1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 30 /* 31 * This file contains routines that manipulate Internet Routing Entries (IREs). 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/ddi.h> 38 #include <sys/cmn_err.h> 39 #include <sys/policy.h> 40 41 #include <sys/systm.h> 42 #include <sys/kmem.h> 43 #include <sys/param.h> 44 #include <sys/socket.h> 45 #include <net/if.h> 46 #include <net/route.h> 47 #include <netinet/in.h> 48 #include <net/if_dl.h> 49 #include <netinet/ip6.h> 50 #include <netinet/icmp6.h> 51 52 #include <inet/common.h> 53 #include <inet/mi.h> 54 #include <inet/ip.h> 55 #include <inet/ip6.h> 56 #include <inet/ip_ndp.h> 57 #include <inet/arp.h> 58 #include <inet/ip_if.h> 59 #include <inet/ip_ire.h> 60 #include <inet/ip_ftable.h> 61 #include <inet/ip_rts.h> 62 #include <inet/nd.h> 63 64 #include <net/pfkeyv2.h> 65 #include <inet/ipsec_info.h> 66 #include <inet/sadb.h> 67 #include <sys/kmem.h> 68 #include <inet/tcp.h> 69 #include <inet/ipclassifier.h> 70 #include <sys/zone.h> 71 #include <sys/cpuvar.h> 72 73 #include <sys/tsol/label.h> 74 #include <sys/tsol/tnet.h> 75 76 struct kmem_cache *rt_entry_cache; 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the respective tables (cache or forwarding tables). 86 * 87 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 89 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_ident, ire_refcnt 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_max_frag, ire_frag_flag 117 * 118 * - ire_lock is used to set/read both of them together. 119 * 120 * ire_tire_mark 121 * 122 * - Set in ire_create and updated in ire_expire, which is called 123 * by only one function namely ip_trash_timer_expire. Thus only 124 * one function updates and examines the value. 125 * 126 * ire_marks 127 * - bucket lock protects this. 128 * 129 * ire_ipsec_overhead/ire_ll_hdr_length 130 * 131 * - Place holder for returning the information to the upper layers 132 * when IRE_DB_REQ comes down. 133 * 134 * 135 * ipv6_ire_default_count is protected by the bucket lock of 136 * ip_forwarding_table_v6[0][0]. 137 * 138 * ipv6_ire_default_index is not protected as it is just a hint 139 * at which default gateway to use. There is nothing 140 * wrong in using the same gateway for two different connections. 141 * 142 * As we always hold the bucket locks in all the places while accessing 143 * the above values, it is natural to use them for protecting them. 144 * 145 * We have a separate cache table and forwarding table for IPv4 and IPv6. 146 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 147 * array of irb_t structure and forwarding table (ip_forwarding_table/ 148 * ip_forwarding_table_v6) is an array of pointers to array of irb_t 149 * structure. ip_forwarding_table_v6 is allocated dynamically in 150 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 151 * initializing the same bucket. Once a bucket is initialized, it is never 152 * de-alloacted. This assumption enables us to access 153 * ip_forwarding_table_v6[i] without any locks. 154 * 155 * Each irb_t - ire bucket structure has a lock to protect 156 * a bucket and the ires residing in the bucket have a back pointer to 157 * the bucket structure. It also has a reference count for the number 158 * of threads walking the bucket - irb_refcnt which is bumped up 159 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 160 * set to IRE_MARK_CONDEMNED indicating that there are some ires 161 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 162 * last thread to leave the bucket should delete the ires. Usually 163 * this is done by the IRB_REFRELE macro which is used to decrement 164 * the reference count on a bucket. 165 * 166 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 167 * decrements the reference count, ire_refcnt, atomically on the ire. 168 * ire_refcnt is modified only using this macro. Operations on the IRE 169 * could be described as follows : 170 * 171 * CREATE an ire with reference count initialized to 1. 172 * 173 * ADDITION of an ire holds the bucket lock, checks for duplicates 174 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 175 * bumping up once more i.e the reference count is 2. This is to avoid 176 * an extra lookup in the functions calling ire_add which wants to 177 * work with the ire after adding. 178 * 179 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 180 * macro. It is valid to bump up the referece count of the IRE, 181 * after the lookup has returned an ire. Following are the lookup 182 * functions that return an HELD ire : 183 * 184 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 185 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 186 * ipif_to_ire[_v6]. 187 * 188 * DELETION of an ire holds the bucket lock, removes it from the list 189 * and then decrements the reference count for having removed from the list 190 * by using the IRE_REFRELE macro. If some other thread has looked up 191 * the ire, the reference count would have been bumped up and hence 192 * this ire will not be freed once deleted. It will be freed once the 193 * reference count drops to zero. 194 * 195 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 196 * lookups acquire the bucket lock as RW_READER. 197 * 198 * NOTE : The only functions that does the IRE_REFRELE when an ire is 199 * passed as an argument are : 200 * 201 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 202 * broadcast ires it looks up internally within 203 * the function. Currently, for simplicity it does 204 * not differentiate the one that is passed in and 205 * the ones it looks up internally. It always 206 * IRE_REFRELEs. 207 * 2) ire_send 208 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 209 * that take ire as an argument, it has to selectively 210 * IRE_REFRELE the ire. To maintain symmetry, 211 * ire_send_v6 does the same. 212 * 213 * Otherwise, the general rule is to do the IRE_REFRELE in the function 214 * that is passing the ire as an argument. 215 * 216 * In trying to locate ires the following points are to be noted. 217 * 218 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 219 * to be ignored when walking the ires using ire_next. 220 * 221 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 222 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 223 * applications should not be seeing this ire and hence this ire is ignored 224 * in most cases in the search using ire_next. 225 * 226 * Zones note: 227 * Walking IREs within a given zone also walks certain ires in other 228 * zones. This is done intentionally. IRE walks with a specified 229 * zoneid are used only when doing informational reports, and 230 * zone users want to see things that they can access. See block 231 * comment in ire_walk_ill_match(). 232 */ 233 234 /* 235 * The minimum size of IRE cache table. It will be recalcuated in 236 * ip_ire_init(). 237 * Setable in /etc/system 238 */ 239 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 240 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 241 242 /* 243 * The size of the forwarding table. We will make sure that it is a 244 * power of 2 in ip_ire_init(). 245 * Setable in /etc/system 246 */ 247 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 248 249 struct kmem_cache *ire_cache; 250 static ire_t ire_null; 251 252 /* 253 * The threshold number of IRE in a bucket when the IREs are 254 * cleaned up. This threshold is calculated later in ip_open() 255 * based on the speed of CPU and available memory. This default 256 * value is the maximum. 257 * 258 * We have two kinds of cached IRE, temporary and 259 * non-temporary. Temporary IREs are marked with 260 * IRE_MARK_TEMPORARY. They are IREs created for non 261 * TCP traffic and for forwarding purposes. All others 262 * are non-temporary IREs. We don't mark IRE created for 263 * TCP as temporary because TCP is stateful and there are 264 * info stored in the IRE which can be shared by other TCP 265 * connections to the same destination. For connected 266 * endpoint, we also don't want to mark the IRE used as 267 * temporary because the same IRE will be used frequently, 268 * otherwise, the app should not do a connect(). We change 269 * the marking at ip_bind_connected_*() if necessary. 270 * 271 * We want to keep the cache IRE hash bucket length reasonably 272 * short, otherwise IRE lookup functions will take "forever." 273 * We use the "crude" function that the IRE bucket 274 * length should be based on the CPU speed, which is 1 entry 275 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 276 * (n). This means that with a 750MHz CPU, the max bucket 277 * length can be (750 >> n) entries. 278 * 279 * Note that this threshold is separate for temp and non-temp 280 * IREs. This means that the actual bucket length can be 281 * twice as that. And while we try to keep temporary IRE 282 * length at most at the threshold value, we do not attempt to 283 * make the length for non-temporary IREs fixed, for the 284 * reason stated above. Instead, we start trying to find 285 * "unused" non-temporary IREs when the bucket length reaches 286 * this threshold and clean them up. 287 * 288 * We also want to limit the amount of memory used by 289 * IREs. So if we are allowed to use ~3% of memory (M) 290 * for those IREs, each bucket should not have more than 291 * 292 * M / num of cache bucket / sizeof (ire_t) 293 * 294 * Again the above memory uses are separate for temp and 295 * non-temp cached IREs. 296 * 297 * We may also want the limit to be a function of the number 298 * of interfaces and number of CPUs. Doing the initialization 299 * in ip_open() means that every time an interface is plumbed, 300 * the max is re-calculated. Right now, we don't do anything 301 * different. In future, when we have more experience, we 302 * may want to change this behavior. 303 */ 304 uint32_t ip_ire_max_bucket_cnt = 10; /* Setable in /etc/system */ 305 uint32_t ip6_ire_max_bucket_cnt = 10; 306 307 /* 308 * The minimum of the temporary IRE bucket count. We do not want 309 * the length of each bucket to be too short. This may hurt 310 * performance of some apps as the temporary IREs are removed too 311 * often. 312 */ 313 uint32_t ip_ire_min_bucket_cnt = 3; /* /etc/system - not used */ 314 uint32_t ip6_ire_min_bucket_cnt = 3; 315 316 /* 317 * The ratio of memory consumed by IRE used for temporary to available 318 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 319 * value can be changed in /etc/system. 6 is a reasonable number. 320 */ 321 uint32_t ip_ire_mem_ratio = 6; /* /etc/system */ 322 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 323 uint32_t ip_ire_cpu_ratio = 7; /* /etc/system */ 324 325 typedef struct nce_clookup_s { 326 ipaddr_t ncecl_addr; 327 boolean_t ncecl_found; 328 } nce_clookup_t; 329 330 /* 331 * The maximum number of buckets in IRE cache table. In future, we may 332 * want to make it a dynamic hash table. For the moment, we fix the 333 * size and allocate the table in ip_ire_init() when IP is first loaded. 334 * We take into account the amount of memory a system has. 335 */ 336 #define IP_MAX_CACHE_TABLE_SIZE 4096 337 338 /* Setable in /etc/system */ 339 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 340 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 341 342 #define NUM_ILLS 2 /* To build the ILL list to unlock */ 343 344 /* Zero iulp_t for initialization. */ 345 const iulp_t ire_uinfo_null = { 0 }; 346 347 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 348 ipsq_func_t func, boolean_t); 349 static void ire_delete_v4(ire_t *ire); 350 static void ire_report_ctable(ire_t *ire, char *mp); 351 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 352 zoneid_t zoneid, ip_stack_t *); 353 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 354 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 355 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt); 356 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 357 #ifdef DEBUG 358 static void ire_trace_cleanup(const ire_t *); 359 #endif 360 361 /* 362 * To avoid bloating the code, we call this function instead of 363 * using the macro IRE_REFRELE. Use macro only in performance 364 * critical paths. 365 * 366 * Must not be called while holding any locks. Otherwise if this is 367 * the last reference to be released there is a chance of recursive mutex 368 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 369 * to restart an ioctl. The one exception is when the caller is sure that 370 * this is not the last reference to be released. Eg. if the caller is 371 * sure that the ire has not been deleted and won't be deleted. 372 */ 373 void 374 ire_refrele(ire_t *ire) 375 { 376 IRE_REFRELE(ire); 377 } 378 379 void 380 ire_refrele_notr(ire_t *ire) 381 { 382 IRE_REFRELE_NOTR(ire); 383 } 384 385 /* 386 * kmem_cache_alloc constructor for IRE in kma space. 387 * Note that when ire_mp is set the IRE is stored in that mblk and 388 * not in this cache. 389 */ 390 /* ARGSUSED */ 391 static int 392 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 393 { 394 ire_t *ire = buf; 395 396 ire->ire_nce = NULL; 397 398 return (0); 399 } 400 401 /* ARGSUSED1 */ 402 static void 403 ip_ire_destructor(void *buf, void *cdrarg) 404 { 405 ire_t *ire = buf; 406 407 ASSERT(ire->ire_nce == NULL); 408 } 409 410 /* 411 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 412 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 413 * for an existing CACHED IRE. 414 */ 415 /* ARGSUSED */ 416 int 417 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 418 { 419 uchar_t *addr_ucp; 420 ipic_t *ipic; 421 ire_t *ire; 422 ipaddr_t addr; 423 in6_addr_t v6addr; 424 irb_t *irb; 425 zoneid_t zoneid; 426 ip_stack_t *ipst = CONNQ_TO_IPST(q); 427 428 ASSERT(q->q_next == NULL); 429 zoneid = Q_TO_CONN(q)->conn_zoneid; 430 431 /* 432 * Check privilege using the ioctl credential; if it is NULL 433 * then this is a kernel message and therefor privileged. 434 */ 435 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 436 return (EPERM); 437 438 ipic = (ipic_t *)mp->b_rptr; 439 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 440 ipic->ipic_addr_length))) { 441 return (EINVAL); 442 } 443 if (!OK_32PTR(addr_ucp)) 444 return (EINVAL); 445 switch (ipic->ipic_addr_length) { 446 case IP_ADDR_LEN: { 447 /* Extract the destination address. */ 448 addr = *(ipaddr_t *)addr_ucp; 449 /* Find the corresponding IRE. */ 450 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 451 break; 452 } 453 case IPV6_ADDR_LEN: { 454 /* Extract the destination address. */ 455 v6addr = *(in6_addr_t *)addr_ucp; 456 /* Find the corresponding IRE. */ 457 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst); 458 break; 459 } 460 default: 461 return (EINVAL); 462 } 463 464 if (ire == NULL) 465 return (ENOENT); 466 /* 467 * Update the round trip time estimate and/or the max frag size 468 * and/or the slow start threshold. 469 * 470 * We serialize multiple advises using ire_lock. 471 */ 472 mutex_enter(&ire->ire_lock); 473 if (ipic->ipic_rtt) { 474 /* 475 * If there is no old cached values, initialize them 476 * conservatively. Set them to be (1.5 * new value). 477 */ 478 if (ire->ire_uinfo.iulp_rtt != 0) { 479 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 480 ipic->ipic_rtt) >> 1; 481 } else { 482 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 483 (ipic->ipic_rtt >> 1); 484 } 485 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 486 ire->ire_uinfo.iulp_rtt_sd = 487 (ire->ire_uinfo.iulp_rtt_sd + 488 ipic->ipic_rtt_sd) >> 1; 489 } else { 490 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 491 (ipic->ipic_rtt_sd >> 1); 492 } 493 } 494 if (ipic->ipic_max_frag) 495 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 496 if (ipic->ipic_ssthresh != 0) { 497 if (ire->ire_uinfo.iulp_ssthresh != 0) 498 ire->ire_uinfo.iulp_ssthresh = 499 (ipic->ipic_ssthresh + 500 ire->ire_uinfo.iulp_ssthresh) >> 1; 501 else 502 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 503 } 504 /* 505 * Don't need the ire_lock below this. ire_type does not change 506 * after initialization. ire_marks is protected by irb_lock. 507 */ 508 mutex_exit(&ire->ire_lock); 509 510 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 511 /* 512 * Only increment the temporary IRE count if the original 513 * IRE is not already marked temporary. 514 */ 515 irb = ire->ire_bucket; 516 rw_enter(&irb->irb_lock, RW_WRITER); 517 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 518 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 519 irb->irb_tmp_ire_cnt++; 520 } 521 ire->ire_marks |= ipic->ipic_ire_marks; 522 rw_exit(&irb->irb_lock); 523 } 524 525 ire_refrele(ire); 526 return (0); 527 } 528 529 /* 530 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 531 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 532 * for a host that is not responding. This will force an attempt to 533 * establish a new route, if available, and flush out the ARP entry so 534 * it will re-resolve. Management processes may want to use the 535 * version that generates a reply. 536 * 537 * This function does not support IPv6 since Neighbor Unreachability Detection 538 * means that negative advise like this is useless. 539 */ 540 /* ARGSUSED */ 541 int 542 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 543 { 544 uchar_t *addr_ucp; 545 ipaddr_t addr; 546 ire_t *ire; 547 ipid_t *ipid; 548 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 549 zoneid_t zoneid; 550 ire_t *gire = NULL; 551 ill_t *ill; 552 mblk_t *arp_mp; 553 ip_stack_t *ipst; 554 555 ASSERT(q->q_next == NULL); 556 zoneid = Q_TO_CONN(q)->conn_zoneid; 557 ipst = CONNQ_TO_IPST(q); 558 559 /* 560 * Check privilege using the ioctl credential; if it is NULL 561 * then this is a kernel message and therefor privileged. 562 */ 563 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 564 return (EPERM); 565 566 ipid = (ipid_t *)mp->b_rptr; 567 568 /* Only actions on IRE_CACHEs are acceptable at present. */ 569 if (ipid->ipid_ire_type != IRE_CACHE) 570 return (EINVAL); 571 572 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 573 ipid->ipid_addr_length); 574 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 575 return (EINVAL); 576 switch (ipid->ipid_addr_length) { 577 case IP_ADDR_LEN: 578 /* addr_ucp points at IP addr */ 579 break; 580 case sizeof (sin_t): { 581 sin_t *sin; 582 /* 583 * got complete (sockaddr) address - increment addr_ucp to point 584 * at the ip_addr field. 585 */ 586 sin = (sin_t *)addr_ucp; 587 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 588 break; 589 } 590 default: 591 return (EINVAL); 592 } 593 /* Extract the destination address. */ 594 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 595 596 /* Try to find the CACHED IRE. */ 597 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 598 599 /* Nail it. */ 600 if (ire) { 601 /* Allow delete only on CACHE entries */ 602 if (ire->ire_type != IRE_CACHE) { 603 ire_refrele(ire); 604 return (EINVAL); 605 } 606 607 /* 608 * Verify that the IRE has been around for a while. 609 * This is to protect against transport protocols 610 * that are too eager in sending delete messages. 611 */ 612 if (gethrestime_sec() < 613 ire->ire_create_time + ipst->ips_ip_ignore_delete_time) { 614 ire_refrele(ire); 615 return (EINVAL); 616 } 617 /* 618 * Now we have a potentially dead cache entry. We need 619 * to remove it. 620 * If this cache entry is generated from a 621 * default route (i.e., ire_cmask == 0), 622 * search the default list and mark it dead and some 623 * background process will try to activate it. 624 */ 625 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 626 /* 627 * Make sure that we pick a different 628 * IRE_DEFAULT next time. 629 */ 630 ire_t *gw_ire; 631 irb_t *irb = NULL; 632 uint_t match_flags; 633 634 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 635 636 gire = ire_ftable_lookup(ire->ire_addr, 637 ire->ire_cmask, 0, 0, 638 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags, 639 ipst); 640 641 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 642 (void *)gire)); 643 644 if (gire != NULL) { 645 irb = gire->ire_bucket; 646 647 /* 648 * We grab it as writer just to serialize 649 * multiple threads trying to bump up 650 * irb_rr_origin 651 */ 652 rw_enter(&irb->irb_lock, RW_WRITER); 653 if ((gw_ire = irb->irb_rr_origin) == NULL) { 654 rw_exit(&irb->irb_lock); 655 goto done; 656 } 657 658 DTRACE_PROBE1(ip__ire__del__origin, 659 (ire_t *), gw_ire); 660 661 /* Skip past the potentially bad gateway */ 662 if (ire->ire_gateway_addr == 663 gw_ire->ire_gateway_addr) { 664 ire_t *next = gw_ire->ire_next; 665 666 DTRACE_PROBE2(ip__ire__del, 667 (ire_t *), gw_ire, (irb_t *), irb); 668 IRE_FIND_NEXT_ORIGIN(next); 669 irb->irb_rr_origin = next; 670 } 671 rw_exit(&irb->irb_lock); 672 } 673 } 674 done: 675 if (gire != NULL) 676 IRE_REFRELE(gire); 677 /* report the bad route to routing sockets */ 678 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 679 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 680 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst); 681 routing_sock_info = B_TRUE; 682 683 /* 684 * TCP is really telling us to start over completely, and it 685 * expects that we'll resend the ARP query. Tell ARP to 686 * discard the entry, if this is a local destination. 687 */ 688 ill = ire->ire_stq->q_ptr; 689 if (ire->ire_gateway_addr == 0 && 690 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 691 putnext(ill->ill_rq, arp_mp); 692 } 693 694 ire_delete(ire); 695 ire_refrele(ire); 696 } 697 /* 698 * Also look for an IRE_HOST type redirect ire and 699 * remove it if present. 700 */ 701 ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL, 702 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 703 704 /* Nail it. */ 705 if (ire != NULL) { 706 if (ire->ire_flags & RTF_DYNAMIC) { 707 if (!routing_sock_info) { 708 ip_rts_change(RTM_LOSING, ire->ire_addr, 709 ire->ire_gateway_addr, ire->ire_mask, 710 ire->ire_src_addr, 0, 0, 0, 711 (RTA_DST | RTA_GATEWAY | 712 RTA_NETMASK | RTA_IFA), 713 ipst); 714 } 715 ire_delete(ire); 716 } 717 ire_refrele(ire); 718 } 719 return (0); 720 } 721 722 /* 723 * Named Dispatch routine to produce a formatted report on all IREs. 724 * This report is accessed by using the ndd utility to "get" ND variable 725 * "ipv4_ire_status". 726 */ 727 /* ARGSUSED */ 728 int 729 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 730 { 731 zoneid_t zoneid; 732 ip_stack_t *ipst; 733 734 if (CONN_Q(q)) 735 ipst = CONNQ_TO_IPST(q); 736 else 737 ipst = ILLQ_TO_IPST(q); 738 739 (void) mi_mpprintf(mp, 740 "IRE " MI_COL_HDRPAD_STR 741 /* 01234567[89ABCDEF] */ 742 "rfq " MI_COL_HDRPAD_STR 743 /* 01234567[89ABCDEF] */ 744 "stq " MI_COL_HDRPAD_STR 745 /* 01234567[89ABCDEF] */ 746 " zone " 747 /* 12345 */ 748 "addr mask " 749 /* 123.123.123.123 123.123.123.123 */ 750 "src gateway mxfrg rtt rtt_sd ssthresh ref " 751 /* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */ 752 "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe " 753 /* 123456 123456789 123456789 123456 12345678 1234 12345678 */ 754 "recvpipe in/out/forward type"); 755 /* 12345678 in/out/forward xxxxxxxxxx */ 756 757 /* 758 * Because of the ndd constraint, at most we can have 64K buffer 759 * to put in all IRE info. So to be more efficient, just 760 * allocate a 64K buffer here, assuming we need that large buffer. 761 * This should be OK as only root can do ndd /dev/ip. 762 */ 763 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 764 /* The following may work even if we cannot get a large buf. */ 765 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 766 return (0); 767 } 768 769 zoneid = Q_TO_CONN(q)->conn_zoneid; 770 if (zoneid == GLOBAL_ZONEID) 771 zoneid = ALL_ZONES; 772 773 ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid, ipst); 774 ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid, ipst); 775 776 return (0); 777 } 778 779 780 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */ 781 static void 782 ire_report_ctable(ire_t *ire, char *mp) 783 { 784 char buf1[16]; 785 char buf2[16]; 786 char buf3[16]; 787 char buf4[16]; 788 uint_t fo_pkt_count; 789 uint_t ib_pkt_count; 790 int ref; 791 uint_t print_len, buf_len; 792 793 if ((ire->ire_type & IRE_CACHETABLE) == 0) 794 return; 795 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 796 if (buf_len <= 0) 797 return; 798 799 /* Number of active references of this ire */ 800 ref = ire->ire_refcnt; 801 /* "inbound" to a non local address is a forward */ 802 ib_pkt_count = ire->ire_ib_pkt_count; 803 fo_pkt_count = 0; 804 if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { 805 fo_pkt_count = ib_pkt_count; 806 ib_pkt_count = 0; 807 } 808 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 809 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 810 "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 811 "%04d %08d %08d %d/%d/%d %s\n", 812 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 813 (int)ire->ire_zoneid, 814 ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), 815 ip_dot_addr(ire->ire_src_addr, buf3), 816 ip_dot_addr(ire->ire_gateway_addr, buf4), 817 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 818 ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, 819 ire->ire_uinfo.iulp_rtomax, 820 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 821 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 822 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 823 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 824 ire->ire_uinfo.iulp_sack, 825 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 826 ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, 827 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); 828 if (print_len < buf_len) { 829 ((mblk_t *)mp)->b_wptr += print_len; 830 } else { 831 ((mblk_t *)mp)->b_wptr += buf_len; 832 } 833 } 834 835 /* 836 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 837 * down from the Upper Level Protocol to request a copy of the IRE (to check 838 * its type or to extract information like round-trip time estimates or the 839 * MTU.) 840 * The address is assumed to be in the ire_addr field. If no IRE is found 841 * an IRE is returned with ire_type being zero. 842 * Note that the upper lavel protocol has to check for broadcast 843 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 844 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 845 * end of the returned message. 846 * 847 * TCP sends down a message of this type with a connection request packet 848 * chained on. UDP and ICMP send it down to verify that a route exists for 849 * the destination address when they get connected. 850 */ 851 void 852 ip_ire_req(queue_t *q, mblk_t *mp) 853 { 854 ire_t *inire; 855 ire_t *ire; 856 mblk_t *mp1; 857 ire_t *sire = NULL; 858 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 859 ip_stack_t *ipst = CONNQ_TO_IPST(q); 860 861 ASSERT(q->q_next == NULL); 862 863 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 864 !OK_32PTR(mp->b_rptr)) { 865 freemsg(mp); 866 return; 867 } 868 inire = (ire_t *)mp->b_rptr; 869 /* 870 * Got it, now take our best shot at an IRE. 871 */ 872 if (inire->ire_ipversion == IPV6_VERSION) { 873 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 874 NULL, &sire, zoneid, NULL, 875 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 876 } else { 877 ASSERT(inire->ire_ipversion == IPV4_VERSION); 878 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 879 NULL, &sire, zoneid, NULL, 880 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 881 } 882 883 /* 884 * We prevent returning IRES with source address INADDR_ANY 885 * as these were temporarily created for sending packets 886 * from endpoints that have conn_unspec_src set. 887 */ 888 if (ire == NULL || 889 (ire->ire_ipversion == IPV4_VERSION && 890 ire->ire_src_addr == INADDR_ANY) || 891 (ire->ire_ipversion == IPV6_VERSION && 892 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 893 inire->ire_type = 0; 894 } else { 895 bcopy(ire, inire, sizeof (ire_t)); 896 /* Copy the route metrics from the parent. */ 897 if (sire != NULL) { 898 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 899 sizeof (iulp_t)); 900 } 901 902 /* 903 * As we don't lookup global policy here, we may not 904 * pass the right size if per-socket policy is not 905 * present. For these cases, path mtu discovery will 906 * do the right thing. 907 */ 908 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 909 910 /* Pass the latest setting of the ip_path_mtu_discovery */ 911 inire->ire_frag_flag |= 912 (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 913 } 914 if (ire != NULL) 915 ire_refrele(ire); 916 if (sire != NULL) 917 ire_refrele(sire); 918 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 919 mp->b_datap->db_type = IRE_DB_TYPE; 920 921 /* Put the IRE_DB_TYPE mblk last in the chain */ 922 mp1 = mp->b_cont; 923 if (mp1 != NULL) { 924 mp->b_cont = NULL; 925 linkb(mp1, mp); 926 mp = mp1; 927 } 928 qreply(q, mp); 929 } 930 931 /* 932 * Send a packet using the specified IRE. 933 * If ire_src_addr_v6 is all zero then discard the IRE after 934 * the packet has been sent. 935 */ 936 static void 937 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 938 { 939 mblk_t *ipsec_mp; 940 boolean_t is_secure; 941 uint_t ifindex; 942 ill_t *ill; 943 zoneid_t zoneid = ire->ire_zoneid; 944 ip_stack_t *ipst = ire->ire_ipst; 945 946 ASSERT(ire->ire_ipversion == IPV4_VERSION); 947 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 948 ipsec_mp = pkt; 949 is_secure = (pkt->b_datap->db_type == M_CTL); 950 if (is_secure) { 951 ipsec_out_t *io; 952 953 pkt = pkt->b_cont; 954 io = (ipsec_out_t *)ipsec_mp->b_rptr; 955 if (io->ipsec_out_type == IPSEC_OUT) 956 zoneid = io->ipsec_out_zoneid; 957 } 958 959 /* If the packet originated externally then */ 960 if (pkt->b_prev) { 961 ire_refrele(ire); 962 /* 963 * Extract the ifindex from b_prev (set in ip_rput_noire). 964 * Look up interface to see if it still exists (it could have 965 * been unplumbed by the time the reply came back from ARP) 966 */ 967 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 968 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 969 NULL, NULL, NULL, NULL, ipst); 970 if (ill == NULL) { 971 pkt->b_prev = NULL; 972 pkt->b_next = NULL; 973 freemsg(ipsec_mp); 974 return; 975 } 976 q = ill->ill_rq; 977 pkt->b_prev = NULL; 978 /* 979 * This packet has not gone through IPSEC processing 980 * and hence we should not have any IPSEC message 981 * prepended. 982 */ 983 ASSERT(ipsec_mp == pkt); 984 put(q, pkt); 985 ill_refrele(ill); 986 } else if (pkt->b_next) { 987 /* Packets from multicast router */ 988 pkt->b_next = NULL; 989 /* 990 * We never get the IPSEC_OUT while forwarding the 991 * packet for multicast router. 992 */ 993 ASSERT(ipsec_mp == pkt); 994 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 995 ire_refrele(ire); 996 } else { 997 /* Locally originated packets */ 998 boolean_t is_inaddr_any; 999 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 1000 1001 /* 1002 * We need to do an ire_delete below for which 1003 * we need to make sure that the IRE will be 1004 * around even after calling ip_wput_ire - 1005 * which does ire_refrele. Otherwise somebody 1006 * could potentially delete this ire and hence 1007 * free this ire and we will be calling ire_delete 1008 * on a freed ire below. 1009 */ 1010 is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); 1011 if (is_inaddr_any) { 1012 IRE_REFHOLD(ire); 1013 } 1014 /* 1015 * If we were resolving a router we can not use the 1016 * routers IRE for sending the packet (since it would 1017 * violate the uniqness of the IP idents) thus we 1018 * make another pass through ip_wput to create the IRE_CACHE 1019 * for the destination. 1020 * When IRE_MARK_NOADD is set, ire_add() is not called. 1021 * Thus ip_wput() will never find a ire and result in an 1022 * infinite loop. Thus we check whether IRE_MARK_NOADD is 1023 * is set. This also implies that IRE_MARK_NOADD can only be 1024 * used to send packets to directly connected hosts. 1025 */ 1026 if (ipha->ipha_dst != ire->ire_addr && 1027 !(ire->ire_marks & IRE_MARK_NOADD)) { 1028 ire_refrele(ire); /* Held in ire_add */ 1029 if (CONN_Q(q)) { 1030 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 1031 IRE_SEND); 1032 } else { 1033 (void) ip_output((void *)(uintptr_t)zoneid, 1034 ipsec_mp, q, IRE_SEND); 1035 } 1036 } else { 1037 if (is_secure) { 1038 ipsec_out_t *oi; 1039 ipha_t *ipha; 1040 1041 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1042 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 1043 if (oi->ipsec_out_proc_begin) { 1044 /* 1045 * This is the case where 1046 * ip_wput_ipsec_out could not find 1047 * the IRE and recreated a new one. 1048 * As ip_wput_ipsec_out does ire 1049 * lookups, ire_refrele for the extra 1050 * bump in ire_add. 1051 */ 1052 ire_refrele(ire); 1053 ip_wput_ipsec_out(q, ipsec_mp, ipha, 1054 NULL, NULL); 1055 } else { 1056 /* 1057 * IRE_REFRELE will be done in 1058 * ip_wput_ire. 1059 */ 1060 ip_wput_ire(q, ipsec_mp, ire, NULL, 1061 IRE_SEND, zoneid); 1062 } 1063 } else { 1064 /* 1065 * IRE_REFRELE will be done in ip_wput_ire. 1066 */ 1067 ip_wput_ire(q, ipsec_mp, ire, NULL, 1068 IRE_SEND, zoneid); 1069 } 1070 } 1071 /* 1072 * Special code to support sending a single packet with 1073 * conn_unspec_src using an IRE which has no source address. 1074 * The IRE is deleted here after sending the packet to avoid 1075 * having other code trip on it. But before we delete the 1076 * ire, somebody could have looked up this ire. 1077 * We prevent returning/using this IRE by the upper layers 1078 * by making checks to NULL source address in other places 1079 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 1080 * Though, this does not completely prevent other threads 1081 * from using this ire, this should not cause any problems. 1082 * 1083 * NOTE : We use is_inaddr_any instead of using ire_src_addr 1084 * because for the normal case i.e !is_inaddr_any, ire_refrele 1085 * above could have potentially freed the ire. 1086 */ 1087 if (is_inaddr_any) { 1088 /* 1089 * If this IRE has been deleted by another thread, then 1090 * ire_bucket won't be NULL, but ire_ptpn will be NULL. 1091 * Thus, ire_delete will do nothing. This check 1092 * guards against calling ire_delete when the IRE was 1093 * never inserted in the table, which is handled by 1094 * ire_delete as dropping another reference. 1095 */ 1096 if (ire->ire_bucket != NULL) { 1097 ip1dbg(("ire_send: delete IRE\n")); 1098 ire_delete(ire); 1099 } 1100 ire_refrele(ire); /* Held above */ 1101 } 1102 } 1103 } 1104 1105 /* 1106 * Send a packet using the specified IRE. 1107 * If ire_src_addr_v6 is all zero then discard the IRE after 1108 * the packet has been sent. 1109 */ 1110 static void 1111 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 1112 { 1113 mblk_t *ipsec_mp; 1114 boolean_t secure; 1115 uint_t ifindex; 1116 zoneid_t zoneid = ire->ire_zoneid; 1117 ip_stack_t *ipst = ire->ire_ipst; 1118 1119 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1120 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1121 if (pkt->b_datap->db_type == M_CTL) { 1122 ipsec_out_t *io; 1123 1124 ipsec_mp = pkt; 1125 pkt = pkt->b_cont; 1126 secure = B_TRUE; 1127 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1128 if (io->ipsec_out_type == IPSEC_OUT) 1129 zoneid = io->ipsec_out_zoneid; 1130 } else { 1131 ipsec_mp = pkt; 1132 secure = B_FALSE; 1133 } 1134 1135 /* If the packet originated externally then */ 1136 if (pkt->b_prev) { 1137 ill_t *ill; 1138 /* 1139 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1140 * Look up interface to see if it still exists (it could have 1141 * been unplumbed by the time the reply came back from the 1142 * resolver). 1143 */ 1144 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1145 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1146 NULL, NULL, NULL, NULL, ipst); 1147 if (ill == NULL) { 1148 pkt->b_prev = NULL; 1149 pkt->b_next = NULL; 1150 freemsg(ipsec_mp); 1151 ire_refrele(ire); /* Held in ire_add */ 1152 return; 1153 } 1154 q = ill->ill_rq; 1155 pkt->b_prev = NULL; 1156 /* 1157 * This packet has not gone through IPSEC processing 1158 * and hence we should not have any IPSEC message 1159 * prepended. 1160 */ 1161 ASSERT(ipsec_mp == pkt); 1162 put(q, pkt); 1163 ill_refrele(ill); 1164 } else if (pkt->b_next) { 1165 /* Packets from multicast router */ 1166 pkt->b_next = NULL; 1167 /* 1168 * We never get the IPSEC_OUT while forwarding the 1169 * packet for multicast router. 1170 */ 1171 ASSERT(ipsec_mp == pkt); 1172 /* 1173 * XXX TODO IPv6. 1174 */ 1175 freemsg(pkt); 1176 #ifdef XXX 1177 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1178 #endif 1179 } else { 1180 if (secure) { 1181 ipsec_out_t *oi; 1182 ip6_t *ip6h; 1183 1184 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1185 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1186 if (oi->ipsec_out_proc_begin) { 1187 /* 1188 * This is the case where 1189 * ip_wput_ipsec_out could not find 1190 * the IRE and recreated a new one. 1191 */ 1192 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1193 NULL, NULL); 1194 } else { 1195 if (CONN_Q(q)) { 1196 (void) ip_output_v6(Q_TO_CONN(q), 1197 ipsec_mp, q, IRE_SEND); 1198 } else { 1199 (void) ip_output_v6( 1200 (void *)(uintptr_t)zoneid, 1201 ipsec_mp, q, IRE_SEND); 1202 } 1203 } 1204 } else { 1205 /* 1206 * Send packets through ip_output_v6 so that any 1207 * ip6_info header can be processed again. 1208 */ 1209 if (CONN_Q(q)) { 1210 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1211 IRE_SEND); 1212 } else { 1213 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1214 ipsec_mp, q, IRE_SEND); 1215 } 1216 } 1217 /* 1218 * Special code to support sending a single packet with 1219 * conn_unspec_src using an IRE which has no source address. 1220 * The IRE is deleted here after sending the packet to avoid 1221 * having other code trip on it. But before we delete the 1222 * ire, somebody could have looked up this ire. 1223 * We prevent returning/using this IRE by the upper layers 1224 * by making checks to NULL source address in other places 1225 * like e.g ip_ire_append_v6, ip_ire_req and 1226 * ip_bind_connected_v6. Though, this does not completely 1227 * prevent other threads from using this ire, this should 1228 * not cause any problems. 1229 */ 1230 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1231 ip1dbg(("ire_send_v6: delete IRE\n")); 1232 ire_delete(ire); 1233 } 1234 } 1235 ire_refrele(ire); /* Held in ire_add */ 1236 } 1237 1238 /* 1239 * Make sure that IRE bucket does not get too long. 1240 * This can cause lock up because ire_cache_lookup() 1241 * may take "forever" to finish. 1242 * 1243 * We just remove cnt IREs each time. This means that 1244 * the bucket length will stay approximately constant, 1245 * depending on cnt. This should be enough to defend 1246 * against DoS attack based on creating temporary IREs 1247 * (for forwarding and non-TCP traffic). 1248 * 1249 * Note that new IRE is normally added at the tail of the 1250 * bucket. This means that we are removing the "oldest" 1251 * temporary IRE added. Only if there are IREs with 1252 * the same ire_addr, do we not add it at the tail. Refer 1253 * to ire_add_v*(). It should be OK for our purpose. 1254 * 1255 * For non-temporary cached IREs, we make sure that they 1256 * have not been used for some time (defined below), they 1257 * are non-local destinations, and there is no one using 1258 * them at the moment (refcnt == 1). 1259 * 1260 * The above means that the IRE bucket length may become 1261 * very long, consisting of mostly non-temporary IREs. 1262 * This can happen when the hash function does a bad job 1263 * so that most TCP connections cluster to a specific bucket. 1264 * This "hopefully" should never happen. It can also 1265 * happen if most TCP connections have very long lives. 1266 * Even with the minimal hash table size of 256, there 1267 * has to be a lot of such connections to make the bucket 1268 * length unreasonably long. This should probably not 1269 * happen either. The third can when this can happen is 1270 * when the machine is under attack, such as SYN flooding. 1271 * TCP should already have the proper mechanism to protect 1272 * that. So we should be safe. 1273 * 1274 * This function is called by ire_add_then_send() after 1275 * a new IRE is added and the packet is sent. 1276 * 1277 * The idle cutoff interval is set to 60s. It can be 1278 * changed using /etc/system. 1279 */ 1280 uint32_t ire_idle_cutoff_interval = 60000; 1281 1282 static void 1283 ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt) 1284 { 1285 ire_t *ire; 1286 int tmp_cnt = cnt; 1287 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1288 1289 /* 1290 * irb is NULL if the IRE is not added to the hash. This 1291 * happens when IRE_MARK_NOADD is set in ire_add_then_send(). 1292 */ 1293 if (irb == NULL) 1294 return; 1295 1296 IRB_REFHOLD(irb); 1297 if (irb->irb_tmp_ire_cnt > threshold) { 1298 for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0; 1299 ire = ire->ire_next) { 1300 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1301 continue; 1302 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1303 ASSERT(ire->ire_type == IRE_CACHE); 1304 ire_delete(ire); 1305 tmp_cnt--; 1306 } 1307 } 1308 } 1309 if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) { 1310 for (ire = irb->irb_ire; ire != NULL && cnt > 0; 1311 ire = ire->ire_next) { 1312 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1313 continue; 1314 if (ire->ire_ipversion == IPV4_VERSION) { 1315 if (ire->ire_gateway_addr == 0) 1316 continue; 1317 } else { 1318 if (IN6_IS_ADDR_UNSPECIFIED( 1319 &ire->ire_gateway_addr_v6)) 1320 continue; 1321 } 1322 if ((ire->ire_type == IRE_CACHE) && 1323 (lbolt - ire->ire_last_used_time > cut_off) && 1324 (ire->ire_refcnt == 1)) { 1325 ire_delete(ire); 1326 cnt--; 1327 } 1328 } 1329 } 1330 IRB_REFRELE(irb); 1331 } 1332 1333 /* 1334 * ire_add_then_send is called when a new IRE has been created in order to 1335 * route an outgoing packet. Typically, it is called from ip_wput when 1336 * a response comes back down from a resolver. We add the IRE, and then 1337 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1338 * However, we do not add the newly created IRE in the cache when 1339 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1340 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by 1341 * ip_wput_ire() and get deleted. 1342 * Multirouting support: the packet is silently discarded when the new IRE 1343 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1344 * RTF_MULTIRT flag for the same destination address. 1345 * In this case, we just want to register this additional ire without 1346 * sending the packet, as it has already been replicated through 1347 * existing multirt routes in ip_wput(). 1348 */ 1349 void 1350 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1351 { 1352 irb_t *irb; 1353 boolean_t drop = B_FALSE; 1354 /* LINTED : set but not used in function */ 1355 boolean_t mctl_present; 1356 mblk_t *first_mp = NULL; 1357 mblk_t *save_mp = NULL; 1358 ire_t *dst_ire; 1359 ipha_t *ipha; 1360 ip6_t *ip6h; 1361 ip_stack_t *ipst = ire->ire_ipst; 1362 1363 if (mp != NULL) { 1364 /* 1365 * We first have to retrieve the destination address carried 1366 * by the packet. 1367 * We can't rely on ire as it can be related to a gateway. 1368 * The destination address will help in determining if 1369 * other RTF_MULTIRT ires are already registered. 1370 * 1371 * We first need to know where we are going : v4 or V6. 1372 * the ire version is enough, as there is no risk that 1373 * we resolve an IPv6 address with an IPv4 ire 1374 * or vice versa. 1375 */ 1376 if (ire->ire_ipversion == IPV4_VERSION) { 1377 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1378 ipha = (ipha_t *)mp->b_rptr; 1379 save_mp = mp; 1380 mp = first_mp; 1381 1382 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1383 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1384 } else { 1385 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1386 /* 1387 * Get a pointer to the beginning of the IPv6 header. 1388 * Ignore leading IPsec control mblks. 1389 */ 1390 first_mp = mp; 1391 if (mp->b_datap->db_type == M_CTL) { 1392 mp = mp->b_cont; 1393 } 1394 ip6h = (ip6_t *)mp->b_rptr; 1395 save_mp = mp; 1396 mp = first_mp; 1397 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1398 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1399 } 1400 if (dst_ire != NULL) { 1401 if (dst_ire->ire_flags & RTF_MULTIRT) { 1402 /* 1403 * At least one resolved multirt route 1404 * already exists for the destination, 1405 * don't sent this packet: either drop it 1406 * or complete the pending resolution, 1407 * depending on the ire. 1408 */ 1409 drop = B_TRUE; 1410 } 1411 ip1dbg(("ire_add_then_send: dst_ire %p " 1412 "[dst %08x, gw %08x], drop %d\n", 1413 (void *)dst_ire, 1414 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1415 ntohl(dst_ire->ire_addr) : \ 1416 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1417 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1418 ntohl(dst_ire->ire_gateway_addr) : \ 1419 ntohl(V4_PART_OF_V6( 1420 dst_ire->ire_gateway_addr_v6)), 1421 drop)); 1422 ire_refrele(dst_ire); 1423 } 1424 } 1425 1426 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1427 /* Regular packets with cache bound ires are here. */ 1428 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1429 1430 if (ire == NULL) { 1431 mp->b_prev = NULL; 1432 mp->b_next = NULL; 1433 MULTIRT_DEBUG_UNTAG(mp); 1434 freemsg(mp); 1435 return; 1436 } 1437 if (mp == NULL) { 1438 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1439 return; 1440 } 1441 } 1442 if (drop) { 1443 /* 1444 * If we're adding an RTF_MULTIRT ire, the resolution 1445 * is over: we just drop the packet. 1446 */ 1447 if (ire->ire_flags & RTF_MULTIRT) { 1448 if (save_mp) { 1449 save_mp->b_prev = NULL; 1450 save_mp->b_next = NULL; 1451 } 1452 MULTIRT_DEBUG_UNTAG(mp); 1453 freemsg(mp); 1454 } else { 1455 /* 1456 * Otherwise, we're adding the ire to a gateway 1457 * for a multirt route. 1458 * Invoke ip_newroute() to complete the resolution 1459 * of the route. We will then come back here and 1460 * finally drop this packet in the above code. 1461 */ 1462 if (ire->ire_ipversion == IPV4_VERSION) { 1463 /* 1464 * TODO: in order for CGTP to work in non-global 1465 * zones, ip_newroute() must create the IRE 1466 * cache in the zone indicated by 1467 * ire->ire_zoneid. 1468 */ 1469 ip_newroute(q, mp, ipha->ipha_dst, 1470 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1471 ire->ire_zoneid, ipst); 1472 } else { 1473 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1474 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1475 NULL, ire->ire_zoneid, ipst); 1476 } 1477 } 1478 1479 ire_refrele(ire); /* As done by ire_send(). */ 1480 return; 1481 } 1482 /* 1483 * Need to remember ire_bucket here as ire_send*() may delete 1484 * the ire so we cannot reference it after that. 1485 */ 1486 irb = ire->ire_bucket; 1487 if (ire->ire_ipversion == IPV6_VERSION) { 1488 ire_send_v6(q, mp, ire); 1489 /* 1490 * Clean up more than 1 IRE so that the clean up does not 1491 * need to be done every time when a new IRE is added and 1492 * the threshold is reached. 1493 */ 1494 ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2); 1495 } else { 1496 ire_send(q, mp, ire); 1497 ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2); 1498 } 1499 } 1500 1501 /* 1502 * Initialize the ire that is specific to IPv4 part and call 1503 * ire_init_common to finish it. 1504 */ 1505 ire_t * 1506 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1507 uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1508 queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1509 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1510 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1511 { 1512 /* 1513 * Reject IRE security attribute creation/initialization 1514 * if system is not running in Trusted mode. 1515 */ 1516 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1517 return (NULL); 1518 1519 1520 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 1521 1522 if (addr != NULL) 1523 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1524 if (src_addr != NULL) 1525 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1526 if (mask != NULL) { 1527 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1528 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1529 } 1530 if (gateway != NULL) { 1531 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1532 } 1533 1534 if (type == IRE_CACHE) 1535 ire->ire_cmask = cmask; 1536 1537 /* ire_init_common will free the mblks upon encountering any failure */ 1538 if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif, 1539 phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst)) 1540 return (NULL); 1541 1542 return (ire); 1543 } 1544 1545 /* 1546 * Similar to ire_create except that it is called only when 1547 * we want to allocate ire as an mblk e.g. we have an external 1548 * resolver ARP. 1549 */ 1550 ire_t * 1551 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1552 uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type, 1553 ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1554 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, 1555 ip_stack_t *ipst) 1556 { 1557 ire_t *ire, *buf; 1558 ire_t *ret_ire; 1559 mblk_t *mp; 1560 size_t bufsize; 1561 frtn_t *frtnp; 1562 ill_t *ill; 1563 1564 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1565 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1566 if (buf == NULL) { 1567 ip1dbg(("ire_create_mp: alloc failed\n")); 1568 return (NULL); 1569 } 1570 frtnp = (frtn_t *)(buf + 1); 1571 frtnp->free_arg = (caddr_t)buf; 1572 frtnp->free_func = ire_freemblk; 1573 1574 /* 1575 * Allocate the new IRE. The ire created will hold a ref on 1576 * an nce_t after ire_nce_init, and this ref must either be 1577 * (a) transferred to the ire_cache entry created when ire_add_v4 1578 * is called after successful arp resolution, or, 1579 * (b) released, when arp resolution fails 1580 * Case (b) is handled in ire_freemblk() which will be called 1581 * when mp is freed as a result of failed arp. 1582 */ 1583 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1584 if (mp == NULL) { 1585 ip1dbg(("ire_create_mp: alloc failed\n")); 1586 kmem_free(buf, bufsize); 1587 return (NULL); 1588 } 1589 ire = (ire_t *)mp->b_rptr; 1590 mp->b_wptr = (uchar_t *)&ire[1]; 1591 1592 /* Start clean. */ 1593 *ire = ire_null; 1594 ire->ire_mp = mp; 1595 mp->b_datap->db_type = IRE_DB_TYPE; 1596 ire->ire_marks |= IRE_MARK_UNCACHED; 1597 1598 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce, 1599 rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc, 1600 gcgrp, ipst); 1601 1602 ill = (ill_t *)(stq->q_ptr); 1603 if (ret_ire == NULL) { 1604 /* ire_freemblk needs these set */ 1605 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1606 ire->ire_ipst = ipst; 1607 freeb(ire->ire_mp); 1608 return (NULL); 1609 } 1610 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1611 ASSERT(ret_ire == ire); 1612 /* 1613 * ire_max_frag is normally zero here and is atomically set 1614 * under the irebucket lock in ire_add_v[46] except for the 1615 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1616 * is non-zero here. 1617 */ 1618 ire->ire_max_frag = max_frag; 1619 return (ire); 1620 } 1621 1622 /* 1623 * ire_create is called to allocate and initialize a new IRE. 1624 * 1625 * NOTE : This is called as writer sometimes though not required 1626 * by this function. 1627 */ 1628 ire_t * 1629 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1630 uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq, 1631 ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1632 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1633 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1634 { 1635 ire_t *ire; 1636 ire_t *ret_ire; 1637 1638 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1639 if (ire == NULL) { 1640 ip1dbg(("ire_create: alloc failed\n")); 1641 return (NULL); 1642 } 1643 *ire = ire_null; 1644 1645 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp, 1646 src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags, 1647 ulp_info, gc, gcgrp, ipst); 1648 1649 if (ret_ire == NULL) { 1650 kmem_cache_free(ire_cache, ire); 1651 return (NULL); 1652 } 1653 ASSERT(ret_ire == ire); 1654 return (ire); 1655 } 1656 1657 1658 /* 1659 * Common to IPv4 and IPv6 1660 */ 1661 boolean_t 1662 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1663 queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle, 1664 uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info, 1665 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1666 { 1667 ire->ire_max_fragp = max_fragp; 1668 ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 1669 1670 #ifdef DEBUG 1671 if (ipif != NULL) { 1672 if (ipif->ipif_isv6) 1673 ASSERT(ipversion == IPV6_VERSION); 1674 else 1675 ASSERT(ipversion == IPV4_VERSION); 1676 } 1677 #endif /* DEBUG */ 1678 1679 /* 1680 * Create/initialize IRE security attribute only in Trusted mode; 1681 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1682 * has held a reference to it and will release it when this routine 1683 * returns a failure, otherwise we own the reference. We do this 1684 * prior to initializing the rest IRE fields. 1685 * 1686 * Don't allocate ire_gw_secattr for the resolver case to prevent 1687 * memory leak (in case of external resolution failure). We'll 1688 * allocate it after a successful external resolution, in ire_add(). 1689 * Note that ire->ire_mp != NULL here means this ire is headed 1690 * to an external resolver. 1691 */ 1692 if (is_system_labeled()) { 1693 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1694 IRE_INTERFACE)) != 0) { 1695 /* release references on behalf of caller */ 1696 if (gc != NULL) 1697 GC_REFRELE(gc); 1698 if (gcgrp != NULL) 1699 GCGRP_REFRELE(gcgrp); 1700 } else if ((ire->ire_mp == NULL) && 1701 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1702 return (B_FALSE); 1703 } 1704 } 1705 1706 ire->ire_stq = stq; 1707 ire->ire_rfq = rfq; 1708 ire->ire_type = type; 1709 ire->ire_flags = RTF_UP | flags; 1710 ire->ire_ident = TICK_TO_MSEC(lbolt); 1711 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1712 1713 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1714 ire->ire_last_used_time = lbolt; 1715 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1716 1717 /* 1718 * If this IRE is an IRE_CACHE, inherit the handles from the 1719 * parent IREs. For others in the forwarding table, assign appropriate 1720 * new ones. 1721 * 1722 * The mutex protecting ire_handle is because ire_create is not always 1723 * called as a writer. 1724 */ 1725 if (ire->ire_type & IRE_OFFSUBNET) { 1726 mutex_enter(&ipst->ips_ire_handle_lock); 1727 ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++; 1728 mutex_exit(&ipst->ips_ire_handle_lock); 1729 } else if (ire->ire_type & IRE_INTERFACE) { 1730 mutex_enter(&ipst->ips_ire_handle_lock); 1731 ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++; 1732 mutex_exit(&ipst->ips_ire_handle_lock); 1733 } else if (ire->ire_type == IRE_CACHE) { 1734 ire->ire_phandle = phandle; 1735 ire->ire_ihandle = ihandle; 1736 } 1737 ire->ire_ipif = ipif; 1738 if (ipif != NULL) { 1739 ire->ire_ipif_seqid = ipif->ipif_seqid; 1740 ire->ire_zoneid = ipif->ipif_zoneid; 1741 } else { 1742 ire->ire_zoneid = GLOBAL_ZONEID; 1743 } 1744 ire->ire_ipversion = ipversion; 1745 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1746 if (ipversion == IPV4_VERSION) { 1747 /* 1748 * IPv6 initializes the ire_nce in ire_add_v6, which expects 1749 * to find the ire_nce to be null when it is called. 1750 */ 1751 if (ire_nce_init(ire, src_nce) != 0) { 1752 /* some failure occurred. propagate error back */ 1753 return (B_FALSE); 1754 } 1755 } 1756 ire->ire_refcnt = 1; 1757 ire->ire_ipst = ipst; /* No netstack_hold */ 1758 ire->ire_trace_disable = B_FALSE; 1759 1760 return (B_TRUE); 1761 } 1762 1763 /* 1764 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1765 * It is passed a pointer to a slot in an IRE pointer array into which to 1766 * place the pointer to the new IRE, if indeed we create one. If the 1767 * IRE corresponding to the address passed in would be a duplicate of an 1768 * existing one, we don't create the new one. irep is incremented before 1769 * return only if we do create a new IRE. (Always called as writer.) 1770 * 1771 * Note that with the "match_flags" parameter, we can match on either 1772 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1773 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1774 * we only create broadcast ire's on a per physical interface basis. If 1775 * someone is going to be mucking with logical interfaces, it is important 1776 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1777 * logical interface will not cause critical broadcast IRE's to be deleted. 1778 */ 1779 ire_t ** 1780 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1781 int match_flags) 1782 { 1783 ire_t *ire; 1784 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1785 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1786 1787 /* 1788 * No broadcast IREs for the LOOPBACK interface 1789 * or others such as point to point and IPIF_NOXMIT. 1790 */ 1791 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1792 (ipif->ipif_flags & IPIF_NOXMIT)) 1793 return (irep); 1794 1795 /* If this would be a duplicate, don't bother. */ 1796 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1797 ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) { 1798 /* 1799 * We look for non-deprecated (and non-anycast, non-nolocal) 1800 * ipifs as the best choice. ipifs with check_flags matching 1801 * (deprecated, etc) are used only if non-deprecated ipifs 1802 * are not available. if the existing ire's ipif is deprecated 1803 * and the new ipif is non-deprecated, switch to the new ipif 1804 */ 1805 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1806 (ipif->ipif_flags & check_flags)) { 1807 ire_refrele(ire); 1808 return (irep); 1809 } 1810 /* 1811 * Bcast ires exist in pairs. Both have to be deleted, 1812 * Since we are exclusive we can make the above assertion. 1813 * The 1st has to be refrele'd since it was ctable_lookup'd. 1814 */ 1815 ASSERT(IAM_WRITER_IPIF(ipif)); 1816 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 1817 ire_delete(ire->ire_next); 1818 ire_delete(ire); 1819 ire_refrele(ire); 1820 } 1821 1822 irep = ire_create_bcast(ipif, addr, irep); 1823 1824 return (irep); 1825 } 1826 1827 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 1828 1829 /* 1830 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 1831 * It leaves all the verifying and deleting to those routines. So it always 1832 * creates 2 bcast ires and chains them into the ire array passed in. 1833 */ 1834 ire_t ** 1835 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 1836 { 1837 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1838 1839 *irep++ = ire_create( 1840 (uchar_t *)&addr, /* dest addr */ 1841 (uchar_t *)&ip_g_all_ones, /* mask */ 1842 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 1843 NULL, /* no gateway */ 1844 &ipif->ipif_mtu, /* max frag */ 1845 NULL, /* no src nce */ 1846 ipif->ipif_rq, /* recv-from queue */ 1847 ipif->ipif_wq, /* send-to queue */ 1848 IRE_BROADCAST, 1849 ipif, 1850 0, 1851 0, 1852 0, 1853 0, 1854 &ire_uinfo_null, 1855 NULL, 1856 NULL, 1857 ipst); 1858 1859 *irep++ = ire_create( 1860 (uchar_t *)&addr, /* dest address */ 1861 (uchar_t *)&ip_g_all_ones, /* mask */ 1862 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 1863 NULL, /* no gateway */ 1864 &ip_loopback_mtu, /* max frag size */ 1865 NULL, /* no src_nce */ 1866 ipif->ipif_rq, /* recv-from queue */ 1867 NULL, /* no send-to queue */ 1868 IRE_BROADCAST, /* Needed for fanout in wput */ 1869 ipif, 1870 0, 1871 0, 1872 0, 1873 0, 1874 &ire_uinfo_null, 1875 NULL, 1876 NULL, 1877 ipst); 1878 1879 return (irep); 1880 } 1881 1882 /* 1883 * ire_walk routine to delete or update any IRE_CACHE that might contain 1884 * stale information. 1885 * The flags state which entries to delete or update. 1886 * Garbage collection is done separately using kmem alloc callbacks to 1887 * ip_trash_ire_reclaim. 1888 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 1889 * since other stale information is cleaned up using NUD. 1890 */ 1891 void 1892 ire_expire(ire_t *ire, char *arg) 1893 { 1894 ire_expire_arg_t *ieap = (ire_expire_arg_t *)(uintptr_t)arg; 1895 ill_t *stq_ill; 1896 int flush_flags = ieap->iea_flush_flag; 1897 ip_stack_t *ipst = ieap->iea_ipst; 1898 1899 if ((flush_flags & FLUSH_REDIRECT_TIME) && 1900 (ire->ire_flags & RTF_DYNAMIC)) { 1901 /* Make sure we delete the corresponding IRE_CACHE */ 1902 ip1dbg(("ire_expire: all redirects\n")); 1903 ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst); 1904 ire_delete(ire); 1905 atomic_dec_32(&ipst->ips_ip_redirect_cnt); 1906 return; 1907 } 1908 if (ire->ire_type != IRE_CACHE) 1909 return; 1910 1911 if (flush_flags & FLUSH_ARP_TIME) { 1912 /* 1913 * Remove all IRE_CACHE. 1914 * Verify that create time is more than 1915 * ip_ire_arp_interval milliseconds ago. 1916 */ 1917 if (NCE_EXPIRED(ire->ire_nce, ipst)) { 1918 ire_delete(ire); 1919 return; 1920 } 1921 } 1922 1923 if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 1924 (ire->ire_ipif != NULL)) { 1925 /* Increase pmtu if it is less than the interface mtu */ 1926 mutex_enter(&ire->ire_lock); 1927 /* 1928 * If the ipif is a vni (whose mtu is 0, since it's virtual) 1929 * get the mtu from the sending interfaces' ipif 1930 */ 1931 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 1932 stq_ill = ire->ire_stq->q_ptr; 1933 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 1934 IP_MAXPACKET); 1935 } else { 1936 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 1937 IP_MAXPACKET); 1938 } 1939 ire->ire_frag_flag |= IPH_DF; 1940 mutex_exit(&ire->ire_lock); 1941 } 1942 } 1943 1944 /* 1945 * Return any local address. We use this to target ourselves 1946 * when the src address was specified as 'default'. 1947 * Preference for IRE_LOCAL entries. 1948 */ 1949 ire_t * 1950 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst) 1951 { 1952 ire_t *ire; 1953 irb_t *irb; 1954 ire_t *maybe = NULL; 1955 int i; 1956 1957 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 1958 irb = &ipst->ips_ip_cache_table[i]; 1959 if (irb->irb_ire == NULL) 1960 continue; 1961 rw_enter(&irb->irb_lock, RW_READER); 1962 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1963 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 1964 (ire->ire_zoneid != zoneid && 1965 ire->ire_zoneid != ALL_ZONES)) 1966 continue; 1967 switch (ire->ire_type) { 1968 case IRE_LOOPBACK: 1969 if (maybe == NULL) { 1970 IRE_REFHOLD(ire); 1971 maybe = ire; 1972 } 1973 break; 1974 case IRE_LOCAL: 1975 if (maybe != NULL) { 1976 ire_refrele(maybe); 1977 } 1978 IRE_REFHOLD(ire); 1979 rw_exit(&irb->irb_lock); 1980 return (ire); 1981 } 1982 } 1983 rw_exit(&irb->irb_lock); 1984 } 1985 return (maybe); 1986 } 1987 1988 /* 1989 * If the specified IRE is associated with a particular ILL, return 1990 * that ILL pointer (May be called as writer.). 1991 * 1992 * NOTE : This is not a generic function that can be used always. 1993 * This function always returns the ill of the outgoing packets 1994 * if this ire is used. 1995 */ 1996 ill_t * 1997 ire_to_ill(const ire_t *ire) 1998 { 1999 ill_t *ill = NULL; 2000 2001 /* 2002 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 2003 * the source address from. ire_stq is the one where the 2004 * packets will be sent out on. We return that here. 2005 * 2006 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 2007 * copy and they always exist next to each other with loopback 2008 * copy being the first one. If we are called on the non-loopback 2009 * copy, return the one pointed by ire_stq. If it was called on 2010 * a loopback copy, we still return the one pointed by the next 2011 * ire's ire_stq pointer i.e the one pointed by the non-loopback 2012 * copy. We don't want use ire_ipif as it might represent the 2013 * source address (if we borrow source addresses for 2014 * IRE_BROADCASTS in the future). 2015 * However if an interface is currently coming up, the above 2016 * condition may not hold during that period since the ires 2017 * are added one at a time. Thus one of the pair could have been 2018 * added and the other not yet added. 2019 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill. 2020 * 4) For all others return the ones pointed by ire_ipif->ipif_ill. 2021 * That handles IRE_LOOPBACK. 2022 */ 2023 2024 if (ire->ire_type == IRE_CACHE) { 2025 ill = (ill_t *)ire->ire_stq->q_ptr; 2026 } else if (ire->ire_type == IRE_BROADCAST) { 2027 if (ire->ire_stq != NULL) { 2028 ill = (ill_t *)ire->ire_stq->q_ptr; 2029 } else { 2030 ire_t *ire_next; 2031 2032 ire_next = ire->ire_next; 2033 if (ire_next != NULL && 2034 ire_next->ire_type == IRE_BROADCAST && 2035 ire_next->ire_addr == ire->ire_addr && 2036 ire_next->ire_ipif == ire->ire_ipif) { 2037 ill = (ill_t *)ire_next->ire_stq->q_ptr; 2038 } 2039 } 2040 } else if (ire->ire_rfq != NULL) { 2041 ill = ire->ire_rfq->q_ptr; 2042 } else if (ire->ire_ipif != NULL) { 2043 ill = ire->ire_ipif->ipif_ill; 2044 } 2045 return (ill); 2046 } 2047 2048 /* Arrange to call the specified function for every IRE in the world. */ 2049 void 2050 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 2051 { 2052 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 2053 } 2054 2055 void 2056 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 2057 { 2058 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 2059 } 2060 2061 void 2062 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 2063 { 2064 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 2065 } 2066 2067 /* 2068 * Walk a particular version. version == 0 means both v4 and v6. 2069 */ 2070 static void 2071 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 2072 ip_stack_t *ipst) 2073 { 2074 if (vers != IPV6_VERSION) { 2075 /* 2076 * ip_forwarding_table variable doesn't matter for IPv4 since 2077 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 2078 */ 2079 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 2080 0, NULL, 2081 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 2082 NULL, zoneid, ipst); 2083 } 2084 if (vers != IPV4_VERSION) { 2085 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 2086 ipst->ips_ip6_ftable_hash_size, 2087 ipst->ips_ip_forwarding_table_v6, 2088 ipst->ips_ip6_cache_table_size, 2089 ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst); 2090 } 2091 } 2092 2093 /* 2094 * Arrange to call the specified 2095 * function for every IRE that matches the ill. 2096 */ 2097 void 2098 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2099 ill_t *ill) 2100 { 2101 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); 2102 } 2103 2104 void 2105 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2106 ill_t *ill) 2107 { 2108 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2109 ill); 2110 } 2111 2112 void 2113 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2114 ill_t *ill) 2115 { 2116 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2117 ill); 2118 } 2119 2120 /* 2121 * Walk a particular ill and version. version == 0 means both v4 and v6. 2122 */ 2123 static void 2124 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2125 void *arg, uchar_t vers, ill_t *ill) 2126 { 2127 ip_stack_t *ipst = ill->ill_ipst; 2128 2129 if (vers != IPV6_VERSION) { 2130 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2131 IP_MASK_TABLE_SIZE, 0, 2132 NULL, ipst->ips_ip_cache_table_size, 2133 ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst); 2134 } 2135 if (vers != IPV4_VERSION) { 2136 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2137 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 2138 ipst->ips_ip_forwarding_table_v6, 2139 ipst->ips_ip6_cache_table_size, 2140 ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst); 2141 } 2142 } 2143 2144 boolean_t 2145 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2146 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 2147 { 2148 ill_t *ire_stq_ill = NULL; 2149 ill_t *ire_ipif_ill = NULL; 2150 ill_group_t *ire_ill_group = NULL; 2151 2152 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2153 /* 2154 * MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2155 * pointed by ire_stq and ire_ipif. Only in the case of 2156 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2157 * different ills. But we want to keep this function generic 2158 * enough for future use. So, we always try to match on both. 2159 * The only caller of this function ire_walk_ill_tables, will 2160 * call "func" after we return from this function. We expect 2161 * "func" to do the right filtering of ires in this case. 2162 * 2163 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2164 * pointed by ire_stq and ire_ipif should always be the same. 2165 * So, we just match on only one of them. 2166 */ 2167 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2168 if (ire->ire_stq != NULL) 2169 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2170 if (ire->ire_ipif != NULL) 2171 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2172 if (ire_stq_ill != NULL) 2173 ire_ill_group = ire_stq_ill->ill_group; 2174 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2175 ire_ill_group = ire_ipif_ill->ill_group; 2176 } 2177 2178 if (zoneid != ALL_ZONES) { 2179 /* 2180 * We're walking the IREs for a specific zone. The only relevant 2181 * IREs are: 2182 * - all IREs with a matching ire_zoneid 2183 * - all IRE_OFFSUBNETs as they're shared across all zones 2184 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2185 * with a matching zone 2186 * - IRE_DEFAULTs with a gateway reachable from the zone 2187 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2188 * using the same rule; but the above rules are consistent with 2189 * the behavior of ire_ftable_lookup[_v6]() so that all the 2190 * routes that can be matched during lookup are also matched 2191 * here. 2192 */ 2193 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2194 /* 2195 * Note, IRE_INTERFACE can have the stq as NULL. For 2196 * example, if the default multicast route is tied to 2197 * the loopback address. 2198 */ 2199 if ((ire->ire_type & IRE_INTERFACE) && 2200 (ire->ire_stq != NULL)) { 2201 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2202 if (ire->ire_ipversion == IPV4_VERSION) { 2203 if (!ipif_usesrc_avail(ire_stq_ill, 2204 zoneid)) 2205 /* No usable src addr in zone */ 2206 return (B_FALSE); 2207 } else if (ire_stq_ill->ill_usesrc_ifindex 2208 != 0) { 2209 /* 2210 * For IPv6 use ipif_select_source_v6() 2211 * so the right scope selection is done 2212 */ 2213 ipif_t *src_ipif; 2214 src_ipif = 2215 ipif_select_source_v6(ire_stq_ill, 2216 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2217 IPV6_PREFER_SRC_DEFAULT, 2218 zoneid); 2219 if (src_ipif != NULL) { 2220 ipif_refrele(src_ipif); 2221 } else { 2222 return (B_FALSE); 2223 } 2224 } else { 2225 return (B_FALSE); 2226 } 2227 2228 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2229 return (B_FALSE); 2230 } 2231 } 2232 2233 /* 2234 * Match all default routes from the global zone, irrespective 2235 * of reachability. For a non-global zone only match those 2236 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2237 */ 2238 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2239 int ire_match_flags = 0; 2240 in6_addr_t gw_addr_v6; 2241 ire_t *rire; 2242 2243 ire_match_flags |= MATCH_IRE_TYPE; 2244 if (ire->ire_ipif != NULL) { 2245 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2246 } 2247 if (ire->ire_ipversion == IPV4_VERSION) { 2248 rire = ire_route_lookup(ire->ire_gateway_addr, 2249 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2250 zoneid, NULL, ire_match_flags, ipst); 2251 } else { 2252 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2253 mutex_enter(&ire->ire_lock); 2254 gw_addr_v6 = ire->ire_gateway_addr_v6; 2255 mutex_exit(&ire->ire_lock); 2256 rire = ire_route_lookup_v6(&gw_addr_v6, 2257 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2258 NULL, zoneid, NULL, ire_match_flags, ipst); 2259 } 2260 if (rire == NULL) { 2261 return (B_FALSE); 2262 } 2263 ire_refrele(rire); 2264 } 2265 } 2266 2267 if (((!(match_flags & MATCH_IRE_TYPE)) || 2268 (ire->ire_type & ire_type)) && 2269 ((!(match_flags & MATCH_IRE_ILL)) || 2270 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2271 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2272 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2273 (ire_ill_group != NULL && 2274 ire_ill_group == ill->ill_group))) { 2275 return (B_TRUE); 2276 } 2277 return (B_FALSE); 2278 } 2279 2280 int 2281 rtfunc(struct radix_node *rn, void *arg) 2282 { 2283 struct rtfuncarg *rtf = arg; 2284 struct rt_entry *rt; 2285 irb_t *irb; 2286 ire_t *ire; 2287 boolean_t ret; 2288 2289 rt = (struct rt_entry *)rn; 2290 ASSERT(rt != NULL); 2291 irb = &rt->rt_irb; 2292 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2293 if ((rtf->rt_match_flags != 0) || 2294 (rtf->rt_zoneid != ALL_ZONES)) { 2295 ret = ire_walk_ill_match(rtf->rt_match_flags, 2296 rtf->rt_ire_type, ire, 2297 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 2298 } else 2299 ret = B_TRUE; 2300 if (ret) 2301 (*rtf->rt_func)(ire, rtf->rt_arg); 2302 } 2303 return (0); 2304 } 2305 2306 /* 2307 * Walk the ftable and the ctable entries that match the ill. 2308 */ 2309 void 2310 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2311 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2312 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid, 2313 ip_stack_t *ipst) 2314 { 2315 irb_t *irb_ptr; 2316 irb_t *irb; 2317 ire_t *ire; 2318 int i, j; 2319 boolean_t ret; 2320 struct rtfuncarg rtfarg; 2321 2322 ASSERT((!(match_flags & (MATCH_IRE_ILL | 2323 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2324 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2325 /* 2326 * Optimize by not looking at the forwarding table if there 2327 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2328 * specified in ire_type. 2329 */ 2330 if (!(match_flags & MATCH_IRE_TYPE) || 2331 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2332 /* knobs such that routine is called only for v6 case */ 2333 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 2334 for (i = (ftbl_sz - 1); i >= 0; i--) { 2335 if ((irb_ptr = ipftbl[i]) == NULL) 2336 continue; 2337 for (j = 0; j < htbl_sz; j++) { 2338 irb = &irb_ptr[j]; 2339 if (irb->irb_ire == NULL) 2340 continue; 2341 2342 IRB_REFHOLD(irb); 2343 for (ire = irb->irb_ire; ire != NULL; 2344 ire = ire->ire_next) { 2345 if (match_flags == 0 && 2346 zoneid == ALL_ZONES) { 2347 ret = B_TRUE; 2348 } else { 2349 ret = 2350 ire_walk_ill_match( 2351 match_flags, 2352 ire_type, ire, ill, 2353 zoneid, ipst); 2354 } 2355 if (ret) 2356 (*func)(ire, arg); 2357 } 2358 IRB_REFRELE(irb); 2359 } 2360 } 2361 } else { 2362 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2363 rtfarg.rt_func = func; 2364 rtfarg.rt_arg = arg; 2365 if (match_flags != 0) { 2366 rtfarg.rt_match_flags = match_flags; 2367 } 2368 rtfarg.rt_ire_type = ire_type; 2369 rtfarg.rt_ill = ill; 2370 rtfarg.rt_zoneid = zoneid; 2371 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 2372 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 2373 ipst->ips_ip_ftable, 2374 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 2375 } 2376 } 2377 2378 /* 2379 * Optimize by not looking at the cache table if there 2380 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2381 * specified in ire_type. 2382 */ 2383 if (!(match_flags & MATCH_IRE_TYPE) || 2384 ((ire_type & IRE_CACHETABLE) != 0)) { 2385 for (i = 0; i < ctbl_sz; i++) { 2386 irb = &ipctbl[i]; 2387 if (irb->irb_ire == NULL) 2388 continue; 2389 IRB_REFHOLD(irb); 2390 for (ire = irb->irb_ire; ire != NULL; 2391 ire = ire->ire_next) { 2392 if (match_flags == 0 && zoneid == ALL_ZONES) { 2393 ret = B_TRUE; 2394 } else { 2395 ret = ire_walk_ill_match( 2396 match_flags, ire_type, 2397 ire, ill, zoneid, ipst); 2398 } 2399 if (ret) 2400 (*func)(ire, arg); 2401 } 2402 IRB_REFRELE(irb); 2403 } 2404 } 2405 } 2406 2407 /* 2408 * This function takes a mask and returns 2409 * number of bits set in the mask. If no 2410 * bit is set it returns 0. 2411 * Assumes a contiguous mask. 2412 */ 2413 int 2414 ip_mask_to_plen(ipaddr_t mask) 2415 { 2416 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2417 } 2418 2419 /* 2420 * Convert length for a mask to the mask. 2421 */ 2422 ipaddr_t 2423 ip_plen_to_mask(uint_t masklen) 2424 { 2425 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2426 } 2427 2428 void 2429 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2430 { 2431 ill_t *ill_list[NUM_ILLS]; 2432 ip_stack_t *ipst = ire->ire_ipst; 2433 2434 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2435 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2436 ill_unlock_ills(ill_list, NUM_ILLS); 2437 rw_exit(&irb_ptr->irb_lock); 2438 rw_exit(&ipst->ips_ill_g_usesrc_lock); 2439 } 2440 2441 /* 2442 * ire_add_v[46] atomically make sure that the ipif or ill associated 2443 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2444 * before adding the ire to the table. This ensures that we don't create 2445 * new IRE_CACHEs with stale values for parameters that are passed to 2446 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2447 * to the ipif_mtu, and not the value. The actual value is derived from the 2448 * parent ire or ipif under the bucket lock. 2449 */ 2450 int 2451 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2452 ipsq_func_t func) 2453 { 2454 ill_t *stq_ill; 2455 ill_t *ipif_ill; 2456 ill_t *ill_list[NUM_ILLS]; 2457 int cnt = NUM_ILLS; 2458 int error = 0; 2459 ill_t *ill = NULL; 2460 ip_stack_t *ipst = ire->ire_ipst; 2461 2462 ill_list[0] = stq_ill = ire->ire_stq != 2463 NULL ? ire->ire_stq->q_ptr : NULL; 2464 ill_list[1] = ipif_ill = ire->ire_ipif != 2465 NULL ? ire->ire_ipif->ipif_ill : NULL; 2466 2467 ASSERT((q != NULL && mp != NULL && func != NULL) || 2468 (q == NULL && mp == NULL && func == NULL)); 2469 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 2470 GRAB_CONN_LOCK(q); 2471 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 2472 ill_lock_ills(ill_list, cnt); 2473 2474 /* 2475 * While the IRE is in the process of being added, a user may have 2476 * invoked the ifconfig usesrc option on the stq_ill to make it a 2477 * usesrc client ILL. Check for this possibility here, if it is true 2478 * then we fail adding the IRE_CACHE. Another check is to make sure 2479 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 2480 * group. The ill_g_usesrc_lock is released in ire_atomic_end 2481 */ 2482 if ((ire->ire_type & IRE_CACHE) && 2483 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 2484 if (stq_ill->ill_usesrc_ifindex != 0) { 2485 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 2486 if ((ipif_ill->ill_phyint->phyint_ifindex != 2487 stq_ill->ill_usesrc_ifindex) || 2488 (ipif_ill->ill_usesrc_grp_next == NULL) || 2489 (ipif_ill->ill_usesrc_ifindex != 0)) { 2490 error = EINVAL; 2491 goto done; 2492 } 2493 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 2494 error = EINVAL; 2495 goto done; 2496 } 2497 } 2498 2499 /* 2500 * IPMP flag settings happen without taking the exclusive route 2501 * in ip_sioctl_flags. So we need to make an atomic check here 2502 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 2503 * FAILBACK=no case. 2504 */ 2505 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 2506 if (stq_ill->ill_state_flags & ILL_CHANGING) { 2507 ill = stq_ill; 2508 error = EAGAIN; 2509 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2510 (ill_is_probeonly(stq_ill) && 2511 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2512 error = EINVAL; 2513 } 2514 goto done; 2515 } 2516 2517 /* 2518 * We don't check for OFFLINE/FAILED in this case because 2519 * the source address selection logic (ipif_select_source) 2520 * may still select a source address from such an ill. The 2521 * assumption is that these addresses will be moved by in.mpathd 2522 * soon. (i.e. this is a race). However link local addresses 2523 * will not move and hence ipif_select_source_v6 tries to avoid 2524 * FAILED ills. Please see ipif_select_source_v6 for more info 2525 */ 2526 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 2527 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 2528 ill = ipif_ill; 2529 error = EAGAIN; 2530 goto done; 2531 } 2532 2533 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 2534 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 2535 ill = ire->ire_ipif->ipif_ill; 2536 ASSERT(ill != NULL); 2537 error = EAGAIN; 2538 goto done; 2539 } 2540 2541 done: 2542 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 2543 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 2544 mutex_enter(&ipsq->ipsq_lock); 2545 ire_atomic_end(irb_ptr, ire); 2546 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 2547 mutex_exit(&ipsq->ipsq_lock); 2548 error = EINPROGRESS; 2549 } else if (error != 0) { 2550 ire_atomic_end(irb_ptr, ire); 2551 } 2552 2553 RELEASE_CONN_LOCK(q); 2554 return (error); 2555 } 2556 2557 /* 2558 * Add a fully initialized IRE to an appropriate table based on 2559 * ire_type. 2560 * 2561 * allow_unresolved == B_FALSE indicates a legacy code-path call 2562 * that has prohibited the addition of incomplete ire's. If this 2563 * parameter is set, and we find an nce that is in a state other 2564 * than ND_REACHABLE, we fail the add. Note that nce_state could be 2565 * something other than ND_REACHABLE if the nce had just expired and 2566 * the ire_create preceding the ire_add added a new ND_INITIAL nce. 2567 */ 2568 int 2569 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 2570 boolean_t allow_unresolved) 2571 { 2572 ire_t *ire1; 2573 ill_t *stq_ill = NULL; 2574 ill_t *ill; 2575 ipif_t *ipif = NULL; 2576 ill_walk_context_t ctx; 2577 ire_t *ire = *irep; 2578 int error; 2579 boolean_t ire_is_mblk = B_FALSE; 2580 tsol_gcgrp_t *gcgrp = NULL; 2581 tsol_gcgrp_addr_t ga; 2582 ip_stack_t *ipst = ire->ire_ipst; 2583 2584 /* get ready for the day when original ire is not created as mblk */ 2585 if (ire->ire_mp != NULL) { 2586 ire_is_mblk = B_TRUE; 2587 /* Copy the ire to a kmem_alloc'ed area */ 2588 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 2589 if (ire1 == NULL) { 2590 ip1dbg(("ire_add: alloc failed\n")); 2591 ire_delete(ire); 2592 *irep = NULL; 2593 return (ENOMEM); 2594 } 2595 ire->ire_marks &= ~IRE_MARK_UNCACHED; 2596 *ire1 = *ire; 2597 ire1->ire_mp = NULL; 2598 ire1->ire_stq_ifindex = 0; 2599 freeb(ire->ire_mp); 2600 ire = ire1; 2601 } 2602 if (ire->ire_stq != NULL) 2603 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2604 2605 if (ire->ire_type == IRE_CACHE) { 2606 /* 2607 * If this interface is FAILED, or INACTIVE or has hit 2608 * the FAILBACK=no case, we create IRE_CACHES marked 2609 * HIDDEN for some special cases e.g. bind to 2610 * IPIF_NOFAILOVER address etc. So, if this interface 2611 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 2612 * not creating hidden ires, we should not allow that. 2613 * This happens because the state of the interface 2614 * changed while we were waiting in ARP. If this is the 2615 * daemon sending probes, the next probe will create 2616 * HIDDEN ires and we will create an ire then. This 2617 * cannot happen with NDP currently because IRE is 2618 * never queued in NDP. But it can happen in the 2619 * future when we have external resolvers with IPv6. 2620 * If the interface gets marked with OFFLINE while we 2621 * are waiting in ARP, don't add the ire. 2622 */ 2623 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2624 (ill_is_probeonly(stq_ill) && 2625 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2626 /* 2627 * We don't know whether it is a valid ipif or not. 2628 * unless we do the check below. So, set it to NULL. 2629 */ 2630 ire->ire_ipif = NULL; 2631 ire_delete(ire); 2632 *irep = NULL; 2633 return (EINVAL); 2634 } 2635 } 2636 2637 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 2638 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 2639 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2640 ill = ILL_START_WALK_ALL(&ctx, ipst); 2641 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2642 mutex_enter(&ill->ill_lock); 2643 if (ill->ill_state_flags & ILL_CONDEMNED) { 2644 mutex_exit(&ill->ill_lock); 2645 continue; 2646 } 2647 /* 2648 * We need to make sure that the ipif is a valid one 2649 * before adding the IRE_CACHE. This happens only 2650 * with IRE_CACHE when there is an external resolver. 2651 * 2652 * We can unplumb a logical interface while the 2653 * packet is waiting in ARP with the IRE. Then, 2654 * later on when we feed the IRE back, the ipif 2655 * has to be re-checked. This can't happen with 2656 * NDP currently, as we never queue the IRE with 2657 * the packet. We always try to recreate the IRE 2658 * when the resolution is completed. But, we do 2659 * it for IPv6 also here so that in future if 2660 * we have external resolvers, it will work without 2661 * any change. 2662 */ 2663 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 2664 if (ipif != NULL) { 2665 ipif_refhold_locked(ipif); 2666 mutex_exit(&ill->ill_lock); 2667 break; 2668 } 2669 mutex_exit(&ill->ill_lock); 2670 } 2671 rw_exit(&ipst->ips_ill_g_lock); 2672 if (ipif == NULL || 2673 (ipif->ipif_isv6 && 2674 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 2675 &ipif->ipif_v6src_addr)) || 2676 (!ipif->ipif_isv6 && 2677 ire->ire_src_addr != ipif->ipif_src_addr) || 2678 ire->ire_zoneid != ipif->ipif_zoneid) { 2679 2680 if (ipif != NULL) 2681 ipif_refrele(ipif); 2682 ire->ire_ipif = NULL; 2683 ire_delete(ire); 2684 *irep = NULL; 2685 return (EINVAL); 2686 } 2687 2688 2689 ASSERT(ill != NULL); 2690 /* 2691 * If this group was dismantled while this packets was 2692 * queued in ARP, don't add it here. 2693 */ 2694 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 2695 /* We don't want ire_inactive bump stats for this */ 2696 ipif_refrele(ipif); 2697 ire->ire_ipif = NULL; 2698 ire_delete(ire); 2699 *irep = NULL; 2700 return (EINVAL); 2701 } 2702 2703 /* 2704 * Since we didn't attach label security attributes to the 2705 * ire for the resolver case, we need to add it now. (only 2706 * for v4 resolver and v6 xresolv case). 2707 */ 2708 if (is_system_labeled() && ire_is_mblk) { 2709 if (ire->ire_ipversion == IPV4_VERSION) { 2710 ga.ga_af = AF_INET; 2711 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 2712 INADDR_ANY ? ire->ire_gateway_addr : 2713 ire->ire_addr, &ga.ga_addr); 2714 } else { 2715 ga.ga_af = AF_INET6; 2716 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 2717 &ire->ire_gateway_addr_v6) ? 2718 ire->ire_addr_v6 : 2719 ire->ire_gateway_addr_v6; 2720 } 2721 gcgrp = gcgrp_lookup(&ga, B_FALSE); 2722 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 2723 NULL, gcgrp); 2724 if (error != 0) { 2725 if (gcgrp != NULL) { 2726 GCGRP_REFRELE(gcgrp); 2727 gcgrp = NULL; 2728 } 2729 ipif_refrele(ipif); 2730 ire->ire_ipif = NULL; 2731 ire_delete(ire); 2732 *irep = NULL; 2733 return (error); 2734 } 2735 } 2736 } 2737 2738 /* 2739 * In case ire was changed 2740 */ 2741 *irep = ire; 2742 if (ire->ire_ipversion == IPV6_VERSION) 2743 error = ire_add_v6(irep, q, mp, func); 2744 else 2745 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 2746 if (ipif != NULL) 2747 ipif_refrele(ipif); 2748 return (error); 2749 } 2750 2751 /* 2752 * Add an initialized IRE to an appropriate table based on ire_type. 2753 * 2754 * The forward table contains IRE_PREFIX/IRE_HOST and 2755 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 2756 * 2757 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 2758 * and IRE_CACHE. 2759 * 2760 * NOTE : This function is called as writer though not required 2761 * by this function. 2762 */ 2763 static int 2764 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 2765 boolean_t allow_unresolved) 2766 { 2767 ire_t *ire1; 2768 irb_t *irb_ptr; 2769 ire_t **irep; 2770 int flags; 2771 ire_t *pire = NULL; 2772 ill_t *stq_ill; 2773 ire_t *ire = *ire_p; 2774 int error; 2775 boolean_t need_refrele = B_FALSE; 2776 nce_t *nce; 2777 ip_stack_t *ipst = ire->ire_ipst; 2778 2779 if (ire->ire_ipif != NULL) 2780 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 2781 if (ire->ire_stq != NULL) 2782 ASSERT(!MUTEX_HELD( 2783 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 2784 ASSERT(ire->ire_ipversion == IPV4_VERSION); 2785 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 2786 2787 /* Find the appropriate list head. */ 2788 switch (ire->ire_type) { 2789 case IRE_HOST: 2790 ire->ire_mask = IP_HOST_MASK; 2791 ire->ire_masklen = IP_ABITS; 2792 if ((ire->ire_flags & RTF_SETSRC) == 0) 2793 ire->ire_src_addr = 0; 2794 break; 2795 case IRE_CACHE: 2796 case IRE_BROADCAST: 2797 case IRE_LOCAL: 2798 case IRE_LOOPBACK: 2799 ire->ire_mask = IP_HOST_MASK; 2800 ire->ire_masklen = IP_ABITS; 2801 break; 2802 case IRE_PREFIX: 2803 if ((ire->ire_flags & RTF_SETSRC) == 0) 2804 ire->ire_src_addr = 0; 2805 break; 2806 case IRE_DEFAULT: 2807 if ((ire->ire_flags & RTF_SETSRC) == 0) 2808 ire->ire_src_addr = 0; 2809 break; 2810 case IRE_IF_RESOLVER: 2811 case IRE_IF_NORESOLVER: 2812 break; 2813 default: 2814 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 2815 (void *)ire, ire->ire_type)); 2816 ire_delete(ire); 2817 *ire_p = NULL; 2818 return (EINVAL); 2819 } 2820 2821 /* Make sure the address is properly masked. */ 2822 ire->ire_addr &= ire->ire_mask; 2823 2824 /* 2825 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 2826 * of the interface route while adding an IRE_CACHE for an on-link 2827 * destination in the IRE_IF_RESOLVER case, since the ire has to 2828 * go to ARP and return. We can't do a REFHOLD on the 2829 * associated interface ire for fear of ARP freeing the message. 2830 * Here we look up the interface ire in the forwarding table and 2831 * make sure that the interface route has not been deleted. 2832 */ 2833 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 2834 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 2835 2836 ASSERT(ire->ire_max_fragp == NULL); 2837 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 2838 /* 2839 * The ihandle that we used in ip_newroute_multi 2840 * comes from the interface route corresponding 2841 * to ire_ipif. Lookup here to see if it exists 2842 * still. 2843 * If the ire has a source address assigned using 2844 * RTF_SETSRC, ire_ipif is the logical interface holding 2845 * this source address, so we can't use it to check for 2846 * the existence of the interface route. Instead we rely 2847 * on the brute force ihandle search in 2848 * ire_ihandle_lookup_onlink() below. 2849 */ 2850 pire = ipif_to_ire(ire->ire_ipif); 2851 if (pire == NULL) { 2852 ire_delete(ire); 2853 *ire_p = NULL; 2854 return (EINVAL); 2855 } else if (pire->ire_ihandle != ire->ire_ihandle) { 2856 ire_refrele(pire); 2857 ire_delete(ire); 2858 *ire_p = NULL; 2859 return (EINVAL); 2860 } 2861 } else { 2862 pire = ire_ihandle_lookup_onlink(ire); 2863 if (pire == NULL) { 2864 ire_delete(ire); 2865 *ire_p = NULL; 2866 return (EINVAL); 2867 } 2868 } 2869 /* Prevent pire from getting deleted */ 2870 IRB_REFHOLD(pire->ire_bucket); 2871 /* Has it been removed already ? */ 2872 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 2873 IRB_REFRELE(pire->ire_bucket); 2874 ire_refrele(pire); 2875 ire_delete(ire); 2876 *ire_p = NULL; 2877 return (EINVAL); 2878 } 2879 } else { 2880 ASSERT(ire->ire_max_fragp != NULL); 2881 } 2882 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 2883 2884 if (ire->ire_ipif != NULL) { 2885 /* 2886 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 2887 * for historic reasons and to maintain symmetry with 2888 * IPv6 code path. Historically this was used by 2889 * multicast code to create multiple IRE_CACHES on 2890 * a single ill with different ipifs. This was used 2891 * so that multicast packets leaving the node had the 2892 * right source address. This is no longer needed as 2893 * ip_wput initializes the address correctly. 2894 */ 2895 flags |= MATCH_IRE_IPIF; 2896 /* 2897 * If we are creating hidden ires, make sure we search on 2898 * this ill (MATCH_IRE_ILL) and a hidden ire, 2899 * while we are searching for duplicates below. Otherwise we 2900 * could potentially find an IRE on some other interface 2901 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 2902 * shouldn't do this as this will lead to an infinite loop 2903 * (if we get to ip_wput again) eventually we need an hidden 2904 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 2905 * done below. 2906 */ 2907 if (ire->ire_type == IRE_CACHE && 2908 (ire->ire_marks & IRE_MARK_HIDDEN)) 2909 flags |= (MATCH_IRE_MARK_HIDDEN); 2910 } 2911 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 2912 irb_ptr = ire_get_bucket(ire); 2913 need_refrele = B_TRUE; 2914 if (irb_ptr == NULL) { 2915 /* 2916 * This assumes that the ire has not added 2917 * a reference to the ipif. 2918 */ 2919 ire->ire_ipif = NULL; 2920 ire_delete(ire); 2921 if (pire != NULL) { 2922 IRB_REFRELE(pire->ire_bucket); 2923 ire_refrele(pire); 2924 } 2925 *ire_p = NULL; 2926 return (EINVAL); 2927 } 2928 } else { 2929 irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH( 2930 ire->ire_addr, ipst->ips_ip_cache_table_size)]); 2931 } 2932 2933 /* 2934 * Start the atomic add of the ire. Grab the ill locks, 2935 * ill_g_usesrc_lock and the bucket lock. Check for condemned 2936 * 2937 * If ipif or ill is changing ire_atomic_start() may queue the 2938 * request and return EINPROGRESS. 2939 * To avoid lock order problems, get the ndp4->ndp_g_lock. 2940 */ 2941 mutex_enter(&ipst->ips_ndp4->ndp_g_lock); 2942 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 2943 if (error != 0) { 2944 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2945 /* 2946 * We don't know whether it is a valid ipif or not. 2947 * So, set it to NULL. This assumes that the ire has not added 2948 * a reference to the ipif. 2949 */ 2950 ire->ire_ipif = NULL; 2951 ire_delete(ire); 2952 if (pire != NULL) { 2953 IRB_REFRELE(pire->ire_bucket); 2954 ire_refrele(pire); 2955 } 2956 *ire_p = NULL; 2957 if (need_refrele) 2958 IRB_REFRELE(irb_ptr); 2959 return (error); 2960 } 2961 /* 2962 * To avoid creating ires having stale values for the ire_max_frag 2963 * we get the latest value atomically here. For more details 2964 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 2965 * in ip_rput_dlpi_writer 2966 */ 2967 if (ire->ire_max_fragp == NULL) { 2968 if (CLASSD(ire->ire_addr)) 2969 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 2970 else 2971 ire->ire_max_frag = pire->ire_max_frag; 2972 } else { 2973 uint_t max_frag; 2974 2975 max_frag = *ire->ire_max_fragp; 2976 ire->ire_max_fragp = NULL; 2977 ire->ire_max_frag = max_frag; 2978 } 2979 /* 2980 * Atomically check for duplicate and insert in the table. 2981 */ 2982 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 2983 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 2984 continue; 2985 if (ire->ire_ipif != NULL) { 2986 /* 2987 * We do MATCH_IRE_ILL implicitly here for IREs 2988 * with a non-null ire_ipif, including IRE_CACHEs. 2989 * As ire_ipif and ire_stq could point to two 2990 * different ills, we can't pass just ire_ipif to 2991 * ire_match_args and get a match on both ills. 2992 * This is just needed for duplicate checks here and 2993 * so we don't add an extra argument to 2994 * ire_match_args for this. Do it locally. 2995 * 2996 * NOTE : Currently there is no part of the code 2997 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 2998 * match for IRE_CACHEs. Thus we don't want to 2999 * extend the arguments to ire_match_args. 3000 */ 3001 if (ire1->ire_stq != ire->ire_stq) 3002 continue; 3003 /* 3004 * Multiroute IRE_CACHEs for a given destination can 3005 * have the same ire_ipif, typically if their source 3006 * address is forced using RTF_SETSRC, and the same 3007 * send-to queue. We differentiate them using the parent 3008 * handle. 3009 */ 3010 if (ire->ire_type == IRE_CACHE && 3011 (ire1->ire_flags & RTF_MULTIRT) && 3012 (ire->ire_flags & RTF_MULTIRT) && 3013 (ire1->ire_phandle != ire->ire_phandle)) 3014 continue; 3015 } 3016 if (ire1->ire_zoneid != ire->ire_zoneid) 3017 continue; 3018 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 3019 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 3020 ire->ire_zoneid, 0, NULL, flags)) { 3021 /* 3022 * Return the old ire after doing a REFHOLD. 3023 * As most of the callers continue to use the IRE 3024 * after adding, we return a held ire. This will 3025 * avoid a lookup in the caller again. If the callers 3026 * don't want to use it, they need to do a REFRELE. 3027 */ 3028 ip1dbg(("found dup ire existing %p new %p", 3029 (void *)ire1, (void *)ire)); 3030 IRE_REFHOLD(ire1); 3031 ire_atomic_end(irb_ptr, ire); 3032 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3033 ire_delete(ire); 3034 if (pire != NULL) { 3035 /* 3036 * Assert that it is not removed from the 3037 * list yet. 3038 */ 3039 ASSERT(pire->ire_ptpn != NULL); 3040 IRB_REFRELE(pire->ire_bucket); 3041 ire_refrele(pire); 3042 } 3043 *ire_p = ire1; 3044 if (need_refrele) 3045 IRB_REFRELE(irb_ptr); 3046 return (0); 3047 } 3048 } 3049 if (ire->ire_type & IRE_CACHE) { 3050 ASSERT(ire->ire_stq != NULL); 3051 nce = ndp_lookup_v4(ire_to_ill(ire), 3052 ((ire->ire_gateway_addr != INADDR_ANY) ? 3053 &ire->ire_gateway_addr : &ire->ire_addr), 3054 B_TRUE); 3055 if (nce != NULL) 3056 mutex_enter(&nce->nce_lock); 3057 /* 3058 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 3059 * and the caller has prohibited the addition of incomplete 3060 * ire's, we fail the add. Note that nce_state could be 3061 * something other than ND_REACHABLE if the nce had 3062 * just expired and the ire_create preceding the 3063 * ire_add added a new ND_INITIAL nce. 3064 */ 3065 if ((nce == NULL) || 3066 (nce->nce_flags & NCE_F_CONDEMNED) || 3067 (!allow_unresolved && 3068 (nce->nce_state != ND_REACHABLE))) { 3069 if (nce != NULL) { 3070 DTRACE_PROBE1(ire__bad__nce, nce_t *, nce); 3071 mutex_exit(&nce->nce_lock); 3072 } 3073 ire_atomic_end(irb_ptr, ire); 3074 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3075 if (nce != NULL) 3076 NCE_REFRELE(nce); 3077 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 3078 ire_delete(ire); 3079 if (pire != NULL) { 3080 IRB_REFRELE(pire->ire_bucket); 3081 ire_refrele(pire); 3082 } 3083 *ire_p = NULL; 3084 if (need_refrele) 3085 IRB_REFRELE(irb_ptr); 3086 return (EINVAL); 3087 } else { 3088 ire->ire_nce = nce; 3089 mutex_exit(&nce->nce_lock); 3090 /* 3091 * We are associating this nce to the ire, so 3092 * change the nce ref taken in ndp_lookup_v4() from 3093 * NCE_REFHOLD to NCE_REFHOLD_NOTR 3094 */ 3095 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 3096 } 3097 } 3098 /* 3099 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 3100 * grouping identical addresses together on the hash chain. We also 3101 * don't want to send multiple copies out if there are two ills part 3102 * of the same group. Thus we group the ires with same addr and same 3103 * ill group together so that ip_wput_ire can easily skip all the 3104 * ires with same addr and same group after sending the first copy. 3105 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3106 * interested in such groupings only for broadcasts. 3107 * 3108 * NOTE : If the interfaces are brought up first and then grouped, 3109 * illgrp_insert will handle it. We come here when the interfaces 3110 * are already in group and we are bringing them UP. 3111 * 3112 * Find the first entry that matches ire_addr. *irep will be null 3113 * if no match. 3114 * 3115 * Note: the loopback and non-loopback broadcast entries for an 3116 * interface MUST be added before any MULTIRT entries. 3117 */ 3118 irep = (ire_t **)irb_ptr; 3119 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3120 irep = &ire1->ire_next; 3121 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3122 /* 3123 * We found some ire (i.e *irep) with a matching addr. We 3124 * want to group ires with same addr and same ill group 3125 * together. 3126 * 3127 * First get to the entry that matches our address and 3128 * ill group i.e stop as soon as we find the first ire 3129 * matching the ill group and address. If there is only 3130 * an address match, we should walk and look for some 3131 * group match. These are some of the possible scenarios : 3132 * 3133 * 1) There are no groups at all i.e all ire's ill_group 3134 * are NULL. In that case we will essentially group 3135 * all the ires with the same addr together. Same as 3136 * the "else" block of this "if". 3137 * 3138 * 2) There are some groups and this ire's ill_group is 3139 * NULL. In this case, we will first find the group 3140 * that matches the address and a NULL group. Then 3141 * we will insert the ire at the end of that group. 3142 * 3143 * 3) There are some groups and this ires's ill_group is 3144 * non-NULL. In this case we will first find the group 3145 * that matches the address and the ill_group. Then 3146 * we will insert the ire at the end of that group. 3147 */ 3148 for (;;) { 3149 ire1 = *irep; 3150 if ((ire1->ire_next == NULL) || 3151 (ire1->ire_next->ire_addr != ire->ire_addr) || 3152 (ire1->ire_type != IRE_BROADCAST) || 3153 (ire1->ire_flags & RTF_MULTIRT) || 3154 (ire1->ire_ipif->ipif_ill->ill_group == 3155 ire->ire_ipif->ipif_ill->ill_group)) 3156 break; 3157 irep = &ire1->ire_next; 3158 } 3159 ASSERT(*irep != NULL); 3160 /* 3161 * The ire will be added before *irep, so 3162 * if irep is a MULTIRT ire, just break to 3163 * ire insertion code. 3164 */ 3165 if (((*irep)->ire_flags & RTF_MULTIRT) != 0) 3166 goto insert_ire; 3167 3168 irep = &((*irep)->ire_next); 3169 3170 /* 3171 * Either we have hit the end of the list or the address 3172 * did not match or the group *matched*. If we found 3173 * a match on the group, skip to the end of the group. 3174 */ 3175 while (*irep != NULL) { 3176 ire1 = *irep; 3177 if ((ire1->ire_addr != ire->ire_addr) || 3178 (ire1->ire_type != IRE_BROADCAST) || 3179 (ire1->ire_ipif->ipif_ill->ill_group != 3180 ire->ire_ipif->ipif_ill->ill_group)) 3181 break; 3182 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3183 ire1->ire_ipif == ire->ire_ipif) { 3184 irep = &ire1->ire_next; 3185 break; 3186 } 3187 irep = &ire1->ire_next; 3188 } 3189 } else if (*irep != NULL) { 3190 /* 3191 * Find the last ire which matches ire_addr. 3192 * Needed to do tail insertion among entries with the same 3193 * ire_addr. 3194 */ 3195 while (ire->ire_addr == ire1->ire_addr) { 3196 irep = &ire1->ire_next; 3197 ire1 = *irep; 3198 if (ire1 == NULL) 3199 break; 3200 } 3201 } 3202 3203 insert_ire: 3204 /* Insert at *irep */ 3205 ire1 = *irep; 3206 if (ire1 != NULL) 3207 ire1->ire_ptpn = &ire->ire_next; 3208 ire->ire_next = ire1; 3209 /* Link the new one in. */ 3210 ire->ire_ptpn = irep; 3211 3212 /* 3213 * ire_walk routines de-reference ire_next without holding 3214 * a lock. Before we point to the new ire, we want to make 3215 * sure the store that sets the ire_next of the new ire 3216 * reaches global visibility, so that ire_walk routines 3217 * don't see a truncated list of ires i.e if the ire_next 3218 * of the new ire gets set after we do "*irep = ire" due 3219 * to re-ordering, the ire_walk thread will see a NULL 3220 * once it accesses the ire_next of the new ire. 3221 * membar_producer() makes sure that the following store 3222 * happens *after* all of the above stores. 3223 */ 3224 membar_producer(); 3225 *irep = ire; 3226 ire->ire_bucket = irb_ptr; 3227 /* 3228 * We return a bumped up IRE above. Keep it symmetrical 3229 * so that the callers will always have to release. This 3230 * helps the callers of this function because they continue 3231 * to use the IRE after adding and hence they don't have to 3232 * lookup again after we return the IRE. 3233 * 3234 * NOTE : We don't have to use atomics as this is appearing 3235 * in the list for the first time and no one else can bump 3236 * up the reference count on this yet. 3237 */ 3238 IRE_REFHOLD_LOCKED(ire); 3239 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 3240 3241 irb_ptr->irb_ire_cnt++; 3242 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3243 irb_ptr->irb_nire++; 3244 3245 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3246 irb_ptr->irb_tmp_ire_cnt++; 3247 3248 if (ire->ire_ipif != NULL) { 3249 ire->ire_ipif->ipif_ire_cnt++; 3250 if (ire->ire_stq != NULL) { 3251 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3252 stq_ill->ill_ire_cnt++; 3253 } 3254 } else { 3255 ASSERT(ire->ire_stq == NULL); 3256 } 3257 3258 ire_atomic_end(irb_ptr, ire); 3259 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3260 3261 if (pire != NULL) { 3262 /* Assert that it is not removed from the list yet */ 3263 ASSERT(pire->ire_ptpn != NULL); 3264 IRB_REFRELE(pire->ire_bucket); 3265 ire_refrele(pire); 3266 } 3267 3268 if (ire->ire_type != IRE_CACHE) { 3269 /* 3270 * For ire's with host mask see if there is an entry 3271 * in the cache. If there is one flush the whole cache as 3272 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3273 * If no entry is found than there is no need to flush the 3274 * cache. 3275 */ 3276 if (ire->ire_mask == IP_HOST_MASK) { 3277 ire_t *lire; 3278 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3279 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3280 if (lire != NULL) { 3281 ire_refrele(lire); 3282 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3283 } 3284 } else { 3285 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3286 } 3287 } 3288 /* 3289 * We had to delay the fast path probe until the ire is inserted 3290 * in the list. Otherwise the fast path ack won't find the ire in 3291 * the table. 3292 */ 3293 if (ire->ire_type == IRE_CACHE || 3294 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) { 3295 ASSERT(ire->ire_nce != NULL); 3296 if (ire->ire_nce->nce_state == ND_REACHABLE) 3297 nce_fastpath(ire->ire_nce); 3298 } 3299 if (ire->ire_ipif != NULL) 3300 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3301 *ire_p = ire; 3302 if (need_refrele) { 3303 IRB_REFRELE(irb_ptr); 3304 } 3305 return (0); 3306 } 3307 3308 /* 3309 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3310 * do the final cleanup for this ire. 3311 */ 3312 void 3313 ire_cleanup(ire_t *ire) 3314 { 3315 ire_t *ire_next; 3316 ip_stack_t *ipst = ire->ire_ipst; 3317 3318 ASSERT(ire != NULL); 3319 3320 while (ire != NULL) { 3321 ire_next = ire->ire_next; 3322 if (ire->ire_ipversion == IPV4_VERSION) { 3323 ire_delete_v4(ire); 3324 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 3325 ire_stats_deleted); 3326 } else { 3327 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3328 ire_delete_v6(ire); 3329 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 3330 ire_stats_deleted); 3331 } 3332 /* 3333 * Now it's really out of the list. Before doing the 3334 * REFRELE, set ire_next to NULL as ire_inactive asserts 3335 * so. 3336 */ 3337 ire->ire_next = NULL; 3338 IRE_REFRELE_NOTR(ire); 3339 ire = ire_next; 3340 } 3341 } 3342 3343 /* 3344 * IRB_REFRELE is the only caller of the function. It calls to unlink 3345 * all the CONDEMNED ires from this bucket. 3346 */ 3347 ire_t * 3348 ire_unlink(irb_t *irb) 3349 { 3350 ire_t *ire; 3351 ire_t *ire1; 3352 ire_t **ptpn; 3353 ire_t *ire_list = NULL; 3354 3355 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3356 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3357 (irb->irb_refcnt == 0)); 3358 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3359 ASSERT(irb->irb_ire != NULL); 3360 3361 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3362 ip_stack_t *ipst = ire->ire_ipst; 3363 3364 ire1 = ire->ire_next; 3365 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3366 ptpn = ire->ire_ptpn; 3367 ire1 = ire->ire_next; 3368 if (ire1) 3369 ire1->ire_ptpn = ptpn; 3370 *ptpn = ire1; 3371 ire->ire_ptpn = NULL; 3372 ire->ire_next = NULL; 3373 if (ire->ire_type == IRE_DEFAULT) { 3374 /* 3375 * IRE is out of the list. We need to adjust 3376 * the accounting before the caller drops 3377 * the lock. 3378 */ 3379 if (ire->ire_ipversion == IPV6_VERSION) { 3380 ASSERT(ipst-> 3381 ips_ipv6_ire_default_count != 3382 0); 3383 ipst->ips_ipv6_ire_default_count--; 3384 } 3385 } 3386 /* 3387 * We need to call ire_delete_v4 or ire_delete_v6 3388 * to clean up the cache or the redirects pointing at 3389 * the default gateway. We need to drop the lock 3390 * as ire_flush_cache/ire_delete_host_redircts require 3391 * so. But we can't drop the lock, as ire_unlink needs 3392 * to atomically remove the ires from the list. 3393 * So, create a temporary list of CONDEMNED ires 3394 * for doing ire_delete_v4/ire_delete_v6 operations 3395 * later on. 3396 */ 3397 ire->ire_next = ire_list; 3398 ire_list = ire; 3399 } 3400 } 3401 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3402 return (ire_list); 3403 } 3404 3405 /* 3406 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3407 * ARP message on any of its interface queue, it scans the nce table and 3408 * deletes and calls ndp_delete() for the appropriate nce. This action 3409 * also deletes all the neighbor/ire cache entries for that address. 3410 * This function is called from ip_arp_news in ip.c and also for 3411 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3412 * true if it finds a nce entry which is used by ip_arp_news to determine if 3413 * it needs to do an ire_walk_v4. The return value is also used for the 3414 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3415 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3416 * ip_if->ipif_ill also needs to be matched. 3417 */ 3418 boolean_t 3419 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst) 3420 { 3421 ill_t *ill; 3422 nce_t *nce; 3423 3424 ill = (ipif ? ipif->ipif_ill : NULL); 3425 3426 if (ill != NULL) { 3427 /* 3428 * clean up the nce (and any relevant ire's) that matches 3429 * on addr and ill. 3430 */ 3431 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3432 if (nce != NULL) { 3433 ndp_delete(nce); 3434 return (B_TRUE); 3435 } 3436 } else { 3437 /* 3438 * ill is wildcard. clean up all nce's and 3439 * ire's that match on addr 3440 */ 3441 nce_clookup_t cl; 3442 3443 cl.ncecl_addr = addr; 3444 cl.ncecl_found = B_FALSE; 3445 3446 ndp_walk_common(ipst->ips_ndp4, NULL, 3447 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3448 3449 /* 3450 * ncecl_found would be set by ip_nce_clookup_and_delete if 3451 * we found a matching nce. 3452 */ 3453 return (cl.ncecl_found); 3454 } 3455 return (B_FALSE); 3456 3457 } 3458 3459 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3460 static void 3461 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 3462 { 3463 nce_clookup_t *cl = (nce_clookup_t *)arg; 3464 ipaddr_t nce_addr; 3465 3466 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 3467 if (nce_addr == cl->ncecl_addr) { 3468 cl->ncecl_found = B_TRUE; 3469 /* clean up the nce (and any relevant ire's) */ 3470 ndp_delete(nce); 3471 } 3472 } 3473 3474 /* 3475 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 3476 * when there are no ire's left in the bucket. Returns TRUE if the bucket 3477 * is deleted and freed. 3478 */ 3479 boolean_t 3480 irb_inactive(irb_t *irb) 3481 { 3482 struct rt_entry *rt; 3483 struct radix_node *rn; 3484 ip_stack_t *ipst = irb->irb_ipst; 3485 3486 ASSERT(irb->irb_ipst != NULL); 3487 3488 rt = IRB2RT(irb); 3489 rn = (struct radix_node *)rt; 3490 3491 /* first remove it from the radix tree. */ 3492 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 3493 rw_enter(&irb->irb_lock, RW_WRITER); 3494 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 3495 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 3496 ipst->ips_ip_ftable); 3497 DTRACE_PROBE1(irb__free, rt_t *, rt); 3498 ASSERT((void *)rn == (void *)rt); 3499 Free(rt, rt_entry_cache); 3500 /* irb_lock is freed */ 3501 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3502 return (B_TRUE); 3503 } 3504 rw_exit(&irb->irb_lock); 3505 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3506 return (B_FALSE); 3507 } 3508 3509 /* 3510 * Delete the specified IRE. 3511 */ 3512 void 3513 ire_delete(ire_t *ire) 3514 { 3515 ire_t *ire1; 3516 ire_t **ptpn; 3517 irb_t *irb; 3518 ip_stack_t *ipst = ire->ire_ipst; 3519 3520 if ((irb = ire->ire_bucket) == NULL) { 3521 /* 3522 * It was never inserted in the list. Should call REFRELE 3523 * to free this IRE. 3524 */ 3525 IRE_REFRELE_NOTR(ire); 3526 return; 3527 } 3528 3529 rw_enter(&irb->irb_lock, RW_WRITER); 3530 3531 if (irb->irb_rr_origin == ire) { 3532 irb->irb_rr_origin = NULL; 3533 } 3534 3535 /* 3536 * In case of V4 we might still be waiting for fastpath ack. 3537 */ 3538 if (ire->ire_ipversion == IPV4_VERSION && 3539 (ire->ire_type == IRE_CACHE || 3540 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) { 3541 ASSERT(ire->ire_nce != NULL); 3542 nce_fastpath_list_delete(ire->ire_nce); 3543 } 3544 3545 if (ire->ire_ptpn == NULL) { 3546 /* 3547 * Some other thread has removed us from the list. 3548 * It should have done the REFRELE for us. 3549 */ 3550 rw_exit(&irb->irb_lock); 3551 return; 3552 } 3553 3554 if (irb->irb_refcnt != 0) { 3555 /* 3556 * The last thread to leave this bucket will 3557 * delete this ire. 3558 */ 3559 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3560 irb->irb_ire_cnt--; 3561 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3562 irb->irb_tmp_ire_cnt--; 3563 ire->ire_marks |= IRE_MARK_CONDEMNED; 3564 } 3565 irb->irb_marks |= IRB_MARK_CONDEMNED; 3566 rw_exit(&irb->irb_lock); 3567 return; 3568 } 3569 3570 /* 3571 * Normally to delete an ire, we walk the bucket. While we 3572 * walk the bucket, we normally bump up irb_refcnt and hence 3573 * we return from above where we mark CONDEMNED and the ire 3574 * gets deleted from ire_unlink. This case is where somebody 3575 * knows the ire e.g by doing a lookup, and wants to delete the 3576 * IRE. irb_refcnt would be 0 in this case if nobody is walking 3577 * the bucket. 3578 */ 3579 ptpn = ire->ire_ptpn; 3580 ire1 = ire->ire_next; 3581 if (ire1 != NULL) 3582 ire1->ire_ptpn = ptpn; 3583 ASSERT(ptpn != NULL); 3584 *ptpn = ire1; 3585 ire->ire_ptpn = NULL; 3586 ire->ire_next = NULL; 3587 if (ire->ire_ipversion == IPV6_VERSION) { 3588 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 3589 } else { 3590 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 3591 } 3592 /* 3593 * ip_wput/ip_wput_v6 checks this flag to see whether 3594 * it should still use the cached ire or not. 3595 */ 3596 ire->ire_marks |= IRE_MARK_CONDEMNED; 3597 if (ire->ire_type == IRE_DEFAULT) { 3598 /* 3599 * IRE is out of the list. We need to adjust the 3600 * accounting before we drop the lock. 3601 */ 3602 if (ire->ire_ipversion == IPV6_VERSION) { 3603 ASSERT(ipst->ips_ipv6_ire_default_count != 0); 3604 ipst->ips_ipv6_ire_default_count--; 3605 } 3606 } 3607 irb->irb_ire_cnt--; 3608 3609 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3610 irb->irb_tmp_ire_cnt--; 3611 rw_exit(&irb->irb_lock); 3612 3613 if (ire->ire_ipversion == IPV6_VERSION) { 3614 ire_delete_v6(ire); 3615 } else { 3616 ire_delete_v4(ire); 3617 } 3618 /* 3619 * We removed it from the list. Decrement the 3620 * reference count. 3621 */ 3622 IRE_REFRELE_NOTR(ire); 3623 } 3624 3625 /* 3626 * Delete the specified IRE. 3627 * All calls should use ire_delete(). 3628 * Sometimes called as writer though not required by this function. 3629 * 3630 * NOTE : This function is called only if the ire was added 3631 * in the list. 3632 */ 3633 static void 3634 ire_delete_v4(ire_t *ire) 3635 { 3636 ip_stack_t *ipst = ire->ire_ipst; 3637 3638 ASSERT(ire->ire_refcnt >= 1); 3639 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3640 3641 if (ire->ire_type != IRE_CACHE) 3642 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 3643 if (ire->ire_type == IRE_DEFAULT) { 3644 /* 3645 * when a default gateway is going away 3646 * delete all the host redirects pointing at that 3647 * gateway. 3648 */ 3649 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 3650 } 3651 } 3652 3653 /* 3654 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 3655 * to free the ire when the reference count goes to zero. 3656 */ 3657 void 3658 ire_inactive(ire_t *ire) 3659 { 3660 nce_t *nce; 3661 ill_t *ill = NULL; 3662 ill_t *stq_ill = NULL; 3663 ipif_t *ipif; 3664 boolean_t need_wakeup = B_FALSE; 3665 irb_t *irb; 3666 ip_stack_t *ipst = ire->ire_ipst; 3667 3668 ASSERT(ire->ire_refcnt == 0); 3669 ASSERT(ire->ire_ptpn == NULL); 3670 ASSERT(ire->ire_next == NULL); 3671 3672 if (ire->ire_gw_secattr != NULL) { 3673 ire_gw_secattr_free(ire->ire_gw_secattr); 3674 ire->ire_gw_secattr = NULL; 3675 } 3676 3677 if (ire->ire_mp != NULL) { 3678 ASSERT(ire->ire_bucket == NULL); 3679 mutex_destroy(&ire->ire_lock); 3680 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3681 if (ire->ire_nce != NULL) 3682 NCE_REFRELE_NOTR(ire->ire_nce); 3683 freeb(ire->ire_mp); 3684 return; 3685 } 3686 3687 if ((nce = ire->ire_nce) != NULL) { 3688 NCE_REFRELE_NOTR(nce); 3689 ire->ire_nce = NULL; 3690 } 3691 3692 if (ire->ire_ipif == NULL) 3693 goto end; 3694 3695 ipif = ire->ire_ipif; 3696 ill = ipif->ipif_ill; 3697 3698 if (ire->ire_bucket == NULL) { 3699 /* The ire was never inserted in the table. */ 3700 goto end; 3701 } 3702 3703 /* 3704 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 3705 * non-null ill_ire_count also goes down by 1. 3706 * 3707 * The ipif that is associated with an ire is ire->ire_ipif and 3708 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 3709 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 3710 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 3711 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 3712 * different. If this is different from ire->ire_ipif->ipif_ill and 3713 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 3714 * ipif_ill_refrele_tail on the stq_ill. 3715 */ 3716 3717 if (ire->ire_stq != NULL) 3718 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3719 3720 if (stq_ill == NULL || stq_ill == ill) { 3721 /* Optimize the most common case */ 3722 mutex_enter(&ill->ill_lock); 3723 ASSERT(ipif->ipif_ire_cnt != 0); 3724 ipif->ipif_ire_cnt--; 3725 if (ipif->ipif_ire_cnt == 0) 3726 need_wakeup = B_TRUE; 3727 if (stq_ill != NULL) { 3728 ASSERT(stq_ill->ill_ire_cnt != 0); 3729 stq_ill->ill_ire_cnt--; 3730 if (stq_ill->ill_ire_cnt == 0) 3731 need_wakeup = B_TRUE; 3732 } 3733 if (need_wakeup) { 3734 /* Drops the ill lock */ 3735 ipif_ill_refrele_tail(ill); 3736 } else { 3737 mutex_exit(&ill->ill_lock); 3738 } 3739 } else { 3740 /* 3741 * We can't grab all the ill locks at the same time. 3742 * It can lead to recursive lock enter in the call to 3743 * ipif_ill_refrele_tail and later. Instead do it 1 at 3744 * a time. 3745 */ 3746 mutex_enter(&ill->ill_lock); 3747 ASSERT(ipif->ipif_ire_cnt != 0); 3748 ipif->ipif_ire_cnt--; 3749 if (ipif->ipif_ire_cnt == 0) { 3750 /* Drops the lock */ 3751 ipif_ill_refrele_tail(ill); 3752 } else { 3753 mutex_exit(&ill->ill_lock); 3754 } 3755 if (stq_ill != NULL) { 3756 mutex_enter(&stq_ill->ill_lock); 3757 ASSERT(stq_ill->ill_ire_cnt != 0); 3758 stq_ill->ill_ire_cnt--; 3759 if (stq_ill->ill_ire_cnt == 0) { 3760 /* Drops the ill lock */ 3761 ipif_ill_refrele_tail(stq_ill); 3762 } else { 3763 mutex_exit(&stq_ill->ill_lock); 3764 } 3765 } 3766 } 3767 end: 3768 /* This should be true for both V4 and V6 */ 3769 3770 if ((ire->ire_type & IRE_FORWARDTABLE) && 3771 (ire->ire_ipversion == IPV4_VERSION) && 3772 ((irb = ire->ire_bucket) != NULL)) { 3773 rw_enter(&irb->irb_lock, RW_WRITER); 3774 irb->irb_nire--; 3775 /* 3776 * Instead of examining the conditions for freeing 3777 * the radix node here, we do it by calling 3778 * IRB_REFRELE which is a single point in the code 3779 * that embeds that logic. Bump up the refcnt to 3780 * be able to call IRB_REFRELE 3781 */ 3782 IRB_REFHOLD_LOCKED(irb); 3783 rw_exit(&irb->irb_lock); 3784 IRB_REFRELE(irb); 3785 } 3786 ire->ire_ipif = NULL; 3787 3788 #ifdef DEBUG 3789 ire_trace_cleanup(ire); 3790 #endif 3791 mutex_destroy(&ire->ire_lock); 3792 if (ire->ire_ipversion == IPV6_VERSION) { 3793 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 3794 } else { 3795 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3796 } 3797 ASSERT(ire->ire_mp == NULL); 3798 /* Has been allocated out of the cache */ 3799 kmem_cache_free(ire_cache, ire); 3800 } 3801 3802 /* 3803 * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect 3804 * entries that have a given gateway address. 3805 */ 3806 void 3807 ire_delete_cache_gw(ire_t *ire, char *cp) 3808 { 3809 ipaddr_t gw_addr; 3810 3811 if (!(ire->ire_type & IRE_CACHE) && 3812 !(ire->ire_flags & RTF_DYNAMIC)) 3813 return; 3814 3815 bcopy(cp, &gw_addr, sizeof (gw_addr)); 3816 if (ire->ire_gateway_addr == gw_addr) { 3817 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 3818 (int)ntohl(ire->ire_addr), ire->ire_type, 3819 (int)ntohl(ire->ire_gateway_addr))); 3820 ire_delete(ire); 3821 } 3822 } 3823 3824 /* 3825 * Remove all IRE_CACHE entries that match the ire specified. 3826 * 3827 * The flag argument indicates if the flush request is due to addition 3828 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 3829 * 3830 * This routine takes only the IREs from the forwarding table and flushes 3831 * the corresponding entries from the cache table. 3832 * 3833 * When flushing due to the deletion of an old route, it 3834 * just checks the cache handles (ire_phandle and ire_ihandle) and 3835 * deletes the ones that match. 3836 * 3837 * When flushing due to the creation of a new route, it checks 3838 * if a cache entry's address matches the one in the IRE and 3839 * that the cache entry's parent has a less specific mask than the 3840 * one in IRE. The destination of such a cache entry could be the 3841 * gateway for other cache entries, so we need to flush those as 3842 * well by looking for gateway addresses matching the IRE's address. 3843 */ 3844 void 3845 ire_flush_cache_v4(ire_t *ire, int flag) 3846 { 3847 int i; 3848 ire_t *cire; 3849 irb_t *irb; 3850 ip_stack_t *ipst = ire->ire_ipst; 3851 3852 if (ire->ire_type & IRE_CACHE) 3853 return; 3854 3855 /* 3856 * If a default is just created, there is no point 3857 * in going through the cache, as there will not be any 3858 * cached ires. 3859 */ 3860 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 3861 return; 3862 if (flag == IRE_FLUSH_ADD) { 3863 /* 3864 * This selective flush is due to the addition of 3865 * new IRE. 3866 */ 3867 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3868 irb = &ipst->ips_ip_cache_table[i]; 3869 if ((cire = irb->irb_ire) == NULL) 3870 continue; 3871 IRB_REFHOLD(irb); 3872 for (cire = irb->irb_ire; cire != NULL; 3873 cire = cire->ire_next) { 3874 if (cire->ire_type != IRE_CACHE) 3875 continue; 3876 /* 3877 * If 'cire' belongs to the same subnet 3878 * as the new ire being added, and 'cire' 3879 * is derived from a prefix that is less 3880 * specific than the new ire being added, 3881 * we need to flush 'cire'; for instance, 3882 * when a new interface comes up. 3883 */ 3884 if (((cire->ire_addr & ire->ire_mask) == 3885 (ire->ire_addr & ire->ire_mask)) && 3886 (ip_mask_to_plen(cire->ire_cmask) <= 3887 ire->ire_masklen)) { 3888 ire_delete(cire); 3889 continue; 3890 } 3891 /* 3892 * This is the case when the ire_gateway_addr 3893 * of 'cire' belongs to the same subnet as 3894 * the new ire being added. 3895 * Flushing such ires is sometimes required to 3896 * avoid misrouting: say we have a machine with 3897 * two interfaces (I1 and I2), a default router 3898 * R on the I1 subnet, and a host route to an 3899 * off-link destination D with a gateway G on 3900 * the I2 subnet. 3901 * Under normal operation, we will have an 3902 * on-link cache entry for G and an off-link 3903 * cache entry for D with G as ire_gateway_addr, 3904 * traffic to D will reach its destination 3905 * through gateway G. 3906 * If the administrator does 'ifconfig I2 down', 3907 * the cache entries for D and G will be 3908 * flushed. However, G will now be resolved as 3909 * an off-link destination using R (the default 3910 * router) as gateway. Then D will also be 3911 * resolved as an off-link destination using G 3912 * as gateway - this behavior is due to 3913 * compatibility reasons, see comment in 3914 * ire_ihandle_lookup_offlink(). Traffic to D 3915 * will go to the router R and probably won't 3916 * reach the destination. 3917 * The administrator then does 'ifconfig I2 up'. 3918 * Since G is on the I2 subnet, this routine 3919 * will flush its cache entry. It must also 3920 * flush the cache entry for D, otherwise 3921 * traffic will stay misrouted until the IRE 3922 * times out. 3923 */ 3924 if ((cire->ire_gateway_addr & ire->ire_mask) == 3925 (ire->ire_addr & ire->ire_mask)) { 3926 ire_delete(cire); 3927 continue; 3928 } 3929 } 3930 IRB_REFRELE(irb); 3931 } 3932 } else { 3933 /* 3934 * delete the cache entries based on 3935 * handle in the IRE as this IRE is 3936 * being deleted/changed. 3937 */ 3938 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3939 irb = &ipst->ips_ip_cache_table[i]; 3940 if ((cire = irb->irb_ire) == NULL) 3941 continue; 3942 IRB_REFHOLD(irb); 3943 for (cire = irb->irb_ire; cire != NULL; 3944 cire = cire->ire_next) { 3945 if (cire->ire_type != IRE_CACHE) 3946 continue; 3947 if ((cire->ire_phandle == 0 || 3948 cire->ire_phandle != ire->ire_phandle) && 3949 (cire->ire_ihandle == 0 || 3950 cire->ire_ihandle != ire->ire_ihandle)) 3951 continue; 3952 ire_delete(cire); 3953 } 3954 IRB_REFRELE(irb); 3955 } 3956 } 3957 } 3958 3959 /* 3960 * Matches the arguments passed with the values in the ire. 3961 * 3962 * Note: for match types that match using "ipif" passed in, ipif 3963 * must be checked for non-NULL before calling this routine. 3964 */ 3965 boolean_t 3966 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 3967 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 3968 const ts_label_t *tsl, int match_flags) 3969 { 3970 ill_t *ire_ill = NULL, *dst_ill; 3971 ill_t *ipif_ill = NULL; 3972 ill_group_t *ire_ill_group = NULL; 3973 ill_group_t *ipif_ill_group = NULL; 3974 3975 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3976 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 3977 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 3978 (ipif != NULL && !ipif->ipif_isv6)); 3979 3980 /* 3981 * HIDDEN cache entries have to be looked up specifically with 3982 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 3983 * when the interface is FAILED or INACTIVE. In that case, 3984 * any IRE_CACHES that exists should be marked with 3985 * IRE_MARK_HIDDEN. So, we don't really need to match below 3986 * for IRE_MARK_HIDDEN. But we do so for consistency. 3987 */ 3988 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 3989 (ire->ire_marks & IRE_MARK_HIDDEN)) 3990 return (B_FALSE); 3991 3992 /* 3993 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 3994 * is used. In that case the routing table is bypassed and the 3995 * packets are sent directly to the specified nexthop. The 3996 * IRE_CACHE entry representing this route should be marked 3997 * with IRE_MARK_PRIVATE_ADDR. 3998 */ 3999 4000 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 4001 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 4002 return (B_FALSE); 4003 4004 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 4005 ire->ire_zoneid != ALL_ZONES) { 4006 /* 4007 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 4008 * valid and does not match that of ire_zoneid, a failure to 4009 * match is reported at this point. Otherwise, since some IREs 4010 * that are available in the global zone can be used in local 4011 * zones, additional checks need to be performed: 4012 * 4013 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 4014 * entries should never be matched in this situation. 4015 * 4016 * IRE entries that have an interface associated with them 4017 * should in general not match unless they are an IRE_LOCAL 4018 * or in the case when MATCH_IRE_DEFAULT has been set in 4019 * the caller. In the case of the former, checking of the 4020 * other fields supplied should take place. 4021 * 4022 * In the case where MATCH_IRE_DEFAULT has been set, 4023 * all of the ipif's associated with the IRE's ill are 4024 * checked to see if there is a matching zoneid. If any 4025 * one ipif has a matching zoneid, this IRE is a 4026 * potential candidate so checking of the other fields 4027 * takes place. 4028 * 4029 * In the case where the IRE_INTERFACE has a usable source 4030 * address (indicated by ill_usesrc_ifindex) in the 4031 * correct zone then it's permitted to return this IRE 4032 */ 4033 if (match_flags & MATCH_IRE_ZONEONLY) 4034 return (B_FALSE); 4035 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 4036 return (B_FALSE); 4037 /* 4038 * Note, IRE_INTERFACE can have the stq as NULL. For 4039 * example, if the default multicast route is tied to 4040 * the loopback address. 4041 */ 4042 if ((ire->ire_type & IRE_INTERFACE) && 4043 (ire->ire_stq != NULL)) { 4044 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 4045 /* 4046 * If there is a usable source address in the 4047 * zone, then it's ok to return an 4048 * IRE_INTERFACE 4049 */ 4050 if (ipif_usesrc_avail(dst_ill, zoneid)) { 4051 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 4052 (void *)dst_ill, 4053 (ire->ire_addr == (addr & mask)))); 4054 } else { 4055 ip3dbg(("ire_match_args: src_ipif NULL" 4056 " dst_ill %p\n", (void *)dst_ill)); 4057 return (B_FALSE); 4058 } 4059 } 4060 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 4061 !(ire->ire_type & IRE_INTERFACE)) { 4062 ipif_t *tipif; 4063 4064 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 4065 return (B_FALSE); 4066 } 4067 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 4068 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 4069 tipif != NULL; tipif = tipif->ipif_next) { 4070 if (IPIF_CAN_LOOKUP(tipif) && 4071 (tipif->ipif_flags & IPIF_UP) && 4072 (tipif->ipif_zoneid == zoneid || 4073 tipif->ipif_zoneid == ALL_ZONES)) 4074 break; 4075 } 4076 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 4077 if (tipif == NULL) { 4078 return (B_FALSE); 4079 } 4080 } 4081 } 4082 4083 /* 4084 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 4085 * somebody wants to send out on a particular interface which 4086 * is given by ire_stq and hence use ire_stq to derive the ill 4087 * value. ire_ipif for IRE_CACHES is just the means of getting 4088 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 4089 * ire_to_ill does the right thing for this. 4090 */ 4091 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 4092 ire_ill = ire_to_ill(ire); 4093 if (ire_ill != NULL) 4094 ire_ill_group = ire_ill->ill_group; 4095 ipif_ill = ipif->ipif_ill; 4096 ipif_ill_group = ipif_ill->ill_group; 4097 } 4098 4099 if ((ire->ire_addr == (addr & mask)) && 4100 ((!(match_flags & MATCH_IRE_GW)) || 4101 (ire->ire_gateway_addr == gateway)) && 4102 ((!(match_flags & MATCH_IRE_TYPE)) || 4103 (ire->ire_type & type)) && 4104 ((!(match_flags & MATCH_IRE_SRC)) || 4105 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4106 ((!(match_flags & MATCH_IRE_IPIF)) || 4107 (ire->ire_ipif == ipif)) && 4108 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4109 (ire->ire_type != IRE_CACHE || 4110 ire->ire_marks & IRE_MARK_HIDDEN)) && 4111 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4112 (ire->ire_type != IRE_CACHE || 4113 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4114 ((!(match_flags & MATCH_IRE_ILL)) || 4115 (ire_ill == ipif_ill)) && 4116 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4117 (ire->ire_ihandle == ihandle)) && 4118 ((!(match_flags & MATCH_IRE_MASK)) || 4119 (ire->ire_mask == mask)) && 4120 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4121 (ire_ill == ipif_ill) || 4122 (ire_ill_group != NULL && 4123 ire_ill_group == ipif_ill_group)) && 4124 ((!(match_flags & MATCH_IRE_SECATTR)) || 4125 (!is_system_labeled()) || 4126 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4127 /* We found the matched IRE */ 4128 return (B_TRUE); 4129 } 4130 return (B_FALSE); 4131 } 4132 4133 4134 /* 4135 * Lookup for a route in all the tables 4136 */ 4137 ire_t * 4138 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4139 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4140 const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4141 { 4142 ire_t *ire = NULL; 4143 4144 /* 4145 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4146 * MATCH_IRE_ILL is set. 4147 */ 4148 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4149 (ipif == NULL)) 4150 return (NULL); 4151 4152 /* 4153 * might be asking for a cache lookup, 4154 * This is not best way to lookup cache, 4155 * user should call ire_cache_lookup directly. 4156 * 4157 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4158 * in the forwarding table, if the applicable type flags were set. 4159 */ 4160 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4161 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4162 tsl, flags, ipst); 4163 if (ire != NULL) 4164 return (ire); 4165 } 4166 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4167 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4168 zoneid, 0, tsl, flags, ipst); 4169 } 4170 return (ire); 4171 } 4172 4173 4174 /* 4175 * Delete the IRE cache for the gateway and all IRE caches whose 4176 * ire_gateway_addr points to this gateway, and allow them to 4177 * be created on demand by ip_newroute. 4178 */ 4179 void 4180 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 4181 { 4182 irb_t *irb; 4183 ire_t *ire; 4184 4185 irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4186 ipst->ips_ip_cache_table_size)]; 4187 IRB_REFHOLD(irb); 4188 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4189 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4190 continue; 4191 4192 ASSERT(ire->ire_mask == IP_HOST_MASK); 4193 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4194 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4195 ire_delete(ire); 4196 } 4197 } 4198 IRB_REFRELE(irb); 4199 4200 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst); 4201 } 4202 4203 /* 4204 * Looks up cache table for a route. 4205 * specific lookup can be indicated by 4206 * passing the MATCH_* flags and the 4207 * necessary parameters. 4208 */ 4209 ire_t * 4210 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4211 zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4212 { 4213 irb_t *irb_ptr; 4214 ire_t *ire; 4215 4216 /* 4217 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4218 * MATCH_IRE_ILL is set. 4219 */ 4220 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4221 (ipif == NULL)) 4222 return (NULL); 4223 4224 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4225 ipst->ips_ip_cache_table_size)]; 4226 rw_enter(&irb_ptr->irb_lock, RW_READER); 4227 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4228 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4229 continue; 4230 ASSERT(ire->ire_mask == IP_HOST_MASK); 4231 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4232 ipif, zoneid, 0, tsl, flags)) { 4233 IRE_REFHOLD(ire); 4234 rw_exit(&irb_ptr->irb_lock); 4235 return (ire); 4236 } 4237 } 4238 rw_exit(&irb_ptr->irb_lock); 4239 return (NULL); 4240 } 4241 4242 /* 4243 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4244 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of 4245 * the same ill group. 4246 */ 4247 boolean_t 4248 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire) 4249 { 4250 ill_t *recv_ill, *xmit_ill; 4251 ill_group_t *recv_group, *xmit_group; 4252 4253 ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK)); 4254 ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE)); 4255 4256 recv_ill = ire_to_ill(ire_local); 4257 xmit_ill = ire_to_ill(xmit_ire); 4258 4259 ASSERT(recv_ill != NULL); 4260 ASSERT(xmit_ill != NULL); 4261 4262 if (recv_ill == xmit_ill) 4263 return (B_TRUE); 4264 4265 recv_group = recv_ill->ill_group; 4266 xmit_group = xmit_ill->ill_group; 4267 4268 if (recv_group != NULL && recv_group == xmit_group) 4269 return (B_TRUE); 4270 4271 return (B_FALSE); 4272 } 4273 4274 /* 4275 * Check if the IRE_LOCAL uses the same ill (group) as another route would use. 4276 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 4277 * then we don't allow this IRE_LOCAL to be used. 4278 */ 4279 boolean_t 4280 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4281 const ts_label_t *tsl, ip_stack_t *ipst) 4282 { 4283 ire_t *alt_ire; 4284 boolean_t rval; 4285 4286 if (ire_local->ire_ipversion == IPV4_VERSION) { 4287 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4288 NULL, zoneid, 0, tsl, 4289 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4290 MATCH_IRE_RJ_BHOLE, ipst); 4291 } else { 4292 alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 4293 0, NULL, NULL, zoneid, 0, tsl, 4294 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4295 MATCH_IRE_RJ_BHOLE, ipst); 4296 } 4297 4298 if (alt_ire == NULL) 4299 return (B_FALSE); 4300 4301 if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4302 ire_refrele(alt_ire); 4303 return (B_FALSE); 4304 } 4305 rval = ire_local_same_ill_group(ire_local, alt_ire); 4306 4307 ire_refrele(alt_ire); 4308 return (rval); 4309 } 4310 4311 /* 4312 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4313 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4314 * to the hidden ones. 4315 * 4316 * In general the zoneid has to match (where ALL_ZONES match all of them). 4317 * But for IRE_LOCAL we also need to handle the case where L2 should 4318 * conceptually loop back the packet. This is necessary since neither 4319 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4320 * own MAC address. This loopback is needed when the normal 4321 * routes (ignoring IREs with different zoneids) would send out the packet on 4322 * the same ill (or ill group) as the ill with which this IRE_LOCAL is 4323 * associated. 4324 * 4325 * Earlier versions of this code always matched an IRE_LOCAL independently of 4326 * the zoneid. We preserve that earlier behavior when 4327 * ip_restrict_interzone_loopback is turned off. 4328 */ 4329 ire_t * 4330 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl, 4331 ip_stack_t *ipst) 4332 { 4333 irb_t *irb_ptr; 4334 ire_t *ire; 4335 4336 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4337 ipst->ips_ip_cache_table_size)]; 4338 rw_enter(&irb_ptr->irb_lock, RW_READER); 4339 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4340 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4341 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4342 continue; 4343 } 4344 if (ire->ire_addr == addr) { 4345 /* 4346 * Finally, check if the security policy has any 4347 * restriction on using this route for the specified 4348 * message. 4349 */ 4350 if (tsl != NULL && 4351 ire->ire_gw_secattr != NULL && 4352 tsol_ire_match_gwattr(ire, tsl) != 0) { 4353 continue; 4354 } 4355 4356 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4357 ire->ire_zoneid == ALL_ZONES) { 4358 IRE_REFHOLD(ire); 4359 rw_exit(&irb_ptr->irb_lock); 4360 return (ire); 4361 } 4362 4363 if (ire->ire_type == IRE_LOCAL) { 4364 if (ipst->ips_ip_restrict_interzone_loopback && 4365 !ire_local_ok_across_zones(ire, zoneid, 4366 &addr, tsl, ipst)) 4367 continue; 4368 4369 IRE_REFHOLD(ire); 4370 rw_exit(&irb_ptr->irb_lock); 4371 return (ire); 4372 } 4373 } 4374 } 4375 rw_exit(&irb_ptr->irb_lock); 4376 return (NULL); 4377 } 4378 4379 /* 4380 * Locate the interface ire that is tied to the cache ire 'cire' via 4381 * cire->ire_ihandle. 4382 * 4383 * We are trying to create the cache ire for an offlink destn based 4384 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4385 * as found by ip_newroute(). We are called from ip_newroute() in 4386 * the IRE_CACHE case. 4387 */ 4388 ire_t * 4389 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4390 { 4391 ire_t *ire; 4392 int match_flags; 4393 ipaddr_t gw_addr; 4394 ipif_t *gw_ipif; 4395 ip_stack_t *ipst = cire->ire_ipst; 4396 4397 ASSERT(cire != NULL && pire != NULL); 4398 4399 /* 4400 * We don't need to specify the zoneid to ire_ftable_lookup() below 4401 * because the ihandle refers to an ipif which can be in only one zone. 4402 */ 4403 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4404 /* 4405 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4406 * for on-link hosts. We should never be here for onlink. 4407 * Thus, use MATCH_IRE_ILL_GROUP. 4408 */ 4409 if (pire->ire_ipif != NULL) 4410 match_flags |= MATCH_IRE_ILL_GROUP; 4411 /* 4412 * We know that the mask of the interface ire equals cire->ire_cmask. 4413 * (When ip_newroute() created 'cire' for the gateway it set its 4414 * cmask from the interface ire's mask) 4415 */ 4416 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4417 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4418 NULL, match_flags, ipst); 4419 if (ire != NULL) 4420 return (ire); 4421 /* 4422 * If we didn't find an interface ire above, we can't declare failure. 4423 * For backwards compatibility, we need to support prefix routes 4424 * pointing to next hop gateways that are not on-link. 4425 * 4426 * Assume we are trying to ping some offlink destn, and we have the 4427 * routing table below. 4428 * 4429 * Eg. default - gw1 <--- pire (line 1) 4430 * gw1 - gw2 (line 2) 4431 * gw2 - hme0 (line 3) 4432 * 4433 * If we already have a cache ire for gw1 in 'cire', the 4434 * ire_ftable_lookup above would have failed, since there is no 4435 * interface ire to reach gw1. We will fallthru below. 4436 * 4437 * Here we duplicate the steps that ire_ftable_lookup() did in 4438 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 4439 * The differences are the following 4440 * i. We want the interface ire only, so we call ire_ftable_lookup() 4441 * instead of ire_route_lookup() 4442 * ii. We look for only prefix routes in the 1st call below. 4443 * ii. We want to match on the ihandle in the 2nd call below. 4444 */ 4445 match_flags = MATCH_IRE_TYPE; 4446 if (pire->ire_ipif != NULL) 4447 match_flags |= MATCH_IRE_ILL_GROUP; 4448 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 4449 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 4450 if (ire == NULL) 4451 return (NULL); 4452 /* 4453 * At this point 'ire' corresponds to the entry shown in line 2. 4454 * gw_addr is 'gw2' in the example above. 4455 */ 4456 gw_addr = ire->ire_gateway_addr; 4457 gw_ipif = ire->ire_ipif; 4458 ire_refrele(ire); 4459 4460 match_flags |= MATCH_IRE_IHANDLE; 4461 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 4462 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags, 4463 ipst); 4464 return (ire); 4465 } 4466 4467 /* 4468 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 4469 * ire associated with the specified ipif. 4470 * 4471 * This might occasionally be called when IPIF_UP is not set since 4472 * the IP_MULTICAST_IF as well as creating interface routes 4473 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 4474 * 4475 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 4476 * the ipif, this routine might return NULL. 4477 */ 4478 ire_t * 4479 ipif_to_ire(const ipif_t *ipif) 4480 { 4481 ire_t *ire; 4482 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 4483 4484 ASSERT(!ipif->ipif_isv6); 4485 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 4486 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 4487 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 4488 ipst); 4489 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4490 /* In this case we need to lookup destination address. */ 4491 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 4492 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 4493 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst); 4494 } else { 4495 ire = ire_ftable_lookup(ipif->ipif_subnet, 4496 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 4497 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 4498 MATCH_IRE_MASK), ipst); 4499 } 4500 return (ire); 4501 } 4502 4503 /* 4504 * ire_walk function. 4505 * Count the number of IRE_CACHE entries in different categories. 4506 */ 4507 void 4508 ire_cache_count(ire_t *ire, char *arg) 4509 { 4510 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 4511 4512 if (ire->ire_type != IRE_CACHE) 4513 return; 4514 4515 icc->icc_total++; 4516 4517 if (ire->ire_ipversion == IPV6_VERSION) { 4518 mutex_enter(&ire->ire_lock); 4519 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4520 mutex_exit(&ire->ire_lock); 4521 icc->icc_onlink++; 4522 return; 4523 } 4524 mutex_exit(&ire->ire_lock); 4525 } else { 4526 if (ire->ire_gateway_addr == 0) { 4527 icc->icc_onlink++; 4528 return; 4529 } 4530 } 4531 4532 ASSERT(ire->ire_ipif != NULL); 4533 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 4534 icc->icc_pmtu++; 4535 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4536 ire->ire_ib_pkt_count) 4537 icc->icc_offlink++; 4538 else 4539 icc->icc_unused++; 4540 } 4541 4542 /* 4543 * ire_walk function called by ip_trash_ire_reclaim(). 4544 * Free a fraction of the IRE_CACHE cache entries. The fractions are 4545 * different for different categories of IRE_CACHE entries. 4546 * A fraction of zero means to not free any in that category. 4547 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 4548 * is N then every Nth hash bucket chain will be freed. 4549 */ 4550 void 4551 ire_cache_reclaim(ire_t *ire, char *arg) 4552 { 4553 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 4554 uint_t rand; 4555 ip_stack_t *ipst = icr->icr_ipst; 4556 4557 if (ire->ire_type != IRE_CACHE) 4558 return; 4559 4560 if (ire->ire_ipversion == IPV6_VERSION) { 4561 rand = (uint_t)lbolt + 4562 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 4563 ipst->ips_ip6_cache_table_size); 4564 mutex_enter(&ire->ire_lock); 4565 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4566 mutex_exit(&ire->ire_lock); 4567 if (icr->icr_onlink != 0 && 4568 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4569 ire_delete(ire); 4570 return; 4571 } 4572 goto done; 4573 } 4574 mutex_exit(&ire->ire_lock); 4575 } else { 4576 rand = (uint_t)lbolt + 4577 IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size); 4578 if (ire->ire_gateway_addr == 0) { 4579 if (icr->icr_onlink != 0 && 4580 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4581 ire_delete(ire); 4582 return; 4583 } 4584 goto done; 4585 } 4586 } 4587 /* Not onlink IRE */ 4588 ASSERT(ire->ire_ipif != NULL); 4589 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 4590 /* Use ptmu fraction */ 4591 if (icr->icr_pmtu != 0 && 4592 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 4593 ire_delete(ire); 4594 return; 4595 } 4596 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4597 ire->ire_ib_pkt_count) { 4598 /* Use offlink fraction */ 4599 if (icr->icr_offlink != 0 && 4600 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 4601 ire_delete(ire); 4602 return; 4603 } 4604 } else { 4605 /* Use unused fraction */ 4606 if (icr->icr_unused != 0 && 4607 (rand/icr->icr_unused)*icr->icr_unused == rand) { 4608 ire_delete(ire); 4609 return; 4610 } 4611 } 4612 done: 4613 /* 4614 * Update tire_mark so that those that haven't been used since this 4615 * reclaim will be considered unused next time we reclaim. 4616 */ 4617 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 4618 } 4619 4620 static void 4621 power2_roundup(uint32_t *value) 4622 { 4623 int i; 4624 4625 for (i = 1; i < 31; i++) { 4626 if (*value <= (1 << i)) 4627 break; 4628 } 4629 *value = (1 << i); 4630 } 4631 4632 /* Global init for all zones */ 4633 void 4634 ip_ire_g_init() 4635 { 4636 /* 4637 * Create ire caches, ire_reclaim() 4638 * will give IRE_CACHE back to system when needed. 4639 * This needs to be done here before anything else, since 4640 * ire_add() expects the cache to be created. 4641 */ 4642 ire_cache = kmem_cache_create("ire_cache", 4643 sizeof (ire_t), 0, ip_ire_constructor, 4644 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 4645 4646 rt_entry_cache = kmem_cache_create("rt_entry", 4647 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 4648 4649 /* 4650 * Have radix code setup kmem caches etc. 4651 */ 4652 rn_init(); 4653 } 4654 4655 void 4656 ip_ire_init(ip_stack_t *ipst) 4657 { 4658 int i; 4659 uint32_t mem_cnt; 4660 uint32_t cpu_cnt; 4661 uint32_t min_cnt; 4662 pgcnt_t mem_avail; 4663 4664 /* 4665 * ip_ire_max_bucket_cnt is sized below based on the memory 4666 * size and the cpu speed of the machine. This is upper 4667 * bounded by the compile time value of ip_ire_max_bucket_cnt 4668 * and is lower bounded by the compile time value of 4669 * ip_ire_min_bucket_cnt. Similar logic applies to 4670 * ip6_ire_max_bucket_cnt. 4671 * 4672 * We calculate this for each IP Instances in order to use 4673 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are 4674 * in effect when the zone is booted. 4675 */ 4676 mem_avail = kmem_avail(); 4677 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4678 ip_cache_table_size / sizeof (ire_t); 4679 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 4680 4681 min_cnt = MIN(cpu_cnt, mem_cnt); 4682 if (min_cnt < ip_ire_min_bucket_cnt) 4683 min_cnt = ip_ire_min_bucket_cnt; 4684 if (ip_ire_max_bucket_cnt > min_cnt) { 4685 ip_ire_max_bucket_cnt = min_cnt; 4686 } 4687 4688 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4689 ip6_cache_table_size / sizeof (ire_t); 4690 min_cnt = MIN(cpu_cnt, mem_cnt); 4691 if (min_cnt < ip6_ire_min_bucket_cnt) 4692 min_cnt = ip6_ire_min_bucket_cnt; 4693 if (ip6_ire_max_bucket_cnt > min_cnt) { 4694 ip6_ire_max_bucket_cnt = min_cnt; 4695 } 4696 4697 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 4698 mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 4699 4700 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 4701 4702 4703 /* Calculate the IPv4 cache table size. */ 4704 ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size, 4705 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4706 ip_ire_max_bucket_cnt)); 4707 if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size) 4708 ipst->ips_ip_cache_table_size = ip_max_cache_table_size; 4709 /* 4710 * Make sure that the table size is always a power of 2. The 4711 * hash macro IRE_ADDR_HASH() depends on that. 4712 */ 4713 power2_roundup(&ipst->ips_ip_cache_table_size); 4714 4715 ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size * 4716 sizeof (irb_t), KM_SLEEP); 4717 4718 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4719 rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL, 4720 RW_DEFAULT, NULL); 4721 } 4722 4723 /* Calculate the IPv6 cache table size. */ 4724 ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size, 4725 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4726 ip6_ire_max_bucket_cnt)); 4727 if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size) 4728 ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size; 4729 /* 4730 * Make sure that the table size is always a power of 2. The 4731 * hash macro IRE_ADDR_HASH_V6() depends on that. 4732 */ 4733 power2_roundup(&ipst->ips_ip6_cache_table_size); 4734 4735 ipst->ips_ip_cache_table_v6 = kmem_zalloc( 4736 ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP); 4737 4738 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4739 rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL, 4740 RW_DEFAULT, NULL); 4741 } 4742 4743 /* 4744 * Make sure that the forwarding table size is a power of 2. 4745 * The IRE*_ADDR_HASH() macroes depend on that. 4746 */ 4747 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 4748 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 4749 4750 ipst->ips_ire_handle = 1; 4751 } 4752 4753 void 4754 ip_ire_g_fini(void) 4755 { 4756 kmem_cache_destroy(ire_cache); 4757 kmem_cache_destroy(rt_entry_cache); 4758 4759 rn_fini(); 4760 } 4761 4762 void 4763 ip_ire_fini(ip_stack_t *ipst) 4764 { 4765 int i; 4766 4767 /* 4768 * Delete all IREs - assumes that the ill/ipifs have 4769 * been removed so what remains are just the ftable and IRE_CACHE. 4770 */ 4771 ire_walk(ire_delete, NULL, ipst); 4772 4773 rn_freehead(ipst->ips_ip_ftable); 4774 ipst->ips_ip_ftable = NULL; 4775 4776 mutex_destroy(&ipst->ips_ire_ft_init_lock); 4777 mutex_destroy(&ipst->ips_ire_handle_lock); 4778 4779 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4780 ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL); 4781 rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock); 4782 } 4783 kmem_free(ipst->ips_ip_cache_table, 4784 ipst->ips_ip_cache_table_size * sizeof (irb_t)); 4785 ipst->ips_ip_cache_table = NULL; 4786 4787 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4788 ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL); 4789 rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock); 4790 } 4791 kmem_free(ipst->ips_ip_cache_table_v6, 4792 ipst->ips_ip6_cache_table_size * sizeof (irb_t)); 4793 ipst->ips_ip_cache_table_v6 = NULL; 4794 4795 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 4796 irb_t *ptr; 4797 int j; 4798 4799 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 4800 continue; 4801 4802 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 4803 ASSERT(ptr[j].irb_ire == NULL); 4804 rw_destroy(&ptr[j].irb_lock); 4805 } 4806 mi_free(ptr); 4807 ipst->ips_ip_forwarding_table_v6[i] = NULL; 4808 } 4809 } 4810 4811 /* 4812 * Check if another multirt route resolution is needed. 4813 * B_TRUE is returned is there remain a resolvable route, 4814 * or if no route for that dst is resolved yet. 4815 * B_FALSE is returned if all routes for that dst are resolved 4816 * or if the remaining unresolved routes are actually not 4817 * resolvable. 4818 * This only works in the global zone. 4819 */ 4820 boolean_t 4821 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst) 4822 { 4823 ire_t *first_fire; 4824 ire_t *first_cire; 4825 ire_t *fire; 4826 ire_t *cire; 4827 irb_t *firb; 4828 irb_t *cirb; 4829 int unres_cnt = 0; 4830 boolean_t resolvable = B_FALSE; 4831 4832 /* Retrieve the first IRE_HOST that matches the destination */ 4833 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 4834 NULL, ALL_ZONES, 0, tsl, 4835 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 4836 4837 /* No route at all */ 4838 if (first_fire == NULL) { 4839 return (B_TRUE); 4840 } 4841 4842 firb = first_fire->ire_bucket; 4843 ASSERT(firb != NULL); 4844 4845 /* Retrieve the first IRE_CACHE ire for that destination. */ 4846 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4847 4848 /* No resolved route. */ 4849 if (first_cire == NULL) { 4850 ire_refrele(first_fire); 4851 return (B_TRUE); 4852 } 4853 4854 /* 4855 * At least one route is resolved. Here we look through the forward 4856 * and cache tables, to compare the number of declared routes 4857 * with the number of resolved routes. The search for a resolvable 4858 * route is performed only if at least one route remains 4859 * unresolved. 4860 */ 4861 cirb = first_cire->ire_bucket; 4862 ASSERT(cirb != NULL); 4863 4864 /* Count the number of routes to that dest that are declared. */ 4865 IRB_REFHOLD(firb); 4866 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4867 if (!(fire->ire_flags & RTF_MULTIRT)) 4868 continue; 4869 if (fire->ire_addr != dst) 4870 continue; 4871 unres_cnt++; 4872 } 4873 IRB_REFRELE(firb); 4874 4875 /* Then subtract the number of routes to that dst that are resolved */ 4876 IRB_REFHOLD(cirb); 4877 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 4878 if (!(cire->ire_flags & RTF_MULTIRT)) 4879 continue; 4880 if (cire->ire_addr != dst) 4881 continue; 4882 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 4883 continue; 4884 unres_cnt--; 4885 } 4886 IRB_REFRELE(cirb); 4887 4888 /* At least one route is unresolved; search for a resolvable route. */ 4889 if (unres_cnt > 0) 4890 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 4891 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst); 4892 4893 if (first_fire != NULL) 4894 ire_refrele(first_fire); 4895 4896 if (first_cire != NULL) 4897 ire_refrele(first_cire); 4898 4899 return (resolvable); 4900 } 4901 4902 4903 /* 4904 * Explore a forward_table bucket, starting from fire_arg. 4905 * fire_arg MUST be an IRE_HOST entry. 4906 * 4907 * Return B_TRUE and update *ire_arg and *fire_arg 4908 * if at least one resolvable route is found. *ire_arg 4909 * is the IRE entry for *fire_arg's gateway. 4910 * 4911 * Return B_FALSE otherwise (all routes are resolved or 4912 * the remaining unresolved routes are all unresolvable). 4913 * 4914 * The IRE selection relies on a priority mechanism 4915 * driven by the flags passed in by the caller. 4916 * The caller, such as ip_newroute_ipif(), can get the most 4917 * relevant ire at each stage of a multiple route resolution. 4918 * 4919 * The rules are: 4920 * 4921 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 4922 * ires are preferred for the gateway. This gives the highest 4923 * priority to routes that can be resolved without using 4924 * a resolver. 4925 * 4926 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 4927 * is specified but no IRE_CACHETABLE ire entry for the gateway 4928 * is found, the following rules apply. 4929 * 4930 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 4931 * ires for the gateway, that have not been tried since 4932 * a configurable amount of time, are preferred. 4933 * This applies when a resolver must be invoked for 4934 * a missing route, but we don't want to use the resolver 4935 * upon each packet emission. If no such resolver is found, 4936 * B_FALSE is returned. 4937 * The MULTIRT_USESTAMP flag can be combined with 4938 * MULTIRT_CACHEGW. 4939 * 4940 * - if MULTIRT_USESTAMP is not specified in flags, the first 4941 * unresolved but resolvable route is selected. 4942 * 4943 * - Otherwise, there is no resolvalble route, and 4944 * B_FALSE is returned. 4945 * 4946 * At last, MULTIRT_SETSTAMP can be specified in flags to 4947 * request the timestamp of unresolvable routes to 4948 * be refreshed. This prevents the useless exploration 4949 * of those routes for a while, when MULTIRT_USESTAMP is used. 4950 * 4951 * This only works in the global zone. 4952 */ 4953 boolean_t 4954 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 4955 const ts_label_t *tsl, ip_stack_t *ipst) 4956 { 4957 clock_t delta; 4958 ire_t *best_fire = NULL; 4959 ire_t *best_cire = NULL; 4960 ire_t *first_fire; 4961 ire_t *first_cire; 4962 ire_t *fire; 4963 ire_t *cire; 4964 irb_t *firb = NULL; 4965 irb_t *cirb = NULL; 4966 ire_t *gw_ire; 4967 boolean_t already_resolved; 4968 boolean_t res; 4969 ipaddr_t dst; 4970 ipaddr_t gw; 4971 4972 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 4973 (void *)*ire_arg, (void *)*fire_arg, flags)); 4974 4975 ASSERT(ire_arg != NULL); 4976 ASSERT(fire_arg != NULL); 4977 4978 /* Not an IRE_HOST ire; give up. */ 4979 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 4980 return (B_FALSE); 4981 } 4982 4983 /* This is the first IRE_HOST ire for that destination. */ 4984 first_fire = *fire_arg; 4985 firb = first_fire->ire_bucket; 4986 ASSERT(firb != NULL); 4987 4988 dst = first_fire->ire_addr; 4989 4990 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 4991 4992 /* 4993 * Retrieve the first IRE_CACHE ire for that destination; 4994 * if we don't find one, no route for that dest is 4995 * resolved yet. 4996 */ 4997 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4998 if (first_cire != NULL) { 4999 cirb = first_cire->ire_bucket; 5000 } 5001 5002 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 5003 5004 /* 5005 * Search for a resolvable route, giving the top priority 5006 * to routes that can be resolved without any call to the resolver. 5007 */ 5008 IRB_REFHOLD(firb); 5009 5010 if (!CLASSD(dst)) { 5011 /* 5012 * For all multiroute IRE_HOST ires for that destination, 5013 * check if the route via the IRE_HOST's gateway is 5014 * resolved yet. 5015 */ 5016 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 5017 5018 if (!(fire->ire_flags & RTF_MULTIRT)) 5019 continue; 5020 if (fire->ire_addr != dst) 5021 continue; 5022 5023 if (fire->ire_gw_secattr != NULL && 5024 tsol_ire_match_gwattr(fire, tsl) != 0) { 5025 continue; 5026 } 5027 5028 gw = fire->ire_gateway_addr; 5029 5030 ip2dbg(("ire_multirt_lookup: fire %p, " 5031 "ire_addr %08x, ire_gateway_addr %08x\n", 5032 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 5033 5034 already_resolved = B_FALSE; 5035 5036 if (first_cire != NULL) { 5037 ASSERT(cirb != NULL); 5038 5039 IRB_REFHOLD(cirb); 5040 /* 5041 * For all IRE_CACHE ires for that 5042 * destination. 5043 */ 5044 for (cire = first_cire; 5045 cire != NULL; 5046 cire = cire->ire_next) { 5047 5048 if (!(cire->ire_flags & RTF_MULTIRT)) 5049 continue; 5050 if (cire->ire_addr != dst) 5051 continue; 5052 if (cire->ire_marks & 5053 (IRE_MARK_CONDEMNED | 5054 IRE_MARK_HIDDEN)) 5055 continue; 5056 5057 if (cire->ire_gw_secattr != NULL && 5058 tsol_ire_match_gwattr(cire, 5059 tsl) != 0) { 5060 continue; 5061 } 5062 5063 /* 5064 * Check if the IRE_CACHE's gateway 5065 * matches the IRE_HOST's gateway. 5066 */ 5067 if (cire->ire_gateway_addr == gw) { 5068 already_resolved = B_TRUE; 5069 break; 5070 } 5071 } 5072 IRB_REFRELE(cirb); 5073 } 5074 5075 /* 5076 * This route is already resolved; 5077 * proceed with next one. 5078 */ 5079 if (already_resolved) { 5080 ip2dbg(("ire_multirt_lookup: found cire %p, " 5081 "already resolved\n", (void *)cire)); 5082 continue; 5083 } 5084 5085 /* 5086 * The route is unresolved; is it actually 5087 * resolvable, i.e. is there a cache or a resolver 5088 * for the gateway? 5089 */ 5090 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 5091 ALL_ZONES, tsl, 5092 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst); 5093 5094 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 5095 (void *)gw_ire)); 5096 5097 /* 5098 * If gw_ire is typed IRE_CACHETABLE, 5099 * this route can be resolved without any call to the 5100 * resolver. If the MULTIRT_CACHEGW flag is set, 5101 * give the top priority to this ire and exit the 5102 * loop. 5103 * This is typically the case when an ARP reply 5104 * is processed through ip_wput_nondata(). 5105 */ 5106 if ((flags & MULTIRT_CACHEGW) && 5107 (gw_ire != NULL) && 5108 (gw_ire->ire_type & IRE_CACHETABLE)) { 5109 ASSERT(gw_ire->ire_nce == NULL || 5110 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5111 /* 5112 * Release the resolver associated to the 5113 * previous candidate best ire, if any. 5114 */ 5115 if (best_cire != NULL) { 5116 ire_refrele(best_cire); 5117 ASSERT(best_fire != NULL); 5118 } 5119 5120 best_fire = fire; 5121 best_cire = gw_ire; 5122 5123 ip2dbg(("ire_multirt_lookup: found top prio " 5124 "best_fire %p, best_cire %p\n", 5125 (void *)best_fire, (void *)best_cire)); 5126 break; 5127 } 5128 5129 /* 5130 * Compute the time elapsed since our preceding 5131 * attempt to resolve that route. 5132 * If the MULTIRT_USESTAMP flag is set, we take that 5133 * route into account only if this time interval 5134 * exceeds ip_multirt_resolution_interval; 5135 * this prevents us from attempting to resolve a 5136 * broken route upon each sending of a packet. 5137 */ 5138 delta = lbolt - fire->ire_last_used_time; 5139 delta = TICK_TO_MSEC(delta); 5140 5141 res = (boolean_t)((delta > 5142 ipst->ips_ip_multirt_resolution_interval) || 5143 (!(flags & MULTIRT_USESTAMP))); 5144 5145 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 5146 "res %d\n", 5147 (void *)fire, delta, res)); 5148 5149 if (res) { 5150 /* 5151 * We are here if MULTIRT_USESTAMP flag is set 5152 * and the resolver for fire's gateway 5153 * has not been tried since 5154 * ip_multirt_resolution_interval, or if 5155 * MULTIRT_USESTAMP is not set but gw_ire did 5156 * not fill the conditions for MULTIRT_CACHEGW, 5157 * or if neither MULTIRT_USESTAMP nor 5158 * MULTIRT_CACHEGW are set. 5159 */ 5160 if (gw_ire != NULL) { 5161 if (best_fire == NULL) { 5162 ASSERT(best_cire == NULL); 5163 5164 best_fire = fire; 5165 best_cire = gw_ire; 5166 5167 ip2dbg(("ire_multirt_lookup:" 5168 "found candidate " 5169 "best_fire %p, " 5170 "best_cire %p\n", 5171 (void *)best_fire, 5172 (void *)best_cire)); 5173 5174 /* 5175 * If MULTIRT_CACHEGW is not 5176 * set, we ignore the top 5177 * priority ires that can 5178 * be resolved without any 5179 * call to the resolver; 5180 * In that case, there is 5181 * actually no need 5182 * to continue the loop. 5183 */ 5184 if (!(flags & 5185 MULTIRT_CACHEGW)) { 5186 break; 5187 } 5188 continue; 5189 } 5190 } else { 5191 /* 5192 * No resolver for the gateway: the 5193 * route is not resolvable. 5194 * If the MULTIRT_SETSTAMP flag is 5195 * set, we stamp the IRE_HOST ire, 5196 * so we will not select it again 5197 * during this resolution interval. 5198 */ 5199 if (flags & MULTIRT_SETSTAMP) 5200 fire->ire_last_used_time = 5201 lbolt; 5202 } 5203 } 5204 5205 if (gw_ire != NULL) 5206 ire_refrele(gw_ire); 5207 } 5208 } else { /* CLASSD(dst) */ 5209 5210 for (fire = first_fire; 5211 fire != NULL; 5212 fire = fire->ire_next) { 5213 5214 if (!(fire->ire_flags & RTF_MULTIRT)) 5215 continue; 5216 if (fire->ire_addr != dst) 5217 continue; 5218 5219 if (fire->ire_gw_secattr != NULL && 5220 tsol_ire_match_gwattr(fire, tsl) != 0) { 5221 continue; 5222 } 5223 5224 already_resolved = B_FALSE; 5225 5226 gw = fire->ire_gateway_addr; 5227 5228 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 5229 NULL, NULL, ALL_ZONES, 0, tsl, 5230 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 5231 MATCH_IRE_SECATTR, ipst); 5232 5233 /* No resolver for the gateway; we skip this ire. */ 5234 if (gw_ire == NULL) { 5235 continue; 5236 } 5237 ASSERT(gw_ire->ire_nce == NULL || 5238 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5239 5240 if (first_cire != NULL) { 5241 5242 IRB_REFHOLD(cirb); 5243 /* 5244 * For all IRE_CACHE ires for that 5245 * destination. 5246 */ 5247 for (cire = first_cire; 5248 cire != NULL; 5249 cire = cire->ire_next) { 5250 5251 if (!(cire->ire_flags & RTF_MULTIRT)) 5252 continue; 5253 if (cire->ire_addr != dst) 5254 continue; 5255 if (cire->ire_marks & 5256 (IRE_MARK_CONDEMNED | 5257 IRE_MARK_HIDDEN)) 5258 continue; 5259 5260 if (cire->ire_gw_secattr != NULL && 5261 tsol_ire_match_gwattr(cire, 5262 tsl) != 0) { 5263 continue; 5264 } 5265 5266 /* 5267 * Cache entries are linked to the 5268 * parent routes using the parent handle 5269 * (ire_phandle). If no cache entry has 5270 * the same handle as fire, fire is 5271 * still unresolved. 5272 */ 5273 ASSERT(cire->ire_phandle != 0); 5274 if (cire->ire_phandle == 5275 fire->ire_phandle) { 5276 already_resolved = B_TRUE; 5277 break; 5278 } 5279 } 5280 IRB_REFRELE(cirb); 5281 } 5282 5283 /* 5284 * This route is already resolved; proceed with 5285 * next one. 5286 */ 5287 if (already_resolved) { 5288 ire_refrele(gw_ire); 5289 continue; 5290 } 5291 5292 /* 5293 * Compute the time elapsed since our preceding 5294 * attempt to resolve that route. 5295 * If the MULTIRT_USESTAMP flag is set, we take 5296 * that route into account only if this time 5297 * interval exceeds ip_multirt_resolution_interval; 5298 * this prevents us from attempting to resolve a 5299 * broken route upon each sending of a packet. 5300 */ 5301 delta = lbolt - fire->ire_last_used_time; 5302 delta = TICK_TO_MSEC(delta); 5303 5304 res = (boolean_t)((delta > 5305 ipst->ips_ip_multirt_resolution_interval) || 5306 (!(flags & MULTIRT_USESTAMP))); 5307 5308 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 5309 "flags %04x, res %d\n", 5310 (void *)fire, delta, flags, res)); 5311 5312 if (res) { 5313 if (best_cire != NULL) { 5314 /* 5315 * Release the resolver associated 5316 * to the preceding candidate best 5317 * ire, if any. 5318 */ 5319 ire_refrele(best_cire); 5320 ASSERT(best_fire != NULL); 5321 } 5322 best_fire = fire; 5323 best_cire = gw_ire; 5324 continue; 5325 } 5326 5327 ire_refrele(gw_ire); 5328 } 5329 } 5330 5331 if (best_fire != NULL) { 5332 IRE_REFHOLD(best_fire); 5333 } 5334 IRB_REFRELE(firb); 5335 5336 /* Release the first IRE_CACHE we initially looked up, if any. */ 5337 if (first_cire != NULL) 5338 ire_refrele(first_cire); 5339 5340 /* Found a resolvable route. */ 5341 if (best_fire != NULL) { 5342 ASSERT(best_cire != NULL); 5343 5344 if (*fire_arg != NULL) 5345 ire_refrele(*fire_arg); 5346 if (*ire_arg != NULL) 5347 ire_refrele(*ire_arg); 5348 5349 /* 5350 * Update the passed-in arguments with the 5351 * resolvable multirt route we found. 5352 */ 5353 *fire_arg = best_fire; 5354 *ire_arg = best_cire; 5355 5356 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 5357 "*fire_arg %p, *ire_arg %p\n", 5358 (void *)best_fire, (void *)best_cire)); 5359 5360 return (B_TRUE); 5361 } 5362 5363 ASSERT(best_cire == NULL); 5364 5365 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 5366 "*ire_arg %p\n", 5367 (void *)*fire_arg, (void *)*ire_arg)); 5368 5369 /* No resolvable route. */ 5370 return (B_FALSE); 5371 } 5372 5373 /* 5374 * IRE iterator for inbound and loopback broadcast processing. 5375 * Given an IRE_BROADCAST ire, walk the ires with the same destination 5376 * address, but skip over the passed-in ire. Returns the next ire without 5377 * a hold - assumes that the caller holds a reference on the IRE bucket. 5378 */ 5379 ire_t * 5380 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 5381 { 5382 ill_t *ill; 5383 5384 if (curr == NULL) { 5385 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 5386 curr = curr->ire_next) { 5387 if (curr->ire_addr == ire->ire_addr) 5388 break; 5389 } 5390 } else { 5391 curr = curr->ire_next; 5392 } 5393 ill = ire_to_ill(ire); 5394 for (; curr != NULL; curr = curr->ire_next) { 5395 if (curr->ire_addr != ire->ire_addr) { 5396 /* 5397 * All the IREs to a given destination are contiguous; 5398 * break out once the address doesn't match. 5399 */ 5400 break; 5401 } 5402 if (curr == ire) { 5403 /* skip over the passed-in ire */ 5404 continue; 5405 } 5406 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 5407 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 5408 /* 5409 * If the passed-in ire is loopback, skip over 5410 * non-loopback ires and vice versa. 5411 */ 5412 continue; 5413 } 5414 if (ire_to_ill(curr) != ill) { 5415 /* skip over IREs going through a different interface */ 5416 continue; 5417 } 5418 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 5419 /* skip over deleted IREs */ 5420 continue; 5421 } 5422 return (curr); 5423 } 5424 return (NULL); 5425 } 5426 5427 #ifdef DEBUG 5428 void 5429 ire_trace_ref(ire_t *ire) 5430 { 5431 mutex_enter(&ire->ire_lock); 5432 if (ire->ire_trace_disable) { 5433 mutex_exit(&ire->ire_lock); 5434 return; 5435 } 5436 5437 if (th_trace_ref(ire, ire->ire_ipst)) { 5438 mutex_exit(&ire->ire_lock); 5439 } else { 5440 ire->ire_trace_disable = B_TRUE; 5441 mutex_exit(&ire->ire_lock); 5442 ire_trace_cleanup(ire); 5443 } 5444 } 5445 5446 void 5447 ire_untrace_ref(ire_t *ire) 5448 { 5449 mutex_enter(&ire->ire_lock); 5450 if (!ire->ire_trace_disable) 5451 th_trace_unref(ire); 5452 mutex_exit(&ire->ire_lock); 5453 } 5454 5455 static void 5456 ire_trace_cleanup(const ire_t *ire) 5457 { 5458 th_trace_cleanup(ire, ire->ire_trace_disable); 5459 } 5460 #endif /* DEBUG */ 5461 5462 /* 5463 * Generate a message chain with an arp request to resolve the in_ire. 5464 * It is assumed that in_ire itself is currently in the ire cache table, 5465 * so we create a fake_ire filled with enough information about ire_addr etc. 5466 * to retrieve in_ire when the DL_UNITDATA response from the resolver 5467 * comes back. The fake_ire itself is created by calling esballoc with 5468 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 5469 * invoked when the mblk containing fake_ire is freed. 5470 */ 5471 void 5472 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 5473 { 5474 areq_t *areq; 5475 ipaddr_t *addrp; 5476 mblk_t *ire_mp, *areq_mp; 5477 ire_t *ire, *buf; 5478 size_t bufsize; 5479 frtn_t *frtnp; 5480 ill_t *ill; 5481 ip_stack_t *ipst = dst_ill->ill_ipst; 5482 5483 /* 5484 * Construct message chain for the resolver 5485 * of the form: 5486 * ARP_REQ_MBLK-->IRE_MBLK 5487 * 5488 * NOTE : If the response does not 5489 * come back, ARP frees the packet. For this reason, 5490 * we can't REFHOLD the bucket of save_ire to prevent 5491 * deletions. We may not be able to REFRELE the bucket 5492 * if the response never comes back. Thus, before 5493 * adding the ire, ire_add_v4 will make sure that the 5494 * interface route does not get deleted. This is the 5495 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 5496 * where we can always prevent deletions because of 5497 * the synchronous nature of adding IRES i.e 5498 * ire_add_then_send is called after creating the IRE. 5499 */ 5500 5501 /* 5502 * We use esballoc to allocate the second part(the ire_t size mblk) 5503 * of the message chain depicted above. THis mblk will be freed 5504 * by arp when there is a timeout, and otherwise passed to IP 5505 * and IP will * free it after processing the ARP response. 5506 */ 5507 5508 bufsize = sizeof (ire_t) + sizeof (frtn_t); 5509 buf = kmem_alloc(bufsize, KM_NOSLEEP); 5510 if (buf == NULL) { 5511 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 5512 return; 5513 } 5514 frtnp = (frtn_t *)(buf + 1); 5515 frtnp->free_arg = (caddr_t)buf; 5516 frtnp->free_func = ire_freemblk; 5517 5518 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 5519 5520 if (ire_mp == NULL) { 5521 ip1dbg(("ire_arpresolve: esballoc failed\n")); 5522 kmem_free(buf, bufsize); 5523 return; 5524 } 5525 ASSERT(in_ire->ire_nce != NULL); 5526 areq_mp = copyb(dst_ill->ill_resolver_mp); 5527 if (areq_mp == NULL) { 5528 kmem_free(buf, bufsize); 5529 return; 5530 } 5531 5532 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 5533 ire = (ire_t *)buf; 5534 /* 5535 * keep enough info in the fake ire so that we can pull up 5536 * the incomplete ire (in_ire) after result comes back from 5537 * arp and make it complete. 5538 */ 5539 *ire = ire_null; 5540 ire->ire_u = in_ire->ire_u; 5541 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 5542 ire->ire_ipif = in_ire->ire_ipif; 5543 ire->ire_stq = in_ire->ire_stq; 5544 ill = ire_to_ill(ire); 5545 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 5546 ire->ire_zoneid = in_ire->ire_zoneid; 5547 ire->ire_ipst = ipst; 5548 5549 /* 5550 * ire_freemblk will be called when ire_mp is freed, both for 5551 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 5552 * when the arp resolution failed. 5553 */ 5554 ire->ire_marks |= IRE_MARK_UNCACHED; 5555 ire->ire_mp = ire_mp; 5556 ire_mp->b_wptr = (uchar_t *)&ire[1]; 5557 ire_mp->b_cont = NULL; 5558 linkb(areq_mp, ire_mp); 5559 5560 /* 5561 * Fill in the source and dest addrs for the resolver. 5562 * NOTE: this depends on memory layouts imposed by 5563 * ill_init(). 5564 */ 5565 areq = (areq_t *)areq_mp->b_rptr; 5566 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 5567 *addrp = ire->ire_src_addr; 5568 5569 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 5570 if (ire->ire_gateway_addr != INADDR_ANY) { 5571 *addrp = ire->ire_gateway_addr; 5572 } else { 5573 *addrp = ire->ire_addr; 5574 } 5575 5576 /* Up to the resolver. */ 5577 if (canputnext(dst_ill->ill_rq)) { 5578 putnext(dst_ill->ill_rq, areq_mp); 5579 } else { 5580 freemsg(areq_mp); 5581 } 5582 } 5583 5584 /* 5585 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 5586 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 5587 * 5588 * This function can be called by ARP via free routine for ire_mp or 5589 * by IPv4(both host and forwarding path) via ire_delete 5590 * in case ARP resolution fails. 5591 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 5592 * (for IP to talk to ARP, it still has to send AR* messages). 5593 * 5594 * Note that the ARP/IP merge should replace the functioanlity by providing 5595 * direct function calls to clean up unresolved entries in ire/nce lists. 5596 */ 5597 void 5598 ire_freemblk(ire_t *ire_mp) 5599 { 5600 nce_t *nce = NULL; 5601 ill_t *ill; 5602 ip_stack_t *ipst; 5603 5604 ASSERT(ire_mp != NULL); 5605 5606 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 5607 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 5608 (void *)ire_mp)); 5609 goto cleanup; 5610 } 5611 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 5612 goto cleanup; /* everything succeeded. just free and return */ 5613 } 5614 5615 /* 5616 * the arp information corresponding to this ire_mp was not 5617 * transferred to a ire_cache entry. Need 5618 * to clean up incomplete ire's and nce, if necessary. 5619 */ 5620 ASSERT(ire_mp->ire_stq != NULL); 5621 ASSERT(ire_mp->ire_stq_ifindex != 0); 5622 ASSERT(ire_mp->ire_ipst != NULL); 5623 5624 ipst = ire_mp->ire_ipst; 5625 5626 /* 5627 * Get any nce's corresponding to this ire_mp. We first have to 5628 * make sure that the ill is still around. 5629 */ 5630 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, 5631 B_FALSE, NULL, NULL, NULL, NULL, ipst); 5632 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 5633 (ill->ill_state_flags & ILL_CONDEMNED)) { 5634 /* 5635 * ill went away. no nce to clean up. 5636 * Note that the ill_state_flags could be set to 5637 * ILL_CONDEMNED after this point, but if we know 5638 * that it is CONDEMNED now, we just bail out quickly. 5639 */ 5640 if (ill != NULL) 5641 ill_refrele(ill); 5642 goto cleanup; 5643 } 5644 nce = ndp_lookup_v4(ill, 5645 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 5646 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 5647 B_FALSE); 5648 ill_refrele(ill); 5649 5650 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 5651 /* 5652 * some incomplete nce was found. 5653 */ 5654 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 5655 nce_t *, nce, ire_t *, ire_mp); 5656 /* 5657 * Send the icmp_unreachable messages for the queued mblks in 5658 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 5659 * for this ire 5660 */ 5661 arp_resolv_failed(nce); 5662 /* 5663 * Delete the nce and clean up all ire's pointing at this nce 5664 * in the cachetable 5665 */ 5666 ndp_delete(nce); 5667 } 5668 if (nce != NULL) 5669 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 5670 5671 cleanup: 5672 /* 5673 * Get rid of the ire buffer 5674 * We call kmem_free here(instead of ire_delete()), since 5675 * this is the freeb's callback. 5676 */ 5677 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 5678 } 5679 5680 /* 5681 * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and 5682 * non-loopback IRE_BROADCAST ire's. 5683 * 5684 * If a neighbor-cache entry has to be created (i.e., one does not already 5685 * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache 5686 * entry are initialized in ndp_add_v4(). These values are picked from 5687 * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the 5688 * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values 5689 * determine the {nce_state, nce_res_mp} of the nce_t created. All 5690 * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp 5691 * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire 5692 * entries, 5693 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 5694 * nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state. 5695 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 5696 * layer resolution is necessary, so that the nce_t will be in the 5697 * ND_REACHABLE state and the nce_res_mp will have a copy of the 5698 * ill_resolver_mp of the outgoing interface. 5699 * 5700 * The link layer information needed for broadcast addresses, and for 5701 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 5702 * never needs re-verification for the lifetime of the nce_t. These are 5703 * therefore marked NCE_F_PERMANENT, and never allowed to expire via 5704 * NCE_EXPIRED. 5705 * 5706 * IRE_CACHE ire's contain the information for the nexthop (ire_gateway_addr) 5707 * in the case of indirect routes, and for the dst itself (ire_addr) in the 5708 * case of direct routes, with the nce_res_mp containing a template 5709 * DL_UNITDATA request. 5710 * 5711 * The actual association of the ire_nce to the nce created here is 5712 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 5713 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 5714 * the ire_nce assignment is done in ire_add_then_send. 5715 */ 5716 int 5717 ire_nce_init(ire_t *ire, nce_t *src_nce) 5718 { 5719 in_addr_t addr4; 5720 int err; 5721 nce_t *nce = NULL; 5722 ill_t *ire_ill; 5723 uint16_t nce_flags = 0; 5724 ip_stack_t *ipst; 5725 5726 if (ire->ire_stq == NULL) 5727 return (0); /* no need to create nce for local/loopback */ 5728 5729 switch (ire->ire_type) { 5730 case IRE_CACHE: 5731 if (ire->ire_gateway_addr != INADDR_ANY) 5732 addr4 = ire->ire_gateway_addr; /* 'G' route */ 5733 else 5734 addr4 = ire->ire_addr; /* direct route */ 5735 break; 5736 case IRE_BROADCAST: 5737 addr4 = ire->ire_addr; 5738 nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST); 5739 break; 5740 default: 5741 return (0); 5742 } 5743 5744 /* 5745 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 5746 * rules in ire_forward_src_ipif. We want the dlureq_mp 5747 * for the outgoing interface, which we get from the ire_stq. 5748 */ 5749 ire_ill = ire_to_ill(ire); 5750 ipst = ire_ill->ill_ipst; 5751 5752 /* 5753 * IRE_IF_NORESOLVER entries never need re-verification and 5754 * do not expire, so we mark them as NCE_F_PERMANENT. 5755 */ 5756 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) 5757 nce_flags |= NCE_F_PERMANENT; 5758 5759 retry_nce: 5760 err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags, 5761 &nce, src_nce); 5762 5763 if (err == EEXIST && NCE_EXPIRED(nce, ipst)) { 5764 /* 5765 * We looked up an expired nce. 5766 * Go back and try to create one again. 5767 */ 5768 ndp_delete(nce); 5769 NCE_REFRELE(nce); 5770 nce = NULL; 5771 goto retry_nce; 5772 } 5773 5774 ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n", 5775 (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err)); 5776 5777 switch (err) { 5778 case 0: 5779 case EEXIST: 5780 /* 5781 * return a pointer to a newly created or existing nce_t; 5782 * note that the ire-nce mapping is many-one, i.e., 5783 * multiple ire's could point to the same nce_t. 5784 */ 5785 break; 5786 default: 5787 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 5788 return (EINVAL); 5789 } 5790 if (ire->ire_type == IRE_BROADCAST) { 5791 /* 5792 * Two bcast ires are created for each interface; 5793 * 1. loopback copy (which does not have an 5794 * ire_stq, and therefore has no ire_nce), and, 5795 * 2. the non-loopback copy, which has the nce_res_mp 5796 * initialized to a copy of the ill_bcast_mp, and 5797 * is marked as ND_REACHABLE at this point. 5798 * This nce does not undergo any further state changes, 5799 * and exists as long as the interface is plumbed. 5800 * Note: we do the ire_nce assignment here for IRE_BROADCAST 5801 * because some functions like ill_mark_bcast() inline the 5802 * ire_add functionality. 5803 */ 5804 ire->ire_nce = nce; 5805 /* 5806 * We are associating this nce to the ire, 5807 * so change the nce ref taken in 5808 * ndp_lookup_then_add_v4() from 5809 * NCE_REFHOLD to NCE_REFHOLD_NOTR 5810 */ 5811 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 5812 } else { 5813 /* 5814 * We are not using this nce_t just yet so release 5815 * the ref taken in ndp_lookup_then_add_v4() 5816 */ 5817 NCE_REFRELE(nce); 5818 } 5819 return (0); 5820 } 5821