1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 30 /* 31 * This file contains routines that manipulate Internet Routing Entries (IREs). 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/ddi.h> 38 #include <sys/cmn_err.h> 39 #include <sys/policy.h> 40 41 #include <sys/systm.h> 42 #include <sys/kmem.h> 43 #include <sys/param.h> 44 #include <sys/socket.h> 45 #include <net/if.h> 46 #include <net/route.h> 47 #include <netinet/in.h> 48 #include <net/if_dl.h> 49 #include <netinet/ip6.h> 50 #include <netinet/icmp6.h> 51 52 #include <inet/common.h> 53 #include <inet/mi.h> 54 #include <inet/ip.h> 55 #include <inet/ip6.h> 56 #include <inet/ip_ndp.h> 57 #include <inet/arp.h> 58 #include <inet/ip_if.h> 59 #include <inet/ip_ire.h> 60 #include <inet/ip_ftable.h> 61 #include <inet/ip_rts.h> 62 #include <inet/nd.h> 63 64 #include <net/pfkeyv2.h> 65 #include <inet/ipsec_info.h> 66 #include <inet/sadb.h> 67 #include <sys/kmem.h> 68 #include <inet/tcp.h> 69 #include <inet/ipclassifier.h> 70 #include <sys/zone.h> 71 #include <sys/cpuvar.h> 72 73 #include <sys/tsol/label.h> 74 #include <sys/tsol/tnet.h> 75 76 struct kmem_cache *rt_entry_cache; 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the respective tables (cache or forwarding tables). 86 * 87 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 89 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_ident, ire_refcnt 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_max_frag, ire_frag_flag 117 * 118 * - ire_lock is used to set/read both of them together. 119 * 120 * ire_tire_mark 121 * 122 * - Set in ire_create and updated in ire_expire, which is called 123 * by only one function namely ip_trash_timer_expire. Thus only 124 * one function updates and examines the value. 125 * 126 * ire_marks 127 * - bucket lock protects this. 128 * 129 * ire_ipsec_overhead/ire_ll_hdr_length 130 * 131 * - Place holder for returning the information to the upper layers 132 * when IRE_DB_REQ comes down. 133 * 134 * 135 * ipv6_ire_default_count is protected by the bucket lock of 136 * ip_forwarding_table_v6[0][0]. 137 * 138 * ipv6_ire_default_index is not protected as it is just a hint 139 * at which default gateway to use. There is nothing 140 * wrong in using the same gateway for two different connections. 141 * 142 * As we always hold the bucket locks in all the places while accessing 143 * the above values, it is natural to use them for protecting them. 144 * 145 * We have a separate cache table and forwarding table for IPv4 and IPv6. 146 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 147 * array of irb_t structures. The IPv6 forwarding table 148 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 149 * structure. ip_forwarding_table_v6 is allocated dynamically in 150 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 151 * initializing the same bucket. Once a bucket is initialized, it is never 152 * de-alloacted. This assumption enables us to access 153 * ip_forwarding_table_v6[i] without any locks. 154 * 155 * The forwarding table for IPv4 is a radix tree whose leaves 156 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 157 * for IPv4 is dynamically allocated and freed. 158 * 159 * Each irb_t - ire bucket structure has a lock to protect 160 * a bucket and the ires residing in the bucket have a back pointer to 161 * the bucket structure. It also has a reference count for the number 162 * of threads walking the bucket - irb_refcnt which is bumped up 163 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 164 * set to IRE_MARK_CONDEMNED indicating that there are some ires 165 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 166 * last thread to leave the bucket should delete the ires. Usually 167 * this is done by the IRB_REFRELE macro which is used to decrement 168 * the reference count on a bucket. See comments above irb_t structure 169 * definition in ip.h for further details. 170 * 171 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 172 * decrements the reference count, ire_refcnt, atomically on the ire. 173 * ire_refcnt is modified only using this macro. Operations on the IRE 174 * could be described as follows : 175 * 176 * CREATE an ire with reference count initialized to 1. 177 * 178 * ADDITION of an ire holds the bucket lock, checks for duplicates 179 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 180 * bumping up once more i.e the reference count is 2. This is to avoid 181 * an extra lookup in the functions calling ire_add which wants to 182 * work with the ire after adding. 183 * 184 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 185 * macro. It is valid to bump up the referece count of the IRE, 186 * after the lookup has returned an ire. Following are the lookup 187 * functions that return an HELD ire : 188 * 189 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 190 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 191 * ipif_to_ire[_v6]. 192 * 193 * DELETION of an ire holds the bucket lock, removes it from the list 194 * and then decrements the reference count for having removed from the list 195 * by using the IRE_REFRELE macro. If some other thread has looked up 196 * the ire, the reference count would have been bumped up and hence 197 * this ire will not be freed once deleted. It will be freed once the 198 * reference count drops to zero. 199 * 200 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 201 * lookups acquire the bucket lock as RW_READER. 202 * 203 * NOTE : The only functions that does the IRE_REFRELE when an ire is 204 * passed as an argument are : 205 * 206 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 207 * broadcast ires it looks up internally within 208 * the function. Currently, for simplicity it does 209 * not differentiate the one that is passed in and 210 * the ones it looks up internally. It always 211 * IRE_REFRELEs. 212 * 2) ire_send 213 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 214 * that take ire as an argument, it has to selectively 215 * IRE_REFRELE the ire. To maintain symmetry, 216 * ire_send_v6 does the same. 217 * 218 * Otherwise, the general rule is to do the IRE_REFRELE in the function 219 * that is passing the ire as an argument. 220 * 221 * In trying to locate ires the following points are to be noted. 222 * 223 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 224 * to be ignored when walking the ires using ire_next. 225 * 226 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 227 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 228 * applications should not be seeing this ire and hence this ire is ignored 229 * in most cases in the search using ire_next. 230 * 231 * Zones note: 232 * Walking IREs within a given zone also walks certain ires in other 233 * zones. This is done intentionally. IRE walks with a specified 234 * zoneid are used only when doing informational reports, and 235 * zone users want to see things that they can access. See block 236 * comment in ire_walk_ill_match(). 237 */ 238 239 /* 240 * The minimum size of IRE cache table. It will be recalcuated in 241 * ip_ire_init(). 242 * Setable in /etc/system 243 */ 244 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 245 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 246 247 /* 248 * The size of the forwarding table. We will make sure that it is a 249 * power of 2 in ip_ire_init(). 250 * Setable in /etc/system 251 */ 252 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 253 254 struct kmem_cache *ire_cache; 255 static ire_t ire_null; 256 257 /* 258 * The threshold number of IRE in a bucket when the IREs are 259 * cleaned up. This threshold is calculated later in ip_open() 260 * based on the speed of CPU and available memory. This default 261 * value is the maximum. 262 * 263 * We have two kinds of cached IRE, temporary and 264 * non-temporary. Temporary IREs are marked with 265 * IRE_MARK_TEMPORARY. They are IREs created for non 266 * TCP traffic and for forwarding purposes. All others 267 * are non-temporary IREs. We don't mark IRE created for 268 * TCP as temporary because TCP is stateful and there are 269 * info stored in the IRE which can be shared by other TCP 270 * connections to the same destination. For connected 271 * endpoint, we also don't want to mark the IRE used as 272 * temporary because the same IRE will be used frequently, 273 * otherwise, the app should not do a connect(). We change 274 * the marking at ip_bind_connected_*() if necessary. 275 * 276 * We want to keep the cache IRE hash bucket length reasonably 277 * short, otherwise IRE lookup functions will take "forever." 278 * We use the "crude" function that the IRE bucket 279 * length should be based on the CPU speed, which is 1 entry 280 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 281 * (n). This means that with a 750MHz CPU, the max bucket 282 * length can be (750 >> n) entries. 283 * 284 * Note that this threshold is separate for temp and non-temp 285 * IREs. This means that the actual bucket length can be 286 * twice as that. And while we try to keep temporary IRE 287 * length at most at the threshold value, we do not attempt to 288 * make the length for non-temporary IREs fixed, for the 289 * reason stated above. Instead, we start trying to find 290 * "unused" non-temporary IREs when the bucket length reaches 291 * this threshold and clean them up. 292 * 293 * We also want to limit the amount of memory used by 294 * IREs. So if we are allowed to use ~3% of memory (M) 295 * for those IREs, each bucket should not have more than 296 * 297 * M / num of cache bucket / sizeof (ire_t) 298 * 299 * Again the above memory uses are separate for temp and 300 * non-temp cached IREs. 301 * 302 * We may also want the limit to be a function of the number 303 * of interfaces and number of CPUs. Doing the initialization 304 * in ip_open() means that every time an interface is plumbed, 305 * the max is re-calculated. Right now, we don't do anything 306 * different. In future, when we have more experience, we 307 * may want to change this behavior. 308 */ 309 uint32_t ip_ire_max_bucket_cnt = 10; /* Setable in /etc/system */ 310 uint32_t ip6_ire_max_bucket_cnt = 10; 311 312 /* 313 * The minimum of the temporary IRE bucket count. We do not want 314 * the length of each bucket to be too short. This may hurt 315 * performance of some apps as the temporary IREs are removed too 316 * often. 317 */ 318 uint32_t ip_ire_min_bucket_cnt = 3; /* /etc/system - not used */ 319 uint32_t ip6_ire_min_bucket_cnt = 3; 320 321 /* 322 * The ratio of memory consumed by IRE used for temporary to available 323 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 324 * value can be changed in /etc/system. 6 is a reasonable number. 325 */ 326 uint32_t ip_ire_mem_ratio = 6; /* /etc/system */ 327 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 328 uint32_t ip_ire_cpu_ratio = 7; /* /etc/system */ 329 330 typedef struct nce_clookup_s { 331 ipaddr_t ncecl_addr; 332 boolean_t ncecl_found; 333 } nce_clookup_t; 334 335 /* 336 * The maximum number of buckets in IRE cache table. In future, we may 337 * want to make it a dynamic hash table. For the moment, we fix the 338 * size and allocate the table in ip_ire_init() when IP is first loaded. 339 * We take into account the amount of memory a system has. 340 */ 341 #define IP_MAX_CACHE_TABLE_SIZE 4096 342 343 /* Setable in /etc/system */ 344 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 345 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 346 347 #define NUM_ILLS 2 /* To build the ILL list to unlock */ 348 349 /* Zero iulp_t for initialization. */ 350 const iulp_t ire_uinfo_null = { 0 }; 351 352 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 353 ipsq_func_t func, boolean_t); 354 static void ire_delete_v4(ire_t *ire); 355 static void ire_report_ctable(ire_t *ire, char *mp); 356 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 357 zoneid_t zoneid, ip_stack_t *); 358 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 359 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 360 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt); 361 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 362 #ifdef DEBUG 363 static void ire_trace_cleanup(const ire_t *); 364 #endif 365 366 /* 367 * To avoid bloating the code, we call this function instead of 368 * using the macro IRE_REFRELE. Use macro only in performance 369 * critical paths. 370 * 371 * Must not be called while holding any locks. Otherwise if this is 372 * the last reference to be released there is a chance of recursive mutex 373 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 374 * to restart an ioctl. The one exception is when the caller is sure that 375 * this is not the last reference to be released. Eg. if the caller is 376 * sure that the ire has not been deleted and won't be deleted. 377 */ 378 void 379 ire_refrele(ire_t *ire) 380 { 381 IRE_REFRELE(ire); 382 } 383 384 void 385 ire_refrele_notr(ire_t *ire) 386 { 387 IRE_REFRELE_NOTR(ire); 388 } 389 390 /* 391 * kmem_cache_alloc constructor for IRE in kma space. 392 * Note that when ire_mp is set the IRE is stored in that mblk and 393 * not in this cache. 394 */ 395 /* ARGSUSED */ 396 static int 397 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 398 { 399 ire_t *ire = buf; 400 401 ire->ire_nce = NULL; 402 403 return (0); 404 } 405 406 /* ARGSUSED1 */ 407 static void 408 ip_ire_destructor(void *buf, void *cdrarg) 409 { 410 ire_t *ire = buf; 411 412 ASSERT(ire->ire_nce == NULL); 413 } 414 415 /* 416 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 417 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 418 * for an existing CACHED IRE. 419 */ 420 /* ARGSUSED */ 421 int 422 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 423 { 424 uchar_t *addr_ucp; 425 ipic_t *ipic; 426 ire_t *ire; 427 ipaddr_t addr; 428 in6_addr_t v6addr; 429 irb_t *irb; 430 zoneid_t zoneid; 431 ip_stack_t *ipst = CONNQ_TO_IPST(q); 432 433 ASSERT(q->q_next == NULL); 434 zoneid = Q_TO_CONN(q)->conn_zoneid; 435 436 /* 437 * Check privilege using the ioctl credential; if it is NULL 438 * then this is a kernel message and therefor privileged. 439 */ 440 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 441 return (EPERM); 442 443 ipic = (ipic_t *)mp->b_rptr; 444 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 445 ipic->ipic_addr_length))) { 446 return (EINVAL); 447 } 448 if (!OK_32PTR(addr_ucp)) 449 return (EINVAL); 450 switch (ipic->ipic_addr_length) { 451 case IP_ADDR_LEN: { 452 /* Extract the destination address. */ 453 addr = *(ipaddr_t *)addr_ucp; 454 /* Find the corresponding IRE. */ 455 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 456 break; 457 } 458 case IPV6_ADDR_LEN: { 459 /* Extract the destination address. */ 460 v6addr = *(in6_addr_t *)addr_ucp; 461 /* Find the corresponding IRE. */ 462 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst); 463 break; 464 } 465 default: 466 return (EINVAL); 467 } 468 469 if (ire == NULL) 470 return (ENOENT); 471 /* 472 * Update the round trip time estimate and/or the max frag size 473 * and/or the slow start threshold. 474 * 475 * We serialize multiple advises using ire_lock. 476 */ 477 mutex_enter(&ire->ire_lock); 478 if (ipic->ipic_rtt) { 479 /* 480 * If there is no old cached values, initialize them 481 * conservatively. Set them to be (1.5 * new value). 482 */ 483 if (ire->ire_uinfo.iulp_rtt != 0) { 484 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 485 ipic->ipic_rtt) >> 1; 486 } else { 487 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 488 (ipic->ipic_rtt >> 1); 489 } 490 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 491 ire->ire_uinfo.iulp_rtt_sd = 492 (ire->ire_uinfo.iulp_rtt_sd + 493 ipic->ipic_rtt_sd) >> 1; 494 } else { 495 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 496 (ipic->ipic_rtt_sd >> 1); 497 } 498 } 499 if (ipic->ipic_max_frag) 500 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 501 if (ipic->ipic_ssthresh != 0) { 502 if (ire->ire_uinfo.iulp_ssthresh != 0) 503 ire->ire_uinfo.iulp_ssthresh = 504 (ipic->ipic_ssthresh + 505 ire->ire_uinfo.iulp_ssthresh) >> 1; 506 else 507 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 508 } 509 /* 510 * Don't need the ire_lock below this. ire_type does not change 511 * after initialization. ire_marks is protected by irb_lock. 512 */ 513 mutex_exit(&ire->ire_lock); 514 515 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 516 /* 517 * Only increment the temporary IRE count if the original 518 * IRE is not already marked temporary. 519 */ 520 irb = ire->ire_bucket; 521 rw_enter(&irb->irb_lock, RW_WRITER); 522 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 523 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 524 irb->irb_tmp_ire_cnt++; 525 } 526 ire->ire_marks |= ipic->ipic_ire_marks; 527 rw_exit(&irb->irb_lock); 528 } 529 530 ire_refrele(ire); 531 return (0); 532 } 533 534 /* 535 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 536 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 537 * for a host that is not responding. This will force an attempt to 538 * establish a new route, if available, and flush out the ARP entry so 539 * it will re-resolve. Management processes may want to use the 540 * version that generates a reply. 541 * 542 * This function does not support IPv6 since Neighbor Unreachability Detection 543 * means that negative advise like this is useless. 544 */ 545 /* ARGSUSED */ 546 int 547 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 548 { 549 uchar_t *addr_ucp; 550 ipaddr_t addr; 551 ire_t *ire; 552 ipid_t *ipid; 553 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 554 zoneid_t zoneid; 555 ire_t *gire = NULL; 556 ill_t *ill; 557 mblk_t *arp_mp; 558 ip_stack_t *ipst; 559 560 ASSERT(q->q_next == NULL); 561 zoneid = Q_TO_CONN(q)->conn_zoneid; 562 ipst = CONNQ_TO_IPST(q); 563 564 /* 565 * Check privilege using the ioctl credential; if it is NULL 566 * then this is a kernel message and therefor privileged. 567 */ 568 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 569 return (EPERM); 570 571 ipid = (ipid_t *)mp->b_rptr; 572 573 /* Only actions on IRE_CACHEs are acceptable at present. */ 574 if (ipid->ipid_ire_type != IRE_CACHE) 575 return (EINVAL); 576 577 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 578 ipid->ipid_addr_length); 579 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 580 return (EINVAL); 581 switch (ipid->ipid_addr_length) { 582 case IP_ADDR_LEN: 583 /* addr_ucp points at IP addr */ 584 break; 585 case sizeof (sin_t): { 586 sin_t *sin; 587 /* 588 * got complete (sockaddr) address - increment addr_ucp to point 589 * at the ip_addr field. 590 */ 591 sin = (sin_t *)addr_ucp; 592 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 593 break; 594 } 595 default: 596 return (EINVAL); 597 } 598 /* Extract the destination address. */ 599 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 600 601 /* Try to find the CACHED IRE. */ 602 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 603 604 /* Nail it. */ 605 if (ire) { 606 /* Allow delete only on CACHE entries */ 607 if (ire->ire_type != IRE_CACHE) { 608 ire_refrele(ire); 609 return (EINVAL); 610 } 611 612 /* 613 * Verify that the IRE has been around for a while. 614 * This is to protect against transport protocols 615 * that are too eager in sending delete messages. 616 */ 617 if (gethrestime_sec() < 618 ire->ire_create_time + ipst->ips_ip_ignore_delete_time) { 619 ire_refrele(ire); 620 return (EINVAL); 621 } 622 /* 623 * Now we have a potentially dead cache entry. We need 624 * to remove it. 625 * If this cache entry is generated from a 626 * default route (i.e., ire_cmask == 0), 627 * search the default list and mark it dead and some 628 * background process will try to activate it. 629 */ 630 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 631 /* 632 * Make sure that we pick a different 633 * IRE_DEFAULT next time. 634 */ 635 ire_t *gw_ire; 636 irb_t *irb = NULL; 637 uint_t match_flags; 638 639 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 640 641 gire = ire_ftable_lookup(ire->ire_addr, 642 ire->ire_cmask, 0, 0, 643 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags, 644 ipst); 645 646 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 647 (void *)gire)); 648 649 if (gire != NULL) { 650 irb = gire->ire_bucket; 651 652 /* 653 * We grab it as writer just to serialize 654 * multiple threads trying to bump up 655 * irb_rr_origin 656 */ 657 rw_enter(&irb->irb_lock, RW_WRITER); 658 if ((gw_ire = irb->irb_rr_origin) == NULL) { 659 rw_exit(&irb->irb_lock); 660 goto done; 661 } 662 663 DTRACE_PROBE1(ip__ire__del__origin, 664 (ire_t *), gw_ire); 665 666 /* Skip past the potentially bad gateway */ 667 if (ire->ire_gateway_addr == 668 gw_ire->ire_gateway_addr) { 669 ire_t *next = gw_ire->ire_next; 670 671 DTRACE_PROBE2(ip__ire__del, 672 (ire_t *), gw_ire, (irb_t *), irb); 673 IRE_FIND_NEXT_ORIGIN(next); 674 irb->irb_rr_origin = next; 675 } 676 rw_exit(&irb->irb_lock); 677 } 678 } 679 done: 680 if (gire != NULL) 681 IRE_REFRELE(gire); 682 /* report the bad route to routing sockets */ 683 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 684 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 685 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst); 686 routing_sock_info = B_TRUE; 687 688 /* 689 * TCP is really telling us to start over completely, and it 690 * expects that we'll resend the ARP query. Tell ARP to 691 * discard the entry, if this is a local destination. 692 */ 693 ill = ire->ire_stq->q_ptr; 694 if (ire->ire_gateway_addr == 0 && 695 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 696 putnext(ill->ill_rq, arp_mp); 697 } 698 699 ire_delete(ire); 700 ire_refrele(ire); 701 } 702 /* 703 * Also look for an IRE_HOST type redirect ire and 704 * remove it if present. 705 */ 706 ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL, 707 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 708 709 /* Nail it. */ 710 if (ire != NULL) { 711 if (ire->ire_flags & RTF_DYNAMIC) { 712 if (!routing_sock_info) { 713 ip_rts_change(RTM_LOSING, ire->ire_addr, 714 ire->ire_gateway_addr, ire->ire_mask, 715 ire->ire_src_addr, 0, 0, 0, 716 (RTA_DST | RTA_GATEWAY | 717 RTA_NETMASK | RTA_IFA), 718 ipst); 719 } 720 ire_delete(ire); 721 } 722 ire_refrele(ire); 723 } 724 return (0); 725 } 726 727 /* 728 * Named Dispatch routine to produce a formatted report on all IREs. 729 * This report is accessed by using the ndd utility to "get" ND variable 730 * "ipv4_ire_status". 731 */ 732 /* ARGSUSED */ 733 int 734 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 735 { 736 zoneid_t zoneid; 737 ip_stack_t *ipst; 738 739 if (CONN_Q(q)) 740 ipst = CONNQ_TO_IPST(q); 741 else 742 ipst = ILLQ_TO_IPST(q); 743 744 (void) mi_mpprintf(mp, 745 "IRE " MI_COL_HDRPAD_STR 746 /* 01234567[89ABCDEF] */ 747 "rfq " MI_COL_HDRPAD_STR 748 /* 01234567[89ABCDEF] */ 749 "stq " MI_COL_HDRPAD_STR 750 /* 01234567[89ABCDEF] */ 751 " zone " 752 /* 12345 */ 753 "addr mask " 754 /* 123.123.123.123 123.123.123.123 */ 755 "src gateway mxfrg rtt rtt_sd ssthresh ref " 756 /* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */ 757 "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe " 758 /* 123456 123456789 123456789 123456 12345678 1234 12345678 */ 759 "recvpipe in/out/forward type"); 760 /* 12345678 in/out/forward xxxxxxxxxx */ 761 762 /* 763 * Because of the ndd constraint, at most we can have 64K buffer 764 * to put in all IRE info. So to be more efficient, just 765 * allocate a 64K buffer here, assuming we need that large buffer. 766 * This should be OK as only root can do ndd /dev/ip. 767 */ 768 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 769 /* The following may work even if we cannot get a large buf. */ 770 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 771 return (0); 772 } 773 774 zoneid = Q_TO_CONN(q)->conn_zoneid; 775 if (zoneid == GLOBAL_ZONEID) 776 zoneid = ALL_ZONES; 777 778 ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid, ipst); 779 ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid, ipst); 780 781 return (0); 782 } 783 784 785 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */ 786 static void 787 ire_report_ctable(ire_t *ire, char *mp) 788 { 789 char buf1[16]; 790 char buf2[16]; 791 char buf3[16]; 792 char buf4[16]; 793 uint_t fo_pkt_count; 794 uint_t ib_pkt_count; 795 int ref; 796 uint_t print_len, buf_len; 797 798 if ((ire->ire_type & IRE_CACHETABLE) == 0) 799 return; 800 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 801 if (buf_len <= 0) 802 return; 803 804 /* Number of active references of this ire */ 805 ref = ire->ire_refcnt; 806 /* "inbound" to a non local address is a forward */ 807 ib_pkt_count = ire->ire_ib_pkt_count; 808 fo_pkt_count = 0; 809 if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { 810 fo_pkt_count = ib_pkt_count; 811 ib_pkt_count = 0; 812 } 813 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 814 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 815 "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 816 "%04d %08d %08d %d/%d/%d %s\n", 817 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 818 (int)ire->ire_zoneid, 819 ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), 820 ip_dot_addr(ire->ire_src_addr, buf3), 821 ip_dot_addr(ire->ire_gateway_addr, buf4), 822 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 823 ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, 824 ire->ire_uinfo.iulp_rtomax, 825 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 826 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 827 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 828 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 829 ire->ire_uinfo.iulp_sack, 830 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 831 ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, 832 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); 833 if (print_len < buf_len) { 834 ((mblk_t *)mp)->b_wptr += print_len; 835 } else { 836 ((mblk_t *)mp)->b_wptr += buf_len; 837 } 838 } 839 840 /* 841 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 842 * down from the Upper Level Protocol to request a copy of the IRE (to check 843 * its type or to extract information like round-trip time estimates or the 844 * MTU.) 845 * The address is assumed to be in the ire_addr field. If no IRE is found 846 * an IRE is returned with ire_type being zero. 847 * Note that the upper lavel protocol has to check for broadcast 848 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 849 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 850 * end of the returned message. 851 * 852 * TCP sends down a message of this type with a connection request packet 853 * chained on. UDP and ICMP send it down to verify that a route exists for 854 * the destination address when they get connected. 855 */ 856 void 857 ip_ire_req(queue_t *q, mblk_t *mp) 858 { 859 ire_t *inire; 860 ire_t *ire; 861 mblk_t *mp1; 862 ire_t *sire = NULL; 863 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 864 ip_stack_t *ipst = CONNQ_TO_IPST(q); 865 866 ASSERT(q->q_next == NULL); 867 868 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 869 !OK_32PTR(mp->b_rptr)) { 870 freemsg(mp); 871 return; 872 } 873 inire = (ire_t *)mp->b_rptr; 874 /* 875 * Got it, now take our best shot at an IRE. 876 */ 877 if (inire->ire_ipversion == IPV6_VERSION) { 878 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 879 NULL, &sire, zoneid, NULL, 880 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 881 } else { 882 ASSERT(inire->ire_ipversion == IPV4_VERSION); 883 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 884 NULL, &sire, zoneid, NULL, 885 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 886 } 887 888 /* 889 * We prevent returning IRES with source address INADDR_ANY 890 * as these were temporarily created for sending packets 891 * from endpoints that have conn_unspec_src set. 892 */ 893 if (ire == NULL || 894 (ire->ire_ipversion == IPV4_VERSION && 895 ire->ire_src_addr == INADDR_ANY) || 896 (ire->ire_ipversion == IPV6_VERSION && 897 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 898 inire->ire_type = 0; 899 } else { 900 bcopy(ire, inire, sizeof (ire_t)); 901 /* Copy the route metrics from the parent. */ 902 if (sire != NULL) { 903 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 904 sizeof (iulp_t)); 905 } 906 907 /* 908 * As we don't lookup global policy here, we may not 909 * pass the right size if per-socket policy is not 910 * present. For these cases, path mtu discovery will 911 * do the right thing. 912 */ 913 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 914 915 /* Pass the latest setting of the ip_path_mtu_discovery */ 916 inire->ire_frag_flag |= 917 (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 918 } 919 if (ire != NULL) 920 ire_refrele(ire); 921 if (sire != NULL) 922 ire_refrele(sire); 923 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 924 mp->b_datap->db_type = IRE_DB_TYPE; 925 926 /* Put the IRE_DB_TYPE mblk last in the chain */ 927 mp1 = mp->b_cont; 928 if (mp1 != NULL) { 929 mp->b_cont = NULL; 930 linkb(mp1, mp); 931 mp = mp1; 932 } 933 qreply(q, mp); 934 } 935 936 /* 937 * Send a packet using the specified IRE. 938 * If ire_src_addr_v6 is all zero then discard the IRE after 939 * the packet has been sent. 940 */ 941 static void 942 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 943 { 944 mblk_t *ipsec_mp; 945 boolean_t is_secure; 946 uint_t ifindex; 947 ill_t *ill; 948 zoneid_t zoneid = ire->ire_zoneid; 949 ip_stack_t *ipst = ire->ire_ipst; 950 951 ASSERT(ire->ire_ipversion == IPV4_VERSION); 952 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 953 ipsec_mp = pkt; 954 is_secure = (pkt->b_datap->db_type == M_CTL); 955 if (is_secure) { 956 ipsec_out_t *io; 957 958 pkt = pkt->b_cont; 959 io = (ipsec_out_t *)ipsec_mp->b_rptr; 960 if (io->ipsec_out_type == IPSEC_OUT) 961 zoneid = io->ipsec_out_zoneid; 962 } 963 964 /* If the packet originated externally then */ 965 if (pkt->b_prev) { 966 ire_refrele(ire); 967 /* 968 * Extract the ifindex from b_prev (set in ip_rput_noire). 969 * Look up interface to see if it still exists (it could have 970 * been unplumbed by the time the reply came back from ARP) 971 */ 972 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 973 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 974 NULL, NULL, NULL, NULL, ipst); 975 if (ill == NULL) { 976 pkt->b_prev = NULL; 977 pkt->b_next = NULL; 978 freemsg(ipsec_mp); 979 return; 980 } 981 q = ill->ill_rq; 982 pkt->b_prev = NULL; 983 /* 984 * This packet has not gone through IPSEC processing 985 * and hence we should not have any IPSEC message 986 * prepended. 987 */ 988 ASSERT(ipsec_mp == pkt); 989 put(q, pkt); 990 ill_refrele(ill); 991 } else if (pkt->b_next) { 992 /* Packets from multicast router */ 993 pkt->b_next = NULL; 994 /* 995 * We never get the IPSEC_OUT while forwarding the 996 * packet for multicast router. 997 */ 998 ASSERT(ipsec_mp == pkt); 999 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 1000 ire_refrele(ire); 1001 } else { 1002 /* Locally originated packets */ 1003 boolean_t is_inaddr_any; 1004 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 1005 1006 /* 1007 * We need to do an ire_delete below for which 1008 * we need to make sure that the IRE will be 1009 * around even after calling ip_wput_ire - 1010 * which does ire_refrele. Otherwise somebody 1011 * could potentially delete this ire and hence 1012 * free this ire and we will be calling ire_delete 1013 * on a freed ire below. 1014 */ 1015 is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); 1016 if (is_inaddr_any) { 1017 IRE_REFHOLD(ire); 1018 } 1019 /* 1020 * If we were resolving a router we can not use the 1021 * routers IRE for sending the packet (since it would 1022 * violate the uniqness of the IP idents) thus we 1023 * make another pass through ip_wput to create the IRE_CACHE 1024 * for the destination. 1025 * When IRE_MARK_NOADD is set, ire_add() is not called. 1026 * Thus ip_wput() will never find a ire and result in an 1027 * infinite loop. Thus we check whether IRE_MARK_NOADD is 1028 * is set. This also implies that IRE_MARK_NOADD can only be 1029 * used to send packets to directly connected hosts. 1030 */ 1031 if (ipha->ipha_dst != ire->ire_addr && 1032 !(ire->ire_marks & IRE_MARK_NOADD)) { 1033 ire_refrele(ire); /* Held in ire_add */ 1034 if (CONN_Q(q)) { 1035 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 1036 IRE_SEND); 1037 } else { 1038 (void) ip_output((void *)(uintptr_t)zoneid, 1039 ipsec_mp, q, IRE_SEND); 1040 } 1041 } else { 1042 if (is_secure) { 1043 ipsec_out_t *oi; 1044 ipha_t *ipha; 1045 1046 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1047 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 1048 if (oi->ipsec_out_proc_begin) { 1049 /* 1050 * This is the case where 1051 * ip_wput_ipsec_out could not find 1052 * the IRE and recreated a new one. 1053 * As ip_wput_ipsec_out does ire 1054 * lookups, ire_refrele for the extra 1055 * bump in ire_add. 1056 */ 1057 ire_refrele(ire); 1058 ip_wput_ipsec_out(q, ipsec_mp, ipha, 1059 NULL, NULL); 1060 } else { 1061 /* 1062 * IRE_REFRELE will be done in 1063 * ip_wput_ire. 1064 */ 1065 ip_wput_ire(q, ipsec_mp, ire, NULL, 1066 IRE_SEND, zoneid); 1067 } 1068 } else { 1069 /* 1070 * IRE_REFRELE will be done in ip_wput_ire. 1071 */ 1072 ip_wput_ire(q, ipsec_mp, ire, NULL, 1073 IRE_SEND, zoneid); 1074 } 1075 } 1076 /* 1077 * Special code to support sending a single packet with 1078 * conn_unspec_src using an IRE which has no source address. 1079 * The IRE is deleted here after sending the packet to avoid 1080 * having other code trip on it. But before we delete the 1081 * ire, somebody could have looked up this ire. 1082 * We prevent returning/using this IRE by the upper layers 1083 * by making checks to NULL source address in other places 1084 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 1085 * Though, this does not completely prevent other threads 1086 * from using this ire, this should not cause any problems. 1087 * 1088 * NOTE : We use is_inaddr_any instead of using ire_src_addr 1089 * because for the normal case i.e !is_inaddr_any, ire_refrele 1090 * above could have potentially freed the ire. 1091 */ 1092 if (is_inaddr_any) { 1093 /* 1094 * If this IRE has been deleted by another thread, then 1095 * ire_bucket won't be NULL, but ire_ptpn will be NULL. 1096 * Thus, ire_delete will do nothing. This check 1097 * guards against calling ire_delete when the IRE was 1098 * never inserted in the table, which is handled by 1099 * ire_delete as dropping another reference. 1100 */ 1101 if (ire->ire_bucket != NULL) { 1102 ip1dbg(("ire_send: delete IRE\n")); 1103 ire_delete(ire); 1104 } 1105 ire_refrele(ire); /* Held above */ 1106 } 1107 } 1108 } 1109 1110 /* 1111 * Send a packet using the specified IRE. 1112 * If ire_src_addr_v6 is all zero then discard the IRE after 1113 * the packet has been sent. 1114 */ 1115 static void 1116 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 1117 { 1118 mblk_t *ipsec_mp; 1119 boolean_t secure; 1120 uint_t ifindex; 1121 zoneid_t zoneid = ire->ire_zoneid; 1122 ip_stack_t *ipst = ire->ire_ipst; 1123 1124 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1125 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1126 if (pkt->b_datap->db_type == M_CTL) { 1127 ipsec_out_t *io; 1128 1129 ipsec_mp = pkt; 1130 pkt = pkt->b_cont; 1131 secure = B_TRUE; 1132 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1133 if (io->ipsec_out_type == IPSEC_OUT) 1134 zoneid = io->ipsec_out_zoneid; 1135 } else { 1136 ipsec_mp = pkt; 1137 secure = B_FALSE; 1138 } 1139 1140 /* If the packet originated externally then */ 1141 if (pkt->b_prev) { 1142 ill_t *ill; 1143 /* 1144 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1145 * Look up interface to see if it still exists (it could have 1146 * been unplumbed by the time the reply came back from the 1147 * resolver). 1148 */ 1149 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1150 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1151 NULL, NULL, NULL, NULL, ipst); 1152 if (ill == NULL) { 1153 pkt->b_prev = NULL; 1154 pkt->b_next = NULL; 1155 freemsg(ipsec_mp); 1156 ire_refrele(ire); /* Held in ire_add */ 1157 return; 1158 } 1159 q = ill->ill_rq; 1160 pkt->b_prev = NULL; 1161 /* 1162 * This packet has not gone through IPSEC processing 1163 * and hence we should not have any IPSEC message 1164 * prepended. 1165 */ 1166 ASSERT(ipsec_mp == pkt); 1167 put(q, pkt); 1168 ill_refrele(ill); 1169 } else if (pkt->b_next) { 1170 /* Packets from multicast router */ 1171 pkt->b_next = NULL; 1172 /* 1173 * We never get the IPSEC_OUT while forwarding the 1174 * packet for multicast router. 1175 */ 1176 ASSERT(ipsec_mp == pkt); 1177 /* 1178 * XXX TODO IPv6. 1179 */ 1180 freemsg(pkt); 1181 #ifdef XXX 1182 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1183 #endif 1184 } else { 1185 if (secure) { 1186 ipsec_out_t *oi; 1187 ip6_t *ip6h; 1188 1189 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1190 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1191 if (oi->ipsec_out_proc_begin) { 1192 /* 1193 * This is the case where 1194 * ip_wput_ipsec_out could not find 1195 * the IRE and recreated a new one. 1196 */ 1197 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1198 NULL, NULL); 1199 } else { 1200 if (CONN_Q(q)) { 1201 (void) ip_output_v6(Q_TO_CONN(q), 1202 ipsec_mp, q, IRE_SEND); 1203 } else { 1204 (void) ip_output_v6( 1205 (void *)(uintptr_t)zoneid, 1206 ipsec_mp, q, IRE_SEND); 1207 } 1208 } 1209 } else { 1210 /* 1211 * Send packets through ip_output_v6 so that any 1212 * ip6_info header can be processed again. 1213 */ 1214 if (CONN_Q(q)) { 1215 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1216 IRE_SEND); 1217 } else { 1218 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1219 ipsec_mp, q, IRE_SEND); 1220 } 1221 } 1222 /* 1223 * Special code to support sending a single packet with 1224 * conn_unspec_src using an IRE which has no source address. 1225 * The IRE is deleted here after sending the packet to avoid 1226 * having other code trip on it. But before we delete the 1227 * ire, somebody could have looked up this ire. 1228 * We prevent returning/using this IRE by the upper layers 1229 * by making checks to NULL source address in other places 1230 * like e.g ip_ire_append_v6, ip_ire_req and 1231 * ip_bind_connected_v6. Though, this does not completely 1232 * prevent other threads from using this ire, this should 1233 * not cause any problems. 1234 */ 1235 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1236 ip1dbg(("ire_send_v6: delete IRE\n")); 1237 ire_delete(ire); 1238 } 1239 } 1240 ire_refrele(ire); /* Held in ire_add */ 1241 } 1242 1243 /* 1244 * Make sure that IRE bucket does not get too long. 1245 * This can cause lock up because ire_cache_lookup() 1246 * may take "forever" to finish. 1247 * 1248 * We just remove cnt IREs each time. This means that 1249 * the bucket length will stay approximately constant, 1250 * depending on cnt. This should be enough to defend 1251 * against DoS attack based on creating temporary IREs 1252 * (for forwarding and non-TCP traffic). 1253 * 1254 * Note that new IRE is normally added at the tail of the 1255 * bucket. This means that we are removing the "oldest" 1256 * temporary IRE added. Only if there are IREs with 1257 * the same ire_addr, do we not add it at the tail. Refer 1258 * to ire_add_v*(). It should be OK for our purpose. 1259 * 1260 * For non-temporary cached IREs, we make sure that they 1261 * have not been used for some time (defined below), they 1262 * are non-local destinations, and there is no one using 1263 * them at the moment (refcnt == 1). 1264 * 1265 * The above means that the IRE bucket length may become 1266 * very long, consisting of mostly non-temporary IREs. 1267 * This can happen when the hash function does a bad job 1268 * so that most TCP connections cluster to a specific bucket. 1269 * This "hopefully" should never happen. It can also 1270 * happen if most TCP connections have very long lives. 1271 * Even with the minimal hash table size of 256, there 1272 * has to be a lot of such connections to make the bucket 1273 * length unreasonably long. This should probably not 1274 * happen either. The third can when this can happen is 1275 * when the machine is under attack, such as SYN flooding. 1276 * TCP should already have the proper mechanism to protect 1277 * that. So we should be safe. 1278 * 1279 * This function is called by ire_add_then_send() after 1280 * a new IRE is added and the packet is sent. 1281 * 1282 * The idle cutoff interval is set to 60s. It can be 1283 * changed using /etc/system. 1284 */ 1285 uint32_t ire_idle_cutoff_interval = 60000; 1286 1287 static void 1288 ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt) 1289 { 1290 ire_t *ire; 1291 int tmp_cnt = cnt; 1292 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1293 1294 /* 1295 * irb is NULL if the IRE is not added to the hash. This 1296 * happens when IRE_MARK_NOADD is set in ire_add_then_send(). 1297 */ 1298 if (irb == NULL) 1299 return; 1300 1301 IRB_REFHOLD(irb); 1302 if (irb->irb_tmp_ire_cnt > threshold) { 1303 for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0; 1304 ire = ire->ire_next) { 1305 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1306 continue; 1307 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1308 ASSERT(ire->ire_type == IRE_CACHE); 1309 ire_delete(ire); 1310 tmp_cnt--; 1311 } 1312 } 1313 } 1314 if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) { 1315 for (ire = irb->irb_ire; ire != NULL && cnt > 0; 1316 ire = ire->ire_next) { 1317 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1318 continue; 1319 if (ire->ire_ipversion == IPV4_VERSION) { 1320 if (ire->ire_gateway_addr == 0) 1321 continue; 1322 } else { 1323 if (IN6_IS_ADDR_UNSPECIFIED( 1324 &ire->ire_gateway_addr_v6)) 1325 continue; 1326 } 1327 if ((ire->ire_type == IRE_CACHE) && 1328 (lbolt - ire->ire_last_used_time > cut_off) && 1329 (ire->ire_refcnt == 1)) { 1330 ire_delete(ire); 1331 cnt--; 1332 } 1333 } 1334 } 1335 IRB_REFRELE(irb); 1336 } 1337 1338 /* 1339 * ire_add_then_send is called when a new IRE has been created in order to 1340 * route an outgoing packet. Typically, it is called from ip_wput when 1341 * a response comes back down from a resolver. We add the IRE, and then 1342 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1343 * However, we do not add the newly created IRE in the cache when 1344 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1345 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by 1346 * ip_wput_ire() and get deleted. 1347 * Multirouting support: the packet is silently discarded when the new IRE 1348 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1349 * RTF_MULTIRT flag for the same destination address. 1350 * In this case, we just want to register this additional ire without 1351 * sending the packet, as it has already been replicated through 1352 * existing multirt routes in ip_wput(). 1353 */ 1354 void 1355 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1356 { 1357 irb_t *irb; 1358 boolean_t drop = B_FALSE; 1359 /* LINTED : set but not used in function */ 1360 boolean_t mctl_present; 1361 mblk_t *first_mp = NULL; 1362 mblk_t *save_mp = NULL; 1363 ire_t *dst_ire; 1364 ipha_t *ipha; 1365 ip6_t *ip6h; 1366 ip_stack_t *ipst = ire->ire_ipst; 1367 1368 if (mp != NULL) { 1369 /* 1370 * We first have to retrieve the destination address carried 1371 * by the packet. 1372 * We can't rely on ire as it can be related to a gateway. 1373 * The destination address will help in determining if 1374 * other RTF_MULTIRT ires are already registered. 1375 * 1376 * We first need to know where we are going : v4 or V6. 1377 * the ire version is enough, as there is no risk that 1378 * we resolve an IPv6 address with an IPv4 ire 1379 * or vice versa. 1380 */ 1381 if (ire->ire_ipversion == IPV4_VERSION) { 1382 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1383 ipha = (ipha_t *)mp->b_rptr; 1384 save_mp = mp; 1385 mp = first_mp; 1386 1387 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1388 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1389 } else { 1390 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1391 /* 1392 * Get a pointer to the beginning of the IPv6 header. 1393 * Ignore leading IPsec control mblks. 1394 */ 1395 first_mp = mp; 1396 if (mp->b_datap->db_type == M_CTL) { 1397 mp = mp->b_cont; 1398 } 1399 ip6h = (ip6_t *)mp->b_rptr; 1400 save_mp = mp; 1401 mp = first_mp; 1402 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1403 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1404 } 1405 if (dst_ire != NULL) { 1406 if (dst_ire->ire_flags & RTF_MULTIRT) { 1407 /* 1408 * At least one resolved multirt route 1409 * already exists for the destination, 1410 * don't sent this packet: either drop it 1411 * or complete the pending resolution, 1412 * depending on the ire. 1413 */ 1414 drop = B_TRUE; 1415 } 1416 ip1dbg(("ire_add_then_send: dst_ire %p " 1417 "[dst %08x, gw %08x], drop %d\n", 1418 (void *)dst_ire, 1419 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1420 ntohl(dst_ire->ire_addr) : \ 1421 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1422 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1423 ntohl(dst_ire->ire_gateway_addr) : \ 1424 ntohl(V4_PART_OF_V6( 1425 dst_ire->ire_gateway_addr_v6)), 1426 drop)); 1427 ire_refrele(dst_ire); 1428 } 1429 } 1430 1431 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1432 /* Regular packets with cache bound ires are here. */ 1433 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1434 1435 if (ire == NULL) { 1436 mp->b_prev = NULL; 1437 mp->b_next = NULL; 1438 MULTIRT_DEBUG_UNTAG(mp); 1439 freemsg(mp); 1440 return; 1441 } 1442 if (mp == NULL) { 1443 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1444 return; 1445 } 1446 } 1447 if (drop) { 1448 /* 1449 * If we're adding an RTF_MULTIRT ire, the resolution 1450 * is over: we just drop the packet. 1451 */ 1452 if (ire->ire_flags & RTF_MULTIRT) { 1453 if (save_mp) { 1454 save_mp->b_prev = NULL; 1455 save_mp->b_next = NULL; 1456 } 1457 MULTIRT_DEBUG_UNTAG(mp); 1458 freemsg(mp); 1459 } else { 1460 /* 1461 * Otherwise, we're adding the ire to a gateway 1462 * for a multirt route. 1463 * Invoke ip_newroute() to complete the resolution 1464 * of the route. We will then come back here and 1465 * finally drop this packet in the above code. 1466 */ 1467 if (ire->ire_ipversion == IPV4_VERSION) { 1468 /* 1469 * TODO: in order for CGTP to work in non-global 1470 * zones, ip_newroute() must create the IRE 1471 * cache in the zone indicated by 1472 * ire->ire_zoneid. 1473 */ 1474 ip_newroute(q, mp, ipha->ipha_dst, 1475 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1476 ire->ire_zoneid, ipst); 1477 } else { 1478 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1479 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1480 NULL, ire->ire_zoneid, ipst); 1481 } 1482 } 1483 1484 ire_refrele(ire); /* As done by ire_send(). */ 1485 return; 1486 } 1487 /* 1488 * Need to remember ire_bucket here as ire_send*() may delete 1489 * the ire so we cannot reference it after that. 1490 */ 1491 irb = ire->ire_bucket; 1492 if (ire->ire_ipversion == IPV6_VERSION) { 1493 ire_send_v6(q, mp, ire); 1494 /* 1495 * Clean up more than 1 IRE so that the clean up does not 1496 * need to be done every time when a new IRE is added and 1497 * the threshold is reached. 1498 */ 1499 ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2); 1500 } else { 1501 ire_send(q, mp, ire); 1502 ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2); 1503 } 1504 } 1505 1506 /* 1507 * Initialize the ire that is specific to IPv4 part and call 1508 * ire_init_common to finish it. 1509 */ 1510 ire_t * 1511 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1512 uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1513 queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1514 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1515 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1516 { 1517 /* 1518 * Reject IRE security attribute creation/initialization 1519 * if system is not running in Trusted mode. 1520 */ 1521 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1522 return (NULL); 1523 1524 1525 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 1526 1527 if (addr != NULL) 1528 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1529 if (src_addr != NULL) 1530 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1531 if (mask != NULL) { 1532 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1533 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1534 } 1535 if (gateway != NULL) { 1536 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1537 } 1538 1539 if (type == IRE_CACHE) 1540 ire->ire_cmask = cmask; 1541 1542 /* ire_init_common will free the mblks upon encountering any failure */ 1543 if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif, 1544 phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst)) 1545 return (NULL); 1546 1547 return (ire); 1548 } 1549 1550 /* 1551 * Similar to ire_create except that it is called only when 1552 * we want to allocate ire as an mblk e.g. we have an external 1553 * resolver ARP. 1554 */ 1555 ire_t * 1556 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1557 uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type, 1558 ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1559 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, 1560 ip_stack_t *ipst) 1561 { 1562 ire_t *ire, *buf; 1563 ire_t *ret_ire; 1564 mblk_t *mp; 1565 size_t bufsize; 1566 frtn_t *frtnp; 1567 ill_t *ill; 1568 1569 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1570 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1571 if (buf == NULL) { 1572 ip1dbg(("ire_create_mp: alloc failed\n")); 1573 return (NULL); 1574 } 1575 frtnp = (frtn_t *)(buf + 1); 1576 frtnp->free_arg = (caddr_t)buf; 1577 frtnp->free_func = ire_freemblk; 1578 1579 /* 1580 * Allocate the new IRE. The ire created will hold a ref on 1581 * an nce_t after ire_nce_init, and this ref must either be 1582 * (a) transferred to the ire_cache entry created when ire_add_v4 1583 * is called after successful arp resolution, or, 1584 * (b) released, when arp resolution fails 1585 * Case (b) is handled in ire_freemblk() which will be called 1586 * when mp is freed as a result of failed arp. 1587 */ 1588 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1589 if (mp == NULL) { 1590 ip1dbg(("ire_create_mp: alloc failed\n")); 1591 kmem_free(buf, bufsize); 1592 return (NULL); 1593 } 1594 ire = (ire_t *)mp->b_rptr; 1595 mp->b_wptr = (uchar_t *)&ire[1]; 1596 1597 /* Start clean. */ 1598 *ire = ire_null; 1599 ire->ire_mp = mp; 1600 mp->b_datap->db_type = IRE_DB_TYPE; 1601 ire->ire_marks |= IRE_MARK_UNCACHED; 1602 1603 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce, 1604 rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc, 1605 gcgrp, ipst); 1606 1607 ill = (ill_t *)(stq->q_ptr); 1608 if (ret_ire == NULL) { 1609 /* ire_freemblk needs these set */ 1610 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1611 ire->ire_ipst = ipst; 1612 freeb(ire->ire_mp); 1613 return (NULL); 1614 } 1615 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1616 ASSERT(ret_ire == ire); 1617 /* 1618 * ire_max_frag is normally zero here and is atomically set 1619 * under the irebucket lock in ire_add_v[46] except for the 1620 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1621 * is non-zero here. 1622 */ 1623 ire->ire_max_frag = max_frag; 1624 return (ire); 1625 } 1626 1627 /* 1628 * ire_create is called to allocate and initialize a new IRE. 1629 * 1630 * NOTE : This is called as writer sometimes though not required 1631 * by this function. 1632 */ 1633 ire_t * 1634 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1635 uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq, 1636 ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1637 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1638 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1639 { 1640 ire_t *ire; 1641 ire_t *ret_ire; 1642 1643 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1644 if (ire == NULL) { 1645 ip1dbg(("ire_create: alloc failed\n")); 1646 return (NULL); 1647 } 1648 *ire = ire_null; 1649 1650 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp, 1651 src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags, 1652 ulp_info, gc, gcgrp, ipst); 1653 1654 if (ret_ire == NULL) { 1655 kmem_cache_free(ire_cache, ire); 1656 return (NULL); 1657 } 1658 ASSERT(ret_ire == ire); 1659 return (ire); 1660 } 1661 1662 1663 /* 1664 * Common to IPv4 and IPv6 1665 */ 1666 boolean_t 1667 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1668 queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle, 1669 uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info, 1670 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1671 { 1672 ire->ire_max_fragp = max_fragp; 1673 ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 1674 1675 #ifdef DEBUG 1676 if (ipif != NULL) { 1677 if (ipif->ipif_isv6) 1678 ASSERT(ipversion == IPV6_VERSION); 1679 else 1680 ASSERT(ipversion == IPV4_VERSION); 1681 } 1682 #endif /* DEBUG */ 1683 1684 /* 1685 * Create/initialize IRE security attribute only in Trusted mode; 1686 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1687 * has held a reference to it and will release it when this routine 1688 * returns a failure, otherwise we own the reference. We do this 1689 * prior to initializing the rest IRE fields. 1690 * 1691 * Don't allocate ire_gw_secattr for the resolver case to prevent 1692 * memory leak (in case of external resolution failure). We'll 1693 * allocate it after a successful external resolution, in ire_add(). 1694 * Note that ire->ire_mp != NULL here means this ire is headed 1695 * to an external resolver. 1696 */ 1697 if (is_system_labeled()) { 1698 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1699 IRE_INTERFACE)) != 0) { 1700 /* release references on behalf of caller */ 1701 if (gc != NULL) 1702 GC_REFRELE(gc); 1703 if (gcgrp != NULL) 1704 GCGRP_REFRELE(gcgrp); 1705 } else if ((ire->ire_mp == NULL) && 1706 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1707 return (B_FALSE); 1708 } 1709 } 1710 1711 ire->ire_stq = stq; 1712 ire->ire_rfq = rfq; 1713 ire->ire_type = type; 1714 ire->ire_flags = RTF_UP | flags; 1715 ire->ire_ident = TICK_TO_MSEC(lbolt); 1716 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1717 1718 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1719 ire->ire_last_used_time = lbolt; 1720 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1721 1722 /* 1723 * If this IRE is an IRE_CACHE, inherit the handles from the 1724 * parent IREs. For others in the forwarding table, assign appropriate 1725 * new ones. 1726 * 1727 * The mutex protecting ire_handle is because ire_create is not always 1728 * called as a writer. 1729 */ 1730 if (ire->ire_type & IRE_OFFSUBNET) { 1731 mutex_enter(&ipst->ips_ire_handle_lock); 1732 ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++; 1733 mutex_exit(&ipst->ips_ire_handle_lock); 1734 } else if (ire->ire_type & IRE_INTERFACE) { 1735 mutex_enter(&ipst->ips_ire_handle_lock); 1736 ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++; 1737 mutex_exit(&ipst->ips_ire_handle_lock); 1738 } else if (ire->ire_type == IRE_CACHE) { 1739 ire->ire_phandle = phandle; 1740 ire->ire_ihandle = ihandle; 1741 } 1742 ire->ire_ipif = ipif; 1743 if (ipif != NULL) { 1744 ire->ire_ipif_seqid = ipif->ipif_seqid; 1745 ire->ire_zoneid = ipif->ipif_zoneid; 1746 } else { 1747 ire->ire_zoneid = GLOBAL_ZONEID; 1748 } 1749 ire->ire_ipversion = ipversion; 1750 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1751 if (ipversion == IPV4_VERSION) { 1752 /* 1753 * IPv6 initializes the ire_nce in ire_add_v6, which expects 1754 * to find the ire_nce to be null when it is called. 1755 */ 1756 if (ire_nce_init(ire, src_nce) != 0) { 1757 /* some failure occurred. propagate error back */ 1758 return (B_FALSE); 1759 } 1760 } 1761 ire->ire_refcnt = 1; 1762 ire->ire_ipst = ipst; /* No netstack_hold */ 1763 ire->ire_trace_disable = B_FALSE; 1764 1765 return (B_TRUE); 1766 } 1767 1768 /* 1769 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1770 * It is passed a pointer to a slot in an IRE pointer array into which to 1771 * place the pointer to the new IRE, if indeed we create one. If the 1772 * IRE corresponding to the address passed in would be a duplicate of an 1773 * existing one, we don't create the new one. irep is incremented before 1774 * return only if we do create a new IRE. (Always called as writer.) 1775 * 1776 * Note that with the "match_flags" parameter, we can match on either 1777 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1778 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1779 * we only create broadcast ire's on a per physical interface basis. If 1780 * someone is going to be mucking with logical interfaces, it is important 1781 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1782 * logical interface will not cause critical broadcast IRE's to be deleted. 1783 */ 1784 ire_t ** 1785 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1786 int match_flags) 1787 { 1788 ire_t *ire; 1789 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1790 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1791 1792 /* 1793 * No broadcast IREs for the LOOPBACK interface 1794 * or others such as point to point and IPIF_NOXMIT. 1795 */ 1796 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1797 (ipif->ipif_flags & IPIF_NOXMIT)) 1798 return (irep); 1799 1800 /* If this would be a duplicate, don't bother. */ 1801 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1802 ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) { 1803 /* 1804 * We look for non-deprecated (and non-anycast, non-nolocal) 1805 * ipifs as the best choice. ipifs with check_flags matching 1806 * (deprecated, etc) are used only if non-deprecated ipifs 1807 * are not available. if the existing ire's ipif is deprecated 1808 * and the new ipif is non-deprecated, switch to the new ipif 1809 */ 1810 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1811 (ipif->ipif_flags & check_flags)) { 1812 ire_refrele(ire); 1813 return (irep); 1814 } 1815 /* 1816 * Bcast ires exist in pairs. Both have to be deleted, 1817 * Since we are exclusive we can make the above assertion. 1818 * The 1st has to be refrele'd since it was ctable_lookup'd. 1819 */ 1820 ASSERT(IAM_WRITER_IPIF(ipif)); 1821 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 1822 ire_delete(ire->ire_next); 1823 ire_delete(ire); 1824 ire_refrele(ire); 1825 } 1826 1827 irep = ire_create_bcast(ipif, addr, irep); 1828 1829 return (irep); 1830 } 1831 1832 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 1833 1834 /* 1835 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 1836 * It leaves all the verifying and deleting to those routines. So it always 1837 * creates 2 bcast ires and chains them into the ire array passed in. 1838 */ 1839 ire_t ** 1840 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 1841 { 1842 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1843 1844 *irep++ = ire_create( 1845 (uchar_t *)&addr, /* dest addr */ 1846 (uchar_t *)&ip_g_all_ones, /* mask */ 1847 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 1848 NULL, /* no gateway */ 1849 &ipif->ipif_mtu, /* max frag */ 1850 NULL, /* no src nce */ 1851 ipif->ipif_rq, /* recv-from queue */ 1852 ipif->ipif_wq, /* send-to queue */ 1853 IRE_BROADCAST, 1854 ipif, 1855 0, 1856 0, 1857 0, 1858 0, 1859 &ire_uinfo_null, 1860 NULL, 1861 NULL, 1862 ipst); 1863 1864 *irep++ = ire_create( 1865 (uchar_t *)&addr, /* dest address */ 1866 (uchar_t *)&ip_g_all_ones, /* mask */ 1867 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 1868 NULL, /* no gateway */ 1869 &ip_loopback_mtu, /* max frag size */ 1870 NULL, /* no src_nce */ 1871 ipif->ipif_rq, /* recv-from queue */ 1872 NULL, /* no send-to queue */ 1873 IRE_BROADCAST, /* Needed for fanout in wput */ 1874 ipif, 1875 0, 1876 0, 1877 0, 1878 0, 1879 &ire_uinfo_null, 1880 NULL, 1881 NULL, 1882 ipst); 1883 1884 return (irep); 1885 } 1886 1887 /* 1888 * ire_walk routine to delete or update any IRE_CACHE that might contain 1889 * stale information. 1890 * The flags state which entries to delete or update. 1891 * Garbage collection is done separately using kmem alloc callbacks to 1892 * ip_trash_ire_reclaim. 1893 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 1894 * since other stale information is cleaned up using NUD. 1895 */ 1896 void 1897 ire_expire(ire_t *ire, char *arg) 1898 { 1899 ire_expire_arg_t *ieap = (ire_expire_arg_t *)(uintptr_t)arg; 1900 ill_t *stq_ill; 1901 int flush_flags = ieap->iea_flush_flag; 1902 ip_stack_t *ipst = ieap->iea_ipst; 1903 1904 if ((flush_flags & FLUSH_REDIRECT_TIME) && 1905 (ire->ire_flags & RTF_DYNAMIC)) { 1906 /* Make sure we delete the corresponding IRE_CACHE */ 1907 ip1dbg(("ire_expire: all redirects\n")); 1908 ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst); 1909 ire_delete(ire); 1910 atomic_dec_32(&ipst->ips_ip_redirect_cnt); 1911 return; 1912 } 1913 if (ire->ire_type != IRE_CACHE) 1914 return; 1915 1916 if (flush_flags & FLUSH_ARP_TIME) { 1917 /* 1918 * Remove all IRE_CACHE. 1919 * Verify that create time is more than 1920 * ip_ire_arp_interval milliseconds ago. 1921 */ 1922 if (NCE_EXPIRED(ire->ire_nce, ipst)) { 1923 ire_delete(ire); 1924 return; 1925 } 1926 } 1927 1928 if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 1929 (ire->ire_ipif != NULL)) { 1930 /* Increase pmtu if it is less than the interface mtu */ 1931 mutex_enter(&ire->ire_lock); 1932 /* 1933 * If the ipif is a vni (whose mtu is 0, since it's virtual) 1934 * get the mtu from the sending interfaces' ipif 1935 */ 1936 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 1937 stq_ill = ire->ire_stq->q_ptr; 1938 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 1939 IP_MAXPACKET); 1940 } else { 1941 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 1942 IP_MAXPACKET); 1943 } 1944 ire->ire_frag_flag |= IPH_DF; 1945 mutex_exit(&ire->ire_lock); 1946 } 1947 } 1948 1949 /* 1950 * Return any local address. We use this to target ourselves 1951 * when the src address was specified as 'default'. 1952 * Preference for IRE_LOCAL entries. 1953 */ 1954 ire_t * 1955 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst) 1956 { 1957 ire_t *ire; 1958 irb_t *irb; 1959 ire_t *maybe = NULL; 1960 int i; 1961 1962 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 1963 irb = &ipst->ips_ip_cache_table[i]; 1964 if (irb->irb_ire == NULL) 1965 continue; 1966 rw_enter(&irb->irb_lock, RW_READER); 1967 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1968 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 1969 (ire->ire_zoneid != zoneid && 1970 ire->ire_zoneid != ALL_ZONES)) 1971 continue; 1972 switch (ire->ire_type) { 1973 case IRE_LOOPBACK: 1974 if (maybe == NULL) { 1975 IRE_REFHOLD(ire); 1976 maybe = ire; 1977 } 1978 break; 1979 case IRE_LOCAL: 1980 if (maybe != NULL) { 1981 ire_refrele(maybe); 1982 } 1983 IRE_REFHOLD(ire); 1984 rw_exit(&irb->irb_lock); 1985 return (ire); 1986 } 1987 } 1988 rw_exit(&irb->irb_lock); 1989 } 1990 return (maybe); 1991 } 1992 1993 /* 1994 * If the specified IRE is associated with a particular ILL, return 1995 * that ILL pointer (May be called as writer.). 1996 * 1997 * NOTE : This is not a generic function that can be used always. 1998 * This function always returns the ill of the outgoing packets 1999 * if this ire is used. 2000 */ 2001 ill_t * 2002 ire_to_ill(const ire_t *ire) 2003 { 2004 ill_t *ill = NULL; 2005 2006 /* 2007 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 2008 * the source address from. ire_stq is the one where the 2009 * packets will be sent out on. We return that here. 2010 * 2011 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 2012 * copy and they always exist next to each other with loopback 2013 * copy being the first one. If we are called on the non-loopback 2014 * copy, return the one pointed by ire_stq. If it was called on 2015 * a loopback copy, we still return the one pointed by the next 2016 * ire's ire_stq pointer i.e the one pointed by the non-loopback 2017 * copy. We don't want use ire_ipif as it might represent the 2018 * source address (if we borrow source addresses for 2019 * IRE_BROADCASTS in the future). 2020 * However if an interface is currently coming up, the above 2021 * condition may not hold during that period since the ires 2022 * are added one at a time. Thus one of the pair could have been 2023 * added and the other not yet added. 2024 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill. 2025 * 4) For all others return the ones pointed by ire_ipif->ipif_ill. 2026 * That handles IRE_LOOPBACK. 2027 */ 2028 2029 if (ire->ire_type == IRE_CACHE) { 2030 ill = (ill_t *)ire->ire_stq->q_ptr; 2031 } else if (ire->ire_type == IRE_BROADCAST) { 2032 if (ire->ire_stq != NULL) { 2033 ill = (ill_t *)ire->ire_stq->q_ptr; 2034 } else { 2035 ire_t *ire_next; 2036 2037 ire_next = ire->ire_next; 2038 if (ire_next != NULL && 2039 ire_next->ire_type == IRE_BROADCAST && 2040 ire_next->ire_addr == ire->ire_addr && 2041 ire_next->ire_ipif == ire->ire_ipif) { 2042 ill = (ill_t *)ire_next->ire_stq->q_ptr; 2043 } 2044 } 2045 } else if (ire->ire_rfq != NULL) { 2046 ill = ire->ire_rfq->q_ptr; 2047 } else if (ire->ire_ipif != NULL) { 2048 ill = ire->ire_ipif->ipif_ill; 2049 } 2050 return (ill); 2051 } 2052 2053 /* Arrange to call the specified function for every IRE in the world. */ 2054 void 2055 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 2056 { 2057 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 2058 } 2059 2060 void 2061 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 2062 { 2063 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 2064 } 2065 2066 void 2067 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 2068 { 2069 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 2070 } 2071 2072 /* 2073 * Walk a particular version. version == 0 means both v4 and v6. 2074 */ 2075 static void 2076 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 2077 ip_stack_t *ipst) 2078 { 2079 if (vers != IPV6_VERSION) { 2080 /* 2081 * ip_forwarding_table variable doesn't matter for IPv4 since 2082 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 2083 */ 2084 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 2085 0, NULL, 2086 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 2087 NULL, zoneid, ipst); 2088 } 2089 if (vers != IPV4_VERSION) { 2090 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 2091 ipst->ips_ip6_ftable_hash_size, 2092 ipst->ips_ip_forwarding_table_v6, 2093 ipst->ips_ip6_cache_table_size, 2094 ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst); 2095 } 2096 } 2097 2098 /* 2099 * Arrange to call the specified 2100 * function for every IRE that matches the ill. 2101 */ 2102 void 2103 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2104 ill_t *ill) 2105 { 2106 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); 2107 } 2108 2109 void 2110 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2111 ill_t *ill) 2112 { 2113 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2114 ill); 2115 } 2116 2117 void 2118 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2119 ill_t *ill) 2120 { 2121 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2122 ill); 2123 } 2124 2125 /* 2126 * Walk a particular ill and version. version == 0 means both v4 and v6. 2127 */ 2128 static void 2129 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2130 void *arg, uchar_t vers, ill_t *ill) 2131 { 2132 ip_stack_t *ipst = ill->ill_ipst; 2133 2134 if (vers != IPV6_VERSION) { 2135 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2136 IP_MASK_TABLE_SIZE, 0, 2137 NULL, ipst->ips_ip_cache_table_size, 2138 ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst); 2139 } 2140 if (vers != IPV4_VERSION) { 2141 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2142 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 2143 ipst->ips_ip_forwarding_table_v6, 2144 ipst->ips_ip6_cache_table_size, 2145 ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst); 2146 } 2147 } 2148 2149 boolean_t 2150 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2151 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 2152 { 2153 ill_t *ire_stq_ill = NULL; 2154 ill_t *ire_ipif_ill = NULL; 2155 ill_group_t *ire_ill_group = NULL; 2156 2157 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2158 /* 2159 * MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2160 * pointed by ire_stq and ire_ipif. Only in the case of 2161 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2162 * different ills. But we want to keep this function generic 2163 * enough for future use. So, we always try to match on both. 2164 * The only caller of this function ire_walk_ill_tables, will 2165 * call "func" after we return from this function. We expect 2166 * "func" to do the right filtering of ires in this case. 2167 * 2168 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2169 * pointed by ire_stq and ire_ipif should always be the same. 2170 * So, we just match on only one of them. 2171 */ 2172 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2173 if (ire->ire_stq != NULL) 2174 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2175 if (ire->ire_ipif != NULL) 2176 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2177 if (ire_stq_ill != NULL) 2178 ire_ill_group = ire_stq_ill->ill_group; 2179 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2180 ire_ill_group = ire_ipif_ill->ill_group; 2181 } 2182 2183 if (zoneid != ALL_ZONES) { 2184 /* 2185 * We're walking the IREs for a specific zone. The only relevant 2186 * IREs are: 2187 * - all IREs with a matching ire_zoneid 2188 * - all IRE_OFFSUBNETs as they're shared across all zones 2189 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2190 * with a matching zone 2191 * - IRE_DEFAULTs with a gateway reachable from the zone 2192 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2193 * using the same rule; but the above rules are consistent with 2194 * the behavior of ire_ftable_lookup[_v6]() so that all the 2195 * routes that can be matched during lookup are also matched 2196 * here. 2197 */ 2198 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2199 /* 2200 * Note, IRE_INTERFACE can have the stq as NULL. For 2201 * example, if the default multicast route is tied to 2202 * the loopback address. 2203 */ 2204 if ((ire->ire_type & IRE_INTERFACE) && 2205 (ire->ire_stq != NULL)) { 2206 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2207 if (ire->ire_ipversion == IPV4_VERSION) { 2208 if (!ipif_usesrc_avail(ire_stq_ill, 2209 zoneid)) 2210 /* No usable src addr in zone */ 2211 return (B_FALSE); 2212 } else if (ire_stq_ill->ill_usesrc_ifindex 2213 != 0) { 2214 /* 2215 * For IPv6 use ipif_select_source_v6() 2216 * so the right scope selection is done 2217 */ 2218 ipif_t *src_ipif; 2219 src_ipif = 2220 ipif_select_source_v6(ire_stq_ill, 2221 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2222 IPV6_PREFER_SRC_DEFAULT, 2223 zoneid); 2224 if (src_ipif != NULL) { 2225 ipif_refrele(src_ipif); 2226 } else { 2227 return (B_FALSE); 2228 } 2229 } else { 2230 return (B_FALSE); 2231 } 2232 2233 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2234 return (B_FALSE); 2235 } 2236 } 2237 2238 /* 2239 * Match all default routes from the global zone, irrespective 2240 * of reachability. For a non-global zone only match those 2241 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2242 */ 2243 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2244 int ire_match_flags = 0; 2245 in6_addr_t gw_addr_v6; 2246 ire_t *rire; 2247 2248 ire_match_flags |= MATCH_IRE_TYPE; 2249 if (ire->ire_ipif != NULL) { 2250 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2251 } 2252 if (ire->ire_ipversion == IPV4_VERSION) { 2253 rire = ire_route_lookup(ire->ire_gateway_addr, 2254 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2255 zoneid, NULL, ire_match_flags, ipst); 2256 } else { 2257 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2258 mutex_enter(&ire->ire_lock); 2259 gw_addr_v6 = ire->ire_gateway_addr_v6; 2260 mutex_exit(&ire->ire_lock); 2261 rire = ire_route_lookup_v6(&gw_addr_v6, 2262 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2263 NULL, zoneid, NULL, ire_match_flags, ipst); 2264 } 2265 if (rire == NULL) { 2266 return (B_FALSE); 2267 } 2268 ire_refrele(rire); 2269 } 2270 } 2271 2272 if (((!(match_flags & MATCH_IRE_TYPE)) || 2273 (ire->ire_type & ire_type)) && 2274 ((!(match_flags & MATCH_IRE_ILL)) || 2275 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2276 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2277 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2278 (ire_ill_group != NULL && 2279 ire_ill_group == ill->ill_group))) { 2280 return (B_TRUE); 2281 } 2282 return (B_FALSE); 2283 } 2284 2285 int 2286 rtfunc(struct radix_node *rn, void *arg) 2287 { 2288 struct rtfuncarg *rtf = arg; 2289 struct rt_entry *rt; 2290 irb_t *irb; 2291 ire_t *ire; 2292 boolean_t ret; 2293 2294 rt = (struct rt_entry *)rn; 2295 ASSERT(rt != NULL); 2296 irb = &rt->rt_irb; 2297 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2298 if ((rtf->rt_match_flags != 0) || 2299 (rtf->rt_zoneid != ALL_ZONES)) { 2300 ret = ire_walk_ill_match(rtf->rt_match_flags, 2301 rtf->rt_ire_type, ire, 2302 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 2303 } else 2304 ret = B_TRUE; 2305 if (ret) 2306 (*rtf->rt_func)(ire, rtf->rt_arg); 2307 } 2308 return (0); 2309 } 2310 2311 /* 2312 * Walk the ftable and the ctable entries that match the ill. 2313 */ 2314 void 2315 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2316 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2317 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid, 2318 ip_stack_t *ipst) 2319 { 2320 irb_t *irb_ptr; 2321 irb_t *irb; 2322 ire_t *ire; 2323 int i, j; 2324 boolean_t ret; 2325 struct rtfuncarg rtfarg; 2326 2327 ASSERT((!(match_flags & (MATCH_IRE_ILL | 2328 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2329 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2330 /* 2331 * Optimize by not looking at the forwarding table if there 2332 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2333 * specified in ire_type. 2334 */ 2335 if (!(match_flags & MATCH_IRE_TYPE) || 2336 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2337 /* knobs such that routine is called only for v6 case */ 2338 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 2339 for (i = (ftbl_sz - 1); i >= 0; i--) { 2340 if ((irb_ptr = ipftbl[i]) == NULL) 2341 continue; 2342 for (j = 0; j < htbl_sz; j++) { 2343 irb = &irb_ptr[j]; 2344 if (irb->irb_ire == NULL) 2345 continue; 2346 2347 IRB_REFHOLD(irb); 2348 for (ire = irb->irb_ire; ire != NULL; 2349 ire = ire->ire_next) { 2350 if (match_flags == 0 && 2351 zoneid == ALL_ZONES) { 2352 ret = B_TRUE; 2353 } else { 2354 ret = 2355 ire_walk_ill_match( 2356 match_flags, 2357 ire_type, ire, ill, 2358 zoneid, ipst); 2359 } 2360 if (ret) 2361 (*func)(ire, arg); 2362 } 2363 IRB_REFRELE(irb); 2364 } 2365 } 2366 } else { 2367 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2368 rtfarg.rt_func = func; 2369 rtfarg.rt_arg = arg; 2370 if (match_flags != 0) { 2371 rtfarg.rt_match_flags = match_flags; 2372 } 2373 rtfarg.rt_ire_type = ire_type; 2374 rtfarg.rt_ill = ill; 2375 rtfarg.rt_zoneid = zoneid; 2376 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 2377 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 2378 ipst->ips_ip_ftable, 2379 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 2380 } 2381 } 2382 2383 /* 2384 * Optimize by not looking at the cache table if there 2385 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2386 * specified in ire_type. 2387 */ 2388 if (!(match_flags & MATCH_IRE_TYPE) || 2389 ((ire_type & IRE_CACHETABLE) != 0)) { 2390 for (i = 0; i < ctbl_sz; i++) { 2391 irb = &ipctbl[i]; 2392 if (irb->irb_ire == NULL) 2393 continue; 2394 IRB_REFHOLD(irb); 2395 for (ire = irb->irb_ire; ire != NULL; 2396 ire = ire->ire_next) { 2397 if (match_flags == 0 && zoneid == ALL_ZONES) { 2398 ret = B_TRUE; 2399 } else { 2400 ret = ire_walk_ill_match( 2401 match_flags, ire_type, 2402 ire, ill, zoneid, ipst); 2403 } 2404 if (ret) 2405 (*func)(ire, arg); 2406 } 2407 IRB_REFRELE(irb); 2408 } 2409 } 2410 } 2411 2412 /* 2413 * This function takes a mask and returns 2414 * number of bits set in the mask. If no 2415 * bit is set it returns 0. 2416 * Assumes a contiguous mask. 2417 */ 2418 int 2419 ip_mask_to_plen(ipaddr_t mask) 2420 { 2421 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2422 } 2423 2424 /* 2425 * Convert length for a mask to the mask. 2426 */ 2427 ipaddr_t 2428 ip_plen_to_mask(uint_t masklen) 2429 { 2430 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2431 } 2432 2433 void 2434 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2435 { 2436 ill_t *ill_list[NUM_ILLS]; 2437 ip_stack_t *ipst = ire->ire_ipst; 2438 2439 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2440 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2441 ill_unlock_ills(ill_list, NUM_ILLS); 2442 rw_exit(&irb_ptr->irb_lock); 2443 rw_exit(&ipst->ips_ill_g_usesrc_lock); 2444 } 2445 2446 /* 2447 * ire_add_v[46] atomically make sure that the ipif or ill associated 2448 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2449 * before adding the ire to the table. This ensures that we don't create 2450 * new IRE_CACHEs with stale values for parameters that are passed to 2451 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2452 * to the ipif_mtu, and not the value. The actual value is derived from the 2453 * parent ire or ipif under the bucket lock. 2454 */ 2455 int 2456 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2457 ipsq_func_t func) 2458 { 2459 ill_t *stq_ill; 2460 ill_t *ipif_ill; 2461 ill_t *ill_list[NUM_ILLS]; 2462 int cnt = NUM_ILLS; 2463 int error = 0; 2464 ill_t *ill = NULL; 2465 ip_stack_t *ipst = ire->ire_ipst; 2466 2467 ill_list[0] = stq_ill = ire->ire_stq != 2468 NULL ? ire->ire_stq->q_ptr : NULL; 2469 ill_list[1] = ipif_ill = ire->ire_ipif != 2470 NULL ? ire->ire_ipif->ipif_ill : NULL; 2471 2472 ASSERT((q != NULL && mp != NULL && func != NULL) || 2473 (q == NULL && mp == NULL && func == NULL)); 2474 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 2475 GRAB_CONN_LOCK(q); 2476 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 2477 ill_lock_ills(ill_list, cnt); 2478 2479 /* 2480 * While the IRE is in the process of being added, a user may have 2481 * invoked the ifconfig usesrc option on the stq_ill to make it a 2482 * usesrc client ILL. Check for this possibility here, if it is true 2483 * then we fail adding the IRE_CACHE. Another check is to make sure 2484 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 2485 * group. The ill_g_usesrc_lock is released in ire_atomic_end 2486 */ 2487 if ((ire->ire_type & IRE_CACHE) && 2488 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 2489 if (stq_ill->ill_usesrc_ifindex != 0) { 2490 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 2491 if ((ipif_ill->ill_phyint->phyint_ifindex != 2492 stq_ill->ill_usesrc_ifindex) || 2493 (ipif_ill->ill_usesrc_grp_next == NULL) || 2494 (ipif_ill->ill_usesrc_ifindex != 0)) { 2495 error = EINVAL; 2496 goto done; 2497 } 2498 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 2499 error = EINVAL; 2500 goto done; 2501 } 2502 } 2503 2504 /* 2505 * IPMP flag settings happen without taking the exclusive route 2506 * in ip_sioctl_flags. So we need to make an atomic check here 2507 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 2508 * FAILBACK=no case. 2509 */ 2510 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 2511 if (stq_ill->ill_state_flags & ILL_CHANGING) { 2512 ill = stq_ill; 2513 error = EAGAIN; 2514 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2515 (ill_is_probeonly(stq_ill) && 2516 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2517 error = EINVAL; 2518 } 2519 goto done; 2520 } 2521 2522 /* 2523 * We don't check for OFFLINE/FAILED in this case because 2524 * the source address selection logic (ipif_select_source) 2525 * may still select a source address from such an ill. The 2526 * assumption is that these addresses will be moved by in.mpathd 2527 * soon. (i.e. this is a race). However link local addresses 2528 * will not move and hence ipif_select_source_v6 tries to avoid 2529 * FAILED ills. Please see ipif_select_source_v6 for more info 2530 */ 2531 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 2532 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 2533 ill = ipif_ill; 2534 error = EAGAIN; 2535 goto done; 2536 } 2537 2538 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 2539 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 2540 ill = ire->ire_ipif->ipif_ill; 2541 ASSERT(ill != NULL); 2542 error = EAGAIN; 2543 goto done; 2544 } 2545 2546 done: 2547 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 2548 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 2549 mutex_enter(&ipsq->ipsq_lock); 2550 ire_atomic_end(irb_ptr, ire); 2551 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 2552 mutex_exit(&ipsq->ipsq_lock); 2553 error = EINPROGRESS; 2554 } else if (error != 0) { 2555 ire_atomic_end(irb_ptr, ire); 2556 } 2557 2558 RELEASE_CONN_LOCK(q); 2559 return (error); 2560 } 2561 2562 /* 2563 * Add a fully initialized IRE to an appropriate table based on 2564 * ire_type. 2565 * 2566 * allow_unresolved == B_FALSE indicates a legacy code-path call 2567 * that has prohibited the addition of incomplete ire's. If this 2568 * parameter is set, and we find an nce that is in a state other 2569 * than ND_REACHABLE, we fail the add. Note that nce_state could be 2570 * something other than ND_REACHABLE if the nce had just expired and 2571 * the ire_create preceding the ire_add added a new ND_INITIAL nce. 2572 */ 2573 int 2574 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 2575 boolean_t allow_unresolved) 2576 { 2577 ire_t *ire1; 2578 ill_t *stq_ill = NULL; 2579 ill_t *ill; 2580 ipif_t *ipif = NULL; 2581 ill_walk_context_t ctx; 2582 ire_t *ire = *irep; 2583 int error; 2584 boolean_t ire_is_mblk = B_FALSE; 2585 tsol_gcgrp_t *gcgrp = NULL; 2586 tsol_gcgrp_addr_t ga; 2587 ip_stack_t *ipst = ire->ire_ipst; 2588 2589 /* get ready for the day when original ire is not created as mblk */ 2590 if (ire->ire_mp != NULL) { 2591 ire_is_mblk = B_TRUE; 2592 /* Copy the ire to a kmem_alloc'ed area */ 2593 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 2594 if (ire1 == NULL) { 2595 ip1dbg(("ire_add: alloc failed\n")); 2596 ire_delete(ire); 2597 *irep = NULL; 2598 return (ENOMEM); 2599 } 2600 ire->ire_marks &= ~IRE_MARK_UNCACHED; 2601 *ire1 = *ire; 2602 ire1->ire_mp = NULL; 2603 ire1->ire_stq_ifindex = 0; 2604 freeb(ire->ire_mp); 2605 ire = ire1; 2606 } 2607 if (ire->ire_stq != NULL) 2608 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2609 2610 if (ire->ire_type == IRE_CACHE) { 2611 /* 2612 * If this interface is FAILED, or INACTIVE or has hit 2613 * the FAILBACK=no case, we create IRE_CACHES marked 2614 * HIDDEN for some special cases e.g. bind to 2615 * IPIF_NOFAILOVER address etc. So, if this interface 2616 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 2617 * not creating hidden ires, we should not allow that. 2618 * This happens because the state of the interface 2619 * changed while we were waiting in ARP. If this is the 2620 * daemon sending probes, the next probe will create 2621 * HIDDEN ires and we will create an ire then. This 2622 * cannot happen with NDP currently because IRE is 2623 * never queued in NDP. But it can happen in the 2624 * future when we have external resolvers with IPv6. 2625 * If the interface gets marked with OFFLINE while we 2626 * are waiting in ARP, don't add the ire. 2627 */ 2628 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2629 (ill_is_probeonly(stq_ill) && 2630 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2631 /* 2632 * We don't know whether it is a valid ipif or not. 2633 * unless we do the check below. So, set it to NULL. 2634 */ 2635 ire->ire_ipif = NULL; 2636 ire_delete(ire); 2637 *irep = NULL; 2638 return (EINVAL); 2639 } 2640 } 2641 2642 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 2643 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 2644 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2645 ill = ILL_START_WALK_ALL(&ctx, ipst); 2646 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2647 mutex_enter(&ill->ill_lock); 2648 if (ill->ill_state_flags & ILL_CONDEMNED) { 2649 mutex_exit(&ill->ill_lock); 2650 continue; 2651 } 2652 /* 2653 * We need to make sure that the ipif is a valid one 2654 * before adding the IRE_CACHE. This happens only 2655 * with IRE_CACHE when there is an external resolver. 2656 * 2657 * We can unplumb a logical interface while the 2658 * packet is waiting in ARP with the IRE. Then, 2659 * later on when we feed the IRE back, the ipif 2660 * has to be re-checked. This can't happen with 2661 * NDP currently, as we never queue the IRE with 2662 * the packet. We always try to recreate the IRE 2663 * when the resolution is completed. But, we do 2664 * it for IPv6 also here so that in future if 2665 * we have external resolvers, it will work without 2666 * any change. 2667 */ 2668 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 2669 if (ipif != NULL) { 2670 ipif_refhold_locked(ipif); 2671 mutex_exit(&ill->ill_lock); 2672 break; 2673 } 2674 mutex_exit(&ill->ill_lock); 2675 } 2676 rw_exit(&ipst->ips_ill_g_lock); 2677 if (ipif == NULL || 2678 (ipif->ipif_isv6 && 2679 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 2680 &ipif->ipif_v6src_addr)) || 2681 (!ipif->ipif_isv6 && 2682 ire->ire_src_addr != ipif->ipif_src_addr) || 2683 ire->ire_zoneid != ipif->ipif_zoneid) { 2684 2685 if (ipif != NULL) 2686 ipif_refrele(ipif); 2687 ire->ire_ipif = NULL; 2688 ire_delete(ire); 2689 *irep = NULL; 2690 return (EINVAL); 2691 } 2692 2693 2694 ASSERT(ill != NULL); 2695 /* 2696 * If this group was dismantled while this packets was 2697 * queued in ARP, don't add it here. 2698 */ 2699 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 2700 /* We don't want ire_inactive bump stats for this */ 2701 ipif_refrele(ipif); 2702 ire->ire_ipif = NULL; 2703 ire_delete(ire); 2704 *irep = NULL; 2705 return (EINVAL); 2706 } 2707 2708 /* 2709 * Since we didn't attach label security attributes to the 2710 * ire for the resolver case, we need to add it now. (only 2711 * for v4 resolver and v6 xresolv case). 2712 */ 2713 if (is_system_labeled() && ire_is_mblk) { 2714 if (ire->ire_ipversion == IPV4_VERSION) { 2715 ga.ga_af = AF_INET; 2716 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 2717 INADDR_ANY ? ire->ire_gateway_addr : 2718 ire->ire_addr, &ga.ga_addr); 2719 } else { 2720 ga.ga_af = AF_INET6; 2721 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 2722 &ire->ire_gateway_addr_v6) ? 2723 ire->ire_addr_v6 : 2724 ire->ire_gateway_addr_v6; 2725 } 2726 gcgrp = gcgrp_lookup(&ga, B_FALSE); 2727 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 2728 NULL, gcgrp); 2729 if (error != 0) { 2730 if (gcgrp != NULL) { 2731 GCGRP_REFRELE(gcgrp); 2732 gcgrp = NULL; 2733 } 2734 ipif_refrele(ipif); 2735 ire->ire_ipif = NULL; 2736 ire_delete(ire); 2737 *irep = NULL; 2738 return (error); 2739 } 2740 } 2741 } 2742 2743 /* 2744 * In case ire was changed 2745 */ 2746 *irep = ire; 2747 if (ire->ire_ipversion == IPV6_VERSION) 2748 error = ire_add_v6(irep, q, mp, func); 2749 else 2750 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 2751 if (ipif != NULL) 2752 ipif_refrele(ipif); 2753 return (error); 2754 } 2755 2756 /* 2757 * Add an initialized IRE to an appropriate table based on ire_type. 2758 * 2759 * The forward table contains IRE_PREFIX/IRE_HOST and 2760 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 2761 * 2762 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 2763 * and IRE_CACHE. 2764 * 2765 * NOTE : This function is called as writer though not required 2766 * by this function. 2767 */ 2768 static int 2769 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 2770 boolean_t allow_unresolved) 2771 { 2772 ire_t *ire1; 2773 irb_t *irb_ptr; 2774 ire_t **irep; 2775 int flags; 2776 ire_t *pire = NULL; 2777 ill_t *stq_ill; 2778 ire_t *ire = *ire_p; 2779 int error; 2780 boolean_t need_refrele = B_FALSE; 2781 nce_t *nce; 2782 ip_stack_t *ipst = ire->ire_ipst; 2783 2784 if (ire->ire_ipif != NULL) 2785 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 2786 if (ire->ire_stq != NULL) 2787 ASSERT(!MUTEX_HELD( 2788 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 2789 ASSERT(ire->ire_ipversion == IPV4_VERSION); 2790 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 2791 2792 /* Find the appropriate list head. */ 2793 switch (ire->ire_type) { 2794 case IRE_HOST: 2795 ire->ire_mask = IP_HOST_MASK; 2796 ire->ire_masklen = IP_ABITS; 2797 if ((ire->ire_flags & RTF_SETSRC) == 0) 2798 ire->ire_src_addr = 0; 2799 break; 2800 case IRE_CACHE: 2801 case IRE_BROADCAST: 2802 case IRE_LOCAL: 2803 case IRE_LOOPBACK: 2804 ire->ire_mask = IP_HOST_MASK; 2805 ire->ire_masklen = IP_ABITS; 2806 break; 2807 case IRE_PREFIX: 2808 if ((ire->ire_flags & RTF_SETSRC) == 0) 2809 ire->ire_src_addr = 0; 2810 break; 2811 case IRE_DEFAULT: 2812 if ((ire->ire_flags & RTF_SETSRC) == 0) 2813 ire->ire_src_addr = 0; 2814 break; 2815 case IRE_IF_RESOLVER: 2816 case IRE_IF_NORESOLVER: 2817 break; 2818 default: 2819 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 2820 (void *)ire, ire->ire_type)); 2821 ire_delete(ire); 2822 *ire_p = NULL; 2823 return (EINVAL); 2824 } 2825 2826 /* Make sure the address is properly masked. */ 2827 ire->ire_addr &= ire->ire_mask; 2828 2829 /* 2830 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 2831 * of the interface route while adding an IRE_CACHE for an on-link 2832 * destination in the IRE_IF_RESOLVER case, since the ire has to 2833 * go to ARP and return. We can't do a REFHOLD on the 2834 * associated interface ire for fear of ARP freeing the message. 2835 * Here we look up the interface ire in the forwarding table and 2836 * make sure that the interface route has not been deleted. 2837 */ 2838 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 2839 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 2840 2841 ASSERT(ire->ire_max_fragp == NULL); 2842 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 2843 /* 2844 * The ihandle that we used in ip_newroute_multi 2845 * comes from the interface route corresponding 2846 * to ire_ipif. Lookup here to see if it exists 2847 * still. 2848 * If the ire has a source address assigned using 2849 * RTF_SETSRC, ire_ipif is the logical interface holding 2850 * this source address, so we can't use it to check for 2851 * the existence of the interface route. Instead we rely 2852 * on the brute force ihandle search in 2853 * ire_ihandle_lookup_onlink() below. 2854 */ 2855 pire = ipif_to_ire(ire->ire_ipif); 2856 if (pire == NULL) { 2857 ire_delete(ire); 2858 *ire_p = NULL; 2859 return (EINVAL); 2860 } else if (pire->ire_ihandle != ire->ire_ihandle) { 2861 ire_refrele(pire); 2862 ire_delete(ire); 2863 *ire_p = NULL; 2864 return (EINVAL); 2865 } 2866 } else { 2867 pire = ire_ihandle_lookup_onlink(ire); 2868 if (pire == NULL) { 2869 ire_delete(ire); 2870 *ire_p = NULL; 2871 return (EINVAL); 2872 } 2873 } 2874 /* Prevent pire from getting deleted */ 2875 IRB_REFHOLD(pire->ire_bucket); 2876 /* Has it been removed already ? */ 2877 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 2878 IRB_REFRELE(pire->ire_bucket); 2879 ire_refrele(pire); 2880 ire_delete(ire); 2881 *ire_p = NULL; 2882 return (EINVAL); 2883 } 2884 } else { 2885 ASSERT(ire->ire_max_fragp != NULL); 2886 } 2887 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 2888 2889 if (ire->ire_ipif != NULL) { 2890 /* 2891 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 2892 * for historic reasons and to maintain symmetry with 2893 * IPv6 code path. Historically this was used by 2894 * multicast code to create multiple IRE_CACHES on 2895 * a single ill with different ipifs. This was used 2896 * so that multicast packets leaving the node had the 2897 * right source address. This is no longer needed as 2898 * ip_wput initializes the address correctly. 2899 */ 2900 flags |= MATCH_IRE_IPIF; 2901 /* 2902 * If we are creating hidden ires, make sure we search on 2903 * this ill (MATCH_IRE_ILL) and a hidden ire, 2904 * while we are searching for duplicates below. Otherwise we 2905 * could potentially find an IRE on some other interface 2906 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 2907 * shouldn't do this as this will lead to an infinite loop 2908 * (if we get to ip_wput again) eventually we need an hidden 2909 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 2910 * done below. 2911 */ 2912 if (ire->ire_type == IRE_CACHE && 2913 (ire->ire_marks & IRE_MARK_HIDDEN)) 2914 flags |= (MATCH_IRE_MARK_HIDDEN); 2915 } 2916 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 2917 irb_ptr = ire_get_bucket(ire); 2918 need_refrele = B_TRUE; 2919 if (irb_ptr == NULL) { 2920 /* 2921 * This assumes that the ire has not added 2922 * a reference to the ipif. 2923 */ 2924 ire->ire_ipif = NULL; 2925 ire_delete(ire); 2926 if (pire != NULL) { 2927 IRB_REFRELE(pire->ire_bucket); 2928 ire_refrele(pire); 2929 } 2930 *ire_p = NULL; 2931 return (EINVAL); 2932 } 2933 } else { 2934 irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH( 2935 ire->ire_addr, ipst->ips_ip_cache_table_size)]); 2936 } 2937 2938 /* 2939 * Start the atomic add of the ire. Grab the ill locks, 2940 * ill_g_usesrc_lock and the bucket lock. Check for condemned 2941 * 2942 * If ipif or ill is changing ire_atomic_start() may queue the 2943 * request and return EINPROGRESS. 2944 * To avoid lock order problems, get the ndp4->ndp_g_lock. 2945 */ 2946 mutex_enter(&ipst->ips_ndp4->ndp_g_lock); 2947 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 2948 if (error != 0) { 2949 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2950 /* 2951 * We don't know whether it is a valid ipif or not. 2952 * So, set it to NULL. This assumes that the ire has not added 2953 * a reference to the ipif. 2954 */ 2955 ire->ire_ipif = NULL; 2956 ire_delete(ire); 2957 if (pire != NULL) { 2958 IRB_REFRELE(pire->ire_bucket); 2959 ire_refrele(pire); 2960 } 2961 *ire_p = NULL; 2962 if (need_refrele) 2963 IRB_REFRELE(irb_ptr); 2964 return (error); 2965 } 2966 /* 2967 * To avoid creating ires having stale values for the ire_max_frag 2968 * we get the latest value atomically here. For more details 2969 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 2970 * in ip_rput_dlpi_writer 2971 */ 2972 if (ire->ire_max_fragp == NULL) { 2973 if (CLASSD(ire->ire_addr)) 2974 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 2975 else 2976 ire->ire_max_frag = pire->ire_max_frag; 2977 } else { 2978 uint_t max_frag; 2979 2980 max_frag = *ire->ire_max_fragp; 2981 ire->ire_max_fragp = NULL; 2982 ire->ire_max_frag = max_frag; 2983 } 2984 /* 2985 * Atomically check for duplicate and insert in the table. 2986 */ 2987 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 2988 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 2989 continue; 2990 if (ire->ire_ipif != NULL) { 2991 /* 2992 * We do MATCH_IRE_ILL implicitly here for IREs 2993 * with a non-null ire_ipif, including IRE_CACHEs. 2994 * As ire_ipif and ire_stq could point to two 2995 * different ills, we can't pass just ire_ipif to 2996 * ire_match_args and get a match on both ills. 2997 * This is just needed for duplicate checks here and 2998 * so we don't add an extra argument to 2999 * ire_match_args for this. Do it locally. 3000 * 3001 * NOTE : Currently there is no part of the code 3002 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 3003 * match for IRE_CACHEs. Thus we don't want to 3004 * extend the arguments to ire_match_args. 3005 */ 3006 if (ire1->ire_stq != ire->ire_stq) 3007 continue; 3008 /* 3009 * Multiroute IRE_CACHEs for a given destination can 3010 * have the same ire_ipif, typically if their source 3011 * address is forced using RTF_SETSRC, and the same 3012 * send-to queue. We differentiate them using the parent 3013 * handle. 3014 */ 3015 if (ire->ire_type == IRE_CACHE && 3016 (ire1->ire_flags & RTF_MULTIRT) && 3017 (ire->ire_flags & RTF_MULTIRT) && 3018 (ire1->ire_phandle != ire->ire_phandle)) 3019 continue; 3020 } 3021 if (ire1->ire_zoneid != ire->ire_zoneid) 3022 continue; 3023 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 3024 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 3025 ire->ire_zoneid, 0, NULL, flags)) { 3026 /* 3027 * Return the old ire after doing a REFHOLD. 3028 * As most of the callers continue to use the IRE 3029 * after adding, we return a held ire. This will 3030 * avoid a lookup in the caller again. If the callers 3031 * don't want to use it, they need to do a REFRELE. 3032 */ 3033 ip1dbg(("found dup ire existing %p new %p", 3034 (void *)ire1, (void *)ire)); 3035 IRE_REFHOLD(ire1); 3036 ire_atomic_end(irb_ptr, ire); 3037 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3038 ire_delete(ire); 3039 if (pire != NULL) { 3040 /* 3041 * Assert that it is not removed from the 3042 * list yet. 3043 */ 3044 ASSERT(pire->ire_ptpn != NULL); 3045 IRB_REFRELE(pire->ire_bucket); 3046 ire_refrele(pire); 3047 } 3048 *ire_p = ire1; 3049 if (need_refrele) 3050 IRB_REFRELE(irb_ptr); 3051 return (0); 3052 } 3053 } 3054 if (ire->ire_type & IRE_CACHE) { 3055 ASSERT(ire->ire_stq != NULL); 3056 nce = ndp_lookup_v4(ire_to_ill(ire), 3057 ((ire->ire_gateway_addr != INADDR_ANY) ? 3058 &ire->ire_gateway_addr : &ire->ire_addr), 3059 B_TRUE); 3060 if (nce != NULL) 3061 mutex_enter(&nce->nce_lock); 3062 /* 3063 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 3064 * and the caller has prohibited the addition of incomplete 3065 * ire's, we fail the add. Note that nce_state could be 3066 * something other than ND_REACHABLE if the nce had 3067 * just expired and the ire_create preceding the 3068 * ire_add added a new ND_INITIAL nce. 3069 */ 3070 if ((nce == NULL) || 3071 (nce->nce_flags & NCE_F_CONDEMNED) || 3072 (!allow_unresolved && 3073 (nce->nce_state != ND_REACHABLE))) { 3074 if (nce != NULL) { 3075 DTRACE_PROBE1(ire__bad__nce, nce_t *, nce); 3076 mutex_exit(&nce->nce_lock); 3077 } 3078 ire_atomic_end(irb_ptr, ire); 3079 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3080 if (nce != NULL) 3081 NCE_REFRELE(nce); 3082 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 3083 ire_delete(ire); 3084 if (pire != NULL) { 3085 IRB_REFRELE(pire->ire_bucket); 3086 ire_refrele(pire); 3087 } 3088 *ire_p = NULL; 3089 if (need_refrele) 3090 IRB_REFRELE(irb_ptr); 3091 return (EINVAL); 3092 } else { 3093 ire->ire_nce = nce; 3094 mutex_exit(&nce->nce_lock); 3095 /* 3096 * We are associating this nce to the ire, so 3097 * change the nce ref taken in ndp_lookup_v4() from 3098 * NCE_REFHOLD to NCE_REFHOLD_NOTR 3099 */ 3100 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 3101 } 3102 } 3103 /* 3104 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 3105 * grouping identical addresses together on the hash chain. We also 3106 * don't want to send multiple copies out if there are two ills part 3107 * of the same group. Thus we group the ires with same addr and same 3108 * ill group together so that ip_wput_ire can easily skip all the 3109 * ires with same addr and same group after sending the first copy. 3110 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3111 * interested in such groupings only for broadcasts. 3112 * 3113 * NOTE : If the interfaces are brought up first and then grouped, 3114 * illgrp_insert will handle it. We come here when the interfaces 3115 * are already in group and we are bringing them UP. 3116 * 3117 * Find the first entry that matches ire_addr. *irep will be null 3118 * if no match. 3119 * 3120 * Note: the loopback and non-loopback broadcast entries for an 3121 * interface MUST be added before any MULTIRT entries. 3122 */ 3123 irep = (ire_t **)irb_ptr; 3124 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3125 irep = &ire1->ire_next; 3126 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3127 /* 3128 * We found some ire (i.e *irep) with a matching addr. We 3129 * want to group ires with same addr and same ill group 3130 * together. 3131 * 3132 * First get to the entry that matches our address and 3133 * ill group i.e stop as soon as we find the first ire 3134 * matching the ill group and address. If there is only 3135 * an address match, we should walk and look for some 3136 * group match. These are some of the possible scenarios : 3137 * 3138 * 1) There are no groups at all i.e all ire's ill_group 3139 * are NULL. In that case we will essentially group 3140 * all the ires with the same addr together. Same as 3141 * the "else" block of this "if". 3142 * 3143 * 2) There are some groups and this ire's ill_group is 3144 * NULL. In this case, we will first find the group 3145 * that matches the address and a NULL group. Then 3146 * we will insert the ire at the end of that group. 3147 * 3148 * 3) There are some groups and this ires's ill_group is 3149 * non-NULL. In this case we will first find the group 3150 * that matches the address and the ill_group. Then 3151 * we will insert the ire at the end of that group. 3152 */ 3153 for (;;) { 3154 ire1 = *irep; 3155 if ((ire1->ire_next == NULL) || 3156 (ire1->ire_next->ire_addr != ire->ire_addr) || 3157 (ire1->ire_type != IRE_BROADCAST) || 3158 (ire1->ire_flags & RTF_MULTIRT) || 3159 (ire1->ire_ipif->ipif_ill->ill_group == 3160 ire->ire_ipif->ipif_ill->ill_group)) 3161 break; 3162 irep = &ire1->ire_next; 3163 } 3164 ASSERT(*irep != NULL); 3165 /* 3166 * The ire will be added before *irep, so 3167 * if irep is a MULTIRT ire, just break to 3168 * ire insertion code. 3169 */ 3170 if (((*irep)->ire_flags & RTF_MULTIRT) != 0) 3171 goto insert_ire; 3172 3173 irep = &((*irep)->ire_next); 3174 3175 /* 3176 * Either we have hit the end of the list or the address 3177 * did not match or the group *matched*. If we found 3178 * a match on the group, skip to the end of the group. 3179 */ 3180 while (*irep != NULL) { 3181 ire1 = *irep; 3182 if ((ire1->ire_addr != ire->ire_addr) || 3183 (ire1->ire_type != IRE_BROADCAST) || 3184 (ire1->ire_ipif->ipif_ill->ill_group != 3185 ire->ire_ipif->ipif_ill->ill_group)) 3186 break; 3187 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3188 ire1->ire_ipif == ire->ire_ipif) { 3189 irep = &ire1->ire_next; 3190 break; 3191 } 3192 irep = &ire1->ire_next; 3193 } 3194 } else if (*irep != NULL) { 3195 /* 3196 * Find the last ire which matches ire_addr. 3197 * Needed to do tail insertion among entries with the same 3198 * ire_addr. 3199 */ 3200 while (ire->ire_addr == ire1->ire_addr) { 3201 irep = &ire1->ire_next; 3202 ire1 = *irep; 3203 if (ire1 == NULL) 3204 break; 3205 } 3206 } 3207 3208 insert_ire: 3209 /* Insert at *irep */ 3210 ire1 = *irep; 3211 if (ire1 != NULL) 3212 ire1->ire_ptpn = &ire->ire_next; 3213 ire->ire_next = ire1; 3214 /* Link the new one in. */ 3215 ire->ire_ptpn = irep; 3216 3217 /* 3218 * ire_walk routines de-reference ire_next without holding 3219 * a lock. Before we point to the new ire, we want to make 3220 * sure the store that sets the ire_next of the new ire 3221 * reaches global visibility, so that ire_walk routines 3222 * don't see a truncated list of ires i.e if the ire_next 3223 * of the new ire gets set after we do "*irep = ire" due 3224 * to re-ordering, the ire_walk thread will see a NULL 3225 * once it accesses the ire_next of the new ire. 3226 * membar_producer() makes sure that the following store 3227 * happens *after* all of the above stores. 3228 */ 3229 membar_producer(); 3230 *irep = ire; 3231 ire->ire_bucket = irb_ptr; 3232 /* 3233 * We return a bumped up IRE above. Keep it symmetrical 3234 * so that the callers will always have to release. This 3235 * helps the callers of this function because they continue 3236 * to use the IRE after adding and hence they don't have to 3237 * lookup again after we return the IRE. 3238 * 3239 * NOTE : We don't have to use atomics as this is appearing 3240 * in the list for the first time and no one else can bump 3241 * up the reference count on this yet. 3242 */ 3243 IRE_REFHOLD_LOCKED(ire); 3244 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 3245 3246 irb_ptr->irb_ire_cnt++; 3247 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3248 irb_ptr->irb_nire++; 3249 3250 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3251 irb_ptr->irb_tmp_ire_cnt++; 3252 3253 if (ire->ire_ipif != NULL) { 3254 ire->ire_ipif->ipif_ire_cnt++; 3255 if (ire->ire_stq != NULL) { 3256 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3257 stq_ill->ill_ire_cnt++; 3258 } 3259 } else { 3260 ASSERT(ire->ire_stq == NULL); 3261 } 3262 3263 ire_atomic_end(irb_ptr, ire); 3264 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3265 3266 if (pire != NULL) { 3267 /* Assert that it is not removed from the list yet */ 3268 ASSERT(pire->ire_ptpn != NULL); 3269 IRB_REFRELE(pire->ire_bucket); 3270 ire_refrele(pire); 3271 } 3272 3273 if (ire->ire_type != IRE_CACHE) { 3274 /* 3275 * For ire's with host mask see if there is an entry 3276 * in the cache. If there is one flush the whole cache as 3277 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3278 * If no entry is found than there is no need to flush the 3279 * cache. 3280 */ 3281 if (ire->ire_mask == IP_HOST_MASK) { 3282 ire_t *lire; 3283 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3284 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3285 if (lire != NULL) { 3286 ire_refrele(lire); 3287 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3288 } 3289 } else { 3290 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3291 } 3292 } 3293 /* 3294 * We had to delay the fast path probe until the ire is inserted 3295 * in the list. Otherwise the fast path ack won't find the ire in 3296 * the table. 3297 */ 3298 if (ire->ire_type == IRE_CACHE || 3299 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) { 3300 ASSERT(ire->ire_nce != NULL); 3301 if (ire->ire_nce->nce_state == ND_REACHABLE) 3302 nce_fastpath(ire->ire_nce); 3303 } 3304 if (ire->ire_ipif != NULL) 3305 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3306 *ire_p = ire; 3307 if (need_refrele) { 3308 IRB_REFRELE(irb_ptr); 3309 } 3310 return (0); 3311 } 3312 3313 /* 3314 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3315 * do the final cleanup for this ire. 3316 */ 3317 void 3318 ire_cleanup(ire_t *ire) 3319 { 3320 ire_t *ire_next; 3321 ip_stack_t *ipst = ire->ire_ipst; 3322 3323 ASSERT(ire != NULL); 3324 3325 while (ire != NULL) { 3326 ire_next = ire->ire_next; 3327 if (ire->ire_ipversion == IPV4_VERSION) { 3328 ire_delete_v4(ire); 3329 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 3330 ire_stats_deleted); 3331 } else { 3332 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3333 ire_delete_v6(ire); 3334 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 3335 ire_stats_deleted); 3336 } 3337 /* 3338 * Now it's really out of the list. Before doing the 3339 * REFRELE, set ire_next to NULL as ire_inactive asserts 3340 * so. 3341 */ 3342 ire->ire_next = NULL; 3343 IRE_REFRELE_NOTR(ire); 3344 ire = ire_next; 3345 } 3346 } 3347 3348 /* 3349 * IRB_REFRELE is the only caller of the function. It calls to unlink 3350 * all the CONDEMNED ires from this bucket. 3351 */ 3352 ire_t * 3353 ire_unlink(irb_t *irb) 3354 { 3355 ire_t *ire; 3356 ire_t *ire1; 3357 ire_t **ptpn; 3358 ire_t *ire_list = NULL; 3359 3360 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3361 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3362 (irb->irb_refcnt == 0)); 3363 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3364 ASSERT(irb->irb_ire != NULL); 3365 3366 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3367 ip_stack_t *ipst = ire->ire_ipst; 3368 3369 ire1 = ire->ire_next; 3370 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3371 ptpn = ire->ire_ptpn; 3372 ire1 = ire->ire_next; 3373 if (ire1) 3374 ire1->ire_ptpn = ptpn; 3375 *ptpn = ire1; 3376 ire->ire_ptpn = NULL; 3377 ire->ire_next = NULL; 3378 if (ire->ire_type == IRE_DEFAULT) { 3379 /* 3380 * IRE is out of the list. We need to adjust 3381 * the accounting before the caller drops 3382 * the lock. 3383 */ 3384 if (ire->ire_ipversion == IPV6_VERSION) { 3385 ASSERT(ipst-> 3386 ips_ipv6_ire_default_count != 3387 0); 3388 ipst->ips_ipv6_ire_default_count--; 3389 } 3390 } 3391 /* 3392 * We need to call ire_delete_v4 or ire_delete_v6 3393 * to clean up the cache or the redirects pointing at 3394 * the default gateway. We need to drop the lock 3395 * as ire_flush_cache/ire_delete_host_redircts require 3396 * so. But we can't drop the lock, as ire_unlink needs 3397 * to atomically remove the ires from the list. 3398 * So, create a temporary list of CONDEMNED ires 3399 * for doing ire_delete_v4/ire_delete_v6 operations 3400 * later on. 3401 */ 3402 ire->ire_next = ire_list; 3403 ire_list = ire; 3404 } 3405 } 3406 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3407 return (ire_list); 3408 } 3409 3410 /* 3411 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3412 * ARP message on any of its interface queue, it scans the nce table and 3413 * deletes and calls ndp_delete() for the appropriate nce. This action 3414 * also deletes all the neighbor/ire cache entries for that address. 3415 * This function is called from ip_arp_news in ip.c and also for 3416 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3417 * true if it finds a nce entry which is used by ip_arp_news to determine if 3418 * it needs to do an ire_walk_v4. The return value is also used for the 3419 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3420 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3421 * ip_if->ipif_ill also needs to be matched. 3422 */ 3423 boolean_t 3424 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst) 3425 { 3426 ill_t *ill; 3427 nce_t *nce; 3428 3429 ill = (ipif ? ipif->ipif_ill : NULL); 3430 3431 if (ill != NULL) { 3432 /* 3433 * clean up the nce (and any relevant ire's) that matches 3434 * on addr and ill. 3435 */ 3436 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3437 if (nce != NULL) { 3438 ndp_delete(nce); 3439 return (B_TRUE); 3440 } 3441 } else { 3442 /* 3443 * ill is wildcard. clean up all nce's and 3444 * ire's that match on addr 3445 */ 3446 nce_clookup_t cl; 3447 3448 cl.ncecl_addr = addr; 3449 cl.ncecl_found = B_FALSE; 3450 3451 ndp_walk_common(ipst->ips_ndp4, NULL, 3452 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3453 3454 /* 3455 * ncecl_found would be set by ip_nce_clookup_and_delete if 3456 * we found a matching nce. 3457 */ 3458 return (cl.ncecl_found); 3459 } 3460 return (B_FALSE); 3461 3462 } 3463 3464 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3465 static void 3466 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 3467 { 3468 nce_clookup_t *cl = (nce_clookup_t *)arg; 3469 ipaddr_t nce_addr; 3470 3471 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 3472 if (nce_addr == cl->ncecl_addr) { 3473 cl->ncecl_found = B_TRUE; 3474 /* clean up the nce (and any relevant ire's) */ 3475 ndp_delete(nce); 3476 } 3477 } 3478 3479 /* 3480 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 3481 * when there are no ire's left in the bucket. Returns TRUE if the bucket 3482 * is deleted and freed. 3483 */ 3484 boolean_t 3485 irb_inactive(irb_t *irb) 3486 { 3487 struct rt_entry *rt; 3488 struct radix_node *rn; 3489 ip_stack_t *ipst = irb->irb_ipst; 3490 3491 ASSERT(irb->irb_ipst != NULL); 3492 3493 rt = IRB2RT(irb); 3494 rn = (struct radix_node *)rt; 3495 3496 /* first remove it from the radix tree. */ 3497 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 3498 rw_enter(&irb->irb_lock, RW_WRITER); 3499 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 3500 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 3501 ipst->ips_ip_ftable); 3502 DTRACE_PROBE1(irb__free, rt_t *, rt); 3503 ASSERT((void *)rn == (void *)rt); 3504 Free(rt, rt_entry_cache); 3505 /* irb_lock is freed */ 3506 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3507 return (B_TRUE); 3508 } 3509 rw_exit(&irb->irb_lock); 3510 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3511 return (B_FALSE); 3512 } 3513 3514 /* 3515 * Delete the specified IRE. 3516 */ 3517 void 3518 ire_delete(ire_t *ire) 3519 { 3520 ire_t *ire1; 3521 ire_t **ptpn; 3522 irb_t *irb; 3523 ip_stack_t *ipst = ire->ire_ipst; 3524 3525 if ((irb = ire->ire_bucket) == NULL) { 3526 /* 3527 * It was never inserted in the list. Should call REFRELE 3528 * to free this IRE. 3529 */ 3530 IRE_REFRELE_NOTR(ire); 3531 return; 3532 } 3533 3534 rw_enter(&irb->irb_lock, RW_WRITER); 3535 3536 if (irb->irb_rr_origin == ire) { 3537 irb->irb_rr_origin = NULL; 3538 } 3539 3540 /* 3541 * In case of V4 we might still be waiting for fastpath ack. 3542 */ 3543 if (ire->ire_ipversion == IPV4_VERSION && 3544 (ire->ire_type == IRE_CACHE || 3545 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) { 3546 ASSERT(ire->ire_nce != NULL); 3547 nce_fastpath_list_delete(ire->ire_nce); 3548 } 3549 3550 if (ire->ire_ptpn == NULL) { 3551 /* 3552 * Some other thread has removed us from the list. 3553 * It should have done the REFRELE for us. 3554 */ 3555 rw_exit(&irb->irb_lock); 3556 return; 3557 } 3558 3559 if (irb->irb_refcnt != 0) { 3560 /* 3561 * The last thread to leave this bucket will 3562 * delete this ire. 3563 */ 3564 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3565 irb->irb_ire_cnt--; 3566 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3567 irb->irb_tmp_ire_cnt--; 3568 ire->ire_marks |= IRE_MARK_CONDEMNED; 3569 } 3570 irb->irb_marks |= IRB_MARK_CONDEMNED; 3571 rw_exit(&irb->irb_lock); 3572 return; 3573 } 3574 3575 /* 3576 * Normally to delete an ire, we walk the bucket. While we 3577 * walk the bucket, we normally bump up irb_refcnt and hence 3578 * we return from above where we mark CONDEMNED and the ire 3579 * gets deleted from ire_unlink. This case is where somebody 3580 * knows the ire e.g by doing a lookup, and wants to delete the 3581 * IRE. irb_refcnt would be 0 in this case if nobody is walking 3582 * the bucket. 3583 */ 3584 ptpn = ire->ire_ptpn; 3585 ire1 = ire->ire_next; 3586 if (ire1 != NULL) 3587 ire1->ire_ptpn = ptpn; 3588 ASSERT(ptpn != NULL); 3589 *ptpn = ire1; 3590 ire->ire_ptpn = NULL; 3591 ire->ire_next = NULL; 3592 if (ire->ire_ipversion == IPV6_VERSION) { 3593 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 3594 } else { 3595 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 3596 } 3597 /* 3598 * ip_wput/ip_wput_v6 checks this flag to see whether 3599 * it should still use the cached ire or not. 3600 */ 3601 ire->ire_marks |= IRE_MARK_CONDEMNED; 3602 if (ire->ire_type == IRE_DEFAULT) { 3603 /* 3604 * IRE is out of the list. We need to adjust the 3605 * accounting before we drop the lock. 3606 */ 3607 if (ire->ire_ipversion == IPV6_VERSION) { 3608 ASSERT(ipst->ips_ipv6_ire_default_count != 0); 3609 ipst->ips_ipv6_ire_default_count--; 3610 } 3611 } 3612 irb->irb_ire_cnt--; 3613 3614 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3615 irb->irb_tmp_ire_cnt--; 3616 rw_exit(&irb->irb_lock); 3617 3618 if (ire->ire_ipversion == IPV6_VERSION) { 3619 ire_delete_v6(ire); 3620 } else { 3621 ire_delete_v4(ire); 3622 } 3623 /* 3624 * We removed it from the list. Decrement the 3625 * reference count. 3626 */ 3627 IRE_REFRELE_NOTR(ire); 3628 } 3629 3630 /* 3631 * Delete the specified IRE. 3632 * All calls should use ire_delete(). 3633 * Sometimes called as writer though not required by this function. 3634 * 3635 * NOTE : This function is called only if the ire was added 3636 * in the list. 3637 */ 3638 static void 3639 ire_delete_v4(ire_t *ire) 3640 { 3641 ip_stack_t *ipst = ire->ire_ipst; 3642 3643 ASSERT(ire->ire_refcnt >= 1); 3644 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3645 3646 if (ire->ire_type != IRE_CACHE) 3647 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 3648 if (ire->ire_type == IRE_DEFAULT) { 3649 /* 3650 * when a default gateway is going away 3651 * delete all the host redirects pointing at that 3652 * gateway. 3653 */ 3654 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 3655 } 3656 } 3657 3658 /* 3659 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 3660 * to free the ire when the reference count goes to zero. 3661 */ 3662 void 3663 ire_inactive(ire_t *ire) 3664 { 3665 nce_t *nce; 3666 ill_t *ill = NULL; 3667 ill_t *stq_ill = NULL; 3668 ipif_t *ipif; 3669 boolean_t need_wakeup = B_FALSE; 3670 irb_t *irb; 3671 ip_stack_t *ipst = ire->ire_ipst; 3672 3673 ASSERT(ire->ire_refcnt == 0); 3674 ASSERT(ire->ire_ptpn == NULL); 3675 ASSERT(ire->ire_next == NULL); 3676 3677 if (ire->ire_gw_secattr != NULL) { 3678 ire_gw_secattr_free(ire->ire_gw_secattr); 3679 ire->ire_gw_secattr = NULL; 3680 } 3681 3682 if (ire->ire_mp != NULL) { 3683 ASSERT(ire->ire_bucket == NULL); 3684 mutex_destroy(&ire->ire_lock); 3685 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3686 if (ire->ire_nce != NULL) 3687 NCE_REFRELE_NOTR(ire->ire_nce); 3688 freeb(ire->ire_mp); 3689 return; 3690 } 3691 3692 if ((nce = ire->ire_nce) != NULL) { 3693 NCE_REFRELE_NOTR(nce); 3694 ire->ire_nce = NULL; 3695 } 3696 3697 if (ire->ire_ipif == NULL) 3698 goto end; 3699 3700 ipif = ire->ire_ipif; 3701 ill = ipif->ipif_ill; 3702 3703 if (ire->ire_bucket == NULL) { 3704 /* The ire was never inserted in the table. */ 3705 goto end; 3706 } 3707 3708 /* 3709 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 3710 * non-null ill_ire_count also goes down by 1. 3711 * 3712 * The ipif that is associated with an ire is ire->ire_ipif and 3713 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 3714 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 3715 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 3716 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 3717 * different. If this is different from ire->ire_ipif->ipif_ill and 3718 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 3719 * ipif_ill_refrele_tail on the stq_ill. 3720 */ 3721 3722 if (ire->ire_stq != NULL) 3723 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3724 3725 if (stq_ill == NULL || stq_ill == ill) { 3726 /* Optimize the most common case */ 3727 mutex_enter(&ill->ill_lock); 3728 ASSERT(ipif->ipif_ire_cnt != 0); 3729 ipif->ipif_ire_cnt--; 3730 if (ipif->ipif_ire_cnt == 0) 3731 need_wakeup = B_TRUE; 3732 if (stq_ill != NULL) { 3733 ASSERT(stq_ill->ill_ire_cnt != 0); 3734 stq_ill->ill_ire_cnt--; 3735 if (stq_ill->ill_ire_cnt == 0) 3736 need_wakeup = B_TRUE; 3737 } 3738 if (need_wakeup) { 3739 /* Drops the ill lock */ 3740 ipif_ill_refrele_tail(ill); 3741 } else { 3742 mutex_exit(&ill->ill_lock); 3743 } 3744 } else { 3745 /* 3746 * We can't grab all the ill locks at the same time. 3747 * It can lead to recursive lock enter in the call to 3748 * ipif_ill_refrele_tail and later. Instead do it 1 at 3749 * a time. 3750 */ 3751 mutex_enter(&ill->ill_lock); 3752 ASSERT(ipif->ipif_ire_cnt != 0); 3753 ipif->ipif_ire_cnt--; 3754 if (ipif->ipif_ire_cnt == 0) { 3755 /* Drops the lock */ 3756 ipif_ill_refrele_tail(ill); 3757 } else { 3758 mutex_exit(&ill->ill_lock); 3759 } 3760 if (stq_ill != NULL) { 3761 mutex_enter(&stq_ill->ill_lock); 3762 ASSERT(stq_ill->ill_ire_cnt != 0); 3763 stq_ill->ill_ire_cnt--; 3764 if (stq_ill->ill_ire_cnt == 0) { 3765 /* Drops the ill lock */ 3766 ipif_ill_refrele_tail(stq_ill); 3767 } else { 3768 mutex_exit(&stq_ill->ill_lock); 3769 } 3770 } 3771 } 3772 end: 3773 /* This should be true for both V4 and V6 */ 3774 3775 if ((ire->ire_type & IRE_FORWARDTABLE) && 3776 (ire->ire_ipversion == IPV4_VERSION) && 3777 ((irb = ire->ire_bucket) != NULL)) { 3778 rw_enter(&irb->irb_lock, RW_WRITER); 3779 irb->irb_nire--; 3780 /* 3781 * Instead of examining the conditions for freeing 3782 * the radix node here, we do it by calling 3783 * IRB_REFRELE which is a single point in the code 3784 * that embeds that logic. Bump up the refcnt to 3785 * be able to call IRB_REFRELE 3786 */ 3787 IRB_REFHOLD_LOCKED(irb); 3788 rw_exit(&irb->irb_lock); 3789 IRB_REFRELE(irb); 3790 } 3791 ire->ire_ipif = NULL; 3792 3793 #ifdef DEBUG 3794 ire_trace_cleanup(ire); 3795 #endif 3796 mutex_destroy(&ire->ire_lock); 3797 if (ire->ire_ipversion == IPV6_VERSION) { 3798 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 3799 } else { 3800 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3801 } 3802 ASSERT(ire->ire_mp == NULL); 3803 /* Has been allocated out of the cache */ 3804 kmem_cache_free(ire_cache, ire); 3805 } 3806 3807 /* 3808 * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect 3809 * entries that have a given gateway address. 3810 */ 3811 void 3812 ire_delete_cache_gw(ire_t *ire, char *cp) 3813 { 3814 ipaddr_t gw_addr; 3815 3816 if (!(ire->ire_type & IRE_CACHE) && 3817 !(ire->ire_flags & RTF_DYNAMIC)) 3818 return; 3819 3820 bcopy(cp, &gw_addr, sizeof (gw_addr)); 3821 if (ire->ire_gateway_addr == gw_addr) { 3822 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 3823 (int)ntohl(ire->ire_addr), ire->ire_type, 3824 (int)ntohl(ire->ire_gateway_addr))); 3825 ire_delete(ire); 3826 } 3827 } 3828 3829 /* 3830 * Remove all IRE_CACHE entries that match the ire specified. 3831 * 3832 * The flag argument indicates if the flush request is due to addition 3833 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 3834 * 3835 * This routine takes only the IREs from the forwarding table and flushes 3836 * the corresponding entries from the cache table. 3837 * 3838 * When flushing due to the deletion of an old route, it 3839 * just checks the cache handles (ire_phandle and ire_ihandle) and 3840 * deletes the ones that match. 3841 * 3842 * When flushing due to the creation of a new route, it checks 3843 * if a cache entry's address matches the one in the IRE and 3844 * that the cache entry's parent has a less specific mask than the 3845 * one in IRE. The destination of such a cache entry could be the 3846 * gateway for other cache entries, so we need to flush those as 3847 * well by looking for gateway addresses matching the IRE's address. 3848 */ 3849 void 3850 ire_flush_cache_v4(ire_t *ire, int flag) 3851 { 3852 int i; 3853 ire_t *cire; 3854 irb_t *irb; 3855 ip_stack_t *ipst = ire->ire_ipst; 3856 3857 if (ire->ire_type & IRE_CACHE) 3858 return; 3859 3860 /* 3861 * If a default is just created, there is no point 3862 * in going through the cache, as there will not be any 3863 * cached ires. 3864 */ 3865 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 3866 return; 3867 if (flag == IRE_FLUSH_ADD) { 3868 /* 3869 * This selective flush is due to the addition of 3870 * new IRE. 3871 */ 3872 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3873 irb = &ipst->ips_ip_cache_table[i]; 3874 if ((cire = irb->irb_ire) == NULL) 3875 continue; 3876 IRB_REFHOLD(irb); 3877 for (cire = irb->irb_ire; cire != NULL; 3878 cire = cire->ire_next) { 3879 if (cire->ire_type != IRE_CACHE) 3880 continue; 3881 /* 3882 * If 'cire' belongs to the same subnet 3883 * as the new ire being added, and 'cire' 3884 * is derived from a prefix that is less 3885 * specific than the new ire being added, 3886 * we need to flush 'cire'; for instance, 3887 * when a new interface comes up. 3888 */ 3889 if (((cire->ire_addr & ire->ire_mask) == 3890 (ire->ire_addr & ire->ire_mask)) && 3891 (ip_mask_to_plen(cire->ire_cmask) <= 3892 ire->ire_masklen)) { 3893 ire_delete(cire); 3894 continue; 3895 } 3896 /* 3897 * This is the case when the ire_gateway_addr 3898 * of 'cire' belongs to the same subnet as 3899 * the new ire being added. 3900 * Flushing such ires is sometimes required to 3901 * avoid misrouting: say we have a machine with 3902 * two interfaces (I1 and I2), a default router 3903 * R on the I1 subnet, and a host route to an 3904 * off-link destination D with a gateway G on 3905 * the I2 subnet. 3906 * Under normal operation, we will have an 3907 * on-link cache entry for G and an off-link 3908 * cache entry for D with G as ire_gateway_addr, 3909 * traffic to D will reach its destination 3910 * through gateway G. 3911 * If the administrator does 'ifconfig I2 down', 3912 * the cache entries for D and G will be 3913 * flushed. However, G will now be resolved as 3914 * an off-link destination using R (the default 3915 * router) as gateway. Then D will also be 3916 * resolved as an off-link destination using G 3917 * as gateway - this behavior is due to 3918 * compatibility reasons, see comment in 3919 * ire_ihandle_lookup_offlink(). Traffic to D 3920 * will go to the router R and probably won't 3921 * reach the destination. 3922 * The administrator then does 'ifconfig I2 up'. 3923 * Since G is on the I2 subnet, this routine 3924 * will flush its cache entry. It must also 3925 * flush the cache entry for D, otherwise 3926 * traffic will stay misrouted until the IRE 3927 * times out. 3928 */ 3929 if ((cire->ire_gateway_addr & ire->ire_mask) == 3930 (ire->ire_addr & ire->ire_mask)) { 3931 ire_delete(cire); 3932 continue; 3933 } 3934 } 3935 IRB_REFRELE(irb); 3936 } 3937 } else { 3938 /* 3939 * delete the cache entries based on 3940 * handle in the IRE as this IRE is 3941 * being deleted/changed. 3942 */ 3943 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3944 irb = &ipst->ips_ip_cache_table[i]; 3945 if ((cire = irb->irb_ire) == NULL) 3946 continue; 3947 IRB_REFHOLD(irb); 3948 for (cire = irb->irb_ire; cire != NULL; 3949 cire = cire->ire_next) { 3950 if (cire->ire_type != IRE_CACHE) 3951 continue; 3952 if ((cire->ire_phandle == 0 || 3953 cire->ire_phandle != ire->ire_phandle) && 3954 (cire->ire_ihandle == 0 || 3955 cire->ire_ihandle != ire->ire_ihandle)) 3956 continue; 3957 ire_delete(cire); 3958 } 3959 IRB_REFRELE(irb); 3960 } 3961 } 3962 } 3963 3964 /* 3965 * Matches the arguments passed with the values in the ire. 3966 * 3967 * Note: for match types that match using "ipif" passed in, ipif 3968 * must be checked for non-NULL before calling this routine. 3969 */ 3970 boolean_t 3971 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 3972 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 3973 const ts_label_t *tsl, int match_flags) 3974 { 3975 ill_t *ire_ill = NULL, *dst_ill; 3976 ill_t *ipif_ill = NULL; 3977 ill_group_t *ire_ill_group = NULL; 3978 ill_group_t *ipif_ill_group = NULL; 3979 3980 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3981 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 3982 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 3983 (ipif != NULL && !ipif->ipif_isv6)); 3984 3985 /* 3986 * HIDDEN cache entries have to be looked up specifically with 3987 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 3988 * when the interface is FAILED or INACTIVE. In that case, 3989 * any IRE_CACHES that exists should be marked with 3990 * IRE_MARK_HIDDEN. So, we don't really need to match below 3991 * for IRE_MARK_HIDDEN. But we do so for consistency. 3992 */ 3993 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 3994 (ire->ire_marks & IRE_MARK_HIDDEN)) 3995 return (B_FALSE); 3996 3997 /* 3998 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 3999 * is used. In that case the routing table is bypassed and the 4000 * packets are sent directly to the specified nexthop. The 4001 * IRE_CACHE entry representing this route should be marked 4002 * with IRE_MARK_PRIVATE_ADDR. 4003 */ 4004 4005 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 4006 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 4007 return (B_FALSE); 4008 4009 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 4010 ire->ire_zoneid != ALL_ZONES) { 4011 /* 4012 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 4013 * valid and does not match that of ire_zoneid, a failure to 4014 * match is reported at this point. Otherwise, since some IREs 4015 * that are available in the global zone can be used in local 4016 * zones, additional checks need to be performed: 4017 * 4018 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 4019 * entries should never be matched in this situation. 4020 * 4021 * IRE entries that have an interface associated with them 4022 * should in general not match unless they are an IRE_LOCAL 4023 * or in the case when MATCH_IRE_DEFAULT has been set in 4024 * the caller. In the case of the former, checking of the 4025 * other fields supplied should take place. 4026 * 4027 * In the case where MATCH_IRE_DEFAULT has been set, 4028 * all of the ipif's associated with the IRE's ill are 4029 * checked to see if there is a matching zoneid. If any 4030 * one ipif has a matching zoneid, this IRE is a 4031 * potential candidate so checking of the other fields 4032 * takes place. 4033 * 4034 * In the case where the IRE_INTERFACE has a usable source 4035 * address (indicated by ill_usesrc_ifindex) in the 4036 * correct zone then it's permitted to return this IRE 4037 */ 4038 if (match_flags & MATCH_IRE_ZONEONLY) 4039 return (B_FALSE); 4040 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 4041 return (B_FALSE); 4042 /* 4043 * Note, IRE_INTERFACE can have the stq as NULL. For 4044 * example, if the default multicast route is tied to 4045 * the loopback address. 4046 */ 4047 if ((ire->ire_type & IRE_INTERFACE) && 4048 (ire->ire_stq != NULL)) { 4049 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 4050 /* 4051 * If there is a usable source address in the 4052 * zone, then it's ok to return an 4053 * IRE_INTERFACE 4054 */ 4055 if (ipif_usesrc_avail(dst_ill, zoneid)) { 4056 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 4057 (void *)dst_ill, 4058 (ire->ire_addr == (addr & mask)))); 4059 } else { 4060 ip3dbg(("ire_match_args: src_ipif NULL" 4061 " dst_ill %p\n", (void *)dst_ill)); 4062 return (B_FALSE); 4063 } 4064 } 4065 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 4066 !(ire->ire_type & IRE_INTERFACE)) { 4067 ipif_t *tipif; 4068 4069 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 4070 return (B_FALSE); 4071 } 4072 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 4073 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 4074 tipif != NULL; tipif = tipif->ipif_next) { 4075 if (IPIF_CAN_LOOKUP(tipif) && 4076 (tipif->ipif_flags & IPIF_UP) && 4077 (tipif->ipif_zoneid == zoneid || 4078 tipif->ipif_zoneid == ALL_ZONES)) 4079 break; 4080 } 4081 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 4082 if (tipif == NULL) { 4083 return (B_FALSE); 4084 } 4085 } 4086 } 4087 4088 /* 4089 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 4090 * somebody wants to send out on a particular interface which 4091 * is given by ire_stq and hence use ire_stq to derive the ill 4092 * value. ire_ipif for IRE_CACHES is just the means of getting 4093 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 4094 * ire_to_ill does the right thing for this. 4095 */ 4096 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 4097 ire_ill = ire_to_ill(ire); 4098 if (ire_ill != NULL) 4099 ire_ill_group = ire_ill->ill_group; 4100 ipif_ill = ipif->ipif_ill; 4101 ipif_ill_group = ipif_ill->ill_group; 4102 } 4103 4104 if ((ire->ire_addr == (addr & mask)) && 4105 ((!(match_flags & MATCH_IRE_GW)) || 4106 (ire->ire_gateway_addr == gateway)) && 4107 ((!(match_flags & MATCH_IRE_TYPE)) || 4108 (ire->ire_type & type)) && 4109 ((!(match_flags & MATCH_IRE_SRC)) || 4110 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4111 ((!(match_flags & MATCH_IRE_IPIF)) || 4112 (ire->ire_ipif == ipif)) && 4113 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4114 (ire->ire_type != IRE_CACHE || 4115 ire->ire_marks & IRE_MARK_HIDDEN)) && 4116 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4117 (ire->ire_type != IRE_CACHE || 4118 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4119 ((!(match_flags & MATCH_IRE_ILL)) || 4120 (ire_ill == ipif_ill)) && 4121 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4122 (ire->ire_ihandle == ihandle)) && 4123 ((!(match_flags & MATCH_IRE_MASK)) || 4124 (ire->ire_mask == mask)) && 4125 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4126 (ire_ill == ipif_ill) || 4127 (ire_ill_group != NULL && 4128 ire_ill_group == ipif_ill_group)) && 4129 ((!(match_flags & MATCH_IRE_SECATTR)) || 4130 (!is_system_labeled()) || 4131 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4132 /* We found the matched IRE */ 4133 return (B_TRUE); 4134 } 4135 return (B_FALSE); 4136 } 4137 4138 4139 /* 4140 * Lookup for a route in all the tables 4141 */ 4142 ire_t * 4143 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4144 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4145 const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4146 { 4147 ire_t *ire = NULL; 4148 4149 /* 4150 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4151 * MATCH_IRE_ILL is set. 4152 */ 4153 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4154 (ipif == NULL)) 4155 return (NULL); 4156 4157 /* 4158 * might be asking for a cache lookup, 4159 * This is not best way to lookup cache, 4160 * user should call ire_cache_lookup directly. 4161 * 4162 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4163 * in the forwarding table, if the applicable type flags were set. 4164 */ 4165 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4166 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4167 tsl, flags, ipst); 4168 if (ire != NULL) 4169 return (ire); 4170 } 4171 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4172 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4173 zoneid, 0, tsl, flags, ipst); 4174 } 4175 return (ire); 4176 } 4177 4178 4179 /* 4180 * Delete the IRE cache for the gateway and all IRE caches whose 4181 * ire_gateway_addr points to this gateway, and allow them to 4182 * be created on demand by ip_newroute. 4183 */ 4184 void 4185 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 4186 { 4187 irb_t *irb; 4188 ire_t *ire; 4189 4190 irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4191 ipst->ips_ip_cache_table_size)]; 4192 IRB_REFHOLD(irb); 4193 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4194 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4195 continue; 4196 4197 ASSERT(ire->ire_mask == IP_HOST_MASK); 4198 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4199 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4200 ire_delete(ire); 4201 } 4202 } 4203 IRB_REFRELE(irb); 4204 4205 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst); 4206 } 4207 4208 /* 4209 * Looks up cache table for a route. 4210 * specific lookup can be indicated by 4211 * passing the MATCH_* flags and the 4212 * necessary parameters. 4213 */ 4214 ire_t * 4215 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4216 zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4217 { 4218 irb_t *irb_ptr; 4219 ire_t *ire; 4220 4221 /* 4222 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4223 * MATCH_IRE_ILL is set. 4224 */ 4225 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4226 (ipif == NULL)) 4227 return (NULL); 4228 4229 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4230 ipst->ips_ip_cache_table_size)]; 4231 rw_enter(&irb_ptr->irb_lock, RW_READER); 4232 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4233 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4234 continue; 4235 ASSERT(ire->ire_mask == IP_HOST_MASK); 4236 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4237 ipif, zoneid, 0, tsl, flags)) { 4238 IRE_REFHOLD(ire); 4239 rw_exit(&irb_ptr->irb_lock); 4240 return (ire); 4241 } 4242 } 4243 rw_exit(&irb_ptr->irb_lock); 4244 return (NULL); 4245 } 4246 4247 /* 4248 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4249 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of 4250 * the same ill group. 4251 */ 4252 boolean_t 4253 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire) 4254 { 4255 ill_t *recv_ill, *xmit_ill; 4256 ill_group_t *recv_group, *xmit_group; 4257 4258 ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK)); 4259 ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE)); 4260 4261 recv_ill = ire_to_ill(ire_local); 4262 xmit_ill = ire_to_ill(xmit_ire); 4263 4264 ASSERT(recv_ill != NULL); 4265 ASSERT(xmit_ill != NULL); 4266 4267 if (recv_ill == xmit_ill) 4268 return (B_TRUE); 4269 4270 recv_group = recv_ill->ill_group; 4271 xmit_group = xmit_ill->ill_group; 4272 4273 if (recv_group != NULL && recv_group == xmit_group) 4274 return (B_TRUE); 4275 4276 return (B_FALSE); 4277 } 4278 4279 /* 4280 * Check if the IRE_LOCAL uses the same ill (group) as another route would use. 4281 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 4282 * then we don't allow this IRE_LOCAL to be used. 4283 */ 4284 boolean_t 4285 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4286 const ts_label_t *tsl, ip_stack_t *ipst) 4287 { 4288 ire_t *alt_ire; 4289 boolean_t rval; 4290 4291 if (ire_local->ire_ipversion == IPV4_VERSION) { 4292 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4293 NULL, zoneid, 0, tsl, 4294 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4295 MATCH_IRE_RJ_BHOLE, ipst); 4296 } else { 4297 alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 4298 0, NULL, NULL, zoneid, 0, tsl, 4299 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4300 MATCH_IRE_RJ_BHOLE, ipst); 4301 } 4302 4303 if (alt_ire == NULL) 4304 return (B_FALSE); 4305 4306 if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4307 ire_refrele(alt_ire); 4308 return (B_FALSE); 4309 } 4310 rval = ire_local_same_ill_group(ire_local, alt_ire); 4311 4312 ire_refrele(alt_ire); 4313 return (rval); 4314 } 4315 4316 /* 4317 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4318 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4319 * to the hidden ones. 4320 * 4321 * In general the zoneid has to match (where ALL_ZONES match all of them). 4322 * But for IRE_LOCAL we also need to handle the case where L2 should 4323 * conceptually loop back the packet. This is necessary since neither 4324 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4325 * own MAC address. This loopback is needed when the normal 4326 * routes (ignoring IREs with different zoneids) would send out the packet on 4327 * the same ill (or ill group) as the ill with which this IRE_LOCAL is 4328 * associated. 4329 * 4330 * Earlier versions of this code always matched an IRE_LOCAL independently of 4331 * the zoneid. We preserve that earlier behavior when 4332 * ip_restrict_interzone_loopback is turned off. 4333 */ 4334 ire_t * 4335 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl, 4336 ip_stack_t *ipst) 4337 { 4338 irb_t *irb_ptr; 4339 ire_t *ire; 4340 4341 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4342 ipst->ips_ip_cache_table_size)]; 4343 rw_enter(&irb_ptr->irb_lock, RW_READER); 4344 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4345 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4346 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4347 continue; 4348 } 4349 if (ire->ire_addr == addr) { 4350 /* 4351 * Finally, check if the security policy has any 4352 * restriction on using this route for the specified 4353 * message. 4354 */ 4355 if (tsl != NULL && 4356 ire->ire_gw_secattr != NULL && 4357 tsol_ire_match_gwattr(ire, tsl) != 0) { 4358 continue; 4359 } 4360 4361 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4362 ire->ire_zoneid == ALL_ZONES) { 4363 IRE_REFHOLD(ire); 4364 rw_exit(&irb_ptr->irb_lock); 4365 return (ire); 4366 } 4367 4368 if (ire->ire_type == IRE_LOCAL) { 4369 if (ipst->ips_ip_restrict_interzone_loopback && 4370 !ire_local_ok_across_zones(ire, zoneid, 4371 &addr, tsl, ipst)) 4372 continue; 4373 4374 IRE_REFHOLD(ire); 4375 rw_exit(&irb_ptr->irb_lock); 4376 return (ire); 4377 } 4378 } 4379 } 4380 rw_exit(&irb_ptr->irb_lock); 4381 return (NULL); 4382 } 4383 4384 /* 4385 * Locate the interface ire that is tied to the cache ire 'cire' via 4386 * cire->ire_ihandle. 4387 * 4388 * We are trying to create the cache ire for an offlink destn based 4389 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4390 * as found by ip_newroute(). We are called from ip_newroute() in 4391 * the IRE_CACHE case. 4392 */ 4393 ire_t * 4394 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4395 { 4396 ire_t *ire; 4397 int match_flags; 4398 ipaddr_t gw_addr; 4399 ipif_t *gw_ipif; 4400 ip_stack_t *ipst = cire->ire_ipst; 4401 4402 ASSERT(cire != NULL && pire != NULL); 4403 4404 /* 4405 * We don't need to specify the zoneid to ire_ftable_lookup() below 4406 * because the ihandle refers to an ipif which can be in only one zone. 4407 */ 4408 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4409 /* 4410 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4411 * for on-link hosts. We should never be here for onlink. 4412 * Thus, use MATCH_IRE_ILL_GROUP. 4413 */ 4414 if (pire->ire_ipif != NULL) 4415 match_flags |= MATCH_IRE_ILL_GROUP; 4416 /* 4417 * We know that the mask of the interface ire equals cire->ire_cmask. 4418 * (When ip_newroute() created 'cire' for the gateway it set its 4419 * cmask from the interface ire's mask) 4420 */ 4421 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4422 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4423 NULL, match_flags, ipst); 4424 if (ire != NULL) 4425 return (ire); 4426 /* 4427 * If we didn't find an interface ire above, we can't declare failure. 4428 * For backwards compatibility, we need to support prefix routes 4429 * pointing to next hop gateways that are not on-link. 4430 * 4431 * Assume we are trying to ping some offlink destn, and we have the 4432 * routing table below. 4433 * 4434 * Eg. default - gw1 <--- pire (line 1) 4435 * gw1 - gw2 (line 2) 4436 * gw2 - hme0 (line 3) 4437 * 4438 * If we already have a cache ire for gw1 in 'cire', the 4439 * ire_ftable_lookup above would have failed, since there is no 4440 * interface ire to reach gw1. We will fallthru below. 4441 * 4442 * Here we duplicate the steps that ire_ftable_lookup() did in 4443 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 4444 * The differences are the following 4445 * i. We want the interface ire only, so we call ire_ftable_lookup() 4446 * instead of ire_route_lookup() 4447 * ii. We look for only prefix routes in the 1st call below. 4448 * ii. We want to match on the ihandle in the 2nd call below. 4449 */ 4450 match_flags = MATCH_IRE_TYPE; 4451 if (pire->ire_ipif != NULL) 4452 match_flags |= MATCH_IRE_ILL_GROUP; 4453 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 4454 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 4455 if (ire == NULL) 4456 return (NULL); 4457 /* 4458 * At this point 'ire' corresponds to the entry shown in line 2. 4459 * gw_addr is 'gw2' in the example above. 4460 */ 4461 gw_addr = ire->ire_gateway_addr; 4462 gw_ipif = ire->ire_ipif; 4463 ire_refrele(ire); 4464 4465 match_flags |= MATCH_IRE_IHANDLE; 4466 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 4467 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags, 4468 ipst); 4469 return (ire); 4470 } 4471 4472 /* 4473 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 4474 * ire associated with the specified ipif. 4475 * 4476 * This might occasionally be called when IPIF_UP is not set since 4477 * the IP_MULTICAST_IF as well as creating interface routes 4478 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 4479 * 4480 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 4481 * the ipif, this routine might return NULL. 4482 */ 4483 ire_t * 4484 ipif_to_ire(const ipif_t *ipif) 4485 { 4486 ire_t *ire; 4487 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 4488 4489 ASSERT(!ipif->ipif_isv6); 4490 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 4491 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 4492 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 4493 ipst); 4494 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4495 /* In this case we need to lookup destination address. */ 4496 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 4497 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 4498 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst); 4499 } else { 4500 ire = ire_ftable_lookup(ipif->ipif_subnet, 4501 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 4502 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 4503 MATCH_IRE_MASK), ipst); 4504 } 4505 return (ire); 4506 } 4507 4508 /* 4509 * ire_walk function. 4510 * Count the number of IRE_CACHE entries in different categories. 4511 */ 4512 void 4513 ire_cache_count(ire_t *ire, char *arg) 4514 { 4515 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 4516 4517 if (ire->ire_type != IRE_CACHE) 4518 return; 4519 4520 icc->icc_total++; 4521 4522 if (ire->ire_ipversion == IPV6_VERSION) { 4523 mutex_enter(&ire->ire_lock); 4524 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4525 mutex_exit(&ire->ire_lock); 4526 icc->icc_onlink++; 4527 return; 4528 } 4529 mutex_exit(&ire->ire_lock); 4530 } else { 4531 if (ire->ire_gateway_addr == 0) { 4532 icc->icc_onlink++; 4533 return; 4534 } 4535 } 4536 4537 ASSERT(ire->ire_ipif != NULL); 4538 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 4539 icc->icc_pmtu++; 4540 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4541 ire->ire_ib_pkt_count) 4542 icc->icc_offlink++; 4543 else 4544 icc->icc_unused++; 4545 } 4546 4547 /* 4548 * ire_walk function called by ip_trash_ire_reclaim(). 4549 * Free a fraction of the IRE_CACHE cache entries. The fractions are 4550 * different for different categories of IRE_CACHE entries. 4551 * A fraction of zero means to not free any in that category. 4552 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 4553 * is N then every Nth hash bucket chain will be freed. 4554 */ 4555 void 4556 ire_cache_reclaim(ire_t *ire, char *arg) 4557 { 4558 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 4559 uint_t rand; 4560 ip_stack_t *ipst = icr->icr_ipst; 4561 4562 if (ire->ire_type != IRE_CACHE) 4563 return; 4564 4565 if (ire->ire_ipversion == IPV6_VERSION) { 4566 rand = (uint_t)lbolt + 4567 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 4568 ipst->ips_ip6_cache_table_size); 4569 mutex_enter(&ire->ire_lock); 4570 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4571 mutex_exit(&ire->ire_lock); 4572 if (icr->icr_onlink != 0 && 4573 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4574 ire_delete(ire); 4575 return; 4576 } 4577 goto done; 4578 } 4579 mutex_exit(&ire->ire_lock); 4580 } else { 4581 rand = (uint_t)lbolt + 4582 IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size); 4583 if (ire->ire_gateway_addr == 0) { 4584 if (icr->icr_onlink != 0 && 4585 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4586 ire_delete(ire); 4587 return; 4588 } 4589 goto done; 4590 } 4591 } 4592 /* Not onlink IRE */ 4593 ASSERT(ire->ire_ipif != NULL); 4594 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 4595 /* Use ptmu fraction */ 4596 if (icr->icr_pmtu != 0 && 4597 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 4598 ire_delete(ire); 4599 return; 4600 } 4601 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4602 ire->ire_ib_pkt_count) { 4603 /* Use offlink fraction */ 4604 if (icr->icr_offlink != 0 && 4605 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 4606 ire_delete(ire); 4607 return; 4608 } 4609 } else { 4610 /* Use unused fraction */ 4611 if (icr->icr_unused != 0 && 4612 (rand/icr->icr_unused)*icr->icr_unused == rand) { 4613 ire_delete(ire); 4614 return; 4615 } 4616 } 4617 done: 4618 /* 4619 * Update tire_mark so that those that haven't been used since this 4620 * reclaim will be considered unused next time we reclaim. 4621 */ 4622 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 4623 } 4624 4625 static void 4626 power2_roundup(uint32_t *value) 4627 { 4628 int i; 4629 4630 for (i = 1; i < 31; i++) { 4631 if (*value <= (1 << i)) 4632 break; 4633 } 4634 *value = (1 << i); 4635 } 4636 4637 /* Global init for all zones */ 4638 void 4639 ip_ire_g_init() 4640 { 4641 /* 4642 * Create ire caches, ire_reclaim() 4643 * will give IRE_CACHE back to system when needed. 4644 * This needs to be done here before anything else, since 4645 * ire_add() expects the cache to be created. 4646 */ 4647 ire_cache = kmem_cache_create("ire_cache", 4648 sizeof (ire_t), 0, ip_ire_constructor, 4649 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 4650 4651 rt_entry_cache = kmem_cache_create("rt_entry", 4652 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 4653 4654 /* 4655 * Have radix code setup kmem caches etc. 4656 */ 4657 rn_init(); 4658 } 4659 4660 void 4661 ip_ire_init(ip_stack_t *ipst) 4662 { 4663 int i; 4664 uint32_t mem_cnt; 4665 uint32_t cpu_cnt; 4666 uint32_t min_cnt; 4667 pgcnt_t mem_avail; 4668 4669 /* 4670 * ip_ire_max_bucket_cnt is sized below based on the memory 4671 * size and the cpu speed of the machine. This is upper 4672 * bounded by the compile time value of ip_ire_max_bucket_cnt 4673 * and is lower bounded by the compile time value of 4674 * ip_ire_min_bucket_cnt. Similar logic applies to 4675 * ip6_ire_max_bucket_cnt. 4676 * 4677 * We calculate this for each IP Instances in order to use 4678 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are 4679 * in effect when the zone is booted. 4680 */ 4681 mem_avail = kmem_avail(); 4682 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4683 ip_cache_table_size / sizeof (ire_t); 4684 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 4685 4686 min_cnt = MIN(cpu_cnt, mem_cnt); 4687 if (min_cnt < ip_ire_min_bucket_cnt) 4688 min_cnt = ip_ire_min_bucket_cnt; 4689 if (ip_ire_max_bucket_cnt > min_cnt) { 4690 ip_ire_max_bucket_cnt = min_cnt; 4691 } 4692 4693 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4694 ip6_cache_table_size / sizeof (ire_t); 4695 min_cnt = MIN(cpu_cnt, mem_cnt); 4696 if (min_cnt < ip6_ire_min_bucket_cnt) 4697 min_cnt = ip6_ire_min_bucket_cnt; 4698 if (ip6_ire_max_bucket_cnt > min_cnt) { 4699 ip6_ire_max_bucket_cnt = min_cnt; 4700 } 4701 4702 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 4703 mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 4704 4705 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 4706 4707 4708 /* Calculate the IPv4 cache table size. */ 4709 ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size, 4710 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4711 ip_ire_max_bucket_cnt)); 4712 if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size) 4713 ipst->ips_ip_cache_table_size = ip_max_cache_table_size; 4714 /* 4715 * Make sure that the table size is always a power of 2. The 4716 * hash macro IRE_ADDR_HASH() depends on that. 4717 */ 4718 power2_roundup(&ipst->ips_ip_cache_table_size); 4719 4720 ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size * 4721 sizeof (irb_t), KM_SLEEP); 4722 4723 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4724 rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL, 4725 RW_DEFAULT, NULL); 4726 } 4727 4728 /* Calculate the IPv6 cache table size. */ 4729 ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size, 4730 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4731 ip6_ire_max_bucket_cnt)); 4732 if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size) 4733 ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size; 4734 /* 4735 * Make sure that the table size is always a power of 2. The 4736 * hash macro IRE_ADDR_HASH_V6() depends on that. 4737 */ 4738 power2_roundup(&ipst->ips_ip6_cache_table_size); 4739 4740 ipst->ips_ip_cache_table_v6 = kmem_zalloc( 4741 ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP); 4742 4743 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4744 rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL, 4745 RW_DEFAULT, NULL); 4746 } 4747 4748 /* 4749 * Make sure that the forwarding table size is a power of 2. 4750 * The IRE*_ADDR_HASH() macroes depend on that. 4751 */ 4752 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 4753 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 4754 4755 ipst->ips_ire_handle = 1; 4756 } 4757 4758 void 4759 ip_ire_g_fini(void) 4760 { 4761 kmem_cache_destroy(ire_cache); 4762 kmem_cache_destroy(rt_entry_cache); 4763 4764 rn_fini(); 4765 } 4766 4767 void 4768 ip_ire_fini(ip_stack_t *ipst) 4769 { 4770 int i; 4771 4772 /* 4773 * Delete all IREs - assumes that the ill/ipifs have 4774 * been removed so what remains are just the ftable and IRE_CACHE. 4775 */ 4776 ire_walk(ire_delete, NULL, ipst); 4777 4778 rn_freehead(ipst->ips_ip_ftable); 4779 ipst->ips_ip_ftable = NULL; 4780 4781 mutex_destroy(&ipst->ips_ire_ft_init_lock); 4782 mutex_destroy(&ipst->ips_ire_handle_lock); 4783 4784 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4785 ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL); 4786 rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock); 4787 } 4788 kmem_free(ipst->ips_ip_cache_table, 4789 ipst->ips_ip_cache_table_size * sizeof (irb_t)); 4790 ipst->ips_ip_cache_table = NULL; 4791 4792 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4793 ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL); 4794 rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock); 4795 } 4796 kmem_free(ipst->ips_ip_cache_table_v6, 4797 ipst->ips_ip6_cache_table_size * sizeof (irb_t)); 4798 ipst->ips_ip_cache_table_v6 = NULL; 4799 4800 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 4801 irb_t *ptr; 4802 int j; 4803 4804 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 4805 continue; 4806 4807 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 4808 ASSERT(ptr[j].irb_ire == NULL); 4809 rw_destroy(&ptr[j].irb_lock); 4810 } 4811 mi_free(ptr); 4812 ipst->ips_ip_forwarding_table_v6[i] = NULL; 4813 } 4814 } 4815 4816 /* 4817 * Check if another multirt route resolution is needed. 4818 * B_TRUE is returned is there remain a resolvable route, 4819 * or if no route for that dst is resolved yet. 4820 * B_FALSE is returned if all routes for that dst are resolved 4821 * or if the remaining unresolved routes are actually not 4822 * resolvable. 4823 * This only works in the global zone. 4824 */ 4825 boolean_t 4826 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst) 4827 { 4828 ire_t *first_fire; 4829 ire_t *first_cire; 4830 ire_t *fire; 4831 ire_t *cire; 4832 irb_t *firb; 4833 irb_t *cirb; 4834 int unres_cnt = 0; 4835 boolean_t resolvable = B_FALSE; 4836 4837 /* Retrieve the first IRE_HOST that matches the destination */ 4838 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 4839 NULL, ALL_ZONES, 0, tsl, 4840 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 4841 4842 /* No route at all */ 4843 if (first_fire == NULL) { 4844 return (B_TRUE); 4845 } 4846 4847 firb = first_fire->ire_bucket; 4848 ASSERT(firb != NULL); 4849 4850 /* Retrieve the first IRE_CACHE ire for that destination. */ 4851 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4852 4853 /* No resolved route. */ 4854 if (first_cire == NULL) { 4855 ire_refrele(first_fire); 4856 return (B_TRUE); 4857 } 4858 4859 /* 4860 * At least one route is resolved. Here we look through the forward 4861 * and cache tables, to compare the number of declared routes 4862 * with the number of resolved routes. The search for a resolvable 4863 * route is performed only if at least one route remains 4864 * unresolved. 4865 */ 4866 cirb = first_cire->ire_bucket; 4867 ASSERT(cirb != NULL); 4868 4869 /* Count the number of routes to that dest that are declared. */ 4870 IRB_REFHOLD(firb); 4871 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4872 if (!(fire->ire_flags & RTF_MULTIRT)) 4873 continue; 4874 if (fire->ire_addr != dst) 4875 continue; 4876 unres_cnt++; 4877 } 4878 IRB_REFRELE(firb); 4879 4880 /* Then subtract the number of routes to that dst that are resolved */ 4881 IRB_REFHOLD(cirb); 4882 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 4883 if (!(cire->ire_flags & RTF_MULTIRT)) 4884 continue; 4885 if (cire->ire_addr != dst) 4886 continue; 4887 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 4888 continue; 4889 unres_cnt--; 4890 } 4891 IRB_REFRELE(cirb); 4892 4893 /* At least one route is unresolved; search for a resolvable route. */ 4894 if (unres_cnt > 0) 4895 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 4896 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst); 4897 4898 if (first_fire != NULL) 4899 ire_refrele(first_fire); 4900 4901 if (first_cire != NULL) 4902 ire_refrele(first_cire); 4903 4904 return (resolvable); 4905 } 4906 4907 4908 /* 4909 * Explore a forward_table bucket, starting from fire_arg. 4910 * fire_arg MUST be an IRE_HOST entry. 4911 * 4912 * Return B_TRUE and update *ire_arg and *fire_arg 4913 * if at least one resolvable route is found. *ire_arg 4914 * is the IRE entry for *fire_arg's gateway. 4915 * 4916 * Return B_FALSE otherwise (all routes are resolved or 4917 * the remaining unresolved routes are all unresolvable). 4918 * 4919 * The IRE selection relies on a priority mechanism 4920 * driven by the flags passed in by the caller. 4921 * The caller, such as ip_newroute_ipif(), can get the most 4922 * relevant ire at each stage of a multiple route resolution. 4923 * 4924 * The rules are: 4925 * 4926 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 4927 * ires are preferred for the gateway. This gives the highest 4928 * priority to routes that can be resolved without using 4929 * a resolver. 4930 * 4931 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 4932 * is specified but no IRE_CACHETABLE ire entry for the gateway 4933 * is found, the following rules apply. 4934 * 4935 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 4936 * ires for the gateway, that have not been tried since 4937 * a configurable amount of time, are preferred. 4938 * This applies when a resolver must be invoked for 4939 * a missing route, but we don't want to use the resolver 4940 * upon each packet emission. If no such resolver is found, 4941 * B_FALSE is returned. 4942 * The MULTIRT_USESTAMP flag can be combined with 4943 * MULTIRT_CACHEGW. 4944 * 4945 * - if MULTIRT_USESTAMP is not specified in flags, the first 4946 * unresolved but resolvable route is selected. 4947 * 4948 * - Otherwise, there is no resolvalble route, and 4949 * B_FALSE is returned. 4950 * 4951 * At last, MULTIRT_SETSTAMP can be specified in flags to 4952 * request the timestamp of unresolvable routes to 4953 * be refreshed. This prevents the useless exploration 4954 * of those routes for a while, when MULTIRT_USESTAMP is used. 4955 * 4956 * This only works in the global zone. 4957 */ 4958 boolean_t 4959 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 4960 const ts_label_t *tsl, ip_stack_t *ipst) 4961 { 4962 clock_t delta; 4963 ire_t *best_fire = NULL; 4964 ire_t *best_cire = NULL; 4965 ire_t *first_fire; 4966 ire_t *first_cire; 4967 ire_t *fire; 4968 ire_t *cire; 4969 irb_t *firb = NULL; 4970 irb_t *cirb = NULL; 4971 ire_t *gw_ire; 4972 boolean_t already_resolved; 4973 boolean_t res; 4974 ipaddr_t dst; 4975 ipaddr_t gw; 4976 4977 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 4978 (void *)*ire_arg, (void *)*fire_arg, flags)); 4979 4980 ASSERT(ire_arg != NULL); 4981 ASSERT(fire_arg != NULL); 4982 4983 /* Not an IRE_HOST ire; give up. */ 4984 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 4985 return (B_FALSE); 4986 } 4987 4988 /* This is the first IRE_HOST ire for that destination. */ 4989 first_fire = *fire_arg; 4990 firb = first_fire->ire_bucket; 4991 ASSERT(firb != NULL); 4992 4993 dst = first_fire->ire_addr; 4994 4995 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 4996 4997 /* 4998 * Retrieve the first IRE_CACHE ire for that destination; 4999 * if we don't find one, no route for that dest is 5000 * resolved yet. 5001 */ 5002 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 5003 if (first_cire != NULL) { 5004 cirb = first_cire->ire_bucket; 5005 } 5006 5007 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 5008 5009 /* 5010 * Search for a resolvable route, giving the top priority 5011 * to routes that can be resolved without any call to the resolver. 5012 */ 5013 IRB_REFHOLD(firb); 5014 5015 if (!CLASSD(dst)) { 5016 /* 5017 * For all multiroute IRE_HOST ires for that destination, 5018 * check if the route via the IRE_HOST's gateway is 5019 * resolved yet. 5020 */ 5021 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 5022 5023 if (!(fire->ire_flags & RTF_MULTIRT)) 5024 continue; 5025 if (fire->ire_addr != dst) 5026 continue; 5027 5028 if (fire->ire_gw_secattr != NULL && 5029 tsol_ire_match_gwattr(fire, tsl) != 0) { 5030 continue; 5031 } 5032 5033 gw = fire->ire_gateway_addr; 5034 5035 ip2dbg(("ire_multirt_lookup: fire %p, " 5036 "ire_addr %08x, ire_gateway_addr %08x\n", 5037 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 5038 5039 already_resolved = B_FALSE; 5040 5041 if (first_cire != NULL) { 5042 ASSERT(cirb != NULL); 5043 5044 IRB_REFHOLD(cirb); 5045 /* 5046 * For all IRE_CACHE ires for that 5047 * destination. 5048 */ 5049 for (cire = first_cire; 5050 cire != NULL; 5051 cire = cire->ire_next) { 5052 5053 if (!(cire->ire_flags & RTF_MULTIRT)) 5054 continue; 5055 if (cire->ire_addr != dst) 5056 continue; 5057 if (cire->ire_marks & 5058 (IRE_MARK_CONDEMNED | 5059 IRE_MARK_HIDDEN)) 5060 continue; 5061 5062 if (cire->ire_gw_secattr != NULL && 5063 tsol_ire_match_gwattr(cire, 5064 tsl) != 0) { 5065 continue; 5066 } 5067 5068 /* 5069 * Check if the IRE_CACHE's gateway 5070 * matches the IRE_HOST's gateway. 5071 */ 5072 if (cire->ire_gateway_addr == gw) { 5073 already_resolved = B_TRUE; 5074 break; 5075 } 5076 } 5077 IRB_REFRELE(cirb); 5078 } 5079 5080 /* 5081 * This route is already resolved; 5082 * proceed with next one. 5083 */ 5084 if (already_resolved) { 5085 ip2dbg(("ire_multirt_lookup: found cire %p, " 5086 "already resolved\n", (void *)cire)); 5087 continue; 5088 } 5089 5090 /* 5091 * The route is unresolved; is it actually 5092 * resolvable, i.e. is there a cache or a resolver 5093 * for the gateway? 5094 */ 5095 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 5096 ALL_ZONES, tsl, 5097 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst); 5098 5099 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 5100 (void *)gw_ire)); 5101 5102 /* 5103 * If gw_ire is typed IRE_CACHETABLE, 5104 * this route can be resolved without any call to the 5105 * resolver. If the MULTIRT_CACHEGW flag is set, 5106 * give the top priority to this ire and exit the 5107 * loop. 5108 * This is typically the case when an ARP reply 5109 * is processed through ip_wput_nondata(). 5110 */ 5111 if ((flags & MULTIRT_CACHEGW) && 5112 (gw_ire != NULL) && 5113 (gw_ire->ire_type & IRE_CACHETABLE)) { 5114 ASSERT(gw_ire->ire_nce == NULL || 5115 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5116 /* 5117 * Release the resolver associated to the 5118 * previous candidate best ire, if any. 5119 */ 5120 if (best_cire != NULL) { 5121 ire_refrele(best_cire); 5122 ASSERT(best_fire != NULL); 5123 } 5124 5125 best_fire = fire; 5126 best_cire = gw_ire; 5127 5128 ip2dbg(("ire_multirt_lookup: found top prio " 5129 "best_fire %p, best_cire %p\n", 5130 (void *)best_fire, (void *)best_cire)); 5131 break; 5132 } 5133 5134 /* 5135 * Compute the time elapsed since our preceding 5136 * attempt to resolve that route. 5137 * If the MULTIRT_USESTAMP flag is set, we take that 5138 * route into account only if this time interval 5139 * exceeds ip_multirt_resolution_interval; 5140 * this prevents us from attempting to resolve a 5141 * broken route upon each sending of a packet. 5142 */ 5143 delta = lbolt - fire->ire_last_used_time; 5144 delta = TICK_TO_MSEC(delta); 5145 5146 res = (boolean_t)((delta > 5147 ipst->ips_ip_multirt_resolution_interval) || 5148 (!(flags & MULTIRT_USESTAMP))); 5149 5150 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 5151 "res %d\n", 5152 (void *)fire, delta, res)); 5153 5154 if (res) { 5155 /* 5156 * We are here if MULTIRT_USESTAMP flag is set 5157 * and the resolver for fire's gateway 5158 * has not been tried since 5159 * ip_multirt_resolution_interval, or if 5160 * MULTIRT_USESTAMP is not set but gw_ire did 5161 * not fill the conditions for MULTIRT_CACHEGW, 5162 * or if neither MULTIRT_USESTAMP nor 5163 * MULTIRT_CACHEGW are set. 5164 */ 5165 if (gw_ire != NULL) { 5166 if (best_fire == NULL) { 5167 ASSERT(best_cire == NULL); 5168 5169 best_fire = fire; 5170 best_cire = gw_ire; 5171 5172 ip2dbg(("ire_multirt_lookup:" 5173 "found candidate " 5174 "best_fire %p, " 5175 "best_cire %p\n", 5176 (void *)best_fire, 5177 (void *)best_cire)); 5178 5179 /* 5180 * If MULTIRT_CACHEGW is not 5181 * set, we ignore the top 5182 * priority ires that can 5183 * be resolved without any 5184 * call to the resolver; 5185 * In that case, there is 5186 * actually no need 5187 * to continue the loop. 5188 */ 5189 if (!(flags & 5190 MULTIRT_CACHEGW)) { 5191 break; 5192 } 5193 continue; 5194 } 5195 } else { 5196 /* 5197 * No resolver for the gateway: the 5198 * route is not resolvable. 5199 * If the MULTIRT_SETSTAMP flag is 5200 * set, we stamp the IRE_HOST ire, 5201 * so we will not select it again 5202 * during this resolution interval. 5203 */ 5204 if (flags & MULTIRT_SETSTAMP) 5205 fire->ire_last_used_time = 5206 lbolt; 5207 } 5208 } 5209 5210 if (gw_ire != NULL) 5211 ire_refrele(gw_ire); 5212 } 5213 } else { /* CLASSD(dst) */ 5214 5215 for (fire = first_fire; 5216 fire != NULL; 5217 fire = fire->ire_next) { 5218 5219 if (!(fire->ire_flags & RTF_MULTIRT)) 5220 continue; 5221 if (fire->ire_addr != dst) 5222 continue; 5223 5224 if (fire->ire_gw_secattr != NULL && 5225 tsol_ire_match_gwattr(fire, tsl) != 0) { 5226 continue; 5227 } 5228 5229 already_resolved = B_FALSE; 5230 5231 gw = fire->ire_gateway_addr; 5232 5233 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 5234 NULL, NULL, ALL_ZONES, 0, tsl, 5235 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 5236 MATCH_IRE_SECATTR, ipst); 5237 5238 /* No resolver for the gateway; we skip this ire. */ 5239 if (gw_ire == NULL) { 5240 continue; 5241 } 5242 ASSERT(gw_ire->ire_nce == NULL || 5243 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5244 5245 if (first_cire != NULL) { 5246 5247 IRB_REFHOLD(cirb); 5248 /* 5249 * For all IRE_CACHE ires for that 5250 * destination. 5251 */ 5252 for (cire = first_cire; 5253 cire != NULL; 5254 cire = cire->ire_next) { 5255 5256 if (!(cire->ire_flags & RTF_MULTIRT)) 5257 continue; 5258 if (cire->ire_addr != dst) 5259 continue; 5260 if (cire->ire_marks & 5261 (IRE_MARK_CONDEMNED | 5262 IRE_MARK_HIDDEN)) 5263 continue; 5264 5265 if (cire->ire_gw_secattr != NULL && 5266 tsol_ire_match_gwattr(cire, 5267 tsl) != 0) { 5268 continue; 5269 } 5270 5271 /* 5272 * Cache entries are linked to the 5273 * parent routes using the parent handle 5274 * (ire_phandle). If no cache entry has 5275 * the same handle as fire, fire is 5276 * still unresolved. 5277 */ 5278 ASSERT(cire->ire_phandle != 0); 5279 if (cire->ire_phandle == 5280 fire->ire_phandle) { 5281 already_resolved = B_TRUE; 5282 break; 5283 } 5284 } 5285 IRB_REFRELE(cirb); 5286 } 5287 5288 /* 5289 * This route is already resolved; proceed with 5290 * next one. 5291 */ 5292 if (already_resolved) { 5293 ire_refrele(gw_ire); 5294 continue; 5295 } 5296 5297 /* 5298 * Compute the time elapsed since our preceding 5299 * attempt to resolve that route. 5300 * If the MULTIRT_USESTAMP flag is set, we take 5301 * that route into account only if this time 5302 * interval exceeds ip_multirt_resolution_interval; 5303 * this prevents us from attempting to resolve a 5304 * broken route upon each sending of a packet. 5305 */ 5306 delta = lbolt - fire->ire_last_used_time; 5307 delta = TICK_TO_MSEC(delta); 5308 5309 res = (boolean_t)((delta > 5310 ipst->ips_ip_multirt_resolution_interval) || 5311 (!(flags & MULTIRT_USESTAMP))); 5312 5313 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 5314 "flags %04x, res %d\n", 5315 (void *)fire, delta, flags, res)); 5316 5317 if (res) { 5318 if (best_cire != NULL) { 5319 /* 5320 * Release the resolver associated 5321 * to the preceding candidate best 5322 * ire, if any. 5323 */ 5324 ire_refrele(best_cire); 5325 ASSERT(best_fire != NULL); 5326 } 5327 best_fire = fire; 5328 best_cire = gw_ire; 5329 continue; 5330 } 5331 5332 ire_refrele(gw_ire); 5333 } 5334 } 5335 5336 if (best_fire != NULL) { 5337 IRE_REFHOLD(best_fire); 5338 } 5339 IRB_REFRELE(firb); 5340 5341 /* Release the first IRE_CACHE we initially looked up, if any. */ 5342 if (first_cire != NULL) 5343 ire_refrele(first_cire); 5344 5345 /* Found a resolvable route. */ 5346 if (best_fire != NULL) { 5347 ASSERT(best_cire != NULL); 5348 5349 if (*fire_arg != NULL) 5350 ire_refrele(*fire_arg); 5351 if (*ire_arg != NULL) 5352 ire_refrele(*ire_arg); 5353 5354 /* 5355 * Update the passed-in arguments with the 5356 * resolvable multirt route we found. 5357 */ 5358 *fire_arg = best_fire; 5359 *ire_arg = best_cire; 5360 5361 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 5362 "*fire_arg %p, *ire_arg %p\n", 5363 (void *)best_fire, (void *)best_cire)); 5364 5365 return (B_TRUE); 5366 } 5367 5368 ASSERT(best_cire == NULL); 5369 5370 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 5371 "*ire_arg %p\n", 5372 (void *)*fire_arg, (void *)*ire_arg)); 5373 5374 /* No resolvable route. */ 5375 return (B_FALSE); 5376 } 5377 5378 /* 5379 * IRE iterator for inbound and loopback broadcast processing. 5380 * Given an IRE_BROADCAST ire, walk the ires with the same destination 5381 * address, but skip over the passed-in ire. Returns the next ire without 5382 * a hold - assumes that the caller holds a reference on the IRE bucket. 5383 */ 5384 ire_t * 5385 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 5386 { 5387 ill_t *ill; 5388 5389 if (curr == NULL) { 5390 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 5391 curr = curr->ire_next) { 5392 if (curr->ire_addr == ire->ire_addr) 5393 break; 5394 } 5395 } else { 5396 curr = curr->ire_next; 5397 } 5398 ill = ire_to_ill(ire); 5399 for (; curr != NULL; curr = curr->ire_next) { 5400 if (curr->ire_addr != ire->ire_addr) { 5401 /* 5402 * All the IREs to a given destination are contiguous; 5403 * break out once the address doesn't match. 5404 */ 5405 break; 5406 } 5407 if (curr == ire) { 5408 /* skip over the passed-in ire */ 5409 continue; 5410 } 5411 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 5412 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 5413 /* 5414 * If the passed-in ire is loopback, skip over 5415 * non-loopback ires and vice versa. 5416 */ 5417 continue; 5418 } 5419 if (ire_to_ill(curr) != ill) { 5420 /* skip over IREs going through a different interface */ 5421 continue; 5422 } 5423 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 5424 /* skip over deleted IREs */ 5425 continue; 5426 } 5427 return (curr); 5428 } 5429 return (NULL); 5430 } 5431 5432 #ifdef DEBUG 5433 void 5434 ire_trace_ref(ire_t *ire) 5435 { 5436 mutex_enter(&ire->ire_lock); 5437 if (ire->ire_trace_disable) { 5438 mutex_exit(&ire->ire_lock); 5439 return; 5440 } 5441 5442 if (th_trace_ref(ire, ire->ire_ipst)) { 5443 mutex_exit(&ire->ire_lock); 5444 } else { 5445 ire->ire_trace_disable = B_TRUE; 5446 mutex_exit(&ire->ire_lock); 5447 ire_trace_cleanup(ire); 5448 } 5449 } 5450 5451 void 5452 ire_untrace_ref(ire_t *ire) 5453 { 5454 mutex_enter(&ire->ire_lock); 5455 if (!ire->ire_trace_disable) 5456 th_trace_unref(ire); 5457 mutex_exit(&ire->ire_lock); 5458 } 5459 5460 static void 5461 ire_trace_cleanup(const ire_t *ire) 5462 { 5463 th_trace_cleanup(ire, ire->ire_trace_disable); 5464 } 5465 #endif /* DEBUG */ 5466 5467 /* 5468 * Generate a message chain with an arp request to resolve the in_ire. 5469 * It is assumed that in_ire itself is currently in the ire cache table, 5470 * so we create a fake_ire filled with enough information about ire_addr etc. 5471 * to retrieve in_ire when the DL_UNITDATA response from the resolver 5472 * comes back. The fake_ire itself is created by calling esballoc with 5473 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 5474 * invoked when the mblk containing fake_ire is freed. 5475 */ 5476 void 5477 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 5478 { 5479 areq_t *areq; 5480 ipaddr_t *addrp; 5481 mblk_t *ire_mp, *areq_mp; 5482 ire_t *ire, *buf; 5483 size_t bufsize; 5484 frtn_t *frtnp; 5485 ill_t *ill; 5486 ip_stack_t *ipst = dst_ill->ill_ipst; 5487 5488 /* 5489 * Construct message chain for the resolver 5490 * of the form: 5491 * ARP_REQ_MBLK-->IRE_MBLK 5492 * 5493 * NOTE : If the response does not 5494 * come back, ARP frees the packet. For this reason, 5495 * we can't REFHOLD the bucket of save_ire to prevent 5496 * deletions. We may not be able to REFRELE the bucket 5497 * if the response never comes back. Thus, before 5498 * adding the ire, ire_add_v4 will make sure that the 5499 * interface route does not get deleted. This is the 5500 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 5501 * where we can always prevent deletions because of 5502 * the synchronous nature of adding IRES i.e 5503 * ire_add_then_send is called after creating the IRE. 5504 */ 5505 5506 /* 5507 * We use esballoc to allocate the second part(the ire_t size mblk) 5508 * of the message chain depicted above. THis mblk will be freed 5509 * by arp when there is a timeout, and otherwise passed to IP 5510 * and IP will * free it after processing the ARP response. 5511 */ 5512 5513 bufsize = sizeof (ire_t) + sizeof (frtn_t); 5514 buf = kmem_alloc(bufsize, KM_NOSLEEP); 5515 if (buf == NULL) { 5516 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 5517 return; 5518 } 5519 frtnp = (frtn_t *)(buf + 1); 5520 frtnp->free_arg = (caddr_t)buf; 5521 frtnp->free_func = ire_freemblk; 5522 5523 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 5524 5525 if (ire_mp == NULL) { 5526 ip1dbg(("ire_arpresolve: esballoc failed\n")); 5527 kmem_free(buf, bufsize); 5528 return; 5529 } 5530 ASSERT(in_ire->ire_nce != NULL); 5531 areq_mp = copyb(dst_ill->ill_resolver_mp); 5532 if (areq_mp == NULL) { 5533 kmem_free(buf, bufsize); 5534 return; 5535 } 5536 5537 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 5538 ire = (ire_t *)buf; 5539 /* 5540 * keep enough info in the fake ire so that we can pull up 5541 * the incomplete ire (in_ire) after result comes back from 5542 * arp and make it complete. 5543 */ 5544 *ire = ire_null; 5545 ire->ire_u = in_ire->ire_u; 5546 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 5547 ire->ire_ipif = in_ire->ire_ipif; 5548 ire->ire_stq = in_ire->ire_stq; 5549 ill = ire_to_ill(ire); 5550 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 5551 ire->ire_zoneid = in_ire->ire_zoneid; 5552 ire->ire_ipst = ipst; 5553 5554 /* 5555 * ire_freemblk will be called when ire_mp is freed, both for 5556 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 5557 * when the arp resolution failed. 5558 */ 5559 ire->ire_marks |= IRE_MARK_UNCACHED; 5560 ire->ire_mp = ire_mp; 5561 ire_mp->b_wptr = (uchar_t *)&ire[1]; 5562 ire_mp->b_cont = NULL; 5563 linkb(areq_mp, ire_mp); 5564 5565 /* 5566 * Fill in the source and dest addrs for the resolver. 5567 * NOTE: this depends on memory layouts imposed by 5568 * ill_init(). 5569 */ 5570 areq = (areq_t *)areq_mp->b_rptr; 5571 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 5572 *addrp = ire->ire_src_addr; 5573 5574 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 5575 if (ire->ire_gateway_addr != INADDR_ANY) { 5576 *addrp = ire->ire_gateway_addr; 5577 } else { 5578 *addrp = ire->ire_addr; 5579 } 5580 5581 /* Up to the resolver. */ 5582 if (canputnext(dst_ill->ill_rq)) { 5583 putnext(dst_ill->ill_rq, areq_mp); 5584 } else { 5585 freemsg(areq_mp); 5586 } 5587 } 5588 5589 /* 5590 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 5591 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 5592 * 5593 * This function can be called by ARP via free routine for ire_mp or 5594 * by IPv4(both host and forwarding path) via ire_delete 5595 * in case ARP resolution fails. 5596 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 5597 * (for IP to talk to ARP, it still has to send AR* messages). 5598 * 5599 * Note that the ARP/IP merge should replace the functioanlity by providing 5600 * direct function calls to clean up unresolved entries in ire/nce lists. 5601 */ 5602 void 5603 ire_freemblk(ire_t *ire_mp) 5604 { 5605 nce_t *nce = NULL; 5606 ill_t *ill; 5607 ip_stack_t *ipst; 5608 5609 ASSERT(ire_mp != NULL); 5610 5611 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 5612 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 5613 (void *)ire_mp)); 5614 goto cleanup; 5615 } 5616 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 5617 goto cleanup; /* everything succeeded. just free and return */ 5618 } 5619 5620 /* 5621 * the arp information corresponding to this ire_mp was not 5622 * transferred to a ire_cache entry. Need 5623 * to clean up incomplete ire's and nce, if necessary. 5624 */ 5625 ASSERT(ire_mp->ire_stq != NULL); 5626 ASSERT(ire_mp->ire_stq_ifindex != 0); 5627 ASSERT(ire_mp->ire_ipst != NULL); 5628 5629 ipst = ire_mp->ire_ipst; 5630 5631 /* 5632 * Get any nce's corresponding to this ire_mp. We first have to 5633 * make sure that the ill is still around. 5634 */ 5635 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, 5636 B_FALSE, NULL, NULL, NULL, NULL, ipst); 5637 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 5638 (ill->ill_state_flags & ILL_CONDEMNED)) { 5639 /* 5640 * ill went away. no nce to clean up. 5641 * Note that the ill_state_flags could be set to 5642 * ILL_CONDEMNED after this point, but if we know 5643 * that it is CONDEMNED now, we just bail out quickly. 5644 */ 5645 if (ill != NULL) 5646 ill_refrele(ill); 5647 goto cleanup; 5648 } 5649 nce = ndp_lookup_v4(ill, 5650 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 5651 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 5652 B_FALSE); 5653 ill_refrele(ill); 5654 5655 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 5656 /* 5657 * some incomplete nce was found. 5658 */ 5659 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 5660 nce_t *, nce, ire_t *, ire_mp); 5661 /* 5662 * Send the icmp_unreachable messages for the queued mblks in 5663 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 5664 * for this ire 5665 */ 5666 arp_resolv_failed(nce); 5667 /* 5668 * Delete the nce and clean up all ire's pointing at this nce 5669 * in the cachetable 5670 */ 5671 ndp_delete(nce); 5672 } 5673 if (nce != NULL) 5674 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 5675 5676 cleanup: 5677 /* 5678 * Get rid of the ire buffer 5679 * We call kmem_free here(instead of ire_delete()), since 5680 * this is the freeb's callback. 5681 */ 5682 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 5683 } 5684 5685 /* 5686 * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and 5687 * non-loopback IRE_BROADCAST ire's. 5688 * 5689 * If a neighbor-cache entry has to be created (i.e., one does not already 5690 * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache 5691 * entry are initialized in ndp_add_v4(). These values are picked from 5692 * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the 5693 * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values 5694 * determine the {nce_state, nce_res_mp} of the nce_t created. All 5695 * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp 5696 * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire 5697 * entries, 5698 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 5699 * nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state. 5700 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 5701 * layer resolution is necessary, so that the nce_t will be in the 5702 * ND_REACHABLE state and the nce_res_mp will have a copy of the 5703 * ill_resolver_mp of the outgoing interface. 5704 * 5705 * The link layer information needed for broadcast addresses, and for 5706 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 5707 * never needs re-verification for the lifetime of the nce_t. These are 5708 * therefore marked NCE_F_PERMANENT, and never allowed to expire via 5709 * NCE_EXPIRED. 5710 * 5711 * IRE_CACHE ire's contain the information for the nexthop (ire_gateway_addr) 5712 * in the case of indirect routes, and for the dst itself (ire_addr) in the 5713 * case of direct routes, with the nce_res_mp containing a template 5714 * DL_UNITDATA request. 5715 * 5716 * The actual association of the ire_nce to the nce created here is 5717 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 5718 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 5719 * the ire_nce assignment is done in ire_add_then_send. 5720 */ 5721 int 5722 ire_nce_init(ire_t *ire, nce_t *src_nce) 5723 { 5724 in_addr_t addr4; 5725 int err; 5726 nce_t *nce = NULL; 5727 ill_t *ire_ill; 5728 uint16_t nce_flags = 0; 5729 ip_stack_t *ipst; 5730 5731 if (ire->ire_stq == NULL) 5732 return (0); /* no need to create nce for local/loopback */ 5733 5734 switch (ire->ire_type) { 5735 case IRE_CACHE: 5736 if (ire->ire_gateway_addr != INADDR_ANY) 5737 addr4 = ire->ire_gateway_addr; /* 'G' route */ 5738 else 5739 addr4 = ire->ire_addr; /* direct route */ 5740 break; 5741 case IRE_BROADCAST: 5742 addr4 = ire->ire_addr; 5743 nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST); 5744 break; 5745 default: 5746 return (0); 5747 } 5748 5749 /* 5750 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 5751 * rules in ire_forward_src_ipif. We want the dlureq_mp 5752 * for the outgoing interface, which we get from the ire_stq. 5753 */ 5754 ire_ill = ire_to_ill(ire); 5755 ipst = ire_ill->ill_ipst; 5756 5757 /* 5758 * IRE_IF_NORESOLVER entries never need re-verification and 5759 * do not expire, so we mark them as NCE_F_PERMANENT. 5760 */ 5761 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) 5762 nce_flags |= NCE_F_PERMANENT; 5763 5764 retry_nce: 5765 err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags, 5766 &nce, src_nce); 5767 5768 if (err == EEXIST && NCE_EXPIRED(nce, ipst)) { 5769 /* 5770 * We looked up an expired nce. 5771 * Go back and try to create one again. 5772 */ 5773 ndp_delete(nce); 5774 NCE_REFRELE(nce); 5775 nce = NULL; 5776 goto retry_nce; 5777 } 5778 5779 ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n", 5780 (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err)); 5781 5782 switch (err) { 5783 case 0: 5784 case EEXIST: 5785 /* 5786 * return a pointer to a newly created or existing nce_t; 5787 * note that the ire-nce mapping is many-one, i.e., 5788 * multiple ire's could point to the same nce_t. 5789 */ 5790 break; 5791 default: 5792 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 5793 return (EINVAL); 5794 } 5795 if (ire->ire_type == IRE_BROADCAST) { 5796 /* 5797 * Two bcast ires are created for each interface; 5798 * 1. loopback copy (which does not have an 5799 * ire_stq, and therefore has no ire_nce), and, 5800 * 2. the non-loopback copy, which has the nce_res_mp 5801 * initialized to a copy of the ill_bcast_mp, and 5802 * is marked as ND_REACHABLE at this point. 5803 * This nce does not undergo any further state changes, 5804 * and exists as long as the interface is plumbed. 5805 * Note: we do the ire_nce assignment here for IRE_BROADCAST 5806 * because some functions like ill_mark_bcast() inline the 5807 * ire_add functionality. 5808 */ 5809 ire->ire_nce = nce; 5810 /* 5811 * We are associating this nce to the ire, 5812 * so change the nce ref taken in 5813 * ndp_lookup_then_add_v4() from 5814 * NCE_REFHOLD to NCE_REFHOLD_NOTR 5815 */ 5816 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 5817 } else { 5818 /* 5819 * We are not using this nce_t just yet so release 5820 * the ref taken in ndp_lookup_then_add_v4() 5821 */ 5822 NCE_REFRELE(nce); 5823 } 5824 return (0); 5825 } 5826