1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2018 Joyent, Inc. 26 * Copyright 2022 MNX Cloud, Inc. 27 */ 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/stropts.h> 32 #include <sys/strsubr.h> 33 #include <sys/errno.h> 34 #include <sys/ddi.h> 35 #include <sys/debug.h> 36 #include <sys/cmn_err.h> 37 #include <sys/stream.h> 38 #include <sys/strlog.h> 39 #include <sys/kmem.h> 40 #include <sys/sunddi.h> 41 #include <sys/tihdr.h> 42 #include <sys/atomic.h> 43 #include <sys/socket.h> 44 #include <sys/sysmacros.h> 45 #include <sys/crypto/common.h> 46 #include <sys/crypto/api.h> 47 #include <sys/zone.h> 48 #include <netinet/in.h> 49 #include <net/if.h> 50 #include <net/pfkeyv2.h> 51 #include <net/pfpolicy.h> 52 #include <inet/common.h> 53 #include <netinet/ip6.h> 54 #include <inet/ip.h> 55 #include <inet/ip_ire.h> 56 #include <inet/ip6.h> 57 #include <inet/ipsec_info.h> 58 #include <inet/tcp.h> 59 #include <inet/sadb.h> 60 #include <inet/ipsec_impl.h> 61 #include <inet/ipsecah.h> 62 #include <inet/ipsecesp.h> 63 #include <sys/random.h> 64 #include <sys/dlpi.h> 65 #include <sys/strsun.h> 66 #include <sys/strsubr.h> 67 #include <inet/ip_if.h> 68 #include <inet/ipdrop.h> 69 #include <inet/ipclassifier.h> 70 #include <inet/sctp_ip.h> 71 #include <sys/tsol/tnet.h> 72 73 /* 74 * This source file contains Security Association Database (SADB) common 75 * routines. They are linked in with the AH module. Since AH has no chance 76 * of falling under export control, it was safe to link it in there. 77 */ 78 79 static uint8_t *sadb_action_to_ecomb(uint8_t *, uint8_t *, ipsec_action_t *, 80 netstack_t *); 81 static ipsa_t *sadb_torch_assoc(isaf_t *, ipsa_t *); 82 static void sadb_destroy_acqlist(iacqf_t **, uint_t, boolean_t, 83 netstack_t *); 84 static void sadb_destroy(sadb_t *, netstack_t *); 85 static mblk_t *sadb_sa2msg(ipsa_t *, sadb_msg_t *); 86 static ts_label_t *sadb_label_from_sens(sadb_sens_t *, uint64_t *); 87 88 static time_t sadb_add_time(time_t, uint64_t); 89 static void lifetime_fuzz(ipsa_t *); 90 static void age_pair_peer_list(templist_t *, sadb_t *, boolean_t); 91 static int get_ipsa_pair(ipsa_query_t *, ipsap_t *, int *); 92 static void init_ipsa_pair(ipsap_t *); 93 static void destroy_ipsa_pair(ipsap_t *); 94 static int update_pairing(ipsap_t *, ipsa_query_t *, keysock_in_t *, int *); 95 static void ipsa_set_replay(ipsa_t *ipsa, uint32_t offset); 96 97 /* 98 * ipsacq_maxpackets is defined here to make it tunable 99 * from /etc/system. 100 */ 101 extern uint64_t ipsacq_maxpackets; 102 103 #define SET_EXPIRE(sa, delta, exp) { \ 104 if (((sa)->ipsa_ ## delta) != 0) { \ 105 (sa)->ipsa_ ## exp = sadb_add_time((sa)->ipsa_addtime, \ 106 (sa)->ipsa_ ## delta); \ 107 } \ 108 } 109 110 #define UPDATE_EXPIRE(sa, delta, exp) { \ 111 if (((sa)->ipsa_ ## delta) != 0) { \ 112 time_t tmp = sadb_add_time((sa)->ipsa_usetime, \ 113 (sa)->ipsa_ ## delta); \ 114 if (((sa)->ipsa_ ## exp) == 0) \ 115 (sa)->ipsa_ ## exp = tmp; \ 116 else \ 117 (sa)->ipsa_ ## exp = \ 118 MIN((sa)->ipsa_ ## exp, tmp); \ 119 } \ 120 } 121 122 123 /* wrap the macro so we can pass it as a function pointer */ 124 void 125 sadb_sa_refrele(void *target) 126 { 127 IPSA_REFRELE(((ipsa_t *)target)); 128 } 129 130 /* 131 * We presume that sizeof (long) == sizeof (time_t) and that time_t is 132 * a signed type. 133 */ 134 #define TIME_MAX LONG_MAX 135 136 /* 137 * PF_KEY gives us lifetimes in uint64_t seconds. We presume that 138 * time_t is defined to be a signed type with the same range as 139 * "long". On ILP32 systems, we thus run the risk of wrapping around 140 * at end of time, as well as "overwrapping" the clock back around 141 * into a seemingly valid but incorrect future date earlier than the 142 * desired expiration. 143 * 144 * In order to avoid odd behavior (either negative lifetimes or loss 145 * of high order bits) when someone asks for bizarrely long SA 146 * lifetimes, we do a saturating add for expire times. 147 * 148 * We presume that ILP32 systems will be past end of support life when 149 * the 32-bit time_t overflows (a dangerous assumption, mind you..). 150 * 151 * On LP64, 2^64 seconds are about 5.8e11 years, at which point we 152 * will hopefully have figured out clever ways to avoid the use of 153 * fixed-sized integers in computation. 154 */ 155 static time_t 156 sadb_add_time(time_t base, uint64_t delta) 157 { 158 /* 159 * Clip delta to the maximum possible time_t value to 160 * prevent "overwrapping" back into a shorter-than-desired 161 * future time. 162 */ 163 if (delta > TIME_MAX) 164 delta = TIME_MAX; 165 166 if (base > 0) { 167 if (TIME_MAX - base < delta) 168 return (TIME_MAX); /* Overflow */ 169 } 170 return (base + delta); 171 } 172 173 /* 174 * Callers of this function have already created a working security 175 * association, and have found the appropriate table & hash chain. All this 176 * function does is check duplicates, and insert the SA. The caller needs to 177 * hold the hash bucket lock and increment the refcnt before insertion. 178 * 179 * Return 0 if success, EEXIST if collision. 180 */ 181 #define SA_UNIQUE_MATCH(sa1, sa2) \ 182 (((sa1)->ipsa_unique_id & (sa1)->ipsa_unique_mask) == \ 183 ((sa2)->ipsa_unique_id & (sa2)->ipsa_unique_mask)) 184 185 int 186 sadb_insertassoc(ipsa_t *ipsa, isaf_t *bucket) 187 { 188 ipsa_t **ptpn = NULL; 189 ipsa_t *walker; 190 boolean_t unspecsrc; 191 192 ASSERT(MUTEX_HELD(&bucket->isaf_lock)); 193 194 unspecsrc = IPSA_IS_ADDR_UNSPEC(ipsa->ipsa_srcaddr, ipsa->ipsa_addrfam); 195 196 walker = bucket->isaf_ipsa; 197 ASSERT(walker == NULL || ipsa->ipsa_addrfam == walker->ipsa_addrfam); 198 199 /* 200 * Find insertion point (pointed to with **ptpn). Insert at the head 201 * of the list unless there's an unspecified source address, then 202 * insert it after the last SA with a specified source address. 203 * 204 * BTW, you'll have to walk the whole chain, matching on {DST, SPI} 205 * checking for collisions. 206 */ 207 208 while (walker != NULL) { 209 if (IPSA_ARE_ADDR_EQUAL(walker->ipsa_dstaddr, 210 ipsa->ipsa_dstaddr, ipsa->ipsa_addrfam)) { 211 if (walker->ipsa_spi == ipsa->ipsa_spi) 212 return (EEXIST); 213 214 mutex_enter(&walker->ipsa_lock); 215 if (ipsa->ipsa_state == IPSA_STATE_MATURE && 216 (walker->ipsa_flags & IPSA_F_USED) && 217 SA_UNIQUE_MATCH(walker, ipsa)) { 218 walker->ipsa_flags |= IPSA_F_CINVALID; 219 } 220 mutex_exit(&walker->ipsa_lock); 221 } 222 223 if (ptpn == NULL && unspecsrc) { 224 if (IPSA_IS_ADDR_UNSPEC(walker->ipsa_srcaddr, 225 walker->ipsa_addrfam)) 226 ptpn = walker->ipsa_ptpn; 227 else if (walker->ipsa_next == NULL) 228 ptpn = &walker->ipsa_next; 229 } 230 231 walker = walker->ipsa_next; 232 } 233 234 if (ptpn == NULL) 235 ptpn = &bucket->isaf_ipsa; 236 ipsa->ipsa_next = *ptpn; 237 ipsa->ipsa_ptpn = ptpn; 238 if (ipsa->ipsa_next != NULL) 239 ipsa->ipsa_next->ipsa_ptpn = &ipsa->ipsa_next; 240 *ptpn = ipsa; 241 ipsa->ipsa_linklock = &bucket->isaf_lock; 242 243 return (0); 244 } 245 #undef SA_UNIQUE_MATCH 246 247 /* 248 * Free a security association. Its reference count is 0, which means 249 * I must free it. The SA must be unlocked and must not be linked into 250 * any fanout list. 251 */ 252 static void 253 sadb_freeassoc(ipsa_t *ipsa) 254 { 255 ipsec_stack_t *ipss = ipsa->ipsa_netstack->netstack_ipsec; 256 mblk_t *asyncmp, *mp; 257 258 ASSERT(ipss != NULL); 259 ASSERT(MUTEX_NOT_HELD(&ipsa->ipsa_lock)); 260 ASSERT(ipsa->ipsa_refcnt == 0); 261 ASSERT(ipsa->ipsa_next == NULL); 262 ASSERT(ipsa->ipsa_ptpn == NULL); 263 264 265 asyncmp = sadb_clear_lpkt(ipsa); 266 if (asyncmp != NULL) { 267 mp = ip_recv_attr_free_mblk(asyncmp); 268 ip_drop_packet(mp, B_TRUE, NULL, 269 DROPPER(ipss, ipds_sadb_inlarval_timeout), 270 &ipss->ipsec_sadb_dropper); 271 } 272 mutex_enter(&ipsa->ipsa_lock); 273 274 if (ipsa->ipsa_tsl != NULL) { 275 label_rele(ipsa->ipsa_tsl); 276 ipsa->ipsa_tsl = NULL; 277 } 278 279 if (ipsa->ipsa_otsl != NULL) { 280 label_rele(ipsa->ipsa_otsl); 281 ipsa->ipsa_otsl = NULL; 282 } 283 284 ipsec_destroy_ctx_tmpl(ipsa, IPSEC_ALG_AUTH); 285 ipsec_destroy_ctx_tmpl(ipsa, IPSEC_ALG_ENCR); 286 mutex_exit(&ipsa->ipsa_lock); 287 288 /* bzero() these fields for paranoia's sake. */ 289 if (ipsa->ipsa_authkey != NULL) { 290 bzero(ipsa->ipsa_authkey, ipsa->ipsa_authkeylen); 291 kmem_free(ipsa->ipsa_authkey, ipsa->ipsa_authkeylen); 292 } 293 if (ipsa->ipsa_encrkey != NULL) { 294 bzero(ipsa->ipsa_encrkey, ipsa->ipsa_encrkeylen); 295 kmem_free(ipsa->ipsa_encrkey, ipsa->ipsa_encrkeylen); 296 } 297 if (ipsa->ipsa_nonce_buf != NULL) { 298 bzero(ipsa->ipsa_nonce_buf, sizeof (ipsec_nonce_t)); 299 kmem_free(ipsa->ipsa_nonce_buf, sizeof (ipsec_nonce_t)); 300 } 301 if (ipsa->ipsa_src_cid != NULL) { 302 IPSID_REFRELE(ipsa->ipsa_src_cid); 303 } 304 if (ipsa->ipsa_dst_cid != NULL) { 305 IPSID_REFRELE(ipsa->ipsa_dst_cid); 306 } 307 if (ipsa->ipsa_emech.cm_param != NULL) 308 kmem_free(ipsa->ipsa_emech.cm_param, 309 ipsa->ipsa_emech.cm_param_len); 310 311 mutex_destroy(&ipsa->ipsa_lock); 312 kmem_free(ipsa, sizeof (*ipsa)); 313 } 314 315 /* 316 * Unlink a security association from a hash bucket. Assume the hash bucket 317 * lock is held, but the association's lock is not. 318 * 319 * Note that we do not bump the bucket's generation number here because 320 * we might not be making a visible change to the set of visible SA's. 321 * All callers MUST bump the bucket's generation number before they unlock 322 * the bucket if they use sadb_unlinkassoc to permanetly remove an SA which 323 * was present in the bucket at the time it was locked. 324 */ 325 void 326 sadb_unlinkassoc(ipsa_t *ipsa) 327 { 328 ASSERT(ipsa->ipsa_linklock != NULL); 329 ASSERT(MUTEX_HELD(ipsa->ipsa_linklock)); 330 331 /* Sometimes someone beats us here with the same SA. Check now. */ 332 if (ipsa->ipsa_ptpn == NULL) 333 return; 334 335 /* These fields are protected by the link lock. */ 336 *(ipsa->ipsa_ptpn) = ipsa->ipsa_next; 337 if (ipsa->ipsa_next != NULL) { 338 ipsa->ipsa_next->ipsa_ptpn = ipsa->ipsa_ptpn; 339 ipsa->ipsa_next = NULL; 340 } 341 ipsa->ipsa_ptpn = NULL; 342 343 /* This may destroy the SA. */ 344 IPSA_REFRELE(ipsa); 345 } 346 347 void 348 sadb_delete_cluster(ipsa_t *assoc) 349 { 350 uint8_t protocol; 351 352 if (cl_inet_deletespi && 353 ((assoc->ipsa_state == IPSA_STATE_LARVAL) || 354 (assoc->ipsa_state == IPSA_STATE_MATURE))) { 355 protocol = (assoc->ipsa_type == SADB_SATYPE_AH) ? 356 IPPROTO_AH : IPPROTO_ESP; 357 cl_inet_deletespi(assoc->ipsa_netstack->netstack_stackid, 358 protocol, assoc->ipsa_spi, NULL); 359 } 360 } 361 362 /* 363 * Create a larval security association with the specified SPI. All other 364 * fields are zeroed. 365 */ 366 static ipsa_t * 367 sadb_makelarvalassoc(uint32_t spi, uint32_t *src, uint32_t *dst, int addrfam, 368 netstack_t *ns) 369 { 370 ipsa_t *newbie; 371 372 /* 373 * Allocate... 374 */ 375 376 newbie = (ipsa_t *)kmem_zalloc(sizeof (ipsa_t), KM_NOSLEEP); 377 if (newbie == NULL) { 378 /* Can't make new larval SA. */ 379 return (NULL); 380 } 381 382 /* Assigned requested SPI, assume caller does SPI allocation magic. */ 383 newbie->ipsa_spi = spi; 384 newbie->ipsa_netstack = ns; /* No netstack_hold */ 385 386 /* 387 * Copy addresses... 388 */ 389 390 IPSA_COPY_ADDR(newbie->ipsa_srcaddr, src, addrfam); 391 IPSA_COPY_ADDR(newbie->ipsa_dstaddr, dst, addrfam); 392 393 newbie->ipsa_addrfam = addrfam; 394 395 /* 396 * Set common initialization values, including refcnt. 397 */ 398 mutex_init(&newbie->ipsa_lock, NULL, MUTEX_DEFAULT, NULL); 399 newbie->ipsa_state = IPSA_STATE_LARVAL; 400 newbie->ipsa_refcnt = 1; 401 newbie->ipsa_freefunc = sadb_freeassoc; 402 403 /* 404 * There aren't a lot of other common initialization values, as 405 * they are copied in from the PF_KEY message. 406 */ 407 408 return (newbie); 409 } 410 411 /* 412 * Call me to initialize a security association fanout. 413 */ 414 static int 415 sadb_init_fanout(isaf_t **tablep, uint_t size, int kmflag) 416 { 417 isaf_t *table; 418 int i; 419 420 table = (isaf_t *)kmem_alloc(size * sizeof (*table), kmflag); 421 *tablep = table; 422 423 if (table == NULL) 424 return (ENOMEM); 425 426 for (i = 0; i < size; i++) { 427 mutex_init(&(table[i].isaf_lock), NULL, MUTEX_DEFAULT, NULL); 428 table[i].isaf_ipsa = NULL; 429 table[i].isaf_gen = 0; 430 } 431 432 return (0); 433 } 434 435 /* 436 * Call me to initialize an acquire fanout 437 */ 438 static int 439 sadb_init_acfanout(iacqf_t **tablep, uint_t size, int kmflag) 440 { 441 iacqf_t *table; 442 int i; 443 444 table = (iacqf_t *)kmem_alloc(size * sizeof (*table), kmflag); 445 *tablep = table; 446 447 if (table == NULL) 448 return (ENOMEM); 449 450 for (i = 0; i < size; i++) { 451 mutex_init(&(table[i].iacqf_lock), NULL, MUTEX_DEFAULT, NULL); 452 table[i].iacqf_ipsacq = NULL; 453 } 454 455 return (0); 456 } 457 458 /* 459 * Attempt to initialize an SADB instance. On failure, return ENOMEM; 460 * caller must clean up partial allocations. 461 */ 462 static int 463 sadb_init_trial(sadb_t *sp, uint_t size, int kmflag) 464 { 465 ASSERT(sp->sdb_of == NULL); 466 ASSERT(sp->sdb_if == NULL); 467 ASSERT(sp->sdb_acq == NULL); 468 469 sp->sdb_hashsize = size; 470 if (sadb_init_fanout(&sp->sdb_of, size, kmflag) != 0) 471 return (ENOMEM); 472 if (sadb_init_fanout(&sp->sdb_if, size, kmflag) != 0) 473 return (ENOMEM); 474 if (sadb_init_acfanout(&sp->sdb_acq, size, kmflag) != 0) 475 return (ENOMEM); 476 477 return (0); 478 } 479 480 /* 481 * Call me to initialize an SADB instance; fall back to default size on failure. 482 */ 483 static void 484 sadb_init(const char *name, sadb_t *sp, uint_t size, uint_t ver, 485 netstack_t *ns) 486 { 487 ASSERT(sp->sdb_of == NULL); 488 ASSERT(sp->sdb_if == NULL); 489 ASSERT(sp->sdb_acq == NULL); 490 491 if (size < IPSEC_DEFAULT_HASH_SIZE) 492 size = IPSEC_DEFAULT_HASH_SIZE; 493 494 if (sadb_init_trial(sp, size, KM_NOSLEEP) != 0) { 495 496 cmn_err(CE_WARN, 497 "Unable to allocate %u entry IPv%u %s SADB hash table", 498 size, ver, name); 499 500 sadb_destroy(sp, ns); 501 size = IPSEC_DEFAULT_HASH_SIZE; 502 cmn_err(CE_WARN, "Falling back to %d entries", size); 503 (void) sadb_init_trial(sp, size, KM_SLEEP); 504 } 505 } 506 507 508 /* 509 * Initialize an SADB-pair. 510 */ 511 void 512 sadbp_init(const char *name, sadbp_t *sp, int type, int size, netstack_t *ns) 513 { 514 sadb_init(name, &sp->s_v4, size, 4, ns); 515 sadb_init(name, &sp->s_v6, size, 6, ns); 516 517 sp->s_satype = type; 518 519 ASSERT((type == SADB_SATYPE_AH) || (type == SADB_SATYPE_ESP)); 520 if (type == SADB_SATYPE_AH) { 521 ipsec_stack_t *ipss = ns->netstack_ipsec; 522 523 ip_drop_register(&ipss->ipsec_sadb_dropper, "IPsec SADB"); 524 sp->s_addflags = AH_ADD_SETTABLE_FLAGS; 525 sp->s_updateflags = AH_UPDATE_SETTABLE_FLAGS; 526 } else { 527 sp->s_addflags = ESP_ADD_SETTABLE_FLAGS; 528 sp->s_updateflags = ESP_UPDATE_SETTABLE_FLAGS; 529 } 530 } 531 532 /* 533 * Deliver a single SADB_DUMP message representing a single SA. This is 534 * called many times by sadb_dump(). 535 * 536 * If the return value of this is ENOBUFS (not the same as ENOMEM), then 537 * the caller should take that as a hint that dupb() on the "original answer" 538 * failed, and that perhaps the caller should try again with a copyb()ed 539 * "original answer". 540 */ 541 static int 542 sadb_dump_deliver(queue_t *pfkey_q, mblk_t *original_answer, ipsa_t *ipsa, 543 sadb_msg_t *samsg) 544 { 545 mblk_t *answer; 546 547 answer = dupb(original_answer); 548 if (answer == NULL) 549 return (ENOBUFS); 550 answer->b_cont = sadb_sa2msg(ipsa, samsg); 551 if (answer->b_cont == NULL) { 552 freeb(answer); 553 return (ENOMEM); 554 } 555 556 /* Just do a putnext, and let keysock deal with flow control. */ 557 putnext(pfkey_q, answer); 558 return (0); 559 } 560 561 /* 562 * Common function to allocate and prepare a keysock_out_t M_CTL message. 563 */ 564 mblk_t * 565 sadb_keysock_out(minor_t serial) 566 { 567 mblk_t *mp; 568 keysock_out_t *kso; 569 570 mp = allocb(sizeof (ipsec_info_t), BPRI_HI); 571 if (mp != NULL) { 572 mp->b_datap->db_type = M_CTL; 573 mp->b_wptr += sizeof (ipsec_info_t); 574 kso = (keysock_out_t *)mp->b_rptr; 575 kso->ks_out_type = KEYSOCK_OUT; 576 kso->ks_out_len = sizeof (*kso); 577 kso->ks_out_serial = serial; 578 } 579 580 return (mp); 581 } 582 583 /* 584 * Perform an SADB_DUMP, spewing out every SA in an array of SA fanouts 585 * to keysock. 586 */ 587 static int 588 sadb_dump_fanout(queue_t *pfkey_q, mblk_t *mp, minor_t serial, isaf_t *fanout, 589 int num_entries, boolean_t do_peers, time_t active_time) 590 { 591 int i, error = 0; 592 mblk_t *original_answer; 593 ipsa_t *walker; 594 sadb_msg_t *samsg; 595 time_t current; 596 597 /* 598 * For each IPSA hash bucket do: 599 * - Hold the mutex 600 * - Walk each entry, doing an sadb_dump_deliver() on it. 601 */ 602 ASSERT(mp->b_cont != NULL); 603 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 604 605 original_answer = sadb_keysock_out(serial); 606 if (original_answer == NULL) 607 return (ENOMEM); 608 609 current = gethrestime_sec(); 610 for (i = 0; i < num_entries; i++) { 611 mutex_enter(&fanout[i].isaf_lock); 612 for (walker = fanout[i].isaf_ipsa; walker != NULL; 613 walker = walker->ipsa_next) { 614 if (!do_peers && walker->ipsa_haspeer) 615 continue; 616 if ((active_time != 0) && 617 ((current - walker->ipsa_lastuse) > active_time)) 618 continue; 619 error = sadb_dump_deliver(pfkey_q, original_answer, 620 walker, samsg); 621 if (error == ENOBUFS) { 622 mblk_t *new_original_answer; 623 624 /* Ran out of dupb's. Try a copyb. */ 625 new_original_answer = copyb(original_answer); 626 if (new_original_answer == NULL) { 627 error = ENOMEM; 628 } else { 629 freeb(original_answer); 630 original_answer = new_original_answer; 631 error = sadb_dump_deliver(pfkey_q, 632 original_answer, walker, samsg); 633 } 634 } 635 if (error != 0) 636 break; /* out of for loop. */ 637 } 638 mutex_exit(&fanout[i].isaf_lock); 639 if (error != 0) 640 break; /* out of for loop. */ 641 } 642 643 freeb(original_answer); 644 return (error); 645 } 646 647 /* 648 * Dump an entire SADB; outbound first, then inbound. 649 */ 650 651 int 652 sadb_dump(queue_t *pfkey_q, mblk_t *mp, keysock_in_t *ksi, sadb_t *sp) 653 { 654 int error; 655 time_t active_time = 0; 656 sadb_x_edump_t *edump = 657 (sadb_x_edump_t *)ksi->ks_in_extv[SADB_X_EXT_EDUMP]; 658 659 if (edump != NULL) { 660 active_time = edump->sadb_x_edump_timeout; 661 } 662 663 /* Dump outbound */ 664 error = sadb_dump_fanout(pfkey_q, mp, ksi->ks_in_serial, sp->sdb_of, 665 sp->sdb_hashsize, B_TRUE, active_time); 666 if (error) 667 return (error); 668 669 /* Dump inbound */ 670 return sadb_dump_fanout(pfkey_q, mp, ksi->ks_in_serial, sp->sdb_if, 671 sp->sdb_hashsize, B_FALSE, active_time); 672 } 673 674 /* 675 * Generic sadb table walker. 676 * 677 * Call "walkfn" for each SA in each bucket in "table"; pass the 678 * bucket, the entry and "cookie" to the callback function. 679 * Take care to ensure that walkfn can delete the SA without screwing 680 * up our traverse. 681 * 682 * The bucket is locked for the duration of the callback, both so that the 683 * callback can just call sadb_unlinkassoc() when it wants to delete something, 684 * and so that no new entries are added while we're walking the list. 685 */ 686 static void 687 sadb_walker(isaf_t *table, uint_t numentries, 688 void (*walkfn)(isaf_t *head, ipsa_t *entry, void *cookie), 689 void *cookie) 690 { 691 int i; 692 for (i = 0; i < numentries; i++) { 693 ipsa_t *entry, *next; 694 695 mutex_enter(&table[i].isaf_lock); 696 697 for (entry = table[i].isaf_ipsa; entry != NULL; 698 entry = next) { 699 next = entry->ipsa_next; 700 (*walkfn)(&table[i], entry, cookie); 701 } 702 mutex_exit(&table[i].isaf_lock); 703 } 704 } 705 706 /* 707 * Call me to free up a security association fanout. Use the forever 708 * variable to indicate freeing up the SAs (forever == B_FALSE, e.g. 709 * an SADB_FLUSH message), or destroying everything (forever == B_TRUE, 710 * when a module is unloaded). 711 */ 712 static void 713 sadb_destroyer(isaf_t **tablep, uint_t numentries, boolean_t forever, 714 boolean_t inbound) 715 { 716 int i; 717 isaf_t *table = *tablep; 718 uint8_t protocol; 719 ipsa_t *sa; 720 netstackid_t sid; 721 722 if (table == NULL) 723 return; 724 725 for (i = 0; i < numentries; i++) { 726 mutex_enter(&table[i].isaf_lock); 727 while ((sa = table[i].isaf_ipsa) != NULL) { 728 if (inbound && cl_inet_deletespi && 729 (sa->ipsa_state != IPSA_STATE_ACTIVE_ELSEWHERE) && 730 (sa->ipsa_state != IPSA_STATE_IDLE)) { 731 protocol = (sa->ipsa_type == SADB_SATYPE_AH) ? 732 IPPROTO_AH : IPPROTO_ESP; 733 sid = sa->ipsa_netstack->netstack_stackid; 734 cl_inet_deletespi(sid, protocol, sa->ipsa_spi, 735 NULL); 736 } 737 sadb_unlinkassoc(sa); 738 } 739 table[i].isaf_gen++; 740 mutex_exit(&table[i].isaf_lock); 741 if (forever) 742 mutex_destroy(&(table[i].isaf_lock)); 743 } 744 745 if (forever) { 746 *tablep = NULL; 747 kmem_free(table, numentries * sizeof (*table)); 748 } 749 } 750 751 /* 752 * Entry points to sadb_destroyer(). 753 */ 754 static void 755 sadb_flush(sadb_t *sp, netstack_t *ns) 756 { 757 /* 758 * Flush out each bucket, one at a time. Were it not for keysock's 759 * enforcement, there would be a subtlety where I could add on the 760 * heels of a flush. With keysock's enforcement, however, this 761 * makes ESP's job easy. 762 */ 763 sadb_destroyer(&sp->sdb_of, sp->sdb_hashsize, B_FALSE, B_FALSE); 764 sadb_destroyer(&sp->sdb_if, sp->sdb_hashsize, B_FALSE, B_TRUE); 765 766 /* For each acquire, destroy it; leave the bucket mutex alone. */ 767 sadb_destroy_acqlist(&sp->sdb_acq, sp->sdb_hashsize, B_FALSE, ns); 768 } 769 770 static void 771 sadb_destroy(sadb_t *sp, netstack_t *ns) 772 { 773 sadb_destroyer(&sp->sdb_of, sp->sdb_hashsize, B_TRUE, B_FALSE); 774 sadb_destroyer(&sp->sdb_if, sp->sdb_hashsize, B_TRUE, B_TRUE); 775 776 /* For each acquire, destroy it, including the bucket mutex. */ 777 sadb_destroy_acqlist(&sp->sdb_acq, sp->sdb_hashsize, B_TRUE, ns); 778 779 ASSERT(sp->sdb_of == NULL); 780 ASSERT(sp->sdb_if == NULL); 781 ASSERT(sp->sdb_acq == NULL); 782 } 783 784 void 785 sadbp_flush(sadbp_t *spp, netstack_t *ns) 786 { 787 sadb_flush(&spp->s_v4, ns); 788 sadb_flush(&spp->s_v6, ns); 789 } 790 791 void 792 sadbp_destroy(sadbp_t *spp, netstack_t *ns) 793 { 794 sadb_destroy(&spp->s_v4, ns); 795 sadb_destroy(&spp->s_v6, ns); 796 797 if (spp->s_satype == SADB_SATYPE_AH) { 798 ipsec_stack_t *ipss = ns->netstack_ipsec; 799 800 ip_drop_unregister(&ipss->ipsec_sadb_dropper); 801 } 802 } 803 804 805 /* 806 * Check hard vs. soft lifetimes. If there's a reality mismatch (e.g. 807 * soft lifetimes > hard lifetimes) return an appropriate diagnostic for 808 * EINVAL. 809 */ 810 int 811 sadb_hardsoftchk(sadb_lifetime_t *hard, sadb_lifetime_t *soft, 812 sadb_lifetime_t *idle) 813 { 814 if (hard == NULL || soft == NULL) 815 return (0); 816 817 if (hard->sadb_lifetime_allocations != 0 && 818 soft->sadb_lifetime_allocations != 0 && 819 hard->sadb_lifetime_allocations < soft->sadb_lifetime_allocations) 820 return (SADB_X_DIAGNOSTIC_ALLOC_HSERR); 821 822 if (hard->sadb_lifetime_bytes != 0 && 823 soft->sadb_lifetime_bytes != 0 && 824 hard->sadb_lifetime_bytes < soft->sadb_lifetime_bytes) 825 return (SADB_X_DIAGNOSTIC_BYTES_HSERR); 826 827 if (hard->sadb_lifetime_addtime != 0 && 828 soft->sadb_lifetime_addtime != 0 && 829 hard->sadb_lifetime_addtime < soft->sadb_lifetime_addtime) 830 return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR); 831 832 if (hard->sadb_lifetime_usetime != 0 && 833 soft->sadb_lifetime_usetime != 0 && 834 hard->sadb_lifetime_usetime < soft->sadb_lifetime_usetime) 835 return (SADB_X_DIAGNOSTIC_USETIME_HSERR); 836 837 if (idle != NULL) { 838 if (hard->sadb_lifetime_addtime != 0 && 839 idle->sadb_lifetime_addtime != 0 && 840 hard->sadb_lifetime_addtime < idle->sadb_lifetime_addtime) 841 return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR); 842 843 if (soft->sadb_lifetime_addtime != 0 && 844 idle->sadb_lifetime_addtime != 0 && 845 soft->sadb_lifetime_addtime < idle->sadb_lifetime_addtime) 846 return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR); 847 848 if (hard->sadb_lifetime_usetime != 0 && 849 idle->sadb_lifetime_usetime != 0 && 850 hard->sadb_lifetime_usetime < idle->sadb_lifetime_usetime) 851 return (SADB_X_DIAGNOSTIC_USETIME_HSERR); 852 853 if (soft->sadb_lifetime_usetime != 0 && 854 idle->sadb_lifetime_usetime != 0 && 855 soft->sadb_lifetime_usetime < idle->sadb_lifetime_usetime) 856 return (SADB_X_DIAGNOSTIC_USETIME_HSERR); 857 } 858 859 return (0); 860 } 861 862 /* 863 * Sanity check sensitivity labels. 864 * 865 * For now, just reject labels on unlabeled systems. 866 */ 867 int 868 sadb_labelchk(keysock_in_t *ksi) 869 { 870 if (!is_system_labeled()) { 871 if (ksi->ks_in_extv[SADB_EXT_SENSITIVITY] != NULL) 872 return (SADB_X_DIAGNOSTIC_BAD_LABEL); 873 874 if (ksi->ks_in_extv[SADB_X_EXT_OUTER_SENS] != NULL) 875 return (SADB_X_DIAGNOSTIC_BAD_LABEL); 876 } 877 878 return (0); 879 } 880 881 /* 882 * Clone a security association for the purposes of inserting a single SA 883 * into inbound and outbound tables respectively. This function should only 884 * be called from sadb_common_add(). 885 */ 886 static ipsa_t * 887 sadb_cloneassoc(ipsa_t *ipsa) 888 { 889 ipsa_t *newbie; 890 boolean_t error = B_FALSE; 891 892 ASSERT(MUTEX_NOT_HELD(&(ipsa->ipsa_lock))); 893 894 newbie = kmem_alloc(sizeof (ipsa_t), KM_NOSLEEP); 895 if (newbie == NULL) 896 return (NULL); 897 898 /* Copy over what we can. */ 899 *newbie = *ipsa; 900 901 /* bzero and initialize locks, in case *_init() allocates... */ 902 mutex_init(&newbie->ipsa_lock, NULL, MUTEX_DEFAULT, NULL); 903 904 if (newbie->ipsa_tsl != NULL) 905 label_hold(newbie->ipsa_tsl); 906 907 if (newbie->ipsa_otsl != NULL) 908 label_hold(newbie->ipsa_otsl); 909 910 /* 911 * While somewhat dain-bramaged, the most graceful way to 912 * recover from errors is to keep plowing through the 913 * allocations, and getting what I can. It's easier to call 914 * sadb_freeassoc() on the stillborn clone when all the 915 * pointers aren't pointing to the parent's data. 916 */ 917 918 if (ipsa->ipsa_authkey != NULL) { 919 newbie->ipsa_authkey = kmem_alloc(newbie->ipsa_authkeylen, 920 KM_NOSLEEP); 921 if (newbie->ipsa_authkey == NULL) { 922 error = B_TRUE; 923 } else { 924 bcopy(ipsa->ipsa_authkey, newbie->ipsa_authkey, 925 newbie->ipsa_authkeylen); 926 927 newbie->ipsa_kcfauthkey.ck_data = 928 newbie->ipsa_authkey; 929 } 930 931 if (newbie->ipsa_amech.cm_param != NULL) { 932 newbie->ipsa_amech.cm_param = 933 (char *)&newbie->ipsa_mac_len; 934 } 935 } 936 937 if (ipsa->ipsa_encrkey != NULL) { 938 newbie->ipsa_encrkey = kmem_alloc(newbie->ipsa_encrkeylen, 939 KM_NOSLEEP); 940 if (newbie->ipsa_encrkey == NULL) { 941 error = B_TRUE; 942 } else { 943 bcopy(ipsa->ipsa_encrkey, newbie->ipsa_encrkey, 944 newbie->ipsa_encrkeylen); 945 946 newbie->ipsa_kcfencrkey.ck_data = 947 newbie->ipsa_encrkey; 948 } 949 } 950 951 newbie->ipsa_authtmpl = NULL; 952 newbie->ipsa_encrtmpl = NULL; 953 newbie->ipsa_haspeer = B_TRUE; 954 955 if (ipsa->ipsa_src_cid != NULL) { 956 newbie->ipsa_src_cid = ipsa->ipsa_src_cid; 957 IPSID_REFHOLD(ipsa->ipsa_src_cid); 958 } 959 960 if (ipsa->ipsa_dst_cid != NULL) { 961 newbie->ipsa_dst_cid = ipsa->ipsa_dst_cid; 962 IPSID_REFHOLD(ipsa->ipsa_dst_cid); 963 } 964 965 if (error) { 966 sadb_freeassoc(newbie); 967 return (NULL); 968 } 969 970 return (newbie); 971 } 972 973 /* 974 * Initialize a SADB address extension at the address specified by addrext. 975 * Return a pointer to the end of the new address extension. 976 */ 977 static uint8_t * 978 sadb_make_addr_ext(uint8_t *start, uint8_t *end, uint16_t exttype, 979 sa_family_t af, uint32_t *addr, uint16_t port, uint8_t proto, int prefix) 980 { 981 struct sockaddr_in *sin; 982 struct sockaddr_in6 *sin6; 983 uint8_t *cur = start; 984 int addrext_len; 985 int sin_len; 986 sadb_address_t *addrext = (sadb_address_t *)cur; 987 988 if (cur == NULL) 989 return (NULL); 990 991 cur += sizeof (*addrext); 992 if (cur > end) 993 return (NULL); 994 995 addrext->sadb_address_proto = proto; 996 addrext->sadb_address_prefixlen = prefix; 997 addrext->sadb_address_reserved = 0; 998 addrext->sadb_address_exttype = exttype; 999 1000 switch (af) { 1001 case AF_INET: 1002 sin = (struct sockaddr_in *)cur; 1003 sin_len = sizeof (*sin); 1004 cur += sin_len; 1005 if (cur > end) 1006 return (NULL); 1007 1008 sin->sin_family = af; 1009 bzero(sin->sin_zero, sizeof (sin->sin_zero)); 1010 sin->sin_port = port; 1011 IPSA_COPY_ADDR(&sin->sin_addr, addr, af); 1012 break; 1013 case AF_INET6: 1014 sin6 = (struct sockaddr_in6 *)cur; 1015 sin_len = sizeof (*sin6); 1016 cur += sin_len; 1017 if (cur > end) 1018 return (NULL); 1019 1020 bzero(sin6, sizeof (*sin6)); 1021 sin6->sin6_family = af; 1022 sin6->sin6_port = port; 1023 IPSA_COPY_ADDR(&sin6->sin6_addr, addr, af); 1024 break; 1025 } 1026 1027 addrext_len = roundup(cur - start, sizeof (uint64_t)); 1028 addrext->sadb_address_len = SADB_8TO64(addrext_len); 1029 1030 cur = start + addrext_len; 1031 if (cur > end) 1032 cur = NULL; 1033 1034 return (cur); 1035 } 1036 1037 /* 1038 * Construct a key management cookie extension. 1039 */ 1040 1041 static uint8_t * 1042 sadb_make_kmc_ext(uint8_t *cur, uint8_t *end, uint32_t kmp, uint64_t kmc) 1043 { 1044 sadb_x_kmc_t *kmcext = (sadb_x_kmc_t *)cur; 1045 1046 if (cur == NULL) 1047 return (NULL); 1048 1049 cur += sizeof (*kmcext); 1050 1051 if (cur > end) 1052 return (NULL); 1053 1054 kmcext->sadb_x_kmc_len = SADB_8TO64(sizeof (*kmcext)); 1055 kmcext->sadb_x_kmc_exttype = SADB_X_EXT_KM_COOKIE; 1056 kmcext->sadb_x_kmc_proto = kmp; 1057 kmcext->sadb_x_kmc_cookie64 = kmc; 1058 1059 return (cur); 1060 } 1061 1062 /* 1063 * Given an original message header with sufficient space following it, and an 1064 * SA, construct a full PF_KEY message with all of the relevant extensions. 1065 * This is mostly used for SADB_GET, and SADB_DUMP. 1066 */ 1067 static mblk_t * 1068 sadb_sa2msg(ipsa_t *ipsa, sadb_msg_t *samsg) 1069 { 1070 int alloclen, addrsize, paddrsize, authsize, encrsize; 1071 int srcidsize, dstidsize, senslen, osenslen; 1072 sa_family_t fam, pfam; /* Address family for SADB_EXT_ADDRESS */ 1073 /* src/dst and proxy sockaddrs. */ 1074 1075 authsize = 0; 1076 encrsize = 0; 1077 pfam = 0; 1078 srcidsize = 0; 1079 dstidsize = 0; 1080 paddrsize = 0; 1081 senslen = 0; 1082 osenslen = 0; 1083 /* 1084 * The following are pointers into the PF_KEY message this PF_KEY 1085 * message creates. 1086 */ 1087 sadb_msg_t *newsamsg; 1088 sadb_sa_t *assoc; 1089 sadb_lifetime_t *lt; 1090 sadb_key_t *key; 1091 sadb_ident_t *ident; 1092 sadb_sens_t *sens; 1093 sadb_ext_t *walker; /* For when we need a generic ext. pointer. */ 1094 sadb_x_replay_ctr_t *repl_ctr; 1095 sadb_x_pair_t *pair_ext; 1096 1097 mblk_t *mp; 1098 uint8_t *cur, *end; 1099 /* These indicate the presence of the above extension fields. */ 1100 boolean_t soft = B_FALSE, hard = B_FALSE; 1101 boolean_t isrc = B_FALSE, idst = B_FALSE; 1102 boolean_t auth = B_FALSE, encr = B_FALSE; 1103 boolean_t sensinteg = B_FALSE, osensinteg = B_FALSE; 1104 boolean_t srcid = B_FALSE, dstid = B_FALSE; 1105 boolean_t idle; 1106 boolean_t paired; 1107 uint32_t otherspi; 1108 1109 /* First off, figure out the allocation length for this message. */ 1110 /* 1111 * Constant stuff. This includes base, SA, address (src, dst), 1112 * and lifetime (current). 1113 */ 1114 alloclen = sizeof (sadb_msg_t) + sizeof (sadb_sa_t) + 1115 sizeof (sadb_lifetime_t); 1116 otherspi = 0; 1117 1118 fam = ipsa->ipsa_addrfam; 1119 switch (fam) { 1120 case AF_INET: 1121 addrsize = roundup(sizeof (struct sockaddr_in) + 1122 sizeof (sadb_address_t), sizeof (uint64_t)); 1123 break; 1124 case AF_INET6: 1125 addrsize = roundup(sizeof (struct sockaddr_in6) + 1126 sizeof (sadb_address_t), sizeof (uint64_t)); 1127 break; 1128 default: 1129 return (NULL); 1130 } 1131 /* 1132 * Allocate TWO address extensions, for source and destination. 1133 * (Thus, the * 2.) 1134 */ 1135 alloclen += addrsize * 2; 1136 if (ipsa->ipsa_flags & IPSA_F_NATT_REM) 1137 alloclen += addrsize; 1138 if (ipsa->ipsa_flags & IPSA_F_NATT_LOC) 1139 alloclen += addrsize; 1140 1141 if (ipsa->ipsa_flags & IPSA_F_PAIRED) { 1142 paired = B_TRUE; 1143 alloclen += sizeof (sadb_x_pair_t); 1144 otherspi = ipsa->ipsa_otherspi; 1145 } else { 1146 paired = B_FALSE; 1147 } 1148 1149 /* How 'bout other lifetimes? */ 1150 if (ipsa->ipsa_softaddlt != 0 || ipsa->ipsa_softuselt != 0 || 1151 ipsa->ipsa_softbyteslt != 0 || ipsa->ipsa_softalloc != 0) { 1152 alloclen += sizeof (sadb_lifetime_t); 1153 soft = B_TRUE; 1154 } 1155 1156 if (ipsa->ipsa_hardaddlt != 0 || ipsa->ipsa_harduselt != 0 || 1157 ipsa->ipsa_hardbyteslt != 0 || ipsa->ipsa_hardalloc != 0) { 1158 alloclen += sizeof (sadb_lifetime_t); 1159 hard = B_TRUE; 1160 } 1161 1162 if (ipsa->ipsa_idleaddlt != 0 || ipsa->ipsa_idleuselt != 0) { 1163 alloclen += sizeof (sadb_lifetime_t); 1164 idle = B_TRUE; 1165 } else { 1166 idle = B_FALSE; 1167 } 1168 1169 /* Inner addresses. */ 1170 if (ipsa->ipsa_innerfam != 0) { 1171 pfam = ipsa->ipsa_innerfam; 1172 switch (pfam) { 1173 case AF_INET6: 1174 paddrsize = roundup(sizeof (struct sockaddr_in6) + 1175 sizeof (sadb_address_t), sizeof (uint64_t)); 1176 break; 1177 case AF_INET: 1178 paddrsize = roundup(sizeof (struct sockaddr_in) + 1179 sizeof (sadb_address_t), sizeof (uint64_t)); 1180 break; 1181 default: 1182 cmn_err(CE_PANIC, 1183 "IPsec SADB: Proxy length failure.\n"); 1184 break; 1185 } 1186 isrc = B_TRUE; 1187 idst = B_TRUE; 1188 alloclen += 2 * paddrsize; 1189 } 1190 1191 /* For the following fields, assume that length != 0 ==> stuff */ 1192 if (ipsa->ipsa_authkeylen != 0) { 1193 authsize = roundup(sizeof (sadb_key_t) + ipsa->ipsa_authkeylen, 1194 sizeof (uint64_t)); 1195 alloclen += authsize; 1196 auth = B_TRUE; 1197 } 1198 1199 if (ipsa->ipsa_encrkeylen != 0) { 1200 encrsize = roundup(sizeof (sadb_key_t) + ipsa->ipsa_encrkeylen + 1201 ipsa->ipsa_nonce_len, sizeof (uint64_t)); 1202 alloclen += encrsize; 1203 encr = B_TRUE; 1204 } else { 1205 encr = B_FALSE; 1206 } 1207 1208 if (ipsa->ipsa_tsl != NULL) { 1209 senslen = sadb_sens_len_from_label(ipsa->ipsa_tsl); 1210 alloclen += senslen; 1211 sensinteg = B_TRUE; 1212 } 1213 1214 if (ipsa->ipsa_otsl != NULL) { 1215 osenslen = sadb_sens_len_from_label(ipsa->ipsa_otsl); 1216 alloclen += osenslen; 1217 osensinteg = B_TRUE; 1218 } 1219 1220 /* 1221 * Must use strlen() here for lengths. Identities use NULL 1222 * pointers to indicate their nonexistence. 1223 */ 1224 if (ipsa->ipsa_src_cid != NULL) { 1225 srcidsize = roundup(sizeof (sadb_ident_t) + 1226 strlen(ipsa->ipsa_src_cid->ipsid_cid) + 1, 1227 sizeof (uint64_t)); 1228 alloclen += srcidsize; 1229 srcid = B_TRUE; 1230 } 1231 1232 if (ipsa->ipsa_dst_cid != NULL) { 1233 dstidsize = roundup(sizeof (sadb_ident_t) + 1234 strlen(ipsa->ipsa_dst_cid->ipsid_cid) + 1, 1235 sizeof (uint64_t)); 1236 alloclen += dstidsize; 1237 dstid = B_TRUE; 1238 } 1239 1240 if ((ipsa->ipsa_kmp != 0) || (ipsa->ipsa_kmc != 0)) 1241 alloclen += sizeof (sadb_x_kmc_t); 1242 1243 if (ipsa->ipsa_replay != 0) { 1244 alloclen += sizeof (sadb_x_replay_ctr_t); 1245 } 1246 1247 /* Make sure the allocation length is a multiple of 8 bytes. */ 1248 ASSERT((alloclen & 0x7) == 0); 1249 1250 /* XXX Possibly make it esballoc, with a bzero-ing free_ftn. */ 1251 mp = allocb(alloclen, BPRI_HI); 1252 if (mp == NULL) 1253 return (NULL); 1254 bzero(mp->b_rptr, alloclen); 1255 1256 mp->b_wptr += alloclen; 1257 end = mp->b_wptr; 1258 newsamsg = (sadb_msg_t *)mp->b_rptr; 1259 *newsamsg = *samsg; 1260 newsamsg->sadb_msg_len = (uint16_t)SADB_8TO64(alloclen); 1261 1262 mutex_enter(&ipsa->ipsa_lock); /* Since I'm grabbing SA fields... */ 1263 1264 newsamsg->sadb_msg_satype = ipsa->ipsa_type; 1265 1266 assoc = (sadb_sa_t *)(newsamsg + 1); 1267 assoc->sadb_sa_len = SADB_8TO64(sizeof (*assoc)); 1268 assoc->sadb_sa_exttype = SADB_EXT_SA; 1269 assoc->sadb_sa_spi = ipsa->ipsa_spi; 1270 assoc->sadb_sa_replay = ipsa->ipsa_replay_wsize; 1271 assoc->sadb_sa_state = ipsa->ipsa_state; 1272 assoc->sadb_sa_auth = ipsa->ipsa_auth_alg; 1273 assoc->sadb_sa_encrypt = ipsa->ipsa_encr_alg; 1274 assoc->sadb_sa_flags = ipsa->ipsa_flags; 1275 1276 lt = (sadb_lifetime_t *)(assoc + 1); 1277 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt)); 1278 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 1279 /* We do not support the concept. */ 1280 lt->sadb_lifetime_allocations = 0; 1281 lt->sadb_lifetime_bytes = ipsa->ipsa_bytes; 1282 lt->sadb_lifetime_addtime = ipsa->ipsa_addtime; 1283 lt->sadb_lifetime_usetime = ipsa->ipsa_usetime; 1284 1285 if (hard) { 1286 lt++; 1287 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt)); 1288 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 1289 lt->sadb_lifetime_allocations = ipsa->ipsa_hardalloc; 1290 lt->sadb_lifetime_bytes = ipsa->ipsa_hardbyteslt; 1291 lt->sadb_lifetime_addtime = ipsa->ipsa_hardaddlt; 1292 lt->sadb_lifetime_usetime = ipsa->ipsa_harduselt; 1293 } 1294 1295 if (soft) { 1296 lt++; 1297 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt)); 1298 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 1299 lt->sadb_lifetime_allocations = ipsa->ipsa_softalloc; 1300 lt->sadb_lifetime_bytes = ipsa->ipsa_softbyteslt; 1301 lt->sadb_lifetime_addtime = ipsa->ipsa_softaddlt; 1302 lt->sadb_lifetime_usetime = ipsa->ipsa_softuselt; 1303 } 1304 1305 if (idle) { 1306 lt++; 1307 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt)); 1308 lt->sadb_lifetime_exttype = SADB_X_EXT_LIFETIME_IDLE; 1309 lt->sadb_lifetime_addtime = ipsa->ipsa_idleaddlt; 1310 lt->sadb_lifetime_usetime = ipsa->ipsa_idleuselt; 1311 } 1312 1313 cur = (uint8_t *)(lt + 1); 1314 1315 /* NOTE: Don't fill in ports here if we are a tunnel-mode SA. */ 1316 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, fam, 1317 ipsa->ipsa_srcaddr, (!isrc && !idst) ? SA_SRCPORT(ipsa) : 0, 1318 SA_PROTO(ipsa), 0); 1319 if (cur == NULL) { 1320 freemsg(mp); 1321 mp = NULL; 1322 goto bail; 1323 } 1324 1325 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, fam, 1326 ipsa->ipsa_dstaddr, (!isrc && !idst) ? SA_DSTPORT(ipsa) : 0, 1327 SA_PROTO(ipsa), 0); 1328 if (cur == NULL) { 1329 freemsg(mp); 1330 mp = NULL; 1331 goto bail; 1332 } 1333 1334 if (ipsa->ipsa_flags & IPSA_F_NATT_LOC) { 1335 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_NATT_LOC, 1336 fam, &ipsa->ipsa_natt_addr_loc, ipsa->ipsa_local_nat_port, 1337 IPPROTO_UDP, 0); 1338 if (cur == NULL) { 1339 freemsg(mp); 1340 mp = NULL; 1341 goto bail; 1342 } 1343 } 1344 1345 if (ipsa->ipsa_flags & IPSA_F_NATT_REM) { 1346 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_NATT_REM, 1347 fam, &ipsa->ipsa_natt_addr_rem, ipsa->ipsa_remote_nat_port, 1348 IPPROTO_UDP, 0); 1349 if (cur == NULL) { 1350 freemsg(mp); 1351 mp = NULL; 1352 goto bail; 1353 } 1354 } 1355 1356 /* If we are a tunnel-mode SA, fill in the inner-selectors. */ 1357 if (isrc) { 1358 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC, 1359 pfam, ipsa->ipsa_innersrc, SA_SRCPORT(ipsa), 1360 SA_IPROTO(ipsa), ipsa->ipsa_innersrcpfx); 1361 if (cur == NULL) { 1362 freemsg(mp); 1363 mp = NULL; 1364 goto bail; 1365 } 1366 } 1367 1368 if (idst) { 1369 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST, 1370 pfam, ipsa->ipsa_innerdst, SA_DSTPORT(ipsa), 1371 SA_IPROTO(ipsa), ipsa->ipsa_innerdstpfx); 1372 if (cur == NULL) { 1373 freemsg(mp); 1374 mp = NULL; 1375 goto bail; 1376 } 1377 } 1378 1379 if ((ipsa->ipsa_kmp != 0) || (ipsa->ipsa_kmc != 0)) { 1380 cur = sadb_make_kmc_ext(cur, end, 1381 ipsa->ipsa_kmp, ipsa->ipsa_kmc); 1382 if (cur == NULL) { 1383 freemsg(mp); 1384 mp = NULL; 1385 goto bail; 1386 } 1387 } 1388 1389 walker = (sadb_ext_t *)cur; 1390 if (auth) { 1391 key = (sadb_key_t *)walker; 1392 key->sadb_key_len = SADB_8TO64(authsize); 1393 key->sadb_key_exttype = SADB_EXT_KEY_AUTH; 1394 key->sadb_key_bits = ipsa->ipsa_authkeybits; 1395 key->sadb_key_reserved = 0; 1396 bcopy(ipsa->ipsa_authkey, key + 1, ipsa->ipsa_authkeylen); 1397 walker = (sadb_ext_t *)((uint64_t *)walker + 1398 walker->sadb_ext_len); 1399 } 1400 1401 if (encr) { 1402 uint8_t *buf_ptr; 1403 key = (sadb_key_t *)walker; 1404 key->sadb_key_len = SADB_8TO64(encrsize); 1405 key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT; 1406 key->sadb_key_bits = ipsa->ipsa_encrkeybits; 1407 key->sadb_key_reserved = ipsa->ipsa_saltbits; 1408 buf_ptr = (uint8_t *)(key + 1); 1409 bcopy(ipsa->ipsa_encrkey, buf_ptr, ipsa->ipsa_encrkeylen); 1410 if (ipsa->ipsa_salt != NULL) { 1411 buf_ptr += ipsa->ipsa_encrkeylen; 1412 bcopy(ipsa->ipsa_salt, buf_ptr, ipsa->ipsa_saltlen); 1413 } 1414 walker = (sadb_ext_t *)((uint64_t *)walker + 1415 walker->sadb_ext_len); 1416 } 1417 1418 if (srcid) { 1419 ident = (sadb_ident_t *)walker; 1420 ident->sadb_ident_len = SADB_8TO64(srcidsize); 1421 ident->sadb_ident_exttype = SADB_EXT_IDENTITY_SRC; 1422 ident->sadb_ident_type = ipsa->ipsa_src_cid->ipsid_type; 1423 ident->sadb_ident_id = 0; 1424 ident->sadb_ident_reserved = 0; 1425 (void) strcpy((char *)(ident + 1), 1426 ipsa->ipsa_src_cid->ipsid_cid); 1427 walker = (sadb_ext_t *)((uint64_t *)walker + 1428 walker->sadb_ext_len); 1429 } 1430 1431 if (dstid) { 1432 ident = (sadb_ident_t *)walker; 1433 ident->sadb_ident_len = SADB_8TO64(dstidsize); 1434 ident->sadb_ident_exttype = SADB_EXT_IDENTITY_DST; 1435 ident->sadb_ident_type = ipsa->ipsa_dst_cid->ipsid_type; 1436 ident->sadb_ident_id = 0; 1437 ident->sadb_ident_reserved = 0; 1438 (void) strcpy((char *)(ident + 1), 1439 ipsa->ipsa_dst_cid->ipsid_cid); 1440 walker = (sadb_ext_t *)((uint64_t *)walker + 1441 walker->sadb_ext_len); 1442 } 1443 1444 if (sensinteg) { 1445 sens = (sadb_sens_t *)walker; 1446 sadb_sens_from_label(sens, SADB_EXT_SENSITIVITY, 1447 ipsa->ipsa_tsl, senslen); 1448 1449 walker = (sadb_ext_t *)((uint64_t *)walker + 1450 walker->sadb_ext_len); 1451 } 1452 1453 if (osensinteg) { 1454 sens = (sadb_sens_t *)walker; 1455 1456 sadb_sens_from_label(sens, SADB_X_EXT_OUTER_SENS, 1457 ipsa->ipsa_otsl, osenslen); 1458 if (ipsa->ipsa_mac_exempt) 1459 sens->sadb_x_sens_flags = SADB_X_SENS_IMPLICIT; 1460 1461 walker = (sadb_ext_t *)((uint64_t *)walker + 1462 walker->sadb_ext_len); 1463 } 1464 1465 if (paired) { 1466 pair_ext = (sadb_x_pair_t *)walker; 1467 1468 pair_ext->sadb_x_pair_len = SADB_8TO64(sizeof (sadb_x_pair_t)); 1469 pair_ext->sadb_x_pair_exttype = SADB_X_EXT_PAIR; 1470 pair_ext->sadb_x_pair_spi = otherspi; 1471 1472 walker = (sadb_ext_t *)((uint64_t *)walker + 1473 walker->sadb_ext_len); 1474 } 1475 1476 if (ipsa->ipsa_replay != 0) { 1477 repl_ctr = (sadb_x_replay_ctr_t *)walker; 1478 repl_ctr->sadb_x_rc_len = SADB_8TO64(sizeof (*repl_ctr)); 1479 repl_ctr->sadb_x_rc_exttype = SADB_X_EXT_REPLAY_VALUE; 1480 repl_ctr->sadb_x_rc_replay32 = ipsa->ipsa_replay; 1481 repl_ctr->sadb_x_rc_replay64 = 0; 1482 walker = (sadb_ext_t *)(repl_ctr + 1); 1483 } 1484 1485 bail: 1486 /* Pardon any delays... */ 1487 mutex_exit(&ipsa->ipsa_lock); 1488 1489 return (mp); 1490 } 1491 1492 /* 1493 * Strip out key headers or unmarked headers (SADB_EXT_KEY_*, SADB_EXT_UNKNOWN) 1494 * and adjust base message accordingly. 1495 * 1496 * Assume message is pulled up in one piece of contiguous memory. 1497 * 1498 * Say if we start off with: 1499 * 1500 * +------+----+-------------+-----------+---------------+---------------+ 1501 * | base | SA | source addr | dest addr | rsrvd. or key | soft lifetime | 1502 * +------+----+-------------+-----------+---------------+---------------+ 1503 * 1504 * we will end up with 1505 * 1506 * +------+----+-------------+-----------+---------------+ 1507 * | base | SA | source addr | dest addr | soft lifetime | 1508 * +------+----+-------------+-----------+---------------+ 1509 */ 1510 static void 1511 sadb_strip(sadb_msg_t *samsg) 1512 { 1513 sadb_ext_t *ext; 1514 uint8_t *target = NULL; 1515 uint8_t *msgend; 1516 int sofar = SADB_8TO64(sizeof (*samsg)); 1517 int copylen; 1518 1519 ext = (sadb_ext_t *)(samsg + 1); 1520 msgend = (uint8_t *)samsg; 1521 msgend += SADB_64TO8(samsg->sadb_msg_len); 1522 while ((uint8_t *)ext < msgend) { 1523 if (ext->sadb_ext_type == SADB_EXT_RESERVED || 1524 ext->sadb_ext_type == SADB_EXT_KEY_AUTH || 1525 ext->sadb_ext_type == SADB_X_EXT_EDUMP || 1526 ext->sadb_ext_type == SADB_EXT_KEY_ENCRYPT) { 1527 /* 1528 * Aha! I found a header to be erased. 1529 */ 1530 1531 if (target != NULL) { 1532 /* 1533 * If I had a previous header to be erased, 1534 * copy over it. I can get away with just 1535 * copying backwards because the target will 1536 * always be 8 bytes behind the source. 1537 */ 1538 copylen = ((uint8_t *)ext) - (target + 1539 SADB_64TO8( 1540 ((sadb_ext_t *)target)->sadb_ext_len)); 1541 ovbcopy(((uint8_t *)ext - copylen), target, 1542 copylen); 1543 target += copylen; 1544 ((sadb_ext_t *)target)->sadb_ext_len = 1545 SADB_8TO64(((uint8_t *)ext) - target + 1546 SADB_64TO8(ext->sadb_ext_len)); 1547 } else { 1548 target = (uint8_t *)ext; 1549 } 1550 } else { 1551 sofar += ext->sadb_ext_len; 1552 } 1553 1554 ext = (sadb_ext_t *)(((uint64_t *)ext) + ext->sadb_ext_len); 1555 } 1556 1557 ASSERT((uint8_t *)ext == msgend); 1558 1559 if (target != NULL) { 1560 copylen = ((uint8_t *)ext) - (target + 1561 SADB_64TO8(((sadb_ext_t *)target)->sadb_ext_len)); 1562 if (copylen != 0) 1563 ovbcopy(((uint8_t *)ext - copylen), target, copylen); 1564 } 1565 1566 /* Adjust samsg. */ 1567 samsg->sadb_msg_len = (uint16_t)sofar; 1568 1569 /* Assume all of the rest is cleared by caller in sadb_pfkey_echo(). */ 1570 } 1571 1572 /* 1573 * AH needs to send an error to PF_KEY. Assume mp points to an M_CTL 1574 * followed by an M_DATA with a PF_KEY message in it. The serial of 1575 * the sending keysock instance is included. 1576 */ 1577 void 1578 sadb_pfkey_error(queue_t *pfkey_q, mblk_t *mp, int error, int diagnostic, 1579 uint_t serial) 1580 { 1581 mblk_t *msg = mp->b_cont; 1582 sadb_msg_t *samsg; 1583 keysock_out_t *kso; 1584 1585 /* 1586 * Enough functions call this to merit a NULL queue check. 1587 */ 1588 if (pfkey_q == NULL) { 1589 freemsg(mp); 1590 return; 1591 } 1592 1593 ASSERT(msg != NULL); 1594 ASSERT((mp->b_wptr - mp->b_rptr) == sizeof (ipsec_info_t)); 1595 ASSERT((msg->b_wptr - msg->b_rptr) >= sizeof (sadb_msg_t)); 1596 samsg = (sadb_msg_t *)msg->b_rptr; 1597 kso = (keysock_out_t *)mp->b_rptr; 1598 1599 kso->ks_out_type = KEYSOCK_OUT; 1600 kso->ks_out_len = sizeof (*kso); 1601 kso->ks_out_serial = serial; 1602 1603 /* 1604 * Only send the base message up in the event of an error. 1605 * Don't worry about bzero()-ing, because it was probably bogus 1606 * anyway. 1607 */ 1608 msg->b_wptr = msg->b_rptr + sizeof (*samsg); 1609 samsg = (sadb_msg_t *)msg->b_rptr; 1610 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg)); 1611 samsg->sadb_msg_errno = (uint8_t)error; 1612 if (diagnostic != SADB_X_DIAGNOSTIC_PRESET) 1613 samsg->sadb_x_msg_diagnostic = (uint16_t)diagnostic; 1614 1615 putnext(pfkey_q, mp); 1616 } 1617 1618 /* 1619 * Send a successful return packet back to keysock via the queue in pfkey_q. 1620 * 1621 * Often, an SA is associated with the reply message, it's passed in if needed, 1622 * and NULL if not. BTW, that ipsa will have its refcnt appropriately held, 1623 * and the caller will release said refcnt. 1624 */ 1625 void 1626 sadb_pfkey_echo(queue_t *pfkey_q, mblk_t *mp, sadb_msg_t *samsg, 1627 keysock_in_t *ksi, ipsa_t *ipsa) 1628 { 1629 keysock_out_t *kso; 1630 mblk_t *mp1; 1631 sadb_msg_t *newsamsg; 1632 uint8_t *oldend; 1633 1634 ASSERT((mp->b_cont != NULL) && 1635 ((void *)samsg == (void *)mp->b_cont->b_rptr) && 1636 ((void *)mp->b_rptr == (void *)ksi)); 1637 1638 switch (samsg->sadb_msg_type) { 1639 case SADB_ADD: 1640 case SADB_UPDATE: 1641 case SADB_X_UPDATEPAIR: 1642 case SADB_X_DELPAIR_STATE: 1643 case SADB_FLUSH: 1644 case SADB_DUMP: 1645 /* 1646 * I have all of the message already. I just need to strip 1647 * out the keying material and echo the message back. 1648 * 1649 * NOTE: for SADB_DUMP, the function sadb_dump() did the 1650 * work. When DUMP reaches here, it should only be a base 1651 * message. 1652 */ 1653 justecho: 1654 if (ksi->ks_in_extv[SADB_EXT_KEY_AUTH] != NULL || 1655 ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT] != NULL || 1656 ksi->ks_in_extv[SADB_X_EXT_EDUMP] != NULL) { 1657 sadb_strip(samsg); 1658 /* Assume PF_KEY message is contiguous. */ 1659 ASSERT(mp->b_cont->b_cont == NULL); 1660 oldend = mp->b_cont->b_wptr; 1661 mp->b_cont->b_wptr = mp->b_cont->b_rptr + 1662 SADB_64TO8(samsg->sadb_msg_len); 1663 bzero(mp->b_cont->b_wptr, oldend - mp->b_cont->b_wptr); 1664 } 1665 break; 1666 case SADB_GET: 1667 /* 1668 * Do a lot of work here, because of the ipsa I just found. 1669 * First construct the new PF_KEY message, then abandon 1670 * the old one. 1671 */ 1672 mp1 = sadb_sa2msg(ipsa, samsg); 1673 if (mp1 == NULL) { 1674 sadb_pfkey_error(pfkey_q, mp, ENOMEM, 1675 SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial); 1676 return; 1677 } 1678 freemsg(mp->b_cont); 1679 mp->b_cont = mp1; 1680 break; 1681 case SADB_DELETE: 1682 case SADB_X_DELPAIR: 1683 if (ipsa == NULL) 1684 goto justecho; 1685 /* 1686 * Because listening KMds may require more info, treat 1687 * DELETE like a special case of GET. 1688 */ 1689 mp1 = sadb_sa2msg(ipsa, samsg); 1690 if (mp1 == NULL) { 1691 sadb_pfkey_error(pfkey_q, mp, ENOMEM, 1692 SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial); 1693 return; 1694 } 1695 newsamsg = (sadb_msg_t *)mp1->b_rptr; 1696 sadb_strip(newsamsg); 1697 oldend = mp1->b_wptr; 1698 mp1->b_wptr = mp1->b_rptr + SADB_64TO8(newsamsg->sadb_msg_len); 1699 bzero(mp1->b_wptr, oldend - mp1->b_wptr); 1700 freemsg(mp->b_cont); 1701 mp->b_cont = mp1; 1702 break; 1703 default: 1704 freemsg(mp); 1705 return; 1706 } 1707 1708 /* ksi is now null and void. */ 1709 kso = (keysock_out_t *)ksi; 1710 kso->ks_out_type = KEYSOCK_OUT; 1711 kso->ks_out_len = sizeof (*kso); 1712 kso->ks_out_serial = ksi->ks_in_serial; 1713 /* We're ready to send... */ 1714 putnext(pfkey_q, mp); 1715 } 1716 1717 /* 1718 * Set up a global pfkey_q instance for AH, ESP, or some other consumer. 1719 */ 1720 void 1721 sadb_keysock_hello(queue_t **pfkey_qp, queue_t *q, mblk_t *mp, 1722 void (*ager)(void *), void *agerarg, timeout_id_t *top, int satype) 1723 { 1724 keysock_hello_ack_t *kha; 1725 queue_t *oldq; 1726 1727 ASSERT(OTHERQ(q) != NULL); 1728 1729 /* 1730 * First, check atomically that I'm the first and only keysock 1731 * instance. 1732 * 1733 * Use OTHERQ(q), because qreply(q, mp) == putnext(OTHERQ(q), mp), 1734 * and I want this module to say putnext(*_pfkey_q, mp) for PF_KEY 1735 * messages. 1736 */ 1737 1738 oldq = atomic_cas_ptr((void **)pfkey_qp, NULL, OTHERQ(q)); 1739 if (oldq != NULL) { 1740 ASSERT(oldq != q); 1741 cmn_err(CE_WARN, "Danger! Multiple keysocks on top of %s.\n", 1742 (satype == SADB_SATYPE_ESP)? "ESP" : "AH or other"); 1743 freemsg(mp); 1744 return; 1745 } 1746 1747 kha = (keysock_hello_ack_t *)mp->b_rptr; 1748 kha->ks_hello_len = sizeof (keysock_hello_ack_t); 1749 kha->ks_hello_type = KEYSOCK_HELLO_ACK; 1750 kha->ks_hello_satype = (uint8_t)satype; 1751 1752 /* 1753 * If we made it past the atomic_cas_ptr, then we have "exclusive" 1754 * access to the timeout handle. Fire it off after the default ager 1755 * interval. 1756 */ 1757 *top = qtimeout(*pfkey_qp, ager, agerarg, 1758 drv_usectohz(SADB_AGE_INTERVAL_DEFAULT * 1000)); 1759 1760 putnext(*pfkey_qp, mp); 1761 } 1762 1763 /* 1764 * Normalize IPv4-mapped IPv6 addresses (and prefixes) as appropriate. 1765 * 1766 * Check addresses themselves for wildcard or multicast. 1767 * Check ire table for local/non-local/broadcast. 1768 */ 1769 int 1770 sadb_addrcheck(queue_t *pfkey_q, mblk_t *mp, sadb_ext_t *ext, uint_t serial, 1771 netstack_t *ns) 1772 { 1773 sadb_address_t *addr = (sadb_address_t *)ext; 1774 struct sockaddr_in *sin; 1775 struct sockaddr_in6 *sin6; 1776 int diagnostic, type; 1777 boolean_t normalized = B_FALSE; 1778 1779 ASSERT(ext != NULL); 1780 ASSERT((ext->sadb_ext_type == SADB_EXT_ADDRESS_SRC) || 1781 (ext->sadb_ext_type == SADB_EXT_ADDRESS_DST) || 1782 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC) || 1783 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_DST) || 1784 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_NATT_LOC) || 1785 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_NATT_REM)); 1786 1787 diagnostic = 0; 1788 1789 /* Assign both sockaddrs, the compiler will do the right thing. */ 1790 sin = (struct sockaddr_in *)(addr + 1); 1791 sin6 = (struct sockaddr_in6 *)(addr + 1); 1792 1793 if (sin6->sin6_family == AF_INET6) { 1794 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 1795 /* 1796 * Convert to an AF_INET sockaddr. This means the 1797 * return messages will have the extra space, but have 1798 * AF_INET sockaddrs instead of AF_INET6. 1799 * 1800 * Yes, RFC 2367 isn't clear on what to do here w.r.t. 1801 * mapped addresses, but since AF_INET6 ::ffff:<v4> is 1802 * equal to AF_INET <v4>, it shouldnt be a huge 1803 * problem. 1804 */ 1805 sin->sin_family = AF_INET; 1806 IN6_V4MAPPED_TO_INADDR(&sin6->sin6_addr, 1807 &sin->sin_addr); 1808 bzero(&sin->sin_zero, sizeof (sin->sin_zero)); 1809 normalized = B_TRUE; 1810 } 1811 } else if (sin->sin_family != AF_INET) { 1812 switch (ext->sadb_ext_type) { 1813 case SADB_EXT_ADDRESS_SRC: 1814 diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC_AF; 1815 break; 1816 case SADB_EXT_ADDRESS_DST: 1817 diagnostic = SADB_X_DIAGNOSTIC_BAD_DST_AF; 1818 break; 1819 case SADB_X_EXT_ADDRESS_INNER_SRC: 1820 diagnostic = SADB_X_DIAGNOSTIC_BAD_PROXY_AF; 1821 break; 1822 case SADB_X_EXT_ADDRESS_INNER_DST: 1823 diagnostic = SADB_X_DIAGNOSTIC_BAD_INNER_DST_AF; 1824 break; 1825 case SADB_X_EXT_ADDRESS_NATT_LOC: 1826 diagnostic = SADB_X_DIAGNOSTIC_BAD_NATT_LOC_AF; 1827 break; 1828 case SADB_X_EXT_ADDRESS_NATT_REM: 1829 diagnostic = SADB_X_DIAGNOSTIC_BAD_NATT_REM_AF; 1830 break; 1831 /* There is no default, see above ASSERT. */ 1832 } 1833 bail: 1834 if (pfkey_q != NULL) { 1835 sadb_pfkey_error(pfkey_q, mp, EINVAL, diagnostic, 1836 serial); 1837 } else { 1838 /* 1839 * Scribble in sadb_msg that we got passed in. 1840 * Overload "mp" to be an sadb_msg pointer. 1841 */ 1842 sadb_msg_t *samsg = (sadb_msg_t *)mp; 1843 1844 samsg->sadb_msg_errno = EINVAL; 1845 samsg->sadb_x_msg_diagnostic = diagnostic; 1846 } 1847 return (KS_IN_ADDR_UNKNOWN); 1848 } 1849 1850 if (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC || 1851 ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_DST) { 1852 /* 1853 * We need only check for prefix issues. 1854 */ 1855 1856 /* Set diagnostic now, in case we need it later. */ 1857 diagnostic = 1858 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC) ? 1859 SADB_X_DIAGNOSTIC_PREFIX_INNER_SRC : 1860 SADB_X_DIAGNOSTIC_PREFIX_INNER_DST; 1861 1862 if (normalized) 1863 addr->sadb_address_prefixlen -= 96; 1864 1865 /* 1866 * Verify and mask out inner-addresses based on prefix length. 1867 */ 1868 if (sin->sin_family == AF_INET) { 1869 if (addr->sadb_address_prefixlen > 32) 1870 goto bail; 1871 sin->sin_addr.s_addr &= 1872 ip_plen_to_mask(addr->sadb_address_prefixlen); 1873 } else { 1874 in6_addr_t mask; 1875 1876 ASSERT(sin->sin_family == AF_INET6); 1877 /* 1878 * ip_plen_to_mask_v6() returns NULL if the value in 1879 * question is out of range. 1880 */ 1881 if (ip_plen_to_mask_v6(addr->sadb_address_prefixlen, 1882 &mask) == NULL) 1883 goto bail; 1884 sin6->sin6_addr.s6_addr32[0] &= mask.s6_addr32[0]; 1885 sin6->sin6_addr.s6_addr32[1] &= mask.s6_addr32[1]; 1886 sin6->sin6_addr.s6_addr32[2] &= mask.s6_addr32[2]; 1887 sin6->sin6_addr.s6_addr32[3] &= mask.s6_addr32[3]; 1888 } 1889 1890 /* We don't care in these cases. */ 1891 return (KS_IN_ADDR_DONTCARE); 1892 } 1893 1894 if (sin->sin_family == AF_INET6) { 1895 /* Check the easy ones now. */ 1896 if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1897 return (KS_IN_ADDR_MBCAST); 1898 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 1899 return (KS_IN_ADDR_UNSPEC); 1900 /* 1901 * At this point, we're a unicast IPv6 address. 1902 * 1903 * XXX Zones alert -> me/notme decision needs to be tempered 1904 * by what zone we're in when we go to zone-aware IPsec. 1905 */ 1906 if (ip_type_v6(&sin6->sin6_addr, ns->netstack_ip) == 1907 IRE_LOCAL) { 1908 /* Hey hey, it's local. */ 1909 return (KS_IN_ADDR_ME); 1910 } 1911 } else { 1912 ASSERT(sin->sin_family == AF_INET); 1913 if (sin->sin_addr.s_addr == INADDR_ANY) 1914 return (KS_IN_ADDR_UNSPEC); 1915 if (CLASSD(sin->sin_addr.s_addr)) 1916 return (KS_IN_ADDR_MBCAST); 1917 /* 1918 * At this point we're a unicast or broadcast IPv4 address. 1919 * 1920 * Check if the address is IRE_BROADCAST or IRE_LOCAL. 1921 * 1922 * XXX Zones alert -> me/notme decision needs to be tempered 1923 * by what zone we're in when we go to zone-aware IPsec. 1924 */ 1925 type = ip_type_v4(sin->sin_addr.s_addr, ns->netstack_ip); 1926 switch (type) { 1927 case IRE_LOCAL: 1928 return (KS_IN_ADDR_ME); 1929 case IRE_BROADCAST: 1930 return (KS_IN_ADDR_MBCAST); 1931 } 1932 } 1933 1934 return (KS_IN_ADDR_NOTME); 1935 } 1936 1937 /* 1938 * Address normalizations and reality checks for inbound PF_KEY messages. 1939 * 1940 * For the case of src == unspecified AF_INET6, and dst == AF_INET, convert 1941 * the source to AF_INET. Do the same for the inner sources. 1942 */ 1943 boolean_t 1944 sadb_addrfix(keysock_in_t *ksi, queue_t *pfkey_q, mblk_t *mp, netstack_t *ns) 1945 { 1946 struct sockaddr_in *src, *isrc; 1947 struct sockaddr_in6 *dst, *idst; 1948 sadb_address_t *srcext, *dstext; 1949 uint16_t sport; 1950 sadb_ext_t **extv = ksi->ks_in_extv; 1951 int rc; 1952 1953 if (extv[SADB_EXT_ADDRESS_SRC] != NULL) { 1954 rc = sadb_addrcheck(pfkey_q, mp, extv[SADB_EXT_ADDRESS_SRC], 1955 ksi->ks_in_serial, ns); 1956 if (rc == KS_IN_ADDR_UNKNOWN) 1957 return (B_FALSE); 1958 if (rc == KS_IN_ADDR_MBCAST) { 1959 sadb_pfkey_error(pfkey_q, mp, EINVAL, 1960 SADB_X_DIAGNOSTIC_BAD_SRC, ksi->ks_in_serial); 1961 return (B_FALSE); 1962 } 1963 ksi->ks_in_srctype = rc; 1964 } 1965 1966 if (extv[SADB_EXT_ADDRESS_DST] != NULL) { 1967 rc = sadb_addrcheck(pfkey_q, mp, extv[SADB_EXT_ADDRESS_DST], 1968 ksi->ks_in_serial, ns); 1969 if (rc == KS_IN_ADDR_UNKNOWN) 1970 return (B_FALSE); 1971 if (rc == KS_IN_ADDR_UNSPEC) { 1972 sadb_pfkey_error(pfkey_q, mp, EINVAL, 1973 SADB_X_DIAGNOSTIC_BAD_DST, ksi->ks_in_serial); 1974 return (B_FALSE); 1975 } 1976 ksi->ks_in_dsttype = rc; 1977 } 1978 1979 /* 1980 * NAT-Traversal addrs are simple enough to not require all of 1981 * the checks in sadb_addrcheck(). Just normalize or reject if not 1982 * AF_INET. 1983 */ 1984 if (extv[SADB_X_EXT_ADDRESS_NATT_LOC] != NULL) { 1985 rc = sadb_addrcheck(pfkey_q, mp, 1986 extv[SADB_X_EXT_ADDRESS_NATT_LOC], ksi->ks_in_serial, ns); 1987 1988 /* 1989 * Local NAT-T addresses never use an IRE_LOCAL, so it should 1990 * always be NOTME, or UNSPEC (to handle both tunnel mode 1991 * AND local-port flexibility). 1992 */ 1993 if (rc != KS_IN_ADDR_NOTME && rc != KS_IN_ADDR_UNSPEC) { 1994 sadb_pfkey_error(pfkey_q, mp, EINVAL, 1995 SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC, 1996 ksi->ks_in_serial); 1997 return (B_FALSE); 1998 } 1999 src = (struct sockaddr_in *) 2000 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_NATT_LOC]) + 1); 2001 if (src->sin_family != AF_INET) { 2002 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2003 SADB_X_DIAGNOSTIC_BAD_NATT_LOC_AF, 2004 ksi->ks_in_serial); 2005 return (B_FALSE); 2006 } 2007 } 2008 2009 if (extv[SADB_X_EXT_ADDRESS_NATT_REM] != NULL) { 2010 rc = sadb_addrcheck(pfkey_q, mp, 2011 extv[SADB_X_EXT_ADDRESS_NATT_REM], ksi->ks_in_serial, ns); 2012 2013 /* 2014 * Remote NAT-T addresses never use an IRE_LOCAL, so it should 2015 * always be NOTME, or UNSPEC if it's a tunnel-mode SA. 2016 */ 2017 if (rc != KS_IN_ADDR_NOTME && 2018 !(extv[SADB_X_EXT_ADDRESS_INNER_SRC] != NULL && 2019 rc == KS_IN_ADDR_UNSPEC)) { 2020 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2021 SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM, 2022 ksi->ks_in_serial); 2023 return (B_FALSE); 2024 } 2025 src = (struct sockaddr_in *) 2026 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_NATT_REM]) + 1); 2027 if (src->sin_family != AF_INET) { 2028 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2029 SADB_X_DIAGNOSTIC_BAD_NATT_REM_AF, 2030 ksi->ks_in_serial); 2031 return (B_FALSE); 2032 } 2033 } 2034 2035 if (extv[SADB_X_EXT_ADDRESS_INNER_SRC] != NULL) { 2036 if (extv[SADB_X_EXT_ADDRESS_INNER_DST] == NULL) { 2037 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2038 SADB_X_DIAGNOSTIC_MISSING_INNER_DST, 2039 ksi->ks_in_serial); 2040 return (B_FALSE); 2041 } 2042 2043 if (sadb_addrcheck(pfkey_q, mp, 2044 extv[SADB_X_EXT_ADDRESS_INNER_DST], ksi->ks_in_serial, ns) 2045 == KS_IN_ADDR_UNKNOWN || 2046 sadb_addrcheck(pfkey_q, mp, 2047 extv[SADB_X_EXT_ADDRESS_INNER_SRC], ksi->ks_in_serial, ns) 2048 == KS_IN_ADDR_UNKNOWN) 2049 return (B_FALSE); 2050 2051 isrc = (struct sockaddr_in *) 2052 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_SRC]) + 2053 1); 2054 idst = (struct sockaddr_in6 *) 2055 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_DST]) + 2056 1); 2057 if (isrc->sin_family != idst->sin6_family) { 2058 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2059 SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH, 2060 ksi->ks_in_serial); 2061 return (B_FALSE); 2062 } 2063 } else if (extv[SADB_X_EXT_ADDRESS_INNER_DST] != NULL) { 2064 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2065 SADB_X_DIAGNOSTIC_MISSING_INNER_SRC, 2066 ksi->ks_in_serial); 2067 return (B_FALSE); 2068 } else { 2069 isrc = NULL; /* For inner/outer port check below. */ 2070 } 2071 2072 dstext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_DST]; 2073 srcext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_SRC]; 2074 2075 if (dstext == NULL || srcext == NULL) 2076 return (B_TRUE); 2077 2078 dst = (struct sockaddr_in6 *)(dstext + 1); 2079 src = (struct sockaddr_in *)(srcext + 1); 2080 2081 if (isrc != NULL && 2082 (isrc->sin_port != 0 || idst->sin6_port != 0) && 2083 (src->sin_port != 0 || dst->sin6_port != 0)) { 2084 /* Can't set inner and outer ports in one SA. */ 2085 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2086 SADB_X_DIAGNOSTIC_DUAL_PORT_SETS, 2087 ksi->ks_in_serial); 2088 return (B_FALSE); 2089 } 2090 2091 if (dst->sin6_family == src->sin_family) 2092 return (B_TRUE); 2093 2094 if (srcext->sadb_address_proto != dstext->sadb_address_proto) { 2095 if (srcext->sadb_address_proto == 0) { 2096 srcext->sadb_address_proto = dstext->sadb_address_proto; 2097 } else if (dstext->sadb_address_proto == 0) { 2098 dstext->sadb_address_proto = srcext->sadb_address_proto; 2099 } else { 2100 /* Inequal protocols, neither were 0. Report error. */ 2101 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2102 SADB_X_DIAGNOSTIC_PROTO_MISMATCH, 2103 ksi->ks_in_serial); 2104 return (B_FALSE); 2105 } 2106 } 2107 2108 /* 2109 * With the exception of an unspec IPv6 source and an IPv4 2110 * destination, address families MUST me matched. 2111 */ 2112 if (src->sin_family == AF_INET || 2113 ksi->ks_in_srctype != KS_IN_ADDR_UNSPEC) { 2114 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2115 SADB_X_DIAGNOSTIC_AF_MISMATCH, ksi->ks_in_serial); 2116 return (B_FALSE); 2117 } 2118 2119 /* 2120 * Convert "src" to AF_INET INADDR_ANY. We rely on sin_port being 2121 * in the same place for sockaddr_in and sockaddr_in6. 2122 */ 2123 sport = src->sin_port; 2124 bzero(src, sizeof (*src)); 2125 src->sin_family = AF_INET; 2126 src->sin_port = sport; 2127 2128 return (B_TRUE); 2129 } 2130 2131 /* 2132 * Set the results in "addrtype", given an IRE as requested by 2133 * sadb_addrcheck(). 2134 */ 2135 int 2136 sadb_addrset(ire_t *ire) 2137 { 2138 if ((ire->ire_type & IRE_BROADCAST) || 2139 (ire->ire_ipversion == IPV4_VERSION && CLASSD(ire->ire_addr)) || 2140 (ire->ire_ipversion == IPV6_VERSION && 2141 IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6)))) 2142 return (KS_IN_ADDR_MBCAST); 2143 if (ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) 2144 return (KS_IN_ADDR_ME); 2145 return (KS_IN_ADDR_NOTME); 2146 } 2147 2148 /* 2149 * Match primitives.. 2150 * !!! TODO: short term: inner selectors 2151 * ipv6 scope id (ifindex) 2152 * longer term: zone id. sensitivity label. uid. 2153 */ 2154 boolean_t 2155 sadb_match_spi(ipsa_query_t *sq, ipsa_t *sa) 2156 { 2157 return (sq->spi == sa->ipsa_spi); 2158 } 2159 2160 boolean_t 2161 sadb_match_dst_v6(ipsa_query_t *sq, ipsa_t *sa) 2162 { 2163 return (IPSA_ARE_ADDR_EQUAL(sa->ipsa_dstaddr, sq->dstaddr, AF_INET6)); 2164 } 2165 2166 boolean_t 2167 sadb_match_src_v6(ipsa_query_t *sq, ipsa_t *sa) 2168 { 2169 return (IPSA_ARE_ADDR_EQUAL(sa->ipsa_srcaddr, sq->srcaddr, AF_INET6)); 2170 } 2171 2172 boolean_t 2173 sadb_match_dst_v4(ipsa_query_t *sq, ipsa_t *sa) 2174 { 2175 return (sq->dstaddr[0] == sa->ipsa_dstaddr[0]); 2176 } 2177 2178 boolean_t 2179 sadb_match_src_v4(ipsa_query_t *sq, ipsa_t *sa) 2180 { 2181 return (sq->srcaddr[0] == sa->ipsa_srcaddr[0]); 2182 } 2183 2184 boolean_t 2185 sadb_match_dstid(ipsa_query_t *sq, ipsa_t *sa) 2186 { 2187 return ((sa->ipsa_dst_cid != NULL) && 2188 (sq->didtype == sa->ipsa_dst_cid->ipsid_type) && 2189 (strcmp(sq->didstr, sa->ipsa_dst_cid->ipsid_cid) == 0)); 2190 2191 } 2192 boolean_t 2193 sadb_match_srcid(ipsa_query_t *sq, ipsa_t *sa) 2194 { 2195 return ((sa->ipsa_src_cid != NULL) && 2196 (sq->sidtype == sa->ipsa_src_cid->ipsid_type) && 2197 (strcmp(sq->sidstr, sa->ipsa_src_cid->ipsid_cid) == 0)); 2198 } 2199 2200 boolean_t 2201 sadb_match_kmc(ipsa_query_t *sq, ipsa_t *sa) 2202 { 2203 #define M(a, b) (((a) == 0) || ((b) == 0) || ((a) == (b))) 2204 2205 return (M(sq->kmc, sa->ipsa_kmc) && M(sq->kmp, sa->ipsa_kmp)); 2206 2207 #undef M 2208 } 2209 2210 /* 2211 * Common function which extracts several PF_KEY extensions for ease of 2212 * SADB matching. 2213 * 2214 * XXX TODO: weed out ipsa_query_t fields not used during matching 2215 * or afterwards? 2216 */ 2217 int 2218 sadb_form_query(keysock_in_t *ksi, uint32_t req, uint32_t match, 2219 ipsa_query_t *sq, int *diagnostic) 2220 { 2221 int i; 2222 ipsa_match_fn_t *mfpp = &(sq->matchers[0]); 2223 2224 for (i = 0; i < IPSA_NMATCH; i++) 2225 sq->matchers[i] = NULL; 2226 2227 ASSERT((req & ~match) == 0); 2228 2229 sq->req = req; 2230 sq->dstext = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 2231 sq->srcext = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 2232 sq->assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 2233 2234 if ((req & IPSA_Q_DST) && (sq->dstext == NULL)) { 2235 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 2236 return (EINVAL); 2237 } 2238 if ((req & IPSA_Q_SRC) && (sq->srcext == NULL)) { 2239 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 2240 return (EINVAL); 2241 } 2242 if ((req & IPSA_Q_SA) && (sq->assoc == NULL)) { 2243 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 2244 return (EINVAL); 2245 } 2246 2247 if (match & IPSA_Q_SA) { 2248 *mfpp++ = sadb_match_spi; 2249 sq->spi = sq->assoc->sadb_sa_spi; 2250 } 2251 2252 if (sq->dstext != NULL) 2253 sq->dst = (struct sockaddr_in *)(sq->dstext + 1); 2254 else { 2255 sq->dst = NULL; 2256 sq->dst6 = NULL; 2257 sq->dstaddr = NULL; 2258 } 2259 2260 if (sq->srcext != NULL) 2261 sq->src = (struct sockaddr_in *)(sq->srcext + 1); 2262 else { 2263 sq->src = NULL; 2264 sq->src6 = NULL; 2265 sq->srcaddr = NULL; 2266 } 2267 2268 if (sq->dst != NULL) 2269 sq->af = sq->dst->sin_family; 2270 else if (sq->src != NULL) 2271 sq->af = sq->src->sin_family; 2272 else 2273 sq->af = AF_INET; 2274 2275 if (sq->af == AF_INET6) { 2276 if ((match & IPSA_Q_DST) && (sq->dstext != NULL)) { 2277 *mfpp++ = sadb_match_dst_v6; 2278 sq->dst6 = (struct sockaddr_in6 *)sq->dst; 2279 sq->dstaddr = (uint32_t *)&(sq->dst6->sin6_addr); 2280 } else { 2281 match &= ~IPSA_Q_DST; 2282 sq->dstaddr = ALL_ZEROES_PTR; 2283 } 2284 2285 if ((match & IPSA_Q_SRC) && (sq->srcext != NULL)) { 2286 sq->src6 = (struct sockaddr_in6 *)(sq->srcext + 1); 2287 sq->srcaddr = (uint32_t *)&sq->src6->sin6_addr; 2288 if (sq->src6->sin6_family != AF_INET6) { 2289 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 2290 return (EINVAL); 2291 } 2292 *mfpp++ = sadb_match_src_v6; 2293 } else { 2294 match &= ~IPSA_Q_SRC; 2295 sq->srcaddr = ALL_ZEROES_PTR; 2296 } 2297 } else { 2298 sq->src6 = sq->dst6 = NULL; 2299 if ((match & IPSA_Q_DST) && (sq->dstext != NULL)) { 2300 *mfpp++ = sadb_match_dst_v4; 2301 sq->dstaddr = (uint32_t *)&sq->dst->sin_addr; 2302 } else { 2303 match &= ~IPSA_Q_DST; 2304 sq->dstaddr = ALL_ZEROES_PTR; 2305 } 2306 if ((match & IPSA_Q_SRC) && (sq->srcext != NULL)) { 2307 sq->srcaddr = (uint32_t *)&sq->src->sin_addr; 2308 if (sq->src->sin_family != AF_INET) { 2309 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 2310 return (EINVAL); 2311 } 2312 *mfpp++ = sadb_match_src_v4; 2313 } else { 2314 match &= ~IPSA_Q_SRC; 2315 sq->srcaddr = ALL_ZEROES_PTR; 2316 } 2317 } 2318 2319 sq->dstid = (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_DST]; 2320 if ((match & IPSA_Q_DSTID) && (sq->dstid != NULL)) { 2321 sq->didstr = (char *)(sq->dstid + 1); 2322 sq->didtype = sq->dstid->sadb_ident_type; 2323 *mfpp++ = sadb_match_dstid; 2324 } 2325 2326 sq->srcid = (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC]; 2327 2328 if ((match & IPSA_Q_SRCID) && (sq->srcid != NULL)) { 2329 sq->sidstr = (char *)(sq->srcid + 1); 2330 sq->sidtype = sq->srcid->sadb_ident_type; 2331 *mfpp++ = sadb_match_srcid; 2332 } 2333 2334 sq->kmcext = (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE]; 2335 sq->kmc = 0; 2336 sq->kmp = 0; 2337 2338 if ((match & IPSA_Q_KMC) && (sq->kmcext)) { 2339 sq->kmp = sq->kmcext->sadb_x_kmc_proto; 2340 /* 2341 * Be liberal in what we receive. Special-case the IKEv1 2342 * cookie, which closed-source in.iked assumes is 32 bits. 2343 * Now that we store all 64 bits, we should pre-zero the 2344 * reserved field on behalf of closed-source in.iked. 2345 */ 2346 if (sq->kmp == SADB_X_KMP_IKE) { 2347 /* Just in case in.iked is misbehaving... */ 2348 sq->kmcext->sadb_x_kmc_reserved = 0; 2349 } 2350 sq->kmc = sq->kmcext->sadb_x_kmc_cookie64; 2351 *mfpp++ = sadb_match_kmc; 2352 } 2353 2354 if (match & (IPSA_Q_INBOUND|IPSA_Q_OUTBOUND)) { 2355 if (sq->af == AF_INET6) 2356 sq->sp = &sq->spp->s_v6; 2357 else 2358 sq->sp = &sq->spp->s_v4; 2359 } else { 2360 sq->sp = NULL; 2361 } 2362 2363 if (match & IPSA_Q_INBOUND) { 2364 sq->inhash = INBOUND_HASH(sq->sp, sq->assoc->sadb_sa_spi); 2365 sq->inbound = &sq->sp->sdb_if[sq->inhash]; 2366 } else { 2367 sq->inhash = 0; 2368 sq->inbound = NULL; 2369 } 2370 2371 if (match & IPSA_Q_OUTBOUND) { 2372 if (sq->af == AF_INET6) { 2373 sq->outhash = OUTBOUND_HASH_V6(sq->sp, *(sq->dstaddr)); 2374 } else { 2375 sq->outhash = OUTBOUND_HASH_V4(sq->sp, *(sq->dstaddr)); 2376 } 2377 sq->outbound = &sq->sp->sdb_of[sq->outhash]; 2378 } else { 2379 sq->outhash = 0; 2380 sq->outbound = NULL; 2381 } 2382 sq->match = match; 2383 return (0); 2384 } 2385 2386 /* 2387 * Match an initialized query structure with a security association; 2388 * return B_TRUE on a match, B_FALSE on a miss. 2389 * Applies match functions set up by sadb_form_query() until one returns false. 2390 */ 2391 boolean_t 2392 sadb_match_query(ipsa_query_t *sq, ipsa_t *sa) 2393 { 2394 ipsa_match_fn_t *mfpp = &(sq->matchers[0]); 2395 ipsa_match_fn_t mfp; 2396 2397 for (mfp = *mfpp++; mfp != NULL; mfp = *mfpp++) { 2398 if (!mfp(sq, sa)) 2399 return (B_FALSE); 2400 } 2401 return (B_TRUE); 2402 } 2403 2404 /* 2405 * Walker callback function to delete sa's based on src/dst address. 2406 * Assumes that we're called with *head locked, no other locks held; 2407 * Conveniently, and not coincidentally, this is both what sadb_walker 2408 * gives us and also what sadb_unlinkassoc expects. 2409 */ 2410 struct sadb_purge_state 2411 { 2412 ipsa_query_t sq; 2413 boolean_t inbnd; 2414 uint8_t sadb_sa_state; 2415 }; 2416 2417 static void 2418 sadb_purge_cb(isaf_t *head, ipsa_t *entry, void *cookie) 2419 { 2420 struct sadb_purge_state *ps = (struct sadb_purge_state *)cookie; 2421 2422 ASSERT(MUTEX_HELD(&head->isaf_lock)); 2423 2424 mutex_enter(&entry->ipsa_lock); 2425 2426 if (entry->ipsa_state == IPSA_STATE_LARVAL || 2427 !sadb_match_query(&ps->sq, entry)) { 2428 mutex_exit(&entry->ipsa_lock); 2429 return; 2430 } 2431 2432 if (ps->inbnd) { 2433 sadb_delete_cluster(entry); 2434 } 2435 entry->ipsa_state = IPSA_STATE_DEAD; 2436 (void) sadb_torch_assoc(head, entry); 2437 } 2438 2439 /* 2440 * Common code to purge an SA with a matching src or dst address. 2441 * Don't kill larval SA's in such a purge. 2442 */ 2443 int 2444 sadb_purge_sa(mblk_t *mp, keysock_in_t *ksi, sadb_t *sp, 2445 int *diagnostic, queue_t *pfkey_q) 2446 { 2447 struct sadb_purge_state ps; 2448 int error = sadb_form_query(ksi, 0, 2449 IPSA_Q_SRC|IPSA_Q_DST|IPSA_Q_SRCID|IPSA_Q_DSTID|IPSA_Q_KMC, 2450 &ps.sq, diagnostic); 2451 2452 if (error != 0) 2453 return (error); 2454 2455 /* 2456 * This is simple, crude, and effective. 2457 * Unimplemented optimizations (TBD): 2458 * - we can limit how many places we search based on where we 2459 * think the SA is filed. 2460 * - if we get a dst address, we can hash based on dst addr to find 2461 * the correct bucket in the outbound table. 2462 */ 2463 ps.inbnd = B_TRUE; 2464 sadb_walker(sp->sdb_if, sp->sdb_hashsize, sadb_purge_cb, &ps); 2465 ps.inbnd = B_FALSE; 2466 sadb_walker(sp->sdb_of, sp->sdb_hashsize, sadb_purge_cb, &ps); 2467 2468 ASSERT(mp->b_cont != NULL); 2469 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi, 2470 NULL); 2471 return (0); 2472 } 2473 2474 static void 2475 sadb_delpair_state_one(isaf_t *head, ipsa_t *entry, void *cookie) 2476 { 2477 struct sadb_purge_state *ps = (struct sadb_purge_state *)cookie; 2478 isaf_t *inbound_bucket; 2479 ipsa_t *peer_assoc; 2480 ipsa_query_t *sq = &ps->sq; 2481 2482 ASSERT(MUTEX_HELD(&head->isaf_lock)); 2483 2484 mutex_enter(&entry->ipsa_lock); 2485 2486 if ((entry->ipsa_state != ps->sadb_sa_state) || 2487 ((sq->srcaddr != NULL) && 2488 !IPSA_ARE_ADDR_EQUAL(entry->ipsa_srcaddr, sq->srcaddr, sq->af))) { 2489 mutex_exit(&entry->ipsa_lock); 2490 return; 2491 } 2492 2493 /* 2494 * The isaf_t *, which is passed in , is always an outbound bucket, 2495 * and we are preserving the outbound-then-inbound hash-bucket lock 2496 * ordering. The sadb_walker() which triggers this function is called 2497 * only on the outbound fanout, and the corresponding inbound bucket 2498 * lock is safe to acquire here. 2499 */ 2500 2501 if (entry->ipsa_haspeer) { 2502 inbound_bucket = INBOUND_BUCKET(sq->sp, entry->ipsa_spi); 2503 mutex_enter(&inbound_bucket->isaf_lock); 2504 peer_assoc = ipsec_getassocbyspi(inbound_bucket, 2505 entry->ipsa_spi, entry->ipsa_srcaddr, 2506 entry->ipsa_dstaddr, entry->ipsa_addrfam); 2507 } else { 2508 inbound_bucket = INBOUND_BUCKET(sq->sp, entry->ipsa_otherspi); 2509 mutex_enter(&inbound_bucket->isaf_lock); 2510 peer_assoc = ipsec_getassocbyspi(inbound_bucket, 2511 entry->ipsa_otherspi, entry->ipsa_dstaddr, 2512 entry->ipsa_srcaddr, entry->ipsa_addrfam); 2513 } 2514 2515 entry->ipsa_state = IPSA_STATE_DEAD; 2516 (void) sadb_torch_assoc(head, entry); 2517 if (peer_assoc != NULL) { 2518 mutex_enter(&peer_assoc->ipsa_lock); 2519 peer_assoc->ipsa_state = IPSA_STATE_DEAD; 2520 (void) sadb_torch_assoc(inbound_bucket, peer_assoc); 2521 } 2522 mutex_exit(&inbound_bucket->isaf_lock); 2523 } 2524 2525 static int 2526 sadb_delpair_state(mblk_t *mp, keysock_in_t *ksi, sadbp_t *spp, 2527 int *diagnostic, queue_t *pfkey_q) 2528 { 2529 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 2530 struct sadb_purge_state ps; 2531 int error; 2532 2533 ps.sq.spp = spp; /* XXX param */ 2534 2535 error = sadb_form_query(ksi, IPSA_Q_DST|IPSA_Q_SRC, 2536 IPSA_Q_SRC|IPSA_Q_DST|IPSA_Q_SRCID|IPSA_Q_DSTID|IPSA_Q_KMC, 2537 &ps.sq, diagnostic); 2538 if (error != 0) 2539 return (error); 2540 2541 ps.inbnd = B_FALSE; 2542 ps.sadb_sa_state = assoc->sadb_sa_state; 2543 sadb_walker(ps.sq.sp->sdb_of, ps.sq.sp->sdb_hashsize, 2544 sadb_delpair_state_one, &ps); 2545 2546 ASSERT(mp->b_cont != NULL); 2547 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, 2548 ksi, NULL); 2549 return (0); 2550 } 2551 2552 /* 2553 * Common code to delete/get an SA. 2554 */ 2555 int 2556 sadb_delget_sa(mblk_t *mp, keysock_in_t *ksi, sadbp_t *spp, 2557 int *diagnostic, queue_t *pfkey_q, uint8_t sadb_msg_type) 2558 { 2559 ipsa_query_t sq; 2560 ipsa_t *echo_target = NULL; 2561 ipsap_t ipsapp; 2562 uint_t error = 0; 2563 2564 if (sadb_msg_type == SADB_X_DELPAIR_STATE) 2565 return (sadb_delpair_state(mp, ksi, spp, diagnostic, pfkey_q)); 2566 2567 sq.spp = spp; /* XXX param */ 2568 error = sadb_form_query(ksi, IPSA_Q_DST|IPSA_Q_SA, 2569 IPSA_Q_SRC|IPSA_Q_DST|IPSA_Q_SA|IPSA_Q_INBOUND|IPSA_Q_OUTBOUND, 2570 &sq, diagnostic); 2571 if (error != 0) 2572 return (error); 2573 2574 error = get_ipsa_pair(&sq, &ipsapp, diagnostic); 2575 if (error != 0) { 2576 return (error); 2577 } 2578 2579 echo_target = ipsapp.ipsap_sa_ptr; 2580 if (echo_target == NULL) 2581 echo_target = ipsapp.ipsap_psa_ptr; 2582 2583 if (sadb_msg_type == SADB_DELETE || sadb_msg_type == SADB_X_DELPAIR) { 2584 /* 2585 * Bucket locks will be required if SA is actually unlinked. 2586 * get_ipsa_pair() returns valid hash bucket pointers even 2587 * if it can't find a pair SA pointer. To prevent a potential 2588 * deadlock, always lock the outbound bucket before the inbound. 2589 */ 2590 if (ipsapp.in_inbound_table) { 2591 mutex_enter(&ipsapp.ipsap_pbucket->isaf_lock); 2592 mutex_enter(&ipsapp.ipsap_bucket->isaf_lock); 2593 } else { 2594 mutex_enter(&ipsapp.ipsap_bucket->isaf_lock); 2595 mutex_enter(&ipsapp.ipsap_pbucket->isaf_lock); 2596 } 2597 2598 if (ipsapp.ipsap_sa_ptr != NULL) { 2599 mutex_enter(&ipsapp.ipsap_sa_ptr->ipsa_lock); 2600 if (ipsapp.ipsap_sa_ptr->ipsa_flags & IPSA_F_INBOUND) { 2601 sadb_delete_cluster(ipsapp.ipsap_sa_ptr); 2602 } 2603 ipsapp.ipsap_sa_ptr->ipsa_state = IPSA_STATE_DEAD; 2604 (void) sadb_torch_assoc(ipsapp.ipsap_bucket, 2605 ipsapp.ipsap_sa_ptr); 2606 /* 2607 * sadb_torch_assoc() releases the ipsa_lock 2608 * and calls sadb_unlinkassoc() which does a 2609 * IPSA_REFRELE. 2610 */ 2611 } 2612 if (ipsapp.ipsap_psa_ptr != NULL) { 2613 mutex_enter(&ipsapp.ipsap_psa_ptr->ipsa_lock); 2614 if (sadb_msg_type == SADB_X_DELPAIR || 2615 ipsapp.ipsap_psa_ptr->ipsa_haspeer) { 2616 if (ipsapp.ipsap_psa_ptr->ipsa_flags & 2617 IPSA_F_INBOUND) { 2618 sadb_delete_cluster 2619 (ipsapp.ipsap_psa_ptr); 2620 } 2621 ipsapp.ipsap_psa_ptr->ipsa_state = 2622 IPSA_STATE_DEAD; 2623 (void) sadb_torch_assoc(ipsapp.ipsap_pbucket, 2624 ipsapp.ipsap_psa_ptr); 2625 } else { 2626 /* 2627 * Only half of the "pair" has been deleted. 2628 * Update the remaining SA and remove references 2629 * to its pair SA, which is now gone. 2630 */ 2631 ipsapp.ipsap_psa_ptr->ipsa_otherspi = 0; 2632 ipsapp.ipsap_psa_ptr->ipsa_flags &= 2633 ~IPSA_F_PAIRED; 2634 mutex_exit(&ipsapp.ipsap_psa_ptr->ipsa_lock); 2635 } 2636 } else if (sadb_msg_type == SADB_X_DELPAIR) { 2637 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND; 2638 error = ESRCH; 2639 } 2640 mutex_exit(&ipsapp.ipsap_bucket->isaf_lock); 2641 mutex_exit(&ipsapp.ipsap_pbucket->isaf_lock); 2642 } 2643 2644 ASSERT(mp->b_cont != NULL); 2645 2646 if (error == 0) 2647 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *) 2648 mp->b_cont->b_rptr, ksi, echo_target); 2649 2650 destroy_ipsa_pair(&ipsapp); 2651 2652 return (error); 2653 } 2654 2655 /* 2656 * This function takes a sadb_sa_t and finds the ipsa_t structure 2657 * and the isaf_t (hash bucket) that its stored under. If the security 2658 * association has a peer, the ipsa_t structure and bucket for that security 2659 * association are also searched for. The "pair" of ipsa_t's and isaf_t's 2660 * are returned as a ipsap_t. 2661 * 2662 * The hash buckets are returned for convenience, if the calling function 2663 * needs to use the hash bucket locks, say to remove the SA's, it should 2664 * take care to observe the convention of locking outbound bucket then 2665 * inbound bucket. The flag in_inbound_table provides direction. 2666 * 2667 * Note that a "pair" is defined as one (but not both) of the following: 2668 * 2669 * A security association which has a soft reference to another security 2670 * association via its SPI. 2671 * 2672 * A security association that is not obviously "inbound" or "outbound" so 2673 * it appears in both hash tables, the "peer" being the same security 2674 * association in the other hash table. 2675 * 2676 * This function will return NULL if the ipsa_t can't be found in the 2677 * inbound or outbound hash tables (not found). If only one ipsa_t is 2678 * found, the pair ipsa_t will be NULL. Both isaf_t values are valid 2679 * provided at least one ipsa_t is found. 2680 */ 2681 static int 2682 get_ipsa_pair(ipsa_query_t *sq, ipsap_t *ipsapp, int *diagnostic) 2683 { 2684 uint32_t pair_srcaddr[IPSA_MAX_ADDRLEN]; 2685 uint32_t pair_dstaddr[IPSA_MAX_ADDRLEN]; 2686 uint32_t pair_spi; 2687 2688 init_ipsa_pair(ipsapp); 2689 2690 ipsapp->in_inbound_table = B_FALSE; 2691 2692 /* Lock down both buckets. */ 2693 mutex_enter(&sq->outbound->isaf_lock); 2694 mutex_enter(&sq->inbound->isaf_lock); 2695 2696 if (sq->assoc->sadb_sa_flags & IPSA_F_INBOUND) { 2697 ipsapp->ipsap_sa_ptr = ipsec_getassocbyspi(sq->inbound, 2698 sq->assoc->sadb_sa_spi, sq->srcaddr, sq->dstaddr, sq->af); 2699 if (ipsapp->ipsap_sa_ptr != NULL) { 2700 ipsapp->ipsap_bucket = sq->inbound; 2701 ipsapp->ipsap_pbucket = sq->outbound; 2702 ipsapp->in_inbound_table = B_TRUE; 2703 } else { 2704 ipsapp->ipsap_sa_ptr = ipsec_getassocbyspi(sq->outbound, 2705 sq->assoc->sadb_sa_spi, sq->srcaddr, sq->dstaddr, 2706 sq->af); 2707 ipsapp->ipsap_bucket = sq->outbound; 2708 ipsapp->ipsap_pbucket = sq->inbound; 2709 } 2710 } else { 2711 /* IPSA_F_OUTBOUND is set *or* no directions flags set. */ 2712 ipsapp->ipsap_sa_ptr = 2713 ipsec_getassocbyspi(sq->outbound, 2714 sq->assoc->sadb_sa_spi, sq->srcaddr, sq->dstaddr, sq->af); 2715 if (ipsapp->ipsap_sa_ptr != NULL) { 2716 ipsapp->ipsap_bucket = sq->outbound; 2717 ipsapp->ipsap_pbucket = sq->inbound; 2718 } else { 2719 ipsapp->ipsap_sa_ptr = ipsec_getassocbyspi(sq->inbound, 2720 sq->assoc->sadb_sa_spi, sq->srcaddr, sq->dstaddr, 2721 sq->af); 2722 ipsapp->ipsap_bucket = sq->inbound; 2723 ipsapp->ipsap_pbucket = sq->outbound; 2724 if (ipsapp->ipsap_sa_ptr != NULL) 2725 ipsapp->in_inbound_table = B_TRUE; 2726 } 2727 } 2728 2729 if (ipsapp->ipsap_sa_ptr == NULL) { 2730 mutex_exit(&sq->outbound->isaf_lock); 2731 mutex_exit(&sq->inbound->isaf_lock); 2732 *diagnostic = SADB_X_DIAGNOSTIC_SA_NOTFOUND; 2733 return (ESRCH); 2734 } 2735 2736 if ((ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_LARVAL) && 2737 ipsapp->in_inbound_table) { 2738 mutex_exit(&sq->outbound->isaf_lock); 2739 mutex_exit(&sq->inbound->isaf_lock); 2740 return (0); 2741 } 2742 2743 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock); 2744 if (ipsapp->ipsap_sa_ptr->ipsa_haspeer) { 2745 /* 2746 * haspeer implies no sa_pairing, look for same spi 2747 * in other hashtable. 2748 */ 2749 ipsapp->ipsap_psa_ptr = 2750 ipsec_getassocbyspi(ipsapp->ipsap_pbucket, 2751 sq->assoc->sadb_sa_spi, sq->srcaddr, sq->dstaddr, sq->af); 2752 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 2753 mutex_exit(&sq->outbound->isaf_lock); 2754 mutex_exit(&sq->inbound->isaf_lock); 2755 return (0); 2756 } 2757 pair_spi = ipsapp->ipsap_sa_ptr->ipsa_otherspi; 2758 IPSA_COPY_ADDR(&pair_srcaddr, 2759 ipsapp->ipsap_sa_ptr->ipsa_srcaddr, sq->af); 2760 IPSA_COPY_ADDR(&pair_dstaddr, 2761 ipsapp->ipsap_sa_ptr->ipsa_dstaddr, sq->af); 2762 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 2763 mutex_exit(&sq->inbound->isaf_lock); 2764 mutex_exit(&sq->outbound->isaf_lock); 2765 2766 if (pair_spi == 0) { 2767 ASSERT(ipsapp->ipsap_bucket != NULL); 2768 ASSERT(ipsapp->ipsap_pbucket != NULL); 2769 return (0); 2770 } 2771 2772 /* found sa in outbound sadb, peer should be inbound */ 2773 2774 if (ipsapp->in_inbound_table) { 2775 /* Found SA in inbound table, pair will be in outbound. */ 2776 if (sq->af == AF_INET6) { 2777 ipsapp->ipsap_pbucket = OUTBOUND_BUCKET_V6(sq->sp, 2778 *(uint32_t *)pair_srcaddr); 2779 } else { 2780 ipsapp->ipsap_pbucket = OUTBOUND_BUCKET_V4(sq->sp, 2781 *(uint32_t *)pair_srcaddr); 2782 } 2783 } else { 2784 ipsapp->ipsap_pbucket = INBOUND_BUCKET(sq->sp, pair_spi); 2785 } 2786 mutex_enter(&ipsapp->ipsap_pbucket->isaf_lock); 2787 ipsapp->ipsap_psa_ptr = ipsec_getassocbyspi(ipsapp->ipsap_pbucket, 2788 pair_spi, pair_dstaddr, pair_srcaddr, sq->af); 2789 mutex_exit(&ipsapp->ipsap_pbucket->isaf_lock); 2790 ASSERT(ipsapp->ipsap_bucket != NULL); 2791 ASSERT(ipsapp->ipsap_pbucket != NULL); 2792 return (0); 2793 } 2794 2795 /* 2796 * Perform NAT-traversal cached checksum offset calculations here. 2797 */ 2798 static void 2799 sadb_nat_calculations(ipsa_t *newbie, sadb_address_t *natt_loc_ext, 2800 sadb_address_t *natt_rem_ext, uint32_t *src_addr_ptr, 2801 uint32_t *dst_addr_ptr) 2802 { 2803 struct sockaddr_in *natt_loc, *natt_rem; 2804 uint32_t *natt_loc_ptr = NULL, *natt_rem_ptr = NULL; 2805 uint32_t running_sum = 0; 2806 2807 #define DOWN_SUM(x) (x) = ((x) & 0xFFFF) + ((x) >> 16) 2808 2809 if (natt_rem_ext != NULL) { 2810 uint32_t l_src; 2811 uint32_t l_rem; 2812 2813 natt_rem = (struct sockaddr_in *)(natt_rem_ext + 1); 2814 2815 /* Ensured by sadb_addrfix(). */ 2816 ASSERT(natt_rem->sin_family == AF_INET); 2817 2818 natt_rem_ptr = (uint32_t *)(&natt_rem->sin_addr); 2819 newbie->ipsa_remote_nat_port = natt_rem->sin_port; 2820 l_src = *src_addr_ptr; 2821 l_rem = *natt_rem_ptr; 2822 2823 /* Instead of IPSA_COPY_ADDR(), just copy first 32 bits. */ 2824 newbie->ipsa_natt_addr_rem = *natt_rem_ptr; 2825 2826 l_src = ntohl(l_src); 2827 DOWN_SUM(l_src); 2828 DOWN_SUM(l_src); 2829 l_rem = ntohl(l_rem); 2830 DOWN_SUM(l_rem); 2831 DOWN_SUM(l_rem); 2832 2833 /* 2834 * We're 1's complement for checksums, so check for wraparound 2835 * here. 2836 */ 2837 if (l_rem > l_src) 2838 l_src--; 2839 2840 running_sum += l_src - l_rem; 2841 2842 DOWN_SUM(running_sum); 2843 DOWN_SUM(running_sum); 2844 } 2845 2846 if (natt_loc_ext != NULL) { 2847 natt_loc = (struct sockaddr_in *)(natt_loc_ext + 1); 2848 2849 /* Ensured by sadb_addrfix(). */ 2850 ASSERT(natt_loc->sin_family == AF_INET); 2851 2852 natt_loc_ptr = (uint32_t *)(&natt_loc->sin_addr); 2853 newbie->ipsa_local_nat_port = natt_loc->sin_port; 2854 2855 /* Instead of IPSA_COPY_ADDR(), just copy first 32 bits. */ 2856 newbie->ipsa_natt_addr_loc = *natt_loc_ptr; 2857 2858 /* 2859 * NAT-T port agility means we may have natt_loc_ext, but 2860 * only for a local-port change. 2861 */ 2862 if (natt_loc->sin_addr.s_addr != INADDR_ANY) { 2863 uint32_t l_dst = ntohl(*dst_addr_ptr); 2864 uint32_t l_loc = ntohl(*natt_loc_ptr); 2865 2866 DOWN_SUM(l_loc); 2867 DOWN_SUM(l_loc); 2868 DOWN_SUM(l_dst); 2869 DOWN_SUM(l_dst); 2870 2871 /* 2872 * We're 1's complement for checksums, so check for 2873 * wraparound here. 2874 */ 2875 if (l_loc > l_dst) 2876 l_dst--; 2877 2878 running_sum += l_dst - l_loc; 2879 DOWN_SUM(running_sum); 2880 DOWN_SUM(running_sum); 2881 } 2882 } 2883 2884 newbie->ipsa_inbound_cksum = running_sum; 2885 #undef DOWN_SUM 2886 } 2887 2888 /* 2889 * This function is called from consumers that need to insert a fully-grown 2890 * security association into its tables. This function takes into account that 2891 * SAs can be "inbound", "outbound", or "both". The "primary" and "secondary" 2892 * hash bucket parameters are set in order of what the SA will be most of the 2893 * time. (For example, an SA with an unspecified source, and a multicast 2894 * destination will primarily be an outbound SA. OTOH, if that destination 2895 * is unicast for this node, then the SA will primarily be inbound.) 2896 * 2897 * It takes a lot of parameters because even if clone is B_FALSE, this needs 2898 * to check both buckets for purposes of collision. 2899 * 2900 * Return 0 upon success. Return various errnos (ENOMEM, EEXIST) for 2901 * various error conditions. We may need to set samsg->sadb_x_msg_diagnostic 2902 * with additional diagnostic information because there is at least one EINVAL 2903 * case here. 2904 */ 2905 int 2906 sadb_common_add(queue_t *pfkey_q, mblk_t *mp, sadb_msg_t *samsg, 2907 keysock_in_t *ksi, isaf_t *primary, isaf_t *secondary, 2908 ipsa_t *newbie, boolean_t clone, boolean_t is_inbound, int *diagnostic, 2909 netstack_t *ns, sadbp_t *spp) 2910 { 2911 ipsa_t *newbie_clone = NULL, *scratch; 2912 ipsap_t ipsapp; 2913 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 2914 sadb_address_t *srcext = 2915 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 2916 sadb_address_t *dstext = 2917 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 2918 sadb_address_t *isrcext = 2919 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC]; 2920 sadb_address_t *idstext = 2921 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_DST]; 2922 sadb_x_kmc_t *kmcext = 2923 (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE]; 2924 sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH]; 2925 sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT]; 2926 sadb_sens_t *sens = 2927 (sadb_sens_t *)ksi->ks_in_extv[SADB_EXT_SENSITIVITY]; 2928 sadb_sens_t *osens = 2929 (sadb_sens_t *)ksi->ks_in_extv[SADB_X_EXT_OUTER_SENS]; 2930 sadb_x_pair_t *pair_ext = 2931 (sadb_x_pair_t *)ksi->ks_in_extv[SADB_X_EXT_PAIR]; 2932 sadb_x_replay_ctr_t *replayext = 2933 (sadb_x_replay_ctr_t *)ksi->ks_in_extv[SADB_X_EXT_REPLAY_VALUE]; 2934 uint8_t protocol = 2935 (samsg->sadb_msg_satype == SADB_SATYPE_AH) ? IPPROTO_AH:IPPROTO_ESP; 2936 int salt_offset; 2937 uint8_t *buf_ptr; 2938 struct sockaddr_in *src, *dst, *isrc, *idst; 2939 struct sockaddr_in6 *src6, *dst6, *isrc6, *idst6; 2940 sadb_lifetime_t *soft = 2941 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT]; 2942 sadb_lifetime_t *hard = 2943 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD]; 2944 sadb_lifetime_t *idle = 2945 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_X_EXT_LIFETIME_IDLE]; 2946 sa_family_t af; 2947 int error = 0; 2948 boolean_t isupdate = (newbie != NULL); 2949 uint32_t *src_addr_ptr, *dst_addr_ptr, *isrc_addr_ptr, *idst_addr_ptr; 2950 ipsec_stack_t *ipss = ns->netstack_ipsec; 2951 ip_stack_t *ipst = ns->netstack_ip; 2952 ipsec_alginfo_t *alg; 2953 int rcode; 2954 boolean_t async = B_FALSE; 2955 2956 init_ipsa_pair(&ipsapp); 2957 2958 if (srcext == NULL) { 2959 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 2960 return (EINVAL); 2961 } 2962 if (dstext == NULL) { 2963 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 2964 return (EINVAL); 2965 } 2966 if (assoc == NULL) { 2967 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 2968 return (EINVAL); 2969 } 2970 2971 src = (struct sockaddr_in *)(srcext + 1); 2972 src6 = (struct sockaddr_in6 *)(srcext + 1); 2973 dst = (struct sockaddr_in *)(dstext + 1); 2974 dst6 = (struct sockaddr_in6 *)(dstext + 1); 2975 if (isrcext != NULL) { 2976 isrc = (struct sockaddr_in *)(isrcext + 1); 2977 isrc6 = (struct sockaddr_in6 *)(isrcext + 1); 2978 ASSERT(idstext != NULL); 2979 idst = (struct sockaddr_in *)(idstext + 1); 2980 idst6 = (struct sockaddr_in6 *)(idstext + 1); 2981 } else { 2982 isrc = NULL; 2983 isrc6 = NULL; 2984 } 2985 2986 af = src->sin_family; 2987 2988 if (af == AF_INET) { 2989 src_addr_ptr = (uint32_t *)&src->sin_addr; 2990 dst_addr_ptr = (uint32_t *)&dst->sin_addr; 2991 } else { 2992 ASSERT(af == AF_INET6); 2993 src_addr_ptr = (uint32_t *)&src6->sin6_addr; 2994 dst_addr_ptr = (uint32_t *)&dst6->sin6_addr; 2995 } 2996 2997 if (!isupdate && (clone == B_TRUE || is_inbound == B_TRUE) && 2998 cl_inet_checkspi && 2999 (assoc->sadb_sa_state != SADB_X_SASTATE_ACTIVE_ELSEWHERE)) { 3000 rcode = cl_inet_checkspi(ns->netstack_stackid, protocol, 3001 assoc->sadb_sa_spi, NULL); 3002 if (rcode == -1) { 3003 return (EEXIST); 3004 } 3005 } 3006 3007 /* 3008 * Check to see if the new SA will be cloned AND paired. The 3009 * reason a SA will be cloned is the source or destination addresses 3010 * are not specific enough to determine if the SA goes in the outbound 3011 * or the inbound hash table, so its cloned and put in both. If 3012 * the SA is paired, it's soft linked to another SA for the other 3013 * direction. Keeping track and looking up SA's that are direction 3014 * unspecific and linked is too hard. 3015 */ 3016 if (clone && (pair_ext != NULL)) { 3017 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 3018 return (EINVAL); 3019 } 3020 3021 if (!isupdate) { 3022 newbie = sadb_makelarvalassoc(assoc->sadb_sa_spi, 3023 src_addr_ptr, dst_addr_ptr, af, ns); 3024 if (newbie == NULL) 3025 return (ENOMEM); 3026 } 3027 3028 mutex_enter(&newbie->ipsa_lock); 3029 3030 if (isrc != NULL) { 3031 if (isrc->sin_family == AF_INET) { 3032 if (srcext->sadb_address_proto != IPPROTO_ENCAP) { 3033 if (srcext->sadb_address_proto != 0) { 3034 /* 3035 * Mismatched outer-packet protocol 3036 * and inner-packet address family. 3037 */ 3038 mutex_exit(&newbie->ipsa_lock); 3039 error = EPROTOTYPE; 3040 *diagnostic = 3041 SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH; 3042 goto error; 3043 } else { 3044 /* Fill in with explicit protocol. */ 3045 srcext->sadb_address_proto = 3046 IPPROTO_ENCAP; 3047 dstext->sadb_address_proto = 3048 IPPROTO_ENCAP; 3049 } 3050 } 3051 isrc_addr_ptr = (uint32_t *)&isrc->sin_addr; 3052 idst_addr_ptr = (uint32_t *)&idst->sin_addr; 3053 } else { 3054 ASSERT(isrc->sin_family == AF_INET6); 3055 if (srcext->sadb_address_proto != IPPROTO_IPV6) { 3056 if (srcext->sadb_address_proto != 0) { 3057 /* 3058 * Mismatched outer-packet protocol 3059 * and inner-packet address family. 3060 */ 3061 mutex_exit(&newbie->ipsa_lock); 3062 error = EPROTOTYPE; 3063 *diagnostic = 3064 SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH; 3065 goto error; 3066 } else { 3067 /* Fill in with explicit protocol. */ 3068 srcext->sadb_address_proto = 3069 IPPROTO_IPV6; 3070 dstext->sadb_address_proto = 3071 IPPROTO_IPV6; 3072 } 3073 } 3074 isrc_addr_ptr = (uint32_t *)&isrc6->sin6_addr; 3075 idst_addr_ptr = (uint32_t *)&idst6->sin6_addr; 3076 } 3077 newbie->ipsa_innerfam = isrc->sin_family; 3078 3079 IPSA_COPY_ADDR(newbie->ipsa_innersrc, isrc_addr_ptr, 3080 newbie->ipsa_innerfam); 3081 IPSA_COPY_ADDR(newbie->ipsa_innerdst, idst_addr_ptr, 3082 newbie->ipsa_innerfam); 3083 newbie->ipsa_innersrcpfx = isrcext->sadb_address_prefixlen; 3084 newbie->ipsa_innerdstpfx = idstext->sadb_address_prefixlen; 3085 3086 /* Unique value uses inner-ports for Tunnel Mode... */ 3087 newbie->ipsa_unique_id = SA_UNIQUE_ID(isrc->sin_port, 3088 idst->sin_port, dstext->sadb_address_proto, 3089 idstext->sadb_address_proto); 3090 newbie->ipsa_unique_mask = SA_UNIQUE_MASK(isrc->sin_port, 3091 idst->sin_port, dstext->sadb_address_proto, 3092 idstext->sadb_address_proto); 3093 } else { 3094 /* ... and outer-ports for Transport Mode. */ 3095 newbie->ipsa_unique_id = SA_UNIQUE_ID(src->sin_port, 3096 dst->sin_port, dstext->sadb_address_proto, 0); 3097 newbie->ipsa_unique_mask = SA_UNIQUE_MASK(src->sin_port, 3098 dst->sin_port, dstext->sadb_address_proto, 0); 3099 } 3100 if (newbie->ipsa_unique_mask != (uint64_t)0) 3101 newbie->ipsa_flags |= IPSA_F_UNIQUE; 3102 3103 sadb_nat_calculations(newbie, 3104 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC], 3105 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM], 3106 src_addr_ptr, dst_addr_ptr); 3107 3108 newbie->ipsa_type = samsg->sadb_msg_satype; 3109 3110 ASSERT((assoc->sadb_sa_state == SADB_SASTATE_MATURE) || 3111 (assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE)); 3112 newbie->ipsa_auth_alg = assoc->sadb_sa_auth; 3113 newbie->ipsa_encr_alg = assoc->sadb_sa_encrypt; 3114 3115 newbie->ipsa_flags |= assoc->sadb_sa_flags; 3116 if (newbie->ipsa_flags & SADB_X_SAFLAGS_NATT_LOC && 3117 ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC] == NULL) { 3118 mutex_exit(&newbie->ipsa_lock); 3119 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_LOC; 3120 error = EINVAL; 3121 goto error; 3122 } 3123 if (newbie->ipsa_flags & SADB_X_SAFLAGS_NATT_REM && 3124 ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM] == NULL) { 3125 mutex_exit(&newbie->ipsa_lock); 3126 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_REM; 3127 error = EINVAL; 3128 goto error; 3129 } 3130 if (newbie->ipsa_flags & SADB_X_SAFLAGS_TUNNEL && 3131 ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC] == NULL) { 3132 mutex_exit(&newbie->ipsa_lock); 3133 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC; 3134 error = EINVAL; 3135 goto error; 3136 } 3137 /* 3138 * If unspecified source address, force replay_wsize to 0. 3139 * This is because an SA that has multiple sources of secure 3140 * traffic cannot enforce a replay counter w/o synchronizing the 3141 * senders. 3142 */ 3143 if (ksi->ks_in_srctype != KS_IN_ADDR_UNSPEC) 3144 newbie->ipsa_replay_wsize = assoc->sadb_sa_replay; 3145 else 3146 newbie->ipsa_replay_wsize = 0; 3147 3148 newbie->ipsa_addtime = gethrestime_sec(); 3149 3150 if (kmcext != NULL) { 3151 newbie->ipsa_kmp = kmcext->sadb_x_kmc_proto; 3152 /* 3153 * Be liberal in what we receive. Special-case the IKEv1 3154 * cookie, which closed-source in.iked assumes is 32 bits. 3155 * Now that we store all 64 bits, we should pre-zero the 3156 * reserved field on behalf of closed-source in.iked. 3157 */ 3158 if (newbie->ipsa_kmp == SADB_X_KMP_IKE) { 3159 /* Just in case in.iked is misbehaving... */ 3160 kmcext->sadb_x_kmc_reserved = 0; 3161 } 3162 newbie->ipsa_kmc = kmcext->sadb_x_kmc_cookie64; 3163 } 3164 3165 /* 3166 * XXX CURRENT lifetime checks MAY BE needed for an UPDATE. 3167 * The spec says that one can update current lifetimes, but 3168 * that seems impractical, especially in the larval-to-mature 3169 * update that this function performs. 3170 */ 3171 if (soft != NULL) { 3172 newbie->ipsa_softaddlt = soft->sadb_lifetime_addtime; 3173 newbie->ipsa_softuselt = soft->sadb_lifetime_usetime; 3174 newbie->ipsa_softbyteslt = soft->sadb_lifetime_bytes; 3175 newbie->ipsa_softalloc = soft->sadb_lifetime_allocations; 3176 SET_EXPIRE(newbie, softaddlt, softexpiretime); 3177 } 3178 if (hard != NULL) { 3179 newbie->ipsa_hardaddlt = hard->sadb_lifetime_addtime; 3180 newbie->ipsa_harduselt = hard->sadb_lifetime_usetime; 3181 newbie->ipsa_hardbyteslt = hard->sadb_lifetime_bytes; 3182 newbie->ipsa_hardalloc = hard->sadb_lifetime_allocations; 3183 SET_EXPIRE(newbie, hardaddlt, hardexpiretime); 3184 } 3185 if (idle != NULL) { 3186 newbie->ipsa_idleaddlt = idle->sadb_lifetime_addtime; 3187 newbie->ipsa_idleuselt = idle->sadb_lifetime_usetime; 3188 newbie->ipsa_idleexpiretime = newbie->ipsa_addtime + 3189 newbie->ipsa_idleaddlt; 3190 newbie->ipsa_idletime = newbie->ipsa_idleaddlt; 3191 } 3192 3193 newbie->ipsa_authtmpl = NULL; 3194 newbie->ipsa_encrtmpl = NULL; 3195 3196 #ifdef IPSEC_LATENCY_TEST 3197 if (akey != NULL && newbie->ipsa_auth_alg != SADB_AALG_NONE) { 3198 #else 3199 if (akey != NULL) { 3200 #endif 3201 async = (ipss->ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == 3202 IPSEC_ALGS_EXEC_ASYNC); 3203 3204 newbie->ipsa_authkeybits = akey->sadb_key_bits; 3205 newbie->ipsa_authkeylen = SADB_1TO8(akey->sadb_key_bits); 3206 /* In case we have to round up to the next byte... */ 3207 if ((akey->sadb_key_bits & 0x7) != 0) 3208 newbie->ipsa_authkeylen++; 3209 newbie->ipsa_authkey = kmem_alloc(newbie->ipsa_authkeylen, 3210 KM_NOSLEEP); 3211 if (newbie->ipsa_authkey == NULL) { 3212 error = ENOMEM; 3213 mutex_exit(&newbie->ipsa_lock); 3214 goto error; 3215 } 3216 bcopy(akey + 1, newbie->ipsa_authkey, newbie->ipsa_authkeylen); 3217 bzero(akey + 1, newbie->ipsa_authkeylen); 3218 3219 /* 3220 * Pre-initialize the kernel crypto framework key 3221 * structure. 3222 */ 3223 newbie->ipsa_kcfauthkey.ck_format = CRYPTO_KEY_RAW; 3224 newbie->ipsa_kcfauthkey.ck_length = newbie->ipsa_authkeybits; 3225 newbie->ipsa_kcfauthkey.ck_data = newbie->ipsa_authkey; 3226 3227 rw_enter(&ipss->ipsec_alg_lock, RW_READER); 3228 alg = ipss->ipsec_alglists[IPSEC_ALG_AUTH] 3229 [newbie->ipsa_auth_alg]; 3230 if (alg != NULL && ALG_VALID(alg)) { 3231 newbie->ipsa_amech.cm_type = alg->alg_mech_type; 3232 newbie->ipsa_amech.cm_param = 3233 (char *)&newbie->ipsa_mac_len; 3234 newbie->ipsa_amech.cm_param_len = sizeof (size_t); 3235 newbie->ipsa_mac_len = (size_t)alg->alg_datalen; 3236 } else { 3237 newbie->ipsa_amech.cm_type = CRYPTO_MECHANISM_INVALID; 3238 } 3239 error = ipsec_create_ctx_tmpl(newbie, IPSEC_ALG_AUTH); 3240 rw_exit(&ipss->ipsec_alg_lock); 3241 if (error != 0) { 3242 mutex_exit(&newbie->ipsa_lock); 3243 /* 3244 * An error here indicates that alg is the wrong type 3245 * (IE: not authentication) or its not in the alg tables 3246 * created by ipsecalgs(8), or Kcf does not like the 3247 * parameters passed in with this algorithm, which is 3248 * probably a coding error! 3249 */ 3250 *diagnostic = SADB_X_DIAGNOSTIC_BAD_CTX; 3251 3252 goto error; 3253 } 3254 } 3255 3256 if (ekey != NULL) { 3257 rw_enter(&ipss->ipsec_alg_lock, RW_READER); 3258 async = async || (ipss->ipsec_algs_exec_mode[IPSEC_ALG_ENCR] == 3259 IPSEC_ALGS_EXEC_ASYNC); 3260 alg = ipss->ipsec_alglists[IPSEC_ALG_ENCR] 3261 [newbie->ipsa_encr_alg]; 3262 3263 if (alg != NULL && ALG_VALID(alg)) { 3264 newbie->ipsa_emech.cm_type = alg->alg_mech_type; 3265 newbie->ipsa_datalen = alg->alg_datalen; 3266 if (alg->alg_flags & ALG_FLAG_COUNTERMODE) 3267 newbie->ipsa_flags |= IPSA_F_COUNTERMODE; 3268 3269 if (alg->alg_flags & ALG_FLAG_COMBINED) { 3270 newbie->ipsa_flags |= IPSA_F_COMBINED; 3271 newbie->ipsa_mac_len = alg->alg_icvlen; 3272 } 3273 3274 if (alg->alg_flags & ALG_FLAG_CCM) 3275 newbie->ipsa_noncefunc = ccm_params_init; 3276 else if (alg->alg_flags & ALG_FLAG_GCM) 3277 newbie->ipsa_noncefunc = gcm_params_init; 3278 else newbie->ipsa_noncefunc = cbc_params_init; 3279 3280 newbie->ipsa_saltlen = alg->alg_saltlen; 3281 newbie->ipsa_saltbits = SADB_8TO1(newbie->ipsa_saltlen); 3282 newbie->ipsa_iv_len = alg->alg_ivlen; 3283 newbie->ipsa_nonce_len = newbie->ipsa_saltlen + 3284 newbie->ipsa_iv_len; 3285 newbie->ipsa_emech.cm_param = NULL; 3286 newbie->ipsa_emech.cm_param_len = 0; 3287 } else { 3288 newbie->ipsa_emech.cm_type = CRYPTO_MECHANISM_INVALID; 3289 } 3290 rw_exit(&ipss->ipsec_alg_lock); 3291 3292 /* 3293 * The byte stream following the sadb_key_t is made up of: 3294 * key bytes, [salt bytes], [IV initial value] 3295 * All of these have variable length. The IV is typically 3296 * randomly generated by this function and not passed in. 3297 * By supporting the injection of a known IV, the whole 3298 * IPsec subsystem and the underlying crypto subsystem 3299 * can be tested with known test vectors. 3300 * 3301 * The keying material has been checked by ext_check() 3302 * and ipsec_valid_key_size(), after removing salt/IV 3303 * bits, whats left is the encryption key. If this is too 3304 * short, ipsec_create_ctx_tmpl() will fail and the SA 3305 * won't get created. 3306 * 3307 * set ipsa_encrkeylen to length of key only. 3308 */ 3309 newbie->ipsa_encrkeybits = ekey->sadb_key_bits; 3310 newbie->ipsa_encrkeybits -= ekey->sadb_key_reserved; 3311 newbie->ipsa_encrkeybits -= newbie->ipsa_saltbits; 3312 newbie->ipsa_encrkeylen = SADB_1TO8(newbie->ipsa_encrkeybits); 3313 3314 /* In case we have to round up to the next byte... */ 3315 if ((ekey->sadb_key_bits & 0x7) != 0) 3316 newbie->ipsa_encrkeylen++; 3317 3318 newbie->ipsa_encrkey = kmem_alloc(newbie->ipsa_encrkeylen, 3319 KM_NOSLEEP); 3320 if (newbie->ipsa_encrkey == NULL) { 3321 error = ENOMEM; 3322 mutex_exit(&newbie->ipsa_lock); 3323 goto error; 3324 } 3325 3326 buf_ptr = (uint8_t *)(ekey + 1); 3327 bcopy(buf_ptr, newbie->ipsa_encrkey, newbie->ipsa_encrkeylen); 3328 3329 if (newbie->ipsa_flags & IPSA_F_COMBINED) { 3330 /* 3331 * Combined mode algs need a nonce. Copy the salt and 3332 * IV into a buffer. The ipsa_nonce is a pointer into 3333 * this buffer, some bytes at the start of the buffer 3334 * may be unused, depends on the salt length. The IV 3335 * is 64 bit aligned so it can be incremented as a 3336 * uint64_t. Zero out key in samsg_t before freeing. 3337 */ 3338 3339 newbie->ipsa_nonce_buf = kmem_alloc( 3340 sizeof (ipsec_nonce_t), KM_NOSLEEP); 3341 if (newbie->ipsa_nonce_buf == NULL) { 3342 error = ENOMEM; 3343 mutex_exit(&newbie->ipsa_lock); 3344 goto error; 3345 } 3346 /* 3347 * Initialize nonce and salt pointers to point 3348 * to the nonce buffer. This is just in case we get 3349 * bad data, the pointers will be valid, the data 3350 * won't be. 3351 * 3352 * See sadb.h for layout of nonce. 3353 */ 3354 newbie->ipsa_iv = &newbie->ipsa_nonce_buf->iv; 3355 newbie->ipsa_salt = (uint8_t *)newbie->ipsa_nonce_buf; 3356 newbie->ipsa_nonce = newbie->ipsa_salt; 3357 if (newbie->ipsa_saltlen != 0) { 3358 salt_offset = MAXSALTSIZE - 3359 newbie->ipsa_saltlen; 3360 newbie->ipsa_salt = (uint8_t *) 3361 &newbie->ipsa_nonce_buf->salt[salt_offset]; 3362 newbie->ipsa_nonce = newbie->ipsa_salt; 3363 buf_ptr += newbie->ipsa_encrkeylen; 3364 bcopy(buf_ptr, newbie->ipsa_salt, 3365 newbie->ipsa_saltlen); 3366 } 3367 /* 3368 * The IV for CCM/GCM mode increments, it should not 3369 * repeat. Get a random value for the IV, make a 3370 * copy, the SA will expire when/if the IV ever 3371 * wraps back to the initial value. If an Initial IV 3372 * is passed in via PF_KEY, save this in the SA. 3373 * Initialising IV for inbound is pointless as its 3374 * taken from the inbound packet. 3375 */ 3376 if (!is_inbound) { 3377 if (ekey->sadb_key_reserved != 0) { 3378 buf_ptr += newbie->ipsa_saltlen; 3379 bcopy(buf_ptr, (uint8_t *)newbie-> 3380 ipsa_iv, SADB_1TO8(ekey-> 3381 sadb_key_reserved)); 3382 } else { 3383 (void) random_get_pseudo_bytes( 3384 (uint8_t *)newbie->ipsa_iv, 3385 newbie->ipsa_iv_len); 3386 } 3387 newbie->ipsa_iv_softexpire = 3388 (*newbie->ipsa_iv) << 9; 3389 newbie->ipsa_iv_hardexpire = *newbie->ipsa_iv; 3390 } 3391 } 3392 bzero((ekey + 1), SADB_1TO8(ekey->sadb_key_bits)); 3393 3394 /* 3395 * Pre-initialize the kernel crypto framework key 3396 * structure. 3397 */ 3398 newbie->ipsa_kcfencrkey.ck_format = CRYPTO_KEY_RAW; 3399 newbie->ipsa_kcfencrkey.ck_length = newbie->ipsa_encrkeybits; 3400 newbie->ipsa_kcfencrkey.ck_data = newbie->ipsa_encrkey; 3401 3402 rw_enter(&ipss->ipsec_alg_lock, RW_READER); 3403 error = ipsec_create_ctx_tmpl(newbie, IPSEC_ALG_ENCR); 3404 rw_exit(&ipss->ipsec_alg_lock); 3405 if (error != 0) { 3406 mutex_exit(&newbie->ipsa_lock); 3407 /* See above for error explanation. */ 3408 *diagnostic = SADB_X_DIAGNOSTIC_BAD_CTX; 3409 goto error; 3410 } 3411 } 3412 3413 if (async) 3414 newbie->ipsa_flags |= IPSA_F_ASYNC; 3415 3416 /* 3417 * Ptrs to processing functions. 3418 */ 3419 if (newbie->ipsa_type == SADB_SATYPE_ESP) 3420 ipsecesp_init_funcs(newbie); 3421 else 3422 ipsecah_init_funcs(newbie); 3423 ASSERT(newbie->ipsa_output_func != NULL && 3424 newbie->ipsa_input_func != NULL); 3425 3426 /* 3427 * Certificate ID stuff. 3428 */ 3429 if (ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC] != NULL) { 3430 sadb_ident_t *id = 3431 (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC]; 3432 3433 /* 3434 * Can assume strlen() will return okay because ext_check() in 3435 * keysock.c prepares the string for us. 3436 */ 3437 newbie->ipsa_src_cid = ipsid_lookup(id->sadb_ident_type, 3438 (char *)(id+1), ns); 3439 if (newbie->ipsa_src_cid == NULL) { 3440 error = ENOMEM; 3441 mutex_exit(&newbie->ipsa_lock); 3442 goto error; 3443 } 3444 } 3445 3446 if (ksi->ks_in_extv[SADB_EXT_IDENTITY_DST] != NULL) { 3447 sadb_ident_t *id = 3448 (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_DST]; 3449 3450 /* 3451 * Can assume strlen() will return okay because ext_check() in 3452 * keysock.c prepares the string for us. 3453 */ 3454 newbie->ipsa_dst_cid = ipsid_lookup(id->sadb_ident_type, 3455 (char *)(id+1), ns); 3456 if (newbie->ipsa_dst_cid == NULL) { 3457 error = ENOMEM; 3458 mutex_exit(&newbie->ipsa_lock); 3459 goto error; 3460 } 3461 } 3462 3463 /* 3464 * sensitivity label handling code: 3465 * Convert sens + bitmap into cred_t, and associate it 3466 * with the new SA. 3467 */ 3468 if (sens != NULL) { 3469 uint64_t *bitmap = (uint64_t *)(sens + 1); 3470 3471 newbie->ipsa_tsl = sadb_label_from_sens(sens, bitmap); 3472 } 3473 3474 /* 3475 * Likewise for outer sensitivity. 3476 */ 3477 if (osens != NULL) { 3478 uint64_t *bitmap = (uint64_t *)(osens + 1); 3479 ts_label_t *tsl, *effective_tsl; 3480 uint32_t *peer_addr_ptr; 3481 zoneid_t zoneid = GLOBAL_ZONEID; 3482 zone_t *zone; 3483 3484 peer_addr_ptr = is_inbound ? src_addr_ptr : dst_addr_ptr; 3485 3486 tsl = sadb_label_from_sens(osens, bitmap); 3487 newbie->ipsa_mac_exempt = CONN_MAC_DEFAULT; 3488 3489 if (osens->sadb_x_sens_flags & SADB_X_SENS_IMPLICIT) { 3490 newbie->ipsa_mac_exempt = CONN_MAC_IMPLICIT; 3491 } 3492 3493 error = tsol_check_dest(tsl, peer_addr_ptr, 3494 (af == AF_INET6)?IPV6_VERSION:IPV4_VERSION, 3495 newbie->ipsa_mac_exempt, B_TRUE, &effective_tsl); 3496 if (error != 0) { 3497 label_rele(tsl); 3498 mutex_exit(&newbie->ipsa_lock); 3499 goto error; 3500 } 3501 3502 if (effective_tsl != NULL) { 3503 label_rele(tsl); 3504 tsl = effective_tsl; 3505 } 3506 3507 newbie->ipsa_otsl = tsl; 3508 3509 zone = zone_find_by_label(tsl); 3510 if (zone != NULL) { 3511 zoneid = zone->zone_id; 3512 zone_rele(zone); 3513 } 3514 /* 3515 * For exclusive stacks we set the zoneid to zero to operate 3516 * as if in the global zone for tsol_compute_label_v4/v6 3517 */ 3518 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 3519 zoneid = GLOBAL_ZONEID; 3520 3521 if (af == AF_INET6) { 3522 error = tsol_compute_label_v6(tsl, zoneid, 3523 (in6_addr_t *)peer_addr_ptr, 3524 newbie->ipsa_opt_storage, ipst); 3525 } else { 3526 error = tsol_compute_label_v4(tsl, zoneid, 3527 *peer_addr_ptr, newbie->ipsa_opt_storage, ipst); 3528 } 3529 if (error != 0) { 3530 mutex_exit(&newbie->ipsa_lock); 3531 goto error; 3532 } 3533 } 3534 3535 3536 if (replayext != NULL) { 3537 if ((replayext->sadb_x_rc_replay32 == 0) && 3538 (replayext->sadb_x_rc_replay64 != 0)) { 3539 error = EOPNOTSUPP; 3540 *diagnostic = SADB_X_DIAGNOSTIC_INVALID_REPLAY; 3541 mutex_exit(&newbie->ipsa_lock); 3542 goto error; 3543 } 3544 newbie->ipsa_replay = replayext->sadb_x_rc_replay32; 3545 } 3546 3547 /* now that the SA has been updated, set its new state */ 3548 newbie->ipsa_state = assoc->sadb_sa_state; 3549 3550 if (clone) { 3551 newbie->ipsa_haspeer = B_TRUE; 3552 } else { 3553 if (!is_inbound) { 3554 lifetime_fuzz(newbie); 3555 } 3556 } 3557 /* 3558 * The less locks I hold when doing an insertion and possible cloning, 3559 * the better! 3560 */ 3561 mutex_exit(&newbie->ipsa_lock); 3562 3563 if (clone) { 3564 newbie_clone = sadb_cloneassoc(newbie); 3565 3566 if (newbie_clone == NULL) { 3567 error = ENOMEM; 3568 goto error; 3569 } 3570 } 3571 3572 /* 3573 * Enter the bucket locks. The order of entry is outbound, 3574 * inbound. We map "primary" and "secondary" into outbound and inbound 3575 * based on the destination address type. If the destination address 3576 * type is for a node that isn't mine (or potentially mine), the 3577 * "primary" bucket is the outbound one. 3578 */ 3579 if (!is_inbound) { 3580 /* primary == outbound */ 3581 mutex_enter(&primary->isaf_lock); 3582 mutex_enter(&secondary->isaf_lock); 3583 } else { 3584 /* primary == inbound */ 3585 mutex_enter(&secondary->isaf_lock); 3586 mutex_enter(&primary->isaf_lock); 3587 } 3588 3589 /* 3590 * sadb_insertassoc() doesn't increment the reference 3591 * count. We therefore have to increment the 3592 * reference count one more time to reflect the 3593 * pointers of the table that reference this SA. 3594 */ 3595 IPSA_REFHOLD(newbie); 3596 3597 if (isupdate) { 3598 /* 3599 * Unlink from larval holding cell in the "inbound" fanout. 3600 */ 3601 ASSERT(newbie->ipsa_linklock == &primary->isaf_lock || 3602 newbie->ipsa_linklock == &secondary->isaf_lock); 3603 sadb_unlinkassoc(newbie); 3604 } 3605 3606 mutex_enter(&newbie->ipsa_lock); 3607 error = sadb_insertassoc(newbie, primary); 3608 mutex_exit(&newbie->ipsa_lock); 3609 3610 if (error != 0) { 3611 /* 3612 * Since sadb_insertassoc() failed, we must decrement the 3613 * refcount again so the cleanup code will actually free 3614 * the offending SA. 3615 */ 3616 IPSA_REFRELE(newbie); 3617 goto error_unlock; 3618 } 3619 3620 if (newbie_clone != NULL) { 3621 mutex_enter(&newbie_clone->ipsa_lock); 3622 error = sadb_insertassoc(newbie_clone, secondary); 3623 mutex_exit(&newbie_clone->ipsa_lock); 3624 if (error != 0) { 3625 /* Collision in secondary table. */ 3626 sadb_unlinkassoc(newbie); /* This does REFRELE. */ 3627 goto error_unlock; 3628 } 3629 IPSA_REFHOLD(newbie_clone); 3630 } else { 3631 ASSERT(primary != secondary); 3632 scratch = ipsec_getassocbyspi(secondary, newbie->ipsa_spi, 3633 ALL_ZEROES_PTR, newbie->ipsa_dstaddr, af); 3634 if (scratch != NULL) { 3635 /* Collision in secondary table. */ 3636 sadb_unlinkassoc(newbie); /* This does REFRELE. */ 3637 /* Set the error, since ipsec_getassocbyspi() can't. */ 3638 error = EEXIST; 3639 goto error_unlock; 3640 } 3641 } 3642 3643 /* OKAY! So let's do some reality check assertions. */ 3644 3645 ASSERT(MUTEX_NOT_HELD(&newbie->ipsa_lock)); 3646 ASSERT(newbie_clone == NULL || 3647 (MUTEX_NOT_HELD(&newbie_clone->ipsa_lock))); 3648 3649 error_unlock: 3650 3651 /* 3652 * We can exit the locks in any order. Only entrance needs to 3653 * follow any protocol. 3654 */ 3655 mutex_exit(&secondary->isaf_lock); 3656 mutex_exit(&primary->isaf_lock); 3657 3658 if (pair_ext != NULL && error == 0) { 3659 /* update pair_spi if it exists. */ 3660 ipsa_query_t sq; 3661 3662 sq.spp = spp; /* XXX param */ 3663 error = sadb_form_query(ksi, IPSA_Q_DST, IPSA_Q_SRC|IPSA_Q_DST| 3664 IPSA_Q_SA|IPSA_Q_INBOUND|IPSA_Q_OUTBOUND, &sq, diagnostic); 3665 if (error) 3666 return (error); 3667 3668 error = get_ipsa_pair(&sq, &ipsapp, diagnostic); 3669 3670 if (error != 0) 3671 goto error; 3672 3673 if (ipsapp.ipsap_psa_ptr != NULL) { 3674 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_ALREADY; 3675 error = EINVAL; 3676 } else { 3677 /* update_pairing() sets diagnostic */ 3678 error = update_pairing(&ipsapp, &sq, ksi, diagnostic); 3679 } 3680 } 3681 /* Common error point for this routine. */ 3682 error: 3683 if (newbie != NULL) { 3684 if (error != 0) { 3685 /* This SA is broken, let the reaper clean up. */ 3686 mutex_enter(&newbie->ipsa_lock); 3687 newbie->ipsa_state = IPSA_STATE_DEAD; 3688 newbie->ipsa_hardexpiretime = 1; 3689 mutex_exit(&newbie->ipsa_lock); 3690 } 3691 IPSA_REFRELE(newbie); 3692 } 3693 if (newbie_clone != NULL) { 3694 IPSA_REFRELE(newbie_clone); 3695 } 3696 3697 if (error == 0) { 3698 /* 3699 * Construct favorable PF_KEY return message and send to 3700 * keysock. Update the flags in the original keysock message 3701 * to reflect the actual flags in the new SA. 3702 * (Q: Do I need to pass "newbie"? If I do, 3703 * make sure to REFHOLD, call, then REFRELE.) 3704 */ 3705 assoc->sadb_sa_flags = newbie->ipsa_flags; 3706 sadb_pfkey_echo(pfkey_q, mp, samsg, ksi, NULL); 3707 } 3708 3709 destroy_ipsa_pair(&ipsapp); 3710 return (error); 3711 } 3712 3713 /* 3714 * Set the time of first use for a security association. Update any 3715 * expiration times as a result. 3716 */ 3717 void 3718 sadb_set_usetime(ipsa_t *assoc) 3719 { 3720 time_t snapshot = gethrestime_sec(); 3721 3722 mutex_enter(&assoc->ipsa_lock); 3723 assoc->ipsa_lastuse = snapshot; 3724 assoc->ipsa_idleexpiretime = snapshot + assoc->ipsa_idletime; 3725 3726 /* 3727 * Caller does check usetime before calling me usually, and 3728 * double-checking is better than a mutex_enter/exit hit. 3729 */ 3730 if (assoc->ipsa_usetime == 0) { 3731 /* 3732 * This is redundant for outbound SA's, as 3733 * ipsec_getassocbyconn() sets the IPSA_F_USED flag already. 3734 * Inbound SAs, however, have no such protection. 3735 */ 3736 assoc->ipsa_flags |= IPSA_F_USED; 3737 assoc->ipsa_usetime = snapshot; 3738 3739 /* 3740 * After setting the use time, see if we have a use lifetime 3741 * that would cause the actual SA expiration time to shorten. 3742 */ 3743 UPDATE_EXPIRE(assoc, softuselt, softexpiretime); 3744 UPDATE_EXPIRE(assoc, harduselt, hardexpiretime); 3745 } 3746 mutex_exit(&assoc->ipsa_lock); 3747 } 3748 3749 /* 3750 * Send up a PF_KEY expire message for this association. 3751 */ 3752 static void 3753 sadb_expire_assoc(queue_t *pfkey_q, ipsa_t *assoc) 3754 { 3755 mblk_t *mp, *mp1; 3756 int alloclen, af; 3757 sadb_msg_t *samsg; 3758 sadb_lifetime_t *current, *expire; 3759 sadb_sa_t *saext; 3760 uint8_t *end; 3761 boolean_t tunnel_mode; 3762 3763 ASSERT(MUTEX_HELD(&assoc->ipsa_lock)); 3764 3765 /* Don't bother sending if there's no queue. */ 3766 if (pfkey_q == NULL) 3767 return; 3768 3769 mp = sadb_keysock_out(0); 3770 if (mp == NULL) { 3771 /* cmn_err(CE_WARN, */ 3772 /* "sadb_expire_assoc: Can't allocate KEYSOCK_OUT.\n"); */ 3773 return; 3774 } 3775 3776 alloclen = sizeof (*samsg) + sizeof (*current) + sizeof (*expire) + 3777 2 * sizeof (sadb_address_t) + sizeof (*saext) + 3778 sizeof (sadb_x_kmc_t); 3779 3780 af = assoc->ipsa_addrfam; 3781 switch (af) { 3782 case AF_INET: 3783 alloclen += 2 * sizeof (struct sockaddr_in); 3784 break; 3785 case AF_INET6: 3786 alloclen += 2 * sizeof (struct sockaddr_in6); 3787 break; 3788 default: 3789 /* Won't happen unless there's a kernel bug. */ 3790 freeb(mp); 3791 cmn_err(CE_WARN, 3792 "sadb_expire_assoc: Unknown address length.\n"); 3793 return; 3794 } 3795 3796 tunnel_mode = (assoc->ipsa_flags & IPSA_F_TUNNEL); 3797 if (tunnel_mode) { 3798 alloclen += 2 * sizeof (sadb_address_t); 3799 switch (assoc->ipsa_innerfam) { 3800 case AF_INET: 3801 alloclen += 2 * sizeof (struct sockaddr_in); 3802 break; 3803 case AF_INET6: 3804 alloclen += 2 * sizeof (struct sockaddr_in6); 3805 break; 3806 default: 3807 /* Won't happen unless there's a kernel bug. */ 3808 freeb(mp); 3809 cmn_err(CE_WARN, "sadb_expire_assoc: " 3810 "Unknown inner address length.\n"); 3811 return; 3812 } 3813 } 3814 3815 mp->b_cont = allocb(alloclen, BPRI_HI); 3816 if (mp->b_cont == NULL) { 3817 freeb(mp); 3818 /* cmn_err(CE_WARN, */ 3819 /* "sadb_expire_assoc: Can't allocate message.\n"); */ 3820 return; 3821 } 3822 3823 mp1 = mp; 3824 mp = mp->b_cont; 3825 end = mp->b_wptr + alloclen; 3826 3827 samsg = (sadb_msg_t *)mp->b_wptr; 3828 mp->b_wptr += sizeof (*samsg); 3829 samsg->sadb_msg_version = PF_KEY_V2; 3830 samsg->sadb_msg_type = SADB_EXPIRE; 3831 samsg->sadb_msg_errno = 0; 3832 samsg->sadb_msg_satype = assoc->ipsa_type; 3833 samsg->sadb_msg_len = SADB_8TO64(alloclen); 3834 samsg->sadb_msg_reserved = 0; 3835 samsg->sadb_msg_seq = 0; 3836 samsg->sadb_msg_pid = 0; 3837 3838 saext = (sadb_sa_t *)mp->b_wptr; 3839 mp->b_wptr += sizeof (*saext); 3840 saext->sadb_sa_len = SADB_8TO64(sizeof (*saext)); 3841 saext->sadb_sa_exttype = SADB_EXT_SA; 3842 saext->sadb_sa_spi = assoc->ipsa_spi; 3843 saext->sadb_sa_replay = assoc->ipsa_replay_wsize; 3844 saext->sadb_sa_state = assoc->ipsa_state; 3845 saext->sadb_sa_auth = assoc->ipsa_auth_alg; 3846 saext->sadb_sa_encrypt = assoc->ipsa_encr_alg; 3847 saext->sadb_sa_flags = assoc->ipsa_flags; 3848 3849 current = (sadb_lifetime_t *)mp->b_wptr; 3850 mp->b_wptr += sizeof (sadb_lifetime_t); 3851 current->sadb_lifetime_len = SADB_8TO64(sizeof (*current)); 3852 current->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3853 /* We do not support the concept. */ 3854 current->sadb_lifetime_allocations = 0; 3855 current->sadb_lifetime_bytes = assoc->ipsa_bytes; 3856 current->sadb_lifetime_addtime = assoc->ipsa_addtime; 3857 current->sadb_lifetime_usetime = assoc->ipsa_usetime; 3858 3859 expire = (sadb_lifetime_t *)mp->b_wptr; 3860 mp->b_wptr += sizeof (*expire); 3861 expire->sadb_lifetime_len = SADB_8TO64(sizeof (*expire)); 3862 3863 if (assoc->ipsa_state == IPSA_STATE_DEAD) { 3864 expire->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 3865 expire->sadb_lifetime_allocations = assoc->ipsa_hardalloc; 3866 expire->sadb_lifetime_bytes = assoc->ipsa_hardbyteslt; 3867 expire->sadb_lifetime_addtime = assoc->ipsa_hardaddlt; 3868 expire->sadb_lifetime_usetime = assoc->ipsa_harduselt; 3869 } else if (assoc->ipsa_state == IPSA_STATE_DYING) { 3870 expire->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 3871 expire->sadb_lifetime_allocations = assoc->ipsa_softalloc; 3872 expire->sadb_lifetime_bytes = assoc->ipsa_softbyteslt; 3873 expire->sadb_lifetime_addtime = assoc->ipsa_softaddlt; 3874 expire->sadb_lifetime_usetime = assoc->ipsa_softuselt; 3875 } else { 3876 ASSERT(assoc->ipsa_state == IPSA_STATE_MATURE); 3877 expire->sadb_lifetime_exttype = SADB_X_EXT_LIFETIME_IDLE; 3878 expire->sadb_lifetime_allocations = 0; 3879 expire->sadb_lifetime_bytes = 0; 3880 expire->sadb_lifetime_addtime = assoc->ipsa_idleaddlt; 3881 expire->sadb_lifetime_usetime = assoc->ipsa_idleuselt; 3882 } 3883 3884 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, SADB_EXT_ADDRESS_SRC, 3885 af, assoc->ipsa_srcaddr, tunnel_mode ? 0 : SA_SRCPORT(assoc), 3886 SA_PROTO(assoc), 0); 3887 ASSERT(mp->b_wptr != NULL); 3888 3889 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, SADB_EXT_ADDRESS_DST, 3890 af, assoc->ipsa_dstaddr, tunnel_mode ? 0 : SA_DSTPORT(assoc), 3891 SA_PROTO(assoc), 0); 3892 ASSERT(mp->b_wptr != NULL); 3893 3894 if (tunnel_mode) { 3895 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, 3896 SADB_X_EXT_ADDRESS_INNER_SRC, assoc->ipsa_innerfam, 3897 assoc->ipsa_innersrc, SA_SRCPORT(assoc), SA_IPROTO(assoc), 3898 assoc->ipsa_innersrcpfx); 3899 ASSERT(mp->b_wptr != NULL); 3900 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, 3901 SADB_X_EXT_ADDRESS_INNER_DST, assoc->ipsa_innerfam, 3902 assoc->ipsa_innerdst, SA_DSTPORT(assoc), SA_IPROTO(assoc), 3903 assoc->ipsa_innerdstpfx); 3904 ASSERT(mp->b_wptr != NULL); 3905 } 3906 3907 mp->b_wptr = sadb_make_kmc_ext(mp->b_wptr, end, assoc->ipsa_kmp, 3908 assoc->ipsa_kmc); 3909 ASSERT(mp->b_wptr != NULL); 3910 3911 /* Can just putnext, we're ready to go! */ 3912 putnext(pfkey_q, mp1); 3913 } 3914 3915 /* 3916 * "Age" the SA with the number of bytes that was used to protect traffic. 3917 * Send an SADB_EXPIRE message if appropriate. Return B_TRUE if there was 3918 * enough "charge" left in the SA to protect the data. Return B_FALSE 3919 * otherwise. (If B_FALSE is returned, the association either was, or became 3920 * DEAD.) 3921 */ 3922 boolean_t 3923 sadb_age_bytes(queue_t *pfkey_q, ipsa_t *assoc, uint64_t bytes, 3924 boolean_t sendmsg) 3925 { 3926 boolean_t rc = B_TRUE; 3927 uint64_t newtotal; 3928 3929 mutex_enter(&assoc->ipsa_lock); 3930 newtotal = assoc->ipsa_bytes + bytes; 3931 if (assoc->ipsa_hardbyteslt != 0 && 3932 newtotal >= assoc->ipsa_hardbyteslt) { 3933 if (assoc->ipsa_state != IPSA_STATE_DEAD) { 3934 sadb_delete_cluster(assoc); 3935 /* 3936 * Send EXPIRE message to PF_KEY. May wish to pawn 3937 * this off on another non-interrupt thread. Also 3938 * unlink this SA immediately. 3939 */ 3940 assoc->ipsa_state = IPSA_STATE_DEAD; 3941 if (sendmsg) 3942 sadb_expire_assoc(pfkey_q, assoc); 3943 /* 3944 * Set non-zero expiration time so sadb_age_assoc() 3945 * will work when reaping. 3946 */ 3947 assoc->ipsa_hardexpiretime = (time_t)1; 3948 } /* Else someone beat me to it! */ 3949 rc = B_FALSE; 3950 } else if (assoc->ipsa_softbyteslt != 0 && 3951 (newtotal >= assoc->ipsa_softbyteslt)) { 3952 if (assoc->ipsa_state < IPSA_STATE_DYING) { 3953 /* 3954 * Send EXPIRE message to PF_KEY. May wish to pawn 3955 * this off on another non-interrupt thread. 3956 */ 3957 assoc->ipsa_state = IPSA_STATE_DYING; 3958 assoc->ipsa_bytes = newtotal; 3959 if (sendmsg) 3960 sadb_expire_assoc(pfkey_q, assoc); 3961 } /* Else someone beat me to it! */ 3962 } 3963 if (rc == B_TRUE) 3964 assoc->ipsa_bytes = newtotal; 3965 mutex_exit(&assoc->ipsa_lock); 3966 return (rc); 3967 } 3968 3969 /* 3970 * "Torch" an individual SA. Returns NULL, so it can be tail-called from 3971 * sadb_age_assoc(). 3972 */ 3973 static ipsa_t * 3974 sadb_torch_assoc(isaf_t *head, ipsa_t *sa) 3975 { 3976 ASSERT(MUTEX_HELD(&head->isaf_lock)); 3977 ASSERT(MUTEX_HELD(&sa->ipsa_lock)); 3978 ASSERT(sa->ipsa_state == IPSA_STATE_DEAD); 3979 3980 /* 3981 * Force cached SAs to be revalidated.. 3982 */ 3983 head->isaf_gen++; 3984 3985 mutex_exit(&sa->ipsa_lock); 3986 sadb_unlinkassoc(sa); 3987 3988 return (NULL); 3989 } 3990 3991 /* 3992 * Do various SA-is-idle activities depending on delta (the number of idle 3993 * seconds on the SA) and/or other properties of the SA. 3994 * 3995 * Return B_TRUE if I've sent a packet, because I have to drop the 3996 * association's mutex before sending a packet out the wire. 3997 */ 3998 /* ARGSUSED */ 3999 static boolean_t 4000 sadb_idle_activities(ipsa_t *assoc, time_t delta, boolean_t inbound) 4001 { 4002 ipsecesp_stack_t *espstack = assoc->ipsa_netstack->netstack_ipsecesp; 4003 int nat_t_interval = espstack->ipsecesp_nat_keepalive_interval; 4004 4005 ASSERT(MUTEX_HELD(&assoc->ipsa_lock)); 4006 4007 if (!inbound && (assoc->ipsa_flags & IPSA_F_NATT_LOC) && 4008 delta >= nat_t_interval && 4009 gethrestime_sec() - assoc->ipsa_last_nat_t_ka >= nat_t_interval) { 4010 ASSERT(assoc->ipsa_type == SADB_SATYPE_ESP); 4011 assoc->ipsa_last_nat_t_ka = gethrestime_sec(); 4012 mutex_exit(&assoc->ipsa_lock); 4013 ipsecesp_send_keepalive(assoc); 4014 return (B_TRUE); 4015 } 4016 return (B_FALSE); 4017 } 4018 4019 /* 4020 * Return "assoc" if haspeer is true and I send an expire. This allows 4021 * the consumers' aging functions to tidy up an expired SA's peer. 4022 */ 4023 static ipsa_t * 4024 sadb_age_assoc(isaf_t *head, queue_t *pfkey_q, ipsa_t *assoc, 4025 time_t current, int reap_delay, boolean_t inbound) 4026 { 4027 ipsa_t *retval = NULL; 4028 boolean_t dropped_mutex = B_FALSE; 4029 4030 ASSERT(MUTEX_HELD(&head->isaf_lock)); 4031 4032 mutex_enter(&assoc->ipsa_lock); 4033 4034 if (((assoc->ipsa_state == IPSA_STATE_LARVAL) || 4035 ((assoc->ipsa_state == IPSA_STATE_IDLE) || 4036 (assoc->ipsa_state == IPSA_STATE_ACTIVE_ELSEWHERE) && 4037 (assoc->ipsa_hardexpiretime != 0))) && 4038 (assoc->ipsa_hardexpiretime <= current)) { 4039 assoc->ipsa_state = IPSA_STATE_DEAD; 4040 return (sadb_torch_assoc(head, assoc)); 4041 } 4042 4043 /* 4044 * Check lifetimes. Fortunately, SA setup is done 4045 * such that there are only two times to look at, 4046 * softexpiretime, and hardexpiretime. 4047 * 4048 * Check hard first. 4049 */ 4050 4051 if (assoc->ipsa_hardexpiretime != 0 && 4052 assoc->ipsa_hardexpiretime <= current) { 4053 if (assoc->ipsa_state == IPSA_STATE_DEAD) 4054 return (sadb_torch_assoc(head, assoc)); 4055 4056 if (inbound) { 4057 sadb_delete_cluster(assoc); 4058 } 4059 4060 /* 4061 * Send SADB_EXPIRE with hard lifetime, delay for unlinking. 4062 */ 4063 assoc->ipsa_state = IPSA_STATE_DEAD; 4064 if (assoc->ipsa_haspeer || assoc->ipsa_otherspi != 0) { 4065 /* 4066 * If the SA is paired or peered with another, put 4067 * a copy on a list which can be processed later, the 4068 * pair/peer SA needs to be updated so the both die 4069 * at the same time. 4070 * 4071 * If I return assoc, I have to bump up its reference 4072 * count to keep with the ipsa_t reference count 4073 * semantics. 4074 */ 4075 IPSA_REFHOLD(assoc); 4076 retval = assoc; 4077 } 4078 sadb_expire_assoc(pfkey_q, assoc); 4079 assoc->ipsa_hardexpiretime = current + reap_delay; 4080 } else if (assoc->ipsa_softexpiretime != 0 && 4081 assoc->ipsa_softexpiretime <= current && 4082 assoc->ipsa_state < IPSA_STATE_DYING) { 4083 /* 4084 * Send EXPIRE message to PF_KEY. May wish to pawn 4085 * this off on another non-interrupt thread. 4086 */ 4087 assoc->ipsa_state = IPSA_STATE_DYING; 4088 if (assoc->ipsa_haspeer) { 4089 /* 4090 * If the SA has a peer, update the peer's state 4091 * on SOFT_EXPIRE, this is mostly to prevent two 4092 * expire messages from effectively the same SA. 4093 * 4094 * Don't care about paired SA's, then can (and should) 4095 * be able to soft expire at different times. 4096 * 4097 * If I return assoc, I have to bump up its 4098 * reference count to keep with the ipsa_t reference 4099 * count semantics. 4100 */ 4101 IPSA_REFHOLD(assoc); 4102 retval = assoc; 4103 } 4104 sadb_expire_assoc(pfkey_q, assoc); 4105 } else if (assoc->ipsa_idletime != 0 && 4106 assoc->ipsa_idleexpiretime <= current) { 4107 if (assoc->ipsa_state == IPSA_STATE_ACTIVE_ELSEWHERE) { 4108 assoc->ipsa_state = IPSA_STATE_IDLE; 4109 } 4110 4111 /* 4112 * Need to handle Mature case 4113 */ 4114 if (assoc->ipsa_state == IPSA_STATE_MATURE) { 4115 sadb_expire_assoc(pfkey_q, assoc); 4116 } 4117 } else { 4118 /* Check idle time activities. */ 4119 dropped_mutex = sadb_idle_activities(assoc, 4120 current - assoc->ipsa_lastuse, inbound); 4121 } 4122 4123 if (!dropped_mutex) 4124 mutex_exit(&assoc->ipsa_lock); 4125 return (retval); 4126 } 4127 4128 /* 4129 * Called by a consumer protocol to do ther dirty work of reaping dead 4130 * Security Associations. 4131 * 4132 * NOTE: sadb_age_assoc() marks expired SA's as DEAD but only removed 4133 * SA's that are already marked DEAD, so expired SA's are only reaped 4134 * the second time sadb_ager() runs. 4135 */ 4136 void 4137 sadb_ager(sadb_t *sp, queue_t *pfkey_q, int reap_delay, netstack_t *ns) 4138 { 4139 int i; 4140 isaf_t *bucket; 4141 ipsa_t *assoc, *spare; 4142 iacqf_t *acqlist; 4143 ipsacq_t *acqrec, *spareacq; 4144 templist_t *haspeerlist, *newbie; 4145 /* Snapshot current time now. */ 4146 time_t current = gethrestime_sec(); 4147 haspeerlist = NULL; 4148 4149 /* 4150 * Do my dirty work. This includes aging real entries, aging 4151 * larvals, and aging outstanding ACQUIREs. 4152 * 4153 * I hope I don't tie up resources for too long. 4154 */ 4155 4156 /* Age acquires. */ 4157 4158 for (i = 0; i < sp->sdb_hashsize; i++) { 4159 acqlist = &sp->sdb_acq[i]; 4160 mutex_enter(&acqlist->iacqf_lock); 4161 for (acqrec = acqlist->iacqf_ipsacq; acqrec != NULL; 4162 acqrec = spareacq) { 4163 spareacq = acqrec->ipsacq_next; 4164 if (current > acqrec->ipsacq_expire) 4165 sadb_destroy_acquire(acqrec, ns); 4166 } 4167 mutex_exit(&acqlist->iacqf_lock); 4168 } 4169 4170 /* Age inbound associations. */ 4171 for (i = 0; i < sp->sdb_hashsize; i++) { 4172 bucket = &(sp->sdb_if[i]); 4173 mutex_enter(&bucket->isaf_lock); 4174 for (assoc = bucket->isaf_ipsa; assoc != NULL; 4175 assoc = spare) { 4176 spare = assoc->ipsa_next; 4177 if (sadb_age_assoc(bucket, pfkey_q, assoc, current, 4178 reap_delay, B_TRUE) != NULL) { 4179 /* 4180 * Put SA's which have a peer or SA's which 4181 * are paired on a list for processing after 4182 * all the hash tables have been walked. 4183 * 4184 * sadb_age_assoc() increments the refcnt, 4185 * effectively doing an IPSA_REFHOLD(). 4186 */ 4187 newbie = kmem_alloc(sizeof (*newbie), 4188 KM_NOSLEEP); 4189 if (newbie == NULL) { 4190 /* 4191 * Don't forget to REFRELE(). 4192 */ 4193 IPSA_REFRELE(assoc); 4194 continue; /* for loop... */ 4195 } 4196 newbie->next = haspeerlist; 4197 newbie->ipsa = assoc; 4198 haspeerlist = newbie; 4199 } 4200 } 4201 mutex_exit(&bucket->isaf_lock); 4202 } 4203 4204 age_pair_peer_list(haspeerlist, sp, B_FALSE); 4205 haspeerlist = NULL; 4206 4207 /* Age outbound associations. */ 4208 for (i = 0; i < sp->sdb_hashsize; i++) { 4209 bucket = &(sp->sdb_of[i]); 4210 mutex_enter(&bucket->isaf_lock); 4211 for (assoc = bucket->isaf_ipsa; assoc != NULL; 4212 assoc = spare) { 4213 spare = assoc->ipsa_next; 4214 if (sadb_age_assoc(bucket, pfkey_q, assoc, current, 4215 reap_delay, B_FALSE) != NULL) { 4216 /* 4217 * sadb_age_assoc() increments the refcnt, 4218 * effectively doing an IPSA_REFHOLD(). 4219 */ 4220 newbie = kmem_alloc(sizeof (*newbie), 4221 KM_NOSLEEP); 4222 if (newbie == NULL) { 4223 /* 4224 * Don't forget to REFRELE(). 4225 */ 4226 IPSA_REFRELE(assoc); 4227 continue; /* for loop... */ 4228 } 4229 newbie->next = haspeerlist; 4230 newbie->ipsa = assoc; 4231 haspeerlist = newbie; 4232 } 4233 } 4234 mutex_exit(&bucket->isaf_lock); 4235 } 4236 4237 age_pair_peer_list(haspeerlist, sp, B_TRUE); 4238 4239 /* 4240 * Run a GC pass to clean out dead identities. 4241 */ 4242 ipsid_gc(ns); 4243 } 4244 4245 /* 4246 * Figure out when to reschedule the ager. 4247 */ 4248 timeout_id_t 4249 sadb_retimeout(hrtime_t begin, queue_t *pfkey_q, void (*ager)(void *), 4250 void *agerarg, uint_t *intp, uint_t intmax, short mid) 4251 { 4252 hrtime_t end = gethrtime(); 4253 uint_t interval = *intp; /* "interval" is in ms. */ 4254 4255 /* 4256 * See how long this took. If it took too long, increase the 4257 * aging interval. 4258 */ 4259 if ((end - begin) > MSEC2NSEC(interval)) { 4260 if (interval >= intmax) { 4261 /* XXX Rate limit this? Or recommend flush? */ 4262 (void) strlog(mid, 0, 0, SL_ERROR | SL_WARN, 4263 "Too many SA's to age out in %d msec.\n", 4264 intmax); 4265 } else { 4266 /* Double by shifting by one bit. */ 4267 interval <<= 1; 4268 interval = min(interval, intmax); 4269 } 4270 } else if ((end - begin) <= (MSEC2NSEC(interval) / 2) && 4271 interval > SADB_AGE_INTERVAL_DEFAULT) { 4272 /* 4273 * If I took less than half of the interval, then I should 4274 * ratchet the interval back down. Never automatically 4275 * shift below the default aging interval. 4276 * 4277 * NOTE:This even overrides manual setting of the age 4278 * interval using NDD to lower the setting past the 4279 * default. In other words, if you set the interval 4280 * lower than the default, and your SADB gets too big, 4281 * the interval will only self-lower back to the default. 4282 */ 4283 /* Halve by shifting one bit. */ 4284 interval >>= 1; 4285 interval = max(interval, SADB_AGE_INTERVAL_DEFAULT); 4286 } 4287 *intp = interval; 4288 return (qtimeout(pfkey_q, ager, agerarg, 4289 drv_usectohz(interval * (MICROSEC / MILLISEC)))); 4290 } 4291 4292 4293 /* 4294 * Update the lifetime values of an SA. This is the path an SADB_UPDATE 4295 * message takes when updating a MATURE or DYING SA. 4296 */ 4297 static void 4298 sadb_update_lifetimes(ipsa_t *assoc, sadb_lifetime_t *hard, 4299 sadb_lifetime_t *soft, sadb_lifetime_t *idle, boolean_t outbound) 4300 { 4301 mutex_enter(&assoc->ipsa_lock); 4302 4303 /* 4304 * XXX RFC 2367 mentions how an SADB_EXT_LIFETIME_CURRENT can be 4305 * passed in during an update message. We currently don't handle 4306 * these. 4307 */ 4308 4309 if (hard != NULL) { 4310 if (hard->sadb_lifetime_bytes != 0) 4311 assoc->ipsa_hardbyteslt = hard->sadb_lifetime_bytes; 4312 if (hard->sadb_lifetime_usetime != 0) 4313 assoc->ipsa_harduselt = hard->sadb_lifetime_usetime; 4314 if (hard->sadb_lifetime_addtime != 0) 4315 assoc->ipsa_hardaddlt = hard->sadb_lifetime_addtime; 4316 if (assoc->ipsa_hardaddlt != 0) { 4317 assoc->ipsa_hardexpiretime = 4318 assoc->ipsa_addtime + assoc->ipsa_hardaddlt; 4319 } 4320 if (assoc->ipsa_harduselt != 0 && 4321 assoc->ipsa_flags & IPSA_F_USED) { 4322 UPDATE_EXPIRE(assoc, harduselt, hardexpiretime); 4323 } 4324 if (hard->sadb_lifetime_allocations != 0) 4325 assoc->ipsa_hardalloc = hard->sadb_lifetime_allocations; 4326 } 4327 4328 if (soft != NULL) { 4329 if (soft->sadb_lifetime_bytes != 0) { 4330 if (soft->sadb_lifetime_bytes > 4331 assoc->ipsa_hardbyteslt) { 4332 assoc->ipsa_softbyteslt = 4333 assoc->ipsa_hardbyteslt; 4334 } else { 4335 assoc->ipsa_softbyteslt = 4336 soft->sadb_lifetime_bytes; 4337 } 4338 } 4339 if (soft->sadb_lifetime_usetime != 0) { 4340 if (soft->sadb_lifetime_usetime > 4341 assoc->ipsa_harduselt) { 4342 assoc->ipsa_softuselt = 4343 assoc->ipsa_harduselt; 4344 } else { 4345 assoc->ipsa_softuselt = 4346 soft->sadb_lifetime_usetime; 4347 } 4348 } 4349 if (soft->sadb_lifetime_addtime != 0) { 4350 if (soft->sadb_lifetime_addtime > 4351 assoc->ipsa_hardexpiretime) { 4352 assoc->ipsa_softexpiretime = 4353 assoc->ipsa_hardexpiretime; 4354 } else { 4355 assoc->ipsa_softaddlt = 4356 soft->sadb_lifetime_addtime; 4357 } 4358 } 4359 if (assoc->ipsa_softaddlt != 0) { 4360 assoc->ipsa_softexpiretime = 4361 assoc->ipsa_addtime + assoc->ipsa_softaddlt; 4362 } 4363 if (assoc->ipsa_softuselt != 0 && 4364 assoc->ipsa_flags & IPSA_F_USED) { 4365 UPDATE_EXPIRE(assoc, softuselt, softexpiretime); 4366 } 4367 if (outbound && assoc->ipsa_softexpiretime != 0) { 4368 if (assoc->ipsa_state == IPSA_STATE_MATURE) 4369 lifetime_fuzz(assoc); 4370 } 4371 4372 if (soft->sadb_lifetime_allocations != 0) 4373 assoc->ipsa_softalloc = soft->sadb_lifetime_allocations; 4374 } 4375 4376 if (idle != NULL) { 4377 time_t current = gethrestime_sec(); 4378 if ((assoc->ipsa_idleexpiretime <= current) && 4379 (assoc->ipsa_idleaddlt == idle->sadb_lifetime_addtime)) { 4380 assoc->ipsa_idleexpiretime = 4381 current + assoc->ipsa_idleaddlt; 4382 } 4383 if (idle->sadb_lifetime_addtime != 0) 4384 assoc->ipsa_idleaddlt = idle->sadb_lifetime_addtime; 4385 if (idle->sadb_lifetime_usetime != 0) 4386 assoc->ipsa_idleuselt = idle->sadb_lifetime_usetime; 4387 if (assoc->ipsa_idleaddlt != 0) { 4388 assoc->ipsa_idleexpiretime = 4389 current + idle->sadb_lifetime_addtime; 4390 assoc->ipsa_idletime = idle->sadb_lifetime_addtime; 4391 } 4392 if (assoc->ipsa_idleuselt != 0) { 4393 if (assoc->ipsa_idletime != 0) { 4394 assoc->ipsa_idletime = min(assoc->ipsa_idletime, 4395 assoc->ipsa_idleuselt); 4396 assoc->ipsa_idleexpiretime = 4397 current + assoc->ipsa_idletime; 4398 } else { 4399 assoc->ipsa_idleexpiretime = 4400 current + assoc->ipsa_idleuselt; 4401 assoc->ipsa_idletime = assoc->ipsa_idleuselt; 4402 } 4403 } 4404 } 4405 mutex_exit(&assoc->ipsa_lock); 4406 } 4407 4408 static int 4409 sadb_update_state(ipsa_t *assoc, uint_t new_state, mblk_t **ipkt_lst) 4410 { 4411 int rcode = 0; 4412 time_t current = gethrestime_sec(); 4413 4414 mutex_enter(&assoc->ipsa_lock); 4415 4416 switch (new_state) { 4417 case SADB_X_SASTATE_ACTIVE_ELSEWHERE: 4418 if (assoc->ipsa_state == SADB_X_SASTATE_IDLE) { 4419 assoc->ipsa_state = IPSA_STATE_ACTIVE_ELSEWHERE; 4420 assoc->ipsa_idleexpiretime = 4421 current + assoc->ipsa_idletime; 4422 } 4423 break; 4424 case SADB_X_SASTATE_IDLE: 4425 if (assoc->ipsa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE) { 4426 assoc->ipsa_state = IPSA_STATE_IDLE; 4427 assoc->ipsa_idleexpiretime = 4428 current + assoc->ipsa_idletime; 4429 } else { 4430 rcode = EINVAL; 4431 } 4432 break; 4433 4434 case SADB_X_SASTATE_ACTIVE: 4435 if (assoc->ipsa_state != SADB_X_SASTATE_IDLE) { 4436 rcode = EINVAL; 4437 break; 4438 } 4439 assoc->ipsa_state = IPSA_STATE_MATURE; 4440 assoc->ipsa_idleexpiretime = current + assoc->ipsa_idletime; 4441 4442 if (ipkt_lst == NULL) { 4443 break; 4444 } 4445 4446 if (assoc->ipsa_bpkt_head != NULL) { 4447 *ipkt_lst = assoc->ipsa_bpkt_head; 4448 assoc->ipsa_bpkt_head = assoc->ipsa_bpkt_tail = NULL; 4449 assoc->ipsa_mblkcnt = 0; 4450 } else { 4451 *ipkt_lst = NULL; 4452 } 4453 break; 4454 default: 4455 rcode = EINVAL; 4456 break; 4457 } 4458 4459 mutex_exit(&assoc->ipsa_lock); 4460 return (rcode); 4461 } 4462 4463 /* 4464 * Check a proposed KMC update for sanity. 4465 */ 4466 static int 4467 sadb_check_kmc(ipsa_query_t *sq, ipsa_t *sa, int *diagnostic) 4468 { 4469 uint32_t kmp = sq->kmp; 4470 uint64_t kmc = sq->kmc; 4471 4472 if (sa == NULL) 4473 return (0); 4474 4475 if (sa->ipsa_state == IPSA_STATE_DEAD) 4476 return (ESRCH); /* DEAD == Not there, in this case. */ 4477 4478 if ((kmp != 0) && (sa->ipsa_kmp != 0) && (sa->ipsa_kmp != kmp)) { 4479 *diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMP; 4480 return (EINVAL); 4481 } 4482 4483 /* Allow IKEv2 KMCs to update the kmc value for rekeying */ 4484 if ((kmp != SADB_X_KMP_IKEV2) && (kmc != 0) && (sa->ipsa_kmc != 0) && 4485 (sa->ipsa_kmc != kmc)) { 4486 *diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMC; 4487 return (EINVAL); 4488 } 4489 4490 return (0); 4491 } 4492 4493 /* 4494 * Actually update the KMC info. 4495 */ 4496 static void 4497 sadb_update_kmc(ipsa_query_t *sq, ipsa_t *sa) 4498 { 4499 uint32_t kmp = sq->kmp; 4500 uint64_t kmc = sq->kmc; 4501 4502 if (kmp != 0) 4503 sa->ipsa_kmp = kmp; 4504 if (kmc != 0) 4505 sa->ipsa_kmc = kmc; 4506 } 4507 4508 /* 4509 * Common code to update an SA. 4510 */ 4511 4512 int 4513 sadb_update_sa(mblk_t *mp, keysock_in_t *ksi, mblk_t **ipkt_lst, 4514 sadbp_t *spp, int *diagnostic, queue_t *pfkey_q, 4515 int (*add_sa_func)(mblk_t *, keysock_in_t *, int *, netstack_t *), 4516 netstack_t *ns, uint8_t sadb_msg_type) 4517 { 4518 sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH]; 4519 sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT]; 4520 sadb_x_replay_ctr_t *replext = 4521 (sadb_x_replay_ctr_t *)ksi->ks_in_extv[SADB_X_EXT_REPLAY_VALUE]; 4522 sadb_lifetime_t *soft = 4523 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT]; 4524 sadb_lifetime_t *hard = 4525 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD]; 4526 sadb_lifetime_t *idle = 4527 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_X_EXT_LIFETIME_IDLE]; 4528 sadb_x_pair_t *pair_ext = 4529 (sadb_x_pair_t *)ksi->ks_in_extv[SADB_X_EXT_PAIR]; 4530 ipsa_t *echo_target = NULL; 4531 ipsap_t ipsapp; 4532 ipsa_query_t sq; 4533 time_t current = gethrestime_sec(); 4534 4535 sq.spp = spp; /* XXX param */ 4536 int error = sadb_form_query(ksi, IPSA_Q_SRC|IPSA_Q_DST|IPSA_Q_SA, 4537 IPSA_Q_SRC|IPSA_Q_DST|IPSA_Q_SA|IPSA_Q_INBOUND|IPSA_Q_OUTBOUND| 4538 IPSA_Q_KMC, 4539 &sq, diagnostic); 4540 4541 if (error != 0) 4542 return (error); 4543 4544 error = get_ipsa_pair(&sq, &ipsapp, diagnostic); 4545 if (error != 0) 4546 return (error); 4547 4548 if (ipsapp.ipsap_psa_ptr == NULL && ipsapp.ipsap_sa_ptr != NULL) { 4549 if (ipsapp.ipsap_sa_ptr->ipsa_state == IPSA_STATE_LARVAL) { 4550 /* 4551 * REFRELE the target and let the add_sa_func() 4552 * deal with updating a larval SA. 4553 */ 4554 destroy_ipsa_pair(&ipsapp); 4555 return (add_sa_func(mp, ksi, diagnostic, ns)); 4556 } 4557 } 4558 4559 /* 4560 * At this point we have an UPDATE to a MATURE SA. There should 4561 * not be any keying material present. 4562 */ 4563 if (akey != NULL) { 4564 *diagnostic = SADB_X_DIAGNOSTIC_AKEY_PRESENT; 4565 error = EINVAL; 4566 goto bail; 4567 } 4568 if (ekey != NULL) { 4569 *diagnostic = SADB_X_DIAGNOSTIC_EKEY_PRESENT; 4570 error = EINVAL; 4571 goto bail; 4572 } 4573 4574 if (sq.assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE) { 4575 if (ipsapp.ipsap_sa_ptr != NULL && 4576 ipsapp.ipsap_sa_ptr->ipsa_state == IPSA_STATE_IDLE) { 4577 if ((error = sadb_update_state(ipsapp.ipsap_sa_ptr, 4578 sq.assoc->sadb_sa_state, NULL)) != 0) { 4579 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4580 goto bail; 4581 } 4582 } 4583 if (ipsapp.ipsap_psa_ptr != NULL && 4584 ipsapp.ipsap_psa_ptr->ipsa_state == IPSA_STATE_IDLE) { 4585 if ((error = sadb_update_state(ipsapp.ipsap_psa_ptr, 4586 sq.assoc->sadb_sa_state, NULL)) != 0) { 4587 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4588 goto bail; 4589 } 4590 } 4591 } 4592 if (sq.assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE) { 4593 if (ipsapp.ipsap_sa_ptr != NULL) { 4594 error = sadb_update_state(ipsapp.ipsap_sa_ptr, 4595 sq.assoc->sadb_sa_state, 4596 (ipsapp.ipsap_sa_ptr->ipsa_flags & 4597 IPSA_F_INBOUND) ? ipkt_lst : NULL); 4598 if (error) { 4599 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4600 goto bail; 4601 } 4602 } 4603 if (ipsapp.ipsap_psa_ptr != NULL) { 4604 error = sadb_update_state(ipsapp.ipsap_psa_ptr, 4605 sq.assoc->sadb_sa_state, 4606 (ipsapp.ipsap_psa_ptr->ipsa_flags & 4607 IPSA_F_INBOUND) ? ipkt_lst : NULL); 4608 if (error) { 4609 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4610 goto bail; 4611 } 4612 } 4613 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, 4614 ksi, echo_target); 4615 goto bail; 4616 } 4617 4618 /* 4619 * Reality checks for updates of active associations. 4620 * Sundry first-pass UPDATE-specific reality checks. 4621 * Have to do the checks here, because it's after the add_sa code. 4622 * XXX STATS : logging/stats here? 4623 */ 4624 4625 if (!((sq.assoc->sadb_sa_state == SADB_SASTATE_MATURE) || 4626 (sq.assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE))) { 4627 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4628 error = EINVAL; 4629 goto bail; 4630 } 4631 if (sq.assoc->sadb_sa_flags & ~spp->s_updateflags) { 4632 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS; 4633 error = EINVAL; 4634 goto bail; 4635 } 4636 if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL) { 4637 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_LIFETIME; 4638 error = EOPNOTSUPP; 4639 goto bail; 4640 } 4641 4642 if ((*diagnostic = sadb_hardsoftchk(hard, soft, idle)) != 0) { 4643 error = EINVAL; 4644 goto bail; 4645 } 4646 4647 if ((*diagnostic = sadb_labelchk(ksi)) != 0) 4648 return (EINVAL); 4649 4650 error = sadb_check_kmc(&sq, ipsapp.ipsap_sa_ptr, diagnostic); 4651 if (error != 0) 4652 goto bail; 4653 4654 error = sadb_check_kmc(&sq, ipsapp.ipsap_psa_ptr, diagnostic); 4655 if (error != 0) 4656 goto bail; 4657 4658 4659 if (ipsapp.ipsap_sa_ptr != NULL) { 4660 /* 4661 * Do not allow replay value change for MATURE or LARVAL SA. 4662 */ 4663 4664 if ((replext != NULL) && 4665 ((ipsapp.ipsap_sa_ptr->ipsa_state == IPSA_STATE_LARVAL) || 4666 (ipsapp.ipsap_sa_ptr->ipsa_state == IPSA_STATE_MATURE))) { 4667 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4668 error = EINVAL; 4669 goto bail; 4670 } 4671 } 4672 4673 4674 if (ipsapp.ipsap_sa_ptr != NULL) { 4675 sadb_update_lifetimes(ipsapp.ipsap_sa_ptr, hard, soft, 4676 idle, B_TRUE); 4677 sadb_update_kmc(&sq, ipsapp.ipsap_sa_ptr); 4678 if ((replext != NULL) && 4679 (ipsapp.ipsap_sa_ptr->ipsa_replay_wsize != 0)) { 4680 /* 4681 * If an inbound SA, update the replay counter 4682 * and check off all the other sequence number 4683 */ 4684 if (ksi->ks_in_dsttype == KS_IN_ADDR_ME) { 4685 if (!sadb_replay_check(ipsapp.ipsap_sa_ptr, 4686 replext->sadb_x_rc_replay32)) { 4687 *diagnostic = 4688 SADB_X_DIAGNOSTIC_INVALID_REPLAY; 4689 error = EINVAL; 4690 goto bail; 4691 } 4692 mutex_enter(&ipsapp.ipsap_sa_ptr->ipsa_lock); 4693 ipsapp.ipsap_sa_ptr->ipsa_idleexpiretime = 4694 current + 4695 ipsapp.ipsap_sa_ptr->ipsa_idletime; 4696 mutex_exit(&ipsapp.ipsap_sa_ptr->ipsa_lock); 4697 } else { 4698 mutex_enter(&ipsapp.ipsap_sa_ptr->ipsa_lock); 4699 ipsapp.ipsap_sa_ptr->ipsa_replay = 4700 replext->sadb_x_rc_replay32; 4701 ipsapp.ipsap_sa_ptr->ipsa_idleexpiretime = 4702 current + 4703 ipsapp.ipsap_sa_ptr->ipsa_idletime; 4704 mutex_exit(&ipsapp.ipsap_sa_ptr->ipsa_lock); 4705 } 4706 } 4707 } 4708 4709 if (sadb_msg_type == SADB_X_UPDATEPAIR) { 4710 if (ipsapp.ipsap_psa_ptr != NULL) { 4711 sadb_update_lifetimes(ipsapp.ipsap_psa_ptr, hard, soft, 4712 idle, B_FALSE); 4713 sadb_update_kmc(&sq, ipsapp.ipsap_psa_ptr); 4714 } else { 4715 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND; 4716 error = ESRCH; 4717 goto bail; 4718 } 4719 } 4720 4721 if (pair_ext != NULL) 4722 error = update_pairing(&ipsapp, &sq, ksi, diagnostic); 4723 4724 if (error == 0) 4725 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, 4726 ksi, echo_target); 4727 bail: 4728 4729 destroy_ipsa_pair(&ipsapp); 4730 4731 return (error); 4732 } 4733 4734 4735 static int 4736 update_pairing(ipsap_t *ipsapp, ipsa_query_t *sq, keysock_in_t *ksi, 4737 int *diagnostic) 4738 { 4739 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 4740 sadb_x_pair_t *pair_ext = 4741 (sadb_x_pair_t *)ksi->ks_in_extv[SADB_X_EXT_PAIR]; 4742 int error = 0; 4743 ipsap_t oipsapp; 4744 boolean_t undo_pair = B_FALSE; 4745 uint32_t ipsa_flags; 4746 4747 if (pair_ext->sadb_x_pair_spi == 0 || pair_ext->sadb_x_pair_spi == 4748 assoc->sadb_sa_spi) { 4749 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 4750 return (EINVAL); 4751 } 4752 4753 /* 4754 * Assume for now that the spi value provided in the SADB_UPDATE 4755 * message was valid, update the SA with its pair spi value. 4756 * If the spi turns out to be bogus or the SA no longer exists 4757 * then this will be detected when the reverse update is made 4758 * below. 4759 */ 4760 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4761 ipsapp->ipsap_sa_ptr->ipsa_flags |= IPSA_F_PAIRED; 4762 ipsapp->ipsap_sa_ptr->ipsa_otherspi = pair_ext->sadb_x_pair_spi; 4763 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4764 4765 /* 4766 * After updating the ipsa_otherspi element of the SA, get_ipsa_pair() 4767 * should now return pointers to the SA *AND* its pair, if this is not 4768 * the case, the "otherspi" either did not exist or was deleted. Also 4769 * check that "otherspi" is not already paired. If everything looks 4770 * good, complete the update. IPSA_REFRELE the first pair_pointer 4771 * after this update to ensure its not deleted until we are done. 4772 */ 4773 error = get_ipsa_pair(sq, &oipsapp, diagnostic); 4774 if (error != 0) { 4775 /* 4776 * This should never happen, calling function still has 4777 * IPSA_REFHELD on the SA we just updated. 4778 */ 4779 return (error); /* XXX EINVAL instead of ESRCH? */ 4780 } 4781 4782 if (oipsapp.ipsap_psa_ptr == NULL) { 4783 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 4784 error = EINVAL; 4785 undo_pair = B_TRUE; 4786 } else { 4787 ipsa_flags = oipsapp.ipsap_psa_ptr->ipsa_flags; 4788 if ((oipsapp.ipsap_psa_ptr->ipsa_state == IPSA_STATE_DEAD) || 4789 (oipsapp.ipsap_psa_ptr->ipsa_state == IPSA_STATE_DYING)) { 4790 /* Its dead Jim! */ 4791 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 4792 undo_pair = B_TRUE; 4793 } else if ((ipsa_flags & (IPSA_F_OUTBOUND | IPSA_F_INBOUND)) == 4794 (IPSA_F_OUTBOUND | IPSA_F_INBOUND)) { 4795 /* This SA is in both hashtables. */ 4796 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 4797 undo_pair = B_TRUE; 4798 } else if (ipsa_flags & IPSA_F_PAIRED) { 4799 /* This SA is already paired with another. */ 4800 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_ALREADY; 4801 undo_pair = B_TRUE; 4802 } 4803 } 4804 4805 if (undo_pair) { 4806 /* The pair SA does not exist. */ 4807 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4808 ipsapp->ipsap_sa_ptr->ipsa_flags &= ~IPSA_F_PAIRED; 4809 ipsapp->ipsap_sa_ptr->ipsa_otherspi = 0; 4810 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4811 } else { 4812 mutex_enter(&oipsapp.ipsap_psa_ptr->ipsa_lock); 4813 oipsapp.ipsap_psa_ptr->ipsa_otherspi = assoc->sadb_sa_spi; 4814 oipsapp.ipsap_psa_ptr->ipsa_flags |= IPSA_F_PAIRED; 4815 mutex_exit(&oipsapp.ipsap_psa_ptr->ipsa_lock); 4816 } 4817 4818 destroy_ipsa_pair(&oipsapp); 4819 return (error); 4820 } 4821 4822 /* 4823 * The following functions deal with ACQUIRE LISTS. An ACQUIRE list is 4824 * a list of outstanding SADB_ACQUIRE messages. If ipsec_getassocbyconn() fails 4825 * for an outbound datagram, that datagram is queued up on an ACQUIRE record, 4826 * and an SADB_ACQUIRE message is sent up. Presumably, a user-space key 4827 * management daemon will process the ACQUIRE, use a SADB_GETSPI to reserve 4828 * an SPI value and a larval SA, then SADB_UPDATE the larval SA, and ADD the 4829 * other direction's SA. 4830 */ 4831 4832 /* 4833 * Check the ACQUIRE lists. If there's an existing ACQUIRE record, 4834 * grab it, lock it, and return it. Otherwise return NULL. 4835 * 4836 * XXX MLS number of arguments getting unwieldy here 4837 */ 4838 static ipsacq_t * 4839 sadb_checkacquire(iacqf_t *bucket, ipsec_action_t *ap, ipsec_policy_t *pp, 4840 uint32_t *src, uint32_t *dst, uint32_t *isrc, uint32_t *idst, 4841 uint64_t unique_id, ts_label_t *tsl) 4842 { 4843 ipsacq_t *walker; 4844 sa_family_t fam; 4845 uint32_t blank_address[4] = {0, 0, 0, 0}; 4846 4847 if (isrc == NULL) { 4848 ASSERT(idst == NULL); 4849 isrc = idst = blank_address; 4850 } 4851 4852 /* 4853 * Scan list for duplicates. Check for UNIQUE, src/dest, policy. 4854 * 4855 * XXX May need search for duplicates based on other things too! 4856 */ 4857 for (walker = bucket->iacqf_ipsacq; walker != NULL; 4858 walker = walker->ipsacq_next) { 4859 mutex_enter(&walker->ipsacq_lock); 4860 fam = walker->ipsacq_addrfam; 4861 if (IPSA_ARE_ADDR_EQUAL(dst, walker->ipsacq_dstaddr, fam) && 4862 IPSA_ARE_ADDR_EQUAL(src, walker->ipsacq_srcaddr, fam) && 4863 ip_addr_match((uint8_t *)isrc, walker->ipsacq_innersrcpfx, 4864 (in6_addr_t *)walker->ipsacq_innersrc) && 4865 ip_addr_match((uint8_t *)idst, walker->ipsacq_innerdstpfx, 4866 (in6_addr_t *)walker->ipsacq_innerdst) && 4867 (ap == walker->ipsacq_act) && 4868 (pp == walker->ipsacq_policy) && 4869 /* XXX do deep compares of ap/pp? */ 4870 (unique_id == walker->ipsacq_unique_id) && 4871 (ipsec_label_match(tsl, walker->ipsacq_tsl))) 4872 break; /* everything matched */ 4873 mutex_exit(&walker->ipsacq_lock); 4874 } 4875 4876 return (walker); 4877 } 4878 4879 /* 4880 * Generate an SADB_ACQUIRE base message mblk, including KEYSOCK_OUT metadata. 4881 * In other words, this will return, upon success, a two-mblk chain. 4882 */ 4883 static inline mblk_t * 4884 sadb_acquire_msg_base(minor_t serial, uint8_t satype, uint32_t seq, pid_t pid) 4885 { 4886 mblk_t *mp; 4887 sadb_msg_t *samsg; 4888 4889 mp = sadb_keysock_out(serial); 4890 if (mp == NULL) 4891 return (NULL); 4892 mp->b_cont = allocb(sizeof (sadb_msg_t), BPRI_HI); 4893 if (mp->b_cont == NULL) { 4894 freeb(mp); 4895 return (NULL); 4896 } 4897 4898 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 4899 mp->b_cont->b_wptr += sizeof (*samsg); 4900 samsg->sadb_msg_version = PF_KEY_V2; 4901 samsg->sadb_msg_type = SADB_ACQUIRE; 4902 samsg->sadb_msg_errno = 0; 4903 samsg->sadb_msg_reserved = 0; 4904 samsg->sadb_msg_satype = satype; 4905 samsg->sadb_msg_seq = seq; 4906 samsg->sadb_msg_pid = pid; 4907 4908 return (mp); 4909 } 4910 4911 /* 4912 * Generate address and TX/MLS sensitivity label PF_KEY extensions that are 4913 * common to both regular and extended ACQUIREs. 4914 */ 4915 static mblk_t * 4916 sadb_acquire_msg_common(ipsec_selector_t *sel, ipsec_policy_t *pp, 4917 ipsec_action_t *ap, boolean_t tunnel_mode, ts_label_t *tsl, 4918 sadb_sens_t *sens) 4919 { 4920 size_t len; 4921 mblk_t *mp; 4922 uint8_t *start, *cur, *end; 4923 uint32_t *saddrptr, *daddrptr; 4924 sa_family_t af; 4925 ipsec_action_t *oldap; 4926 ipsec_selkey_t *ipsl; 4927 uint8_t proto, pfxlen; 4928 uint16_t lport, rport; 4929 int senslen = 0; 4930 4931 /* 4932 * Get action pointer set if it isn't already. 4933 */ 4934 oldap = ap; 4935 if (pp != NULL) { 4936 ap = pp->ipsp_act; 4937 if (ap == NULL) 4938 ap = oldap; 4939 } 4940 4941 /* 4942 * Biggest-case scenario: 4943 * 4x (sadb_address_t + struct sockaddr_in6) 4944 * (src, dst, isrc, idst) 4945 * (COMING SOON, 6x, because of triggering-packet contents.) 4946 * sadb_x_kmc_t 4947 * sadb_sens_t 4948 * And wiggle room for label bitvectors. Luckily there are 4949 * programmatic ways to find it. 4950 */ 4951 len = 4 * (sizeof (sadb_address_t) + sizeof (struct sockaddr_in6)); 4952 4953 /* Figure out full and proper length of sensitivity labels. */ 4954 if (sens != NULL) { 4955 ASSERT(tsl == NULL); 4956 senslen = SADB_64TO8(sens->sadb_sens_len); 4957 } else if (tsl != NULL) { 4958 senslen = sadb_sens_len_from_label(tsl); 4959 } 4960 #ifdef DEBUG 4961 else { 4962 ASSERT(senslen == 0); 4963 } 4964 #endif /* DEBUG */ 4965 len += senslen; 4966 4967 mp = allocb(len, BPRI_HI); 4968 if (mp == NULL) 4969 return (NULL); 4970 4971 start = mp->b_rptr; 4972 end = start + len; 4973 cur = start; 4974 4975 /* 4976 * Address extensions first, from most-recently-defined to least. 4977 * (This should immediately trigger surprise or verify robustness on 4978 * older apps, like in.iked.) 4979 */ 4980 if (tunnel_mode) { 4981 /* 4982 * Form inner address extensions based NOT on the inner 4983 * selectors (i.e. the packet data), but on the policy's 4984 * selector key (i.e. the policy's selector information). 4985 * 4986 * NOTE: The position of IPv4 and IPv6 addresses is the 4987 * same in ipsec_selkey_t (unless the compiler does very 4988 * strange things with unions, consult your local C language 4989 * lawyer for details). 4990 */ 4991 ASSERT(pp != NULL); 4992 4993 ipsl = &(pp->ipsp_sel->ipsl_key); 4994 if (ipsl->ipsl_valid & IPSL_IPV4) { 4995 af = AF_INET; 4996 ASSERT(sel->ips_protocol == IPPROTO_ENCAP); 4997 ASSERT(!(ipsl->ipsl_valid & IPSL_IPV6)); 4998 } else { 4999 af = AF_INET6; 5000 ASSERT(sel->ips_protocol == IPPROTO_IPV6); 5001 ASSERT(ipsl->ipsl_valid & IPSL_IPV6); 5002 } 5003 5004 if (ipsl->ipsl_valid & IPSL_LOCAL_ADDR) { 5005 saddrptr = (uint32_t *)(&ipsl->ipsl_local); 5006 pfxlen = ipsl->ipsl_local_pfxlen; 5007 } else { 5008 saddrptr = (uint32_t *)(&ipv6_all_zeros); 5009 pfxlen = 0; 5010 } 5011 /* XXX What about ICMP type/code? */ 5012 lport = (ipsl->ipsl_valid & IPSL_LOCAL_PORT) ? 5013 ipsl->ipsl_lport : 0; 5014 proto = (ipsl->ipsl_valid & IPSL_PROTOCOL) ? 5015 ipsl->ipsl_proto : 0; 5016 5017 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC, 5018 af, saddrptr, lport, proto, pfxlen); 5019 if (cur == NULL) { 5020 freeb(mp); 5021 return (NULL); 5022 } 5023 5024 if (ipsl->ipsl_valid & IPSL_REMOTE_ADDR) { 5025 daddrptr = (uint32_t *)(&ipsl->ipsl_remote); 5026 pfxlen = ipsl->ipsl_remote_pfxlen; 5027 } else { 5028 daddrptr = (uint32_t *)(&ipv6_all_zeros); 5029 pfxlen = 0; 5030 } 5031 /* XXX What about ICMP type/code? */ 5032 rport = (ipsl->ipsl_valid & IPSL_REMOTE_PORT) ? 5033 ipsl->ipsl_rport : 0; 5034 5035 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST, 5036 af, daddrptr, rport, proto, pfxlen); 5037 if (cur == NULL) { 5038 freeb(mp); 5039 return (NULL); 5040 } 5041 /* 5042 * TODO - if we go to 3884's dream of transport mode IP-in-IP 5043 * _with_ inner-packet address selectors, we'll need to further 5044 * distinguish tunnel mode here. For now, having inner 5045 * addresses and/or ports is sufficient. 5046 * 5047 * Meanwhile, whack proto/ports to reflect IP-in-IP for the 5048 * outer addresses. 5049 */ 5050 proto = sel->ips_protocol; /* Either _ENCAP or _IPV6 */ 5051 lport = rport = 0; 5052 } else if ((ap != NULL) && (!ap->ipa_want_unique)) { 5053 /* 5054 * For cases when the policy calls out specific ports (or not). 5055 */ 5056 proto = 0; 5057 lport = 0; 5058 rport = 0; 5059 if (pp != NULL) { 5060 ipsl = &(pp->ipsp_sel->ipsl_key); 5061 if (ipsl->ipsl_valid & IPSL_PROTOCOL) 5062 proto = ipsl->ipsl_proto; 5063 if (ipsl->ipsl_valid & IPSL_REMOTE_PORT) 5064 rport = ipsl->ipsl_rport; 5065 if (ipsl->ipsl_valid & IPSL_LOCAL_PORT) 5066 lport = ipsl->ipsl_lport; 5067 } 5068 } else { 5069 /* 5070 * For require-unique-SA policies. 5071 */ 5072 proto = sel->ips_protocol; 5073 lport = sel->ips_local_port; 5074 rport = sel->ips_remote_port; 5075 } 5076 5077 /* 5078 * Regular addresses. These are outer-packet ones for tunnel mode. 5079 * Or for transport mode, the regulard address & port information. 5080 */ 5081 af = sel->ips_isv4 ? AF_INET : AF_INET6; 5082 5083 /* 5084 * NOTE: The position of IPv4 and IPv6 addresses is the same in 5085 * ipsec_selector_t. 5086 */ 5087 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, af, 5088 (uint32_t *)(&sel->ips_local_addr_v6), lport, proto, 0); 5089 if (cur == NULL) { 5090 freeb(mp); 5091 return (NULL); 5092 } 5093 5094 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, af, 5095 (uint32_t *)(&sel->ips_remote_addr_v6), rport, proto, 0); 5096 if (cur == NULL) { 5097 freeb(mp); 5098 return (NULL); 5099 } 5100 5101 /* 5102 * If present, generate a sensitivity label. 5103 */ 5104 if (cur + senslen > end) { 5105 freeb(mp); 5106 return (NULL); 5107 } 5108 if (sens != NULL) { 5109 /* Explicit sadb_sens_t, usually from inverse-ACQUIRE. */ 5110 bcopy(sens, cur, senslen); 5111 } else if (tsl != NULL) { 5112 /* Generate sadb_sens_t from ACQUIRE source. */ 5113 sadb_sens_from_label((sadb_sens_t *)cur, SADB_EXT_SENSITIVITY, 5114 tsl, senslen); 5115 } 5116 #ifdef DEBUG 5117 else { 5118 ASSERT(senslen == 0); 5119 } 5120 #endif /* DEBUG */ 5121 cur += senslen; 5122 mp->b_wptr = cur; 5123 5124 return (mp); 5125 } 5126 5127 /* 5128 * Generate a regular ACQUIRE's proposal extension and KMC information.. 5129 */ 5130 static mblk_t * 5131 sadb_acquire_prop(ipsec_action_t *ap, netstack_t *ns, boolean_t do_esp) 5132 { 5133 ipsec_stack_t *ipss = ns->netstack_ipsec; 5134 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp; 5135 ipsecah_stack_t *ahstack = ns->netstack_ipsecah; 5136 mblk_t *mp = NULL; 5137 sadb_prop_t *prop; 5138 sadb_comb_t *comb; 5139 ipsec_action_t *walker; 5140 int ncombs, allocsize, ealgid, aalgid, aminbits, amaxbits, eminbits, 5141 emaxbits, esaltlen, replay; 5142 uint64_t softbytes, hardbytes, softaddtime, hardaddtime, softusetime, 5143 hardusetime; 5144 uint64_t kmc = 0; 5145 uint32_t kmp = 0; 5146 5147 /* 5148 * Since it's an rwlock read, AND writing to the IPsec algorithms is 5149 * rare, just acquire it once up top, and drop it upon return. 5150 */ 5151 rw_enter(&ipss->ipsec_alg_lock, RW_READER); 5152 if (do_esp) { 5153 uint64_t num_aalgs, num_ealgs; 5154 5155 if (espstack->esp_kstats == NULL) 5156 goto bail; 5157 5158 num_aalgs = ipss->ipsec_nalgs[IPSEC_ALG_AUTH]; 5159 num_ealgs = ipss->ipsec_nalgs[IPSEC_ALG_ENCR]; 5160 if (num_ealgs == 0) 5161 goto bail; /* IPsec not loaded yet, apparently. */ 5162 num_aalgs++; /* No-auth or self-auth-crypto ESP. */ 5163 5164 /* Use netstack's maximum loaded algorithms... */ 5165 ncombs = num_ealgs * num_aalgs; 5166 replay = espstack->ipsecesp_replay_size; 5167 } else { 5168 if (ahstack->ah_kstats == NULL) 5169 goto bail; 5170 5171 ncombs = ipss->ipsec_nalgs[IPSEC_ALG_AUTH]; 5172 5173 if (ncombs == 0) 5174 goto bail; /* IPsec not loaded yet, apparently. */ 5175 replay = ahstack->ipsecah_replay_size; 5176 } 5177 5178 allocsize = sizeof (*prop) + ncombs * sizeof (*comb) + 5179 sizeof (sadb_x_kmc_t); 5180 mp = allocb(allocsize, BPRI_HI); 5181 if (mp == NULL) 5182 goto bail; 5183 prop = (sadb_prop_t *)mp->b_rptr; 5184 mp->b_wptr += sizeof (*prop); 5185 comb = (sadb_comb_t *)mp->b_wptr; 5186 /* Decrement allocsize, if it goes to or below 0, stop. */ 5187 allocsize -= sizeof (*prop); 5188 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 5189 prop->sadb_prop_len = SADB_8TO64(sizeof (*prop)); 5190 *(uint32_t *)(&prop->sadb_prop_replay) = 0; /* Quick zero-out! */ 5191 prop->sadb_prop_replay = replay; 5192 5193 /* 5194 * Based upon algorithm properties, and what-not, prioritize a 5195 * proposal, based on the ordering of the ESP algorithms in the 5196 * alternatives in the policy rule or socket that was placed 5197 * in the acquire record. 5198 * 5199 * For each action in policy list 5200 * Add combination. 5201 * I should not hit it, but if I've hit limit, return. 5202 */ 5203 5204 for (walker = ap; walker != NULL; walker = walker->ipa_next) { 5205 ipsec_alginfo_t *ealg, *aalg; 5206 ipsec_prot_t *prot; 5207 5208 if (walker->ipa_act.ipa_type != IPSEC_POLICY_APPLY) 5209 continue; 5210 5211 prot = &walker->ipa_act.ipa_apply; 5212 if (walker->ipa_act.ipa_apply.ipp_km_proto != 0) 5213 kmp = walker->ipa_act.ipa_apply.ipp_km_proto; 5214 if (walker->ipa_act.ipa_apply.ipp_km_cookie != 0) 5215 kmc = walker->ipa_act.ipa_apply.ipp_km_cookie; 5216 if (walker->ipa_act.ipa_apply.ipp_replay_depth) { 5217 prop->sadb_prop_replay = 5218 walker->ipa_act.ipa_apply.ipp_replay_depth; 5219 } 5220 5221 if (do_esp) { 5222 if (!prot->ipp_use_esp) 5223 continue; 5224 5225 if (prot->ipp_esp_auth_alg != 0) { 5226 aalg = ipss->ipsec_alglists[IPSEC_ALG_AUTH] 5227 [prot->ipp_esp_auth_alg]; 5228 if (aalg == NULL || !ALG_VALID(aalg)) 5229 continue; 5230 } else 5231 aalg = NULL; 5232 5233 ASSERT(prot->ipp_encr_alg > 0); 5234 ealg = ipss->ipsec_alglists[IPSEC_ALG_ENCR] 5235 [prot->ipp_encr_alg]; 5236 if (ealg == NULL || !ALG_VALID(ealg)) 5237 continue; 5238 5239 /* 5240 * These may want to come from policy rule.. 5241 */ 5242 softbytes = espstack->ipsecesp_default_soft_bytes; 5243 hardbytes = espstack->ipsecesp_default_hard_bytes; 5244 softaddtime = espstack->ipsecesp_default_soft_addtime; 5245 hardaddtime = espstack->ipsecesp_default_hard_addtime; 5246 softusetime = espstack->ipsecesp_default_soft_usetime; 5247 hardusetime = espstack->ipsecesp_default_hard_usetime; 5248 } else { 5249 if (!prot->ipp_use_ah) 5250 continue; 5251 ealg = NULL; 5252 aalg = ipss->ipsec_alglists[IPSEC_ALG_AUTH] 5253 [prot->ipp_auth_alg]; 5254 if (aalg == NULL || !ALG_VALID(aalg)) 5255 continue; 5256 5257 /* 5258 * These may want to come from policy rule.. 5259 */ 5260 softbytes = ahstack->ipsecah_default_soft_bytes; 5261 hardbytes = ahstack->ipsecah_default_hard_bytes; 5262 softaddtime = ahstack->ipsecah_default_soft_addtime; 5263 hardaddtime = ahstack->ipsecah_default_hard_addtime; 5264 softusetime = ahstack->ipsecah_default_soft_usetime; 5265 hardusetime = ahstack->ipsecah_default_hard_usetime; 5266 } 5267 5268 if (ealg == NULL) { 5269 ealgid = eminbits = emaxbits = esaltlen = 0; 5270 } else { 5271 ealgid = ealg->alg_id; 5272 eminbits = 5273 MAX(prot->ipp_espe_minbits, ealg->alg_ef_minbits); 5274 emaxbits = 5275 MIN(prot->ipp_espe_maxbits, ealg->alg_ef_maxbits); 5276 esaltlen = ealg->alg_saltlen; 5277 } 5278 5279 if (aalg == NULL) { 5280 aalgid = aminbits = amaxbits = 0; 5281 } else { 5282 aalgid = aalg->alg_id; 5283 aminbits = MAX(prot->ipp_espa_minbits, 5284 aalg->alg_ef_minbits); 5285 amaxbits = MIN(prot->ipp_espa_maxbits, 5286 aalg->alg_ef_maxbits); 5287 } 5288 5289 comb->sadb_comb_flags = 0; 5290 comb->sadb_comb_reserved = 0; 5291 comb->sadb_comb_encrypt = ealgid; 5292 comb->sadb_comb_encrypt_minbits = eminbits; 5293 comb->sadb_comb_encrypt_maxbits = emaxbits; 5294 comb->sadb_x_comb_encrypt_saltbits = SADB_8TO1(esaltlen); 5295 comb->sadb_comb_auth = aalgid; 5296 comb->sadb_comb_auth_minbits = aminbits; 5297 comb->sadb_comb_auth_maxbits = amaxbits; 5298 comb->sadb_comb_soft_allocations = 0; 5299 comb->sadb_comb_hard_allocations = 0; 5300 comb->sadb_comb_soft_bytes = softbytes; 5301 comb->sadb_comb_hard_bytes = hardbytes; 5302 comb->sadb_comb_soft_addtime = softaddtime; 5303 comb->sadb_comb_hard_addtime = hardaddtime; 5304 comb->sadb_comb_soft_usetime = softusetime; 5305 comb->sadb_comb_hard_usetime = hardusetime; 5306 5307 prop->sadb_prop_len += SADB_8TO64(sizeof (*comb)); 5308 mp->b_wptr += sizeof (*comb); 5309 allocsize -= sizeof (*comb); 5310 /* Should never dip BELOW sizeof (KM cookie extension). */ 5311 ASSERT3S(allocsize, >=, sizeof (sadb_x_kmc_t)); 5312 if (allocsize <= sizeof (sadb_x_kmc_t)) 5313 break; /* out of space.. */ 5314 comb++; 5315 } 5316 5317 /* Don't include KMC extension if there's no room. */ 5318 if (((kmp != 0) || (kmc != 0)) && allocsize >= sizeof (sadb_x_kmc_t)) { 5319 if (sadb_make_kmc_ext(mp->b_wptr, 5320 mp->b_wptr + sizeof (sadb_x_kmc_t), kmp, kmc) == NULL) { 5321 freeb(mp); 5322 mp = NULL; 5323 goto bail; 5324 } 5325 mp->b_wptr += sizeof (sadb_x_kmc_t); 5326 prop->sadb_prop_len += SADB_8TO64(sizeof (sadb_x_kmc_t)); 5327 } 5328 5329 bail: 5330 rw_exit(&ipss->ipsec_alg_lock); 5331 return (mp); 5332 } 5333 5334 /* 5335 * Generate an extended ACQUIRE's extended-proposal extension. 5336 */ 5337 static mblk_t * 5338 sadb_acquire_extended_prop(ipsec_action_t *ap, netstack_t *ns) 5339 { 5340 sadb_prop_t *eprop; 5341 uint8_t *cur, *end; 5342 mblk_t *mp; 5343 int allocsize, numecombs = 0, numalgdescs = 0; 5344 uint32_t kmp = 0, replay = 0; 5345 uint64_t kmc = 0; 5346 ipsec_action_t *walker; 5347 5348 allocsize = sizeof (*eprop); 5349 5350 /* 5351 * Going to walk through the action list twice. Once for allocation 5352 * measurement, and once for actual construction. 5353 */ 5354 for (walker = ap; walker != NULL; walker = walker->ipa_next) { 5355 ipsec_prot_t *ipp; 5356 5357 /* 5358 * Skip non-IPsec policies 5359 */ 5360 if (walker->ipa_act.ipa_type != IPSEC_ACT_APPLY) 5361 continue; 5362 5363 ipp = &walker->ipa_act.ipa_apply; 5364 5365 if (walker->ipa_act.ipa_apply.ipp_km_proto) 5366 kmp = ipp->ipp_km_proto; 5367 if (walker->ipa_act.ipa_apply.ipp_km_cookie) 5368 kmc = ipp->ipp_km_cookie; 5369 if (walker->ipa_act.ipa_apply.ipp_replay_depth) 5370 replay = ipp->ipp_replay_depth; 5371 5372 if (ipp->ipp_use_ah) 5373 numalgdescs++; 5374 if (ipp->ipp_use_esp) { 5375 numalgdescs++; 5376 if (ipp->ipp_use_espa) 5377 numalgdescs++; 5378 } 5379 5380 numecombs++; 5381 } 5382 ASSERT(numecombs > 0); 5383 5384 allocsize += numecombs * sizeof (sadb_x_ecomb_t) + 5385 numalgdescs * sizeof (sadb_x_algdesc_t) + sizeof (sadb_x_kmc_t); 5386 mp = allocb(allocsize, BPRI_HI); 5387 if (mp == NULL) 5388 return (NULL); 5389 eprop = (sadb_prop_t *)mp->b_rptr; 5390 end = mp->b_rptr + allocsize; 5391 cur = mp->b_rptr + sizeof (*eprop); 5392 5393 eprop->sadb_prop_exttype = SADB_X_EXT_EPROP; 5394 eprop->sadb_x_prop_ereserved = 0; 5395 eprop->sadb_x_prop_numecombs = 0; 5396 *(uint32_t *)(&eprop->sadb_prop_replay) = 0; /* Quick zero-out! */ 5397 /* Pick ESP's replay default if need be. */ 5398 eprop->sadb_prop_replay = (replay == 0) ? 5399 ns->netstack_ipsecesp->ipsecesp_replay_size : replay; 5400 5401 /* This time, walk through and actually allocate. */ 5402 for (walker = ap; walker != NULL; walker = walker->ipa_next) { 5403 /* 5404 * Skip non-IPsec policies 5405 */ 5406 if (walker->ipa_act.ipa_type != IPSEC_ACT_APPLY) 5407 continue; 5408 cur = sadb_action_to_ecomb(cur, end, walker, ns); 5409 if (cur == NULL) { 5410 /* NOTE: inverse-ACQUIRE should note this as ENOMEM. */ 5411 freeb(mp); 5412 return (NULL); 5413 } 5414 eprop->sadb_x_prop_numecombs++; 5415 } 5416 5417 ASSERT(end - cur >= sizeof (sadb_x_kmc_t)); 5418 if ((kmp != 0) || (kmc != 0)) { 5419 cur = sadb_make_kmc_ext(cur, end, kmp, kmc); 5420 if (cur == NULL) { 5421 freeb(mp); 5422 return (NULL); 5423 } 5424 } 5425 mp->b_wptr = cur; 5426 eprop->sadb_prop_len = SADB_8TO64(cur - mp->b_rptr); 5427 5428 return (mp); 5429 } 5430 5431 /* 5432 * For this mblk, insert a new acquire record. Assume bucket contains addrs 5433 * of all of the same length. Give up (and drop) if memory 5434 * cannot be allocated for a new one; otherwise, invoke callback to 5435 * send the acquire up.. 5436 * 5437 * In cases where we need both AH and ESP, add the SA to the ESP ACQUIRE 5438 * list. The ah_add_sa_finish() routines can look at the packet's attached 5439 * attributes and handle this case specially. 5440 */ 5441 void 5442 sadb_acquire(mblk_t *datamp, ip_xmit_attr_t *ixa, boolean_t need_ah, 5443 boolean_t need_esp) 5444 { 5445 mblk_t *asyncmp, *regular, *extended, *common, *prop, *eprop; 5446 sadbp_t *spp; 5447 sadb_t *sp; 5448 ipsacq_t *newbie; 5449 iacqf_t *bucket; 5450 ipha_t *ipha = (ipha_t *)datamp->b_rptr; 5451 ip6_t *ip6h = (ip6_t *)datamp->b_rptr; 5452 uint32_t *src, *dst, *isrc, *idst; 5453 ipsec_policy_t *pp = ixa->ixa_ipsec_policy; 5454 ipsec_action_t *ap = ixa->ixa_ipsec_action; 5455 sa_family_t af; 5456 int hashoffset; 5457 uint32_t seq; 5458 uint64_t unique_id = 0; 5459 boolean_t tunnel_mode = (ixa->ixa_flags & IXAF_IPSEC_TUNNEL) != 0; 5460 ts_label_t *tsl; 5461 netstack_t *ns = ixa->ixa_ipst->ips_netstack; 5462 ipsec_stack_t *ipss = ns->netstack_ipsec; 5463 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp; 5464 ipsecah_stack_t *ahstack = ns->netstack_ipsecah; 5465 ipsec_selector_t sel; 5466 queue_t *q; 5467 5468 ASSERT((pp != NULL) || (ap != NULL)); 5469 5470 ASSERT(need_ah || need_esp); 5471 5472 /* Assign sadb pointers */ 5473 if (need_esp) { 5474 /* 5475 * ESP happens first if we need both AH and ESP. 5476 */ 5477 spp = &espstack->esp_sadb; 5478 } else { 5479 spp = &ahstack->ah_sadb; 5480 } 5481 sp = (ixa->ixa_flags & IXAF_IS_IPV4) ? &spp->s_v4 : &spp->s_v6; 5482 5483 if (is_system_labeled()) 5484 tsl = ixa->ixa_tsl; 5485 else 5486 tsl = NULL; 5487 5488 if (ap == NULL) 5489 ap = pp->ipsp_act; 5490 ASSERT(ap != NULL); 5491 5492 if (ap->ipa_act.ipa_apply.ipp_use_unique || tunnel_mode) 5493 unique_id = SA_FORM_UNIQUE_ID(ixa); 5494 5495 /* 5496 * Set up an ACQUIRE record. 5497 * 5498 * Immediately, make sure the ACQUIRE sequence number doesn't slip 5499 * below the lowest point allowed in the kernel. (In other words, 5500 * make sure the high bit on the sequence number is set.) 5501 */ 5502 5503 seq = keysock_next_seq(ns) | IACQF_LOWEST_SEQ; 5504 5505 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5506 src = (uint32_t *)&ipha->ipha_src; 5507 dst = (uint32_t *)&ipha->ipha_dst; 5508 af = AF_INET; 5509 hashoffset = OUTBOUND_HASH_V4(sp, ipha->ipha_dst); 5510 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 5511 } else { 5512 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 5513 src = (uint32_t *)&ip6h->ip6_src; 5514 dst = (uint32_t *)&ip6h->ip6_dst; 5515 af = AF_INET6; 5516 hashoffset = OUTBOUND_HASH_V6(sp, ip6h->ip6_dst); 5517 ASSERT(!(ixa->ixa_flags & IXAF_IS_IPV4)); 5518 } 5519 5520 if (tunnel_mode) { 5521 if (pp == NULL) { 5522 /* 5523 * Tunnel mode with no policy pointer means this is a 5524 * reflected ICMP (like a ECHO REQUEST) that came in 5525 * with self-encapsulated protection. Until we better 5526 * support this, drop the packet. 5527 */ 5528 ip_drop_packet(datamp, B_FALSE, NULL, 5529 DROPPER(ipss, ipds_spd_got_selfencap), 5530 &ipss->ipsec_spd_dropper); 5531 return; 5532 } 5533 /* Snag inner addresses. */ 5534 isrc = ixa->ixa_ipsec_insrc; 5535 idst = ixa->ixa_ipsec_indst; 5536 } else { 5537 isrc = idst = NULL; 5538 } 5539 5540 /* 5541 * Check buckets to see if there is an existing entry. If so, 5542 * grab it. sadb_checkacquire locks newbie if found. 5543 */ 5544 bucket = &(sp->sdb_acq[hashoffset]); 5545 mutex_enter(&bucket->iacqf_lock); 5546 newbie = sadb_checkacquire(bucket, ap, pp, src, dst, isrc, idst, 5547 unique_id, tsl); 5548 5549 if (newbie == NULL) { 5550 /* 5551 * Otherwise, allocate a new one. 5552 */ 5553 newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP); 5554 if (newbie == NULL) { 5555 mutex_exit(&bucket->iacqf_lock); 5556 ip_drop_packet(datamp, B_FALSE, NULL, 5557 DROPPER(ipss, ipds_sadb_acquire_nomem), 5558 &ipss->ipsec_sadb_dropper); 5559 return; 5560 } 5561 newbie->ipsacq_policy = pp; 5562 if (pp != NULL) { 5563 IPPOL_REFHOLD(pp); 5564 } 5565 IPACT_REFHOLD(ap); 5566 newbie->ipsacq_act = ap; 5567 newbie->ipsacq_linklock = &bucket->iacqf_lock; 5568 newbie->ipsacq_next = bucket->iacqf_ipsacq; 5569 newbie->ipsacq_ptpn = &bucket->iacqf_ipsacq; 5570 if (newbie->ipsacq_next != NULL) 5571 newbie->ipsacq_next->ipsacq_ptpn = &newbie->ipsacq_next; 5572 5573 bucket->iacqf_ipsacq = newbie; 5574 mutex_init(&newbie->ipsacq_lock, NULL, MUTEX_DEFAULT, NULL); 5575 mutex_enter(&newbie->ipsacq_lock); 5576 } 5577 5578 /* 5579 * XXX MLS does it actually help us to drop the bucket lock here? 5580 * we have inserted a half-built, locked acquire record into the 5581 * bucket. any competing thread will now be able to lock the bucket 5582 * to scan it, but will immediately pile up on the new acquire 5583 * record's lock; I don't think we gain anything here other than to 5584 * disperse blame for lock contention. 5585 * 5586 * we might be able to dispense with acquire record locks entirely.. 5587 * just use the bucket locks.. 5588 */ 5589 5590 mutex_exit(&bucket->iacqf_lock); 5591 5592 /* 5593 * This assert looks silly for now, but we may need to enter newbie's 5594 * mutex during a search. 5595 */ 5596 ASSERT(MUTEX_HELD(&newbie->ipsacq_lock)); 5597 5598 /* 5599 * Make the ip_xmit_attr_t into something we can queue. 5600 * If no memory it frees datamp. 5601 */ 5602 asyncmp = ip_xmit_attr_to_mblk(ixa); 5603 if (asyncmp != NULL) 5604 linkb(asyncmp, datamp); 5605 5606 /* Queue up packet. Use b_next. */ 5607 5608 if (asyncmp == NULL) { 5609 /* Statistics for allocation failure */ 5610 if (ixa->ixa_flags & IXAF_IS_IPV4) { 5611 BUMP_MIB(&ixa->ixa_ipst->ips_ip_mib, 5612 ipIfStatsOutDiscards); 5613 } else { 5614 BUMP_MIB(&ixa->ixa_ipst->ips_ip6_mib, 5615 ipIfStatsOutDiscards); 5616 } 5617 ip_drop_output("No memory for asyncmp", datamp, NULL); 5618 freemsg(datamp); 5619 /* 5620 * The acquire record will be freed quickly if it's new 5621 * (ipsacq_expire == 0), and will proceed as if no packet 5622 * showed up if not. 5623 */ 5624 mutex_exit(&newbie->ipsacq_lock); 5625 return; 5626 } else if (newbie->ipsacq_numpackets == 0) { 5627 /* First one. */ 5628 newbie->ipsacq_mp = asyncmp; 5629 newbie->ipsacq_numpackets = 1; 5630 newbie->ipsacq_expire = gethrestime_sec(); 5631 /* 5632 * Extended ACQUIRE with both AH+ESP will use ESP's timeout 5633 * value. 5634 */ 5635 newbie->ipsacq_expire += *spp->s_acquire_timeout; 5636 newbie->ipsacq_seq = seq; 5637 newbie->ipsacq_addrfam = af; 5638 5639 newbie->ipsacq_srcport = ixa->ixa_ipsec_src_port; 5640 newbie->ipsacq_dstport = ixa->ixa_ipsec_dst_port; 5641 newbie->ipsacq_icmp_type = ixa->ixa_ipsec_icmp_type; 5642 newbie->ipsacq_icmp_code = ixa->ixa_ipsec_icmp_code; 5643 if (tunnel_mode) { 5644 newbie->ipsacq_inneraddrfam = ixa->ixa_ipsec_inaf; 5645 newbie->ipsacq_proto = ixa->ixa_ipsec_inaf == AF_INET6 ? 5646 IPPROTO_IPV6 : IPPROTO_ENCAP; 5647 newbie->ipsacq_innersrcpfx = ixa->ixa_ipsec_insrcpfx; 5648 newbie->ipsacq_innerdstpfx = ixa->ixa_ipsec_indstpfx; 5649 IPSA_COPY_ADDR(newbie->ipsacq_innersrc, 5650 ixa->ixa_ipsec_insrc, ixa->ixa_ipsec_inaf); 5651 IPSA_COPY_ADDR(newbie->ipsacq_innerdst, 5652 ixa->ixa_ipsec_indst, ixa->ixa_ipsec_inaf); 5653 } else { 5654 newbie->ipsacq_proto = ixa->ixa_ipsec_proto; 5655 } 5656 newbie->ipsacq_unique_id = unique_id; 5657 5658 if (tsl != NULL) { 5659 label_hold(tsl); 5660 newbie->ipsacq_tsl = tsl; 5661 } 5662 } else { 5663 /* Scan to the end of the list & insert. */ 5664 mblk_t *lastone = newbie->ipsacq_mp; 5665 5666 while (lastone->b_next != NULL) 5667 lastone = lastone->b_next; 5668 lastone->b_next = asyncmp; 5669 if (newbie->ipsacq_numpackets++ == ipsacq_maxpackets) { 5670 newbie->ipsacq_numpackets = ipsacq_maxpackets; 5671 lastone = newbie->ipsacq_mp; 5672 newbie->ipsacq_mp = lastone->b_next; 5673 lastone->b_next = NULL; 5674 5675 /* Freeing the async message */ 5676 lastone = ip_xmit_attr_free_mblk(lastone); 5677 ip_drop_packet(lastone, B_FALSE, NULL, 5678 DROPPER(ipss, ipds_sadb_acquire_toofull), 5679 &ipss->ipsec_sadb_dropper); 5680 } else { 5681 IP_ACQUIRE_STAT(ipss, qhiwater, 5682 newbie->ipsacq_numpackets); 5683 } 5684 } 5685 5686 /* 5687 * Reset addresses. Set them to the most recently added mblk chain, 5688 * so that the address pointers in the acquire record will point 5689 * at an mblk still attached to the acquire list. 5690 */ 5691 5692 newbie->ipsacq_srcaddr = src; 5693 newbie->ipsacq_dstaddr = dst; 5694 5695 /* 5696 * If the acquire record has more than one queued packet, we've 5697 * already sent an ACQUIRE, and don't need to repeat ourself. 5698 */ 5699 if (newbie->ipsacq_seq != seq || newbie->ipsacq_numpackets > 1) { 5700 /* I have an acquire outstanding already! */ 5701 mutex_exit(&newbie->ipsacq_lock); 5702 return; 5703 } 5704 5705 if (need_esp) { 5706 ESP_BUMP_STAT(espstack, acquire_requests); 5707 q = espstack->esp_pfkey_q; 5708 } else { 5709 /* 5710 * Two cases get us here: 5711 * 1.) AH-only policy. 5712 * 5713 * 2.) A continuation of an AH+ESP policy, and this is the 5714 * post-ESP, AH-needs-to-send-a-regular-ACQUIRE case. 5715 * (i.e. called from esp_do_outbound_ah().) 5716 */ 5717 AH_BUMP_STAT(ahstack, acquire_requests); 5718 q = ahstack->ah_pfkey_q; 5719 } 5720 5721 /* 5722 * Get selectors and other policy-expression bits needed for an 5723 * ACQUIRE. 5724 */ 5725 bzero(&sel, sizeof (sel)); 5726 sel.ips_isv4 = (ixa->ixa_flags & IXAF_IS_IPV4) != 0; 5727 if (tunnel_mode) { 5728 sel.ips_protocol = (ixa->ixa_ipsec_inaf == AF_INET) ? 5729 IPPROTO_ENCAP : IPPROTO_IPV6; 5730 } else { 5731 sel.ips_protocol = ixa->ixa_ipsec_proto; 5732 sel.ips_local_port = ixa->ixa_ipsec_src_port; 5733 sel.ips_remote_port = ixa->ixa_ipsec_dst_port; 5734 } 5735 sel.ips_icmp_type = ixa->ixa_ipsec_icmp_type; 5736 sel.ips_icmp_code = ixa->ixa_ipsec_icmp_code; 5737 sel.ips_is_icmp_inv_acq = 0; 5738 if (af == AF_INET) { 5739 sel.ips_local_addr_v4 = ipha->ipha_src; 5740 sel.ips_remote_addr_v4 = ipha->ipha_dst; 5741 } else { 5742 sel.ips_local_addr_v6 = ip6h->ip6_src; 5743 sel.ips_remote_addr_v6 = ip6h->ip6_dst; 5744 } 5745 5746 5747 /* 5748 * 1. Generate addresses, kmc, and sensitivity. These are "common" 5749 * and should be an mblk pointed to by common. TBD -- eventually it 5750 * will include triggering packet contents as more address extensions. 5751 * 5752 * 2. Generate ACQUIRE & KEYSOCK_OUT and single-protocol proposal. 5753 * These are "regular" and "prop". String regular->b_cont->b_cont = 5754 * common, common->b_cont = prop. 5755 * 5756 * 3. If extended register got turned on, generate EXT_ACQUIRE & 5757 * KEYSOCK_OUT and multi-protocol eprop. These are "extended" and 5758 * "eprop". String extended->b_cont->b_cont = dupb(common) and 5759 * extended->b_cont->b_cont->b_cont = prop. 5760 * 5761 * 4. Deliver: putnext(q, regular) and if there, putnext(q, extended). 5762 */ 5763 5764 regular = extended = prop = eprop = NULL; 5765 5766 common = sadb_acquire_msg_common(&sel, pp, ap, tunnel_mode, tsl, NULL); 5767 if (common == NULL) 5768 goto bail; 5769 5770 regular = sadb_acquire_msg_base(0, (need_esp ? 5771 SADB_SATYPE_ESP : SADB_SATYPE_AH), newbie->ipsacq_seq, 0); 5772 if (regular == NULL) 5773 goto bail; 5774 5775 /* 5776 * Pardon the boolean cleverness. At least one of need_* must be true. 5777 * If they are equal, it's an AH & ESP policy and ESP needs to go 5778 * first. If they aren't, just check the contents of need_esp. 5779 */ 5780 prop = sadb_acquire_prop(ap, ns, need_esp); 5781 if (prop == NULL) 5782 goto bail; 5783 5784 /* Link the parts together. */ 5785 regular->b_cont->b_cont = common; 5786 common->b_cont = prop; 5787 /* 5788 * Prop is now linked, so don't freemsg() it if the extended 5789 * construction goes off the rails. 5790 */ 5791 prop = NULL; 5792 5793 ((sadb_msg_t *)(regular->b_cont->b_rptr))->sadb_msg_len = 5794 SADB_8TO64(msgsize(regular->b_cont)); 5795 5796 /* 5797 * If we need an extended ACQUIRE, build it here. 5798 */ 5799 if (keysock_extended_reg(ns)) { 5800 /* NOTE: "common" still points to what we need. */ 5801 extended = sadb_acquire_msg_base(0, 0, newbie->ipsacq_seq, 0); 5802 if (extended == NULL) { 5803 common = NULL; 5804 goto bail; 5805 } 5806 5807 extended->b_cont->b_cont = dupb(common); 5808 common = NULL; 5809 if (extended->b_cont->b_cont == NULL) 5810 goto bail; 5811 5812 eprop = sadb_acquire_extended_prop(ap, ns); 5813 if (eprop == NULL) 5814 goto bail; 5815 extended->b_cont->b_cont->b_cont = eprop; 5816 5817 ((sadb_msg_t *)(extended->b_cont->b_rptr))->sadb_msg_len = 5818 SADB_8TO64(msgsize(extended->b_cont)); 5819 } 5820 5821 /* So we don't hold a lock across putnext()... */ 5822 mutex_exit(&newbie->ipsacq_lock); 5823 5824 if (extended != NULL) 5825 putnext(q, extended); 5826 ASSERT(regular != NULL); 5827 putnext(q, regular); 5828 return; 5829 5830 bail: 5831 /* Make this acquire record go away quickly... */ 5832 newbie->ipsacq_expire = 0; 5833 /* Exploit freemsg(NULL) being legal for fun & profit. */ 5834 freemsg(common); 5835 freemsg(prop); 5836 freemsg(extended); 5837 freemsg(regular); 5838 mutex_exit(&newbie->ipsacq_lock); 5839 } 5840 5841 /* 5842 * Unlink and free an acquire record. 5843 */ 5844 void 5845 sadb_destroy_acquire(ipsacq_t *acqrec, netstack_t *ns) 5846 { 5847 mblk_t *mp; 5848 ipsec_stack_t *ipss = ns->netstack_ipsec; 5849 5850 ASSERT(MUTEX_HELD(acqrec->ipsacq_linklock)); 5851 5852 if (acqrec->ipsacq_policy != NULL) { 5853 IPPOL_REFRELE(acqrec->ipsacq_policy); 5854 } 5855 if (acqrec->ipsacq_act != NULL) { 5856 IPACT_REFRELE(acqrec->ipsacq_act); 5857 } 5858 5859 /* Unlink */ 5860 *(acqrec->ipsacq_ptpn) = acqrec->ipsacq_next; 5861 if (acqrec->ipsacq_next != NULL) 5862 acqrec->ipsacq_next->ipsacq_ptpn = acqrec->ipsacq_ptpn; 5863 5864 if (acqrec->ipsacq_tsl != NULL) { 5865 label_rele(acqrec->ipsacq_tsl); 5866 acqrec->ipsacq_tsl = NULL; 5867 } 5868 5869 /* 5870 * Free hanging mp's. 5871 * 5872 * XXX Instead of freemsg(), perhaps use IPSEC_REQ_FAILED. 5873 */ 5874 5875 mutex_enter(&acqrec->ipsacq_lock); 5876 while (acqrec->ipsacq_mp != NULL) { 5877 mp = acqrec->ipsacq_mp; 5878 acqrec->ipsacq_mp = mp->b_next; 5879 mp->b_next = NULL; 5880 /* Freeing the async message */ 5881 mp = ip_xmit_attr_free_mblk(mp); 5882 ip_drop_packet(mp, B_FALSE, NULL, 5883 DROPPER(ipss, ipds_sadb_acquire_timeout), 5884 &ipss->ipsec_sadb_dropper); 5885 } 5886 mutex_exit(&acqrec->ipsacq_lock); 5887 5888 /* Free */ 5889 mutex_destroy(&acqrec->ipsacq_lock); 5890 kmem_free(acqrec, sizeof (*acqrec)); 5891 } 5892 5893 /* 5894 * Destroy an acquire list fanout. 5895 */ 5896 static void 5897 sadb_destroy_acqlist(iacqf_t **listp, uint_t numentries, boolean_t forever, 5898 netstack_t *ns) 5899 { 5900 int i; 5901 iacqf_t *list = *listp; 5902 5903 if (list == NULL) 5904 return; 5905 5906 for (i = 0; i < numentries; i++) { 5907 mutex_enter(&(list[i].iacqf_lock)); 5908 while (list[i].iacqf_ipsacq != NULL) 5909 sadb_destroy_acquire(list[i].iacqf_ipsacq, ns); 5910 mutex_exit(&(list[i].iacqf_lock)); 5911 if (forever) 5912 mutex_destroy(&(list[i].iacqf_lock)); 5913 } 5914 5915 if (forever) { 5916 *listp = NULL; 5917 kmem_free(list, numentries * sizeof (*list)); 5918 } 5919 } 5920 5921 /* 5922 * Create an algorithm descriptor for an extended ACQUIRE. Filter crypto 5923 * framework's view of reality vs. IPsec's. EF's wins, BTW. 5924 */ 5925 static uint8_t * 5926 sadb_new_algdesc(uint8_t *start, uint8_t *limit, 5927 sadb_x_ecomb_t *ecomb, uint8_t satype, uint8_t algtype, 5928 uint8_t alg, uint16_t minbits, uint16_t maxbits, ipsec_stack_t *ipss) 5929 { 5930 uint8_t *cur = start; 5931 ipsec_alginfo_t *algp; 5932 sadb_x_algdesc_t *algdesc = (sadb_x_algdesc_t *)cur; 5933 5934 cur += sizeof (*algdesc); 5935 if (cur >= limit) 5936 return (NULL); 5937 5938 ecomb->sadb_x_ecomb_numalgs++; 5939 5940 /* 5941 * Normalize vs. crypto framework's limits. This way, you can specify 5942 * a stronger policy, and when the framework loads a stronger version, 5943 * you can just keep plowing w/o rewhacking your SPD. 5944 */ 5945 rw_enter(&ipss->ipsec_alg_lock, RW_READER); 5946 algp = ipss->ipsec_alglists[(algtype == SADB_X_ALGTYPE_AUTH) ? 5947 IPSEC_ALG_AUTH : IPSEC_ALG_ENCR][alg]; 5948 if (algp == NULL) { 5949 rw_exit(&ipss->ipsec_alg_lock); 5950 return (NULL); /* Algorithm doesn't exist. Fail gracefully. */ 5951 } 5952 if (minbits < algp->alg_ef_minbits) 5953 minbits = algp->alg_ef_minbits; 5954 if (maxbits > algp->alg_ef_maxbits) 5955 maxbits = algp->alg_ef_maxbits; 5956 rw_exit(&ipss->ipsec_alg_lock); 5957 5958 algdesc->sadb_x_algdesc_saltbits = SADB_8TO1(algp->alg_saltlen); 5959 algdesc->sadb_x_algdesc_satype = satype; 5960 algdesc->sadb_x_algdesc_algtype = algtype; 5961 algdesc->sadb_x_algdesc_alg = alg; 5962 algdesc->sadb_x_algdesc_minbits = minbits; 5963 algdesc->sadb_x_algdesc_maxbits = maxbits; 5964 5965 return (cur); 5966 } 5967 5968 /* 5969 * Convert the given ipsec_action_t into an ecomb starting at *ecomb 5970 * which must fit before *limit 5971 * 5972 * return NULL if we ran out of room or a pointer to the end of the ecomb. 5973 */ 5974 static uint8_t * 5975 sadb_action_to_ecomb(uint8_t *start, uint8_t *limit, ipsec_action_t *act, 5976 netstack_t *ns) 5977 { 5978 uint8_t *cur = start; 5979 sadb_x_ecomb_t *ecomb = (sadb_x_ecomb_t *)cur; 5980 ipsec_prot_t *ipp; 5981 ipsec_stack_t *ipss = ns->netstack_ipsec; 5982 5983 cur += sizeof (*ecomb); 5984 if (cur >= limit) 5985 return (NULL); 5986 5987 ASSERT(act->ipa_act.ipa_type == IPSEC_ACT_APPLY); 5988 5989 ipp = &act->ipa_act.ipa_apply; 5990 5991 ecomb->sadb_x_ecomb_numalgs = 0; 5992 ecomb->sadb_x_ecomb_reserved = 0; 5993 ecomb->sadb_x_ecomb_reserved2 = 0; 5994 /* 5995 * No limits on allocations, since we really don't support that 5996 * concept currently. 5997 */ 5998 ecomb->sadb_x_ecomb_soft_allocations = 0; 5999 ecomb->sadb_x_ecomb_hard_allocations = 0; 6000 6001 /* 6002 * XXX TBD: Policy or global parameters will eventually be 6003 * able to fill in some of these. 6004 */ 6005 ecomb->sadb_x_ecomb_flags = 0; 6006 ecomb->sadb_x_ecomb_soft_bytes = 0; 6007 ecomb->sadb_x_ecomb_hard_bytes = 0; 6008 ecomb->sadb_x_ecomb_soft_addtime = 0; 6009 ecomb->sadb_x_ecomb_hard_addtime = 0; 6010 ecomb->sadb_x_ecomb_soft_usetime = 0; 6011 ecomb->sadb_x_ecomb_hard_usetime = 0; 6012 6013 if (ipp->ipp_use_ah) { 6014 cur = sadb_new_algdesc(cur, limit, ecomb, 6015 SADB_SATYPE_AH, SADB_X_ALGTYPE_AUTH, ipp->ipp_auth_alg, 6016 ipp->ipp_ah_minbits, ipp->ipp_ah_maxbits, ipss); 6017 if (cur == NULL) 6018 return (NULL); 6019 ipsecah_fill_defs(ecomb, ns); 6020 } 6021 6022 if (ipp->ipp_use_esp) { 6023 if (ipp->ipp_use_espa) { 6024 cur = sadb_new_algdesc(cur, limit, ecomb, 6025 SADB_SATYPE_ESP, SADB_X_ALGTYPE_AUTH, 6026 ipp->ipp_esp_auth_alg, 6027 ipp->ipp_espa_minbits, 6028 ipp->ipp_espa_maxbits, ipss); 6029 if (cur == NULL) 6030 return (NULL); 6031 } 6032 6033 cur = sadb_new_algdesc(cur, limit, ecomb, 6034 SADB_SATYPE_ESP, SADB_X_ALGTYPE_CRYPT, 6035 ipp->ipp_encr_alg, 6036 ipp->ipp_espe_minbits, 6037 ipp->ipp_espe_maxbits, ipss); 6038 if (cur == NULL) 6039 return (NULL); 6040 /* Fill in lifetimes if and only if AH didn't already... */ 6041 if (!ipp->ipp_use_ah) 6042 ipsecesp_fill_defs(ecomb, ns); 6043 } 6044 6045 return (cur); 6046 } 6047 6048 #include <sys/tsol/label_macro.h> /* XXX should not need this */ 6049 6050 /* 6051 * From a cred_t, construct a sensitivity label extension 6052 * 6053 * We send up a fixed-size sensitivity label bitmap, and are perhaps 6054 * overly chummy with the underlying data structures here. 6055 */ 6056 6057 /* ARGSUSED */ 6058 int 6059 sadb_sens_len_from_label(ts_label_t *tsl) 6060 { 6061 int baselen = sizeof (sadb_sens_t) + _C_LEN * 4; 6062 return (roundup(baselen, sizeof (uint64_t))); 6063 } 6064 6065 void 6066 sadb_sens_from_label(sadb_sens_t *sens, int exttype, ts_label_t *tsl, 6067 int senslen) 6068 { 6069 uint8_t *bitmap; 6070 bslabel_t *sl; 6071 6072 /* LINTED */ 6073 ASSERT((_C_LEN & 1) == 0); 6074 ASSERT((senslen & 7) == 0); 6075 6076 sl = label2bslabel(tsl); 6077 6078 sens->sadb_sens_exttype = exttype; 6079 sens->sadb_sens_len = SADB_8TO64(senslen); 6080 6081 sens->sadb_sens_dpd = tsl->tsl_doi; 6082 sens->sadb_sens_sens_level = LCLASS(sl); 6083 sens->sadb_sens_integ_level = 0; /* TBD */ 6084 sens->sadb_sens_sens_len = _C_LEN >> 1; 6085 sens->sadb_sens_integ_len = 0; /* TBD */ 6086 sens->sadb_x_sens_flags = 0; 6087 6088 bitmap = (uint8_t *)(sens + 1); 6089 bcopy(&(((_bslabel_impl_t *)sl)->compartments), bitmap, _C_LEN * 4); 6090 } 6091 6092 /* 6093 * Okay, how do we report errors/invalid labels from this? 6094 * With a special designated "not a label" cred_t ? 6095 */ 6096 /* ARGSUSED */ 6097 ts_label_t * 6098 sadb_label_from_sens(sadb_sens_t *sens, uint64_t *bitmap) 6099 { 6100 int bitmap_len = SADB_64TO8(sens->sadb_sens_sens_len); 6101 bslabel_t sl; 6102 ts_label_t *tsl; 6103 6104 if (sens->sadb_sens_integ_level != 0) 6105 return (NULL); 6106 if (sens->sadb_sens_integ_len != 0) 6107 return (NULL); 6108 if (bitmap_len > _C_LEN * 4) 6109 return (NULL); 6110 6111 bsllow(&sl); 6112 LCLASS_SET((_bslabel_impl_t *)&sl, 6113 (uint16_t)sens->sadb_sens_sens_level); 6114 bcopy(bitmap, &((_bslabel_impl_t *)&sl)->compartments, 6115 bitmap_len); 6116 6117 tsl = labelalloc(&sl, sens->sadb_sens_dpd, KM_NOSLEEP); 6118 if (tsl == NULL) 6119 return (NULL); 6120 6121 if (sens->sadb_x_sens_flags & SADB_X_SENS_UNLABELED) 6122 tsl->tsl_flags |= TSLF_UNLABELED; 6123 return (tsl); 6124 } 6125 6126 /* End XXX label-library-leakage */ 6127 6128 /* 6129 * Given an SADB_GETSPI message, find an appropriately ranged SA and 6130 * allocate an SA. If there are message improprieties, return (ipsa_t *)-1. 6131 * If there was a memory allocation error, return NULL. (Assume NULL != 6132 * (ipsa_t *)-1). 6133 * 6134 * master_spi is passed in host order. 6135 */ 6136 ipsa_t * 6137 sadb_getspi(keysock_in_t *ksi, uint32_t master_spi, int *diagnostic, 6138 netstack_t *ns, uint_t sa_type) 6139 { 6140 sadb_address_t *src = 6141 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC], 6142 *dst = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 6143 sadb_spirange_t *range = 6144 (sadb_spirange_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE]; 6145 struct sockaddr_in *ssa, *dsa; 6146 struct sockaddr_in6 *ssa6, *dsa6; 6147 uint32_t *srcaddr, *dstaddr; 6148 sa_family_t af; 6149 uint32_t add, min, max; 6150 uint8_t protocol = 6151 (sa_type == SADB_SATYPE_AH) ? IPPROTO_AH : IPPROTO_ESP; 6152 6153 if (src == NULL) { 6154 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 6155 return ((ipsa_t *)-1); 6156 } 6157 if (dst == NULL) { 6158 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 6159 return ((ipsa_t *)-1); 6160 } 6161 if (range == NULL) { 6162 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_RANGE; 6163 return ((ipsa_t *)-1); 6164 } 6165 6166 min = ntohl(range->sadb_spirange_min); 6167 max = ntohl(range->sadb_spirange_max); 6168 dsa = (struct sockaddr_in *)(dst + 1); 6169 dsa6 = (struct sockaddr_in6 *)dsa; 6170 6171 ssa = (struct sockaddr_in *)(src + 1); 6172 ssa6 = (struct sockaddr_in6 *)ssa; 6173 ASSERT(dsa->sin_family == ssa->sin_family); 6174 6175 srcaddr = ALL_ZEROES_PTR; 6176 af = dsa->sin_family; 6177 switch (af) { 6178 case AF_INET: 6179 if (src != NULL) 6180 srcaddr = (uint32_t *)(&ssa->sin_addr); 6181 dstaddr = (uint32_t *)(&dsa->sin_addr); 6182 break; 6183 case AF_INET6: 6184 if (src != NULL) 6185 srcaddr = (uint32_t *)(&ssa6->sin6_addr); 6186 dstaddr = (uint32_t *)(&dsa6->sin6_addr); 6187 break; 6188 default: 6189 *diagnostic = SADB_X_DIAGNOSTIC_BAD_DST_AF; 6190 return ((ipsa_t *)-1); 6191 } 6192 6193 if (master_spi < min || master_spi > max) { 6194 /* Return a random value in the range. */ 6195 if (cl_inet_getspi) { 6196 cl_inet_getspi(ns->netstack_stackid, protocol, 6197 (uint8_t *)&add, sizeof (add), NULL); 6198 } else { 6199 (void) random_get_pseudo_bytes((uint8_t *)&add, 6200 sizeof (add)); 6201 } 6202 master_spi = min + (add % (max - min + 1)); 6203 } 6204 6205 /* 6206 * Since master_spi is passed in host order, we need to htonl() it 6207 * for the purposes of creating a new SA. 6208 */ 6209 return (sadb_makelarvalassoc(htonl(master_spi), srcaddr, dstaddr, af, 6210 ns)); 6211 } 6212 6213 /* 6214 * 6215 * Locate an ACQUIRE and nuke it. If I have an samsg that's larger than the 6216 * base header, just ignore it. Otherwise, lock down the whole ACQUIRE list 6217 * and scan for the sequence number in question. I may wish to accept an 6218 * address pair with it, for easier searching. 6219 * 6220 * Caller frees the message, so we don't have to here. 6221 * 6222 * NOTE: The pfkey_q parameter may be used in the future for ACQUIRE 6223 * failures. 6224 */ 6225 /* ARGSUSED */ 6226 void 6227 sadb_in_acquire(sadb_msg_t *samsg, sadbp_t *sp, queue_t *pfkey_q, 6228 netstack_t *ns) 6229 { 6230 int i; 6231 ipsacq_t *acqrec; 6232 iacqf_t *bucket; 6233 6234 /* 6235 * I only accept the base header for this! 6236 * Though to be honest, requiring the dst address would help 6237 * immensely. 6238 * 6239 * XXX There are already cases where I can get the dst address. 6240 */ 6241 if (samsg->sadb_msg_len > SADB_8TO64(sizeof (*samsg))) 6242 return; 6243 6244 /* 6245 * Using the samsg->sadb_msg_seq, find the ACQUIRE record, delete it, 6246 * (and in the future send a message to IP with the appropriate error 6247 * number). 6248 * 6249 * Q: Do I want to reject if pid != 0? 6250 */ 6251 6252 for (i = 0; i < sp->s_v4.sdb_hashsize; i++) { 6253 bucket = &sp->s_v4.sdb_acq[i]; 6254 mutex_enter(&bucket->iacqf_lock); 6255 for (acqrec = bucket->iacqf_ipsacq; acqrec != NULL; 6256 acqrec = acqrec->ipsacq_next) { 6257 if (samsg->sadb_msg_seq == acqrec->ipsacq_seq) 6258 break; /* for acqrec... loop. */ 6259 } 6260 if (acqrec != NULL) 6261 break; /* for i = 0... loop. */ 6262 6263 mutex_exit(&bucket->iacqf_lock); 6264 } 6265 6266 if (acqrec == NULL) { 6267 for (i = 0; i < sp->s_v6.sdb_hashsize; i++) { 6268 bucket = &sp->s_v6.sdb_acq[i]; 6269 mutex_enter(&bucket->iacqf_lock); 6270 for (acqrec = bucket->iacqf_ipsacq; acqrec != NULL; 6271 acqrec = acqrec->ipsacq_next) { 6272 if (samsg->sadb_msg_seq == acqrec->ipsacq_seq) 6273 break; /* for acqrec... loop. */ 6274 } 6275 if (acqrec != NULL) 6276 break; /* for i = 0... loop. */ 6277 6278 mutex_exit(&bucket->iacqf_lock); 6279 } 6280 } 6281 6282 6283 if (acqrec == NULL) 6284 return; 6285 6286 /* 6287 * What do I do with the errno and IP? I may need mp's services a 6288 * little more. See sadb_destroy_acquire() for future directions 6289 * beyond free the mblk chain on the acquire record. 6290 */ 6291 6292 ASSERT(&bucket->iacqf_lock == acqrec->ipsacq_linklock); 6293 sadb_destroy_acquire(acqrec, ns); 6294 /* Have to exit mutex here, because of breaking out of for loop. */ 6295 mutex_exit(&bucket->iacqf_lock); 6296 } 6297 6298 /* 6299 * The following functions work with the replay windows of an SA. They assume 6300 * the ipsa->ipsa_replay_arr is an array of uint64_t, and that the bit vector 6301 * represents the highest sequence number packet received, and back 6302 * (ipsa->ipsa_replay_wsize) packets. 6303 */ 6304 6305 /* 6306 * Is the replay bit set? 6307 */ 6308 static boolean_t 6309 ipsa_is_replay_set(ipsa_t *ipsa, uint32_t offset) 6310 { 6311 uint64_t bit = (uint64_t)1 << (uint64_t)(offset & 63); 6312 6313 return ((bit & ipsa->ipsa_replay_arr[offset >> 6]) ? B_TRUE : B_FALSE); 6314 } 6315 6316 /* 6317 * Shift the bits of the replay window over. 6318 */ 6319 static void 6320 ipsa_shift_replay(ipsa_t *ipsa, uint32_t shift) 6321 { 6322 int i; 6323 int jump = ((shift - 1) >> 6) + 1; 6324 6325 if (shift == 0) 6326 return; 6327 6328 for (i = (ipsa->ipsa_replay_wsize - 1) >> 6; i >= 0; i--) { 6329 if (i + jump <= (ipsa->ipsa_replay_wsize - 1) >> 6) { 6330 ipsa->ipsa_replay_arr[i + jump] |= 6331 ipsa->ipsa_replay_arr[i] >> (64 - (shift & 63)); 6332 } 6333 ipsa->ipsa_replay_arr[i] <<= shift; 6334 } 6335 } 6336 6337 /* 6338 * Set a bit in the bit vector. 6339 */ 6340 static void 6341 ipsa_set_replay(ipsa_t *ipsa, uint32_t offset) 6342 { 6343 uint64_t bit = (uint64_t)1 << (uint64_t)(offset & 63); 6344 6345 ipsa->ipsa_replay_arr[offset >> 6] |= bit; 6346 } 6347 6348 #define SADB_MAX_REPLAY_VALUE 0xffffffff 6349 6350 /* 6351 * Assume caller has NOT done ntohl() already on seq. Check to see 6352 * if replay sequence number "seq" has been seen already. 6353 */ 6354 boolean_t 6355 sadb_replay_check(ipsa_t *ipsa, uint32_t seq) 6356 { 6357 boolean_t rc; 6358 uint32_t diff; 6359 6360 if (ipsa->ipsa_replay_wsize == 0) 6361 return (B_TRUE); 6362 6363 /* 6364 * NOTE: I've already checked for 0 on the wire in sadb_replay_peek(). 6365 */ 6366 6367 /* Convert sequence number into host order before holding the mutex. */ 6368 seq = ntohl(seq); 6369 6370 mutex_enter(&ipsa->ipsa_lock); 6371 6372 /* Initialize inbound SA's ipsa_replay field to last one received. */ 6373 if (ipsa->ipsa_replay == 0) 6374 ipsa->ipsa_replay = 1; 6375 6376 if (seq > ipsa->ipsa_replay) { 6377 /* 6378 * I have received a new "highest value received". Shift 6379 * the replay window over. 6380 */ 6381 diff = seq - ipsa->ipsa_replay; 6382 if (diff < ipsa->ipsa_replay_wsize) { 6383 /* In replay window, shift bits over. */ 6384 ipsa_shift_replay(ipsa, diff); 6385 } else { 6386 /* WAY FAR AHEAD, clear bits and start again. */ 6387 bzero(ipsa->ipsa_replay_arr, 6388 sizeof (ipsa->ipsa_replay_arr)); 6389 } 6390 ipsa_set_replay(ipsa, 0); 6391 ipsa->ipsa_replay = seq; 6392 rc = B_TRUE; 6393 goto done; 6394 } 6395 diff = ipsa->ipsa_replay - seq; 6396 if (diff >= ipsa->ipsa_replay_wsize || ipsa_is_replay_set(ipsa, diff)) { 6397 rc = B_FALSE; 6398 goto done; 6399 } 6400 /* Set this packet as seen. */ 6401 ipsa_set_replay(ipsa, diff); 6402 6403 rc = B_TRUE; 6404 done: 6405 mutex_exit(&ipsa->ipsa_lock); 6406 return (rc); 6407 } 6408 6409 /* 6410 * "Peek" and see if we should even bother going through the effort of 6411 * running an authentication check on the sequence number passed in. 6412 * this takes into account packets that are below the replay window, 6413 * and collisions with already replayed packets. Return B_TRUE if it 6414 * is okay to proceed, B_FALSE if this packet should be dropped immediately. 6415 * Assume same byte-ordering as sadb_replay_check. 6416 */ 6417 boolean_t 6418 sadb_replay_peek(ipsa_t *ipsa, uint32_t seq) 6419 { 6420 boolean_t rc = B_FALSE; 6421 uint32_t diff; 6422 6423 if (ipsa->ipsa_replay_wsize == 0) 6424 return (B_TRUE); 6425 6426 /* 6427 * 0 is 0, regardless of byte order... :) 6428 * 6429 * If I get 0 on the wire (and there is a replay window) then the 6430 * sender most likely wrapped. This ipsa may need to be marked or 6431 * something. 6432 */ 6433 if (seq == 0) 6434 return (B_FALSE); 6435 6436 seq = ntohl(seq); 6437 mutex_enter(&ipsa->ipsa_lock); 6438 if (seq < ipsa->ipsa_replay - ipsa->ipsa_replay_wsize && 6439 ipsa->ipsa_replay >= ipsa->ipsa_replay_wsize) 6440 goto done; 6441 6442 /* 6443 * If I've hit 0xffffffff, then quite honestly, I don't need to 6444 * bother with formalities. I'm not accepting any more packets 6445 * on this SA. 6446 */ 6447 if (ipsa->ipsa_replay == SADB_MAX_REPLAY_VALUE) { 6448 /* 6449 * Since we're already holding the lock, update the 6450 * expire time ala. sadb_replay_delete() and return. 6451 */ 6452 ipsa->ipsa_hardexpiretime = (time_t)1; 6453 goto done; 6454 } 6455 6456 if (seq <= ipsa->ipsa_replay) { 6457 /* 6458 * This seq is in the replay window. I'm not below it, 6459 * because I already checked for that above! 6460 */ 6461 diff = ipsa->ipsa_replay - seq; 6462 if (ipsa_is_replay_set(ipsa, diff)) 6463 goto done; 6464 } 6465 /* Else return B_TRUE, I'm going to advance the window. */ 6466 6467 rc = B_TRUE; 6468 done: 6469 mutex_exit(&ipsa->ipsa_lock); 6470 return (rc); 6471 } 6472 6473 /* 6474 * Delete a single SA. 6475 * 6476 * For now, use the quick-and-dirty trick of making the association's 6477 * hard-expire lifetime (time_t)1, ensuring deletion by the *_ager(). 6478 */ 6479 void 6480 sadb_replay_delete(ipsa_t *assoc) 6481 { 6482 mutex_enter(&assoc->ipsa_lock); 6483 assoc->ipsa_hardexpiretime = (time_t)1; 6484 mutex_exit(&assoc->ipsa_lock); 6485 } 6486 6487 /* 6488 * Special front-end to ipsec_rl_strlog() dealing with SA failure. 6489 * this is designed to take only a format string with "* %x * %s *", so 6490 * that "spi" is printed first, then "addr" is converted using inet_pton(). 6491 * 6492 * This is abstracted out to save the stack space for only when inet_pton() 6493 * is called. Make sure "spi" is in network order; it usually is when this 6494 * would get called. 6495 */ 6496 void 6497 ipsec_assocfailure(short mid, short sid, char level, ushort_t sl, char *fmt, 6498 uint32_t spi, void *addr, int af, netstack_t *ns) 6499 { 6500 char buf[INET6_ADDRSTRLEN]; 6501 6502 ASSERT(af == AF_INET6 || af == AF_INET); 6503 6504 ipsec_rl_strlog(ns, mid, sid, level, sl, fmt, ntohl(spi), 6505 inet_ntop(af, addr, buf, sizeof (buf))); 6506 } 6507 6508 /* 6509 * Fills in a reference to the policy, if any, from the conn, in *ppp 6510 */ 6511 static void 6512 ipsec_conn_pol(ipsec_selector_t *sel, conn_t *connp, ipsec_policy_t **ppp) 6513 { 6514 ipsec_policy_t *pp; 6515 ipsec_latch_t *ipl = connp->conn_latch; 6516 6517 if ((ipl != NULL) && (connp->conn_ixa->ixa_ipsec_policy != NULL)) { 6518 pp = connp->conn_ixa->ixa_ipsec_policy; 6519 IPPOL_REFHOLD(pp); 6520 } else { 6521 pp = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, sel, 6522 connp->conn_netstack); 6523 } 6524 *ppp = pp; 6525 } 6526 6527 /* 6528 * The following functions scan through active conn_t structures 6529 * and return a reference to the best-matching policy it can find. 6530 * Caller must release the reference. 6531 */ 6532 static void 6533 ipsec_udp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, ip_stack_t *ipst) 6534 { 6535 connf_t *connfp; 6536 conn_t *connp = NULL; 6537 ipsec_selector_t portonly; 6538 6539 bzero((void *)&portonly, sizeof (portonly)); 6540 6541 if (sel->ips_local_port == 0) 6542 return; 6543 6544 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(sel->ips_local_port, 6545 ipst)]; 6546 mutex_enter(&connfp->connf_lock); 6547 6548 if (sel->ips_isv4) { 6549 connp = connfp->connf_head; 6550 while (connp != NULL) { 6551 if (IPCL_UDP_MATCH(connp, sel->ips_local_port, 6552 sel->ips_local_addr_v4, sel->ips_remote_port, 6553 sel->ips_remote_addr_v4)) 6554 break; 6555 connp = connp->conn_next; 6556 } 6557 6558 if (connp == NULL) { 6559 /* Try port-only match in IPv6. */ 6560 portonly.ips_local_port = sel->ips_local_port; 6561 sel = &portonly; 6562 } 6563 } 6564 6565 if (connp == NULL) { 6566 connp = connfp->connf_head; 6567 while (connp != NULL) { 6568 if (IPCL_UDP_MATCH_V6(connp, sel->ips_local_port, 6569 sel->ips_local_addr_v6, sel->ips_remote_port, 6570 sel->ips_remote_addr_v6)) 6571 break; 6572 connp = connp->conn_next; 6573 } 6574 6575 if (connp == NULL) { 6576 mutex_exit(&connfp->connf_lock); 6577 return; 6578 } 6579 } 6580 6581 CONN_INC_REF(connp); 6582 mutex_exit(&connfp->connf_lock); 6583 6584 ipsec_conn_pol(sel, connp, ppp); 6585 CONN_DEC_REF(connp); 6586 } 6587 6588 static conn_t * 6589 ipsec_find_listen_conn(uint16_t *pptr, ipsec_selector_t *sel, ip_stack_t *ipst) 6590 { 6591 connf_t *connfp; 6592 conn_t *connp = NULL; 6593 const in6_addr_t *v6addrmatch = &sel->ips_local_addr_v6; 6594 6595 if (sel->ips_local_port == 0) 6596 return (NULL); 6597 6598 connfp = &ipst->ips_ipcl_bind_fanout[ 6599 IPCL_BIND_HASH(sel->ips_local_port, ipst)]; 6600 mutex_enter(&connfp->connf_lock); 6601 6602 if (sel->ips_isv4) { 6603 connp = connfp->connf_head; 6604 while (connp != NULL) { 6605 if (IPCL_BIND_MATCH(connp, IPPROTO_TCP, 6606 sel->ips_local_addr_v4, pptr[1])) 6607 break; 6608 connp = connp->conn_next; 6609 } 6610 6611 if (connp == NULL) { 6612 /* Match to all-zeroes. */ 6613 v6addrmatch = &ipv6_all_zeros; 6614 } 6615 } 6616 6617 if (connp == NULL) { 6618 connp = connfp->connf_head; 6619 while (connp != NULL) { 6620 if (IPCL_BIND_MATCH_V6(connp, IPPROTO_TCP, 6621 *v6addrmatch, pptr[1])) 6622 break; 6623 connp = connp->conn_next; 6624 } 6625 6626 if (connp == NULL) { 6627 mutex_exit(&connfp->connf_lock); 6628 return (NULL); 6629 } 6630 } 6631 6632 CONN_INC_REF(connp); 6633 mutex_exit(&connfp->connf_lock); 6634 return (connp); 6635 } 6636 6637 static void 6638 ipsec_tcp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, ip_stack_t *ipst) 6639 { 6640 connf_t *connfp; 6641 conn_t *connp; 6642 uint32_t ports; 6643 uint16_t *pptr = (uint16_t *)&ports; 6644 6645 /* 6646 * Find TCP state in the following order: 6647 * 1.) Connected conns. 6648 * 2.) Listeners. 6649 * 6650 * Even though #2 will be the common case for inbound traffic, only 6651 * following this order insures correctness. 6652 */ 6653 6654 if (sel->ips_local_port == 0) 6655 return; 6656 6657 /* 6658 * 0 should be fport, 1 should be lport. SRC is the local one here. 6659 * See ipsec_construct_inverse_acquire() for details. 6660 */ 6661 pptr[0] = sel->ips_remote_port; 6662 pptr[1] = sel->ips_local_port; 6663 6664 connfp = &ipst->ips_ipcl_conn_fanout[ 6665 IPCL_CONN_HASH(sel->ips_remote_addr_v4, ports, ipst)]; 6666 mutex_enter(&connfp->connf_lock); 6667 connp = connfp->connf_head; 6668 6669 if (sel->ips_isv4) { 6670 while (connp != NULL) { 6671 if (IPCL_CONN_MATCH(connp, IPPROTO_TCP, 6672 sel->ips_remote_addr_v4, sel->ips_local_addr_v4, 6673 ports)) 6674 break; 6675 connp = connp->conn_next; 6676 } 6677 } else { 6678 while (connp != NULL) { 6679 if (IPCL_CONN_MATCH_V6(connp, IPPROTO_TCP, 6680 sel->ips_remote_addr_v6, sel->ips_local_addr_v6, 6681 ports)) 6682 break; 6683 connp = connp->conn_next; 6684 } 6685 } 6686 6687 if (connp != NULL) { 6688 CONN_INC_REF(connp); 6689 mutex_exit(&connfp->connf_lock); 6690 } else { 6691 mutex_exit(&connfp->connf_lock); 6692 6693 /* Try the listen hash. */ 6694 if ((connp = ipsec_find_listen_conn(pptr, sel, ipst)) == NULL) 6695 return; 6696 } 6697 6698 ipsec_conn_pol(sel, connp, ppp); 6699 CONN_DEC_REF(connp); 6700 } 6701 6702 static void 6703 ipsec_sctp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, 6704 ip_stack_t *ipst) 6705 { 6706 conn_t *connp; 6707 uint32_t ports; 6708 uint16_t *pptr = (uint16_t *)&ports; 6709 6710 /* 6711 * Find SCP state in the following order: 6712 * 1.) Connected conns. 6713 * 2.) Listeners. 6714 * 6715 * Even though #2 will be the common case for inbound traffic, only 6716 * following this order insures correctness. 6717 */ 6718 6719 if (sel->ips_local_port == 0) 6720 return; 6721 6722 /* 6723 * 0 should be fport, 1 should be lport. SRC is the local one here. 6724 * See ipsec_construct_inverse_acquire() for details. 6725 */ 6726 pptr[0] = sel->ips_remote_port; 6727 pptr[1] = sel->ips_local_port; 6728 6729 /* 6730 * For labeled systems, there's no need to check the 6731 * label here. It's known to be good as we checked 6732 * before allowing the connection to become bound. 6733 */ 6734 if (sel->ips_isv4) { 6735 in6_addr_t src, dst; 6736 6737 IN6_IPADDR_TO_V4MAPPED(sel->ips_remote_addr_v4, &dst); 6738 IN6_IPADDR_TO_V4MAPPED(sel->ips_local_addr_v4, &src); 6739 connp = sctp_find_conn(&dst, &src, ports, ALL_ZONES, 6740 0, ipst->ips_netstack->netstack_sctp); 6741 } else { 6742 connp = sctp_find_conn(&sel->ips_remote_addr_v6, 6743 &sel->ips_local_addr_v6, ports, ALL_ZONES, 6744 0, ipst->ips_netstack->netstack_sctp); 6745 } 6746 if (connp == NULL) 6747 return; 6748 ipsec_conn_pol(sel, connp, ppp); 6749 CONN_DEC_REF(connp); 6750 } 6751 6752 /* 6753 * Fill in a query for the SPD (in "sel") using two PF_KEY address extensions. 6754 * Returns 0 or errno, and always sets *diagnostic to something appropriate 6755 * to PF_KEY. 6756 * 6757 * NOTE: For right now, this function (and ipsec_selector_t for that matter), 6758 * ignore prefix lengths in the address extension. Since we match on first- 6759 * entered policies, this shouldn't matter. Also, since we normalize prefix- 6760 * set addresses to mask out the lower bits, we should get a suitable search 6761 * key for the SPD anyway. This is the function to change if the assumption 6762 * about suitable search keys is wrong. 6763 */ 6764 static int 6765 ipsec_get_inverse_acquire_sel(ipsec_selector_t *sel, sadb_address_t *srcext, 6766 sadb_address_t *dstext, int *diagnostic) 6767 { 6768 struct sockaddr_in *src, *dst; 6769 struct sockaddr_in6 *src6, *dst6; 6770 6771 *diagnostic = 0; 6772 6773 bzero(sel, sizeof (*sel)); 6774 sel->ips_protocol = srcext->sadb_address_proto; 6775 dst = (struct sockaddr_in *)(dstext + 1); 6776 if (dst->sin_family == AF_INET6) { 6777 dst6 = (struct sockaddr_in6 *)dst; 6778 src6 = (struct sockaddr_in6 *)(srcext + 1); 6779 if (src6->sin6_family != AF_INET6) { 6780 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 6781 return (EINVAL); 6782 } 6783 sel->ips_remote_addr_v6 = dst6->sin6_addr; 6784 sel->ips_local_addr_v6 = src6->sin6_addr; 6785 if (sel->ips_protocol == IPPROTO_ICMPV6) { 6786 sel->ips_is_icmp_inv_acq = 1; 6787 } else { 6788 sel->ips_remote_port = dst6->sin6_port; 6789 sel->ips_local_port = src6->sin6_port; 6790 } 6791 sel->ips_isv4 = B_FALSE; 6792 } else { 6793 src = (struct sockaddr_in *)(srcext + 1); 6794 if (src->sin_family != AF_INET) { 6795 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 6796 return (EINVAL); 6797 } 6798 sel->ips_remote_addr_v4 = dst->sin_addr.s_addr; 6799 sel->ips_local_addr_v4 = src->sin_addr.s_addr; 6800 if (sel->ips_protocol == IPPROTO_ICMP) { 6801 sel->ips_is_icmp_inv_acq = 1; 6802 } else { 6803 sel->ips_remote_port = dst->sin_port; 6804 sel->ips_local_port = src->sin_port; 6805 } 6806 sel->ips_isv4 = B_TRUE; 6807 } 6808 return (0); 6809 } 6810 6811 /* 6812 * We have encapsulation. 6813 * - Lookup tun_t by address and look for an associated 6814 * tunnel policy 6815 * - If there are inner selectors 6816 * - check ITPF_P_TUNNEL and ITPF_P_ACTIVE 6817 * - Look up tunnel policy based on selectors 6818 * - Else 6819 * - Sanity check the negotation 6820 * - If appropriate, fall through to global policy 6821 */ 6822 static int 6823 ipsec_tun_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, 6824 sadb_address_t *innsrcext, sadb_address_t *inndstext, ipsec_tun_pol_t *itp, 6825 int *diagnostic) 6826 { 6827 int err; 6828 ipsec_policy_head_t *polhead; 6829 6830 *diagnostic = 0; 6831 6832 /* Check for inner selectors and act appropriately */ 6833 6834 if (innsrcext != NULL) { 6835 /* Inner selectors present */ 6836 ASSERT(inndstext != NULL); 6837 if ((itp == NULL) || 6838 (itp->itp_flags & (ITPF_P_ACTIVE | ITPF_P_TUNNEL)) != 6839 (ITPF_P_ACTIVE | ITPF_P_TUNNEL)) { 6840 /* 6841 * If inner packet selectors, we must have negotiate 6842 * tunnel and active policy. If the tunnel has 6843 * transport-mode policy set on it, or has no policy, 6844 * fail. 6845 */ 6846 return (ENOENT); 6847 } else { 6848 /* 6849 * Reset "sel" to indicate inner selectors. Pass 6850 * inner PF_KEY address extensions for this to happen. 6851 */ 6852 if ((err = ipsec_get_inverse_acquire_sel(sel, 6853 innsrcext, inndstext, diagnostic)) != 0) 6854 return (err); 6855 /* 6856 * Now look for a tunnel policy based on those inner 6857 * selectors. (Common code is below.) 6858 */ 6859 } 6860 } else { 6861 /* No inner selectors present */ 6862 if ((itp == NULL) || !(itp->itp_flags & ITPF_P_ACTIVE)) { 6863 /* 6864 * Transport mode negotiation with no tunnel policy 6865 * configured - return to indicate a global policy 6866 * check is needed. 6867 */ 6868 return (0); 6869 } else if (itp->itp_flags & ITPF_P_TUNNEL) { 6870 /* Tunnel mode set with no inner selectors. */ 6871 return (ENOENT); 6872 } 6873 /* 6874 * Else, this is a tunnel policy configured with ifconfig(8) 6875 * or "negotiate transport" with ipsecconf(8). We have an 6876 * itp with policy set based on any match, so don't bother 6877 * changing fields in "sel". 6878 */ 6879 } 6880 6881 ASSERT(itp != NULL); 6882 polhead = itp->itp_policy; 6883 ASSERT(polhead != NULL); 6884 rw_enter(&polhead->iph_lock, RW_READER); 6885 *ppp = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND, sel); 6886 rw_exit(&polhead->iph_lock); 6887 6888 /* 6889 * Don't default to global if we didn't find a matching policy entry. 6890 * Instead, send ENOENT, just like if we hit a transport-mode tunnel. 6891 */ 6892 if (*ppp == NULL) 6893 return (ENOENT); 6894 6895 return (0); 6896 } 6897 6898 /* 6899 * For sctp conn_faddr is the primary address, hence this is of limited 6900 * use for sctp. 6901 */ 6902 static void 6903 ipsec_oth_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, 6904 ip_stack_t *ipst) 6905 { 6906 boolean_t isv4 = sel->ips_isv4; 6907 connf_t *connfp; 6908 conn_t *connp; 6909 6910 if (isv4) { 6911 connfp = &ipst->ips_ipcl_proto_fanout_v4[sel->ips_protocol]; 6912 } else { 6913 connfp = &ipst->ips_ipcl_proto_fanout_v6[sel->ips_protocol]; 6914 } 6915 6916 mutex_enter(&connfp->connf_lock); 6917 for (connp = connfp->connf_head; connp != NULL; 6918 connp = connp->conn_next) { 6919 if (isv4) { 6920 if ((connp->conn_laddr_v4 == INADDR_ANY || 6921 connp->conn_laddr_v4 == sel->ips_local_addr_v4) && 6922 (connp->conn_faddr_v4 == INADDR_ANY || 6923 connp->conn_faddr_v4 == sel->ips_remote_addr_v4)) 6924 break; 6925 } else { 6926 if ((IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6) || 6927 IN6_ARE_ADDR_EQUAL(&connp->conn_laddr_v6, 6928 &sel->ips_local_addr_v6)) && 6929 (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) || 6930 IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 6931 &sel->ips_remote_addr_v6))) 6932 break; 6933 } 6934 } 6935 if (connp == NULL) { 6936 mutex_exit(&connfp->connf_lock); 6937 return; 6938 } 6939 6940 CONN_INC_REF(connp); 6941 mutex_exit(&connfp->connf_lock); 6942 6943 ipsec_conn_pol(sel, connp, ppp); 6944 CONN_DEC_REF(connp); 6945 } 6946 6947 /* 6948 * Construct an inverse ACQUIRE reply based on: 6949 * 6950 * 1.) Current global policy. 6951 * 2.) An conn_t match depending on what all was passed in the extv[]. 6952 * 3.) A tunnel's policy head. 6953 * ... 6954 * N.) Other stuff TBD (e.g. identities) 6955 * 6956 * If there is an error, set sadb_msg_errno and sadb_x_msg_diagnostic 6957 * in this function so the caller can extract them where appropriately. 6958 * 6959 * The SRC address is the local one - just like an outbound ACQUIRE message. 6960 * 6961 * XXX MLS: key management supplies a label which we just reflect back up 6962 * again. clearly we need to involve the label in the rest of the checks. 6963 */ 6964 mblk_t * 6965 ipsec_construct_inverse_acquire(sadb_msg_t *samsg, sadb_ext_t *extv[], 6966 netstack_t *ns) 6967 { 6968 int err; 6969 int diagnostic; 6970 sadb_address_t *srcext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_SRC], 6971 *dstext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_DST], 6972 *innsrcext = (sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_SRC], 6973 *inndstext = (sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_DST]; 6974 sadb_sens_t *sens = (sadb_sens_t *)extv[SADB_EXT_SENSITIVITY]; 6975 struct sockaddr_in6 *src, *dst; 6976 struct sockaddr_in6 *isrc, *idst; 6977 ipsec_tun_pol_t *itp = NULL; 6978 ipsec_policy_t *pp = NULL; 6979 ipsec_selector_t sel, isel; 6980 mblk_t *retmp = NULL; 6981 ip_stack_t *ipst = ns->netstack_ip; 6982 6983 6984 /* Normalize addresses */ 6985 if (sadb_addrcheck(NULL, (mblk_t *)samsg, (sadb_ext_t *)srcext, 0, ns) 6986 == KS_IN_ADDR_UNKNOWN) { 6987 err = EINVAL; 6988 diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC; 6989 goto bail; 6990 } 6991 src = (struct sockaddr_in6 *)(srcext + 1); 6992 if (sadb_addrcheck(NULL, (mblk_t *)samsg, (sadb_ext_t *)dstext, 0, ns) 6993 == KS_IN_ADDR_UNKNOWN) { 6994 err = EINVAL; 6995 diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; 6996 goto bail; 6997 } 6998 dst = (struct sockaddr_in6 *)(dstext + 1); 6999 if (src->sin6_family != dst->sin6_family) { 7000 err = EINVAL; 7001 diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 7002 goto bail; 7003 } 7004 7005 /* Check for tunnel mode and act appropriately */ 7006 if (innsrcext != NULL) { 7007 if (inndstext == NULL) { 7008 err = EINVAL; 7009 diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_DST; 7010 goto bail; 7011 } 7012 if (sadb_addrcheck(NULL, (mblk_t *)samsg, 7013 (sadb_ext_t *)innsrcext, 0, ns) == KS_IN_ADDR_UNKNOWN) { 7014 err = EINVAL; 7015 diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_INNER_SRC; 7016 goto bail; 7017 } 7018 isrc = (struct sockaddr_in6 *)(innsrcext + 1); 7019 if (sadb_addrcheck(NULL, (mblk_t *)samsg, 7020 (sadb_ext_t *)inndstext, 0, ns) == KS_IN_ADDR_UNKNOWN) { 7021 err = EINVAL; 7022 diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_INNER_DST; 7023 goto bail; 7024 } 7025 idst = (struct sockaddr_in6 *)(inndstext + 1); 7026 if (isrc->sin6_family != idst->sin6_family) { 7027 err = EINVAL; 7028 diagnostic = SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH; 7029 goto bail; 7030 } 7031 if (isrc->sin6_family != AF_INET && 7032 isrc->sin6_family != AF_INET6) { 7033 err = EINVAL; 7034 diagnostic = SADB_X_DIAGNOSTIC_BAD_INNER_SRC_AF; 7035 goto bail; 7036 } 7037 } else if (inndstext != NULL) { 7038 err = EINVAL; 7039 diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC; 7040 goto bail; 7041 } 7042 7043 /* Get selectors first, based on outer addresses */ 7044 err = ipsec_get_inverse_acquire_sel(&sel, srcext, dstext, &diagnostic); 7045 if (err != 0) 7046 goto bail; 7047 7048 /* Check for tunnel mode mismatches. */ 7049 if (innsrcext != NULL && 7050 ((isrc->sin6_family == AF_INET && 7051 sel.ips_protocol != IPPROTO_ENCAP && sel.ips_protocol != 0) || 7052 (isrc->sin6_family == AF_INET6 && 7053 sel.ips_protocol != IPPROTO_IPV6 && sel.ips_protocol != 0))) { 7054 err = EPROTOTYPE; 7055 goto bail; 7056 } 7057 7058 /* 7059 * Okay, we have the addresses and other selector information. 7060 * Let's first find a conn... 7061 */ 7062 pp = NULL; 7063 switch (sel.ips_protocol) { 7064 case IPPROTO_TCP: 7065 ipsec_tcp_pol(&sel, &pp, ipst); 7066 break; 7067 case IPPROTO_UDP: 7068 ipsec_udp_pol(&sel, &pp, ipst); 7069 break; 7070 case IPPROTO_SCTP: 7071 ipsec_sctp_pol(&sel, &pp, ipst); 7072 break; 7073 case IPPROTO_ENCAP: 7074 case IPPROTO_IPV6: 7075 /* 7076 * Assume sel.ips_remote_addr_* has the right address at 7077 * that exact position. 7078 */ 7079 itp = itp_get_byaddr((uint32_t *)(&sel.ips_local_addr_v6), 7080 (uint32_t *)(&sel.ips_remote_addr_v6), src->sin6_family, 7081 ipst); 7082 7083 if (innsrcext == NULL) { 7084 /* 7085 * Transport-mode tunnel, make sure we fake out isel 7086 * to contain something based on the outer protocol. 7087 */ 7088 bzero(&isel, sizeof (isel)); 7089 isel.ips_isv4 = (sel.ips_protocol == IPPROTO_ENCAP); 7090 } /* Else isel is initialized by ipsec_tun_pol(). */ 7091 err = ipsec_tun_pol(&isel, &pp, innsrcext, inndstext, itp, 7092 &diagnostic); 7093 /* 7094 * NOTE: isel isn't used for now, but in RFC 430x IPsec, it 7095 * may be. 7096 */ 7097 if (err != 0) 7098 goto bail; 7099 break; 7100 default: 7101 ipsec_oth_pol(&sel, &pp, ipst); 7102 break; 7103 } 7104 7105 /* 7106 * If we didn't find a matching conn_t or other policy head, take a 7107 * look in the global policy. 7108 */ 7109 if (pp == NULL) { 7110 pp = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, NULL, &sel, ns); 7111 if (pp == NULL) { 7112 /* There's no global policy. */ 7113 err = ENOENT; 7114 diagnostic = 0; 7115 goto bail; 7116 } 7117 } 7118 7119 ASSERT(pp != NULL); 7120 retmp = sadb_acquire_msg_base(0, 0, samsg->sadb_msg_seq, 7121 samsg->sadb_msg_pid); 7122 if (retmp != NULL) { 7123 /* Remove KEYSOCK_OUT, because caller constructs it instead. */ 7124 mblk_t *kso = retmp; 7125 7126 retmp = retmp->b_cont; 7127 freeb(kso); 7128 /* Append addresses... */ 7129 retmp->b_cont = sadb_acquire_msg_common(&sel, pp, NULL, 7130 (itp != NULL && (itp->itp_flags & ITPF_P_TUNNEL)), NULL, 7131 sens); 7132 if (retmp->b_cont == NULL) { 7133 freemsg(retmp); 7134 retmp = NULL; 7135 } 7136 /* And the policy result. */ 7137 retmp->b_cont->b_cont = 7138 sadb_acquire_extended_prop(pp->ipsp_act, ns); 7139 if (retmp->b_cont->b_cont == NULL) { 7140 freemsg(retmp); 7141 retmp = NULL; 7142 } 7143 ((sadb_msg_t *)retmp->b_rptr)->sadb_msg_len = 7144 SADB_8TO64(msgsize(retmp)); 7145 } 7146 7147 if (pp != NULL) { 7148 IPPOL_REFRELE(pp); 7149 } 7150 ASSERT(err == 0 && diagnostic == 0); 7151 if (retmp == NULL) 7152 err = ENOMEM; 7153 bail: 7154 if (itp != NULL) { 7155 ITP_REFRELE(itp, ns); 7156 } 7157 samsg->sadb_msg_errno = (uint8_t)err; 7158 samsg->sadb_x_msg_diagnostic = (uint16_t)diagnostic; 7159 return (retmp); 7160 } 7161 7162 /* 7163 * ipsa_lpkt is a one-element queue, only manipulated by the next two 7164 * functions. They have to hold the ipsa_lock because of potential races 7165 * between key management using SADB_UPDATE, and inbound packets that may 7166 * queue up on the larval SA (hence the 'l' in "lpkt"). 7167 */ 7168 7169 /* 7170 * sadb_set_lpkt: 7171 * 7172 * Returns the passed-in packet if the SA is no longer larval. 7173 * 7174 * Returns NULL if the SA is larval, and needs to be swapped into the SA for 7175 * processing after an SADB_UPDATE. 7176 */ 7177 mblk_t * 7178 sadb_set_lpkt(ipsa_t *ipsa, mblk_t *npkt, ip_recv_attr_t *ira) 7179 { 7180 mblk_t *opkt; 7181 7182 mutex_enter(&ipsa->ipsa_lock); 7183 opkt = ipsa->ipsa_lpkt; 7184 if (ipsa->ipsa_state == IPSA_STATE_LARVAL) { 7185 /* 7186 * Consume npkt and place it in the LARVAL SA's inbound 7187 * packet slot. 7188 */ 7189 mblk_t *attrmp; 7190 7191 attrmp = ip_recv_attr_to_mblk(ira); 7192 if (attrmp == NULL) { 7193 ill_t *ill = ira->ira_ill; 7194 7195 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7196 ip_drop_input("ipIfStatsInDiscards", npkt, ill); 7197 freemsg(npkt); 7198 opkt = NULL; 7199 } else { 7200 ASSERT(attrmp->b_cont == NULL); 7201 attrmp->b_cont = npkt; 7202 ipsa->ipsa_lpkt = attrmp; 7203 } 7204 npkt = NULL; 7205 } else { 7206 /* 7207 * If not larval, we lost the race. NOTE: ipsa_lpkt may still 7208 * have been non-NULL in the non-larval case, because of 7209 * inbound packets arriving prior to sadb_common_add() 7210 * transferring the SA completely out of larval state, but 7211 * after lpkt was grabbed by the AH/ESP-specific add routines. 7212 * We should clear the old ipsa_lpkt in this case to make sure 7213 * that it doesn't linger on the now-MATURE IPsec SA, or get 7214 * picked up as an out-of-order packet. 7215 */ 7216 ipsa->ipsa_lpkt = NULL; 7217 } 7218 mutex_exit(&ipsa->ipsa_lock); 7219 7220 if (opkt != NULL) { 7221 ipsec_stack_t *ipss; 7222 7223 ipss = ira->ira_ill->ill_ipst->ips_netstack->netstack_ipsec; 7224 opkt = ip_recv_attr_free_mblk(opkt); 7225 ip_drop_packet(opkt, B_TRUE, ira->ira_ill, 7226 DROPPER(ipss, ipds_sadb_inlarval_replace), 7227 &ipss->ipsec_sadb_dropper); 7228 } 7229 return (npkt); 7230 } 7231 7232 /* 7233 * sadb_clear_lpkt: Atomically clear ipsa->ipsa_lpkt and return the 7234 * previous value. 7235 */ 7236 mblk_t * 7237 sadb_clear_lpkt(ipsa_t *ipsa) 7238 { 7239 mblk_t *opkt; 7240 7241 mutex_enter(&ipsa->ipsa_lock); 7242 opkt = ipsa->ipsa_lpkt; 7243 ipsa->ipsa_lpkt = NULL; 7244 mutex_exit(&ipsa->ipsa_lock); 7245 return (opkt); 7246 } 7247 7248 /* 7249 * Buffer a packet that's in IDLE state as set by Solaris Clustering. 7250 */ 7251 void 7252 sadb_buf_pkt(ipsa_t *ipsa, mblk_t *bpkt, ip_recv_attr_t *ira) 7253 { 7254 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack; 7255 ipsec_stack_t *ipss = ns->netstack_ipsec; 7256 in6_addr_t *srcaddr = (in6_addr_t *)(&ipsa->ipsa_srcaddr); 7257 in6_addr_t *dstaddr = (in6_addr_t *)(&ipsa->ipsa_dstaddr); 7258 mblk_t *mp; 7259 7260 ASSERT(ipsa->ipsa_state == IPSA_STATE_IDLE); 7261 7262 if (cl_inet_idlesa == NULL) { 7263 ip_drop_packet(bpkt, B_TRUE, ira->ira_ill, 7264 DROPPER(ipss, ipds_sadb_inidle_overflow), 7265 &ipss->ipsec_sadb_dropper); 7266 return; 7267 } 7268 7269 cl_inet_idlesa(ns->netstack_stackid, 7270 (ipsa->ipsa_type == SADB_SATYPE_AH) ? IPPROTO_AH : IPPROTO_ESP, 7271 ipsa->ipsa_spi, ipsa->ipsa_addrfam, *srcaddr, *dstaddr, NULL); 7272 7273 mp = ip_recv_attr_to_mblk(ira); 7274 if (mp == NULL) { 7275 ip_drop_packet(bpkt, B_TRUE, ira->ira_ill, 7276 DROPPER(ipss, ipds_sadb_inidle_overflow), 7277 &ipss->ipsec_sadb_dropper); 7278 return; 7279 } 7280 linkb(mp, bpkt); 7281 7282 mutex_enter(&ipsa->ipsa_lock); 7283 ipsa->ipsa_mblkcnt++; 7284 if (ipsa->ipsa_bpkt_head == NULL) { 7285 ipsa->ipsa_bpkt_head = ipsa->ipsa_bpkt_tail = bpkt; 7286 } else { 7287 ipsa->ipsa_bpkt_tail->b_next = bpkt; 7288 ipsa->ipsa_bpkt_tail = bpkt; 7289 if (ipsa->ipsa_mblkcnt > SADB_MAX_IDLEPKTS) { 7290 mblk_t *tmp; 7291 7292 tmp = ipsa->ipsa_bpkt_head; 7293 ipsa->ipsa_bpkt_head = ipsa->ipsa_bpkt_head->b_next; 7294 tmp = ip_recv_attr_free_mblk(tmp); 7295 ip_drop_packet(tmp, B_TRUE, NULL, 7296 DROPPER(ipss, ipds_sadb_inidle_overflow), 7297 &ipss->ipsec_sadb_dropper); 7298 ipsa->ipsa_mblkcnt --; 7299 } 7300 } 7301 mutex_exit(&ipsa->ipsa_lock); 7302 } 7303 7304 /* 7305 * Stub function that taskq_dispatch() invokes to take the mblk (in arg) 7306 * and put into STREAMS again. 7307 */ 7308 void 7309 sadb_clear_buf_pkt(void *ipkt) 7310 { 7311 mblk_t *tmp, *buf_pkt; 7312 ip_recv_attr_t iras; 7313 7314 buf_pkt = (mblk_t *)ipkt; 7315 7316 while (buf_pkt != NULL) { 7317 mblk_t *data_mp; 7318 7319 tmp = buf_pkt->b_next; 7320 buf_pkt->b_next = NULL; 7321 7322 data_mp = buf_pkt->b_cont; 7323 buf_pkt->b_cont = NULL; 7324 if (!ip_recv_attr_from_mblk(buf_pkt, &iras)) { 7325 /* The ill or ip_stack_t disappeared on us. */ 7326 ip_drop_input("ip_recv_attr_from_mblk", data_mp, NULL); 7327 freemsg(data_mp); 7328 } else { 7329 ip_input_post_ipsec(data_mp, &iras); 7330 } 7331 ira_cleanup(&iras, B_TRUE); 7332 buf_pkt = tmp; 7333 } 7334 } 7335 /* 7336 * Walker callback used by sadb_alg_update() to free/create crypto 7337 * context template when a crypto software provider is removed or 7338 * added. 7339 */ 7340 7341 struct sadb_update_alg_state { 7342 ipsec_algtype_t alg_type; 7343 uint8_t alg_id; 7344 boolean_t is_added; 7345 boolean_t async_auth; 7346 boolean_t async_encr; 7347 }; 7348 7349 static void 7350 sadb_alg_update_cb(isaf_t *head, ipsa_t *entry, void *cookie) 7351 { 7352 struct sadb_update_alg_state *update_state = 7353 (struct sadb_update_alg_state *)cookie; 7354 crypto_ctx_template_t *ctx_tmpl = NULL; 7355 7356 ASSERT(MUTEX_HELD(&head->isaf_lock)); 7357 7358 if (entry->ipsa_state == IPSA_STATE_LARVAL) 7359 return; 7360 7361 mutex_enter(&entry->ipsa_lock); 7362 7363 if ((entry->ipsa_encr_alg != SADB_EALG_NONE && entry->ipsa_encr_alg != 7364 SADB_EALG_NULL && update_state->async_encr) || 7365 (entry->ipsa_auth_alg != SADB_AALG_NONE && 7366 update_state->async_auth)) { 7367 entry->ipsa_flags |= IPSA_F_ASYNC; 7368 } else { 7369 entry->ipsa_flags &= ~IPSA_F_ASYNC; 7370 } 7371 7372 switch (update_state->alg_type) { 7373 case IPSEC_ALG_AUTH: 7374 if (entry->ipsa_auth_alg == update_state->alg_id) 7375 ctx_tmpl = &entry->ipsa_authtmpl; 7376 break; 7377 case IPSEC_ALG_ENCR: 7378 if (entry->ipsa_encr_alg == update_state->alg_id) 7379 ctx_tmpl = &entry->ipsa_encrtmpl; 7380 break; 7381 default: 7382 ctx_tmpl = NULL; 7383 } 7384 7385 if (ctx_tmpl == NULL) { 7386 mutex_exit(&entry->ipsa_lock); 7387 return; 7388 } 7389 7390 /* 7391 * The context template of the SA may be affected by the change 7392 * of crypto provider. 7393 */ 7394 if (update_state->is_added) { 7395 /* create the context template if not already done */ 7396 if (*ctx_tmpl == NULL) { 7397 (void) ipsec_create_ctx_tmpl(entry, 7398 update_state->alg_type); 7399 } 7400 } else { 7401 /* 7402 * The crypto provider was removed. If the context template 7403 * exists but it is no longer valid, free it. 7404 */ 7405 if (*ctx_tmpl != NULL) 7406 ipsec_destroy_ctx_tmpl(entry, update_state->alg_type); 7407 } 7408 7409 mutex_exit(&entry->ipsa_lock); 7410 } 7411 7412 /* 7413 * Invoked by IP when an software crypto provider has been updated, or if 7414 * the crypto synchrony changes. The type and id of the corresponding 7415 * algorithm is passed as argument. The type is set to ALL in the case of 7416 * a synchrony change. 7417 * 7418 * is_added is B_TRUE if the provider was added, B_FALSE if it was 7419 * removed. The function updates the SADB and free/creates the 7420 * context templates associated with SAs if needed. 7421 */ 7422 7423 #define SADB_ALG_UPDATE_WALK(sadb, table) \ 7424 sadb_walker((sadb).table, (sadb).sdb_hashsize, sadb_alg_update_cb, \ 7425 &update_state) 7426 7427 void 7428 sadb_alg_update(ipsec_algtype_t alg_type, uint8_t alg_id, boolean_t is_added, 7429 netstack_t *ns) 7430 { 7431 struct sadb_update_alg_state update_state; 7432 ipsecah_stack_t *ahstack = ns->netstack_ipsecah; 7433 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp; 7434 ipsec_stack_t *ipss = ns->netstack_ipsec; 7435 7436 update_state.alg_type = alg_type; 7437 update_state.alg_id = alg_id; 7438 update_state.is_added = is_added; 7439 update_state.async_auth = ipss->ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == 7440 IPSEC_ALGS_EXEC_ASYNC; 7441 update_state.async_encr = ipss->ipsec_algs_exec_mode[IPSEC_ALG_ENCR] == 7442 IPSEC_ALGS_EXEC_ASYNC; 7443 7444 if (alg_type == IPSEC_ALG_AUTH || alg_type == IPSEC_ALG_ALL) { 7445 /* walk the AH tables only for auth. algorithm changes */ 7446 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v4, sdb_of); 7447 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v4, sdb_if); 7448 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v6, sdb_of); 7449 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v6, sdb_if); 7450 } 7451 7452 /* walk the ESP tables */ 7453 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v4, sdb_of); 7454 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v4, sdb_if); 7455 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v6, sdb_of); 7456 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v6, sdb_if); 7457 } 7458 7459 /* 7460 * Creates a context template for the specified SA. This function 7461 * is called when an SA is created and when a context template needs 7462 * to be created due to a change of software provider. 7463 */ 7464 int 7465 ipsec_create_ctx_tmpl(ipsa_t *sa, ipsec_algtype_t alg_type) 7466 { 7467 ipsec_alginfo_t *alg; 7468 crypto_mechanism_t mech; 7469 crypto_key_t *key; 7470 crypto_ctx_template_t *sa_tmpl; 7471 int rv; 7472 ipsec_stack_t *ipss = sa->ipsa_netstack->netstack_ipsec; 7473 7474 ASSERT(RW_READ_HELD(&ipss->ipsec_alg_lock)); 7475 ASSERT(MUTEX_HELD(&sa->ipsa_lock)); 7476 7477 /* get pointers to the algorithm info, context template, and key */ 7478 switch (alg_type) { 7479 case IPSEC_ALG_AUTH: 7480 key = &sa->ipsa_kcfauthkey; 7481 sa_tmpl = &sa->ipsa_authtmpl; 7482 alg = ipss->ipsec_alglists[alg_type][sa->ipsa_auth_alg]; 7483 break; 7484 case IPSEC_ALG_ENCR: 7485 key = &sa->ipsa_kcfencrkey; 7486 sa_tmpl = &sa->ipsa_encrtmpl; 7487 alg = ipss->ipsec_alglists[alg_type][sa->ipsa_encr_alg]; 7488 break; 7489 default: 7490 alg = NULL; 7491 } 7492 7493 if (alg == NULL || !ALG_VALID(alg)) 7494 return (EINVAL); 7495 7496 /* initialize the mech info structure for the framework */ 7497 ASSERT(alg->alg_mech_type != CRYPTO_MECHANISM_INVALID); 7498 mech.cm_type = alg->alg_mech_type; 7499 mech.cm_param = NULL; 7500 mech.cm_param_len = 0; 7501 7502 /* create a new context template */ 7503 rv = crypto_create_ctx_template(&mech, key, sa_tmpl, KM_NOSLEEP); 7504 7505 /* 7506 * CRYPTO_MECH_NOT_SUPPORTED can be returned if only hardware 7507 * providers are available for that mechanism. In that case 7508 * we don't fail, and will generate the context template from 7509 * the framework callback when a software provider for that 7510 * mechanism registers. 7511 * 7512 * The context template is assigned the special value 7513 * IPSEC_CTX_TMPL_ALLOC if the allocation failed due to a 7514 * lack of memory. No attempt will be made to use 7515 * the context template if it is set to this value. 7516 */ 7517 if (rv == CRYPTO_HOST_MEMORY) { 7518 *sa_tmpl = IPSEC_CTX_TMPL_ALLOC; 7519 } else if (rv != CRYPTO_SUCCESS) { 7520 *sa_tmpl = NULL; 7521 if (rv != CRYPTO_MECH_NOT_SUPPORTED) 7522 return (EINVAL); 7523 } 7524 7525 return (0); 7526 } 7527 7528 /* 7529 * Destroy the context template of the specified algorithm type 7530 * of the specified SA. Must be called while holding the SA lock. 7531 */ 7532 void 7533 ipsec_destroy_ctx_tmpl(ipsa_t *sa, ipsec_algtype_t alg_type) 7534 { 7535 ASSERT(MUTEX_HELD(&sa->ipsa_lock)); 7536 7537 if (alg_type == IPSEC_ALG_AUTH) { 7538 if (sa->ipsa_authtmpl == IPSEC_CTX_TMPL_ALLOC) 7539 sa->ipsa_authtmpl = NULL; 7540 else if (sa->ipsa_authtmpl != NULL) { 7541 crypto_destroy_ctx_template(sa->ipsa_authtmpl); 7542 sa->ipsa_authtmpl = NULL; 7543 } 7544 } else { 7545 ASSERT(alg_type == IPSEC_ALG_ENCR); 7546 if (sa->ipsa_encrtmpl == IPSEC_CTX_TMPL_ALLOC) 7547 sa->ipsa_encrtmpl = NULL; 7548 else if (sa->ipsa_encrtmpl != NULL) { 7549 crypto_destroy_ctx_template(sa->ipsa_encrtmpl); 7550 sa->ipsa_encrtmpl = NULL; 7551 } 7552 } 7553 } 7554 7555 /* 7556 * Use the kernel crypto framework to check the validity of a key received 7557 * via keysock. Returns 0 if the key is OK, -1 otherwise. 7558 */ 7559 int 7560 ipsec_check_key(crypto_mech_type_t mech_type, sadb_key_t *sadb_key, 7561 boolean_t is_auth, int *diag) 7562 { 7563 crypto_mechanism_t mech; 7564 crypto_key_t crypto_key; 7565 int crypto_rc; 7566 7567 mech.cm_type = mech_type; 7568 mech.cm_param = NULL; 7569 mech.cm_param_len = 0; 7570 7571 crypto_key.ck_format = CRYPTO_KEY_RAW; 7572 crypto_key.ck_data = sadb_key + 1; 7573 crypto_key.ck_length = sadb_key->sadb_key_bits; 7574 7575 crypto_rc = crypto_key_check(&mech, &crypto_key); 7576 7577 switch (crypto_rc) { 7578 case CRYPTO_SUCCESS: 7579 return (0); 7580 case CRYPTO_MECHANISM_INVALID: 7581 case CRYPTO_MECH_NOT_SUPPORTED: 7582 *diag = is_auth ? SADB_X_DIAGNOSTIC_BAD_AALG : 7583 SADB_X_DIAGNOSTIC_BAD_EALG; 7584 break; 7585 case CRYPTO_KEY_SIZE_RANGE: 7586 *diag = is_auth ? SADB_X_DIAGNOSTIC_BAD_AKEYBITS : 7587 SADB_X_DIAGNOSTIC_BAD_EKEYBITS; 7588 break; 7589 case CRYPTO_WEAK_KEY: 7590 *diag = is_auth ? SADB_X_DIAGNOSTIC_WEAK_AKEY : 7591 SADB_X_DIAGNOSTIC_WEAK_EKEY; 7592 break; 7593 } 7594 7595 return (-1); 7596 } 7597 7598 /* 7599 * Whack options in the outer IP header when ipsec changes the outer label 7600 * 7601 * This is inelegant and really could use refactoring. 7602 */ 7603 mblk_t * 7604 sadb_whack_label_v4(mblk_t *mp, ipsa_t *assoc, kstat_named_t *counter, 7605 ipdropper_t *dropper) 7606 { 7607 int delta; 7608 int plen; 7609 dblk_t *db; 7610 int hlen; 7611 uint8_t *opt_storage = assoc->ipsa_opt_storage; 7612 ipha_t *ipha = (ipha_t *)mp->b_rptr; 7613 7614 plen = ntohs(ipha->ipha_length); 7615 7616 delta = tsol_remove_secopt(ipha, MBLKL(mp)); 7617 mp->b_wptr += delta; 7618 plen += delta; 7619 7620 /* XXX XXX code copied from tsol_check_label */ 7621 7622 /* Make sure we have room for the worst-case addition */ 7623 hlen = IPH_HDR_LENGTH(ipha) + opt_storage[IPOPT_OLEN]; 7624 hlen = (hlen + 3) & ~3; 7625 if (hlen > IP_MAX_HDR_LENGTH) 7626 hlen = IP_MAX_HDR_LENGTH; 7627 hlen -= IPH_HDR_LENGTH(ipha); 7628 7629 db = mp->b_datap; 7630 if ((db->db_ref != 1) || (mp->b_wptr + hlen > db->db_lim)) { 7631 int copylen; 7632 mblk_t *new_mp; 7633 7634 /* allocate enough to be meaningful, but not *too* much */ 7635 copylen = MBLKL(mp); 7636 if (copylen > 256) 7637 copylen = 256; 7638 new_mp = allocb_tmpl(hlen + copylen + 7639 (mp->b_rptr - mp->b_datap->db_base), mp); 7640 7641 if (new_mp == NULL) { 7642 ip_drop_packet(mp, B_FALSE, NULL, counter, dropper); 7643 return (NULL); 7644 } 7645 7646 /* keep the bias */ 7647 new_mp->b_rptr += mp->b_rptr - mp->b_datap->db_base; 7648 new_mp->b_wptr = new_mp->b_rptr + copylen; 7649 bcopy(mp->b_rptr, new_mp->b_rptr, copylen); 7650 new_mp->b_cont = mp; 7651 if ((mp->b_rptr += copylen) >= mp->b_wptr) { 7652 new_mp->b_cont = mp->b_cont; 7653 freeb(mp); 7654 } 7655 mp = new_mp; 7656 ipha = (ipha_t *)mp->b_rptr; 7657 } 7658 7659 delta = tsol_prepend_option(assoc->ipsa_opt_storage, ipha, MBLKL(mp)); 7660 7661 ASSERT(delta != -1); 7662 7663 plen += delta; 7664 mp->b_wptr += delta; 7665 7666 /* 7667 * Paranoia 7668 */ 7669 db = mp->b_datap; 7670 7671 ASSERT3P(mp->b_wptr, <=, db->db_lim); 7672 ASSERT3P(mp->b_rptr, <=, db->db_lim); 7673 7674 ASSERT3P(mp->b_wptr, >=, db->db_base); 7675 ASSERT3P(mp->b_rptr, >=, db->db_base); 7676 /* End paranoia */ 7677 7678 ipha->ipha_length = htons(plen); 7679 7680 return (mp); 7681 } 7682 7683 mblk_t * 7684 sadb_whack_label_v6(mblk_t *mp, ipsa_t *assoc, kstat_named_t *counter, 7685 ipdropper_t *dropper) 7686 { 7687 int delta; 7688 int plen; 7689 dblk_t *db; 7690 int hlen; 7691 uint8_t *opt_storage = assoc->ipsa_opt_storage; 7692 uint_t sec_opt_len; /* label option length not including type, len */ 7693 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 7694 7695 plen = ntohs(ip6h->ip6_plen); 7696 7697 delta = tsol_remove_secopt_v6(ip6h, MBLKL(mp)); 7698 mp->b_wptr += delta; 7699 plen += delta; 7700 7701 /* XXX XXX code copied from tsol_check_label_v6 */ 7702 /* 7703 * Make sure we have room for the worst-case addition. Add 2 bytes for 7704 * the hop-by-hop ext header's next header and length fields. Add 7705 * another 2 bytes for the label option type, len and then round 7706 * up to the next 8-byte multiple. 7707 */ 7708 sec_opt_len = opt_storage[1]; 7709 7710 db = mp->b_datap; 7711 hlen = (4 + sec_opt_len + 7) & ~7; 7712 7713 if ((db->db_ref != 1) || (mp->b_wptr + hlen > db->db_lim)) { 7714 int copylen; 7715 mblk_t *new_mp; 7716 uint16_t hdr_len; 7717 7718 hdr_len = ip_hdr_length_v6(mp, ip6h); 7719 /* 7720 * Allocate enough to be meaningful, but not *too* much. 7721 * Also all the IPv6 extension headers must be in the same mblk 7722 */ 7723 copylen = MBLKL(mp); 7724 if (copylen > 256) 7725 copylen = 256; 7726 if (copylen < hdr_len) 7727 copylen = hdr_len; 7728 new_mp = allocb_tmpl(hlen + copylen + 7729 (mp->b_rptr - mp->b_datap->db_base), mp); 7730 if (new_mp == NULL) { 7731 ip_drop_packet(mp, B_FALSE, NULL, counter, dropper); 7732 return (NULL); 7733 } 7734 7735 /* keep the bias */ 7736 new_mp->b_rptr += mp->b_rptr - mp->b_datap->db_base; 7737 new_mp->b_wptr = new_mp->b_rptr + copylen; 7738 bcopy(mp->b_rptr, new_mp->b_rptr, copylen); 7739 new_mp->b_cont = mp; 7740 if ((mp->b_rptr += copylen) >= mp->b_wptr) { 7741 new_mp->b_cont = mp->b_cont; 7742 freeb(mp); 7743 } 7744 mp = new_mp; 7745 ip6h = (ip6_t *)mp->b_rptr; 7746 } 7747 7748 delta = tsol_prepend_option_v6(assoc->ipsa_opt_storage, 7749 ip6h, MBLKL(mp)); 7750 7751 ASSERT(delta != -1); 7752 7753 plen += delta; 7754 mp->b_wptr += delta; 7755 7756 /* 7757 * Paranoia 7758 */ 7759 db = mp->b_datap; 7760 7761 ASSERT3P(mp->b_wptr, <=, db->db_lim); 7762 ASSERT3P(mp->b_rptr, <=, db->db_lim); 7763 7764 ASSERT3P(mp->b_wptr, >=, db->db_base); 7765 ASSERT3P(mp->b_rptr, >=, db->db_base); 7766 /* End paranoia */ 7767 7768 ip6h->ip6_plen = htons(plen); 7769 7770 return (mp); 7771 } 7772 7773 /* Whack the labels and update ip_xmit_attr_t as needed */ 7774 mblk_t * 7775 sadb_whack_label(mblk_t *mp, ipsa_t *assoc, ip_xmit_attr_t *ixa, 7776 kstat_named_t *counter, ipdropper_t *dropper) 7777 { 7778 int adjust; 7779 int iplen; 7780 7781 if (ixa->ixa_flags & IXAF_IS_IPV4) { 7782 ipha_t *ipha = (ipha_t *)mp->b_rptr; 7783 7784 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 7785 iplen = ntohs(ipha->ipha_length); 7786 mp = sadb_whack_label_v4(mp, assoc, counter, dropper); 7787 if (mp == NULL) 7788 return (NULL); 7789 7790 ipha = (ipha_t *)mp->b_rptr; 7791 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 7792 adjust = (int)ntohs(ipha->ipha_length) - iplen; 7793 } else { 7794 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 7795 7796 ASSERT(IPH_HDR_VERSION(ip6h) == IPV6_VERSION); 7797 iplen = ntohs(ip6h->ip6_plen); 7798 mp = sadb_whack_label_v6(mp, assoc, counter, dropper); 7799 if (mp == NULL) 7800 return (NULL); 7801 7802 ip6h = (ip6_t *)mp->b_rptr; 7803 ASSERT(IPH_HDR_VERSION(ip6h) == IPV6_VERSION); 7804 adjust = (int)ntohs(ip6h->ip6_plen) - iplen; 7805 } 7806 ixa->ixa_pktlen += adjust; 7807 ixa->ixa_ip_hdr_length += adjust; 7808 return (mp); 7809 } 7810 7811 /* 7812 * If this is an outgoing SA then add some fuzz to the 7813 * SOFT EXPIRE time. The reason for this is to stop 7814 * peers trying to renegotiate SOFT expiring SA's at 7815 * the same time. The amount of fuzz needs to be at 7816 * least 8 seconds which is the typical interval 7817 * sadb_ager(), although this is only a guide as it 7818 * selftunes. 7819 */ 7820 static void 7821 lifetime_fuzz(ipsa_t *assoc) 7822 { 7823 uint8_t rnd; 7824 7825 if (assoc->ipsa_softaddlt == 0) 7826 return; 7827 7828 (void) random_get_pseudo_bytes(&rnd, sizeof (rnd)); 7829 rnd = (rnd & 0xF) + 8; 7830 assoc->ipsa_softexpiretime -= rnd; 7831 assoc->ipsa_softaddlt -= rnd; 7832 } 7833 7834 static void 7835 destroy_ipsa_pair(ipsap_t *ipsapp) 7836 { 7837 /* 7838 * Because of the multi-line macro nature of IPSA_REFRELE, keep 7839 * them in { }. 7840 */ 7841 if (ipsapp->ipsap_sa_ptr != NULL) { 7842 IPSA_REFRELE(ipsapp->ipsap_sa_ptr); 7843 } 7844 if (ipsapp->ipsap_psa_ptr != NULL) { 7845 IPSA_REFRELE(ipsapp->ipsap_psa_ptr); 7846 } 7847 init_ipsa_pair(ipsapp); 7848 } 7849 7850 static void 7851 init_ipsa_pair(ipsap_t *ipsapp) 7852 { 7853 ipsapp->ipsap_bucket = NULL; 7854 ipsapp->ipsap_sa_ptr = NULL; 7855 ipsapp->ipsap_pbucket = NULL; 7856 ipsapp->ipsap_psa_ptr = NULL; 7857 } 7858 7859 /* 7860 * The sadb_ager() function walks through the hash tables of SA's and ages 7861 * them, if the SA expires as a result, its marked as DEAD and will be reaped 7862 * the next time sadb_ager() runs. SA's which are paired or have a peer (same 7863 * SA appears in both the inbound and outbound tables because its not possible 7864 * to determine its direction) are placed on a list when they expire. This is 7865 * to ensure that pair/peer SA's are reaped at the same time, even if they 7866 * expire at different times. 7867 * 7868 * This function is called twice by sadb_ager(), one after processing the 7869 * inbound table, then again after processing the outbound table. 7870 */ 7871 void 7872 age_pair_peer_list(templist_t *haspeerlist, sadb_t *sp, boolean_t outbound) 7873 { 7874 templist_t *listptr; 7875 int outhash; 7876 isaf_t *bucket; 7877 boolean_t haspeer; 7878 ipsa_t *peer_assoc, *dying; 7879 /* 7880 * Haspeer cases will contain both IPv4 and IPv6. This code 7881 * is address independent. 7882 */ 7883 while (haspeerlist != NULL) { 7884 /* "dying" contains the SA that has a peer. */ 7885 dying = haspeerlist->ipsa; 7886 haspeer = (dying->ipsa_haspeer); 7887 listptr = haspeerlist; 7888 haspeerlist = listptr->next; 7889 kmem_free(listptr, sizeof (*listptr)); 7890 /* 7891 * Pick peer bucket based on addrfam. 7892 */ 7893 if (outbound) { 7894 if (haspeer) 7895 bucket = INBOUND_BUCKET(sp, dying->ipsa_spi); 7896 else 7897 bucket = INBOUND_BUCKET(sp, 7898 dying->ipsa_otherspi); 7899 } else { /* inbound */ 7900 if (haspeer) { 7901 if (dying->ipsa_addrfam == AF_INET6) { 7902 outhash = OUTBOUND_HASH_V6(sp, 7903 *((in6_addr_t *)&dying-> 7904 ipsa_dstaddr)); 7905 } else { 7906 outhash = OUTBOUND_HASH_V4(sp, 7907 *((ipaddr_t *)&dying-> 7908 ipsa_dstaddr)); 7909 } 7910 } else if (dying->ipsa_addrfam == AF_INET6) { 7911 outhash = OUTBOUND_HASH_V6(sp, 7912 *((in6_addr_t *)&dying-> 7913 ipsa_srcaddr)); 7914 } else { 7915 outhash = OUTBOUND_HASH_V4(sp, 7916 *((ipaddr_t *)&dying-> 7917 ipsa_srcaddr)); 7918 } 7919 bucket = &(sp->sdb_of[outhash]); 7920 } 7921 7922 mutex_enter(&bucket->isaf_lock); 7923 /* 7924 * "haspeer" SA's have the same src/dst address ordering, 7925 * "paired" SA's have the src/dst addresses reversed. 7926 */ 7927 if (haspeer) { 7928 peer_assoc = ipsec_getassocbyspi(bucket, 7929 dying->ipsa_spi, dying->ipsa_srcaddr, 7930 dying->ipsa_dstaddr, dying->ipsa_addrfam); 7931 } else { 7932 peer_assoc = ipsec_getassocbyspi(bucket, 7933 dying->ipsa_otherspi, dying->ipsa_dstaddr, 7934 dying->ipsa_srcaddr, dying->ipsa_addrfam); 7935 } 7936 7937 mutex_exit(&bucket->isaf_lock); 7938 if (peer_assoc != NULL) { 7939 mutex_enter(&peer_assoc->ipsa_lock); 7940 mutex_enter(&dying->ipsa_lock); 7941 if (!haspeer) { 7942 /* 7943 * Only SA's which have a "peer" or are 7944 * "paired" end up on this list, so this 7945 * must be a "paired" SA, update the flags 7946 * to break the pair. 7947 */ 7948 peer_assoc->ipsa_otherspi = 0; 7949 peer_assoc->ipsa_flags &= ~IPSA_F_PAIRED; 7950 dying->ipsa_otherspi = 0; 7951 dying->ipsa_flags &= ~IPSA_F_PAIRED; 7952 } 7953 if (haspeer || outbound) { 7954 /* 7955 * Update the state of the "inbound" SA when 7956 * the "outbound" SA has expired. Don't update 7957 * the "outbound" SA when the "inbound" SA 7958 * SA expires because setting the hard_addtime 7959 * below will cause this to happen. 7960 */ 7961 peer_assoc->ipsa_state = dying->ipsa_state; 7962 } 7963 if (dying->ipsa_state == IPSA_STATE_DEAD) 7964 peer_assoc->ipsa_hardexpiretime = 1; 7965 7966 mutex_exit(&dying->ipsa_lock); 7967 mutex_exit(&peer_assoc->ipsa_lock); 7968 IPSA_REFRELE(peer_assoc); 7969 } 7970 IPSA_REFRELE(dying); 7971 } 7972 } 7973 7974 /* 7975 * Ensure that the IV used for CCM mode never repeats. The IV should 7976 * only be updated by this function. Also check to see if the IV 7977 * is about to wrap and generate a SOFT Expire. This function is only 7978 * called for outgoing packets, the IV for incomming packets is taken 7979 * from the wire. If the outgoing SA needs to be expired, update 7980 * the matching incomming SA. 7981 */ 7982 boolean_t 7983 update_iv(uint8_t *iv_ptr, queue_t *pfkey_q, ipsa_t *assoc, 7984 ipsecesp_stack_t *espstack) 7985 { 7986 boolean_t rc = B_TRUE; 7987 isaf_t *inbound_bucket; 7988 sadb_t *sp; 7989 ipsa_t *pair_sa = NULL; 7990 int sa_new_state = 0; 7991 7992 /* For non counter modes, the IV is random data. */ 7993 if (!(assoc->ipsa_flags & IPSA_F_COUNTERMODE)) { 7994 (void) random_get_pseudo_bytes(iv_ptr, assoc->ipsa_iv_len); 7995 return (rc); 7996 } 7997 7998 mutex_enter(&assoc->ipsa_lock); 7999 8000 (*assoc->ipsa_iv)++; 8001 8002 if (*assoc->ipsa_iv == assoc->ipsa_iv_hardexpire) { 8003 sa_new_state = IPSA_STATE_DEAD; 8004 rc = B_FALSE; 8005 } else if (*assoc->ipsa_iv == assoc->ipsa_iv_softexpire) { 8006 if (assoc->ipsa_state != IPSA_STATE_DYING) { 8007 /* 8008 * This SA may have already been expired when its 8009 * PAIR_SA expired. 8010 */ 8011 sa_new_state = IPSA_STATE_DYING; 8012 } 8013 } 8014 if (sa_new_state) { 8015 /* 8016 * If there is a state change, we need to update this SA 8017 * and its "pair", we can find the bucket for the "pair" SA 8018 * while holding the ipsa_t mutex, but we won't actually 8019 * update anything untill the ipsa_t mutex has been released 8020 * for _this_ SA. 8021 */ 8022 assoc->ipsa_state = sa_new_state; 8023 if (assoc->ipsa_addrfam == AF_INET6) { 8024 sp = &espstack->esp_sadb.s_v6; 8025 } else { 8026 sp = &espstack->esp_sadb.s_v4; 8027 } 8028 inbound_bucket = INBOUND_BUCKET(sp, assoc->ipsa_otherspi); 8029 sadb_expire_assoc(pfkey_q, assoc); 8030 } 8031 if (rc == B_TRUE) 8032 bcopy(assoc->ipsa_iv, iv_ptr, assoc->ipsa_iv_len); 8033 8034 mutex_exit(&assoc->ipsa_lock); 8035 8036 if (sa_new_state) { 8037 /* Find the inbound SA, need to lock hash bucket. */ 8038 mutex_enter(&inbound_bucket->isaf_lock); 8039 pair_sa = ipsec_getassocbyspi(inbound_bucket, 8040 assoc->ipsa_otherspi, assoc->ipsa_dstaddr, 8041 assoc->ipsa_srcaddr, assoc->ipsa_addrfam); 8042 mutex_exit(&inbound_bucket->isaf_lock); 8043 if (pair_sa != NULL) { 8044 mutex_enter(&pair_sa->ipsa_lock); 8045 pair_sa->ipsa_state = sa_new_state; 8046 mutex_exit(&pair_sa->ipsa_lock); 8047 IPSA_REFRELE(pair_sa); 8048 } 8049 } 8050 8051 return (rc); 8052 } 8053 8054 void 8055 ccm_params_init(ipsa_t *assoc, uchar_t *esph, uint_t data_len, uchar_t *iv_ptr, 8056 ipsa_cm_mech_t *cm_mech, crypto_data_t *crypto_data) 8057 { 8058 uchar_t *nonce; 8059 crypto_mechanism_t *combined_mech; 8060 CK_AES_CCM_PARAMS *params; 8061 8062 combined_mech = (crypto_mechanism_t *)cm_mech; 8063 params = (CK_AES_CCM_PARAMS *)(combined_mech + 1); 8064 nonce = (uchar_t *)(params + 1); 8065 params->ulMACSize = assoc->ipsa_mac_len; 8066 params->ulNonceSize = assoc->ipsa_nonce_len; 8067 params->ulAuthDataSize = sizeof (esph_t); 8068 params->ulDataSize = data_len; 8069 params->nonce = nonce; 8070 params->authData = esph; 8071 8072 cm_mech->combined_mech.cm_type = assoc->ipsa_emech.cm_type; 8073 cm_mech->combined_mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS); 8074 cm_mech->combined_mech.cm_param = (caddr_t)params; 8075 /* See gcm_params_init() for comments. */ 8076 bcopy(assoc->ipsa_nonce, nonce, assoc->ipsa_saltlen); 8077 nonce += assoc->ipsa_saltlen; 8078 bcopy(iv_ptr, nonce, assoc->ipsa_iv_len); 8079 crypto_data->cd_miscdata = NULL; 8080 } 8081 8082 /* ARGSUSED */ 8083 void 8084 cbc_params_init(ipsa_t *assoc, uchar_t *esph, uint_t data_len, uchar_t *iv_ptr, 8085 ipsa_cm_mech_t *cm_mech, crypto_data_t *crypto_data) 8086 { 8087 cm_mech->combined_mech.cm_type = assoc->ipsa_emech.cm_type; 8088 cm_mech->combined_mech.cm_param_len = 0; 8089 cm_mech->combined_mech.cm_param = NULL; 8090 crypto_data->cd_miscdata = (char *)iv_ptr; 8091 } 8092 8093 /* ARGSUSED */ 8094 void 8095 gcm_params_init(ipsa_t *assoc, uchar_t *esph, uint_t data_len, uchar_t *iv_ptr, 8096 ipsa_cm_mech_t *cm_mech, crypto_data_t *crypto_data) 8097 { 8098 uchar_t *nonce; 8099 crypto_mechanism_t *combined_mech; 8100 CK_AES_GCM_PARAMS *params; 8101 8102 combined_mech = (crypto_mechanism_t *)cm_mech; 8103 params = (CK_AES_GCM_PARAMS *)(combined_mech + 1); 8104 nonce = (uchar_t *)(params + 1); 8105 8106 params->pIv = nonce; 8107 params->ulIvLen = assoc->ipsa_nonce_len; 8108 params->ulIvBits = SADB_8TO1(assoc->ipsa_nonce_len); 8109 params->pAAD = esph; 8110 params->ulAADLen = sizeof (esph_t); 8111 params->ulTagBits = SADB_8TO1(assoc->ipsa_mac_len); 8112 8113 cm_mech->combined_mech.cm_type = assoc->ipsa_emech.cm_type; 8114 cm_mech->combined_mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS); 8115 cm_mech->combined_mech.cm_param = (caddr_t)params; 8116 /* 8117 * Create the nonce, which is made up of the salt and the IV. 8118 * Copy the salt from the SA and the IV from the packet. 8119 * For inbound packets we copy the IV from the packet because it 8120 * was set by the sending system, for outbound packets we copy the IV 8121 * from the packet because the IV in the SA may be changed by another 8122 * thread, the IV in the packet was created while holding a mutex. 8123 */ 8124 bcopy(assoc->ipsa_nonce, nonce, assoc->ipsa_saltlen); 8125 nonce += assoc->ipsa_saltlen; 8126 bcopy(iv_ptr, nonce, assoc->ipsa_iv_len); 8127 crypto_data->cd_miscdata = NULL; 8128 } 8129