xref: /illumos-gate/usr/src/uts/common/inet/ip/ip_ire.c (revision 34a0f871d192b33b865455a8812a3d34c1866315)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 
30 /*
31  * This file contains routines that manipulate Internet Routing Entries (IREs).
32  */
33 
34 #include <sys/types.h>
35 #include <sys/stream.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/ddi.h>
39 #include <sys/cmn_err.h>
40 #include <sys/policy.h>
41 
42 #include <sys/systm.h>
43 #include <sys/kmem.h>
44 #include <sys/param.h>
45 #include <sys/socket.h>
46 #include <net/if.h>
47 #include <net/route.h>
48 #include <netinet/in.h>
49 #include <net/if_dl.h>
50 #include <netinet/ip6.h>
51 #include <netinet/icmp6.h>
52 
53 #include <inet/common.h>
54 #include <inet/mi.h>
55 #include <inet/ip.h>
56 #include <inet/ip6.h>
57 #include <inet/ip_ndp.h>
58 #include <inet/arp.h>
59 #include <inet/ip_if.h>
60 #include <inet/ip_ire.h>
61 #include <inet/ip_ftable.h>
62 #include <inet/ip_rts.h>
63 #include <inet/nd.h>
64 
65 #include <net/pfkeyv2.h>
66 #include <inet/ipsec_info.h>
67 #include <inet/sadb.h>
68 #include <sys/kmem.h>
69 #include <inet/tcp.h>
70 #include <inet/ipclassifier.h>
71 #include <sys/zone.h>
72 #include <sys/cpuvar.h>
73 
74 #include <sys/tsol/label.h>
75 #include <sys/tsol/tnet.h>
76 #include <sys/dlpi.h>
77 
78 struct kmem_cache *rt_entry_cache;
79 
80 
81 /*
82  * Synchronization notes:
83  *
84  * The fields of the ire_t struct are protected in the following way :
85  *
86  * ire_next/ire_ptpn
87  *
88  *	- bucket lock of the respective tables (cache or forwarding tables).
89  *
90  * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask,
91  * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif,
92  * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr
93  *
94  *	- Set in ire_create_v4/v6 and never changes after that. Thus,
95  *	  we don't need a lock whenever these fields are accessed.
96  *
97  *	- ire_bucket and ire_masklen (also set in ire_create) is set in
98  *        ire_add_v4/ire_add_v6 before inserting in the bucket and never
99  *        changes after that. Thus we don't need a lock whenever these
100  *	  fields are accessed.
101  *
102  * ire_gateway_addr_v4[v6]
103  *
104  *	- ire_gateway_addr_v4[v6] is set during ire_create and later modified
105  *	  by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
106  *	  it assumed to be atomic and hence the other parts of the code
107  *	  does not use any locks. ire_gateway_addr_v6 updates are not atomic
108  *	  and hence any access to it uses ire_lock to get/set the right value.
109  *
110  * ire_ident, ire_refcnt
111  *
112  *	- Updated atomically using atomic_add_32
113  *
114  * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
115  *
116  *	- Assumes that 32 bit writes are atomic. No locks. ire_lock is
117  *	  used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
118  *
119  * ire_max_frag, ire_frag_flag
120  *
121  *	- ire_lock is used to set/read both of them together.
122  *
123  * ire_tire_mark
124  *
125  *	- Set in ire_create and updated in ire_expire, which is called
126  *	  by only one function namely ip_trash_timer_expire. Thus only
127  *	  one function updates and examines the value.
128  *
129  * ire_marks
130  *	- bucket lock protects this.
131  *
132  * ire_ipsec_overhead/ire_ll_hdr_length
133  *
134  *	- Place holder for returning the information to the upper layers
135  *	  when IRE_DB_REQ comes down.
136  *
137  *
138  * ipv6_ire_default_count is protected by the bucket lock of
139  * ip_forwarding_table_v6[0][0].
140  *
141  * ipv6_ire_default_index is not protected as it  is just a hint
142  * at which default gateway to use. There is nothing
143  * wrong in using the same gateway for two different connections.
144  *
145  * As we always hold the bucket locks in all the places while accessing
146  * the above values, it is natural to use them for protecting them.
147  *
148  * We have a separate cache table and forwarding table for IPv4 and IPv6.
149  * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an
150  * array of irb_t structure and forwarding table (ip_forwarding_table/
151  * ip_forwarding_table_v6) is an array of pointers to array of irb_t
152  * structure. ip_forwarding_table_v6 is allocated dynamically in
153  * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
154  * initializing the same bucket. Once a bucket is initialized, it is never
155  * de-alloacted. This assumption enables us to access
156  * ip_forwarding_table_v6[i] without any locks.
157  *
158  * Each irb_t - ire bucket structure has a lock to protect
159  * a bucket and the ires residing in the bucket have a back pointer to
160  * the bucket structure. It also has a reference count for the number
161  * of threads walking the bucket - irb_refcnt which is bumped up
162  * using the macro IRB_REFHOLD macro. The flags irb_flags can be
163  * set to IRE_MARK_CONDEMNED indicating that there are some ires
164  * in this bucket that are marked with IRE_MARK_CONDEMNED and the
165  * last thread to leave the bucket should delete the ires. Usually
166  * this is done by the IRB_REFRELE macro which is used to decrement
167  * the reference count on a bucket.
168  *
169  * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/
170  * decrements the reference count, ire_refcnt, atomically on the ire.
171  * ire_refcnt is modified only using this macro. Operations on the IRE
172  * could be described as follows :
173  *
174  * CREATE an ire with reference count initialized to 1.
175  *
176  * ADDITION of an ire holds the bucket lock, checks for duplicates
177  * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after
178  * bumping up once more i.e the reference count is 2. This is to avoid
179  * an extra lookup in the functions calling ire_add which wants to
180  * work with the ire after adding.
181  *
182  * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD
183  * macro. It is valid to bump up the referece count of the IRE,
184  * after the lookup has returned an ire. Following are the lookup
185  * functions that return an HELD ire :
186  *
187  * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6],
188  * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6],
189  * ipif_to_ire[_v6], ire_mrtun_lookup, ire_srcif_table_lookup.
190  *
191  * DELETION of an ire holds the bucket lock, removes it from the list
192  * and then decrements the reference count for having removed from the list
193  * by using the IRE_REFRELE macro. If some other thread has looked up
194  * the ire, the reference count would have been bumped up and hence
195  * this ire will not be freed once deleted. It will be freed once the
196  * reference count drops to zero.
197  *
198  * Add and Delete acquires the bucket lock as RW_WRITER, while all the
199  * lookups acquire the bucket lock as RW_READER.
200  *
201  * NOTE : The only functions that does the IRE_REFRELE when an ire is
202  *	  passed as an argument are :
203  *
204  *	  1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the
205  *			   broadcast ires it looks up internally within
206  *			   the function. Currently, for simplicity it does
207  *			   not differentiate the one that is passed in and
208  *			   the ones it looks up internally. It always
209  *			   IRE_REFRELEs.
210  *	  2) ire_send
211  *	     ire_send_v6 : As ire_send calls ip_wput_ire and other functions
212  *			   that take ire as an argument, it has to selectively
213  *			   IRE_REFRELE the ire. To maintain symmetry,
214  *			   ire_send_v6 does the same.
215  *
216  * Otherwise, the general rule is to do the IRE_REFRELE in the function
217  * that is passing the ire as an argument.
218  *
219  * In trying to locate ires the following points are to be noted.
220  *
221  * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is
222  * to be ignored when walking the ires using ire_next.
223  *
224  * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the
225  * benefit of in.mpathd which needs to probe interfaces for failures. Normal
226  * applications should not be seeing this ire and hence this ire is ignored
227  * in most cases in the search using ire_next.
228  *
229  * Zones note:
230  *	Walking IREs within a given zone also walks certain ires in other
231  *	zones.  This is done intentionally.  IRE walks with a specified
232  *	zoneid are used only when doing informational reports, and
233  *	zone users want to see things that they can access. See block
234  *	comment in ire_walk_ill_match().
235  */
236 
237 /*
238  * A per-interface routing table is created ( if not present)
239  * when the first entry is added to this special routing table.
240  * This special routing table is accessed through the ill data structure.
241  * The routing table looks like cache table. For example, currently it
242  * is used by mobile-ip foreign agent to forward data that only comes from
243  * the home agent tunnel for a mobile node. Thus if the outgoing interface
244  * is a RESOLVER interface, IP may need to resolve the hardware address for
245  * the outgoing interface. The routing entries in this table are not updated
246  * in IRE_CACHE. When MCTL msg comes back from ARP, the incoming ill informa-
247  * tion is lost as the write queue is passed to ip_wput.
248  * But, before sending the packet out, the hardware information must be updated
249  * in the special forwarding table. ire_srcif_table_count keeps track of total
250  * number of ires that are in interface based tables. Each interface based
251  * table hangs off of the incoming ill and each ill_t also keeps a refcnt
252  * of ires in that table.
253  */
254 
255 /*
256  * The minimum size of IRE cache table.  It will be recalcuated in
257  * ip_ire_init().
258  * Setable in /etc/system
259  */
260 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE;
261 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE;
262 
263 /*
264  * The size of the forwarding table.  We will make sure that it is a
265  * power of 2 in ip_ire_init().
266  * Setable in /etc/system
267  */
268 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
269 
270 struct	kmem_cache	*ire_cache;
271 static ire_t	ire_null;
272 
273 /*
274  * The threshold number of IRE in a bucket when the IREs are
275  * cleaned up.  This threshold is calculated later in ip_open()
276  * based on the speed of CPU and available memory.  This default
277  * value is the maximum.
278  *
279  * We have two kinds of cached IRE, temporary and
280  * non-temporary.  Temporary IREs are marked with
281  * IRE_MARK_TEMPORARY.  They are IREs created for non
282  * TCP traffic and for forwarding purposes.  All others
283  * are non-temporary IREs.  We don't mark IRE created for
284  * TCP as temporary because TCP is stateful and there are
285  * info stored in the IRE which can be shared by other TCP
286  * connections to the same destination.  For connected
287  * endpoint, we also don't want to mark the IRE used as
288  * temporary because the same IRE will be used frequently,
289  * otherwise, the app should not do a connect().  We change
290  * the marking at ip_bind_connected_*() if necessary.
291  *
292  * We want to keep the cache IRE hash bucket length reasonably
293  * short, otherwise IRE lookup functions will take "forever."
294  * We use the "crude" function that the IRE bucket
295  * length should be based on the CPU speed, which is 1 entry
296  * per x MHz, depending on the shift factor ip_ire_cpu_ratio
297  * (n).  This means that with a 750MHz CPU, the max bucket
298  * length can be (750 >> n) entries.
299  *
300  * Note that this threshold is separate for temp and non-temp
301  * IREs.  This means that the actual bucket length can be
302  * twice as that.  And while we try to keep temporary IRE
303  * length at most at the threshold value, we do not attempt to
304  * make the length for non-temporary IREs fixed, for the
305  * reason stated above.  Instead, we start trying to find
306  * "unused" non-temporary IREs when the bucket length reaches
307  * this threshold and clean them up.
308  *
309  * We also want to limit the amount of memory used by
310  * IREs.  So if we are allowed to use ~3% of memory (M)
311  * for those IREs, each bucket should not have more than
312  *
313  * 	M / num of cache bucket / sizeof (ire_t)
314  *
315  * Again the above memory uses are separate for temp and
316  * non-temp cached IREs.
317  *
318  * We may also want the limit to be a function of the number
319  * of interfaces and number of CPUs.  Doing the initialization
320  * in ip_open() means that every time an interface is plumbed,
321  * the max is re-calculated.  Right now, we don't do anything
322  * different.  In future, when we have more experience, we
323  * may want to change this behavior.
324  */
325 uint32_t ip_ire_max_bucket_cnt = 10;	/* Setable in /etc/system */
326 uint32_t ip6_ire_max_bucket_cnt = 10;
327 
328 /*
329  * The minimum of the temporary IRE bucket count.  We do not want
330  * the length of each bucket to be too short.  This may hurt
331  * performance of some apps as the temporary IREs are removed too
332  * often.
333  */
334 uint32_t ip_ire_min_bucket_cnt = 3;	/* /etc/system - not used */
335 uint32_t ip6_ire_min_bucket_cnt = 3;
336 
337 /*
338  * The ratio of memory consumed by IRE used for temporary to available
339  * memory.  This is a shift factor, so 6 means the ratio 1 to 64.  This
340  * value can be changed in /etc/system.  6 is a reasonable number.
341  */
342 uint32_t ip_ire_mem_ratio = 6;	/* /etc/system */
343 /* The shift factor for CPU speed to calculate the max IRE bucket length. */
344 uint32_t ip_ire_cpu_ratio = 7;	/* /etc/system */
345 
346 typedef struct nce_clookup_s {
347 	ipaddr_t ncecl_addr;
348 	boolean_t ncecl_found;
349 } nce_clookup_t;
350 
351 /*
352  * The maximum number of buckets in IRE cache table.  In future, we may
353  * want to make it a dynamic hash table.  For the moment, we fix the
354  * size and allocate the table in ip_ire_init() when IP is first loaded.
355  * We take into account the amount of memory a system has.
356  */
357 #define	IP_MAX_CACHE_TABLE_SIZE	4096
358 
359 /* Setable in /etc/system */
360 static uint32_t	ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
361 static uint32_t	ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
362 
363 #define	NUM_ILLS	3	/* To build the ILL list to unlock */
364 
365 /* Zero iulp_t for initialization. */
366 const iulp_t	ire_uinfo_null = { 0 };
367 
368 static int	ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
369     ipsq_func_t func, boolean_t);
370 static int	ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
371     ipsq_func_t func);
372 static ire_t	*ire_update_srcif_v4(ire_t *ire);
373 static void	ire_delete_v4(ire_t *ire);
374 static void	ire_report_ctable(ire_t *ire, char *mp);
375 static void	ire_report_mrtun_table(ire_t *ire, char *mp);
376 static void	ire_report_srcif_table(ire_t *ire, char *mp, ip_stack_t *ipst);
377 static void	ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
378     zoneid_t zoneid, ip_stack_t *);
379 static void	ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
380     pfv_t func, void *arg, uchar_t vers, ill_t *ill);
381 static void	ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt);
382 extern void	ill_unlock_ills(ill_t **list, int cnt);
383 static	void	ip_nce_clookup_and_delete(nce_t *nce, void *arg);
384 extern void	th_trace_rrecord(th_trace_t *);
385 #ifdef IRE_DEBUG
386 static void	ire_trace_inactive(ire_t *);
387 #endif
388 
389 /*
390  * To avoid bloating the code, we call this function instead of
391  * using the macro IRE_REFRELE. Use macro only in performance
392  * critical paths.
393  *
394  * Must not be called while holding any locks. Otherwise if this is
395  * the last reference to be released there is a chance of recursive mutex
396  * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
397  * to restart an ioctl. The one exception is when the caller is sure that
398  * this is not the last reference to be released. Eg. if the caller is
399  * sure that the ire has not been deleted and won't be deleted.
400  */
401 void
402 ire_refrele(ire_t *ire)
403 {
404 	IRE_REFRELE(ire);
405 }
406 
407 void
408 ire_refrele_notr(ire_t *ire)
409 {
410 	IRE_REFRELE_NOTR(ire);
411 }
412 
413 /*
414  * kmem_cache_alloc constructor for IRE in kma space.
415  * Note that when ire_mp is set the IRE is stored in that mblk and
416  * not in this cache.
417  */
418 /* ARGSUSED */
419 static int
420 ip_ire_constructor(void *buf, void *cdrarg, int kmflags)
421 {
422 	ire_t	*ire = buf;
423 
424 	ire->ire_nce = NULL;
425 
426 	return (0);
427 }
428 
429 /* ARGSUSED1 */
430 static void
431 ip_ire_destructor(void *buf, void *cdrarg)
432 {
433 	ire_t	*ire = buf;
434 
435 	ASSERT(ire->ire_nce == NULL);
436 }
437 
438 /*
439  * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY
440  * IOCTL.  It is used by TCP (or other ULPs) to supply revised information
441  * for an existing CACHED IRE.
442  */
443 /* ARGSUSED */
444 int
445 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
446 {
447 	uchar_t	*addr_ucp;
448 	ipic_t	*ipic;
449 	ire_t	*ire;
450 	ipaddr_t	addr;
451 	in6_addr_t	v6addr;
452 	irb_t	*irb;
453 	zoneid_t	zoneid;
454 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
455 
456 	ASSERT(q->q_next == NULL);
457 	zoneid = Q_TO_CONN(q)->conn_zoneid;
458 
459 	/*
460 	 * Check privilege using the ioctl credential; if it is NULL
461 	 * then this is a kernel message and therefor privileged.
462 	 */
463 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
464 		return (EPERM);
465 
466 	ipic = (ipic_t *)mp->b_rptr;
467 	if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset,
468 	    ipic->ipic_addr_length))) {
469 		return (EINVAL);
470 	}
471 	if (!OK_32PTR(addr_ucp))
472 		return (EINVAL);
473 	switch (ipic->ipic_addr_length) {
474 	case IP_ADDR_LEN: {
475 		/* Extract the destination address. */
476 		addr = *(ipaddr_t *)addr_ucp;
477 		/* Find the corresponding IRE. */
478 		ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
479 		break;
480 	}
481 	case IPV6_ADDR_LEN: {
482 		/* Extract the destination address. */
483 		v6addr = *(in6_addr_t *)addr_ucp;
484 		/* Find the corresponding IRE. */
485 		ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst);
486 		break;
487 	}
488 	default:
489 		return (EINVAL);
490 	}
491 
492 	if (ire == NULL)
493 		return (ENOENT);
494 	/*
495 	 * Update the round trip time estimate and/or the max frag size
496 	 * and/or the slow start threshold.
497 	 *
498 	 * We serialize multiple advises using ire_lock.
499 	 */
500 	mutex_enter(&ire->ire_lock);
501 	if (ipic->ipic_rtt) {
502 		/*
503 		 * If there is no old cached values, initialize them
504 		 * conservatively.  Set them to be (1.5 * new value).
505 		 */
506 		if (ire->ire_uinfo.iulp_rtt != 0) {
507 			ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt +
508 			    ipic->ipic_rtt) >> 1;
509 		} else {
510 			ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt +
511 			    (ipic->ipic_rtt >> 1);
512 		}
513 		if (ire->ire_uinfo.iulp_rtt_sd != 0) {
514 			ire->ire_uinfo.iulp_rtt_sd =
515 			    (ire->ire_uinfo.iulp_rtt_sd +
516 			    ipic->ipic_rtt_sd) >> 1;
517 		} else {
518 			ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd +
519 			    (ipic->ipic_rtt_sd >> 1);
520 		}
521 	}
522 	if (ipic->ipic_max_frag)
523 		ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET);
524 	if (ipic->ipic_ssthresh != 0) {
525 		if (ire->ire_uinfo.iulp_ssthresh != 0)
526 			ire->ire_uinfo.iulp_ssthresh =
527 			    (ipic->ipic_ssthresh +
528 			    ire->ire_uinfo.iulp_ssthresh) >> 1;
529 		else
530 			ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh;
531 	}
532 	/*
533 	 * Don't need the ire_lock below this. ire_type does not change
534 	 * after initialization. ire_marks is protected by irb_lock.
535 	 */
536 	mutex_exit(&ire->ire_lock);
537 
538 	if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) {
539 		/*
540 		 * Only increment the temporary IRE count if the original
541 		 * IRE is not already marked temporary.
542 		 */
543 		irb = ire->ire_bucket;
544 		rw_enter(&irb->irb_lock, RW_WRITER);
545 		if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) &&
546 		    !(ire->ire_marks & IRE_MARK_TEMPORARY)) {
547 			irb->irb_tmp_ire_cnt++;
548 		}
549 		ire->ire_marks |= ipic->ipic_ire_marks;
550 		rw_exit(&irb->irb_lock);
551 	}
552 
553 	ire_refrele(ire);
554 	return (0);
555 }
556 
557 /*
558  * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
559  * IOCTL[s].  The NO_REPLY form is used by TCP to delete a route IRE
560  * for a host that is not responding.  This will force an attempt to
561  * establish a new route, if available, and flush out the ARP entry so
562  * it will re-resolve.  Management processes may want to use the
563  * version that generates a reply.
564  *
565  * This function does not support IPv6 since Neighbor Unreachability Detection
566  * means that negative advise like this is useless.
567  */
568 /* ARGSUSED */
569 int
570 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
571 {
572 	uchar_t		*addr_ucp;
573 	ipaddr_t	addr;
574 	ire_t		*ire;
575 	ipid_t		*ipid;
576 	boolean_t	routing_sock_info = B_FALSE;	/* Sent info? */
577 	zoneid_t	zoneid;
578 	ire_t		*gire = NULL;
579 	ill_t		*ill;
580 	mblk_t		*arp_mp;
581 	ip_stack_t	*ipst;
582 
583 	ASSERT(q->q_next == NULL);
584 	zoneid = Q_TO_CONN(q)->conn_zoneid;
585 	ipst = CONNQ_TO_IPST(q);
586 
587 	/*
588 	 * Check privilege using the ioctl credential; if it is NULL
589 	 * then this is a kernel message and therefor privileged.
590 	 */
591 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
592 		return (EPERM);
593 
594 	ipid = (ipid_t *)mp->b_rptr;
595 
596 	/* Only actions on IRE_CACHEs are acceptable at present. */
597 	if (ipid->ipid_ire_type != IRE_CACHE)
598 		return (EINVAL);
599 
600 	addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
601 		ipid->ipid_addr_length);
602 	if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
603 		return (EINVAL);
604 	switch (ipid->ipid_addr_length) {
605 	case IP_ADDR_LEN:
606 		/* addr_ucp points at IP addr */
607 		break;
608 	case sizeof (sin_t): {
609 		sin_t	*sin;
610 		/*
611 		 * got complete (sockaddr) address - increment addr_ucp to point
612 		 * at the ip_addr field.
613 		 */
614 		sin = (sin_t *)addr_ucp;
615 		addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
616 		break;
617 	}
618 	default:
619 		return (EINVAL);
620 	}
621 	/* Extract the destination address. */
622 	bcopy(addr_ucp, &addr, IP_ADDR_LEN);
623 
624 	/* Try to find the CACHED IRE. */
625 	ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
626 
627 	/* Nail it. */
628 	if (ire) {
629 		/* Allow delete only on CACHE entries */
630 		if (ire->ire_type != IRE_CACHE) {
631 			ire_refrele(ire);
632 			return (EINVAL);
633 		}
634 
635 		/*
636 		 * Verify that the IRE has been around for a while.
637 		 * This is to protect against transport protocols
638 		 * that are too eager in sending delete messages.
639 		 */
640 		if (gethrestime_sec() <
641 		    ire->ire_create_time + ipst->ips_ip_ignore_delete_time) {
642 			ire_refrele(ire);
643 			return (EINVAL);
644 		}
645 		/*
646 		 * Now we have a potentially dead cache entry. We need
647 		 * to remove it.
648 		 * If this cache entry is generated from a
649 		 * default route (i.e., ire_cmask == 0),
650 		 * search the default list and mark it dead and some
651 		 * background process will try to activate it.
652 		 */
653 		if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) {
654 			/*
655 			 * Make sure that we pick a different
656 			 * IRE_DEFAULT next time.
657 			 */
658 			ire_t *gw_ire;
659 			irb_t *irb = NULL;
660 			uint_t match_flags;
661 
662 			match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE);
663 
664 			gire = ire_ftable_lookup(ire->ire_addr,
665 			    ire->ire_cmask, 0, 0,
666 			    ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags,
667 			    ipst);
668 
669 			ip3dbg(("ire_ftable_lookup() returned gire %p\n",
670 			    (void *)gire));
671 
672 			if (gire != NULL) {
673 				irb = gire->ire_bucket;
674 
675 				/*
676 				 * We grab it as writer just to serialize
677 				 * multiple threads trying to bump up
678 				 * irb_rr_origin
679 				 */
680 				rw_enter(&irb->irb_lock, RW_WRITER);
681 				if ((gw_ire = irb->irb_rr_origin) == NULL) {
682 					rw_exit(&irb->irb_lock);
683 					goto done;
684 				}
685 
686 				DTRACE_PROBE1(ip__ire__del__origin,
687 				    (ire_t *), gw_ire);
688 
689 				/* Skip past the potentially bad gateway */
690 				if (ire->ire_gateway_addr ==
691 				    gw_ire->ire_gateway_addr) {
692 					ire_t *next = gw_ire->ire_next;
693 
694 					DTRACE_PROBE2(ip__ire__del,
695 					    (ire_t *), gw_ire, (irb_t *), irb);
696 					IRE_FIND_NEXT_ORIGIN(next);
697 					irb->irb_rr_origin = next;
698 				}
699 				rw_exit(&irb->irb_lock);
700 			}
701 		}
702 done:
703 		if (gire != NULL)
704 			IRE_REFRELE(gire);
705 		/* report the bad route to routing sockets */
706 		ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr,
707 		    ire->ire_mask, ire->ire_src_addr, 0, 0, 0,
708 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst);
709 		routing_sock_info = B_TRUE;
710 
711 		/*
712 		 * TCP is really telling us to start over completely, and it
713 		 * expects that we'll resend the ARP query.  Tell ARP to
714 		 * discard the entry, if this is a local destination.
715 		 */
716 		ill = ire->ire_stq->q_ptr;
717 		if (ire->ire_gateway_addr == 0 &&
718 		    (arp_mp = ill_ared_alloc(ill, addr)) != NULL) {
719 			putnext(ill->ill_rq, arp_mp);
720 		}
721 
722 		ire_delete(ire);
723 		ire_refrele(ire);
724 	}
725 	/*
726 	 * Also look for an IRE_HOST type redirect ire and
727 	 * remove it if present.
728 	 */
729 	ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL,
730 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
731 
732 	/* Nail it. */
733 	if (ire != NULL) {
734 	    if (ire->ire_flags & RTF_DYNAMIC) {
735 		if (!routing_sock_info) {
736 			ip_rts_change(RTM_LOSING, ire->ire_addr,
737 			    ire->ire_gateway_addr, ire->ire_mask,
738 			    ire->ire_src_addr, 0, 0, 0,
739 			    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA),
740 			    ipst);
741 		}
742 		ire_delete(ire);
743 	    }
744 	    ire_refrele(ire);
745 	}
746 	return (0);
747 }
748 
749 /*
750  * Named Dispatch routine to produce a formatted report on all IREs.
751  * This report is accessed by using the ndd utility to "get" ND variable
752  * "ipv4_ire_status".
753  */
754 /* ARGSUSED */
755 int
756 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
757 {
758 	zoneid_t zoneid;
759 	ip_stack_t	*ipst;
760 
761 	if (CONN_Q(q))
762 		ipst = CONNQ_TO_IPST(q);
763 	else
764 		ipst = ILLQ_TO_IPST(q);
765 
766 	(void) mi_mpprintf(mp,
767 	    "IRE      " MI_COL_HDRPAD_STR
768 	/*   01234567[89ABCDEF] */
769 	    "rfq      " MI_COL_HDRPAD_STR
770 	/*   01234567[89ABCDEF] */
771 	    "stq      " MI_COL_HDRPAD_STR
772 	/*   01234567[89ABCDEF] */
773 	    " zone "
774 	/*   12345 */
775 	    "addr            mask            "
776 	/*   123.123.123.123 123.123.123.123 */
777 	    "src             gateway         mxfrg rtt   rtt_sd ssthresh ref "
778 	/*   123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */
779 	    "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe "
780 	/*   123456 123456789 123456789 123456 12345678 1234 12345678 */
781 	    "recvpipe in/out/forward type");
782 	/*   12345678 in/out/forward xxxxxxxxxx */
783 
784 	/*
785 	 * Because of the ndd constraint, at most we can have 64K buffer
786 	 * to put in all IRE info.  So to be more efficient, just
787 	 * allocate a 64K buffer here, assuming we need that large buffer.
788 	 * This should be OK as only root can do ndd /dev/ip.
789 	 */
790 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
791 		/* The following may work even if we cannot get a large buf. */
792 		(void) mi_mpprintf(mp, "<< Out of buffer >>\n");
793 		return (0);
794 	}
795 
796 	zoneid = Q_TO_CONN(q)->conn_zoneid;
797 	if (zoneid == GLOBAL_ZONEID)
798 		zoneid = ALL_ZONES;
799 
800 	ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid, ipst);
801 	ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid, ipst);
802 
803 	return (0);
804 }
805 
806 
807 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */
808 static void
809 ire_report_ctable(ire_t *ire, char *mp)
810 {
811 	char	buf1[16];
812 	char	buf2[16];
813 	char	buf3[16];
814 	char	buf4[16];
815 	uint_t	fo_pkt_count;
816 	uint_t	ib_pkt_count;
817 	int	ref;
818 	uint_t	print_len, buf_len;
819 
820 	if ((ire->ire_type & IRE_CACHETABLE) == 0)
821 	    return;
822 	buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr;
823 	if (buf_len <= 0)
824 		return;
825 
826 	/* Number of active references of this ire */
827 	ref = ire->ire_refcnt;
828 	/* "inbound" to a non local address is a forward */
829 	ib_pkt_count = ire->ire_ib_pkt_count;
830 	fo_pkt_count = 0;
831 	if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) {
832 		fo_pkt_count = ib_pkt_count;
833 		ib_pkt_count = 0;
834 	}
835 	print_len =  snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len,
836 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d "
837 	    "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d "
838 	    "%04d %08d %08d %d/%d/%d %s\n",
839 	    (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq,
840 	    (int)ire->ire_zoneid,
841 	    ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2),
842 	    ip_dot_addr(ire->ire_src_addr, buf3),
843 	    ip_dot_addr(ire->ire_gateway_addr, buf4),
844 	    ire->ire_max_frag, ire->ire_uinfo.iulp_rtt,
845 	    ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref,
846 	    ire->ire_uinfo.iulp_rtomax,
847 	    (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0),
848 	    (ire->ire_uinfo.iulp_wscale_ok ? 1: 0),
849 	    (ire->ire_uinfo.iulp_ecn_ok ? 1: 0),
850 	    (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0),
851 	    ire->ire_uinfo.iulp_sack,
852 	    ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe,
853 	    ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count,
854 	    ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type));
855 	if (print_len < buf_len) {
856 		((mblk_t *)mp)->b_wptr += print_len;
857 	} else {
858 		((mblk_t *)mp)->b_wptr += buf_len;
859 	}
860 }
861 
862 /* ARGSUSED */
863 int
864 ip_ire_report_mrtun(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
865 {
866 	ip_stack_t	*ipst;
867 
868 	if (CONN_Q(q))
869 		ipst = CONNQ_TO_IPST(q);
870 	else
871 		ipst = ILLQ_TO_IPST(q);
872 
873 	(void) mi_mpprintf(mp,
874 	"IRE      " MI_COL_HDRPAD_STR
875 	/*   01234567[89ABCDEF] */
876 	"stq      " MI_COL_HDRPAD_STR
877 	/*   01234567[89ABCDEF] */
878 	"in_ill    " MI_COL_HDRPAD_STR
879 	/*   01234567[89ABCDEF] */
880 	"in_src_addr            "
881 	/*   123.123.123.123 */
882 	"max_frag      "
883 	/*   12345 */
884 	"ref     ");
885 	/*   123 */
886 
887 	ire_walk_ill_mrtun(0, 0, ire_report_mrtun_table, mp, NULL,
888 	    ipst);
889 	return (0);
890 }
891 
892 /* mrtun report table - supports ipv4_mrtun_ire_status ndd variable */
893 
894 static void
895 ire_report_mrtun_table(ire_t *ire, char *mp)
896 {
897 	char	buf1[INET_ADDRSTRLEN];
898 	int	ref;
899 
900 	/* Number of active references of this ire */
901 	ref = ire->ire_refcnt;
902 	ASSERT(ire->ire_type == IRE_MIPRTUN);
903 	(void) mi_mpprintf((mblk_t *)mp,
904 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
905 	    "%s          %05d             %03d",
906 	    (void *)ire, (void *)ire->ire_stq,
907 	    (void *)ire->ire_in_ill,
908 	    ip_dot_addr(ire->ire_in_src_addr, buf1),
909 	    ire->ire_max_frag, ref);
910 }
911 
912 /*
913  * Dispatch routine to format ires in interface based routine
914  */
915 /* ARGSUSED */
916 int
917 ip_ire_report_srcif(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
918 {
919 	ip_stack_t	*ipst;
920 
921 	if (CONN_Q(q))
922 		ipst = CONNQ_TO_IPST(q);
923 	else
924 		ipst = ILLQ_TO_IPST(q);
925 
926 	/* Report all interface based ires */
927 
928 	(void) mi_mpprintf(mp,
929 	    "IRE      " MI_COL_HDRPAD_STR
930 	    /*   01234567[89ABCDEF] */
931 	    "stq      " MI_COL_HDRPAD_STR
932 	    /*   01234567[89ABCDEF] */
933 	    "in_ill    " MI_COL_HDRPAD_STR
934 	    /*   01234567[89ABCDEF] */
935 	    "addr            "
936 	    /*   123.123.123.123 */
937 	    "gateway         "
938 	    /*   123.123.123.123 */
939 	    "max_frag      "
940 	    /*   12345 */
941 	    "ref     "
942 	    /*   123 */
943 	    "type    "
944 	    /* ABCDEFGH */
945 	    "in/out/forward");
946 	ire_walk_srcif_table_v4(ire_report_srcif_table, mp, ipst);
947 	return (0);
948 }
949 
950 /* Reports the interface table ires */
951 /* ARGSUSED2 */
952 static void
953 ire_report_srcif_table(ire_t *ire, char *mp, ip_stack_t *ipst)
954 {
955 	char    buf1[INET_ADDRSTRLEN];
956 	char    buf2[INET_ADDRSTRLEN];
957 	int	ref;
958 
959 	ref = ire->ire_refcnt;
960 	(void) mi_mpprintf((mblk_t *)mp,
961 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
962 	    "%s    %s      %05d       %03d      %s     %d",
963 	    (void *)ire, (void *)ire->ire_stq,
964 	    (void *)ire->ire_in_ill,
965 	    ip_dot_addr(ire->ire_addr, buf1),
966 	    ip_dot_addr(ire->ire_gateway_addr, buf2),
967 	    ire->ire_max_frag, ref,
968 	    ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type),
969 	    ire->ire_ib_pkt_count);
970 
971 }
972 /*
973  * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed
974  * down from the Upper Level Protocol to request a copy of the IRE (to check
975  * its type or to extract information like round-trip time estimates or the
976  * MTU.)
977  * The address is assumed to be in the ire_addr field. If no IRE is found
978  * an IRE is returned with ire_type being zero.
979  * Note that the upper lavel protocol has to check for broadcast
980  * (IRE_BROADCAST) and multicast (CLASSD(addr)).
981  * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the
982  * end of the returned message.
983  *
984  * TCP sends down a message of this type with a connection request packet
985  * chained on. UDP and ICMP send it down to verify that a route exists for
986  * the destination address when they get connected.
987  */
988 void
989 ip_ire_req(queue_t *q, mblk_t *mp)
990 {
991 	ire_t	*inire;
992 	ire_t	*ire;
993 	mblk_t	*mp1;
994 	ire_t	*sire = NULL;
995 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
996 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
997 
998 	ASSERT(q->q_next == NULL);
999 
1000 	if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) ||
1001 	    !OK_32PTR(mp->b_rptr)) {
1002 		freemsg(mp);
1003 		return;
1004 	}
1005 	inire = (ire_t *)mp->b_rptr;
1006 	/*
1007 	 * Got it, now take our best shot at an IRE.
1008 	 */
1009 	if (inire->ire_ipversion == IPV6_VERSION) {
1010 		ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0,
1011 		    NULL, &sire, zoneid, NULL,
1012 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
1013 	} else {
1014 		ASSERT(inire->ire_ipversion == IPV4_VERSION);
1015 		ire = ire_route_lookup(inire->ire_addr, 0, 0, 0,
1016 		    NULL, &sire, zoneid, NULL,
1017 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
1018 	}
1019 
1020 	/*
1021 	 * We prevent returning IRES with source address INADDR_ANY
1022 	 * as these were temporarily created for sending packets
1023 	 * from endpoints that have conn_unspec_src set.
1024 	 */
1025 	if (ire == NULL ||
1026 	    (ire->ire_ipversion == IPV4_VERSION &&
1027 	    ire->ire_src_addr == INADDR_ANY) ||
1028 	    (ire->ire_ipversion == IPV6_VERSION &&
1029 	    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) {
1030 		inire->ire_type = 0;
1031 	} else {
1032 		bcopy(ire, inire, sizeof (ire_t));
1033 		/* Copy the route metrics from the parent. */
1034 		if (sire != NULL) {
1035 			bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo),
1036 			    sizeof (iulp_t));
1037 		}
1038 
1039 		/*
1040 		 * As we don't lookup global policy here, we may not
1041 		 * pass the right size if per-socket policy is not
1042 		 * present. For these cases, path mtu discovery will
1043 		 * do the right thing.
1044 		 */
1045 		inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q));
1046 
1047 		/* Pass the latest setting of the ip_path_mtu_discovery */
1048 		inire->ire_frag_flag |=
1049 		    (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
1050 	}
1051 	if (ire != NULL)
1052 		ire_refrele(ire);
1053 	if (sire != NULL)
1054 		ire_refrele(sire);
1055 	mp->b_wptr = &mp->b_rptr[sizeof (ire_t)];
1056 	mp->b_datap->db_type = IRE_DB_TYPE;
1057 
1058 	/* Put the IRE_DB_TYPE mblk last in the chain */
1059 	mp1 = mp->b_cont;
1060 	if (mp1 != NULL) {
1061 		mp->b_cont = NULL;
1062 		linkb(mp1, mp);
1063 		mp = mp1;
1064 	}
1065 	qreply(q, mp);
1066 }
1067 
1068 /*
1069  * Send a packet using the specified IRE.
1070  * If ire_src_addr_v6 is all zero then discard the IRE after
1071  * the packet has been sent.
1072  */
1073 static void
1074 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire)
1075 {
1076 	mblk_t *ipsec_mp;
1077 	boolean_t is_secure;
1078 	uint_t ifindex;
1079 	ill_t	*ill;
1080 	zoneid_t zoneid = ire->ire_zoneid;
1081 	ip_stack_t	*ipst = ire->ire_ipst;
1082 
1083 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
1084 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
1085 	ipsec_mp = pkt;
1086 	is_secure = (pkt->b_datap->db_type == M_CTL);
1087 	if (is_secure) {
1088 		ipsec_out_t *io;
1089 
1090 		pkt = pkt->b_cont;
1091 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1092 		if (io->ipsec_out_type == IPSEC_OUT)
1093 			zoneid = io->ipsec_out_zoneid;
1094 	}
1095 
1096 	/* If the packet originated externally then */
1097 	if (pkt->b_prev) {
1098 		ire_refrele(ire);
1099 		/*
1100 		 * Extract the ifindex from b_prev (set in ip_rput_noire).
1101 		 * Look up interface to see if it still exists (it could have
1102 		 * been unplumbed by the time the reply came back from ARP)
1103 		 */
1104 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1105 		ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
1106 		    NULL, NULL, NULL, NULL, ipst);
1107 		if (ill == NULL) {
1108 			pkt->b_prev = NULL;
1109 			pkt->b_next = NULL;
1110 			freemsg(ipsec_mp);
1111 			return;
1112 		}
1113 		q = ill->ill_rq;
1114 		pkt->b_prev = NULL;
1115 		/*
1116 		 * This packet has not gone through IPSEC processing
1117 		 * and hence we should not have any IPSEC message
1118 		 * prepended.
1119 		 */
1120 		ASSERT(ipsec_mp == pkt);
1121 		put(q, pkt);
1122 		ill_refrele(ill);
1123 	} else if (pkt->b_next) {
1124 		/* Packets from multicast router */
1125 		pkt->b_next = NULL;
1126 		/*
1127 		 * We never get the IPSEC_OUT while forwarding the
1128 		 * packet for multicast router.
1129 		 */
1130 		ASSERT(ipsec_mp == pkt);
1131 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL);
1132 		ire_refrele(ire);
1133 	} else {
1134 		/* Locally originated packets */
1135 		boolean_t is_inaddr_any;
1136 		ipha_t *ipha = (ipha_t *)pkt->b_rptr;
1137 
1138 		/*
1139 		 * We need to do an ire_delete below for which
1140 		 * we need to make sure that the IRE will be
1141 		 * around even after calling ip_wput_ire -
1142 		 * which does ire_refrele. Otherwise somebody
1143 		 * could potentially delete this ire and hence
1144 		 * free this ire and we will be calling ire_delete
1145 		 * on a freed ire below.
1146 		 */
1147 		is_inaddr_any = (ire->ire_src_addr == INADDR_ANY);
1148 		if (is_inaddr_any) {
1149 			IRE_REFHOLD(ire);
1150 		}
1151 		/*
1152 		 * If we were resolving a router we can not use the
1153 		 * routers IRE for sending the packet (since it would
1154 		 * violate the uniqness of the IP idents) thus we
1155 		 * make another pass through ip_wput to create the IRE_CACHE
1156 		 * for the destination.
1157 		 * When IRE_MARK_NOADD is set, ire_add() is not called.
1158 		 * Thus ip_wput() will never find a ire and result in an
1159 		 * infinite loop. Thus we check whether IRE_MARK_NOADD is
1160 		 * is set. This also implies that IRE_MARK_NOADD can only be
1161 		 * used to send packets to directly connected hosts.
1162 		 */
1163 		if (ipha->ipha_dst != ire->ire_addr &&
1164 		    !(ire->ire_marks & IRE_MARK_NOADD)) {
1165 			ire_refrele(ire);	/* Held in ire_add */
1166 			if (CONN_Q(q)) {
1167 				(void) ip_output(Q_TO_CONN(q), ipsec_mp, q,
1168 				    IRE_SEND);
1169 			} else {
1170 				(void) ip_output((void *)(uintptr_t)zoneid,
1171 				    ipsec_mp, q, IRE_SEND);
1172 			}
1173 		} else {
1174 			if (is_secure) {
1175 				ipsec_out_t *oi;
1176 				ipha_t *ipha;
1177 
1178 				oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1179 				ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
1180 				if (oi->ipsec_out_proc_begin) {
1181 					/*
1182 					 * This is the case where
1183 					 * ip_wput_ipsec_out could not find
1184 					 * the IRE and recreated a new one.
1185 					 * As ip_wput_ipsec_out does ire
1186 					 * lookups, ire_refrele for the extra
1187 					 * bump in ire_add.
1188 					 */
1189 					ire_refrele(ire);
1190 					ip_wput_ipsec_out(q, ipsec_mp, ipha,
1191 					    NULL, NULL);
1192 				} else {
1193 					/*
1194 					 * IRE_REFRELE will be done in
1195 					 * ip_wput_ire.
1196 					 */
1197 					ip_wput_ire(q, ipsec_mp, ire, NULL,
1198 					    IRE_SEND, zoneid);
1199 				}
1200 			} else {
1201 				/*
1202 				 * IRE_REFRELE will be done in ip_wput_ire.
1203 				 */
1204 				ip_wput_ire(q, ipsec_mp, ire, NULL,
1205 				    IRE_SEND, zoneid);
1206 			}
1207 		}
1208 		/*
1209 		 * Special code to support sending a single packet with
1210 		 * conn_unspec_src using an IRE which has no source address.
1211 		 * The IRE is deleted here after sending the packet to avoid
1212 		 * having other code trip on it. But before we delete the
1213 		 * ire, somebody could have looked up this ire.
1214 		 * We prevent returning/using this IRE by the upper layers
1215 		 * by making checks to NULL source address in other places
1216 		 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected.
1217 		 * Though, this does not completely prevent other threads
1218 		 * from using this ire, this should not cause any problems.
1219 		 *
1220 		 * NOTE : We use is_inaddr_any instead of using ire_src_addr
1221 		 * because for the normal case i.e !is_inaddr_any, ire_refrele
1222 		 * above could have potentially freed the ire.
1223 		 */
1224 		if (is_inaddr_any) {
1225 			/*
1226 			 * If this IRE has been deleted by another thread, then
1227 			 * ire_bucket won't be NULL, but ire_ptpn will be NULL.
1228 			 * Thus, ire_delete will do nothing.  This check
1229 			 * guards against calling ire_delete when the IRE was
1230 			 * never inserted in the table, which is handled by
1231 			 * ire_delete as dropping another reference.
1232 			 */
1233 			if (ire->ire_bucket != NULL) {
1234 				ip1dbg(("ire_send: delete IRE\n"));
1235 				ire_delete(ire);
1236 			}
1237 			ire_refrele(ire);	/* Held above */
1238 		}
1239 	}
1240 }
1241 
1242 /*
1243  * Send a packet using the specified IRE.
1244  * If ire_src_addr_v6 is all zero then discard the IRE after
1245  * the packet has been sent.
1246  */
1247 static void
1248 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire)
1249 {
1250 	mblk_t *ipsec_mp;
1251 	boolean_t secure;
1252 	uint_t ifindex;
1253 	zoneid_t zoneid = ire->ire_zoneid;
1254 	ip_stack_t	*ipst = ire->ire_ipst;
1255 
1256 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
1257 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
1258 	if (pkt->b_datap->db_type == M_CTL) {
1259 		ipsec_out_t *io;
1260 
1261 		ipsec_mp = pkt;
1262 		pkt = pkt->b_cont;
1263 		secure = B_TRUE;
1264 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1265 		if (io->ipsec_out_type == IPSEC_OUT)
1266 			zoneid = io->ipsec_out_zoneid;
1267 	} else {
1268 		ipsec_mp = pkt;
1269 		secure = B_FALSE;
1270 	}
1271 
1272 	/* If the packet originated externally then */
1273 	if (pkt->b_prev) {
1274 		ill_t	*ill;
1275 		/*
1276 		 * Extract the ifindex from b_prev (set in ip_rput_data_v6).
1277 		 * Look up interface to see if it still exists (it could have
1278 		 * been unplumbed by the time the reply came back from the
1279 		 * resolver).
1280 		 */
1281 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1282 		ill = ill_lookup_on_ifindex(ifindex, B_TRUE,
1283 		    NULL, NULL, NULL, NULL, ipst);
1284 		if (ill == NULL) {
1285 			pkt->b_prev = NULL;
1286 			pkt->b_next = NULL;
1287 			freemsg(ipsec_mp);
1288 			ire_refrele(ire);	/* Held in ire_add */
1289 			return;
1290 		}
1291 		q = ill->ill_rq;
1292 		pkt->b_prev = NULL;
1293 		/*
1294 		 * This packet has not gone through IPSEC processing
1295 		 * and hence we should not have any IPSEC message
1296 		 * prepended.
1297 		 */
1298 		ASSERT(ipsec_mp == pkt);
1299 		put(q, pkt);
1300 		ill_refrele(ill);
1301 	} else if (pkt->b_next) {
1302 		/* Packets from multicast router */
1303 		pkt->b_next = NULL;
1304 		/*
1305 		 * We never get the IPSEC_OUT while forwarding the
1306 		 * packet for multicast router.
1307 		 */
1308 		ASSERT(ipsec_mp == pkt);
1309 		/*
1310 		 * XXX TODO IPv6.
1311 		 */
1312 		freemsg(pkt);
1313 #ifdef XXX
1314 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL);
1315 #endif
1316 	} else {
1317 		if (secure) {
1318 			ipsec_out_t *oi;
1319 			ip6_t *ip6h;
1320 
1321 			oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1322 			ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr;
1323 			if (oi->ipsec_out_proc_begin) {
1324 				/*
1325 				 * This is the case where
1326 				 * ip_wput_ipsec_out could not find
1327 				 * the IRE and recreated a new one.
1328 				 */
1329 				ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h,
1330 				    NULL, NULL);
1331 			} else {
1332 				if (CONN_Q(q)) {
1333 					(void) ip_output_v6(Q_TO_CONN(q),
1334 					    ipsec_mp, q, IRE_SEND);
1335 				} else {
1336 					(void) ip_output_v6(
1337 					    (void *)(uintptr_t)zoneid,
1338 					    ipsec_mp, q, IRE_SEND);
1339 				}
1340 			}
1341 		} else {
1342 			/*
1343 			 * Send packets through ip_output_v6 so that any
1344 			 * ip6_info header can be processed again.
1345 			 */
1346 			if (CONN_Q(q)) {
1347 				(void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q,
1348 				    IRE_SEND);
1349 			} else {
1350 				(void) ip_output_v6((void *)(uintptr_t)zoneid,
1351 				    ipsec_mp, q, IRE_SEND);
1352 			}
1353 		}
1354 		/*
1355 		 * Special code to support sending a single packet with
1356 		 * conn_unspec_src using an IRE which has no source address.
1357 		 * The IRE is deleted here after sending the packet to avoid
1358 		 * having other code trip on it. But before we delete the
1359 		 * ire, somebody could have looked up this ire.
1360 		 * We prevent returning/using this IRE by the upper layers
1361 		 * by making checks to NULL source address in other places
1362 		 * like e.g ip_ire_append_v6, ip_ire_req and
1363 		 * ip_bind_connected_v6. Though, this does not completely
1364 		 * prevent other threads from using this ire, this should
1365 		 * not cause any problems.
1366 		 */
1367 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) {
1368 			ip1dbg(("ire_send_v6: delete IRE\n"));
1369 			ire_delete(ire);
1370 		}
1371 	}
1372 	ire_refrele(ire);	/* Held in ire_add */
1373 }
1374 
1375 /*
1376  * Make sure that IRE bucket does not get too long.
1377  * This can cause lock up because ire_cache_lookup()
1378  * may take "forever" to finish.
1379  *
1380  * We just remove cnt IREs each time.  This means that
1381  * the bucket length will stay approximately constant,
1382  * depending on cnt.  This should be enough to defend
1383  * against DoS attack based on creating temporary IREs
1384  * (for forwarding and non-TCP traffic).
1385  *
1386  * Note that new IRE is normally added at the tail of the
1387  * bucket.  This means that we are removing the "oldest"
1388  * temporary IRE added.  Only if there are IREs with
1389  * the same ire_addr, do we not add it at the tail.  Refer
1390  * to ire_add_v*().  It should be OK for our purpose.
1391  *
1392  * For non-temporary cached IREs, we make sure that they
1393  * have not been used for some time (defined below), they
1394  * are non-local destinations, and there is no one using
1395  * them at the moment (refcnt == 1).
1396  *
1397  * The above means that the IRE bucket length may become
1398  * very long, consisting of mostly non-temporary IREs.
1399  * This can happen when the hash function does a bad job
1400  * so that most TCP connections cluster to a specific bucket.
1401  * This "hopefully" should never happen.  It can also
1402  * happen if most TCP connections have very long lives.
1403  * Even with the minimal hash table size of 256, there
1404  * has to be a lot of such connections to make the bucket
1405  * length unreasonably long.  This should probably not
1406  * happen either.  The third can when this can happen is
1407  * when the machine is under attack, such as SYN flooding.
1408  * TCP should already have the proper mechanism to protect
1409  * that.  So we should be safe.
1410  *
1411  * This function is called by ire_add_then_send() after
1412  * a new IRE is added and the packet is sent.
1413  *
1414  * The idle cutoff interval is set to 60s.  It can be
1415  * changed using /etc/system.
1416  */
1417 uint32_t ire_idle_cutoff_interval = 60000;
1418 
1419 static void
1420 ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt)
1421 {
1422 	ire_t *ire;
1423 	int tmp_cnt = cnt;
1424 	clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000);
1425 
1426 	/*
1427 	 * irb is NULL if the IRE is not added to the hash.  This
1428 	 * happens when IRE_MARK_NOADD is set in ire_add_then_send()
1429 	 * and when ires are returned from ire_update_srcif_v4() routine.
1430 	 */
1431 	if (irb == NULL)
1432 		return;
1433 
1434 	IRB_REFHOLD(irb);
1435 	if (irb->irb_tmp_ire_cnt > threshold) {
1436 		for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0;
1437 		    ire = ire->ire_next) {
1438 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
1439 				continue;
1440 			if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1441 				ASSERT(ire->ire_type == IRE_CACHE);
1442 				ire_delete(ire);
1443 				tmp_cnt--;
1444 			}
1445 		}
1446 	}
1447 	if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) {
1448 		for (ire = irb->irb_ire; ire != NULL && cnt > 0;
1449 		    ire = ire->ire_next) {
1450 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
1451 				continue;
1452 			if (ire->ire_ipversion == IPV4_VERSION) {
1453 				if (ire->ire_gateway_addr == 0)
1454 					continue;
1455 			} else {
1456 				if (IN6_IS_ADDR_UNSPECIFIED(
1457 				    &ire->ire_gateway_addr_v6))
1458 					continue;
1459 			}
1460 			if ((ire->ire_type == IRE_CACHE) &&
1461 			    (lbolt - ire->ire_last_used_time > cut_off) &&
1462 			    (ire->ire_refcnt == 1)) {
1463 				ire_delete(ire);
1464 				cnt--;
1465 			}
1466 		}
1467 	}
1468 	IRB_REFRELE(irb);
1469 }
1470 
1471 /*
1472  * ire_add_then_send is called when a new IRE has been created in order to
1473  * route an outgoing packet.  Typically, it is called from ip_wput when
1474  * a response comes back down from a resolver.  We add the IRE, and then
1475  * possibly run the packet through ip_wput or ip_rput, as appropriate.
1476  * However, we do not add the newly created IRE in the cache when
1477  * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at
1478  * ip_newroute_ipif(). The ires with IRE_MARK_NOADD and ires returned
1479  * by ire_update_srcif_v4() are ire_refrele'd by ip_wput_ire() and get
1480  * deleted.
1481  * Multirouting support: the packet is silently discarded when the new IRE
1482  * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the
1483  * RTF_MULTIRT flag for the same destination address.
1484  * In this case, we just want to register this additional ire without
1485  * sending the packet, as it has already been replicated through
1486  * existing multirt routes in ip_wput().
1487  */
1488 void
1489 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp)
1490 {
1491 	irb_t *irb;
1492 	boolean_t drop = B_FALSE;
1493 	/* LINTED : set but not used in function */
1494 	boolean_t mctl_present;
1495 	mblk_t *first_mp = NULL;
1496 	mblk_t *save_mp = NULL;
1497 	ire_t *dst_ire;
1498 	ipha_t *ipha;
1499 	ip6_t *ip6h;
1500 	ip_stack_t	*ipst = ire->ire_ipst;
1501 
1502 	if (mp != NULL) {
1503 		/*
1504 		 * We first have to retrieve the destination address carried
1505 		 * by the packet.
1506 		 * We can't rely on ire as it can be related to a gateway.
1507 		 * The destination address will help in determining if
1508 		 * other RTF_MULTIRT ires are already registered.
1509 		 *
1510 		 * We first need to know where we are going : v4 or V6.
1511 		 * the ire version is enough, as there is no risk that
1512 		 * we resolve an IPv6 address with an IPv4 ire
1513 		 * or vice versa.
1514 		 */
1515 		if (ire->ire_ipversion == IPV4_VERSION) {
1516 			EXTRACT_PKT_MP(mp, first_mp, mctl_present);
1517 			ipha = (ipha_t *)mp->b_rptr;
1518 			save_mp = mp;
1519 			mp = first_mp;
1520 
1521 			dst_ire = ire_cache_lookup(ipha->ipha_dst,
1522 			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1523 		} else {
1524 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
1525 			/*
1526 			 * Get a pointer to the beginning of the IPv6 header.
1527 			 * Ignore leading IPsec control mblks.
1528 			 */
1529 			first_mp = mp;
1530 			if (mp->b_datap->db_type == M_CTL) {
1531 				mp = mp->b_cont;
1532 			}
1533 			ip6h = (ip6_t *)mp->b_rptr;
1534 			save_mp = mp;
1535 			mp = first_mp;
1536 			dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst,
1537 			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1538 		}
1539 		if (dst_ire != NULL) {
1540 			if (dst_ire->ire_flags & RTF_MULTIRT) {
1541 				/*
1542 				 * At least one resolved multirt route
1543 				 * already exists for the destination,
1544 				 * don't sent this packet: either drop it
1545 				 * or complete the pending resolution,
1546 				 * depending on the ire.
1547 				 */
1548 				drop = B_TRUE;
1549 			}
1550 			ip1dbg(("ire_add_then_send: dst_ire %p "
1551 			    "[dst %08x, gw %08x], drop %d\n",
1552 			    (void *)dst_ire,
1553 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1554 				ntohl(dst_ire->ire_addr) : \
1555 				ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)),
1556 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1557 				ntohl(dst_ire->ire_gateway_addr) : \
1558 				ntohl(V4_PART_OF_V6(
1559 				    dst_ire->ire_gateway_addr_v6)),
1560 			    drop));
1561 			ire_refrele(dst_ire);
1562 		}
1563 	}
1564 
1565 	if (!(ire->ire_marks & IRE_MARK_NOADD)) {
1566 		/*
1567 		 * Regular packets with cache bound ires and
1568 		 * the packets from ARP response for ires which
1569 		 * belong to the ire_srcif_v4 table, are here.
1570 		 */
1571 		if (ire->ire_in_ill == NULL) {
1572 			/* Add the ire */
1573 			(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
1574 		} else {
1575 			/*
1576 			 * This must be ARP response for ire in interface based
1577 			 * table. Note that we don't add them in cache table,
1578 			 * instead we update the existing table with dlureq_mp
1579 			 * information. The reverse tunnel ires do not come
1580 			 * here, as reverse tunnel is non-resolver interface.
1581 			 * XXX- another design alternative was to mark the
1582 			 * ires in interface based table with a special mark to
1583 			 * make absolutely sure that we operate in right ires.
1584 			 * This idea was not implemented as part of code review
1585 			 * suggestion, as ire_in_ill suffice to distinguish
1586 			 * between the regular ires and interface based
1587 			 * ires now and thus we save a bit in the ire_marks.
1588 			 */
1589 			ire = ire_update_srcif_v4(ire);
1590 		}
1591 
1592 		if (ire == NULL) {
1593 			mp->b_prev = NULL;
1594 			mp->b_next = NULL;
1595 			MULTIRT_DEBUG_UNTAG(mp);
1596 			freemsg(mp);
1597 			return;
1598 		}
1599 		if (mp == NULL) {
1600 			ire_refrele(ire);	/* Held in ire_add_v4/v6 */
1601 			return;
1602 		}
1603 	}
1604 	if (drop) {
1605 		/*
1606 		 * If we're adding an RTF_MULTIRT ire, the resolution
1607 		 * is over: we just drop the packet.
1608 		 */
1609 		if (ire->ire_flags & RTF_MULTIRT) {
1610 			if (save_mp) {
1611 				save_mp->b_prev = NULL;
1612 				save_mp->b_next = NULL;
1613 			}
1614 			MULTIRT_DEBUG_UNTAG(mp);
1615 			freemsg(mp);
1616 		} else {
1617 			/*
1618 			 * Otherwise, we're adding the ire to a gateway
1619 			 * for a multirt route.
1620 			 * Invoke ip_newroute() to complete the resolution
1621 			 * of the route. We will then come back here and
1622 			 * finally drop this packet in the above code.
1623 			 */
1624 			if (ire->ire_ipversion == IPV4_VERSION) {
1625 				/*
1626 				 * TODO: in order for CGTP to work in non-global
1627 				 * zones, ip_newroute() must create the IRE
1628 				 * cache in the zone indicated by
1629 				 * ire->ire_zoneid.
1630 				 */
1631 				ip_newroute(q, mp, ipha->ipha_dst, 0,
1632 				    (CONN_Q(q) ? Q_TO_CONN(q) : NULL),
1633 				    ire->ire_zoneid, ipst);
1634 			} else {
1635 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
1636 				ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL,
1637 				    NULL, ire->ire_zoneid, ipst);
1638 			}
1639 		}
1640 
1641 		ire_refrele(ire); /* As done by ire_send(). */
1642 		return;
1643 	}
1644 	/*
1645 	 * Need to remember ire_bucket here as ire_send*() may delete
1646 	 * the ire so we cannot reference it after that.
1647 	 */
1648 	irb = ire->ire_bucket;
1649 	if (ire->ire_ipversion == IPV6_VERSION) {
1650 		ire_send_v6(q, mp, ire);
1651 		/*
1652 		 * Clean up more than 1 IRE so that the clean up does not
1653 		 * need to be done every time when a new IRE is added and
1654 		 * the threshold is reached.
1655 		 */
1656 		ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2);
1657 	} else {
1658 		ire_send(q, mp, ire);
1659 		ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2);
1660 	}
1661 }
1662 
1663 /*
1664  * Initialize the ire that is specific to IPv4 part and call
1665  * ire_init_common to finish it.
1666  */
1667 ire_t *
1668 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr,
1669     uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp,
1670     queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif,
1671     ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle,
1672     uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1673     ip_stack_t *ipst)
1674 {
1675 	/*
1676 	 * Reject IRE security attribute creation/initialization
1677 	 * if system is not running in Trusted mode.
1678 	 */
1679 	if ((gc != NULL || gcgrp != NULL) && !is_system_labeled())
1680 		return (NULL);
1681 
1682 	if (fp_mp != NULL) {
1683 		/*
1684 		 * We can't dupb() here as multiple threads could be
1685 		 * calling dupb on the same mp which is incorrect.
1686 		 * First dupb() should be called only by one thread.
1687 		 */
1688 		fp_mp = copyb(fp_mp);
1689 		if (fp_mp == NULL)
1690 			return (NULL);
1691 	}
1692 
1693 	if (dlureq_mp != NULL) {
1694 		/*
1695 		 * We can't dupb() here as multiple threads could be
1696 		 * calling dupb on the same mp which is incorrect.
1697 		 * First dupb() should be called only by one thread.
1698 		 */
1699 		dlureq_mp = copyb(dlureq_mp);
1700 		if (dlureq_mp == NULL) {
1701 			if (fp_mp != NULL)
1702 				freeb(fp_mp);
1703 			return (NULL);
1704 		}
1705 	}
1706 
1707 	/*
1708 	 * Check that IRE_IF_RESOLVER and IRE_IF_NORESOLVER have a
1709 	 * dlureq_mp which is the ill_resolver_mp for IRE_IF_RESOLVER
1710 	 * and DL_UNITDATA_REQ for IRE_IF_NORESOLVER.
1711 	 */
1712 	if ((type & IRE_INTERFACE) &&
1713 	    dlureq_mp == NULL) {
1714 		ASSERT(fp_mp == NULL);
1715 		ip0dbg(("ire_init: no dlureq_mp\n"));
1716 		return (NULL);
1717 	}
1718 
1719 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced);
1720 
1721 	if (addr != NULL)
1722 		bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
1723 	if (src_addr != NULL)
1724 		bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN);
1725 	if (mask != NULL) {
1726 		bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
1727 		ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
1728 	}
1729 	if (gateway != NULL) {
1730 		bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
1731 	}
1732 	if (in_src_addr != NULL) {
1733 		bcopy(in_src_addr, &ire->ire_in_src_addr, IP_ADDR_LEN);
1734 	}
1735 
1736 	if (type == IRE_CACHE)
1737 		ire->ire_cmask = cmask;
1738 
1739 	/* ire_init_common will free the mblks upon encountering any failure */
1740 	if (!ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp,
1741 	    ipif, in_ill, phandle, ihandle, flags, IPV4_VERSION, ulp_info,
1742 	    gc, gcgrp, ipst))
1743 		return (NULL);
1744 
1745 	return (ire);
1746 }
1747 
1748 /*
1749  * Similar to ire_create except that it is called only when
1750  * we want to allocate ire as an mblk e.g. we have an external
1751  * resolver ARP.
1752  */
1753 ire_t *
1754 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1755     uchar_t *in_src_addr, uint_t max_frag, mblk_t *fp_mp, queue_t *rfq,
1756     queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill,
1757     ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags,
1758     const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1759     ip_stack_t *ipst)
1760 {
1761 	ire_t	*ire, *buf;
1762 	ire_t	*ret_ire;
1763 	mblk_t	*mp;
1764 	size_t	bufsize;
1765 	frtn_t	*frtnp;
1766 	ill_t	*ill;
1767 
1768 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
1769 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
1770 	if (buf == NULL) {
1771 		ip1dbg(("ire_create_mp: alloc failed\n"));
1772 		return (NULL);
1773 	}
1774 	frtnp = (frtn_t *)(buf + 1);
1775 	frtnp->free_arg = (caddr_t)buf;
1776 	frtnp->free_func = ire_freemblk;
1777 
1778 	/*
1779 	 * Allocate the new IRE. The ire created will hold a ref on
1780 	 * an nce_t after ire_nce_init, and this ref must either be
1781 	 * (a)  transferred to the ire_cache entry created when ire_add_v4
1782 	 *	is called after successful arp resolution, or,
1783 	 * (b)  released, when arp resolution fails
1784 	 * Case (b) is handled in ire_freemblk() which will be called
1785 	 * when mp is freed as a result of failed arp.
1786 	 */
1787 	mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
1788 	if (mp == NULL) {
1789 		ip1dbg(("ire_create_mp: alloc failed\n"));
1790 		kmem_free(buf, bufsize);
1791 		return (NULL);
1792 	}
1793 	ire = (ire_t *)mp->b_rptr;
1794 	mp->b_wptr = (uchar_t *)&ire[1];
1795 
1796 	/* Start clean. */
1797 	*ire = ire_null;
1798 	ire->ire_mp = mp;
1799 	mp->b_datap->db_type = IRE_DB_TYPE;
1800 	ire->ire_marks |= IRE_MARK_UNCACHED;
1801 
1802 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr,
1803 	    NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask,
1804 	    phandle, ihandle, flags, ulp_info, gc, gcgrp, ipst);
1805 
1806 	ill = (ill_t *)(stq->q_ptr);
1807 	if (ret_ire == NULL) {
1808 		/* ire_freemblk needs these set */
1809 		ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1810 		ire->ire_ipst = ipst;
1811 		freeb(ire->ire_mp);
1812 		return (NULL);
1813 	}
1814 	ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1815 	ASSERT(ret_ire == ire);
1816 	/*
1817 	 * ire_max_frag is normally zero here and is atomically set
1818 	 * under the irebucket lock in ire_add_v[46] except for the
1819 	 * case of IRE_MARK_NOADD. In that event the the ire_max_frag
1820 	 * is non-zero here.
1821 	 */
1822 	ire->ire_max_frag = max_frag;
1823 	return (ire);
1824 }
1825 
1826 /*
1827  * ire_create is called to allocate and initialize a new IRE.
1828  *
1829  * NOTE : This is called as writer sometimes though not required
1830  * by this function.
1831  */
1832 ire_t *
1833 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1834     uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq,
1835     queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill,
1836     ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags,
1837     const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1838     ip_stack_t *ipst)
1839 {
1840 	ire_t	*ire;
1841 	ire_t	*ret_ire;
1842 
1843 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
1844 	if (ire == NULL) {
1845 		ip1dbg(("ire_create: alloc failed\n"));
1846 		return (NULL);
1847 	}
1848 	*ire = ire_null;
1849 
1850 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr,
1851 	    max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill,  cmask,
1852 	    phandle, ihandle, flags, ulp_info, gc, gcgrp, ipst);
1853 
1854 	if (ret_ire == NULL) {
1855 		kmem_cache_free(ire_cache, ire);
1856 		return (NULL);
1857 	}
1858 	ASSERT(ret_ire == ire);
1859 	return (ire);
1860 }
1861 
1862 
1863 /*
1864  * Common to IPv4 and IPv6
1865  */
1866 boolean_t
1867 ire_init_common(ire_t *ire, uint_t *max_fragp, mblk_t *fp_mp,
1868     queue_t *rfq, queue_t *stq, ushort_t type,
1869     mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, uint32_t phandle,
1870     uint32_t ihandle, uint32_t flags, uchar_t ipversion,
1871     const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1872     ip_stack_t *ipst)
1873 {
1874 	ire->ire_max_fragp = max_fragp;
1875 	ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
1876 
1877 	ASSERT(fp_mp == NULL || fp_mp->b_datap->db_type == M_DATA);
1878 #ifdef DEBUG
1879 	if (ipif != NULL) {
1880 		if (ipif->ipif_isv6)
1881 			ASSERT(ipversion == IPV6_VERSION);
1882 		else
1883 			ASSERT(ipversion == IPV4_VERSION);
1884 	}
1885 #endif /* DEBUG */
1886 
1887 	/*
1888 	 * Create/initialize IRE security attribute only in Trusted mode;
1889 	 * if the passed in gc/gcgrp is non-NULL, we expect that the caller
1890 	 * has held a reference to it and will release it when this routine
1891 	 * returns a failure, otherwise we own the reference.  We do this
1892 	 * prior to initializing the rest IRE fields.
1893 	 *
1894 	 * Don't allocate ire_gw_secattr for the resolver case to prevent
1895 	 * memory leak (in case of external resolution failure). We'll
1896 	 * allocate it after a successful external resolution, in ire_add().
1897 	 * Note that ire->ire_mp != NULL here means this ire is headed
1898 	 * to an external resolver.
1899 	 */
1900 	if (is_system_labeled()) {
1901 		if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
1902 		    IRE_INTERFACE)) != 0) {
1903 			/* release references on behalf of caller */
1904 			if (gc != NULL)
1905 				GC_REFRELE(gc);
1906 			if (gcgrp != NULL)
1907 				GCGRP_REFRELE(gcgrp);
1908 		} else if ((ire->ire_mp == NULL) &&
1909 		    tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) {
1910 			/* free any caller-allocated mblks upon failure */
1911 			if (fp_mp != NULL)
1912 				freeb(fp_mp);
1913 			if (dlureq_mp != NULL)
1914 				freeb(dlureq_mp);
1915 			return (B_FALSE);
1916 		}
1917 	}
1918 
1919 	ire->ire_stq = stq;
1920 	ire->ire_rfq = rfq;
1921 	ire->ire_type = type;
1922 	ire->ire_flags = RTF_UP | flags;
1923 	ire->ire_ident = TICK_TO_MSEC(lbolt);
1924 	bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t));
1925 
1926 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
1927 	ire->ire_last_used_time = lbolt;
1928 	ire->ire_create_time = (uint32_t)gethrestime_sec();
1929 
1930 	/*
1931 	 * If this IRE is an IRE_CACHE, inherit the handles from the
1932 	 * parent IREs. For others in the forwarding table, assign appropriate
1933 	 * new ones.
1934 	 *
1935 	 * The mutex protecting ire_handle is because ire_create is not always
1936 	 * called as a writer.
1937 	 */
1938 	if (ire->ire_type & IRE_OFFSUBNET) {
1939 		mutex_enter(&ipst->ips_ire_handle_lock);
1940 		ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++;
1941 		mutex_exit(&ipst->ips_ire_handle_lock);
1942 	} else if (ire->ire_type & IRE_INTERFACE) {
1943 		mutex_enter(&ipst->ips_ire_handle_lock);
1944 		ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++;
1945 		mutex_exit(&ipst->ips_ire_handle_lock);
1946 	} else if (ire->ire_type == IRE_CACHE) {
1947 		ire->ire_phandle = phandle;
1948 		ire->ire_ihandle = ihandle;
1949 	}
1950 	ire->ire_in_ill = in_ill;
1951 	ire->ire_ipif = ipif;
1952 	if (ipif != NULL) {
1953 		ire->ire_ipif_seqid = ipif->ipif_seqid;
1954 		ire->ire_zoneid = ipif->ipif_zoneid;
1955 	} else {
1956 		ire->ire_zoneid = GLOBAL_ZONEID;
1957 	}
1958 	ire->ire_ipversion = ipversion;
1959 	mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
1960 	if (ipversion == IPV4_VERSION) {
1961 		if (ire_nce_init(ire, fp_mp, dlureq_mp) != 0) {
1962 			/* some failure occurred. propagate error back */
1963 			return (B_FALSE);
1964 		}
1965 	} else {
1966 		ASSERT(ipversion == IPV6_VERSION);
1967 		/*
1968 		 * IPv6 initializes the ire_nce in ire_add_v6,
1969 		 * which expects to find the ire_nce to be null when
1970 		 * when it is called.
1971 		 */
1972 		if (dlureq_mp)
1973 			freemsg(dlureq_mp);
1974 		if (fp_mp)
1975 			freemsg(fp_mp);
1976 	}
1977 	ire->ire_refcnt = 1;
1978 	ire->ire_ipst = ipst;	/* No netstack_hold */
1979 
1980 #ifdef IRE_DEBUG
1981 	bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX);
1982 #endif
1983 
1984 	return (B_TRUE);
1985 }
1986 
1987 /*
1988  * This routine is called repeatedly by ipif_up to create broadcast IREs.
1989  * It is passed a pointer to a slot in an IRE pointer array into which to
1990  * place the pointer to the new IRE, if indeed we create one.  If the
1991  * IRE corresponding to the address passed in would be a duplicate of an
1992  * existing one, we don't create the new one.  irep is incremented before
1993  * return only if we do create a new IRE.  (Always called as writer.)
1994  *
1995  * Note that with the "match_flags" parameter, we can match on either
1996  * a particular logical interface (MATCH_IRE_IPIF) or for all logical
1997  * interfaces for a given physical interface (MATCH_IRE_ILL).  Currently,
1998  * we only create broadcast ire's on a per physical interface basis. If
1999  * someone is going to be mucking with logical interfaces, it is important
2000  * to call "ipif_check_bcast_ires()" to make sure that any change to a
2001  * logical interface will not cause critical broadcast IRE's to be deleted.
2002  */
2003 ire_t **
2004 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep,
2005     int match_flags)
2006 {
2007 	ire_t *ire;
2008 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
2009 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
2010 
2011 	/*
2012 	 * No broadcast IREs for the LOOPBACK interface
2013 	 * or others such as point to point and IPIF_NOXMIT.
2014 	 */
2015 	if (!(ipif->ipif_flags & IPIF_BROADCAST) ||
2016 	    (ipif->ipif_flags & IPIF_NOXMIT))
2017 		return (irep);
2018 
2019 	/* If this would be a duplicate, don't bother. */
2020 	if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif,
2021 	    ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) {
2022 		/*
2023 		 * We look for non-deprecated (and non-anycast, non-nolocal)
2024 		 * ipifs as the best choice. ipifs with check_flags matching
2025 		 * (deprecated, etc) are used only if non-deprecated ipifs
2026 		 * are not available. if the existing ire's ipif is deprecated
2027 		 * and the new ipif is non-deprecated, switch to the new ipif
2028 		 */
2029 		if ((!(ire->ire_ipif->ipif_flags & check_flags)) ||
2030 		    (ipif->ipif_flags & check_flags)) {
2031 			ire_refrele(ire);
2032 			return (irep);
2033 		}
2034 		/*
2035 		 * Bcast ires exist in pairs. Both have to be deleted,
2036 		 * Since we are exclusive we can make the above assertion.
2037 		 * The 1st has to be refrele'd since it was ctable_lookup'd.
2038 		 */
2039 		ASSERT(IAM_WRITER_IPIF(ipif));
2040 		ASSERT(ire->ire_next->ire_addr == ire->ire_addr);
2041 		ire_delete(ire->ire_next);
2042 		ire_delete(ire);
2043 		ire_refrele(ire);
2044 	}
2045 
2046 	irep = ire_create_bcast(ipif, addr, irep);
2047 
2048 	return (irep);
2049 }
2050 
2051 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU;
2052 
2053 /*
2054  * This routine is called from ipif_check_bcast_ires and ire_check_bcast.
2055  * It leaves all the verifying and deleting to those routines. So it always
2056  * creates 2 bcast ires and chains them into the ire array passed in.
2057  */
2058 ire_t **
2059 ire_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep)
2060 {
2061 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
2062 
2063 	*irep++ = ire_create(
2064 	    (uchar_t *)&addr,			/* dest addr */
2065 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2066 	    (uchar_t *)&ipif->ipif_src_addr,	/* source addr */
2067 	    NULL,				/* no gateway */
2068 	    NULL,				/* no in_src_addr */
2069 	    &ipif->ipif_mtu,			/* max frag */
2070 	    NULL,				/* fast path header */
2071 	    ipif->ipif_rq,			/* recv-from queue */
2072 	    ipif->ipif_wq,			/* send-to queue */
2073 	    IRE_BROADCAST,
2074 	    ipif->ipif_bcast_mp,		/* xmit header */
2075 	    ipif,
2076 	    NULL,
2077 	    0,
2078 	    0,
2079 	    0,
2080 	    0,
2081 	    &ire_uinfo_null,
2082 	    NULL,
2083 	    NULL,
2084 	    ipst);
2085 
2086 	*irep++ = ire_create(
2087 		(uchar_t *)&addr,		 /* dest address */
2088 		(uchar_t *)&ip_g_all_ones,	 /* mask */
2089 		(uchar_t *)&ipif->ipif_src_addr, /* source address */
2090 		NULL,				 /* no gateway */
2091 		NULL,				 /* no in_src_addr */
2092 		&ip_loopback_mtu,		 /* max frag size */
2093 		NULL,				 /* Fast Path header */
2094 		ipif->ipif_rq,			 /* recv-from queue */
2095 		NULL,				 /* no send-to queue */
2096 		IRE_BROADCAST,		/* Needed for fanout in wput */
2097 		NULL,
2098 		ipif,
2099 		NULL,
2100 		0,
2101 		0,
2102 		0,
2103 		0,
2104 		&ire_uinfo_null,
2105 		NULL,
2106 		NULL,
2107 		ipst);
2108 
2109 	return (irep);
2110 }
2111 
2112 /*
2113  * ire_walk routine to delete or update any IRE_CACHE that might contain
2114  * stale information.
2115  * The flags state which entries to delete or update.
2116  * Garbage collection is done separately using kmem alloc callbacks to
2117  * ip_trash_ire_reclaim.
2118  * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME
2119  * since other stale information is cleaned up using NUD.
2120  */
2121 void
2122 ire_expire(ire_t *ire, char *arg)
2123 {
2124 	ire_expire_arg_t	*ieap = (ire_expire_arg_t *)(uintptr_t)arg;
2125 	ill_t			*stq_ill;
2126 	int			flush_flags = ieap->iea_flush_flag;
2127 	ip_stack_t		*ipst = ieap->iea_ipst;
2128 
2129 	if ((flush_flags & FLUSH_REDIRECT_TIME) &&
2130 	    (ire->ire_flags & RTF_DYNAMIC)) {
2131 		/* Make sure we delete the corresponding IRE_CACHE */
2132 		ip1dbg(("ire_expire: all redirects\n"));
2133 		ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst);
2134 		ire_delete(ire);
2135 		atomic_dec_32(&ipst->ips_ip_redirect_cnt);
2136 		return;
2137 	}
2138 	if (ire->ire_type != IRE_CACHE)
2139 		return;
2140 
2141 	if (flush_flags & FLUSH_ARP_TIME) {
2142 		/*
2143 		 * Remove all IRE_CACHE.
2144 		 * Verify that create time is more than
2145 		 * ip_ire_arp_interval milliseconds ago.
2146 		 */
2147 		if (NCE_EXPIRED(ire->ire_nce, ipst)) {
2148 			ire_delete(ire);
2149 			return;
2150 		}
2151 	}
2152 
2153 	if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) &&
2154 	    (ire->ire_ipif != NULL)) {
2155 		/* Increase pmtu if it is less than the interface mtu */
2156 		mutex_enter(&ire->ire_lock);
2157 		/*
2158 		 * If the ipif is a vni (whose mtu is 0, since it's virtual)
2159 		 * get the mtu from the sending interfaces' ipif
2160 		 */
2161 		if (IS_VNI(ire->ire_ipif->ipif_ill)) {
2162 			stq_ill = ire->ire_stq->q_ptr;
2163 			ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu,
2164 			    IP_MAXPACKET);
2165 		} else {
2166 			ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
2167 			    IP_MAXPACKET);
2168 		}
2169 		ire->ire_frag_flag |= IPH_DF;
2170 		mutex_exit(&ire->ire_lock);
2171 	}
2172 }
2173 
2174 /*
2175  * Return any local address.  We use this to target ourselves
2176  * when the src address was specified as 'default'.
2177  * Preference for IRE_LOCAL entries.
2178  */
2179 ire_t *
2180 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst)
2181 {
2182 	ire_t	*ire;
2183 	irb_t	*irb;
2184 	ire_t	*maybe = NULL;
2185 	int i;
2186 
2187 	for (i = 0; i < ipst->ips_ip_cache_table_size;  i++) {
2188 		irb = &ipst->ips_ip_cache_table[i];
2189 		if (irb->irb_ire == NULL)
2190 			continue;
2191 		rw_enter(&irb->irb_lock, RW_READER);
2192 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2193 			if ((ire->ire_marks & IRE_MARK_CONDEMNED) ||
2194 			    (ire->ire_zoneid != zoneid &&
2195 			    ire->ire_zoneid != ALL_ZONES))
2196 				continue;
2197 			switch (ire->ire_type) {
2198 			case IRE_LOOPBACK:
2199 				if (maybe == NULL) {
2200 					IRE_REFHOLD(ire);
2201 					maybe = ire;
2202 				}
2203 				break;
2204 			case IRE_LOCAL:
2205 				if (maybe != NULL) {
2206 					ire_refrele(maybe);
2207 				}
2208 				IRE_REFHOLD(ire);
2209 				rw_exit(&irb->irb_lock);
2210 				return (ire);
2211 			}
2212 		}
2213 		rw_exit(&irb->irb_lock);
2214 	}
2215 	return (maybe);
2216 }
2217 
2218 /*
2219  * If the specified IRE is associated with a particular ILL, return
2220  * that ILL pointer (May be called as writer.).
2221  *
2222  * NOTE : This is not a generic function that can be used always.
2223  * This function always returns the ill of the outgoing packets
2224  * if this ire is used.
2225  */
2226 ill_t *
2227 ire_to_ill(const ire_t *ire)
2228 {
2229 	ill_t *ill = NULL;
2230 
2231 	/*
2232 	 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained
2233 	 *    the source address from. ire_stq is the one where the
2234 	 *    packets will be sent out on. We return that here.
2235 	 *
2236 	 * 2) IRE_BROADCAST normally has a loopback and a non-loopback
2237 	 *    copy and they always exist next to each other with loopback
2238 	 *    copy being the first one. If we are called on the non-loopback
2239 	 *    copy, return the one pointed by ire_stq. If it was called on
2240 	 *    a loopback copy, we still return the one pointed by the next
2241 	 *    ire's ire_stq pointer i.e the one pointed by the non-loopback
2242 	 *    copy. We don't want use ire_ipif as it might represent the
2243 	 *    source address (if we borrow source addresses for
2244 	 *    IRE_BROADCASTS in the future).
2245 	 *    However if an interface is currently coming up, the above
2246 	 *    condition may not hold during that period since the ires
2247 	 *    are added one at a time. Thus one of the pair could have been
2248 	 *    added and the other not yet added.
2249 	 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill.
2250 	 * 4) For all others return the ones pointed by ire_ipif->ipif_ill.
2251 	 *    That handles IRE_LOOPBACK.
2252 	 */
2253 
2254 	if (ire->ire_type == IRE_CACHE) {
2255 		ill = (ill_t *)ire->ire_stq->q_ptr;
2256 	} else if (ire->ire_type == IRE_BROADCAST) {
2257 		if (ire->ire_stq != NULL) {
2258 			ill = (ill_t *)ire->ire_stq->q_ptr;
2259 		} else {
2260 			ire_t  *ire_next;
2261 
2262 			ire_next = ire->ire_next;
2263 			if (ire_next != NULL &&
2264 			    ire_next->ire_type == IRE_BROADCAST &&
2265 			    ire_next->ire_addr == ire->ire_addr &&
2266 			    ire_next->ire_ipif == ire->ire_ipif) {
2267 				ill = (ill_t *)ire_next->ire_stq->q_ptr;
2268 			}
2269 		}
2270 	} else if (ire->ire_rfq != NULL) {
2271 		ill = ire->ire_rfq->q_ptr;
2272 	} else if (ire->ire_ipif != NULL) {
2273 		ill = ire->ire_ipif->ipif_ill;
2274 	}
2275 	return (ill);
2276 }
2277 
2278 /* Arrange to call the specified function for every IRE in the world. */
2279 void
2280 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst)
2281 {
2282 	ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst);
2283 }
2284 
2285 void
2286 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
2287 {
2288 	ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst);
2289 }
2290 
2291 void
2292 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
2293 {
2294 	ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst);
2295 }
2296 
2297 /*
2298  * Walk a particular version. version == 0 means both v4 and v6.
2299  */
2300 static void
2301 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid,
2302     ip_stack_t *ipst)
2303 {
2304 	if (vers != IPV6_VERSION) {
2305 		/*
2306 		 * ip_forwarding_table variable doesn't matter for IPv4 since
2307 		 * ire_walk_ill_tables uses ips_ip_ftable for IPv4.
2308 		 */
2309 		ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
2310 		    0, NULL,
2311 		    ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table,
2312 		    NULL, zoneid, ipst);
2313 	}
2314 	if (vers != IPV4_VERSION) {
2315 		ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
2316 		    ipst->ips_ip6_ftable_hash_size,
2317 		    ipst->ips_ip_forwarding_table_v6,
2318 		    ipst->ips_ip6_cache_table_size,
2319 		    ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst);
2320 	}
2321 }
2322 
2323 /*
2324  * Arrange to call the specified
2325  * function for every IRE that matches the ill.
2326  */
2327 void
2328 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2329     ill_t *ill)
2330 {
2331 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill);
2332 }
2333 
2334 void
2335 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2336     ill_t *ill)
2337 {
2338 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION,
2339 	    ill);
2340 }
2341 
2342 void
2343 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2344     ill_t *ill)
2345 {
2346 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION,
2347 	    ill);
2348 }
2349 
2350 /*
2351  * Walk a particular ill and version. version == 0 means both v4 and v6.
2352  */
2353 static void
2354 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
2355     void *arg, uchar_t vers, ill_t *ill)
2356 {
2357 	ip_stack_t	*ipst = ill->ill_ipst;
2358 
2359 	if (vers != IPV6_VERSION) {
2360 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2361 		    IP_MASK_TABLE_SIZE, 0,
2362 		    NULL, ipst->ips_ip_cache_table_size,
2363 		    ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst);
2364 	}
2365 	if (vers != IPV4_VERSION) {
2366 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2367 		    IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size,
2368 		    ipst->ips_ip_forwarding_table_v6,
2369 		    ipst->ips_ip6_cache_table_size,
2370 		    ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst);
2371 	}
2372 }
2373 
2374 boolean_t
2375 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
2376     ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst)
2377 {
2378 	ill_t *ire_stq_ill = NULL;
2379 	ill_t *ire_ipif_ill = NULL;
2380 	ill_group_t *ire_ill_group = NULL;
2381 
2382 	ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
2383 	/*
2384 	 * 1) MATCH_IRE_WQ : Used specifically to match on ire_stq.
2385 	 *    The fast path update uses this to make sure it does not
2386 	 *    update the fast path header of interface X with the fast
2387 	 *    path updates it recieved on interface Y.  It is similar
2388 	 *    in handling DL_NOTE_FASTPATH_FLUSH.
2389 	 *
2390 	 * 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill
2391 	 *    pointed by ire_stq and ire_ipif. Only in the case of
2392 	 *    IRE_CACHEs can ire_stq and ire_ipif be pointing to
2393 	 *    different ills. But we want to keep this function generic
2394 	 *    enough for future use. So, we always try to match on both.
2395 	 *    The only caller of this function ire_walk_ill_tables, will
2396 	 *    call "func" after we return from this function. We expect
2397 	 *    "func" to do the right filtering of ires in this case.
2398 	 *
2399 	 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups
2400 	 * pointed by ire_stq and ire_ipif should always be the same.
2401 	 * So, we just match on only one of them.
2402 	 */
2403 	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
2404 		if (ire->ire_stq != NULL)
2405 			ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2406 		if (ire->ire_ipif != NULL)
2407 			ire_ipif_ill = ire->ire_ipif->ipif_ill;
2408 		if (ire_stq_ill != NULL)
2409 			ire_ill_group = ire_stq_ill->ill_group;
2410 		if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL))
2411 			ire_ill_group = ire_ipif_ill->ill_group;
2412 	}
2413 
2414 	if (zoneid != ALL_ZONES) {
2415 		/*
2416 		 * We're walking the IREs for a specific zone. The only relevant
2417 		 * IREs are:
2418 		 * - all IREs with a matching ire_zoneid
2419 		 * - all IRE_OFFSUBNETs as they're shared across all zones
2420 		 * - IRE_INTERFACE IREs for interfaces with a usable source addr
2421 		 *   with a matching zone
2422 		 * - IRE_DEFAULTs with a gateway reachable from the zone
2423 		 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs
2424 		 * using the same rule; but the above rules are consistent with
2425 		 * the behavior of ire_ftable_lookup[_v6]() so that all the
2426 		 * routes that can be matched during lookup are also matched
2427 		 * here.
2428 		 */
2429 		if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) {
2430 			/*
2431 			 * Note, IRE_INTERFACE can have the stq as NULL. For
2432 			 * example, if the default multicast route is tied to
2433 			 * the loopback address.
2434 			 */
2435 			if ((ire->ire_type & IRE_INTERFACE) &&
2436 			    (ire->ire_stq != NULL)) {
2437 				ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2438 				if (ire->ire_ipversion == IPV4_VERSION) {
2439 					if (!ipif_usesrc_avail(ire_stq_ill,
2440 					    zoneid))
2441 						/* No usable src addr in zone */
2442 						return (B_FALSE);
2443 				} else if (ire_stq_ill->ill_usesrc_ifindex
2444 				    != 0) {
2445 					/*
2446 					 * For IPv6 use ipif_select_source_v6()
2447 					 * so the right scope selection is done
2448 					 */
2449 					ipif_t *src_ipif;
2450 					src_ipif =
2451 					    ipif_select_source_v6(ire_stq_ill,
2452 					    &ire->ire_addr_v6, RESTRICT_TO_NONE,
2453 					    IPV6_PREFER_SRC_DEFAULT,
2454 					    zoneid);
2455 					if (src_ipif != NULL) {
2456 						ipif_refrele(src_ipif);
2457 					} else {
2458 						return (B_FALSE);
2459 					}
2460 				} else {
2461 					return (B_FALSE);
2462 				}
2463 
2464 			} else if (!(ire->ire_type & IRE_OFFSUBNET)) {
2465 				return (B_FALSE);
2466 			}
2467 		}
2468 
2469 		/*
2470 		 * Match all default routes from the global zone, irrespective
2471 		 * of reachability. For a non-global zone only match those
2472 		 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid.
2473 		 */
2474 		if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) {
2475 			int ire_match_flags = 0;
2476 			in6_addr_t gw_addr_v6;
2477 			ire_t *rire;
2478 
2479 			ire_match_flags |= MATCH_IRE_TYPE;
2480 			if (ire->ire_ipif != NULL) {
2481 				ire_match_flags |= MATCH_IRE_ILL_GROUP;
2482 			}
2483 			if (ire->ire_ipversion == IPV4_VERSION) {
2484 				rire = ire_route_lookup(ire->ire_gateway_addr,
2485 				    0, 0, IRE_INTERFACE, ire->ire_ipif, NULL,
2486 				    zoneid, NULL, ire_match_flags, ipst);
2487 			} else {
2488 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
2489 				mutex_enter(&ire->ire_lock);
2490 				gw_addr_v6 = ire->ire_gateway_addr_v6;
2491 				mutex_exit(&ire->ire_lock);
2492 				rire = ire_route_lookup_v6(&gw_addr_v6,
2493 				    NULL, NULL, IRE_INTERFACE, ire->ire_ipif,
2494 				    NULL, zoneid, NULL, ire_match_flags, ipst);
2495 			}
2496 			if (rire == NULL) {
2497 				return (B_FALSE);
2498 			}
2499 			ire_refrele(rire);
2500 		}
2501 	}
2502 
2503 	if (((!(match_flags & MATCH_IRE_TYPE)) ||
2504 		(ire->ire_type & ire_type)) &&
2505 	    ((!(match_flags & MATCH_IRE_WQ)) ||
2506 		(ire->ire_stq == ill->ill_wq)) &&
2507 	    ((!(match_flags & MATCH_IRE_ILL)) ||
2508 		(ire_stq_ill == ill || ire_ipif_ill == ill)) &&
2509 	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
2510 		(ire_stq_ill == ill) || (ire_ipif_ill == ill) ||
2511 		(ire_ill_group != NULL &&
2512 		ire_ill_group == ill->ill_group))) {
2513 		return (B_TRUE);
2514 	}
2515 	return (B_FALSE);
2516 }
2517 
2518 int
2519 rtfunc(struct radix_node *rn, void *arg)
2520 {
2521 	struct rtfuncarg *rtf = arg;
2522 	struct rt_entry *rt;
2523 	irb_t *irb;
2524 	ire_t *ire;
2525 	boolean_t ret;
2526 
2527 	rt = (struct rt_entry *)rn;
2528 	ASSERT(rt != NULL);
2529 	irb = &rt->rt_irb;
2530 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2531 		if ((rtf->rt_match_flags != 0) ||
2532 		    (rtf->rt_zoneid != ALL_ZONES)) {
2533 			ret = ire_walk_ill_match(rtf->rt_match_flags,
2534 			    rtf->rt_ire_type, ire,
2535 			    rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst);
2536 		} else
2537 			ret = B_TRUE;
2538 		if (ret)
2539 			(*rtf->rt_func)(ire, rtf->rt_arg);
2540 	}
2541 	return (0);
2542 }
2543 
2544 /*
2545  * Walk the ftable and the ctable entries that match the ill.
2546  */
2547 void
2548 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
2549     void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
2550     size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid,
2551     ip_stack_t *ipst)
2552 {
2553 	irb_t	*irb_ptr;
2554 	irb_t	*irb;
2555 	ire_t	*ire;
2556 	int i, j;
2557 	boolean_t ret;
2558 	struct rtfuncarg rtfarg;
2559 
2560 	ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL |
2561 	    MATCH_IRE_ILL_GROUP))) || (ill != NULL));
2562 	ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
2563 	/*
2564 	 * Optimize by not looking at the forwarding table if there
2565 	 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE
2566 	 * specified in ire_type.
2567 	 */
2568 	if (!(match_flags & MATCH_IRE_TYPE) ||
2569 	    ((ire_type & IRE_FORWARDTABLE) != 0)) {
2570 		/* knobs such that routine is called only for v6 case */
2571 		if (ipftbl == ipst->ips_ip_forwarding_table_v6) {
2572 			for (i = (ftbl_sz - 1);  i >= 0; i--) {
2573 				if ((irb_ptr = ipftbl[i]) == NULL)
2574 					continue;
2575 				for (j = 0; j < htbl_sz; j++) {
2576 					irb = &irb_ptr[j];
2577 					if (irb->irb_ire == NULL)
2578 						continue;
2579 
2580 					IRB_REFHOLD(irb);
2581 					for (ire = irb->irb_ire; ire != NULL;
2582 						ire = ire->ire_next) {
2583 						if (match_flags == 0 &&
2584 						    zoneid == ALL_ZONES) {
2585 							ret = B_TRUE;
2586 						} else {
2587 							ret =
2588 							    ire_walk_ill_match(
2589 							    match_flags,
2590 							    ire_type, ire, ill,
2591 							    zoneid, ipst);
2592 						}
2593 						if (ret)
2594 							(*func)(ire, arg);
2595 					}
2596 					IRB_REFRELE(irb);
2597 				}
2598 			}
2599 		} else {
2600 			(void) memset(&rtfarg, 0, sizeof (rtfarg));
2601 			rtfarg.rt_func = func;
2602 			rtfarg.rt_arg = arg;
2603 			if (match_flags != 0) {
2604 				rtfarg.rt_match_flags = match_flags;
2605 			}
2606 			rtfarg.rt_ire_type = ire_type;
2607 			rtfarg.rt_ill = ill;
2608 			rtfarg.rt_zoneid = zoneid;
2609 			rtfarg.rt_ipst = ipst;	/* No netstack_hold */
2610 			(void) ipst->ips_ip_ftable->rnh_walktree_mt(
2611 			    ipst->ips_ip_ftable,
2612 			    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
2613 		}
2614 	}
2615 
2616 	/*
2617 	 * Optimize by not looking at the cache table if there
2618 	 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE
2619 	 * specified in ire_type.
2620 	 */
2621 	if (!(match_flags & MATCH_IRE_TYPE) ||
2622 	    ((ire_type & IRE_CACHETABLE) != 0)) {
2623 		for (i = 0; i < ctbl_sz;  i++) {
2624 			irb = &ipctbl[i];
2625 			if (irb->irb_ire == NULL)
2626 				continue;
2627 			IRB_REFHOLD(irb);
2628 			for (ire = irb->irb_ire; ire != NULL;
2629 			    ire = ire->ire_next) {
2630 				if (match_flags == 0 && zoneid == ALL_ZONES) {
2631 					ret = B_TRUE;
2632 				} else {
2633 					ret = ire_walk_ill_match(
2634 					    match_flags, ire_type,
2635 					    ire, ill, zoneid, ipst);
2636 				}
2637 				if (ret)
2638 					(*func)(ire, arg);
2639 			}
2640 			IRB_REFRELE(irb);
2641 		}
2642 	}
2643 }
2644 
2645 /*
2646  * This routine walks through the ill chain to find if there is any
2647  * ire linked to the ill's interface based forwarding table
2648  * The arg could be ill or mp. This routine is called when a ill goes
2649  * down/deleted or the 'ipv4_ire_srcif_status' report is printed.
2650  */
2651 void
2652 ire_walk_srcif_table_v4(pfv_t func, void *arg, ip_stack_t *ipst)
2653 {
2654 	irb_t   *irb;
2655 	ire_t   *ire;
2656 	ill_t	*ill, *next_ill;
2657 	int	i;
2658 	int	total_count;
2659 	ill_walk_context_t ctx;
2660 
2661 	/*
2662 	 * Take care of ire's in other ill's per-interface forwarding
2663 	 * table. Check if any ire in any of the ill's ill_srcif_table
2664 	 * is pointing to this ill.
2665 	 */
2666 	mutex_enter(&ipst->ips_ire_srcif_table_lock);
2667 	if (ipst->ips_ire_srcif_table_count == 0) {
2668 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
2669 		return;
2670 	}
2671 	mutex_exit(&ipst->ips_ire_srcif_table_lock);
2672 
2673 #ifdef DEBUG
2674 	/* Keep accounting of all interface based table ires */
2675 	total_count = 0;
2676 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2677 	ill = ILL_START_WALK_V4(&ctx, ipst);
2678 	while (ill != NULL) {
2679 		mutex_enter(&ill->ill_lock);
2680 		total_count += ill->ill_srcif_refcnt;
2681 		next_ill = ill_next(&ctx, ill);
2682 		mutex_exit(&ill->ill_lock);
2683 		ill = next_ill;
2684 	}
2685 	rw_exit(&ipst->ips_ill_g_lock);
2686 
2687 	/* Hold lock here to make sure ire_srcif_table_count is stable */
2688 	mutex_enter(&ipst->ips_ire_srcif_table_lock);
2689 	i = ipst->ips_ire_srcif_table_count;
2690 	mutex_exit(&ipst->ips_ire_srcif_table_lock);
2691 	ip1dbg(("ire_walk_srcif_v4: ire_srcif_table_count %d "
2692 	    "total ill_srcif_refcnt %d\n", i, total_count));
2693 #endif
2694 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2695 	ill = ILL_START_WALK_V4(&ctx, ipst);
2696 	while (ill != NULL) {
2697 		mutex_enter(&ill->ill_lock);
2698 		if ((ill->ill_srcif_refcnt == 0) || !ILL_CAN_LOOKUP(ill)) {
2699 			next_ill = ill_next(&ctx, ill);
2700 			mutex_exit(&ill->ill_lock);
2701 			ill = next_ill;
2702 			continue;
2703 		}
2704 		ill_refhold_locked(ill);
2705 		mutex_exit(&ill->ill_lock);
2706 		rw_exit(&ipst->ips_ill_g_lock);
2707 		if (ill->ill_srcif_table != NULL) {
2708 			for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
2709 				irb = &(ill->ill_srcif_table[i]);
2710 				if (irb->irb_ire == NULL)
2711 					continue;
2712 				IRB_REFHOLD(irb);
2713 				for (ire = irb->irb_ire; ire != NULL;
2714 				    ire = ire->ire_next) {
2715 					(*func)(ire, arg);
2716 				}
2717 				IRB_REFRELE(irb);
2718 			}
2719 		}
2720 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2721 		next_ill = ill_next(&ctx, ill);
2722 		ill_refrele(ill);
2723 		ill = next_ill;
2724 	}
2725 	rw_exit(&ipst->ips_ill_g_lock);
2726 }
2727 
2728 /*
2729  * This function takes a mask and returns
2730  * number of bits set in the mask. If no
2731  * bit is set it returns 0.
2732  * Assumes a contiguous mask.
2733  */
2734 int
2735 ip_mask_to_plen(ipaddr_t mask)
2736 {
2737 	return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
2738 }
2739 
2740 /*
2741  * Convert length for a mask to the mask.
2742  */
2743 ipaddr_t
2744 ip_plen_to_mask(uint_t masklen)
2745 {
2746 	return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
2747 }
2748 
2749 void
2750 ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
2751 {
2752 	ill_t	*ill_list[NUM_ILLS];
2753 	ip_stack_t	*ipst = ire->ire_ipst;
2754 
2755 	ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL;
2756 	ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL;
2757 	ill_list[2] = ire->ire_in_ill;
2758 	ill_unlock_ills(ill_list, NUM_ILLS);
2759 	rw_exit(&irb_ptr->irb_lock);
2760 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
2761 }
2762 
2763 /*
2764  * ire_add_v[46] atomically make sure that the ipif or ill associated
2765  * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING
2766  * before adding the ire to the table. This ensures that we don't create
2767  * new IRE_CACHEs with stale values for parameters that are passed to
2768  * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer
2769  * to the ipif_mtu, and not the value. The actual value is derived from the
2770  * parent ire or ipif under the bucket lock.
2771  */
2772 int
2773 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp,
2774     ipsq_func_t func)
2775 {
2776 	ill_t	*stq_ill;
2777 	ill_t	*ipif_ill;
2778 	ill_t	*in_ill;
2779 	ill_t	*ill_list[NUM_ILLS];
2780 	int	cnt = NUM_ILLS;
2781 	int	error = 0;
2782 	ill_t	*ill = NULL;
2783 	ip_stack_t	*ipst = ire->ire_ipst;
2784 
2785 	ill_list[0] = stq_ill = ire->ire_stq !=
2786 		NULL ? ire->ire_stq->q_ptr : NULL;
2787 	ill_list[1] = ipif_ill = ire->ire_ipif !=
2788 		NULL ? ire->ire_ipif->ipif_ill : NULL;
2789 	ill_list[2] = in_ill = ire->ire_in_ill;
2790 
2791 	ASSERT((q != NULL && mp != NULL && func != NULL) ||
2792 	    (q == NULL && mp == NULL && func == NULL));
2793 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
2794 	GRAB_CONN_LOCK(q);
2795 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
2796 	ill_lock_ills(ill_list, cnt);
2797 
2798 	/*
2799 	 * While the IRE is in the process of being added, a user may have
2800 	 * invoked the ifconfig usesrc option on the stq_ill to make it a
2801 	 * usesrc client ILL. Check for this possibility here, if it is true
2802 	 * then we fail adding the IRE_CACHE. Another check is to make sure
2803 	 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc
2804 	 * group. The ill_g_usesrc_lock is released in ire_atomic_end
2805 	 */
2806 	if ((ire->ire_type & IRE_CACHE) &&
2807 	    (ire->ire_marks & IRE_MARK_USESRC_CHECK)) {
2808 		if (stq_ill->ill_usesrc_ifindex != 0) {
2809 			ASSERT(stq_ill->ill_usesrc_grp_next != NULL);
2810 			if ((ipif_ill->ill_phyint->phyint_ifindex !=
2811 			    stq_ill->ill_usesrc_ifindex) ||
2812 			    (ipif_ill->ill_usesrc_grp_next == NULL) ||
2813 			    (ipif_ill->ill_usesrc_ifindex != 0)) {
2814 				error = EINVAL;
2815 				goto done;
2816 			}
2817 		} else if (ipif_ill->ill_usesrc_grp_next != NULL) {
2818 			error = EINVAL;
2819 			goto done;
2820 		}
2821 	}
2822 
2823 	/*
2824 	 * IPMP flag settings happen without taking the exclusive route
2825 	 * in ip_sioctl_flags. So we need to make an atomic check here
2826 	 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the
2827 	 * FAILBACK=no case.
2828 	 */
2829 	if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) {
2830 		if (stq_ill->ill_state_flags & ILL_CHANGING) {
2831 			ill = stq_ill;
2832 			error = EAGAIN;
2833 		} else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
2834 		    (ill_is_probeonly(stq_ill) &&
2835 		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
2836 			error = EINVAL;
2837 		}
2838 		goto done;
2839 	}
2840 
2841 	/*
2842 	 * We don't check for OFFLINE/FAILED in this case because
2843 	 * the source address selection logic (ipif_select_source)
2844 	 * may still select a source address from such an ill. The
2845 	 * assumption is that these addresses will be moved by in.mpathd
2846 	 * soon. (i.e. this is a race). However link local addresses
2847 	 * will not move and hence ipif_select_source_v6 tries to avoid
2848 	 * FAILED ills. Please see ipif_select_source_v6 for more info
2849 	 */
2850 	if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) &&
2851 	    (ipif_ill->ill_state_flags & ILL_CHANGING)) {
2852 		ill = ipif_ill;
2853 		error = EAGAIN;
2854 		goto done;
2855 	}
2856 
2857 	if ((in_ill != NULL) && !IAM_WRITER_ILL(in_ill) &&
2858 	    (in_ill->ill_state_flags & ILL_CHANGING)) {
2859 		ill = in_ill;
2860 		error = EAGAIN;
2861 		goto done;
2862 	}
2863 
2864 	if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) &&
2865 	    (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) {
2866 		ill = ire->ire_ipif->ipif_ill;
2867 		ASSERT(ill != NULL);
2868 		error = EAGAIN;
2869 		goto done;
2870 	}
2871 
2872 done:
2873 	if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) {
2874 		ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
2875 		mutex_enter(&ipsq->ipsq_lock);
2876 		ire_atomic_end(irb_ptr, ire);
2877 		ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
2878 		mutex_exit(&ipsq->ipsq_lock);
2879 		error = EINPROGRESS;
2880 	} else if (error != 0) {
2881 		ire_atomic_end(irb_ptr, ire);
2882 	}
2883 
2884 	RELEASE_CONN_LOCK(q);
2885 	return (error);
2886 }
2887 
2888 /*
2889  * Add a fully initialized IRE to an appropriate table based on
2890  * ire_type.
2891  *
2892  * allow_unresolved == B_FALSE indicates a legacy code-path call
2893  * that has prohibited the addition of incomplete ire's. If this
2894  * parameter is set, and we find an nce that is in a state other
2895  * than ND_REACHABLE, we fail the add. Note that nce_state could be
2896  * something other than ND_REACHABLE if nce_reinit has just
2897  * kicked in and reset the nce.
2898  */
2899 int
2900 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func,
2901     boolean_t allow_unresolved)
2902 {
2903 	ire_t	*ire1;
2904 	ill_t	*stq_ill = NULL;
2905 	ill_t	*ill;
2906 	ipif_t	*ipif = NULL;
2907 	ill_walk_context_t ctx;
2908 	ire_t	*ire = *irep;
2909 	int	error;
2910 	boolean_t ire_is_mblk = B_FALSE;
2911 	tsol_gcgrp_t *gcgrp = NULL;
2912 	tsol_gcgrp_addr_t ga;
2913 	ip_stack_t	*ipst = ire->ire_ipst;
2914 
2915 	ASSERT(ire->ire_type != IRE_MIPRTUN);
2916 
2917 	/* get ready for the day when original ire is not created as mblk */
2918 	if (ire->ire_mp != NULL) {
2919 		ire_is_mblk = B_TRUE;
2920 		/* Copy the ire to a kmem_alloc'ed area */
2921 		ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
2922 		if (ire1 == NULL) {
2923 			ip1dbg(("ire_add: alloc failed\n"));
2924 			ire_delete(ire);
2925 			*irep = NULL;
2926 			return (ENOMEM);
2927 		}
2928 		ire->ire_marks &= ~IRE_MARK_UNCACHED;
2929 		*ire1 = *ire;
2930 		ire1->ire_mp = NULL;
2931 		ire1->ire_stq_ifindex = 0;
2932 		freeb(ire->ire_mp);
2933 		ire = ire1;
2934 	}
2935 	if (ire->ire_stq != NULL)
2936 		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2937 
2938 	if (ire->ire_type == IRE_CACHE) {
2939 		/*
2940 		 * If this interface is FAILED, or INACTIVE or has hit
2941 		 * the FAILBACK=no case, we create IRE_CACHES marked
2942 		 * HIDDEN for some special cases e.g. bind to
2943 		 * IPIF_NOFAILOVER address etc. So, if this interface
2944 		 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are
2945 		 * not creating hidden ires, we should not allow that.
2946 		 * This happens because the state of the interface
2947 		 * changed while we were waiting in ARP. If this is the
2948 		 * daemon sending probes, the next probe will create
2949 		 * HIDDEN ires and we will create an ire then. This
2950 		 * cannot happen with NDP currently because IRE is
2951 		 * never queued in NDP. But it can happen in the
2952 		 * future when we have external resolvers with IPv6.
2953 		 * If the interface gets marked with OFFLINE while we
2954 		 * are waiting in ARP, don't add the ire.
2955 		 */
2956 		if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
2957 		    (ill_is_probeonly(stq_ill) &&
2958 		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
2959 			/*
2960 			 * We don't know whether it is a valid ipif or not.
2961 			 * unless we do the check below. So, set it to NULL.
2962 			 */
2963 			ire->ire_ipif = NULL;
2964 			ire_delete(ire);
2965 			*irep = NULL;
2966 			return (EINVAL);
2967 		}
2968 	}
2969 
2970 	if (stq_ill != NULL && ire->ire_type == IRE_CACHE &&
2971 	    stq_ill->ill_net_type == IRE_IF_RESOLVER) {
2972 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2973 		ill = ILL_START_WALK_ALL(&ctx, ipst);
2974 		for (; ill != NULL; ill = ill_next(&ctx, ill)) {
2975 			mutex_enter(&ill->ill_lock);
2976 			if (ill->ill_state_flags & ILL_CONDEMNED) {
2977 				mutex_exit(&ill->ill_lock);
2978 				continue;
2979 			}
2980 			/*
2981 			 * We need to make sure that the ipif is a valid one
2982 			 * before adding the IRE_CACHE. This happens only
2983 			 * with IRE_CACHE when there is an external resolver.
2984 			 *
2985 			 * We can unplumb a logical interface while the
2986 			 * packet is waiting in ARP with the IRE. Then,
2987 			 * later on when we feed the IRE back, the ipif
2988 			 * has to be re-checked. This can't happen with
2989 			 * NDP currently, as we never queue the IRE with
2990 			 * the packet. We always try to recreate the IRE
2991 			 * when the resolution is completed. But, we do
2992 			 * it for IPv6 also here so that in future if
2993 			 * we have external resolvers, it will work without
2994 			 * any change.
2995 			 */
2996 			ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid);
2997 			if (ipif != NULL) {
2998 				ipif_refhold_locked(ipif);
2999 				mutex_exit(&ill->ill_lock);
3000 				break;
3001 			}
3002 			mutex_exit(&ill->ill_lock);
3003 		}
3004 		rw_exit(&ipst->ips_ill_g_lock);
3005 		if (ipif == NULL ||
3006 		    (ipif->ipif_isv6 &&
3007 		    !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
3008 		    &ipif->ipif_v6src_addr)) ||
3009 		    (!ipif->ipif_isv6 &&
3010 		    ire->ire_src_addr != ipif->ipif_src_addr) ||
3011 		    ire->ire_zoneid != ipif->ipif_zoneid) {
3012 
3013 			if (ipif != NULL)
3014 				ipif_refrele(ipif);
3015 			ire->ire_ipif = NULL;
3016 			ire_delete(ire);
3017 			*irep = NULL;
3018 			return (EINVAL);
3019 		}
3020 
3021 
3022 		ASSERT(ill != NULL);
3023 		/*
3024 		 * If this group was dismantled while this packets was
3025 		 * queued in ARP, don't add it here.
3026 		 */
3027 		if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) {
3028 			/* We don't want ire_inactive bump stats for this */
3029 			ipif_refrele(ipif);
3030 			ire->ire_ipif = NULL;
3031 			ire_delete(ire);
3032 			*irep = NULL;
3033 			return (EINVAL);
3034 		}
3035 
3036 		/*
3037 		 * Since we didn't attach label security attributes to the
3038 		 * ire for the resolver case, we need to add it now. (only
3039 		 * for v4 resolver and v6 xresolv case).
3040 		 */
3041 		if (is_system_labeled() && ire_is_mblk) {
3042 			if (ire->ire_ipversion == IPV4_VERSION) {
3043 				ga.ga_af = AF_INET;
3044 				IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr !=
3045 				    INADDR_ANY ? ire->ire_gateway_addr :
3046 				    ire->ire_addr, &ga.ga_addr);
3047 			} else {
3048 				ga.ga_af = AF_INET6;
3049 				ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED(
3050 				    &ire->ire_gateway_addr_v6) ?
3051 				    ire->ire_addr_v6 :
3052 				    ire->ire_gateway_addr_v6;
3053 			}
3054 			gcgrp = gcgrp_lookup(&ga, B_FALSE);
3055 			error = tsol_ire_init_gwattr(ire, ire->ire_ipversion,
3056 			    NULL, gcgrp);
3057 			if (error != 0) {
3058 				if (gcgrp != NULL) {
3059 					GCGRP_REFRELE(gcgrp);
3060 					gcgrp = NULL;
3061 				}
3062 				ipif_refrele(ipif);
3063 				ire->ire_ipif = NULL;
3064 				ire_delete(ire);
3065 				*irep = NULL;
3066 				return (error);
3067 			}
3068 		}
3069 	}
3070 
3071 	/*
3072 	 * In case ire was changed
3073 	 */
3074 	*irep = ire;
3075 	if (ire->ire_ipversion == IPV6_VERSION) {
3076 		error = ire_add_v6(irep, q, mp, func);
3077 	} else {
3078 		if (ire->ire_in_ill == NULL)
3079 			error = ire_add_v4(irep, q, mp, func, allow_unresolved);
3080 		else
3081 			error = ire_add_srcif_v4(irep, q, mp, func);
3082 	}
3083 	if (ipif != NULL)
3084 		ipif_refrele(ipif);
3085 	return (error);
3086 }
3087 
3088 /*
3089  * Add an initialized IRE to an appropriate table based on ire_type.
3090  *
3091  * The forward table contains IRE_PREFIX/IRE_HOST and
3092  * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT.
3093  *
3094  * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK
3095  * and IRE_CACHE.
3096  *
3097  * NOTE : This function is called as writer though not required
3098  * by this function.
3099  */
3100 static int
3101 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func,
3102     boolean_t allow_unresolved)
3103 {
3104 	ire_t	*ire1;
3105 	irb_t	*irb_ptr;
3106 	ire_t	**irep;
3107 	int	flags;
3108 	ire_t	*pire = NULL;
3109 	ill_t	*stq_ill;
3110 	ire_t	*ire = *ire_p;
3111 	int	error;
3112 	boolean_t need_refrele = B_FALSE;
3113 	nce_t	*nce;
3114 	ip_stack_t	*ipst = ire->ire_ipst;
3115 
3116 	if (ire->ire_ipif != NULL)
3117 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3118 	if (ire->ire_stq != NULL)
3119 		ASSERT(!MUTEX_HELD(
3120 		    &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock));
3121 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3122 	ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */
3123 	ASSERT(ire->ire_in_ill == NULL); /* No srcif entries */
3124 
3125 	/* Find the appropriate list head. */
3126 	switch (ire->ire_type) {
3127 	case IRE_HOST:
3128 		ire->ire_mask = IP_HOST_MASK;
3129 		ire->ire_masklen = IP_ABITS;
3130 		if ((ire->ire_flags & RTF_SETSRC) == 0)
3131 			ire->ire_src_addr = 0;
3132 		break;
3133 	case IRE_CACHE:
3134 	case IRE_BROADCAST:
3135 	case IRE_LOCAL:
3136 	case IRE_LOOPBACK:
3137 		ire->ire_mask = IP_HOST_MASK;
3138 		ire->ire_masklen = IP_ABITS;
3139 		break;
3140 	case IRE_PREFIX:
3141 		if ((ire->ire_flags & RTF_SETSRC) == 0)
3142 			ire->ire_src_addr = 0;
3143 		break;
3144 	case IRE_DEFAULT:
3145 		if ((ire->ire_flags & RTF_SETSRC) == 0)
3146 			ire->ire_src_addr = 0;
3147 		break;
3148 	case IRE_IF_RESOLVER:
3149 	case IRE_IF_NORESOLVER:
3150 		break;
3151 	default:
3152 		ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n",
3153 		    (void *)ire, ire->ire_type));
3154 		ire_delete(ire);
3155 		*ire_p = NULL;
3156 		return (EINVAL);
3157 	}
3158 
3159 	/* Make sure the address is properly masked. */
3160 	ire->ire_addr &= ire->ire_mask;
3161 
3162 	/*
3163 	 * ip_newroute/ip_newroute_multi are unable to prevent the deletion
3164 	 * of the interface route while adding an IRE_CACHE for an on-link
3165 	 * destination in the IRE_IF_RESOLVER case, since the ire has to
3166 	 * go to ARP and return. We can't do a REFHOLD on the
3167 	 * associated interface ire for fear of ARP freeing the message.
3168 	 * Here we look up the interface ire in the forwarding table and
3169 	 * make sure that the interface route has not been deleted.
3170 	 */
3171 	if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 &&
3172 	    ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) {
3173 
3174 		ASSERT(ire->ire_max_fragp == NULL);
3175 		if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) {
3176 			/*
3177 			 * The ihandle that we used in ip_newroute_multi
3178 			 * comes from the interface route corresponding
3179 			 * to ire_ipif. Lookup here to see if it exists
3180 			 * still.
3181 			 * If the ire has a source address assigned using
3182 			 * RTF_SETSRC, ire_ipif is the logical interface holding
3183 			 * this source address, so we can't use it to check for
3184 			 * the existence of the interface route. Instead we rely
3185 			 * on the brute force ihandle search in
3186 			 * ire_ihandle_lookup_onlink() below.
3187 			 */
3188 			pire = ipif_to_ire(ire->ire_ipif);
3189 			if (pire == NULL) {
3190 				ire_delete(ire);
3191 				*ire_p = NULL;
3192 				return (EINVAL);
3193 			} else if (pire->ire_ihandle != ire->ire_ihandle) {
3194 				ire_refrele(pire);
3195 				ire_delete(ire);
3196 				*ire_p = NULL;
3197 				return (EINVAL);
3198 			}
3199 		} else {
3200 			pire = ire_ihandle_lookup_onlink(ire);
3201 			if (pire == NULL) {
3202 				ire_delete(ire);
3203 				*ire_p = NULL;
3204 				return (EINVAL);
3205 			}
3206 		}
3207 		/* Prevent pire from getting deleted */
3208 		IRB_REFHOLD(pire->ire_bucket);
3209 		/* Has it been removed already ? */
3210 		if (pire->ire_marks & IRE_MARK_CONDEMNED) {
3211 			IRB_REFRELE(pire->ire_bucket);
3212 			ire_refrele(pire);
3213 			ire_delete(ire);
3214 			*ire_p = NULL;
3215 			return (EINVAL);
3216 		}
3217 	} else {
3218 		ASSERT(ire->ire_max_fragp != NULL);
3219 	}
3220 	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
3221 
3222 	if (ire->ire_ipif != NULL) {
3223 		/*
3224 		 * We use MATCH_IRE_IPIF while adding IRE_CACHES only
3225 		 * for historic reasons and to maintain symmetry with
3226 		 * IPv6 code path. Historically this was used by
3227 		 * multicast code to create multiple IRE_CACHES on
3228 		 * a single ill with different ipifs. This was used
3229 		 * so that multicast packets leaving the node had the
3230 		 * right source address. This is no longer needed as
3231 		 * ip_wput initializes the address correctly.
3232 		 */
3233 		flags |= MATCH_IRE_IPIF;
3234 		/*
3235 		 * If we are creating hidden ires, make sure we search on
3236 		 * this ill (MATCH_IRE_ILL) and a hidden ire,
3237 		 * while we are searching for duplicates below. Otherwise we
3238 		 * could potentially find an IRE on some other interface
3239 		 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We
3240 		 * shouldn't do this as this will lead to an infinite loop
3241 		 * (if we get to ip_wput again) eventually we need an hidden
3242 		 * ire for this packet to go out. MATCH_IRE_ILL is explicitly
3243 		 * done below.
3244 		 */
3245 		if (ire->ire_type == IRE_CACHE &&
3246 		    (ire->ire_marks & IRE_MARK_HIDDEN))
3247 			flags |= (MATCH_IRE_MARK_HIDDEN);
3248 	}
3249 	if ((ire->ire_type & IRE_CACHETABLE) == 0) {
3250 		irb_ptr = ire_get_bucket(ire);
3251 		need_refrele = B_TRUE;
3252 		if (irb_ptr == NULL) {
3253 			/*
3254 			 * This assumes that the ire has not added
3255 			 * a reference to the ipif.
3256 			 */
3257 			ire->ire_ipif = NULL;
3258 			ire_delete(ire);
3259 			if (pire != NULL) {
3260 				IRB_REFRELE(pire->ire_bucket);
3261 				ire_refrele(pire);
3262 			}
3263 			*ire_p = NULL;
3264 			return (EINVAL);
3265 		}
3266 	} else {
3267 		irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH(
3268 		    ire->ire_addr, ipst->ips_ip_cache_table_size)]);
3269 	}
3270 
3271 	/*
3272 	 * Start the atomic add of the ire. Grab the ill locks,
3273 	 * ill_g_usesrc_lock and the bucket lock. Check for condemned
3274 	 *
3275 	 * If ipif or ill is changing ire_atomic_start() may queue the
3276 	 * request and return EINPROGRESS.
3277 	 * To avoid lock order problems, get the ndp4->ndp_g_lock.
3278 	 */
3279 	mutex_enter(&ipst->ips_ndp4->ndp_g_lock);
3280 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
3281 	if (error != 0) {
3282 		mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3283 		/*
3284 		 * We don't know whether it is a valid ipif or not.
3285 		 * So, set it to NULL. This assumes that the ire has not added
3286 		 * a reference to the ipif.
3287 		 */
3288 		ire->ire_ipif = NULL;
3289 		ire_delete(ire);
3290 		if (pire != NULL) {
3291 			IRB_REFRELE(pire->ire_bucket);
3292 			ire_refrele(pire);
3293 		}
3294 		*ire_p = NULL;
3295 		if (need_refrele)
3296 			IRB_REFRELE(irb_ptr);
3297 		return (error);
3298 	}
3299 	/*
3300 	 * To avoid creating ires having stale values for the ire_max_frag
3301 	 * we get the latest value atomically here. For more details
3302 	 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE
3303 	 * in ip_rput_dlpi_writer
3304 	 */
3305 	if (ire->ire_max_fragp == NULL) {
3306 		if (CLASSD(ire->ire_addr))
3307 			ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
3308 		else
3309 			ire->ire_max_frag = pire->ire_max_frag;
3310 	} else {
3311 		uint_t	max_frag;
3312 
3313 		max_frag = *ire->ire_max_fragp;
3314 		ire->ire_max_fragp = NULL;
3315 		ire->ire_max_frag = max_frag;
3316 	}
3317 	/*
3318 	 * Atomically check for duplicate and insert in the table.
3319 	 */
3320 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
3321 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
3322 			continue;
3323 		if (ire->ire_ipif != NULL) {
3324 			/*
3325 			 * We do MATCH_IRE_ILL implicitly here for IREs
3326 			 * with a non-null ire_ipif, including IRE_CACHEs.
3327 			 * As ire_ipif and ire_stq could point to two
3328 			 * different ills, we can't pass just ire_ipif to
3329 			 * ire_match_args and get a match on both ills.
3330 			 * This is just needed for duplicate checks here and
3331 			 * so we don't add an extra argument to
3332 			 * ire_match_args for this. Do it locally.
3333 			 *
3334 			 * NOTE : Currently there is no part of the code
3335 			 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL
3336 			 * match for IRE_CACHEs. Thus we don't want to
3337 			 * extend the arguments to ire_match_args.
3338 			 */
3339 			if (ire1->ire_stq != ire->ire_stq)
3340 				continue;
3341 			/*
3342 			 * Multiroute IRE_CACHEs for a given destination can
3343 			 * have the same ire_ipif, typically if their source
3344 			 * address is forced using RTF_SETSRC, and the same
3345 			 * send-to queue. We differentiate them using the parent
3346 			 * handle.
3347 			 */
3348 			if (ire->ire_type == IRE_CACHE &&
3349 			    (ire1->ire_flags & RTF_MULTIRT) &&
3350 			    (ire->ire_flags & RTF_MULTIRT) &&
3351 			    (ire1->ire_phandle != ire->ire_phandle))
3352 				continue;
3353 		}
3354 		if (ire1->ire_zoneid != ire->ire_zoneid)
3355 			continue;
3356 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask,
3357 		    ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif,
3358 		    ire->ire_zoneid, 0, NULL, flags)) {
3359 			/*
3360 			 * Return the old ire after doing a REFHOLD.
3361 			 * As most of the callers continue to use the IRE
3362 			 * after adding, we return a held ire. This will
3363 			 * avoid a lookup in the caller again. If the callers
3364 			 * don't want to use it, they need to do a REFRELE.
3365 			 */
3366 			ip1dbg(("found dup ire existing %p new %p",
3367 			    (void *)ire1, (void *)ire));
3368 			IRE_REFHOLD(ire1);
3369 			ire_atomic_end(irb_ptr, ire);
3370 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3371 			ire_delete(ire);
3372 			if (pire != NULL) {
3373 				/*
3374 				 * Assert that it is not removed from the
3375 				 * list yet.
3376 				 */
3377 				ASSERT(pire->ire_ptpn != NULL);
3378 				IRB_REFRELE(pire->ire_bucket);
3379 				ire_refrele(pire);
3380 			}
3381 			*ire_p = ire1;
3382 			if (need_refrele)
3383 				IRB_REFRELE(irb_ptr);
3384 			return (0);
3385 		}
3386 	}
3387 	if (ire->ire_type & IRE_CACHE) {
3388 		ASSERT(ire->ire_stq != NULL);
3389 		nce = ndp_lookup_v4(ire_to_ill(ire),
3390 		    ((ire->ire_gateway_addr != INADDR_ANY) ?
3391 		    &ire->ire_gateway_addr : &ire->ire_addr),
3392 		    B_TRUE);
3393 		if (nce != NULL)
3394 			mutex_enter(&nce->nce_lock);
3395 		/*
3396 		 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE
3397 		 * and the caller has prohibited the addition of incomplete
3398 		 * ire's, we fail the add. Note that nce_state could be
3399 		 * something other than ND_REACHABLE if nce_reinit has just
3400 		 * kicked in and reset the nce.
3401 		 */
3402 		if ((nce == NULL) ||
3403 		    (nce->nce_flags & NCE_F_CONDEMNED) ||
3404 		    (!allow_unresolved &&
3405 		    (nce->nce_state != ND_REACHABLE))) {
3406 			if (nce != NULL)
3407 				mutex_exit(&nce->nce_lock);
3408 			ire_atomic_end(irb_ptr, ire);
3409 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3410 			if (nce != NULL)
3411 				NCE_REFRELE(nce);
3412 			DTRACE_PROBE1(ire__no__nce, ire_t *, ire);
3413 			ire_delete(ire);
3414 			if (pire != NULL) {
3415 				IRB_REFRELE(pire->ire_bucket);
3416 				ire_refrele(pire);
3417 			}
3418 			*ire_p = NULL;
3419 			if (need_refrele)
3420 				IRB_REFRELE(irb_ptr);
3421 			return (EINVAL);
3422 		} else {
3423 			ire->ire_nce = nce;
3424 			mutex_exit(&nce->nce_lock);
3425 			/*
3426 			 * We are associating this nce to the ire, so
3427 			 * change the nce ref taken in ndp_lookup_v4() from
3428 			 * NCE_REFHOLD to NCE_REFHOLD_NOTR
3429 			 */
3430 			NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
3431 		}
3432 	}
3433 	/*
3434 	 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by
3435 	 * grouping identical addresses together on the hash chain. We also
3436 	 * don't want to send multiple copies out if there are two ills part
3437 	 * of the same group. Thus we group the ires with same addr and same
3438 	 * ill group together so that ip_wput_ire can easily skip all the
3439 	 * ires with same addr and same group after sending the first copy.
3440 	 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently
3441 	 * interested in such groupings only for broadcasts.
3442 	 *
3443 	 * NOTE : If the interfaces are brought up first and then grouped,
3444 	 * illgrp_insert will handle it. We come here when the interfaces
3445 	 * are already in group and we are bringing them UP.
3446 	 *
3447 	 * Find the first entry that matches ire_addr. *irep will be null
3448 	 * if no match.
3449 	 */
3450 	irep = (ire_t **)irb_ptr;
3451 	while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr)
3452 		irep = &ire1->ire_next;
3453 	if (ire->ire_type == IRE_BROADCAST && *irep != NULL) {
3454 		/*
3455 		 * We found some ire (i.e *irep) with a matching addr. We
3456 		 * want to group ires with same addr and same ill group
3457 		 * together.
3458 		 *
3459 		 * First get to the entry that matches our address and
3460 		 * ill group i.e stop as soon as we find the first ire
3461 		 * matching the ill group and address. If there is only
3462 		 * an address match, we should walk and look for some
3463 		 * group match. These are some of the possible scenarios :
3464 		 *
3465 		 * 1) There are no groups at all i.e all ire's ill_group
3466 		 *    are NULL. In that case we will essentially group
3467 		 *    all the ires with the same addr together. Same as
3468 		 *    the "else" block of this "if".
3469 		 *
3470 		 * 2) There are some groups and this ire's ill_group is
3471 		 *    NULL. In this case, we will first find the group
3472 		 *    that matches the address and a NULL group. Then
3473 		 *    we will insert the ire at the end of that group.
3474 		 *
3475 		 * 3) There are some groups and this ires's ill_group is
3476 		 *    non-NULL. In this case we will first find the group
3477 		 *    that matches the address and the ill_group. Then
3478 		 *    we will insert the ire at the end of that group.
3479 		 */
3480 		/* LINTED : constant in conditional context */
3481 		while (1) {
3482 			ire1 = *irep;
3483 			if ((ire1->ire_next == NULL) ||
3484 			    (ire1->ire_next->ire_addr != ire->ire_addr) ||
3485 			    (ire1->ire_type != IRE_BROADCAST) ||
3486 			    (ire1->ire_ipif->ipif_ill->ill_group ==
3487 			    ire->ire_ipif->ipif_ill->ill_group))
3488 				break;
3489 			irep = &ire1->ire_next;
3490 		}
3491 		ASSERT(*irep != NULL);
3492 		irep = &((*irep)->ire_next);
3493 
3494 		/*
3495 		 * Either we have hit the end of the list or the address
3496 		 * did not match or the group *matched*. If we found
3497 		 * a match on the group, skip to the end of the group.
3498 		 */
3499 		while (*irep != NULL) {
3500 			ire1 = *irep;
3501 			if ((ire1->ire_addr != ire->ire_addr) ||
3502 			    (ire1->ire_type != IRE_BROADCAST) ||
3503 			    (ire1->ire_ipif->ipif_ill->ill_group !=
3504 			    ire->ire_ipif->ipif_ill->ill_group))
3505 				break;
3506 			if (ire1->ire_ipif->ipif_ill->ill_group == NULL &&
3507 			    ire1->ire_ipif == ire->ire_ipif) {
3508 				irep = &ire1->ire_next;
3509 				break;
3510 			}
3511 			irep = &ire1->ire_next;
3512 		}
3513 	} else if (*irep != NULL) {
3514 		/*
3515 		 * Find the last ire which matches ire_addr.
3516 		 * Needed to do tail insertion among entries with the same
3517 		 * ire_addr.
3518 		 */
3519 		while (ire->ire_addr == ire1->ire_addr) {
3520 			irep = &ire1->ire_next;
3521 			ire1 = *irep;
3522 			if (ire1 == NULL)
3523 				break;
3524 		}
3525 	}
3526 
3527 	/* Insert at *irep */
3528 	ire1 = *irep;
3529 	if (ire1 != NULL)
3530 		ire1->ire_ptpn = &ire->ire_next;
3531 	ire->ire_next = ire1;
3532 	/* Link the new one in. */
3533 	ire->ire_ptpn = irep;
3534 
3535 	/*
3536 	 * ire_walk routines de-reference ire_next without holding
3537 	 * a lock. Before we point to the new ire, we want to make
3538 	 * sure the store that sets the ire_next of the new ire
3539 	 * reaches global visibility, so that ire_walk routines
3540 	 * don't see a truncated list of ires i.e if the ire_next
3541 	 * of the new ire gets set after we do "*irep = ire" due
3542 	 * to re-ordering, the ire_walk thread will see a NULL
3543 	 * once it accesses the ire_next of the new ire.
3544 	 * membar_producer() makes sure that the following store
3545 	 * happens *after* all of the above stores.
3546 	 */
3547 	membar_producer();
3548 	*irep = ire;
3549 	ire->ire_bucket = irb_ptr;
3550 	/*
3551 	 * We return a bumped up IRE above. Keep it symmetrical
3552 	 * so that the callers will always have to release. This
3553 	 * helps the callers of this function because they continue
3554 	 * to use the IRE after adding and hence they don't have to
3555 	 * lookup again after we return the IRE.
3556 	 *
3557 	 * NOTE : We don't have to use atomics as this is appearing
3558 	 * in the list for the first time and no one else can bump
3559 	 * up the reference count on this yet.
3560 	 */
3561 	IRE_REFHOLD_LOCKED(ire);
3562 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
3563 
3564 	irb_ptr->irb_ire_cnt++;
3565 	if (irb_ptr->irb_marks & IRB_MARK_FTABLE)
3566 		irb_ptr->irb_nire++;
3567 
3568 	if (ire->ire_marks & IRE_MARK_TEMPORARY)
3569 		irb_ptr->irb_tmp_ire_cnt++;
3570 
3571 	if (ire->ire_ipif != NULL) {
3572 		ire->ire_ipif->ipif_ire_cnt++;
3573 		if (ire->ire_stq != NULL) {
3574 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3575 			stq_ill->ill_ire_cnt++;
3576 		}
3577 	} else {
3578 		ASSERT(ire->ire_stq == NULL);
3579 	}
3580 
3581 	ire_atomic_end(irb_ptr, ire);
3582 	mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3583 
3584 	if (pire != NULL) {
3585 		/* Assert that it is not removed from the list yet */
3586 		ASSERT(pire->ire_ptpn != NULL);
3587 		IRB_REFRELE(pire->ire_bucket);
3588 		ire_refrele(pire);
3589 	}
3590 
3591 	if (ire->ire_type != IRE_CACHE) {
3592 		/*
3593 		 * For ire's with host mask see if there is an entry
3594 		 * in the cache. If there is one flush the whole cache as
3595 		 * there might be multiple entries due to RTF_MULTIRT (CGTP).
3596 		 * If no entry is found than there is no need to flush the
3597 		 * cache.
3598 		 */
3599 		if (ire->ire_mask == IP_HOST_MASK) {
3600 			ire_t *lire;
3601 			lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE,
3602 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3603 			if (lire != NULL) {
3604 				ire_refrele(lire);
3605 				ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3606 			}
3607 		} else {
3608 			ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3609 		}
3610 	}
3611 	/*
3612 	 * We had to delay the fast path probe until the ire is inserted
3613 	 * in the list. Otherwise the fast path ack won't find the ire in
3614 	 * the table.
3615 	 */
3616 	if (ire->ire_type == IRE_CACHE ||
3617 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) {
3618 		ASSERT(ire->ire_nce != NULL);
3619 		nce_fastpath(ire->ire_nce);
3620 	}
3621 	if (ire->ire_ipif != NULL)
3622 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3623 	*ire_p = ire;
3624 	if (need_refrele) {
3625 		IRB_REFRELE(irb_ptr);
3626 	}
3627 	return (0);
3628 }
3629 
3630 /*
3631  * IRB_REFRELE is the only caller of the function. ire_unlink calls to
3632  * do the final cleanup for this ire.
3633  */
3634 void
3635 ire_cleanup(ire_t *ire)
3636 {
3637 	ire_t *ire_next;
3638 	ip_stack_t *ipst = ire->ire_ipst;
3639 
3640 	ASSERT(ire != NULL);
3641 
3642 	while (ire != NULL) {
3643 		ire_next = ire->ire_next;
3644 		if (ire->ire_ipversion == IPV4_VERSION) {
3645 			ire_delete_v4(ire);
3646 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
3647 			    ire_stats_deleted);
3648 		} else {
3649 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
3650 			ire_delete_v6(ire);
3651 			BUMP_IRE_STATS(ipst->ips_ire_stats_v6,
3652 			    ire_stats_deleted);
3653 		}
3654 		/*
3655 		 * Now it's really out of the list. Before doing the
3656 		 * REFRELE, set ire_next to NULL as ire_inactive asserts
3657 		 * so.
3658 		 */
3659 		ire->ire_next = NULL;
3660 		IRE_REFRELE_NOTR(ire);
3661 		ire = ire_next;
3662 	}
3663 }
3664 
3665 /*
3666  * IRB_REFRELE is the only caller of the function. It calls to unlink
3667  * all the CONDEMNED ires from this bucket.
3668  */
3669 ire_t *
3670 ire_unlink(irb_t *irb)
3671 {
3672 	ire_t *ire;
3673 	ire_t *ire1;
3674 	ire_t **ptpn;
3675 	ire_t *ire_list = NULL;
3676 
3677 	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
3678 	ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) ||
3679 	    (irb->irb_refcnt == 0));
3680 	ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED);
3681 	ASSERT(irb->irb_ire != NULL);
3682 
3683 	for (ire = irb->irb_ire; ire != NULL; ire = ire1) {
3684 		ip_stack_t	*ipst = ire->ire_ipst;
3685 
3686 		ire1 = ire->ire_next;
3687 		if (ire->ire_marks & IRE_MARK_CONDEMNED) {
3688 			ptpn = ire->ire_ptpn;
3689 			ire1 = ire->ire_next;
3690 			if (ire1)
3691 				ire1->ire_ptpn = ptpn;
3692 			*ptpn = ire1;
3693 			ire->ire_ptpn = NULL;
3694 			ire->ire_next = NULL;
3695 			if (ire->ire_type == IRE_DEFAULT) {
3696 				/*
3697 				 * IRE is out of the list. We need to adjust
3698 				 * the accounting before the caller drops
3699 				 * the lock.
3700 				 */
3701 				if (ire->ire_ipversion == IPV6_VERSION) {
3702 					ASSERT(ipst->
3703 					    ips_ipv6_ire_default_count !=
3704 					    0);
3705 					ipst->ips_ipv6_ire_default_count--;
3706 				}
3707 			}
3708 			/*
3709 			 * We need to call ire_delete_v4 or ire_delete_v6
3710 			 * to clean up the cache or the redirects pointing at
3711 			 * the default gateway. We need to drop the lock
3712 			 * as ire_flush_cache/ire_delete_host_redircts require
3713 			 * so. But we can't drop the lock, as ire_unlink needs
3714 			 * to atomically remove the ires from the list.
3715 			 * So, create a temporary list of CONDEMNED ires
3716 			 * for doing ire_delete_v4/ire_delete_v6 operations
3717 			 * later on.
3718 			 */
3719 			ire->ire_next = ire_list;
3720 			ire_list = ire;
3721 		}
3722 	}
3723 	irb->irb_marks &= ~IRB_MARK_CONDEMNED;
3724 	return (ire_list);
3725 }
3726 
3727 /*
3728  * Delete all the cache entries with this 'addr'.  When IP gets a gratuitous
3729  * ARP message on any of its interface queue, it scans the nce table and
3730  * deletes and calls ndp_delete() for the appropriate nce. This action
3731  * also deletes all the neighbor/ire cache entries for that address.
3732  * This function is called from ip_arp_news in ip.c and also for
3733  * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns
3734  * true if it finds a nce entry which is used by ip_arp_news to determine if
3735  * it needs to do an ire_walk_v4. The return value is also  used for the
3736  * same purpose by ARP IOCTL processing * in ip_if.c when deleting
3737  * ARP entries. For SIOC*IFARP ioctls in addition to the address,
3738  * ip_if->ipif_ill also needs to be matched.
3739  */
3740 boolean_t
3741 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst)
3742 {
3743 	ill_t	*ill;
3744 	nce_t	*nce;
3745 
3746 	ill = (ipif ? ipif->ipif_ill : NULL);
3747 
3748 	if (ill != NULL) {
3749 		/*
3750 		 * clean up the nce (and any relevant ire's) that matches
3751 		 * on addr and ill.
3752 		 */
3753 		nce = ndp_lookup_v4(ill, &addr, B_FALSE);
3754 		if (nce != NULL) {
3755 			ndp_delete(nce);
3756 			return (B_TRUE);
3757 		}
3758 	} else {
3759 		/*
3760 		 * ill is wildcard. clean up all nce's and
3761 		 * ire's that match on addr
3762 		 */
3763 		nce_clookup_t cl;
3764 
3765 		cl.ncecl_addr = addr;
3766 		cl.ncecl_found = B_FALSE;
3767 
3768 		ndp_walk_common(ipst->ips_ndp4, NULL,
3769 		    (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE);
3770 
3771 		/*
3772 		 *  ncecl_found would be set by ip_nce_clookup_and_delete if
3773 		 *  we found a matching nce.
3774 		 */
3775 		return (cl.ncecl_found);
3776 	}
3777 	return (B_FALSE);
3778 
3779 }
3780 
3781 /* Delete the supplied nce if its nce_addr matches the supplied address */
3782 static void
3783 ip_nce_clookup_and_delete(nce_t *nce, void *arg)
3784 {
3785 	nce_clookup_t *cl = (nce_clookup_t *)arg;
3786 	ipaddr_t nce_addr;
3787 
3788 	IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr);
3789 	if (nce_addr == cl->ncecl_addr) {
3790 		cl->ncecl_found = B_TRUE;
3791 		/* clean up the nce (and any relevant ire's) */
3792 		ndp_delete(nce);
3793 	}
3794 }
3795 
3796 /*
3797  * Clean up the radix node for this ire. Must be called by IRB_REFRELE
3798  * when there are no ire's left in the bucket. Returns TRUE if the bucket
3799  * is deleted and freed.
3800  */
3801 boolean_t
3802 irb_inactive(irb_t *irb)
3803 {
3804 	struct rt_entry *rt;
3805 	struct radix_node *rn;
3806 	ip_stack_t *ipst = irb->irb_ipst;
3807 
3808 	ASSERT(irb->irb_ipst != NULL);
3809 
3810 	rt = IRB2RT(irb);
3811 	rn = (struct radix_node *)rt;
3812 
3813 	/* first remove it from the radix tree. */
3814 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
3815 	rw_enter(&irb->irb_lock, RW_WRITER);
3816 	if (irb->irb_refcnt == 1 && irb->irb_nire == 0) {
3817 		rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask,
3818 		    ipst->ips_ip_ftable);
3819 		DTRACE_PROBE1(irb__free, rt_t *,  rt);
3820 		ASSERT((void *)rn == (void *)rt);
3821 		Free(rt, rt_entry_cache);
3822 		/* irb_lock is freed */
3823 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3824 		return (B_TRUE);
3825 	}
3826 	rw_exit(&irb->irb_lock);
3827 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3828 	return (B_FALSE);
3829 }
3830 
3831 /*
3832  * Delete the specified IRE.
3833  */
3834 void
3835 ire_delete(ire_t *ire)
3836 {
3837 	ire_t	*ire1;
3838 	ire_t	**ptpn;
3839 	irb_t *irb;
3840 	ip_stack_t	*ipst = ire->ire_ipst;
3841 
3842 	if ((irb = ire->ire_bucket) == NULL) {
3843 		/*
3844 		 * It was never inserted in the list. Should call REFRELE
3845 		 * to free this IRE.
3846 		 */
3847 		IRE_REFRELE_NOTR(ire);
3848 		return;
3849 	}
3850 
3851 	rw_enter(&irb->irb_lock, RW_WRITER);
3852 
3853 	if (irb->irb_rr_origin == ire) {
3854 		irb->irb_rr_origin = NULL;
3855 	}
3856 
3857 	/*
3858 	 * In case of V4 we might still be waiting for fastpath ack.
3859 	 */
3860 	if (ire->ire_ipversion == IPV4_VERSION &&
3861 	    (ire->ire_type == IRE_CACHE ||
3862 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) {
3863 		ASSERT(ire->ire_nce != NULL);
3864 		nce_fastpath_list_delete(ire->ire_nce);
3865 	}
3866 
3867 	if (ire->ire_ptpn == NULL) {
3868 		/*
3869 		 * Some other thread has removed us from the list.
3870 		 * It should have done the REFRELE for us.
3871 		 */
3872 		rw_exit(&irb->irb_lock);
3873 		return;
3874 	}
3875 
3876 	if (irb->irb_refcnt != 0) {
3877 		/*
3878 		 * The last thread to leave this bucket will
3879 		 * delete this ire.
3880 		 */
3881 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3882 			irb->irb_ire_cnt--;
3883 			if (ire->ire_marks & IRE_MARK_TEMPORARY)
3884 				irb->irb_tmp_ire_cnt--;
3885 			ire->ire_marks |= IRE_MARK_CONDEMNED;
3886 		}
3887 		irb->irb_marks |= IRB_MARK_CONDEMNED;
3888 		rw_exit(&irb->irb_lock);
3889 		return;
3890 	}
3891 
3892 	/*
3893 	 * Normally to delete an ire, we walk the bucket. While we
3894 	 * walk the bucket, we normally bump up irb_refcnt and hence
3895 	 * we return from above where we mark CONDEMNED and the ire
3896 	 * gets deleted from ire_unlink. This case is where somebody
3897 	 * knows the ire e.g by doing a lookup, and wants to delete the
3898 	 * IRE. irb_refcnt would be 0 in this case if nobody is walking
3899 	 * the bucket.
3900 	 */
3901 	ptpn = ire->ire_ptpn;
3902 	ire1 = ire->ire_next;
3903 	if (ire1 != NULL)
3904 		ire1->ire_ptpn = ptpn;
3905 	ASSERT(ptpn != NULL);
3906 	*ptpn = ire1;
3907 	ire->ire_ptpn = NULL;
3908 	ire->ire_next = NULL;
3909 	if (ire->ire_ipversion == IPV6_VERSION) {
3910 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted);
3911 	} else {
3912 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted);
3913 	}
3914 	/*
3915 	 * ip_wput/ip_wput_v6 checks this flag to see whether
3916 	 * it should still use the cached ire or not.
3917 	 */
3918 	ire->ire_marks |= IRE_MARK_CONDEMNED;
3919 	if (ire->ire_type == IRE_DEFAULT) {
3920 		/*
3921 		 * IRE is out of the list. We need to adjust the
3922 		 * accounting before we drop the lock.
3923 		 */
3924 		if (ire->ire_ipversion == IPV6_VERSION) {
3925 			ASSERT(ipst->ips_ipv6_ire_default_count != 0);
3926 			ipst->ips_ipv6_ire_default_count--;
3927 		}
3928 	}
3929 	irb->irb_ire_cnt--;
3930 
3931 	if (ire->ire_marks & IRE_MARK_TEMPORARY)
3932 		irb->irb_tmp_ire_cnt--;
3933 	rw_exit(&irb->irb_lock);
3934 
3935 	if (ire->ire_ipversion == IPV6_VERSION) {
3936 		ire_delete_v6(ire);
3937 	} else {
3938 		ire_delete_v4(ire);
3939 	}
3940 	/*
3941 	 * We removed it from the list. Decrement the
3942 	 * reference count.
3943 	 */
3944 	IRE_REFRELE_NOTR(ire);
3945 }
3946 
3947 /*
3948  * Delete the specified IRE.
3949  * All calls should use ire_delete().
3950  * Sometimes called as writer though not required by this function.
3951  *
3952  * NOTE : This function is called only if the ire was added
3953  * in the list.
3954  */
3955 static void
3956 ire_delete_v4(ire_t *ire)
3957 {
3958 	ip_stack_t	*ipst = ire->ire_ipst;
3959 
3960 	ASSERT(ire->ire_refcnt >= 1);
3961 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3962 
3963 	if (ire->ire_type != IRE_CACHE)
3964 		ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
3965 	if (ire->ire_type == IRE_DEFAULT) {
3966 		/*
3967 		 * when a default gateway is going away
3968 		 * delete all the host redirects pointing at that
3969 		 * gateway.
3970 		 */
3971 		ire_delete_host_redirects(ire->ire_gateway_addr, ipst);
3972 	}
3973 }
3974 
3975 /*
3976  * IRE_REFRELE/ire_refrele are the only caller of the function. It calls
3977  * to free the ire when the reference count goes to zero.
3978  */
3979 void
3980 ire_inactive(ire_t *ire)
3981 {
3982 	nce_t	*nce;
3983 	ill_t	*ill = NULL;
3984 	ill_t	*stq_ill = NULL;
3985 	ill_t	*in_ill = NULL;
3986 	ipif_t	*ipif;
3987 	boolean_t	need_wakeup = B_FALSE;
3988 	irb_t 	*irb;
3989 	ip_stack_t	*ipst = ire->ire_ipst;
3990 
3991 	ASSERT(ire->ire_refcnt == 0);
3992 	ASSERT(ire->ire_ptpn == NULL);
3993 	ASSERT(ire->ire_next == NULL);
3994 
3995 	if (ire->ire_gw_secattr != NULL) {
3996 		ire_gw_secattr_free(ire->ire_gw_secattr);
3997 		ire->ire_gw_secattr = NULL;
3998 	}
3999 
4000 	if (ire->ire_mp != NULL) {
4001 		ASSERT(ire->ire_bucket == NULL);
4002 		mutex_destroy(&ire->ire_lock);
4003 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
4004 		if (ire->ire_nce != NULL)
4005 			NCE_REFRELE_NOTR(ire->ire_nce);
4006 		freeb(ire->ire_mp);
4007 		return;
4008 	}
4009 
4010 	if ((nce = ire->ire_nce) != NULL) {
4011 		NCE_REFRELE_NOTR(nce);
4012 		ire->ire_nce = NULL;
4013 	}
4014 
4015 	if (ire->ire_ipif == NULL)
4016 		goto end;
4017 
4018 	ipif = ire->ire_ipif;
4019 	ill = ipif->ipif_ill;
4020 
4021 	if (ire->ire_bucket == NULL) {
4022 		/* The ire was never inserted in the table. */
4023 		goto end;
4024 	}
4025 
4026 	/*
4027 	 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is
4028 	 * non-null ill_ire_count also goes down by 1. If the in_ill is
4029 	 * non-null either ill_mrtun_refcnt or ill_srcif_refcnt goes down by 1.
4030 	 *
4031 	 * The ipif that is associated with an ire is ire->ire_ipif and
4032 	 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call
4033 	 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as
4034 	 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only
4035 	 * in the case of IRE_CACHES when IPMP is used, stq_ill can be
4036 	 * different. If this is different from ire->ire_ipif->ipif_ill and
4037 	 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call
4038 	 * ipif_ill_refrele_tail on the stq_ill. If mobile ip is in use
4039 	 * in_ill could be non-null. If it is a reverse tunnel related ire
4040 	 * ill_mrtun_refcnt is non-zero. If it is forward tunnel related ire
4041 	 * ill_srcif_refcnt is non-null.
4042 	 */
4043 
4044 	if (ire->ire_stq != NULL)
4045 		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
4046 	if (ire->ire_in_ill != NULL)
4047 		in_ill = ire->ire_in_ill;
4048 
4049 	if ((stq_ill == NULL || stq_ill == ill) && (in_ill == NULL)) {
4050 		/* Optimize the most common case */
4051 		mutex_enter(&ill->ill_lock);
4052 		ASSERT(ipif->ipif_ire_cnt != 0);
4053 		ipif->ipif_ire_cnt--;
4054 		if (ipif->ipif_ire_cnt == 0)
4055 			need_wakeup = B_TRUE;
4056 		if (stq_ill != NULL) {
4057 			ASSERT(stq_ill->ill_ire_cnt != 0);
4058 			stq_ill->ill_ire_cnt--;
4059 			if (stq_ill->ill_ire_cnt == 0)
4060 				need_wakeup = B_TRUE;
4061 		}
4062 		if (need_wakeup) {
4063 			/* Drops the ill lock */
4064 			ipif_ill_refrele_tail(ill);
4065 		} else {
4066 			mutex_exit(&ill->ill_lock);
4067 		}
4068 	} else {
4069 		/*
4070 		 * We can't grab all the ill locks at the same time.
4071 		 * It can lead to recursive lock enter in the call to
4072 		 * ipif_ill_refrele_tail and later. Instead do it 1 at
4073 		 * a time.
4074 		 */
4075 		mutex_enter(&ill->ill_lock);
4076 		ASSERT(ipif->ipif_ire_cnt != 0);
4077 		ipif->ipif_ire_cnt--;
4078 		if (ipif->ipif_ire_cnt == 0) {
4079 			/* Drops the lock */
4080 			ipif_ill_refrele_tail(ill);
4081 		} else {
4082 			mutex_exit(&ill->ill_lock);
4083 		}
4084 		if (stq_ill != NULL) {
4085 			mutex_enter(&stq_ill->ill_lock);
4086 			ASSERT(stq_ill->ill_ire_cnt != 0);
4087 			stq_ill->ill_ire_cnt--;
4088 			if (stq_ill->ill_ire_cnt == 0)  {
4089 				/* Drops the ill lock */
4090 				ipif_ill_refrele_tail(stq_ill);
4091 			} else {
4092 				mutex_exit(&stq_ill->ill_lock);
4093 			}
4094 		}
4095 		if (in_ill != NULL) {
4096 			mutex_enter(&in_ill->ill_lock);
4097 			if (ire->ire_type == IRE_MIPRTUN) {
4098 				/*
4099 				 * Mobile IP reverse tunnel ire.
4100 				 * Decrement table count and the
4101 				 * ill reference count. This signifies
4102 				 * mipagent is deleting reverse tunnel
4103 				 * route for a particular mobile node.
4104 				 */
4105 				mutex_enter(&ipst->ips_ire_mrtun_lock);
4106 				ipst->ips_ire_mrtun_count--;
4107 				mutex_exit(&ipst->ips_ire_mrtun_lock);
4108 				ASSERT(in_ill->ill_mrtun_refcnt != 0);
4109 				in_ill->ill_mrtun_refcnt--;
4110 				if (in_ill->ill_mrtun_refcnt == 0) {
4111 					/* Drops the ill lock */
4112 					ipif_ill_refrele_tail(in_ill);
4113 				} else {
4114 					mutex_exit(&in_ill->ill_lock);
4115 				}
4116 			} else {
4117 				mutex_enter(&ipst->ips_ire_srcif_table_lock);
4118 				ipst->ips_ire_srcif_table_count--;
4119 				mutex_exit(&ipst->ips_ire_srcif_table_lock);
4120 				ASSERT(in_ill->ill_srcif_refcnt != 0);
4121 				in_ill->ill_srcif_refcnt--;
4122 				if (in_ill->ill_srcif_refcnt == 0) {
4123 					/* Drops the ill lock */
4124 					ipif_ill_refrele_tail(in_ill);
4125 				} else {
4126 					mutex_exit(&in_ill->ill_lock);
4127 				}
4128 			}
4129 		}
4130 	}
4131 end:
4132 	/* This should be true for both V4 and V6 */
4133 
4134 	if ((ire->ire_type & IRE_FORWARDTABLE) &&
4135 	    (ire->ire_ipversion == IPV4_VERSION) &&
4136 	    ((irb = ire->ire_bucket) != NULL)) {
4137 		rw_enter(&irb->irb_lock, RW_WRITER);
4138 		irb->irb_nire--;
4139 		/*
4140 		 * Instead of examining the conditions for freeing
4141 		 * the radix node here, we do it by calling
4142 		 * IRB_REFRELE which is a single point in the code
4143 		 * that embeds that logic. Bump up the refcnt to
4144 		 * be able to call IRB_REFRELE
4145 		 */
4146 		IRB_REFHOLD_LOCKED(irb);
4147 		rw_exit(&irb->irb_lock);
4148 		IRB_REFRELE(irb);
4149 	}
4150 	ire->ire_ipif = NULL;
4151 
4152 	if (ire->ire_in_ill != NULL) {
4153 		ire->ire_in_ill = NULL;
4154 	}
4155 
4156 #ifdef IRE_DEBUG
4157 	ire_trace_inactive(ire);
4158 #endif
4159 	mutex_destroy(&ire->ire_lock);
4160 	if (ire->ire_ipversion == IPV6_VERSION) {
4161 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed);
4162 	} else {
4163 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
4164 	}
4165 	ASSERT(ire->ire_mp == NULL);
4166 	/* Has been allocated out of the cache */
4167 	kmem_cache_free(ire_cache, ire);
4168 }
4169 
4170 /*
4171  * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect
4172  * entries that have a given gateway address.
4173  */
4174 void
4175 ire_delete_cache_gw(ire_t *ire, char *cp)
4176 {
4177 	ipaddr_t	gw_addr;
4178 
4179 	if (!(ire->ire_type & IRE_CACHE) &&
4180 	    !(ire->ire_flags & RTF_DYNAMIC))
4181 		return;
4182 
4183 	bcopy(cp, &gw_addr, sizeof (gw_addr));
4184 	if (ire->ire_gateway_addr == gw_addr) {
4185 		ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n",
4186 			(int)ntohl(ire->ire_addr), ire->ire_type,
4187 			(int)ntohl(ire->ire_gateway_addr)));
4188 		ire_delete(ire);
4189 	}
4190 }
4191 
4192 /*
4193  * Remove all IRE_CACHE entries that match the ire specified.
4194  *
4195  * The flag argument indicates if the flush request is due to addition
4196  * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE).
4197  *
4198  * This routine takes only the IREs from the forwarding table and flushes
4199  * the corresponding entries from the cache table.
4200  *
4201  * When flushing due to the deletion of an old route, it
4202  * just checks the cache handles (ire_phandle and ire_ihandle) and
4203  * deletes the ones that match.
4204  *
4205  * When flushing due to the creation of a new route, it checks
4206  * if a cache entry's address matches the one in the IRE and
4207  * that the cache entry's parent has a less specific mask than the
4208  * one in IRE. The destination of such a cache entry could be the
4209  * gateway for other cache entries, so we need to flush those as
4210  * well by looking for gateway addresses matching the IRE's address.
4211  */
4212 void
4213 ire_flush_cache_v4(ire_t *ire, int flag)
4214 {
4215 	int i;
4216 	ire_t *cire;
4217 	irb_t *irb;
4218 	ip_stack_t	*ipst = ire->ire_ipst;
4219 
4220 	if (ire->ire_type & IRE_CACHE)
4221 	    return;
4222 
4223 	/*
4224 	 * If a default is just created, there is no point
4225 	 * in going through the cache, as there will not be any
4226 	 * cached ires.
4227 	 */
4228 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD)
4229 		return;
4230 	if (flag == IRE_FLUSH_ADD) {
4231 		/*
4232 		 * This selective flush is due to the addition of
4233 		 * new IRE.
4234 		 */
4235 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4236 			irb = &ipst->ips_ip_cache_table[i];
4237 			if ((cire = irb->irb_ire) == NULL)
4238 				continue;
4239 			IRB_REFHOLD(irb);
4240 			for (cire = irb->irb_ire; cire != NULL;
4241 			    cire = cire->ire_next) {
4242 				if (cire->ire_type != IRE_CACHE)
4243 					continue;
4244 				/*
4245 				 * If 'cire' belongs to the same subnet
4246 				 * as the new ire being added, and 'cire'
4247 				 * is derived from a prefix that is less
4248 				 * specific than the new ire being added,
4249 				 * we need to flush 'cire'; for instance,
4250 				 * when a new interface comes up.
4251 				 */
4252 				if (((cire->ire_addr & ire->ire_mask) ==
4253 				    (ire->ire_addr & ire->ire_mask)) &&
4254 				    (ip_mask_to_plen(cire->ire_cmask) <=
4255 				    ire->ire_masklen)) {
4256 					ire_delete(cire);
4257 					continue;
4258 				}
4259 				/*
4260 				 * This is the case when the ire_gateway_addr
4261 				 * of 'cire' belongs to the same subnet as
4262 				 * the new ire being added.
4263 				 * Flushing such ires is sometimes required to
4264 				 * avoid misrouting: say we have a machine with
4265 				 * two interfaces (I1 and I2), a default router
4266 				 * R on the I1 subnet, and a host route to an
4267 				 * off-link destination D with a gateway G on
4268 				 * the I2 subnet.
4269 				 * Under normal operation, we will have an
4270 				 * on-link cache entry for G and an off-link
4271 				 * cache entry for D with G as ire_gateway_addr,
4272 				 * traffic to D will reach its destination
4273 				 * through gateway G.
4274 				 * If the administrator does 'ifconfig I2 down',
4275 				 * the cache entries for D and G will be
4276 				 * flushed. However, G will now be resolved as
4277 				 * an off-link destination using R (the default
4278 				 * router) as gateway. Then D will also be
4279 				 * resolved as an off-link destination using G
4280 				 * as gateway - this behavior is due to
4281 				 * compatibility reasons, see comment in
4282 				 * ire_ihandle_lookup_offlink(). Traffic to D
4283 				 * will go to the router R and probably won't
4284 				 * reach the destination.
4285 				 * The administrator then does 'ifconfig I2 up'.
4286 				 * Since G is on the I2 subnet, this routine
4287 				 * will flush its cache entry. It must also
4288 				 * flush the cache entry for D, otherwise
4289 				 * traffic will stay misrouted until the IRE
4290 				 * times out.
4291 				 */
4292 				if ((cire->ire_gateway_addr & ire->ire_mask) ==
4293 				    (ire->ire_addr & ire->ire_mask)) {
4294 					ire_delete(cire);
4295 					continue;
4296 				}
4297 			}
4298 			IRB_REFRELE(irb);
4299 		}
4300 	} else {
4301 		/*
4302 		 * delete the cache entries based on
4303 		 * handle in the IRE as this IRE is
4304 		 * being deleted/changed.
4305 		 */
4306 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4307 			irb = &ipst->ips_ip_cache_table[i];
4308 			if ((cire = irb->irb_ire) == NULL)
4309 				continue;
4310 			IRB_REFHOLD(irb);
4311 			for (cire = irb->irb_ire; cire != NULL;
4312 			    cire = cire->ire_next) {
4313 				if (cire->ire_type != IRE_CACHE)
4314 					continue;
4315 				if ((cire->ire_phandle == 0 ||
4316 				    cire->ire_phandle != ire->ire_phandle) &&
4317 				    (cire->ire_ihandle == 0 ||
4318 				    cire->ire_ihandle != ire->ire_ihandle))
4319 					continue;
4320 				ire_delete(cire);
4321 			}
4322 			IRB_REFRELE(irb);
4323 		}
4324 	}
4325 }
4326 
4327 /*
4328  * Matches the arguments passed with the values in the ire.
4329  *
4330  * Note: for match types that match using "ipif" passed in, ipif
4331  * must be checked for non-NULL before calling this routine.
4332  */
4333 boolean_t
4334 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
4335     int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle,
4336     const ts_label_t *tsl, int match_flags)
4337 {
4338 	ill_t *ire_ill = NULL, *dst_ill;
4339 	ill_t *ipif_ill = NULL;
4340 	ill_group_t *ire_ill_group = NULL;
4341 	ill_group_t *ipif_ill_group = NULL;
4342 
4343 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
4344 	ASSERT((ire->ire_addr & ~ire->ire_mask) == 0);
4345 	ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) ||
4346 	    (ipif != NULL && !ipif->ipif_isv6));
4347 	ASSERT(!(match_flags & MATCH_IRE_WQ));
4348 
4349 	/*
4350 	 * HIDDEN cache entries have to be looked up specifically with
4351 	 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set
4352 	 * when the interface is FAILED or INACTIVE. In that case,
4353 	 * any IRE_CACHES that exists should be marked with
4354 	 * IRE_MARK_HIDDEN. So, we don't really need to match below
4355 	 * for IRE_MARK_HIDDEN. But we do so for consistency.
4356 	 */
4357 	if (!(match_flags & MATCH_IRE_MARK_HIDDEN) &&
4358 	    (ire->ire_marks & IRE_MARK_HIDDEN))
4359 		return (B_FALSE);
4360 
4361 	/*
4362 	 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option
4363 	 * is used. In that case the routing table is bypassed and the
4364 	 * packets are sent directly to the specified nexthop. The
4365 	 * IRE_CACHE entry representing this route should be marked
4366 	 * with IRE_MARK_PRIVATE_ADDR.
4367 	 */
4368 
4369 	if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) &&
4370 	    (ire->ire_marks & IRE_MARK_PRIVATE_ADDR))
4371 		return (B_FALSE);
4372 
4373 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
4374 	    ire->ire_zoneid != ALL_ZONES) {
4375 		/*
4376 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is
4377 		 * valid and does not match that of ire_zoneid, a failure to
4378 		 * match is reported at this point. Otherwise, since some IREs
4379 		 * that are available in the global zone can be used in local
4380 		 * zones, additional checks need to be performed:
4381 		 *
4382 		 *	IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK
4383 		 *	entries should never be matched in this situation.
4384 		 *
4385 		 *	IRE entries that have an interface associated with them
4386 		 *	should in general not match unless they are an IRE_LOCAL
4387 		 *	or in the case when MATCH_IRE_DEFAULT has been set in
4388 		 *	the caller.  In the case of the former, checking of the
4389 		 *	other fields supplied should take place.
4390 		 *
4391 		 *	In the case where MATCH_IRE_DEFAULT has been set,
4392 		 *	all of the ipif's associated with the IRE's ill are
4393 		 *	checked to see if there is a matching zoneid.  If any
4394 		 *	one ipif has a matching zoneid, this IRE is a
4395 		 *	potential candidate so checking of the other fields
4396 		 *	takes place.
4397 		 *
4398 		 *	In the case where the IRE_INTERFACE has a usable source
4399 		 *	address (indicated by ill_usesrc_ifindex) in the
4400 		 *	correct zone then it's permitted to return this IRE
4401 		 */
4402 		if (match_flags & MATCH_IRE_ZONEONLY)
4403 			return (B_FALSE);
4404 		if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK))
4405 			return (B_FALSE);
4406 		/*
4407 		 * Note, IRE_INTERFACE can have the stq as NULL. For
4408 		 * example, if the default multicast route is tied to
4409 		 * the loopback address.
4410 		 */
4411 		if ((ire->ire_type & IRE_INTERFACE) &&
4412 		    (ire->ire_stq != NULL)) {
4413 			dst_ill = (ill_t *)ire->ire_stq->q_ptr;
4414 			/*
4415 			 * If there is a usable source address in the
4416 			 * zone, then it's ok to return an
4417 			 * IRE_INTERFACE
4418 			 */
4419 			if (ipif_usesrc_avail(dst_ill, zoneid)) {
4420 				ip3dbg(("ire_match_args: dst_ill %p match %d\n",
4421 				    (void *)dst_ill,
4422 				    (ire->ire_addr == (addr & mask))));
4423 			} else {
4424 				ip3dbg(("ire_match_args: src_ipif NULL"
4425 				    " dst_ill %p\n", (void *)dst_ill));
4426 				return (B_FALSE);
4427 			}
4428 		}
4429 		if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL &&
4430 		    !(ire->ire_type & IRE_INTERFACE)) {
4431 			ipif_t	*tipif;
4432 
4433 			if ((match_flags & MATCH_IRE_DEFAULT) == 0) {
4434 				return (B_FALSE);
4435 			}
4436 			mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock);
4437 			for (tipif = ire->ire_ipif->ipif_ill->ill_ipif;
4438 			    tipif != NULL; tipif = tipif->ipif_next) {
4439 				if (IPIF_CAN_LOOKUP(tipif) &&
4440 				    (tipif->ipif_flags & IPIF_UP) &&
4441 				    (tipif->ipif_zoneid == zoneid ||
4442 				    tipif->ipif_zoneid == ALL_ZONES))
4443 					break;
4444 			}
4445 			mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock);
4446 			if (tipif == NULL) {
4447 				return (B_FALSE);
4448 			}
4449 		}
4450 	}
4451 
4452 	/*
4453 	 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that
4454 	 * somebody wants to send out on a particular interface which
4455 	 * is given by ire_stq and hence use ire_stq to derive the ill
4456 	 * value. ire_ipif for IRE_CACHES is just the means of getting
4457 	 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr.
4458 	 * ire_to_ill does the right thing for this.
4459 	 */
4460 	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
4461 		ire_ill = ire_to_ill(ire);
4462 		if (ire_ill != NULL)
4463 			ire_ill_group = ire_ill->ill_group;
4464 		ipif_ill = ipif->ipif_ill;
4465 		ipif_ill_group = ipif_ill->ill_group;
4466 	}
4467 
4468 	if ((ire->ire_addr == (addr & mask)) &&
4469 	    ((!(match_flags & MATCH_IRE_GW)) ||
4470 		(ire->ire_gateway_addr == gateway)) &&
4471 	    ((!(match_flags & MATCH_IRE_TYPE)) ||
4472 		(ire->ire_type & type)) &&
4473 	    ((!(match_flags & MATCH_IRE_SRC)) ||
4474 		(ire->ire_src_addr == ipif->ipif_src_addr)) &&
4475 	    ((!(match_flags & MATCH_IRE_IPIF)) ||
4476 		(ire->ire_ipif == ipif)) &&
4477 	    ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) ||
4478 		(ire->ire_type != IRE_CACHE ||
4479 		ire->ire_marks & IRE_MARK_HIDDEN)) &&
4480 	    ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) ||
4481 		(ire->ire_type != IRE_CACHE ||
4482 		ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) &&
4483 	    ((!(match_flags & MATCH_IRE_ILL)) ||
4484 		(ire_ill == ipif_ill)) &&
4485 	    ((!(match_flags & MATCH_IRE_IHANDLE)) ||
4486 		(ire->ire_ihandle == ihandle)) &&
4487 	    ((!(match_flags & MATCH_IRE_MASK)) ||
4488 		(ire->ire_mask == mask)) &&
4489 	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
4490 		(ire_ill == ipif_ill) ||
4491 		(ire_ill_group != NULL &&
4492 		ire_ill_group == ipif_ill_group)) &&
4493 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
4494 		(!is_system_labeled()) ||
4495 		(tsol_ire_match_gwattr(ire, tsl) == 0))) {
4496 		/* We found the matched IRE */
4497 		return (B_TRUE);
4498 	}
4499 	return (B_FALSE);
4500 }
4501 
4502 
4503 /*
4504  * Lookup for a route in all the tables
4505  */
4506 ire_t *
4507 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
4508     int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid,
4509     const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4510 {
4511 	ire_t *ire = NULL;
4512 
4513 	/*
4514 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4515 	 * MATCH_IRE_ILL is set.
4516 	 */
4517 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4518 	    (ipif == NULL))
4519 		return (NULL);
4520 
4521 	/*
4522 	 * might be asking for a cache lookup,
4523 	 * This is not best way to lookup cache,
4524 	 * user should call ire_cache_lookup directly.
4525 	 *
4526 	 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then
4527 	 * in the forwarding table, if the applicable type flags were set.
4528 	 */
4529 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) {
4530 		ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid,
4531 		    tsl, flags, ipst);
4532 		if (ire != NULL)
4533 			return (ire);
4534 	}
4535 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) {
4536 		ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire,
4537 		    zoneid, 0, tsl, flags, ipst);
4538 	}
4539 	return (ire);
4540 }
4541 
4542 
4543 /*
4544  * Delete the IRE cache for the gateway and all IRE caches whose
4545  * ire_gateway_addr points to this gateway, and allow them to
4546  * be created on demand by ip_newroute.
4547  */
4548 void
4549 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
4550 {
4551 	irb_t *irb;
4552 	ire_t *ire;
4553 
4554 	irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4555 	    ipst->ips_ip_cache_table_size)];
4556 	IRB_REFHOLD(irb);
4557 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
4558 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4559 			continue;
4560 
4561 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4562 		ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL);
4563 		if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE,
4564 		    NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) {
4565 			ire_delete(ire);
4566 		}
4567 	}
4568 	IRB_REFRELE(irb);
4569 
4570 	ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst);
4571 }
4572 
4573 /*
4574  * Looks up cache table for a route.
4575  * specific lookup can be indicated by
4576  * passing the MATCH_* flags and the
4577  * necessary parameters.
4578  */
4579 ire_t *
4580 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif,
4581     zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4582 {
4583 	irb_t *irb_ptr;
4584 	ire_t *ire;
4585 
4586 	/*
4587 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4588 	 * MATCH_IRE_ILL is set.
4589 	 */
4590 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4591 	    (ipif == NULL))
4592 		return (NULL);
4593 
4594 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4595 					    ipst->ips_ip_cache_table_size)];
4596 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4597 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4598 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4599 			continue;
4600 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4601 		ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL);
4602 		if (ire_match_args(ire, addr, ire->ire_mask, gateway, type,
4603 		    ipif, zoneid, 0, tsl, flags)) {
4604 			IRE_REFHOLD(ire);
4605 			rw_exit(&irb_ptr->irb_lock);
4606 			return (ire);
4607 		}
4608 	}
4609 	rw_exit(&irb_ptr->irb_lock);
4610 	return (NULL);
4611 }
4612 
4613 /*
4614  * Check whether the IRE_LOCAL and the IRE potentially used to transmit
4615  * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of
4616  * the same ill group.
4617  */
4618 boolean_t
4619 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire)
4620 {
4621 	ill_t		*recv_ill, *xmit_ill;
4622 	ill_group_t	*recv_group, *xmit_group;
4623 
4624 	ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK));
4625 	ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE));
4626 
4627 	recv_ill = ire_to_ill(ire_local);
4628 	xmit_ill = ire_to_ill(xmit_ire);
4629 
4630 	ASSERT(recv_ill != NULL);
4631 	ASSERT(xmit_ill != NULL);
4632 
4633 	if (recv_ill == xmit_ill)
4634 		return (B_TRUE);
4635 
4636 	recv_group = recv_ill->ill_group;
4637 	xmit_group = xmit_ill->ill_group;
4638 
4639 	if (recv_group != NULL && recv_group == xmit_group)
4640 		return (B_TRUE);
4641 
4642 	return (B_FALSE);
4643 }
4644 
4645 /*
4646  * Check if the IRE_LOCAL uses the same ill (group) as another route would use.
4647  * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE,
4648  * then we don't allow this IRE_LOCAL to be used.
4649  */
4650 boolean_t
4651 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr,
4652     const ts_label_t *tsl, ip_stack_t *ipst)
4653 {
4654 	ire_t		*alt_ire;
4655 	boolean_t	rval;
4656 
4657 	if (ire_local->ire_ipversion == IPV4_VERSION) {
4658 		alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL,
4659 		    NULL, zoneid, 0, tsl,
4660 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4661 		    MATCH_IRE_RJ_BHOLE, ipst);
4662 	} else {
4663 		alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
4664 		    0, NULL, NULL, zoneid, 0, tsl,
4665 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4666 		    MATCH_IRE_RJ_BHOLE, ipst);
4667 	}
4668 
4669 	if (alt_ire == NULL)
4670 		return (B_FALSE);
4671 
4672 	if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
4673 		ire_refrele(alt_ire);
4674 		return (B_FALSE);
4675 	}
4676 	rval = ire_local_same_ill_group(ire_local, alt_ire);
4677 
4678 	ire_refrele(alt_ire);
4679 	return (rval);
4680 }
4681 
4682 /*
4683  * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers
4684  * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get
4685  * to the hidden ones.
4686  *
4687  * In general the zoneid has to match (where ALL_ZONES match all of them).
4688  * But for IRE_LOCAL we also need to handle the case where L2 should
4689  * conceptually loop back the packet. This is necessary since neither
4690  * Ethernet drivers nor Ethernet hardware loops back packets sent to their
4691  * own MAC address. This loopback is needed when the normal
4692  * routes (ignoring IREs with different zoneids) would send out the packet on
4693  * the same ill (or ill group) as the ill with which this IRE_LOCAL is
4694  * associated.
4695  *
4696  * Earlier versions of this code always matched an IRE_LOCAL independently of
4697  * the zoneid. We preserve that earlier behavior when
4698  * ip_restrict_interzone_loopback is turned off.
4699  */
4700 ire_t *
4701 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl,
4702     ip_stack_t *ipst)
4703 {
4704 	irb_t *irb_ptr;
4705 	ire_t *ire;
4706 
4707 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4708 					    ipst->ips_ip_cache_table_size)];
4709 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4710 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4711 		if (ire->ire_marks & (IRE_MARK_CONDEMNED |
4712 		    IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) {
4713 			continue;
4714 		}
4715 		if (ire->ire_addr == addr) {
4716 			/*
4717 			 * Finally, check if the security policy has any
4718 			 * restriction on using this route for the specified
4719 			 * message.
4720 			 */
4721 			if (tsl != NULL &&
4722 			    ire->ire_gw_secattr != NULL &&
4723 			    tsol_ire_match_gwattr(ire, tsl) != 0) {
4724 				continue;
4725 			}
4726 
4727 			if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid ||
4728 			    ire->ire_zoneid == ALL_ZONES) {
4729 				IRE_REFHOLD(ire);
4730 				rw_exit(&irb_ptr->irb_lock);
4731 				return (ire);
4732 			}
4733 
4734 			if (ire->ire_type == IRE_LOCAL) {
4735 				if (ipst->ips_ip_restrict_interzone_loopback &&
4736 				    !ire_local_ok_across_zones(ire, zoneid,
4737 				    &addr, tsl, ipst))
4738 					continue;
4739 
4740 				IRE_REFHOLD(ire);
4741 				rw_exit(&irb_ptr->irb_lock);
4742 				return (ire);
4743 			}
4744 		}
4745 	}
4746 	rw_exit(&irb_ptr->irb_lock);
4747 	return (NULL);
4748 }
4749 
4750 /*
4751  * Locate the interface ire that is tied to the cache ire 'cire' via
4752  * cire->ire_ihandle.
4753  *
4754  * We are trying to create the cache ire for an offlink destn based
4755  * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire
4756  * as found by ip_newroute(). We are called from ip_newroute() in
4757  * the IRE_CACHE case.
4758  */
4759 ire_t *
4760 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire)
4761 {
4762 	ire_t	*ire;
4763 	int	match_flags;
4764 	ipaddr_t gw_addr;
4765 	ipif_t	*gw_ipif;
4766 	ip_stack_t	*ipst = cire->ire_ipst;
4767 
4768 	ASSERT(cire != NULL && pire != NULL);
4769 
4770 	/*
4771 	 * We don't need to specify the zoneid to ire_ftable_lookup() below
4772 	 * because the ihandle refers to an ipif which can be in only one zone.
4773 	 */
4774 	match_flags =  MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK;
4775 	/*
4776 	 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only
4777 	 * for on-link hosts. We should never be here for onlink.
4778 	 * Thus, use MATCH_IRE_ILL_GROUP.
4779 	 */
4780 	if (pire->ire_ipif != NULL)
4781 		match_flags |= MATCH_IRE_ILL_GROUP;
4782 	/*
4783 	 * We know that the mask of the interface ire equals cire->ire_cmask.
4784 	 * (When ip_newroute() created 'cire' for the gateway it set its
4785 	 * cmask from the interface ire's mask)
4786 	 */
4787 	ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0,
4788 	    IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle,
4789 	    NULL, match_flags, ipst);
4790 	if (ire != NULL)
4791 		return (ire);
4792 	/*
4793 	 * If we didn't find an interface ire above, we can't declare failure.
4794 	 * For backwards compatibility, we need to support prefix routes
4795 	 * pointing to next hop gateways that are not on-link.
4796 	 *
4797 	 * Assume we are trying to ping some offlink destn, and we have the
4798 	 * routing table below.
4799 	 *
4800 	 * Eg.	default	- gw1		<--- pire	(line 1)
4801 	 *	gw1	- gw2				(line 2)
4802 	 *	gw2	- hme0				(line 3)
4803 	 *
4804 	 * If we already have a cache ire for gw1 in 'cire', the
4805 	 * ire_ftable_lookup above would have failed, since there is no
4806 	 * interface ire to reach gw1. We will fallthru below.
4807 	 *
4808 	 * Here we duplicate the steps that ire_ftable_lookup() did in
4809 	 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case.
4810 	 * The differences are the following
4811 	 * i.   We want the interface ire only, so we call ire_ftable_lookup()
4812 	 *	instead of ire_route_lookup()
4813 	 * ii.  We look for only prefix routes in the 1st call below.
4814 	 * ii.  We want to match on the ihandle in the 2nd call below.
4815 	 */
4816 	match_flags =  MATCH_IRE_TYPE;
4817 	if (pire->ire_ipif != NULL)
4818 		match_flags |= MATCH_IRE_ILL_GROUP;
4819 	ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET,
4820 	    pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
4821 	if (ire == NULL)
4822 		return (NULL);
4823 	/*
4824 	 * At this point 'ire' corresponds to the entry shown in line 2.
4825 	 * gw_addr is 'gw2' in the example above.
4826 	 */
4827 	gw_addr = ire->ire_gateway_addr;
4828 	gw_ipif = ire->ire_ipif;
4829 	ire_refrele(ire);
4830 
4831 	match_flags |= MATCH_IRE_IHANDLE;
4832 	ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE,
4833 	    gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags,
4834 	    ipst);
4835 	return (ire);
4836 }
4837 
4838 /*
4839  * ire_mrtun_lookup() is called by ip_rput() when packet is to be
4840  * tunneled through reverse tunnel. This is only supported for
4841  * IPv4 packets
4842  */
4843 
4844 ire_t *
4845 ire_mrtun_lookup(ipaddr_t srcaddr, ill_t *ill)
4846 {
4847 	irb_t *irb_ptr;
4848 	ire_t *ire;
4849 	ip_stack_t	*ipst = ill->ill_ipst;
4850 
4851 	ASSERT(ill != NULL);
4852 	ASSERT(!(ill->ill_isv6));
4853 
4854 	if (ipst->ips_ip_mrtun_table == NULL)
4855 		return (NULL);
4856 	irb_ptr = &ipst->ips_ip_mrtun_table[IRE_ADDR_HASH(srcaddr,
4857 					    IP_MRTUN_TABLE_SIZE)];
4858 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4859 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4860 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4861 			continue;
4862 		if ((ire->ire_in_src_addr == srcaddr) &&
4863 		    ire->ire_in_ill == ill) {
4864 			IRE_REFHOLD(ire);
4865 			rw_exit(&irb_ptr->irb_lock);
4866 			return (ire);
4867 		}
4868 	}
4869 	rw_exit(&irb_ptr->irb_lock);
4870 	return (NULL);
4871 }
4872 
4873 /*
4874  * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER
4875  * ire associated with the specified ipif.
4876  *
4877  * This might occasionally be called when IPIF_UP is not set since
4878  * the IP_MULTICAST_IF as well as creating interface routes
4879  * allows specifying a down ipif (ipif_lookup* match ipifs that are down).
4880  *
4881  * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on
4882  * the ipif, this routine might return NULL.
4883  */
4884 ire_t *
4885 ipif_to_ire(const ipif_t *ipif)
4886 {
4887 	ire_t	*ire;
4888 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
4889 
4890 	ASSERT(!ipif->ipif_isv6);
4891 	if (ipif->ipif_ire_type == IRE_LOOPBACK) {
4892 		ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK,
4893 		    ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
4894 		    ipst);
4895 	} else if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4896 		/* In this case we need to lookup destination address. */
4897 		ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0,
4898 		    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
4899 		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst);
4900 	} else {
4901 		ire = ire_ftable_lookup(ipif->ipif_subnet,
4902 		    ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL,
4903 		    ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF |
4904 		    MATCH_IRE_MASK), ipst);
4905 	}
4906 	return (ire);
4907 }
4908 
4909 /*
4910  * ire_walk function.
4911  * Count the number of IRE_CACHE entries in different categories.
4912  */
4913 void
4914 ire_cache_count(ire_t *ire, char *arg)
4915 {
4916 	ire_cache_count_t *icc = (ire_cache_count_t *)arg;
4917 
4918 	if (ire->ire_type != IRE_CACHE)
4919 		return;
4920 
4921 	icc->icc_total++;
4922 
4923 	if (ire->ire_ipversion == IPV6_VERSION) {
4924 		mutex_enter(&ire->ire_lock);
4925 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4926 			mutex_exit(&ire->ire_lock);
4927 			icc->icc_onlink++;
4928 			return;
4929 		}
4930 		mutex_exit(&ire->ire_lock);
4931 	} else {
4932 		if (ire->ire_gateway_addr == 0) {
4933 			icc->icc_onlink++;
4934 			return;
4935 		}
4936 	}
4937 
4938 	ASSERT(ire->ire_ipif != NULL);
4939 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu)
4940 		icc->icc_pmtu++;
4941 	else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4942 	    ire->ire_ib_pkt_count)
4943 		icc->icc_offlink++;
4944 	else
4945 		icc->icc_unused++;
4946 }
4947 
4948 /*
4949  * ire_walk function called by ip_trash_ire_reclaim().
4950  * Free a fraction of the IRE_CACHE cache entries. The fractions are
4951  * different for different categories of IRE_CACHE entries.
4952  * A fraction of zero means to not free any in that category.
4953  * Use the hash bucket id plus lbolt as a random number. Thus if the fraction
4954  * is N then every Nth hash bucket chain will be freed.
4955  */
4956 void
4957 ire_cache_reclaim(ire_t *ire, char *arg)
4958 {
4959 	ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg;
4960 	uint_t rand;
4961 	ip_stack_t	*ipst = icr->icr_ipst;
4962 
4963 	if (ire->ire_type != IRE_CACHE)
4964 		return;
4965 
4966 	if (ire->ire_ipversion == IPV6_VERSION) {
4967 		rand = (uint_t)lbolt +
4968 		    IRE_ADDR_HASH_V6(ire->ire_addr_v6,
4969 			ipst->ips_ip6_cache_table_size);
4970 		mutex_enter(&ire->ire_lock);
4971 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4972 			mutex_exit(&ire->ire_lock);
4973 			if (icr->icr_onlink != 0 &&
4974 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4975 				ire_delete(ire);
4976 				return;
4977 			}
4978 			goto done;
4979 		}
4980 		mutex_exit(&ire->ire_lock);
4981 	} else {
4982 		rand = (uint_t)lbolt +
4983 		    IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size);
4984 		if (ire->ire_gateway_addr == 0) {
4985 			if (icr->icr_onlink != 0 &&
4986 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4987 				ire_delete(ire);
4988 				return;
4989 			}
4990 			goto done;
4991 		}
4992 	}
4993 	/* Not onlink IRE */
4994 	ASSERT(ire->ire_ipif != NULL);
4995 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) {
4996 		/* Use ptmu fraction */
4997 		if (icr->icr_pmtu != 0 &&
4998 		    (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) {
4999 			ire_delete(ire);
5000 			return;
5001 		}
5002 	} else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
5003 	    ire->ire_ib_pkt_count) {
5004 		/* Use offlink fraction */
5005 		if (icr->icr_offlink != 0 &&
5006 		    (rand/icr->icr_offlink)*icr->icr_offlink == rand) {
5007 			ire_delete(ire);
5008 			return;
5009 		}
5010 	} else {
5011 		/* Use unused fraction */
5012 		if (icr->icr_unused != 0 &&
5013 		    (rand/icr->icr_unused)*icr->icr_unused == rand) {
5014 			ire_delete(ire);
5015 			return;
5016 		}
5017 	}
5018 done:
5019 	/*
5020 	 * Update tire_mark so that those that haven't been used since this
5021 	 * reclaim will be considered unused next time we reclaim.
5022 	 */
5023 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
5024 }
5025 
5026 static void
5027 power2_roundup(uint32_t *value)
5028 {
5029 	int i;
5030 
5031 	for (i = 1; i < 31; i++) {
5032 		if (*value <= (1 << i))
5033 			break;
5034 	}
5035 	*value = (1 << i);
5036 }
5037 
5038 /* Global init for all zones */
5039 void
5040 ip_ire_g_init()
5041 {
5042 	/*
5043 	 * Create ire caches, ire_reclaim()
5044 	 * will give IRE_CACHE back to system when needed.
5045 	 * This needs to be done here before anything else, since
5046 	 * ire_add() expects the cache to be created.
5047 	 */
5048 	ire_cache = kmem_cache_create("ire_cache",
5049 		sizeof (ire_t), 0, ip_ire_constructor,
5050 		ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0);
5051 
5052 	rt_entry_cache = kmem_cache_create("rt_entry",
5053 	    sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0);
5054 
5055 	/*
5056 	 * Have radix code setup kmem caches etc.
5057 	 */
5058 	rn_init();
5059 }
5060 
5061 void
5062 ip_ire_init(ip_stack_t *ipst)
5063 {
5064 	int i;
5065 	uint32_t mem_cnt;
5066 	uint32_t cpu_cnt;
5067 	uint32_t min_cnt;
5068 	pgcnt_t mem_avail;
5069 
5070 	/*
5071 	 * ip_ire_max_bucket_cnt is sized below based on the memory
5072 	 * size and the cpu speed of the machine. This is upper
5073 	 * bounded by the compile time value of ip_ire_max_bucket_cnt
5074 	 * and is lower bounded by the compile time value of
5075 	 * ip_ire_min_bucket_cnt.  Similar logic applies to
5076 	 * ip6_ire_max_bucket_cnt.
5077 	 *
5078 	 * We calculate this for each IP Instances in order to use
5079 	 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are
5080 	 * in effect when the zone is booted.
5081 	 */
5082 	mem_avail = kmem_avail();
5083 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
5084 	    ip_cache_table_size / sizeof (ire_t);
5085 	cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio;
5086 
5087 	min_cnt = MIN(cpu_cnt, mem_cnt);
5088 	if (min_cnt < ip_ire_min_bucket_cnt)
5089 		min_cnt = ip_ire_min_bucket_cnt;
5090 	if (ip_ire_max_bucket_cnt > min_cnt) {
5091 		ip_ire_max_bucket_cnt = min_cnt;
5092 	}
5093 
5094 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
5095 	    ip6_cache_table_size / sizeof (ire_t);
5096 	min_cnt = MIN(cpu_cnt, mem_cnt);
5097 	if (min_cnt < ip6_ire_min_bucket_cnt)
5098 		min_cnt = ip6_ire_min_bucket_cnt;
5099 	if (ip6_ire_max_bucket_cnt > min_cnt) {
5100 		ip6_ire_max_bucket_cnt = min_cnt;
5101 	}
5102 
5103 	mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0);
5104 	mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL);
5105 	mutex_init(&ipst->ips_ire_mrtun_lock, NULL, MUTEX_DEFAULT, NULL);
5106 	mutex_init(&ipst->ips_ire_srcif_table_lock, NULL, MUTEX_DEFAULT, NULL);
5107 
5108 	(void) rn_inithead((void **)&ipst->ips_ip_ftable, 32);
5109 
5110 
5111 	/* Calculate the IPv4 cache table size. */
5112 	ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size,
5113 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
5114 	    ip_ire_max_bucket_cnt));
5115 	if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size)
5116 		ipst->ips_ip_cache_table_size = ip_max_cache_table_size;
5117 	/*
5118 	 * Make sure that the table size is always a power of 2.  The
5119 	 * hash macro IRE_ADDR_HASH() depends on that.
5120 	 */
5121 	power2_roundup(&ipst->ips_ip_cache_table_size);
5122 
5123 	ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size *
5124 	    sizeof (irb_t), KM_SLEEP);
5125 
5126 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
5127 		rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL,
5128 		    RW_DEFAULT, NULL);
5129 	}
5130 
5131 	/* Calculate the IPv6 cache table size. */
5132 	ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size,
5133 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
5134 	    ip6_ire_max_bucket_cnt));
5135 	if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size)
5136 		ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size;
5137 	/*
5138 	 * Make sure that the table size is always a power of 2.  The
5139 	 * hash macro IRE_ADDR_HASH_V6() depends on that.
5140 	 */
5141 	power2_roundup(&ipst->ips_ip6_cache_table_size);
5142 
5143 	ipst->ips_ip_cache_table_v6 = kmem_zalloc(
5144 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP);
5145 
5146 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
5147 		rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL,
5148 		    RW_DEFAULT, NULL);
5149 	}
5150 
5151 	/*
5152 	 * Initialize ip_mrtun_table to NULL now, it will be
5153 	 * populated by ip_rt_add if reverse tunnel is created
5154 	 */
5155 	ipst->ips_ip_mrtun_table = NULL;
5156 
5157 	/*
5158 	 * Make sure that the forwarding table size is a power of 2.
5159 	 * The IRE*_ADDR_HASH() macroes depend on that.
5160 	 */
5161 	ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size;
5162 	power2_roundup(&ipst->ips_ip6_ftable_hash_size);
5163 
5164 	ipst->ips_ire_handle = 1;
5165 }
5166 
5167 void
5168 ip_ire_g_fini(void)
5169 {
5170 	kmem_cache_destroy(ire_cache);
5171 	kmem_cache_destroy(rt_entry_cache);
5172 
5173 	rn_fini();
5174 }
5175 
5176 void
5177 ip_ire_fini(ip_stack_t *ipst)
5178 {
5179 	int i;
5180 
5181 	/*
5182 	 * Delete all IREs - assumes that the ill/ipifs have
5183 	 * been removed so what remains are just the ftable and IRE_CACHE.
5184 	 */
5185 	ire_walk_ill_mrtun(0, 0, ire_delete, NULL, NULL, ipst);
5186 	ire_walk(ire_delete, NULL, ipst);
5187 
5188 	rn_freehead(ipst->ips_ip_ftable);
5189 	ipst->ips_ip_ftable = NULL;
5190 
5191 	mutex_destroy(&ipst->ips_ire_ft_init_lock);
5192 	mutex_destroy(&ipst->ips_ire_handle_lock);
5193 	mutex_destroy(&ipst->ips_ire_mrtun_lock);
5194 	mutex_destroy(&ipst->ips_ire_srcif_table_lock);
5195 
5196 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
5197 		ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL);
5198 		rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock);
5199 	}
5200 	kmem_free(ipst->ips_ip_cache_table,
5201 	    ipst->ips_ip_cache_table_size * sizeof (irb_t));
5202 	ipst->ips_ip_cache_table = NULL;
5203 
5204 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
5205 		ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL);
5206 		rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock);
5207 	}
5208 	kmem_free(ipst->ips_ip_cache_table_v6,
5209 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t));
5210 	ipst->ips_ip_cache_table_v6 = NULL;
5211 
5212 	if (ipst->ips_ip_mrtun_table != NULL) {
5213 		for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) {
5214 			ASSERT(ipst->ips_ip_mrtun_table[i].irb_ire == NULL);
5215 			rw_destroy(&ipst->ips_ip_mrtun_table[i].irb_lock);
5216 		}
5217 		kmem_free(ipst->ips_ip_mrtun_table,
5218 		    IP_MRTUN_TABLE_SIZE * sizeof (irb_t));
5219 		ipst->ips_ip_mrtun_table = NULL;
5220 	}
5221 
5222 	for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) {
5223 		irb_t *ptr;
5224 		int j;
5225 
5226 		if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL)
5227 			continue;
5228 
5229 		for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) {
5230 			ASSERT(ptr[j].irb_ire == NULL);
5231 			rw_destroy(&ptr[j].irb_lock);
5232 		}
5233 		mi_free(ptr);
5234 		ipst->ips_ip_forwarding_table_v6[i] = NULL;
5235 	}
5236 }
5237 
5238 int
5239 ire_add_mrtun(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func)
5240 {
5241 	ire_t   *ire1;
5242 	irb_t	*irb_ptr;
5243 	ire_t	**irep;
5244 	ire_t	*ire = *ire_p;
5245 	int	i;
5246 	uint_t	max_frag;
5247 	ill_t	*stq_ill;
5248 	int error;
5249 	ip_stack_t	*ipst = ire->ire_ipst;
5250 
5251 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
5252 	/* Is ip_mrtun_table empty ? */
5253 
5254 	if (ipst->ips_ip_mrtun_table == NULL) {
5255 		/* create the mrtun table */
5256 		mutex_enter(&ipst->ips_ire_mrtun_lock);
5257 		if (ipst->ips_ip_mrtun_table == NULL) {
5258 			ipst->ips_ip_mrtun_table = kmem_zalloc(
5259 			    IP_MRTUN_TABLE_SIZE * sizeof (irb_t), KM_NOSLEEP);
5260 
5261 			if (ipst->ips_ip_mrtun_table == NULL) {
5262 				ip2dbg(("ire_add_mrtun: allocation failure\n"));
5263 				mutex_exit(&ipst->ips_ire_mrtun_lock);
5264 				ire_refrele(ire);
5265 				*ire_p = NULL;
5266 				return (ENOMEM);
5267 			}
5268 
5269 			for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) {
5270 			    rw_init(&ipst->ips_ip_mrtun_table[i].irb_lock, NULL,
5271 				    RW_DEFAULT, NULL);
5272 			}
5273 			ip2dbg(("ire_add_mrtun: mrtun table is created\n"));
5274 		}
5275 		/* some other thread got it and created the table */
5276 		mutex_exit(&ipst->ips_ire_mrtun_lock);
5277 	}
5278 
5279 	/*
5280 	 * Check for duplicate in the bucket and insert in the table
5281 	 */
5282 	irb_ptr = &(ipst->ips_ip_mrtun_table[IRE_ADDR_HASH(ire->ire_in_src_addr,
5283 	    IP_MRTUN_TABLE_SIZE)]);
5284 
5285 	/*
5286 	 * Start the atomic add of the ire. Grab the ill locks,
5287 	 * ill_g_usesrc_lock and the bucket lock.
5288 	 *
5289 	 * If ipif or ill is changing ire_atomic_start() may queue the
5290 	 * request and return EINPROGRESS.
5291 	 */
5292 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
5293 	if (error != 0) {
5294 		/*
5295 		 * We don't know whether it is a valid ipif or not.
5296 		 * So, set it to NULL. This assumes that the ire has not added
5297 		 * a reference to the ipif.
5298 		 */
5299 		ire->ire_ipif = NULL;
5300 		ire_delete(ire);
5301 		ip1dbg(("ire_add_mrtun: ire_atomic_start failed\n"));
5302 		*ire_p = NULL;
5303 		return (error);
5304 	}
5305 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
5306 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
5307 			continue;
5308 		/* has anyone inserted the route in the meanwhile ? */
5309 		if (ire1->ire_in_ill == ire->ire_in_ill &&
5310 		    ire1->ire_in_src_addr == ire->ire_in_src_addr) {
5311 			ip1dbg(("ire_add_mrtun: Duplicate entry exists\n"));
5312 			IRE_REFHOLD(ire1);
5313 			ire_atomic_end(irb_ptr, ire);
5314 			ire_delete(ire);
5315 			/* Return the old ire */
5316 			*ire_p = ire1;
5317 			return (0);
5318 		}
5319 	}
5320 
5321 	/* Atomically set the ire_max_frag */
5322 	max_frag = *ire->ire_max_fragp;
5323 	ire->ire_max_fragp = NULL;
5324 	ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET);
5325 	ASSERT(ire->ire_type != IRE_CACHE);
5326 	irep = (ire_t **)irb_ptr;
5327 	if (*irep != NULL) {
5328 		/* Find the last ire which matches ire_in_src_addr */
5329 		ire1 = *irep;
5330 		while (ire1->ire_in_src_addr == ire->ire_in_src_addr) {
5331 			irep = &ire1->ire_next;
5332 			ire1 = *irep;
5333 			if (ire1 == NULL)
5334 				break;
5335 		}
5336 	}
5337 	ire1 = *irep;
5338 	if (ire1 != NULL)
5339 		ire1->ire_ptpn = &ire->ire_next;
5340 	ire->ire_next = ire1;
5341 	/* Link the new one in. */
5342 	ire->ire_ptpn = irep;
5343 	membar_producer();
5344 	*irep = ire;
5345 	ire->ire_bucket = irb_ptr;
5346 	IRE_REFHOLD_LOCKED(ire);
5347 
5348 	ip2dbg(("ire_add_mrtun: created and linked ire %p\n", (void *)*irep));
5349 
5350 	/*
5351 	 * Protect ire_mrtun_count and ill_mrtun_refcnt from
5352 	 * another thread trying to add ire in the table
5353 	 */
5354 	mutex_enter(&ipst->ips_ire_mrtun_lock);
5355 	ipst->ips_ire_mrtun_count++;
5356 	mutex_exit(&ipst->ips_ire_mrtun_lock);
5357 	/*
5358 	 * ill_mrtun_refcnt is protected by the ill_lock held via
5359 	 * ire_atomic_start
5360 	 */
5361 	ire->ire_in_ill->ill_mrtun_refcnt++;
5362 
5363 	if (ire->ire_ipif != NULL) {
5364 		ire->ire_ipif->ipif_ire_cnt++;
5365 		if (ire->ire_stq != NULL) {
5366 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
5367 			stq_ill->ill_ire_cnt++;
5368 		}
5369 	} else {
5370 		ASSERT(ire->ire_stq == NULL);
5371 	}
5372 
5373 	ire_atomic_end(irb_ptr, ire);
5374 	nce_fastpath(ire->ire_nce);
5375 	*ire_p = ire;
5376 	return (0);
5377 }
5378 
5379 
5380 /* Walks down the mrtun table */
5381 
5382 void
5383 ire_walk_ill_mrtun(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
5384     ill_t *ill, ip_stack_t *ipst)
5385 {
5386 	irb_t	*irb;
5387 	ire_t	*ire;
5388 	int	i;
5389 	int	ret;
5390 
5391 	ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL |
5392 	    MATCH_IRE_ILL_GROUP))) || (ill != NULL));
5393 	ASSERT(match_flags == 0 || ire_type == IRE_MIPRTUN);
5394 
5395 	mutex_enter(&ipst->ips_ire_mrtun_lock);
5396 	if (ipst->ips_ire_mrtun_count == 0) {
5397 		mutex_exit(&ipst->ips_ire_mrtun_lock);
5398 		return;
5399 	}
5400 	mutex_exit(&ipst->ips_ire_mrtun_lock);
5401 
5402 	ip2dbg(("ire_walk_ill_mrtun:walking the reverse tunnel table \n"));
5403 	for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) {
5404 
5405 		irb = &(ipst->ips_ip_mrtun_table[i]);
5406 		if (irb->irb_ire == NULL)
5407 			continue;
5408 		IRB_REFHOLD(irb);
5409 		for (ire = irb->irb_ire; ire != NULL;
5410 		    ire = ire->ire_next) {
5411 			ASSERT(ire->ire_ipversion == IPV4_VERSION);
5412 			if (match_flags != 0) {
5413 				ret = ire_walk_ill_match(
5414 				    match_flags, ire_type,
5415 				    ire, ill, ALL_ZONES, ipst);
5416 			}
5417 			if (match_flags == 0 || ret)
5418 				(*func)(ire, arg);
5419 		}
5420 		IRB_REFRELE(irb);
5421 	}
5422 }
5423 
5424 /*
5425  * Source interface based lookup routine (IPV4 only).
5426  * This routine is called only when RTA_SRCIFP bitflag is set
5427  * by routing socket while adding/deleting the route and it is
5428  * also called from ip_rput() when packets arrive from an interface
5429  * for which ill_srcif_ref_cnt is positive. This function is useful
5430  * when a packet coming from one interface must be forwarded to another
5431  * designated interface to reach the correct node. This function is also
5432  * called from ip_newroute when the link-layer address of an ire is resolved.
5433  * We need to make sure that ip_newroute searches for IRE_IF_RESOLVER type
5434  * ires--thus the ire_type parameter is needed.
5435  */
5436 
5437 ire_t *
5438 ire_srcif_table_lookup(ipaddr_t dst_addr, int ire_type, ipif_t *ipif,
5439     ill_t *in_ill, int flags)
5440 {
5441 	irb_t	*irb_ptr;
5442 	ire_t	*ire;
5443 	irb_t	*ire_srcif_table;
5444 
5445 	ASSERT(in_ill != NULL && !in_ill->ill_isv6);
5446 	ASSERT(!(flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) ||
5447 	    (ipif != NULL && !ipif->ipif_isv6));
5448 
5449 	/*
5450 	 * No need to lock the ill since it is refheld by the caller of this
5451 	 * function
5452 	 */
5453 	if (in_ill->ill_srcif_table == NULL) {
5454 		return (NULL);
5455 	}
5456 
5457 	if (!(flags & MATCH_IRE_TYPE)) {
5458 		flags |= MATCH_IRE_TYPE;
5459 		ire_type = IRE_INTERFACE;
5460 	}
5461 	ire_srcif_table = in_ill->ill_srcif_table;
5462 	irb_ptr = &ire_srcif_table[IRE_ADDR_HASH(dst_addr,
5463 	    IP_SRCIF_TABLE_SIZE)];
5464 	rw_enter(&irb_ptr->irb_lock, RW_READER);
5465 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
5466 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
5467 			continue;
5468 		if (ire_match_args(ire, dst_addr, ire->ire_mask, 0,
5469 		    ire_type, ipif, ire->ire_zoneid, 0, NULL, flags)) {
5470 			IRE_REFHOLD(ire);
5471 			rw_exit(&irb_ptr->irb_lock);
5472 			return (ire);
5473 		}
5474 	}
5475 	/* Not Found */
5476 	rw_exit(&irb_ptr->irb_lock);
5477 	return (NULL);
5478 }
5479 
5480 
5481 /*
5482  * Adds the ire into the special routing table which is hanging off of
5483  * the src_ipif->ipif_ill. It also increments the refcnt in the ill.
5484  * The forward table contains only IRE_IF_RESOLVER, IRE_IF_NORESOLVER
5485  * i,e. IRE_INTERFACE entries. Originally the dlureq_mp field is NULL
5486  * for IRE_IF_RESOLVER entry because we do not have the dst_addr's
5487  * link-layer address at the time of addition.
5488  * Upon resolving the address from ARP, dlureq_mp field is updated with
5489  * proper information in ire_update_srcif_v4.
5490  */
5491 static int
5492 ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func)
5493 {
5494 	ire_t	*ire1;
5495 	irb_t	*ire_srcifp_table = NULL;
5496 	irb_t	*irb_ptr = NULL;
5497 	ire_t   **irep;
5498 	ire_t   *ire;
5499 	int	flags;
5500 	int	i;
5501 	ill_t	*stq_ill;
5502 	uint_t	max_frag;
5503 	int error = 0;
5504 	ip_stack_t	*ipst;
5505 
5506 	ire = *ire_p;
5507 	ipst = ire->ire_ipst;
5508 	ASSERT(ire->ire_in_ill != NULL);
5509 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
5510 	ASSERT(ire->ire_type == IRE_IF_NORESOLVER ||
5511 	    ire->ire_type == IRE_IF_RESOLVER);
5512 
5513 	ire->ire_mask = IP_HOST_MASK;
5514 	/*
5515 	 * Update ire_nce->nce_res_mp with NULL value upon creation;
5516 	 * first free the default res_mp created by ire_nce_init.
5517 	 */
5518 	freeb(ire->ire_nce->nce_res_mp);
5519 	if (ire->ire_type == IRE_IF_RESOLVER) {
5520 		/*
5521 		 * assign NULL now, it will be updated
5522 		 * with correct value upon returning from
5523 		 * ARP
5524 		 */
5525 		ire->ire_nce->nce_res_mp = NULL;
5526 	} else {
5527 		ire->ire_nce->nce_res_mp = ill_dlur_gen(NULL,
5528 		    ire->ire_ipif->ipif_ill->ill_phys_addr_length,
5529 		    ire->ire_ipif->ipif_ill->ill_sap,
5530 		    ire->ire_ipif->ipif_ill->ill_sap_length);
5531 	}
5532 	/* Make sure the address is properly masked. */
5533 	ire->ire_addr &= ire->ire_mask;
5534 
5535 	ASSERT(ire->ire_max_fragp != NULL);
5536 	max_frag = *ire->ire_max_fragp;
5537 	ire->ire_max_fragp = NULL;
5538 	ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET);
5539 
5540 	mutex_enter(&ire->ire_in_ill->ill_lock);
5541 	if (ire->ire_in_ill->ill_srcif_table == NULL) {
5542 		/* create the incoming interface based table */
5543 		ire->ire_in_ill->ill_srcif_table = kmem_zalloc(
5544 		    IP_SRCIF_TABLE_SIZE * sizeof (irb_t), KM_NOSLEEP);
5545 		if (ire->ire_in_ill->ill_srcif_table == NULL) {
5546 			ip1dbg(("ire_add_srcif_v4: Allocation fail\n"));
5547 			mutex_exit(&ire->ire_in_ill->ill_lock);
5548 			ire_delete(ire);
5549 			*ire_p = NULL;
5550 			return (ENOMEM);
5551 		}
5552 		ire_srcifp_table = ire->ire_in_ill->ill_srcif_table;
5553 		for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
5554 			rw_init(&ire_srcifp_table[i].irb_lock, NULL,
5555 			    RW_DEFAULT, NULL);
5556 		}
5557 		ip2dbg(("ire_add_srcif_v4: table created for ill %p\n",
5558 		    (void *)ire->ire_in_ill));
5559 	}
5560 	/* Check for duplicate and insert */
5561 	ASSERT(ire->ire_in_ill->ill_srcif_table != NULL);
5562 	irb_ptr =
5563 	    &(ire->ire_in_ill->ill_srcif_table[IRE_ADDR_HASH(ire->ire_addr,
5564 	    IP_SRCIF_TABLE_SIZE)]);
5565 	mutex_exit(&ire->ire_in_ill->ill_lock);
5566 	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
5567 	flags |= MATCH_IRE_IPIF;
5568 
5569 	/*
5570 	 * Start the atomic add of the ire. Grab the ill locks,
5571 	 * ill_g_usesrc_lock and the bucket lock.
5572 	 *
5573 	 * If ipif or ill is changing ire_atomic_start() may queue the
5574 	 * request and return EINPROGRESS.
5575 	 */
5576 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
5577 	if (error != 0) {
5578 		/*
5579 		 * We don't know whether it is a valid ipif or not.
5580 		 * So, set it to NULL. This assumes that the ire has not added
5581 		 * a reference to the ipif.
5582 		 */
5583 		ire->ire_ipif = NULL;
5584 		ire_delete(ire);
5585 		ip1dbg(("ire_add_srcif_v4: ire_atomic_start failed\n"));
5586 		*ire_p = NULL;
5587 		return (error);
5588 	}
5589 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
5590 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
5591 			continue;
5592 		if (ire1->ire_zoneid != ire->ire_zoneid)
5593 			continue;
5594 		/* Has anyone inserted route in the meanwhile ? */
5595 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 0,
5596 		    ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, NULL,
5597 		    flags)) {
5598 			ip1dbg(("ire_add_srcif_v4 : Duplicate entry exists\n"));
5599 			IRE_REFHOLD(ire1);
5600 			ire_atomic_end(irb_ptr, ire);
5601 			ire_delete(ire);
5602 			/* Return old ire as in ire_add_v4 */
5603 			*ire_p = ire1;
5604 			return (0);
5605 		}
5606 	}
5607 	irep = (ire_t **)irb_ptr;
5608 	if (*irep != NULL) {
5609 		/* Find the last ire which matches ire_addr */
5610 		ire1 = *irep;
5611 		while (ire1->ire_addr == ire->ire_addr) {
5612 			irep = &ire1->ire_next;
5613 			ire1 = *irep;
5614 			if (ire1 == NULL)
5615 				break;
5616 		}
5617 	}
5618 	ire1 = *irep;
5619 	if (ire1 != NULL)
5620 		ire1->ire_ptpn = &ire->ire_next;
5621 	ire->ire_next = ire1;
5622 	/* Link the new one in. */
5623 	ire->ire_ptpn = irep;
5624 	membar_producer();
5625 	*irep = ire;
5626 	ire->ire_bucket = irb_ptr;
5627 	IRE_REFHOLD_LOCKED(ire);
5628 
5629 	/*
5630 	 * Protect ire_in_ill->ill_srcif_refcnt and table reference count.
5631 	 * Note, ire_atomic_start already grabs the ire_in_ill->ill_lock
5632 	 * so ill_srcif_refcnt is already protected.
5633 	 */
5634 	ire->ire_in_ill->ill_srcif_refcnt++;
5635 	mutex_enter(&ipst->ips_ire_srcif_table_lock);
5636 	ipst->ips_ire_srcif_table_count++;
5637 	mutex_exit(&ipst->ips_ire_srcif_table_lock);
5638 	irb_ptr->irb_ire_cnt++;
5639 	if (ire->ire_ipif != NULL) {
5640 		ire->ire_ipif->ipif_ire_cnt++;
5641 		if (ire->ire_stq != NULL) {
5642 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
5643 			stq_ill->ill_ire_cnt++;
5644 		}
5645 	} else {
5646 		ASSERT(ire->ire_stq == NULL);
5647 	}
5648 
5649 	ire_atomic_end(irb_ptr, ire);
5650 	*ire_p = ire;
5651 	return (0);
5652 }
5653 
5654 
5655 /*
5656  * This function is called by ire_add_then_send when ARP request comes
5657  * back to ip_wput->ire_add_then_send for resolved ire in the interface
5658  * based routing table. At this point, it only needs to update the resolver
5659  * information for the ire. The passed ire is returned to the caller as it
5660  * is the ire which is created as mblk.
5661  */
5662 static ire_t *
5663 ire_update_srcif_v4(ire_t *ire)
5664 {
5665 	ire_t   *ire1;
5666 	irb_t	*irb;
5667 	int	error;
5668 
5669 	ASSERT(ire->ire_type != IRE_MIPRTUN &&
5670 	    ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER);
5671 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
5672 
5673 	/*
5674 	 * This ire is from ARP. Update
5675 	 * ire_nce->nce_res_mp info
5676 	 */
5677 	ire1 = ire_srcif_table_lookup(ire->ire_addr,
5678 	    IRE_IF_RESOLVER, ire->ire_ipif,
5679 	    ire->ire_in_ill,
5680 	    MATCH_IRE_ILL | MATCH_IRE_TYPE);
5681 	if (ire1 == NULL) {
5682 		/* Mobile node registration expired ? */
5683 		ire_delete(ire);
5684 		return (NULL);
5685 	}
5686 	irb = ire1->ire_bucket;
5687 	ASSERT(irb != NULL);
5688 	/*
5689 	 * Start the atomic add of the ire. Grab the ill locks,
5690 	 * ill_g_usesrc_lock and the bucket lock.
5691 	 */
5692 	error = ire_atomic_start(irb, ire1, NULL, NULL, NULL);
5693 	if (error != 0) {
5694 		/*
5695 		 * We don't know whether it is a valid ipif or not.
5696 		 * So, set it to NULL. This assumes that the ire has not added
5697 		 * a reference to the ipif.
5698 		 */
5699 		ire->ire_ipif = NULL;
5700 		ire_delete(ire);
5701 		ip1dbg(("ire_update_srcif_v4: ire_atomic_start failed\n"));
5702 		return (NULL);
5703 	}
5704 	ASSERT(ire->ire_max_fragp == NULL);
5705 	ire->ire_max_frag = ire1->ire_max_frag;
5706 	/*
5707 	 * Update resolver information and
5708 	 * send-to queue.
5709 	 */
5710 	ASSERT(ire->ire_nce->nce_res_mp != NULL);
5711 	ire1->ire_nce->nce_res_mp = copyb(ire->ire_nce->nce_res_mp);
5712 	if (ire1->ire_nce->nce_res_mp ==  NULL) {
5713 		ip0dbg(("ire_update_srcif: copyb failed\n"));
5714 		ire_refrele(ire1);
5715 		ire_refrele(ire);
5716 		ire_atomic_end(irb, ire1);
5717 		return (NULL);
5718 	}
5719 	ire1->ire_stq = ire->ire_stq;
5720 
5721 	ASSERT(ire->ire_nce->nce_fp_mp == NULL);
5722 
5723 	ire_atomic_end(irb, ire1);
5724 	ire_refrele(ire1);
5725 	/* Return the passed ire */
5726 	return (ire);   /* Update done */
5727 }
5728 
5729 
5730 /*
5731  * Check if another multirt route resolution is needed.
5732  * B_TRUE is returned is there remain a resolvable route,
5733  * or if no route for that dst is resolved yet.
5734  * B_FALSE is returned if all routes for that dst are resolved
5735  * or if the remaining unresolved routes are actually not
5736  * resolvable.
5737  * This only works in the global zone.
5738  */
5739 boolean_t
5740 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst)
5741 {
5742 	ire_t	*first_fire;
5743 	ire_t	*first_cire;
5744 	ire_t	*fire;
5745 	ire_t	*cire;
5746 	irb_t	*firb;
5747 	irb_t	*cirb;
5748 	int	unres_cnt = 0;
5749 	boolean_t resolvable = B_FALSE;
5750 
5751 	/* Retrieve the first IRE_HOST that matches the destination */
5752 	first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL,
5753 	    NULL, ALL_ZONES, 0, tsl,
5754 	    MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst);
5755 
5756 	/* No route at all */
5757 	if (first_fire == NULL) {
5758 		return (B_TRUE);
5759 	}
5760 
5761 	firb = first_fire->ire_bucket;
5762 	ASSERT(firb != NULL);
5763 
5764 	/* Retrieve the first IRE_CACHE ire for that destination. */
5765 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
5766 
5767 	/* No resolved route. */
5768 	if (first_cire == NULL) {
5769 		ire_refrele(first_fire);
5770 		return (B_TRUE);
5771 	}
5772 
5773 	/*
5774 	 * At least one route is resolved. Here we look through the forward
5775 	 * and cache tables, to compare the number of declared routes
5776 	 * with the number of resolved routes. The search for a resolvable
5777 	 * route is performed only if at least one route remains
5778 	 * unresolved.
5779 	 */
5780 	cirb = first_cire->ire_bucket;
5781 	ASSERT(cirb != NULL);
5782 
5783 	/* Count the number of routes to that dest that are declared. */
5784 	IRB_REFHOLD(firb);
5785 	for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
5786 		if (!(fire->ire_flags & RTF_MULTIRT))
5787 			continue;
5788 		if (fire->ire_addr != dst)
5789 			continue;
5790 		unres_cnt++;
5791 	}
5792 	IRB_REFRELE(firb);
5793 
5794 	/* Then subtract the number of routes to that dst that are resolved */
5795 	IRB_REFHOLD(cirb);
5796 	for (cire = first_cire; cire != NULL; cire = cire->ire_next) {
5797 		if (!(cire->ire_flags & RTF_MULTIRT))
5798 			continue;
5799 		if (cire->ire_addr != dst)
5800 			continue;
5801 		if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
5802 			continue;
5803 		unres_cnt--;
5804 	}
5805 	IRB_REFRELE(cirb);
5806 
5807 	/* At least one route is unresolved; search for a resolvable route. */
5808 	if (unres_cnt > 0)
5809 		resolvable = ire_multirt_lookup(&first_cire, &first_fire,
5810 		    MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst);
5811 
5812 	if (first_fire != NULL)
5813 		ire_refrele(first_fire);
5814 
5815 	if (first_cire != NULL)
5816 		ire_refrele(first_cire);
5817 
5818 	return (resolvable);
5819 }
5820 
5821 
5822 /*
5823  * Explore a forward_table bucket, starting from fire_arg.
5824  * fire_arg MUST be an IRE_HOST entry.
5825  *
5826  * Return B_TRUE and update *ire_arg and *fire_arg
5827  * if at least one resolvable route is found. *ire_arg
5828  * is the IRE entry for *fire_arg's gateway.
5829  *
5830  * Return B_FALSE otherwise (all routes are resolved or
5831  * the remaining unresolved routes are all unresolvable).
5832  *
5833  * The IRE selection relies on a priority mechanism
5834  * driven by the flags passed in by the caller.
5835  * The caller, such as ip_newroute_ipif(), can get the most
5836  * relevant ire at each stage of a multiple route resolution.
5837  *
5838  * The rules are:
5839  *
5840  * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE
5841  *   ires are preferred for the gateway. This gives the highest
5842  *   priority to routes that can be resolved without using
5843  *   a resolver.
5844  *
5845  * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW
5846  *   is specified but no IRE_CACHETABLE ire entry for the gateway
5847  *   is found, the following rules apply.
5848  *
5849  * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE
5850  *   ires for the gateway, that have not been tried since
5851  *   a configurable amount of time, are preferred.
5852  *   This applies when a resolver must be invoked for
5853  *   a missing route, but we don't want to use the resolver
5854  *   upon each packet emission. If no such resolver is found,
5855  *   B_FALSE is returned.
5856  *   The MULTIRT_USESTAMP flag can be combined with
5857  *   MULTIRT_CACHEGW.
5858  *
5859  * - if MULTIRT_USESTAMP is not specified in flags, the first
5860  *   unresolved but resolvable route is selected.
5861  *
5862  * - Otherwise, there is no resolvalble route, and
5863  *   B_FALSE is returned.
5864  *
5865  * At last, MULTIRT_SETSTAMP can be specified in flags to
5866  * request the timestamp of unresolvable routes to
5867  * be refreshed. This prevents the useless exploration
5868  * of those routes for a while, when MULTIRT_USESTAMP is used.
5869  *
5870  * This only works in the global zone.
5871  */
5872 boolean_t
5873 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags,
5874     const ts_label_t *tsl, ip_stack_t *ipst)
5875 {
5876 	clock_t	delta;
5877 	ire_t	*best_fire = NULL;
5878 	ire_t	*best_cire = NULL;
5879 	ire_t	*first_fire;
5880 	ire_t	*first_cire;
5881 	ire_t	*fire;
5882 	ire_t	*cire;
5883 	irb_t	*firb = NULL;
5884 	irb_t	*cirb = NULL;
5885 	ire_t	*gw_ire;
5886 	boolean_t	already_resolved;
5887 	boolean_t	res;
5888 	ipaddr_t	dst;
5889 	ipaddr_t	gw;
5890 
5891 	ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n",
5892 	    (void *)*ire_arg, (void *)*fire_arg, flags));
5893 
5894 	ASSERT(ire_arg != NULL);
5895 	ASSERT(fire_arg != NULL);
5896 
5897 	/* Not an IRE_HOST ire; give up. */
5898 	if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) {
5899 		return (B_FALSE);
5900 	}
5901 
5902 	/* This is the first IRE_HOST ire for that destination. */
5903 	first_fire = *fire_arg;
5904 	firb = first_fire->ire_bucket;
5905 	ASSERT(firb != NULL);
5906 
5907 	dst = first_fire->ire_addr;
5908 
5909 	ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst)));
5910 
5911 	/*
5912 	 * Retrieve the first IRE_CACHE ire for that destination;
5913 	 * if we don't find one, no route for that dest is
5914 	 * resolved yet.
5915 	 */
5916 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
5917 	if (first_cire != NULL) {
5918 		cirb = first_cire->ire_bucket;
5919 	}
5920 
5921 	ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire));
5922 
5923 	/*
5924 	 * Search for a resolvable route, giving the top priority
5925 	 * to routes that can be resolved without any call to the resolver.
5926 	 */
5927 	IRB_REFHOLD(firb);
5928 
5929 	if (!CLASSD(dst)) {
5930 		/*
5931 		 * For all multiroute IRE_HOST ires for that destination,
5932 		 * check if the route via the IRE_HOST's gateway is
5933 		 * resolved yet.
5934 		 */
5935 		for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
5936 
5937 			if (!(fire->ire_flags & RTF_MULTIRT))
5938 				continue;
5939 			if (fire->ire_addr != dst)
5940 				continue;
5941 
5942 			if (fire->ire_gw_secattr != NULL &&
5943 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
5944 				continue;
5945 			}
5946 
5947 			gw = fire->ire_gateway_addr;
5948 
5949 			ip2dbg(("ire_multirt_lookup: fire %p, "
5950 			    "ire_addr %08x, ire_gateway_addr %08x\n",
5951 			    (void *)fire, ntohl(fire->ire_addr), ntohl(gw)));
5952 
5953 			already_resolved = B_FALSE;
5954 
5955 			if (first_cire != NULL) {
5956 				ASSERT(cirb != NULL);
5957 
5958 				IRB_REFHOLD(cirb);
5959 				/*
5960 				 * For all IRE_CACHE ires for that
5961 				 * destination.
5962 				 */
5963 				for (cire = first_cire;
5964 				    cire != NULL;
5965 				    cire = cire->ire_next) {
5966 
5967 					if (!(cire->ire_flags & RTF_MULTIRT))
5968 						continue;
5969 					if (cire->ire_addr != dst)
5970 						continue;
5971 					if (cire->ire_marks &
5972 					    (IRE_MARK_CONDEMNED |
5973 						IRE_MARK_HIDDEN))
5974 						continue;
5975 
5976 					if (cire->ire_gw_secattr != NULL &&
5977 					    tsol_ire_match_gwattr(cire,
5978 					    tsl) != 0) {
5979 						continue;
5980 					}
5981 
5982 					/*
5983 					 * Check if the IRE_CACHE's gateway
5984 					 * matches the IRE_HOST's gateway.
5985 					 */
5986 					if (cire->ire_gateway_addr == gw) {
5987 						already_resolved = B_TRUE;
5988 						break;
5989 					}
5990 				}
5991 				IRB_REFRELE(cirb);
5992 			}
5993 
5994 			/*
5995 			 * This route is already resolved;
5996 			 * proceed with next one.
5997 			 */
5998 			if (already_resolved) {
5999 				ip2dbg(("ire_multirt_lookup: found cire %p, "
6000 				    "already resolved\n", (void *)cire));
6001 				continue;
6002 			}
6003 
6004 			/*
6005 			 * The route is unresolved; is it actually
6006 			 * resolvable, i.e. is there a cache or a resolver
6007 			 * for the gateway?
6008 			 */
6009 			gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL,
6010 			    ALL_ZONES, tsl,
6011 			    MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst);
6012 
6013 			ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n",
6014 			    (void *)gw_ire));
6015 
6016 			/*
6017 			 * If gw_ire is typed IRE_CACHETABLE,
6018 			 * this route can be resolved without any call to the
6019 			 * resolver. If the MULTIRT_CACHEGW flag is set,
6020 			 * give the top priority to this ire and exit the
6021 			 * loop.
6022 			 * This is typically the case when an ARP reply
6023 			 * is processed through ip_wput_nondata().
6024 			 */
6025 			if ((flags & MULTIRT_CACHEGW) &&
6026 			    (gw_ire != NULL) &&
6027 			    (gw_ire->ire_type & IRE_CACHETABLE)) {
6028 				ASSERT(gw_ire->ire_nce == NULL ||
6029 				    gw_ire->ire_nce->nce_state == ND_REACHABLE);
6030 				/*
6031 				 * Release the resolver associated to the
6032 				 * previous candidate best ire, if any.
6033 				 */
6034 				if (best_cire != NULL) {
6035 					ire_refrele(best_cire);
6036 					ASSERT(best_fire != NULL);
6037 				}
6038 
6039 				best_fire = fire;
6040 				best_cire = gw_ire;
6041 
6042 				ip2dbg(("ire_multirt_lookup: found top prio "
6043 				    "best_fire %p, best_cire %p\n",
6044 				    (void *)best_fire, (void *)best_cire));
6045 				break;
6046 			}
6047 
6048 			/*
6049 			 * Compute the time elapsed since our preceding
6050 			 * attempt to  resolve that route.
6051 			 * If the MULTIRT_USESTAMP flag is set, we take that
6052 			 * route into account only if this time interval
6053 			 * exceeds ip_multirt_resolution_interval;
6054 			 * this prevents us from attempting to resolve a
6055 			 * broken route upon each sending of a packet.
6056 			 */
6057 			delta = lbolt - fire->ire_last_used_time;
6058 			delta = TICK_TO_MSEC(delta);
6059 
6060 			res = (boolean_t)((delta >
6061 				ipst->ips_ip_multirt_resolution_interval) ||
6062 				(!(flags & MULTIRT_USESTAMP)));
6063 
6064 			ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, "
6065 			    "res %d\n",
6066 			    (void *)fire, delta, res));
6067 
6068 			if (res) {
6069 				/*
6070 				 * We are here if MULTIRT_USESTAMP flag is set
6071 				 * and the resolver for fire's gateway
6072 				 * has not been tried since
6073 				 * ip_multirt_resolution_interval, or if
6074 				 * MULTIRT_USESTAMP is not set but gw_ire did
6075 				 * not fill the conditions for MULTIRT_CACHEGW,
6076 				 * or if neither MULTIRT_USESTAMP nor
6077 				 * MULTIRT_CACHEGW are set.
6078 				 */
6079 				if (gw_ire != NULL) {
6080 					if (best_fire == NULL) {
6081 						ASSERT(best_cire == NULL);
6082 
6083 						best_fire = fire;
6084 						best_cire = gw_ire;
6085 
6086 						ip2dbg(("ire_multirt_lookup:"
6087 						    "found candidate "
6088 						    "best_fire %p, "
6089 						    "best_cire %p\n",
6090 						    (void *)best_fire,
6091 						    (void *)best_cire));
6092 
6093 						/*
6094 						 * If MULTIRT_CACHEGW is not
6095 						 * set, we ignore the top
6096 						 * priority ires that can
6097 						 * be resolved without any
6098 						 * call to the resolver;
6099 						 * In that case, there is
6100 						 * actually no need
6101 						 * to continue the loop.
6102 						 */
6103 						if (!(flags &
6104 						    MULTIRT_CACHEGW)) {
6105 							break;
6106 						}
6107 						continue;
6108 					}
6109 				} else {
6110 					/*
6111 					 * No resolver for the gateway: the
6112 					 * route is not resolvable.
6113 					 * If the MULTIRT_SETSTAMP flag is
6114 					 * set, we stamp the IRE_HOST ire,
6115 					 * so we will not select it again
6116 					 * during this resolution interval.
6117 					 */
6118 					if (flags & MULTIRT_SETSTAMP)
6119 						fire->ire_last_used_time =
6120 						    lbolt;
6121 				}
6122 			}
6123 
6124 			if (gw_ire != NULL)
6125 				ire_refrele(gw_ire);
6126 		}
6127 	} else { /* CLASSD(dst) */
6128 
6129 		for (fire = first_fire;
6130 		    fire != NULL;
6131 		    fire = fire->ire_next) {
6132 
6133 			if (!(fire->ire_flags & RTF_MULTIRT))
6134 				continue;
6135 			if (fire->ire_addr != dst)
6136 				continue;
6137 
6138 			if (fire->ire_gw_secattr != NULL &&
6139 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
6140 				continue;
6141 			}
6142 
6143 			already_resolved = B_FALSE;
6144 
6145 			gw = fire->ire_gateway_addr;
6146 
6147 			gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE,
6148 			    NULL, NULL, ALL_ZONES, 0, tsl,
6149 			    MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE |
6150 			    MATCH_IRE_SECATTR, ipst);
6151 
6152 			/* No resolver for the gateway; we skip this ire. */
6153 			if (gw_ire == NULL) {
6154 				continue;
6155 			}
6156 			ASSERT(gw_ire->ire_nce == NULL ||
6157 			    gw_ire->ire_nce->nce_state == ND_REACHABLE);
6158 
6159 			if (first_cire != NULL) {
6160 
6161 				IRB_REFHOLD(cirb);
6162 				/*
6163 				 * For all IRE_CACHE ires for that
6164 				 * destination.
6165 				 */
6166 				for (cire = first_cire;
6167 				    cire != NULL;
6168 				    cire = cire->ire_next) {
6169 
6170 					if (!(cire->ire_flags & RTF_MULTIRT))
6171 						continue;
6172 					if (cire->ire_addr != dst)
6173 						continue;
6174 					if (cire->ire_marks &
6175 					    (IRE_MARK_CONDEMNED |
6176 						IRE_MARK_HIDDEN))
6177 						continue;
6178 
6179 					if (cire->ire_gw_secattr != NULL &&
6180 					    tsol_ire_match_gwattr(cire,
6181 					    tsl) != 0) {
6182 						continue;
6183 					}
6184 
6185 					/*
6186 					 * Cache entries are linked to the
6187 					 * parent routes using the parent handle
6188 					 * (ire_phandle). If no cache entry has
6189 					 * the same handle as fire, fire is
6190 					 * still unresolved.
6191 					 */
6192 					ASSERT(cire->ire_phandle != 0);
6193 					if (cire->ire_phandle ==
6194 					    fire->ire_phandle) {
6195 						already_resolved = B_TRUE;
6196 						break;
6197 					}
6198 				}
6199 				IRB_REFRELE(cirb);
6200 			}
6201 
6202 			/*
6203 			 * This route is already resolved; proceed with
6204 			 * next one.
6205 			 */
6206 			if (already_resolved) {
6207 				ire_refrele(gw_ire);
6208 				continue;
6209 			}
6210 
6211 			/*
6212 			 * Compute the time elapsed since our preceding
6213 			 * attempt to resolve that route.
6214 			 * If the MULTIRT_USESTAMP flag is set, we take
6215 			 * that route into account only if this time
6216 			 * interval exceeds ip_multirt_resolution_interval;
6217 			 * this prevents us from attempting to resolve a
6218 			 * broken route upon each sending of a packet.
6219 			 */
6220 			delta = lbolt - fire->ire_last_used_time;
6221 			delta = TICK_TO_MSEC(delta);
6222 
6223 			res = (boolean_t)((delta >
6224 				ipst->ips_ip_multirt_resolution_interval) ||
6225 				(!(flags & MULTIRT_USESTAMP)));
6226 
6227 			ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, "
6228 			    "flags %04x, res %d\n",
6229 			    (void *)fire, delta, flags, res));
6230 
6231 			if (res) {
6232 				if (best_cire != NULL) {
6233 					/*
6234 					 * Release the resolver associated
6235 					 * to the preceding candidate best
6236 					 * ire, if any.
6237 					 */
6238 					ire_refrele(best_cire);
6239 					ASSERT(best_fire != NULL);
6240 				}
6241 				best_fire = fire;
6242 				best_cire = gw_ire;
6243 				continue;
6244 			}
6245 
6246 			ire_refrele(gw_ire);
6247 		}
6248 	}
6249 
6250 	if (best_fire != NULL) {
6251 		IRE_REFHOLD(best_fire);
6252 	}
6253 	IRB_REFRELE(firb);
6254 
6255 	/* Release the first IRE_CACHE we initially looked up, if any. */
6256 	if (first_cire != NULL)
6257 		ire_refrele(first_cire);
6258 
6259 	/* Found a resolvable route. */
6260 	if (best_fire != NULL) {
6261 		ASSERT(best_cire != NULL);
6262 
6263 		if (*fire_arg != NULL)
6264 			ire_refrele(*fire_arg);
6265 		if (*ire_arg != NULL)
6266 			ire_refrele(*ire_arg);
6267 
6268 		/*
6269 		 * Update the passed-in arguments with the
6270 		 * resolvable multirt route we found.
6271 		 */
6272 		*fire_arg = best_fire;
6273 		*ire_arg = best_cire;
6274 
6275 		ip2dbg(("ire_multirt_lookup: returning B_TRUE, "
6276 		    "*fire_arg %p, *ire_arg %p\n",
6277 		    (void *)best_fire, (void *)best_cire));
6278 
6279 		return (B_TRUE);
6280 	}
6281 
6282 	ASSERT(best_cire == NULL);
6283 
6284 	ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, "
6285 	    "*ire_arg %p\n",
6286 	    (void *)*fire_arg, (void *)*ire_arg));
6287 
6288 	/* No resolvable route. */
6289 	return (B_FALSE);
6290 }
6291 
6292 /*
6293  * IRE iterator for inbound and loopback broadcast processing.
6294  * Given an IRE_BROADCAST ire, walk the ires with the same destination
6295  * address, but skip over the passed-in ire. Returns the next ire without
6296  * a hold - assumes that the caller holds a reference on the IRE bucket.
6297  */
6298 ire_t *
6299 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire)
6300 {
6301 	ill_t *ill;
6302 
6303 	if (curr == NULL) {
6304 		for (curr = ire->ire_bucket->irb_ire; curr != NULL;
6305 		    curr = curr->ire_next) {
6306 			if (curr->ire_addr == ire->ire_addr)
6307 				break;
6308 		}
6309 	} else {
6310 		curr = curr->ire_next;
6311 	}
6312 	ill = ire_to_ill(ire);
6313 	for (; curr != NULL; curr = curr->ire_next) {
6314 		if (curr->ire_addr != ire->ire_addr) {
6315 			/*
6316 			 * All the IREs to a given destination are contiguous;
6317 			 * break out once the address doesn't match.
6318 			 */
6319 			break;
6320 		}
6321 		if (curr == ire) {
6322 			/* skip over the passed-in ire */
6323 			continue;
6324 		}
6325 		if ((curr->ire_stq != NULL && ire->ire_stq == NULL) ||
6326 		    (curr->ire_stq == NULL && ire->ire_stq != NULL)) {
6327 			/*
6328 			 * If the passed-in ire is loopback, skip over
6329 			 * non-loopback ires and vice versa.
6330 			 */
6331 			continue;
6332 		}
6333 		if (ire_to_ill(curr) != ill) {
6334 			/* skip over IREs going through a different interface */
6335 			continue;
6336 		}
6337 		if (curr->ire_marks & IRE_MARK_CONDEMNED) {
6338 			/* skip over deleted IREs */
6339 			continue;
6340 		}
6341 		return (curr);
6342 	}
6343 	return (NULL);
6344 }
6345 
6346 #ifdef IRE_DEBUG
6347 th_trace_t *
6348 th_trace_ire_lookup(ire_t *ire)
6349 {
6350 	int bucket_id;
6351 	th_trace_t *th_trace;
6352 
6353 	ASSERT(MUTEX_HELD(&ire->ire_lock));
6354 
6355 	bucket_id = IP_TR_HASH(curthread);
6356 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6357 
6358 	for (th_trace = ire->ire_trace[bucket_id]; th_trace != NULL;
6359 	    th_trace = th_trace->th_next) {
6360 		if (th_trace->th_id == curthread)
6361 			return (th_trace);
6362 	}
6363 	return (NULL);
6364 }
6365 
6366 void
6367 ire_trace_ref(ire_t *ire)
6368 {
6369 	int bucket_id;
6370 	th_trace_t *th_trace;
6371 
6372 	/*
6373 	 * Attempt to locate the trace buffer for the curthread.
6374 	 * If it does not exist, then allocate a new trace buffer
6375 	 * and link it in list of trace bufs for this ipif, at the head
6376 	 */
6377 	mutex_enter(&ire->ire_lock);
6378 	if (ire->ire_trace_disable == B_TRUE) {
6379 		mutex_exit(&ire->ire_lock);
6380 		return;
6381 	}
6382 	th_trace = th_trace_ire_lookup(ire);
6383 	if (th_trace == NULL) {
6384 		bucket_id = IP_TR_HASH(curthread);
6385 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6386 		    KM_NOSLEEP);
6387 		if (th_trace == NULL) {
6388 			ire->ire_trace_disable = B_TRUE;
6389 			mutex_exit(&ire->ire_lock);
6390 			ire_trace_inactive(ire);
6391 			return;
6392 		}
6393 
6394 		th_trace->th_id = curthread;
6395 		th_trace->th_next = ire->ire_trace[bucket_id];
6396 		th_trace->th_prev = &ire->ire_trace[bucket_id];
6397 		if (th_trace->th_next != NULL)
6398 			th_trace->th_next->th_prev = &th_trace->th_next;
6399 		ire->ire_trace[bucket_id] = th_trace;
6400 	}
6401 	ASSERT(th_trace->th_refcnt < TR_BUF_MAX - 1);
6402 	th_trace->th_refcnt++;
6403 	th_trace_rrecord(th_trace);
6404 	mutex_exit(&ire->ire_lock);
6405 }
6406 
6407 void
6408 ire_trace_free(th_trace_t *th_trace)
6409 {
6410 	/* unlink th_trace and free it */
6411 	*th_trace->th_prev = th_trace->th_next;
6412 	if (th_trace->th_next != NULL)
6413 		th_trace->th_next->th_prev = th_trace->th_prev;
6414 	th_trace->th_next = NULL;
6415 	th_trace->th_prev = NULL;
6416 	kmem_free(th_trace, sizeof (th_trace_t));
6417 }
6418 
6419 void
6420 ire_untrace_ref(ire_t *ire)
6421 {
6422 	th_trace_t *th_trace;
6423 
6424 	mutex_enter(&ire->ire_lock);
6425 
6426 	if (ire->ire_trace_disable == B_TRUE) {
6427 		mutex_exit(&ire->ire_lock);
6428 		return;
6429 	}
6430 
6431 	th_trace = th_trace_ire_lookup(ire);
6432 	ASSERT(th_trace != NULL && th_trace->th_refcnt > 0);
6433 	th_trace_rrecord(th_trace);
6434 	th_trace->th_refcnt--;
6435 
6436 	if (th_trace->th_refcnt == 0)
6437 		ire_trace_free(th_trace);
6438 
6439 	mutex_exit(&ire->ire_lock);
6440 }
6441 
6442 static void
6443 ire_trace_inactive(ire_t *ire)
6444 {
6445 	th_trace_t *th_trace;
6446 	int i;
6447 
6448 	mutex_enter(&ire->ire_lock);
6449 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6450 		while (ire->ire_trace[i] != NULL) {
6451 			th_trace = ire->ire_trace[i];
6452 
6453 			/* unlink th_trace and free it */
6454 			ire->ire_trace[i] = th_trace->th_next;
6455 			if (th_trace->th_next != NULL)
6456 				th_trace->th_next->th_prev =
6457 				    &ire->ire_trace[i];
6458 
6459 			th_trace->th_next = NULL;
6460 			th_trace->th_prev = NULL;
6461 			kmem_free(th_trace, sizeof (th_trace_t));
6462 		}
6463 	}
6464 
6465 	mutex_exit(&ire->ire_lock);
6466 }
6467 
6468 /* ARGSUSED */
6469 void
6470 ire_thread_exit(ire_t *ire, caddr_t arg)
6471 {
6472 	th_trace_t	*th_trace;
6473 
6474 	mutex_enter(&ire->ire_lock);
6475 	th_trace = th_trace_ire_lookup(ire);
6476 	if (th_trace == NULL) {
6477 		mutex_exit(&ire->ire_lock);
6478 		return;
6479 	}
6480 	ASSERT(th_trace->th_refcnt == 0);
6481 
6482 	ire_trace_free(th_trace);
6483 	mutex_exit(&ire->ire_lock);
6484 }
6485 
6486 #endif
6487 
6488 /*
6489  * Generate a message chain with an arp request to resolve the in_ire.
6490  * It is assumed that in_ire itself is currently in the ire cache table,
6491  * so we create a fake_ire filled with enough information about ire_addr etc.
6492  * to retrieve in_ire when the DL_UNITDATA response from the resolver
6493  * comes back. The fake_ire itself is created by calling esballoc with
6494  * the fr_rtnp (free routine) set to ire_freemblk. This routine will be
6495  * invoked when the mblk containing fake_ire is freed.
6496  */
6497 void
6498 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill)
6499 {
6500 	areq_t		*areq;
6501 	ipaddr_t	*addrp;
6502 	mblk_t 		*ire_mp, *dlureq_mp;
6503 	ire_t 		*ire, *buf;
6504 	size_t		bufsize;
6505 	frtn_t		*frtnp;
6506 	ill_t		*ill;
6507 	ip_stack_t	*ipst = dst_ill->ill_ipst;
6508 
6509 	/*
6510 	 * Construct message chain for the resolver
6511 	 * of the form:
6512 	 *	ARP_REQ_MBLK-->IRE_MBLK
6513 	 *
6514 	 * NOTE : If the response does not
6515 	 * come back, ARP frees the packet. For this reason,
6516 	 * we can't REFHOLD the bucket of save_ire to prevent
6517 	 * deletions. We may not be able to REFRELE the bucket
6518 	 * if the response never comes back. Thus, before
6519 	 * adding the ire, ire_add_v4 will make sure that the
6520 	 * interface route does not get deleted. This is the
6521 	 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6
6522 	 * where we can always prevent deletions because of
6523 	 * the synchronous nature of adding IRES i.e
6524 	 * ire_add_then_send is called after creating the IRE.
6525 	 */
6526 
6527 	/*
6528 	 * We use esballoc to allocate the second part(the ire_t size mblk)
6529 	 * of the message chain depicted above. THis mblk will be freed
6530 	 * by arp when there is a  timeout, and otherwise passed to IP
6531 	 * and IP will * free it after processing the ARP response.
6532 	 */
6533 
6534 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
6535 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
6536 	if (buf == NULL) {
6537 		ip1dbg(("ire_arpresolver:alloc buffer failed\n "));
6538 		return;
6539 	}
6540 	frtnp = (frtn_t *)(buf + 1);
6541 	frtnp->free_arg = (caddr_t)buf;
6542 	frtnp->free_func = ire_freemblk;
6543 
6544 	ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
6545 
6546 	if (ire_mp == NULL) {
6547 		ip1dbg(("ire_arpresolve: esballoc failed\n"));
6548 		kmem_free(buf, bufsize);
6549 		return;
6550 	}
6551 	ASSERT(in_ire->ire_nce != NULL);
6552 	dlureq_mp = copyb(dst_ill->ill_resolver_mp);
6553 	if (dlureq_mp == NULL) {
6554 		kmem_free(buf, bufsize);
6555 		return;
6556 	}
6557 
6558 	ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE;
6559 	ire = (ire_t *)buf;
6560 	/*
6561 	 * keep enough info in the fake ire so that we can pull up
6562 	 * the incomplete ire (in_ire) after result comes back from
6563 	 * arp and make it complete.
6564 	 */
6565 	*ire = ire_null;
6566 	ire->ire_u = in_ire->ire_u;
6567 	ire->ire_ipif_seqid = in_ire->ire_ipif_seqid;
6568 	ire->ire_ipif = in_ire->ire_ipif;
6569 	ire->ire_stq = in_ire->ire_stq;
6570 	ill = ire_to_ill(ire);
6571 	ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
6572 	ire->ire_zoneid = in_ire->ire_zoneid;
6573 	ire->ire_ipst = ipst;
6574 
6575 	/*
6576 	 * ire_freemblk will be called when ire_mp is freed, both for
6577 	 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set
6578 	 * when the arp resolution failed.
6579 	 */
6580 	ire->ire_marks |= IRE_MARK_UNCACHED;
6581 	ire->ire_mp = ire_mp;
6582 	ire_mp->b_wptr = (uchar_t *)&ire[1];
6583 	ire_mp->b_cont = NULL;
6584 	ASSERT(dlureq_mp != NULL);
6585 	linkb(dlureq_mp, ire_mp);
6586 
6587 	/*
6588 	 * Fill in the source and dest addrs for the resolver.
6589 	 * NOTE: this depends on memory layouts imposed by
6590 	 * ill_init().
6591 	 */
6592 	areq = (areq_t *)dlureq_mp->b_rptr;
6593 	addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset);
6594 	*addrp = ire->ire_src_addr;
6595 
6596 	addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset);
6597 	if (ire->ire_gateway_addr != INADDR_ANY) {
6598 		*addrp = ire->ire_gateway_addr;
6599 	} else {
6600 		*addrp = ire->ire_addr;
6601 	}
6602 
6603 	/* Up to the resolver. */
6604 	if (canputnext(dst_ill->ill_rq)) {
6605 		putnext(dst_ill->ill_rq, dlureq_mp);
6606 	} else {
6607 		/* Prepare for cleanup */
6608 		freemsg(dlureq_mp);
6609 	}
6610 }
6611 
6612 /*
6613  * Esballoc free function for AR_ENTRY_QUERY request to clean up any
6614  * unresolved ire_t and/or nce_t structures when ARP resolution fails.
6615  *
6616  * This function can be called by ARP via free routine for ire_mp or
6617  * by IPv4(both host and forwarding path) via ire_delete
6618  * in case ARP resolution fails.
6619  * NOTE: Since IP is MT, ARP can call into IP but not vice versa
6620  * (for IP to talk to ARP, it still has to send AR* messages).
6621  *
6622  * Note that the ARP/IP merge should replace the functioanlity by providing
6623  * direct function calls to clean up unresolved entries in ire/nce lists.
6624  */
6625 void
6626 ire_freemblk(ire_t *ire_mp)
6627 {
6628 	nce_t		*nce = NULL;
6629 	ill_t		*ill;
6630 	ip_stack_t	*ipst;
6631 
6632 	ASSERT(ire_mp != NULL);
6633 
6634 	if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) {
6635 		ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n",
6636 		    (void *)ire_mp));
6637 		goto cleanup;
6638 	}
6639 	if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) {
6640 		goto cleanup; /* everything succeeded. just free and return */
6641 	}
6642 
6643 	/*
6644 	 * the arp information corresponding to this ire_mp was not
6645 	 * transferred to  a ire_cache entry. Need
6646 	 * to clean up incomplete ire's and nce, if necessary.
6647 	 */
6648 	ASSERT(ire_mp->ire_stq != NULL);
6649 	ASSERT(ire_mp->ire_stq_ifindex != 0);
6650 	ASSERT(ire_mp->ire_ipst != NULL);
6651 
6652 	ipst = ire_mp->ire_ipst;
6653 
6654 	/*
6655 	 * Get any nce's corresponding to this ire_mp. We first have to
6656 	 * make sure that the ill is still around.
6657 	 */
6658 	ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex,
6659 	    B_FALSE, NULL, NULL, NULL, NULL, ipst);
6660 	if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) ||
6661 	    (ill->ill_state_flags & ILL_CONDEMNED)) {
6662 		/*
6663 		 * ill went away. no nce to clean up.
6664 		 * Note that the ill_state_flags could be set to
6665 		 * ILL_CONDEMNED after this point, but if we know
6666 		 * that it is CONDEMNED now, we just bail out quickly.
6667 		 */
6668 		if (ill != NULL)
6669 			ill_refrele(ill);
6670 		goto cleanup;
6671 	}
6672 	nce = ndp_lookup_v4(ill,
6673 	    ((ire_mp->ire_gateway_addr != INADDR_ANY) ?
6674 	    &ire_mp->ire_gateway_addr : &ire_mp->ire_addr),
6675 	    B_FALSE);
6676 	ill_refrele(ill);
6677 
6678 	if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) {
6679 		/*
6680 		 * some incomplete nce was found.
6681 		 */
6682 		DTRACE_PROBE2(ire__freemblk__arp__resolv__fail,
6683 		    nce_t *, nce, ire_t *, ire_mp);
6684 		/*
6685 		 * Send the icmp_unreachable messages for the queued mblks in
6686 		 * ire->ire_nce->nce_qd_mp, since ARP resolution failed
6687 		 * for this ire
6688 		 */
6689 		arp_resolv_failed(nce);
6690 		/*
6691 		 * Delete the nce and clean up all ire's pointing at this nce
6692 		 * in the cachetable
6693 		 */
6694 		ndp_delete(nce);
6695 	}
6696 	if (nce != NULL)
6697 		NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */
6698 
6699 cleanup:
6700 	/*
6701 	 * Get rid of the ire buffer
6702 	 * We call kmem_free here(instead of ire_delete()), since
6703 	 * this is the freeb's callback.
6704 	 */
6705 	kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t));
6706 }
6707 
6708 /*
6709  * The mp passed to this function is typically res_mp.
6710  * Note that res_mp field can contain the request (ie AR_ENTRY_QUERY)
6711  * or the response (ie DL_UNITDATA_REQ). So in case of the
6712  * forwarding path, there is a small window of time between the two
6713  * when the forwarding path creates an unresolved nce and the
6714  * ip_newroute path finds this and uses this in the creation of an
6715  * ire cache. To account for this possible race case we we check
6716  * for DL_UNITDATA_REQ to make sure this is indeed the response.
6717  */
6718 boolean_t
6719 ire_nce_valid_dlureq_mp(mblk_t *mp)
6720 {
6721 	dl_unitdata_req_t *dlur;
6722 
6723 	if (mp == NULL)
6724 		return (B_FALSE);
6725 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
6726 	if ((DB_TYPE(mp) == M_PROTO) &&
6727 	    (dlur->dl_primitive == DL_UNITDATA_REQ)) {
6728 		return (B_TRUE);
6729 	} else {
6730 		return (B_FALSE);
6731 	}
6732 }
6733 
6734 /*
6735  * create the neighbor cache entry  nce_t for  IRE_CACHE and
6736  * non-loopback IRE_BROADCAST ire's. Note that IRE_BROADCAST
6737  * (non-loopback) entries  have the nce_res_mp set to the
6738  * template passed in (generated from ill_bcast_mp); IRE_CACHE ire's
6739  * contain the information for  the nexthop (ire_gateway_addr) in the
6740  * case of indirect routes, and for the dst itself (ire_addr) in the
6741  * case of direct routes, with the nce_res_mp containing a template
6742  * DL_UNITDATA request.
6743  *
6744  * This function always consumes res_mp and fp_mp.
6745  *
6746  * The actual association of the ire_nce to the nce created here is
6747  * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions
6748  * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which
6749  * the ire_nce assignment is done in ire_add_then_send, and mobile-ip
6750  * where the assignment is done in ire_add_mrtun().
6751  */
6752 int
6753 ire_nce_init(ire_t *ire, mblk_t *fp_mp, mblk_t *res_mp)
6754 {
6755 	in_addr_t	addr4, mask4;
6756 	int		err;
6757 	nce_t		*arpce = NULL;
6758 	ill_t		*ire_ill;
6759 	uint16_t	nce_state, nce_flags;
6760 	ip_stack_t	*ipst;
6761 
6762 	if (ire->ire_stq == NULL) {
6763 		if (res_mp)
6764 			freemsg(res_mp);
6765 		if (fp_mp)
6766 			freemsg(fp_mp);
6767 		return (0); /* no need to create nce for local/loopback */
6768 	}
6769 
6770 	mask4 = IP_HOST_MASK;
6771 	switch (ire->ire_type) {
6772 	case IRE_CACHE:
6773 		if (ire->ire_gateway_addr != INADDR_ANY)
6774 			addr4 = ire->ire_gateway_addr; /* 'G' route */
6775 		else
6776 			addr4 = ire->ire_addr; /* direct route */
6777 		break;
6778 	case IRE_BROADCAST:
6779 		addr4 = ire->ire_addr;
6780 		break;
6781 	default:
6782 		if (res_mp)
6783 			freemsg(res_mp);
6784 		if (fp_mp)
6785 			freemsg(fp_mp);
6786 		return (0);
6787 	}
6788 
6789 	/*
6790 	 * ire_ipif is picked based on RTF_SETSRC, usesrc etc.
6791 	 * rules in ire_forward_src_ipif. We want the dlureq_mp
6792 	 * for the outgoing interface, which we get from the ire_stq.
6793 	 */
6794 	ire_ill = ire_to_ill(ire);
6795 	ipst = ire_ill->ill_ipst;
6796 
6797 	/*
6798 	 * if we are creating an nce for the first time, and this is
6799 	 * a NORESOLVER interface, atomically create the nce in the
6800 	 * REACHABLE state; else create it in the ND_INITIAL state.
6801 	 */
6802 	if (ire_ill->ill_net_type == IRE_IF_NORESOLVER)  {
6803 		nce_state = ND_REACHABLE;
6804 		nce_flags = NCE_F_PERMANENT;
6805 	} else {
6806 		/* Make sure you have the response and not the request. */
6807 		if (ire_nce_valid_dlureq_mp(res_mp)) {
6808 			nce_state = ND_REACHABLE;
6809 		} else {
6810 			nce_state = ND_INITIAL;
6811 			if (fp_mp)
6812 				freemsg(fp_mp);
6813 			fp_mp = NULL;
6814 		}
6815 		nce_flags = 0;
6816 	}
6817 
6818 	err = ndp_lookup_then_add(ire_ill, NULL,
6819 	    &addr4, &mask4, NULL, 0, nce_flags, nce_state, &arpce,
6820 	    fp_mp, res_mp);
6821 
6822 	ip1dbg(("ire 0x%p addr 0x%lx mask 0x%lx type 0x%x; "
6823 	    "found nce 0x%p err %d\n", (void *)ire, (ulong_t)addr4,
6824 	    (ulong_t)mask4, ire->ire_type, (void *)arpce, err));
6825 
6826 	switch (err) {
6827 	case 0:
6828 		break;
6829 	case EEXIST:
6830 		/*
6831 		 * return a pointer to an existing nce_t;
6832 		 * note that the ire-nce mapping is many-one, i.e.,
6833 		 * multiple ire's could point to the same nce_t;
6834 		 */
6835 		if (fp_mp != NULL) {
6836 			freemsg(fp_mp);
6837 		}
6838 		if (res_mp != NULL) {
6839 			freemsg(res_mp);
6840 		}
6841 		break;
6842 	default:
6843 		DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err);
6844 		if (res_mp)
6845 			freemsg(res_mp);
6846 		if (fp_mp)
6847 			freemsg(fp_mp);
6848 		return (EINVAL);
6849 	}
6850 #if DEBUG
6851 	/*
6852 	 * If an nce_fp_mp was passed in by ndp_lookup_then_add()
6853 	 * we should be picking up an existing nce_t in
6854 	 * the ND_REACHABLE state.
6855 	 */
6856 	mutex_enter(&arpce->nce_lock);
6857 	ASSERT(arpce->nce_fp_mp == NULL || arpce->nce_state == ND_REACHABLE);
6858 	mutex_exit(&arpce->nce_lock);
6859 #endif
6860 	if (ire->ire_type == IRE_BROADCAST) {
6861 		/*
6862 		 * Two bcast ires are created for each interface;
6863 		 * 1. loopback copy (which does not  have an
6864 		 *    ire_stq, and therefore has no ire_nce), and,
6865 		 * 2. the non-loopback copy, which has the nce_res_mp
6866 		 *    initialized to a copy of the ill_bcast_mp, and
6867 		 *    is marked as ND_REACHABLE at this point.
6868 		 *    This nce does not undergo any further state changes,
6869 		 *    and exists as long as the interface is plumbed.
6870 		 * Note: we do the ire_nce assignment here for IRE_BROADCAST
6871 		 * because some functions like ill_mark_bcast() inline the
6872 		 * ire_add functionality;
6873 		 */
6874 		mutex_enter(&arpce->nce_lock);
6875 		arpce->nce_state = ND_REACHABLE;
6876 		arpce->nce_flags |= (NCE_F_PERMANENT | NCE_F_BCAST);
6877 		arpce->nce_last = TICK_TO_MSEC(lbolt64);
6878 		ire->ire_nce = arpce;
6879 		mutex_exit(&arpce->nce_lock);
6880 		/*
6881 		 * We are associating this nce to the ire,
6882 		 * so change the nce ref taken in
6883 		 * ndp_lookup_then_add_v4() from
6884 		 * NCE_REFHOLD to NCE_REFHOLD_NOTR
6885 		 */
6886 		NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
6887 	} else {
6888 		if (NCE_EXPIRED(arpce, ipst))
6889 			arpce = nce_reinit(arpce);
6890 		if (arpce != NULL) {
6891 			/*
6892 			 * We are not using this nce_t just yet so release
6893 			 * the ref taken in ndp_lookup_then_add_v4()
6894 			 */
6895 			NCE_REFRELE(arpce);
6896 		} else {
6897 			ip0dbg(("can't reinit arpce for ill 0x%p;\n",
6898 			    (void *)ire_ill));
6899 		}
6900 	}
6901 	return (0);
6902 }
6903