xref: /illumos-gate/usr/src/uts/common/inet/ip/ipcsum.c (revision 9c72db81a69bf1ea2a220c7cfc40eb0ef089be8c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 1992,1997 by Sun Microsystems, Inc.
24  * All rights reserved.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/ddi.h>
31 #include <sys/isa_defs.h>
32 #include <inet/common.h>
33 
34 #define	FOLD_SUM(sum) \
35 { sum = (sum >> 16) + (sum & 0xFFFF); sum = (sum >> 16) + (sum & 0xFFFF); }
36 #define	U16AM(p, i, m)	((((uint16_t *)(p))[i]) & (uint32_t)(m))
37 
38 /*
39  * For maximum efficiency, these access macros should be redone for
40  * machines that can access unaligned data.  NOTE: these assume
41  * ability to fetch from a zero extended 'uint8_t' and 'uint16_t'.  Add explicit
42  * masks in the U8_FETCH, U16_FETCH, PREV_TWO and NEXT_TWO as needed.
43  */
44 
45 #ifdef	_LITTLE_ENDIAN
46 #define	U8_FETCH_FIRST(p)	((p)[0])
47 #define	U8_FETCH_SECOND(p)	(((uint32_t)(p)[0]) << 8)
48 #define	PREV_ONE(p)		U16AM(p, -1, 0xFF00)
49 #define	NEXT_ONE(p)		U16AM(p, 0, 0xFF)
50 #else
51 #define	U8_FETCH_FIRST(p)	((uint32_t)((p)[0]) << 8)
52 #define	U8_FETCH_SECOND(p)	((p)[0])
53 #define	PREV_ONE(p)		U16AM(p, -1, 0xFF)
54 #define	NEXT_ONE(p)		U16AM(p, 0, 0xFF00)
55 #endif
56 
57 #define	U16_FETCH(p)		U8_FETCH_FIRST(p) + U8_FETCH_SECOND(p+1)
58 #define	PREV_TWO(p)		((uint32_t)(((uint16_t *)(p))[-1]))
59 #define	NEXT_TWO(p)		((uint32_t)(((uint16_t *)(p))[0]))
60 
61 /*
62  * Return the ones complement checksum from the mblk chain at mp,
63  * after skipping offset bytes, and adding in the supplied partial
64  * sum.  Note that a final complement of the return value is needed
65  * if no further contributions to the checksum are forthcoming.
66  */
67 uint16_t
68 ip_csum(mp, offset, sum)
69 	mblk_t *mp;
70 	int	offset;
71 	uint32_t	sum;
72 {
73 	uint8_t	*startp = mp->b_rptr + offset;
74 	uint8_t	*endp = mp->b_wptr;
75 /* >= 0x2 means flipped for memory align, 0x1 means last count was odd */
76 	int	odd_total = 0;
77 
78 #ifdef	TEST_COVERAGE
79 	mblk_t *safe_mp;
80 #define	INIT_COVERAGE()	(safe_mp = mp, safe_mp->b_next = NULL)
81 #define	MARK_COVERAGE(flag) (safe_mp->b_next = \
82 	(mblk_t *)((uint32_t)safe_mp->b_next | flag))
83 #else
84 #define	INIT_COVERAGE()	/* */
85 #define	MARK_COVERAGE(flag)	/* */
86 #endif
87 
88 	for (;;) {
89 		INIT_COVERAGE();
90 		if ((endp - startp) < 10) {
91 			MARK_COVERAGE(0x1);
92 			while ((endp - startp) >= 2) {
93 				MARK_COVERAGE(0x2);
94 				sum += U16_FETCH(startp);
95 				startp += 2;
96 			}
97 			if ((endp - startp) >= 1) {
98 				MARK_COVERAGE(0x4);
99 				odd_total = 1;
100 				sum += U8_FETCH_FIRST(startp);
101 			}
102 			MARK_COVERAGE(0x8);
103 			FOLD_SUM(sum);
104 			goto next_frag;
105 		}
106 		if ((uint32_t)startp & 0x1) {
107 			MARK_COVERAGE(0x10);
108 			odd_total = 3;
109 			startp++;
110 			sum = (sum << 8) + PREV_ONE(startp);
111 		}
112 		if ((uint32_t)startp & 0x2) {
113 			MARK_COVERAGE(0x20);
114 			startp += 2;
115 			sum += PREV_TWO(startp);
116 		}
117 		if ((uint32_t)endp & 0x1) {
118 			MARK_COVERAGE(0x40);
119 			odd_total ^= 0x1;
120 			endp--;
121 			sum += NEXT_ONE(endp);
122 		}
123 		if ((uint32_t)endp & 0x2) {
124 			MARK_COVERAGE(0x80);
125 			endp -= 2;
126 			sum += NEXT_TWO(endp);
127 		}
128 
129 		{
130 #ifdef	NOT_ALL_PTRS_EQUAL
131 #define	INC_PTR(cnt)	ptr += cnt
132 #define	INC_ENDPTR(cnt)	endptr += cnt
133 			uint32_t	*ptr = (uint32_t *)startp;
134 			uint32_t	*endptr = (uint32_t *)endp;
135 #else
136 #define	INC_PTR(cnt)	startp += (cnt * sizeof (uint32_t))
137 #define	INC_ENDPTR(cnt)	endp += (cnt * sizeof (uint32_t))
138 #define	ptr		((uint32_t *)startp)
139 #define	endptr		((uint32_t *)endp)
140 #endif
141 
142 
143 #ifdef	USE_FETCH_AND_SHIFT
144 			uint32_t	u1, u2;
145 			uint32_t	mask = 0xFFFF;
146 #define	LOAD1(i)	u1 = ptr[i]
147 #define	LOAD2(i)	u2 = ptr[i]
148 #define	SUM1(i)		sum += (u1 & mask) + (u1 >> 16)
149 #define	SUM2(i)		sum += (u2 & mask) + (u2 >> 16)
150 #endif
151 
152 #ifdef	USE_FETCH_AND_ADDC
153 			uint32_t	u1, u2;
154 #define	LOAD1(i)	u1 = ptr[i]
155 #define	LOAD2(i)	u2 = ptr[i]
156 #define	SUM1(i)		sum += u1
157 #define	SUM2(i)		sum += u2
158 #endif
159 
160 #ifdef	USE_ADDC
161 #define	SUM1(i)		sum += ptr[i]
162 #endif
163 
164 #ifdef	USE_POSTINC
165 #define	SUM1(i)		sum += *((uint16_t *)ptr)++; sum += *((uint16_t *)ptr)++
166 #undef	INC_PTR
167 #define	INC_PTR(i)	/* */
168 #endif
169 
170 #ifndef	LOAD1
171 #define	LOAD1(i)	/* */
172 #endif
173 
174 #ifndef	LOAD2
175 #define	LOAD2(i)	/* */
176 #endif
177 
178 #ifndef	SUM2
179 #define	SUM2(i)		SUM1(i)
180 #endif
181 
182 /* USE_INDEXING is the default */
183 #ifndef	SUM1
184 #define	SUM1(i)
185 	sum += ((uint16_t *)ptr)[i * 2]; sum += ((uint16_t *)ptr)[(i * 2) + 1]
186 #endif
187 
188 		LOAD1(0);
189 		INC_ENDPTR(-8);
190 		if (ptr <= endptr) {
191 			MARK_COVERAGE(0x100);
192 			do {
193 				LOAD2(1); SUM1(0);
194 				LOAD1(2); SUM2(1);
195 				LOAD2(3); SUM1(2);
196 				LOAD1(4); SUM2(3);
197 				LOAD2(5); SUM1(4);
198 				LOAD1(6); SUM2(5);
199 				LOAD2(7); SUM1(6);
200 				LOAD1(8); SUM2(7);
201 				INC_PTR(8);
202 			} while (ptr <= endptr);
203 		}
204 #ifdef USE_TAIL_SWITCH
205 		switch ((endptr + 8) - ptr) {
206 		case 7:	LOAD2(6); SUM2(6);
207 		case 6:	LOAD2(5); SUM2(5);
208 		case 5:	LOAD2(4); SUM2(4);
209 		case 4:	LOAD2(3); SUM2(3);
210 		case 3:	LOAD2(2); SUM2(2);
211 		case 2:	LOAD2(1); SUM2(1);
212 		case 1:	SUM1(0);
213 		case 0:	break;
214 		}
215 #else
216 		INC_ENDPTR(4);
217 		if (ptr <= endptr) {
218 			MARK_COVERAGE(0x200);
219 			LOAD2(1); SUM1(0);
220 			LOAD1(2); SUM2(1);
221 			LOAD2(3); SUM1(2);
222 			LOAD1(4); SUM2(3);
223 			INC_PTR(4);
224 		}
225 		INC_ENDPTR(4);
226 		if (ptr < endptr) {
227 			MARK_COVERAGE(0x400);
228 			do {
229 				SUM1(0); LOAD1(1);
230 				INC_PTR(1);
231 			} while (ptr < endptr);
232 		}
233 #endif
234 		}
235 
236 		FOLD_SUM(sum);
237 		if (odd_total > 1) {
238 			MARK_COVERAGE(0x800);
239 			sum = ((sum << 8) | (sum >> 8)) & 0xFFFF;
240 			odd_total -= 2;
241 		}
242 next_frag:
243 		mp = mp->b_cont;
244 		if (!mp) {
245 			MARK_COVERAGE(0x1000);
246 			{
247 			uint32_t	u1 = sum;
248 			return ((uint16_t)u1);
249 			}
250 		}
251 		MARK_COVERAGE(0x4000);
252 		startp = mp->b_rptr;
253 		endp = mp->b_wptr;
254 		if (odd_total && (endp > startp)) {
255 			MARK_COVERAGE(0x8000);
256 			odd_total = 0;
257 			sum += U8_FETCH_SECOND(startp);
258 			startp++;
259 		}
260 	}
261 }
262 #undef	endptr
263 #undef	INIT_COVERAGE
264 #undef	INC_PTR
265 #undef	INC_ENDPTR
266 #undef	LOAD1
267 #undef	LOAD2
268 #undef	MARK_COVERAGE
269 #undef	ptr
270 #undef	SUM1
271 #undef	SUM2
272 
273 
274 
275 #undef	FOLD_SUM
276 #undef	NEXT_ONE
277 #undef	NEXT_TWO
278 #undef	PREV_ONE
279 #undef	PREV_TWO
280 #undef	U8_FETCH_FIRST
281 #undef	U8_FETCH_SECOND
282 #undef	U16AM
283 #undef	U16_FETCH
284