xref: /illumos-gate/usr/src/uts/common/inet/ip/rts.c (revision e61d7e85ebb4a7361eeb10639b742a92e0bf5e55)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2018 Toomas Soome <tsoome@me.com>
25  */
26 
27 #include <sys/types.h>
28 #include <sys/stream.h>
29 #include <sys/strsubr.h>
30 #include <sys/stropts.h>
31 #include <sys/strsun.h>
32 #include <sys/strlog.h>
33 #define	_SUN_TPI_VERSION 2
34 #include <sys/tihdr.h>
35 #include <sys/timod.h>
36 #include <sys/ddi.h>
37 #include <sys/sunddi.h>
38 #include <sys/cmn_err.h>
39 #include <sys/proc.h>
40 #include <sys/suntpi.h>
41 #include <sys/policy.h>
42 #include <sys/zone.h>
43 #include <sys/disp.h>
44 
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <netinet/in.h>
48 
49 #include <inet/common.h>
50 #include <netinet/ip6.h>
51 #include <inet/ip.h>
52 #include <inet/ipclassifier.h>
53 #include <inet/proto_set.h>
54 #include <inet/nd.h>
55 #include <inet/optcom.h>
56 #include <netinet/ip_mroute.h>
57 #include <sys/isa_defs.h>
58 #include <net/route.h>
59 
60 #include <inet/rts_impl.h>
61 #include <inet/ip_rts.h>
62 
63 /*
64  * This is a transport provider for routing sockets.  Downstream messages are
65  * wrapped with a IP_IOCTL header, and ip_wput_ioctl calls the appropriate entry
66  * in the ip_ioctl_ftbl callout table to pass the routing socket data into IP.
67  * Upstream messages are generated for listeners of the routing socket as well
68  * as the message sender (unless they have turned off their end using
69  * SO_USELOOPBACK or shutdown(3n)).  Upstream messages may also be generated
70  * asynchronously when:
71  *
72  *	Interfaces are brought up or down.
73  *	Addresses are assigned to interfaces.
74  *	ICMP redirects are processed and a IRE_HOST/RTF_DYNAMIC is installed.
75  *	No route is found while sending a packet.
76  *
77  * Since all we do is reformat the messages between routing socket and
78  * ioctl forms, no synchronization is necessary in this module; all
79  * the dirty work is done down in ip.
80  */
81 
82 /* Default structure copied into T_INFO_ACK messages */
83 static struct T_info_ack rts_g_t_info_ack = {
84 	T_INFO_ACK,
85 	T_INFINITE,	/* TSDU_size. Maximum size messages. */
86 	T_INVALID,	/* ETSDU_size. No expedited data. */
87 	T_INVALID,	/* CDATA_size. No connect data. */
88 	T_INVALID,	/* DDATA_size. No disconnect data. */
89 	0,		/* ADDR_size. */
90 	0,		/* OPT_size - not initialized here */
91 	64 * 1024,	/* TIDU_size. rts allows maximum size messages. */
92 	T_COTS,		/* SERV_type. rts supports connection oriented. */
93 	TS_UNBND,	/* CURRENT_state. This is set from rts_state. */
94 	(XPG4_1)	/* PROVIDER_flag */
95 };
96 
97 /*
98  * Table of ND variables supported by rts. These are loaded into rts_g_nd
99  * in rts_open.
100  * All of these are alterable, within the min/max values given, at run time.
101  */
102 static rtsparam_t	lcl_param_arr[] = {
103 	/* min		max		value		name */
104 	{ 4096,		65536,		8192,		"rts_xmit_hiwat"},
105 	{ 0,		65536,		1024,		"rts_xmit_lowat"},
106 	{ 4096,		65536,		8192,		"rts_recv_hiwat"},
107 	{ 65536,	1024*1024*1024, 256*1024,	"rts_max_buf"},
108 };
109 #define	rtss_xmit_hiwat		rtss_params[0].rts_param_value
110 #define	rtss_xmit_lowat		rtss_params[1].rts_param_value
111 #define	rtss_recv_hiwat		rtss_params[2].rts_param_value
112 #define	rtss_max_buf		rtss_params[3].rts_param_value
113 
114 static void	rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
115     int sys_error);
116 static void	rts_input(void *, mblk_t *, void *, ip_recv_attr_t *);
117 static void	rts_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
118 static mblk_t	*rts_ioctl_alloc(mblk_t *data);
119 static int	rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
120 static boolean_t rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt);
121 static int	rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
122     cred_t *cr);
123 static int	rts_rsrv(queue_t *q);
124 static void	*rts_stack_init(netstackid_t stackid, netstack_t *ns);
125 static void	rts_stack_fini(netstackid_t stackid, void *arg);
126 static int	rts_wput(queue_t *q, mblk_t *mp);
127 static void	rts_wput_iocdata(queue_t *q, mblk_t *mp);
128 static void	rts_wput_other(queue_t *q, mblk_t *mp);
129 static int	rts_wrw(queue_t *q, struiod_t *dp);
130 
131 static int	rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag,
132 		    cred_t *credp);
133 static conn_t	*rts_open(int flag, cred_t *credp);
134 
135 static int	rts_stream_close(queue_t *, int, cred_t *);
136 static int	rts_close(sock_lower_handle_t proto_handle, int flags,
137 		    cred_t *cr);
138 
139 static struct module_info rts_mod_info = {
140 	129, "rts", 1, INFPSZ, 512, 128
141 };
142 
143 static struct qinit rtsrinit = {
144 	NULL, rts_rsrv, rts_stream_open, rts_stream_close, NULL,
145 	&rts_mod_info
146 };
147 
148 static struct qinit rtswinit = {
149 	rts_wput, NULL, NULL, NULL, NULL, &rts_mod_info,
150 	NULL, rts_wrw, NULL, STRUIOT_STANDARD
151 };
152 
153 struct streamtab rtsinfo = {
154 	&rtsrinit, &rtswinit
155 };
156 
157 /*
158  * This routine allocates the necessary
159  * message blocks for IOCTL wrapping the
160  * user data.
161  */
162 static mblk_t *
163 rts_ioctl_alloc(mblk_t *data)
164 {
165 	mblk_t	*mp = NULL;
166 	mblk_t	*mp1 = NULL;
167 	ipllc_t	*ipllc;
168 	struct iocblk	*ioc;
169 
170 	mp = allocb_tmpl(sizeof (ipllc_t), data);
171 	if (mp == NULL)
172 		return (NULL);
173 	mp1 = allocb_tmpl(sizeof (struct iocblk), data);
174 	if (mp1 == NULL) {
175 		freeb(mp);
176 		return (NULL);
177 	}
178 
179 	ipllc = (ipllc_t *)mp->b_rptr;
180 	ipllc->ipllc_cmd = IP_IOC_RTS_REQUEST;
181 	ipllc->ipllc_name_offset = 0;
182 	ipllc->ipllc_name_length = 0;
183 	mp->b_wptr += sizeof (ipllc_t);
184 	mp->b_cont = data;
185 
186 	ioc = (struct iocblk *)mp1->b_rptr;
187 	ioc->ioc_cmd = IP_IOCTL;
188 	ioc->ioc_error = 0;
189 	ioc->ioc_cr = NULL;
190 	ioc->ioc_count = msgdsize(mp);
191 	mp1->b_wptr += sizeof (struct iocblk);
192 	mp1->b_datap->db_type = M_IOCTL;
193 	mp1->b_cont = mp;
194 
195 	return (mp1);
196 }
197 
198 /*
199  * This routine closes rts stream, by disabling
200  * put/srv routines and freeing the this module
201  * internal datastructure.
202  */
203 static int
204 rts_common_close(queue_t *q, conn_t *connp)
205 {
206 
207 	ASSERT(connp != NULL && IPCL_IS_RTS(connp));
208 
209 	ip_rts_unregister(connp);
210 
211 	ip_quiesce_conn(connp);
212 
213 	if (!IPCL_IS_NONSTR(connp)) {
214 		qprocsoff(q);
215 	}
216 
217 	/*
218 	 * Now we are truly single threaded on this stream, and can
219 	 * delete the things hanging off the connp, and finally the connp.
220 	 * We removed this connp from the fanout list, it cannot be
221 	 * accessed thru the fanouts, and we already waited for the
222 	 * conn_ref to drop to 0. We are already in close, so
223 	 * there cannot be any other thread from the top. qprocsoff
224 	 * has completed, and service has completed or won't run in
225 	 * future.
226 	 */
227 	ASSERT(connp->conn_ref == 1);
228 
229 	if (!IPCL_IS_NONSTR(connp)) {
230 		inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
231 	} else {
232 		ip_free_helper_stream(connp);
233 	}
234 
235 	connp->conn_ref--;
236 	ipcl_conn_destroy(connp);
237 	return (0);
238 }
239 
240 /* ARGSUSED */
241 static int
242 rts_stream_close(queue_t *q, int flags __unused, cred_t *credp __unused)
243 {
244 	conn_t  *connp = Q_TO_CONN(q);
245 
246 	(void) rts_common_close(q, connp);
247 	q->q_ptr = WR(q)->q_ptr = NULL;
248 	return (0);
249 }
250 
251 /*
252  * This is the open routine for routing socket. It allocates
253  * rts_t structure for the stream and tells IP that it is a routing socket.
254  */
255 /* ARGSUSED */
256 static int
257 rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
258 {
259 	conn_t *connp;
260 	dev_t	conn_dev;
261 	rts_t   *rts;
262 
263 	/* If the stream is already open, return immediately. */
264 	if (q->q_ptr != NULL)
265 		return (0);
266 
267 	if (sflag == MODOPEN)
268 		return (EINVAL);
269 
270 	/*
271 	 * Since RTS is not used so heavily, allocating from the small
272 	 * arena should be sufficient.
273 	 */
274 	if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
275 		return (EBUSY);
276 	}
277 
278 	connp = rts_open(flag, credp);
279 	ASSERT(connp != NULL);
280 
281 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
282 
283 	rts = connp->conn_rts;
284 	rw_enter(&rts->rts_rwlock, RW_WRITER);
285 	connp->conn_dev = conn_dev;
286 	connp->conn_minor_arena = ip_minor_arena_sa;
287 
288 	q->q_ptr = connp;
289 	WR(q)->q_ptr = connp;
290 	connp->conn_rq = q;
291 	connp->conn_wq = WR(q);
292 
293 	WR(q)->q_hiwat = connp->conn_sndbuf;
294 	WR(q)->q_lowat = connp->conn_sndlowat;
295 
296 	mutex_enter(&connp->conn_lock);
297 	connp->conn_state_flags &= ~CONN_INCIPIENT;
298 	mutex_exit(&connp->conn_lock);
299 	rw_exit(&rts->rts_rwlock);
300 
301 	/* Indicate to IP that this is a routing socket client */
302 	ip_rts_register(connp);
303 
304 	qprocson(q);
305 
306 	return (0);
307 }
308 
309 /* ARGSUSED */
310 static conn_t *
311 rts_open(int flag, cred_t *credp)
312 {
313 	netstack_t *ns;
314 	rts_stack_t *rtss;
315 	rts_t	*rts;
316 	conn_t	*connp;
317 	zoneid_t zoneid;
318 
319 	ns = netstack_find_by_cred(credp);
320 	ASSERT(ns != NULL);
321 	rtss = ns->netstack_rts;
322 	ASSERT(rtss != NULL);
323 
324 	/*
325 	 * For exclusive stacks we set the zoneid to zero
326 	 * to make RTS operate as if in the global zone.
327 	 */
328 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
329 		zoneid = GLOBAL_ZONEID;
330 	else
331 		zoneid = crgetzoneid(credp);
332 
333 	connp = ipcl_conn_create(IPCL_RTSCONN, KM_SLEEP, ns);
334 	rts = connp->conn_rts;
335 
336 	/*
337 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
338 	 * done by netstack_find_by_cred()
339 	 */
340 	netstack_rele(ns);
341 
342 	rw_enter(&rts->rts_rwlock, RW_WRITER);
343 	ASSERT(connp->conn_rts == rts);
344 	ASSERT(rts->rts_connp == connp);
345 
346 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
347 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
348 	connp->conn_ixa->ixa_zoneid = zoneid;
349 	connp->conn_zoneid = zoneid;
350 	connp->conn_flow_cntrld = B_FALSE;
351 
352 	rts->rts_rtss = rtss;
353 
354 	connp->conn_rcvbuf = rtss->rtss_recv_hiwat;
355 	connp->conn_sndbuf = rtss->rtss_xmit_hiwat;
356 	connp->conn_sndlowat = rtss->rtss_xmit_lowat;
357 	connp->conn_rcvlowat = rts_mod_info.mi_lowat;
358 
359 	connp->conn_family = PF_ROUTE;
360 	connp->conn_so_type = SOCK_RAW;
361 	/* SO_PROTOTYPE is always sent down by sockfs setting conn_proto */
362 
363 	connp->conn_recv = rts_input;
364 	connp->conn_recvicmp = rts_icmp_input;
365 
366 	crhold(credp);
367 	connp->conn_cred = credp;
368 	connp->conn_cpid = curproc->p_pid;
369 	/* Cache things in ixa without an extra refhold */
370 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
371 	connp->conn_ixa->ixa_cred = connp->conn_cred;
372 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
373 	if (is_system_labeled())
374 		connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
375 
376 	/*
377 	 * rts sockets start out as bound and connected
378 	 * For streams based sockets, socket state is set to
379 	 * SS_ISBOUND | SS_ISCONNECTED in so_strinit.
380 	 */
381 	rts->rts_state = TS_DATA_XFER;
382 	rw_exit(&rts->rts_rwlock);
383 
384 	return (connp);
385 }
386 
387 /*
388  * This routine creates a T_ERROR_ACK message and passes it upstream.
389  */
390 static void
391 rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
392 {
393 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
394 		qreply(q, mp);
395 }
396 
397 /*
398  * This routine creates a T_OK_ACK message and passes it upstream.
399  */
400 static void
401 rts_ok_ack(queue_t *q, mblk_t *mp)
402 {
403 	if ((mp = mi_tpi_ok_ack_alloc(mp)) != NULL)
404 		qreply(q, mp);
405 }
406 
407 /*
408  * This routine is called by rts_wput to handle T_UNBIND_REQ messages.
409  */
410 static void
411 rts_tpi_unbind(queue_t *q, mblk_t *mp)
412 {
413 	conn_t	*connp = Q_TO_CONN(q);
414 	rts_t	*rts = connp->conn_rts;
415 
416 	/* If a bind has not been done, we can't unbind. */
417 	if (rts->rts_state != TS_IDLE) {
418 		rts_err_ack(q, mp, TOUTSTATE, 0);
419 		return;
420 	}
421 	rts->rts_state = TS_UNBND;
422 	rts_ok_ack(q, mp);
423 }
424 
425 /*
426  * This routine is called to handle each
427  * O_T_BIND_REQ/T_BIND_REQ message passed to
428  * rts_wput. Note: This routine works with both
429  * O_T_BIND_REQ and T_BIND_REQ semantics.
430  */
431 static void
432 rts_tpi_bind(queue_t *q, mblk_t *mp)
433 {
434 	conn_t	*connp = Q_TO_CONN(q);
435 	rts_t	*rts = connp->conn_rts;
436 	struct T_bind_req *tbr;
437 
438 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
439 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
440 		    "rts_tpi_bind: bad data, %d", rts->rts_state);
441 		rts_err_ack(q, mp, TBADADDR, 0);
442 		return;
443 	}
444 	if (rts->rts_state != TS_UNBND) {
445 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
446 		    "rts_tpi_bind: bad state, %d", rts->rts_state);
447 		rts_err_ack(q, mp, TOUTSTATE, 0);
448 		return;
449 	}
450 	tbr = (struct T_bind_req *)mp->b_rptr;
451 	if (tbr->ADDR_length != 0) {
452 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
453 		    "rts_tpi_bind: bad ADDR_length %d", tbr->ADDR_length);
454 		rts_err_ack(q, mp, TBADADDR, 0);
455 		return;
456 	}
457 	/* Generic request */
458 	tbr->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_req);
459 	tbr->ADDR_length = 0;
460 	tbr->PRIM_type = T_BIND_ACK;
461 	mp->b_datap->db_type = M_PCPROTO;
462 	rts->rts_state = TS_IDLE;
463 	qreply(q, mp);
464 }
465 
466 static void
467 rts_copy_info(struct T_info_ack *tap, rts_t *rts)
468 {
469 	*tap = rts_g_t_info_ack;
470 	tap->CURRENT_state = rts->rts_state;
471 	tap->OPT_size = rts_max_optsize;
472 }
473 
474 /*
475  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
476  * rts_wput.  Much of the T_CAPABILITY_ACK information is copied from
477  * rts_g_t_info_ack.  The current state of the stream is copied from
478  * rts_state.
479  */
480 static void
481 rts_capability_req(queue_t *q, mblk_t *mp)
482 {
483 	conn_t	*connp = Q_TO_CONN(q);
484 	rts_t	*rts = connp->conn_rts;
485 	t_uscalar_t		cap_bits1;
486 	struct T_capability_ack	*tcap;
487 
488 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
489 
490 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
491 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
492 	if (mp == NULL)
493 		return;
494 
495 	tcap = (struct T_capability_ack *)mp->b_rptr;
496 	tcap->CAP_bits1 = 0;
497 
498 	if (cap_bits1 & TC1_INFO) {
499 		rts_copy_info(&tcap->INFO_ack, rts);
500 		tcap->CAP_bits1 |= TC1_INFO;
501 	}
502 
503 	qreply(q, mp);
504 }
505 
506 /*
507  * This routine responds to T_INFO_REQ messages.  It is called by rts_wput.
508  * Most of the T_INFO_ACK information is copied from rts_g_t_info_ack.
509  * The current state of the stream is copied from rts_state.
510  */
511 static void
512 rts_info_req(queue_t *q, mblk_t *mp)
513 {
514 	conn_t	*connp = Q_TO_CONN(q);
515 	rts_t	*rts = connp->conn_rts;
516 
517 	mp = tpi_ack_alloc(mp, sizeof (rts_g_t_info_ack), M_PCPROTO,
518 	    T_INFO_ACK);
519 	if (mp == NULL)
520 		return;
521 	rts_copy_info((struct T_info_ack *)mp->b_rptr, rts);
522 	qreply(q, mp);
523 }
524 
525 /*
526  * This routine gets default values of certain options whose default
527  * values are maintained by protcol specific code
528  */
529 /* ARGSUSED */
530 int
531 rts_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
532 {
533 	/* no default value processed by protocol specific code currently */
534 	return (-1);
535 }
536 
537 
538 static int
539 rts_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
540 {
541 	rts_t	*rts = connp->conn_rts;
542 	conn_opt_arg_t	coas;
543 	int retval;
544 
545 	ASSERT(RW_READ_HELD(&rts->rts_rwlock));
546 
547 	switch (level) {
548 	/* do this in conn_opt_get? */
549 	case SOL_ROUTE:
550 		switch (name) {
551 		case RT_AWARE:
552 			mutex_enter(&connp->conn_lock);
553 			*(int *)ptr = connp->conn_rtaware;
554 			mutex_exit(&connp->conn_lock);
555 			return (0);
556 		}
557 		break;
558 	}
559 	coas.coa_connp = connp;
560 	coas.coa_ixa = connp->conn_ixa;
561 	coas.coa_ipp = &connp->conn_xmit_ipp;
562 	mutex_enter(&connp->conn_lock);
563 	retval = conn_opt_get(&coas, level, name, ptr);
564 	mutex_exit(&connp->conn_lock);
565 	return (retval);
566 }
567 
568 /* ARGSUSED */
569 static int
570 rts_do_opt_set(conn_t *connp, int level, int name, uint_t inlen,
571     uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, cred_t *cr,
572     void *thisdg_attrs, boolean_t checkonly)
573 {
574 	int	*i1 = (int *)invalp;
575 	rts_t	*rts = connp->conn_rts;
576 	rts_stack_t	*rtss = rts->rts_rtss;
577 	int		error;
578 	conn_opt_arg_t	coas;
579 
580 	coas.coa_connp = connp;
581 	coas.coa_ixa = connp->conn_ixa;
582 	coas.coa_ipp = &connp->conn_xmit_ipp;
583 
584 	ASSERT(RW_WRITE_HELD(&rts->rts_rwlock));
585 
586 	/*
587 	 * For rts, we should have no ancillary data sent down
588 	 * (rts_wput doesn't handle options).
589 	 */
590 	ASSERT(thisdg_attrs == NULL);
591 
592 	/*
593 	 * For fixed length options, no sanity check
594 	 * of passed in length is done. It is assumed *_optcom_req()
595 	 * routines do the right thing.
596 	 */
597 
598 	switch (level) {
599 	case SOL_SOCKET:
600 		switch (name) {
601 		case SO_PROTOTYPE:
602 			/*
603 			 * Routing socket applications that call socket() with
604 			 * a third argument can filter which messages will be
605 			 * sent upstream thanks to sockfs.  so_socket() sends
606 			 * down the SO_PROTOTYPE and rts_queue_input()
607 			 * implements the filtering.
608 			 */
609 			if (*i1 != AF_INET && *i1 != AF_INET6) {
610 				*outlenp = 0;
611 				return (EPROTONOSUPPORT);
612 			}
613 			if (!checkonly)
614 				connp->conn_proto = *i1;
615 			*outlenp = inlen;
616 			return (0);
617 
618 		/*
619 		 * The following two items can be manipulated,
620 		 * but changing them should do nothing.
621 		 */
622 		case SO_SNDBUF:
623 			if (*i1 > rtss->rtss_max_buf) {
624 				*outlenp = 0;
625 				return (ENOBUFS);
626 			}
627 			break;	/* goto sizeof (int) option return */
628 		case SO_RCVBUF:
629 			if (*i1 > rtss->rtss_max_buf) {
630 				*outlenp = 0;
631 				return (ENOBUFS);
632 			}
633 			break;	/* goto sizeof (int) option return */
634 		}
635 		break;
636 	case SOL_ROUTE:
637 		switch (name) {
638 		case RT_AWARE:
639 			if (!checkonly) {
640 				mutex_enter(&connp->conn_lock);
641 				connp->conn_rtaware = *i1;
642 				mutex_exit(&connp->conn_lock);
643 			}
644 			*outlenp = inlen;
645 			return (0);
646 		}
647 		break;
648 	}
649 	/* Serialized setsockopt since we are D_MTQPAIR */
650 	error = conn_opt_set(&coas, level, name, inlen, invalp,
651 	    checkonly, cr);
652 	if (error != 0) {
653 		*outlenp = 0;
654 		return (error);
655 	}
656 	/*
657 	 * Common case of return from an option that is sizeof (int)
658 	 */
659 	if (invalp != outvalp) {
660 		/* don't trust bcopy for identical src/dst */
661 		(void) bcopy(invalp, outvalp, inlen);
662 	}
663 	*outlenp = (t_uscalar_t)sizeof (int);
664 	return (0);
665 }
666 
667 static int
668 rts_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
669     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
670     void *thisdg_attrs, cred_t *cr)
671 {
672 	boolean_t	checkonly = B_FALSE;
673 
674 	if (optset_context) {
675 		switch (optset_context) {
676 		case SETFN_OPTCOM_CHECKONLY:
677 			checkonly = B_TRUE;
678 			/*
679 			 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
680 			 * inlen != 0 implies value supplied and
681 			 *	we have to "pretend" to set it.
682 			 * inlen == 0 implies that there is no value part
683 			 *	in T_CHECK request and just validation
684 			 * done elsewhere should be enough, we just return here.
685 			 */
686 			if (inlen == 0) {
687 				*outlenp = 0;
688 				return (0);
689 			}
690 			break;
691 		case SETFN_OPTCOM_NEGOTIATE:
692 			checkonly = B_FALSE;
693 			break;
694 		case SETFN_UD_NEGOTIATE:
695 		case SETFN_CONN_NEGOTIATE:
696 			checkonly = B_FALSE;
697 			/*
698 			 * Negotiating local and "association-related" options
699 			 * through T_UNITDATA_REQ or T_CONN_{REQ,CON}
700 			 * Not allowed in this module.
701 			 */
702 			return (EINVAL);
703 		default:
704 			/*
705 			 * We should never get here
706 			 */
707 			*outlenp = 0;
708 			return (EINVAL);
709 		}
710 
711 		ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
712 		    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
713 
714 	}
715 	return (rts_do_opt_set(connp, level, name, inlen, invalp, outlenp,
716 	    outvalp, cr, thisdg_attrs, checkonly));
717 
718 }
719 
720 /*
721  * This routine retrieves the current status of socket options.
722  * It returns the size of the option retrieved.
723  */
724 int
725 rts_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
726 {
727 	rts_t	*rts;
728 	int	err;
729 
730 	rts = Q_TO_RTS(q);
731 	rw_enter(&rts->rts_rwlock, RW_READER);
732 	err = rts_opt_get(Q_TO_CONN(q), level, name, ptr);
733 	rw_exit(&rts->rts_rwlock);
734 	return (err);
735 }
736 
737 /*
738  * This routine sets socket options.
739  */
740 /*ARGSUSED*/
741 int
742 rts_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
743     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
744     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr)
745 {
746 	conn_t	*connp = Q_TO_CONN(q);
747 	int	error;
748 	rts_t	*rts = connp->conn_rts;
749 
750 
751 	rw_enter(&rts->rts_rwlock, RW_WRITER);
752 	error = rts_opt_set(connp, optset_context, level, name, inlen, invalp,
753 	    outlenp, outvalp, thisdg_attrs, cr);
754 	rw_exit(&rts->rts_rwlock);
755 	return (error);
756 }
757 
758 /*
759  * This routine retrieves the value of an ND variable in a rtsparam_t
760  * structure. It is called through nd_getset when a user reads the
761  * variable.
762  */
763 /* ARGSUSED */
764 static int
765 rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
766 {
767 	rtsparam_t	*rtspa = (rtsparam_t *)cp;
768 
769 	(void) mi_mpprintf(mp, "%u", rtspa->rts_param_value);
770 	return (0);
771 }
772 
773 /*
774  * Walk through the param array specified registering each element with the
775  * named dispatch (ND) handler.
776  */
777 static boolean_t
778 rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt)
779 {
780 	for (; cnt-- > 0; rtspa++) {
781 		if (rtspa->rts_param_name != NULL && rtspa->rts_param_name[0]) {
782 			if (!nd_load(ndp, rtspa->rts_param_name,
783 			    rts_param_get, rts_param_set, (caddr_t)rtspa)) {
784 				nd_free(ndp);
785 				return (B_FALSE);
786 			}
787 		}
788 	}
789 	return (B_TRUE);
790 }
791 
792 /* This routine sets an ND variable in a rtsparam_t structure. */
793 /* ARGSUSED */
794 static int
795 rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
796 {
797 	ulong_t	new_value;
798 	rtsparam_t	*rtspa = (rtsparam_t *)cp;
799 
800 	/*
801 	 * Fail the request if the new value does not lie within the
802 	 * required bounds.
803 	 */
804 	if (ddi_strtoul(value, NULL, 10, &new_value) != 0 ||
805 	    new_value < rtspa->rts_param_min ||
806 	    new_value > rtspa->rts_param_max) {
807 		return (EINVAL);
808 	}
809 
810 	/* Set the new value */
811 	rtspa->rts_param_value = new_value;
812 	return (0);
813 }
814 
815 /*
816  * Empty rsrv routine which is used by rts_input to cause a wakeup
817  * of a thread in qwait.
818  */
819 /*ARGSUSED*/
820 static int
821 rts_rsrv(queue_t *q)
822 {
823 	return (0);
824 }
825 
826 /*
827  * This routine handles synchronous messages passed downstream. It either
828  * consumes the message or passes it downstream; it never queues a
829  * a message. The data messages that go down are wrapped in an IOCTL
830  * message.
831  *
832  * Since it is synchronous, it waits for the M_IOCACK/M_IOCNAK so that
833  * it can return an immediate error (such as ENETUNREACH when adding a route).
834  * It uses the RTS_WRW_PENDING to ensure that each rts instance has only
835  * one M_IOCTL outstanding at any given time.
836  */
837 static int
838 rts_wrw(queue_t *q, struiod_t *dp)
839 {
840 	mblk_t	*mp = dp->d_mp;
841 	mblk_t	*mp1;
842 	int	error;
843 	rt_msghdr_t	*rtm;
844 	conn_t	*connp = Q_TO_CONN(q);
845 	rts_t	*rts = connp->conn_rts;
846 
847 	while (rts->rts_flag & RTS_WRW_PENDING) {
848 		if (qwait_rw(q)) {
849 			rts->rts_error = EINTR;
850 			goto err_ret;
851 		}
852 	}
853 	rts->rts_flag |= RTS_WRW_PENDING;
854 
855 	if (isuioq(q) && (error = struioget(q, mp, dp, 0))) {
856 		/*
857 		 * Uio error of some sort, so just return the error.
858 		 */
859 		rts->rts_error = error;
860 		goto err_ret;
861 	}
862 	/*
863 	 * Pass the mblk (chain) onto wput().
864 	 */
865 	dp->d_mp = 0;
866 
867 	switch (mp->b_datap->db_type) {
868 	case M_PROTO:
869 	case M_PCPROTO:
870 		/* Expedite other than T_DATA_REQ to below the switch */
871 		if (((mp->b_wptr - mp->b_rptr) !=
872 		    sizeof (struct T_data_req)) ||
873 		    (((union T_primitives *)mp->b_rptr)->type != T_DATA_REQ))
874 			break;
875 		if ((mp1 = mp->b_cont) == NULL) {
876 			rts->rts_error = EINVAL;
877 			freemsg(mp);
878 			goto err_ret;
879 		}
880 		freeb(mp);
881 		mp = mp1;
882 		/* FALLTHRU */
883 	case M_DATA:
884 		/*
885 		 * The semantics of the routing socket is such that the rtm_pid
886 		 * field is automatically filled in during requests with the
887 		 * current process' pid.  We do this here (where we still have
888 		 * user context) after checking we have at least a message the
889 		 * size of a routing message header.
890 		 */
891 		if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) {
892 			if (!pullupmsg(mp, sizeof (rt_msghdr_t))) {
893 				rts->rts_error = EINVAL;
894 				freemsg(mp);
895 				goto err_ret;
896 			}
897 		}
898 		rtm = (rt_msghdr_t *)mp->b_rptr;
899 		rtm->rtm_pid = curproc->p_pid;
900 		break;
901 	default:
902 		break;
903 	}
904 	rts->rts_flag |= RTS_WPUT_PENDING;
905 	rts_wput(q, mp);
906 	while (rts->rts_flag & RTS_WPUT_PENDING)
907 		if (qwait_rw(q)) {
908 			/* RTS_WPUT_PENDING will be cleared below */
909 			rts->rts_error = EINTR;
910 			break;
911 		}
912 err_ret:
913 	rts->rts_flag &= ~(RTS_WPUT_PENDING | RTS_WRW_PENDING);
914 	return (rts->rts_error);
915 }
916 
917 /*
918  * This routine handles all messages passed downstream. It either
919  * consumes the message or passes it downstream; it never queues a
920  * a message. The data messages that go down are wrapped in an IOCTL
921  * message.
922  */
923 static int
924 rts_wput(queue_t *q, mblk_t *mp)
925 {
926 	uchar_t	*rptr = mp->b_rptr;
927 	mblk_t	*mp1;
928 	conn_t	*connp = Q_TO_CONN(q);
929 	rts_t	*rts = connp->conn_rts;
930 
931 	switch (mp->b_datap->db_type) {
932 	case M_DATA:
933 		break;
934 	case M_PROTO:
935 	case M_PCPROTO:
936 		if ((mp->b_wptr - rptr) == sizeof (struct T_data_req)) {
937 			/* Expedite valid T_DATA_REQ to below the switch */
938 			if (((union T_primitives *)rptr)->type == T_DATA_REQ) {
939 				mp1 = mp->b_cont;
940 				freeb(mp);
941 				if (mp1 == NULL)
942 					return (0);
943 				mp = mp1;
944 				break;
945 			}
946 		}
947 		/* FALLTHRU */
948 	default:
949 		rts_wput_other(q, mp);
950 		return (0);
951 	}
952 
953 
954 	ASSERT(msg_getcred(mp, NULL) != NULL);
955 
956 	mp1 = rts_ioctl_alloc(mp);
957 	if (mp1 == NULL) {
958 		ASSERT(rts != NULL);
959 		freemsg(mp);
960 		if (rts->rts_flag & RTS_WPUT_PENDING) {
961 			rts->rts_error = ENOMEM;
962 			rts->rts_flag &= ~RTS_WPUT_PENDING;
963 		}
964 		return (0);
965 	}
966 	ip_wput_nondata(q, mp1);
967 	return (0);
968 }
969 
970 
971 /*
972  * Handles all the control message, if it
973  * can not understand it, it will
974  * pass down stream.
975  */
976 static void
977 rts_wput_other(queue_t *q, mblk_t *mp)
978 {
979 	conn_t	*connp = Q_TO_CONN(q);
980 	rts_t	*rts = connp->conn_rts;
981 	uchar_t	*rptr = mp->b_rptr;
982 	struct iocblk	*iocp;
983 	cred_t	*cr;
984 	rts_stack_t	*rtss;
985 
986 	rtss = rts->rts_rtss;
987 
988 	switch (mp->b_datap->db_type) {
989 	case M_PROTO:
990 	case M_PCPROTO:
991 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) {
992 			/*
993 			 * If the message does not contain a PRIM_type,
994 			 * throw it away.
995 			 */
996 			freemsg(mp);
997 			return;
998 		}
999 		switch (((union T_primitives *)rptr)->type) {
1000 		case T_BIND_REQ:
1001 		case O_T_BIND_REQ:
1002 			rts_tpi_bind(q, mp);
1003 			return;
1004 		case T_UNBIND_REQ:
1005 			rts_tpi_unbind(q, mp);
1006 			return;
1007 		case T_CAPABILITY_REQ:
1008 			rts_capability_req(q, mp);
1009 			return;
1010 		case T_INFO_REQ:
1011 			rts_info_req(q, mp);
1012 			return;
1013 		case T_SVR4_OPTMGMT_REQ:
1014 		case T_OPTMGMT_REQ:
1015 			/*
1016 			 * All Solaris components should pass a db_credp
1017 			 * for this TPI message, hence we ASSERT.
1018 			 * But in case there is some other M_PROTO that looks
1019 			 * like a TPI message sent by some other kernel
1020 			 * component, we check and return an error.
1021 			 */
1022 			cr = msg_getcred(mp, NULL);
1023 			ASSERT(cr != NULL);
1024 			if (cr == NULL) {
1025 				rts_err_ack(q, mp, TSYSERR, EINVAL);
1026 				return;
1027 			}
1028 			if (((union T_primitives *)rptr)->type ==
1029 			    T_SVR4_OPTMGMT_REQ) {
1030 				svr4_optcom_req(q, mp, cr, &rts_opt_obj);
1031 			} else {
1032 				tpi_optcom_req(q, mp, cr, &rts_opt_obj);
1033 			}
1034 			return;
1035 		case O_T_CONN_RES:
1036 		case T_CONN_RES:
1037 		case T_DISCON_REQ:
1038 			/* Not supported by rts. */
1039 			rts_err_ack(q, mp, TNOTSUPPORT, 0);
1040 			return;
1041 		case T_DATA_REQ:
1042 		case T_EXDATA_REQ:
1043 		case T_ORDREL_REQ:
1044 			/* Illegal for rts. */
1045 			freemsg(mp);
1046 			(void) putnextctl1(RD(q), M_ERROR, EPROTO);
1047 			return;
1048 
1049 		default:
1050 			break;
1051 		}
1052 		break;
1053 	case M_IOCTL:
1054 		iocp = (struct iocblk *)mp->b_rptr;
1055 		switch (iocp->ioc_cmd) {
1056 		case ND_SET:
1057 		case ND_GET:
1058 			if (nd_getset(q, rtss->rtss_g_nd, mp)) {
1059 				qreply(q, mp);
1060 				return;
1061 			}
1062 			break;
1063 		case TI_GETPEERNAME:
1064 			mi_copyin(q, mp, NULL,
1065 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
1066 			return;
1067 		default:
1068 			break;
1069 		}
1070 		break;
1071 	case M_IOCDATA:
1072 		rts_wput_iocdata(q, mp);
1073 		return;
1074 	default:
1075 		break;
1076 	}
1077 	ip_wput_nondata(q, mp);
1078 }
1079 
1080 /*
1081  * Called by rts_wput_other to handle all M_IOCDATA messages.
1082  */
1083 static void
1084 rts_wput_iocdata(queue_t *q, mblk_t *mp)
1085 {
1086 	struct sockaddr	*rtsaddr;
1087 	mblk_t	*mp1;
1088 	STRUCT_HANDLE(strbuf, sb);
1089 	struct iocblk	*iocp	= (struct iocblk *)mp->b_rptr;
1090 
1091 	/* Make sure it is one of ours. */
1092 	switch (iocp->ioc_cmd) {
1093 	case TI_GETPEERNAME:
1094 		break;
1095 	default:
1096 		ip_wput_nondata(q, mp);
1097 		return;
1098 	}
1099 	switch (mi_copy_state(q, mp, &mp1)) {
1100 	case -1:
1101 		return;
1102 	case MI_COPY_CASE(MI_COPY_IN, 1):
1103 		break;
1104 	case MI_COPY_CASE(MI_COPY_OUT, 1):
1105 		/* Copy out the strbuf. */
1106 		mi_copyout(q, mp);
1107 		return;
1108 	case MI_COPY_CASE(MI_COPY_OUT, 2):
1109 		/* All done. */
1110 		mi_copy_done(q, mp, 0);
1111 		return;
1112 	default:
1113 		mi_copy_done(q, mp, EPROTO);
1114 		return;
1115 	}
1116 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
1117 	if (STRUCT_FGET(sb, maxlen) < (int)sizeof (sin_t)) {
1118 		mi_copy_done(q, mp, EINVAL);
1119 		return;
1120 	}
1121 	switch (iocp->ioc_cmd) {
1122 	case TI_GETPEERNAME:
1123 		break;
1124 	default:
1125 		mi_copy_done(q, mp, EPROTO);
1126 		return;
1127 	}
1128 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), sizeof (sin_t),
1129 	    B_TRUE);
1130 	if (mp1 == NULL)
1131 		return;
1132 	STRUCT_FSET(sb, len, (int)sizeof (sin_t));
1133 	rtsaddr = (struct sockaddr *)mp1->b_rptr;
1134 	mp1->b_wptr = (uchar_t *)&rtsaddr[1];
1135 	bzero(rtsaddr, sizeof (struct sockaddr));
1136 	rtsaddr->sa_family = AF_ROUTE;
1137 	/* Copy out the address */
1138 	mi_copyout(q, mp);
1139 }
1140 
1141 /*
1142  * IP passes up a NULL ira.
1143  */
1144 /*ARGSUSED2*/
1145 static void
1146 rts_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1147 {
1148 	conn_t *connp = (conn_t *)arg1;
1149 	rts_t	*rts = connp->conn_rts;
1150 	struct iocblk	*iocp;
1151 	mblk_t *mp1;
1152 	struct T_data_ind *tdi;
1153 	int	error;
1154 
1155 	switch (mp->b_datap->db_type) {
1156 	case M_IOCACK:
1157 	case M_IOCNAK:
1158 		iocp = (struct iocblk *)mp->b_rptr;
1159 		ASSERT(!IPCL_IS_NONSTR(connp));
1160 		if (rts->rts_flag & (RTS_WPUT_PENDING)) {
1161 			rts->rts_flag &= ~RTS_WPUT_PENDING;
1162 			rts->rts_error = iocp->ioc_error;
1163 			/*
1164 			 * Tell rts_wvw/qwait that we are done.
1165 			 * Note: there is no qwait_wakeup() we can use.
1166 			 */
1167 			qenable(connp->conn_rq);
1168 			freemsg(mp);
1169 			return;
1170 		}
1171 		break;
1172 	case M_DATA:
1173 		/*
1174 		 * Prepend T_DATA_IND to prevent the stream head from
1175 		 * consolidating multiple messages together.
1176 		 * If the allocation fails just send up the M_DATA.
1177 		 */
1178 		mp1 = allocb(sizeof (*tdi), BPRI_MED);
1179 		if (mp1 != NULL) {
1180 			mp1->b_cont = mp;
1181 			mp = mp1;
1182 
1183 			mp->b_datap->db_type = M_PROTO;
1184 			mp->b_wptr += sizeof (*tdi);
1185 			tdi = (struct T_data_ind *)mp->b_rptr;
1186 			tdi->PRIM_type = T_DATA_IND;
1187 			tdi->MORE_flag = 0;
1188 		}
1189 		break;
1190 	default:
1191 		break;
1192 	}
1193 
1194 	if (IPCL_IS_NONSTR(connp)) {
1195 		if ((*connp->conn_upcalls->su_recv)
1196 		    (connp->conn_upper_handle, mp, msgdsize(mp), 0,
1197 		    &error, NULL) < 0) {
1198 			ASSERT(error == ENOSPC);
1199 			/*
1200 			 * Let's confirm hoding the lock that
1201 			 * we are out of recv space.
1202 			 */
1203 			mutex_enter(&rts->rts_recv_mutex);
1204 			if ((*connp->conn_upcalls->su_recv)
1205 			    (connp->conn_upper_handle, NULL, 0, 0,
1206 			    &error, NULL) < 0) {
1207 				ASSERT(error == ENOSPC);
1208 				connp->conn_flow_cntrld = B_TRUE;
1209 			}
1210 			mutex_exit(&rts->rts_recv_mutex);
1211 		}
1212 	} else {
1213 		putnext(connp->conn_rq, mp);
1214 	}
1215 }
1216 
1217 /*ARGSUSED*/
1218 static void
1219 rts_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1220 {
1221 	freemsg(mp);
1222 }
1223 
1224 void
1225 rts_ddi_g_init(void)
1226 {
1227 	rts_max_optsize = optcom_max_optsize(rts_opt_obj.odb_opt_des_arr,
1228 	    rts_opt_obj.odb_opt_arr_cnt);
1229 
1230 	/*
1231 	 * We want to be informed each time a stack is created or
1232 	 * destroyed in the kernel, so we can maintain the
1233 	 * set of rts_stack_t's.
1234 	 */
1235 	netstack_register(NS_RTS, rts_stack_init, NULL, rts_stack_fini);
1236 }
1237 
1238 void
1239 rts_ddi_g_destroy(void)
1240 {
1241 	netstack_unregister(NS_RTS);
1242 }
1243 
1244 #define	INET_NAME	"ip"
1245 
1246 /*
1247  * Initialize the RTS stack instance.
1248  */
1249 /* ARGSUSED */
1250 static void *
1251 rts_stack_init(netstackid_t stackid, netstack_t *ns)
1252 {
1253 	rts_stack_t	*rtss;
1254 	rtsparam_t	*pa;
1255 	int		error = 0;
1256 	major_t		major;
1257 
1258 	rtss = (rts_stack_t *)kmem_zalloc(sizeof (*rtss), KM_SLEEP);
1259 	rtss->rtss_netstack = ns;
1260 
1261 	pa = (rtsparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
1262 	rtss->rtss_params = pa;
1263 	bcopy(lcl_param_arr, rtss->rtss_params, sizeof (lcl_param_arr));
1264 
1265 	(void) rts_param_register(&rtss->rtss_g_nd,
1266 	    rtss->rtss_params, A_CNT(lcl_param_arr));
1267 
1268 	major = mod_name_to_major(INET_NAME);
1269 	error = ldi_ident_from_major(major, &rtss->rtss_ldi_ident);
1270 	ASSERT(error == 0);
1271 	return (rtss);
1272 }
1273 
1274 /*
1275  * Free the RTS stack instance.
1276  */
1277 /* ARGSUSED */
1278 static void
1279 rts_stack_fini(netstackid_t stackid, void *arg)
1280 {
1281 	rts_stack_t *rtss = (rts_stack_t *)arg;
1282 
1283 	nd_free(&rtss->rtss_g_nd);
1284 	kmem_free(rtss->rtss_params, sizeof (lcl_param_arr));
1285 	rtss->rtss_params = NULL;
1286 	ldi_ident_release(rtss->rtss_ldi_ident);
1287 	kmem_free(rtss, sizeof (*rtss));
1288 }
1289 
1290 /* ARGSUSED */
1291 int
1292 rts_accept(sock_lower_handle_t lproto_handle,
1293     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
1294     cred_t *cr)
1295 {
1296 	return (EINVAL);
1297 }
1298 
1299 /* ARGSUSED */
1300 static int
1301 rts_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
1302     socklen_t len, cred_t *cr)
1303 {
1304 	/*
1305 	 * rebind not allowed
1306 	 */
1307 	return (EINVAL);
1308 }
1309 
1310 /* ARGSUSED */
1311 int
1312 rts_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
1313 {
1314 	return (EINVAL);
1315 }
1316 
1317 /* ARGSUSED */
1318 int
1319 rts_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
1320     socklen_t len, sock_connid_t *id, cred_t *cr)
1321 {
1322 	/*
1323 	 * rts sockets start out as bound and connected
1324 	 */
1325 	*id = 0;
1326 	return (EISCONN);
1327 }
1328 
1329 /* ARGSUSED */
1330 int
1331 rts_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
1332     socklen_t *addrlen, cred_t *cr)
1333 {
1334 	bzero(addr, sizeof (struct sockaddr));
1335 	addr->sa_family = AF_ROUTE;
1336 	*addrlen = sizeof (struct sockaddr);
1337 
1338 	return (0);
1339 }
1340 
1341 /* ARGSUSED */
1342 int
1343 rts_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
1344     socklen_t *addrlen, cred_t *cr)
1345 {
1346 	bzero(addr, sizeof (struct sockaddr));
1347 	addr->sa_family = AF_ROUTE;
1348 	*addrlen = sizeof (struct sockaddr);
1349 
1350 	return (0);
1351 }
1352 
1353 static int
1354 rts_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
1355     void *optvalp, socklen_t *optlen, cred_t *cr)
1356 {
1357 	conn_t		*connp = (conn_t *)proto_handle;
1358 	rts_t		*rts = connp->conn_rts;
1359 	int		error;
1360 	t_uscalar_t	max_optbuf_len;
1361 	void		*optvalp_buf;
1362 	int		len;
1363 
1364 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
1365 	    rts_opt_obj.odb_opt_des_arr,
1366 	    rts_opt_obj.odb_opt_arr_cnt,
1367 	    B_FALSE, B_TRUE, cr);
1368 	if (error != 0) {
1369 		if (error < 0)
1370 			error = proto_tlitosyserr(-error);
1371 		return (error);
1372 	}
1373 
1374 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
1375 	rw_enter(&rts->rts_rwlock, RW_READER);
1376 	len = rts_opt_get(connp, level, option_name, optvalp_buf);
1377 	rw_exit(&rts->rts_rwlock);
1378 	if (len == -1) {
1379 		kmem_free(optvalp_buf, max_optbuf_len);
1380 		return (EINVAL);
1381 	}
1382 
1383 	/*
1384 	 * update optlen and copy option value
1385 	 */
1386 	t_uscalar_t size = MIN(len, *optlen);
1387 
1388 	bcopy(optvalp_buf, optvalp, size);
1389 	bcopy(&size, optlen, sizeof (size));
1390 	kmem_free(optvalp_buf, max_optbuf_len);
1391 	return (0);
1392 }
1393 
1394 static int
1395 rts_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
1396     const void *optvalp, socklen_t optlen, cred_t *cr)
1397 {
1398 	conn_t	*connp = (conn_t *)proto_handle;
1399 	rts_t	*rts = connp->conn_rts;
1400 	int	error;
1401 
1402 	error = proto_opt_check(level, option_name, optlen, NULL,
1403 	    rts_opt_obj.odb_opt_des_arr,
1404 	    rts_opt_obj.odb_opt_arr_cnt,
1405 	    B_TRUE, B_FALSE, cr);
1406 
1407 	if (error != 0) {
1408 		if (error < 0)
1409 			error = proto_tlitosyserr(-error);
1410 		return (error);
1411 	}
1412 
1413 	rw_enter(&rts->rts_rwlock, RW_WRITER);
1414 	error = rts_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
1415 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
1416 	    NULL, cr);
1417 	rw_exit(&rts->rts_rwlock);
1418 
1419 	ASSERT(error >= 0);
1420 
1421 	return (error);
1422 }
1423 
1424 /* ARGSUSED */
1425 static int
1426 rts_send(sock_lower_handle_t proto_handle, mblk_t *mp,
1427     struct nmsghdr *msg, cred_t *cr)
1428 {
1429 	conn_t  *connp = (conn_t *)proto_handle;
1430 	rt_msghdr_t	*rtm;
1431 	int error;
1432 
1433 	ASSERT(DB_TYPE(mp) == M_DATA);
1434 	/*
1435 	 * The semantics of the routing socket is such that the rtm_pid
1436 	 * field is automatically filled in during requests with the
1437 	 * current process' pid.  We do this here (where we still have
1438 	 * user context) after checking we have at least a message the
1439 	 * size of a routing message header.
1440 	 */
1441 	if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) {
1442 		if (!pullupmsg(mp, sizeof (rt_msghdr_t))) {
1443 			freemsg(mp);
1444 			return (EINVAL);
1445 		}
1446 	}
1447 	rtm = (rt_msghdr_t *)mp->b_rptr;
1448 	rtm->rtm_pid = curproc->p_pid;
1449 
1450 	/*
1451 	 * We are not constrained by the ioctl interface and
1452 	 * ip_rts_request_common processing requests synchronously hence
1453 	 * we can send them down concurrently.
1454 	 */
1455 	error = ip_rts_request_common(mp, connp, cr);
1456 	return (error);
1457 }
1458 
1459 /* ARGSUSED */
1460 sock_lower_handle_t
1461 rts_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
1462     uint_t *smodep, int *errorp, int flags, cred_t *credp)
1463 {
1464 	conn_t	*connp;
1465 
1466 	if (family != AF_ROUTE || type != SOCK_RAW ||
1467 	    (proto != 0 && proto != AF_INET && proto != AF_INET6)) {
1468 		*errorp = EPROTONOSUPPORT;
1469 		return (NULL);
1470 	}
1471 
1472 	connp = rts_open(flags, credp);
1473 	ASSERT(connp != NULL);
1474 	connp->conn_flags |= IPCL_NONSTR;
1475 
1476 	connp->conn_proto = proto;
1477 
1478 	mutex_enter(&connp->conn_lock);
1479 	connp->conn_state_flags &= ~CONN_INCIPIENT;
1480 	mutex_exit(&connp->conn_lock);
1481 
1482 	*errorp = 0;
1483 	*smodep = SM_ATOMIC;
1484 	*sock_downcalls = &sock_rts_downcalls;
1485 	return ((sock_lower_handle_t)connp);
1486 }
1487 
1488 /* ARGSUSED */
1489 void
1490 rts_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
1491     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
1492 {
1493 	conn_t  *connp = (conn_t *)proto_handle;
1494 	struct sock_proto_props sopp;
1495 
1496 	connp->conn_upcalls = sock_upcalls;
1497 	connp->conn_upper_handle = sock_handle;
1498 
1499 	sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
1500 	    SOCKOPT_MAXBLK | SOCKOPT_MAXPSZ | SOCKOPT_MINPSZ;
1501 	sopp.sopp_wroff = 0;
1502 	sopp.sopp_rxhiwat = connp->conn_rcvbuf;
1503 	sopp.sopp_rxlowat = connp->conn_rcvlowat;
1504 	sopp.sopp_maxblk = INFPSZ;
1505 	sopp.sopp_maxpsz = rts_mod_info.mi_maxpsz;
1506 	sopp.sopp_minpsz = (rts_mod_info.mi_minpsz == 1) ? 0 :
1507 	    rts_mod_info.mi_minpsz;
1508 
1509 	(*connp->conn_upcalls->su_set_proto_props)
1510 	    (connp->conn_upper_handle, &sopp);
1511 
1512 	/*
1513 	 * We treat it as already connected for routing socket.
1514 	 */
1515 	(*connp->conn_upcalls->su_connected)
1516 	    (connp->conn_upper_handle, 0, NULL, -1);
1517 
1518 	/* Indicate to IP that this is a routing socket client */
1519 	ip_rts_register(connp);
1520 }
1521 
1522 /* ARGSUSED */
1523 int
1524 rts_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
1525 {
1526 	conn_t  *connp = (conn_t *)proto_handle;
1527 
1528 	ASSERT(connp != NULL && IPCL_IS_RTS(connp));
1529 	return (rts_common_close(NULL, connp));
1530 }
1531 
1532 /* ARGSUSED */
1533 int
1534 rts_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
1535 {
1536 	conn_t  *connp = (conn_t *)proto_handle;
1537 
1538 	/* shut down the send side */
1539 	if (how != SHUT_RD)
1540 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
1541 		    SOCK_OPCTL_SHUT_SEND, 0);
1542 	/* shut down the recv side */
1543 	if (how != SHUT_WR)
1544 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
1545 		    SOCK_OPCTL_SHUT_RECV, 0);
1546 	return (0);
1547 }
1548 
1549 void
1550 rts_clr_flowctrl(sock_lower_handle_t proto_handle)
1551 {
1552 	conn_t  *connp = (conn_t *)proto_handle;
1553 	rts_t	*rts = connp->conn_rts;
1554 
1555 	mutex_enter(&rts->rts_recv_mutex);
1556 	connp->conn_flow_cntrld = B_FALSE;
1557 	mutex_exit(&rts->rts_recv_mutex);
1558 }
1559 
1560 int
1561 rts_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
1562     int mode, int32_t *rvalp, cred_t *cr)
1563 {
1564 	conn_t		*connp = (conn_t *)proto_handle;
1565 	int		error;
1566 
1567 	/*
1568 	 * If we don't have a helper stream then create one.
1569 	 * ip_create_helper_stream takes care of locking the conn_t,
1570 	 * so this check for NULL is just a performance optimization.
1571 	 */
1572 	if (connp->conn_helper_info == NULL) {
1573 		rts_stack_t *rtss = connp->conn_rts->rts_rtss;
1574 
1575 		ASSERT(rtss->rtss_ldi_ident != NULL);
1576 
1577 		/*
1578 		 * Create a helper stream for non-STREAMS socket.
1579 		 */
1580 		error = ip_create_helper_stream(connp, rtss->rtss_ldi_ident);
1581 		if (error != 0) {
1582 			ip0dbg(("rts_ioctl: create of IP helper stream "
1583 			    "failed %d\n", error));
1584 			return (error);
1585 		}
1586 	}
1587 
1588 	switch (cmd) {
1589 	case ND_SET:
1590 	case ND_GET:
1591 	case TI_GETPEERNAME:
1592 	case TI_GETMYNAME:
1593 #ifdef DEUG
1594 		cmn_err(CE_CONT, "rts_ioctl cmd 0x%x on non sreams"
1595 		    " socket", cmd);
1596 #endif
1597 		error = EINVAL;
1598 		break;
1599 	default:
1600 		/*
1601 		 * Pass on to IP using helper stream
1602 		 */
1603 		error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
1604 		    cmd, arg, mode, cr, rvalp);
1605 		break;
1606 	}
1607 
1608 	return (error);
1609 }
1610 
1611 sock_downcalls_t sock_rts_downcalls = {
1612 	rts_activate,
1613 	rts_accept,
1614 	rts_bind,
1615 	rts_listen,
1616 	rts_connect,
1617 	rts_getpeername,
1618 	rts_getsockname,
1619 	rts_getsockopt,
1620 	rts_setsockopt,
1621 	rts_send,
1622 	NULL,
1623 	NULL,
1624 	NULL,
1625 	rts_shutdown,
1626 	rts_clr_flowctrl,
1627 	rts_ioctl,
1628 	rts_close
1629 };
1630