime number under 255 132 */ 133 134 #define IPSEC_SPDHASH_DEFAULT 251 135 136 /* SPD hash-size tunable per tunnel. */ 137 #define TUN_SPDHASH_DEFAULT 5 138 139 uint32_t ipsec_spd_hashsize; 140 uint32_t tun_spd_hashsize; 141 142 #define IPSEC_SEL_NOHASH ((uint32_t)(~0)) 143 144 /* 145 * Handle global across all stack instances 146 */ 147 static crypto_notify_handle_t prov_update_handle = NULL; 148 149 static kmem_cache_t *ipsec_action_cache; 150 static kmem_cache_t *ipsec_sel_cache; 151 static kmem_cache_t *ipsec_pol_cache; 152 static kmem_cache_t *ipsec_info_cache; 153 154 /* Frag cache prototypes */ 155 static void ipsec_fragcache_clean(ipsec_fragcache_t *); 156 static ipsec_fragcache_entry_t *fragcache_delentry(int, 157 ipsec_fragcache_entry_t *, ipsec_fragcache_t *); 158 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *); 159 void ipsec_fragcache_uninit(ipsec_fragcache_t *); 160 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *, int, 161 ipsec_stack_t *); 162 163 int ipsec_hdr_pullup_needed = 0; 164 int ipsec_weird_null_inbound_policy = 0; 165 166 #define ALGBITS_ROUND_DOWN(x, align) (((x)/(align))*(align)) 167 #define ALGBITS_ROUND_UP(x, align) ALGBITS_ROUND_DOWN((x)+(align)-1, align) 168 169 /* 170 * Inbound traffic should have matching identities for both SA's. 171 */ 172 173 #define SA_IDS_MATCH(sa1, sa2) \ 174 (((sa1) == NULL) || ((sa2) == NULL) || \ 175 (((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) && \ 176 (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid)))) 177 178 /* 179 * IPv6 Fragments 180 */ 181 #define IS_V6_FRAGMENT(ipp) (ipp.ipp_fields & IPPF_FRAGHDR) 182 183 /* 184 * Policy failure messages. 185 */ 186 static char *ipsec_policy_failure_msgs[] = { 187 188 /* IPSEC_POLICY_NOT_NEEDED */ 189 "%s: Dropping the datagram because the incoming packet " 190 "is %s, but the recipient expects clear; Source %s, " 191 "Destination %s.\n", 192 193 /* IPSEC_POLICY_MISMATCH */ 194 "%s: Policy Failure for the incoming packet (%s); Source %s, " 195 "Destination %s.\n", 196 197 /* IPSEC_POLICY_AUTH_NOT_NEEDED */ 198 "%s: Authentication present while not expected in the " 199 "incoming %s packet; Source %s, Destination %s.\n", 200 201 /* IPSEC_POLICY_ENCR_NOT_NEEDED */ 202 "%s: Encryption present while not expected in the " 203 "incoming %s packet; Source %s, Destination %s.\n", 204 205 /* IPSEC_POLICY_SE_NOT_NEEDED */ 206 "%s: Self-Encapsulation present while not expected in the " 207 "incoming %s packet; Source %s, Destination %s.\n", 208 }; 209 210 /* 211 * General overviews: 212 * 213 * Locking: 214 * 215 * All of the system policy structures are protected by a single 216 * rwlock. These structures are threaded in a 217 * fairly complex fashion and are not expected to change on a 218 * regular basis, so this should not cause scaling/contention 219 * problems. As a result, policy checks should (hopefully) be MT-hot. 220 * 221 * Allocation policy: 222 * 223 * We use custom kmem cache types for the various 224 * bits & pieces of the policy data structures. All allocations 225 * use KM_NOSLEEP instead of KM_SLEEP for policy allocation. The 226 * policy table is of potentially unbounded size, so we don't 227 * want to provide a way to hog all system memory with policy 228 * entries.. 229 */ 230 231 /* Convenient functions for freeing or dropping a b_next linked mblk chain */ 232 233 /* Free all messages in an mblk chain */ 234 static void 235 ipsec_freemsg_chain(mblk_t *mp) 236 { 237 mblk_t *mpnext; 238 while (mp != NULL) { 239 ASSERT(mp->b_prev == NULL); 240 mpnext = mp->b_next; 241 mp->b_next = NULL; 242 freemsg(mp); /* Always works, even if NULL */ 243 mp = mpnext; 244 } 245 } 246 247 /* ip_drop all messages in an mblk chain */ 248 static void 249 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *arriving, 250 ire_t *outbound_ire, struct kstat_named *counter, ipdropper_t *who_called) 251 { 252 mblk_t *mpnext; 253 while (mp != NULL) { 254 ASSERT(mp->b_prev == NULL); 255 mpnext = mp->b_next; 256 mp->b_next = NULL; 257 ip_drop_packet(mp, inbound, arriving, outbound_ire, counter, 258 who_called); 259 mp = mpnext; 260 } 261 } 262 263 /* 264 * AVL tree comparison function. 265 * the in-kernel avl assumes unique keys for all objects. 266 * Since sometimes policy will duplicate rules, we may insert 267 * multiple rules with the same rule id, so we need a tie-breaker. 268 */ 269 static int 270 ipsec_policy_cmpbyid(const void *a, const void *b) 271 { 272 const ipsec_policy_t *ipa, *ipb; 273 uint64_t idxa, idxb; 274 275 ipa = (const ipsec_policy_t *)a; 276 ipb = (const ipsec_policy_t *)b; 277 idxa = ipa->ipsp_index; 278 idxb = ipb->ipsp_index; 279 280 if (idxa < idxb) 281 return (-1); 282 if (idxa > idxb) 283 return (1); 284 /* 285 * Tie-breaker #1: All installed policy rules have a non-NULL 286 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not 287 * actually in-tree but rather a template node being used in 288 * an avl_find query; see ipsec_policy_delete(). This gives us 289 * a placeholder in the ordering just before the the first entry with 290 * a key >= the one we're looking for, so we can walk forward from 291 * that point to get the remaining entries with the same id. 292 */ 293 if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL)) 294 return (-1); 295 if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL)) 296 return (1); 297 /* 298 * At most one of the arguments to the comparison should have a 299 * NULL selector pointer; if not, the tree is broken. 300 */ 301 ASSERT(ipa->ipsp_sel != NULL); 302 ASSERT(ipb->ipsp_sel != NULL); 303 /* 304 * Tie-breaker #2: use the virtual address of the policy node 305 * to arbitrarily break ties. Since we use the new tree node in 306 * the avl_find() in ipsec_insert_always, the new node will be 307 * inserted into the tree in the right place in the sequence. 308 */ 309 if (ipa < ipb) 310 return (-1); 311 if (ipa > ipb) 312 return (1); 313 return (0); 314 } 315 316 /* 317 * Free what ipsec_alloc_table allocated. 318 */ 319 void 320 ipsec_polhead_free_table(ipsec_policy_head_t *iph) 321 { 322 int dir; 323 int i; 324 325 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 326 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 327 328 if (ipr->ipr_hash == NULL) 329 continue; 330 331 for (i = 0; i < ipr->ipr_nchains; i++) { 332 ASSERT(ipr->ipr_hash[i].hash_head == NULL); 333 } 334 kmem_free(ipr->ipr_hash, ipr->ipr_nchains * 335 sizeof (ipsec_policy_hash_t)); 336 ipr->ipr_hash = NULL; 337 } 338 } 339 340 void 341 ipsec_polhead_destroy(ipsec_policy_head_t *iph) 342 { 343 int dir; 344 345 avl_destroy(&iph->iph_rulebyid); 346 rw_destroy(&iph->iph_lock); 347 348 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 349 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 350 int chain; 351 352 for (chain = 0; chain < ipr->ipr_nchains; chain++) 353 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock)); 354 355 } 356 ipsec_polhead_free_table(iph); 357 } 358 359 /* 360 * Free the IPsec stack instance. 361 */ 362 /* ARGSUSED */ 363 static void 364 ipsec_stack_fini(netstackid_t stackid, void *arg) 365 { 366 ipsec_stack_t *ipss = (ipsec_stack_t *)arg; 367 void *cookie; 368 ipsec_tun_pol_t *node; 369 netstack_t *ns = ipss->ipsec_netstack; 370 int i; 371 ipsec_algtype_t algtype; 372 373 ipsec_loader_destroy(ipss); 374 375 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER); 376 /* 377 * It's possible we can just ASSERT() the tree is empty. After all, 378 * we aren't called until IP is ready to unload (and presumably all 379 * tunnels have been unplumbed). But we'll play it safe for now, the 380 * loop will just exit immediately if it's empty. 381 */ 382 cookie = NULL; 383 while ((node = (ipsec_tun_pol_t *) 384 avl_destroy_nodes(&ipss->ipsec_tunnel_policies, 385 &cookie)) != NULL) { 386 ITP_REFRELE(node, ns); 387 } 388 avl_destroy(&ipss->ipsec_tunnel_policies); 389 rw_exit(&ipss->ipsec_tunnel_policy_lock); 390 rw_destroy(&ipss->ipsec_tunnel_policy_lock); 391 392 ipsec_config_flush(ns); 393 394 ipsec_kstat_destroy(ipss); 395 396 ip_drop_unregister(&ipss->ipsec_dropper); 397 398 ip_drop_unregister(&ipss->ipsec_spd_dropper); 399 ip_drop_destroy(ipss); 400 /* 401 * Globals start with ref == 1 to prevent IPPH_REFRELE() from 402 * attempting to free them, hence they should have 1 now. 403 */ 404 ipsec_polhead_destroy(&ipss->ipsec_system_policy); 405 ASSERT(ipss->ipsec_system_policy.iph_refs == 1); 406 ipsec_polhead_destroy(&ipss->ipsec_inactive_policy); 407 ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1); 408 409 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) { 410 ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head); 411 ipss->ipsec_action_hash[i].hash_head = NULL; 412 mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock)); 413 } 414 415 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) { 416 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL); 417 mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock)); 418 } 419 420 mutex_enter(&ipss->ipsec_alg_lock); 421 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) { 422 int nalgs = ipss->ipsec_nalgs[algtype]; 423 424 for (i = 0; i < nalgs; i++) { 425 if (ipss->ipsec_alglists[algtype][i] != NULL) 426 ipsec_alg_unreg(algtype, i, ns); 427 } 428 } 429 mutex_exit(&ipss->ipsec_alg_lock); 430 mutex_destroy(&ipss->ipsec_alg_lock); 431 432 ipsid_gc(ns); 433 ipsid_fini(ns); 434 435 (void) ipsec_free_tables(ipss); 436 kmem_free(ipss, sizeof (*ipss)); 437 } 438 439 void 440 ipsec_policy_g_destroy(void) 441 { 442 kmem_cache_destroy(ipsec_action_cache); 443 kmem_cache_destroy(ipsec_sel_cache); 444 kmem_cache_destroy(ipsec_pol_cache); 445 kmem_cache_destroy(ipsec_info_cache); 446 447 ipsec_unregister_prov_update(); 448 449 netstack_unregister(NS_IPSEC); 450 } 451 452 453 /* 454 * Free what ipsec_alloc_tables allocated. 455 * Called when table allocation fails to free the table. 456 */ 457 static int 458 ipsec_free_tables(ipsec_stack_t *ipss) 459 { 460 int i; 461 462 if (ipss->ipsec_sel_hash != NULL) { 463 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) { 464 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL); 465 } 466 kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize * 467 sizeof (*ipss->ipsec_sel_hash)); 468 ipss->ipsec_sel_hash = NULL; 469 ipss->ipsec_spd_hashsize = 0; 470 } 471 ipsec_polhead_free_table(&ipss->ipsec_system_policy); 472 ipsec_polhead_free_table(&ipss->ipsec_inactive_policy); 473 474 return (ENOMEM); 475 } 476 477 /* 478 * Attempt to allocate the tables in a single policy head. 479 * Return nonzero on failure after cleaning up any work in progress. 480 */ 481 int 482 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag, 483 boolean_t global_cleanup, netstack_t *ns) 484 { 485 int dir; 486 487 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 488 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 489 490 ipr->ipr_nchains = nchains; 491 ipr->ipr_hash = kmem_zalloc(nchains * 492 sizeof (ipsec_policy_hash_t), kmflag); 493 if (ipr->ipr_hash == NULL) 494 return (global_cleanup ? 495 ipsec_free_tables(ns->netstack_ipsec) : 496 ENOMEM); 497 } 498 return (0); 499 } 500 501 /* 502 * Attempt to allocate the various tables. Return nonzero on failure 503 * after cleaning up any work in progress. 504 */ 505 static int 506 ipsec_alloc_tables(int kmflag, netstack_t *ns) 507 { 508 int error; 509 ipsec_stack_t *ipss = ns->netstack_ipsec; 510 511 error = ipsec_alloc_table(&ipss->ipsec_system_policy, 512 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns); 513 if (error != 0) 514 return (error); 515 516 error = ipsec_alloc_table(&ipss->ipsec_inactive_policy, 517 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns); 518 if (error != 0) 519 return (error); 520 521 ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize * 522 sizeof (*ipss->ipsec_sel_hash), kmflag); 523 524 if (ipss->ipsec_sel_hash == NULL) 525 return (ipsec_free_tables(ipss)); 526 527 return (0); 528 } 529 530 /* 531 * After table allocation, initialize a policy head. 532 */ 533 void 534 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains) 535 { 536 int dir, chain; 537 538 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL); 539 avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid, 540 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid)); 541 542 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 543 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 544 ipr->ipr_nchains = nchains; 545 546 for (chain = 0; chain < nchains; chain++) { 547 mutex_init(&(ipr->ipr_hash[chain].hash_lock), 548 NULL, MUTEX_DEFAULT, NULL); 549 } 550 } 551 } 552 553 static boolean_t 554 ipsec_kstat_init(ipsec_stack_t *ipss) 555 { 556 ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net", 557 KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t), 558 KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid); 559 560 if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL) 561 return (B_FALSE); 562 563 ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data; 564 565 #define KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64) 566 KI(esp_stat_in_requests); 567 KI(esp_stat_in_discards); 568 KI(esp_stat_lookup_failure); 569 KI(ah_stat_in_requests); 570 KI(ah_stat_in_discards); 571 KI(ah_stat_lookup_failure); 572 KI(sadb_acquire_maxpackets); 573 KI(sadb_acquire_qhiwater); 574 #undef KI 575 576 kstat_install(ipss->ipsec_ksp); 577 return (B_TRUE); 578 } 579 580 static void 581 ipsec_kstat_destroy(ipsec_stack_t *ipss) 582 { 583 kstat_delete_netstack(ipss->ipsec_ksp, 584 ipss->ipsec_netstack->netstack_stackid); 585 ipss->ipsec_kstats = NULL; 586 587 } 588 589 /* 590 * Initialize the IPsec stack instance. 591 */ 592 /* ARGSUSED */ 593 static void * 594 ipsec_stack_init(netstackid_t stackid, netstack_t *ns) 595 { 596 ipsec_stack_t *ipss; 597 int i; 598 599 ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP); 600 ipss->ipsec_netstack = ns; 601 602 /* 603 * FIXME: netstack_ipsec is used by some of the routines we call 604 * below, but it isn't set until this routine returns. 605 * Either we introduce optional xxx_stack_alloc() functions 606 * that will be called by the netstack framework before xxx_stack_init, 607 * or we switch spd.c and sadb.c to operate on ipsec_stack_t 608 * (latter has some include file order issues for sadb.h, but makes 609 * sense if we merge some of the ipsec related stack_t's together. 610 */ 611 ns->netstack_ipsec = ipss; 612 613 /* 614 * Make two attempts to allocate policy hash tables; try it at 615 * the "preferred" size (may be set in /etc/system) first, 616 * then fall back to the default size. 617 */ 618 ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ? 619 IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize; 620 621 if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) { 622 cmn_err(CE_WARN, 623 "Unable to allocate %d entry IPsec policy hash table", 624 ipss->ipsec_spd_hashsize); 625 ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT; 626 cmn_err(CE_WARN, "Falling back to %d entries", 627 ipss->ipsec_spd_hashsize); 628 (void) ipsec_alloc_tables(KM_SLEEP, ns); 629 } 630 631 /* Just set a default for tunnels. */ 632 ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ? 633 TUN_SPDHASH_DEFAULT : tun_spd_hashsize; 634 635 ipsid_init(ns); 636 /* 637 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting 638 * to free them. 639 */ 640 ipss->ipsec_system_policy.iph_refs = 1; 641 ipss->ipsec_inactive_policy.iph_refs = 1; 642 ipsec_polhead_init(&ipss->ipsec_system_policy, 643 ipss->ipsec_spd_hashsize); 644 ipsec_polhead_init(&ipss->ipsec_inactive_policy, 645 ipss->ipsec_spd_hashsize); 646 rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL); 647 avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare, 648 sizeof (ipsec_tun_pol_t), 0); 649 650 ipss->ipsec_next_policy_index = 1; 651 652 rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL); 653 rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL); 654 655 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) 656 mutex_init(&(ipss->ipsec_action_hash[i].hash_lock), 657 NULL, MUTEX_DEFAULT, NULL); 658 659 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) 660 mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock), 661 NULL, MUTEX_DEFAULT, NULL); 662 663 mutex_init(&ipss->ipsec_alg_lock, NULL, MUTEX_DEFAULT, NULL); 664 for (i = 0; i < IPSEC_NALGTYPES; i++) { 665 ipss->ipsec_nalgs[i] = 0; 666 } 667 668 ip_drop_init(ipss); 669 ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD"); 670 671 /* Set function to dummy until tun is loaded */ 672 rw_init(&ipss->ipsec_itp_get_byaddr_rw_lock, NULL, RW_DEFAULT, NULL); 673 rw_enter(&ipss->ipsec_itp_get_byaddr_rw_lock, RW_WRITER); 674 ipss->ipsec_itp_get_byaddr = itp_get_byaddr_dummy; 675 rw_exit(&ipss->ipsec_itp_get_byaddr_rw_lock); 676 677 /* IP's IPsec code calls the packet dropper */ 678 ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing"); 679 680 (void) ipsec_kstat_init(ipss); 681 682 ipsec_loader_init(ipss); 683 ipsec_loader_start(ipss); 684 685 return (ipss); 686 } 687 688 /* Global across all stack instances */ 689 void 690 ipsec_policy_g_init(void) 691 { 692 ipsec_action_cache = kmem_cache_create("ipsec_actions", 693 sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL, 694 ipsec_action_reclaim, NULL, NULL, 0); 695 ipsec_sel_cache = kmem_cache_create("ipsec_selectors", 696 sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL, 697 NULL, NULL, NULL, 0); 698 ipsec_pol_cache = kmem_cache_create("ipsec_policy", 699 sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL, 700 NULL, NULL, NULL, 0); 701 ipsec_info_cache = kmem_cache_create("ipsec_info", 702 sizeof (ipsec_info_t), _POINTER_ALIGNMENT, NULL, NULL, 703 NULL, NULL, NULL, 0); 704 705 /* 706 * We want to be informed each time a stack is created or 707 * destroyed in the kernel, so we can maintain the 708 * set of ipsec_stack_t's. 709 */ 710 netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini); 711 } 712 713 /* 714 * Sort algorithm lists. 715 * 716 * I may need to split this based on 717 * authentication/encryption, and I may wish to have an administrator 718 * configure this list. Hold on to some NDD variables... 719 * 720 * XXX For now, sort on minimum key size (GAG!). While minimum key size is 721 * not the ideal metric, it's the only quantifiable measure available. 722 * We need a better metric for sorting algorithms by preference. 723 */ 724 static void 725 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns) 726 { 727 ipsec_stack_t *ipss = ns->netstack_ipsec; 728 ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid]; 729 uint8_t holder, swap; 730 uint_t i; 731 uint_t count = ipss->ipsec_nalgs[at]; 732 ASSERT(ai != NULL); 733 ASSERT(algid == ai->alg_id); 734 735 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 736 737 holder = algid; 738 739 for (i = 0; i < count - 1; i++) { 740 ipsec_alginfo_t *alt; 741 742 alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]]; 743 /* 744 * If you want to give precedence to newly added algs, 745 * add the = in the > comparison. 746 */ 747 if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) { 748 /* Swap sortlist[i] and holder. */ 749 swap = ipss->ipsec_sortlist[at][i]; 750 ipss->ipsec_sortlist[at][i] = holder; 751 holder = swap; 752 ai = alt; 753 } /* Else just continue. */ 754 } 755 756 /* Store holder in last slot. */ 757 ipss->ipsec_sortlist[at][i] = holder; 758 } 759 760 /* 761 * Remove an algorithm from a sorted algorithm list. 762 * This should be considerably easier, even with complex sorting. 763 */ 764 static void 765 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns) 766 { 767 boolean_t copyback = B_FALSE; 768 int i; 769 ipsec_stack_t *ipss = ns->netstack_ipsec; 770 int newcount = ipss->ipsec_nalgs[at]; 771 772 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 773 774 for (i = 0; i <= newcount; i++) { 775 if (copyback) { 776 ipss->ipsec_sortlist[at][i-1] = 777 ipss->ipsec_sortlist[at][i]; 778 } else if (ipss->ipsec_sortlist[at][i] == algid) { 779 copyback = B_TRUE; 780 } 781 } 782 } 783 784 /* 785 * Add the specified algorithm to the algorithm tables. 786 * Must be called while holding the algorithm table writer lock. 787 */ 788 void 789 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns) 790 { 791 ipsec_stack_t *ipss = ns->netstack_ipsec; 792 793 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 794 795 ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL); 796 ipsec_alg_fix_min_max(alg, algtype, ns); 797 ipss->ipsec_alglists[algtype][alg->alg_id] = alg; 798 799 ipss->ipsec_nalgs[algtype]++; 800 alg_insert_sortlist(algtype, alg->alg_id, ns); 801 } 802 803 /* 804 * Remove the specified algorithm from the algorithm tables. 805 * Must be called while holding the algorithm table writer lock. 806 */ 807 void 808 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns) 809 { 810 ipsec_stack_t *ipss = ns->netstack_ipsec; 811 812 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 813 814 ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL); 815 ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]); 816 ipss->ipsec_alglists[algtype][algid] = NULL; 817 818 ipss->ipsec_nalgs[algtype]--; 819 alg_remove_sortlist(algtype, algid, ns); 820 } 821 822 /* 823 * Hooks for spdsock to get a grip on system policy. 824 */ 825 826 ipsec_policy_head_t * 827 ipsec_system_policy(netstack_t *ns) 828 { 829 ipsec_stack_t *ipss = ns->netstack_ipsec; 830 ipsec_policy_head_t *h = &ipss->ipsec_system_policy; 831 832 IPPH_REFHOLD(h); 833 return (h); 834 } 835 836 ipsec_policy_head_t * 837 ipsec_inactive_policy(netstack_t *ns) 838 { 839 ipsec_stack_t *ipss = ns->netstack_ipsec; 840 ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy; 841 842 IPPH_REFHOLD(h); 843 return (h); 844 } 845 846 /* 847 * Lock inactive policy, then active policy, then exchange policy root 848 * pointers. 849 */ 850 void 851 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive, 852 netstack_t *ns) 853 { 854 int af, dir; 855 avl_tree_t r1, r2; 856 857 rw_enter(&inactive->iph_lock, RW_WRITER); 858 rw_enter(&active->iph_lock, RW_WRITER); 859 860 r1 = active->iph_rulebyid; 861 r2 = inactive->iph_rulebyid; 862 active->iph_rulebyid = r2; 863 inactive->iph_rulebyid = r1; 864 865 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 866 ipsec_policy_hash_t *h1, *h2; 867 868 h1 = active->iph_root[dir].ipr_hash; 869 h2 = inactive->iph_root[dir].ipr_hash; 870 active->iph_root[dir].ipr_hash = h2; 871 inactive->iph_root[dir].ipr_hash = h1; 872 873 for (af = 0; af < IPSEC_NAF; af++) { 874 ipsec_policy_t *t1, *t2; 875 876 t1 = active->iph_root[dir].ipr_nonhash[af]; 877 t2 = inactive->iph_root[dir].ipr_nonhash[af]; 878 active->iph_root[dir].ipr_nonhash[af] = t2; 879 inactive->iph_root[dir].ipr_nonhash[af] = t1; 880 if (t1 != NULL) { 881 t1->ipsp_hash.hash_pp = 882 &(inactive->iph_root[dir].ipr_nonhash[af]); 883 } 884 if (t2 != NULL) { 885 t2->ipsp_hash.hash_pp = 886 &(active->iph_root[dir].ipr_nonhash[af]); 887 } 888 889 } 890 } 891 active->iph_gen++; 892 inactive->iph_gen++; 893 ipsec_update_present_flags(ns->netstack_ipsec); 894 rw_exit(&active->iph_lock); 895 rw_exit(&inactive->iph_lock); 896 } 897 898 /* 899 * Swap global policy primary/secondary. 900 */ 901 void 902 ipsec_swap_global_policy(netstack_t *ns) 903 { 904 ipsec_stack_t *ipss = ns->netstack_ipsec; 905 906 ipsec_swap_policy(&ipss->ipsec_system_policy, 907 &ipss->ipsec_inactive_policy, ns); 908 } 909 910 /* 911 * Clone one policy rule.. 912 */ 913 static ipsec_policy_t * 914 ipsec_copy_policy(const ipsec_policy_t *src) 915 { 916 ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP); 917 918 if (dst == NULL) 919 return (NULL); 920 921 /* 922 * Adjust refcounts of cloned state. 923 */ 924 IPACT_REFHOLD(src->ipsp_act); 925 src->ipsp_sel->ipsl_refs++; 926 927 HASH_NULL(dst, ipsp_hash); 928 dst->ipsp_refs = 1; 929 dst->ipsp_sel = src->ipsp_sel; 930 dst->ipsp_act = src->ipsp_act; 931 dst->ipsp_prio = src->ipsp_prio; 932 dst->ipsp_index = src->ipsp_index; 933 934 return (dst); 935 } 936 937 void 938 ipsec_insert_always(avl_tree_t *tree, void *new_node) 939 { 940 void *node; 941 avl_index_t where; 942 943 node = avl_find(tree, new_node, &where); 944 ASSERT(node == NULL); 945 avl_insert(tree, new_node, where); 946 } 947 948 949 static int 950 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src, 951 ipsec_policy_t **dstp) 952 { 953 for (; src != NULL; src = src->ipsp_hash.hash_next) { 954 ipsec_policy_t *dst = ipsec_copy_policy(src); 955 if (dst == NULL) 956 return (ENOMEM); 957 958 HASHLIST_INSERT(dst, ipsp_hash, *dstp); 959 ipsec_insert_always(&dph->iph_rulebyid, dst); 960 } 961 return (0); 962 } 963 964 965 966 /* 967 * Make one policy head look exactly like another. 968 * 969 * As with ipsec_swap_policy, we lock the destination policy head first, then 970 * the source policy head. Note that we only need to read-lock the source 971 * policy head as we are not changing it. 972 */ 973 int 974 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph, 975 netstack_t *ns) 976 { 977 int af, dir, chain, nchains; 978 979 rw_enter(&dph->iph_lock, RW_WRITER); 980 981 ipsec_polhead_flush(dph, ns); 982 983 rw_enter(&sph->iph_lock, RW_READER); 984 985 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 986 ipsec_policy_root_t *dpr = &dph->iph_root[dir]; 987 ipsec_policy_root_t *spr = &sph->iph_root[dir]; 988 nchains = dpr->ipr_nchains; 989 990 ASSERT(dpr->ipr_nchains == spr->ipr_nchains); 991 992 for (af = 0; af < IPSEC_NAF; af++) { 993 if (ipsec_copy_chain(dph, spr->ipr_nonhash[af], 994 &dpr->ipr_nonhash[af])) 995 goto abort_copy; 996 } 997 998 for (chain = 0; chain < nchains; chain++) { 999 if (ipsec_copy_chain(dph, 1000 spr->ipr_hash[chain].hash_head, 1001 &dpr->ipr_hash[chain].hash_head)) 1002 goto abort_copy; 1003 } 1004 } 1005 1006 dph->iph_gen++; 1007 1008 rw_exit(&sph->iph_lock); 1009 rw_exit(&dph->iph_lock); 1010 return (0); 1011 1012 abort_copy: 1013 ipsec_polhead_flush(dph, ns); 1014 rw_exit(&sph->iph_lock); 1015 rw_exit(&dph->iph_lock); 1016 return (ENOMEM); 1017 } 1018 1019 /* 1020 * Clone currently active policy to the inactive policy list. 1021 */ 1022 int 1023 ipsec_clone_system_policy(netstack_t *ns) 1024 { 1025 ipsec_stack_t *ipss = ns->netstack_ipsec; 1026 1027 return (ipsec_copy_polhead(&ipss->ipsec_system_policy, 1028 &ipss->ipsec_inactive_policy, ns)); 1029 } 1030 1031 /* 1032 * Generic "do we have IPvN policy" answer. 1033 */ 1034 boolean_t 1035 iph_ipvN(ipsec_policy_head_t *iph, boolean_t v6) 1036 { 1037 int i, hval; 1038 uint32_t valbit; 1039 ipsec_policy_root_t *ipr; 1040 ipsec_policy_t *ipp; 1041 1042 if (v6) { 1043 valbit = IPSL_IPV6; 1044 hval = IPSEC_AF_V6; 1045 } else { 1046 valbit = IPSL_IPV4; 1047 hval = IPSEC_AF_V4; 1048 } 1049 1050 ASSERT(RW_LOCK_HELD(&iph->iph_lock)); 1051 for (ipr = iph->iph_root; ipr < &(iph->iph_root[IPSEC_NTYPES]); ipr++) { 1052 if (ipr->ipr_nonhash[hval] != NULL) 1053 return (B_TRUE); 1054 for (i = 0; i < ipr->ipr_nchains; i++) { 1055 for (ipp = ipr->ipr_hash[i].hash_head; ipp != NULL; 1056 ipp = ipp->ipsp_hash.hash_next) { 1057 if (ipp->ipsp_sel->ipsl_key.ipsl_valid & valbit) 1058 return (B_TRUE); 1059 } 1060 } 1061 } 1062 1063 return (B_FALSE); 1064 } 1065 1066 /* 1067 * Extract the string from ipsec_policy_failure_msgs[type] and 1068 * log it. 1069 * 1070 */ 1071 void 1072 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h, 1073 boolean_t secure, netstack_t *ns) 1074 { 1075 char sbuf[INET6_ADDRSTRLEN]; 1076 char dbuf[INET6_ADDRSTRLEN]; 1077 char *s; 1078 char *d; 1079 ipsec_stack_t *ipss = ns->netstack_ipsec; 1080 1081 ASSERT((ipha == NULL && ip6h != NULL) || 1082 (ip6h == NULL && ipha != NULL)); 1083 1084 if (ipha != NULL) { 1085 s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf)); 1086 d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf)); 1087 } else { 1088 s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf)); 1089 d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf)); 1090 1091 } 1092 1093 /* Always bump the policy failure counter. */ 1094 ipss->ipsec_policy_failure_count[type]++; 1095 1096 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 1097 ipsec_policy_failure_msgs[type], func_name, 1098 (secure ? "secure" : "not secure"), s, d); 1099 } 1100 1101 /* 1102 * Rate-limiting front-end to strlog() for AH and ESP. Uses the ndd variables 1103 * in /dev/ip and the same rate-limiting clock so that there's a single 1104 * knob to turn to throttle the rate of messages. 1105 */ 1106 void 1107 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl, 1108 char *fmt, ...) 1109 { 1110 va_list adx; 1111 hrtime_t current = gethrtime(); 1112 ip_stack_t *ipst = ns->netstack_ip; 1113 ipsec_stack_t *ipss = ns->netstack_ipsec; 1114 1115 sl |= SL_CONSOLE; 1116 /* 1117 * Throttle logging to stop syslog from being swamped. If variable 1118 * 'ipsec_policy_log_interval' is zero, don't log any messages at 1119 * all, otherwise log only one message every 'ipsec_policy_log_interval' 1120 * msec. Convert interval (in msec) to hrtime (in nsec). 1121 */ 1122 1123 if (ipst->ips_ipsec_policy_log_interval) { 1124 if (ipss->ipsec_policy_failure_last + 1125 ((hrtime_t)ipst->ips_ipsec_policy_log_interval * 1126 (hrtime_t)1000000) <= current) { 1127 va_start(adx, fmt); 1128 (void) vstrlog(mid, sid, level, sl, fmt, adx); 1129 va_end(adx); 1130 ipss->ipsec_policy_failure_last = current; 1131 } 1132 } 1133 } 1134 1135 void 1136 ipsec_config_flush(netstack_t *ns) 1137 { 1138 ipsec_stack_t *ipss = ns->netstack_ipsec; 1139 1140 rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER); 1141 ipsec_polhead_flush(&ipss->ipsec_system_policy, ns); 1142 ipss->ipsec_next_policy_index = 1; 1143 rw_exit(&ipss->ipsec_system_policy.iph_lock); 1144 ipsec_action_reclaim_stack(ns); 1145 } 1146 1147 /* 1148 * Clip a policy's min/max keybits vs. the capabilities of the 1149 * algorithm. 1150 */ 1151 static void 1152 act_alg_adjust(uint_t algtype, uint_t algid, 1153 uint16_t *minbits, uint16_t *maxbits, netstack_t *ns) 1154 { 1155 ipsec_stack_t *ipss = ns->netstack_ipsec; 1156 ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid]; 1157 1158 if (algp != NULL) { 1159 /* 1160 * If passed-in minbits is zero, we assume the caller trusts 1161 * us with setting the minimum key size. We pick the 1162 * algorithms DEFAULT key size for the minimum in this case. 1163 */ 1164 if (*minbits == 0) { 1165 *minbits = algp->alg_default_bits; 1166 ASSERT(*minbits >= algp->alg_minbits); 1167 } else { 1168 *minbits = MAX(MIN(*minbits, algp->alg_maxbits), 1169 algp->alg_minbits); 1170 } 1171 if (*maxbits == 0) 1172 *maxbits = algp->alg_maxbits; 1173 else 1174 *maxbits = MIN(MAX(*maxbits, algp->alg_minbits), 1175 algp->alg_maxbits); 1176 ASSERT(*minbits <= *maxbits); 1177 } else { 1178 *minbits = 0; 1179 *maxbits = 0; 1180 } 1181 } 1182 1183 /* 1184 * Check an action's requested algorithms against the algorithms currently 1185 * loaded in the system. 1186 */ 1187 boolean_t 1188 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns) 1189 { 1190 ipsec_prot_t *ipp; 1191 ipsec_stack_t *ipss = ns->netstack_ipsec; 1192 1193 ipp = &act->ipa_apply; 1194 1195 if (ipp->ipp_use_ah && 1196 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) { 1197 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG; 1198 return (B_FALSE); 1199 } 1200 if (ipp->ipp_use_espa && 1201 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] == 1202 NULL) { 1203 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG; 1204 return (B_FALSE); 1205 } 1206 if (ipp->ipp_use_esp && 1207 ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) { 1208 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG; 1209 return (B_FALSE); 1210 } 1211 1212 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg, 1213 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns); 1214 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg, 1215 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns); 1216 act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg, 1217 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns); 1218 1219 if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) { 1220 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE; 1221 return (B_FALSE); 1222 } 1223 if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) { 1224 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE; 1225 return (B_FALSE); 1226 } 1227 if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) { 1228 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE; 1229 return (B_FALSE); 1230 } 1231 /* TODO: sanity check lifetimes */ 1232 return (B_TRUE); 1233 } 1234 1235 /* 1236 * Set up a single action during wildcard expansion.. 1237 */ 1238 static void 1239 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act, 1240 uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns) 1241 { 1242 ipsec_prot_t *ipp; 1243 1244 *outact = *act; 1245 ipp = &outact->ipa_apply; 1246 ipp->ipp_auth_alg = (uint8_t)auth_alg; 1247 ipp->ipp_encr_alg = (uint8_t)encr_alg; 1248 ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg; 1249 1250 act_alg_adjust(IPSEC_ALG_AUTH, auth_alg, 1251 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns); 1252 act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg, 1253 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns); 1254 act_alg_adjust(IPSEC_ALG_ENCR, encr_alg, 1255 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns); 1256 } 1257 1258 /* 1259 * combinatoric expansion time: expand a wildcarded action into an 1260 * array of wildcarded actions; we return the exploded action list, 1261 * and return a count in *nact (output only). 1262 */ 1263 static ipsec_act_t * 1264 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns) 1265 { 1266 boolean_t use_ah, use_esp, use_espa; 1267 boolean_t wild_auth, wild_encr, wild_eauth; 1268 uint_t auth_alg, auth_idx, auth_min, auth_max; 1269 uint_t eauth_alg, eauth_idx, eauth_min, eauth_max; 1270 uint_t encr_alg, encr_idx, encr_min, encr_max; 1271 uint_t action_count, ai; 1272 ipsec_act_t *outact; 1273 ipsec_stack_t *ipss = ns->netstack_ipsec; 1274 1275 if (act->ipa_type != IPSEC_ACT_APPLY) { 1276 outact = kmem_alloc(sizeof (*act), KM_NOSLEEP); 1277 *nact = 1; 1278 if (outact != NULL) 1279 bcopy(act, outact, sizeof (*act)); 1280 return (outact); 1281 } 1282 /* 1283 * compute the combinatoric explosion.. 1284 * 1285 * we assume a request for encr if esp_req is PREF_REQUIRED 1286 * we assume a request for ah auth if ah_req is PREF_REQUIRED. 1287 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED 1288 */ 1289 1290 use_ah = act->ipa_apply.ipp_use_ah; 1291 use_esp = act->ipa_apply.ipp_use_esp; 1292 use_espa = act->ipa_apply.ipp_use_espa; 1293 auth_alg = act->ipa_apply.ipp_auth_alg; 1294 eauth_alg = act->ipa_apply.ipp_esp_auth_alg; 1295 encr_alg = act->ipa_apply.ipp_encr_alg; 1296 1297 wild_auth = use_ah && (auth_alg == 0); 1298 wild_eauth = use_espa && (eauth_alg == 0); 1299 wild_encr = use_esp && (encr_alg == 0); 1300 1301 action_count = 1; 1302 auth_min = auth_max = auth_alg; 1303 eauth_min = eauth_max = eauth_alg; 1304 encr_min = encr_max = encr_alg; 1305 1306 /* 1307 * set up for explosion.. for each dimension, expand output 1308 * size by the explosion factor. 1309 * 1310 * Don't include the "any" algorithms, if defined, as no 1311 * kernel policies should be set for these algorithms. 1312 */ 1313 1314 #define SET_EXP_MINMAX(type, wild, alg, min, max, ipss) \ 1315 if (wild) { \ 1316 int nalgs = ipss->ipsec_nalgs[type]; \ 1317 if (ipss->ipsec_alglists[type][alg] != NULL) \ 1318 nalgs--; \ 1319 action_count *= nalgs; \ 1320 min = 0; \ 1321 max = ipss->ipsec_nalgs[type] - 1; \ 1322 } 1323 1324 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE, 1325 auth_min, auth_max, ipss); 1326 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE, 1327 eauth_min, eauth_max, ipss); 1328 SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE, 1329 encr_min, encr_max, ipss); 1330 1331 #undef SET_EXP_MINMAX 1332 1333 /* 1334 * ok, allocate the whole mess.. 1335 */ 1336 1337 outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP); 1338 if (outact == NULL) 1339 return (NULL); 1340 1341 /* 1342 * Now compute all combinations. Note that non-wildcarded 1343 * dimensions just get a single value from auth_min, while 1344 * wildcarded dimensions indirect through the sortlist. 1345 * 1346 * We do encryption outermost since, at this time, there's 1347 * greater difference in security and performance between 1348 * encryption algorithms vs. authentication algorithms. 1349 */ 1350 1351 ai = 0; 1352 1353 #define WHICH_ALG(type, wild, idx, ipss) \ 1354 ((wild)?(ipss->ipsec_sortlist[type][idx]):(idx)) 1355 1356 for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) { 1357 encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss); 1358 if (wild_encr && encr_alg == SADB_EALG_NONE) 1359 continue; 1360 for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) { 1361 auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth, 1362 auth_idx, ipss); 1363 if (wild_auth && auth_alg == SADB_AALG_NONE) 1364 continue; 1365 for (eauth_idx = eauth_min; eauth_idx <= eauth_max; 1366 eauth_idx++) { 1367 eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH, 1368 wild_eauth, eauth_idx, ipss); 1369 if (wild_eauth && eauth_alg == SADB_AALG_NONE) 1370 continue; 1371 1372 ipsec_setup_act(&outact[ai], act, 1373 auth_alg, encr_alg, eauth_alg, ns); 1374 ai++; 1375 } 1376 } 1377 } 1378 1379 #undef WHICH_ALG 1380 1381 ASSERT(ai == action_count); 1382 *nact = action_count; 1383 return (outact); 1384 } 1385 1386 /* 1387 * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t. 1388 */ 1389 static void 1390 ipsec_prot_from_req(ipsec_req_t *req, ipsec_prot_t *ipp) 1391 { 1392 bzero(ipp, sizeof (*ipp)); 1393 /* 1394 * ipp_use_* are bitfields. Look at "!!" in the following as a 1395 * "boolean canonicalization" operator. 1396 */ 1397 ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED); 1398 ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED); 1399 ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg); 1400 ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED); 1401 ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) & 1402 IPSEC_PREF_UNIQUE); 1403 ipp->ipp_encr_alg = req->ipsr_esp_alg; 1404 /* 1405 * SADB_AALG_ANY is a placeholder to distinguish "any" from 1406 * "none" above. If auth is required, as determined above, 1407 * SADB_AALG_ANY becomes 0, which is the representation 1408 * of "any" and "none" in PF_KEY v2. 1409 */ 1410 ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ? 1411 req->ipsr_auth_alg : 0; 1412 ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ? 1413 req->ipsr_esp_auth_alg : 0; 1414 } 1415 1416 /* 1417 * Extract a new-style action from a request. 1418 */ 1419 void 1420 ipsec_actvec_from_req(ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp, 1421 netstack_t *ns) 1422 { 1423 struct ipsec_act act; 1424 1425 bzero(&act, sizeof (act)); 1426 if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) && 1427 (req->ipsr_esp_req & IPSEC_PREF_NEVER)) { 1428 act.ipa_type = IPSEC_ACT_BYPASS; 1429 } else { 1430 act.ipa_type = IPSEC_ACT_APPLY; 1431 ipsec_prot_from_req(req, &act.ipa_apply); 1432 } 1433 *actp = ipsec_act_wildcard_expand(&act, nactp, ns); 1434 } 1435 1436 /* 1437 * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat). 1438 * We assume caller has already zero'ed *req for us. 1439 */ 1440 static int 1441 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req) 1442 { 1443 req->ipsr_esp_alg = ipp->ipp_encr_alg; 1444 req->ipsr_auth_alg = ipp->ipp_auth_alg; 1445 req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg; 1446 1447 if (ipp->ipp_use_unique) { 1448 req->ipsr_ah_req |= IPSEC_PREF_UNIQUE; 1449 req->ipsr_esp_req |= IPSEC_PREF_UNIQUE; 1450 } 1451 if (ipp->ipp_use_se) 1452 req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED; 1453 if (ipp->ipp_use_ah) 1454 req->ipsr_ah_req |= IPSEC_PREF_REQUIRED; 1455 if (ipp->ipp_use_esp) 1456 req->ipsr_esp_req |= IPSEC_PREF_REQUIRED; 1457 return (sizeof (*req)); 1458 } 1459 1460 /* 1461 * Convert a new-style action back to an ipsec_req_t (more backwards compat). 1462 * We assume caller has already zero'ed *req for us. 1463 */ 1464 static int 1465 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req) 1466 { 1467 switch (ap->ipa_act.ipa_type) { 1468 case IPSEC_ACT_BYPASS: 1469 req->ipsr_ah_req = IPSEC_PREF_NEVER; 1470 req->ipsr_esp_req = IPSEC_PREF_NEVER; 1471 return (sizeof (*req)); 1472 case IPSEC_ACT_APPLY: 1473 return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req)); 1474 } 1475 return (sizeof (*req)); 1476 } 1477 1478 /* 1479 * Convert a new-style action back to an ipsec_req_t (more backwards compat). 1480 * We assume caller has already zero'ed *req for us. 1481 */ 1482 int 1483 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af) 1484 { 1485 ipsec_policy_t *p; 1486 1487 /* 1488 * FULL-PERSOCK: consult hash table, too? 1489 */ 1490 for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af]; 1491 p != NULL; 1492 p = p->ipsp_hash.hash_next) { 1493 if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0) 1494 return (ipsec_req_from_act(p->ipsp_act, req)); 1495 } 1496 return (sizeof (*req)); 1497 } 1498 1499 /* 1500 * Based on per-socket or latched policy, convert to an appropriate 1501 * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can 1502 * be tail-called from ip. 1503 */ 1504 int 1505 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af) 1506 { 1507 ipsec_latch_t *ipl; 1508 int rv = sizeof (ipsec_req_t); 1509 1510 bzero(req, sizeof (*req)); 1511 1512 mutex_enter(&connp->conn_lock); 1513 ipl = connp->conn_latch; 1514 1515 /* 1516 * Find appropriate policy. First choice is latched action; 1517 * failing that, see latched policy; failing that, 1518 * look at configured policy. 1519 */ 1520 if (ipl != NULL) { 1521 if (ipl->ipl_in_action != NULL) { 1522 rv = ipsec_req_from_act(ipl->ipl_in_action, req); 1523 goto done; 1524 } 1525 if (ipl->ipl_in_policy != NULL) { 1526 rv = ipsec_req_from_act(ipl->ipl_in_policy->ipsp_act, 1527 req); 1528 goto done; 1529 } 1530 } 1531 if (connp->conn_policy != NULL) 1532 rv = ipsec_req_from_head(connp->conn_policy, req, af); 1533 done: 1534 mutex_exit(&connp->conn_lock); 1535 return (rv); 1536 } 1537 1538 void 1539 ipsec_actvec_free(ipsec_act_t *act, uint_t nact) 1540 { 1541 kmem_free(act, nact * sizeof (*act)); 1542 } 1543 1544 /* 1545 * When outbound policy is not cached, look it up the hard way and attach 1546 * an ipsec_out_t to the packet.. 1547 */ 1548 static mblk_t * 1549 ipsec_attach_global_policy(mblk_t **mp, conn_t *connp, ipsec_selector_t *sel, 1550 netstack_t *ns) 1551 { 1552 ipsec_policy_t *p; 1553 1554 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel, ns); 1555 1556 if (p == NULL) 1557 return (NULL); 1558 return (ipsec_attach_ipsec_out(mp, connp, p, sel->ips_protocol, ns)); 1559 } 1560 1561 /* 1562 * We have an ipsec_out already, but don't have cached policy; fill it in 1563 * with the right actions. 1564 */ 1565 static mblk_t * 1566 ipsec_apply_global_policy(mblk_t *ipsec_mp, conn_t *connp, 1567 ipsec_selector_t *sel, netstack_t *ns) 1568 { 1569 ipsec_out_t *io; 1570 ipsec_policy_t *p; 1571 1572 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 1573 ASSERT(ipsec_mp->b_cont->b_datap->db_type == M_DATA); 1574 1575 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1576 1577 if (io->ipsec_out_policy == NULL) { 1578 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, io, sel, ns); 1579 io->ipsec_out_policy = p; 1580 } 1581 return (ipsec_mp); 1582 } 1583 1584 1585 /* 1586 * Consumes a reference to ipsp. 1587 */ 1588 static mblk_t * 1589 ipsec_check_loopback_policy(mblk_t *first_mp, boolean_t mctl_present, 1590 ipsec_policy_t *ipsp) 1591 { 1592 mblk_t *ipsec_mp; 1593 ipsec_in_t *ii; 1594 netstack_t *ns; 1595 1596 if (!mctl_present) 1597 return (first_mp); 1598 1599 ipsec_mp = first_mp; 1600 1601 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 1602 ns = ii->ipsec_in_ns; 1603 ASSERT(ii->ipsec_in_loopback); 1604 IPPOL_REFRELE(ipsp, ns); 1605 1606 /* 1607 * We should do an actual policy check here. Revisit this 1608 * when we revisit the IPsec API. (And pass a conn_t in when we 1609 * get there.) 1610 */ 1611 1612 return (first_mp); 1613 } 1614 1615 /* 1616 * Check that packet's inbound ports & proto match the selectors 1617 * expected by the SAs it traversed on the way in. 1618 */ 1619 static boolean_t 1620 ipsec_check_ipsecin_unique(ipsec_in_t *ii, const char **reason, 1621 kstat_named_t **counter, uint64_t pkt_unique) 1622 { 1623 uint64_t ah_mask, esp_mask; 1624 ipsa_t *ah_assoc; 1625 ipsa_t *esp_assoc; 1626 netstack_t *ns = ii->ipsec_in_ns; 1627 ipsec_stack_t *ipss = ns->netstack_ipsec; 1628 1629 ASSERT(ii->ipsec_in_secure); 1630 ASSERT(!ii->ipsec_in_loopback); 1631 1632 ah_assoc = ii->ipsec_in_ah_sa; 1633 esp_assoc = ii->ipsec_in_esp_sa; 1634 ASSERT((ah_assoc != NULL) || (esp_assoc != NULL)); 1635 1636 ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0; 1637 esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0; 1638 1639 if ((ah_mask == 0) && (esp_mask == 0)) 1640 return (B_TRUE); 1641 1642 /* 1643 * The pkt_unique check will also check for tunnel mode on the SA 1644 * vs. the tunneled_packet boolean. "Be liberal in what you receive" 1645 * should not apply in this case. ;) 1646 */ 1647 1648 if (ah_mask != 0 && 1649 ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) { 1650 *reason = "AH inner header mismatch"; 1651 *counter = DROPPER(ipss, ipds_spd_ah_innermismatch); 1652 return (B_FALSE); 1653 } 1654 if (esp_mask != 0 && 1655 esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) { 1656 *reason = "ESP inner header mismatch"; 1657 *counter = DROPPER(ipss, ipds_spd_esp_innermismatch); 1658 return (B_FALSE); 1659 } 1660 return (B_TRUE); 1661 } 1662 1663 static boolean_t 1664 ipsec_check_ipsecin_action(ipsec_in_t *ii, mblk_t *mp, ipsec_action_t *ap, 1665 ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter) 1666 { 1667 boolean_t ret = B_TRUE; 1668 ipsec_prot_t *ipp; 1669 ipsa_t *ah_assoc; 1670 ipsa_t *esp_assoc; 1671 boolean_t decaps; 1672 netstack_t *ns = ii->ipsec_in_ns; 1673 ipsec_stack_t *ipss = ns->netstack_ipsec; 1674 1675 ASSERT((ipha == NULL && ip6h != NULL) || 1676 (ip6h == NULL && ipha != NULL)); 1677 1678 if (ii->ipsec_in_loopback) { 1679 /* 1680 * Besides accepting pointer-equivalent actions, we also 1681 * accept any ICMP errors we generated for ourselves, 1682 * regardless of policy. If we do not wish to make this 1683 * assumption in the future, check here, and where 1684 * icmp_loopback is initialized in ip.c and ip6.c. (Look for 1685 * ipsec_out_icmp_loopback.) 1686 */ 1687 if (ap == ii->ipsec_in_action || ii->ipsec_in_icmp_loopback) 1688 return (B_TRUE); 1689 1690 /* Deep compare necessary here?? */ 1691 *counter = DROPPER(ipss, ipds_spd_loopback_mismatch); 1692 *reason = "loopback policy mismatch"; 1693 return (B_FALSE); 1694 } 1695 ASSERT(!ii->ipsec_in_icmp_loopback); 1696 1697 ah_assoc = ii->ipsec_in_ah_sa; 1698 esp_assoc = ii->ipsec_in_esp_sa; 1699 1700 decaps = ii->ipsec_in_decaps; 1701 1702 switch (ap->ipa_act.ipa_type) { 1703 case IPSEC_ACT_DISCARD: 1704 case IPSEC_ACT_REJECT: 1705 /* Should "fail hard" */ 1706 *counter = DROPPER(ipss, ipds_spd_explicit); 1707 *reason = "blocked by policy"; 1708 return (B_FALSE); 1709 1710 case IPSEC_ACT_BYPASS: 1711 case IPSEC_ACT_CLEAR: 1712 *counter = DROPPER(ipss, ipds_spd_got_secure); 1713 *reason = "expected clear, got protected"; 1714 return (B_FALSE); 1715 1716 case IPSEC_ACT_APPLY: 1717 ipp = &ap->ipa_act.ipa_apply; 1718 /* 1719 * As of now we do the simple checks of whether 1720 * the datagram has gone through the required IPSEC 1721 * protocol constraints or not. We might have more 1722 * in the future like sensitive levels, key bits, etc. 1723 * If it fails the constraints, check whether we would 1724 * have accepted this if it had come in clear. 1725 */ 1726 if (ipp->ipp_use_ah) { 1727 if (ah_assoc == NULL) { 1728 ret = ipsec_inbound_accept_clear(mp, ipha, 1729 ip6h); 1730 *counter = DROPPER(ipss, ipds_spd_got_clear); 1731 *reason = "unprotected not accepted"; 1732 break; 1733 } 1734 ASSERT(ah_assoc != NULL); 1735 ASSERT(ipp->ipp_auth_alg != 0); 1736 1737 if (ah_assoc->ipsa_auth_alg != 1738 ipp->ipp_auth_alg) { 1739 *counter = DROPPER(ipss, ipds_spd_bad_ahalg); 1740 *reason = "unacceptable ah alg"; 1741 ret = B_FALSE; 1742 break; 1743 } 1744 } else if (ah_assoc != NULL) { 1745 /* 1746 * Don't allow this. Check IPSEC NOTE above 1747 * ip_fanout_proto(). 1748 */ 1749 *counter = DROPPER(ipss, ipds_spd_got_ah); 1750 *reason = "unexpected AH"; 1751 ret = B_FALSE; 1752 break; 1753 } 1754 if (ipp->ipp_use_esp) { 1755 if (esp_assoc == NULL) { 1756 ret = ipsec_inbound_accept_clear(mp, ipha, 1757 ip6h); 1758 *counter = DROPPER(ipss, ipds_spd_got_clear); 1759 *reason = "unprotected not accepted"; 1760 break; 1761 } 1762 ASSERT(esp_assoc != NULL); 1763 ASSERT(ipp->ipp_encr_alg != 0); 1764 1765 if (esp_assoc->ipsa_encr_alg != 1766 ipp->ipp_encr_alg) { 1767 *counter = DROPPER(ipss, ipds_spd_bad_espealg); 1768 *reason = "unacceptable esp alg"; 1769 ret = B_FALSE; 1770 break; 1771 } 1772 /* 1773 * If the client does not need authentication, 1774 * we don't verify the alogrithm. 1775 */ 1776 if (ipp->ipp_use_espa) { 1777 if (esp_assoc->ipsa_auth_alg != 1778 ipp->ipp_esp_auth_alg) { 1779 *counter = DROPPER(ipss, 1780 ipds_spd_bad_espaalg); 1781 *reason = "unacceptable esp auth alg"; 1782 ret = B_FALSE; 1783 break; 1784 } 1785 } 1786 } else if (esp_assoc != NULL) { 1787 /* 1788 * Don't allow this. Check IPSEC NOTE above 1789 * ip_fanout_proto(). 1790 */ 1791 *counter = DROPPER(ipss, ipds_spd_got_esp); 1792 *reason = "unexpected ESP"; 1793 ret = B_FALSE; 1794 break; 1795 } 1796 if (ipp->ipp_use_se) { 1797 if (!decaps) { 1798 ret = ipsec_inbound_accept_clear(mp, ipha, 1799 ip6h); 1800 if (!ret) { 1801 /* XXX mutant? */ 1802 *counter = DROPPER(ipss, 1803 ipds_spd_bad_selfencap); 1804 *reason = "self encap not found"; 1805 break; 1806 } 1807 } 1808 } else if (decaps) { 1809 /* 1810 * XXX If the packet comes in tunneled and the 1811 * recipient does not expect it to be tunneled, it 1812 * is okay. But we drop to be consistent with the 1813 * other cases. 1814 */ 1815 *counter = DROPPER(ipss, ipds_spd_got_selfencap); 1816 *reason = "unexpected self encap"; 1817 ret = B_FALSE; 1818 break; 1819 } 1820 if (ii->ipsec_in_action != NULL) { 1821 /* 1822 * This can happen if we do a double policy-check on 1823 * a packet 1824 * XXX XXX should fix this case! 1825 */ 1826 IPACT_REFRELE(ii->ipsec_in_action); 1827 } 1828 ASSERT(ii->ipsec_in_action == NULL); 1829 IPACT_REFHOLD(ap); 1830 ii->ipsec_in_action = ap; 1831 break; /* from switch */ 1832 } 1833 return (ret); 1834 } 1835 1836 static boolean_t 1837 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa) 1838 { 1839 ASSERT(ipl->ipl_ids_latched == B_TRUE); 1840 return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) && 1841 ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid); 1842 } 1843 1844 /* 1845 * Takes a latched conn and an inbound packet and returns a unique_id suitable 1846 * for SA comparisons. Most of the time we will copy from the conn_t, but 1847 * there are cases when the conn_t is latched but it has wildcard selectors, 1848 * and then we need to fallback to scooping them out of the packet. 1849 * 1850 * Assume we'll never have 0 with a conn_t present, so use 0 as a failure. We 1851 * can get away with this because we only have non-zero ports/proto for 1852 * latched conn_ts. 1853 * 1854 * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough 1855 * to not be a nice macro. 1856 */ 1857 static uint64_t 1858 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h) 1859 { 1860 ipsec_selector_t sel; 1861 uint8_t ulp = connp->conn_ulp; 1862 1863 ASSERT(connp->conn_latch->ipl_in_policy != NULL); 1864 1865 if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) && 1866 (connp->conn_fport == 0 || connp->conn_lport == 0)) { 1867 /* Slow path - we gotta grab from the packet. */ 1868 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, 1869 SEL_NONE) != SELRET_SUCCESS) { 1870 /* Failure -> have caller free packet with ENOMEM. */ 1871 return (0); 1872 } 1873 return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port, 1874 sel.ips_protocol, 0)); 1875 } 1876 1877 #ifdef DEBUG_NOT_UNTIL_6478464 1878 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) == 1879 SELRET_SUCCESS) { 1880 ASSERT(sel.ips_local_port == connp->conn_lport); 1881 ASSERT(sel.ips_remote_port == connp->conn_fport); 1882 ASSERT(sel.ips_protocol == connp->conn_ulp); 1883 } 1884 ASSERT(connp->conn_ulp != 0); 1885 #endif 1886 1887 return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0)); 1888 } 1889 1890 /* 1891 * Called to check policy on a latched connection, both from this file 1892 * and from tcp.c 1893 */ 1894 boolean_t 1895 ipsec_check_ipsecin_latch(ipsec_in_t *ii, mblk_t *mp, ipsec_latch_t *ipl, 1896 ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter, 1897 conn_t *connp) 1898 { 1899 netstack_t *ns = ii->ipsec_in_ns; 1900 ipsec_stack_t *ipss = ns->netstack_ipsec; 1901 1902 ASSERT(ipl->ipl_ids_latched == B_TRUE); 1903 1904 if (!ii->ipsec_in_loopback) { 1905 /* 1906 * Over loopback, there aren't real security associations, 1907 * so there are neither identities nor "unique" values 1908 * for us to check the packet against. 1909 */ 1910 if ((ii->ipsec_in_ah_sa != NULL) && 1911 (!spd_match_inbound_ids(ipl, ii->ipsec_in_ah_sa))) { 1912 *counter = DROPPER(ipss, ipds_spd_ah_badid); 1913 *reason = "AH identity mismatch"; 1914 return (B_FALSE); 1915 } 1916 1917 if ((ii->ipsec_in_esp_sa != NULL) && 1918 (!spd_match_inbound_ids(ipl, ii->ipsec_in_esp_sa))) { 1919 *counter = DROPPER(ipss, ipds_spd_esp_badid); 1920 *reason = "ESP identity mismatch"; 1921 return (B_FALSE); 1922 } 1923 1924 /* 1925 * Can fudge pkt_unique from connp because we're latched. 1926 * In DEBUG kernels (see conn_to_unique()'s implementation), 1927 * verify this even if it REALLY slows things down. 1928 */ 1929 if (!ipsec_check_ipsecin_unique(ii, reason, counter, 1930 conn_to_unique(connp, mp, ipha, ip6h))) { 1931 return (B_FALSE); 1932 } 1933 } 1934 1935 return (ipsec_check_ipsecin_action(ii, mp, ipl->ipl_in_action, 1936 ipha, ip6h, reason, counter)); 1937 } 1938 1939 /* 1940 * Check to see whether this secured datagram meets the policy 1941 * constraints specified in ipsp. 1942 * 1943 * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy. 1944 * 1945 * Consumes a reference to ipsp. 1946 */ 1947 static mblk_t * 1948 ipsec_check_ipsecin_policy(mblk_t *first_mp, ipsec_policy_t *ipsp, 1949 ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, netstack_t *ns) 1950 { 1951 ipsec_in_t *ii; 1952 ipsec_action_t *ap; 1953 const char *reason = "no policy actions found"; 1954 mblk_t *data_mp, *ipsec_mp; 1955 ipsec_stack_t *ipss = ns->netstack_ipsec; 1956 ip_stack_t *ipst = ns->netstack_ip; 1957 kstat_named_t *counter; 1958 1959 counter = DROPPER(ipss, ipds_spd_got_secure); 1960 1961 data_mp = first_mp->b_cont; 1962 ipsec_mp = first_mp; 1963 1964 ASSERT(ipsp != NULL); 1965 1966 ASSERT((ipha == NULL && ip6h != NULL) || 1967 (ip6h == NULL && ipha != NULL)); 1968 1969 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 1970 1971 if (ii->ipsec_in_loopback) 1972 return (ipsec_check_loopback_policy(first_mp, B_TRUE, ipsp)); 1973 ASSERT(ii->ipsec_in_type == IPSEC_IN); 1974 ASSERT(ii->ipsec_in_secure); 1975 1976 if (ii->ipsec_in_action != NULL) { 1977 /* 1978 * this can happen if we do a double policy-check on a packet 1979 * Would be nice to be able to delete this test.. 1980 */ 1981 IPACT_REFRELE(ii->ipsec_in_action); 1982 } 1983 ASSERT(ii->ipsec_in_action == NULL); 1984 1985 if (!SA_IDS_MATCH(ii->ipsec_in_ah_sa, ii->ipsec_in_esp_sa)) { 1986 reason = "inbound AH and ESP identities differ"; 1987 counter = DROPPER(ipss, ipds_spd_ahesp_diffid); 1988 goto drop; 1989 } 1990 1991 if (!ipsec_check_ipsecin_unique(ii, &reason, &counter, pkt_unique)) 1992 goto drop; 1993 1994 /* 1995 * Ok, now loop through the possible actions and see if any 1996 * of them work for us. 1997 */ 1998 1999 for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) { 2000 if (ipsec_check_ipsecin_action(ii, data_mp, ap, 2001 ipha, ip6h, &reason, &counter)) { 2002 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2003 IPPOL_REFRELE(ipsp, ns); 2004 return (first_mp); 2005 } 2006 } 2007 drop: 2008 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 2009 "ipsec inbound policy mismatch: %s, packet dropped\n", 2010 reason); 2011 IPPOL_REFRELE(ipsp, ns); 2012 ASSERT(ii->ipsec_in_action == NULL); 2013 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2014 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 2015 &ipss->ipsec_spd_dropper); 2016 return (NULL); 2017 } 2018 2019 /* 2020 * sleazy prefix-length-based compare. 2021 * another inlining candidate.. 2022 */ 2023 boolean_t 2024 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p) 2025 { 2026 int offset = pfxlen>>3; 2027 int bitsleft = pfxlen & 7; 2028 uint8_t *addr2 = (uint8_t *)addr2p; 2029 2030 /* 2031 * and there was much evil.. 2032 * XXX should inline-expand the bcmp here and do this 32 bits 2033 * or 64 bits at a time.. 2034 */ 2035 return ((bcmp(addr1, addr2, offset) == 0) && 2036 ((bitsleft == 0) || 2037 (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0))); 2038 } 2039 2040 static ipsec_policy_t * 2041 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain, 2042 ipsec_selector_t *sel, boolean_t is_icmp_inv_acq) 2043 { 2044 ipsec_selkey_t *isel; 2045 ipsec_policy_t *p; 2046 int bpri = best ? best->ipsp_prio : 0; 2047 2048 for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) { 2049 uint32_t valid; 2050 2051 if (p->ipsp_prio <= bpri) 2052 continue; 2053 isel = &p->ipsp_sel->ipsl_key; 2054 valid = isel->ipsl_valid; 2055 2056 if ((valid & IPSL_PROTOCOL) && 2057 (isel->ipsl_proto != sel->ips_protocol)) 2058 continue; 2059 2060 if ((valid & IPSL_REMOTE_ADDR) && 2061 !ip_addr_match((uint8_t *)&isel->ipsl_remote, 2062 isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6)) 2063 continue; 2064 2065 if ((valid & IPSL_LOCAL_ADDR) && 2066 !ip_addr_match((uint8_t *)&isel->ipsl_local, 2067 isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6)) 2068 continue; 2069 2070 if ((valid & IPSL_REMOTE_PORT) && 2071 isel->ipsl_rport != sel->ips_remote_port) 2072 continue; 2073 2074 if ((valid & IPSL_LOCAL_PORT) && 2075 isel->ipsl_lport != sel->ips_local_port) 2076 continue; 2077 2078 if (!is_icmp_inv_acq) { 2079 if ((valid & IPSL_ICMP_TYPE) && 2080 (isel->ipsl_icmp_type > sel->ips_icmp_type || 2081 isel->ipsl_icmp_type_end < sel->ips_icmp_type)) { 2082 continue; 2083 } 2084 2085 if ((valid & IPSL_ICMP_CODE) && 2086 (isel->ipsl_icmp_code > sel->ips_icmp_code || 2087 isel->ipsl_icmp_code_end < 2088 sel->ips_icmp_code)) { 2089 continue; 2090 } 2091 } else { 2092 /* 2093 * special case for icmp inverse acquire 2094 * we only want policies that aren't drop/pass 2095 */ 2096 if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY) 2097 continue; 2098 } 2099 2100 /* we matched all the packet-port-field selectors! */ 2101 best = p; 2102 bpri = p->ipsp_prio; 2103 } 2104 2105 return (best); 2106 } 2107 2108 /* 2109 * Try to find and return the best policy entry under a given policy 2110 * root for a given set of selectors; the first parameter "best" is 2111 * the current best policy so far. If "best" is non-null, we have a 2112 * reference to it. We return a reference to a policy; if that policy 2113 * is not the original "best", we need to release that reference 2114 * before returning. 2115 */ 2116 ipsec_policy_t * 2117 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head, 2118 int direction, ipsec_selector_t *sel, netstack_t *ns) 2119 { 2120 ipsec_policy_t *curbest; 2121 ipsec_policy_root_t *root; 2122 uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq; 2123 int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6; 2124 2125 curbest = best; 2126 root = &head->iph_root[direction]; 2127 2128 #ifdef DEBUG 2129 if (is_icmp_inv_acq) { 2130 if (sel->ips_isv4) { 2131 if (sel->ips_protocol != IPPROTO_ICMP) { 2132 cmn_err(CE_WARN, "ipsec_find_policy_head:" 2133 " expecting icmp, got %d", 2134 sel->ips_protocol); 2135 } 2136 } else { 2137 if (sel->ips_protocol != IPPROTO_ICMPV6) { 2138 cmn_err(CE_WARN, "ipsec_find_policy_head:" 2139 " expecting icmpv6, got %d", 2140 sel->ips_protocol); 2141 } 2142 } 2143 } 2144 #endif 2145 2146 rw_enter(&head->iph_lock, RW_READER); 2147 2148 if (root->ipr_nchains > 0) { 2149 curbest = ipsec_find_policy_chain(curbest, 2150 root->ipr_hash[selector_hash(sel, root)].hash_head, sel, 2151 is_icmp_inv_acq); 2152 } 2153 curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel, 2154 is_icmp_inv_acq); 2155 2156 /* 2157 * Adjust reference counts if we found anything new. 2158 */ 2159 if (curbest != best) { 2160 ASSERT(curbest != NULL); 2161 IPPOL_REFHOLD(curbest); 2162 2163 if (best != NULL) { 2164 IPPOL_REFRELE(best, ns); 2165 } 2166 } 2167 2168 rw_exit(&head->iph_lock); 2169 2170 return (curbest); 2171 } 2172 2173 /* 2174 * Find the best system policy (either global or per-interface) which 2175 * applies to the given selector; look in all the relevant policy roots 2176 * to figure out which policy wins. 2177 * 2178 * Returns a reference to a policy; caller must release this 2179 * reference when done. 2180 */ 2181 ipsec_policy_t * 2182 ipsec_find_policy(int direction, conn_t *connp, ipsec_out_t *io, 2183 ipsec_selector_t *sel, netstack_t *ns) 2184 { 2185 ipsec_policy_t *p; 2186 ipsec_stack_t *ipss = ns->netstack_ipsec; 2187 2188 p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy, 2189 direction, sel, ns); 2190 if ((connp != NULL) && (connp->conn_policy != NULL)) { 2191 p = ipsec_find_policy_head(p, connp->conn_policy, 2192 direction, sel, ns); 2193 } else if ((io != NULL) && (io->ipsec_out_polhead != NULL)) { 2194 p = ipsec_find_policy_head(p, io->ipsec_out_polhead, 2195 direction, sel, ns); 2196 } 2197 2198 return (p); 2199 } 2200 2201 /* 2202 * Check with global policy and see whether this inbound 2203 * packet meets the policy constraints. 2204 * 2205 * Locate appropriate policy from global policy, supplemented by the 2206 * conn's configured and/or cached policy if the conn is supplied. 2207 * 2208 * Dispatch to ipsec_check_ipsecin_policy if we have policy and an 2209 * encrypted packet to see if they match. 2210 * 2211 * Otherwise, see if the policy allows cleartext; if not, drop it on the 2212 * floor. 2213 */ 2214 mblk_t * 2215 ipsec_check_global_policy(mblk_t *first_mp, conn_t *connp, 2216 ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present, netstack_t *ns) 2217 { 2218 ipsec_policy_t *p; 2219 ipsec_selector_t sel; 2220 mblk_t *data_mp, *ipsec_mp; 2221 boolean_t policy_present; 2222 kstat_named_t *counter; 2223 ipsec_in_t *ii = NULL; 2224 uint64_t pkt_unique; 2225 ipsec_stack_t *ipss = ns->netstack_ipsec; 2226 ip_stack_t *ipst = ns->netstack_ip; 2227 2228 data_mp = mctl_present ? first_mp->b_cont : first_mp; 2229 ipsec_mp = mctl_present ? first_mp : NULL; 2230 2231 sel.ips_is_icmp_inv_acq = 0; 2232 2233 ASSERT((ipha == NULL && ip6h != NULL) || 2234 (ip6h == NULL && ipha != NULL)); 2235 2236 if (ipha != NULL) 2237 policy_present = ipss->ipsec_inbound_v4_policy_present; 2238 else 2239 policy_present = ipss->ipsec_inbound_v6_policy_present; 2240 2241 if (!policy_present && connp == NULL) { 2242 /* 2243 * No global policy and no per-socket policy; 2244 * just pass it back (but we shouldn't get here in that case) 2245 */ 2246 return (first_mp); 2247 } 2248 2249 if (ipsec_mp != NULL) { 2250 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 2251 ii = (ipsec_in_t *)(ipsec_mp->b_rptr); 2252 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2253 } 2254 2255 /* 2256 * If we have cached policy, use it. 2257 * Otherwise consult system policy. 2258 */ 2259 if ((connp != NULL) && (connp->conn_latch != NULL)) { 2260 p = connp->conn_latch->ipl_in_policy; 2261 if (p != NULL) { 2262 IPPOL_REFHOLD(p); 2263 } 2264 /* 2265 * Fudge sel for UNIQUE_ID setting below. 2266 */ 2267 pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h); 2268 } else { 2269 /* Initialize the ports in the selector */ 2270 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, 2271 SEL_NONE) == SELRET_NOMEM) { 2272 /* 2273 * Technically not a policy mismatch, but it is 2274 * an internal failure. 2275 */ 2276 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 2277 "ipsec_init_inbound_sel", ipha, ip6h, B_FALSE, ns); 2278 counter = DROPPER(ipss, ipds_spd_nomem); 2279 goto fail; 2280 } 2281 2282 /* 2283 * Find the policy which best applies. 2284 * 2285 * If we find global policy, we should look at both 2286 * local policy and global policy and see which is 2287 * stronger and match accordingly. 2288 * 2289 * If we don't find a global policy, check with 2290 * local policy alone. 2291 */ 2292 2293 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel, 2294 ns); 2295 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port, 2296 sel.ips_local_port, sel.ips_protocol, 0); 2297 } 2298 2299 if (p == NULL) { 2300 if (ipsec_mp == NULL) { 2301 /* 2302 * We have no policy; default to succeeding. 2303 * XXX paranoid system design doesn't do this. 2304 */ 2305 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2306 return (first_mp); 2307 } else { 2308 counter = DROPPER(ipss, ipds_spd_got_secure); 2309 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 2310 "ipsec_check_global_policy", ipha, ip6h, B_TRUE, 2311 ns); 2312 goto fail; 2313 } 2314 } 2315 if ((ii != NULL) && (ii->ipsec_in_secure)) { 2316 return (ipsec_check_ipsecin_policy(ipsec_mp, p, ipha, ip6h, 2317 pkt_unique, ns)); 2318 } 2319 if (p->ipsp_act->ipa_allow_clear) { 2320 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2321 IPPOL_REFRELE(p, ns); 2322 return (first_mp); 2323 } 2324 IPPOL_REFRELE(p, ns); 2325 /* 2326 * If we reach here, we will drop the packet because it failed the 2327 * global policy check because the packet was cleartext, and it 2328 * should not have been. 2329 */ 2330 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 2331 "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns); 2332 counter = DROPPER(ipss, ipds_spd_got_clear); 2333 2334 fail: 2335 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 2336 &ipss->ipsec_spd_dropper); 2337 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2338 return (NULL); 2339 } 2340 2341 /* 2342 * We check whether an inbound datagram is a valid one 2343 * to accept in clear. If it is secure, it is the job 2344 * of IPSEC to log information appropriately if it 2345 * suspects that it may not be the real one. 2346 * 2347 * It is called only while fanning out to the ULP 2348 * where ULP accepts only secure data and the incoming 2349 * is clear. Usually we never accept clear datagrams in 2350 * such cases. ICMP is the only exception. 2351 * 2352 * NOTE : We don't call this function if the client (ULP) 2353 * is willing to accept things in clear. 2354 */ 2355 boolean_t 2356 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h) 2357 { 2358 ushort_t iph_hdr_length; 2359 icmph_t *icmph; 2360 icmp6_t *icmp6; 2361 uint8_t *nexthdrp; 2362 2363 ASSERT((ipha != NULL && ip6h == NULL) || 2364 (ipha == NULL && ip6h != NULL)); 2365 2366 if (ip6h != NULL) { 2367 iph_hdr_length = ip_hdr_length_v6(mp, ip6h); 2368 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 2369 &nexthdrp)) { 2370 return (B_FALSE); 2371 } 2372 if (*nexthdrp != IPPROTO_ICMPV6) 2373 return (B_FALSE); 2374 icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]); 2375 /* Match IPv6 ICMP policy as closely as IPv4 as possible. */ 2376 switch (icmp6->icmp6_type) { 2377 case ICMP6_PARAM_PROB: 2378 /* Corresponds to port/proto unreach in IPv4. */ 2379 case ICMP6_ECHO_REQUEST: 2380 /* Just like IPv4. */ 2381 return (B_FALSE); 2382 2383 case MLD_LISTENER_QUERY: 2384 case MLD_LISTENER_REPORT: 2385 case MLD_LISTENER_REDUCTION: 2386 /* 2387 * XXX Seperate NDD in IPv4 what about here? 2388 * Plus, mcast is important to ND. 2389 */ 2390 case ICMP6_DST_UNREACH: 2391 /* Corresponds to HOST/NET unreachable in IPv4. */ 2392 case ICMP6_PACKET_TOO_BIG: 2393 case ICMP6_ECHO_REPLY: 2394 /* These are trusted in IPv4. */ 2395 case ND_ROUTER_SOLICIT: 2396 case ND_ROUTER_ADVERT: 2397 case ND_NEIGHBOR_SOLICIT: 2398 case ND_NEIGHBOR_ADVERT: 2399 case ND_REDIRECT: 2400 /* Trust ND messages for now. */ 2401 case ICMP6_TIME_EXCEEDED: 2402 default: 2403 return (B_TRUE); 2404 } 2405 } else { 2406 /* 2407 * If it is not ICMP, fail this request. 2408 */ 2409 if (ipha->ipha_protocol != IPPROTO_ICMP) { 2410 #ifdef FRAGCACHE_DEBUG 2411 cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n", 2412 ipha->ipha_protocol); 2413 #endif 2414 return (B_FALSE); 2415 } 2416 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2417 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2418 /* 2419 * It is an insecure icmp message. Check to see whether we are 2420 * willing to accept this one. 2421 */ 2422 2423 switch (icmph->icmph_type) { 2424 case ICMP_ECHO_REPLY: 2425 case ICMP_TIME_STAMP_REPLY: 2426 case ICMP_INFO_REPLY: 2427 case ICMP_ROUTER_ADVERTISEMENT: 2428 /* 2429 * We should not encourage clear replies if this 2430 * client expects secure. If somebody is replying 2431 * in clear some mailicious user watching both the 2432 * request and reply, can do chosen-plain-text attacks. 2433 * With global policy we might be just expecting secure 2434 * but sending out clear. We don't know what the right 2435 * thing is. We can't do much here as we can't control 2436 * the sender here. Till we are sure of what to do, 2437 * accept them. 2438 */ 2439 return (B_TRUE); 2440 case ICMP_ECHO_REQUEST: 2441 case ICMP_TIME_STAMP_REQUEST: 2442 case ICMP_INFO_REQUEST: 2443 case ICMP_ADDRESS_MASK_REQUEST: 2444 case ICMP_ROUTER_SOLICITATION: 2445 case ICMP_ADDRESS_MASK_REPLY: 2446 /* 2447 * Don't accept this as somebody could be sending 2448 * us plain text to get encrypted data. If we reply, 2449 * it will lead to chosen plain text attack. 2450 */ 2451 return (B_FALSE); 2452 case ICMP_DEST_UNREACHABLE: 2453 switch (icmph->icmph_code) { 2454 case ICMP_FRAGMENTATION_NEEDED: 2455 /* 2456 * Be in sync with icmp_inbound, where we have 2457 * already set ire_max_frag. 2458 */ 2459 #ifdef FRAGCACHE_DEBUG 2460 cmn_err(CE_WARN, "ICMP frag needed\n"); 2461 #endif 2462 return (B_TRUE); 2463 case ICMP_HOST_UNREACHABLE: 2464 case ICMP_NET_UNREACHABLE: 2465 /* 2466 * By accepting, we could reset a connection. 2467 * How do we solve the problem of some 2468 * intermediate router sending in-secure ICMP 2469 * messages ? 2470 */ 2471 return (B_TRUE); 2472 case ICMP_PORT_UNREACHABLE: 2473 case ICMP_PROTOCOL_UNREACHABLE: 2474 default : 2475 return (B_FALSE); 2476 } 2477 case ICMP_SOURCE_QUENCH: 2478 /* 2479 * If this is an attack, TCP will slow start 2480 * because of this. Is it very harmful ? 2481 */ 2482 return (B_TRUE); 2483 case ICMP_PARAM_PROBLEM: 2484 return (B_FALSE); 2485 case ICMP_TIME_EXCEEDED: 2486 return (B_TRUE); 2487 case ICMP_REDIRECT: 2488 return (B_FALSE); 2489 default : 2490 return (B_FALSE); 2491 } 2492 } 2493 } 2494 2495 void 2496 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote) 2497 { 2498 mutex_enter(&ipl->ipl_lock); 2499 2500 if (ipl->ipl_ids_latched) { 2501 /* I lost, someone else got here before me */ 2502 mutex_exit(&ipl->ipl_lock); 2503 return; 2504 } 2505 2506 if (local != NULL) 2507 IPSID_REFHOLD(local); 2508 if (remote != NULL) 2509 IPSID_REFHOLD(remote); 2510 2511 ipl->ipl_local_cid = local; 2512 ipl->ipl_remote_cid = remote; 2513 ipl->ipl_ids_latched = B_TRUE; 2514 mutex_exit(&ipl->ipl_lock); 2515 } 2516 2517 void 2518 ipsec_latch_inbound(ipsec_latch_t *ipl, ipsec_in_t *ii) 2519 { 2520 ipsa_t *sa; 2521 2522 if (!ipl->ipl_ids_latched) { 2523 ipsid_t *local = NULL; 2524 ipsid_t *remote = NULL; 2525 2526 if (!ii->ipsec_in_loopback) { 2527 if (ii->ipsec_in_esp_sa != NULL) 2528 sa = ii->ipsec_in_esp_sa; 2529 else 2530 sa = ii->ipsec_in_ah_sa; 2531 ASSERT(sa != NULL); 2532 local = sa->ipsa_dst_cid; 2533 remote = sa->ipsa_src_cid; 2534 } 2535 ipsec_latch_ids(ipl, local, remote); 2536 } 2537 ipl->ipl_in_action = ii->ipsec_in_action; 2538 IPACT_REFHOLD(ipl->ipl_in_action); 2539 } 2540 2541 /* 2542 * Check whether the policy constraints are met either for an 2543 * inbound datagram; called from IP in numerous places. 2544 * 2545 * Note that this is not a chokepoint for inbound policy checks; 2546 * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy() 2547 */ 2548 mblk_t * 2549 ipsec_check_inbound_policy(mblk_t *first_mp, conn_t *connp, 2550 ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present) 2551 { 2552 ipsec_in_t *ii; 2553 boolean_t ret; 2554 mblk_t *mp = mctl_present ? first_mp->b_cont : first_mp; 2555 mblk_t *ipsec_mp = mctl_present ? first_mp : NULL; 2556 ipsec_latch_t *ipl; 2557 uint64_t unique_id; 2558 ipsec_stack_t *ipss; 2559 ip_stack_t *ipst; 2560 netstack_t *ns; 2561 2562 ASSERT(connp != NULL); 2563 ns = connp->conn_netstack; 2564 ipss = ns->netstack_ipsec; 2565 ipst = ns->netstack_ip; 2566 2567 if (ipsec_mp == NULL) { 2568 clear: 2569 /* 2570 * This is the case where the incoming datagram is 2571 * cleartext and we need to see whether this client 2572 * would like to receive such untrustworthy things from 2573 * the wire. 2574 */ 2575 ASSERT(mp != NULL); 2576 2577 mutex_enter(&connp->conn_lock); 2578 if (connp->conn_state_flags & CONN_CONDEMNED) { 2579 mutex_exit(&connp->conn_lock); 2580 ip_drop_packet(first_mp, B_TRUE, NULL, 2581 NULL, DROPPER(ipss, ipds_spd_got_clear), 2582 &ipss->ipsec_spd_dropper); 2583 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2584 return (NULL); 2585 } 2586 if ((ipl = connp->conn_latch) != NULL) { 2587 /* Hold a reference in case the conn is closing */ 2588 IPLATCH_REFHOLD(ipl); 2589 mutex_exit(&connp->conn_lock); 2590 /* 2591 * Policy is cached in the conn. 2592 */ 2593 if ((ipl->ipl_in_policy != NULL) && 2594 (!ipl->ipl_in_policy->ipsp_act->ipa_allow_clear)) { 2595 ret = ipsec_inbound_accept_clear(mp, 2596 ipha, ip6h); 2597 if (ret) { 2598 BUMP_MIB(&ipst->ips_ip_mib, 2599 ipsecInSucceeded); 2600 IPLATCH_REFRELE(ipl, ns); 2601 return (first_mp); 2602 } else { 2603 ipsec_log_policy_failure( 2604 IPSEC_POLICY_MISMATCH, 2605 "ipsec_check_inbound_policy", ipha, 2606 ip6h, B_FALSE, ns); 2607 ip_drop_packet(first_mp, B_TRUE, NULL, 2608 NULL, 2609 DROPPER(ipss, ipds_spd_got_clear), 2610 &ipss->ipsec_spd_dropper); 2611 BUMP_MIB(&ipst->ips_ip_mib, 2612 ipsecInFailed); 2613 IPLATCH_REFRELE(ipl, ns); 2614 return (NULL); 2615 } 2616 } else { 2617 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2618 IPLATCH_REFRELE(ipl, ns); 2619 return (first_mp); 2620 } 2621 } else { 2622 uchar_t db_type; 2623 2624 mutex_exit(&connp->conn_lock); 2625 /* 2626 * As this is a non-hardbound connection we need 2627 * to look at both per-socket policy and global 2628 * policy. As this is cleartext, mark the mp as 2629 * M_DATA in case if it is an ICMP error being 2630 * reported before calling ipsec_check_global_policy 2631 * so that it does not mistake it for IPSEC_IN. 2632 */ 2633 db_type = mp->b_datap->db_type; 2634 mp->b_datap->db_type = M_DATA; 2635 first_mp = ipsec_check_global_policy(first_mp, connp, 2636 ipha, ip6h, mctl_present, ns); 2637 if (first_mp != NULL) 2638 mp->b_datap->db_type = db_type; 2639 return (first_mp); 2640 } 2641 } 2642 /* 2643 * If it is inbound check whether the attached message 2644 * is secure or not. We have a special case for ICMP, 2645 * where we have a IPSEC_IN message and the attached 2646 * message is not secure. See icmp_inbound_error_fanout 2647 * for details. 2648 */ 2649 ASSERT(ipsec_mp != NULL); 2650 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 2651 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 2652 2653 if (!ii->ipsec_in_secure) 2654 goto clear; 2655 2656 /* 2657 * mp->b_cont could be either a M_CTL message 2658 * for icmp errors being sent up or a M_DATA message. 2659 */ 2660 ASSERT(mp->b_datap->db_type == M_CTL || mp->b_datap->db_type == M_DATA); 2661 2662 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2663 2664 mutex_enter(&connp->conn_lock); 2665 /* Connection is closing */ 2666 if (connp->conn_state_flags & CONN_CONDEMNED) { 2667 mutex_exit(&connp->conn_lock); 2668 ip_drop_packet(first_mp, B_TRUE, NULL, 2669 NULL, DROPPER(ipss, ipds_spd_got_clear), 2670 &ipss->ipsec_spd_dropper); 2671 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2672 return (NULL); 2673 } 2674 2675 /* 2676 * Once a connection is latched it remains so for life, the conn_latch 2677 * pointer on the conn has not changed, simply initializing ipl here 2678 * as the earlier initialization was done only in the cleartext case. 2679 */ 2680 if ((ipl = connp->conn_latch) == NULL) { 2681 mutex_exit(&connp->conn_lock); 2682 /* 2683 * We don't have policies cached in the conn 2684 * for this stream. So, look at the global 2685 * policy. It will check against conn or global 2686 * depending on whichever is stronger. 2687 */ 2688 return (ipsec_check_global_policy(first_mp, connp, 2689 ipha, ip6h, mctl_present, ns)); 2690 } 2691 2692 IPLATCH_REFHOLD(ipl); 2693 mutex_exit(&connp->conn_lock); 2694 2695 if (ipl->ipl_in_action != NULL) { 2696 /* Policy is cached & latched; fast(er) path */ 2697 const char *reason; 2698 kstat_named_t *counter; 2699 2700 if (ipsec_check_ipsecin_latch(ii, mp, ipl, 2701 ipha, ip6h, &reason, &counter, connp)) { 2702 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2703 IPLATCH_REFRELE(ipl, ns); 2704 return (first_mp); 2705 } 2706 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, 2707 SL_ERROR|SL_WARN|SL_CONSOLE, 2708 "ipsec inbound policy mismatch: %s, packet dropped\n", 2709 reason); 2710 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 2711 &ipss->ipsec_spd_dropper); 2712 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2713 IPLATCH_REFRELE(ipl, ns); 2714 return (NULL); 2715 } else if (ipl->ipl_in_policy == NULL) { 2716 ipsec_weird_null_inbound_policy++; 2717 IPLATCH_REFRELE(ipl, ns); 2718 return (first_mp); 2719 } 2720 2721 unique_id = conn_to_unique(connp, mp, ipha, ip6h); 2722 IPPOL_REFHOLD(ipl->ipl_in_policy); 2723 first_mp = ipsec_check_ipsecin_policy(first_mp, ipl->ipl_in_policy, 2724 ipha, ip6h, unique_id, ns); 2725 /* 2726 * NOTE: ipsecIn{Failed,Succeeeded} bumped by 2727 * ipsec_check_ipsecin_policy(). 2728 */ 2729 if (first_mp != NULL) 2730 ipsec_latch_inbound(ipl, ii); 2731 IPLATCH_REFRELE(ipl, ns); 2732 return (first_mp); 2733 } 2734 2735 /* 2736 * Returns: 2737 * 2738 * SELRET_NOMEM --> msgpullup() needed to gather things failed. 2739 * SELRET_BADPKT --> If we're being called after tunnel-mode fragment 2740 * gathering, the initial fragment is too short for 2741 * useful data. Only returned if SEL_TUNNEL_FIRSTFRAG is 2742 * set. 2743 * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data. 2744 * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet. Caller 2745 * should put this packet in a fragment-gathering queue. 2746 * Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY 2747 * is set. 2748 */ 2749 static selret_t 2750 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha, 2751 ip6_t *ip6h, uint8_t sel_flags) 2752 { 2753 uint16_t *ports; 2754 ushort_t hdr_len; 2755 int outer_hdr_len = 0; /* For ICMP tunnel-mode cases... */ 2756 mblk_t *spare_mp = NULL; 2757 uint8_t *nexthdrp; 2758 uint8_t nexthdr; 2759 uint8_t *typecode; 2760 uint8_t check_proto; 2761 ip6_pkt_t ipp; 2762 boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY); 2763 boolean_t is_icmp = (sel_flags & SEL_IS_ICMP); 2764 boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE); 2765 2766 ASSERT((ipha == NULL && ip6h != NULL) || 2767 (ipha != NULL && ip6h == NULL)); 2768 2769 if (ip6h != NULL) { 2770 if (is_icmp) 2771 outer_hdr_len = ((uint8_t *)ip6h) - mp->b_rptr; 2772 2773 check_proto = IPPROTO_ICMPV6; 2774 sel->ips_isv4 = B_FALSE; 2775 sel->ips_local_addr_v6 = ip6h->ip6_dst; 2776 sel->ips_remote_addr_v6 = ip6h->ip6_src; 2777 2778 bzero(&ipp, sizeof (ipp)); 2779 (void) ip_find_hdr_v6(mp, ip6h, &ipp, NULL); 2780 2781 nexthdr = ip6h->ip6_nxt; 2782 switch (nexthdr) { 2783 case IPPROTO_HOPOPTS: 2784 case IPPROTO_ROUTING: 2785 case IPPROTO_DSTOPTS: 2786 case IPPROTO_FRAGMENT: 2787 /* 2788 * Use ip_hdr_length_nexthdr_v6(). And have a spare 2789 * mblk that's contiguous to feed it 2790 */ 2791 if ((spare_mp = msgpullup(mp, -1)) == NULL) 2792 return (SELRET_NOMEM); 2793 if (!ip_hdr_length_nexthdr_v6(spare_mp, 2794 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len), 2795 &hdr_len, &nexthdrp)) { 2796 /* Malformed packet - caller frees. */ 2797 ipsec_freemsg_chain(spare_mp); 2798 return (SELRET_BADPKT); 2799 } 2800 nexthdr = *nexthdrp; 2801 /* We can just extract based on hdr_len now. */ 2802 break; 2803 default: 2804 hdr_len = IPV6_HDR_LEN; 2805 break; 2806 } 2807 2808 if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) { 2809 /* IPv6 Fragment */ 2810 ipsec_freemsg_chain(spare_mp); 2811 return (SELRET_TUNFRAG); 2812 } 2813 } else { 2814 if (is_icmp) 2815 outer_hdr_len = ((uint8_t *)ipha) - mp->b_rptr; 2816 check_proto = IPPROTO_ICMP; 2817 sel->ips_isv4 = B_TRUE; 2818 sel->ips_local_addr_v4 = ipha->ipha_dst; 2819 sel->ips_remote_addr_v4 = ipha->ipha_src; 2820 nexthdr = ipha->ipha_protocol; 2821 hdr_len = IPH_HDR_LENGTH(ipha); 2822 2823 if (port_policy_present && 2824 IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) && 2825 !is_icmp) { 2826 /* IPv4 Fragment */ 2827 ipsec_freemsg_chain(spare_mp); 2828 return (SELRET_TUNFRAG); 2829 } 2830 2831 } 2832 sel->ips_protocol = nexthdr; 2833 2834 if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP && 2835 nexthdr != IPPROTO_SCTP && nexthdr != check_proto) || 2836 (!port_policy_present && tunnel_mode)) { 2837 sel->ips_remote_port = sel->ips_local_port = 0; 2838 ipsec_freemsg_chain(spare_mp); 2839 return (SELRET_SUCCESS); 2840 } 2841 2842 if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) { 2843 /* If we didn't pullup a copy already, do so now. */ 2844 /* 2845 * XXX performance, will upper-layers frequently split TCP/UDP 2846 * apart from IP or options? If so, perhaps we should revisit 2847 * the spare_mp strategy. 2848 */ 2849 ipsec_hdr_pullup_needed++; 2850 if (spare_mp == NULL && 2851 (spare_mp = msgpullup(mp, -1)) == NULL) { 2852 return (SELRET_NOMEM); 2853 } 2854 ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len]; 2855 } else { 2856 ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len]; 2857 } 2858 2859 if (nexthdr == check_proto) { 2860 typecode = (uint8_t *)ports; 2861 sel->ips_icmp_type = *typecode++; 2862 sel->ips_icmp_code = *typecode; 2863 sel->ips_remote_port = sel->ips_local_port = 0; 2864 } else { 2865 sel->ips_remote_port = *ports++; 2866 sel->ips_local_port = *ports; 2867 } 2868 ipsec_freemsg_chain(spare_mp); 2869 return (SELRET_SUCCESS); 2870 } 2871 2872 static boolean_t 2873 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha, 2874 ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss) 2875 { 2876 /* 2877 * XXX cut&paste shared with ipsec_init_inbound_sel 2878 */ 2879 uint16_t *ports; 2880 ushort_t hdr_len; 2881 mblk_t *spare_mp = NULL; 2882 uint8_t *nexthdrp; 2883 uint8_t nexthdr; 2884 uint8_t *typecode; 2885 uint8_t check_proto; 2886 2887 ASSERT((ipha == NULL && ip6h != NULL) || 2888 (ipha != NULL && ip6h == NULL)); 2889 2890 if (ip6h != NULL) { 2891 check_proto = IPPROTO_ICMPV6; 2892 nexthdr = ip6h->ip6_nxt; 2893 switch (nexthdr) { 2894 case IPPROTO_HOPOPTS: 2895 case IPPROTO_ROUTING: 2896 case IPPROTO_DSTOPTS: 2897 case IPPROTO_FRAGMENT: 2898 /* 2899 * Use ip_hdr_length_nexthdr_v6(). And have a spare 2900 * mblk that's contiguous to feed it 2901 */ 2902 spare_mp = msgpullup(mp, -1); 2903 if (spare_mp == NULL || 2904 !ip_hdr_length_nexthdr_v6(spare_mp, 2905 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len), 2906 &hdr_len, &nexthdrp)) { 2907 /* Always works, even if NULL. */ 2908 ipsec_freemsg_chain(spare_mp); 2909 ip_drop_packet_chain(mp, B_FALSE, NULL, NULL, 2910 DROPPER(ipss, ipds_spd_nomem), 2911 &ipss->ipsec_spd_dropper); 2912 return (B_FALSE); 2913 } else { 2914 nexthdr = *nexthdrp; 2915 /* We can just extract based on hdr_len now. */ 2916 } 2917 break; 2918 default: 2919 hdr_len = IPV6_HDR_LEN; 2920 break; 2921 } 2922 } else { 2923 check_proto = IPPROTO_ICMP; 2924 hdr_len = IPH_HDR_LENGTH(ipha); 2925 nexthdr = ipha->ipha_protocol; 2926 } 2927 2928 sel->ips_protocol = nexthdr; 2929 if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP && 2930 nexthdr != IPPROTO_SCTP && nexthdr != check_proto) { 2931 sel->ips_local_port = sel->ips_remote_port = 0; 2932 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */ 2933 return (B_TRUE); 2934 } 2935 2936 if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) { 2937 /* If we didn't pullup a copy already, do so now. */ 2938 /* 2939 * XXX performance, will upper-layers frequently split TCP/UDP 2940 * apart from IP or options? If so, perhaps we should revisit 2941 * the spare_mp strategy. 2942 * 2943 * XXX should this be msgpullup(mp, hdr_len+4) ??? 2944 */ 2945 if (spare_mp == NULL && 2946 (spare_mp = msgpullup(mp, -1)) == NULL) { 2947 ip_drop_packet_chain(mp, B_FALSE, NULL, NULL, 2948 DROPPER(ipss, ipds_spd_nomem), 2949 &ipss->ipsec_spd_dropper); 2950 return (B_FALSE); 2951 } 2952 ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len]; 2953 } else { 2954 ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len]; 2955 } 2956 2957 if (nexthdr == check_proto) { 2958 typecode = (uint8_t *)ports; 2959 sel->ips_icmp_type = *typecode++; 2960 sel->ips_icmp_code = *typecode; 2961 sel->ips_remote_port = sel->ips_local_port = 0; 2962 } else { 2963 sel->ips_local_port = *ports++; 2964 sel->ips_remote_port = *ports; 2965 } 2966 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */ 2967 return (B_TRUE); 2968 } 2969 2970 /* 2971 * Create an ipsec_action_t based on the way an inbound packet was protected. 2972 * Used to reflect traffic back to a sender. 2973 * 2974 * We don't bother interning the action into the hash table. 2975 */ 2976 ipsec_action_t * 2977 ipsec_in_to_out_action(ipsec_in_t *ii) 2978 { 2979 ipsa_t *ah_assoc, *esp_assoc; 2980 uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0; 2981 ipsec_action_t *ap; 2982 boolean_t unique; 2983 2984 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP); 2985 2986 if (ap == NULL) 2987 return (NULL); 2988 2989 bzero(ap, sizeof (*ap)); 2990 HASH_NULL(ap, ipa_hash); 2991 ap->ipa_next = NULL; 2992 ap->ipa_refs = 1; 2993 2994 /* 2995 * Get the algorithms that were used for this packet. 2996 */ 2997 ap->ipa_act.ipa_type = IPSEC_ACT_APPLY; 2998 ap->ipa_act.ipa_log = 0; 2999 ah_assoc = ii->ipsec_in_ah_sa; 3000 ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL); 3001 3002 esp_assoc = ii->ipsec_in_esp_sa; 3003 ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL); 3004 3005 if (esp_assoc != NULL) { 3006 encr_alg = esp_assoc->ipsa_encr_alg; 3007 espa_alg = esp_assoc->ipsa_auth_alg; 3008 ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0); 3009 } 3010 if (ah_assoc != NULL) 3011 auth_alg = ah_assoc->ipsa_auth_alg; 3012 3013 ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg; 3014 ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg; 3015 ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg; 3016 ap->ipa_act.ipa_apply.ipp_use_se = ii->ipsec_in_decaps; 3017 unique = B_FALSE; 3018 3019 if (esp_assoc != NULL) { 3020 ap->ipa_act.ipa_apply.ipp_espa_minbits = 3021 esp_assoc->ipsa_authkeybits; 3022 ap->ipa_act.ipa_apply.ipp_espa_maxbits = 3023 esp_assoc->ipsa_authkeybits; 3024 ap->ipa_act.ipa_apply.ipp_espe_minbits = 3025 esp_assoc->ipsa_encrkeybits; 3026 ap->ipa_act.ipa_apply.ipp_espe_maxbits = 3027 esp_assoc->ipsa_encrkeybits; 3028 ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp; 3029 ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc; 3030 if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE) 3031 unique = B_TRUE; 3032 } 3033 if (ah_assoc != NULL) { 3034 ap->ipa_act.ipa_apply.ipp_ah_minbits = 3035 ah_assoc->ipsa_authkeybits; 3036 ap->ipa_act.ipa_apply.ipp_ah_maxbits = 3037 ah_assoc->ipsa_authkeybits; 3038 ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp; 3039 ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc; 3040 if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE) 3041 unique = B_TRUE; 3042 } 3043 ap->ipa_act.ipa_apply.ipp_use_unique = unique; 3044 ap->ipa_want_unique = unique; 3045 ap->ipa_allow_clear = B_FALSE; 3046 ap->ipa_want_se = ii->ipsec_in_decaps; 3047 ap->ipa_want_ah = (ah_assoc != NULL); 3048 ap->ipa_want_esp = (esp_assoc != NULL); 3049 3050 ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act); 3051 3052 ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */ 3053 3054 return (ap); 3055 } 3056 3057 3058 /* 3059 * Compute the worst-case amount of extra space required by an action. 3060 * Note that, because of the ESP considerations listed below, this is 3061 * actually not the same as the best-case reduction in the MTU; in the 3062 * future, we should pass additional information to this function to 3063 * allow the actual MTU impact to be computed. 3064 * 3065 * AH: Revisit this if we implement algorithms with 3066 * a verifier size of more than 12 bytes. 3067 * 3068 * ESP: A more exact but more messy computation would take into 3069 * account the interaction between the cipher block size and the 3070 * effective MTU, yielding the inner payload size which reflects a 3071 * packet with *minimum* ESP padding.. 3072 */ 3073 int32_t 3074 ipsec_act_ovhd(const ipsec_act_t *act) 3075 { 3076 int32_t overhead = 0; 3077 3078 if (act->ipa_type == IPSEC_ACT_APPLY) { 3079 const ipsec_prot_t *ipp = &act->ipa_apply; 3080 3081 if (ipp->ipp_use_ah) 3082 overhead += IPSEC_MAX_AH_HDR_SIZE; 3083 if (ipp->ipp_use_esp) { 3084 overhead += IPSEC_MAX_ESP_HDR_SIZE; 3085 overhead += sizeof (struct udphdr); 3086 } 3087 if (ipp->ipp_use_se) 3088 overhead += IP_SIMPLE_HDR_LENGTH; 3089 } 3090 return (overhead); 3091 } 3092 3093 /* 3094 * This hash function is used only when creating policies and thus is not 3095 * performance-critical for packet flows. 3096 * 3097 * Future work: canonicalize the structures hashed with this (i.e., 3098 * zeroize padding) so the hash works correctly. 3099 */ 3100 /* ARGSUSED */ 3101 static uint32_t 3102 policy_hash(int size, const void *start, const void *end) 3103 { 3104 return (0); 3105 } 3106 3107 3108 /* 3109 * Hash function macros for each address type. 3110 * 3111 * The IPV6 hash function assumes that the low order 32-bits of the 3112 * address (typically containing the low order 24 bits of the mac 3113 * address) are reasonably well-distributed. Revisit this if we run 3114 * into trouble from lots of collisions on ::1 addresses and the like 3115 * (seems unlikely). 3116 */ 3117 #define IPSEC_IPV4_HASH(a, n) ((a) % (n)) 3118 #define IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n)) 3119 3120 /* 3121 * These two hash functions should produce coordinated values 3122 * but have slightly different roles. 3123 */ 3124 static uint32_t 3125 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns) 3126 { 3127 uint32_t valid = selkey->ipsl_valid; 3128 ipsec_stack_t *ipss = ns->netstack_ipsec; 3129 3130 if (!(valid & IPSL_REMOTE_ADDR)) 3131 return (IPSEC_SEL_NOHASH); 3132 3133 if (valid & IPSL_IPV4) { 3134 if (selkey->ipsl_remote_pfxlen == 32) { 3135 return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4, 3136 ipss->ipsec_spd_hashsize)); 3137 } 3138 } 3139 if (valid & IPSL_IPV6) { 3140 if (selkey->ipsl_remote_pfxlen == 128) { 3141 return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6, 3142 ipss->ipsec_spd_hashsize)); 3143 } 3144 } 3145 return (IPSEC_SEL_NOHASH); 3146 } 3147 3148 static uint32_t 3149 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root) 3150 { 3151 if (sel->ips_isv4) { 3152 return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4, 3153 root->ipr_nchains)); 3154 } 3155 return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains)); 3156 } 3157 3158 /* 3159 * Intern actions into the action hash table. 3160 */ 3161 ipsec_action_t * 3162 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns) 3163 { 3164 int i; 3165 uint32_t hval; 3166 ipsec_action_t *ap; 3167 ipsec_action_t *prev = NULL; 3168 int32_t overhead, maxovhd = 0; 3169 boolean_t allow_clear = B_FALSE; 3170 boolean_t want_ah = B_FALSE; 3171 boolean_t want_esp = B_FALSE; 3172 boolean_t want_se = B_FALSE; 3173 boolean_t want_unique = B_FALSE; 3174 ipsec_stack_t *ipss = ns->netstack_ipsec; 3175 3176 /* 3177 * TODO: should canonicalize a[] (i.e., zeroize any padding) 3178 * so we can use a non-trivial policy_hash function. 3179 */ 3180 for (i = n-1; i >= 0; i--) { 3181 hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]); 3182 3183 HASH_LOCK(ipss->ipsec_action_hash, hval); 3184 3185 for (HASH_ITERATE(ap, ipa_hash, 3186 ipss->ipsec_action_hash, hval)) { 3187 if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0) 3188 continue; 3189 if (ap->ipa_next != prev) 3190 continue; 3191 break; 3192 } 3193 if (ap != NULL) { 3194 HASH_UNLOCK(ipss->ipsec_action_hash, hval); 3195 prev = ap; 3196 continue; 3197 } 3198 /* 3199 * need to allocate a new one.. 3200 */ 3201 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP); 3202 if (ap == NULL) { 3203 HASH_UNLOCK(ipss->ipsec_action_hash, hval); 3204 if (prev != NULL) 3205 ipsec_action_free(prev); 3206 return (NULL); 3207 } 3208 HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval); 3209 3210 ap->ipa_next = prev; 3211 ap->ipa_act = a[i]; 3212 3213 overhead = ipsec_act_ovhd(&a[i]); 3214 if (maxovhd < overhead) 3215 maxovhd = overhead; 3216 3217 if ((a[i].ipa_type == IPSEC_ACT_BYPASS) || 3218 (a[i].ipa_type == IPSEC_ACT_CLEAR)) 3219 allow_clear = B_TRUE; 3220 if (a[i].ipa_type == IPSEC_ACT_APPLY) { 3221 const ipsec_prot_t *ipp = &a[i].ipa_apply; 3222 3223 ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp); 3224 want_ah |= ipp->ipp_use_ah; 3225 want_esp |= ipp->ipp_use_esp; 3226 want_se |= ipp->ipp_use_se; 3227 want_unique |= ipp->ipp_use_unique; 3228 } 3229 ap->ipa_allow_clear = allow_clear; 3230 ap->ipa_want_ah = want_ah; 3231 ap->ipa_want_esp = want_esp; 3232 ap->ipa_want_se = want_se; 3233 ap->ipa_want_unique = want_unique; 3234 ap->ipa_refs = 1; /* from the hash table */ 3235 ap->ipa_ovhd = maxovhd; 3236 if (prev) 3237 prev->ipa_refs++; 3238 prev = ap; 3239 HASH_UNLOCK(ipss->ipsec_action_hash, hval); 3240 } 3241 3242 ap->ipa_refs++; /* caller's reference */ 3243 3244 return (ap); 3245 } 3246 3247 /* 3248 * Called when refcount goes to 0, indicating that all references to this 3249 * node are gone. 3250 * 3251 * This does not unchain the action from the hash table. 3252 */ 3253 void 3254 ipsec_action_free(ipsec_action_t *ap) 3255 { 3256 for (;;) { 3257 ipsec_action_t *np = ap->ipa_next; 3258 ASSERT(ap->ipa_refs == 0); 3259 ASSERT(ap->ipa_hash.hash_pp == NULL); 3260 kmem_cache_free(ipsec_action_cache, ap); 3261 ap = np; 3262 /* Inlined IPACT_REFRELE -- avoid recursion */ 3263 if (ap == NULL) 3264 break; 3265 membar_exit(); 3266 if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0) 3267 break; 3268 /* End inlined IPACT_REFRELE */ 3269 } 3270 } 3271 3272 /* 3273 * Called when the action hash table goes away. 3274 * 3275 * The actions can be queued on an mblk with ipsec_in or 3276 * ipsec_out, hence the actions might still be around. 3277 * But we decrement ipa_refs here since we no longer have 3278 * a reference to the action from the hash table. 3279 */ 3280 static void 3281 ipsec_action_free_table(ipsec_action_t *ap) 3282 { 3283 while (ap != NULL) { 3284 ipsec_action_t *np = ap->ipa_next; 3285 3286 /* FIXME: remove? */ 3287 (void) printf("ipsec_action_free_table(%p) ref %d\n", 3288 (void *)ap, ap->ipa_refs); 3289 ASSERT(ap->ipa_refs > 0); 3290 IPACT_REFRELE(ap); 3291 ap = np; 3292 } 3293 } 3294 3295 /* 3296 * Need to walk all stack instances since the reclaim function 3297 * is global for all instances 3298 */ 3299 /* ARGSUSED */ 3300 static void 3301 ipsec_action_reclaim(void *arg) 3302 { 3303 netstack_handle_t nh; 3304 netstack_t *ns; 3305 3306 netstack_next_init(&nh); 3307 while ((ns = netstack_next(&nh)) != NULL) { 3308 ipsec_action_reclaim_stack(ns); 3309 netstack_rele(ns); 3310 } 3311 netstack_next_fini(&nh); 3312 } 3313 3314 /* 3315 * Periodically sweep action hash table for actions with refcount==1, and 3316 * nuke them. We cannot do this "on demand" (i.e., from IPACT_REFRELE) 3317 * because we can't close the race between another thread finding the action 3318 * in the hash table without holding the bucket lock during IPACT_REFRELE. 3319 * Instead, we run this function sporadically to clean up after ourselves; 3320 * we also set it as the "reclaim" function for the action kmem_cache. 3321 * 3322 * Note that it may take several passes of ipsec_action_gc() to free all 3323 * "stale" actions. 3324 */ 3325 static void 3326 ipsec_action_reclaim_stack(netstack_t *ns) 3327 { 3328 int i; 3329 ipsec_stack_t *ipss = ns->netstack_ipsec; 3330 3331 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) { 3332 ipsec_action_t *ap, *np; 3333 3334 /* skip the lock if nobody home */ 3335 if (ipss->ipsec_action_hash[i].hash_head == NULL) 3336 continue; 3337 3338 HASH_LOCK(ipss->ipsec_action_hash, i); 3339 for (ap = ipss->ipsec_action_hash[i].hash_head; 3340 ap != NULL; ap = np) { 3341 ASSERT(ap->ipa_refs > 0); 3342 np = ap->ipa_hash.hash_next; 3343 if (ap->ipa_refs > 1) 3344 continue; 3345 HASH_UNCHAIN(ap, ipa_hash, 3346 ipss->ipsec_action_hash, i); 3347 IPACT_REFRELE(ap); 3348 } 3349 HASH_UNLOCK(ipss->ipsec_action_hash, i); 3350 } 3351 } 3352 3353 /* 3354 * Intern a selector set into the selector set hash table. 3355 * This is simpler than the actions case.. 3356 */ 3357 static ipsec_sel_t * 3358 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns) 3359 { 3360 ipsec_sel_t *sp; 3361 uint32_t hval, bucket; 3362 ipsec_stack_t *ipss = ns->netstack_ipsec; 3363 3364 /* 3365 * Exactly one AF bit should be set in selkey. 3366 */ 3367 ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^ 3368 !(selkey->ipsl_valid & IPSL_IPV6)); 3369 3370 hval = selkey_hash(selkey, ns); 3371 /* Set pol_hval to uninitialized until we put it in a polhead. */ 3372 selkey->ipsl_sel_hval = hval; 3373 3374 bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval; 3375 3376 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket)); 3377 HASH_LOCK(ipss->ipsec_sel_hash, bucket); 3378 3379 for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) { 3380 if (bcmp(&sp->ipsl_key, selkey, 3381 offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0) 3382 break; 3383 } 3384 if (sp != NULL) { 3385 sp->ipsl_refs++; 3386 3387 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket); 3388 return (sp); 3389 } 3390 3391 sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP); 3392 if (sp == NULL) { 3393 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket); 3394 return (NULL); 3395 } 3396 3397 HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket); 3398 sp->ipsl_refs = 2; /* one for hash table, one for caller */ 3399 sp->ipsl_key = *selkey; 3400 /* Set to uninitalized and have insertion into polhead fix things. */ 3401 if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH) 3402 sp->ipsl_key.ipsl_pol_hval = 0; 3403 else 3404 sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH; 3405 3406 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket); 3407 3408 return (sp); 3409 } 3410 3411 static void 3412 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns) 3413 { 3414 ipsec_sel_t *sp = *spp; 3415 int hval = sp->ipsl_key.ipsl_sel_hval; 3416 ipsec_stack_t *ipss = ns->netstack_ipsec; 3417 3418 *spp = NULL; 3419 3420 if (hval == IPSEC_SEL_NOHASH) 3421 hval = 0; 3422 3423 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval)); 3424 HASH_LOCK(ipss->ipsec_sel_hash, hval); 3425 if (--sp->ipsl_refs == 1) { 3426 HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval); 3427 sp->ipsl_refs--; 3428 HASH_UNLOCK(ipss->ipsec_sel_hash, hval); 3429 ASSERT(sp->ipsl_refs == 0); 3430 kmem_cache_free(ipsec_sel_cache, sp); 3431 /* Caller unlocks */ 3432 return; 3433 } 3434 3435 HASH_UNLOCK(ipss->ipsec_sel_hash, hval); 3436 } 3437 3438 /* 3439 * Free a policy rule which we know is no longer being referenced. 3440 */ 3441 void 3442 ipsec_policy_free(ipsec_policy_t *ipp, netstack_t *ns) 3443 { 3444 ASSERT(ipp->ipsp_refs == 0); 3445 ASSERT(ipp->ipsp_sel != NULL); 3446 ASSERT(ipp->ipsp_act != NULL); 3447 3448 ipsec_sel_rel(&ipp->ipsp_sel, ns); 3449 IPACT_REFRELE(ipp->ipsp_act); 3450 kmem_cache_free(ipsec_pol_cache, ipp); 3451 } 3452 3453 /* 3454 * Construction of new policy rules; construct a policy, and add it to 3455 * the appropriate tables. 3456 */ 3457 ipsec_policy_t * 3458 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a, 3459 int nacts, int prio, uint64_t *index_ptr, netstack_t *ns) 3460 { 3461 ipsec_action_t *ap; 3462 ipsec_sel_t *sp; 3463 ipsec_policy_t *ipp; 3464 ipsec_stack_t *ipss = ns->netstack_ipsec; 3465 3466 if (index_ptr == NULL) 3467 index_ptr = &ipss->ipsec_next_policy_index; 3468 3469 ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP); 3470 ap = ipsec_act_find(a, nacts, ns); 3471 sp = ipsec_find_sel(keys, ns); 3472 3473 if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) { 3474 if (ap != NULL) { 3475 IPACT_REFRELE(ap); 3476 } 3477 if (sp != NULL) 3478 ipsec_sel_rel(&sp, ns); 3479 if (ipp != NULL) 3480 kmem_cache_free(ipsec_pol_cache, ipp); 3481 return (NULL); 3482 } 3483 3484 HASH_NULL(ipp, ipsp_hash); 3485 3486 ipp->ipsp_refs = 1; /* caller's reference */ 3487 ipp->ipsp_sel = sp; 3488 ipp->ipsp_act = ap; 3489 ipp->ipsp_prio = prio; /* rule priority */ 3490 ipp->ipsp_index = *index_ptr; 3491 (*index_ptr)++; 3492 3493 return (ipp); 3494 } 3495 3496 static void 3497 ipsec_update_present_flags(ipsec_stack_t *ipss) 3498 { 3499 boolean_t hashpol; 3500 3501 hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0); 3502 3503 if (hashpol) { 3504 ipss->ipsec_outbound_v4_policy_present = B_TRUE; 3505 ipss->ipsec_outbound_v6_policy_present = B_TRUE; 3506 ipss->ipsec_inbound_v4_policy_present = B_TRUE; 3507 ipss->ipsec_inbound_v6_policy_present = B_TRUE; 3508 return; 3509 } 3510 3511 ipss->ipsec_outbound_v4_policy_present = (NULL != 3512 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND]. 3513 ipr_nonhash[IPSEC_AF_V4]); 3514 ipss->ipsec_outbound_v6_policy_present = (NULL != 3515 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND]. 3516 ipr_nonhash[IPSEC_AF_V6]); 3517 ipss->ipsec_inbound_v4_policy_present = (NULL != 3518 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND]. 3519 ipr_nonhash[IPSEC_AF_V4]); 3520 ipss->ipsec_inbound_v6_policy_present = (NULL != 3521 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND]. 3522 ipr_nonhash[IPSEC_AF_V6]); 3523 } 3524 3525 boolean_t 3526 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir, 3527 netstack_t *ns) 3528 { 3529 ipsec_sel_t *sp; 3530 ipsec_policy_t *ip, *nip, *head; 3531 int af; 3532 ipsec_policy_root_t *pr = &php->iph_root[dir]; 3533 3534 sp = ipsec_find_sel(keys, ns); 3535 3536 if (sp == NULL) 3537 return (B_FALSE); 3538 3539 af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6; 3540 3541 rw_enter(&php->iph_lock, RW_WRITER); 3542 3543 if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) { 3544 head = pr->ipr_nonhash[af]; 3545 } else { 3546 head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head; 3547 } 3548 3549 for (ip = head; ip != NULL; ip = nip) { 3550 nip = ip->ipsp_hash.hash_next; 3551 if (ip->ipsp_sel != sp) { 3552 continue; 3553 } 3554 3555 IPPOL_UNCHAIN(php, ip, ns); 3556 3557 php->iph_gen++; 3558 ipsec_update_present_flags(ns->netstack_ipsec); 3559 3560 rw_exit(&php->iph_lock); 3561 3562 ipsec_sel_rel(&sp, ns); 3563 3564 return (B_TRUE); 3565 } 3566 3567 rw_exit(&php->iph_lock); 3568 ipsec_sel_rel(&sp, ns); 3569 return (B_FALSE); 3570 } 3571 3572 int 3573 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index, 3574 netstack_t *ns) 3575 { 3576 boolean_t found = B_FALSE; 3577 ipsec_policy_t ipkey; 3578 ipsec_policy_t *ip; 3579 avl_index_t where; 3580 3581 (void) memset(&ipkey, 0, sizeof (ipkey)); 3582 ipkey.ipsp_index = policy_index; 3583 3584 rw_enter(&php->iph_lock, RW_WRITER); 3585 3586 /* 3587 * We could be cleverer here about the walk. 3588 * but well, (k+1)*log(N) will do for now (k==number of matches, 3589 * N==number of table entries 3590 */ 3591 for (;;) { 3592 ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid, 3593 (void *)&ipkey, &where); 3594 ASSERT(ip == NULL); 3595 3596 ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER); 3597 3598 if (ip == NULL) 3599 break; 3600 3601 if (ip->ipsp_index != policy_index) { 3602 ASSERT(ip->ipsp_index > policy_index); 3603 break; 3604 } 3605 3606 IPPOL_UNCHAIN(php, ip, ns); 3607 found = B_TRUE; 3608 } 3609 3610 if (found) { 3611 php->iph_gen++; 3612 ipsec_update_present_flags(ns->netstack_ipsec); 3613 } 3614 3615 rw_exit(&php->iph_lock); 3616 3617 return (found ? 0 : ENOENT); 3618 } 3619 3620 /* 3621 * Given a constructed ipsec_policy_t policy rule, see if it can be entered 3622 * into the correct policy ruleset. As a side-effect, it sets the hash 3623 * entries on "ipp"'s ipsp_pol_hval. 3624 * 3625 * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a 3626 * duplicate policy exists with exactly the same selectors), or an icmp 3627 * rule exists with a different encryption/authentication action. 3628 */ 3629 boolean_t 3630 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction) 3631 { 3632 ipsec_policy_root_t *pr = &php->iph_root[direction]; 3633 int af = -1; 3634 ipsec_policy_t *p2, *head; 3635 uint8_t check_proto; 3636 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key; 3637 uint32_t valid = selkey->ipsl_valid; 3638 3639 if (valid & IPSL_IPV6) { 3640 ASSERT(!(valid & IPSL_IPV4)); 3641 af = IPSEC_AF_V6; 3642 check_proto = IPPROTO_ICMPV6; 3643 } else { 3644 ASSERT(valid & IPSL_IPV4); 3645 af = IPSEC_AF_V4; 3646 check_proto = IPPROTO_ICMP; 3647 } 3648 3649 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3650 3651 /* 3652 * Double-check that we don't have any duplicate selectors here. 3653 * Because selectors are interned below, we need only compare pointers 3654 * for equality. 3655 */ 3656 if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) { 3657 head = pr->ipr_nonhash[af]; 3658 } else { 3659 selkey->ipsl_pol_hval = 3660 (selkey->ipsl_valid & IPSL_IPV4) ? 3661 IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4, 3662 pr->ipr_nchains) : 3663 IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6, 3664 pr->ipr_nchains); 3665 3666 head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head; 3667 } 3668 3669 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) { 3670 if (p2->ipsp_sel == ipp->ipsp_sel) 3671 return (B_FALSE); 3672 } 3673 3674 /* 3675 * If it's ICMP and not a drop or pass rule, run through the ICMP 3676 * rules and make sure the action is either new or the same as any 3677 * other actions. We don't have to check the full chain because 3678 * discard and bypass will override all other actions 3679 */ 3680 3681 if (valid & IPSL_PROTOCOL && 3682 selkey->ipsl_proto == check_proto && 3683 (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) { 3684 3685 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) { 3686 3687 if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL && 3688 p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto && 3689 (p2->ipsp_act->ipa_act.ipa_type == 3690 IPSEC_ACT_APPLY)) { 3691 return (ipsec_compare_action(p2, ipp)); 3692 } 3693 } 3694 } 3695 3696 return (B_TRUE); 3697 } 3698 3699 /* 3700 * compare the action chains of two policies for equality 3701 * B_TRUE -> effective equality 3702 */ 3703 3704 static boolean_t 3705 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2) 3706 { 3707 3708 ipsec_action_t *act1, *act2; 3709 3710 /* We have a valid rule. Let's compare the actions */ 3711 if (p1->ipsp_act == p2->ipsp_act) { 3712 /* same action. We are good */ 3713 return (B_TRUE); 3714 } 3715 3716 /* we have to walk the chain */ 3717 3718 act1 = p1->ipsp_act; 3719 act2 = p2->ipsp_act; 3720 3721 while (act1 != NULL && act2 != NULL) { 3722 3723 /* otherwise, Are we close enough? */ 3724 if (act1->ipa_allow_clear != act2->ipa_allow_clear || 3725 act1->ipa_want_ah != act2->ipa_want_ah || 3726 act1->ipa_want_esp != act2->ipa_want_esp || 3727 act1->ipa_want_se != act2->ipa_want_se) { 3728 /* Nope, we aren't */ 3729 return (B_FALSE); 3730 } 3731 3732 if (act1->ipa_want_ah) { 3733 if (act1->ipa_act.ipa_apply.ipp_auth_alg != 3734 act2->ipa_act.ipa_apply.ipp_auth_alg) { 3735 return (B_FALSE); 3736 } 3737 3738 if (act1->ipa_act.ipa_apply.ipp_ah_minbits != 3739 act2->ipa_act.ipa_apply.ipp_ah_minbits || 3740 act1->ipa_act.ipa_apply.ipp_ah_maxbits != 3741 act2->ipa_act.ipa_apply.ipp_ah_maxbits) { 3742 return (B_FALSE); 3743 } 3744 } 3745 3746 if (act1->ipa_want_esp) { 3747 if (act1->ipa_act.ipa_apply.ipp_use_esp != 3748 act2->ipa_act.ipa_apply.ipp_use_esp || 3749 act1->ipa_act.ipa_apply.ipp_use_espa != 3750 act2->ipa_act.ipa_apply.ipp_use_espa) { 3751 return (B_FALSE); 3752 } 3753 3754 if (act1->ipa_act.ipa_apply.ipp_use_esp) { 3755 if (act1->ipa_act.ipa_apply.ipp_encr_alg != 3756 act2->ipa_act.ipa_apply.ipp_encr_alg) { 3757 return (B_FALSE); 3758 } 3759 3760 if (act1->ipa_act.ipa_apply.ipp_espe_minbits != 3761 act2->ipa_act.ipa_apply.ipp_espe_minbits || 3762 act1->ipa_act.ipa_apply.ipp_espe_maxbits != 3763 act2->ipa_act.ipa_apply.ipp_espe_maxbits) { 3764 return (B_FALSE); 3765 } 3766 } 3767 3768 if (act1->ipa_act.ipa_apply.ipp_use_espa) { 3769 if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg != 3770 act2->ipa_act.ipa_apply.ipp_esp_auth_alg) { 3771 return (B_FALSE); 3772 } 3773 3774 if (act1->ipa_act.ipa_apply.ipp_espa_minbits != 3775 act2->ipa_act.ipa_apply.ipp_espa_minbits || 3776 act1->ipa_act.ipa_apply.ipp_espa_maxbits != 3777 act2->ipa_act.ipa_apply.ipp_espa_maxbits) { 3778 return (B_FALSE); 3779 } 3780 } 3781 3782 } 3783 3784 act1 = act1->ipa_next; 3785 act2 = act2->ipa_next; 3786 } 3787 3788 if (act1 != NULL || act2 != NULL) { 3789 return (B_FALSE); 3790 } 3791 3792 return (B_TRUE); 3793 } 3794 3795 3796 /* 3797 * Given a constructed ipsec_policy_t policy rule, enter it into 3798 * the correct policy ruleset. 3799 * 3800 * ipsec_check_policy() is assumed to have succeeded first (to check for 3801 * duplicates). 3802 */ 3803 void 3804 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction, 3805 netstack_t *ns) 3806 { 3807 ipsec_policy_root_t *pr = &php->iph_root[direction]; 3808 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key; 3809 uint32_t valid = selkey->ipsl_valid; 3810 uint32_t hval = selkey->ipsl_pol_hval; 3811 int af = -1; 3812 3813 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3814 3815 if (valid & IPSL_IPV6) { 3816 ASSERT(!(valid & IPSL_IPV4)); 3817 af = IPSEC_AF_V6; 3818 } else { 3819 ASSERT(valid & IPSL_IPV4); 3820 af = IPSEC_AF_V4; 3821 } 3822 3823 php->iph_gen++; 3824 3825 if (hval == IPSEC_SEL_NOHASH) { 3826 HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]); 3827 } else { 3828 HASH_LOCK(pr->ipr_hash, hval); 3829 HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval); 3830 HASH_UNLOCK(pr->ipr_hash, hval); 3831 } 3832 3833 ipsec_insert_always(&php->iph_rulebyid, ipp); 3834 3835 ipsec_update_present_flags(ns->netstack_ipsec); 3836 } 3837 3838 static void 3839 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr, 3840 netstack_t *ns) 3841 { 3842 ipsec_policy_t *ip, *nip; 3843 int af, chain, nchain; 3844 3845 for (af = 0; af < IPSEC_NAF; af++) { 3846 for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) { 3847 nip = ip->ipsp_hash.hash_next; 3848 IPPOL_UNCHAIN(php, ip, ns); 3849 } 3850 ipr->ipr_nonhash[af] = NULL; 3851 } 3852 nchain = ipr->ipr_nchains; 3853 3854 for (chain = 0; chain < nchain; chain++) { 3855 for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL; 3856 ip = nip) { 3857 nip = ip->ipsp_hash.hash_next; 3858 IPPOL_UNCHAIN(php, ip, ns); 3859 } 3860 ipr->ipr_hash[chain].hash_head = NULL; 3861 } 3862 } 3863 3864 void 3865 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns) 3866 { 3867 int dir; 3868 3869 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3870 3871 for (dir = 0; dir < IPSEC_NTYPES; dir++) 3872 ipsec_ipr_flush(php, &php->iph_root[dir], ns); 3873 3874 ipsec_update_present_flags(ns->netstack_ipsec); 3875 } 3876 3877 void 3878 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns) 3879 { 3880 int dir; 3881 3882 ASSERT(php->iph_refs == 0); 3883 3884 rw_enter(&php->iph_lock, RW_WRITER); 3885 ipsec_polhead_flush(php, ns); 3886 rw_exit(&php->iph_lock); 3887 rw_destroy(&php->iph_lock); 3888 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 3889 ipsec_policy_root_t *ipr = &php->iph_root[dir]; 3890 int chain; 3891 3892 for (chain = 0; chain < ipr->ipr_nchains; chain++) 3893 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock)); 3894 3895 } 3896 ipsec_polhead_free_table(php); 3897 kmem_free(php, sizeof (*php)); 3898 } 3899 3900 static void 3901 ipsec_ipr_init(ipsec_policy_root_t *ipr) 3902 { 3903 int af; 3904 3905 ipr->ipr_nchains = 0; 3906 ipr->ipr_hash = NULL; 3907 3908 for (af = 0; af < IPSEC_NAF; af++) { 3909 ipr->ipr_nonhash[af] = NULL; 3910 } 3911 } 3912 3913 ipsec_policy_head_t * 3914 ipsec_polhead_create(void) 3915 { 3916 ipsec_policy_head_t *php; 3917 3918 php = kmem_alloc(sizeof (*php), KM_NOSLEEP); 3919 if (php == NULL) 3920 return (php); 3921 3922 rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL); 3923 php->iph_refs = 1; 3924 php->iph_gen = 0; 3925 3926 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]); 3927 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]); 3928 3929 avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid, 3930 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid)); 3931 3932 return (php); 3933 } 3934 3935 /* 3936 * Clone the policy head into a new polhead; release one reference to the 3937 * old one and return the only reference to the new one. 3938 * If the old one had a refcount of 1, just return it. 3939 */ 3940 ipsec_policy_head_t * 3941 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns) 3942 { 3943 ipsec_policy_head_t *nphp; 3944 3945 if (php == NULL) 3946 return (ipsec_polhead_create()); 3947 else if (php->iph_refs == 1) 3948 return (php); 3949 3950 nphp = ipsec_polhead_create(); 3951 if (nphp == NULL) 3952 return (NULL); 3953 3954 if (ipsec_copy_polhead(php, nphp, ns) != 0) { 3955 ipsec_polhead_free(nphp, ns); 3956 return (NULL); 3957 } 3958 IPPH_REFRELE(php, ns); 3959 return (nphp); 3960 } 3961 3962 /* 3963 * When sending a response to a ICMP request or generating a RST 3964 * in the TCP case, the outbound packets need to go at the same level 3965 * of protection as the incoming ones i.e we associate our outbound 3966 * policy with how the packet came in. We call this after we have 3967 * accepted the incoming packet which may or may not have been in 3968 * clear and hence we are sending the reply back with the policy 3969 * matching the incoming datagram's policy. 3970 * 3971 * NOTE : This technology serves two purposes : 3972 * 3973 * 1) If we have multiple outbound policies, we send out a reply 3974 * matching with how it came in rather than matching the outbound 3975 * policy. 3976 * 3977 * 2) For assymetric policies, we want to make sure that incoming 3978 * and outgoing has the same level of protection. Assymetric 3979 * policies exist only with global policy where we may not have 3980 * both outbound and inbound at the same time. 3981 * 3982 * NOTE2: This function is called by cleartext cases, so it needs to be 3983 * in IP proper. 3984 */ 3985 boolean_t 3986 ipsec_in_to_out(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h) 3987 { 3988 ipsec_in_t *ii; 3989 ipsec_out_t *io; 3990 boolean_t v4; 3991 mblk_t *mp; 3992 boolean_t secure; 3993 uint_t ifindex; 3994 ipsec_selector_t sel; 3995 ipsec_action_t *reflect_action = NULL; 3996 zoneid_t zoneid; 3997 netstack_t *ns; 3998 3999 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 4000 4001 bzero((void*)&sel, sizeof (sel)); 4002 4003 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 4004 4005 mp = ipsec_mp->b_cont; 4006 ASSERT(mp != NULL); 4007 4008 if (ii->ipsec_in_action != NULL) { 4009 /* transfer reference.. */ 4010 reflect_action = ii->ipsec_in_action; 4011 ii->ipsec_in_action = NULL; 4012 } else if (!ii->ipsec_in_loopback) 4013 reflect_action = ipsec_in_to_out_action(ii); 4014 secure = ii->ipsec_in_secure; 4015 ifindex = ii->ipsec_in_ill_index; 4016 zoneid = ii->ipsec_in_zoneid; 4017 ASSERT(zoneid != ALL_ZONES); 4018 ns = ii->ipsec_in_ns; 4019 v4 = ii->ipsec_in_v4; 4020 4021 ipsec_in_release_refs(ii); /* No netstack_rele/hold needed */ 4022 4023 /* 4024 * The caller is going to send the datagram out which might 4025 * go on the wire or delivered locally through ip_wput_local. 4026 * 4027 * 1) If it goes out on the wire, new associations will be 4028 * obtained. 4029 * 2) If it is delivered locally, ip_wput_local will convert 4030 * this IPSEC_OUT to a IPSEC_IN looking at the requests. 4031 */ 4032 4033 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4034 bzero(io, sizeof (ipsec_out_t)); 4035 io->ipsec_out_type = IPSEC_OUT; 4036 io->ipsec_out_len = sizeof (ipsec_out_t); 4037 io->ipsec_out_frtn.free_func = ipsec_out_free; 4038 io->ipsec_out_frtn.free_arg = (char *)io; 4039 io->ipsec_out_act = reflect_action; 4040 4041 if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, 4042 ns->netstack_ipsec)) 4043 return (B_FALSE); 4044 4045 io->ipsec_out_src_port = sel.ips_local_port; 4046 io->ipsec_out_dst_port = sel.ips_remote_port; 4047 io->ipsec_out_proto = sel.ips_protocol; 4048 io->ipsec_out_icmp_type = sel.ips_icmp_type; 4049 io->ipsec_out_icmp_code = sel.ips_icmp_code; 4050 4051 /* 4052 * Don't use global policy for this, as we want 4053 * to use the same protection that was applied to the inbound packet. 4054 */ 4055 io->ipsec_out_use_global_policy = B_FALSE; 4056 io->ipsec_out_proc_begin = B_FALSE; 4057 io->ipsec_out_secure = secure; 4058 io->ipsec_out_v4 = v4; 4059 io->ipsec_out_ill_index = ifindex; 4060 io->ipsec_out_zoneid = zoneid; 4061 io->ipsec_out_ns = ns; /* No netstack_hold */ 4062 4063 return (B_TRUE); 4064 } 4065 4066 mblk_t * 4067 ipsec_in_tag(mblk_t *mp, mblk_t *cont, netstack_t *ns) 4068 { 4069 ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr; 4070 ipsec_in_t *nii; 4071 mblk_t *nmp; 4072 frtn_t nfrtn; 4073 ipsec_stack_t *ipss = ns->netstack_ipsec; 4074 4075 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4076 ASSERT(ii->ipsec_in_len == sizeof (ipsec_in_t)); 4077 4078 nmp = ipsec_in_alloc(ii->ipsec_in_v4, ns); 4079 if (nmp == NULL) { 4080 ip_drop_packet_chain(cont, B_FALSE, NULL, NULL, 4081 DROPPER(ipss, ipds_spd_nomem), 4082 &ipss->ipsec_spd_dropper); 4083 return (NULL); 4084 } 4085 4086 ASSERT(nmp->b_datap->db_type == M_CTL); 4087 ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t))); 4088 4089 /* 4090 * Bump refcounts. 4091 */ 4092 if (ii->ipsec_in_ah_sa != NULL) 4093 IPSA_REFHOLD(ii->ipsec_in_ah_sa); 4094 if (ii->ipsec_in_esp_sa != NULL) 4095 IPSA_REFHOLD(ii->ipsec_in_esp_sa); 4096 if (ii->ipsec_in_policy != NULL) 4097 IPPH_REFHOLD(ii->ipsec_in_policy); 4098 4099 /* 4100 * Copy everything, but preserve the free routine provided by 4101 * ipsec_in_alloc(). 4102 */ 4103 nii = (ipsec_in_t *)nmp->b_rptr; 4104 nfrtn = nii->ipsec_in_frtn; 4105 bcopy(ii, nii, sizeof (*ii)); 4106 nii->ipsec_in_frtn = nfrtn; 4107 4108 nmp->b_cont = cont; 4109 4110 return (nmp); 4111 } 4112 4113 mblk_t * 4114 ipsec_out_tag(mblk_t *mp, mblk_t *cont, netstack_t *ns) 4115 { 4116 ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr; 4117 ipsec_out_t *nio; 4118 mblk_t *nmp; 4119 frtn_t nfrtn; 4120 ipsec_stack_t *ipss = ns->netstack_ipsec; 4121 4122 ASSERT(io->ipsec_out_type == IPSEC_OUT); 4123 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 4124 4125 nmp = ipsec_alloc_ipsec_out(ns); 4126 if (nmp == NULL) { 4127 ip_drop_packet_chain(cont, B_FALSE, NULL, NULL, 4128 DROPPER(ipss, ipds_spd_nomem), 4129 &ipss->ipsec_spd_dropper); 4130 return (NULL); 4131 } 4132 ASSERT(nmp->b_datap->db_type == M_CTL); 4133 ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t))); 4134 4135 /* 4136 * Bump refcounts. 4137 */ 4138 if (io->ipsec_out_ah_sa != NULL) 4139 IPSA_REFHOLD(io->ipsec_out_ah_sa); 4140 if (io->ipsec_out_esp_sa != NULL) 4141 IPSA_REFHOLD(io->ipsec_out_esp_sa); 4142 if (io->ipsec_out_polhead != NULL) 4143 IPPH_REFHOLD(io->ipsec_out_polhead); 4144 if (io->ipsec_out_policy != NULL) 4145 IPPOL_REFHOLD(io->ipsec_out_policy); 4146 if (io->ipsec_out_act != NULL) 4147 IPACT_REFHOLD(io->ipsec_out_act); 4148 if (io->ipsec_out_latch != NULL) 4149 IPLATCH_REFHOLD(io->ipsec_out_latch); 4150 if (io->ipsec_out_cred != NULL) 4151 crhold(io->ipsec_out_cred); 4152 4153 /* 4154 * Copy everything, but preserve the free routine provided by 4155 * ipsec_alloc_ipsec_out(). 4156 */ 4157 nio = (ipsec_out_t *)nmp->b_rptr; 4158 nfrtn = nio->ipsec_out_frtn; 4159 bcopy(io, nio, sizeof (*io)); 4160 nio->ipsec_out_frtn = nfrtn; 4161 4162 nmp->b_cont = cont; 4163 4164 return (nmp); 4165 } 4166 4167 static void 4168 ipsec_out_release_refs(ipsec_out_t *io) 4169 { 4170 netstack_t *ns = io->ipsec_out_ns; 4171 4172 ASSERT(io->ipsec_out_type == IPSEC_OUT); 4173 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 4174 ASSERT(io->ipsec_out_ns != NULL); 4175 4176 /* Note: IPSA_REFRELE is multi-line macro */ 4177 if (io->ipsec_out_ah_sa != NULL) 4178 IPSA_REFRELE(io->ipsec_out_ah_sa); 4179 if (io->ipsec_out_esp_sa != NULL) 4180 IPSA_REFRELE(io->ipsec_out_esp_sa); 4181 if (io->ipsec_out_polhead != NULL) 4182 IPPH_REFRELE(io->ipsec_out_polhead, ns); 4183 if (io->ipsec_out_policy != NULL) 4184 IPPOL_REFRELE(io->ipsec_out_policy, ns); 4185 if (io->ipsec_out_act != NULL) 4186 IPACT_REFRELE(io->ipsec_out_act); 4187 if (io->ipsec_out_cred != NULL) { 4188 crfree(io->ipsec_out_cred); 4189 io->ipsec_out_cred = NULL; 4190 } 4191 if (io->ipsec_out_latch) { 4192 IPLATCH_REFRELE(io->ipsec_out_latch, ns); 4193 io->ipsec_out_latch = NULL; 4194 } 4195 } 4196 4197 static void 4198 ipsec_out_free(void *arg) 4199 { 4200 ipsec_out_t *io = (ipsec_out_t *)arg; 4201 ipsec_out_release_refs(io); 4202 kmem_cache_free(ipsec_info_cache, arg); 4203 } 4204 4205 static void 4206 ipsec_in_release_refs(ipsec_in_t *ii) 4207 { 4208 netstack_t *ns = ii->ipsec_in_ns; 4209 4210 ASSERT(ii->ipsec_in_ns != NULL); 4211 4212 /* Note: IPSA_REFRELE is multi-line macro */ 4213 if (ii->ipsec_in_ah_sa != NULL) 4214 IPSA_REFRELE(ii->ipsec_in_ah_sa); 4215 if (ii->ipsec_in_esp_sa != NULL) 4216 IPSA_REFRELE(ii->ipsec_in_esp_sa); 4217 if (ii->ipsec_in_policy != NULL) 4218 IPPH_REFRELE(ii->ipsec_in_policy, ns); 4219 if (ii->ipsec_in_da != NULL) { 4220 freeb(ii->ipsec_in_da); 4221 ii->ipsec_in_da = NULL; 4222 } 4223 } 4224 4225 static void 4226 ipsec_in_free(void *arg) 4227 { 4228 ipsec_in_t *ii = (ipsec_in_t *)arg; 4229 ipsec_in_release_refs(ii); 4230 kmem_cache_free(ipsec_info_cache, arg); 4231 } 4232 4233 /* 4234 * This is called only for outbound datagrams if the datagram needs to 4235 * go out secure. A NULL mp can be passed to get an ipsec_out. This 4236 * facility is used by ip_unbind. 4237 * 4238 * NOTE : o As the data part could be modified by ipsec_out_process etc. 4239 * we can't make it fast by calling a dup. 4240 */ 4241 mblk_t * 4242 ipsec_alloc_ipsec_out(netstack_t *ns) 4243 { 4244 mblk_t *ipsec_mp; 4245 ipsec_out_t *io = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP); 4246 4247 if (io == NULL) 4248 return (NULL); 4249 4250 bzero(io, sizeof (ipsec_out_t)); 4251 4252 io->ipsec_out_type = IPSEC_OUT; 4253 io->ipsec_out_len = sizeof (ipsec_out_t); 4254 io->ipsec_out_frtn.free_func = ipsec_out_free; 4255 io->ipsec_out_frtn.free_arg = (char *)io; 4256 4257 /* 4258 * Set the zoneid to ALL_ZONES which is used as an invalid value. Code 4259 * using ipsec_out_zoneid should assert that the zoneid has been set to 4260 * a sane value. 4261 */ 4262 io->ipsec_out_zoneid = ALL_ZONES; 4263 io->ipsec_out_ns = ns; /* No netstack_hold */ 4264 4265 ipsec_mp = desballoc((uint8_t *)io, sizeof (ipsec_info_t), BPRI_HI, 4266 &io->ipsec_out_frtn); 4267 if (ipsec_mp == NULL) { 4268 ipsec_out_free(io); 4269 4270 return (NULL); 4271 } 4272 ipsec_mp->b_datap->db_type = M_CTL; 4273 ipsec_mp->b_wptr = ipsec_mp->b_rptr + sizeof (ipsec_info_t); 4274 4275 return (ipsec_mp); 4276 } 4277 4278 /* 4279 * Attach an IPSEC_OUT; use pol for policy if it is non-null. 4280 * Otherwise initialize using conn. 4281 * 4282 * If pol is non-null, we consume a reference to it. 4283 */ 4284 mblk_t * 4285 ipsec_attach_ipsec_out(mblk_t **mp, conn_t *connp, ipsec_policy_t *pol, 4286 uint8_t proto, netstack_t *ns) 4287 { 4288 mblk_t *ipsec_mp; 4289 ipsec_stack_t *ipss = ns->netstack_ipsec; 4290 4291 ASSERT((pol != NULL) || (connp != NULL)); 4292 4293 ipsec_mp = ipsec_alloc_ipsec_out(ns); 4294 if (ipsec_mp == NULL) { 4295 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_NOTE, 4296 "ipsec_attach_ipsec_out: Allocation failure\n"); 4297 ip_drop_packet(*mp, B_FALSE, NULL, NULL, 4298 DROPPER(ipss, ipds_spd_nomem), 4299 &ipss->ipsec_spd_dropper); 4300 *mp = NULL; 4301 return (NULL); 4302 } 4303 ipsec_mp->b_cont = *mp; 4304 /* 4305 * If *mp is NULL, ipsec_init_ipsec_out() won't/should not be using it. 4306 */ 4307 return (ipsec_init_ipsec_out(ipsec_mp, mp, connp, pol, proto, ns)); 4308 } 4309 4310 /* 4311 * Initialize the IPSEC_OUT (ipsec_mp) using pol if it is non-null. 4312 * Otherwise initialize using conn. 4313 * 4314 * If pol is non-null, we consume a reference to it. 4315 */ 4316 mblk_t * 4317 ipsec_init_ipsec_out(mblk_t *ipsec_mp, mblk_t **mp, conn_t *connp, 4318 ipsec_policy_t *pol, uint8_t proto, netstack_t *ns) 4319 { 4320 ipsec_out_t *io; 4321 ipsec_policy_t *p; 4322 ipha_t *ipha; 4323 ip6_t *ip6h; 4324 ipsec_stack_t *ipss = ns->netstack_ipsec; 4325 4326 ASSERT(ipsec_mp->b_cont == *mp); 4327 4328 ASSERT((pol != NULL) || (connp != NULL)); 4329 4330 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 4331 ASSERT(ipsec_mp->b_wptr == (ipsec_mp->b_rptr + sizeof (ipsec_info_t))); 4332 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4333 ASSERT(io->ipsec_out_type == IPSEC_OUT); 4334 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 4335 io->ipsec_out_latch = NULL; 4336 /* 4337 * Set the zoneid when we have the connp. 4338 * Otherwise, we're called from ip_wput_attach_policy() who will take 4339 * care of setting the zoneid. 4340 */ 4341 if (connp != NULL) 4342 io->ipsec_out_zoneid = connp->conn_zoneid; 4343 4344 io->ipsec_out_ns = ns; /* No netstack_hold */ 4345 4346 if (*mp != NULL) { 4347 ipha = (ipha_t *)(*mp)->b_rptr; 4348 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 4349 io->ipsec_out_v4 = B_TRUE; 4350 ip6h = NULL; 4351 } else { 4352 io->ipsec_out_v4 = B_FALSE; 4353 ip6h = (ip6_t *)ipha; 4354 ipha = NULL; 4355 } 4356 } else { 4357 ASSERT(connp != NULL && connp->conn_policy_cached); 4358 ip6h = NULL; 4359 ipha = NULL; 4360 io->ipsec_out_v4 = !connp->conn_pkt_isv6; 4361 } 4362 4363 p = NULL; 4364 4365 /* 4366 * Take latched policies over global policy. Check here again for 4367 * this, in case we had conn_latch set while the packet was flying 4368 * around in IP. 4369 */ 4370 if (connp != NULL && connp->conn_latch != NULL) { 4371 ASSERT(ns == connp->conn_netstack); 4372 p = connp->conn_latch->ipl_out_policy; 4373 io->ipsec_out_latch = connp->conn_latch; 4374 IPLATCH_REFHOLD(connp->conn_latch); 4375 if (p != NULL) { 4376 IPPOL_REFHOLD(p); 4377 } 4378 io->ipsec_out_src_port = connp->conn_lport; 4379 io->ipsec_out_dst_port = connp->conn_fport; 4380 io->ipsec_out_icmp_type = io->ipsec_out_icmp_code = 0; 4381 if (pol != NULL) 4382 IPPOL_REFRELE(pol, ns); 4383 } else if (pol != NULL) { 4384 ipsec_selector_t sel; 4385 4386 bzero((void*)&sel, sizeof (sel)); 4387 4388 p = pol; 4389 /* 4390 * conn does not have the port information. Get 4391 * it from the packet. 4392 */ 4393 4394 if (!ipsec_init_outbound_ports(&sel, *mp, ipha, ip6h, 0, 4395 ns->netstack_ipsec)) { 4396 /* Callee did ip_drop_packet() on *mp. */ 4397 *mp = NULL; 4398 freeb(ipsec_mp); 4399 return (NULL); 4400 } 4401 io->ipsec_out_src_port = sel.ips_local_port; 4402 io->ipsec_out_dst_port = sel.ips_remote_port; 4403 io->ipsec_out_icmp_type = sel.ips_icmp_type; 4404 io->ipsec_out_icmp_code = sel.ips_icmp_code; 4405 } 4406 4407 io->ipsec_out_proto = proto; 4408 io->ipsec_out_use_global_policy = B_TRUE; 4409 io->ipsec_out_secure = (p != NULL); 4410 io->ipsec_out_policy = p; 4411 4412 if (p == NULL) { 4413 if (connp->conn_policy != NULL) { 4414 io->ipsec_out_secure = B_TRUE; 4415 ASSERT(io->ipsec_out_latch == NULL); 4416 ASSERT(io->ipsec_out_use_global_policy == B_TRUE); 4417 io->ipsec_out_need_policy = B_TRUE; 4418 ASSERT(io->ipsec_out_polhead == NULL); 4419 IPPH_REFHOLD(connp->conn_policy); 4420 io->ipsec_out_polhead = connp->conn_policy; 4421 } 4422 } else { 4423 /* Handle explicit drop action. */ 4424 if (p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_DISCARD || 4425 p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_REJECT) { 4426 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 4427 DROPPER(ipss, ipds_spd_explicit), 4428 &ipss->ipsec_spd_dropper); 4429 *mp = NULL; 4430 ipsec_mp = NULL; 4431 } 4432 } 4433 4434 return (ipsec_mp); 4435 } 4436 4437 /* 4438 * Allocate an IPSEC_IN mblk. This will be prepended to an inbound datagram 4439 * and keep track of what-if-any IPsec processing will be applied to the 4440 * datagram. 4441 */ 4442 mblk_t * 4443 ipsec_in_alloc(boolean_t isv4, netstack_t *ns) 4444 { 4445 mblk_t *ipsec_in; 4446 ipsec_in_t *ii = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP); 4447 4448 if (ii == NULL) 4449 return (NULL); 4450 4451 bzero(ii, sizeof (ipsec_info_t)); 4452 ii->ipsec_in_type = IPSEC_IN; 4453 ii->ipsec_in_len = sizeof (ipsec_in_t); 4454 4455 ii->ipsec_in_v4 = isv4; 4456 ii->ipsec_in_secure = B_TRUE; 4457 ii->ipsec_in_ns = ns; /* No netstack_hold */ 4458 ii->ipsec_in_stackid = ns->netstack_stackid; 4459 4460 ii->ipsec_in_frtn.free_func = ipsec_in_free; 4461 ii->ipsec_in_frtn.free_arg = (char *)ii; 4462 4463 ipsec_in = desballoc((uint8_t *)ii, sizeof (ipsec_info_t), BPRI_HI, 4464 &ii->ipsec_in_frtn); 4465 if (ipsec_in == NULL) { 4466 ip1dbg(("ipsec_in_alloc: IPSEC_IN allocation failure.\n")); 4467 ipsec_in_free(ii); 4468 return (NULL); 4469 } 4470 4471 ipsec_in->b_datap->db_type = M_CTL; 4472 ipsec_in->b_wptr += sizeof (ipsec_info_t); 4473 4474 return (ipsec_in); 4475 } 4476 4477 /* 4478 * This is called from ip_wput_local when a packet which needs 4479 * security is looped back, to convert the IPSEC_OUT to a IPSEC_IN 4480 * before fanout, where the policy check happens. In most of the 4481 * cases, IPSEC processing has *never* been done. There is one case 4482 * (ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed) where 4483 * the packet is destined for localhost, IPSEC processing has already 4484 * been done. 4485 * 4486 * Future: This could happen after SA selection has occurred for 4487 * outbound.. which will tell us who the src and dst identities are.. 4488 * Then it's just a matter of splicing the ah/esp SA pointers from the 4489 * ipsec_out_t to the ipsec_in_t. 4490 */ 4491 void 4492 ipsec_out_to_in(mblk_t *ipsec_mp) 4493 { 4494 ipsec_in_t *ii; 4495 ipsec_out_t *io; 4496 ipsec_policy_t *pol; 4497 ipsec_action_t *act; 4498 boolean_t v4, icmp_loopback; 4499 zoneid_t zoneid; 4500 netstack_t *ns; 4501 4502 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 4503 4504 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4505 4506 v4 = io->ipsec_out_v4; 4507 zoneid = io->ipsec_out_zoneid; 4508 icmp_loopback = io->ipsec_out_icmp_loopback; 4509 ns = io->ipsec_out_ns; 4510 4511 act = io->ipsec_out_act; 4512 if (act == NULL) { 4513 pol = io->ipsec_out_policy; 4514 if (pol != NULL) { 4515 act = pol->ipsp_act; 4516 IPACT_REFHOLD(act); 4517 } 4518 } 4519 io->ipsec_out_act = NULL; 4520 4521 ipsec_out_release_refs(io); /* No netstack_rele/hold needed */ 4522 4523 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 4524 bzero(ii, sizeof (ipsec_in_t)); 4525 ii->ipsec_in_type = IPSEC_IN; 4526 ii->ipsec_in_len = sizeof (ipsec_in_t); 4527 ii->ipsec_in_loopback = B_TRUE; 4528 ii->ipsec_in_ns = ns; /* No netstack_hold */ 4529 4530 ii->ipsec_in_frtn.free_func = ipsec_in_free; 4531 ii->ipsec_in_frtn.free_arg = (char *)ii; 4532 ii->ipsec_in_action = act; 4533 ii->ipsec_in_zoneid = zoneid; 4534 4535 /* 4536 * In most of the cases, we can't look at the ipsec_out_XXX_sa 4537 * because this never went through IPSEC processing. So, look at 4538 * the requests and infer whether it would have gone through 4539 * IPSEC processing or not. Initialize the "done" fields with 4540 * the requests. The possible values for "done" fields are : 4541 * 4542 * 1) zero, indicates that a particular preference was never 4543 * requested. 4544 * 2) non-zero, indicates that it could be IPSEC_PREF_REQUIRED/ 4545 * IPSEC_PREF_NEVER. If IPSEC_REQ_DONE is set, it means that 4546 * IPSEC processing has been completed. 4547 */ 4548 ii->ipsec_in_secure = B_TRUE; 4549 ii->ipsec_in_v4 = v4; 4550 ii->ipsec_in_icmp_loopback = icmp_loopback; 4551 } 4552 4553 /* 4554 * Consults global policy to see whether this datagram should 4555 * go out secure. If so it attaches a ipsec_mp in front and 4556 * returns. 4557 */ 4558 mblk_t * 4559 ip_wput_attach_policy(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 4560 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 4561 { 4562 mblk_t *mp; 4563 ipsec_out_t *io = NULL; 4564 ipsec_selector_t sel; 4565 uint_t ill_index; 4566 boolean_t conn_dontroutex; 4567 boolean_t conn_multicast_loopx; 4568 boolean_t policy_present; 4569 ip_stack_t *ipst = ire->ire_ipst; 4570 netstack_t *ns = ipst->ips_netstack; 4571 ipsec_stack_t *ipss = ns->netstack_ipsec; 4572 4573 ASSERT((ipha != NULL && ip6h == NULL) || 4574 (ip6h != NULL && ipha == NULL)); 4575 4576 bzero((void*)&sel, sizeof (sel)); 4577 4578 if (ipha != NULL) 4579 policy_present = ipss->ipsec_outbound_v4_policy_present; 4580 else 4581 policy_present = ipss->ipsec_outbound_v6_policy_present; 4582 /* 4583 * Fast Path to see if there is any policy. 4584 */ 4585 if (!policy_present) { 4586 if (ipsec_mp->b_datap->db_type == M_CTL) { 4587 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4588 if (!io->ipsec_out_secure) { 4589 /* 4590 * If there is no global policy and ip_wput 4591 * or ip_wput_multicast has attached this mp 4592 * for multicast case, free the ipsec_mp and 4593 * return the original mp. 4594 */ 4595 mp = ipsec_mp->b_cont; 4596 freeb(ipsec_mp); 4597 ipsec_mp = mp; 4598 io = NULL; 4599 } 4600 ASSERT(io == NULL || !io->ipsec_out_tunnel); 4601 } 4602 if (((io == NULL) || (io->ipsec_out_polhead == NULL)) && 4603 ((connp == NULL) || (connp->conn_policy == NULL))) 4604 return (ipsec_mp); 4605 } 4606 4607 ill_index = 0; 4608 conn_multicast_loopx = conn_dontroutex = B_FALSE; 4609 mp = ipsec_mp; 4610 if (ipsec_mp->b_datap->db_type == M_CTL) { 4611 mp = ipsec_mp->b_cont; 4612 /* 4613 * This is a connection where we have some per-socket 4614 * policy or ip_wput has attached an ipsec_mp for 4615 * the multicast datagram. 4616 */ 4617 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4618 if (!io->ipsec_out_secure) { 4619 /* 4620 * This ipsec_mp was allocated in ip_wput or 4621 * ip_wput_multicast so that we will know the 4622 * value of ill_index, conn_dontroute, 4623 * conn_multicast_loop in the multicast case if 4624 * we inherit global policy here. 4625 */ 4626 ill_index = io->ipsec_out_ill_index; 4627 conn_dontroutex = io->ipsec_out_dontroute; 4628 conn_multicast_loopx = io->ipsec_out_multicast_loop; 4629 freeb(ipsec_mp); 4630 ipsec_mp = mp; 4631 io = NULL; 4632 } 4633 ASSERT(io == NULL || !io->ipsec_out_tunnel); 4634 } 4635 4636 if (ipha != NULL) { 4637 sel.ips_local_addr_v4 = (ipha->ipha_src != 0 ? 4638 ipha->ipha_src : ire->ire_src_addr); 4639 sel.ips_remote_addr_v4 = ip_get_dst(ipha); 4640 sel.ips_protocol = (uint8_t)ipha->ipha_protocol; 4641 sel.ips_isv4 = B_TRUE; 4642 } else { 4643 ushort_t hdr_len; 4644 uint8_t *nexthdrp; 4645 boolean_t is_fragment; 4646 4647 sel.ips_isv4 = B_FALSE; 4648 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) { 4649 if (!unspec_src) 4650 sel.ips_local_addr_v6 = ire->ire_src_addr_v6; 4651 } else { 4652 sel.ips_local_addr_v6 = ip6h->ip6_src; 4653 } 4654 4655 sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, mp, &is_fragment); 4656 if (is_fragment) { 4657 /* 4658 * It's a packet fragment for a packet that 4659 * we have already processed (since IPsec processing 4660 * is done before fragmentation), so we don't 4661 * have to do policy checks again. Fragments can 4662 * come back to us for processing if they have 4663 * been queued up due to flow control. 4664 */ 4665 if (ipsec_mp->b_datap->db_type == M_CTL) { 4666 mp = ipsec_mp->b_cont; 4667 freeb(ipsec_mp); 4668 ipsec_mp = mp; 4669 } 4670 return (ipsec_mp); 4671 } 4672 4673 /* IPv6 common-case. */ 4674 sel.ips_protocol = ip6h->ip6_nxt; 4675 switch (ip6h->ip6_nxt) { 4676 case IPPROTO_TCP: 4677 case IPPROTO_UDP: 4678 case IPPROTO_SCTP: 4679 case IPPROTO_ICMPV6: 4680 break; 4681 default: 4682 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, 4683 &hdr_len, &nexthdrp)) { 4684 BUMP_MIB(&ipst->ips_ip6_mib, 4685 ipIfStatsOutDiscards); 4686 freemsg(ipsec_mp); /* Not IPsec-related drop. */ 4687 return (NULL); 4688 } 4689 sel.ips_protocol = *nexthdrp; 4690 break; 4691 } 4692 } 4693 4694 if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) { 4695 if (ipha != NULL) { 4696 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 4697 } else { 4698 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 4699 } 4700 4701 /* Callee dropped the packet. */ 4702 return (NULL); 4703 } 4704 4705 if (io != NULL) { 4706 /* 4707 * We seem to have some local policy (we already have 4708 * an ipsec_out). Look at global policy and see 4709 * whether we have to inherit or not. 4710 */ 4711 io->ipsec_out_need_policy = B_FALSE; 4712 ipsec_mp = ipsec_apply_global_policy(ipsec_mp, connp, 4713 &sel, ns); 4714 ASSERT((io->ipsec_out_policy != NULL) || 4715 (io->ipsec_out_act != NULL)); 4716 ASSERT(io->ipsec_out_need_policy == B_FALSE); 4717 return (ipsec_mp); 4718 } 4719 /* 4720 * We pass in a pointer to a pointer because mp can become 4721 * NULL due to allocation failures or explicit drops. Callers 4722 * of this function should assume a NULL mp means the packet 4723 * was dropped. 4724 */ 4725 ipsec_mp = ipsec_attach_global_policy(&mp, connp, &sel, ns); 4726 if (ipsec_mp == NULL) 4727 return (mp); 4728 4729 /* 4730 * Copy the right port information. 4731 */ 4732 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 4733 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4734 4735 ASSERT(io->ipsec_out_need_policy == B_FALSE); 4736 ASSERT((io->ipsec_out_policy != NULL) || 4737 (io->ipsec_out_act != NULL)); 4738 io->ipsec_out_src_port = sel.ips_local_port; 4739 io->ipsec_out_dst_port = sel.ips_remote_port; 4740 io->ipsec_out_icmp_type = sel.ips_icmp_type; 4741 io->ipsec_out_icmp_code = sel.ips_icmp_code; 4742 /* 4743 * Set ill_index, conn_dontroute and conn_multicast_loop 4744 * for multicast datagrams. 4745 */ 4746 io->ipsec_out_ill_index = ill_index; 4747 io->ipsec_out_dontroute = conn_dontroutex; 4748 io->ipsec_out_multicast_loop = conn_multicast_loopx; 4749 4750 if (zoneid == ALL_ZONES) 4751 zoneid = GLOBAL_ZONEID; 4752 io->ipsec_out_zoneid = zoneid; 4753 return (ipsec_mp); 4754 } 4755 4756 /* 4757 * When appropriate, this function caches inbound and outbound policy 4758 * for this connection. 4759 * 4760 * XXX need to work out more details about per-interface policy and 4761 * caching here! 4762 * 4763 * XXX may want to split inbound and outbound caching for ill.. 4764 */ 4765 int 4766 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4) 4767 { 4768 boolean_t global_policy_present; 4769 netstack_t *ns = connp->conn_netstack; 4770 ipsec_stack_t *ipss = ns->netstack_ipsec; 4771 4772 /* 4773 * There is no policy latching for ICMP sockets because we can't 4774 * decide on which policy to use until we see the packet and get 4775 * type/code selectors. 4776 */ 4777 if (connp->conn_ulp == IPPROTO_ICMP || 4778 connp->conn_ulp == IPPROTO_ICMPV6) { 4779 connp->conn_in_enforce_policy = 4780 connp->conn_out_enforce_policy = B_TRUE; 4781 if (connp->conn_latch != NULL) { 4782 IPLATCH_REFRELE(connp->conn_latch, ns); 4783 connp->conn_latch = NULL; 4784 } 4785 connp->conn_flags |= IPCL_CHECK_POLICY; 4786 return (0); 4787 } 4788 4789 global_policy_present = isv4 ? 4790 (ipss->ipsec_outbound_v4_policy_present || 4791 ipss->ipsec_inbound_v4_policy_present) : 4792 (ipss->ipsec_outbound_v6_policy_present || 4793 ipss->ipsec_inbound_v6_policy_present); 4794 4795 if ((connp->conn_policy != NULL) || global_policy_present) { 4796 ipsec_selector_t sel; 4797 ipsec_policy_t *p; 4798 4799 if (connp->conn_latch == NULL && 4800 (connp->conn_latch = iplatch_create()) == NULL) { 4801 return (ENOMEM); 4802 } 4803 4804 sel.ips_protocol = connp->conn_ulp; 4805 sel.ips_local_port = connp->conn_lport; 4806 sel.ips_remote_port = connp->conn_fport; 4807 sel.ips_is_icmp_inv_acq = 0; 4808 sel.ips_isv4 = isv4; 4809 if (isv4) { 4810 sel.ips_local_addr_v4 = connp->conn_src; 4811 sel.ips_remote_addr_v4 = connp->conn_rem; 4812 } else { 4813 sel.ips_local_addr_v6 = connp->conn_srcv6; 4814 sel.ips_remote_addr_v6 = connp->conn_remv6; 4815 } 4816 4817 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel, 4818 ns); 4819 if (connp->conn_latch->ipl_in_policy != NULL) 4820 IPPOL_REFRELE(connp->conn_latch->ipl_in_policy, ns); 4821 connp->conn_latch->ipl_in_policy = p; 4822 connp->conn_in_enforce_policy = (p != NULL); 4823 4824 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, &sel, 4825 ns); 4826 if (connp->conn_latch->ipl_out_policy != NULL) 4827 IPPOL_REFRELE(connp->conn_latch->ipl_out_policy, ns); 4828 connp->conn_latch->ipl_out_policy = p; 4829 connp->conn_out_enforce_policy = (p != NULL); 4830 4831 /* Clear the latched actions too, in case we're recaching. */ 4832 if (connp->conn_latch->ipl_out_action != NULL) 4833 IPACT_REFRELE(connp->conn_latch->ipl_out_action); 4834 if (connp->conn_latch->ipl_in_action != NULL) 4835 IPACT_REFRELE(connp->conn_latch->ipl_in_action); 4836 } 4837 4838 /* 4839 * We may or may not have policy for this endpoint. We still set 4840 * conn_policy_cached so that inbound datagrams don't have to look 4841 * at global policy as policy is considered latched for these 4842 * endpoints. We should not set conn_policy_cached until the conn 4843 * reflects the actual policy. If we *set* this before inheriting 4844 * the policy there is a window where the check 4845 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy 4846 * on the conn (because we have not yet copied the policy on to 4847 * conn and hence not set conn_in_enforce_policy) nor with the 4848 * global policy (because conn_policy_cached is already set). 4849 */ 4850 connp->conn_policy_cached = B_TRUE; 4851 if (connp->conn_in_enforce_policy) 4852 connp->conn_flags |= IPCL_CHECK_POLICY; 4853 return (0); 4854 } 4855 4856 void 4857 iplatch_free(ipsec_latch_t *ipl, netstack_t *ns) 4858 { 4859 if (ipl->ipl_out_policy != NULL) 4860 IPPOL_REFRELE(ipl->ipl_out_policy, ns); 4861 if (ipl->ipl_in_policy != NULL) 4862 IPPOL_REFRELE(ipl->ipl_in_policy, ns); 4863 if (ipl->ipl_in_action != NULL) 4864 IPACT_REFRELE(ipl->ipl_in_action); 4865 if (ipl->ipl_out_action != NULL) 4866 IPACT_REFRELE(ipl->ipl_out_action); 4867 if (ipl->ipl_local_cid != NULL) 4868 IPSID_REFRELE(ipl->ipl_local_cid); 4869 if (ipl->ipl_remote_cid != NULL) 4870 IPSID_REFRELE(ipl->ipl_remote_cid); 4871 if (ipl->ipl_local_id != NULL) 4872 crfree(ipl->ipl_local_id); 4873 mutex_destroy(&ipl->ipl_lock); 4874 kmem_free(ipl, sizeof (*ipl)); 4875 } 4876 4877 ipsec_latch_t * 4878 iplatch_create() 4879 { 4880 ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP); 4881 if (ipl == NULL) 4882 return (ipl); 4883 bzero(ipl, sizeof (*ipl)); 4884 mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL); 4885 ipl->ipl_refcnt = 1; 4886 return (ipl); 4887 } 4888 4889 /* 4890 * Hash function for ID hash table. 4891 */ 4892 static uint32_t 4893 ipsid_hash(int idtype, char *idstring) 4894 { 4895 uint32_t hval = idtype; 4896 unsigned char c; 4897 4898 while ((c = *idstring++) != 0) { 4899 hval = (hval << 4) | (hval >> 28); 4900 hval ^= c; 4901 } 4902 hval = hval ^ (hval >> 16); 4903 return (hval & (IPSID_HASHSIZE-1)); 4904 } 4905 4906 /* 4907 * Look up identity string in hash table. Return identity object 4908 * corresponding to the name -- either preexisting, or newly allocated. 4909 * 4910 * Return NULL if we need to allocate a new one and can't get memory. 4911 */ 4912 ipsid_t * 4913 ipsid_lookup(int idtype, char *idstring, netstack_t *ns) 4914 { 4915 ipsid_t *retval; 4916 char *nstr; 4917 int idlen = strlen(idstring) + 1; 4918 ipsec_stack_t *ipss = ns->netstack_ipsec; 4919 ipsif_t *bucket; 4920 4921 bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)]; 4922 4923 mutex_enter(&bucket->ipsif_lock); 4924 4925 for (retval = bucket->ipsif_head; retval != NULL; 4926 retval = retval->ipsid_next) { 4927 if (idtype != retval->ipsid_type) 4928 continue; 4929 if (bcmp(idstring, retval->ipsid_cid, idlen) != 0) 4930 continue; 4931 4932 IPSID_REFHOLD(retval); 4933 mutex_exit(&bucket->ipsif_lock); 4934 return (retval); 4935 } 4936 4937 retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP); 4938 if (!retval) { 4939 mutex_exit(&bucket->ipsif_lock); 4940 return (NULL); 4941 } 4942 4943 nstr = kmem_alloc(idlen, KM_NOSLEEP); 4944 if (!nstr) { 4945 mutex_exit(&bucket->ipsif_lock); 4946 kmem_free(retval, sizeof (*retval)); 4947 return (NULL); 4948 } 4949 4950 retval->ipsid_refcnt = 1; 4951 retval->ipsid_next = bucket->ipsif_head; 4952 if (retval->ipsid_next != NULL) 4953 retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next; 4954 retval->ipsid_ptpn = &bucket->ipsif_head; 4955 retval->ipsid_type = idtype; 4956 retval->ipsid_cid = nstr; 4957 bucket->ipsif_head = retval; 4958 bcopy(idstring, nstr, idlen); 4959 mutex_exit(&bucket->ipsif_lock); 4960 4961 return (retval); 4962 } 4963 4964 /* 4965 * Garbage collect the identity hash table. 4966 */ 4967 void 4968 ipsid_gc(netstack_t *ns) 4969 { 4970 int i, len; 4971 ipsid_t *id, *nid; 4972 ipsif_t *bucket; 4973 ipsec_stack_t *ipss = ns->netstack_ipsec; 4974 4975 for (i = 0; i < IPSID_HASHSIZE; i++) { 4976 bucket = &ipss->ipsec_ipsid_buckets[i]; 4977 mutex_enter(&bucket->ipsif_lock); 4978 for (id = bucket->ipsif_head; id != NULL; id = nid) { 4979 nid = id->ipsid_next; 4980 if (id->ipsid_refcnt == 0) { 4981 *id->ipsid_ptpn = nid; 4982 if (nid != NULL) 4983 nid->ipsid_ptpn = id->ipsid_ptpn; 4984 len = strlen(id->ipsid_cid) + 1; 4985 kmem_free(id->ipsid_cid, len); 4986 kmem_free(id, sizeof (*id)); 4987 } 4988 } 4989 mutex_exit(&bucket->ipsif_lock); 4990 } 4991 } 4992 4993 /* 4994 * Return true if two identities are the same. 4995 */ 4996 boolean_t 4997 ipsid_equal(ipsid_t *id1, ipsid_t *id2) 4998 { 4999 if (id1 == id2) 5000 return (B_TRUE); 5001 #ifdef DEBUG 5002 if ((id1 == NULL) || (id2 == NULL)) 5003 return (B_FALSE); 5004 /* 5005 * test that we're interning id's correctly.. 5006 */ 5007 ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) || 5008 (id1->ipsid_type != id2->ipsid_type)); 5009 #endif 5010 return (B_FALSE); 5011 } 5012 5013 /* 5014 * Initialize identity table; called during module initialization. 5015 */ 5016 static void 5017 ipsid_init(netstack_t *ns) 5018 { 5019 ipsif_t *bucket; 5020 int i; 5021 ipsec_stack_t *ipss = ns->netstack_ipsec; 5022 5023 for (i = 0; i < IPSID_HASHSIZE; i++) { 5024 bucket = &ipss->ipsec_ipsid_buckets[i]; 5025 mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL); 5026 } 5027 } 5028 5029 /* 5030 * Free identity table (preparatory to module unload) 5031 */ 5032 static void 5033 ipsid_fini(netstack_t *ns) 5034 { 5035 ipsif_t *bucket; 5036 int i; 5037 ipsec_stack_t *ipss = ns->netstack_ipsec; 5038 5039 for (i = 0; i < IPSID_HASHSIZE; i++) { 5040 bucket = &ipss->ipsec_ipsid_buckets[i]; 5041 ASSERT(bucket->ipsif_head == NULL); 5042 mutex_destroy(&bucket->ipsif_lock); 5043 } 5044 } 5045 5046 /* 5047 * Update the minimum and maximum supported key sizes for the 5048 * specified algorithm. Must be called while holding the algorithms lock. 5049 */ 5050 void 5051 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type, 5052 netstack_t *ns) 5053 { 5054 size_t crypto_min = (size_t)-1, crypto_max = 0; 5055 size_t cur_crypto_min, cur_crypto_max; 5056 boolean_t is_valid; 5057 crypto_mechanism_info_t *mech_infos; 5058 uint_t nmech_infos; 5059 int crypto_rc, i; 5060 crypto_mech_usage_t mask; 5061 ipsec_stack_t *ipss = ns->netstack_ipsec; 5062 5063 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 5064 5065 /* 5066 * Compute the min, max, and default key sizes (in number of 5067 * increments to the default key size in bits) as defined 5068 * by the algorithm mappings. This range of key sizes is used 5069 * for policy related operations. The effective key sizes 5070 * supported by the framework could be more limited than 5071 * those defined for an algorithm. 5072 */ 5073 alg->alg_default_bits = alg->alg_key_sizes[0]; 5074 if (alg->alg_increment != 0) { 5075 /* key sizes are defined by range & increment */ 5076 alg->alg_minbits = alg->alg_key_sizes[1]; 5077 alg->alg_maxbits = alg->alg_key_sizes[2]; 5078 5079 alg->alg_default = SADB_ALG_DEFAULT_INCR(alg->alg_minbits, 5080 alg->alg_increment, alg->alg_default_bits); 5081 } else if (alg->alg_nkey_sizes == 0) { 5082 /* no specified key size for algorithm */ 5083 alg->alg_minbits = alg->alg_maxbits = 0; 5084 } else { 5085 /* key sizes are defined by enumeration */ 5086 alg->alg_minbits = (uint16_t)-1; 5087 alg->alg_maxbits = 0; 5088 5089 for (i = 0; i < alg->alg_nkey_sizes; i++) { 5090 if (alg->alg_key_sizes[i] < alg->alg_minbits) 5091 alg->alg_minbits = alg->alg_key_sizes[i]; 5092 if (alg->alg_key_sizes[i] > alg->alg_maxbits) 5093 alg->alg_maxbits = alg->alg_key_sizes[i]; 5094 } 5095 alg->alg_default = 0; 5096 } 5097 5098 if (!(alg->alg_flags & ALG_FLAG_VALID)) 5099 return; 5100 5101 /* 5102 * Mechanisms do not apply to the NULL encryption 5103 * algorithm, so simply return for this case. 5104 */ 5105 if (alg->alg_id == SADB_EALG_NULL) 5106 return; 5107 5108 /* 5109 * Find the min and max key sizes supported by the cryptographic 5110 * framework providers. 5111 */ 5112 5113 /* get the key sizes supported by the framework */ 5114 crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type, 5115 &mech_infos, &nmech_infos, KM_SLEEP); 5116 if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) { 5117 alg->alg_flags &= ~ALG_FLAG_VALID; 5118 return; 5119 } 5120 5121 /* min and max key sizes supported by framework */ 5122 for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) { 5123 int unit_bits; 5124 5125 /* 5126 * Ignore entries that do not support the operations 5127 * needed for the algorithm type. 5128 */ 5129 if (alg_type == IPSEC_ALG_AUTH) { 5130 mask = CRYPTO_MECH_USAGE_MAC; 5131 } else { 5132 mask = CRYPTO_MECH_USAGE_ENCRYPT | 5133 CRYPTO_MECH_USAGE_DECRYPT; 5134 } 5135 if ((mech_infos[i].mi_usage & mask) != mask) 5136 continue; 5137 5138 unit_bits = (mech_infos[i].mi_keysize_unit == 5139 CRYPTO_KEYSIZE_UNIT_IN_BYTES) ? 8 : 1; 5140 /* adjust min/max supported by framework */ 5141 cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits; 5142 cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits; 5143 5144 if (cur_crypto_min < crypto_min) 5145 crypto_min = cur_crypto_min; 5146 5147 /* 5148 * CRYPTO_EFFECTIVELY_INFINITE is a special value of 5149 * the crypto framework which means "no upper limit". 5150 */ 5151 if (mech_infos[i].mi_max_key_size == 5152 CRYPTO_EFFECTIVELY_INFINITE) { 5153 crypto_max = (size_t)-1; 5154 } else if (cur_crypto_max > crypto_max) { 5155 crypto_max = cur_crypto_max; 5156 } 5157 5158 is_valid = B_TRUE; 5159 } 5160 5161 kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) * 5162 nmech_infos); 5163 5164 if (!is_valid) { 5165 /* no key sizes supported by framework */ 5166 alg->alg_flags &= ~ALG_FLAG_VALID; 5167 return; 5168 } 5169 5170 /* 5171 * Determine min and max key sizes from alg_key_sizes[]. 5172 * defined for the algorithm entry. Adjust key sizes based on 5173 * those supported by the framework. 5174 */ 5175 alg->alg_ef_default_bits = alg->alg_key_sizes[0]; 5176 if (alg->alg_increment != 0) { 5177 /* supported key sizes are defined by range & increment */ 5178 crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment); 5179 crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment); 5180 5181 alg->alg_ef_minbits = MAX(alg->alg_minbits, 5182 (uint16_t)crypto_min); 5183 alg->alg_ef_maxbits = MIN(alg->alg_maxbits, 5184 (uint16_t)crypto_max); 5185 5186 /* 5187 * If the sizes supported by the framework are outside 5188 * the range of sizes defined by the algorithm mappings, 5189 * the algorithm cannot be used. Check for this 5190 * condition here. 5191 */ 5192 if (alg->alg_ef_minbits > alg->alg_ef_maxbits) { 5193 alg->alg_flags &= ~ALG_FLAG_VALID; 5194 return; 5195 } 5196 5197 if (alg->alg_ef_default_bits < alg->alg_ef_minbits) 5198 alg->alg_ef_default_bits = alg->alg_ef_minbits; 5199 if (alg->alg_ef_default_bits > alg->alg_ef_maxbits) 5200 alg->alg_ef_default_bits = alg->alg_ef_maxbits; 5201 5202 alg->alg_ef_default = SADB_ALG_DEFAULT_INCR(alg->alg_ef_minbits, 5203 alg->alg_increment, alg->alg_ef_default_bits); 5204 } else if (alg->alg_nkey_sizes == 0) { 5205 /* no specified key size for algorithm */ 5206 alg->alg_ef_minbits = alg->alg_ef_maxbits = 0; 5207 } else { 5208 /* supported key sizes are defined by enumeration */ 5209 alg->alg_ef_minbits = (uint16_t)-1; 5210 alg->alg_ef_maxbits = 0; 5211 5212 for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) { 5213 /* 5214 * Ignore the current key size if it is not in the 5215 * range of sizes supported by the framework. 5216 */ 5217 if (alg->alg_key_sizes[i] < crypto_min || 5218 alg->alg_key_sizes[i] > crypto_max) 5219 continue; 5220 if (alg->alg_key_sizes[i] < alg->alg_ef_minbits) 5221 alg->alg_ef_minbits = alg->alg_key_sizes[i]; 5222 if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits) 5223 alg->alg_ef_maxbits = alg->alg_key_sizes[i]; 5224 is_valid = B_TRUE; 5225 } 5226 5227 if (!is_valid) { 5228 alg->alg_flags &= ~ALG_FLAG_VALID; 5229 return; 5230 } 5231 alg->alg_ef_default = 0; 5232 } 5233 } 5234 5235 /* 5236 * Free the memory used by the specified algorithm. 5237 */ 5238 void 5239 ipsec_alg_free(ipsec_alginfo_t *alg) 5240 { 5241 if (alg == NULL) 5242 return; 5243 5244 if (alg->alg_key_sizes != NULL) { 5245 kmem_free(alg->alg_key_sizes, 5246 (alg->alg_nkey_sizes + 1) * sizeof (uint16_t)); 5247 alg->alg_key_sizes = NULL; 5248 } 5249 if (alg->alg_block_sizes != NULL) { 5250 kmem_free(alg->alg_block_sizes, 5251 (alg->alg_nblock_sizes + 1) * sizeof (uint16_t)); 5252 alg->alg_block_sizes = NULL; 5253 } 5254 kmem_free(alg, sizeof (*alg)); 5255 } 5256 5257 /* 5258 * Check the validity of the specified key size for an algorithm. 5259 * Returns B_TRUE if key size is valid, B_FALSE otherwise. 5260 */ 5261 boolean_t 5262 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg) 5263 { 5264 if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits) 5265 return (B_FALSE); 5266 5267 if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) { 5268 /* 5269 * If the key sizes are defined by enumeration, the new 5270 * key size must be equal to one of the supported values. 5271 */ 5272 int i; 5273 5274 for (i = 0; i < alg->alg_nkey_sizes; i++) 5275 if (key_size == alg->alg_key_sizes[i]) 5276 break; 5277 if (i == alg->alg_nkey_sizes) 5278 return (B_FALSE); 5279 } 5280 5281 return (B_TRUE); 5282 } 5283 5284 /* 5285 * Callback function invoked by the crypto framework when a provider 5286 * registers or unregisters. This callback updates the algorithms 5287 * tables when a crypto algorithm is no longer available or becomes 5288 * available, and triggers the freeing/creation of context templates 5289 * associated with existing SAs, if needed. 5290 * 5291 * Need to walk all stack instances since the callback is global 5292 * for all instances 5293 */ 5294 void 5295 ipsec_prov_update_callback(uint32_t event, void *event_arg) 5296 { 5297 netstack_handle_t nh; 5298 netstack_t *ns; 5299 5300 netstack_next_init(&nh); 5301 while ((ns = netstack_next(&nh)) != NULL) { 5302 ipsec_prov_update_callback_stack(event, event_arg, ns); 5303 netstack_rele(ns); 5304 } 5305 netstack_next_fini(&nh); 5306 } 5307 5308 static void 5309 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg, 5310 netstack_t *ns) 5311 { 5312 crypto_notify_event_change_t *prov_change = 5313 (crypto_notify_event_change_t *)event_arg; 5314 uint_t algidx, algid, algtype, mech_count, mech_idx; 5315 ipsec_alginfo_t *alg; 5316 ipsec_alginfo_t oalg; 5317 crypto_mech_name_t *mechs; 5318 boolean_t alg_changed = B_FALSE; 5319 ipsec_stack_t *ipss = ns->netstack_ipsec; 5320 5321 /* ignore events for which we didn't register */ 5322 if (event != CRYPTO_EVENT_MECHS_CHANGED) { 5323 ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x " 5324 " received from crypto framework\n", event)); 5325 return; 5326 } 5327 5328 mechs = crypto_get_mech_list(&mech_count, KM_SLEEP); 5329 if (mechs == NULL) 5330 return; 5331 5332 /* 5333 * Walk the list of currently defined IPsec algorithm. Update 5334 * the algorithm valid flag and trigger an update of the 5335 * SAs that depend on that algorithm. 5336 */ 5337 mutex_enter(&ipss->ipsec_alg_lock); 5338 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) { 5339 for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype]; 5340 algidx++) { 5341 5342 algid = ipss->ipsec_sortlist[algtype][algidx]; 5343 alg = ipss->ipsec_alglists[algtype][algid]; 5344 ASSERT(alg != NULL); 5345 5346 /* 5347 * Skip the algorithms which do not map to the 5348 * crypto framework provider being added or removed. 5349 */ 5350 if (strncmp(alg->alg_mech_name, 5351 prov_change->ec_mech_name, 5352 CRYPTO_MAX_MECH_NAME) != 0) 5353 continue; 5354 5355 /* 5356 * Determine if the mechanism is valid. If it 5357 * is not, mark the algorithm as being invalid. If 5358 * it is, mark the algorithm as being valid. 5359 */ 5360 for (mech_idx = 0; mech_idx < mech_count; mech_idx++) 5361 if (strncmp(alg->alg_mech_name, 5362 mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0) 5363 break; 5364 if (mech_idx == mech_count && 5365 alg->alg_flags & ALG_FLAG_VALID) { 5366 alg->alg_flags &= ~ALG_FLAG_VALID; 5367 alg_changed = B_TRUE; 5368 } else if (mech_idx < mech_count && 5369 !(alg->alg_flags & ALG_FLAG_VALID)) { 5370 alg->alg_flags |= ALG_FLAG_VALID; 5371 alg_changed = B_TRUE; 5372 } 5373 5374 /* 5375 * Update the supported key sizes, regardless 5376 * of whether a crypto provider was added or 5377 * removed. 5378 */ 5379 oalg = *alg; 5380 ipsec_alg_fix_min_max(alg, algtype, ns); 5381 if (!alg_changed && 5382 alg->alg_ef_minbits != oalg.alg_ef_minbits || 5383 alg->alg_ef_maxbits != oalg.alg_ef_maxbits || 5384 alg->alg_ef_default != oalg.alg_ef_default || 5385 alg->alg_ef_default_bits != 5386 oalg.alg_ef_default_bits) 5387 alg_changed = B_TRUE; 5388 5389 /* 5390 * Update the affected SAs if a software provider is 5391 * being added or removed. 5392 */ 5393 if (prov_change->ec_provider_type == 5394 CRYPTO_SW_PROVIDER) 5395 sadb_alg_update(algtype, alg->alg_id, 5396 prov_change->ec_change == 5397 CRYPTO_MECH_ADDED, ns); 5398 } 5399 } 5400 mutex_exit(&ipss->ipsec_alg_lock); 5401 crypto_free_mech_list(mechs, mech_count); 5402 5403 if (alg_changed) { 5404 /* 5405 * An algorithm has changed, i.e. it became valid or 5406 * invalid, or its support key sizes have changed. 5407 * Notify ipsecah and ipsecesp of this change so 5408 * that they can send a SADB_REGISTER to their consumers. 5409 */ 5410 ipsecah_algs_changed(ns); 5411 ipsecesp_algs_changed(ns); 5412 } 5413 } 5414 5415 /* 5416 * Registers with the crypto framework to be notified of crypto 5417 * providers changes. Used to update the algorithm tables and 5418 * to free or create context templates if needed. Invoked after IPsec 5419 * is loaded successfully. 5420 * 5421 * This is called separately for each IP instance, so we ensure we only 5422 * register once. 5423 */ 5424 void 5425 ipsec_register_prov_update(void) 5426 { 5427 if (prov_update_handle != NULL) 5428 return; 5429 5430 prov_update_handle = crypto_notify_events( 5431 ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED); 5432 } 5433 5434 /* 5435 * Unregisters from the framework to be notified of crypto providers 5436 * changes. Called from ipsec_policy_g_destroy(). 5437 */ 5438 static void 5439 ipsec_unregister_prov_update(void) 5440 { 5441 if (prov_update_handle != NULL) 5442 crypto_unnotify_events(prov_update_handle); 5443 } 5444 5445 /* 5446 * Tunnel-mode support routines. 5447 */ 5448 5449 /* 5450 * Returns an mblk chain suitable for putnext() if policies match and IPsec 5451 * SAs are available. If there's no per-tunnel policy, or a match comes back 5452 * with no match, then still return the packet and have global policy take 5453 * a crack at it in IP. 5454 * 5455 * Remember -> we can be forwarding packets. Keep that in mind w.r.t. 5456 * inner-packet contents. 5457 */ 5458 mblk_t * 5459 ipsec_tun_outbound(mblk_t *mp, tun_t *atp, ipha_t *inner_ipv4, 5460 ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len, 5461 netstack_t *ns) 5462 { 5463 ipsec_tun_pol_t *itp = atp->tun_itp; 5464 ipsec_policy_head_t *polhead; 5465 ipsec_selector_t sel; 5466 mblk_t *ipsec_mp, *ipsec_mp_head, *nmp; 5467 mblk_t *spare_mp = NULL; 5468 ipsec_out_t *io; 5469 boolean_t is_fragment; 5470 ipsec_policy_t *pol; 5471 ipsec_stack_t *ipss = ns->netstack_ipsec; 5472 5473 ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL || 5474 outer_ipv4 != NULL && outer_ipv6 == NULL); 5475 /* We take care of inners in a bit. */ 5476 5477 /* No policy on this tunnel - let global policy have at it. */ 5478 if (itp == NULL || !(itp->itp_flags & ITPF_P_ACTIVE)) 5479 return (mp); 5480 polhead = itp->itp_policy; 5481 5482 bzero(&sel, sizeof (sel)); 5483 if (inner_ipv4 != NULL) { 5484 ASSERT(inner_ipv6 == NULL); 5485 sel.ips_isv4 = B_TRUE; 5486 sel.ips_local_addr_v4 = inner_ipv4->ipha_src; 5487 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst; 5488 sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol; 5489 is_fragment = 5490 IS_V4_FRAGMENT(inner_ipv4->ipha_fragment_offset_and_flags); 5491 } else { 5492 ASSERT(inner_ipv6 != NULL); 5493 sel.ips_isv4 = B_FALSE; 5494 sel.ips_local_addr_v6 = inner_ipv6->ip6_src; 5495 /* Use ip_get_dst_v6() just for the fragment bit. */ 5496 sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6, mp, 5497 &is_fragment); 5498 /* 5499 * Reset, because we don't care about routing-header dests 5500 * in the forwarding/tunnel path. 5501 */ 5502 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst; 5503 } 5504 5505 if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) { 5506 if (is_fragment) { 5507 ipha_t *oiph; 5508 ipha_t *iph = NULL; 5509 ip6_t *ip6h = NULL; 5510 int hdr_len; 5511 uint16_t ip6_hdr_length; 5512 uint8_t v6_proto; 5513 uint8_t *v6_proto_p; 5514 5515 /* 5516 * We have a fragment we need to track! 5517 */ 5518 mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp, 5519 outer_hdr_len, ipss); 5520 if (mp == NULL) 5521 return (NULL); 5522 5523 /* 5524 * If we get here, we have a full 5525 * fragment chain 5526 */ 5527 5528 oiph = (ipha_t *)mp->b_rptr; 5529 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) { 5530 hdr_len = ((outer_hdr_len != 0) ? 5531 IPH_HDR_LENGTH(oiph) : 0); 5532 iph = (ipha_t *)(mp->b_rptr + hdr_len); 5533 } else { 5534 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION); 5535 if ((spare_mp = msgpullup(mp, -1)) == NULL) { 5536 ip_drop_packet_chain(mp, B_FALSE, 5537 NULL, NULL, 5538 DROPPER(ipss, ipds_spd_nomem), 5539 &ipss->ipsec_spd_dropper); 5540 } 5541 ip6h = (ip6_t *)spare_mp->b_rptr; 5542 (void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h, 5543 &ip6_hdr_length, &v6_proto_p); 5544 hdr_len = ip6_hdr_length; 5545 } 5546 outer_hdr_len = hdr_len; 5547 5548 if (sel.ips_isv4) { 5549 if (iph == NULL) { 5550 /* Was v6 outer */ 5551 iph = (ipha_t *)(mp->b_rptr + hdr_len); 5552 } 5553 inner_ipv4 = iph; 5554 sel.ips_local_addr_v4 = inner_ipv4->ipha_src; 5555 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst; 5556 sel.ips_protocol = 5557 (uint8_t)inner_ipv4->ipha_protocol; 5558 } else { 5559 if ((spare_mp == NULL) && 5560 ((spare_mp = msgpullup(mp, -1)) == NULL)) { 5561 ip_drop_packet_chain(mp, B_FALSE, 5562 NULL, NULL, 5563 DROPPER(ipss, ipds_spd_nomem), 5564 &ipss->ipsec_spd_dropper); 5565 } 5566 inner_ipv6 = (ip6_t *)(spare_mp->b_rptr + 5567 hdr_len); 5568 sel.ips_local_addr_v6 = inner_ipv6->ip6_src; 5569 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst; 5570 (void) ip_hdr_length_nexthdr_v6(spare_mp, 5571 inner_ipv6, &ip6_hdr_length, 5572 &v6_proto_p); 5573 v6_proto = *v6_proto_p; 5574 sel.ips_protocol = v6_proto; 5575 #ifdef FRAGCACHE_DEBUG 5576 cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n", 5577 sel.ips_protocol); 5578 #endif 5579 } 5580 /* Ports are extracted below */ 5581 } 5582 5583 /* Get ports... */ 5584 if (spare_mp != NULL) { 5585 if (!ipsec_init_outbound_ports(&sel, spare_mp, 5586 inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) { 5587 /* 5588 * callee did ip_drop_packet_chain() on 5589 * spare_mp 5590 */ 5591 ipsec_freemsg_chain(mp); 5592 return (NULL); 5593 } 5594 } else { 5595 if (!ipsec_init_outbound_ports(&sel, mp, 5596 inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) { 5597 /* callee did ip_drop_packet_chain() on mp. */ 5598 return (NULL); 5599 } 5600 } 5601 #ifdef FRAGCACHE_DEBUG 5602 if (inner_ipv4 != NULL) 5603 cmn_err(CE_WARN, 5604 "(v4) sel.ips_protocol = %d, " 5605 "sel.ips_local_port = %d, " 5606 "sel.ips_remote_port = %d\n", 5607 sel.ips_protocol, ntohs(sel.ips_local_port), 5608 ntohs(sel.ips_remote_port)); 5609 if (inner_ipv6 != NULL) 5610 cmn_err(CE_WARN, 5611 "(v6) sel.ips_protocol = %d, " 5612 "sel.ips_local_port = %d, " 5613 "sel.ips_remote_port = %d\n", 5614 sel.ips_protocol, ntohs(sel.ips_local_port), 5615 ntohs(sel.ips_remote_port)); 5616 #endif 5617 /* Success so far - done with spare_mp */ 5618 ipsec_freemsg_chain(spare_mp); 5619 } 5620 rw_enter(&polhead->iph_lock, RW_READER); 5621 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, 5622 &sel, ns); 5623 rw_exit(&polhead->iph_lock); 5624 if (pol == NULL) { 5625 /* 5626 * No matching policy on this tunnel, drop the packet. 5627 * 5628 * NOTE: Tunnel-mode tunnels are different from the 5629 * IP global transport mode policy head. For a tunnel-mode 5630 * tunnel, we drop the packet in lieu of passing it 5631 * along accepted the way a global-policy miss would. 5632 * 5633 * NOTE2: "negotiate transport" tunnels should match ALL 5634 * inbound packets, but we do not uncomment the ASSERT() 5635 * below because if/when we open PF_POLICY, a user can 5636 * shoot him/her-self in the foot with a 0 priority. 5637 */ 5638 5639 /* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */ 5640 #ifdef FRAGCACHE_DEBUG 5641 cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel " 5642 "per-port policy\n"); 5643 #endif 5644 ip_drop_packet_chain(mp, B_FALSE, NULL, NULL, 5645 DROPPER(ipss, ipds_spd_explicit), 5646 &ipss->ipsec_spd_dropper); 5647 return (NULL); 5648 } 5649 5650 #ifdef FRAGCACHE_DEBUG 5651 cmn_err(CE_WARN, "Having matching tunnel per-port policy\n"); 5652 #endif 5653 5654 /* Construct an IPSEC_OUT message. */ 5655 ipsec_mp = ipsec_mp_head = ipsec_alloc_ipsec_out(ns); 5656 if (ipsec_mp == NULL) { 5657 IPPOL_REFRELE(pol, ns); 5658 ip_drop_packet(mp, B_FALSE, NULL, NULL, 5659 DROPPER(ipss, ipds_spd_nomem), 5660 &ipss->ipsec_spd_dropper); 5661 return (NULL); 5662 } 5663 ipsec_mp->b_cont = mp; 5664 io = (ipsec_out_t *)ipsec_mp->b_rptr; 5665 IPPH_REFHOLD(polhead); 5666 /* 5667 * NOTE: free() function of ipsec_out mblk will release polhead and 5668 * pol references. 5669 */ 5670 io->ipsec_out_polhead = polhead; 5671 io->ipsec_out_policy = pol; 5672 io->ipsec_out_zoneid = atp->tun_zoneid; 5673 io->ipsec_out_v4 = (outer_ipv4 != NULL); 5674 io->ipsec_out_secure = B_TRUE; 5675 5676 if (!(itp->itp_flags & ITPF_P_TUNNEL)) { 5677 /* Set up transport mode for tunnelled packets. */ 5678 io->ipsec_out_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP : 5679 IPPROTO_IPV6; 5680 return (ipsec_mp); 5681 } 5682 5683 /* Fill in tunnel-mode goodies here. */ 5684 io->ipsec_out_tunnel = B_TRUE; 5685 /* XXX Do I need to fill in all of the goodies here? */ 5686 if (inner_ipv4) { 5687 io->ipsec_out_inaf = AF_INET; 5688 io->ipsec_out_insrc[0] = 5689 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4; 5690 io->ipsec_out_indst[0] = 5691 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4; 5692 } else { 5693 io->ipsec_out_inaf = AF_INET6; 5694 io->ipsec_out_insrc[0] = 5695 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0]; 5696 io->ipsec_out_insrc[1] = 5697 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1]; 5698 io->ipsec_out_insrc[2] = 5699 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2]; 5700 io->ipsec_out_insrc[3] = 5701 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3]; 5702 io->ipsec_out_indst[0] = 5703 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0]; 5704 io->ipsec_out_indst[1] = 5705 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1]; 5706 io->ipsec_out_indst[2] = 5707 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2]; 5708 io->ipsec_out_indst[3] = 5709 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3]; 5710 } 5711 io->ipsec_out_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen; 5712 io->ipsec_out_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen; 5713 /* NOTE: These are used for transport mode too. */ 5714 io->ipsec_out_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport; 5715 io->ipsec_out_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport; 5716 io->ipsec_out_proto = pol->ipsp_sel->ipsl_key.ipsl_proto; 5717 5718 /* 5719 * The mp pointer still valid 5720 * Add ipsec_out to each fragment. 5721 * The fragment head already has one 5722 */ 5723 nmp = mp->b_next; 5724 mp->b_next = NULL; 5725 mp = nmp; 5726 ASSERT(ipsec_mp != NULL); 5727 while (mp != NULL) { 5728 nmp = mp->b_next; 5729 ipsec_mp->b_next = ipsec_out_tag(ipsec_mp_head, mp, ns); 5730 if (ipsec_mp->b_next == NULL) { 5731 ip_drop_packet_chain(ipsec_mp_head, B_FALSE, NULL, NULL, 5732 DROPPER(ipss, ipds_spd_nomem), 5733 &ipss->ipsec_spd_dropper); 5734 ip_drop_packet_chain(mp, B_FALSE, NULL, NULL, 5735 DROPPER(ipss, ipds_spd_nomem), 5736 &ipss->ipsec_spd_dropper); 5737 return (NULL); 5738 } 5739 ipsec_mp = ipsec_mp->b_next; 5740 mp->b_next = NULL; 5741 mp = nmp; 5742 } 5743 return (ipsec_mp_head); 5744 } 5745 5746 /* 5747 * NOTE: The following releases pol's reference and 5748 * calls ip_drop_packet() for me on NULL returns. 5749 */ 5750 mblk_t * 5751 ipsec_check_ipsecin_policy_reasm(mblk_t *ipsec_mp, ipsec_policy_t *pol, 5752 ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns) 5753 { 5754 /* Assume ipsec_mp is a chain of b_next-linked IPSEC_IN M_CTLs. */ 5755 mblk_t *data_chain = NULL, *data_tail = NULL; 5756 mblk_t *ii_next; 5757 5758 while (ipsec_mp != NULL) { 5759 ii_next = ipsec_mp->b_next; 5760 ipsec_mp->b_next = NULL; /* No tripping asserts. */ 5761 5762 /* 5763 * Need IPPOL_REFHOLD(pol) for extras because 5764 * ipsecin_policy does the refrele. 5765 */ 5766 IPPOL_REFHOLD(pol); 5767 5768 if (ipsec_check_ipsecin_policy(ipsec_mp, pol, inner_ipv4, 5769 inner_ipv6, pkt_unique, ns) != NULL) { 5770 if (data_tail == NULL) { 5771 /* First one */ 5772 data_chain = data_tail = ipsec_mp->b_cont; 5773 } else { 5774 data_tail->b_next = ipsec_mp->b_cont; 5775 data_tail = data_tail->b_next; 5776 } 5777 freeb(ipsec_mp); 5778 } else { 5779 /* 5780 * ipsec_check_ipsecin_policy() freed ipsec_mp 5781 * already. Need to get rid of any extra pol 5782 * references, and any remaining bits as well. 5783 */ 5784 IPPOL_REFRELE(pol, ns); 5785 ipsec_freemsg_chain(data_chain); 5786 ipsec_freemsg_chain(ii_next); /* ipdrop stats? */ 5787 return (NULL); 5788 } 5789 ipsec_mp = ii_next; 5790 } 5791 /* 5792 * One last release because either the loop bumped it up, or we never 5793 * called ipsec_check_ipsecin_policy(). 5794 */ 5795 IPPOL_REFRELE(pol, ns); 5796 5797 /* data_chain is ready for return to tun module. */ 5798 return (data_chain); 5799 } 5800 5801 5802 /* 5803 * Returns B_TRUE if the inbound packet passed an IPsec policy check. Returns 5804 * B_FALSE if it failed or if it is a fragment needing its friends before a 5805 * policy check can be performed. 5806 * 5807 * Expects a non-NULL *data_mp, an optional ipsec_mp, and a non-NULL polhead. 5808 * data_mp may be reassigned with a b_next chain of packets if fragments 5809 * neeeded to be collected for a proper policy check. 5810 * 5811 * Always frees ipsec_mp, but only frees data_mp if returns B_FALSE. This 5812 * function calls ip_drop_packet() on data_mp if need be. 5813 * 5814 * NOTE: outer_hdr_len is signed. If it's a negative value, the caller 5815 * is inspecting an ICMP packet. 5816 */ 5817 boolean_t 5818 ipsec_tun_inbound(mblk_t *ipsec_mp, mblk_t **data_mp, ipsec_tun_pol_t *itp, 5819 ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4, 5820 ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns) 5821 { 5822 ipsec_policy_head_t *polhead; 5823 ipsec_selector_t sel; 5824 mblk_t *message = (ipsec_mp == NULL) ? *data_mp : ipsec_mp; 5825 ipsec_policy_t *pol; 5826 uint16_t tmpport; 5827 selret_t rc; 5828 boolean_t retval, port_policy_present, is_icmp, global_present; 5829 in6_addr_t tmpaddr; 5830 ipaddr_t tmp4; 5831 ipsec_stack_t *ipss = ns->netstack_ipsec; 5832 uint8_t flags, *holder, *outer_hdr; 5833 5834 sel.ips_is_icmp_inv_acq = 0; 5835 5836 if (outer_ipv4 != NULL) { 5837 ASSERT(outer_ipv6 == NULL); 5838 outer_hdr = (uint8_t *)outer_ipv4; 5839 global_present = ipss->ipsec_inbound_v4_policy_present; 5840 } else { 5841 outer_hdr = (uint8_t *)outer_ipv6; 5842 global_present = ipss->ipsec_inbound_v6_policy_present; 5843 } 5844 ASSERT(outer_hdr != NULL); 5845 5846 ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL || 5847 inner_ipv4 == NULL && inner_ipv6 != NULL); 5848 ASSERT(message == *data_mp || message->b_cont == *data_mp); 5849 5850 if (outer_hdr_len < 0) { 5851 outer_hdr_len = (-outer_hdr_len); 5852 is_icmp = B_TRUE; 5853 } else { 5854 is_icmp = B_FALSE; 5855 } 5856 5857 if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) { 5858 polhead = itp->itp_policy; 5859 /* 5860 * We need to perform full Tunnel-Mode enforcement, 5861 * and we need to have inner-header data for such enforcement. 5862 * 5863 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound 5864 * and on return. 5865 */ 5866 5867 port_policy_present = ((itp->itp_flags & 5868 ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE); 5869 flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) | 5870 (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE); 5871 5872 rc = ipsec_init_inbound_sel(&sel, *data_mp, inner_ipv4, 5873 inner_ipv6, flags); 5874 5875 switch (rc) { 5876 case SELRET_NOMEM: 5877 ip_drop_packet(message, B_TRUE, NULL, NULL, 5878 DROPPER(ipss, ipds_spd_nomem), 5879 &ipss->ipsec_spd_dropper); 5880 return (B_FALSE); 5881 case SELRET_TUNFRAG: 5882 /* 5883 * At this point, if we're cleartext, we don't want 5884 * to go there. 5885 */ 5886 if (ipsec_mp == NULL) { 5887 ip_drop_packet(*data_mp, B_TRUE, NULL, NULL, 5888 DROPPER(ipss, ipds_spd_got_clear), 5889 &ipss->ipsec_spd_dropper); 5890 *data_mp = NULL; 5891 return (B_FALSE); 5892 } 5893 ASSERT(((ipsec_in_t *)ipsec_mp->b_rptr)-> 5894 ipsec_in_secure); 5895 message = ipsec_fragcache_add(&itp->itp_fragcache, 5896 ipsec_mp, *data_mp, outer_hdr_len, ipss); 5897 5898 if (message == NULL) { 5899 /* 5900 * Data is cached, fragment chain is not 5901 * complete. I consume ipsec_mp and data_mp 5902 */ 5903 return (B_FALSE); 5904 } 5905 5906 /* 5907 * If we get here, we have a full fragment chain. 5908 * Reacquire headers and selectors from first fragment. 5909 */ 5910 if (inner_ipv4 != NULL) { 5911 inner_ipv4 = (ipha_t *)message->b_cont->b_rptr; 5912 ASSERT(message->b_cont->b_wptr - 5913 message->b_cont->b_rptr > sizeof (ipha_t)); 5914 } else { 5915 inner_ipv6 = (ip6_t *)message->b_cont->b_rptr; 5916 ASSERT(message->b_cont->b_wptr - 5917 message->b_cont->b_rptr > sizeof (ip6_t)); 5918 } 5919 /* Use SEL_NONE so we always get ports! */ 5920 rc = ipsec_init_inbound_sel(&sel, message->b_cont, 5921 inner_ipv4, inner_ipv6, SEL_NONE); 5922 switch (rc) { 5923 case SELRET_SUCCESS: 5924 /* 5925 * Get to same place as first caller's 5926 * SELRET_SUCCESS case. 5927 */ 5928 break; 5929 case SELRET_NOMEM: 5930 ip_drop_packet_chain(message, B_TRUE, 5931 NULL, NULL, 5932 DROPPER(ipss, ipds_spd_nomem), 5933 &ipss->ipsec_spd_dropper); 5934 return (B_FALSE); 5935 case SELRET_BADPKT: 5936 ip_drop_packet_chain(message, B_TRUE, 5937 NULL, NULL, 5938 DROPPER(ipss, ipds_spd_malformed_frag), 5939 &ipss->ipsec_spd_dropper); 5940 return (B_FALSE); 5941 case SELRET_TUNFRAG: 5942 cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)"); 5943 /* FALLTHRU */ 5944 default: 5945 cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)" 5946 " returns bizarro 0x%x", rc); 5947 /* Guaranteed panic! */ 5948 ASSERT(rc == SELRET_NOMEM); 5949 return (B_FALSE); 5950 } 5951 /* FALLTHRU */ 5952 case SELRET_SUCCESS: 5953 /* 5954 * Common case: 5955 * No per-port policy or a non-fragment. Keep going. 5956 */ 5957 break; 5958 case SELRET_BADPKT: 5959 /* 5960 * We may receive ICMP (with IPv6 inner) packets that 5961 * trigger this return value. Send 'em in for 5962 * enforcement checking. 5963 */ 5964 cmn_err(CE_NOTE, "ipsec_tun_inbound(): " 5965 "sending 'bad packet' in for enforcement"); 5966 break; 5967 default: 5968 cmn_err(CE_WARN, 5969 "ipsec_init_inbound_sel() returns bizarro 0x%x", 5970 rc); 5971 ASSERT(rc == SELRET_NOMEM); /* Guaranteed panic! */ 5972 return (B_FALSE); 5973 } 5974 5975 if (is_icmp) { 5976 /* 5977 * Swap local/remote because this is an ICMP packet. 5978 */ 5979 tmpaddr = sel.ips_local_addr_v6; 5980 sel.ips_local_addr_v6 = sel.ips_remote_addr_v6; 5981 sel.ips_remote_addr_v6 = tmpaddr; 5982 tmpport = sel.ips_local_port; 5983 sel.ips_local_port = sel.ips_remote_port; 5984 sel.ips_remote_port = tmpport; 5985 } 5986 5987 /* find_policy_head() */ 5988 rw_enter(&polhead->iph_lock, RW_READER); 5989 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND, 5990 &sel, ns); 5991 rw_exit(&polhead->iph_lock); 5992 if (pol != NULL) { 5993 if (ipsec_mp == NULL || 5994 !((ipsec_in_t *)ipsec_mp->b_rptr)-> 5995 ipsec_in_secure) { 5996 retval = pol->ipsp_act->ipa_allow_clear; 5997 if (!retval) { 5998 /* 5999 * XXX should never get here with 6000 * tunnel reassembled fragments? 6001 */ 6002 ASSERT(message->b_next == NULL); 6003 ip_drop_packet(message, B_TRUE, NULL, 6004 NULL, 6005 DROPPER(ipss, ipds_spd_got_clear), 6006 &ipss->ipsec_spd_dropper); 6007 } else if (ipsec_mp != NULL) { 6008 freeb(ipsec_mp); 6009 } 6010 6011 IPPOL_REFRELE(pol, ns); 6012 return (retval); 6013 } 6014 /* 6015 * NOTE: The following releases pol's reference and 6016 * calls ip_drop_packet() for me on NULL returns. 6017 * 6018 * "sel" is still good here, so let's use it! 6019 */ 6020 *data_mp = ipsec_check_ipsecin_policy_reasm(message, 6021 pol, inner_ipv4, inner_ipv6, SA_UNIQUE_ID( 6022 sel.ips_remote_port, sel.ips_local_port, 6023 (inner_ipv4 == NULL) ? IPPROTO_IPV6 : 6024 IPPROTO_ENCAP, sel.ips_protocol), ns); 6025 return (*data_mp != NULL); 6026 } 6027 6028 /* 6029 * Else fallthru and check the global policy on the outer 6030 * header(s) if this tunnel is an old-style transport-mode 6031 * one. Drop the packet explicitly (no policy entry) for 6032 * a new-style tunnel-mode tunnel. 6033 */ 6034 if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) { 6035 ip_drop_packet_chain(message, B_TRUE, NULL, 6036 NULL, 6037 DROPPER(ipss, ipds_spd_explicit), 6038 &ipss->ipsec_spd_dropper); 6039 return (B_FALSE); 6040 } 6041 } 6042 6043 /* 6044 * NOTE: If we reach here, we will not have packet chains from 6045 * fragcache_add(), because the only way I get chains is on a 6046 * tunnel-mode tunnel, which either returns with a pass, or gets 6047 * hit by the ip_drop_packet_chain() call right above here. 6048 */ 6049 6050 /* If no per-tunnel security, check global policy now. */ 6051 if (ipsec_mp != NULL && !global_present) { 6052 if (((ipsec_in_t *)(ipsec_mp->b_rptr))-> 6053 ipsec_in_icmp_loopback) { 6054 /* 6055 * This is an ICMP message with an ipsec_mp 6056 * attached. We should accept it. 6057 */ 6058 if (ipsec_mp != NULL) 6059 freeb(ipsec_mp); 6060 return (B_TRUE); 6061 } 6062 6063 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 6064 DROPPER(ipss, ipds_spd_got_secure), 6065 &ipss->ipsec_spd_dropper); 6066 return (B_FALSE); 6067 } 6068 6069 /* 6070 * The following assertion is valid because only the tun module alters 6071 * the mblk chain - stripping the outer header by advancing mp->b_rptr. 6072 */ 6073 ASSERT(is_icmp || ((*data_mp)->b_datap->db_base <= outer_hdr && 6074 outer_hdr < (*data_mp)->b_rptr)); 6075 holder = (*data_mp)->b_rptr; 6076 (*data_mp)->b_rptr = outer_hdr; 6077 6078 if (is_icmp) { 6079 /* 6080 * For ICMP packets, "outer_ipvN" is set to the outer header 6081 * that is *INSIDE* the ICMP payload. For global policy 6082 * checking, we need to reverse src/dst on the payload in 6083 * order to construct selectors appropriately. See "ripha" 6084 * constructions in ip.c. To avoid a bug like 6478464 (see 6085 * earlier in this file), we will actually exchange src/dst 6086 * in the packet, and reverse if after the call to 6087 * ipsec_check_global_policy(). 6088 */ 6089 if (outer_ipv4 != NULL) { 6090 tmp4 = outer_ipv4->ipha_src; 6091 outer_ipv4->ipha_src = outer_ipv4->ipha_dst; 6092 outer_ipv4->ipha_dst = tmp4; 6093 } else { 6094 ASSERT(outer_ipv6 != NULL); 6095 tmpaddr = outer_ipv6->ip6_src; 6096 outer_ipv6->ip6_src = outer_ipv6->ip6_dst; 6097 outer_ipv6->ip6_dst = tmpaddr; 6098 } 6099 } 6100 6101 /* NOTE: Frees message if it returns NULL. */ 6102 if (ipsec_check_global_policy(message, NULL, outer_ipv4, outer_ipv6, 6103 (ipsec_mp != NULL), ns) == NULL) { 6104 return (B_FALSE); 6105 } 6106 6107 if (is_icmp) { 6108 /* Set things back to normal. */ 6109 if (outer_ipv4 != NULL) { 6110 tmp4 = outer_ipv4->ipha_src; 6111 outer_ipv4->ipha_src = outer_ipv4->ipha_dst; 6112 outer_ipv4->ipha_dst = tmp4; 6113 } else { 6114 /* No need for ASSERT()s now. */ 6115 tmpaddr = outer_ipv6->ip6_src; 6116 outer_ipv6->ip6_src = outer_ipv6->ip6_dst; 6117 outer_ipv6->ip6_dst = tmpaddr; 6118 } 6119 } 6120 6121 (*data_mp)->b_rptr = holder; 6122 6123 if (ipsec_mp != NULL) 6124 freeb(ipsec_mp); 6125 6126 /* 6127 * At this point, we pretend it's a cleartext accepted 6128 * packet. 6129 */ 6130 return (B_TRUE); 6131 } 6132 6133 /* 6134 * AVL comparison routine for our list of tunnel polheads. 6135 */ 6136 static int 6137 tunnel_compare(const void *arg1, const void *arg2) 6138 { 6139 ipsec_tun_pol_t *left, *right; 6140 int rc; 6141 6142 left = (ipsec_tun_pol_t *)arg1; 6143 right = (ipsec_tun_pol_t *)arg2; 6144 6145 rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ); 6146 return (rc == 0 ? rc : (rc > 0 ? 1 : -1)); 6147 } 6148 6149 /* 6150 * Free a tunnel policy node. 6151 */ 6152 void 6153 itp_free(ipsec_tun_pol_t *node, netstack_t *ns) 6154 { 6155 IPPH_REFRELE(node->itp_policy, ns); 6156 IPPH_REFRELE(node->itp_inactive, ns); 6157 mutex_destroy(&node->itp_lock); 6158 kmem_free(node, sizeof (*node)); 6159 } 6160 6161 void 6162 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns) 6163 { 6164 ipsec_stack_t *ipss = ns->netstack_ipsec; 6165 6166 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER); 6167 ipss->ipsec_tunnel_policy_gen++; 6168 ipsec_fragcache_uninit(&node->itp_fragcache); 6169 avl_remove(&ipss->ipsec_tunnel_policies, node); 6170 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6171 ITP_REFRELE(node, ns); 6172 } 6173 6174 /* 6175 * Public interface to look up a tunnel security policy by name. Used by 6176 * spdsock mostly. Returns "node" with a bumped refcnt. 6177 */ 6178 ipsec_tun_pol_t * 6179 get_tunnel_policy(char *name, netstack_t *ns) 6180 { 6181 ipsec_tun_pol_t *node, lookup; 6182 ipsec_stack_t *ipss = ns->netstack_ipsec; 6183 6184 (void) strncpy(lookup.itp_name, name, LIFNAMSIZ); 6185 6186 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER); 6187 node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies, 6188 &lookup, NULL); 6189 if (node != NULL) { 6190 ITP_REFHOLD(node); 6191 } 6192 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6193 6194 return (node); 6195 } 6196 6197 /* 6198 * Public interface to walk all tunnel security polcies. Useful for spdsock 6199 * DUMP operations. iterator() will not consume a reference. 6200 */ 6201 void 6202 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *), 6203 void *arg, netstack_t *ns) 6204 { 6205 ipsec_tun_pol_t *node; 6206 ipsec_stack_t *ipss = ns->netstack_ipsec; 6207 6208 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER); 6209 for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL; 6210 node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) { 6211 iterator(node, arg, ns); 6212 } 6213 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6214 } 6215 6216 /* 6217 * Initialize policy head. This can only fail if there's a memory problem. 6218 */ 6219 static boolean_t 6220 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns) 6221 { 6222 ipsec_stack_t *ipss = ns->netstack_ipsec; 6223 6224 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL); 6225 iph->iph_refs = 1; 6226 iph->iph_gen = 0; 6227 if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize, 6228 KM_SLEEP, B_FALSE, ns) != 0) { 6229 ipsec_polhead_free_table(iph); 6230 return (B_FALSE); 6231 } 6232 ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize); 6233 return (B_TRUE); 6234 } 6235 6236 /* 6237 * Create a tunnel policy node with "name". Set errno with 6238 * ENOMEM if there's a memory problem, and EEXIST if there's an existing 6239 * node. 6240 */ 6241 ipsec_tun_pol_t * 6242 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns) 6243 { 6244 ipsec_tun_pol_t *newbie, *existing; 6245 avl_index_t where; 6246 ipsec_stack_t *ipss = ns->netstack_ipsec; 6247 6248 newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP); 6249 if (newbie == NULL) { 6250 *errno = ENOMEM; 6251 return (NULL); 6252 } 6253 if (!ipsec_fragcache_init(&newbie->itp_fragcache)) { 6254 kmem_free(newbie, sizeof (*newbie)); 6255 *errno = ENOMEM; 6256 return (NULL); 6257 } 6258 6259 (void) strncpy(newbie->itp_name, name, LIFNAMSIZ); 6260 6261 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER); 6262 existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies, 6263 newbie, &where); 6264 if (existing != NULL) { 6265 itp_free(newbie, ns); 6266 *errno = EEXIST; 6267 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6268 return (NULL); 6269 } 6270 ipss->ipsec_tunnel_policy_gen++; 6271 *gen = ipss->ipsec_tunnel_policy_gen; 6272 newbie->itp_refcnt = 2; /* One for the caller, one for the tree. */ 6273 newbie->itp_next_policy_index = 1; 6274 avl_insert(&ipss->ipsec_tunnel_policies, newbie, where); 6275 mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL); 6276 newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t), 6277 KM_NOSLEEP); 6278 if (newbie->itp_policy == NULL) 6279 goto nomem; 6280 newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t), 6281 KM_NOSLEEP); 6282 if (newbie->itp_inactive == NULL) { 6283 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t)); 6284 goto nomem; 6285 } 6286 6287 if (!tunnel_polhead_init(newbie->itp_policy, ns)) { 6288 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t)); 6289 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t)); 6290 goto nomem; 6291 } else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) { 6292 IPPH_REFRELE(newbie->itp_policy, ns); 6293 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t)); 6294 goto nomem; 6295 } 6296 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6297 6298 return (newbie); 6299 nomem: 6300 *errno = ENOMEM; 6301 kmem_free(newbie, sizeof (*newbie)); 6302 return (NULL); 6303 } 6304 6305 /* 6306 * We can't call the tun_t lookup function until tun is 6307 * loaded, so create a dummy function to avoid symbol 6308 * lookup errors on boot. 6309 */ 6310 /* ARGSUSED */ 6311 ipsec_tun_pol_t * 6312 itp_get_byaddr_dummy(uint32_t *laddr, uint32_t *faddr, int af, netstack_t *ns) 6313 { 6314 return (NULL); /* Always return NULL. */ 6315 } 6316 6317 /* 6318 * Frag cache code, based on SunScreen 3.2 source 6319 * screen/kernel/common/screen_fragcache.c 6320 */ 6321 6322 #define IPSEC_FRAG_TTL_MAX 5 6323 /* 6324 * Note that the following parameters create 256 hash buckets 6325 * with 1024 free entries to be distributed. Things are cleaned 6326 * periodically and are attempted to be cleaned when there is no 6327 * free space, but this system errs on the side of dropping packets 6328 * over creating memory exhaustion. We may decide to make hash 6329 * factor a tunable if this proves to be a bad decision. 6330 */ 6331 #define IPSEC_FRAG_HASH_SLOTS (1<<8) 6332 #define IPSEC_FRAG_HASH_FACTOR 4 6333 #define IPSEC_FRAG_HASH_SIZE (IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR) 6334 6335 #define IPSEC_FRAG_HASH_MASK (IPSEC_FRAG_HASH_SLOTS - 1) 6336 #define IPSEC_FRAG_HASH_FUNC(id) (((id) & IPSEC_FRAG_HASH_MASK) ^ \ 6337 (((id) / \ 6338 (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \ 6339 IPSEC_FRAG_HASH_MASK)) 6340 6341 /* Maximum fragments per packet. 48 bytes payload x 1366 packets > 64KB */ 6342 #define IPSEC_MAX_FRAGS 1366 6343 6344 #define V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \ 6345 IPH_OFFSET) << 3) 6346 #define V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \ 6347 IPH_MF) 6348 6349 /* 6350 * Initialize an ipsec fragcache instance. 6351 * Returns B_FALSE if memory allocation fails. 6352 */ 6353 boolean_t 6354 ipsec_fragcache_init(ipsec_fragcache_t *frag) 6355 { 6356 ipsec_fragcache_entry_t *ftemp; 6357 int i; 6358 6359 mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL); 6360 frag->itpf_ptr = (ipsec_fragcache_entry_t **) 6361 kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) * 6362 IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP); 6363 if (frag->itpf_ptr == NULL) 6364 return (B_FALSE); 6365 6366 ftemp = (ipsec_fragcache_entry_t *) 6367 kmem_zalloc(sizeof (ipsec_fragcache_entry_t) * 6368 IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP); 6369 if (ftemp == NULL) { 6370 kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) * 6371 IPSEC_FRAG_HASH_SLOTS); 6372 return (B_FALSE); 6373 } 6374 6375 frag->itpf_freelist = NULL; 6376 6377 for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) { 6378 ftemp->itpfe_next = frag->itpf_freelist; 6379 frag->itpf_freelist = ftemp; 6380 ftemp++; 6381 } 6382 6383 frag->itpf_expire_hint = 0; 6384 6385 return (B_TRUE); 6386 } 6387 6388 void 6389 ipsec_fragcache_uninit(ipsec_fragcache_t *frag) 6390 { 6391 ipsec_fragcache_entry_t *fep; 6392 int i; 6393 6394 mutex_enter(&frag->itpf_lock); 6395 if (frag->itpf_ptr) { 6396 /* Delete any existing fragcache entry chains */ 6397 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) { 6398 fep = (frag->itpf_ptr)[i]; 6399 while (fep != NULL) { 6400 /* Returned fep is next in chain or NULL */ 6401 fep = fragcache_delentry(i, fep, frag); 6402 } 6403 } 6404 /* 6405 * Chase the pointers back to the beginning 6406 * of the memory allocation and then 6407 * get rid of the allocated freelist 6408 */ 6409 while (frag->itpf_freelist->itpfe_next != NULL) 6410 frag->itpf_freelist = frag->itpf_freelist->itpfe_next; 6411 /* 6412 * XXX - If we ever dynamically grow the freelist 6413 * then we'll have to free entries individually 6414 * or determine how many entries or chunks we have 6415 * grown since the initial allocation. 6416 */ 6417 kmem_free(frag->itpf_freelist, 6418 sizeof (ipsec_fragcache_entry_t) * 6419 IPSEC_FRAG_HASH_SIZE); 6420 /* Free the fragcache structure */ 6421 kmem_free(frag->itpf_ptr, 6422 sizeof (ipsec_fragcache_entry_t *) * 6423 IPSEC_FRAG_HASH_SLOTS); 6424 } 6425 mutex_exit(&frag->itpf_lock); 6426 mutex_destroy(&frag->itpf_lock); 6427 } 6428 6429 /* 6430 * Add a fragment to the fragment cache. Consumes mp if NULL is returned. 6431 * Returns mp if a whole fragment has been assembled, NULL otherwise 6432 */ 6433 6434 mblk_t * 6435 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *ipsec_mp, mblk_t *mp, 6436 int outer_hdr_len, ipsec_stack_t *ipss) 6437 { 6438 boolean_t is_v4; 6439 time_t itpf_time; 6440 ipha_t *iph; 6441 ipha_t *oiph; 6442 ip6_t *ip6h = NULL; 6443 uint8_t v6_proto; 6444 uint8_t *v6_proto_p; 6445 uint16_t ip6_hdr_length; 6446 ip6_pkt_t ipp; 6447 ip6_frag_t *fraghdr; 6448 ipsec_fragcache_entry_t *fep; 6449 int i; 6450 mblk_t *nmp, *prevmp, *spare_mp = NULL; 6451 int firstbyte, lastbyte; 6452 int offset; 6453 int last; 6454 boolean_t inbound = (ipsec_mp != NULL); 6455 mblk_t *first_mp = inbound ? ipsec_mp : mp; 6456 6457 mutex_enter(&frag->itpf_lock); 6458 6459 oiph = (ipha_t *)mp->b_rptr; 6460 iph = (ipha_t *)(mp->b_rptr + outer_hdr_len); 6461 if (IPH_HDR_VERSION(iph) == IPV4_VERSION) { 6462 is_v4 = B_TRUE; 6463 } else { 6464 ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION); 6465 if ((spare_mp = msgpullup(mp, -1)) == NULL) { 6466 mutex_exit(&frag->itpf_lock); 6467 ip_drop_packet(first_mp, inbound, NULL, NULL, 6468 DROPPER(ipss, ipds_spd_nomem), 6469 &ipss->ipsec_spd_dropper); 6470 return (NULL); 6471 } 6472 ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len); 6473 6474 if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h, &ip6_hdr_length, 6475 &v6_proto_p)) { 6476 /* 6477 * Find upper layer protocol. 6478 * If it fails we have a malformed packet 6479 */ 6480 mutex_exit(&frag->itpf_lock); 6481 ip_drop_packet(first_mp, inbound, NULL, NULL, 6482 DROPPER(ipss, ipds_spd_malformed_packet), 6483 &ipss->ipsec_spd_dropper); 6484 freemsg(spare_mp); 6485 return (NULL); 6486 } else { 6487 v6_proto = *v6_proto_p; 6488 } 6489 6490 6491 bzero(&ipp, sizeof (ipp)); 6492 (void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL); 6493 if (!(ipp.ipp_fields & IPPF_FRAGHDR)) { 6494 /* 6495 * We think this is a fragment, but didn't find 6496 * a fragment header. Something is wrong. 6497 */ 6498 mutex_exit(&frag->itpf_lock); 6499 ip_drop_packet(first_mp, inbound, NULL, NULL, 6500 DROPPER(ipss, ipds_spd_malformed_frag), 6501 &ipss->ipsec_spd_dropper); 6502 freemsg(spare_mp); 6503 return (NULL); 6504 } 6505 fraghdr = ipp.ipp_fraghdr; 6506 is_v4 = B_FALSE; 6507 } 6508 6509 /* Anything to cleanup? */ 6510 6511 /* 6512 * This cleanup call could be put in a timer loop 6513 * but it may actually be just as reasonable a decision to 6514 * leave it here. The disadvantage is this only gets called when 6515 * frags are added. The advantage is that it is not 6516 * susceptible to race conditions like a time-based cleanup 6517 * may be. 6518 */ 6519 itpf_time = gethrestime_sec(); 6520 if (itpf_time >= frag->itpf_expire_hint) 6521 ipsec_fragcache_clean(frag); 6522 6523 /* Lookup to see if there is an existing entry */ 6524 6525 if (is_v4) 6526 i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident); 6527 else 6528 i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident); 6529 6530 for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) { 6531 if (is_v4) { 6532 ASSERT(iph != NULL); 6533 if ((fep->itpfe_id == iph->ipha_ident) && 6534 (fep->itpfe_src == iph->ipha_src) && 6535 (fep->itpfe_dst == iph->ipha_dst) && 6536 (fep->itpfe_proto == iph->ipha_protocol)) 6537 break; 6538 } else { 6539 ASSERT(fraghdr != NULL); 6540 ASSERT(fep != NULL); 6541 if ((fep->itpfe_id == fraghdr->ip6f_ident) && 6542 IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6, 6543 &ip6h->ip6_src) && 6544 IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6, 6545 &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto)) 6546 break; 6547 } 6548 } 6549 6550 if (is_v4) { 6551 firstbyte = V4_FRAG_OFFSET(iph); 6552 lastbyte = firstbyte + ntohs(iph->ipha_length) - 6553 IPH_HDR_LENGTH(iph); 6554 last = (V4_MORE_FRAGS(iph) == 0); 6555 #ifdef FRAGCACHE_DEBUG 6556 cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, " 6557 "last = %d, id = %d\n", firstbyte, lastbyte, last, 6558 iph->ipha_ident); 6559 #endif 6560 } else { 6561 firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK); 6562 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) + 6563 sizeof (ip6_t) - ip6_hdr_length; 6564 last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0; 6565 #ifdef FRAGCACHE_DEBUG 6566 cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, " 6567 "last = %d, id = %d, fraghdr = %p, spare_mp = %p\n", 6568 firstbyte, lastbyte, last, fraghdr->ip6f_ident, 6569 fraghdr, spare_mp); 6570 #endif 6571 } 6572 6573 /* check for bogus fragments and delete the entry */ 6574 if (firstbyte > 0 && firstbyte <= 8) { 6575 if (fep != NULL) 6576 (void) fragcache_delentry(i, fep, frag); 6577 mutex_exit(&frag->itpf_lock); 6578 ip_drop_packet(first_mp, inbound, NULL, NULL, 6579 DROPPER(ipss, ipds_spd_malformed_frag), 6580 &ipss->ipsec_spd_dropper); 6581 freemsg(spare_mp); 6582 return (NULL); 6583 } 6584 6585 /* Not found, allocate a new entry */ 6586 if (fep == NULL) { 6587 if (frag->itpf_freelist == NULL) { 6588 /* see if there is some space */ 6589 ipsec_fragcache_clean(frag); 6590 if (frag->itpf_freelist == NULL) { 6591 mutex_exit(&frag->itpf_lock); 6592 ip_drop_packet(first_mp, inbound, NULL, NULL, 6593 DROPPER(ipss, ipds_spd_nomem), 6594 &ipss->ipsec_spd_dropper); 6595 freemsg(spare_mp); 6596 return (NULL); 6597 } 6598 } 6599 6600 fep = frag->itpf_freelist; 6601 frag->itpf_freelist = fep->itpfe_next; 6602 6603 if (is_v4) { 6604 bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src, 6605 sizeof (struct in_addr)); 6606 bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst, 6607 sizeof (struct in_addr)); 6608 fep->itpfe_id = iph->ipha_ident; 6609 fep->itpfe_proto = iph->ipha_protocol; 6610 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id); 6611 } else { 6612 bcopy((in6_addr_t *)&ip6h->ip6_src, 6613 (in6_addr_t *)&fep->itpfe_src6, 6614 sizeof (struct in6_addr)); 6615 bcopy((in6_addr_t *)&ip6h->ip6_dst, 6616 (in6_addr_t *)&fep->itpfe_dst6, 6617 sizeof (struct in6_addr)); 6618 fep->itpfe_id = fraghdr->ip6f_ident; 6619 fep->itpfe_proto = v6_proto; 6620 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id); 6621 } 6622 itpf_time = gethrestime_sec(); 6623 fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1; 6624 fep->itpfe_last = 0; 6625 fep->itpfe_fraglist = NULL; 6626 fep->itpfe_depth = 0; 6627 fep->itpfe_next = (frag->itpf_ptr)[i]; 6628 (frag->itpf_ptr)[i] = fep; 6629 6630 if (frag->itpf_expire_hint > fep->itpfe_exp) 6631 frag->itpf_expire_hint = fep->itpfe_exp; 6632 6633 } 6634 freemsg(spare_mp); 6635 6636 /* Insert it in the frag list */ 6637 /* List is in order by starting offset of fragments */ 6638 6639 prevmp = NULL; 6640 for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) { 6641 ipha_t *niph; 6642 ipha_t *oniph; 6643 ip6_t *nip6h; 6644 ip6_pkt_t nipp; 6645 ip6_frag_t *nfraghdr; 6646 uint16_t nip6_hdr_length; 6647 uint8_t *nv6_proto_p; 6648 int nfirstbyte, nlastbyte; 6649 char *data, *ndata; 6650 mblk_t *nspare_mp = NULL; 6651 mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp); 6652 int hdr_len; 6653 6654 oniph = (ipha_t *)mp->b_rptr; 6655 nip6h = NULL; 6656 niph = NULL; 6657 6658 /* 6659 * Determine outer header type and length and set 6660 * pointers appropriately 6661 */ 6662 6663 if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) { 6664 hdr_len = ((outer_hdr_len != 0) ? 6665 IPH_HDR_LENGTH(oiph) : 0); 6666 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len); 6667 } else { 6668 ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION); 6669 if ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL) { 6670 mutex_exit(&frag->itpf_lock); 6671 ip_drop_packet_chain(nmp, inbound, NULL, NULL, 6672 DROPPER(ipss, ipds_spd_nomem), 6673 &ipss->ipsec_spd_dropper); 6674 return (NULL); 6675 } 6676 nip6h = (ip6_t *)nspare_mp->b_rptr; 6677 (void) ip_hdr_length_nexthdr_v6(nspare_mp, nip6h, 6678 &nip6_hdr_length, &v6_proto_p); 6679 hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0); 6680 } 6681 6682 /* 6683 * Determine inner header type and length and set 6684 * pointers appropriately 6685 */ 6686 6687 if (is_v4) { 6688 if (niph == NULL) { 6689 /* Was v6 outer */ 6690 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len); 6691 } 6692 nfirstbyte = V4_FRAG_OFFSET(niph); 6693 nlastbyte = nfirstbyte + ntohs(niph->ipha_length) - 6694 IPH_HDR_LENGTH(niph); 6695 } else { 6696 if ((nspare_mp == NULL) && 6697 ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL)) { 6698 mutex_exit(&frag->itpf_lock); 6699 ip_drop_packet_chain(nmp, inbound, NULL, NULL, 6700 DROPPER(ipss, ipds_spd_nomem), 6701 &ipss->ipsec_spd_dropper); 6702 return (NULL); 6703 } 6704 nip6h = (ip6_t *)(nspare_mp->b_rptr + hdr_len); 6705 if (!ip_hdr_length_nexthdr_v6(nspare_mp, nip6h, 6706 &nip6_hdr_length, &nv6_proto_p)) { 6707 mutex_exit(&frag->itpf_lock); 6708 ip_drop_packet_chain(nmp, inbound, NULL, NULL, 6709 DROPPER(ipss, ipds_spd_malformed_frag), 6710 &ipss->ipsec_spd_dropper); 6711 ipsec_freemsg_chain(nspare_mp); 6712 return (NULL); 6713 } 6714 bzero(&nipp, sizeof (nipp)); 6715 (void) ip_find_hdr_v6(nspare_mp, nip6h, &nipp, NULL); 6716 nfraghdr = nipp.ipp_fraghdr; 6717 nfirstbyte = ntohs(nfraghdr->ip6f_offlg & 6718 IP6F_OFF_MASK); 6719 nlastbyte = nfirstbyte + ntohs(nip6h->ip6_plen) + 6720 sizeof (ip6_t) - nip6_hdr_length; 6721 } 6722 ipsec_freemsg_chain(nspare_mp); 6723 6724 /* Check for overlapping fragments */ 6725 if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) { 6726 /* 6727 * Overlap Check: 6728 * ~~~~--------- # Check if the newly 6729 * ~ ndata_mp| # received fragment 6730 * ~~~~--------- # overlaps with the 6731 * ---------~~~~~~ # current fragment. 6732 * | mp ~ 6733 * ---------~~~~~~ 6734 */ 6735 if (is_v4) { 6736 data = (char *)iph + IPH_HDR_LENGTH(iph) + 6737 firstbyte - nfirstbyte; 6738 ndata = (char *)niph + IPH_HDR_LENGTH(niph); 6739 } else { 6740 data = (char *)ip6h + 6741 nip6_hdr_length + firstbyte - 6742 nfirstbyte; 6743 ndata = (char *)nip6h + nip6_hdr_length; 6744 } 6745 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) - 6746 firstbyte)) { 6747 /* Overlapping data does not match */ 6748 (void) fragcache_delentry(i, fep, frag); 6749 mutex_exit(&frag->itpf_lock); 6750 ip_drop_packet(first_mp, inbound, NULL, NULL, 6751 DROPPER(ipss, ipds_spd_overlap_frag), 6752 &ipss->ipsec_spd_dropper); 6753 return (NULL); 6754 } 6755 /* Part of defense for jolt2.c fragmentation attack */ 6756 if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) { 6757 /* 6758 * Check for identical or subset fragments: 6759 * ---------- ~~~~--------~~~~~ 6760 * | nmp | or ~ nmp ~ 6761 * ---------- ~~~~--------~~~~~ 6762 * ---------- ------ 6763 * | mp | | mp | 6764 * ---------- ------ 6765 */ 6766 mutex_exit(&frag->itpf_lock); 6767 ip_drop_packet(first_mp, inbound, NULL, NULL, 6768 DROPPER(ipss, ipds_spd_evil_frag), 6769 &ipss->ipsec_spd_dropper); 6770 return (NULL); 6771 } 6772 6773 } 6774 6775 /* Correct location for this fragment? */ 6776 if (firstbyte <= nfirstbyte) { 6777 /* 6778 * Check if the tail end of the new fragment overlaps 6779 * with the head of the current fragment. 6780 * --------~~~~~~~ 6781 * | nmp ~ 6782 * --------~~~~~~~ 6783 * ~~~~~-------- 6784 * ~ mp | 6785 * ~~~~~-------- 6786 */ 6787 if (lastbyte > nfirstbyte) { 6788 /* Fragments overlap */ 6789 data = (char *)iph + IPH_HDR_LENGTH(iph) + 6790 firstbyte - nfirstbyte; 6791 ndata = (char *)niph + IPH_HDR_LENGTH(niph); 6792 if (is_v4) { 6793 data = (char *)iph + 6794 IPH_HDR_LENGTH(iph) + firstbyte - 6795 nfirstbyte; 6796 ndata = (char *)niph + 6797 IPH_HDR_LENGTH(niph); 6798 } else { 6799 data = (char *)ip6h + 6800 nip6_hdr_length + firstbyte - 6801 nfirstbyte; 6802 ndata = (char *)nip6h + nip6_hdr_length; 6803 } 6804 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) 6805 - nfirstbyte)) { 6806 /* Overlap mismatch */ 6807 (void) fragcache_delentry(i, fep, frag); 6808 mutex_exit(&frag->itpf_lock); 6809 ip_drop_packet(first_mp, inbound, NULL, 6810 NULL, DROPPER(ipss, 6811 ipds_spd_overlap_frag), 6812 &ipss->ipsec_spd_dropper); 6813 return (NULL); 6814 } 6815 } 6816 6817 /* 6818 * Fragment does not illegally overlap and can now 6819 * be inserted into the chain 6820 */ 6821 break; 6822 } 6823 6824 prevmp = nmp; 6825 } 6826 first_mp->b_next = nmp; 6827 6828 if (prevmp == NULL) { 6829 fep->itpfe_fraglist = first_mp; 6830 } else { 6831 prevmp->b_next = first_mp; 6832 } 6833 if (last) 6834 fep->itpfe_last = 1; 6835 6836 /* Part of defense for jolt2.c fragmentation attack */ 6837 if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) { 6838 (void) fragcache_delentry(i, fep, frag); 6839 mutex_exit(&frag->itpf_lock); 6840 ip_drop_packet(first_mp, inbound, NULL, NULL, 6841 DROPPER(ipss, ipds_spd_max_frags), 6842 &ipss->ipsec_spd_dropper); 6843 return (NULL); 6844 } 6845 6846 /* Check for complete packet */ 6847 6848 if (!fep->itpfe_last) { 6849 mutex_exit(&frag->itpf_lock); 6850 #ifdef FRAGCACHE_DEBUG 6851 cmn_err(CE_WARN, "Fragment cached, not last.\n"); 6852 #endif 6853 return (NULL); 6854 } 6855 6856 #ifdef FRAGCACHE_DEBUG 6857 cmn_err(CE_WARN, "Last fragment cached.\n"); 6858 cmn_err(CE_WARN, "mp = %p, first_mp = %p.\n", mp, first_mp); 6859 #endif 6860 6861 offset = 0; 6862 for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) { 6863 mblk_t *data_mp = (inbound ? mp->b_cont : mp); 6864 int hdr_len; 6865 6866 oiph = (ipha_t *)data_mp->b_rptr; 6867 ip6h = NULL; 6868 iph = NULL; 6869 6870 spare_mp = NULL; 6871 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) { 6872 hdr_len = ((outer_hdr_len != 0) ? 6873 IPH_HDR_LENGTH(oiph) : 0); 6874 iph = (ipha_t *)(data_mp->b_rptr + hdr_len); 6875 } else { 6876 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION); 6877 if ((spare_mp = msgpullup(data_mp, -1)) == NULL) { 6878 mutex_exit(&frag->itpf_lock); 6879 ip_drop_packet_chain(mp, inbound, NULL, NULL, 6880 DROPPER(ipss, ipds_spd_nomem), 6881 &ipss->ipsec_spd_dropper); 6882 return (NULL); 6883 } 6884 ip6h = (ip6_t *)spare_mp->b_rptr; 6885 (void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h, 6886 &ip6_hdr_length, &v6_proto_p); 6887 hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0); 6888 } 6889 6890 /* Calculate current fragment start/end */ 6891 if (is_v4) { 6892 if (iph == NULL) { 6893 /* Was v6 outer */ 6894 iph = (ipha_t *)(data_mp->b_rptr + hdr_len); 6895 } 6896 firstbyte = V4_FRAG_OFFSET(iph); 6897 lastbyte = firstbyte + ntohs(iph->ipha_length) - 6898 IPH_HDR_LENGTH(iph); 6899 } else { 6900 if ((spare_mp == NULL) && 6901 ((spare_mp = msgpullup(data_mp, -1)) == NULL)) { 6902 mutex_exit(&frag->itpf_lock); 6903 ip_drop_packet_chain(mp, inbound, NULL, NULL, 6904 DROPPER(ipss, ipds_spd_nomem), 6905 &ipss->ipsec_spd_dropper); 6906 return (NULL); 6907 } 6908 ip6h = (ip6_t *)(spare_mp->b_rptr + hdr_len); 6909 if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h, 6910 &ip6_hdr_length, &v6_proto_p)) { 6911 mutex_exit(&frag->itpf_lock); 6912 ip_drop_packet_chain(mp, inbound, NULL, NULL, 6913 DROPPER(ipss, ipds_spd_malformed_frag), 6914 &ipss->ipsec_spd_dropper); 6915 ipsec_freemsg_chain(spare_mp); 6916 return (NULL); 6917 } 6918 v6_proto = *v6_proto_p; 6919 bzero(&ipp, sizeof (ipp)); 6920 (void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL); 6921 fraghdr = ipp.ipp_fraghdr; 6922 firstbyte = ntohs(fraghdr->ip6f_offlg & 6923 IP6F_OFF_MASK); 6924 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) + 6925 sizeof (ip6_t) - ip6_hdr_length; 6926 } 6927 6928 /* 6929 * If this fragment is greater than current offset, 6930 * we have a missing fragment so return NULL 6931 */ 6932 if (firstbyte > offset) { 6933 mutex_exit(&frag->itpf_lock); 6934 #ifdef FRAGCACHE_DEBUG 6935 /* 6936 * Note, this can happen when the last frag 6937 * gets sent through because it is smaller 6938 * than the MTU. It is not necessarily an 6939 * error condition. 6940 */ 6941 cmn_err(CE_WARN, "Frag greater than offset! : " 6942 "missing fragment: firstbyte = %d, offset = %d, " 6943 "mp = %p\n", firstbyte, offset, mp); 6944 #endif 6945 ipsec_freemsg_chain(spare_mp); 6946 return (NULL); 6947 } 6948 6949 /* 6950 * If we are at the last fragment, we have the complete 6951 * packet, so rechain things and return it to caller 6952 * for processing 6953 */ 6954 6955 if ((is_v4 && !V4_MORE_FRAGS(iph)) || 6956 (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) { 6957 mp = fep->itpfe_fraglist; 6958 fep->itpfe_fraglist = NULL; 6959 (void) fragcache_delentry(i, fep, frag); 6960 mutex_exit(&frag->itpf_lock); 6961 6962 if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) > 6963 65535)) || (!is_v4 && (firstbyte + 6964 ntohs(ip6h->ip6_plen) > 65535))) { 6965 /* It is an invalid "ping-o-death" packet */ 6966 /* Discard it */ 6967 ip_drop_packet_chain(mp, inbound, NULL, NULL, 6968 DROPPER(ipss, ipds_spd_evil_frag), 6969 &ipss->ipsec_spd_dropper); 6970 ipsec_freemsg_chain(spare_mp); 6971 return (NULL); 6972 } 6973 #ifdef FRAGCACHE_DEBUG 6974 cmn_err(CE_WARN, "Fragcache returning mp = %p, " 6975 "mp->b_next = %p", mp, mp->b_next); 6976 #endif 6977 ipsec_freemsg_chain(spare_mp); 6978 /* 6979 * For inbound case, mp has ipsec_in b_next'd chain 6980 * For outbound case, it is just data mp chain 6981 */ 6982 return (mp); 6983 } 6984 ipsec_freemsg_chain(spare_mp); 6985 6986 /* 6987 * Update new ending offset if this 6988 * fragment extends the packet 6989 */ 6990 if (offset < lastbyte) 6991 offset = lastbyte; 6992 } 6993 6994 mutex_exit(&frag->itpf_lock); 6995 6996 /* Didn't find last fragment, so return NULL */ 6997 return (NULL); 6998 } 6999 7000 static void 7001 ipsec_fragcache_clean(ipsec_fragcache_t *frag) 7002 { 7003 ipsec_fragcache_entry_t *fep; 7004 int i; 7005 ipsec_fragcache_entry_t *earlyfep = NULL; 7006 time_t itpf_time; 7007 int earlyexp; 7008 int earlyi = 0; 7009 7010 ASSERT(MUTEX_HELD(&frag->itpf_lock)); 7011 7012 itpf_time = gethrestime_sec(); 7013 earlyexp = itpf_time + 10000; 7014 7015 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) { 7016 fep = (frag->itpf_ptr)[i]; 7017 while (fep) { 7018 if (fep->itpfe_exp < itpf_time) { 7019 /* found */ 7020 fep = fragcache_delentry(i, fep, frag); 7021 } else { 7022 if (fep->itpfe_exp < earlyexp) { 7023 earlyfep = fep; 7024 earlyexp = fep->itpfe_exp; 7025 earlyi = i; 7026 } 7027 fep = fep->itpfe_next; 7028 } 7029 } 7030 } 7031 7032 frag->itpf_expire_hint = earlyexp; 7033 7034 /* if (!found) */ 7035 if (frag->itpf_freelist == NULL) 7036 (void) fragcache_delentry(earlyi, earlyfep, frag); 7037 } 7038 7039 static ipsec_fragcache_entry_t * 7040 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep, 7041 ipsec_fragcache_t *frag) 7042 { 7043 ipsec_fragcache_entry_t *targp; 7044 ipsec_fragcache_entry_t *nextp = fep->itpfe_next; 7045 7046 ASSERT(MUTEX_HELD(&frag->itpf_lock)); 7047 7048 /* Free up any fragment list still in cache entry */ 7049 ipsec_freemsg_chain(fep->itpfe_fraglist); 7050 7051 targp = (frag->itpf_ptr)[slot]; 7052 ASSERT(targp != 0); 7053 7054 if (targp == fep) { 7055 /* unlink from head of hash chain */ 7056 (frag->itpf_ptr)[slot] = nextp; 7057 /* link into free list */ 7058 fep->itpfe_next = frag->itpf_freelist; 7059 frag->itpf_freelist = fep; 7060 return (nextp); 7061 } 7062 7063 /* maybe should use double linked list to make update faster */ 7064 /* must be past front of chain */ 7065 while (targp) { 7066 if (targp->itpfe_next == fep) { 7067 /* unlink from hash chain */ 7068 targp->itpfe_next = nextp; 7069 /* link into free list */ 7070 fep->itpfe_next = frag->itpf_freelist; 7071 frag->itpf_freelist = fep; 7072 return (nextp); 7073 } 7074 targp = targp->itpfe_next; 7075 ASSERT(targp != 0); 7076 } 7077 /* NOTREACHED */ 7078 return (NULL); 7079 } 7080