1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 30 /* 31 * This file contains routines that manipulate Internet Routing Entries (IREs). 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/ddi.h> 39 #include <sys/cmn_err.h> 40 #include <sys/policy.h> 41 42 #include <sys/systm.h> 43 #include <sys/kmem.h> 44 #include <sys/param.h> 45 #include <sys/socket.h> 46 #include <net/if.h> 47 #include <net/route.h> 48 #include <netinet/in.h> 49 #include <net/if_dl.h> 50 #include <netinet/ip6.h> 51 #include <netinet/icmp6.h> 52 53 #include <inet/common.h> 54 #include <inet/mi.h> 55 #include <inet/ip.h> 56 #include <inet/ip6.h> 57 #include <inet/ip_ndp.h> 58 #include <inet/arp.h> 59 #include <inet/ip_if.h> 60 #include <inet/ip_ire.h> 61 #include <inet/ip_ftable.h> 62 #include <inet/ip_rts.h> 63 #include <inet/nd.h> 64 65 #include <net/pfkeyv2.h> 66 #include <inet/ipsec_info.h> 67 #include <inet/sadb.h> 68 #include <sys/kmem.h> 69 #include <inet/tcp.h> 70 #include <inet/ipclassifier.h> 71 #include <sys/zone.h> 72 #include <sys/tsol/label.h> 73 #include <sys/tsol/tnet.h> 74 75 struct kmem_cache *rt_entry_cache; 76 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the respective tables (cache or forwarding tables). 86 * 87 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 89 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_ident, ire_refcnt 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_max_frag, ire_frag_flag 117 * 118 * - ire_lock is used to set/read both of them together. 119 * 120 * ire_tire_mark 121 * 122 * - Set in ire_create and updated in ire_expire, which is called 123 * by only one function namely ip_trash_timer_expire. Thus only 124 * one function updates and examines the value. 125 * 126 * ire_marks 127 * - bucket lock protects this. 128 * 129 * ire_ipsec_overhead/ire_ll_hdr_length 130 * 131 * - Place holder for returning the information to the upper layers 132 * when IRE_DB_REQ comes down. 133 * 134 * 135 * ipv6_ire_default_count is protected by the bucket lock of 136 * ip_forwarding_table_v6[0][0]. 137 * 138 * ipv6_ire_default_index is not protected as it is just a hint 139 * at which default gateway to use. There is nothing 140 * wrong in using the same gateway for two different connections. 141 * 142 * As we always hold the bucket locks in all the places while accessing 143 * the above values, it is natural to use them for protecting them. 144 * 145 * We have a separate cache table and forwarding table for IPv4 and IPv6. 146 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 147 * array of irb_t structure and forwarding table (ip_forwarding_table/ 148 * ip_forwarding_table_v6) is an array of pointers to array of irb_t 149 * structure. ip_forwarding_table[_v6] is allocated dynamically in 150 * ire_add_v4/v6. ire_ft_init_lock is used to serialize multiple threads 151 * initializing the same bucket. Once a bucket is initialized, it is never 152 * de-alloacted. This assumption enables us to access ip_forwarding_table[i] 153 * or ip_forwarding_table_v6[i] without any locks. 154 * 155 * Each irb_t - ire bucket structure has a lock to protect 156 * a bucket and the ires residing in the bucket have a back pointer to 157 * the bucket structure. It also has a reference count for the number 158 * of threads walking the bucket - irb_refcnt which is bumped up 159 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 160 * set to IRE_MARK_CONDEMNED indicating that there are some ires 161 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 162 * last thread to leave the bucket should delete the ires. Usually 163 * this is done by the IRB_REFRELE macro which is used to decrement 164 * the reference count on a bucket. 165 * 166 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 167 * decrements the reference count, ire_refcnt, atomically on the ire. 168 * ire_refcnt is modified only using this macro. Operations on the IRE 169 * could be described as follows : 170 * 171 * CREATE an ire with reference count initialized to 1. 172 * 173 * ADDITION of an ire holds the bucket lock, checks for duplicates 174 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 175 * bumping up once more i.e the reference count is 2. This is to avoid 176 * an extra lookup in the functions calling ire_add which wants to 177 * work with the ire after adding. 178 * 179 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 180 * macro. It is valid to bump up the referece count of the IRE, 181 * after the lookup has returned an ire. Following are the lookup 182 * functions that return an HELD ire : 183 * 184 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 185 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 186 * ipif_to_ire[_v6], ire_mrtun_lookup, ire_srcif_table_lookup. 187 * 188 * DELETION of an ire holds the bucket lock, removes it from the list 189 * and then decrements the reference count for having removed from the list 190 * by using the IRE_REFRELE macro. If some other thread has looked up 191 * the ire, the reference count would have been bumped up and hence 192 * this ire will not be freed once deleted. It will be freed once the 193 * reference count drops to zero. 194 * 195 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 196 * lookups acquire the bucket lock as RW_READER. 197 * 198 * NOTE : The only functions that does the IRE_REFRELE when an ire is 199 * passed as an argument are : 200 * 201 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 202 * broadcast ires it looks up internally within 203 * the function. Currently, for simplicity it does 204 * not differentiate the one that is passed in and 205 * the ones it looks up internally. It always 206 * IRE_REFRELEs. 207 * 2) ire_send 208 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 209 * that take ire as an argument, it has to selectively 210 * IRE_REFRELE the ire. To maintain symmetry, 211 * ire_send_v6 does the same. 212 * 213 * Otherwise, the general rule is to do the IRE_REFRELE in the function 214 * that is passing the ire as an argument. 215 * 216 * In trying to locate ires the following points are to be noted. 217 * 218 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 219 * to be ignored when walking the ires using ire_next. 220 * 221 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 222 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 223 * applications should not be seeing this ire and hence this ire is ignored 224 * in most cases in the search using ire_next. 225 * 226 * Zones note: 227 * Walking IREs within a given zone also walks certain ires in other 228 * zones. This is done intentionally. IRE walks with a specified 229 * zoneid are used only when doing informational reports, and 230 * zone users want to see things that they can access. See block 231 * comment in ire_walk_ill_match(). 232 */ 233 234 /* This is dynamically allocated in ip_ire_init */ 235 irb_t *ip_cache_table; 236 /* This is dynamically allocated in ire_add_mrtun */ 237 irb_t *ip_mrtun_table; 238 239 uint32_t ire_handle = 1; 240 /* 241 * ire_ft_init_lock is used while initializing ip_forwarding_table 242 * dynamically in ire_add. 243 */ 244 kmutex_t ire_ft_init_lock; 245 kmutex_t ire_mrtun_lock; /* Protects creation of table and it's count */ 246 kmutex_t ire_srcif_table_lock; /* Same as above */ 247 /* 248 * The following counts are used to determine whether a walk is 249 * needed through the reverse tunnel table or through ills 250 */ 251 kmutex_t ire_handle_lock; /* Protects ire_handle */ 252 uint_t ire_mrtun_count; /* Number of ires in reverse tun table */ 253 254 /* 255 * A per-interface routing table is created ( if not present) 256 * when the first entry is added to this special routing table. 257 * This special routing table is accessed through the ill data structure. 258 * The routing table looks like cache table. For example, currently it 259 * is used by mobile-ip foreign agent to forward data that only comes from 260 * the home agent tunnel for a mobile node. Thus if the outgoing interface 261 * is a RESOLVER interface, IP may need to resolve the hardware address for 262 * the outgoing interface. The routing entries in this table are not updated 263 * in IRE_CACHE. When MCTL msg comes back from ARP, the incoming ill informa- 264 * tion is lost as the write queue is passed to ip_wput. 265 * But, before sending the packet out, the hardware information must be updated 266 * in the special forwarding table. ire_srcif_table_count keeps track of total 267 * number of ires that are in interface based tables. Each interface based 268 * table hangs off of the incoming ill and each ill_t also keeps a refcnt 269 * of ires in that table. 270 */ 271 272 uint_t ire_srcif_table_count; /* Number of ires in all srcif tables */ 273 274 /* 275 * The minimum size of IRE cache table. It will be recalcuated in 276 * ip_ire_init(). 277 */ 278 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 279 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 280 281 /* 282 * The size of the forwarding table. We will make sure that it is a 283 * power of 2 in ip_ire_init(). 284 */ 285 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 286 287 struct kmem_cache *ire_cache; 288 static ire_t ire_null; 289 290 ire_stats_t ire_stats_v4; /* IPv4 ire statistics */ 291 ire_stats_t ire_stats_v6; /* IPv6 ire statistics */ 292 293 /* 294 * The threshold number of IRE in a bucket when the IREs are 295 * cleaned up. This threshold is calculated later in ip_open() 296 * based on the speed of CPU and available memory. This default 297 * value is the maximum. 298 * 299 * We have two kinds of cached IRE, temporary and 300 * non-temporary. Temporary IREs are marked with 301 * IRE_MARK_TEMPORARY. They are IREs created for non 302 * TCP traffic and for forwarding purposes. All others 303 * are non-temporary IREs. We don't mark IRE created for 304 * TCP as temporary because TCP is stateful and there are 305 * info stored in the IRE which can be shared by other TCP 306 * connections to the same destination. For connected 307 * endpoint, we also don't want to mark the IRE used as 308 * temporary because the same IRE will be used frequently, 309 * otherwise, the app should not do a connect(). We change 310 * the marking at ip_bind_connected_*() if necessary. 311 * 312 * We want to keep the cache IRE hash bucket length reasonably 313 * short, otherwise IRE lookup functions will take "forever." 314 * We use the "crude" function that the IRE bucket 315 * length should be based on the CPU speed, which is 1 entry 316 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 317 * (n). This means that with a 750MHz CPU, the max bucket 318 * length can be (750 >> n) entries. 319 * 320 * Note that this threshold is separate for temp and non-temp 321 * IREs. This means that the actual bucket length can be 322 * twice as that. And while we try to keep temporary IRE 323 * length at most at the threshold value, we do not attempt to 324 * make the length for non-temporary IREs fixed, for the 325 * reason stated above. Instead, we start trying to find 326 * "unused" non-temporary IREs when the bucket length reaches 327 * this threshold and clean them up. 328 * 329 * We also want to limit the amount of memory used by 330 * IREs. So if we are allowed to use ~3% of memory (M) 331 * for those IREs, each bucket should not have more than 332 * 333 * M / num of cache bucket / sizeof (ire_t) 334 * 335 * Again the above memory uses are separate for temp and 336 * non-temp cached IREs. 337 * 338 * We may also want the limit to be a function of the number 339 * of interfaces and number of CPUs. Doing the initialization 340 * in ip_open() means that every time an interface is plumbed, 341 * the max is re-calculated. Right now, we don't do anything 342 * different. In future, when we have more experience, we 343 * may want to change this behavior. 344 */ 345 uint32_t ip_ire_max_bucket_cnt = 10; 346 uint32_t ip6_ire_max_bucket_cnt = 10; 347 348 /* 349 * The minimum of the temporary IRE bucket count. We do not want 350 * the length of each bucket to be too short. This may hurt 351 * performance of some apps as the temporary IREs are removed too 352 * often. 353 */ 354 uint32_t ip_ire_min_bucket_cnt = 3; 355 uint32_t ip6_ire_min_bucket_cnt = 3; 356 357 /* 358 * The ratio of memory consumed by IRE used for temporary to available 359 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 360 * value can be changed in /etc/system. 6 is a reasonable number. 361 */ 362 uint32_t ip_ire_mem_ratio = 6; 363 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 364 uint32_t ip_ire_cpu_ratio = 7; 365 366 typedef struct nce_clookup_s { 367 ipaddr_t ncecl_addr; 368 boolean_t ncecl_found; 369 } nce_clookup_t; 370 371 /* 372 * The maximum number of buckets in IRE cache table. In future, we may 373 * want to make it a dynamic hash table. For the moment, we fix the 374 * size and allocate the table in ip_ire_init() when IP is first loaded. 375 * We take into account the amount of memory a system has. 376 */ 377 #define IP_MAX_CACHE_TABLE_SIZE 4096 378 379 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 380 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 381 382 #define NUM_ILLS 3 /* To build the ILL list to unlock */ 383 384 /* Zero iulp_t for initialization. */ 385 const iulp_t ire_uinfo_null = { 0 }; 386 387 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 388 ipsq_func_t func, boolean_t); 389 static int ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 390 ipsq_func_t func); 391 static ire_t *ire_update_srcif_v4(ire_t *ire); 392 static void ire_delete_v4(ire_t *ire); 393 static void ire_report_ctable(ire_t *ire, char *mp); 394 static void ire_report_mrtun_table(ire_t *ire, char *mp); 395 static void ire_report_srcif_table(ire_t *ire, char *mp); 396 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 397 zoneid_t zoneid); 398 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 399 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 400 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt); 401 extern void ill_unlock_ills(ill_t **list, int cnt); 402 static void ire_fastpath_list_add(ill_t *ill, ire_t *ire); 403 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 404 extern void th_trace_rrecord(th_trace_t *); 405 #ifdef IRE_DEBUG 406 static void ire_trace_inactive(ire_t *); 407 #endif 408 409 /* 410 * To avoid bloating the code, we call this function instead of 411 * using the macro IRE_REFRELE. Use macro only in performance 412 * critical paths. 413 * 414 * Must not be called while holding any locks. Otherwise if this is 415 * the last reference to be released there is a chance of recursive mutex 416 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 417 * to restart an ioctl. The one exception is when the caller is sure that 418 * this is not the last reference to be released. Eg. if the caller is 419 * sure that the ire has not been deleted and won't be deleted. 420 */ 421 void 422 ire_refrele(ire_t *ire) 423 { 424 IRE_REFRELE(ire); 425 } 426 427 void 428 ire_refrele_notr(ire_t *ire) 429 { 430 IRE_REFRELE_NOTR(ire); 431 } 432 433 /* 434 * kmem_cache_alloc constructor for IRE in kma space. 435 * Note that when ire_mp is set the IRE is stored in that mblk and 436 * not in this cache. 437 */ 438 /* ARGSUSED */ 439 static int 440 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 441 { 442 ire_t *ire = buf; 443 444 ire->ire_nce = NULL; 445 446 return (0); 447 } 448 449 /* ARGSUSED1 */ 450 static void 451 ip_ire_destructor(void *buf, void *cdrarg) 452 { 453 ire_t *ire = buf; 454 455 ASSERT(ire->ire_nce == NULL); 456 } 457 458 /* 459 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 460 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 461 * for an existing CACHED IRE. 462 */ 463 /* ARGSUSED */ 464 int 465 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 466 { 467 uchar_t *addr_ucp; 468 ipic_t *ipic; 469 ire_t *ire; 470 ipaddr_t addr; 471 in6_addr_t v6addr; 472 irb_t *irb; 473 zoneid_t zoneid; 474 475 ASSERT(q->q_next == NULL); 476 zoneid = Q_TO_CONN(q)->conn_zoneid; 477 478 /* 479 * Check privilege using the ioctl credential; if it is NULL 480 * then this is a kernel message and therefor privileged. 481 */ 482 if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) 483 return (EPERM); 484 485 ipic = (ipic_t *)mp->b_rptr; 486 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 487 ipic->ipic_addr_length))) { 488 return (EINVAL); 489 } 490 if (!OK_32PTR(addr_ucp)) 491 return (EINVAL); 492 switch (ipic->ipic_addr_length) { 493 case IP_ADDR_LEN: { 494 /* Extract the destination address. */ 495 addr = *(ipaddr_t *)addr_ucp; 496 /* Find the corresponding IRE. */ 497 ire = ire_cache_lookup(addr, zoneid, NULL); 498 break; 499 } 500 case IPV6_ADDR_LEN: { 501 /* Extract the destination address. */ 502 v6addr = *(in6_addr_t *)addr_ucp; 503 /* Find the corresponding IRE. */ 504 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL); 505 break; 506 } 507 default: 508 return (EINVAL); 509 } 510 511 if (ire == NULL) 512 return (ENOENT); 513 /* 514 * Update the round trip time estimate and/or the max frag size 515 * and/or the slow start threshold. 516 * 517 * We serialize multiple advises using ire_lock. 518 */ 519 mutex_enter(&ire->ire_lock); 520 if (ipic->ipic_rtt) { 521 /* 522 * If there is no old cached values, initialize them 523 * conservatively. Set them to be (1.5 * new value). 524 */ 525 if (ire->ire_uinfo.iulp_rtt != 0) { 526 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 527 ipic->ipic_rtt) >> 1; 528 } else { 529 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 530 (ipic->ipic_rtt >> 1); 531 } 532 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 533 ire->ire_uinfo.iulp_rtt_sd = 534 (ire->ire_uinfo.iulp_rtt_sd + 535 ipic->ipic_rtt_sd) >> 1; 536 } else { 537 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 538 (ipic->ipic_rtt_sd >> 1); 539 } 540 } 541 if (ipic->ipic_max_frag) 542 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 543 if (ipic->ipic_ssthresh != 0) { 544 if (ire->ire_uinfo.iulp_ssthresh != 0) 545 ire->ire_uinfo.iulp_ssthresh = 546 (ipic->ipic_ssthresh + 547 ire->ire_uinfo.iulp_ssthresh) >> 1; 548 else 549 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 550 } 551 /* 552 * Don't need the ire_lock below this. ire_type does not change 553 * after initialization. ire_marks is protected by irb_lock. 554 */ 555 mutex_exit(&ire->ire_lock); 556 557 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 558 /* 559 * Only increment the temporary IRE count if the original 560 * IRE is not already marked temporary. 561 */ 562 irb = ire->ire_bucket; 563 rw_enter(&irb->irb_lock, RW_WRITER); 564 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 565 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 566 irb->irb_tmp_ire_cnt++; 567 } 568 ire->ire_marks |= ipic->ipic_ire_marks; 569 rw_exit(&irb->irb_lock); 570 } 571 572 ire_refrele(ire); 573 return (0); 574 } 575 576 /* 577 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 578 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 579 * for a host that is not responding. This will force an attempt to 580 * establish a new route, if available, and flush out the ARP entry so 581 * it will re-resolve. Management processes may want to use the 582 * version that generates a reply. 583 * 584 * This function does not support IPv6 since Neighbor Unreachability Detection 585 * means that negative advise like this is useless. 586 */ 587 /* ARGSUSED */ 588 int 589 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 590 { 591 uchar_t *addr_ucp; 592 ipaddr_t addr; 593 ire_t *ire; 594 ipid_t *ipid; 595 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 596 zoneid_t zoneid; 597 ire_t *gire = NULL; 598 ill_t *ill; 599 mblk_t *arp_mp; 600 601 ASSERT(q->q_next == NULL); 602 zoneid = Q_TO_CONN(q)->conn_zoneid; 603 604 /* 605 * Check privilege using the ioctl credential; if it is NULL 606 * then this is a kernel message and therefor privileged. 607 */ 608 if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) 609 return (EPERM); 610 611 ipid = (ipid_t *)mp->b_rptr; 612 613 /* Only actions on IRE_CACHEs are acceptable at present. */ 614 if (ipid->ipid_ire_type != IRE_CACHE) 615 return (EINVAL); 616 617 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 618 ipid->ipid_addr_length); 619 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 620 return (EINVAL); 621 switch (ipid->ipid_addr_length) { 622 case IP_ADDR_LEN: 623 /* addr_ucp points at IP addr */ 624 break; 625 case sizeof (sin_t): { 626 sin_t *sin; 627 /* 628 * got complete (sockaddr) address - increment addr_ucp to point 629 * at the ip_addr field. 630 */ 631 sin = (sin_t *)addr_ucp; 632 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 633 break; 634 } 635 default: 636 return (EINVAL); 637 } 638 /* Extract the destination address. */ 639 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 640 641 /* Try to find the CACHED IRE. */ 642 ire = ire_cache_lookup(addr, zoneid, NULL); 643 644 /* Nail it. */ 645 if (ire) { 646 /* Allow delete only on CACHE entries */ 647 if (ire->ire_type != IRE_CACHE) { 648 ire_refrele(ire); 649 return (EINVAL); 650 } 651 652 /* 653 * Verify that the IRE has been around for a while. 654 * This is to protect against transport protocols 655 * that are too eager in sending delete messages. 656 */ 657 if (gethrestime_sec() < 658 ire->ire_create_time + ip_ignore_delete_time) { 659 ire_refrele(ire); 660 return (EINVAL); 661 } 662 /* 663 * Now we have a potentially dead cache entry. We need 664 * to remove it. 665 * If this cache entry is generated from a 666 * default route (i.e., ire_cmask == 0), 667 * search the default list and mark it dead and some 668 * background process will try to activate it. 669 */ 670 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 671 /* 672 * Make sure that we pick a different 673 * IRE_DEFAULT next time. 674 */ 675 ire_t *gw_ire; 676 irb_t *irb = NULL; 677 uint_t match_flags; 678 679 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 680 681 gire = ire_ftable_lookup(ire->ire_addr, 682 ire->ire_cmask, 0, 0, 683 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags); 684 685 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 686 (void *)gire)); 687 688 if (gire != NULL) { 689 irb = gire->ire_bucket; 690 691 /* 692 * We grab it as writer just to serialize 693 * multiple threads trying to bump up 694 * irb_rr_origin 695 */ 696 rw_enter(&irb->irb_lock, RW_WRITER); 697 if ((gw_ire = irb->irb_rr_origin) == NULL) { 698 rw_exit(&irb->irb_lock); 699 goto done; 700 } 701 702 DTRACE_PROBE1(ip__ire__del__origin, 703 (ire_t *), gw_ire); 704 705 /* Skip past the potentially bad gateway */ 706 if (ire->ire_gateway_addr == 707 gw_ire->ire_gateway_addr) { 708 ire_t *next = gw_ire->ire_next; 709 710 DTRACE_PROBE2(ip__ire__del, 711 (ire_t *), gw_ire, (irb_t *), irb); 712 IRE_FIND_NEXT_ORIGIN(next); 713 irb->irb_rr_origin = next; 714 } 715 rw_exit(&irb->irb_lock); 716 } 717 } 718 done: 719 if (gire != NULL) 720 IRE_REFRELE(gire); 721 /* report the bad route to routing sockets */ 722 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 723 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 724 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); 725 routing_sock_info = B_TRUE; 726 727 /* 728 * TCP is really telling us to start over completely, and it 729 * expects that we'll resend the ARP query. Tell ARP to 730 * discard the entry, if this is a local destination. 731 */ 732 ill = ire->ire_stq->q_ptr; 733 if (ire->ire_gateway_addr == 0 && 734 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 735 putnext(ill->ill_rq, arp_mp); 736 } 737 738 ire_delete(ire); 739 ire_refrele(ire); 740 } 741 /* Also look for an IRE_HOST_REDIRECT and remove it if present */ 742 ire = ire_route_lookup(addr, 0, 0, IRE_HOST_REDIRECT, NULL, NULL, 743 ALL_ZONES, NULL, MATCH_IRE_TYPE); 744 745 /* Nail it. */ 746 if (ire) { 747 if (!routing_sock_info) { 748 ip_rts_change(RTM_LOSING, ire->ire_addr, 749 ire->ire_gateway_addr, ire->ire_mask, 750 ire->ire_src_addr, 0, 0, 0, 751 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); 752 } 753 ire_delete(ire); 754 ire_refrele(ire); 755 } 756 return (0); 757 } 758 759 /* 760 * Named Dispatch routine to produce a formatted report on all IREs. 761 * This report is accessed by using the ndd utility to "get" ND variable 762 * "ipv4_ire_status". 763 */ 764 /* ARGSUSED */ 765 int 766 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 767 { 768 zoneid_t zoneid; 769 770 (void) mi_mpprintf(mp, 771 "IRE " MI_COL_HDRPAD_STR 772 /* 01234567[89ABCDEF] */ 773 "rfq " MI_COL_HDRPAD_STR 774 /* 01234567[89ABCDEF] */ 775 "stq " MI_COL_HDRPAD_STR 776 /* 01234567[89ABCDEF] */ 777 " zone " 778 /* 12345 */ 779 "addr mask " 780 /* 123.123.123.123 123.123.123.123 */ 781 "src gateway mxfrg rtt rtt_sd ssthresh ref " 782 /* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */ 783 "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe " 784 /* 123456 123456789 123456789 123456 12345678 1234 12345678 */ 785 "recvpipe in/out/forward type"); 786 /* 12345678 in/out/forward xxxxxxxxxx */ 787 788 /* 789 * Because of the ndd constraint, at most we can have 64K buffer 790 * to put in all IRE info. So to be more efficient, just 791 * allocate a 64K buffer here, assuming we need that large buffer. 792 * This should be OK as only root can do ndd /dev/ip. 793 */ 794 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 795 /* The following may work even if we cannot get a large buf. */ 796 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 797 return (0); 798 } 799 800 zoneid = Q_TO_CONN(q)->conn_zoneid; 801 if (zoneid == GLOBAL_ZONEID) 802 zoneid = ALL_ZONES; 803 804 ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid); 805 ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid); 806 807 return (0); 808 } 809 810 811 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */ 812 static void 813 ire_report_ctable(ire_t *ire, char *mp) 814 { 815 char buf1[16]; 816 char buf2[16]; 817 char buf3[16]; 818 char buf4[16]; 819 uint_t fo_pkt_count; 820 uint_t ib_pkt_count; 821 int ref; 822 uint_t print_len, buf_len; 823 824 if ((ire->ire_type & IRE_CACHETABLE) == 0) 825 return; 826 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 827 if (buf_len <= 0) 828 return; 829 830 /* Number of active references of this ire */ 831 ref = ire->ire_refcnt; 832 /* "inbound" to a non local address is a forward */ 833 ib_pkt_count = ire->ire_ib_pkt_count; 834 fo_pkt_count = 0; 835 if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { 836 fo_pkt_count = ib_pkt_count; 837 ib_pkt_count = 0; 838 } 839 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 840 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 841 "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 842 "%04d %08d %08d %d/%d/%d %s\n", 843 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 844 (int)ire->ire_zoneid, 845 ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), 846 ip_dot_addr(ire->ire_src_addr, buf3), 847 ip_dot_addr(ire->ire_gateway_addr, buf4), 848 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 849 ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, 850 ire->ire_uinfo.iulp_rtomax, 851 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 852 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 853 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 854 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 855 ire->ire_uinfo.iulp_sack, 856 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 857 ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, 858 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); 859 if (print_len < buf_len) { 860 ((mblk_t *)mp)->b_wptr += print_len; 861 } else { 862 ((mblk_t *)mp)->b_wptr += buf_len; 863 } 864 } 865 866 /* ARGSUSED */ 867 int 868 ip_ire_report_mrtun(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 869 { 870 (void) mi_mpprintf(mp, 871 "IRE " MI_COL_HDRPAD_STR 872 /* 01234567[89ABCDEF] */ 873 "stq " MI_COL_HDRPAD_STR 874 /* 01234567[89ABCDEF] */ 875 "in_ill " MI_COL_HDRPAD_STR 876 /* 01234567[89ABCDEF] */ 877 "in_src_addr " 878 /* 123.123.123.123 */ 879 "max_frag " 880 /* 12345 */ 881 "ref "); 882 /* 123 */ 883 884 ire_walk_ill_mrtun(0, 0, ire_report_mrtun_table, mp, NULL); 885 return (0); 886 } 887 888 /* mrtun report table - supports ipv4_mrtun_ire_status ndd variable */ 889 890 static void 891 ire_report_mrtun_table(ire_t *ire, char *mp) 892 { 893 char buf1[INET_ADDRSTRLEN]; 894 int ref; 895 896 /* Number of active references of this ire */ 897 ref = ire->ire_refcnt; 898 ASSERT(ire->ire_type == IRE_MIPRTUN); 899 (void) mi_mpprintf((mblk_t *)mp, 900 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 901 "%s %05d %03d", 902 (void *)ire, (void *)ire->ire_stq, 903 (void *)ire->ire_in_ill, 904 ip_dot_addr(ire->ire_in_src_addr, buf1), 905 ire->ire_max_frag, ref); 906 } 907 908 /* 909 * Dispatch routine to format ires in interface based routine 910 */ 911 /* ARGSUSED */ 912 int 913 ip_ire_report_srcif(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 914 { 915 916 /* Report all interface based ires */ 917 918 (void) mi_mpprintf(mp, 919 "IRE " MI_COL_HDRPAD_STR 920 /* 01234567[89ABCDEF] */ 921 "stq " MI_COL_HDRPAD_STR 922 /* 01234567[89ABCDEF] */ 923 "in_ill " MI_COL_HDRPAD_STR 924 /* 01234567[89ABCDEF] */ 925 "addr " 926 /* 123.123.123.123 */ 927 "gateway " 928 /* 123.123.123.123 */ 929 "max_frag " 930 /* 12345 */ 931 "ref " 932 /* 123 */ 933 "type " 934 /* ABCDEFGH */ 935 "in/out/forward"); 936 ire_walk_srcif_table_v4(ire_report_srcif_table, mp); 937 return (0); 938 } 939 940 /* Reports the interface table ires */ 941 static void 942 ire_report_srcif_table(ire_t *ire, char *mp) 943 { 944 char buf1[INET_ADDRSTRLEN]; 945 char buf2[INET_ADDRSTRLEN]; 946 int ref; 947 948 ref = ire->ire_refcnt; 949 (void) mi_mpprintf((mblk_t *)mp, 950 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 951 "%s %s %05d %03d %s %d", 952 (void *)ire, (void *)ire->ire_stq, 953 (void *)ire->ire_in_ill, 954 ip_dot_addr(ire->ire_addr, buf1), 955 ip_dot_addr(ire->ire_gateway_addr, buf2), 956 ire->ire_max_frag, ref, 957 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type), 958 ire->ire_ib_pkt_count); 959 960 } 961 /* 962 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 963 * down from the Upper Level Protocol to request a copy of the IRE (to check 964 * its type or to extract information like round-trip time estimates or the 965 * MTU.) 966 * The address is assumed to be in the ire_addr field. If no IRE is found 967 * an IRE is returned with ire_type being zero. 968 * Note that the upper lavel protocol has to check for broadcast 969 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 970 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 971 * end of the returned message. 972 * 973 * TCP sends down a message of this type with a connection request packet 974 * chained on. UDP and ICMP send it down to verify that a route exists for 975 * the destination address when they get connected. 976 */ 977 void 978 ip_ire_req(queue_t *q, mblk_t *mp) 979 { 980 ire_t *inire; 981 ire_t *ire; 982 mblk_t *mp1; 983 ire_t *sire = NULL; 984 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 985 986 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 987 !OK_32PTR(mp->b_rptr)) { 988 freemsg(mp); 989 return; 990 } 991 inire = (ire_t *)mp->b_rptr; 992 /* 993 * Got it, now take our best shot at an IRE. 994 */ 995 if (inire->ire_ipversion == IPV6_VERSION) { 996 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 997 NULL, &sire, zoneid, NULL, 998 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 999 } else { 1000 ASSERT(inire->ire_ipversion == IPV4_VERSION); 1001 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 1002 NULL, &sire, zoneid, NULL, 1003 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 1004 } 1005 1006 /* 1007 * We prevent returning IRES with source address INADDR_ANY 1008 * as these were temporarily created for sending packets 1009 * from endpoints that have conn_unspec_src set. 1010 */ 1011 if (ire == NULL || 1012 (ire->ire_ipversion == IPV4_VERSION && 1013 ire->ire_src_addr == INADDR_ANY) || 1014 (ire->ire_ipversion == IPV6_VERSION && 1015 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 1016 inire->ire_type = 0; 1017 } else { 1018 bcopy(ire, inire, sizeof (ire_t)); 1019 /* Copy the route metrics from the parent. */ 1020 if (sire != NULL) { 1021 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 1022 sizeof (iulp_t)); 1023 } 1024 1025 /* 1026 * As we don't lookup global policy here, we may not 1027 * pass the right size if per-socket policy is not 1028 * present. For these cases, path mtu discovery will 1029 * do the right thing. 1030 */ 1031 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 1032 1033 /* Pass the latest setting of the ip_path_mtu_discovery */ 1034 inire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; 1035 } 1036 if (ire != NULL) 1037 ire_refrele(ire); 1038 if (sire != NULL) 1039 ire_refrele(sire); 1040 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 1041 mp->b_datap->db_type = IRE_DB_TYPE; 1042 1043 /* Put the IRE_DB_TYPE mblk last in the chain */ 1044 mp1 = mp->b_cont; 1045 if (mp1 != NULL) { 1046 mp->b_cont = NULL; 1047 linkb(mp1, mp); 1048 mp = mp1; 1049 } 1050 qreply(q, mp); 1051 } 1052 1053 /* 1054 * Send a packet using the specified IRE. 1055 * If ire_src_addr_v6 is all zero then discard the IRE after 1056 * the packet has been sent. 1057 */ 1058 static void 1059 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 1060 { 1061 mblk_t *ipsec_mp; 1062 boolean_t is_secure; 1063 uint_t ifindex; 1064 ill_t *ill; 1065 zoneid_t zoneid = ire->ire_zoneid; 1066 1067 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1068 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1069 ipsec_mp = pkt; 1070 is_secure = (pkt->b_datap->db_type == M_CTL); 1071 if (is_secure) { 1072 ipsec_out_t *io; 1073 1074 pkt = pkt->b_cont; 1075 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1076 if (io->ipsec_out_type == IPSEC_OUT) 1077 zoneid = io->ipsec_out_zoneid; 1078 } 1079 1080 /* If the packet originated externally then */ 1081 if (pkt->b_prev) { 1082 ire_refrele(ire); 1083 /* 1084 * Extract the ifindex from b_prev (set in ip_rput_noire). 1085 * Look up interface to see if it still exists (it could have 1086 * been unplumbed by the time the reply came back from ARP) 1087 */ 1088 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1089 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 1090 NULL, NULL, NULL, NULL); 1091 if (ill == NULL) { 1092 pkt->b_prev = NULL; 1093 pkt->b_next = NULL; 1094 freemsg(ipsec_mp); 1095 return; 1096 } 1097 q = ill->ill_rq; 1098 pkt->b_prev = NULL; 1099 /* 1100 * This packet has not gone through IPSEC processing 1101 * and hence we should not have any IPSEC message 1102 * prepended. 1103 */ 1104 ASSERT(ipsec_mp == pkt); 1105 put(q, pkt); 1106 ill_refrele(ill); 1107 } else if (pkt->b_next) { 1108 /* Packets from multicast router */ 1109 pkt->b_next = NULL; 1110 /* 1111 * We never get the IPSEC_OUT while forwarding the 1112 * packet for multicast router. 1113 */ 1114 ASSERT(ipsec_mp == pkt); 1115 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 1116 ire_refrele(ire); 1117 } else { 1118 /* Locally originated packets */ 1119 boolean_t is_inaddr_any; 1120 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 1121 1122 /* 1123 * We need to do an ire_delete below for which 1124 * we need to make sure that the IRE will be 1125 * around even after calling ip_wput_ire - 1126 * which does ire_refrele. Otherwise somebody 1127 * could potentially delete this ire and hence 1128 * free this ire and we will be calling ire_delete 1129 * on a freed ire below. 1130 */ 1131 is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); 1132 if (is_inaddr_any) { 1133 IRE_REFHOLD(ire); 1134 } 1135 /* 1136 * If we were resolving a router we can not use the 1137 * routers IRE for sending the packet (since it would 1138 * violate the uniqness of the IP idents) thus we 1139 * make another pass through ip_wput to create the IRE_CACHE 1140 * for the destination. 1141 * When IRE_MARK_NOADD is set, ire_add() is not called. 1142 * Thus ip_wput() will never find a ire and result in an 1143 * infinite loop. Thus we check whether IRE_MARK_NOADD is 1144 * is set. This also implies that IRE_MARK_NOADD can only be 1145 * used to send packets to directly connected hosts. 1146 */ 1147 if (ipha->ipha_dst != ire->ire_addr && 1148 !(ire->ire_marks & IRE_MARK_NOADD)) { 1149 ire_refrele(ire); /* Held in ire_add */ 1150 if (CONN_Q(q)) { 1151 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 1152 IRE_SEND); 1153 } else { 1154 (void) ip_output((void *)(uintptr_t)zoneid, 1155 ipsec_mp, q, IRE_SEND); 1156 } 1157 } else { 1158 if (is_secure) { 1159 ipsec_out_t *oi; 1160 ipha_t *ipha; 1161 1162 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1163 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 1164 if (oi->ipsec_out_proc_begin) { 1165 /* 1166 * This is the case where 1167 * ip_wput_ipsec_out could not find 1168 * the IRE and recreated a new one. 1169 * As ip_wput_ipsec_out does ire 1170 * lookups, ire_refrele for the extra 1171 * bump in ire_add. 1172 */ 1173 ire_refrele(ire); 1174 ip_wput_ipsec_out(q, ipsec_mp, ipha, 1175 NULL, NULL); 1176 } else { 1177 /* 1178 * IRE_REFRELE will be done in 1179 * ip_wput_ire. 1180 */ 1181 ip_wput_ire(q, ipsec_mp, ire, NULL, 1182 IRE_SEND, zoneid); 1183 } 1184 } else { 1185 /* 1186 * IRE_REFRELE will be done in ip_wput_ire. 1187 */ 1188 ip_wput_ire(q, ipsec_mp, ire, NULL, 1189 IRE_SEND, zoneid); 1190 } 1191 } 1192 /* 1193 * Special code to support sending a single packet with 1194 * conn_unspec_src using an IRE which has no source address. 1195 * The IRE is deleted here after sending the packet to avoid 1196 * having other code trip on it. But before we delete the 1197 * ire, somebody could have looked up this ire. 1198 * We prevent returning/using this IRE by the upper layers 1199 * by making checks to NULL source address in other places 1200 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 1201 * Though, this does not completely prevent other threads 1202 * from using this ire, this should not cause any problems. 1203 * 1204 * NOTE : We use is_inaddr_any instead of using ire_src_addr 1205 * because for the normal case i.e !is_inaddr_any, ire_refrele 1206 * above could have potentially freed the ire. 1207 */ 1208 if (is_inaddr_any) { 1209 /* 1210 * If this IRE has been deleted by another thread, then 1211 * ire_bucket won't be NULL, but ire_ptpn will be NULL. 1212 * Thus, ire_delete will do nothing. This check 1213 * guards against calling ire_delete when the IRE was 1214 * never inserted in the table, which is handled by 1215 * ire_delete as dropping another reference. 1216 */ 1217 if (ire->ire_bucket != NULL) { 1218 ip1dbg(("ire_send: delete IRE\n")); 1219 ire_delete(ire); 1220 } 1221 ire_refrele(ire); /* Held above */ 1222 } 1223 } 1224 } 1225 1226 /* 1227 * Send a packet using the specified IRE. 1228 * If ire_src_addr_v6 is all zero then discard the IRE after 1229 * the packet has been sent. 1230 */ 1231 static void 1232 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 1233 { 1234 mblk_t *ipsec_mp; 1235 boolean_t secure; 1236 uint_t ifindex; 1237 zoneid_t zoneid = ire->ire_zoneid; 1238 1239 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1240 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1241 if (pkt->b_datap->db_type == M_CTL) { 1242 ipsec_out_t *io; 1243 1244 ipsec_mp = pkt; 1245 pkt = pkt->b_cont; 1246 secure = B_TRUE; 1247 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1248 if (io->ipsec_out_type == IPSEC_OUT) 1249 zoneid = io->ipsec_out_zoneid; 1250 } else { 1251 ipsec_mp = pkt; 1252 secure = B_FALSE; 1253 } 1254 1255 /* If the packet originated externally then */ 1256 if (pkt->b_prev) { 1257 ill_t *ill; 1258 /* 1259 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1260 * Look up interface to see if it still exists (it could have 1261 * been unplumbed by the time the reply came back from the 1262 * resolver). 1263 */ 1264 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1265 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1266 NULL, NULL, NULL, NULL); 1267 if (ill == NULL) { 1268 pkt->b_prev = NULL; 1269 pkt->b_next = NULL; 1270 freemsg(ipsec_mp); 1271 ire_refrele(ire); /* Held in ire_add */ 1272 return; 1273 } 1274 q = ill->ill_rq; 1275 pkt->b_prev = NULL; 1276 /* 1277 * This packet has not gone through IPSEC processing 1278 * and hence we should not have any IPSEC message 1279 * prepended. 1280 */ 1281 ASSERT(ipsec_mp == pkt); 1282 put(q, pkt); 1283 ill_refrele(ill); 1284 } else if (pkt->b_next) { 1285 /* Packets from multicast router */ 1286 pkt->b_next = NULL; 1287 /* 1288 * We never get the IPSEC_OUT while forwarding the 1289 * packet for multicast router. 1290 */ 1291 ASSERT(ipsec_mp == pkt); 1292 /* 1293 * XXX TODO IPv6. 1294 */ 1295 freemsg(pkt); 1296 #ifdef XXX 1297 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1298 #endif 1299 } else { 1300 if (secure) { 1301 ipsec_out_t *oi; 1302 ip6_t *ip6h; 1303 1304 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1305 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1306 if (oi->ipsec_out_proc_begin) { 1307 /* 1308 * This is the case where 1309 * ip_wput_ipsec_out could not find 1310 * the IRE and recreated a new one. 1311 */ 1312 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1313 NULL, NULL); 1314 } else { 1315 if (CONN_Q(q)) { 1316 (void) ip_output_v6(Q_TO_CONN(q), 1317 ipsec_mp, q, IRE_SEND); 1318 } else { 1319 (void) ip_output_v6( 1320 (void *)(uintptr_t)zoneid, 1321 ipsec_mp, q, IRE_SEND); 1322 } 1323 } 1324 } else { 1325 /* 1326 * Send packets through ip_output_v6 so that any 1327 * ip6_info header can be processed again. 1328 */ 1329 if (CONN_Q(q)) { 1330 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1331 IRE_SEND); 1332 } else { 1333 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1334 ipsec_mp, q, IRE_SEND); 1335 } 1336 } 1337 /* 1338 * Special code to support sending a single packet with 1339 * conn_unspec_src using an IRE which has no source address. 1340 * The IRE is deleted here after sending the packet to avoid 1341 * having other code trip on it. But before we delete the 1342 * ire, somebody could have looked up this ire. 1343 * We prevent returning/using this IRE by the upper layers 1344 * by making checks to NULL source address in other places 1345 * like e.g ip_ire_append_v6, ip_ire_req and 1346 * ip_bind_connected_v6. Though, this does not completely 1347 * prevent other threads from using this ire, this should 1348 * not cause any problems. 1349 */ 1350 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1351 ip1dbg(("ire_send_v6: delete IRE\n")); 1352 ire_delete(ire); 1353 } 1354 } 1355 ire_refrele(ire); /* Held in ire_add */ 1356 } 1357 1358 /* 1359 * Make sure that IRE bucket does not get too long. 1360 * This can cause lock up because ire_cache_lookup() 1361 * may take "forever" to finish. 1362 * 1363 * We just remove cnt IREs each time. This means that 1364 * the bucket length will stay approximately constant, 1365 * depending on cnt. This should be enough to defend 1366 * against DoS attack based on creating temporary IREs 1367 * (for forwarding and non-TCP traffic). 1368 * 1369 * Note that new IRE is normally added at the tail of the 1370 * bucket. This means that we are removing the "oldest" 1371 * temporary IRE added. Only if there are IREs with 1372 * the same ire_addr, do we not add it at the tail. Refer 1373 * to ire_add_v*(). It should be OK for our purpose. 1374 * 1375 * For non-temporary cached IREs, we make sure that they 1376 * have not been used for some time (defined below), they 1377 * are non-local destinations, and there is no one using 1378 * them at the moment (refcnt == 1). 1379 * 1380 * The above means that the IRE bucket length may become 1381 * very long, consisting of mostly non-temporary IREs. 1382 * This can happen when the hash function does a bad job 1383 * so that most TCP connections cluster to a specific bucket. 1384 * This "hopefully" should never happen. It can also 1385 * happen if most TCP connections have very long lives. 1386 * Even with the minimal hash table size of 256, there 1387 * has to be a lot of such connections to make the bucket 1388 * length unreasonably long. This should probably not 1389 * happen either. The third can when this can happen is 1390 * when the machine is under attack, such as SYN flooding. 1391 * TCP should already have the proper mechanism to protect 1392 * that. So we should be safe. 1393 * 1394 * This function is called by ire_add_then_send() after 1395 * a new IRE is added and the packet is sent. 1396 * 1397 * The idle cutoff interval is set to 60s. It can be 1398 * changed using /etc/system. 1399 */ 1400 uint32_t ire_idle_cutoff_interval = 60000; 1401 1402 static void 1403 ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt) 1404 { 1405 ire_t *ire; 1406 int tmp_cnt = cnt; 1407 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1408 1409 /* 1410 * irb is NULL if the IRE is not added to the hash. This 1411 * happens when IRE_MARK_NOADD is set in ire_add_then_send() 1412 * and when ires are returned from ire_update_srcif_v4() routine. 1413 */ 1414 if (irb == NULL) 1415 return; 1416 1417 IRB_REFHOLD(irb); 1418 if (irb->irb_tmp_ire_cnt > threshold) { 1419 for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0; 1420 ire = ire->ire_next) { 1421 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1422 continue; 1423 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1424 ASSERT(ire->ire_type == IRE_CACHE); 1425 ire_delete(ire); 1426 tmp_cnt--; 1427 } 1428 } 1429 } 1430 if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) { 1431 for (ire = irb->irb_ire; ire != NULL && cnt > 0; 1432 ire = ire->ire_next) { 1433 if (ire->ire_marks & IRE_MARK_CONDEMNED || 1434 ire->ire_gateway_addr == 0) { 1435 continue; 1436 } 1437 if ((ire->ire_type == IRE_CACHE) && 1438 (lbolt - ire->ire_last_used_time > cut_off) && 1439 (ire->ire_refcnt == 1)) { 1440 ire_delete(ire); 1441 cnt--; 1442 } 1443 } 1444 } 1445 IRB_REFRELE(irb); 1446 } 1447 1448 /* 1449 * ire_add_then_send is called when a new IRE has been created in order to 1450 * route an outgoing packet. Typically, it is called from ip_wput when 1451 * a response comes back down from a resolver. We add the IRE, and then 1452 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1453 * However, we do not add the newly created IRE in the cache when 1454 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1455 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD and ires returned 1456 * by ire_update_srcif_v4() are ire_refrele'd by ip_wput_ire() and get 1457 * deleted. 1458 * Multirouting support: the packet is silently discarded when the new IRE 1459 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1460 * RTF_MULTIRT flag for the same destination address. 1461 * In this case, we just want to register this additional ire without 1462 * sending the packet, as it has already been replicated through 1463 * existing multirt routes in ip_wput(). 1464 */ 1465 void 1466 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1467 { 1468 irb_t *irb; 1469 boolean_t drop = B_FALSE; 1470 /* LINTED : set but not used in function */ 1471 boolean_t mctl_present; 1472 mblk_t *first_mp = NULL; 1473 mblk_t *save_mp = NULL; 1474 ire_t *dst_ire; 1475 ipha_t *ipha; 1476 ip6_t *ip6h; 1477 1478 if (mp != NULL) { 1479 /* 1480 * We first have to retrieve the destination address carried 1481 * by the packet. 1482 * We can't rely on ire as it can be related to a gateway. 1483 * The destination address will help in determining if 1484 * other RTF_MULTIRT ires are already registered. 1485 * 1486 * We first need to know where we are going : v4 or V6. 1487 * the ire version is enough, as there is no risk that 1488 * we resolve an IPv6 address with an IPv4 ire 1489 * or vice versa. 1490 */ 1491 if (ire->ire_ipversion == IPV4_VERSION) { 1492 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1493 ipha = (ipha_t *)mp->b_rptr; 1494 save_mp = mp; 1495 mp = first_mp; 1496 1497 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1498 ire->ire_zoneid, MBLK_GETLABEL(mp)); 1499 } else { 1500 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1501 /* 1502 * Get a pointer to the beginning of the IPv6 header. 1503 * Ignore leading IPsec control mblks. 1504 */ 1505 first_mp = mp; 1506 if (mp->b_datap->db_type == M_CTL) { 1507 mp = mp->b_cont; 1508 } 1509 ip6h = (ip6_t *)mp->b_rptr; 1510 save_mp = mp; 1511 mp = first_mp; 1512 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1513 ire->ire_zoneid, MBLK_GETLABEL(mp)); 1514 } 1515 if (dst_ire != NULL) { 1516 if (dst_ire->ire_flags & RTF_MULTIRT) { 1517 /* 1518 * At least one resolved multirt route 1519 * already exists for the destination, 1520 * don't sent this packet: either drop it 1521 * or complete the pending resolution, 1522 * depending on the ire. 1523 */ 1524 drop = B_TRUE; 1525 } 1526 ip1dbg(("ire_add_then_send: dst_ire %p " 1527 "[dst %08x, gw %08x], drop %d\n", 1528 (void *)dst_ire, 1529 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1530 ntohl(dst_ire->ire_addr) : \ 1531 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1532 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1533 ntohl(dst_ire->ire_gateway_addr) : \ 1534 ntohl(V4_PART_OF_V6( 1535 dst_ire->ire_gateway_addr_v6)), 1536 drop)); 1537 ire_refrele(dst_ire); 1538 } 1539 } 1540 1541 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1542 /* 1543 * Regular packets with cache bound ires and 1544 * the packets from ARP response for ires which 1545 * belong to the ire_srcif_v4 table, are here. 1546 */ 1547 if (ire->ire_in_ill == NULL) { 1548 /* Add the ire */ 1549 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1550 } else { 1551 /* 1552 * This must be ARP response for ire in interface based 1553 * table. Note that we don't add them in cache table, 1554 * instead we update the existing table with dlureq_mp 1555 * information. The reverse tunnel ires do not come 1556 * here, as reverse tunnel is non-resolver interface. 1557 * XXX- another design alternative was to mark the 1558 * ires in interface based table with a special mark to 1559 * make absolutely sure that we operate in right ires. 1560 * This idea was not implemented as part of code review 1561 * suggestion, as ire_in_ill suffice to distinguish 1562 * between the regular ires and interface based 1563 * ires now and thus we save a bit in the ire_marks. 1564 */ 1565 ire = ire_update_srcif_v4(ire); 1566 } 1567 1568 if (ire == NULL) { 1569 mp->b_prev = NULL; 1570 mp->b_next = NULL; 1571 MULTIRT_DEBUG_UNTAG(mp); 1572 freemsg(mp); 1573 return; 1574 } 1575 if (mp == NULL) { 1576 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1577 return; 1578 } 1579 } 1580 if (drop) { 1581 /* 1582 * If we're adding an RTF_MULTIRT ire, the resolution 1583 * is over: we just drop the packet. 1584 */ 1585 if (ire->ire_flags & RTF_MULTIRT) { 1586 if (save_mp) { 1587 save_mp->b_prev = NULL; 1588 save_mp->b_next = NULL; 1589 } 1590 MULTIRT_DEBUG_UNTAG(mp); 1591 freemsg(mp); 1592 } else { 1593 /* 1594 * Otherwise, we're adding the ire to a gateway 1595 * for a multirt route. 1596 * Invoke ip_newroute() to complete the resolution 1597 * of the route. We will then come back here and 1598 * finally drop this packet in the above code. 1599 */ 1600 if (ire->ire_ipversion == IPV4_VERSION) { 1601 /* 1602 * TODO: in order for CGTP to work in non-global 1603 * zones, ip_newroute() must create the IRE 1604 * cache in the zone indicated by 1605 * ire->ire_zoneid. 1606 */ 1607 ip_newroute(q, mp, ipha->ipha_dst, 0, 1608 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1609 ire->ire_zoneid); 1610 } else { 1611 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1612 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1613 NULL, ire->ire_zoneid); 1614 } 1615 } 1616 1617 ire_refrele(ire); /* As done by ire_send(). */ 1618 return; 1619 } 1620 /* 1621 * Need to remember ire_bucket here as ire_send*() may delete 1622 * the ire so we cannot reference it after that. 1623 */ 1624 irb = ire->ire_bucket; 1625 if (ire->ire_ipversion == IPV6_VERSION) { 1626 ire_send_v6(q, mp, ire); 1627 /* 1628 * Clean up more than 1 IRE so that the clean up does not 1629 * need to be done every time when a new IRE is added and 1630 * the threshold is reached. 1631 */ 1632 ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2); 1633 } else { 1634 ire_send(q, mp, ire); 1635 ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2); 1636 } 1637 } 1638 1639 /* 1640 * Initialize the ire that is specific to IPv4 part and call 1641 * ire_init_common to finish it. 1642 */ 1643 ire_t * 1644 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1645 uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, 1646 queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, 1647 ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1648 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1649 { 1650 /* 1651 * Reject IRE security attribute creation/initialization 1652 * if system is not running in Trusted mode. 1653 */ 1654 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1655 return (NULL); 1656 1657 if (fp_mp != NULL) { 1658 /* 1659 * We can't dupb() here as multiple threads could be 1660 * calling dupb on the same mp which is incorrect. 1661 * First dupb() should be called only by one thread. 1662 */ 1663 fp_mp = copyb(fp_mp); 1664 if (fp_mp == NULL) 1665 return (NULL); 1666 } 1667 1668 if (dlureq_mp != NULL) { 1669 /* 1670 * We can't dupb() here as multiple threads could be 1671 * calling dupb on the same mp which is incorrect. 1672 * First dupb() should be called only by one thread. 1673 */ 1674 dlureq_mp = copyb(dlureq_mp); 1675 if (dlureq_mp == NULL) { 1676 if (fp_mp != NULL) 1677 freeb(fp_mp); 1678 return (NULL); 1679 } 1680 } 1681 1682 /* 1683 * Check that IRE_IF_RESOLVER and IRE_IF_NORESOLVER have a 1684 * dlureq_mp which is the ill_resolver_mp for IRE_IF_RESOLVER 1685 * and DL_UNITDATA_REQ for IRE_IF_NORESOLVER. 1686 */ 1687 if ((type & IRE_INTERFACE) && 1688 dlureq_mp == NULL) { 1689 ASSERT(fp_mp == NULL); 1690 ip0dbg(("ire_init: no dlureq_mp\n")); 1691 return (NULL); 1692 } 1693 1694 BUMP_IRE_STATS(ire_stats_v4, ire_stats_alloced); 1695 1696 if (addr != NULL) 1697 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1698 if (src_addr != NULL) 1699 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1700 if (mask != NULL) { 1701 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1702 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1703 } 1704 if (gateway != NULL) { 1705 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1706 } 1707 if (in_src_addr != NULL) { 1708 bcopy(in_src_addr, &ire->ire_in_src_addr, IP_ADDR_LEN); 1709 } 1710 1711 if (type == IRE_CACHE) 1712 ire->ire_cmask = cmask; 1713 1714 /* ire_init_common will free the mblks upon encountering any failure */ 1715 if (!ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp, 1716 ipif, in_ill, phandle, ihandle, flags, IPV4_VERSION, ulp_info, 1717 gc, gcgrp)) 1718 return (NULL); 1719 1720 return (ire); 1721 } 1722 1723 /* 1724 * Similar to ire_create except that it is called only when 1725 * we want to allocate ire as an mblk e.g. we have an external 1726 * resolver ARP. 1727 */ 1728 ire_t * 1729 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1730 uchar_t *in_src_addr, uint_t max_frag, mblk_t *fp_mp, queue_t *rfq, 1731 queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, 1732 ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, 1733 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1734 { 1735 ire_t *ire, *buf; 1736 ire_t *ret_ire; 1737 mblk_t *mp; 1738 size_t bufsize; 1739 frtn_t *frtnp; 1740 ill_t *ill; 1741 1742 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1743 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1744 if (buf == NULL) { 1745 ip1dbg(("ire_create_mp: alloc failed\n")); 1746 return (NULL); 1747 } 1748 frtnp = (frtn_t *)(buf + 1); 1749 frtnp->free_arg = (caddr_t)buf; 1750 frtnp->free_func = ire_freemblk; 1751 1752 /* 1753 * Allocate the new IRE. The ire created will hold a ref on 1754 * an nce_t after ire_nce_init, and this ref must either be 1755 * (a) transferred to the ire_cache entry created when ire_add_v4 1756 * is called after successful arp resolution, or, 1757 * (b) released, when arp resolution fails 1758 * Case (b) is handled in ire_freemblk() which will be called 1759 * when mp is freed as a result of failed arp. 1760 */ 1761 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1762 if (mp == NULL) { 1763 ip1dbg(("ire_create_mp: alloc failed\n")); 1764 kmem_free(buf, bufsize); 1765 return (NULL); 1766 } 1767 ire = (ire_t *)mp->b_rptr; 1768 mp->b_wptr = (uchar_t *)&ire[1]; 1769 1770 /* Start clean. */ 1771 *ire = ire_null; 1772 ire->ire_mp = mp; 1773 mp->b_datap->db_type = IRE_DB_TYPE; 1774 ire->ire_marks |= IRE_MARK_UNCACHED; 1775 1776 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, 1777 NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, 1778 phandle, ihandle, flags, ulp_info, gc, gcgrp); 1779 1780 ill = (ill_t *)(stq->q_ptr); 1781 if (ret_ire == NULL) { 1782 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1783 freeb(ire->ire_mp); 1784 return (NULL); 1785 } 1786 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1787 ASSERT(ret_ire == ire); 1788 /* 1789 * ire_max_frag is normally zero here and is atomically set 1790 * under the irebucket lock in ire_add_v[46] except for the 1791 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1792 * is non-zero here. 1793 */ 1794 ire->ire_max_frag = max_frag; 1795 return (ire); 1796 } 1797 1798 /* 1799 * ire_create is called to allocate and initialize a new IRE. 1800 * 1801 * NOTE : This is called as writer sometimes though not required 1802 * by this function. 1803 */ 1804 ire_t * 1805 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1806 uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq, 1807 queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, 1808 ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, 1809 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1810 { 1811 ire_t *ire; 1812 ire_t *ret_ire; 1813 1814 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1815 if (ire == NULL) { 1816 ip1dbg(("ire_create: alloc failed\n")); 1817 return (NULL); 1818 } 1819 *ire = ire_null; 1820 1821 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, 1822 max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, 1823 phandle, ihandle, flags, ulp_info, gc, gcgrp); 1824 1825 if (ret_ire == NULL) { 1826 kmem_cache_free(ire_cache, ire); 1827 return (NULL); 1828 } 1829 ASSERT(ret_ire == ire); 1830 return (ire); 1831 } 1832 1833 1834 /* 1835 * Common to IPv4 and IPv6 1836 */ 1837 boolean_t 1838 ire_init_common(ire_t *ire, uint_t *max_fragp, mblk_t *fp_mp, 1839 queue_t *rfq, queue_t *stq, ushort_t type, 1840 mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, uint32_t phandle, 1841 uint32_t ihandle, uint32_t flags, uchar_t ipversion, 1842 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1843 { 1844 ire->ire_max_fragp = max_fragp; 1845 ire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; 1846 1847 ASSERT(fp_mp == NULL || fp_mp->b_datap->db_type == M_DATA); 1848 #ifdef DEBUG 1849 if (ipif != NULL) { 1850 if (ipif->ipif_isv6) 1851 ASSERT(ipversion == IPV6_VERSION); 1852 else 1853 ASSERT(ipversion == IPV4_VERSION); 1854 } 1855 #endif /* DEBUG */ 1856 1857 /* 1858 * Create/initialize IRE security attribute only in Trusted mode; 1859 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1860 * has held a reference to it and will release it when this routine 1861 * returns a failure, otherwise we own the reference. We do this 1862 * prior to initializing the rest IRE fields. 1863 * 1864 * Don't allocate ire_gw_secattr for the resolver case to prevent 1865 * memory leak (in case of external resolution failure). We'll 1866 * allocate it after a successful external resolution, in ire_add(). 1867 * Note that ire->ire_mp != NULL here means this ire is headed 1868 * to an external resolver. 1869 */ 1870 if (is_system_labeled()) { 1871 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1872 IRE_INTERFACE)) != 0) { 1873 /* release references on behalf of caller */ 1874 if (gc != NULL) 1875 GC_REFRELE(gc); 1876 if (gcgrp != NULL) 1877 GCGRP_REFRELE(gcgrp); 1878 } else if ((ire->ire_mp == NULL) && 1879 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1880 /* free any caller-allocated mblks upon failure */ 1881 if (fp_mp != NULL) 1882 freeb(fp_mp); 1883 if (dlureq_mp != NULL) 1884 freeb(dlureq_mp); 1885 return (B_FALSE); 1886 } 1887 } 1888 1889 ire->ire_stq = stq; 1890 ire->ire_rfq = rfq; 1891 ire->ire_type = type; 1892 ire->ire_flags = RTF_UP | flags; 1893 ire->ire_ident = TICK_TO_MSEC(lbolt); 1894 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1895 1896 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1897 ire->ire_last_used_time = lbolt; 1898 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1899 1900 /* 1901 * If this IRE is an IRE_CACHE, inherit the handles from the 1902 * parent IREs. For others in the forwarding table, assign appropriate 1903 * new ones. 1904 * 1905 * The mutex protecting ire_handle is because ire_create is not always 1906 * called as a writer. 1907 */ 1908 if (ire->ire_type & IRE_OFFSUBNET) { 1909 mutex_enter(&ire_handle_lock); 1910 ire->ire_phandle = (uint32_t)ire_handle++; 1911 mutex_exit(&ire_handle_lock); 1912 } else if (ire->ire_type & IRE_INTERFACE) { 1913 mutex_enter(&ire_handle_lock); 1914 ire->ire_ihandle = (uint32_t)ire_handle++; 1915 mutex_exit(&ire_handle_lock); 1916 } else if (ire->ire_type == IRE_CACHE) { 1917 ire->ire_phandle = phandle; 1918 ire->ire_ihandle = ihandle; 1919 } 1920 ire->ire_in_ill = in_ill; 1921 ire->ire_ipif = ipif; 1922 if (ipif != NULL) { 1923 ire->ire_ipif_seqid = ipif->ipif_seqid; 1924 ire->ire_zoneid = ipif->ipif_zoneid; 1925 } else { 1926 ire->ire_zoneid = GLOBAL_ZONEID; 1927 } 1928 ire->ire_ipversion = ipversion; 1929 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1930 if (ipversion == IPV4_VERSION) { 1931 if (ire_nce_init(ire, fp_mp, dlureq_mp) != 0) { 1932 /* some failure occurred. propagate error back */ 1933 return (B_FALSE); 1934 } 1935 } else { 1936 ASSERT(ipversion == IPV6_VERSION); 1937 /* 1938 * IPv6 initializes the ire_nce in ire_add_v6, 1939 * which expects to find the ire_nce to be null when 1940 * when it is called. 1941 */ 1942 if (dlureq_mp) 1943 freemsg(dlureq_mp); 1944 if (fp_mp) 1945 freemsg(fp_mp); 1946 } 1947 ire->ire_refcnt = 1; 1948 1949 #ifdef IRE_DEBUG 1950 bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX); 1951 #endif 1952 1953 return (B_TRUE); 1954 } 1955 1956 /* 1957 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1958 * It is passed a pointer to a slot in an IRE pointer array into which to 1959 * place the pointer to the new IRE, if indeed we create one. If the 1960 * IRE corresponding to the address passed in would be a duplicate of an 1961 * existing one, we don't create the new one. irep is incremented before 1962 * return only if we do create a new IRE. (Always called as writer.) 1963 * 1964 * Note that with the "match_flags" parameter, we can match on either 1965 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1966 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1967 * we only create broadcast ire's on a per physical interface basis. If 1968 * someone is going to be mucking with logical interfaces, it is important 1969 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1970 * logical interface will not cause critical broadcast IRE's to be deleted. 1971 */ 1972 ire_t ** 1973 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1974 int match_flags) 1975 { 1976 ire_t *ire; 1977 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1978 1979 /* 1980 * No broadcast IREs for the LOOPBACK interface 1981 * or others such as point to point and IPIF_NOXMIT. 1982 */ 1983 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1984 (ipif->ipif_flags & IPIF_NOXMIT)) 1985 return (irep); 1986 1987 /* If this would be a duplicate, don't bother. */ 1988 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1989 ipif->ipif_zoneid, NULL, match_flags)) != NULL) { 1990 /* 1991 * We look for non-deprecated (and non-anycast, non-nolocal) 1992 * ipifs as the best choice. ipifs with check_flags matching 1993 * (deprecated, etc) are used only if non-deprecated ipifs 1994 * are not available. if the existing ire's ipif is deprecated 1995 * and the new ipif is non-deprecated, switch to the new ipif 1996 */ 1997 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1998 (ipif->ipif_flags & check_flags)) { 1999 ire_refrele(ire); 2000 return (irep); 2001 } 2002 /* 2003 * Bcast ires exist in pairs. Both have to be deleted, 2004 * Since we are exclusive we can make the above assertion. 2005 * The 1st has to be refrele'd since it was ctable_lookup'd. 2006 */ 2007 ASSERT(IAM_WRITER_IPIF(ipif)); 2008 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 2009 ire_delete(ire->ire_next); 2010 ire_delete(ire); 2011 ire_refrele(ire); 2012 } 2013 2014 irep = ire_create_bcast(ipif, addr, irep); 2015 2016 return (irep); 2017 } 2018 2019 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 2020 2021 /* 2022 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 2023 * It leaves all the verifying and deleting to those routines. So it always 2024 * creates 2 bcast ires and chains them into the ire array passed in. 2025 */ 2026 ire_t ** 2027 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 2028 { 2029 *irep++ = ire_create( 2030 (uchar_t *)&addr, /* dest addr */ 2031 (uchar_t *)&ip_g_all_ones, /* mask */ 2032 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 2033 NULL, /* no gateway */ 2034 NULL, /* no in_src_addr */ 2035 &ipif->ipif_mtu, /* max frag */ 2036 NULL, /* fast path header */ 2037 ipif->ipif_rq, /* recv-from queue */ 2038 ipif->ipif_wq, /* send-to queue */ 2039 IRE_BROADCAST, 2040 ipif->ipif_bcast_mp, /* xmit header */ 2041 ipif, 2042 NULL, 2043 0, 2044 0, 2045 0, 2046 0, 2047 &ire_uinfo_null, 2048 NULL, 2049 NULL); 2050 2051 *irep++ = ire_create( 2052 (uchar_t *)&addr, /* dest address */ 2053 (uchar_t *)&ip_g_all_ones, /* mask */ 2054 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 2055 NULL, /* no gateway */ 2056 NULL, /* no in_src_addr */ 2057 &ip_loopback_mtu, /* max frag size */ 2058 NULL, /* Fast Path header */ 2059 ipif->ipif_rq, /* recv-from queue */ 2060 NULL, /* no send-to queue */ 2061 IRE_BROADCAST, /* Needed for fanout in wput */ 2062 NULL, 2063 ipif, 2064 NULL, 2065 0, 2066 0, 2067 0, 2068 0, 2069 &ire_uinfo_null, 2070 NULL, 2071 NULL); 2072 2073 return (irep); 2074 } 2075 2076 /* 2077 * ire_walk routine to delete or update any IRE_CACHE that might contain 2078 * stale information. 2079 * The flags state which entries to delete or update. 2080 * Garbage collection is done separately using kmem alloc callbacks to 2081 * ip_trash_ire_reclaim. 2082 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 2083 * since other stale information is cleaned up using NUD. 2084 */ 2085 void 2086 ire_expire(ire_t *ire, char *arg) 2087 { 2088 int flush_flags = (int)(uintptr_t)arg; 2089 ill_t *stq_ill; 2090 2091 if ((flush_flags & FLUSH_REDIRECT_TIME) && 2092 ire->ire_type == IRE_HOST_REDIRECT) { 2093 /* Make sure we delete the corresponding IRE_CACHE */ 2094 ip1dbg(("ire_expire: all redirects\n")); 2095 ip_rts_rtmsg(RTM_DELETE, ire, 0); 2096 ire_delete(ire); 2097 atomic_dec_32(&ip_redirect_cnt); 2098 return; 2099 } 2100 if (ire->ire_type != IRE_CACHE) 2101 return; 2102 2103 if (flush_flags & FLUSH_ARP_TIME) { 2104 /* 2105 * Remove all IRE_CACHE. 2106 * Verify that create time is more than 2107 * ip_ire_arp_interval milliseconds ago. 2108 */ 2109 if (NCE_EXPIRED(ire->ire_nce)) { 2110 ire_delete(ire); 2111 return; 2112 } 2113 } 2114 2115 if (ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 2116 (ire->ire_ipif != NULL)) { 2117 /* Increase pmtu if it is less than the interface mtu */ 2118 mutex_enter(&ire->ire_lock); 2119 /* 2120 * If the ipif is a vni (whose mtu is 0, since it's virtual) 2121 * get the mtu from the sending interfaces' ipif 2122 */ 2123 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 2124 stq_ill = ire->ire_stq->q_ptr; 2125 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 2126 IP_MAXPACKET); 2127 } else { 2128 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 2129 IP_MAXPACKET); 2130 } 2131 ire->ire_frag_flag |= IPH_DF; 2132 mutex_exit(&ire->ire_lock); 2133 } 2134 } 2135 2136 /* 2137 * Do fast path probing if necessary. 2138 */ 2139 void 2140 ire_fastpath(ire_t *ire) 2141 { 2142 ill_t *ill; 2143 int res; 2144 2145 if (ire->ire_nce == NULL || ire->ire_nce->nce_fp_mp != NULL || 2146 ire->ire_nce->nce_state != ND_REACHABLE || 2147 ire->ire_nce->nce_res_mp == NULL) { 2148 2149 /* 2150 * Already contains fastpath info or 2151 * doesn't have DL_UNITDATA_REQ header or 2152 * or is an incomplete ire in the ire table 2153 * or is a loopback broadcast ire i.e. no stq. 2154 */ 2155 return; 2156 } 2157 ill = ire_to_ill(ire); 2158 if (ill == NULL) 2159 return; 2160 ire_fastpath_list_add(ill, ire); 2161 res = ill_fastpath_probe(ill, ire->ire_nce->nce_res_mp); 2162 /* 2163 * EAGAIN is an indication of a transient error 2164 * i.e. allocation failure etc. leave the ire in the list it will 2165 * be updated when another probe happens for another ire if not 2166 * it will be taken out of the list when the ire is deleted. 2167 */ 2168 if (res != 0 && res != EAGAIN) 2169 ire_fastpath_list_delete(ill, ire); 2170 } 2171 2172 /* 2173 * Update all IRE's that are not in fastpath mode and 2174 * have an dlureq_mp that matches mp. mp->b_cont contains 2175 * the fastpath header. 2176 * 2177 * Returns TRUE if entry should be dequeued, or FALSE otherwise. 2178 */ 2179 boolean_t 2180 ire_fastpath_update(ire_t *ire, void *arg) 2181 { 2182 mblk_t *mp, *fp_mp; 2183 uchar_t *up, *up2; 2184 ptrdiff_t cmplen; 2185 nce_t *arpce; 2186 2187 ASSERT((ire->ire_type & (IRE_CACHE | IRE_BROADCAST | 2188 IRE_MIPRTUN)) != 0); 2189 2190 /* 2191 * Already contains fastpath info or doesn't have 2192 * DL_UNITDATA_REQ header or is an incomplete ire. 2193 */ 2194 if (ire->ire_nce == NULL || ire->ire_nce->nce_res_mp == NULL || 2195 ire->ire_nce->nce_fp_mp != NULL || 2196 ire->ire_nce->nce_state != ND_REACHABLE) 2197 return (B_TRUE); 2198 2199 ip2dbg(("ire_fastpath_update: trying\n")); 2200 mp = arg; 2201 up = mp->b_rptr; 2202 cmplen = mp->b_wptr - up; 2203 /* Serialize multiple fast path updates */ 2204 mutex_enter(&ire->ire_nce->nce_lock); 2205 up2 = ire->ire_nce->nce_res_mp->b_rptr; 2206 ASSERT(cmplen >= 0); 2207 if (ire->ire_nce->nce_res_mp->b_wptr - up2 != cmplen || 2208 bcmp(up, up2, cmplen) != 0) { 2209 mutex_exit(&ire->ire_nce->nce_lock); 2210 /* 2211 * Don't take the ire off the fastpath list yet, 2212 * since the response may come later. 2213 */ 2214 return (B_FALSE); 2215 } 2216 arpce = ire->ire_nce; 2217 /* Matched - install mp as the nce_fp_mp */ 2218 ip1dbg(("ire_fastpath_update: match\n")); 2219 fp_mp = dupb(mp->b_cont); 2220 if (fp_mp) { 2221 /* 2222 * We checked nce_fp_mp above. Check it again with the 2223 * lock. Update fp_mp only if it has not been done 2224 * already. 2225 */ 2226 if (arpce->nce_fp_mp == NULL) { 2227 /* 2228 * ire_ll_hdr_length is just an optimization to 2229 * store the length. It is used to return the 2230 * fast path header length to the upper layers. 2231 */ 2232 arpce->nce_fp_mp = fp_mp; 2233 ire->ire_ll_hdr_length = 2234 (uint_t)(fp_mp->b_wptr - fp_mp->b_rptr); 2235 } else { 2236 freeb(fp_mp); 2237 } 2238 } 2239 mutex_exit(&ire->ire_nce->nce_lock); 2240 return (B_TRUE); 2241 } 2242 2243 /* 2244 * This function handles the DL_NOTE_FASTPATH_FLUSH notification from the 2245 * driver. 2246 */ 2247 /* ARGSUSED */ 2248 void 2249 ire_fastpath_flush(ire_t *ire, void *arg) 2250 { 2251 ill_t *ill; 2252 int res; 2253 2254 /* No fastpath info? */ 2255 if (ire->ire_nce == NULL || 2256 ire->ire_nce->nce_fp_mp == NULL || ire->ire_nce->nce_res_mp == NULL) 2257 return; 2258 2259 /* 2260 * Just remove the IRE if it is for non-broadcast dest. Then 2261 * we will create another one which will have the correct 2262 * fastpath info. 2263 */ 2264 switch (ire->ire_type) { 2265 case IRE_CACHE: 2266 ire_delete(ire); 2267 break; 2268 case IRE_MIPRTUN: 2269 case IRE_BROADCAST: 2270 /* 2271 * We can't delete the ire since it is difficult to 2272 * recreate these ire's without going through the 2273 * ipif down/up dance. The nce_fp_mp is protected by the 2274 * nce_lock in the case of IRE_MIPRTUN and IRE_BROADCAST. 2275 * All access to ire->ire_nce->nce_fp_mp in the case of these 2276 * 2 ire types * is protected by nce_lock. 2277 */ 2278 mutex_enter(&ire->ire_nce->nce_lock); 2279 if (ire->ire_nce->nce_fp_mp != NULL) { 2280 freeb(ire->ire_nce->nce_fp_mp); 2281 ire->ire_nce->nce_fp_mp = NULL; 2282 mutex_exit(&ire->ire_nce->nce_lock); 2283 /* 2284 * No fastpath probe if there is no stq i.e. 2285 * i.e. the case of loopback broadcast ire. 2286 */ 2287 if (ire->ire_stq == NULL) 2288 break; 2289 ill = (ill_t *)((ire->ire_stq)->q_ptr); 2290 ire_fastpath_list_add(ill, ire); 2291 res = ill_fastpath_probe(ill, ire->ire_nce->nce_res_mp); 2292 /* 2293 * EAGAIN is an indication of a transient error 2294 * i.e. allocation failure etc. leave the ire in the 2295 * list it will be updated when another probe happens 2296 * for another ire if not it will be taken out of the 2297 * list when the ire is deleted. 2298 */ 2299 if (res != 0 && res != EAGAIN) 2300 ire_fastpath_list_delete(ill, ire); 2301 } else { 2302 mutex_exit(&ire->ire_nce->nce_lock); 2303 } 2304 break; 2305 default: 2306 /* This should not happen! */ 2307 ip0dbg(("ire_fastpath_flush: Wrong ire type %s\n", 2308 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type))); 2309 break; 2310 } 2311 } 2312 2313 /* 2314 * Drain the list of ire's waiting for fastpath response. 2315 */ 2316 void 2317 ire_fastpath_list_dispatch(ill_t *ill, boolean_t (*func)(ire_t *, void *), 2318 void *arg) 2319 { 2320 ire_t *next_ire; 2321 ire_t *current_ire; 2322 ire_t *first_ire; 2323 ire_t *prev_ire = NULL; 2324 2325 ASSERT(ill != NULL); 2326 2327 mutex_enter(&ill->ill_lock); 2328 first_ire = current_ire = (ire_t *)ill->ill_fastpath_list; 2329 while (current_ire != (ire_t *)&ill->ill_fastpath_list) { 2330 next_ire = current_ire->ire_fastpath; 2331 /* 2332 * Take it off the list if we're flushing, or if the callback 2333 * routine tells us to do so. Otherwise, leave the ire in the 2334 * fastpath list to handle any pending response from the lower 2335 * layer. We can't drain the list when the callback routine 2336 * comparison failed, because the response is asynchronous in 2337 * nature, and may not arrive in the same order as the list 2338 * insertion. 2339 */ 2340 if (func == NULL || func(current_ire, arg)) { 2341 current_ire->ire_fastpath = NULL; 2342 if (current_ire == first_ire) 2343 ill->ill_fastpath_list = first_ire = next_ire; 2344 else 2345 prev_ire->ire_fastpath = next_ire; 2346 } else { 2347 /* previous element that is still in the list */ 2348 prev_ire = current_ire; 2349 } 2350 current_ire = next_ire; 2351 } 2352 mutex_exit(&ill->ill_lock); 2353 } 2354 2355 /* 2356 * Add ire to the ire fastpath list. 2357 */ 2358 static void 2359 ire_fastpath_list_add(ill_t *ill, ire_t *ire) 2360 { 2361 ASSERT(ill != NULL); 2362 ASSERT(ire->ire_stq != NULL); 2363 2364 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2365 mutex_enter(&ill->ill_lock); 2366 2367 /* 2368 * if ire has not been deleted and 2369 * is not already in the list add it. 2370 */ 2371 if (((ire->ire_marks & IRE_MARK_CONDEMNED) == 0) && 2372 (ire->ire_fastpath == NULL)) { 2373 ire->ire_fastpath = (ire_t *)ill->ill_fastpath_list; 2374 ill->ill_fastpath_list = ire; 2375 } 2376 2377 mutex_exit(&ill->ill_lock); 2378 rw_exit(&ire->ire_bucket->irb_lock); 2379 } 2380 2381 /* 2382 * remove ire from the ire fastpath list. 2383 */ 2384 void 2385 ire_fastpath_list_delete(ill_t *ill, ire_t *ire) 2386 { 2387 ire_t *ire_ptr; 2388 2389 ASSERT(ire->ire_stq != NULL && ill != NULL); 2390 2391 mutex_enter(&ill->ill_lock); 2392 if (ire->ire_fastpath == NULL) 2393 goto done; 2394 2395 ASSERT(ill->ill_fastpath_list != &ill->ill_fastpath_list); 2396 2397 if (ill->ill_fastpath_list == ire) { 2398 ill->ill_fastpath_list = ire->ire_fastpath; 2399 } else { 2400 ire_ptr = ill->ill_fastpath_list; 2401 while (ire_ptr != (ire_t *)&ill->ill_fastpath_list) { 2402 if (ire_ptr->ire_fastpath == ire) { 2403 ire_ptr->ire_fastpath = ire->ire_fastpath; 2404 break; 2405 } 2406 ire_ptr = ire_ptr->ire_fastpath; 2407 } 2408 } 2409 ire->ire_fastpath = NULL; 2410 done: 2411 mutex_exit(&ill->ill_lock); 2412 } 2413 2414 /* 2415 * Return any local address. We use this to target ourselves 2416 * when the src address was specified as 'default'. 2417 * Preference for IRE_LOCAL entries. 2418 */ 2419 ire_t * 2420 ire_lookup_local(zoneid_t zoneid) 2421 { 2422 ire_t *ire; 2423 irb_t *irb; 2424 ire_t *maybe = NULL; 2425 int i; 2426 2427 for (i = 0; i < ip_cache_table_size; i++) { 2428 irb = &ip_cache_table[i]; 2429 if (irb->irb_ire == NULL) 2430 continue; 2431 rw_enter(&irb->irb_lock, RW_READER); 2432 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2433 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 2434 (ire->ire_zoneid != zoneid && 2435 ire->ire_zoneid != ALL_ZONES)) 2436 continue; 2437 switch (ire->ire_type) { 2438 case IRE_LOOPBACK: 2439 if (maybe == NULL) { 2440 IRE_REFHOLD(ire); 2441 maybe = ire; 2442 } 2443 break; 2444 case IRE_LOCAL: 2445 if (maybe != NULL) { 2446 ire_refrele(maybe); 2447 } 2448 IRE_REFHOLD(ire); 2449 rw_exit(&irb->irb_lock); 2450 return (ire); 2451 } 2452 } 2453 rw_exit(&irb->irb_lock); 2454 } 2455 return (maybe); 2456 } 2457 2458 /* 2459 * If the specified IRE is associated with a particular ILL, return 2460 * that ILL pointer (May be called as writer.). 2461 * 2462 * NOTE : This is not a generic function that can be used always. 2463 * This function always returns the ill of the outgoing packets 2464 * if this ire is used. 2465 */ 2466 ill_t * 2467 ire_to_ill(const ire_t *ire) 2468 { 2469 ill_t *ill = NULL; 2470 2471 /* 2472 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 2473 * the source address from. ire_stq is the one where the 2474 * packets will be sent out on. We return that here. 2475 * 2476 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 2477 * copy and they always exist next to each other with loopback 2478 * copy being the first one. If we are called on the non-loopback 2479 * copy, return the one pointed by ire_stq. If it was called on 2480 * a loopback copy, we still return the one pointed by the next 2481 * ire's ire_stq pointer i.e the one pointed by the non-loopback 2482 * copy. We don't want use ire_ipif as it might represent the 2483 * source address (if we borrow source addresses for 2484 * IRE_BROADCASTS in the future). 2485 * However if an interface is currently coming up, the above 2486 * condition may not hold during that period since the ires 2487 * are added one at a time. Thus one of the pair could have been 2488 * added and the other not yet added. 2489 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill. 2490 * 4) For all others return the ones pointed by ire_ipif->ipif_ill. 2491 * That handles IRE_LOOPBACK. 2492 */ 2493 2494 if (ire->ire_type == IRE_CACHE) { 2495 ill = (ill_t *)ire->ire_stq->q_ptr; 2496 } else if (ire->ire_type == IRE_BROADCAST) { 2497 if (ire->ire_stq != NULL) { 2498 ill = (ill_t *)ire->ire_stq->q_ptr; 2499 } else { 2500 ire_t *ire_next; 2501 2502 ire_next = ire->ire_next; 2503 if (ire_next != NULL && 2504 ire_next->ire_type == IRE_BROADCAST && 2505 ire_next->ire_addr == ire->ire_addr && 2506 ire_next->ire_ipif == ire->ire_ipif) { 2507 ill = (ill_t *)ire_next->ire_stq->q_ptr; 2508 } 2509 } 2510 } else if (ire->ire_rfq != NULL) { 2511 ill = ire->ire_rfq->q_ptr; 2512 } else if (ire->ire_ipif != NULL) { 2513 ill = ire->ire_ipif->ipif_ill; 2514 } 2515 return (ill); 2516 } 2517 2518 /* Arrange to call the specified function for every IRE in the world. */ 2519 void 2520 ire_walk(pfv_t func, void *arg) 2521 { 2522 ire_walk_ipvers(func, arg, 0, ALL_ZONES); 2523 } 2524 2525 void 2526 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid) 2527 { 2528 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid); 2529 } 2530 2531 void 2532 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid) 2533 { 2534 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid); 2535 } 2536 2537 /* 2538 * Walk a particular version. version == 0 means both v4 and v6. 2539 */ 2540 static void 2541 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid) 2542 { 2543 if (vers != IPV6_VERSION) { 2544 /* 2545 * ip_forwarding_table variable doesn't matter for IPv4 since 2546 * ire_walk_ill_tables directly calls with the ip_ftable global 2547 */ 2548 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 2549 0, NULL, 2550 ip_cache_table_size, ip_cache_table, NULL, zoneid); 2551 } 2552 if (vers != IPV4_VERSION) { 2553 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 2554 ip6_ftable_hash_size, ip_forwarding_table_v6, 2555 ip6_cache_table_size, ip_cache_table_v6, NULL, zoneid); 2556 } 2557 } 2558 2559 /* 2560 * Arrange to call the specified 2561 * function for every IRE that matches the ill. 2562 */ 2563 void 2564 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2565 ill_t *ill) 2566 { 2567 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); 2568 } 2569 2570 void 2571 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2572 ill_t *ill) 2573 { 2574 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2575 ill); 2576 } 2577 2578 void 2579 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2580 ill_t *ill) 2581 { 2582 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2583 ill); 2584 } 2585 2586 /* 2587 * Walk a particular ill and version. version == 0 means both v4 and v6. 2588 */ 2589 static void 2590 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2591 void *arg, uchar_t vers, ill_t *ill) 2592 { 2593 if (vers != IPV6_VERSION) { 2594 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2595 IP_MASK_TABLE_SIZE, 0, 2596 NULL, ip_cache_table_size, 2597 ip_cache_table, ill, ALL_ZONES); 2598 } 2599 if (vers != IPV4_VERSION) { 2600 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2601 IP6_MASK_TABLE_SIZE, ip6_ftable_hash_size, 2602 ip_forwarding_table_v6, ip6_cache_table_size, 2603 ip_cache_table_v6, ill, ALL_ZONES); 2604 } 2605 } 2606 2607 boolean_t 2608 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2609 ill_t *ill, zoneid_t zoneid) 2610 { 2611 ill_t *ire_stq_ill = NULL; 2612 ill_t *ire_ipif_ill = NULL; 2613 ill_group_t *ire_ill_group = NULL; 2614 2615 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2616 /* 2617 * 1) MATCH_IRE_WQ : Used specifically to match on ire_stq. 2618 * The fast path update uses this to make sure it does not 2619 * update the fast path header of interface X with the fast 2620 * path updates it recieved on interface Y. It is similar 2621 * in handling DL_NOTE_FASTPATH_FLUSH. 2622 * 2623 * 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2624 * pointed by ire_stq and ire_ipif. Only in the case of 2625 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2626 * different ills. But we want to keep this function generic 2627 * enough for future use. So, we always try to match on both. 2628 * The only caller of this function ire_walk_ill_tables, will 2629 * call "func" after we return from this function. We expect 2630 * "func" to do the right filtering of ires in this case. 2631 * 2632 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2633 * pointed by ire_stq and ire_ipif should always be the same. 2634 * So, we just match on only one of them. 2635 */ 2636 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2637 if (ire->ire_stq != NULL) 2638 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2639 if (ire->ire_ipif != NULL) 2640 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2641 if (ire_stq_ill != NULL) 2642 ire_ill_group = ire_stq_ill->ill_group; 2643 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2644 ire_ill_group = ire_ipif_ill->ill_group; 2645 } 2646 2647 if (zoneid != ALL_ZONES) { 2648 /* 2649 * We're walking the IREs for a specific zone. The only relevant 2650 * IREs are: 2651 * - all IREs with a matching ire_zoneid 2652 * - all IRE_OFFSUBNETs as they're shared across all zones 2653 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2654 * with a matching zone 2655 * - IRE_DEFAULTs with a gateway reachable from the zone 2656 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2657 * using the same rule; but the above rules are consistent with 2658 * the behavior of ire_ftable_lookup[_v6]() so that all the 2659 * routes that can be matched during lookup are also matched 2660 * here. 2661 */ 2662 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2663 /* 2664 * Note, IRE_INTERFACE can have the stq as NULL. For 2665 * example, if the default multicast route is tied to 2666 * the loopback address. 2667 */ 2668 if ((ire->ire_type & IRE_INTERFACE) && 2669 (ire->ire_stq != NULL)) { 2670 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2671 if (ire->ire_ipversion == IPV4_VERSION) { 2672 if (!ipif_usesrc_avail(ire_stq_ill, 2673 zoneid)) 2674 /* No usable src addr in zone */ 2675 return (B_FALSE); 2676 } else if (ire_stq_ill->ill_usesrc_ifindex 2677 != 0) { 2678 /* 2679 * For IPv6 use ipif_select_source_v6() 2680 * so the right scope selection is done 2681 */ 2682 ipif_t *src_ipif; 2683 src_ipif = 2684 ipif_select_source_v6(ire_stq_ill, 2685 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2686 IPV6_PREFER_SRC_DEFAULT, 2687 zoneid); 2688 if (src_ipif != NULL) { 2689 ipif_refrele(src_ipif); 2690 } else { 2691 return (B_FALSE); 2692 } 2693 } else { 2694 return (B_FALSE); 2695 } 2696 2697 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2698 return (B_FALSE); 2699 } 2700 } 2701 2702 /* 2703 * Match all default routes from the global zone, irrespective 2704 * of reachability. For a non-global zone only match those 2705 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2706 */ 2707 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2708 int ire_match_flags = 0; 2709 in6_addr_t gw_addr_v6; 2710 ire_t *rire; 2711 2712 ire_match_flags |= MATCH_IRE_TYPE; 2713 if (ire->ire_ipif != NULL) { 2714 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2715 } 2716 if (ire->ire_ipversion == IPV4_VERSION) { 2717 rire = ire_route_lookup(ire->ire_gateway_addr, 2718 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2719 zoneid, NULL, ire_match_flags); 2720 } else { 2721 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2722 mutex_enter(&ire->ire_lock); 2723 gw_addr_v6 = ire->ire_gateway_addr_v6; 2724 mutex_exit(&ire->ire_lock); 2725 rire = ire_route_lookup_v6(&gw_addr_v6, 2726 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2727 NULL, zoneid, NULL, ire_match_flags); 2728 } 2729 if (rire == NULL) { 2730 return (B_FALSE); 2731 } 2732 ire_refrele(rire); 2733 } 2734 } 2735 2736 if (((!(match_flags & MATCH_IRE_TYPE)) || 2737 (ire->ire_type & ire_type)) && 2738 ((!(match_flags & MATCH_IRE_WQ)) || 2739 (ire->ire_stq == ill->ill_wq)) && 2740 ((!(match_flags & MATCH_IRE_ILL)) || 2741 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2742 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2743 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2744 (ire_ill_group != NULL && 2745 ire_ill_group == ill->ill_group))) { 2746 return (B_TRUE); 2747 } 2748 return (B_FALSE); 2749 } 2750 2751 int 2752 rtfunc(struct radix_node *rn, void *arg) 2753 { 2754 struct rtfuncarg *rtf = arg; 2755 struct rt_entry *rt; 2756 irb_t *irb; 2757 ire_t *ire; 2758 boolean_t ret; 2759 2760 rt = (struct rt_entry *)rn; 2761 ASSERT(rt != NULL); 2762 irb = &rt->rt_irb; 2763 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2764 if ((rtf->rt_match_flags != 0) || 2765 (rtf->rt_zoneid != ALL_ZONES)) { 2766 ret = ire_walk_ill_match(rtf->rt_match_flags, 2767 rtf->rt_ire_type, ire, 2768 rtf->rt_ill, rtf->rt_zoneid); 2769 } else 2770 ret = B_TRUE; 2771 if (ret) 2772 (*rtf->rt_func)(ire, rtf->rt_arg); 2773 } 2774 return (0); 2775 } 2776 2777 /* 2778 * Walk the ftable and the ctable entries that match the ill. 2779 */ 2780 void 2781 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2782 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2783 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid) 2784 { 2785 irb_t *irb_ptr; 2786 irb_t *irb; 2787 ire_t *ire; 2788 int i, j; 2789 boolean_t ret; 2790 struct rtfuncarg rtfarg; 2791 2792 ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | 2793 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2794 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2795 /* 2796 * Optimize by not looking at the forwarding table if there 2797 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2798 * specified in ire_type. 2799 */ 2800 if (!(match_flags & MATCH_IRE_TYPE) || 2801 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2802 /* knobs such that routine is called only for v6 case */ 2803 if (ipftbl == ip_forwarding_table_v6) { 2804 for (i = (ftbl_sz - 1); i >= 0; i--) { 2805 if ((irb_ptr = ipftbl[i]) == NULL) 2806 continue; 2807 for (j = 0; j < htbl_sz; j++) { 2808 irb = &irb_ptr[j]; 2809 if (irb->irb_ire == NULL) 2810 continue; 2811 2812 IRB_REFHOLD(irb); 2813 for (ire = irb->irb_ire; ire != NULL; 2814 ire = ire->ire_next) { 2815 if (match_flags == 0 && 2816 zoneid == ALL_ZONES) { 2817 ret = B_TRUE; 2818 } else { 2819 ret = 2820 ire_walk_ill_match( 2821 match_flags, 2822 ire_type, ire, ill, 2823 zoneid); 2824 } 2825 if (ret) 2826 (*func)(ire, arg); 2827 } 2828 IRB_REFRELE(irb); 2829 } 2830 } 2831 } else { 2832 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2833 rtfarg.rt_func = func; 2834 rtfarg.rt_arg = arg; 2835 if (match_flags != 0) { 2836 rtfarg.rt_match_flags = match_flags; 2837 } 2838 rtfarg.rt_ire_type = ire_type; 2839 rtfarg.rt_ill = ill; 2840 rtfarg.rt_zoneid = zoneid; 2841 (void) ip_ftable->rnh_walktree_mt(ip_ftable, rtfunc, 2842 &rtfarg, irb_refhold_rn, irb_refrele_rn); 2843 } 2844 } 2845 2846 /* 2847 * Optimize by not looking at the cache table if there 2848 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2849 * specified in ire_type. 2850 */ 2851 if (!(match_flags & MATCH_IRE_TYPE) || 2852 ((ire_type & IRE_CACHETABLE) != 0)) { 2853 for (i = 0; i < ctbl_sz; i++) { 2854 irb = &ipctbl[i]; 2855 if (irb->irb_ire == NULL) 2856 continue; 2857 IRB_REFHOLD(irb); 2858 for (ire = irb->irb_ire; ire != NULL; 2859 ire = ire->ire_next) { 2860 if (match_flags == 0 && zoneid == ALL_ZONES) { 2861 ret = B_TRUE; 2862 } else { 2863 ret = ire_walk_ill_match( 2864 match_flags, ire_type, 2865 ire, ill, zoneid); 2866 } 2867 if (ret) 2868 (*func)(ire, arg); 2869 } 2870 IRB_REFRELE(irb); 2871 } 2872 } 2873 } 2874 2875 /* 2876 * This routine walks through the ill chain to find if there is any 2877 * ire linked to the ill's interface based forwarding table 2878 * The arg could be ill or mp. This routine is called when a ill goes 2879 * down/deleted or the 'ipv4_ire_srcif_status' report is printed. 2880 */ 2881 void 2882 ire_walk_srcif_table_v4(pfv_t func, void *arg) 2883 { 2884 irb_t *irb; 2885 ire_t *ire; 2886 ill_t *ill, *next_ill; 2887 int i; 2888 int total_count; 2889 ill_walk_context_t ctx; 2890 2891 /* 2892 * Take care of ire's in other ill's per-interface forwarding 2893 * table. Check if any ire in any of the ill's ill_srcif_table 2894 * is pointing to this ill. 2895 */ 2896 mutex_enter(&ire_srcif_table_lock); 2897 if (ire_srcif_table_count == 0) { 2898 mutex_exit(&ire_srcif_table_lock); 2899 return; 2900 } 2901 mutex_exit(&ire_srcif_table_lock); 2902 2903 #ifdef DEBUG 2904 /* Keep accounting of all interface based table ires */ 2905 total_count = 0; 2906 rw_enter(&ill_g_lock, RW_READER); 2907 ill = ILL_START_WALK_V4(&ctx); 2908 while (ill != NULL) { 2909 mutex_enter(&ill->ill_lock); 2910 total_count += ill->ill_srcif_refcnt; 2911 next_ill = ill_next(&ctx, ill); 2912 mutex_exit(&ill->ill_lock); 2913 ill = next_ill; 2914 } 2915 rw_exit(&ill_g_lock); 2916 2917 /* Hold lock here to make sure ire_srcif_table_count is stable */ 2918 mutex_enter(&ire_srcif_table_lock); 2919 i = ire_srcif_table_count; 2920 mutex_exit(&ire_srcif_table_lock); 2921 ip1dbg(("ire_walk_srcif_v4: ire_srcif_table_count %d " 2922 "total ill_srcif_refcnt %d\n", i, total_count)); 2923 #endif 2924 rw_enter(&ill_g_lock, RW_READER); 2925 ill = ILL_START_WALK_V4(&ctx); 2926 while (ill != NULL) { 2927 mutex_enter(&ill->ill_lock); 2928 if ((ill->ill_srcif_refcnt == 0) || !ILL_CAN_LOOKUP(ill)) { 2929 next_ill = ill_next(&ctx, ill); 2930 mutex_exit(&ill->ill_lock); 2931 ill = next_ill; 2932 continue; 2933 } 2934 ill_refhold_locked(ill); 2935 mutex_exit(&ill->ill_lock); 2936 rw_exit(&ill_g_lock); 2937 if (ill->ill_srcif_table != NULL) { 2938 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 2939 irb = &(ill->ill_srcif_table[i]); 2940 if (irb->irb_ire == NULL) 2941 continue; 2942 IRB_REFHOLD(irb); 2943 for (ire = irb->irb_ire; ire != NULL; 2944 ire = ire->ire_next) { 2945 (*func)(ire, arg); 2946 } 2947 IRB_REFRELE(irb); 2948 } 2949 } 2950 rw_enter(&ill_g_lock, RW_READER); 2951 next_ill = ill_next(&ctx, ill); 2952 ill_refrele(ill); 2953 ill = next_ill; 2954 } 2955 rw_exit(&ill_g_lock); 2956 } 2957 2958 /* 2959 * This function takes a mask and returns 2960 * number of bits set in the mask. If no 2961 * bit is set it returns 0. 2962 * Assumes a contiguous mask. 2963 */ 2964 int 2965 ip_mask_to_plen(ipaddr_t mask) 2966 { 2967 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2968 } 2969 2970 /* 2971 * Convert length for a mask to the mask. 2972 */ 2973 ipaddr_t 2974 ip_plen_to_mask(uint_t masklen) 2975 { 2976 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2977 } 2978 2979 void 2980 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2981 { 2982 ill_t *ill_list[NUM_ILLS]; 2983 2984 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2985 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2986 ill_list[2] = ire->ire_in_ill; 2987 ill_unlock_ills(ill_list, NUM_ILLS); 2988 rw_exit(&irb_ptr->irb_lock); 2989 rw_exit(&ill_g_usesrc_lock); 2990 } 2991 2992 /* 2993 * ire_add_v[46] atomically make sure that the ipif or ill associated 2994 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2995 * before adding the ire to the table. This ensures that we don't create 2996 * new IRE_CACHEs with stale values for parameters that are passed to 2997 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2998 * to the ipif_mtu, and not the value. The actual value is derived from the 2999 * parent ire or ipif under the bucket lock. 3000 */ 3001 int 3002 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 3003 ipsq_func_t func) 3004 { 3005 ill_t *stq_ill; 3006 ill_t *ipif_ill; 3007 ill_t *in_ill; 3008 ill_t *ill_list[NUM_ILLS]; 3009 int cnt = NUM_ILLS; 3010 int error = 0; 3011 ill_t *ill = NULL; 3012 3013 ill_list[0] = stq_ill = ire->ire_stq != 3014 NULL ? ire->ire_stq->q_ptr : NULL; 3015 ill_list[1] = ipif_ill = ire->ire_ipif != 3016 NULL ? ire->ire_ipif->ipif_ill : NULL; 3017 ill_list[2] = in_ill = ire->ire_in_ill; 3018 3019 ASSERT((q != NULL && mp != NULL && func != NULL) || 3020 (q == NULL && mp == NULL && func == NULL)); 3021 rw_enter(&ill_g_usesrc_lock, RW_READER); 3022 GRAB_CONN_LOCK(q); 3023 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 3024 ill_lock_ills(ill_list, cnt); 3025 3026 /* 3027 * While the IRE is in the process of being added, a user may have 3028 * invoked the ifconfig usesrc option on the stq_ill to make it a 3029 * usesrc client ILL. Check for this possibility here, if it is true 3030 * then we fail adding the IRE_CACHE. Another check is to make sure 3031 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 3032 * group. The ill_g_usesrc_lock is released in ire_atomic_end 3033 */ 3034 if ((ire->ire_type & IRE_CACHE) && 3035 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 3036 if (stq_ill->ill_usesrc_ifindex != 0) { 3037 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 3038 if ((ipif_ill->ill_phyint->phyint_ifindex != 3039 stq_ill->ill_usesrc_ifindex) || 3040 (ipif_ill->ill_usesrc_grp_next == NULL) || 3041 (ipif_ill->ill_usesrc_ifindex != 0)) { 3042 error = EINVAL; 3043 goto done; 3044 } 3045 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 3046 error = EINVAL; 3047 goto done; 3048 } 3049 } 3050 3051 /* 3052 * IPMP flag settings happen without taking the exclusive route 3053 * in ip_sioctl_flags. So we need to make an atomic check here 3054 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 3055 * FAILBACK=no case. 3056 */ 3057 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 3058 if (stq_ill->ill_state_flags & ILL_CHANGING) { 3059 ill = stq_ill; 3060 error = EAGAIN; 3061 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 3062 (ill_is_probeonly(stq_ill) && 3063 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 3064 error = EINVAL; 3065 } 3066 goto done; 3067 } 3068 3069 /* 3070 * We don't check for OFFLINE/FAILED in this case because 3071 * the source address selection logic (ipif_select_source) 3072 * may still select a source address from such an ill. The 3073 * assumption is that these addresses will be moved by in.mpathd 3074 * soon. (i.e. this is a race). However link local addresses 3075 * will not move and hence ipif_select_source_v6 tries to avoid 3076 * FAILED ills. Please see ipif_select_source_v6 for more info 3077 */ 3078 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 3079 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 3080 ill = ipif_ill; 3081 error = EAGAIN; 3082 goto done; 3083 } 3084 3085 if ((in_ill != NULL) && !IAM_WRITER_ILL(in_ill) && 3086 (in_ill->ill_state_flags & ILL_CHANGING)) { 3087 ill = in_ill; 3088 error = EAGAIN; 3089 goto done; 3090 } 3091 3092 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 3093 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 3094 ill = ire->ire_ipif->ipif_ill; 3095 ASSERT(ill != NULL); 3096 error = EAGAIN; 3097 goto done; 3098 } 3099 3100 done: 3101 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 3102 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 3103 mutex_enter(&ipsq->ipsq_lock); 3104 ire_atomic_end(irb_ptr, ire); 3105 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 3106 mutex_exit(&ipsq->ipsq_lock); 3107 error = EINPROGRESS; 3108 } else if (error != 0) { 3109 ire_atomic_end(irb_ptr, ire); 3110 } 3111 3112 RELEASE_CONN_LOCK(q); 3113 return (error); 3114 } 3115 3116 /* 3117 * Add a fully initialized IRE to an appropriate table based on 3118 * ire_type. 3119 * 3120 * allow_unresolved == B_FALSE indicates a legacy code-path call 3121 * that has prohibited the addition of incomplete ire's. If this 3122 * parameter is set, and we find an nce that is in a state other 3123 * than ND_REACHABLE, we fail the add. Note that nce_state could be 3124 * something other than ND_REACHABLE if nce_reinit has just 3125 * kicked in and reset the nce. 3126 */ 3127 int 3128 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 3129 boolean_t allow_unresolved) 3130 { 3131 ire_t *ire1; 3132 ill_t *stq_ill = NULL; 3133 ill_t *ill; 3134 ipif_t *ipif = NULL; 3135 ill_walk_context_t ctx; 3136 ire_t *ire = *irep; 3137 int error; 3138 boolean_t ire_is_mblk = B_FALSE; 3139 tsol_gcgrp_t *gcgrp = NULL; 3140 tsol_gcgrp_addr_t ga; 3141 3142 ASSERT(ire->ire_type != IRE_MIPRTUN); 3143 3144 /* get ready for the day when original ire is not created as mblk */ 3145 if (ire->ire_mp != NULL) { 3146 ire_is_mblk = B_TRUE; 3147 /* Copy the ire to a kmem_alloc'ed area */ 3148 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 3149 if (ire1 == NULL) { 3150 ip1dbg(("ire_add: alloc failed\n")); 3151 ire_delete(ire); 3152 *irep = NULL; 3153 return (ENOMEM); 3154 } 3155 ire->ire_marks &= ~IRE_MARK_UNCACHED; 3156 *ire1 = *ire; 3157 ire1->ire_mp = NULL; 3158 ire1->ire_stq_ifindex = 0; 3159 freeb(ire->ire_mp); 3160 ire = ire1; 3161 } 3162 if (ire->ire_stq != NULL) 3163 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3164 3165 if (ire->ire_type == IRE_CACHE) { 3166 /* 3167 * If this interface is FAILED, or INACTIVE or has hit 3168 * the FAILBACK=no case, we create IRE_CACHES marked 3169 * HIDDEN for some special cases e.g. bind to 3170 * IPIF_NOFAILOVER address etc. So, if this interface 3171 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 3172 * not creating hidden ires, we should not allow that. 3173 * This happens because the state of the interface 3174 * changed while we were waiting in ARP. If this is the 3175 * daemon sending probes, the next probe will create 3176 * HIDDEN ires and we will create an ire then. This 3177 * cannot happen with NDP currently because IRE is 3178 * never queued in NDP. But it can happen in the 3179 * future when we have external resolvers with IPv6. 3180 * If the interface gets marked with OFFLINE while we 3181 * are waiting in ARP, don't add the ire. 3182 */ 3183 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 3184 (ill_is_probeonly(stq_ill) && 3185 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 3186 /* 3187 * We don't know whether it is a valid ipif or not. 3188 * unless we do the check below. So, set it to NULL. 3189 */ 3190 ire->ire_ipif = NULL; 3191 ire_delete(ire); 3192 *irep = NULL; 3193 return (EINVAL); 3194 } 3195 } 3196 3197 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 3198 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 3199 rw_enter(&ill_g_lock, RW_READER); 3200 ill = ILL_START_WALK_ALL(&ctx); 3201 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 3202 mutex_enter(&ill->ill_lock); 3203 if (ill->ill_state_flags & ILL_CONDEMNED) { 3204 mutex_exit(&ill->ill_lock); 3205 continue; 3206 } 3207 /* 3208 * We need to make sure that the ipif is a valid one 3209 * before adding the IRE_CACHE. This happens only 3210 * with IRE_CACHE when there is an external resolver. 3211 * 3212 * We can unplumb a logical interface while the 3213 * packet is waiting in ARP with the IRE. Then, 3214 * later on when we feed the IRE back, the ipif 3215 * has to be re-checked. This can't happen with 3216 * NDP currently, as we never queue the IRE with 3217 * the packet. We always try to recreate the IRE 3218 * when the resolution is completed. But, we do 3219 * it for IPv6 also here so that in future if 3220 * we have external resolvers, it will work without 3221 * any change. 3222 */ 3223 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 3224 if (ipif != NULL) { 3225 ipif_refhold_locked(ipif); 3226 mutex_exit(&ill->ill_lock); 3227 break; 3228 } 3229 mutex_exit(&ill->ill_lock); 3230 } 3231 rw_exit(&ill_g_lock); 3232 if (ipif == NULL || 3233 (ipif->ipif_isv6 && 3234 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 3235 &ipif->ipif_v6src_addr)) || 3236 (!ipif->ipif_isv6 && 3237 ire->ire_src_addr != ipif->ipif_src_addr) || 3238 ire->ire_zoneid != ipif->ipif_zoneid) { 3239 3240 if (ipif != NULL) 3241 ipif_refrele(ipif); 3242 ire->ire_ipif = NULL; 3243 ire_delete(ire); 3244 *irep = NULL; 3245 return (EINVAL); 3246 } 3247 3248 3249 ASSERT(ill != NULL); 3250 /* 3251 * If this group was dismantled while this packets was 3252 * queued in ARP, don't add it here. 3253 */ 3254 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 3255 /* We don't want ire_inactive bump stats for this */ 3256 ipif_refrele(ipif); 3257 ire->ire_ipif = NULL; 3258 ire_delete(ire); 3259 *irep = NULL; 3260 return (EINVAL); 3261 } 3262 3263 /* 3264 * Since we didn't attach label security attributes to the 3265 * ire for the resolver case, we need to add it now. (only 3266 * for v4 resolver and v6 xresolv case). 3267 */ 3268 if (is_system_labeled() && ire_is_mblk) { 3269 if (ire->ire_ipversion == IPV4_VERSION) { 3270 ga.ga_af = AF_INET; 3271 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 3272 INADDR_ANY ? ire->ire_gateway_addr : 3273 ire->ire_addr, &ga.ga_addr); 3274 } else { 3275 ga.ga_af = AF_INET6; 3276 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 3277 &ire->ire_gateway_addr_v6) ? 3278 ire->ire_addr_v6 : 3279 ire->ire_gateway_addr_v6; 3280 } 3281 gcgrp = gcgrp_lookup(&ga, B_FALSE); 3282 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 3283 NULL, gcgrp); 3284 if (error != 0) { 3285 if (gcgrp != NULL) { 3286 GCGRP_REFRELE(gcgrp); 3287 gcgrp = NULL; 3288 } 3289 ipif_refrele(ipif); 3290 ire->ire_ipif = NULL; 3291 ire_delete(ire); 3292 *irep = NULL; 3293 return (error); 3294 } 3295 } 3296 } 3297 3298 /* 3299 * In case ire was changed 3300 */ 3301 *irep = ire; 3302 if (ire->ire_ipversion == IPV6_VERSION) { 3303 error = ire_add_v6(irep, q, mp, func); 3304 } else { 3305 if (ire->ire_in_ill == NULL) 3306 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 3307 else 3308 error = ire_add_srcif_v4(irep, q, mp, func); 3309 } 3310 if (ipif != NULL) 3311 ipif_refrele(ipif); 3312 return (error); 3313 } 3314 3315 /* 3316 * Add an initialized IRE to an appropriate table based on ire_type. 3317 * 3318 * The forward table contains IRE_PREFIX/IRE_HOST/IRE_HOST_REDIRECT 3319 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 3320 * 3321 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 3322 * and IRE_CACHE. 3323 * 3324 * NOTE : This function is called as writer though not required 3325 * by this function. 3326 */ 3327 static int 3328 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 3329 boolean_t allow_unresolved) 3330 { 3331 ire_t *ire1; 3332 irb_t *irb_ptr; 3333 ire_t **irep; 3334 int flags; 3335 ire_t *pire = NULL; 3336 ill_t *stq_ill; 3337 ire_t *ire = *ire_p; 3338 int error; 3339 boolean_t need_refrele = B_FALSE; 3340 nce_t *nce; 3341 3342 if (ire->ire_ipif != NULL) 3343 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3344 if (ire->ire_stq != NULL) 3345 ASSERT(!MUTEX_HELD( 3346 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 3347 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3348 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 3349 ASSERT(ire->ire_in_ill == NULL); /* No srcif entries */ 3350 3351 /* Find the appropriate list head. */ 3352 switch (ire->ire_type) { 3353 case IRE_HOST: 3354 ire->ire_mask = IP_HOST_MASK; 3355 ire->ire_masklen = IP_ABITS; 3356 if ((ire->ire_flags & RTF_SETSRC) == 0) 3357 ire->ire_src_addr = 0; 3358 break; 3359 case IRE_HOST_REDIRECT: 3360 ire->ire_mask = IP_HOST_MASK; 3361 ire->ire_masklen = IP_ABITS; 3362 ire->ire_src_addr = 0; 3363 break; 3364 case IRE_CACHE: 3365 case IRE_BROADCAST: 3366 case IRE_LOCAL: 3367 case IRE_LOOPBACK: 3368 ire->ire_mask = IP_HOST_MASK; 3369 ire->ire_masklen = IP_ABITS; 3370 break; 3371 case IRE_PREFIX: 3372 if ((ire->ire_flags & RTF_SETSRC) == 0) 3373 ire->ire_src_addr = 0; 3374 break; 3375 case IRE_DEFAULT: 3376 if ((ire->ire_flags & RTF_SETSRC) == 0) 3377 ire->ire_src_addr = 0; 3378 break; 3379 case IRE_IF_RESOLVER: 3380 case IRE_IF_NORESOLVER: 3381 break; 3382 default: 3383 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 3384 (void *)ire, ire->ire_type)); 3385 ire_delete(ire); 3386 *ire_p = NULL; 3387 return (EINVAL); 3388 } 3389 3390 /* Make sure the address is properly masked. */ 3391 ire->ire_addr &= ire->ire_mask; 3392 3393 /* 3394 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 3395 * of the interface route while adding an IRE_CACHE for an on-link 3396 * destination in the IRE_IF_RESOLVER case, since the ire has to 3397 * go to ARP and return. We can't do a REFHOLD on the 3398 * associated interface ire for fear of ARP freeing the message. 3399 * Here we look up the interface ire in the forwarding table and 3400 * make sure that the interface route has not been deleted. 3401 */ 3402 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 3403 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 3404 3405 ASSERT(ire->ire_max_fragp == NULL); 3406 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 3407 /* 3408 * The ihandle that we used in ip_newroute_multi 3409 * comes from the interface route corresponding 3410 * to ire_ipif. Lookup here to see if it exists 3411 * still. 3412 * If the ire has a source address assigned using 3413 * RTF_SETSRC, ire_ipif is the logical interface holding 3414 * this source address, so we can't use it to check for 3415 * the existence of the interface route. Instead we rely 3416 * on the brute force ihandle search in 3417 * ire_ihandle_lookup_onlink() below. 3418 */ 3419 pire = ipif_to_ire(ire->ire_ipif); 3420 if (pire == NULL) { 3421 ire_delete(ire); 3422 *ire_p = NULL; 3423 return (EINVAL); 3424 } else if (pire->ire_ihandle != ire->ire_ihandle) { 3425 ire_refrele(pire); 3426 ire_delete(ire); 3427 *ire_p = NULL; 3428 return (EINVAL); 3429 } 3430 } else { 3431 pire = ire_ihandle_lookup_onlink(ire); 3432 if (pire == NULL) { 3433 ire_delete(ire); 3434 *ire_p = NULL; 3435 return (EINVAL); 3436 } 3437 } 3438 /* Prevent pire from getting deleted */ 3439 IRB_REFHOLD(pire->ire_bucket); 3440 /* Has it been removed already ? */ 3441 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 3442 IRB_REFRELE(pire->ire_bucket); 3443 ire_refrele(pire); 3444 ire_delete(ire); 3445 *ire_p = NULL; 3446 return (EINVAL); 3447 } 3448 } else { 3449 ASSERT(ire->ire_max_fragp != NULL); 3450 } 3451 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 3452 3453 if (ire->ire_ipif != NULL) { 3454 /* 3455 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 3456 * for historic reasons and to maintain symmetry with 3457 * IPv6 code path. Historically this was used by 3458 * multicast code to create multiple IRE_CACHES on 3459 * a single ill with different ipifs. This was used 3460 * so that multicast packets leaving the node had the 3461 * right source address. This is no longer needed as 3462 * ip_wput initializes the address correctly. 3463 */ 3464 flags |= MATCH_IRE_IPIF; 3465 /* 3466 * If we are creating hidden ires, make sure we search on 3467 * this ill (MATCH_IRE_ILL) and a hidden ire, 3468 * while we are searching for duplicates below. Otherwise we 3469 * could potentially find an IRE on some other interface 3470 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 3471 * shouldn't do this as this will lead to an infinite loop 3472 * (if we get to ip_wput again) eventually we need an hidden 3473 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 3474 * done below. 3475 */ 3476 if (ire->ire_type == IRE_CACHE && 3477 (ire->ire_marks & IRE_MARK_HIDDEN)) 3478 flags |= (MATCH_IRE_MARK_HIDDEN); 3479 } 3480 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 3481 irb_ptr = ire_get_bucket(ire); 3482 need_refrele = B_TRUE; 3483 if (irb_ptr == NULL) { 3484 /* 3485 * This assumes that the ire has not added 3486 * a reference to the ipif. 3487 */ 3488 ire->ire_ipif = NULL; 3489 ire_delete(ire); 3490 if (pire != NULL) { 3491 IRB_REFRELE(pire->ire_bucket); 3492 ire_refrele(pire); 3493 } 3494 *ire_p = NULL; 3495 return (EINVAL); 3496 } 3497 } else { 3498 irb_ptr = &(ip_cache_table[IRE_ADDR_HASH(ire->ire_addr, 3499 ip_cache_table_size)]); 3500 } 3501 3502 /* 3503 * Start the atomic add of the ire. Grab the ill locks, 3504 * ill_g_usesrc_lock and the bucket lock. Check for condemned 3505 * 3506 * If ipif or ill is changing ire_atomic_start() may queue the 3507 * request and return EINPROGRESS. 3508 * To avoid lock order problems, get the ndp4.ndp_g_lock. 3509 */ 3510 mutex_enter(&ndp4.ndp_g_lock); 3511 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 3512 if (error != 0) { 3513 mutex_exit(&ndp4.ndp_g_lock); 3514 /* 3515 * We don't know whether it is a valid ipif or not. 3516 * So, set it to NULL. This assumes that the ire has not added 3517 * a reference to the ipif. 3518 */ 3519 ire->ire_ipif = NULL; 3520 ire_delete(ire); 3521 if (pire != NULL) { 3522 IRB_REFRELE(pire->ire_bucket); 3523 ire_refrele(pire); 3524 } 3525 *ire_p = NULL; 3526 if (need_refrele) 3527 IRB_REFRELE(irb_ptr); 3528 return (error); 3529 } 3530 /* 3531 * To avoid creating ires having stale values for the ire_max_frag 3532 * we get the latest value atomically here. For more details 3533 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 3534 * in ip_rput_dlpi_writer 3535 */ 3536 if (ire->ire_max_fragp == NULL) { 3537 if (CLASSD(ire->ire_addr)) 3538 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 3539 else 3540 ire->ire_max_frag = pire->ire_max_frag; 3541 } else { 3542 uint_t max_frag; 3543 3544 max_frag = *ire->ire_max_fragp; 3545 ire->ire_max_fragp = NULL; 3546 ire->ire_max_frag = max_frag; 3547 } 3548 /* 3549 * Atomically check for duplicate and insert in the table. 3550 */ 3551 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 3552 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 3553 continue; 3554 if (ire->ire_ipif != NULL) { 3555 /* 3556 * We do MATCH_IRE_ILL implicitly here for IREs 3557 * with a non-null ire_ipif, including IRE_CACHEs. 3558 * As ire_ipif and ire_stq could point to two 3559 * different ills, we can't pass just ire_ipif to 3560 * ire_match_args and get a match on both ills. 3561 * This is just needed for duplicate checks here and 3562 * so we don't add an extra argument to 3563 * ire_match_args for this. Do it locally. 3564 * 3565 * NOTE : Currently there is no part of the code 3566 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 3567 * match for IRE_CACHEs. Thus we don't want to 3568 * extend the arguments to ire_match_args. 3569 */ 3570 if (ire1->ire_stq != ire->ire_stq) 3571 continue; 3572 /* 3573 * Multiroute IRE_CACHEs for a given destination can 3574 * have the same ire_ipif, typically if their source 3575 * address is forced using RTF_SETSRC, and the same 3576 * send-to queue. We differentiate them using the parent 3577 * handle. 3578 */ 3579 if (ire->ire_type == IRE_CACHE && 3580 (ire1->ire_flags & RTF_MULTIRT) && 3581 (ire->ire_flags & RTF_MULTIRT) && 3582 (ire1->ire_phandle != ire->ire_phandle)) 3583 continue; 3584 } 3585 if (ire1->ire_zoneid != ire->ire_zoneid) 3586 continue; 3587 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 3588 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 3589 ire->ire_zoneid, 0, NULL, flags)) { 3590 /* 3591 * Return the old ire after doing a REFHOLD. 3592 * As most of the callers continue to use the IRE 3593 * after adding, we return a held ire. This will 3594 * avoid a lookup in the caller again. If the callers 3595 * don't want to use it, they need to do a REFRELE. 3596 */ 3597 ip1dbg(("found dup ire existing %p new %p", 3598 (void *)ire1, (void *)ire)); 3599 IRE_REFHOLD(ire1); 3600 ire_atomic_end(irb_ptr, ire); 3601 mutex_exit(&ndp4.ndp_g_lock); 3602 ire_delete(ire); 3603 if (pire != NULL) { 3604 /* 3605 * Assert that it is not removed from the 3606 * list yet. 3607 */ 3608 ASSERT(pire->ire_ptpn != NULL); 3609 IRB_REFRELE(pire->ire_bucket); 3610 ire_refrele(pire); 3611 } 3612 *ire_p = ire1; 3613 if (need_refrele) 3614 IRB_REFRELE(irb_ptr); 3615 return (0); 3616 } 3617 } 3618 if (ire->ire_type & IRE_CACHE) { 3619 ASSERT(ire->ire_stq != NULL); 3620 nce = ndp_lookup_v4(ire_to_ill(ire), 3621 ((ire->ire_gateway_addr != INADDR_ANY) ? 3622 &ire->ire_gateway_addr : &ire->ire_addr), 3623 B_TRUE); 3624 if (nce != NULL) 3625 mutex_enter(&nce->nce_lock); 3626 /* 3627 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 3628 * and the caller has prohibited the addition of incomplete 3629 * ire's, we fail the add. Note that nce_state could be 3630 * something other than ND_REACHABLE if nce_reinit has just 3631 * kicked in and reset the nce. 3632 */ 3633 if ((nce == NULL) || 3634 (nce->nce_flags & NCE_F_CONDEMNED) || 3635 (!allow_unresolved && 3636 ((nce->nce_state & ND_REACHABLE) == 0))) { 3637 if (nce != NULL) 3638 mutex_exit(&nce->nce_lock); 3639 ire_atomic_end(irb_ptr, ire); 3640 mutex_exit(&ndp4.ndp_g_lock); 3641 if (nce != NULL) 3642 NCE_REFRELE(nce); 3643 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 3644 ire_delete(ire); 3645 if (pire != NULL) { 3646 IRB_REFRELE(pire->ire_bucket); 3647 ire_refrele(pire); 3648 } 3649 *ire_p = NULL; 3650 if (need_refrele) 3651 IRB_REFRELE(irb_ptr); 3652 return (EINVAL); 3653 } else { 3654 ire->ire_nce = nce; 3655 mutex_exit(&nce->nce_lock); 3656 /* 3657 * We are associating this nce to the ire, so 3658 * change the nce ref taken in ndp_lookup_v4() from 3659 * NCE_REFHOLD to NCE_REFHOLD_NOTR 3660 */ 3661 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 3662 } 3663 } 3664 /* 3665 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 3666 * grouping identical addresses together on the hash chain. We also 3667 * don't want to send multiple copies out if there are two ills part 3668 * of the same group. Thus we group the ires with same addr and same 3669 * ill group together so that ip_wput_ire can easily skip all the 3670 * ires with same addr and same group after sending the first copy. 3671 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3672 * interested in such groupings only for broadcasts. 3673 * 3674 * NOTE : If the interfaces are brought up first and then grouped, 3675 * illgrp_insert will handle it. We come here when the interfaces 3676 * are already in group and we are bringing them UP. 3677 * 3678 * Find the first entry that matches ire_addr. *irep will be null 3679 * if no match. 3680 */ 3681 irep = (ire_t **)irb_ptr; 3682 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3683 irep = &ire1->ire_next; 3684 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3685 /* 3686 * We found some ire (i.e *irep) with a matching addr. We 3687 * want to group ires with same addr and same ill group 3688 * together. 3689 * 3690 * First get to the entry that matches our address and 3691 * ill group i.e stop as soon as we find the first ire 3692 * matching the ill group and address. If there is only 3693 * an address match, we should walk and look for some 3694 * group match. These are some of the possible scenarios : 3695 * 3696 * 1) There are no groups at all i.e all ire's ill_group 3697 * are NULL. In that case we will essentially group 3698 * all the ires with the same addr together. Same as 3699 * the "else" block of this "if". 3700 * 3701 * 2) There are some groups and this ire's ill_group is 3702 * NULL. In this case, we will first find the group 3703 * that matches the address and a NULL group. Then 3704 * we will insert the ire at the end of that group. 3705 * 3706 * 3) There are some groups and this ires's ill_group is 3707 * non-NULL. In this case we will first find the group 3708 * that matches the address and the ill_group. Then 3709 * we will insert the ire at the end of that group. 3710 */ 3711 /* LINTED : constant in conditional context */ 3712 while (1) { 3713 ire1 = *irep; 3714 if ((ire1->ire_next == NULL) || 3715 (ire1->ire_next->ire_addr != ire->ire_addr) || 3716 (ire1->ire_type != IRE_BROADCAST) || 3717 (ire1->ire_ipif->ipif_ill->ill_group == 3718 ire->ire_ipif->ipif_ill->ill_group)) 3719 break; 3720 irep = &ire1->ire_next; 3721 } 3722 ASSERT(*irep != NULL); 3723 irep = &((*irep)->ire_next); 3724 3725 /* 3726 * Either we have hit the end of the list or the address 3727 * did not match or the group *matched*. If we found 3728 * a match on the group, skip to the end of the group. 3729 */ 3730 while (*irep != NULL) { 3731 ire1 = *irep; 3732 if ((ire1->ire_addr != ire->ire_addr) || 3733 (ire1->ire_type != IRE_BROADCAST) || 3734 (ire1->ire_ipif->ipif_ill->ill_group != 3735 ire->ire_ipif->ipif_ill->ill_group)) 3736 break; 3737 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3738 ire1->ire_ipif == ire->ire_ipif) { 3739 irep = &ire1->ire_next; 3740 break; 3741 } 3742 irep = &ire1->ire_next; 3743 } 3744 } else if (*irep != NULL) { 3745 /* 3746 * Find the last ire which matches ire_addr. 3747 * Needed to do tail insertion among entries with the same 3748 * ire_addr. 3749 */ 3750 while (ire->ire_addr == ire1->ire_addr) { 3751 irep = &ire1->ire_next; 3752 ire1 = *irep; 3753 if (ire1 == NULL) 3754 break; 3755 } 3756 } 3757 3758 /* Insert at *irep */ 3759 ire1 = *irep; 3760 if (ire1 != NULL) 3761 ire1->ire_ptpn = &ire->ire_next; 3762 ire->ire_next = ire1; 3763 /* Link the new one in. */ 3764 ire->ire_ptpn = irep; 3765 3766 /* 3767 * ire_walk routines de-reference ire_next without holding 3768 * a lock. Before we point to the new ire, we want to make 3769 * sure the store that sets the ire_next of the new ire 3770 * reaches global visibility, so that ire_walk routines 3771 * don't see a truncated list of ires i.e if the ire_next 3772 * of the new ire gets set after we do "*irep = ire" due 3773 * to re-ordering, the ire_walk thread will see a NULL 3774 * once it accesses the ire_next of the new ire. 3775 * membar_producer() makes sure that the following store 3776 * happens *after* all of the above stores. 3777 */ 3778 membar_producer(); 3779 *irep = ire; 3780 ire->ire_bucket = irb_ptr; 3781 /* 3782 * We return a bumped up IRE above. Keep it symmetrical 3783 * so that the callers will always have to release. This 3784 * helps the callers of this function because they continue 3785 * to use the IRE after adding and hence they don't have to 3786 * lookup again after we return the IRE. 3787 * 3788 * NOTE : We don't have to use atomics as this is appearing 3789 * in the list for the first time and no one else can bump 3790 * up the reference count on this yet. 3791 */ 3792 IRE_REFHOLD_LOCKED(ire); 3793 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 3794 3795 irb_ptr->irb_ire_cnt++; 3796 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3797 irb_ptr->irb_nire++; 3798 3799 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3800 irb_ptr->irb_tmp_ire_cnt++; 3801 3802 if (ire->ire_ipif != NULL) { 3803 ire->ire_ipif->ipif_ire_cnt++; 3804 if (ire->ire_stq != NULL) { 3805 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3806 stq_ill->ill_ire_cnt++; 3807 } 3808 } else { 3809 ASSERT(ire->ire_stq == NULL); 3810 } 3811 3812 ire_atomic_end(irb_ptr, ire); 3813 mutex_exit(&ndp4.ndp_g_lock); 3814 3815 if (pire != NULL) { 3816 /* Assert that it is not removed from the list yet */ 3817 ASSERT(pire->ire_ptpn != NULL); 3818 IRB_REFRELE(pire->ire_bucket); 3819 ire_refrele(pire); 3820 } 3821 3822 if (ire->ire_type != IRE_CACHE) { 3823 /* 3824 * For ire's with host mask see if there is an entry 3825 * in the cache. If there is one flush the whole cache as 3826 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3827 * If no entry is found than there is no need to flush the 3828 * cache. 3829 */ 3830 if (ire->ire_mask == IP_HOST_MASK) { 3831 ire_t *lire; 3832 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3833 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3834 if (lire != NULL) { 3835 ire_refrele(lire); 3836 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3837 } 3838 } else { 3839 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3840 } 3841 } 3842 /* 3843 * We had to delay the fast path probe until the ire is inserted 3844 * in the list. Otherwise the fast path ack won't find the ire in 3845 * the table. 3846 */ 3847 if (ire->ire_type == IRE_CACHE || ire->ire_type == IRE_BROADCAST) 3848 ire_fastpath(ire); 3849 if (ire->ire_ipif != NULL) 3850 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3851 *ire_p = ire; 3852 if (need_refrele) { 3853 IRB_REFRELE(irb_ptr); 3854 } 3855 return (0); 3856 } 3857 3858 /* 3859 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3860 * do the final cleanup for this ire. 3861 */ 3862 void 3863 ire_cleanup(ire_t *ire) 3864 { 3865 ire_t *ire_next; 3866 3867 ASSERT(ire != NULL); 3868 3869 while (ire != NULL) { 3870 ire_next = ire->ire_next; 3871 if (ire->ire_ipversion == IPV4_VERSION) { 3872 ire_delete_v4(ire); 3873 BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted); 3874 } else { 3875 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3876 ire_delete_v6(ire); 3877 BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted); 3878 } 3879 /* 3880 * Now it's really out of the list. Before doing the 3881 * REFRELE, set ire_next to NULL as ire_inactive asserts 3882 * so. 3883 */ 3884 ire->ire_next = NULL; 3885 IRE_REFRELE_NOTR(ire); 3886 ire = ire_next; 3887 } 3888 } 3889 3890 /* 3891 * IRB_REFRELE is the only caller of the function. It calls to unlink 3892 * all the CONDEMNED ires from this bucket. 3893 */ 3894 ire_t * 3895 ire_unlink(irb_t *irb) 3896 { 3897 ire_t *ire; 3898 ire_t *ire1; 3899 ire_t **ptpn; 3900 ire_t *ire_list = NULL; 3901 3902 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3903 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3904 (irb->irb_refcnt == 0)); 3905 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3906 ASSERT(irb->irb_ire != NULL); 3907 3908 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3909 ire1 = ire->ire_next; 3910 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3911 ptpn = ire->ire_ptpn; 3912 ire1 = ire->ire_next; 3913 if (ire1) 3914 ire1->ire_ptpn = ptpn; 3915 *ptpn = ire1; 3916 ire->ire_ptpn = NULL; 3917 ire->ire_next = NULL; 3918 if (ire->ire_type == IRE_DEFAULT) { 3919 /* 3920 * IRE is out of the list. We need to adjust 3921 * the accounting before the caller drops 3922 * the lock. 3923 */ 3924 if (ire->ire_ipversion == IPV6_VERSION) { 3925 ASSERT(ipv6_ire_default_count != 0); 3926 ipv6_ire_default_count--; 3927 } 3928 } 3929 /* 3930 * We need to call ire_delete_v4 or ire_delete_v6 3931 * to clean up the cache or the redirects pointing at 3932 * the default gateway. We need to drop the lock 3933 * as ire_flush_cache/ire_delete_host_redircts require 3934 * so. But we can't drop the lock, as ire_unlink needs 3935 * to atomically remove the ires from the list. 3936 * So, create a temporary list of CONDEMNED ires 3937 * for doing ire_delete_v4/ire_delete_v6 operations 3938 * later on. 3939 */ 3940 ire->ire_next = ire_list; 3941 ire_list = ire; 3942 } 3943 } 3944 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3945 return (ire_list); 3946 } 3947 3948 /* 3949 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3950 * ARP message on any of its interface queue, it scans the nce table and 3951 * deletes and calls ndp_delete() for the appropriate nce. This action 3952 * also deletes all the neighbor/ire cache entries for that address. 3953 * This function is called from ip_arp_news in ip.c and also for 3954 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3955 * true if it finds a nce entry which is used by ip_arp_news to determine if 3956 * it needs to do an ire_walk_v4. The return value is also used for the 3957 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3958 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3959 * ip_if->ipif_ill also needs to be matched. 3960 */ 3961 boolean_t 3962 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif) 3963 { 3964 ill_t *ill; 3965 nce_t *nce; 3966 3967 ill = (ipif ? ipif->ipif_ill : NULL); 3968 3969 if (ill != NULL) { 3970 /* 3971 * clean up the nce (and any relevant ire's) that matches 3972 * on addr and ill. 3973 */ 3974 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3975 if (nce != NULL) { 3976 ndp_delete(nce); 3977 return (B_TRUE); 3978 } 3979 } else { 3980 /* 3981 * ill is wildcard. clean up all nce's and 3982 * ire's that match on addr 3983 */ 3984 nce_clookup_t cl; 3985 3986 cl.ncecl_addr = addr; 3987 cl.ncecl_found = B_FALSE; 3988 3989 ndp_walk_common(&ndp4, NULL, 3990 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3991 3992 /* 3993 * ncecl_found would be set by ip_nce_clookup_and_delete if 3994 * we found a matching nce. 3995 */ 3996 return (cl.ncecl_found); 3997 } 3998 return (B_FALSE); 3999 4000 } 4001 4002 /* Delete the supplied nce if its nce_addr matches the supplied address */ 4003 static void 4004 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 4005 { 4006 nce_clookup_t *cl = (nce_clookup_t *)arg; 4007 ipaddr_t nce_addr; 4008 4009 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 4010 if (nce_addr == cl->ncecl_addr) { 4011 cl->ncecl_found = B_TRUE; 4012 /* clean up the nce (and any relevant ire's) */ 4013 ndp_delete(nce); 4014 } 4015 } 4016 4017 /* 4018 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 4019 * when there are no ire's left in the bucket. Returns TRUE if the bucket 4020 * is deleted and freed. 4021 */ 4022 boolean_t 4023 irb_inactive(irb_t *irb) 4024 { 4025 struct rt_entry *rt; 4026 struct radix_node *rn; 4027 4028 rt = IRB2RT(irb); 4029 rn = (struct radix_node *)rt; 4030 4031 /* first remove it from the radix tree. */ 4032 RADIX_NODE_HEAD_WLOCK(ip_ftable); 4033 rw_enter(&irb->irb_lock, RW_WRITER); 4034 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 4035 rn = ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 4036 ip_ftable); 4037 DTRACE_PROBE1(irb__free, rt_t *, rt); 4038 ASSERT((void *)rn == (void *)rt); 4039 Free(rt, rt_entry_cache); 4040 /* irb_lock is freed */ 4041 RADIX_NODE_HEAD_UNLOCK(ip_ftable); 4042 return (B_TRUE); 4043 } 4044 rw_exit(&irb->irb_lock); 4045 RADIX_NODE_HEAD_UNLOCK(ip_ftable); 4046 return (B_FALSE); 4047 } 4048 4049 /* 4050 * Delete the specified IRE. 4051 */ 4052 void 4053 ire_delete(ire_t *ire) 4054 { 4055 ire_t *ire1; 4056 ire_t **ptpn; 4057 irb_t *irb; 4058 4059 if ((irb = ire->ire_bucket) == NULL) { 4060 /* 4061 * It was never inserted in the list. Should call REFRELE 4062 * to free this IRE. 4063 */ 4064 IRE_REFRELE_NOTR(ire); 4065 return; 4066 } 4067 4068 rw_enter(&irb->irb_lock, RW_WRITER); 4069 4070 if (irb->irb_rr_origin == ire) { 4071 irb->irb_rr_origin = NULL; 4072 } 4073 4074 /* 4075 * In case of V4 we might still be waiting for fastpath ack. 4076 */ 4077 if (ire->ire_ipversion == IPV4_VERSION && ire->ire_stq != NULL) { 4078 ill_t *ill; 4079 4080 ill = ire_to_ill(ire); 4081 if (ill != NULL) 4082 ire_fastpath_list_delete(ill, ire); 4083 } 4084 4085 if (ire->ire_ptpn == NULL) { 4086 /* 4087 * Some other thread has removed us from the list. 4088 * It should have done the REFRELE for us. 4089 */ 4090 rw_exit(&irb->irb_lock); 4091 return; 4092 } 4093 4094 if (irb->irb_refcnt != 0) { 4095 /* 4096 * The last thread to leave this bucket will 4097 * delete this ire. 4098 */ 4099 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 4100 irb->irb_ire_cnt--; 4101 if (ire->ire_marks & IRE_MARK_TEMPORARY) 4102 irb->irb_tmp_ire_cnt--; 4103 ire->ire_marks |= IRE_MARK_CONDEMNED; 4104 } 4105 irb->irb_marks |= IRB_MARK_CONDEMNED; 4106 rw_exit(&irb->irb_lock); 4107 return; 4108 } 4109 4110 /* 4111 * Normally to delete an ire, we walk the bucket. While we 4112 * walk the bucket, we normally bump up irb_refcnt and hence 4113 * we return from above where we mark CONDEMNED and the ire 4114 * gets deleted from ire_unlink. This case is where somebody 4115 * knows the ire e.g by doing a lookup, and wants to delete the 4116 * IRE. irb_refcnt would be 0 in this case if nobody is walking 4117 * the bucket. 4118 */ 4119 ptpn = ire->ire_ptpn; 4120 ire1 = ire->ire_next; 4121 if (ire1 != NULL) 4122 ire1->ire_ptpn = ptpn; 4123 ASSERT(ptpn != NULL); 4124 *ptpn = ire1; 4125 ire->ire_ptpn = NULL; 4126 ire->ire_next = NULL; 4127 if (ire->ire_ipversion == IPV6_VERSION) { 4128 BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted); 4129 } else { 4130 BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted); 4131 } 4132 /* 4133 * ip_wput/ip_wput_v6 checks this flag to see whether 4134 * it should still use the cached ire or not. 4135 */ 4136 ire->ire_marks |= IRE_MARK_CONDEMNED; 4137 if (ire->ire_type == IRE_DEFAULT) { 4138 /* 4139 * IRE is out of the list. We need to adjust the 4140 * accounting before we drop the lock. 4141 */ 4142 if (ire->ire_ipversion == IPV6_VERSION) { 4143 ASSERT(ipv6_ire_default_count != 0); 4144 ipv6_ire_default_count--; 4145 } 4146 } 4147 irb->irb_ire_cnt--; 4148 4149 if (ire->ire_marks & IRE_MARK_TEMPORARY) 4150 irb->irb_tmp_ire_cnt--; 4151 rw_exit(&irb->irb_lock); 4152 4153 if (ire->ire_ipversion == IPV6_VERSION) { 4154 ire_delete_v6(ire); 4155 } else { 4156 ire_delete_v4(ire); 4157 } 4158 /* 4159 * We removed it from the list. Decrement the 4160 * reference count. 4161 */ 4162 IRE_REFRELE_NOTR(ire); 4163 } 4164 4165 /* 4166 * Delete the specified IRE. 4167 * All calls should use ire_delete(). 4168 * Sometimes called as writer though not required by this function. 4169 * 4170 * NOTE : This function is called only if the ire was added 4171 * in the list. 4172 */ 4173 static void 4174 ire_delete_v4(ire_t *ire) 4175 { 4176 ASSERT(ire->ire_refcnt >= 1); 4177 ASSERT(ire->ire_ipversion == IPV4_VERSION); 4178 4179 if (ire->ire_type != IRE_CACHE) 4180 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 4181 if (ire->ire_type == IRE_DEFAULT) { 4182 /* 4183 * when a default gateway is going away 4184 * delete all the host redirects pointing at that 4185 * gateway. 4186 */ 4187 ire_delete_host_redirects(ire->ire_gateway_addr); 4188 } 4189 } 4190 4191 /* 4192 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 4193 * to free the ire when the reference count goes to zero. 4194 */ 4195 void 4196 ire_inactive(ire_t *ire) 4197 { 4198 nce_t *nce; 4199 ill_t *ill = NULL; 4200 ill_t *stq_ill = NULL; 4201 ill_t *in_ill = NULL; 4202 ipif_t *ipif; 4203 boolean_t need_wakeup = B_FALSE; 4204 irb_t *irb; 4205 4206 ASSERT(ire->ire_refcnt == 0); 4207 ASSERT(ire->ire_ptpn == NULL); 4208 ASSERT(ire->ire_next == NULL); 4209 4210 if (ire->ire_gw_secattr != NULL) { 4211 ire_gw_secattr_free(ire->ire_gw_secattr); 4212 ire->ire_gw_secattr = NULL; 4213 } 4214 4215 if (ire->ire_mp != NULL) { 4216 ASSERT(ire->ire_fastpath == NULL); 4217 ASSERT(ire->ire_bucket == NULL); 4218 mutex_destroy(&ire->ire_lock); 4219 BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed); 4220 if (ire->ire_nce != NULL) 4221 NCE_REFRELE_NOTR(ire->ire_nce); 4222 freeb(ire->ire_mp); 4223 return; 4224 } 4225 4226 if ((nce = ire->ire_nce) != NULL) { 4227 NCE_REFRELE_NOTR(nce); 4228 ire->ire_nce = NULL; 4229 } 4230 4231 if (ire->ire_ipif == NULL) 4232 goto end; 4233 4234 ipif = ire->ire_ipif; 4235 ill = ipif->ipif_ill; 4236 4237 if (ire->ire_bucket == NULL) { 4238 /* The ire was never inserted in the table. */ 4239 goto end; 4240 } 4241 4242 /* 4243 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 4244 * non-null ill_ire_count also goes down by 1. If the in_ill is 4245 * non-null either ill_mrtun_refcnt or ill_srcif_refcnt goes down by 1. 4246 * 4247 * The ipif that is associated with an ire is ire->ire_ipif and 4248 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 4249 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 4250 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 4251 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 4252 * different. If this is different from ire->ire_ipif->ipif_ill and 4253 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 4254 * ipif_ill_refrele_tail on the stq_ill. If mobile ip is in use 4255 * in_ill could be non-null. If it is a reverse tunnel related ire 4256 * ill_mrtun_refcnt is non-zero. If it is forward tunnel related ire 4257 * ill_srcif_refcnt is non-null. 4258 */ 4259 4260 if (ire->ire_stq != NULL) 4261 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 4262 if (ire->ire_in_ill != NULL) 4263 in_ill = ire->ire_in_ill; 4264 4265 if ((stq_ill == NULL || stq_ill == ill) && (in_ill == NULL)) { 4266 /* Optimize the most common case */ 4267 mutex_enter(&ill->ill_lock); 4268 ASSERT(ipif->ipif_ire_cnt != 0); 4269 ipif->ipif_ire_cnt--; 4270 if (ipif->ipif_ire_cnt == 0) 4271 need_wakeup = B_TRUE; 4272 if (stq_ill != NULL) { 4273 ASSERT(stq_ill->ill_ire_cnt != 0); 4274 stq_ill->ill_ire_cnt--; 4275 if (stq_ill->ill_ire_cnt == 0) 4276 need_wakeup = B_TRUE; 4277 } 4278 if (need_wakeup) { 4279 /* Drops the ill lock */ 4280 ipif_ill_refrele_tail(ill); 4281 } else { 4282 mutex_exit(&ill->ill_lock); 4283 } 4284 } else { 4285 /* 4286 * We can't grab all the ill locks at the same time. 4287 * It can lead to recursive lock enter in the call to 4288 * ipif_ill_refrele_tail and later. Instead do it 1 at 4289 * a time. 4290 */ 4291 mutex_enter(&ill->ill_lock); 4292 ASSERT(ipif->ipif_ire_cnt != 0); 4293 ipif->ipif_ire_cnt--; 4294 if (ipif->ipif_ire_cnt == 0) { 4295 /* Drops the lock */ 4296 ipif_ill_refrele_tail(ill); 4297 } else { 4298 mutex_exit(&ill->ill_lock); 4299 } 4300 if (stq_ill != NULL) { 4301 mutex_enter(&stq_ill->ill_lock); 4302 ASSERT(stq_ill->ill_ire_cnt != 0); 4303 stq_ill->ill_ire_cnt--; 4304 if (stq_ill->ill_ire_cnt == 0) { 4305 /* Drops the ill lock */ 4306 ipif_ill_refrele_tail(stq_ill); 4307 } else { 4308 mutex_exit(&stq_ill->ill_lock); 4309 } 4310 } 4311 if (in_ill != NULL) { 4312 mutex_enter(&in_ill->ill_lock); 4313 if (ire->ire_type == IRE_MIPRTUN) { 4314 /* 4315 * Mobile IP reverse tunnel ire. 4316 * Decrement table count and the 4317 * ill reference count. This signifies 4318 * mipagent is deleting reverse tunnel 4319 * route for a particular mobile node. 4320 */ 4321 mutex_enter(&ire_mrtun_lock); 4322 ire_mrtun_count--; 4323 mutex_exit(&ire_mrtun_lock); 4324 ASSERT(in_ill->ill_mrtun_refcnt != 0); 4325 in_ill->ill_mrtun_refcnt--; 4326 if (in_ill->ill_mrtun_refcnt == 0) { 4327 /* Drops the ill lock */ 4328 ipif_ill_refrele_tail(in_ill); 4329 } else { 4330 mutex_exit(&in_ill->ill_lock); 4331 } 4332 } else { 4333 mutex_enter(&ire_srcif_table_lock); 4334 ire_srcif_table_count--; 4335 mutex_exit(&ire_srcif_table_lock); 4336 ASSERT(in_ill->ill_srcif_refcnt != 0); 4337 in_ill->ill_srcif_refcnt--; 4338 if (in_ill->ill_srcif_refcnt == 0) { 4339 /* Drops the ill lock */ 4340 ipif_ill_refrele_tail(in_ill); 4341 } else { 4342 mutex_exit(&in_ill->ill_lock); 4343 } 4344 } 4345 } 4346 } 4347 end: 4348 /* This should be true for both V4 and V6 */ 4349 ASSERT(ire->ire_fastpath == NULL); 4350 4351 if ((ire->ire_type & IRE_FORWARDTABLE) && 4352 (ire->ire_ipversion == IPV4_VERSION) && 4353 ((irb = ire->ire_bucket) != NULL)) { 4354 rw_enter(&irb->irb_lock, RW_WRITER); 4355 irb->irb_nire--; 4356 /* 4357 * Instead of examining the conditions for freeing 4358 * the radix node here, we do it by calling 4359 * IRB_REFRELE which is a single point in the code 4360 * that embeds that logic. Bump up the refcnt to 4361 * be able to call IRB_REFRELE 4362 */ 4363 IRB_REFHOLD_LOCKED(irb); 4364 rw_exit(&irb->irb_lock); 4365 IRB_REFRELE(irb); 4366 } 4367 ire->ire_ipif = NULL; 4368 4369 if (ire->ire_in_ill != NULL) { 4370 ire->ire_in_ill = NULL; 4371 } 4372 4373 #ifdef IRE_DEBUG 4374 ire_trace_inactive(ire); 4375 #endif 4376 mutex_destroy(&ire->ire_lock); 4377 if (ire->ire_ipversion == IPV6_VERSION) { 4378 BUMP_IRE_STATS(ire_stats_v6, ire_stats_freed); 4379 } else { 4380 BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed); 4381 } 4382 ASSERT(ire->ire_mp == NULL); 4383 /* Has been allocated out of the cache */ 4384 kmem_cache_free(ire_cache, ire); 4385 } 4386 4387 /* 4388 * ire_walk routine to delete all IRE_CACHE/IRE_HOST_REDIRECT entries 4389 * that have a given gateway address. 4390 */ 4391 void 4392 ire_delete_cache_gw(ire_t *ire, char *cp) 4393 { 4394 ipaddr_t gw_addr; 4395 4396 if (!(ire->ire_type & (IRE_CACHE|IRE_HOST_REDIRECT))) 4397 return; 4398 4399 bcopy(cp, &gw_addr, sizeof (gw_addr)); 4400 if (ire->ire_gateway_addr == gw_addr) { 4401 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 4402 (int)ntohl(ire->ire_addr), ire->ire_type, 4403 (int)ntohl(ire->ire_gateway_addr))); 4404 ire_delete(ire); 4405 } 4406 } 4407 4408 /* 4409 * Remove all IRE_CACHE entries that match the ire specified. 4410 * 4411 * The flag argument indicates if the flush request is due to addition 4412 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 4413 * 4414 * This routine takes only the IREs from the forwarding table and flushes 4415 * the corresponding entries from the cache table. 4416 * 4417 * When flushing due to the deletion of an old route, it 4418 * just checks the cache handles (ire_phandle and ire_ihandle) and 4419 * deletes the ones that match. 4420 * 4421 * When flushing due to the creation of a new route, it checks 4422 * if a cache entry's address matches the one in the IRE and 4423 * that the cache entry's parent has a less specific mask than the 4424 * one in IRE. The destination of such a cache entry could be the 4425 * gateway for other cache entries, so we need to flush those as 4426 * well by looking for gateway addresses matching the IRE's address. 4427 */ 4428 void 4429 ire_flush_cache_v4(ire_t *ire, int flag) 4430 { 4431 int i; 4432 ire_t *cire; 4433 irb_t *irb; 4434 4435 if (ire->ire_type & IRE_CACHE) 4436 return; 4437 4438 /* 4439 * If a default is just created, there is no point 4440 * in going through the cache, as there will not be any 4441 * cached ires. 4442 */ 4443 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 4444 return; 4445 if (flag == IRE_FLUSH_ADD) { 4446 /* 4447 * This selective flush is due to the addition of 4448 * new IRE. 4449 */ 4450 for (i = 0; i < ip_cache_table_size; i++) { 4451 irb = &ip_cache_table[i]; 4452 if ((cire = irb->irb_ire) == NULL) 4453 continue; 4454 IRB_REFHOLD(irb); 4455 for (cire = irb->irb_ire; cire != NULL; 4456 cire = cire->ire_next) { 4457 if (cire->ire_type != IRE_CACHE) 4458 continue; 4459 /* 4460 * If 'cire' belongs to the same subnet 4461 * as the new ire being added, and 'cire' 4462 * is derived from a prefix that is less 4463 * specific than the new ire being added, 4464 * we need to flush 'cire'; for instance, 4465 * when a new interface comes up. 4466 */ 4467 if (((cire->ire_addr & ire->ire_mask) == 4468 (ire->ire_addr & ire->ire_mask)) && 4469 (ip_mask_to_plen(cire->ire_cmask) <= 4470 ire->ire_masklen)) { 4471 ire_delete(cire); 4472 continue; 4473 } 4474 /* 4475 * This is the case when the ire_gateway_addr 4476 * of 'cire' belongs to the same subnet as 4477 * the new ire being added. 4478 * Flushing such ires is sometimes required to 4479 * avoid misrouting: say we have a machine with 4480 * two interfaces (I1 and I2), a default router 4481 * R on the I1 subnet, and a host route to an 4482 * off-link destination D with a gateway G on 4483 * the I2 subnet. 4484 * Under normal operation, we will have an 4485 * on-link cache entry for G and an off-link 4486 * cache entry for D with G as ire_gateway_addr, 4487 * traffic to D will reach its destination 4488 * through gateway G. 4489 * If the administrator does 'ifconfig I2 down', 4490 * the cache entries for D and G will be 4491 * flushed. However, G will now be resolved as 4492 * an off-link destination using R (the default 4493 * router) as gateway. Then D will also be 4494 * resolved as an off-link destination using G 4495 * as gateway - this behavior is due to 4496 * compatibility reasons, see comment in 4497 * ire_ihandle_lookup_offlink(). Traffic to D 4498 * will go to the router R and probably won't 4499 * reach the destination. 4500 * The administrator then does 'ifconfig I2 up'. 4501 * Since G is on the I2 subnet, this routine 4502 * will flush its cache entry. It must also 4503 * flush the cache entry for D, otherwise 4504 * traffic will stay misrouted until the IRE 4505 * times out. 4506 */ 4507 if ((cire->ire_gateway_addr & ire->ire_mask) == 4508 (ire->ire_addr & ire->ire_mask)) { 4509 ire_delete(cire); 4510 continue; 4511 } 4512 } 4513 IRB_REFRELE(irb); 4514 } 4515 } else { 4516 /* 4517 * delete the cache entries based on 4518 * handle in the IRE as this IRE is 4519 * being deleted/changed. 4520 */ 4521 for (i = 0; i < ip_cache_table_size; i++) { 4522 irb = &ip_cache_table[i]; 4523 if ((cire = irb->irb_ire) == NULL) 4524 continue; 4525 IRB_REFHOLD(irb); 4526 for (cire = irb->irb_ire; cire != NULL; 4527 cire = cire->ire_next) { 4528 if (cire->ire_type != IRE_CACHE) 4529 continue; 4530 if ((cire->ire_phandle == 0 || 4531 cire->ire_phandle != ire->ire_phandle) && 4532 (cire->ire_ihandle == 0 || 4533 cire->ire_ihandle != ire->ire_ihandle)) 4534 continue; 4535 ire_delete(cire); 4536 } 4537 IRB_REFRELE(irb); 4538 } 4539 } 4540 } 4541 4542 /* 4543 * Matches the arguments passed with the values in the ire. 4544 * 4545 * Note: for match types that match using "ipif" passed in, ipif 4546 * must be checked for non-NULL before calling this routine. 4547 */ 4548 boolean_t 4549 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4550 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 4551 const ts_label_t *tsl, int match_flags) 4552 { 4553 ill_t *ire_ill = NULL, *dst_ill; 4554 ill_t *ipif_ill = NULL; 4555 ill_group_t *ire_ill_group = NULL; 4556 ill_group_t *ipif_ill_group = NULL; 4557 4558 ASSERT(ire->ire_ipversion == IPV4_VERSION); 4559 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 4560 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 4561 (ipif != NULL && !ipif->ipif_isv6)); 4562 ASSERT(!(match_flags & MATCH_IRE_WQ)); 4563 4564 /* 4565 * HIDDEN cache entries have to be looked up specifically with 4566 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 4567 * when the interface is FAILED or INACTIVE. In that case, 4568 * any IRE_CACHES that exists should be marked with 4569 * IRE_MARK_HIDDEN. So, we don't really need to match below 4570 * for IRE_MARK_HIDDEN. But we do so for consistency. 4571 */ 4572 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 4573 (ire->ire_marks & IRE_MARK_HIDDEN)) 4574 return (B_FALSE); 4575 4576 /* 4577 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 4578 * is used. In that case the routing table is bypassed and the 4579 * packets are sent directly to the specified nexthop. The 4580 * IRE_CACHE entry representing this route should be marked 4581 * with IRE_MARK_PRIVATE_ADDR. 4582 */ 4583 4584 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 4585 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 4586 return (B_FALSE); 4587 4588 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 4589 ire->ire_zoneid != ALL_ZONES) { 4590 /* 4591 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 4592 * valid and does not match that of ire_zoneid, a failure to 4593 * match is reported at this point. Otherwise, since some IREs 4594 * that are available in the global zone can be used in local 4595 * zones, additional checks need to be performed: 4596 * 4597 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 4598 * entries should never be matched in this situation. 4599 * 4600 * IRE entries that have an interface associated with them 4601 * should in general not match unless they are an IRE_LOCAL 4602 * or in the case when MATCH_IRE_DEFAULT has been set in 4603 * the caller. In the case of the former, checking of the 4604 * other fields supplied should take place. 4605 * 4606 * In the case where MATCH_IRE_DEFAULT has been set, 4607 * all of the ipif's associated with the IRE's ill are 4608 * checked to see if there is a matching zoneid. If any 4609 * one ipif has a matching zoneid, this IRE is a 4610 * potential candidate so checking of the other fields 4611 * takes place. 4612 * 4613 * In the case where the IRE_INTERFACE has a usable source 4614 * address (indicated by ill_usesrc_ifindex) in the 4615 * correct zone then it's permitted to return this IRE 4616 */ 4617 if (match_flags & MATCH_IRE_ZONEONLY) 4618 return (B_FALSE); 4619 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 4620 return (B_FALSE); 4621 /* 4622 * Note, IRE_INTERFACE can have the stq as NULL. For 4623 * example, if the default multicast route is tied to 4624 * the loopback address. 4625 */ 4626 if ((ire->ire_type & IRE_INTERFACE) && 4627 (ire->ire_stq != NULL)) { 4628 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 4629 /* 4630 * If there is a usable source address in the 4631 * zone, then it's ok to return an 4632 * IRE_INTERFACE 4633 */ 4634 if (ipif_usesrc_avail(dst_ill, zoneid)) { 4635 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 4636 (void *)dst_ill, 4637 (ire->ire_addr == (addr & mask)))); 4638 } else { 4639 ip3dbg(("ire_match_args: src_ipif NULL" 4640 " dst_ill %p\n", (void *)dst_ill)); 4641 return (B_FALSE); 4642 } 4643 } 4644 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 4645 !(ire->ire_type & IRE_INTERFACE)) { 4646 ipif_t *tipif; 4647 4648 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 4649 return (B_FALSE); 4650 } 4651 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 4652 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 4653 tipif != NULL; tipif = tipif->ipif_next) { 4654 if (IPIF_CAN_LOOKUP(tipif) && 4655 (tipif->ipif_flags & IPIF_UP) && 4656 (tipif->ipif_zoneid == zoneid || 4657 tipif->ipif_zoneid == ALL_ZONES)) 4658 break; 4659 } 4660 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 4661 if (tipif == NULL) { 4662 return (B_FALSE); 4663 } 4664 } 4665 } 4666 4667 /* 4668 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 4669 * somebody wants to send out on a particular interface which 4670 * is given by ire_stq and hence use ire_stq to derive the ill 4671 * value. ire_ipif for IRE_CACHES is just the means of getting 4672 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 4673 * ire_to_ill does the right thing for this. 4674 */ 4675 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 4676 ire_ill = ire_to_ill(ire); 4677 if (ire_ill != NULL) 4678 ire_ill_group = ire_ill->ill_group; 4679 ipif_ill = ipif->ipif_ill; 4680 ipif_ill_group = ipif_ill->ill_group; 4681 } 4682 4683 if ((ire->ire_addr == (addr & mask)) && 4684 ((!(match_flags & MATCH_IRE_GW)) || 4685 (ire->ire_gateway_addr == gateway)) && 4686 ((!(match_flags & MATCH_IRE_TYPE)) || 4687 (ire->ire_type & type)) && 4688 ((!(match_flags & MATCH_IRE_SRC)) || 4689 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4690 ((!(match_flags & MATCH_IRE_IPIF)) || 4691 (ire->ire_ipif == ipif)) && 4692 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4693 (ire->ire_type != IRE_CACHE || 4694 ire->ire_marks & IRE_MARK_HIDDEN)) && 4695 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4696 (ire->ire_type != IRE_CACHE || 4697 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4698 ((!(match_flags & MATCH_IRE_ILL)) || 4699 (ire_ill == ipif_ill)) && 4700 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4701 (ire->ire_ihandle == ihandle)) && 4702 ((!(match_flags & MATCH_IRE_MASK)) || 4703 (ire->ire_mask == mask)) && 4704 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4705 (ire_ill == ipif_ill) || 4706 (ire_ill_group != NULL && 4707 ire_ill_group == ipif_ill_group)) && 4708 ((!(match_flags & MATCH_IRE_SECATTR)) || 4709 (!is_system_labeled()) || 4710 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4711 /* We found the matched IRE */ 4712 return (B_TRUE); 4713 } 4714 return (B_FALSE); 4715 } 4716 4717 4718 /* 4719 * Lookup for a route in all the tables 4720 */ 4721 ire_t * 4722 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4723 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4724 const ts_label_t *tsl, int flags) 4725 { 4726 ire_t *ire = NULL; 4727 4728 /* 4729 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4730 * MATCH_IRE_ILL is set. 4731 */ 4732 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4733 (ipif == NULL)) 4734 return (NULL); 4735 4736 /* 4737 * might be asking for a cache lookup, 4738 * This is not best way to lookup cache, 4739 * user should call ire_cache_lookup directly. 4740 * 4741 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4742 * in the forwarding table, if the applicable type flags were set. 4743 */ 4744 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4745 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4746 tsl, flags); 4747 if (ire != NULL) 4748 return (ire); 4749 } 4750 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4751 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4752 zoneid, 0, tsl, flags); 4753 } 4754 return (ire); 4755 } 4756 4757 4758 /* 4759 * Delete the IRE cache for the gateway and all IRE caches whose 4760 * ire_gateway_addr points to this gateway, and allow them to 4761 * be created on demand by ip_newroute. 4762 */ 4763 void 4764 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid) 4765 { 4766 irb_t *irb; 4767 ire_t *ire; 4768 4769 irb = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4770 IRB_REFHOLD(irb); 4771 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4772 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4773 continue; 4774 4775 ASSERT(ire->ire_mask == IP_HOST_MASK); 4776 ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); 4777 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4778 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4779 ire_delete(ire); 4780 } 4781 } 4782 IRB_REFRELE(irb); 4783 4784 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid); 4785 } 4786 4787 /* 4788 * Looks up cache table for a route. 4789 * specific lookup can be indicated by 4790 * passing the MATCH_* flags and the 4791 * necessary parameters. 4792 */ 4793 ire_t * 4794 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4795 zoneid_t zoneid, const ts_label_t *tsl, int flags) 4796 { 4797 irb_t *irb_ptr; 4798 ire_t *ire; 4799 4800 /* 4801 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4802 * MATCH_IRE_ILL is set. 4803 */ 4804 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4805 (ipif == NULL)) 4806 return (NULL); 4807 4808 irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4809 rw_enter(&irb_ptr->irb_lock, RW_READER); 4810 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4811 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4812 continue; 4813 ASSERT(ire->ire_mask == IP_HOST_MASK); 4814 ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); 4815 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4816 ipif, zoneid, 0, tsl, flags)) { 4817 IRE_REFHOLD(ire); 4818 rw_exit(&irb_ptr->irb_lock); 4819 return (ire); 4820 } 4821 } 4822 rw_exit(&irb_ptr->irb_lock); 4823 return (NULL); 4824 } 4825 4826 /* 4827 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4828 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of 4829 * the same ill group. 4830 */ 4831 boolean_t 4832 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire) 4833 { 4834 ill_t *recv_ill, *xmit_ill; 4835 ill_group_t *recv_group, *xmit_group; 4836 4837 ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK)); 4838 ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE)); 4839 4840 recv_ill = ire_to_ill(ire_local); 4841 xmit_ill = ire_to_ill(xmit_ire); 4842 4843 ASSERT(recv_ill != NULL); 4844 ASSERT(xmit_ill != NULL); 4845 4846 if (recv_ill == xmit_ill) 4847 return (B_TRUE); 4848 4849 recv_group = recv_ill->ill_group; 4850 xmit_group = xmit_ill->ill_group; 4851 4852 if (recv_group != NULL && recv_group == xmit_group) 4853 return (B_TRUE); 4854 4855 return (B_FALSE); 4856 } 4857 4858 /* 4859 * Check if the IRE_LOCAL uses the same ill (group) as another route would use. 4860 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 4861 * then we don't allow this IRE_LOCAL to be used. 4862 */ 4863 boolean_t 4864 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4865 const ts_label_t *tsl) 4866 { 4867 ire_t *alt_ire; 4868 boolean_t rval; 4869 4870 if (ire_local->ire_ipversion == IPV4_VERSION) { 4871 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4872 NULL, zoneid, 0, tsl, 4873 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4874 MATCH_IRE_RJ_BHOLE); 4875 } else { 4876 alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 4877 0, NULL, NULL, zoneid, 0, tsl, 4878 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4879 MATCH_IRE_RJ_BHOLE); 4880 } 4881 4882 if (alt_ire == NULL) 4883 return (B_FALSE); 4884 4885 if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4886 ire_refrele(alt_ire); 4887 return (B_FALSE); 4888 } 4889 rval = ire_local_same_ill_group(ire_local, alt_ire); 4890 4891 ire_refrele(alt_ire); 4892 return (rval); 4893 } 4894 4895 /* 4896 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4897 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4898 * to the hidden ones. 4899 * 4900 * In general the zoneid has to match (where ALL_ZONES match all of them). 4901 * But for IRE_LOCAL we also need to handle the case where L2 should 4902 * conceptually loop back the packet. This is necessary since neither 4903 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4904 * own MAC address. This loopback is needed when the normal 4905 * routes (ignoring IREs with different zoneids) would send out the packet on 4906 * the same ill (or ill group) as the ill with which this IRE_LOCAL is 4907 * associated. 4908 * 4909 * Earlier versions of this code always matched an IRE_LOCAL independently of 4910 * the zoneid. We preserve that earlier behavior when 4911 * ip_restrict_interzone_loopback is turned off. 4912 */ 4913 ire_t * 4914 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl) 4915 { 4916 irb_t *irb_ptr; 4917 ire_t *ire; 4918 4919 irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4920 rw_enter(&irb_ptr->irb_lock, RW_READER); 4921 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4922 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4923 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4924 continue; 4925 } 4926 if (ire->ire_addr == addr) { 4927 /* 4928 * Finally, check if the security policy has any 4929 * restriction on using this route for the specified 4930 * message. 4931 */ 4932 if (tsl != NULL && 4933 ire->ire_gw_secattr != NULL && 4934 tsol_ire_match_gwattr(ire, tsl) != 0) { 4935 continue; 4936 } 4937 4938 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4939 ire->ire_zoneid == ALL_ZONES) { 4940 IRE_REFHOLD(ire); 4941 rw_exit(&irb_ptr->irb_lock); 4942 return (ire); 4943 } 4944 4945 if (ire->ire_type == IRE_LOCAL) { 4946 if (ip_restrict_interzone_loopback && 4947 !ire_local_ok_across_zones(ire, zoneid, 4948 &addr, tsl)) 4949 continue; 4950 4951 IRE_REFHOLD(ire); 4952 rw_exit(&irb_ptr->irb_lock); 4953 return (ire); 4954 } 4955 } 4956 } 4957 rw_exit(&irb_ptr->irb_lock); 4958 return (NULL); 4959 } 4960 4961 /* 4962 * Locate the interface ire that is tied to the cache ire 'cire' via 4963 * cire->ire_ihandle. 4964 * 4965 * We are trying to create the cache ire for an offlink destn based 4966 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4967 * as found by ip_newroute(). We are called from ip_newroute() in 4968 * the IRE_CACHE case. 4969 */ 4970 ire_t * 4971 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4972 { 4973 ire_t *ire; 4974 int match_flags; 4975 ipaddr_t gw_addr; 4976 ipif_t *gw_ipif; 4977 4978 ASSERT(cire != NULL && pire != NULL); 4979 4980 /* 4981 * We don't need to specify the zoneid to ire_ftable_lookup() below 4982 * because the ihandle refers to an ipif which can be in only one zone. 4983 */ 4984 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4985 /* 4986 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4987 * for on-link hosts. We should never be here for onlink. 4988 * Thus, use MATCH_IRE_ILL_GROUP. 4989 */ 4990 if (pire->ire_ipif != NULL) 4991 match_flags |= MATCH_IRE_ILL_GROUP; 4992 /* 4993 * We know that the mask of the interface ire equals cire->ire_cmask. 4994 * (When ip_newroute() created 'cire' for the gateway it set its 4995 * cmask from the interface ire's mask) 4996 */ 4997 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4998 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4999 NULL, match_flags); 5000 if (ire != NULL) 5001 return (ire); 5002 /* 5003 * If we didn't find an interface ire above, we can't declare failure. 5004 * For backwards compatibility, we need to support prefix routes 5005 * pointing to next hop gateways that are not on-link. 5006 * 5007 * Assume we are trying to ping some offlink destn, and we have the 5008 * routing table below. 5009 * 5010 * Eg. default - gw1 <--- pire (line 1) 5011 * gw1 - gw2 (line 2) 5012 * gw2 - hme0 (line 3) 5013 * 5014 * If we already have a cache ire for gw1 in 'cire', the 5015 * ire_ftable_lookup above would have failed, since there is no 5016 * interface ire to reach gw1. We will fallthru below. 5017 * 5018 * Here we duplicate the steps that ire_ftable_lookup() did in 5019 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 5020 * The differences are the following 5021 * i. We want the interface ire only, so we call ire_ftable_lookup() 5022 * instead of ire_route_lookup() 5023 * ii. We look for only prefix routes in the 1st call below. 5024 * ii. We want to match on the ihandle in the 2nd call below. 5025 */ 5026 match_flags = MATCH_IRE_TYPE; 5027 if (pire->ire_ipif != NULL) 5028 match_flags |= MATCH_IRE_ILL_GROUP; 5029 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 5030 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags); 5031 if (ire == NULL) 5032 return (NULL); 5033 /* 5034 * At this point 'ire' corresponds to the entry shown in line 2. 5035 * gw_addr is 'gw2' in the example above. 5036 */ 5037 gw_addr = ire->ire_gateway_addr; 5038 gw_ipif = ire->ire_ipif; 5039 ire_refrele(ire); 5040 5041 match_flags |= MATCH_IRE_IHANDLE; 5042 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 5043 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags); 5044 return (ire); 5045 } 5046 5047 /* 5048 * ire_mrtun_lookup() is called by ip_rput() when packet is to be 5049 * tunneled through reverse tunnel. This is only supported for 5050 * IPv4 packets 5051 */ 5052 5053 ire_t * 5054 ire_mrtun_lookup(ipaddr_t srcaddr, ill_t *ill) 5055 { 5056 irb_t *irb_ptr; 5057 ire_t *ire; 5058 5059 ASSERT(ill != NULL); 5060 ASSERT(!(ill->ill_isv6)); 5061 5062 if (ip_mrtun_table == NULL) 5063 return (NULL); 5064 irb_ptr = &ip_mrtun_table[IRE_ADDR_HASH(srcaddr, IP_MRTUN_TABLE_SIZE)]; 5065 rw_enter(&irb_ptr->irb_lock, RW_READER); 5066 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 5067 if (ire->ire_marks & IRE_MARK_CONDEMNED) 5068 continue; 5069 if ((ire->ire_in_src_addr == srcaddr) && 5070 ire->ire_in_ill == ill) { 5071 IRE_REFHOLD(ire); 5072 rw_exit(&irb_ptr->irb_lock); 5073 return (ire); 5074 } 5075 } 5076 rw_exit(&irb_ptr->irb_lock); 5077 return (NULL); 5078 } 5079 5080 /* 5081 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 5082 * ire associated with the specified ipif. 5083 * 5084 * This might occasionally be called when IPIF_UP is not set since 5085 * the IP_MULTICAST_IF as well as creating interface routes 5086 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 5087 * 5088 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 5089 * the ipif, this routine might return NULL. 5090 */ 5091 ire_t * 5092 ipif_to_ire(const ipif_t *ipif) 5093 { 5094 ire_t *ire; 5095 5096 ASSERT(!ipif->ipif_isv6); 5097 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 5098 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 5099 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 5100 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5101 /* In this case we need to lookup destination address. */ 5102 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 5103 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 5104 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK)); 5105 } else { 5106 ire = ire_ftable_lookup(ipif->ipif_subnet, 5107 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 5108 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 5109 MATCH_IRE_MASK)); 5110 } 5111 return (ire); 5112 } 5113 5114 /* 5115 * ire_walk function. 5116 * Count the number of IRE_CACHE entries in different categories. 5117 */ 5118 void 5119 ire_cache_count(ire_t *ire, char *arg) 5120 { 5121 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 5122 5123 if (ire->ire_type != IRE_CACHE) 5124 return; 5125 5126 icc->icc_total++; 5127 5128 if (ire->ire_ipversion == IPV6_VERSION) { 5129 mutex_enter(&ire->ire_lock); 5130 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 5131 mutex_exit(&ire->ire_lock); 5132 icc->icc_onlink++; 5133 return; 5134 } 5135 mutex_exit(&ire->ire_lock); 5136 } else { 5137 if (ire->ire_gateway_addr == 0) { 5138 icc->icc_onlink++; 5139 return; 5140 } 5141 } 5142 5143 ASSERT(ire->ire_ipif != NULL); 5144 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 5145 icc->icc_pmtu++; 5146 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 5147 ire->ire_ib_pkt_count) 5148 icc->icc_offlink++; 5149 else 5150 icc->icc_unused++; 5151 } 5152 5153 /* 5154 * ire_walk function called by ip_trash_ire_reclaim(). 5155 * Free a fraction of the IRE_CACHE cache entries. The fractions are 5156 * different for different categories of IRE_CACHE entries. 5157 * A fraction of zero means to not free any in that category. 5158 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 5159 * is N then every Nth hash bucket chain will be freed. 5160 */ 5161 void 5162 ire_cache_reclaim(ire_t *ire, char *arg) 5163 { 5164 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 5165 uint_t rand; 5166 5167 if (ire->ire_type != IRE_CACHE) 5168 return; 5169 5170 if (ire->ire_ipversion == IPV6_VERSION) { 5171 rand = (uint_t)lbolt + 5172 IRE_ADDR_HASH_V6(ire->ire_addr_v6, ip6_cache_table_size); 5173 mutex_enter(&ire->ire_lock); 5174 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 5175 mutex_exit(&ire->ire_lock); 5176 if (icr->icr_onlink != 0 && 5177 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 5178 ire_delete(ire); 5179 return; 5180 } 5181 goto done; 5182 } 5183 mutex_exit(&ire->ire_lock); 5184 } else { 5185 rand = (uint_t)lbolt + 5186 IRE_ADDR_HASH(ire->ire_addr, ip_cache_table_size); 5187 if (ire->ire_gateway_addr == 0) { 5188 if (icr->icr_onlink != 0 && 5189 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 5190 ire_delete(ire); 5191 return; 5192 } 5193 goto done; 5194 } 5195 } 5196 /* Not onlink IRE */ 5197 ASSERT(ire->ire_ipif != NULL); 5198 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 5199 /* Use ptmu fraction */ 5200 if (icr->icr_pmtu != 0 && 5201 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 5202 ire_delete(ire); 5203 return; 5204 } 5205 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 5206 ire->ire_ib_pkt_count) { 5207 /* Use offlink fraction */ 5208 if (icr->icr_offlink != 0 && 5209 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 5210 ire_delete(ire); 5211 return; 5212 } 5213 } else { 5214 /* Use unused fraction */ 5215 if (icr->icr_unused != 0 && 5216 (rand/icr->icr_unused)*icr->icr_unused == rand) { 5217 ire_delete(ire); 5218 return; 5219 } 5220 } 5221 done: 5222 /* 5223 * Update tire_mark so that those that haven't been used since this 5224 * reclaim will be considered unused next time we reclaim. 5225 */ 5226 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 5227 } 5228 5229 static void 5230 power2_roundup(uint32_t *value) 5231 { 5232 int i; 5233 5234 for (i = 1; i < 31; i++) { 5235 if (*value <= (1 << i)) 5236 break; 5237 } 5238 *value = (1 << i); 5239 } 5240 5241 void 5242 ip_ire_init() 5243 { 5244 int i; 5245 5246 mutex_init(&ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 5247 mutex_init(&ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 5248 mutex_init(&ire_mrtun_lock, NULL, MUTEX_DEFAULT, NULL); 5249 mutex_init(&ire_srcif_table_lock, NULL, MUTEX_DEFAULT, NULL); 5250 mutex_init(&ndp4.ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5251 5252 rn_init(); 5253 (void) rn_inithead((void **)&ip_ftable, 32); 5254 rt_entry_cache = kmem_cache_create("rt_entry", 5255 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 5256 5257 /* Calculate the IPv4 cache table size. */ 5258 ip_cache_table_size = MAX(ip_cache_table_size, 5259 ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) / 5260 ip_ire_max_bucket_cnt)); 5261 if (ip_cache_table_size > ip_max_cache_table_size) 5262 ip_cache_table_size = ip_max_cache_table_size; 5263 /* 5264 * Make sure that the table size is always a power of 2. The 5265 * hash macro IRE_ADDR_HASH() depends on that. 5266 */ 5267 power2_roundup(&ip_cache_table_size); 5268 5269 ip_cache_table = (irb_t *)kmem_zalloc(ip_cache_table_size * 5270 sizeof (irb_t), KM_SLEEP); 5271 5272 for (i = 0; i < ip_cache_table_size; i++) { 5273 rw_init(&ip_cache_table[i].irb_lock, NULL, 5274 RW_DEFAULT, NULL); 5275 } 5276 5277 /* Calculate the IPv6 cache table size. */ 5278 ip6_cache_table_size = MAX(ip6_cache_table_size, 5279 ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) / 5280 ip6_ire_max_bucket_cnt)); 5281 if (ip6_cache_table_size > ip6_max_cache_table_size) 5282 ip6_cache_table_size = ip6_max_cache_table_size; 5283 /* 5284 * Make sure that the table size is always a power of 2. The 5285 * hash macro IRE_ADDR_HASH_V6() depends on that. 5286 */ 5287 power2_roundup(&ip6_cache_table_size); 5288 5289 ip_cache_table_v6 = (irb_t *)kmem_zalloc(ip6_cache_table_size * 5290 sizeof (irb_t), KM_SLEEP); 5291 5292 for (i = 0; i < ip6_cache_table_size; i++) { 5293 rw_init(&ip_cache_table_v6[i].irb_lock, NULL, 5294 RW_DEFAULT, NULL); 5295 } 5296 /* 5297 * Create ire caches, ire_reclaim() 5298 * will give IRE_CACHE back to system when needed. 5299 * This needs to be done here before anything else, since 5300 * ire_add() expects the cache to be created. 5301 */ 5302 ire_cache = kmem_cache_create("ire_cache", 5303 sizeof (ire_t), 0, ip_ire_constructor, 5304 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 5305 5306 /* 5307 * Initialize ip_mrtun_table to NULL now, it will be 5308 * populated by ip_rt_add if reverse tunnel is created 5309 */ 5310 ip_mrtun_table = NULL; 5311 5312 /* 5313 * Make sure that the forwarding table size is a power of 2. 5314 * The IRE*_ADDR_HASH() macroes depend on that. 5315 */ 5316 power2_roundup(&ip6_ftable_hash_size); 5317 } 5318 5319 void 5320 ip_ire_fini() 5321 { 5322 int i; 5323 5324 mutex_destroy(&ire_ft_init_lock); 5325 mutex_destroy(&ire_handle_lock); 5326 mutex_destroy(&ndp4.ndp_g_lock); 5327 5328 rn_fini(); 5329 RADIX_NODE_HEAD_DESTROY(ip_ftable); 5330 kmem_cache_destroy(rt_entry_cache); 5331 5332 for (i = 0; i < ip_cache_table_size; i++) { 5333 rw_destroy(&ip_cache_table[i].irb_lock); 5334 } 5335 kmem_free(ip_cache_table, ip_cache_table_size * sizeof (irb_t)); 5336 5337 for (i = 0; i < ip6_cache_table_size; i++) { 5338 rw_destroy(&ip_cache_table_v6[i].irb_lock); 5339 } 5340 kmem_free(ip_cache_table_v6, ip6_cache_table_size * sizeof (irb_t)); 5341 5342 if (ip_mrtun_table != NULL) { 5343 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5344 rw_destroy(&ip_mrtun_table[i].irb_lock); 5345 } 5346 kmem_free(ip_mrtun_table, IP_MRTUN_TABLE_SIZE * sizeof (irb_t)); 5347 } 5348 kmem_cache_destroy(ire_cache); 5349 } 5350 5351 int 5352 ire_add_mrtun(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) 5353 { 5354 ire_t *ire1; 5355 irb_t *irb_ptr; 5356 ire_t **irep; 5357 ire_t *ire; 5358 int i; 5359 uint_t max_frag; 5360 ill_t *stq_ill; 5361 int error; 5362 5363 ire = *ire_p; 5364 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5365 /* Is ip_mrtun_table empty ? */ 5366 5367 if (ip_mrtun_table == NULL) { 5368 /* create the mrtun table */ 5369 mutex_enter(&ire_mrtun_lock); 5370 if (ip_mrtun_table == NULL) { 5371 ip_mrtun_table = 5372 (irb_t *)kmem_zalloc(IP_MRTUN_TABLE_SIZE * 5373 sizeof (irb_t), KM_NOSLEEP); 5374 5375 if (ip_mrtun_table == NULL) { 5376 ip2dbg(("ire_add_mrtun: allocation failure\n")); 5377 mutex_exit(&ire_mrtun_lock); 5378 ire_refrele(ire); 5379 *ire_p = NULL; 5380 return (ENOMEM); 5381 } 5382 5383 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5384 rw_init(&ip_mrtun_table[i].irb_lock, NULL, 5385 RW_DEFAULT, NULL); 5386 } 5387 ip2dbg(("ire_add_mrtun: mrtun table is created\n")); 5388 } 5389 /* some other thread got it and created the table */ 5390 mutex_exit(&ire_mrtun_lock); 5391 } 5392 5393 /* 5394 * Check for duplicate in the bucket and insert in the table 5395 */ 5396 irb_ptr = &(ip_mrtun_table[IRE_ADDR_HASH(ire->ire_in_src_addr, 5397 IP_MRTUN_TABLE_SIZE)]); 5398 5399 /* 5400 * Start the atomic add of the ire. Grab the ill locks, 5401 * ill_g_usesrc_lock and the bucket lock. 5402 * 5403 * If ipif or ill is changing ire_atomic_start() may queue the 5404 * request and return EINPROGRESS. 5405 */ 5406 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 5407 if (error != 0) { 5408 /* 5409 * We don't know whether it is a valid ipif or not. 5410 * So, set it to NULL. This assumes that the ire has not added 5411 * a reference to the ipif. 5412 */ 5413 ire->ire_ipif = NULL; 5414 ire_delete(ire); 5415 ip1dbg(("ire_add_mrtun: ire_atomic_start failed\n")); 5416 *ire_p = NULL; 5417 return (error); 5418 } 5419 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 5420 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 5421 continue; 5422 /* has anyone inserted the route in the meanwhile ? */ 5423 if (ire1->ire_in_ill == ire->ire_in_ill && 5424 ire1->ire_in_src_addr == ire->ire_in_src_addr) { 5425 ip1dbg(("ire_add_mrtun: Duplicate entry exists\n")); 5426 IRE_REFHOLD(ire1); 5427 ire_atomic_end(irb_ptr, ire); 5428 ire_delete(ire); 5429 /* Return the old ire */ 5430 *ire_p = ire1; 5431 return (0); 5432 } 5433 } 5434 5435 /* Atomically set the ire_max_frag */ 5436 max_frag = *ire->ire_max_fragp; 5437 ire->ire_max_fragp = NULL; 5438 ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET); 5439 ASSERT(ire->ire_type != IRE_CACHE); 5440 irep = (ire_t **)irb_ptr; 5441 if (*irep != NULL) { 5442 /* Find the last ire which matches ire_in_src_addr */ 5443 ire1 = *irep; 5444 while (ire1->ire_in_src_addr == ire->ire_in_src_addr) { 5445 irep = &ire1->ire_next; 5446 ire1 = *irep; 5447 if (ire1 == NULL) 5448 break; 5449 } 5450 } 5451 ire1 = *irep; 5452 if (ire1 != NULL) 5453 ire1->ire_ptpn = &ire->ire_next; 5454 ire->ire_next = ire1; 5455 /* Link the new one in. */ 5456 ire->ire_ptpn = irep; 5457 membar_producer(); 5458 *irep = ire; 5459 ire->ire_bucket = irb_ptr; 5460 IRE_REFHOLD_LOCKED(ire); 5461 5462 ip2dbg(("ire_add_mrtun: created and linked ire %p\n", (void *)*irep)); 5463 5464 /* 5465 * Protect ire_mrtun_count and ill_mrtun_refcnt from 5466 * another thread trying to add ire in the table 5467 */ 5468 mutex_enter(&ire_mrtun_lock); 5469 ire_mrtun_count++; 5470 mutex_exit(&ire_mrtun_lock); 5471 /* 5472 * ill_mrtun_refcnt is protected by the ill_lock held via 5473 * ire_atomic_start 5474 */ 5475 ire->ire_in_ill->ill_mrtun_refcnt++; 5476 5477 if (ire->ire_ipif != NULL) { 5478 ire->ire_ipif->ipif_ire_cnt++; 5479 if (ire->ire_stq != NULL) { 5480 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 5481 stq_ill->ill_ire_cnt++; 5482 } 5483 } else { 5484 ASSERT(ire->ire_stq == NULL); 5485 } 5486 5487 ire_atomic_end(irb_ptr, ire); 5488 ire_fastpath(ire); 5489 *ire_p = ire; 5490 return (0); 5491 } 5492 5493 5494 /* Walks down the mrtun table */ 5495 5496 void 5497 ire_walk_ill_mrtun(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 5498 ill_t *ill) 5499 { 5500 irb_t *irb; 5501 ire_t *ire; 5502 int i; 5503 int ret; 5504 5505 ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | 5506 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 5507 ASSERT(match_flags == 0 || ire_type == IRE_MIPRTUN); 5508 5509 mutex_enter(&ire_mrtun_lock); 5510 if (ire_mrtun_count == 0) { 5511 mutex_exit(&ire_mrtun_lock); 5512 return; 5513 } 5514 mutex_exit(&ire_mrtun_lock); 5515 5516 ip2dbg(("ire_walk_ill_mrtun:walking the reverse tunnel table \n")); 5517 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5518 5519 irb = &(ip_mrtun_table[i]); 5520 if (irb->irb_ire == NULL) 5521 continue; 5522 IRB_REFHOLD(irb); 5523 for (ire = irb->irb_ire; ire != NULL; 5524 ire = ire->ire_next) { 5525 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5526 if (match_flags != 0) { 5527 ret = ire_walk_ill_match( 5528 match_flags, ire_type, 5529 ire, ill, ALL_ZONES); 5530 } 5531 if (match_flags == 0 || ret) 5532 (*func)(ire, arg); 5533 } 5534 IRB_REFRELE(irb); 5535 } 5536 } 5537 5538 /* 5539 * Source interface based lookup routine (IPV4 only). 5540 * This routine is called only when RTA_SRCIFP bitflag is set 5541 * by routing socket while adding/deleting the route and it is 5542 * also called from ip_rput() when packets arrive from an interface 5543 * for which ill_srcif_ref_cnt is positive. This function is useful 5544 * when a packet coming from one interface must be forwarded to another 5545 * designated interface to reach the correct node. This function is also 5546 * called from ip_newroute when the link-layer address of an ire is resolved. 5547 * We need to make sure that ip_newroute searches for IRE_IF_RESOLVER type 5548 * ires--thus the ire_type parameter is needed. 5549 */ 5550 5551 ire_t * 5552 ire_srcif_table_lookup(ipaddr_t dst_addr, int ire_type, ipif_t *ipif, 5553 ill_t *in_ill, int flags) 5554 { 5555 irb_t *irb_ptr; 5556 ire_t *ire; 5557 irb_t *ire_srcif_table; 5558 5559 ASSERT(in_ill != NULL && !in_ill->ill_isv6); 5560 ASSERT(!(flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) || 5561 (ipif != NULL && !ipif->ipif_isv6)); 5562 5563 /* 5564 * No need to lock the ill since it is refheld by the caller of this 5565 * function 5566 */ 5567 if (in_ill->ill_srcif_table == NULL) { 5568 return (NULL); 5569 } 5570 5571 if (!(flags & MATCH_IRE_TYPE)) { 5572 flags |= MATCH_IRE_TYPE; 5573 ire_type = IRE_INTERFACE; 5574 } 5575 ire_srcif_table = in_ill->ill_srcif_table; 5576 irb_ptr = &ire_srcif_table[IRE_ADDR_HASH(dst_addr, 5577 IP_SRCIF_TABLE_SIZE)]; 5578 rw_enter(&irb_ptr->irb_lock, RW_READER); 5579 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 5580 if (ire->ire_marks & IRE_MARK_CONDEMNED) 5581 continue; 5582 if (ire_match_args(ire, dst_addr, ire->ire_mask, 0, 5583 ire_type, ipif, ire->ire_zoneid, 0, NULL, flags)) { 5584 IRE_REFHOLD(ire); 5585 rw_exit(&irb_ptr->irb_lock); 5586 return (ire); 5587 } 5588 } 5589 /* Not Found */ 5590 rw_exit(&irb_ptr->irb_lock); 5591 return (NULL); 5592 } 5593 5594 5595 /* 5596 * Adds the ire into the special routing table which is hanging off of 5597 * the src_ipif->ipif_ill. It also increments the refcnt in the ill. 5598 * The forward table contains only IRE_IF_RESOLVER, IRE_IF_NORESOLVER 5599 * i,e. IRE_INTERFACE entries. Originally the dlureq_mp field is NULL 5600 * for IRE_IF_RESOLVER entry because we do not have the dst_addr's 5601 * link-layer address at the time of addition. 5602 * Upon resolving the address from ARP, dlureq_mp field is updated with 5603 * proper information in ire_update_srcif_v4. 5604 */ 5605 static int 5606 ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) 5607 { 5608 ire_t *ire1; 5609 irb_t *ire_srcifp_table = NULL; 5610 irb_t *irb_ptr = NULL; 5611 ire_t **irep; 5612 ire_t *ire; 5613 int flags; 5614 int i; 5615 ill_t *stq_ill; 5616 uint_t max_frag; 5617 int error = 0; 5618 5619 ire = *ire_p; 5620 ASSERT(ire->ire_in_ill != NULL); 5621 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5622 ASSERT(ire->ire_type == IRE_IF_NORESOLVER || 5623 ire->ire_type == IRE_IF_RESOLVER); 5624 5625 ire->ire_mask = IP_HOST_MASK; 5626 /* 5627 * Update ire_nce->nce_res_mp with NULL value upon creation; 5628 * first free the default res_mp created by ire_nce_init. 5629 */ 5630 freeb(ire->ire_nce->nce_res_mp); 5631 if (ire->ire_type == IRE_IF_RESOLVER) { 5632 /* 5633 * assign NULL now, it will be updated 5634 * with correct value upon returning from 5635 * ARP 5636 */ 5637 ire->ire_nce->nce_res_mp = NULL; 5638 } else { 5639 ire->ire_nce->nce_res_mp = ill_dlur_gen(NULL, 5640 ire->ire_ipif->ipif_ill->ill_phys_addr_length, 5641 ire->ire_ipif->ipif_ill->ill_sap, 5642 ire->ire_ipif->ipif_ill->ill_sap_length); 5643 } 5644 /* Make sure the address is properly masked. */ 5645 ire->ire_addr &= ire->ire_mask; 5646 5647 ASSERT(ire->ire_max_fragp != NULL); 5648 max_frag = *ire->ire_max_fragp; 5649 ire->ire_max_fragp = NULL; 5650 ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET); 5651 5652 mutex_enter(&ire->ire_in_ill->ill_lock); 5653 if (ire->ire_in_ill->ill_srcif_table == NULL) { 5654 /* create the incoming interface based table */ 5655 ire->ire_in_ill->ill_srcif_table = 5656 (irb_t *)kmem_zalloc(IP_SRCIF_TABLE_SIZE * 5657 sizeof (irb_t), KM_NOSLEEP); 5658 if (ire->ire_in_ill->ill_srcif_table == NULL) { 5659 ip1dbg(("ire_add_srcif_v4: Allocation fail\n")); 5660 mutex_exit(&ire->ire_in_ill->ill_lock); 5661 ire_delete(ire); 5662 *ire_p = NULL; 5663 return (ENOMEM); 5664 } 5665 ire_srcifp_table = ire->ire_in_ill->ill_srcif_table; 5666 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 5667 rw_init(&ire_srcifp_table[i].irb_lock, NULL, 5668 RW_DEFAULT, NULL); 5669 } 5670 ip2dbg(("ire_add_srcif_v4: table created for ill %p\n", 5671 (void *)ire->ire_in_ill)); 5672 } 5673 /* Check for duplicate and insert */ 5674 ASSERT(ire->ire_in_ill->ill_srcif_table != NULL); 5675 irb_ptr = 5676 &(ire->ire_in_ill->ill_srcif_table[IRE_ADDR_HASH(ire->ire_addr, 5677 IP_SRCIF_TABLE_SIZE)]); 5678 mutex_exit(&ire->ire_in_ill->ill_lock); 5679 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 5680 flags |= MATCH_IRE_IPIF; 5681 5682 /* 5683 * Start the atomic add of the ire. Grab the ill locks, 5684 * ill_g_usesrc_lock and the bucket lock. 5685 * 5686 * If ipif or ill is changing ire_atomic_start() may queue the 5687 * request and return EINPROGRESS. 5688 */ 5689 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 5690 if (error != 0) { 5691 /* 5692 * We don't know whether it is a valid ipif or not. 5693 * So, set it to NULL. This assumes that the ire has not added 5694 * a reference to the ipif. 5695 */ 5696 ire->ire_ipif = NULL; 5697 ire_delete(ire); 5698 ip1dbg(("ire_add_srcif_v4: ire_atomic_start failed\n")); 5699 *ire_p = NULL; 5700 return (error); 5701 } 5702 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 5703 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 5704 continue; 5705 if (ire1->ire_zoneid != ire->ire_zoneid) 5706 continue; 5707 /* Has anyone inserted route in the meanwhile ? */ 5708 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 0, 5709 ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, NULL, 5710 flags)) { 5711 ip1dbg(("ire_add_srcif_v4 : Duplicate entry exists\n")); 5712 IRE_REFHOLD(ire1); 5713 ire_atomic_end(irb_ptr, ire); 5714 ire_delete(ire); 5715 /* Return old ire as in ire_add_v4 */ 5716 *ire_p = ire1; 5717 return (0); 5718 } 5719 } 5720 irep = (ire_t **)irb_ptr; 5721 if (*irep != NULL) { 5722 /* Find the last ire which matches ire_addr */ 5723 ire1 = *irep; 5724 while (ire1->ire_addr == ire->ire_addr) { 5725 irep = &ire1->ire_next; 5726 ire1 = *irep; 5727 if (ire1 == NULL) 5728 break; 5729 } 5730 } 5731 ire1 = *irep; 5732 if (ire1 != NULL) 5733 ire1->ire_ptpn = &ire->ire_next; 5734 ire->ire_next = ire1; 5735 /* Link the new one in. */ 5736 ire->ire_ptpn = irep; 5737 membar_producer(); 5738 *irep = ire; 5739 ire->ire_bucket = irb_ptr; 5740 IRE_REFHOLD_LOCKED(ire); 5741 5742 /* 5743 * Protect ire_in_ill->ill_srcif_refcnt and table reference count. 5744 * Note, ire_atomic_start already grabs the ire_in_ill->ill_lock 5745 * so ill_srcif_refcnt is already protected. 5746 */ 5747 ire->ire_in_ill->ill_srcif_refcnt++; 5748 mutex_enter(&ire_srcif_table_lock); 5749 ire_srcif_table_count++; 5750 mutex_exit(&ire_srcif_table_lock); 5751 irb_ptr->irb_ire_cnt++; 5752 if (ire->ire_ipif != NULL) { 5753 ire->ire_ipif->ipif_ire_cnt++; 5754 if (ire->ire_stq != NULL) { 5755 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 5756 stq_ill->ill_ire_cnt++; 5757 } 5758 } else { 5759 ASSERT(ire->ire_stq == NULL); 5760 } 5761 5762 ire_atomic_end(irb_ptr, ire); 5763 *ire_p = ire; 5764 return (0); 5765 } 5766 5767 5768 /* 5769 * This function is called by ire_add_then_send when ARP request comes 5770 * back to ip_wput->ire_add_then_send for resolved ire in the interface 5771 * based routing table. At this point, it only needs to update the resolver 5772 * information for the ire. The passed ire is returned to the caller as it 5773 * is the ire which is created as mblk. 5774 */ 5775 5776 static ire_t * 5777 ire_update_srcif_v4(ire_t *ire) 5778 { 5779 ire_t *ire1; 5780 irb_t *irb; 5781 int error; 5782 5783 ASSERT(ire->ire_type != IRE_MIPRTUN && 5784 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER); 5785 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5786 5787 /* 5788 * This ire is from ARP. Update 5789 * ire_nce->nce_res_mp info 5790 */ 5791 ire1 = ire_srcif_table_lookup(ire->ire_addr, 5792 IRE_IF_RESOLVER, ire->ire_ipif, 5793 ire->ire_in_ill, 5794 MATCH_IRE_ILL | MATCH_IRE_TYPE); 5795 if (ire1 == NULL) { 5796 /* Mobile node registration expired ? */ 5797 ire_delete(ire); 5798 return (NULL); 5799 } 5800 irb = ire1->ire_bucket; 5801 ASSERT(irb != NULL); 5802 /* 5803 * Start the atomic add of the ire. Grab the ill locks, 5804 * ill_g_usesrc_lock and the bucket lock. 5805 */ 5806 error = ire_atomic_start(irb, ire1, NULL, NULL, NULL); 5807 if (error != 0) { 5808 /* 5809 * We don't know whether it is a valid ipif or not. 5810 * So, set it to NULL. This assumes that the ire has not added 5811 * a reference to the ipif. 5812 */ 5813 ire->ire_ipif = NULL; 5814 ire_delete(ire); 5815 ip1dbg(("ire_update_srcif_v4: ire_atomic_start failed\n")); 5816 return (NULL); 5817 } 5818 ASSERT(ire->ire_max_fragp == NULL); 5819 ire->ire_max_frag = ire1->ire_max_frag; 5820 /* 5821 * Update resolver information and 5822 * send-to queue. 5823 */ 5824 ASSERT(ire->ire_nce->nce_res_mp != NULL); 5825 ire1->ire_nce->nce_res_mp = copyb(ire->ire_nce->nce_res_mp); 5826 if (ire1->ire_nce->nce_res_mp == NULL) { 5827 ip0dbg(("ire_update_srcif: copyb failed\n")); 5828 ire_refrele(ire1); 5829 ire_refrele(ire); 5830 ire_atomic_end(irb, ire1); 5831 return (NULL); 5832 } 5833 ire1->ire_stq = ire->ire_stq; 5834 5835 ASSERT(ire->ire_nce->nce_fp_mp == NULL); 5836 5837 ire_atomic_end(irb, ire1); 5838 ire_refrele(ire1); 5839 /* Return the passed ire */ 5840 return (ire); /* Update done */ 5841 } 5842 5843 5844 /* 5845 * Check if another multirt route resolution is needed. 5846 * B_TRUE is returned is there remain a resolvable route, 5847 * or if no route for that dst is resolved yet. 5848 * B_FALSE is returned if all routes for that dst are resolved 5849 * or if the remaining unresolved routes are actually not 5850 * resolvable. 5851 * This only works in the global zone. 5852 */ 5853 boolean_t 5854 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl) 5855 { 5856 ire_t *first_fire; 5857 ire_t *first_cire; 5858 ire_t *fire; 5859 ire_t *cire; 5860 irb_t *firb; 5861 irb_t *cirb; 5862 int unres_cnt = 0; 5863 boolean_t resolvable = B_FALSE; 5864 5865 /* Retrieve the first IRE_HOST that matches the destination */ 5866 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 5867 NULL, ALL_ZONES, 0, tsl, 5868 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 5869 5870 /* No route at all */ 5871 if (first_fire == NULL) { 5872 return (B_TRUE); 5873 } 5874 5875 firb = first_fire->ire_bucket; 5876 ASSERT(firb != NULL); 5877 5878 /* Retrieve the first IRE_CACHE ire for that destination. */ 5879 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl); 5880 5881 /* No resolved route. */ 5882 if (first_cire == NULL) { 5883 ire_refrele(first_fire); 5884 return (B_TRUE); 5885 } 5886 5887 /* 5888 * At least one route is resolved. Here we look through the forward 5889 * and cache tables, to compare the number of declared routes 5890 * with the number of resolved routes. The search for a resolvable 5891 * route is performed only if at least one route remains 5892 * unresolved. 5893 */ 5894 cirb = first_cire->ire_bucket; 5895 ASSERT(cirb != NULL); 5896 5897 /* Count the number of routes to that dest that are declared. */ 5898 IRB_REFHOLD(firb); 5899 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 5900 if (!(fire->ire_flags & RTF_MULTIRT)) 5901 continue; 5902 if (fire->ire_addr != dst) 5903 continue; 5904 unres_cnt++; 5905 } 5906 IRB_REFRELE(firb); 5907 5908 /* Then subtract the number of routes to that dst that are resolved */ 5909 IRB_REFHOLD(cirb); 5910 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 5911 if (!(cire->ire_flags & RTF_MULTIRT)) 5912 continue; 5913 if (cire->ire_addr != dst) 5914 continue; 5915 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 5916 continue; 5917 unres_cnt--; 5918 } 5919 IRB_REFRELE(cirb); 5920 5921 /* At least one route is unresolved; search for a resolvable route. */ 5922 if (unres_cnt > 0) 5923 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 5924 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl); 5925 5926 if (first_fire != NULL) 5927 ire_refrele(first_fire); 5928 5929 if (first_cire != NULL) 5930 ire_refrele(first_cire); 5931 5932 return (resolvable); 5933 } 5934 5935 5936 /* 5937 * Explore a forward_table bucket, starting from fire_arg. 5938 * fire_arg MUST be an IRE_HOST entry. 5939 * 5940 * Return B_TRUE and update *ire_arg and *fire_arg 5941 * if at least one resolvable route is found. *ire_arg 5942 * is the IRE entry for *fire_arg's gateway. 5943 * 5944 * Return B_FALSE otherwise (all routes are resolved or 5945 * the remaining unresolved routes are all unresolvable). 5946 * 5947 * The IRE selection relies on a priority mechanism 5948 * driven by the flags passed in by the caller. 5949 * The caller, such as ip_newroute_ipif(), can get the most 5950 * relevant ire at each stage of a multiple route resolution. 5951 * 5952 * The rules are: 5953 * 5954 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 5955 * ires are preferred for the gateway. This gives the highest 5956 * priority to routes that can be resolved without using 5957 * a resolver. 5958 * 5959 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 5960 * is specified but no IRE_CACHETABLE ire entry for the gateway 5961 * is found, the following rules apply. 5962 * 5963 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 5964 * ires for the gateway, that have not been tried since 5965 * a configurable amount of time, are preferred. 5966 * This applies when a resolver must be invoked for 5967 * a missing route, but we don't want to use the resolver 5968 * upon each packet emission. If no such resolver is found, 5969 * B_FALSE is returned. 5970 * The MULTIRT_USESTAMP flag can be combined with 5971 * MULTIRT_CACHEGW. 5972 * 5973 * - if MULTIRT_USESTAMP is not specified in flags, the first 5974 * unresolved but resolvable route is selected. 5975 * 5976 * - Otherwise, there is no resolvalble route, and 5977 * B_FALSE is returned. 5978 * 5979 * At last, MULTIRT_SETSTAMP can be specified in flags to 5980 * request the timestamp of unresolvable routes to 5981 * be refreshed. This prevents the useless exploration 5982 * of those routes for a while, when MULTIRT_USESTAMP is used. 5983 * 5984 * This only works in the global zone. 5985 */ 5986 boolean_t 5987 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 5988 const ts_label_t *tsl) 5989 { 5990 clock_t delta; 5991 ire_t *best_fire = NULL; 5992 ire_t *best_cire = NULL; 5993 ire_t *first_fire; 5994 ire_t *first_cire; 5995 ire_t *fire; 5996 ire_t *cire; 5997 irb_t *firb = NULL; 5998 irb_t *cirb = NULL; 5999 ire_t *gw_ire; 6000 boolean_t already_resolved; 6001 boolean_t res; 6002 ipaddr_t dst; 6003 ipaddr_t gw; 6004 6005 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 6006 (void *)*ire_arg, (void *)*fire_arg, flags)); 6007 6008 ASSERT(ire_arg != NULL); 6009 ASSERT(fire_arg != NULL); 6010 6011 /* Not an IRE_HOST ire; give up. */ 6012 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 6013 return (B_FALSE); 6014 } 6015 6016 /* This is the first IRE_HOST ire for that destination. */ 6017 first_fire = *fire_arg; 6018 firb = first_fire->ire_bucket; 6019 ASSERT(firb != NULL); 6020 6021 dst = first_fire->ire_addr; 6022 6023 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 6024 6025 /* 6026 * Retrieve the first IRE_CACHE ire for that destination; 6027 * if we don't find one, no route for that dest is 6028 * resolved yet. 6029 */ 6030 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl); 6031 if (first_cire != NULL) { 6032 cirb = first_cire->ire_bucket; 6033 } 6034 6035 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 6036 6037 /* 6038 * Search for a resolvable route, giving the top priority 6039 * to routes that can be resolved without any call to the resolver. 6040 */ 6041 IRB_REFHOLD(firb); 6042 6043 if (!CLASSD(dst)) { 6044 /* 6045 * For all multiroute IRE_HOST ires for that destination, 6046 * check if the route via the IRE_HOST's gateway is 6047 * resolved yet. 6048 */ 6049 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 6050 6051 if (!(fire->ire_flags & RTF_MULTIRT)) 6052 continue; 6053 if (fire->ire_addr != dst) 6054 continue; 6055 6056 if (fire->ire_gw_secattr != NULL && 6057 tsol_ire_match_gwattr(fire, tsl) != 0) { 6058 continue; 6059 } 6060 6061 gw = fire->ire_gateway_addr; 6062 6063 ip2dbg(("ire_multirt_lookup: fire %p, " 6064 "ire_addr %08x, ire_gateway_addr %08x\n", 6065 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 6066 6067 already_resolved = B_FALSE; 6068 6069 if (first_cire != NULL) { 6070 ASSERT(cirb != NULL); 6071 6072 IRB_REFHOLD(cirb); 6073 /* 6074 * For all IRE_CACHE ires for that 6075 * destination. 6076 */ 6077 for (cire = first_cire; 6078 cire != NULL; 6079 cire = cire->ire_next) { 6080 6081 if (!(cire->ire_flags & RTF_MULTIRT)) 6082 continue; 6083 if (cire->ire_addr != dst) 6084 continue; 6085 if (cire->ire_marks & 6086 (IRE_MARK_CONDEMNED | 6087 IRE_MARK_HIDDEN)) 6088 continue; 6089 6090 if (cire->ire_gw_secattr != NULL && 6091 tsol_ire_match_gwattr(cire, 6092 tsl) != 0) { 6093 continue; 6094 } 6095 6096 /* 6097 * Check if the IRE_CACHE's gateway 6098 * matches the IRE_HOST's gateway. 6099 */ 6100 if (cire->ire_gateway_addr == gw) { 6101 already_resolved = B_TRUE; 6102 break; 6103 } 6104 } 6105 IRB_REFRELE(cirb); 6106 } 6107 6108 /* 6109 * This route is already resolved; 6110 * proceed with next one. 6111 */ 6112 if (already_resolved) { 6113 ip2dbg(("ire_multirt_lookup: found cire %p, " 6114 "already resolved\n", (void *)cire)); 6115 continue; 6116 } 6117 6118 /* 6119 * The route is unresolved; is it actually 6120 * resolvable, i.e. is there a cache or a resolver 6121 * for the gateway? 6122 */ 6123 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 6124 ALL_ZONES, tsl, 6125 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR); 6126 6127 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 6128 (void *)gw_ire)); 6129 6130 /* 6131 * If gw_ire is typed IRE_CACHETABLE, 6132 * this route can be resolved without any call to the 6133 * resolver. If the MULTIRT_CACHEGW flag is set, 6134 * give the top priority to this ire and exit the 6135 * loop. 6136 * This is typically the case when an ARP reply 6137 * is processed through ip_wput_nondata(). 6138 */ 6139 if ((flags & MULTIRT_CACHEGW) && 6140 (gw_ire != NULL) && 6141 (gw_ire->ire_type & IRE_CACHETABLE)) { 6142 ASSERT(gw_ire->ire_nce == NULL || 6143 gw_ire->ire_nce->nce_state == ND_REACHABLE); 6144 /* 6145 * Release the resolver associated to the 6146 * previous candidate best ire, if any. 6147 */ 6148 if (best_cire != NULL) { 6149 ire_refrele(best_cire); 6150 ASSERT(best_fire != NULL); 6151 } 6152 6153 best_fire = fire; 6154 best_cire = gw_ire; 6155 6156 ip2dbg(("ire_multirt_lookup: found top prio " 6157 "best_fire %p, best_cire %p\n", 6158 (void *)best_fire, (void *)best_cire)); 6159 break; 6160 } 6161 6162 /* 6163 * Compute the time elapsed since our preceding 6164 * attempt to resolve that route. 6165 * If the MULTIRT_USESTAMP flag is set, we take that 6166 * route into account only if this time interval 6167 * exceeds ip_multirt_resolution_interval; 6168 * this prevents us from attempting to resolve a 6169 * broken route upon each sending of a packet. 6170 */ 6171 delta = lbolt - fire->ire_last_used_time; 6172 delta = TICK_TO_MSEC(delta); 6173 6174 res = (boolean_t) 6175 ((delta > ip_multirt_resolution_interval) || 6176 (!(flags & MULTIRT_USESTAMP))); 6177 6178 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 6179 "res %d\n", 6180 (void *)fire, delta, res)); 6181 6182 if (res) { 6183 /* 6184 * We are here if MULTIRT_USESTAMP flag is set 6185 * and the resolver for fire's gateway 6186 * has not been tried since 6187 * ip_multirt_resolution_interval, or if 6188 * MULTIRT_USESTAMP is not set but gw_ire did 6189 * not fill the conditions for MULTIRT_CACHEGW, 6190 * or if neither MULTIRT_USESTAMP nor 6191 * MULTIRT_CACHEGW are set. 6192 */ 6193 if (gw_ire != NULL) { 6194 if (best_fire == NULL) { 6195 ASSERT(best_cire == NULL); 6196 6197 best_fire = fire; 6198 best_cire = gw_ire; 6199 6200 ip2dbg(("ire_multirt_lookup:" 6201 "found candidate " 6202 "best_fire %p, " 6203 "best_cire %p\n", 6204 (void *)best_fire, 6205 (void *)best_cire)); 6206 6207 /* 6208 * If MULTIRT_CACHEGW is not 6209 * set, we ignore the top 6210 * priority ires that can 6211 * be resolved without any 6212 * call to the resolver; 6213 * In that case, there is 6214 * actually no need 6215 * to continue the loop. 6216 */ 6217 if (!(flags & 6218 MULTIRT_CACHEGW)) { 6219 break; 6220 } 6221 continue; 6222 } 6223 } else { 6224 /* 6225 * No resolver for the gateway: the 6226 * route is not resolvable. 6227 * If the MULTIRT_SETSTAMP flag is 6228 * set, we stamp the IRE_HOST ire, 6229 * so we will not select it again 6230 * during this resolution interval. 6231 */ 6232 if (flags & MULTIRT_SETSTAMP) 6233 fire->ire_last_used_time = 6234 lbolt; 6235 } 6236 } 6237 6238 if (gw_ire != NULL) 6239 ire_refrele(gw_ire); 6240 } 6241 } else { /* CLASSD(dst) */ 6242 6243 for (fire = first_fire; 6244 fire != NULL; 6245 fire = fire->ire_next) { 6246 6247 if (!(fire->ire_flags & RTF_MULTIRT)) 6248 continue; 6249 if (fire->ire_addr != dst) 6250 continue; 6251 6252 if (fire->ire_gw_secattr != NULL && 6253 tsol_ire_match_gwattr(fire, tsl) != 0) { 6254 continue; 6255 } 6256 6257 already_resolved = B_FALSE; 6258 6259 gw = fire->ire_gateway_addr; 6260 6261 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 6262 NULL, NULL, ALL_ZONES, 0, tsl, 6263 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 6264 MATCH_IRE_SECATTR); 6265 6266 /* No resolver for the gateway; we skip this ire. */ 6267 if (gw_ire == NULL) { 6268 continue; 6269 } 6270 ASSERT(gw_ire->ire_nce == NULL || 6271 gw_ire->ire_nce->nce_state == ND_REACHABLE); 6272 6273 if (first_cire != NULL) { 6274 6275 IRB_REFHOLD(cirb); 6276 /* 6277 * For all IRE_CACHE ires for that 6278 * destination. 6279 */ 6280 for (cire = first_cire; 6281 cire != NULL; 6282 cire = cire->ire_next) { 6283 6284 if (!(cire->ire_flags & RTF_MULTIRT)) 6285 continue; 6286 if (cire->ire_addr != dst) 6287 continue; 6288 if (cire->ire_marks & 6289 (IRE_MARK_CONDEMNED | 6290 IRE_MARK_HIDDEN)) 6291 continue; 6292 6293 if (cire->ire_gw_secattr != NULL && 6294 tsol_ire_match_gwattr(cire, 6295 tsl) != 0) { 6296 continue; 6297 } 6298 6299 /* 6300 * Cache entries are linked to the 6301 * parent routes using the parent handle 6302 * (ire_phandle). If no cache entry has 6303 * the same handle as fire, fire is 6304 * still unresolved. 6305 */ 6306 ASSERT(cire->ire_phandle != 0); 6307 if (cire->ire_phandle == 6308 fire->ire_phandle) { 6309 already_resolved = B_TRUE; 6310 break; 6311 } 6312 } 6313 IRB_REFRELE(cirb); 6314 } 6315 6316 /* 6317 * This route is already resolved; proceed with 6318 * next one. 6319 */ 6320 if (already_resolved) { 6321 ire_refrele(gw_ire); 6322 continue; 6323 } 6324 6325 /* 6326 * Compute the time elapsed since our preceding 6327 * attempt to resolve that route. 6328 * If the MULTIRT_USESTAMP flag is set, we take 6329 * that route into account only if this time 6330 * interval exceeds ip_multirt_resolution_interval; 6331 * this prevents us from attempting to resolve a 6332 * broken route upon each sending of a packet. 6333 */ 6334 delta = lbolt - fire->ire_last_used_time; 6335 delta = TICK_TO_MSEC(delta); 6336 6337 res = (boolean_t) 6338 ((delta > ip_multirt_resolution_interval) || 6339 (!(flags & MULTIRT_USESTAMP))); 6340 6341 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 6342 "flags %04x, res %d\n", 6343 (void *)fire, delta, flags, res)); 6344 6345 if (res) { 6346 if (best_cire != NULL) { 6347 /* 6348 * Release the resolver associated 6349 * to the preceding candidate best 6350 * ire, if any. 6351 */ 6352 ire_refrele(best_cire); 6353 ASSERT(best_fire != NULL); 6354 } 6355 best_fire = fire; 6356 best_cire = gw_ire; 6357 continue; 6358 } 6359 6360 ire_refrele(gw_ire); 6361 } 6362 } 6363 6364 if (best_fire != NULL) { 6365 IRE_REFHOLD(best_fire); 6366 } 6367 IRB_REFRELE(firb); 6368 6369 /* Release the first IRE_CACHE we initially looked up, if any. */ 6370 if (first_cire != NULL) 6371 ire_refrele(first_cire); 6372 6373 /* Found a resolvable route. */ 6374 if (best_fire != NULL) { 6375 ASSERT(best_cire != NULL); 6376 6377 if (*fire_arg != NULL) 6378 ire_refrele(*fire_arg); 6379 if (*ire_arg != NULL) 6380 ire_refrele(*ire_arg); 6381 6382 /* 6383 * Update the passed-in arguments with the 6384 * resolvable multirt route we found. 6385 */ 6386 *fire_arg = best_fire; 6387 *ire_arg = best_cire; 6388 6389 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 6390 "*fire_arg %p, *ire_arg %p\n", 6391 (void *)best_fire, (void *)best_cire)); 6392 6393 return (B_TRUE); 6394 } 6395 6396 ASSERT(best_cire == NULL); 6397 6398 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 6399 "*ire_arg %p\n", 6400 (void *)*fire_arg, (void *)*ire_arg)); 6401 6402 /* No resolvable route. */ 6403 return (B_FALSE); 6404 } 6405 6406 /* 6407 * The purpose of the next two functions is to provide some external access to 6408 * routing/l2 lookup functionality while hiding the implementation of routing 6409 * and interface data structures (IRE/ILL). Thus, interfaces are passed/ 6410 * returned by name instead of by ILL reference. These functions are used by 6411 * IP Filter. 6412 * Return a link layer header suitable for an IP packet being sent to the 6413 * dst_addr IP address. The interface associated with the route is put into 6414 * ifname, which must be a buffer of LIFNAMSIZ bytes. The dst_addr is the 6415 * packet's ultimate destination address, not a router address. 6416 * 6417 * This function is used when the caller wants to know the outbound interface 6418 * and MAC header for a packet given only the address. 6419 */ 6420 mblk_t * 6421 ip_nexthop_route(const struct sockaddr *target, char *ifname) 6422 { 6423 struct nce_s *nce; 6424 ire_t *dir; 6425 ill_t *ill; 6426 mblk_t *mp, *tmp_mp; 6427 6428 /* parameter sanity */ 6429 if (ifname == NULL || target == NULL) 6430 return (NULL); 6431 6432 /* Find the route entry, if it exists. */ 6433 switch (target->sa_family) { 6434 case AF_INET: 6435 dir = ire_route_lookup( 6436 ((struct sockaddr_in *)target)->sin_addr.s_addr, 6437 0xffffffff, 6438 0, 0, NULL, NULL, ALL_ZONES, NULL, 6439 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE); 6440 break; 6441 case AF_INET6: 6442 dir = ire_route_lookup_v6( 6443 &((struct sockaddr_in6 *)target)->sin6_addr, 6444 NULL, 6445 0, 0, NULL, NULL, ALL_ZONES, NULL, 6446 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE); 6447 if ((dir != NULL) && (dir->ire_nce == NULL)) { 6448 ire_refrele(dir); 6449 dir = NULL; 6450 } 6451 break; 6452 default: 6453 dir = NULL; 6454 break; 6455 } 6456 6457 if (dir == NULL) { 6458 return (NULL); 6459 } 6460 6461 /* Map the IRE to an ILL so we can fill in ifname. */ 6462 ill = ire_to_ill(dir); 6463 if (ill == NULL) { 6464 ire_refrele(dir); 6465 return (NULL); 6466 } 6467 (void) strncpy(ifname, ill->ill_name, LIFNAMSIZ); 6468 6469 if ((dir->ire_type & (IRE_CACHE|IRE_BROADCAST)) == 0) { 6470 mp = copyb(ill->ill_resolver_mp); 6471 ire_refrele(dir); 6472 return (mp); 6473 } 6474 6475 /* Return a copy of the header to the caller. */ 6476 switch (target->sa_family) { 6477 case AF_INET : 6478 if (dir->ire_nce != NULL && 6479 dir->ire_nce->nce_state == ND_REACHABLE) { 6480 if (dir->ire_nce->nce_fp_mp != NULL) 6481 tmp_mp = dir->ire_nce->nce_fp_mp; 6482 else 6483 tmp_mp = dir->ire_nce->nce_fp_mp; 6484 if ((mp = dupb(tmp_mp)) == NULL) 6485 mp = copyb(tmp_mp); 6486 } else { 6487 mp = copyb(ill->ill_resolver_mp); 6488 } 6489 break; 6490 case AF_INET6 : 6491 nce = dir->ire_nce; 6492 if (nce->nce_fp_mp != NULL) { 6493 if ((mp = dupb(nce->nce_fp_mp)) == NULL) 6494 mp = copyb(nce->nce_fp_mp); 6495 } else if (nce->nce_res_mp != NULL) { 6496 if ((mp = dupb(nce->nce_res_mp)) == NULL) 6497 mp = copyb(nce->nce_res_mp); 6498 } else { 6499 mp = NULL; 6500 } 6501 break; 6502 } 6503 6504 ire_refrele(dir); 6505 return (mp); 6506 } 6507 6508 6509 /* 6510 * Return a link layer header suitable for an IP packet being sent to the 6511 * dst_addr IP address on the specified output interface. The dst_addr 6512 * may be the packet's ultimate destination or a predetermined next hop 6513 * router's address. 6514 * ifname must be nul-terminated. 6515 * 6516 * This function is used when the caller knows the outbound interface (usually 6517 * because it was specified by policy) and only needs the MAC header for a 6518 * packet. 6519 */ 6520 mblk_t * 6521 ip_nexthop(const struct sockaddr *target, const char *ifname) 6522 { 6523 struct nce_s *nce; 6524 ill_walk_context_t ctx; 6525 t_uscalar_t sap; 6526 ire_t *dir; 6527 ill_t *ill; 6528 mblk_t *mp; 6529 6530 /* parameter sanity */ 6531 if (ifname == NULL || target == NULL) 6532 return (NULL); 6533 6534 switch (target->sa_family) { 6535 case AF_INET : 6536 sap = IP_DL_SAP; 6537 break; 6538 case AF_INET6 : 6539 sap = IP6_DL_SAP; 6540 break; 6541 default: 6542 return (NULL); 6543 } 6544 6545 /* Lock ill_g_lock before walking through the list */ 6546 rw_enter(&ill_g_lock, RW_READER); 6547 /* 6548 * Can we find the interface name among those currently configured? 6549 */ 6550 for (ill = ILL_START_WALK_ALL(&ctx); ill != NULL; 6551 ill = ill_next(&ctx, ill)) { 6552 if ((strcmp(ifname, ill->ill_name) == 0) && 6553 (ill->ill_sap == sap)) 6554 break; 6555 } 6556 if (ill == NULL || ill->ill_ipif == NULL) { 6557 rw_exit(&ill_g_lock); 6558 return (NULL); 6559 } 6560 6561 mutex_enter(&ill->ill_lock); 6562 if (!ILL_CAN_LOOKUP(ill)) { 6563 mutex_exit(&ill->ill_lock); 6564 rw_exit(&ill_g_lock); 6565 return (NULL); 6566 } 6567 ill_refhold_locked(ill); 6568 mutex_exit(&ill->ill_lock); 6569 rw_exit(&ill_g_lock); 6570 6571 /* Find the resolver entry, if it exists. */ 6572 switch (target->sa_family) { 6573 case AF_INET: 6574 dir = ire_route_lookup( 6575 ((struct sockaddr_in *)target)->sin_addr.s_addr, 6576 0xffffffff, 6577 0, 0, ill->ill_ipif, NULL, ALL_ZONES, NULL, 6578 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| 6579 MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF); 6580 if ((dir != NULL) && dir->ire_nce != NULL && 6581 dir->ire_nce->nce_state != ND_REACHABLE) { 6582 ire_refrele(dir); 6583 dir = NULL; 6584 } 6585 break; 6586 case AF_INET6: 6587 dir = ire_route_lookup_v6( 6588 &((struct sockaddr_in6 *)target)->sin6_addr, NULL, 6589 0, 0, ill->ill_ipif, NULL, ALL_ZONES, NULL, 6590 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| 6591 MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF); 6592 if ((dir != NULL) && (dir->ire_nce == NULL)) { 6593 ire_refrele(dir); 6594 dir = NULL; 6595 } 6596 break; 6597 default: 6598 dir = NULL; 6599 break; 6600 } 6601 6602 if (dir == NULL) { 6603 return (NULL); 6604 } 6605 6606 if ((dir->ire_type & (IRE_CACHE|IRE_BROADCAST)) == 0) { 6607 mp = copyb(ill->ill_resolver_mp); 6608 ill_refrele(ill); 6609 ire_refrele(dir); 6610 return (mp); 6611 } 6612 6613 /* Return a copy of the header to the caller. */ 6614 switch (target->sa_family) { 6615 case AF_INET : 6616 if (dir->ire_nce->nce_fp_mp != NULL) { 6617 if ((mp = dupb(dir->ire_nce->nce_fp_mp)) == NULL) 6618 mp = copyb(dir->ire_nce->nce_fp_mp); 6619 } else if (dir->ire_nce->nce_res_mp != NULL) { 6620 if ((mp = dupb(dir->ire_nce->nce_res_mp)) == NULL) 6621 mp = copyb(dir->ire_nce->nce_res_mp); 6622 } else { 6623 mp = copyb(ill->ill_resolver_mp); 6624 } 6625 break; 6626 case AF_INET6 : 6627 nce = dir->ire_nce; 6628 if (nce->nce_fp_mp != NULL) { 6629 if ((mp = dupb(nce->nce_fp_mp)) == NULL) 6630 mp = copyb(nce->nce_fp_mp); 6631 } else if (nce->nce_res_mp != NULL) { 6632 if ((mp = dupb(nce->nce_res_mp)) == NULL) 6633 mp = copyb(nce->nce_res_mp); 6634 } else { 6635 mp = NULL; 6636 } 6637 break; 6638 } 6639 6640 ire_refrele(dir); 6641 ill_refrele(ill); 6642 return (mp); 6643 } 6644 6645 /* 6646 * IRE iterator for inbound and loopback broadcast processing. 6647 * Given an IRE_BROADCAST ire, walk the ires with the same destination 6648 * address, but skip over the passed-in ire. Returns the next ire without 6649 * a hold - assumes that the caller holds a reference on the IRE bucket. 6650 */ 6651 ire_t * 6652 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 6653 { 6654 ill_t *ill; 6655 6656 if (curr == NULL) { 6657 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 6658 curr = curr->ire_next) { 6659 if (curr->ire_addr == ire->ire_addr) 6660 break; 6661 } 6662 } else { 6663 curr = curr->ire_next; 6664 } 6665 ill = ire_to_ill(ire); 6666 for (; curr != NULL; curr = curr->ire_next) { 6667 if (curr->ire_addr != ire->ire_addr) { 6668 /* 6669 * All the IREs to a given destination are contiguous; 6670 * break out once the address doesn't match. 6671 */ 6672 break; 6673 } 6674 if (curr == ire) { 6675 /* skip over the passed-in ire */ 6676 continue; 6677 } 6678 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 6679 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 6680 /* 6681 * If the passed-in ire is loopback, skip over 6682 * non-loopback ires and vice versa. 6683 */ 6684 continue; 6685 } 6686 if (ire_to_ill(curr) != ill) { 6687 /* skip over IREs going through a different interface */ 6688 continue; 6689 } 6690 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 6691 /* skip over deleted IREs */ 6692 continue; 6693 } 6694 return (curr); 6695 } 6696 return (NULL); 6697 } 6698 6699 #ifdef IRE_DEBUG 6700 th_trace_t * 6701 th_trace_ire_lookup(ire_t *ire) 6702 { 6703 int bucket_id; 6704 th_trace_t *th_trace; 6705 6706 ASSERT(MUTEX_HELD(&ire->ire_lock)); 6707 6708 bucket_id = IP_TR_HASH(curthread); 6709 ASSERT(bucket_id < IP_TR_HASH_MAX); 6710 6711 for (th_trace = ire->ire_trace[bucket_id]; th_trace != NULL; 6712 th_trace = th_trace->th_next) { 6713 if (th_trace->th_id == curthread) 6714 return (th_trace); 6715 } 6716 return (NULL); 6717 } 6718 6719 void 6720 ire_trace_ref(ire_t *ire) 6721 { 6722 int bucket_id; 6723 th_trace_t *th_trace; 6724 6725 /* 6726 * Attempt to locate the trace buffer for the curthread. 6727 * If it does not exist, then allocate a new trace buffer 6728 * and link it in list of trace bufs for this ipif, at the head 6729 */ 6730 mutex_enter(&ire->ire_lock); 6731 if (ire->ire_trace_disable == B_TRUE) { 6732 mutex_exit(&ire->ire_lock); 6733 return; 6734 } 6735 th_trace = th_trace_ire_lookup(ire); 6736 if (th_trace == NULL) { 6737 bucket_id = IP_TR_HASH(curthread); 6738 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6739 KM_NOSLEEP); 6740 if (th_trace == NULL) { 6741 ire->ire_trace_disable = B_TRUE; 6742 mutex_exit(&ire->ire_lock); 6743 ire_trace_inactive(ire); 6744 return; 6745 } 6746 6747 th_trace->th_id = curthread; 6748 th_trace->th_next = ire->ire_trace[bucket_id]; 6749 th_trace->th_prev = &ire->ire_trace[bucket_id]; 6750 if (th_trace->th_next != NULL) 6751 th_trace->th_next->th_prev = &th_trace->th_next; 6752 ire->ire_trace[bucket_id] = th_trace; 6753 } 6754 ASSERT(th_trace->th_refcnt < TR_BUF_MAX - 1); 6755 th_trace->th_refcnt++; 6756 th_trace_rrecord(th_trace); 6757 mutex_exit(&ire->ire_lock); 6758 } 6759 6760 void 6761 ire_trace_free(th_trace_t *th_trace) 6762 { 6763 /* unlink th_trace and free it */ 6764 *th_trace->th_prev = th_trace->th_next; 6765 if (th_trace->th_next != NULL) 6766 th_trace->th_next->th_prev = th_trace->th_prev; 6767 th_trace->th_next = NULL; 6768 th_trace->th_prev = NULL; 6769 kmem_free(th_trace, sizeof (th_trace_t)); 6770 } 6771 6772 void 6773 ire_untrace_ref(ire_t *ire) 6774 { 6775 th_trace_t *th_trace; 6776 6777 mutex_enter(&ire->ire_lock); 6778 6779 if (ire->ire_trace_disable == B_TRUE) { 6780 mutex_exit(&ire->ire_lock); 6781 return; 6782 } 6783 6784 th_trace = th_trace_ire_lookup(ire); 6785 ASSERT(th_trace != NULL && th_trace->th_refcnt > 0); 6786 th_trace_rrecord(th_trace); 6787 th_trace->th_refcnt--; 6788 6789 if (th_trace->th_refcnt == 0) 6790 ire_trace_free(th_trace); 6791 6792 mutex_exit(&ire->ire_lock); 6793 } 6794 6795 static void 6796 ire_trace_inactive(ire_t *ire) 6797 { 6798 th_trace_t *th_trace; 6799 int i; 6800 6801 mutex_enter(&ire->ire_lock); 6802 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6803 while (ire->ire_trace[i] != NULL) { 6804 th_trace = ire->ire_trace[i]; 6805 6806 /* unlink th_trace and free it */ 6807 ire->ire_trace[i] = th_trace->th_next; 6808 if (th_trace->th_next != NULL) 6809 th_trace->th_next->th_prev = 6810 &ire->ire_trace[i]; 6811 6812 th_trace->th_next = NULL; 6813 th_trace->th_prev = NULL; 6814 kmem_free(th_trace, sizeof (th_trace_t)); 6815 } 6816 } 6817 6818 mutex_exit(&ire->ire_lock); 6819 } 6820 6821 /* ARGSUSED */ 6822 void 6823 ire_thread_exit(ire_t *ire, caddr_t arg) 6824 { 6825 th_trace_t *th_trace; 6826 6827 mutex_enter(&ire->ire_lock); 6828 th_trace = th_trace_ire_lookup(ire); 6829 if (th_trace == NULL) { 6830 mutex_exit(&ire->ire_lock); 6831 return; 6832 } 6833 ASSERT(th_trace->th_refcnt == 0); 6834 6835 ire_trace_free(th_trace); 6836 mutex_exit(&ire->ire_lock); 6837 } 6838 6839 #endif 6840 6841 /* 6842 * Generate a message chain with an arp request to resolve the in_ire. 6843 * It is assumed that in_ire itself is currently in the ire cache table, 6844 * so we create a fake_ire filled with enough information about ire_addr etc. 6845 * to retrieve in_ire when the DL_UNITDATA response from the resolver 6846 * comes back. The fake_ire itself is created by calling esballoc with 6847 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 6848 * invoked when the mblk containing fake_ire is freed. 6849 */ 6850 void 6851 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 6852 { 6853 areq_t *areq; 6854 ipaddr_t *addrp; 6855 mblk_t *ire_mp, *dlureq_mp; 6856 ire_t *ire, *buf; 6857 size_t bufsize; 6858 frtn_t *frtnp; 6859 ill_t *ill; 6860 6861 /* 6862 * Construct message chain for the resolver 6863 * of the form: 6864 * ARP_REQ_MBLK-->IRE_MBLK 6865 * 6866 * NOTE : If the response does not 6867 * come back, ARP frees the packet. For this reason, 6868 * we can't REFHOLD the bucket of save_ire to prevent 6869 * deletions. We may not be able to REFRELE the bucket 6870 * if the response never comes back. Thus, before 6871 * adding the ire, ire_add_v4 will make sure that the 6872 * interface route does not get deleted. This is the 6873 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 6874 * where we can always prevent deletions because of 6875 * the synchronous nature of adding IRES i.e 6876 * ire_add_then_send is called after creating the IRE. 6877 */ 6878 6879 /* 6880 * We use esballoc to allocate the second part(the ire_t size mblk) 6881 * of the message chain depicted above. THis mblk will be freed 6882 * by arp when there is a timeout, and otherwise passed to IP 6883 * and IP will * free it after processing the ARP response. 6884 */ 6885 6886 bufsize = sizeof (ire_t) + sizeof (frtn_t); 6887 buf = kmem_alloc(bufsize, KM_NOSLEEP); 6888 if (buf == NULL) { 6889 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 6890 return; 6891 } 6892 frtnp = (frtn_t *)(buf + 1); 6893 frtnp->free_arg = (caddr_t)buf; 6894 frtnp->free_func = ire_freemblk; 6895 6896 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 6897 6898 if (ire_mp == NULL) { 6899 ip1dbg(("ire_arpresolve: esballoc failed\n")); 6900 kmem_free(buf, bufsize); 6901 return; 6902 } 6903 ASSERT(in_ire->ire_nce != NULL); 6904 dlureq_mp = copyb(dst_ill->ill_resolver_mp); 6905 if (dlureq_mp == NULL) { 6906 kmem_free(buf, bufsize); 6907 return; 6908 } 6909 6910 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 6911 ire = (ire_t *)buf; 6912 /* 6913 * keep enough info in the fake ire so that we can pull up 6914 * the incomplete ire (in_ire) after result comes back from 6915 * arp and make it complete. 6916 */ 6917 *ire = ire_null; 6918 ire->ire_u = in_ire->ire_u; 6919 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 6920 ire->ire_ipif = in_ire->ire_ipif; 6921 ire->ire_stq = in_ire->ire_stq; 6922 ill = ire_to_ill(ire); 6923 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 6924 ire->ire_zoneid = in_ire->ire_zoneid; 6925 /* 6926 * ire_freemblk will be called when ire_mp is freed, both for 6927 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 6928 * when the arp resolution failed. 6929 */ 6930 ire->ire_marks |= IRE_MARK_UNCACHED; 6931 ire->ire_mp = ire_mp; 6932 ire_mp->b_wptr = (uchar_t *)&ire[1]; 6933 ire_mp->b_cont = NULL; 6934 ASSERT(dlureq_mp != NULL); 6935 linkb(dlureq_mp, ire_mp); 6936 6937 /* 6938 * Fill in the source and dest addrs for the resolver. 6939 * NOTE: this depends on memory layouts imposed by 6940 * ill_init(). 6941 */ 6942 areq = (areq_t *)dlureq_mp->b_rptr; 6943 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 6944 *addrp = ire->ire_src_addr; 6945 6946 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 6947 if (ire->ire_gateway_addr != INADDR_ANY) { 6948 *addrp = ire->ire_gateway_addr; 6949 } else { 6950 *addrp = ire->ire_addr; 6951 } 6952 6953 /* Up to the resolver. */ 6954 if (canputnext(dst_ill->ill_rq)) { 6955 putnext(dst_ill->ill_rq, dlureq_mp); 6956 } else { 6957 /* Prepare for cleanup */ 6958 freemsg(dlureq_mp); 6959 } 6960 } 6961 6962 /* 6963 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 6964 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 6965 * 6966 * This function can be called by ARP via free routine for ire_mp or 6967 * by IPv4(both host and forwarding path) via ire_delete 6968 * in case ARP resolution fails. 6969 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 6970 * (for IP to talk to ARP, it still has to send AR* messages). 6971 * 6972 * Note that the ARP/IP merge should replace the functioanlity by providing 6973 * direct function calls to clean up unresolved entries in ire/nce lists. 6974 */ 6975 void 6976 ire_freemblk(ire_t *ire_mp) 6977 { 6978 nce_t *nce = NULL; 6979 ill_t *ill; 6980 6981 ASSERT(ire_mp != NULL); 6982 6983 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 6984 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 6985 (void *)ire_mp)); 6986 goto cleanup; 6987 } 6988 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 6989 goto cleanup; /* everything succeeded. just free and return */ 6990 } 6991 6992 /* 6993 * the arp information corresponding to this ire_mp was not 6994 * transferred to a ire_cache entry. Need 6995 * to clean up incomplete ire's and nce, if necessary. 6996 */ 6997 ASSERT(ire_mp->ire_stq != NULL); 6998 ASSERT(ire_mp->ire_stq_ifindex != 0); 6999 /* 7000 * Get any nce's corresponding to this ire_mp. We first have to 7001 * make sure that the ill is still around. 7002 */ 7003 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, B_FALSE, 7004 NULL, NULL, NULL, NULL); 7005 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 7006 (ill->ill_state_flags & ILL_CONDEMNED)) { 7007 /* 7008 * ill went away. no nce to clean up. 7009 * Note that the ill_state_flags could be set to 7010 * ILL_CONDEMNED after this point, but if we know 7011 * that it is CONDEMNED now, we just bail out quickly. 7012 */ 7013 if (ill != NULL) 7014 ill_refrele(ill); 7015 goto cleanup; 7016 } 7017 nce = ndp_lookup_v4(ill, 7018 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 7019 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 7020 B_FALSE); 7021 ill_refrele(ill); 7022 7023 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 7024 /* 7025 * some incomplete nce was found. 7026 */ 7027 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 7028 nce_t *, nce, ire_t *, ire_mp); 7029 /* 7030 * Send the icmp_unreachable messages for the queued mblks in 7031 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 7032 * for this ire 7033 */ 7034 arp_resolv_failed(nce); 7035 /* 7036 * Delete the nce and clean up all ire's pointing at this nce 7037 * in the cachetable 7038 */ 7039 ndp_delete(nce); 7040 } 7041 if (nce != NULL) 7042 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 7043 7044 cleanup: 7045 /* 7046 * Get rid of the ire buffer 7047 * We call kmem_free here(instead of ire_delete()), since 7048 * this is the freeb's callback. 7049 */ 7050 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 7051 } 7052 7053 7054 /* 7055 * create the neighbor cache entry nce_t for IRE_CACHE and 7056 * non-loopback IRE_BROADCAST ire's. Note that IRE_BROADCAST 7057 * (non-loopback) entries have the nce_res_mp set to the 7058 * template passed in (generated from ill_bcast_mp); IRE_CACHE ire's 7059 * contain the information for the nexthop (ire_gateway_addr) in the 7060 * case of indirect routes, and for the dst itself (ire_addr) in the 7061 * case of direct routes, with the nce_res_mp containing a template 7062 * DL_UNITDATA request. 7063 * 7064 * This function always consumes res_mp and fp_mp. 7065 * 7066 * The actual association of the ire_nce to the nce created here is 7067 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 7068 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 7069 * the ire_nce assignment is done in ire_add_then_send, and mobile-ip 7070 * where the assignment is done in ire_add_mrtun(). 7071 */ 7072 int 7073 ire_nce_init(ire_t *ire, mblk_t *fp_mp, mblk_t *res_mp) 7074 { 7075 in_addr_t addr4, mask4; 7076 int err; 7077 nce_t *arpce = NULL; 7078 ill_t *ire_ill; 7079 uint16_t nce_state, nce_flags; 7080 7081 if (ire->ire_stq == NULL) { 7082 if (res_mp) 7083 freemsg(res_mp); 7084 if (fp_mp) 7085 freemsg(fp_mp); 7086 return (0); /* no need to create nce for local/loopback */ 7087 } 7088 7089 mask4 = IP_HOST_MASK; 7090 switch (ire->ire_type) { 7091 case IRE_CACHE: 7092 if (ire->ire_gateway_addr != INADDR_ANY) 7093 addr4 = ire->ire_gateway_addr; /* 'G' route */ 7094 else 7095 addr4 = ire->ire_addr; /* direct route */ 7096 break; 7097 case IRE_BROADCAST: 7098 addr4 = ire->ire_addr; 7099 break; 7100 default: 7101 if (res_mp) 7102 freemsg(res_mp); 7103 if (fp_mp) 7104 freemsg(fp_mp); 7105 return (0); 7106 } 7107 7108 /* 7109 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 7110 * rules in ire_forward_src_ipif. We want the dlureq_mp 7111 * for the outgoing interface, which we get from the ire_stq. 7112 */ 7113 ire_ill = ire_to_ill(ire); 7114 7115 /* 7116 * if we are creating an nce for the first time, and this is 7117 * a NORESOLVER interface, atomically create the nce in the 7118 * REACHABLE state; else create it in the ND_INITIAL state. 7119 */ 7120 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) { 7121 nce_state = ND_REACHABLE; 7122 nce_flags = NCE_F_PERMANENT; 7123 } else { 7124 if (fp_mp != NULL) 7125 nce_state = ND_REACHABLE; 7126 else 7127 nce_state = ND_INITIAL; 7128 nce_flags = 0; 7129 } 7130 7131 err = ndp_lookup_then_add(ire_ill, NULL, 7132 &addr4, &mask4, NULL, 0, nce_flags, nce_state, &arpce, 7133 fp_mp, res_mp); 7134 7135 ip1dbg(("ire 0x%p addr 0x%lx mask 0x%lx type 0x%x; " 7136 "found nce 0x%p err %d\n", (void *)ire, (ulong_t)addr4, 7137 (ulong_t)mask4, ire->ire_type, (void *)arpce, err)); 7138 7139 switch (err) { 7140 case 0: 7141 break; 7142 case EEXIST: 7143 /* 7144 * return a pointer to an existing nce_t; 7145 * note that the ire-nce mapping is many-one, i.e., 7146 * multiple ire's could point to the same nce_t; 7147 */ 7148 if (fp_mp != NULL) { 7149 freemsg(fp_mp); 7150 } 7151 if (res_mp != NULL) { 7152 freemsg(res_mp); 7153 } 7154 break; 7155 default: 7156 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 7157 if (res_mp) 7158 freemsg(res_mp); 7159 if (fp_mp) 7160 freemsg(fp_mp); 7161 return (EINVAL); 7162 } 7163 #if DEBUG 7164 /* 7165 * if an nce_fp_mp was passed in, we should be picking up an 7166 * existing nce_t in the ND_REACHABLE state. 7167 */ 7168 mutex_enter(&arpce->nce_lock); 7169 ASSERT(arpce->nce_fp_mp == NULL || arpce->nce_state == ND_REACHABLE); 7170 mutex_exit(&arpce->nce_lock); 7171 #endif 7172 if (ire->ire_type == IRE_BROADCAST) { 7173 /* 7174 * Two bcast ires are created for each interface; 7175 * 1. loopback copy (which does not have an 7176 * ire_stq, and therefore has no ire_nce), and, 7177 * 2. the non-loopback copy, which has the nce_res_mp 7178 * initialized to a copy of the ill_bcast_mp, and 7179 * is marked as ND_REACHABLE at this point. 7180 * This nce does not undergo any further state changes, 7181 * and exists as long as the interface is plumbed. 7182 * Note: we do the ire_nce assignment here for IRE_BROADCAST 7183 * because some functions like ill_mark_bcast() inline the 7184 * ire_add functionality; 7185 */ 7186 mutex_enter(&arpce->nce_lock); 7187 arpce->nce_state = ND_REACHABLE; 7188 arpce->nce_flags |= NCE_F_PERMANENT; 7189 arpce->nce_last = TICK_TO_MSEC(lbolt64); 7190 ire->ire_nce = arpce; 7191 mutex_exit(&arpce->nce_lock); 7192 /* 7193 * We are associating this nce to the ire, 7194 * so change the nce ref taken in 7195 * ndp_lookup_then_add_v4() from 7196 * NCE_REFHOLD to NCE_REFHOLD_NOTR 7197 */ 7198 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 7199 } else { 7200 if (NCE_EXPIRED(arpce)) 7201 arpce = nce_reinit(arpce); 7202 if (arpce != NULL) { 7203 /* 7204 * We are not using this nce_t just yet so release 7205 * the ref taken in ndp_lookup_then_add_v4() 7206 */ 7207 NCE_REFRELE(arpce); 7208 } else { 7209 ip0dbg(("can't reinit arpce for ill 0x%p;\n", 7210 (void *)ire_ill)); 7211 } 7212 } 7213 return (0); 7214 } 7215