xref: /illumos-gate/usr/src/uts/common/inet/ip/rts.c (revision b9175c69691c8949bec97fb8f689b7d1efdb05bb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/strsubr.h>
29 #include <sys/stropts.h>
30 #include <sys/strsun.h>
31 #include <sys/strlog.h>
32 #define	_SUN_TPI_VERSION 2
33 #include <sys/tihdr.h>
34 #include <sys/timod.h>
35 #include <sys/ddi.h>
36 #include <sys/sunddi.h>
37 #include <sys/cmn_err.h>
38 #include <sys/proc.h>
39 #include <sys/suntpi.h>
40 #include <sys/policy.h>
41 #include <sys/zone.h>
42 #include <sys/disp.h>
43 
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <netinet/in.h>
47 
48 #include <inet/common.h>
49 #include <netinet/ip6.h>
50 #include <inet/ip.h>
51 #include <inet/ipclassifier.h>
52 #include <inet/proto_set.h>
53 #include <inet/nd.h>
54 #include <inet/optcom.h>
55 #include <netinet/ip_mroute.h>
56 #include <sys/isa_defs.h>
57 #include <net/route.h>
58 
59 #include <inet/rts_impl.h>
60 #include <inet/ip_rts.h>
61 
62 /*
63  * This is a transport provider for routing sockets.  Downstream messages are
64  * wrapped with a IP_IOCTL header, and ip_wput_ioctl calls the appropriate entry
65  * in the ip_ioctl_ftbl callout table to pass the routing socket data into IP.
66  * Upstream messages are generated for listeners of the routing socket as well
67  * as the message sender (unless they have turned off their end using
68  * SO_USELOOPBACK or shutdown(3n)).  Upstream messages may also be generated
69  * asynchronously when:
70  *
71  *	Interfaces are brought up or down.
72  *	Addresses are assigned to interfaces.
73  *	ICMP redirects are processed and a IRE_HOST/RTF_DYNAMIC is installed.
74  *	No route is found while sending a packet.
75  *	When TCP requests IP to remove an IRE_CACHE of a troubled destination.
76  *
77  * Since all we do is reformat the messages between routing socket and
78  * ioctl forms, no synchronization is necessary in this module; all
79  * the dirty work is done down in ip.
80  */
81 
82 /* Default structure copied into T_INFO_ACK messages */
83 static struct T_info_ack rts_g_t_info_ack = {
84 	T_INFO_ACK,
85 	T_INFINITE,	/* TSDU_size. Maximum size messages. */
86 	T_INVALID,	/* ETSDU_size. No expedited data. */
87 	T_INVALID,	/* CDATA_size. No connect data. */
88 	T_INVALID,	/* DDATA_size. No disconnect data. */
89 	0,		/* ADDR_size. */
90 	0,		/* OPT_size - not initialized here */
91 	64 * 1024,	/* TIDU_size. rts allows maximum size messages. */
92 	T_COTS,		/* SERV_type. rts supports connection oriented. */
93 	TS_UNBND,	/* CURRENT_state. This is set from rts_state. */
94 	(XPG4_1)	/* PROVIDER_flag */
95 };
96 
97 /*
98  * Table of ND variables supported by rts. These are loaded into rts_g_nd
99  * in rts_open.
100  * All of these are alterable, within the min/max values given, at run time.
101  */
102 static rtsparam_t	lcl_param_arr[] = {
103 	/* min		max		value		name */
104 	{ 4096,		65536,		8192,		"rts_xmit_hiwat"},
105 	{ 0,		65536,		1024,		"rts_xmit_lowat"},
106 	{ 4096,		65536,		8192,		"rts_recv_hiwat"},
107 	{ 65536,	1024*1024*1024, 256*1024,	"rts_max_buf"},
108 };
109 #define	rtss_xmit_hiwat		rtss_params[0].rts_param_value
110 #define	rtss_xmit_lowat		rtss_params[1].rts_param_value
111 #define	rtss_recv_hiwat		rtss_params[2].rts_param_value
112 #define	rtss_max_buf		rtss_params[3].rts_param_value
113 
114 static void 	rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
115     int sys_error);
116 static void	rts_input(void *, mblk_t *, void *);
117 static mblk_t	*rts_ioctl_alloc(mblk_t *data, cred_t *cr);
118 static int	rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
119 static boolean_t rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt);
120 static int	rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
121     cred_t *cr);
122 static void	rts_rsrv(queue_t *q);
123 static void	*rts_stack_init(netstackid_t stackid, netstack_t *ns);
124 static void	rts_stack_fini(netstackid_t stackid, void *arg);
125 static void	rts_wput(queue_t *q, mblk_t *mp);
126 static void	rts_wput_iocdata(queue_t *q, mblk_t *mp);
127 static void 	rts_wput_other(queue_t *q, mblk_t *mp);
128 static int	rts_wrw(queue_t *q, struiod_t *dp);
129 
130 static int	rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag,
131 		    cred_t *credp);
132 static conn_t	*rts_open(int flag, cred_t *credp);
133 
134 static int	rts_stream_close(queue_t *q);
135 static int	rts_close(sock_lower_handle_t proto_handle, int flags,
136 		    cred_t *cr);
137 
138 static struct module_info rts_mod_info = {
139 	129, "rts", 1, INFPSZ, 512, 128
140 };
141 
142 static struct qinit rtsrinit = {
143 	NULL, (pfi_t)rts_rsrv, rts_stream_open, rts_stream_close, NULL,
144 	&rts_mod_info
145 };
146 
147 static struct qinit rtswinit = {
148 	(pfi_t)rts_wput, NULL, NULL, NULL, NULL, &rts_mod_info,
149 	NULL, (pfi_t)rts_wrw, NULL, STRUIOT_STANDARD
150 };
151 
152 struct streamtab rtsinfo = {
153 	&rtsrinit, &rtswinit
154 };
155 
156 /*
157  * This routine allocates the necessary
158  * message blocks for IOCTL wrapping the
159  * user data.
160  */
161 static mblk_t *
162 rts_ioctl_alloc(mblk_t *data, cred_t *cr)
163 {
164 	mblk_t	*mp = NULL;
165 	mblk_t	*mp1 = NULL;
166 	ipllc_t	*ipllc;
167 	struct iocblk	*ioc;
168 
169 	mp = allocb_cred(sizeof (ipllc_t), cr);
170 	if (mp == NULL)
171 		return (NULL);
172 	mp1 = allocb_cred(sizeof (struct iocblk), cr);
173 	if (mp1 == NULL) {
174 		freeb(mp);
175 		return (NULL);
176 	}
177 
178 	ipllc = (ipllc_t *)mp->b_rptr;
179 	ipllc->ipllc_cmd = IP_IOC_RTS_REQUEST;
180 	ipllc->ipllc_name_offset = 0;
181 	ipllc->ipllc_name_length = 0;
182 	mp->b_wptr += sizeof (ipllc_t);
183 	mp->b_cont = data;
184 
185 	ioc = (struct iocblk *)mp1->b_rptr;
186 	ioc->ioc_cmd = IP_IOCTL;
187 	ioc->ioc_error = 0;
188 	ioc->ioc_cr = NULL;
189 	ioc->ioc_count = msgdsize(mp);
190 	mp1->b_wptr += sizeof (struct iocblk);
191 	mp1->b_datap->db_type = M_IOCTL;
192 	mp1->b_cont = mp;
193 
194 	return (mp1);
195 }
196 
197 /*
198  * This routine closes rts stream, by disabling
199  * put/srv routines and freeing the this module
200  * internal datastructure.
201  */
202 static int
203 rts_common_close(queue_t *q, conn_t *connp)
204 {
205 
206 	ASSERT(connp != NULL && IPCL_IS_RTS(connp));
207 
208 	ip_rts_unregister(connp);
209 
210 	ip_quiesce_conn(connp);
211 
212 	if (!IPCL_IS_NONSTR(connp)) {
213 		qprocsoff(q);
214 
215 		/*
216 		 * Now we are truly single threaded on this stream, and can
217 		 * delete the things hanging off the connp, and finally the
218 		 * connp.
219 		 * We removed this connp from the fanout list, it cannot be
220 		 * accessed thru the fanouts, and we already waited for the
221 		 * conn_ref to drop to 0. We are already in close, so
222 		 * there cannot be any other thread from the top. qprocsoff
223 		 * has completed, and service has completed or won't run in
224 		 * future.
225 		 */
226 		inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
227 	} else {
228 		ip_free_helper_stream(connp);
229 	}
230 	ASSERT(connp->conn_ref == 1);
231 
232 
233 	connp->conn_ref--;
234 	ipcl_conn_destroy(connp);
235 
236 	return (0);
237 }
238 
239 static int
240 rts_stream_close(queue_t *q)
241 {
242 	conn_t  *connp = Q_TO_CONN(q);
243 
244 	(void) rts_common_close(q, connp);
245 	q->q_ptr = WR(q)->q_ptr = NULL;
246 	return (0);
247 }
248 
249 /*
250  * This is the open routine for routing socket. It allocates
251  * rts_t structure for the stream and tells IP that it is a routing socket.
252  */
253 /* ARGSUSED */
254 static int
255 rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
256 {
257 	conn_t *connp;
258 	dev_t	conn_dev;
259 	rts_stack_t *rtss;
260 	rts_t   *rts;
261 
262 	/* If the stream is already open, return immediately. */
263 	if (q->q_ptr != NULL)
264 		return (0);
265 
266 	if (sflag == MODOPEN)
267 		return (EINVAL);
268 
269 
270 	/*
271 	 * Since RTS is not used so heavily, allocating from the small
272 	 * arena should be sufficient.
273 	 */
274 	if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
275 		return (EBUSY);
276 	}
277 
278 	connp = rts_open(flag, credp);
279 	ASSERT(connp != NULL);
280 
281 
282 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
283 
284 	rts = connp->conn_rts;
285 
286 	rw_enter(&rts->rts_rwlock, RW_WRITER);
287 	connp->conn_dev = conn_dev;
288 	connp->conn_minor_arena = ip_minor_arena_sa;
289 
290 	/*
291 	 * Initialize the rts_t structure for this stream.
292 	 */
293 	q->q_ptr = connp;
294 	WR(q)->q_ptr = connp;
295 	connp->conn_rq = q;
296 	connp->conn_wq = WR(q);
297 
298 	rtss = rts->rts_rtss;
299 	q->q_hiwat = rtss->rtss_recv_hiwat;
300 	WR(q)->q_hiwat = rtss->rtss_xmit_hiwat;
301 	WR(q)->q_lowat = rtss->rtss_xmit_lowat;
302 
303 
304 
305 	mutex_enter(&connp->conn_lock);
306 	connp->conn_state_flags &= ~CONN_INCIPIENT;
307 	mutex_exit(&connp->conn_lock);
308 
309 	qprocson(q);
310 	rw_exit(&rts->rts_rwlock);
311 	/*
312 	 * Indicate the down IP module that this is a routing socket
313 	 * client by sending an RTS IOCTL without any user data. Although
314 	 * this is just a notification message (without any real routing
315 	 * request), we pass in any credential for correctness sake.
316 	 */
317 	ip_rts_register(connp);
318 
319 	return (0);
320 }
321 
322 /* ARGSUSED */
323 static conn_t *
324 rts_open(int flag, cred_t *credp)
325 {
326 	netstack_t *ns;
327 	rts_stack_t *rtss;
328 	rts_t	*rts;
329 	conn_t	*connp;
330 	zoneid_t zoneid;
331 
332 	ns = netstack_find_by_cred(credp);
333 	ASSERT(ns != NULL);
334 	rtss = ns->netstack_rts;
335 	ASSERT(rtss != NULL);
336 
337 	/*
338 	 * For exclusive stacks we set the zoneid to zero
339 	 * to make RTS operate as if in the global zone.
340 	 */
341 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
342 		zoneid = GLOBAL_ZONEID;
343 	else
344 		zoneid = crgetzoneid(credp);
345 
346 	connp = ipcl_conn_create(IPCL_RTSCONN, KM_SLEEP, ns);
347 	rts = connp->conn_rts;
348 
349 	/*
350 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
351 	 * done by netstack_find_by_cred()
352 	 */
353 	netstack_rele(ns);
354 
355 
356 	rw_enter(&rts->rts_rwlock, RW_WRITER);
357 	ASSERT(connp->conn_rts == rts);
358 	ASSERT(rts->rts_connp == connp);
359 
360 	connp->conn_zoneid = zoneid;
361 	connp->conn_flow_cntrld = B_FALSE;
362 
363 	connp->conn_ulp_labeled = is_system_labeled();
364 
365 	rts->rts_rtss = rtss;
366 	rts->rts_xmit_hiwat = rtss->rtss_xmit_hiwat;
367 
368 	connp->conn_recv = rts_input;
369 	crhold(credp);
370 	connp->conn_cred = credp;
371 
372 	/*
373 	 * rts sockets start out as bound and connected
374 	 * For streams based sockets, socket state is set to
375 	 * SS_ISBOUND | SS_ISCONNECTED in so_strinit.
376 	 */
377 	rts->rts_state = TS_DATA_XFER;
378 	rw_exit(&rts->rts_rwlock);
379 
380 	return (connp);
381 }
382 
383 /*
384  * This routine creates a T_ERROR_ACK message and passes it upstream.
385  */
386 static void
387 rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
388 {
389 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
390 		qreply(q, mp);
391 }
392 
393 /*
394  * This routine creates a T_OK_ACK message and passes it upstream.
395  */
396 static void
397 rts_ok_ack(queue_t *q, mblk_t *mp)
398 {
399 	if ((mp = mi_tpi_ok_ack_alloc(mp)) != NULL)
400 		qreply(q, mp);
401 }
402 
403 /*
404  * This routine is called by rts_wput to handle T_UNBIND_REQ messages.
405  */
406 static void
407 rts_tpi_unbind(queue_t *q, mblk_t *mp)
408 {
409 	conn_t	*connp = Q_TO_CONN(q);
410 	rts_t	*rts = connp->conn_rts;
411 
412 	/* If a bind has not been done, we can't unbind. */
413 	if (rts->rts_state != TS_IDLE) {
414 		rts_err_ack(q, mp, TOUTSTATE, 0);
415 		return;
416 	}
417 	rts->rts_state = TS_UNBND;
418 	rts_ok_ack(q, mp);
419 }
420 
421 /*
422  * This routine is called to handle each
423  * O_T_BIND_REQ/T_BIND_REQ message passed to
424  * rts_wput. Note: This routine works with both
425  * O_T_BIND_REQ and T_BIND_REQ semantics.
426  */
427 static void
428 rts_tpi_bind(queue_t *q, mblk_t *mp)
429 {
430 	conn_t	*connp = Q_TO_CONN(q);
431 	rts_t	*rts = connp->conn_rts;
432 	mblk_t	*mp1;
433 	struct T_bind_req *tbr;
434 
435 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
436 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
437 		    "rts_tpi_bind: bad data, %d", rts->rts_state);
438 		rts_err_ack(q, mp, TBADADDR, 0);
439 		return;
440 	}
441 	if (rts->rts_state != TS_UNBND) {
442 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
443 		    "rts_tpi_bind: bad state, %d", rts->rts_state);
444 		rts_err_ack(q, mp, TOUTSTATE, 0);
445 		return;
446 	}
447 	/*
448 	 * Reallocate the message to make sure we have enough room for an
449 	 * address and the protocol type.
450 	 */
451 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin_t), 1);
452 	if (mp1 == NULL) {
453 		rts_err_ack(q, mp, TSYSERR, ENOMEM);
454 		return;
455 	}
456 	mp = mp1;
457 	tbr = (struct T_bind_req *)mp->b_rptr;
458 	if (tbr->ADDR_length != 0) {
459 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
460 		    "rts_tpi_bind: bad ADDR_length %d", tbr->ADDR_length);
461 		rts_err_ack(q, mp, TBADADDR, 0);
462 		return;
463 	}
464 	/* Generic request */
465 	tbr->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_req);
466 	tbr->ADDR_length = 0;
467 	tbr->PRIM_type = T_BIND_ACK;
468 	rts->rts_state = TS_IDLE;
469 	qreply(q, mp);
470 }
471 
472 static void
473 rts_copy_info(struct T_info_ack *tap, rts_t *rts)
474 {
475 	*tap = rts_g_t_info_ack;
476 	tap->CURRENT_state = rts->rts_state;
477 	tap->OPT_size = rts_max_optsize;
478 }
479 
480 /*
481  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
482  * rts_wput.  Much of the T_CAPABILITY_ACK information is copied from
483  * rts_g_t_info_ack.  The current state of the stream is copied from
484  * rts_state.
485  */
486 static void
487 rts_capability_req(queue_t *q, mblk_t *mp)
488 {
489 	conn_t	*connp = Q_TO_CONN(q);
490 	rts_t	*rts = connp->conn_rts;
491 	t_uscalar_t		cap_bits1;
492 	struct T_capability_ack	*tcap;
493 
494 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
495 
496 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
497 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
498 	if (mp == NULL)
499 		return;
500 
501 	tcap = (struct T_capability_ack *)mp->b_rptr;
502 	tcap->CAP_bits1 = 0;
503 
504 	if (cap_bits1 & TC1_INFO) {
505 		rts_copy_info(&tcap->INFO_ack, rts);
506 		tcap->CAP_bits1 |= TC1_INFO;
507 	}
508 
509 	qreply(q, mp);
510 }
511 
512 /*
513  * This routine responds to T_INFO_REQ messages.  It is called by rts_wput.
514  * Most of the T_INFO_ACK information is copied from rts_g_t_info_ack.
515  * The current state of the stream is copied from rts_state.
516  */
517 static void
518 rts_info_req(queue_t *q, mblk_t *mp)
519 {
520 	conn_t	*connp = Q_TO_CONN(q);
521 	rts_t	*rts = connp->conn_rts;
522 
523 	mp = tpi_ack_alloc(mp, sizeof (rts_g_t_info_ack), M_PCPROTO,
524 	    T_INFO_ACK);
525 	if (mp == NULL)
526 		return;
527 	rts_copy_info((struct T_info_ack *)mp->b_rptr, rts);
528 	qreply(q, mp);
529 }
530 
531 /*
532  * This routine gets default values of certain options whose default
533  * values are maintained by protcol specific code
534  */
535 /* ARGSUSED */
536 int
537 rts_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
538 {
539 	/* no default value processed by protocol specific code currently */
540 	return (-1);
541 }
542 
543 
544 static int
545 rts_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
546 {
547 	rts_t	*rts = connp->conn_rts;
548 	int	*i1 = (int *)ptr;
549 
550 	ASSERT(RW_READ_HELD(&rts->rts_rwlock));
551 
552 	switch (level) {
553 	case SOL_SOCKET:
554 		switch (name) {
555 		case SO_DEBUG:
556 			*i1 = rts->rts_debug;
557 			break;
558 		case SO_REUSEADDR:
559 			*i1 = rts->rts_reuseaddr;
560 			break;
561 		case SO_TYPE:
562 			*i1 = SOCK_RAW;
563 			break;
564 		/*
565 		 * The following three items are available here,
566 		 * but are only meaningful to IP.
567 		 */
568 		case SO_DONTROUTE:
569 			*i1 = rts->rts_dontroute;
570 			break;
571 		case SO_USELOOPBACK:
572 			*i1 = rts->rts_useloopback;
573 			break;
574 		case SO_BROADCAST:
575 			*i1 = rts->rts_broadcast;
576 			break;
577 		case SO_PROTOTYPE:
578 			*i1 = rts->rts_proto;
579 			break;
580 		/*
581 		 * The following two items can be manipulated,
582 		 * but changing them should do nothing.
583 		 */
584 		case SO_SNDBUF:
585 			ASSERT(rts->rts_xmit_hiwat <= INT_MAX);
586 			*i1 = (int)(rts->rts_xmit_hiwat);
587 			break;
588 		case SO_RCVBUF:
589 			ASSERT(rts->rts_recv_hiwat <= INT_MAX);
590 			*i1 = (int)(rts->rts_recv_hiwat);
591 			break;
592 		case SO_DOMAIN:
593 			*i1 = PF_ROUTE;
594 			break;
595 		default:
596 			return (-1);
597 		}
598 		break;
599 	case SOL_ROUTE:
600 		switch (name) {
601 		case RT_AWARE:
602 			mutex_enter(&connp->conn_lock);
603 			*i1 = connp->conn_rtaware;
604 			mutex_exit(&connp->conn_lock);
605 			break;
606 		}
607 		break;
608 	default:
609 		return (-1);
610 	}
611 	return ((int)sizeof (int));
612 }
613 
614 /* ARGSUSED */
615 static int
616 rts_do_opt_set(conn_t *connp, int level, int name, uint_t inlen,
617     uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, cred_t *cr,
618     void *thisdg_attrs, boolean_t checkonly)
619 {
620 	int	*i1 = (int *)invalp;
621 	rts_t	*rts = connp->conn_rts;
622 	rts_stack_t	*rtss = rts->rts_rtss;
623 
624 	ASSERT(RW_WRITE_HELD(&rts->rts_rwlock));
625 
626 	/*
627 	 * For rts, we should have no ancillary data sent down
628 	 * (rts_wput doesn't handle options).
629 	 */
630 	ASSERT(thisdg_attrs == NULL);
631 
632 	/*
633 	 * For fixed length options, no sanity check
634 	 * of passed in length is done. It is assumed *_optcom_req()
635 	 * routines do the right thing.
636 	 */
637 
638 	switch (level) {
639 	case SOL_SOCKET:
640 		switch (name) {
641 		case SO_REUSEADDR:
642 			if (!checkonly) {
643 				rts->rts_reuseaddr = *i1 ? 1 : 0;
644 				connp->conn_reuseaddr = *i1 ? 1 : 0;
645 			}
646 			break;	/* goto sizeof (int) option return */
647 		case SO_DEBUG:
648 			if (!checkonly)
649 				rts->rts_debug = *i1 ? 1 : 0;
650 			break;	/* goto sizeof (int) option return */
651 		/*
652 		 * The following three items are available here,
653 		 * but are only meaningful to IP.
654 		 */
655 		case SO_DONTROUTE:
656 			if (!checkonly) {
657 				rts->rts_dontroute = *i1 ? 1 : 0;
658 				connp->conn_dontroute = *i1 ? 1 : 0;
659 			}
660 			break;	/* goto sizeof (int) option return */
661 		case SO_USELOOPBACK:
662 			if (!checkonly) {
663 				rts->rts_useloopback = *i1 ? 1 : 0;
664 				connp->conn_loopback = *i1 ? 1 : 0;
665 			}
666 			break;	/* goto sizeof (int) option return */
667 		case SO_BROADCAST:
668 			if (!checkonly) {
669 				rts->rts_broadcast = *i1 ? 1 : 0;
670 				connp->conn_broadcast = *i1 ? 1 : 0;
671 			}
672 			break;	/* goto sizeof (int) option return */
673 		case SO_PROTOTYPE:
674 			/*
675 			 * Routing socket applications that call socket() with
676 			 * a third argument can filter which messages will be
677 			 * sent upstream thanks to sockfs.  so_socket() sends
678 			 * down the SO_PROTOTYPE and rts_queue_input()
679 			 * implements the filtering.
680 			 */
681 			if (*i1 != AF_INET && *i1 != AF_INET6)
682 				return (EPROTONOSUPPORT);
683 			if (!checkonly) {
684 				rts->rts_proto = *i1;
685 				connp->conn_proto = *i1;
686 			}
687 			break;	/* goto sizeof (int) option return */
688 		/*
689 		 * The following two items can be manipulated,
690 		 * but changing them should do nothing.
691 		 */
692 		case SO_SNDBUF:
693 			if (*i1 > rtss->rtss_max_buf) {
694 				*outlenp = 0;
695 				return (ENOBUFS);
696 			}
697 			if (!checkonly) {
698 				rts->rts_xmit_hiwat = *i1;
699 				if (!IPCL_IS_NONSTR(connp))
700 					connp->conn_wq->q_hiwat = *i1;
701 			}
702 			break;	/* goto sizeof (int) option return */
703 		case SO_RCVBUF:
704 			if (*i1 > rtss->rtss_max_buf) {
705 				*outlenp = 0;
706 				return (ENOBUFS);
707 			}
708 			if (!checkonly) {
709 				rts->rts_recv_hiwat = *i1;
710 				rw_exit(&rts->rts_rwlock);
711 				(void) proto_set_rx_hiwat(connp->conn_rq, connp,
712 				    *i1);
713 				rw_enter(&rts->rts_rwlock, RW_WRITER);
714 			}
715 
716 			break;	/* goto sizeof (int) option return */
717 		default:
718 			*outlenp = 0;
719 			return (EINVAL);
720 		}
721 		break;
722 	case SOL_ROUTE:
723 		switch (name) {
724 		case RT_AWARE:
725 			if (!checkonly) {
726 				mutex_enter(&connp->conn_lock);
727 				connp->conn_rtaware = *i1;
728 				mutex_exit(&connp->conn_lock);
729 			}
730 			break;	/* goto sizeof (int) option return */
731 		default:
732 			*outlenp = 0;
733 			return (EINVAL);
734 		}
735 		break;
736 	default:
737 		*outlenp = 0;
738 		return (EINVAL);
739 	}
740 	/*
741 	 * Common case of return from an option that is sizeof (int)
742 	 */
743 	if (invalp != outvalp) {
744 		/* don't trust bcopy for identical src/dst */
745 		(void) bcopy(invalp, outvalp, inlen);
746 	}
747 	*outlenp = (t_uscalar_t)sizeof (int);
748 	return (0);
749 }
750 
751 static int
752 rts_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
753     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
754     void *thisdg_attrs, cred_t *cr)
755 {
756 	boolean_t 	checkonly = B_FALSE;
757 
758 	if (optset_context) {
759 		switch (optset_context) {
760 		case SETFN_OPTCOM_CHECKONLY:
761 			checkonly = B_TRUE;
762 			/*
763 			 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
764 			 * inlen != 0 implies value supplied and
765 			 * 	we have to "pretend" to set it.
766 			 * inlen == 0 implies that there is no value part
767 			 * 	in T_CHECK request and just validation
768 			 * done elsewhere should be enough, we just return here.
769 			 */
770 			if (inlen == 0) {
771 				*outlenp = 0;
772 				return (0);
773 			}
774 			break;
775 		case SETFN_OPTCOM_NEGOTIATE:
776 			checkonly = B_FALSE;
777 			break;
778 		case SETFN_UD_NEGOTIATE:
779 		case SETFN_CONN_NEGOTIATE:
780 			checkonly = B_FALSE;
781 			/*
782 			 * Negotiating local and "association-related" options
783 			 * through T_UNITDATA_REQ or T_CONN_{REQ,CON}
784 			 * Not allowed in this module.
785 			 */
786 			return (EINVAL);
787 		default:
788 			/*
789 			 * We should never get here
790 			 */
791 			*outlenp = 0;
792 			return (EINVAL);
793 		}
794 
795 		ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
796 		    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
797 
798 	}
799 	return (rts_do_opt_set(connp, level, name, inlen, invalp, outlenp,
800 	    outvalp, cr, thisdg_attrs, checkonly));
801 
802 }
803 
804 /*
805  * This routine retrieves the current status of socket options.
806  * It returns the size of the option retrieved.
807  */
808 int
809 rts_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
810 {
811 	rts_t	*rts;
812 	int	err;
813 
814 	rts = Q_TO_RTS(q);
815 	rw_enter(&rts->rts_rwlock, RW_READER);
816 	err = rts_opt_get(Q_TO_CONN(q), level, name, ptr);
817 	rw_exit(&rts->rts_rwlock);
818 	return (err);
819 }
820 
821 /*
822  * This routine sets socket options.
823  */
824 /*ARGSUSED*/
825 int
826 rts_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
827     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
828     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
829 {
830 	conn_t	*connp = Q_TO_CONN(q);
831 	int	error;
832 	rts_t	*rts = connp->conn_rts;
833 
834 
835 	rw_enter(&rts->rts_rwlock, RW_WRITER);
836 	error = rts_opt_set(connp, optset_context, level, name, inlen, invalp,
837 	    outlenp, outvalp, thisdg_attrs, cr);
838 	rw_exit(&rts->rts_rwlock);
839 	return (error);
840 }
841 
842 /*
843  * This routine retrieves the value of an ND variable in a rtsparam_t
844  * structure. It is called through nd_getset when a user reads the
845  * variable.
846  */
847 /* ARGSUSED */
848 static int
849 rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
850 {
851 	rtsparam_t	*rtspa = (rtsparam_t *)cp;
852 
853 	(void) mi_mpprintf(mp, "%u", rtspa->rts_param_value);
854 	return (0);
855 }
856 
857 /*
858  * Walk through the param array specified registering each element with the
859  * named dispatch (ND) handler.
860  */
861 static boolean_t
862 rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt)
863 {
864 	for (; cnt-- > 0; rtspa++) {
865 		if (rtspa->rts_param_name != NULL && rtspa->rts_param_name[0]) {
866 			if (!nd_load(ndp, rtspa->rts_param_name,
867 			    rts_param_get, rts_param_set, (caddr_t)rtspa)) {
868 				nd_free(ndp);
869 				return (B_FALSE);
870 			}
871 		}
872 	}
873 	return (B_TRUE);
874 }
875 
876 /* This routine sets an ND variable in a rtsparam_t structure. */
877 /* ARGSUSED */
878 static int
879 rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
880 {
881 	ulong_t	new_value;
882 	rtsparam_t	*rtspa = (rtsparam_t *)cp;
883 
884 	/*
885 	 * Fail the request if the new value does not lie within the
886 	 * required bounds.
887 	 */
888 	if (ddi_strtoul(value, NULL, 10, &new_value) != 0 ||
889 	    new_value < rtspa->rts_param_min ||
890 	    new_value > rtspa->rts_param_max) {
891 		return (EINVAL);
892 	}
893 
894 	/* Set the new value */
895 	rtspa->rts_param_value = new_value;
896 	return (0);
897 }
898 
899 /*
900  * Empty rsrv routine which is used by rts_input to cause a wakeup
901  * of a thread in qwait.
902  */
903 /*ARGSUSED*/
904 static void
905 rts_rsrv(queue_t *q)
906 {
907 }
908 
909 /*
910  * This routine handles synchronous messages passed downstream. It either
911  * consumes the message or passes it downstream; it never queues a
912  * a message. The data messages that go down are wrapped in an IOCTL
913  * message.
914  *
915  * Since it is synchronous, it waits for the M_IOCACK/M_IOCNAK so that
916  * it can return an immediate error (such as ENETUNREACH when adding a route).
917  * It uses the RTS_WRW_PENDING to ensure that each rts instance has only
918  * one M_IOCTL outstanding at any given time.
919  */
920 static int
921 rts_wrw(queue_t *q, struiod_t *dp)
922 {
923 	mblk_t	*mp = dp->d_mp;
924 	mblk_t	*mp1;
925 	int	error;
926 	rt_msghdr_t	*rtm;
927 	conn_t	*connp = Q_TO_CONN(q);
928 	rts_t	*rts = connp->conn_rts;
929 
930 	while (rts->rts_flag & RTS_WRW_PENDING) {
931 		if (qwait_rw(q)) {
932 			rts->rts_error = EINTR;
933 			goto err_ret;
934 		}
935 	}
936 	rts->rts_flag |= RTS_WRW_PENDING;
937 
938 	if (isuioq(q) && (error = struioget(q, mp, dp, 0))) {
939 		/*
940 		 * Uio error of some sort, so just return the error.
941 		 */
942 		rts->rts_error = error;
943 		goto err_ret;
944 	}
945 	/*
946 	 * Pass the mblk (chain) onto wput().
947 	 */
948 	dp->d_mp = 0;
949 
950 	switch (mp->b_datap->db_type) {
951 	case M_PROTO:
952 	case M_PCPROTO:
953 		/* Expedite other than T_DATA_REQ to below the switch */
954 		if (((mp->b_wptr - mp->b_rptr) !=
955 		    sizeof (struct T_data_req)) ||
956 		    (((union T_primitives *)mp->b_rptr)->type != T_DATA_REQ))
957 			break;
958 		if ((mp1 = mp->b_cont) == NULL) {
959 			rts->rts_error = EINVAL;
960 			goto err_ret;
961 		}
962 		freeb(mp);
963 		mp = mp1;
964 		/* FALLTHRU */
965 	case M_DATA:
966 		/*
967 		 * The semantics of the routing socket is such that the rtm_pid
968 		 * field is automatically filled in during requests with the
969 		 * current process' pid.  We do this here (where we still have
970 		 * user context) after checking we have at least a message the
971 		 * size of a routing message header.
972 		 */
973 		if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) {
974 			if (!pullupmsg(mp, sizeof (rt_msghdr_t))) {
975 				rts->rts_error = EINVAL;
976 				goto err_ret;
977 			}
978 		}
979 		rtm = (rt_msghdr_t *)mp->b_rptr;
980 		rtm->rtm_pid = curproc->p_pid;
981 		break;
982 	default:
983 		break;
984 	}
985 	rts->rts_flag |= RTS_WPUT_PENDING;
986 	rts_wput(q, mp);
987 	while (rts->rts_flag & RTS_WPUT_PENDING)
988 		if (qwait_rw(q)) {
989 			/* RTS_WPUT_PENDING will be cleared below */
990 			rts->rts_error = EINTR;
991 			break;
992 		}
993 err_ret:
994 	rts->rts_flag &= ~(RTS_WPUT_PENDING | RTS_WRW_PENDING);
995 	return (rts->rts_error);
996 }
997 
998 /*
999  * This routine handles all messages passed downstream. It either
1000  * consumes the message or passes it downstream; it never queues a
1001  * a message. The data messages that go down are wrapped in an IOCTL
1002  * message.
1003  *
1004  * FIXME? Should we call IP rts_request directly? Could punt on returning
1005  * errno in the case when it defers processing due to
1006  * IPIF_CHANGING/ILL_CHANGING???
1007  */
1008 static void
1009 rts_wput(queue_t *q, mblk_t *mp)
1010 {
1011 	uchar_t	*rptr = mp->b_rptr;
1012 	mblk_t	*mp1;
1013 	conn_t	*connp = Q_TO_CONN(q);
1014 	rts_t	*rts = connp->conn_rts;
1015 
1016 	switch (mp->b_datap->db_type) {
1017 	case M_DATA:
1018 		break;
1019 	case M_PROTO:
1020 	case M_PCPROTO:
1021 		if ((mp->b_wptr - rptr) == sizeof (struct T_data_req)) {
1022 			/* Expedite valid T_DATA_REQ to below the switch */
1023 			if (((union T_primitives *)rptr)->type == T_DATA_REQ) {
1024 				mp1 = mp->b_cont;
1025 				freeb(mp);
1026 				if (mp1 == NULL)
1027 					return;
1028 				mp = mp1;
1029 				break;
1030 			}
1031 		}
1032 		/* FALLTHRU */
1033 	default:
1034 		rts_wput_other(q, mp);
1035 		return;
1036 	}
1037 
1038 
1039 	mp1 = rts_ioctl_alloc(mp, DB_CRED(mp));
1040 	if (mp1 == NULL) {
1041 		ASSERT(rts != NULL);
1042 		freemsg(mp);
1043 		if (rts->rts_flag & RTS_WPUT_PENDING) {
1044 			rts->rts_error = ENOMEM;
1045 			rts->rts_flag &= ~RTS_WPUT_PENDING;
1046 		}
1047 		return;
1048 	}
1049 	ip_output(connp, mp1, q, IP_WPUT);
1050 }
1051 
1052 
1053 /*
1054  * Handles all the control message, if it
1055  * can not understand it, it will
1056  * pass down stream.
1057  */
1058 static void
1059 rts_wput_other(queue_t *q, mblk_t *mp)
1060 {
1061 	conn_t	*connp = Q_TO_CONN(q);
1062 	rts_t	*rts = connp->conn_rts;
1063 	uchar_t	*rptr = mp->b_rptr;
1064 	struct iocblk	*iocp;
1065 	cred_t	*cr;
1066 	rts_stack_t	*rtss;
1067 
1068 	rtss = rts->rts_rtss;
1069 
1070 	cr = DB_CREDDEF(mp, connp->conn_cred);
1071 
1072 	switch (mp->b_datap->db_type) {
1073 	case M_PROTO:
1074 	case M_PCPROTO:
1075 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) {
1076 			/*
1077 			 * If the message does not contain a PRIM_type,
1078 			 * throw it away.
1079 			 */
1080 			freemsg(mp);
1081 			return;
1082 		}
1083 		switch (((union T_primitives *)rptr)->type) {
1084 		case T_BIND_REQ:
1085 		case O_T_BIND_REQ:
1086 			rts_tpi_bind(q, mp);
1087 			return;
1088 		case T_UNBIND_REQ:
1089 			rts_tpi_unbind(q, mp);
1090 			return;
1091 		case T_CAPABILITY_REQ:
1092 			rts_capability_req(q, mp);
1093 			return;
1094 		case T_INFO_REQ:
1095 			rts_info_req(q, mp);
1096 			return;
1097 		case T_SVR4_OPTMGMT_REQ:
1098 			(void) svr4_optcom_req(q, mp, cr, &rts_opt_obj,
1099 			    B_TRUE);
1100 			return;
1101 		case T_OPTMGMT_REQ:
1102 			(void) tpi_optcom_req(q, mp, cr, &rts_opt_obj, B_TRUE);
1103 			return;
1104 		case O_T_CONN_RES:
1105 		case T_CONN_RES:
1106 		case T_DISCON_REQ:
1107 			/* Not supported by rts. */
1108 			rts_err_ack(q, mp, TNOTSUPPORT, 0);
1109 			return;
1110 		case T_DATA_REQ:
1111 		case T_EXDATA_REQ:
1112 		case T_ORDREL_REQ:
1113 			/* Illegal for rts. */
1114 			freemsg(mp);
1115 			(void) putnextctl1(RD(q), M_ERROR, EPROTO);
1116 			return;
1117 
1118 		default:
1119 			break;
1120 		}
1121 		break;
1122 	case M_IOCTL:
1123 		iocp = (struct iocblk *)mp->b_rptr;
1124 		switch (iocp->ioc_cmd) {
1125 		case ND_SET:
1126 		case ND_GET:
1127 			if (nd_getset(q, rtss->rtss_g_nd, mp)) {
1128 				qreply(q, mp);
1129 				return;
1130 			}
1131 			break;
1132 		case TI_GETPEERNAME:
1133 			mi_copyin(q, mp, NULL,
1134 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
1135 			return;
1136 		default:
1137 			break;
1138 		}
1139 	case M_IOCDATA:
1140 		rts_wput_iocdata(q, mp);
1141 		return;
1142 	default:
1143 		break;
1144 	}
1145 	ip_output(connp, mp, q, IP_WPUT);
1146 }
1147 
1148 /*
1149  * Called by rts_wput_other to handle all M_IOCDATA messages.
1150  */
1151 static void
1152 rts_wput_iocdata(queue_t *q, mblk_t *mp)
1153 {
1154 	conn_t *connp = Q_TO_CONN(q);
1155 	struct sockaddr	*rtsaddr;
1156 	mblk_t	*mp1;
1157 	STRUCT_HANDLE(strbuf, sb);
1158 	struct iocblk	*iocp	= (struct iocblk *)mp->b_rptr;
1159 
1160 	/* Make sure it is one of ours. */
1161 	switch (iocp->ioc_cmd) {
1162 	case TI_GETPEERNAME:
1163 		break;
1164 	default:
1165 		ip_output(connp, mp, q, IP_WPUT);
1166 		return;
1167 	}
1168 	switch (mi_copy_state(q, mp, &mp1)) {
1169 	case -1:
1170 		return;
1171 	case MI_COPY_CASE(MI_COPY_IN, 1):
1172 		break;
1173 	case MI_COPY_CASE(MI_COPY_OUT, 1):
1174 		/* Copy out the strbuf. */
1175 		mi_copyout(q, mp);
1176 		return;
1177 	case MI_COPY_CASE(MI_COPY_OUT, 2):
1178 		/* All done. */
1179 		mi_copy_done(q, mp, 0);
1180 		return;
1181 	default:
1182 		mi_copy_done(q, mp, EPROTO);
1183 		return;
1184 	}
1185 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
1186 	if (STRUCT_FGET(sb, maxlen) < (int)sizeof (sin_t)) {
1187 		mi_copy_done(q, mp, EINVAL);
1188 		return;
1189 	}
1190 	switch (iocp->ioc_cmd) {
1191 	case TI_GETPEERNAME:
1192 		break;
1193 	default:
1194 		mi_copy_done(q, mp, EPROTO);
1195 		return;
1196 	}
1197 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), sizeof (sin_t),
1198 	    B_TRUE);
1199 	if (mp1 == NULL)
1200 		return;
1201 	STRUCT_FSET(sb, len, (int)sizeof (sin_t));
1202 	rtsaddr = (struct sockaddr *)mp1->b_rptr;
1203 	mp1->b_wptr = (uchar_t *)&rtsaddr[1];
1204 	bzero(rtsaddr, sizeof (struct sockaddr));
1205 	rtsaddr->sa_family = AF_ROUTE;
1206 	/* Copy out the address */
1207 	mi_copyout(q, mp);
1208 }
1209 
1210 /*ARGSUSED2*/
1211 static void
1212 rts_input(void *arg1, mblk_t *mp, void *arg2)
1213 {
1214 	conn_t *connp = (conn_t *)arg1;
1215 	rts_t	*rts = connp->conn_rts;
1216 	struct iocblk	*iocp;
1217 	mblk_t *mp1;
1218 	struct T_data_ind *tdi;
1219 	int	error;
1220 
1221 	switch (mp->b_datap->db_type) {
1222 	case M_IOCACK:
1223 	case M_IOCNAK:
1224 		iocp = (struct iocblk *)mp->b_rptr;
1225 		if (IPCL_IS_NONSTR(connp)) {
1226 			ASSERT(rts->rts_flag & (RTS_REQ_PENDING));
1227 			mutex_enter(&rts->rts_send_mutex);
1228 			rts->rts_flag &= ~RTS_REQ_INPROG;
1229 			rts->rts_error = iocp->ioc_error;
1230 			cv_signal(&rts->rts_io_cv);
1231 			mutex_exit(&rts->rts_send_mutex);
1232 			freemsg(mp);
1233 			return;
1234 		} else {
1235 			if (rts->rts_flag & (RTS_WPUT_PENDING)) {
1236 				rts->rts_flag &= ~RTS_WPUT_PENDING;
1237 				rts->rts_error = iocp->ioc_error;
1238 				/*
1239 				 * Tell rts_wvw/qwait that we are done.
1240 				 * Note: there is no qwait_wakeup() we can use.
1241 				 */
1242 				qenable(connp->conn_rq);
1243 				freemsg(mp);
1244 				return;
1245 			}
1246 		}
1247 		break;
1248 	case M_DATA:
1249 		/*
1250 		 * Prepend T_DATA_IND to prevent the stream head from
1251 		 * consolidating multiple messages together.
1252 		 * If the allocation fails just send up the M_DATA.
1253 		 */
1254 		mp1 = allocb(sizeof (*tdi), BPRI_MED);
1255 		if (mp1 != NULL) {
1256 			mp1->b_cont = mp;
1257 			mp = mp1;
1258 
1259 			mp->b_datap->db_type = M_PROTO;
1260 			mp->b_wptr += sizeof (*tdi);
1261 			tdi = (struct T_data_ind *)mp->b_rptr;
1262 			tdi->PRIM_type = T_DATA_IND;
1263 			tdi->MORE_flag = 0;
1264 		}
1265 		break;
1266 	default:
1267 		break;
1268 	}
1269 
1270 	if (IPCL_IS_NONSTR(connp)) {
1271 		if ((*connp->conn_upcalls->su_recv)
1272 		    (connp->conn_upper_handle, mp, msgdsize(mp), 0,
1273 		    &error, NULL) < 0) {
1274 			ASSERT(error == ENOSPC);
1275 			/*
1276 			 * Let's confirm hoding the lock that
1277 			 * we are out of recv space.
1278 			 */
1279 			mutex_enter(&rts->rts_recv_mutex);
1280 			if ((*connp->conn_upcalls->su_recv)
1281 			    (connp->conn_upper_handle, NULL, 0, 0,
1282 			    &error, NULL) < 0) {
1283 				ASSERT(error == ENOSPC);
1284 				connp->conn_flow_cntrld = B_TRUE;
1285 			}
1286 			mutex_exit(&rts->rts_recv_mutex);
1287 		}
1288 	} else {
1289 		putnext(connp->conn_rq, mp);
1290 	}
1291 }
1292 
1293 
1294 void
1295 rts_ddi_g_init(void)
1296 {
1297 	rts_max_optsize = optcom_max_optsize(rts_opt_obj.odb_opt_des_arr,
1298 	    rts_opt_obj.odb_opt_arr_cnt);
1299 
1300 	/*
1301 	 * We want to be informed each time a stack is created or
1302 	 * destroyed in the kernel, so we can maintain the
1303 	 * set of rts_stack_t's.
1304 	 */
1305 	netstack_register(NS_RTS, rts_stack_init, NULL, rts_stack_fini);
1306 }
1307 
1308 void
1309 rts_ddi_g_destroy(void)
1310 {
1311 	netstack_unregister(NS_RTS);
1312 }
1313 
1314 #define	INET_NAME	"ip"
1315 
1316 /*
1317  * Initialize the RTS stack instance.
1318  */
1319 /* ARGSUSED */
1320 static void *
1321 rts_stack_init(netstackid_t stackid, netstack_t *ns)
1322 {
1323 	rts_stack_t	*rtss;
1324 	rtsparam_t	*pa;
1325 	int		error = 0;
1326 	major_t		major;
1327 
1328 	rtss = (rts_stack_t *)kmem_zalloc(sizeof (*rtss), KM_SLEEP);
1329 	rtss->rtss_netstack = ns;
1330 
1331 	pa = (rtsparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
1332 	rtss->rtss_params = pa;
1333 	bcopy(lcl_param_arr, rtss->rtss_params, sizeof (lcl_param_arr));
1334 
1335 	(void) rts_param_register(&rtss->rtss_g_nd,
1336 	    rtss->rtss_params, A_CNT(lcl_param_arr));
1337 
1338 	major = mod_name_to_major(INET_NAME);
1339 	error = ldi_ident_from_major(major, &rtss->rtss_ldi_ident);
1340 	ASSERT(error == 0);
1341 	return (rtss);
1342 }
1343 
1344 /*
1345  * Free the RTS stack instance.
1346  */
1347 /* ARGSUSED */
1348 static void
1349 rts_stack_fini(netstackid_t stackid, void *arg)
1350 {
1351 	rts_stack_t *rtss = (rts_stack_t *)arg;
1352 
1353 	nd_free(&rtss->rtss_g_nd);
1354 	kmem_free(rtss->rtss_params, sizeof (lcl_param_arr));
1355 	rtss->rtss_params = NULL;
1356 	ldi_ident_release(rtss->rtss_ldi_ident);
1357 	kmem_free(rtss, sizeof (*rtss));
1358 }
1359 
1360 /* ARGSUSED */
1361 int
1362 rts_accept(sock_lower_handle_t lproto_handle,
1363     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
1364     cred_t *cr)
1365 {
1366 	return (EINVAL);
1367 }
1368 
1369 /* ARGSUSED */
1370 static int
1371 rts_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
1372     socklen_t len, cred_t *cr)
1373 {
1374 	/*
1375 	 * rebind not allowed
1376 	 */
1377 	return (EINVAL);
1378 }
1379 
1380 /* ARGSUSED */
1381 int
1382 rts_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
1383 {
1384 	return (EINVAL);
1385 }
1386 
1387 /* ARGSUSED */
1388 int
1389 rts_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
1390     socklen_t len, sock_connid_t *id, cred_t *cr)
1391 {
1392 	/*
1393 	 * rts sockets start out as bound and connected
1394 	 */
1395 	*id = 0;
1396 	return (EISCONN);
1397 }
1398 
1399 /* ARGSUSED */
1400 int
1401 rts_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
1402     socklen_t *addrlen, cred_t *cr)
1403 {
1404 	conn_t *connp = (conn_t *)proto_handle;
1405 	rts_t *rts = connp->conn_rts;
1406 
1407 	ASSERT(rts != NULL);
1408 
1409 	bzero(addr, sizeof (struct sockaddr));
1410 	addr->sa_family = AF_ROUTE;
1411 	*addrlen = sizeof (struct sockaddr);
1412 
1413 	return (0);
1414 }
1415 
1416 /* ARGSUSED */
1417 int
1418 rts_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
1419     socklen_t *addrlen, cred_t *cr)
1420 {
1421 	return (EOPNOTSUPP);
1422 }
1423 
1424 static int
1425 rts_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
1426     void *optvalp, socklen_t *optlen, cred_t *cr)
1427 {
1428 	conn_t  	*connp = (conn_t *)proto_handle;
1429 	rts_t		*rts = connp->conn_rts;
1430 	int		error;
1431 	t_uscalar_t	max_optbuf_len;
1432 	void		*optvalp_buf;
1433 	int		len;
1434 
1435 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
1436 	    rts_opt_obj.odb_opt_des_arr,
1437 	    rts_opt_obj.odb_opt_arr_cnt,
1438 	    rts_opt_obj.odb_topmost_tpiprovider,
1439 	    B_FALSE, B_TRUE, cr);
1440 	if (error != 0) {
1441 		if (error < 0)
1442 			error = proto_tlitosyserr(-error);
1443 		return (error);
1444 	}
1445 
1446 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
1447 	rw_enter(&rts->rts_rwlock, RW_READER);
1448 	len = rts_opt_get(connp, level, option_name, optvalp_buf);
1449 	rw_exit(&rts->rts_rwlock);
1450 
1451 	if (len < 0) {
1452 		/*
1453 		 * Pass on to IP
1454 		 */
1455 		error = ip_get_options(connp, level, option_name,
1456 		    optvalp, optlen, cr);
1457 	} else {
1458 		/*
1459 		 * update optlen and copy option value
1460 		 */
1461 		t_uscalar_t size = MIN(len, *optlen);
1462 		bcopy(optvalp_buf, optvalp, size);
1463 		bcopy(&size, optlen, sizeof (size));
1464 		error = 0;
1465 	}
1466 
1467 	kmem_free(optvalp_buf, max_optbuf_len);
1468 	return (error);
1469 }
1470 
1471 static int
1472 rts_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
1473     const void *optvalp, socklen_t optlen, cred_t *cr)
1474 {
1475 	conn_t	*connp = (conn_t *)proto_handle;
1476 	rts_t	*rts = connp->conn_rts;
1477 	int	error;
1478 
1479 	error = proto_opt_check(level, option_name, optlen, NULL,
1480 	    rts_opt_obj.odb_opt_des_arr,
1481 	    rts_opt_obj.odb_opt_arr_cnt,
1482 	    rts_opt_obj.odb_topmost_tpiprovider,
1483 	    B_TRUE, B_FALSE, cr);
1484 
1485 	if (error != 0) {
1486 		if (error < 0)
1487 			error = proto_tlitosyserr(-error);
1488 		return (error);
1489 	}
1490 
1491 	rw_enter(&rts->rts_rwlock, RW_WRITER);
1492 	error = rts_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
1493 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
1494 	    NULL, cr);
1495 	rw_exit(&rts->rts_rwlock);
1496 
1497 	ASSERT(error >= 0);
1498 
1499 	return (error);
1500 }
1501 
1502 /* ARGSUSED */
1503 static int
1504 rts_send(sock_lower_handle_t proto_handle, mblk_t *mp,
1505     struct nmsghdr *msg, cred_t *cr)
1506 {
1507 	mblk_t  *mp1;
1508 	conn_t  *connp = (conn_t *)proto_handle;
1509 	rts_t   *rts = connp->conn_rts;
1510 	rt_msghdr_t	*rtm;
1511 	int error;
1512 
1513 	ASSERT(DB_TYPE(mp) == M_DATA);
1514 	/*
1515 	 * The semantics of the routing socket is such that the rtm_pid
1516 	 * field is automatically filled in during requests with the
1517 	 * current process' pid.  We do this here (where we still have
1518 	 * user context) after checking we have at least a message the
1519 	 * size of a routing message header.
1520 	 */
1521 	if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) {
1522 		if (!pullupmsg(mp, sizeof (rt_msghdr_t))) {
1523 			rts->rts_error = EINVAL;
1524 			freemsg(mp);
1525 			return (rts->rts_error);
1526 		}
1527 	}
1528 	rtm = (rt_msghdr_t *)mp->b_rptr;
1529 	rtm->rtm_pid = curproc->p_pid;
1530 
1531 	mp1 = rts_ioctl_alloc(mp, DB_CRED(mp));
1532 	if (mp1 == NULL) {
1533 		ASSERT(rts != NULL);
1534 		freemsg(mp);
1535 		return (ENOMEM);
1536 	}
1537 
1538 	/*
1539 	 * Allow only one outstanding request(ioctl) at any given time
1540 	 */
1541 	mutex_enter(&rts->rts_send_mutex);
1542 	while (rts->rts_flag & RTS_REQ_PENDING) {
1543 		int ret;
1544 
1545 		ret = cv_wait_sig(&rts->rts_send_cv, &rts->rts_send_mutex);
1546 		if (ret <= 0) {
1547 			mutex_exit(&rts->rts_send_mutex);
1548 			freemsg(mp);
1549 			return (EINTR);
1550 		}
1551 	}
1552 
1553 	rts->rts_flag |= RTS_REQ_PENDING;
1554 
1555 	rts->rts_flag |= RTS_REQ_INPROG;
1556 
1557 	mutex_exit(&rts->rts_send_mutex);
1558 
1559 	CONN_INC_REF(connp);
1560 
1561 	error = ip_rts_request_common(rts->rts_connp->conn_wq, mp1, connp,
1562 	    DB_CREDDEF(mp, connp->conn_cred));
1563 
1564 	mutex_enter(&rts->rts_send_mutex);
1565 	if (error == EINPROGRESS) {
1566 		ASSERT(rts->rts_flag & RTS_REQ_INPROG);
1567 		if (rts->rts_flag & RTS_REQ_INPROG) {
1568 			/*
1569 			 * Once the request has been issued we wait for
1570 			 * completion
1571 			 */
1572 			cv_wait(&rts->rts_io_cv, &rts->rts_send_mutex);
1573 			error = rts->rts_error;
1574 		}
1575 	}
1576 
1577 	ASSERT((error != 0) || !(rts->rts_flag & RTS_REQ_INPROG));
1578 	ASSERT(MUTEX_HELD(&rts->rts_send_mutex));
1579 
1580 	rts->rts_flag &= ~(RTS_REQ_PENDING | RTS_REQ_INPROG);
1581 	cv_signal(&rts->rts_send_cv);
1582 	mutex_exit(&rts->rts_send_mutex);
1583 	return (error);
1584 }
1585 
1586 /* ARGSUSED */
1587 sock_lower_handle_t
1588 rts_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
1589     uint_t *smodep, int *errorp, int flags, cred_t *credp)
1590 {
1591 	conn_t	*connp;
1592 	rts_t	*rts;
1593 	rts_stack_t *rtss;
1594 
1595 	if (family != AF_ROUTE || type != SOCK_RAW ||
1596 	    (proto != 0 && proto != AF_INET && proto != AF_INET6)) {
1597 		*errorp = EPROTONOSUPPORT;
1598 		return (NULL);
1599 	}
1600 
1601 	connp = rts_open(flags, credp);
1602 	ASSERT(connp != NULL);
1603 	connp->conn_flags |= IPCL_NONSTR;
1604 
1605 	rts = connp->conn_rts;
1606 	rtss = rts->rts_rtss;
1607 
1608 	rts->rts_xmit_hiwat = rtss->rtss_xmit_hiwat;
1609 	rts->rts_xmit_lowat = rtss->rtss_xmit_lowat;
1610 	rts->rts_recv_hiwat = rtss->rtss_recv_hiwat;
1611 	rts->rts_recv_lowat = rts_mod_info.mi_lowat;
1612 
1613 	ASSERT(rtss->rtss_ldi_ident != NULL);
1614 
1615 	*errorp = ip_create_helper_stream(connp, rtss->rtss_ldi_ident);
1616 	if (*errorp != 0) {
1617 #ifdef DEBUG
1618 		cmn_err(CE_CONT, "rts_create: create of IP helper stream"
1619 		    " failed\n");
1620 #endif
1621 		(void) rts_close((sock_lower_handle_t)connp, 0, credp);
1622 		return (NULL);
1623 	}
1624 
1625 	mutex_enter(&connp->conn_lock);
1626 	connp->conn_state_flags &= ~CONN_INCIPIENT;
1627 	mutex_exit(&connp->conn_lock);
1628 
1629 	*errorp = 0;
1630 	*smodep = SM_ATOMIC;
1631 	*sock_downcalls = &sock_rts_downcalls;
1632 	return ((sock_lower_handle_t)connp);
1633 }
1634 
1635 /* ARGSUSED */
1636 void
1637 rts_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
1638     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
1639 {
1640 	conn_t  *connp = (conn_t *)proto_handle;
1641 	rts_t	*rts = connp->conn_rts;
1642 	rts_stack_t *rtss = rts->rts_rtss;
1643 	struct sock_proto_props sopp;
1644 
1645 	connp->conn_upcalls = sock_upcalls;
1646 	connp->conn_upper_handle = sock_handle;
1647 
1648 	sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
1649 	    SOCKOPT_MAXBLK | SOCKOPT_MAXPSZ | SOCKOPT_MINPSZ;
1650 	sopp.sopp_wroff = 0;
1651 	sopp.sopp_rxhiwat = rtss->rtss_recv_hiwat;
1652 	sopp.sopp_rxlowat = rts_mod_info.mi_lowat;
1653 	sopp.sopp_maxblk = INFPSZ;
1654 	sopp.sopp_maxpsz = rts_mod_info.mi_maxpsz;
1655 	sopp.sopp_minpsz = (rts_mod_info.mi_minpsz == 1) ? 0 :
1656 	    rts_mod_info.mi_minpsz;
1657 
1658 	(*connp->conn_upcalls->su_set_proto_props)
1659 	    (connp->conn_upper_handle, &sopp);
1660 
1661 	/*
1662 	 * We treat it as already connected for routing socket.
1663 	 */
1664 	(*connp->conn_upcalls->su_connected)
1665 	    (connp->conn_upper_handle, 0, NULL, -1);
1666 
1667 	/*
1668 	 * Indicate the down IP module that this is a routing socket
1669 	 * client by sending an RTS IOCTL without any user data. Although
1670 	 * this is just a notification message (without any real routing
1671 	 * request), we pass in any credential for correctness sake.
1672 	 */
1673 	ip_rts_register(connp);
1674 }
1675 
1676 /* ARGSUSED */
1677 int
1678 rts_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
1679 {
1680 	conn_t  *connp = (conn_t *)proto_handle;
1681 
1682 	ASSERT(connp != NULL && IPCL_IS_RTS(connp));
1683 	return (rts_common_close(NULL, connp));
1684 }
1685 
1686 /* ARGSUSED */
1687 int
1688 rts_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
1689 {
1690 	conn_t  *connp = (conn_t *)proto_handle;
1691 
1692 	/* shut down the send side */
1693 	if (how != SHUT_RD)
1694 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
1695 		    SOCK_OPCTL_SHUT_SEND, 0);
1696 	/* shut down the recv side */
1697 	if (how != SHUT_WR)
1698 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
1699 		    SOCK_OPCTL_SHUT_RECV, 0);
1700 	return (0);
1701 }
1702 
1703 void
1704 rts_clr_flowctrl(sock_lower_handle_t proto_handle)
1705 {
1706 	conn_t  *connp = (conn_t *)proto_handle;
1707 	rts_t	*rts = connp->conn_rts;
1708 
1709 	mutex_enter(&rts->rts_recv_mutex);
1710 	connp->conn_flow_cntrld = B_FALSE;
1711 	mutex_exit(&rts->rts_recv_mutex);
1712 }
1713 
1714 int
1715 rts_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
1716     int mode, int32_t *rvalp, cred_t *cr)
1717 {
1718 	conn_t		*connp = (conn_t *)proto_handle;
1719 	int		error;
1720 
1721 	switch (cmd) {
1722 	case ND_SET:
1723 	case ND_GET:
1724 	case TI_GETPEERNAME:
1725 	case TI_GETMYNAME:
1726 #ifdef DEUG
1727 		cmn_err(CE_CONT, "rts_ioctl cmd 0x%x on non sreams"
1728 		    " socket", cmd);
1729 #endif
1730 		error = EINVAL;
1731 		break;
1732 	default:
1733 		/*
1734 		 * Pass on to IP using helper stream
1735 		 */
1736 		error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
1737 		    cmd, arg, mode, cr, rvalp);
1738 		break;
1739 	}
1740 
1741 	return (error);
1742 }
1743 
1744 sock_downcalls_t sock_rts_downcalls = {
1745 	rts_activate,
1746 	rts_accept,
1747 	rts_bind,
1748 	rts_listen,
1749 	rts_connect,
1750 	rts_getpeername,
1751 	rts_getsockname,
1752 	rts_getsockopt,
1753 	rts_setsockopt,
1754 	rts_send,
1755 	NULL,
1756 	NULL,
1757 	NULL,
1758 	rts_shutdown,
1759 	rts_clr_flowctrl,
1760 	rts_ioctl,
1761 	rts_close
1762 };
1763