1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains routines that manipulate Internet Routing Entries (IREs). 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/stropts.h> 34 #include <sys/ddi.h> 35 #include <sys/cmn_err.h> 36 #include <sys/policy.h> 37 38 #include <sys/systm.h> 39 #include <sys/kmem.h> 40 #include <sys/param.h> 41 #include <sys/socket.h> 42 #include <net/if.h> 43 #include <net/route.h> 44 #include <netinet/in.h> 45 #include <net/if_dl.h> 46 #include <netinet/ip6.h> 47 #include <netinet/icmp6.h> 48 49 #include <inet/common.h> 50 #include <inet/mi.h> 51 #include <inet/ip.h> 52 #include <inet/ip6.h> 53 #include <inet/ip_ndp.h> 54 #include <inet/arp.h> 55 #include <inet/ip_if.h> 56 #include <inet/ip_ire.h> 57 #include <inet/ip_ftable.h> 58 #include <inet/ip_rts.h> 59 #include <inet/nd.h> 60 61 #include <net/pfkeyv2.h> 62 #include <inet/ipsec_info.h> 63 #include <inet/sadb.h> 64 #include <sys/kmem.h> 65 #include <inet/tcp.h> 66 #include <inet/ipclassifier.h> 67 #include <sys/zone.h> 68 #include <sys/cpuvar.h> 69 70 #include <sys/tsol/label.h> 71 #include <sys/tsol/tnet.h> 72 73 struct kmem_cache *rt_entry_cache; 74 75 /* 76 * Synchronization notes: 77 * 78 * The fields of the ire_t struct are protected in the following way : 79 * 80 * ire_next/ire_ptpn 81 * 82 * - bucket lock of the respective tables (cache or forwarding tables). 83 * 84 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 85 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 86 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 87 * 88 * - Set in ire_create_v4/v6 and never changes after that. Thus, 89 * we don't need a lock whenever these fields are accessed. 90 * 91 * - ire_bucket and ire_masklen (also set in ire_create) is set in 92 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 93 * changes after that. Thus we don't need a lock whenever these 94 * fields are accessed. 95 * 96 * ire_gateway_addr_v4[v6] 97 * 98 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 99 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 100 * it assumed to be atomic and hence the other parts of the code 101 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 102 * and hence any access to it uses ire_lock to get/set the right value. 103 * 104 * ire_ident, ire_refcnt 105 * 106 * - Updated atomically using atomic_add_32 107 * 108 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 109 * 110 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 111 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 112 * 113 * ire_max_frag, ire_frag_flag 114 * 115 * - ire_lock is used to set/read both of them together. 116 * 117 * ire_tire_mark 118 * 119 * - Set in ire_create and updated in ire_expire, which is called 120 * by only one function namely ip_trash_timer_expire. Thus only 121 * one function updates and examines the value. 122 * 123 * ire_marks 124 * - bucket lock protects this. 125 * 126 * ire_ipsec_overhead/ire_ll_hdr_length 127 * 128 * - Place holder for returning the information to the upper layers 129 * when IRE_DB_REQ comes down. 130 * 131 * 132 * ipv6_ire_default_count is protected by the bucket lock of 133 * ip_forwarding_table_v6[0][0]. 134 * 135 * ipv6_ire_default_index is not protected as it is just a hint 136 * at which default gateway to use. There is nothing 137 * wrong in using the same gateway for two different connections. 138 * 139 * As we always hold the bucket locks in all the places while accessing 140 * the above values, it is natural to use them for protecting them. 141 * 142 * We have a separate cache table and forwarding table for IPv4 and IPv6. 143 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 144 * array of irb_t structures. The IPv6 forwarding table 145 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 146 * structure. ip_forwarding_table_v6 is allocated dynamically in 147 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 148 * initializing the same bucket. Once a bucket is initialized, it is never 149 * de-alloacted. This assumption enables us to access 150 * ip_forwarding_table_v6[i] without any locks. 151 * 152 * The forwarding table for IPv4 is a radix tree whose leaves 153 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 154 * for IPv4 is dynamically allocated and freed. 155 * 156 * Each irb_t - ire bucket structure has a lock to protect 157 * a bucket and the ires residing in the bucket have a back pointer to 158 * the bucket structure. It also has a reference count for the number 159 * of threads walking the bucket - irb_refcnt which is bumped up 160 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 161 * set to IRE_MARK_CONDEMNED indicating that there are some ires 162 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 163 * last thread to leave the bucket should delete the ires. Usually 164 * this is done by the IRB_REFRELE macro which is used to decrement 165 * the reference count on a bucket. See comments above irb_t structure 166 * definition in ip.h for further details. 167 * 168 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 169 * decrements the reference count, ire_refcnt, atomically on the ire. 170 * ire_refcnt is modified only using this macro. Operations on the IRE 171 * could be described as follows : 172 * 173 * CREATE an ire with reference count initialized to 1. 174 * 175 * ADDITION of an ire holds the bucket lock, checks for duplicates 176 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 177 * bumping up once more i.e the reference count is 2. This is to avoid 178 * an extra lookup in the functions calling ire_add which wants to 179 * work with the ire after adding. 180 * 181 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 182 * macro. It is valid to bump up the referece count of the IRE, 183 * after the lookup has returned an ire. Following are the lookup 184 * functions that return an HELD ire : 185 * 186 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 187 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 188 * ipif_to_ire[_v6]. 189 * 190 * DELETION of an ire holds the bucket lock, removes it from the list 191 * and then decrements the reference count for having removed from the list 192 * by using the IRE_REFRELE macro. If some other thread has looked up 193 * the ire, the reference count would have been bumped up and hence 194 * this ire will not be freed once deleted. It will be freed once the 195 * reference count drops to zero. 196 * 197 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 198 * lookups acquire the bucket lock as RW_READER. 199 * 200 * NOTE : The only functions that does the IRE_REFRELE when an ire is 201 * passed as an argument are : 202 * 203 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 204 * broadcast ires it looks up internally within 205 * the function. Currently, for simplicity it does 206 * not differentiate the one that is passed in and 207 * the ones it looks up internally. It always 208 * IRE_REFRELEs. 209 * 2) ire_send 210 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 211 * that take ire as an argument, it has to selectively 212 * IRE_REFRELE the ire. To maintain symmetry, 213 * ire_send_v6 does the same. 214 * 215 * Otherwise, the general rule is to do the IRE_REFRELE in the function 216 * that is passing the ire as an argument. 217 * 218 * In trying to locate ires the following points are to be noted. 219 * 220 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 221 * to be ignored when walking the ires using ire_next. 222 * 223 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 224 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 225 * applications should not be seeing this ire and hence this ire is ignored 226 * in most cases in the search using ire_next. 227 * 228 * Zones note: 229 * Walking IREs within a given zone also walks certain ires in other 230 * zones. This is done intentionally. IRE walks with a specified 231 * zoneid are used only when doing informational reports, and 232 * zone users want to see things that they can access. See block 233 * comment in ire_walk_ill_match(). 234 */ 235 236 /* 237 * The minimum size of IRE cache table. It will be recalcuated in 238 * ip_ire_init(). 239 * Setable in /etc/system 240 */ 241 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 242 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 243 244 /* 245 * The size of the forwarding table. We will make sure that it is a 246 * power of 2 in ip_ire_init(). 247 * Setable in /etc/system 248 */ 249 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 250 251 struct kmem_cache *ire_cache; 252 static ire_t ire_null; 253 254 /* 255 * The threshold number of IRE in a bucket when the IREs are 256 * cleaned up. This threshold is calculated later in ip_open() 257 * based on the speed of CPU and available memory. This default 258 * value is the maximum. 259 * 260 * We have two kinds of cached IRE, temporary and 261 * non-temporary. Temporary IREs are marked with 262 * IRE_MARK_TEMPORARY. They are IREs created for non 263 * TCP traffic and for forwarding purposes. All others 264 * are non-temporary IREs. We don't mark IRE created for 265 * TCP as temporary because TCP is stateful and there are 266 * info stored in the IRE which can be shared by other TCP 267 * connections to the same destination. For connected 268 * endpoint, we also don't want to mark the IRE used as 269 * temporary because the same IRE will be used frequently, 270 * otherwise, the app should not do a connect(). We change 271 * the marking at ip_bind_connected_*() if necessary. 272 * 273 * We want to keep the cache IRE hash bucket length reasonably 274 * short, otherwise IRE lookup functions will take "forever." 275 * We use the "crude" function that the IRE bucket 276 * length should be based on the CPU speed, which is 1 entry 277 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 278 * (n). This means that with a 750MHz CPU, the max bucket 279 * length can be (750 >> n) entries. 280 * 281 * Note that this threshold is separate for temp and non-temp 282 * IREs. This means that the actual bucket length can be 283 * twice as that. And while we try to keep temporary IRE 284 * length at most at the threshold value, we do not attempt to 285 * make the length for non-temporary IREs fixed, for the 286 * reason stated above. Instead, we start trying to find 287 * "unused" non-temporary IREs when the bucket length reaches 288 * this threshold and clean them up. 289 * 290 * We also want to limit the amount of memory used by 291 * IREs. So if we are allowed to use ~3% of memory (M) 292 * for those IREs, each bucket should not have more than 293 * 294 * M / num of cache bucket / sizeof (ire_t) 295 * 296 * Again the above memory uses are separate for temp and 297 * non-temp cached IREs. 298 * 299 * We may also want the limit to be a function of the number 300 * of interfaces and number of CPUs. Doing the initialization 301 * in ip_open() means that every time an interface is plumbed, 302 * the max is re-calculated. Right now, we don't do anything 303 * different. In future, when we have more experience, we 304 * may want to change this behavior. 305 */ 306 uint32_t ip_ire_max_bucket_cnt = 10; /* Setable in /etc/system */ 307 uint32_t ip6_ire_max_bucket_cnt = 10; 308 uint32_t ip_ire_cleanup_cnt = 2; 309 310 /* 311 * The minimum of the temporary IRE bucket count. We do not want 312 * the length of each bucket to be too short. This may hurt 313 * performance of some apps as the temporary IREs are removed too 314 * often. 315 */ 316 uint32_t ip_ire_min_bucket_cnt = 3; /* /etc/system - not used */ 317 uint32_t ip6_ire_min_bucket_cnt = 3; 318 319 /* 320 * The ratio of memory consumed by IRE used for temporary to available 321 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 322 * value can be changed in /etc/system. 6 is a reasonable number. 323 */ 324 uint32_t ip_ire_mem_ratio = 6; /* /etc/system */ 325 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 326 uint32_t ip_ire_cpu_ratio = 7; /* /etc/system */ 327 328 typedef struct nce_clookup_s { 329 ipaddr_t ncecl_addr; 330 boolean_t ncecl_found; 331 } nce_clookup_t; 332 333 /* 334 * The maximum number of buckets in IRE cache table. In future, we may 335 * want to make it a dynamic hash table. For the moment, we fix the 336 * size and allocate the table in ip_ire_init() when IP is first loaded. 337 * We take into account the amount of memory a system has. 338 */ 339 #define IP_MAX_CACHE_TABLE_SIZE 4096 340 341 /* Setable in /etc/system */ 342 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 343 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 344 345 #define NUM_ILLS 2 /* To build the ILL list to unlock */ 346 347 /* Zero iulp_t for initialization. */ 348 const iulp_t ire_uinfo_null = { 0 }; 349 350 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 351 ipsq_func_t func, boolean_t); 352 static void ire_delete_v4(ire_t *ire); 353 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 354 zoneid_t zoneid, ip_stack_t *); 355 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 356 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 357 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, 358 ire_t *ref_ire); 359 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 360 static ire_t *ip4_ctable_lookup_impl(ire_ctable_args_t *margs); 361 #ifdef DEBUG 362 static void ire_trace_cleanup(const ire_t *); 363 #endif 364 365 /* 366 * To avoid bloating the code, we call this function instead of 367 * using the macro IRE_REFRELE. Use macro only in performance 368 * critical paths. 369 * 370 * Must not be called while holding any locks. Otherwise if this is 371 * the last reference to be released there is a chance of recursive mutex 372 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 373 * to restart an ioctl. The one exception is when the caller is sure that 374 * this is not the last reference to be released. Eg. if the caller is 375 * sure that the ire has not been deleted and won't be deleted. 376 */ 377 void 378 ire_refrele(ire_t *ire) 379 { 380 IRE_REFRELE(ire); 381 } 382 383 void 384 ire_refrele_notr(ire_t *ire) 385 { 386 IRE_REFRELE_NOTR(ire); 387 } 388 389 /* 390 * kmem_cache_alloc constructor for IRE in kma space. 391 * Note that when ire_mp is set the IRE is stored in that mblk and 392 * not in this cache. 393 */ 394 /* ARGSUSED */ 395 static int 396 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 397 { 398 ire_t *ire = buf; 399 400 ire->ire_nce = NULL; 401 402 return (0); 403 } 404 405 /* ARGSUSED1 */ 406 static void 407 ip_ire_destructor(void *buf, void *cdrarg) 408 { 409 ire_t *ire = buf; 410 411 ASSERT(ire->ire_nce == NULL); 412 } 413 414 /* 415 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 416 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 417 * for an existing CACHED IRE. 418 */ 419 /* ARGSUSED */ 420 int 421 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 422 { 423 uchar_t *addr_ucp; 424 ipic_t *ipic; 425 ire_t *ire; 426 ipaddr_t addr; 427 in6_addr_t v6addr; 428 irb_t *irb; 429 zoneid_t zoneid; 430 ip_stack_t *ipst = CONNQ_TO_IPST(q); 431 432 ASSERT(q->q_next == NULL); 433 zoneid = Q_TO_CONN(q)->conn_zoneid; 434 435 /* 436 * Check privilege using the ioctl credential; if it is NULL 437 * then this is a kernel message and therefor privileged. 438 */ 439 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 440 return (EPERM); 441 442 ipic = (ipic_t *)mp->b_rptr; 443 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 444 ipic->ipic_addr_length))) { 445 return (EINVAL); 446 } 447 if (!OK_32PTR(addr_ucp)) 448 return (EINVAL); 449 switch (ipic->ipic_addr_length) { 450 case IP_ADDR_LEN: { 451 /* Extract the destination address. */ 452 addr = *(ipaddr_t *)addr_ucp; 453 /* Find the corresponding IRE. */ 454 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 455 break; 456 } 457 case IPV6_ADDR_LEN: { 458 /* Extract the destination address. */ 459 v6addr = *(in6_addr_t *)addr_ucp; 460 /* Find the corresponding IRE. */ 461 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst); 462 break; 463 } 464 default: 465 return (EINVAL); 466 } 467 468 if (ire == NULL) 469 return (ENOENT); 470 /* 471 * Update the round trip time estimate and/or the max frag size 472 * and/or the slow start threshold. 473 * 474 * We serialize multiple advises using ire_lock. 475 */ 476 mutex_enter(&ire->ire_lock); 477 if (ipic->ipic_rtt) { 478 /* 479 * If there is no old cached values, initialize them 480 * conservatively. Set them to be (1.5 * new value). 481 */ 482 if (ire->ire_uinfo.iulp_rtt != 0) { 483 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 484 ipic->ipic_rtt) >> 1; 485 } else { 486 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 487 (ipic->ipic_rtt >> 1); 488 } 489 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 490 ire->ire_uinfo.iulp_rtt_sd = 491 (ire->ire_uinfo.iulp_rtt_sd + 492 ipic->ipic_rtt_sd) >> 1; 493 } else { 494 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 495 (ipic->ipic_rtt_sd >> 1); 496 } 497 } 498 if (ipic->ipic_max_frag) 499 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 500 if (ipic->ipic_ssthresh != 0) { 501 if (ire->ire_uinfo.iulp_ssthresh != 0) 502 ire->ire_uinfo.iulp_ssthresh = 503 (ipic->ipic_ssthresh + 504 ire->ire_uinfo.iulp_ssthresh) >> 1; 505 else 506 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 507 } 508 /* 509 * Don't need the ire_lock below this. ire_type does not change 510 * after initialization. ire_marks is protected by irb_lock. 511 */ 512 mutex_exit(&ire->ire_lock); 513 514 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 515 /* 516 * Only increment the temporary IRE count if the original 517 * IRE is not already marked temporary. 518 */ 519 irb = ire->ire_bucket; 520 rw_enter(&irb->irb_lock, RW_WRITER); 521 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 522 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 523 irb->irb_tmp_ire_cnt++; 524 } 525 ire->ire_marks |= ipic->ipic_ire_marks; 526 rw_exit(&irb->irb_lock); 527 } 528 529 ire_refrele(ire); 530 return (0); 531 } 532 533 /* 534 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 535 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 536 * for a host that is not responding. This will force an attempt to 537 * establish a new route, if available, and flush out the ARP entry so 538 * it will re-resolve. Management processes may want to use the 539 * version that generates a reply. 540 * 541 * This function does not support IPv6 since Neighbor Unreachability Detection 542 * means that negative advise like this is useless. 543 */ 544 /* ARGSUSED */ 545 int 546 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 547 { 548 uchar_t *addr_ucp; 549 ipaddr_t addr; 550 ire_t *ire; 551 ipid_t *ipid; 552 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 553 zoneid_t zoneid; 554 ire_t *gire = NULL; 555 ill_t *ill; 556 mblk_t *arp_mp; 557 ip_stack_t *ipst; 558 559 ASSERT(q->q_next == NULL); 560 zoneid = Q_TO_CONN(q)->conn_zoneid; 561 ipst = CONNQ_TO_IPST(q); 562 563 /* 564 * Check privilege using the ioctl credential; if it is NULL 565 * then this is a kernel message and therefor privileged. 566 */ 567 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 568 return (EPERM); 569 570 ipid = (ipid_t *)mp->b_rptr; 571 572 /* Only actions on IRE_CACHEs are acceptable at present. */ 573 if (ipid->ipid_ire_type != IRE_CACHE) 574 return (EINVAL); 575 576 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 577 ipid->ipid_addr_length); 578 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 579 return (EINVAL); 580 switch (ipid->ipid_addr_length) { 581 case IP_ADDR_LEN: 582 /* addr_ucp points at IP addr */ 583 break; 584 case sizeof (sin_t): { 585 sin_t *sin; 586 /* 587 * got complete (sockaddr) address - increment addr_ucp to point 588 * at the ip_addr field. 589 */ 590 sin = (sin_t *)addr_ucp; 591 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 592 break; 593 } 594 default: 595 return (EINVAL); 596 } 597 /* Extract the destination address. */ 598 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 599 600 /* Try to find the CACHED IRE. */ 601 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 602 603 /* Nail it. */ 604 if (ire) { 605 /* Allow delete only on CACHE entries */ 606 if (ire->ire_type != IRE_CACHE) { 607 ire_refrele(ire); 608 return (EINVAL); 609 } 610 611 /* 612 * Verify that the IRE has been around for a while. 613 * This is to protect against transport protocols 614 * that are too eager in sending delete messages. 615 */ 616 if (gethrestime_sec() < 617 ire->ire_create_time + ipst->ips_ip_ignore_delete_time) { 618 ire_refrele(ire); 619 return (EINVAL); 620 } 621 /* 622 * Now we have a potentially dead cache entry. We need 623 * to remove it. 624 * If this cache entry is generated from a 625 * default route (i.e., ire_cmask == 0), 626 * search the default list and mark it dead and some 627 * background process will try to activate it. 628 */ 629 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 630 /* 631 * Make sure that we pick a different 632 * IRE_DEFAULT next time. 633 */ 634 ire_t *gw_ire; 635 irb_t *irb = NULL; 636 uint_t match_flags; 637 638 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 639 640 gire = ire_ftable_lookup(ire->ire_addr, 641 ire->ire_cmask, 0, 0, 642 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags, 643 ipst); 644 645 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 646 (void *)gire)); 647 648 if (gire != NULL) { 649 irb = gire->ire_bucket; 650 651 /* 652 * We grab it as writer just to serialize 653 * multiple threads trying to bump up 654 * irb_rr_origin 655 */ 656 rw_enter(&irb->irb_lock, RW_WRITER); 657 if ((gw_ire = irb->irb_rr_origin) == NULL) { 658 rw_exit(&irb->irb_lock); 659 goto done; 660 } 661 662 DTRACE_PROBE1(ip__ire__del__origin, 663 (ire_t *), gw_ire); 664 665 /* Skip past the potentially bad gateway */ 666 if (ire->ire_gateway_addr == 667 gw_ire->ire_gateway_addr) { 668 ire_t *next = gw_ire->ire_next; 669 670 DTRACE_PROBE2(ip__ire__del, 671 (ire_t *), gw_ire, (irb_t *), irb); 672 IRE_FIND_NEXT_ORIGIN(next); 673 irb->irb_rr_origin = next; 674 } 675 rw_exit(&irb->irb_lock); 676 } 677 } 678 done: 679 if (gire != NULL) 680 IRE_REFRELE(gire); 681 /* report the bad route to routing sockets */ 682 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 683 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 684 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst); 685 routing_sock_info = B_TRUE; 686 687 /* 688 * TCP is really telling us to start over completely, and it 689 * expects that we'll resend the ARP query. Tell ARP to 690 * discard the entry, if this is a local destination. 691 * 692 * But, if the ARP entry is permanent then it shouldn't be 693 * deleted, so we set ARED_F_PRESERVE_PERM. 694 */ 695 ill = ire->ire_stq->q_ptr; 696 if (ire->ire_gateway_addr == 0 && 697 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 698 ared_t *ared = (ared_t *)arp_mp->b_rptr; 699 700 ASSERT(ared->ared_cmd == AR_ENTRY_DELETE); 701 ared->ared_flags |= ARED_F_PRESERVE_PERM; 702 putnext(ill->ill_rq, arp_mp); 703 } 704 705 ire_delete(ire); 706 ire_refrele(ire); 707 } 708 /* 709 * Also look for an IRE_HOST type redirect ire and 710 * remove it if present. 711 */ 712 ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL, 713 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 714 715 /* Nail it. */ 716 if (ire != NULL) { 717 if (ire->ire_flags & RTF_DYNAMIC) { 718 if (!routing_sock_info) { 719 ip_rts_change(RTM_LOSING, ire->ire_addr, 720 ire->ire_gateway_addr, ire->ire_mask, 721 ire->ire_src_addr, 0, 0, 0, 722 (RTA_DST | RTA_GATEWAY | 723 RTA_NETMASK | RTA_IFA), 724 ipst); 725 } 726 ire_delete(ire); 727 } 728 ire_refrele(ire); 729 } 730 return (0); 731 } 732 733 734 /* 735 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 736 * down from the Upper Level Protocol to request a copy of the IRE (to check 737 * its type or to extract information like round-trip time estimates or the 738 * MTU.) 739 * The address is assumed to be in the ire_addr field. If no IRE is found 740 * an IRE is returned with ire_type being zero. 741 * Note that the upper lavel protocol has to check for broadcast 742 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 743 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 744 * end of the returned message. 745 * 746 * TCP sends down a message of this type with a connection request packet 747 * chained on. UDP and ICMP send it down to verify that a route exists for 748 * the destination address when they get connected. 749 */ 750 void 751 ip_ire_req(queue_t *q, mblk_t *mp) 752 { 753 ire_t *inire; 754 ire_t *ire; 755 mblk_t *mp1; 756 ire_t *sire = NULL; 757 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 758 ip_stack_t *ipst = CONNQ_TO_IPST(q); 759 760 ASSERT(q->q_next == NULL); 761 762 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 763 !OK_32PTR(mp->b_rptr)) { 764 freemsg(mp); 765 return; 766 } 767 inire = (ire_t *)mp->b_rptr; 768 /* 769 * Got it, now take our best shot at an IRE. 770 */ 771 if (inire->ire_ipversion == IPV6_VERSION) { 772 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 773 NULL, &sire, zoneid, NULL, 774 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 775 } else { 776 ASSERT(inire->ire_ipversion == IPV4_VERSION); 777 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 778 NULL, &sire, zoneid, NULL, 779 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 780 } 781 782 /* 783 * We prevent returning IRES with source address INADDR_ANY 784 * as these were temporarily created for sending packets 785 * from endpoints that have conn_unspec_src set. 786 */ 787 if (ire == NULL || 788 (ire->ire_ipversion == IPV4_VERSION && 789 ire->ire_src_addr == INADDR_ANY) || 790 (ire->ire_ipversion == IPV6_VERSION && 791 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 792 inire->ire_type = 0; 793 } else { 794 bcopy(ire, inire, sizeof (ire_t)); 795 /* Copy the route metrics from the parent. */ 796 if (sire != NULL) { 797 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 798 sizeof (iulp_t)); 799 } 800 801 /* 802 * As we don't lookup global policy here, we may not 803 * pass the right size if per-socket policy is not 804 * present. For these cases, path mtu discovery will 805 * do the right thing. 806 */ 807 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 808 809 /* Pass the latest setting of the ip_path_mtu_discovery */ 810 inire->ire_frag_flag |= 811 (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 812 } 813 if (ire != NULL) 814 ire_refrele(ire); 815 if (sire != NULL) 816 ire_refrele(sire); 817 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 818 mp->b_datap->db_type = IRE_DB_TYPE; 819 820 /* Put the IRE_DB_TYPE mblk last in the chain */ 821 mp1 = mp->b_cont; 822 if (mp1 != NULL) { 823 mp->b_cont = NULL; 824 linkb(mp1, mp); 825 mp = mp1; 826 } 827 qreply(q, mp); 828 } 829 830 /* 831 * Send a packet using the specified IRE. 832 * If ire_src_addr_v6 is all zero then discard the IRE after 833 * the packet has been sent. 834 */ 835 static void 836 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 837 { 838 mblk_t *ipsec_mp; 839 boolean_t is_secure; 840 uint_t ifindex; 841 ill_t *ill; 842 zoneid_t zoneid = ire->ire_zoneid; 843 ip_stack_t *ipst = ire->ire_ipst; 844 845 ASSERT(ire->ire_ipversion == IPV4_VERSION); 846 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 847 ipsec_mp = pkt; 848 is_secure = (pkt->b_datap->db_type == M_CTL); 849 if (is_secure) { 850 ipsec_out_t *io; 851 852 pkt = pkt->b_cont; 853 io = (ipsec_out_t *)ipsec_mp->b_rptr; 854 if (io->ipsec_out_type == IPSEC_OUT) 855 zoneid = io->ipsec_out_zoneid; 856 } 857 858 /* If the packet originated externally then */ 859 if (pkt->b_prev) { 860 ire_refrele(ire); 861 /* 862 * Extract the ifindex from b_prev (set in ip_rput_noire). 863 * Look up interface to see if it still exists (it could have 864 * been unplumbed by the time the reply came back from ARP) 865 */ 866 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 867 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 868 NULL, NULL, NULL, NULL, ipst); 869 if (ill == NULL) { 870 pkt->b_prev = NULL; 871 pkt->b_next = NULL; 872 freemsg(ipsec_mp); 873 return; 874 } 875 q = ill->ill_rq; 876 pkt->b_prev = NULL; 877 /* 878 * This packet has not gone through IPSEC processing 879 * and hence we should not have any IPSEC message 880 * prepended. 881 */ 882 ASSERT(ipsec_mp == pkt); 883 put(q, pkt); 884 ill_refrele(ill); 885 } else if (pkt->b_next) { 886 /* Packets from multicast router */ 887 pkt->b_next = NULL; 888 /* 889 * We never get the IPSEC_OUT while forwarding the 890 * packet for multicast router. 891 */ 892 ASSERT(ipsec_mp == pkt); 893 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 894 ire_refrele(ire); 895 } else { 896 /* Locally originated packets */ 897 boolean_t delete_ire = B_FALSE; 898 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 899 900 /* 901 * If this IRE shouldn't be kept in the table (because its 902 * source address is unspecified), hold a reference to it so 903 * we can delete it even after e.g. ip_wput_ire() has dropped 904 * its reference. 905 */ 906 if (!(ire->ire_marks & IRE_MARK_NOADD) && 907 ire->ire_src_addr == INADDR_ANY) { 908 delete_ire = B_TRUE; 909 IRE_REFHOLD(ire); 910 } 911 912 /* 913 * If we were resolving a router we can not use the 914 * routers IRE for sending the packet (since it would 915 * violate the uniqness of the IP idents) thus we 916 * make another pass through ip_wput to create the IRE_CACHE 917 * for the destination. 918 * When IRE_MARK_NOADD is set, ire_add() is not called. 919 * Thus ip_wput() will never find a ire and result in an 920 * infinite loop. Thus we check whether IRE_MARK_NOADD is 921 * is set. This also implies that IRE_MARK_NOADD can only be 922 * used to send packets to directly connected hosts. 923 */ 924 if (ipha->ipha_dst != ire->ire_addr && 925 !(ire->ire_marks & IRE_MARK_NOADD)) { 926 ire_refrele(ire); /* Held in ire_add */ 927 if (CONN_Q(q)) { 928 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 929 IRE_SEND); 930 } else { 931 (void) ip_output((void *)(uintptr_t)zoneid, 932 ipsec_mp, q, IRE_SEND); 933 } 934 } else { 935 if (is_secure) { 936 ipsec_out_t *oi; 937 ipha_t *ipha; 938 939 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 940 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 941 if (oi->ipsec_out_proc_begin) { 942 /* 943 * This is the case where 944 * ip_wput_ipsec_out could not find 945 * the IRE and recreated a new one. 946 * As ip_wput_ipsec_out does ire 947 * lookups, ire_refrele for the extra 948 * bump in ire_add. 949 */ 950 ire_refrele(ire); 951 ip_wput_ipsec_out(q, ipsec_mp, ipha, 952 NULL, NULL); 953 } else { 954 /* 955 * IRE_REFRELE will be done in 956 * ip_wput_ire. 957 */ 958 ip_wput_ire(q, ipsec_mp, ire, NULL, 959 IRE_SEND, zoneid); 960 } 961 } else { 962 /* 963 * IRE_REFRELE will be done in ip_wput_ire. 964 */ 965 ip_wput_ire(q, ipsec_mp, ire, NULL, 966 IRE_SEND, zoneid); 967 } 968 } 969 /* 970 * Special code to support sending a single packet with 971 * conn_unspec_src using an IRE which has no source address. 972 * The IRE is deleted here after sending the packet to avoid 973 * having other code trip on it. But before we delete the 974 * ire, somebody could have looked up this ire. 975 * We prevent returning/using this IRE by the upper layers 976 * by making checks to NULL source address in other places 977 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 978 * Though this does not completely prevent other threads 979 * from using this ire, this should not cause any problems. 980 */ 981 if (delete_ire) { 982 ip1dbg(("ire_send: delete IRE\n")); 983 ire_delete(ire); 984 ire_refrele(ire); /* Held above */ 985 } 986 } 987 } 988 989 /* 990 * Send a packet using the specified IRE. 991 * If ire_src_addr_v6 is all zero then discard the IRE after 992 * the packet has been sent. 993 */ 994 static void 995 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 996 { 997 mblk_t *ipsec_mp; 998 boolean_t secure; 999 uint_t ifindex; 1000 zoneid_t zoneid = ire->ire_zoneid; 1001 ip_stack_t *ipst = ire->ire_ipst; 1002 1003 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1004 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1005 if (pkt->b_datap->db_type == M_CTL) { 1006 ipsec_out_t *io; 1007 1008 ipsec_mp = pkt; 1009 pkt = pkt->b_cont; 1010 secure = B_TRUE; 1011 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1012 if (io->ipsec_out_type == IPSEC_OUT) 1013 zoneid = io->ipsec_out_zoneid; 1014 } else { 1015 ipsec_mp = pkt; 1016 secure = B_FALSE; 1017 } 1018 1019 /* If the packet originated externally then */ 1020 if (pkt->b_prev) { 1021 ill_t *ill; 1022 /* 1023 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1024 * Look up interface to see if it still exists (it could have 1025 * been unplumbed by the time the reply came back from the 1026 * resolver). 1027 */ 1028 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1029 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1030 NULL, NULL, NULL, NULL, ipst); 1031 if (ill == NULL) { 1032 pkt->b_prev = NULL; 1033 pkt->b_next = NULL; 1034 freemsg(ipsec_mp); 1035 ire_refrele(ire); /* Held in ire_add */ 1036 return; 1037 } 1038 q = ill->ill_rq; 1039 pkt->b_prev = NULL; 1040 /* 1041 * This packet has not gone through IPSEC processing 1042 * and hence we should not have any IPSEC message 1043 * prepended. 1044 */ 1045 ASSERT(ipsec_mp == pkt); 1046 put(q, pkt); 1047 ill_refrele(ill); 1048 } else if (pkt->b_next) { 1049 /* Packets from multicast router */ 1050 pkt->b_next = NULL; 1051 /* 1052 * We never get the IPSEC_OUT while forwarding the 1053 * packet for multicast router. 1054 */ 1055 ASSERT(ipsec_mp == pkt); 1056 /* 1057 * XXX TODO IPv6. 1058 */ 1059 freemsg(pkt); 1060 #ifdef XXX 1061 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1062 #endif 1063 } else { 1064 if (secure) { 1065 ipsec_out_t *oi; 1066 ip6_t *ip6h; 1067 1068 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1069 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1070 if (oi->ipsec_out_proc_begin) { 1071 /* 1072 * This is the case where 1073 * ip_wput_ipsec_out could not find 1074 * the IRE and recreated a new one. 1075 */ 1076 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1077 NULL, NULL); 1078 } else { 1079 if (CONN_Q(q)) { 1080 (void) ip_output_v6(Q_TO_CONN(q), 1081 ipsec_mp, q, IRE_SEND); 1082 } else { 1083 (void) ip_output_v6( 1084 (void *)(uintptr_t)zoneid, 1085 ipsec_mp, q, IRE_SEND); 1086 } 1087 } 1088 } else { 1089 /* 1090 * Send packets through ip_output_v6 so that any 1091 * ip6_info header can be processed again. 1092 */ 1093 if (CONN_Q(q)) { 1094 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1095 IRE_SEND); 1096 } else { 1097 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1098 ipsec_mp, q, IRE_SEND); 1099 } 1100 } 1101 /* 1102 * Special code to support sending a single packet with 1103 * conn_unspec_src using an IRE which has no source address. 1104 * The IRE is deleted here after sending the packet to avoid 1105 * having other code trip on it. But before we delete the 1106 * ire, somebody could have looked up this ire. 1107 * We prevent returning/using this IRE by the upper layers 1108 * by making checks to NULL source address in other places 1109 * like e.g ip_ire_append_v6, ip_ire_req and 1110 * ip_bind_connected_v6. Though, this does not completely 1111 * prevent other threads from using this ire, this should 1112 * not cause any problems. 1113 */ 1114 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1115 ip1dbg(("ire_send_v6: delete IRE\n")); 1116 ire_delete(ire); 1117 } 1118 } 1119 ire_refrele(ire); /* Held in ire_add */ 1120 } 1121 1122 /* 1123 * Make sure that IRE bucket does not get too long. 1124 * This can cause lock up because ire_cache_lookup() 1125 * may take "forever" to finish. 1126 * 1127 * We only remove a maximum of cnt IREs each time. This 1128 * should keep the bucket length approximately constant, 1129 * depending on cnt. This should be enough to defend 1130 * against DoS attack based on creating temporary IREs 1131 * (for forwarding and non-TCP traffic). 1132 * 1133 * We also pass in the address of the newly created IRE 1134 * as we do not want to remove this straight after adding 1135 * it. New IREs are normally added at the tail of the 1136 * bucket. This means that we are removing the "oldest" 1137 * temporary IREs added. Only if there are IREs with 1138 * the same ire_addr, do we not add it at the tail. Refer 1139 * to ire_add_v*(). It should be OK for our purpose. 1140 * 1141 * For non-temporary cached IREs, we make sure that they 1142 * have not been used for some time (defined below), they 1143 * are non-local destinations, and there is no one using 1144 * them at the moment (refcnt == 1). 1145 * 1146 * The above means that the IRE bucket length may become 1147 * very long, consisting of mostly non-temporary IREs. 1148 * This can happen when the hash function does a bad job 1149 * so that most TCP connections cluster to a specific bucket. 1150 * This "hopefully" should never happen. It can also 1151 * happen if most TCP connections have very long lives. 1152 * Even with the minimal hash table size of 256, there 1153 * has to be a lot of such connections to make the bucket 1154 * length unreasonably long. This should probably not 1155 * happen either. The third can when this can happen is 1156 * when the machine is under attack, such as SYN flooding. 1157 * TCP should already have the proper mechanism to protect 1158 * that. So we should be safe. 1159 * 1160 * This function is called by ire_add_then_send() after 1161 * a new IRE is added and the packet is sent. 1162 * 1163 * The idle cutoff interval is set to 60s. It can be 1164 * changed using /etc/system. 1165 */ 1166 uint32_t ire_idle_cutoff_interval = 60000; 1167 1168 static void 1169 ire_cache_cleanup(irb_t *irb, uint32_t threshold, ire_t *ref_ire) 1170 { 1171 ire_t *ire; 1172 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1173 int cnt = ip_ire_cleanup_cnt; 1174 1175 /* 1176 * Try to remove cnt temporary IREs first. 1177 */ 1178 for (ire = irb->irb_ire; cnt > 0 && ire != NULL; ire = ire->ire_next) { 1179 if (ire == ref_ire) 1180 continue; 1181 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1182 continue; 1183 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1184 ASSERT(ire->ire_type == IRE_CACHE); 1185 ire_delete(ire); 1186 cnt--; 1187 } 1188 } 1189 if (cnt == 0) 1190 return; 1191 1192 /* 1193 * If we didn't satisfy our removal target from temporary IREs 1194 * we see how many non-temporary IREs are currently in the bucket. 1195 * If this quantity is above the threshold then we see if there are any 1196 * candidates for removal. We are still limited to removing a maximum 1197 * of cnt IREs. 1198 */ 1199 if ((irb->irb_ire_cnt - irb->irb_tmp_ire_cnt) > threshold) { 1200 for (ire = irb->irb_ire; cnt > 0 && ire != NULL; 1201 ire = ire->ire_next) { 1202 if (ire == ref_ire) 1203 continue; 1204 if (ire->ire_type != IRE_CACHE) 1205 continue; 1206 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1207 continue; 1208 if ((ire->ire_refcnt == 1) && 1209 (lbolt - ire->ire_last_used_time > cut_off)) { 1210 ire_delete(ire); 1211 cnt--; 1212 } 1213 } 1214 } 1215 } 1216 1217 /* 1218 * ire_add_then_send is called when a new IRE has been created in order to 1219 * route an outgoing packet. Typically, it is called from ip_wput when 1220 * a response comes back down from a resolver. We add the IRE, and then 1221 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1222 * However, we do not add the newly created IRE in the cache when 1223 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1224 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by 1225 * ip_wput_ire() and get deleted. 1226 * Multirouting support: the packet is silently discarded when the new IRE 1227 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1228 * RTF_MULTIRT flag for the same destination address. 1229 * In this case, we just want to register this additional ire without 1230 * sending the packet, as it has already been replicated through 1231 * existing multirt routes in ip_wput(). 1232 */ 1233 void 1234 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1235 { 1236 irb_t *irb; 1237 boolean_t drop = B_FALSE; 1238 /* LINTED : set but not used in function */ 1239 boolean_t mctl_present; 1240 mblk_t *first_mp = NULL; 1241 mblk_t *save_mp = NULL; 1242 ire_t *dst_ire; 1243 ipha_t *ipha; 1244 ip6_t *ip6h; 1245 ip_stack_t *ipst = ire->ire_ipst; 1246 int ire_limit; 1247 1248 if (mp != NULL) { 1249 /* 1250 * We first have to retrieve the destination address carried 1251 * by the packet. 1252 * We can't rely on ire as it can be related to a gateway. 1253 * The destination address will help in determining if 1254 * other RTF_MULTIRT ires are already registered. 1255 * 1256 * We first need to know where we are going : v4 or V6. 1257 * the ire version is enough, as there is no risk that 1258 * we resolve an IPv6 address with an IPv4 ire 1259 * or vice versa. 1260 */ 1261 if (ire->ire_ipversion == IPV4_VERSION) { 1262 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1263 ipha = (ipha_t *)mp->b_rptr; 1264 save_mp = mp; 1265 mp = first_mp; 1266 1267 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1268 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1269 } else { 1270 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1271 /* 1272 * Get a pointer to the beginning of the IPv6 header. 1273 * Ignore leading IPsec control mblks. 1274 */ 1275 first_mp = mp; 1276 if (mp->b_datap->db_type == M_CTL) { 1277 mp = mp->b_cont; 1278 } 1279 ip6h = (ip6_t *)mp->b_rptr; 1280 save_mp = mp; 1281 mp = first_mp; 1282 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1283 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1284 } 1285 if (dst_ire != NULL) { 1286 if (dst_ire->ire_flags & RTF_MULTIRT) { 1287 /* 1288 * At least one resolved multirt route 1289 * already exists for the destination, 1290 * don't sent this packet: either drop it 1291 * or complete the pending resolution, 1292 * depending on the ire. 1293 */ 1294 drop = B_TRUE; 1295 } 1296 ip1dbg(("ire_add_then_send: dst_ire %p " 1297 "[dst %08x, gw %08x], drop %d\n", 1298 (void *)dst_ire, 1299 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1300 ntohl(dst_ire->ire_addr) : \ 1301 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1302 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1303 ntohl(dst_ire->ire_gateway_addr) : \ 1304 ntohl(V4_PART_OF_V6( 1305 dst_ire->ire_gateway_addr_v6)), 1306 drop)); 1307 ire_refrele(dst_ire); 1308 } 1309 } 1310 1311 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1312 /* Regular packets with cache bound ires are here. */ 1313 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1314 1315 if (ire == NULL) { 1316 mp->b_prev = NULL; 1317 mp->b_next = NULL; 1318 MULTIRT_DEBUG_UNTAG(mp); 1319 freemsg(mp); 1320 return; 1321 } 1322 if (mp == NULL) { 1323 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1324 return; 1325 } 1326 } 1327 if (drop) { 1328 /* 1329 * If we're adding an RTF_MULTIRT ire, the resolution 1330 * is over: we just drop the packet. 1331 */ 1332 if (ire->ire_flags & RTF_MULTIRT) { 1333 if (save_mp) { 1334 save_mp->b_prev = NULL; 1335 save_mp->b_next = NULL; 1336 } 1337 MULTIRT_DEBUG_UNTAG(mp); 1338 freemsg(mp); 1339 } else { 1340 /* 1341 * Otherwise, we're adding the ire to a gateway 1342 * for a multirt route. 1343 * Invoke ip_newroute() to complete the resolution 1344 * of the route. We will then come back here and 1345 * finally drop this packet in the above code. 1346 */ 1347 if (ire->ire_ipversion == IPV4_VERSION) { 1348 /* 1349 * TODO: in order for CGTP to work in non-global 1350 * zones, ip_newroute() must create the IRE 1351 * cache in the zone indicated by 1352 * ire->ire_zoneid. 1353 */ 1354 ip_newroute(q, mp, ipha->ipha_dst, 1355 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1356 ire->ire_zoneid, ipst); 1357 } else { 1358 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1359 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1360 NULL, ire->ire_zoneid, ipst); 1361 } 1362 } 1363 1364 ire_refrele(ire); /* As done by ire_send(). */ 1365 return; 1366 } 1367 /* 1368 * Need to remember ire_bucket here as ire_send*() may delete 1369 * the ire so we cannot reference it after that. 1370 */ 1371 irb = ire->ire_bucket; 1372 if (ire->ire_ipversion == IPV4_VERSION) { 1373 ire_send(q, mp, ire); 1374 ire_limit = ip_ire_max_bucket_cnt; 1375 } else { 1376 ire_send_v6(q, mp, ire); 1377 ire_limit = ip6_ire_max_bucket_cnt; 1378 } 1379 1380 /* 1381 * irb is NULL if the IRE was not added to the hash. This happens 1382 * when IRE_MARK_NOADD is set and when IREs are returned from 1383 * ire_update_srcif_v4(). 1384 */ 1385 if (irb != NULL) { 1386 IRB_REFHOLD(irb); 1387 if (irb->irb_ire_cnt > ire_limit) 1388 ire_cache_cleanup(irb, ire_limit, ire); 1389 IRB_REFRELE(irb); 1390 } 1391 } 1392 1393 /* 1394 * Initialize the ire that is specific to IPv4 part and call 1395 * ire_init_common to finish it. 1396 */ 1397 ire_t * 1398 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1399 uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1400 queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1401 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1402 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1403 { 1404 ASSERT(type != IRE_CACHE || stq != NULL); 1405 /* 1406 * Reject IRE security attribute creation/initialization 1407 * if system is not running in Trusted mode. 1408 */ 1409 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1410 return (NULL); 1411 1412 1413 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 1414 1415 if (addr != NULL) 1416 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1417 if (src_addr != NULL) 1418 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1419 if (mask != NULL) { 1420 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1421 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1422 } 1423 if (gateway != NULL) { 1424 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1425 } 1426 1427 if (type == IRE_CACHE) 1428 ire->ire_cmask = cmask; 1429 1430 /* ire_init_common will free the mblks upon encountering any failure */ 1431 if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif, 1432 phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst)) 1433 return (NULL); 1434 1435 return (ire); 1436 } 1437 1438 /* 1439 * Similar to ire_create except that it is called only when 1440 * we want to allocate ire as an mblk e.g. we have an external 1441 * resolver ARP. 1442 */ 1443 ire_t * 1444 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1445 uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type, 1446 ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1447 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, 1448 ip_stack_t *ipst) 1449 { 1450 ire_t *ire, *buf; 1451 ire_t *ret_ire; 1452 mblk_t *mp; 1453 size_t bufsize; 1454 frtn_t *frtnp; 1455 ill_t *ill; 1456 1457 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1458 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1459 if (buf == NULL) { 1460 ip1dbg(("ire_create_mp: alloc failed\n")); 1461 return (NULL); 1462 } 1463 frtnp = (frtn_t *)(buf + 1); 1464 frtnp->free_arg = (caddr_t)buf; 1465 frtnp->free_func = ire_freemblk; 1466 1467 /* 1468 * Allocate the new IRE. The ire created will hold a ref on 1469 * an nce_t after ire_nce_init, and this ref must either be 1470 * (a) transferred to the ire_cache entry created when ire_add_v4 1471 * is called after successful arp resolution, or, 1472 * (b) released, when arp resolution fails 1473 * Case (b) is handled in ire_freemblk() which will be called 1474 * when mp is freed as a result of failed arp. 1475 */ 1476 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1477 if (mp == NULL) { 1478 ip1dbg(("ire_create_mp: alloc failed\n")); 1479 kmem_free(buf, bufsize); 1480 return (NULL); 1481 } 1482 ire = (ire_t *)mp->b_rptr; 1483 mp->b_wptr = (uchar_t *)&ire[1]; 1484 1485 /* Start clean. */ 1486 *ire = ire_null; 1487 ire->ire_mp = mp; 1488 mp->b_datap->db_type = IRE_DB_TYPE; 1489 ire->ire_marks |= IRE_MARK_UNCACHED; 1490 1491 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce, 1492 rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc, 1493 gcgrp, ipst); 1494 1495 ill = (ill_t *)(stq->q_ptr); 1496 if (ret_ire == NULL) { 1497 /* ire_freemblk needs these set */ 1498 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1499 ire->ire_stackid = ipst->ips_netstack->netstack_stackid; 1500 ire->ire_ipst = ipst; 1501 freeb(ire->ire_mp); 1502 return (NULL); 1503 } 1504 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1505 ret_ire->ire_stackid = ipst->ips_netstack->netstack_stackid; 1506 ASSERT(ret_ire == ire); 1507 ASSERT(ret_ire->ire_ipst == ipst); 1508 /* 1509 * ire_max_frag is normally zero here and is atomically set 1510 * under the irebucket lock in ire_add_v[46] except for the 1511 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1512 * is non-zero here. 1513 */ 1514 ire->ire_max_frag = max_frag; 1515 return (ire); 1516 } 1517 1518 /* 1519 * ire_create is called to allocate and initialize a new IRE. 1520 * 1521 * NOTE : This is called as writer sometimes though not required 1522 * by this function. 1523 */ 1524 ire_t * 1525 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1526 uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq, 1527 ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1528 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1529 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1530 { 1531 ire_t *ire; 1532 ire_t *ret_ire; 1533 1534 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1535 if (ire == NULL) { 1536 ip1dbg(("ire_create: alloc failed\n")); 1537 return (NULL); 1538 } 1539 *ire = ire_null; 1540 1541 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp, 1542 src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags, 1543 ulp_info, gc, gcgrp, ipst); 1544 1545 if (ret_ire == NULL) { 1546 kmem_cache_free(ire_cache, ire); 1547 return (NULL); 1548 } 1549 ASSERT(ret_ire == ire); 1550 return (ire); 1551 } 1552 1553 1554 /* 1555 * Common to IPv4 and IPv6 1556 */ 1557 boolean_t 1558 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1559 queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle, 1560 uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info, 1561 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1562 { 1563 ire->ire_max_fragp = max_fragp; 1564 ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 1565 1566 #ifdef DEBUG 1567 if (ipif != NULL) { 1568 if (ipif->ipif_isv6) 1569 ASSERT(ipversion == IPV6_VERSION); 1570 else 1571 ASSERT(ipversion == IPV4_VERSION); 1572 } 1573 #endif /* DEBUG */ 1574 1575 /* 1576 * Create/initialize IRE security attribute only in Trusted mode; 1577 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1578 * has held a reference to it and will release it when this routine 1579 * returns a failure, otherwise we own the reference. We do this 1580 * prior to initializing the rest IRE fields. 1581 * 1582 * Don't allocate ire_gw_secattr for the resolver case to prevent 1583 * memory leak (in case of external resolution failure). We'll 1584 * allocate it after a successful external resolution, in ire_add(). 1585 * Note that ire->ire_mp != NULL here means this ire is headed 1586 * to an external resolver. 1587 */ 1588 if (is_system_labeled()) { 1589 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1590 IRE_INTERFACE)) != 0) { 1591 /* release references on behalf of caller */ 1592 if (gc != NULL) 1593 GC_REFRELE(gc); 1594 if (gcgrp != NULL) 1595 GCGRP_REFRELE(gcgrp); 1596 } else if ((ire->ire_mp == NULL) && 1597 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1598 return (B_FALSE); 1599 } 1600 } 1601 1602 ire->ire_stq = stq; 1603 ire->ire_rfq = rfq; 1604 ire->ire_type = type; 1605 ire->ire_flags = RTF_UP | flags; 1606 ire->ire_ident = TICK_TO_MSEC(lbolt); 1607 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1608 1609 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1610 ire->ire_last_used_time = lbolt; 1611 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1612 1613 /* 1614 * If this IRE is an IRE_CACHE, inherit the handles from the 1615 * parent IREs. For others in the forwarding table, assign appropriate 1616 * new ones. 1617 * 1618 * The mutex protecting ire_handle is because ire_create is not always 1619 * called as a writer. 1620 */ 1621 if (ire->ire_type & IRE_OFFSUBNET) { 1622 mutex_enter(&ipst->ips_ire_handle_lock); 1623 ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++; 1624 mutex_exit(&ipst->ips_ire_handle_lock); 1625 } else if (ire->ire_type & IRE_INTERFACE) { 1626 mutex_enter(&ipst->ips_ire_handle_lock); 1627 ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++; 1628 mutex_exit(&ipst->ips_ire_handle_lock); 1629 } else if (ire->ire_type == IRE_CACHE) { 1630 ire->ire_phandle = phandle; 1631 ire->ire_ihandle = ihandle; 1632 } 1633 ire->ire_ipif = ipif; 1634 if (ipif != NULL) { 1635 ire->ire_ipif_seqid = ipif->ipif_seqid; 1636 ire->ire_ipif_ifindex = 1637 ipif->ipif_ill->ill_phyint->phyint_ifindex; 1638 ire->ire_zoneid = ipif->ipif_zoneid; 1639 } else { 1640 ire->ire_zoneid = GLOBAL_ZONEID; 1641 } 1642 ire->ire_ipversion = ipversion; 1643 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1644 if (ipversion == IPV4_VERSION) { 1645 /* 1646 * IPv6 initializes the ire_nce in ire_add_v6, which expects 1647 * to find the ire_nce to be null when it is called. 1648 */ 1649 if (ire_nce_init(ire, src_nce) != 0) { 1650 /* some failure occurred. propagate error back */ 1651 return (B_FALSE); 1652 } 1653 } 1654 ire->ire_refcnt = 1; 1655 ire->ire_ipst = ipst; /* No netstack_hold */ 1656 ire->ire_trace_disable = B_FALSE; 1657 1658 return (B_TRUE); 1659 } 1660 1661 /* 1662 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1663 * It is passed a pointer to a slot in an IRE pointer array into which to 1664 * place the pointer to the new IRE, if indeed we create one. If the 1665 * IRE corresponding to the address passed in would be a duplicate of an 1666 * existing one, we don't create the new one. irep is incremented before 1667 * return only if we do create a new IRE. (Always called as writer.) 1668 * 1669 * Note that with the "match_flags" parameter, we can match on either 1670 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1671 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1672 * we only create broadcast ire's on a per physical interface basis. If 1673 * someone is going to be mucking with logical interfaces, it is important 1674 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1675 * logical interface will not cause critical broadcast IRE's to be deleted. 1676 */ 1677 ire_t ** 1678 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1679 int match_flags) 1680 { 1681 ire_t *ire; 1682 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1683 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1684 1685 /* 1686 * No broadcast IREs for the LOOPBACK interface 1687 * or others such as point to point and IPIF_NOXMIT. 1688 */ 1689 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1690 (ipif->ipif_flags & IPIF_NOXMIT)) 1691 return (irep); 1692 1693 /* If this would be a duplicate, don't bother. */ 1694 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1695 ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) { 1696 /* 1697 * We look for non-deprecated (and non-anycast, non-nolocal) 1698 * ipifs as the best choice. ipifs with check_flags matching 1699 * (deprecated, etc) are used only if non-deprecated ipifs 1700 * are not available. if the existing ire's ipif is deprecated 1701 * and the new ipif is non-deprecated, switch to the new ipif 1702 */ 1703 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1704 (ipif->ipif_flags & check_flags)) { 1705 ire_refrele(ire); 1706 return (irep); 1707 } 1708 /* 1709 * Bcast ires exist in pairs. Both have to be deleted, 1710 * Since we are exclusive we can make the above assertion. 1711 * The 1st has to be refrele'd since it was ctable_lookup'd. 1712 */ 1713 ASSERT(IAM_WRITER_IPIF(ipif)); 1714 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 1715 ire_delete(ire->ire_next); 1716 ire_delete(ire); 1717 ire_refrele(ire); 1718 } 1719 1720 irep = ire_create_bcast(ipif, addr, irep); 1721 1722 return (irep); 1723 } 1724 1725 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 1726 1727 /* 1728 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 1729 * It leaves all the verifying and deleting to those routines. So it always 1730 * creates 2 bcast ires and chains them into the ire array passed in. 1731 */ 1732 ire_t ** 1733 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 1734 { 1735 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1736 1737 *irep++ = ire_create( 1738 (uchar_t *)&addr, /* dest addr */ 1739 (uchar_t *)&ip_g_all_ones, /* mask */ 1740 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 1741 NULL, /* no gateway */ 1742 &ipif->ipif_mtu, /* max frag */ 1743 NULL, /* no src nce */ 1744 ipif->ipif_rq, /* recv-from queue */ 1745 ipif->ipif_wq, /* send-to queue */ 1746 IRE_BROADCAST, 1747 ipif, 1748 0, 1749 0, 1750 0, 1751 0, 1752 &ire_uinfo_null, 1753 NULL, 1754 NULL, 1755 ipst); 1756 1757 *irep++ = ire_create( 1758 (uchar_t *)&addr, /* dest address */ 1759 (uchar_t *)&ip_g_all_ones, /* mask */ 1760 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 1761 NULL, /* no gateway */ 1762 &ip_loopback_mtu, /* max frag size */ 1763 NULL, /* no src_nce */ 1764 ipif->ipif_rq, /* recv-from queue */ 1765 NULL, /* no send-to queue */ 1766 IRE_BROADCAST, /* Needed for fanout in wput */ 1767 ipif, 1768 0, 1769 0, 1770 0, 1771 0, 1772 &ire_uinfo_null, 1773 NULL, 1774 NULL, 1775 ipst); 1776 1777 return (irep); 1778 } 1779 1780 /* 1781 * ire_walk routine to delete or update any IRE_CACHE that might contain 1782 * stale information. 1783 * The flags state which entries to delete or update. 1784 * Garbage collection is done separately using kmem alloc callbacks to 1785 * ip_trash_ire_reclaim. 1786 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 1787 * since other stale information is cleaned up using NUD. 1788 */ 1789 void 1790 ire_expire(ire_t *ire, char *arg) 1791 { 1792 ire_expire_arg_t *ieap = (ire_expire_arg_t *)(uintptr_t)arg; 1793 ill_t *stq_ill; 1794 int flush_flags = ieap->iea_flush_flag; 1795 ip_stack_t *ipst = ieap->iea_ipst; 1796 1797 if ((flush_flags & FLUSH_REDIRECT_TIME) && 1798 (ire->ire_flags & RTF_DYNAMIC)) { 1799 /* Make sure we delete the corresponding IRE_CACHE */ 1800 ip1dbg(("ire_expire: all redirects\n")); 1801 ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst); 1802 ire_delete(ire); 1803 atomic_dec_32(&ipst->ips_ip_redirect_cnt); 1804 return; 1805 } 1806 if (ire->ire_type != IRE_CACHE) 1807 return; 1808 1809 if (flush_flags & FLUSH_ARP_TIME) { 1810 /* 1811 * Remove all IRE_CACHE except IPv4 multicast ires. These 1812 * ires will be deleted by ip_trash_ire_reclaim_stack() 1813 * when system runs low in memory. 1814 * Verify that create time is more than ip_ire_arp_interval 1815 * milliseconds ago. 1816 */ 1817 1818 if (!(ire->ire_ipversion == IPV4_VERSION && 1819 CLASSD(ire->ire_addr)) && NCE_EXPIRED(ire->ire_nce, ipst)) { 1820 ire_delete(ire); 1821 return; 1822 } 1823 } 1824 1825 if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 1826 (ire->ire_ipif != NULL)) { 1827 /* Increase pmtu if it is less than the interface mtu */ 1828 mutex_enter(&ire->ire_lock); 1829 /* 1830 * If the ipif is a vni (whose mtu is 0, since it's virtual) 1831 * get the mtu from the sending interfaces' ipif 1832 */ 1833 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 1834 stq_ill = ire->ire_stq->q_ptr; 1835 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 1836 IP_MAXPACKET); 1837 } else { 1838 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 1839 IP_MAXPACKET); 1840 } 1841 ire->ire_frag_flag |= IPH_DF; 1842 mutex_exit(&ire->ire_lock); 1843 } 1844 } 1845 1846 /* 1847 * Return any local address. We use this to target ourselves 1848 * when the src address was specified as 'default'. 1849 * Preference for IRE_LOCAL entries. 1850 */ 1851 ire_t * 1852 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst) 1853 { 1854 ire_t *ire; 1855 irb_t *irb; 1856 ire_t *maybe = NULL; 1857 int i; 1858 1859 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 1860 irb = &ipst->ips_ip_cache_table[i]; 1861 if (irb->irb_ire == NULL) 1862 continue; 1863 rw_enter(&irb->irb_lock, RW_READER); 1864 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1865 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 1866 (ire->ire_zoneid != zoneid && 1867 ire->ire_zoneid != ALL_ZONES)) 1868 continue; 1869 switch (ire->ire_type) { 1870 case IRE_LOOPBACK: 1871 if (maybe == NULL) { 1872 IRE_REFHOLD(ire); 1873 maybe = ire; 1874 } 1875 break; 1876 case IRE_LOCAL: 1877 if (maybe != NULL) { 1878 ire_refrele(maybe); 1879 } 1880 IRE_REFHOLD(ire); 1881 rw_exit(&irb->irb_lock); 1882 return (ire); 1883 } 1884 } 1885 rw_exit(&irb->irb_lock); 1886 } 1887 return (maybe); 1888 } 1889 1890 /* 1891 * If the specified IRE is associated with a particular ILL, return 1892 * that ILL pointer (May be called as writer.). 1893 * 1894 * NOTE : This is not a generic function that can be used always. 1895 * This function always returns the ill of the outgoing packets 1896 * if this ire is used. 1897 */ 1898 ill_t * 1899 ire_to_ill(const ire_t *ire) 1900 { 1901 ill_t *ill = NULL; 1902 1903 /* 1904 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 1905 * the source address from. ire_stq is the one where the 1906 * packets will be sent out on. We return that here. 1907 * 1908 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 1909 * copy and they always exist next to each other with loopback 1910 * copy being the first one. If we are called on the non-loopback 1911 * copy, return the one pointed by ire_stq. If it was called on 1912 * a loopback copy, we still return the one pointed by the next 1913 * ire's ire_stq pointer i.e the one pointed by the non-loopback 1914 * copy. We don't want use ire_ipif as it might represent the 1915 * source address (if we borrow source addresses for 1916 * IRE_BROADCASTS in the future). 1917 * However if an interface is currently coming up, the above 1918 * condition may not hold during that period since the ires 1919 * are added one at a time. Thus one of the pair could have been 1920 * added and the other not yet added. 1921 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill. 1922 * 4) For all others return the ones pointed by ire_ipif->ipif_ill. 1923 * That handles IRE_LOOPBACK. 1924 */ 1925 1926 if (ire->ire_type == IRE_CACHE) { 1927 ill = (ill_t *)ire->ire_stq->q_ptr; 1928 } else if (ire->ire_type == IRE_BROADCAST) { 1929 if (ire->ire_stq != NULL) { 1930 ill = (ill_t *)ire->ire_stq->q_ptr; 1931 } else { 1932 ire_t *ire_next; 1933 1934 ire_next = ire->ire_next; 1935 if (ire_next != NULL && 1936 ire_next->ire_type == IRE_BROADCAST && 1937 ire_next->ire_addr == ire->ire_addr && 1938 ire_next->ire_ipif == ire->ire_ipif) { 1939 ill = (ill_t *)ire_next->ire_stq->q_ptr; 1940 } 1941 } 1942 } else if (ire->ire_rfq != NULL) { 1943 ill = ire->ire_rfq->q_ptr; 1944 } else if (ire->ire_ipif != NULL) { 1945 ill = ire->ire_ipif->ipif_ill; 1946 } 1947 return (ill); 1948 } 1949 1950 /* Arrange to call the specified function for every IRE in the world. */ 1951 void 1952 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 1953 { 1954 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 1955 } 1956 1957 void 1958 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 1959 { 1960 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 1961 } 1962 1963 void 1964 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 1965 { 1966 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 1967 } 1968 1969 /* 1970 * Walk a particular version. version == 0 means both v4 and v6. 1971 */ 1972 static void 1973 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 1974 ip_stack_t *ipst) 1975 { 1976 if (vers != IPV6_VERSION) { 1977 /* 1978 * ip_forwarding_table variable doesn't matter for IPv4 since 1979 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 1980 */ 1981 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 1982 0, NULL, 1983 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 1984 NULL, zoneid, ipst); 1985 } 1986 if (vers != IPV4_VERSION) { 1987 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 1988 ipst->ips_ip6_ftable_hash_size, 1989 ipst->ips_ip_forwarding_table_v6, 1990 ipst->ips_ip6_cache_table_size, 1991 ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst); 1992 } 1993 } 1994 1995 /* 1996 * Arrange to call the specified function for every IRE that matches the ill. 1997 */ 1998 void 1999 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2000 ill_t *ill) 2001 { 2002 uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION); 2003 2004 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill); 2005 } 2006 2007 void 2008 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2009 ill_t *ill) 2010 { 2011 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2012 ill); 2013 } 2014 2015 void 2016 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2017 ill_t *ill) 2018 { 2019 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2020 ill); 2021 } 2022 2023 /* 2024 * Walk a particular ill and version. 2025 */ 2026 static void 2027 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2028 void *arg, uchar_t vers, ill_t *ill) 2029 { 2030 ip_stack_t *ipst = ill->ill_ipst; 2031 2032 if (vers == IPV4_VERSION) { 2033 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2034 IP_MASK_TABLE_SIZE, 0, 2035 NULL, ipst->ips_ip_cache_table_size, 2036 ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst); 2037 } else if (vers == IPV6_VERSION) { 2038 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2039 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 2040 ipst->ips_ip_forwarding_table_v6, 2041 ipst->ips_ip6_cache_table_size, 2042 ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst); 2043 } 2044 } 2045 2046 boolean_t 2047 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2048 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 2049 { 2050 ill_t *ire_stq_ill = NULL; 2051 ill_t *ire_ipif_ill = NULL; 2052 ill_group_t *ire_ill_group = NULL; 2053 2054 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2055 /* 2056 * MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2057 * pointed by ire_stq and ire_ipif. Only in the case of 2058 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2059 * different ills. But we want to keep this function generic 2060 * enough for future use. So, we always try to match on both. 2061 * The only caller of this function ire_walk_ill_tables, will 2062 * call "func" after we return from this function. We expect 2063 * "func" to do the right filtering of ires in this case. 2064 * 2065 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2066 * pointed by ire_stq and ire_ipif should always be the same. 2067 * So, we just match on only one of them. 2068 */ 2069 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2070 if (ire->ire_stq != NULL) 2071 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2072 if (ire->ire_ipif != NULL) 2073 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2074 if (ire_stq_ill != NULL) 2075 ire_ill_group = ire_stq_ill->ill_group; 2076 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2077 ire_ill_group = ire_ipif_ill->ill_group; 2078 } 2079 2080 if (zoneid != ALL_ZONES) { 2081 /* 2082 * We're walking the IREs for a specific zone. The only relevant 2083 * IREs are: 2084 * - all IREs with a matching ire_zoneid 2085 * - all IRE_OFFSUBNETs as they're shared across all zones 2086 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2087 * with a matching zone 2088 * - IRE_DEFAULTs with a gateway reachable from the zone 2089 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2090 * using the same rule; but the above rules are consistent with 2091 * the behavior of ire_ftable_lookup[_v6]() so that all the 2092 * routes that can be matched during lookup are also matched 2093 * here. 2094 */ 2095 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2096 /* 2097 * Note, IRE_INTERFACE can have the stq as NULL. For 2098 * example, if the default multicast route is tied to 2099 * the loopback address. 2100 */ 2101 if ((ire->ire_type & IRE_INTERFACE) && 2102 (ire->ire_stq != NULL)) { 2103 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2104 if (ire->ire_ipversion == IPV4_VERSION) { 2105 if (!ipif_usesrc_avail(ire_stq_ill, 2106 zoneid)) 2107 /* No usable src addr in zone */ 2108 return (B_FALSE); 2109 } else if (ire_stq_ill->ill_usesrc_ifindex 2110 != 0) { 2111 /* 2112 * For IPv6 use ipif_select_source_v6() 2113 * so the right scope selection is done 2114 */ 2115 ipif_t *src_ipif; 2116 src_ipif = 2117 ipif_select_source_v6(ire_stq_ill, 2118 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2119 IPV6_PREFER_SRC_DEFAULT, 2120 zoneid); 2121 if (src_ipif != NULL) { 2122 ipif_refrele(src_ipif); 2123 } else { 2124 return (B_FALSE); 2125 } 2126 } else { 2127 return (B_FALSE); 2128 } 2129 2130 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2131 return (B_FALSE); 2132 } 2133 } 2134 2135 /* 2136 * Match all default routes from the global zone, irrespective 2137 * of reachability. For a non-global zone only match those 2138 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2139 */ 2140 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2141 int ire_match_flags = 0; 2142 in6_addr_t gw_addr_v6; 2143 ire_t *rire; 2144 2145 ire_match_flags |= MATCH_IRE_TYPE; 2146 if (ire->ire_ipif != NULL) { 2147 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2148 } 2149 if (ire->ire_ipversion == IPV4_VERSION) { 2150 rire = ire_route_lookup(ire->ire_gateway_addr, 2151 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2152 zoneid, NULL, ire_match_flags, ipst); 2153 } else { 2154 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2155 mutex_enter(&ire->ire_lock); 2156 gw_addr_v6 = ire->ire_gateway_addr_v6; 2157 mutex_exit(&ire->ire_lock); 2158 rire = ire_route_lookup_v6(&gw_addr_v6, 2159 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2160 NULL, zoneid, NULL, ire_match_flags, ipst); 2161 } 2162 if (rire == NULL) { 2163 return (B_FALSE); 2164 } 2165 ire_refrele(rire); 2166 } 2167 } 2168 2169 if (((!(match_flags & MATCH_IRE_TYPE)) || 2170 (ire->ire_type & ire_type)) && 2171 ((!(match_flags & MATCH_IRE_ILL)) || 2172 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2173 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2174 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2175 (ire_ill_group != NULL && 2176 ire_ill_group == ill->ill_group))) { 2177 return (B_TRUE); 2178 } 2179 return (B_FALSE); 2180 } 2181 2182 int 2183 rtfunc(struct radix_node *rn, void *arg) 2184 { 2185 struct rtfuncarg *rtf = arg; 2186 struct rt_entry *rt; 2187 irb_t *irb; 2188 ire_t *ire; 2189 boolean_t ret; 2190 2191 rt = (struct rt_entry *)rn; 2192 ASSERT(rt != NULL); 2193 irb = &rt->rt_irb; 2194 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2195 if ((rtf->rt_match_flags != 0) || 2196 (rtf->rt_zoneid != ALL_ZONES)) { 2197 ret = ire_walk_ill_match(rtf->rt_match_flags, 2198 rtf->rt_ire_type, ire, 2199 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 2200 } else 2201 ret = B_TRUE; 2202 if (ret) 2203 (*rtf->rt_func)(ire, rtf->rt_arg); 2204 } 2205 return (0); 2206 } 2207 2208 /* 2209 * Walk the ftable and the ctable entries that match the ill. 2210 */ 2211 void 2212 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2213 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2214 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid, 2215 ip_stack_t *ipst) 2216 { 2217 irb_t *irb_ptr; 2218 irb_t *irb; 2219 ire_t *ire; 2220 int i, j; 2221 boolean_t ret; 2222 struct rtfuncarg rtfarg; 2223 2224 ASSERT((!(match_flags & (MATCH_IRE_ILL | 2225 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2226 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2227 /* 2228 * Optimize by not looking at the forwarding table if there 2229 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2230 * specified in ire_type. 2231 */ 2232 if (!(match_flags & MATCH_IRE_TYPE) || 2233 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2234 /* knobs such that routine is called only for v6 case */ 2235 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 2236 for (i = (ftbl_sz - 1); i >= 0; i--) { 2237 if ((irb_ptr = ipftbl[i]) == NULL) 2238 continue; 2239 for (j = 0; j < htbl_sz; j++) { 2240 irb = &irb_ptr[j]; 2241 if (irb->irb_ire == NULL) 2242 continue; 2243 2244 IRB_REFHOLD(irb); 2245 for (ire = irb->irb_ire; ire != NULL; 2246 ire = ire->ire_next) { 2247 if (match_flags == 0 && 2248 zoneid == ALL_ZONES) { 2249 ret = B_TRUE; 2250 } else { 2251 ret = 2252 ire_walk_ill_match( 2253 match_flags, 2254 ire_type, ire, ill, 2255 zoneid, ipst); 2256 } 2257 if (ret) 2258 (*func)(ire, arg); 2259 } 2260 IRB_REFRELE(irb); 2261 } 2262 } 2263 } else { 2264 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2265 rtfarg.rt_func = func; 2266 rtfarg.rt_arg = arg; 2267 if (match_flags != 0) { 2268 rtfarg.rt_match_flags = match_flags; 2269 } 2270 rtfarg.rt_ire_type = ire_type; 2271 rtfarg.rt_ill = ill; 2272 rtfarg.rt_zoneid = zoneid; 2273 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 2274 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 2275 ipst->ips_ip_ftable, 2276 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 2277 } 2278 } 2279 2280 /* 2281 * Optimize by not looking at the cache table if there 2282 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2283 * specified in ire_type. 2284 */ 2285 if (!(match_flags & MATCH_IRE_TYPE) || 2286 ((ire_type & IRE_CACHETABLE) != 0)) { 2287 for (i = 0; i < ctbl_sz; i++) { 2288 irb = &ipctbl[i]; 2289 if (irb->irb_ire == NULL) 2290 continue; 2291 IRB_REFHOLD(irb); 2292 for (ire = irb->irb_ire; ire != NULL; 2293 ire = ire->ire_next) { 2294 if (match_flags == 0 && zoneid == ALL_ZONES) { 2295 ret = B_TRUE; 2296 } else { 2297 ret = ire_walk_ill_match( 2298 match_flags, ire_type, 2299 ire, ill, zoneid, ipst); 2300 } 2301 if (ret) 2302 (*func)(ire, arg); 2303 } 2304 IRB_REFRELE(irb); 2305 } 2306 } 2307 } 2308 2309 /* 2310 * This function takes a mask and returns 2311 * number of bits set in the mask. If no 2312 * bit is set it returns 0. 2313 * Assumes a contiguous mask. 2314 */ 2315 int 2316 ip_mask_to_plen(ipaddr_t mask) 2317 { 2318 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2319 } 2320 2321 /* 2322 * Convert length for a mask to the mask. 2323 */ 2324 ipaddr_t 2325 ip_plen_to_mask(uint_t masklen) 2326 { 2327 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2328 } 2329 2330 void 2331 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2332 { 2333 ill_t *ill_list[NUM_ILLS]; 2334 ip_stack_t *ipst = ire->ire_ipst; 2335 2336 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2337 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2338 ill_unlock_ills(ill_list, NUM_ILLS); 2339 rw_exit(&irb_ptr->irb_lock); 2340 rw_exit(&ipst->ips_ill_g_usesrc_lock); 2341 } 2342 2343 /* 2344 * ire_add_v[46] atomically make sure that the ipif or ill associated 2345 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2346 * before adding the ire to the table. This ensures that we don't create 2347 * new IRE_CACHEs with stale values for parameters that are passed to 2348 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2349 * to the ipif_mtu, and not the value. The actual value is derived from the 2350 * parent ire or ipif under the bucket lock. 2351 */ 2352 int 2353 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2354 ipsq_func_t func) 2355 { 2356 ill_t *stq_ill; 2357 ill_t *ipif_ill; 2358 ill_t *ill_list[NUM_ILLS]; 2359 int cnt = NUM_ILLS; 2360 int error = 0; 2361 ill_t *ill = NULL; 2362 ip_stack_t *ipst = ire->ire_ipst; 2363 2364 ill_list[0] = stq_ill = ire->ire_stq != 2365 NULL ? ire->ire_stq->q_ptr : NULL; 2366 ill_list[1] = ipif_ill = ire->ire_ipif != 2367 NULL ? ire->ire_ipif->ipif_ill : NULL; 2368 2369 ASSERT((q != NULL && mp != NULL && func != NULL) || 2370 (q == NULL && mp == NULL && func == NULL)); 2371 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 2372 GRAB_CONN_LOCK(q); 2373 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 2374 ill_lock_ills(ill_list, cnt); 2375 2376 /* 2377 * While the IRE is in the process of being added, a user may have 2378 * invoked the ifconfig usesrc option on the stq_ill to make it a 2379 * usesrc client ILL. Check for this possibility here, if it is true 2380 * then we fail adding the IRE_CACHE. Another check is to make sure 2381 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 2382 * group. The ill_g_usesrc_lock is released in ire_atomic_end 2383 */ 2384 if ((ire->ire_type & IRE_CACHE) && 2385 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 2386 if (stq_ill->ill_usesrc_ifindex != 0) { 2387 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 2388 if ((ipif_ill->ill_phyint->phyint_ifindex != 2389 stq_ill->ill_usesrc_ifindex) || 2390 (ipif_ill->ill_usesrc_grp_next == NULL) || 2391 (ipif_ill->ill_usesrc_ifindex != 0)) { 2392 error = EINVAL; 2393 goto done; 2394 } 2395 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 2396 error = EINVAL; 2397 goto done; 2398 } 2399 } 2400 2401 /* 2402 * IPMP flag settings happen without taking the exclusive route 2403 * in ip_sioctl_flags. So we need to make an atomic check here 2404 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 2405 * FAILBACK=no case. 2406 */ 2407 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 2408 if (stq_ill->ill_state_flags & ILL_CHANGING) { 2409 ill = stq_ill; 2410 error = EAGAIN; 2411 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2412 (ill_is_probeonly(stq_ill) && 2413 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2414 error = EINVAL; 2415 } 2416 goto done; 2417 } 2418 2419 /* 2420 * We don't check for OFFLINE/FAILED in this case because 2421 * the source address selection logic (ipif_select_source) 2422 * may still select a source address from such an ill. The 2423 * assumption is that these addresses will be moved by in.mpathd 2424 * soon. (i.e. this is a race). However link local addresses 2425 * will not move and hence ipif_select_source_v6 tries to avoid 2426 * FAILED ills. Please see ipif_select_source_v6 for more info 2427 */ 2428 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 2429 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 2430 ill = ipif_ill; 2431 error = EAGAIN; 2432 goto done; 2433 } 2434 2435 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 2436 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 2437 ill = ire->ire_ipif->ipif_ill; 2438 ASSERT(ill != NULL); 2439 error = EAGAIN; 2440 goto done; 2441 } 2442 2443 done: 2444 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 2445 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 2446 mutex_enter(&ipsq->ipsq_lock); 2447 ire_atomic_end(irb_ptr, ire); 2448 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 2449 mutex_exit(&ipsq->ipsq_lock); 2450 error = EINPROGRESS; 2451 } else if (error != 0) { 2452 ire_atomic_end(irb_ptr, ire); 2453 } 2454 2455 RELEASE_CONN_LOCK(q); 2456 return (error); 2457 } 2458 2459 /* 2460 * Add a fully initialized IRE to an appropriate table based on 2461 * ire_type. 2462 * 2463 * allow_unresolved == B_FALSE indicates a legacy code-path call 2464 * that has prohibited the addition of incomplete ire's. If this 2465 * parameter is set, and we find an nce that is in a state other 2466 * than ND_REACHABLE, we fail the add. Note that nce_state could be 2467 * something other than ND_REACHABLE if the nce had just expired and 2468 * the ire_create preceding the ire_add added a new ND_INITIAL nce. 2469 */ 2470 int 2471 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 2472 boolean_t allow_unresolved) 2473 { 2474 ire_t *ire1; 2475 ill_t *stq_ill = NULL; 2476 ill_t *ill; 2477 ipif_t *ipif = NULL; 2478 ill_walk_context_t ctx; 2479 ire_t *ire = *irep; 2480 int error; 2481 boolean_t ire_is_mblk = B_FALSE; 2482 tsol_gcgrp_t *gcgrp = NULL; 2483 tsol_gcgrp_addr_t ga; 2484 ip_stack_t *ipst = ire->ire_ipst; 2485 2486 /* get ready for the day when original ire is not created as mblk */ 2487 if (ire->ire_mp != NULL) { 2488 ire_is_mblk = B_TRUE; 2489 /* Copy the ire to a kmem_alloc'ed area */ 2490 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 2491 if (ire1 == NULL) { 2492 ip1dbg(("ire_add: alloc failed\n")); 2493 ire_delete(ire); 2494 *irep = NULL; 2495 return (ENOMEM); 2496 } 2497 ire->ire_marks &= ~IRE_MARK_UNCACHED; 2498 *ire1 = *ire; 2499 ire1->ire_mp = NULL; 2500 ire1->ire_stq_ifindex = 0; 2501 freeb(ire->ire_mp); 2502 ire = ire1; 2503 } 2504 if (ire->ire_stq != NULL) 2505 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2506 2507 if (ire->ire_type == IRE_CACHE) { 2508 /* 2509 * If this interface is FAILED, or INACTIVE or has hit 2510 * the FAILBACK=no case, we create IRE_CACHES marked 2511 * HIDDEN for some special cases e.g. bind to 2512 * IPIF_NOFAILOVER address etc. So, if this interface 2513 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 2514 * not creating hidden ires, we should not allow that. 2515 * This happens because the state of the interface 2516 * changed while we were waiting in ARP. If this is the 2517 * daemon sending probes, the next probe will create 2518 * HIDDEN ires and we will create an ire then. This 2519 * cannot happen with NDP currently because IRE is 2520 * never queued in NDP. But it can happen in the 2521 * future when we have external resolvers with IPv6. 2522 * If the interface gets marked with OFFLINE while we 2523 * are waiting in ARP, don't add the ire. 2524 */ 2525 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2526 (ill_is_probeonly(stq_ill) && 2527 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2528 /* 2529 * We don't know whether it is a valid ipif or not. 2530 * unless we do the check below. So, set it to NULL. 2531 */ 2532 ire->ire_ipif = NULL; 2533 ire_delete(ire); 2534 *irep = NULL; 2535 return (EINVAL); 2536 } 2537 } 2538 2539 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 2540 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 2541 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2542 ill = ILL_START_WALK_ALL(&ctx, ipst); 2543 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2544 mutex_enter(&ill->ill_lock); 2545 if (ill->ill_state_flags & ILL_CONDEMNED) { 2546 mutex_exit(&ill->ill_lock); 2547 continue; 2548 } 2549 /* 2550 * We need to make sure that the ipif is a valid one 2551 * before adding the IRE_CACHE. This happens only 2552 * with IRE_CACHE when there is an external resolver. 2553 * 2554 * We can unplumb a logical interface while the 2555 * packet is waiting in ARP with the IRE. Then, 2556 * later on when we feed the IRE back, the ipif 2557 * has to be re-checked. This can't happen with 2558 * NDP currently, as we never queue the IRE with 2559 * the packet. We always try to recreate the IRE 2560 * when the resolution is completed. But, we do 2561 * it for IPv6 also here so that in future if 2562 * we have external resolvers, it will work without 2563 * any change. 2564 */ 2565 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 2566 if (ipif != NULL) { 2567 ipif_refhold_locked(ipif); 2568 mutex_exit(&ill->ill_lock); 2569 break; 2570 } 2571 mutex_exit(&ill->ill_lock); 2572 } 2573 rw_exit(&ipst->ips_ill_g_lock); 2574 if (ipif == NULL || 2575 (ipif->ipif_isv6 && 2576 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 2577 &ipif->ipif_v6src_addr)) || 2578 (!ipif->ipif_isv6 && 2579 ire->ire_src_addr != ipif->ipif_src_addr) || 2580 ire->ire_zoneid != ipif->ipif_zoneid) { 2581 2582 if (ipif != NULL) 2583 ipif_refrele(ipif); 2584 ire->ire_ipif = NULL; 2585 ire_delete(ire); 2586 *irep = NULL; 2587 return (EINVAL); 2588 } 2589 2590 2591 ASSERT(ill != NULL); 2592 /* 2593 * If this group was dismantled while this packets was 2594 * queued in ARP, don't add it here. 2595 */ 2596 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 2597 /* We don't want ire_inactive bump stats for this */ 2598 ipif_refrele(ipif); 2599 ire->ire_ipif = NULL; 2600 ire_delete(ire); 2601 *irep = NULL; 2602 return (EINVAL); 2603 } 2604 2605 /* 2606 * Since we didn't attach label security attributes to the 2607 * ire for the resolver case, we need to add it now. (only 2608 * for v4 resolver and v6 xresolv case). 2609 */ 2610 if (is_system_labeled() && ire_is_mblk) { 2611 if (ire->ire_ipversion == IPV4_VERSION) { 2612 ga.ga_af = AF_INET; 2613 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 2614 INADDR_ANY ? ire->ire_gateway_addr : 2615 ire->ire_addr, &ga.ga_addr); 2616 } else { 2617 ga.ga_af = AF_INET6; 2618 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 2619 &ire->ire_gateway_addr_v6) ? 2620 ire->ire_addr_v6 : 2621 ire->ire_gateway_addr_v6; 2622 } 2623 gcgrp = gcgrp_lookup(&ga, B_FALSE); 2624 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 2625 NULL, gcgrp); 2626 if (error != 0) { 2627 if (gcgrp != NULL) { 2628 GCGRP_REFRELE(gcgrp); 2629 gcgrp = NULL; 2630 } 2631 ipif_refrele(ipif); 2632 ire->ire_ipif = NULL; 2633 ire_delete(ire); 2634 *irep = NULL; 2635 return (error); 2636 } 2637 } 2638 } 2639 2640 /* 2641 * In case ire was changed 2642 */ 2643 *irep = ire; 2644 if (ire->ire_ipversion == IPV6_VERSION) 2645 error = ire_add_v6(irep, q, mp, func); 2646 else 2647 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 2648 if (ipif != NULL) 2649 ipif_refrele(ipif); 2650 return (error); 2651 } 2652 2653 /* 2654 * Add an initialized IRE to an appropriate table based on ire_type. 2655 * 2656 * The forward table contains IRE_PREFIX/IRE_HOST and 2657 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 2658 * 2659 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 2660 * and IRE_CACHE. 2661 * 2662 * NOTE : This function is called as writer though not required 2663 * by this function. 2664 */ 2665 static int 2666 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 2667 boolean_t allow_unresolved) 2668 { 2669 ire_t *ire1; 2670 irb_t *irb_ptr; 2671 ire_t **irep; 2672 int flags; 2673 ire_t *pire = NULL; 2674 ill_t *stq_ill; 2675 ire_t *ire = *ire_p; 2676 int error; 2677 boolean_t need_refrele = B_FALSE; 2678 nce_t *nce; 2679 ip_stack_t *ipst = ire->ire_ipst; 2680 2681 if (ire->ire_ipif != NULL) 2682 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 2683 if (ire->ire_stq != NULL) 2684 ASSERT(!MUTEX_HELD( 2685 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 2686 ASSERT(ire->ire_ipversion == IPV4_VERSION); 2687 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 2688 2689 /* Find the appropriate list head. */ 2690 switch (ire->ire_type) { 2691 case IRE_HOST: 2692 ire->ire_mask = IP_HOST_MASK; 2693 ire->ire_masklen = IP_ABITS; 2694 if ((ire->ire_flags & RTF_SETSRC) == 0) 2695 ire->ire_src_addr = 0; 2696 break; 2697 case IRE_CACHE: 2698 case IRE_BROADCAST: 2699 case IRE_LOCAL: 2700 case IRE_LOOPBACK: 2701 ire->ire_mask = IP_HOST_MASK; 2702 ire->ire_masklen = IP_ABITS; 2703 break; 2704 case IRE_PREFIX: 2705 if ((ire->ire_flags & RTF_SETSRC) == 0) 2706 ire->ire_src_addr = 0; 2707 break; 2708 case IRE_DEFAULT: 2709 if ((ire->ire_flags & RTF_SETSRC) == 0) 2710 ire->ire_src_addr = 0; 2711 break; 2712 case IRE_IF_RESOLVER: 2713 case IRE_IF_NORESOLVER: 2714 break; 2715 default: 2716 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 2717 (void *)ire, ire->ire_type)); 2718 ire_delete(ire); 2719 *ire_p = NULL; 2720 return (EINVAL); 2721 } 2722 2723 /* Make sure the address is properly masked. */ 2724 ire->ire_addr &= ire->ire_mask; 2725 2726 /* 2727 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 2728 * of the interface route while adding an IRE_CACHE for an on-link 2729 * destination in the IRE_IF_RESOLVER case, since the ire has to 2730 * go to ARP and return. We can't do a REFHOLD on the 2731 * associated interface ire for fear of ARP freeing the message. 2732 * Here we look up the interface ire in the forwarding table and 2733 * make sure that the interface route has not been deleted. 2734 */ 2735 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 2736 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 2737 2738 ASSERT(ire->ire_max_fragp == NULL); 2739 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 2740 /* 2741 * The ihandle that we used in ip_newroute_multi 2742 * comes from the interface route corresponding 2743 * to ire_ipif. Lookup here to see if it exists 2744 * still. 2745 * If the ire has a source address assigned using 2746 * RTF_SETSRC, ire_ipif is the logical interface holding 2747 * this source address, so we can't use it to check for 2748 * the existence of the interface route. Instead we rely 2749 * on the brute force ihandle search in 2750 * ire_ihandle_lookup_onlink() below. 2751 */ 2752 pire = ipif_to_ire(ire->ire_ipif); 2753 if (pire == NULL) { 2754 ire_delete(ire); 2755 *ire_p = NULL; 2756 return (EINVAL); 2757 } else if (pire->ire_ihandle != ire->ire_ihandle) { 2758 ire_refrele(pire); 2759 ire_delete(ire); 2760 *ire_p = NULL; 2761 return (EINVAL); 2762 } 2763 } else { 2764 pire = ire_ihandle_lookup_onlink(ire); 2765 if (pire == NULL) { 2766 ire_delete(ire); 2767 *ire_p = NULL; 2768 return (EINVAL); 2769 } 2770 } 2771 /* Prevent pire from getting deleted */ 2772 IRB_REFHOLD(pire->ire_bucket); 2773 /* Has it been removed already ? */ 2774 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 2775 IRB_REFRELE(pire->ire_bucket); 2776 ire_refrele(pire); 2777 ire_delete(ire); 2778 *ire_p = NULL; 2779 return (EINVAL); 2780 } 2781 } else { 2782 ASSERT(ire->ire_max_fragp != NULL); 2783 } 2784 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 2785 2786 if (ire->ire_ipif != NULL) { 2787 /* 2788 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 2789 * for historic reasons and to maintain symmetry with 2790 * IPv6 code path. Historically this was used by 2791 * multicast code to create multiple IRE_CACHES on 2792 * a single ill with different ipifs. This was used 2793 * so that multicast packets leaving the node had the 2794 * right source address. This is no longer needed as 2795 * ip_wput initializes the address correctly. 2796 */ 2797 flags |= MATCH_IRE_IPIF; 2798 /* 2799 * If we are creating hidden ires, make sure we search on 2800 * this ill (MATCH_IRE_ILL) and a hidden ire, 2801 * while we are searching for duplicates below. Otherwise we 2802 * could potentially find an IRE on some other interface 2803 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 2804 * shouldn't do this as this will lead to an infinite loop 2805 * (if we get to ip_wput again) eventually we need an hidden 2806 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 2807 * done below. 2808 */ 2809 if (ire->ire_type == IRE_CACHE && 2810 (ire->ire_marks & IRE_MARK_HIDDEN)) 2811 flags |= (MATCH_IRE_MARK_HIDDEN); 2812 } 2813 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 2814 irb_ptr = ire_get_bucket(ire); 2815 need_refrele = B_TRUE; 2816 if (irb_ptr == NULL) { 2817 /* 2818 * This assumes that the ire has not added 2819 * a reference to the ipif. 2820 */ 2821 ire->ire_ipif = NULL; 2822 ire_delete(ire); 2823 if (pire != NULL) { 2824 IRB_REFRELE(pire->ire_bucket); 2825 ire_refrele(pire); 2826 } 2827 *ire_p = NULL; 2828 return (EINVAL); 2829 } 2830 } else { 2831 irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH( 2832 ire->ire_addr, ipst->ips_ip_cache_table_size)]); 2833 } 2834 2835 /* 2836 * Start the atomic add of the ire. Grab the ill locks, 2837 * ill_g_usesrc_lock and the bucket lock. Check for condemned 2838 * 2839 * If ipif or ill is changing ire_atomic_start() may queue the 2840 * request and return EINPROGRESS. 2841 * To avoid lock order problems, get the ndp4->ndp_g_lock. 2842 */ 2843 mutex_enter(&ipst->ips_ndp4->ndp_g_lock); 2844 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 2845 if (error != 0) { 2846 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2847 /* 2848 * We don't know whether it is a valid ipif or not. 2849 * So, set it to NULL. This assumes that the ire has not added 2850 * a reference to the ipif. 2851 */ 2852 ire->ire_ipif = NULL; 2853 ire_delete(ire); 2854 if (pire != NULL) { 2855 IRB_REFRELE(pire->ire_bucket); 2856 ire_refrele(pire); 2857 } 2858 *ire_p = NULL; 2859 if (need_refrele) 2860 IRB_REFRELE(irb_ptr); 2861 return (error); 2862 } 2863 /* 2864 * To avoid creating ires having stale values for the ire_max_frag 2865 * we get the latest value atomically here. For more details 2866 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 2867 * in ip_rput_dlpi_writer 2868 */ 2869 if (ire->ire_max_fragp == NULL) { 2870 if (CLASSD(ire->ire_addr)) 2871 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 2872 else 2873 ire->ire_max_frag = pire->ire_max_frag; 2874 } else { 2875 uint_t max_frag; 2876 2877 max_frag = *ire->ire_max_fragp; 2878 ire->ire_max_fragp = NULL; 2879 ire->ire_max_frag = max_frag; 2880 } 2881 /* 2882 * Atomically check for duplicate and insert in the table. 2883 */ 2884 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 2885 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 2886 continue; 2887 if (ire->ire_ipif != NULL) { 2888 /* 2889 * We do MATCH_IRE_ILL implicitly here for IREs 2890 * with a non-null ire_ipif, including IRE_CACHEs. 2891 * As ire_ipif and ire_stq could point to two 2892 * different ills, we can't pass just ire_ipif to 2893 * ire_match_args and get a match on both ills. 2894 * This is just needed for duplicate checks here and 2895 * so we don't add an extra argument to 2896 * ire_match_args for this. Do it locally. 2897 * 2898 * NOTE : Currently there is no part of the code 2899 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 2900 * match for IRE_CACHEs. Thus we don't want to 2901 * extend the arguments to ire_match_args. 2902 */ 2903 if (ire1->ire_stq != ire->ire_stq) 2904 continue; 2905 /* 2906 * Multiroute IRE_CACHEs for a given destination can 2907 * have the same ire_ipif, typically if their source 2908 * address is forced using RTF_SETSRC, and the same 2909 * send-to queue. We differentiate them using the parent 2910 * handle. 2911 */ 2912 if (ire->ire_type == IRE_CACHE && 2913 (ire1->ire_flags & RTF_MULTIRT) && 2914 (ire->ire_flags & RTF_MULTIRT) && 2915 (ire1->ire_phandle != ire->ire_phandle)) 2916 continue; 2917 } 2918 if (ire1->ire_zoneid != ire->ire_zoneid) 2919 continue; 2920 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 2921 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 2922 ire->ire_zoneid, 0, NULL, flags, NULL)) { 2923 /* 2924 * Return the old ire after doing a REFHOLD. 2925 * As most of the callers continue to use the IRE 2926 * after adding, we return a held ire. This will 2927 * avoid a lookup in the caller again. If the callers 2928 * don't want to use it, they need to do a REFRELE. 2929 */ 2930 ip1dbg(("found dup ire existing %p new %p", 2931 (void *)ire1, (void *)ire)); 2932 IRE_REFHOLD(ire1); 2933 ire_atomic_end(irb_ptr, ire); 2934 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2935 ire_delete(ire); 2936 if (pire != NULL) { 2937 /* 2938 * Assert that it is not removed from the 2939 * list yet. 2940 */ 2941 ASSERT(pire->ire_ptpn != NULL); 2942 IRB_REFRELE(pire->ire_bucket); 2943 ire_refrele(pire); 2944 } 2945 *ire_p = ire1; 2946 if (need_refrele) 2947 IRB_REFRELE(irb_ptr); 2948 return (0); 2949 } 2950 } 2951 if (ire->ire_type & IRE_CACHE) { 2952 ASSERT(ire->ire_stq != NULL); 2953 nce = ndp_lookup_v4(ire_to_ill(ire), 2954 ((ire->ire_gateway_addr != INADDR_ANY) ? 2955 &ire->ire_gateway_addr : &ire->ire_addr), 2956 B_TRUE); 2957 if (nce != NULL) 2958 mutex_enter(&nce->nce_lock); 2959 /* 2960 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 2961 * and the caller has prohibited the addition of incomplete 2962 * ire's, we fail the add. Note that nce_state could be 2963 * something other than ND_REACHABLE if the nce had 2964 * just expired and the ire_create preceding the 2965 * ire_add added a new ND_INITIAL nce. 2966 */ 2967 if ((nce == NULL) || 2968 (nce->nce_flags & NCE_F_CONDEMNED) || 2969 (!allow_unresolved && 2970 (nce->nce_state != ND_REACHABLE))) { 2971 if (nce != NULL) { 2972 DTRACE_PROBE1(ire__bad__nce, nce_t *, nce); 2973 mutex_exit(&nce->nce_lock); 2974 } 2975 ire_atomic_end(irb_ptr, ire); 2976 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2977 if (nce != NULL) 2978 NCE_REFRELE(nce); 2979 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 2980 ire_delete(ire); 2981 if (pire != NULL) { 2982 IRB_REFRELE(pire->ire_bucket); 2983 ire_refrele(pire); 2984 } 2985 *ire_p = NULL; 2986 if (need_refrele) 2987 IRB_REFRELE(irb_ptr); 2988 return (EINVAL); 2989 } else { 2990 ire->ire_nce = nce; 2991 mutex_exit(&nce->nce_lock); 2992 /* 2993 * We are associating this nce to the ire, so 2994 * change the nce ref taken in ndp_lookup_v4() from 2995 * NCE_REFHOLD to NCE_REFHOLD_NOTR 2996 */ 2997 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 2998 } 2999 } 3000 /* 3001 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 3002 * grouping identical addresses together on the hash chain. We also 3003 * don't want to send multiple copies out if there are two ills part 3004 * of the same group. Thus we group the ires with same addr and same 3005 * ill group together so that ip_wput_ire can easily skip all the 3006 * ires with same addr and same group after sending the first copy. 3007 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3008 * interested in such groupings only for broadcasts. 3009 * 3010 * NOTE : If the interfaces are brought up first and then grouped, 3011 * illgrp_insert will handle it. We come here when the interfaces 3012 * are already in group and we are bringing them UP. 3013 * 3014 * Find the first entry that matches ire_addr. *irep will be null 3015 * if no match. 3016 * 3017 * Note: the loopback and non-loopback broadcast entries for an 3018 * interface MUST be added before any MULTIRT entries. 3019 */ 3020 irep = (ire_t **)irb_ptr; 3021 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3022 irep = &ire1->ire_next; 3023 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3024 /* 3025 * We found some ire (i.e *irep) with a matching addr. We 3026 * want to group ires with same addr and same ill group 3027 * together. 3028 * 3029 * First get to the entry that matches our address and 3030 * ill group i.e stop as soon as we find the first ire 3031 * matching the ill group and address. If there is only 3032 * an address match, we should walk and look for some 3033 * group match. These are some of the possible scenarios : 3034 * 3035 * 1) There are no groups at all i.e all ire's ill_group 3036 * are NULL. In that case we will essentially group 3037 * all the ires with the same addr together. Same as 3038 * the "else" block of this "if". 3039 * 3040 * 2) There are some groups and this ire's ill_group is 3041 * NULL. In this case, we will first find the group 3042 * that matches the address and a NULL group. Then 3043 * we will insert the ire at the end of that group. 3044 * 3045 * 3) There are some groups and this ires's ill_group is 3046 * non-NULL. In this case we will first find the group 3047 * that matches the address and the ill_group. Then 3048 * we will insert the ire at the end of that group. 3049 */ 3050 for (;;) { 3051 ire1 = *irep; 3052 if ((ire1->ire_next == NULL) || 3053 (ire1->ire_next->ire_addr != ire->ire_addr) || 3054 (ire1->ire_type != IRE_BROADCAST) || 3055 (ire1->ire_flags & RTF_MULTIRT) || 3056 (ire1->ire_ipif->ipif_ill->ill_group == 3057 ire->ire_ipif->ipif_ill->ill_group)) 3058 break; 3059 irep = &ire1->ire_next; 3060 } 3061 ASSERT(*irep != NULL); 3062 /* 3063 * The ire will be added before *irep, so 3064 * if irep is a MULTIRT ire, just break to 3065 * ire insertion code. 3066 */ 3067 if (((*irep)->ire_flags & RTF_MULTIRT) != 0) 3068 goto insert_ire; 3069 3070 irep = &((*irep)->ire_next); 3071 3072 /* 3073 * Either we have hit the end of the list or the address 3074 * did not match or the group *matched*. If we found 3075 * a match on the group, skip to the end of the group. 3076 */ 3077 while (*irep != NULL) { 3078 ire1 = *irep; 3079 if ((ire1->ire_addr != ire->ire_addr) || 3080 (ire1->ire_type != IRE_BROADCAST) || 3081 (ire1->ire_ipif->ipif_ill->ill_group != 3082 ire->ire_ipif->ipif_ill->ill_group)) 3083 break; 3084 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3085 ire1->ire_ipif == ire->ire_ipif) { 3086 irep = &ire1->ire_next; 3087 break; 3088 } 3089 irep = &ire1->ire_next; 3090 } 3091 } else if (*irep != NULL) { 3092 /* 3093 * Find the last ire which matches ire_addr. 3094 * Needed to do tail insertion among entries with the same 3095 * ire_addr. 3096 */ 3097 while (ire->ire_addr == ire1->ire_addr) { 3098 irep = &ire1->ire_next; 3099 ire1 = *irep; 3100 if (ire1 == NULL) 3101 break; 3102 } 3103 } 3104 3105 insert_ire: 3106 /* Insert at *irep */ 3107 ire1 = *irep; 3108 if (ire1 != NULL) 3109 ire1->ire_ptpn = &ire->ire_next; 3110 ire->ire_next = ire1; 3111 /* Link the new one in. */ 3112 ire->ire_ptpn = irep; 3113 3114 /* 3115 * ire_walk routines de-reference ire_next without holding 3116 * a lock. Before we point to the new ire, we want to make 3117 * sure the store that sets the ire_next of the new ire 3118 * reaches global visibility, so that ire_walk routines 3119 * don't see a truncated list of ires i.e if the ire_next 3120 * of the new ire gets set after we do "*irep = ire" due 3121 * to re-ordering, the ire_walk thread will see a NULL 3122 * once it accesses the ire_next of the new ire. 3123 * membar_producer() makes sure that the following store 3124 * happens *after* all of the above stores. 3125 */ 3126 membar_producer(); 3127 *irep = ire; 3128 ire->ire_bucket = irb_ptr; 3129 /* 3130 * We return a bumped up IRE above. Keep it symmetrical 3131 * so that the callers will always have to release. This 3132 * helps the callers of this function because they continue 3133 * to use the IRE after adding and hence they don't have to 3134 * lookup again after we return the IRE. 3135 * 3136 * NOTE : We don't have to use atomics as this is appearing 3137 * in the list for the first time and no one else can bump 3138 * up the reference count on this yet. 3139 */ 3140 IRE_REFHOLD_LOCKED(ire); 3141 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 3142 3143 irb_ptr->irb_ire_cnt++; 3144 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3145 irb_ptr->irb_nire++; 3146 3147 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3148 irb_ptr->irb_tmp_ire_cnt++; 3149 3150 if (ire->ire_ipif != NULL) { 3151 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ire->ire_ipif, 3152 (char *), "ire", (void *), ire); 3153 ire->ire_ipif->ipif_ire_cnt++; 3154 if (ire->ire_stq != NULL) { 3155 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3156 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), stq_ill, 3157 (char *), "ire", (void *), ire); 3158 stq_ill->ill_ire_cnt++; 3159 } 3160 } else { 3161 ASSERT(ire->ire_stq == NULL); 3162 } 3163 3164 ire_atomic_end(irb_ptr, ire); 3165 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3166 3167 if (pire != NULL) { 3168 /* Assert that it is not removed from the list yet */ 3169 ASSERT(pire->ire_ptpn != NULL); 3170 IRB_REFRELE(pire->ire_bucket); 3171 ire_refrele(pire); 3172 } 3173 3174 if (ire->ire_type != IRE_CACHE) { 3175 /* 3176 * For ire's with host mask see if there is an entry 3177 * in the cache. If there is one flush the whole cache as 3178 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3179 * If no entry is found than there is no need to flush the 3180 * cache. 3181 */ 3182 if (ire->ire_mask == IP_HOST_MASK) { 3183 ire_t *lire; 3184 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3185 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3186 if (lire != NULL) { 3187 ire_refrele(lire); 3188 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3189 } 3190 } else { 3191 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3192 } 3193 } 3194 /* 3195 * We had to delay the fast path probe until the ire is inserted 3196 * in the list. Otherwise the fast path ack won't find the ire in 3197 * the table. 3198 */ 3199 if (ire->ire_type == IRE_CACHE || 3200 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) { 3201 ASSERT(ire->ire_nce != NULL); 3202 if (ire->ire_nce->nce_state == ND_REACHABLE) 3203 nce_fastpath(ire->ire_nce); 3204 } 3205 if (ire->ire_ipif != NULL) 3206 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3207 *ire_p = ire; 3208 if (need_refrele) { 3209 IRB_REFRELE(irb_ptr); 3210 } 3211 return (0); 3212 } 3213 3214 /* 3215 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3216 * do the final cleanup for this ire. 3217 */ 3218 void 3219 ire_cleanup(ire_t *ire) 3220 { 3221 ire_t *ire_next; 3222 ip_stack_t *ipst = ire->ire_ipst; 3223 3224 ASSERT(ire != NULL); 3225 3226 while (ire != NULL) { 3227 ire_next = ire->ire_next; 3228 if (ire->ire_ipversion == IPV4_VERSION) { 3229 ire_delete_v4(ire); 3230 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 3231 ire_stats_deleted); 3232 } else { 3233 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3234 ire_delete_v6(ire); 3235 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 3236 ire_stats_deleted); 3237 } 3238 /* 3239 * Now it's really out of the list. Before doing the 3240 * REFRELE, set ire_next to NULL as ire_inactive asserts 3241 * so. 3242 */ 3243 ire->ire_next = NULL; 3244 IRE_REFRELE_NOTR(ire); 3245 ire = ire_next; 3246 } 3247 } 3248 3249 /* 3250 * IRB_REFRELE is the only caller of the function. It calls to unlink 3251 * all the CONDEMNED ires from this bucket. 3252 */ 3253 ire_t * 3254 ire_unlink(irb_t *irb) 3255 { 3256 ire_t *ire; 3257 ire_t *ire1; 3258 ire_t **ptpn; 3259 ire_t *ire_list = NULL; 3260 3261 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3262 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3263 (irb->irb_refcnt == 0)); 3264 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3265 ASSERT(irb->irb_ire != NULL); 3266 3267 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3268 ip_stack_t *ipst = ire->ire_ipst; 3269 3270 ire1 = ire->ire_next; 3271 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3272 ptpn = ire->ire_ptpn; 3273 ire1 = ire->ire_next; 3274 if (ire1) 3275 ire1->ire_ptpn = ptpn; 3276 *ptpn = ire1; 3277 ire->ire_ptpn = NULL; 3278 ire->ire_next = NULL; 3279 if (ire->ire_type == IRE_DEFAULT) { 3280 /* 3281 * IRE is out of the list. We need to adjust 3282 * the accounting before the caller drops 3283 * the lock. 3284 */ 3285 if (ire->ire_ipversion == IPV6_VERSION) { 3286 ASSERT(ipst-> 3287 ips_ipv6_ire_default_count != 3288 0); 3289 ipst->ips_ipv6_ire_default_count--; 3290 } 3291 } 3292 /* 3293 * We need to call ire_delete_v4 or ire_delete_v6 3294 * to clean up the cache or the redirects pointing at 3295 * the default gateway. We need to drop the lock 3296 * as ire_flush_cache/ire_delete_host_redircts require 3297 * so. But we can't drop the lock, as ire_unlink needs 3298 * to atomically remove the ires from the list. 3299 * So, create a temporary list of CONDEMNED ires 3300 * for doing ire_delete_v4/ire_delete_v6 operations 3301 * later on. 3302 */ 3303 ire->ire_next = ire_list; 3304 ire_list = ire; 3305 } 3306 } 3307 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3308 return (ire_list); 3309 } 3310 3311 /* 3312 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3313 * ARP message on any of its interface queue, it scans the nce table and 3314 * deletes and calls ndp_delete() for the appropriate nce. This action 3315 * also deletes all the neighbor/ire cache entries for that address. 3316 * This function is called from ip_arp_news in ip.c and also for 3317 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3318 * true if it finds a nce entry which is used by ip_arp_news to determine if 3319 * it needs to do an ire_walk_v4. The return value is also used for the 3320 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3321 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3322 * ip_if->ipif_ill also needs to be matched. 3323 */ 3324 boolean_t 3325 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst) 3326 { 3327 ill_t *ill; 3328 nce_t *nce; 3329 3330 ill = (ipif ? ipif->ipif_ill : NULL); 3331 3332 if (ill != NULL) { 3333 /* 3334 * clean up the nce (and any relevant ire's) that matches 3335 * on addr and ill. 3336 */ 3337 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3338 if (nce != NULL) { 3339 ndp_delete(nce); 3340 return (B_TRUE); 3341 } 3342 } else { 3343 /* 3344 * ill is wildcard. clean up all nce's and 3345 * ire's that match on addr 3346 */ 3347 nce_clookup_t cl; 3348 3349 cl.ncecl_addr = addr; 3350 cl.ncecl_found = B_FALSE; 3351 3352 ndp_walk_common(ipst->ips_ndp4, NULL, 3353 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3354 3355 /* 3356 * ncecl_found would be set by ip_nce_clookup_and_delete if 3357 * we found a matching nce. 3358 */ 3359 return (cl.ncecl_found); 3360 } 3361 return (B_FALSE); 3362 3363 } 3364 3365 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3366 static void 3367 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 3368 { 3369 nce_clookup_t *cl = (nce_clookup_t *)arg; 3370 ipaddr_t nce_addr; 3371 3372 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 3373 if (nce_addr == cl->ncecl_addr) { 3374 cl->ncecl_found = B_TRUE; 3375 /* clean up the nce (and any relevant ire's) */ 3376 ndp_delete(nce); 3377 } 3378 } 3379 3380 /* 3381 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 3382 * when there are no ire's left in the bucket. Returns TRUE if the bucket 3383 * is deleted and freed. 3384 */ 3385 boolean_t 3386 irb_inactive(irb_t *irb) 3387 { 3388 struct rt_entry *rt; 3389 struct radix_node *rn; 3390 ip_stack_t *ipst = irb->irb_ipst; 3391 3392 ASSERT(irb->irb_ipst != NULL); 3393 3394 rt = IRB2RT(irb); 3395 rn = (struct radix_node *)rt; 3396 3397 /* first remove it from the radix tree. */ 3398 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 3399 rw_enter(&irb->irb_lock, RW_WRITER); 3400 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 3401 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 3402 ipst->ips_ip_ftable); 3403 DTRACE_PROBE1(irb__free, rt_t *, rt); 3404 ASSERT((void *)rn == (void *)rt); 3405 Free(rt, rt_entry_cache); 3406 /* irb_lock is freed */ 3407 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3408 return (B_TRUE); 3409 } 3410 rw_exit(&irb->irb_lock); 3411 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3412 return (B_FALSE); 3413 } 3414 3415 /* 3416 * Delete the specified IRE. 3417 */ 3418 void 3419 ire_delete(ire_t *ire) 3420 { 3421 ire_t *ire1; 3422 ire_t **ptpn; 3423 irb_t *irb; 3424 ip_stack_t *ipst = ire->ire_ipst; 3425 3426 if ((irb = ire->ire_bucket) == NULL) { 3427 /* 3428 * It was never inserted in the list. Should call REFRELE 3429 * to free this IRE. 3430 */ 3431 IRE_REFRELE_NOTR(ire); 3432 return; 3433 } 3434 3435 rw_enter(&irb->irb_lock, RW_WRITER); 3436 3437 if (irb->irb_rr_origin == ire) { 3438 irb->irb_rr_origin = NULL; 3439 } 3440 3441 /* 3442 * In case of V4 we might still be waiting for fastpath ack. 3443 */ 3444 if (ire->ire_ipversion == IPV4_VERSION && 3445 (ire->ire_type == IRE_CACHE || 3446 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) { 3447 ASSERT(ire->ire_nce != NULL); 3448 nce_fastpath_list_delete(ire->ire_nce); 3449 } 3450 3451 if (ire->ire_ptpn == NULL) { 3452 /* 3453 * Some other thread has removed us from the list. 3454 * It should have done the REFRELE for us. 3455 */ 3456 rw_exit(&irb->irb_lock); 3457 return; 3458 } 3459 3460 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3461 irb->irb_ire_cnt--; 3462 ire->ire_marks |= IRE_MARK_CONDEMNED; 3463 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 3464 irb->irb_tmp_ire_cnt--; 3465 ire->ire_marks &= ~IRE_MARK_TEMPORARY; 3466 } 3467 } 3468 3469 if (irb->irb_refcnt != 0) { 3470 /* 3471 * The last thread to leave this bucket will 3472 * delete this ire. 3473 */ 3474 irb->irb_marks |= IRB_MARK_CONDEMNED; 3475 rw_exit(&irb->irb_lock); 3476 return; 3477 } 3478 3479 /* 3480 * Normally to delete an ire, we walk the bucket. While we 3481 * walk the bucket, we normally bump up irb_refcnt and hence 3482 * we return from above where we mark CONDEMNED and the ire 3483 * gets deleted from ire_unlink. This case is where somebody 3484 * knows the ire e.g by doing a lookup, and wants to delete the 3485 * IRE. irb_refcnt would be 0 in this case if nobody is walking 3486 * the bucket. 3487 */ 3488 ptpn = ire->ire_ptpn; 3489 ire1 = ire->ire_next; 3490 if (ire1 != NULL) 3491 ire1->ire_ptpn = ptpn; 3492 ASSERT(ptpn != NULL); 3493 *ptpn = ire1; 3494 ire->ire_ptpn = NULL; 3495 ire->ire_next = NULL; 3496 if (ire->ire_ipversion == IPV6_VERSION) { 3497 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 3498 } else { 3499 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 3500 } 3501 /* 3502 * ip_wput/ip_wput_v6 checks this flag to see whether 3503 * it should still use the cached ire or not. 3504 */ 3505 if (ire->ire_type == IRE_DEFAULT) { 3506 /* 3507 * IRE is out of the list. We need to adjust the 3508 * accounting before we drop the lock. 3509 */ 3510 if (ire->ire_ipversion == IPV6_VERSION) { 3511 ASSERT(ipst->ips_ipv6_ire_default_count != 0); 3512 ipst->ips_ipv6_ire_default_count--; 3513 } 3514 } 3515 rw_exit(&irb->irb_lock); 3516 3517 if (ire->ire_ipversion == IPV6_VERSION) { 3518 ire_delete_v6(ire); 3519 } else { 3520 ire_delete_v4(ire); 3521 } 3522 /* 3523 * We removed it from the list. Decrement the 3524 * reference count. 3525 */ 3526 IRE_REFRELE_NOTR(ire); 3527 } 3528 3529 /* 3530 * Delete the specified IRE. 3531 * All calls should use ire_delete(). 3532 * Sometimes called as writer though not required by this function. 3533 * 3534 * NOTE : This function is called only if the ire was added 3535 * in the list. 3536 */ 3537 static void 3538 ire_delete_v4(ire_t *ire) 3539 { 3540 ip_stack_t *ipst = ire->ire_ipst; 3541 3542 ASSERT(ire->ire_refcnt >= 1); 3543 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3544 3545 if (ire->ire_type != IRE_CACHE) 3546 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 3547 if (ire->ire_type == IRE_DEFAULT) { 3548 /* 3549 * when a default gateway is going away 3550 * delete all the host redirects pointing at that 3551 * gateway. 3552 */ 3553 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 3554 } 3555 } 3556 3557 /* 3558 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 3559 * to free the ire when the reference count goes to zero. 3560 */ 3561 void 3562 ire_inactive(ire_t *ire) 3563 { 3564 nce_t *nce; 3565 ill_t *ill = NULL; 3566 ill_t *stq_ill = NULL; 3567 ipif_t *ipif; 3568 boolean_t need_wakeup = B_FALSE; 3569 irb_t *irb; 3570 ip_stack_t *ipst = ire->ire_ipst; 3571 3572 ASSERT(ire->ire_refcnt == 0); 3573 ASSERT(ire->ire_ptpn == NULL); 3574 ASSERT(ire->ire_next == NULL); 3575 3576 if (ire->ire_gw_secattr != NULL) { 3577 ire_gw_secattr_free(ire->ire_gw_secattr); 3578 ire->ire_gw_secattr = NULL; 3579 } 3580 3581 if (ire->ire_mp != NULL) { 3582 ASSERT(ire->ire_bucket == NULL); 3583 mutex_destroy(&ire->ire_lock); 3584 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3585 if (ire->ire_nce != NULL) 3586 NCE_REFRELE_NOTR(ire->ire_nce); 3587 freeb(ire->ire_mp); 3588 return; 3589 } 3590 3591 if ((nce = ire->ire_nce) != NULL) { 3592 NCE_REFRELE_NOTR(nce); 3593 ire->ire_nce = NULL; 3594 } 3595 3596 if (ire->ire_ipif == NULL) 3597 goto end; 3598 3599 ipif = ire->ire_ipif; 3600 ill = ipif->ipif_ill; 3601 3602 if (ire->ire_bucket == NULL) { 3603 /* The ire was never inserted in the table. */ 3604 goto end; 3605 } 3606 3607 /* 3608 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 3609 * non-null ill_ire_count also goes down by 1. 3610 * 3611 * The ipif that is associated with an ire is ire->ire_ipif and 3612 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 3613 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 3614 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 3615 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 3616 * different. If this is different from ire->ire_ipif->ipif_ill and 3617 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 3618 * ipif_ill_refrele_tail on the stq_ill. 3619 */ 3620 3621 if (ire->ire_stq != NULL) 3622 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3623 3624 if (stq_ill == NULL || stq_ill == ill) { 3625 /* Optimize the most common case */ 3626 mutex_enter(&ill->ill_lock); 3627 ASSERT(ipif->ipif_ire_cnt != 0); 3628 DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif, 3629 (char *), "ire", (void *), ire); 3630 ipif->ipif_ire_cnt--; 3631 if (IPIF_DOWN_OK(ipif)) 3632 need_wakeup = B_TRUE; 3633 if (stq_ill != NULL) { 3634 ASSERT(stq_ill->ill_ire_cnt != 0); 3635 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill, 3636 (char *), "ire", (void *), ire); 3637 stq_ill->ill_ire_cnt--; 3638 if (ILL_DOWN_OK(stq_ill)) 3639 need_wakeup = B_TRUE; 3640 } 3641 if (need_wakeup) { 3642 /* Drops the ill lock */ 3643 ipif_ill_refrele_tail(ill); 3644 } else { 3645 mutex_exit(&ill->ill_lock); 3646 } 3647 } else { 3648 /* 3649 * We can't grab all the ill locks at the same time. 3650 * It can lead to recursive lock enter in the call to 3651 * ipif_ill_refrele_tail and later. Instead do it 1 at 3652 * a time. 3653 */ 3654 mutex_enter(&ill->ill_lock); 3655 ASSERT(ipif->ipif_ire_cnt != 0); 3656 DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif, 3657 (char *), "ire", (void *), ire); 3658 ipif->ipif_ire_cnt--; 3659 if (IPIF_DOWN_OK(ipif)) { 3660 /* Drops the lock */ 3661 ipif_ill_refrele_tail(ill); 3662 } else { 3663 mutex_exit(&ill->ill_lock); 3664 } 3665 if (stq_ill != NULL) { 3666 mutex_enter(&stq_ill->ill_lock); 3667 ASSERT(stq_ill->ill_ire_cnt != 0); 3668 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill, 3669 (char *), "ire", (void *), ire); 3670 stq_ill->ill_ire_cnt--; 3671 if (ILL_DOWN_OK(stq_ill)) { 3672 /* Drops the ill lock */ 3673 ipif_ill_refrele_tail(stq_ill); 3674 } else { 3675 mutex_exit(&stq_ill->ill_lock); 3676 } 3677 } 3678 } 3679 end: 3680 /* This should be true for both V4 and V6 */ 3681 3682 if ((ire->ire_type & IRE_FORWARDTABLE) && 3683 (ire->ire_ipversion == IPV4_VERSION) && 3684 ((irb = ire->ire_bucket) != NULL)) { 3685 rw_enter(&irb->irb_lock, RW_WRITER); 3686 irb->irb_nire--; 3687 /* 3688 * Instead of examining the conditions for freeing 3689 * the radix node here, we do it by calling 3690 * IRB_REFRELE which is a single point in the code 3691 * that embeds that logic. Bump up the refcnt to 3692 * be able to call IRB_REFRELE 3693 */ 3694 IRB_REFHOLD_LOCKED(irb); 3695 rw_exit(&irb->irb_lock); 3696 IRB_REFRELE(irb); 3697 } 3698 ire->ire_ipif = NULL; 3699 3700 #ifdef DEBUG 3701 ire_trace_cleanup(ire); 3702 #endif 3703 mutex_destroy(&ire->ire_lock); 3704 if (ire->ire_ipversion == IPV6_VERSION) { 3705 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 3706 } else { 3707 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3708 } 3709 ASSERT(ire->ire_mp == NULL); 3710 /* Has been allocated out of the cache */ 3711 kmem_cache_free(ire_cache, ire); 3712 } 3713 3714 /* 3715 * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect 3716 * entries that have a given gateway address. 3717 */ 3718 void 3719 ire_delete_cache_gw(ire_t *ire, char *cp) 3720 { 3721 ipaddr_t gw_addr; 3722 3723 if (!(ire->ire_type & IRE_CACHE) && 3724 !(ire->ire_flags & RTF_DYNAMIC)) 3725 return; 3726 3727 bcopy(cp, &gw_addr, sizeof (gw_addr)); 3728 if (ire->ire_gateway_addr == gw_addr) { 3729 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 3730 (int)ntohl(ire->ire_addr), ire->ire_type, 3731 (int)ntohl(ire->ire_gateway_addr))); 3732 ire_delete(ire); 3733 } 3734 } 3735 3736 /* 3737 * Remove all IRE_CACHE entries that match the ire specified. 3738 * 3739 * The flag argument indicates if the flush request is due to addition 3740 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 3741 * 3742 * This routine takes only the IREs from the forwarding table and flushes 3743 * the corresponding entries from the cache table. 3744 * 3745 * When flushing due to the deletion of an old route, it 3746 * just checks the cache handles (ire_phandle and ire_ihandle) and 3747 * deletes the ones that match. 3748 * 3749 * When flushing due to the creation of a new route, it checks 3750 * if a cache entry's address matches the one in the IRE and 3751 * that the cache entry's parent has a less specific mask than the 3752 * one in IRE. The destination of such a cache entry could be the 3753 * gateway for other cache entries, so we need to flush those as 3754 * well by looking for gateway addresses matching the IRE's address. 3755 */ 3756 void 3757 ire_flush_cache_v4(ire_t *ire, int flag) 3758 { 3759 int i; 3760 ire_t *cire; 3761 irb_t *irb; 3762 ip_stack_t *ipst = ire->ire_ipst; 3763 3764 if (ire->ire_type & IRE_CACHE) 3765 return; 3766 3767 /* 3768 * If a default is just created, there is no point 3769 * in going through the cache, as there will not be any 3770 * cached ires. 3771 */ 3772 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 3773 return; 3774 if (flag == IRE_FLUSH_ADD) { 3775 /* 3776 * This selective flush is due to the addition of 3777 * new IRE. 3778 */ 3779 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3780 irb = &ipst->ips_ip_cache_table[i]; 3781 if ((cire = irb->irb_ire) == NULL) 3782 continue; 3783 IRB_REFHOLD(irb); 3784 for (cire = irb->irb_ire; cire != NULL; 3785 cire = cire->ire_next) { 3786 if (cire->ire_type != IRE_CACHE) 3787 continue; 3788 /* 3789 * If 'cire' belongs to the same subnet 3790 * as the new ire being added, and 'cire' 3791 * is derived from a prefix that is less 3792 * specific than the new ire being added, 3793 * we need to flush 'cire'; for instance, 3794 * when a new interface comes up. 3795 */ 3796 if (((cire->ire_addr & ire->ire_mask) == 3797 (ire->ire_addr & ire->ire_mask)) && 3798 (ip_mask_to_plen(cire->ire_cmask) <= 3799 ire->ire_masklen)) { 3800 ire_delete(cire); 3801 continue; 3802 } 3803 /* 3804 * This is the case when the ire_gateway_addr 3805 * of 'cire' belongs to the same subnet as 3806 * the new ire being added. 3807 * Flushing such ires is sometimes required to 3808 * avoid misrouting: say we have a machine with 3809 * two interfaces (I1 and I2), a default router 3810 * R on the I1 subnet, and a host route to an 3811 * off-link destination D with a gateway G on 3812 * the I2 subnet. 3813 * Under normal operation, we will have an 3814 * on-link cache entry for G and an off-link 3815 * cache entry for D with G as ire_gateway_addr, 3816 * traffic to D will reach its destination 3817 * through gateway G. 3818 * If the administrator does 'ifconfig I2 down', 3819 * the cache entries for D and G will be 3820 * flushed. However, G will now be resolved as 3821 * an off-link destination using R (the default 3822 * router) as gateway. Then D will also be 3823 * resolved as an off-link destination using G 3824 * as gateway - this behavior is due to 3825 * compatibility reasons, see comment in 3826 * ire_ihandle_lookup_offlink(). Traffic to D 3827 * will go to the router R and probably won't 3828 * reach the destination. 3829 * The administrator then does 'ifconfig I2 up'. 3830 * Since G is on the I2 subnet, this routine 3831 * will flush its cache entry. It must also 3832 * flush the cache entry for D, otherwise 3833 * traffic will stay misrouted until the IRE 3834 * times out. 3835 */ 3836 if ((cire->ire_gateway_addr & ire->ire_mask) == 3837 (ire->ire_addr & ire->ire_mask)) { 3838 ire_delete(cire); 3839 continue; 3840 } 3841 } 3842 IRB_REFRELE(irb); 3843 } 3844 } else { 3845 /* 3846 * delete the cache entries based on 3847 * handle in the IRE as this IRE is 3848 * being deleted/changed. 3849 */ 3850 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3851 irb = &ipst->ips_ip_cache_table[i]; 3852 if ((cire = irb->irb_ire) == NULL) 3853 continue; 3854 IRB_REFHOLD(irb); 3855 for (cire = irb->irb_ire; cire != NULL; 3856 cire = cire->ire_next) { 3857 if (cire->ire_type != IRE_CACHE) 3858 continue; 3859 if ((cire->ire_phandle == 0 || 3860 cire->ire_phandle != ire->ire_phandle) && 3861 (cire->ire_ihandle == 0 || 3862 cire->ire_ihandle != ire->ire_ihandle)) 3863 continue; 3864 ire_delete(cire); 3865 } 3866 IRB_REFRELE(irb); 3867 } 3868 } 3869 } 3870 3871 /* 3872 * Matches the arguments passed with the values in the ire. 3873 * 3874 * Note: for match types that match using "ipif" passed in, ipif 3875 * must be checked for non-NULL before calling this routine. 3876 */ 3877 boolean_t 3878 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 3879 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 3880 const ts_label_t *tsl, int match_flags, queue_t *wq) 3881 { 3882 ill_t *ire_ill = NULL, *dst_ill; 3883 ill_t *ipif_ill = NULL; 3884 ill_group_t *ire_ill_group = NULL; 3885 ill_group_t *ipif_ill_group = NULL; 3886 3887 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3888 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 3889 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 3890 (ipif != NULL && !ipif->ipif_isv6)); 3891 ASSERT(!(match_flags & MATCH_IRE_WQ) || wq != NULL); 3892 3893 /* 3894 * HIDDEN cache entries have to be looked up specifically with 3895 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 3896 * when the interface is FAILED or INACTIVE. In that case, 3897 * any IRE_CACHES that exists should be marked with 3898 * IRE_MARK_HIDDEN. So, we don't really need to match below 3899 * for IRE_MARK_HIDDEN. But we do so for consistency. 3900 */ 3901 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 3902 (ire->ire_marks & IRE_MARK_HIDDEN)) 3903 return (B_FALSE); 3904 3905 /* 3906 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 3907 * is used. In that case the routing table is bypassed and the 3908 * packets are sent directly to the specified nexthop. The 3909 * IRE_CACHE entry representing this route should be marked 3910 * with IRE_MARK_PRIVATE_ADDR. 3911 */ 3912 3913 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 3914 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 3915 return (B_FALSE); 3916 3917 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 3918 ire->ire_zoneid != ALL_ZONES) { 3919 /* 3920 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 3921 * valid and does not match that of ire_zoneid, a failure to 3922 * match is reported at this point. Otherwise, since some IREs 3923 * that are available in the global zone can be used in local 3924 * zones, additional checks need to be performed: 3925 * 3926 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 3927 * entries should never be matched in this situation. 3928 * 3929 * IRE entries that have an interface associated with them 3930 * should in general not match unless they are an IRE_LOCAL 3931 * or in the case when MATCH_IRE_DEFAULT has been set in 3932 * the caller. In the case of the former, checking of the 3933 * other fields supplied should take place. 3934 * 3935 * In the case where MATCH_IRE_DEFAULT has been set, 3936 * all of the ipif's associated with the IRE's ill are 3937 * checked to see if there is a matching zoneid. If any 3938 * one ipif has a matching zoneid, this IRE is a 3939 * potential candidate so checking of the other fields 3940 * takes place. 3941 * 3942 * In the case where the IRE_INTERFACE has a usable source 3943 * address (indicated by ill_usesrc_ifindex) in the 3944 * correct zone then it's permitted to return this IRE 3945 */ 3946 if (match_flags & MATCH_IRE_ZONEONLY) 3947 return (B_FALSE); 3948 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 3949 return (B_FALSE); 3950 /* 3951 * Note, IRE_INTERFACE can have the stq as NULL. For 3952 * example, if the default multicast route is tied to 3953 * the loopback address. 3954 */ 3955 if ((ire->ire_type & IRE_INTERFACE) && 3956 (ire->ire_stq != NULL)) { 3957 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 3958 /* 3959 * If there is a usable source address in the 3960 * zone, then it's ok to return an 3961 * IRE_INTERFACE 3962 */ 3963 if (ipif_usesrc_avail(dst_ill, zoneid)) { 3964 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 3965 (void *)dst_ill, 3966 (ire->ire_addr == (addr & mask)))); 3967 } else { 3968 ip3dbg(("ire_match_args: src_ipif NULL" 3969 " dst_ill %p\n", (void *)dst_ill)); 3970 return (B_FALSE); 3971 } 3972 } 3973 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 3974 !(ire->ire_type & IRE_INTERFACE)) { 3975 ipif_t *tipif; 3976 3977 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 3978 return (B_FALSE); 3979 } 3980 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 3981 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 3982 tipif != NULL; tipif = tipif->ipif_next) { 3983 if (IPIF_CAN_LOOKUP(tipif) && 3984 (tipif->ipif_flags & IPIF_UP) && 3985 (tipif->ipif_zoneid == zoneid || 3986 tipif->ipif_zoneid == ALL_ZONES)) 3987 break; 3988 } 3989 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 3990 if (tipif == NULL) { 3991 return (B_FALSE); 3992 } 3993 } 3994 } 3995 3996 /* 3997 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 3998 * somebody wants to send out on a particular interface which 3999 * is given by ire_stq and hence use ire_stq to derive the ill 4000 * value. ire_ipif for IRE_CACHES is just the means of getting 4001 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 4002 * ire_to_ill does the right thing for this. 4003 */ 4004 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 4005 ire_ill = ire_to_ill(ire); 4006 if (ire_ill != NULL) 4007 ire_ill_group = ire_ill->ill_group; 4008 ipif_ill = ipif->ipif_ill; 4009 ipif_ill_group = ipif_ill->ill_group; 4010 } 4011 4012 if ((ire->ire_addr == (addr & mask)) && 4013 ((!(match_flags & MATCH_IRE_GW)) || 4014 (ire->ire_gateway_addr == gateway)) && 4015 ((!(match_flags & MATCH_IRE_TYPE)) || 4016 (ire->ire_type & type)) && 4017 ((!(match_flags & MATCH_IRE_SRC)) || 4018 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4019 ((!(match_flags & MATCH_IRE_IPIF)) || 4020 (ire->ire_ipif == ipif)) && 4021 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4022 (ire->ire_type != IRE_CACHE || 4023 ire->ire_marks & IRE_MARK_HIDDEN)) && 4024 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4025 (ire->ire_type != IRE_CACHE || 4026 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4027 ((!(match_flags & MATCH_IRE_ILL)) || 4028 (ire_ill == ipif_ill)) && 4029 ((!(match_flags & MATCH_IRE_WQ)) || 4030 (ire->ire_stq == wq)) && 4031 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4032 (ire->ire_ihandle == ihandle)) && 4033 ((!(match_flags & MATCH_IRE_MASK)) || 4034 (ire->ire_mask == mask)) && 4035 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4036 (ire_ill == ipif_ill) || 4037 (ire_ill_group != NULL && 4038 ire_ill_group == ipif_ill_group)) && 4039 ((!(match_flags & MATCH_IRE_SECATTR)) || 4040 (!is_system_labeled()) || 4041 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4042 /* We found the matched IRE */ 4043 return (B_TRUE); 4044 } 4045 return (B_FALSE); 4046 } 4047 4048 4049 /* 4050 * Lookup for a route in all the tables 4051 */ 4052 ire_t * 4053 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4054 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4055 const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4056 { 4057 ire_t *ire = NULL; 4058 4059 /* 4060 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4061 * MATCH_IRE_ILL is set. 4062 */ 4063 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4064 (ipif == NULL)) 4065 return (NULL); 4066 4067 /* 4068 * might be asking for a cache lookup, 4069 * This is not best way to lookup cache, 4070 * user should call ire_cache_lookup directly. 4071 * 4072 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4073 * in the forwarding table, if the applicable type flags were set. 4074 */ 4075 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4076 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4077 tsl, flags, ipst); 4078 if (ire != NULL) 4079 return (ire); 4080 } 4081 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4082 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4083 zoneid, 0, tsl, flags, ipst); 4084 } 4085 return (ire); 4086 } 4087 4088 4089 /* 4090 * Delete the IRE cache for the gateway and all IRE caches whose 4091 * ire_gateway_addr points to this gateway, and allow them to 4092 * be created on demand by ip_newroute. 4093 */ 4094 void 4095 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 4096 { 4097 irb_t *irb; 4098 ire_t *ire; 4099 4100 irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4101 ipst->ips_ip_cache_table_size)]; 4102 IRB_REFHOLD(irb); 4103 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4104 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4105 continue; 4106 4107 ASSERT(ire->ire_mask == IP_HOST_MASK); 4108 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4109 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE, NULL)) { 4110 ire_delete(ire); 4111 } 4112 } 4113 IRB_REFRELE(irb); 4114 4115 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst); 4116 } 4117 4118 /* 4119 * Looks up cache table for a route. 4120 * specific lookup can be indicated by 4121 * passing the MATCH_* flags and the 4122 * necessary parameters. 4123 */ 4124 ire_t * 4125 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4126 zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4127 { 4128 ire_ctable_args_t margs; 4129 4130 margs.ict_addr = &addr; 4131 margs.ict_gateway = &gateway; 4132 margs.ict_type = type; 4133 margs.ict_ipif = ipif; 4134 margs.ict_zoneid = zoneid; 4135 margs.ict_tsl = tsl; 4136 margs.ict_flags = flags; 4137 margs.ict_ipst = ipst; 4138 margs.ict_wq = NULL; 4139 4140 return (ip4_ctable_lookup_impl(&margs)); 4141 } 4142 4143 /* 4144 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4145 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of 4146 * the same ill group. 4147 */ 4148 boolean_t 4149 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire) 4150 { 4151 ill_t *recv_ill, *xmit_ill; 4152 ill_group_t *recv_group, *xmit_group; 4153 4154 ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK)); 4155 ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE)); 4156 4157 recv_ill = ire_to_ill(ire_local); 4158 xmit_ill = ire_to_ill(xmit_ire); 4159 4160 ASSERT(recv_ill != NULL); 4161 ASSERT(xmit_ill != NULL); 4162 4163 if (recv_ill == xmit_ill) 4164 return (B_TRUE); 4165 4166 recv_group = recv_ill->ill_group; 4167 xmit_group = xmit_ill->ill_group; 4168 4169 if (recv_group != NULL && recv_group == xmit_group) 4170 return (B_TRUE); 4171 4172 return (B_FALSE); 4173 } 4174 4175 /* 4176 * Check if the IRE_LOCAL uses the same ill (group) as another route would use. 4177 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 4178 * then we don't allow this IRE_LOCAL to be used. 4179 */ 4180 boolean_t 4181 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4182 const ts_label_t *tsl, ip_stack_t *ipst) 4183 { 4184 ire_t *alt_ire; 4185 boolean_t rval; 4186 4187 if (ire_local->ire_ipversion == IPV4_VERSION) { 4188 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4189 NULL, zoneid, 0, tsl, 4190 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4191 MATCH_IRE_RJ_BHOLE, ipst); 4192 } else { 4193 alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 4194 0, NULL, NULL, zoneid, 0, tsl, 4195 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4196 MATCH_IRE_RJ_BHOLE, ipst); 4197 } 4198 4199 if (alt_ire == NULL) 4200 return (B_FALSE); 4201 4202 if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4203 ire_refrele(alt_ire); 4204 return (B_FALSE); 4205 } 4206 rval = ire_local_same_ill_group(ire_local, alt_ire); 4207 4208 ire_refrele(alt_ire); 4209 return (rval); 4210 } 4211 4212 /* 4213 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4214 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4215 * to the hidden ones. 4216 * 4217 * In general the zoneid has to match (where ALL_ZONES match all of them). 4218 * But for IRE_LOCAL we also need to handle the case where L2 should 4219 * conceptually loop back the packet. This is necessary since neither 4220 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4221 * own MAC address. This loopback is needed when the normal 4222 * routes (ignoring IREs with different zoneids) would send out the packet on 4223 * the same ill (or ill group) as the ill with which this IRE_LOCAL is 4224 * associated. 4225 * 4226 * Earlier versions of this code always matched an IRE_LOCAL independently of 4227 * the zoneid. We preserve that earlier behavior when 4228 * ip_restrict_interzone_loopback is turned off. 4229 */ 4230 ire_t * 4231 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl, 4232 ip_stack_t *ipst) 4233 { 4234 irb_t *irb_ptr; 4235 ire_t *ire; 4236 4237 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4238 ipst->ips_ip_cache_table_size)]; 4239 rw_enter(&irb_ptr->irb_lock, RW_READER); 4240 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4241 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4242 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4243 continue; 4244 } 4245 if (ire->ire_addr == addr) { 4246 /* 4247 * Finally, check if the security policy has any 4248 * restriction on using this route for the specified 4249 * message. 4250 */ 4251 if (tsl != NULL && 4252 ire->ire_gw_secattr != NULL && 4253 tsol_ire_match_gwattr(ire, tsl) != 0) { 4254 continue; 4255 } 4256 4257 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4258 ire->ire_zoneid == ALL_ZONES) { 4259 IRE_REFHOLD(ire); 4260 rw_exit(&irb_ptr->irb_lock); 4261 return (ire); 4262 } 4263 4264 if (ire->ire_type == IRE_LOCAL) { 4265 if (ipst->ips_ip_restrict_interzone_loopback && 4266 !ire_local_ok_across_zones(ire, zoneid, 4267 &addr, tsl, ipst)) 4268 continue; 4269 4270 IRE_REFHOLD(ire); 4271 rw_exit(&irb_ptr->irb_lock); 4272 return (ire); 4273 } 4274 } 4275 } 4276 rw_exit(&irb_ptr->irb_lock); 4277 return (NULL); 4278 } 4279 4280 /* 4281 * Locate the interface ire that is tied to the cache ire 'cire' via 4282 * cire->ire_ihandle. 4283 * 4284 * We are trying to create the cache ire for an offlink destn based 4285 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4286 * as found by ip_newroute(). We are called from ip_newroute() in 4287 * the IRE_CACHE case. 4288 */ 4289 ire_t * 4290 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4291 { 4292 ire_t *ire; 4293 int match_flags; 4294 ipaddr_t gw_addr; 4295 ipif_t *gw_ipif; 4296 ip_stack_t *ipst = cire->ire_ipst; 4297 4298 ASSERT(cire != NULL && pire != NULL); 4299 4300 /* 4301 * We don't need to specify the zoneid to ire_ftable_lookup() below 4302 * because the ihandle refers to an ipif which can be in only one zone. 4303 */ 4304 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4305 /* 4306 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4307 * for on-link hosts. We should never be here for onlink. 4308 * Thus, use MATCH_IRE_ILL_GROUP. 4309 */ 4310 if (pire->ire_ipif != NULL) 4311 match_flags |= MATCH_IRE_ILL_GROUP; 4312 /* 4313 * We know that the mask of the interface ire equals cire->ire_cmask. 4314 * (When ip_newroute() created 'cire' for the gateway it set its 4315 * cmask from the interface ire's mask) 4316 */ 4317 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4318 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4319 NULL, match_flags, ipst); 4320 if (ire != NULL) 4321 return (ire); 4322 /* 4323 * If we didn't find an interface ire above, we can't declare failure. 4324 * For backwards compatibility, we need to support prefix routes 4325 * pointing to next hop gateways that are not on-link. 4326 * 4327 * Assume we are trying to ping some offlink destn, and we have the 4328 * routing table below. 4329 * 4330 * Eg. default - gw1 <--- pire (line 1) 4331 * gw1 - gw2 (line 2) 4332 * gw2 - hme0 (line 3) 4333 * 4334 * If we already have a cache ire for gw1 in 'cire', the 4335 * ire_ftable_lookup above would have failed, since there is no 4336 * interface ire to reach gw1. We will fallthru below. 4337 * 4338 * Here we duplicate the steps that ire_ftable_lookup() did in 4339 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 4340 * The differences are the following 4341 * i. We want the interface ire only, so we call ire_ftable_lookup() 4342 * instead of ire_route_lookup() 4343 * ii. We look for only prefix routes in the 1st call below. 4344 * ii. We want to match on the ihandle in the 2nd call below. 4345 */ 4346 match_flags = MATCH_IRE_TYPE; 4347 if (pire->ire_ipif != NULL) 4348 match_flags |= MATCH_IRE_ILL_GROUP; 4349 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 4350 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 4351 if (ire == NULL) 4352 return (NULL); 4353 /* 4354 * At this point 'ire' corresponds to the entry shown in line 2. 4355 * gw_addr is 'gw2' in the example above. 4356 */ 4357 gw_addr = ire->ire_gateway_addr; 4358 gw_ipif = ire->ire_ipif; 4359 ire_refrele(ire); 4360 4361 match_flags |= MATCH_IRE_IHANDLE; 4362 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 4363 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags, 4364 ipst); 4365 return (ire); 4366 } 4367 4368 /* 4369 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 4370 * ire associated with the specified ipif. 4371 * 4372 * This might occasionally be called when IPIF_UP is not set since 4373 * the IP_MULTICAST_IF as well as creating interface routes 4374 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 4375 * 4376 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 4377 * the ipif, this routine might return NULL. 4378 */ 4379 ire_t * 4380 ipif_to_ire(const ipif_t *ipif) 4381 { 4382 ire_t *ire; 4383 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 4384 4385 ASSERT(!ipif->ipif_isv6); 4386 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 4387 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 4388 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 4389 ipst); 4390 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4391 /* In this case we need to lookup destination address. */ 4392 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 4393 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 4394 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst); 4395 } else { 4396 ire = ire_ftable_lookup(ipif->ipif_subnet, 4397 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 4398 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 4399 MATCH_IRE_MASK), ipst); 4400 } 4401 return (ire); 4402 } 4403 4404 /* 4405 * ire_walk function. 4406 * Count the number of IRE_CACHE entries in different categories. 4407 */ 4408 void 4409 ire_cache_count(ire_t *ire, char *arg) 4410 { 4411 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 4412 4413 if (ire->ire_type != IRE_CACHE) 4414 return; 4415 4416 icc->icc_total++; 4417 4418 if (ire->ire_ipversion == IPV6_VERSION) { 4419 mutex_enter(&ire->ire_lock); 4420 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4421 mutex_exit(&ire->ire_lock); 4422 icc->icc_onlink++; 4423 return; 4424 } 4425 mutex_exit(&ire->ire_lock); 4426 } else { 4427 if (ire->ire_gateway_addr == 0) { 4428 icc->icc_onlink++; 4429 return; 4430 } 4431 } 4432 4433 ASSERT(ire->ire_ipif != NULL); 4434 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 4435 icc->icc_pmtu++; 4436 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4437 ire->ire_ib_pkt_count) 4438 icc->icc_offlink++; 4439 else 4440 icc->icc_unused++; 4441 } 4442 4443 /* 4444 * ire_walk function called by ip_trash_ire_reclaim(). 4445 * Free a fraction of the IRE_CACHE cache entries. The fractions are 4446 * different for different categories of IRE_CACHE entries. 4447 * A fraction of zero means to not free any in that category. 4448 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 4449 * is N then every Nth hash bucket chain will be freed. 4450 */ 4451 void 4452 ire_cache_reclaim(ire_t *ire, char *arg) 4453 { 4454 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 4455 uint_t rand; 4456 ip_stack_t *ipst = icr->icr_ipst; 4457 4458 if (ire->ire_type != IRE_CACHE) 4459 return; 4460 4461 if (ire->ire_ipversion == IPV6_VERSION) { 4462 rand = (uint_t)lbolt + 4463 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 4464 ipst->ips_ip6_cache_table_size); 4465 mutex_enter(&ire->ire_lock); 4466 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4467 mutex_exit(&ire->ire_lock); 4468 if (icr->icr_onlink != 0 && 4469 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4470 ire_delete(ire); 4471 return; 4472 } 4473 goto done; 4474 } 4475 mutex_exit(&ire->ire_lock); 4476 } else { 4477 rand = (uint_t)lbolt + 4478 IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size); 4479 if (ire->ire_gateway_addr == 0) { 4480 if (icr->icr_onlink != 0 && 4481 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4482 ire_delete(ire); 4483 return; 4484 } 4485 goto done; 4486 } 4487 } 4488 /* Not onlink IRE */ 4489 ASSERT(ire->ire_ipif != NULL); 4490 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 4491 /* Use ptmu fraction */ 4492 if (icr->icr_pmtu != 0 && 4493 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 4494 ire_delete(ire); 4495 return; 4496 } 4497 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4498 ire->ire_ib_pkt_count) { 4499 /* Use offlink fraction */ 4500 if (icr->icr_offlink != 0 && 4501 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 4502 ire_delete(ire); 4503 return; 4504 } 4505 } else { 4506 /* Use unused fraction */ 4507 if (icr->icr_unused != 0 && 4508 (rand/icr->icr_unused)*icr->icr_unused == rand) { 4509 ire_delete(ire); 4510 return; 4511 } 4512 } 4513 done: 4514 /* 4515 * Update tire_mark so that those that haven't been used since this 4516 * reclaim will be considered unused next time we reclaim. 4517 */ 4518 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 4519 } 4520 4521 static void 4522 power2_roundup(uint32_t *value) 4523 { 4524 int i; 4525 4526 for (i = 1; i < 31; i++) { 4527 if (*value <= (1 << i)) 4528 break; 4529 } 4530 *value = (1 << i); 4531 } 4532 4533 /* Global init for all zones */ 4534 void 4535 ip_ire_g_init() 4536 { 4537 /* 4538 * Create ire caches, ire_reclaim() 4539 * will give IRE_CACHE back to system when needed. 4540 * This needs to be done here before anything else, since 4541 * ire_add() expects the cache to be created. 4542 */ 4543 ire_cache = kmem_cache_create("ire_cache", 4544 sizeof (ire_t), 0, ip_ire_constructor, 4545 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 4546 4547 rt_entry_cache = kmem_cache_create("rt_entry", 4548 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 4549 4550 /* 4551 * Have radix code setup kmem caches etc. 4552 */ 4553 rn_init(); 4554 } 4555 4556 void 4557 ip_ire_init(ip_stack_t *ipst) 4558 { 4559 int i; 4560 uint32_t mem_cnt; 4561 uint32_t cpu_cnt; 4562 uint32_t min_cnt; 4563 pgcnt_t mem_avail; 4564 4565 /* 4566 * ip_ire_max_bucket_cnt is sized below based on the memory 4567 * size and the cpu speed of the machine. This is upper 4568 * bounded by the compile time value of ip_ire_max_bucket_cnt 4569 * and is lower bounded by the compile time value of 4570 * ip_ire_min_bucket_cnt. Similar logic applies to 4571 * ip6_ire_max_bucket_cnt. 4572 * 4573 * We calculate this for each IP Instances in order to use 4574 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are 4575 * in effect when the zone is booted. 4576 */ 4577 mem_avail = kmem_avail(); 4578 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4579 ip_cache_table_size / sizeof (ire_t); 4580 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 4581 4582 min_cnt = MIN(cpu_cnt, mem_cnt); 4583 if (min_cnt < ip_ire_min_bucket_cnt) 4584 min_cnt = ip_ire_min_bucket_cnt; 4585 if (ip_ire_max_bucket_cnt > min_cnt) { 4586 ip_ire_max_bucket_cnt = min_cnt; 4587 } 4588 4589 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4590 ip6_cache_table_size / sizeof (ire_t); 4591 min_cnt = MIN(cpu_cnt, mem_cnt); 4592 if (min_cnt < ip6_ire_min_bucket_cnt) 4593 min_cnt = ip6_ire_min_bucket_cnt; 4594 if (ip6_ire_max_bucket_cnt > min_cnt) { 4595 ip6_ire_max_bucket_cnt = min_cnt; 4596 } 4597 4598 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 4599 mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 4600 4601 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 4602 4603 4604 /* Calculate the IPv4 cache table size. */ 4605 ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size, 4606 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4607 ip_ire_max_bucket_cnt)); 4608 if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size) 4609 ipst->ips_ip_cache_table_size = ip_max_cache_table_size; 4610 /* 4611 * Make sure that the table size is always a power of 2. The 4612 * hash macro IRE_ADDR_HASH() depends on that. 4613 */ 4614 power2_roundup(&ipst->ips_ip_cache_table_size); 4615 4616 ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size * 4617 sizeof (irb_t), KM_SLEEP); 4618 4619 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4620 rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL, 4621 RW_DEFAULT, NULL); 4622 } 4623 4624 /* Calculate the IPv6 cache table size. */ 4625 ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size, 4626 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4627 ip6_ire_max_bucket_cnt)); 4628 if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size) 4629 ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size; 4630 /* 4631 * Make sure that the table size is always a power of 2. The 4632 * hash macro IRE_ADDR_HASH_V6() depends on that. 4633 */ 4634 power2_roundup(&ipst->ips_ip6_cache_table_size); 4635 4636 ipst->ips_ip_cache_table_v6 = kmem_zalloc( 4637 ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP); 4638 4639 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4640 rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL, 4641 RW_DEFAULT, NULL); 4642 } 4643 4644 /* 4645 * Make sure that the forwarding table size is a power of 2. 4646 * The IRE*_ADDR_HASH() macroes depend on that. 4647 */ 4648 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 4649 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 4650 4651 ipst->ips_ire_handle = 1; 4652 } 4653 4654 void 4655 ip_ire_g_fini(void) 4656 { 4657 kmem_cache_destroy(ire_cache); 4658 kmem_cache_destroy(rt_entry_cache); 4659 4660 rn_fini(); 4661 } 4662 4663 void 4664 ip_ire_fini(ip_stack_t *ipst) 4665 { 4666 int i; 4667 4668 /* 4669 * Delete all IREs - assumes that the ill/ipifs have 4670 * been removed so what remains are just the ftable and IRE_CACHE. 4671 */ 4672 ire_walk(ire_delete, NULL, ipst); 4673 4674 rn_freehead(ipst->ips_ip_ftable); 4675 ipst->ips_ip_ftable = NULL; 4676 4677 mutex_destroy(&ipst->ips_ire_ft_init_lock); 4678 mutex_destroy(&ipst->ips_ire_handle_lock); 4679 4680 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4681 ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL); 4682 rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock); 4683 } 4684 kmem_free(ipst->ips_ip_cache_table, 4685 ipst->ips_ip_cache_table_size * sizeof (irb_t)); 4686 ipst->ips_ip_cache_table = NULL; 4687 4688 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4689 ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL); 4690 rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock); 4691 } 4692 kmem_free(ipst->ips_ip_cache_table_v6, 4693 ipst->ips_ip6_cache_table_size * sizeof (irb_t)); 4694 ipst->ips_ip_cache_table_v6 = NULL; 4695 4696 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 4697 irb_t *ptr; 4698 int j; 4699 4700 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 4701 continue; 4702 4703 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 4704 ASSERT(ptr[j].irb_ire == NULL); 4705 rw_destroy(&ptr[j].irb_lock); 4706 } 4707 mi_free(ptr); 4708 ipst->ips_ip_forwarding_table_v6[i] = NULL; 4709 } 4710 } 4711 4712 /* 4713 * Check if another multirt route resolution is needed. 4714 * B_TRUE is returned is there remain a resolvable route, 4715 * or if no route for that dst is resolved yet. 4716 * B_FALSE is returned if all routes for that dst are resolved 4717 * or if the remaining unresolved routes are actually not 4718 * resolvable. 4719 * This only works in the global zone. 4720 */ 4721 boolean_t 4722 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst) 4723 { 4724 ire_t *first_fire; 4725 ire_t *first_cire; 4726 ire_t *fire; 4727 ire_t *cire; 4728 irb_t *firb; 4729 irb_t *cirb; 4730 int unres_cnt = 0; 4731 boolean_t resolvable = B_FALSE; 4732 4733 /* Retrieve the first IRE_HOST that matches the destination */ 4734 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 4735 NULL, ALL_ZONES, 0, tsl, 4736 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 4737 4738 /* No route at all */ 4739 if (first_fire == NULL) { 4740 return (B_TRUE); 4741 } 4742 4743 firb = first_fire->ire_bucket; 4744 ASSERT(firb != NULL); 4745 4746 /* Retrieve the first IRE_CACHE ire for that destination. */ 4747 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4748 4749 /* No resolved route. */ 4750 if (first_cire == NULL) { 4751 ire_refrele(first_fire); 4752 return (B_TRUE); 4753 } 4754 4755 /* 4756 * At least one route is resolved. Here we look through the forward 4757 * and cache tables, to compare the number of declared routes 4758 * with the number of resolved routes. The search for a resolvable 4759 * route is performed only if at least one route remains 4760 * unresolved. 4761 */ 4762 cirb = first_cire->ire_bucket; 4763 ASSERT(cirb != NULL); 4764 4765 /* Count the number of routes to that dest that are declared. */ 4766 IRB_REFHOLD(firb); 4767 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4768 if (!(fire->ire_flags & RTF_MULTIRT)) 4769 continue; 4770 if (fire->ire_addr != dst) 4771 continue; 4772 unres_cnt++; 4773 } 4774 IRB_REFRELE(firb); 4775 4776 /* Then subtract the number of routes to that dst that are resolved */ 4777 IRB_REFHOLD(cirb); 4778 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 4779 if (!(cire->ire_flags & RTF_MULTIRT)) 4780 continue; 4781 if (cire->ire_addr != dst) 4782 continue; 4783 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 4784 continue; 4785 unres_cnt--; 4786 } 4787 IRB_REFRELE(cirb); 4788 4789 /* At least one route is unresolved; search for a resolvable route. */ 4790 if (unres_cnt > 0) 4791 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 4792 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst); 4793 4794 if (first_fire != NULL) 4795 ire_refrele(first_fire); 4796 4797 if (first_cire != NULL) 4798 ire_refrele(first_cire); 4799 4800 return (resolvable); 4801 } 4802 4803 4804 /* 4805 * Explore a forward_table bucket, starting from fire_arg. 4806 * fire_arg MUST be an IRE_HOST entry. 4807 * 4808 * Return B_TRUE and update *ire_arg and *fire_arg 4809 * if at least one resolvable route is found. *ire_arg 4810 * is the IRE entry for *fire_arg's gateway. 4811 * 4812 * Return B_FALSE otherwise (all routes are resolved or 4813 * the remaining unresolved routes are all unresolvable). 4814 * 4815 * The IRE selection relies on a priority mechanism 4816 * driven by the flags passed in by the caller. 4817 * The caller, such as ip_newroute_ipif(), can get the most 4818 * relevant ire at each stage of a multiple route resolution. 4819 * 4820 * The rules are: 4821 * 4822 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 4823 * ires are preferred for the gateway. This gives the highest 4824 * priority to routes that can be resolved without using 4825 * a resolver. 4826 * 4827 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 4828 * is specified but no IRE_CACHETABLE ire entry for the gateway 4829 * is found, the following rules apply. 4830 * 4831 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 4832 * ires for the gateway, that have not been tried since 4833 * a configurable amount of time, are preferred. 4834 * This applies when a resolver must be invoked for 4835 * a missing route, but we don't want to use the resolver 4836 * upon each packet emission. If no such resolver is found, 4837 * B_FALSE is returned. 4838 * The MULTIRT_USESTAMP flag can be combined with 4839 * MULTIRT_CACHEGW. 4840 * 4841 * - if MULTIRT_USESTAMP is not specified in flags, the first 4842 * unresolved but resolvable route is selected. 4843 * 4844 * - Otherwise, there is no resolvalble route, and 4845 * B_FALSE is returned. 4846 * 4847 * At last, MULTIRT_SETSTAMP can be specified in flags to 4848 * request the timestamp of unresolvable routes to 4849 * be refreshed. This prevents the useless exploration 4850 * of those routes for a while, when MULTIRT_USESTAMP is used. 4851 * 4852 * This only works in the global zone. 4853 */ 4854 boolean_t 4855 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 4856 const ts_label_t *tsl, ip_stack_t *ipst) 4857 { 4858 clock_t delta; 4859 ire_t *best_fire = NULL; 4860 ire_t *best_cire = NULL; 4861 ire_t *first_fire; 4862 ire_t *first_cire; 4863 ire_t *fire; 4864 ire_t *cire; 4865 irb_t *firb = NULL; 4866 irb_t *cirb = NULL; 4867 ire_t *gw_ire; 4868 boolean_t already_resolved; 4869 boolean_t res; 4870 ipaddr_t dst; 4871 ipaddr_t gw; 4872 4873 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 4874 (void *)*ire_arg, (void *)*fire_arg, flags)); 4875 4876 ASSERT(ire_arg != NULL); 4877 ASSERT(fire_arg != NULL); 4878 4879 /* Not an IRE_HOST ire; give up. */ 4880 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 4881 return (B_FALSE); 4882 } 4883 4884 /* This is the first IRE_HOST ire for that destination. */ 4885 first_fire = *fire_arg; 4886 firb = first_fire->ire_bucket; 4887 ASSERT(firb != NULL); 4888 4889 dst = first_fire->ire_addr; 4890 4891 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 4892 4893 /* 4894 * Retrieve the first IRE_CACHE ire for that destination; 4895 * if we don't find one, no route for that dest is 4896 * resolved yet. 4897 */ 4898 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4899 if (first_cire != NULL) { 4900 cirb = first_cire->ire_bucket; 4901 } 4902 4903 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 4904 4905 /* 4906 * Search for a resolvable route, giving the top priority 4907 * to routes that can be resolved without any call to the resolver. 4908 */ 4909 IRB_REFHOLD(firb); 4910 4911 if (!CLASSD(dst)) { 4912 /* 4913 * For all multiroute IRE_HOST ires for that destination, 4914 * check if the route via the IRE_HOST's gateway is 4915 * resolved yet. 4916 */ 4917 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4918 4919 if (!(fire->ire_flags & RTF_MULTIRT)) 4920 continue; 4921 if (fire->ire_addr != dst) 4922 continue; 4923 4924 if (fire->ire_gw_secattr != NULL && 4925 tsol_ire_match_gwattr(fire, tsl) != 0) { 4926 continue; 4927 } 4928 4929 gw = fire->ire_gateway_addr; 4930 4931 ip2dbg(("ire_multirt_lookup: fire %p, " 4932 "ire_addr %08x, ire_gateway_addr %08x\n", 4933 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 4934 4935 already_resolved = B_FALSE; 4936 4937 if (first_cire != NULL) { 4938 ASSERT(cirb != NULL); 4939 4940 IRB_REFHOLD(cirb); 4941 /* 4942 * For all IRE_CACHE ires for that 4943 * destination. 4944 */ 4945 for (cire = first_cire; 4946 cire != NULL; 4947 cire = cire->ire_next) { 4948 4949 if (!(cire->ire_flags & RTF_MULTIRT)) 4950 continue; 4951 if (cire->ire_addr != dst) 4952 continue; 4953 if (cire->ire_marks & 4954 (IRE_MARK_CONDEMNED | 4955 IRE_MARK_HIDDEN)) 4956 continue; 4957 4958 if (cire->ire_gw_secattr != NULL && 4959 tsol_ire_match_gwattr(cire, 4960 tsl) != 0) { 4961 continue; 4962 } 4963 4964 /* 4965 * Check if the IRE_CACHE's gateway 4966 * matches the IRE_HOST's gateway. 4967 */ 4968 if (cire->ire_gateway_addr == gw) { 4969 already_resolved = B_TRUE; 4970 break; 4971 } 4972 } 4973 IRB_REFRELE(cirb); 4974 } 4975 4976 /* 4977 * This route is already resolved; 4978 * proceed with next one. 4979 */ 4980 if (already_resolved) { 4981 ip2dbg(("ire_multirt_lookup: found cire %p, " 4982 "already resolved\n", (void *)cire)); 4983 continue; 4984 } 4985 4986 /* 4987 * The route is unresolved; is it actually 4988 * resolvable, i.e. is there a cache or a resolver 4989 * for the gateway? 4990 */ 4991 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 4992 ALL_ZONES, tsl, 4993 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst); 4994 4995 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 4996 (void *)gw_ire)); 4997 4998 /* 4999 * If gw_ire is typed IRE_CACHETABLE, 5000 * this route can be resolved without any call to the 5001 * resolver. If the MULTIRT_CACHEGW flag is set, 5002 * give the top priority to this ire and exit the 5003 * loop. 5004 * This is typically the case when an ARP reply 5005 * is processed through ip_wput_nondata(). 5006 */ 5007 if ((flags & MULTIRT_CACHEGW) && 5008 (gw_ire != NULL) && 5009 (gw_ire->ire_type & IRE_CACHETABLE)) { 5010 ASSERT(gw_ire->ire_nce == NULL || 5011 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5012 /* 5013 * Release the resolver associated to the 5014 * previous candidate best ire, if any. 5015 */ 5016 if (best_cire != NULL) { 5017 ire_refrele(best_cire); 5018 ASSERT(best_fire != NULL); 5019 } 5020 5021 best_fire = fire; 5022 best_cire = gw_ire; 5023 5024 ip2dbg(("ire_multirt_lookup: found top prio " 5025 "best_fire %p, best_cire %p\n", 5026 (void *)best_fire, (void *)best_cire)); 5027 break; 5028 } 5029 5030 /* 5031 * Compute the time elapsed since our preceding 5032 * attempt to resolve that route. 5033 * If the MULTIRT_USESTAMP flag is set, we take that 5034 * route into account only if this time interval 5035 * exceeds ip_multirt_resolution_interval; 5036 * this prevents us from attempting to resolve a 5037 * broken route upon each sending of a packet. 5038 */ 5039 delta = lbolt - fire->ire_last_used_time; 5040 delta = TICK_TO_MSEC(delta); 5041 5042 res = (boolean_t)((delta > 5043 ipst->ips_ip_multirt_resolution_interval) || 5044 (!(flags & MULTIRT_USESTAMP))); 5045 5046 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 5047 "res %d\n", 5048 (void *)fire, delta, res)); 5049 5050 if (res) { 5051 /* 5052 * We are here if MULTIRT_USESTAMP flag is set 5053 * and the resolver for fire's gateway 5054 * has not been tried since 5055 * ip_multirt_resolution_interval, or if 5056 * MULTIRT_USESTAMP is not set but gw_ire did 5057 * not fill the conditions for MULTIRT_CACHEGW, 5058 * or if neither MULTIRT_USESTAMP nor 5059 * MULTIRT_CACHEGW are set. 5060 */ 5061 if (gw_ire != NULL) { 5062 if (best_fire == NULL) { 5063 ASSERT(best_cire == NULL); 5064 5065 best_fire = fire; 5066 best_cire = gw_ire; 5067 5068 ip2dbg(("ire_multirt_lookup:" 5069 "found candidate " 5070 "best_fire %p, " 5071 "best_cire %p\n", 5072 (void *)best_fire, 5073 (void *)best_cire)); 5074 5075 /* 5076 * If MULTIRT_CACHEGW is not 5077 * set, we ignore the top 5078 * priority ires that can 5079 * be resolved without any 5080 * call to the resolver; 5081 * In that case, there is 5082 * actually no need 5083 * to continue the loop. 5084 */ 5085 if (!(flags & 5086 MULTIRT_CACHEGW)) { 5087 break; 5088 } 5089 continue; 5090 } 5091 } else { 5092 /* 5093 * No resolver for the gateway: the 5094 * route is not resolvable. 5095 * If the MULTIRT_SETSTAMP flag is 5096 * set, we stamp the IRE_HOST ire, 5097 * so we will not select it again 5098 * during this resolution interval. 5099 */ 5100 if (flags & MULTIRT_SETSTAMP) 5101 fire->ire_last_used_time = 5102 lbolt; 5103 } 5104 } 5105 5106 if (gw_ire != NULL) 5107 ire_refrele(gw_ire); 5108 } 5109 } else { /* CLASSD(dst) */ 5110 5111 for (fire = first_fire; 5112 fire != NULL; 5113 fire = fire->ire_next) { 5114 5115 if (!(fire->ire_flags & RTF_MULTIRT)) 5116 continue; 5117 if (fire->ire_addr != dst) 5118 continue; 5119 5120 if (fire->ire_gw_secattr != NULL && 5121 tsol_ire_match_gwattr(fire, tsl) != 0) { 5122 continue; 5123 } 5124 5125 already_resolved = B_FALSE; 5126 5127 gw = fire->ire_gateway_addr; 5128 5129 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 5130 NULL, NULL, ALL_ZONES, 0, tsl, 5131 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 5132 MATCH_IRE_SECATTR, ipst); 5133 5134 /* No resolver for the gateway; we skip this ire. */ 5135 if (gw_ire == NULL) { 5136 continue; 5137 } 5138 ASSERT(gw_ire->ire_nce == NULL || 5139 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5140 5141 if (first_cire != NULL) { 5142 5143 IRB_REFHOLD(cirb); 5144 /* 5145 * For all IRE_CACHE ires for that 5146 * destination. 5147 */ 5148 for (cire = first_cire; 5149 cire != NULL; 5150 cire = cire->ire_next) { 5151 5152 if (!(cire->ire_flags & RTF_MULTIRT)) 5153 continue; 5154 if (cire->ire_addr != dst) 5155 continue; 5156 if (cire->ire_marks & 5157 (IRE_MARK_CONDEMNED | 5158 IRE_MARK_HIDDEN)) 5159 continue; 5160 5161 if (cire->ire_gw_secattr != NULL && 5162 tsol_ire_match_gwattr(cire, 5163 tsl) != 0) { 5164 continue; 5165 } 5166 5167 /* 5168 * Cache entries are linked to the 5169 * parent routes using the parent handle 5170 * (ire_phandle). If no cache entry has 5171 * the same handle as fire, fire is 5172 * still unresolved. 5173 */ 5174 ASSERT(cire->ire_phandle != 0); 5175 if (cire->ire_phandle == 5176 fire->ire_phandle) { 5177 already_resolved = B_TRUE; 5178 break; 5179 } 5180 } 5181 IRB_REFRELE(cirb); 5182 } 5183 5184 /* 5185 * This route is already resolved; proceed with 5186 * next one. 5187 */ 5188 if (already_resolved) { 5189 ire_refrele(gw_ire); 5190 continue; 5191 } 5192 5193 /* 5194 * Compute the time elapsed since our preceding 5195 * attempt to resolve that route. 5196 * If the MULTIRT_USESTAMP flag is set, we take 5197 * that route into account only if this time 5198 * interval exceeds ip_multirt_resolution_interval; 5199 * this prevents us from attempting to resolve a 5200 * broken route upon each sending of a packet. 5201 */ 5202 delta = lbolt - fire->ire_last_used_time; 5203 delta = TICK_TO_MSEC(delta); 5204 5205 res = (boolean_t)((delta > 5206 ipst->ips_ip_multirt_resolution_interval) || 5207 (!(flags & MULTIRT_USESTAMP))); 5208 5209 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 5210 "flags %04x, res %d\n", 5211 (void *)fire, delta, flags, res)); 5212 5213 if (res) { 5214 if (best_cire != NULL) { 5215 /* 5216 * Release the resolver associated 5217 * to the preceding candidate best 5218 * ire, if any. 5219 */ 5220 ire_refrele(best_cire); 5221 ASSERT(best_fire != NULL); 5222 } 5223 best_fire = fire; 5224 best_cire = gw_ire; 5225 continue; 5226 } 5227 5228 ire_refrele(gw_ire); 5229 } 5230 } 5231 5232 if (best_fire != NULL) { 5233 IRE_REFHOLD(best_fire); 5234 } 5235 IRB_REFRELE(firb); 5236 5237 /* Release the first IRE_CACHE we initially looked up, if any. */ 5238 if (first_cire != NULL) 5239 ire_refrele(first_cire); 5240 5241 /* Found a resolvable route. */ 5242 if (best_fire != NULL) { 5243 ASSERT(best_cire != NULL); 5244 5245 if (*fire_arg != NULL) 5246 ire_refrele(*fire_arg); 5247 if (*ire_arg != NULL) 5248 ire_refrele(*ire_arg); 5249 5250 /* 5251 * Update the passed-in arguments with the 5252 * resolvable multirt route we found. 5253 */ 5254 *fire_arg = best_fire; 5255 *ire_arg = best_cire; 5256 5257 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 5258 "*fire_arg %p, *ire_arg %p\n", 5259 (void *)best_fire, (void *)best_cire)); 5260 5261 return (B_TRUE); 5262 } 5263 5264 ASSERT(best_cire == NULL); 5265 5266 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 5267 "*ire_arg %p\n", 5268 (void *)*fire_arg, (void *)*ire_arg)); 5269 5270 /* No resolvable route. */ 5271 return (B_FALSE); 5272 } 5273 5274 /* 5275 * IRE iterator for inbound and loopback broadcast processing. 5276 * Given an IRE_BROADCAST ire, walk the ires with the same destination 5277 * address, but skip over the passed-in ire. Returns the next ire without 5278 * a hold - assumes that the caller holds a reference on the IRE bucket. 5279 */ 5280 ire_t * 5281 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 5282 { 5283 ill_t *ill; 5284 5285 if (curr == NULL) { 5286 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 5287 curr = curr->ire_next) { 5288 if (curr->ire_addr == ire->ire_addr) 5289 break; 5290 } 5291 } else { 5292 curr = curr->ire_next; 5293 } 5294 ill = ire_to_ill(ire); 5295 for (; curr != NULL; curr = curr->ire_next) { 5296 if (curr->ire_addr != ire->ire_addr) { 5297 /* 5298 * All the IREs to a given destination are contiguous; 5299 * break out once the address doesn't match. 5300 */ 5301 break; 5302 } 5303 if (curr == ire) { 5304 /* skip over the passed-in ire */ 5305 continue; 5306 } 5307 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 5308 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 5309 /* 5310 * If the passed-in ire is loopback, skip over 5311 * non-loopback ires and vice versa. 5312 */ 5313 continue; 5314 } 5315 if (ire_to_ill(curr) != ill) { 5316 /* skip over IREs going through a different interface */ 5317 continue; 5318 } 5319 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 5320 /* skip over deleted IREs */ 5321 continue; 5322 } 5323 return (curr); 5324 } 5325 return (NULL); 5326 } 5327 5328 #ifdef DEBUG 5329 void 5330 ire_trace_ref(ire_t *ire) 5331 { 5332 mutex_enter(&ire->ire_lock); 5333 if (ire->ire_trace_disable) { 5334 mutex_exit(&ire->ire_lock); 5335 return; 5336 } 5337 5338 if (th_trace_ref(ire, ire->ire_ipst)) { 5339 mutex_exit(&ire->ire_lock); 5340 } else { 5341 ire->ire_trace_disable = B_TRUE; 5342 mutex_exit(&ire->ire_lock); 5343 ire_trace_cleanup(ire); 5344 } 5345 } 5346 5347 void 5348 ire_untrace_ref(ire_t *ire) 5349 { 5350 mutex_enter(&ire->ire_lock); 5351 if (!ire->ire_trace_disable) 5352 th_trace_unref(ire); 5353 mutex_exit(&ire->ire_lock); 5354 } 5355 5356 static void 5357 ire_trace_cleanup(const ire_t *ire) 5358 { 5359 th_trace_cleanup(ire, ire->ire_trace_disable); 5360 } 5361 #endif /* DEBUG */ 5362 5363 /* 5364 * Generate a message chain with an arp request to resolve the in_ire. 5365 * It is assumed that in_ire itself is currently in the ire cache table, 5366 * so we create a fake_ire filled with enough information about ire_addr etc. 5367 * to retrieve in_ire when the DL_UNITDATA response from the resolver 5368 * comes back. The fake_ire itself is created by calling esballoc with 5369 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 5370 * invoked when the mblk containing fake_ire is freed. 5371 */ 5372 void 5373 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 5374 { 5375 areq_t *areq; 5376 ipaddr_t *addrp; 5377 mblk_t *ire_mp, *areq_mp; 5378 ire_t *ire, *buf; 5379 size_t bufsize; 5380 frtn_t *frtnp; 5381 ill_t *ill; 5382 ip_stack_t *ipst = dst_ill->ill_ipst; 5383 5384 /* 5385 * Construct message chain for the resolver 5386 * of the form: 5387 * ARP_REQ_MBLK-->IRE_MBLK 5388 * 5389 * NOTE : If the response does not 5390 * come back, ARP frees the packet. For this reason, 5391 * we can't REFHOLD the bucket of save_ire to prevent 5392 * deletions. We may not be able to REFRELE the bucket 5393 * if the response never comes back. Thus, before 5394 * adding the ire, ire_add_v4 will make sure that the 5395 * interface route does not get deleted. This is the 5396 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 5397 * where we can always prevent deletions because of 5398 * the synchronous nature of adding IRES i.e 5399 * ire_add_then_send is called after creating the IRE. 5400 */ 5401 5402 /* 5403 * We use esballoc to allocate the second part(the ire_t size mblk) 5404 * of the message chain depicted above. THis mblk will be freed 5405 * by arp when there is a timeout, and otherwise passed to IP 5406 * and IP will * free it after processing the ARP response. 5407 */ 5408 5409 bufsize = sizeof (ire_t) + sizeof (frtn_t); 5410 buf = kmem_alloc(bufsize, KM_NOSLEEP); 5411 if (buf == NULL) { 5412 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 5413 return; 5414 } 5415 frtnp = (frtn_t *)(buf + 1); 5416 frtnp->free_arg = (caddr_t)buf; 5417 frtnp->free_func = ire_freemblk; 5418 5419 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 5420 5421 if (ire_mp == NULL) { 5422 ip1dbg(("ire_arpresolve: esballoc failed\n")); 5423 kmem_free(buf, bufsize); 5424 return; 5425 } 5426 ASSERT(in_ire->ire_nce != NULL); 5427 areq_mp = copyb(dst_ill->ill_resolver_mp); 5428 if (areq_mp == NULL) { 5429 kmem_free(buf, bufsize); 5430 return; 5431 } 5432 5433 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 5434 ire = (ire_t *)buf; 5435 /* 5436 * keep enough info in the fake ire so that we can pull up 5437 * the incomplete ire (in_ire) after result comes back from 5438 * arp and make it complete. 5439 */ 5440 *ire = ire_null; 5441 ire->ire_u = in_ire->ire_u; 5442 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 5443 ire->ire_ipif_ifindex = in_ire->ire_ipif_ifindex; 5444 ire->ire_ipif = in_ire->ire_ipif; 5445 ire->ire_stq = in_ire->ire_stq; 5446 ill = ire_to_ill(ire); 5447 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 5448 ire->ire_zoneid = in_ire->ire_zoneid; 5449 ire->ire_stackid = ipst->ips_netstack->netstack_stackid; 5450 ire->ire_ipst = ipst; 5451 5452 /* 5453 * ire_freemblk will be called when ire_mp is freed, both for 5454 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 5455 * when the arp resolution failed. 5456 */ 5457 ire->ire_marks |= IRE_MARK_UNCACHED; 5458 ire->ire_mp = ire_mp; 5459 ire_mp->b_wptr = (uchar_t *)&ire[1]; 5460 ire_mp->b_cont = NULL; 5461 linkb(areq_mp, ire_mp); 5462 5463 /* 5464 * Fill in the source and dest addrs for the resolver. 5465 * NOTE: this depends on memory layouts imposed by 5466 * ill_init(). 5467 */ 5468 areq = (areq_t *)areq_mp->b_rptr; 5469 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 5470 *addrp = ire->ire_src_addr; 5471 5472 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 5473 if (ire->ire_gateway_addr != INADDR_ANY) { 5474 *addrp = ire->ire_gateway_addr; 5475 } else { 5476 *addrp = ire->ire_addr; 5477 } 5478 5479 /* Up to the resolver. */ 5480 if (canputnext(dst_ill->ill_rq)) { 5481 putnext(dst_ill->ill_rq, areq_mp); 5482 } else { 5483 freemsg(areq_mp); 5484 } 5485 } 5486 5487 /* 5488 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 5489 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 5490 * 5491 * This function can be called by ARP via free routine for ire_mp or 5492 * by IPv4(both host and forwarding path) via ire_delete 5493 * in case ARP resolution fails. 5494 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 5495 * (for IP to talk to ARP, it still has to send AR* messages). 5496 * 5497 * Note that the ARP/IP merge should replace the functioanlity by providing 5498 * direct function calls to clean up unresolved entries in ire/nce lists. 5499 */ 5500 5501 void 5502 ire_freemblk(ire_t *ire_mp) 5503 { 5504 nce_t *nce = NULL; 5505 ill_t *ill; 5506 ip_stack_t *ipst; 5507 netstack_t *ns = NULL; 5508 5509 ASSERT(ire_mp != NULL); 5510 5511 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 5512 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 5513 (void *)ire_mp)); 5514 goto cleanup; 5515 } 5516 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 5517 goto cleanup; /* everything succeeded. just free and return */ 5518 } 5519 5520 /* 5521 * the arp information corresponding to this ire_mp was not 5522 * transferred to an ire_cache entry. Need 5523 * to clean up incomplete ire's and nce, if necessary. 5524 */ 5525 ASSERT(ire_mp->ire_stq != NULL); 5526 ASSERT(ire_mp->ire_stq_ifindex != 0); 5527 ASSERT(ire_mp->ire_ipst != NULL); 5528 5529 ns = netstack_find_by_stackid(ire_mp->ire_stackid); 5530 ipst = (ns ? ns->netstack_ip : NULL); 5531 if (ipst == NULL || ipst != ire_mp->ire_ipst) /* Disapeared on us */ 5532 goto cleanup; 5533 5534 /* 5535 * Get any nce's corresponding to this ire_mp. We first have to 5536 * make sure that the ill is still around. 5537 */ 5538 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, 5539 B_FALSE, NULL, NULL, NULL, NULL, ipst); 5540 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 5541 (ill->ill_state_flags & ILL_CONDEMNED)) { 5542 /* 5543 * ill went away. no nce to clean up. 5544 * Note that the ill_state_flags could be set to 5545 * ILL_CONDEMNED after this point, but if we know 5546 * that it is CONDEMNED now, we just bail out quickly. 5547 */ 5548 if (ill != NULL) 5549 ill_refrele(ill); 5550 goto cleanup; 5551 } 5552 nce = ndp_lookup_v4(ill, 5553 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 5554 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 5555 B_FALSE); 5556 ill_refrele(ill); 5557 5558 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 5559 /* 5560 * some incomplete nce was found. 5561 */ 5562 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 5563 nce_t *, nce, ire_t *, ire_mp); 5564 /* 5565 * Send the icmp_unreachable messages for the queued mblks in 5566 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 5567 * for this ire 5568 */ 5569 arp_resolv_failed(nce); 5570 /* 5571 * Delete the nce and clean up all ire's pointing at this nce 5572 * in the cachetable 5573 */ 5574 ndp_delete(nce); 5575 } 5576 if (nce != NULL) 5577 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 5578 5579 cleanup: 5580 if (ns != NULL) 5581 netstack_rele(ns); 5582 /* 5583 * Get rid of the ire buffer 5584 * We call kmem_free here(instead of ire_delete()), since 5585 * this is the freeb's callback. 5586 */ 5587 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 5588 } 5589 5590 /* 5591 * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and 5592 * non-loopback IRE_BROADCAST ire's. 5593 * 5594 * If a neighbor-cache entry has to be created (i.e., one does not already 5595 * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache 5596 * entry are initialized in ndp_add_v4(). These values are picked from 5597 * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the 5598 * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values 5599 * determine the {nce_state, nce_res_mp} of the nce_t created. All 5600 * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp 5601 * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire 5602 * entries, 5603 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 5604 * nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state. 5605 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 5606 * layer resolution is necessary, so that the nce_t will be in the 5607 * ND_REACHABLE state and the nce_res_mp will have a copy of the 5608 * ill_resolver_mp of the outgoing interface. 5609 * 5610 * The link layer information needed for broadcast addresses, and for 5611 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 5612 * never needs re-verification for the lifetime of the nce_t. These are 5613 * therefore marked NCE_F_PERMANENT, and never allowed to expire via 5614 * NCE_EXPIRED. 5615 * 5616 * IRE_CACHE ire's contain the information for the nexthop (ire_gateway_addr) 5617 * in the case of indirect routes, and for the dst itself (ire_addr) in the 5618 * case of direct routes, with the nce_res_mp containing a template 5619 * DL_UNITDATA request. 5620 * 5621 * The actual association of the ire_nce to the nce created here is 5622 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 5623 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 5624 * the ire_nce assignment is done in ire_add_then_send. 5625 */ 5626 int 5627 ire_nce_init(ire_t *ire, nce_t *src_nce) 5628 { 5629 in_addr_t addr4; 5630 int err; 5631 nce_t *nce = NULL; 5632 ill_t *ire_ill; 5633 uint16_t nce_flags = 0; 5634 ip_stack_t *ipst; 5635 5636 if (ire->ire_stq == NULL) 5637 return (0); /* no need to create nce for local/loopback */ 5638 5639 switch (ire->ire_type) { 5640 case IRE_CACHE: 5641 if (ire->ire_gateway_addr != INADDR_ANY) 5642 addr4 = ire->ire_gateway_addr; /* 'G' route */ 5643 else 5644 addr4 = ire->ire_addr; /* direct route */ 5645 break; 5646 case IRE_BROADCAST: 5647 addr4 = ire->ire_addr; 5648 nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST); 5649 break; 5650 default: 5651 return (0); 5652 } 5653 5654 /* 5655 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 5656 * rules in ire_forward_src_ipif. We want the dlureq_mp 5657 * for the outgoing interface, which we get from the ire_stq. 5658 */ 5659 ire_ill = ire_to_ill(ire); 5660 ipst = ire_ill->ill_ipst; 5661 5662 /* 5663 * IRE_IF_NORESOLVER entries never need re-verification and 5664 * do not expire, so we mark them as NCE_F_PERMANENT. 5665 */ 5666 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) 5667 nce_flags |= NCE_F_PERMANENT; 5668 5669 retry_nce: 5670 err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags, 5671 &nce, src_nce); 5672 5673 if (err == EEXIST && NCE_EXPIRED(nce, ipst)) { 5674 /* 5675 * We looked up an expired nce. 5676 * Go back and try to create one again. 5677 */ 5678 ndp_delete(nce); 5679 NCE_REFRELE(nce); 5680 nce = NULL; 5681 goto retry_nce; 5682 } 5683 5684 ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n", 5685 (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err)); 5686 5687 switch (err) { 5688 case 0: 5689 case EEXIST: 5690 /* 5691 * return a pointer to a newly created or existing nce_t; 5692 * note that the ire-nce mapping is many-one, i.e., 5693 * multiple ire's could point to the same nce_t. 5694 */ 5695 break; 5696 default: 5697 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 5698 return (EINVAL); 5699 } 5700 if (ire->ire_type == IRE_BROADCAST) { 5701 /* 5702 * Two bcast ires are created for each interface; 5703 * 1. loopback copy (which does not have an 5704 * ire_stq, and therefore has no ire_nce), and, 5705 * 2. the non-loopback copy, which has the nce_res_mp 5706 * initialized to a copy of the ill_bcast_mp, and 5707 * is marked as ND_REACHABLE at this point. 5708 * This nce does not undergo any further state changes, 5709 * and exists as long as the interface is plumbed. 5710 * Note: we do the ire_nce assignment here for IRE_BROADCAST 5711 * because some functions like ill_mark_bcast() inline the 5712 * ire_add functionality. 5713 */ 5714 ire->ire_nce = nce; 5715 /* 5716 * We are associating this nce to the ire, 5717 * so change the nce ref taken in 5718 * ndp_lookup_then_add_v4() from 5719 * NCE_REFHOLD to NCE_REFHOLD_NOTR 5720 */ 5721 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 5722 } else { 5723 /* 5724 * We are not using this nce_t just yet so release 5725 * the ref taken in ndp_lookup_then_add_v4() 5726 */ 5727 NCE_REFRELE(nce); 5728 } 5729 return (0); 5730 } 5731 5732 /* 5733 * This is the implementation of the IPv4 IRE cache lookup procedure. 5734 * Separating the interface from the implementation allows additional 5735 * flexibility when specifying search criteria. 5736 */ 5737 static ire_t * 5738 ip4_ctable_lookup_impl(ire_ctable_args_t *margs) 5739 { 5740 irb_t *irb_ptr; 5741 ire_t *ire; 5742 ip_stack_t *ipst = margs->ict_ipst; 5743 5744 if ((margs->ict_flags & 5745 (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 5746 (margs->ict_ipif == NULL)) { 5747 return (NULL); 5748 } 5749 5750 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH( 5751 *((ipaddr_t *)margs->ict_addr), ipst->ips_ip_cache_table_size)]; 5752 rw_enter(&irb_ptr->irb_lock, RW_READER); 5753 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 5754 if (ire->ire_marks & IRE_MARK_CONDEMNED) 5755 continue; 5756 ASSERT(ire->ire_mask == IP_HOST_MASK); 5757 if (ire_match_args(ire, *((ipaddr_t *)margs->ict_addr), 5758 ire->ire_mask, *((ipaddr_t *)margs->ict_gateway), 5759 margs->ict_type, margs->ict_ipif, margs->ict_zoneid, 0, 5760 margs->ict_tsl, margs->ict_flags, margs->ict_wq)) { 5761 IRE_REFHOLD(ire); 5762 rw_exit(&irb_ptr->irb_lock); 5763 return (ire); 5764 } 5765 } 5766 5767 rw_exit(&irb_ptr->irb_lock); 5768 return (NULL); 5769 } 5770 5771 /* 5772 * This function locates IRE_CACHE entries which were added by the 5773 * ire_forward() path. We can fully specify the IRE we are looking for by 5774 * providing the ipif_t AND the ire_stq. This is different to MATCH_IRE_ILL 5775 * which uses the ipif_ill. This is inadequate with IPMP groups where 5776 * illgrp_scheduler() may have been used to select an ill from the group for 5777 * the outgoing interface. 5778 */ 5779 ire_t * 5780 ire_arpresolve_lookup(ipaddr_t addr, ipaddr_t gw, ipif_t *ipif, 5781 zoneid_t zoneid, ip_stack_t *ipst, queue_t *wq) 5782 { 5783 ire_ctable_args_t margs; 5784 5785 margs.ict_addr = &addr; 5786 margs.ict_gateway = &gw; 5787 margs.ict_type = IRE_CACHE; 5788 margs.ict_ipif = ipif; 5789 margs.ict_zoneid = zoneid; 5790 margs.ict_tsl = NULL; 5791 margs.ict_flags = MATCH_IRE_GW | MATCH_IRE_IPIF | MATCH_IRE_ZONEONLY | 5792 MATCH_IRE_TYPE | MATCH_IRE_WQ; 5793 margs.ict_ipst = ipst; 5794 margs.ict_wq = wq; 5795 5796 return (ip4_ctable_lookup_impl(&margs)); 5797 } 5798