1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains routines that manipulate Internet Routing Entries (IREs). 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/stropts.h> 34 #include <sys/ddi.h> 35 #include <sys/cmn_err.h> 36 #include <sys/policy.h> 37 38 #include <sys/systm.h> 39 #include <sys/kmem.h> 40 #include <sys/param.h> 41 #include <sys/socket.h> 42 #include <net/if.h> 43 #include <net/route.h> 44 #include <netinet/in.h> 45 #include <net/if_dl.h> 46 #include <netinet/ip6.h> 47 #include <netinet/icmp6.h> 48 49 #include <inet/common.h> 50 #include <inet/mi.h> 51 #include <inet/ip.h> 52 #include <inet/ip6.h> 53 #include <inet/ip_ndp.h> 54 #include <inet/arp.h> 55 #include <inet/ip_if.h> 56 #include <inet/ip_ire.h> 57 #include <inet/ip_ftable.h> 58 #include <inet/ip_rts.h> 59 #include <inet/nd.h> 60 61 #include <net/pfkeyv2.h> 62 #include <inet/ipsec_info.h> 63 #include <inet/sadb.h> 64 #include <sys/kmem.h> 65 #include <inet/tcp.h> 66 #include <inet/ipclassifier.h> 67 #include <sys/zone.h> 68 #include <sys/cpuvar.h> 69 70 #include <sys/tsol/label.h> 71 #include <sys/tsol/tnet.h> 72 73 struct kmem_cache *rt_entry_cache; 74 75 /* 76 * Synchronization notes: 77 * 78 * The fields of the ire_t struct are protected in the following way : 79 * 80 * ire_next/ire_ptpn 81 * 82 * - bucket lock of the respective tables (cache or forwarding tables). 83 * 84 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 85 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 86 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 87 * 88 * - Set in ire_create_v4/v6 and never changes after that. Thus, 89 * we don't need a lock whenever these fields are accessed. 90 * 91 * - ire_bucket and ire_masklen (also set in ire_create) is set in 92 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 93 * changes after that. Thus we don't need a lock whenever these 94 * fields are accessed. 95 * 96 * ire_gateway_addr_v4[v6] 97 * 98 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 99 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 100 * it assumed to be atomic and hence the other parts of the code 101 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 102 * and hence any access to it uses ire_lock to get/set the right value. 103 * 104 * ire_ident, ire_refcnt 105 * 106 * - Updated atomically using atomic_add_32 107 * 108 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 109 * 110 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 111 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 112 * 113 * ire_max_frag, ire_frag_flag 114 * 115 * - ire_lock is used to set/read both of them together. 116 * 117 * ire_tire_mark 118 * 119 * - Set in ire_create and updated in ire_expire, which is called 120 * by only one function namely ip_trash_timer_expire. Thus only 121 * one function updates and examines the value. 122 * 123 * ire_marks 124 * - bucket lock protects this. 125 * 126 * ire_ipsec_overhead/ire_ll_hdr_length 127 * 128 * - Place holder for returning the information to the upper layers 129 * when IRE_DB_REQ comes down. 130 * 131 * 132 * ipv6_ire_default_count is protected by the bucket lock of 133 * ip_forwarding_table_v6[0][0]. 134 * 135 * ipv6_ire_default_index is not protected as it is just a hint 136 * at which default gateway to use. There is nothing 137 * wrong in using the same gateway for two different connections. 138 * 139 * As we always hold the bucket locks in all the places while accessing 140 * the above values, it is natural to use them for protecting them. 141 * 142 * We have a separate cache table and forwarding table for IPv4 and IPv6. 143 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 144 * array of irb_t structures. The IPv6 forwarding table 145 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 146 * structure. ip_forwarding_table_v6 is allocated dynamically in 147 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 148 * initializing the same bucket. Once a bucket is initialized, it is never 149 * de-alloacted. This assumption enables us to access 150 * ip_forwarding_table_v6[i] without any locks. 151 * 152 * The forwarding table for IPv4 is a radix tree whose leaves 153 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 154 * for IPv4 is dynamically allocated and freed. 155 * 156 * Each irb_t - ire bucket structure has a lock to protect 157 * a bucket and the ires residing in the bucket have a back pointer to 158 * the bucket structure. It also has a reference count for the number 159 * of threads walking the bucket - irb_refcnt which is bumped up 160 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 161 * set to IRE_MARK_CONDEMNED indicating that there are some ires 162 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 163 * last thread to leave the bucket should delete the ires. Usually 164 * this is done by the IRB_REFRELE macro which is used to decrement 165 * the reference count on a bucket. See comments above irb_t structure 166 * definition in ip.h for further details. 167 * 168 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 169 * decrements the reference count, ire_refcnt, atomically on the ire. 170 * ire_refcnt is modified only using this macro. Operations on the IRE 171 * could be described as follows : 172 * 173 * CREATE an ire with reference count initialized to 1. 174 * 175 * ADDITION of an ire holds the bucket lock, checks for duplicates 176 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 177 * bumping up once more i.e the reference count is 2. This is to avoid 178 * an extra lookup in the functions calling ire_add which wants to 179 * work with the ire after adding. 180 * 181 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 182 * macro. It is valid to bump up the referece count of the IRE, 183 * after the lookup has returned an ire. Following are the lookup 184 * functions that return an HELD ire : 185 * 186 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 187 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 188 * ipif_to_ire[_v6]. 189 * 190 * DELETION of an ire holds the bucket lock, removes it from the list 191 * and then decrements the reference count for having removed from the list 192 * by using the IRE_REFRELE macro. If some other thread has looked up 193 * the ire, the reference count would have been bumped up and hence 194 * this ire will not be freed once deleted. It will be freed once the 195 * reference count drops to zero. 196 * 197 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 198 * lookups acquire the bucket lock as RW_READER. 199 * 200 * NOTE : The only functions that does the IRE_REFRELE when an ire is 201 * passed as an argument are : 202 * 203 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 204 * broadcast ires it looks up internally within 205 * the function. Currently, for simplicity it does 206 * not differentiate the one that is passed in and 207 * the ones it looks up internally. It always 208 * IRE_REFRELEs. 209 * 2) ire_send 210 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 211 * that take ire as an argument, it has to selectively 212 * IRE_REFRELE the ire. To maintain symmetry, 213 * ire_send_v6 does the same. 214 * 215 * Otherwise, the general rule is to do the IRE_REFRELE in the function 216 * that is passing the ire as an argument. 217 * 218 * In trying to locate ires the following points are to be noted. 219 * 220 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 221 * to be ignored when walking the ires using ire_next. 222 * 223 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 224 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 225 * applications should not be seeing this ire and hence this ire is ignored 226 * in most cases in the search using ire_next. 227 * 228 * Zones note: 229 * Walking IREs within a given zone also walks certain ires in other 230 * zones. This is done intentionally. IRE walks with a specified 231 * zoneid are used only when doing informational reports, and 232 * zone users want to see things that they can access. See block 233 * comment in ire_walk_ill_match(). 234 */ 235 236 /* 237 * The minimum size of IRE cache table. It will be recalcuated in 238 * ip_ire_init(). 239 * Setable in /etc/system 240 */ 241 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 242 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 243 244 /* 245 * The size of the forwarding table. We will make sure that it is a 246 * power of 2 in ip_ire_init(). 247 * Setable in /etc/system 248 */ 249 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 250 251 struct kmem_cache *ire_cache; 252 static ire_t ire_null; 253 254 /* 255 * The threshold number of IRE in a bucket when the IREs are 256 * cleaned up. This threshold is calculated later in ip_open() 257 * based on the speed of CPU and available memory. This default 258 * value is the maximum. 259 * 260 * We have two kinds of cached IRE, temporary and 261 * non-temporary. Temporary IREs are marked with 262 * IRE_MARK_TEMPORARY. They are IREs created for non 263 * TCP traffic and for forwarding purposes. All others 264 * are non-temporary IREs. We don't mark IRE created for 265 * TCP as temporary because TCP is stateful and there are 266 * info stored in the IRE which can be shared by other TCP 267 * connections to the same destination. For connected 268 * endpoint, we also don't want to mark the IRE used as 269 * temporary because the same IRE will be used frequently, 270 * otherwise, the app should not do a connect(). We change 271 * the marking at ip_bind_connected_*() if necessary. 272 * 273 * We want to keep the cache IRE hash bucket length reasonably 274 * short, otherwise IRE lookup functions will take "forever." 275 * We use the "crude" function that the IRE bucket 276 * length should be based on the CPU speed, which is 1 entry 277 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 278 * (n). This means that with a 750MHz CPU, the max bucket 279 * length can be (750 >> n) entries. 280 * 281 * Note that this threshold is separate for temp and non-temp 282 * IREs. This means that the actual bucket length can be 283 * twice as that. And while we try to keep temporary IRE 284 * length at most at the threshold value, we do not attempt to 285 * make the length for non-temporary IREs fixed, for the 286 * reason stated above. Instead, we start trying to find 287 * "unused" non-temporary IREs when the bucket length reaches 288 * this threshold and clean them up. 289 * 290 * We also want to limit the amount of memory used by 291 * IREs. So if we are allowed to use ~3% of memory (M) 292 * for those IREs, each bucket should not have more than 293 * 294 * M / num of cache bucket / sizeof (ire_t) 295 * 296 * Again the above memory uses are separate for temp and 297 * non-temp cached IREs. 298 * 299 * We may also want the limit to be a function of the number 300 * of interfaces and number of CPUs. Doing the initialization 301 * in ip_open() means that every time an interface is plumbed, 302 * the max is re-calculated. Right now, we don't do anything 303 * different. In future, when we have more experience, we 304 * may want to change this behavior. 305 */ 306 uint32_t ip_ire_max_bucket_cnt = 10; /* Setable in /etc/system */ 307 uint32_t ip6_ire_max_bucket_cnt = 10; 308 uint32_t ip_ire_cleanup_cnt = 2; 309 310 /* 311 * The minimum of the temporary IRE bucket count. We do not want 312 * the length of each bucket to be too short. This may hurt 313 * performance of some apps as the temporary IREs are removed too 314 * often. 315 */ 316 uint32_t ip_ire_min_bucket_cnt = 3; /* /etc/system - not used */ 317 uint32_t ip6_ire_min_bucket_cnt = 3; 318 319 /* 320 * The ratio of memory consumed by IRE used for temporary to available 321 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 322 * value can be changed in /etc/system. 6 is a reasonable number. 323 */ 324 uint32_t ip_ire_mem_ratio = 6; /* /etc/system */ 325 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 326 uint32_t ip_ire_cpu_ratio = 7; /* /etc/system */ 327 328 typedef struct nce_clookup_s { 329 ipaddr_t ncecl_addr; 330 boolean_t ncecl_found; 331 } nce_clookup_t; 332 333 /* 334 * The maximum number of buckets in IRE cache table. In future, we may 335 * want to make it a dynamic hash table. For the moment, we fix the 336 * size and allocate the table in ip_ire_init() when IP is first loaded. 337 * We take into account the amount of memory a system has. 338 */ 339 #define IP_MAX_CACHE_TABLE_SIZE 4096 340 341 /* Setable in /etc/system */ 342 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 343 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 344 345 #define NUM_ILLS 2 /* To build the ILL list to unlock */ 346 347 /* Zero iulp_t for initialization. */ 348 const iulp_t ire_uinfo_null = { 0 }; 349 350 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 351 ipsq_func_t func, boolean_t); 352 static void ire_delete_v4(ire_t *ire); 353 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 354 zoneid_t zoneid, ip_stack_t *); 355 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 356 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 357 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, 358 ire_t *ref_ire); 359 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 360 #ifdef DEBUG 361 static void ire_trace_cleanup(const ire_t *); 362 #endif 363 364 /* 365 * To avoid bloating the code, we call this function instead of 366 * using the macro IRE_REFRELE. Use macro only in performance 367 * critical paths. 368 * 369 * Must not be called while holding any locks. Otherwise if this is 370 * the last reference to be released there is a chance of recursive mutex 371 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 372 * to restart an ioctl. The one exception is when the caller is sure that 373 * this is not the last reference to be released. Eg. if the caller is 374 * sure that the ire has not been deleted and won't be deleted. 375 */ 376 void 377 ire_refrele(ire_t *ire) 378 { 379 IRE_REFRELE(ire); 380 } 381 382 void 383 ire_refrele_notr(ire_t *ire) 384 { 385 IRE_REFRELE_NOTR(ire); 386 } 387 388 /* 389 * kmem_cache_alloc constructor for IRE in kma space. 390 * Note that when ire_mp is set the IRE is stored in that mblk and 391 * not in this cache. 392 */ 393 /* ARGSUSED */ 394 static int 395 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 396 { 397 ire_t *ire = buf; 398 399 ire->ire_nce = NULL; 400 401 return (0); 402 } 403 404 /* ARGSUSED1 */ 405 static void 406 ip_ire_destructor(void *buf, void *cdrarg) 407 { 408 ire_t *ire = buf; 409 410 ASSERT(ire->ire_nce == NULL); 411 } 412 413 /* 414 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 415 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 416 * for an existing CACHED IRE. 417 */ 418 /* ARGSUSED */ 419 int 420 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 421 { 422 uchar_t *addr_ucp; 423 ipic_t *ipic; 424 ire_t *ire; 425 ipaddr_t addr; 426 in6_addr_t v6addr; 427 irb_t *irb; 428 zoneid_t zoneid; 429 ip_stack_t *ipst = CONNQ_TO_IPST(q); 430 431 ASSERT(q->q_next == NULL); 432 zoneid = Q_TO_CONN(q)->conn_zoneid; 433 434 /* 435 * Check privilege using the ioctl credential; if it is NULL 436 * then this is a kernel message and therefor privileged. 437 */ 438 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 439 return (EPERM); 440 441 ipic = (ipic_t *)mp->b_rptr; 442 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 443 ipic->ipic_addr_length))) { 444 return (EINVAL); 445 } 446 if (!OK_32PTR(addr_ucp)) 447 return (EINVAL); 448 switch (ipic->ipic_addr_length) { 449 case IP_ADDR_LEN: { 450 /* Extract the destination address. */ 451 addr = *(ipaddr_t *)addr_ucp; 452 /* Find the corresponding IRE. */ 453 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 454 break; 455 } 456 case IPV6_ADDR_LEN: { 457 /* Extract the destination address. */ 458 v6addr = *(in6_addr_t *)addr_ucp; 459 /* Find the corresponding IRE. */ 460 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst); 461 break; 462 } 463 default: 464 return (EINVAL); 465 } 466 467 if (ire == NULL) 468 return (ENOENT); 469 /* 470 * Update the round trip time estimate and/or the max frag size 471 * and/or the slow start threshold. 472 * 473 * We serialize multiple advises using ire_lock. 474 */ 475 mutex_enter(&ire->ire_lock); 476 if (ipic->ipic_rtt) { 477 /* 478 * If there is no old cached values, initialize them 479 * conservatively. Set them to be (1.5 * new value). 480 */ 481 if (ire->ire_uinfo.iulp_rtt != 0) { 482 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 483 ipic->ipic_rtt) >> 1; 484 } else { 485 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 486 (ipic->ipic_rtt >> 1); 487 } 488 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 489 ire->ire_uinfo.iulp_rtt_sd = 490 (ire->ire_uinfo.iulp_rtt_sd + 491 ipic->ipic_rtt_sd) >> 1; 492 } else { 493 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 494 (ipic->ipic_rtt_sd >> 1); 495 } 496 } 497 if (ipic->ipic_max_frag) 498 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 499 if (ipic->ipic_ssthresh != 0) { 500 if (ire->ire_uinfo.iulp_ssthresh != 0) 501 ire->ire_uinfo.iulp_ssthresh = 502 (ipic->ipic_ssthresh + 503 ire->ire_uinfo.iulp_ssthresh) >> 1; 504 else 505 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 506 } 507 /* 508 * Don't need the ire_lock below this. ire_type does not change 509 * after initialization. ire_marks is protected by irb_lock. 510 */ 511 mutex_exit(&ire->ire_lock); 512 513 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 514 /* 515 * Only increment the temporary IRE count if the original 516 * IRE is not already marked temporary. 517 */ 518 irb = ire->ire_bucket; 519 rw_enter(&irb->irb_lock, RW_WRITER); 520 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 521 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 522 irb->irb_tmp_ire_cnt++; 523 } 524 ire->ire_marks |= ipic->ipic_ire_marks; 525 rw_exit(&irb->irb_lock); 526 } 527 528 ire_refrele(ire); 529 return (0); 530 } 531 532 /* 533 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 534 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 535 * for a host that is not responding. This will force an attempt to 536 * establish a new route, if available, and flush out the ARP entry so 537 * it will re-resolve. Management processes may want to use the 538 * version that generates a reply. 539 * 540 * This function does not support IPv6 since Neighbor Unreachability Detection 541 * means that negative advise like this is useless. 542 */ 543 /* ARGSUSED */ 544 int 545 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 546 { 547 uchar_t *addr_ucp; 548 ipaddr_t addr; 549 ire_t *ire; 550 ipid_t *ipid; 551 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 552 zoneid_t zoneid; 553 ire_t *gire = NULL; 554 ill_t *ill; 555 mblk_t *arp_mp; 556 ip_stack_t *ipst; 557 558 ASSERT(q->q_next == NULL); 559 zoneid = Q_TO_CONN(q)->conn_zoneid; 560 ipst = CONNQ_TO_IPST(q); 561 562 /* 563 * Check privilege using the ioctl credential; if it is NULL 564 * then this is a kernel message and therefor privileged. 565 */ 566 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 567 return (EPERM); 568 569 ipid = (ipid_t *)mp->b_rptr; 570 571 /* Only actions on IRE_CACHEs are acceptable at present. */ 572 if (ipid->ipid_ire_type != IRE_CACHE) 573 return (EINVAL); 574 575 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 576 ipid->ipid_addr_length); 577 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 578 return (EINVAL); 579 switch (ipid->ipid_addr_length) { 580 case IP_ADDR_LEN: 581 /* addr_ucp points at IP addr */ 582 break; 583 case sizeof (sin_t): { 584 sin_t *sin; 585 /* 586 * got complete (sockaddr) address - increment addr_ucp to point 587 * at the ip_addr field. 588 */ 589 sin = (sin_t *)addr_ucp; 590 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 591 break; 592 } 593 default: 594 return (EINVAL); 595 } 596 /* Extract the destination address. */ 597 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 598 599 /* Try to find the CACHED IRE. */ 600 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 601 602 /* Nail it. */ 603 if (ire) { 604 /* Allow delete only on CACHE entries */ 605 if (ire->ire_type != IRE_CACHE) { 606 ire_refrele(ire); 607 return (EINVAL); 608 } 609 610 /* 611 * Verify that the IRE has been around for a while. 612 * This is to protect against transport protocols 613 * that are too eager in sending delete messages. 614 */ 615 if (gethrestime_sec() < 616 ire->ire_create_time + ipst->ips_ip_ignore_delete_time) { 617 ire_refrele(ire); 618 return (EINVAL); 619 } 620 /* 621 * Now we have a potentially dead cache entry. We need 622 * to remove it. 623 * If this cache entry is generated from a 624 * default route (i.e., ire_cmask == 0), 625 * search the default list and mark it dead and some 626 * background process will try to activate it. 627 */ 628 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 629 /* 630 * Make sure that we pick a different 631 * IRE_DEFAULT next time. 632 */ 633 ire_t *gw_ire; 634 irb_t *irb = NULL; 635 uint_t match_flags; 636 637 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 638 639 gire = ire_ftable_lookup(ire->ire_addr, 640 ire->ire_cmask, 0, 0, 641 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags, 642 ipst); 643 644 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 645 (void *)gire)); 646 647 if (gire != NULL) { 648 irb = gire->ire_bucket; 649 650 /* 651 * We grab it as writer just to serialize 652 * multiple threads trying to bump up 653 * irb_rr_origin 654 */ 655 rw_enter(&irb->irb_lock, RW_WRITER); 656 if ((gw_ire = irb->irb_rr_origin) == NULL) { 657 rw_exit(&irb->irb_lock); 658 goto done; 659 } 660 661 DTRACE_PROBE1(ip__ire__del__origin, 662 (ire_t *), gw_ire); 663 664 /* Skip past the potentially bad gateway */ 665 if (ire->ire_gateway_addr == 666 gw_ire->ire_gateway_addr) { 667 ire_t *next = gw_ire->ire_next; 668 669 DTRACE_PROBE2(ip__ire__del, 670 (ire_t *), gw_ire, (irb_t *), irb); 671 IRE_FIND_NEXT_ORIGIN(next); 672 irb->irb_rr_origin = next; 673 } 674 rw_exit(&irb->irb_lock); 675 } 676 } 677 done: 678 if (gire != NULL) 679 IRE_REFRELE(gire); 680 /* report the bad route to routing sockets */ 681 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 682 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 683 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst); 684 routing_sock_info = B_TRUE; 685 686 /* 687 * TCP is really telling us to start over completely, and it 688 * expects that we'll resend the ARP query. Tell ARP to 689 * discard the entry, if this is a local destination. 690 * 691 * But, if the ARP entry is permanent then it shouldn't be 692 * deleted, so we set ARED_F_PRESERVE_PERM. 693 */ 694 ill = ire->ire_stq->q_ptr; 695 if (ire->ire_gateway_addr == 0 && 696 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 697 ared_t *ared = (ared_t *)arp_mp->b_rptr; 698 699 ASSERT(ared->ared_cmd == AR_ENTRY_DELETE); 700 ared->ared_flags |= ARED_F_PRESERVE_PERM; 701 putnext(ill->ill_rq, arp_mp); 702 } 703 704 ire_delete(ire); 705 ire_refrele(ire); 706 } 707 /* 708 * Also look for an IRE_HOST type redirect ire and 709 * remove it if present. 710 */ 711 ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL, 712 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 713 714 /* Nail it. */ 715 if (ire != NULL) { 716 if (ire->ire_flags & RTF_DYNAMIC) { 717 if (!routing_sock_info) { 718 ip_rts_change(RTM_LOSING, ire->ire_addr, 719 ire->ire_gateway_addr, ire->ire_mask, 720 ire->ire_src_addr, 0, 0, 0, 721 (RTA_DST | RTA_GATEWAY | 722 RTA_NETMASK | RTA_IFA), 723 ipst); 724 } 725 ire_delete(ire); 726 } 727 ire_refrele(ire); 728 } 729 return (0); 730 } 731 732 733 /* 734 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 735 * down from the Upper Level Protocol to request a copy of the IRE (to check 736 * its type or to extract information like round-trip time estimates or the 737 * MTU.) 738 * The address is assumed to be in the ire_addr field. If no IRE is found 739 * an IRE is returned with ire_type being zero. 740 * Note that the upper lavel protocol has to check for broadcast 741 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 742 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 743 * end of the returned message. 744 * 745 * TCP sends down a message of this type with a connection request packet 746 * chained on. UDP and ICMP send it down to verify that a route exists for 747 * the destination address when they get connected. 748 */ 749 void 750 ip_ire_req(queue_t *q, mblk_t *mp) 751 { 752 ire_t *inire; 753 ire_t *ire; 754 mblk_t *mp1; 755 ire_t *sire = NULL; 756 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 757 ip_stack_t *ipst = CONNQ_TO_IPST(q); 758 759 ASSERT(q->q_next == NULL); 760 761 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 762 !OK_32PTR(mp->b_rptr)) { 763 freemsg(mp); 764 return; 765 } 766 inire = (ire_t *)mp->b_rptr; 767 /* 768 * Got it, now take our best shot at an IRE. 769 */ 770 if (inire->ire_ipversion == IPV6_VERSION) { 771 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 772 NULL, &sire, zoneid, NULL, 773 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 774 } else { 775 ASSERT(inire->ire_ipversion == IPV4_VERSION); 776 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 777 NULL, &sire, zoneid, NULL, 778 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 779 } 780 781 /* 782 * We prevent returning IRES with source address INADDR_ANY 783 * as these were temporarily created for sending packets 784 * from endpoints that have conn_unspec_src set. 785 */ 786 if (ire == NULL || 787 (ire->ire_ipversion == IPV4_VERSION && 788 ire->ire_src_addr == INADDR_ANY) || 789 (ire->ire_ipversion == IPV6_VERSION && 790 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 791 inire->ire_type = 0; 792 } else { 793 bcopy(ire, inire, sizeof (ire_t)); 794 /* Copy the route metrics from the parent. */ 795 if (sire != NULL) { 796 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 797 sizeof (iulp_t)); 798 } 799 800 /* 801 * As we don't lookup global policy here, we may not 802 * pass the right size if per-socket policy is not 803 * present. For these cases, path mtu discovery will 804 * do the right thing. 805 */ 806 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 807 808 /* Pass the latest setting of the ip_path_mtu_discovery */ 809 inire->ire_frag_flag |= 810 (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 811 } 812 if (ire != NULL) 813 ire_refrele(ire); 814 if (sire != NULL) 815 ire_refrele(sire); 816 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 817 mp->b_datap->db_type = IRE_DB_TYPE; 818 819 /* Put the IRE_DB_TYPE mblk last in the chain */ 820 mp1 = mp->b_cont; 821 if (mp1 != NULL) { 822 mp->b_cont = NULL; 823 linkb(mp1, mp); 824 mp = mp1; 825 } 826 qreply(q, mp); 827 } 828 829 /* 830 * Send a packet using the specified IRE. 831 * If ire_src_addr_v6 is all zero then discard the IRE after 832 * the packet has been sent. 833 */ 834 static void 835 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 836 { 837 mblk_t *ipsec_mp; 838 boolean_t is_secure; 839 uint_t ifindex; 840 ill_t *ill; 841 zoneid_t zoneid = ire->ire_zoneid; 842 ip_stack_t *ipst = ire->ire_ipst; 843 844 ASSERT(ire->ire_ipversion == IPV4_VERSION); 845 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 846 ipsec_mp = pkt; 847 is_secure = (pkt->b_datap->db_type == M_CTL); 848 if (is_secure) { 849 ipsec_out_t *io; 850 851 pkt = pkt->b_cont; 852 io = (ipsec_out_t *)ipsec_mp->b_rptr; 853 if (io->ipsec_out_type == IPSEC_OUT) 854 zoneid = io->ipsec_out_zoneid; 855 } 856 857 /* If the packet originated externally then */ 858 if (pkt->b_prev) { 859 ire_refrele(ire); 860 /* 861 * Extract the ifindex from b_prev (set in ip_rput_noire). 862 * Look up interface to see if it still exists (it could have 863 * been unplumbed by the time the reply came back from ARP) 864 */ 865 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 866 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 867 NULL, NULL, NULL, NULL, ipst); 868 if (ill == NULL) { 869 pkt->b_prev = NULL; 870 pkt->b_next = NULL; 871 freemsg(ipsec_mp); 872 return; 873 } 874 q = ill->ill_rq; 875 pkt->b_prev = NULL; 876 /* 877 * This packet has not gone through IPSEC processing 878 * and hence we should not have any IPSEC message 879 * prepended. 880 */ 881 ASSERT(ipsec_mp == pkt); 882 put(q, pkt); 883 ill_refrele(ill); 884 } else if (pkt->b_next) { 885 /* Packets from multicast router */ 886 pkt->b_next = NULL; 887 /* 888 * We never get the IPSEC_OUT while forwarding the 889 * packet for multicast router. 890 */ 891 ASSERT(ipsec_mp == pkt); 892 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 893 ire_refrele(ire); 894 } else { 895 /* Locally originated packets */ 896 boolean_t delete_ire = B_FALSE; 897 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 898 899 /* 900 * If this IRE shouldn't be kept in the table (because its 901 * source address is unspecified), hold a reference to it so 902 * we can delete it even after e.g. ip_wput_ire() has dropped 903 * its reference. 904 */ 905 if (!(ire->ire_marks & IRE_MARK_NOADD) && 906 ire->ire_src_addr == INADDR_ANY) { 907 delete_ire = B_TRUE; 908 IRE_REFHOLD(ire); 909 } 910 911 /* 912 * If we were resolving a router we can not use the 913 * routers IRE for sending the packet (since it would 914 * violate the uniqness of the IP idents) thus we 915 * make another pass through ip_wput to create the IRE_CACHE 916 * for the destination. 917 * When IRE_MARK_NOADD is set, ire_add() is not called. 918 * Thus ip_wput() will never find a ire and result in an 919 * infinite loop. Thus we check whether IRE_MARK_NOADD is 920 * is set. This also implies that IRE_MARK_NOADD can only be 921 * used to send packets to directly connected hosts. 922 */ 923 if (ipha->ipha_dst != ire->ire_addr && 924 !(ire->ire_marks & IRE_MARK_NOADD)) { 925 ire_refrele(ire); /* Held in ire_add */ 926 if (CONN_Q(q)) { 927 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 928 IRE_SEND); 929 } else { 930 (void) ip_output((void *)(uintptr_t)zoneid, 931 ipsec_mp, q, IRE_SEND); 932 } 933 } else { 934 if (is_secure) { 935 ipsec_out_t *oi; 936 ipha_t *ipha; 937 938 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 939 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 940 if (oi->ipsec_out_proc_begin) { 941 /* 942 * This is the case where 943 * ip_wput_ipsec_out could not find 944 * the IRE and recreated a new one. 945 * As ip_wput_ipsec_out does ire 946 * lookups, ire_refrele for the extra 947 * bump in ire_add. 948 */ 949 ire_refrele(ire); 950 ip_wput_ipsec_out(q, ipsec_mp, ipha, 951 NULL, NULL); 952 } else { 953 /* 954 * IRE_REFRELE will be done in 955 * ip_wput_ire. 956 */ 957 ip_wput_ire(q, ipsec_mp, ire, NULL, 958 IRE_SEND, zoneid); 959 } 960 } else { 961 /* 962 * IRE_REFRELE will be done in ip_wput_ire. 963 */ 964 ip_wput_ire(q, ipsec_mp, ire, NULL, 965 IRE_SEND, zoneid); 966 } 967 } 968 /* 969 * Special code to support sending a single packet with 970 * conn_unspec_src using an IRE which has no source address. 971 * The IRE is deleted here after sending the packet to avoid 972 * having other code trip on it. But before we delete the 973 * ire, somebody could have looked up this ire. 974 * We prevent returning/using this IRE by the upper layers 975 * by making checks to NULL source address in other places 976 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 977 * Though this does not completely prevent other threads 978 * from using this ire, this should not cause any problems. 979 */ 980 if (delete_ire) { 981 ip1dbg(("ire_send: delete IRE\n")); 982 ire_delete(ire); 983 ire_refrele(ire); /* Held above */ 984 } 985 } 986 } 987 988 /* 989 * Send a packet using the specified IRE. 990 * If ire_src_addr_v6 is all zero then discard the IRE after 991 * the packet has been sent. 992 */ 993 static void 994 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 995 { 996 mblk_t *ipsec_mp; 997 boolean_t secure; 998 uint_t ifindex; 999 zoneid_t zoneid = ire->ire_zoneid; 1000 ip_stack_t *ipst = ire->ire_ipst; 1001 1002 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1003 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1004 if (pkt->b_datap->db_type == M_CTL) { 1005 ipsec_out_t *io; 1006 1007 ipsec_mp = pkt; 1008 pkt = pkt->b_cont; 1009 secure = B_TRUE; 1010 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1011 if (io->ipsec_out_type == IPSEC_OUT) 1012 zoneid = io->ipsec_out_zoneid; 1013 } else { 1014 ipsec_mp = pkt; 1015 secure = B_FALSE; 1016 } 1017 1018 /* If the packet originated externally then */ 1019 if (pkt->b_prev) { 1020 ill_t *ill; 1021 /* 1022 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1023 * Look up interface to see if it still exists (it could have 1024 * been unplumbed by the time the reply came back from the 1025 * resolver). 1026 */ 1027 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1028 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1029 NULL, NULL, NULL, NULL, ipst); 1030 if (ill == NULL) { 1031 pkt->b_prev = NULL; 1032 pkt->b_next = NULL; 1033 freemsg(ipsec_mp); 1034 ire_refrele(ire); /* Held in ire_add */ 1035 return; 1036 } 1037 q = ill->ill_rq; 1038 pkt->b_prev = NULL; 1039 /* 1040 * This packet has not gone through IPSEC processing 1041 * and hence we should not have any IPSEC message 1042 * prepended. 1043 */ 1044 ASSERT(ipsec_mp == pkt); 1045 put(q, pkt); 1046 ill_refrele(ill); 1047 } else if (pkt->b_next) { 1048 /* Packets from multicast router */ 1049 pkt->b_next = NULL; 1050 /* 1051 * We never get the IPSEC_OUT while forwarding the 1052 * packet for multicast router. 1053 */ 1054 ASSERT(ipsec_mp == pkt); 1055 /* 1056 * XXX TODO IPv6. 1057 */ 1058 freemsg(pkt); 1059 #ifdef XXX 1060 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1061 #endif 1062 } else { 1063 if (secure) { 1064 ipsec_out_t *oi; 1065 ip6_t *ip6h; 1066 1067 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1068 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1069 if (oi->ipsec_out_proc_begin) { 1070 /* 1071 * This is the case where 1072 * ip_wput_ipsec_out could not find 1073 * the IRE and recreated a new one. 1074 */ 1075 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1076 NULL, NULL); 1077 } else { 1078 if (CONN_Q(q)) { 1079 (void) ip_output_v6(Q_TO_CONN(q), 1080 ipsec_mp, q, IRE_SEND); 1081 } else { 1082 (void) ip_output_v6( 1083 (void *)(uintptr_t)zoneid, 1084 ipsec_mp, q, IRE_SEND); 1085 } 1086 } 1087 } else { 1088 /* 1089 * Send packets through ip_output_v6 so that any 1090 * ip6_info header can be processed again. 1091 */ 1092 if (CONN_Q(q)) { 1093 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1094 IRE_SEND); 1095 } else { 1096 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1097 ipsec_mp, q, IRE_SEND); 1098 } 1099 } 1100 /* 1101 * Special code to support sending a single packet with 1102 * conn_unspec_src using an IRE which has no source address. 1103 * The IRE is deleted here after sending the packet to avoid 1104 * having other code trip on it. But before we delete the 1105 * ire, somebody could have looked up this ire. 1106 * We prevent returning/using this IRE by the upper layers 1107 * by making checks to NULL source address in other places 1108 * like e.g ip_ire_append_v6, ip_ire_req and 1109 * ip_bind_connected_v6. Though, this does not completely 1110 * prevent other threads from using this ire, this should 1111 * not cause any problems. 1112 */ 1113 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1114 ip1dbg(("ire_send_v6: delete IRE\n")); 1115 ire_delete(ire); 1116 } 1117 } 1118 ire_refrele(ire); /* Held in ire_add */ 1119 } 1120 1121 /* 1122 * Make sure that IRE bucket does not get too long. 1123 * This can cause lock up because ire_cache_lookup() 1124 * may take "forever" to finish. 1125 * 1126 * We only remove a maximum of cnt IREs each time. This 1127 * should keep the bucket length approximately constant, 1128 * depending on cnt. This should be enough to defend 1129 * against DoS attack based on creating temporary IREs 1130 * (for forwarding and non-TCP traffic). 1131 * 1132 * We also pass in the address of the newly created IRE 1133 * as we do not want to remove this straight after adding 1134 * it. New IREs are normally added at the tail of the 1135 * bucket. This means that we are removing the "oldest" 1136 * temporary IREs added. Only if there are IREs with 1137 * the same ire_addr, do we not add it at the tail. Refer 1138 * to ire_add_v*(). It should be OK for our purpose. 1139 * 1140 * For non-temporary cached IREs, we make sure that they 1141 * have not been used for some time (defined below), they 1142 * are non-local destinations, and there is no one using 1143 * them at the moment (refcnt == 1). 1144 * 1145 * The above means that the IRE bucket length may become 1146 * very long, consisting of mostly non-temporary IREs. 1147 * This can happen when the hash function does a bad job 1148 * so that most TCP connections cluster to a specific bucket. 1149 * This "hopefully" should never happen. It can also 1150 * happen if most TCP connections have very long lives. 1151 * Even with the minimal hash table size of 256, there 1152 * has to be a lot of such connections to make the bucket 1153 * length unreasonably long. This should probably not 1154 * happen either. The third can when this can happen is 1155 * when the machine is under attack, such as SYN flooding. 1156 * TCP should already have the proper mechanism to protect 1157 * that. So we should be safe. 1158 * 1159 * This function is called by ire_add_then_send() after 1160 * a new IRE is added and the packet is sent. 1161 * 1162 * The idle cutoff interval is set to 60s. It can be 1163 * changed using /etc/system. 1164 */ 1165 uint32_t ire_idle_cutoff_interval = 60000; 1166 1167 static void 1168 ire_cache_cleanup(irb_t *irb, uint32_t threshold, ire_t *ref_ire) 1169 { 1170 ire_t *ire; 1171 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1172 int cnt = ip_ire_cleanup_cnt; 1173 1174 /* 1175 * Try to remove cnt temporary IREs first. 1176 */ 1177 for (ire = irb->irb_ire; cnt > 0 && ire != NULL; ire = ire->ire_next) { 1178 if (ire == ref_ire) 1179 continue; 1180 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1181 continue; 1182 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1183 ASSERT(ire->ire_type == IRE_CACHE); 1184 ire_delete(ire); 1185 cnt--; 1186 } 1187 } 1188 if (cnt == 0) 1189 return; 1190 1191 /* 1192 * If we didn't satisfy our removal target from temporary IREs 1193 * we see how many non-temporary IREs are currently in the bucket. 1194 * If this quantity is above the threshold then we see if there are any 1195 * candidates for removal. We are still limited to removing a maximum 1196 * of cnt IREs. 1197 */ 1198 if ((irb->irb_ire_cnt - irb->irb_tmp_ire_cnt) > threshold) { 1199 for (ire = irb->irb_ire; cnt > 0 && ire != NULL; 1200 ire = ire->ire_next) { 1201 if (ire == ref_ire) 1202 continue; 1203 if (ire->ire_type != IRE_CACHE) 1204 continue; 1205 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1206 continue; 1207 if ((ire->ire_refcnt == 1) && 1208 (lbolt - ire->ire_last_used_time > cut_off)) { 1209 ire_delete(ire); 1210 cnt--; 1211 } 1212 } 1213 } 1214 } 1215 1216 /* 1217 * ire_add_then_send is called when a new IRE has been created in order to 1218 * route an outgoing packet. Typically, it is called from ip_wput when 1219 * a response comes back down from a resolver. We add the IRE, and then 1220 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1221 * However, we do not add the newly created IRE in the cache when 1222 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1223 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by 1224 * ip_wput_ire() and get deleted. 1225 * Multirouting support: the packet is silently discarded when the new IRE 1226 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1227 * RTF_MULTIRT flag for the same destination address. 1228 * In this case, we just want to register this additional ire without 1229 * sending the packet, as it has already been replicated through 1230 * existing multirt routes in ip_wput(). 1231 */ 1232 void 1233 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1234 { 1235 irb_t *irb; 1236 boolean_t drop = B_FALSE; 1237 /* LINTED : set but not used in function */ 1238 boolean_t mctl_present; 1239 mblk_t *first_mp = NULL; 1240 mblk_t *save_mp = NULL; 1241 ire_t *dst_ire; 1242 ipha_t *ipha; 1243 ip6_t *ip6h; 1244 ip_stack_t *ipst = ire->ire_ipst; 1245 int ire_limit; 1246 1247 if (mp != NULL) { 1248 /* 1249 * We first have to retrieve the destination address carried 1250 * by the packet. 1251 * We can't rely on ire as it can be related to a gateway. 1252 * The destination address will help in determining if 1253 * other RTF_MULTIRT ires are already registered. 1254 * 1255 * We first need to know where we are going : v4 or V6. 1256 * the ire version is enough, as there is no risk that 1257 * we resolve an IPv6 address with an IPv4 ire 1258 * or vice versa. 1259 */ 1260 if (ire->ire_ipversion == IPV4_VERSION) { 1261 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1262 ipha = (ipha_t *)mp->b_rptr; 1263 save_mp = mp; 1264 mp = first_mp; 1265 1266 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1267 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1268 } else { 1269 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1270 /* 1271 * Get a pointer to the beginning of the IPv6 header. 1272 * Ignore leading IPsec control mblks. 1273 */ 1274 first_mp = mp; 1275 if (mp->b_datap->db_type == M_CTL) { 1276 mp = mp->b_cont; 1277 } 1278 ip6h = (ip6_t *)mp->b_rptr; 1279 save_mp = mp; 1280 mp = first_mp; 1281 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1282 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1283 } 1284 if (dst_ire != NULL) { 1285 if (dst_ire->ire_flags & RTF_MULTIRT) { 1286 /* 1287 * At least one resolved multirt route 1288 * already exists for the destination, 1289 * don't sent this packet: either drop it 1290 * or complete the pending resolution, 1291 * depending on the ire. 1292 */ 1293 drop = B_TRUE; 1294 } 1295 ip1dbg(("ire_add_then_send: dst_ire %p " 1296 "[dst %08x, gw %08x], drop %d\n", 1297 (void *)dst_ire, 1298 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1299 ntohl(dst_ire->ire_addr) : \ 1300 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1301 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1302 ntohl(dst_ire->ire_gateway_addr) : \ 1303 ntohl(V4_PART_OF_V6( 1304 dst_ire->ire_gateway_addr_v6)), 1305 drop)); 1306 ire_refrele(dst_ire); 1307 } 1308 } 1309 1310 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1311 /* Regular packets with cache bound ires are here. */ 1312 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1313 1314 if (ire == NULL) { 1315 mp->b_prev = NULL; 1316 mp->b_next = NULL; 1317 MULTIRT_DEBUG_UNTAG(mp); 1318 freemsg(mp); 1319 return; 1320 } 1321 if (mp == NULL) { 1322 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1323 return; 1324 } 1325 } 1326 if (drop) { 1327 /* 1328 * If we're adding an RTF_MULTIRT ire, the resolution 1329 * is over: we just drop the packet. 1330 */ 1331 if (ire->ire_flags & RTF_MULTIRT) { 1332 if (save_mp) { 1333 save_mp->b_prev = NULL; 1334 save_mp->b_next = NULL; 1335 } 1336 MULTIRT_DEBUG_UNTAG(mp); 1337 freemsg(mp); 1338 } else { 1339 /* 1340 * Otherwise, we're adding the ire to a gateway 1341 * for a multirt route. 1342 * Invoke ip_newroute() to complete the resolution 1343 * of the route. We will then come back here and 1344 * finally drop this packet in the above code. 1345 */ 1346 if (ire->ire_ipversion == IPV4_VERSION) { 1347 /* 1348 * TODO: in order for CGTP to work in non-global 1349 * zones, ip_newroute() must create the IRE 1350 * cache in the zone indicated by 1351 * ire->ire_zoneid. 1352 */ 1353 ip_newroute(q, mp, ipha->ipha_dst, 1354 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1355 ire->ire_zoneid, ipst); 1356 } else { 1357 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1358 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1359 NULL, ire->ire_zoneid, ipst); 1360 } 1361 } 1362 1363 ire_refrele(ire); /* As done by ire_send(). */ 1364 return; 1365 } 1366 /* 1367 * Need to remember ire_bucket here as ire_send*() may delete 1368 * the ire so we cannot reference it after that. 1369 */ 1370 irb = ire->ire_bucket; 1371 if (ire->ire_ipversion == IPV4_VERSION) { 1372 ire_send(q, mp, ire); 1373 ire_limit = ip_ire_max_bucket_cnt; 1374 } else { 1375 ire_send_v6(q, mp, ire); 1376 ire_limit = ip6_ire_max_bucket_cnt; 1377 } 1378 1379 /* 1380 * irb is NULL if the IRE was not added to the hash. This happens 1381 * when IRE_MARK_NOADD is set and when IREs are returned from 1382 * ire_update_srcif_v4(). 1383 */ 1384 if (irb != NULL) { 1385 IRB_REFHOLD(irb); 1386 if (irb->irb_ire_cnt > ire_limit) 1387 ire_cache_cleanup(irb, ire_limit, ire); 1388 IRB_REFRELE(irb); 1389 } 1390 } 1391 1392 /* 1393 * Initialize the ire that is specific to IPv4 part and call 1394 * ire_init_common to finish it. 1395 */ 1396 ire_t * 1397 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1398 uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1399 queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1400 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1401 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1402 { 1403 ASSERT(type != IRE_CACHE || stq != NULL); 1404 /* 1405 * Reject IRE security attribute creation/initialization 1406 * if system is not running in Trusted mode. 1407 */ 1408 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1409 return (NULL); 1410 1411 1412 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 1413 1414 if (addr != NULL) 1415 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1416 if (src_addr != NULL) 1417 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1418 if (mask != NULL) { 1419 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1420 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1421 } 1422 if (gateway != NULL) { 1423 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1424 } 1425 1426 if (type == IRE_CACHE) 1427 ire->ire_cmask = cmask; 1428 1429 /* ire_init_common will free the mblks upon encountering any failure */ 1430 if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif, 1431 phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst)) 1432 return (NULL); 1433 1434 return (ire); 1435 } 1436 1437 /* 1438 * Similar to ire_create except that it is called only when 1439 * we want to allocate ire as an mblk e.g. we have an external 1440 * resolver ARP. 1441 */ 1442 ire_t * 1443 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1444 uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type, 1445 ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1446 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, 1447 ip_stack_t *ipst) 1448 { 1449 ire_t *ire, *buf; 1450 ire_t *ret_ire; 1451 mblk_t *mp; 1452 size_t bufsize; 1453 frtn_t *frtnp; 1454 ill_t *ill; 1455 1456 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1457 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1458 if (buf == NULL) { 1459 ip1dbg(("ire_create_mp: alloc failed\n")); 1460 return (NULL); 1461 } 1462 frtnp = (frtn_t *)(buf + 1); 1463 frtnp->free_arg = (caddr_t)buf; 1464 frtnp->free_func = ire_freemblk; 1465 1466 /* 1467 * Allocate the new IRE. The ire created will hold a ref on 1468 * an nce_t after ire_nce_init, and this ref must either be 1469 * (a) transferred to the ire_cache entry created when ire_add_v4 1470 * is called after successful arp resolution, or, 1471 * (b) released, when arp resolution fails 1472 * Case (b) is handled in ire_freemblk() which will be called 1473 * when mp is freed as a result of failed arp. 1474 */ 1475 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1476 if (mp == NULL) { 1477 ip1dbg(("ire_create_mp: alloc failed\n")); 1478 kmem_free(buf, bufsize); 1479 return (NULL); 1480 } 1481 ire = (ire_t *)mp->b_rptr; 1482 mp->b_wptr = (uchar_t *)&ire[1]; 1483 1484 /* Start clean. */ 1485 *ire = ire_null; 1486 ire->ire_mp = mp; 1487 mp->b_datap->db_type = IRE_DB_TYPE; 1488 ire->ire_marks |= IRE_MARK_UNCACHED; 1489 1490 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce, 1491 rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc, 1492 gcgrp, ipst); 1493 1494 ill = (ill_t *)(stq->q_ptr); 1495 if (ret_ire == NULL) { 1496 /* ire_freemblk needs these set */ 1497 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1498 ire->ire_ipst = ipst; 1499 freeb(ire->ire_mp); 1500 return (NULL); 1501 } 1502 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1503 ASSERT(ret_ire == ire); 1504 /* 1505 * ire_max_frag is normally zero here and is atomically set 1506 * under the irebucket lock in ire_add_v[46] except for the 1507 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1508 * is non-zero here. 1509 */ 1510 ire->ire_max_frag = max_frag; 1511 return (ire); 1512 } 1513 1514 /* 1515 * ire_create is called to allocate and initialize a new IRE. 1516 * 1517 * NOTE : This is called as writer sometimes though not required 1518 * by this function. 1519 */ 1520 ire_t * 1521 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1522 uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq, 1523 ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1524 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1525 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1526 { 1527 ire_t *ire; 1528 ire_t *ret_ire; 1529 1530 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1531 if (ire == NULL) { 1532 ip1dbg(("ire_create: alloc failed\n")); 1533 return (NULL); 1534 } 1535 *ire = ire_null; 1536 1537 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp, 1538 src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags, 1539 ulp_info, gc, gcgrp, ipst); 1540 1541 if (ret_ire == NULL) { 1542 kmem_cache_free(ire_cache, ire); 1543 return (NULL); 1544 } 1545 ASSERT(ret_ire == ire); 1546 return (ire); 1547 } 1548 1549 1550 /* 1551 * Common to IPv4 and IPv6 1552 */ 1553 boolean_t 1554 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1555 queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle, 1556 uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info, 1557 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1558 { 1559 ire->ire_max_fragp = max_fragp; 1560 ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 1561 1562 #ifdef DEBUG 1563 if (ipif != NULL) { 1564 if (ipif->ipif_isv6) 1565 ASSERT(ipversion == IPV6_VERSION); 1566 else 1567 ASSERT(ipversion == IPV4_VERSION); 1568 } 1569 #endif /* DEBUG */ 1570 1571 /* 1572 * Create/initialize IRE security attribute only in Trusted mode; 1573 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1574 * has held a reference to it and will release it when this routine 1575 * returns a failure, otherwise we own the reference. We do this 1576 * prior to initializing the rest IRE fields. 1577 * 1578 * Don't allocate ire_gw_secattr for the resolver case to prevent 1579 * memory leak (in case of external resolution failure). We'll 1580 * allocate it after a successful external resolution, in ire_add(). 1581 * Note that ire->ire_mp != NULL here means this ire is headed 1582 * to an external resolver. 1583 */ 1584 if (is_system_labeled()) { 1585 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1586 IRE_INTERFACE)) != 0) { 1587 /* release references on behalf of caller */ 1588 if (gc != NULL) 1589 GC_REFRELE(gc); 1590 if (gcgrp != NULL) 1591 GCGRP_REFRELE(gcgrp); 1592 } else if ((ire->ire_mp == NULL) && 1593 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1594 return (B_FALSE); 1595 } 1596 } 1597 1598 ire->ire_stq = stq; 1599 ire->ire_rfq = rfq; 1600 ire->ire_type = type; 1601 ire->ire_flags = RTF_UP | flags; 1602 ire->ire_ident = TICK_TO_MSEC(lbolt); 1603 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1604 1605 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1606 ire->ire_last_used_time = lbolt; 1607 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1608 1609 /* 1610 * If this IRE is an IRE_CACHE, inherit the handles from the 1611 * parent IREs. For others in the forwarding table, assign appropriate 1612 * new ones. 1613 * 1614 * The mutex protecting ire_handle is because ire_create is not always 1615 * called as a writer. 1616 */ 1617 if (ire->ire_type & IRE_OFFSUBNET) { 1618 mutex_enter(&ipst->ips_ire_handle_lock); 1619 ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++; 1620 mutex_exit(&ipst->ips_ire_handle_lock); 1621 } else if (ire->ire_type & IRE_INTERFACE) { 1622 mutex_enter(&ipst->ips_ire_handle_lock); 1623 ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++; 1624 mutex_exit(&ipst->ips_ire_handle_lock); 1625 } else if (ire->ire_type == IRE_CACHE) { 1626 ire->ire_phandle = phandle; 1627 ire->ire_ihandle = ihandle; 1628 } 1629 ire->ire_ipif = ipif; 1630 if (ipif != NULL) { 1631 ire->ire_ipif_seqid = ipif->ipif_seqid; 1632 ire->ire_zoneid = ipif->ipif_zoneid; 1633 } else { 1634 ire->ire_zoneid = GLOBAL_ZONEID; 1635 } 1636 ire->ire_ipversion = ipversion; 1637 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1638 if (ipversion == IPV4_VERSION) { 1639 /* 1640 * IPv6 initializes the ire_nce in ire_add_v6, which expects 1641 * to find the ire_nce to be null when it is called. 1642 */ 1643 if (ire_nce_init(ire, src_nce) != 0) { 1644 /* some failure occurred. propagate error back */ 1645 return (B_FALSE); 1646 } 1647 } 1648 ire->ire_refcnt = 1; 1649 ire->ire_ipst = ipst; /* No netstack_hold */ 1650 ire->ire_trace_disable = B_FALSE; 1651 1652 return (B_TRUE); 1653 } 1654 1655 /* 1656 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1657 * It is passed a pointer to a slot in an IRE pointer array into which to 1658 * place the pointer to the new IRE, if indeed we create one. If the 1659 * IRE corresponding to the address passed in would be a duplicate of an 1660 * existing one, we don't create the new one. irep is incremented before 1661 * return only if we do create a new IRE. (Always called as writer.) 1662 * 1663 * Note that with the "match_flags" parameter, we can match on either 1664 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1665 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1666 * we only create broadcast ire's on a per physical interface basis. If 1667 * someone is going to be mucking with logical interfaces, it is important 1668 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1669 * logical interface will not cause critical broadcast IRE's to be deleted. 1670 */ 1671 ire_t ** 1672 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1673 int match_flags) 1674 { 1675 ire_t *ire; 1676 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1677 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1678 1679 /* 1680 * No broadcast IREs for the LOOPBACK interface 1681 * or others such as point to point and IPIF_NOXMIT. 1682 */ 1683 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1684 (ipif->ipif_flags & IPIF_NOXMIT)) 1685 return (irep); 1686 1687 /* If this would be a duplicate, don't bother. */ 1688 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1689 ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) { 1690 /* 1691 * We look for non-deprecated (and non-anycast, non-nolocal) 1692 * ipifs as the best choice. ipifs with check_flags matching 1693 * (deprecated, etc) are used only if non-deprecated ipifs 1694 * are not available. if the existing ire's ipif is deprecated 1695 * and the new ipif is non-deprecated, switch to the new ipif 1696 */ 1697 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1698 (ipif->ipif_flags & check_flags)) { 1699 ire_refrele(ire); 1700 return (irep); 1701 } 1702 /* 1703 * Bcast ires exist in pairs. Both have to be deleted, 1704 * Since we are exclusive we can make the above assertion. 1705 * The 1st has to be refrele'd since it was ctable_lookup'd. 1706 */ 1707 ASSERT(IAM_WRITER_IPIF(ipif)); 1708 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 1709 ire_delete(ire->ire_next); 1710 ire_delete(ire); 1711 ire_refrele(ire); 1712 } 1713 1714 irep = ire_create_bcast(ipif, addr, irep); 1715 1716 return (irep); 1717 } 1718 1719 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 1720 1721 /* 1722 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 1723 * It leaves all the verifying and deleting to those routines. So it always 1724 * creates 2 bcast ires and chains them into the ire array passed in. 1725 */ 1726 ire_t ** 1727 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 1728 { 1729 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1730 1731 *irep++ = ire_create( 1732 (uchar_t *)&addr, /* dest addr */ 1733 (uchar_t *)&ip_g_all_ones, /* mask */ 1734 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 1735 NULL, /* no gateway */ 1736 &ipif->ipif_mtu, /* max frag */ 1737 NULL, /* no src nce */ 1738 ipif->ipif_rq, /* recv-from queue */ 1739 ipif->ipif_wq, /* send-to queue */ 1740 IRE_BROADCAST, 1741 ipif, 1742 0, 1743 0, 1744 0, 1745 0, 1746 &ire_uinfo_null, 1747 NULL, 1748 NULL, 1749 ipst); 1750 1751 *irep++ = ire_create( 1752 (uchar_t *)&addr, /* dest address */ 1753 (uchar_t *)&ip_g_all_ones, /* mask */ 1754 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 1755 NULL, /* no gateway */ 1756 &ip_loopback_mtu, /* max frag size */ 1757 NULL, /* no src_nce */ 1758 ipif->ipif_rq, /* recv-from queue */ 1759 NULL, /* no send-to queue */ 1760 IRE_BROADCAST, /* Needed for fanout in wput */ 1761 ipif, 1762 0, 1763 0, 1764 0, 1765 0, 1766 &ire_uinfo_null, 1767 NULL, 1768 NULL, 1769 ipst); 1770 1771 return (irep); 1772 } 1773 1774 /* 1775 * ire_walk routine to delete or update any IRE_CACHE that might contain 1776 * stale information. 1777 * The flags state which entries to delete or update. 1778 * Garbage collection is done separately using kmem alloc callbacks to 1779 * ip_trash_ire_reclaim. 1780 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 1781 * since other stale information is cleaned up using NUD. 1782 */ 1783 void 1784 ire_expire(ire_t *ire, char *arg) 1785 { 1786 ire_expire_arg_t *ieap = (ire_expire_arg_t *)(uintptr_t)arg; 1787 ill_t *stq_ill; 1788 int flush_flags = ieap->iea_flush_flag; 1789 ip_stack_t *ipst = ieap->iea_ipst; 1790 1791 if ((flush_flags & FLUSH_REDIRECT_TIME) && 1792 (ire->ire_flags & RTF_DYNAMIC)) { 1793 /* Make sure we delete the corresponding IRE_CACHE */ 1794 ip1dbg(("ire_expire: all redirects\n")); 1795 ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst); 1796 ire_delete(ire); 1797 atomic_dec_32(&ipst->ips_ip_redirect_cnt); 1798 return; 1799 } 1800 if (ire->ire_type != IRE_CACHE) 1801 return; 1802 1803 if (flush_flags & FLUSH_ARP_TIME) { 1804 /* 1805 * Remove all IRE_CACHE except IPv4 multicast ires. These 1806 * ires will be deleted by ip_trash_ire_reclaim_stack() 1807 * when system runs low in memory. 1808 * Verify that create time is more than ip_ire_arp_interval 1809 * milliseconds ago. 1810 */ 1811 1812 if (!(ire->ire_ipversion == IPV4_VERSION && 1813 CLASSD(ire->ire_addr)) && NCE_EXPIRED(ire->ire_nce, ipst)) { 1814 ire_delete(ire); 1815 return; 1816 } 1817 } 1818 1819 if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 1820 (ire->ire_ipif != NULL)) { 1821 /* Increase pmtu if it is less than the interface mtu */ 1822 mutex_enter(&ire->ire_lock); 1823 /* 1824 * If the ipif is a vni (whose mtu is 0, since it's virtual) 1825 * get the mtu from the sending interfaces' ipif 1826 */ 1827 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 1828 stq_ill = ire->ire_stq->q_ptr; 1829 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 1830 IP_MAXPACKET); 1831 } else { 1832 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 1833 IP_MAXPACKET); 1834 } 1835 ire->ire_frag_flag |= IPH_DF; 1836 mutex_exit(&ire->ire_lock); 1837 } 1838 } 1839 1840 /* 1841 * Return any local address. We use this to target ourselves 1842 * when the src address was specified as 'default'. 1843 * Preference for IRE_LOCAL entries. 1844 */ 1845 ire_t * 1846 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst) 1847 { 1848 ire_t *ire; 1849 irb_t *irb; 1850 ire_t *maybe = NULL; 1851 int i; 1852 1853 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 1854 irb = &ipst->ips_ip_cache_table[i]; 1855 if (irb->irb_ire == NULL) 1856 continue; 1857 rw_enter(&irb->irb_lock, RW_READER); 1858 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1859 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 1860 (ire->ire_zoneid != zoneid && 1861 ire->ire_zoneid != ALL_ZONES)) 1862 continue; 1863 switch (ire->ire_type) { 1864 case IRE_LOOPBACK: 1865 if (maybe == NULL) { 1866 IRE_REFHOLD(ire); 1867 maybe = ire; 1868 } 1869 break; 1870 case IRE_LOCAL: 1871 if (maybe != NULL) { 1872 ire_refrele(maybe); 1873 } 1874 IRE_REFHOLD(ire); 1875 rw_exit(&irb->irb_lock); 1876 return (ire); 1877 } 1878 } 1879 rw_exit(&irb->irb_lock); 1880 } 1881 return (maybe); 1882 } 1883 1884 /* 1885 * If the specified IRE is associated with a particular ILL, return 1886 * that ILL pointer (May be called as writer.). 1887 * 1888 * NOTE : This is not a generic function that can be used always. 1889 * This function always returns the ill of the outgoing packets 1890 * if this ire is used. 1891 */ 1892 ill_t * 1893 ire_to_ill(const ire_t *ire) 1894 { 1895 ill_t *ill = NULL; 1896 1897 /* 1898 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 1899 * the source address from. ire_stq is the one where the 1900 * packets will be sent out on. We return that here. 1901 * 1902 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 1903 * copy and they always exist next to each other with loopback 1904 * copy being the first one. If we are called on the non-loopback 1905 * copy, return the one pointed by ire_stq. If it was called on 1906 * a loopback copy, we still return the one pointed by the next 1907 * ire's ire_stq pointer i.e the one pointed by the non-loopback 1908 * copy. We don't want use ire_ipif as it might represent the 1909 * source address (if we borrow source addresses for 1910 * IRE_BROADCASTS in the future). 1911 * However if an interface is currently coming up, the above 1912 * condition may not hold during that period since the ires 1913 * are added one at a time. Thus one of the pair could have been 1914 * added and the other not yet added. 1915 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill. 1916 * 4) For all others return the ones pointed by ire_ipif->ipif_ill. 1917 * That handles IRE_LOOPBACK. 1918 */ 1919 1920 if (ire->ire_type == IRE_CACHE) { 1921 ill = (ill_t *)ire->ire_stq->q_ptr; 1922 } else if (ire->ire_type == IRE_BROADCAST) { 1923 if (ire->ire_stq != NULL) { 1924 ill = (ill_t *)ire->ire_stq->q_ptr; 1925 } else { 1926 ire_t *ire_next; 1927 1928 ire_next = ire->ire_next; 1929 if (ire_next != NULL && 1930 ire_next->ire_type == IRE_BROADCAST && 1931 ire_next->ire_addr == ire->ire_addr && 1932 ire_next->ire_ipif == ire->ire_ipif) { 1933 ill = (ill_t *)ire_next->ire_stq->q_ptr; 1934 } 1935 } 1936 } else if (ire->ire_rfq != NULL) { 1937 ill = ire->ire_rfq->q_ptr; 1938 } else if (ire->ire_ipif != NULL) { 1939 ill = ire->ire_ipif->ipif_ill; 1940 } 1941 return (ill); 1942 } 1943 1944 /* Arrange to call the specified function for every IRE in the world. */ 1945 void 1946 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 1947 { 1948 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 1949 } 1950 1951 void 1952 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 1953 { 1954 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 1955 } 1956 1957 void 1958 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 1959 { 1960 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 1961 } 1962 1963 /* 1964 * Walk a particular version. version == 0 means both v4 and v6. 1965 */ 1966 static void 1967 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 1968 ip_stack_t *ipst) 1969 { 1970 if (vers != IPV6_VERSION) { 1971 /* 1972 * ip_forwarding_table variable doesn't matter for IPv4 since 1973 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 1974 */ 1975 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 1976 0, NULL, 1977 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 1978 NULL, zoneid, ipst); 1979 } 1980 if (vers != IPV4_VERSION) { 1981 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 1982 ipst->ips_ip6_ftable_hash_size, 1983 ipst->ips_ip_forwarding_table_v6, 1984 ipst->ips_ip6_cache_table_size, 1985 ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst); 1986 } 1987 } 1988 1989 /* 1990 * Arrange to call the specified function for every IRE that matches the ill. 1991 */ 1992 void 1993 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 1994 ill_t *ill) 1995 { 1996 uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION); 1997 1998 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill); 1999 } 2000 2001 void 2002 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2003 ill_t *ill) 2004 { 2005 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2006 ill); 2007 } 2008 2009 void 2010 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2011 ill_t *ill) 2012 { 2013 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2014 ill); 2015 } 2016 2017 /* 2018 * Walk a particular ill and version. 2019 */ 2020 static void 2021 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2022 void *arg, uchar_t vers, ill_t *ill) 2023 { 2024 ip_stack_t *ipst = ill->ill_ipst; 2025 2026 if (vers == IPV4_VERSION) { 2027 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2028 IP_MASK_TABLE_SIZE, 0, 2029 NULL, ipst->ips_ip_cache_table_size, 2030 ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst); 2031 } else if (vers == IPV6_VERSION) { 2032 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2033 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 2034 ipst->ips_ip_forwarding_table_v6, 2035 ipst->ips_ip6_cache_table_size, 2036 ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst); 2037 } 2038 } 2039 2040 boolean_t 2041 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2042 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 2043 { 2044 ill_t *ire_stq_ill = NULL; 2045 ill_t *ire_ipif_ill = NULL; 2046 ill_group_t *ire_ill_group = NULL; 2047 2048 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2049 /* 2050 * MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2051 * pointed by ire_stq and ire_ipif. Only in the case of 2052 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2053 * different ills. But we want to keep this function generic 2054 * enough for future use. So, we always try to match on both. 2055 * The only caller of this function ire_walk_ill_tables, will 2056 * call "func" after we return from this function. We expect 2057 * "func" to do the right filtering of ires in this case. 2058 * 2059 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2060 * pointed by ire_stq and ire_ipif should always be the same. 2061 * So, we just match on only one of them. 2062 */ 2063 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2064 if (ire->ire_stq != NULL) 2065 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2066 if (ire->ire_ipif != NULL) 2067 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2068 if (ire_stq_ill != NULL) 2069 ire_ill_group = ire_stq_ill->ill_group; 2070 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2071 ire_ill_group = ire_ipif_ill->ill_group; 2072 } 2073 2074 if (zoneid != ALL_ZONES) { 2075 /* 2076 * We're walking the IREs for a specific zone. The only relevant 2077 * IREs are: 2078 * - all IREs with a matching ire_zoneid 2079 * - all IRE_OFFSUBNETs as they're shared across all zones 2080 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2081 * with a matching zone 2082 * - IRE_DEFAULTs with a gateway reachable from the zone 2083 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2084 * using the same rule; but the above rules are consistent with 2085 * the behavior of ire_ftable_lookup[_v6]() so that all the 2086 * routes that can be matched during lookup are also matched 2087 * here. 2088 */ 2089 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2090 /* 2091 * Note, IRE_INTERFACE can have the stq as NULL. For 2092 * example, if the default multicast route is tied to 2093 * the loopback address. 2094 */ 2095 if ((ire->ire_type & IRE_INTERFACE) && 2096 (ire->ire_stq != NULL)) { 2097 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2098 if (ire->ire_ipversion == IPV4_VERSION) { 2099 if (!ipif_usesrc_avail(ire_stq_ill, 2100 zoneid)) 2101 /* No usable src addr in zone */ 2102 return (B_FALSE); 2103 } else if (ire_stq_ill->ill_usesrc_ifindex 2104 != 0) { 2105 /* 2106 * For IPv6 use ipif_select_source_v6() 2107 * so the right scope selection is done 2108 */ 2109 ipif_t *src_ipif; 2110 src_ipif = 2111 ipif_select_source_v6(ire_stq_ill, 2112 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2113 IPV6_PREFER_SRC_DEFAULT, 2114 zoneid); 2115 if (src_ipif != NULL) { 2116 ipif_refrele(src_ipif); 2117 } else { 2118 return (B_FALSE); 2119 } 2120 } else { 2121 return (B_FALSE); 2122 } 2123 2124 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2125 return (B_FALSE); 2126 } 2127 } 2128 2129 /* 2130 * Match all default routes from the global zone, irrespective 2131 * of reachability. For a non-global zone only match those 2132 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2133 */ 2134 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2135 int ire_match_flags = 0; 2136 in6_addr_t gw_addr_v6; 2137 ire_t *rire; 2138 2139 ire_match_flags |= MATCH_IRE_TYPE; 2140 if (ire->ire_ipif != NULL) { 2141 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2142 } 2143 if (ire->ire_ipversion == IPV4_VERSION) { 2144 rire = ire_route_lookup(ire->ire_gateway_addr, 2145 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2146 zoneid, NULL, ire_match_flags, ipst); 2147 } else { 2148 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2149 mutex_enter(&ire->ire_lock); 2150 gw_addr_v6 = ire->ire_gateway_addr_v6; 2151 mutex_exit(&ire->ire_lock); 2152 rire = ire_route_lookup_v6(&gw_addr_v6, 2153 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2154 NULL, zoneid, NULL, ire_match_flags, ipst); 2155 } 2156 if (rire == NULL) { 2157 return (B_FALSE); 2158 } 2159 ire_refrele(rire); 2160 } 2161 } 2162 2163 if (((!(match_flags & MATCH_IRE_TYPE)) || 2164 (ire->ire_type & ire_type)) && 2165 ((!(match_flags & MATCH_IRE_ILL)) || 2166 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2167 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2168 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2169 (ire_ill_group != NULL && 2170 ire_ill_group == ill->ill_group))) { 2171 return (B_TRUE); 2172 } 2173 return (B_FALSE); 2174 } 2175 2176 int 2177 rtfunc(struct radix_node *rn, void *arg) 2178 { 2179 struct rtfuncarg *rtf = arg; 2180 struct rt_entry *rt; 2181 irb_t *irb; 2182 ire_t *ire; 2183 boolean_t ret; 2184 2185 rt = (struct rt_entry *)rn; 2186 ASSERT(rt != NULL); 2187 irb = &rt->rt_irb; 2188 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2189 if ((rtf->rt_match_flags != 0) || 2190 (rtf->rt_zoneid != ALL_ZONES)) { 2191 ret = ire_walk_ill_match(rtf->rt_match_flags, 2192 rtf->rt_ire_type, ire, 2193 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 2194 } else 2195 ret = B_TRUE; 2196 if (ret) 2197 (*rtf->rt_func)(ire, rtf->rt_arg); 2198 } 2199 return (0); 2200 } 2201 2202 /* 2203 * Walk the ftable and the ctable entries that match the ill. 2204 */ 2205 void 2206 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2207 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2208 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid, 2209 ip_stack_t *ipst) 2210 { 2211 irb_t *irb_ptr; 2212 irb_t *irb; 2213 ire_t *ire; 2214 int i, j; 2215 boolean_t ret; 2216 struct rtfuncarg rtfarg; 2217 2218 ASSERT((!(match_flags & (MATCH_IRE_ILL | 2219 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2220 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2221 /* 2222 * Optimize by not looking at the forwarding table if there 2223 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2224 * specified in ire_type. 2225 */ 2226 if (!(match_flags & MATCH_IRE_TYPE) || 2227 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2228 /* knobs such that routine is called only for v6 case */ 2229 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 2230 for (i = (ftbl_sz - 1); i >= 0; i--) { 2231 if ((irb_ptr = ipftbl[i]) == NULL) 2232 continue; 2233 for (j = 0; j < htbl_sz; j++) { 2234 irb = &irb_ptr[j]; 2235 if (irb->irb_ire == NULL) 2236 continue; 2237 2238 IRB_REFHOLD(irb); 2239 for (ire = irb->irb_ire; ire != NULL; 2240 ire = ire->ire_next) { 2241 if (match_flags == 0 && 2242 zoneid == ALL_ZONES) { 2243 ret = B_TRUE; 2244 } else { 2245 ret = 2246 ire_walk_ill_match( 2247 match_flags, 2248 ire_type, ire, ill, 2249 zoneid, ipst); 2250 } 2251 if (ret) 2252 (*func)(ire, arg); 2253 } 2254 IRB_REFRELE(irb); 2255 } 2256 } 2257 } else { 2258 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2259 rtfarg.rt_func = func; 2260 rtfarg.rt_arg = arg; 2261 if (match_flags != 0) { 2262 rtfarg.rt_match_flags = match_flags; 2263 } 2264 rtfarg.rt_ire_type = ire_type; 2265 rtfarg.rt_ill = ill; 2266 rtfarg.rt_zoneid = zoneid; 2267 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 2268 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 2269 ipst->ips_ip_ftable, 2270 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 2271 } 2272 } 2273 2274 /* 2275 * Optimize by not looking at the cache table if there 2276 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2277 * specified in ire_type. 2278 */ 2279 if (!(match_flags & MATCH_IRE_TYPE) || 2280 ((ire_type & IRE_CACHETABLE) != 0)) { 2281 for (i = 0; i < ctbl_sz; i++) { 2282 irb = &ipctbl[i]; 2283 if (irb->irb_ire == NULL) 2284 continue; 2285 IRB_REFHOLD(irb); 2286 for (ire = irb->irb_ire; ire != NULL; 2287 ire = ire->ire_next) { 2288 if (match_flags == 0 && zoneid == ALL_ZONES) { 2289 ret = B_TRUE; 2290 } else { 2291 ret = ire_walk_ill_match( 2292 match_flags, ire_type, 2293 ire, ill, zoneid, ipst); 2294 } 2295 if (ret) 2296 (*func)(ire, arg); 2297 } 2298 IRB_REFRELE(irb); 2299 } 2300 } 2301 } 2302 2303 /* 2304 * This function takes a mask and returns 2305 * number of bits set in the mask. If no 2306 * bit is set it returns 0. 2307 * Assumes a contiguous mask. 2308 */ 2309 int 2310 ip_mask_to_plen(ipaddr_t mask) 2311 { 2312 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2313 } 2314 2315 /* 2316 * Convert length for a mask to the mask. 2317 */ 2318 ipaddr_t 2319 ip_plen_to_mask(uint_t masklen) 2320 { 2321 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2322 } 2323 2324 void 2325 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2326 { 2327 ill_t *ill_list[NUM_ILLS]; 2328 ip_stack_t *ipst = ire->ire_ipst; 2329 2330 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2331 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2332 ill_unlock_ills(ill_list, NUM_ILLS); 2333 rw_exit(&irb_ptr->irb_lock); 2334 rw_exit(&ipst->ips_ill_g_usesrc_lock); 2335 } 2336 2337 /* 2338 * ire_add_v[46] atomically make sure that the ipif or ill associated 2339 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2340 * before adding the ire to the table. This ensures that we don't create 2341 * new IRE_CACHEs with stale values for parameters that are passed to 2342 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2343 * to the ipif_mtu, and not the value. The actual value is derived from the 2344 * parent ire or ipif under the bucket lock. 2345 */ 2346 int 2347 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2348 ipsq_func_t func) 2349 { 2350 ill_t *stq_ill; 2351 ill_t *ipif_ill; 2352 ill_t *ill_list[NUM_ILLS]; 2353 int cnt = NUM_ILLS; 2354 int error = 0; 2355 ill_t *ill = NULL; 2356 ip_stack_t *ipst = ire->ire_ipst; 2357 2358 ill_list[0] = stq_ill = ire->ire_stq != 2359 NULL ? ire->ire_stq->q_ptr : NULL; 2360 ill_list[1] = ipif_ill = ire->ire_ipif != 2361 NULL ? ire->ire_ipif->ipif_ill : NULL; 2362 2363 ASSERT((q != NULL && mp != NULL && func != NULL) || 2364 (q == NULL && mp == NULL && func == NULL)); 2365 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 2366 GRAB_CONN_LOCK(q); 2367 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 2368 ill_lock_ills(ill_list, cnt); 2369 2370 /* 2371 * While the IRE is in the process of being added, a user may have 2372 * invoked the ifconfig usesrc option on the stq_ill to make it a 2373 * usesrc client ILL. Check for this possibility here, if it is true 2374 * then we fail adding the IRE_CACHE. Another check is to make sure 2375 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 2376 * group. The ill_g_usesrc_lock is released in ire_atomic_end 2377 */ 2378 if ((ire->ire_type & IRE_CACHE) && 2379 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 2380 if (stq_ill->ill_usesrc_ifindex != 0) { 2381 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 2382 if ((ipif_ill->ill_phyint->phyint_ifindex != 2383 stq_ill->ill_usesrc_ifindex) || 2384 (ipif_ill->ill_usesrc_grp_next == NULL) || 2385 (ipif_ill->ill_usesrc_ifindex != 0)) { 2386 error = EINVAL; 2387 goto done; 2388 } 2389 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 2390 error = EINVAL; 2391 goto done; 2392 } 2393 } 2394 2395 /* 2396 * IPMP flag settings happen without taking the exclusive route 2397 * in ip_sioctl_flags. So we need to make an atomic check here 2398 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 2399 * FAILBACK=no case. 2400 */ 2401 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 2402 if (stq_ill->ill_state_flags & ILL_CHANGING) { 2403 ill = stq_ill; 2404 error = EAGAIN; 2405 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2406 (ill_is_probeonly(stq_ill) && 2407 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2408 error = EINVAL; 2409 } 2410 goto done; 2411 } 2412 2413 /* 2414 * We don't check for OFFLINE/FAILED in this case because 2415 * the source address selection logic (ipif_select_source) 2416 * may still select a source address from such an ill. The 2417 * assumption is that these addresses will be moved by in.mpathd 2418 * soon. (i.e. this is a race). However link local addresses 2419 * will not move and hence ipif_select_source_v6 tries to avoid 2420 * FAILED ills. Please see ipif_select_source_v6 for more info 2421 */ 2422 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 2423 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 2424 ill = ipif_ill; 2425 error = EAGAIN; 2426 goto done; 2427 } 2428 2429 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 2430 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 2431 ill = ire->ire_ipif->ipif_ill; 2432 ASSERT(ill != NULL); 2433 error = EAGAIN; 2434 goto done; 2435 } 2436 2437 done: 2438 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 2439 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 2440 mutex_enter(&ipsq->ipsq_lock); 2441 ire_atomic_end(irb_ptr, ire); 2442 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 2443 mutex_exit(&ipsq->ipsq_lock); 2444 error = EINPROGRESS; 2445 } else if (error != 0) { 2446 ire_atomic_end(irb_ptr, ire); 2447 } 2448 2449 RELEASE_CONN_LOCK(q); 2450 return (error); 2451 } 2452 2453 /* 2454 * Add a fully initialized IRE to an appropriate table based on 2455 * ire_type. 2456 * 2457 * allow_unresolved == B_FALSE indicates a legacy code-path call 2458 * that has prohibited the addition of incomplete ire's. If this 2459 * parameter is set, and we find an nce that is in a state other 2460 * than ND_REACHABLE, we fail the add. Note that nce_state could be 2461 * something other than ND_REACHABLE if the nce had just expired and 2462 * the ire_create preceding the ire_add added a new ND_INITIAL nce. 2463 */ 2464 int 2465 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 2466 boolean_t allow_unresolved) 2467 { 2468 ire_t *ire1; 2469 ill_t *stq_ill = NULL; 2470 ill_t *ill; 2471 ipif_t *ipif = NULL; 2472 ill_walk_context_t ctx; 2473 ire_t *ire = *irep; 2474 int error; 2475 boolean_t ire_is_mblk = B_FALSE; 2476 tsol_gcgrp_t *gcgrp = NULL; 2477 tsol_gcgrp_addr_t ga; 2478 ip_stack_t *ipst = ire->ire_ipst; 2479 2480 /* get ready for the day when original ire is not created as mblk */ 2481 if (ire->ire_mp != NULL) { 2482 ire_is_mblk = B_TRUE; 2483 /* Copy the ire to a kmem_alloc'ed area */ 2484 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 2485 if (ire1 == NULL) { 2486 ip1dbg(("ire_add: alloc failed\n")); 2487 ire_delete(ire); 2488 *irep = NULL; 2489 return (ENOMEM); 2490 } 2491 ire->ire_marks &= ~IRE_MARK_UNCACHED; 2492 *ire1 = *ire; 2493 ire1->ire_mp = NULL; 2494 ire1->ire_stq_ifindex = 0; 2495 freeb(ire->ire_mp); 2496 ire = ire1; 2497 } 2498 if (ire->ire_stq != NULL) 2499 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2500 2501 if (ire->ire_type == IRE_CACHE) { 2502 /* 2503 * If this interface is FAILED, or INACTIVE or has hit 2504 * the FAILBACK=no case, we create IRE_CACHES marked 2505 * HIDDEN for some special cases e.g. bind to 2506 * IPIF_NOFAILOVER address etc. So, if this interface 2507 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 2508 * not creating hidden ires, we should not allow that. 2509 * This happens because the state of the interface 2510 * changed while we were waiting in ARP. If this is the 2511 * daemon sending probes, the next probe will create 2512 * HIDDEN ires and we will create an ire then. This 2513 * cannot happen with NDP currently because IRE is 2514 * never queued in NDP. But it can happen in the 2515 * future when we have external resolvers with IPv6. 2516 * If the interface gets marked with OFFLINE while we 2517 * are waiting in ARP, don't add the ire. 2518 */ 2519 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2520 (ill_is_probeonly(stq_ill) && 2521 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2522 /* 2523 * We don't know whether it is a valid ipif or not. 2524 * unless we do the check below. So, set it to NULL. 2525 */ 2526 ire->ire_ipif = NULL; 2527 ire_delete(ire); 2528 *irep = NULL; 2529 return (EINVAL); 2530 } 2531 } 2532 2533 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 2534 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 2535 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2536 ill = ILL_START_WALK_ALL(&ctx, ipst); 2537 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2538 mutex_enter(&ill->ill_lock); 2539 if (ill->ill_state_flags & ILL_CONDEMNED) { 2540 mutex_exit(&ill->ill_lock); 2541 continue; 2542 } 2543 /* 2544 * We need to make sure that the ipif is a valid one 2545 * before adding the IRE_CACHE. This happens only 2546 * with IRE_CACHE when there is an external resolver. 2547 * 2548 * We can unplumb a logical interface while the 2549 * packet is waiting in ARP with the IRE. Then, 2550 * later on when we feed the IRE back, the ipif 2551 * has to be re-checked. This can't happen with 2552 * NDP currently, as we never queue the IRE with 2553 * the packet. We always try to recreate the IRE 2554 * when the resolution is completed. But, we do 2555 * it for IPv6 also here so that in future if 2556 * we have external resolvers, it will work without 2557 * any change. 2558 */ 2559 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 2560 if (ipif != NULL) { 2561 ipif_refhold_locked(ipif); 2562 mutex_exit(&ill->ill_lock); 2563 break; 2564 } 2565 mutex_exit(&ill->ill_lock); 2566 } 2567 rw_exit(&ipst->ips_ill_g_lock); 2568 if (ipif == NULL || 2569 (ipif->ipif_isv6 && 2570 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 2571 &ipif->ipif_v6src_addr)) || 2572 (!ipif->ipif_isv6 && 2573 ire->ire_src_addr != ipif->ipif_src_addr) || 2574 ire->ire_zoneid != ipif->ipif_zoneid) { 2575 2576 if (ipif != NULL) 2577 ipif_refrele(ipif); 2578 ire->ire_ipif = NULL; 2579 ire_delete(ire); 2580 *irep = NULL; 2581 return (EINVAL); 2582 } 2583 2584 2585 ASSERT(ill != NULL); 2586 /* 2587 * If this group was dismantled while this packets was 2588 * queued in ARP, don't add it here. 2589 */ 2590 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 2591 /* We don't want ire_inactive bump stats for this */ 2592 ipif_refrele(ipif); 2593 ire->ire_ipif = NULL; 2594 ire_delete(ire); 2595 *irep = NULL; 2596 return (EINVAL); 2597 } 2598 2599 /* 2600 * Since we didn't attach label security attributes to the 2601 * ire for the resolver case, we need to add it now. (only 2602 * for v4 resolver and v6 xresolv case). 2603 */ 2604 if (is_system_labeled() && ire_is_mblk) { 2605 if (ire->ire_ipversion == IPV4_VERSION) { 2606 ga.ga_af = AF_INET; 2607 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 2608 INADDR_ANY ? ire->ire_gateway_addr : 2609 ire->ire_addr, &ga.ga_addr); 2610 } else { 2611 ga.ga_af = AF_INET6; 2612 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 2613 &ire->ire_gateway_addr_v6) ? 2614 ire->ire_addr_v6 : 2615 ire->ire_gateway_addr_v6; 2616 } 2617 gcgrp = gcgrp_lookup(&ga, B_FALSE); 2618 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 2619 NULL, gcgrp); 2620 if (error != 0) { 2621 if (gcgrp != NULL) { 2622 GCGRP_REFRELE(gcgrp); 2623 gcgrp = NULL; 2624 } 2625 ipif_refrele(ipif); 2626 ire->ire_ipif = NULL; 2627 ire_delete(ire); 2628 *irep = NULL; 2629 return (error); 2630 } 2631 } 2632 } 2633 2634 /* 2635 * In case ire was changed 2636 */ 2637 *irep = ire; 2638 if (ire->ire_ipversion == IPV6_VERSION) 2639 error = ire_add_v6(irep, q, mp, func); 2640 else 2641 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 2642 if (ipif != NULL) 2643 ipif_refrele(ipif); 2644 return (error); 2645 } 2646 2647 /* 2648 * Add an initialized IRE to an appropriate table based on ire_type. 2649 * 2650 * The forward table contains IRE_PREFIX/IRE_HOST and 2651 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 2652 * 2653 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 2654 * and IRE_CACHE. 2655 * 2656 * NOTE : This function is called as writer though not required 2657 * by this function. 2658 */ 2659 static int 2660 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 2661 boolean_t allow_unresolved) 2662 { 2663 ire_t *ire1; 2664 irb_t *irb_ptr; 2665 ire_t **irep; 2666 int flags; 2667 ire_t *pire = NULL; 2668 ill_t *stq_ill; 2669 ire_t *ire = *ire_p; 2670 int error; 2671 boolean_t need_refrele = B_FALSE; 2672 nce_t *nce; 2673 ip_stack_t *ipst = ire->ire_ipst; 2674 2675 if (ire->ire_ipif != NULL) 2676 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 2677 if (ire->ire_stq != NULL) 2678 ASSERT(!MUTEX_HELD( 2679 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 2680 ASSERT(ire->ire_ipversion == IPV4_VERSION); 2681 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 2682 2683 /* Find the appropriate list head. */ 2684 switch (ire->ire_type) { 2685 case IRE_HOST: 2686 ire->ire_mask = IP_HOST_MASK; 2687 ire->ire_masklen = IP_ABITS; 2688 if ((ire->ire_flags & RTF_SETSRC) == 0) 2689 ire->ire_src_addr = 0; 2690 break; 2691 case IRE_CACHE: 2692 case IRE_BROADCAST: 2693 case IRE_LOCAL: 2694 case IRE_LOOPBACK: 2695 ire->ire_mask = IP_HOST_MASK; 2696 ire->ire_masklen = IP_ABITS; 2697 break; 2698 case IRE_PREFIX: 2699 if ((ire->ire_flags & RTF_SETSRC) == 0) 2700 ire->ire_src_addr = 0; 2701 break; 2702 case IRE_DEFAULT: 2703 if ((ire->ire_flags & RTF_SETSRC) == 0) 2704 ire->ire_src_addr = 0; 2705 break; 2706 case IRE_IF_RESOLVER: 2707 case IRE_IF_NORESOLVER: 2708 break; 2709 default: 2710 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 2711 (void *)ire, ire->ire_type)); 2712 ire_delete(ire); 2713 *ire_p = NULL; 2714 return (EINVAL); 2715 } 2716 2717 /* Make sure the address is properly masked. */ 2718 ire->ire_addr &= ire->ire_mask; 2719 2720 /* 2721 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 2722 * of the interface route while adding an IRE_CACHE for an on-link 2723 * destination in the IRE_IF_RESOLVER case, since the ire has to 2724 * go to ARP and return. We can't do a REFHOLD on the 2725 * associated interface ire for fear of ARP freeing the message. 2726 * Here we look up the interface ire in the forwarding table and 2727 * make sure that the interface route has not been deleted. 2728 */ 2729 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 2730 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 2731 2732 ASSERT(ire->ire_max_fragp == NULL); 2733 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 2734 /* 2735 * The ihandle that we used in ip_newroute_multi 2736 * comes from the interface route corresponding 2737 * to ire_ipif. Lookup here to see if it exists 2738 * still. 2739 * If the ire has a source address assigned using 2740 * RTF_SETSRC, ire_ipif is the logical interface holding 2741 * this source address, so we can't use it to check for 2742 * the existence of the interface route. Instead we rely 2743 * on the brute force ihandle search in 2744 * ire_ihandle_lookup_onlink() below. 2745 */ 2746 pire = ipif_to_ire(ire->ire_ipif); 2747 if (pire == NULL) { 2748 ire_delete(ire); 2749 *ire_p = NULL; 2750 return (EINVAL); 2751 } else if (pire->ire_ihandle != ire->ire_ihandle) { 2752 ire_refrele(pire); 2753 ire_delete(ire); 2754 *ire_p = NULL; 2755 return (EINVAL); 2756 } 2757 } else { 2758 pire = ire_ihandle_lookup_onlink(ire); 2759 if (pire == NULL) { 2760 ire_delete(ire); 2761 *ire_p = NULL; 2762 return (EINVAL); 2763 } 2764 } 2765 /* Prevent pire from getting deleted */ 2766 IRB_REFHOLD(pire->ire_bucket); 2767 /* Has it been removed already ? */ 2768 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 2769 IRB_REFRELE(pire->ire_bucket); 2770 ire_refrele(pire); 2771 ire_delete(ire); 2772 *ire_p = NULL; 2773 return (EINVAL); 2774 } 2775 } else { 2776 ASSERT(ire->ire_max_fragp != NULL); 2777 } 2778 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 2779 2780 if (ire->ire_ipif != NULL) { 2781 /* 2782 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 2783 * for historic reasons and to maintain symmetry with 2784 * IPv6 code path. Historically this was used by 2785 * multicast code to create multiple IRE_CACHES on 2786 * a single ill with different ipifs. This was used 2787 * so that multicast packets leaving the node had the 2788 * right source address. This is no longer needed as 2789 * ip_wput initializes the address correctly. 2790 */ 2791 flags |= MATCH_IRE_IPIF; 2792 /* 2793 * If we are creating hidden ires, make sure we search on 2794 * this ill (MATCH_IRE_ILL) and a hidden ire, 2795 * while we are searching for duplicates below. Otherwise we 2796 * could potentially find an IRE on some other interface 2797 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 2798 * shouldn't do this as this will lead to an infinite loop 2799 * (if we get to ip_wput again) eventually we need an hidden 2800 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 2801 * done below. 2802 */ 2803 if (ire->ire_type == IRE_CACHE && 2804 (ire->ire_marks & IRE_MARK_HIDDEN)) 2805 flags |= (MATCH_IRE_MARK_HIDDEN); 2806 } 2807 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 2808 irb_ptr = ire_get_bucket(ire); 2809 need_refrele = B_TRUE; 2810 if (irb_ptr == NULL) { 2811 /* 2812 * This assumes that the ire has not added 2813 * a reference to the ipif. 2814 */ 2815 ire->ire_ipif = NULL; 2816 ire_delete(ire); 2817 if (pire != NULL) { 2818 IRB_REFRELE(pire->ire_bucket); 2819 ire_refrele(pire); 2820 } 2821 *ire_p = NULL; 2822 return (EINVAL); 2823 } 2824 } else { 2825 irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH( 2826 ire->ire_addr, ipst->ips_ip_cache_table_size)]); 2827 } 2828 2829 /* 2830 * Start the atomic add of the ire. Grab the ill locks, 2831 * ill_g_usesrc_lock and the bucket lock. Check for condemned 2832 * 2833 * If ipif or ill is changing ire_atomic_start() may queue the 2834 * request and return EINPROGRESS. 2835 * To avoid lock order problems, get the ndp4->ndp_g_lock. 2836 */ 2837 mutex_enter(&ipst->ips_ndp4->ndp_g_lock); 2838 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 2839 if (error != 0) { 2840 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2841 /* 2842 * We don't know whether it is a valid ipif or not. 2843 * So, set it to NULL. This assumes that the ire has not added 2844 * a reference to the ipif. 2845 */ 2846 ire->ire_ipif = NULL; 2847 ire_delete(ire); 2848 if (pire != NULL) { 2849 IRB_REFRELE(pire->ire_bucket); 2850 ire_refrele(pire); 2851 } 2852 *ire_p = NULL; 2853 if (need_refrele) 2854 IRB_REFRELE(irb_ptr); 2855 return (error); 2856 } 2857 /* 2858 * To avoid creating ires having stale values for the ire_max_frag 2859 * we get the latest value atomically here. For more details 2860 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 2861 * in ip_rput_dlpi_writer 2862 */ 2863 if (ire->ire_max_fragp == NULL) { 2864 if (CLASSD(ire->ire_addr)) 2865 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 2866 else 2867 ire->ire_max_frag = pire->ire_max_frag; 2868 } else { 2869 uint_t max_frag; 2870 2871 max_frag = *ire->ire_max_fragp; 2872 ire->ire_max_fragp = NULL; 2873 ire->ire_max_frag = max_frag; 2874 } 2875 /* 2876 * Atomically check for duplicate and insert in the table. 2877 */ 2878 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 2879 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 2880 continue; 2881 if (ire->ire_ipif != NULL) { 2882 /* 2883 * We do MATCH_IRE_ILL implicitly here for IREs 2884 * with a non-null ire_ipif, including IRE_CACHEs. 2885 * As ire_ipif and ire_stq could point to two 2886 * different ills, we can't pass just ire_ipif to 2887 * ire_match_args and get a match on both ills. 2888 * This is just needed for duplicate checks here and 2889 * so we don't add an extra argument to 2890 * ire_match_args for this. Do it locally. 2891 * 2892 * NOTE : Currently there is no part of the code 2893 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 2894 * match for IRE_CACHEs. Thus we don't want to 2895 * extend the arguments to ire_match_args. 2896 */ 2897 if (ire1->ire_stq != ire->ire_stq) 2898 continue; 2899 /* 2900 * Multiroute IRE_CACHEs for a given destination can 2901 * have the same ire_ipif, typically if their source 2902 * address is forced using RTF_SETSRC, and the same 2903 * send-to queue. We differentiate them using the parent 2904 * handle. 2905 */ 2906 if (ire->ire_type == IRE_CACHE && 2907 (ire1->ire_flags & RTF_MULTIRT) && 2908 (ire->ire_flags & RTF_MULTIRT) && 2909 (ire1->ire_phandle != ire->ire_phandle)) 2910 continue; 2911 } 2912 if (ire1->ire_zoneid != ire->ire_zoneid) 2913 continue; 2914 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 2915 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 2916 ire->ire_zoneid, 0, NULL, flags)) { 2917 /* 2918 * Return the old ire after doing a REFHOLD. 2919 * As most of the callers continue to use the IRE 2920 * after adding, we return a held ire. This will 2921 * avoid a lookup in the caller again. If the callers 2922 * don't want to use it, they need to do a REFRELE. 2923 */ 2924 ip1dbg(("found dup ire existing %p new %p", 2925 (void *)ire1, (void *)ire)); 2926 IRE_REFHOLD(ire1); 2927 ire_atomic_end(irb_ptr, ire); 2928 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2929 ire_delete(ire); 2930 if (pire != NULL) { 2931 /* 2932 * Assert that it is not removed from the 2933 * list yet. 2934 */ 2935 ASSERT(pire->ire_ptpn != NULL); 2936 IRB_REFRELE(pire->ire_bucket); 2937 ire_refrele(pire); 2938 } 2939 *ire_p = ire1; 2940 if (need_refrele) 2941 IRB_REFRELE(irb_ptr); 2942 return (0); 2943 } 2944 } 2945 if (ire->ire_type & IRE_CACHE) { 2946 ASSERT(ire->ire_stq != NULL); 2947 nce = ndp_lookup_v4(ire_to_ill(ire), 2948 ((ire->ire_gateway_addr != INADDR_ANY) ? 2949 &ire->ire_gateway_addr : &ire->ire_addr), 2950 B_TRUE); 2951 if (nce != NULL) 2952 mutex_enter(&nce->nce_lock); 2953 /* 2954 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 2955 * and the caller has prohibited the addition of incomplete 2956 * ire's, we fail the add. Note that nce_state could be 2957 * something other than ND_REACHABLE if the nce had 2958 * just expired and the ire_create preceding the 2959 * ire_add added a new ND_INITIAL nce. 2960 */ 2961 if ((nce == NULL) || 2962 (nce->nce_flags & NCE_F_CONDEMNED) || 2963 (!allow_unresolved && 2964 (nce->nce_state != ND_REACHABLE))) { 2965 if (nce != NULL) { 2966 DTRACE_PROBE1(ire__bad__nce, nce_t *, nce); 2967 mutex_exit(&nce->nce_lock); 2968 } 2969 ire_atomic_end(irb_ptr, ire); 2970 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2971 if (nce != NULL) 2972 NCE_REFRELE(nce); 2973 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 2974 ire_delete(ire); 2975 if (pire != NULL) { 2976 IRB_REFRELE(pire->ire_bucket); 2977 ire_refrele(pire); 2978 } 2979 *ire_p = NULL; 2980 if (need_refrele) 2981 IRB_REFRELE(irb_ptr); 2982 return (EINVAL); 2983 } else { 2984 ire->ire_nce = nce; 2985 mutex_exit(&nce->nce_lock); 2986 /* 2987 * We are associating this nce to the ire, so 2988 * change the nce ref taken in ndp_lookup_v4() from 2989 * NCE_REFHOLD to NCE_REFHOLD_NOTR 2990 */ 2991 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 2992 } 2993 } 2994 /* 2995 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 2996 * grouping identical addresses together on the hash chain. We also 2997 * don't want to send multiple copies out if there are two ills part 2998 * of the same group. Thus we group the ires with same addr and same 2999 * ill group together so that ip_wput_ire can easily skip all the 3000 * ires with same addr and same group after sending the first copy. 3001 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3002 * interested in such groupings only for broadcasts. 3003 * 3004 * NOTE : If the interfaces are brought up first and then grouped, 3005 * illgrp_insert will handle it. We come here when the interfaces 3006 * are already in group and we are bringing them UP. 3007 * 3008 * Find the first entry that matches ire_addr. *irep will be null 3009 * if no match. 3010 * 3011 * Note: the loopback and non-loopback broadcast entries for an 3012 * interface MUST be added before any MULTIRT entries. 3013 */ 3014 irep = (ire_t **)irb_ptr; 3015 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3016 irep = &ire1->ire_next; 3017 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3018 /* 3019 * We found some ire (i.e *irep) with a matching addr. We 3020 * want to group ires with same addr and same ill group 3021 * together. 3022 * 3023 * First get to the entry that matches our address and 3024 * ill group i.e stop as soon as we find the first ire 3025 * matching the ill group and address. If there is only 3026 * an address match, we should walk and look for some 3027 * group match. These are some of the possible scenarios : 3028 * 3029 * 1) There are no groups at all i.e all ire's ill_group 3030 * are NULL. In that case we will essentially group 3031 * all the ires with the same addr together. Same as 3032 * the "else" block of this "if". 3033 * 3034 * 2) There are some groups and this ire's ill_group is 3035 * NULL. In this case, we will first find the group 3036 * that matches the address and a NULL group. Then 3037 * we will insert the ire at the end of that group. 3038 * 3039 * 3) There are some groups and this ires's ill_group is 3040 * non-NULL. In this case we will first find the group 3041 * that matches the address and the ill_group. Then 3042 * we will insert the ire at the end of that group. 3043 */ 3044 for (;;) { 3045 ire1 = *irep; 3046 if ((ire1->ire_next == NULL) || 3047 (ire1->ire_next->ire_addr != ire->ire_addr) || 3048 (ire1->ire_type != IRE_BROADCAST) || 3049 (ire1->ire_flags & RTF_MULTIRT) || 3050 (ire1->ire_ipif->ipif_ill->ill_group == 3051 ire->ire_ipif->ipif_ill->ill_group)) 3052 break; 3053 irep = &ire1->ire_next; 3054 } 3055 ASSERT(*irep != NULL); 3056 /* 3057 * The ire will be added before *irep, so 3058 * if irep is a MULTIRT ire, just break to 3059 * ire insertion code. 3060 */ 3061 if (((*irep)->ire_flags & RTF_MULTIRT) != 0) 3062 goto insert_ire; 3063 3064 irep = &((*irep)->ire_next); 3065 3066 /* 3067 * Either we have hit the end of the list or the address 3068 * did not match or the group *matched*. If we found 3069 * a match on the group, skip to the end of the group. 3070 */ 3071 while (*irep != NULL) { 3072 ire1 = *irep; 3073 if ((ire1->ire_addr != ire->ire_addr) || 3074 (ire1->ire_type != IRE_BROADCAST) || 3075 (ire1->ire_ipif->ipif_ill->ill_group != 3076 ire->ire_ipif->ipif_ill->ill_group)) 3077 break; 3078 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3079 ire1->ire_ipif == ire->ire_ipif) { 3080 irep = &ire1->ire_next; 3081 break; 3082 } 3083 irep = &ire1->ire_next; 3084 } 3085 } else if (*irep != NULL) { 3086 /* 3087 * Find the last ire which matches ire_addr. 3088 * Needed to do tail insertion among entries with the same 3089 * ire_addr. 3090 */ 3091 while (ire->ire_addr == ire1->ire_addr) { 3092 irep = &ire1->ire_next; 3093 ire1 = *irep; 3094 if (ire1 == NULL) 3095 break; 3096 } 3097 } 3098 3099 insert_ire: 3100 /* Insert at *irep */ 3101 ire1 = *irep; 3102 if (ire1 != NULL) 3103 ire1->ire_ptpn = &ire->ire_next; 3104 ire->ire_next = ire1; 3105 /* Link the new one in. */ 3106 ire->ire_ptpn = irep; 3107 3108 /* 3109 * ire_walk routines de-reference ire_next without holding 3110 * a lock. Before we point to the new ire, we want to make 3111 * sure the store that sets the ire_next of the new ire 3112 * reaches global visibility, so that ire_walk routines 3113 * don't see a truncated list of ires i.e if the ire_next 3114 * of the new ire gets set after we do "*irep = ire" due 3115 * to re-ordering, the ire_walk thread will see a NULL 3116 * once it accesses the ire_next of the new ire. 3117 * membar_producer() makes sure that the following store 3118 * happens *after* all of the above stores. 3119 */ 3120 membar_producer(); 3121 *irep = ire; 3122 ire->ire_bucket = irb_ptr; 3123 /* 3124 * We return a bumped up IRE above. Keep it symmetrical 3125 * so that the callers will always have to release. This 3126 * helps the callers of this function because they continue 3127 * to use the IRE after adding and hence they don't have to 3128 * lookup again after we return the IRE. 3129 * 3130 * NOTE : We don't have to use atomics as this is appearing 3131 * in the list for the first time and no one else can bump 3132 * up the reference count on this yet. 3133 */ 3134 IRE_REFHOLD_LOCKED(ire); 3135 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 3136 3137 irb_ptr->irb_ire_cnt++; 3138 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3139 irb_ptr->irb_nire++; 3140 3141 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3142 irb_ptr->irb_tmp_ire_cnt++; 3143 3144 if (ire->ire_ipif != NULL) { 3145 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ire->ire_ipif, 3146 (char *), "ire", (void *), ire); 3147 ire->ire_ipif->ipif_ire_cnt++; 3148 if (ire->ire_stq != NULL) { 3149 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3150 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), stq_ill, 3151 (char *), "ire", (void *), ire); 3152 stq_ill->ill_ire_cnt++; 3153 } 3154 } else { 3155 ASSERT(ire->ire_stq == NULL); 3156 } 3157 3158 ire_atomic_end(irb_ptr, ire); 3159 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3160 3161 if (pire != NULL) { 3162 /* Assert that it is not removed from the list yet */ 3163 ASSERT(pire->ire_ptpn != NULL); 3164 IRB_REFRELE(pire->ire_bucket); 3165 ire_refrele(pire); 3166 } 3167 3168 if (ire->ire_type != IRE_CACHE) { 3169 /* 3170 * For ire's with host mask see if there is an entry 3171 * in the cache. If there is one flush the whole cache as 3172 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3173 * If no entry is found than there is no need to flush the 3174 * cache. 3175 */ 3176 if (ire->ire_mask == IP_HOST_MASK) { 3177 ire_t *lire; 3178 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3179 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3180 if (lire != NULL) { 3181 ire_refrele(lire); 3182 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3183 } 3184 } else { 3185 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3186 } 3187 } 3188 /* 3189 * We had to delay the fast path probe until the ire is inserted 3190 * in the list. Otherwise the fast path ack won't find the ire in 3191 * the table. 3192 */ 3193 if (ire->ire_type == IRE_CACHE || 3194 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) { 3195 ASSERT(ire->ire_nce != NULL); 3196 if (ire->ire_nce->nce_state == ND_REACHABLE) 3197 nce_fastpath(ire->ire_nce); 3198 } 3199 if (ire->ire_ipif != NULL) 3200 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3201 *ire_p = ire; 3202 if (need_refrele) { 3203 IRB_REFRELE(irb_ptr); 3204 } 3205 return (0); 3206 } 3207 3208 /* 3209 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3210 * do the final cleanup for this ire. 3211 */ 3212 void 3213 ire_cleanup(ire_t *ire) 3214 { 3215 ire_t *ire_next; 3216 ip_stack_t *ipst = ire->ire_ipst; 3217 3218 ASSERT(ire != NULL); 3219 3220 while (ire != NULL) { 3221 ire_next = ire->ire_next; 3222 if (ire->ire_ipversion == IPV4_VERSION) { 3223 ire_delete_v4(ire); 3224 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 3225 ire_stats_deleted); 3226 } else { 3227 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3228 ire_delete_v6(ire); 3229 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 3230 ire_stats_deleted); 3231 } 3232 /* 3233 * Now it's really out of the list. Before doing the 3234 * REFRELE, set ire_next to NULL as ire_inactive asserts 3235 * so. 3236 */ 3237 ire->ire_next = NULL; 3238 IRE_REFRELE_NOTR(ire); 3239 ire = ire_next; 3240 } 3241 } 3242 3243 /* 3244 * IRB_REFRELE is the only caller of the function. It calls to unlink 3245 * all the CONDEMNED ires from this bucket. 3246 */ 3247 ire_t * 3248 ire_unlink(irb_t *irb) 3249 { 3250 ire_t *ire; 3251 ire_t *ire1; 3252 ire_t **ptpn; 3253 ire_t *ire_list = NULL; 3254 3255 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3256 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3257 (irb->irb_refcnt == 0)); 3258 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3259 ASSERT(irb->irb_ire != NULL); 3260 3261 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3262 ip_stack_t *ipst = ire->ire_ipst; 3263 3264 ire1 = ire->ire_next; 3265 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3266 ptpn = ire->ire_ptpn; 3267 ire1 = ire->ire_next; 3268 if (ire1) 3269 ire1->ire_ptpn = ptpn; 3270 *ptpn = ire1; 3271 ire->ire_ptpn = NULL; 3272 ire->ire_next = NULL; 3273 if (ire->ire_type == IRE_DEFAULT) { 3274 /* 3275 * IRE is out of the list. We need to adjust 3276 * the accounting before the caller drops 3277 * the lock. 3278 */ 3279 if (ire->ire_ipversion == IPV6_VERSION) { 3280 ASSERT(ipst-> 3281 ips_ipv6_ire_default_count != 3282 0); 3283 ipst->ips_ipv6_ire_default_count--; 3284 } 3285 } 3286 /* 3287 * We need to call ire_delete_v4 or ire_delete_v6 3288 * to clean up the cache or the redirects pointing at 3289 * the default gateway. We need to drop the lock 3290 * as ire_flush_cache/ire_delete_host_redircts require 3291 * so. But we can't drop the lock, as ire_unlink needs 3292 * to atomically remove the ires from the list. 3293 * So, create a temporary list of CONDEMNED ires 3294 * for doing ire_delete_v4/ire_delete_v6 operations 3295 * later on. 3296 */ 3297 ire->ire_next = ire_list; 3298 ire_list = ire; 3299 } 3300 } 3301 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3302 return (ire_list); 3303 } 3304 3305 /* 3306 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3307 * ARP message on any of its interface queue, it scans the nce table and 3308 * deletes and calls ndp_delete() for the appropriate nce. This action 3309 * also deletes all the neighbor/ire cache entries for that address. 3310 * This function is called from ip_arp_news in ip.c and also for 3311 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3312 * true if it finds a nce entry which is used by ip_arp_news to determine if 3313 * it needs to do an ire_walk_v4. The return value is also used for the 3314 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3315 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3316 * ip_if->ipif_ill also needs to be matched. 3317 */ 3318 boolean_t 3319 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst) 3320 { 3321 ill_t *ill; 3322 nce_t *nce; 3323 3324 ill = (ipif ? ipif->ipif_ill : NULL); 3325 3326 if (ill != NULL) { 3327 /* 3328 * clean up the nce (and any relevant ire's) that matches 3329 * on addr and ill. 3330 */ 3331 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3332 if (nce != NULL) { 3333 ndp_delete(nce); 3334 return (B_TRUE); 3335 } 3336 } else { 3337 /* 3338 * ill is wildcard. clean up all nce's and 3339 * ire's that match on addr 3340 */ 3341 nce_clookup_t cl; 3342 3343 cl.ncecl_addr = addr; 3344 cl.ncecl_found = B_FALSE; 3345 3346 ndp_walk_common(ipst->ips_ndp4, NULL, 3347 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3348 3349 /* 3350 * ncecl_found would be set by ip_nce_clookup_and_delete if 3351 * we found a matching nce. 3352 */ 3353 return (cl.ncecl_found); 3354 } 3355 return (B_FALSE); 3356 3357 } 3358 3359 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3360 static void 3361 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 3362 { 3363 nce_clookup_t *cl = (nce_clookup_t *)arg; 3364 ipaddr_t nce_addr; 3365 3366 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 3367 if (nce_addr == cl->ncecl_addr) { 3368 cl->ncecl_found = B_TRUE; 3369 /* clean up the nce (and any relevant ire's) */ 3370 ndp_delete(nce); 3371 } 3372 } 3373 3374 /* 3375 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 3376 * when there are no ire's left in the bucket. Returns TRUE if the bucket 3377 * is deleted and freed. 3378 */ 3379 boolean_t 3380 irb_inactive(irb_t *irb) 3381 { 3382 struct rt_entry *rt; 3383 struct radix_node *rn; 3384 ip_stack_t *ipst = irb->irb_ipst; 3385 3386 ASSERT(irb->irb_ipst != NULL); 3387 3388 rt = IRB2RT(irb); 3389 rn = (struct radix_node *)rt; 3390 3391 /* first remove it from the radix tree. */ 3392 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 3393 rw_enter(&irb->irb_lock, RW_WRITER); 3394 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 3395 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 3396 ipst->ips_ip_ftable); 3397 DTRACE_PROBE1(irb__free, rt_t *, rt); 3398 ASSERT((void *)rn == (void *)rt); 3399 Free(rt, rt_entry_cache); 3400 /* irb_lock is freed */ 3401 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3402 return (B_TRUE); 3403 } 3404 rw_exit(&irb->irb_lock); 3405 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3406 return (B_FALSE); 3407 } 3408 3409 /* 3410 * Delete the specified IRE. 3411 */ 3412 void 3413 ire_delete(ire_t *ire) 3414 { 3415 ire_t *ire1; 3416 ire_t **ptpn; 3417 irb_t *irb; 3418 ip_stack_t *ipst = ire->ire_ipst; 3419 3420 if ((irb = ire->ire_bucket) == NULL) { 3421 /* 3422 * It was never inserted in the list. Should call REFRELE 3423 * to free this IRE. 3424 */ 3425 IRE_REFRELE_NOTR(ire); 3426 return; 3427 } 3428 3429 rw_enter(&irb->irb_lock, RW_WRITER); 3430 3431 if (irb->irb_rr_origin == ire) { 3432 irb->irb_rr_origin = NULL; 3433 } 3434 3435 /* 3436 * In case of V4 we might still be waiting for fastpath ack. 3437 */ 3438 if (ire->ire_ipversion == IPV4_VERSION && 3439 (ire->ire_type == IRE_CACHE || 3440 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) { 3441 ASSERT(ire->ire_nce != NULL); 3442 nce_fastpath_list_delete(ire->ire_nce); 3443 } 3444 3445 if (ire->ire_ptpn == NULL) { 3446 /* 3447 * Some other thread has removed us from the list. 3448 * It should have done the REFRELE for us. 3449 */ 3450 rw_exit(&irb->irb_lock); 3451 return; 3452 } 3453 3454 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3455 irb->irb_ire_cnt--; 3456 ire->ire_marks |= IRE_MARK_CONDEMNED; 3457 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 3458 irb->irb_tmp_ire_cnt--; 3459 ire->ire_marks &= ~IRE_MARK_TEMPORARY; 3460 } 3461 } 3462 3463 if (irb->irb_refcnt != 0) { 3464 /* 3465 * The last thread to leave this bucket will 3466 * delete this ire. 3467 */ 3468 irb->irb_marks |= IRB_MARK_CONDEMNED; 3469 rw_exit(&irb->irb_lock); 3470 return; 3471 } 3472 3473 /* 3474 * Normally to delete an ire, we walk the bucket. While we 3475 * walk the bucket, we normally bump up irb_refcnt and hence 3476 * we return from above where we mark CONDEMNED and the ire 3477 * gets deleted from ire_unlink. This case is where somebody 3478 * knows the ire e.g by doing a lookup, and wants to delete the 3479 * IRE. irb_refcnt would be 0 in this case if nobody is walking 3480 * the bucket. 3481 */ 3482 ptpn = ire->ire_ptpn; 3483 ire1 = ire->ire_next; 3484 if (ire1 != NULL) 3485 ire1->ire_ptpn = ptpn; 3486 ASSERT(ptpn != NULL); 3487 *ptpn = ire1; 3488 ire->ire_ptpn = NULL; 3489 ire->ire_next = NULL; 3490 if (ire->ire_ipversion == IPV6_VERSION) { 3491 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 3492 } else { 3493 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 3494 } 3495 /* 3496 * ip_wput/ip_wput_v6 checks this flag to see whether 3497 * it should still use the cached ire or not. 3498 */ 3499 if (ire->ire_type == IRE_DEFAULT) { 3500 /* 3501 * IRE is out of the list. We need to adjust the 3502 * accounting before we drop the lock. 3503 */ 3504 if (ire->ire_ipversion == IPV6_VERSION) { 3505 ASSERT(ipst->ips_ipv6_ire_default_count != 0); 3506 ipst->ips_ipv6_ire_default_count--; 3507 } 3508 } 3509 rw_exit(&irb->irb_lock); 3510 3511 if (ire->ire_ipversion == IPV6_VERSION) { 3512 ire_delete_v6(ire); 3513 } else { 3514 ire_delete_v4(ire); 3515 } 3516 /* 3517 * We removed it from the list. Decrement the 3518 * reference count. 3519 */ 3520 IRE_REFRELE_NOTR(ire); 3521 } 3522 3523 /* 3524 * Delete the specified IRE. 3525 * All calls should use ire_delete(). 3526 * Sometimes called as writer though not required by this function. 3527 * 3528 * NOTE : This function is called only if the ire was added 3529 * in the list. 3530 */ 3531 static void 3532 ire_delete_v4(ire_t *ire) 3533 { 3534 ip_stack_t *ipst = ire->ire_ipst; 3535 3536 ASSERT(ire->ire_refcnt >= 1); 3537 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3538 3539 if (ire->ire_type != IRE_CACHE) 3540 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 3541 if (ire->ire_type == IRE_DEFAULT) { 3542 /* 3543 * when a default gateway is going away 3544 * delete all the host redirects pointing at that 3545 * gateway. 3546 */ 3547 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 3548 } 3549 } 3550 3551 /* 3552 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 3553 * to free the ire when the reference count goes to zero. 3554 */ 3555 void 3556 ire_inactive(ire_t *ire) 3557 { 3558 nce_t *nce; 3559 ill_t *ill = NULL; 3560 ill_t *stq_ill = NULL; 3561 ipif_t *ipif; 3562 boolean_t need_wakeup = B_FALSE; 3563 irb_t *irb; 3564 ip_stack_t *ipst = ire->ire_ipst; 3565 3566 ASSERT(ire->ire_refcnt == 0); 3567 ASSERT(ire->ire_ptpn == NULL); 3568 ASSERT(ire->ire_next == NULL); 3569 3570 if (ire->ire_gw_secattr != NULL) { 3571 ire_gw_secattr_free(ire->ire_gw_secattr); 3572 ire->ire_gw_secattr = NULL; 3573 } 3574 3575 if (ire->ire_mp != NULL) { 3576 ASSERT(ire->ire_bucket == NULL); 3577 mutex_destroy(&ire->ire_lock); 3578 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3579 if (ire->ire_nce != NULL) 3580 NCE_REFRELE_NOTR(ire->ire_nce); 3581 freeb(ire->ire_mp); 3582 return; 3583 } 3584 3585 if ((nce = ire->ire_nce) != NULL) { 3586 NCE_REFRELE_NOTR(nce); 3587 ire->ire_nce = NULL; 3588 } 3589 3590 if (ire->ire_ipif == NULL) 3591 goto end; 3592 3593 ipif = ire->ire_ipif; 3594 ill = ipif->ipif_ill; 3595 3596 if (ire->ire_bucket == NULL) { 3597 /* The ire was never inserted in the table. */ 3598 goto end; 3599 } 3600 3601 /* 3602 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 3603 * non-null ill_ire_count also goes down by 1. 3604 * 3605 * The ipif that is associated with an ire is ire->ire_ipif and 3606 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 3607 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 3608 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 3609 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 3610 * different. If this is different from ire->ire_ipif->ipif_ill and 3611 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 3612 * ipif_ill_refrele_tail on the stq_ill. 3613 */ 3614 3615 if (ire->ire_stq != NULL) 3616 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3617 3618 if (stq_ill == NULL || stq_ill == ill) { 3619 /* Optimize the most common case */ 3620 mutex_enter(&ill->ill_lock); 3621 ASSERT(ipif->ipif_ire_cnt != 0); 3622 DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif, 3623 (char *), "ire", (void *), ire); 3624 ipif->ipif_ire_cnt--; 3625 if (IPIF_DOWN_OK(ipif)) 3626 need_wakeup = B_TRUE; 3627 if (stq_ill != NULL) { 3628 ASSERT(stq_ill->ill_ire_cnt != 0); 3629 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill, 3630 (char *), "ire", (void *), ire); 3631 stq_ill->ill_ire_cnt--; 3632 if (ILL_DOWN_OK(stq_ill)) 3633 need_wakeup = B_TRUE; 3634 } 3635 if (need_wakeup) { 3636 /* Drops the ill lock */ 3637 ipif_ill_refrele_tail(ill); 3638 } else { 3639 mutex_exit(&ill->ill_lock); 3640 } 3641 } else { 3642 /* 3643 * We can't grab all the ill locks at the same time. 3644 * It can lead to recursive lock enter in the call to 3645 * ipif_ill_refrele_tail and later. Instead do it 1 at 3646 * a time. 3647 */ 3648 mutex_enter(&ill->ill_lock); 3649 ASSERT(ipif->ipif_ire_cnt != 0); 3650 DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif, 3651 (char *), "ire", (void *), ire); 3652 ipif->ipif_ire_cnt--; 3653 if (IPIF_DOWN_OK(ipif)) { 3654 /* Drops the lock */ 3655 ipif_ill_refrele_tail(ill); 3656 } else { 3657 mutex_exit(&ill->ill_lock); 3658 } 3659 if (stq_ill != NULL) { 3660 mutex_enter(&stq_ill->ill_lock); 3661 ASSERT(stq_ill->ill_ire_cnt != 0); 3662 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill, 3663 (char *), "ire", (void *), ire); 3664 stq_ill->ill_ire_cnt--; 3665 if (ILL_DOWN_OK(stq_ill)) { 3666 /* Drops the ill lock */ 3667 ipif_ill_refrele_tail(stq_ill); 3668 } else { 3669 mutex_exit(&stq_ill->ill_lock); 3670 } 3671 } 3672 } 3673 end: 3674 /* This should be true for both V4 and V6 */ 3675 3676 if ((ire->ire_type & IRE_FORWARDTABLE) && 3677 (ire->ire_ipversion == IPV4_VERSION) && 3678 ((irb = ire->ire_bucket) != NULL)) { 3679 rw_enter(&irb->irb_lock, RW_WRITER); 3680 irb->irb_nire--; 3681 /* 3682 * Instead of examining the conditions for freeing 3683 * the radix node here, we do it by calling 3684 * IRB_REFRELE which is a single point in the code 3685 * that embeds that logic. Bump up the refcnt to 3686 * be able to call IRB_REFRELE 3687 */ 3688 IRB_REFHOLD_LOCKED(irb); 3689 rw_exit(&irb->irb_lock); 3690 IRB_REFRELE(irb); 3691 } 3692 ire->ire_ipif = NULL; 3693 3694 #ifdef DEBUG 3695 ire_trace_cleanup(ire); 3696 #endif 3697 mutex_destroy(&ire->ire_lock); 3698 if (ire->ire_ipversion == IPV6_VERSION) { 3699 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 3700 } else { 3701 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3702 } 3703 ASSERT(ire->ire_mp == NULL); 3704 /* Has been allocated out of the cache */ 3705 kmem_cache_free(ire_cache, ire); 3706 } 3707 3708 /* 3709 * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect 3710 * entries that have a given gateway address. 3711 */ 3712 void 3713 ire_delete_cache_gw(ire_t *ire, char *cp) 3714 { 3715 ipaddr_t gw_addr; 3716 3717 if (!(ire->ire_type & IRE_CACHE) && 3718 !(ire->ire_flags & RTF_DYNAMIC)) 3719 return; 3720 3721 bcopy(cp, &gw_addr, sizeof (gw_addr)); 3722 if (ire->ire_gateway_addr == gw_addr) { 3723 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 3724 (int)ntohl(ire->ire_addr), ire->ire_type, 3725 (int)ntohl(ire->ire_gateway_addr))); 3726 ire_delete(ire); 3727 } 3728 } 3729 3730 /* 3731 * Remove all IRE_CACHE entries that match the ire specified. 3732 * 3733 * The flag argument indicates if the flush request is due to addition 3734 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 3735 * 3736 * This routine takes only the IREs from the forwarding table and flushes 3737 * the corresponding entries from the cache table. 3738 * 3739 * When flushing due to the deletion of an old route, it 3740 * just checks the cache handles (ire_phandle and ire_ihandle) and 3741 * deletes the ones that match. 3742 * 3743 * When flushing due to the creation of a new route, it checks 3744 * if a cache entry's address matches the one in the IRE and 3745 * that the cache entry's parent has a less specific mask than the 3746 * one in IRE. The destination of such a cache entry could be the 3747 * gateway for other cache entries, so we need to flush those as 3748 * well by looking for gateway addresses matching the IRE's address. 3749 */ 3750 void 3751 ire_flush_cache_v4(ire_t *ire, int flag) 3752 { 3753 int i; 3754 ire_t *cire; 3755 irb_t *irb; 3756 ip_stack_t *ipst = ire->ire_ipst; 3757 3758 if (ire->ire_type & IRE_CACHE) 3759 return; 3760 3761 /* 3762 * If a default is just created, there is no point 3763 * in going through the cache, as there will not be any 3764 * cached ires. 3765 */ 3766 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 3767 return; 3768 if (flag == IRE_FLUSH_ADD) { 3769 /* 3770 * This selective flush is due to the addition of 3771 * new IRE. 3772 */ 3773 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3774 irb = &ipst->ips_ip_cache_table[i]; 3775 if ((cire = irb->irb_ire) == NULL) 3776 continue; 3777 IRB_REFHOLD(irb); 3778 for (cire = irb->irb_ire; cire != NULL; 3779 cire = cire->ire_next) { 3780 if (cire->ire_type != IRE_CACHE) 3781 continue; 3782 /* 3783 * If 'cire' belongs to the same subnet 3784 * as the new ire being added, and 'cire' 3785 * is derived from a prefix that is less 3786 * specific than the new ire being added, 3787 * we need to flush 'cire'; for instance, 3788 * when a new interface comes up. 3789 */ 3790 if (((cire->ire_addr & ire->ire_mask) == 3791 (ire->ire_addr & ire->ire_mask)) && 3792 (ip_mask_to_plen(cire->ire_cmask) <= 3793 ire->ire_masklen)) { 3794 ire_delete(cire); 3795 continue; 3796 } 3797 /* 3798 * This is the case when the ire_gateway_addr 3799 * of 'cire' belongs to the same subnet as 3800 * the new ire being added. 3801 * Flushing such ires is sometimes required to 3802 * avoid misrouting: say we have a machine with 3803 * two interfaces (I1 and I2), a default router 3804 * R on the I1 subnet, and a host route to an 3805 * off-link destination D with a gateway G on 3806 * the I2 subnet. 3807 * Under normal operation, we will have an 3808 * on-link cache entry for G and an off-link 3809 * cache entry for D with G as ire_gateway_addr, 3810 * traffic to D will reach its destination 3811 * through gateway G. 3812 * If the administrator does 'ifconfig I2 down', 3813 * the cache entries for D and G will be 3814 * flushed. However, G will now be resolved as 3815 * an off-link destination using R (the default 3816 * router) as gateway. Then D will also be 3817 * resolved as an off-link destination using G 3818 * as gateway - this behavior is due to 3819 * compatibility reasons, see comment in 3820 * ire_ihandle_lookup_offlink(). Traffic to D 3821 * will go to the router R and probably won't 3822 * reach the destination. 3823 * The administrator then does 'ifconfig I2 up'. 3824 * Since G is on the I2 subnet, this routine 3825 * will flush its cache entry. It must also 3826 * flush the cache entry for D, otherwise 3827 * traffic will stay misrouted until the IRE 3828 * times out. 3829 */ 3830 if ((cire->ire_gateway_addr & ire->ire_mask) == 3831 (ire->ire_addr & ire->ire_mask)) { 3832 ire_delete(cire); 3833 continue; 3834 } 3835 } 3836 IRB_REFRELE(irb); 3837 } 3838 } else { 3839 /* 3840 * delete the cache entries based on 3841 * handle in the IRE as this IRE is 3842 * being deleted/changed. 3843 */ 3844 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3845 irb = &ipst->ips_ip_cache_table[i]; 3846 if ((cire = irb->irb_ire) == NULL) 3847 continue; 3848 IRB_REFHOLD(irb); 3849 for (cire = irb->irb_ire; cire != NULL; 3850 cire = cire->ire_next) { 3851 if (cire->ire_type != IRE_CACHE) 3852 continue; 3853 if ((cire->ire_phandle == 0 || 3854 cire->ire_phandle != ire->ire_phandle) && 3855 (cire->ire_ihandle == 0 || 3856 cire->ire_ihandle != ire->ire_ihandle)) 3857 continue; 3858 ire_delete(cire); 3859 } 3860 IRB_REFRELE(irb); 3861 } 3862 } 3863 } 3864 3865 /* 3866 * Matches the arguments passed with the values in the ire. 3867 * 3868 * Note: for match types that match using "ipif" passed in, ipif 3869 * must be checked for non-NULL before calling this routine. 3870 */ 3871 boolean_t 3872 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 3873 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 3874 const ts_label_t *tsl, int match_flags) 3875 { 3876 ill_t *ire_ill = NULL, *dst_ill; 3877 ill_t *ipif_ill = NULL; 3878 ill_group_t *ire_ill_group = NULL; 3879 ill_group_t *ipif_ill_group = NULL; 3880 3881 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3882 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 3883 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 3884 (ipif != NULL && !ipif->ipif_isv6)); 3885 3886 /* 3887 * HIDDEN cache entries have to be looked up specifically with 3888 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 3889 * when the interface is FAILED or INACTIVE. In that case, 3890 * any IRE_CACHES that exists should be marked with 3891 * IRE_MARK_HIDDEN. So, we don't really need to match below 3892 * for IRE_MARK_HIDDEN. But we do so for consistency. 3893 */ 3894 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 3895 (ire->ire_marks & IRE_MARK_HIDDEN)) 3896 return (B_FALSE); 3897 3898 /* 3899 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 3900 * is used. In that case the routing table is bypassed and the 3901 * packets are sent directly to the specified nexthop. The 3902 * IRE_CACHE entry representing this route should be marked 3903 * with IRE_MARK_PRIVATE_ADDR. 3904 */ 3905 3906 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 3907 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 3908 return (B_FALSE); 3909 3910 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 3911 ire->ire_zoneid != ALL_ZONES) { 3912 /* 3913 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 3914 * valid and does not match that of ire_zoneid, a failure to 3915 * match is reported at this point. Otherwise, since some IREs 3916 * that are available in the global zone can be used in local 3917 * zones, additional checks need to be performed: 3918 * 3919 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 3920 * entries should never be matched in this situation. 3921 * 3922 * IRE entries that have an interface associated with them 3923 * should in general not match unless they are an IRE_LOCAL 3924 * or in the case when MATCH_IRE_DEFAULT has been set in 3925 * the caller. In the case of the former, checking of the 3926 * other fields supplied should take place. 3927 * 3928 * In the case where MATCH_IRE_DEFAULT has been set, 3929 * all of the ipif's associated with the IRE's ill are 3930 * checked to see if there is a matching zoneid. If any 3931 * one ipif has a matching zoneid, this IRE is a 3932 * potential candidate so checking of the other fields 3933 * takes place. 3934 * 3935 * In the case where the IRE_INTERFACE has a usable source 3936 * address (indicated by ill_usesrc_ifindex) in the 3937 * correct zone then it's permitted to return this IRE 3938 */ 3939 if (match_flags & MATCH_IRE_ZONEONLY) 3940 return (B_FALSE); 3941 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 3942 return (B_FALSE); 3943 /* 3944 * Note, IRE_INTERFACE can have the stq as NULL. For 3945 * example, if the default multicast route is tied to 3946 * the loopback address. 3947 */ 3948 if ((ire->ire_type & IRE_INTERFACE) && 3949 (ire->ire_stq != NULL)) { 3950 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 3951 /* 3952 * If there is a usable source address in the 3953 * zone, then it's ok to return an 3954 * IRE_INTERFACE 3955 */ 3956 if (ipif_usesrc_avail(dst_ill, zoneid)) { 3957 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 3958 (void *)dst_ill, 3959 (ire->ire_addr == (addr & mask)))); 3960 } else { 3961 ip3dbg(("ire_match_args: src_ipif NULL" 3962 " dst_ill %p\n", (void *)dst_ill)); 3963 return (B_FALSE); 3964 } 3965 } 3966 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 3967 !(ire->ire_type & IRE_INTERFACE)) { 3968 ipif_t *tipif; 3969 3970 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 3971 return (B_FALSE); 3972 } 3973 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 3974 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 3975 tipif != NULL; tipif = tipif->ipif_next) { 3976 if (IPIF_CAN_LOOKUP(tipif) && 3977 (tipif->ipif_flags & IPIF_UP) && 3978 (tipif->ipif_zoneid == zoneid || 3979 tipif->ipif_zoneid == ALL_ZONES)) 3980 break; 3981 } 3982 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 3983 if (tipif == NULL) { 3984 return (B_FALSE); 3985 } 3986 } 3987 } 3988 3989 /* 3990 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 3991 * somebody wants to send out on a particular interface which 3992 * is given by ire_stq and hence use ire_stq to derive the ill 3993 * value. ire_ipif for IRE_CACHES is just the means of getting 3994 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 3995 * ire_to_ill does the right thing for this. 3996 */ 3997 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 3998 ire_ill = ire_to_ill(ire); 3999 if (ire_ill != NULL) 4000 ire_ill_group = ire_ill->ill_group; 4001 ipif_ill = ipif->ipif_ill; 4002 ipif_ill_group = ipif_ill->ill_group; 4003 } 4004 4005 if ((ire->ire_addr == (addr & mask)) && 4006 ((!(match_flags & MATCH_IRE_GW)) || 4007 (ire->ire_gateway_addr == gateway)) && 4008 ((!(match_flags & MATCH_IRE_TYPE)) || 4009 (ire->ire_type & type)) && 4010 ((!(match_flags & MATCH_IRE_SRC)) || 4011 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4012 ((!(match_flags & MATCH_IRE_IPIF)) || 4013 (ire->ire_ipif == ipif)) && 4014 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4015 (ire->ire_type != IRE_CACHE || 4016 ire->ire_marks & IRE_MARK_HIDDEN)) && 4017 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4018 (ire->ire_type != IRE_CACHE || 4019 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4020 ((!(match_flags & MATCH_IRE_ILL)) || 4021 (ire_ill == ipif_ill)) && 4022 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4023 (ire->ire_ihandle == ihandle)) && 4024 ((!(match_flags & MATCH_IRE_MASK)) || 4025 (ire->ire_mask == mask)) && 4026 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4027 (ire_ill == ipif_ill) || 4028 (ire_ill_group != NULL && 4029 ire_ill_group == ipif_ill_group)) && 4030 ((!(match_flags & MATCH_IRE_SECATTR)) || 4031 (!is_system_labeled()) || 4032 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4033 /* We found the matched IRE */ 4034 return (B_TRUE); 4035 } 4036 return (B_FALSE); 4037 } 4038 4039 4040 /* 4041 * Lookup for a route in all the tables 4042 */ 4043 ire_t * 4044 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4045 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4046 const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4047 { 4048 ire_t *ire = NULL; 4049 4050 /* 4051 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4052 * MATCH_IRE_ILL is set. 4053 */ 4054 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4055 (ipif == NULL)) 4056 return (NULL); 4057 4058 /* 4059 * might be asking for a cache lookup, 4060 * This is not best way to lookup cache, 4061 * user should call ire_cache_lookup directly. 4062 * 4063 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4064 * in the forwarding table, if the applicable type flags were set. 4065 */ 4066 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4067 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4068 tsl, flags, ipst); 4069 if (ire != NULL) 4070 return (ire); 4071 } 4072 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4073 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4074 zoneid, 0, tsl, flags, ipst); 4075 } 4076 return (ire); 4077 } 4078 4079 4080 /* 4081 * Delete the IRE cache for the gateway and all IRE caches whose 4082 * ire_gateway_addr points to this gateway, and allow them to 4083 * be created on demand by ip_newroute. 4084 */ 4085 void 4086 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 4087 { 4088 irb_t *irb; 4089 ire_t *ire; 4090 4091 irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4092 ipst->ips_ip_cache_table_size)]; 4093 IRB_REFHOLD(irb); 4094 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4095 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4096 continue; 4097 4098 ASSERT(ire->ire_mask == IP_HOST_MASK); 4099 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4100 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4101 ire_delete(ire); 4102 } 4103 } 4104 IRB_REFRELE(irb); 4105 4106 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst); 4107 } 4108 4109 /* 4110 * Looks up cache table for a route. 4111 * specific lookup can be indicated by 4112 * passing the MATCH_* flags and the 4113 * necessary parameters. 4114 */ 4115 ire_t * 4116 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4117 zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4118 { 4119 irb_t *irb_ptr; 4120 ire_t *ire; 4121 4122 /* 4123 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4124 * MATCH_IRE_ILL is set. 4125 */ 4126 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4127 (ipif == NULL)) 4128 return (NULL); 4129 4130 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4131 ipst->ips_ip_cache_table_size)]; 4132 rw_enter(&irb_ptr->irb_lock, RW_READER); 4133 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4134 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4135 continue; 4136 ASSERT(ire->ire_mask == IP_HOST_MASK); 4137 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4138 ipif, zoneid, 0, tsl, flags)) { 4139 IRE_REFHOLD(ire); 4140 rw_exit(&irb_ptr->irb_lock); 4141 return (ire); 4142 } 4143 } 4144 rw_exit(&irb_ptr->irb_lock); 4145 return (NULL); 4146 } 4147 4148 /* 4149 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4150 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of 4151 * the same ill group. 4152 */ 4153 boolean_t 4154 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire) 4155 { 4156 ill_t *recv_ill, *xmit_ill; 4157 ill_group_t *recv_group, *xmit_group; 4158 4159 ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK)); 4160 ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE)); 4161 4162 recv_ill = ire_to_ill(ire_local); 4163 xmit_ill = ire_to_ill(xmit_ire); 4164 4165 ASSERT(recv_ill != NULL); 4166 ASSERT(xmit_ill != NULL); 4167 4168 if (recv_ill == xmit_ill) 4169 return (B_TRUE); 4170 4171 recv_group = recv_ill->ill_group; 4172 xmit_group = xmit_ill->ill_group; 4173 4174 if (recv_group != NULL && recv_group == xmit_group) 4175 return (B_TRUE); 4176 4177 return (B_FALSE); 4178 } 4179 4180 /* 4181 * Check if the IRE_LOCAL uses the same ill (group) as another route would use. 4182 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 4183 * then we don't allow this IRE_LOCAL to be used. 4184 */ 4185 boolean_t 4186 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4187 const ts_label_t *tsl, ip_stack_t *ipst) 4188 { 4189 ire_t *alt_ire; 4190 boolean_t rval; 4191 4192 if (ire_local->ire_ipversion == IPV4_VERSION) { 4193 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4194 NULL, zoneid, 0, tsl, 4195 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4196 MATCH_IRE_RJ_BHOLE, ipst); 4197 } else { 4198 alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 4199 0, NULL, NULL, zoneid, 0, tsl, 4200 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4201 MATCH_IRE_RJ_BHOLE, ipst); 4202 } 4203 4204 if (alt_ire == NULL) 4205 return (B_FALSE); 4206 4207 if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4208 ire_refrele(alt_ire); 4209 return (B_FALSE); 4210 } 4211 rval = ire_local_same_ill_group(ire_local, alt_ire); 4212 4213 ire_refrele(alt_ire); 4214 return (rval); 4215 } 4216 4217 /* 4218 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4219 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4220 * to the hidden ones. 4221 * 4222 * In general the zoneid has to match (where ALL_ZONES match all of them). 4223 * But for IRE_LOCAL we also need to handle the case where L2 should 4224 * conceptually loop back the packet. This is necessary since neither 4225 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4226 * own MAC address. This loopback is needed when the normal 4227 * routes (ignoring IREs with different zoneids) would send out the packet on 4228 * the same ill (or ill group) as the ill with which this IRE_LOCAL is 4229 * associated. 4230 * 4231 * Earlier versions of this code always matched an IRE_LOCAL independently of 4232 * the zoneid. We preserve that earlier behavior when 4233 * ip_restrict_interzone_loopback is turned off. 4234 */ 4235 ire_t * 4236 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl, 4237 ip_stack_t *ipst) 4238 { 4239 irb_t *irb_ptr; 4240 ire_t *ire; 4241 4242 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4243 ipst->ips_ip_cache_table_size)]; 4244 rw_enter(&irb_ptr->irb_lock, RW_READER); 4245 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4246 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4247 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4248 continue; 4249 } 4250 if (ire->ire_addr == addr) { 4251 /* 4252 * Finally, check if the security policy has any 4253 * restriction on using this route for the specified 4254 * message. 4255 */ 4256 if (tsl != NULL && 4257 ire->ire_gw_secattr != NULL && 4258 tsol_ire_match_gwattr(ire, tsl) != 0) { 4259 continue; 4260 } 4261 4262 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4263 ire->ire_zoneid == ALL_ZONES) { 4264 IRE_REFHOLD(ire); 4265 rw_exit(&irb_ptr->irb_lock); 4266 return (ire); 4267 } 4268 4269 if (ire->ire_type == IRE_LOCAL) { 4270 if (ipst->ips_ip_restrict_interzone_loopback && 4271 !ire_local_ok_across_zones(ire, zoneid, 4272 &addr, tsl, ipst)) 4273 continue; 4274 4275 IRE_REFHOLD(ire); 4276 rw_exit(&irb_ptr->irb_lock); 4277 return (ire); 4278 } 4279 } 4280 } 4281 rw_exit(&irb_ptr->irb_lock); 4282 return (NULL); 4283 } 4284 4285 /* 4286 * Locate the interface ire that is tied to the cache ire 'cire' via 4287 * cire->ire_ihandle. 4288 * 4289 * We are trying to create the cache ire for an offlink destn based 4290 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4291 * as found by ip_newroute(). We are called from ip_newroute() in 4292 * the IRE_CACHE case. 4293 */ 4294 ire_t * 4295 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4296 { 4297 ire_t *ire; 4298 int match_flags; 4299 ipaddr_t gw_addr; 4300 ipif_t *gw_ipif; 4301 ip_stack_t *ipst = cire->ire_ipst; 4302 4303 ASSERT(cire != NULL && pire != NULL); 4304 4305 /* 4306 * We don't need to specify the zoneid to ire_ftable_lookup() below 4307 * because the ihandle refers to an ipif which can be in only one zone. 4308 */ 4309 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4310 /* 4311 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4312 * for on-link hosts. We should never be here for onlink. 4313 * Thus, use MATCH_IRE_ILL_GROUP. 4314 */ 4315 if (pire->ire_ipif != NULL) 4316 match_flags |= MATCH_IRE_ILL_GROUP; 4317 /* 4318 * We know that the mask of the interface ire equals cire->ire_cmask. 4319 * (When ip_newroute() created 'cire' for the gateway it set its 4320 * cmask from the interface ire's mask) 4321 */ 4322 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4323 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4324 NULL, match_flags, ipst); 4325 if (ire != NULL) 4326 return (ire); 4327 /* 4328 * If we didn't find an interface ire above, we can't declare failure. 4329 * For backwards compatibility, we need to support prefix routes 4330 * pointing to next hop gateways that are not on-link. 4331 * 4332 * Assume we are trying to ping some offlink destn, and we have the 4333 * routing table below. 4334 * 4335 * Eg. default - gw1 <--- pire (line 1) 4336 * gw1 - gw2 (line 2) 4337 * gw2 - hme0 (line 3) 4338 * 4339 * If we already have a cache ire for gw1 in 'cire', the 4340 * ire_ftable_lookup above would have failed, since there is no 4341 * interface ire to reach gw1. We will fallthru below. 4342 * 4343 * Here we duplicate the steps that ire_ftable_lookup() did in 4344 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 4345 * The differences are the following 4346 * i. We want the interface ire only, so we call ire_ftable_lookup() 4347 * instead of ire_route_lookup() 4348 * ii. We look for only prefix routes in the 1st call below. 4349 * ii. We want to match on the ihandle in the 2nd call below. 4350 */ 4351 match_flags = MATCH_IRE_TYPE; 4352 if (pire->ire_ipif != NULL) 4353 match_flags |= MATCH_IRE_ILL_GROUP; 4354 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 4355 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 4356 if (ire == NULL) 4357 return (NULL); 4358 /* 4359 * At this point 'ire' corresponds to the entry shown in line 2. 4360 * gw_addr is 'gw2' in the example above. 4361 */ 4362 gw_addr = ire->ire_gateway_addr; 4363 gw_ipif = ire->ire_ipif; 4364 ire_refrele(ire); 4365 4366 match_flags |= MATCH_IRE_IHANDLE; 4367 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 4368 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags, 4369 ipst); 4370 return (ire); 4371 } 4372 4373 /* 4374 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 4375 * ire associated with the specified ipif. 4376 * 4377 * This might occasionally be called when IPIF_UP is not set since 4378 * the IP_MULTICAST_IF as well as creating interface routes 4379 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 4380 * 4381 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 4382 * the ipif, this routine might return NULL. 4383 */ 4384 ire_t * 4385 ipif_to_ire(const ipif_t *ipif) 4386 { 4387 ire_t *ire; 4388 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 4389 4390 ASSERT(!ipif->ipif_isv6); 4391 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 4392 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 4393 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 4394 ipst); 4395 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4396 /* In this case we need to lookup destination address. */ 4397 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 4398 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 4399 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst); 4400 } else { 4401 ire = ire_ftable_lookup(ipif->ipif_subnet, 4402 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 4403 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 4404 MATCH_IRE_MASK), ipst); 4405 } 4406 return (ire); 4407 } 4408 4409 /* 4410 * ire_walk function. 4411 * Count the number of IRE_CACHE entries in different categories. 4412 */ 4413 void 4414 ire_cache_count(ire_t *ire, char *arg) 4415 { 4416 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 4417 4418 if (ire->ire_type != IRE_CACHE) 4419 return; 4420 4421 icc->icc_total++; 4422 4423 if (ire->ire_ipversion == IPV6_VERSION) { 4424 mutex_enter(&ire->ire_lock); 4425 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4426 mutex_exit(&ire->ire_lock); 4427 icc->icc_onlink++; 4428 return; 4429 } 4430 mutex_exit(&ire->ire_lock); 4431 } else { 4432 if (ire->ire_gateway_addr == 0) { 4433 icc->icc_onlink++; 4434 return; 4435 } 4436 } 4437 4438 ASSERT(ire->ire_ipif != NULL); 4439 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 4440 icc->icc_pmtu++; 4441 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4442 ire->ire_ib_pkt_count) 4443 icc->icc_offlink++; 4444 else 4445 icc->icc_unused++; 4446 } 4447 4448 /* 4449 * ire_walk function called by ip_trash_ire_reclaim(). 4450 * Free a fraction of the IRE_CACHE cache entries. The fractions are 4451 * different for different categories of IRE_CACHE entries. 4452 * A fraction of zero means to not free any in that category. 4453 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 4454 * is N then every Nth hash bucket chain will be freed. 4455 */ 4456 void 4457 ire_cache_reclaim(ire_t *ire, char *arg) 4458 { 4459 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 4460 uint_t rand; 4461 ip_stack_t *ipst = icr->icr_ipst; 4462 4463 if (ire->ire_type != IRE_CACHE) 4464 return; 4465 4466 if (ire->ire_ipversion == IPV6_VERSION) { 4467 rand = (uint_t)lbolt + 4468 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 4469 ipst->ips_ip6_cache_table_size); 4470 mutex_enter(&ire->ire_lock); 4471 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4472 mutex_exit(&ire->ire_lock); 4473 if (icr->icr_onlink != 0 && 4474 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4475 ire_delete(ire); 4476 return; 4477 } 4478 goto done; 4479 } 4480 mutex_exit(&ire->ire_lock); 4481 } else { 4482 rand = (uint_t)lbolt + 4483 IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size); 4484 if (ire->ire_gateway_addr == 0) { 4485 if (icr->icr_onlink != 0 && 4486 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4487 ire_delete(ire); 4488 return; 4489 } 4490 goto done; 4491 } 4492 } 4493 /* Not onlink IRE */ 4494 ASSERT(ire->ire_ipif != NULL); 4495 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 4496 /* Use ptmu fraction */ 4497 if (icr->icr_pmtu != 0 && 4498 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 4499 ire_delete(ire); 4500 return; 4501 } 4502 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4503 ire->ire_ib_pkt_count) { 4504 /* Use offlink fraction */ 4505 if (icr->icr_offlink != 0 && 4506 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 4507 ire_delete(ire); 4508 return; 4509 } 4510 } else { 4511 /* Use unused fraction */ 4512 if (icr->icr_unused != 0 && 4513 (rand/icr->icr_unused)*icr->icr_unused == rand) { 4514 ire_delete(ire); 4515 return; 4516 } 4517 } 4518 done: 4519 /* 4520 * Update tire_mark so that those that haven't been used since this 4521 * reclaim will be considered unused next time we reclaim. 4522 */ 4523 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 4524 } 4525 4526 static void 4527 power2_roundup(uint32_t *value) 4528 { 4529 int i; 4530 4531 for (i = 1; i < 31; i++) { 4532 if (*value <= (1 << i)) 4533 break; 4534 } 4535 *value = (1 << i); 4536 } 4537 4538 /* Global init for all zones */ 4539 void 4540 ip_ire_g_init() 4541 { 4542 /* 4543 * Create ire caches, ire_reclaim() 4544 * will give IRE_CACHE back to system when needed. 4545 * This needs to be done here before anything else, since 4546 * ire_add() expects the cache to be created. 4547 */ 4548 ire_cache = kmem_cache_create("ire_cache", 4549 sizeof (ire_t), 0, ip_ire_constructor, 4550 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 4551 4552 rt_entry_cache = kmem_cache_create("rt_entry", 4553 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 4554 4555 /* 4556 * Have radix code setup kmem caches etc. 4557 */ 4558 rn_init(); 4559 } 4560 4561 void 4562 ip_ire_init(ip_stack_t *ipst) 4563 { 4564 int i; 4565 uint32_t mem_cnt; 4566 uint32_t cpu_cnt; 4567 uint32_t min_cnt; 4568 pgcnt_t mem_avail; 4569 4570 /* 4571 * ip_ire_max_bucket_cnt is sized below based on the memory 4572 * size and the cpu speed of the machine. This is upper 4573 * bounded by the compile time value of ip_ire_max_bucket_cnt 4574 * and is lower bounded by the compile time value of 4575 * ip_ire_min_bucket_cnt. Similar logic applies to 4576 * ip6_ire_max_bucket_cnt. 4577 * 4578 * We calculate this for each IP Instances in order to use 4579 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are 4580 * in effect when the zone is booted. 4581 */ 4582 mem_avail = kmem_avail(); 4583 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4584 ip_cache_table_size / sizeof (ire_t); 4585 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 4586 4587 min_cnt = MIN(cpu_cnt, mem_cnt); 4588 if (min_cnt < ip_ire_min_bucket_cnt) 4589 min_cnt = ip_ire_min_bucket_cnt; 4590 if (ip_ire_max_bucket_cnt > min_cnt) { 4591 ip_ire_max_bucket_cnt = min_cnt; 4592 } 4593 4594 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4595 ip6_cache_table_size / sizeof (ire_t); 4596 min_cnt = MIN(cpu_cnt, mem_cnt); 4597 if (min_cnt < ip6_ire_min_bucket_cnt) 4598 min_cnt = ip6_ire_min_bucket_cnt; 4599 if (ip6_ire_max_bucket_cnt > min_cnt) { 4600 ip6_ire_max_bucket_cnt = min_cnt; 4601 } 4602 4603 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 4604 mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 4605 4606 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 4607 4608 4609 /* Calculate the IPv4 cache table size. */ 4610 ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size, 4611 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4612 ip_ire_max_bucket_cnt)); 4613 if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size) 4614 ipst->ips_ip_cache_table_size = ip_max_cache_table_size; 4615 /* 4616 * Make sure that the table size is always a power of 2. The 4617 * hash macro IRE_ADDR_HASH() depends on that. 4618 */ 4619 power2_roundup(&ipst->ips_ip_cache_table_size); 4620 4621 ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size * 4622 sizeof (irb_t), KM_SLEEP); 4623 4624 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4625 rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL, 4626 RW_DEFAULT, NULL); 4627 } 4628 4629 /* Calculate the IPv6 cache table size. */ 4630 ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size, 4631 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4632 ip6_ire_max_bucket_cnt)); 4633 if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size) 4634 ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size; 4635 /* 4636 * Make sure that the table size is always a power of 2. The 4637 * hash macro IRE_ADDR_HASH_V6() depends on that. 4638 */ 4639 power2_roundup(&ipst->ips_ip6_cache_table_size); 4640 4641 ipst->ips_ip_cache_table_v6 = kmem_zalloc( 4642 ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP); 4643 4644 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4645 rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL, 4646 RW_DEFAULT, NULL); 4647 } 4648 4649 /* 4650 * Make sure that the forwarding table size is a power of 2. 4651 * The IRE*_ADDR_HASH() macroes depend on that. 4652 */ 4653 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 4654 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 4655 4656 ipst->ips_ire_handle = 1; 4657 } 4658 4659 void 4660 ip_ire_g_fini(void) 4661 { 4662 kmem_cache_destroy(ire_cache); 4663 kmem_cache_destroy(rt_entry_cache); 4664 4665 rn_fini(); 4666 } 4667 4668 void 4669 ip_ire_fini(ip_stack_t *ipst) 4670 { 4671 int i; 4672 4673 /* 4674 * Delete all IREs - assumes that the ill/ipifs have 4675 * been removed so what remains are just the ftable and IRE_CACHE. 4676 */ 4677 ire_walk(ire_delete, NULL, ipst); 4678 4679 rn_freehead(ipst->ips_ip_ftable); 4680 ipst->ips_ip_ftable = NULL; 4681 4682 mutex_destroy(&ipst->ips_ire_ft_init_lock); 4683 mutex_destroy(&ipst->ips_ire_handle_lock); 4684 4685 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4686 ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL); 4687 rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock); 4688 } 4689 kmem_free(ipst->ips_ip_cache_table, 4690 ipst->ips_ip_cache_table_size * sizeof (irb_t)); 4691 ipst->ips_ip_cache_table = NULL; 4692 4693 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4694 ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL); 4695 rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock); 4696 } 4697 kmem_free(ipst->ips_ip_cache_table_v6, 4698 ipst->ips_ip6_cache_table_size * sizeof (irb_t)); 4699 ipst->ips_ip_cache_table_v6 = NULL; 4700 4701 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 4702 irb_t *ptr; 4703 int j; 4704 4705 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 4706 continue; 4707 4708 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 4709 ASSERT(ptr[j].irb_ire == NULL); 4710 rw_destroy(&ptr[j].irb_lock); 4711 } 4712 mi_free(ptr); 4713 ipst->ips_ip_forwarding_table_v6[i] = NULL; 4714 } 4715 } 4716 4717 /* 4718 * Check if another multirt route resolution is needed. 4719 * B_TRUE is returned is there remain a resolvable route, 4720 * or if no route for that dst is resolved yet. 4721 * B_FALSE is returned if all routes for that dst are resolved 4722 * or if the remaining unresolved routes are actually not 4723 * resolvable. 4724 * This only works in the global zone. 4725 */ 4726 boolean_t 4727 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst) 4728 { 4729 ire_t *first_fire; 4730 ire_t *first_cire; 4731 ire_t *fire; 4732 ire_t *cire; 4733 irb_t *firb; 4734 irb_t *cirb; 4735 int unres_cnt = 0; 4736 boolean_t resolvable = B_FALSE; 4737 4738 /* Retrieve the first IRE_HOST that matches the destination */ 4739 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 4740 NULL, ALL_ZONES, 0, tsl, 4741 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 4742 4743 /* No route at all */ 4744 if (first_fire == NULL) { 4745 return (B_TRUE); 4746 } 4747 4748 firb = first_fire->ire_bucket; 4749 ASSERT(firb != NULL); 4750 4751 /* Retrieve the first IRE_CACHE ire for that destination. */ 4752 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4753 4754 /* No resolved route. */ 4755 if (first_cire == NULL) { 4756 ire_refrele(first_fire); 4757 return (B_TRUE); 4758 } 4759 4760 /* 4761 * At least one route is resolved. Here we look through the forward 4762 * and cache tables, to compare the number of declared routes 4763 * with the number of resolved routes. The search for a resolvable 4764 * route is performed only if at least one route remains 4765 * unresolved. 4766 */ 4767 cirb = first_cire->ire_bucket; 4768 ASSERT(cirb != NULL); 4769 4770 /* Count the number of routes to that dest that are declared. */ 4771 IRB_REFHOLD(firb); 4772 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4773 if (!(fire->ire_flags & RTF_MULTIRT)) 4774 continue; 4775 if (fire->ire_addr != dst) 4776 continue; 4777 unres_cnt++; 4778 } 4779 IRB_REFRELE(firb); 4780 4781 /* Then subtract the number of routes to that dst that are resolved */ 4782 IRB_REFHOLD(cirb); 4783 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 4784 if (!(cire->ire_flags & RTF_MULTIRT)) 4785 continue; 4786 if (cire->ire_addr != dst) 4787 continue; 4788 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 4789 continue; 4790 unres_cnt--; 4791 } 4792 IRB_REFRELE(cirb); 4793 4794 /* At least one route is unresolved; search for a resolvable route. */ 4795 if (unres_cnt > 0) 4796 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 4797 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst); 4798 4799 if (first_fire != NULL) 4800 ire_refrele(first_fire); 4801 4802 if (first_cire != NULL) 4803 ire_refrele(first_cire); 4804 4805 return (resolvable); 4806 } 4807 4808 4809 /* 4810 * Explore a forward_table bucket, starting from fire_arg. 4811 * fire_arg MUST be an IRE_HOST entry. 4812 * 4813 * Return B_TRUE and update *ire_arg and *fire_arg 4814 * if at least one resolvable route is found. *ire_arg 4815 * is the IRE entry for *fire_arg's gateway. 4816 * 4817 * Return B_FALSE otherwise (all routes are resolved or 4818 * the remaining unresolved routes are all unresolvable). 4819 * 4820 * The IRE selection relies on a priority mechanism 4821 * driven by the flags passed in by the caller. 4822 * The caller, such as ip_newroute_ipif(), can get the most 4823 * relevant ire at each stage of a multiple route resolution. 4824 * 4825 * The rules are: 4826 * 4827 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 4828 * ires are preferred for the gateway. This gives the highest 4829 * priority to routes that can be resolved without using 4830 * a resolver. 4831 * 4832 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 4833 * is specified but no IRE_CACHETABLE ire entry for the gateway 4834 * is found, the following rules apply. 4835 * 4836 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 4837 * ires for the gateway, that have not been tried since 4838 * a configurable amount of time, are preferred. 4839 * This applies when a resolver must be invoked for 4840 * a missing route, but we don't want to use the resolver 4841 * upon each packet emission. If no such resolver is found, 4842 * B_FALSE is returned. 4843 * The MULTIRT_USESTAMP flag can be combined with 4844 * MULTIRT_CACHEGW. 4845 * 4846 * - if MULTIRT_USESTAMP is not specified in flags, the first 4847 * unresolved but resolvable route is selected. 4848 * 4849 * - Otherwise, there is no resolvalble route, and 4850 * B_FALSE is returned. 4851 * 4852 * At last, MULTIRT_SETSTAMP can be specified in flags to 4853 * request the timestamp of unresolvable routes to 4854 * be refreshed. This prevents the useless exploration 4855 * of those routes for a while, when MULTIRT_USESTAMP is used. 4856 * 4857 * This only works in the global zone. 4858 */ 4859 boolean_t 4860 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 4861 const ts_label_t *tsl, ip_stack_t *ipst) 4862 { 4863 clock_t delta; 4864 ire_t *best_fire = NULL; 4865 ire_t *best_cire = NULL; 4866 ire_t *first_fire; 4867 ire_t *first_cire; 4868 ire_t *fire; 4869 ire_t *cire; 4870 irb_t *firb = NULL; 4871 irb_t *cirb = NULL; 4872 ire_t *gw_ire; 4873 boolean_t already_resolved; 4874 boolean_t res; 4875 ipaddr_t dst; 4876 ipaddr_t gw; 4877 4878 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 4879 (void *)*ire_arg, (void *)*fire_arg, flags)); 4880 4881 ASSERT(ire_arg != NULL); 4882 ASSERT(fire_arg != NULL); 4883 4884 /* Not an IRE_HOST ire; give up. */ 4885 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 4886 return (B_FALSE); 4887 } 4888 4889 /* This is the first IRE_HOST ire for that destination. */ 4890 first_fire = *fire_arg; 4891 firb = first_fire->ire_bucket; 4892 ASSERT(firb != NULL); 4893 4894 dst = first_fire->ire_addr; 4895 4896 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 4897 4898 /* 4899 * Retrieve the first IRE_CACHE ire for that destination; 4900 * if we don't find one, no route for that dest is 4901 * resolved yet. 4902 */ 4903 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4904 if (first_cire != NULL) { 4905 cirb = first_cire->ire_bucket; 4906 } 4907 4908 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 4909 4910 /* 4911 * Search for a resolvable route, giving the top priority 4912 * to routes that can be resolved without any call to the resolver. 4913 */ 4914 IRB_REFHOLD(firb); 4915 4916 if (!CLASSD(dst)) { 4917 /* 4918 * For all multiroute IRE_HOST ires for that destination, 4919 * check if the route via the IRE_HOST's gateway is 4920 * resolved yet. 4921 */ 4922 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4923 4924 if (!(fire->ire_flags & RTF_MULTIRT)) 4925 continue; 4926 if (fire->ire_addr != dst) 4927 continue; 4928 4929 if (fire->ire_gw_secattr != NULL && 4930 tsol_ire_match_gwattr(fire, tsl) != 0) { 4931 continue; 4932 } 4933 4934 gw = fire->ire_gateway_addr; 4935 4936 ip2dbg(("ire_multirt_lookup: fire %p, " 4937 "ire_addr %08x, ire_gateway_addr %08x\n", 4938 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 4939 4940 already_resolved = B_FALSE; 4941 4942 if (first_cire != NULL) { 4943 ASSERT(cirb != NULL); 4944 4945 IRB_REFHOLD(cirb); 4946 /* 4947 * For all IRE_CACHE ires for that 4948 * destination. 4949 */ 4950 for (cire = first_cire; 4951 cire != NULL; 4952 cire = cire->ire_next) { 4953 4954 if (!(cire->ire_flags & RTF_MULTIRT)) 4955 continue; 4956 if (cire->ire_addr != dst) 4957 continue; 4958 if (cire->ire_marks & 4959 (IRE_MARK_CONDEMNED | 4960 IRE_MARK_HIDDEN)) 4961 continue; 4962 4963 if (cire->ire_gw_secattr != NULL && 4964 tsol_ire_match_gwattr(cire, 4965 tsl) != 0) { 4966 continue; 4967 } 4968 4969 /* 4970 * Check if the IRE_CACHE's gateway 4971 * matches the IRE_HOST's gateway. 4972 */ 4973 if (cire->ire_gateway_addr == gw) { 4974 already_resolved = B_TRUE; 4975 break; 4976 } 4977 } 4978 IRB_REFRELE(cirb); 4979 } 4980 4981 /* 4982 * This route is already resolved; 4983 * proceed with next one. 4984 */ 4985 if (already_resolved) { 4986 ip2dbg(("ire_multirt_lookup: found cire %p, " 4987 "already resolved\n", (void *)cire)); 4988 continue; 4989 } 4990 4991 /* 4992 * The route is unresolved; is it actually 4993 * resolvable, i.e. is there a cache or a resolver 4994 * for the gateway? 4995 */ 4996 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 4997 ALL_ZONES, tsl, 4998 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst); 4999 5000 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 5001 (void *)gw_ire)); 5002 5003 /* 5004 * If gw_ire is typed IRE_CACHETABLE, 5005 * this route can be resolved without any call to the 5006 * resolver. If the MULTIRT_CACHEGW flag is set, 5007 * give the top priority to this ire and exit the 5008 * loop. 5009 * This is typically the case when an ARP reply 5010 * is processed through ip_wput_nondata(). 5011 */ 5012 if ((flags & MULTIRT_CACHEGW) && 5013 (gw_ire != NULL) && 5014 (gw_ire->ire_type & IRE_CACHETABLE)) { 5015 ASSERT(gw_ire->ire_nce == NULL || 5016 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5017 /* 5018 * Release the resolver associated to the 5019 * previous candidate best ire, if any. 5020 */ 5021 if (best_cire != NULL) { 5022 ire_refrele(best_cire); 5023 ASSERT(best_fire != NULL); 5024 } 5025 5026 best_fire = fire; 5027 best_cire = gw_ire; 5028 5029 ip2dbg(("ire_multirt_lookup: found top prio " 5030 "best_fire %p, best_cire %p\n", 5031 (void *)best_fire, (void *)best_cire)); 5032 break; 5033 } 5034 5035 /* 5036 * Compute the time elapsed since our preceding 5037 * attempt to resolve that route. 5038 * If the MULTIRT_USESTAMP flag is set, we take that 5039 * route into account only if this time interval 5040 * exceeds ip_multirt_resolution_interval; 5041 * this prevents us from attempting to resolve a 5042 * broken route upon each sending of a packet. 5043 */ 5044 delta = lbolt - fire->ire_last_used_time; 5045 delta = TICK_TO_MSEC(delta); 5046 5047 res = (boolean_t)((delta > 5048 ipst->ips_ip_multirt_resolution_interval) || 5049 (!(flags & MULTIRT_USESTAMP))); 5050 5051 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 5052 "res %d\n", 5053 (void *)fire, delta, res)); 5054 5055 if (res) { 5056 /* 5057 * We are here if MULTIRT_USESTAMP flag is set 5058 * and the resolver for fire's gateway 5059 * has not been tried since 5060 * ip_multirt_resolution_interval, or if 5061 * MULTIRT_USESTAMP is not set but gw_ire did 5062 * not fill the conditions for MULTIRT_CACHEGW, 5063 * or if neither MULTIRT_USESTAMP nor 5064 * MULTIRT_CACHEGW are set. 5065 */ 5066 if (gw_ire != NULL) { 5067 if (best_fire == NULL) { 5068 ASSERT(best_cire == NULL); 5069 5070 best_fire = fire; 5071 best_cire = gw_ire; 5072 5073 ip2dbg(("ire_multirt_lookup:" 5074 "found candidate " 5075 "best_fire %p, " 5076 "best_cire %p\n", 5077 (void *)best_fire, 5078 (void *)best_cire)); 5079 5080 /* 5081 * If MULTIRT_CACHEGW is not 5082 * set, we ignore the top 5083 * priority ires that can 5084 * be resolved without any 5085 * call to the resolver; 5086 * In that case, there is 5087 * actually no need 5088 * to continue the loop. 5089 */ 5090 if (!(flags & 5091 MULTIRT_CACHEGW)) { 5092 break; 5093 } 5094 continue; 5095 } 5096 } else { 5097 /* 5098 * No resolver for the gateway: the 5099 * route is not resolvable. 5100 * If the MULTIRT_SETSTAMP flag is 5101 * set, we stamp the IRE_HOST ire, 5102 * so we will not select it again 5103 * during this resolution interval. 5104 */ 5105 if (flags & MULTIRT_SETSTAMP) 5106 fire->ire_last_used_time = 5107 lbolt; 5108 } 5109 } 5110 5111 if (gw_ire != NULL) 5112 ire_refrele(gw_ire); 5113 } 5114 } else { /* CLASSD(dst) */ 5115 5116 for (fire = first_fire; 5117 fire != NULL; 5118 fire = fire->ire_next) { 5119 5120 if (!(fire->ire_flags & RTF_MULTIRT)) 5121 continue; 5122 if (fire->ire_addr != dst) 5123 continue; 5124 5125 if (fire->ire_gw_secattr != NULL && 5126 tsol_ire_match_gwattr(fire, tsl) != 0) { 5127 continue; 5128 } 5129 5130 already_resolved = B_FALSE; 5131 5132 gw = fire->ire_gateway_addr; 5133 5134 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 5135 NULL, NULL, ALL_ZONES, 0, tsl, 5136 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 5137 MATCH_IRE_SECATTR, ipst); 5138 5139 /* No resolver for the gateway; we skip this ire. */ 5140 if (gw_ire == NULL) { 5141 continue; 5142 } 5143 ASSERT(gw_ire->ire_nce == NULL || 5144 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5145 5146 if (first_cire != NULL) { 5147 5148 IRB_REFHOLD(cirb); 5149 /* 5150 * For all IRE_CACHE ires for that 5151 * destination. 5152 */ 5153 for (cire = first_cire; 5154 cire != NULL; 5155 cire = cire->ire_next) { 5156 5157 if (!(cire->ire_flags & RTF_MULTIRT)) 5158 continue; 5159 if (cire->ire_addr != dst) 5160 continue; 5161 if (cire->ire_marks & 5162 (IRE_MARK_CONDEMNED | 5163 IRE_MARK_HIDDEN)) 5164 continue; 5165 5166 if (cire->ire_gw_secattr != NULL && 5167 tsol_ire_match_gwattr(cire, 5168 tsl) != 0) { 5169 continue; 5170 } 5171 5172 /* 5173 * Cache entries are linked to the 5174 * parent routes using the parent handle 5175 * (ire_phandle). If no cache entry has 5176 * the same handle as fire, fire is 5177 * still unresolved. 5178 */ 5179 ASSERT(cire->ire_phandle != 0); 5180 if (cire->ire_phandle == 5181 fire->ire_phandle) { 5182 already_resolved = B_TRUE; 5183 break; 5184 } 5185 } 5186 IRB_REFRELE(cirb); 5187 } 5188 5189 /* 5190 * This route is already resolved; proceed with 5191 * next one. 5192 */ 5193 if (already_resolved) { 5194 ire_refrele(gw_ire); 5195 continue; 5196 } 5197 5198 /* 5199 * Compute the time elapsed since our preceding 5200 * attempt to resolve that route. 5201 * If the MULTIRT_USESTAMP flag is set, we take 5202 * that route into account only if this time 5203 * interval exceeds ip_multirt_resolution_interval; 5204 * this prevents us from attempting to resolve a 5205 * broken route upon each sending of a packet. 5206 */ 5207 delta = lbolt - fire->ire_last_used_time; 5208 delta = TICK_TO_MSEC(delta); 5209 5210 res = (boolean_t)((delta > 5211 ipst->ips_ip_multirt_resolution_interval) || 5212 (!(flags & MULTIRT_USESTAMP))); 5213 5214 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 5215 "flags %04x, res %d\n", 5216 (void *)fire, delta, flags, res)); 5217 5218 if (res) { 5219 if (best_cire != NULL) { 5220 /* 5221 * Release the resolver associated 5222 * to the preceding candidate best 5223 * ire, if any. 5224 */ 5225 ire_refrele(best_cire); 5226 ASSERT(best_fire != NULL); 5227 } 5228 best_fire = fire; 5229 best_cire = gw_ire; 5230 continue; 5231 } 5232 5233 ire_refrele(gw_ire); 5234 } 5235 } 5236 5237 if (best_fire != NULL) { 5238 IRE_REFHOLD(best_fire); 5239 } 5240 IRB_REFRELE(firb); 5241 5242 /* Release the first IRE_CACHE we initially looked up, if any. */ 5243 if (first_cire != NULL) 5244 ire_refrele(first_cire); 5245 5246 /* Found a resolvable route. */ 5247 if (best_fire != NULL) { 5248 ASSERT(best_cire != NULL); 5249 5250 if (*fire_arg != NULL) 5251 ire_refrele(*fire_arg); 5252 if (*ire_arg != NULL) 5253 ire_refrele(*ire_arg); 5254 5255 /* 5256 * Update the passed-in arguments with the 5257 * resolvable multirt route we found. 5258 */ 5259 *fire_arg = best_fire; 5260 *ire_arg = best_cire; 5261 5262 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 5263 "*fire_arg %p, *ire_arg %p\n", 5264 (void *)best_fire, (void *)best_cire)); 5265 5266 return (B_TRUE); 5267 } 5268 5269 ASSERT(best_cire == NULL); 5270 5271 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 5272 "*ire_arg %p\n", 5273 (void *)*fire_arg, (void *)*ire_arg)); 5274 5275 /* No resolvable route. */ 5276 return (B_FALSE); 5277 } 5278 5279 /* 5280 * IRE iterator for inbound and loopback broadcast processing. 5281 * Given an IRE_BROADCAST ire, walk the ires with the same destination 5282 * address, but skip over the passed-in ire. Returns the next ire without 5283 * a hold - assumes that the caller holds a reference on the IRE bucket. 5284 */ 5285 ire_t * 5286 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 5287 { 5288 ill_t *ill; 5289 5290 if (curr == NULL) { 5291 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 5292 curr = curr->ire_next) { 5293 if (curr->ire_addr == ire->ire_addr) 5294 break; 5295 } 5296 } else { 5297 curr = curr->ire_next; 5298 } 5299 ill = ire_to_ill(ire); 5300 for (; curr != NULL; curr = curr->ire_next) { 5301 if (curr->ire_addr != ire->ire_addr) { 5302 /* 5303 * All the IREs to a given destination are contiguous; 5304 * break out once the address doesn't match. 5305 */ 5306 break; 5307 } 5308 if (curr == ire) { 5309 /* skip over the passed-in ire */ 5310 continue; 5311 } 5312 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 5313 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 5314 /* 5315 * If the passed-in ire is loopback, skip over 5316 * non-loopback ires and vice versa. 5317 */ 5318 continue; 5319 } 5320 if (ire_to_ill(curr) != ill) { 5321 /* skip over IREs going through a different interface */ 5322 continue; 5323 } 5324 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 5325 /* skip over deleted IREs */ 5326 continue; 5327 } 5328 return (curr); 5329 } 5330 return (NULL); 5331 } 5332 5333 #ifdef DEBUG 5334 void 5335 ire_trace_ref(ire_t *ire) 5336 { 5337 mutex_enter(&ire->ire_lock); 5338 if (ire->ire_trace_disable) { 5339 mutex_exit(&ire->ire_lock); 5340 return; 5341 } 5342 5343 if (th_trace_ref(ire, ire->ire_ipst)) { 5344 mutex_exit(&ire->ire_lock); 5345 } else { 5346 ire->ire_trace_disable = B_TRUE; 5347 mutex_exit(&ire->ire_lock); 5348 ire_trace_cleanup(ire); 5349 } 5350 } 5351 5352 void 5353 ire_untrace_ref(ire_t *ire) 5354 { 5355 mutex_enter(&ire->ire_lock); 5356 if (!ire->ire_trace_disable) 5357 th_trace_unref(ire); 5358 mutex_exit(&ire->ire_lock); 5359 } 5360 5361 static void 5362 ire_trace_cleanup(const ire_t *ire) 5363 { 5364 th_trace_cleanup(ire, ire->ire_trace_disable); 5365 } 5366 #endif /* DEBUG */ 5367 5368 /* 5369 * Generate a message chain with an arp request to resolve the in_ire. 5370 * It is assumed that in_ire itself is currently in the ire cache table, 5371 * so we create a fake_ire filled with enough information about ire_addr etc. 5372 * to retrieve in_ire when the DL_UNITDATA response from the resolver 5373 * comes back. The fake_ire itself is created by calling esballoc with 5374 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 5375 * invoked when the mblk containing fake_ire is freed. 5376 */ 5377 void 5378 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 5379 { 5380 areq_t *areq; 5381 ipaddr_t *addrp; 5382 mblk_t *ire_mp, *areq_mp; 5383 ire_t *ire, *buf; 5384 size_t bufsize; 5385 frtn_t *frtnp; 5386 ill_t *ill; 5387 ip_stack_t *ipst = dst_ill->ill_ipst; 5388 5389 /* 5390 * Construct message chain for the resolver 5391 * of the form: 5392 * ARP_REQ_MBLK-->IRE_MBLK 5393 * 5394 * NOTE : If the response does not 5395 * come back, ARP frees the packet. For this reason, 5396 * we can't REFHOLD the bucket of save_ire to prevent 5397 * deletions. We may not be able to REFRELE the bucket 5398 * if the response never comes back. Thus, before 5399 * adding the ire, ire_add_v4 will make sure that the 5400 * interface route does not get deleted. This is the 5401 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 5402 * where we can always prevent deletions because of 5403 * the synchronous nature of adding IRES i.e 5404 * ire_add_then_send is called after creating the IRE. 5405 */ 5406 5407 /* 5408 * We use esballoc to allocate the second part(the ire_t size mblk) 5409 * of the message chain depicted above. THis mblk will be freed 5410 * by arp when there is a timeout, and otherwise passed to IP 5411 * and IP will * free it after processing the ARP response. 5412 */ 5413 5414 bufsize = sizeof (ire_t) + sizeof (frtn_t); 5415 buf = kmem_alloc(bufsize, KM_NOSLEEP); 5416 if (buf == NULL) { 5417 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 5418 return; 5419 } 5420 frtnp = (frtn_t *)(buf + 1); 5421 frtnp->free_arg = (caddr_t)buf; 5422 frtnp->free_func = ire_freemblk; 5423 5424 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 5425 5426 if (ire_mp == NULL) { 5427 ip1dbg(("ire_arpresolve: esballoc failed\n")); 5428 kmem_free(buf, bufsize); 5429 return; 5430 } 5431 ASSERT(in_ire->ire_nce != NULL); 5432 areq_mp = copyb(dst_ill->ill_resolver_mp); 5433 if (areq_mp == NULL) { 5434 kmem_free(buf, bufsize); 5435 return; 5436 } 5437 5438 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 5439 ire = (ire_t *)buf; 5440 /* 5441 * keep enough info in the fake ire so that we can pull up 5442 * the incomplete ire (in_ire) after result comes back from 5443 * arp and make it complete. 5444 */ 5445 *ire = ire_null; 5446 ire->ire_u = in_ire->ire_u; 5447 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 5448 ire->ire_ipif = in_ire->ire_ipif; 5449 ire->ire_stq = in_ire->ire_stq; 5450 ill = ire_to_ill(ire); 5451 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 5452 ire->ire_zoneid = in_ire->ire_zoneid; 5453 ire->ire_ipst = ipst; 5454 5455 /* 5456 * ire_freemblk will be called when ire_mp is freed, both for 5457 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 5458 * when the arp resolution failed. 5459 */ 5460 ire->ire_marks |= IRE_MARK_UNCACHED; 5461 ire->ire_mp = ire_mp; 5462 ire_mp->b_wptr = (uchar_t *)&ire[1]; 5463 ire_mp->b_cont = NULL; 5464 linkb(areq_mp, ire_mp); 5465 5466 /* 5467 * Fill in the source and dest addrs for the resolver. 5468 * NOTE: this depends on memory layouts imposed by 5469 * ill_init(). 5470 */ 5471 areq = (areq_t *)areq_mp->b_rptr; 5472 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 5473 *addrp = ire->ire_src_addr; 5474 5475 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 5476 if (ire->ire_gateway_addr != INADDR_ANY) { 5477 *addrp = ire->ire_gateway_addr; 5478 } else { 5479 *addrp = ire->ire_addr; 5480 } 5481 5482 /* Up to the resolver. */ 5483 if (canputnext(dst_ill->ill_rq)) { 5484 putnext(dst_ill->ill_rq, areq_mp); 5485 } else { 5486 freemsg(areq_mp); 5487 } 5488 } 5489 5490 /* 5491 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 5492 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 5493 * 5494 * This function can be called by ARP via free routine for ire_mp or 5495 * by IPv4(both host and forwarding path) via ire_delete 5496 * in case ARP resolution fails. 5497 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 5498 * (for IP to talk to ARP, it still has to send AR* messages). 5499 * 5500 * Note that the ARP/IP merge should replace the functioanlity by providing 5501 * direct function calls to clean up unresolved entries in ire/nce lists. 5502 */ 5503 void 5504 ire_freemblk(ire_t *ire_mp) 5505 { 5506 nce_t *nce = NULL; 5507 ill_t *ill; 5508 ip_stack_t *ipst; 5509 5510 ASSERT(ire_mp != NULL); 5511 5512 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 5513 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 5514 (void *)ire_mp)); 5515 goto cleanup; 5516 } 5517 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 5518 goto cleanup; /* everything succeeded. just free and return */ 5519 } 5520 5521 /* 5522 * the arp information corresponding to this ire_mp was not 5523 * transferred to a ire_cache entry. Need 5524 * to clean up incomplete ire's and nce, if necessary. 5525 */ 5526 ASSERT(ire_mp->ire_stq != NULL); 5527 ASSERT(ire_mp->ire_stq_ifindex != 0); 5528 ASSERT(ire_mp->ire_ipst != NULL); 5529 5530 ipst = ire_mp->ire_ipst; 5531 5532 /* 5533 * Get any nce's corresponding to this ire_mp. We first have to 5534 * make sure that the ill is still around. 5535 */ 5536 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, 5537 B_FALSE, NULL, NULL, NULL, NULL, ipst); 5538 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 5539 (ill->ill_state_flags & ILL_CONDEMNED)) { 5540 /* 5541 * ill went away. no nce to clean up. 5542 * Note that the ill_state_flags could be set to 5543 * ILL_CONDEMNED after this point, but if we know 5544 * that it is CONDEMNED now, we just bail out quickly. 5545 */ 5546 if (ill != NULL) 5547 ill_refrele(ill); 5548 goto cleanup; 5549 } 5550 nce = ndp_lookup_v4(ill, 5551 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 5552 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 5553 B_FALSE); 5554 ill_refrele(ill); 5555 5556 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 5557 /* 5558 * some incomplete nce was found. 5559 */ 5560 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 5561 nce_t *, nce, ire_t *, ire_mp); 5562 /* 5563 * Send the icmp_unreachable messages for the queued mblks in 5564 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 5565 * for this ire 5566 */ 5567 arp_resolv_failed(nce); 5568 /* 5569 * Delete the nce and clean up all ire's pointing at this nce 5570 * in the cachetable 5571 */ 5572 ndp_delete(nce); 5573 } 5574 if (nce != NULL) 5575 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 5576 5577 cleanup: 5578 /* 5579 * Get rid of the ire buffer 5580 * We call kmem_free here(instead of ire_delete()), since 5581 * this is the freeb's callback. 5582 */ 5583 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 5584 } 5585 5586 /* 5587 * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and 5588 * non-loopback IRE_BROADCAST ire's. 5589 * 5590 * If a neighbor-cache entry has to be created (i.e., one does not already 5591 * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache 5592 * entry are initialized in ndp_add_v4(). These values are picked from 5593 * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the 5594 * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values 5595 * determine the {nce_state, nce_res_mp} of the nce_t created. All 5596 * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp 5597 * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire 5598 * entries, 5599 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 5600 * nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state. 5601 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 5602 * layer resolution is necessary, so that the nce_t will be in the 5603 * ND_REACHABLE state and the nce_res_mp will have a copy of the 5604 * ill_resolver_mp of the outgoing interface. 5605 * 5606 * The link layer information needed for broadcast addresses, and for 5607 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 5608 * never needs re-verification for the lifetime of the nce_t. These are 5609 * therefore marked NCE_F_PERMANENT, and never allowed to expire via 5610 * NCE_EXPIRED. 5611 * 5612 * IRE_CACHE ire's contain the information for the nexthop (ire_gateway_addr) 5613 * in the case of indirect routes, and for the dst itself (ire_addr) in the 5614 * case of direct routes, with the nce_res_mp containing a template 5615 * DL_UNITDATA request. 5616 * 5617 * The actual association of the ire_nce to the nce created here is 5618 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 5619 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 5620 * the ire_nce assignment is done in ire_add_then_send. 5621 */ 5622 int 5623 ire_nce_init(ire_t *ire, nce_t *src_nce) 5624 { 5625 in_addr_t addr4; 5626 int err; 5627 nce_t *nce = NULL; 5628 ill_t *ire_ill; 5629 uint16_t nce_flags = 0; 5630 ip_stack_t *ipst; 5631 5632 if (ire->ire_stq == NULL) 5633 return (0); /* no need to create nce for local/loopback */ 5634 5635 switch (ire->ire_type) { 5636 case IRE_CACHE: 5637 if (ire->ire_gateway_addr != INADDR_ANY) 5638 addr4 = ire->ire_gateway_addr; /* 'G' route */ 5639 else 5640 addr4 = ire->ire_addr; /* direct route */ 5641 break; 5642 case IRE_BROADCAST: 5643 addr4 = ire->ire_addr; 5644 nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST); 5645 break; 5646 default: 5647 return (0); 5648 } 5649 5650 /* 5651 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 5652 * rules in ire_forward_src_ipif. We want the dlureq_mp 5653 * for the outgoing interface, which we get from the ire_stq. 5654 */ 5655 ire_ill = ire_to_ill(ire); 5656 ipst = ire_ill->ill_ipst; 5657 5658 /* 5659 * IRE_IF_NORESOLVER entries never need re-verification and 5660 * do not expire, so we mark them as NCE_F_PERMANENT. 5661 */ 5662 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) 5663 nce_flags |= NCE_F_PERMANENT; 5664 5665 retry_nce: 5666 err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags, 5667 &nce, src_nce); 5668 5669 if (err == EEXIST && NCE_EXPIRED(nce, ipst)) { 5670 /* 5671 * We looked up an expired nce. 5672 * Go back and try to create one again. 5673 */ 5674 ndp_delete(nce); 5675 NCE_REFRELE(nce); 5676 nce = NULL; 5677 goto retry_nce; 5678 } 5679 5680 ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n", 5681 (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err)); 5682 5683 switch (err) { 5684 case 0: 5685 case EEXIST: 5686 /* 5687 * return a pointer to a newly created or existing nce_t; 5688 * note that the ire-nce mapping is many-one, i.e., 5689 * multiple ire's could point to the same nce_t. 5690 */ 5691 break; 5692 default: 5693 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 5694 return (EINVAL); 5695 } 5696 if (ire->ire_type == IRE_BROADCAST) { 5697 /* 5698 * Two bcast ires are created for each interface; 5699 * 1. loopback copy (which does not have an 5700 * ire_stq, and therefore has no ire_nce), and, 5701 * 2. the non-loopback copy, which has the nce_res_mp 5702 * initialized to a copy of the ill_bcast_mp, and 5703 * is marked as ND_REACHABLE at this point. 5704 * This nce does not undergo any further state changes, 5705 * and exists as long as the interface is plumbed. 5706 * Note: we do the ire_nce assignment here for IRE_BROADCAST 5707 * because some functions like ill_mark_bcast() inline the 5708 * ire_add functionality. 5709 */ 5710 ire->ire_nce = nce; 5711 /* 5712 * We are associating this nce to the ire, 5713 * so change the nce ref taken in 5714 * ndp_lookup_then_add_v4() from 5715 * NCE_REFHOLD to NCE_REFHOLD_NOTR 5716 */ 5717 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 5718 } else { 5719 /* 5720 * We are not using this nce_t just yet so release 5721 * the ref taken in ndp_lookup_then_add_v4() 5722 */ 5723 NCE_REFRELE(nce); 5724 } 5725 return (0); 5726 } 5727