1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 */ 25 26 /* 27 * This file contains routines that manipulate Internet Routing Entries (IREs). 28 */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/stropts.h> 33 #include <sys/strsun.h> 34 #include <sys/strsubr.h> 35 #include <sys/ddi.h> 36 #include <sys/cmn_err.h> 37 #include <sys/policy.h> 38 39 #include <sys/systm.h> 40 #include <sys/kmem.h> 41 #include <sys/param.h> 42 #include <sys/socket.h> 43 #include <net/if.h> 44 #include <net/route.h> 45 #include <netinet/in.h> 46 #include <net/if_dl.h> 47 #include <netinet/ip6.h> 48 #include <netinet/icmp6.h> 49 50 #include <inet/common.h> 51 #include <inet/mi.h> 52 #include <inet/ip.h> 53 #include <inet/ip6.h> 54 #include <inet/ip_ndp.h> 55 #include <inet/arp.h> 56 #include <inet/ip_if.h> 57 #include <inet/ip_ire.h> 58 #include <inet/ip_ftable.h> 59 #include <inet/ip_rts.h> 60 #include <inet/nd.h> 61 #include <inet/tunables.h> 62 63 #include <inet/tcp.h> 64 #include <inet/ipclassifier.h> 65 #include <sys/zone.h> 66 #include <sys/cpuvar.h> 67 68 #include <sys/tsol/label.h> 69 #include <sys/tsol/tnet.h> 70 71 struct kmem_cache *rt_entry_cache; 72 73 typedef struct nce_clookup_s { 74 ipaddr_t ncecl_addr; 75 boolean_t ncecl_found; 76 } nce_clookup_t; 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the forwarding table in which is ire stored. 86 * 87 * ire_ill, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, 89 * ire_bucket 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_refcnt, ire_identical_ref 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_generation 117 * - Under ire_lock 118 * 119 * ire_nce_cache 120 * - Under ire_lock 121 * 122 * ire_dep_parent (To next IRE in recursive lookup chain) 123 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 124 * walking. We also hold ire_lock when modifying to allow the data path 125 * to only acquire ire_lock. 126 * 127 * ire_dep_parent_generation (Generation number from ire_dep_parent) 128 * - Under ips_ire_dep_lock and/or ire_lock. (A read claim on the dep_lock 129 * and ire_lock held when modifying) 130 * 131 * ire_dep_children (From parent to first child) 132 * ire_dep_sib_next (linked list of siblings) 133 * ire_dep_sib_ptpn (linked list of siblings) 134 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 135 * walking. 136 * 137 * As we always hold the bucket locks in all the places while accessing 138 * the above values, it is natural to use them for protecting them. 139 * 140 * We have a forwarding table for IPv4 and IPv6. The IPv6 forwarding table 141 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 142 * structures. ip_forwarding_table_v6 is allocated dynamically in 143 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 144 * initializing the same bucket. Once a bucket is initialized, it is never 145 * de-alloacted. This assumption enables us to access 146 * ip_forwarding_table_v6[i] without any locks. 147 * 148 * The forwarding table for IPv4 is a radix tree whose leaves 149 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 150 * for IPv4 is dynamically allocated and freed. 151 * 152 * Each irb_t - ire bucket structure has a lock to protect 153 * a bucket and the ires residing in the bucket have a back pointer to 154 * the bucket structure. It also has a reference count for the number 155 * of threads walking the bucket - irb_refcnt which is bumped up 156 * using the irb_refhold function. The flags irb_marks can be 157 * set to IRB_MARK_CONDEMNED indicating that there are some ires 158 * in this bucket that are IRE_IS_CONDEMNED and the 159 * last thread to leave the bucket should delete the ires. Usually 160 * this is done by the irb_refrele function which is used to decrement 161 * the reference count on a bucket. See comments above irb_t structure 162 * definition in ip.h for further details. 163 * 164 * The ire_refhold/ire_refrele functions operate on the ire which increments/ 165 * decrements the reference count, ire_refcnt, atomically on the ire. 166 * ire_refcnt is modified only using those functions. Operations on the IRE 167 * could be described as follows : 168 * 169 * CREATE an ire with reference count initialized to 1. 170 * 171 * ADDITION of an ire holds the bucket lock, checks for duplicates 172 * and then adds the ire. ire_add returns the ire after 173 * bumping up once more i.e the reference count is 2. This is to avoid 174 * an extra lookup in the functions calling ire_add which wants to 175 * work with the ire after adding. 176 * 177 * LOOKUP of an ire bumps up the reference count using ire_refhold 178 * function. It is valid to bump up the referece count of the IRE, 179 * after the lookup has returned an ire. Following are the lookup 180 * functions that return an HELD ire : 181 * 182 * ire_ftable_lookup[_v6], ire_lookup_multi_ill[_v6] 183 * 184 * DELETION of an ire holds the bucket lock, removes it from the list 185 * and then decrements the reference count for having removed from the list 186 * by using the ire_refrele function. If some other thread has looked up 187 * the ire, the reference count would have been bumped up and hence 188 * this ire will not be freed once deleted. It will be freed once the 189 * reference count drops to zero. 190 * 191 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 192 * lookups acquire the bucket lock as RW_READER. 193 * 194 * The general rule is to do the ire_refrele in the function 195 * that is passing the ire as an argument. 196 * 197 * In trying to locate ires the following points are to be noted. 198 * 199 * IRE_IS_CONDEMNED signifies that the ire has been logically deleted and is 200 * to be ignored when walking the ires using ire_next. 201 * 202 * Zones note: 203 * Walking IREs within a given zone also walks certain ires in other 204 * zones. This is done intentionally. IRE walks with a specified 205 * zoneid are used only when doing informational reports, and 206 * zone users want to see things that they can access. See block 207 * comment in ire_walk_ill_match(). 208 */ 209 210 /* 211 * The size of the forwarding table. We will make sure that it is a 212 * power of 2 in ip_ire_init(). 213 * Setable in /etc/system 214 */ 215 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 216 217 struct kmem_cache *ire_cache; 218 struct kmem_cache *ncec_cache; 219 struct kmem_cache *nce_cache; 220 221 static ire_t ire_null; 222 223 static ire_t *ire_add_v4(ire_t *ire); 224 static void ire_delete_v4(ire_t *ire); 225 static void ire_dep_invalidate_children(ire_t *child); 226 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 227 zoneid_t zoneid, ip_stack_t *); 228 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 229 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 230 #ifdef DEBUG 231 static void ire_trace_cleanup(const ire_t *); 232 #endif 233 static void ire_dep_incr_generation_locked(ire_t *); 234 235 /* 236 * Following are the functions to increment/decrement the reference 237 * count of the IREs and IRBs (ire bucket). 238 * 239 * 1) We bump up the reference count of an IRE to make sure that 240 * it does not get deleted and freed while we are using it. 241 * Typically all the lookup functions hold the bucket lock, 242 * and look for the IRE. If it finds an IRE, it bumps up the 243 * reference count before dropping the lock. Sometimes we *may* want 244 * to bump up the reference count after we *looked* up i.e without 245 * holding the bucket lock. So, the ire_refhold function does not assert 246 * on the bucket lock being held. Any thread trying to delete from 247 * the hash bucket can still do so but cannot free the IRE if 248 * ire_refcnt is not 0. 249 * 250 * 2) We bump up the reference count on the bucket where the IRE resides 251 * (IRB), when we want to prevent the IREs getting deleted from a given 252 * hash bucket. This makes life easier for ire_walk type functions which 253 * wants to walk the IRE list, call a function, but needs to drop 254 * the bucket lock to prevent recursive rw_enters. While the 255 * lock is dropped, the list could be changed by other threads or 256 * the same thread could end up deleting the ire or the ire pointed by 257 * ire_next. ire_refholding the ire or ire_next is not sufficient as 258 * a delete will still remove the ire from the bucket while we have 259 * dropped the lock and hence the ire_next would be NULL. Thus, we 260 * need a mechanism to prevent deletions from a given bucket. 261 * 262 * To prevent deletions, we bump up the reference count on the 263 * bucket. If the bucket is held, ire_delete just marks both 264 * the ire and irb as CONDEMNED. When the 265 * reference count on the bucket drops to zero, all the CONDEMNED ires 266 * are deleted. We don't have to bump up the reference count on the 267 * bucket if we are walking the bucket and never have to drop the bucket 268 * lock. Note that irb_refhold does not prevent addition of new ires 269 * in the list. It is okay because addition of new ires will not cause 270 * ire_next to point to freed memory. We do irb_refhold only when 271 * all of the 3 conditions are true : 272 * 273 * 1) The code needs to walk the IRE bucket from start to end. 274 * 2) It may have to drop the bucket lock sometimes while doing (1) 275 * 3) It does not want any ires to be deleted meanwhile. 276 */ 277 278 /* 279 * Bump up the reference count on the hash bucket - IRB to 280 * prevent ires from being deleted in this bucket. 281 */ 282 void 283 irb_refhold(irb_t *irb) 284 { 285 rw_enter(&irb->irb_lock, RW_WRITER); 286 irb->irb_refcnt++; 287 ASSERT(irb->irb_refcnt != 0); 288 rw_exit(&irb->irb_lock); 289 } 290 291 void 292 irb_refhold_locked(irb_t *irb) 293 { 294 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 295 irb->irb_refcnt++; 296 ASSERT(irb->irb_refcnt != 0); 297 } 298 299 /* 300 * Note: when IRB_MARK_DYNAMIC is not set the irb_t 301 * is statically allocated, so that when the irb_refcnt goes to 0, 302 * we simply clean up the ire list and continue. 303 */ 304 void 305 irb_refrele(irb_t *irb) 306 { 307 if (irb->irb_marks & IRB_MARK_DYNAMIC) { 308 irb_refrele_ftable(irb); 309 } else { 310 rw_enter(&irb->irb_lock, RW_WRITER); 311 ASSERT(irb->irb_refcnt != 0); 312 if (--irb->irb_refcnt == 0 && 313 (irb->irb_marks & IRB_MARK_CONDEMNED)) { 314 ire_t *ire_list; 315 316 ire_list = ire_unlink(irb); 317 rw_exit(&irb->irb_lock); 318 ASSERT(ire_list != NULL); 319 ire_cleanup(ire_list); 320 } else { 321 rw_exit(&irb->irb_lock); 322 } 323 } 324 } 325 326 327 /* 328 * Bump up the reference count on the IRE. We cannot assert that the 329 * bucket lock is being held as it is legal to bump up the reference 330 * count after the first lookup has returned the IRE without 331 * holding the lock. 332 */ 333 void 334 ire_refhold(ire_t *ire) 335 { 336 atomic_inc_32(&(ire)->ire_refcnt); 337 ASSERT((ire)->ire_refcnt != 0); 338 #ifdef DEBUG 339 ire_trace_ref(ire); 340 #endif 341 } 342 343 void 344 ire_refhold_notr(ire_t *ire) 345 { 346 atomic_inc_32(&(ire)->ire_refcnt); 347 ASSERT((ire)->ire_refcnt != 0); 348 } 349 350 void 351 ire_refhold_locked(ire_t *ire) 352 { 353 #ifdef DEBUG 354 ire_trace_ref(ire); 355 #endif 356 ire->ire_refcnt++; 357 } 358 359 /* 360 * Release a ref on an IRE. 361 * 362 * Must not be called while holding any locks. Otherwise if this is 363 * the last reference to be released there is a chance of recursive mutex 364 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 365 * to restart an ioctl. The one exception is when the caller is sure that 366 * this is not the last reference to be released. Eg. if the caller is 367 * sure that the ire has not been deleted and won't be deleted. 368 * 369 * In architectures e.g sun4u, where atomic_add_32_nv is just 370 * a cas, we need to maintain the right memory barrier semantics 371 * as that of mutex_exit i.e all the loads and stores should complete 372 * before the cas is executed. membar_exit() does that here. 373 */ 374 void 375 ire_refrele(ire_t *ire) 376 { 377 #ifdef DEBUG 378 ire_untrace_ref(ire); 379 #endif 380 ASSERT((ire)->ire_refcnt != 0); 381 membar_exit(); 382 if (atomic_dec_32_nv(&(ire)->ire_refcnt) == 0) 383 ire_inactive(ire); 384 } 385 386 void 387 ire_refrele_notr(ire_t *ire) 388 { 389 ASSERT((ire)->ire_refcnt != 0); 390 membar_exit(); 391 if (atomic_dec_32_nv(&(ire)->ire_refcnt) == 0) 392 ire_inactive(ire); 393 } 394 395 /* 396 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 397 * IOCTL[s]. The NO_REPLY form is used by TCP to tell IP that it is 398 * having problems reaching a particular destination. 399 * This will make IP consider alternate routes (e.g., when there are 400 * muliple default routes), and it will also make IP discard any (potentially) 401 * stale redirect. 402 * Management processes may want to use the version that generates a reply. 403 * 404 * With the use of NUD like behavior for IPv4/ARP in addition to IPv6 405 * this function shouldn't be necessary for IP to recover from a bad redirect, 406 * a bad default router (when there are multiple default routers), or 407 * a stale ND/ARP entry. But we retain it in any case. 408 * For instance, this is helpful when TCP suspects a failure before NUD does. 409 */ 410 int 411 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 412 { 413 uchar_t *addr_ucp; 414 uint_t ipversion; 415 sin_t *sin; 416 sin6_t *sin6; 417 ipaddr_t v4addr; 418 in6_addr_t v6addr; 419 ire_t *ire; 420 ipid_t *ipid; 421 zoneid_t zoneid; 422 ip_stack_t *ipst; 423 424 ASSERT(q->q_next == NULL); 425 zoneid = IPCL_ZONEID(Q_TO_CONN(q)); 426 ipst = CONNQ_TO_IPST(q); 427 428 /* 429 * Check privilege using the ioctl credential; if it is NULL 430 * then this is a kernel message and therefor privileged. 431 */ 432 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 433 return (EPERM); 434 435 ipid = (ipid_t *)mp->b_rptr; 436 437 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 438 ipid->ipid_addr_length); 439 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 440 return (EINVAL); 441 switch (ipid->ipid_addr_length) { 442 case sizeof (sin_t): 443 /* 444 * got complete (sockaddr) address - increment addr_ucp to point 445 * at the ip_addr field. 446 */ 447 sin = (sin_t *)addr_ucp; 448 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 449 ipversion = IPV4_VERSION; 450 break; 451 case sizeof (sin6_t): 452 /* 453 * got complete (sockaddr) address - increment addr_ucp to point 454 * at the ip_addr field. 455 */ 456 sin6 = (sin6_t *)addr_ucp; 457 addr_ucp = (uchar_t *)&sin6->sin6_addr; 458 ipversion = IPV6_VERSION; 459 break; 460 default: 461 return (EINVAL); 462 } 463 if (ipversion == IPV4_VERSION) { 464 /* Extract the destination address. */ 465 bcopy(addr_ucp, &v4addr, IP_ADDR_LEN); 466 467 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 468 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 469 } else { 470 /* Extract the destination address. */ 471 bcopy(addr_ucp, &v6addr, IPV6_ADDR_LEN); 472 473 ire = ire_ftable_lookup_v6(&v6addr, NULL, NULL, 0, NULL, 474 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 475 } 476 if (ire != NULL) { 477 if (ipversion == IPV4_VERSION) { 478 ip_rts_change(RTM_LOSING, ire->ire_addr, 479 ire->ire_gateway_addr, ire->ire_mask, 480 (Q_TO_CONN(q))->conn_laddr_v4, 0, 0, 0, 481 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 482 ire->ire_ipst); 483 } 484 (void) ire_no_good(ire); 485 ire_refrele(ire); 486 } 487 return (0); 488 } 489 490 /* 491 * Initialize the ire that is specific to IPv4 part and call 492 * ire_init_common to finish it. 493 * Returns zero or errno. 494 */ 495 int 496 ire_init_v4(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *gateway, 497 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, 498 tsol_gc_t *gc, ip_stack_t *ipst) 499 { 500 int error; 501 502 /* 503 * Reject IRE security attribute creation/initialization 504 * if system is not running in Trusted mode. 505 */ 506 if (gc != NULL && !is_system_labeled()) 507 return (EINVAL); 508 509 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 510 511 if (addr != NULL) 512 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 513 if (gateway != NULL) 514 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 515 516 /* Make sure we don't have stray values in some fields */ 517 switch (type) { 518 case IRE_LOOPBACK: 519 case IRE_HOST: 520 case IRE_BROADCAST: 521 case IRE_LOCAL: 522 case IRE_IF_CLONE: 523 ire->ire_mask = IP_HOST_MASK; 524 ire->ire_masklen = IPV4_ABITS; 525 break; 526 case IRE_PREFIX: 527 case IRE_DEFAULT: 528 case IRE_IF_RESOLVER: 529 case IRE_IF_NORESOLVER: 530 if (mask != NULL) { 531 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 532 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 533 } 534 break; 535 case IRE_MULTICAST: 536 case IRE_NOROUTE: 537 ASSERT(mask == NULL); 538 break; 539 default: 540 ASSERT(0); 541 return (EINVAL); 542 } 543 544 error = ire_init_common(ire, type, ill, zoneid, flags, IPV4_VERSION, 545 gc, ipst); 546 if (error != 0) 547 return (error); 548 549 /* Determine which function pointers to use */ 550 ire->ire_postfragfn = ip_xmit; /* Common case */ 551 552 switch (ire->ire_type) { 553 case IRE_LOCAL: 554 ire->ire_sendfn = ire_send_local_v4; 555 ire->ire_recvfn = ire_recv_local_v4; 556 ASSERT(ire->ire_ill != NULL); 557 if (ire->ire_ill->ill_flags & ILLF_NOACCEPT) 558 ire->ire_recvfn = ire_recv_noaccept_v6; 559 break; 560 case IRE_LOOPBACK: 561 ire->ire_sendfn = ire_send_local_v4; 562 ire->ire_recvfn = ire_recv_loopback_v4; 563 break; 564 case IRE_BROADCAST: 565 ire->ire_postfragfn = ip_postfrag_loopcheck; 566 ire->ire_sendfn = ire_send_broadcast_v4; 567 ire->ire_recvfn = ire_recv_broadcast_v4; 568 break; 569 case IRE_MULTICAST: 570 ire->ire_postfragfn = ip_postfrag_loopcheck; 571 ire->ire_sendfn = ire_send_multicast_v4; 572 ire->ire_recvfn = ire_recv_multicast_v4; 573 break; 574 default: 575 /* 576 * For IRE_IF_ALL and IRE_OFFLINK we forward received 577 * packets by default. 578 */ 579 ire->ire_sendfn = ire_send_wire_v4; 580 ire->ire_recvfn = ire_recv_forward_v4; 581 break; 582 } 583 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 584 ire->ire_sendfn = ire_send_noroute_v4; 585 ire->ire_recvfn = ire_recv_noroute_v4; 586 } else if (ire->ire_flags & RTF_MULTIRT) { 587 ire->ire_postfragfn = ip_postfrag_multirt_v4; 588 ire->ire_sendfn = ire_send_multirt_v4; 589 /* Multirt receive of broadcast uses ire_recv_broadcast_v4 */ 590 if (ire->ire_type != IRE_BROADCAST) 591 ire->ire_recvfn = ire_recv_multirt_v4; 592 } 593 ire->ire_nce_capable = ire_determine_nce_capable(ire); 594 return (0); 595 } 596 597 /* 598 * Determine ire_nce_capable 599 */ 600 boolean_t 601 ire_determine_nce_capable(ire_t *ire) 602 { 603 int max_masklen; 604 605 if ((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 606 (ire->ire_type & IRE_MULTICAST)) 607 return (B_TRUE); 608 609 if (ire->ire_ipversion == IPV4_VERSION) 610 max_masklen = IPV4_ABITS; 611 else 612 max_masklen = IPV6_ABITS; 613 614 if ((ire->ire_type & IRE_ONLINK) && ire->ire_masklen == max_masklen) 615 return (B_TRUE); 616 return (B_FALSE); 617 } 618 619 /* 620 * ire_create is called to allocate and initialize a new IRE. 621 * 622 * NOTE : This is called as writer sometimes though not required 623 * by this function. 624 */ 625 ire_t * 626 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *gateway, 627 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, 628 ip_stack_t *ipst) 629 { 630 ire_t *ire; 631 int error; 632 633 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 634 if (ire == NULL) { 635 DTRACE_PROBE(kmem__cache__alloc); 636 return (NULL); 637 } 638 *ire = ire_null; 639 640 error = ire_init_v4(ire, addr, mask, gateway, type, ill, zoneid, flags, 641 gc, ipst); 642 if (error != 0) { 643 DTRACE_PROBE2(ire__init, ire_t *, ire, int, error); 644 kmem_cache_free(ire_cache, ire); 645 return (NULL); 646 } 647 return (ire); 648 } 649 650 /* 651 * Common to IPv4 and IPv6 652 * Returns zero or errno. 653 */ 654 int 655 ire_init_common(ire_t *ire, ushort_t type, ill_t *ill, zoneid_t zoneid, 656 uint_t flags, uchar_t ipversion, tsol_gc_t *gc, ip_stack_t *ipst) 657 { 658 int error; 659 660 #ifdef DEBUG 661 if (ill != NULL) { 662 if (ill->ill_isv6) 663 ASSERT(ipversion == IPV6_VERSION); 664 else 665 ASSERT(ipversion == IPV4_VERSION); 666 } 667 #endif /* DEBUG */ 668 669 /* 670 * Create/initialize IRE security attribute only in Trusted mode; 671 * if the passed in gc is non-NULL, we expect that the caller 672 * has held a reference to it and will release it when this routine 673 * returns a failure, otherwise we own the reference. We do this 674 * prior to initializing the rest IRE fields. 675 */ 676 if (is_system_labeled()) { 677 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 678 IRE_IF_ALL | IRE_MULTICAST | IRE_NOROUTE)) != 0) { 679 /* release references on behalf of caller */ 680 if (gc != NULL) 681 GC_REFRELE(gc); 682 } else { 683 error = tsol_ire_init_gwattr(ire, ipversion, gc); 684 if (error != 0) 685 return (error); 686 } 687 } 688 689 ire->ire_type = type; 690 ire->ire_flags = RTF_UP | flags; 691 ire->ire_create_time = (uint32_t)gethrestime_sec(); 692 ire->ire_generation = IRE_GENERATION_INITIAL; 693 694 /* 695 * The ill_ire_cnt isn't increased until 696 * the IRE is added to ensure that a walker will find 697 * all IREs that hold a reference on an ill. 698 * 699 * Note that ill_ire_multicast doesn't hold a ref on the ill since 700 * ire_add() is not called for the IRE_MULTICAST. 701 */ 702 ire->ire_ill = ill; 703 ire->ire_zoneid = zoneid; 704 ire->ire_ipversion = ipversion; 705 706 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 707 ire->ire_refcnt = 1; 708 ire->ire_identical_ref = 1; /* Number of ire_delete's needed */ 709 ire->ire_ipst = ipst; /* No netstack_hold */ 710 ire->ire_trace_disable = B_FALSE; 711 712 return (0); 713 } 714 715 /* 716 * This creates an IRE_BROADCAST based on the arguments. 717 * A mirror is ire_lookup_bcast(). 718 * 719 * Any supression of unneeded ones is done in ire_add_v4. 720 * We add one IRE_BROADCAST per address. ire_send_broadcast_v4() 721 * takes care of generating a loopback copy of the packet. 722 */ 723 ire_t ** 724 ire_create_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid, ire_t **irep) 725 { 726 ip_stack_t *ipst = ill->ill_ipst; 727 728 ASSERT(IAM_WRITER_ILL(ill)); 729 730 *irep++ = ire_create( 731 (uchar_t *)&addr, /* dest addr */ 732 (uchar_t *)&ip_g_all_ones, /* mask */ 733 NULL, /* no gateway */ 734 IRE_BROADCAST, 735 ill, 736 zoneid, 737 RTF_KERNEL, 738 NULL, 739 ipst); 740 741 return (irep); 742 } 743 744 /* 745 * This looks up an IRE_BROADCAST based on the arguments. 746 * Mirrors ire_create_bcast(). 747 */ 748 ire_t * 749 ire_lookup_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 750 { 751 ire_t *ire; 752 int match_args; 753 754 match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_GW | 755 MATCH_IRE_MASK | MATCH_IRE_ZONEONLY; 756 757 if (IS_UNDER_IPMP(ill)) 758 match_args |= MATCH_IRE_TESTHIDDEN; 759 760 ire = ire_ftable_lookup_v4( 761 addr, /* dest addr */ 762 ip_g_all_ones, /* mask */ 763 0, /* no gateway */ 764 IRE_BROADCAST, 765 ill, 766 zoneid, 767 NULL, 768 match_args, 769 0, 770 ill->ill_ipst, 771 NULL); 772 return (ire); 773 } 774 775 /* Arrange to call the specified function for every IRE in the world. */ 776 void 777 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 778 { 779 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 780 } 781 782 void 783 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 784 { 785 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 786 } 787 788 void 789 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 790 { 791 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 792 } 793 794 /* 795 * Walk a particular version. version == 0 means both v4 and v6. 796 */ 797 static void 798 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 799 ip_stack_t *ipst) 800 { 801 if (vers != IPV6_VERSION) { 802 /* 803 * ip_forwarding_table variable doesn't matter for IPv4 since 804 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 805 */ 806 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 807 0, NULL, 808 NULL, zoneid, ipst); 809 } 810 if (vers != IPV4_VERSION) { 811 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 812 ipst->ips_ip6_ftable_hash_size, 813 ipst->ips_ip_forwarding_table_v6, 814 NULL, zoneid, ipst); 815 } 816 } 817 818 /* 819 * Arrange to call the specified function for every IRE that matches the ill. 820 */ 821 void 822 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 823 ill_t *ill) 824 { 825 uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION); 826 827 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill); 828 } 829 830 /* 831 * Walk a particular ill and version. 832 */ 833 static void 834 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 835 void *arg, uchar_t vers, ill_t *ill) 836 { 837 ip_stack_t *ipst = ill->ill_ipst; 838 839 if (vers == IPV4_VERSION) { 840 ire_walk_ill_tables(match_flags, ire_type, func, arg, 841 IP_MASK_TABLE_SIZE, 842 0, NULL, 843 ill, ALL_ZONES, ipst); 844 } 845 if (vers != IPV4_VERSION) { 846 ire_walk_ill_tables(match_flags, ire_type, func, arg, 847 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 848 ipst->ips_ip_forwarding_table_v6, 849 ill, ALL_ZONES, ipst); 850 } 851 } 852 853 /* 854 * Do the specific matching of IREs to shared-IP zones. 855 * 856 * We have the same logic as in ire_match_args but implemented slightly 857 * differently. 858 */ 859 boolean_t 860 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 861 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 862 { 863 ill_t *dst_ill = ire->ire_ill; 864 865 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 866 867 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 868 ire->ire_zoneid != ALL_ZONES) { 869 /* 870 * We're walking the IREs for a specific zone. The only relevant 871 * IREs are: 872 * - all IREs with a matching ire_zoneid 873 * - IRE_IF_ALL IREs for interfaces with a usable source addr 874 * with a matching zone 875 * - IRE_OFFLINK with a gateway reachable from the zone 876 * Note that ealier we only did the IRE_OFFLINK check for 877 * IRE_DEFAULT (and only when we had multiple IRE_DEFAULTs). 878 */ 879 if (ire->ire_type & IRE_ONLINK) { 880 uint_t ifindex; 881 882 /* 883 * Note there is no IRE_INTERFACE on vniN thus 884 * can't do an IRE lookup for a matching route. 885 */ 886 ifindex = dst_ill->ill_usesrc_ifindex; 887 if (ifindex == 0) 888 return (B_FALSE); 889 890 /* 891 * If there is a usable source address in the 892 * zone, then it's ok to return an 893 * IRE_INTERFACE 894 */ 895 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 896 zoneid, ipst)) { 897 return (B_FALSE); 898 } 899 } 900 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 901 ipif_t *tipif; 902 903 mutex_enter(&dst_ill->ill_lock); 904 for (tipif = dst_ill->ill_ipif; 905 tipif != NULL; tipif = tipif->ipif_next) { 906 if (!IPIF_IS_CONDEMNED(tipif) && 907 (tipif->ipif_flags & IPIF_UP) && 908 (tipif->ipif_zoneid == zoneid || 909 tipif->ipif_zoneid == ALL_ZONES)) 910 break; 911 } 912 mutex_exit(&dst_ill->ill_lock); 913 if (tipif == NULL) { 914 return (B_FALSE); 915 } 916 } 917 } 918 /* 919 * Except for ALL_ZONES, we only match the offlink routes 920 * where ire_gateway_addr has an IRE_INTERFACE for the zoneid. 921 * Since we can have leftover routes after the IP addresses have 922 * changed, the global zone will also match offlink routes where the 923 * gateway is unreachable from any zone. 924 */ 925 if ((ire->ire_type & IRE_OFFLINK) && zoneid != ALL_ZONES) { 926 in6_addr_t gw_addr_v6; 927 boolean_t reach; 928 929 if (ire->ire_ipversion == IPV4_VERSION) { 930 reach = ire_gateway_ok_zone_v4(ire->ire_gateway_addr, 931 zoneid, dst_ill, NULL, ipst, B_FALSE); 932 } else { 933 ASSERT(ire->ire_ipversion == IPV6_VERSION); 934 mutex_enter(&ire->ire_lock); 935 gw_addr_v6 = ire->ire_gateway_addr_v6; 936 mutex_exit(&ire->ire_lock); 937 938 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, zoneid, 939 dst_ill, NULL, ipst, B_FALSE); 940 } 941 if (!reach) { 942 if (zoneid != GLOBAL_ZONEID) 943 return (B_FALSE); 944 945 /* 946 * Check if ALL_ZONES reachable - if not then let the 947 * global zone see it. 948 */ 949 if (ire->ire_ipversion == IPV4_VERSION) { 950 reach = ire_gateway_ok_zone_v4( 951 ire->ire_gateway_addr, ALL_ZONES, 952 dst_ill, NULL, ipst, B_FALSE); 953 } else { 954 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, 955 ALL_ZONES, dst_ill, NULL, ipst, B_FALSE); 956 } 957 if (reach) { 958 /* 959 * Some other zone could see it, hence hide it 960 * in the global zone. 961 */ 962 return (B_FALSE); 963 } 964 } 965 } 966 967 if (((!(match_flags & MATCH_IRE_TYPE)) || 968 (ire->ire_type & ire_type)) && 969 ((!(match_flags & MATCH_IRE_ILL)) || 970 (dst_ill == ill || 971 dst_ill != NULL && IS_IN_SAME_ILLGRP(dst_ill, ill)))) { 972 return (B_TRUE); 973 } 974 return (B_FALSE); 975 } 976 977 int 978 rtfunc(struct radix_node *rn, void *arg) 979 { 980 struct rtfuncarg *rtf = arg; 981 struct rt_entry *rt; 982 irb_t *irb; 983 ire_t *ire; 984 boolean_t ret; 985 986 rt = (struct rt_entry *)rn; 987 ASSERT(rt != NULL); 988 irb = &rt->rt_irb; 989 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 990 if ((rtf->rt_match_flags != 0) || 991 (rtf->rt_zoneid != ALL_ZONES)) { 992 ret = ire_walk_ill_match(rtf->rt_match_flags, 993 rtf->rt_ire_type, ire, 994 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 995 } else { 996 ret = B_TRUE; 997 } 998 if (ret) 999 (*rtf->rt_func)(ire, rtf->rt_arg); 1000 } 1001 return (0); 1002 } 1003 1004 /* 1005 * Walk the ftable entries that match the ill. 1006 */ 1007 void 1008 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 1009 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 1010 ill_t *ill, zoneid_t zoneid, 1011 ip_stack_t *ipst) 1012 { 1013 irb_t *irb_ptr; 1014 irb_t *irb; 1015 ire_t *ire; 1016 int i, j; 1017 boolean_t ret; 1018 struct rtfuncarg rtfarg; 1019 1020 ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL)); 1021 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 1022 1023 /* knobs such that routine is called only for v6 case */ 1024 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 1025 for (i = (ftbl_sz - 1); i >= 0; i--) { 1026 if ((irb_ptr = ipftbl[i]) == NULL) 1027 continue; 1028 for (j = 0; j < htbl_sz; j++) { 1029 irb = &irb_ptr[j]; 1030 if (irb->irb_ire == NULL) 1031 continue; 1032 1033 irb_refhold(irb); 1034 for (ire = irb->irb_ire; ire != NULL; 1035 ire = ire->ire_next) { 1036 if (match_flags == 0 && 1037 zoneid == ALL_ZONES) { 1038 ret = B_TRUE; 1039 } else { 1040 ret = 1041 ire_walk_ill_match( 1042 match_flags, 1043 ire_type, ire, ill, 1044 zoneid, ipst); 1045 } 1046 if (ret) 1047 (*func)(ire, arg); 1048 } 1049 irb_refrele(irb); 1050 } 1051 } 1052 } else { 1053 bzero(&rtfarg, sizeof (rtfarg)); 1054 rtfarg.rt_func = func; 1055 rtfarg.rt_arg = arg; 1056 if (match_flags != 0) { 1057 rtfarg.rt_match_flags = match_flags; 1058 } 1059 rtfarg.rt_ire_type = ire_type; 1060 rtfarg.rt_ill = ill; 1061 rtfarg.rt_zoneid = zoneid; 1062 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 1063 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 1064 ipst->ips_ip_ftable, 1065 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 1066 } 1067 } 1068 1069 /* 1070 * This function takes a mask and returns 1071 * number of bits set in the mask. If no 1072 * bit is set it returns 0. 1073 * Assumes a contiguous mask. 1074 */ 1075 int 1076 ip_mask_to_plen(ipaddr_t mask) 1077 { 1078 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 1079 } 1080 1081 /* 1082 * Convert length for a mask to the mask. 1083 */ 1084 ipaddr_t 1085 ip_plen_to_mask(uint_t masklen) 1086 { 1087 if (masklen == 0) 1088 return (0); 1089 1090 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 1091 } 1092 1093 void 1094 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 1095 { 1096 ill_t *ill; 1097 1098 ill = ire->ire_ill; 1099 if (ill != NULL) 1100 mutex_exit(&ill->ill_lock); 1101 rw_exit(&irb_ptr->irb_lock); 1102 } 1103 1104 /* 1105 * ire_add_v[46] atomically make sure that the ill associated 1106 * with the new ire is not going away i.e., we check ILL_CONDEMNED. 1107 */ 1108 int 1109 ire_atomic_start(irb_t *irb_ptr, ire_t *ire) 1110 { 1111 ill_t *ill; 1112 1113 ill = ire->ire_ill; 1114 1115 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 1116 if (ill != NULL) { 1117 mutex_enter(&ill->ill_lock); 1118 1119 /* 1120 * Don't allow IRE's to be created on dying ills, or on 1121 * ill's for which the last ipif is going down, or ones which 1122 * don't have even a single UP interface 1123 */ 1124 if ((ill->ill_state_flags & 1125 (ILL_CONDEMNED|ILL_DOWN_IN_PROGRESS)) != 0) { 1126 ire_atomic_end(irb_ptr, ire); 1127 DTRACE_PROBE1(ire__add__on__dying__ill, ire_t *, ire); 1128 return (ENXIO); 1129 } 1130 1131 if (IS_UNDER_IPMP(ill)) { 1132 int error = 0; 1133 mutex_enter(&ill->ill_phyint->phyint_lock); 1134 if (!ipmp_ill_is_active(ill) && 1135 IRE_HIDDEN_TYPE(ire->ire_type) && 1136 !ire->ire_testhidden) { 1137 error = EINVAL; 1138 } 1139 mutex_exit(&ill->ill_phyint->phyint_lock); 1140 if (error != 0) { 1141 ire_atomic_end(irb_ptr, ire); 1142 return (error); 1143 } 1144 } 1145 1146 } 1147 return (0); 1148 } 1149 1150 /* 1151 * Add a fully initialized IRE to the forwarding table. 1152 * This returns NULL on failure, or a held IRE on success. 1153 * Normally the returned IRE is the same as the argument. But a different 1154 * IRE will be returned if the added IRE is deemed identical to an existing 1155 * one. In that case ire_identical_ref will be increased. 1156 * The caller always needs to do an ire_refrele() on the returned IRE. 1157 */ 1158 ire_t * 1159 ire_add(ire_t *ire) 1160 { 1161 if (IRE_HIDDEN_TYPE(ire->ire_type) && 1162 ire->ire_ill != NULL && IS_UNDER_IPMP(ire->ire_ill)) { 1163 /* 1164 * IREs hosted on interfaces that are under IPMP 1165 * should be hidden so that applications don't 1166 * accidentally end up sending packets with test 1167 * addresses as their source addresses, or 1168 * sending out interfaces that are e.g. IFF_INACTIVE. 1169 * Hide them here. 1170 */ 1171 ire->ire_testhidden = B_TRUE; 1172 } 1173 1174 if (ire->ire_ipversion == IPV6_VERSION) 1175 return (ire_add_v6(ire)); 1176 else 1177 return (ire_add_v4(ire)); 1178 } 1179 1180 /* 1181 * Add a fully initialized IPv4 IRE to the forwarding table. 1182 * This returns NULL on failure, or a held IRE on success. 1183 * Normally the returned IRE is the same as the argument. But a different 1184 * IRE will be returned if the added IRE is deemed identical to an existing 1185 * one. In that case ire_identical_ref will be increased. 1186 * The caller always needs to do an ire_refrele() on the returned IRE. 1187 */ 1188 static ire_t * 1189 ire_add_v4(ire_t *ire) 1190 { 1191 ire_t *ire1; 1192 irb_t *irb_ptr; 1193 ire_t **irep; 1194 int match_flags; 1195 int error; 1196 ip_stack_t *ipst = ire->ire_ipst; 1197 1198 if (ire->ire_ill != NULL) 1199 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1200 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1201 1202 /* Make sure the address is properly masked. */ 1203 ire->ire_addr &= ire->ire_mask; 1204 1205 match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 1206 1207 if (ire->ire_ill != NULL) { 1208 match_flags |= MATCH_IRE_ILL; 1209 } 1210 irb_ptr = ire_get_bucket(ire); 1211 if (irb_ptr == NULL) { 1212 printf("no bucket for %p\n", (void *)ire); 1213 ire_delete(ire); 1214 return (NULL); 1215 } 1216 1217 /* 1218 * Start the atomic add of the ire. Grab the ill lock, 1219 * the bucket lock. Check for condemned. 1220 */ 1221 error = ire_atomic_start(irb_ptr, ire); 1222 if (error != 0) { 1223 printf("no ire_atomic_start for %p\n", (void *)ire); 1224 ire_delete(ire); 1225 irb_refrele(irb_ptr); 1226 return (NULL); 1227 } 1228 /* 1229 * If we are creating a hidden IRE, make sure we search for 1230 * hidden IREs when searching for duplicates below. 1231 * Otherwise, we might find an IRE on some other interface 1232 * that's not marked hidden. 1233 */ 1234 if (ire->ire_testhidden) 1235 match_flags |= MATCH_IRE_TESTHIDDEN; 1236 1237 /* 1238 * Atomically check for duplicate and insert in the table. 1239 */ 1240 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 1241 if (IRE_IS_CONDEMNED(ire1)) 1242 continue; 1243 /* 1244 * Here we need an exact match on zoneid, i.e., 1245 * ire_match_args doesn't fit. 1246 */ 1247 if (ire1->ire_zoneid != ire->ire_zoneid) 1248 continue; 1249 1250 if (ire1->ire_type != ire->ire_type) 1251 continue; 1252 1253 /* 1254 * Note: We do not allow multiple routes that differ only 1255 * in the gateway security attributes; such routes are 1256 * considered duplicates. 1257 * To change that we explicitly have to treat them as 1258 * different here. 1259 */ 1260 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 1261 ire->ire_gateway_addr, ire->ire_type, ire->ire_ill, 1262 ire->ire_zoneid, NULL, match_flags)) { 1263 /* 1264 * Return the old ire after doing a REFHOLD. 1265 * As most of the callers continue to use the IRE 1266 * after adding, we return a held ire. This will 1267 * avoid a lookup in the caller again. If the callers 1268 * don't want to use it, they need to do a REFRELE. 1269 * 1270 * We only allow exactly one IRE_IF_CLONE for any dst, 1271 * so, if the is an IF_CLONE, return the ire without 1272 * an identical_ref, but with an ire_ref held. 1273 */ 1274 if (ire->ire_type != IRE_IF_CLONE) { 1275 atomic_inc_32(&ire1->ire_identical_ref); 1276 DTRACE_PROBE2(ire__add__exist, ire_t *, ire1, 1277 ire_t *, ire); 1278 } 1279 ire_refhold(ire1); 1280 ire_atomic_end(irb_ptr, ire); 1281 ire_delete(ire); 1282 irb_refrele(irb_ptr); 1283 return (ire1); 1284 } 1285 } 1286 1287 /* 1288 * Normally we do head insertion since most things do not care about 1289 * the order of the IREs in the bucket. Note that ip_cgtp_bcast_add 1290 * assumes we at least do head insertion so that its IRE_BROADCAST 1291 * arrive ahead of existing IRE_HOST for the same address. 1292 * However, due to shared-IP zones (and restrict_interzone_loopback) 1293 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same 1294 * address. For that reason we do tail insertion for IRE_IF_CLONE. 1295 * Due to the IRE_BROADCAST on cgtp0, which must be last in the bucket, 1296 * we do tail insertion of IRE_BROADCASTs that do not have RTF_MULTIRT 1297 * set. 1298 */ 1299 irep = (ire_t **)irb_ptr; 1300 if ((ire->ire_type & IRE_IF_CLONE) || 1301 ((ire->ire_type & IRE_BROADCAST) && 1302 !(ire->ire_flags & RTF_MULTIRT))) { 1303 while ((ire1 = *irep) != NULL) 1304 irep = &ire1->ire_next; 1305 } 1306 /* Insert at *irep */ 1307 ire1 = *irep; 1308 if (ire1 != NULL) 1309 ire1->ire_ptpn = &ire->ire_next; 1310 ire->ire_next = ire1; 1311 /* Link the new one in. */ 1312 ire->ire_ptpn = irep; 1313 1314 /* 1315 * ire_walk routines de-reference ire_next without holding 1316 * a lock. Before we point to the new ire, we want to make 1317 * sure the store that sets the ire_next of the new ire 1318 * reaches global visibility, so that ire_walk routines 1319 * don't see a truncated list of ires i.e if the ire_next 1320 * of the new ire gets set after we do "*irep = ire" due 1321 * to re-ordering, the ire_walk thread will see a NULL 1322 * once it accesses the ire_next of the new ire. 1323 * membar_producer() makes sure that the following store 1324 * happens *after* all of the above stores. 1325 */ 1326 membar_producer(); 1327 *irep = ire; 1328 ire->ire_bucket = irb_ptr; 1329 /* 1330 * We return a bumped up IRE above. Keep it symmetrical 1331 * so that the callers will always have to release. This 1332 * helps the callers of this function because they continue 1333 * to use the IRE after adding and hence they don't have to 1334 * lookup again after we return the IRE. 1335 * 1336 * NOTE : We don't have to use atomics as this is appearing 1337 * in the list for the first time and no one else can bump 1338 * up the reference count on this yet. 1339 */ 1340 ire_refhold_locked(ire); 1341 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 1342 1343 irb_ptr->irb_ire_cnt++; 1344 if (irb_ptr->irb_marks & IRB_MARK_DYNAMIC) 1345 irb_ptr->irb_nire++; 1346 1347 if (ire->ire_ill != NULL) { 1348 ire->ire_ill->ill_ire_cnt++; 1349 ASSERT(ire->ire_ill->ill_ire_cnt != 0); /* Wraparound */ 1350 } 1351 1352 ire_atomic_end(irb_ptr, ire); 1353 1354 /* Make any caching of the IREs be notified or updated */ 1355 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 1356 1357 if (ire->ire_ill != NULL) 1358 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1359 irb_refrele(irb_ptr); 1360 return (ire); 1361 } 1362 1363 /* 1364 * irb_refrele is the only caller of the function. ire_unlink calls to 1365 * do the final cleanup for this ire. 1366 */ 1367 void 1368 ire_cleanup(ire_t *ire) 1369 { 1370 ire_t *ire_next; 1371 ip_stack_t *ipst = ire->ire_ipst; 1372 1373 ASSERT(ire != NULL); 1374 1375 while (ire != NULL) { 1376 ire_next = ire->ire_next; 1377 if (ire->ire_ipversion == IPV4_VERSION) { 1378 ire_delete_v4(ire); 1379 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 1380 ire_stats_deleted); 1381 } else { 1382 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1383 ire_delete_v6(ire); 1384 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 1385 ire_stats_deleted); 1386 } 1387 /* 1388 * Now it's really out of the list. Before doing the 1389 * REFRELE, set ire_next to NULL as ire_inactive asserts 1390 * so. 1391 */ 1392 ire->ire_next = NULL; 1393 ire_refrele_notr(ire); 1394 ire = ire_next; 1395 } 1396 } 1397 1398 /* 1399 * irb_refrele is the only caller of the function. It calls to unlink 1400 * all the CONDEMNED ires from this bucket. 1401 */ 1402 ire_t * 1403 ire_unlink(irb_t *irb) 1404 { 1405 ire_t *ire; 1406 ire_t *ire1; 1407 ire_t **ptpn; 1408 ire_t *ire_list = NULL; 1409 1410 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 1411 ASSERT(((irb->irb_marks & IRB_MARK_DYNAMIC) && irb->irb_refcnt == 1) || 1412 (irb->irb_refcnt == 0)); 1413 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 1414 ASSERT(irb->irb_ire != NULL); 1415 1416 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 1417 ire1 = ire->ire_next; 1418 if (IRE_IS_CONDEMNED(ire)) { 1419 ptpn = ire->ire_ptpn; 1420 ire1 = ire->ire_next; 1421 if (ire1) 1422 ire1->ire_ptpn = ptpn; 1423 *ptpn = ire1; 1424 ire->ire_ptpn = NULL; 1425 ire->ire_next = NULL; 1426 1427 /* 1428 * We need to call ire_delete_v4 or ire_delete_v6 to 1429 * clean up dependents and the redirects pointing at 1430 * the default gateway. We need to drop the lock 1431 * as ire_flush_cache/ire_delete_host_redircts require 1432 * so. But we can't drop the lock, as ire_unlink needs 1433 * to atomically remove the ires from the list. 1434 * So, create a temporary list of CONDEMNED ires 1435 * for doing ire_delete_v4/ire_delete_v6 operations 1436 * later on. 1437 */ 1438 ire->ire_next = ire_list; 1439 ire_list = ire; 1440 } 1441 } 1442 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 1443 return (ire_list); 1444 } 1445 1446 /* 1447 * Clean up the radix node for this ire. Must be called by irb_refrele 1448 * when there are no ire's left in the bucket. Returns TRUE if the bucket 1449 * is deleted and freed. 1450 */ 1451 boolean_t 1452 irb_inactive(irb_t *irb) 1453 { 1454 struct rt_entry *rt; 1455 struct radix_node *rn; 1456 ip_stack_t *ipst = irb->irb_ipst; 1457 1458 ASSERT(irb->irb_ipst != NULL); 1459 1460 rt = IRB2RT(irb); 1461 rn = (struct radix_node *)rt; 1462 1463 /* first remove it from the radix tree. */ 1464 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1465 rw_enter(&irb->irb_lock, RW_WRITER); 1466 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 1467 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 1468 ipst->ips_ip_ftable); 1469 DTRACE_PROBE1(irb__free, rt_t *, rt); 1470 ASSERT((void *)rn == (void *)rt); 1471 Free(rt, rt_entry_cache); 1472 /* irb_lock is freed */ 1473 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1474 return (B_TRUE); 1475 } 1476 rw_exit(&irb->irb_lock); 1477 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1478 return (B_FALSE); 1479 } 1480 1481 /* 1482 * Delete the specified IRE. 1483 * We assume that if ire_bucket is not set then ire_ill->ill_ire_cnt was 1484 * not incremented i.e., that the insertion in the bucket and the increment 1485 * of that counter is done atomically. 1486 */ 1487 void 1488 ire_delete(ire_t *ire) 1489 { 1490 ire_t *ire1; 1491 ire_t **ptpn; 1492 irb_t *irb; 1493 ip_stack_t *ipst = ire->ire_ipst; 1494 1495 if ((irb = ire->ire_bucket) == NULL) { 1496 /* 1497 * It was never inserted in the list. Should call REFRELE 1498 * to free this IRE. 1499 */ 1500 ire_make_condemned(ire); 1501 ire_refrele_notr(ire); 1502 return; 1503 } 1504 1505 /* 1506 * Move the use counts from an IRE_IF_CLONE to its parent 1507 * IRE_INTERFACE. 1508 * We need to do this before acquiring irb_lock. 1509 */ 1510 if (ire->ire_type & IRE_IF_CLONE) { 1511 ire_t *parent; 1512 1513 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 1514 if ((parent = ire->ire_dep_parent) != NULL) { 1515 parent->ire_ob_pkt_count += ire->ire_ob_pkt_count; 1516 parent->ire_ib_pkt_count += ire->ire_ib_pkt_count; 1517 ire->ire_ob_pkt_count = 0; 1518 ire->ire_ib_pkt_count = 0; 1519 } 1520 rw_exit(&ipst->ips_ire_dep_lock); 1521 } 1522 1523 rw_enter(&irb->irb_lock, RW_WRITER); 1524 if (ire->ire_ptpn == NULL) { 1525 /* 1526 * Some other thread has removed us from the list. 1527 * It should have done the REFRELE for us. 1528 */ 1529 rw_exit(&irb->irb_lock); 1530 return; 1531 } 1532 1533 if (!IRE_IS_CONDEMNED(ire)) { 1534 /* Is this an IRE representing multiple duplicate entries? */ 1535 ASSERT(ire->ire_identical_ref >= 1); 1536 if (atomic_dec_32_nv(&ire->ire_identical_ref) != 0) { 1537 /* Removed one of the identical parties */ 1538 rw_exit(&irb->irb_lock); 1539 return; 1540 } 1541 1542 irb->irb_ire_cnt--; 1543 ire_make_condemned(ire); 1544 } 1545 1546 if (irb->irb_refcnt != 0) { 1547 /* 1548 * The last thread to leave this bucket will 1549 * delete this ire. 1550 */ 1551 irb->irb_marks |= IRB_MARK_CONDEMNED; 1552 rw_exit(&irb->irb_lock); 1553 return; 1554 } 1555 1556 /* 1557 * Normally to delete an ire, we walk the bucket. While we 1558 * walk the bucket, we normally bump up irb_refcnt and hence 1559 * we return from above where we mark CONDEMNED and the ire 1560 * gets deleted from ire_unlink. This case is where somebody 1561 * knows the ire e.g by doing a lookup, and wants to delete the 1562 * IRE. irb_refcnt would be 0 in this case if nobody is walking 1563 * the bucket. 1564 */ 1565 ptpn = ire->ire_ptpn; 1566 ire1 = ire->ire_next; 1567 if (ire1 != NULL) 1568 ire1->ire_ptpn = ptpn; 1569 ASSERT(ptpn != NULL); 1570 *ptpn = ire1; 1571 ire->ire_ptpn = NULL; 1572 ire->ire_next = NULL; 1573 if (ire->ire_ipversion == IPV6_VERSION) { 1574 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 1575 } else { 1576 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 1577 } 1578 rw_exit(&irb->irb_lock); 1579 1580 /* Cleanup dependents and related stuff */ 1581 if (ire->ire_ipversion == IPV6_VERSION) { 1582 ire_delete_v6(ire); 1583 } else { 1584 ire_delete_v4(ire); 1585 } 1586 /* 1587 * We removed it from the list. Decrement the 1588 * reference count. 1589 */ 1590 ire_refrele_notr(ire); 1591 } 1592 1593 /* 1594 * Delete the specified IRE. 1595 * All calls should use ire_delete(). 1596 * Sometimes called as writer though not required by this function. 1597 * 1598 * NOTE : This function is called only if the ire was added 1599 * in the list. 1600 */ 1601 static void 1602 ire_delete_v4(ire_t *ire) 1603 { 1604 ip_stack_t *ipst = ire->ire_ipst; 1605 1606 ASSERT(ire->ire_refcnt >= 1); 1607 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1608 1609 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 1610 if (ire->ire_type == IRE_DEFAULT) { 1611 /* 1612 * when a default gateway is going away 1613 * delete all the host redirects pointing at that 1614 * gateway. 1615 */ 1616 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 1617 } 1618 1619 /* 1620 * If we are deleting an IRE_INTERFACE then we make sure we also 1621 * delete any IRE_IF_CLONE that has been created from it. 1622 * Those are always in ire_dep_children. 1623 */ 1624 if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != NULL) 1625 ire_dep_delete_if_clone(ire); 1626 1627 /* Remove from parent dependencies and child */ 1628 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 1629 if (ire->ire_dep_parent != NULL) 1630 ire_dep_remove(ire); 1631 1632 while (ire->ire_dep_children != NULL) 1633 ire_dep_remove(ire->ire_dep_children); 1634 rw_exit(&ipst->ips_ire_dep_lock); 1635 } 1636 1637 /* 1638 * ire_refrele is the only caller of the function. It calls 1639 * to free the ire when the reference count goes to zero. 1640 */ 1641 void 1642 ire_inactive(ire_t *ire) 1643 { 1644 ill_t *ill; 1645 irb_t *irb; 1646 ip_stack_t *ipst = ire->ire_ipst; 1647 1648 ASSERT(ire->ire_refcnt == 0); 1649 ASSERT(ire->ire_ptpn == NULL); 1650 ASSERT(ire->ire_next == NULL); 1651 1652 /* Count how many condemned ires for kmem_cache callback */ 1653 ASSERT(IRE_IS_CONDEMNED(ire)); 1654 atomic_add_32(&ipst->ips_num_ire_condemned, -1); 1655 1656 if (ire->ire_gw_secattr != NULL) { 1657 ire_gw_secattr_free(ire->ire_gw_secattr); 1658 ire->ire_gw_secattr = NULL; 1659 } 1660 1661 /* 1662 * ire_nce_cache is cleared in ire_delete, and we make sure we don't 1663 * set it once the ire is marked condemned. 1664 */ 1665 ASSERT(ire->ire_nce_cache == NULL); 1666 1667 /* 1668 * Since any parent would have a refhold on us they would already 1669 * have been removed. 1670 */ 1671 ASSERT(ire->ire_dep_parent == NULL); 1672 ASSERT(ire->ire_dep_sib_next == NULL); 1673 ASSERT(ire->ire_dep_sib_ptpn == NULL); 1674 1675 /* 1676 * Since any children would have a refhold on us they should have 1677 * already been removed. 1678 */ 1679 ASSERT(ire->ire_dep_children == NULL); 1680 1681 /* 1682 * ill_ire_ref is increased when the IRE is inserted in the 1683 * bucket - not when the IRE is created. 1684 */ 1685 irb = ire->ire_bucket; 1686 ill = ire->ire_ill; 1687 if (irb != NULL && ill != NULL) { 1688 mutex_enter(&ill->ill_lock); 1689 ASSERT(ill->ill_ire_cnt != 0); 1690 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), ill, 1691 (char *), "ire", (void *), ire); 1692 ill->ill_ire_cnt--; 1693 if (ILL_DOWN_OK(ill)) { 1694 /* Drops the ill lock */ 1695 ipif_ill_refrele_tail(ill); 1696 } else { 1697 mutex_exit(&ill->ill_lock); 1698 } 1699 } 1700 ire->ire_ill = NULL; 1701 1702 /* This should be true for both V4 and V6 */ 1703 if (irb != NULL && (irb->irb_marks & IRB_MARK_DYNAMIC)) { 1704 rw_enter(&irb->irb_lock, RW_WRITER); 1705 irb->irb_nire--; 1706 /* 1707 * Instead of examining the conditions for freeing 1708 * the radix node here, we do it by calling 1709 * irb_refrele which is a single point in the code 1710 * that embeds that logic. Bump up the refcnt to 1711 * be able to call irb_refrele 1712 */ 1713 irb_refhold_locked(irb); 1714 rw_exit(&irb->irb_lock); 1715 irb_refrele(irb); 1716 } 1717 1718 #ifdef DEBUG 1719 ire_trace_cleanup(ire); 1720 #endif 1721 mutex_destroy(&ire->ire_lock); 1722 if (ire->ire_ipversion == IPV6_VERSION) { 1723 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 1724 } else { 1725 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 1726 } 1727 kmem_cache_free(ire_cache, ire); 1728 } 1729 1730 /* 1731 * ire_update_generation is the callback function provided by 1732 * ire_get_bucket() to update the generation number of any 1733 * matching shorter route when a new route is added. 1734 * 1735 * This fucntion always returns a failure return (B_FALSE) 1736 * to force the caller (rn_matchaddr_args) 1737 * to back-track up the tree looking for shorter matches. 1738 */ 1739 /* ARGSUSED */ 1740 static boolean_t 1741 ire_update_generation(struct radix_node *rn, void *arg) 1742 { 1743 struct rt_entry *rt = (struct rt_entry *)rn; 1744 1745 /* We need to handle all in the same bucket */ 1746 irb_increment_generation(&rt->rt_irb); 1747 return (B_FALSE); 1748 } 1749 1750 /* 1751 * Take care of all the generation numbers in the bucket. 1752 */ 1753 void 1754 irb_increment_generation(irb_t *irb) 1755 { 1756 ire_t *ire; 1757 ip_stack_t *ipst; 1758 1759 if (irb == NULL || irb->irb_ire_cnt == 0) 1760 return; 1761 1762 ipst = irb->irb_ipst; 1763 /* 1764 * we cannot do an irb_refhold/irb_refrele here as the caller 1765 * already has the global RADIX_NODE_HEAD_WLOCK, and the irb_refrele 1766 * may result in an attempt to free the irb_t, which also needs 1767 * the RADIX_NODE_HEAD lock. However, since we want to traverse the 1768 * irb_ire list without fear of having a condemned ire removed from 1769 * the list, we acquire the irb_lock as WRITER. Moreover, since 1770 * the ire_generation increments are done under the ire_dep_lock, 1771 * acquire the locks in the prescribed lock order first. 1772 */ 1773 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 1774 rw_enter(&irb->irb_lock, RW_WRITER); 1775 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1776 if (!IRE_IS_CONDEMNED(ire)) 1777 ire_increment_generation(ire); /* Ourselves */ 1778 ire_dep_incr_generation_locked(ire); /* Dependants */ 1779 } 1780 rw_exit(&irb->irb_lock); 1781 rw_exit(&ipst->ips_ire_dep_lock); 1782 } 1783 1784 /* 1785 * When an IRE is added or deleted this routine is called to make sure 1786 * any caching of IRE information is notified or updated. 1787 * 1788 * The flag argument indicates if the flush request is due to addition 1789 * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE), 1790 * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE). 1791 */ 1792 void 1793 ire_flush_cache_v4(ire_t *ire, int flag) 1794 { 1795 irb_t *irb = ire->ire_bucket; 1796 struct rt_entry *rt = IRB2RT(irb); 1797 ip_stack_t *ipst = ire->ire_ipst; 1798 1799 /* 1800 * IRE_IF_CLONE ire's don't provide any new information 1801 * than the parent from which they are cloned, so don't 1802 * perturb the generation numbers. 1803 */ 1804 if (ire->ire_type & IRE_IF_CLONE) 1805 return; 1806 1807 /* 1808 * Ensure that an ire_add during a lookup serializes the updates of the 1809 * generation numbers under the radix head lock so that the lookup gets 1810 * either the old ire and old generation number, or a new ire and new 1811 * generation number. 1812 */ 1813 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1814 1815 /* 1816 * If a route was just added, we need to notify everybody that 1817 * has cached an IRE_NOROUTE since there might now be a better 1818 * route for them. 1819 */ 1820 if (flag == IRE_FLUSH_ADD) { 1821 ire_increment_generation(ipst->ips_ire_reject_v4); 1822 ire_increment_generation(ipst->ips_ire_blackhole_v4); 1823 } 1824 1825 /* Adding a default can't otherwise provide a better route */ 1826 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) { 1827 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1828 return; 1829 } 1830 1831 switch (flag) { 1832 case IRE_FLUSH_DELETE: 1833 case IRE_FLUSH_GWCHANGE: 1834 /* 1835 * Update ire_generation for all ire_dep_children chains 1836 * starting with this IRE 1837 */ 1838 ire_dep_incr_generation(ire); 1839 break; 1840 case IRE_FLUSH_ADD: 1841 /* 1842 * Update the generation numbers of all shorter matching routes. 1843 * ire_update_generation takes care of the dependants by 1844 * using ire_dep_incr_generation. 1845 */ 1846 (void) ipst->ips_ip_ftable->rnh_matchaddr_args(&rt->rt_dst, 1847 ipst->ips_ip_ftable, ire_update_generation, NULL); 1848 break; 1849 } 1850 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1851 } 1852 1853 /* 1854 * Matches the arguments passed with the values in the ire. 1855 * 1856 * Note: for match types that match using "ill" passed in, ill 1857 * must be checked for non-NULL before calling this routine. 1858 */ 1859 boolean_t 1860 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 1861 int type, const ill_t *ill, zoneid_t zoneid, 1862 const ts_label_t *tsl, int match_flags) 1863 { 1864 ill_t *ire_ill = NULL, *dst_ill; 1865 ip_stack_t *ipst = ire->ire_ipst; 1866 1867 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1868 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 1869 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL))) || 1870 (ill != NULL && !ill->ill_isv6)); 1871 1872 /* 1873 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it is 1874 * in fact hidden, to ensure the caller gets the right one. 1875 */ 1876 if (ire->ire_testhidden) { 1877 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) 1878 return (B_FALSE); 1879 } 1880 1881 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 1882 ire->ire_zoneid != ALL_ZONES) { 1883 /* 1884 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid 1885 * does not match that of ire_zoneid, a failure to 1886 * match is reported at this point. Otherwise, since some IREs 1887 * that are available in the global zone can be used in local 1888 * zones, additional checks need to be performed: 1889 * 1890 * IRE_LOOPBACK 1891 * entries should never be matched in this situation. 1892 * Each zone has its own IRE_LOOPBACK. 1893 * 1894 * IRE_LOCAL 1895 * We allow them for any zoneid. ire_route_recursive 1896 * does additional checks when 1897 * ip_restrict_interzone_loopback is set. 1898 * 1899 * If ill_usesrc_ifindex is set 1900 * Then we check if the zone has a valid source address 1901 * on the usesrc ill. 1902 * 1903 * If ire_ill is set, then check that the zone has an ipif 1904 * on that ill. 1905 * 1906 * Outside of this function (in ire_round_robin) we check 1907 * that any IRE_OFFLINK has a gateway that reachable from the 1908 * zone when we have multiple choices (ECMP). 1909 */ 1910 if (match_flags & MATCH_IRE_ZONEONLY) 1911 return (B_FALSE); 1912 if (ire->ire_type & IRE_LOOPBACK) 1913 return (B_FALSE); 1914 1915 if (ire->ire_type & IRE_LOCAL) 1916 goto matchit; 1917 1918 /* 1919 * The normal case of IRE_ONLINK has a matching zoneid. 1920 * Here we handle the case when shared-IP zones have been 1921 * configured with IP addresses on vniN. In that case it 1922 * is ok for traffic from a zone to use IRE_ONLINK routes 1923 * if the ill has a usesrc pointing at vniN 1924 */ 1925 dst_ill = ire->ire_ill; 1926 if (ire->ire_type & IRE_ONLINK) { 1927 uint_t ifindex; 1928 1929 /* 1930 * Note there is no IRE_INTERFACE on vniN thus 1931 * can't do an IRE lookup for a matching route. 1932 */ 1933 ifindex = dst_ill->ill_usesrc_ifindex; 1934 if (ifindex == 0) 1935 return (B_FALSE); 1936 1937 /* 1938 * If there is a usable source address in the 1939 * zone, then it's ok to return this IRE_INTERFACE 1940 */ 1941 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 1942 zoneid, ipst)) { 1943 ip3dbg(("ire_match_args: no usrsrc for zone" 1944 " dst_ill %p\n", (void *)dst_ill)); 1945 return (B_FALSE); 1946 } 1947 } 1948 /* 1949 * For example, with 1950 * route add 11.0.0.0 gw1 -ifp bge0 1951 * route add 11.0.0.0 gw2 -ifp bge1 1952 * this code would differentiate based on 1953 * where the sending zone has addresses. 1954 * Only if the zone has an address on bge0 can it use the first 1955 * route. It isn't clear if this behavior is documented 1956 * anywhere. 1957 */ 1958 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 1959 ipif_t *tipif; 1960 1961 mutex_enter(&dst_ill->ill_lock); 1962 for (tipif = dst_ill->ill_ipif; 1963 tipif != NULL; tipif = tipif->ipif_next) { 1964 if (!IPIF_IS_CONDEMNED(tipif) && 1965 (tipif->ipif_flags & IPIF_UP) && 1966 (tipif->ipif_zoneid == zoneid || 1967 tipif->ipif_zoneid == ALL_ZONES)) 1968 break; 1969 } 1970 mutex_exit(&dst_ill->ill_lock); 1971 if (tipif == NULL) { 1972 return (B_FALSE); 1973 } 1974 } 1975 } 1976 1977 matchit: 1978 ire_ill = ire->ire_ill; 1979 if (match_flags & MATCH_IRE_ILL) { 1980 1981 /* 1982 * If asked to match an ill, we *must* match 1983 * on the ire_ill for ipmp test addresses, or 1984 * any of the ill in the group for data addresses. 1985 * If we don't, we may as well fail. 1986 * However, we need an exception for IRE_LOCALs to ensure 1987 * we loopback packets even sent to test addresses on different 1988 * interfaces in the group. 1989 */ 1990 if ((match_flags & MATCH_IRE_TESTHIDDEN) && 1991 !(ire->ire_type & IRE_LOCAL)) { 1992 if (ire->ire_ill != ill) 1993 return (B_FALSE); 1994 } else { 1995 match_flags &= ~MATCH_IRE_TESTHIDDEN; 1996 /* 1997 * We know that ill is not NULL, but ire_ill could be 1998 * NULL 1999 */ 2000 if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill)) 2001 return (B_FALSE); 2002 } 2003 } 2004 if (match_flags & MATCH_IRE_SRC_ILL) { 2005 if (ire_ill == NULL) 2006 return (B_FALSE); 2007 if (!IS_ON_SAME_LAN(ill, ire_ill)) { 2008 if (ire_ill->ill_usesrc_ifindex == 0 || 2009 (ire_ill->ill_usesrc_ifindex != 2010 ill->ill_phyint->phyint_ifindex)) 2011 return (B_FALSE); 2012 } 2013 } 2014 2015 if ((ire->ire_addr == (addr & mask)) && 2016 ((!(match_flags & MATCH_IRE_GW)) || 2017 (ire->ire_gateway_addr == gateway)) && 2018 ((!(match_flags & MATCH_IRE_DIRECT)) || 2019 !(ire->ire_flags & RTF_INDIRECT)) && 2020 ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) && 2021 ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) && 2022 ((!(match_flags & MATCH_IRE_MASK)) || (ire->ire_mask == mask)) && 2023 ((!(match_flags & MATCH_IRE_SECATTR)) || 2024 (!is_system_labeled()) || 2025 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 2026 /* We found the matched IRE */ 2027 return (B_TRUE); 2028 } 2029 return (B_FALSE); 2030 } 2031 2032 /* 2033 * Check if the IRE_LOCAL uses the same ill as another route would use. 2034 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 2035 * then we don't allow this IRE_LOCAL to be used. 2036 * We always return an IRE; will be RTF_REJECT if no route available. 2037 */ 2038 ire_t * 2039 ire_alt_local(ire_t *ire, zoneid_t zoneid, const ts_label_t *tsl, 2040 const ill_t *ill, uint_t *generationp) 2041 { 2042 ip_stack_t *ipst = ire->ire_ipst; 2043 ire_t *alt_ire; 2044 uint_t ire_type; 2045 uint_t generation; 2046 uint_t match_flags; 2047 2048 ASSERT(ire->ire_type & IRE_LOCAL); 2049 ASSERT(ire->ire_ill != NULL); 2050 2051 /* 2052 * Need to match on everything but local. 2053 * This might result in the creation of a IRE_IF_CLONE for the 2054 * same address as the IRE_LOCAL when restrict_interzone_loopback is 2055 * set. ire_add_*() ensures that the IRE_IF_CLONE are tail inserted 2056 * to make sure the IRE_LOCAL is always found first. 2057 */ 2058 ire_type = (IRE_ONLINK | IRE_OFFLINK) & ~(IRE_LOCAL|IRE_LOOPBACK); 2059 match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR; 2060 if (ill != NULL) 2061 match_flags |= MATCH_IRE_ILL; 2062 2063 if (ire->ire_ipversion == IPV4_VERSION) { 2064 alt_ire = ire_route_recursive_v4(ire->ire_addr, ire_type, 2065 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, 2066 NULL, &generation); 2067 } else { 2068 alt_ire = ire_route_recursive_v6(&ire->ire_addr_v6, ire_type, 2069 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, 2070 NULL, &generation); 2071 } 2072 ASSERT(alt_ire != NULL); 2073 2074 if (alt_ire->ire_ill == ire->ire_ill) { 2075 /* Going out the same ILL - ok to send to IRE_LOCAL */ 2076 ire_refrele(alt_ire); 2077 } else { 2078 /* Different ill - ignore IRE_LOCAL */ 2079 ire_refrele(ire); 2080 ire = alt_ire; 2081 if (generationp != NULL) 2082 *generationp = generation; 2083 } 2084 return (ire); 2085 } 2086 2087 boolean_t 2088 ire_find_zoneid(struct radix_node *rn, void *arg) 2089 { 2090 struct rt_entry *rt = (struct rt_entry *)rn; 2091 irb_t *irb; 2092 ire_t *ire; 2093 ire_ftable_args_t *margs = arg; 2094 2095 ASSERT(rt != NULL); 2096 2097 irb = &rt->rt_irb; 2098 2099 if (irb->irb_ire_cnt == 0) 2100 return (B_FALSE); 2101 2102 rw_enter(&irb->irb_lock, RW_READER); 2103 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2104 if (IRE_IS_CONDEMNED(ire)) 2105 continue; 2106 2107 if (!(ire->ire_type & IRE_INTERFACE)) 2108 continue; 2109 2110 if (ire->ire_zoneid != ALL_ZONES && 2111 ire->ire_zoneid != margs->ift_zoneid) 2112 continue; 2113 2114 if (margs->ift_ill != NULL && margs->ift_ill != ire->ire_ill) 2115 continue; 2116 2117 if (is_system_labeled() && 2118 tsol_ire_match_gwattr(ire, margs->ift_tsl) != 0) 2119 continue; 2120 2121 rw_exit(&irb->irb_lock); 2122 return (B_TRUE); 2123 } 2124 rw_exit(&irb->irb_lock); 2125 return (B_FALSE); 2126 } 2127 2128 /* 2129 * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified 2130 * gateway address. If ill is non-NULL we also match on it. 2131 * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set. 2132 */ 2133 boolean_t 2134 ire_gateway_ok_zone_v4(ipaddr_t gateway, zoneid_t zoneid, ill_t *ill, 2135 const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held) 2136 { 2137 struct rt_sockaddr rdst; 2138 struct rt_entry *rt; 2139 ire_ftable_args_t margs; 2140 2141 ASSERT(ill == NULL || !ill->ill_isv6); 2142 if (lock_held) 2143 ASSERT(RW_READ_HELD(&ipst->ips_ip_ftable->rnh_lock)); 2144 else 2145 RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); 2146 2147 bzero(&rdst, sizeof (rdst)); 2148 rdst.rt_sin_len = sizeof (rdst); 2149 rdst.rt_sin_family = AF_INET; 2150 rdst.rt_sin_addr.s_addr = gateway; 2151 2152 /* 2153 * We only use margs for ill, zoneid, and tsl matching in 2154 * ire_find_zoneid 2155 */ 2156 bzero(&margs, sizeof (margs)); 2157 margs.ift_ill = ill; 2158 margs.ift_zoneid = zoneid; 2159 margs.ift_tsl = tsl; 2160 rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst, 2161 ipst->ips_ip_ftable, ire_find_zoneid, (void *)&margs); 2162 2163 if (!lock_held) 2164 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 2165 2166 return (rt != NULL); 2167 } 2168 2169 /* 2170 * ire_walk routine to delete a fraction of redirect IREs and IRE_CLONE_IF IREs. 2171 * The fraction argument tells us what fraction of the IREs to delete. 2172 * Common for IPv4 and IPv6. 2173 * Used when memory backpressure. 2174 */ 2175 static void 2176 ire_delete_reclaim(ire_t *ire, char *arg) 2177 { 2178 ip_stack_t *ipst = ire->ire_ipst; 2179 uint_t fraction = *(uint_t *)arg; 2180 uint_t rand; 2181 2182 if ((ire->ire_flags & RTF_DYNAMIC) || 2183 (ire->ire_type & IRE_IF_CLONE)) { 2184 2185 /* Pick a random number */ 2186 rand = (uint_t)ddi_get_lbolt() + 2187 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 256); 2188 2189 /* Use truncation */ 2190 if ((rand/fraction)*fraction == rand) { 2191 IP_STAT(ipst, ip_ire_reclaim_deleted); 2192 ire_delete(ire); 2193 } 2194 } 2195 2196 } 2197 2198 /* 2199 * kmem_cache callback to free up memory. 2200 * 2201 * Free a fraction (ips_ip_ire_reclaim_fraction) of things IP added dynamically 2202 * (RTF_DYNAMIC and IRE_IF_CLONE). 2203 */ 2204 static void 2205 ip_ire_reclaim_stack(ip_stack_t *ipst) 2206 { 2207 uint_t fraction = ipst->ips_ip_ire_reclaim_fraction; 2208 2209 IP_STAT(ipst, ip_ire_reclaim_calls); 2210 2211 ire_walk(ire_delete_reclaim, &fraction, ipst); 2212 2213 /* 2214 * Walk all CONNs that can have a reference on an ire, nce or dce. 2215 * Get them to update any stale references to drop any refholds they 2216 * have. 2217 */ 2218 ipcl_walk(conn_ixa_cleanup, (void *)B_FALSE, ipst); 2219 } 2220 2221 /* 2222 * Called by the memory allocator subsystem directly, when the system 2223 * is running low on memory. 2224 */ 2225 /* ARGSUSED */ 2226 void 2227 ip_ire_reclaim(void *args) 2228 { 2229 netstack_handle_t nh; 2230 netstack_t *ns; 2231 ip_stack_t *ipst; 2232 2233 netstack_next_init(&nh); 2234 while ((ns = netstack_next(&nh)) != NULL) { 2235 /* 2236 * netstack_next() can return a netstack_t with a NULL 2237 * netstack_ip at boot time. 2238 */ 2239 if ((ipst = ns->netstack_ip) == NULL) { 2240 netstack_rele(ns); 2241 continue; 2242 } 2243 ip_ire_reclaim_stack(ipst); 2244 netstack_rele(ns); 2245 } 2246 netstack_next_fini(&nh); 2247 } 2248 2249 static void 2250 power2_roundup(uint32_t *value) 2251 { 2252 int i; 2253 2254 for (i = 1; i < 31; i++) { 2255 if (*value <= (1 << i)) 2256 break; 2257 } 2258 *value = (1 << i); 2259 } 2260 2261 /* Global init for all zones */ 2262 void 2263 ip_ire_g_init() 2264 { 2265 /* 2266 * Create kmem_caches. ip_ire_reclaim() and ip_nce_reclaim() 2267 * will give disposable IREs back to system when needed. 2268 * This needs to be done here before anything else, since 2269 * ire_add() expects the cache to be created. 2270 */ 2271 ire_cache = kmem_cache_create("ire_cache", 2272 sizeof (ire_t), 0, NULL, NULL, 2273 ip_ire_reclaim, NULL, NULL, 0); 2274 2275 ncec_cache = kmem_cache_create("ncec_cache", 2276 sizeof (ncec_t), 0, NULL, NULL, 2277 ip_nce_reclaim, NULL, NULL, 0); 2278 nce_cache = kmem_cache_create("nce_cache", 2279 sizeof (nce_t), 0, NULL, NULL, 2280 NULL, NULL, NULL, 0); 2281 2282 rt_entry_cache = kmem_cache_create("rt_entry", 2283 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 2284 2285 /* 2286 * Have radix code setup kmem caches etc. 2287 */ 2288 rn_init(); 2289 } 2290 2291 void 2292 ip_ire_init(ip_stack_t *ipst) 2293 { 2294 ire_t *ire; 2295 int error; 2296 2297 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 2298 2299 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 2300 2301 /* 2302 * Make sure that the forwarding table size is a power of 2. 2303 * The IRE*_ADDR_HASH() macroes depend on that. 2304 */ 2305 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 2306 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 2307 2308 /* 2309 * Allocate/initialize a pair of IRE_NOROUTEs for each of IPv4 and IPv6. 2310 * The ire_reject_v* has RTF_REJECT set, and the ire_blackhole_v* has 2311 * RTF_BLACKHOLE set. We use the latter for transient errors such 2312 * as memory allocation failures and tripping on IRE_IS_CONDEMNED 2313 * entries. 2314 */ 2315 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2316 *ire = ire_null; 2317 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2318 RTF_REJECT|RTF_UP, NULL, ipst); 2319 ASSERT(error == 0); 2320 ipst->ips_ire_reject_v4 = ire; 2321 2322 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2323 *ire = ire_null; 2324 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2325 RTF_REJECT|RTF_UP, NULL, ipst); 2326 ASSERT(error == 0); 2327 ipst->ips_ire_reject_v6 = ire; 2328 2329 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2330 *ire = ire_null; 2331 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2332 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2333 ASSERT(error == 0); 2334 ipst->ips_ire_blackhole_v4 = ire; 2335 2336 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2337 *ire = ire_null; 2338 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2339 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2340 ASSERT(error == 0); 2341 ipst->ips_ire_blackhole_v6 = ire; 2342 2343 rw_init(&ipst->ips_ip6_ire_head_lock, NULL, RW_DEFAULT, NULL); 2344 rw_init(&ipst->ips_ire_dep_lock, NULL, RW_DEFAULT, NULL); 2345 } 2346 2347 void 2348 ip_ire_g_fini(void) 2349 { 2350 kmem_cache_destroy(ire_cache); 2351 kmem_cache_destroy(ncec_cache); 2352 kmem_cache_destroy(nce_cache); 2353 kmem_cache_destroy(rt_entry_cache); 2354 2355 rn_fini(); 2356 } 2357 2358 void 2359 ip_ire_fini(ip_stack_t *ipst) 2360 { 2361 int i; 2362 2363 ire_make_condemned(ipst->ips_ire_reject_v6); 2364 ire_refrele_notr(ipst->ips_ire_reject_v6); 2365 ipst->ips_ire_reject_v6 = NULL; 2366 2367 ire_make_condemned(ipst->ips_ire_reject_v4); 2368 ire_refrele_notr(ipst->ips_ire_reject_v4); 2369 ipst->ips_ire_reject_v4 = NULL; 2370 2371 ire_make_condemned(ipst->ips_ire_blackhole_v6); 2372 ire_refrele_notr(ipst->ips_ire_blackhole_v6); 2373 ipst->ips_ire_blackhole_v6 = NULL; 2374 2375 ire_make_condemned(ipst->ips_ire_blackhole_v4); 2376 ire_refrele_notr(ipst->ips_ire_blackhole_v4); 2377 ipst->ips_ire_blackhole_v4 = NULL; 2378 2379 /* 2380 * Delete all IREs - assumes that the ill/ipifs have 2381 * been removed so what remains are just the ftable to handle. 2382 */ 2383 ire_walk(ire_delete, NULL, ipst); 2384 2385 rn_freehead(ipst->ips_ip_ftable); 2386 ipst->ips_ip_ftable = NULL; 2387 2388 rw_destroy(&ipst->ips_ire_dep_lock); 2389 rw_destroy(&ipst->ips_ip6_ire_head_lock); 2390 2391 mutex_destroy(&ipst->ips_ire_ft_init_lock); 2392 2393 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 2394 irb_t *ptr; 2395 int j; 2396 2397 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 2398 continue; 2399 2400 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 2401 ASSERT(ptr[j].irb_ire == NULL); 2402 rw_destroy(&ptr[j].irb_lock); 2403 } 2404 mi_free(ptr); 2405 ipst->ips_ip_forwarding_table_v6[i] = NULL; 2406 } 2407 } 2408 2409 #ifdef DEBUG 2410 void 2411 ire_trace_ref(ire_t *ire) 2412 { 2413 mutex_enter(&ire->ire_lock); 2414 if (ire->ire_trace_disable) { 2415 mutex_exit(&ire->ire_lock); 2416 return; 2417 } 2418 2419 if (th_trace_ref(ire, ire->ire_ipst)) { 2420 mutex_exit(&ire->ire_lock); 2421 } else { 2422 ire->ire_trace_disable = B_TRUE; 2423 mutex_exit(&ire->ire_lock); 2424 ire_trace_cleanup(ire); 2425 } 2426 } 2427 2428 void 2429 ire_untrace_ref(ire_t *ire) 2430 { 2431 mutex_enter(&ire->ire_lock); 2432 if (!ire->ire_trace_disable) 2433 th_trace_unref(ire); 2434 mutex_exit(&ire->ire_lock); 2435 } 2436 2437 static void 2438 ire_trace_cleanup(const ire_t *ire) 2439 { 2440 th_trace_cleanup(ire, ire->ire_trace_disable); 2441 } 2442 #endif /* DEBUG */ 2443 2444 /* 2445 * Find, or create if needed, the nce_t pointer to the neighbor cache 2446 * entry ncec_t for an IPv4 address. The nce_t will be created on the ill_t 2447 * in the non-IPMP case, or on the cast-ill in the IPMP bcast/mcast case, or 2448 * on the next available under-ill (selected by the IPMP rotor) in the 2449 * unicast IPMP case. 2450 * 2451 * If a neighbor-cache entry has to be created (i.e., one does not already 2452 * exist in the nce list) the ncec_lladdr and ncec_state of the neighbor cache 2453 * entry are initialized in nce_add_v4(). The broadcast, multicast, and 2454 * link-layer type determine the contents of {ncec_state, ncec_lladdr} of 2455 * the ncec_t created. The ncec_lladdr is non-null for all link types with 2456 * non-zero ill_phys_addr_length, though the contents may be zero in cases 2457 * where the link-layer type is not known at the time of creation 2458 * (e.g., IRE_IFRESOLVER links) 2459 * 2460 * All IRE_BROADCAST entries have ncec_state = ND_REACHABLE, and the nce_lladr 2461 * has the physical broadcast address of the outgoing interface. 2462 * For unicast ire entries, 2463 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 2464 * ncec_t with 0 nce_lladr contents, and will be in the ND_INITIAL state. 2465 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 2466 * layer resolution is necessary, so that the ncec_t will be in the 2467 * ND_REACHABLE state 2468 * 2469 * The link layer information needed for broadcast addresses, and for 2470 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 2471 * never needs re-verification for the lifetime of the ncec_t. These are 2472 * therefore marked NCE_F_NONUD. 2473 * 2474 * The nce returned will be created such that the nce_ill == ill that 2475 * is passed in. Note that the nce itself may not have ncec_ill == ill 2476 * where IPMP links are involved. 2477 */ 2478 static nce_t * 2479 ire_nce_init(ill_t *ill, const void *addr, int ire_type) 2480 { 2481 int err; 2482 nce_t *nce = NULL; 2483 uint16_t ncec_flags; 2484 uchar_t *hwaddr; 2485 boolean_t need_refrele = B_FALSE; 2486 ill_t *in_ill = ill; 2487 boolean_t is_unicast; 2488 uint_t hwaddr_len; 2489 2490 is_unicast = ((ire_type & (IRE_MULTICAST|IRE_BROADCAST)) == 0); 2491 if (IS_IPMP(ill) || 2492 ((ire_type & IRE_BROADCAST) && IS_UNDER_IPMP(ill))) { 2493 if ((ill = ipmp_ill_hold_xmit_ill(ill, is_unicast)) == NULL) 2494 return (NULL); 2495 need_refrele = B_TRUE; 2496 } 2497 ncec_flags = (ill->ill_flags & ILLF_NONUD) ? NCE_F_NONUD : 0; 2498 2499 switch (ire_type) { 2500 case IRE_BROADCAST: 2501 ASSERT(!ill->ill_isv6); 2502 ncec_flags |= (NCE_F_BCAST|NCE_F_NONUD); 2503 break; 2504 case IRE_MULTICAST: 2505 ncec_flags |= (NCE_F_MCAST|NCE_F_NONUD); 2506 break; 2507 } 2508 2509 if (ill->ill_net_type == IRE_IF_NORESOLVER && is_unicast) { 2510 hwaddr = ill->ill_dest_addr; 2511 } else { 2512 hwaddr = NULL; 2513 } 2514 hwaddr_len = ill->ill_phys_addr_length; 2515 2516 retry: 2517 /* nce_state will be computed by nce_add_common() */ 2518 if (!ill->ill_isv6) { 2519 err = nce_lookup_then_add_v4(ill, hwaddr, hwaddr_len, addr, 2520 ncec_flags, ND_UNCHANGED, &nce); 2521 } else { 2522 err = nce_lookup_then_add_v6(ill, hwaddr, hwaddr_len, addr, 2523 ncec_flags, ND_UNCHANGED, &nce); 2524 } 2525 2526 switch (err) { 2527 case 0: 2528 break; 2529 case EEXIST: 2530 /* 2531 * When subnets change or partially overlap what was once 2532 * a broadcast address could now be a unicast, or vice versa. 2533 */ 2534 if (((ncec_flags ^ nce->nce_common->ncec_flags) & 2535 NCE_F_BCAST) != 0) { 2536 ASSERT(!ill->ill_isv6); 2537 ncec_delete(nce->nce_common); 2538 nce_refrele(nce); 2539 goto retry; 2540 } 2541 break; 2542 default: 2543 DTRACE_PROBE2(nce__init__fail, ill_t *, ill, int, err); 2544 if (need_refrele) 2545 ill_refrele(ill); 2546 return (NULL); 2547 } 2548 /* 2549 * If the ill was an under-ill of an IPMP group, we need to verify 2550 * that it is still active so that we select an active interface in 2551 * the group. However, since ipmp_ill_is_active ASSERTs for 2552 * IS_UNDER_IPMP(), we first need to verify that the ill is an 2553 * under-ill, and since this is being done in the data path, the 2554 * only way to ascertain this is by holding the ill_g_lock. 2555 */ 2556 rw_enter(&ill->ill_ipst->ips_ill_g_lock, RW_READER); 2557 mutex_enter(&ill->ill_lock); 2558 mutex_enter(&ill->ill_phyint->phyint_lock); 2559 if (need_refrele && IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 2560 /* 2561 * need_refrele implies that the under ill was selected by 2562 * ipmp_ill_hold_xmit_ill() because either the in_ill was an 2563 * ipmp_ill, or we are sending a non-unicast packet on an 2564 * under_ill. However, when we get here, the ill selected by 2565 * ipmp_ill_hold_xmit_ill was pulled out of the active set 2566 * (for unicast) or cast_ill nomination (for !unicast) after 2567 * it was picked as the outgoing ill. We have to pick an 2568 * active interface and/or cast_ill in the group. 2569 */ 2570 mutex_exit(&ill->ill_phyint->phyint_lock); 2571 nce_delete(nce); 2572 mutex_exit(&ill->ill_lock); 2573 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2574 nce_refrele(nce); 2575 ill_refrele(ill); 2576 if ((ill = ipmp_ill_hold_xmit_ill(in_ill, is_unicast)) == NULL) 2577 return (NULL); 2578 goto retry; 2579 } else { 2580 mutex_exit(&ill->ill_phyint->phyint_lock); 2581 mutex_exit(&ill->ill_lock); 2582 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2583 } 2584 done: 2585 ASSERT(nce->nce_ill == ill); 2586 if (need_refrele) 2587 ill_refrele(ill); 2588 return (nce); 2589 } 2590 2591 nce_t * 2592 arp_nce_init(ill_t *ill, in_addr_t addr4, int ire_type) 2593 { 2594 return (ire_nce_init(ill, &addr4, ire_type)); 2595 } 2596 2597 nce_t * 2598 ndp_nce_init(ill_t *ill, const in6_addr_t *addr6, int ire_type) 2599 { 2600 ASSERT((ire_type & IRE_BROADCAST) == 0); 2601 return (ire_nce_init(ill, addr6, ire_type)); 2602 } 2603 2604 /* 2605 * The caller should hold irb_lock as a writer if the ire is in a bucket. 2606 * This routine will clear ire_nce_cache, and we make sure that we can never 2607 * set ire_nce_cache after the ire is marked condemned. 2608 */ 2609 void 2610 ire_make_condemned(ire_t *ire) 2611 { 2612 ip_stack_t *ipst = ire->ire_ipst; 2613 nce_t *nce; 2614 2615 mutex_enter(&ire->ire_lock); 2616 ASSERT(ire->ire_bucket == NULL || 2617 RW_WRITE_HELD(&ire->ire_bucket->irb_lock)); 2618 ASSERT(!IRE_IS_CONDEMNED(ire)); 2619 ire->ire_generation = IRE_GENERATION_CONDEMNED; 2620 /* Count how many condemned ires for kmem_cache callback */ 2621 atomic_inc_32(&ipst->ips_num_ire_condemned); 2622 nce = ire->ire_nce_cache; 2623 ire->ire_nce_cache = NULL; 2624 mutex_exit(&ire->ire_lock); 2625 if (nce != NULL) 2626 nce_refrele(nce); 2627 } 2628 2629 /* 2630 * Increment the generation avoiding the special condemned value 2631 */ 2632 void 2633 ire_increment_generation(ire_t *ire) 2634 { 2635 uint_t generation; 2636 2637 mutex_enter(&ire->ire_lock); 2638 /* 2639 * Even though the caller has a hold it can't prevent a concurrent 2640 * ire_delete marking the IRE condemned 2641 */ 2642 if (!IRE_IS_CONDEMNED(ire)) { 2643 generation = ire->ire_generation + 1; 2644 if (generation == IRE_GENERATION_CONDEMNED) 2645 generation = IRE_GENERATION_INITIAL; 2646 ASSERT(generation != IRE_GENERATION_VERIFY); 2647 ire->ire_generation = generation; 2648 } 2649 mutex_exit(&ire->ire_lock); 2650 } 2651 2652 /* 2653 * Increment ire_generation on all the IRE_MULTICASTs 2654 * Used when the default multicast interface (as determined by 2655 * ill_lookup_multicast) might have changed. 2656 * 2657 * That includes the zoneid, IFF_ flags, the IPv6 scope of the address, and 2658 * ill unplumb. 2659 */ 2660 void 2661 ire_increment_multicast_generation(ip_stack_t *ipst, boolean_t isv6) 2662 { 2663 ill_t *ill; 2664 ill_walk_context_t ctx; 2665 2666 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2667 if (isv6) 2668 ill = ILL_START_WALK_V6(&ctx, ipst); 2669 else 2670 ill = ILL_START_WALK_V4(&ctx, ipst); 2671 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2672 if (ILL_IS_CONDEMNED(ill)) 2673 continue; 2674 if (ill->ill_ire_multicast != NULL) 2675 ire_increment_generation(ill->ill_ire_multicast); 2676 } 2677 rw_exit(&ipst->ips_ill_g_lock); 2678 } 2679 2680 /* 2681 * Return a held IRE_NOROUTE with RTF_REJECT set 2682 */ 2683 ire_t * 2684 ire_reject(ip_stack_t *ipst, boolean_t isv6) 2685 { 2686 ire_t *ire; 2687 2688 if (isv6) 2689 ire = ipst->ips_ire_reject_v6; 2690 else 2691 ire = ipst->ips_ire_reject_v4; 2692 2693 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2694 ire_refhold(ire); 2695 return (ire); 2696 } 2697 2698 /* 2699 * Return a held IRE_NOROUTE with RTF_BLACKHOLE set 2700 */ 2701 ire_t * 2702 ire_blackhole(ip_stack_t *ipst, boolean_t isv6) 2703 { 2704 ire_t *ire; 2705 2706 if (isv6) 2707 ire = ipst->ips_ire_blackhole_v6; 2708 else 2709 ire = ipst->ips_ire_blackhole_v4; 2710 2711 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2712 ire_refhold(ire); 2713 return (ire); 2714 } 2715 2716 /* 2717 * Return a held IRE_MULTICAST. 2718 */ 2719 ire_t * 2720 ire_multicast(ill_t *ill) 2721 { 2722 ire_t *ire = ill->ill_ire_multicast; 2723 2724 ASSERT(ire == NULL || ire->ire_generation != IRE_GENERATION_CONDEMNED); 2725 if (ire == NULL) 2726 ire = ire_blackhole(ill->ill_ipst, ill->ill_isv6); 2727 else 2728 ire_refhold(ire); 2729 return (ire); 2730 } 2731 2732 /* 2733 * Given an IRE return its nexthop IRE. The nexthop IRE is an IRE_ONLINK 2734 * that is an exact match (i.e., a /32 for IPv4 and /128 for IPv6). 2735 * This can return an RTF_REJECT|RTF_BLACKHOLE. 2736 * The returned IRE is held. 2737 * The assumption is that ip_select_route() has been called and returned the 2738 * IRE (thus ip_select_route would have set up the ire_dep* information.) 2739 * If some IRE is deleteted then ire_dep_remove() will have been called and 2740 * we might not find a nexthop IRE, in which case we return NULL. 2741 */ 2742 ire_t * 2743 ire_nexthop(ire_t *ire) 2744 { 2745 ip_stack_t *ipst = ire->ire_ipst; 2746 2747 /* Acquire lock to walk ire_dep_parent */ 2748 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 2749 while (ire != NULL) { 2750 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 2751 goto done; 2752 } 2753 /* 2754 * If we find an IRE_ONLINK we are done. This includes 2755 * the case of IRE_MULTICAST. 2756 * Note that in order to send packets we need a host-specific 2757 * IRE_IF_ALL first in the ire_dep_parent chain. Normally this 2758 * is done by inserting an IRE_IF_CLONE if the IRE_INTERFACE 2759 * was not host specific. 2760 * However, ip_rts_request doesn't want to send packets 2761 * hence doesn't want to allocate an IRE_IF_CLONE. Yet 2762 * it needs an IRE_IF_ALL to get to the ill. Thus 2763 * we return IRE_IF_ALL that are not host specific here. 2764 */ 2765 if (ire->ire_type & IRE_ONLINK) 2766 goto done; 2767 ire = ire->ire_dep_parent; 2768 } 2769 rw_exit(&ipst->ips_ire_dep_lock); 2770 return (NULL); 2771 2772 done: 2773 ire_refhold(ire); 2774 rw_exit(&ipst->ips_ire_dep_lock); 2775 return (ire); 2776 } 2777 2778 /* 2779 * Find the ill used to send packets. This will be NULL in case 2780 * of a reject or blackhole. 2781 * The returned ill is held; caller needs to do ill_refrele when done. 2782 */ 2783 ill_t * 2784 ire_nexthop_ill(ire_t *ire) 2785 { 2786 ill_t *ill; 2787 2788 ire = ire_nexthop(ire); 2789 if (ire == NULL) 2790 return (NULL); 2791 2792 /* ire_ill can not change for an existing ire */ 2793 ill = ire->ire_ill; 2794 if (ill != NULL) 2795 ill_refhold(ill); 2796 ire_refrele(ire); 2797 return (ill); 2798 } 2799 2800 #ifdef DEBUG 2801 static boolean_t 2802 parent_has_child(ire_t *parent, ire_t *child) 2803 { 2804 ire_t *ire; 2805 ire_t *prev; 2806 2807 ire = parent->ire_dep_children; 2808 prev = NULL; 2809 while (ire != NULL) { 2810 if (prev == NULL) { 2811 ASSERT(ire->ire_dep_sib_ptpn == 2812 &(parent->ire_dep_children)); 2813 } else { 2814 ASSERT(ire->ire_dep_sib_ptpn == 2815 &(prev->ire_dep_sib_next)); 2816 } 2817 if (ire == child) 2818 return (B_TRUE); 2819 prev = ire; 2820 ire = ire->ire_dep_sib_next; 2821 } 2822 return (B_FALSE); 2823 } 2824 2825 static void 2826 ire_dep_verify(ire_t *ire) 2827 { 2828 ire_t *parent = ire->ire_dep_parent; 2829 ire_t *child = ire->ire_dep_children; 2830 2831 ASSERT(ire->ire_ipversion == IPV4_VERSION || 2832 ire->ire_ipversion == IPV6_VERSION); 2833 if (parent != NULL) { 2834 ASSERT(parent->ire_ipversion == IPV4_VERSION || 2835 parent->ire_ipversion == IPV6_VERSION); 2836 ASSERT(parent->ire_refcnt >= 1); 2837 ASSERT(parent_has_child(parent, ire)); 2838 } 2839 if (child != NULL) { 2840 ASSERT(child->ire_ipversion == IPV4_VERSION || 2841 child->ire_ipversion == IPV6_VERSION); 2842 ASSERT(child->ire_dep_parent == ire); 2843 ASSERT(child->ire_dep_sib_ptpn != NULL); 2844 ASSERT(parent_has_child(ire, child)); 2845 } 2846 } 2847 #endif /* DEBUG */ 2848 2849 /* 2850 * Assumes ire_dep_parent is set. Remove this child from its parent's linkage. 2851 */ 2852 void 2853 ire_dep_remove(ire_t *ire) 2854 { 2855 ip_stack_t *ipst = ire->ire_ipst; 2856 ire_t *parent = ire->ire_dep_parent; 2857 ire_t *next; 2858 nce_t *nce; 2859 2860 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2861 ASSERT(ire->ire_dep_parent != NULL); 2862 ASSERT(ire->ire_dep_sib_ptpn != NULL); 2863 2864 #ifdef DEBUG 2865 ire_dep_verify(ire); 2866 ire_dep_verify(parent); 2867 #endif 2868 2869 next = ire->ire_dep_sib_next; 2870 if (next != NULL) 2871 next->ire_dep_sib_ptpn = ire->ire_dep_sib_ptpn; 2872 2873 ASSERT(*(ire->ire_dep_sib_ptpn) == ire); 2874 *(ire->ire_dep_sib_ptpn) = ire->ire_dep_sib_next; 2875 2876 ire->ire_dep_sib_ptpn = NULL; 2877 ire->ire_dep_sib_next = NULL; 2878 2879 mutex_enter(&ire->ire_lock); 2880 parent = ire->ire_dep_parent; 2881 ire->ire_dep_parent = NULL; 2882 mutex_exit(&ire->ire_lock); 2883 2884 /* 2885 * Make sure all our children, grandchildren, etc set 2886 * ire_dep_parent_generation to IRE_GENERATION_VERIFY since 2887 * we can no longer guarantee than the children have a current 2888 * ire_nce_cache and ire_nexthop_ill(). 2889 */ 2890 if (ire->ire_dep_children != NULL) 2891 ire_dep_invalidate_children(ire->ire_dep_children); 2892 2893 /* 2894 * Since the parent is gone we make sure we clear ire_nce_cache. 2895 * We can clear it under ire_lock even if the IRE is used 2896 */ 2897 mutex_enter(&ire->ire_lock); 2898 nce = ire->ire_nce_cache; 2899 ire->ire_nce_cache = NULL; 2900 mutex_exit(&ire->ire_lock); 2901 if (nce != NULL) 2902 nce_refrele(nce); 2903 2904 #ifdef DEBUG 2905 ire_dep_verify(ire); 2906 ire_dep_verify(parent); 2907 #endif 2908 2909 ire_refrele_notr(parent); 2910 ire_refrele_notr(ire); 2911 } 2912 2913 /* 2914 * Insert the child in the linkage of the parent 2915 */ 2916 static void 2917 ire_dep_parent_insert(ire_t *child, ire_t *parent) 2918 { 2919 ip_stack_t *ipst = child->ire_ipst; 2920 ire_t *next; 2921 2922 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2923 ASSERT(child->ire_dep_parent == NULL); 2924 2925 #ifdef DEBUG 2926 ire_dep_verify(child); 2927 ire_dep_verify(parent); 2928 #endif 2929 /* No parents => no siblings */ 2930 ASSERT(child->ire_dep_sib_ptpn == NULL); 2931 ASSERT(child->ire_dep_sib_next == NULL); 2932 2933 ire_refhold_notr(parent); 2934 ire_refhold_notr(child); 2935 2936 /* Head insertion */ 2937 next = parent->ire_dep_children; 2938 if (next != NULL) { 2939 ASSERT(next->ire_dep_sib_ptpn == &(parent->ire_dep_children)); 2940 child->ire_dep_sib_next = next; 2941 next->ire_dep_sib_ptpn = &(child->ire_dep_sib_next); 2942 } 2943 parent->ire_dep_children = child; 2944 child->ire_dep_sib_ptpn = &(parent->ire_dep_children); 2945 2946 mutex_enter(&child->ire_lock); 2947 child->ire_dep_parent = parent; 2948 mutex_exit(&child->ire_lock); 2949 2950 #ifdef DEBUG 2951 ire_dep_verify(child); 2952 ire_dep_verify(parent); 2953 #endif 2954 } 2955 2956 2957 /* 2958 * Given count worth of ires and generations, build ire_dep_* relationships 2959 * from ires[0] to ires[count-1]. Record generations[i+1] in 2960 * ire_dep_parent_generation for ires[i]. 2961 * We graft onto an existing parent chain by making sure that we don't 2962 * touch ire_dep_parent for ires[count-1]. 2963 * 2964 * We check for any condemned ire_generation count and return B_FALSE in 2965 * that case so that the caller can tear it apart. 2966 * 2967 * Note that generations[0] is not used. Caller handles that. 2968 */ 2969 boolean_t 2970 ire_dep_build(ire_t *ires[], uint_t generations[], uint_t count) 2971 { 2972 ire_t *ire = ires[0]; 2973 ip_stack_t *ipst; 2974 uint_t i; 2975 2976 ASSERT(count > 0); 2977 if (count == 1) { 2978 /* No work to do */ 2979 return (B_TRUE); 2980 } 2981 ipst = ire->ire_ipst; 2982 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 2983 /* 2984 * Do not remove the linkage for any existing parent chain i.e., 2985 * ires[count-1] is left alone. 2986 */ 2987 for (i = 0; i < count-1; i++) { 2988 /* Remove existing parent if we need to change it */ 2989 if (ires[i]->ire_dep_parent != NULL && 2990 ires[i]->ire_dep_parent != ires[i+1]) 2991 ire_dep_remove(ires[i]); 2992 } 2993 2994 for (i = 0; i < count - 1; i++) { 2995 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 2996 ires[i]->ire_ipversion == IPV6_VERSION); 2997 /* Does it need to change? */ 2998 if (ires[i]->ire_dep_parent != ires[i+1]) 2999 ire_dep_parent_insert(ires[i], ires[i+1]); 3000 3001 mutex_enter(&ires[i+1]->ire_lock); 3002 if (IRE_IS_CONDEMNED(ires[i+1])) { 3003 mutex_exit(&ires[i+1]->ire_lock); 3004 rw_exit(&ipst->ips_ire_dep_lock); 3005 return (B_FALSE); 3006 } 3007 mutex_exit(&ires[i+1]->ire_lock); 3008 3009 mutex_enter(&ires[i]->ire_lock); 3010 ires[i]->ire_dep_parent_generation = generations[i+1]; 3011 mutex_exit(&ires[i]->ire_lock); 3012 } 3013 rw_exit(&ipst->ips_ire_dep_lock); 3014 return (B_TRUE); 3015 } 3016 3017 /* 3018 * Given count worth of ires, unbuild ire_dep_* relationships 3019 * from ires[0] to ires[count-1]. 3020 */ 3021 void 3022 ire_dep_unbuild(ire_t *ires[], uint_t count) 3023 { 3024 ip_stack_t *ipst; 3025 uint_t i; 3026 3027 if (count == 0) { 3028 /* No work to do */ 3029 return; 3030 } 3031 ipst = ires[0]->ire_ipst; 3032 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 3033 for (i = 0; i < count; i++) { 3034 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 3035 ires[i]->ire_ipversion == IPV6_VERSION); 3036 if (ires[i]->ire_dep_parent != NULL) 3037 ire_dep_remove(ires[i]); 3038 mutex_enter(&ires[i]->ire_lock); 3039 ires[i]->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3040 mutex_exit(&ires[i]->ire_lock); 3041 } 3042 rw_exit(&ipst->ips_ire_dep_lock); 3043 } 3044 3045 /* 3046 * Both the forwarding and the outbound code paths can trip on 3047 * a condemned NCE, in which case we call this function. 3048 * We have two different behaviors: if the NCE was UNREACHABLE 3049 * it is an indication that something failed. In that case 3050 * we see if we should look for a different IRE (for example, 3051 * delete any matching redirect IRE, or try a different 3052 * IRE_DEFAULT (ECMP)). We mark the ire as bad so a hopefully 3053 * different IRE will be picked next time we send/forward. 3054 * 3055 * If we are called by the output path then fail_if_better is set 3056 * and we return NULL if there could be a better IRE. This is because the 3057 * output path retries the IRE lookup. (The input/forward path can not retry.) 3058 * 3059 * If the NCE was not unreachable then we pick/allocate a 3060 * new (most likely ND_INITIAL) NCE and proceed with it. 3061 * 3062 * ipha/ip6h are needed for multicast packets; ipha needs to be 3063 * set for IPv4 and ip6h needs to be set for IPv6 packets. 3064 */ 3065 nce_t * 3066 ire_handle_condemned_nce(nce_t *nce, ire_t *ire, ipha_t *ipha, ip6_t *ip6h, 3067 boolean_t fail_if_better) 3068 { 3069 if (nce->nce_common->ncec_state == ND_UNREACHABLE) { 3070 if (ire_no_good(ire) && fail_if_better) { 3071 /* 3072 * Did some changes, or ECMP likely to exist. 3073 * Make ip_output look for a different IRE 3074 */ 3075 return (NULL); 3076 } 3077 } 3078 if (ire_revalidate_nce(ire) == ENETUNREACH) { 3079 /* The ire_dep_parent chain went bad, or no memory? */ 3080 (void) ire_no_good(ire); 3081 return (NULL); 3082 } 3083 if (ire->ire_ipversion == IPV4_VERSION) { 3084 ASSERT(ipha != NULL); 3085 nce = ire_to_nce(ire, ipha->ipha_dst, NULL); 3086 } else { 3087 ASSERT(ip6h != NULL); 3088 nce = ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst); 3089 } 3090 3091 if (nce == NULL) 3092 return (NULL); 3093 if (nce->nce_is_condemned) { 3094 nce_refrele(nce); 3095 return (NULL); 3096 } 3097 return (nce); 3098 } 3099 3100 /* 3101 * The caller has found that the ire is bad, either due to a reference to an NCE 3102 * in ND_UNREACHABLE state, or a MULTIRT route whose gateway can't be resolved. 3103 * We update things so a subsequent attempt to send to the destination 3104 * is likely to find different IRE, or that a new NCE would be created. 3105 * 3106 * Returns B_TRUE if it is likely that a subsequent ire_ftable_lookup would 3107 * find a different route (either due to having deleted a redirect, or there 3108 * being ECMP routes.) 3109 * 3110 * If we have a redirect (RTF_DYNAMIC) we delete it. 3111 * Otherwise we increment ire_badcnt and increment the generation number so 3112 * that a cached ixa_ire will redo the route selection. ire_badcnt is taken 3113 * into account in the route selection when we have multiple choices (multiple 3114 * default routes or ECMP in general). 3115 * Any time ip_select_route find an ire with a condemned ire_nce_cache 3116 * (e.g., if no equal cost route to the bad one) ip_select_route will make 3117 * sure the NCE is revalidated to avoid getting stuck on a 3118 * NCE_F_CONDMNED ncec that caused ire_no_good to be called. 3119 */ 3120 boolean_t 3121 ire_no_good(ire_t *ire) 3122 { 3123 ip_stack_t *ipst = ire->ire_ipst; 3124 ire_t *ire2; 3125 nce_t *nce; 3126 3127 if (ire->ire_flags & RTF_DYNAMIC) { 3128 ire_delete(ire); 3129 return (B_TRUE); 3130 } 3131 if (ire->ire_flags & RTF_INDIRECT) { 3132 /* Check if next IRE is a redirect */ 3133 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3134 if (ire->ire_dep_parent != NULL && 3135 (ire->ire_dep_parent->ire_flags & RTF_DYNAMIC)) { 3136 ire2 = ire->ire_dep_parent; 3137 ire_refhold(ire2); 3138 } else { 3139 ire2 = NULL; 3140 } 3141 rw_exit(&ipst->ips_ire_dep_lock); 3142 if (ire2 != NULL) { 3143 ire_delete(ire2); 3144 ire_refrele(ire2); 3145 return (B_TRUE); 3146 } 3147 } 3148 /* 3149 * No redirect involved. Increment badcnt so that if we have ECMP 3150 * routes we are likely to pick a different one for the next packet. 3151 * 3152 * If the NCE is unreachable and condemned we should drop the reference 3153 * to it so that a new NCE can be created. 3154 * 3155 * Finally we increment the generation number so that any ixa_ire 3156 * cache will be revalidated. 3157 */ 3158 mutex_enter(&ire->ire_lock); 3159 ire->ire_badcnt++; 3160 ire->ire_last_badcnt = TICK_TO_SEC(ddi_get_lbolt64()); 3161 nce = ire->ire_nce_cache; 3162 if (nce != NULL && nce->nce_is_condemned && 3163 nce->nce_common->ncec_state == ND_UNREACHABLE) 3164 ire->ire_nce_cache = NULL; 3165 else 3166 nce = NULL; 3167 mutex_exit(&ire->ire_lock); 3168 if (nce != NULL) 3169 nce_refrele(nce); 3170 3171 ire_increment_generation(ire); 3172 ire_dep_incr_generation(ire); 3173 3174 return (ire->ire_bucket->irb_ire_cnt > 1); 3175 } 3176 3177 /* 3178 * Walk ire_dep_parent chain and validate that ire_dep_parent->ire_generation == 3179 * ire_dep_parent_generation. 3180 * If they all match we just return ire_generation from the topmost IRE. 3181 * Otherwise we propagate the mismatch by setting all ire_dep_parent_generation 3182 * above the mismatch to IRE_GENERATION_VERIFY and also returning 3183 * IRE_GENERATION_VERIFY. 3184 */ 3185 uint_t 3186 ire_dep_validate_generations(ire_t *ire) 3187 { 3188 ip_stack_t *ipst = ire->ire_ipst; 3189 uint_t generation; 3190 ire_t *ire1; 3191 3192 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3193 generation = ire->ire_generation; /* Assuming things match */ 3194 for (ire1 = ire; ire1 != NULL; ire1 = ire1->ire_dep_parent) { 3195 ASSERT(ire1->ire_ipversion == IPV4_VERSION || 3196 ire1->ire_ipversion == IPV6_VERSION); 3197 if (ire1->ire_dep_parent == NULL) 3198 break; 3199 if (ire1->ire_dep_parent_generation != 3200 ire1->ire_dep_parent->ire_generation) 3201 goto mismatch; 3202 } 3203 rw_exit(&ipst->ips_ire_dep_lock); 3204 return (generation); 3205 3206 mismatch: 3207 generation = IRE_GENERATION_VERIFY; 3208 /* Fill from top down to the mismatch with _VERIFY */ 3209 while (ire != ire1) { 3210 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3211 ire->ire_ipversion == IPV6_VERSION); 3212 mutex_enter(&ire->ire_lock); 3213 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3214 mutex_exit(&ire->ire_lock); 3215 ire = ire->ire_dep_parent; 3216 } 3217 rw_exit(&ipst->ips_ire_dep_lock); 3218 return (generation); 3219 } 3220 3221 /* 3222 * Used when we need to return an ire with ire_dep_parent, but we 3223 * know the chain is invalid for instance we didn't create an IRE_IF_CLONE 3224 * Using IRE_GENERATION_VERIFY means that next time we'll redo the 3225 * recursive lookup. 3226 */ 3227 void 3228 ire_dep_invalidate_generations(ire_t *ire) 3229 { 3230 ip_stack_t *ipst = ire->ire_ipst; 3231 3232 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3233 while (ire != NULL) { 3234 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3235 ire->ire_ipversion == IPV6_VERSION); 3236 mutex_enter(&ire->ire_lock); 3237 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3238 mutex_exit(&ire->ire_lock); 3239 ire = ire->ire_dep_parent; 3240 } 3241 rw_exit(&ipst->ips_ire_dep_lock); 3242 } 3243 3244 /* Set _VERIFY ire_dep_parent_generation for all children recursively */ 3245 static void 3246 ire_dep_invalidate_children(ire_t *child) 3247 { 3248 ip_stack_t *ipst = child->ire_ipst; 3249 3250 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 3251 /* Depth first */ 3252 if (child->ire_dep_children != NULL) 3253 ire_dep_invalidate_children(child->ire_dep_children); 3254 3255 while (child != NULL) { 3256 mutex_enter(&child->ire_lock); 3257 child->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3258 mutex_exit(&child->ire_lock); 3259 child = child->ire_dep_sib_next; 3260 } 3261 } 3262 3263 static void 3264 ire_dep_increment_children(ire_t *child) 3265 { 3266 ip_stack_t *ipst = child->ire_ipst; 3267 3268 ASSERT(RW_READ_HELD(&ipst->ips_ire_dep_lock)); 3269 /* Depth first */ 3270 if (child->ire_dep_children != NULL) 3271 ire_dep_increment_children(child->ire_dep_children); 3272 3273 while (child != NULL) { 3274 if (!IRE_IS_CONDEMNED(child)) 3275 ire_increment_generation(child); 3276 child = child->ire_dep_sib_next; 3277 } 3278 } 3279 3280 /* 3281 * Walk all the children of this ire recursively and increment their 3282 * generation number. 3283 */ 3284 static void 3285 ire_dep_incr_generation_locked(ire_t *parent) 3286 { 3287 ASSERT(RW_READ_HELD(&parent->ire_ipst->ips_ire_dep_lock)); 3288 if (parent->ire_dep_children != NULL) 3289 ire_dep_increment_children(parent->ire_dep_children); 3290 } 3291 3292 void 3293 ire_dep_incr_generation(ire_t *parent) 3294 { 3295 ip_stack_t *ipst = parent->ire_ipst; 3296 3297 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3298 ire_dep_incr_generation_locked(parent); 3299 rw_exit(&ipst->ips_ire_dep_lock); 3300 } 3301 3302 /* 3303 * Get a new ire_nce_cache for this IRE as well as its nexthop. 3304 * Returns zero if it succeeds. Can fail due to lack of memory or when 3305 * the route has become unreachable. Returns ENOMEM and ENETUNREACH in those 3306 * cases. 3307 * 3308 * In the in.mpathd case, the ire will have ire_testhidden 3309 * set; so we should create the ncec for the underlying ill. 3310 * 3311 * Note that the error returned by ire_revalidate_nce() is ignored by most 3312 * callers except ire_handle_condemned_nce(), which handles the ENETUNREACH 3313 * error to mark potentially bad ire's. For all the other callers, an 3314 * error return could indicate a transient condition like ENOMEM, or could 3315 * be the result of an interface that is going down/unplumbing. In the former 3316 * case (transient error), we would leave the old stale ire/ire_nce_cache 3317 * in place, and possibly use incorrect link-layer information to send packets 3318 * but would eventually recover. In the latter case (ill down/replumb), 3319 * ire_revalidate_nce() might return a condemned nce back, but we would then 3320 * recover in the packet output path. 3321 */ 3322 int 3323 ire_revalidate_nce(ire_t *ire) 3324 { 3325 nce_t *nce, *old_nce; 3326 ire_t *nexthop; 3327 3328 /* 3329 * For multicast we conceptually have an NCE but we don't store it 3330 * in ire_nce_cache; when ire_to_nce is called we allocate the nce. 3331 */ 3332 if (ire->ire_type & IRE_MULTICAST) 3333 return (0); 3334 3335 /* ire_testhidden should only be set on under-interfaces */ 3336 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3337 3338 nexthop = ire_nexthop(ire); 3339 if (nexthop == NULL) { 3340 /* The route is potentially bad */ 3341 (void) ire_no_good(ire); 3342 return (ENETUNREACH); 3343 } 3344 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3345 ASSERT(ire->ire_ill != NULL); 3346 3347 if (ire->ire_ipversion == IPV4_VERSION) 3348 nce = nce_lookup_v4(ire->ire_ill, &ire->ire_addr); 3349 else 3350 nce = nce_lookup_v6(ire->ire_ill, &ire->ire_addr_v6); 3351 } else { 3352 ASSERT(nexthop->ire_type & IRE_ONLINK); 3353 if (ire->ire_ipversion == IPV4_VERSION) { 3354 nce = arp_nce_init(nexthop->ire_ill, nexthop->ire_addr, 3355 nexthop->ire_type); 3356 } else { 3357 nce = ndp_nce_init(nexthop->ire_ill, 3358 &nexthop->ire_addr_v6, nexthop->ire_type); 3359 } 3360 } 3361 if (nce == NULL) { 3362 /* 3363 * Leave the old stale one in place to avoid a NULL 3364 * ire_nce_cache. 3365 */ 3366 ire_refrele(nexthop); 3367 return (ENOMEM); 3368 } 3369 3370 if (nexthop != ire) { 3371 /* Update the nexthop ire */ 3372 mutex_enter(&nexthop->ire_lock); 3373 old_nce = nexthop->ire_nce_cache; 3374 if (!IRE_IS_CONDEMNED(nexthop)) { 3375 nce_refhold(nce); 3376 nexthop->ire_nce_cache = nce; 3377 } else { 3378 nexthop->ire_nce_cache = NULL; 3379 } 3380 mutex_exit(&nexthop->ire_lock); 3381 if (old_nce != NULL) 3382 nce_refrele(old_nce); 3383 } 3384 ire_refrele(nexthop); 3385 3386 mutex_enter(&ire->ire_lock); 3387 old_nce = ire->ire_nce_cache; 3388 if (!IRE_IS_CONDEMNED(ire)) { 3389 nce_refhold(nce); 3390 ire->ire_nce_cache = nce; 3391 } else { 3392 ire->ire_nce_cache = NULL; 3393 } 3394 mutex_exit(&ire->ire_lock); 3395 if (old_nce != NULL) 3396 nce_refrele(old_nce); 3397 3398 nce_refrele(nce); 3399 return (0); 3400 } 3401 3402 /* 3403 * Get a held nce for a given ire. 3404 * In the common case this is just from ire_nce_cache. 3405 * For IRE_MULTICAST this needs to do an explicit lookup since we do not 3406 * have an IRE_MULTICAST per address. 3407 * Note that this explicitly returns CONDEMNED NCEs. The caller needs those 3408 * so they can check whether the NCE went unreachable (as opposed to was 3409 * condemned for some other reason). 3410 */ 3411 nce_t * 3412 ire_to_nce(ire_t *ire, ipaddr_t v4nexthop, const in6_addr_t *v6nexthop) 3413 { 3414 nce_t *nce; 3415 3416 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 3417 return (NULL); 3418 3419 /* ire_testhidden should only be set on under-interfaces */ 3420 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3421 3422 mutex_enter(&ire->ire_lock); 3423 nce = ire->ire_nce_cache; 3424 if (nce != NULL) { 3425 nce_refhold(nce); 3426 mutex_exit(&ire->ire_lock); 3427 return (nce); 3428 } 3429 mutex_exit(&ire->ire_lock); 3430 3431 if (ire->ire_type & IRE_MULTICAST) { 3432 ASSERT(ire->ire_ill != NULL); 3433 3434 if (ire->ire_ipversion == IPV4_VERSION) { 3435 ASSERT(v6nexthop == NULL); 3436 3437 nce = arp_nce_init(ire->ire_ill, v4nexthop, 3438 ire->ire_type); 3439 } else { 3440 ASSERT(v6nexthop != NULL); 3441 ASSERT(v4nexthop == 0); 3442 nce = ndp_nce_init(ire->ire_ill, v6nexthop, 3443 ire->ire_type); 3444 } 3445 return (nce); 3446 } 3447 return (NULL); 3448 } 3449 3450 nce_t * 3451 ire_to_nce_pkt(ire_t *ire, mblk_t *mp) 3452 { 3453 ipha_t *ipha; 3454 ip6_t *ip6h; 3455 3456 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 3457 ipha = (ipha_t *)mp->b_rptr; 3458 return (ire_to_nce(ire, ipha->ipha_dst, NULL)); 3459 } else { 3460 ip6h = (ip6_t *)mp->b_rptr; 3461 return (ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst)); 3462 } 3463 } 3464 3465 /* 3466 * Given an IRE_INTERFACE (that matches more than one address) create 3467 * and return an IRE_IF_CLONE for the specific address. 3468 * Return the generation number. 3469 * Returns NULL is no memory for the IRE. 3470 * Handles both IPv4 and IPv6. 3471 * 3472 * IRE_IF_CLONE entries may only be created adn added by calling 3473 * ire_create_if_clone(), and we depend on the fact that ire_add will 3474 * atomically ensure that attempts to add multiple identical IRE_IF_CLONE 3475 * entries will not result in duplicate (i.e., ire_identical_ref > 1) 3476 * CLONE entries, so that a single ire_delete is sufficient to remove the 3477 * CLONE. 3478 */ 3479 ire_t * 3480 ire_create_if_clone(ire_t *ire_if, const in6_addr_t *addr, uint_t *generationp) 3481 { 3482 ire_t *ire; 3483 ire_t *nire; 3484 3485 if (ire_if->ire_ipversion == IPV4_VERSION) { 3486 ipaddr_t v4addr; 3487 ipaddr_t mask = IP_HOST_MASK; 3488 3489 ASSERT(IN6_IS_ADDR_V4MAPPED(addr)); 3490 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 3491 3492 ire = ire_create( 3493 (uchar_t *)&v4addr, /* dest address */ 3494 (uchar_t *)&mask, /* mask */ 3495 (uchar_t *)&ire_if->ire_gateway_addr, 3496 IRE_IF_CLONE, /* IRE type */ 3497 ire_if->ire_ill, 3498 ire_if->ire_zoneid, 3499 ire_if->ire_flags | RTF_HOST, 3500 NULL, /* No security attr for IRE_IF_ALL */ 3501 ire_if->ire_ipst); 3502 } else { 3503 ASSERT(!IN6_IS_ADDR_V4MAPPED(addr)); 3504 ire = ire_create_v6( 3505 addr, /* dest address */ 3506 &ipv6_all_ones, /* mask */ 3507 &ire_if->ire_gateway_addr_v6, /* gateway addr */ 3508 IRE_IF_CLONE, /* IRE type */ 3509 ire_if->ire_ill, 3510 ire_if->ire_zoneid, 3511 ire_if->ire_flags | RTF_HOST, 3512 NULL, /* No security attr for IRE_IF_ALL */ 3513 ire_if->ire_ipst); 3514 } 3515 if (ire == NULL) 3516 return (NULL); 3517 3518 /* Take the metrics, in particular the mtu, from the IRE_IF */ 3519 ire->ire_metrics = ire_if->ire_metrics; 3520 3521 nire = ire_add(ire); 3522 if (nire == NULL) /* Some failure */ 3523 return (NULL); 3524 3525 if (generationp != NULL) 3526 *generationp = nire->ire_generation; 3527 3528 return (nire); 3529 } 3530 3531 /* 3532 * The argument is an IRE_INTERFACE. Delete all of IRE_IF_CLONE in the 3533 * ire_dep_children (just walk the ire_dep_sib_next since they are all 3534 * immediate children.) 3535 * Since we hold a lock while we remove them we need to defer the actual 3536 * calls to ire_delete() until we have dropped the lock. This makes things 3537 * less efficient since we restart at the top after dropping the lock. But 3538 * we only run when an IRE_INTERFACE is deleted which is infrquent. 3539 * 3540 * Note that ire_dep_children can be any mixture of offlink routes and 3541 * IRE_IF_CLONE entries. 3542 */ 3543 void 3544 ire_dep_delete_if_clone(ire_t *parent) 3545 { 3546 ip_stack_t *ipst = parent->ire_ipst; 3547 ire_t *child, *next; 3548 3549 restart: 3550 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3551 if (parent->ire_dep_children == NULL) { 3552 rw_exit(&ipst->ips_ire_dep_lock); 3553 return; 3554 } 3555 child = parent->ire_dep_children; 3556 while (child != NULL) { 3557 next = child->ire_dep_sib_next; 3558 if ((child->ire_type & IRE_IF_CLONE) && 3559 !IRE_IS_CONDEMNED(child)) { 3560 ire_refhold(child); 3561 rw_exit(&ipst->ips_ire_dep_lock); 3562 ire_delete(child); 3563 ASSERT(IRE_IS_CONDEMNED(child)); 3564 ire_refrele(child); 3565 goto restart; 3566 } 3567 child = next; 3568 } 3569 rw_exit(&ipst->ips_ire_dep_lock); 3570 } 3571 3572 /* 3573 * In the preferred/strict src multihoming modes, unbound routes (i.e., 3574 * ire_t entries with ire_unbound set to B_TRUE) are bound to an interface 3575 * by selecting the first available interface that has an interface route for 3576 * the ire_gateway. If that interface is subsequently brought down, ill_downi() 3577 * will call ire_rebind() so that the unbound route can be bound to some other 3578 * matching interface thereby preserving the intended reachability information 3579 * from the original unbound route. 3580 */ 3581 void 3582 ire_rebind(ire_t *ire) 3583 { 3584 ire_t *gw_ire, *new_ire; 3585 int match_flags = MATCH_IRE_TYPE; 3586 ill_t *gw_ill; 3587 boolean_t isv6 = (ire->ire_ipversion == IPV6_VERSION); 3588 ip_stack_t *ipst = ire->ire_ipst; 3589 3590 ASSERT(ire->ire_unbound); 3591 again: 3592 if (isv6) { 3593 gw_ire = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 0, 0, 3594 IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0, 3595 ipst, NULL); 3596 } else { 3597 gw_ire = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 3598 IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0, 3599 ipst, NULL); 3600 } 3601 if (gw_ire == NULL) { 3602 /* see comments in ip_rt_add[_v6]() for IPMP */ 3603 if (match_flags & MATCH_IRE_TESTHIDDEN) 3604 return; 3605 3606 match_flags |= MATCH_IRE_TESTHIDDEN; 3607 goto again; 3608 } 3609 gw_ill = gw_ire->ire_ill; 3610 if (isv6) { 3611 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 3612 &ire->ire_gateway_addr_v6, ire->ire_type, gw_ill, 3613 ire->ire_zoneid, ire->ire_flags, NULL, ipst); 3614 } else { 3615 new_ire = ire_create((uchar_t *)&ire->ire_addr, 3616 (uchar_t *)&ire->ire_mask, 3617 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, gw_ill, 3618 ire->ire_zoneid, ire->ire_flags, NULL, ipst); 3619 } 3620 ire_refrele(gw_ire); 3621 if (new_ire == NULL) 3622 return; 3623 new_ire->ire_unbound = B_TRUE; 3624 new_ire = ire_add(new_ire); 3625 if (new_ire != NULL) 3626 ire_refrele(new_ire); 3627 } 3628