1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 30 /* 31 * This file contains routines that manipulate Internet Routing Entries (IREs). 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/ddi.h> 38 #include <sys/cmn_err.h> 39 #include <sys/policy.h> 40 41 #include <sys/systm.h> 42 #include <sys/kmem.h> 43 #include <sys/param.h> 44 #include <sys/socket.h> 45 #include <net/if.h> 46 #include <net/route.h> 47 #include <netinet/in.h> 48 #include <net/if_dl.h> 49 #include <netinet/ip6.h> 50 #include <netinet/icmp6.h> 51 52 #include <inet/common.h> 53 #include <inet/mi.h> 54 #include <inet/ip.h> 55 #include <inet/ip6.h> 56 #include <inet/ip_ndp.h> 57 #include <inet/arp.h> 58 #include <inet/ip_if.h> 59 #include <inet/ip_ire.h> 60 #include <inet/ip_ftable.h> 61 #include <inet/ip_rts.h> 62 #include <inet/nd.h> 63 64 #include <net/pfkeyv2.h> 65 #include <inet/ipsec_info.h> 66 #include <inet/sadb.h> 67 #include <sys/kmem.h> 68 #include <inet/tcp.h> 69 #include <inet/ipclassifier.h> 70 #include <sys/zone.h> 71 #include <sys/cpuvar.h> 72 73 #include <sys/tsol/label.h> 74 #include <sys/tsol/tnet.h> 75 76 struct kmem_cache *rt_entry_cache; 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the respective tables (cache or forwarding tables). 86 * 87 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 89 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_ident, ire_refcnt 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_max_frag, ire_frag_flag 117 * 118 * - ire_lock is used to set/read both of them together. 119 * 120 * ire_tire_mark 121 * 122 * - Set in ire_create and updated in ire_expire, which is called 123 * by only one function namely ip_trash_timer_expire. Thus only 124 * one function updates and examines the value. 125 * 126 * ire_marks 127 * - bucket lock protects this. 128 * 129 * ire_ipsec_overhead/ire_ll_hdr_length 130 * 131 * - Place holder for returning the information to the upper layers 132 * when IRE_DB_REQ comes down. 133 * 134 * 135 * ipv6_ire_default_count is protected by the bucket lock of 136 * ip_forwarding_table_v6[0][0]. 137 * 138 * ipv6_ire_default_index is not protected as it is just a hint 139 * at which default gateway to use. There is nothing 140 * wrong in using the same gateway for two different connections. 141 * 142 * As we always hold the bucket locks in all the places while accessing 143 * the above values, it is natural to use them for protecting them. 144 * 145 * We have a separate cache table and forwarding table for IPv4 and IPv6. 146 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 147 * array of irb_t structures. The IPv6 forwarding table 148 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 149 * structure. ip_forwarding_table_v6 is allocated dynamically in 150 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 151 * initializing the same bucket. Once a bucket is initialized, it is never 152 * de-alloacted. This assumption enables us to access 153 * ip_forwarding_table_v6[i] without any locks. 154 * 155 * The forwarding table for IPv4 is a radix tree whose leaves 156 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 157 * for IPv4 is dynamically allocated and freed. 158 * 159 * Each irb_t - ire bucket structure has a lock to protect 160 * a bucket and the ires residing in the bucket have a back pointer to 161 * the bucket structure. It also has a reference count for the number 162 * of threads walking the bucket - irb_refcnt which is bumped up 163 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 164 * set to IRE_MARK_CONDEMNED indicating that there are some ires 165 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 166 * last thread to leave the bucket should delete the ires. Usually 167 * this is done by the IRB_REFRELE macro which is used to decrement 168 * the reference count on a bucket. See comments above irb_t structure 169 * definition in ip.h for further details. 170 * 171 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 172 * decrements the reference count, ire_refcnt, atomically on the ire. 173 * ire_refcnt is modified only using this macro. Operations on the IRE 174 * could be described as follows : 175 * 176 * CREATE an ire with reference count initialized to 1. 177 * 178 * ADDITION of an ire holds the bucket lock, checks for duplicates 179 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 180 * bumping up once more i.e the reference count is 2. This is to avoid 181 * an extra lookup in the functions calling ire_add which wants to 182 * work with the ire after adding. 183 * 184 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 185 * macro. It is valid to bump up the referece count of the IRE, 186 * after the lookup has returned an ire. Following are the lookup 187 * functions that return an HELD ire : 188 * 189 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 190 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 191 * ipif_to_ire[_v6]. 192 * 193 * DELETION of an ire holds the bucket lock, removes it from the list 194 * and then decrements the reference count for having removed from the list 195 * by using the IRE_REFRELE macro. If some other thread has looked up 196 * the ire, the reference count would have been bumped up and hence 197 * this ire will not be freed once deleted. It will be freed once the 198 * reference count drops to zero. 199 * 200 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 201 * lookups acquire the bucket lock as RW_READER. 202 * 203 * NOTE : The only functions that does the IRE_REFRELE when an ire is 204 * passed as an argument are : 205 * 206 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 207 * broadcast ires it looks up internally within 208 * the function. Currently, for simplicity it does 209 * not differentiate the one that is passed in and 210 * the ones it looks up internally. It always 211 * IRE_REFRELEs. 212 * 2) ire_send 213 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 214 * that take ire as an argument, it has to selectively 215 * IRE_REFRELE the ire. To maintain symmetry, 216 * ire_send_v6 does the same. 217 * 218 * Otherwise, the general rule is to do the IRE_REFRELE in the function 219 * that is passing the ire as an argument. 220 * 221 * In trying to locate ires the following points are to be noted. 222 * 223 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 224 * to be ignored when walking the ires using ire_next. 225 * 226 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 227 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 228 * applications should not be seeing this ire and hence this ire is ignored 229 * in most cases in the search using ire_next. 230 * 231 * Zones note: 232 * Walking IREs within a given zone also walks certain ires in other 233 * zones. This is done intentionally. IRE walks with a specified 234 * zoneid are used only when doing informational reports, and 235 * zone users want to see things that they can access. See block 236 * comment in ire_walk_ill_match(). 237 */ 238 239 /* 240 * The minimum size of IRE cache table. It will be recalcuated in 241 * ip_ire_init(). 242 * Setable in /etc/system 243 */ 244 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 245 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 246 247 /* 248 * The size of the forwarding table. We will make sure that it is a 249 * power of 2 in ip_ire_init(). 250 * Setable in /etc/system 251 */ 252 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 253 254 struct kmem_cache *ire_cache; 255 static ire_t ire_null; 256 257 /* 258 * The threshold number of IRE in a bucket when the IREs are 259 * cleaned up. This threshold is calculated later in ip_open() 260 * based on the speed of CPU and available memory. This default 261 * value is the maximum. 262 * 263 * We have two kinds of cached IRE, temporary and 264 * non-temporary. Temporary IREs are marked with 265 * IRE_MARK_TEMPORARY. They are IREs created for non 266 * TCP traffic and for forwarding purposes. All others 267 * are non-temporary IREs. We don't mark IRE created for 268 * TCP as temporary because TCP is stateful and there are 269 * info stored in the IRE which can be shared by other TCP 270 * connections to the same destination. For connected 271 * endpoint, we also don't want to mark the IRE used as 272 * temporary because the same IRE will be used frequently, 273 * otherwise, the app should not do a connect(). We change 274 * the marking at ip_bind_connected_*() if necessary. 275 * 276 * We want to keep the cache IRE hash bucket length reasonably 277 * short, otherwise IRE lookup functions will take "forever." 278 * We use the "crude" function that the IRE bucket 279 * length should be based on the CPU speed, which is 1 entry 280 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 281 * (n). This means that with a 750MHz CPU, the max bucket 282 * length can be (750 >> n) entries. 283 * 284 * Note that this threshold is separate for temp and non-temp 285 * IREs. This means that the actual bucket length can be 286 * twice as that. And while we try to keep temporary IRE 287 * length at most at the threshold value, we do not attempt to 288 * make the length for non-temporary IREs fixed, for the 289 * reason stated above. Instead, we start trying to find 290 * "unused" non-temporary IREs when the bucket length reaches 291 * this threshold and clean them up. 292 * 293 * We also want to limit the amount of memory used by 294 * IREs. So if we are allowed to use ~3% of memory (M) 295 * for those IREs, each bucket should not have more than 296 * 297 * M / num of cache bucket / sizeof (ire_t) 298 * 299 * Again the above memory uses are separate for temp and 300 * non-temp cached IREs. 301 * 302 * We may also want the limit to be a function of the number 303 * of interfaces and number of CPUs. Doing the initialization 304 * in ip_open() means that every time an interface is plumbed, 305 * the max is re-calculated. Right now, we don't do anything 306 * different. In future, when we have more experience, we 307 * may want to change this behavior. 308 */ 309 uint32_t ip_ire_max_bucket_cnt = 10; /* Setable in /etc/system */ 310 uint32_t ip6_ire_max_bucket_cnt = 10; 311 uint32_t ip_ire_cleanup_cnt = 2; 312 313 /* 314 * The minimum of the temporary IRE bucket count. We do not want 315 * the length of each bucket to be too short. This may hurt 316 * performance of some apps as the temporary IREs are removed too 317 * often. 318 */ 319 uint32_t ip_ire_min_bucket_cnt = 3; /* /etc/system - not used */ 320 uint32_t ip6_ire_min_bucket_cnt = 3; 321 322 /* 323 * The ratio of memory consumed by IRE used for temporary to available 324 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 325 * value can be changed in /etc/system. 6 is a reasonable number. 326 */ 327 uint32_t ip_ire_mem_ratio = 6; /* /etc/system */ 328 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 329 uint32_t ip_ire_cpu_ratio = 7; /* /etc/system */ 330 331 typedef struct nce_clookup_s { 332 ipaddr_t ncecl_addr; 333 boolean_t ncecl_found; 334 } nce_clookup_t; 335 336 /* 337 * The maximum number of buckets in IRE cache table. In future, we may 338 * want to make it a dynamic hash table. For the moment, we fix the 339 * size and allocate the table in ip_ire_init() when IP is first loaded. 340 * We take into account the amount of memory a system has. 341 */ 342 #define IP_MAX_CACHE_TABLE_SIZE 4096 343 344 /* Setable in /etc/system */ 345 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 346 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 347 348 #define NUM_ILLS 2 /* To build the ILL list to unlock */ 349 350 /* Zero iulp_t for initialization. */ 351 const iulp_t ire_uinfo_null = { 0 }; 352 353 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 354 ipsq_func_t func, boolean_t); 355 static void ire_delete_v4(ire_t *ire); 356 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 357 zoneid_t zoneid, ip_stack_t *); 358 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 359 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 360 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, 361 ire_t *ref_ire); 362 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 363 #ifdef DEBUG 364 static void ire_trace_cleanup(const ire_t *); 365 #endif 366 367 /* 368 * To avoid bloating the code, we call this function instead of 369 * using the macro IRE_REFRELE. Use macro only in performance 370 * critical paths. 371 * 372 * Must not be called while holding any locks. Otherwise if this is 373 * the last reference to be released there is a chance of recursive mutex 374 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 375 * to restart an ioctl. The one exception is when the caller is sure that 376 * this is not the last reference to be released. Eg. if the caller is 377 * sure that the ire has not been deleted and won't be deleted. 378 */ 379 void 380 ire_refrele(ire_t *ire) 381 { 382 IRE_REFRELE(ire); 383 } 384 385 void 386 ire_refrele_notr(ire_t *ire) 387 { 388 IRE_REFRELE_NOTR(ire); 389 } 390 391 /* 392 * kmem_cache_alloc constructor for IRE in kma space. 393 * Note that when ire_mp is set the IRE is stored in that mblk and 394 * not in this cache. 395 */ 396 /* ARGSUSED */ 397 static int 398 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 399 { 400 ire_t *ire = buf; 401 402 ire->ire_nce = NULL; 403 404 return (0); 405 } 406 407 /* ARGSUSED1 */ 408 static void 409 ip_ire_destructor(void *buf, void *cdrarg) 410 { 411 ire_t *ire = buf; 412 413 ASSERT(ire->ire_nce == NULL); 414 } 415 416 /* 417 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 418 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 419 * for an existing CACHED IRE. 420 */ 421 /* ARGSUSED */ 422 int 423 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 424 { 425 uchar_t *addr_ucp; 426 ipic_t *ipic; 427 ire_t *ire; 428 ipaddr_t addr; 429 in6_addr_t v6addr; 430 irb_t *irb; 431 zoneid_t zoneid; 432 ip_stack_t *ipst = CONNQ_TO_IPST(q); 433 434 ASSERT(q->q_next == NULL); 435 zoneid = Q_TO_CONN(q)->conn_zoneid; 436 437 /* 438 * Check privilege using the ioctl credential; if it is NULL 439 * then this is a kernel message and therefor privileged. 440 */ 441 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 442 return (EPERM); 443 444 ipic = (ipic_t *)mp->b_rptr; 445 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 446 ipic->ipic_addr_length))) { 447 return (EINVAL); 448 } 449 if (!OK_32PTR(addr_ucp)) 450 return (EINVAL); 451 switch (ipic->ipic_addr_length) { 452 case IP_ADDR_LEN: { 453 /* Extract the destination address. */ 454 addr = *(ipaddr_t *)addr_ucp; 455 /* Find the corresponding IRE. */ 456 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 457 break; 458 } 459 case IPV6_ADDR_LEN: { 460 /* Extract the destination address. */ 461 v6addr = *(in6_addr_t *)addr_ucp; 462 /* Find the corresponding IRE. */ 463 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst); 464 break; 465 } 466 default: 467 return (EINVAL); 468 } 469 470 if (ire == NULL) 471 return (ENOENT); 472 /* 473 * Update the round trip time estimate and/or the max frag size 474 * and/or the slow start threshold. 475 * 476 * We serialize multiple advises using ire_lock. 477 */ 478 mutex_enter(&ire->ire_lock); 479 if (ipic->ipic_rtt) { 480 /* 481 * If there is no old cached values, initialize them 482 * conservatively. Set them to be (1.5 * new value). 483 */ 484 if (ire->ire_uinfo.iulp_rtt != 0) { 485 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 486 ipic->ipic_rtt) >> 1; 487 } else { 488 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 489 (ipic->ipic_rtt >> 1); 490 } 491 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 492 ire->ire_uinfo.iulp_rtt_sd = 493 (ire->ire_uinfo.iulp_rtt_sd + 494 ipic->ipic_rtt_sd) >> 1; 495 } else { 496 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 497 (ipic->ipic_rtt_sd >> 1); 498 } 499 } 500 if (ipic->ipic_max_frag) 501 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 502 if (ipic->ipic_ssthresh != 0) { 503 if (ire->ire_uinfo.iulp_ssthresh != 0) 504 ire->ire_uinfo.iulp_ssthresh = 505 (ipic->ipic_ssthresh + 506 ire->ire_uinfo.iulp_ssthresh) >> 1; 507 else 508 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 509 } 510 /* 511 * Don't need the ire_lock below this. ire_type does not change 512 * after initialization. ire_marks is protected by irb_lock. 513 */ 514 mutex_exit(&ire->ire_lock); 515 516 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 517 /* 518 * Only increment the temporary IRE count if the original 519 * IRE is not already marked temporary. 520 */ 521 irb = ire->ire_bucket; 522 rw_enter(&irb->irb_lock, RW_WRITER); 523 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 524 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 525 irb->irb_tmp_ire_cnt++; 526 } 527 ire->ire_marks |= ipic->ipic_ire_marks; 528 rw_exit(&irb->irb_lock); 529 } 530 531 ire_refrele(ire); 532 return (0); 533 } 534 535 /* 536 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 537 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 538 * for a host that is not responding. This will force an attempt to 539 * establish a new route, if available, and flush out the ARP entry so 540 * it will re-resolve. Management processes may want to use the 541 * version that generates a reply. 542 * 543 * This function does not support IPv6 since Neighbor Unreachability Detection 544 * means that negative advise like this is useless. 545 */ 546 /* ARGSUSED */ 547 int 548 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 549 { 550 uchar_t *addr_ucp; 551 ipaddr_t addr; 552 ire_t *ire; 553 ipid_t *ipid; 554 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 555 zoneid_t zoneid; 556 ire_t *gire = NULL; 557 ill_t *ill; 558 mblk_t *arp_mp; 559 ip_stack_t *ipst; 560 561 ASSERT(q->q_next == NULL); 562 zoneid = Q_TO_CONN(q)->conn_zoneid; 563 ipst = CONNQ_TO_IPST(q); 564 565 /* 566 * Check privilege using the ioctl credential; if it is NULL 567 * then this is a kernel message and therefor privileged. 568 */ 569 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 570 return (EPERM); 571 572 ipid = (ipid_t *)mp->b_rptr; 573 574 /* Only actions on IRE_CACHEs are acceptable at present. */ 575 if (ipid->ipid_ire_type != IRE_CACHE) 576 return (EINVAL); 577 578 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 579 ipid->ipid_addr_length); 580 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 581 return (EINVAL); 582 switch (ipid->ipid_addr_length) { 583 case IP_ADDR_LEN: 584 /* addr_ucp points at IP addr */ 585 break; 586 case sizeof (sin_t): { 587 sin_t *sin; 588 /* 589 * got complete (sockaddr) address - increment addr_ucp to point 590 * at the ip_addr field. 591 */ 592 sin = (sin_t *)addr_ucp; 593 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 594 break; 595 } 596 default: 597 return (EINVAL); 598 } 599 /* Extract the destination address. */ 600 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 601 602 /* Try to find the CACHED IRE. */ 603 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 604 605 /* Nail it. */ 606 if (ire) { 607 /* Allow delete only on CACHE entries */ 608 if (ire->ire_type != IRE_CACHE) { 609 ire_refrele(ire); 610 return (EINVAL); 611 } 612 613 /* 614 * Verify that the IRE has been around for a while. 615 * This is to protect against transport protocols 616 * that are too eager in sending delete messages. 617 */ 618 if (gethrestime_sec() < 619 ire->ire_create_time + ipst->ips_ip_ignore_delete_time) { 620 ire_refrele(ire); 621 return (EINVAL); 622 } 623 /* 624 * Now we have a potentially dead cache entry. We need 625 * to remove it. 626 * If this cache entry is generated from a 627 * default route (i.e., ire_cmask == 0), 628 * search the default list and mark it dead and some 629 * background process will try to activate it. 630 */ 631 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 632 /* 633 * Make sure that we pick a different 634 * IRE_DEFAULT next time. 635 */ 636 ire_t *gw_ire; 637 irb_t *irb = NULL; 638 uint_t match_flags; 639 640 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 641 642 gire = ire_ftable_lookup(ire->ire_addr, 643 ire->ire_cmask, 0, 0, 644 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags, 645 ipst); 646 647 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 648 (void *)gire)); 649 650 if (gire != NULL) { 651 irb = gire->ire_bucket; 652 653 /* 654 * We grab it as writer just to serialize 655 * multiple threads trying to bump up 656 * irb_rr_origin 657 */ 658 rw_enter(&irb->irb_lock, RW_WRITER); 659 if ((gw_ire = irb->irb_rr_origin) == NULL) { 660 rw_exit(&irb->irb_lock); 661 goto done; 662 } 663 664 DTRACE_PROBE1(ip__ire__del__origin, 665 (ire_t *), gw_ire); 666 667 /* Skip past the potentially bad gateway */ 668 if (ire->ire_gateway_addr == 669 gw_ire->ire_gateway_addr) { 670 ire_t *next = gw_ire->ire_next; 671 672 DTRACE_PROBE2(ip__ire__del, 673 (ire_t *), gw_ire, (irb_t *), irb); 674 IRE_FIND_NEXT_ORIGIN(next); 675 irb->irb_rr_origin = next; 676 } 677 rw_exit(&irb->irb_lock); 678 } 679 } 680 done: 681 if (gire != NULL) 682 IRE_REFRELE(gire); 683 /* report the bad route to routing sockets */ 684 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 685 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 686 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst); 687 routing_sock_info = B_TRUE; 688 689 /* 690 * TCP is really telling us to start over completely, and it 691 * expects that we'll resend the ARP query. Tell ARP to 692 * discard the entry, if this is a local destination. 693 */ 694 ill = ire->ire_stq->q_ptr; 695 if (ire->ire_gateway_addr == 0 && 696 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 697 putnext(ill->ill_rq, arp_mp); 698 } 699 700 ire_delete(ire); 701 ire_refrele(ire); 702 } 703 /* 704 * Also look for an IRE_HOST type redirect ire and 705 * remove it if present. 706 */ 707 ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL, 708 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 709 710 /* Nail it. */ 711 if (ire != NULL) { 712 if (ire->ire_flags & RTF_DYNAMIC) { 713 if (!routing_sock_info) { 714 ip_rts_change(RTM_LOSING, ire->ire_addr, 715 ire->ire_gateway_addr, ire->ire_mask, 716 ire->ire_src_addr, 0, 0, 0, 717 (RTA_DST | RTA_GATEWAY | 718 RTA_NETMASK | RTA_IFA), 719 ipst); 720 } 721 ire_delete(ire); 722 } 723 ire_refrele(ire); 724 } 725 return (0); 726 } 727 728 729 /* 730 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 731 * down from the Upper Level Protocol to request a copy of the IRE (to check 732 * its type or to extract information like round-trip time estimates or the 733 * MTU.) 734 * The address is assumed to be in the ire_addr field. If no IRE is found 735 * an IRE is returned with ire_type being zero. 736 * Note that the upper lavel protocol has to check for broadcast 737 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 738 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 739 * end of the returned message. 740 * 741 * TCP sends down a message of this type with a connection request packet 742 * chained on. UDP and ICMP send it down to verify that a route exists for 743 * the destination address when they get connected. 744 */ 745 void 746 ip_ire_req(queue_t *q, mblk_t *mp) 747 { 748 ire_t *inire; 749 ire_t *ire; 750 mblk_t *mp1; 751 ire_t *sire = NULL; 752 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 753 ip_stack_t *ipst = CONNQ_TO_IPST(q); 754 755 ASSERT(q->q_next == NULL); 756 757 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 758 !OK_32PTR(mp->b_rptr)) { 759 freemsg(mp); 760 return; 761 } 762 inire = (ire_t *)mp->b_rptr; 763 /* 764 * Got it, now take our best shot at an IRE. 765 */ 766 if (inire->ire_ipversion == IPV6_VERSION) { 767 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 768 NULL, &sire, zoneid, NULL, 769 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 770 } else { 771 ASSERT(inire->ire_ipversion == IPV4_VERSION); 772 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 773 NULL, &sire, zoneid, NULL, 774 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 775 } 776 777 /* 778 * We prevent returning IRES with source address INADDR_ANY 779 * as these were temporarily created for sending packets 780 * from endpoints that have conn_unspec_src set. 781 */ 782 if (ire == NULL || 783 (ire->ire_ipversion == IPV4_VERSION && 784 ire->ire_src_addr == INADDR_ANY) || 785 (ire->ire_ipversion == IPV6_VERSION && 786 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 787 inire->ire_type = 0; 788 } else { 789 bcopy(ire, inire, sizeof (ire_t)); 790 /* Copy the route metrics from the parent. */ 791 if (sire != NULL) { 792 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 793 sizeof (iulp_t)); 794 } 795 796 /* 797 * As we don't lookup global policy here, we may not 798 * pass the right size if per-socket policy is not 799 * present. For these cases, path mtu discovery will 800 * do the right thing. 801 */ 802 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 803 804 /* Pass the latest setting of the ip_path_mtu_discovery */ 805 inire->ire_frag_flag |= 806 (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 807 } 808 if (ire != NULL) 809 ire_refrele(ire); 810 if (sire != NULL) 811 ire_refrele(sire); 812 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 813 mp->b_datap->db_type = IRE_DB_TYPE; 814 815 /* Put the IRE_DB_TYPE mblk last in the chain */ 816 mp1 = mp->b_cont; 817 if (mp1 != NULL) { 818 mp->b_cont = NULL; 819 linkb(mp1, mp); 820 mp = mp1; 821 } 822 qreply(q, mp); 823 } 824 825 /* 826 * Send a packet using the specified IRE. 827 * If ire_src_addr_v6 is all zero then discard the IRE after 828 * the packet has been sent. 829 */ 830 static void 831 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 832 { 833 mblk_t *ipsec_mp; 834 boolean_t is_secure; 835 uint_t ifindex; 836 ill_t *ill; 837 zoneid_t zoneid = ire->ire_zoneid; 838 ip_stack_t *ipst = ire->ire_ipst; 839 840 ASSERT(ire->ire_ipversion == IPV4_VERSION); 841 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 842 ipsec_mp = pkt; 843 is_secure = (pkt->b_datap->db_type == M_CTL); 844 if (is_secure) { 845 ipsec_out_t *io; 846 847 pkt = pkt->b_cont; 848 io = (ipsec_out_t *)ipsec_mp->b_rptr; 849 if (io->ipsec_out_type == IPSEC_OUT) 850 zoneid = io->ipsec_out_zoneid; 851 } 852 853 /* If the packet originated externally then */ 854 if (pkt->b_prev) { 855 ire_refrele(ire); 856 /* 857 * Extract the ifindex from b_prev (set in ip_rput_noire). 858 * Look up interface to see if it still exists (it could have 859 * been unplumbed by the time the reply came back from ARP) 860 */ 861 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 862 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 863 NULL, NULL, NULL, NULL, ipst); 864 if (ill == NULL) { 865 pkt->b_prev = NULL; 866 pkt->b_next = NULL; 867 freemsg(ipsec_mp); 868 return; 869 } 870 q = ill->ill_rq; 871 pkt->b_prev = NULL; 872 /* 873 * This packet has not gone through IPSEC processing 874 * and hence we should not have any IPSEC message 875 * prepended. 876 */ 877 ASSERT(ipsec_mp == pkt); 878 put(q, pkt); 879 ill_refrele(ill); 880 } else if (pkt->b_next) { 881 /* Packets from multicast router */ 882 pkt->b_next = NULL; 883 /* 884 * We never get the IPSEC_OUT while forwarding the 885 * packet for multicast router. 886 */ 887 ASSERT(ipsec_mp == pkt); 888 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 889 ire_refrele(ire); 890 } else { 891 /* Locally originated packets */ 892 boolean_t is_inaddr_any; 893 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 894 895 /* 896 * We need to do an ire_delete below for which 897 * we need to make sure that the IRE will be 898 * around even after calling ip_wput_ire - 899 * which does ire_refrele. Otherwise somebody 900 * could potentially delete this ire and hence 901 * free this ire and we will be calling ire_delete 902 * on a freed ire below. 903 */ 904 is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); 905 if (is_inaddr_any) { 906 IRE_REFHOLD(ire); 907 } 908 /* 909 * If we were resolving a router we can not use the 910 * routers IRE for sending the packet (since it would 911 * violate the uniqness of the IP idents) thus we 912 * make another pass through ip_wput to create the IRE_CACHE 913 * for the destination. 914 * When IRE_MARK_NOADD is set, ire_add() is not called. 915 * Thus ip_wput() will never find a ire and result in an 916 * infinite loop. Thus we check whether IRE_MARK_NOADD is 917 * is set. This also implies that IRE_MARK_NOADD can only be 918 * used to send packets to directly connected hosts. 919 */ 920 if (ipha->ipha_dst != ire->ire_addr && 921 !(ire->ire_marks & IRE_MARK_NOADD)) { 922 ire_refrele(ire); /* Held in ire_add */ 923 if (CONN_Q(q)) { 924 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 925 IRE_SEND); 926 } else { 927 (void) ip_output((void *)(uintptr_t)zoneid, 928 ipsec_mp, q, IRE_SEND); 929 } 930 } else { 931 if (is_secure) { 932 ipsec_out_t *oi; 933 ipha_t *ipha; 934 935 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 936 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 937 if (oi->ipsec_out_proc_begin) { 938 /* 939 * This is the case where 940 * ip_wput_ipsec_out could not find 941 * the IRE and recreated a new one. 942 * As ip_wput_ipsec_out does ire 943 * lookups, ire_refrele for the extra 944 * bump in ire_add. 945 */ 946 ire_refrele(ire); 947 ip_wput_ipsec_out(q, ipsec_mp, ipha, 948 NULL, NULL); 949 } else { 950 /* 951 * IRE_REFRELE will be done in 952 * ip_wput_ire. 953 */ 954 ip_wput_ire(q, ipsec_mp, ire, NULL, 955 IRE_SEND, zoneid); 956 } 957 } else { 958 /* 959 * IRE_REFRELE will be done in ip_wput_ire. 960 */ 961 ip_wput_ire(q, ipsec_mp, ire, NULL, 962 IRE_SEND, zoneid); 963 } 964 } 965 /* 966 * Special code to support sending a single packet with 967 * conn_unspec_src using an IRE which has no source address. 968 * The IRE is deleted here after sending the packet to avoid 969 * having other code trip on it. But before we delete the 970 * ire, somebody could have looked up this ire. 971 * We prevent returning/using this IRE by the upper layers 972 * by making checks to NULL source address in other places 973 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 974 * Though, this does not completely prevent other threads 975 * from using this ire, this should not cause any problems. 976 * 977 * NOTE : We use is_inaddr_any instead of using ire_src_addr 978 * because for the normal case i.e !is_inaddr_any, ire_refrele 979 * above could have potentially freed the ire. 980 */ 981 if (is_inaddr_any) { 982 /* 983 * If this IRE has been deleted by another thread, then 984 * ire_bucket won't be NULL, but ire_ptpn will be NULL. 985 * Thus, ire_delete will do nothing. This check 986 * guards against calling ire_delete when the IRE was 987 * never inserted in the table, which is handled by 988 * ire_delete as dropping another reference. 989 */ 990 if (ire->ire_bucket != NULL) { 991 ip1dbg(("ire_send: delete IRE\n")); 992 ire_delete(ire); 993 } 994 ire_refrele(ire); /* Held above */ 995 } 996 } 997 } 998 999 /* 1000 * Send a packet using the specified IRE. 1001 * If ire_src_addr_v6 is all zero then discard the IRE after 1002 * the packet has been sent. 1003 */ 1004 static void 1005 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 1006 { 1007 mblk_t *ipsec_mp; 1008 boolean_t secure; 1009 uint_t ifindex; 1010 zoneid_t zoneid = ire->ire_zoneid; 1011 ip_stack_t *ipst = ire->ire_ipst; 1012 1013 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1014 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1015 if (pkt->b_datap->db_type == M_CTL) { 1016 ipsec_out_t *io; 1017 1018 ipsec_mp = pkt; 1019 pkt = pkt->b_cont; 1020 secure = B_TRUE; 1021 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1022 if (io->ipsec_out_type == IPSEC_OUT) 1023 zoneid = io->ipsec_out_zoneid; 1024 } else { 1025 ipsec_mp = pkt; 1026 secure = B_FALSE; 1027 } 1028 1029 /* If the packet originated externally then */ 1030 if (pkt->b_prev) { 1031 ill_t *ill; 1032 /* 1033 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1034 * Look up interface to see if it still exists (it could have 1035 * been unplumbed by the time the reply came back from the 1036 * resolver). 1037 */ 1038 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1039 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1040 NULL, NULL, NULL, NULL, ipst); 1041 if (ill == NULL) { 1042 pkt->b_prev = NULL; 1043 pkt->b_next = NULL; 1044 freemsg(ipsec_mp); 1045 ire_refrele(ire); /* Held in ire_add */ 1046 return; 1047 } 1048 q = ill->ill_rq; 1049 pkt->b_prev = NULL; 1050 /* 1051 * This packet has not gone through IPSEC processing 1052 * and hence we should not have any IPSEC message 1053 * prepended. 1054 */ 1055 ASSERT(ipsec_mp == pkt); 1056 put(q, pkt); 1057 ill_refrele(ill); 1058 } else if (pkt->b_next) { 1059 /* Packets from multicast router */ 1060 pkt->b_next = NULL; 1061 /* 1062 * We never get the IPSEC_OUT while forwarding the 1063 * packet for multicast router. 1064 */ 1065 ASSERT(ipsec_mp == pkt); 1066 /* 1067 * XXX TODO IPv6. 1068 */ 1069 freemsg(pkt); 1070 #ifdef XXX 1071 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1072 #endif 1073 } else { 1074 if (secure) { 1075 ipsec_out_t *oi; 1076 ip6_t *ip6h; 1077 1078 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1079 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1080 if (oi->ipsec_out_proc_begin) { 1081 /* 1082 * This is the case where 1083 * ip_wput_ipsec_out could not find 1084 * the IRE and recreated a new one. 1085 */ 1086 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1087 NULL, NULL); 1088 } else { 1089 if (CONN_Q(q)) { 1090 (void) ip_output_v6(Q_TO_CONN(q), 1091 ipsec_mp, q, IRE_SEND); 1092 } else { 1093 (void) ip_output_v6( 1094 (void *)(uintptr_t)zoneid, 1095 ipsec_mp, q, IRE_SEND); 1096 } 1097 } 1098 } else { 1099 /* 1100 * Send packets through ip_output_v6 so that any 1101 * ip6_info header can be processed again. 1102 */ 1103 if (CONN_Q(q)) { 1104 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1105 IRE_SEND); 1106 } else { 1107 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1108 ipsec_mp, q, IRE_SEND); 1109 } 1110 } 1111 /* 1112 * Special code to support sending a single packet with 1113 * conn_unspec_src using an IRE which has no source address. 1114 * The IRE is deleted here after sending the packet to avoid 1115 * having other code trip on it. But before we delete the 1116 * ire, somebody could have looked up this ire. 1117 * We prevent returning/using this IRE by the upper layers 1118 * by making checks to NULL source address in other places 1119 * like e.g ip_ire_append_v6, ip_ire_req and 1120 * ip_bind_connected_v6. Though, this does not completely 1121 * prevent other threads from using this ire, this should 1122 * not cause any problems. 1123 */ 1124 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1125 ip1dbg(("ire_send_v6: delete IRE\n")); 1126 ire_delete(ire); 1127 } 1128 } 1129 ire_refrele(ire); /* Held in ire_add */ 1130 } 1131 1132 /* 1133 * Make sure that IRE bucket does not get too long. 1134 * This can cause lock up because ire_cache_lookup() 1135 * may take "forever" to finish. 1136 * 1137 * We only remove a maximum of cnt IREs each time. This 1138 * should keep the bucket length approximately constant, 1139 * depending on cnt. This should be enough to defend 1140 * against DoS attack based on creating temporary IREs 1141 * (for forwarding and non-TCP traffic). 1142 * 1143 * We also pass in the address of the newly created IRE 1144 * as we do not want to remove this straight after adding 1145 * it. New IREs are normally added at the tail of the 1146 * bucket. This means that we are removing the "oldest" 1147 * temporary IREs added. Only if there are IREs with 1148 * the same ire_addr, do we not add it at the tail. Refer 1149 * to ire_add_v*(). It should be OK for our purpose. 1150 * 1151 * For non-temporary cached IREs, we make sure that they 1152 * have not been used for some time (defined below), they 1153 * are non-local destinations, and there is no one using 1154 * them at the moment (refcnt == 1). 1155 * 1156 * The above means that the IRE bucket length may become 1157 * very long, consisting of mostly non-temporary IREs. 1158 * This can happen when the hash function does a bad job 1159 * so that most TCP connections cluster to a specific bucket. 1160 * This "hopefully" should never happen. It can also 1161 * happen if most TCP connections have very long lives. 1162 * Even with the minimal hash table size of 256, there 1163 * has to be a lot of such connections to make the bucket 1164 * length unreasonably long. This should probably not 1165 * happen either. The third can when this can happen is 1166 * when the machine is under attack, such as SYN flooding. 1167 * TCP should already have the proper mechanism to protect 1168 * that. So we should be safe. 1169 * 1170 * This function is called by ire_add_then_send() after 1171 * a new IRE is added and the packet is sent. 1172 * 1173 * The idle cutoff interval is set to 60s. It can be 1174 * changed using /etc/system. 1175 */ 1176 uint32_t ire_idle_cutoff_interval = 60000; 1177 1178 static void 1179 ire_cache_cleanup(irb_t *irb, uint32_t threshold, ire_t *ref_ire) 1180 { 1181 ire_t *ire; 1182 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1183 int cnt = ip_ire_cleanup_cnt; 1184 1185 /* 1186 * Try to remove cnt temporary IREs first. 1187 */ 1188 for (ire = irb->irb_ire; cnt > 0 && ire != NULL; ire = ire->ire_next) { 1189 if (ire == ref_ire) 1190 continue; 1191 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1192 continue; 1193 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1194 ASSERT(ire->ire_type == IRE_CACHE); 1195 ire_delete(ire); 1196 cnt--; 1197 } 1198 } 1199 if (cnt == 0) 1200 return; 1201 1202 /* 1203 * If we didn't satisfy our removal target from temporary IREs 1204 * we see how many non-temporary IREs are currently in the bucket. 1205 * If this quantity is above the threshold then we see if there are any 1206 * candidates for removal. We are still limited to removing a maximum 1207 * of cnt IREs. 1208 */ 1209 if ((irb->irb_ire_cnt - irb->irb_tmp_ire_cnt) > threshold) { 1210 for (ire = irb->irb_ire; cnt > 0 && ire != NULL; 1211 ire = ire->ire_next) { 1212 if (ire == ref_ire) 1213 continue; 1214 if (ire->ire_type != IRE_CACHE) 1215 continue; 1216 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1217 continue; 1218 if ((ire->ire_refcnt == 1) && 1219 (lbolt - ire->ire_last_used_time > cut_off)) { 1220 ire_delete(ire); 1221 cnt--; 1222 } 1223 } 1224 } 1225 } 1226 1227 /* 1228 * ire_add_then_send is called when a new IRE has been created in order to 1229 * route an outgoing packet. Typically, it is called from ip_wput when 1230 * a response comes back down from a resolver. We add the IRE, and then 1231 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1232 * However, we do not add the newly created IRE in the cache when 1233 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1234 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by 1235 * ip_wput_ire() and get deleted. 1236 * Multirouting support: the packet is silently discarded when the new IRE 1237 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1238 * RTF_MULTIRT flag for the same destination address. 1239 * In this case, we just want to register this additional ire without 1240 * sending the packet, as it has already been replicated through 1241 * existing multirt routes in ip_wput(). 1242 */ 1243 void 1244 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1245 { 1246 irb_t *irb; 1247 boolean_t drop = B_FALSE; 1248 /* LINTED : set but not used in function */ 1249 boolean_t mctl_present; 1250 mblk_t *first_mp = NULL; 1251 mblk_t *save_mp = NULL; 1252 ire_t *dst_ire; 1253 ipha_t *ipha; 1254 ip6_t *ip6h; 1255 ip_stack_t *ipst = ire->ire_ipst; 1256 int ire_limit; 1257 1258 if (mp != NULL) { 1259 /* 1260 * We first have to retrieve the destination address carried 1261 * by the packet. 1262 * We can't rely on ire as it can be related to a gateway. 1263 * The destination address will help in determining if 1264 * other RTF_MULTIRT ires are already registered. 1265 * 1266 * We first need to know where we are going : v4 or V6. 1267 * the ire version is enough, as there is no risk that 1268 * we resolve an IPv6 address with an IPv4 ire 1269 * or vice versa. 1270 */ 1271 if (ire->ire_ipversion == IPV4_VERSION) { 1272 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1273 ipha = (ipha_t *)mp->b_rptr; 1274 save_mp = mp; 1275 mp = first_mp; 1276 1277 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1278 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1279 } else { 1280 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1281 /* 1282 * Get a pointer to the beginning of the IPv6 header. 1283 * Ignore leading IPsec control mblks. 1284 */ 1285 first_mp = mp; 1286 if (mp->b_datap->db_type == M_CTL) { 1287 mp = mp->b_cont; 1288 } 1289 ip6h = (ip6_t *)mp->b_rptr; 1290 save_mp = mp; 1291 mp = first_mp; 1292 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1293 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1294 } 1295 if (dst_ire != NULL) { 1296 if (dst_ire->ire_flags & RTF_MULTIRT) { 1297 /* 1298 * At least one resolved multirt route 1299 * already exists for the destination, 1300 * don't sent this packet: either drop it 1301 * or complete the pending resolution, 1302 * depending on the ire. 1303 */ 1304 drop = B_TRUE; 1305 } 1306 ip1dbg(("ire_add_then_send: dst_ire %p " 1307 "[dst %08x, gw %08x], drop %d\n", 1308 (void *)dst_ire, 1309 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1310 ntohl(dst_ire->ire_addr) : \ 1311 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1312 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1313 ntohl(dst_ire->ire_gateway_addr) : \ 1314 ntohl(V4_PART_OF_V6( 1315 dst_ire->ire_gateway_addr_v6)), 1316 drop)); 1317 ire_refrele(dst_ire); 1318 } 1319 } 1320 1321 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1322 /* Regular packets with cache bound ires are here. */ 1323 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1324 1325 if (ire == NULL) { 1326 mp->b_prev = NULL; 1327 mp->b_next = NULL; 1328 MULTIRT_DEBUG_UNTAG(mp); 1329 freemsg(mp); 1330 return; 1331 } 1332 if (mp == NULL) { 1333 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1334 return; 1335 } 1336 } 1337 if (drop) { 1338 /* 1339 * If we're adding an RTF_MULTIRT ire, the resolution 1340 * is over: we just drop the packet. 1341 */ 1342 if (ire->ire_flags & RTF_MULTIRT) { 1343 if (save_mp) { 1344 save_mp->b_prev = NULL; 1345 save_mp->b_next = NULL; 1346 } 1347 MULTIRT_DEBUG_UNTAG(mp); 1348 freemsg(mp); 1349 } else { 1350 /* 1351 * Otherwise, we're adding the ire to a gateway 1352 * for a multirt route. 1353 * Invoke ip_newroute() to complete the resolution 1354 * of the route. We will then come back here and 1355 * finally drop this packet in the above code. 1356 */ 1357 if (ire->ire_ipversion == IPV4_VERSION) { 1358 /* 1359 * TODO: in order for CGTP to work in non-global 1360 * zones, ip_newroute() must create the IRE 1361 * cache in the zone indicated by 1362 * ire->ire_zoneid. 1363 */ 1364 ip_newroute(q, mp, ipha->ipha_dst, 1365 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1366 ire->ire_zoneid, ipst); 1367 } else { 1368 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1369 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1370 NULL, ire->ire_zoneid, ipst); 1371 } 1372 } 1373 1374 ire_refrele(ire); /* As done by ire_send(). */ 1375 return; 1376 } 1377 /* 1378 * Need to remember ire_bucket here as ire_send*() may delete 1379 * the ire so we cannot reference it after that. 1380 */ 1381 irb = ire->ire_bucket; 1382 if (ire->ire_ipversion == IPV4_VERSION) { 1383 ire_send(q, mp, ire); 1384 ire_limit = ip_ire_max_bucket_cnt; 1385 } else { 1386 ire_send_v6(q, mp, ire); 1387 ire_limit = ip6_ire_max_bucket_cnt; 1388 } 1389 1390 /* 1391 * irb is NULL if the IRE was not added to the hash. This happens 1392 * when IRE_MARK_NOADD is set and when IREs are returned from 1393 * ire_update_srcif_v4(). 1394 */ 1395 if (irb != NULL) { 1396 IRB_REFHOLD(irb); 1397 if (irb->irb_ire_cnt > ire_limit) 1398 ire_cache_cleanup(irb, ire_limit, ire); 1399 IRB_REFRELE(irb); 1400 } 1401 } 1402 1403 /* 1404 * Initialize the ire that is specific to IPv4 part and call 1405 * ire_init_common to finish it. 1406 */ 1407 ire_t * 1408 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1409 uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1410 queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1411 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1412 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1413 { 1414 ASSERT(type != IRE_CACHE || stq != NULL); 1415 /* 1416 * Reject IRE security attribute creation/initialization 1417 * if system is not running in Trusted mode. 1418 */ 1419 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1420 return (NULL); 1421 1422 1423 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 1424 1425 if (addr != NULL) 1426 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1427 if (src_addr != NULL) 1428 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1429 if (mask != NULL) { 1430 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1431 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1432 } 1433 if (gateway != NULL) { 1434 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1435 } 1436 1437 if (type == IRE_CACHE) 1438 ire->ire_cmask = cmask; 1439 1440 /* ire_init_common will free the mblks upon encountering any failure */ 1441 if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif, 1442 phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst)) 1443 return (NULL); 1444 1445 return (ire); 1446 } 1447 1448 /* 1449 * Similar to ire_create except that it is called only when 1450 * we want to allocate ire as an mblk e.g. we have an external 1451 * resolver ARP. 1452 */ 1453 ire_t * 1454 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1455 uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type, 1456 ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1457 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, 1458 ip_stack_t *ipst) 1459 { 1460 ire_t *ire, *buf; 1461 ire_t *ret_ire; 1462 mblk_t *mp; 1463 size_t bufsize; 1464 frtn_t *frtnp; 1465 ill_t *ill; 1466 1467 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1468 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1469 if (buf == NULL) { 1470 ip1dbg(("ire_create_mp: alloc failed\n")); 1471 return (NULL); 1472 } 1473 frtnp = (frtn_t *)(buf + 1); 1474 frtnp->free_arg = (caddr_t)buf; 1475 frtnp->free_func = ire_freemblk; 1476 1477 /* 1478 * Allocate the new IRE. The ire created will hold a ref on 1479 * an nce_t after ire_nce_init, and this ref must either be 1480 * (a) transferred to the ire_cache entry created when ire_add_v4 1481 * is called after successful arp resolution, or, 1482 * (b) released, when arp resolution fails 1483 * Case (b) is handled in ire_freemblk() which will be called 1484 * when mp is freed as a result of failed arp. 1485 */ 1486 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1487 if (mp == NULL) { 1488 ip1dbg(("ire_create_mp: alloc failed\n")); 1489 kmem_free(buf, bufsize); 1490 return (NULL); 1491 } 1492 ire = (ire_t *)mp->b_rptr; 1493 mp->b_wptr = (uchar_t *)&ire[1]; 1494 1495 /* Start clean. */ 1496 *ire = ire_null; 1497 ire->ire_mp = mp; 1498 mp->b_datap->db_type = IRE_DB_TYPE; 1499 ire->ire_marks |= IRE_MARK_UNCACHED; 1500 1501 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce, 1502 rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc, 1503 gcgrp, ipst); 1504 1505 ill = (ill_t *)(stq->q_ptr); 1506 if (ret_ire == NULL) { 1507 /* ire_freemblk needs these set */ 1508 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1509 ire->ire_ipst = ipst; 1510 freeb(ire->ire_mp); 1511 return (NULL); 1512 } 1513 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1514 ASSERT(ret_ire == ire); 1515 /* 1516 * ire_max_frag is normally zero here and is atomically set 1517 * under the irebucket lock in ire_add_v[46] except for the 1518 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1519 * is non-zero here. 1520 */ 1521 ire->ire_max_frag = max_frag; 1522 return (ire); 1523 } 1524 1525 /* 1526 * ire_create is called to allocate and initialize a new IRE. 1527 * 1528 * NOTE : This is called as writer sometimes though not required 1529 * by this function. 1530 */ 1531 ire_t * 1532 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1533 uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq, 1534 ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1535 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1536 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1537 { 1538 ire_t *ire; 1539 ire_t *ret_ire; 1540 1541 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1542 if (ire == NULL) { 1543 ip1dbg(("ire_create: alloc failed\n")); 1544 return (NULL); 1545 } 1546 *ire = ire_null; 1547 1548 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp, 1549 src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags, 1550 ulp_info, gc, gcgrp, ipst); 1551 1552 if (ret_ire == NULL) { 1553 kmem_cache_free(ire_cache, ire); 1554 return (NULL); 1555 } 1556 ASSERT(ret_ire == ire); 1557 return (ire); 1558 } 1559 1560 1561 /* 1562 * Common to IPv4 and IPv6 1563 */ 1564 boolean_t 1565 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1566 queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle, 1567 uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info, 1568 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1569 { 1570 ire->ire_max_fragp = max_fragp; 1571 ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 1572 1573 #ifdef DEBUG 1574 if (ipif != NULL) { 1575 if (ipif->ipif_isv6) 1576 ASSERT(ipversion == IPV6_VERSION); 1577 else 1578 ASSERT(ipversion == IPV4_VERSION); 1579 } 1580 #endif /* DEBUG */ 1581 1582 /* 1583 * Create/initialize IRE security attribute only in Trusted mode; 1584 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1585 * has held a reference to it and will release it when this routine 1586 * returns a failure, otherwise we own the reference. We do this 1587 * prior to initializing the rest IRE fields. 1588 * 1589 * Don't allocate ire_gw_secattr for the resolver case to prevent 1590 * memory leak (in case of external resolution failure). We'll 1591 * allocate it after a successful external resolution, in ire_add(). 1592 * Note that ire->ire_mp != NULL here means this ire is headed 1593 * to an external resolver. 1594 */ 1595 if (is_system_labeled()) { 1596 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1597 IRE_INTERFACE)) != 0) { 1598 /* release references on behalf of caller */ 1599 if (gc != NULL) 1600 GC_REFRELE(gc); 1601 if (gcgrp != NULL) 1602 GCGRP_REFRELE(gcgrp); 1603 } else if ((ire->ire_mp == NULL) && 1604 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1605 return (B_FALSE); 1606 } 1607 } 1608 1609 ire->ire_stq = stq; 1610 ire->ire_rfq = rfq; 1611 ire->ire_type = type; 1612 ire->ire_flags = RTF_UP | flags; 1613 ire->ire_ident = TICK_TO_MSEC(lbolt); 1614 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1615 1616 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1617 ire->ire_last_used_time = lbolt; 1618 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1619 1620 /* 1621 * If this IRE is an IRE_CACHE, inherit the handles from the 1622 * parent IREs. For others in the forwarding table, assign appropriate 1623 * new ones. 1624 * 1625 * The mutex protecting ire_handle is because ire_create is not always 1626 * called as a writer. 1627 */ 1628 if (ire->ire_type & IRE_OFFSUBNET) { 1629 mutex_enter(&ipst->ips_ire_handle_lock); 1630 ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++; 1631 mutex_exit(&ipst->ips_ire_handle_lock); 1632 } else if (ire->ire_type & IRE_INTERFACE) { 1633 mutex_enter(&ipst->ips_ire_handle_lock); 1634 ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++; 1635 mutex_exit(&ipst->ips_ire_handle_lock); 1636 } else if (ire->ire_type == IRE_CACHE) { 1637 ire->ire_phandle = phandle; 1638 ire->ire_ihandle = ihandle; 1639 } 1640 ire->ire_ipif = ipif; 1641 if (ipif != NULL) { 1642 ire->ire_ipif_seqid = ipif->ipif_seqid; 1643 ire->ire_zoneid = ipif->ipif_zoneid; 1644 } else { 1645 ire->ire_zoneid = GLOBAL_ZONEID; 1646 } 1647 ire->ire_ipversion = ipversion; 1648 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1649 if (ipversion == IPV4_VERSION) { 1650 /* 1651 * IPv6 initializes the ire_nce in ire_add_v6, which expects 1652 * to find the ire_nce to be null when it is called. 1653 */ 1654 if (ire_nce_init(ire, src_nce) != 0) { 1655 /* some failure occurred. propagate error back */ 1656 return (B_FALSE); 1657 } 1658 } 1659 ire->ire_refcnt = 1; 1660 ire->ire_ipst = ipst; /* No netstack_hold */ 1661 ire->ire_trace_disable = B_FALSE; 1662 1663 return (B_TRUE); 1664 } 1665 1666 /* 1667 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1668 * It is passed a pointer to a slot in an IRE pointer array into which to 1669 * place the pointer to the new IRE, if indeed we create one. If the 1670 * IRE corresponding to the address passed in would be a duplicate of an 1671 * existing one, we don't create the new one. irep is incremented before 1672 * return only if we do create a new IRE. (Always called as writer.) 1673 * 1674 * Note that with the "match_flags" parameter, we can match on either 1675 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1676 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1677 * we only create broadcast ire's on a per physical interface basis. If 1678 * someone is going to be mucking with logical interfaces, it is important 1679 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1680 * logical interface will not cause critical broadcast IRE's to be deleted. 1681 */ 1682 ire_t ** 1683 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1684 int match_flags) 1685 { 1686 ire_t *ire; 1687 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1688 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1689 1690 /* 1691 * No broadcast IREs for the LOOPBACK interface 1692 * or others such as point to point and IPIF_NOXMIT. 1693 */ 1694 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1695 (ipif->ipif_flags & IPIF_NOXMIT)) 1696 return (irep); 1697 1698 /* If this would be a duplicate, don't bother. */ 1699 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1700 ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) { 1701 /* 1702 * We look for non-deprecated (and non-anycast, non-nolocal) 1703 * ipifs as the best choice. ipifs with check_flags matching 1704 * (deprecated, etc) are used only if non-deprecated ipifs 1705 * are not available. if the existing ire's ipif is deprecated 1706 * and the new ipif is non-deprecated, switch to the new ipif 1707 */ 1708 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1709 (ipif->ipif_flags & check_flags)) { 1710 ire_refrele(ire); 1711 return (irep); 1712 } 1713 /* 1714 * Bcast ires exist in pairs. Both have to be deleted, 1715 * Since we are exclusive we can make the above assertion. 1716 * The 1st has to be refrele'd since it was ctable_lookup'd. 1717 */ 1718 ASSERT(IAM_WRITER_IPIF(ipif)); 1719 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 1720 ire_delete(ire->ire_next); 1721 ire_delete(ire); 1722 ire_refrele(ire); 1723 } 1724 1725 irep = ire_create_bcast(ipif, addr, irep); 1726 1727 return (irep); 1728 } 1729 1730 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 1731 1732 /* 1733 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 1734 * It leaves all the verifying and deleting to those routines. So it always 1735 * creates 2 bcast ires and chains them into the ire array passed in. 1736 */ 1737 ire_t ** 1738 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 1739 { 1740 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1741 1742 *irep++ = ire_create( 1743 (uchar_t *)&addr, /* dest addr */ 1744 (uchar_t *)&ip_g_all_ones, /* mask */ 1745 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 1746 NULL, /* no gateway */ 1747 &ipif->ipif_mtu, /* max frag */ 1748 NULL, /* no src nce */ 1749 ipif->ipif_rq, /* recv-from queue */ 1750 ipif->ipif_wq, /* send-to queue */ 1751 IRE_BROADCAST, 1752 ipif, 1753 0, 1754 0, 1755 0, 1756 0, 1757 &ire_uinfo_null, 1758 NULL, 1759 NULL, 1760 ipst); 1761 1762 *irep++ = ire_create( 1763 (uchar_t *)&addr, /* dest address */ 1764 (uchar_t *)&ip_g_all_ones, /* mask */ 1765 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 1766 NULL, /* no gateway */ 1767 &ip_loopback_mtu, /* max frag size */ 1768 NULL, /* no src_nce */ 1769 ipif->ipif_rq, /* recv-from queue */ 1770 NULL, /* no send-to queue */ 1771 IRE_BROADCAST, /* Needed for fanout in wput */ 1772 ipif, 1773 0, 1774 0, 1775 0, 1776 0, 1777 &ire_uinfo_null, 1778 NULL, 1779 NULL, 1780 ipst); 1781 1782 return (irep); 1783 } 1784 1785 /* 1786 * ire_walk routine to delete or update any IRE_CACHE that might contain 1787 * stale information. 1788 * The flags state which entries to delete or update. 1789 * Garbage collection is done separately using kmem alloc callbacks to 1790 * ip_trash_ire_reclaim. 1791 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 1792 * since other stale information is cleaned up using NUD. 1793 */ 1794 void 1795 ire_expire(ire_t *ire, char *arg) 1796 { 1797 ire_expire_arg_t *ieap = (ire_expire_arg_t *)(uintptr_t)arg; 1798 ill_t *stq_ill; 1799 int flush_flags = ieap->iea_flush_flag; 1800 ip_stack_t *ipst = ieap->iea_ipst; 1801 1802 if ((flush_flags & FLUSH_REDIRECT_TIME) && 1803 (ire->ire_flags & RTF_DYNAMIC)) { 1804 /* Make sure we delete the corresponding IRE_CACHE */ 1805 ip1dbg(("ire_expire: all redirects\n")); 1806 ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst); 1807 ire_delete(ire); 1808 atomic_dec_32(&ipst->ips_ip_redirect_cnt); 1809 return; 1810 } 1811 if (ire->ire_type != IRE_CACHE) 1812 return; 1813 1814 if (flush_flags & FLUSH_ARP_TIME) { 1815 /* 1816 * Remove all IRE_CACHE. 1817 * Verify that create time is more than 1818 * ip_ire_arp_interval milliseconds ago. 1819 */ 1820 if (NCE_EXPIRED(ire->ire_nce, ipst)) { 1821 ire_delete(ire); 1822 return; 1823 } 1824 } 1825 1826 if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 1827 (ire->ire_ipif != NULL)) { 1828 /* Increase pmtu if it is less than the interface mtu */ 1829 mutex_enter(&ire->ire_lock); 1830 /* 1831 * If the ipif is a vni (whose mtu is 0, since it's virtual) 1832 * get the mtu from the sending interfaces' ipif 1833 */ 1834 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 1835 stq_ill = ire->ire_stq->q_ptr; 1836 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 1837 IP_MAXPACKET); 1838 } else { 1839 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 1840 IP_MAXPACKET); 1841 } 1842 ire->ire_frag_flag |= IPH_DF; 1843 mutex_exit(&ire->ire_lock); 1844 } 1845 } 1846 1847 /* 1848 * Return any local address. We use this to target ourselves 1849 * when the src address was specified as 'default'. 1850 * Preference for IRE_LOCAL entries. 1851 */ 1852 ire_t * 1853 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst) 1854 { 1855 ire_t *ire; 1856 irb_t *irb; 1857 ire_t *maybe = NULL; 1858 int i; 1859 1860 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 1861 irb = &ipst->ips_ip_cache_table[i]; 1862 if (irb->irb_ire == NULL) 1863 continue; 1864 rw_enter(&irb->irb_lock, RW_READER); 1865 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1866 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 1867 (ire->ire_zoneid != zoneid && 1868 ire->ire_zoneid != ALL_ZONES)) 1869 continue; 1870 switch (ire->ire_type) { 1871 case IRE_LOOPBACK: 1872 if (maybe == NULL) { 1873 IRE_REFHOLD(ire); 1874 maybe = ire; 1875 } 1876 break; 1877 case IRE_LOCAL: 1878 if (maybe != NULL) { 1879 ire_refrele(maybe); 1880 } 1881 IRE_REFHOLD(ire); 1882 rw_exit(&irb->irb_lock); 1883 return (ire); 1884 } 1885 } 1886 rw_exit(&irb->irb_lock); 1887 } 1888 return (maybe); 1889 } 1890 1891 /* 1892 * If the specified IRE is associated with a particular ILL, return 1893 * that ILL pointer (May be called as writer.). 1894 * 1895 * NOTE : This is not a generic function that can be used always. 1896 * This function always returns the ill of the outgoing packets 1897 * if this ire is used. 1898 */ 1899 ill_t * 1900 ire_to_ill(const ire_t *ire) 1901 { 1902 ill_t *ill = NULL; 1903 1904 /* 1905 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 1906 * the source address from. ire_stq is the one where the 1907 * packets will be sent out on. We return that here. 1908 * 1909 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 1910 * copy and they always exist next to each other with loopback 1911 * copy being the first one. If we are called on the non-loopback 1912 * copy, return the one pointed by ire_stq. If it was called on 1913 * a loopback copy, we still return the one pointed by the next 1914 * ire's ire_stq pointer i.e the one pointed by the non-loopback 1915 * copy. We don't want use ire_ipif as it might represent the 1916 * source address (if we borrow source addresses for 1917 * IRE_BROADCASTS in the future). 1918 * However if an interface is currently coming up, the above 1919 * condition may not hold during that period since the ires 1920 * are added one at a time. Thus one of the pair could have been 1921 * added and the other not yet added. 1922 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill. 1923 * 4) For all others return the ones pointed by ire_ipif->ipif_ill. 1924 * That handles IRE_LOOPBACK. 1925 */ 1926 1927 if (ire->ire_type == IRE_CACHE) { 1928 ill = (ill_t *)ire->ire_stq->q_ptr; 1929 } else if (ire->ire_type == IRE_BROADCAST) { 1930 if (ire->ire_stq != NULL) { 1931 ill = (ill_t *)ire->ire_stq->q_ptr; 1932 } else { 1933 ire_t *ire_next; 1934 1935 ire_next = ire->ire_next; 1936 if (ire_next != NULL && 1937 ire_next->ire_type == IRE_BROADCAST && 1938 ire_next->ire_addr == ire->ire_addr && 1939 ire_next->ire_ipif == ire->ire_ipif) { 1940 ill = (ill_t *)ire_next->ire_stq->q_ptr; 1941 } 1942 } 1943 } else if (ire->ire_rfq != NULL) { 1944 ill = ire->ire_rfq->q_ptr; 1945 } else if (ire->ire_ipif != NULL) { 1946 ill = ire->ire_ipif->ipif_ill; 1947 } 1948 return (ill); 1949 } 1950 1951 /* Arrange to call the specified function for every IRE in the world. */ 1952 void 1953 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 1954 { 1955 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 1956 } 1957 1958 void 1959 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 1960 { 1961 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 1962 } 1963 1964 void 1965 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 1966 { 1967 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 1968 } 1969 1970 /* 1971 * Walk a particular version. version == 0 means both v4 and v6. 1972 */ 1973 static void 1974 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 1975 ip_stack_t *ipst) 1976 { 1977 if (vers != IPV6_VERSION) { 1978 /* 1979 * ip_forwarding_table variable doesn't matter for IPv4 since 1980 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 1981 */ 1982 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 1983 0, NULL, 1984 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 1985 NULL, zoneid, ipst); 1986 } 1987 if (vers != IPV4_VERSION) { 1988 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 1989 ipst->ips_ip6_ftable_hash_size, 1990 ipst->ips_ip_forwarding_table_v6, 1991 ipst->ips_ip6_cache_table_size, 1992 ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst); 1993 } 1994 } 1995 1996 /* 1997 * Arrange to call the specified 1998 * function for every IRE that matches the ill. 1999 */ 2000 void 2001 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2002 ill_t *ill) 2003 { 2004 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); 2005 } 2006 2007 void 2008 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2009 ill_t *ill) 2010 { 2011 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2012 ill); 2013 } 2014 2015 void 2016 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2017 ill_t *ill) 2018 { 2019 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2020 ill); 2021 } 2022 2023 /* 2024 * Walk a particular ill and version. version == 0 means both v4 and v6. 2025 */ 2026 static void 2027 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2028 void *arg, uchar_t vers, ill_t *ill) 2029 { 2030 ip_stack_t *ipst = ill->ill_ipst; 2031 2032 if (vers != IPV6_VERSION) { 2033 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2034 IP_MASK_TABLE_SIZE, 0, 2035 NULL, ipst->ips_ip_cache_table_size, 2036 ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst); 2037 } 2038 if (vers != IPV4_VERSION) { 2039 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2040 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 2041 ipst->ips_ip_forwarding_table_v6, 2042 ipst->ips_ip6_cache_table_size, 2043 ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst); 2044 } 2045 } 2046 2047 boolean_t 2048 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2049 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 2050 { 2051 ill_t *ire_stq_ill = NULL; 2052 ill_t *ire_ipif_ill = NULL; 2053 ill_group_t *ire_ill_group = NULL; 2054 2055 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2056 /* 2057 * MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2058 * pointed by ire_stq and ire_ipif. Only in the case of 2059 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2060 * different ills. But we want to keep this function generic 2061 * enough for future use. So, we always try to match on both. 2062 * The only caller of this function ire_walk_ill_tables, will 2063 * call "func" after we return from this function. We expect 2064 * "func" to do the right filtering of ires in this case. 2065 * 2066 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2067 * pointed by ire_stq and ire_ipif should always be the same. 2068 * So, we just match on only one of them. 2069 */ 2070 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2071 if (ire->ire_stq != NULL) 2072 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2073 if (ire->ire_ipif != NULL) 2074 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2075 if (ire_stq_ill != NULL) 2076 ire_ill_group = ire_stq_ill->ill_group; 2077 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2078 ire_ill_group = ire_ipif_ill->ill_group; 2079 } 2080 2081 if (zoneid != ALL_ZONES) { 2082 /* 2083 * We're walking the IREs for a specific zone. The only relevant 2084 * IREs are: 2085 * - all IREs with a matching ire_zoneid 2086 * - all IRE_OFFSUBNETs as they're shared across all zones 2087 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2088 * with a matching zone 2089 * - IRE_DEFAULTs with a gateway reachable from the zone 2090 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2091 * using the same rule; but the above rules are consistent with 2092 * the behavior of ire_ftable_lookup[_v6]() so that all the 2093 * routes that can be matched during lookup are also matched 2094 * here. 2095 */ 2096 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2097 /* 2098 * Note, IRE_INTERFACE can have the stq as NULL. For 2099 * example, if the default multicast route is tied to 2100 * the loopback address. 2101 */ 2102 if ((ire->ire_type & IRE_INTERFACE) && 2103 (ire->ire_stq != NULL)) { 2104 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2105 if (ire->ire_ipversion == IPV4_VERSION) { 2106 if (!ipif_usesrc_avail(ire_stq_ill, 2107 zoneid)) 2108 /* No usable src addr in zone */ 2109 return (B_FALSE); 2110 } else if (ire_stq_ill->ill_usesrc_ifindex 2111 != 0) { 2112 /* 2113 * For IPv6 use ipif_select_source_v6() 2114 * so the right scope selection is done 2115 */ 2116 ipif_t *src_ipif; 2117 src_ipif = 2118 ipif_select_source_v6(ire_stq_ill, 2119 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2120 IPV6_PREFER_SRC_DEFAULT, 2121 zoneid); 2122 if (src_ipif != NULL) { 2123 ipif_refrele(src_ipif); 2124 } else { 2125 return (B_FALSE); 2126 } 2127 } else { 2128 return (B_FALSE); 2129 } 2130 2131 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2132 return (B_FALSE); 2133 } 2134 } 2135 2136 /* 2137 * Match all default routes from the global zone, irrespective 2138 * of reachability. For a non-global zone only match those 2139 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2140 */ 2141 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2142 int ire_match_flags = 0; 2143 in6_addr_t gw_addr_v6; 2144 ire_t *rire; 2145 2146 ire_match_flags |= MATCH_IRE_TYPE; 2147 if (ire->ire_ipif != NULL) { 2148 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2149 } 2150 if (ire->ire_ipversion == IPV4_VERSION) { 2151 rire = ire_route_lookup(ire->ire_gateway_addr, 2152 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2153 zoneid, NULL, ire_match_flags, ipst); 2154 } else { 2155 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2156 mutex_enter(&ire->ire_lock); 2157 gw_addr_v6 = ire->ire_gateway_addr_v6; 2158 mutex_exit(&ire->ire_lock); 2159 rire = ire_route_lookup_v6(&gw_addr_v6, 2160 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2161 NULL, zoneid, NULL, ire_match_flags, ipst); 2162 } 2163 if (rire == NULL) { 2164 return (B_FALSE); 2165 } 2166 ire_refrele(rire); 2167 } 2168 } 2169 2170 if (((!(match_flags & MATCH_IRE_TYPE)) || 2171 (ire->ire_type & ire_type)) && 2172 ((!(match_flags & MATCH_IRE_ILL)) || 2173 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2174 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2175 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2176 (ire_ill_group != NULL && 2177 ire_ill_group == ill->ill_group))) { 2178 return (B_TRUE); 2179 } 2180 return (B_FALSE); 2181 } 2182 2183 int 2184 rtfunc(struct radix_node *rn, void *arg) 2185 { 2186 struct rtfuncarg *rtf = arg; 2187 struct rt_entry *rt; 2188 irb_t *irb; 2189 ire_t *ire; 2190 boolean_t ret; 2191 2192 rt = (struct rt_entry *)rn; 2193 ASSERT(rt != NULL); 2194 irb = &rt->rt_irb; 2195 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2196 if ((rtf->rt_match_flags != 0) || 2197 (rtf->rt_zoneid != ALL_ZONES)) { 2198 ret = ire_walk_ill_match(rtf->rt_match_flags, 2199 rtf->rt_ire_type, ire, 2200 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 2201 } else 2202 ret = B_TRUE; 2203 if (ret) 2204 (*rtf->rt_func)(ire, rtf->rt_arg); 2205 } 2206 return (0); 2207 } 2208 2209 /* 2210 * Walk the ftable and the ctable entries that match the ill. 2211 */ 2212 void 2213 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2214 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2215 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid, 2216 ip_stack_t *ipst) 2217 { 2218 irb_t *irb_ptr; 2219 irb_t *irb; 2220 ire_t *ire; 2221 int i, j; 2222 boolean_t ret; 2223 struct rtfuncarg rtfarg; 2224 2225 ASSERT((!(match_flags & (MATCH_IRE_ILL | 2226 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2227 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2228 /* 2229 * Optimize by not looking at the forwarding table if there 2230 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2231 * specified in ire_type. 2232 */ 2233 if (!(match_flags & MATCH_IRE_TYPE) || 2234 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2235 /* knobs such that routine is called only for v6 case */ 2236 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 2237 for (i = (ftbl_sz - 1); i >= 0; i--) { 2238 if ((irb_ptr = ipftbl[i]) == NULL) 2239 continue; 2240 for (j = 0; j < htbl_sz; j++) { 2241 irb = &irb_ptr[j]; 2242 if (irb->irb_ire == NULL) 2243 continue; 2244 2245 IRB_REFHOLD(irb); 2246 for (ire = irb->irb_ire; ire != NULL; 2247 ire = ire->ire_next) { 2248 if (match_flags == 0 && 2249 zoneid == ALL_ZONES) { 2250 ret = B_TRUE; 2251 } else { 2252 ret = 2253 ire_walk_ill_match( 2254 match_flags, 2255 ire_type, ire, ill, 2256 zoneid, ipst); 2257 } 2258 if (ret) 2259 (*func)(ire, arg); 2260 } 2261 IRB_REFRELE(irb); 2262 } 2263 } 2264 } else { 2265 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2266 rtfarg.rt_func = func; 2267 rtfarg.rt_arg = arg; 2268 if (match_flags != 0) { 2269 rtfarg.rt_match_flags = match_flags; 2270 } 2271 rtfarg.rt_ire_type = ire_type; 2272 rtfarg.rt_ill = ill; 2273 rtfarg.rt_zoneid = zoneid; 2274 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 2275 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 2276 ipst->ips_ip_ftable, 2277 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 2278 } 2279 } 2280 2281 /* 2282 * Optimize by not looking at the cache table if there 2283 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2284 * specified in ire_type. 2285 */ 2286 if (!(match_flags & MATCH_IRE_TYPE) || 2287 ((ire_type & IRE_CACHETABLE) != 0)) { 2288 for (i = 0; i < ctbl_sz; i++) { 2289 irb = &ipctbl[i]; 2290 if (irb->irb_ire == NULL) 2291 continue; 2292 IRB_REFHOLD(irb); 2293 for (ire = irb->irb_ire; ire != NULL; 2294 ire = ire->ire_next) { 2295 if (match_flags == 0 && zoneid == ALL_ZONES) { 2296 ret = B_TRUE; 2297 } else { 2298 ret = ire_walk_ill_match( 2299 match_flags, ire_type, 2300 ire, ill, zoneid, ipst); 2301 } 2302 if (ret) 2303 (*func)(ire, arg); 2304 } 2305 IRB_REFRELE(irb); 2306 } 2307 } 2308 } 2309 2310 /* 2311 * This function takes a mask and returns 2312 * number of bits set in the mask. If no 2313 * bit is set it returns 0. 2314 * Assumes a contiguous mask. 2315 */ 2316 int 2317 ip_mask_to_plen(ipaddr_t mask) 2318 { 2319 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2320 } 2321 2322 /* 2323 * Convert length for a mask to the mask. 2324 */ 2325 ipaddr_t 2326 ip_plen_to_mask(uint_t masklen) 2327 { 2328 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2329 } 2330 2331 void 2332 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2333 { 2334 ill_t *ill_list[NUM_ILLS]; 2335 ip_stack_t *ipst = ire->ire_ipst; 2336 2337 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2338 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2339 ill_unlock_ills(ill_list, NUM_ILLS); 2340 rw_exit(&irb_ptr->irb_lock); 2341 rw_exit(&ipst->ips_ill_g_usesrc_lock); 2342 } 2343 2344 /* 2345 * ire_add_v[46] atomically make sure that the ipif or ill associated 2346 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2347 * before adding the ire to the table. This ensures that we don't create 2348 * new IRE_CACHEs with stale values for parameters that are passed to 2349 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2350 * to the ipif_mtu, and not the value. The actual value is derived from the 2351 * parent ire or ipif under the bucket lock. 2352 */ 2353 int 2354 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2355 ipsq_func_t func) 2356 { 2357 ill_t *stq_ill; 2358 ill_t *ipif_ill; 2359 ill_t *ill_list[NUM_ILLS]; 2360 int cnt = NUM_ILLS; 2361 int error = 0; 2362 ill_t *ill = NULL; 2363 ip_stack_t *ipst = ire->ire_ipst; 2364 2365 ill_list[0] = stq_ill = ire->ire_stq != 2366 NULL ? ire->ire_stq->q_ptr : NULL; 2367 ill_list[1] = ipif_ill = ire->ire_ipif != 2368 NULL ? ire->ire_ipif->ipif_ill : NULL; 2369 2370 ASSERT((q != NULL && mp != NULL && func != NULL) || 2371 (q == NULL && mp == NULL && func == NULL)); 2372 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 2373 GRAB_CONN_LOCK(q); 2374 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 2375 ill_lock_ills(ill_list, cnt); 2376 2377 /* 2378 * While the IRE is in the process of being added, a user may have 2379 * invoked the ifconfig usesrc option on the stq_ill to make it a 2380 * usesrc client ILL. Check for this possibility here, if it is true 2381 * then we fail adding the IRE_CACHE. Another check is to make sure 2382 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 2383 * group. The ill_g_usesrc_lock is released in ire_atomic_end 2384 */ 2385 if ((ire->ire_type & IRE_CACHE) && 2386 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 2387 if (stq_ill->ill_usesrc_ifindex != 0) { 2388 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 2389 if ((ipif_ill->ill_phyint->phyint_ifindex != 2390 stq_ill->ill_usesrc_ifindex) || 2391 (ipif_ill->ill_usesrc_grp_next == NULL) || 2392 (ipif_ill->ill_usesrc_ifindex != 0)) { 2393 error = EINVAL; 2394 goto done; 2395 } 2396 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 2397 error = EINVAL; 2398 goto done; 2399 } 2400 } 2401 2402 /* 2403 * IPMP flag settings happen without taking the exclusive route 2404 * in ip_sioctl_flags. So we need to make an atomic check here 2405 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 2406 * FAILBACK=no case. 2407 */ 2408 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 2409 if (stq_ill->ill_state_flags & ILL_CHANGING) { 2410 ill = stq_ill; 2411 error = EAGAIN; 2412 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2413 (ill_is_probeonly(stq_ill) && 2414 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2415 error = EINVAL; 2416 } 2417 goto done; 2418 } 2419 2420 /* 2421 * We don't check for OFFLINE/FAILED in this case because 2422 * the source address selection logic (ipif_select_source) 2423 * may still select a source address from such an ill. The 2424 * assumption is that these addresses will be moved by in.mpathd 2425 * soon. (i.e. this is a race). However link local addresses 2426 * will not move and hence ipif_select_source_v6 tries to avoid 2427 * FAILED ills. Please see ipif_select_source_v6 for more info 2428 */ 2429 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 2430 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 2431 ill = ipif_ill; 2432 error = EAGAIN; 2433 goto done; 2434 } 2435 2436 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 2437 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 2438 ill = ire->ire_ipif->ipif_ill; 2439 ASSERT(ill != NULL); 2440 error = EAGAIN; 2441 goto done; 2442 } 2443 2444 done: 2445 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 2446 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 2447 mutex_enter(&ipsq->ipsq_lock); 2448 ire_atomic_end(irb_ptr, ire); 2449 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 2450 mutex_exit(&ipsq->ipsq_lock); 2451 error = EINPROGRESS; 2452 } else if (error != 0) { 2453 ire_atomic_end(irb_ptr, ire); 2454 } 2455 2456 RELEASE_CONN_LOCK(q); 2457 return (error); 2458 } 2459 2460 /* 2461 * Add a fully initialized IRE to an appropriate table based on 2462 * ire_type. 2463 * 2464 * allow_unresolved == B_FALSE indicates a legacy code-path call 2465 * that has prohibited the addition of incomplete ire's. If this 2466 * parameter is set, and we find an nce that is in a state other 2467 * than ND_REACHABLE, we fail the add. Note that nce_state could be 2468 * something other than ND_REACHABLE if the nce had just expired and 2469 * the ire_create preceding the ire_add added a new ND_INITIAL nce. 2470 */ 2471 int 2472 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 2473 boolean_t allow_unresolved) 2474 { 2475 ire_t *ire1; 2476 ill_t *stq_ill = NULL; 2477 ill_t *ill; 2478 ipif_t *ipif = NULL; 2479 ill_walk_context_t ctx; 2480 ire_t *ire = *irep; 2481 int error; 2482 boolean_t ire_is_mblk = B_FALSE; 2483 tsol_gcgrp_t *gcgrp = NULL; 2484 tsol_gcgrp_addr_t ga; 2485 ip_stack_t *ipst = ire->ire_ipst; 2486 2487 /* get ready for the day when original ire is not created as mblk */ 2488 if (ire->ire_mp != NULL) { 2489 ire_is_mblk = B_TRUE; 2490 /* Copy the ire to a kmem_alloc'ed area */ 2491 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 2492 if (ire1 == NULL) { 2493 ip1dbg(("ire_add: alloc failed\n")); 2494 ire_delete(ire); 2495 *irep = NULL; 2496 return (ENOMEM); 2497 } 2498 ire->ire_marks &= ~IRE_MARK_UNCACHED; 2499 *ire1 = *ire; 2500 ire1->ire_mp = NULL; 2501 ire1->ire_stq_ifindex = 0; 2502 freeb(ire->ire_mp); 2503 ire = ire1; 2504 } 2505 if (ire->ire_stq != NULL) 2506 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2507 2508 if (ire->ire_type == IRE_CACHE) { 2509 /* 2510 * If this interface is FAILED, or INACTIVE or has hit 2511 * the FAILBACK=no case, we create IRE_CACHES marked 2512 * HIDDEN for some special cases e.g. bind to 2513 * IPIF_NOFAILOVER address etc. So, if this interface 2514 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 2515 * not creating hidden ires, we should not allow that. 2516 * This happens because the state of the interface 2517 * changed while we were waiting in ARP. If this is the 2518 * daemon sending probes, the next probe will create 2519 * HIDDEN ires and we will create an ire then. This 2520 * cannot happen with NDP currently because IRE is 2521 * never queued in NDP. But it can happen in the 2522 * future when we have external resolvers with IPv6. 2523 * If the interface gets marked with OFFLINE while we 2524 * are waiting in ARP, don't add the ire. 2525 */ 2526 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2527 (ill_is_probeonly(stq_ill) && 2528 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2529 /* 2530 * We don't know whether it is a valid ipif or not. 2531 * unless we do the check below. So, set it to NULL. 2532 */ 2533 ire->ire_ipif = NULL; 2534 ire_delete(ire); 2535 *irep = NULL; 2536 return (EINVAL); 2537 } 2538 } 2539 2540 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 2541 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 2542 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2543 ill = ILL_START_WALK_ALL(&ctx, ipst); 2544 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2545 mutex_enter(&ill->ill_lock); 2546 if (ill->ill_state_flags & ILL_CONDEMNED) { 2547 mutex_exit(&ill->ill_lock); 2548 continue; 2549 } 2550 /* 2551 * We need to make sure that the ipif is a valid one 2552 * before adding the IRE_CACHE. This happens only 2553 * with IRE_CACHE when there is an external resolver. 2554 * 2555 * We can unplumb a logical interface while the 2556 * packet is waiting in ARP with the IRE. Then, 2557 * later on when we feed the IRE back, the ipif 2558 * has to be re-checked. This can't happen with 2559 * NDP currently, as we never queue the IRE with 2560 * the packet. We always try to recreate the IRE 2561 * when the resolution is completed. But, we do 2562 * it for IPv6 also here so that in future if 2563 * we have external resolvers, it will work without 2564 * any change. 2565 */ 2566 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 2567 if (ipif != NULL) { 2568 ipif_refhold_locked(ipif); 2569 mutex_exit(&ill->ill_lock); 2570 break; 2571 } 2572 mutex_exit(&ill->ill_lock); 2573 } 2574 rw_exit(&ipst->ips_ill_g_lock); 2575 if (ipif == NULL || 2576 (ipif->ipif_isv6 && 2577 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 2578 &ipif->ipif_v6src_addr)) || 2579 (!ipif->ipif_isv6 && 2580 ire->ire_src_addr != ipif->ipif_src_addr) || 2581 ire->ire_zoneid != ipif->ipif_zoneid) { 2582 2583 if (ipif != NULL) 2584 ipif_refrele(ipif); 2585 ire->ire_ipif = NULL; 2586 ire_delete(ire); 2587 *irep = NULL; 2588 return (EINVAL); 2589 } 2590 2591 2592 ASSERT(ill != NULL); 2593 /* 2594 * If this group was dismantled while this packets was 2595 * queued in ARP, don't add it here. 2596 */ 2597 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 2598 /* We don't want ire_inactive bump stats for this */ 2599 ipif_refrele(ipif); 2600 ire->ire_ipif = NULL; 2601 ire_delete(ire); 2602 *irep = NULL; 2603 return (EINVAL); 2604 } 2605 2606 /* 2607 * Since we didn't attach label security attributes to the 2608 * ire for the resolver case, we need to add it now. (only 2609 * for v4 resolver and v6 xresolv case). 2610 */ 2611 if (is_system_labeled() && ire_is_mblk) { 2612 if (ire->ire_ipversion == IPV4_VERSION) { 2613 ga.ga_af = AF_INET; 2614 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 2615 INADDR_ANY ? ire->ire_gateway_addr : 2616 ire->ire_addr, &ga.ga_addr); 2617 } else { 2618 ga.ga_af = AF_INET6; 2619 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 2620 &ire->ire_gateway_addr_v6) ? 2621 ire->ire_addr_v6 : 2622 ire->ire_gateway_addr_v6; 2623 } 2624 gcgrp = gcgrp_lookup(&ga, B_FALSE); 2625 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 2626 NULL, gcgrp); 2627 if (error != 0) { 2628 if (gcgrp != NULL) { 2629 GCGRP_REFRELE(gcgrp); 2630 gcgrp = NULL; 2631 } 2632 ipif_refrele(ipif); 2633 ire->ire_ipif = NULL; 2634 ire_delete(ire); 2635 *irep = NULL; 2636 return (error); 2637 } 2638 } 2639 } 2640 2641 /* 2642 * In case ire was changed 2643 */ 2644 *irep = ire; 2645 if (ire->ire_ipversion == IPV6_VERSION) 2646 error = ire_add_v6(irep, q, mp, func); 2647 else 2648 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 2649 if (ipif != NULL) 2650 ipif_refrele(ipif); 2651 return (error); 2652 } 2653 2654 /* 2655 * Add an initialized IRE to an appropriate table based on ire_type. 2656 * 2657 * The forward table contains IRE_PREFIX/IRE_HOST and 2658 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 2659 * 2660 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 2661 * and IRE_CACHE. 2662 * 2663 * NOTE : This function is called as writer though not required 2664 * by this function. 2665 */ 2666 static int 2667 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 2668 boolean_t allow_unresolved) 2669 { 2670 ire_t *ire1; 2671 irb_t *irb_ptr; 2672 ire_t **irep; 2673 int flags; 2674 ire_t *pire = NULL; 2675 ill_t *stq_ill; 2676 ire_t *ire = *ire_p; 2677 int error; 2678 boolean_t need_refrele = B_FALSE; 2679 nce_t *nce; 2680 ip_stack_t *ipst = ire->ire_ipst; 2681 2682 if (ire->ire_ipif != NULL) 2683 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 2684 if (ire->ire_stq != NULL) 2685 ASSERT(!MUTEX_HELD( 2686 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 2687 ASSERT(ire->ire_ipversion == IPV4_VERSION); 2688 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 2689 2690 /* Find the appropriate list head. */ 2691 switch (ire->ire_type) { 2692 case IRE_HOST: 2693 ire->ire_mask = IP_HOST_MASK; 2694 ire->ire_masklen = IP_ABITS; 2695 if ((ire->ire_flags & RTF_SETSRC) == 0) 2696 ire->ire_src_addr = 0; 2697 break; 2698 case IRE_CACHE: 2699 case IRE_BROADCAST: 2700 case IRE_LOCAL: 2701 case IRE_LOOPBACK: 2702 ire->ire_mask = IP_HOST_MASK; 2703 ire->ire_masklen = IP_ABITS; 2704 break; 2705 case IRE_PREFIX: 2706 if ((ire->ire_flags & RTF_SETSRC) == 0) 2707 ire->ire_src_addr = 0; 2708 break; 2709 case IRE_DEFAULT: 2710 if ((ire->ire_flags & RTF_SETSRC) == 0) 2711 ire->ire_src_addr = 0; 2712 break; 2713 case IRE_IF_RESOLVER: 2714 case IRE_IF_NORESOLVER: 2715 break; 2716 default: 2717 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 2718 (void *)ire, ire->ire_type)); 2719 ire_delete(ire); 2720 *ire_p = NULL; 2721 return (EINVAL); 2722 } 2723 2724 /* Make sure the address is properly masked. */ 2725 ire->ire_addr &= ire->ire_mask; 2726 2727 /* 2728 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 2729 * of the interface route while adding an IRE_CACHE for an on-link 2730 * destination in the IRE_IF_RESOLVER case, since the ire has to 2731 * go to ARP and return. We can't do a REFHOLD on the 2732 * associated interface ire for fear of ARP freeing the message. 2733 * Here we look up the interface ire in the forwarding table and 2734 * make sure that the interface route has not been deleted. 2735 */ 2736 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 2737 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 2738 2739 ASSERT(ire->ire_max_fragp == NULL); 2740 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 2741 /* 2742 * The ihandle that we used in ip_newroute_multi 2743 * comes from the interface route corresponding 2744 * to ire_ipif. Lookup here to see if it exists 2745 * still. 2746 * If the ire has a source address assigned using 2747 * RTF_SETSRC, ire_ipif is the logical interface holding 2748 * this source address, so we can't use it to check for 2749 * the existence of the interface route. Instead we rely 2750 * on the brute force ihandle search in 2751 * ire_ihandle_lookup_onlink() below. 2752 */ 2753 pire = ipif_to_ire(ire->ire_ipif); 2754 if (pire == NULL) { 2755 ire_delete(ire); 2756 *ire_p = NULL; 2757 return (EINVAL); 2758 } else if (pire->ire_ihandle != ire->ire_ihandle) { 2759 ire_refrele(pire); 2760 ire_delete(ire); 2761 *ire_p = NULL; 2762 return (EINVAL); 2763 } 2764 } else { 2765 pire = ire_ihandle_lookup_onlink(ire); 2766 if (pire == NULL) { 2767 ire_delete(ire); 2768 *ire_p = NULL; 2769 return (EINVAL); 2770 } 2771 } 2772 /* Prevent pire from getting deleted */ 2773 IRB_REFHOLD(pire->ire_bucket); 2774 /* Has it been removed already ? */ 2775 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 2776 IRB_REFRELE(pire->ire_bucket); 2777 ire_refrele(pire); 2778 ire_delete(ire); 2779 *ire_p = NULL; 2780 return (EINVAL); 2781 } 2782 } else { 2783 ASSERT(ire->ire_max_fragp != NULL); 2784 } 2785 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 2786 2787 if (ire->ire_ipif != NULL) { 2788 /* 2789 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 2790 * for historic reasons and to maintain symmetry with 2791 * IPv6 code path. Historically this was used by 2792 * multicast code to create multiple IRE_CACHES on 2793 * a single ill with different ipifs. This was used 2794 * so that multicast packets leaving the node had the 2795 * right source address. This is no longer needed as 2796 * ip_wput initializes the address correctly. 2797 */ 2798 flags |= MATCH_IRE_IPIF; 2799 /* 2800 * If we are creating hidden ires, make sure we search on 2801 * this ill (MATCH_IRE_ILL) and a hidden ire, 2802 * while we are searching for duplicates below. Otherwise we 2803 * could potentially find an IRE on some other interface 2804 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 2805 * shouldn't do this as this will lead to an infinite loop 2806 * (if we get to ip_wput again) eventually we need an hidden 2807 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 2808 * done below. 2809 */ 2810 if (ire->ire_type == IRE_CACHE && 2811 (ire->ire_marks & IRE_MARK_HIDDEN)) 2812 flags |= (MATCH_IRE_MARK_HIDDEN); 2813 } 2814 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 2815 irb_ptr = ire_get_bucket(ire); 2816 need_refrele = B_TRUE; 2817 if (irb_ptr == NULL) { 2818 /* 2819 * This assumes that the ire has not added 2820 * a reference to the ipif. 2821 */ 2822 ire->ire_ipif = NULL; 2823 ire_delete(ire); 2824 if (pire != NULL) { 2825 IRB_REFRELE(pire->ire_bucket); 2826 ire_refrele(pire); 2827 } 2828 *ire_p = NULL; 2829 return (EINVAL); 2830 } 2831 } else { 2832 irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH( 2833 ire->ire_addr, ipst->ips_ip_cache_table_size)]); 2834 } 2835 2836 /* 2837 * Start the atomic add of the ire. Grab the ill locks, 2838 * ill_g_usesrc_lock and the bucket lock. Check for condemned 2839 * 2840 * If ipif or ill is changing ire_atomic_start() may queue the 2841 * request and return EINPROGRESS. 2842 * To avoid lock order problems, get the ndp4->ndp_g_lock. 2843 */ 2844 mutex_enter(&ipst->ips_ndp4->ndp_g_lock); 2845 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 2846 if (error != 0) { 2847 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2848 /* 2849 * We don't know whether it is a valid ipif or not. 2850 * So, set it to NULL. This assumes that the ire has not added 2851 * a reference to the ipif. 2852 */ 2853 ire->ire_ipif = NULL; 2854 ire_delete(ire); 2855 if (pire != NULL) { 2856 IRB_REFRELE(pire->ire_bucket); 2857 ire_refrele(pire); 2858 } 2859 *ire_p = NULL; 2860 if (need_refrele) 2861 IRB_REFRELE(irb_ptr); 2862 return (error); 2863 } 2864 /* 2865 * To avoid creating ires having stale values for the ire_max_frag 2866 * we get the latest value atomically here. For more details 2867 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 2868 * in ip_rput_dlpi_writer 2869 */ 2870 if (ire->ire_max_fragp == NULL) { 2871 if (CLASSD(ire->ire_addr)) 2872 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 2873 else 2874 ire->ire_max_frag = pire->ire_max_frag; 2875 } else { 2876 uint_t max_frag; 2877 2878 max_frag = *ire->ire_max_fragp; 2879 ire->ire_max_fragp = NULL; 2880 ire->ire_max_frag = max_frag; 2881 } 2882 /* 2883 * Atomically check for duplicate and insert in the table. 2884 */ 2885 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 2886 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 2887 continue; 2888 if (ire->ire_ipif != NULL) { 2889 /* 2890 * We do MATCH_IRE_ILL implicitly here for IREs 2891 * with a non-null ire_ipif, including IRE_CACHEs. 2892 * As ire_ipif and ire_stq could point to two 2893 * different ills, we can't pass just ire_ipif to 2894 * ire_match_args and get a match on both ills. 2895 * This is just needed for duplicate checks here and 2896 * so we don't add an extra argument to 2897 * ire_match_args for this. Do it locally. 2898 * 2899 * NOTE : Currently there is no part of the code 2900 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 2901 * match for IRE_CACHEs. Thus we don't want to 2902 * extend the arguments to ire_match_args. 2903 */ 2904 if (ire1->ire_stq != ire->ire_stq) 2905 continue; 2906 /* 2907 * Multiroute IRE_CACHEs for a given destination can 2908 * have the same ire_ipif, typically if their source 2909 * address is forced using RTF_SETSRC, and the same 2910 * send-to queue. We differentiate them using the parent 2911 * handle. 2912 */ 2913 if (ire->ire_type == IRE_CACHE && 2914 (ire1->ire_flags & RTF_MULTIRT) && 2915 (ire->ire_flags & RTF_MULTIRT) && 2916 (ire1->ire_phandle != ire->ire_phandle)) 2917 continue; 2918 } 2919 if (ire1->ire_zoneid != ire->ire_zoneid) 2920 continue; 2921 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 2922 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 2923 ire->ire_zoneid, 0, NULL, flags)) { 2924 /* 2925 * Return the old ire after doing a REFHOLD. 2926 * As most of the callers continue to use the IRE 2927 * after adding, we return a held ire. This will 2928 * avoid a lookup in the caller again. If the callers 2929 * don't want to use it, they need to do a REFRELE. 2930 */ 2931 ip1dbg(("found dup ire existing %p new %p", 2932 (void *)ire1, (void *)ire)); 2933 IRE_REFHOLD(ire1); 2934 ire_atomic_end(irb_ptr, ire); 2935 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2936 ire_delete(ire); 2937 if (pire != NULL) { 2938 /* 2939 * Assert that it is not removed from the 2940 * list yet. 2941 */ 2942 ASSERT(pire->ire_ptpn != NULL); 2943 IRB_REFRELE(pire->ire_bucket); 2944 ire_refrele(pire); 2945 } 2946 *ire_p = ire1; 2947 if (need_refrele) 2948 IRB_REFRELE(irb_ptr); 2949 return (0); 2950 } 2951 } 2952 if (ire->ire_type & IRE_CACHE) { 2953 ASSERT(ire->ire_stq != NULL); 2954 nce = ndp_lookup_v4(ire_to_ill(ire), 2955 ((ire->ire_gateway_addr != INADDR_ANY) ? 2956 &ire->ire_gateway_addr : &ire->ire_addr), 2957 B_TRUE); 2958 if (nce != NULL) 2959 mutex_enter(&nce->nce_lock); 2960 /* 2961 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 2962 * and the caller has prohibited the addition of incomplete 2963 * ire's, we fail the add. Note that nce_state could be 2964 * something other than ND_REACHABLE if the nce had 2965 * just expired and the ire_create preceding the 2966 * ire_add added a new ND_INITIAL nce. 2967 */ 2968 if ((nce == NULL) || 2969 (nce->nce_flags & NCE_F_CONDEMNED) || 2970 (!allow_unresolved && 2971 (nce->nce_state != ND_REACHABLE))) { 2972 if (nce != NULL) { 2973 DTRACE_PROBE1(ire__bad__nce, nce_t *, nce); 2974 mutex_exit(&nce->nce_lock); 2975 } 2976 ire_atomic_end(irb_ptr, ire); 2977 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2978 if (nce != NULL) 2979 NCE_REFRELE(nce); 2980 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 2981 ire_delete(ire); 2982 if (pire != NULL) { 2983 IRB_REFRELE(pire->ire_bucket); 2984 ire_refrele(pire); 2985 } 2986 *ire_p = NULL; 2987 if (need_refrele) 2988 IRB_REFRELE(irb_ptr); 2989 return (EINVAL); 2990 } else { 2991 ire->ire_nce = nce; 2992 mutex_exit(&nce->nce_lock); 2993 /* 2994 * We are associating this nce to the ire, so 2995 * change the nce ref taken in ndp_lookup_v4() from 2996 * NCE_REFHOLD to NCE_REFHOLD_NOTR 2997 */ 2998 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 2999 } 3000 } 3001 /* 3002 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 3003 * grouping identical addresses together on the hash chain. We also 3004 * don't want to send multiple copies out if there are two ills part 3005 * of the same group. Thus we group the ires with same addr and same 3006 * ill group together so that ip_wput_ire can easily skip all the 3007 * ires with same addr and same group after sending the first copy. 3008 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3009 * interested in such groupings only for broadcasts. 3010 * 3011 * NOTE : If the interfaces are brought up first and then grouped, 3012 * illgrp_insert will handle it. We come here when the interfaces 3013 * are already in group and we are bringing them UP. 3014 * 3015 * Find the first entry that matches ire_addr. *irep will be null 3016 * if no match. 3017 * 3018 * Note: the loopback and non-loopback broadcast entries for an 3019 * interface MUST be added before any MULTIRT entries. 3020 */ 3021 irep = (ire_t **)irb_ptr; 3022 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3023 irep = &ire1->ire_next; 3024 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3025 /* 3026 * We found some ire (i.e *irep) with a matching addr. We 3027 * want to group ires with same addr and same ill group 3028 * together. 3029 * 3030 * First get to the entry that matches our address and 3031 * ill group i.e stop as soon as we find the first ire 3032 * matching the ill group and address. If there is only 3033 * an address match, we should walk and look for some 3034 * group match. These are some of the possible scenarios : 3035 * 3036 * 1) There are no groups at all i.e all ire's ill_group 3037 * are NULL. In that case we will essentially group 3038 * all the ires with the same addr together. Same as 3039 * the "else" block of this "if". 3040 * 3041 * 2) There are some groups and this ire's ill_group is 3042 * NULL. In this case, we will first find the group 3043 * that matches the address and a NULL group. Then 3044 * we will insert the ire at the end of that group. 3045 * 3046 * 3) There are some groups and this ires's ill_group is 3047 * non-NULL. In this case we will first find the group 3048 * that matches the address and the ill_group. Then 3049 * we will insert the ire at the end of that group. 3050 */ 3051 for (;;) { 3052 ire1 = *irep; 3053 if ((ire1->ire_next == NULL) || 3054 (ire1->ire_next->ire_addr != ire->ire_addr) || 3055 (ire1->ire_type != IRE_BROADCAST) || 3056 (ire1->ire_flags & RTF_MULTIRT) || 3057 (ire1->ire_ipif->ipif_ill->ill_group == 3058 ire->ire_ipif->ipif_ill->ill_group)) 3059 break; 3060 irep = &ire1->ire_next; 3061 } 3062 ASSERT(*irep != NULL); 3063 /* 3064 * The ire will be added before *irep, so 3065 * if irep is a MULTIRT ire, just break to 3066 * ire insertion code. 3067 */ 3068 if (((*irep)->ire_flags & RTF_MULTIRT) != 0) 3069 goto insert_ire; 3070 3071 irep = &((*irep)->ire_next); 3072 3073 /* 3074 * Either we have hit the end of the list or the address 3075 * did not match or the group *matched*. If we found 3076 * a match on the group, skip to the end of the group. 3077 */ 3078 while (*irep != NULL) { 3079 ire1 = *irep; 3080 if ((ire1->ire_addr != ire->ire_addr) || 3081 (ire1->ire_type != IRE_BROADCAST) || 3082 (ire1->ire_ipif->ipif_ill->ill_group != 3083 ire->ire_ipif->ipif_ill->ill_group)) 3084 break; 3085 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3086 ire1->ire_ipif == ire->ire_ipif) { 3087 irep = &ire1->ire_next; 3088 break; 3089 } 3090 irep = &ire1->ire_next; 3091 } 3092 } else if (*irep != NULL) { 3093 /* 3094 * Find the last ire which matches ire_addr. 3095 * Needed to do tail insertion among entries with the same 3096 * ire_addr. 3097 */ 3098 while (ire->ire_addr == ire1->ire_addr) { 3099 irep = &ire1->ire_next; 3100 ire1 = *irep; 3101 if (ire1 == NULL) 3102 break; 3103 } 3104 } 3105 3106 insert_ire: 3107 /* Insert at *irep */ 3108 ire1 = *irep; 3109 if (ire1 != NULL) 3110 ire1->ire_ptpn = &ire->ire_next; 3111 ire->ire_next = ire1; 3112 /* Link the new one in. */ 3113 ire->ire_ptpn = irep; 3114 3115 /* 3116 * ire_walk routines de-reference ire_next without holding 3117 * a lock. Before we point to the new ire, we want to make 3118 * sure the store that sets the ire_next of the new ire 3119 * reaches global visibility, so that ire_walk routines 3120 * don't see a truncated list of ires i.e if the ire_next 3121 * of the new ire gets set after we do "*irep = ire" due 3122 * to re-ordering, the ire_walk thread will see a NULL 3123 * once it accesses the ire_next of the new ire. 3124 * membar_producer() makes sure that the following store 3125 * happens *after* all of the above stores. 3126 */ 3127 membar_producer(); 3128 *irep = ire; 3129 ire->ire_bucket = irb_ptr; 3130 /* 3131 * We return a bumped up IRE above. Keep it symmetrical 3132 * so that the callers will always have to release. This 3133 * helps the callers of this function because they continue 3134 * to use the IRE after adding and hence they don't have to 3135 * lookup again after we return the IRE. 3136 * 3137 * NOTE : We don't have to use atomics as this is appearing 3138 * in the list for the first time and no one else can bump 3139 * up the reference count on this yet. 3140 */ 3141 IRE_REFHOLD_LOCKED(ire); 3142 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 3143 3144 irb_ptr->irb_ire_cnt++; 3145 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3146 irb_ptr->irb_nire++; 3147 3148 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3149 irb_ptr->irb_tmp_ire_cnt++; 3150 3151 if (ire->ire_ipif != NULL) { 3152 ire->ire_ipif->ipif_ire_cnt++; 3153 if (ire->ire_stq != NULL) { 3154 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3155 stq_ill->ill_ire_cnt++; 3156 } 3157 } else { 3158 ASSERT(ire->ire_stq == NULL); 3159 } 3160 3161 ire_atomic_end(irb_ptr, ire); 3162 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3163 3164 if (pire != NULL) { 3165 /* Assert that it is not removed from the list yet */ 3166 ASSERT(pire->ire_ptpn != NULL); 3167 IRB_REFRELE(pire->ire_bucket); 3168 ire_refrele(pire); 3169 } 3170 3171 if (ire->ire_type != IRE_CACHE) { 3172 /* 3173 * For ire's with host mask see if there is an entry 3174 * in the cache. If there is one flush the whole cache as 3175 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3176 * If no entry is found than there is no need to flush the 3177 * cache. 3178 */ 3179 if (ire->ire_mask == IP_HOST_MASK) { 3180 ire_t *lire; 3181 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3182 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3183 if (lire != NULL) { 3184 ire_refrele(lire); 3185 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3186 } 3187 } else { 3188 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3189 } 3190 } 3191 /* 3192 * We had to delay the fast path probe until the ire is inserted 3193 * in the list. Otherwise the fast path ack won't find the ire in 3194 * the table. 3195 */ 3196 if (ire->ire_type == IRE_CACHE || 3197 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) { 3198 ASSERT(ire->ire_nce != NULL); 3199 if (ire->ire_nce->nce_state == ND_REACHABLE) 3200 nce_fastpath(ire->ire_nce); 3201 } 3202 if (ire->ire_ipif != NULL) 3203 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3204 *ire_p = ire; 3205 if (need_refrele) { 3206 IRB_REFRELE(irb_ptr); 3207 } 3208 return (0); 3209 } 3210 3211 /* 3212 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3213 * do the final cleanup for this ire. 3214 */ 3215 void 3216 ire_cleanup(ire_t *ire) 3217 { 3218 ire_t *ire_next; 3219 ip_stack_t *ipst = ire->ire_ipst; 3220 3221 ASSERT(ire != NULL); 3222 3223 while (ire != NULL) { 3224 ire_next = ire->ire_next; 3225 if (ire->ire_ipversion == IPV4_VERSION) { 3226 ire_delete_v4(ire); 3227 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 3228 ire_stats_deleted); 3229 } else { 3230 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3231 ire_delete_v6(ire); 3232 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 3233 ire_stats_deleted); 3234 } 3235 /* 3236 * Now it's really out of the list. Before doing the 3237 * REFRELE, set ire_next to NULL as ire_inactive asserts 3238 * so. 3239 */ 3240 ire->ire_next = NULL; 3241 IRE_REFRELE_NOTR(ire); 3242 ire = ire_next; 3243 } 3244 } 3245 3246 /* 3247 * IRB_REFRELE is the only caller of the function. It calls to unlink 3248 * all the CONDEMNED ires from this bucket. 3249 */ 3250 ire_t * 3251 ire_unlink(irb_t *irb) 3252 { 3253 ire_t *ire; 3254 ire_t *ire1; 3255 ire_t **ptpn; 3256 ire_t *ire_list = NULL; 3257 3258 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3259 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3260 (irb->irb_refcnt == 0)); 3261 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3262 ASSERT(irb->irb_ire != NULL); 3263 3264 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3265 ip_stack_t *ipst = ire->ire_ipst; 3266 3267 ire1 = ire->ire_next; 3268 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3269 ptpn = ire->ire_ptpn; 3270 ire1 = ire->ire_next; 3271 if (ire1) 3272 ire1->ire_ptpn = ptpn; 3273 *ptpn = ire1; 3274 ire->ire_ptpn = NULL; 3275 ire->ire_next = NULL; 3276 if (ire->ire_type == IRE_DEFAULT) { 3277 /* 3278 * IRE is out of the list. We need to adjust 3279 * the accounting before the caller drops 3280 * the lock. 3281 */ 3282 if (ire->ire_ipversion == IPV6_VERSION) { 3283 ASSERT(ipst-> 3284 ips_ipv6_ire_default_count != 3285 0); 3286 ipst->ips_ipv6_ire_default_count--; 3287 } 3288 } 3289 /* 3290 * We need to call ire_delete_v4 or ire_delete_v6 3291 * to clean up the cache or the redirects pointing at 3292 * the default gateway. We need to drop the lock 3293 * as ire_flush_cache/ire_delete_host_redircts require 3294 * so. But we can't drop the lock, as ire_unlink needs 3295 * to atomically remove the ires from the list. 3296 * So, create a temporary list of CONDEMNED ires 3297 * for doing ire_delete_v4/ire_delete_v6 operations 3298 * later on. 3299 */ 3300 ire->ire_next = ire_list; 3301 ire_list = ire; 3302 } 3303 } 3304 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3305 return (ire_list); 3306 } 3307 3308 /* 3309 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3310 * ARP message on any of its interface queue, it scans the nce table and 3311 * deletes and calls ndp_delete() for the appropriate nce. This action 3312 * also deletes all the neighbor/ire cache entries for that address. 3313 * This function is called from ip_arp_news in ip.c and also for 3314 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3315 * true if it finds a nce entry which is used by ip_arp_news to determine if 3316 * it needs to do an ire_walk_v4. The return value is also used for the 3317 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3318 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3319 * ip_if->ipif_ill also needs to be matched. 3320 */ 3321 boolean_t 3322 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst) 3323 { 3324 ill_t *ill; 3325 nce_t *nce; 3326 3327 ill = (ipif ? ipif->ipif_ill : NULL); 3328 3329 if (ill != NULL) { 3330 /* 3331 * clean up the nce (and any relevant ire's) that matches 3332 * on addr and ill. 3333 */ 3334 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3335 if (nce != NULL) { 3336 ndp_delete(nce); 3337 return (B_TRUE); 3338 } 3339 } else { 3340 /* 3341 * ill is wildcard. clean up all nce's and 3342 * ire's that match on addr 3343 */ 3344 nce_clookup_t cl; 3345 3346 cl.ncecl_addr = addr; 3347 cl.ncecl_found = B_FALSE; 3348 3349 ndp_walk_common(ipst->ips_ndp4, NULL, 3350 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3351 3352 /* 3353 * ncecl_found would be set by ip_nce_clookup_and_delete if 3354 * we found a matching nce. 3355 */ 3356 return (cl.ncecl_found); 3357 } 3358 return (B_FALSE); 3359 3360 } 3361 3362 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3363 static void 3364 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 3365 { 3366 nce_clookup_t *cl = (nce_clookup_t *)arg; 3367 ipaddr_t nce_addr; 3368 3369 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 3370 if (nce_addr == cl->ncecl_addr) { 3371 cl->ncecl_found = B_TRUE; 3372 /* clean up the nce (and any relevant ire's) */ 3373 ndp_delete(nce); 3374 } 3375 } 3376 3377 /* 3378 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 3379 * when there are no ire's left in the bucket. Returns TRUE if the bucket 3380 * is deleted and freed. 3381 */ 3382 boolean_t 3383 irb_inactive(irb_t *irb) 3384 { 3385 struct rt_entry *rt; 3386 struct radix_node *rn; 3387 ip_stack_t *ipst = irb->irb_ipst; 3388 3389 ASSERT(irb->irb_ipst != NULL); 3390 3391 rt = IRB2RT(irb); 3392 rn = (struct radix_node *)rt; 3393 3394 /* first remove it from the radix tree. */ 3395 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 3396 rw_enter(&irb->irb_lock, RW_WRITER); 3397 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 3398 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 3399 ipst->ips_ip_ftable); 3400 DTRACE_PROBE1(irb__free, rt_t *, rt); 3401 ASSERT((void *)rn == (void *)rt); 3402 Free(rt, rt_entry_cache); 3403 /* irb_lock is freed */ 3404 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3405 return (B_TRUE); 3406 } 3407 rw_exit(&irb->irb_lock); 3408 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3409 return (B_FALSE); 3410 } 3411 3412 /* 3413 * Delete the specified IRE. 3414 */ 3415 void 3416 ire_delete(ire_t *ire) 3417 { 3418 ire_t *ire1; 3419 ire_t **ptpn; 3420 irb_t *irb; 3421 ip_stack_t *ipst = ire->ire_ipst; 3422 3423 if ((irb = ire->ire_bucket) == NULL) { 3424 /* 3425 * It was never inserted in the list. Should call REFRELE 3426 * to free this IRE. 3427 */ 3428 IRE_REFRELE_NOTR(ire); 3429 return; 3430 } 3431 3432 rw_enter(&irb->irb_lock, RW_WRITER); 3433 3434 if (irb->irb_rr_origin == ire) { 3435 irb->irb_rr_origin = NULL; 3436 } 3437 3438 /* 3439 * In case of V4 we might still be waiting for fastpath ack. 3440 */ 3441 if (ire->ire_ipversion == IPV4_VERSION && 3442 (ire->ire_type == IRE_CACHE || 3443 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) { 3444 ASSERT(ire->ire_nce != NULL); 3445 nce_fastpath_list_delete(ire->ire_nce); 3446 } 3447 3448 if (ire->ire_ptpn == NULL) { 3449 /* 3450 * Some other thread has removed us from the list. 3451 * It should have done the REFRELE for us. 3452 */ 3453 rw_exit(&irb->irb_lock); 3454 return; 3455 } 3456 3457 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3458 irb->irb_ire_cnt--; 3459 ire->ire_marks |= IRE_MARK_CONDEMNED; 3460 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 3461 irb->irb_tmp_ire_cnt--; 3462 ire->ire_marks &= ~IRE_MARK_TEMPORARY; 3463 } 3464 } 3465 3466 if (irb->irb_refcnt != 0) { 3467 /* 3468 * The last thread to leave this bucket will 3469 * delete this ire. 3470 */ 3471 irb->irb_marks |= IRB_MARK_CONDEMNED; 3472 rw_exit(&irb->irb_lock); 3473 return; 3474 } 3475 3476 /* 3477 * Normally to delete an ire, we walk the bucket. While we 3478 * walk the bucket, we normally bump up irb_refcnt and hence 3479 * we return from above where we mark CONDEMNED and the ire 3480 * gets deleted from ire_unlink. This case is where somebody 3481 * knows the ire e.g by doing a lookup, and wants to delete the 3482 * IRE. irb_refcnt would be 0 in this case if nobody is walking 3483 * the bucket. 3484 */ 3485 ptpn = ire->ire_ptpn; 3486 ire1 = ire->ire_next; 3487 if (ire1 != NULL) 3488 ire1->ire_ptpn = ptpn; 3489 ASSERT(ptpn != NULL); 3490 *ptpn = ire1; 3491 ire->ire_ptpn = NULL; 3492 ire->ire_next = NULL; 3493 if (ire->ire_ipversion == IPV6_VERSION) { 3494 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 3495 } else { 3496 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 3497 } 3498 /* 3499 * ip_wput/ip_wput_v6 checks this flag to see whether 3500 * it should still use the cached ire or not. 3501 */ 3502 if (ire->ire_type == IRE_DEFAULT) { 3503 /* 3504 * IRE is out of the list. We need to adjust the 3505 * accounting before we drop the lock. 3506 */ 3507 if (ire->ire_ipversion == IPV6_VERSION) { 3508 ASSERT(ipst->ips_ipv6_ire_default_count != 0); 3509 ipst->ips_ipv6_ire_default_count--; 3510 } 3511 } 3512 rw_exit(&irb->irb_lock); 3513 3514 if (ire->ire_ipversion == IPV6_VERSION) { 3515 ire_delete_v6(ire); 3516 } else { 3517 ire_delete_v4(ire); 3518 } 3519 /* 3520 * We removed it from the list. Decrement the 3521 * reference count. 3522 */ 3523 IRE_REFRELE_NOTR(ire); 3524 } 3525 3526 /* 3527 * Delete the specified IRE. 3528 * All calls should use ire_delete(). 3529 * Sometimes called as writer though not required by this function. 3530 * 3531 * NOTE : This function is called only if the ire was added 3532 * in the list. 3533 */ 3534 static void 3535 ire_delete_v4(ire_t *ire) 3536 { 3537 ip_stack_t *ipst = ire->ire_ipst; 3538 3539 ASSERT(ire->ire_refcnt >= 1); 3540 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3541 3542 if (ire->ire_type != IRE_CACHE) 3543 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 3544 if (ire->ire_type == IRE_DEFAULT) { 3545 /* 3546 * when a default gateway is going away 3547 * delete all the host redirects pointing at that 3548 * gateway. 3549 */ 3550 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 3551 } 3552 } 3553 3554 /* 3555 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 3556 * to free the ire when the reference count goes to zero. 3557 */ 3558 void 3559 ire_inactive(ire_t *ire) 3560 { 3561 nce_t *nce; 3562 ill_t *ill = NULL; 3563 ill_t *stq_ill = NULL; 3564 ipif_t *ipif; 3565 boolean_t need_wakeup = B_FALSE; 3566 irb_t *irb; 3567 ip_stack_t *ipst = ire->ire_ipst; 3568 3569 ASSERT(ire->ire_refcnt == 0); 3570 ASSERT(ire->ire_ptpn == NULL); 3571 ASSERT(ire->ire_next == NULL); 3572 3573 if (ire->ire_gw_secattr != NULL) { 3574 ire_gw_secattr_free(ire->ire_gw_secattr); 3575 ire->ire_gw_secattr = NULL; 3576 } 3577 3578 if (ire->ire_mp != NULL) { 3579 ASSERT(ire->ire_bucket == NULL); 3580 mutex_destroy(&ire->ire_lock); 3581 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3582 if (ire->ire_nce != NULL) 3583 NCE_REFRELE_NOTR(ire->ire_nce); 3584 freeb(ire->ire_mp); 3585 return; 3586 } 3587 3588 if ((nce = ire->ire_nce) != NULL) { 3589 NCE_REFRELE_NOTR(nce); 3590 ire->ire_nce = NULL; 3591 } 3592 3593 if (ire->ire_ipif == NULL) 3594 goto end; 3595 3596 ipif = ire->ire_ipif; 3597 ill = ipif->ipif_ill; 3598 3599 if (ire->ire_bucket == NULL) { 3600 /* The ire was never inserted in the table. */ 3601 goto end; 3602 } 3603 3604 /* 3605 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 3606 * non-null ill_ire_count also goes down by 1. 3607 * 3608 * The ipif that is associated with an ire is ire->ire_ipif and 3609 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 3610 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 3611 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 3612 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 3613 * different. If this is different from ire->ire_ipif->ipif_ill and 3614 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 3615 * ipif_ill_refrele_tail on the stq_ill. 3616 */ 3617 3618 if (ire->ire_stq != NULL) 3619 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3620 3621 if (stq_ill == NULL || stq_ill == ill) { 3622 /* Optimize the most common case */ 3623 mutex_enter(&ill->ill_lock); 3624 ASSERT(ipif->ipif_ire_cnt != 0); 3625 ipif->ipif_ire_cnt--; 3626 if (ipif->ipif_ire_cnt == 0) 3627 need_wakeup = B_TRUE; 3628 if (stq_ill != NULL) { 3629 ASSERT(stq_ill->ill_ire_cnt != 0); 3630 stq_ill->ill_ire_cnt--; 3631 if (stq_ill->ill_ire_cnt == 0) 3632 need_wakeup = B_TRUE; 3633 } 3634 if (need_wakeup) { 3635 /* Drops the ill lock */ 3636 ipif_ill_refrele_tail(ill); 3637 } else { 3638 mutex_exit(&ill->ill_lock); 3639 } 3640 } else { 3641 /* 3642 * We can't grab all the ill locks at the same time. 3643 * It can lead to recursive lock enter in the call to 3644 * ipif_ill_refrele_tail and later. Instead do it 1 at 3645 * a time. 3646 */ 3647 mutex_enter(&ill->ill_lock); 3648 ASSERT(ipif->ipif_ire_cnt != 0); 3649 ipif->ipif_ire_cnt--; 3650 if (ipif->ipif_ire_cnt == 0) { 3651 /* Drops the lock */ 3652 ipif_ill_refrele_tail(ill); 3653 } else { 3654 mutex_exit(&ill->ill_lock); 3655 } 3656 if (stq_ill != NULL) { 3657 mutex_enter(&stq_ill->ill_lock); 3658 ASSERT(stq_ill->ill_ire_cnt != 0); 3659 stq_ill->ill_ire_cnt--; 3660 if (stq_ill->ill_ire_cnt == 0) { 3661 /* Drops the ill lock */ 3662 ipif_ill_refrele_tail(stq_ill); 3663 } else { 3664 mutex_exit(&stq_ill->ill_lock); 3665 } 3666 } 3667 } 3668 end: 3669 /* This should be true for both V4 and V6 */ 3670 3671 if ((ire->ire_type & IRE_FORWARDTABLE) && 3672 (ire->ire_ipversion == IPV4_VERSION) && 3673 ((irb = ire->ire_bucket) != NULL)) { 3674 rw_enter(&irb->irb_lock, RW_WRITER); 3675 irb->irb_nire--; 3676 /* 3677 * Instead of examining the conditions for freeing 3678 * the radix node here, we do it by calling 3679 * IRB_REFRELE which is a single point in the code 3680 * that embeds that logic. Bump up the refcnt to 3681 * be able to call IRB_REFRELE 3682 */ 3683 IRB_REFHOLD_LOCKED(irb); 3684 rw_exit(&irb->irb_lock); 3685 IRB_REFRELE(irb); 3686 } 3687 ire->ire_ipif = NULL; 3688 3689 #ifdef DEBUG 3690 ire_trace_cleanup(ire); 3691 #endif 3692 mutex_destroy(&ire->ire_lock); 3693 if (ire->ire_ipversion == IPV6_VERSION) { 3694 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 3695 } else { 3696 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3697 } 3698 ASSERT(ire->ire_mp == NULL); 3699 /* Has been allocated out of the cache */ 3700 kmem_cache_free(ire_cache, ire); 3701 } 3702 3703 /* 3704 * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect 3705 * entries that have a given gateway address. 3706 */ 3707 void 3708 ire_delete_cache_gw(ire_t *ire, char *cp) 3709 { 3710 ipaddr_t gw_addr; 3711 3712 if (!(ire->ire_type & IRE_CACHE) && 3713 !(ire->ire_flags & RTF_DYNAMIC)) 3714 return; 3715 3716 bcopy(cp, &gw_addr, sizeof (gw_addr)); 3717 if (ire->ire_gateway_addr == gw_addr) { 3718 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 3719 (int)ntohl(ire->ire_addr), ire->ire_type, 3720 (int)ntohl(ire->ire_gateway_addr))); 3721 ire_delete(ire); 3722 } 3723 } 3724 3725 /* 3726 * Remove all IRE_CACHE entries that match the ire specified. 3727 * 3728 * The flag argument indicates if the flush request is due to addition 3729 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 3730 * 3731 * This routine takes only the IREs from the forwarding table and flushes 3732 * the corresponding entries from the cache table. 3733 * 3734 * When flushing due to the deletion of an old route, it 3735 * just checks the cache handles (ire_phandle and ire_ihandle) and 3736 * deletes the ones that match. 3737 * 3738 * When flushing due to the creation of a new route, it checks 3739 * if a cache entry's address matches the one in the IRE and 3740 * that the cache entry's parent has a less specific mask than the 3741 * one in IRE. The destination of such a cache entry could be the 3742 * gateway for other cache entries, so we need to flush those as 3743 * well by looking for gateway addresses matching the IRE's address. 3744 */ 3745 void 3746 ire_flush_cache_v4(ire_t *ire, int flag) 3747 { 3748 int i; 3749 ire_t *cire; 3750 irb_t *irb; 3751 ip_stack_t *ipst = ire->ire_ipst; 3752 3753 if (ire->ire_type & IRE_CACHE) 3754 return; 3755 3756 /* 3757 * If a default is just created, there is no point 3758 * in going through the cache, as there will not be any 3759 * cached ires. 3760 */ 3761 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 3762 return; 3763 if (flag == IRE_FLUSH_ADD) { 3764 /* 3765 * This selective flush is due to the addition of 3766 * new IRE. 3767 */ 3768 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3769 irb = &ipst->ips_ip_cache_table[i]; 3770 if ((cire = irb->irb_ire) == NULL) 3771 continue; 3772 IRB_REFHOLD(irb); 3773 for (cire = irb->irb_ire; cire != NULL; 3774 cire = cire->ire_next) { 3775 if (cire->ire_type != IRE_CACHE) 3776 continue; 3777 /* 3778 * If 'cire' belongs to the same subnet 3779 * as the new ire being added, and 'cire' 3780 * is derived from a prefix that is less 3781 * specific than the new ire being added, 3782 * we need to flush 'cire'; for instance, 3783 * when a new interface comes up. 3784 */ 3785 if (((cire->ire_addr & ire->ire_mask) == 3786 (ire->ire_addr & ire->ire_mask)) && 3787 (ip_mask_to_plen(cire->ire_cmask) <= 3788 ire->ire_masklen)) { 3789 ire_delete(cire); 3790 continue; 3791 } 3792 /* 3793 * This is the case when the ire_gateway_addr 3794 * of 'cire' belongs to the same subnet as 3795 * the new ire being added. 3796 * Flushing such ires is sometimes required to 3797 * avoid misrouting: say we have a machine with 3798 * two interfaces (I1 and I2), a default router 3799 * R on the I1 subnet, and a host route to an 3800 * off-link destination D with a gateway G on 3801 * the I2 subnet. 3802 * Under normal operation, we will have an 3803 * on-link cache entry for G and an off-link 3804 * cache entry for D with G as ire_gateway_addr, 3805 * traffic to D will reach its destination 3806 * through gateway G. 3807 * If the administrator does 'ifconfig I2 down', 3808 * the cache entries for D and G will be 3809 * flushed. However, G will now be resolved as 3810 * an off-link destination using R (the default 3811 * router) as gateway. Then D will also be 3812 * resolved as an off-link destination using G 3813 * as gateway - this behavior is due to 3814 * compatibility reasons, see comment in 3815 * ire_ihandle_lookup_offlink(). Traffic to D 3816 * will go to the router R and probably won't 3817 * reach the destination. 3818 * The administrator then does 'ifconfig I2 up'. 3819 * Since G is on the I2 subnet, this routine 3820 * will flush its cache entry. It must also 3821 * flush the cache entry for D, otherwise 3822 * traffic will stay misrouted until the IRE 3823 * times out. 3824 */ 3825 if ((cire->ire_gateway_addr & ire->ire_mask) == 3826 (ire->ire_addr & ire->ire_mask)) { 3827 ire_delete(cire); 3828 continue; 3829 } 3830 } 3831 IRB_REFRELE(irb); 3832 } 3833 } else { 3834 /* 3835 * delete the cache entries based on 3836 * handle in the IRE as this IRE is 3837 * being deleted/changed. 3838 */ 3839 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3840 irb = &ipst->ips_ip_cache_table[i]; 3841 if ((cire = irb->irb_ire) == NULL) 3842 continue; 3843 IRB_REFHOLD(irb); 3844 for (cire = irb->irb_ire; cire != NULL; 3845 cire = cire->ire_next) { 3846 if (cire->ire_type != IRE_CACHE) 3847 continue; 3848 if ((cire->ire_phandle == 0 || 3849 cire->ire_phandle != ire->ire_phandle) && 3850 (cire->ire_ihandle == 0 || 3851 cire->ire_ihandle != ire->ire_ihandle)) 3852 continue; 3853 ire_delete(cire); 3854 } 3855 IRB_REFRELE(irb); 3856 } 3857 } 3858 } 3859 3860 /* 3861 * Matches the arguments passed with the values in the ire. 3862 * 3863 * Note: for match types that match using "ipif" passed in, ipif 3864 * must be checked for non-NULL before calling this routine. 3865 */ 3866 boolean_t 3867 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 3868 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 3869 const ts_label_t *tsl, int match_flags) 3870 { 3871 ill_t *ire_ill = NULL, *dst_ill; 3872 ill_t *ipif_ill = NULL; 3873 ill_group_t *ire_ill_group = NULL; 3874 ill_group_t *ipif_ill_group = NULL; 3875 3876 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3877 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 3878 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 3879 (ipif != NULL && !ipif->ipif_isv6)); 3880 3881 /* 3882 * HIDDEN cache entries have to be looked up specifically with 3883 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 3884 * when the interface is FAILED or INACTIVE. In that case, 3885 * any IRE_CACHES that exists should be marked with 3886 * IRE_MARK_HIDDEN. So, we don't really need to match below 3887 * for IRE_MARK_HIDDEN. But we do so for consistency. 3888 */ 3889 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 3890 (ire->ire_marks & IRE_MARK_HIDDEN)) 3891 return (B_FALSE); 3892 3893 /* 3894 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 3895 * is used. In that case the routing table is bypassed and the 3896 * packets are sent directly to the specified nexthop. The 3897 * IRE_CACHE entry representing this route should be marked 3898 * with IRE_MARK_PRIVATE_ADDR. 3899 */ 3900 3901 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 3902 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 3903 return (B_FALSE); 3904 3905 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 3906 ire->ire_zoneid != ALL_ZONES) { 3907 /* 3908 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 3909 * valid and does not match that of ire_zoneid, a failure to 3910 * match is reported at this point. Otherwise, since some IREs 3911 * that are available in the global zone can be used in local 3912 * zones, additional checks need to be performed: 3913 * 3914 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 3915 * entries should never be matched in this situation. 3916 * 3917 * IRE entries that have an interface associated with them 3918 * should in general not match unless they are an IRE_LOCAL 3919 * or in the case when MATCH_IRE_DEFAULT has been set in 3920 * the caller. In the case of the former, checking of the 3921 * other fields supplied should take place. 3922 * 3923 * In the case where MATCH_IRE_DEFAULT has been set, 3924 * all of the ipif's associated with the IRE's ill are 3925 * checked to see if there is a matching zoneid. If any 3926 * one ipif has a matching zoneid, this IRE is a 3927 * potential candidate so checking of the other fields 3928 * takes place. 3929 * 3930 * In the case where the IRE_INTERFACE has a usable source 3931 * address (indicated by ill_usesrc_ifindex) in the 3932 * correct zone then it's permitted to return this IRE 3933 */ 3934 if (match_flags & MATCH_IRE_ZONEONLY) 3935 return (B_FALSE); 3936 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 3937 return (B_FALSE); 3938 /* 3939 * Note, IRE_INTERFACE can have the stq as NULL. For 3940 * example, if the default multicast route is tied to 3941 * the loopback address. 3942 */ 3943 if ((ire->ire_type & IRE_INTERFACE) && 3944 (ire->ire_stq != NULL)) { 3945 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 3946 /* 3947 * If there is a usable source address in the 3948 * zone, then it's ok to return an 3949 * IRE_INTERFACE 3950 */ 3951 if (ipif_usesrc_avail(dst_ill, zoneid)) { 3952 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 3953 (void *)dst_ill, 3954 (ire->ire_addr == (addr & mask)))); 3955 } else { 3956 ip3dbg(("ire_match_args: src_ipif NULL" 3957 " dst_ill %p\n", (void *)dst_ill)); 3958 return (B_FALSE); 3959 } 3960 } 3961 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 3962 !(ire->ire_type & IRE_INTERFACE)) { 3963 ipif_t *tipif; 3964 3965 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 3966 return (B_FALSE); 3967 } 3968 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 3969 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 3970 tipif != NULL; tipif = tipif->ipif_next) { 3971 if (IPIF_CAN_LOOKUP(tipif) && 3972 (tipif->ipif_flags & IPIF_UP) && 3973 (tipif->ipif_zoneid == zoneid || 3974 tipif->ipif_zoneid == ALL_ZONES)) 3975 break; 3976 } 3977 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 3978 if (tipif == NULL) { 3979 return (B_FALSE); 3980 } 3981 } 3982 } 3983 3984 /* 3985 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 3986 * somebody wants to send out on a particular interface which 3987 * is given by ire_stq and hence use ire_stq to derive the ill 3988 * value. ire_ipif for IRE_CACHES is just the means of getting 3989 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 3990 * ire_to_ill does the right thing for this. 3991 */ 3992 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 3993 ire_ill = ire_to_ill(ire); 3994 if (ire_ill != NULL) 3995 ire_ill_group = ire_ill->ill_group; 3996 ipif_ill = ipif->ipif_ill; 3997 ipif_ill_group = ipif_ill->ill_group; 3998 } 3999 4000 if ((ire->ire_addr == (addr & mask)) && 4001 ((!(match_flags & MATCH_IRE_GW)) || 4002 (ire->ire_gateway_addr == gateway)) && 4003 ((!(match_flags & MATCH_IRE_TYPE)) || 4004 (ire->ire_type & type)) && 4005 ((!(match_flags & MATCH_IRE_SRC)) || 4006 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4007 ((!(match_flags & MATCH_IRE_IPIF)) || 4008 (ire->ire_ipif == ipif)) && 4009 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4010 (ire->ire_type != IRE_CACHE || 4011 ire->ire_marks & IRE_MARK_HIDDEN)) && 4012 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4013 (ire->ire_type != IRE_CACHE || 4014 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4015 ((!(match_flags & MATCH_IRE_ILL)) || 4016 (ire_ill == ipif_ill)) && 4017 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4018 (ire->ire_ihandle == ihandle)) && 4019 ((!(match_flags & MATCH_IRE_MASK)) || 4020 (ire->ire_mask == mask)) && 4021 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4022 (ire_ill == ipif_ill) || 4023 (ire_ill_group != NULL && 4024 ire_ill_group == ipif_ill_group)) && 4025 ((!(match_flags & MATCH_IRE_SECATTR)) || 4026 (!is_system_labeled()) || 4027 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4028 /* We found the matched IRE */ 4029 return (B_TRUE); 4030 } 4031 return (B_FALSE); 4032 } 4033 4034 4035 /* 4036 * Lookup for a route in all the tables 4037 */ 4038 ire_t * 4039 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4040 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4041 const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4042 { 4043 ire_t *ire = NULL; 4044 4045 /* 4046 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4047 * MATCH_IRE_ILL is set. 4048 */ 4049 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4050 (ipif == NULL)) 4051 return (NULL); 4052 4053 /* 4054 * might be asking for a cache lookup, 4055 * This is not best way to lookup cache, 4056 * user should call ire_cache_lookup directly. 4057 * 4058 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4059 * in the forwarding table, if the applicable type flags were set. 4060 */ 4061 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4062 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4063 tsl, flags, ipst); 4064 if (ire != NULL) 4065 return (ire); 4066 } 4067 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4068 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4069 zoneid, 0, tsl, flags, ipst); 4070 } 4071 return (ire); 4072 } 4073 4074 4075 /* 4076 * Delete the IRE cache for the gateway and all IRE caches whose 4077 * ire_gateway_addr points to this gateway, and allow them to 4078 * be created on demand by ip_newroute. 4079 */ 4080 void 4081 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 4082 { 4083 irb_t *irb; 4084 ire_t *ire; 4085 4086 irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4087 ipst->ips_ip_cache_table_size)]; 4088 IRB_REFHOLD(irb); 4089 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4090 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4091 continue; 4092 4093 ASSERT(ire->ire_mask == IP_HOST_MASK); 4094 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4095 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4096 ire_delete(ire); 4097 } 4098 } 4099 IRB_REFRELE(irb); 4100 4101 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst); 4102 } 4103 4104 /* 4105 * Looks up cache table for a route. 4106 * specific lookup can be indicated by 4107 * passing the MATCH_* flags and the 4108 * necessary parameters. 4109 */ 4110 ire_t * 4111 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4112 zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4113 { 4114 irb_t *irb_ptr; 4115 ire_t *ire; 4116 4117 /* 4118 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4119 * MATCH_IRE_ILL is set. 4120 */ 4121 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4122 (ipif == NULL)) 4123 return (NULL); 4124 4125 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4126 ipst->ips_ip_cache_table_size)]; 4127 rw_enter(&irb_ptr->irb_lock, RW_READER); 4128 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4129 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4130 continue; 4131 ASSERT(ire->ire_mask == IP_HOST_MASK); 4132 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4133 ipif, zoneid, 0, tsl, flags)) { 4134 IRE_REFHOLD(ire); 4135 rw_exit(&irb_ptr->irb_lock); 4136 return (ire); 4137 } 4138 } 4139 rw_exit(&irb_ptr->irb_lock); 4140 return (NULL); 4141 } 4142 4143 /* 4144 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4145 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of 4146 * the same ill group. 4147 */ 4148 boolean_t 4149 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire) 4150 { 4151 ill_t *recv_ill, *xmit_ill; 4152 ill_group_t *recv_group, *xmit_group; 4153 4154 ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK)); 4155 ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE)); 4156 4157 recv_ill = ire_to_ill(ire_local); 4158 xmit_ill = ire_to_ill(xmit_ire); 4159 4160 ASSERT(recv_ill != NULL); 4161 ASSERT(xmit_ill != NULL); 4162 4163 if (recv_ill == xmit_ill) 4164 return (B_TRUE); 4165 4166 recv_group = recv_ill->ill_group; 4167 xmit_group = xmit_ill->ill_group; 4168 4169 if (recv_group != NULL && recv_group == xmit_group) 4170 return (B_TRUE); 4171 4172 return (B_FALSE); 4173 } 4174 4175 /* 4176 * Check if the IRE_LOCAL uses the same ill (group) as another route would use. 4177 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 4178 * then we don't allow this IRE_LOCAL to be used. 4179 */ 4180 boolean_t 4181 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4182 const ts_label_t *tsl, ip_stack_t *ipst) 4183 { 4184 ire_t *alt_ire; 4185 boolean_t rval; 4186 4187 if (ire_local->ire_ipversion == IPV4_VERSION) { 4188 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4189 NULL, zoneid, 0, tsl, 4190 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4191 MATCH_IRE_RJ_BHOLE, ipst); 4192 } else { 4193 alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 4194 0, NULL, NULL, zoneid, 0, tsl, 4195 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4196 MATCH_IRE_RJ_BHOLE, ipst); 4197 } 4198 4199 if (alt_ire == NULL) 4200 return (B_FALSE); 4201 4202 if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4203 ire_refrele(alt_ire); 4204 return (B_FALSE); 4205 } 4206 rval = ire_local_same_ill_group(ire_local, alt_ire); 4207 4208 ire_refrele(alt_ire); 4209 return (rval); 4210 } 4211 4212 /* 4213 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4214 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4215 * to the hidden ones. 4216 * 4217 * In general the zoneid has to match (where ALL_ZONES match all of them). 4218 * But for IRE_LOCAL we also need to handle the case where L2 should 4219 * conceptually loop back the packet. This is necessary since neither 4220 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4221 * own MAC address. This loopback is needed when the normal 4222 * routes (ignoring IREs with different zoneids) would send out the packet on 4223 * the same ill (or ill group) as the ill with which this IRE_LOCAL is 4224 * associated. 4225 * 4226 * Earlier versions of this code always matched an IRE_LOCAL independently of 4227 * the zoneid. We preserve that earlier behavior when 4228 * ip_restrict_interzone_loopback is turned off. 4229 */ 4230 ire_t * 4231 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl, 4232 ip_stack_t *ipst) 4233 { 4234 irb_t *irb_ptr; 4235 ire_t *ire; 4236 4237 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4238 ipst->ips_ip_cache_table_size)]; 4239 rw_enter(&irb_ptr->irb_lock, RW_READER); 4240 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4241 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4242 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4243 continue; 4244 } 4245 if (ire->ire_addr == addr) { 4246 /* 4247 * Finally, check if the security policy has any 4248 * restriction on using this route for the specified 4249 * message. 4250 */ 4251 if (tsl != NULL && 4252 ire->ire_gw_secattr != NULL && 4253 tsol_ire_match_gwattr(ire, tsl) != 0) { 4254 continue; 4255 } 4256 4257 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4258 ire->ire_zoneid == ALL_ZONES) { 4259 IRE_REFHOLD(ire); 4260 rw_exit(&irb_ptr->irb_lock); 4261 return (ire); 4262 } 4263 4264 if (ire->ire_type == IRE_LOCAL) { 4265 if (ipst->ips_ip_restrict_interzone_loopback && 4266 !ire_local_ok_across_zones(ire, zoneid, 4267 &addr, tsl, ipst)) 4268 continue; 4269 4270 IRE_REFHOLD(ire); 4271 rw_exit(&irb_ptr->irb_lock); 4272 return (ire); 4273 } 4274 } 4275 } 4276 rw_exit(&irb_ptr->irb_lock); 4277 return (NULL); 4278 } 4279 4280 /* 4281 * Locate the interface ire that is tied to the cache ire 'cire' via 4282 * cire->ire_ihandle. 4283 * 4284 * We are trying to create the cache ire for an offlink destn based 4285 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4286 * as found by ip_newroute(). We are called from ip_newroute() in 4287 * the IRE_CACHE case. 4288 */ 4289 ire_t * 4290 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4291 { 4292 ire_t *ire; 4293 int match_flags; 4294 ipaddr_t gw_addr; 4295 ipif_t *gw_ipif; 4296 ip_stack_t *ipst = cire->ire_ipst; 4297 4298 ASSERT(cire != NULL && pire != NULL); 4299 4300 /* 4301 * We don't need to specify the zoneid to ire_ftable_lookup() below 4302 * because the ihandle refers to an ipif which can be in only one zone. 4303 */ 4304 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4305 /* 4306 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4307 * for on-link hosts. We should never be here for onlink. 4308 * Thus, use MATCH_IRE_ILL_GROUP. 4309 */ 4310 if (pire->ire_ipif != NULL) 4311 match_flags |= MATCH_IRE_ILL_GROUP; 4312 /* 4313 * We know that the mask of the interface ire equals cire->ire_cmask. 4314 * (When ip_newroute() created 'cire' for the gateway it set its 4315 * cmask from the interface ire's mask) 4316 */ 4317 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4318 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4319 NULL, match_flags, ipst); 4320 if (ire != NULL) 4321 return (ire); 4322 /* 4323 * If we didn't find an interface ire above, we can't declare failure. 4324 * For backwards compatibility, we need to support prefix routes 4325 * pointing to next hop gateways that are not on-link. 4326 * 4327 * Assume we are trying to ping some offlink destn, and we have the 4328 * routing table below. 4329 * 4330 * Eg. default - gw1 <--- pire (line 1) 4331 * gw1 - gw2 (line 2) 4332 * gw2 - hme0 (line 3) 4333 * 4334 * If we already have a cache ire for gw1 in 'cire', the 4335 * ire_ftable_lookup above would have failed, since there is no 4336 * interface ire to reach gw1. We will fallthru below. 4337 * 4338 * Here we duplicate the steps that ire_ftable_lookup() did in 4339 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 4340 * The differences are the following 4341 * i. We want the interface ire only, so we call ire_ftable_lookup() 4342 * instead of ire_route_lookup() 4343 * ii. We look for only prefix routes in the 1st call below. 4344 * ii. We want to match on the ihandle in the 2nd call below. 4345 */ 4346 match_flags = MATCH_IRE_TYPE; 4347 if (pire->ire_ipif != NULL) 4348 match_flags |= MATCH_IRE_ILL_GROUP; 4349 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 4350 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 4351 if (ire == NULL) 4352 return (NULL); 4353 /* 4354 * At this point 'ire' corresponds to the entry shown in line 2. 4355 * gw_addr is 'gw2' in the example above. 4356 */ 4357 gw_addr = ire->ire_gateway_addr; 4358 gw_ipif = ire->ire_ipif; 4359 ire_refrele(ire); 4360 4361 match_flags |= MATCH_IRE_IHANDLE; 4362 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 4363 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags, 4364 ipst); 4365 return (ire); 4366 } 4367 4368 /* 4369 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 4370 * ire associated with the specified ipif. 4371 * 4372 * This might occasionally be called when IPIF_UP is not set since 4373 * the IP_MULTICAST_IF as well as creating interface routes 4374 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 4375 * 4376 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 4377 * the ipif, this routine might return NULL. 4378 */ 4379 ire_t * 4380 ipif_to_ire(const ipif_t *ipif) 4381 { 4382 ire_t *ire; 4383 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 4384 4385 ASSERT(!ipif->ipif_isv6); 4386 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 4387 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 4388 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 4389 ipst); 4390 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4391 /* In this case we need to lookup destination address. */ 4392 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 4393 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 4394 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst); 4395 } else { 4396 ire = ire_ftable_lookup(ipif->ipif_subnet, 4397 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 4398 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 4399 MATCH_IRE_MASK), ipst); 4400 } 4401 return (ire); 4402 } 4403 4404 /* 4405 * ire_walk function. 4406 * Count the number of IRE_CACHE entries in different categories. 4407 */ 4408 void 4409 ire_cache_count(ire_t *ire, char *arg) 4410 { 4411 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 4412 4413 if (ire->ire_type != IRE_CACHE) 4414 return; 4415 4416 icc->icc_total++; 4417 4418 if (ire->ire_ipversion == IPV6_VERSION) { 4419 mutex_enter(&ire->ire_lock); 4420 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4421 mutex_exit(&ire->ire_lock); 4422 icc->icc_onlink++; 4423 return; 4424 } 4425 mutex_exit(&ire->ire_lock); 4426 } else { 4427 if (ire->ire_gateway_addr == 0) { 4428 icc->icc_onlink++; 4429 return; 4430 } 4431 } 4432 4433 ASSERT(ire->ire_ipif != NULL); 4434 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 4435 icc->icc_pmtu++; 4436 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4437 ire->ire_ib_pkt_count) 4438 icc->icc_offlink++; 4439 else 4440 icc->icc_unused++; 4441 } 4442 4443 /* 4444 * ire_walk function called by ip_trash_ire_reclaim(). 4445 * Free a fraction of the IRE_CACHE cache entries. The fractions are 4446 * different for different categories of IRE_CACHE entries. 4447 * A fraction of zero means to not free any in that category. 4448 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 4449 * is N then every Nth hash bucket chain will be freed. 4450 */ 4451 void 4452 ire_cache_reclaim(ire_t *ire, char *arg) 4453 { 4454 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 4455 uint_t rand; 4456 ip_stack_t *ipst = icr->icr_ipst; 4457 4458 if (ire->ire_type != IRE_CACHE) 4459 return; 4460 4461 if (ire->ire_ipversion == IPV6_VERSION) { 4462 rand = (uint_t)lbolt + 4463 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 4464 ipst->ips_ip6_cache_table_size); 4465 mutex_enter(&ire->ire_lock); 4466 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4467 mutex_exit(&ire->ire_lock); 4468 if (icr->icr_onlink != 0 && 4469 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4470 ire_delete(ire); 4471 return; 4472 } 4473 goto done; 4474 } 4475 mutex_exit(&ire->ire_lock); 4476 } else { 4477 rand = (uint_t)lbolt + 4478 IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size); 4479 if (ire->ire_gateway_addr == 0) { 4480 if (icr->icr_onlink != 0 && 4481 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4482 ire_delete(ire); 4483 return; 4484 } 4485 goto done; 4486 } 4487 } 4488 /* Not onlink IRE */ 4489 ASSERT(ire->ire_ipif != NULL); 4490 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 4491 /* Use ptmu fraction */ 4492 if (icr->icr_pmtu != 0 && 4493 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 4494 ire_delete(ire); 4495 return; 4496 } 4497 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4498 ire->ire_ib_pkt_count) { 4499 /* Use offlink fraction */ 4500 if (icr->icr_offlink != 0 && 4501 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 4502 ire_delete(ire); 4503 return; 4504 } 4505 } else { 4506 /* Use unused fraction */ 4507 if (icr->icr_unused != 0 && 4508 (rand/icr->icr_unused)*icr->icr_unused == rand) { 4509 ire_delete(ire); 4510 return; 4511 } 4512 } 4513 done: 4514 /* 4515 * Update tire_mark so that those that haven't been used since this 4516 * reclaim will be considered unused next time we reclaim. 4517 */ 4518 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 4519 } 4520 4521 static void 4522 power2_roundup(uint32_t *value) 4523 { 4524 int i; 4525 4526 for (i = 1; i < 31; i++) { 4527 if (*value <= (1 << i)) 4528 break; 4529 } 4530 *value = (1 << i); 4531 } 4532 4533 /* Global init for all zones */ 4534 void 4535 ip_ire_g_init() 4536 { 4537 /* 4538 * Create ire caches, ire_reclaim() 4539 * will give IRE_CACHE back to system when needed. 4540 * This needs to be done here before anything else, since 4541 * ire_add() expects the cache to be created. 4542 */ 4543 ire_cache = kmem_cache_create("ire_cache", 4544 sizeof (ire_t), 0, ip_ire_constructor, 4545 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 4546 4547 rt_entry_cache = kmem_cache_create("rt_entry", 4548 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 4549 4550 /* 4551 * Have radix code setup kmem caches etc. 4552 */ 4553 rn_init(); 4554 } 4555 4556 void 4557 ip_ire_init(ip_stack_t *ipst) 4558 { 4559 int i; 4560 uint32_t mem_cnt; 4561 uint32_t cpu_cnt; 4562 uint32_t min_cnt; 4563 pgcnt_t mem_avail; 4564 4565 /* 4566 * ip_ire_max_bucket_cnt is sized below based on the memory 4567 * size and the cpu speed of the machine. This is upper 4568 * bounded by the compile time value of ip_ire_max_bucket_cnt 4569 * and is lower bounded by the compile time value of 4570 * ip_ire_min_bucket_cnt. Similar logic applies to 4571 * ip6_ire_max_bucket_cnt. 4572 * 4573 * We calculate this for each IP Instances in order to use 4574 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are 4575 * in effect when the zone is booted. 4576 */ 4577 mem_avail = kmem_avail(); 4578 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4579 ip_cache_table_size / sizeof (ire_t); 4580 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 4581 4582 min_cnt = MIN(cpu_cnt, mem_cnt); 4583 if (min_cnt < ip_ire_min_bucket_cnt) 4584 min_cnt = ip_ire_min_bucket_cnt; 4585 if (ip_ire_max_bucket_cnt > min_cnt) { 4586 ip_ire_max_bucket_cnt = min_cnt; 4587 } 4588 4589 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4590 ip6_cache_table_size / sizeof (ire_t); 4591 min_cnt = MIN(cpu_cnt, mem_cnt); 4592 if (min_cnt < ip6_ire_min_bucket_cnt) 4593 min_cnt = ip6_ire_min_bucket_cnt; 4594 if (ip6_ire_max_bucket_cnt > min_cnt) { 4595 ip6_ire_max_bucket_cnt = min_cnt; 4596 } 4597 4598 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 4599 mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 4600 4601 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 4602 4603 4604 /* Calculate the IPv4 cache table size. */ 4605 ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size, 4606 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4607 ip_ire_max_bucket_cnt)); 4608 if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size) 4609 ipst->ips_ip_cache_table_size = ip_max_cache_table_size; 4610 /* 4611 * Make sure that the table size is always a power of 2. The 4612 * hash macro IRE_ADDR_HASH() depends on that. 4613 */ 4614 power2_roundup(&ipst->ips_ip_cache_table_size); 4615 4616 ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size * 4617 sizeof (irb_t), KM_SLEEP); 4618 4619 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4620 rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL, 4621 RW_DEFAULT, NULL); 4622 } 4623 4624 /* Calculate the IPv6 cache table size. */ 4625 ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size, 4626 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4627 ip6_ire_max_bucket_cnt)); 4628 if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size) 4629 ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size; 4630 /* 4631 * Make sure that the table size is always a power of 2. The 4632 * hash macro IRE_ADDR_HASH_V6() depends on that. 4633 */ 4634 power2_roundup(&ipst->ips_ip6_cache_table_size); 4635 4636 ipst->ips_ip_cache_table_v6 = kmem_zalloc( 4637 ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP); 4638 4639 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4640 rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL, 4641 RW_DEFAULT, NULL); 4642 } 4643 4644 /* 4645 * Make sure that the forwarding table size is a power of 2. 4646 * The IRE*_ADDR_HASH() macroes depend on that. 4647 */ 4648 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 4649 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 4650 4651 ipst->ips_ire_handle = 1; 4652 } 4653 4654 void 4655 ip_ire_g_fini(void) 4656 { 4657 kmem_cache_destroy(ire_cache); 4658 kmem_cache_destroy(rt_entry_cache); 4659 4660 rn_fini(); 4661 } 4662 4663 void 4664 ip_ire_fini(ip_stack_t *ipst) 4665 { 4666 int i; 4667 4668 /* 4669 * Delete all IREs - assumes that the ill/ipifs have 4670 * been removed so what remains are just the ftable and IRE_CACHE. 4671 */ 4672 ire_walk(ire_delete, NULL, ipst); 4673 4674 rn_freehead(ipst->ips_ip_ftable); 4675 ipst->ips_ip_ftable = NULL; 4676 4677 mutex_destroy(&ipst->ips_ire_ft_init_lock); 4678 mutex_destroy(&ipst->ips_ire_handle_lock); 4679 4680 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4681 ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL); 4682 rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock); 4683 } 4684 kmem_free(ipst->ips_ip_cache_table, 4685 ipst->ips_ip_cache_table_size * sizeof (irb_t)); 4686 ipst->ips_ip_cache_table = NULL; 4687 4688 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4689 ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL); 4690 rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock); 4691 } 4692 kmem_free(ipst->ips_ip_cache_table_v6, 4693 ipst->ips_ip6_cache_table_size * sizeof (irb_t)); 4694 ipst->ips_ip_cache_table_v6 = NULL; 4695 4696 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 4697 irb_t *ptr; 4698 int j; 4699 4700 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 4701 continue; 4702 4703 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 4704 ASSERT(ptr[j].irb_ire == NULL); 4705 rw_destroy(&ptr[j].irb_lock); 4706 } 4707 mi_free(ptr); 4708 ipst->ips_ip_forwarding_table_v6[i] = NULL; 4709 } 4710 } 4711 4712 /* 4713 * Check if another multirt route resolution is needed. 4714 * B_TRUE is returned is there remain a resolvable route, 4715 * or if no route for that dst is resolved yet. 4716 * B_FALSE is returned if all routes for that dst are resolved 4717 * or if the remaining unresolved routes are actually not 4718 * resolvable. 4719 * This only works in the global zone. 4720 */ 4721 boolean_t 4722 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst) 4723 { 4724 ire_t *first_fire; 4725 ire_t *first_cire; 4726 ire_t *fire; 4727 ire_t *cire; 4728 irb_t *firb; 4729 irb_t *cirb; 4730 int unres_cnt = 0; 4731 boolean_t resolvable = B_FALSE; 4732 4733 /* Retrieve the first IRE_HOST that matches the destination */ 4734 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 4735 NULL, ALL_ZONES, 0, tsl, 4736 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 4737 4738 /* No route at all */ 4739 if (first_fire == NULL) { 4740 return (B_TRUE); 4741 } 4742 4743 firb = first_fire->ire_bucket; 4744 ASSERT(firb != NULL); 4745 4746 /* Retrieve the first IRE_CACHE ire for that destination. */ 4747 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4748 4749 /* No resolved route. */ 4750 if (first_cire == NULL) { 4751 ire_refrele(first_fire); 4752 return (B_TRUE); 4753 } 4754 4755 /* 4756 * At least one route is resolved. Here we look through the forward 4757 * and cache tables, to compare the number of declared routes 4758 * with the number of resolved routes. The search for a resolvable 4759 * route is performed only if at least one route remains 4760 * unresolved. 4761 */ 4762 cirb = first_cire->ire_bucket; 4763 ASSERT(cirb != NULL); 4764 4765 /* Count the number of routes to that dest that are declared. */ 4766 IRB_REFHOLD(firb); 4767 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4768 if (!(fire->ire_flags & RTF_MULTIRT)) 4769 continue; 4770 if (fire->ire_addr != dst) 4771 continue; 4772 unres_cnt++; 4773 } 4774 IRB_REFRELE(firb); 4775 4776 /* Then subtract the number of routes to that dst that are resolved */ 4777 IRB_REFHOLD(cirb); 4778 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 4779 if (!(cire->ire_flags & RTF_MULTIRT)) 4780 continue; 4781 if (cire->ire_addr != dst) 4782 continue; 4783 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 4784 continue; 4785 unres_cnt--; 4786 } 4787 IRB_REFRELE(cirb); 4788 4789 /* At least one route is unresolved; search for a resolvable route. */ 4790 if (unres_cnt > 0) 4791 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 4792 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst); 4793 4794 if (first_fire != NULL) 4795 ire_refrele(first_fire); 4796 4797 if (first_cire != NULL) 4798 ire_refrele(first_cire); 4799 4800 return (resolvable); 4801 } 4802 4803 4804 /* 4805 * Explore a forward_table bucket, starting from fire_arg. 4806 * fire_arg MUST be an IRE_HOST entry. 4807 * 4808 * Return B_TRUE and update *ire_arg and *fire_arg 4809 * if at least one resolvable route is found. *ire_arg 4810 * is the IRE entry for *fire_arg's gateway. 4811 * 4812 * Return B_FALSE otherwise (all routes are resolved or 4813 * the remaining unresolved routes are all unresolvable). 4814 * 4815 * The IRE selection relies on a priority mechanism 4816 * driven by the flags passed in by the caller. 4817 * The caller, such as ip_newroute_ipif(), can get the most 4818 * relevant ire at each stage of a multiple route resolution. 4819 * 4820 * The rules are: 4821 * 4822 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 4823 * ires are preferred for the gateway. This gives the highest 4824 * priority to routes that can be resolved without using 4825 * a resolver. 4826 * 4827 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 4828 * is specified but no IRE_CACHETABLE ire entry for the gateway 4829 * is found, the following rules apply. 4830 * 4831 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 4832 * ires for the gateway, that have not been tried since 4833 * a configurable amount of time, are preferred. 4834 * This applies when a resolver must be invoked for 4835 * a missing route, but we don't want to use the resolver 4836 * upon each packet emission. If no such resolver is found, 4837 * B_FALSE is returned. 4838 * The MULTIRT_USESTAMP flag can be combined with 4839 * MULTIRT_CACHEGW. 4840 * 4841 * - if MULTIRT_USESTAMP is not specified in flags, the first 4842 * unresolved but resolvable route is selected. 4843 * 4844 * - Otherwise, there is no resolvalble route, and 4845 * B_FALSE is returned. 4846 * 4847 * At last, MULTIRT_SETSTAMP can be specified in flags to 4848 * request the timestamp of unresolvable routes to 4849 * be refreshed. This prevents the useless exploration 4850 * of those routes for a while, when MULTIRT_USESTAMP is used. 4851 * 4852 * This only works in the global zone. 4853 */ 4854 boolean_t 4855 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 4856 const ts_label_t *tsl, ip_stack_t *ipst) 4857 { 4858 clock_t delta; 4859 ire_t *best_fire = NULL; 4860 ire_t *best_cire = NULL; 4861 ire_t *first_fire; 4862 ire_t *first_cire; 4863 ire_t *fire; 4864 ire_t *cire; 4865 irb_t *firb = NULL; 4866 irb_t *cirb = NULL; 4867 ire_t *gw_ire; 4868 boolean_t already_resolved; 4869 boolean_t res; 4870 ipaddr_t dst; 4871 ipaddr_t gw; 4872 4873 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 4874 (void *)*ire_arg, (void *)*fire_arg, flags)); 4875 4876 ASSERT(ire_arg != NULL); 4877 ASSERT(fire_arg != NULL); 4878 4879 /* Not an IRE_HOST ire; give up. */ 4880 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 4881 return (B_FALSE); 4882 } 4883 4884 /* This is the first IRE_HOST ire for that destination. */ 4885 first_fire = *fire_arg; 4886 firb = first_fire->ire_bucket; 4887 ASSERT(firb != NULL); 4888 4889 dst = first_fire->ire_addr; 4890 4891 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 4892 4893 /* 4894 * Retrieve the first IRE_CACHE ire for that destination; 4895 * if we don't find one, no route for that dest is 4896 * resolved yet. 4897 */ 4898 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4899 if (first_cire != NULL) { 4900 cirb = first_cire->ire_bucket; 4901 } 4902 4903 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 4904 4905 /* 4906 * Search for a resolvable route, giving the top priority 4907 * to routes that can be resolved without any call to the resolver. 4908 */ 4909 IRB_REFHOLD(firb); 4910 4911 if (!CLASSD(dst)) { 4912 /* 4913 * For all multiroute IRE_HOST ires for that destination, 4914 * check if the route via the IRE_HOST's gateway is 4915 * resolved yet. 4916 */ 4917 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4918 4919 if (!(fire->ire_flags & RTF_MULTIRT)) 4920 continue; 4921 if (fire->ire_addr != dst) 4922 continue; 4923 4924 if (fire->ire_gw_secattr != NULL && 4925 tsol_ire_match_gwattr(fire, tsl) != 0) { 4926 continue; 4927 } 4928 4929 gw = fire->ire_gateway_addr; 4930 4931 ip2dbg(("ire_multirt_lookup: fire %p, " 4932 "ire_addr %08x, ire_gateway_addr %08x\n", 4933 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 4934 4935 already_resolved = B_FALSE; 4936 4937 if (first_cire != NULL) { 4938 ASSERT(cirb != NULL); 4939 4940 IRB_REFHOLD(cirb); 4941 /* 4942 * For all IRE_CACHE ires for that 4943 * destination. 4944 */ 4945 for (cire = first_cire; 4946 cire != NULL; 4947 cire = cire->ire_next) { 4948 4949 if (!(cire->ire_flags & RTF_MULTIRT)) 4950 continue; 4951 if (cire->ire_addr != dst) 4952 continue; 4953 if (cire->ire_marks & 4954 (IRE_MARK_CONDEMNED | 4955 IRE_MARK_HIDDEN)) 4956 continue; 4957 4958 if (cire->ire_gw_secattr != NULL && 4959 tsol_ire_match_gwattr(cire, 4960 tsl) != 0) { 4961 continue; 4962 } 4963 4964 /* 4965 * Check if the IRE_CACHE's gateway 4966 * matches the IRE_HOST's gateway. 4967 */ 4968 if (cire->ire_gateway_addr == gw) { 4969 already_resolved = B_TRUE; 4970 break; 4971 } 4972 } 4973 IRB_REFRELE(cirb); 4974 } 4975 4976 /* 4977 * This route is already resolved; 4978 * proceed with next one. 4979 */ 4980 if (already_resolved) { 4981 ip2dbg(("ire_multirt_lookup: found cire %p, " 4982 "already resolved\n", (void *)cire)); 4983 continue; 4984 } 4985 4986 /* 4987 * The route is unresolved; is it actually 4988 * resolvable, i.e. is there a cache or a resolver 4989 * for the gateway? 4990 */ 4991 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 4992 ALL_ZONES, tsl, 4993 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst); 4994 4995 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 4996 (void *)gw_ire)); 4997 4998 /* 4999 * If gw_ire is typed IRE_CACHETABLE, 5000 * this route can be resolved without any call to the 5001 * resolver. If the MULTIRT_CACHEGW flag is set, 5002 * give the top priority to this ire and exit the 5003 * loop. 5004 * This is typically the case when an ARP reply 5005 * is processed through ip_wput_nondata(). 5006 */ 5007 if ((flags & MULTIRT_CACHEGW) && 5008 (gw_ire != NULL) && 5009 (gw_ire->ire_type & IRE_CACHETABLE)) { 5010 ASSERT(gw_ire->ire_nce == NULL || 5011 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5012 /* 5013 * Release the resolver associated to the 5014 * previous candidate best ire, if any. 5015 */ 5016 if (best_cire != NULL) { 5017 ire_refrele(best_cire); 5018 ASSERT(best_fire != NULL); 5019 } 5020 5021 best_fire = fire; 5022 best_cire = gw_ire; 5023 5024 ip2dbg(("ire_multirt_lookup: found top prio " 5025 "best_fire %p, best_cire %p\n", 5026 (void *)best_fire, (void *)best_cire)); 5027 break; 5028 } 5029 5030 /* 5031 * Compute the time elapsed since our preceding 5032 * attempt to resolve that route. 5033 * If the MULTIRT_USESTAMP flag is set, we take that 5034 * route into account only if this time interval 5035 * exceeds ip_multirt_resolution_interval; 5036 * this prevents us from attempting to resolve a 5037 * broken route upon each sending of a packet. 5038 */ 5039 delta = lbolt - fire->ire_last_used_time; 5040 delta = TICK_TO_MSEC(delta); 5041 5042 res = (boolean_t)((delta > 5043 ipst->ips_ip_multirt_resolution_interval) || 5044 (!(flags & MULTIRT_USESTAMP))); 5045 5046 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 5047 "res %d\n", 5048 (void *)fire, delta, res)); 5049 5050 if (res) { 5051 /* 5052 * We are here if MULTIRT_USESTAMP flag is set 5053 * and the resolver for fire's gateway 5054 * has not been tried since 5055 * ip_multirt_resolution_interval, or if 5056 * MULTIRT_USESTAMP is not set but gw_ire did 5057 * not fill the conditions for MULTIRT_CACHEGW, 5058 * or if neither MULTIRT_USESTAMP nor 5059 * MULTIRT_CACHEGW are set. 5060 */ 5061 if (gw_ire != NULL) { 5062 if (best_fire == NULL) { 5063 ASSERT(best_cire == NULL); 5064 5065 best_fire = fire; 5066 best_cire = gw_ire; 5067 5068 ip2dbg(("ire_multirt_lookup:" 5069 "found candidate " 5070 "best_fire %p, " 5071 "best_cire %p\n", 5072 (void *)best_fire, 5073 (void *)best_cire)); 5074 5075 /* 5076 * If MULTIRT_CACHEGW is not 5077 * set, we ignore the top 5078 * priority ires that can 5079 * be resolved without any 5080 * call to the resolver; 5081 * In that case, there is 5082 * actually no need 5083 * to continue the loop. 5084 */ 5085 if (!(flags & 5086 MULTIRT_CACHEGW)) { 5087 break; 5088 } 5089 continue; 5090 } 5091 } else { 5092 /* 5093 * No resolver for the gateway: the 5094 * route is not resolvable. 5095 * If the MULTIRT_SETSTAMP flag is 5096 * set, we stamp the IRE_HOST ire, 5097 * so we will not select it again 5098 * during this resolution interval. 5099 */ 5100 if (flags & MULTIRT_SETSTAMP) 5101 fire->ire_last_used_time = 5102 lbolt; 5103 } 5104 } 5105 5106 if (gw_ire != NULL) 5107 ire_refrele(gw_ire); 5108 } 5109 } else { /* CLASSD(dst) */ 5110 5111 for (fire = first_fire; 5112 fire != NULL; 5113 fire = fire->ire_next) { 5114 5115 if (!(fire->ire_flags & RTF_MULTIRT)) 5116 continue; 5117 if (fire->ire_addr != dst) 5118 continue; 5119 5120 if (fire->ire_gw_secattr != NULL && 5121 tsol_ire_match_gwattr(fire, tsl) != 0) { 5122 continue; 5123 } 5124 5125 already_resolved = B_FALSE; 5126 5127 gw = fire->ire_gateway_addr; 5128 5129 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 5130 NULL, NULL, ALL_ZONES, 0, tsl, 5131 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 5132 MATCH_IRE_SECATTR, ipst); 5133 5134 /* No resolver for the gateway; we skip this ire. */ 5135 if (gw_ire == NULL) { 5136 continue; 5137 } 5138 ASSERT(gw_ire->ire_nce == NULL || 5139 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5140 5141 if (first_cire != NULL) { 5142 5143 IRB_REFHOLD(cirb); 5144 /* 5145 * For all IRE_CACHE ires for that 5146 * destination. 5147 */ 5148 for (cire = first_cire; 5149 cire != NULL; 5150 cire = cire->ire_next) { 5151 5152 if (!(cire->ire_flags & RTF_MULTIRT)) 5153 continue; 5154 if (cire->ire_addr != dst) 5155 continue; 5156 if (cire->ire_marks & 5157 (IRE_MARK_CONDEMNED | 5158 IRE_MARK_HIDDEN)) 5159 continue; 5160 5161 if (cire->ire_gw_secattr != NULL && 5162 tsol_ire_match_gwattr(cire, 5163 tsl) != 0) { 5164 continue; 5165 } 5166 5167 /* 5168 * Cache entries are linked to the 5169 * parent routes using the parent handle 5170 * (ire_phandle). If no cache entry has 5171 * the same handle as fire, fire is 5172 * still unresolved. 5173 */ 5174 ASSERT(cire->ire_phandle != 0); 5175 if (cire->ire_phandle == 5176 fire->ire_phandle) { 5177 already_resolved = B_TRUE; 5178 break; 5179 } 5180 } 5181 IRB_REFRELE(cirb); 5182 } 5183 5184 /* 5185 * This route is already resolved; proceed with 5186 * next one. 5187 */ 5188 if (already_resolved) { 5189 ire_refrele(gw_ire); 5190 continue; 5191 } 5192 5193 /* 5194 * Compute the time elapsed since our preceding 5195 * attempt to resolve that route. 5196 * If the MULTIRT_USESTAMP flag is set, we take 5197 * that route into account only if this time 5198 * interval exceeds ip_multirt_resolution_interval; 5199 * this prevents us from attempting to resolve a 5200 * broken route upon each sending of a packet. 5201 */ 5202 delta = lbolt - fire->ire_last_used_time; 5203 delta = TICK_TO_MSEC(delta); 5204 5205 res = (boolean_t)((delta > 5206 ipst->ips_ip_multirt_resolution_interval) || 5207 (!(flags & MULTIRT_USESTAMP))); 5208 5209 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 5210 "flags %04x, res %d\n", 5211 (void *)fire, delta, flags, res)); 5212 5213 if (res) { 5214 if (best_cire != NULL) { 5215 /* 5216 * Release the resolver associated 5217 * to the preceding candidate best 5218 * ire, if any. 5219 */ 5220 ire_refrele(best_cire); 5221 ASSERT(best_fire != NULL); 5222 } 5223 best_fire = fire; 5224 best_cire = gw_ire; 5225 continue; 5226 } 5227 5228 ire_refrele(gw_ire); 5229 } 5230 } 5231 5232 if (best_fire != NULL) { 5233 IRE_REFHOLD(best_fire); 5234 } 5235 IRB_REFRELE(firb); 5236 5237 /* Release the first IRE_CACHE we initially looked up, if any. */ 5238 if (first_cire != NULL) 5239 ire_refrele(first_cire); 5240 5241 /* Found a resolvable route. */ 5242 if (best_fire != NULL) { 5243 ASSERT(best_cire != NULL); 5244 5245 if (*fire_arg != NULL) 5246 ire_refrele(*fire_arg); 5247 if (*ire_arg != NULL) 5248 ire_refrele(*ire_arg); 5249 5250 /* 5251 * Update the passed-in arguments with the 5252 * resolvable multirt route we found. 5253 */ 5254 *fire_arg = best_fire; 5255 *ire_arg = best_cire; 5256 5257 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 5258 "*fire_arg %p, *ire_arg %p\n", 5259 (void *)best_fire, (void *)best_cire)); 5260 5261 return (B_TRUE); 5262 } 5263 5264 ASSERT(best_cire == NULL); 5265 5266 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 5267 "*ire_arg %p\n", 5268 (void *)*fire_arg, (void *)*ire_arg)); 5269 5270 /* No resolvable route. */ 5271 return (B_FALSE); 5272 } 5273 5274 /* 5275 * IRE iterator for inbound and loopback broadcast processing. 5276 * Given an IRE_BROADCAST ire, walk the ires with the same destination 5277 * address, but skip over the passed-in ire. Returns the next ire without 5278 * a hold - assumes that the caller holds a reference on the IRE bucket. 5279 */ 5280 ire_t * 5281 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 5282 { 5283 ill_t *ill; 5284 5285 if (curr == NULL) { 5286 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 5287 curr = curr->ire_next) { 5288 if (curr->ire_addr == ire->ire_addr) 5289 break; 5290 } 5291 } else { 5292 curr = curr->ire_next; 5293 } 5294 ill = ire_to_ill(ire); 5295 for (; curr != NULL; curr = curr->ire_next) { 5296 if (curr->ire_addr != ire->ire_addr) { 5297 /* 5298 * All the IREs to a given destination are contiguous; 5299 * break out once the address doesn't match. 5300 */ 5301 break; 5302 } 5303 if (curr == ire) { 5304 /* skip over the passed-in ire */ 5305 continue; 5306 } 5307 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 5308 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 5309 /* 5310 * If the passed-in ire is loopback, skip over 5311 * non-loopback ires and vice versa. 5312 */ 5313 continue; 5314 } 5315 if (ire_to_ill(curr) != ill) { 5316 /* skip over IREs going through a different interface */ 5317 continue; 5318 } 5319 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 5320 /* skip over deleted IREs */ 5321 continue; 5322 } 5323 return (curr); 5324 } 5325 return (NULL); 5326 } 5327 5328 #ifdef DEBUG 5329 void 5330 ire_trace_ref(ire_t *ire) 5331 { 5332 mutex_enter(&ire->ire_lock); 5333 if (ire->ire_trace_disable) { 5334 mutex_exit(&ire->ire_lock); 5335 return; 5336 } 5337 5338 if (th_trace_ref(ire, ire->ire_ipst)) { 5339 mutex_exit(&ire->ire_lock); 5340 } else { 5341 ire->ire_trace_disable = B_TRUE; 5342 mutex_exit(&ire->ire_lock); 5343 ire_trace_cleanup(ire); 5344 } 5345 } 5346 5347 void 5348 ire_untrace_ref(ire_t *ire) 5349 { 5350 mutex_enter(&ire->ire_lock); 5351 if (!ire->ire_trace_disable) 5352 th_trace_unref(ire); 5353 mutex_exit(&ire->ire_lock); 5354 } 5355 5356 static void 5357 ire_trace_cleanup(const ire_t *ire) 5358 { 5359 th_trace_cleanup(ire, ire->ire_trace_disable); 5360 } 5361 #endif /* DEBUG */ 5362 5363 /* 5364 * Generate a message chain with an arp request to resolve the in_ire. 5365 * It is assumed that in_ire itself is currently in the ire cache table, 5366 * so we create a fake_ire filled with enough information about ire_addr etc. 5367 * to retrieve in_ire when the DL_UNITDATA response from the resolver 5368 * comes back. The fake_ire itself is created by calling esballoc with 5369 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 5370 * invoked when the mblk containing fake_ire is freed. 5371 */ 5372 void 5373 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 5374 { 5375 areq_t *areq; 5376 ipaddr_t *addrp; 5377 mblk_t *ire_mp, *areq_mp; 5378 ire_t *ire, *buf; 5379 size_t bufsize; 5380 frtn_t *frtnp; 5381 ill_t *ill; 5382 ip_stack_t *ipst = dst_ill->ill_ipst; 5383 5384 /* 5385 * Construct message chain for the resolver 5386 * of the form: 5387 * ARP_REQ_MBLK-->IRE_MBLK 5388 * 5389 * NOTE : If the response does not 5390 * come back, ARP frees the packet. For this reason, 5391 * we can't REFHOLD the bucket of save_ire to prevent 5392 * deletions. We may not be able to REFRELE the bucket 5393 * if the response never comes back. Thus, before 5394 * adding the ire, ire_add_v4 will make sure that the 5395 * interface route does not get deleted. This is the 5396 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 5397 * where we can always prevent deletions because of 5398 * the synchronous nature of adding IRES i.e 5399 * ire_add_then_send is called after creating the IRE. 5400 */ 5401 5402 /* 5403 * We use esballoc to allocate the second part(the ire_t size mblk) 5404 * of the message chain depicted above. THis mblk will be freed 5405 * by arp when there is a timeout, and otherwise passed to IP 5406 * and IP will * free it after processing the ARP response. 5407 */ 5408 5409 bufsize = sizeof (ire_t) + sizeof (frtn_t); 5410 buf = kmem_alloc(bufsize, KM_NOSLEEP); 5411 if (buf == NULL) { 5412 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 5413 return; 5414 } 5415 frtnp = (frtn_t *)(buf + 1); 5416 frtnp->free_arg = (caddr_t)buf; 5417 frtnp->free_func = ire_freemblk; 5418 5419 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 5420 5421 if (ire_mp == NULL) { 5422 ip1dbg(("ire_arpresolve: esballoc failed\n")); 5423 kmem_free(buf, bufsize); 5424 return; 5425 } 5426 ASSERT(in_ire->ire_nce != NULL); 5427 areq_mp = copyb(dst_ill->ill_resolver_mp); 5428 if (areq_mp == NULL) { 5429 kmem_free(buf, bufsize); 5430 return; 5431 } 5432 5433 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 5434 ire = (ire_t *)buf; 5435 /* 5436 * keep enough info in the fake ire so that we can pull up 5437 * the incomplete ire (in_ire) after result comes back from 5438 * arp and make it complete. 5439 */ 5440 *ire = ire_null; 5441 ire->ire_u = in_ire->ire_u; 5442 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 5443 ire->ire_ipif = in_ire->ire_ipif; 5444 ire->ire_stq = in_ire->ire_stq; 5445 ill = ire_to_ill(ire); 5446 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 5447 ire->ire_zoneid = in_ire->ire_zoneid; 5448 ire->ire_ipst = ipst; 5449 5450 /* 5451 * ire_freemblk will be called when ire_mp is freed, both for 5452 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 5453 * when the arp resolution failed. 5454 */ 5455 ire->ire_marks |= IRE_MARK_UNCACHED; 5456 ire->ire_mp = ire_mp; 5457 ire_mp->b_wptr = (uchar_t *)&ire[1]; 5458 ire_mp->b_cont = NULL; 5459 linkb(areq_mp, ire_mp); 5460 5461 /* 5462 * Fill in the source and dest addrs for the resolver. 5463 * NOTE: this depends on memory layouts imposed by 5464 * ill_init(). 5465 */ 5466 areq = (areq_t *)areq_mp->b_rptr; 5467 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 5468 *addrp = ire->ire_src_addr; 5469 5470 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 5471 if (ire->ire_gateway_addr != INADDR_ANY) { 5472 *addrp = ire->ire_gateway_addr; 5473 } else { 5474 *addrp = ire->ire_addr; 5475 } 5476 5477 /* Up to the resolver. */ 5478 if (canputnext(dst_ill->ill_rq)) { 5479 putnext(dst_ill->ill_rq, areq_mp); 5480 } else { 5481 freemsg(areq_mp); 5482 } 5483 } 5484 5485 /* 5486 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 5487 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 5488 * 5489 * This function can be called by ARP via free routine for ire_mp or 5490 * by IPv4(both host and forwarding path) via ire_delete 5491 * in case ARP resolution fails. 5492 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 5493 * (for IP to talk to ARP, it still has to send AR* messages). 5494 * 5495 * Note that the ARP/IP merge should replace the functioanlity by providing 5496 * direct function calls to clean up unresolved entries in ire/nce lists. 5497 */ 5498 void 5499 ire_freemblk(ire_t *ire_mp) 5500 { 5501 nce_t *nce = NULL; 5502 ill_t *ill; 5503 ip_stack_t *ipst; 5504 5505 ASSERT(ire_mp != NULL); 5506 5507 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 5508 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 5509 (void *)ire_mp)); 5510 goto cleanup; 5511 } 5512 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 5513 goto cleanup; /* everything succeeded. just free and return */ 5514 } 5515 5516 /* 5517 * the arp information corresponding to this ire_mp was not 5518 * transferred to a ire_cache entry. Need 5519 * to clean up incomplete ire's and nce, if necessary. 5520 */ 5521 ASSERT(ire_mp->ire_stq != NULL); 5522 ASSERT(ire_mp->ire_stq_ifindex != 0); 5523 ASSERT(ire_mp->ire_ipst != NULL); 5524 5525 ipst = ire_mp->ire_ipst; 5526 5527 /* 5528 * Get any nce's corresponding to this ire_mp. We first have to 5529 * make sure that the ill is still around. 5530 */ 5531 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, 5532 B_FALSE, NULL, NULL, NULL, NULL, ipst); 5533 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 5534 (ill->ill_state_flags & ILL_CONDEMNED)) { 5535 /* 5536 * ill went away. no nce to clean up. 5537 * Note that the ill_state_flags could be set to 5538 * ILL_CONDEMNED after this point, but if we know 5539 * that it is CONDEMNED now, we just bail out quickly. 5540 */ 5541 if (ill != NULL) 5542 ill_refrele(ill); 5543 goto cleanup; 5544 } 5545 nce = ndp_lookup_v4(ill, 5546 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 5547 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 5548 B_FALSE); 5549 ill_refrele(ill); 5550 5551 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 5552 /* 5553 * some incomplete nce was found. 5554 */ 5555 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 5556 nce_t *, nce, ire_t *, ire_mp); 5557 /* 5558 * Send the icmp_unreachable messages for the queued mblks in 5559 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 5560 * for this ire 5561 */ 5562 arp_resolv_failed(nce); 5563 /* 5564 * Delete the nce and clean up all ire's pointing at this nce 5565 * in the cachetable 5566 */ 5567 ndp_delete(nce); 5568 } 5569 if (nce != NULL) 5570 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 5571 5572 cleanup: 5573 /* 5574 * Get rid of the ire buffer 5575 * We call kmem_free here(instead of ire_delete()), since 5576 * this is the freeb's callback. 5577 */ 5578 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 5579 } 5580 5581 /* 5582 * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and 5583 * non-loopback IRE_BROADCAST ire's. 5584 * 5585 * If a neighbor-cache entry has to be created (i.e., one does not already 5586 * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache 5587 * entry are initialized in ndp_add_v4(). These values are picked from 5588 * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the 5589 * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values 5590 * determine the {nce_state, nce_res_mp} of the nce_t created. All 5591 * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp 5592 * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire 5593 * entries, 5594 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 5595 * nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state. 5596 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 5597 * layer resolution is necessary, so that the nce_t will be in the 5598 * ND_REACHABLE state and the nce_res_mp will have a copy of the 5599 * ill_resolver_mp of the outgoing interface. 5600 * 5601 * The link layer information needed for broadcast addresses, and for 5602 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 5603 * never needs re-verification for the lifetime of the nce_t. These are 5604 * therefore marked NCE_F_PERMANENT, and never allowed to expire via 5605 * NCE_EXPIRED. 5606 * 5607 * IRE_CACHE ire's contain the information for the nexthop (ire_gateway_addr) 5608 * in the case of indirect routes, and for the dst itself (ire_addr) in the 5609 * case of direct routes, with the nce_res_mp containing a template 5610 * DL_UNITDATA request. 5611 * 5612 * The actual association of the ire_nce to the nce created here is 5613 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 5614 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 5615 * the ire_nce assignment is done in ire_add_then_send. 5616 */ 5617 int 5618 ire_nce_init(ire_t *ire, nce_t *src_nce) 5619 { 5620 in_addr_t addr4; 5621 int err; 5622 nce_t *nce = NULL; 5623 ill_t *ire_ill; 5624 uint16_t nce_flags = 0; 5625 ip_stack_t *ipst; 5626 5627 if (ire->ire_stq == NULL) 5628 return (0); /* no need to create nce for local/loopback */ 5629 5630 switch (ire->ire_type) { 5631 case IRE_CACHE: 5632 if (ire->ire_gateway_addr != INADDR_ANY) 5633 addr4 = ire->ire_gateway_addr; /* 'G' route */ 5634 else 5635 addr4 = ire->ire_addr; /* direct route */ 5636 break; 5637 case IRE_BROADCAST: 5638 addr4 = ire->ire_addr; 5639 nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST); 5640 break; 5641 default: 5642 return (0); 5643 } 5644 5645 /* 5646 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 5647 * rules in ire_forward_src_ipif. We want the dlureq_mp 5648 * for the outgoing interface, which we get from the ire_stq. 5649 */ 5650 ire_ill = ire_to_ill(ire); 5651 ipst = ire_ill->ill_ipst; 5652 5653 /* 5654 * IRE_IF_NORESOLVER entries never need re-verification and 5655 * do not expire, so we mark them as NCE_F_PERMANENT. 5656 */ 5657 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) 5658 nce_flags |= NCE_F_PERMANENT; 5659 5660 retry_nce: 5661 err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags, 5662 &nce, src_nce); 5663 5664 if (err == EEXIST && NCE_EXPIRED(nce, ipst)) { 5665 /* 5666 * We looked up an expired nce. 5667 * Go back and try to create one again. 5668 */ 5669 ndp_delete(nce); 5670 NCE_REFRELE(nce); 5671 nce = NULL; 5672 goto retry_nce; 5673 } 5674 5675 ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n", 5676 (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err)); 5677 5678 switch (err) { 5679 case 0: 5680 case EEXIST: 5681 /* 5682 * return a pointer to a newly created or existing nce_t; 5683 * note that the ire-nce mapping is many-one, i.e., 5684 * multiple ire's could point to the same nce_t. 5685 */ 5686 break; 5687 default: 5688 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 5689 return (EINVAL); 5690 } 5691 if (ire->ire_type == IRE_BROADCAST) { 5692 /* 5693 * Two bcast ires are created for each interface; 5694 * 1. loopback copy (which does not have an 5695 * ire_stq, and therefore has no ire_nce), and, 5696 * 2. the non-loopback copy, which has the nce_res_mp 5697 * initialized to a copy of the ill_bcast_mp, and 5698 * is marked as ND_REACHABLE at this point. 5699 * This nce does not undergo any further state changes, 5700 * and exists as long as the interface is plumbed. 5701 * Note: we do the ire_nce assignment here for IRE_BROADCAST 5702 * because some functions like ill_mark_bcast() inline the 5703 * ire_add functionality. 5704 */ 5705 ire->ire_nce = nce; 5706 /* 5707 * We are associating this nce to the ire, 5708 * so change the nce ref taken in 5709 * ndp_lookup_then_add_v4() from 5710 * NCE_REFHOLD to NCE_REFHOLD_NOTR 5711 */ 5712 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 5713 } else { 5714 /* 5715 * We are not using this nce_t just yet so release 5716 * the ref taken in ndp_lookup_then_add_v4() 5717 */ 5718 NCE_REFRELE(nce); 5719 } 5720 return (0); 5721 } 5722