1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2018 Joyent, Inc. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/stropts.h> 31 #include <sys/strsubr.h> 32 #include <sys/errno.h> 33 #include <sys/ddi.h> 34 #include <sys/debug.h> 35 #include <sys/cmn_err.h> 36 #include <sys/stream.h> 37 #include <sys/strlog.h> 38 #include <sys/kmem.h> 39 #include <sys/sunddi.h> 40 #include <sys/tihdr.h> 41 #include <sys/atomic.h> 42 #include <sys/socket.h> 43 #include <sys/sysmacros.h> 44 #include <sys/crypto/common.h> 45 #include <sys/crypto/api.h> 46 #include <sys/zone.h> 47 #include <netinet/in.h> 48 #include <net/if.h> 49 #include <net/pfkeyv2.h> 50 #include <net/pfpolicy.h> 51 #include <inet/common.h> 52 #include <netinet/ip6.h> 53 #include <inet/ip.h> 54 #include <inet/ip_ire.h> 55 #include <inet/ip6.h> 56 #include <inet/ipsec_info.h> 57 #include <inet/tcp.h> 58 #include <inet/sadb.h> 59 #include <inet/ipsec_impl.h> 60 #include <inet/ipsecah.h> 61 #include <inet/ipsecesp.h> 62 #include <sys/random.h> 63 #include <sys/dlpi.h> 64 #include <sys/strsun.h> 65 #include <sys/strsubr.h> 66 #include <inet/ip_if.h> 67 #include <inet/ipdrop.h> 68 #include <inet/ipclassifier.h> 69 #include <inet/sctp_ip.h> 70 #include <sys/tsol/tnet.h> 71 72 /* 73 * This source file contains Security Association Database (SADB) common 74 * routines. They are linked in with the AH module. Since AH has no chance 75 * of falling under export control, it was safe to link it in there. 76 */ 77 78 static uint8_t *sadb_action_to_ecomb(uint8_t *, uint8_t *, ipsec_action_t *, 79 netstack_t *); 80 static ipsa_t *sadb_torch_assoc(isaf_t *, ipsa_t *); 81 static void sadb_destroy_acqlist(iacqf_t **, uint_t, boolean_t, 82 netstack_t *); 83 static void sadb_destroy(sadb_t *, netstack_t *); 84 static mblk_t *sadb_sa2msg(ipsa_t *, sadb_msg_t *); 85 static ts_label_t *sadb_label_from_sens(sadb_sens_t *, uint64_t *); 86 87 static time_t sadb_add_time(time_t, uint64_t); 88 static void lifetime_fuzz(ipsa_t *); 89 static void age_pair_peer_list(templist_t *, sadb_t *, boolean_t); 90 static int get_ipsa_pair(ipsa_query_t *, ipsap_t *, int *); 91 static void init_ipsa_pair(ipsap_t *); 92 static void destroy_ipsa_pair(ipsap_t *); 93 static int update_pairing(ipsap_t *, ipsa_query_t *, keysock_in_t *, int *); 94 static void ipsa_set_replay(ipsa_t *ipsa, uint32_t offset); 95 96 /* 97 * ipsacq_maxpackets is defined here to make it tunable 98 * from /etc/system. 99 */ 100 extern uint64_t ipsacq_maxpackets; 101 102 #define SET_EXPIRE(sa, delta, exp) { \ 103 if (((sa)->ipsa_ ## delta) != 0) { \ 104 (sa)->ipsa_ ## exp = sadb_add_time((sa)->ipsa_addtime, \ 105 (sa)->ipsa_ ## delta); \ 106 } \ 107 } 108 109 #define UPDATE_EXPIRE(sa, delta, exp) { \ 110 if (((sa)->ipsa_ ## delta) != 0) { \ 111 time_t tmp = sadb_add_time((sa)->ipsa_usetime, \ 112 (sa)->ipsa_ ## delta); \ 113 if (((sa)->ipsa_ ## exp) == 0) \ 114 (sa)->ipsa_ ## exp = tmp; \ 115 else \ 116 (sa)->ipsa_ ## exp = \ 117 MIN((sa)->ipsa_ ## exp, tmp); \ 118 } \ 119 } 120 121 122 /* wrap the macro so we can pass it as a function pointer */ 123 void 124 sadb_sa_refrele(void *target) 125 { 126 IPSA_REFRELE(((ipsa_t *)target)); 127 } 128 129 /* 130 * We presume that sizeof (long) == sizeof (time_t) and that time_t is 131 * a signed type. 132 */ 133 #define TIME_MAX LONG_MAX 134 135 /* 136 * PF_KEY gives us lifetimes in uint64_t seconds. We presume that 137 * time_t is defined to be a signed type with the same range as 138 * "long". On ILP32 systems, we thus run the risk of wrapping around 139 * at end of time, as well as "overwrapping" the clock back around 140 * into a seemingly valid but incorrect future date earlier than the 141 * desired expiration. 142 * 143 * In order to avoid odd behavior (either negative lifetimes or loss 144 * of high order bits) when someone asks for bizarrely long SA 145 * lifetimes, we do a saturating add for expire times. 146 * 147 * We presume that ILP32 systems will be past end of support life when 148 * the 32-bit time_t overflows (a dangerous assumption, mind you..). 149 * 150 * On LP64, 2^64 seconds are about 5.8e11 years, at which point we 151 * will hopefully have figured out clever ways to avoid the use of 152 * fixed-sized integers in computation. 153 */ 154 static time_t 155 sadb_add_time(time_t base, uint64_t delta) 156 { 157 /* 158 * Clip delta to the maximum possible time_t value to 159 * prevent "overwrapping" back into a shorter-than-desired 160 * future time. 161 */ 162 if (delta > TIME_MAX) 163 delta = TIME_MAX; 164 165 if (base > 0) { 166 if (TIME_MAX - base < delta) 167 return (TIME_MAX); /* Overflow */ 168 } 169 return (base + delta); 170 } 171 172 /* 173 * Callers of this function have already created a working security 174 * association, and have found the appropriate table & hash chain. All this 175 * function does is check duplicates, and insert the SA. The caller needs to 176 * hold the hash bucket lock and increment the refcnt before insertion. 177 * 178 * Return 0 if success, EEXIST if collision. 179 */ 180 #define SA_UNIQUE_MATCH(sa1, sa2) \ 181 (((sa1)->ipsa_unique_id & (sa1)->ipsa_unique_mask) == \ 182 ((sa2)->ipsa_unique_id & (sa2)->ipsa_unique_mask)) 183 184 int 185 sadb_insertassoc(ipsa_t *ipsa, isaf_t *bucket) 186 { 187 ipsa_t **ptpn = NULL; 188 ipsa_t *walker; 189 boolean_t unspecsrc; 190 191 ASSERT(MUTEX_HELD(&bucket->isaf_lock)); 192 193 unspecsrc = IPSA_IS_ADDR_UNSPEC(ipsa->ipsa_srcaddr, ipsa->ipsa_addrfam); 194 195 walker = bucket->isaf_ipsa; 196 ASSERT(walker == NULL || ipsa->ipsa_addrfam == walker->ipsa_addrfam); 197 198 /* 199 * Find insertion point (pointed to with **ptpn). Insert at the head 200 * of the list unless there's an unspecified source address, then 201 * insert it after the last SA with a specified source address. 202 * 203 * BTW, you'll have to walk the whole chain, matching on {DST, SPI} 204 * checking for collisions. 205 */ 206 207 while (walker != NULL) { 208 if (IPSA_ARE_ADDR_EQUAL(walker->ipsa_dstaddr, 209 ipsa->ipsa_dstaddr, ipsa->ipsa_addrfam)) { 210 if (walker->ipsa_spi == ipsa->ipsa_spi) 211 return (EEXIST); 212 213 mutex_enter(&walker->ipsa_lock); 214 if (ipsa->ipsa_state == IPSA_STATE_MATURE && 215 (walker->ipsa_flags & IPSA_F_USED) && 216 SA_UNIQUE_MATCH(walker, ipsa)) { 217 walker->ipsa_flags |= IPSA_F_CINVALID; 218 } 219 mutex_exit(&walker->ipsa_lock); 220 } 221 222 if (ptpn == NULL && unspecsrc) { 223 if (IPSA_IS_ADDR_UNSPEC(walker->ipsa_srcaddr, 224 walker->ipsa_addrfam)) 225 ptpn = walker->ipsa_ptpn; 226 else if (walker->ipsa_next == NULL) 227 ptpn = &walker->ipsa_next; 228 } 229 230 walker = walker->ipsa_next; 231 } 232 233 if (ptpn == NULL) 234 ptpn = &bucket->isaf_ipsa; 235 ipsa->ipsa_next = *ptpn; 236 ipsa->ipsa_ptpn = ptpn; 237 if (ipsa->ipsa_next != NULL) 238 ipsa->ipsa_next->ipsa_ptpn = &ipsa->ipsa_next; 239 *ptpn = ipsa; 240 ipsa->ipsa_linklock = &bucket->isaf_lock; 241 242 return (0); 243 } 244 #undef SA_UNIQUE_MATCH 245 246 /* 247 * Free a security association. Its reference count is 0, which means 248 * I must free it. The SA must be unlocked and must not be linked into 249 * any fanout list. 250 */ 251 static void 252 sadb_freeassoc(ipsa_t *ipsa) 253 { 254 ipsec_stack_t *ipss = ipsa->ipsa_netstack->netstack_ipsec; 255 mblk_t *asyncmp, *mp; 256 257 ASSERT(ipss != NULL); 258 ASSERT(MUTEX_NOT_HELD(&ipsa->ipsa_lock)); 259 ASSERT(ipsa->ipsa_refcnt == 0); 260 ASSERT(ipsa->ipsa_next == NULL); 261 ASSERT(ipsa->ipsa_ptpn == NULL); 262 263 264 asyncmp = sadb_clear_lpkt(ipsa); 265 if (asyncmp != NULL) { 266 mp = ip_recv_attr_free_mblk(asyncmp); 267 ip_drop_packet(mp, B_TRUE, NULL, 268 DROPPER(ipss, ipds_sadb_inlarval_timeout), 269 &ipss->ipsec_sadb_dropper); 270 } 271 mutex_enter(&ipsa->ipsa_lock); 272 273 if (ipsa->ipsa_tsl != NULL) { 274 label_rele(ipsa->ipsa_tsl); 275 ipsa->ipsa_tsl = NULL; 276 } 277 278 if (ipsa->ipsa_otsl != NULL) { 279 label_rele(ipsa->ipsa_otsl); 280 ipsa->ipsa_otsl = NULL; 281 } 282 283 ipsec_destroy_ctx_tmpl(ipsa, IPSEC_ALG_AUTH); 284 ipsec_destroy_ctx_tmpl(ipsa, IPSEC_ALG_ENCR); 285 mutex_exit(&ipsa->ipsa_lock); 286 287 /* bzero() these fields for paranoia's sake. */ 288 if (ipsa->ipsa_authkey != NULL) { 289 bzero(ipsa->ipsa_authkey, ipsa->ipsa_authkeylen); 290 kmem_free(ipsa->ipsa_authkey, ipsa->ipsa_authkeylen); 291 } 292 if (ipsa->ipsa_encrkey != NULL) { 293 bzero(ipsa->ipsa_encrkey, ipsa->ipsa_encrkeylen); 294 kmem_free(ipsa->ipsa_encrkey, ipsa->ipsa_encrkeylen); 295 } 296 if (ipsa->ipsa_nonce_buf != NULL) { 297 bzero(ipsa->ipsa_nonce_buf, sizeof (ipsec_nonce_t)); 298 kmem_free(ipsa->ipsa_nonce_buf, sizeof (ipsec_nonce_t)); 299 } 300 if (ipsa->ipsa_src_cid != NULL) { 301 IPSID_REFRELE(ipsa->ipsa_src_cid); 302 } 303 if (ipsa->ipsa_dst_cid != NULL) { 304 IPSID_REFRELE(ipsa->ipsa_dst_cid); 305 } 306 if (ipsa->ipsa_emech.cm_param != NULL) 307 kmem_free(ipsa->ipsa_emech.cm_param, 308 ipsa->ipsa_emech.cm_param_len); 309 310 mutex_destroy(&ipsa->ipsa_lock); 311 kmem_free(ipsa, sizeof (*ipsa)); 312 } 313 314 /* 315 * Unlink a security association from a hash bucket. Assume the hash bucket 316 * lock is held, but the association's lock is not. 317 * 318 * Note that we do not bump the bucket's generation number here because 319 * we might not be making a visible change to the set of visible SA's. 320 * All callers MUST bump the bucket's generation number before they unlock 321 * the bucket if they use sadb_unlinkassoc to permanetly remove an SA which 322 * was present in the bucket at the time it was locked. 323 */ 324 void 325 sadb_unlinkassoc(ipsa_t *ipsa) 326 { 327 ASSERT(ipsa->ipsa_linklock != NULL); 328 ASSERT(MUTEX_HELD(ipsa->ipsa_linklock)); 329 330 /* These fields are protected by the link lock. */ 331 *(ipsa->ipsa_ptpn) = ipsa->ipsa_next; 332 if (ipsa->ipsa_next != NULL) { 333 ipsa->ipsa_next->ipsa_ptpn = ipsa->ipsa_ptpn; 334 ipsa->ipsa_next = NULL; 335 } 336 337 ipsa->ipsa_ptpn = NULL; 338 339 /* This may destroy the SA. */ 340 IPSA_REFRELE(ipsa); 341 } 342 343 void 344 sadb_delete_cluster(ipsa_t *assoc) 345 { 346 uint8_t protocol; 347 348 if (cl_inet_deletespi && 349 ((assoc->ipsa_state == IPSA_STATE_LARVAL) || 350 (assoc->ipsa_state == IPSA_STATE_MATURE))) { 351 protocol = (assoc->ipsa_type == SADB_SATYPE_AH) ? 352 IPPROTO_AH : IPPROTO_ESP; 353 cl_inet_deletespi(assoc->ipsa_netstack->netstack_stackid, 354 protocol, assoc->ipsa_spi, NULL); 355 } 356 } 357 358 /* 359 * Create a larval security association with the specified SPI. All other 360 * fields are zeroed. 361 */ 362 static ipsa_t * 363 sadb_makelarvalassoc(uint32_t spi, uint32_t *src, uint32_t *dst, int addrfam, 364 netstack_t *ns) 365 { 366 ipsa_t *newbie; 367 368 /* 369 * Allocate... 370 */ 371 372 newbie = (ipsa_t *)kmem_zalloc(sizeof (ipsa_t), KM_NOSLEEP); 373 if (newbie == NULL) { 374 /* Can't make new larval SA. */ 375 return (NULL); 376 } 377 378 /* Assigned requested SPI, assume caller does SPI allocation magic. */ 379 newbie->ipsa_spi = spi; 380 newbie->ipsa_netstack = ns; /* No netstack_hold */ 381 382 /* 383 * Copy addresses... 384 */ 385 386 IPSA_COPY_ADDR(newbie->ipsa_srcaddr, src, addrfam); 387 IPSA_COPY_ADDR(newbie->ipsa_dstaddr, dst, addrfam); 388 389 newbie->ipsa_addrfam = addrfam; 390 391 /* 392 * Set common initialization values, including refcnt. 393 */ 394 mutex_init(&newbie->ipsa_lock, NULL, MUTEX_DEFAULT, NULL); 395 newbie->ipsa_state = IPSA_STATE_LARVAL; 396 newbie->ipsa_refcnt = 1; 397 newbie->ipsa_freefunc = sadb_freeassoc; 398 399 /* 400 * There aren't a lot of other common initialization values, as 401 * they are copied in from the PF_KEY message. 402 */ 403 404 return (newbie); 405 } 406 407 /* 408 * Call me to initialize a security association fanout. 409 */ 410 static int 411 sadb_init_fanout(isaf_t **tablep, uint_t size, int kmflag) 412 { 413 isaf_t *table; 414 int i; 415 416 table = (isaf_t *)kmem_alloc(size * sizeof (*table), kmflag); 417 *tablep = table; 418 419 if (table == NULL) 420 return (ENOMEM); 421 422 for (i = 0; i < size; i++) { 423 mutex_init(&(table[i].isaf_lock), NULL, MUTEX_DEFAULT, NULL); 424 table[i].isaf_ipsa = NULL; 425 table[i].isaf_gen = 0; 426 } 427 428 return (0); 429 } 430 431 /* 432 * Call me to initialize an acquire fanout 433 */ 434 static int 435 sadb_init_acfanout(iacqf_t **tablep, uint_t size, int kmflag) 436 { 437 iacqf_t *table; 438 int i; 439 440 table = (iacqf_t *)kmem_alloc(size * sizeof (*table), kmflag); 441 *tablep = table; 442 443 if (table == NULL) 444 return (ENOMEM); 445 446 for (i = 0; i < size; i++) { 447 mutex_init(&(table[i].iacqf_lock), NULL, MUTEX_DEFAULT, NULL); 448 table[i].iacqf_ipsacq = NULL; 449 } 450 451 return (0); 452 } 453 454 /* 455 * Attempt to initialize an SADB instance. On failure, return ENOMEM; 456 * caller must clean up partial allocations. 457 */ 458 static int 459 sadb_init_trial(sadb_t *sp, uint_t size, int kmflag) 460 { 461 ASSERT(sp->sdb_of == NULL); 462 ASSERT(sp->sdb_if == NULL); 463 ASSERT(sp->sdb_acq == NULL); 464 465 sp->sdb_hashsize = size; 466 if (sadb_init_fanout(&sp->sdb_of, size, kmflag) != 0) 467 return (ENOMEM); 468 if (sadb_init_fanout(&sp->sdb_if, size, kmflag) != 0) 469 return (ENOMEM); 470 if (sadb_init_acfanout(&sp->sdb_acq, size, kmflag) != 0) 471 return (ENOMEM); 472 473 return (0); 474 } 475 476 /* 477 * Call me to initialize an SADB instance; fall back to default size on failure. 478 */ 479 static void 480 sadb_init(const char *name, sadb_t *sp, uint_t size, uint_t ver, 481 netstack_t *ns) 482 { 483 ASSERT(sp->sdb_of == NULL); 484 ASSERT(sp->sdb_if == NULL); 485 ASSERT(sp->sdb_acq == NULL); 486 487 if (size < IPSEC_DEFAULT_HASH_SIZE) 488 size = IPSEC_DEFAULT_HASH_SIZE; 489 490 if (sadb_init_trial(sp, size, KM_NOSLEEP) != 0) { 491 492 cmn_err(CE_WARN, 493 "Unable to allocate %u entry IPv%u %s SADB hash table", 494 size, ver, name); 495 496 sadb_destroy(sp, ns); 497 size = IPSEC_DEFAULT_HASH_SIZE; 498 cmn_err(CE_WARN, "Falling back to %d entries", size); 499 (void) sadb_init_trial(sp, size, KM_SLEEP); 500 } 501 } 502 503 504 /* 505 * Initialize an SADB-pair. 506 */ 507 void 508 sadbp_init(const char *name, sadbp_t *sp, int type, int size, netstack_t *ns) 509 { 510 sadb_init(name, &sp->s_v4, size, 4, ns); 511 sadb_init(name, &sp->s_v6, size, 6, ns); 512 513 sp->s_satype = type; 514 515 ASSERT((type == SADB_SATYPE_AH) || (type == SADB_SATYPE_ESP)); 516 if (type == SADB_SATYPE_AH) { 517 ipsec_stack_t *ipss = ns->netstack_ipsec; 518 519 ip_drop_register(&ipss->ipsec_sadb_dropper, "IPsec SADB"); 520 sp->s_addflags = AH_ADD_SETTABLE_FLAGS; 521 sp->s_updateflags = AH_UPDATE_SETTABLE_FLAGS; 522 } else { 523 sp->s_addflags = ESP_ADD_SETTABLE_FLAGS; 524 sp->s_updateflags = ESP_UPDATE_SETTABLE_FLAGS; 525 } 526 } 527 528 /* 529 * Deliver a single SADB_DUMP message representing a single SA. This is 530 * called many times by sadb_dump(). 531 * 532 * If the return value of this is ENOBUFS (not the same as ENOMEM), then 533 * the caller should take that as a hint that dupb() on the "original answer" 534 * failed, and that perhaps the caller should try again with a copyb()ed 535 * "original answer". 536 */ 537 static int 538 sadb_dump_deliver(queue_t *pfkey_q, mblk_t *original_answer, ipsa_t *ipsa, 539 sadb_msg_t *samsg) 540 { 541 mblk_t *answer; 542 543 answer = dupb(original_answer); 544 if (answer == NULL) 545 return (ENOBUFS); 546 answer->b_cont = sadb_sa2msg(ipsa, samsg); 547 if (answer->b_cont == NULL) { 548 freeb(answer); 549 return (ENOMEM); 550 } 551 552 /* Just do a putnext, and let keysock deal with flow control. */ 553 putnext(pfkey_q, answer); 554 return (0); 555 } 556 557 /* 558 * Common function to allocate and prepare a keysock_out_t M_CTL message. 559 */ 560 mblk_t * 561 sadb_keysock_out(minor_t serial) 562 { 563 mblk_t *mp; 564 keysock_out_t *kso; 565 566 mp = allocb(sizeof (ipsec_info_t), BPRI_HI); 567 if (mp != NULL) { 568 mp->b_datap->db_type = M_CTL; 569 mp->b_wptr += sizeof (ipsec_info_t); 570 kso = (keysock_out_t *)mp->b_rptr; 571 kso->ks_out_type = KEYSOCK_OUT; 572 kso->ks_out_len = sizeof (*kso); 573 kso->ks_out_serial = serial; 574 } 575 576 return (mp); 577 } 578 579 /* 580 * Perform an SADB_DUMP, spewing out every SA in an array of SA fanouts 581 * to keysock. 582 */ 583 static int 584 sadb_dump_fanout(queue_t *pfkey_q, mblk_t *mp, minor_t serial, isaf_t *fanout, 585 int num_entries, boolean_t do_peers, time_t active_time) 586 { 587 int i, error = 0; 588 mblk_t *original_answer; 589 ipsa_t *walker; 590 sadb_msg_t *samsg; 591 time_t current; 592 593 /* 594 * For each IPSA hash bucket do: 595 * - Hold the mutex 596 * - Walk each entry, doing an sadb_dump_deliver() on it. 597 */ 598 ASSERT(mp->b_cont != NULL); 599 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 600 601 original_answer = sadb_keysock_out(serial); 602 if (original_answer == NULL) 603 return (ENOMEM); 604 605 current = gethrestime_sec(); 606 for (i = 0; i < num_entries; i++) { 607 mutex_enter(&fanout[i].isaf_lock); 608 for (walker = fanout[i].isaf_ipsa; walker != NULL; 609 walker = walker->ipsa_next) { 610 if (!do_peers && walker->ipsa_haspeer) 611 continue; 612 if ((active_time != 0) && 613 ((current - walker->ipsa_lastuse) > active_time)) 614 continue; 615 error = sadb_dump_deliver(pfkey_q, original_answer, 616 walker, samsg); 617 if (error == ENOBUFS) { 618 mblk_t *new_original_answer; 619 620 /* Ran out of dupb's. Try a copyb. */ 621 new_original_answer = copyb(original_answer); 622 if (new_original_answer == NULL) { 623 error = ENOMEM; 624 } else { 625 freeb(original_answer); 626 original_answer = new_original_answer; 627 error = sadb_dump_deliver(pfkey_q, 628 original_answer, walker, samsg); 629 } 630 } 631 if (error != 0) 632 break; /* out of for loop. */ 633 } 634 mutex_exit(&fanout[i].isaf_lock); 635 if (error != 0) 636 break; /* out of for loop. */ 637 } 638 639 freeb(original_answer); 640 return (error); 641 } 642 643 /* 644 * Dump an entire SADB; outbound first, then inbound. 645 */ 646 647 int 648 sadb_dump(queue_t *pfkey_q, mblk_t *mp, keysock_in_t *ksi, sadb_t *sp) 649 { 650 int error; 651 time_t active_time = 0; 652 sadb_x_edump_t *edump = 653 (sadb_x_edump_t *)ksi->ks_in_extv[SADB_X_EXT_EDUMP]; 654 655 if (edump != NULL) { 656 active_time = edump->sadb_x_edump_timeout; 657 } 658 659 /* Dump outbound */ 660 error = sadb_dump_fanout(pfkey_q, mp, ksi->ks_in_serial, sp->sdb_of, 661 sp->sdb_hashsize, B_TRUE, active_time); 662 if (error) 663 return (error); 664 665 /* Dump inbound */ 666 return sadb_dump_fanout(pfkey_q, mp, ksi->ks_in_serial, sp->sdb_if, 667 sp->sdb_hashsize, B_FALSE, active_time); 668 } 669 670 /* 671 * Generic sadb table walker. 672 * 673 * Call "walkfn" for each SA in each bucket in "table"; pass the 674 * bucket, the entry and "cookie" to the callback function. 675 * Take care to ensure that walkfn can delete the SA without screwing 676 * up our traverse. 677 * 678 * The bucket is locked for the duration of the callback, both so that the 679 * callback can just call sadb_unlinkassoc() when it wants to delete something, 680 * and so that no new entries are added while we're walking the list. 681 */ 682 static void 683 sadb_walker(isaf_t *table, uint_t numentries, 684 void (*walkfn)(isaf_t *head, ipsa_t *entry, void *cookie), 685 void *cookie) 686 { 687 int i; 688 for (i = 0; i < numentries; i++) { 689 ipsa_t *entry, *next; 690 691 mutex_enter(&table[i].isaf_lock); 692 693 for (entry = table[i].isaf_ipsa; entry != NULL; 694 entry = next) { 695 next = entry->ipsa_next; 696 (*walkfn)(&table[i], entry, cookie); 697 } 698 mutex_exit(&table[i].isaf_lock); 699 } 700 } 701 702 /* 703 * Call me to free up a security association fanout. Use the forever 704 * variable to indicate freeing up the SAs (forever == B_FALSE, e.g. 705 * an SADB_FLUSH message), or destroying everything (forever == B_TRUE, 706 * when a module is unloaded). 707 */ 708 static void 709 sadb_destroyer(isaf_t **tablep, uint_t numentries, boolean_t forever, 710 boolean_t inbound) 711 { 712 int i; 713 isaf_t *table = *tablep; 714 uint8_t protocol; 715 ipsa_t *sa; 716 netstackid_t sid; 717 718 if (table == NULL) 719 return; 720 721 for (i = 0; i < numentries; i++) { 722 mutex_enter(&table[i].isaf_lock); 723 while ((sa = table[i].isaf_ipsa) != NULL) { 724 if (inbound && cl_inet_deletespi && 725 (sa->ipsa_state != IPSA_STATE_ACTIVE_ELSEWHERE) && 726 (sa->ipsa_state != IPSA_STATE_IDLE)) { 727 protocol = (sa->ipsa_type == SADB_SATYPE_AH) ? 728 IPPROTO_AH : IPPROTO_ESP; 729 sid = sa->ipsa_netstack->netstack_stackid; 730 cl_inet_deletespi(sid, protocol, sa->ipsa_spi, 731 NULL); 732 } 733 sadb_unlinkassoc(sa); 734 } 735 table[i].isaf_gen++; 736 mutex_exit(&table[i].isaf_lock); 737 if (forever) 738 mutex_destroy(&(table[i].isaf_lock)); 739 } 740 741 if (forever) { 742 *tablep = NULL; 743 kmem_free(table, numentries * sizeof (*table)); 744 } 745 } 746 747 /* 748 * Entry points to sadb_destroyer(). 749 */ 750 static void 751 sadb_flush(sadb_t *sp, netstack_t *ns) 752 { 753 /* 754 * Flush out each bucket, one at a time. Were it not for keysock's 755 * enforcement, there would be a subtlety where I could add on the 756 * heels of a flush. With keysock's enforcement, however, this 757 * makes ESP's job easy. 758 */ 759 sadb_destroyer(&sp->sdb_of, sp->sdb_hashsize, B_FALSE, B_FALSE); 760 sadb_destroyer(&sp->sdb_if, sp->sdb_hashsize, B_FALSE, B_TRUE); 761 762 /* For each acquire, destroy it; leave the bucket mutex alone. */ 763 sadb_destroy_acqlist(&sp->sdb_acq, sp->sdb_hashsize, B_FALSE, ns); 764 } 765 766 static void 767 sadb_destroy(sadb_t *sp, netstack_t *ns) 768 { 769 sadb_destroyer(&sp->sdb_of, sp->sdb_hashsize, B_TRUE, B_FALSE); 770 sadb_destroyer(&sp->sdb_if, sp->sdb_hashsize, B_TRUE, B_TRUE); 771 772 /* For each acquire, destroy it, including the bucket mutex. */ 773 sadb_destroy_acqlist(&sp->sdb_acq, sp->sdb_hashsize, B_TRUE, ns); 774 775 ASSERT(sp->sdb_of == NULL); 776 ASSERT(sp->sdb_if == NULL); 777 ASSERT(sp->sdb_acq == NULL); 778 } 779 780 void 781 sadbp_flush(sadbp_t *spp, netstack_t *ns) 782 { 783 sadb_flush(&spp->s_v4, ns); 784 sadb_flush(&spp->s_v6, ns); 785 } 786 787 void 788 sadbp_destroy(sadbp_t *spp, netstack_t *ns) 789 { 790 sadb_destroy(&spp->s_v4, ns); 791 sadb_destroy(&spp->s_v6, ns); 792 793 if (spp->s_satype == SADB_SATYPE_AH) { 794 ipsec_stack_t *ipss = ns->netstack_ipsec; 795 796 ip_drop_unregister(&ipss->ipsec_sadb_dropper); 797 } 798 } 799 800 801 /* 802 * Check hard vs. soft lifetimes. If there's a reality mismatch (e.g. 803 * soft lifetimes > hard lifetimes) return an appropriate diagnostic for 804 * EINVAL. 805 */ 806 int 807 sadb_hardsoftchk(sadb_lifetime_t *hard, sadb_lifetime_t *soft, 808 sadb_lifetime_t *idle) 809 { 810 if (hard == NULL || soft == NULL) 811 return (0); 812 813 if (hard->sadb_lifetime_allocations != 0 && 814 soft->sadb_lifetime_allocations != 0 && 815 hard->sadb_lifetime_allocations < soft->sadb_lifetime_allocations) 816 return (SADB_X_DIAGNOSTIC_ALLOC_HSERR); 817 818 if (hard->sadb_lifetime_bytes != 0 && 819 soft->sadb_lifetime_bytes != 0 && 820 hard->sadb_lifetime_bytes < soft->sadb_lifetime_bytes) 821 return (SADB_X_DIAGNOSTIC_BYTES_HSERR); 822 823 if (hard->sadb_lifetime_addtime != 0 && 824 soft->sadb_lifetime_addtime != 0 && 825 hard->sadb_lifetime_addtime < soft->sadb_lifetime_addtime) 826 return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR); 827 828 if (hard->sadb_lifetime_usetime != 0 && 829 soft->sadb_lifetime_usetime != 0 && 830 hard->sadb_lifetime_usetime < soft->sadb_lifetime_usetime) 831 return (SADB_X_DIAGNOSTIC_USETIME_HSERR); 832 833 if (idle != NULL) { 834 if (hard->sadb_lifetime_addtime != 0 && 835 idle->sadb_lifetime_addtime != 0 && 836 hard->sadb_lifetime_addtime < idle->sadb_lifetime_addtime) 837 return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR); 838 839 if (soft->sadb_lifetime_addtime != 0 && 840 idle->sadb_lifetime_addtime != 0 && 841 soft->sadb_lifetime_addtime < idle->sadb_lifetime_addtime) 842 return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR); 843 844 if (hard->sadb_lifetime_usetime != 0 && 845 idle->sadb_lifetime_usetime != 0 && 846 hard->sadb_lifetime_usetime < idle->sadb_lifetime_usetime) 847 return (SADB_X_DIAGNOSTIC_USETIME_HSERR); 848 849 if (soft->sadb_lifetime_usetime != 0 && 850 idle->sadb_lifetime_usetime != 0 && 851 soft->sadb_lifetime_usetime < idle->sadb_lifetime_usetime) 852 return (SADB_X_DIAGNOSTIC_USETIME_HSERR); 853 } 854 855 return (0); 856 } 857 858 /* 859 * Sanity check sensitivity labels. 860 * 861 * For now, just reject labels on unlabeled systems. 862 */ 863 int 864 sadb_labelchk(keysock_in_t *ksi) 865 { 866 if (!is_system_labeled()) { 867 if (ksi->ks_in_extv[SADB_EXT_SENSITIVITY] != NULL) 868 return (SADB_X_DIAGNOSTIC_BAD_LABEL); 869 870 if (ksi->ks_in_extv[SADB_X_EXT_OUTER_SENS] != NULL) 871 return (SADB_X_DIAGNOSTIC_BAD_LABEL); 872 } 873 874 return (0); 875 } 876 877 /* 878 * Clone a security association for the purposes of inserting a single SA 879 * into inbound and outbound tables respectively. This function should only 880 * be called from sadb_common_add(). 881 */ 882 static ipsa_t * 883 sadb_cloneassoc(ipsa_t *ipsa) 884 { 885 ipsa_t *newbie; 886 boolean_t error = B_FALSE; 887 888 ASSERT(MUTEX_NOT_HELD(&(ipsa->ipsa_lock))); 889 890 newbie = kmem_alloc(sizeof (ipsa_t), KM_NOSLEEP); 891 if (newbie == NULL) 892 return (NULL); 893 894 /* Copy over what we can. */ 895 *newbie = *ipsa; 896 897 /* bzero and initialize locks, in case *_init() allocates... */ 898 mutex_init(&newbie->ipsa_lock, NULL, MUTEX_DEFAULT, NULL); 899 900 if (newbie->ipsa_tsl != NULL) 901 label_hold(newbie->ipsa_tsl); 902 903 if (newbie->ipsa_otsl != NULL) 904 label_hold(newbie->ipsa_otsl); 905 906 /* 907 * While somewhat dain-bramaged, the most graceful way to 908 * recover from errors is to keep plowing through the 909 * allocations, and getting what I can. It's easier to call 910 * sadb_freeassoc() on the stillborn clone when all the 911 * pointers aren't pointing to the parent's data. 912 */ 913 914 if (ipsa->ipsa_authkey != NULL) { 915 newbie->ipsa_authkey = kmem_alloc(newbie->ipsa_authkeylen, 916 KM_NOSLEEP); 917 if (newbie->ipsa_authkey == NULL) { 918 error = B_TRUE; 919 } else { 920 bcopy(ipsa->ipsa_authkey, newbie->ipsa_authkey, 921 newbie->ipsa_authkeylen); 922 923 newbie->ipsa_kcfauthkey.ck_data = 924 newbie->ipsa_authkey; 925 } 926 927 if (newbie->ipsa_amech.cm_param != NULL) { 928 newbie->ipsa_amech.cm_param = 929 (char *)&newbie->ipsa_mac_len; 930 } 931 } 932 933 if (ipsa->ipsa_encrkey != NULL) { 934 newbie->ipsa_encrkey = kmem_alloc(newbie->ipsa_encrkeylen, 935 KM_NOSLEEP); 936 if (newbie->ipsa_encrkey == NULL) { 937 error = B_TRUE; 938 } else { 939 bcopy(ipsa->ipsa_encrkey, newbie->ipsa_encrkey, 940 newbie->ipsa_encrkeylen); 941 942 newbie->ipsa_kcfencrkey.ck_data = 943 newbie->ipsa_encrkey; 944 } 945 } 946 947 newbie->ipsa_authtmpl = NULL; 948 newbie->ipsa_encrtmpl = NULL; 949 newbie->ipsa_haspeer = B_TRUE; 950 951 if (ipsa->ipsa_src_cid != NULL) { 952 newbie->ipsa_src_cid = ipsa->ipsa_src_cid; 953 IPSID_REFHOLD(ipsa->ipsa_src_cid); 954 } 955 956 if (ipsa->ipsa_dst_cid != NULL) { 957 newbie->ipsa_dst_cid = ipsa->ipsa_dst_cid; 958 IPSID_REFHOLD(ipsa->ipsa_dst_cid); 959 } 960 961 if (error) { 962 sadb_freeassoc(newbie); 963 return (NULL); 964 } 965 966 return (newbie); 967 } 968 969 /* 970 * Initialize a SADB address extension at the address specified by addrext. 971 * Return a pointer to the end of the new address extension. 972 */ 973 static uint8_t * 974 sadb_make_addr_ext(uint8_t *start, uint8_t *end, uint16_t exttype, 975 sa_family_t af, uint32_t *addr, uint16_t port, uint8_t proto, int prefix) 976 { 977 struct sockaddr_in *sin; 978 struct sockaddr_in6 *sin6; 979 uint8_t *cur = start; 980 int addrext_len; 981 int sin_len; 982 sadb_address_t *addrext = (sadb_address_t *)cur; 983 984 if (cur == NULL) 985 return (NULL); 986 987 cur += sizeof (*addrext); 988 if (cur > end) 989 return (NULL); 990 991 addrext->sadb_address_proto = proto; 992 addrext->sadb_address_prefixlen = prefix; 993 addrext->sadb_address_reserved = 0; 994 addrext->sadb_address_exttype = exttype; 995 996 switch (af) { 997 case AF_INET: 998 sin = (struct sockaddr_in *)cur; 999 sin_len = sizeof (*sin); 1000 cur += sin_len; 1001 if (cur > end) 1002 return (NULL); 1003 1004 sin->sin_family = af; 1005 bzero(sin->sin_zero, sizeof (sin->sin_zero)); 1006 sin->sin_port = port; 1007 IPSA_COPY_ADDR(&sin->sin_addr, addr, af); 1008 break; 1009 case AF_INET6: 1010 sin6 = (struct sockaddr_in6 *)cur; 1011 sin_len = sizeof (*sin6); 1012 cur += sin_len; 1013 if (cur > end) 1014 return (NULL); 1015 1016 bzero(sin6, sizeof (*sin6)); 1017 sin6->sin6_family = af; 1018 sin6->sin6_port = port; 1019 IPSA_COPY_ADDR(&sin6->sin6_addr, addr, af); 1020 break; 1021 } 1022 1023 addrext_len = roundup(cur - start, sizeof (uint64_t)); 1024 addrext->sadb_address_len = SADB_8TO64(addrext_len); 1025 1026 cur = start + addrext_len; 1027 if (cur > end) 1028 cur = NULL; 1029 1030 return (cur); 1031 } 1032 1033 /* 1034 * Construct a key management cookie extension. 1035 */ 1036 1037 static uint8_t * 1038 sadb_make_kmc_ext(uint8_t *cur, uint8_t *end, uint32_t kmp, uint64_t kmc) 1039 { 1040 sadb_x_kmc_t *kmcext = (sadb_x_kmc_t *)cur; 1041 1042 if (cur == NULL) 1043 return (NULL); 1044 1045 cur += sizeof (*kmcext); 1046 1047 if (cur > end) 1048 return (NULL); 1049 1050 kmcext->sadb_x_kmc_len = SADB_8TO64(sizeof (*kmcext)); 1051 kmcext->sadb_x_kmc_exttype = SADB_X_EXT_KM_COOKIE; 1052 kmcext->sadb_x_kmc_proto = kmp; 1053 kmcext->sadb_x_kmc_cookie64 = kmc; 1054 1055 return (cur); 1056 } 1057 1058 /* 1059 * Given an original message header with sufficient space following it, and an 1060 * SA, construct a full PF_KEY message with all of the relevant extensions. 1061 * This is mostly used for SADB_GET, and SADB_DUMP. 1062 */ 1063 static mblk_t * 1064 sadb_sa2msg(ipsa_t *ipsa, sadb_msg_t *samsg) 1065 { 1066 int alloclen, addrsize, paddrsize, authsize, encrsize; 1067 int srcidsize, dstidsize, senslen, osenslen; 1068 sa_family_t fam, pfam; /* Address family for SADB_EXT_ADDRESS */ 1069 /* src/dst and proxy sockaddrs. */ 1070 1071 authsize = 0; 1072 encrsize = 0; 1073 pfam = 0; 1074 srcidsize = 0; 1075 dstidsize = 0; 1076 paddrsize = 0; 1077 senslen = 0; 1078 osenslen = 0; 1079 /* 1080 * The following are pointers into the PF_KEY message this PF_KEY 1081 * message creates. 1082 */ 1083 sadb_msg_t *newsamsg; 1084 sadb_sa_t *assoc; 1085 sadb_lifetime_t *lt; 1086 sadb_key_t *key; 1087 sadb_ident_t *ident; 1088 sadb_sens_t *sens; 1089 sadb_ext_t *walker; /* For when we need a generic ext. pointer. */ 1090 sadb_x_replay_ctr_t *repl_ctr; 1091 sadb_x_pair_t *pair_ext; 1092 1093 mblk_t *mp; 1094 uint8_t *cur, *end; 1095 /* These indicate the presence of the above extension fields. */ 1096 boolean_t soft = B_FALSE, hard = B_FALSE; 1097 boolean_t isrc = B_FALSE, idst = B_FALSE; 1098 boolean_t auth = B_FALSE, encr = B_FALSE; 1099 boolean_t sensinteg = B_FALSE, osensinteg = B_FALSE; 1100 boolean_t srcid = B_FALSE, dstid = B_FALSE; 1101 boolean_t idle; 1102 boolean_t paired; 1103 uint32_t otherspi; 1104 1105 /* First off, figure out the allocation length for this message. */ 1106 /* 1107 * Constant stuff. This includes base, SA, address (src, dst), 1108 * and lifetime (current). 1109 */ 1110 alloclen = sizeof (sadb_msg_t) + sizeof (sadb_sa_t) + 1111 sizeof (sadb_lifetime_t); 1112 otherspi = 0; 1113 1114 fam = ipsa->ipsa_addrfam; 1115 switch (fam) { 1116 case AF_INET: 1117 addrsize = roundup(sizeof (struct sockaddr_in) + 1118 sizeof (sadb_address_t), sizeof (uint64_t)); 1119 break; 1120 case AF_INET6: 1121 addrsize = roundup(sizeof (struct sockaddr_in6) + 1122 sizeof (sadb_address_t), sizeof (uint64_t)); 1123 break; 1124 default: 1125 return (NULL); 1126 } 1127 /* 1128 * Allocate TWO address extensions, for source and destination. 1129 * (Thus, the * 2.) 1130 */ 1131 alloclen += addrsize * 2; 1132 if (ipsa->ipsa_flags & IPSA_F_NATT_REM) 1133 alloclen += addrsize; 1134 if (ipsa->ipsa_flags & IPSA_F_NATT_LOC) 1135 alloclen += addrsize; 1136 1137 if (ipsa->ipsa_flags & IPSA_F_PAIRED) { 1138 paired = B_TRUE; 1139 alloclen += sizeof (sadb_x_pair_t); 1140 otherspi = ipsa->ipsa_otherspi; 1141 } else { 1142 paired = B_FALSE; 1143 } 1144 1145 /* How 'bout other lifetimes? */ 1146 if (ipsa->ipsa_softaddlt != 0 || ipsa->ipsa_softuselt != 0 || 1147 ipsa->ipsa_softbyteslt != 0 || ipsa->ipsa_softalloc != 0) { 1148 alloclen += sizeof (sadb_lifetime_t); 1149 soft = B_TRUE; 1150 } 1151 1152 if (ipsa->ipsa_hardaddlt != 0 || ipsa->ipsa_harduselt != 0 || 1153 ipsa->ipsa_hardbyteslt != 0 || ipsa->ipsa_hardalloc != 0) { 1154 alloclen += sizeof (sadb_lifetime_t); 1155 hard = B_TRUE; 1156 } 1157 1158 if (ipsa->ipsa_idleaddlt != 0 || ipsa->ipsa_idleuselt != 0) { 1159 alloclen += sizeof (sadb_lifetime_t); 1160 idle = B_TRUE; 1161 } else { 1162 idle = B_FALSE; 1163 } 1164 1165 /* Inner addresses. */ 1166 if (ipsa->ipsa_innerfam != 0) { 1167 pfam = ipsa->ipsa_innerfam; 1168 switch (pfam) { 1169 case AF_INET6: 1170 paddrsize = roundup(sizeof (struct sockaddr_in6) + 1171 sizeof (sadb_address_t), sizeof (uint64_t)); 1172 break; 1173 case AF_INET: 1174 paddrsize = roundup(sizeof (struct sockaddr_in) + 1175 sizeof (sadb_address_t), sizeof (uint64_t)); 1176 break; 1177 default: 1178 cmn_err(CE_PANIC, 1179 "IPsec SADB: Proxy length failure.\n"); 1180 break; 1181 } 1182 isrc = B_TRUE; 1183 idst = B_TRUE; 1184 alloclen += 2 * paddrsize; 1185 } 1186 1187 /* For the following fields, assume that length != 0 ==> stuff */ 1188 if (ipsa->ipsa_authkeylen != 0) { 1189 authsize = roundup(sizeof (sadb_key_t) + ipsa->ipsa_authkeylen, 1190 sizeof (uint64_t)); 1191 alloclen += authsize; 1192 auth = B_TRUE; 1193 } 1194 1195 if (ipsa->ipsa_encrkeylen != 0) { 1196 encrsize = roundup(sizeof (sadb_key_t) + ipsa->ipsa_encrkeylen + 1197 ipsa->ipsa_nonce_len, sizeof (uint64_t)); 1198 alloclen += encrsize; 1199 encr = B_TRUE; 1200 } else { 1201 encr = B_FALSE; 1202 } 1203 1204 if (ipsa->ipsa_tsl != NULL) { 1205 senslen = sadb_sens_len_from_label(ipsa->ipsa_tsl); 1206 alloclen += senslen; 1207 sensinteg = B_TRUE; 1208 } 1209 1210 if (ipsa->ipsa_otsl != NULL) { 1211 osenslen = sadb_sens_len_from_label(ipsa->ipsa_otsl); 1212 alloclen += osenslen; 1213 osensinteg = B_TRUE; 1214 } 1215 1216 /* 1217 * Must use strlen() here for lengths. Identities use NULL 1218 * pointers to indicate their nonexistence. 1219 */ 1220 if (ipsa->ipsa_src_cid != NULL) { 1221 srcidsize = roundup(sizeof (sadb_ident_t) + 1222 strlen(ipsa->ipsa_src_cid->ipsid_cid) + 1, 1223 sizeof (uint64_t)); 1224 alloclen += srcidsize; 1225 srcid = B_TRUE; 1226 } 1227 1228 if (ipsa->ipsa_dst_cid != NULL) { 1229 dstidsize = roundup(sizeof (sadb_ident_t) + 1230 strlen(ipsa->ipsa_dst_cid->ipsid_cid) + 1, 1231 sizeof (uint64_t)); 1232 alloclen += dstidsize; 1233 dstid = B_TRUE; 1234 } 1235 1236 if ((ipsa->ipsa_kmp != 0) || (ipsa->ipsa_kmc != 0)) 1237 alloclen += sizeof (sadb_x_kmc_t); 1238 1239 if (ipsa->ipsa_replay != 0) { 1240 alloclen += sizeof (sadb_x_replay_ctr_t); 1241 } 1242 1243 /* Make sure the allocation length is a multiple of 8 bytes. */ 1244 ASSERT((alloclen & 0x7) == 0); 1245 1246 /* XXX Possibly make it esballoc, with a bzero-ing free_ftn. */ 1247 mp = allocb(alloclen, BPRI_HI); 1248 if (mp == NULL) 1249 return (NULL); 1250 bzero(mp->b_rptr, alloclen); 1251 1252 mp->b_wptr += alloclen; 1253 end = mp->b_wptr; 1254 newsamsg = (sadb_msg_t *)mp->b_rptr; 1255 *newsamsg = *samsg; 1256 newsamsg->sadb_msg_len = (uint16_t)SADB_8TO64(alloclen); 1257 1258 mutex_enter(&ipsa->ipsa_lock); /* Since I'm grabbing SA fields... */ 1259 1260 newsamsg->sadb_msg_satype = ipsa->ipsa_type; 1261 1262 assoc = (sadb_sa_t *)(newsamsg + 1); 1263 assoc->sadb_sa_len = SADB_8TO64(sizeof (*assoc)); 1264 assoc->sadb_sa_exttype = SADB_EXT_SA; 1265 assoc->sadb_sa_spi = ipsa->ipsa_spi; 1266 assoc->sadb_sa_replay = ipsa->ipsa_replay_wsize; 1267 assoc->sadb_sa_state = ipsa->ipsa_state; 1268 assoc->sadb_sa_auth = ipsa->ipsa_auth_alg; 1269 assoc->sadb_sa_encrypt = ipsa->ipsa_encr_alg; 1270 assoc->sadb_sa_flags = ipsa->ipsa_flags; 1271 1272 lt = (sadb_lifetime_t *)(assoc + 1); 1273 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt)); 1274 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 1275 /* We do not support the concept. */ 1276 lt->sadb_lifetime_allocations = 0; 1277 lt->sadb_lifetime_bytes = ipsa->ipsa_bytes; 1278 lt->sadb_lifetime_addtime = ipsa->ipsa_addtime; 1279 lt->sadb_lifetime_usetime = ipsa->ipsa_usetime; 1280 1281 if (hard) { 1282 lt++; 1283 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt)); 1284 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 1285 lt->sadb_lifetime_allocations = ipsa->ipsa_hardalloc; 1286 lt->sadb_lifetime_bytes = ipsa->ipsa_hardbyteslt; 1287 lt->sadb_lifetime_addtime = ipsa->ipsa_hardaddlt; 1288 lt->sadb_lifetime_usetime = ipsa->ipsa_harduselt; 1289 } 1290 1291 if (soft) { 1292 lt++; 1293 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt)); 1294 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 1295 lt->sadb_lifetime_allocations = ipsa->ipsa_softalloc; 1296 lt->sadb_lifetime_bytes = ipsa->ipsa_softbyteslt; 1297 lt->sadb_lifetime_addtime = ipsa->ipsa_softaddlt; 1298 lt->sadb_lifetime_usetime = ipsa->ipsa_softuselt; 1299 } 1300 1301 if (idle) { 1302 lt++; 1303 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt)); 1304 lt->sadb_lifetime_exttype = SADB_X_EXT_LIFETIME_IDLE; 1305 lt->sadb_lifetime_addtime = ipsa->ipsa_idleaddlt; 1306 lt->sadb_lifetime_usetime = ipsa->ipsa_idleuselt; 1307 } 1308 1309 cur = (uint8_t *)(lt + 1); 1310 1311 /* NOTE: Don't fill in ports here if we are a tunnel-mode SA. */ 1312 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, fam, 1313 ipsa->ipsa_srcaddr, (!isrc && !idst) ? SA_SRCPORT(ipsa) : 0, 1314 SA_PROTO(ipsa), 0); 1315 if (cur == NULL) { 1316 freemsg(mp); 1317 mp = NULL; 1318 goto bail; 1319 } 1320 1321 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, fam, 1322 ipsa->ipsa_dstaddr, (!isrc && !idst) ? SA_DSTPORT(ipsa) : 0, 1323 SA_PROTO(ipsa), 0); 1324 if (cur == NULL) { 1325 freemsg(mp); 1326 mp = NULL; 1327 goto bail; 1328 } 1329 1330 if (ipsa->ipsa_flags & IPSA_F_NATT_LOC) { 1331 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_NATT_LOC, 1332 fam, &ipsa->ipsa_natt_addr_loc, ipsa->ipsa_local_nat_port, 1333 IPPROTO_UDP, 0); 1334 if (cur == NULL) { 1335 freemsg(mp); 1336 mp = NULL; 1337 goto bail; 1338 } 1339 } 1340 1341 if (ipsa->ipsa_flags & IPSA_F_NATT_REM) { 1342 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_NATT_REM, 1343 fam, &ipsa->ipsa_natt_addr_rem, ipsa->ipsa_remote_nat_port, 1344 IPPROTO_UDP, 0); 1345 if (cur == NULL) { 1346 freemsg(mp); 1347 mp = NULL; 1348 goto bail; 1349 } 1350 } 1351 1352 /* If we are a tunnel-mode SA, fill in the inner-selectors. */ 1353 if (isrc) { 1354 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC, 1355 pfam, ipsa->ipsa_innersrc, SA_SRCPORT(ipsa), 1356 SA_IPROTO(ipsa), ipsa->ipsa_innersrcpfx); 1357 if (cur == NULL) { 1358 freemsg(mp); 1359 mp = NULL; 1360 goto bail; 1361 } 1362 } 1363 1364 if (idst) { 1365 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST, 1366 pfam, ipsa->ipsa_innerdst, SA_DSTPORT(ipsa), 1367 SA_IPROTO(ipsa), ipsa->ipsa_innerdstpfx); 1368 if (cur == NULL) { 1369 freemsg(mp); 1370 mp = NULL; 1371 goto bail; 1372 } 1373 } 1374 1375 if ((ipsa->ipsa_kmp != 0) || (ipsa->ipsa_kmc != 0)) { 1376 cur = sadb_make_kmc_ext(cur, end, 1377 ipsa->ipsa_kmp, ipsa->ipsa_kmc); 1378 if (cur == NULL) { 1379 freemsg(mp); 1380 mp = NULL; 1381 goto bail; 1382 } 1383 } 1384 1385 walker = (sadb_ext_t *)cur; 1386 if (auth) { 1387 key = (sadb_key_t *)walker; 1388 key->sadb_key_len = SADB_8TO64(authsize); 1389 key->sadb_key_exttype = SADB_EXT_KEY_AUTH; 1390 key->sadb_key_bits = ipsa->ipsa_authkeybits; 1391 key->sadb_key_reserved = 0; 1392 bcopy(ipsa->ipsa_authkey, key + 1, ipsa->ipsa_authkeylen); 1393 walker = (sadb_ext_t *)((uint64_t *)walker + 1394 walker->sadb_ext_len); 1395 } 1396 1397 if (encr) { 1398 uint8_t *buf_ptr; 1399 key = (sadb_key_t *)walker; 1400 key->sadb_key_len = SADB_8TO64(encrsize); 1401 key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT; 1402 key->sadb_key_bits = ipsa->ipsa_encrkeybits; 1403 key->sadb_key_reserved = ipsa->ipsa_saltbits; 1404 buf_ptr = (uint8_t *)(key + 1); 1405 bcopy(ipsa->ipsa_encrkey, buf_ptr, ipsa->ipsa_encrkeylen); 1406 if (ipsa->ipsa_salt != NULL) { 1407 buf_ptr += ipsa->ipsa_encrkeylen; 1408 bcopy(ipsa->ipsa_salt, buf_ptr, ipsa->ipsa_saltlen); 1409 } 1410 walker = (sadb_ext_t *)((uint64_t *)walker + 1411 walker->sadb_ext_len); 1412 } 1413 1414 if (srcid) { 1415 ident = (sadb_ident_t *)walker; 1416 ident->sadb_ident_len = SADB_8TO64(srcidsize); 1417 ident->sadb_ident_exttype = SADB_EXT_IDENTITY_SRC; 1418 ident->sadb_ident_type = ipsa->ipsa_src_cid->ipsid_type; 1419 ident->sadb_ident_id = 0; 1420 ident->sadb_ident_reserved = 0; 1421 (void) strcpy((char *)(ident + 1), 1422 ipsa->ipsa_src_cid->ipsid_cid); 1423 walker = (sadb_ext_t *)((uint64_t *)walker + 1424 walker->sadb_ext_len); 1425 } 1426 1427 if (dstid) { 1428 ident = (sadb_ident_t *)walker; 1429 ident->sadb_ident_len = SADB_8TO64(dstidsize); 1430 ident->sadb_ident_exttype = SADB_EXT_IDENTITY_DST; 1431 ident->sadb_ident_type = ipsa->ipsa_dst_cid->ipsid_type; 1432 ident->sadb_ident_id = 0; 1433 ident->sadb_ident_reserved = 0; 1434 (void) strcpy((char *)(ident + 1), 1435 ipsa->ipsa_dst_cid->ipsid_cid); 1436 walker = (sadb_ext_t *)((uint64_t *)walker + 1437 walker->sadb_ext_len); 1438 } 1439 1440 if (sensinteg) { 1441 sens = (sadb_sens_t *)walker; 1442 sadb_sens_from_label(sens, SADB_EXT_SENSITIVITY, 1443 ipsa->ipsa_tsl, senslen); 1444 1445 walker = (sadb_ext_t *)((uint64_t *)walker + 1446 walker->sadb_ext_len); 1447 } 1448 1449 if (osensinteg) { 1450 sens = (sadb_sens_t *)walker; 1451 1452 sadb_sens_from_label(sens, SADB_X_EXT_OUTER_SENS, 1453 ipsa->ipsa_otsl, osenslen); 1454 if (ipsa->ipsa_mac_exempt) 1455 sens->sadb_x_sens_flags = SADB_X_SENS_IMPLICIT; 1456 1457 walker = (sadb_ext_t *)((uint64_t *)walker + 1458 walker->sadb_ext_len); 1459 } 1460 1461 if (paired) { 1462 pair_ext = (sadb_x_pair_t *)walker; 1463 1464 pair_ext->sadb_x_pair_len = SADB_8TO64(sizeof (sadb_x_pair_t)); 1465 pair_ext->sadb_x_pair_exttype = SADB_X_EXT_PAIR; 1466 pair_ext->sadb_x_pair_spi = otherspi; 1467 1468 walker = (sadb_ext_t *)((uint64_t *)walker + 1469 walker->sadb_ext_len); 1470 } 1471 1472 if (ipsa->ipsa_replay != 0) { 1473 repl_ctr = (sadb_x_replay_ctr_t *)walker; 1474 repl_ctr->sadb_x_rc_len = SADB_8TO64(sizeof (*repl_ctr)); 1475 repl_ctr->sadb_x_rc_exttype = SADB_X_EXT_REPLAY_VALUE; 1476 repl_ctr->sadb_x_rc_replay32 = ipsa->ipsa_replay; 1477 repl_ctr->sadb_x_rc_replay64 = 0; 1478 walker = (sadb_ext_t *)(repl_ctr + 1); 1479 } 1480 1481 bail: 1482 /* Pardon any delays... */ 1483 mutex_exit(&ipsa->ipsa_lock); 1484 1485 return (mp); 1486 } 1487 1488 /* 1489 * Strip out key headers or unmarked headers (SADB_EXT_KEY_*, SADB_EXT_UNKNOWN) 1490 * and adjust base message accordingly. 1491 * 1492 * Assume message is pulled up in one piece of contiguous memory. 1493 * 1494 * Say if we start off with: 1495 * 1496 * +------+----+-------------+-----------+---------------+---------------+ 1497 * | base | SA | source addr | dest addr | rsrvd. or key | soft lifetime | 1498 * +------+----+-------------+-----------+---------------+---------------+ 1499 * 1500 * we will end up with 1501 * 1502 * +------+----+-------------+-----------+---------------+ 1503 * | base | SA | source addr | dest addr | soft lifetime | 1504 * +------+----+-------------+-----------+---------------+ 1505 */ 1506 static void 1507 sadb_strip(sadb_msg_t *samsg) 1508 { 1509 sadb_ext_t *ext; 1510 uint8_t *target = NULL; 1511 uint8_t *msgend; 1512 int sofar = SADB_8TO64(sizeof (*samsg)); 1513 int copylen; 1514 1515 ext = (sadb_ext_t *)(samsg + 1); 1516 msgend = (uint8_t *)samsg; 1517 msgend += SADB_64TO8(samsg->sadb_msg_len); 1518 while ((uint8_t *)ext < msgend) { 1519 if (ext->sadb_ext_type == SADB_EXT_RESERVED || 1520 ext->sadb_ext_type == SADB_EXT_KEY_AUTH || 1521 ext->sadb_ext_type == SADB_X_EXT_EDUMP || 1522 ext->sadb_ext_type == SADB_EXT_KEY_ENCRYPT) { 1523 /* 1524 * Aha! I found a header to be erased. 1525 */ 1526 1527 if (target != NULL) { 1528 /* 1529 * If I had a previous header to be erased, 1530 * copy over it. I can get away with just 1531 * copying backwards because the target will 1532 * always be 8 bytes behind the source. 1533 */ 1534 copylen = ((uint8_t *)ext) - (target + 1535 SADB_64TO8( 1536 ((sadb_ext_t *)target)->sadb_ext_len)); 1537 ovbcopy(((uint8_t *)ext - copylen), target, 1538 copylen); 1539 target += copylen; 1540 ((sadb_ext_t *)target)->sadb_ext_len = 1541 SADB_8TO64(((uint8_t *)ext) - target + 1542 SADB_64TO8(ext->sadb_ext_len)); 1543 } else { 1544 target = (uint8_t *)ext; 1545 } 1546 } else { 1547 sofar += ext->sadb_ext_len; 1548 } 1549 1550 ext = (sadb_ext_t *)(((uint64_t *)ext) + ext->sadb_ext_len); 1551 } 1552 1553 ASSERT((uint8_t *)ext == msgend); 1554 1555 if (target != NULL) { 1556 copylen = ((uint8_t *)ext) - (target + 1557 SADB_64TO8(((sadb_ext_t *)target)->sadb_ext_len)); 1558 if (copylen != 0) 1559 ovbcopy(((uint8_t *)ext - copylen), target, copylen); 1560 } 1561 1562 /* Adjust samsg. */ 1563 samsg->sadb_msg_len = (uint16_t)sofar; 1564 1565 /* Assume all of the rest is cleared by caller in sadb_pfkey_echo(). */ 1566 } 1567 1568 /* 1569 * AH needs to send an error to PF_KEY. Assume mp points to an M_CTL 1570 * followed by an M_DATA with a PF_KEY message in it. The serial of 1571 * the sending keysock instance is included. 1572 */ 1573 void 1574 sadb_pfkey_error(queue_t *pfkey_q, mblk_t *mp, int error, int diagnostic, 1575 uint_t serial) 1576 { 1577 mblk_t *msg = mp->b_cont; 1578 sadb_msg_t *samsg; 1579 keysock_out_t *kso; 1580 1581 /* 1582 * Enough functions call this to merit a NULL queue check. 1583 */ 1584 if (pfkey_q == NULL) { 1585 freemsg(mp); 1586 return; 1587 } 1588 1589 ASSERT(msg != NULL); 1590 ASSERT((mp->b_wptr - mp->b_rptr) == sizeof (ipsec_info_t)); 1591 ASSERT((msg->b_wptr - msg->b_rptr) >= sizeof (sadb_msg_t)); 1592 samsg = (sadb_msg_t *)msg->b_rptr; 1593 kso = (keysock_out_t *)mp->b_rptr; 1594 1595 kso->ks_out_type = KEYSOCK_OUT; 1596 kso->ks_out_len = sizeof (*kso); 1597 kso->ks_out_serial = serial; 1598 1599 /* 1600 * Only send the base message up in the event of an error. 1601 * Don't worry about bzero()-ing, because it was probably bogus 1602 * anyway. 1603 */ 1604 msg->b_wptr = msg->b_rptr + sizeof (*samsg); 1605 samsg = (sadb_msg_t *)msg->b_rptr; 1606 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg)); 1607 samsg->sadb_msg_errno = (uint8_t)error; 1608 if (diagnostic != SADB_X_DIAGNOSTIC_PRESET) 1609 samsg->sadb_x_msg_diagnostic = (uint16_t)diagnostic; 1610 1611 putnext(pfkey_q, mp); 1612 } 1613 1614 /* 1615 * Send a successful return packet back to keysock via the queue in pfkey_q. 1616 * 1617 * Often, an SA is associated with the reply message, it's passed in if needed, 1618 * and NULL if not. BTW, that ipsa will have its refcnt appropriately held, 1619 * and the caller will release said refcnt. 1620 */ 1621 void 1622 sadb_pfkey_echo(queue_t *pfkey_q, mblk_t *mp, sadb_msg_t *samsg, 1623 keysock_in_t *ksi, ipsa_t *ipsa) 1624 { 1625 keysock_out_t *kso; 1626 mblk_t *mp1; 1627 sadb_msg_t *newsamsg; 1628 uint8_t *oldend; 1629 1630 ASSERT((mp->b_cont != NULL) && 1631 ((void *)samsg == (void *)mp->b_cont->b_rptr) && 1632 ((void *)mp->b_rptr == (void *)ksi)); 1633 1634 switch (samsg->sadb_msg_type) { 1635 case SADB_ADD: 1636 case SADB_UPDATE: 1637 case SADB_X_UPDATEPAIR: 1638 case SADB_X_DELPAIR_STATE: 1639 case SADB_FLUSH: 1640 case SADB_DUMP: 1641 /* 1642 * I have all of the message already. I just need to strip 1643 * out the keying material and echo the message back. 1644 * 1645 * NOTE: for SADB_DUMP, the function sadb_dump() did the 1646 * work. When DUMP reaches here, it should only be a base 1647 * message. 1648 */ 1649 justecho: 1650 if (ksi->ks_in_extv[SADB_EXT_KEY_AUTH] != NULL || 1651 ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT] != NULL || 1652 ksi->ks_in_extv[SADB_X_EXT_EDUMP] != NULL) { 1653 sadb_strip(samsg); 1654 /* Assume PF_KEY message is contiguous. */ 1655 ASSERT(mp->b_cont->b_cont == NULL); 1656 oldend = mp->b_cont->b_wptr; 1657 mp->b_cont->b_wptr = mp->b_cont->b_rptr + 1658 SADB_64TO8(samsg->sadb_msg_len); 1659 bzero(mp->b_cont->b_wptr, oldend - mp->b_cont->b_wptr); 1660 } 1661 break; 1662 case SADB_GET: 1663 /* 1664 * Do a lot of work here, because of the ipsa I just found. 1665 * First construct the new PF_KEY message, then abandon 1666 * the old one. 1667 */ 1668 mp1 = sadb_sa2msg(ipsa, samsg); 1669 if (mp1 == NULL) { 1670 sadb_pfkey_error(pfkey_q, mp, ENOMEM, 1671 SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial); 1672 return; 1673 } 1674 freemsg(mp->b_cont); 1675 mp->b_cont = mp1; 1676 break; 1677 case SADB_DELETE: 1678 case SADB_X_DELPAIR: 1679 if (ipsa == NULL) 1680 goto justecho; 1681 /* 1682 * Because listening KMds may require more info, treat 1683 * DELETE like a special case of GET. 1684 */ 1685 mp1 = sadb_sa2msg(ipsa, samsg); 1686 if (mp1 == NULL) { 1687 sadb_pfkey_error(pfkey_q, mp, ENOMEM, 1688 SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial); 1689 return; 1690 } 1691 newsamsg = (sadb_msg_t *)mp1->b_rptr; 1692 sadb_strip(newsamsg); 1693 oldend = mp1->b_wptr; 1694 mp1->b_wptr = mp1->b_rptr + SADB_64TO8(newsamsg->sadb_msg_len); 1695 bzero(mp1->b_wptr, oldend - mp1->b_wptr); 1696 freemsg(mp->b_cont); 1697 mp->b_cont = mp1; 1698 break; 1699 default: 1700 freemsg(mp); 1701 return; 1702 } 1703 1704 /* ksi is now null and void. */ 1705 kso = (keysock_out_t *)ksi; 1706 kso->ks_out_type = KEYSOCK_OUT; 1707 kso->ks_out_len = sizeof (*kso); 1708 kso->ks_out_serial = ksi->ks_in_serial; 1709 /* We're ready to send... */ 1710 putnext(pfkey_q, mp); 1711 } 1712 1713 /* 1714 * Set up a global pfkey_q instance for AH, ESP, or some other consumer. 1715 */ 1716 void 1717 sadb_keysock_hello(queue_t **pfkey_qp, queue_t *q, mblk_t *mp, 1718 void (*ager)(void *), void *agerarg, timeout_id_t *top, int satype) 1719 { 1720 keysock_hello_ack_t *kha; 1721 queue_t *oldq; 1722 1723 ASSERT(OTHERQ(q) != NULL); 1724 1725 /* 1726 * First, check atomically that I'm the first and only keysock 1727 * instance. 1728 * 1729 * Use OTHERQ(q), because qreply(q, mp) == putnext(OTHERQ(q), mp), 1730 * and I want this module to say putnext(*_pfkey_q, mp) for PF_KEY 1731 * messages. 1732 */ 1733 1734 oldq = atomic_cas_ptr((void **)pfkey_qp, NULL, OTHERQ(q)); 1735 if (oldq != NULL) { 1736 ASSERT(oldq != q); 1737 cmn_err(CE_WARN, "Danger! Multiple keysocks on top of %s.\n", 1738 (satype == SADB_SATYPE_ESP)? "ESP" : "AH or other"); 1739 freemsg(mp); 1740 return; 1741 } 1742 1743 kha = (keysock_hello_ack_t *)mp->b_rptr; 1744 kha->ks_hello_len = sizeof (keysock_hello_ack_t); 1745 kha->ks_hello_type = KEYSOCK_HELLO_ACK; 1746 kha->ks_hello_satype = (uint8_t)satype; 1747 1748 /* 1749 * If we made it past the atomic_cas_ptr, then we have "exclusive" 1750 * access to the timeout handle. Fire it off after the default ager 1751 * interval. 1752 */ 1753 *top = qtimeout(*pfkey_qp, ager, agerarg, 1754 drv_usectohz(SADB_AGE_INTERVAL_DEFAULT * 1000)); 1755 1756 putnext(*pfkey_qp, mp); 1757 } 1758 1759 /* 1760 * Normalize IPv4-mapped IPv6 addresses (and prefixes) as appropriate. 1761 * 1762 * Check addresses themselves for wildcard or multicast. 1763 * Check ire table for local/non-local/broadcast. 1764 */ 1765 int 1766 sadb_addrcheck(queue_t *pfkey_q, mblk_t *mp, sadb_ext_t *ext, uint_t serial, 1767 netstack_t *ns) 1768 { 1769 sadb_address_t *addr = (sadb_address_t *)ext; 1770 struct sockaddr_in *sin; 1771 struct sockaddr_in6 *sin6; 1772 int diagnostic, type; 1773 boolean_t normalized = B_FALSE; 1774 1775 ASSERT(ext != NULL); 1776 ASSERT((ext->sadb_ext_type == SADB_EXT_ADDRESS_SRC) || 1777 (ext->sadb_ext_type == SADB_EXT_ADDRESS_DST) || 1778 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC) || 1779 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_DST) || 1780 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_NATT_LOC) || 1781 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_NATT_REM)); 1782 1783 diagnostic = 0; 1784 1785 /* Assign both sockaddrs, the compiler will do the right thing. */ 1786 sin = (struct sockaddr_in *)(addr + 1); 1787 sin6 = (struct sockaddr_in6 *)(addr + 1); 1788 1789 if (sin6->sin6_family == AF_INET6) { 1790 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 1791 /* 1792 * Convert to an AF_INET sockaddr. This means the 1793 * return messages will have the extra space, but have 1794 * AF_INET sockaddrs instead of AF_INET6. 1795 * 1796 * Yes, RFC 2367 isn't clear on what to do here w.r.t. 1797 * mapped addresses, but since AF_INET6 ::ffff:<v4> is 1798 * equal to AF_INET <v4>, it shouldnt be a huge 1799 * problem. 1800 */ 1801 sin->sin_family = AF_INET; 1802 IN6_V4MAPPED_TO_INADDR(&sin6->sin6_addr, 1803 &sin->sin_addr); 1804 bzero(&sin->sin_zero, sizeof (sin->sin_zero)); 1805 normalized = B_TRUE; 1806 } 1807 } else if (sin->sin_family != AF_INET) { 1808 switch (ext->sadb_ext_type) { 1809 case SADB_EXT_ADDRESS_SRC: 1810 diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC_AF; 1811 break; 1812 case SADB_EXT_ADDRESS_DST: 1813 diagnostic = SADB_X_DIAGNOSTIC_BAD_DST_AF; 1814 break; 1815 case SADB_X_EXT_ADDRESS_INNER_SRC: 1816 diagnostic = SADB_X_DIAGNOSTIC_BAD_PROXY_AF; 1817 break; 1818 case SADB_X_EXT_ADDRESS_INNER_DST: 1819 diagnostic = SADB_X_DIAGNOSTIC_BAD_INNER_DST_AF; 1820 break; 1821 case SADB_X_EXT_ADDRESS_NATT_LOC: 1822 diagnostic = SADB_X_DIAGNOSTIC_BAD_NATT_LOC_AF; 1823 break; 1824 case SADB_X_EXT_ADDRESS_NATT_REM: 1825 diagnostic = SADB_X_DIAGNOSTIC_BAD_NATT_REM_AF; 1826 break; 1827 /* There is no default, see above ASSERT. */ 1828 } 1829 bail: 1830 if (pfkey_q != NULL) { 1831 sadb_pfkey_error(pfkey_q, mp, EINVAL, diagnostic, 1832 serial); 1833 } else { 1834 /* 1835 * Scribble in sadb_msg that we got passed in. 1836 * Overload "mp" to be an sadb_msg pointer. 1837 */ 1838 sadb_msg_t *samsg = (sadb_msg_t *)mp; 1839 1840 samsg->sadb_msg_errno = EINVAL; 1841 samsg->sadb_x_msg_diagnostic = diagnostic; 1842 } 1843 return (KS_IN_ADDR_UNKNOWN); 1844 } 1845 1846 if (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC || 1847 ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_DST) { 1848 /* 1849 * We need only check for prefix issues. 1850 */ 1851 1852 /* Set diagnostic now, in case we need it later. */ 1853 diagnostic = 1854 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC) ? 1855 SADB_X_DIAGNOSTIC_PREFIX_INNER_SRC : 1856 SADB_X_DIAGNOSTIC_PREFIX_INNER_DST; 1857 1858 if (normalized) 1859 addr->sadb_address_prefixlen -= 96; 1860 1861 /* 1862 * Verify and mask out inner-addresses based on prefix length. 1863 */ 1864 if (sin->sin_family == AF_INET) { 1865 if (addr->sadb_address_prefixlen > 32) 1866 goto bail; 1867 sin->sin_addr.s_addr &= 1868 ip_plen_to_mask(addr->sadb_address_prefixlen); 1869 } else { 1870 in6_addr_t mask; 1871 1872 ASSERT(sin->sin_family == AF_INET6); 1873 /* 1874 * ip_plen_to_mask_v6() returns NULL if the value in 1875 * question is out of range. 1876 */ 1877 if (ip_plen_to_mask_v6(addr->sadb_address_prefixlen, 1878 &mask) == NULL) 1879 goto bail; 1880 sin6->sin6_addr.s6_addr32[0] &= mask.s6_addr32[0]; 1881 sin6->sin6_addr.s6_addr32[1] &= mask.s6_addr32[1]; 1882 sin6->sin6_addr.s6_addr32[2] &= mask.s6_addr32[2]; 1883 sin6->sin6_addr.s6_addr32[3] &= mask.s6_addr32[3]; 1884 } 1885 1886 /* We don't care in these cases. */ 1887 return (KS_IN_ADDR_DONTCARE); 1888 } 1889 1890 if (sin->sin_family == AF_INET6) { 1891 /* Check the easy ones now. */ 1892 if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1893 return (KS_IN_ADDR_MBCAST); 1894 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 1895 return (KS_IN_ADDR_UNSPEC); 1896 /* 1897 * At this point, we're a unicast IPv6 address. 1898 * 1899 * XXX Zones alert -> me/notme decision needs to be tempered 1900 * by what zone we're in when we go to zone-aware IPsec. 1901 */ 1902 if (ip_type_v6(&sin6->sin6_addr, ns->netstack_ip) == 1903 IRE_LOCAL) { 1904 /* Hey hey, it's local. */ 1905 return (KS_IN_ADDR_ME); 1906 } 1907 } else { 1908 ASSERT(sin->sin_family == AF_INET); 1909 if (sin->sin_addr.s_addr == INADDR_ANY) 1910 return (KS_IN_ADDR_UNSPEC); 1911 if (CLASSD(sin->sin_addr.s_addr)) 1912 return (KS_IN_ADDR_MBCAST); 1913 /* 1914 * At this point we're a unicast or broadcast IPv4 address. 1915 * 1916 * Check if the address is IRE_BROADCAST or IRE_LOCAL. 1917 * 1918 * XXX Zones alert -> me/notme decision needs to be tempered 1919 * by what zone we're in when we go to zone-aware IPsec. 1920 */ 1921 type = ip_type_v4(sin->sin_addr.s_addr, ns->netstack_ip); 1922 switch (type) { 1923 case IRE_LOCAL: 1924 return (KS_IN_ADDR_ME); 1925 case IRE_BROADCAST: 1926 return (KS_IN_ADDR_MBCAST); 1927 } 1928 } 1929 1930 return (KS_IN_ADDR_NOTME); 1931 } 1932 1933 /* 1934 * Address normalizations and reality checks for inbound PF_KEY messages. 1935 * 1936 * For the case of src == unspecified AF_INET6, and dst == AF_INET, convert 1937 * the source to AF_INET. Do the same for the inner sources. 1938 */ 1939 boolean_t 1940 sadb_addrfix(keysock_in_t *ksi, queue_t *pfkey_q, mblk_t *mp, netstack_t *ns) 1941 { 1942 struct sockaddr_in *src, *isrc; 1943 struct sockaddr_in6 *dst, *idst; 1944 sadb_address_t *srcext, *dstext; 1945 uint16_t sport; 1946 sadb_ext_t **extv = ksi->ks_in_extv; 1947 int rc; 1948 1949 if (extv[SADB_EXT_ADDRESS_SRC] != NULL) { 1950 rc = sadb_addrcheck(pfkey_q, mp, extv[SADB_EXT_ADDRESS_SRC], 1951 ksi->ks_in_serial, ns); 1952 if (rc == KS_IN_ADDR_UNKNOWN) 1953 return (B_FALSE); 1954 if (rc == KS_IN_ADDR_MBCAST) { 1955 sadb_pfkey_error(pfkey_q, mp, EINVAL, 1956 SADB_X_DIAGNOSTIC_BAD_SRC, ksi->ks_in_serial); 1957 return (B_FALSE); 1958 } 1959 ksi->ks_in_srctype = rc; 1960 } 1961 1962 if (extv[SADB_EXT_ADDRESS_DST] != NULL) { 1963 rc = sadb_addrcheck(pfkey_q, mp, extv[SADB_EXT_ADDRESS_DST], 1964 ksi->ks_in_serial, ns); 1965 if (rc == KS_IN_ADDR_UNKNOWN) 1966 return (B_FALSE); 1967 if (rc == KS_IN_ADDR_UNSPEC) { 1968 sadb_pfkey_error(pfkey_q, mp, EINVAL, 1969 SADB_X_DIAGNOSTIC_BAD_DST, ksi->ks_in_serial); 1970 return (B_FALSE); 1971 } 1972 ksi->ks_in_dsttype = rc; 1973 } 1974 1975 /* 1976 * NAT-Traversal addrs are simple enough to not require all of 1977 * the checks in sadb_addrcheck(). Just normalize or reject if not 1978 * AF_INET. 1979 */ 1980 if (extv[SADB_X_EXT_ADDRESS_NATT_LOC] != NULL) { 1981 rc = sadb_addrcheck(pfkey_q, mp, 1982 extv[SADB_X_EXT_ADDRESS_NATT_LOC], ksi->ks_in_serial, ns); 1983 1984 /* 1985 * Local NAT-T addresses never use an IRE_LOCAL, so it should 1986 * always be NOTME, or UNSPEC (to handle both tunnel mode 1987 * AND local-port flexibility). 1988 */ 1989 if (rc != KS_IN_ADDR_NOTME && rc != KS_IN_ADDR_UNSPEC) { 1990 sadb_pfkey_error(pfkey_q, mp, EINVAL, 1991 SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC, 1992 ksi->ks_in_serial); 1993 return (B_FALSE); 1994 } 1995 src = (struct sockaddr_in *) 1996 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_NATT_LOC]) + 1); 1997 if (src->sin_family != AF_INET) { 1998 sadb_pfkey_error(pfkey_q, mp, EINVAL, 1999 SADB_X_DIAGNOSTIC_BAD_NATT_LOC_AF, 2000 ksi->ks_in_serial); 2001 return (B_FALSE); 2002 } 2003 } 2004 2005 if (extv[SADB_X_EXT_ADDRESS_NATT_REM] != NULL) { 2006 rc = sadb_addrcheck(pfkey_q, mp, 2007 extv[SADB_X_EXT_ADDRESS_NATT_REM], ksi->ks_in_serial, ns); 2008 2009 /* 2010 * Remote NAT-T addresses never use an IRE_LOCAL, so it should 2011 * always be NOTME, or UNSPEC if it's a tunnel-mode SA. 2012 */ 2013 if (rc != KS_IN_ADDR_NOTME && 2014 !(extv[SADB_X_EXT_ADDRESS_INNER_SRC] != NULL && 2015 rc == KS_IN_ADDR_UNSPEC)) { 2016 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2017 SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM, 2018 ksi->ks_in_serial); 2019 return (B_FALSE); 2020 } 2021 src = (struct sockaddr_in *) 2022 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_NATT_REM]) + 1); 2023 if (src->sin_family != AF_INET) { 2024 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2025 SADB_X_DIAGNOSTIC_BAD_NATT_REM_AF, 2026 ksi->ks_in_serial); 2027 return (B_FALSE); 2028 } 2029 } 2030 2031 if (extv[SADB_X_EXT_ADDRESS_INNER_SRC] != NULL) { 2032 if (extv[SADB_X_EXT_ADDRESS_INNER_DST] == NULL) { 2033 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2034 SADB_X_DIAGNOSTIC_MISSING_INNER_DST, 2035 ksi->ks_in_serial); 2036 return (B_FALSE); 2037 } 2038 2039 if (sadb_addrcheck(pfkey_q, mp, 2040 extv[SADB_X_EXT_ADDRESS_INNER_DST], ksi->ks_in_serial, ns) 2041 == KS_IN_ADDR_UNKNOWN || 2042 sadb_addrcheck(pfkey_q, mp, 2043 extv[SADB_X_EXT_ADDRESS_INNER_SRC], ksi->ks_in_serial, ns) 2044 == KS_IN_ADDR_UNKNOWN) 2045 return (B_FALSE); 2046 2047 isrc = (struct sockaddr_in *) 2048 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_SRC]) + 2049 1); 2050 idst = (struct sockaddr_in6 *) 2051 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_DST]) + 2052 1); 2053 if (isrc->sin_family != idst->sin6_family) { 2054 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2055 SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH, 2056 ksi->ks_in_serial); 2057 return (B_FALSE); 2058 } 2059 } else if (extv[SADB_X_EXT_ADDRESS_INNER_DST] != NULL) { 2060 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2061 SADB_X_DIAGNOSTIC_MISSING_INNER_SRC, 2062 ksi->ks_in_serial); 2063 return (B_FALSE); 2064 } else { 2065 isrc = NULL; /* For inner/outer port check below. */ 2066 } 2067 2068 dstext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_DST]; 2069 srcext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_SRC]; 2070 2071 if (dstext == NULL || srcext == NULL) 2072 return (B_TRUE); 2073 2074 dst = (struct sockaddr_in6 *)(dstext + 1); 2075 src = (struct sockaddr_in *)(srcext + 1); 2076 2077 if (isrc != NULL && 2078 (isrc->sin_port != 0 || idst->sin6_port != 0) && 2079 (src->sin_port != 0 || dst->sin6_port != 0)) { 2080 /* Can't set inner and outer ports in one SA. */ 2081 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2082 SADB_X_DIAGNOSTIC_DUAL_PORT_SETS, 2083 ksi->ks_in_serial); 2084 return (B_FALSE); 2085 } 2086 2087 if (dst->sin6_family == src->sin_family) 2088 return (B_TRUE); 2089 2090 if (srcext->sadb_address_proto != dstext->sadb_address_proto) { 2091 if (srcext->sadb_address_proto == 0) { 2092 srcext->sadb_address_proto = dstext->sadb_address_proto; 2093 } else if (dstext->sadb_address_proto == 0) { 2094 dstext->sadb_address_proto = srcext->sadb_address_proto; 2095 } else { 2096 /* Inequal protocols, neither were 0. Report error. */ 2097 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2098 SADB_X_DIAGNOSTIC_PROTO_MISMATCH, 2099 ksi->ks_in_serial); 2100 return (B_FALSE); 2101 } 2102 } 2103 2104 /* 2105 * With the exception of an unspec IPv6 source and an IPv4 2106 * destination, address families MUST me matched. 2107 */ 2108 if (src->sin_family == AF_INET || 2109 ksi->ks_in_srctype != KS_IN_ADDR_UNSPEC) { 2110 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2111 SADB_X_DIAGNOSTIC_AF_MISMATCH, ksi->ks_in_serial); 2112 return (B_FALSE); 2113 } 2114 2115 /* 2116 * Convert "src" to AF_INET INADDR_ANY. We rely on sin_port being 2117 * in the same place for sockaddr_in and sockaddr_in6. 2118 */ 2119 sport = src->sin_port; 2120 bzero(src, sizeof (*src)); 2121 src->sin_family = AF_INET; 2122 src->sin_port = sport; 2123 2124 return (B_TRUE); 2125 } 2126 2127 /* 2128 * Set the results in "addrtype", given an IRE as requested by 2129 * sadb_addrcheck(). 2130 */ 2131 int 2132 sadb_addrset(ire_t *ire) 2133 { 2134 if ((ire->ire_type & IRE_BROADCAST) || 2135 (ire->ire_ipversion == IPV4_VERSION && CLASSD(ire->ire_addr)) || 2136 (ire->ire_ipversion == IPV6_VERSION && 2137 IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6)))) 2138 return (KS_IN_ADDR_MBCAST); 2139 if (ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) 2140 return (KS_IN_ADDR_ME); 2141 return (KS_IN_ADDR_NOTME); 2142 } 2143 2144 /* 2145 * Match primitives.. 2146 * !!! TODO: short term: inner selectors 2147 * ipv6 scope id (ifindex) 2148 * longer term: zone id. sensitivity label. uid. 2149 */ 2150 boolean_t 2151 sadb_match_spi(ipsa_query_t *sq, ipsa_t *sa) 2152 { 2153 return (sq->spi == sa->ipsa_spi); 2154 } 2155 2156 boolean_t 2157 sadb_match_dst_v6(ipsa_query_t *sq, ipsa_t *sa) 2158 { 2159 return (IPSA_ARE_ADDR_EQUAL(sa->ipsa_dstaddr, sq->dstaddr, AF_INET6)); 2160 } 2161 2162 boolean_t 2163 sadb_match_src_v6(ipsa_query_t *sq, ipsa_t *sa) 2164 { 2165 return (IPSA_ARE_ADDR_EQUAL(sa->ipsa_srcaddr, sq->srcaddr, AF_INET6)); 2166 } 2167 2168 boolean_t 2169 sadb_match_dst_v4(ipsa_query_t *sq, ipsa_t *sa) 2170 { 2171 return (sq->dstaddr[0] == sa->ipsa_dstaddr[0]); 2172 } 2173 2174 boolean_t 2175 sadb_match_src_v4(ipsa_query_t *sq, ipsa_t *sa) 2176 { 2177 return (sq->srcaddr[0] == sa->ipsa_srcaddr[0]); 2178 } 2179 2180 boolean_t 2181 sadb_match_dstid(ipsa_query_t *sq, ipsa_t *sa) 2182 { 2183 return ((sa->ipsa_dst_cid != NULL) && 2184 (sq->didtype == sa->ipsa_dst_cid->ipsid_type) && 2185 (strcmp(sq->didstr, sa->ipsa_dst_cid->ipsid_cid) == 0)); 2186 2187 } 2188 boolean_t 2189 sadb_match_srcid(ipsa_query_t *sq, ipsa_t *sa) 2190 { 2191 return ((sa->ipsa_src_cid != NULL) && 2192 (sq->sidtype == sa->ipsa_src_cid->ipsid_type) && 2193 (strcmp(sq->sidstr, sa->ipsa_src_cid->ipsid_cid) == 0)); 2194 } 2195 2196 boolean_t 2197 sadb_match_kmc(ipsa_query_t *sq, ipsa_t *sa) 2198 { 2199 #define M(a, b) (((a) == 0) || ((b) == 0) || ((a) == (b))) 2200 2201 return (M(sq->kmc, sa->ipsa_kmc) && M(sq->kmp, sa->ipsa_kmp)); 2202 2203 #undef M 2204 } 2205 2206 /* 2207 * Common function which extracts several PF_KEY extensions for ease of 2208 * SADB matching. 2209 * 2210 * XXX TODO: weed out ipsa_query_t fields not used during matching 2211 * or afterwards? 2212 */ 2213 int 2214 sadb_form_query(keysock_in_t *ksi, uint32_t req, uint32_t match, 2215 ipsa_query_t *sq, int *diagnostic) 2216 { 2217 int i; 2218 ipsa_match_fn_t *mfpp = &(sq->matchers[0]); 2219 2220 for (i = 0; i < IPSA_NMATCH; i++) 2221 sq->matchers[i] = NULL; 2222 2223 ASSERT((req & ~match) == 0); 2224 2225 sq->req = req; 2226 sq->dstext = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 2227 sq->srcext = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 2228 sq->assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 2229 2230 if ((req & IPSA_Q_DST) && (sq->dstext == NULL)) { 2231 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 2232 return (EINVAL); 2233 } 2234 if ((req & IPSA_Q_SRC) && (sq->srcext == NULL)) { 2235 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 2236 return (EINVAL); 2237 } 2238 if ((req & IPSA_Q_SA) && (sq->assoc == NULL)) { 2239 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 2240 return (EINVAL); 2241 } 2242 2243 if (match & IPSA_Q_SA) { 2244 *mfpp++ = sadb_match_spi; 2245 sq->spi = sq->assoc->sadb_sa_spi; 2246 } 2247 2248 if (sq->dstext != NULL) 2249 sq->dst = (struct sockaddr_in *)(sq->dstext + 1); 2250 else { 2251 sq->dst = NULL; 2252 sq->dst6 = NULL; 2253 sq->dstaddr = NULL; 2254 } 2255 2256 if (sq->srcext != NULL) 2257 sq->src = (struct sockaddr_in *)(sq->srcext + 1); 2258 else { 2259 sq->src = NULL; 2260 sq->src6 = NULL; 2261 sq->srcaddr = NULL; 2262 } 2263 2264 if (sq->dst != NULL) 2265 sq->af = sq->dst->sin_family; 2266 else if (sq->src != NULL) 2267 sq->af = sq->src->sin_family; 2268 else 2269 sq->af = AF_INET; 2270 2271 if (sq->af == AF_INET6) { 2272 if ((match & IPSA_Q_DST) && (sq->dstext != NULL)) { 2273 *mfpp++ = sadb_match_dst_v6; 2274 sq->dst6 = (struct sockaddr_in6 *)sq->dst; 2275 sq->dstaddr = (uint32_t *)&(sq->dst6->sin6_addr); 2276 } else { 2277 match &= ~IPSA_Q_DST; 2278 sq->dstaddr = ALL_ZEROES_PTR; 2279 } 2280 2281 if ((match & IPSA_Q_SRC) && (sq->srcext != NULL)) { 2282 sq->src6 = (struct sockaddr_in6 *)(sq->srcext + 1); 2283 sq->srcaddr = (uint32_t *)&sq->src6->sin6_addr; 2284 if (sq->src6->sin6_family != AF_INET6) { 2285 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 2286 return (EINVAL); 2287 } 2288 *mfpp++ = sadb_match_src_v6; 2289 } else { 2290 match &= ~IPSA_Q_SRC; 2291 sq->srcaddr = ALL_ZEROES_PTR; 2292 } 2293 } else { 2294 sq->src6 = sq->dst6 = NULL; 2295 if ((match & IPSA_Q_DST) && (sq->dstext != NULL)) { 2296 *mfpp++ = sadb_match_dst_v4; 2297 sq->dstaddr = (uint32_t *)&sq->dst->sin_addr; 2298 } else { 2299 match &= ~IPSA_Q_DST; 2300 sq->dstaddr = ALL_ZEROES_PTR; 2301 } 2302 if ((match & IPSA_Q_SRC) && (sq->srcext != NULL)) { 2303 sq->srcaddr = (uint32_t *)&sq->src->sin_addr; 2304 if (sq->src->sin_family != AF_INET) { 2305 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 2306 return (EINVAL); 2307 } 2308 *mfpp++ = sadb_match_src_v4; 2309 } else { 2310 match &= ~IPSA_Q_SRC; 2311 sq->srcaddr = ALL_ZEROES_PTR; 2312 } 2313 } 2314 2315 sq->dstid = (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_DST]; 2316 if ((match & IPSA_Q_DSTID) && (sq->dstid != NULL)) { 2317 sq->didstr = (char *)(sq->dstid + 1); 2318 sq->didtype = sq->dstid->sadb_ident_type; 2319 *mfpp++ = sadb_match_dstid; 2320 } 2321 2322 sq->srcid = (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC]; 2323 2324 if ((match & IPSA_Q_SRCID) && (sq->srcid != NULL)) { 2325 sq->sidstr = (char *)(sq->srcid + 1); 2326 sq->sidtype = sq->srcid->sadb_ident_type; 2327 *mfpp++ = sadb_match_srcid; 2328 } 2329 2330 sq->kmcext = (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE]; 2331 sq->kmc = 0; 2332 sq->kmp = 0; 2333 2334 if ((match & IPSA_Q_KMC) && (sq->kmcext)) { 2335 sq->kmp = sq->kmcext->sadb_x_kmc_proto; 2336 /* 2337 * Be liberal in what we receive. Special-case the IKEv1 2338 * cookie, which closed-source in.iked assumes is 32 bits. 2339 * Now that we store all 64 bits, we should pre-zero the 2340 * reserved field on behalf of closed-source in.iked. 2341 */ 2342 if (sq->kmp == SADB_X_KMP_IKE) { 2343 /* Just in case in.iked is misbehaving... */ 2344 sq->kmcext->sadb_x_kmc_reserved = 0; 2345 } 2346 sq->kmc = sq->kmcext->sadb_x_kmc_cookie64; 2347 *mfpp++ = sadb_match_kmc; 2348 } 2349 2350 if (match & (IPSA_Q_INBOUND|IPSA_Q_OUTBOUND)) { 2351 if (sq->af == AF_INET6) 2352 sq->sp = &sq->spp->s_v6; 2353 else 2354 sq->sp = &sq->spp->s_v4; 2355 } else { 2356 sq->sp = NULL; 2357 } 2358 2359 if (match & IPSA_Q_INBOUND) { 2360 sq->inhash = INBOUND_HASH(sq->sp, sq->assoc->sadb_sa_spi); 2361 sq->inbound = &sq->sp->sdb_if[sq->inhash]; 2362 } else { 2363 sq->inhash = 0; 2364 sq->inbound = NULL; 2365 } 2366 2367 if (match & IPSA_Q_OUTBOUND) { 2368 if (sq->af == AF_INET6) { 2369 sq->outhash = OUTBOUND_HASH_V6(sq->sp, *(sq->dstaddr)); 2370 } else { 2371 sq->outhash = OUTBOUND_HASH_V4(sq->sp, *(sq->dstaddr)); 2372 } 2373 sq->outbound = &sq->sp->sdb_of[sq->outhash]; 2374 } else { 2375 sq->outhash = 0; 2376 sq->outbound = NULL; 2377 } 2378 sq->match = match; 2379 return (0); 2380 } 2381 2382 /* 2383 * Match an initialized query structure with a security association; 2384 * return B_TRUE on a match, B_FALSE on a miss. 2385 * Applies match functions set up by sadb_form_query() until one returns false. 2386 */ 2387 boolean_t 2388 sadb_match_query(ipsa_query_t *sq, ipsa_t *sa) 2389 { 2390 ipsa_match_fn_t *mfpp = &(sq->matchers[0]); 2391 ipsa_match_fn_t mfp; 2392 2393 for (mfp = *mfpp++; mfp != NULL; mfp = *mfpp++) { 2394 if (!mfp(sq, sa)) 2395 return (B_FALSE); 2396 } 2397 return (B_TRUE); 2398 } 2399 2400 /* 2401 * Walker callback function to delete sa's based on src/dst address. 2402 * Assumes that we're called with *head locked, no other locks held; 2403 * Conveniently, and not coincidentally, this is both what sadb_walker 2404 * gives us and also what sadb_unlinkassoc expects. 2405 */ 2406 struct sadb_purge_state 2407 { 2408 ipsa_query_t sq; 2409 boolean_t inbnd; 2410 uint8_t sadb_sa_state; 2411 }; 2412 2413 static void 2414 sadb_purge_cb(isaf_t *head, ipsa_t *entry, void *cookie) 2415 { 2416 struct sadb_purge_state *ps = (struct sadb_purge_state *)cookie; 2417 2418 ASSERT(MUTEX_HELD(&head->isaf_lock)); 2419 2420 mutex_enter(&entry->ipsa_lock); 2421 2422 if (entry->ipsa_state == IPSA_STATE_LARVAL || 2423 !sadb_match_query(&ps->sq, entry)) { 2424 mutex_exit(&entry->ipsa_lock); 2425 return; 2426 } 2427 2428 if (ps->inbnd) { 2429 sadb_delete_cluster(entry); 2430 } 2431 entry->ipsa_state = IPSA_STATE_DEAD; 2432 (void) sadb_torch_assoc(head, entry); 2433 } 2434 2435 /* 2436 * Common code to purge an SA with a matching src or dst address. 2437 * Don't kill larval SA's in such a purge. 2438 */ 2439 int 2440 sadb_purge_sa(mblk_t *mp, keysock_in_t *ksi, sadb_t *sp, 2441 int *diagnostic, queue_t *pfkey_q) 2442 { 2443 struct sadb_purge_state ps; 2444 int error = sadb_form_query(ksi, 0, 2445 IPSA_Q_SRC|IPSA_Q_DST|IPSA_Q_SRCID|IPSA_Q_DSTID|IPSA_Q_KMC, 2446 &ps.sq, diagnostic); 2447 2448 if (error != 0) 2449 return (error); 2450 2451 /* 2452 * This is simple, crude, and effective. 2453 * Unimplemented optimizations (TBD): 2454 * - we can limit how many places we search based on where we 2455 * think the SA is filed. 2456 * - if we get a dst address, we can hash based on dst addr to find 2457 * the correct bucket in the outbound table. 2458 */ 2459 ps.inbnd = B_TRUE; 2460 sadb_walker(sp->sdb_if, sp->sdb_hashsize, sadb_purge_cb, &ps); 2461 ps.inbnd = B_FALSE; 2462 sadb_walker(sp->sdb_of, sp->sdb_hashsize, sadb_purge_cb, &ps); 2463 2464 ASSERT(mp->b_cont != NULL); 2465 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi, 2466 NULL); 2467 return (0); 2468 } 2469 2470 static void 2471 sadb_delpair_state_one(isaf_t *head, ipsa_t *entry, void *cookie) 2472 { 2473 struct sadb_purge_state *ps = (struct sadb_purge_state *)cookie; 2474 isaf_t *inbound_bucket; 2475 ipsa_t *peer_assoc; 2476 ipsa_query_t *sq = &ps->sq; 2477 2478 ASSERT(MUTEX_HELD(&head->isaf_lock)); 2479 2480 mutex_enter(&entry->ipsa_lock); 2481 2482 if ((entry->ipsa_state != ps->sadb_sa_state) || 2483 ((sq->srcaddr != NULL) && 2484 !IPSA_ARE_ADDR_EQUAL(entry->ipsa_srcaddr, sq->srcaddr, sq->af))) { 2485 mutex_exit(&entry->ipsa_lock); 2486 return; 2487 } 2488 2489 /* 2490 * The isaf_t *, which is passed in , is always an outbound bucket, 2491 * and we are preserving the outbound-then-inbound hash-bucket lock 2492 * ordering. The sadb_walker() which triggers this function is called 2493 * only on the outbound fanout, and the corresponding inbound bucket 2494 * lock is safe to acquire here. 2495 */ 2496 2497 if (entry->ipsa_haspeer) { 2498 inbound_bucket = INBOUND_BUCKET(sq->sp, entry->ipsa_spi); 2499 mutex_enter(&inbound_bucket->isaf_lock); 2500 peer_assoc = ipsec_getassocbyspi(inbound_bucket, 2501 entry->ipsa_spi, entry->ipsa_srcaddr, 2502 entry->ipsa_dstaddr, entry->ipsa_addrfam); 2503 } else { 2504 inbound_bucket = INBOUND_BUCKET(sq->sp, entry->ipsa_otherspi); 2505 mutex_enter(&inbound_bucket->isaf_lock); 2506 peer_assoc = ipsec_getassocbyspi(inbound_bucket, 2507 entry->ipsa_otherspi, entry->ipsa_dstaddr, 2508 entry->ipsa_srcaddr, entry->ipsa_addrfam); 2509 } 2510 2511 entry->ipsa_state = IPSA_STATE_DEAD; 2512 (void) sadb_torch_assoc(head, entry); 2513 if (peer_assoc != NULL) { 2514 mutex_enter(&peer_assoc->ipsa_lock); 2515 peer_assoc->ipsa_state = IPSA_STATE_DEAD; 2516 (void) sadb_torch_assoc(inbound_bucket, peer_assoc); 2517 } 2518 mutex_exit(&inbound_bucket->isaf_lock); 2519 } 2520 2521 static int 2522 sadb_delpair_state(mblk_t *mp, keysock_in_t *ksi, sadbp_t *spp, 2523 int *diagnostic, queue_t *pfkey_q) 2524 { 2525 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 2526 struct sadb_purge_state ps; 2527 int error; 2528 2529 ps.sq.spp = spp; /* XXX param */ 2530 2531 error = sadb_form_query(ksi, IPSA_Q_DST|IPSA_Q_SRC, 2532 IPSA_Q_SRC|IPSA_Q_DST|IPSA_Q_SRCID|IPSA_Q_DSTID|IPSA_Q_KMC, 2533 &ps.sq, diagnostic); 2534 if (error != 0) 2535 return (error); 2536 2537 ps.inbnd = B_FALSE; 2538 ps.sadb_sa_state = assoc->sadb_sa_state; 2539 sadb_walker(ps.sq.sp->sdb_of, ps.sq.sp->sdb_hashsize, 2540 sadb_delpair_state_one, &ps); 2541 2542 ASSERT(mp->b_cont != NULL); 2543 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, 2544 ksi, NULL); 2545 return (0); 2546 } 2547 2548 /* 2549 * Common code to delete/get an SA. 2550 */ 2551 int 2552 sadb_delget_sa(mblk_t *mp, keysock_in_t *ksi, sadbp_t *spp, 2553 int *diagnostic, queue_t *pfkey_q, uint8_t sadb_msg_type) 2554 { 2555 ipsa_query_t sq; 2556 ipsa_t *echo_target = NULL; 2557 ipsap_t ipsapp; 2558 uint_t error = 0; 2559 2560 if (sadb_msg_type == SADB_X_DELPAIR_STATE) 2561 return (sadb_delpair_state(mp, ksi, spp, diagnostic, pfkey_q)); 2562 2563 sq.spp = spp; /* XXX param */ 2564 error = sadb_form_query(ksi, IPSA_Q_DST|IPSA_Q_SA, 2565 IPSA_Q_SRC|IPSA_Q_DST|IPSA_Q_SA|IPSA_Q_INBOUND|IPSA_Q_OUTBOUND, 2566 &sq, diagnostic); 2567 if (error != 0) 2568 return (error); 2569 2570 error = get_ipsa_pair(&sq, &ipsapp, diagnostic); 2571 if (error != 0) { 2572 return (error); 2573 } 2574 2575 echo_target = ipsapp.ipsap_sa_ptr; 2576 if (echo_target == NULL) 2577 echo_target = ipsapp.ipsap_psa_ptr; 2578 2579 if (sadb_msg_type == SADB_DELETE || sadb_msg_type == SADB_X_DELPAIR) { 2580 /* 2581 * Bucket locks will be required if SA is actually unlinked. 2582 * get_ipsa_pair() returns valid hash bucket pointers even 2583 * if it can't find a pair SA pointer. To prevent a potential 2584 * deadlock, always lock the outbound bucket before the inbound. 2585 */ 2586 if (ipsapp.in_inbound_table) { 2587 mutex_enter(&ipsapp.ipsap_pbucket->isaf_lock); 2588 mutex_enter(&ipsapp.ipsap_bucket->isaf_lock); 2589 } else { 2590 mutex_enter(&ipsapp.ipsap_bucket->isaf_lock); 2591 mutex_enter(&ipsapp.ipsap_pbucket->isaf_lock); 2592 } 2593 2594 if (ipsapp.ipsap_sa_ptr != NULL) { 2595 mutex_enter(&ipsapp.ipsap_sa_ptr->ipsa_lock); 2596 if (ipsapp.ipsap_sa_ptr->ipsa_flags & IPSA_F_INBOUND) { 2597 sadb_delete_cluster(ipsapp.ipsap_sa_ptr); 2598 } 2599 ipsapp.ipsap_sa_ptr->ipsa_state = IPSA_STATE_DEAD; 2600 (void) sadb_torch_assoc(ipsapp.ipsap_bucket, 2601 ipsapp.ipsap_sa_ptr); 2602 /* 2603 * sadb_torch_assoc() releases the ipsa_lock 2604 * and calls sadb_unlinkassoc() which does a 2605 * IPSA_REFRELE. 2606 */ 2607 } 2608 if (ipsapp.ipsap_psa_ptr != NULL) { 2609 mutex_enter(&ipsapp.ipsap_psa_ptr->ipsa_lock); 2610 if (sadb_msg_type == SADB_X_DELPAIR || 2611 ipsapp.ipsap_psa_ptr->ipsa_haspeer) { 2612 if (ipsapp.ipsap_psa_ptr->ipsa_flags & 2613 IPSA_F_INBOUND) { 2614 sadb_delete_cluster 2615 (ipsapp.ipsap_psa_ptr); 2616 } 2617 ipsapp.ipsap_psa_ptr->ipsa_state = 2618 IPSA_STATE_DEAD; 2619 (void) sadb_torch_assoc(ipsapp.ipsap_pbucket, 2620 ipsapp.ipsap_psa_ptr); 2621 } else { 2622 /* 2623 * Only half of the "pair" has been deleted. 2624 * Update the remaining SA and remove references 2625 * to its pair SA, which is now gone. 2626 */ 2627 ipsapp.ipsap_psa_ptr->ipsa_otherspi = 0; 2628 ipsapp.ipsap_psa_ptr->ipsa_flags &= 2629 ~IPSA_F_PAIRED; 2630 mutex_exit(&ipsapp.ipsap_psa_ptr->ipsa_lock); 2631 } 2632 } else if (sadb_msg_type == SADB_X_DELPAIR) { 2633 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND; 2634 error = ESRCH; 2635 } 2636 mutex_exit(&ipsapp.ipsap_bucket->isaf_lock); 2637 mutex_exit(&ipsapp.ipsap_pbucket->isaf_lock); 2638 } 2639 2640 ASSERT(mp->b_cont != NULL); 2641 2642 if (error == 0) 2643 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *) 2644 mp->b_cont->b_rptr, ksi, echo_target); 2645 2646 destroy_ipsa_pair(&ipsapp); 2647 2648 return (error); 2649 } 2650 2651 /* 2652 * This function takes a sadb_sa_t and finds the ipsa_t structure 2653 * and the isaf_t (hash bucket) that its stored under. If the security 2654 * association has a peer, the ipsa_t structure and bucket for that security 2655 * association are also searched for. The "pair" of ipsa_t's and isaf_t's 2656 * are returned as a ipsap_t. 2657 * 2658 * The hash buckets are returned for convenience, if the calling function 2659 * needs to use the hash bucket locks, say to remove the SA's, it should 2660 * take care to observe the convention of locking outbound bucket then 2661 * inbound bucket. The flag in_inbound_table provides direction. 2662 * 2663 * Note that a "pair" is defined as one (but not both) of the following: 2664 * 2665 * A security association which has a soft reference to another security 2666 * association via its SPI. 2667 * 2668 * A security association that is not obviously "inbound" or "outbound" so 2669 * it appears in both hash tables, the "peer" being the same security 2670 * association in the other hash table. 2671 * 2672 * This function will return NULL if the ipsa_t can't be found in the 2673 * inbound or outbound hash tables (not found). If only one ipsa_t is 2674 * found, the pair ipsa_t will be NULL. Both isaf_t values are valid 2675 * provided at least one ipsa_t is found. 2676 */ 2677 static int 2678 get_ipsa_pair(ipsa_query_t *sq, ipsap_t *ipsapp, int *diagnostic) 2679 { 2680 uint32_t pair_srcaddr[IPSA_MAX_ADDRLEN]; 2681 uint32_t pair_dstaddr[IPSA_MAX_ADDRLEN]; 2682 uint32_t pair_spi; 2683 2684 init_ipsa_pair(ipsapp); 2685 2686 ipsapp->in_inbound_table = B_FALSE; 2687 2688 /* Lock down both buckets. */ 2689 mutex_enter(&sq->outbound->isaf_lock); 2690 mutex_enter(&sq->inbound->isaf_lock); 2691 2692 if (sq->assoc->sadb_sa_flags & IPSA_F_INBOUND) { 2693 ipsapp->ipsap_sa_ptr = ipsec_getassocbyspi(sq->inbound, 2694 sq->assoc->sadb_sa_spi, sq->srcaddr, sq->dstaddr, sq->af); 2695 if (ipsapp->ipsap_sa_ptr != NULL) { 2696 ipsapp->ipsap_bucket = sq->inbound; 2697 ipsapp->ipsap_pbucket = sq->outbound; 2698 ipsapp->in_inbound_table = B_TRUE; 2699 } else { 2700 ipsapp->ipsap_sa_ptr = ipsec_getassocbyspi(sq->outbound, 2701 sq->assoc->sadb_sa_spi, sq->srcaddr, sq->dstaddr, 2702 sq->af); 2703 ipsapp->ipsap_bucket = sq->outbound; 2704 ipsapp->ipsap_pbucket = sq->inbound; 2705 } 2706 } else { 2707 /* IPSA_F_OUTBOUND is set *or* no directions flags set. */ 2708 ipsapp->ipsap_sa_ptr = 2709 ipsec_getassocbyspi(sq->outbound, 2710 sq->assoc->sadb_sa_spi, sq->srcaddr, sq->dstaddr, sq->af); 2711 if (ipsapp->ipsap_sa_ptr != NULL) { 2712 ipsapp->ipsap_bucket = sq->outbound; 2713 ipsapp->ipsap_pbucket = sq->inbound; 2714 } else { 2715 ipsapp->ipsap_sa_ptr = ipsec_getassocbyspi(sq->inbound, 2716 sq->assoc->sadb_sa_spi, sq->srcaddr, sq->dstaddr, 2717 sq->af); 2718 ipsapp->ipsap_bucket = sq->inbound; 2719 ipsapp->ipsap_pbucket = sq->outbound; 2720 if (ipsapp->ipsap_sa_ptr != NULL) 2721 ipsapp->in_inbound_table = B_TRUE; 2722 } 2723 } 2724 2725 if (ipsapp->ipsap_sa_ptr == NULL) { 2726 mutex_exit(&sq->outbound->isaf_lock); 2727 mutex_exit(&sq->inbound->isaf_lock); 2728 *diagnostic = SADB_X_DIAGNOSTIC_SA_NOTFOUND; 2729 return (ESRCH); 2730 } 2731 2732 if ((ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_LARVAL) && 2733 ipsapp->in_inbound_table) { 2734 mutex_exit(&sq->outbound->isaf_lock); 2735 mutex_exit(&sq->inbound->isaf_lock); 2736 return (0); 2737 } 2738 2739 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock); 2740 if (ipsapp->ipsap_sa_ptr->ipsa_haspeer) { 2741 /* 2742 * haspeer implies no sa_pairing, look for same spi 2743 * in other hashtable. 2744 */ 2745 ipsapp->ipsap_psa_ptr = 2746 ipsec_getassocbyspi(ipsapp->ipsap_pbucket, 2747 sq->assoc->sadb_sa_spi, sq->srcaddr, sq->dstaddr, sq->af); 2748 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 2749 mutex_exit(&sq->outbound->isaf_lock); 2750 mutex_exit(&sq->inbound->isaf_lock); 2751 return (0); 2752 } 2753 pair_spi = ipsapp->ipsap_sa_ptr->ipsa_otherspi; 2754 IPSA_COPY_ADDR(&pair_srcaddr, 2755 ipsapp->ipsap_sa_ptr->ipsa_srcaddr, sq->af); 2756 IPSA_COPY_ADDR(&pair_dstaddr, 2757 ipsapp->ipsap_sa_ptr->ipsa_dstaddr, sq->af); 2758 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 2759 mutex_exit(&sq->inbound->isaf_lock); 2760 mutex_exit(&sq->outbound->isaf_lock); 2761 2762 if (pair_spi == 0) { 2763 ASSERT(ipsapp->ipsap_bucket != NULL); 2764 ASSERT(ipsapp->ipsap_pbucket != NULL); 2765 return (0); 2766 } 2767 2768 /* found sa in outbound sadb, peer should be inbound */ 2769 2770 if (ipsapp->in_inbound_table) { 2771 /* Found SA in inbound table, pair will be in outbound. */ 2772 if (sq->af == AF_INET6) { 2773 ipsapp->ipsap_pbucket = OUTBOUND_BUCKET_V6(sq->sp, 2774 *(uint32_t *)pair_srcaddr); 2775 } else { 2776 ipsapp->ipsap_pbucket = OUTBOUND_BUCKET_V4(sq->sp, 2777 *(uint32_t *)pair_srcaddr); 2778 } 2779 } else { 2780 ipsapp->ipsap_pbucket = INBOUND_BUCKET(sq->sp, pair_spi); 2781 } 2782 mutex_enter(&ipsapp->ipsap_pbucket->isaf_lock); 2783 ipsapp->ipsap_psa_ptr = ipsec_getassocbyspi(ipsapp->ipsap_pbucket, 2784 pair_spi, pair_dstaddr, pair_srcaddr, sq->af); 2785 mutex_exit(&ipsapp->ipsap_pbucket->isaf_lock); 2786 ASSERT(ipsapp->ipsap_bucket != NULL); 2787 ASSERT(ipsapp->ipsap_pbucket != NULL); 2788 return (0); 2789 } 2790 2791 /* 2792 * Perform NAT-traversal cached checksum offset calculations here. 2793 */ 2794 static void 2795 sadb_nat_calculations(ipsa_t *newbie, sadb_address_t *natt_loc_ext, 2796 sadb_address_t *natt_rem_ext, uint32_t *src_addr_ptr, 2797 uint32_t *dst_addr_ptr) 2798 { 2799 struct sockaddr_in *natt_loc, *natt_rem; 2800 uint32_t *natt_loc_ptr = NULL, *natt_rem_ptr = NULL; 2801 uint32_t running_sum = 0; 2802 2803 #define DOWN_SUM(x) (x) = ((x) & 0xFFFF) + ((x) >> 16) 2804 2805 if (natt_rem_ext != NULL) { 2806 uint32_t l_src; 2807 uint32_t l_rem; 2808 2809 natt_rem = (struct sockaddr_in *)(natt_rem_ext + 1); 2810 2811 /* Ensured by sadb_addrfix(). */ 2812 ASSERT(natt_rem->sin_family == AF_INET); 2813 2814 natt_rem_ptr = (uint32_t *)(&natt_rem->sin_addr); 2815 newbie->ipsa_remote_nat_port = natt_rem->sin_port; 2816 l_src = *src_addr_ptr; 2817 l_rem = *natt_rem_ptr; 2818 2819 /* Instead of IPSA_COPY_ADDR(), just copy first 32 bits. */ 2820 newbie->ipsa_natt_addr_rem = *natt_rem_ptr; 2821 2822 l_src = ntohl(l_src); 2823 DOWN_SUM(l_src); 2824 DOWN_SUM(l_src); 2825 l_rem = ntohl(l_rem); 2826 DOWN_SUM(l_rem); 2827 DOWN_SUM(l_rem); 2828 2829 /* 2830 * We're 1's complement for checksums, so check for wraparound 2831 * here. 2832 */ 2833 if (l_rem > l_src) 2834 l_src--; 2835 2836 running_sum += l_src - l_rem; 2837 2838 DOWN_SUM(running_sum); 2839 DOWN_SUM(running_sum); 2840 } 2841 2842 if (natt_loc_ext != NULL) { 2843 natt_loc = (struct sockaddr_in *)(natt_loc_ext + 1); 2844 2845 /* Ensured by sadb_addrfix(). */ 2846 ASSERT(natt_loc->sin_family == AF_INET); 2847 2848 natt_loc_ptr = (uint32_t *)(&natt_loc->sin_addr); 2849 newbie->ipsa_local_nat_port = natt_loc->sin_port; 2850 2851 /* Instead of IPSA_COPY_ADDR(), just copy first 32 bits. */ 2852 newbie->ipsa_natt_addr_loc = *natt_loc_ptr; 2853 2854 /* 2855 * NAT-T port agility means we may have natt_loc_ext, but 2856 * only for a local-port change. 2857 */ 2858 if (natt_loc->sin_addr.s_addr != INADDR_ANY) { 2859 uint32_t l_dst = ntohl(*dst_addr_ptr); 2860 uint32_t l_loc = ntohl(*natt_loc_ptr); 2861 2862 DOWN_SUM(l_loc); 2863 DOWN_SUM(l_loc); 2864 DOWN_SUM(l_dst); 2865 DOWN_SUM(l_dst); 2866 2867 /* 2868 * We're 1's complement for checksums, so check for 2869 * wraparound here. 2870 */ 2871 if (l_loc > l_dst) 2872 l_dst--; 2873 2874 running_sum += l_dst - l_loc; 2875 DOWN_SUM(running_sum); 2876 DOWN_SUM(running_sum); 2877 } 2878 } 2879 2880 newbie->ipsa_inbound_cksum = running_sum; 2881 #undef DOWN_SUM 2882 } 2883 2884 /* 2885 * This function is called from consumers that need to insert a fully-grown 2886 * security association into its tables. This function takes into account that 2887 * SAs can be "inbound", "outbound", or "both". The "primary" and "secondary" 2888 * hash bucket parameters are set in order of what the SA will be most of the 2889 * time. (For example, an SA with an unspecified source, and a multicast 2890 * destination will primarily be an outbound SA. OTOH, if that destination 2891 * is unicast for this node, then the SA will primarily be inbound.) 2892 * 2893 * It takes a lot of parameters because even if clone is B_FALSE, this needs 2894 * to check both buckets for purposes of collision. 2895 * 2896 * Return 0 upon success. Return various errnos (ENOMEM, EEXIST) for 2897 * various error conditions. We may need to set samsg->sadb_x_msg_diagnostic 2898 * with additional diagnostic information because there is at least one EINVAL 2899 * case here. 2900 */ 2901 int 2902 sadb_common_add(queue_t *pfkey_q, mblk_t *mp, sadb_msg_t *samsg, 2903 keysock_in_t *ksi, isaf_t *primary, isaf_t *secondary, 2904 ipsa_t *newbie, boolean_t clone, boolean_t is_inbound, int *diagnostic, 2905 netstack_t *ns, sadbp_t *spp) 2906 { 2907 ipsa_t *newbie_clone = NULL, *scratch; 2908 ipsap_t ipsapp; 2909 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 2910 sadb_address_t *srcext = 2911 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 2912 sadb_address_t *dstext = 2913 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 2914 sadb_address_t *isrcext = 2915 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC]; 2916 sadb_address_t *idstext = 2917 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_DST]; 2918 sadb_x_kmc_t *kmcext = 2919 (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE]; 2920 sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH]; 2921 sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT]; 2922 sadb_sens_t *sens = 2923 (sadb_sens_t *)ksi->ks_in_extv[SADB_EXT_SENSITIVITY]; 2924 sadb_sens_t *osens = 2925 (sadb_sens_t *)ksi->ks_in_extv[SADB_X_EXT_OUTER_SENS]; 2926 sadb_x_pair_t *pair_ext = 2927 (sadb_x_pair_t *)ksi->ks_in_extv[SADB_X_EXT_PAIR]; 2928 sadb_x_replay_ctr_t *replayext = 2929 (sadb_x_replay_ctr_t *)ksi->ks_in_extv[SADB_X_EXT_REPLAY_VALUE]; 2930 uint8_t protocol = 2931 (samsg->sadb_msg_satype == SADB_SATYPE_AH) ? IPPROTO_AH:IPPROTO_ESP; 2932 int salt_offset; 2933 uint8_t *buf_ptr; 2934 struct sockaddr_in *src, *dst, *isrc, *idst; 2935 struct sockaddr_in6 *src6, *dst6, *isrc6, *idst6; 2936 sadb_lifetime_t *soft = 2937 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT]; 2938 sadb_lifetime_t *hard = 2939 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD]; 2940 sadb_lifetime_t *idle = 2941 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_X_EXT_LIFETIME_IDLE]; 2942 sa_family_t af; 2943 int error = 0; 2944 boolean_t isupdate = (newbie != NULL); 2945 uint32_t *src_addr_ptr, *dst_addr_ptr, *isrc_addr_ptr, *idst_addr_ptr; 2946 ipsec_stack_t *ipss = ns->netstack_ipsec; 2947 ip_stack_t *ipst = ns->netstack_ip; 2948 ipsec_alginfo_t *alg; 2949 int rcode; 2950 boolean_t async = B_FALSE; 2951 2952 init_ipsa_pair(&ipsapp); 2953 2954 if (srcext == NULL) { 2955 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 2956 return (EINVAL); 2957 } 2958 if (dstext == NULL) { 2959 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 2960 return (EINVAL); 2961 } 2962 if (assoc == NULL) { 2963 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 2964 return (EINVAL); 2965 } 2966 2967 src = (struct sockaddr_in *)(srcext + 1); 2968 src6 = (struct sockaddr_in6 *)(srcext + 1); 2969 dst = (struct sockaddr_in *)(dstext + 1); 2970 dst6 = (struct sockaddr_in6 *)(dstext + 1); 2971 if (isrcext != NULL) { 2972 isrc = (struct sockaddr_in *)(isrcext + 1); 2973 isrc6 = (struct sockaddr_in6 *)(isrcext + 1); 2974 ASSERT(idstext != NULL); 2975 idst = (struct sockaddr_in *)(idstext + 1); 2976 idst6 = (struct sockaddr_in6 *)(idstext + 1); 2977 } else { 2978 isrc = NULL; 2979 isrc6 = NULL; 2980 } 2981 2982 af = src->sin_family; 2983 2984 if (af == AF_INET) { 2985 src_addr_ptr = (uint32_t *)&src->sin_addr; 2986 dst_addr_ptr = (uint32_t *)&dst->sin_addr; 2987 } else { 2988 ASSERT(af == AF_INET6); 2989 src_addr_ptr = (uint32_t *)&src6->sin6_addr; 2990 dst_addr_ptr = (uint32_t *)&dst6->sin6_addr; 2991 } 2992 2993 if (!isupdate && (clone == B_TRUE || is_inbound == B_TRUE) && 2994 cl_inet_checkspi && 2995 (assoc->sadb_sa_state != SADB_X_SASTATE_ACTIVE_ELSEWHERE)) { 2996 rcode = cl_inet_checkspi(ns->netstack_stackid, protocol, 2997 assoc->sadb_sa_spi, NULL); 2998 if (rcode == -1) { 2999 return (EEXIST); 3000 } 3001 } 3002 3003 /* 3004 * Check to see if the new SA will be cloned AND paired. The 3005 * reason a SA will be cloned is the source or destination addresses 3006 * are not specific enough to determine if the SA goes in the outbound 3007 * or the inbound hash table, so its cloned and put in both. If 3008 * the SA is paired, it's soft linked to another SA for the other 3009 * direction. Keeping track and looking up SA's that are direction 3010 * unspecific and linked is too hard. 3011 */ 3012 if (clone && (pair_ext != NULL)) { 3013 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 3014 return (EINVAL); 3015 } 3016 3017 if (!isupdate) { 3018 newbie = sadb_makelarvalassoc(assoc->sadb_sa_spi, 3019 src_addr_ptr, dst_addr_ptr, af, ns); 3020 if (newbie == NULL) 3021 return (ENOMEM); 3022 } 3023 3024 mutex_enter(&newbie->ipsa_lock); 3025 3026 if (isrc != NULL) { 3027 if (isrc->sin_family == AF_INET) { 3028 if (srcext->sadb_address_proto != IPPROTO_ENCAP) { 3029 if (srcext->sadb_address_proto != 0) { 3030 /* 3031 * Mismatched outer-packet protocol 3032 * and inner-packet address family. 3033 */ 3034 mutex_exit(&newbie->ipsa_lock); 3035 error = EPROTOTYPE; 3036 *diagnostic = 3037 SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH; 3038 goto error; 3039 } else { 3040 /* Fill in with explicit protocol. */ 3041 srcext->sadb_address_proto = 3042 IPPROTO_ENCAP; 3043 dstext->sadb_address_proto = 3044 IPPROTO_ENCAP; 3045 } 3046 } 3047 isrc_addr_ptr = (uint32_t *)&isrc->sin_addr; 3048 idst_addr_ptr = (uint32_t *)&idst->sin_addr; 3049 } else { 3050 ASSERT(isrc->sin_family == AF_INET6); 3051 if (srcext->sadb_address_proto != IPPROTO_IPV6) { 3052 if (srcext->sadb_address_proto != 0) { 3053 /* 3054 * Mismatched outer-packet protocol 3055 * and inner-packet address family. 3056 */ 3057 mutex_exit(&newbie->ipsa_lock); 3058 error = EPROTOTYPE; 3059 *diagnostic = 3060 SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH; 3061 goto error; 3062 } else { 3063 /* Fill in with explicit protocol. */ 3064 srcext->sadb_address_proto = 3065 IPPROTO_IPV6; 3066 dstext->sadb_address_proto = 3067 IPPROTO_IPV6; 3068 } 3069 } 3070 isrc_addr_ptr = (uint32_t *)&isrc6->sin6_addr; 3071 idst_addr_ptr = (uint32_t *)&idst6->sin6_addr; 3072 } 3073 newbie->ipsa_innerfam = isrc->sin_family; 3074 3075 IPSA_COPY_ADDR(newbie->ipsa_innersrc, isrc_addr_ptr, 3076 newbie->ipsa_innerfam); 3077 IPSA_COPY_ADDR(newbie->ipsa_innerdst, idst_addr_ptr, 3078 newbie->ipsa_innerfam); 3079 newbie->ipsa_innersrcpfx = isrcext->sadb_address_prefixlen; 3080 newbie->ipsa_innerdstpfx = idstext->sadb_address_prefixlen; 3081 3082 /* Unique value uses inner-ports for Tunnel Mode... */ 3083 newbie->ipsa_unique_id = SA_UNIQUE_ID(isrc->sin_port, 3084 idst->sin_port, dstext->sadb_address_proto, 3085 idstext->sadb_address_proto); 3086 newbie->ipsa_unique_mask = SA_UNIQUE_MASK(isrc->sin_port, 3087 idst->sin_port, dstext->sadb_address_proto, 3088 idstext->sadb_address_proto); 3089 } else { 3090 /* ... and outer-ports for Transport Mode. */ 3091 newbie->ipsa_unique_id = SA_UNIQUE_ID(src->sin_port, 3092 dst->sin_port, dstext->sadb_address_proto, 0); 3093 newbie->ipsa_unique_mask = SA_UNIQUE_MASK(src->sin_port, 3094 dst->sin_port, dstext->sadb_address_proto, 0); 3095 } 3096 if (newbie->ipsa_unique_mask != (uint64_t)0) 3097 newbie->ipsa_flags |= IPSA_F_UNIQUE; 3098 3099 sadb_nat_calculations(newbie, 3100 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC], 3101 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM], 3102 src_addr_ptr, dst_addr_ptr); 3103 3104 newbie->ipsa_type = samsg->sadb_msg_satype; 3105 3106 ASSERT((assoc->sadb_sa_state == SADB_SASTATE_MATURE) || 3107 (assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE)); 3108 newbie->ipsa_auth_alg = assoc->sadb_sa_auth; 3109 newbie->ipsa_encr_alg = assoc->sadb_sa_encrypt; 3110 3111 newbie->ipsa_flags |= assoc->sadb_sa_flags; 3112 if (newbie->ipsa_flags & SADB_X_SAFLAGS_NATT_LOC && 3113 ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC] == NULL) { 3114 mutex_exit(&newbie->ipsa_lock); 3115 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_LOC; 3116 error = EINVAL; 3117 goto error; 3118 } 3119 if (newbie->ipsa_flags & SADB_X_SAFLAGS_NATT_REM && 3120 ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM] == NULL) { 3121 mutex_exit(&newbie->ipsa_lock); 3122 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_REM; 3123 error = EINVAL; 3124 goto error; 3125 } 3126 if (newbie->ipsa_flags & SADB_X_SAFLAGS_TUNNEL && 3127 ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC] == NULL) { 3128 mutex_exit(&newbie->ipsa_lock); 3129 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC; 3130 error = EINVAL; 3131 goto error; 3132 } 3133 /* 3134 * If unspecified source address, force replay_wsize to 0. 3135 * This is because an SA that has multiple sources of secure 3136 * traffic cannot enforce a replay counter w/o synchronizing the 3137 * senders. 3138 */ 3139 if (ksi->ks_in_srctype != KS_IN_ADDR_UNSPEC) 3140 newbie->ipsa_replay_wsize = assoc->sadb_sa_replay; 3141 else 3142 newbie->ipsa_replay_wsize = 0; 3143 3144 newbie->ipsa_addtime = gethrestime_sec(); 3145 3146 if (kmcext != NULL) { 3147 newbie->ipsa_kmp = kmcext->sadb_x_kmc_proto; 3148 /* 3149 * Be liberal in what we receive. Special-case the IKEv1 3150 * cookie, which closed-source in.iked assumes is 32 bits. 3151 * Now that we store all 64 bits, we should pre-zero the 3152 * reserved field on behalf of closed-source in.iked. 3153 */ 3154 if (newbie->ipsa_kmp == SADB_X_KMP_IKE) { 3155 /* Just in case in.iked is misbehaving... */ 3156 kmcext->sadb_x_kmc_reserved = 0; 3157 } 3158 newbie->ipsa_kmc = kmcext->sadb_x_kmc_cookie64; 3159 } 3160 3161 /* 3162 * XXX CURRENT lifetime checks MAY BE needed for an UPDATE. 3163 * The spec says that one can update current lifetimes, but 3164 * that seems impractical, especially in the larval-to-mature 3165 * update that this function performs. 3166 */ 3167 if (soft != NULL) { 3168 newbie->ipsa_softaddlt = soft->sadb_lifetime_addtime; 3169 newbie->ipsa_softuselt = soft->sadb_lifetime_usetime; 3170 newbie->ipsa_softbyteslt = soft->sadb_lifetime_bytes; 3171 newbie->ipsa_softalloc = soft->sadb_lifetime_allocations; 3172 SET_EXPIRE(newbie, softaddlt, softexpiretime); 3173 } 3174 if (hard != NULL) { 3175 newbie->ipsa_hardaddlt = hard->sadb_lifetime_addtime; 3176 newbie->ipsa_harduselt = hard->sadb_lifetime_usetime; 3177 newbie->ipsa_hardbyteslt = hard->sadb_lifetime_bytes; 3178 newbie->ipsa_hardalloc = hard->sadb_lifetime_allocations; 3179 SET_EXPIRE(newbie, hardaddlt, hardexpiretime); 3180 } 3181 if (idle != NULL) { 3182 newbie->ipsa_idleaddlt = idle->sadb_lifetime_addtime; 3183 newbie->ipsa_idleuselt = idle->sadb_lifetime_usetime; 3184 newbie->ipsa_idleexpiretime = newbie->ipsa_addtime + 3185 newbie->ipsa_idleaddlt; 3186 newbie->ipsa_idletime = newbie->ipsa_idleaddlt; 3187 } 3188 3189 newbie->ipsa_authtmpl = NULL; 3190 newbie->ipsa_encrtmpl = NULL; 3191 3192 #ifdef IPSEC_LATENCY_TEST 3193 if (akey != NULL && newbie->ipsa_auth_alg != SADB_AALG_NONE) { 3194 #else 3195 if (akey != NULL) { 3196 #endif 3197 async = (ipss->ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == 3198 IPSEC_ALGS_EXEC_ASYNC); 3199 3200 newbie->ipsa_authkeybits = akey->sadb_key_bits; 3201 newbie->ipsa_authkeylen = SADB_1TO8(akey->sadb_key_bits); 3202 /* In case we have to round up to the next byte... */ 3203 if ((akey->sadb_key_bits & 0x7) != 0) 3204 newbie->ipsa_authkeylen++; 3205 newbie->ipsa_authkey = kmem_alloc(newbie->ipsa_authkeylen, 3206 KM_NOSLEEP); 3207 if (newbie->ipsa_authkey == NULL) { 3208 error = ENOMEM; 3209 mutex_exit(&newbie->ipsa_lock); 3210 goto error; 3211 } 3212 bcopy(akey + 1, newbie->ipsa_authkey, newbie->ipsa_authkeylen); 3213 bzero(akey + 1, newbie->ipsa_authkeylen); 3214 3215 /* 3216 * Pre-initialize the kernel crypto framework key 3217 * structure. 3218 */ 3219 newbie->ipsa_kcfauthkey.ck_format = CRYPTO_KEY_RAW; 3220 newbie->ipsa_kcfauthkey.ck_length = newbie->ipsa_authkeybits; 3221 newbie->ipsa_kcfauthkey.ck_data = newbie->ipsa_authkey; 3222 3223 rw_enter(&ipss->ipsec_alg_lock, RW_READER); 3224 alg = ipss->ipsec_alglists[IPSEC_ALG_AUTH] 3225 [newbie->ipsa_auth_alg]; 3226 if (alg != NULL && ALG_VALID(alg)) { 3227 newbie->ipsa_amech.cm_type = alg->alg_mech_type; 3228 newbie->ipsa_amech.cm_param = 3229 (char *)&newbie->ipsa_mac_len; 3230 newbie->ipsa_amech.cm_param_len = sizeof (size_t); 3231 newbie->ipsa_mac_len = (size_t)alg->alg_datalen; 3232 } else { 3233 newbie->ipsa_amech.cm_type = CRYPTO_MECHANISM_INVALID; 3234 } 3235 error = ipsec_create_ctx_tmpl(newbie, IPSEC_ALG_AUTH); 3236 rw_exit(&ipss->ipsec_alg_lock); 3237 if (error != 0) { 3238 mutex_exit(&newbie->ipsa_lock); 3239 /* 3240 * An error here indicates that alg is the wrong type 3241 * (IE: not authentication) or its not in the alg tables 3242 * created by ipsecalgs(8), or Kcf does not like the 3243 * parameters passed in with this algorithm, which is 3244 * probably a coding error! 3245 */ 3246 *diagnostic = SADB_X_DIAGNOSTIC_BAD_CTX; 3247 3248 goto error; 3249 } 3250 } 3251 3252 if (ekey != NULL) { 3253 rw_enter(&ipss->ipsec_alg_lock, RW_READER); 3254 async = async || (ipss->ipsec_algs_exec_mode[IPSEC_ALG_ENCR] == 3255 IPSEC_ALGS_EXEC_ASYNC); 3256 alg = ipss->ipsec_alglists[IPSEC_ALG_ENCR] 3257 [newbie->ipsa_encr_alg]; 3258 3259 if (alg != NULL && ALG_VALID(alg)) { 3260 newbie->ipsa_emech.cm_type = alg->alg_mech_type; 3261 newbie->ipsa_datalen = alg->alg_datalen; 3262 if (alg->alg_flags & ALG_FLAG_COUNTERMODE) 3263 newbie->ipsa_flags |= IPSA_F_COUNTERMODE; 3264 3265 if (alg->alg_flags & ALG_FLAG_COMBINED) { 3266 newbie->ipsa_flags |= IPSA_F_COMBINED; 3267 newbie->ipsa_mac_len = alg->alg_icvlen; 3268 } 3269 3270 if (alg->alg_flags & ALG_FLAG_CCM) 3271 newbie->ipsa_noncefunc = ccm_params_init; 3272 else if (alg->alg_flags & ALG_FLAG_GCM) 3273 newbie->ipsa_noncefunc = gcm_params_init; 3274 else newbie->ipsa_noncefunc = cbc_params_init; 3275 3276 newbie->ipsa_saltlen = alg->alg_saltlen; 3277 newbie->ipsa_saltbits = SADB_8TO1(newbie->ipsa_saltlen); 3278 newbie->ipsa_iv_len = alg->alg_ivlen; 3279 newbie->ipsa_nonce_len = newbie->ipsa_saltlen + 3280 newbie->ipsa_iv_len; 3281 newbie->ipsa_emech.cm_param = NULL; 3282 newbie->ipsa_emech.cm_param_len = 0; 3283 } else { 3284 newbie->ipsa_emech.cm_type = CRYPTO_MECHANISM_INVALID; 3285 } 3286 rw_exit(&ipss->ipsec_alg_lock); 3287 3288 /* 3289 * The byte stream following the sadb_key_t is made up of: 3290 * key bytes, [salt bytes], [IV initial value] 3291 * All of these have variable length. The IV is typically 3292 * randomly generated by this function and not passed in. 3293 * By supporting the injection of a known IV, the whole 3294 * IPsec subsystem and the underlying crypto subsystem 3295 * can be tested with known test vectors. 3296 * 3297 * The keying material has been checked by ext_check() 3298 * and ipsec_valid_key_size(), after removing salt/IV 3299 * bits, whats left is the encryption key. If this is too 3300 * short, ipsec_create_ctx_tmpl() will fail and the SA 3301 * won't get created. 3302 * 3303 * set ipsa_encrkeylen to length of key only. 3304 */ 3305 newbie->ipsa_encrkeybits = ekey->sadb_key_bits; 3306 newbie->ipsa_encrkeybits -= ekey->sadb_key_reserved; 3307 newbie->ipsa_encrkeybits -= newbie->ipsa_saltbits; 3308 newbie->ipsa_encrkeylen = SADB_1TO8(newbie->ipsa_encrkeybits); 3309 3310 /* In case we have to round up to the next byte... */ 3311 if ((ekey->sadb_key_bits & 0x7) != 0) 3312 newbie->ipsa_encrkeylen++; 3313 3314 newbie->ipsa_encrkey = kmem_alloc(newbie->ipsa_encrkeylen, 3315 KM_NOSLEEP); 3316 if (newbie->ipsa_encrkey == NULL) { 3317 error = ENOMEM; 3318 mutex_exit(&newbie->ipsa_lock); 3319 goto error; 3320 } 3321 3322 buf_ptr = (uint8_t *)(ekey + 1); 3323 bcopy(buf_ptr, newbie->ipsa_encrkey, newbie->ipsa_encrkeylen); 3324 3325 if (newbie->ipsa_flags & IPSA_F_COMBINED) { 3326 /* 3327 * Combined mode algs need a nonce. Copy the salt and 3328 * IV into a buffer. The ipsa_nonce is a pointer into 3329 * this buffer, some bytes at the start of the buffer 3330 * may be unused, depends on the salt length. The IV 3331 * is 64 bit aligned so it can be incremented as a 3332 * uint64_t. Zero out key in samsg_t before freeing. 3333 */ 3334 3335 newbie->ipsa_nonce_buf = kmem_alloc( 3336 sizeof (ipsec_nonce_t), KM_NOSLEEP); 3337 if (newbie->ipsa_nonce_buf == NULL) { 3338 error = ENOMEM; 3339 mutex_exit(&newbie->ipsa_lock); 3340 goto error; 3341 } 3342 /* 3343 * Initialize nonce and salt pointers to point 3344 * to the nonce buffer. This is just in case we get 3345 * bad data, the pointers will be valid, the data 3346 * won't be. 3347 * 3348 * See sadb.h for layout of nonce. 3349 */ 3350 newbie->ipsa_iv = &newbie->ipsa_nonce_buf->iv; 3351 newbie->ipsa_salt = (uint8_t *)newbie->ipsa_nonce_buf; 3352 newbie->ipsa_nonce = newbie->ipsa_salt; 3353 if (newbie->ipsa_saltlen != 0) { 3354 salt_offset = MAXSALTSIZE - 3355 newbie->ipsa_saltlen; 3356 newbie->ipsa_salt = (uint8_t *) 3357 &newbie->ipsa_nonce_buf->salt[salt_offset]; 3358 newbie->ipsa_nonce = newbie->ipsa_salt; 3359 buf_ptr += newbie->ipsa_encrkeylen; 3360 bcopy(buf_ptr, newbie->ipsa_salt, 3361 newbie->ipsa_saltlen); 3362 } 3363 /* 3364 * The IV for CCM/GCM mode increments, it should not 3365 * repeat. Get a random value for the IV, make a 3366 * copy, the SA will expire when/if the IV ever 3367 * wraps back to the initial value. If an Initial IV 3368 * is passed in via PF_KEY, save this in the SA. 3369 * Initialising IV for inbound is pointless as its 3370 * taken from the inbound packet. 3371 */ 3372 if (!is_inbound) { 3373 if (ekey->sadb_key_reserved != 0) { 3374 buf_ptr += newbie->ipsa_saltlen; 3375 bcopy(buf_ptr, (uint8_t *)newbie-> 3376 ipsa_iv, SADB_1TO8(ekey-> 3377 sadb_key_reserved)); 3378 } else { 3379 (void) random_get_pseudo_bytes( 3380 (uint8_t *)newbie->ipsa_iv, 3381 newbie->ipsa_iv_len); 3382 } 3383 newbie->ipsa_iv_softexpire = 3384 (*newbie->ipsa_iv) << 9; 3385 newbie->ipsa_iv_hardexpire = *newbie->ipsa_iv; 3386 } 3387 } 3388 bzero((ekey + 1), SADB_1TO8(ekey->sadb_key_bits)); 3389 3390 /* 3391 * Pre-initialize the kernel crypto framework key 3392 * structure. 3393 */ 3394 newbie->ipsa_kcfencrkey.ck_format = CRYPTO_KEY_RAW; 3395 newbie->ipsa_kcfencrkey.ck_length = newbie->ipsa_encrkeybits; 3396 newbie->ipsa_kcfencrkey.ck_data = newbie->ipsa_encrkey; 3397 3398 rw_enter(&ipss->ipsec_alg_lock, RW_READER); 3399 error = ipsec_create_ctx_tmpl(newbie, IPSEC_ALG_ENCR); 3400 rw_exit(&ipss->ipsec_alg_lock); 3401 if (error != 0) { 3402 mutex_exit(&newbie->ipsa_lock); 3403 /* See above for error explanation. */ 3404 *diagnostic = SADB_X_DIAGNOSTIC_BAD_CTX; 3405 goto error; 3406 } 3407 } 3408 3409 if (async) 3410 newbie->ipsa_flags |= IPSA_F_ASYNC; 3411 3412 /* 3413 * Ptrs to processing functions. 3414 */ 3415 if (newbie->ipsa_type == SADB_SATYPE_ESP) 3416 ipsecesp_init_funcs(newbie); 3417 else 3418 ipsecah_init_funcs(newbie); 3419 ASSERT(newbie->ipsa_output_func != NULL && 3420 newbie->ipsa_input_func != NULL); 3421 3422 /* 3423 * Certificate ID stuff. 3424 */ 3425 if (ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC] != NULL) { 3426 sadb_ident_t *id = 3427 (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC]; 3428 3429 /* 3430 * Can assume strlen() will return okay because ext_check() in 3431 * keysock.c prepares the string for us. 3432 */ 3433 newbie->ipsa_src_cid = ipsid_lookup(id->sadb_ident_type, 3434 (char *)(id+1), ns); 3435 if (newbie->ipsa_src_cid == NULL) { 3436 error = ENOMEM; 3437 mutex_exit(&newbie->ipsa_lock); 3438 goto error; 3439 } 3440 } 3441 3442 if (ksi->ks_in_extv[SADB_EXT_IDENTITY_DST] != NULL) { 3443 sadb_ident_t *id = 3444 (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_DST]; 3445 3446 /* 3447 * Can assume strlen() will return okay because ext_check() in 3448 * keysock.c prepares the string for us. 3449 */ 3450 newbie->ipsa_dst_cid = ipsid_lookup(id->sadb_ident_type, 3451 (char *)(id+1), ns); 3452 if (newbie->ipsa_dst_cid == NULL) { 3453 error = ENOMEM; 3454 mutex_exit(&newbie->ipsa_lock); 3455 goto error; 3456 } 3457 } 3458 3459 /* 3460 * sensitivity label handling code: 3461 * Convert sens + bitmap into cred_t, and associate it 3462 * with the new SA. 3463 */ 3464 if (sens != NULL) { 3465 uint64_t *bitmap = (uint64_t *)(sens + 1); 3466 3467 newbie->ipsa_tsl = sadb_label_from_sens(sens, bitmap); 3468 } 3469 3470 /* 3471 * Likewise for outer sensitivity. 3472 */ 3473 if (osens != NULL) { 3474 uint64_t *bitmap = (uint64_t *)(osens + 1); 3475 ts_label_t *tsl, *effective_tsl; 3476 uint32_t *peer_addr_ptr; 3477 zoneid_t zoneid = GLOBAL_ZONEID; 3478 zone_t *zone; 3479 3480 peer_addr_ptr = is_inbound ? src_addr_ptr : dst_addr_ptr; 3481 3482 tsl = sadb_label_from_sens(osens, bitmap); 3483 newbie->ipsa_mac_exempt = CONN_MAC_DEFAULT; 3484 3485 if (osens->sadb_x_sens_flags & SADB_X_SENS_IMPLICIT) { 3486 newbie->ipsa_mac_exempt = CONN_MAC_IMPLICIT; 3487 } 3488 3489 error = tsol_check_dest(tsl, peer_addr_ptr, 3490 (af == AF_INET6)?IPV6_VERSION:IPV4_VERSION, 3491 newbie->ipsa_mac_exempt, B_TRUE, &effective_tsl); 3492 if (error != 0) { 3493 label_rele(tsl); 3494 mutex_exit(&newbie->ipsa_lock); 3495 goto error; 3496 } 3497 3498 if (effective_tsl != NULL) { 3499 label_rele(tsl); 3500 tsl = effective_tsl; 3501 } 3502 3503 newbie->ipsa_otsl = tsl; 3504 3505 zone = zone_find_by_label(tsl); 3506 if (zone != NULL) { 3507 zoneid = zone->zone_id; 3508 zone_rele(zone); 3509 } 3510 /* 3511 * For exclusive stacks we set the zoneid to zero to operate 3512 * as if in the global zone for tsol_compute_label_v4/v6 3513 */ 3514 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 3515 zoneid = GLOBAL_ZONEID; 3516 3517 if (af == AF_INET6) { 3518 error = tsol_compute_label_v6(tsl, zoneid, 3519 (in6_addr_t *)peer_addr_ptr, 3520 newbie->ipsa_opt_storage, ipst); 3521 } else { 3522 error = tsol_compute_label_v4(tsl, zoneid, 3523 *peer_addr_ptr, newbie->ipsa_opt_storage, ipst); 3524 } 3525 if (error != 0) { 3526 mutex_exit(&newbie->ipsa_lock); 3527 goto error; 3528 } 3529 } 3530 3531 3532 if (replayext != NULL) { 3533 if ((replayext->sadb_x_rc_replay32 == 0) && 3534 (replayext->sadb_x_rc_replay64 != 0)) { 3535 error = EOPNOTSUPP; 3536 *diagnostic = SADB_X_DIAGNOSTIC_INVALID_REPLAY; 3537 mutex_exit(&newbie->ipsa_lock); 3538 goto error; 3539 } 3540 newbie->ipsa_replay = replayext->sadb_x_rc_replay32; 3541 } 3542 3543 /* now that the SA has been updated, set its new state */ 3544 newbie->ipsa_state = assoc->sadb_sa_state; 3545 3546 if (clone) { 3547 newbie->ipsa_haspeer = B_TRUE; 3548 } else { 3549 if (!is_inbound) { 3550 lifetime_fuzz(newbie); 3551 } 3552 } 3553 /* 3554 * The less locks I hold when doing an insertion and possible cloning, 3555 * the better! 3556 */ 3557 mutex_exit(&newbie->ipsa_lock); 3558 3559 if (clone) { 3560 newbie_clone = sadb_cloneassoc(newbie); 3561 3562 if (newbie_clone == NULL) { 3563 error = ENOMEM; 3564 goto error; 3565 } 3566 } 3567 3568 /* 3569 * Enter the bucket locks. The order of entry is outbound, 3570 * inbound. We map "primary" and "secondary" into outbound and inbound 3571 * based on the destination address type. If the destination address 3572 * type is for a node that isn't mine (or potentially mine), the 3573 * "primary" bucket is the outbound one. 3574 */ 3575 if (!is_inbound) { 3576 /* primary == outbound */ 3577 mutex_enter(&primary->isaf_lock); 3578 mutex_enter(&secondary->isaf_lock); 3579 } else { 3580 /* primary == inbound */ 3581 mutex_enter(&secondary->isaf_lock); 3582 mutex_enter(&primary->isaf_lock); 3583 } 3584 3585 /* 3586 * sadb_insertassoc() doesn't increment the reference 3587 * count. We therefore have to increment the 3588 * reference count one more time to reflect the 3589 * pointers of the table that reference this SA. 3590 */ 3591 IPSA_REFHOLD(newbie); 3592 3593 if (isupdate) { 3594 /* 3595 * Unlink from larval holding cell in the "inbound" fanout. 3596 */ 3597 ASSERT(newbie->ipsa_linklock == &primary->isaf_lock || 3598 newbie->ipsa_linklock == &secondary->isaf_lock); 3599 sadb_unlinkassoc(newbie); 3600 } 3601 3602 mutex_enter(&newbie->ipsa_lock); 3603 error = sadb_insertassoc(newbie, primary); 3604 mutex_exit(&newbie->ipsa_lock); 3605 3606 if (error != 0) { 3607 /* 3608 * Since sadb_insertassoc() failed, we must decrement the 3609 * refcount again so the cleanup code will actually free 3610 * the offending SA. 3611 */ 3612 IPSA_REFRELE(newbie); 3613 goto error_unlock; 3614 } 3615 3616 if (newbie_clone != NULL) { 3617 mutex_enter(&newbie_clone->ipsa_lock); 3618 error = sadb_insertassoc(newbie_clone, secondary); 3619 mutex_exit(&newbie_clone->ipsa_lock); 3620 if (error != 0) { 3621 /* Collision in secondary table. */ 3622 sadb_unlinkassoc(newbie); /* This does REFRELE. */ 3623 goto error_unlock; 3624 } 3625 IPSA_REFHOLD(newbie_clone); 3626 } else { 3627 ASSERT(primary != secondary); 3628 scratch = ipsec_getassocbyspi(secondary, newbie->ipsa_spi, 3629 ALL_ZEROES_PTR, newbie->ipsa_dstaddr, af); 3630 if (scratch != NULL) { 3631 /* Collision in secondary table. */ 3632 sadb_unlinkassoc(newbie); /* This does REFRELE. */ 3633 /* Set the error, since ipsec_getassocbyspi() can't. */ 3634 error = EEXIST; 3635 goto error_unlock; 3636 } 3637 } 3638 3639 /* OKAY! So let's do some reality check assertions. */ 3640 3641 ASSERT(MUTEX_NOT_HELD(&newbie->ipsa_lock)); 3642 ASSERT(newbie_clone == NULL || 3643 (MUTEX_NOT_HELD(&newbie_clone->ipsa_lock))); 3644 3645 error_unlock: 3646 3647 /* 3648 * We can exit the locks in any order. Only entrance needs to 3649 * follow any protocol. 3650 */ 3651 mutex_exit(&secondary->isaf_lock); 3652 mutex_exit(&primary->isaf_lock); 3653 3654 if (pair_ext != NULL && error == 0) { 3655 /* update pair_spi if it exists. */ 3656 ipsa_query_t sq; 3657 3658 sq.spp = spp; /* XXX param */ 3659 error = sadb_form_query(ksi, IPSA_Q_DST, IPSA_Q_SRC|IPSA_Q_DST| 3660 IPSA_Q_SA|IPSA_Q_INBOUND|IPSA_Q_OUTBOUND, &sq, diagnostic); 3661 if (error) 3662 return (error); 3663 3664 error = get_ipsa_pair(&sq, &ipsapp, diagnostic); 3665 3666 if (error != 0) 3667 goto error; 3668 3669 if (ipsapp.ipsap_psa_ptr != NULL) { 3670 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_ALREADY; 3671 error = EINVAL; 3672 } else { 3673 /* update_pairing() sets diagnostic */ 3674 error = update_pairing(&ipsapp, &sq, ksi, diagnostic); 3675 } 3676 } 3677 /* Common error point for this routine. */ 3678 error: 3679 if (newbie != NULL) { 3680 if (error != 0) { 3681 /* This SA is broken, let the reaper clean up. */ 3682 mutex_enter(&newbie->ipsa_lock); 3683 newbie->ipsa_state = IPSA_STATE_DEAD; 3684 newbie->ipsa_hardexpiretime = 1; 3685 mutex_exit(&newbie->ipsa_lock); 3686 } 3687 IPSA_REFRELE(newbie); 3688 } 3689 if (newbie_clone != NULL) { 3690 IPSA_REFRELE(newbie_clone); 3691 } 3692 3693 if (error == 0) { 3694 /* 3695 * Construct favorable PF_KEY return message and send to 3696 * keysock. Update the flags in the original keysock message 3697 * to reflect the actual flags in the new SA. 3698 * (Q: Do I need to pass "newbie"? If I do, 3699 * make sure to REFHOLD, call, then REFRELE.) 3700 */ 3701 assoc->sadb_sa_flags = newbie->ipsa_flags; 3702 sadb_pfkey_echo(pfkey_q, mp, samsg, ksi, NULL); 3703 } 3704 3705 destroy_ipsa_pair(&ipsapp); 3706 return (error); 3707 } 3708 3709 /* 3710 * Set the time of first use for a security association. Update any 3711 * expiration times as a result. 3712 */ 3713 void 3714 sadb_set_usetime(ipsa_t *assoc) 3715 { 3716 time_t snapshot = gethrestime_sec(); 3717 3718 mutex_enter(&assoc->ipsa_lock); 3719 assoc->ipsa_lastuse = snapshot; 3720 assoc->ipsa_idleexpiretime = snapshot + assoc->ipsa_idletime; 3721 3722 /* 3723 * Caller does check usetime before calling me usually, and 3724 * double-checking is better than a mutex_enter/exit hit. 3725 */ 3726 if (assoc->ipsa_usetime == 0) { 3727 /* 3728 * This is redundant for outbound SA's, as 3729 * ipsec_getassocbyconn() sets the IPSA_F_USED flag already. 3730 * Inbound SAs, however, have no such protection. 3731 */ 3732 assoc->ipsa_flags |= IPSA_F_USED; 3733 assoc->ipsa_usetime = snapshot; 3734 3735 /* 3736 * After setting the use time, see if we have a use lifetime 3737 * that would cause the actual SA expiration time to shorten. 3738 */ 3739 UPDATE_EXPIRE(assoc, softuselt, softexpiretime); 3740 UPDATE_EXPIRE(assoc, harduselt, hardexpiretime); 3741 } 3742 mutex_exit(&assoc->ipsa_lock); 3743 } 3744 3745 /* 3746 * Send up a PF_KEY expire message for this association. 3747 */ 3748 static void 3749 sadb_expire_assoc(queue_t *pfkey_q, ipsa_t *assoc) 3750 { 3751 mblk_t *mp, *mp1; 3752 int alloclen, af; 3753 sadb_msg_t *samsg; 3754 sadb_lifetime_t *current, *expire; 3755 sadb_sa_t *saext; 3756 uint8_t *end; 3757 boolean_t tunnel_mode; 3758 3759 ASSERT(MUTEX_HELD(&assoc->ipsa_lock)); 3760 3761 /* Don't bother sending if there's no queue. */ 3762 if (pfkey_q == NULL) 3763 return; 3764 3765 mp = sadb_keysock_out(0); 3766 if (mp == NULL) { 3767 /* cmn_err(CE_WARN, */ 3768 /* "sadb_expire_assoc: Can't allocate KEYSOCK_OUT.\n"); */ 3769 return; 3770 } 3771 3772 alloclen = sizeof (*samsg) + sizeof (*current) + sizeof (*expire) + 3773 2 * sizeof (sadb_address_t) + sizeof (*saext); 3774 3775 af = assoc->ipsa_addrfam; 3776 switch (af) { 3777 case AF_INET: 3778 alloclen += 2 * sizeof (struct sockaddr_in); 3779 break; 3780 case AF_INET6: 3781 alloclen += 2 * sizeof (struct sockaddr_in6); 3782 break; 3783 default: 3784 /* Won't happen unless there's a kernel bug. */ 3785 freeb(mp); 3786 cmn_err(CE_WARN, 3787 "sadb_expire_assoc: Unknown address length.\n"); 3788 return; 3789 } 3790 3791 tunnel_mode = (assoc->ipsa_flags & IPSA_F_TUNNEL); 3792 if (tunnel_mode) { 3793 alloclen += 2 * sizeof (sadb_address_t); 3794 switch (assoc->ipsa_innerfam) { 3795 case AF_INET: 3796 alloclen += 2 * sizeof (struct sockaddr_in); 3797 break; 3798 case AF_INET6: 3799 alloclen += 2 * sizeof (struct sockaddr_in6); 3800 break; 3801 default: 3802 /* Won't happen unless there's a kernel bug. */ 3803 freeb(mp); 3804 cmn_err(CE_WARN, "sadb_expire_assoc: " 3805 "Unknown inner address length.\n"); 3806 return; 3807 } 3808 } 3809 3810 mp->b_cont = allocb(alloclen, BPRI_HI); 3811 if (mp->b_cont == NULL) { 3812 freeb(mp); 3813 /* cmn_err(CE_WARN, */ 3814 /* "sadb_expire_assoc: Can't allocate message.\n"); */ 3815 return; 3816 } 3817 3818 mp1 = mp; 3819 mp = mp->b_cont; 3820 end = mp->b_wptr + alloclen; 3821 3822 samsg = (sadb_msg_t *)mp->b_wptr; 3823 mp->b_wptr += sizeof (*samsg); 3824 samsg->sadb_msg_version = PF_KEY_V2; 3825 samsg->sadb_msg_type = SADB_EXPIRE; 3826 samsg->sadb_msg_errno = 0; 3827 samsg->sadb_msg_satype = assoc->ipsa_type; 3828 samsg->sadb_msg_len = SADB_8TO64(alloclen); 3829 samsg->sadb_msg_reserved = 0; 3830 samsg->sadb_msg_seq = 0; 3831 samsg->sadb_msg_pid = 0; 3832 3833 saext = (sadb_sa_t *)mp->b_wptr; 3834 mp->b_wptr += sizeof (*saext); 3835 saext->sadb_sa_len = SADB_8TO64(sizeof (*saext)); 3836 saext->sadb_sa_exttype = SADB_EXT_SA; 3837 saext->sadb_sa_spi = assoc->ipsa_spi; 3838 saext->sadb_sa_replay = assoc->ipsa_replay_wsize; 3839 saext->sadb_sa_state = assoc->ipsa_state; 3840 saext->sadb_sa_auth = assoc->ipsa_auth_alg; 3841 saext->sadb_sa_encrypt = assoc->ipsa_encr_alg; 3842 saext->sadb_sa_flags = assoc->ipsa_flags; 3843 3844 current = (sadb_lifetime_t *)mp->b_wptr; 3845 mp->b_wptr += sizeof (sadb_lifetime_t); 3846 current->sadb_lifetime_len = SADB_8TO64(sizeof (*current)); 3847 current->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3848 /* We do not support the concept. */ 3849 current->sadb_lifetime_allocations = 0; 3850 current->sadb_lifetime_bytes = assoc->ipsa_bytes; 3851 current->sadb_lifetime_addtime = assoc->ipsa_addtime; 3852 current->sadb_lifetime_usetime = assoc->ipsa_usetime; 3853 3854 expire = (sadb_lifetime_t *)mp->b_wptr; 3855 mp->b_wptr += sizeof (*expire); 3856 expire->sadb_lifetime_len = SADB_8TO64(sizeof (*expire)); 3857 3858 if (assoc->ipsa_state == IPSA_STATE_DEAD) { 3859 expire->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 3860 expire->sadb_lifetime_allocations = assoc->ipsa_hardalloc; 3861 expire->sadb_lifetime_bytes = assoc->ipsa_hardbyteslt; 3862 expire->sadb_lifetime_addtime = assoc->ipsa_hardaddlt; 3863 expire->sadb_lifetime_usetime = assoc->ipsa_harduselt; 3864 } else if (assoc->ipsa_state == IPSA_STATE_DYING) { 3865 expire->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 3866 expire->sadb_lifetime_allocations = assoc->ipsa_softalloc; 3867 expire->sadb_lifetime_bytes = assoc->ipsa_softbyteslt; 3868 expire->sadb_lifetime_addtime = assoc->ipsa_softaddlt; 3869 expire->sadb_lifetime_usetime = assoc->ipsa_softuselt; 3870 } else { 3871 ASSERT(assoc->ipsa_state == IPSA_STATE_MATURE); 3872 expire->sadb_lifetime_exttype = SADB_X_EXT_LIFETIME_IDLE; 3873 expire->sadb_lifetime_allocations = 0; 3874 expire->sadb_lifetime_bytes = 0; 3875 expire->sadb_lifetime_addtime = assoc->ipsa_idleaddlt; 3876 expire->sadb_lifetime_usetime = assoc->ipsa_idleuselt; 3877 } 3878 3879 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, SADB_EXT_ADDRESS_SRC, 3880 af, assoc->ipsa_srcaddr, tunnel_mode ? 0 : SA_SRCPORT(assoc), 3881 SA_PROTO(assoc), 0); 3882 ASSERT(mp->b_wptr != NULL); 3883 3884 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, SADB_EXT_ADDRESS_DST, 3885 af, assoc->ipsa_dstaddr, tunnel_mode ? 0 : SA_DSTPORT(assoc), 3886 SA_PROTO(assoc), 0); 3887 ASSERT(mp->b_wptr != NULL); 3888 3889 if (tunnel_mode) { 3890 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, 3891 SADB_X_EXT_ADDRESS_INNER_SRC, assoc->ipsa_innerfam, 3892 assoc->ipsa_innersrc, SA_SRCPORT(assoc), SA_IPROTO(assoc), 3893 assoc->ipsa_innersrcpfx); 3894 ASSERT(mp->b_wptr != NULL); 3895 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, 3896 SADB_X_EXT_ADDRESS_INNER_DST, assoc->ipsa_innerfam, 3897 assoc->ipsa_innerdst, SA_DSTPORT(assoc), SA_IPROTO(assoc), 3898 assoc->ipsa_innerdstpfx); 3899 ASSERT(mp->b_wptr != NULL); 3900 } 3901 3902 /* Can just putnext, we're ready to go! */ 3903 putnext(pfkey_q, mp1); 3904 } 3905 3906 /* 3907 * "Age" the SA with the number of bytes that was used to protect traffic. 3908 * Send an SADB_EXPIRE message if appropriate. Return B_TRUE if there was 3909 * enough "charge" left in the SA to protect the data. Return B_FALSE 3910 * otherwise. (If B_FALSE is returned, the association either was, or became 3911 * DEAD.) 3912 */ 3913 boolean_t 3914 sadb_age_bytes(queue_t *pfkey_q, ipsa_t *assoc, uint64_t bytes, 3915 boolean_t sendmsg) 3916 { 3917 boolean_t rc = B_TRUE; 3918 uint64_t newtotal; 3919 3920 mutex_enter(&assoc->ipsa_lock); 3921 newtotal = assoc->ipsa_bytes + bytes; 3922 if (assoc->ipsa_hardbyteslt != 0 && 3923 newtotal >= assoc->ipsa_hardbyteslt) { 3924 if (assoc->ipsa_state != IPSA_STATE_DEAD) { 3925 sadb_delete_cluster(assoc); 3926 /* 3927 * Send EXPIRE message to PF_KEY. May wish to pawn 3928 * this off on another non-interrupt thread. Also 3929 * unlink this SA immediately. 3930 */ 3931 assoc->ipsa_state = IPSA_STATE_DEAD; 3932 if (sendmsg) 3933 sadb_expire_assoc(pfkey_q, assoc); 3934 /* 3935 * Set non-zero expiration time so sadb_age_assoc() 3936 * will work when reaping. 3937 */ 3938 assoc->ipsa_hardexpiretime = (time_t)1; 3939 } /* Else someone beat me to it! */ 3940 rc = B_FALSE; 3941 } else if (assoc->ipsa_softbyteslt != 0 && 3942 (newtotal >= assoc->ipsa_softbyteslt)) { 3943 if (assoc->ipsa_state < IPSA_STATE_DYING) { 3944 /* 3945 * Send EXPIRE message to PF_KEY. May wish to pawn 3946 * this off on another non-interrupt thread. 3947 */ 3948 assoc->ipsa_state = IPSA_STATE_DYING; 3949 assoc->ipsa_bytes = newtotal; 3950 if (sendmsg) 3951 sadb_expire_assoc(pfkey_q, assoc); 3952 } /* Else someone beat me to it! */ 3953 } 3954 if (rc == B_TRUE) 3955 assoc->ipsa_bytes = newtotal; 3956 mutex_exit(&assoc->ipsa_lock); 3957 return (rc); 3958 } 3959 3960 /* 3961 * "Torch" an individual SA. Returns NULL, so it can be tail-called from 3962 * sadb_age_assoc(). 3963 */ 3964 static ipsa_t * 3965 sadb_torch_assoc(isaf_t *head, ipsa_t *sa) 3966 { 3967 ASSERT(MUTEX_HELD(&head->isaf_lock)); 3968 ASSERT(MUTEX_HELD(&sa->ipsa_lock)); 3969 ASSERT(sa->ipsa_state == IPSA_STATE_DEAD); 3970 3971 /* 3972 * Force cached SAs to be revalidated.. 3973 */ 3974 head->isaf_gen++; 3975 3976 mutex_exit(&sa->ipsa_lock); 3977 sadb_unlinkassoc(sa); 3978 3979 return (NULL); 3980 } 3981 3982 /* 3983 * Do various SA-is-idle activities depending on delta (the number of idle 3984 * seconds on the SA) and/or other properties of the SA. 3985 * 3986 * Return B_TRUE if I've sent a packet, because I have to drop the 3987 * association's mutex before sending a packet out the wire. 3988 */ 3989 /* ARGSUSED */ 3990 static boolean_t 3991 sadb_idle_activities(ipsa_t *assoc, time_t delta, boolean_t inbound) 3992 { 3993 ipsecesp_stack_t *espstack = assoc->ipsa_netstack->netstack_ipsecesp; 3994 int nat_t_interval = espstack->ipsecesp_nat_keepalive_interval; 3995 3996 ASSERT(MUTEX_HELD(&assoc->ipsa_lock)); 3997 3998 if (!inbound && (assoc->ipsa_flags & IPSA_F_NATT_LOC) && 3999 delta >= nat_t_interval && 4000 gethrestime_sec() - assoc->ipsa_last_nat_t_ka >= nat_t_interval) { 4001 ASSERT(assoc->ipsa_type == SADB_SATYPE_ESP); 4002 assoc->ipsa_last_nat_t_ka = gethrestime_sec(); 4003 mutex_exit(&assoc->ipsa_lock); 4004 ipsecesp_send_keepalive(assoc); 4005 return (B_TRUE); 4006 } 4007 return (B_FALSE); 4008 } 4009 4010 /* 4011 * Return "assoc" if haspeer is true and I send an expire. This allows 4012 * the consumers' aging functions to tidy up an expired SA's peer. 4013 */ 4014 static ipsa_t * 4015 sadb_age_assoc(isaf_t *head, queue_t *pfkey_q, ipsa_t *assoc, 4016 time_t current, int reap_delay, boolean_t inbound) 4017 { 4018 ipsa_t *retval = NULL; 4019 boolean_t dropped_mutex = B_FALSE; 4020 4021 ASSERT(MUTEX_HELD(&head->isaf_lock)); 4022 4023 mutex_enter(&assoc->ipsa_lock); 4024 4025 if (((assoc->ipsa_state == IPSA_STATE_LARVAL) || 4026 ((assoc->ipsa_state == IPSA_STATE_IDLE) || 4027 (assoc->ipsa_state == IPSA_STATE_ACTIVE_ELSEWHERE) && 4028 (assoc->ipsa_hardexpiretime != 0))) && 4029 (assoc->ipsa_hardexpiretime <= current)) { 4030 assoc->ipsa_state = IPSA_STATE_DEAD; 4031 return (sadb_torch_assoc(head, assoc)); 4032 } 4033 4034 /* 4035 * Check lifetimes. Fortunately, SA setup is done 4036 * such that there are only two times to look at, 4037 * softexpiretime, and hardexpiretime. 4038 * 4039 * Check hard first. 4040 */ 4041 4042 if (assoc->ipsa_hardexpiretime != 0 && 4043 assoc->ipsa_hardexpiretime <= current) { 4044 if (assoc->ipsa_state == IPSA_STATE_DEAD) 4045 return (sadb_torch_assoc(head, assoc)); 4046 4047 if (inbound) { 4048 sadb_delete_cluster(assoc); 4049 } 4050 4051 /* 4052 * Send SADB_EXPIRE with hard lifetime, delay for unlinking. 4053 */ 4054 assoc->ipsa_state = IPSA_STATE_DEAD; 4055 if (assoc->ipsa_haspeer || assoc->ipsa_otherspi != 0) { 4056 /* 4057 * If the SA is paired or peered with another, put 4058 * a copy on a list which can be processed later, the 4059 * pair/peer SA needs to be updated so the both die 4060 * at the same time. 4061 * 4062 * If I return assoc, I have to bump up its reference 4063 * count to keep with the ipsa_t reference count 4064 * semantics. 4065 */ 4066 IPSA_REFHOLD(assoc); 4067 retval = assoc; 4068 } 4069 sadb_expire_assoc(pfkey_q, assoc); 4070 assoc->ipsa_hardexpiretime = current + reap_delay; 4071 } else if (assoc->ipsa_softexpiretime != 0 && 4072 assoc->ipsa_softexpiretime <= current && 4073 assoc->ipsa_state < IPSA_STATE_DYING) { 4074 /* 4075 * Send EXPIRE message to PF_KEY. May wish to pawn 4076 * this off on another non-interrupt thread. 4077 */ 4078 assoc->ipsa_state = IPSA_STATE_DYING; 4079 if (assoc->ipsa_haspeer) { 4080 /* 4081 * If the SA has a peer, update the peer's state 4082 * on SOFT_EXPIRE, this is mostly to prevent two 4083 * expire messages from effectively the same SA. 4084 * 4085 * Don't care about paired SA's, then can (and should) 4086 * be able to soft expire at different times. 4087 * 4088 * If I return assoc, I have to bump up its 4089 * reference count to keep with the ipsa_t reference 4090 * count semantics. 4091 */ 4092 IPSA_REFHOLD(assoc); 4093 retval = assoc; 4094 } 4095 sadb_expire_assoc(pfkey_q, assoc); 4096 } else if (assoc->ipsa_idletime != 0 && 4097 assoc->ipsa_idleexpiretime <= current) { 4098 if (assoc->ipsa_state == IPSA_STATE_ACTIVE_ELSEWHERE) { 4099 assoc->ipsa_state = IPSA_STATE_IDLE; 4100 } 4101 4102 /* 4103 * Need to handle Mature case 4104 */ 4105 if (assoc->ipsa_state == IPSA_STATE_MATURE) { 4106 sadb_expire_assoc(pfkey_q, assoc); 4107 } 4108 } else { 4109 /* Check idle time activities. */ 4110 dropped_mutex = sadb_idle_activities(assoc, 4111 current - assoc->ipsa_lastuse, inbound); 4112 } 4113 4114 if (!dropped_mutex) 4115 mutex_exit(&assoc->ipsa_lock); 4116 return (retval); 4117 } 4118 4119 /* 4120 * Called by a consumer protocol to do ther dirty work of reaping dead 4121 * Security Associations. 4122 * 4123 * NOTE: sadb_age_assoc() marks expired SA's as DEAD but only removed 4124 * SA's that are already marked DEAD, so expired SA's are only reaped 4125 * the second time sadb_ager() runs. 4126 */ 4127 void 4128 sadb_ager(sadb_t *sp, queue_t *pfkey_q, int reap_delay, netstack_t *ns) 4129 { 4130 int i; 4131 isaf_t *bucket; 4132 ipsa_t *assoc, *spare; 4133 iacqf_t *acqlist; 4134 ipsacq_t *acqrec, *spareacq; 4135 templist_t *haspeerlist, *newbie; 4136 /* Snapshot current time now. */ 4137 time_t current = gethrestime_sec(); 4138 haspeerlist = NULL; 4139 4140 /* 4141 * Do my dirty work. This includes aging real entries, aging 4142 * larvals, and aging outstanding ACQUIREs. 4143 * 4144 * I hope I don't tie up resources for too long. 4145 */ 4146 4147 /* Age acquires. */ 4148 4149 for (i = 0; i < sp->sdb_hashsize; i++) { 4150 acqlist = &sp->sdb_acq[i]; 4151 mutex_enter(&acqlist->iacqf_lock); 4152 for (acqrec = acqlist->iacqf_ipsacq; acqrec != NULL; 4153 acqrec = spareacq) { 4154 spareacq = acqrec->ipsacq_next; 4155 if (current > acqrec->ipsacq_expire) 4156 sadb_destroy_acquire(acqrec, ns); 4157 } 4158 mutex_exit(&acqlist->iacqf_lock); 4159 } 4160 4161 /* Age inbound associations. */ 4162 for (i = 0; i < sp->sdb_hashsize; i++) { 4163 bucket = &(sp->sdb_if[i]); 4164 mutex_enter(&bucket->isaf_lock); 4165 for (assoc = bucket->isaf_ipsa; assoc != NULL; 4166 assoc = spare) { 4167 spare = assoc->ipsa_next; 4168 if (sadb_age_assoc(bucket, pfkey_q, assoc, current, 4169 reap_delay, B_TRUE) != NULL) { 4170 /* 4171 * Put SA's which have a peer or SA's which 4172 * are paired on a list for processing after 4173 * all the hash tables have been walked. 4174 * 4175 * sadb_age_assoc() increments the refcnt, 4176 * effectively doing an IPSA_REFHOLD(). 4177 */ 4178 newbie = kmem_alloc(sizeof (*newbie), 4179 KM_NOSLEEP); 4180 if (newbie == NULL) { 4181 /* 4182 * Don't forget to REFRELE(). 4183 */ 4184 IPSA_REFRELE(assoc); 4185 continue; /* for loop... */ 4186 } 4187 newbie->next = haspeerlist; 4188 newbie->ipsa = assoc; 4189 haspeerlist = newbie; 4190 } 4191 } 4192 mutex_exit(&bucket->isaf_lock); 4193 } 4194 4195 age_pair_peer_list(haspeerlist, sp, B_FALSE); 4196 haspeerlist = NULL; 4197 4198 /* Age outbound associations. */ 4199 for (i = 0; i < sp->sdb_hashsize; i++) { 4200 bucket = &(sp->sdb_of[i]); 4201 mutex_enter(&bucket->isaf_lock); 4202 for (assoc = bucket->isaf_ipsa; assoc != NULL; 4203 assoc = spare) { 4204 spare = assoc->ipsa_next; 4205 if (sadb_age_assoc(bucket, pfkey_q, assoc, current, 4206 reap_delay, B_FALSE) != NULL) { 4207 /* 4208 * sadb_age_assoc() increments the refcnt, 4209 * effectively doing an IPSA_REFHOLD(). 4210 */ 4211 newbie = kmem_alloc(sizeof (*newbie), 4212 KM_NOSLEEP); 4213 if (newbie == NULL) { 4214 /* 4215 * Don't forget to REFRELE(). 4216 */ 4217 IPSA_REFRELE(assoc); 4218 continue; /* for loop... */ 4219 } 4220 newbie->next = haspeerlist; 4221 newbie->ipsa = assoc; 4222 haspeerlist = newbie; 4223 } 4224 } 4225 mutex_exit(&bucket->isaf_lock); 4226 } 4227 4228 age_pair_peer_list(haspeerlist, sp, B_TRUE); 4229 4230 /* 4231 * Run a GC pass to clean out dead identities. 4232 */ 4233 ipsid_gc(ns); 4234 } 4235 4236 /* 4237 * Figure out when to reschedule the ager. 4238 */ 4239 timeout_id_t 4240 sadb_retimeout(hrtime_t begin, queue_t *pfkey_q, void (*ager)(void *), 4241 void *agerarg, uint_t *intp, uint_t intmax, short mid) 4242 { 4243 hrtime_t end = gethrtime(); 4244 uint_t interval = *intp; /* "interval" is in ms. */ 4245 4246 /* 4247 * See how long this took. If it took too long, increase the 4248 * aging interval. 4249 */ 4250 if ((end - begin) > MSEC2NSEC(interval)) { 4251 if (interval >= intmax) { 4252 /* XXX Rate limit this? Or recommend flush? */ 4253 (void) strlog(mid, 0, 0, SL_ERROR | SL_WARN, 4254 "Too many SA's to age out in %d msec.\n", 4255 intmax); 4256 } else { 4257 /* Double by shifting by one bit. */ 4258 interval <<= 1; 4259 interval = min(interval, intmax); 4260 } 4261 } else if ((end - begin) <= (MSEC2NSEC(interval) / 2) && 4262 interval > SADB_AGE_INTERVAL_DEFAULT) { 4263 /* 4264 * If I took less than half of the interval, then I should 4265 * ratchet the interval back down. Never automatically 4266 * shift below the default aging interval. 4267 * 4268 * NOTE:This even overrides manual setting of the age 4269 * interval using NDD to lower the setting past the 4270 * default. In other words, if you set the interval 4271 * lower than the default, and your SADB gets too big, 4272 * the interval will only self-lower back to the default. 4273 */ 4274 /* Halve by shifting one bit. */ 4275 interval >>= 1; 4276 interval = max(interval, SADB_AGE_INTERVAL_DEFAULT); 4277 } 4278 *intp = interval; 4279 return (qtimeout(pfkey_q, ager, agerarg, 4280 drv_usectohz(interval * (MICROSEC / MILLISEC)))); 4281 } 4282 4283 4284 /* 4285 * Update the lifetime values of an SA. This is the path an SADB_UPDATE 4286 * message takes when updating a MATURE or DYING SA. 4287 */ 4288 static void 4289 sadb_update_lifetimes(ipsa_t *assoc, sadb_lifetime_t *hard, 4290 sadb_lifetime_t *soft, sadb_lifetime_t *idle, boolean_t outbound) 4291 { 4292 mutex_enter(&assoc->ipsa_lock); 4293 4294 /* 4295 * XXX RFC 2367 mentions how an SADB_EXT_LIFETIME_CURRENT can be 4296 * passed in during an update message. We currently don't handle 4297 * these. 4298 */ 4299 4300 if (hard != NULL) { 4301 if (hard->sadb_lifetime_bytes != 0) 4302 assoc->ipsa_hardbyteslt = hard->sadb_lifetime_bytes; 4303 if (hard->sadb_lifetime_usetime != 0) 4304 assoc->ipsa_harduselt = hard->sadb_lifetime_usetime; 4305 if (hard->sadb_lifetime_addtime != 0) 4306 assoc->ipsa_hardaddlt = hard->sadb_lifetime_addtime; 4307 if (assoc->ipsa_hardaddlt != 0) { 4308 assoc->ipsa_hardexpiretime = 4309 assoc->ipsa_addtime + assoc->ipsa_hardaddlt; 4310 } 4311 if (assoc->ipsa_harduselt != 0 && 4312 assoc->ipsa_flags & IPSA_F_USED) { 4313 UPDATE_EXPIRE(assoc, harduselt, hardexpiretime); 4314 } 4315 if (hard->sadb_lifetime_allocations != 0) 4316 assoc->ipsa_hardalloc = hard->sadb_lifetime_allocations; 4317 } 4318 4319 if (soft != NULL) { 4320 if (soft->sadb_lifetime_bytes != 0) { 4321 if (soft->sadb_lifetime_bytes > 4322 assoc->ipsa_hardbyteslt) { 4323 assoc->ipsa_softbyteslt = 4324 assoc->ipsa_hardbyteslt; 4325 } else { 4326 assoc->ipsa_softbyteslt = 4327 soft->sadb_lifetime_bytes; 4328 } 4329 } 4330 if (soft->sadb_lifetime_usetime != 0) { 4331 if (soft->sadb_lifetime_usetime > 4332 assoc->ipsa_harduselt) { 4333 assoc->ipsa_softuselt = 4334 assoc->ipsa_harduselt; 4335 } else { 4336 assoc->ipsa_softuselt = 4337 soft->sadb_lifetime_usetime; 4338 } 4339 } 4340 if (soft->sadb_lifetime_addtime != 0) { 4341 if (soft->sadb_lifetime_addtime > 4342 assoc->ipsa_hardexpiretime) { 4343 assoc->ipsa_softexpiretime = 4344 assoc->ipsa_hardexpiretime; 4345 } else { 4346 assoc->ipsa_softaddlt = 4347 soft->sadb_lifetime_addtime; 4348 } 4349 } 4350 if (assoc->ipsa_softaddlt != 0) { 4351 assoc->ipsa_softexpiretime = 4352 assoc->ipsa_addtime + assoc->ipsa_softaddlt; 4353 } 4354 if (assoc->ipsa_softuselt != 0 && 4355 assoc->ipsa_flags & IPSA_F_USED) { 4356 UPDATE_EXPIRE(assoc, softuselt, softexpiretime); 4357 } 4358 if (outbound && assoc->ipsa_softexpiretime != 0) { 4359 if (assoc->ipsa_state == IPSA_STATE_MATURE) 4360 lifetime_fuzz(assoc); 4361 } 4362 4363 if (soft->sadb_lifetime_allocations != 0) 4364 assoc->ipsa_softalloc = soft->sadb_lifetime_allocations; 4365 } 4366 4367 if (idle != NULL) { 4368 time_t current = gethrestime_sec(); 4369 if ((assoc->ipsa_idleexpiretime <= current) && 4370 (assoc->ipsa_idleaddlt == idle->sadb_lifetime_addtime)) { 4371 assoc->ipsa_idleexpiretime = 4372 current + assoc->ipsa_idleaddlt; 4373 } 4374 if (idle->sadb_lifetime_addtime != 0) 4375 assoc->ipsa_idleaddlt = idle->sadb_lifetime_addtime; 4376 if (idle->sadb_lifetime_usetime != 0) 4377 assoc->ipsa_idleuselt = idle->sadb_lifetime_usetime; 4378 if (assoc->ipsa_idleaddlt != 0) { 4379 assoc->ipsa_idleexpiretime = 4380 current + idle->sadb_lifetime_addtime; 4381 assoc->ipsa_idletime = idle->sadb_lifetime_addtime; 4382 } 4383 if (assoc->ipsa_idleuselt != 0) { 4384 if (assoc->ipsa_idletime != 0) { 4385 assoc->ipsa_idletime = min(assoc->ipsa_idletime, 4386 assoc->ipsa_idleuselt); 4387 assoc->ipsa_idleexpiretime = 4388 current + assoc->ipsa_idletime; 4389 } else { 4390 assoc->ipsa_idleexpiretime = 4391 current + assoc->ipsa_idleuselt; 4392 assoc->ipsa_idletime = assoc->ipsa_idleuselt; 4393 } 4394 } 4395 } 4396 mutex_exit(&assoc->ipsa_lock); 4397 } 4398 4399 static int 4400 sadb_update_state(ipsa_t *assoc, uint_t new_state, mblk_t **ipkt_lst) 4401 { 4402 int rcode = 0; 4403 time_t current = gethrestime_sec(); 4404 4405 mutex_enter(&assoc->ipsa_lock); 4406 4407 switch (new_state) { 4408 case SADB_X_SASTATE_ACTIVE_ELSEWHERE: 4409 if (assoc->ipsa_state == SADB_X_SASTATE_IDLE) { 4410 assoc->ipsa_state = IPSA_STATE_ACTIVE_ELSEWHERE; 4411 assoc->ipsa_idleexpiretime = 4412 current + assoc->ipsa_idletime; 4413 } 4414 break; 4415 case SADB_X_SASTATE_IDLE: 4416 if (assoc->ipsa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE) { 4417 assoc->ipsa_state = IPSA_STATE_IDLE; 4418 assoc->ipsa_idleexpiretime = 4419 current + assoc->ipsa_idletime; 4420 } else { 4421 rcode = EINVAL; 4422 } 4423 break; 4424 4425 case SADB_X_SASTATE_ACTIVE: 4426 if (assoc->ipsa_state != SADB_X_SASTATE_IDLE) { 4427 rcode = EINVAL; 4428 break; 4429 } 4430 assoc->ipsa_state = IPSA_STATE_MATURE; 4431 assoc->ipsa_idleexpiretime = current + assoc->ipsa_idletime; 4432 4433 if (ipkt_lst == NULL) { 4434 break; 4435 } 4436 4437 if (assoc->ipsa_bpkt_head != NULL) { 4438 *ipkt_lst = assoc->ipsa_bpkt_head; 4439 assoc->ipsa_bpkt_head = assoc->ipsa_bpkt_tail = NULL; 4440 assoc->ipsa_mblkcnt = 0; 4441 } else { 4442 *ipkt_lst = NULL; 4443 } 4444 break; 4445 default: 4446 rcode = EINVAL; 4447 break; 4448 } 4449 4450 mutex_exit(&assoc->ipsa_lock); 4451 return (rcode); 4452 } 4453 4454 /* 4455 * Check a proposed KMC update for sanity. 4456 */ 4457 static int 4458 sadb_check_kmc(ipsa_query_t *sq, ipsa_t *sa, int *diagnostic) 4459 { 4460 uint32_t kmp = sq->kmp; 4461 uint64_t kmc = sq->kmc; 4462 4463 if (sa == NULL) 4464 return (0); 4465 4466 if (sa->ipsa_state == IPSA_STATE_DEAD) 4467 return (ESRCH); /* DEAD == Not there, in this case. */ 4468 4469 if ((kmp != 0) && (sa->ipsa_kmp != 0) && (sa->ipsa_kmp != kmp)) { 4470 *diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMP; 4471 return (EINVAL); 4472 } 4473 4474 /* Allow IKEv2 KMCs to update the kmc value for rekeying */ 4475 if ((kmp != SADB_X_KMP_IKEV2) && (kmc != 0) && (sa->ipsa_kmc != 0) && 4476 (sa->ipsa_kmc != kmc)) { 4477 *diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMC; 4478 return (EINVAL); 4479 } 4480 4481 return (0); 4482 } 4483 4484 /* 4485 * Actually update the KMC info. 4486 */ 4487 static void 4488 sadb_update_kmc(ipsa_query_t *sq, ipsa_t *sa) 4489 { 4490 uint32_t kmp = sq->kmp; 4491 uint64_t kmc = sq->kmc; 4492 4493 if (kmp != 0) 4494 sa->ipsa_kmp = kmp; 4495 if (kmc != 0) 4496 sa->ipsa_kmc = kmc; 4497 } 4498 4499 /* 4500 * Common code to update an SA. 4501 */ 4502 4503 int 4504 sadb_update_sa(mblk_t *mp, keysock_in_t *ksi, mblk_t **ipkt_lst, 4505 sadbp_t *spp, int *diagnostic, queue_t *pfkey_q, 4506 int (*add_sa_func)(mblk_t *, keysock_in_t *, int *, netstack_t *), 4507 netstack_t *ns, uint8_t sadb_msg_type) 4508 { 4509 sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH]; 4510 sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT]; 4511 sadb_x_replay_ctr_t *replext = 4512 (sadb_x_replay_ctr_t *)ksi->ks_in_extv[SADB_X_EXT_REPLAY_VALUE]; 4513 sadb_lifetime_t *soft = 4514 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT]; 4515 sadb_lifetime_t *hard = 4516 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD]; 4517 sadb_lifetime_t *idle = 4518 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_X_EXT_LIFETIME_IDLE]; 4519 sadb_x_pair_t *pair_ext = 4520 (sadb_x_pair_t *)ksi->ks_in_extv[SADB_X_EXT_PAIR]; 4521 ipsa_t *echo_target = NULL; 4522 ipsap_t ipsapp; 4523 ipsa_query_t sq; 4524 time_t current = gethrestime_sec(); 4525 4526 sq.spp = spp; /* XXX param */ 4527 int error = sadb_form_query(ksi, IPSA_Q_SRC|IPSA_Q_DST|IPSA_Q_SA, 4528 IPSA_Q_SRC|IPSA_Q_DST|IPSA_Q_SA|IPSA_Q_INBOUND|IPSA_Q_OUTBOUND| 4529 IPSA_Q_KMC, 4530 &sq, diagnostic); 4531 4532 if (error != 0) 4533 return (error); 4534 4535 error = get_ipsa_pair(&sq, &ipsapp, diagnostic); 4536 if (error != 0) 4537 return (error); 4538 4539 if (ipsapp.ipsap_psa_ptr == NULL && ipsapp.ipsap_sa_ptr != NULL) { 4540 if (ipsapp.ipsap_sa_ptr->ipsa_state == IPSA_STATE_LARVAL) { 4541 /* 4542 * REFRELE the target and let the add_sa_func() 4543 * deal with updating a larval SA. 4544 */ 4545 destroy_ipsa_pair(&ipsapp); 4546 return (add_sa_func(mp, ksi, diagnostic, ns)); 4547 } 4548 } 4549 4550 /* 4551 * At this point we have an UPDATE to a MATURE SA. There should 4552 * not be any keying material present. 4553 */ 4554 if (akey != NULL) { 4555 *diagnostic = SADB_X_DIAGNOSTIC_AKEY_PRESENT; 4556 error = EINVAL; 4557 goto bail; 4558 } 4559 if (ekey != NULL) { 4560 *diagnostic = SADB_X_DIAGNOSTIC_EKEY_PRESENT; 4561 error = EINVAL; 4562 goto bail; 4563 } 4564 4565 if (sq.assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE) { 4566 if (ipsapp.ipsap_sa_ptr != NULL && 4567 ipsapp.ipsap_sa_ptr->ipsa_state == IPSA_STATE_IDLE) { 4568 if ((error = sadb_update_state(ipsapp.ipsap_sa_ptr, 4569 sq.assoc->sadb_sa_state, NULL)) != 0) { 4570 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4571 goto bail; 4572 } 4573 } 4574 if (ipsapp.ipsap_psa_ptr != NULL && 4575 ipsapp.ipsap_psa_ptr->ipsa_state == IPSA_STATE_IDLE) { 4576 if ((error = sadb_update_state(ipsapp.ipsap_psa_ptr, 4577 sq.assoc->sadb_sa_state, NULL)) != 0) { 4578 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4579 goto bail; 4580 } 4581 } 4582 } 4583 if (sq.assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE) { 4584 if (ipsapp.ipsap_sa_ptr != NULL) { 4585 error = sadb_update_state(ipsapp.ipsap_sa_ptr, 4586 sq.assoc->sadb_sa_state, 4587 (ipsapp.ipsap_sa_ptr->ipsa_flags & 4588 IPSA_F_INBOUND) ? ipkt_lst : NULL); 4589 if (error) { 4590 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4591 goto bail; 4592 } 4593 } 4594 if (ipsapp.ipsap_psa_ptr != NULL) { 4595 error = sadb_update_state(ipsapp.ipsap_psa_ptr, 4596 sq.assoc->sadb_sa_state, 4597 (ipsapp.ipsap_psa_ptr->ipsa_flags & 4598 IPSA_F_INBOUND) ? ipkt_lst : NULL); 4599 if (error) { 4600 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4601 goto bail; 4602 } 4603 } 4604 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, 4605 ksi, echo_target); 4606 goto bail; 4607 } 4608 4609 /* 4610 * Reality checks for updates of active associations. 4611 * Sundry first-pass UPDATE-specific reality checks. 4612 * Have to do the checks here, because it's after the add_sa code. 4613 * XXX STATS : logging/stats here? 4614 */ 4615 4616 if (!((sq.assoc->sadb_sa_state == SADB_SASTATE_MATURE) || 4617 (sq.assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE))) { 4618 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4619 error = EINVAL; 4620 goto bail; 4621 } 4622 if (sq.assoc->sadb_sa_flags & ~spp->s_updateflags) { 4623 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS; 4624 error = EINVAL; 4625 goto bail; 4626 } 4627 if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL) { 4628 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_LIFETIME; 4629 error = EOPNOTSUPP; 4630 goto bail; 4631 } 4632 4633 if ((*diagnostic = sadb_hardsoftchk(hard, soft, idle)) != 0) { 4634 error = EINVAL; 4635 goto bail; 4636 } 4637 4638 if ((*diagnostic = sadb_labelchk(ksi)) != 0) 4639 return (EINVAL); 4640 4641 error = sadb_check_kmc(&sq, ipsapp.ipsap_sa_ptr, diagnostic); 4642 if (error != 0) 4643 goto bail; 4644 4645 error = sadb_check_kmc(&sq, ipsapp.ipsap_psa_ptr, diagnostic); 4646 if (error != 0) 4647 goto bail; 4648 4649 4650 if (ipsapp.ipsap_sa_ptr != NULL) { 4651 /* 4652 * Do not allow replay value change for MATURE or LARVAL SA. 4653 */ 4654 4655 if ((replext != NULL) && 4656 ((ipsapp.ipsap_sa_ptr->ipsa_state == IPSA_STATE_LARVAL) || 4657 (ipsapp.ipsap_sa_ptr->ipsa_state == IPSA_STATE_MATURE))) { 4658 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4659 error = EINVAL; 4660 goto bail; 4661 } 4662 } 4663 4664 4665 if (ipsapp.ipsap_sa_ptr != NULL) { 4666 sadb_update_lifetimes(ipsapp.ipsap_sa_ptr, hard, soft, 4667 idle, B_TRUE); 4668 sadb_update_kmc(&sq, ipsapp.ipsap_sa_ptr); 4669 if ((replext != NULL) && 4670 (ipsapp.ipsap_sa_ptr->ipsa_replay_wsize != 0)) { 4671 /* 4672 * If an inbound SA, update the replay counter 4673 * and check off all the other sequence number 4674 */ 4675 if (ksi->ks_in_dsttype == KS_IN_ADDR_ME) { 4676 if (!sadb_replay_check(ipsapp.ipsap_sa_ptr, 4677 replext->sadb_x_rc_replay32)) { 4678 *diagnostic = 4679 SADB_X_DIAGNOSTIC_INVALID_REPLAY; 4680 error = EINVAL; 4681 goto bail; 4682 } 4683 mutex_enter(&ipsapp.ipsap_sa_ptr->ipsa_lock); 4684 ipsapp.ipsap_sa_ptr->ipsa_idleexpiretime = 4685 current + 4686 ipsapp.ipsap_sa_ptr->ipsa_idletime; 4687 mutex_exit(&ipsapp.ipsap_sa_ptr->ipsa_lock); 4688 } else { 4689 mutex_enter(&ipsapp.ipsap_sa_ptr->ipsa_lock); 4690 ipsapp.ipsap_sa_ptr->ipsa_replay = 4691 replext->sadb_x_rc_replay32; 4692 ipsapp.ipsap_sa_ptr->ipsa_idleexpiretime = 4693 current + 4694 ipsapp.ipsap_sa_ptr->ipsa_idletime; 4695 mutex_exit(&ipsapp.ipsap_sa_ptr->ipsa_lock); 4696 } 4697 } 4698 } 4699 4700 if (sadb_msg_type == SADB_X_UPDATEPAIR) { 4701 if (ipsapp.ipsap_psa_ptr != NULL) { 4702 sadb_update_lifetimes(ipsapp.ipsap_psa_ptr, hard, soft, 4703 idle, B_FALSE); 4704 sadb_update_kmc(&sq, ipsapp.ipsap_psa_ptr); 4705 } else { 4706 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND; 4707 error = ESRCH; 4708 goto bail; 4709 } 4710 } 4711 4712 if (pair_ext != NULL) 4713 error = update_pairing(&ipsapp, &sq, ksi, diagnostic); 4714 4715 if (error == 0) 4716 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, 4717 ksi, echo_target); 4718 bail: 4719 4720 destroy_ipsa_pair(&ipsapp); 4721 4722 return (error); 4723 } 4724 4725 4726 static int 4727 update_pairing(ipsap_t *ipsapp, ipsa_query_t *sq, keysock_in_t *ksi, 4728 int *diagnostic) 4729 { 4730 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 4731 sadb_x_pair_t *pair_ext = 4732 (sadb_x_pair_t *)ksi->ks_in_extv[SADB_X_EXT_PAIR]; 4733 int error = 0; 4734 ipsap_t oipsapp; 4735 boolean_t undo_pair = B_FALSE; 4736 uint32_t ipsa_flags; 4737 4738 if (pair_ext->sadb_x_pair_spi == 0 || pair_ext->sadb_x_pair_spi == 4739 assoc->sadb_sa_spi) { 4740 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 4741 return (EINVAL); 4742 } 4743 4744 /* 4745 * Assume for now that the spi value provided in the SADB_UPDATE 4746 * message was valid, update the SA with its pair spi value. 4747 * If the spi turns out to be bogus or the SA no longer exists 4748 * then this will be detected when the reverse update is made 4749 * below. 4750 */ 4751 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4752 ipsapp->ipsap_sa_ptr->ipsa_flags |= IPSA_F_PAIRED; 4753 ipsapp->ipsap_sa_ptr->ipsa_otherspi = pair_ext->sadb_x_pair_spi; 4754 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4755 4756 /* 4757 * After updating the ipsa_otherspi element of the SA, get_ipsa_pair() 4758 * should now return pointers to the SA *AND* its pair, if this is not 4759 * the case, the "otherspi" either did not exist or was deleted. Also 4760 * check that "otherspi" is not already paired. If everything looks 4761 * good, complete the update. IPSA_REFRELE the first pair_pointer 4762 * after this update to ensure its not deleted until we are done. 4763 */ 4764 error = get_ipsa_pair(sq, &oipsapp, diagnostic); 4765 if (error != 0) { 4766 /* 4767 * This should never happen, calling function still has 4768 * IPSA_REFHELD on the SA we just updated. 4769 */ 4770 return (error); /* XXX EINVAL instead of ESRCH? */ 4771 } 4772 4773 if (oipsapp.ipsap_psa_ptr == NULL) { 4774 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 4775 error = EINVAL; 4776 undo_pair = B_TRUE; 4777 } else { 4778 ipsa_flags = oipsapp.ipsap_psa_ptr->ipsa_flags; 4779 if ((oipsapp.ipsap_psa_ptr->ipsa_state == IPSA_STATE_DEAD) || 4780 (oipsapp.ipsap_psa_ptr->ipsa_state == IPSA_STATE_DYING)) { 4781 /* Its dead Jim! */ 4782 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 4783 undo_pair = B_TRUE; 4784 } else if ((ipsa_flags & (IPSA_F_OUTBOUND | IPSA_F_INBOUND)) == 4785 (IPSA_F_OUTBOUND | IPSA_F_INBOUND)) { 4786 /* This SA is in both hashtables. */ 4787 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 4788 undo_pair = B_TRUE; 4789 } else if (ipsa_flags & IPSA_F_PAIRED) { 4790 /* This SA is already paired with another. */ 4791 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_ALREADY; 4792 undo_pair = B_TRUE; 4793 } 4794 } 4795 4796 if (undo_pair) { 4797 /* The pair SA does not exist. */ 4798 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4799 ipsapp->ipsap_sa_ptr->ipsa_flags &= ~IPSA_F_PAIRED; 4800 ipsapp->ipsap_sa_ptr->ipsa_otherspi = 0; 4801 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4802 } else { 4803 mutex_enter(&oipsapp.ipsap_psa_ptr->ipsa_lock); 4804 oipsapp.ipsap_psa_ptr->ipsa_otherspi = assoc->sadb_sa_spi; 4805 oipsapp.ipsap_psa_ptr->ipsa_flags |= IPSA_F_PAIRED; 4806 mutex_exit(&oipsapp.ipsap_psa_ptr->ipsa_lock); 4807 } 4808 4809 destroy_ipsa_pair(&oipsapp); 4810 return (error); 4811 } 4812 4813 /* 4814 * The following functions deal with ACQUIRE LISTS. An ACQUIRE list is 4815 * a list of outstanding SADB_ACQUIRE messages. If ipsec_getassocbyconn() fails 4816 * for an outbound datagram, that datagram is queued up on an ACQUIRE record, 4817 * and an SADB_ACQUIRE message is sent up. Presumably, a user-space key 4818 * management daemon will process the ACQUIRE, use a SADB_GETSPI to reserve 4819 * an SPI value and a larval SA, then SADB_UPDATE the larval SA, and ADD the 4820 * other direction's SA. 4821 */ 4822 4823 /* 4824 * Check the ACQUIRE lists. If there's an existing ACQUIRE record, 4825 * grab it, lock it, and return it. Otherwise return NULL. 4826 * 4827 * XXX MLS number of arguments getting unwieldy here 4828 */ 4829 static ipsacq_t * 4830 sadb_checkacquire(iacqf_t *bucket, ipsec_action_t *ap, ipsec_policy_t *pp, 4831 uint32_t *src, uint32_t *dst, uint32_t *isrc, uint32_t *idst, 4832 uint64_t unique_id, ts_label_t *tsl) 4833 { 4834 ipsacq_t *walker; 4835 sa_family_t fam; 4836 uint32_t blank_address[4] = {0, 0, 0, 0}; 4837 4838 if (isrc == NULL) { 4839 ASSERT(idst == NULL); 4840 isrc = idst = blank_address; 4841 } 4842 4843 /* 4844 * Scan list for duplicates. Check for UNIQUE, src/dest, policy. 4845 * 4846 * XXX May need search for duplicates based on other things too! 4847 */ 4848 for (walker = bucket->iacqf_ipsacq; walker != NULL; 4849 walker = walker->ipsacq_next) { 4850 mutex_enter(&walker->ipsacq_lock); 4851 fam = walker->ipsacq_addrfam; 4852 if (IPSA_ARE_ADDR_EQUAL(dst, walker->ipsacq_dstaddr, fam) && 4853 IPSA_ARE_ADDR_EQUAL(src, walker->ipsacq_srcaddr, fam) && 4854 ip_addr_match((uint8_t *)isrc, walker->ipsacq_innersrcpfx, 4855 (in6_addr_t *)walker->ipsacq_innersrc) && 4856 ip_addr_match((uint8_t *)idst, walker->ipsacq_innerdstpfx, 4857 (in6_addr_t *)walker->ipsacq_innerdst) && 4858 (ap == walker->ipsacq_act) && 4859 (pp == walker->ipsacq_policy) && 4860 /* XXX do deep compares of ap/pp? */ 4861 (unique_id == walker->ipsacq_unique_id) && 4862 (ipsec_label_match(tsl, walker->ipsacq_tsl))) 4863 break; /* everything matched */ 4864 mutex_exit(&walker->ipsacq_lock); 4865 } 4866 4867 return (walker); 4868 } 4869 4870 /* 4871 * Generate an SADB_ACQUIRE base message mblk, including KEYSOCK_OUT metadata. 4872 * In other words, this will return, upon success, a two-mblk chain. 4873 */ 4874 static inline mblk_t * 4875 sadb_acquire_msg_base(minor_t serial, uint8_t satype, uint32_t seq, pid_t pid) 4876 { 4877 mblk_t *mp; 4878 sadb_msg_t *samsg; 4879 4880 mp = sadb_keysock_out(serial); 4881 if (mp == NULL) 4882 return (NULL); 4883 mp->b_cont = allocb(sizeof (sadb_msg_t), BPRI_HI); 4884 if (mp->b_cont == NULL) { 4885 freeb(mp); 4886 return (NULL); 4887 } 4888 4889 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 4890 mp->b_cont->b_wptr += sizeof (*samsg); 4891 samsg->sadb_msg_version = PF_KEY_V2; 4892 samsg->sadb_msg_type = SADB_ACQUIRE; 4893 samsg->sadb_msg_errno = 0; 4894 samsg->sadb_msg_reserved = 0; 4895 samsg->sadb_msg_satype = satype; 4896 samsg->sadb_msg_seq = seq; 4897 samsg->sadb_msg_pid = pid; 4898 4899 return (mp); 4900 } 4901 4902 /* 4903 * Generate address and TX/MLS sensitivity label PF_KEY extensions that are 4904 * common to both regular and extended ACQUIREs. 4905 */ 4906 static mblk_t * 4907 sadb_acquire_msg_common(ipsec_selector_t *sel, ipsec_policy_t *pp, 4908 ipsec_action_t *ap, boolean_t tunnel_mode, ts_label_t *tsl, 4909 sadb_sens_t *sens) 4910 { 4911 size_t len; 4912 mblk_t *mp; 4913 uint8_t *start, *cur, *end; 4914 uint32_t *saddrptr, *daddrptr; 4915 sa_family_t af; 4916 ipsec_action_t *oldap; 4917 ipsec_selkey_t *ipsl; 4918 uint8_t proto, pfxlen; 4919 uint16_t lport, rport; 4920 int senslen = 0; 4921 4922 /* 4923 * Get action pointer set if it isn't already. 4924 */ 4925 oldap = ap; 4926 if (pp != NULL) { 4927 ap = pp->ipsp_act; 4928 if (ap == NULL) 4929 ap = oldap; 4930 } 4931 4932 /* 4933 * Biggest-case scenario: 4934 * 4x (sadb_address_t + struct sockaddr_in6) 4935 * (src, dst, isrc, idst) 4936 * (COMING SOON, 6x, because of triggering-packet contents.) 4937 * sadb_x_kmc_t 4938 * sadb_sens_t 4939 * And wiggle room for label bitvectors. Luckily there are 4940 * programmatic ways to find it. 4941 */ 4942 len = 4 * (sizeof (sadb_address_t) + sizeof (struct sockaddr_in6)); 4943 4944 /* Figure out full and proper length of sensitivity labels. */ 4945 if (sens != NULL) { 4946 ASSERT(tsl == NULL); 4947 senslen = SADB_64TO8(sens->sadb_sens_len); 4948 } else if (tsl != NULL) { 4949 senslen = sadb_sens_len_from_label(tsl); 4950 } 4951 #ifdef DEBUG 4952 else { 4953 ASSERT(senslen == 0); 4954 } 4955 #endif /* DEBUG */ 4956 len += senslen; 4957 4958 mp = allocb(len, BPRI_HI); 4959 if (mp == NULL) 4960 return (NULL); 4961 4962 start = mp->b_rptr; 4963 end = start + len; 4964 cur = start; 4965 4966 /* 4967 * Address extensions first, from most-recently-defined to least. 4968 * (This should immediately trigger surprise or verify robustness on 4969 * older apps, like in.iked.) 4970 */ 4971 if (tunnel_mode) { 4972 /* 4973 * Form inner address extensions based NOT on the inner 4974 * selectors (i.e. the packet data), but on the policy's 4975 * selector key (i.e. the policy's selector information). 4976 * 4977 * NOTE: The position of IPv4 and IPv6 addresses is the 4978 * same in ipsec_selkey_t (unless the compiler does very 4979 * strange things with unions, consult your local C language 4980 * lawyer for details). 4981 */ 4982 ASSERT(pp != NULL); 4983 4984 ipsl = &(pp->ipsp_sel->ipsl_key); 4985 if (ipsl->ipsl_valid & IPSL_IPV4) { 4986 af = AF_INET; 4987 ASSERT(sel->ips_protocol == IPPROTO_ENCAP); 4988 ASSERT(!(ipsl->ipsl_valid & IPSL_IPV6)); 4989 } else { 4990 af = AF_INET6; 4991 ASSERT(sel->ips_protocol == IPPROTO_IPV6); 4992 ASSERT(ipsl->ipsl_valid & IPSL_IPV6); 4993 } 4994 4995 if (ipsl->ipsl_valid & IPSL_LOCAL_ADDR) { 4996 saddrptr = (uint32_t *)(&ipsl->ipsl_local); 4997 pfxlen = ipsl->ipsl_local_pfxlen; 4998 } else { 4999 saddrptr = (uint32_t *)(&ipv6_all_zeros); 5000 pfxlen = 0; 5001 } 5002 /* XXX What about ICMP type/code? */ 5003 lport = (ipsl->ipsl_valid & IPSL_LOCAL_PORT) ? 5004 ipsl->ipsl_lport : 0; 5005 proto = (ipsl->ipsl_valid & IPSL_PROTOCOL) ? 5006 ipsl->ipsl_proto : 0; 5007 5008 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC, 5009 af, saddrptr, lport, proto, pfxlen); 5010 if (cur == NULL) { 5011 freeb(mp); 5012 return (NULL); 5013 } 5014 5015 if (ipsl->ipsl_valid & IPSL_REMOTE_ADDR) { 5016 daddrptr = (uint32_t *)(&ipsl->ipsl_remote); 5017 pfxlen = ipsl->ipsl_remote_pfxlen; 5018 } else { 5019 daddrptr = (uint32_t *)(&ipv6_all_zeros); 5020 pfxlen = 0; 5021 } 5022 /* XXX What about ICMP type/code? */ 5023 rport = (ipsl->ipsl_valid & IPSL_REMOTE_PORT) ? 5024 ipsl->ipsl_rport : 0; 5025 5026 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST, 5027 af, daddrptr, rport, proto, pfxlen); 5028 if (cur == NULL) { 5029 freeb(mp); 5030 return (NULL); 5031 } 5032 /* 5033 * TODO - if we go to 3884's dream of transport mode IP-in-IP 5034 * _with_ inner-packet address selectors, we'll need to further 5035 * distinguish tunnel mode here. For now, having inner 5036 * addresses and/or ports is sufficient. 5037 * 5038 * Meanwhile, whack proto/ports to reflect IP-in-IP for the 5039 * outer addresses. 5040 */ 5041 proto = sel->ips_protocol; /* Either _ENCAP or _IPV6 */ 5042 lport = rport = 0; 5043 } else if ((ap != NULL) && (!ap->ipa_want_unique)) { 5044 /* 5045 * For cases when the policy calls out specific ports (or not). 5046 */ 5047 proto = 0; 5048 lport = 0; 5049 rport = 0; 5050 if (pp != NULL) { 5051 ipsl = &(pp->ipsp_sel->ipsl_key); 5052 if (ipsl->ipsl_valid & IPSL_PROTOCOL) 5053 proto = ipsl->ipsl_proto; 5054 if (ipsl->ipsl_valid & IPSL_REMOTE_PORT) 5055 rport = ipsl->ipsl_rport; 5056 if (ipsl->ipsl_valid & IPSL_LOCAL_PORT) 5057 lport = ipsl->ipsl_lport; 5058 } 5059 } else { 5060 /* 5061 * For require-unique-SA policies. 5062 */ 5063 proto = sel->ips_protocol; 5064 lport = sel->ips_local_port; 5065 rport = sel->ips_remote_port; 5066 } 5067 5068 /* 5069 * Regular addresses. These are outer-packet ones for tunnel mode. 5070 * Or for transport mode, the regulard address & port information. 5071 */ 5072 af = sel->ips_isv4 ? AF_INET : AF_INET6; 5073 5074 /* 5075 * NOTE: The position of IPv4 and IPv6 addresses is the same in 5076 * ipsec_selector_t. 5077 */ 5078 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, af, 5079 (uint32_t *)(&sel->ips_local_addr_v6), lport, proto, 0); 5080 if (cur == NULL) { 5081 freeb(mp); 5082 return (NULL); 5083 } 5084 5085 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, af, 5086 (uint32_t *)(&sel->ips_remote_addr_v6), rport, proto, 0); 5087 if (cur == NULL) { 5088 freeb(mp); 5089 return (NULL); 5090 } 5091 5092 /* 5093 * If present, generate a sensitivity label. 5094 */ 5095 if (cur + senslen > end) { 5096 freeb(mp); 5097 return (NULL); 5098 } 5099 if (sens != NULL) { 5100 /* Explicit sadb_sens_t, usually from inverse-ACQUIRE. */ 5101 bcopy(sens, cur, senslen); 5102 } else if (tsl != NULL) { 5103 /* Generate sadb_sens_t from ACQUIRE source. */ 5104 sadb_sens_from_label((sadb_sens_t *)cur, SADB_EXT_SENSITIVITY, 5105 tsl, senslen); 5106 } 5107 #ifdef DEBUG 5108 else { 5109 ASSERT(senslen == 0); 5110 } 5111 #endif /* DEBUG */ 5112 cur += senslen; 5113 mp->b_wptr = cur; 5114 5115 return (mp); 5116 } 5117 5118 /* 5119 * Generate a regular ACQUIRE's proposal extension and KMC information.. 5120 */ 5121 static mblk_t * 5122 sadb_acquire_prop(ipsec_action_t *ap, netstack_t *ns, boolean_t do_esp) 5123 { 5124 ipsec_stack_t *ipss = ns->netstack_ipsec; 5125 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp; 5126 ipsecah_stack_t *ahstack = ns->netstack_ipsecah; 5127 mblk_t *mp = NULL; 5128 sadb_prop_t *prop; 5129 sadb_comb_t *comb; 5130 ipsec_action_t *walker; 5131 int ncombs, allocsize, ealgid, aalgid, aminbits, amaxbits, eminbits, 5132 emaxbits, esaltlen, replay; 5133 uint64_t softbytes, hardbytes, softaddtime, hardaddtime, softusetime, 5134 hardusetime; 5135 uint64_t kmc = 0; 5136 uint32_t kmp = 0; 5137 5138 /* 5139 * Since it's an rwlock read, AND writing to the IPsec algorithms is 5140 * rare, just acquire it once up top, and drop it upon return. 5141 */ 5142 rw_enter(&ipss->ipsec_alg_lock, RW_READER); 5143 if (do_esp) { 5144 uint64_t num_aalgs, num_ealgs; 5145 5146 if (espstack->esp_kstats == NULL) 5147 goto bail; 5148 5149 num_aalgs = ipss->ipsec_nalgs[IPSEC_ALG_AUTH]; 5150 num_ealgs = ipss->ipsec_nalgs[IPSEC_ALG_ENCR]; 5151 if (num_ealgs == 0) 5152 goto bail; /* IPsec not loaded yet, apparently. */ 5153 num_aalgs++; /* No-auth or self-auth-crypto ESP. */ 5154 5155 /* Use netstack's maximum loaded algorithms... */ 5156 ncombs = num_ealgs * num_aalgs; 5157 replay = espstack->ipsecesp_replay_size; 5158 } else { 5159 if (ahstack->ah_kstats == NULL) 5160 goto bail; 5161 5162 ncombs = ipss->ipsec_nalgs[IPSEC_ALG_AUTH]; 5163 5164 if (ncombs == 0) 5165 goto bail; /* IPsec not loaded yet, apparently. */ 5166 replay = ahstack->ipsecah_replay_size; 5167 } 5168 5169 allocsize = sizeof (*prop) + ncombs * sizeof (*comb) + 5170 sizeof (sadb_x_kmc_t); 5171 mp = allocb(allocsize, BPRI_HI); 5172 if (mp == NULL) 5173 goto bail; 5174 prop = (sadb_prop_t *)mp->b_rptr; 5175 mp->b_wptr += sizeof (*prop); 5176 comb = (sadb_comb_t *)mp->b_wptr; 5177 /* Decrement allocsize, if it goes to or below 0, stop. */ 5178 allocsize -= sizeof (*prop); 5179 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 5180 prop->sadb_prop_len = SADB_8TO64(sizeof (*prop)); 5181 *(uint32_t *)(&prop->sadb_prop_replay) = 0; /* Quick zero-out! */ 5182 prop->sadb_prop_replay = replay; 5183 5184 /* 5185 * Based upon algorithm properties, and what-not, prioritize a 5186 * proposal, based on the ordering of the ESP algorithms in the 5187 * alternatives in the policy rule or socket that was placed 5188 * in the acquire record. 5189 * 5190 * For each action in policy list 5191 * Add combination. 5192 * I should not hit it, but if I've hit limit, return. 5193 */ 5194 5195 for (walker = ap; walker != NULL; walker = walker->ipa_next) { 5196 ipsec_alginfo_t *ealg, *aalg; 5197 ipsec_prot_t *prot; 5198 5199 if (walker->ipa_act.ipa_type != IPSEC_POLICY_APPLY) 5200 continue; 5201 5202 prot = &walker->ipa_act.ipa_apply; 5203 if (walker->ipa_act.ipa_apply.ipp_km_proto != 0) 5204 kmp = walker->ipa_act.ipa_apply.ipp_km_proto; 5205 if (walker->ipa_act.ipa_apply.ipp_km_cookie != 0) 5206 kmc = walker->ipa_act.ipa_apply.ipp_km_cookie; 5207 if (walker->ipa_act.ipa_apply.ipp_replay_depth) { 5208 prop->sadb_prop_replay = 5209 walker->ipa_act.ipa_apply.ipp_replay_depth; 5210 } 5211 5212 if (do_esp) { 5213 if (!prot->ipp_use_esp) 5214 continue; 5215 5216 if (prot->ipp_esp_auth_alg != 0) { 5217 aalg = ipss->ipsec_alglists[IPSEC_ALG_AUTH] 5218 [prot->ipp_esp_auth_alg]; 5219 if (aalg == NULL || !ALG_VALID(aalg)) 5220 continue; 5221 } else 5222 aalg = NULL; 5223 5224 ASSERT(prot->ipp_encr_alg > 0); 5225 ealg = ipss->ipsec_alglists[IPSEC_ALG_ENCR] 5226 [prot->ipp_encr_alg]; 5227 if (ealg == NULL || !ALG_VALID(ealg)) 5228 continue; 5229 5230 /* 5231 * These may want to come from policy rule.. 5232 */ 5233 softbytes = espstack->ipsecesp_default_soft_bytes; 5234 hardbytes = espstack->ipsecesp_default_hard_bytes; 5235 softaddtime = espstack->ipsecesp_default_soft_addtime; 5236 hardaddtime = espstack->ipsecesp_default_hard_addtime; 5237 softusetime = espstack->ipsecesp_default_soft_usetime; 5238 hardusetime = espstack->ipsecesp_default_hard_usetime; 5239 } else { 5240 if (!prot->ipp_use_ah) 5241 continue; 5242 ealg = NULL; 5243 aalg = ipss->ipsec_alglists[IPSEC_ALG_AUTH] 5244 [prot->ipp_auth_alg]; 5245 if (aalg == NULL || !ALG_VALID(aalg)) 5246 continue; 5247 5248 /* 5249 * These may want to come from policy rule.. 5250 */ 5251 softbytes = ahstack->ipsecah_default_soft_bytes; 5252 hardbytes = ahstack->ipsecah_default_hard_bytes; 5253 softaddtime = ahstack->ipsecah_default_soft_addtime; 5254 hardaddtime = ahstack->ipsecah_default_hard_addtime; 5255 softusetime = ahstack->ipsecah_default_soft_usetime; 5256 hardusetime = ahstack->ipsecah_default_hard_usetime; 5257 } 5258 5259 if (ealg == NULL) { 5260 ealgid = eminbits = emaxbits = esaltlen = 0; 5261 } else { 5262 ealgid = ealg->alg_id; 5263 eminbits = 5264 MAX(prot->ipp_espe_minbits, ealg->alg_ef_minbits); 5265 emaxbits = 5266 MIN(prot->ipp_espe_maxbits, ealg->alg_ef_maxbits); 5267 esaltlen = ealg->alg_saltlen; 5268 } 5269 5270 if (aalg == NULL) { 5271 aalgid = aminbits = amaxbits = 0; 5272 } else { 5273 aalgid = aalg->alg_id; 5274 aminbits = MAX(prot->ipp_espa_minbits, 5275 aalg->alg_ef_minbits); 5276 amaxbits = MIN(prot->ipp_espa_maxbits, 5277 aalg->alg_ef_maxbits); 5278 } 5279 5280 comb->sadb_comb_flags = 0; 5281 comb->sadb_comb_reserved = 0; 5282 comb->sadb_comb_encrypt = ealgid; 5283 comb->sadb_comb_encrypt_minbits = eminbits; 5284 comb->sadb_comb_encrypt_maxbits = emaxbits; 5285 comb->sadb_x_comb_encrypt_saltbits = SADB_8TO1(esaltlen); 5286 comb->sadb_comb_auth = aalgid; 5287 comb->sadb_comb_auth_minbits = aminbits; 5288 comb->sadb_comb_auth_maxbits = amaxbits; 5289 comb->sadb_comb_soft_allocations = 0; 5290 comb->sadb_comb_hard_allocations = 0; 5291 comb->sadb_comb_soft_bytes = softbytes; 5292 comb->sadb_comb_hard_bytes = hardbytes; 5293 comb->sadb_comb_soft_addtime = softaddtime; 5294 comb->sadb_comb_hard_addtime = hardaddtime; 5295 comb->sadb_comb_soft_usetime = softusetime; 5296 comb->sadb_comb_hard_usetime = hardusetime; 5297 5298 prop->sadb_prop_len += SADB_8TO64(sizeof (*comb)); 5299 mp->b_wptr += sizeof (*comb); 5300 allocsize -= sizeof (*comb); 5301 /* Should never dip BELOW sizeof (KM cookie extension). */ 5302 ASSERT3S(allocsize, >=, sizeof (sadb_x_kmc_t)); 5303 if (allocsize <= sizeof (sadb_x_kmc_t)) 5304 break; /* out of space.. */ 5305 comb++; 5306 } 5307 5308 /* Don't include KMC extension if there's no room. */ 5309 if (((kmp != 0) || (kmc != 0)) && allocsize >= sizeof (sadb_x_kmc_t)) { 5310 if (sadb_make_kmc_ext(mp->b_wptr, 5311 mp->b_wptr + sizeof (sadb_x_kmc_t), kmp, kmc) == NULL) { 5312 freeb(mp); 5313 mp = NULL; 5314 goto bail; 5315 } 5316 mp->b_wptr += sizeof (sadb_x_kmc_t); 5317 prop->sadb_prop_len += SADB_8TO64(sizeof (sadb_x_kmc_t)); 5318 } 5319 5320 bail: 5321 rw_exit(&ipss->ipsec_alg_lock); 5322 return (mp); 5323 } 5324 5325 /* 5326 * Generate an extended ACQUIRE's extended-proposal extension. 5327 */ 5328 static mblk_t * 5329 sadb_acquire_extended_prop(ipsec_action_t *ap, netstack_t *ns) 5330 { 5331 sadb_prop_t *eprop; 5332 uint8_t *cur, *end; 5333 mblk_t *mp; 5334 int allocsize, numecombs = 0, numalgdescs = 0; 5335 uint32_t kmp = 0, replay = 0; 5336 uint64_t kmc = 0; 5337 ipsec_action_t *walker; 5338 5339 allocsize = sizeof (*eprop); 5340 5341 /* 5342 * Going to walk through the action list twice. Once for allocation 5343 * measurement, and once for actual construction. 5344 */ 5345 for (walker = ap; walker != NULL; walker = walker->ipa_next) { 5346 ipsec_prot_t *ipp; 5347 5348 /* 5349 * Skip non-IPsec policies 5350 */ 5351 if (walker->ipa_act.ipa_type != IPSEC_ACT_APPLY) 5352 continue; 5353 5354 ipp = &walker->ipa_act.ipa_apply; 5355 5356 if (walker->ipa_act.ipa_apply.ipp_km_proto) 5357 kmp = ipp->ipp_km_proto; 5358 if (walker->ipa_act.ipa_apply.ipp_km_cookie) 5359 kmc = ipp->ipp_km_cookie; 5360 if (walker->ipa_act.ipa_apply.ipp_replay_depth) 5361 replay = ipp->ipp_replay_depth; 5362 5363 if (ipp->ipp_use_ah) 5364 numalgdescs++; 5365 if (ipp->ipp_use_esp) { 5366 numalgdescs++; 5367 if (ipp->ipp_use_espa) 5368 numalgdescs++; 5369 } 5370 5371 numecombs++; 5372 } 5373 ASSERT(numecombs > 0); 5374 5375 allocsize += numecombs * sizeof (sadb_x_ecomb_t) + 5376 numalgdescs * sizeof (sadb_x_algdesc_t) + sizeof (sadb_x_kmc_t); 5377 mp = allocb(allocsize, BPRI_HI); 5378 if (mp == NULL) 5379 return (NULL); 5380 eprop = (sadb_prop_t *)mp->b_rptr; 5381 end = mp->b_rptr + allocsize; 5382 cur = mp->b_rptr + sizeof (*eprop); 5383 5384 eprop->sadb_prop_exttype = SADB_X_EXT_EPROP; 5385 eprop->sadb_x_prop_ereserved = 0; 5386 eprop->sadb_x_prop_numecombs = 0; 5387 *(uint32_t *)(&eprop->sadb_prop_replay) = 0; /* Quick zero-out! */ 5388 /* Pick ESP's replay default if need be. */ 5389 eprop->sadb_prop_replay = (replay == 0) ? 5390 ns->netstack_ipsecesp->ipsecesp_replay_size : replay; 5391 5392 /* This time, walk through and actually allocate. */ 5393 for (walker = ap; walker != NULL; walker = walker->ipa_next) { 5394 /* 5395 * Skip non-IPsec policies 5396 */ 5397 if (walker->ipa_act.ipa_type != IPSEC_ACT_APPLY) 5398 continue; 5399 cur = sadb_action_to_ecomb(cur, end, walker, ns); 5400 if (cur == NULL) { 5401 /* NOTE: inverse-ACQUIRE should note this as ENOMEM. */ 5402 freeb(mp); 5403 return (NULL); 5404 } 5405 eprop->sadb_x_prop_numecombs++; 5406 } 5407 5408 ASSERT(end - cur >= sizeof (sadb_x_kmc_t)); 5409 if ((kmp != 0) || (kmc != 0)) { 5410 cur = sadb_make_kmc_ext(cur, end, kmp, kmc); 5411 if (cur == NULL) { 5412 freeb(mp); 5413 return (NULL); 5414 } 5415 } 5416 mp->b_wptr = cur; 5417 eprop->sadb_prop_len = SADB_8TO64(cur - mp->b_rptr); 5418 5419 return (mp); 5420 } 5421 5422 /* 5423 * For this mblk, insert a new acquire record. Assume bucket contains addrs 5424 * of all of the same length. Give up (and drop) if memory 5425 * cannot be allocated for a new one; otherwise, invoke callback to 5426 * send the acquire up.. 5427 * 5428 * In cases where we need both AH and ESP, add the SA to the ESP ACQUIRE 5429 * list. The ah_add_sa_finish() routines can look at the packet's attached 5430 * attributes and handle this case specially. 5431 */ 5432 void 5433 sadb_acquire(mblk_t *datamp, ip_xmit_attr_t *ixa, boolean_t need_ah, 5434 boolean_t need_esp) 5435 { 5436 mblk_t *asyncmp, *regular, *extended, *common, *prop, *eprop; 5437 sadbp_t *spp; 5438 sadb_t *sp; 5439 ipsacq_t *newbie; 5440 iacqf_t *bucket; 5441 ipha_t *ipha = (ipha_t *)datamp->b_rptr; 5442 ip6_t *ip6h = (ip6_t *)datamp->b_rptr; 5443 uint32_t *src, *dst, *isrc, *idst; 5444 ipsec_policy_t *pp = ixa->ixa_ipsec_policy; 5445 ipsec_action_t *ap = ixa->ixa_ipsec_action; 5446 sa_family_t af; 5447 int hashoffset; 5448 uint32_t seq; 5449 uint64_t unique_id = 0; 5450 boolean_t tunnel_mode = (ixa->ixa_flags & IXAF_IPSEC_TUNNEL) != 0; 5451 ts_label_t *tsl; 5452 netstack_t *ns = ixa->ixa_ipst->ips_netstack; 5453 ipsec_stack_t *ipss = ns->netstack_ipsec; 5454 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp; 5455 ipsecah_stack_t *ahstack = ns->netstack_ipsecah; 5456 ipsec_selector_t sel; 5457 queue_t *q; 5458 5459 ASSERT((pp != NULL) || (ap != NULL)); 5460 5461 ASSERT(need_ah || need_esp); 5462 5463 /* Assign sadb pointers */ 5464 if (need_esp) { 5465 /* 5466 * ESP happens first if we need both AH and ESP. 5467 */ 5468 spp = &espstack->esp_sadb; 5469 } else { 5470 spp = &ahstack->ah_sadb; 5471 } 5472 sp = (ixa->ixa_flags & IXAF_IS_IPV4) ? &spp->s_v4 : &spp->s_v6; 5473 5474 if (is_system_labeled()) 5475 tsl = ixa->ixa_tsl; 5476 else 5477 tsl = NULL; 5478 5479 if (ap == NULL) 5480 ap = pp->ipsp_act; 5481 ASSERT(ap != NULL); 5482 5483 if (ap->ipa_act.ipa_apply.ipp_use_unique || tunnel_mode) 5484 unique_id = SA_FORM_UNIQUE_ID(ixa); 5485 5486 /* 5487 * Set up an ACQUIRE record. 5488 * 5489 * Immediately, make sure the ACQUIRE sequence number doesn't slip 5490 * below the lowest point allowed in the kernel. (In other words, 5491 * make sure the high bit on the sequence number is set.) 5492 */ 5493 5494 seq = keysock_next_seq(ns) | IACQF_LOWEST_SEQ; 5495 5496 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5497 src = (uint32_t *)&ipha->ipha_src; 5498 dst = (uint32_t *)&ipha->ipha_dst; 5499 af = AF_INET; 5500 hashoffset = OUTBOUND_HASH_V4(sp, ipha->ipha_dst); 5501 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 5502 } else { 5503 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 5504 src = (uint32_t *)&ip6h->ip6_src; 5505 dst = (uint32_t *)&ip6h->ip6_dst; 5506 af = AF_INET6; 5507 hashoffset = OUTBOUND_HASH_V6(sp, ip6h->ip6_dst); 5508 ASSERT(!(ixa->ixa_flags & IXAF_IS_IPV4)); 5509 } 5510 5511 if (tunnel_mode) { 5512 if (pp == NULL) { 5513 /* 5514 * Tunnel mode with no policy pointer means this is a 5515 * reflected ICMP (like a ECHO REQUEST) that came in 5516 * with self-encapsulated protection. Until we better 5517 * support this, drop the packet. 5518 */ 5519 ip_drop_packet(datamp, B_FALSE, NULL, 5520 DROPPER(ipss, ipds_spd_got_selfencap), 5521 &ipss->ipsec_spd_dropper); 5522 return; 5523 } 5524 /* Snag inner addresses. */ 5525 isrc = ixa->ixa_ipsec_insrc; 5526 idst = ixa->ixa_ipsec_indst; 5527 } else { 5528 isrc = idst = NULL; 5529 } 5530 5531 /* 5532 * Check buckets to see if there is an existing entry. If so, 5533 * grab it. sadb_checkacquire locks newbie if found. 5534 */ 5535 bucket = &(sp->sdb_acq[hashoffset]); 5536 mutex_enter(&bucket->iacqf_lock); 5537 newbie = sadb_checkacquire(bucket, ap, pp, src, dst, isrc, idst, 5538 unique_id, tsl); 5539 5540 if (newbie == NULL) { 5541 /* 5542 * Otherwise, allocate a new one. 5543 */ 5544 newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP); 5545 if (newbie == NULL) { 5546 mutex_exit(&bucket->iacqf_lock); 5547 ip_drop_packet(datamp, B_FALSE, NULL, 5548 DROPPER(ipss, ipds_sadb_acquire_nomem), 5549 &ipss->ipsec_sadb_dropper); 5550 return; 5551 } 5552 newbie->ipsacq_policy = pp; 5553 if (pp != NULL) { 5554 IPPOL_REFHOLD(pp); 5555 } 5556 IPACT_REFHOLD(ap); 5557 newbie->ipsacq_act = ap; 5558 newbie->ipsacq_linklock = &bucket->iacqf_lock; 5559 newbie->ipsacq_next = bucket->iacqf_ipsacq; 5560 newbie->ipsacq_ptpn = &bucket->iacqf_ipsacq; 5561 if (newbie->ipsacq_next != NULL) 5562 newbie->ipsacq_next->ipsacq_ptpn = &newbie->ipsacq_next; 5563 5564 bucket->iacqf_ipsacq = newbie; 5565 mutex_init(&newbie->ipsacq_lock, NULL, MUTEX_DEFAULT, NULL); 5566 mutex_enter(&newbie->ipsacq_lock); 5567 } 5568 5569 /* 5570 * XXX MLS does it actually help us to drop the bucket lock here? 5571 * we have inserted a half-built, locked acquire record into the 5572 * bucket. any competing thread will now be able to lock the bucket 5573 * to scan it, but will immediately pile up on the new acquire 5574 * record's lock; I don't think we gain anything here other than to 5575 * disperse blame for lock contention. 5576 * 5577 * we might be able to dispense with acquire record locks entirely.. 5578 * just use the bucket locks.. 5579 */ 5580 5581 mutex_exit(&bucket->iacqf_lock); 5582 5583 /* 5584 * This assert looks silly for now, but we may need to enter newbie's 5585 * mutex during a search. 5586 */ 5587 ASSERT(MUTEX_HELD(&newbie->ipsacq_lock)); 5588 5589 /* 5590 * Make the ip_xmit_attr_t into something we can queue. 5591 * If no memory it frees datamp. 5592 */ 5593 asyncmp = ip_xmit_attr_to_mblk(ixa); 5594 if (asyncmp != NULL) 5595 linkb(asyncmp, datamp); 5596 5597 /* Queue up packet. Use b_next. */ 5598 5599 if (asyncmp == NULL) { 5600 /* Statistics for allocation failure */ 5601 if (ixa->ixa_flags & IXAF_IS_IPV4) { 5602 BUMP_MIB(&ixa->ixa_ipst->ips_ip_mib, 5603 ipIfStatsOutDiscards); 5604 } else { 5605 BUMP_MIB(&ixa->ixa_ipst->ips_ip6_mib, 5606 ipIfStatsOutDiscards); 5607 } 5608 ip_drop_output("No memory for asyncmp", datamp, NULL); 5609 freemsg(datamp); 5610 /* 5611 * The acquire record will be freed quickly if it's new 5612 * (ipsacq_expire == 0), and will proceed as if no packet 5613 * showed up if not. 5614 */ 5615 mutex_exit(&newbie->ipsacq_lock); 5616 return; 5617 } else if (newbie->ipsacq_numpackets == 0) { 5618 /* First one. */ 5619 newbie->ipsacq_mp = asyncmp; 5620 newbie->ipsacq_numpackets = 1; 5621 newbie->ipsacq_expire = gethrestime_sec(); 5622 /* 5623 * Extended ACQUIRE with both AH+ESP will use ESP's timeout 5624 * value. 5625 */ 5626 newbie->ipsacq_expire += *spp->s_acquire_timeout; 5627 newbie->ipsacq_seq = seq; 5628 newbie->ipsacq_addrfam = af; 5629 5630 newbie->ipsacq_srcport = ixa->ixa_ipsec_src_port; 5631 newbie->ipsacq_dstport = ixa->ixa_ipsec_dst_port; 5632 newbie->ipsacq_icmp_type = ixa->ixa_ipsec_icmp_type; 5633 newbie->ipsacq_icmp_code = ixa->ixa_ipsec_icmp_code; 5634 if (tunnel_mode) { 5635 newbie->ipsacq_inneraddrfam = ixa->ixa_ipsec_inaf; 5636 newbie->ipsacq_proto = ixa->ixa_ipsec_inaf == AF_INET6 ? 5637 IPPROTO_IPV6 : IPPROTO_ENCAP; 5638 newbie->ipsacq_innersrcpfx = ixa->ixa_ipsec_insrcpfx; 5639 newbie->ipsacq_innerdstpfx = ixa->ixa_ipsec_indstpfx; 5640 IPSA_COPY_ADDR(newbie->ipsacq_innersrc, 5641 ixa->ixa_ipsec_insrc, ixa->ixa_ipsec_inaf); 5642 IPSA_COPY_ADDR(newbie->ipsacq_innerdst, 5643 ixa->ixa_ipsec_indst, ixa->ixa_ipsec_inaf); 5644 } else { 5645 newbie->ipsacq_proto = ixa->ixa_ipsec_proto; 5646 } 5647 newbie->ipsacq_unique_id = unique_id; 5648 5649 if (tsl != NULL) { 5650 label_hold(tsl); 5651 newbie->ipsacq_tsl = tsl; 5652 } 5653 } else { 5654 /* Scan to the end of the list & insert. */ 5655 mblk_t *lastone = newbie->ipsacq_mp; 5656 5657 while (lastone->b_next != NULL) 5658 lastone = lastone->b_next; 5659 lastone->b_next = asyncmp; 5660 if (newbie->ipsacq_numpackets++ == ipsacq_maxpackets) { 5661 newbie->ipsacq_numpackets = ipsacq_maxpackets; 5662 lastone = newbie->ipsacq_mp; 5663 newbie->ipsacq_mp = lastone->b_next; 5664 lastone->b_next = NULL; 5665 5666 /* Freeing the async message */ 5667 lastone = ip_xmit_attr_free_mblk(lastone); 5668 ip_drop_packet(lastone, B_FALSE, NULL, 5669 DROPPER(ipss, ipds_sadb_acquire_toofull), 5670 &ipss->ipsec_sadb_dropper); 5671 } else { 5672 IP_ACQUIRE_STAT(ipss, qhiwater, 5673 newbie->ipsacq_numpackets); 5674 } 5675 } 5676 5677 /* 5678 * Reset addresses. Set them to the most recently added mblk chain, 5679 * so that the address pointers in the acquire record will point 5680 * at an mblk still attached to the acquire list. 5681 */ 5682 5683 newbie->ipsacq_srcaddr = src; 5684 newbie->ipsacq_dstaddr = dst; 5685 5686 /* 5687 * If the acquire record has more than one queued packet, we've 5688 * already sent an ACQUIRE, and don't need to repeat ourself. 5689 */ 5690 if (newbie->ipsacq_seq != seq || newbie->ipsacq_numpackets > 1) { 5691 /* I have an acquire outstanding already! */ 5692 mutex_exit(&newbie->ipsacq_lock); 5693 return; 5694 } 5695 5696 if (need_esp) { 5697 ESP_BUMP_STAT(espstack, acquire_requests); 5698 q = espstack->esp_pfkey_q; 5699 } else { 5700 /* 5701 * Two cases get us here: 5702 * 1.) AH-only policy. 5703 * 5704 * 2.) A continuation of an AH+ESP policy, and this is the 5705 * post-ESP, AH-needs-to-send-a-regular-ACQUIRE case. 5706 * (i.e. called from esp_do_outbound_ah().) 5707 */ 5708 AH_BUMP_STAT(ahstack, acquire_requests); 5709 q = ahstack->ah_pfkey_q; 5710 } 5711 5712 /* 5713 * Get selectors and other policy-expression bits needed for an 5714 * ACQUIRE. 5715 */ 5716 bzero(&sel, sizeof (sel)); 5717 sel.ips_isv4 = (ixa->ixa_flags & IXAF_IS_IPV4) != 0; 5718 if (tunnel_mode) { 5719 sel.ips_protocol = (ixa->ixa_ipsec_inaf == AF_INET) ? 5720 IPPROTO_ENCAP : IPPROTO_IPV6; 5721 } else { 5722 sel.ips_protocol = ixa->ixa_ipsec_proto; 5723 sel.ips_local_port = ixa->ixa_ipsec_src_port; 5724 sel.ips_remote_port = ixa->ixa_ipsec_dst_port; 5725 } 5726 sel.ips_icmp_type = ixa->ixa_ipsec_icmp_type; 5727 sel.ips_icmp_code = ixa->ixa_ipsec_icmp_code; 5728 sel.ips_is_icmp_inv_acq = 0; 5729 if (af == AF_INET) { 5730 sel.ips_local_addr_v4 = ipha->ipha_src; 5731 sel.ips_remote_addr_v4 = ipha->ipha_dst; 5732 } else { 5733 sel.ips_local_addr_v6 = ip6h->ip6_src; 5734 sel.ips_remote_addr_v6 = ip6h->ip6_dst; 5735 } 5736 5737 5738 /* 5739 * 1. Generate addresses, kmc, and sensitivity. These are "common" 5740 * and should be an mblk pointed to by common. TBD -- eventually it 5741 * will include triggering packet contents as more address extensions. 5742 * 5743 * 2. Generate ACQUIRE & KEYSOCK_OUT and single-protocol proposal. 5744 * These are "regular" and "prop". String regular->b_cont->b_cont = 5745 * common, common->b_cont = prop. 5746 * 5747 * 3. If extended register got turned on, generate EXT_ACQUIRE & 5748 * KEYSOCK_OUT and multi-protocol eprop. These are "extended" and 5749 * "eprop". String extended->b_cont->b_cont = dupb(common) and 5750 * extended->b_cont->b_cont->b_cont = prop. 5751 * 5752 * 4. Deliver: putnext(q, regular) and if there, putnext(q, extended). 5753 */ 5754 5755 regular = extended = prop = eprop = NULL; 5756 5757 common = sadb_acquire_msg_common(&sel, pp, ap, tunnel_mode, tsl, NULL); 5758 if (common == NULL) 5759 goto bail; 5760 5761 regular = sadb_acquire_msg_base(0, (need_esp ? 5762 SADB_SATYPE_ESP : SADB_SATYPE_AH), newbie->ipsacq_seq, 0); 5763 if (regular == NULL) 5764 goto bail; 5765 5766 /* 5767 * Pardon the boolean cleverness. At least one of need_* must be true. 5768 * If they are equal, it's an AH & ESP policy and ESP needs to go 5769 * first. If they aren't, just check the contents of need_esp. 5770 */ 5771 prop = sadb_acquire_prop(ap, ns, need_esp); 5772 if (prop == NULL) 5773 goto bail; 5774 5775 /* Link the parts together. */ 5776 regular->b_cont->b_cont = common; 5777 common->b_cont = prop; 5778 /* 5779 * Prop is now linked, so don't freemsg() it if the extended 5780 * construction goes off the rails. 5781 */ 5782 prop = NULL; 5783 5784 ((sadb_msg_t *)(regular->b_cont->b_rptr))->sadb_msg_len = 5785 SADB_8TO64(msgsize(regular->b_cont)); 5786 5787 /* 5788 * If we need an extended ACQUIRE, build it here. 5789 */ 5790 if (keysock_extended_reg(ns)) { 5791 /* NOTE: "common" still points to what we need. */ 5792 extended = sadb_acquire_msg_base(0, 0, newbie->ipsacq_seq, 0); 5793 if (extended == NULL) { 5794 common = NULL; 5795 goto bail; 5796 } 5797 5798 extended->b_cont->b_cont = dupb(common); 5799 common = NULL; 5800 if (extended->b_cont->b_cont == NULL) 5801 goto bail; 5802 5803 eprop = sadb_acquire_extended_prop(ap, ns); 5804 if (eprop == NULL) 5805 goto bail; 5806 extended->b_cont->b_cont->b_cont = eprop; 5807 5808 ((sadb_msg_t *)(extended->b_cont->b_rptr))->sadb_msg_len = 5809 SADB_8TO64(msgsize(extended->b_cont)); 5810 } 5811 5812 /* So we don't hold a lock across putnext()... */ 5813 mutex_exit(&newbie->ipsacq_lock); 5814 5815 if (extended != NULL) 5816 putnext(q, extended); 5817 ASSERT(regular != NULL); 5818 putnext(q, regular); 5819 return; 5820 5821 bail: 5822 /* Make this acquire record go away quickly... */ 5823 newbie->ipsacq_expire = 0; 5824 /* Exploit freemsg(NULL) being legal for fun & profit. */ 5825 freemsg(common); 5826 freemsg(prop); 5827 freemsg(extended); 5828 freemsg(regular); 5829 mutex_exit(&newbie->ipsacq_lock); 5830 } 5831 5832 /* 5833 * Unlink and free an acquire record. 5834 */ 5835 void 5836 sadb_destroy_acquire(ipsacq_t *acqrec, netstack_t *ns) 5837 { 5838 mblk_t *mp; 5839 ipsec_stack_t *ipss = ns->netstack_ipsec; 5840 5841 ASSERT(MUTEX_HELD(acqrec->ipsacq_linklock)); 5842 5843 if (acqrec->ipsacq_policy != NULL) { 5844 IPPOL_REFRELE(acqrec->ipsacq_policy); 5845 } 5846 if (acqrec->ipsacq_act != NULL) { 5847 IPACT_REFRELE(acqrec->ipsacq_act); 5848 } 5849 5850 /* Unlink */ 5851 *(acqrec->ipsacq_ptpn) = acqrec->ipsacq_next; 5852 if (acqrec->ipsacq_next != NULL) 5853 acqrec->ipsacq_next->ipsacq_ptpn = acqrec->ipsacq_ptpn; 5854 5855 if (acqrec->ipsacq_tsl != NULL) { 5856 label_rele(acqrec->ipsacq_tsl); 5857 acqrec->ipsacq_tsl = NULL; 5858 } 5859 5860 /* 5861 * Free hanging mp's. 5862 * 5863 * XXX Instead of freemsg(), perhaps use IPSEC_REQ_FAILED. 5864 */ 5865 5866 mutex_enter(&acqrec->ipsacq_lock); 5867 while (acqrec->ipsacq_mp != NULL) { 5868 mp = acqrec->ipsacq_mp; 5869 acqrec->ipsacq_mp = mp->b_next; 5870 mp->b_next = NULL; 5871 /* Freeing the async message */ 5872 mp = ip_xmit_attr_free_mblk(mp); 5873 ip_drop_packet(mp, B_FALSE, NULL, 5874 DROPPER(ipss, ipds_sadb_acquire_timeout), 5875 &ipss->ipsec_sadb_dropper); 5876 } 5877 mutex_exit(&acqrec->ipsacq_lock); 5878 5879 /* Free */ 5880 mutex_destroy(&acqrec->ipsacq_lock); 5881 kmem_free(acqrec, sizeof (*acqrec)); 5882 } 5883 5884 /* 5885 * Destroy an acquire list fanout. 5886 */ 5887 static void 5888 sadb_destroy_acqlist(iacqf_t **listp, uint_t numentries, boolean_t forever, 5889 netstack_t *ns) 5890 { 5891 int i; 5892 iacqf_t *list = *listp; 5893 5894 if (list == NULL) 5895 return; 5896 5897 for (i = 0; i < numentries; i++) { 5898 mutex_enter(&(list[i].iacqf_lock)); 5899 while (list[i].iacqf_ipsacq != NULL) 5900 sadb_destroy_acquire(list[i].iacqf_ipsacq, ns); 5901 mutex_exit(&(list[i].iacqf_lock)); 5902 if (forever) 5903 mutex_destroy(&(list[i].iacqf_lock)); 5904 } 5905 5906 if (forever) { 5907 *listp = NULL; 5908 kmem_free(list, numentries * sizeof (*list)); 5909 } 5910 } 5911 5912 /* 5913 * Create an algorithm descriptor for an extended ACQUIRE. Filter crypto 5914 * framework's view of reality vs. IPsec's. EF's wins, BTW. 5915 */ 5916 static uint8_t * 5917 sadb_new_algdesc(uint8_t *start, uint8_t *limit, 5918 sadb_x_ecomb_t *ecomb, uint8_t satype, uint8_t algtype, 5919 uint8_t alg, uint16_t minbits, uint16_t maxbits, ipsec_stack_t *ipss) 5920 { 5921 uint8_t *cur = start; 5922 ipsec_alginfo_t *algp; 5923 sadb_x_algdesc_t *algdesc = (sadb_x_algdesc_t *)cur; 5924 5925 cur += sizeof (*algdesc); 5926 if (cur >= limit) 5927 return (NULL); 5928 5929 ecomb->sadb_x_ecomb_numalgs++; 5930 5931 /* 5932 * Normalize vs. crypto framework's limits. This way, you can specify 5933 * a stronger policy, and when the framework loads a stronger version, 5934 * you can just keep plowing w/o rewhacking your SPD. 5935 */ 5936 rw_enter(&ipss->ipsec_alg_lock, RW_READER); 5937 algp = ipss->ipsec_alglists[(algtype == SADB_X_ALGTYPE_AUTH) ? 5938 IPSEC_ALG_AUTH : IPSEC_ALG_ENCR][alg]; 5939 if (algp == NULL) { 5940 rw_exit(&ipss->ipsec_alg_lock); 5941 return (NULL); /* Algorithm doesn't exist. Fail gracefully. */ 5942 } 5943 if (minbits < algp->alg_ef_minbits) 5944 minbits = algp->alg_ef_minbits; 5945 if (maxbits > algp->alg_ef_maxbits) 5946 maxbits = algp->alg_ef_maxbits; 5947 rw_exit(&ipss->ipsec_alg_lock); 5948 5949 algdesc->sadb_x_algdesc_saltbits = SADB_8TO1(algp->alg_saltlen); 5950 algdesc->sadb_x_algdesc_satype = satype; 5951 algdesc->sadb_x_algdesc_algtype = algtype; 5952 algdesc->sadb_x_algdesc_alg = alg; 5953 algdesc->sadb_x_algdesc_minbits = minbits; 5954 algdesc->sadb_x_algdesc_maxbits = maxbits; 5955 5956 return (cur); 5957 } 5958 5959 /* 5960 * Convert the given ipsec_action_t into an ecomb starting at *ecomb 5961 * which must fit before *limit 5962 * 5963 * return NULL if we ran out of room or a pointer to the end of the ecomb. 5964 */ 5965 static uint8_t * 5966 sadb_action_to_ecomb(uint8_t *start, uint8_t *limit, ipsec_action_t *act, 5967 netstack_t *ns) 5968 { 5969 uint8_t *cur = start; 5970 sadb_x_ecomb_t *ecomb = (sadb_x_ecomb_t *)cur; 5971 ipsec_prot_t *ipp; 5972 ipsec_stack_t *ipss = ns->netstack_ipsec; 5973 5974 cur += sizeof (*ecomb); 5975 if (cur >= limit) 5976 return (NULL); 5977 5978 ASSERT(act->ipa_act.ipa_type == IPSEC_ACT_APPLY); 5979 5980 ipp = &act->ipa_act.ipa_apply; 5981 5982 ecomb->sadb_x_ecomb_numalgs = 0; 5983 ecomb->sadb_x_ecomb_reserved = 0; 5984 ecomb->sadb_x_ecomb_reserved2 = 0; 5985 /* 5986 * No limits on allocations, since we really don't support that 5987 * concept currently. 5988 */ 5989 ecomb->sadb_x_ecomb_soft_allocations = 0; 5990 ecomb->sadb_x_ecomb_hard_allocations = 0; 5991 5992 /* 5993 * XXX TBD: Policy or global parameters will eventually be 5994 * able to fill in some of these. 5995 */ 5996 ecomb->sadb_x_ecomb_flags = 0; 5997 ecomb->sadb_x_ecomb_soft_bytes = 0; 5998 ecomb->sadb_x_ecomb_hard_bytes = 0; 5999 ecomb->sadb_x_ecomb_soft_addtime = 0; 6000 ecomb->sadb_x_ecomb_hard_addtime = 0; 6001 ecomb->sadb_x_ecomb_soft_usetime = 0; 6002 ecomb->sadb_x_ecomb_hard_usetime = 0; 6003 6004 if (ipp->ipp_use_ah) { 6005 cur = sadb_new_algdesc(cur, limit, ecomb, 6006 SADB_SATYPE_AH, SADB_X_ALGTYPE_AUTH, ipp->ipp_auth_alg, 6007 ipp->ipp_ah_minbits, ipp->ipp_ah_maxbits, ipss); 6008 if (cur == NULL) 6009 return (NULL); 6010 ipsecah_fill_defs(ecomb, ns); 6011 } 6012 6013 if (ipp->ipp_use_esp) { 6014 if (ipp->ipp_use_espa) { 6015 cur = sadb_new_algdesc(cur, limit, ecomb, 6016 SADB_SATYPE_ESP, SADB_X_ALGTYPE_AUTH, 6017 ipp->ipp_esp_auth_alg, 6018 ipp->ipp_espa_minbits, 6019 ipp->ipp_espa_maxbits, ipss); 6020 if (cur == NULL) 6021 return (NULL); 6022 } 6023 6024 cur = sadb_new_algdesc(cur, limit, ecomb, 6025 SADB_SATYPE_ESP, SADB_X_ALGTYPE_CRYPT, 6026 ipp->ipp_encr_alg, 6027 ipp->ipp_espe_minbits, 6028 ipp->ipp_espe_maxbits, ipss); 6029 if (cur == NULL) 6030 return (NULL); 6031 /* Fill in lifetimes if and only if AH didn't already... */ 6032 if (!ipp->ipp_use_ah) 6033 ipsecesp_fill_defs(ecomb, ns); 6034 } 6035 6036 return (cur); 6037 } 6038 6039 #include <sys/tsol/label_macro.h> /* XXX should not need this */ 6040 6041 /* 6042 * From a cred_t, construct a sensitivity label extension 6043 * 6044 * We send up a fixed-size sensitivity label bitmap, and are perhaps 6045 * overly chummy with the underlying data structures here. 6046 */ 6047 6048 /* ARGSUSED */ 6049 int 6050 sadb_sens_len_from_label(ts_label_t *tsl) 6051 { 6052 int baselen = sizeof (sadb_sens_t) + _C_LEN * 4; 6053 return (roundup(baselen, sizeof (uint64_t))); 6054 } 6055 6056 void 6057 sadb_sens_from_label(sadb_sens_t *sens, int exttype, ts_label_t *tsl, 6058 int senslen) 6059 { 6060 uint8_t *bitmap; 6061 bslabel_t *sl; 6062 6063 /* LINTED */ 6064 ASSERT((_C_LEN & 1) == 0); 6065 ASSERT((senslen & 7) == 0); 6066 6067 sl = label2bslabel(tsl); 6068 6069 sens->sadb_sens_exttype = exttype; 6070 sens->sadb_sens_len = SADB_8TO64(senslen); 6071 6072 sens->sadb_sens_dpd = tsl->tsl_doi; 6073 sens->sadb_sens_sens_level = LCLASS(sl); 6074 sens->sadb_sens_integ_level = 0; /* TBD */ 6075 sens->sadb_sens_sens_len = _C_LEN >> 1; 6076 sens->sadb_sens_integ_len = 0; /* TBD */ 6077 sens->sadb_x_sens_flags = 0; 6078 6079 bitmap = (uint8_t *)(sens + 1); 6080 bcopy(&(((_bslabel_impl_t *)sl)->compartments), bitmap, _C_LEN * 4); 6081 } 6082 6083 /* 6084 * Okay, how do we report errors/invalid labels from this? 6085 * With a special designated "not a label" cred_t ? 6086 */ 6087 /* ARGSUSED */ 6088 ts_label_t * 6089 sadb_label_from_sens(sadb_sens_t *sens, uint64_t *bitmap) 6090 { 6091 int bitmap_len = SADB_64TO8(sens->sadb_sens_sens_len); 6092 bslabel_t sl; 6093 ts_label_t *tsl; 6094 6095 if (sens->sadb_sens_integ_level != 0) 6096 return (NULL); 6097 if (sens->sadb_sens_integ_len != 0) 6098 return (NULL); 6099 if (bitmap_len > _C_LEN * 4) 6100 return (NULL); 6101 6102 bsllow(&sl); 6103 LCLASS_SET((_bslabel_impl_t *)&sl, 6104 (uint16_t)sens->sadb_sens_sens_level); 6105 bcopy(bitmap, &((_bslabel_impl_t *)&sl)->compartments, 6106 bitmap_len); 6107 6108 tsl = labelalloc(&sl, sens->sadb_sens_dpd, KM_NOSLEEP); 6109 if (tsl == NULL) 6110 return (NULL); 6111 6112 if (sens->sadb_x_sens_flags & SADB_X_SENS_UNLABELED) 6113 tsl->tsl_flags |= TSLF_UNLABELED; 6114 return (tsl); 6115 } 6116 6117 /* End XXX label-library-leakage */ 6118 6119 /* 6120 * Given an SADB_GETSPI message, find an appropriately ranged SA and 6121 * allocate an SA. If there are message improprieties, return (ipsa_t *)-1. 6122 * If there was a memory allocation error, return NULL. (Assume NULL != 6123 * (ipsa_t *)-1). 6124 * 6125 * master_spi is passed in host order. 6126 */ 6127 ipsa_t * 6128 sadb_getspi(keysock_in_t *ksi, uint32_t master_spi, int *diagnostic, 6129 netstack_t *ns, uint_t sa_type) 6130 { 6131 sadb_address_t *src = 6132 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC], 6133 *dst = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 6134 sadb_spirange_t *range = 6135 (sadb_spirange_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE]; 6136 struct sockaddr_in *ssa, *dsa; 6137 struct sockaddr_in6 *ssa6, *dsa6; 6138 uint32_t *srcaddr, *dstaddr; 6139 sa_family_t af; 6140 uint32_t add, min, max; 6141 uint8_t protocol = 6142 (sa_type == SADB_SATYPE_AH) ? IPPROTO_AH : IPPROTO_ESP; 6143 6144 if (src == NULL) { 6145 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 6146 return ((ipsa_t *)-1); 6147 } 6148 if (dst == NULL) { 6149 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 6150 return ((ipsa_t *)-1); 6151 } 6152 if (range == NULL) { 6153 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_RANGE; 6154 return ((ipsa_t *)-1); 6155 } 6156 6157 min = ntohl(range->sadb_spirange_min); 6158 max = ntohl(range->sadb_spirange_max); 6159 dsa = (struct sockaddr_in *)(dst + 1); 6160 dsa6 = (struct sockaddr_in6 *)dsa; 6161 6162 ssa = (struct sockaddr_in *)(src + 1); 6163 ssa6 = (struct sockaddr_in6 *)ssa; 6164 ASSERT(dsa->sin_family == ssa->sin_family); 6165 6166 srcaddr = ALL_ZEROES_PTR; 6167 af = dsa->sin_family; 6168 switch (af) { 6169 case AF_INET: 6170 if (src != NULL) 6171 srcaddr = (uint32_t *)(&ssa->sin_addr); 6172 dstaddr = (uint32_t *)(&dsa->sin_addr); 6173 break; 6174 case AF_INET6: 6175 if (src != NULL) 6176 srcaddr = (uint32_t *)(&ssa6->sin6_addr); 6177 dstaddr = (uint32_t *)(&dsa6->sin6_addr); 6178 break; 6179 default: 6180 *diagnostic = SADB_X_DIAGNOSTIC_BAD_DST_AF; 6181 return ((ipsa_t *)-1); 6182 } 6183 6184 if (master_spi < min || master_spi > max) { 6185 /* Return a random value in the range. */ 6186 if (cl_inet_getspi) { 6187 cl_inet_getspi(ns->netstack_stackid, protocol, 6188 (uint8_t *)&add, sizeof (add), NULL); 6189 } else { 6190 (void) random_get_pseudo_bytes((uint8_t *)&add, 6191 sizeof (add)); 6192 } 6193 master_spi = min + (add % (max - min + 1)); 6194 } 6195 6196 /* 6197 * Since master_spi is passed in host order, we need to htonl() it 6198 * for the purposes of creating a new SA. 6199 */ 6200 return (sadb_makelarvalassoc(htonl(master_spi), srcaddr, dstaddr, af, 6201 ns)); 6202 } 6203 6204 /* 6205 * 6206 * Locate an ACQUIRE and nuke it. If I have an samsg that's larger than the 6207 * base header, just ignore it. Otherwise, lock down the whole ACQUIRE list 6208 * and scan for the sequence number in question. I may wish to accept an 6209 * address pair with it, for easier searching. 6210 * 6211 * Caller frees the message, so we don't have to here. 6212 * 6213 * NOTE: The pfkey_q parameter may be used in the future for ACQUIRE 6214 * failures. 6215 */ 6216 /* ARGSUSED */ 6217 void 6218 sadb_in_acquire(sadb_msg_t *samsg, sadbp_t *sp, queue_t *pfkey_q, 6219 netstack_t *ns) 6220 { 6221 int i; 6222 ipsacq_t *acqrec; 6223 iacqf_t *bucket; 6224 6225 /* 6226 * I only accept the base header for this! 6227 * Though to be honest, requiring the dst address would help 6228 * immensely. 6229 * 6230 * XXX There are already cases where I can get the dst address. 6231 */ 6232 if (samsg->sadb_msg_len > SADB_8TO64(sizeof (*samsg))) 6233 return; 6234 6235 /* 6236 * Using the samsg->sadb_msg_seq, find the ACQUIRE record, delete it, 6237 * (and in the future send a message to IP with the appropriate error 6238 * number). 6239 * 6240 * Q: Do I want to reject if pid != 0? 6241 */ 6242 6243 for (i = 0; i < sp->s_v4.sdb_hashsize; i++) { 6244 bucket = &sp->s_v4.sdb_acq[i]; 6245 mutex_enter(&bucket->iacqf_lock); 6246 for (acqrec = bucket->iacqf_ipsacq; acqrec != NULL; 6247 acqrec = acqrec->ipsacq_next) { 6248 if (samsg->sadb_msg_seq == acqrec->ipsacq_seq) 6249 break; /* for acqrec... loop. */ 6250 } 6251 if (acqrec != NULL) 6252 break; /* for i = 0... loop. */ 6253 6254 mutex_exit(&bucket->iacqf_lock); 6255 } 6256 6257 if (acqrec == NULL) { 6258 for (i = 0; i < sp->s_v6.sdb_hashsize; i++) { 6259 bucket = &sp->s_v6.sdb_acq[i]; 6260 mutex_enter(&bucket->iacqf_lock); 6261 for (acqrec = bucket->iacqf_ipsacq; acqrec != NULL; 6262 acqrec = acqrec->ipsacq_next) { 6263 if (samsg->sadb_msg_seq == acqrec->ipsacq_seq) 6264 break; /* for acqrec... loop. */ 6265 } 6266 if (acqrec != NULL) 6267 break; /* for i = 0... loop. */ 6268 6269 mutex_exit(&bucket->iacqf_lock); 6270 } 6271 } 6272 6273 6274 if (acqrec == NULL) 6275 return; 6276 6277 /* 6278 * What do I do with the errno and IP? I may need mp's services a 6279 * little more. See sadb_destroy_acquire() for future directions 6280 * beyond free the mblk chain on the acquire record. 6281 */ 6282 6283 ASSERT(&bucket->iacqf_lock == acqrec->ipsacq_linklock); 6284 sadb_destroy_acquire(acqrec, ns); 6285 /* Have to exit mutex here, because of breaking out of for loop. */ 6286 mutex_exit(&bucket->iacqf_lock); 6287 } 6288 6289 /* 6290 * The following functions work with the replay windows of an SA. They assume 6291 * the ipsa->ipsa_replay_arr is an array of uint64_t, and that the bit vector 6292 * represents the highest sequence number packet received, and back 6293 * (ipsa->ipsa_replay_wsize) packets. 6294 */ 6295 6296 /* 6297 * Is the replay bit set? 6298 */ 6299 static boolean_t 6300 ipsa_is_replay_set(ipsa_t *ipsa, uint32_t offset) 6301 { 6302 uint64_t bit = (uint64_t)1 << (uint64_t)(offset & 63); 6303 6304 return ((bit & ipsa->ipsa_replay_arr[offset >> 6]) ? B_TRUE : B_FALSE); 6305 } 6306 6307 /* 6308 * Shift the bits of the replay window over. 6309 */ 6310 static void 6311 ipsa_shift_replay(ipsa_t *ipsa, uint32_t shift) 6312 { 6313 int i; 6314 int jump = ((shift - 1) >> 6) + 1; 6315 6316 if (shift == 0) 6317 return; 6318 6319 for (i = (ipsa->ipsa_replay_wsize - 1) >> 6; i >= 0; i--) { 6320 if (i + jump <= (ipsa->ipsa_replay_wsize - 1) >> 6) { 6321 ipsa->ipsa_replay_arr[i + jump] |= 6322 ipsa->ipsa_replay_arr[i] >> (64 - (shift & 63)); 6323 } 6324 ipsa->ipsa_replay_arr[i] <<= shift; 6325 } 6326 } 6327 6328 /* 6329 * Set a bit in the bit vector. 6330 */ 6331 static void 6332 ipsa_set_replay(ipsa_t *ipsa, uint32_t offset) 6333 { 6334 uint64_t bit = (uint64_t)1 << (uint64_t)(offset & 63); 6335 6336 ipsa->ipsa_replay_arr[offset >> 6] |= bit; 6337 } 6338 6339 #define SADB_MAX_REPLAY_VALUE 0xffffffff 6340 6341 /* 6342 * Assume caller has NOT done ntohl() already on seq. Check to see 6343 * if replay sequence number "seq" has been seen already. 6344 */ 6345 boolean_t 6346 sadb_replay_check(ipsa_t *ipsa, uint32_t seq) 6347 { 6348 boolean_t rc; 6349 uint32_t diff; 6350 6351 if (ipsa->ipsa_replay_wsize == 0) 6352 return (B_TRUE); 6353 6354 /* 6355 * NOTE: I've already checked for 0 on the wire in sadb_replay_peek(). 6356 */ 6357 6358 /* Convert sequence number into host order before holding the mutex. */ 6359 seq = ntohl(seq); 6360 6361 mutex_enter(&ipsa->ipsa_lock); 6362 6363 /* Initialize inbound SA's ipsa_replay field to last one received. */ 6364 if (ipsa->ipsa_replay == 0) 6365 ipsa->ipsa_replay = 1; 6366 6367 if (seq > ipsa->ipsa_replay) { 6368 /* 6369 * I have received a new "highest value received". Shift 6370 * the replay window over. 6371 */ 6372 diff = seq - ipsa->ipsa_replay; 6373 if (diff < ipsa->ipsa_replay_wsize) { 6374 /* In replay window, shift bits over. */ 6375 ipsa_shift_replay(ipsa, diff); 6376 } else { 6377 /* WAY FAR AHEAD, clear bits and start again. */ 6378 bzero(ipsa->ipsa_replay_arr, 6379 sizeof (ipsa->ipsa_replay_arr)); 6380 } 6381 ipsa_set_replay(ipsa, 0); 6382 ipsa->ipsa_replay = seq; 6383 rc = B_TRUE; 6384 goto done; 6385 } 6386 diff = ipsa->ipsa_replay - seq; 6387 if (diff >= ipsa->ipsa_replay_wsize || ipsa_is_replay_set(ipsa, diff)) { 6388 rc = B_FALSE; 6389 goto done; 6390 } 6391 /* Set this packet as seen. */ 6392 ipsa_set_replay(ipsa, diff); 6393 6394 rc = B_TRUE; 6395 done: 6396 mutex_exit(&ipsa->ipsa_lock); 6397 return (rc); 6398 } 6399 6400 /* 6401 * "Peek" and see if we should even bother going through the effort of 6402 * running an authentication check on the sequence number passed in. 6403 * this takes into account packets that are below the replay window, 6404 * and collisions with already replayed packets. Return B_TRUE if it 6405 * is okay to proceed, B_FALSE if this packet should be dropped immediately. 6406 * Assume same byte-ordering as sadb_replay_check. 6407 */ 6408 boolean_t 6409 sadb_replay_peek(ipsa_t *ipsa, uint32_t seq) 6410 { 6411 boolean_t rc = B_FALSE; 6412 uint32_t diff; 6413 6414 if (ipsa->ipsa_replay_wsize == 0) 6415 return (B_TRUE); 6416 6417 /* 6418 * 0 is 0, regardless of byte order... :) 6419 * 6420 * If I get 0 on the wire (and there is a replay window) then the 6421 * sender most likely wrapped. This ipsa may need to be marked or 6422 * something. 6423 */ 6424 if (seq == 0) 6425 return (B_FALSE); 6426 6427 seq = ntohl(seq); 6428 mutex_enter(&ipsa->ipsa_lock); 6429 if (seq < ipsa->ipsa_replay - ipsa->ipsa_replay_wsize && 6430 ipsa->ipsa_replay >= ipsa->ipsa_replay_wsize) 6431 goto done; 6432 6433 /* 6434 * If I've hit 0xffffffff, then quite honestly, I don't need to 6435 * bother with formalities. I'm not accepting any more packets 6436 * on this SA. 6437 */ 6438 if (ipsa->ipsa_replay == SADB_MAX_REPLAY_VALUE) { 6439 /* 6440 * Since we're already holding the lock, update the 6441 * expire time ala. sadb_replay_delete() and return. 6442 */ 6443 ipsa->ipsa_hardexpiretime = (time_t)1; 6444 goto done; 6445 } 6446 6447 if (seq <= ipsa->ipsa_replay) { 6448 /* 6449 * This seq is in the replay window. I'm not below it, 6450 * because I already checked for that above! 6451 */ 6452 diff = ipsa->ipsa_replay - seq; 6453 if (ipsa_is_replay_set(ipsa, diff)) 6454 goto done; 6455 } 6456 /* Else return B_TRUE, I'm going to advance the window. */ 6457 6458 rc = B_TRUE; 6459 done: 6460 mutex_exit(&ipsa->ipsa_lock); 6461 return (rc); 6462 } 6463 6464 /* 6465 * Delete a single SA. 6466 * 6467 * For now, use the quick-and-dirty trick of making the association's 6468 * hard-expire lifetime (time_t)1, ensuring deletion by the *_ager(). 6469 */ 6470 void 6471 sadb_replay_delete(ipsa_t *assoc) 6472 { 6473 mutex_enter(&assoc->ipsa_lock); 6474 assoc->ipsa_hardexpiretime = (time_t)1; 6475 mutex_exit(&assoc->ipsa_lock); 6476 } 6477 6478 /* 6479 * Special front-end to ipsec_rl_strlog() dealing with SA failure. 6480 * this is designed to take only a format string with "* %x * %s *", so 6481 * that "spi" is printed first, then "addr" is converted using inet_pton(). 6482 * 6483 * This is abstracted out to save the stack space for only when inet_pton() 6484 * is called. Make sure "spi" is in network order; it usually is when this 6485 * would get called. 6486 */ 6487 void 6488 ipsec_assocfailure(short mid, short sid, char level, ushort_t sl, char *fmt, 6489 uint32_t spi, void *addr, int af, netstack_t *ns) 6490 { 6491 char buf[INET6_ADDRSTRLEN]; 6492 6493 ASSERT(af == AF_INET6 || af == AF_INET); 6494 6495 ipsec_rl_strlog(ns, mid, sid, level, sl, fmt, ntohl(spi), 6496 inet_ntop(af, addr, buf, sizeof (buf))); 6497 } 6498 6499 /* 6500 * Fills in a reference to the policy, if any, from the conn, in *ppp 6501 */ 6502 static void 6503 ipsec_conn_pol(ipsec_selector_t *sel, conn_t *connp, ipsec_policy_t **ppp) 6504 { 6505 ipsec_policy_t *pp; 6506 ipsec_latch_t *ipl = connp->conn_latch; 6507 6508 if ((ipl != NULL) && (connp->conn_ixa->ixa_ipsec_policy != NULL)) { 6509 pp = connp->conn_ixa->ixa_ipsec_policy; 6510 IPPOL_REFHOLD(pp); 6511 } else { 6512 pp = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, sel, 6513 connp->conn_netstack); 6514 } 6515 *ppp = pp; 6516 } 6517 6518 /* 6519 * The following functions scan through active conn_t structures 6520 * and return a reference to the best-matching policy it can find. 6521 * Caller must release the reference. 6522 */ 6523 static void 6524 ipsec_udp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, ip_stack_t *ipst) 6525 { 6526 connf_t *connfp; 6527 conn_t *connp = NULL; 6528 ipsec_selector_t portonly; 6529 6530 bzero((void *)&portonly, sizeof (portonly)); 6531 6532 if (sel->ips_local_port == 0) 6533 return; 6534 6535 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(sel->ips_local_port, 6536 ipst)]; 6537 mutex_enter(&connfp->connf_lock); 6538 6539 if (sel->ips_isv4) { 6540 connp = connfp->connf_head; 6541 while (connp != NULL) { 6542 if (IPCL_UDP_MATCH(connp, sel->ips_local_port, 6543 sel->ips_local_addr_v4, sel->ips_remote_port, 6544 sel->ips_remote_addr_v4)) 6545 break; 6546 connp = connp->conn_next; 6547 } 6548 6549 if (connp == NULL) { 6550 /* Try port-only match in IPv6. */ 6551 portonly.ips_local_port = sel->ips_local_port; 6552 sel = &portonly; 6553 } 6554 } 6555 6556 if (connp == NULL) { 6557 connp = connfp->connf_head; 6558 while (connp != NULL) { 6559 if (IPCL_UDP_MATCH_V6(connp, sel->ips_local_port, 6560 sel->ips_local_addr_v6, sel->ips_remote_port, 6561 sel->ips_remote_addr_v6)) 6562 break; 6563 connp = connp->conn_next; 6564 } 6565 6566 if (connp == NULL) { 6567 mutex_exit(&connfp->connf_lock); 6568 return; 6569 } 6570 } 6571 6572 CONN_INC_REF(connp); 6573 mutex_exit(&connfp->connf_lock); 6574 6575 ipsec_conn_pol(sel, connp, ppp); 6576 CONN_DEC_REF(connp); 6577 } 6578 6579 static conn_t * 6580 ipsec_find_listen_conn(uint16_t *pptr, ipsec_selector_t *sel, ip_stack_t *ipst) 6581 { 6582 connf_t *connfp; 6583 conn_t *connp = NULL; 6584 const in6_addr_t *v6addrmatch = &sel->ips_local_addr_v6; 6585 6586 if (sel->ips_local_port == 0) 6587 return (NULL); 6588 6589 connfp = &ipst->ips_ipcl_bind_fanout[ 6590 IPCL_BIND_HASH(sel->ips_local_port, ipst)]; 6591 mutex_enter(&connfp->connf_lock); 6592 6593 if (sel->ips_isv4) { 6594 connp = connfp->connf_head; 6595 while (connp != NULL) { 6596 if (IPCL_BIND_MATCH(connp, IPPROTO_TCP, 6597 sel->ips_local_addr_v4, pptr[1])) 6598 break; 6599 connp = connp->conn_next; 6600 } 6601 6602 if (connp == NULL) { 6603 /* Match to all-zeroes. */ 6604 v6addrmatch = &ipv6_all_zeros; 6605 } 6606 } 6607 6608 if (connp == NULL) { 6609 connp = connfp->connf_head; 6610 while (connp != NULL) { 6611 if (IPCL_BIND_MATCH_V6(connp, IPPROTO_TCP, 6612 *v6addrmatch, pptr[1])) 6613 break; 6614 connp = connp->conn_next; 6615 } 6616 6617 if (connp == NULL) { 6618 mutex_exit(&connfp->connf_lock); 6619 return (NULL); 6620 } 6621 } 6622 6623 CONN_INC_REF(connp); 6624 mutex_exit(&connfp->connf_lock); 6625 return (connp); 6626 } 6627 6628 static void 6629 ipsec_tcp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, ip_stack_t *ipst) 6630 { 6631 connf_t *connfp; 6632 conn_t *connp; 6633 uint32_t ports; 6634 uint16_t *pptr = (uint16_t *)&ports; 6635 6636 /* 6637 * Find TCP state in the following order: 6638 * 1.) Connected conns. 6639 * 2.) Listeners. 6640 * 6641 * Even though #2 will be the common case for inbound traffic, only 6642 * following this order insures correctness. 6643 */ 6644 6645 if (sel->ips_local_port == 0) 6646 return; 6647 6648 /* 6649 * 0 should be fport, 1 should be lport. SRC is the local one here. 6650 * See ipsec_construct_inverse_acquire() for details. 6651 */ 6652 pptr[0] = sel->ips_remote_port; 6653 pptr[1] = sel->ips_local_port; 6654 6655 connfp = &ipst->ips_ipcl_conn_fanout[ 6656 IPCL_CONN_HASH(sel->ips_remote_addr_v4, ports, ipst)]; 6657 mutex_enter(&connfp->connf_lock); 6658 connp = connfp->connf_head; 6659 6660 if (sel->ips_isv4) { 6661 while (connp != NULL) { 6662 if (IPCL_CONN_MATCH(connp, IPPROTO_TCP, 6663 sel->ips_remote_addr_v4, sel->ips_local_addr_v4, 6664 ports)) 6665 break; 6666 connp = connp->conn_next; 6667 } 6668 } else { 6669 while (connp != NULL) { 6670 if (IPCL_CONN_MATCH_V6(connp, IPPROTO_TCP, 6671 sel->ips_remote_addr_v6, sel->ips_local_addr_v6, 6672 ports)) 6673 break; 6674 connp = connp->conn_next; 6675 } 6676 } 6677 6678 if (connp != NULL) { 6679 CONN_INC_REF(connp); 6680 mutex_exit(&connfp->connf_lock); 6681 } else { 6682 mutex_exit(&connfp->connf_lock); 6683 6684 /* Try the listen hash. */ 6685 if ((connp = ipsec_find_listen_conn(pptr, sel, ipst)) == NULL) 6686 return; 6687 } 6688 6689 ipsec_conn_pol(sel, connp, ppp); 6690 CONN_DEC_REF(connp); 6691 } 6692 6693 static void 6694 ipsec_sctp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, 6695 ip_stack_t *ipst) 6696 { 6697 conn_t *connp; 6698 uint32_t ports; 6699 uint16_t *pptr = (uint16_t *)&ports; 6700 6701 /* 6702 * Find SCP state in the following order: 6703 * 1.) Connected conns. 6704 * 2.) Listeners. 6705 * 6706 * Even though #2 will be the common case for inbound traffic, only 6707 * following this order insures correctness. 6708 */ 6709 6710 if (sel->ips_local_port == 0) 6711 return; 6712 6713 /* 6714 * 0 should be fport, 1 should be lport. SRC is the local one here. 6715 * See ipsec_construct_inverse_acquire() for details. 6716 */ 6717 pptr[0] = sel->ips_remote_port; 6718 pptr[1] = sel->ips_local_port; 6719 6720 /* 6721 * For labeled systems, there's no need to check the 6722 * label here. It's known to be good as we checked 6723 * before allowing the connection to become bound. 6724 */ 6725 if (sel->ips_isv4) { 6726 in6_addr_t src, dst; 6727 6728 IN6_IPADDR_TO_V4MAPPED(sel->ips_remote_addr_v4, &dst); 6729 IN6_IPADDR_TO_V4MAPPED(sel->ips_local_addr_v4, &src); 6730 connp = sctp_find_conn(&dst, &src, ports, ALL_ZONES, 6731 0, ipst->ips_netstack->netstack_sctp); 6732 } else { 6733 connp = sctp_find_conn(&sel->ips_remote_addr_v6, 6734 &sel->ips_local_addr_v6, ports, ALL_ZONES, 6735 0, ipst->ips_netstack->netstack_sctp); 6736 } 6737 if (connp == NULL) 6738 return; 6739 ipsec_conn_pol(sel, connp, ppp); 6740 CONN_DEC_REF(connp); 6741 } 6742 6743 /* 6744 * Fill in a query for the SPD (in "sel") using two PF_KEY address extensions. 6745 * Returns 0 or errno, and always sets *diagnostic to something appropriate 6746 * to PF_KEY. 6747 * 6748 * NOTE: For right now, this function (and ipsec_selector_t for that matter), 6749 * ignore prefix lengths in the address extension. Since we match on first- 6750 * entered policies, this shouldn't matter. Also, since we normalize prefix- 6751 * set addresses to mask out the lower bits, we should get a suitable search 6752 * key for the SPD anyway. This is the function to change if the assumption 6753 * about suitable search keys is wrong. 6754 */ 6755 static int 6756 ipsec_get_inverse_acquire_sel(ipsec_selector_t *sel, sadb_address_t *srcext, 6757 sadb_address_t *dstext, int *diagnostic) 6758 { 6759 struct sockaddr_in *src, *dst; 6760 struct sockaddr_in6 *src6, *dst6; 6761 6762 *diagnostic = 0; 6763 6764 bzero(sel, sizeof (*sel)); 6765 sel->ips_protocol = srcext->sadb_address_proto; 6766 dst = (struct sockaddr_in *)(dstext + 1); 6767 if (dst->sin_family == AF_INET6) { 6768 dst6 = (struct sockaddr_in6 *)dst; 6769 src6 = (struct sockaddr_in6 *)(srcext + 1); 6770 if (src6->sin6_family != AF_INET6) { 6771 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 6772 return (EINVAL); 6773 } 6774 sel->ips_remote_addr_v6 = dst6->sin6_addr; 6775 sel->ips_local_addr_v6 = src6->sin6_addr; 6776 if (sel->ips_protocol == IPPROTO_ICMPV6) { 6777 sel->ips_is_icmp_inv_acq = 1; 6778 } else { 6779 sel->ips_remote_port = dst6->sin6_port; 6780 sel->ips_local_port = src6->sin6_port; 6781 } 6782 sel->ips_isv4 = B_FALSE; 6783 } else { 6784 src = (struct sockaddr_in *)(srcext + 1); 6785 if (src->sin_family != AF_INET) { 6786 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 6787 return (EINVAL); 6788 } 6789 sel->ips_remote_addr_v4 = dst->sin_addr.s_addr; 6790 sel->ips_local_addr_v4 = src->sin_addr.s_addr; 6791 if (sel->ips_protocol == IPPROTO_ICMP) { 6792 sel->ips_is_icmp_inv_acq = 1; 6793 } else { 6794 sel->ips_remote_port = dst->sin_port; 6795 sel->ips_local_port = src->sin_port; 6796 } 6797 sel->ips_isv4 = B_TRUE; 6798 } 6799 return (0); 6800 } 6801 6802 /* 6803 * We have encapsulation. 6804 * - Lookup tun_t by address and look for an associated 6805 * tunnel policy 6806 * - If there are inner selectors 6807 * - check ITPF_P_TUNNEL and ITPF_P_ACTIVE 6808 * - Look up tunnel policy based on selectors 6809 * - Else 6810 * - Sanity check the negotation 6811 * - If appropriate, fall through to global policy 6812 */ 6813 static int 6814 ipsec_tun_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, 6815 sadb_address_t *innsrcext, sadb_address_t *inndstext, ipsec_tun_pol_t *itp, 6816 int *diagnostic) 6817 { 6818 int err; 6819 ipsec_policy_head_t *polhead; 6820 6821 *diagnostic = 0; 6822 6823 /* Check for inner selectors and act appropriately */ 6824 6825 if (innsrcext != NULL) { 6826 /* Inner selectors present */ 6827 ASSERT(inndstext != NULL); 6828 if ((itp == NULL) || 6829 (itp->itp_flags & (ITPF_P_ACTIVE | ITPF_P_TUNNEL)) != 6830 (ITPF_P_ACTIVE | ITPF_P_TUNNEL)) { 6831 /* 6832 * If inner packet selectors, we must have negotiate 6833 * tunnel and active policy. If the tunnel has 6834 * transport-mode policy set on it, or has no policy, 6835 * fail. 6836 */ 6837 return (ENOENT); 6838 } else { 6839 /* 6840 * Reset "sel" to indicate inner selectors. Pass 6841 * inner PF_KEY address extensions for this to happen. 6842 */ 6843 if ((err = ipsec_get_inverse_acquire_sel(sel, 6844 innsrcext, inndstext, diagnostic)) != 0) 6845 return (err); 6846 /* 6847 * Now look for a tunnel policy based on those inner 6848 * selectors. (Common code is below.) 6849 */ 6850 } 6851 } else { 6852 /* No inner selectors present */ 6853 if ((itp == NULL) || !(itp->itp_flags & ITPF_P_ACTIVE)) { 6854 /* 6855 * Transport mode negotiation with no tunnel policy 6856 * configured - return to indicate a global policy 6857 * check is needed. 6858 */ 6859 return (0); 6860 } else if (itp->itp_flags & ITPF_P_TUNNEL) { 6861 /* Tunnel mode set with no inner selectors. */ 6862 return (ENOENT); 6863 } 6864 /* 6865 * Else, this is a tunnel policy configured with ifconfig(8) 6866 * or "negotiate transport" with ipsecconf(8). We have an 6867 * itp with policy set based on any match, so don't bother 6868 * changing fields in "sel". 6869 */ 6870 } 6871 6872 ASSERT(itp != NULL); 6873 polhead = itp->itp_policy; 6874 ASSERT(polhead != NULL); 6875 rw_enter(&polhead->iph_lock, RW_READER); 6876 *ppp = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND, sel); 6877 rw_exit(&polhead->iph_lock); 6878 6879 /* 6880 * Don't default to global if we didn't find a matching policy entry. 6881 * Instead, send ENOENT, just like if we hit a transport-mode tunnel. 6882 */ 6883 if (*ppp == NULL) 6884 return (ENOENT); 6885 6886 return (0); 6887 } 6888 6889 /* 6890 * For sctp conn_faddr is the primary address, hence this is of limited 6891 * use for sctp. 6892 */ 6893 static void 6894 ipsec_oth_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, 6895 ip_stack_t *ipst) 6896 { 6897 boolean_t isv4 = sel->ips_isv4; 6898 connf_t *connfp; 6899 conn_t *connp; 6900 6901 if (isv4) { 6902 connfp = &ipst->ips_ipcl_proto_fanout_v4[sel->ips_protocol]; 6903 } else { 6904 connfp = &ipst->ips_ipcl_proto_fanout_v6[sel->ips_protocol]; 6905 } 6906 6907 mutex_enter(&connfp->connf_lock); 6908 for (connp = connfp->connf_head; connp != NULL; 6909 connp = connp->conn_next) { 6910 if (isv4) { 6911 if ((connp->conn_laddr_v4 == INADDR_ANY || 6912 connp->conn_laddr_v4 == sel->ips_local_addr_v4) && 6913 (connp->conn_faddr_v4 == INADDR_ANY || 6914 connp->conn_faddr_v4 == sel->ips_remote_addr_v4)) 6915 break; 6916 } else { 6917 if ((IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6) || 6918 IN6_ARE_ADDR_EQUAL(&connp->conn_laddr_v6, 6919 &sel->ips_local_addr_v6)) && 6920 (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) || 6921 IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 6922 &sel->ips_remote_addr_v6))) 6923 break; 6924 } 6925 } 6926 if (connp == NULL) { 6927 mutex_exit(&connfp->connf_lock); 6928 return; 6929 } 6930 6931 CONN_INC_REF(connp); 6932 mutex_exit(&connfp->connf_lock); 6933 6934 ipsec_conn_pol(sel, connp, ppp); 6935 CONN_DEC_REF(connp); 6936 } 6937 6938 /* 6939 * Construct an inverse ACQUIRE reply based on: 6940 * 6941 * 1.) Current global policy. 6942 * 2.) An conn_t match depending on what all was passed in the extv[]. 6943 * 3.) A tunnel's policy head. 6944 * ... 6945 * N.) Other stuff TBD (e.g. identities) 6946 * 6947 * If there is an error, set sadb_msg_errno and sadb_x_msg_diagnostic 6948 * in this function so the caller can extract them where appropriately. 6949 * 6950 * The SRC address is the local one - just like an outbound ACQUIRE message. 6951 * 6952 * XXX MLS: key management supplies a label which we just reflect back up 6953 * again. clearly we need to involve the label in the rest of the checks. 6954 */ 6955 mblk_t * 6956 ipsec_construct_inverse_acquire(sadb_msg_t *samsg, sadb_ext_t *extv[], 6957 netstack_t *ns) 6958 { 6959 int err; 6960 int diagnostic; 6961 sadb_address_t *srcext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_SRC], 6962 *dstext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_DST], 6963 *innsrcext = (sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_SRC], 6964 *inndstext = (sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_DST]; 6965 sadb_sens_t *sens = (sadb_sens_t *)extv[SADB_EXT_SENSITIVITY]; 6966 struct sockaddr_in6 *src, *dst; 6967 struct sockaddr_in6 *isrc, *idst; 6968 ipsec_tun_pol_t *itp = NULL; 6969 ipsec_policy_t *pp = NULL; 6970 ipsec_selector_t sel, isel; 6971 mblk_t *retmp = NULL; 6972 ip_stack_t *ipst = ns->netstack_ip; 6973 6974 6975 /* Normalize addresses */ 6976 if (sadb_addrcheck(NULL, (mblk_t *)samsg, (sadb_ext_t *)srcext, 0, ns) 6977 == KS_IN_ADDR_UNKNOWN) { 6978 err = EINVAL; 6979 diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC; 6980 goto bail; 6981 } 6982 src = (struct sockaddr_in6 *)(srcext + 1); 6983 if (sadb_addrcheck(NULL, (mblk_t *)samsg, (sadb_ext_t *)dstext, 0, ns) 6984 == KS_IN_ADDR_UNKNOWN) { 6985 err = EINVAL; 6986 diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; 6987 goto bail; 6988 } 6989 dst = (struct sockaddr_in6 *)(dstext + 1); 6990 if (src->sin6_family != dst->sin6_family) { 6991 err = EINVAL; 6992 diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 6993 goto bail; 6994 } 6995 6996 /* Check for tunnel mode and act appropriately */ 6997 if (innsrcext != NULL) { 6998 if (inndstext == NULL) { 6999 err = EINVAL; 7000 diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_DST; 7001 goto bail; 7002 } 7003 if (sadb_addrcheck(NULL, (mblk_t *)samsg, 7004 (sadb_ext_t *)innsrcext, 0, ns) == KS_IN_ADDR_UNKNOWN) { 7005 err = EINVAL; 7006 diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_INNER_SRC; 7007 goto bail; 7008 } 7009 isrc = (struct sockaddr_in6 *)(innsrcext + 1); 7010 if (sadb_addrcheck(NULL, (mblk_t *)samsg, 7011 (sadb_ext_t *)inndstext, 0, ns) == KS_IN_ADDR_UNKNOWN) { 7012 err = EINVAL; 7013 diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_INNER_DST; 7014 goto bail; 7015 } 7016 idst = (struct sockaddr_in6 *)(inndstext + 1); 7017 if (isrc->sin6_family != idst->sin6_family) { 7018 err = EINVAL; 7019 diagnostic = SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH; 7020 goto bail; 7021 } 7022 if (isrc->sin6_family != AF_INET && 7023 isrc->sin6_family != AF_INET6) { 7024 err = EINVAL; 7025 diagnostic = SADB_X_DIAGNOSTIC_BAD_INNER_SRC_AF; 7026 goto bail; 7027 } 7028 } else if (inndstext != NULL) { 7029 err = EINVAL; 7030 diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC; 7031 goto bail; 7032 } 7033 7034 /* Get selectors first, based on outer addresses */ 7035 err = ipsec_get_inverse_acquire_sel(&sel, srcext, dstext, &diagnostic); 7036 if (err != 0) 7037 goto bail; 7038 7039 /* Check for tunnel mode mismatches. */ 7040 if (innsrcext != NULL && 7041 ((isrc->sin6_family == AF_INET && 7042 sel.ips_protocol != IPPROTO_ENCAP && sel.ips_protocol != 0) || 7043 (isrc->sin6_family == AF_INET6 && 7044 sel.ips_protocol != IPPROTO_IPV6 && sel.ips_protocol != 0))) { 7045 err = EPROTOTYPE; 7046 goto bail; 7047 } 7048 7049 /* 7050 * Okay, we have the addresses and other selector information. 7051 * Let's first find a conn... 7052 */ 7053 pp = NULL; 7054 switch (sel.ips_protocol) { 7055 case IPPROTO_TCP: 7056 ipsec_tcp_pol(&sel, &pp, ipst); 7057 break; 7058 case IPPROTO_UDP: 7059 ipsec_udp_pol(&sel, &pp, ipst); 7060 break; 7061 case IPPROTO_SCTP: 7062 ipsec_sctp_pol(&sel, &pp, ipst); 7063 break; 7064 case IPPROTO_ENCAP: 7065 case IPPROTO_IPV6: 7066 /* 7067 * Assume sel.ips_remote_addr_* has the right address at 7068 * that exact position. 7069 */ 7070 itp = itp_get_byaddr((uint32_t *)(&sel.ips_local_addr_v6), 7071 (uint32_t *)(&sel.ips_remote_addr_v6), src->sin6_family, 7072 ipst); 7073 7074 if (innsrcext == NULL) { 7075 /* 7076 * Transport-mode tunnel, make sure we fake out isel 7077 * to contain something based on the outer protocol. 7078 */ 7079 bzero(&isel, sizeof (isel)); 7080 isel.ips_isv4 = (sel.ips_protocol == IPPROTO_ENCAP); 7081 } /* Else isel is initialized by ipsec_tun_pol(). */ 7082 err = ipsec_tun_pol(&isel, &pp, innsrcext, inndstext, itp, 7083 &diagnostic); 7084 /* 7085 * NOTE: isel isn't used for now, but in RFC 430x IPsec, it 7086 * may be. 7087 */ 7088 if (err != 0) 7089 goto bail; 7090 break; 7091 default: 7092 ipsec_oth_pol(&sel, &pp, ipst); 7093 break; 7094 } 7095 7096 /* 7097 * If we didn't find a matching conn_t or other policy head, take a 7098 * look in the global policy. 7099 */ 7100 if (pp == NULL) { 7101 pp = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, NULL, &sel, ns); 7102 if (pp == NULL) { 7103 /* There's no global policy. */ 7104 err = ENOENT; 7105 diagnostic = 0; 7106 goto bail; 7107 } 7108 } 7109 7110 ASSERT(pp != NULL); 7111 retmp = sadb_acquire_msg_base(0, 0, samsg->sadb_msg_seq, 7112 samsg->sadb_msg_pid); 7113 if (retmp != NULL) { 7114 /* Remove KEYSOCK_OUT, because caller constructs it instead. */ 7115 mblk_t *kso = retmp; 7116 7117 retmp = retmp->b_cont; 7118 freeb(kso); 7119 /* Append addresses... */ 7120 retmp->b_cont = sadb_acquire_msg_common(&sel, pp, NULL, 7121 (itp != NULL && (itp->itp_flags & ITPF_P_TUNNEL)), NULL, 7122 sens); 7123 if (retmp->b_cont == NULL) { 7124 freemsg(retmp); 7125 retmp = NULL; 7126 } 7127 /* And the policy result. */ 7128 retmp->b_cont->b_cont = 7129 sadb_acquire_extended_prop(pp->ipsp_act, ns); 7130 if (retmp->b_cont->b_cont == NULL) { 7131 freemsg(retmp); 7132 retmp = NULL; 7133 } 7134 ((sadb_msg_t *)retmp->b_rptr)->sadb_msg_len = 7135 SADB_8TO64(msgsize(retmp)); 7136 } 7137 7138 if (pp != NULL) { 7139 IPPOL_REFRELE(pp); 7140 } 7141 ASSERT(err == 0 && diagnostic == 0); 7142 if (retmp == NULL) 7143 err = ENOMEM; 7144 bail: 7145 if (itp != NULL) { 7146 ITP_REFRELE(itp, ns); 7147 } 7148 samsg->sadb_msg_errno = (uint8_t)err; 7149 samsg->sadb_x_msg_diagnostic = (uint16_t)diagnostic; 7150 return (retmp); 7151 } 7152 7153 /* 7154 * ipsa_lpkt is a one-element queue, only manipulated by the next two 7155 * functions. They have to hold the ipsa_lock because of potential races 7156 * between key management using SADB_UPDATE, and inbound packets that may 7157 * queue up on the larval SA (hence the 'l' in "lpkt"). 7158 */ 7159 7160 /* 7161 * sadb_set_lpkt: 7162 * 7163 * Returns the passed-in packet if the SA is no longer larval. 7164 * 7165 * Returns NULL if the SA is larval, and needs to be swapped into the SA for 7166 * processing after an SADB_UPDATE. 7167 */ 7168 mblk_t * 7169 sadb_set_lpkt(ipsa_t *ipsa, mblk_t *npkt, ip_recv_attr_t *ira) 7170 { 7171 mblk_t *opkt; 7172 7173 mutex_enter(&ipsa->ipsa_lock); 7174 opkt = ipsa->ipsa_lpkt; 7175 if (ipsa->ipsa_state == IPSA_STATE_LARVAL) { 7176 /* 7177 * Consume npkt and place it in the LARVAL SA's inbound 7178 * packet slot. 7179 */ 7180 mblk_t *attrmp; 7181 7182 attrmp = ip_recv_attr_to_mblk(ira); 7183 if (attrmp == NULL) { 7184 ill_t *ill = ira->ira_ill; 7185 7186 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7187 ip_drop_input("ipIfStatsInDiscards", npkt, ill); 7188 freemsg(npkt); 7189 opkt = NULL; 7190 } else { 7191 ASSERT(attrmp->b_cont == NULL); 7192 attrmp->b_cont = npkt; 7193 ipsa->ipsa_lpkt = attrmp; 7194 } 7195 npkt = NULL; 7196 } else { 7197 /* 7198 * If not larval, we lost the race. NOTE: ipsa_lpkt may still 7199 * have been non-NULL in the non-larval case, because of 7200 * inbound packets arriving prior to sadb_common_add() 7201 * transferring the SA completely out of larval state, but 7202 * after lpkt was grabbed by the AH/ESP-specific add routines. 7203 * We should clear the old ipsa_lpkt in this case to make sure 7204 * that it doesn't linger on the now-MATURE IPsec SA, or get 7205 * picked up as an out-of-order packet. 7206 */ 7207 ipsa->ipsa_lpkt = NULL; 7208 } 7209 mutex_exit(&ipsa->ipsa_lock); 7210 7211 if (opkt != NULL) { 7212 ipsec_stack_t *ipss; 7213 7214 ipss = ira->ira_ill->ill_ipst->ips_netstack->netstack_ipsec; 7215 opkt = ip_recv_attr_free_mblk(opkt); 7216 ip_drop_packet(opkt, B_TRUE, ira->ira_ill, 7217 DROPPER(ipss, ipds_sadb_inlarval_replace), 7218 &ipss->ipsec_sadb_dropper); 7219 } 7220 return (npkt); 7221 } 7222 7223 /* 7224 * sadb_clear_lpkt: Atomically clear ipsa->ipsa_lpkt and return the 7225 * previous value. 7226 */ 7227 mblk_t * 7228 sadb_clear_lpkt(ipsa_t *ipsa) 7229 { 7230 mblk_t *opkt; 7231 7232 mutex_enter(&ipsa->ipsa_lock); 7233 opkt = ipsa->ipsa_lpkt; 7234 ipsa->ipsa_lpkt = NULL; 7235 mutex_exit(&ipsa->ipsa_lock); 7236 return (opkt); 7237 } 7238 7239 /* 7240 * Buffer a packet that's in IDLE state as set by Solaris Clustering. 7241 */ 7242 void 7243 sadb_buf_pkt(ipsa_t *ipsa, mblk_t *bpkt, ip_recv_attr_t *ira) 7244 { 7245 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack; 7246 ipsec_stack_t *ipss = ns->netstack_ipsec; 7247 in6_addr_t *srcaddr = (in6_addr_t *)(&ipsa->ipsa_srcaddr); 7248 in6_addr_t *dstaddr = (in6_addr_t *)(&ipsa->ipsa_dstaddr); 7249 mblk_t *mp; 7250 7251 ASSERT(ipsa->ipsa_state == IPSA_STATE_IDLE); 7252 7253 if (cl_inet_idlesa == NULL) { 7254 ip_drop_packet(bpkt, B_TRUE, ira->ira_ill, 7255 DROPPER(ipss, ipds_sadb_inidle_overflow), 7256 &ipss->ipsec_sadb_dropper); 7257 return; 7258 } 7259 7260 cl_inet_idlesa(ns->netstack_stackid, 7261 (ipsa->ipsa_type == SADB_SATYPE_AH) ? IPPROTO_AH : IPPROTO_ESP, 7262 ipsa->ipsa_spi, ipsa->ipsa_addrfam, *srcaddr, *dstaddr, NULL); 7263 7264 mp = ip_recv_attr_to_mblk(ira); 7265 if (mp == NULL) { 7266 ip_drop_packet(bpkt, B_TRUE, ira->ira_ill, 7267 DROPPER(ipss, ipds_sadb_inidle_overflow), 7268 &ipss->ipsec_sadb_dropper); 7269 return; 7270 } 7271 linkb(mp, bpkt); 7272 7273 mutex_enter(&ipsa->ipsa_lock); 7274 ipsa->ipsa_mblkcnt++; 7275 if (ipsa->ipsa_bpkt_head == NULL) { 7276 ipsa->ipsa_bpkt_head = ipsa->ipsa_bpkt_tail = bpkt; 7277 } else { 7278 ipsa->ipsa_bpkt_tail->b_next = bpkt; 7279 ipsa->ipsa_bpkt_tail = bpkt; 7280 if (ipsa->ipsa_mblkcnt > SADB_MAX_IDLEPKTS) { 7281 mblk_t *tmp; 7282 7283 tmp = ipsa->ipsa_bpkt_head; 7284 ipsa->ipsa_bpkt_head = ipsa->ipsa_bpkt_head->b_next; 7285 tmp = ip_recv_attr_free_mblk(tmp); 7286 ip_drop_packet(tmp, B_TRUE, NULL, 7287 DROPPER(ipss, ipds_sadb_inidle_overflow), 7288 &ipss->ipsec_sadb_dropper); 7289 ipsa->ipsa_mblkcnt --; 7290 } 7291 } 7292 mutex_exit(&ipsa->ipsa_lock); 7293 } 7294 7295 /* 7296 * Stub function that taskq_dispatch() invokes to take the mblk (in arg) 7297 * and put into STREAMS again. 7298 */ 7299 void 7300 sadb_clear_buf_pkt(void *ipkt) 7301 { 7302 mblk_t *tmp, *buf_pkt; 7303 ip_recv_attr_t iras; 7304 7305 buf_pkt = (mblk_t *)ipkt; 7306 7307 while (buf_pkt != NULL) { 7308 mblk_t *data_mp; 7309 7310 tmp = buf_pkt->b_next; 7311 buf_pkt->b_next = NULL; 7312 7313 data_mp = buf_pkt->b_cont; 7314 buf_pkt->b_cont = NULL; 7315 if (!ip_recv_attr_from_mblk(buf_pkt, &iras)) { 7316 /* The ill or ip_stack_t disappeared on us. */ 7317 ip_drop_input("ip_recv_attr_from_mblk", data_mp, NULL); 7318 freemsg(data_mp); 7319 } else { 7320 ip_input_post_ipsec(data_mp, &iras); 7321 } 7322 ira_cleanup(&iras, B_TRUE); 7323 buf_pkt = tmp; 7324 } 7325 } 7326 /* 7327 * Walker callback used by sadb_alg_update() to free/create crypto 7328 * context template when a crypto software provider is removed or 7329 * added. 7330 */ 7331 7332 struct sadb_update_alg_state { 7333 ipsec_algtype_t alg_type; 7334 uint8_t alg_id; 7335 boolean_t is_added; 7336 boolean_t async_auth; 7337 boolean_t async_encr; 7338 }; 7339 7340 static void 7341 sadb_alg_update_cb(isaf_t *head, ipsa_t *entry, void *cookie) 7342 { 7343 struct sadb_update_alg_state *update_state = 7344 (struct sadb_update_alg_state *)cookie; 7345 crypto_ctx_template_t *ctx_tmpl = NULL; 7346 7347 ASSERT(MUTEX_HELD(&head->isaf_lock)); 7348 7349 if (entry->ipsa_state == IPSA_STATE_LARVAL) 7350 return; 7351 7352 mutex_enter(&entry->ipsa_lock); 7353 7354 if ((entry->ipsa_encr_alg != SADB_EALG_NONE && entry->ipsa_encr_alg != 7355 SADB_EALG_NULL && update_state->async_encr) || 7356 (entry->ipsa_auth_alg != SADB_AALG_NONE && 7357 update_state->async_auth)) { 7358 entry->ipsa_flags |= IPSA_F_ASYNC; 7359 } else { 7360 entry->ipsa_flags &= ~IPSA_F_ASYNC; 7361 } 7362 7363 switch (update_state->alg_type) { 7364 case IPSEC_ALG_AUTH: 7365 if (entry->ipsa_auth_alg == update_state->alg_id) 7366 ctx_tmpl = &entry->ipsa_authtmpl; 7367 break; 7368 case IPSEC_ALG_ENCR: 7369 if (entry->ipsa_encr_alg == update_state->alg_id) 7370 ctx_tmpl = &entry->ipsa_encrtmpl; 7371 break; 7372 default: 7373 ctx_tmpl = NULL; 7374 } 7375 7376 if (ctx_tmpl == NULL) { 7377 mutex_exit(&entry->ipsa_lock); 7378 return; 7379 } 7380 7381 /* 7382 * The context template of the SA may be affected by the change 7383 * of crypto provider. 7384 */ 7385 if (update_state->is_added) { 7386 /* create the context template if not already done */ 7387 if (*ctx_tmpl == NULL) { 7388 (void) ipsec_create_ctx_tmpl(entry, 7389 update_state->alg_type); 7390 } 7391 } else { 7392 /* 7393 * The crypto provider was removed. If the context template 7394 * exists but it is no longer valid, free it. 7395 */ 7396 if (*ctx_tmpl != NULL) 7397 ipsec_destroy_ctx_tmpl(entry, update_state->alg_type); 7398 } 7399 7400 mutex_exit(&entry->ipsa_lock); 7401 } 7402 7403 /* 7404 * Invoked by IP when an software crypto provider has been updated, or if 7405 * the crypto synchrony changes. The type and id of the corresponding 7406 * algorithm is passed as argument. The type is set to ALL in the case of 7407 * a synchrony change. 7408 * 7409 * is_added is B_TRUE if the provider was added, B_FALSE if it was 7410 * removed. The function updates the SADB and free/creates the 7411 * context templates associated with SAs if needed. 7412 */ 7413 7414 #define SADB_ALG_UPDATE_WALK(sadb, table) \ 7415 sadb_walker((sadb).table, (sadb).sdb_hashsize, sadb_alg_update_cb, \ 7416 &update_state) 7417 7418 void 7419 sadb_alg_update(ipsec_algtype_t alg_type, uint8_t alg_id, boolean_t is_added, 7420 netstack_t *ns) 7421 { 7422 struct sadb_update_alg_state update_state; 7423 ipsecah_stack_t *ahstack = ns->netstack_ipsecah; 7424 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp; 7425 ipsec_stack_t *ipss = ns->netstack_ipsec; 7426 7427 update_state.alg_type = alg_type; 7428 update_state.alg_id = alg_id; 7429 update_state.is_added = is_added; 7430 update_state.async_auth = ipss->ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == 7431 IPSEC_ALGS_EXEC_ASYNC; 7432 update_state.async_encr = ipss->ipsec_algs_exec_mode[IPSEC_ALG_ENCR] == 7433 IPSEC_ALGS_EXEC_ASYNC; 7434 7435 if (alg_type == IPSEC_ALG_AUTH || alg_type == IPSEC_ALG_ALL) { 7436 /* walk the AH tables only for auth. algorithm changes */ 7437 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v4, sdb_of); 7438 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v4, sdb_if); 7439 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v6, sdb_of); 7440 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v6, sdb_if); 7441 } 7442 7443 /* walk the ESP tables */ 7444 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v4, sdb_of); 7445 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v4, sdb_if); 7446 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v6, sdb_of); 7447 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v6, sdb_if); 7448 } 7449 7450 /* 7451 * Creates a context template for the specified SA. This function 7452 * is called when an SA is created and when a context template needs 7453 * to be created due to a change of software provider. 7454 */ 7455 int 7456 ipsec_create_ctx_tmpl(ipsa_t *sa, ipsec_algtype_t alg_type) 7457 { 7458 ipsec_alginfo_t *alg; 7459 crypto_mechanism_t mech; 7460 crypto_key_t *key; 7461 crypto_ctx_template_t *sa_tmpl; 7462 int rv; 7463 ipsec_stack_t *ipss = sa->ipsa_netstack->netstack_ipsec; 7464 7465 ASSERT(RW_READ_HELD(&ipss->ipsec_alg_lock)); 7466 ASSERT(MUTEX_HELD(&sa->ipsa_lock)); 7467 7468 /* get pointers to the algorithm info, context template, and key */ 7469 switch (alg_type) { 7470 case IPSEC_ALG_AUTH: 7471 key = &sa->ipsa_kcfauthkey; 7472 sa_tmpl = &sa->ipsa_authtmpl; 7473 alg = ipss->ipsec_alglists[alg_type][sa->ipsa_auth_alg]; 7474 break; 7475 case IPSEC_ALG_ENCR: 7476 key = &sa->ipsa_kcfencrkey; 7477 sa_tmpl = &sa->ipsa_encrtmpl; 7478 alg = ipss->ipsec_alglists[alg_type][sa->ipsa_encr_alg]; 7479 break; 7480 default: 7481 alg = NULL; 7482 } 7483 7484 if (alg == NULL || !ALG_VALID(alg)) 7485 return (EINVAL); 7486 7487 /* initialize the mech info structure for the framework */ 7488 ASSERT(alg->alg_mech_type != CRYPTO_MECHANISM_INVALID); 7489 mech.cm_type = alg->alg_mech_type; 7490 mech.cm_param = NULL; 7491 mech.cm_param_len = 0; 7492 7493 /* create a new context template */ 7494 rv = crypto_create_ctx_template(&mech, key, sa_tmpl, KM_NOSLEEP); 7495 7496 /* 7497 * CRYPTO_MECH_NOT_SUPPORTED can be returned if only hardware 7498 * providers are available for that mechanism. In that case 7499 * we don't fail, and will generate the context template from 7500 * the framework callback when a software provider for that 7501 * mechanism registers. 7502 * 7503 * The context template is assigned the special value 7504 * IPSEC_CTX_TMPL_ALLOC if the allocation failed due to a 7505 * lack of memory. No attempt will be made to use 7506 * the context template if it is set to this value. 7507 */ 7508 if (rv == CRYPTO_HOST_MEMORY) { 7509 *sa_tmpl = IPSEC_CTX_TMPL_ALLOC; 7510 } else if (rv != CRYPTO_SUCCESS) { 7511 *sa_tmpl = NULL; 7512 if (rv != CRYPTO_MECH_NOT_SUPPORTED) 7513 return (EINVAL); 7514 } 7515 7516 return (0); 7517 } 7518 7519 /* 7520 * Destroy the context template of the specified algorithm type 7521 * of the specified SA. Must be called while holding the SA lock. 7522 */ 7523 void 7524 ipsec_destroy_ctx_tmpl(ipsa_t *sa, ipsec_algtype_t alg_type) 7525 { 7526 ASSERT(MUTEX_HELD(&sa->ipsa_lock)); 7527 7528 if (alg_type == IPSEC_ALG_AUTH) { 7529 if (sa->ipsa_authtmpl == IPSEC_CTX_TMPL_ALLOC) 7530 sa->ipsa_authtmpl = NULL; 7531 else if (sa->ipsa_authtmpl != NULL) { 7532 crypto_destroy_ctx_template(sa->ipsa_authtmpl); 7533 sa->ipsa_authtmpl = NULL; 7534 } 7535 } else { 7536 ASSERT(alg_type == IPSEC_ALG_ENCR); 7537 if (sa->ipsa_encrtmpl == IPSEC_CTX_TMPL_ALLOC) 7538 sa->ipsa_encrtmpl = NULL; 7539 else if (sa->ipsa_encrtmpl != NULL) { 7540 crypto_destroy_ctx_template(sa->ipsa_encrtmpl); 7541 sa->ipsa_encrtmpl = NULL; 7542 } 7543 } 7544 } 7545 7546 /* 7547 * Use the kernel crypto framework to check the validity of a key received 7548 * via keysock. Returns 0 if the key is OK, -1 otherwise. 7549 */ 7550 int 7551 ipsec_check_key(crypto_mech_type_t mech_type, sadb_key_t *sadb_key, 7552 boolean_t is_auth, int *diag) 7553 { 7554 crypto_mechanism_t mech; 7555 crypto_key_t crypto_key; 7556 int crypto_rc; 7557 7558 mech.cm_type = mech_type; 7559 mech.cm_param = NULL; 7560 mech.cm_param_len = 0; 7561 7562 crypto_key.ck_format = CRYPTO_KEY_RAW; 7563 crypto_key.ck_data = sadb_key + 1; 7564 crypto_key.ck_length = sadb_key->sadb_key_bits; 7565 7566 crypto_rc = crypto_key_check(&mech, &crypto_key); 7567 7568 switch (crypto_rc) { 7569 case CRYPTO_SUCCESS: 7570 return (0); 7571 case CRYPTO_MECHANISM_INVALID: 7572 case CRYPTO_MECH_NOT_SUPPORTED: 7573 *diag = is_auth ? SADB_X_DIAGNOSTIC_BAD_AALG : 7574 SADB_X_DIAGNOSTIC_BAD_EALG; 7575 break; 7576 case CRYPTO_KEY_SIZE_RANGE: 7577 *diag = is_auth ? SADB_X_DIAGNOSTIC_BAD_AKEYBITS : 7578 SADB_X_DIAGNOSTIC_BAD_EKEYBITS; 7579 break; 7580 case CRYPTO_WEAK_KEY: 7581 *diag = is_auth ? SADB_X_DIAGNOSTIC_WEAK_AKEY : 7582 SADB_X_DIAGNOSTIC_WEAK_EKEY; 7583 break; 7584 } 7585 7586 return (-1); 7587 } 7588 7589 /* 7590 * Whack options in the outer IP header when ipsec changes the outer label 7591 * 7592 * This is inelegant and really could use refactoring. 7593 */ 7594 mblk_t * 7595 sadb_whack_label_v4(mblk_t *mp, ipsa_t *assoc, kstat_named_t *counter, 7596 ipdropper_t *dropper) 7597 { 7598 int delta; 7599 int plen; 7600 dblk_t *db; 7601 int hlen; 7602 uint8_t *opt_storage = assoc->ipsa_opt_storage; 7603 ipha_t *ipha = (ipha_t *)mp->b_rptr; 7604 7605 plen = ntohs(ipha->ipha_length); 7606 7607 delta = tsol_remove_secopt(ipha, MBLKL(mp)); 7608 mp->b_wptr += delta; 7609 plen += delta; 7610 7611 /* XXX XXX code copied from tsol_check_label */ 7612 7613 /* Make sure we have room for the worst-case addition */ 7614 hlen = IPH_HDR_LENGTH(ipha) + opt_storage[IPOPT_OLEN]; 7615 hlen = (hlen + 3) & ~3; 7616 if (hlen > IP_MAX_HDR_LENGTH) 7617 hlen = IP_MAX_HDR_LENGTH; 7618 hlen -= IPH_HDR_LENGTH(ipha); 7619 7620 db = mp->b_datap; 7621 if ((db->db_ref != 1) || (mp->b_wptr + hlen > db->db_lim)) { 7622 int copylen; 7623 mblk_t *new_mp; 7624 7625 /* allocate enough to be meaningful, but not *too* much */ 7626 copylen = MBLKL(mp); 7627 if (copylen > 256) 7628 copylen = 256; 7629 new_mp = allocb_tmpl(hlen + copylen + 7630 (mp->b_rptr - mp->b_datap->db_base), mp); 7631 7632 if (new_mp == NULL) { 7633 ip_drop_packet(mp, B_FALSE, NULL, counter, dropper); 7634 return (NULL); 7635 } 7636 7637 /* keep the bias */ 7638 new_mp->b_rptr += mp->b_rptr - mp->b_datap->db_base; 7639 new_mp->b_wptr = new_mp->b_rptr + copylen; 7640 bcopy(mp->b_rptr, new_mp->b_rptr, copylen); 7641 new_mp->b_cont = mp; 7642 if ((mp->b_rptr += copylen) >= mp->b_wptr) { 7643 new_mp->b_cont = mp->b_cont; 7644 freeb(mp); 7645 } 7646 mp = new_mp; 7647 ipha = (ipha_t *)mp->b_rptr; 7648 } 7649 7650 delta = tsol_prepend_option(assoc->ipsa_opt_storage, ipha, MBLKL(mp)); 7651 7652 ASSERT(delta != -1); 7653 7654 plen += delta; 7655 mp->b_wptr += delta; 7656 7657 /* 7658 * Paranoia 7659 */ 7660 db = mp->b_datap; 7661 7662 ASSERT3P(mp->b_wptr, <=, db->db_lim); 7663 ASSERT3P(mp->b_rptr, <=, db->db_lim); 7664 7665 ASSERT3P(mp->b_wptr, >=, db->db_base); 7666 ASSERT3P(mp->b_rptr, >=, db->db_base); 7667 /* End paranoia */ 7668 7669 ipha->ipha_length = htons(plen); 7670 7671 return (mp); 7672 } 7673 7674 mblk_t * 7675 sadb_whack_label_v6(mblk_t *mp, ipsa_t *assoc, kstat_named_t *counter, 7676 ipdropper_t *dropper) 7677 { 7678 int delta; 7679 int plen; 7680 dblk_t *db; 7681 int hlen; 7682 uint8_t *opt_storage = assoc->ipsa_opt_storage; 7683 uint_t sec_opt_len; /* label option length not including type, len */ 7684 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 7685 7686 plen = ntohs(ip6h->ip6_plen); 7687 7688 delta = tsol_remove_secopt_v6(ip6h, MBLKL(mp)); 7689 mp->b_wptr += delta; 7690 plen += delta; 7691 7692 /* XXX XXX code copied from tsol_check_label_v6 */ 7693 /* 7694 * Make sure we have room for the worst-case addition. Add 2 bytes for 7695 * the hop-by-hop ext header's next header and length fields. Add 7696 * another 2 bytes for the label option type, len and then round 7697 * up to the next 8-byte multiple. 7698 */ 7699 sec_opt_len = opt_storage[1]; 7700 7701 db = mp->b_datap; 7702 hlen = (4 + sec_opt_len + 7) & ~7; 7703 7704 if ((db->db_ref != 1) || (mp->b_wptr + hlen > db->db_lim)) { 7705 int copylen; 7706 mblk_t *new_mp; 7707 uint16_t hdr_len; 7708 7709 hdr_len = ip_hdr_length_v6(mp, ip6h); 7710 /* 7711 * Allocate enough to be meaningful, but not *too* much. 7712 * Also all the IPv6 extension headers must be in the same mblk 7713 */ 7714 copylen = MBLKL(mp); 7715 if (copylen > 256) 7716 copylen = 256; 7717 if (copylen < hdr_len) 7718 copylen = hdr_len; 7719 new_mp = allocb_tmpl(hlen + copylen + 7720 (mp->b_rptr - mp->b_datap->db_base), mp); 7721 if (new_mp == NULL) { 7722 ip_drop_packet(mp, B_FALSE, NULL, counter, dropper); 7723 return (NULL); 7724 } 7725 7726 /* keep the bias */ 7727 new_mp->b_rptr += mp->b_rptr - mp->b_datap->db_base; 7728 new_mp->b_wptr = new_mp->b_rptr + copylen; 7729 bcopy(mp->b_rptr, new_mp->b_rptr, copylen); 7730 new_mp->b_cont = mp; 7731 if ((mp->b_rptr += copylen) >= mp->b_wptr) { 7732 new_mp->b_cont = mp->b_cont; 7733 freeb(mp); 7734 } 7735 mp = new_mp; 7736 ip6h = (ip6_t *)mp->b_rptr; 7737 } 7738 7739 delta = tsol_prepend_option_v6(assoc->ipsa_opt_storage, 7740 ip6h, MBLKL(mp)); 7741 7742 ASSERT(delta != -1); 7743 7744 plen += delta; 7745 mp->b_wptr += delta; 7746 7747 /* 7748 * Paranoia 7749 */ 7750 db = mp->b_datap; 7751 7752 ASSERT3P(mp->b_wptr, <=, db->db_lim); 7753 ASSERT3P(mp->b_rptr, <=, db->db_lim); 7754 7755 ASSERT3P(mp->b_wptr, >=, db->db_base); 7756 ASSERT3P(mp->b_rptr, >=, db->db_base); 7757 /* End paranoia */ 7758 7759 ip6h->ip6_plen = htons(plen); 7760 7761 return (mp); 7762 } 7763 7764 /* Whack the labels and update ip_xmit_attr_t as needed */ 7765 mblk_t * 7766 sadb_whack_label(mblk_t *mp, ipsa_t *assoc, ip_xmit_attr_t *ixa, 7767 kstat_named_t *counter, ipdropper_t *dropper) 7768 { 7769 int adjust; 7770 int iplen; 7771 7772 if (ixa->ixa_flags & IXAF_IS_IPV4) { 7773 ipha_t *ipha = (ipha_t *)mp->b_rptr; 7774 7775 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 7776 iplen = ntohs(ipha->ipha_length); 7777 mp = sadb_whack_label_v4(mp, assoc, counter, dropper); 7778 if (mp == NULL) 7779 return (NULL); 7780 7781 ipha = (ipha_t *)mp->b_rptr; 7782 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 7783 adjust = (int)ntohs(ipha->ipha_length) - iplen; 7784 } else { 7785 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 7786 7787 ASSERT(IPH_HDR_VERSION(ip6h) == IPV6_VERSION); 7788 iplen = ntohs(ip6h->ip6_plen); 7789 mp = sadb_whack_label_v6(mp, assoc, counter, dropper); 7790 if (mp == NULL) 7791 return (NULL); 7792 7793 ip6h = (ip6_t *)mp->b_rptr; 7794 ASSERT(IPH_HDR_VERSION(ip6h) == IPV6_VERSION); 7795 adjust = (int)ntohs(ip6h->ip6_plen) - iplen; 7796 } 7797 ixa->ixa_pktlen += adjust; 7798 ixa->ixa_ip_hdr_length += adjust; 7799 return (mp); 7800 } 7801 7802 /* 7803 * If this is an outgoing SA then add some fuzz to the 7804 * SOFT EXPIRE time. The reason for this is to stop 7805 * peers trying to renegotiate SOFT expiring SA's at 7806 * the same time. The amount of fuzz needs to be at 7807 * least 8 seconds which is the typical interval 7808 * sadb_ager(), although this is only a guide as it 7809 * selftunes. 7810 */ 7811 static void 7812 lifetime_fuzz(ipsa_t *assoc) 7813 { 7814 uint8_t rnd; 7815 7816 if (assoc->ipsa_softaddlt == 0) 7817 return; 7818 7819 (void) random_get_pseudo_bytes(&rnd, sizeof (rnd)); 7820 rnd = (rnd & 0xF) + 8; 7821 assoc->ipsa_softexpiretime -= rnd; 7822 assoc->ipsa_softaddlt -= rnd; 7823 } 7824 7825 static void 7826 destroy_ipsa_pair(ipsap_t *ipsapp) 7827 { 7828 /* 7829 * Because of the multi-line macro nature of IPSA_REFRELE, keep 7830 * them in { }. 7831 */ 7832 if (ipsapp->ipsap_sa_ptr != NULL) { 7833 IPSA_REFRELE(ipsapp->ipsap_sa_ptr); 7834 } 7835 if (ipsapp->ipsap_psa_ptr != NULL) { 7836 IPSA_REFRELE(ipsapp->ipsap_psa_ptr); 7837 } 7838 init_ipsa_pair(ipsapp); 7839 } 7840 7841 static void 7842 init_ipsa_pair(ipsap_t *ipsapp) 7843 { 7844 ipsapp->ipsap_bucket = NULL; 7845 ipsapp->ipsap_sa_ptr = NULL; 7846 ipsapp->ipsap_pbucket = NULL; 7847 ipsapp->ipsap_psa_ptr = NULL; 7848 } 7849 7850 /* 7851 * The sadb_ager() function walks through the hash tables of SA's and ages 7852 * them, if the SA expires as a result, its marked as DEAD and will be reaped 7853 * the next time sadb_ager() runs. SA's which are paired or have a peer (same 7854 * SA appears in both the inbound and outbound tables because its not possible 7855 * to determine its direction) are placed on a list when they expire. This is 7856 * to ensure that pair/peer SA's are reaped at the same time, even if they 7857 * expire at different times. 7858 * 7859 * This function is called twice by sadb_ager(), one after processing the 7860 * inbound table, then again after processing the outbound table. 7861 */ 7862 void 7863 age_pair_peer_list(templist_t *haspeerlist, sadb_t *sp, boolean_t outbound) 7864 { 7865 templist_t *listptr; 7866 int outhash; 7867 isaf_t *bucket; 7868 boolean_t haspeer; 7869 ipsa_t *peer_assoc, *dying; 7870 /* 7871 * Haspeer cases will contain both IPv4 and IPv6. This code 7872 * is address independent. 7873 */ 7874 while (haspeerlist != NULL) { 7875 /* "dying" contains the SA that has a peer. */ 7876 dying = haspeerlist->ipsa; 7877 haspeer = (dying->ipsa_haspeer); 7878 listptr = haspeerlist; 7879 haspeerlist = listptr->next; 7880 kmem_free(listptr, sizeof (*listptr)); 7881 /* 7882 * Pick peer bucket based on addrfam. 7883 */ 7884 if (outbound) { 7885 if (haspeer) 7886 bucket = INBOUND_BUCKET(sp, dying->ipsa_spi); 7887 else 7888 bucket = INBOUND_BUCKET(sp, 7889 dying->ipsa_otherspi); 7890 } else { /* inbound */ 7891 if (haspeer) { 7892 if (dying->ipsa_addrfam == AF_INET6) { 7893 outhash = OUTBOUND_HASH_V6(sp, 7894 *((in6_addr_t *)&dying-> 7895 ipsa_dstaddr)); 7896 } else { 7897 outhash = OUTBOUND_HASH_V4(sp, 7898 *((ipaddr_t *)&dying-> 7899 ipsa_dstaddr)); 7900 } 7901 } else if (dying->ipsa_addrfam == AF_INET6) { 7902 outhash = OUTBOUND_HASH_V6(sp, 7903 *((in6_addr_t *)&dying-> 7904 ipsa_srcaddr)); 7905 } else { 7906 outhash = OUTBOUND_HASH_V4(sp, 7907 *((ipaddr_t *)&dying-> 7908 ipsa_srcaddr)); 7909 } 7910 bucket = &(sp->sdb_of[outhash]); 7911 } 7912 7913 mutex_enter(&bucket->isaf_lock); 7914 /* 7915 * "haspeer" SA's have the same src/dst address ordering, 7916 * "paired" SA's have the src/dst addresses reversed. 7917 */ 7918 if (haspeer) { 7919 peer_assoc = ipsec_getassocbyspi(bucket, 7920 dying->ipsa_spi, dying->ipsa_srcaddr, 7921 dying->ipsa_dstaddr, dying->ipsa_addrfam); 7922 } else { 7923 peer_assoc = ipsec_getassocbyspi(bucket, 7924 dying->ipsa_otherspi, dying->ipsa_dstaddr, 7925 dying->ipsa_srcaddr, dying->ipsa_addrfam); 7926 } 7927 7928 mutex_exit(&bucket->isaf_lock); 7929 if (peer_assoc != NULL) { 7930 mutex_enter(&peer_assoc->ipsa_lock); 7931 mutex_enter(&dying->ipsa_lock); 7932 if (!haspeer) { 7933 /* 7934 * Only SA's which have a "peer" or are 7935 * "paired" end up on this list, so this 7936 * must be a "paired" SA, update the flags 7937 * to break the pair. 7938 */ 7939 peer_assoc->ipsa_otherspi = 0; 7940 peer_assoc->ipsa_flags &= ~IPSA_F_PAIRED; 7941 dying->ipsa_otherspi = 0; 7942 dying->ipsa_flags &= ~IPSA_F_PAIRED; 7943 } 7944 if (haspeer || outbound) { 7945 /* 7946 * Update the state of the "inbound" SA when 7947 * the "outbound" SA has expired. Don't update 7948 * the "outbound" SA when the "inbound" SA 7949 * SA expires because setting the hard_addtime 7950 * below will cause this to happen. 7951 */ 7952 peer_assoc->ipsa_state = dying->ipsa_state; 7953 } 7954 if (dying->ipsa_state == IPSA_STATE_DEAD) 7955 peer_assoc->ipsa_hardexpiretime = 1; 7956 7957 mutex_exit(&dying->ipsa_lock); 7958 mutex_exit(&peer_assoc->ipsa_lock); 7959 IPSA_REFRELE(peer_assoc); 7960 } 7961 IPSA_REFRELE(dying); 7962 } 7963 } 7964 7965 /* 7966 * Ensure that the IV used for CCM mode never repeats. The IV should 7967 * only be updated by this function. Also check to see if the IV 7968 * is about to wrap and generate a SOFT Expire. This function is only 7969 * called for outgoing packets, the IV for incomming packets is taken 7970 * from the wire. If the outgoing SA needs to be expired, update 7971 * the matching incomming SA. 7972 */ 7973 boolean_t 7974 update_iv(uint8_t *iv_ptr, queue_t *pfkey_q, ipsa_t *assoc, 7975 ipsecesp_stack_t *espstack) 7976 { 7977 boolean_t rc = B_TRUE; 7978 isaf_t *inbound_bucket; 7979 sadb_t *sp; 7980 ipsa_t *pair_sa = NULL; 7981 int sa_new_state = 0; 7982 7983 /* For non counter modes, the IV is random data. */ 7984 if (!(assoc->ipsa_flags & IPSA_F_COUNTERMODE)) { 7985 (void) random_get_pseudo_bytes(iv_ptr, assoc->ipsa_iv_len); 7986 return (rc); 7987 } 7988 7989 mutex_enter(&assoc->ipsa_lock); 7990 7991 (*assoc->ipsa_iv)++; 7992 7993 if (*assoc->ipsa_iv == assoc->ipsa_iv_hardexpire) { 7994 sa_new_state = IPSA_STATE_DEAD; 7995 rc = B_FALSE; 7996 } else if (*assoc->ipsa_iv == assoc->ipsa_iv_softexpire) { 7997 if (assoc->ipsa_state != IPSA_STATE_DYING) { 7998 /* 7999 * This SA may have already been expired when its 8000 * PAIR_SA expired. 8001 */ 8002 sa_new_state = IPSA_STATE_DYING; 8003 } 8004 } 8005 if (sa_new_state) { 8006 /* 8007 * If there is a state change, we need to update this SA 8008 * and its "pair", we can find the bucket for the "pair" SA 8009 * while holding the ipsa_t mutex, but we won't actually 8010 * update anything untill the ipsa_t mutex has been released 8011 * for _this_ SA. 8012 */ 8013 assoc->ipsa_state = sa_new_state; 8014 if (assoc->ipsa_addrfam == AF_INET6) { 8015 sp = &espstack->esp_sadb.s_v6; 8016 } else { 8017 sp = &espstack->esp_sadb.s_v4; 8018 } 8019 inbound_bucket = INBOUND_BUCKET(sp, assoc->ipsa_otherspi); 8020 sadb_expire_assoc(pfkey_q, assoc); 8021 } 8022 if (rc == B_TRUE) 8023 bcopy(assoc->ipsa_iv, iv_ptr, assoc->ipsa_iv_len); 8024 8025 mutex_exit(&assoc->ipsa_lock); 8026 8027 if (sa_new_state) { 8028 /* Find the inbound SA, need to lock hash bucket. */ 8029 mutex_enter(&inbound_bucket->isaf_lock); 8030 pair_sa = ipsec_getassocbyspi(inbound_bucket, 8031 assoc->ipsa_otherspi, assoc->ipsa_dstaddr, 8032 assoc->ipsa_srcaddr, assoc->ipsa_addrfam); 8033 mutex_exit(&inbound_bucket->isaf_lock); 8034 if (pair_sa != NULL) { 8035 mutex_enter(&pair_sa->ipsa_lock); 8036 pair_sa->ipsa_state = sa_new_state; 8037 mutex_exit(&pair_sa->ipsa_lock); 8038 IPSA_REFRELE(pair_sa); 8039 } 8040 } 8041 8042 return (rc); 8043 } 8044 8045 void 8046 ccm_params_init(ipsa_t *assoc, uchar_t *esph, uint_t data_len, uchar_t *iv_ptr, 8047 ipsa_cm_mech_t *cm_mech, crypto_data_t *crypto_data) 8048 { 8049 uchar_t *nonce; 8050 crypto_mechanism_t *combined_mech; 8051 CK_AES_CCM_PARAMS *params; 8052 8053 combined_mech = (crypto_mechanism_t *)cm_mech; 8054 params = (CK_AES_CCM_PARAMS *)(combined_mech + 1); 8055 nonce = (uchar_t *)(params + 1); 8056 params->ulMACSize = assoc->ipsa_mac_len; 8057 params->ulNonceSize = assoc->ipsa_nonce_len; 8058 params->ulAuthDataSize = sizeof (esph_t); 8059 params->ulDataSize = data_len; 8060 params->nonce = nonce; 8061 params->authData = esph; 8062 8063 cm_mech->combined_mech.cm_type = assoc->ipsa_emech.cm_type; 8064 cm_mech->combined_mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS); 8065 cm_mech->combined_mech.cm_param = (caddr_t)params; 8066 /* See gcm_params_init() for comments. */ 8067 bcopy(assoc->ipsa_nonce, nonce, assoc->ipsa_saltlen); 8068 nonce += assoc->ipsa_saltlen; 8069 bcopy(iv_ptr, nonce, assoc->ipsa_iv_len); 8070 crypto_data->cd_miscdata = NULL; 8071 } 8072 8073 /* ARGSUSED */ 8074 void 8075 cbc_params_init(ipsa_t *assoc, uchar_t *esph, uint_t data_len, uchar_t *iv_ptr, 8076 ipsa_cm_mech_t *cm_mech, crypto_data_t *crypto_data) 8077 { 8078 cm_mech->combined_mech.cm_type = assoc->ipsa_emech.cm_type; 8079 cm_mech->combined_mech.cm_param_len = 0; 8080 cm_mech->combined_mech.cm_param = NULL; 8081 crypto_data->cd_miscdata = (char *)iv_ptr; 8082 } 8083 8084 /* ARGSUSED */ 8085 void 8086 gcm_params_init(ipsa_t *assoc, uchar_t *esph, uint_t data_len, uchar_t *iv_ptr, 8087 ipsa_cm_mech_t *cm_mech, crypto_data_t *crypto_data) 8088 { 8089 uchar_t *nonce; 8090 crypto_mechanism_t *combined_mech; 8091 CK_AES_GCM_PARAMS *params; 8092 8093 combined_mech = (crypto_mechanism_t *)cm_mech; 8094 params = (CK_AES_GCM_PARAMS *)(combined_mech + 1); 8095 nonce = (uchar_t *)(params + 1); 8096 8097 params->pIv = nonce; 8098 params->ulIvLen = assoc->ipsa_nonce_len; 8099 params->ulIvBits = SADB_8TO1(assoc->ipsa_nonce_len); 8100 params->pAAD = esph; 8101 params->ulAADLen = sizeof (esph_t); 8102 params->ulTagBits = SADB_8TO1(assoc->ipsa_mac_len); 8103 8104 cm_mech->combined_mech.cm_type = assoc->ipsa_emech.cm_type; 8105 cm_mech->combined_mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS); 8106 cm_mech->combined_mech.cm_param = (caddr_t)params; 8107 /* 8108 * Create the nonce, which is made up of the salt and the IV. 8109 * Copy the salt from the SA and the IV from the packet. 8110 * For inbound packets we copy the IV from the packet because it 8111 * was set by the sending system, for outbound packets we copy the IV 8112 * from the packet because the IV in the SA may be changed by another 8113 * thread, the IV in the packet was created while holding a mutex. 8114 */ 8115 bcopy(assoc->ipsa_nonce, nonce, assoc->ipsa_saltlen); 8116 nonce += assoc->ipsa_saltlen; 8117 bcopy(iv_ptr, nonce, assoc->ipsa_iv_len); 8118 crypto_data->cd_miscdata = NULL; 8119 } 8120