1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 30 /* 31 * This file contains routines that manipulate Internet Routing Entries (IREs). 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/ddi.h> 39 #include <sys/cmn_err.h> 40 #include <sys/policy.h> 41 42 #include <sys/systm.h> 43 #include <sys/kmem.h> 44 #include <sys/param.h> 45 #include <sys/socket.h> 46 #include <net/if.h> 47 #include <net/route.h> 48 #include <netinet/in.h> 49 #include <net/if_dl.h> 50 #include <netinet/ip6.h> 51 #include <netinet/icmp6.h> 52 53 #include <inet/common.h> 54 #include <inet/mi.h> 55 #include <inet/ip.h> 56 #include <inet/ip6.h> 57 #include <inet/ip_ndp.h> 58 #include <inet/arp.h> 59 #include <inet/ip_if.h> 60 #include <inet/ip_ire.h> 61 #include <inet/ip_ftable.h> 62 #include <inet/ip_rts.h> 63 #include <inet/nd.h> 64 65 #include <net/pfkeyv2.h> 66 #include <inet/ipsec_info.h> 67 #include <inet/sadb.h> 68 #include <sys/kmem.h> 69 #include <inet/tcp.h> 70 #include <inet/ipclassifier.h> 71 #include <sys/zone.h> 72 #include <sys/cpuvar.h> 73 74 #include <sys/tsol/label.h> 75 #include <sys/tsol/tnet.h> 76 #include <sys/dlpi.h> 77 78 struct kmem_cache *rt_entry_cache; 79 80 /* 81 * Synchronization notes: 82 * 83 * The fields of the ire_t struct are protected in the following way : 84 * 85 * ire_next/ire_ptpn 86 * 87 * - bucket lock of the respective tables (cache or forwarding tables). 88 * 89 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 90 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 91 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 92 * 93 * - Set in ire_create_v4/v6 and never changes after that. Thus, 94 * we don't need a lock whenever these fields are accessed. 95 * 96 * - ire_bucket and ire_masklen (also set in ire_create) is set in 97 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 98 * changes after that. Thus we don't need a lock whenever these 99 * fields are accessed. 100 * 101 * ire_gateway_addr_v4[v6] 102 * 103 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 104 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 105 * it assumed to be atomic and hence the other parts of the code 106 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 107 * and hence any access to it uses ire_lock to get/set the right value. 108 * 109 * ire_ident, ire_refcnt 110 * 111 * - Updated atomically using atomic_add_32 112 * 113 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 114 * 115 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 116 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 117 * 118 * ire_max_frag, ire_frag_flag 119 * 120 * - ire_lock is used to set/read both of them together. 121 * 122 * ire_tire_mark 123 * 124 * - Set in ire_create and updated in ire_expire, which is called 125 * by only one function namely ip_trash_timer_expire. Thus only 126 * one function updates and examines the value. 127 * 128 * ire_marks 129 * - bucket lock protects this. 130 * 131 * ire_ipsec_overhead/ire_ll_hdr_length 132 * 133 * - Place holder for returning the information to the upper layers 134 * when IRE_DB_REQ comes down. 135 * 136 * 137 * ipv6_ire_default_count is protected by the bucket lock of 138 * ip_forwarding_table_v6[0][0]. 139 * 140 * ipv6_ire_default_index is not protected as it is just a hint 141 * at which default gateway to use. There is nothing 142 * wrong in using the same gateway for two different connections. 143 * 144 * As we always hold the bucket locks in all the places while accessing 145 * the above values, it is natural to use them for protecting them. 146 * 147 * We have a separate cache table and forwarding table for IPv4 and IPv6. 148 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 149 * array of irb_t structure and forwarding table (ip_forwarding_table/ 150 * ip_forwarding_table_v6) is an array of pointers to array of irb_t 151 * structure. ip_forwarding_table_v6 is allocated dynamically in 152 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 153 * initializing the same bucket. Once a bucket is initialized, it is never 154 * de-alloacted. This assumption enables us to access 155 * ip_forwarding_table_v6[i] without any locks. 156 * 157 * Each irb_t - ire bucket structure has a lock to protect 158 * a bucket and the ires residing in the bucket have a back pointer to 159 * the bucket structure. It also has a reference count for the number 160 * of threads walking the bucket - irb_refcnt which is bumped up 161 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 162 * set to IRE_MARK_CONDEMNED indicating that there are some ires 163 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 164 * last thread to leave the bucket should delete the ires. Usually 165 * this is done by the IRB_REFRELE macro which is used to decrement 166 * the reference count on a bucket. 167 * 168 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 169 * decrements the reference count, ire_refcnt, atomically on the ire. 170 * ire_refcnt is modified only using this macro. Operations on the IRE 171 * could be described as follows : 172 * 173 * CREATE an ire with reference count initialized to 1. 174 * 175 * ADDITION of an ire holds the bucket lock, checks for duplicates 176 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 177 * bumping up once more i.e the reference count is 2. This is to avoid 178 * an extra lookup in the functions calling ire_add which wants to 179 * work with the ire after adding. 180 * 181 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 182 * macro. It is valid to bump up the referece count of the IRE, 183 * after the lookup has returned an ire. Following are the lookup 184 * functions that return an HELD ire : 185 * 186 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 187 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 188 * ipif_to_ire[_v6]. 189 * 190 * DELETION of an ire holds the bucket lock, removes it from the list 191 * and then decrements the reference count for having removed from the list 192 * by using the IRE_REFRELE macro. If some other thread has looked up 193 * the ire, the reference count would have been bumped up and hence 194 * this ire will not be freed once deleted. It will be freed once the 195 * reference count drops to zero. 196 * 197 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 198 * lookups acquire the bucket lock as RW_READER. 199 * 200 * NOTE : The only functions that does the IRE_REFRELE when an ire is 201 * passed as an argument are : 202 * 203 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 204 * broadcast ires it looks up internally within 205 * the function. Currently, for simplicity it does 206 * not differentiate the one that is passed in and 207 * the ones it looks up internally. It always 208 * IRE_REFRELEs. 209 * 2) ire_send 210 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 211 * that take ire as an argument, it has to selectively 212 * IRE_REFRELE the ire. To maintain symmetry, 213 * ire_send_v6 does the same. 214 * 215 * Otherwise, the general rule is to do the IRE_REFRELE in the function 216 * that is passing the ire as an argument. 217 * 218 * In trying to locate ires the following points are to be noted. 219 * 220 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 221 * to be ignored when walking the ires using ire_next. 222 * 223 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 224 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 225 * applications should not be seeing this ire and hence this ire is ignored 226 * in most cases in the search using ire_next. 227 * 228 * Zones note: 229 * Walking IREs within a given zone also walks certain ires in other 230 * zones. This is done intentionally. IRE walks with a specified 231 * zoneid are used only when doing informational reports, and 232 * zone users want to see things that they can access. See block 233 * comment in ire_walk_ill_match(). 234 */ 235 236 /* 237 * The minimum size of IRE cache table. It will be recalcuated in 238 * ip_ire_init(). 239 * Setable in /etc/system 240 */ 241 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 242 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 243 244 /* 245 * The size of the forwarding table. We will make sure that it is a 246 * power of 2 in ip_ire_init(). 247 * Setable in /etc/system 248 */ 249 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 250 251 struct kmem_cache *ire_cache; 252 static ire_t ire_null; 253 254 /* 255 * The threshold number of IRE in a bucket when the IREs are 256 * cleaned up. This threshold is calculated later in ip_open() 257 * based on the speed of CPU and available memory. This default 258 * value is the maximum. 259 * 260 * We have two kinds of cached IRE, temporary and 261 * non-temporary. Temporary IREs are marked with 262 * IRE_MARK_TEMPORARY. They are IREs created for non 263 * TCP traffic and for forwarding purposes. All others 264 * are non-temporary IREs. We don't mark IRE created for 265 * TCP as temporary because TCP is stateful and there are 266 * info stored in the IRE which can be shared by other TCP 267 * connections to the same destination. For connected 268 * endpoint, we also don't want to mark the IRE used as 269 * temporary because the same IRE will be used frequently, 270 * otherwise, the app should not do a connect(). We change 271 * the marking at ip_bind_connected_*() if necessary. 272 * 273 * We want to keep the cache IRE hash bucket length reasonably 274 * short, otherwise IRE lookup functions will take "forever." 275 * We use the "crude" function that the IRE bucket 276 * length should be based on the CPU speed, which is 1 entry 277 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 278 * (n). This means that with a 750MHz CPU, the max bucket 279 * length can be (750 >> n) entries. 280 * 281 * Note that this threshold is separate for temp and non-temp 282 * IREs. This means that the actual bucket length can be 283 * twice as that. And while we try to keep temporary IRE 284 * length at most at the threshold value, we do not attempt to 285 * make the length for non-temporary IREs fixed, for the 286 * reason stated above. Instead, we start trying to find 287 * "unused" non-temporary IREs when the bucket length reaches 288 * this threshold and clean them up. 289 * 290 * We also want to limit the amount of memory used by 291 * IREs. So if we are allowed to use ~3% of memory (M) 292 * for those IREs, each bucket should not have more than 293 * 294 * M / num of cache bucket / sizeof (ire_t) 295 * 296 * Again the above memory uses are separate for temp and 297 * non-temp cached IREs. 298 * 299 * We may also want the limit to be a function of the number 300 * of interfaces and number of CPUs. Doing the initialization 301 * in ip_open() means that every time an interface is plumbed, 302 * the max is re-calculated. Right now, we don't do anything 303 * different. In future, when we have more experience, we 304 * may want to change this behavior. 305 */ 306 uint32_t ip_ire_max_bucket_cnt = 10; /* Setable in /etc/system */ 307 uint32_t ip6_ire_max_bucket_cnt = 10; 308 309 /* 310 * The minimum of the temporary IRE bucket count. We do not want 311 * the length of each bucket to be too short. This may hurt 312 * performance of some apps as the temporary IREs are removed too 313 * often. 314 */ 315 uint32_t ip_ire_min_bucket_cnt = 3; /* /etc/system - not used */ 316 uint32_t ip6_ire_min_bucket_cnt = 3; 317 318 /* 319 * The ratio of memory consumed by IRE used for temporary to available 320 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 321 * value can be changed in /etc/system. 6 is a reasonable number. 322 */ 323 uint32_t ip_ire_mem_ratio = 6; /* /etc/system */ 324 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 325 uint32_t ip_ire_cpu_ratio = 7; /* /etc/system */ 326 327 typedef struct nce_clookup_s { 328 ipaddr_t ncecl_addr; 329 boolean_t ncecl_found; 330 } nce_clookup_t; 331 332 /* 333 * The maximum number of buckets in IRE cache table. In future, we may 334 * want to make it a dynamic hash table. For the moment, we fix the 335 * size and allocate the table in ip_ire_init() when IP is first loaded. 336 * We take into account the amount of memory a system has. 337 */ 338 #define IP_MAX_CACHE_TABLE_SIZE 4096 339 340 /* Setable in /etc/system */ 341 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 342 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 343 344 #define NUM_ILLS 2 /* To build the ILL list to unlock */ 345 346 /* Zero iulp_t for initialization. */ 347 const iulp_t ire_uinfo_null = { 0 }; 348 349 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 350 ipsq_func_t func, boolean_t); 351 static void ire_delete_v4(ire_t *ire); 352 static void ire_report_ctable(ire_t *ire, char *mp); 353 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 354 zoneid_t zoneid, ip_stack_t *); 355 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 356 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 357 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt); 358 extern void ill_unlock_ills(ill_t **list, int cnt); 359 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 360 extern void th_trace_rrecord(th_trace_t *); 361 #ifdef IRE_DEBUG 362 static void ire_trace_inactive(ire_t *); 363 #endif 364 365 /* 366 * To avoid bloating the code, we call this function instead of 367 * using the macro IRE_REFRELE. Use macro only in performance 368 * critical paths. 369 * 370 * Must not be called while holding any locks. Otherwise if this is 371 * the last reference to be released there is a chance of recursive mutex 372 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 373 * to restart an ioctl. The one exception is when the caller is sure that 374 * this is not the last reference to be released. Eg. if the caller is 375 * sure that the ire has not been deleted and won't be deleted. 376 */ 377 void 378 ire_refrele(ire_t *ire) 379 { 380 IRE_REFRELE(ire); 381 } 382 383 void 384 ire_refrele_notr(ire_t *ire) 385 { 386 IRE_REFRELE_NOTR(ire); 387 } 388 389 /* 390 * kmem_cache_alloc constructor for IRE in kma space. 391 * Note that when ire_mp is set the IRE is stored in that mblk and 392 * not in this cache. 393 */ 394 /* ARGSUSED */ 395 static int 396 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 397 { 398 ire_t *ire = buf; 399 400 ire->ire_nce = NULL; 401 402 return (0); 403 } 404 405 /* ARGSUSED1 */ 406 static void 407 ip_ire_destructor(void *buf, void *cdrarg) 408 { 409 ire_t *ire = buf; 410 411 ASSERT(ire->ire_nce == NULL); 412 } 413 414 /* 415 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 416 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 417 * for an existing CACHED IRE. 418 */ 419 /* ARGSUSED */ 420 int 421 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 422 { 423 uchar_t *addr_ucp; 424 ipic_t *ipic; 425 ire_t *ire; 426 ipaddr_t addr; 427 in6_addr_t v6addr; 428 irb_t *irb; 429 zoneid_t zoneid; 430 ip_stack_t *ipst = CONNQ_TO_IPST(q); 431 432 ASSERT(q->q_next == NULL); 433 zoneid = Q_TO_CONN(q)->conn_zoneid; 434 435 /* 436 * Check privilege using the ioctl credential; if it is NULL 437 * then this is a kernel message and therefor privileged. 438 */ 439 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 440 return (EPERM); 441 442 ipic = (ipic_t *)mp->b_rptr; 443 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 444 ipic->ipic_addr_length))) { 445 return (EINVAL); 446 } 447 if (!OK_32PTR(addr_ucp)) 448 return (EINVAL); 449 switch (ipic->ipic_addr_length) { 450 case IP_ADDR_LEN: { 451 /* Extract the destination address. */ 452 addr = *(ipaddr_t *)addr_ucp; 453 /* Find the corresponding IRE. */ 454 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 455 break; 456 } 457 case IPV6_ADDR_LEN: { 458 /* Extract the destination address. */ 459 v6addr = *(in6_addr_t *)addr_ucp; 460 /* Find the corresponding IRE. */ 461 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst); 462 break; 463 } 464 default: 465 return (EINVAL); 466 } 467 468 if (ire == NULL) 469 return (ENOENT); 470 /* 471 * Update the round trip time estimate and/or the max frag size 472 * and/or the slow start threshold. 473 * 474 * We serialize multiple advises using ire_lock. 475 */ 476 mutex_enter(&ire->ire_lock); 477 if (ipic->ipic_rtt) { 478 /* 479 * If there is no old cached values, initialize them 480 * conservatively. Set them to be (1.5 * new value). 481 */ 482 if (ire->ire_uinfo.iulp_rtt != 0) { 483 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 484 ipic->ipic_rtt) >> 1; 485 } else { 486 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 487 (ipic->ipic_rtt >> 1); 488 } 489 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 490 ire->ire_uinfo.iulp_rtt_sd = 491 (ire->ire_uinfo.iulp_rtt_sd + 492 ipic->ipic_rtt_sd) >> 1; 493 } else { 494 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 495 (ipic->ipic_rtt_sd >> 1); 496 } 497 } 498 if (ipic->ipic_max_frag) 499 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 500 if (ipic->ipic_ssthresh != 0) { 501 if (ire->ire_uinfo.iulp_ssthresh != 0) 502 ire->ire_uinfo.iulp_ssthresh = 503 (ipic->ipic_ssthresh + 504 ire->ire_uinfo.iulp_ssthresh) >> 1; 505 else 506 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 507 } 508 /* 509 * Don't need the ire_lock below this. ire_type does not change 510 * after initialization. ire_marks is protected by irb_lock. 511 */ 512 mutex_exit(&ire->ire_lock); 513 514 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 515 /* 516 * Only increment the temporary IRE count if the original 517 * IRE is not already marked temporary. 518 */ 519 irb = ire->ire_bucket; 520 rw_enter(&irb->irb_lock, RW_WRITER); 521 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 522 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 523 irb->irb_tmp_ire_cnt++; 524 } 525 ire->ire_marks |= ipic->ipic_ire_marks; 526 rw_exit(&irb->irb_lock); 527 } 528 529 ire_refrele(ire); 530 return (0); 531 } 532 533 /* 534 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 535 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 536 * for a host that is not responding. This will force an attempt to 537 * establish a new route, if available, and flush out the ARP entry so 538 * it will re-resolve. Management processes may want to use the 539 * version that generates a reply. 540 * 541 * This function does not support IPv6 since Neighbor Unreachability Detection 542 * means that negative advise like this is useless. 543 */ 544 /* ARGSUSED */ 545 int 546 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 547 { 548 uchar_t *addr_ucp; 549 ipaddr_t addr; 550 ire_t *ire; 551 ipid_t *ipid; 552 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 553 zoneid_t zoneid; 554 ire_t *gire = NULL; 555 ill_t *ill; 556 mblk_t *arp_mp; 557 ip_stack_t *ipst; 558 559 ASSERT(q->q_next == NULL); 560 zoneid = Q_TO_CONN(q)->conn_zoneid; 561 ipst = CONNQ_TO_IPST(q); 562 563 /* 564 * Check privilege using the ioctl credential; if it is NULL 565 * then this is a kernel message and therefor privileged. 566 */ 567 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 568 return (EPERM); 569 570 ipid = (ipid_t *)mp->b_rptr; 571 572 /* Only actions on IRE_CACHEs are acceptable at present. */ 573 if (ipid->ipid_ire_type != IRE_CACHE) 574 return (EINVAL); 575 576 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 577 ipid->ipid_addr_length); 578 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 579 return (EINVAL); 580 switch (ipid->ipid_addr_length) { 581 case IP_ADDR_LEN: 582 /* addr_ucp points at IP addr */ 583 break; 584 case sizeof (sin_t): { 585 sin_t *sin; 586 /* 587 * got complete (sockaddr) address - increment addr_ucp to point 588 * at the ip_addr field. 589 */ 590 sin = (sin_t *)addr_ucp; 591 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 592 break; 593 } 594 default: 595 return (EINVAL); 596 } 597 /* Extract the destination address. */ 598 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 599 600 /* Try to find the CACHED IRE. */ 601 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 602 603 /* Nail it. */ 604 if (ire) { 605 /* Allow delete only on CACHE entries */ 606 if (ire->ire_type != IRE_CACHE) { 607 ire_refrele(ire); 608 return (EINVAL); 609 } 610 611 /* 612 * Verify that the IRE has been around for a while. 613 * This is to protect against transport protocols 614 * that are too eager in sending delete messages. 615 */ 616 if (gethrestime_sec() < 617 ire->ire_create_time + ipst->ips_ip_ignore_delete_time) { 618 ire_refrele(ire); 619 return (EINVAL); 620 } 621 /* 622 * Now we have a potentially dead cache entry. We need 623 * to remove it. 624 * If this cache entry is generated from a 625 * default route (i.e., ire_cmask == 0), 626 * search the default list and mark it dead and some 627 * background process will try to activate it. 628 */ 629 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 630 /* 631 * Make sure that we pick a different 632 * IRE_DEFAULT next time. 633 */ 634 ire_t *gw_ire; 635 irb_t *irb = NULL; 636 uint_t match_flags; 637 638 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 639 640 gire = ire_ftable_lookup(ire->ire_addr, 641 ire->ire_cmask, 0, 0, 642 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags, 643 ipst); 644 645 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 646 (void *)gire)); 647 648 if (gire != NULL) { 649 irb = gire->ire_bucket; 650 651 /* 652 * We grab it as writer just to serialize 653 * multiple threads trying to bump up 654 * irb_rr_origin 655 */ 656 rw_enter(&irb->irb_lock, RW_WRITER); 657 if ((gw_ire = irb->irb_rr_origin) == NULL) { 658 rw_exit(&irb->irb_lock); 659 goto done; 660 } 661 662 DTRACE_PROBE1(ip__ire__del__origin, 663 (ire_t *), gw_ire); 664 665 /* Skip past the potentially bad gateway */ 666 if (ire->ire_gateway_addr == 667 gw_ire->ire_gateway_addr) { 668 ire_t *next = gw_ire->ire_next; 669 670 DTRACE_PROBE2(ip__ire__del, 671 (ire_t *), gw_ire, (irb_t *), irb); 672 IRE_FIND_NEXT_ORIGIN(next); 673 irb->irb_rr_origin = next; 674 } 675 rw_exit(&irb->irb_lock); 676 } 677 } 678 done: 679 if (gire != NULL) 680 IRE_REFRELE(gire); 681 /* report the bad route to routing sockets */ 682 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 683 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 684 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst); 685 routing_sock_info = B_TRUE; 686 687 /* 688 * TCP is really telling us to start over completely, and it 689 * expects that we'll resend the ARP query. Tell ARP to 690 * discard the entry, if this is a local destination. 691 */ 692 ill = ire->ire_stq->q_ptr; 693 if (ire->ire_gateway_addr == 0 && 694 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 695 putnext(ill->ill_rq, arp_mp); 696 } 697 698 ire_delete(ire); 699 ire_refrele(ire); 700 } 701 /* 702 * Also look for an IRE_HOST type redirect ire and 703 * remove it if present. 704 */ 705 ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL, 706 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 707 708 /* Nail it. */ 709 if (ire != NULL) { 710 if (ire->ire_flags & RTF_DYNAMIC) { 711 if (!routing_sock_info) { 712 ip_rts_change(RTM_LOSING, ire->ire_addr, 713 ire->ire_gateway_addr, ire->ire_mask, 714 ire->ire_src_addr, 0, 0, 0, 715 (RTA_DST | RTA_GATEWAY | 716 RTA_NETMASK | RTA_IFA), 717 ipst); 718 } 719 ire_delete(ire); 720 } 721 ire_refrele(ire); 722 } 723 return (0); 724 } 725 726 /* 727 * Named Dispatch routine to produce a formatted report on all IREs. 728 * This report is accessed by using the ndd utility to "get" ND variable 729 * "ipv4_ire_status". 730 */ 731 /* ARGSUSED */ 732 int 733 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 734 { 735 zoneid_t zoneid; 736 ip_stack_t *ipst; 737 738 if (CONN_Q(q)) 739 ipst = CONNQ_TO_IPST(q); 740 else 741 ipst = ILLQ_TO_IPST(q); 742 743 (void) mi_mpprintf(mp, 744 "IRE " MI_COL_HDRPAD_STR 745 /* 01234567[89ABCDEF] */ 746 "rfq " MI_COL_HDRPAD_STR 747 /* 01234567[89ABCDEF] */ 748 "stq " MI_COL_HDRPAD_STR 749 /* 01234567[89ABCDEF] */ 750 " zone " 751 /* 12345 */ 752 "addr mask " 753 /* 123.123.123.123 123.123.123.123 */ 754 "src gateway mxfrg rtt rtt_sd ssthresh ref " 755 /* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */ 756 "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe " 757 /* 123456 123456789 123456789 123456 12345678 1234 12345678 */ 758 "recvpipe in/out/forward type"); 759 /* 12345678 in/out/forward xxxxxxxxxx */ 760 761 /* 762 * Because of the ndd constraint, at most we can have 64K buffer 763 * to put in all IRE info. So to be more efficient, just 764 * allocate a 64K buffer here, assuming we need that large buffer. 765 * This should be OK as only root can do ndd /dev/ip. 766 */ 767 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 768 /* The following may work even if we cannot get a large buf. */ 769 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 770 return (0); 771 } 772 773 zoneid = Q_TO_CONN(q)->conn_zoneid; 774 if (zoneid == GLOBAL_ZONEID) 775 zoneid = ALL_ZONES; 776 777 ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid, ipst); 778 ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid, ipst); 779 780 return (0); 781 } 782 783 784 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */ 785 static void 786 ire_report_ctable(ire_t *ire, char *mp) 787 { 788 char buf1[16]; 789 char buf2[16]; 790 char buf3[16]; 791 char buf4[16]; 792 uint_t fo_pkt_count; 793 uint_t ib_pkt_count; 794 int ref; 795 uint_t print_len, buf_len; 796 797 if ((ire->ire_type & IRE_CACHETABLE) == 0) 798 return; 799 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 800 if (buf_len <= 0) 801 return; 802 803 /* Number of active references of this ire */ 804 ref = ire->ire_refcnt; 805 /* "inbound" to a non local address is a forward */ 806 ib_pkt_count = ire->ire_ib_pkt_count; 807 fo_pkt_count = 0; 808 if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { 809 fo_pkt_count = ib_pkt_count; 810 ib_pkt_count = 0; 811 } 812 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 813 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 814 "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 815 "%04d %08d %08d %d/%d/%d %s\n", 816 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 817 (int)ire->ire_zoneid, 818 ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), 819 ip_dot_addr(ire->ire_src_addr, buf3), 820 ip_dot_addr(ire->ire_gateway_addr, buf4), 821 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 822 ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, 823 ire->ire_uinfo.iulp_rtomax, 824 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 825 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 826 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 827 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 828 ire->ire_uinfo.iulp_sack, 829 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 830 ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, 831 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); 832 if (print_len < buf_len) { 833 ((mblk_t *)mp)->b_wptr += print_len; 834 } else { 835 ((mblk_t *)mp)->b_wptr += buf_len; 836 } 837 } 838 839 /* 840 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 841 * down from the Upper Level Protocol to request a copy of the IRE (to check 842 * its type or to extract information like round-trip time estimates or the 843 * MTU.) 844 * The address is assumed to be in the ire_addr field. If no IRE is found 845 * an IRE is returned with ire_type being zero. 846 * Note that the upper lavel protocol has to check for broadcast 847 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 848 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 849 * end of the returned message. 850 * 851 * TCP sends down a message of this type with a connection request packet 852 * chained on. UDP and ICMP send it down to verify that a route exists for 853 * the destination address when they get connected. 854 */ 855 void 856 ip_ire_req(queue_t *q, mblk_t *mp) 857 { 858 ire_t *inire; 859 ire_t *ire; 860 mblk_t *mp1; 861 ire_t *sire = NULL; 862 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 863 ip_stack_t *ipst = CONNQ_TO_IPST(q); 864 865 ASSERT(q->q_next == NULL); 866 867 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 868 !OK_32PTR(mp->b_rptr)) { 869 freemsg(mp); 870 return; 871 } 872 inire = (ire_t *)mp->b_rptr; 873 /* 874 * Got it, now take our best shot at an IRE. 875 */ 876 if (inire->ire_ipversion == IPV6_VERSION) { 877 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 878 NULL, &sire, zoneid, NULL, 879 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 880 } else { 881 ASSERT(inire->ire_ipversion == IPV4_VERSION); 882 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 883 NULL, &sire, zoneid, NULL, 884 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 885 } 886 887 /* 888 * We prevent returning IRES with source address INADDR_ANY 889 * as these were temporarily created for sending packets 890 * from endpoints that have conn_unspec_src set. 891 */ 892 if (ire == NULL || 893 (ire->ire_ipversion == IPV4_VERSION && 894 ire->ire_src_addr == INADDR_ANY) || 895 (ire->ire_ipversion == IPV6_VERSION && 896 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 897 inire->ire_type = 0; 898 } else { 899 bcopy(ire, inire, sizeof (ire_t)); 900 /* Copy the route metrics from the parent. */ 901 if (sire != NULL) { 902 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 903 sizeof (iulp_t)); 904 } 905 906 /* 907 * As we don't lookup global policy here, we may not 908 * pass the right size if per-socket policy is not 909 * present. For these cases, path mtu discovery will 910 * do the right thing. 911 */ 912 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 913 914 /* Pass the latest setting of the ip_path_mtu_discovery */ 915 inire->ire_frag_flag |= 916 (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 917 } 918 if (ire != NULL) 919 ire_refrele(ire); 920 if (sire != NULL) 921 ire_refrele(sire); 922 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 923 mp->b_datap->db_type = IRE_DB_TYPE; 924 925 /* Put the IRE_DB_TYPE mblk last in the chain */ 926 mp1 = mp->b_cont; 927 if (mp1 != NULL) { 928 mp->b_cont = NULL; 929 linkb(mp1, mp); 930 mp = mp1; 931 } 932 qreply(q, mp); 933 } 934 935 /* 936 * Send a packet using the specified IRE. 937 * If ire_src_addr_v6 is all zero then discard the IRE after 938 * the packet has been sent. 939 */ 940 static void 941 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 942 { 943 mblk_t *ipsec_mp; 944 boolean_t is_secure; 945 uint_t ifindex; 946 ill_t *ill; 947 zoneid_t zoneid = ire->ire_zoneid; 948 ip_stack_t *ipst = ire->ire_ipst; 949 950 ASSERT(ire->ire_ipversion == IPV4_VERSION); 951 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 952 ipsec_mp = pkt; 953 is_secure = (pkt->b_datap->db_type == M_CTL); 954 if (is_secure) { 955 ipsec_out_t *io; 956 957 pkt = pkt->b_cont; 958 io = (ipsec_out_t *)ipsec_mp->b_rptr; 959 if (io->ipsec_out_type == IPSEC_OUT) 960 zoneid = io->ipsec_out_zoneid; 961 } 962 963 /* If the packet originated externally then */ 964 if (pkt->b_prev) { 965 ire_refrele(ire); 966 /* 967 * Extract the ifindex from b_prev (set in ip_rput_noire). 968 * Look up interface to see if it still exists (it could have 969 * been unplumbed by the time the reply came back from ARP) 970 */ 971 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 972 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 973 NULL, NULL, NULL, NULL, ipst); 974 if (ill == NULL) { 975 pkt->b_prev = NULL; 976 pkt->b_next = NULL; 977 freemsg(ipsec_mp); 978 return; 979 } 980 q = ill->ill_rq; 981 pkt->b_prev = NULL; 982 /* 983 * This packet has not gone through IPSEC processing 984 * and hence we should not have any IPSEC message 985 * prepended. 986 */ 987 ASSERT(ipsec_mp == pkt); 988 put(q, pkt); 989 ill_refrele(ill); 990 } else if (pkt->b_next) { 991 /* Packets from multicast router */ 992 pkt->b_next = NULL; 993 /* 994 * We never get the IPSEC_OUT while forwarding the 995 * packet for multicast router. 996 */ 997 ASSERT(ipsec_mp == pkt); 998 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 999 ire_refrele(ire); 1000 } else { 1001 /* Locally originated packets */ 1002 boolean_t is_inaddr_any; 1003 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 1004 1005 /* 1006 * We need to do an ire_delete below for which 1007 * we need to make sure that the IRE will be 1008 * around even after calling ip_wput_ire - 1009 * which does ire_refrele. Otherwise somebody 1010 * could potentially delete this ire and hence 1011 * free this ire and we will be calling ire_delete 1012 * on a freed ire below. 1013 */ 1014 is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); 1015 if (is_inaddr_any) { 1016 IRE_REFHOLD(ire); 1017 } 1018 /* 1019 * If we were resolving a router we can not use the 1020 * routers IRE for sending the packet (since it would 1021 * violate the uniqness of the IP idents) thus we 1022 * make another pass through ip_wput to create the IRE_CACHE 1023 * for the destination. 1024 * When IRE_MARK_NOADD is set, ire_add() is not called. 1025 * Thus ip_wput() will never find a ire and result in an 1026 * infinite loop. Thus we check whether IRE_MARK_NOADD is 1027 * is set. This also implies that IRE_MARK_NOADD can only be 1028 * used to send packets to directly connected hosts. 1029 */ 1030 if (ipha->ipha_dst != ire->ire_addr && 1031 !(ire->ire_marks & IRE_MARK_NOADD)) { 1032 ire_refrele(ire); /* Held in ire_add */ 1033 if (CONN_Q(q)) { 1034 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 1035 IRE_SEND); 1036 } else { 1037 (void) ip_output((void *)(uintptr_t)zoneid, 1038 ipsec_mp, q, IRE_SEND); 1039 } 1040 } else { 1041 if (is_secure) { 1042 ipsec_out_t *oi; 1043 ipha_t *ipha; 1044 1045 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1046 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 1047 if (oi->ipsec_out_proc_begin) { 1048 /* 1049 * This is the case where 1050 * ip_wput_ipsec_out could not find 1051 * the IRE and recreated a new one. 1052 * As ip_wput_ipsec_out does ire 1053 * lookups, ire_refrele for the extra 1054 * bump in ire_add. 1055 */ 1056 ire_refrele(ire); 1057 ip_wput_ipsec_out(q, ipsec_mp, ipha, 1058 NULL, NULL); 1059 } else { 1060 /* 1061 * IRE_REFRELE will be done in 1062 * ip_wput_ire. 1063 */ 1064 ip_wput_ire(q, ipsec_mp, ire, NULL, 1065 IRE_SEND, zoneid); 1066 } 1067 } else { 1068 /* 1069 * IRE_REFRELE will be done in ip_wput_ire. 1070 */ 1071 ip_wput_ire(q, ipsec_mp, ire, NULL, 1072 IRE_SEND, zoneid); 1073 } 1074 } 1075 /* 1076 * Special code to support sending a single packet with 1077 * conn_unspec_src using an IRE which has no source address. 1078 * The IRE is deleted here after sending the packet to avoid 1079 * having other code trip on it. But before we delete the 1080 * ire, somebody could have looked up this ire. 1081 * We prevent returning/using this IRE by the upper layers 1082 * by making checks to NULL source address in other places 1083 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 1084 * Though, this does not completely prevent other threads 1085 * from using this ire, this should not cause any problems. 1086 * 1087 * NOTE : We use is_inaddr_any instead of using ire_src_addr 1088 * because for the normal case i.e !is_inaddr_any, ire_refrele 1089 * above could have potentially freed the ire. 1090 */ 1091 if (is_inaddr_any) { 1092 /* 1093 * If this IRE has been deleted by another thread, then 1094 * ire_bucket won't be NULL, but ire_ptpn will be NULL. 1095 * Thus, ire_delete will do nothing. This check 1096 * guards against calling ire_delete when the IRE was 1097 * never inserted in the table, which is handled by 1098 * ire_delete as dropping another reference. 1099 */ 1100 if (ire->ire_bucket != NULL) { 1101 ip1dbg(("ire_send: delete IRE\n")); 1102 ire_delete(ire); 1103 } 1104 ire_refrele(ire); /* Held above */ 1105 } 1106 } 1107 } 1108 1109 /* 1110 * Send a packet using the specified IRE. 1111 * If ire_src_addr_v6 is all zero then discard the IRE after 1112 * the packet has been sent. 1113 */ 1114 static void 1115 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 1116 { 1117 mblk_t *ipsec_mp; 1118 boolean_t secure; 1119 uint_t ifindex; 1120 zoneid_t zoneid = ire->ire_zoneid; 1121 ip_stack_t *ipst = ire->ire_ipst; 1122 1123 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1124 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1125 if (pkt->b_datap->db_type == M_CTL) { 1126 ipsec_out_t *io; 1127 1128 ipsec_mp = pkt; 1129 pkt = pkt->b_cont; 1130 secure = B_TRUE; 1131 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1132 if (io->ipsec_out_type == IPSEC_OUT) 1133 zoneid = io->ipsec_out_zoneid; 1134 } else { 1135 ipsec_mp = pkt; 1136 secure = B_FALSE; 1137 } 1138 1139 /* If the packet originated externally then */ 1140 if (pkt->b_prev) { 1141 ill_t *ill; 1142 /* 1143 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1144 * Look up interface to see if it still exists (it could have 1145 * been unplumbed by the time the reply came back from the 1146 * resolver). 1147 */ 1148 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1149 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1150 NULL, NULL, NULL, NULL, ipst); 1151 if (ill == NULL) { 1152 pkt->b_prev = NULL; 1153 pkt->b_next = NULL; 1154 freemsg(ipsec_mp); 1155 ire_refrele(ire); /* Held in ire_add */ 1156 return; 1157 } 1158 q = ill->ill_rq; 1159 pkt->b_prev = NULL; 1160 /* 1161 * This packet has not gone through IPSEC processing 1162 * and hence we should not have any IPSEC message 1163 * prepended. 1164 */ 1165 ASSERT(ipsec_mp == pkt); 1166 put(q, pkt); 1167 ill_refrele(ill); 1168 } else if (pkt->b_next) { 1169 /* Packets from multicast router */ 1170 pkt->b_next = NULL; 1171 /* 1172 * We never get the IPSEC_OUT while forwarding the 1173 * packet for multicast router. 1174 */ 1175 ASSERT(ipsec_mp == pkt); 1176 /* 1177 * XXX TODO IPv6. 1178 */ 1179 freemsg(pkt); 1180 #ifdef XXX 1181 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1182 #endif 1183 } else { 1184 if (secure) { 1185 ipsec_out_t *oi; 1186 ip6_t *ip6h; 1187 1188 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1189 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1190 if (oi->ipsec_out_proc_begin) { 1191 /* 1192 * This is the case where 1193 * ip_wput_ipsec_out could not find 1194 * the IRE and recreated a new one. 1195 */ 1196 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1197 NULL, NULL); 1198 } else { 1199 if (CONN_Q(q)) { 1200 (void) ip_output_v6(Q_TO_CONN(q), 1201 ipsec_mp, q, IRE_SEND); 1202 } else { 1203 (void) ip_output_v6( 1204 (void *)(uintptr_t)zoneid, 1205 ipsec_mp, q, IRE_SEND); 1206 } 1207 } 1208 } else { 1209 /* 1210 * Send packets through ip_output_v6 so that any 1211 * ip6_info header can be processed again. 1212 */ 1213 if (CONN_Q(q)) { 1214 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1215 IRE_SEND); 1216 } else { 1217 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1218 ipsec_mp, q, IRE_SEND); 1219 } 1220 } 1221 /* 1222 * Special code to support sending a single packet with 1223 * conn_unspec_src using an IRE which has no source address. 1224 * The IRE is deleted here after sending the packet to avoid 1225 * having other code trip on it. But before we delete the 1226 * ire, somebody could have looked up this ire. 1227 * We prevent returning/using this IRE by the upper layers 1228 * by making checks to NULL source address in other places 1229 * like e.g ip_ire_append_v6, ip_ire_req and 1230 * ip_bind_connected_v6. Though, this does not completely 1231 * prevent other threads from using this ire, this should 1232 * not cause any problems. 1233 */ 1234 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1235 ip1dbg(("ire_send_v6: delete IRE\n")); 1236 ire_delete(ire); 1237 } 1238 } 1239 ire_refrele(ire); /* Held in ire_add */ 1240 } 1241 1242 /* 1243 * Make sure that IRE bucket does not get too long. 1244 * This can cause lock up because ire_cache_lookup() 1245 * may take "forever" to finish. 1246 * 1247 * We just remove cnt IREs each time. This means that 1248 * the bucket length will stay approximately constant, 1249 * depending on cnt. This should be enough to defend 1250 * against DoS attack based on creating temporary IREs 1251 * (for forwarding and non-TCP traffic). 1252 * 1253 * Note that new IRE is normally added at the tail of the 1254 * bucket. This means that we are removing the "oldest" 1255 * temporary IRE added. Only if there are IREs with 1256 * the same ire_addr, do we not add it at the tail. Refer 1257 * to ire_add_v*(). It should be OK for our purpose. 1258 * 1259 * For non-temporary cached IREs, we make sure that they 1260 * have not been used for some time (defined below), they 1261 * are non-local destinations, and there is no one using 1262 * them at the moment (refcnt == 1). 1263 * 1264 * The above means that the IRE bucket length may become 1265 * very long, consisting of mostly non-temporary IREs. 1266 * This can happen when the hash function does a bad job 1267 * so that most TCP connections cluster to a specific bucket. 1268 * This "hopefully" should never happen. It can also 1269 * happen if most TCP connections have very long lives. 1270 * Even with the minimal hash table size of 256, there 1271 * has to be a lot of such connections to make the bucket 1272 * length unreasonably long. This should probably not 1273 * happen either. The third can when this can happen is 1274 * when the machine is under attack, such as SYN flooding. 1275 * TCP should already have the proper mechanism to protect 1276 * that. So we should be safe. 1277 * 1278 * This function is called by ire_add_then_send() after 1279 * a new IRE is added and the packet is sent. 1280 * 1281 * The idle cutoff interval is set to 60s. It can be 1282 * changed using /etc/system. 1283 */ 1284 uint32_t ire_idle_cutoff_interval = 60000; 1285 1286 static void 1287 ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt) 1288 { 1289 ire_t *ire; 1290 int tmp_cnt = cnt; 1291 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1292 1293 /* 1294 * irb is NULL if the IRE is not added to the hash. This 1295 * happens when IRE_MARK_NOADD is set in ire_add_then_send(). 1296 */ 1297 if (irb == NULL) 1298 return; 1299 1300 IRB_REFHOLD(irb); 1301 if (irb->irb_tmp_ire_cnt > threshold) { 1302 for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0; 1303 ire = ire->ire_next) { 1304 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1305 continue; 1306 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1307 ASSERT(ire->ire_type == IRE_CACHE); 1308 ire_delete(ire); 1309 tmp_cnt--; 1310 } 1311 } 1312 } 1313 if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) { 1314 for (ire = irb->irb_ire; ire != NULL && cnt > 0; 1315 ire = ire->ire_next) { 1316 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1317 continue; 1318 if (ire->ire_ipversion == IPV4_VERSION) { 1319 if (ire->ire_gateway_addr == 0) 1320 continue; 1321 } else { 1322 if (IN6_IS_ADDR_UNSPECIFIED( 1323 &ire->ire_gateway_addr_v6)) 1324 continue; 1325 } 1326 if ((ire->ire_type == IRE_CACHE) && 1327 (lbolt - ire->ire_last_used_time > cut_off) && 1328 (ire->ire_refcnt == 1)) { 1329 ire_delete(ire); 1330 cnt--; 1331 } 1332 } 1333 } 1334 IRB_REFRELE(irb); 1335 } 1336 1337 /* 1338 * ire_add_then_send is called when a new IRE has been created in order to 1339 * route an outgoing packet. Typically, it is called from ip_wput when 1340 * a response comes back down from a resolver. We add the IRE, and then 1341 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1342 * However, we do not add the newly created IRE in the cache when 1343 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1344 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by 1345 * ip_wput_ire() and get deleted. 1346 * Multirouting support: the packet is silently discarded when the new IRE 1347 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1348 * RTF_MULTIRT flag for the same destination address. 1349 * In this case, we just want to register this additional ire without 1350 * sending the packet, as it has already been replicated through 1351 * existing multirt routes in ip_wput(). 1352 */ 1353 void 1354 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1355 { 1356 irb_t *irb; 1357 boolean_t drop = B_FALSE; 1358 /* LINTED : set but not used in function */ 1359 boolean_t mctl_present; 1360 mblk_t *first_mp = NULL; 1361 mblk_t *save_mp = NULL; 1362 ire_t *dst_ire; 1363 ipha_t *ipha; 1364 ip6_t *ip6h; 1365 ip_stack_t *ipst = ire->ire_ipst; 1366 1367 if (mp != NULL) { 1368 /* 1369 * We first have to retrieve the destination address carried 1370 * by the packet. 1371 * We can't rely on ire as it can be related to a gateway. 1372 * The destination address will help in determining if 1373 * other RTF_MULTIRT ires are already registered. 1374 * 1375 * We first need to know where we are going : v4 or V6. 1376 * the ire version is enough, as there is no risk that 1377 * we resolve an IPv6 address with an IPv4 ire 1378 * or vice versa. 1379 */ 1380 if (ire->ire_ipversion == IPV4_VERSION) { 1381 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1382 ipha = (ipha_t *)mp->b_rptr; 1383 save_mp = mp; 1384 mp = first_mp; 1385 1386 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1387 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1388 } else { 1389 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1390 /* 1391 * Get a pointer to the beginning of the IPv6 header. 1392 * Ignore leading IPsec control mblks. 1393 */ 1394 first_mp = mp; 1395 if (mp->b_datap->db_type == M_CTL) { 1396 mp = mp->b_cont; 1397 } 1398 ip6h = (ip6_t *)mp->b_rptr; 1399 save_mp = mp; 1400 mp = first_mp; 1401 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1402 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1403 } 1404 if (dst_ire != NULL) { 1405 if (dst_ire->ire_flags & RTF_MULTIRT) { 1406 /* 1407 * At least one resolved multirt route 1408 * already exists for the destination, 1409 * don't sent this packet: either drop it 1410 * or complete the pending resolution, 1411 * depending on the ire. 1412 */ 1413 drop = B_TRUE; 1414 } 1415 ip1dbg(("ire_add_then_send: dst_ire %p " 1416 "[dst %08x, gw %08x], drop %d\n", 1417 (void *)dst_ire, 1418 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1419 ntohl(dst_ire->ire_addr) : \ 1420 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1421 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1422 ntohl(dst_ire->ire_gateway_addr) : \ 1423 ntohl(V4_PART_OF_V6( 1424 dst_ire->ire_gateway_addr_v6)), 1425 drop)); 1426 ire_refrele(dst_ire); 1427 } 1428 } 1429 1430 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1431 /* Regular packets with cache bound ires are here. */ 1432 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1433 1434 if (ire == NULL) { 1435 mp->b_prev = NULL; 1436 mp->b_next = NULL; 1437 MULTIRT_DEBUG_UNTAG(mp); 1438 freemsg(mp); 1439 return; 1440 } 1441 if (mp == NULL) { 1442 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1443 return; 1444 } 1445 } 1446 if (drop) { 1447 /* 1448 * If we're adding an RTF_MULTIRT ire, the resolution 1449 * is over: we just drop the packet. 1450 */ 1451 if (ire->ire_flags & RTF_MULTIRT) { 1452 if (save_mp) { 1453 save_mp->b_prev = NULL; 1454 save_mp->b_next = NULL; 1455 } 1456 MULTIRT_DEBUG_UNTAG(mp); 1457 freemsg(mp); 1458 } else { 1459 /* 1460 * Otherwise, we're adding the ire to a gateway 1461 * for a multirt route. 1462 * Invoke ip_newroute() to complete the resolution 1463 * of the route. We will then come back here and 1464 * finally drop this packet in the above code. 1465 */ 1466 if (ire->ire_ipversion == IPV4_VERSION) { 1467 /* 1468 * TODO: in order for CGTP to work in non-global 1469 * zones, ip_newroute() must create the IRE 1470 * cache in the zone indicated by 1471 * ire->ire_zoneid. 1472 */ 1473 ip_newroute(q, mp, ipha->ipha_dst, 1474 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1475 ire->ire_zoneid, ipst); 1476 } else { 1477 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1478 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1479 NULL, ire->ire_zoneid, ipst); 1480 } 1481 } 1482 1483 ire_refrele(ire); /* As done by ire_send(). */ 1484 return; 1485 } 1486 /* 1487 * Need to remember ire_bucket here as ire_send*() may delete 1488 * the ire so we cannot reference it after that. 1489 */ 1490 irb = ire->ire_bucket; 1491 if (ire->ire_ipversion == IPV6_VERSION) { 1492 ire_send_v6(q, mp, ire); 1493 /* 1494 * Clean up more than 1 IRE so that the clean up does not 1495 * need to be done every time when a new IRE is added and 1496 * the threshold is reached. 1497 */ 1498 ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2); 1499 } else { 1500 ire_send(q, mp, ire); 1501 ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2); 1502 } 1503 } 1504 1505 /* 1506 * Initialize the ire that is specific to IPv4 part and call 1507 * ire_init_common to finish it. 1508 */ 1509 ire_t * 1510 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1511 uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1512 queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1513 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1514 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1515 { 1516 /* 1517 * Reject IRE security attribute creation/initialization 1518 * if system is not running in Trusted mode. 1519 */ 1520 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1521 return (NULL); 1522 1523 1524 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 1525 1526 if (addr != NULL) 1527 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1528 if (src_addr != NULL) 1529 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1530 if (mask != NULL) { 1531 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1532 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1533 } 1534 if (gateway != NULL) { 1535 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1536 } 1537 1538 if (type == IRE_CACHE) 1539 ire->ire_cmask = cmask; 1540 1541 /* ire_init_common will free the mblks upon encountering any failure */ 1542 if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif, 1543 phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst)) 1544 return (NULL); 1545 1546 return (ire); 1547 } 1548 1549 /* 1550 * Similar to ire_create except that it is called only when 1551 * we want to allocate ire as an mblk e.g. we have an external 1552 * resolver ARP. 1553 */ 1554 ire_t * 1555 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1556 uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type, 1557 ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1558 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, 1559 ip_stack_t *ipst) 1560 { 1561 ire_t *ire, *buf; 1562 ire_t *ret_ire; 1563 mblk_t *mp; 1564 size_t bufsize; 1565 frtn_t *frtnp; 1566 ill_t *ill; 1567 1568 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1569 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1570 if (buf == NULL) { 1571 ip1dbg(("ire_create_mp: alloc failed\n")); 1572 return (NULL); 1573 } 1574 frtnp = (frtn_t *)(buf + 1); 1575 frtnp->free_arg = (caddr_t)buf; 1576 frtnp->free_func = ire_freemblk; 1577 1578 /* 1579 * Allocate the new IRE. The ire created will hold a ref on 1580 * an nce_t after ire_nce_init, and this ref must either be 1581 * (a) transferred to the ire_cache entry created when ire_add_v4 1582 * is called after successful arp resolution, or, 1583 * (b) released, when arp resolution fails 1584 * Case (b) is handled in ire_freemblk() which will be called 1585 * when mp is freed as a result of failed arp. 1586 */ 1587 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1588 if (mp == NULL) { 1589 ip1dbg(("ire_create_mp: alloc failed\n")); 1590 kmem_free(buf, bufsize); 1591 return (NULL); 1592 } 1593 ire = (ire_t *)mp->b_rptr; 1594 mp->b_wptr = (uchar_t *)&ire[1]; 1595 1596 /* Start clean. */ 1597 *ire = ire_null; 1598 ire->ire_mp = mp; 1599 mp->b_datap->db_type = IRE_DB_TYPE; 1600 ire->ire_marks |= IRE_MARK_UNCACHED; 1601 1602 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce, 1603 rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc, 1604 gcgrp, ipst); 1605 1606 ill = (ill_t *)(stq->q_ptr); 1607 if (ret_ire == NULL) { 1608 /* ire_freemblk needs these set */ 1609 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1610 ire->ire_ipst = ipst; 1611 freeb(ire->ire_mp); 1612 return (NULL); 1613 } 1614 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1615 ASSERT(ret_ire == ire); 1616 /* 1617 * ire_max_frag is normally zero here and is atomically set 1618 * under the irebucket lock in ire_add_v[46] except for the 1619 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1620 * is non-zero here. 1621 */ 1622 ire->ire_max_frag = max_frag; 1623 return (ire); 1624 } 1625 1626 /* 1627 * ire_create is called to allocate and initialize a new IRE. 1628 * 1629 * NOTE : This is called as writer sometimes though not required 1630 * by this function. 1631 */ 1632 ire_t * 1633 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1634 uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq, 1635 ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1636 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1637 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1638 { 1639 ire_t *ire; 1640 ire_t *ret_ire; 1641 1642 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1643 if (ire == NULL) { 1644 ip1dbg(("ire_create: alloc failed\n")); 1645 return (NULL); 1646 } 1647 *ire = ire_null; 1648 1649 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp, 1650 src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags, 1651 ulp_info, gc, gcgrp, ipst); 1652 1653 if (ret_ire == NULL) { 1654 kmem_cache_free(ire_cache, ire); 1655 return (NULL); 1656 } 1657 ASSERT(ret_ire == ire); 1658 return (ire); 1659 } 1660 1661 1662 /* 1663 * Common to IPv4 and IPv6 1664 */ 1665 boolean_t 1666 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1667 queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle, 1668 uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info, 1669 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1670 { 1671 ire->ire_max_fragp = max_fragp; 1672 ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 1673 1674 #ifdef DEBUG 1675 if (ipif != NULL) { 1676 if (ipif->ipif_isv6) 1677 ASSERT(ipversion == IPV6_VERSION); 1678 else 1679 ASSERT(ipversion == IPV4_VERSION); 1680 } 1681 #endif /* DEBUG */ 1682 1683 /* 1684 * Create/initialize IRE security attribute only in Trusted mode; 1685 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1686 * has held a reference to it and will release it when this routine 1687 * returns a failure, otherwise we own the reference. We do this 1688 * prior to initializing the rest IRE fields. 1689 * 1690 * Don't allocate ire_gw_secattr for the resolver case to prevent 1691 * memory leak (in case of external resolution failure). We'll 1692 * allocate it after a successful external resolution, in ire_add(). 1693 * Note that ire->ire_mp != NULL here means this ire is headed 1694 * to an external resolver. 1695 */ 1696 if (is_system_labeled()) { 1697 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1698 IRE_INTERFACE)) != 0) { 1699 /* release references on behalf of caller */ 1700 if (gc != NULL) 1701 GC_REFRELE(gc); 1702 if (gcgrp != NULL) 1703 GCGRP_REFRELE(gcgrp); 1704 } else if ((ire->ire_mp == NULL) && 1705 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1706 return (B_FALSE); 1707 } 1708 } 1709 1710 ire->ire_stq = stq; 1711 ire->ire_rfq = rfq; 1712 ire->ire_type = type; 1713 ire->ire_flags = RTF_UP | flags; 1714 ire->ire_ident = TICK_TO_MSEC(lbolt); 1715 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1716 1717 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1718 ire->ire_last_used_time = lbolt; 1719 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1720 1721 /* 1722 * If this IRE is an IRE_CACHE, inherit the handles from the 1723 * parent IREs. For others in the forwarding table, assign appropriate 1724 * new ones. 1725 * 1726 * The mutex protecting ire_handle is because ire_create is not always 1727 * called as a writer. 1728 */ 1729 if (ire->ire_type & IRE_OFFSUBNET) { 1730 mutex_enter(&ipst->ips_ire_handle_lock); 1731 ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++; 1732 mutex_exit(&ipst->ips_ire_handle_lock); 1733 } else if (ire->ire_type & IRE_INTERFACE) { 1734 mutex_enter(&ipst->ips_ire_handle_lock); 1735 ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++; 1736 mutex_exit(&ipst->ips_ire_handle_lock); 1737 } else if (ire->ire_type == IRE_CACHE) { 1738 ire->ire_phandle = phandle; 1739 ire->ire_ihandle = ihandle; 1740 } 1741 ire->ire_ipif = ipif; 1742 if (ipif != NULL) { 1743 ire->ire_ipif_seqid = ipif->ipif_seqid; 1744 ire->ire_zoneid = ipif->ipif_zoneid; 1745 } else { 1746 ire->ire_zoneid = GLOBAL_ZONEID; 1747 } 1748 ire->ire_ipversion = ipversion; 1749 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1750 if (ipversion == IPV4_VERSION) { 1751 /* 1752 * IPv6 initializes the ire_nce in ire_add_v6, which expects 1753 * to find the ire_nce to be null when it is called. 1754 */ 1755 if (ire_nce_init(ire, src_nce) != 0) { 1756 /* some failure occurred. propagate error back */ 1757 return (B_FALSE); 1758 } 1759 } 1760 ire->ire_refcnt = 1; 1761 ire->ire_ipst = ipst; /* No netstack_hold */ 1762 1763 #ifdef IRE_DEBUG 1764 bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX); 1765 #endif 1766 1767 return (B_TRUE); 1768 } 1769 1770 /* 1771 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1772 * It is passed a pointer to a slot in an IRE pointer array into which to 1773 * place the pointer to the new IRE, if indeed we create one. If the 1774 * IRE corresponding to the address passed in would be a duplicate of an 1775 * existing one, we don't create the new one. irep is incremented before 1776 * return only if we do create a new IRE. (Always called as writer.) 1777 * 1778 * Note that with the "match_flags" parameter, we can match on either 1779 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1780 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1781 * we only create broadcast ire's on a per physical interface basis. If 1782 * someone is going to be mucking with logical interfaces, it is important 1783 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1784 * logical interface will not cause critical broadcast IRE's to be deleted. 1785 */ 1786 ire_t ** 1787 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1788 int match_flags) 1789 { 1790 ire_t *ire; 1791 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1792 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1793 1794 /* 1795 * No broadcast IREs for the LOOPBACK interface 1796 * or others such as point to point and IPIF_NOXMIT. 1797 */ 1798 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1799 (ipif->ipif_flags & IPIF_NOXMIT)) 1800 return (irep); 1801 1802 /* If this would be a duplicate, don't bother. */ 1803 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1804 ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) { 1805 /* 1806 * We look for non-deprecated (and non-anycast, non-nolocal) 1807 * ipifs as the best choice. ipifs with check_flags matching 1808 * (deprecated, etc) are used only if non-deprecated ipifs 1809 * are not available. if the existing ire's ipif is deprecated 1810 * and the new ipif is non-deprecated, switch to the new ipif 1811 */ 1812 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1813 (ipif->ipif_flags & check_flags)) { 1814 ire_refrele(ire); 1815 return (irep); 1816 } 1817 /* 1818 * Bcast ires exist in pairs. Both have to be deleted, 1819 * Since we are exclusive we can make the above assertion. 1820 * The 1st has to be refrele'd since it was ctable_lookup'd. 1821 */ 1822 ASSERT(IAM_WRITER_IPIF(ipif)); 1823 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 1824 ire_delete(ire->ire_next); 1825 ire_delete(ire); 1826 ire_refrele(ire); 1827 } 1828 1829 irep = ire_create_bcast(ipif, addr, irep); 1830 1831 return (irep); 1832 } 1833 1834 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 1835 1836 /* 1837 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 1838 * It leaves all the verifying and deleting to those routines. So it always 1839 * creates 2 bcast ires and chains them into the ire array passed in. 1840 */ 1841 ire_t ** 1842 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 1843 { 1844 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1845 1846 *irep++ = ire_create( 1847 (uchar_t *)&addr, /* dest addr */ 1848 (uchar_t *)&ip_g_all_ones, /* mask */ 1849 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 1850 NULL, /* no gateway */ 1851 &ipif->ipif_mtu, /* max frag */ 1852 NULL, /* no src nce */ 1853 ipif->ipif_rq, /* recv-from queue */ 1854 ipif->ipif_wq, /* send-to queue */ 1855 IRE_BROADCAST, 1856 ipif, 1857 0, 1858 0, 1859 0, 1860 0, 1861 &ire_uinfo_null, 1862 NULL, 1863 NULL, 1864 ipst); 1865 1866 *irep++ = ire_create( 1867 (uchar_t *)&addr, /* dest address */ 1868 (uchar_t *)&ip_g_all_ones, /* mask */ 1869 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 1870 NULL, /* no gateway */ 1871 &ip_loopback_mtu, /* max frag size */ 1872 NULL, /* no src_nce */ 1873 ipif->ipif_rq, /* recv-from queue */ 1874 NULL, /* no send-to queue */ 1875 IRE_BROADCAST, /* Needed for fanout in wput */ 1876 ipif, 1877 0, 1878 0, 1879 0, 1880 0, 1881 &ire_uinfo_null, 1882 NULL, 1883 NULL, 1884 ipst); 1885 1886 return (irep); 1887 } 1888 1889 /* 1890 * ire_walk routine to delete or update any IRE_CACHE that might contain 1891 * stale information. 1892 * The flags state which entries to delete or update. 1893 * Garbage collection is done separately using kmem alloc callbacks to 1894 * ip_trash_ire_reclaim. 1895 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 1896 * since other stale information is cleaned up using NUD. 1897 */ 1898 void 1899 ire_expire(ire_t *ire, char *arg) 1900 { 1901 ire_expire_arg_t *ieap = (ire_expire_arg_t *)(uintptr_t)arg; 1902 ill_t *stq_ill; 1903 int flush_flags = ieap->iea_flush_flag; 1904 ip_stack_t *ipst = ieap->iea_ipst; 1905 1906 if ((flush_flags & FLUSH_REDIRECT_TIME) && 1907 (ire->ire_flags & RTF_DYNAMIC)) { 1908 /* Make sure we delete the corresponding IRE_CACHE */ 1909 ip1dbg(("ire_expire: all redirects\n")); 1910 ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst); 1911 ire_delete(ire); 1912 atomic_dec_32(&ipst->ips_ip_redirect_cnt); 1913 return; 1914 } 1915 if (ire->ire_type != IRE_CACHE) 1916 return; 1917 1918 if (flush_flags & FLUSH_ARP_TIME) { 1919 /* 1920 * Remove all IRE_CACHE. 1921 * Verify that create time is more than 1922 * ip_ire_arp_interval milliseconds ago. 1923 */ 1924 if (NCE_EXPIRED(ire->ire_nce, ipst)) { 1925 ire_delete(ire); 1926 return; 1927 } 1928 } 1929 1930 if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 1931 (ire->ire_ipif != NULL)) { 1932 /* Increase pmtu if it is less than the interface mtu */ 1933 mutex_enter(&ire->ire_lock); 1934 /* 1935 * If the ipif is a vni (whose mtu is 0, since it's virtual) 1936 * get the mtu from the sending interfaces' ipif 1937 */ 1938 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 1939 stq_ill = ire->ire_stq->q_ptr; 1940 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 1941 IP_MAXPACKET); 1942 } else { 1943 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 1944 IP_MAXPACKET); 1945 } 1946 ire->ire_frag_flag |= IPH_DF; 1947 mutex_exit(&ire->ire_lock); 1948 } 1949 } 1950 1951 /* 1952 * Return any local address. We use this to target ourselves 1953 * when the src address was specified as 'default'. 1954 * Preference for IRE_LOCAL entries. 1955 */ 1956 ire_t * 1957 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst) 1958 { 1959 ire_t *ire; 1960 irb_t *irb; 1961 ire_t *maybe = NULL; 1962 int i; 1963 1964 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 1965 irb = &ipst->ips_ip_cache_table[i]; 1966 if (irb->irb_ire == NULL) 1967 continue; 1968 rw_enter(&irb->irb_lock, RW_READER); 1969 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1970 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 1971 (ire->ire_zoneid != zoneid && 1972 ire->ire_zoneid != ALL_ZONES)) 1973 continue; 1974 switch (ire->ire_type) { 1975 case IRE_LOOPBACK: 1976 if (maybe == NULL) { 1977 IRE_REFHOLD(ire); 1978 maybe = ire; 1979 } 1980 break; 1981 case IRE_LOCAL: 1982 if (maybe != NULL) { 1983 ire_refrele(maybe); 1984 } 1985 IRE_REFHOLD(ire); 1986 rw_exit(&irb->irb_lock); 1987 return (ire); 1988 } 1989 } 1990 rw_exit(&irb->irb_lock); 1991 } 1992 return (maybe); 1993 } 1994 1995 /* 1996 * If the specified IRE is associated with a particular ILL, return 1997 * that ILL pointer (May be called as writer.). 1998 * 1999 * NOTE : This is not a generic function that can be used always. 2000 * This function always returns the ill of the outgoing packets 2001 * if this ire is used. 2002 */ 2003 ill_t * 2004 ire_to_ill(const ire_t *ire) 2005 { 2006 ill_t *ill = NULL; 2007 2008 /* 2009 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 2010 * the source address from. ire_stq is the one where the 2011 * packets will be sent out on. We return that here. 2012 * 2013 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 2014 * copy and they always exist next to each other with loopback 2015 * copy being the first one. If we are called on the non-loopback 2016 * copy, return the one pointed by ire_stq. If it was called on 2017 * a loopback copy, we still return the one pointed by the next 2018 * ire's ire_stq pointer i.e the one pointed by the non-loopback 2019 * copy. We don't want use ire_ipif as it might represent the 2020 * source address (if we borrow source addresses for 2021 * IRE_BROADCASTS in the future). 2022 * However if an interface is currently coming up, the above 2023 * condition may not hold during that period since the ires 2024 * are added one at a time. Thus one of the pair could have been 2025 * added and the other not yet added. 2026 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill. 2027 * 4) For all others return the ones pointed by ire_ipif->ipif_ill. 2028 * That handles IRE_LOOPBACK. 2029 */ 2030 2031 if (ire->ire_type == IRE_CACHE) { 2032 ill = (ill_t *)ire->ire_stq->q_ptr; 2033 } else if (ire->ire_type == IRE_BROADCAST) { 2034 if (ire->ire_stq != NULL) { 2035 ill = (ill_t *)ire->ire_stq->q_ptr; 2036 } else { 2037 ire_t *ire_next; 2038 2039 ire_next = ire->ire_next; 2040 if (ire_next != NULL && 2041 ire_next->ire_type == IRE_BROADCAST && 2042 ire_next->ire_addr == ire->ire_addr && 2043 ire_next->ire_ipif == ire->ire_ipif) { 2044 ill = (ill_t *)ire_next->ire_stq->q_ptr; 2045 } 2046 } 2047 } else if (ire->ire_rfq != NULL) { 2048 ill = ire->ire_rfq->q_ptr; 2049 } else if (ire->ire_ipif != NULL) { 2050 ill = ire->ire_ipif->ipif_ill; 2051 } 2052 return (ill); 2053 } 2054 2055 /* Arrange to call the specified function for every IRE in the world. */ 2056 void 2057 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 2058 { 2059 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 2060 } 2061 2062 void 2063 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 2064 { 2065 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 2066 } 2067 2068 void 2069 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 2070 { 2071 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 2072 } 2073 2074 /* 2075 * Walk a particular version. version == 0 means both v4 and v6. 2076 */ 2077 static void 2078 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 2079 ip_stack_t *ipst) 2080 { 2081 if (vers != IPV6_VERSION) { 2082 /* 2083 * ip_forwarding_table variable doesn't matter for IPv4 since 2084 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 2085 */ 2086 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 2087 0, NULL, 2088 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 2089 NULL, zoneid, ipst); 2090 } 2091 if (vers != IPV4_VERSION) { 2092 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 2093 ipst->ips_ip6_ftable_hash_size, 2094 ipst->ips_ip_forwarding_table_v6, 2095 ipst->ips_ip6_cache_table_size, 2096 ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst); 2097 } 2098 } 2099 2100 /* 2101 * Arrange to call the specified 2102 * function for every IRE that matches the ill. 2103 */ 2104 void 2105 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2106 ill_t *ill) 2107 { 2108 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); 2109 } 2110 2111 void 2112 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2113 ill_t *ill) 2114 { 2115 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2116 ill); 2117 } 2118 2119 void 2120 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2121 ill_t *ill) 2122 { 2123 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2124 ill); 2125 } 2126 2127 /* 2128 * Walk a particular ill and version. version == 0 means both v4 and v6. 2129 */ 2130 static void 2131 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2132 void *arg, uchar_t vers, ill_t *ill) 2133 { 2134 ip_stack_t *ipst = ill->ill_ipst; 2135 2136 if (vers != IPV6_VERSION) { 2137 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2138 IP_MASK_TABLE_SIZE, 0, 2139 NULL, ipst->ips_ip_cache_table_size, 2140 ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst); 2141 } 2142 if (vers != IPV4_VERSION) { 2143 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2144 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 2145 ipst->ips_ip_forwarding_table_v6, 2146 ipst->ips_ip6_cache_table_size, 2147 ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst); 2148 } 2149 } 2150 2151 boolean_t 2152 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2153 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 2154 { 2155 ill_t *ire_stq_ill = NULL; 2156 ill_t *ire_ipif_ill = NULL; 2157 ill_group_t *ire_ill_group = NULL; 2158 2159 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2160 /* 2161 * MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2162 * pointed by ire_stq and ire_ipif. Only in the case of 2163 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2164 * different ills. But we want to keep this function generic 2165 * enough for future use. So, we always try to match on both. 2166 * The only caller of this function ire_walk_ill_tables, will 2167 * call "func" after we return from this function. We expect 2168 * "func" to do the right filtering of ires in this case. 2169 * 2170 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2171 * pointed by ire_stq and ire_ipif should always be the same. 2172 * So, we just match on only one of them. 2173 */ 2174 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2175 if (ire->ire_stq != NULL) 2176 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2177 if (ire->ire_ipif != NULL) 2178 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2179 if (ire_stq_ill != NULL) 2180 ire_ill_group = ire_stq_ill->ill_group; 2181 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2182 ire_ill_group = ire_ipif_ill->ill_group; 2183 } 2184 2185 if (zoneid != ALL_ZONES) { 2186 /* 2187 * We're walking the IREs for a specific zone. The only relevant 2188 * IREs are: 2189 * - all IREs with a matching ire_zoneid 2190 * - all IRE_OFFSUBNETs as they're shared across all zones 2191 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2192 * with a matching zone 2193 * - IRE_DEFAULTs with a gateway reachable from the zone 2194 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2195 * using the same rule; but the above rules are consistent with 2196 * the behavior of ire_ftable_lookup[_v6]() so that all the 2197 * routes that can be matched during lookup are also matched 2198 * here. 2199 */ 2200 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2201 /* 2202 * Note, IRE_INTERFACE can have the stq as NULL. For 2203 * example, if the default multicast route is tied to 2204 * the loopback address. 2205 */ 2206 if ((ire->ire_type & IRE_INTERFACE) && 2207 (ire->ire_stq != NULL)) { 2208 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2209 if (ire->ire_ipversion == IPV4_VERSION) { 2210 if (!ipif_usesrc_avail(ire_stq_ill, 2211 zoneid)) 2212 /* No usable src addr in zone */ 2213 return (B_FALSE); 2214 } else if (ire_stq_ill->ill_usesrc_ifindex 2215 != 0) { 2216 /* 2217 * For IPv6 use ipif_select_source_v6() 2218 * so the right scope selection is done 2219 */ 2220 ipif_t *src_ipif; 2221 src_ipif = 2222 ipif_select_source_v6(ire_stq_ill, 2223 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2224 IPV6_PREFER_SRC_DEFAULT, 2225 zoneid); 2226 if (src_ipif != NULL) { 2227 ipif_refrele(src_ipif); 2228 } else { 2229 return (B_FALSE); 2230 } 2231 } else { 2232 return (B_FALSE); 2233 } 2234 2235 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2236 return (B_FALSE); 2237 } 2238 } 2239 2240 /* 2241 * Match all default routes from the global zone, irrespective 2242 * of reachability. For a non-global zone only match those 2243 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2244 */ 2245 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2246 int ire_match_flags = 0; 2247 in6_addr_t gw_addr_v6; 2248 ire_t *rire; 2249 2250 ire_match_flags |= MATCH_IRE_TYPE; 2251 if (ire->ire_ipif != NULL) { 2252 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2253 } 2254 if (ire->ire_ipversion == IPV4_VERSION) { 2255 rire = ire_route_lookup(ire->ire_gateway_addr, 2256 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2257 zoneid, NULL, ire_match_flags, ipst); 2258 } else { 2259 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2260 mutex_enter(&ire->ire_lock); 2261 gw_addr_v6 = ire->ire_gateway_addr_v6; 2262 mutex_exit(&ire->ire_lock); 2263 rire = ire_route_lookup_v6(&gw_addr_v6, 2264 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2265 NULL, zoneid, NULL, ire_match_flags, ipst); 2266 } 2267 if (rire == NULL) { 2268 return (B_FALSE); 2269 } 2270 ire_refrele(rire); 2271 } 2272 } 2273 2274 if (((!(match_flags & MATCH_IRE_TYPE)) || 2275 (ire->ire_type & ire_type)) && 2276 ((!(match_flags & MATCH_IRE_ILL)) || 2277 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2278 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2279 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2280 (ire_ill_group != NULL && 2281 ire_ill_group == ill->ill_group))) { 2282 return (B_TRUE); 2283 } 2284 return (B_FALSE); 2285 } 2286 2287 int 2288 rtfunc(struct radix_node *rn, void *arg) 2289 { 2290 struct rtfuncarg *rtf = arg; 2291 struct rt_entry *rt; 2292 irb_t *irb; 2293 ire_t *ire; 2294 boolean_t ret; 2295 2296 rt = (struct rt_entry *)rn; 2297 ASSERT(rt != NULL); 2298 irb = &rt->rt_irb; 2299 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2300 if ((rtf->rt_match_flags != 0) || 2301 (rtf->rt_zoneid != ALL_ZONES)) { 2302 ret = ire_walk_ill_match(rtf->rt_match_flags, 2303 rtf->rt_ire_type, ire, 2304 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 2305 } else 2306 ret = B_TRUE; 2307 if (ret) 2308 (*rtf->rt_func)(ire, rtf->rt_arg); 2309 } 2310 return (0); 2311 } 2312 2313 /* 2314 * Walk the ftable and the ctable entries that match the ill. 2315 */ 2316 void 2317 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2318 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2319 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid, 2320 ip_stack_t *ipst) 2321 { 2322 irb_t *irb_ptr; 2323 irb_t *irb; 2324 ire_t *ire; 2325 int i, j; 2326 boolean_t ret; 2327 struct rtfuncarg rtfarg; 2328 2329 ASSERT((!(match_flags & (MATCH_IRE_ILL | 2330 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2331 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2332 /* 2333 * Optimize by not looking at the forwarding table if there 2334 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2335 * specified in ire_type. 2336 */ 2337 if (!(match_flags & MATCH_IRE_TYPE) || 2338 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2339 /* knobs such that routine is called only for v6 case */ 2340 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 2341 for (i = (ftbl_sz - 1); i >= 0; i--) { 2342 if ((irb_ptr = ipftbl[i]) == NULL) 2343 continue; 2344 for (j = 0; j < htbl_sz; j++) { 2345 irb = &irb_ptr[j]; 2346 if (irb->irb_ire == NULL) 2347 continue; 2348 2349 IRB_REFHOLD(irb); 2350 for (ire = irb->irb_ire; ire != NULL; 2351 ire = ire->ire_next) { 2352 if (match_flags == 0 && 2353 zoneid == ALL_ZONES) { 2354 ret = B_TRUE; 2355 } else { 2356 ret = 2357 ire_walk_ill_match( 2358 match_flags, 2359 ire_type, ire, ill, 2360 zoneid, ipst); 2361 } 2362 if (ret) 2363 (*func)(ire, arg); 2364 } 2365 IRB_REFRELE(irb); 2366 } 2367 } 2368 } else { 2369 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2370 rtfarg.rt_func = func; 2371 rtfarg.rt_arg = arg; 2372 if (match_flags != 0) { 2373 rtfarg.rt_match_flags = match_flags; 2374 } 2375 rtfarg.rt_ire_type = ire_type; 2376 rtfarg.rt_ill = ill; 2377 rtfarg.rt_zoneid = zoneid; 2378 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 2379 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 2380 ipst->ips_ip_ftable, 2381 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 2382 } 2383 } 2384 2385 /* 2386 * Optimize by not looking at the cache table if there 2387 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2388 * specified in ire_type. 2389 */ 2390 if (!(match_flags & MATCH_IRE_TYPE) || 2391 ((ire_type & IRE_CACHETABLE) != 0)) { 2392 for (i = 0; i < ctbl_sz; i++) { 2393 irb = &ipctbl[i]; 2394 if (irb->irb_ire == NULL) 2395 continue; 2396 IRB_REFHOLD(irb); 2397 for (ire = irb->irb_ire; ire != NULL; 2398 ire = ire->ire_next) { 2399 if (match_flags == 0 && zoneid == ALL_ZONES) { 2400 ret = B_TRUE; 2401 } else { 2402 ret = ire_walk_ill_match( 2403 match_flags, ire_type, 2404 ire, ill, zoneid, ipst); 2405 } 2406 if (ret) 2407 (*func)(ire, arg); 2408 } 2409 IRB_REFRELE(irb); 2410 } 2411 } 2412 } 2413 2414 /* 2415 * This function takes a mask and returns 2416 * number of bits set in the mask. If no 2417 * bit is set it returns 0. 2418 * Assumes a contiguous mask. 2419 */ 2420 int 2421 ip_mask_to_plen(ipaddr_t mask) 2422 { 2423 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2424 } 2425 2426 /* 2427 * Convert length for a mask to the mask. 2428 */ 2429 ipaddr_t 2430 ip_plen_to_mask(uint_t masklen) 2431 { 2432 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2433 } 2434 2435 void 2436 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2437 { 2438 ill_t *ill_list[NUM_ILLS]; 2439 ip_stack_t *ipst = ire->ire_ipst; 2440 2441 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2442 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2443 ill_unlock_ills(ill_list, NUM_ILLS); 2444 rw_exit(&irb_ptr->irb_lock); 2445 rw_exit(&ipst->ips_ill_g_usesrc_lock); 2446 } 2447 2448 /* 2449 * ire_add_v[46] atomically make sure that the ipif or ill associated 2450 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2451 * before adding the ire to the table. This ensures that we don't create 2452 * new IRE_CACHEs with stale values for parameters that are passed to 2453 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2454 * to the ipif_mtu, and not the value. The actual value is derived from the 2455 * parent ire or ipif under the bucket lock. 2456 */ 2457 int 2458 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2459 ipsq_func_t func) 2460 { 2461 ill_t *stq_ill; 2462 ill_t *ipif_ill; 2463 ill_t *ill_list[NUM_ILLS]; 2464 int cnt = NUM_ILLS; 2465 int error = 0; 2466 ill_t *ill = NULL; 2467 ip_stack_t *ipst = ire->ire_ipst; 2468 2469 ill_list[0] = stq_ill = ire->ire_stq != 2470 NULL ? ire->ire_stq->q_ptr : NULL; 2471 ill_list[1] = ipif_ill = ire->ire_ipif != 2472 NULL ? ire->ire_ipif->ipif_ill : NULL; 2473 2474 ASSERT((q != NULL && mp != NULL && func != NULL) || 2475 (q == NULL && mp == NULL && func == NULL)); 2476 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 2477 GRAB_CONN_LOCK(q); 2478 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 2479 ill_lock_ills(ill_list, cnt); 2480 2481 /* 2482 * While the IRE is in the process of being added, a user may have 2483 * invoked the ifconfig usesrc option on the stq_ill to make it a 2484 * usesrc client ILL. Check for this possibility here, if it is true 2485 * then we fail adding the IRE_CACHE. Another check is to make sure 2486 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 2487 * group. The ill_g_usesrc_lock is released in ire_atomic_end 2488 */ 2489 if ((ire->ire_type & IRE_CACHE) && 2490 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 2491 if (stq_ill->ill_usesrc_ifindex != 0) { 2492 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 2493 if ((ipif_ill->ill_phyint->phyint_ifindex != 2494 stq_ill->ill_usesrc_ifindex) || 2495 (ipif_ill->ill_usesrc_grp_next == NULL) || 2496 (ipif_ill->ill_usesrc_ifindex != 0)) { 2497 error = EINVAL; 2498 goto done; 2499 } 2500 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 2501 error = EINVAL; 2502 goto done; 2503 } 2504 } 2505 2506 /* 2507 * IPMP flag settings happen without taking the exclusive route 2508 * in ip_sioctl_flags. So we need to make an atomic check here 2509 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 2510 * FAILBACK=no case. 2511 */ 2512 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 2513 if (stq_ill->ill_state_flags & ILL_CHANGING) { 2514 ill = stq_ill; 2515 error = EAGAIN; 2516 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2517 (ill_is_probeonly(stq_ill) && 2518 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2519 error = EINVAL; 2520 } 2521 goto done; 2522 } 2523 2524 /* 2525 * We don't check for OFFLINE/FAILED in this case because 2526 * the source address selection logic (ipif_select_source) 2527 * may still select a source address from such an ill. The 2528 * assumption is that these addresses will be moved by in.mpathd 2529 * soon. (i.e. this is a race). However link local addresses 2530 * will not move and hence ipif_select_source_v6 tries to avoid 2531 * FAILED ills. Please see ipif_select_source_v6 for more info 2532 */ 2533 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 2534 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 2535 ill = ipif_ill; 2536 error = EAGAIN; 2537 goto done; 2538 } 2539 2540 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 2541 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 2542 ill = ire->ire_ipif->ipif_ill; 2543 ASSERT(ill != NULL); 2544 error = EAGAIN; 2545 goto done; 2546 } 2547 2548 done: 2549 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 2550 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 2551 mutex_enter(&ipsq->ipsq_lock); 2552 ire_atomic_end(irb_ptr, ire); 2553 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 2554 mutex_exit(&ipsq->ipsq_lock); 2555 error = EINPROGRESS; 2556 } else if (error != 0) { 2557 ire_atomic_end(irb_ptr, ire); 2558 } 2559 2560 RELEASE_CONN_LOCK(q); 2561 return (error); 2562 } 2563 2564 /* 2565 * Add a fully initialized IRE to an appropriate table based on 2566 * ire_type. 2567 * 2568 * allow_unresolved == B_FALSE indicates a legacy code-path call 2569 * that has prohibited the addition of incomplete ire's. If this 2570 * parameter is set, and we find an nce that is in a state other 2571 * than ND_REACHABLE, we fail the add. Note that nce_state could be 2572 * something other than ND_REACHABLE if the nce had just expired and 2573 * the ire_create preceding the ire_add added a new ND_INITIAL nce. 2574 */ 2575 int 2576 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 2577 boolean_t allow_unresolved) 2578 { 2579 ire_t *ire1; 2580 ill_t *stq_ill = NULL; 2581 ill_t *ill; 2582 ipif_t *ipif = NULL; 2583 ill_walk_context_t ctx; 2584 ire_t *ire = *irep; 2585 int error; 2586 boolean_t ire_is_mblk = B_FALSE; 2587 tsol_gcgrp_t *gcgrp = NULL; 2588 tsol_gcgrp_addr_t ga; 2589 ip_stack_t *ipst = ire->ire_ipst; 2590 2591 /* get ready for the day when original ire is not created as mblk */ 2592 if (ire->ire_mp != NULL) { 2593 ire_is_mblk = B_TRUE; 2594 /* Copy the ire to a kmem_alloc'ed area */ 2595 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 2596 if (ire1 == NULL) { 2597 ip1dbg(("ire_add: alloc failed\n")); 2598 ire_delete(ire); 2599 *irep = NULL; 2600 return (ENOMEM); 2601 } 2602 ire->ire_marks &= ~IRE_MARK_UNCACHED; 2603 *ire1 = *ire; 2604 ire1->ire_mp = NULL; 2605 ire1->ire_stq_ifindex = 0; 2606 freeb(ire->ire_mp); 2607 ire = ire1; 2608 } 2609 if (ire->ire_stq != NULL) 2610 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2611 2612 if (ire->ire_type == IRE_CACHE) { 2613 /* 2614 * If this interface is FAILED, or INACTIVE or has hit 2615 * the FAILBACK=no case, we create IRE_CACHES marked 2616 * HIDDEN for some special cases e.g. bind to 2617 * IPIF_NOFAILOVER address etc. So, if this interface 2618 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 2619 * not creating hidden ires, we should not allow that. 2620 * This happens because the state of the interface 2621 * changed while we were waiting in ARP. If this is the 2622 * daemon sending probes, the next probe will create 2623 * HIDDEN ires and we will create an ire then. This 2624 * cannot happen with NDP currently because IRE is 2625 * never queued in NDP. But it can happen in the 2626 * future when we have external resolvers with IPv6. 2627 * If the interface gets marked with OFFLINE while we 2628 * are waiting in ARP, don't add the ire. 2629 */ 2630 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2631 (ill_is_probeonly(stq_ill) && 2632 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2633 /* 2634 * We don't know whether it is a valid ipif or not. 2635 * unless we do the check below. So, set it to NULL. 2636 */ 2637 ire->ire_ipif = NULL; 2638 ire_delete(ire); 2639 *irep = NULL; 2640 return (EINVAL); 2641 } 2642 } 2643 2644 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 2645 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 2646 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2647 ill = ILL_START_WALK_ALL(&ctx, ipst); 2648 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2649 mutex_enter(&ill->ill_lock); 2650 if (ill->ill_state_flags & ILL_CONDEMNED) { 2651 mutex_exit(&ill->ill_lock); 2652 continue; 2653 } 2654 /* 2655 * We need to make sure that the ipif is a valid one 2656 * before adding the IRE_CACHE. This happens only 2657 * with IRE_CACHE when there is an external resolver. 2658 * 2659 * We can unplumb a logical interface while the 2660 * packet is waiting in ARP with the IRE. Then, 2661 * later on when we feed the IRE back, the ipif 2662 * has to be re-checked. This can't happen with 2663 * NDP currently, as we never queue the IRE with 2664 * the packet. We always try to recreate the IRE 2665 * when the resolution is completed. But, we do 2666 * it for IPv6 also here so that in future if 2667 * we have external resolvers, it will work without 2668 * any change. 2669 */ 2670 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 2671 if (ipif != NULL) { 2672 ipif_refhold_locked(ipif); 2673 mutex_exit(&ill->ill_lock); 2674 break; 2675 } 2676 mutex_exit(&ill->ill_lock); 2677 } 2678 rw_exit(&ipst->ips_ill_g_lock); 2679 if (ipif == NULL || 2680 (ipif->ipif_isv6 && 2681 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 2682 &ipif->ipif_v6src_addr)) || 2683 (!ipif->ipif_isv6 && 2684 ire->ire_src_addr != ipif->ipif_src_addr) || 2685 ire->ire_zoneid != ipif->ipif_zoneid) { 2686 2687 if (ipif != NULL) 2688 ipif_refrele(ipif); 2689 ire->ire_ipif = NULL; 2690 ire_delete(ire); 2691 *irep = NULL; 2692 return (EINVAL); 2693 } 2694 2695 2696 ASSERT(ill != NULL); 2697 /* 2698 * If this group was dismantled while this packets was 2699 * queued in ARP, don't add it here. 2700 */ 2701 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 2702 /* We don't want ire_inactive bump stats for this */ 2703 ipif_refrele(ipif); 2704 ire->ire_ipif = NULL; 2705 ire_delete(ire); 2706 *irep = NULL; 2707 return (EINVAL); 2708 } 2709 2710 /* 2711 * Since we didn't attach label security attributes to the 2712 * ire for the resolver case, we need to add it now. (only 2713 * for v4 resolver and v6 xresolv case). 2714 */ 2715 if (is_system_labeled() && ire_is_mblk) { 2716 if (ire->ire_ipversion == IPV4_VERSION) { 2717 ga.ga_af = AF_INET; 2718 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 2719 INADDR_ANY ? ire->ire_gateway_addr : 2720 ire->ire_addr, &ga.ga_addr); 2721 } else { 2722 ga.ga_af = AF_INET6; 2723 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 2724 &ire->ire_gateway_addr_v6) ? 2725 ire->ire_addr_v6 : 2726 ire->ire_gateway_addr_v6; 2727 } 2728 gcgrp = gcgrp_lookup(&ga, B_FALSE); 2729 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 2730 NULL, gcgrp); 2731 if (error != 0) { 2732 if (gcgrp != NULL) { 2733 GCGRP_REFRELE(gcgrp); 2734 gcgrp = NULL; 2735 } 2736 ipif_refrele(ipif); 2737 ire->ire_ipif = NULL; 2738 ire_delete(ire); 2739 *irep = NULL; 2740 return (error); 2741 } 2742 } 2743 } 2744 2745 /* 2746 * In case ire was changed 2747 */ 2748 *irep = ire; 2749 if (ire->ire_ipversion == IPV6_VERSION) 2750 error = ire_add_v6(irep, q, mp, func); 2751 else 2752 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 2753 if (ipif != NULL) 2754 ipif_refrele(ipif); 2755 return (error); 2756 } 2757 2758 /* 2759 * Add an initialized IRE to an appropriate table based on ire_type. 2760 * 2761 * The forward table contains IRE_PREFIX/IRE_HOST and 2762 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 2763 * 2764 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 2765 * and IRE_CACHE. 2766 * 2767 * NOTE : This function is called as writer though not required 2768 * by this function. 2769 */ 2770 static int 2771 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 2772 boolean_t allow_unresolved) 2773 { 2774 ire_t *ire1; 2775 irb_t *irb_ptr; 2776 ire_t **irep; 2777 int flags; 2778 ire_t *pire = NULL; 2779 ill_t *stq_ill; 2780 ire_t *ire = *ire_p; 2781 int error; 2782 boolean_t need_refrele = B_FALSE; 2783 nce_t *nce; 2784 ip_stack_t *ipst = ire->ire_ipst; 2785 2786 if (ire->ire_ipif != NULL) 2787 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 2788 if (ire->ire_stq != NULL) 2789 ASSERT(!MUTEX_HELD( 2790 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 2791 ASSERT(ire->ire_ipversion == IPV4_VERSION); 2792 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 2793 2794 /* Find the appropriate list head. */ 2795 switch (ire->ire_type) { 2796 case IRE_HOST: 2797 ire->ire_mask = IP_HOST_MASK; 2798 ire->ire_masklen = IP_ABITS; 2799 if ((ire->ire_flags & RTF_SETSRC) == 0) 2800 ire->ire_src_addr = 0; 2801 break; 2802 case IRE_CACHE: 2803 case IRE_BROADCAST: 2804 case IRE_LOCAL: 2805 case IRE_LOOPBACK: 2806 ire->ire_mask = IP_HOST_MASK; 2807 ire->ire_masklen = IP_ABITS; 2808 break; 2809 case IRE_PREFIX: 2810 if ((ire->ire_flags & RTF_SETSRC) == 0) 2811 ire->ire_src_addr = 0; 2812 break; 2813 case IRE_DEFAULT: 2814 if ((ire->ire_flags & RTF_SETSRC) == 0) 2815 ire->ire_src_addr = 0; 2816 break; 2817 case IRE_IF_RESOLVER: 2818 case IRE_IF_NORESOLVER: 2819 break; 2820 default: 2821 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 2822 (void *)ire, ire->ire_type)); 2823 ire_delete(ire); 2824 *ire_p = NULL; 2825 return (EINVAL); 2826 } 2827 2828 /* Make sure the address is properly masked. */ 2829 ire->ire_addr &= ire->ire_mask; 2830 2831 /* 2832 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 2833 * of the interface route while adding an IRE_CACHE for an on-link 2834 * destination in the IRE_IF_RESOLVER case, since the ire has to 2835 * go to ARP and return. We can't do a REFHOLD on the 2836 * associated interface ire for fear of ARP freeing the message. 2837 * Here we look up the interface ire in the forwarding table and 2838 * make sure that the interface route has not been deleted. 2839 */ 2840 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 2841 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 2842 2843 ASSERT(ire->ire_max_fragp == NULL); 2844 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 2845 /* 2846 * The ihandle that we used in ip_newroute_multi 2847 * comes from the interface route corresponding 2848 * to ire_ipif. Lookup here to see if it exists 2849 * still. 2850 * If the ire has a source address assigned using 2851 * RTF_SETSRC, ire_ipif is the logical interface holding 2852 * this source address, so we can't use it to check for 2853 * the existence of the interface route. Instead we rely 2854 * on the brute force ihandle search in 2855 * ire_ihandle_lookup_onlink() below. 2856 */ 2857 pire = ipif_to_ire(ire->ire_ipif); 2858 if (pire == NULL) { 2859 ire_delete(ire); 2860 *ire_p = NULL; 2861 return (EINVAL); 2862 } else if (pire->ire_ihandle != ire->ire_ihandle) { 2863 ire_refrele(pire); 2864 ire_delete(ire); 2865 *ire_p = NULL; 2866 return (EINVAL); 2867 } 2868 } else { 2869 pire = ire_ihandle_lookup_onlink(ire); 2870 if (pire == NULL) { 2871 ire_delete(ire); 2872 *ire_p = NULL; 2873 return (EINVAL); 2874 } 2875 } 2876 /* Prevent pire from getting deleted */ 2877 IRB_REFHOLD(pire->ire_bucket); 2878 /* Has it been removed already ? */ 2879 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 2880 IRB_REFRELE(pire->ire_bucket); 2881 ire_refrele(pire); 2882 ire_delete(ire); 2883 *ire_p = NULL; 2884 return (EINVAL); 2885 } 2886 } else { 2887 ASSERT(ire->ire_max_fragp != NULL); 2888 } 2889 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 2890 2891 if (ire->ire_ipif != NULL) { 2892 /* 2893 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 2894 * for historic reasons and to maintain symmetry with 2895 * IPv6 code path. Historically this was used by 2896 * multicast code to create multiple IRE_CACHES on 2897 * a single ill with different ipifs. This was used 2898 * so that multicast packets leaving the node had the 2899 * right source address. This is no longer needed as 2900 * ip_wput initializes the address correctly. 2901 */ 2902 flags |= MATCH_IRE_IPIF; 2903 /* 2904 * If we are creating hidden ires, make sure we search on 2905 * this ill (MATCH_IRE_ILL) and a hidden ire, 2906 * while we are searching for duplicates below. Otherwise we 2907 * could potentially find an IRE on some other interface 2908 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 2909 * shouldn't do this as this will lead to an infinite loop 2910 * (if we get to ip_wput again) eventually we need an hidden 2911 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 2912 * done below. 2913 */ 2914 if (ire->ire_type == IRE_CACHE && 2915 (ire->ire_marks & IRE_MARK_HIDDEN)) 2916 flags |= (MATCH_IRE_MARK_HIDDEN); 2917 } 2918 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 2919 irb_ptr = ire_get_bucket(ire); 2920 need_refrele = B_TRUE; 2921 if (irb_ptr == NULL) { 2922 /* 2923 * This assumes that the ire has not added 2924 * a reference to the ipif. 2925 */ 2926 ire->ire_ipif = NULL; 2927 ire_delete(ire); 2928 if (pire != NULL) { 2929 IRB_REFRELE(pire->ire_bucket); 2930 ire_refrele(pire); 2931 } 2932 *ire_p = NULL; 2933 return (EINVAL); 2934 } 2935 } else { 2936 irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH( 2937 ire->ire_addr, ipst->ips_ip_cache_table_size)]); 2938 } 2939 2940 /* 2941 * Start the atomic add of the ire. Grab the ill locks, 2942 * ill_g_usesrc_lock and the bucket lock. Check for condemned 2943 * 2944 * If ipif or ill is changing ire_atomic_start() may queue the 2945 * request and return EINPROGRESS. 2946 * To avoid lock order problems, get the ndp4->ndp_g_lock. 2947 */ 2948 mutex_enter(&ipst->ips_ndp4->ndp_g_lock); 2949 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 2950 if (error != 0) { 2951 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2952 /* 2953 * We don't know whether it is a valid ipif or not. 2954 * So, set it to NULL. This assumes that the ire has not added 2955 * a reference to the ipif. 2956 */ 2957 ire->ire_ipif = NULL; 2958 ire_delete(ire); 2959 if (pire != NULL) { 2960 IRB_REFRELE(pire->ire_bucket); 2961 ire_refrele(pire); 2962 } 2963 *ire_p = NULL; 2964 if (need_refrele) 2965 IRB_REFRELE(irb_ptr); 2966 return (error); 2967 } 2968 /* 2969 * To avoid creating ires having stale values for the ire_max_frag 2970 * we get the latest value atomically here. For more details 2971 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 2972 * in ip_rput_dlpi_writer 2973 */ 2974 if (ire->ire_max_fragp == NULL) { 2975 if (CLASSD(ire->ire_addr)) 2976 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 2977 else 2978 ire->ire_max_frag = pire->ire_max_frag; 2979 } else { 2980 uint_t max_frag; 2981 2982 max_frag = *ire->ire_max_fragp; 2983 ire->ire_max_fragp = NULL; 2984 ire->ire_max_frag = max_frag; 2985 } 2986 /* 2987 * Atomically check for duplicate and insert in the table. 2988 */ 2989 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 2990 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 2991 continue; 2992 if (ire->ire_ipif != NULL) { 2993 /* 2994 * We do MATCH_IRE_ILL implicitly here for IREs 2995 * with a non-null ire_ipif, including IRE_CACHEs. 2996 * As ire_ipif and ire_stq could point to two 2997 * different ills, we can't pass just ire_ipif to 2998 * ire_match_args and get a match on both ills. 2999 * This is just needed for duplicate checks here and 3000 * so we don't add an extra argument to 3001 * ire_match_args for this. Do it locally. 3002 * 3003 * NOTE : Currently there is no part of the code 3004 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 3005 * match for IRE_CACHEs. Thus we don't want to 3006 * extend the arguments to ire_match_args. 3007 */ 3008 if (ire1->ire_stq != ire->ire_stq) 3009 continue; 3010 /* 3011 * Multiroute IRE_CACHEs for a given destination can 3012 * have the same ire_ipif, typically if their source 3013 * address is forced using RTF_SETSRC, and the same 3014 * send-to queue. We differentiate them using the parent 3015 * handle. 3016 */ 3017 if (ire->ire_type == IRE_CACHE && 3018 (ire1->ire_flags & RTF_MULTIRT) && 3019 (ire->ire_flags & RTF_MULTIRT) && 3020 (ire1->ire_phandle != ire->ire_phandle)) 3021 continue; 3022 } 3023 if (ire1->ire_zoneid != ire->ire_zoneid) 3024 continue; 3025 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 3026 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 3027 ire->ire_zoneid, 0, NULL, flags)) { 3028 /* 3029 * Return the old ire after doing a REFHOLD. 3030 * As most of the callers continue to use the IRE 3031 * after adding, we return a held ire. This will 3032 * avoid a lookup in the caller again. If the callers 3033 * don't want to use it, they need to do a REFRELE. 3034 */ 3035 ip1dbg(("found dup ire existing %p new %p", 3036 (void *)ire1, (void *)ire)); 3037 IRE_REFHOLD(ire1); 3038 ire_atomic_end(irb_ptr, ire); 3039 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3040 ire_delete(ire); 3041 if (pire != NULL) { 3042 /* 3043 * Assert that it is not removed from the 3044 * list yet. 3045 */ 3046 ASSERT(pire->ire_ptpn != NULL); 3047 IRB_REFRELE(pire->ire_bucket); 3048 ire_refrele(pire); 3049 } 3050 *ire_p = ire1; 3051 if (need_refrele) 3052 IRB_REFRELE(irb_ptr); 3053 return (0); 3054 } 3055 } 3056 if (ire->ire_type & IRE_CACHE) { 3057 ASSERT(ire->ire_stq != NULL); 3058 nce = ndp_lookup_v4(ire_to_ill(ire), 3059 ((ire->ire_gateway_addr != INADDR_ANY) ? 3060 &ire->ire_gateway_addr : &ire->ire_addr), 3061 B_TRUE); 3062 if (nce != NULL) 3063 mutex_enter(&nce->nce_lock); 3064 /* 3065 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 3066 * and the caller has prohibited the addition of incomplete 3067 * ire's, we fail the add. Note that nce_state could be 3068 * something other than ND_REACHABLE if the nce had 3069 * just expired and the ire_create preceding the 3070 * ire_add added a new ND_INITIAL nce. 3071 */ 3072 if ((nce == NULL) || 3073 (nce->nce_flags & NCE_F_CONDEMNED) || 3074 (!allow_unresolved && 3075 (nce->nce_state != ND_REACHABLE))) { 3076 if (nce != NULL) { 3077 DTRACE_PROBE1(ire__bad__nce, nce_t *, nce); 3078 mutex_exit(&nce->nce_lock); 3079 } 3080 ire_atomic_end(irb_ptr, ire); 3081 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3082 if (nce != NULL) 3083 NCE_REFRELE(nce); 3084 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 3085 ire_delete(ire); 3086 if (pire != NULL) { 3087 IRB_REFRELE(pire->ire_bucket); 3088 ire_refrele(pire); 3089 } 3090 *ire_p = NULL; 3091 if (need_refrele) 3092 IRB_REFRELE(irb_ptr); 3093 return (EINVAL); 3094 } else { 3095 ire->ire_nce = nce; 3096 mutex_exit(&nce->nce_lock); 3097 /* 3098 * We are associating this nce to the ire, so 3099 * change the nce ref taken in ndp_lookup_v4() from 3100 * NCE_REFHOLD to NCE_REFHOLD_NOTR 3101 */ 3102 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 3103 } 3104 } 3105 /* 3106 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 3107 * grouping identical addresses together on the hash chain. We also 3108 * don't want to send multiple copies out if there are two ills part 3109 * of the same group. Thus we group the ires with same addr and same 3110 * ill group together so that ip_wput_ire can easily skip all the 3111 * ires with same addr and same group after sending the first copy. 3112 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3113 * interested in such groupings only for broadcasts. 3114 * 3115 * NOTE : If the interfaces are brought up first and then grouped, 3116 * illgrp_insert will handle it. We come here when the interfaces 3117 * are already in group and we are bringing them UP. 3118 * 3119 * Find the first entry that matches ire_addr. *irep will be null 3120 * if no match. 3121 * 3122 * Note: the loopback and non-loopback broadcast entries for an 3123 * interface MUST be added before any MULTIRT entries. 3124 */ 3125 irep = (ire_t **)irb_ptr; 3126 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3127 irep = &ire1->ire_next; 3128 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3129 /* 3130 * We found some ire (i.e *irep) with a matching addr. We 3131 * want to group ires with same addr and same ill group 3132 * together. 3133 * 3134 * First get to the entry that matches our address and 3135 * ill group i.e stop as soon as we find the first ire 3136 * matching the ill group and address. If there is only 3137 * an address match, we should walk and look for some 3138 * group match. These are some of the possible scenarios : 3139 * 3140 * 1) There are no groups at all i.e all ire's ill_group 3141 * are NULL. In that case we will essentially group 3142 * all the ires with the same addr together. Same as 3143 * the "else" block of this "if". 3144 * 3145 * 2) There are some groups and this ire's ill_group is 3146 * NULL. In this case, we will first find the group 3147 * that matches the address and a NULL group. Then 3148 * we will insert the ire at the end of that group. 3149 * 3150 * 3) There are some groups and this ires's ill_group is 3151 * non-NULL. In this case we will first find the group 3152 * that matches the address and the ill_group. Then 3153 * we will insert the ire at the end of that group. 3154 */ 3155 for (;;) { 3156 ire1 = *irep; 3157 if ((ire1->ire_next == NULL) || 3158 (ire1->ire_next->ire_addr != ire->ire_addr) || 3159 (ire1->ire_type != IRE_BROADCAST) || 3160 (ire1->ire_flags & RTF_MULTIRT) || 3161 (ire1->ire_ipif->ipif_ill->ill_group == 3162 ire->ire_ipif->ipif_ill->ill_group)) 3163 break; 3164 irep = &ire1->ire_next; 3165 } 3166 ASSERT(*irep != NULL); 3167 /* 3168 * The ire will be added before *irep, so 3169 * if irep is a MULTIRT ire, just break to 3170 * ire insertion code. 3171 */ 3172 if (((*irep)->ire_flags & RTF_MULTIRT) != 0) 3173 goto insert_ire; 3174 3175 irep = &((*irep)->ire_next); 3176 3177 /* 3178 * Either we have hit the end of the list or the address 3179 * did not match or the group *matched*. If we found 3180 * a match on the group, skip to the end of the group. 3181 */ 3182 while (*irep != NULL) { 3183 ire1 = *irep; 3184 if ((ire1->ire_addr != ire->ire_addr) || 3185 (ire1->ire_type != IRE_BROADCAST) || 3186 (ire1->ire_ipif->ipif_ill->ill_group != 3187 ire->ire_ipif->ipif_ill->ill_group)) 3188 break; 3189 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3190 ire1->ire_ipif == ire->ire_ipif) { 3191 irep = &ire1->ire_next; 3192 break; 3193 } 3194 irep = &ire1->ire_next; 3195 } 3196 } else if (*irep != NULL) { 3197 /* 3198 * Find the last ire which matches ire_addr. 3199 * Needed to do tail insertion among entries with the same 3200 * ire_addr. 3201 */ 3202 while (ire->ire_addr == ire1->ire_addr) { 3203 irep = &ire1->ire_next; 3204 ire1 = *irep; 3205 if (ire1 == NULL) 3206 break; 3207 } 3208 } 3209 3210 insert_ire: 3211 /* Insert at *irep */ 3212 ire1 = *irep; 3213 if (ire1 != NULL) 3214 ire1->ire_ptpn = &ire->ire_next; 3215 ire->ire_next = ire1; 3216 /* Link the new one in. */ 3217 ire->ire_ptpn = irep; 3218 3219 /* 3220 * ire_walk routines de-reference ire_next without holding 3221 * a lock. Before we point to the new ire, we want to make 3222 * sure the store that sets the ire_next of the new ire 3223 * reaches global visibility, so that ire_walk routines 3224 * don't see a truncated list of ires i.e if the ire_next 3225 * of the new ire gets set after we do "*irep = ire" due 3226 * to re-ordering, the ire_walk thread will see a NULL 3227 * once it accesses the ire_next of the new ire. 3228 * membar_producer() makes sure that the following store 3229 * happens *after* all of the above stores. 3230 */ 3231 membar_producer(); 3232 *irep = ire; 3233 ire->ire_bucket = irb_ptr; 3234 /* 3235 * We return a bumped up IRE above. Keep it symmetrical 3236 * so that the callers will always have to release. This 3237 * helps the callers of this function because they continue 3238 * to use the IRE after adding and hence they don't have to 3239 * lookup again after we return the IRE. 3240 * 3241 * NOTE : We don't have to use atomics as this is appearing 3242 * in the list for the first time and no one else can bump 3243 * up the reference count on this yet. 3244 */ 3245 IRE_REFHOLD_LOCKED(ire); 3246 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 3247 3248 irb_ptr->irb_ire_cnt++; 3249 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3250 irb_ptr->irb_nire++; 3251 3252 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3253 irb_ptr->irb_tmp_ire_cnt++; 3254 3255 if (ire->ire_ipif != NULL) { 3256 ire->ire_ipif->ipif_ire_cnt++; 3257 if (ire->ire_stq != NULL) { 3258 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3259 stq_ill->ill_ire_cnt++; 3260 } 3261 } else { 3262 ASSERT(ire->ire_stq == NULL); 3263 } 3264 3265 ire_atomic_end(irb_ptr, ire); 3266 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3267 3268 if (pire != NULL) { 3269 /* Assert that it is not removed from the list yet */ 3270 ASSERT(pire->ire_ptpn != NULL); 3271 IRB_REFRELE(pire->ire_bucket); 3272 ire_refrele(pire); 3273 } 3274 3275 if (ire->ire_type != IRE_CACHE) { 3276 /* 3277 * For ire's with host mask see if there is an entry 3278 * in the cache. If there is one flush the whole cache as 3279 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3280 * If no entry is found than there is no need to flush the 3281 * cache. 3282 */ 3283 if (ire->ire_mask == IP_HOST_MASK) { 3284 ire_t *lire; 3285 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3286 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3287 if (lire != NULL) { 3288 ire_refrele(lire); 3289 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3290 } 3291 } else { 3292 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3293 } 3294 } 3295 /* 3296 * We had to delay the fast path probe until the ire is inserted 3297 * in the list. Otherwise the fast path ack won't find the ire in 3298 * the table. 3299 */ 3300 if (ire->ire_type == IRE_CACHE || 3301 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) { 3302 ASSERT(ire->ire_nce != NULL); 3303 if (ire->ire_nce->nce_state == ND_REACHABLE) 3304 nce_fastpath(ire->ire_nce); 3305 } 3306 if (ire->ire_ipif != NULL) 3307 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3308 *ire_p = ire; 3309 if (need_refrele) { 3310 IRB_REFRELE(irb_ptr); 3311 } 3312 return (0); 3313 } 3314 3315 /* 3316 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3317 * do the final cleanup for this ire. 3318 */ 3319 void 3320 ire_cleanup(ire_t *ire) 3321 { 3322 ire_t *ire_next; 3323 ip_stack_t *ipst = ire->ire_ipst; 3324 3325 ASSERT(ire != NULL); 3326 3327 while (ire != NULL) { 3328 ire_next = ire->ire_next; 3329 if (ire->ire_ipversion == IPV4_VERSION) { 3330 ire_delete_v4(ire); 3331 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 3332 ire_stats_deleted); 3333 } else { 3334 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3335 ire_delete_v6(ire); 3336 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 3337 ire_stats_deleted); 3338 } 3339 /* 3340 * Now it's really out of the list. Before doing the 3341 * REFRELE, set ire_next to NULL as ire_inactive asserts 3342 * so. 3343 */ 3344 ire->ire_next = NULL; 3345 IRE_REFRELE_NOTR(ire); 3346 ire = ire_next; 3347 } 3348 } 3349 3350 /* 3351 * IRB_REFRELE is the only caller of the function. It calls to unlink 3352 * all the CONDEMNED ires from this bucket. 3353 */ 3354 ire_t * 3355 ire_unlink(irb_t *irb) 3356 { 3357 ire_t *ire; 3358 ire_t *ire1; 3359 ire_t **ptpn; 3360 ire_t *ire_list = NULL; 3361 3362 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3363 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3364 (irb->irb_refcnt == 0)); 3365 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3366 ASSERT(irb->irb_ire != NULL); 3367 3368 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3369 ip_stack_t *ipst = ire->ire_ipst; 3370 3371 ire1 = ire->ire_next; 3372 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3373 ptpn = ire->ire_ptpn; 3374 ire1 = ire->ire_next; 3375 if (ire1) 3376 ire1->ire_ptpn = ptpn; 3377 *ptpn = ire1; 3378 ire->ire_ptpn = NULL; 3379 ire->ire_next = NULL; 3380 if (ire->ire_type == IRE_DEFAULT) { 3381 /* 3382 * IRE is out of the list. We need to adjust 3383 * the accounting before the caller drops 3384 * the lock. 3385 */ 3386 if (ire->ire_ipversion == IPV6_VERSION) { 3387 ASSERT(ipst-> 3388 ips_ipv6_ire_default_count != 3389 0); 3390 ipst->ips_ipv6_ire_default_count--; 3391 } 3392 } 3393 /* 3394 * We need to call ire_delete_v4 or ire_delete_v6 3395 * to clean up the cache or the redirects pointing at 3396 * the default gateway. We need to drop the lock 3397 * as ire_flush_cache/ire_delete_host_redircts require 3398 * so. But we can't drop the lock, as ire_unlink needs 3399 * to atomically remove the ires from the list. 3400 * So, create a temporary list of CONDEMNED ires 3401 * for doing ire_delete_v4/ire_delete_v6 operations 3402 * later on. 3403 */ 3404 ire->ire_next = ire_list; 3405 ire_list = ire; 3406 } 3407 } 3408 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3409 return (ire_list); 3410 } 3411 3412 /* 3413 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3414 * ARP message on any of its interface queue, it scans the nce table and 3415 * deletes and calls ndp_delete() for the appropriate nce. This action 3416 * also deletes all the neighbor/ire cache entries for that address. 3417 * This function is called from ip_arp_news in ip.c and also for 3418 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3419 * true if it finds a nce entry which is used by ip_arp_news to determine if 3420 * it needs to do an ire_walk_v4. The return value is also used for the 3421 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3422 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3423 * ip_if->ipif_ill also needs to be matched. 3424 */ 3425 boolean_t 3426 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst) 3427 { 3428 ill_t *ill; 3429 nce_t *nce; 3430 3431 ill = (ipif ? ipif->ipif_ill : NULL); 3432 3433 if (ill != NULL) { 3434 /* 3435 * clean up the nce (and any relevant ire's) that matches 3436 * on addr and ill. 3437 */ 3438 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3439 if (nce != NULL) { 3440 ndp_delete(nce); 3441 return (B_TRUE); 3442 } 3443 } else { 3444 /* 3445 * ill is wildcard. clean up all nce's and 3446 * ire's that match on addr 3447 */ 3448 nce_clookup_t cl; 3449 3450 cl.ncecl_addr = addr; 3451 cl.ncecl_found = B_FALSE; 3452 3453 ndp_walk_common(ipst->ips_ndp4, NULL, 3454 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3455 3456 /* 3457 * ncecl_found would be set by ip_nce_clookup_and_delete if 3458 * we found a matching nce. 3459 */ 3460 return (cl.ncecl_found); 3461 } 3462 return (B_FALSE); 3463 3464 } 3465 3466 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3467 static void 3468 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 3469 { 3470 nce_clookup_t *cl = (nce_clookup_t *)arg; 3471 ipaddr_t nce_addr; 3472 3473 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 3474 if (nce_addr == cl->ncecl_addr) { 3475 cl->ncecl_found = B_TRUE; 3476 /* clean up the nce (and any relevant ire's) */ 3477 ndp_delete(nce); 3478 } 3479 } 3480 3481 /* 3482 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 3483 * when there are no ire's left in the bucket. Returns TRUE if the bucket 3484 * is deleted and freed. 3485 */ 3486 boolean_t 3487 irb_inactive(irb_t *irb) 3488 { 3489 struct rt_entry *rt; 3490 struct radix_node *rn; 3491 ip_stack_t *ipst = irb->irb_ipst; 3492 3493 ASSERT(irb->irb_ipst != NULL); 3494 3495 rt = IRB2RT(irb); 3496 rn = (struct radix_node *)rt; 3497 3498 /* first remove it from the radix tree. */ 3499 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 3500 rw_enter(&irb->irb_lock, RW_WRITER); 3501 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 3502 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 3503 ipst->ips_ip_ftable); 3504 DTRACE_PROBE1(irb__free, rt_t *, rt); 3505 ASSERT((void *)rn == (void *)rt); 3506 Free(rt, rt_entry_cache); 3507 /* irb_lock is freed */ 3508 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3509 return (B_TRUE); 3510 } 3511 rw_exit(&irb->irb_lock); 3512 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3513 return (B_FALSE); 3514 } 3515 3516 /* 3517 * Delete the specified IRE. 3518 */ 3519 void 3520 ire_delete(ire_t *ire) 3521 { 3522 ire_t *ire1; 3523 ire_t **ptpn; 3524 irb_t *irb; 3525 ip_stack_t *ipst = ire->ire_ipst; 3526 3527 if ((irb = ire->ire_bucket) == NULL) { 3528 /* 3529 * It was never inserted in the list. Should call REFRELE 3530 * to free this IRE. 3531 */ 3532 IRE_REFRELE_NOTR(ire); 3533 return; 3534 } 3535 3536 rw_enter(&irb->irb_lock, RW_WRITER); 3537 3538 if (irb->irb_rr_origin == ire) { 3539 irb->irb_rr_origin = NULL; 3540 } 3541 3542 /* 3543 * In case of V4 we might still be waiting for fastpath ack. 3544 */ 3545 if (ire->ire_ipversion == IPV4_VERSION && 3546 (ire->ire_type == IRE_CACHE || 3547 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) { 3548 ASSERT(ire->ire_nce != NULL); 3549 nce_fastpath_list_delete(ire->ire_nce); 3550 } 3551 3552 if (ire->ire_ptpn == NULL) { 3553 /* 3554 * Some other thread has removed us from the list. 3555 * It should have done the REFRELE for us. 3556 */ 3557 rw_exit(&irb->irb_lock); 3558 return; 3559 } 3560 3561 if (irb->irb_refcnt != 0) { 3562 /* 3563 * The last thread to leave this bucket will 3564 * delete this ire. 3565 */ 3566 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3567 irb->irb_ire_cnt--; 3568 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3569 irb->irb_tmp_ire_cnt--; 3570 ire->ire_marks |= IRE_MARK_CONDEMNED; 3571 } 3572 irb->irb_marks |= IRB_MARK_CONDEMNED; 3573 rw_exit(&irb->irb_lock); 3574 return; 3575 } 3576 3577 /* 3578 * Normally to delete an ire, we walk the bucket. While we 3579 * walk the bucket, we normally bump up irb_refcnt and hence 3580 * we return from above where we mark CONDEMNED and the ire 3581 * gets deleted from ire_unlink. This case is where somebody 3582 * knows the ire e.g by doing a lookup, and wants to delete the 3583 * IRE. irb_refcnt would be 0 in this case if nobody is walking 3584 * the bucket. 3585 */ 3586 ptpn = ire->ire_ptpn; 3587 ire1 = ire->ire_next; 3588 if (ire1 != NULL) 3589 ire1->ire_ptpn = ptpn; 3590 ASSERT(ptpn != NULL); 3591 *ptpn = ire1; 3592 ire->ire_ptpn = NULL; 3593 ire->ire_next = NULL; 3594 if (ire->ire_ipversion == IPV6_VERSION) { 3595 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 3596 } else { 3597 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 3598 } 3599 /* 3600 * ip_wput/ip_wput_v6 checks this flag to see whether 3601 * it should still use the cached ire or not. 3602 */ 3603 ire->ire_marks |= IRE_MARK_CONDEMNED; 3604 if (ire->ire_type == IRE_DEFAULT) { 3605 /* 3606 * IRE is out of the list. We need to adjust the 3607 * accounting before we drop the lock. 3608 */ 3609 if (ire->ire_ipversion == IPV6_VERSION) { 3610 ASSERT(ipst->ips_ipv6_ire_default_count != 0); 3611 ipst->ips_ipv6_ire_default_count--; 3612 } 3613 } 3614 irb->irb_ire_cnt--; 3615 3616 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3617 irb->irb_tmp_ire_cnt--; 3618 rw_exit(&irb->irb_lock); 3619 3620 if (ire->ire_ipversion == IPV6_VERSION) { 3621 ire_delete_v6(ire); 3622 } else { 3623 ire_delete_v4(ire); 3624 } 3625 /* 3626 * We removed it from the list. Decrement the 3627 * reference count. 3628 */ 3629 IRE_REFRELE_NOTR(ire); 3630 } 3631 3632 /* 3633 * Delete the specified IRE. 3634 * All calls should use ire_delete(). 3635 * Sometimes called as writer though not required by this function. 3636 * 3637 * NOTE : This function is called only if the ire was added 3638 * in the list. 3639 */ 3640 static void 3641 ire_delete_v4(ire_t *ire) 3642 { 3643 ip_stack_t *ipst = ire->ire_ipst; 3644 3645 ASSERT(ire->ire_refcnt >= 1); 3646 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3647 3648 if (ire->ire_type != IRE_CACHE) 3649 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 3650 if (ire->ire_type == IRE_DEFAULT) { 3651 /* 3652 * when a default gateway is going away 3653 * delete all the host redirects pointing at that 3654 * gateway. 3655 */ 3656 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 3657 } 3658 } 3659 3660 /* 3661 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 3662 * to free the ire when the reference count goes to zero. 3663 */ 3664 void 3665 ire_inactive(ire_t *ire) 3666 { 3667 nce_t *nce; 3668 ill_t *ill = NULL; 3669 ill_t *stq_ill = NULL; 3670 ipif_t *ipif; 3671 boolean_t need_wakeup = B_FALSE; 3672 irb_t *irb; 3673 ip_stack_t *ipst = ire->ire_ipst; 3674 3675 ASSERT(ire->ire_refcnt == 0); 3676 ASSERT(ire->ire_ptpn == NULL); 3677 ASSERT(ire->ire_next == NULL); 3678 3679 if (ire->ire_gw_secattr != NULL) { 3680 ire_gw_secattr_free(ire->ire_gw_secattr); 3681 ire->ire_gw_secattr = NULL; 3682 } 3683 3684 if (ire->ire_mp != NULL) { 3685 ASSERT(ire->ire_bucket == NULL); 3686 mutex_destroy(&ire->ire_lock); 3687 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3688 if (ire->ire_nce != NULL) 3689 NCE_REFRELE_NOTR(ire->ire_nce); 3690 freeb(ire->ire_mp); 3691 return; 3692 } 3693 3694 if ((nce = ire->ire_nce) != NULL) { 3695 NCE_REFRELE_NOTR(nce); 3696 ire->ire_nce = NULL; 3697 } 3698 3699 if (ire->ire_ipif == NULL) 3700 goto end; 3701 3702 ipif = ire->ire_ipif; 3703 ill = ipif->ipif_ill; 3704 3705 if (ire->ire_bucket == NULL) { 3706 /* The ire was never inserted in the table. */ 3707 goto end; 3708 } 3709 3710 /* 3711 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 3712 * non-null ill_ire_count also goes down by 1. 3713 * 3714 * The ipif that is associated with an ire is ire->ire_ipif and 3715 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 3716 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 3717 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 3718 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 3719 * different. If this is different from ire->ire_ipif->ipif_ill and 3720 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 3721 * ipif_ill_refrele_tail on the stq_ill. 3722 */ 3723 3724 if (ire->ire_stq != NULL) 3725 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3726 3727 if (stq_ill == NULL || stq_ill == ill) { 3728 /* Optimize the most common case */ 3729 mutex_enter(&ill->ill_lock); 3730 ASSERT(ipif->ipif_ire_cnt != 0); 3731 ipif->ipif_ire_cnt--; 3732 if (ipif->ipif_ire_cnt == 0) 3733 need_wakeup = B_TRUE; 3734 if (stq_ill != NULL) { 3735 ASSERT(stq_ill->ill_ire_cnt != 0); 3736 stq_ill->ill_ire_cnt--; 3737 if (stq_ill->ill_ire_cnt == 0) 3738 need_wakeup = B_TRUE; 3739 } 3740 if (need_wakeup) { 3741 /* Drops the ill lock */ 3742 ipif_ill_refrele_tail(ill); 3743 } else { 3744 mutex_exit(&ill->ill_lock); 3745 } 3746 } else { 3747 /* 3748 * We can't grab all the ill locks at the same time. 3749 * It can lead to recursive lock enter in the call to 3750 * ipif_ill_refrele_tail and later. Instead do it 1 at 3751 * a time. 3752 */ 3753 mutex_enter(&ill->ill_lock); 3754 ASSERT(ipif->ipif_ire_cnt != 0); 3755 ipif->ipif_ire_cnt--; 3756 if (ipif->ipif_ire_cnt == 0) { 3757 /* Drops the lock */ 3758 ipif_ill_refrele_tail(ill); 3759 } else { 3760 mutex_exit(&ill->ill_lock); 3761 } 3762 if (stq_ill != NULL) { 3763 mutex_enter(&stq_ill->ill_lock); 3764 ASSERT(stq_ill->ill_ire_cnt != 0); 3765 stq_ill->ill_ire_cnt--; 3766 if (stq_ill->ill_ire_cnt == 0) { 3767 /* Drops the ill lock */ 3768 ipif_ill_refrele_tail(stq_ill); 3769 } else { 3770 mutex_exit(&stq_ill->ill_lock); 3771 } 3772 } 3773 } 3774 end: 3775 /* This should be true for both V4 and V6 */ 3776 3777 if ((ire->ire_type & IRE_FORWARDTABLE) && 3778 (ire->ire_ipversion == IPV4_VERSION) && 3779 ((irb = ire->ire_bucket) != NULL)) { 3780 rw_enter(&irb->irb_lock, RW_WRITER); 3781 irb->irb_nire--; 3782 /* 3783 * Instead of examining the conditions for freeing 3784 * the radix node here, we do it by calling 3785 * IRB_REFRELE which is a single point in the code 3786 * that embeds that logic. Bump up the refcnt to 3787 * be able to call IRB_REFRELE 3788 */ 3789 IRB_REFHOLD_LOCKED(irb); 3790 rw_exit(&irb->irb_lock); 3791 IRB_REFRELE(irb); 3792 } 3793 ire->ire_ipif = NULL; 3794 3795 #ifdef IRE_DEBUG 3796 ire_trace_inactive(ire); 3797 #endif 3798 mutex_destroy(&ire->ire_lock); 3799 if (ire->ire_ipversion == IPV6_VERSION) { 3800 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 3801 } else { 3802 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3803 } 3804 ASSERT(ire->ire_mp == NULL); 3805 /* Has been allocated out of the cache */ 3806 kmem_cache_free(ire_cache, ire); 3807 } 3808 3809 /* 3810 * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect 3811 * entries that have a given gateway address. 3812 */ 3813 void 3814 ire_delete_cache_gw(ire_t *ire, char *cp) 3815 { 3816 ipaddr_t gw_addr; 3817 3818 if (!(ire->ire_type & IRE_CACHE) && 3819 !(ire->ire_flags & RTF_DYNAMIC)) 3820 return; 3821 3822 bcopy(cp, &gw_addr, sizeof (gw_addr)); 3823 if (ire->ire_gateway_addr == gw_addr) { 3824 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 3825 (int)ntohl(ire->ire_addr), ire->ire_type, 3826 (int)ntohl(ire->ire_gateway_addr))); 3827 ire_delete(ire); 3828 } 3829 } 3830 3831 /* 3832 * Remove all IRE_CACHE entries that match the ire specified. 3833 * 3834 * The flag argument indicates if the flush request is due to addition 3835 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 3836 * 3837 * This routine takes only the IREs from the forwarding table and flushes 3838 * the corresponding entries from the cache table. 3839 * 3840 * When flushing due to the deletion of an old route, it 3841 * just checks the cache handles (ire_phandle and ire_ihandle) and 3842 * deletes the ones that match. 3843 * 3844 * When flushing due to the creation of a new route, it checks 3845 * if a cache entry's address matches the one in the IRE and 3846 * that the cache entry's parent has a less specific mask than the 3847 * one in IRE. The destination of such a cache entry could be the 3848 * gateway for other cache entries, so we need to flush those as 3849 * well by looking for gateway addresses matching the IRE's address. 3850 */ 3851 void 3852 ire_flush_cache_v4(ire_t *ire, int flag) 3853 { 3854 int i; 3855 ire_t *cire; 3856 irb_t *irb; 3857 ip_stack_t *ipst = ire->ire_ipst; 3858 3859 if (ire->ire_type & IRE_CACHE) 3860 return; 3861 3862 /* 3863 * If a default is just created, there is no point 3864 * in going through the cache, as there will not be any 3865 * cached ires. 3866 */ 3867 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 3868 return; 3869 if (flag == IRE_FLUSH_ADD) { 3870 /* 3871 * This selective flush is due to the addition of 3872 * new IRE. 3873 */ 3874 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3875 irb = &ipst->ips_ip_cache_table[i]; 3876 if ((cire = irb->irb_ire) == NULL) 3877 continue; 3878 IRB_REFHOLD(irb); 3879 for (cire = irb->irb_ire; cire != NULL; 3880 cire = cire->ire_next) { 3881 if (cire->ire_type != IRE_CACHE) 3882 continue; 3883 /* 3884 * If 'cire' belongs to the same subnet 3885 * as the new ire being added, and 'cire' 3886 * is derived from a prefix that is less 3887 * specific than the new ire being added, 3888 * we need to flush 'cire'; for instance, 3889 * when a new interface comes up. 3890 */ 3891 if (((cire->ire_addr & ire->ire_mask) == 3892 (ire->ire_addr & ire->ire_mask)) && 3893 (ip_mask_to_plen(cire->ire_cmask) <= 3894 ire->ire_masklen)) { 3895 ire_delete(cire); 3896 continue; 3897 } 3898 /* 3899 * This is the case when the ire_gateway_addr 3900 * of 'cire' belongs to the same subnet as 3901 * the new ire being added. 3902 * Flushing such ires is sometimes required to 3903 * avoid misrouting: say we have a machine with 3904 * two interfaces (I1 and I2), a default router 3905 * R on the I1 subnet, and a host route to an 3906 * off-link destination D with a gateway G on 3907 * the I2 subnet. 3908 * Under normal operation, we will have an 3909 * on-link cache entry for G and an off-link 3910 * cache entry for D with G as ire_gateway_addr, 3911 * traffic to D will reach its destination 3912 * through gateway G. 3913 * If the administrator does 'ifconfig I2 down', 3914 * the cache entries for D and G will be 3915 * flushed. However, G will now be resolved as 3916 * an off-link destination using R (the default 3917 * router) as gateway. Then D will also be 3918 * resolved as an off-link destination using G 3919 * as gateway - this behavior is due to 3920 * compatibility reasons, see comment in 3921 * ire_ihandle_lookup_offlink(). Traffic to D 3922 * will go to the router R and probably won't 3923 * reach the destination. 3924 * The administrator then does 'ifconfig I2 up'. 3925 * Since G is on the I2 subnet, this routine 3926 * will flush its cache entry. It must also 3927 * flush the cache entry for D, otherwise 3928 * traffic will stay misrouted until the IRE 3929 * times out. 3930 */ 3931 if ((cire->ire_gateway_addr & ire->ire_mask) == 3932 (ire->ire_addr & ire->ire_mask)) { 3933 ire_delete(cire); 3934 continue; 3935 } 3936 } 3937 IRB_REFRELE(irb); 3938 } 3939 } else { 3940 /* 3941 * delete the cache entries based on 3942 * handle in the IRE as this IRE is 3943 * being deleted/changed. 3944 */ 3945 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3946 irb = &ipst->ips_ip_cache_table[i]; 3947 if ((cire = irb->irb_ire) == NULL) 3948 continue; 3949 IRB_REFHOLD(irb); 3950 for (cire = irb->irb_ire; cire != NULL; 3951 cire = cire->ire_next) { 3952 if (cire->ire_type != IRE_CACHE) 3953 continue; 3954 if ((cire->ire_phandle == 0 || 3955 cire->ire_phandle != ire->ire_phandle) && 3956 (cire->ire_ihandle == 0 || 3957 cire->ire_ihandle != ire->ire_ihandle)) 3958 continue; 3959 ire_delete(cire); 3960 } 3961 IRB_REFRELE(irb); 3962 } 3963 } 3964 } 3965 3966 /* 3967 * Matches the arguments passed with the values in the ire. 3968 * 3969 * Note: for match types that match using "ipif" passed in, ipif 3970 * must be checked for non-NULL before calling this routine. 3971 */ 3972 boolean_t 3973 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 3974 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 3975 const ts_label_t *tsl, int match_flags) 3976 { 3977 ill_t *ire_ill = NULL, *dst_ill; 3978 ill_t *ipif_ill = NULL; 3979 ill_group_t *ire_ill_group = NULL; 3980 ill_group_t *ipif_ill_group = NULL; 3981 3982 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3983 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 3984 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 3985 (ipif != NULL && !ipif->ipif_isv6)); 3986 3987 /* 3988 * HIDDEN cache entries have to be looked up specifically with 3989 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 3990 * when the interface is FAILED or INACTIVE. In that case, 3991 * any IRE_CACHES that exists should be marked with 3992 * IRE_MARK_HIDDEN. So, we don't really need to match below 3993 * for IRE_MARK_HIDDEN. But we do so for consistency. 3994 */ 3995 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 3996 (ire->ire_marks & IRE_MARK_HIDDEN)) 3997 return (B_FALSE); 3998 3999 /* 4000 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 4001 * is used. In that case the routing table is bypassed and the 4002 * packets are sent directly to the specified nexthop. The 4003 * IRE_CACHE entry representing this route should be marked 4004 * with IRE_MARK_PRIVATE_ADDR. 4005 */ 4006 4007 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 4008 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 4009 return (B_FALSE); 4010 4011 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 4012 ire->ire_zoneid != ALL_ZONES) { 4013 /* 4014 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 4015 * valid and does not match that of ire_zoneid, a failure to 4016 * match is reported at this point. Otherwise, since some IREs 4017 * that are available in the global zone can be used in local 4018 * zones, additional checks need to be performed: 4019 * 4020 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 4021 * entries should never be matched in this situation. 4022 * 4023 * IRE entries that have an interface associated with them 4024 * should in general not match unless they are an IRE_LOCAL 4025 * or in the case when MATCH_IRE_DEFAULT has been set in 4026 * the caller. In the case of the former, checking of the 4027 * other fields supplied should take place. 4028 * 4029 * In the case where MATCH_IRE_DEFAULT has been set, 4030 * all of the ipif's associated with the IRE's ill are 4031 * checked to see if there is a matching zoneid. If any 4032 * one ipif has a matching zoneid, this IRE is a 4033 * potential candidate so checking of the other fields 4034 * takes place. 4035 * 4036 * In the case where the IRE_INTERFACE has a usable source 4037 * address (indicated by ill_usesrc_ifindex) in the 4038 * correct zone then it's permitted to return this IRE 4039 */ 4040 if (match_flags & MATCH_IRE_ZONEONLY) 4041 return (B_FALSE); 4042 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 4043 return (B_FALSE); 4044 /* 4045 * Note, IRE_INTERFACE can have the stq as NULL. For 4046 * example, if the default multicast route is tied to 4047 * the loopback address. 4048 */ 4049 if ((ire->ire_type & IRE_INTERFACE) && 4050 (ire->ire_stq != NULL)) { 4051 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 4052 /* 4053 * If there is a usable source address in the 4054 * zone, then it's ok to return an 4055 * IRE_INTERFACE 4056 */ 4057 if (ipif_usesrc_avail(dst_ill, zoneid)) { 4058 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 4059 (void *)dst_ill, 4060 (ire->ire_addr == (addr & mask)))); 4061 } else { 4062 ip3dbg(("ire_match_args: src_ipif NULL" 4063 " dst_ill %p\n", (void *)dst_ill)); 4064 return (B_FALSE); 4065 } 4066 } 4067 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 4068 !(ire->ire_type & IRE_INTERFACE)) { 4069 ipif_t *tipif; 4070 4071 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 4072 return (B_FALSE); 4073 } 4074 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 4075 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 4076 tipif != NULL; tipif = tipif->ipif_next) { 4077 if (IPIF_CAN_LOOKUP(tipif) && 4078 (tipif->ipif_flags & IPIF_UP) && 4079 (tipif->ipif_zoneid == zoneid || 4080 tipif->ipif_zoneid == ALL_ZONES)) 4081 break; 4082 } 4083 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 4084 if (tipif == NULL) { 4085 return (B_FALSE); 4086 } 4087 } 4088 } 4089 4090 /* 4091 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 4092 * somebody wants to send out on a particular interface which 4093 * is given by ire_stq and hence use ire_stq to derive the ill 4094 * value. ire_ipif for IRE_CACHES is just the means of getting 4095 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 4096 * ire_to_ill does the right thing for this. 4097 */ 4098 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 4099 ire_ill = ire_to_ill(ire); 4100 if (ire_ill != NULL) 4101 ire_ill_group = ire_ill->ill_group; 4102 ipif_ill = ipif->ipif_ill; 4103 ipif_ill_group = ipif_ill->ill_group; 4104 } 4105 4106 if ((ire->ire_addr == (addr & mask)) && 4107 ((!(match_flags & MATCH_IRE_GW)) || 4108 (ire->ire_gateway_addr == gateway)) && 4109 ((!(match_flags & MATCH_IRE_TYPE)) || 4110 (ire->ire_type & type)) && 4111 ((!(match_flags & MATCH_IRE_SRC)) || 4112 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4113 ((!(match_flags & MATCH_IRE_IPIF)) || 4114 (ire->ire_ipif == ipif)) && 4115 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4116 (ire->ire_type != IRE_CACHE || 4117 ire->ire_marks & IRE_MARK_HIDDEN)) && 4118 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4119 (ire->ire_type != IRE_CACHE || 4120 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4121 ((!(match_flags & MATCH_IRE_ILL)) || 4122 (ire_ill == ipif_ill)) && 4123 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4124 (ire->ire_ihandle == ihandle)) && 4125 ((!(match_flags & MATCH_IRE_MASK)) || 4126 (ire->ire_mask == mask)) && 4127 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4128 (ire_ill == ipif_ill) || 4129 (ire_ill_group != NULL && 4130 ire_ill_group == ipif_ill_group)) && 4131 ((!(match_flags & MATCH_IRE_SECATTR)) || 4132 (!is_system_labeled()) || 4133 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4134 /* We found the matched IRE */ 4135 return (B_TRUE); 4136 } 4137 return (B_FALSE); 4138 } 4139 4140 4141 /* 4142 * Lookup for a route in all the tables 4143 */ 4144 ire_t * 4145 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4146 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4147 const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4148 { 4149 ire_t *ire = NULL; 4150 4151 /* 4152 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4153 * MATCH_IRE_ILL is set. 4154 */ 4155 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4156 (ipif == NULL)) 4157 return (NULL); 4158 4159 /* 4160 * might be asking for a cache lookup, 4161 * This is not best way to lookup cache, 4162 * user should call ire_cache_lookup directly. 4163 * 4164 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4165 * in the forwarding table, if the applicable type flags were set. 4166 */ 4167 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4168 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4169 tsl, flags, ipst); 4170 if (ire != NULL) 4171 return (ire); 4172 } 4173 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4174 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4175 zoneid, 0, tsl, flags, ipst); 4176 } 4177 return (ire); 4178 } 4179 4180 4181 /* 4182 * Delete the IRE cache for the gateway and all IRE caches whose 4183 * ire_gateway_addr points to this gateway, and allow them to 4184 * be created on demand by ip_newroute. 4185 */ 4186 void 4187 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 4188 { 4189 irb_t *irb; 4190 ire_t *ire; 4191 4192 irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4193 ipst->ips_ip_cache_table_size)]; 4194 IRB_REFHOLD(irb); 4195 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4196 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4197 continue; 4198 4199 ASSERT(ire->ire_mask == IP_HOST_MASK); 4200 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4201 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4202 ire_delete(ire); 4203 } 4204 } 4205 IRB_REFRELE(irb); 4206 4207 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst); 4208 } 4209 4210 /* 4211 * Looks up cache table for a route. 4212 * specific lookup can be indicated by 4213 * passing the MATCH_* flags and the 4214 * necessary parameters. 4215 */ 4216 ire_t * 4217 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4218 zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4219 { 4220 irb_t *irb_ptr; 4221 ire_t *ire; 4222 4223 /* 4224 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4225 * MATCH_IRE_ILL is set. 4226 */ 4227 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4228 (ipif == NULL)) 4229 return (NULL); 4230 4231 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4232 ipst->ips_ip_cache_table_size)]; 4233 rw_enter(&irb_ptr->irb_lock, RW_READER); 4234 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4235 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4236 continue; 4237 ASSERT(ire->ire_mask == IP_HOST_MASK); 4238 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4239 ipif, zoneid, 0, tsl, flags)) { 4240 IRE_REFHOLD(ire); 4241 rw_exit(&irb_ptr->irb_lock); 4242 return (ire); 4243 } 4244 } 4245 rw_exit(&irb_ptr->irb_lock); 4246 return (NULL); 4247 } 4248 4249 /* 4250 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4251 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of 4252 * the same ill group. 4253 */ 4254 boolean_t 4255 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire) 4256 { 4257 ill_t *recv_ill, *xmit_ill; 4258 ill_group_t *recv_group, *xmit_group; 4259 4260 ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK)); 4261 ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE)); 4262 4263 recv_ill = ire_to_ill(ire_local); 4264 xmit_ill = ire_to_ill(xmit_ire); 4265 4266 ASSERT(recv_ill != NULL); 4267 ASSERT(xmit_ill != NULL); 4268 4269 if (recv_ill == xmit_ill) 4270 return (B_TRUE); 4271 4272 recv_group = recv_ill->ill_group; 4273 xmit_group = xmit_ill->ill_group; 4274 4275 if (recv_group != NULL && recv_group == xmit_group) 4276 return (B_TRUE); 4277 4278 return (B_FALSE); 4279 } 4280 4281 /* 4282 * Check if the IRE_LOCAL uses the same ill (group) as another route would use. 4283 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 4284 * then we don't allow this IRE_LOCAL to be used. 4285 */ 4286 boolean_t 4287 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4288 const ts_label_t *tsl, ip_stack_t *ipst) 4289 { 4290 ire_t *alt_ire; 4291 boolean_t rval; 4292 4293 if (ire_local->ire_ipversion == IPV4_VERSION) { 4294 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4295 NULL, zoneid, 0, tsl, 4296 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4297 MATCH_IRE_RJ_BHOLE, ipst); 4298 } else { 4299 alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 4300 0, NULL, NULL, zoneid, 0, tsl, 4301 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4302 MATCH_IRE_RJ_BHOLE, ipst); 4303 } 4304 4305 if (alt_ire == NULL) 4306 return (B_FALSE); 4307 4308 if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4309 ire_refrele(alt_ire); 4310 return (B_FALSE); 4311 } 4312 rval = ire_local_same_ill_group(ire_local, alt_ire); 4313 4314 ire_refrele(alt_ire); 4315 return (rval); 4316 } 4317 4318 /* 4319 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4320 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4321 * to the hidden ones. 4322 * 4323 * In general the zoneid has to match (where ALL_ZONES match all of them). 4324 * But for IRE_LOCAL we also need to handle the case where L2 should 4325 * conceptually loop back the packet. This is necessary since neither 4326 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4327 * own MAC address. This loopback is needed when the normal 4328 * routes (ignoring IREs with different zoneids) would send out the packet on 4329 * the same ill (or ill group) as the ill with which this IRE_LOCAL is 4330 * associated. 4331 * 4332 * Earlier versions of this code always matched an IRE_LOCAL independently of 4333 * the zoneid. We preserve that earlier behavior when 4334 * ip_restrict_interzone_loopback is turned off. 4335 */ 4336 ire_t * 4337 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl, 4338 ip_stack_t *ipst) 4339 { 4340 irb_t *irb_ptr; 4341 ire_t *ire; 4342 4343 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4344 ipst->ips_ip_cache_table_size)]; 4345 rw_enter(&irb_ptr->irb_lock, RW_READER); 4346 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4347 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4348 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4349 continue; 4350 } 4351 if (ire->ire_addr == addr) { 4352 /* 4353 * Finally, check if the security policy has any 4354 * restriction on using this route for the specified 4355 * message. 4356 */ 4357 if (tsl != NULL && 4358 ire->ire_gw_secattr != NULL && 4359 tsol_ire_match_gwattr(ire, tsl) != 0) { 4360 continue; 4361 } 4362 4363 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4364 ire->ire_zoneid == ALL_ZONES) { 4365 IRE_REFHOLD(ire); 4366 rw_exit(&irb_ptr->irb_lock); 4367 return (ire); 4368 } 4369 4370 if (ire->ire_type == IRE_LOCAL) { 4371 if (ipst->ips_ip_restrict_interzone_loopback && 4372 !ire_local_ok_across_zones(ire, zoneid, 4373 &addr, tsl, ipst)) 4374 continue; 4375 4376 IRE_REFHOLD(ire); 4377 rw_exit(&irb_ptr->irb_lock); 4378 return (ire); 4379 } 4380 } 4381 } 4382 rw_exit(&irb_ptr->irb_lock); 4383 return (NULL); 4384 } 4385 4386 /* 4387 * Locate the interface ire that is tied to the cache ire 'cire' via 4388 * cire->ire_ihandle. 4389 * 4390 * We are trying to create the cache ire for an offlink destn based 4391 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4392 * as found by ip_newroute(). We are called from ip_newroute() in 4393 * the IRE_CACHE case. 4394 */ 4395 ire_t * 4396 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4397 { 4398 ire_t *ire; 4399 int match_flags; 4400 ipaddr_t gw_addr; 4401 ipif_t *gw_ipif; 4402 ip_stack_t *ipst = cire->ire_ipst; 4403 4404 ASSERT(cire != NULL && pire != NULL); 4405 4406 /* 4407 * We don't need to specify the zoneid to ire_ftable_lookup() below 4408 * because the ihandle refers to an ipif which can be in only one zone. 4409 */ 4410 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4411 /* 4412 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4413 * for on-link hosts. We should never be here for onlink. 4414 * Thus, use MATCH_IRE_ILL_GROUP. 4415 */ 4416 if (pire->ire_ipif != NULL) 4417 match_flags |= MATCH_IRE_ILL_GROUP; 4418 /* 4419 * We know that the mask of the interface ire equals cire->ire_cmask. 4420 * (When ip_newroute() created 'cire' for the gateway it set its 4421 * cmask from the interface ire's mask) 4422 */ 4423 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4424 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4425 NULL, match_flags, ipst); 4426 if (ire != NULL) 4427 return (ire); 4428 /* 4429 * If we didn't find an interface ire above, we can't declare failure. 4430 * For backwards compatibility, we need to support prefix routes 4431 * pointing to next hop gateways that are not on-link. 4432 * 4433 * Assume we are trying to ping some offlink destn, and we have the 4434 * routing table below. 4435 * 4436 * Eg. default - gw1 <--- pire (line 1) 4437 * gw1 - gw2 (line 2) 4438 * gw2 - hme0 (line 3) 4439 * 4440 * If we already have a cache ire for gw1 in 'cire', the 4441 * ire_ftable_lookup above would have failed, since there is no 4442 * interface ire to reach gw1. We will fallthru below. 4443 * 4444 * Here we duplicate the steps that ire_ftable_lookup() did in 4445 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 4446 * The differences are the following 4447 * i. We want the interface ire only, so we call ire_ftable_lookup() 4448 * instead of ire_route_lookup() 4449 * ii. We look for only prefix routes in the 1st call below. 4450 * ii. We want to match on the ihandle in the 2nd call below. 4451 */ 4452 match_flags = MATCH_IRE_TYPE; 4453 if (pire->ire_ipif != NULL) 4454 match_flags |= MATCH_IRE_ILL_GROUP; 4455 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 4456 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 4457 if (ire == NULL) 4458 return (NULL); 4459 /* 4460 * At this point 'ire' corresponds to the entry shown in line 2. 4461 * gw_addr is 'gw2' in the example above. 4462 */ 4463 gw_addr = ire->ire_gateway_addr; 4464 gw_ipif = ire->ire_ipif; 4465 ire_refrele(ire); 4466 4467 match_flags |= MATCH_IRE_IHANDLE; 4468 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 4469 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags, 4470 ipst); 4471 return (ire); 4472 } 4473 4474 /* 4475 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 4476 * ire associated with the specified ipif. 4477 * 4478 * This might occasionally be called when IPIF_UP is not set since 4479 * the IP_MULTICAST_IF as well as creating interface routes 4480 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 4481 * 4482 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 4483 * the ipif, this routine might return NULL. 4484 */ 4485 ire_t * 4486 ipif_to_ire(const ipif_t *ipif) 4487 { 4488 ire_t *ire; 4489 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 4490 4491 ASSERT(!ipif->ipif_isv6); 4492 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 4493 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 4494 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 4495 ipst); 4496 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4497 /* In this case we need to lookup destination address. */ 4498 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 4499 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 4500 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst); 4501 } else { 4502 ire = ire_ftable_lookup(ipif->ipif_subnet, 4503 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 4504 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 4505 MATCH_IRE_MASK), ipst); 4506 } 4507 return (ire); 4508 } 4509 4510 /* 4511 * ire_walk function. 4512 * Count the number of IRE_CACHE entries in different categories. 4513 */ 4514 void 4515 ire_cache_count(ire_t *ire, char *arg) 4516 { 4517 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 4518 4519 if (ire->ire_type != IRE_CACHE) 4520 return; 4521 4522 icc->icc_total++; 4523 4524 if (ire->ire_ipversion == IPV6_VERSION) { 4525 mutex_enter(&ire->ire_lock); 4526 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4527 mutex_exit(&ire->ire_lock); 4528 icc->icc_onlink++; 4529 return; 4530 } 4531 mutex_exit(&ire->ire_lock); 4532 } else { 4533 if (ire->ire_gateway_addr == 0) { 4534 icc->icc_onlink++; 4535 return; 4536 } 4537 } 4538 4539 ASSERT(ire->ire_ipif != NULL); 4540 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 4541 icc->icc_pmtu++; 4542 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4543 ire->ire_ib_pkt_count) 4544 icc->icc_offlink++; 4545 else 4546 icc->icc_unused++; 4547 } 4548 4549 /* 4550 * ire_walk function called by ip_trash_ire_reclaim(). 4551 * Free a fraction of the IRE_CACHE cache entries. The fractions are 4552 * different for different categories of IRE_CACHE entries. 4553 * A fraction of zero means to not free any in that category. 4554 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 4555 * is N then every Nth hash bucket chain will be freed. 4556 */ 4557 void 4558 ire_cache_reclaim(ire_t *ire, char *arg) 4559 { 4560 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 4561 uint_t rand; 4562 ip_stack_t *ipst = icr->icr_ipst; 4563 4564 if (ire->ire_type != IRE_CACHE) 4565 return; 4566 4567 if (ire->ire_ipversion == IPV6_VERSION) { 4568 rand = (uint_t)lbolt + 4569 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 4570 ipst->ips_ip6_cache_table_size); 4571 mutex_enter(&ire->ire_lock); 4572 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4573 mutex_exit(&ire->ire_lock); 4574 if (icr->icr_onlink != 0 && 4575 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4576 ire_delete(ire); 4577 return; 4578 } 4579 goto done; 4580 } 4581 mutex_exit(&ire->ire_lock); 4582 } else { 4583 rand = (uint_t)lbolt + 4584 IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size); 4585 if (ire->ire_gateway_addr == 0) { 4586 if (icr->icr_onlink != 0 && 4587 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4588 ire_delete(ire); 4589 return; 4590 } 4591 goto done; 4592 } 4593 } 4594 /* Not onlink IRE */ 4595 ASSERT(ire->ire_ipif != NULL); 4596 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 4597 /* Use ptmu fraction */ 4598 if (icr->icr_pmtu != 0 && 4599 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 4600 ire_delete(ire); 4601 return; 4602 } 4603 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4604 ire->ire_ib_pkt_count) { 4605 /* Use offlink fraction */ 4606 if (icr->icr_offlink != 0 && 4607 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 4608 ire_delete(ire); 4609 return; 4610 } 4611 } else { 4612 /* Use unused fraction */ 4613 if (icr->icr_unused != 0 && 4614 (rand/icr->icr_unused)*icr->icr_unused == rand) { 4615 ire_delete(ire); 4616 return; 4617 } 4618 } 4619 done: 4620 /* 4621 * Update tire_mark so that those that haven't been used since this 4622 * reclaim will be considered unused next time we reclaim. 4623 */ 4624 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 4625 } 4626 4627 static void 4628 power2_roundup(uint32_t *value) 4629 { 4630 int i; 4631 4632 for (i = 1; i < 31; i++) { 4633 if (*value <= (1 << i)) 4634 break; 4635 } 4636 *value = (1 << i); 4637 } 4638 4639 /* Global init for all zones */ 4640 void 4641 ip_ire_g_init() 4642 { 4643 /* 4644 * Create ire caches, ire_reclaim() 4645 * will give IRE_CACHE back to system when needed. 4646 * This needs to be done here before anything else, since 4647 * ire_add() expects the cache to be created. 4648 */ 4649 ire_cache = kmem_cache_create("ire_cache", 4650 sizeof (ire_t), 0, ip_ire_constructor, 4651 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 4652 4653 rt_entry_cache = kmem_cache_create("rt_entry", 4654 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 4655 4656 /* 4657 * Have radix code setup kmem caches etc. 4658 */ 4659 rn_init(); 4660 } 4661 4662 void 4663 ip_ire_init(ip_stack_t *ipst) 4664 { 4665 int i; 4666 uint32_t mem_cnt; 4667 uint32_t cpu_cnt; 4668 uint32_t min_cnt; 4669 pgcnt_t mem_avail; 4670 4671 /* 4672 * ip_ire_max_bucket_cnt is sized below based on the memory 4673 * size and the cpu speed of the machine. This is upper 4674 * bounded by the compile time value of ip_ire_max_bucket_cnt 4675 * and is lower bounded by the compile time value of 4676 * ip_ire_min_bucket_cnt. Similar logic applies to 4677 * ip6_ire_max_bucket_cnt. 4678 * 4679 * We calculate this for each IP Instances in order to use 4680 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are 4681 * in effect when the zone is booted. 4682 */ 4683 mem_avail = kmem_avail(); 4684 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4685 ip_cache_table_size / sizeof (ire_t); 4686 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 4687 4688 min_cnt = MIN(cpu_cnt, mem_cnt); 4689 if (min_cnt < ip_ire_min_bucket_cnt) 4690 min_cnt = ip_ire_min_bucket_cnt; 4691 if (ip_ire_max_bucket_cnt > min_cnt) { 4692 ip_ire_max_bucket_cnt = min_cnt; 4693 } 4694 4695 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4696 ip6_cache_table_size / sizeof (ire_t); 4697 min_cnt = MIN(cpu_cnt, mem_cnt); 4698 if (min_cnt < ip6_ire_min_bucket_cnt) 4699 min_cnt = ip6_ire_min_bucket_cnt; 4700 if (ip6_ire_max_bucket_cnt > min_cnt) { 4701 ip6_ire_max_bucket_cnt = min_cnt; 4702 } 4703 4704 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 4705 mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 4706 4707 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 4708 4709 4710 /* Calculate the IPv4 cache table size. */ 4711 ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size, 4712 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4713 ip_ire_max_bucket_cnt)); 4714 if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size) 4715 ipst->ips_ip_cache_table_size = ip_max_cache_table_size; 4716 /* 4717 * Make sure that the table size is always a power of 2. The 4718 * hash macro IRE_ADDR_HASH() depends on that. 4719 */ 4720 power2_roundup(&ipst->ips_ip_cache_table_size); 4721 4722 ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size * 4723 sizeof (irb_t), KM_SLEEP); 4724 4725 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4726 rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL, 4727 RW_DEFAULT, NULL); 4728 } 4729 4730 /* Calculate the IPv6 cache table size. */ 4731 ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size, 4732 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4733 ip6_ire_max_bucket_cnt)); 4734 if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size) 4735 ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size; 4736 /* 4737 * Make sure that the table size is always a power of 2. The 4738 * hash macro IRE_ADDR_HASH_V6() depends on that. 4739 */ 4740 power2_roundup(&ipst->ips_ip6_cache_table_size); 4741 4742 ipst->ips_ip_cache_table_v6 = kmem_zalloc( 4743 ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP); 4744 4745 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4746 rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL, 4747 RW_DEFAULT, NULL); 4748 } 4749 4750 /* 4751 * Make sure that the forwarding table size is a power of 2. 4752 * The IRE*_ADDR_HASH() macroes depend on that. 4753 */ 4754 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 4755 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 4756 4757 ipst->ips_ire_handle = 1; 4758 } 4759 4760 void 4761 ip_ire_g_fini(void) 4762 { 4763 kmem_cache_destroy(ire_cache); 4764 kmem_cache_destroy(rt_entry_cache); 4765 4766 rn_fini(); 4767 } 4768 4769 void 4770 ip_ire_fini(ip_stack_t *ipst) 4771 { 4772 int i; 4773 4774 /* 4775 * Delete all IREs - assumes that the ill/ipifs have 4776 * been removed so what remains are just the ftable and IRE_CACHE. 4777 */ 4778 ire_walk(ire_delete, NULL, ipst); 4779 4780 rn_freehead(ipst->ips_ip_ftable); 4781 ipst->ips_ip_ftable = NULL; 4782 4783 mutex_destroy(&ipst->ips_ire_ft_init_lock); 4784 mutex_destroy(&ipst->ips_ire_handle_lock); 4785 4786 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4787 ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL); 4788 rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock); 4789 } 4790 kmem_free(ipst->ips_ip_cache_table, 4791 ipst->ips_ip_cache_table_size * sizeof (irb_t)); 4792 ipst->ips_ip_cache_table = NULL; 4793 4794 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4795 ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL); 4796 rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock); 4797 } 4798 kmem_free(ipst->ips_ip_cache_table_v6, 4799 ipst->ips_ip6_cache_table_size * sizeof (irb_t)); 4800 ipst->ips_ip_cache_table_v6 = NULL; 4801 4802 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 4803 irb_t *ptr; 4804 int j; 4805 4806 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 4807 continue; 4808 4809 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 4810 ASSERT(ptr[j].irb_ire == NULL); 4811 rw_destroy(&ptr[j].irb_lock); 4812 } 4813 mi_free(ptr); 4814 ipst->ips_ip_forwarding_table_v6[i] = NULL; 4815 } 4816 } 4817 4818 /* 4819 * Check if another multirt route resolution is needed. 4820 * B_TRUE is returned is there remain a resolvable route, 4821 * or if no route for that dst is resolved yet. 4822 * B_FALSE is returned if all routes for that dst are resolved 4823 * or if the remaining unresolved routes are actually not 4824 * resolvable. 4825 * This only works in the global zone. 4826 */ 4827 boolean_t 4828 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst) 4829 { 4830 ire_t *first_fire; 4831 ire_t *first_cire; 4832 ire_t *fire; 4833 ire_t *cire; 4834 irb_t *firb; 4835 irb_t *cirb; 4836 int unres_cnt = 0; 4837 boolean_t resolvable = B_FALSE; 4838 4839 /* Retrieve the first IRE_HOST that matches the destination */ 4840 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 4841 NULL, ALL_ZONES, 0, tsl, 4842 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 4843 4844 /* No route at all */ 4845 if (first_fire == NULL) { 4846 return (B_TRUE); 4847 } 4848 4849 firb = first_fire->ire_bucket; 4850 ASSERT(firb != NULL); 4851 4852 /* Retrieve the first IRE_CACHE ire for that destination. */ 4853 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4854 4855 /* No resolved route. */ 4856 if (first_cire == NULL) { 4857 ire_refrele(first_fire); 4858 return (B_TRUE); 4859 } 4860 4861 /* 4862 * At least one route is resolved. Here we look through the forward 4863 * and cache tables, to compare the number of declared routes 4864 * with the number of resolved routes. The search for a resolvable 4865 * route is performed only if at least one route remains 4866 * unresolved. 4867 */ 4868 cirb = first_cire->ire_bucket; 4869 ASSERT(cirb != NULL); 4870 4871 /* Count the number of routes to that dest that are declared. */ 4872 IRB_REFHOLD(firb); 4873 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4874 if (!(fire->ire_flags & RTF_MULTIRT)) 4875 continue; 4876 if (fire->ire_addr != dst) 4877 continue; 4878 unres_cnt++; 4879 } 4880 IRB_REFRELE(firb); 4881 4882 /* Then subtract the number of routes to that dst that are resolved */ 4883 IRB_REFHOLD(cirb); 4884 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 4885 if (!(cire->ire_flags & RTF_MULTIRT)) 4886 continue; 4887 if (cire->ire_addr != dst) 4888 continue; 4889 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 4890 continue; 4891 unres_cnt--; 4892 } 4893 IRB_REFRELE(cirb); 4894 4895 /* At least one route is unresolved; search for a resolvable route. */ 4896 if (unres_cnt > 0) 4897 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 4898 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst); 4899 4900 if (first_fire != NULL) 4901 ire_refrele(first_fire); 4902 4903 if (first_cire != NULL) 4904 ire_refrele(first_cire); 4905 4906 return (resolvable); 4907 } 4908 4909 4910 /* 4911 * Explore a forward_table bucket, starting from fire_arg. 4912 * fire_arg MUST be an IRE_HOST entry. 4913 * 4914 * Return B_TRUE and update *ire_arg and *fire_arg 4915 * if at least one resolvable route is found. *ire_arg 4916 * is the IRE entry for *fire_arg's gateway. 4917 * 4918 * Return B_FALSE otherwise (all routes are resolved or 4919 * the remaining unresolved routes are all unresolvable). 4920 * 4921 * The IRE selection relies on a priority mechanism 4922 * driven by the flags passed in by the caller. 4923 * The caller, such as ip_newroute_ipif(), can get the most 4924 * relevant ire at each stage of a multiple route resolution. 4925 * 4926 * The rules are: 4927 * 4928 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 4929 * ires are preferred for the gateway. This gives the highest 4930 * priority to routes that can be resolved without using 4931 * a resolver. 4932 * 4933 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 4934 * is specified but no IRE_CACHETABLE ire entry for the gateway 4935 * is found, the following rules apply. 4936 * 4937 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 4938 * ires for the gateway, that have not been tried since 4939 * a configurable amount of time, are preferred. 4940 * This applies when a resolver must be invoked for 4941 * a missing route, but we don't want to use the resolver 4942 * upon each packet emission. If no such resolver is found, 4943 * B_FALSE is returned. 4944 * The MULTIRT_USESTAMP flag can be combined with 4945 * MULTIRT_CACHEGW. 4946 * 4947 * - if MULTIRT_USESTAMP is not specified in flags, the first 4948 * unresolved but resolvable route is selected. 4949 * 4950 * - Otherwise, there is no resolvalble route, and 4951 * B_FALSE is returned. 4952 * 4953 * At last, MULTIRT_SETSTAMP can be specified in flags to 4954 * request the timestamp of unresolvable routes to 4955 * be refreshed. This prevents the useless exploration 4956 * of those routes for a while, when MULTIRT_USESTAMP is used. 4957 * 4958 * This only works in the global zone. 4959 */ 4960 boolean_t 4961 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 4962 const ts_label_t *tsl, ip_stack_t *ipst) 4963 { 4964 clock_t delta; 4965 ire_t *best_fire = NULL; 4966 ire_t *best_cire = NULL; 4967 ire_t *first_fire; 4968 ire_t *first_cire; 4969 ire_t *fire; 4970 ire_t *cire; 4971 irb_t *firb = NULL; 4972 irb_t *cirb = NULL; 4973 ire_t *gw_ire; 4974 boolean_t already_resolved; 4975 boolean_t res; 4976 ipaddr_t dst; 4977 ipaddr_t gw; 4978 4979 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 4980 (void *)*ire_arg, (void *)*fire_arg, flags)); 4981 4982 ASSERT(ire_arg != NULL); 4983 ASSERT(fire_arg != NULL); 4984 4985 /* Not an IRE_HOST ire; give up. */ 4986 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 4987 return (B_FALSE); 4988 } 4989 4990 /* This is the first IRE_HOST ire for that destination. */ 4991 first_fire = *fire_arg; 4992 firb = first_fire->ire_bucket; 4993 ASSERT(firb != NULL); 4994 4995 dst = first_fire->ire_addr; 4996 4997 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 4998 4999 /* 5000 * Retrieve the first IRE_CACHE ire for that destination; 5001 * if we don't find one, no route for that dest is 5002 * resolved yet. 5003 */ 5004 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 5005 if (first_cire != NULL) { 5006 cirb = first_cire->ire_bucket; 5007 } 5008 5009 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 5010 5011 /* 5012 * Search for a resolvable route, giving the top priority 5013 * to routes that can be resolved without any call to the resolver. 5014 */ 5015 IRB_REFHOLD(firb); 5016 5017 if (!CLASSD(dst)) { 5018 /* 5019 * For all multiroute IRE_HOST ires for that destination, 5020 * check if the route via the IRE_HOST's gateway is 5021 * resolved yet. 5022 */ 5023 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 5024 5025 if (!(fire->ire_flags & RTF_MULTIRT)) 5026 continue; 5027 if (fire->ire_addr != dst) 5028 continue; 5029 5030 if (fire->ire_gw_secattr != NULL && 5031 tsol_ire_match_gwattr(fire, tsl) != 0) { 5032 continue; 5033 } 5034 5035 gw = fire->ire_gateway_addr; 5036 5037 ip2dbg(("ire_multirt_lookup: fire %p, " 5038 "ire_addr %08x, ire_gateway_addr %08x\n", 5039 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 5040 5041 already_resolved = B_FALSE; 5042 5043 if (first_cire != NULL) { 5044 ASSERT(cirb != NULL); 5045 5046 IRB_REFHOLD(cirb); 5047 /* 5048 * For all IRE_CACHE ires for that 5049 * destination. 5050 */ 5051 for (cire = first_cire; 5052 cire != NULL; 5053 cire = cire->ire_next) { 5054 5055 if (!(cire->ire_flags & RTF_MULTIRT)) 5056 continue; 5057 if (cire->ire_addr != dst) 5058 continue; 5059 if (cire->ire_marks & 5060 (IRE_MARK_CONDEMNED | 5061 IRE_MARK_HIDDEN)) 5062 continue; 5063 5064 if (cire->ire_gw_secattr != NULL && 5065 tsol_ire_match_gwattr(cire, 5066 tsl) != 0) { 5067 continue; 5068 } 5069 5070 /* 5071 * Check if the IRE_CACHE's gateway 5072 * matches the IRE_HOST's gateway. 5073 */ 5074 if (cire->ire_gateway_addr == gw) { 5075 already_resolved = B_TRUE; 5076 break; 5077 } 5078 } 5079 IRB_REFRELE(cirb); 5080 } 5081 5082 /* 5083 * This route is already resolved; 5084 * proceed with next one. 5085 */ 5086 if (already_resolved) { 5087 ip2dbg(("ire_multirt_lookup: found cire %p, " 5088 "already resolved\n", (void *)cire)); 5089 continue; 5090 } 5091 5092 /* 5093 * The route is unresolved; is it actually 5094 * resolvable, i.e. is there a cache or a resolver 5095 * for the gateway? 5096 */ 5097 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 5098 ALL_ZONES, tsl, 5099 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst); 5100 5101 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 5102 (void *)gw_ire)); 5103 5104 /* 5105 * If gw_ire is typed IRE_CACHETABLE, 5106 * this route can be resolved without any call to the 5107 * resolver. If the MULTIRT_CACHEGW flag is set, 5108 * give the top priority to this ire and exit the 5109 * loop. 5110 * This is typically the case when an ARP reply 5111 * is processed through ip_wput_nondata(). 5112 */ 5113 if ((flags & MULTIRT_CACHEGW) && 5114 (gw_ire != NULL) && 5115 (gw_ire->ire_type & IRE_CACHETABLE)) { 5116 ASSERT(gw_ire->ire_nce == NULL || 5117 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5118 /* 5119 * Release the resolver associated to the 5120 * previous candidate best ire, if any. 5121 */ 5122 if (best_cire != NULL) { 5123 ire_refrele(best_cire); 5124 ASSERT(best_fire != NULL); 5125 } 5126 5127 best_fire = fire; 5128 best_cire = gw_ire; 5129 5130 ip2dbg(("ire_multirt_lookup: found top prio " 5131 "best_fire %p, best_cire %p\n", 5132 (void *)best_fire, (void *)best_cire)); 5133 break; 5134 } 5135 5136 /* 5137 * Compute the time elapsed since our preceding 5138 * attempt to resolve that route. 5139 * If the MULTIRT_USESTAMP flag is set, we take that 5140 * route into account only if this time interval 5141 * exceeds ip_multirt_resolution_interval; 5142 * this prevents us from attempting to resolve a 5143 * broken route upon each sending of a packet. 5144 */ 5145 delta = lbolt - fire->ire_last_used_time; 5146 delta = TICK_TO_MSEC(delta); 5147 5148 res = (boolean_t)((delta > 5149 ipst->ips_ip_multirt_resolution_interval) || 5150 (!(flags & MULTIRT_USESTAMP))); 5151 5152 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 5153 "res %d\n", 5154 (void *)fire, delta, res)); 5155 5156 if (res) { 5157 /* 5158 * We are here if MULTIRT_USESTAMP flag is set 5159 * and the resolver for fire's gateway 5160 * has not been tried since 5161 * ip_multirt_resolution_interval, or if 5162 * MULTIRT_USESTAMP is not set but gw_ire did 5163 * not fill the conditions for MULTIRT_CACHEGW, 5164 * or if neither MULTIRT_USESTAMP nor 5165 * MULTIRT_CACHEGW are set. 5166 */ 5167 if (gw_ire != NULL) { 5168 if (best_fire == NULL) { 5169 ASSERT(best_cire == NULL); 5170 5171 best_fire = fire; 5172 best_cire = gw_ire; 5173 5174 ip2dbg(("ire_multirt_lookup:" 5175 "found candidate " 5176 "best_fire %p, " 5177 "best_cire %p\n", 5178 (void *)best_fire, 5179 (void *)best_cire)); 5180 5181 /* 5182 * If MULTIRT_CACHEGW is not 5183 * set, we ignore the top 5184 * priority ires that can 5185 * be resolved without any 5186 * call to the resolver; 5187 * In that case, there is 5188 * actually no need 5189 * to continue the loop. 5190 */ 5191 if (!(flags & 5192 MULTIRT_CACHEGW)) { 5193 break; 5194 } 5195 continue; 5196 } 5197 } else { 5198 /* 5199 * No resolver for the gateway: the 5200 * route is not resolvable. 5201 * If the MULTIRT_SETSTAMP flag is 5202 * set, we stamp the IRE_HOST ire, 5203 * so we will not select it again 5204 * during this resolution interval. 5205 */ 5206 if (flags & MULTIRT_SETSTAMP) 5207 fire->ire_last_used_time = 5208 lbolt; 5209 } 5210 } 5211 5212 if (gw_ire != NULL) 5213 ire_refrele(gw_ire); 5214 } 5215 } else { /* CLASSD(dst) */ 5216 5217 for (fire = first_fire; 5218 fire != NULL; 5219 fire = fire->ire_next) { 5220 5221 if (!(fire->ire_flags & RTF_MULTIRT)) 5222 continue; 5223 if (fire->ire_addr != dst) 5224 continue; 5225 5226 if (fire->ire_gw_secattr != NULL && 5227 tsol_ire_match_gwattr(fire, tsl) != 0) { 5228 continue; 5229 } 5230 5231 already_resolved = B_FALSE; 5232 5233 gw = fire->ire_gateway_addr; 5234 5235 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 5236 NULL, NULL, ALL_ZONES, 0, tsl, 5237 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 5238 MATCH_IRE_SECATTR, ipst); 5239 5240 /* No resolver for the gateway; we skip this ire. */ 5241 if (gw_ire == NULL) { 5242 continue; 5243 } 5244 ASSERT(gw_ire->ire_nce == NULL || 5245 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5246 5247 if (first_cire != NULL) { 5248 5249 IRB_REFHOLD(cirb); 5250 /* 5251 * For all IRE_CACHE ires for that 5252 * destination. 5253 */ 5254 for (cire = first_cire; 5255 cire != NULL; 5256 cire = cire->ire_next) { 5257 5258 if (!(cire->ire_flags & RTF_MULTIRT)) 5259 continue; 5260 if (cire->ire_addr != dst) 5261 continue; 5262 if (cire->ire_marks & 5263 (IRE_MARK_CONDEMNED | 5264 IRE_MARK_HIDDEN)) 5265 continue; 5266 5267 if (cire->ire_gw_secattr != NULL && 5268 tsol_ire_match_gwattr(cire, 5269 tsl) != 0) { 5270 continue; 5271 } 5272 5273 /* 5274 * Cache entries are linked to the 5275 * parent routes using the parent handle 5276 * (ire_phandle). If no cache entry has 5277 * the same handle as fire, fire is 5278 * still unresolved. 5279 */ 5280 ASSERT(cire->ire_phandle != 0); 5281 if (cire->ire_phandle == 5282 fire->ire_phandle) { 5283 already_resolved = B_TRUE; 5284 break; 5285 } 5286 } 5287 IRB_REFRELE(cirb); 5288 } 5289 5290 /* 5291 * This route is already resolved; proceed with 5292 * next one. 5293 */ 5294 if (already_resolved) { 5295 ire_refrele(gw_ire); 5296 continue; 5297 } 5298 5299 /* 5300 * Compute the time elapsed since our preceding 5301 * attempt to resolve that route. 5302 * If the MULTIRT_USESTAMP flag is set, we take 5303 * that route into account only if this time 5304 * interval exceeds ip_multirt_resolution_interval; 5305 * this prevents us from attempting to resolve a 5306 * broken route upon each sending of a packet. 5307 */ 5308 delta = lbolt - fire->ire_last_used_time; 5309 delta = TICK_TO_MSEC(delta); 5310 5311 res = (boolean_t)((delta > 5312 ipst->ips_ip_multirt_resolution_interval) || 5313 (!(flags & MULTIRT_USESTAMP))); 5314 5315 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 5316 "flags %04x, res %d\n", 5317 (void *)fire, delta, flags, res)); 5318 5319 if (res) { 5320 if (best_cire != NULL) { 5321 /* 5322 * Release the resolver associated 5323 * to the preceding candidate best 5324 * ire, if any. 5325 */ 5326 ire_refrele(best_cire); 5327 ASSERT(best_fire != NULL); 5328 } 5329 best_fire = fire; 5330 best_cire = gw_ire; 5331 continue; 5332 } 5333 5334 ire_refrele(gw_ire); 5335 } 5336 } 5337 5338 if (best_fire != NULL) { 5339 IRE_REFHOLD(best_fire); 5340 } 5341 IRB_REFRELE(firb); 5342 5343 /* Release the first IRE_CACHE we initially looked up, if any. */ 5344 if (first_cire != NULL) 5345 ire_refrele(first_cire); 5346 5347 /* Found a resolvable route. */ 5348 if (best_fire != NULL) { 5349 ASSERT(best_cire != NULL); 5350 5351 if (*fire_arg != NULL) 5352 ire_refrele(*fire_arg); 5353 if (*ire_arg != NULL) 5354 ire_refrele(*ire_arg); 5355 5356 /* 5357 * Update the passed-in arguments with the 5358 * resolvable multirt route we found. 5359 */ 5360 *fire_arg = best_fire; 5361 *ire_arg = best_cire; 5362 5363 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 5364 "*fire_arg %p, *ire_arg %p\n", 5365 (void *)best_fire, (void *)best_cire)); 5366 5367 return (B_TRUE); 5368 } 5369 5370 ASSERT(best_cire == NULL); 5371 5372 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 5373 "*ire_arg %p\n", 5374 (void *)*fire_arg, (void *)*ire_arg)); 5375 5376 /* No resolvable route. */ 5377 return (B_FALSE); 5378 } 5379 5380 /* 5381 * IRE iterator for inbound and loopback broadcast processing. 5382 * Given an IRE_BROADCAST ire, walk the ires with the same destination 5383 * address, but skip over the passed-in ire. Returns the next ire without 5384 * a hold - assumes that the caller holds a reference on the IRE bucket. 5385 */ 5386 ire_t * 5387 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 5388 { 5389 ill_t *ill; 5390 5391 if (curr == NULL) { 5392 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 5393 curr = curr->ire_next) { 5394 if (curr->ire_addr == ire->ire_addr) 5395 break; 5396 } 5397 } else { 5398 curr = curr->ire_next; 5399 } 5400 ill = ire_to_ill(ire); 5401 for (; curr != NULL; curr = curr->ire_next) { 5402 if (curr->ire_addr != ire->ire_addr) { 5403 /* 5404 * All the IREs to a given destination are contiguous; 5405 * break out once the address doesn't match. 5406 */ 5407 break; 5408 } 5409 if (curr == ire) { 5410 /* skip over the passed-in ire */ 5411 continue; 5412 } 5413 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 5414 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 5415 /* 5416 * If the passed-in ire is loopback, skip over 5417 * non-loopback ires and vice versa. 5418 */ 5419 continue; 5420 } 5421 if (ire_to_ill(curr) != ill) { 5422 /* skip over IREs going through a different interface */ 5423 continue; 5424 } 5425 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 5426 /* skip over deleted IREs */ 5427 continue; 5428 } 5429 return (curr); 5430 } 5431 return (NULL); 5432 } 5433 5434 #ifdef IRE_DEBUG 5435 th_trace_t * 5436 th_trace_ire_lookup(ire_t *ire) 5437 { 5438 int bucket_id; 5439 th_trace_t *th_trace; 5440 5441 ASSERT(MUTEX_HELD(&ire->ire_lock)); 5442 5443 bucket_id = IP_TR_HASH(curthread); 5444 ASSERT(bucket_id < IP_TR_HASH_MAX); 5445 5446 for (th_trace = ire->ire_trace[bucket_id]; th_trace != NULL; 5447 th_trace = th_trace->th_next) { 5448 if (th_trace->th_id == curthread) 5449 return (th_trace); 5450 } 5451 return (NULL); 5452 } 5453 5454 void 5455 ire_trace_ref(ire_t *ire) 5456 { 5457 int bucket_id; 5458 th_trace_t *th_trace; 5459 5460 /* 5461 * Attempt to locate the trace buffer for the curthread. 5462 * If it does not exist, then allocate a new trace buffer 5463 * and link it in list of trace bufs for this ipif, at the head 5464 */ 5465 mutex_enter(&ire->ire_lock); 5466 if (ire->ire_trace_disable == B_TRUE) { 5467 mutex_exit(&ire->ire_lock); 5468 return; 5469 } 5470 th_trace = th_trace_ire_lookup(ire); 5471 if (th_trace == NULL) { 5472 bucket_id = IP_TR_HASH(curthread); 5473 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5474 KM_NOSLEEP); 5475 if (th_trace == NULL) { 5476 ire->ire_trace_disable = B_TRUE; 5477 mutex_exit(&ire->ire_lock); 5478 ire_trace_inactive(ire); 5479 return; 5480 } 5481 5482 th_trace->th_id = curthread; 5483 th_trace->th_next = ire->ire_trace[bucket_id]; 5484 th_trace->th_prev = &ire->ire_trace[bucket_id]; 5485 if (th_trace->th_next != NULL) 5486 th_trace->th_next->th_prev = &th_trace->th_next; 5487 ire->ire_trace[bucket_id] = th_trace; 5488 } 5489 ASSERT(th_trace->th_refcnt < TR_BUF_MAX - 1); 5490 th_trace->th_refcnt++; 5491 th_trace_rrecord(th_trace); 5492 mutex_exit(&ire->ire_lock); 5493 } 5494 5495 void 5496 ire_trace_free(th_trace_t *th_trace) 5497 { 5498 /* unlink th_trace and free it */ 5499 *th_trace->th_prev = th_trace->th_next; 5500 if (th_trace->th_next != NULL) 5501 th_trace->th_next->th_prev = th_trace->th_prev; 5502 th_trace->th_next = NULL; 5503 th_trace->th_prev = NULL; 5504 kmem_free(th_trace, sizeof (th_trace_t)); 5505 } 5506 5507 void 5508 ire_untrace_ref(ire_t *ire) 5509 { 5510 th_trace_t *th_trace; 5511 5512 mutex_enter(&ire->ire_lock); 5513 5514 if (ire->ire_trace_disable == B_TRUE) { 5515 mutex_exit(&ire->ire_lock); 5516 return; 5517 } 5518 5519 th_trace = th_trace_ire_lookup(ire); 5520 ASSERT(th_trace != NULL && th_trace->th_refcnt > 0); 5521 th_trace_rrecord(th_trace); 5522 th_trace->th_refcnt--; 5523 5524 if (th_trace->th_refcnt == 0) 5525 ire_trace_free(th_trace); 5526 5527 mutex_exit(&ire->ire_lock); 5528 } 5529 5530 static void 5531 ire_trace_inactive(ire_t *ire) 5532 { 5533 th_trace_t *th_trace; 5534 int i; 5535 5536 mutex_enter(&ire->ire_lock); 5537 for (i = 0; i < IP_TR_HASH_MAX; i++) { 5538 while (ire->ire_trace[i] != NULL) { 5539 th_trace = ire->ire_trace[i]; 5540 5541 /* unlink th_trace and free it */ 5542 ire->ire_trace[i] = th_trace->th_next; 5543 if (th_trace->th_next != NULL) 5544 th_trace->th_next->th_prev = 5545 &ire->ire_trace[i]; 5546 5547 th_trace->th_next = NULL; 5548 th_trace->th_prev = NULL; 5549 kmem_free(th_trace, sizeof (th_trace_t)); 5550 } 5551 } 5552 5553 mutex_exit(&ire->ire_lock); 5554 } 5555 5556 /* ARGSUSED */ 5557 void 5558 ire_thread_exit(ire_t *ire, caddr_t arg) 5559 { 5560 th_trace_t *th_trace; 5561 5562 mutex_enter(&ire->ire_lock); 5563 th_trace = th_trace_ire_lookup(ire); 5564 if (th_trace == NULL) { 5565 mutex_exit(&ire->ire_lock); 5566 return; 5567 } 5568 ASSERT(th_trace->th_refcnt == 0); 5569 5570 ire_trace_free(th_trace); 5571 mutex_exit(&ire->ire_lock); 5572 } 5573 5574 #endif 5575 5576 /* 5577 * Generate a message chain with an arp request to resolve the in_ire. 5578 * It is assumed that in_ire itself is currently in the ire cache table, 5579 * so we create a fake_ire filled with enough information about ire_addr etc. 5580 * to retrieve in_ire when the DL_UNITDATA response from the resolver 5581 * comes back. The fake_ire itself is created by calling esballoc with 5582 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 5583 * invoked when the mblk containing fake_ire is freed. 5584 */ 5585 void 5586 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 5587 { 5588 areq_t *areq; 5589 ipaddr_t *addrp; 5590 mblk_t *ire_mp, *areq_mp; 5591 ire_t *ire, *buf; 5592 size_t bufsize; 5593 frtn_t *frtnp; 5594 ill_t *ill; 5595 ip_stack_t *ipst = dst_ill->ill_ipst; 5596 5597 /* 5598 * Construct message chain for the resolver 5599 * of the form: 5600 * ARP_REQ_MBLK-->IRE_MBLK 5601 * 5602 * NOTE : If the response does not 5603 * come back, ARP frees the packet. For this reason, 5604 * we can't REFHOLD the bucket of save_ire to prevent 5605 * deletions. We may not be able to REFRELE the bucket 5606 * if the response never comes back. Thus, before 5607 * adding the ire, ire_add_v4 will make sure that the 5608 * interface route does not get deleted. This is the 5609 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 5610 * where we can always prevent deletions because of 5611 * the synchronous nature of adding IRES i.e 5612 * ire_add_then_send is called after creating the IRE. 5613 */ 5614 5615 /* 5616 * We use esballoc to allocate the second part(the ire_t size mblk) 5617 * of the message chain depicted above. THis mblk will be freed 5618 * by arp when there is a timeout, and otherwise passed to IP 5619 * and IP will * free it after processing the ARP response. 5620 */ 5621 5622 bufsize = sizeof (ire_t) + sizeof (frtn_t); 5623 buf = kmem_alloc(bufsize, KM_NOSLEEP); 5624 if (buf == NULL) { 5625 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 5626 return; 5627 } 5628 frtnp = (frtn_t *)(buf + 1); 5629 frtnp->free_arg = (caddr_t)buf; 5630 frtnp->free_func = ire_freemblk; 5631 5632 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 5633 5634 if (ire_mp == NULL) { 5635 ip1dbg(("ire_arpresolve: esballoc failed\n")); 5636 kmem_free(buf, bufsize); 5637 return; 5638 } 5639 ASSERT(in_ire->ire_nce != NULL); 5640 areq_mp = copyb(dst_ill->ill_resolver_mp); 5641 if (areq_mp == NULL) { 5642 kmem_free(buf, bufsize); 5643 return; 5644 } 5645 5646 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 5647 ire = (ire_t *)buf; 5648 /* 5649 * keep enough info in the fake ire so that we can pull up 5650 * the incomplete ire (in_ire) after result comes back from 5651 * arp and make it complete. 5652 */ 5653 *ire = ire_null; 5654 ire->ire_u = in_ire->ire_u; 5655 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 5656 ire->ire_ipif = in_ire->ire_ipif; 5657 ire->ire_stq = in_ire->ire_stq; 5658 ill = ire_to_ill(ire); 5659 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 5660 ire->ire_zoneid = in_ire->ire_zoneid; 5661 ire->ire_ipst = ipst; 5662 5663 /* 5664 * ire_freemblk will be called when ire_mp is freed, both for 5665 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 5666 * when the arp resolution failed. 5667 */ 5668 ire->ire_marks |= IRE_MARK_UNCACHED; 5669 ire->ire_mp = ire_mp; 5670 ire_mp->b_wptr = (uchar_t *)&ire[1]; 5671 ire_mp->b_cont = NULL; 5672 linkb(areq_mp, ire_mp); 5673 5674 /* 5675 * Fill in the source and dest addrs for the resolver. 5676 * NOTE: this depends on memory layouts imposed by 5677 * ill_init(). 5678 */ 5679 areq = (areq_t *)areq_mp->b_rptr; 5680 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 5681 *addrp = ire->ire_src_addr; 5682 5683 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 5684 if (ire->ire_gateway_addr != INADDR_ANY) { 5685 *addrp = ire->ire_gateway_addr; 5686 } else { 5687 *addrp = ire->ire_addr; 5688 } 5689 5690 /* Up to the resolver. */ 5691 if (canputnext(dst_ill->ill_rq)) { 5692 putnext(dst_ill->ill_rq, areq_mp); 5693 } else { 5694 freemsg(areq_mp); 5695 } 5696 } 5697 5698 /* 5699 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 5700 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 5701 * 5702 * This function can be called by ARP via free routine for ire_mp or 5703 * by IPv4(both host and forwarding path) via ire_delete 5704 * in case ARP resolution fails. 5705 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 5706 * (for IP to talk to ARP, it still has to send AR* messages). 5707 * 5708 * Note that the ARP/IP merge should replace the functioanlity by providing 5709 * direct function calls to clean up unresolved entries in ire/nce lists. 5710 */ 5711 void 5712 ire_freemblk(ire_t *ire_mp) 5713 { 5714 nce_t *nce = NULL; 5715 ill_t *ill; 5716 ip_stack_t *ipst; 5717 5718 ASSERT(ire_mp != NULL); 5719 5720 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 5721 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 5722 (void *)ire_mp)); 5723 goto cleanup; 5724 } 5725 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 5726 goto cleanup; /* everything succeeded. just free and return */ 5727 } 5728 5729 /* 5730 * the arp information corresponding to this ire_mp was not 5731 * transferred to a ire_cache entry. Need 5732 * to clean up incomplete ire's and nce, if necessary. 5733 */ 5734 ASSERT(ire_mp->ire_stq != NULL); 5735 ASSERT(ire_mp->ire_stq_ifindex != 0); 5736 ASSERT(ire_mp->ire_ipst != NULL); 5737 5738 ipst = ire_mp->ire_ipst; 5739 5740 /* 5741 * Get any nce's corresponding to this ire_mp. We first have to 5742 * make sure that the ill is still around. 5743 */ 5744 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, 5745 B_FALSE, NULL, NULL, NULL, NULL, ipst); 5746 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 5747 (ill->ill_state_flags & ILL_CONDEMNED)) { 5748 /* 5749 * ill went away. no nce to clean up. 5750 * Note that the ill_state_flags could be set to 5751 * ILL_CONDEMNED after this point, but if we know 5752 * that it is CONDEMNED now, we just bail out quickly. 5753 */ 5754 if (ill != NULL) 5755 ill_refrele(ill); 5756 goto cleanup; 5757 } 5758 nce = ndp_lookup_v4(ill, 5759 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 5760 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 5761 B_FALSE); 5762 ill_refrele(ill); 5763 5764 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 5765 /* 5766 * some incomplete nce was found. 5767 */ 5768 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 5769 nce_t *, nce, ire_t *, ire_mp); 5770 /* 5771 * Send the icmp_unreachable messages for the queued mblks in 5772 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 5773 * for this ire 5774 */ 5775 arp_resolv_failed(nce); 5776 /* 5777 * Delete the nce and clean up all ire's pointing at this nce 5778 * in the cachetable 5779 */ 5780 ndp_delete(nce); 5781 } 5782 if (nce != NULL) 5783 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 5784 5785 cleanup: 5786 /* 5787 * Get rid of the ire buffer 5788 * We call kmem_free here(instead of ire_delete()), since 5789 * this is the freeb's callback. 5790 */ 5791 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 5792 } 5793 5794 /* 5795 * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and 5796 * non-loopback IRE_BROADCAST ire's. 5797 * 5798 * If a neighbor-cache entry has to be created (i.e., one does not already 5799 * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache 5800 * entry are initialized in ndp_add_v4(). These values are picked from 5801 * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the 5802 * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values 5803 * determine the {nce_state, nce_res_mp} of the nce_t created. All 5804 * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp 5805 * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire 5806 * entries, 5807 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 5808 * nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state. 5809 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 5810 * layer resolution is necessary, so that the nce_t will be in the 5811 * ND_REACHABLE state and the nce_res_mp will have a copy of the 5812 * ill_resolver_mp of the outgoing interface. 5813 * 5814 * The link layer information needed for broadcast addresses, and for 5815 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 5816 * never needs re-verification for the lifetime of the nce_t. These are 5817 * therefore marked NCE_F_PERMANENT, and never allowed to expire via 5818 * NCE_EXPIRED. 5819 * 5820 * IRE_CACHE ire's contain the information for the nexthop (ire_gateway_addr) 5821 * in the case of indirect routes, and for the dst itself (ire_addr) in the 5822 * case of direct routes, with the nce_res_mp containing a template 5823 * DL_UNITDATA request. 5824 * 5825 * The actual association of the ire_nce to the nce created here is 5826 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 5827 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 5828 * the ire_nce assignment is done in ire_add_then_send. 5829 */ 5830 int 5831 ire_nce_init(ire_t *ire, nce_t *src_nce) 5832 { 5833 in_addr_t addr4; 5834 int err; 5835 nce_t *nce = NULL; 5836 ill_t *ire_ill; 5837 uint16_t nce_flags = 0; 5838 ip_stack_t *ipst; 5839 5840 if (ire->ire_stq == NULL) 5841 return (0); /* no need to create nce for local/loopback */ 5842 5843 switch (ire->ire_type) { 5844 case IRE_CACHE: 5845 if (ire->ire_gateway_addr != INADDR_ANY) 5846 addr4 = ire->ire_gateway_addr; /* 'G' route */ 5847 else 5848 addr4 = ire->ire_addr; /* direct route */ 5849 break; 5850 case IRE_BROADCAST: 5851 addr4 = ire->ire_addr; 5852 nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST); 5853 break; 5854 default: 5855 return (0); 5856 } 5857 5858 /* 5859 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 5860 * rules in ire_forward_src_ipif. We want the dlureq_mp 5861 * for the outgoing interface, which we get from the ire_stq. 5862 */ 5863 ire_ill = ire_to_ill(ire); 5864 ipst = ire_ill->ill_ipst; 5865 5866 /* 5867 * IRE_IF_NORESOLVER entries never need re-verification and 5868 * do not expire, so we mark them as NCE_F_PERMANENT. 5869 */ 5870 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) 5871 nce_flags |= NCE_F_PERMANENT; 5872 5873 retry_nce: 5874 err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags, 5875 &nce, src_nce); 5876 5877 if (err == EEXIST && NCE_EXPIRED(nce, ipst)) { 5878 /* 5879 * We looked up an expired nce. 5880 * Go back and try to create one again. 5881 */ 5882 ndp_delete(nce); 5883 NCE_REFRELE(nce); 5884 nce = NULL; 5885 goto retry_nce; 5886 } 5887 5888 ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n", 5889 (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err)); 5890 5891 switch (err) { 5892 case 0: 5893 case EEXIST: 5894 /* 5895 * return a pointer to a newly created or existing nce_t; 5896 * note that the ire-nce mapping is many-one, i.e., 5897 * multiple ire's could point to the same nce_t. 5898 */ 5899 break; 5900 default: 5901 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 5902 return (EINVAL); 5903 } 5904 if (ire->ire_type == IRE_BROADCAST) { 5905 /* 5906 * Two bcast ires are created for each interface; 5907 * 1. loopback copy (which does not have an 5908 * ire_stq, and therefore has no ire_nce), and, 5909 * 2. the non-loopback copy, which has the nce_res_mp 5910 * initialized to a copy of the ill_bcast_mp, and 5911 * is marked as ND_REACHABLE at this point. 5912 * This nce does not undergo any further state changes, 5913 * and exists as long as the interface is plumbed. 5914 * Note: we do the ire_nce assignment here for IRE_BROADCAST 5915 * because some functions like ill_mark_bcast() inline the 5916 * ire_add functionality. 5917 */ 5918 ire->ire_nce = nce; 5919 /* 5920 * We are associating this nce to the ire, 5921 * so change the nce ref taken in 5922 * ndp_lookup_then_add_v4() from 5923 * NCE_REFHOLD to NCE_REFHOLD_NOTR 5924 */ 5925 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 5926 } else { 5927 /* 5928 * We are not using this nce_t just yet so release 5929 * the ref taken in ndp_lookup_then_add_v4() 5930 */ 5931 NCE_REFRELE(nce); 5932 } 5933 return (0); 5934 } 5935