1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 30 /* 31 * This file contains routines that manipulate Internet Routing Entries (IREs). 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/ddi.h> 39 #include <sys/cmn_err.h> 40 #include <sys/policy.h> 41 42 #include <sys/systm.h> 43 #include <sys/kmem.h> 44 #include <sys/param.h> 45 #include <sys/socket.h> 46 #include <net/if.h> 47 #include <net/route.h> 48 #include <netinet/in.h> 49 #include <net/if_dl.h> 50 #include <netinet/ip6.h> 51 #include <netinet/icmp6.h> 52 53 #include <inet/common.h> 54 #include <inet/mi.h> 55 #include <inet/ip.h> 56 #include <inet/ip6.h> 57 #include <inet/ip_ndp.h> 58 #include <inet/arp.h> 59 #include <inet/ip_if.h> 60 #include <inet/ip_ire.h> 61 #include <inet/ip_ftable.h> 62 #include <inet/ip_rts.h> 63 #include <inet/nd.h> 64 65 #include <net/pfkeyv2.h> 66 #include <inet/ipsec_info.h> 67 #include <inet/sadb.h> 68 #include <sys/kmem.h> 69 #include <inet/tcp.h> 70 #include <inet/ipclassifier.h> 71 #include <sys/zone.h> 72 #include <sys/tsol/label.h> 73 #include <sys/tsol/tnet.h> 74 75 struct kmem_cache *rt_entry_cache; 76 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the respective tables (cache or forwarding tables). 86 * 87 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 89 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_ident, ire_refcnt 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_max_frag, ire_frag_flag 117 * 118 * - ire_lock is used to set/read both of them together. 119 * 120 * ire_tire_mark 121 * 122 * - Set in ire_create and updated in ire_expire, which is called 123 * by only one function namely ip_trash_timer_expire. Thus only 124 * one function updates and examines the value. 125 * 126 * ire_marks 127 * - bucket lock protects this. 128 * 129 * ire_ipsec_overhead/ire_ll_hdr_length 130 * 131 * - Place holder for returning the information to the upper layers 132 * when IRE_DB_REQ comes down. 133 * 134 * 135 * ipv6_ire_default_count is protected by the bucket lock of 136 * ip_forwarding_table_v6[0][0]. 137 * 138 * ipv6_ire_default_index is not protected as it is just a hint 139 * at which default gateway to use. There is nothing 140 * wrong in using the same gateway for two different connections. 141 * 142 * As we always hold the bucket locks in all the places while accessing 143 * the above values, it is natural to use them for protecting them. 144 * 145 * We have a separate cache table and forwarding table for IPv4 and IPv6. 146 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 147 * array of irb_t structure and forwarding table (ip_forwarding_table/ 148 * ip_forwarding_table_v6) is an array of pointers to array of irb_t 149 * structure. ip_forwarding_table[_v6] is allocated dynamically in 150 * ire_add_v4/v6. ire_ft_init_lock is used to serialize multiple threads 151 * initializing the same bucket. Once a bucket is initialized, it is never 152 * de-alloacted. This assumption enables us to access ip_forwarding_table[i] 153 * or ip_forwarding_table_v6[i] without any locks. 154 * 155 * Each irb_t - ire bucket structure has a lock to protect 156 * a bucket and the ires residing in the bucket have a back pointer to 157 * the bucket structure. It also has a reference count for the number 158 * of threads walking the bucket - irb_refcnt which is bumped up 159 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 160 * set to IRE_MARK_CONDEMNED indicating that there are some ires 161 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 162 * last thread to leave the bucket should delete the ires. Usually 163 * this is done by the IRB_REFRELE macro which is used to decrement 164 * the reference count on a bucket. 165 * 166 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 167 * decrements the reference count, ire_refcnt, atomically on the ire. 168 * ire_refcnt is modified only using this macro. Operations on the IRE 169 * could be described as follows : 170 * 171 * CREATE an ire with reference count initialized to 1. 172 * 173 * ADDITION of an ire holds the bucket lock, checks for duplicates 174 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 175 * bumping up once more i.e the reference count is 2. This is to avoid 176 * an extra lookup in the functions calling ire_add which wants to 177 * work with the ire after adding. 178 * 179 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 180 * macro. It is valid to bump up the referece count of the IRE, 181 * after the lookup has returned an ire. Following are the lookup 182 * functions that return an HELD ire : 183 * 184 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 185 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 186 * ipif_to_ire[_v6], ire_mrtun_lookup, ire_srcif_table_lookup. 187 * 188 * DELETION of an ire holds the bucket lock, removes it from the list 189 * and then decrements the reference count for having removed from the list 190 * by using the IRE_REFRELE macro. If some other thread has looked up 191 * the ire, the reference count would have been bumped up and hence 192 * this ire will not be freed once deleted. It will be freed once the 193 * reference count drops to zero. 194 * 195 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 196 * lookups acquire the bucket lock as RW_READER. 197 * 198 * NOTE : The only functions that does the IRE_REFRELE when an ire is 199 * passed as an argument are : 200 * 201 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 202 * broadcast ires it looks up internally within 203 * the function. Currently, for simplicity it does 204 * not differentiate the one that is passed in and 205 * the ones it looks up internally. It always 206 * IRE_REFRELEs. 207 * 2) ire_send 208 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 209 * that take ire as an argument, it has to selectively 210 * IRE_REFRELE the ire. To maintain symmetry, 211 * ire_send_v6 does the same. 212 * 213 * Otherwise, the general rule is to do the IRE_REFRELE in the function 214 * that is passing the ire as an argument. 215 * 216 * In trying to locate ires the following points are to be noted. 217 * 218 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 219 * to be ignored when walking the ires using ire_next. 220 * 221 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 222 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 223 * applications should not be seeing this ire and hence this ire is ignored 224 * in most cases in the search using ire_next. 225 * 226 * Zones note: 227 * Walking IREs within a given zone also walks certain ires in other 228 * zones. This is done intentionally. IRE walks with a specified 229 * zoneid are used only when doing informational reports, and 230 * zone users want to see things that they can access. See block 231 * comment in ire_walk_ill_match(). 232 */ 233 234 /* This is dynamically allocated in ip_ire_init */ 235 irb_t *ip_cache_table; 236 /* This is dynamically allocated in ire_add_mrtun */ 237 irb_t *ip_mrtun_table; 238 239 uint32_t ire_handle = 1; 240 /* 241 * ire_ft_init_lock is used while initializing ip_forwarding_table 242 * dynamically in ire_add. 243 */ 244 kmutex_t ire_ft_init_lock; 245 kmutex_t ire_mrtun_lock; /* Protects creation of table and it's count */ 246 kmutex_t ire_srcif_table_lock; /* Same as above */ 247 /* 248 * The following counts are used to determine whether a walk is 249 * needed through the reverse tunnel table or through ills 250 */ 251 kmutex_t ire_handle_lock; /* Protects ire_handle */ 252 uint_t ire_mrtun_count; /* Number of ires in reverse tun table */ 253 254 /* 255 * A per-interface routing table is created ( if not present) 256 * when the first entry is added to this special routing table. 257 * This special routing table is accessed through the ill data structure. 258 * The routing table looks like cache table. For example, currently it 259 * is used by mobile-ip foreign agent to forward data that only comes from 260 * the home agent tunnel for a mobile node. Thus if the outgoing interface 261 * is a RESOLVER interface, IP may need to resolve the hardware address for 262 * the outgoing interface. The routing entries in this table are not updated 263 * in IRE_CACHE. When MCTL msg comes back from ARP, the incoming ill informa- 264 * tion is lost as the write queue is passed to ip_wput. 265 * But, before sending the packet out, the hardware information must be updated 266 * in the special forwarding table. ire_srcif_table_count keeps track of total 267 * number of ires that are in interface based tables. Each interface based 268 * table hangs off of the incoming ill and each ill_t also keeps a refcnt 269 * of ires in that table. 270 */ 271 272 uint_t ire_srcif_table_count; /* Number of ires in all srcif tables */ 273 274 /* 275 * The minimum size of IRE cache table. It will be recalcuated in 276 * ip_ire_init(). 277 */ 278 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 279 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 280 281 /* 282 * The size of the forwarding table. We will make sure that it is a 283 * power of 2 in ip_ire_init(). 284 */ 285 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 286 287 struct kmem_cache *ire_cache; 288 static ire_t ire_null; 289 290 ire_stats_t ire_stats_v4; /* IPv4 ire statistics */ 291 ire_stats_t ire_stats_v6; /* IPv6 ire statistics */ 292 293 /* 294 * The threshold number of IRE in a bucket when the IREs are 295 * cleaned up. This threshold is calculated later in ip_open() 296 * based on the speed of CPU and available memory. This default 297 * value is the maximum. 298 * 299 * We have two kinds of cached IRE, temporary and 300 * non-temporary. Temporary IREs are marked with 301 * IRE_MARK_TEMPORARY. They are IREs created for non 302 * TCP traffic and for forwarding purposes. All others 303 * are non-temporary IREs. We don't mark IRE created for 304 * TCP as temporary because TCP is stateful and there are 305 * info stored in the IRE which can be shared by other TCP 306 * connections to the same destination. For connected 307 * endpoint, we also don't want to mark the IRE used as 308 * temporary because the same IRE will be used frequently, 309 * otherwise, the app should not do a connect(). We change 310 * the marking at ip_bind_connected_*() if necessary. 311 * 312 * We want to keep the cache IRE hash bucket length reasonably 313 * short, otherwise IRE lookup functions will take "forever." 314 * We use the "crude" function that the IRE bucket 315 * length should be based on the CPU speed, which is 1 entry 316 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 317 * (n). This means that with a 750MHz CPU, the max bucket 318 * length can be (750 >> n) entries. 319 * 320 * Note that this threshold is separate for temp and non-temp 321 * IREs. This means that the actual bucket length can be 322 * twice as that. And while we try to keep temporary IRE 323 * length at most at the threshold value, we do not attempt to 324 * make the length for non-temporary IREs fixed, for the 325 * reason stated above. Instead, we start trying to find 326 * "unused" non-temporary IREs when the bucket length reaches 327 * this threshold and clean them up. 328 * 329 * We also want to limit the amount of memory used by 330 * IREs. So if we are allowed to use ~3% of memory (M) 331 * for those IREs, each bucket should not have more than 332 * 333 * M / num of cache bucket / sizeof (ire_t) 334 * 335 * Again the above memory uses are separate for temp and 336 * non-temp cached IREs. 337 * 338 * We may also want the limit to be a function of the number 339 * of interfaces and number of CPUs. Doing the initialization 340 * in ip_open() means that every time an interface is plumbed, 341 * the max is re-calculated. Right now, we don't do anything 342 * different. In future, when we have more experience, we 343 * may want to change this behavior. 344 */ 345 uint32_t ip_ire_max_bucket_cnt = 10; 346 uint32_t ip6_ire_max_bucket_cnt = 10; 347 348 /* 349 * The minimum of the temporary IRE bucket count. We do not want 350 * the length of each bucket to be too short. This may hurt 351 * performance of some apps as the temporary IREs are removed too 352 * often. 353 */ 354 uint32_t ip_ire_min_bucket_cnt = 3; 355 uint32_t ip6_ire_min_bucket_cnt = 3; 356 357 /* 358 * The ratio of memory consumed by IRE used for temporary to available 359 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 360 * value can be changed in /etc/system. 6 is a reasonable number. 361 */ 362 uint32_t ip_ire_mem_ratio = 6; 363 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 364 uint32_t ip_ire_cpu_ratio = 7; 365 366 typedef struct nce_clookup_s { 367 ipaddr_t ncecl_addr; 368 boolean_t ncecl_found; 369 } nce_clookup_t; 370 371 /* 372 * The maximum number of buckets in IRE cache table. In future, we may 373 * want to make it a dynamic hash table. For the moment, we fix the 374 * size and allocate the table in ip_ire_init() when IP is first loaded. 375 * We take into account the amount of memory a system has. 376 */ 377 #define IP_MAX_CACHE_TABLE_SIZE 4096 378 379 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 380 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 381 382 #define NUM_ILLS 3 /* To build the ILL list to unlock */ 383 384 /* Zero iulp_t for initialization. */ 385 const iulp_t ire_uinfo_null = { 0 }; 386 387 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 388 ipsq_func_t func, boolean_t); 389 static int ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 390 ipsq_func_t func); 391 static ire_t *ire_update_srcif_v4(ire_t *ire); 392 static void ire_delete_v4(ire_t *ire); 393 static void ire_report_ctable(ire_t *ire, char *mp); 394 static void ire_report_mrtun_table(ire_t *ire, char *mp); 395 static void ire_report_srcif_table(ire_t *ire, char *mp); 396 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 397 zoneid_t zoneid); 398 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 399 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 400 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt); 401 extern void ill_unlock_ills(ill_t **list, int cnt); 402 static void ire_fastpath_list_add(ill_t *ill, ire_t *ire); 403 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 404 extern void th_trace_rrecord(th_trace_t *); 405 #ifdef IRE_DEBUG 406 static void ire_trace_inactive(ire_t *); 407 #endif 408 409 /* 410 * To avoid bloating the code, we call this function instead of 411 * using the macro IRE_REFRELE. Use macro only in performance 412 * critical paths. 413 * 414 * Must not be called while holding any locks. Otherwise if this is 415 * the last reference to be released there is a chance of recursive mutex 416 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 417 * to restart an ioctl. The one exception is when the caller is sure that 418 * this is not the last reference to be released. Eg. if the caller is 419 * sure that the ire has not been deleted and won't be deleted. 420 */ 421 void 422 ire_refrele(ire_t *ire) 423 { 424 IRE_REFRELE(ire); 425 } 426 427 void 428 ire_refrele_notr(ire_t *ire) 429 { 430 IRE_REFRELE_NOTR(ire); 431 } 432 433 /* 434 * kmem_cache_alloc constructor for IRE in kma space. 435 * Note that when ire_mp is set the IRE is stored in that mblk and 436 * not in this cache. 437 */ 438 /* ARGSUSED */ 439 static int 440 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 441 { 442 ire_t *ire = buf; 443 444 ire->ire_nce = NULL; 445 446 return (0); 447 } 448 449 /* ARGSUSED1 */ 450 static void 451 ip_ire_destructor(void *buf, void *cdrarg) 452 { 453 ire_t *ire = buf; 454 455 ASSERT(ire->ire_nce == NULL); 456 } 457 458 /* 459 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 460 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 461 * for an existing CACHED IRE. 462 */ 463 /* ARGSUSED */ 464 int 465 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 466 { 467 uchar_t *addr_ucp; 468 ipic_t *ipic; 469 ire_t *ire; 470 ipaddr_t addr; 471 in6_addr_t v6addr; 472 irb_t *irb; 473 zoneid_t zoneid; 474 475 ASSERT(q->q_next == NULL); 476 zoneid = Q_TO_CONN(q)->conn_zoneid; 477 478 /* 479 * Check privilege using the ioctl credential; if it is NULL 480 * then this is a kernel message and therefor privileged. 481 */ 482 if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) 483 return (EPERM); 484 485 ipic = (ipic_t *)mp->b_rptr; 486 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 487 ipic->ipic_addr_length))) { 488 return (EINVAL); 489 } 490 if (!OK_32PTR(addr_ucp)) 491 return (EINVAL); 492 switch (ipic->ipic_addr_length) { 493 case IP_ADDR_LEN: { 494 /* Extract the destination address. */ 495 addr = *(ipaddr_t *)addr_ucp; 496 /* Find the corresponding IRE. */ 497 ire = ire_cache_lookup(addr, zoneid, NULL); 498 break; 499 } 500 case IPV6_ADDR_LEN: { 501 /* Extract the destination address. */ 502 v6addr = *(in6_addr_t *)addr_ucp; 503 /* Find the corresponding IRE. */ 504 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL); 505 break; 506 } 507 default: 508 return (EINVAL); 509 } 510 511 if (ire == NULL) 512 return (ENOENT); 513 /* 514 * Update the round trip time estimate and/or the max frag size 515 * and/or the slow start threshold. 516 * 517 * We serialize multiple advises using ire_lock. 518 */ 519 mutex_enter(&ire->ire_lock); 520 if (ipic->ipic_rtt) { 521 /* 522 * If there is no old cached values, initialize them 523 * conservatively. Set them to be (1.5 * new value). 524 */ 525 if (ire->ire_uinfo.iulp_rtt != 0) { 526 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 527 ipic->ipic_rtt) >> 1; 528 } else { 529 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 530 (ipic->ipic_rtt >> 1); 531 } 532 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 533 ire->ire_uinfo.iulp_rtt_sd = 534 (ire->ire_uinfo.iulp_rtt_sd + 535 ipic->ipic_rtt_sd) >> 1; 536 } else { 537 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 538 (ipic->ipic_rtt_sd >> 1); 539 } 540 } 541 if (ipic->ipic_max_frag) 542 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 543 if (ipic->ipic_ssthresh != 0) { 544 if (ire->ire_uinfo.iulp_ssthresh != 0) 545 ire->ire_uinfo.iulp_ssthresh = 546 (ipic->ipic_ssthresh + 547 ire->ire_uinfo.iulp_ssthresh) >> 1; 548 else 549 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 550 } 551 /* 552 * Don't need the ire_lock below this. ire_type does not change 553 * after initialization. ire_marks is protected by irb_lock. 554 */ 555 mutex_exit(&ire->ire_lock); 556 557 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 558 /* 559 * Only increment the temporary IRE count if the original 560 * IRE is not already marked temporary. 561 */ 562 irb = ire->ire_bucket; 563 rw_enter(&irb->irb_lock, RW_WRITER); 564 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 565 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 566 irb->irb_tmp_ire_cnt++; 567 } 568 ire->ire_marks |= ipic->ipic_ire_marks; 569 rw_exit(&irb->irb_lock); 570 } 571 572 ire_refrele(ire); 573 return (0); 574 } 575 576 /* 577 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 578 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 579 * for a host that is not responding. This will force an attempt to 580 * establish a new route, if available. Management processes may want 581 * to use the version that generates a reply. 582 * 583 * This function does not support IPv6 since Neighbor Unreachability Detection 584 * means that negative advise like this is useless. 585 */ 586 /* ARGSUSED */ 587 int 588 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 589 { 590 uchar_t *addr_ucp; 591 ipaddr_t addr; 592 ire_t *ire; 593 ipid_t *ipid; 594 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 595 zoneid_t zoneid; 596 ire_t *gire = NULL; 597 598 ASSERT(q->q_next == NULL); 599 zoneid = Q_TO_CONN(q)->conn_zoneid; 600 601 /* 602 * Check privilege using the ioctl credential; if it is NULL 603 * then this is a kernel message and therefor privileged. 604 */ 605 if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) 606 return (EPERM); 607 608 ipid = (ipid_t *)mp->b_rptr; 609 610 /* Only actions on IRE_CACHEs are acceptable at present. */ 611 if (ipid->ipid_ire_type != IRE_CACHE) 612 return (EINVAL); 613 614 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 615 ipid->ipid_addr_length); 616 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 617 return (EINVAL); 618 switch (ipid->ipid_addr_length) { 619 case IP_ADDR_LEN: 620 /* addr_ucp points at IP addr */ 621 break; 622 case sizeof (sin_t): { 623 sin_t *sin; 624 /* 625 * got complete (sockaddr) address - increment addr_ucp to point 626 * at the ip_addr field. 627 */ 628 sin = (sin_t *)addr_ucp; 629 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 630 break; 631 } 632 default: 633 return (EINVAL); 634 } 635 /* Extract the destination address. */ 636 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 637 638 /* Try to find the CACHED IRE. */ 639 ire = ire_cache_lookup(addr, zoneid, NULL); 640 641 /* Nail it. */ 642 if (ire) { 643 /* Allow delete only on CACHE entries */ 644 if (ire->ire_type != IRE_CACHE) { 645 ire_refrele(ire); 646 return (EINVAL); 647 } 648 649 /* 650 * Verify that the IRE has been around for a while. 651 * This is to protect against transport protocols 652 * that are too eager in sending delete messages. 653 */ 654 if (gethrestime_sec() < 655 ire->ire_create_time + ip_ignore_delete_time) { 656 ire_refrele(ire); 657 return (EINVAL); 658 } 659 /* 660 * Now we have a potentially dead cache entry. We need 661 * to remove it. 662 * If this cache entry is generated from a 663 * default route (i.e., ire_cmask == 0), 664 * search the default list and mark it dead and some 665 * background process will try to activate it. 666 */ 667 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 668 /* 669 * Make sure that we pick a different 670 * IRE_DEFAULT next time. 671 */ 672 ire_t *gw_ire; 673 irb_t *irb = NULL; 674 uint_t match_flags; 675 676 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 677 678 gire = ire_ftable_lookup(ire->ire_addr, 679 ire->ire_cmask, 0, 0, 680 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags); 681 682 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 683 (void *)gire)); 684 685 if (gire != NULL) { 686 irb = gire->ire_bucket; 687 688 /* 689 * We grab it as writer just to serialize 690 * multiple threads trying to bump up 691 * irb_rr_origin 692 */ 693 rw_enter(&irb->irb_lock, RW_WRITER); 694 if ((gw_ire = irb->irb_rr_origin) == NULL) { 695 rw_exit(&irb->irb_lock); 696 goto done; 697 } 698 699 700 /* Skip past the potentially bad gateway */ 701 if (ire->ire_gateway_addr == 702 gw_ire->ire_gateway_addr) 703 irb->irb_rr_origin = gw_ire->ire_next; 704 705 rw_exit(&irb->irb_lock); 706 } 707 } 708 done: 709 if (gire != NULL) 710 IRE_REFRELE(gire); 711 /* report the bad route to routing sockets */ 712 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 713 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 714 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); 715 routing_sock_info = B_TRUE; 716 ire_delete(ire); 717 ire_refrele(ire); 718 } 719 /* Also look for an IRE_HOST_REDIRECT and remove it if present */ 720 ire = ire_route_lookup(addr, 0, 0, IRE_HOST_REDIRECT, NULL, NULL, 721 ALL_ZONES, NULL, MATCH_IRE_TYPE); 722 723 /* Nail it. */ 724 if (ire) { 725 if (!routing_sock_info) { 726 ip_rts_change(RTM_LOSING, ire->ire_addr, 727 ire->ire_gateway_addr, ire->ire_mask, 728 ire->ire_src_addr, 0, 0, 0, 729 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); 730 } 731 ire_delete(ire); 732 ire_refrele(ire); 733 } 734 return (0); 735 } 736 737 /* 738 * Named Dispatch routine to produce a formatted report on all IREs. 739 * This report is accessed by using the ndd utility to "get" ND variable 740 * "ipv4_ire_status". 741 */ 742 /* ARGSUSED */ 743 int 744 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 745 { 746 zoneid_t zoneid; 747 748 (void) mi_mpprintf(mp, 749 "IRE " MI_COL_HDRPAD_STR 750 /* 01234567[89ABCDEF] */ 751 "rfq " MI_COL_HDRPAD_STR 752 /* 01234567[89ABCDEF] */ 753 "stq " MI_COL_HDRPAD_STR 754 /* 01234567[89ABCDEF] */ 755 " zone " 756 /* 12345 */ 757 "addr mask " 758 /* 123.123.123.123 123.123.123.123 */ 759 "src gateway mxfrg rtt rtt_sd ssthresh ref " 760 /* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */ 761 "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe " 762 /* 123456 123456789 123456789 123456 12345678 1234 12345678 */ 763 "recvpipe in/out/forward type"); 764 /* 12345678 in/out/forward xxxxxxxxxx */ 765 766 /* 767 * Because of the ndd constraint, at most we can have 64K buffer 768 * to put in all IRE info. So to be more efficient, just 769 * allocate a 64K buffer here, assuming we need that large buffer. 770 * This should be OK as only root can do ndd /dev/ip. 771 */ 772 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 773 /* The following may work even if we cannot get a large buf. */ 774 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 775 return (0); 776 } 777 778 zoneid = Q_TO_CONN(q)->conn_zoneid; 779 if (zoneid == GLOBAL_ZONEID) 780 zoneid = ALL_ZONES; 781 782 ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid); 783 ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid); 784 785 return (0); 786 } 787 788 789 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */ 790 static void 791 ire_report_ctable(ire_t *ire, char *mp) 792 { 793 char buf1[16]; 794 char buf2[16]; 795 char buf3[16]; 796 char buf4[16]; 797 uint_t fo_pkt_count; 798 uint_t ib_pkt_count; 799 int ref; 800 uint_t print_len, buf_len; 801 802 if ((ire->ire_type & IRE_CACHETABLE) == 0) 803 return; 804 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 805 if (buf_len <= 0) 806 return; 807 808 /* Number of active references of this ire */ 809 ref = ire->ire_refcnt; 810 /* "inbound" to a non local address is a forward */ 811 ib_pkt_count = ire->ire_ib_pkt_count; 812 fo_pkt_count = 0; 813 if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { 814 fo_pkt_count = ib_pkt_count; 815 ib_pkt_count = 0; 816 } 817 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 818 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 819 "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 820 "%04d %08d %08d %d/%d/%d %s\n", 821 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 822 (int)ire->ire_zoneid, 823 ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), 824 ip_dot_addr(ire->ire_src_addr, buf3), 825 ip_dot_addr(ire->ire_gateway_addr, buf4), 826 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 827 ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, 828 ire->ire_uinfo.iulp_rtomax, 829 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 830 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 831 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 832 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 833 ire->ire_uinfo.iulp_sack, 834 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 835 ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, 836 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); 837 if (print_len < buf_len) { 838 ((mblk_t *)mp)->b_wptr += print_len; 839 } else { 840 ((mblk_t *)mp)->b_wptr += buf_len; 841 } 842 } 843 844 /* ARGSUSED */ 845 int 846 ip_ire_report_mrtun(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 847 { 848 (void) mi_mpprintf(mp, 849 "IRE " MI_COL_HDRPAD_STR 850 /* 01234567[89ABCDEF] */ 851 "stq " MI_COL_HDRPAD_STR 852 /* 01234567[89ABCDEF] */ 853 "in_ill " MI_COL_HDRPAD_STR 854 /* 01234567[89ABCDEF] */ 855 "in_src_addr " 856 /* 123.123.123.123 */ 857 "max_frag " 858 /* 12345 */ 859 "ref "); 860 /* 123 */ 861 862 ire_walk_ill_mrtun(0, 0, ire_report_mrtun_table, mp, NULL); 863 return (0); 864 } 865 866 /* mrtun report table - supports ipv4_mrtun_ire_status ndd variable */ 867 868 static void 869 ire_report_mrtun_table(ire_t *ire, char *mp) 870 { 871 char buf1[INET_ADDRSTRLEN]; 872 int ref; 873 874 /* Number of active references of this ire */ 875 ref = ire->ire_refcnt; 876 ASSERT(ire->ire_type == IRE_MIPRTUN); 877 (void) mi_mpprintf((mblk_t *)mp, 878 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 879 "%s %05d %03d", 880 (void *)ire, (void *)ire->ire_stq, 881 (void *)ire->ire_in_ill, 882 ip_dot_addr(ire->ire_in_src_addr, buf1), 883 ire->ire_max_frag, ref); 884 } 885 886 /* 887 * Dispatch routine to format ires in interface based routine 888 */ 889 /* ARGSUSED */ 890 int 891 ip_ire_report_srcif(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 892 { 893 894 /* Report all interface based ires */ 895 896 (void) mi_mpprintf(mp, 897 "IRE " MI_COL_HDRPAD_STR 898 /* 01234567[89ABCDEF] */ 899 "stq " MI_COL_HDRPAD_STR 900 /* 01234567[89ABCDEF] */ 901 "in_ill " MI_COL_HDRPAD_STR 902 /* 01234567[89ABCDEF] */ 903 "addr " 904 /* 123.123.123.123 */ 905 "gateway " 906 /* 123.123.123.123 */ 907 "max_frag " 908 /* 12345 */ 909 "ref " 910 /* 123 */ 911 "type " 912 /* ABCDEFGH */ 913 "in/out/forward"); 914 ire_walk_srcif_table_v4(ire_report_srcif_table, mp); 915 return (0); 916 } 917 918 /* Reports the interface table ires */ 919 static void 920 ire_report_srcif_table(ire_t *ire, char *mp) 921 { 922 char buf1[INET_ADDRSTRLEN]; 923 char buf2[INET_ADDRSTRLEN]; 924 int ref; 925 926 ref = ire->ire_refcnt; 927 (void) mi_mpprintf((mblk_t *)mp, 928 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 929 "%s %s %05d %03d %s %d", 930 (void *)ire, (void *)ire->ire_stq, 931 (void *)ire->ire_in_ill, 932 ip_dot_addr(ire->ire_addr, buf1), 933 ip_dot_addr(ire->ire_gateway_addr, buf2), 934 ire->ire_max_frag, ref, 935 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type), 936 ire->ire_ib_pkt_count); 937 938 } 939 /* 940 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 941 * down from the Upper Level Protocol to request a copy of the IRE (to check 942 * its type or to extract information like round-trip time estimates or the 943 * MTU.) 944 * The address is assumed to be in the ire_addr field. If no IRE is found 945 * an IRE is returned with ire_type being zero. 946 * Note that the upper lavel protocol has to check for broadcast 947 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 948 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 949 * end of the returned message. 950 * 951 * TCP sends down a message of this type with a connection request packet 952 * chained on. UDP and ICMP send it down to verify that a route exists for 953 * the destination address when they get connected. 954 */ 955 void 956 ip_ire_req(queue_t *q, mblk_t *mp) 957 { 958 ire_t *inire; 959 ire_t *ire; 960 mblk_t *mp1; 961 ire_t *sire = NULL; 962 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 963 964 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 965 !OK_32PTR(mp->b_rptr)) { 966 freemsg(mp); 967 return; 968 } 969 inire = (ire_t *)mp->b_rptr; 970 /* 971 * Got it, now take our best shot at an IRE. 972 */ 973 if (inire->ire_ipversion == IPV6_VERSION) { 974 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 975 NULL, &sire, zoneid, NULL, 976 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 977 } else { 978 ASSERT(inire->ire_ipversion == IPV4_VERSION); 979 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 980 NULL, &sire, zoneid, NULL, 981 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 982 } 983 984 /* 985 * We prevent returning IRES with source address INADDR_ANY 986 * as these were temporarily created for sending packets 987 * from endpoints that have conn_unspec_src set. 988 */ 989 if (ire == NULL || 990 (ire->ire_ipversion == IPV4_VERSION && 991 ire->ire_src_addr == INADDR_ANY) || 992 (ire->ire_ipversion == IPV6_VERSION && 993 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 994 inire->ire_type = 0; 995 } else { 996 bcopy(ire, inire, sizeof (ire_t)); 997 /* Copy the route metrics from the parent. */ 998 if (sire != NULL) { 999 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 1000 sizeof (iulp_t)); 1001 } 1002 1003 /* 1004 * As we don't lookup global policy here, we may not 1005 * pass the right size if per-socket policy is not 1006 * present. For these cases, path mtu discovery will 1007 * do the right thing. 1008 */ 1009 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 1010 1011 /* Pass the latest setting of the ip_path_mtu_discovery */ 1012 inire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; 1013 } 1014 if (ire != NULL) 1015 ire_refrele(ire); 1016 if (sire != NULL) 1017 ire_refrele(sire); 1018 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 1019 mp->b_datap->db_type = IRE_DB_TYPE; 1020 1021 /* Put the IRE_DB_TYPE mblk last in the chain */ 1022 mp1 = mp->b_cont; 1023 if (mp1 != NULL) { 1024 mp->b_cont = NULL; 1025 linkb(mp1, mp); 1026 mp = mp1; 1027 } 1028 qreply(q, mp); 1029 } 1030 1031 /* 1032 * Send a packet using the specified IRE. 1033 * If ire_src_addr_v6 is all zero then discard the IRE after 1034 * the packet has been sent. 1035 */ 1036 static void 1037 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 1038 { 1039 mblk_t *ipsec_mp; 1040 boolean_t is_secure; 1041 uint_t ifindex; 1042 ill_t *ill; 1043 1044 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1045 ipsec_mp = pkt; 1046 is_secure = (pkt->b_datap->db_type == M_CTL); 1047 if (is_secure) 1048 pkt = pkt->b_cont; 1049 1050 /* If the packet originated externally then */ 1051 if (pkt->b_prev) { 1052 ire_refrele(ire); 1053 /* 1054 * Extract the ifindex from b_prev (set in ip_rput_noire). 1055 * Look up interface to see if it still exists (it could have 1056 * been unplumbed by the time the reply came back from ARP) 1057 */ 1058 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1059 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 1060 NULL, NULL, NULL, NULL); 1061 if (ill == NULL) { 1062 pkt->b_prev = NULL; 1063 pkt->b_next = NULL; 1064 freemsg(ipsec_mp); 1065 return; 1066 } 1067 q = ill->ill_rq; 1068 pkt->b_prev = NULL; 1069 /* 1070 * This packet has not gone through IPSEC processing 1071 * and hence we should not have any IPSEC message 1072 * prepended. 1073 */ 1074 ASSERT(ipsec_mp == pkt); 1075 put(q, pkt); 1076 ill_refrele(ill); 1077 } else if (pkt->b_next) { 1078 /* Packets from multicast router */ 1079 pkt->b_next = NULL; 1080 /* 1081 * We never get the IPSEC_OUT while forwarding the 1082 * packet for multicast router. 1083 */ 1084 ASSERT(ipsec_mp == pkt); 1085 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 1086 ire_refrele(ire); 1087 } else { 1088 /* Locally originated packets */ 1089 boolean_t is_inaddr_any; 1090 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 1091 1092 /* 1093 * We need to do an ire_delete below for which 1094 * we need to make sure that the IRE will be 1095 * around even after calling ip_wput_ire - 1096 * which does ire_refrele. Otherwise somebody 1097 * could potentially delete this ire and hence 1098 * free this ire and we will be calling ire_delete 1099 * on a freed ire below. 1100 */ 1101 is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); 1102 if (is_inaddr_any) { 1103 IRE_REFHOLD(ire); 1104 } 1105 /* 1106 * If we were resolving a router we can not use the 1107 * routers IRE for sending the packet (since it would 1108 * violate the uniqness of the IP idents) thus we 1109 * make another pass through ip_wput to create the IRE_CACHE 1110 * for the destination. 1111 * When IRE_MARK_NOADD is set, ire_add() is not called. 1112 * Thus ip_wput() will never find a ire and result in an 1113 * infinite loop. Thus we check whether IRE_MARK_NOADD is 1114 * is set. This also implies that IRE_MARK_NOADD can only be 1115 * used to send packets to directly connected hosts. 1116 */ 1117 if (ipha->ipha_dst != ire->ire_addr && 1118 !(ire->ire_marks & IRE_MARK_NOADD)) { 1119 ire_refrele(ire); /* Held in ire_add */ 1120 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, IRE_SEND); 1121 } else { 1122 if (is_secure) { 1123 ipsec_out_t *oi; 1124 ipha_t *ipha; 1125 1126 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1127 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 1128 if (oi->ipsec_out_proc_begin) { 1129 /* 1130 * This is the case where 1131 * ip_wput_ipsec_out could not find 1132 * the IRE and recreated a new one. 1133 * As ip_wput_ipsec_out does ire 1134 * lookups, ire_refrele for the extra 1135 * bump in ire_add. 1136 */ 1137 ire_refrele(ire); 1138 ip_wput_ipsec_out(q, ipsec_mp, ipha, 1139 NULL, NULL); 1140 } else { 1141 /* 1142 * IRE_REFRELE will be done in 1143 * ip_wput_ire. 1144 */ 1145 ip_wput_ire(q, ipsec_mp, ire, NULL, 1146 IRE_SEND); 1147 } 1148 } else { 1149 /* 1150 * IRE_REFRELE will be done in ip_wput_ire. 1151 */ 1152 ip_wput_ire(q, ipsec_mp, ire, NULL, 1153 IRE_SEND); 1154 } 1155 } 1156 /* 1157 * Special code to support sending a single packet with 1158 * conn_unspec_src using an IRE which has no source address. 1159 * The IRE is deleted here after sending the packet to avoid 1160 * having other code trip on it. But before we delete the 1161 * ire, somebody could have looked up this ire. 1162 * We prevent returning/using this IRE by the upper layers 1163 * by making checks to NULL source address in other places 1164 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 1165 * Though, this does not completely prevent other threads 1166 * from using this ire, this should not cause any problems. 1167 * 1168 * NOTE : We use is_inaddr_any instead of using ire_src_addr 1169 * because for the normal case i.e !is_inaddr_any, ire_refrele 1170 * above could have potentially freed the ire. 1171 */ 1172 if (is_inaddr_any) { 1173 /* 1174 * If this IRE has been deleted by another thread, then 1175 * ire_bucket won't be NULL, but ire_ptpn will be NULL. 1176 * Thus, ire_delete will do nothing. This check 1177 * guards against calling ire_delete when the IRE was 1178 * never inserted in the table, which is handled by 1179 * ire_delete as dropping another reference. 1180 */ 1181 if (ire->ire_bucket != NULL) { 1182 ip1dbg(("ire_send: delete IRE\n")); 1183 ire_delete(ire); 1184 } 1185 ire_refrele(ire); /* Held above */ 1186 } 1187 } 1188 } 1189 1190 /* 1191 * Send a packet using the specified IRE. 1192 * If ire_src_addr_v6 is all zero then discard the IRE after 1193 * the packet has been sent. 1194 */ 1195 static void 1196 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 1197 { 1198 mblk_t *ipsec_mp; 1199 boolean_t secure; 1200 uint_t ifindex; 1201 1202 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1203 if (pkt->b_datap->db_type == M_CTL) { 1204 ipsec_mp = pkt; 1205 pkt = pkt->b_cont; 1206 secure = B_TRUE; 1207 } else { 1208 ipsec_mp = pkt; 1209 secure = B_FALSE; 1210 } 1211 1212 /* If the packet originated externally then */ 1213 if (pkt->b_prev) { 1214 ill_t *ill; 1215 /* 1216 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1217 * Look up interface to see if it still exists (it could have 1218 * been unplumbed by the time the reply came back from the 1219 * resolver). 1220 */ 1221 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1222 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1223 NULL, NULL, NULL, NULL); 1224 if (ill == NULL) { 1225 pkt->b_prev = NULL; 1226 pkt->b_next = NULL; 1227 freemsg(ipsec_mp); 1228 ire_refrele(ire); /* Held in ire_add */ 1229 return; 1230 } 1231 q = ill->ill_rq; 1232 pkt->b_prev = NULL; 1233 /* 1234 * This packet has not gone through IPSEC processing 1235 * and hence we should not have any IPSEC message 1236 * prepended. 1237 */ 1238 ASSERT(ipsec_mp == pkt); 1239 put(q, pkt); 1240 ill_refrele(ill); 1241 } else if (pkt->b_next) { 1242 /* Packets from multicast router */ 1243 pkt->b_next = NULL; 1244 /* 1245 * We never get the IPSEC_OUT while forwarding the 1246 * packet for multicast router. 1247 */ 1248 ASSERT(ipsec_mp == pkt); 1249 /* 1250 * XXX TODO IPv6. 1251 */ 1252 freemsg(pkt); 1253 #ifdef XXX 1254 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1255 #endif 1256 } else { 1257 if (secure) { 1258 ipsec_out_t *oi; 1259 ip6_t *ip6h; 1260 1261 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1262 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1263 if (oi->ipsec_out_proc_begin) { 1264 /* 1265 * This is the case where 1266 * ip_wput_ipsec_out could not find 1267 * the IRE and recreated a new one. 1268 */ 1269 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1270 NULL, NULL); 1271 } else { 1272 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, 1273 q, IRE_SEND); 1274 } 1275 } else { 1276 /* 1277 * Send packets through ip_output_v6 so that any 1278 * ip6_info header can be processed again. 1279 */ 1280 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1281 IRE_SEND); 1282 } 1283 /* 1284 * Special code to support sending a single packet with 1285 * conn_unspec_src using an IRE which has no source address. 1286 * The IRE is deleted here after sending the packet to avoid 1287 * having other code trip on it. But before we delete the 1288 * ire, somebody could have looked up this ire. 1289 * We prevent returning/using this IRE by the upper layers 1290 * by making checks to NULL source address in other places 1291 * like e.g ip_ire_append_v6, ip_ire_req and 1292 * ip_bind_connected_v6. Though, this does not completely 1293 * prevent other threads from using this ire, this should 1294 * not cause any problems. 1295 */ 1296 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1297 ip1dbg(("ire_send_v6: delete IRE\n")); 1298 ire_delete(ire); 1299 } 1300 } 1301 ire_refrele(ire); /* Held in ire_add */ 1302 } 1303 1304 /* 1305 * Make sure that IRE bucket does not get too long. 1306 * This can cause lock up because ire_cache_lookup() 1307 * may take "forever" to finish. 1308 * 1309 * We just remove cnt IREs each time. This means that 1310 * the bucket length will stay approximately constant, 1311 * depending on cnt. This should be enough to defend 1312 * against DoS attack based on creating temporary IREs 1313 * (for forwarding and non-TCP traffic). 1314 * 1315 * Note that new IRE is normally added at the tail of the 1316 * bucket. This means that we are removing the "oldest" 1317 * temporary IRE added. Only if there are IREs with 1318 * the same ire_addr, do we not add it at the tail. Refer 1319 * to ire_add_v*(). It should be OK for our purpose. 1320 * 1321 * For non-temporary cached IREs, we make sure that they 1322 * have not been used for some time (defined below), they 1323 * are non-local destinations, and there is no one using 1324 * them at the moment (refcnt == 1). 1325 * 1326 * The above means that the IRE bucket length may become 1327 * very long, consisting of mostly non-temporary IREs. 1328 * This can happen when the hash function does a bad job 1329 * so that most TCP connections cluster to a specific bucket. 1330 * This "hopefully" should never happen. It can also 1331 * happen if most TCP connections have very long lives. 1332 * Even with the minimal hash table size of 256, there 1333 * has to be a lot of such connections to make the bucket 1334 * length unreasonably long. This should probably not 1335 * happen either. The third can when this can happen is 1336 * when the machine is under attack, such as SYN flooding. 1337 * TCP should already have the proper mechanism to protect 1338 * that. So we should be safe. 1339 * 1340 * This function is called by ire_add_then_send() after 1341 * a new IRE is added and the packet is sent. 1342 * 1343 * The idle cutoff interval is set to 60s. It can be 1344 * changed using /etc/system. 1345 */ 1346 uint32_t ire_idle_cutoff_interval = 60000; 1347 1348 static void 1349 ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt) 1350 { 1351 ire_t *ire; 1352 int tmp_cnt = cnt; 1353 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1354 1355 /* 1356 * irb is NULL if the IRE is not added to the hash. This 1357 * happens when IRE_MARK_NOADD is set in ire_add_then_send() 1358 * and when ires are returned from ire_update_srcif_v4() routine. 1359 */ 1360 if (irb == NULL) 1361 return; 1362 1363 IRB_REFHOLD(irb); 1364 if (irb->irb_tmp_ire_cnt > threshold) { 1365 for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0; 1366 ire = ire->ire_next) { 1367 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1368 continue; 1369 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1370 ASSERT(ire->ire_type == IRE_CACHE); 1371 ire_delete(ire); 1372 tmp_cnt--; 1373 } 1374 } 1375 } 1376 if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) { 1377 for (ire = irb->irb_ire; ire != NULL && cnt > 0; 1378 ire = ire->ire_next) { 1379 if (ire->ire_marks & IRE_MARK_CONDEMNED || 1380 ire->ire_gateway_addr == 0) { 1381 continue; 1382 } 1383 if ((ire->ire_type == IRE_CACHE) && 1384 (lbolt - ire->ire_last_used_time > cut_off) && 1385 (ire->ire_refcnt == 1)) { 1386 ire_delete(ire); 1387 cnt--; 1388 } 1389 } 1390 } 1391 IRB_REFRELE(irb); 1392 } 1393 1394 /* 1395 * ire_add_then_send is called when a new IRE has been created in order to 1396 * route an outgoing packet. Typically, it is called from ip_wput when 1397 * a response comes back down from a resolver. We add the IRE, and then 1398 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1399 * However, we do not add the newly created IRE in the cache when 1400 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1401 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD and ires returned 1402 * by ire_update_srcif_v4() are ire_refrele'd by ip_wput_ire() and get 1403 * deleted. 1404 * Multirouting support: the packet is silently discarded when the new IRE 1405 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1406 * RTF_MULTIRT flag for the same destination address. 1407 * In this case, we just want to register this additional ire without 1408 * sending the packet, as it has already been replicated through 1409 * existing multirt routes in ip_wput(). 1410 */ 1411 void 1412 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1413 { 1414 irb_t *irb; 1415 boolean_t drop = B_FALSE; 1416 /* LINTED : set but not used in function */ 1417 boolean_t mctl_present; 1418 mblk_t *first_mp = NULL; 1419 mblk_t *save_mp = NULL; 1420 ire_t *dst_ire; 1421 ipha_t *ipha; 1422 ip6_t *ip6h; 1423 1424 if (mp != NULL) { 1425 /* 1426 * We first have to retrieve the destination address carried 1427 * by the packet. 1428 * We can't rely on ire as it can be related to a gateway. 1429 * The destination address will help in determining if 1430 * other RTF_MULTIRT ires are already registered. 1431 * 1432 * We first need to know where we are going : v4 or V6. 1433 * the ire version is enough, as there is no risk that 1434 * we resolve an IPv6 address with an IPv4 ire 1435 * or vice versa. 1436 */ 1437 if (ire->ire_ipversion == IPV4_VERSION) { 1438 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1439 ipha = (ipha_t *)mp->b_rptr; 1440 save_mp = mp; 1441 mp = first_mp; 1442 1443 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1444 ire->ire_zoneid, MBLK_GETLABEL(mp)); 1445 } else { 1446 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1447 /* 1448 * Get a pointer to the beginning of the IPv6 header. 1449 * Ignore leading IPsec control mblks. 1450 */ 1451 first_mp = mp; 1452 if (mp->b_datap->db_type == M_CTL) { 1453 mp = mp->b_cont; 1454 } 1455 ip6h = (ip6_t *)mp->b_rptr; 1456 save_mp = mp; 1457 mp = first_mp; 1458 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1459 ire->ire_zoneid, MBLK_GETLABEL(mp)); 1460 } 1461 if (dst_ire != NULL) { 1462 if (dst_ire->ire_flags & RTF_MULTIRT) { 1463 /* 1464 * At least one resolved multirt route 1465 * already exists for the destination, 1466 * don't sent this packet: either drop it 1467 * or complete the pending resolution, 1468 * depending on the ire. 1469 */ 1470 drop = B_TRUE; 1471 } 1472 ip1dbg(("ire_add_then_send: dst_ire %p " 1473 "[dst %08x, gw %08x], drop %d\n", 1474 (void *)dst_ire, 1475 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1476 ntohl(dst_ire->ire_addr) : \ 1477 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1478 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1479 ntohl(dst_ire->ire_gateway_addr) : \ 1480 ntohl(V4_PART_OF_V6( 1481 dst_ire->ire_gateway_addr_v6)), 1482 drop)); 1483 ire_refrele(dst_ire); 1484 } 1485 } 1486 1487 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1488 /* 1489 * Regular packets with cache bound ires and 1490 * the packets from ARP response for ires which 1491 * belong to the ire_srcif_v4 table, are here. 1492 */ 1493 if (ire->ire_in_ill == NULL) { 1494 /* Add the ire */ 1495 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1496 } else { 1497 /* 1498 * This must be ARP response for ire in interface based 1499 * table. Note that we don't add them in cache table, 1500 * instead we update the existing table with dlureq_mp 1501 * information. The reverse tunnel ires do not come 1502 * here, as reverse tunnel is non-resolver interface. 1503 * XXX- another design alternative was to mark the 1504 * ires in interface based table with a special mark to 1505 * make absolutely sure that we operate in right ires. 1506 * This idea was not implemented as part of code review 1507 * suggestion, as ire_in_ill suffice to distinguish 1508 * between the regular ires and interface based 1509 * ires now and thus we save a bit in the ire_marks. 1510 */ 1511 ire = ire_update_srcif_v4(ire); 1512 } 1513 1514 if (ire == NULL) { 1515 mp->b_prev = NULL; 1516 mp->b_next = NULL; 1517 MULTIRT_DEBUG_UNTAG(mp); 1518 freemsg(mp); 1519 return; 1520 } 1521 if (mp == NULL) { 1522 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1523 return; 1524 } 1525 } 1526 if (drop) { 1527 /* 1528 * If we're adding an RTF_MULTIRT ire, the resolution 1529 * is over: we just drop the packet. 1530 */ 1531 if (ire->ire_flags & RTF_MULTIRT) { 1532 if (save_mp) { 1533 save_mp->b_prev = NULL; 1534 save_mp->b_next = NULL; 1535 } 1536 MULTIRT_DEBUG_UNTAG(mp); 1537 freemsg(mp); 1538 } else { 1539 /* 1540 * Otherwise, we're adding the ire to a gateway 1541 * for a multirt route. 1542 * Invoke ip_newroute() to complete the resolution 1543 * of the route. We will then come back here and 1544 * finally drop this packet in the above code. 1545 */ 1546 if (ire->ire_ipversion == IPV4_VERSION) { 1547 /* 1548 * TODO: in order for CGTP to work in non-global 1549 * zones, ip_newroute() must create the IRE 1550 * cache in the zone indicated by 1551 * ire->ire_zoneid. 1552 */ 1553 ip_newroute(q, mp, ipha->ipha_dst, 0, 1554 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 1555 } else { 1556 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1557 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1558 NULL, ire->ire_zoneid); 1559 } 1560 } 1561 1562 ire_refrele(ire); /* As done by ire_send(). */ 1563 return; 1564 } 1565 /* 1566 * Need to remember ire_bucket here as ire_send*() may delete 1567 * the ire so we cannot reference it after that. 1568 */ 1569 irb = ire->ire_bucket; 1570 if (ire->ire_ipversion == IPV6_VERSION) { 1571 ire_send_v6(q, mp, ire); 1572 /* 1573 * Clean up more than 1 IRE so that the clean up does not 1574 * need to be done every time when a new IRE is added and 1575 * the threshold is reached. 1576 */ 1577 ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2); 1578 } else { 1579 ire_send(q, mp, ire); 1580 ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2); 1581 } 1582 } 1583 1584 /* 1585 * Initialize the ire that is specific to IPv4 part and call 1586 * ire_init_common to finish it. 1587 */ 1588 ire_t * 1589 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1590 uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, 1591 queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, 1592 ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1593 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1594 { 1595 /* 1596 * Reject IRE security attribute creation/initialization 1597 * if system is not running in Trusted mode. 1598 */ 1599 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1600 return (NULL); 1601 1602 if (fp_mp != NULL) { 1603 /* 1604 * We can't dupb() here as multiple threads could be 1605 * calling dupb on the same mp which is incorrect. 1606 * First dupb() should be called only by one thread. 1607 */ 1608 fp_mp = copyb(fp_mp); 1609 if (fp_mp == NULL) 1610 return (NULL); 1611 } 1612 1613 if (dlureq_mp != NULL) { 1614 /* 1615 * We can't dupb() here as multiple threads could be 1616 * calling dupb on the same mp which is incorrect. 1617 * First dupb() should be called only by one thread. 1618 */ 1619 dlureq_mp = copyb(dlureq_mp); 1620 if (dlureq_mp == NULL) { 1621 if (fp_mp != NULL) 1622 freeb(fp_mp); 1623 return (NULL); 1624 } 1625 } 1626 1627 /* 1628 * Check that IRE_IF_RESOLVER and IRE_IF_NORESOLVER have a 1629 * dlureq_mp which is the ill_resolver_mp for IRE_IF_RESOLVER 1630 * and DL_UNITDATA_REQ for IRE_IF_NORESOLVER. 1631 */ 1632 if ((type & IRE_INTERFACE) && 1633 dlureq_mp == NULL) { 1634 ASSERT(fp_mp == NULL); 1635 ip0dbg(("ire_init: no dlureq_mp\n")); 1636 return (NULL); 1637 } 1638 1639 BUMP_IRE_STATS(ire_stats_v4, ire_stats_alloced); 1640 1641 if (addr != NULL) 1642 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1643 if (src_addr != NULL) 1644 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1645 if (mask != NULL) { 1646 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1647 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1648 } 1649 if (gateway != NULL) { 1650 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1651 } 1652 if (in_src_addr != NULL) { 1653 bcopy(in_src_addr, &ire->ire_in_src_addr, IP_ADDR_LEN); 1654 } 1655 1656 if (type == IRE_CACHE) 1657 ire->ire_cmask = cmask; 1658 1659 /* ire_init_common will free the mblks upon encountering any failure */ 1660 if (!ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp, 1661 ipif, in_ill, phandle, ihandle, flags, IPV4_VERSION, ulp_info, 1662 gc, gcgrp)) 1663 return (NULL); 1664 1665 return (ire); 1666 } 1667 1668 /* 1669 * Similar to ire_create except that it is called only when 1670 * we want to allocate ire as an mblk e.g. we have an external 1671 * resolver ARP. 1672 */ 1673 ire_t * 1674 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1675 uchar_t *in_src_addr, uint_t max_frag, mblk_t *fp_mp, queue_t *rfq, 1676 queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, 1677 ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, 1678 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1679 { 1680 ire_t *ire, *buf; 1681 ire_t *ret_ire; 1682 mblk_t *mp; 1683 size_t bufsize; 1684 frtn_t *frtnp; 1685 ill_t *ill; 1686 1687 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1688 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1689 if (buf == NULL) { 1690 ip1dbg(("ire_create_mp: alloc failed\n")); 1691 return (NULL); 1692 } 1693 frtnp = (frtn_t *)(buf + 1); 1694 frtnp->free_arg = (caddr_t)buf; 1695 frtnp->free_func = ire_freemblk; 1696 1697 /* 1698 * Allocate the new IRE. The ire created will hold a ref on 1699 * an nce_t after ire_nce_init, and this ref must either be 1700 * (a) transferred to the ire_cache entry created when ire_add_v4 1701 * is called after successful arp resolution, or, 1702 * (b) released, when arp resolution fails 1703 * Case (b) is handled in ire_freemblk() which will be called 1704 * when mp is freed as a result of failed arp. 1705 */ 1706 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1707 if (mp == NULL) { 1708 ip1dbg(("ire_create_mp: alloc failed\n")); 1709 kmem_free(buf, bufsize); 1710 return (NULL); 1711 } 1712 ire = (ire_t *)mp->b_rptr; 1713 mp->b_wptr = (uchar_t *)&ire[1]; 1714 1715 /* Start clean. */ 1716 *ire = ire_null; 1717 ire->ire_mp = mp; 1718 mp->b_datap->db_type = IRE_DB_TYPE; 1719 ire->ire_marks |= IRE_MARK_UNCACHED; 1720 1721 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, 1722 NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, 1723 phandle, ihandle, flags, ulp_info, gc, gcgrp); 1724 1725 if (ret_ire == NULL) { 1726 freeb(ire->ire_mp); 1727 return (NULL); 1728 } 1729 ill = ire_to_ill(ret_ire); 1730 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1731 ASSERT(ret_ire == ire); 1732 /* 1733 * ire_max_frag is normally zero here and is atomically set 1734 * under the irebucket lock in ire_add_v[46] except for the 1735 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1736 * is non-zero here. 1737 */ 1738 ire->ire_max_frag = max_frag; 1739 return (ire); 1740 } 1741 1742 /* 1743 * ire_create is called to allocate and initialize a new IRE. 1744 * 1745 * NOTE : This is called as writer sometimes though not required 1746 * by this function. 1747 */ 1748 ire_t * 1749 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1750 uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq, 1751 queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, 1752 ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, 1753 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1754 { 1755 ire_t *ire; 1756 ire_t *ret_ire; 1757 1758 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1759 if (ire == NULL) { 1760 ip1dbg(("ire_create: alloc failed\n")); 1761 return (NULL); 1762 } 1763 *ire = ire_null; 1764 1765 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, 1766 max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, 1767 phandle, ihandle, flags, ulp_info, gc, gcgrp); 1768 1769 if (ret_ire == NULL) { 1770 kmem_cache_free(ire_cache, ire); 1771 return (NULL); 1772 } 1773 ASSERT(ret_ire == ire); 1774 return (ire); 1775 } 1776 1777 1778 /* 1779 * Common to IPv4 and IPv6 1780 */ 1781 boolean_t 1782 ire_init_common(ire_t *ire, uint_t *max_fragp, mblk_t *fp_mp, 1783 queue_t *rfq, queue_t *stq, ushort_t type, 1784 mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, uint32_t phandle, 1785 uint32_t ihandle, uint32_t flags, uchar_t ipversion, 1786 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1787 { 1788 ire->ire_max_fragp = max_fragp; 1789 ire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; 1790 1791 ASSERT(fp_mp == NULL || fp_mp->b_datap->db_type == M_DATA); 1792 #ifdef DEBUG 1793 if (ipif != NULL) { 1794 if (ipif->ipif_isv6) 1795 ASSERT(ipversion == IPV6_VERSION); 1796 else 1797 ASSERT(ipversion == IPV4_VERSION); 1798 } 1799 #endif /* DEBUG */ 1800 1801 /* 1802 * Create/initialize IRE security attribute only in Trusted mode; 1803 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1804 * has held a reference to it and will release it when this routine 1805 * returns a failure, otherwise we own the reference. We do this 1806 * prior to initializing the rest IRE fields. 1807 * 1808 * Don't allocate ire_gw_secattr for the resolver case to prevent 1809 * memory leak (in case of external resolution failure). We'll 1810 * allocate it after a successful external resolution, in ire_add(). 1811 * Note that ire->ire_mp != NULL here means this ire is headed 1812 * to an external resolver. 1813 */ 1814 if (is_system_labeled()) { 1815 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1816 IRE_INTERFACE)) != 0) { 1817 /* release references on behalf of caller */ 1818 if (gc != NULL) 1819 GC_REFRELE(gc); 1820 if (gcgrp != NULL) 1821 GCGRP_REFRELE(gcgrp); 1822 } else if ((ire->ire_mp == NULL) && 1823 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1824 /* free any caller-allocated mblks upon failure */ 1825 if (fp_mp != NULL) 1826 freeb(fp_mp); 1827 if (dlureq_mp != NULL) 1828 freeb(dlureq_mp); 1829 return (B_FALSE); 1830 } 1831 } 1832 1833 ire->ire_stq = stq; 1834 ire->ire_rfq = rfq; 1835 ire->ire_type = type; 1836 ire->ire_flags = RTF_UP | flags; 1837 ire->ire_ident = TICK_TO_MSEC(lbolt); 1838 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1839 1840 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1841 ire->ire_last_used_time = lbolt; 1842 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1843 1844 /* 1845 * If this IRE is an IRE_CACHE, inherit the handles from the 1846 * parent IREs. For others in the forwarding table, assign appropriate 1847 * new ones. 1848 * 1849 * The mutex protecting ire_handle is because ire_create is not always 1850 * called as a writer. 1851 */ 1852 if (ire->ire_type & IRE_OFFSUBNET) { 1853 mutex_enter(&ire_handle_lock); 1854 ire->ire_phandle = (uint32_t)ire_handle++; 1855 mutex_exit(&ire_handle_lock); 1856 } else if (ire->ire_type & IRE_INTERFACE) { 1857 mutex_enter(&ire_handle_lock); 1858 ire->ire_ihandle = (uint32_t)ire_handle++; 1859 mutex_exit(&ire_handle_lock); 1860 } else if (ire->ire_type == IRE_CACHE) { 1861 ire->ire_phandle = phandle; 1862 ire->ire_ihandle = ihandle; 1863 } 1864 ire->ire_in_ill = in_ill; 1865 ire->ire_ipif = ipif; 1866 if (ipif != NULL) { 1867 ire->ire_ipif_seqid = ipif->ipif_seqid; 1868 ire->ire_zoneid = ipif->ipif_zoneid; 1869 } else { 1870 ire->ire_zoneid = GLOBAL_ZONEID; 1871 } 1872 ire->ire_ipversion = ipversion; 1873 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1874 if (ipversion == IPV4_VERSION) { 1875 if (ire_nce_init(ire, fp_mp, dlureq_mp) != 0) { 1876 /* some failure occurred. propagate error back */ 1877 return (B_FALSE); 1878 } 1879 } else { 1880 ASSERT(ipversion == IPV6_VERSION); 1881 /* 1882 * IPv6 initializes the ire_nce in ire_add_v6, 1883 * which expects to find the ire_nce to be null when 1884 * when it is called. 1885 */ 1886 if (dlureq_mp) 1887 freemsg(dlureq_mp); 1888 if (fp_mp) 1889 freemsg(fp_mp); 1890 } 1891 ire->ire_refcnt = 1; 1892 1893 #ifdef IRE_DEBUG 1894 bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX); 1895 #endif 1896 1897 return (B_TRUE); 1898 } 1899 1900 /* 1901 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1902 * It is passed a pointer to a slot in an IRE pointer array into which to 1903 * place the pointer to the new IRE, if indeed we create one. If the 1904 * IRE corresponding to the address passed in would be a duplicate of an 1905 * existing one, we don't create the new one. irep is incremented before 1906 * return only if we do create a new IRE. (Always called as writer.) 1907 * 1908 * Note that with the "match_flags" parameter, we can match on either 1909 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1910 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1911 * we only create broadcast ire's on a per physical interface basis. If 1912 * someone is going to be mucking with logical interfaces, it is important 1913 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1914 * logical interface will not cause critical broadcast IRE's to be deleted. 1915 */ 1916 ire_t ** 1917 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1918 int match_flags) 1919 { 1920 ire_t *ire; 1921 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1922 1923 /* 1924 * No broadcast IREs for the LOOPBACK interface 1925 * or others such as point to point and IPIF_NOXMIT. 1926 */ 1927 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1928 (ipif->ipif_flags & IPIF_NOXMIT)) 1929 return (irep); 1930 1931 /* If this would be a duplicate, don't bother. */ 1932 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1933 ipif->ipif_zoneid, NULL, match_flags)) != NULL) { 1934 /* 1935 * We look for non-deprecated (and non-anycast, non-nolocal) 1936 * ipifs as the best choice. ipifs with check_flags matching 1937 * (deprecated, etc) are used only if non-deprecated ipifs 1938 * are not available. if the existing ire's ipif is deprecated 1939 * and the new ipif is non-deprecated, switch to the new ipif 1940 */ 1941 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1942 (ipif->ipif_flags & check_flags)) { 1943 ire_refrele(ire); 1944 return (irep); 1945 } 1946 /* 1947 * Bcast ires exist in pairs. Both have to be deleted, 1948 * Since we are exclusive we can make the above assertion. 1949 * The 1st has to be refrele'd since it was ctable_lookup'd. 1950 */ 1951 ASSERT(IAM_WRITER_IPIF(ipif)); 1952 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 1953 ire_delete(ire->ire_next); 1954 ire_delete(ire); 1955 ire_refrele(ire); 1956 } 1957 1958 irep = ire_create_bcast(ipif, addr, irep); 1959 1960 return (irep); 1961 } 1962 1963 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 1964 1965 /* 1966 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 1967 * It leaves all the verifying and deleting to those routines. So it always 1968 * creates 2 bcast ires and chains them into the ire array passed in. 1969 */ 1970 ire_t ** 1971 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 1972 { 1973 *irep++ = ire_create( 1974 (uchar_t *)&addr, /* dest addr */ 1975 (uchar_t *)&ip_g_all_ones, /* mask */ 1976 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 1977 NULL, /* no gateway */ 1978 NULL, /* no in_src_addr */ 1979 &ipif->ipif_mtu, /* max frag */ 1980 NULL, /* fast path header */ 1981 ipif->ipif_rq, /* recv-from queue */ 1982 ipif->ipif_wq, /* send-to queue */ 1983 IRE_BROADCAST, 1984 ipif->ipif_bcast_mp, /* xmit header */ 1985 ipif, 1986 NULL, 1987 0, 1988 0, 1989 0, 1990 0, 1991 &ire_uinfo_null, 1992 NULL, 1993 NULL); 1994 1995 *irep++ = ire_create( 1996 (uchar_t *)&addr, /* dest address */ 1997 (uchar_t *)&ip_g_all_ones, /* mask */ 1998 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 1999 NULL, /* no gateway */ 2000 NULL, /* no in_src_addr */ 2001 &ip_loopback_mtu, /* max frag size */ 2002 NULL, /* Fast Path header */ 2003 ipif->ipif_rq, /* recv-from queue */ 2004 NULL, /* no send-to queue */ 2005 IRE_BROADCAST, /* Needed for fanout in wput */ 2006 NULL, 2007 ipif, 2008 NULL, 2009 0, 2010 0, 2011 0, 2012 0, 2013 &ire_uinfo_null, 2014 NULL, 2015 NULL); 2016 2017 return (irep); 2018 } 2019 2020 /* 2021 * ire_walk routine to delete or update any IRE_CACHE that might contain 2022 * stale information. 2023 * The flags state which entries to delete or update. 2024 * Garbage collection is done separately using kmem alloc callbacks to 2025 * ip_trash_ire_reclaim. 2026 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 2027 * since other stale information is cleaned up using NUD. 2028 */ 2029 void 2030 ire_expire(ire_t *ire, char *arg) 2031 { 2032 int flush_flags = (int)(uintptr_t)arg; 2033 ill_t *stq_ill; 2034 2035 if ((flush_flags & FLUSH_REDIRECT_TIME) && 2036 ire->ire_type == IRE_HOST_REDIRECT) { 2037 /* Make sure we delete the corresponding IRE_CACHE */ 2038 ip1dbg(("ire_expire: all redirects\n")); 2039 ip_rts_rtmsg(RTM_DELETE, ire, 0); 2040 ire_delete(ire); 2041 atomic_dec_32(&ip_redirect_cnt); 2042 return; 2043 } 2044 if (ire->ire_type != IRE_CACHE) 2045 return; 2046 2047 if (flush_flags & FLUSH_ARP_TIME) { 2048 /* 2049 * Remove all IRE_CACHE. 2050 * Verify that create time is more than 2051 * ip_ire_arp_interval milliseconds ago. 2052 */ 2053 if (NCE_EXPIRED(ire->ire_nce)) { 2054 ire_delete(ire); 2055 return; 2056 } 2057 } 2058 2059 if (ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 2060 (ire->ire_ipif != NULL)) { 2061 /* Increase pmtu if it is less than the interface mtu */ 2062 mutex_enter(&ire->ire_lock); 2063 /* 2064 * If the ipif is a vni (whose mtu is 0, since it's virtual) 2065 * get the mtu from the sending interfaces' ipif 2066 */ 2067 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 2068 stq_ill = ire->ire_stq->q_ptr; 2069 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 2070 IP_MAXPACKET); 2071 } else { 2072 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 2073 IP_MAXPACKET); 2074 } 2075 ire->ire_frag_flag |= IPH_DF; 2076 mutex_exit(&ire->ire_lock); 2077 } 2078 } 2079 2080 /* 2081 * Do fast path probing if necessary. 2082 */ 2083 void 2084 ire_fastpath(ire_t *ire) 2085 { 2086 ill_t *ill; 2087 int res; 2088 2089 if (ire->ire_nce == NULL || ire->ire_nce->nce_fp_mp != NULL || 2090 ire->ire_nce->nce_state != ND_REACHABLE || 2091 ire->ire_nce->nce_res_mp == NULL) { 2092 2093 /* 2094 * Already contains fastpath info or 2095 * doesn't have DL_UNITDATA_REQ header or 2096 * or is an incomplete ire in the ire table 2097 * or is a loopback broadcast ire i.e. no stq. 2098 */ 2099 return; 2100 } 2101 ill = ire_to_ill(ire); 2102 if (ill == NULL) 2103 return; 2104 ire_fastpath_list_add(ill, ire); 2105 res = ill_fastpath_probe(ill, ire->ire_nce->nce_res_mp); 2106 /* 2107 * EAGAIN is an indication of a transient error 2108 * i.e. allocation failure etc. leave the ire in the list it will 2109 * be updated when another probe happens for another ire if not 2110 * it will be taken out of the list when the ire is deleted. 2111 */ 2112 if (res != 0 && res != EAGAIN) 2113 ire_fastpath_list_delete(ill, ire); 2114 } 2115 2116 /* 2117 * Update all IRE's that are not in fastpath mode and 2118 * have an dlureq_mp that matches mp. mp->b_cont contains 2119 * the fastpath header. 2120 * 2121 * Returns TRUE if entry should be dequeued, or FALSE otherwise. 2122 */ 2123 boolean_t 2124 ire_fastpath_update(ire_t *ire, void *arg) 2125 { 2126 mblk_t *mp, *fp_mp; 2127 uchar_t *up, *up2; 2128 ptrdiff_t cmplen; 2129 nce_t *arpce; 2130 2131 ASSERT((ire->ire_type & (IRE_CACHE | IRE_BROADCAST | 2132 IRE_MIPRTUN)) != 0); 2133 2134 /* 2135 * Already contains fastpath info or doesn't have 2136 * DL_UNITDATA_REQ header or is an incomplete ire. 2137 */ 2138 if (ire->ire_nce == NULL || ire->ire_nce->nce_res_mp == NULL || 2139 ire->ire_nce->nce_fp_mp != NULL || 2140 ire->ire_nce->nce_state != ND_REACHABLE) 2141 return (B_TRUE); 2142 2143 ip2dbg(("ire_fastpath_update: trying\n")); 2144 mp = arg; 2145 up = mp->b_rptr; 2146 cmplen = mp->b_wptr - up; 2147 /* Serialize multiple fast path updates */ 2148 mutex_enter(&ire->ire_lock); 2149 up2 = ire->ire_nce->nce_res_mp->b_rptr; 2150 ASSERT(cmplen >= 0); 2151 if (ire->ire_nce->nce_res_mp->b_wptr - up2 != cmplen || 2152 bcmp(up, up2, cmplen) != 0) { 2153 mutex_exit(&ire->ire_lock); 2154 /* 2155 * Don't take the ire off the fastpath list yet, 2156 * since the response may come later. 2157 */ 2158 return (B_FALSE); 2159 } 2160 arpce = ire->ire_nce; 2161 /* Matched - install mp as the nce_fp_mp */ 2162 ip1dbg(("ire_fastpath_update: match\n")); 2163 fp_mp = dupb(mp->b_cont); 2164 if (fp_mp) { 2165 /* 2166 * We checked nce_fp_mp above. Check it again with the 2167 * lock. Update fp_mp only if it has not been done 2168 * already. 2169 */ 2170 if (arpce->nce_fp_mp == NULL) { 2171 /* 2172 * ire_ll_hdr_length is just an optimization to 2173 * store the length. It is used to return the 2174 * fast path header length to the upper layers. 2175 */ 2176 arpce->nce_fp_mp = fp_mp; 2177 ire->ire_ll_hdr_length = 2178 (uint_t)(fp_mp->b_wptr - fp_mp->b_rptr); 2179 } else { 2180 freeb(fp_mp); 2181 } 2182 } 2183 mutex_exit(&ire->ire_lock); 2184 return (B_TRUE); 2185 } 2186 2187 /* 2188 * This function handles the DL_NOTE_FASTPATH_FLUSH notification from the 2189 * driver. 2190 */ 2191 /* ARGSUSED */ 2192 void 2193 ire_fastpath_flush(ire_t *ire, void *arg) 2194 { 2195 ill_t *ill; 2196 int res; 2197 2198 /* No fastpath info? */ 2199 if (ire->ire_nce == NULL || 2200 ire->ire_nce->nce_fp_mp == NULL || ire->ire_nce->nce_res_mp == NULL) 2201 return; 2202 2203 /* 2204 * Just remove the IRE if it is for non-broadcast dest. Then 2205 * we will create another one which will have the correct 2206 * fastpath info. 2207 */ 2208 switch (ire->ire_type) { 2209 case IRE_CACHE: 2210 ire_delete(ire); 2211 break; 2212 case IRE_MIPRTUN: 2213 case IRE_BROADCAST: 2214 /* 2215 * We can't delete the ire since it is difficult to 2216 * recreate these ire's without going through the 2217 * ipif down/up dance. The nce_fp_mp is protected by the 2218 * nce_lock in the case of IRE_MIPRTUN and IRE_BROADCAST. 2219 * All access to ire->ire_nce->nce_fp_mp in the case of these 2220 * 2 ire types * is protected by nce_lock. 2221 */ 2222 mutex_enter(&ire->ire_nce->nce_lock); 2223 if (ire->ire_nce->nce_fp_mp != NULL) { 2224 freeb(ire->ire_nce->nce_fp_mp); 2225 ire->ire_nce->nce_fp_mp = NULL; 2226 mutex_exit(&ire->ire_nce->nce_lock); 2227 /* 2228 * No fastpath probe if there is no stq i.e. 2229 * i.e. the case of loopback broadcast ire. 2230 */ 2231 if (ire->ire_stq == NULL) 2232 break; 2233 ill = (ill_t *)((ire->ire_stq)->q_ptr); 2234 ire_fastpath_list_add(ill, ire); 2235 res = ill_fastpath_probe(ill, ire->ire_nce->nce_res_mp); 2236 /* 2237 * EAGAIN is an indication of a transient error 2238 * i.e. allocation failure etc. leave the ire in the 2239 * list it will be updated when another probe happens 2240 * for another ire if not it will be taken out of the 2241 * list when the ire is deleted. 2242 */ 2243 if (res != 0 && res != EAGAIN) 2244 ire_fastpath_list_delete(ill, ire); 2245 } else { 2246 mutex_exit(&ire->ire_nce->nce_lock); 2247 } 2248 break; 2249 default: 2250 /* This should not happen! */ 2251 ip0dbg(("ire_fastpath_flush: Wrong ire type %s\n", 2252 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type))); 2253 break; 2254 } 2255 } 2256 2257 /* 2258 * Drain the list of ire's waiting for fastpath response. 2259 */ 2260 void 2261 ire_fastpath_list_dispatch(ill_t *ill, boolean_t (*func)(ire_t *, void *), 2262 void *arg) 2263 { 2264 ire_t *next_ire; 2265 ire_t *current_ire; 2266 ire_t *first_ire; 2267 ire_t *prev_ire = NULL; 2268 2269 ASSERT(ill != NULL); 2270 2271 mutex_enter(&ill->ill_lock); 2272 first_ire = current_ire = (ire_t *)ill->ill_fastpath_list; 2273 while (current_ire != (ire_t *)&ill->ill_fastpath_list) { 2274 next_ire = current_ire->ire_fastpath; 2275 /* 2276 * Take it off the list if we're flushing, or if the callback 2277 * routine tells us to do so. Otherwise, leave the ire in the 2278 * fastpath list to handle any pending response from the lower 2279 * layer. We can't drain the list when the callback routine 2280 * comparison failed, because the response is asynchronous in 2281 * nature, and may not arrive in the same order as the list 2282 * insertion. 2283 */ 2284 if (func == NULL || func(current_ire, arg)) { 2285 current_ire->ire_fastpath = NULL; 2286 if (current_ire == first_ire) 2287 ill->ill_fastpath_list = first_ire = next_ire; 2288 else 2289 prev_ire->ire_fastpath = next_ire; 2290 } else { 2291 /* previous element that is still in the list */ 2292 prev_ire = current_ire; 2293 } 2294 current_ire = next_ire; 2295 } 2296 mutex_exit(&ill->ill_lock); 2297 } 2298 2299 /* 2300 * Add ire to the ire fastpath list. 2301 */ 2302 static void 2303 ire_fastpath_list_add(ill_t *ill, ire_t *ire) 2304 { 2305 ASSERT(ill != NULL); 2306 ASSERT(ire->ire_stq != NULL); 2307 2308 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2309 mutex_enter(&ill->ill_lock); 2310 2311 /* 2312 * if ire has not been deleted and 2313 * is not already in the list add it. 2314 */ 2315 if (((ire->ire_marks & IRE_MARK_CONDEMNED) == 0) && 2316 (ire->ire_fastpath == NULL)) { 2317 ire->ire_fastpath = (ire_t *)ill->ill_fastpath_list; 2318 ill->ill_fastpath_list = ire; 2319 } 2320 2321 mutex_exit(&ill->ill_lock); 2322 rw_exit(&ire->ire_bucket->irb_lock); 2323 } 2324 2325 /* 2326 * remove ire from the ire fastpath list. 2327 */ 2328 void 2329 ire_fastpath_list_delete(ill_t *ill, ire_t *ire) 2330 { 2331 ire_t *ire_ptr; 2332 2333 ASSERT(ire->ire_stq != NULL && ill != NULL); 2334 2335 mutex_enter(&ill->ill_lock); 2336 if (ire->ire_fastpath == NULL) 2337 goto done; 2338 2339 ASSERT(ill->ill_fastpath_list != &ill->ill_fastpath_list); 2340 2341 if (ill->ill_fastpath_list == ire) { 2342 ill->ill_fastpath_list = ire->ire_fastpath; 2343 } else { 2344 ire_ptr = ill->ill_fastpath_list; 2345 while (ire_ptr != (ire_t *)&ill->ill_fastpath_list) { 2346 if (ire_ptr->ire_fastpath == ire) { 2347 ire_ptr->ire_fastpath = ire->ire_fastpath; 2348 break; 2349 } 2350 ire_ptr = ire_ptr->ire_fastpath; 2351 } 2352 } 2353 ire->ire_fastpath = NULL; 2354 done: 2355 mutex_exit(&ill->ill_lock); 2356 } 2357 2358 /* 2359 * Return any local address. We use this to target ourselves 2360 * when the src address was specified as 'default'. 2361 * Preference for IRE_LOCAL entries. 2362 */ 2363 ire_t * 2364 ire_lookup_local(zoneid_t zoneid) 2365 { 2366 ire_t *ire; 2367 irb_t *irb; 2368 ire_t *maybe = NULL; 2369 int i; 2370 2371 for (i = 0; i < ip_cache_table_size; i++) { 2372 irb = &ip_cache_table[i]; 2373 if (irb->irb_ire == NULL) 2374 continue; 2375 rw_enter(&irb->irb_lock, RW_READER); 2376 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2377 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 2378 (ire->ire_zoneid != zoneid && 2379 ire->ire_zoneid != ALL_ZONES)) 2380 continue; 2381 switch (ire->ire_type) { 2382 case IRE_LOOPBACK: 2383 if (maybe == NULL) { 2384 IRE_REFHOLD(ire); 2385 maybe = ire; 2386 } 2387 break; 2388 case IRE_LOCAL: 2389 if (maybe != NULL) { 2390 ire_refrele(maybe); 2391 } 2392 IRE_REFHOLD(ire); 2393 rw_exit(&irb->irb_lock); 2394 return (ire); 2395 } 2396 } 2397 rw_exit(&irb->irb_lock); 2398 } 2399 return (maybe); 2400 } 2401 2402 /* 2403 * If the specified IRE is associated with a particular ILL, return 2404 * that ILL pointer (May be called as writer.). 2405 * 2406 * NOTE : This is not a generic function that can be used always. 2407 * This function always returns the ill of the outgoing packets 2408 * if this ire is used. 2409 */ 2410 ill_t * 2411 ire_to_ill(const ire_t *ire) 2412 { 2413 ill_t *ill = NULL; 2414 2415 /* 2416 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 2417 * the source address from. ire_stq is the one where the 2418 * packets will be sent out on. We return that here. 2419 * 2420 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 2421 * copy and they always exist next to each other with loopback 2422 * copy being the first one. If we are called on the non-loopback 2423 * copy, return the one pointed by ire_stq. If it was called on 2424 * a loopback copy, we still return the one pointed by the next 2425 * ire's ire_stq pointer i.e the one pointed by the non-loopback 2426 * copy. We don't want use ire_ipif as it might represent the 2427 * source address (if we borrow source addresses for 2428 * IRE_BROADCASTS in the future). 2429 * However if an interface is currently coming up, the above 2430 * condition may not hold during that period since the ires 2431 * are added one at a time. Thus one of the pair could have been 2432 * added and the other not yet added. 2433 * 3) For all others return the ones pointed by ire_ipif->ipif_ill. 2434 */ 2435 2436 if (ire->ire_type == IRE_CACHE) { 2437 ill = (ill_t *)ire->ire_stq->q_ptr; 2438 } else if (ire->ire_type == IRE_BROADCAST) { 2439 if (ire->ire_stq != NULL) { 2440 ill = (ill_t *)ire->ire_stq->q_ptr; 2441 } else { 2442 ire_t *ire_next; 2443 2444 ire_next = ire->ire_next; 2445 if (ire_next != NULL && 2446 ire_next->ire_type == IRE_BROADCAST && 2447 ire_next->ire_addr == ire->ire_addr && 2448 ire_next->ire_ipif == ire->ire_ipif) { 2449 ill = (ill_t *)ire_next->ire_stq->q_ptr; 2450 } 2451 } 2452 } else if (ire->ire_ipif != NULL) { 2453 ill = ire->ire_ipif->ipif_ill; 2454 } 2455 return (ill); 2456 } 2457 2458 /* Arrange to call the specified function for every IRE in the world. */ 2459 void 2460 ire_walk(pfv_t func, void *arg) 2461 { 2462 ire_walk_ipvers(func, arg, 0, ALL_ZONES); 2463 } 2464 2465 void 2466 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid) 2467 { 2468 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid); 2469 } 2470 2471 void 2472 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid) 2473 { 2474 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid); 2475 } 2476 2477 /* 2478 * Walk a particular version. version == 0 means both v4 and v6. 2479 */ 2480 static void 2481 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid) 2482 { 2483 if (vers != IPV6_VERSION) { 2484 /* 2485 * ip_forwarding_table variable doesn't matter for IPv4 since 2486 * ire_walk_ill_tables directly calls with the ip_ftable global 2487 */ 2488 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 2489 0, NULL, 2490 ip_cache_table_size, ip_cache_table, NULL, zoneid); 2491 } 2492 if (vers != IPV4_VERSION) { 2493 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 2494 ip6_ftable_hash_size, ip_forwarding_table_v6, 2495 ip6_cache_table_size, ip_cache_table_v6, NULL, zoneid); 2496 } 2497 } 2498 2499 /* 2500 * Arrange to call the specified 2501 * function for every IRE that matches the ill. 2502 */ 2503 void 2504 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2505 ill_t *ill) 2506 { 2507 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); 2508 } 2509 2510 void 2511 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2512 ill_t *ill) 2513 { 2514 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2515 ill); 2516 } 2517 2518 void 2519 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2520 ill_t *ill) 2521 { 2522 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2523 ill); 2524 } 2525 2526 /* 2527 * Walk a particular ill and version. version == 0 means both v4 and v6. 2528 */ 2529 static void 2530 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2531 void *arg, uchar_t vers, ill_t *ill) 2532 { 2533 if (vers != IPV6_VERSION) { 2534 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2535 IP_MASK_TABLE_SIZE, 0, 2536 NULL, ip_cache_table_size, 2537 ip_cache_table, ill, ALL_ZONES); 2538 } 2539 if (vers != IPV4_VERSION) { 2540 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2541 IP6_MASK_TABLE_SIZE, ip6_ftable_hash_size, 2542 ip_forwarding_table_v6, ip6_cache_table_size, 2543 ip_cache_table_v6, ill, ALL_ZONES); 2544 } 2545 } 2546 2547 boolean_t 2548 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2549 ill_t *ill, zoneid_t zoneid) 2550 { 2551 ill_t *ire_stq_ill = NULL; 2552 ill_t *ire_ipif_ill = NULL; 2553 ill_group_t *ire_ill_group = NULL; 2554 2555 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2556 /* 2557 * 1) MATCH_IRE_WQ : Used specifically to match on ire_stq. 2558 * The fast path update uses this to make sure it does not 2559 * update the fast path header of interface X with the fast 2560 * path updates it recieved on interface Y. It is similar 2561 * in handling DL_NOTE_FASTPATH_FLUSH. 2562 * 2563 * 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2564 * pointed by ire_stq and ire_ipif. Only in the case of 2565 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2566 * different ills. But we want to keep this function generic 2567 * enough for future use. So, we always try to match on both. 2568 * The only caller of this function ire_walk_ill_tables, will 2569 * call "func" after we return from this function. We expect 2570 * "func" to do the right filtering of ires in this case. 2571 * 2572 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2573 * pointed by ire_stq and ire_ipif should always be the same. 2574 * So, we just match on only one of them. 2575 */ 2576 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2577 if (ire->ire_stq != NULL) 2578 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2579 if (ire->ire_ipif != NULL) 2580 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2581 if (ire_stq_ill != NULL) 2582 ire_ill_group = ire_stq_ill->ill_group; 2583 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2584 ire_ill_group = ire_ipif_ill->ill_group; 2585 } 2586 2587 if (zoneid != ALL_ZONES) { 2588 /* 2589 * We're walking the IREs for a specific zone. The only relevant 2590 * IREs are: 2591 * - all IREs with a matching ire_zoneid 2592 * - all IRE_OFFSUBNETs as they're shared across all zones 2593 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2594 * with a matching zone 2595 * - IRE_DEFAULTs with a gateway reachable from the zone 2596 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2597 * using the same rule; but the above rules are consistent with 2598 * the behavior of ire_ftable_lookup[_v6]() so that all the 2599 * routes that can be matched during lookup are also matched 2600 * here. 2601 */ 2602 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2603 /* 2604 * Note, IRE_INTERFACE can have the stq as NULL. For 2605 * example, if the default multicast route is tied to 2606 * the loopback address. 2607 */ 2608 if ((ire->ire_type & IRE_INTERFACE) && 2609 (ire->ire_stq != NULL)) { 2610 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2611 if (ire->ire_ipversion == IPV4_VERSION) { 2612 if (!ipif_usesrc_avail(ire_stq_ill, 2613 zoneid)) 2614 /* No usable src addr in zone */ 2615 return (B_FALSE); 2616 } else if (ire_stq_ill->ill_usesrc_ifindex 2617 != 0) { 2618 /* 2619 * For IPv6 use ipif_select_source_v6() 2620 * so the right scope selection is done 2621 */ 2622 ipif_t *src_ipif; 2623 src_ipif = 2624 ipif_select_source_v6(ire_stq_ill, 2625 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2626 IPV6_PREFER_SRC_DEFAULT, 2627 zoneid); 2628 if (src_ipif != NULL) { 2629 ipif_refrele(src_ipif); 2630 } else { 2631 return (B_FALSE); 2632 } 2633 } else { 2634 return (B_FALSE); 2635 } 2636 2637 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2638 return (B_FALSE); 2639 } 2640 } 2641 2642 /* 2643 * Match all default routes from the global zone, irrespective 2644 * of reachability. 2645 */ 2646 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2647 int ire_match_flags = 0; 2648 in6_addr_t gw_addr_v6; 2649 ire_t *rire; 2650 2651 if (ire->ire_ipif != NULL) { 2652 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2653 } 2654 if (ire->ire_ipversion == IPV4_VERSION) { 2655 rire = ire_route_lookup(ire->ire_gateway_addr, 2656 0, 0, 0, ire->ire_ipif, NULL, zoneid, NULL, 2657 ire_match_flags); 2658 } else { 2659 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2660 mutex_enter(&ire->ire_lock); 2661 gw_addr_v6 = ire->ire_gateway_addr_v6; 2662 mutex_exit(&ire->ire_lock); 2663 rire = ire_route_lookup_v6(&gw_addr_v6, 2664 NULL, NULL, 0, ire->ire_ipif, NULL, zoneid, 2665 NULL, ire_match_flags); 2666 } 2667 if (rire == NULL) { 2668 return (B_FALSE); 2669 } 2670 ire_refrele(rire); 2671 } 2672 } 2673 2674 if (((!(match_flags & MATCH_IRE_TYPE)) || 2675 (ire->ire_type & ire_type)) && 2676 ((!(match_flags & MATCH_IRE_WQ)) || 2677 (ire->ire_stq == ill->ill_wq)) && 2678 ((!(match_flags & MATCH_IRE_ILL)) || 2679 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2680 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2681 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2682 (ire_ill_group != NULL && 2683 ire_ill_group == ill->ill_group))) { 2684 return (B_TRUE); 2685 } 2686 return (B_FALSE); 2687 } 2688 2689 int 2690 rtfunc(struct radix_node *rn, void *arg) 2691 { 2692 struct rtfuncarg *rtf = arg; 2693 struct rt_entry *rt; 2694 irb_t *irb; 2695 ire_t *ire; 2696 boolean_t ret; 2697 2698 rt = (struct rt_entry *)rn; 2699 ASSERT(rt != NULL); 2700 irb = &rt->rt_irb; 2701 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2702 if ((rtf->rt_match_flags != 0) || 2703 (rtf->rt_zoneid != ALL_ZONES)) { 2704 ret = ire_walk_ill_match(rtf->rt_match_flags, 2705 rtf->rt_ire_type, ire, 2706 rtf->rt_ill, rtf->rt_zoneid); 2707 } else 2708 ret = B_TRUE; 2709 if (ret) 2710 (*rtf->rt_func)(ire, rtf->rt_arg); 2711 } 2712 return (0); 2713 } 2714 2715 /* 2716 * Walk the ftable and the ctable entries that match the ill. 2717 */ 2718 void 2719 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2720 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2721 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid) 2722 { 2723 irb_t *irb_ptr; 2724 irb_t *irb; 2725 ire_t *ire; 2726 int i, j; 2727 boolean_t ret; 2728 struct rtfuncarg rtfarg; 2729 2730 ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | 2731 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2732 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2733 /* 2734 * Optimize by not looking at the forwarding table if there 2735 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2736 * specified in ire_type. 2737 */ 2738 if (!(match_flags & MATCH_IRE_TYPE) || 2739 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2740 /* knobs such that routine is called only for v6 case */ 2741 if (ipftbl == ip_forwarding_table_v6) { 2742 for (i = (ftbl_sz - 1); i >= 0; i--) { 2743 if ((irb_ptr = ipftbl[i]) == NULL) 2744 continue; 2745 for (j = 0; j < htbl_sz; j++) { 2746 irb = &irb_ptr[j]; 2747 if (irb->irb_ire == NULL) 2748 continue; 2749 2750 IRB_REFHOLD(irb); 2751 for (ire = irb->irb_ire; ire != NULL; 2752 ire = ire->ire_next) { 2753 if (match_flags == 0 && 2754 zoneid == ALL_ZONES) { 2755 ret = B_TRUE; 2756 } else { 2757 ret = 2758 ire_walk_ill_match( 2759 match_flags, 2760 ire_type, ire, ill, 2761 zoneid); 2762 } 2763 if (ret) 2764 (*func)(ire, arg); 2765 } 2766 IRB_REFRELE(irb); 2767 } 2768 } 2769 } else { 2770 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2771 rtfarg.rt_func = func; 2772 rtfarg.rt_arg = arg; 2773 if (match_flags != 0) { 2774 rtfarg.rt_match_flags = match_flags; 2775 } 2776 rtfarg.rt_ire_type = ire_type; 2777 rtfarg.rt_ill = ill; 2778 rtfarg.rt_zoneid = zoneid; 2779 (void) ip_ftable->rnh_walktree(ip_ftable, rtfunc, 2780 &rtfarg); 2781 } 2782 } 2783 2784 /* 2785 * Optimize by not looking at the cache table if there 2786 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2787 * specified in ire_type. 2788 */ 2789 if (!(match_flags & MATCH_IRE_TYPE) || 2790 ((ire_type & IRE_CACHETABLE) != 0)) { 2791 for (i = 0; i < ctbl_sz; i++) { 2792 irb = &ipctbl[i]; 2793 if (irb->irb_ire == NULL) 2794 continue; 2795 IRB_REFHOLD(irb); 2796 for (ire = irb->irb_ire; ire != NULL; 2797 ire = ire->ire_next) { 2798 if (match_flags == 0 && zoneid == ALL_ZONES) { 2799 ret = B_TRUE; 2800 } else { 2801 ret = ire_walk_ill_match( 2802 match_flags, ire_type, 2803 ire, ill, zoneid); 2804 } 2805 if (ret) 2806 (*func)(ire, arg); 2807 } 2808 IRB_REFRELE(irb); 2809 } 2810 } 2811 } 2812 2813 /* 2814 * This routine walks through the ill chain to find if there is any 2815 * ire linked to the ill's interface based forwarding table 2816 * The arg could be ill or mp. This routine is called when a ill goes 2817 * down/deleted or the 'ipv4_ire_srcif_status' report is printed. 2818 */ 2819 void 2820 ire_walk_srcif_table_v4(pfv_t func, void *arg) 2821 { 2822 irb_t *irb; 2823 ire_t *ire; 2824 ill_t *ill, *next_ill; 2825 int i; 2826 int total_count; 2827 ill_walk_context_t ctx; 2828 2829 /* 2830 * Take care of ire's in other ill's per-interface forwarding 2831 * table. Check if any ire in any of the ill's ill_srcif_table 2832 * is pointing to this ill. 2833 */ 2834 mutex_enter(&ire_srcif_table_lock); 2835 if (ire_srcif_table_count == 0) { 2836 mutex_exit(&ire_srcif_table_lock); 2837 return; 2838 } 2839 mutex_exit(&ire_srcif_table_lock); 2840 2841 #ifdef DEBUG 2842 /* Keep accounting of all interface based table ires */ 2843 total_count = 0; 2844 rw_enter(&ill_g_lock, RW_READER); 2845 ill = ILL_START_WALK_V4(&ctx); 2846 while (ill != NULL) { 2847 mutex_enter(&ill->ill_lock); 2848 total_count += ill->ill_srcif_refcnt; 2849 next_ill = ill_next(&ctx, ill); 2850 mutex_exit(&ill->ill_lock); 2851 ill = next_ill; 2852 } 2853 rw_exit(&ill_g_lock); 2854 2855 /* Hold lock here to make sure ire_srcif_table_count is stable */ 2856 mutex_enter(&ire_srcif_table_lock); 2857 i = ire_srcif_table_count; 2858 mutex_exit(&ire_srcif_table_lock); 2859 ip1dbg(("ire_walk_srcif_v4: ire_srcif_table_count %d " 2860 "total ill_srcif_refcnt %d\n", i, total_count)); 2861 #endif 2862 rw_enter(&ill_g_lock, RW_READER); 2863 ill = ILL_START_WALK_V4(&ctx); 2864 while (ill != NULL) { 2865 mutex_enter(&ill->ill_lock); 2866 if ((ill->ill_srcif_refcnt == 0) || !ILL_CAN_LOOKUP(ill)) { 2867 next_ill = ill_next(&ctx, ill); 2868 mutex_exit(&ill->ill_lock); 2869 ill = next_ill; 2870 continue; 2871 } 2872 ill_refhold_locked(ill); 2873 mutex_exit(&ill->ill_lock); 2874 rw_exit(&ill_g_lock); 2875 if (ill->ill_srcif_table != NULL) { 2876 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 2877 irb = &(ill->ill_srcif_table[i]); 2878 if (irb->irb_ire == NULL) 2879 continue; 2880 IRB_REFHOLD(irb); 2881 for (ire = irb->irb_ire; ire != NULL; 2882 ire = ire->ire_next) { 2883 (*func)(ire, arg); 2884 } 2885 IRB_REFRELE(irb); 2886 } 2887 } 2888 rw_enter(&ill_g_lock, RW_READER); 2889 next_ill = ill_next(&ctx, ill); 2890 ill_refrele(ill); 2891 ill = next_ill; 2892 } 2893 rw_exit(&ill_g_lock); 2894 } 2895 2896 /* 2897 * This function takes a mask and returns 2898 * number of bits set in the mask. If no 2899 * bit is set it returns 0. 2900 * Assumes a contiguous mask. 2901 */ 2902 int 2903 ip_mask_to_plen(ipaddr_t mask) 2904 { 2905 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2906 } 2907 2908 /* 2909 * Convert length for a mask to the mask. 2910 */ 2911 ipaddr_t 2912 ip_plen_to_mask(uint_t masklen) 2913 { 2914 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2915 } 2916 2917 void 2918 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2919 { 2920 ill_t *ill_list[NUM_ILLS]; 2921 2922 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2923 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2924 ill_list[2] = ire->ire_in_ill; 2925 ill_unlock_ills(ill_list, NUM_ILLS); 2926 rw_exit(&irb_ptr->irb_lock); 2927 rw_exit(&ill_g_usesrc_lock); 2928 } 2929 2930 /* 2931 * ire_add_v[46] atomically make sure that the ipif or ill associated 2932 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2933 * before adding the ire to the table. This ensures that we don't create 2934 * new IRE_CACHEs with stale values for parameters that are passed to 2935 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2936 * to the ipif_mtu, and not the value. The actual value is derived from the 2937 * parent ire or ipif under the bucket lock. 2938 */ 2939 int 2940 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2941 ipsq_func_t func) 2942 { 2943 ill_t *stq_ill; 2944 ill_t *ipif_ill; 2945 ill_t *in_ill; 2946 ill_t *ill_list[NUM_ILLS]; 2947 int cnt = NUM_ILLS; 2948 int error = 0; 2949 ill_t *ill = NULL; 2950 2951 ill_list[0] = stq_ill = ire->ire_stq != 2952 NULL ? ire->ire_stq->q_ptr : NULL; 2953 ill_list[1] = ipif_ill = ire->ire_ipif != 2954 NULL ? ire->ire_ipif->ipif_ill : NULL; 2955 ill_list[2] = in_ill = ire->ire_in_ill; 2956 2957 ASSERT((q != NULL && mp != NULL && func != NULL) || 2958 (q == NULL && mp == NULL && func == NULL)); 2959 rw_enter(&ill_g_usesrc_lock, RW_READER); 2960 GRAB_CONN_LOCK(q); 2961 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 2962 ill_lock_ills(ill_list, cnt); 2963 2964 /* 2965 * While the IRE is in the process of being added, a user may have 2966 * invoked the ifconfig usesrc option on the stq_ill to make it a 2967 * usesrc client ILL. Check for this possibility here, if it is true 2968 * then we fail adding the IRE_CACHE. Another check is to make sure 2969 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 2970 * group. The ill_g_usesrc_lock is released in ire_atomic_end 2971 */ 2972 if ((ire->ire_type & IRE_CACHE) && 2973 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 2974 if (stq_ill->ill_usesrc_ifindex != 0) { 2975 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 2976 if ((ipif_ill->ill_phyint->phyint_ifindex != 2977 stq_ill->ill_usesrc_ifindex) || 2978 (ipif_ill->ill_usesrc_grp_next == NULL) || 2979 (ipif_ill->ill_usesrc_ifindex != 0)) { 2980 error = EINVAL; 2981 goto done; 2982 } 2983 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 2984 error = EINVAL; 2985 goto done; 2986 } 2987 } 2988 2989 /* 2990 * IPMP flag settings happen without taking the exclusive route 2991 * in ip_sioctl_flags. So we need to make an atomic check here 2992 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 2993 * FAILBACK=no case. 2994 */ 2995 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 2996 if (stq_ill->ill_state_flags & ILL_CHANGING) { 2997 ill = stq_ill; 2998 error = EAGAIN; 2999 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 3000 (ill_is_probeonly(stq_ill) && 3001 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 3002 error = EINVAL; 3003 } 3004 goto done; 3005 } 3006 3007 /* 3008 * We don't check for OFFLINE/FAILED in this case because 3009 * the source address selection logic (ipif_select_source) 3010 * may still select a source address from such an ill. The 3011 * assumption is that these addresses will be moved by in.mpathd 3012 * soon. (i.e. this is a race). However link local addresses 3013 * will not move and hence ipif_select_source_v6 tries to avoid 3014 * FAILED ills. Please see ipif_select_source_v6 for more info 3015 */ 3016 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 3017 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 3018 ill = ipif_ill; 3019 error = EAGAIN; 3020 goto done; 3021 } 3022 3023 if ((in_ill != NULL) && !IAM_WRITER_ILL(in_ill) && 3024 (in_ill->ill_state_flags & ILL_CHANGING)) { 3025 ill = in_ill; 3026 error = EAGAIN; 3027 goto done; 3028 } 3029 3030 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 3031 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 3032 ill = ire->ire_ipif->ipif_ill; 3033 ASSERT(ill != NULL); 3034 error = EAGAIN; 3035 goto done; 3036 } 3037 3038 done: 3039 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 3040 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 3041 mutex_enter(&ipsq->ipsq_lock); 3042 ire_atomic_end(irb_ptr, ire); 3043 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 3044 mutex_exit(&ipsq->ipsq_lock); 3045 error = EINPROGRESS; 3046 } else if (error != 0) { 3047 ire_atomic_end(irb_ptr, ire); 3048 } 3049 3050 RELEASE_CONN_LOCK(q); 3051 return (error); 3052 } 3053 3054 /* 3055 * Add a fully initialized IRE to an appropriate table based on 3056 * ire_type. 3057 * 3058 * allow_unresolved == B_FALSE indicates a legacy code-path call 3059 * that has prohibited the addition of incomplete ire's. If this 3060 * parameter is set, and we find an nce that is in a state other 3061 * than ND_REACHABLE, we fail the add. Note that nce_state could be 3062 * something other than ND_REACHABLE if nce_reinit has just 3063 * kicked in and reset the nce. 3064 */ 3065 int 3066 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 3067 boolean_t allow_unresolved) 3068 { 3069 ire_t *ire1; 3070 ill_t *stq_ill = NULL; 3071 ill_t *ill; 3072 ipif_t *ipif = NULL; 3073 ill_walk_context_t ctx; 3074 ire_t *ire = *irep; 3075 int error; 3076 boolean_t ire_is_mblk = B_FALSE; 3077 tsol_gcgrp_t *gcgrp = NULL; 3078 tsol_gcgrp_addr_t ga; 3079 3080 ASSERT(ire->ire_type != IRE_MIPRTUN); 3081 3082 /* get ready for the day when original ire is not created as mblk */ 3083 if (ire->ire_mp != NULL) { 3084 ire_is_mblk = B_TRUE; 3085 /* Copy the ire to a kmem_alloc'ed area */ 3086 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 3087 if (ire1 == NULL) { 3088 ip1dbg(("ire_add: alloc failed\n")); 3089 ire_delete(ire); 3090 *irep = NULL; 3091 return (ENOMEM); 3092 } 3093 ire->ire_marks &= ~IRE_MARK_UNCACHED; 3094 *ire1 = *ire; 3095 ire1->ire_mp = NULL; 3096 ire1->ire_stq_ifindex = 0; 3097 freeb(ire->ire_mp); 3098 ire = ire1; 3099 } 3100 if (ire->ire_stq != NULL) 3101 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3102 3103 if (ire->ire_type == IRE_CACHE) { 3104 /* 3105 * If this interface is FAILED, or INACTIVE or has hit 3106 * the FAILBACK=no case, we create IRE_CACHES marked 3107 * HIDDEN for some special cases e.g. bind to 3108 * IPIF_NOFAILOVER address etc. So, if this interface 3109 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 3110 * not creating hidden ires, we should not allow that. 3111 * This happens because the state of the interface 3112 * changed while we were waiting in ARP. If this is the 3113 * daemon sending probes, the next probe will create 3114 * HIDDEN ires and we will create an ire then. This 3115 * cannot happen with NDP currently because IRE is 3116 * never queued in NDP. But it can happen in the 3117 * future when we have external resolvers with IPv6. 3118 * If the interface gets marked with OFFLINE while we 3119 * are waiting in ARP, don't add the ire. 3120 */ 3121 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 3122 (ill_is_probeonly(stq_ill) && 3123 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 3124 /* 3125 * We don't know whether it is a valid ipif or not. 3126 * unless we do the check below. So, set it to NULL. 3127 */ 3128 ire->ire_ipif = NULL; 3129 ire_delete(ire); 3130 *irep = NULL; 3131 return (EINVAL); 3132 } 3133 } 3134 3135 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 3136 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 3137 rw_enter(&ill_g_lock, RW_READER); 3138 ill = ILL_START_WALK_ALL(&ctx); 3139 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 3140 mutex_enter(&ill->ill_lock); 3141 if (ill->ill_state_flags & ILL_CONDEMNED) { 3142 mutex_exit(&ill->ill_lock); 3143 continue; 3144 } 3145 /* 3146 * We need to make sure that the ipif is a valid one 3147 * before adding the IRE_CACHE. This happens only 3148 * with IRE_CACHE when there is an external resolver. 3149 * 3150 * We can unplumb a logical interface while the 3151 * packet is waiting in ARP with the IRE. Then, 3152 * later on when we feed the IRE back, the ipif 3153 * has to be re-checked. This can't happen with 3154 * NDP currently, as we never queue the IRE with 3155 * the packet. We always try to recreate the IRE 3156 * when the resolution is completed. But, we do 3157 * it for IPv6 also here so that in future if 3158 * we have external resolvers, it will work without 3159 * any change. 3160 */ 3161 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 3162 if (ipif != NULL) { 3163 ipif_refhold_locked(ipif); 3164 mutex_exit(&ill->ill_lock); 3165 break; 3166 } 3167 mutex_exit(&ill->ill_lock); 3168 } 3169 rw_exit(&ill_g_lock); 3170 if (ipif == NULL || 3171 (ipif->ipif_isv6 && 3172 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 3173 &ipif->ipif_v6src_addr)) || 3174 (!ipif->ipif_isv6 && 3175 ire->ire_src_addr != ipif->ipif_src_addr) || 3176 ire->ire_zoneid != ipif->ipif_zoneid) { 3177 3178 if (ipif != NULL) 3179 ipif_refrele(ipif); 3180 ire->ire_ipif = NULL; 3181 ire_delete(ire); 3182 *irep = NULL; 3183 return (EINVAL); 3184 } 3185 3186 3187 ASSERT(ill != NULL); 3188 /* 3189 * If this group was dismantled while this packets was 3190 * queued in ARP, don't add it here. 3191 */ 3192 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 3193 /* We don't want ire_inactive bump stats for this */ 3194 ipif_refrele(ipif); 3195 ire->ire_ipif = NULL; 3196 ire_delete(ire); 3197 *irep = NULL; 3198 return (EINVAL); 3199 } 3200 3201 /* 3202 * Since we didn't attach label security attributes to the 3203 * ire for the resolver case, we need to add it now. (only 3204 * for v4 resolver and v6 xresolv case). 3205 */ 3206 if (is_system_labeled() && ire_is_mblk) { 3207 if (ire->ire_ipversion == IPV4_VERSION) { 3208 ga.ga_af = AF_INET; 3209 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 3210 INADDR_ANY ? ire->ire_gateway_addr : 3211 ire->ire_addr, &ga.ga_addr); 3212 } else { 3213 ga.ga_af = AF_INET6; 3214 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 3215 &ire->ire_gateway_addr_v6) ? 3216 ire->ire_addr_v6 : 3217 ire->ire_gateway_addr_v6; 3218 } 3219 gcgrp = gcgrp_lookup(&ga, B_FALSE); 3220 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 3221 NULL, gcgrp); 3222 if (error != 0) { 3223 if (gcgrp != NULL) { 3224 GCGRP_REFRELE(gcgrp); 3225 gcgrp = NULL; 3226 } 3227 ipif_refrele(ipif); 3228 ire->ire_ipif = NULL; 3229 ire_delete(ire); 3230 *irep = NULL; 3231 return (error); 3232 } 3233 } 3234 } 3235 3236 /* 3237 * In case ire was changed 3238 */ 3239 *irep = ire; 3240 if (ire->ire_ipversion == IPV6_VERSION) { 3241 error = ire_add_v6(irep, q, mp, func); 3242 } else { 3243 if (ire->ire_in_ill == NULL) 3244 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 3245 else 3246 error = ire_add_srcif_v4(irep, q, mp, func); 3247 } 3248 if (ipif != NULL) 3249 ipif_refrele(ipif); 3250 return (error); 3251 } 3252 3253 /* 3254 * Add an initialized IRE to an appropriate table based on ire_type. 3255 * 3256 * The forward table contains IRE_PREFIX/IRE_HOST/IRE_HOST_REDIRECT 3257 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 3258 * 3259 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 3260 * and IRE_CACHE. 3261 * 3262 * NOTE : This function is called as writer though not required 3263 * by this function. 3264 */ 3265 static int 3266 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 3267 boolean_t allow_unresolved) 3268 { 3269 ire_t *ire1; 3270 irb_t *irb_ptr; 3271 ire_t **irep; 3272 int flags; 3273 ire_t *pire = NULL; 3274 ill_t *stq_ill; 3275 ire_t *ire = *ire_p; 3276 int error; 3277 boolean_t need_refrele = B_FALSE; 3278 nce_t *nce; 3279 3280 if (ire->ire_ipif != NULL) 3281 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3282 if (ire->ire_stq != NULL) 3283 ASSERT(!MUTEX_HELD( 3284 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 3285 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3286 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 3287 ASSERT(ire->ire_in_ill == NULL); /* No srcif entries */ 3288 3289 /* Find the appropriate list head. */ 3290 switch (ire->ire_type) { 3291 case IRE_HOST: 3292 ire->ire_mask = IP_HOST_MASK; 3293 ire->ire_masklen = IP_ABITS; 3294 if ((ire->ire_flags & RTF_SETSRC) == 0) 3295 ire->ire_src_addr = 0; 3296 break; 3297 case IRE_HOST_REDIRECT: 3298 ire->ire_mask = IP_HOST_MASK; 3299 ire->ire_masklen = IP_ABITS; 3300 ire->ire_src_addr = 0; 3301 break; 3302 case IRE_CACHE: 3303 case IRE_BROADCAST: 3304 case IRE_LOCAL: 3305 case IRE_LOOPBACK: 3306 ire->ire_mask = IP_HOST_MASK; 3307 ire->ire_masklen = IP_ABITS; 3308 break; 3309 case IRE_PREFIX: 3310 if ((ire->ire_flags & RTF_SETSRC) == 0) 3311 ire->ire_src_addr = 0; 3312 break; 3313 case IRE_DEFAULT: 3314 if ((ire->ire_flags & RTF_SETSRC) == 0) 3315 ire->ire_src_addr = 0; 3316 break; 3317 case IRE_IF_RESOLVER: 3318 case IRE_IF_NORESOLVER: 3319 break; 3320 default: 3321 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 3322 (void *)ire, ire->ire_type)); 3323 ire_delete(ire); 3324 *ire_p = NULL; 3325 return (EINVAL); 3326 } 3327 3328 /* Make sure the address is properly masked. */ 3329 ire->ire_addr &= ire->ire_mask; 3330 3331 /* 3332 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 3333 * of the interface route while adding an IRE_CACHE for an on-link 3334 * destination in the IRE_IF_RESOLVER case, since the ire has to 3335 * go to ARP and return. We can't do a REFHOLD on the 3336 * associated interface ire for fear of ARP freeing the message. 3337 * Here we look up the interface ire in the forwarding table and 3338 * make sure that the interface route has not been deleted. 3339 */ 3340 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 3341 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 3342 3343 ASSERT(ire->ire_max_fragp == NULL); 3344 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 3345 /* 3346 * The ihandle that we used in ip_newroute_multi 3347 * comes from the interface route corresponding 3348 * to ire_ipif. Lookup here to see if it exists 3349 * still. 3350 * If the ire has a source address assigned using 3351 * RTF_SETSRC, ire_ipif is the logical interface holding 3352 * this source address, so we can't use it to check for 3353 * the existence of the interface route. Instead we rely 3354 * on the brute force ihandle search in 3355 * ire_ihandle_lookup_onlink() below. 3356 */ 3357 pire = ipif_to_ire(ire->ire_ipif); 3358 if (pire == NULL) { 3359 ire_delete(ire); 3360 *ire_p = NULL; 3361 return (EINVAL); 3362 } else if (pire->ire_ihandle != ire->ire_ihandle) { 3363 ire_refrele(pire); 3364 ire_delete(ire); 3365 *ire_p = NULL; 3366 return (EINVAL); 3367 } 3368 } else { 3369 pire = ire_ihandle_lookup_onlink(ire); 3370 if (pire == NULL) { 3371 ire_delete(ire); 3372 *ire_p = NULL; 3373 return (EINVAL); 3374 } 3375 } 3376 /* Prevent pire from getting deleted */ 3377 IRB_REFHOLD(pire->ire_bucket); 3378 /* Has it been removed already ? */ 3379 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 3380 IRB_REFRELE(pire->ire_bucket); 3381 ire_refrele(pire); 3382 ire_delete(ire); 3383 *ire_p = NULL; 3384 return (EINVAL); 3385 } 3386 } else { 3387 ASSERT(ire->ire_max_fragp != NULL); 3388 } 3389 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 3390 3391 if (ire->ire_ipif != NULL) { 3392 /* 3393 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 3394 * for historic reasons and to maintain symmetry with 3395 * IPv6 code path. Historically this was used by 3396 * multicast code to create multiple IRE_CACHES on 3397 * a single ill with different ipifs. This was used 3398 * so that multicast packets leaving the node had the 3399 * right source address. This is no longer needed as 3400 * ip_wput initializes the address correctly. 3401 */ 3402 flags |= MATCH_IRE_IPIF; 3403 /* 3404 * If we are creating hidden ires, make sure we search on 3405 * this ill (MATCH_IRE_ILL) and a hidden ire, 3406 * while we are searching for duplicates below. Otherwise we 3407 * could potentially find an IRE on some other interface 3408 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 3409 * shouldn't do this as this will lead to an infinite loop 3410 * (if we get to ip_wput again) eventually we need an hidden 3411 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 3412 * done below. 3413 */ 3414 if (ire->ire_type == IRE_CACHE && 3415 (ire->ire_marks & IRE_MARK_HIDDEN)) 3416 flags |= (MATCH_IRE_MARK_HIDDEN); 3417 } 3418 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 3419 irb_ptr = ire_get_bucket(ire); 3420 need_refrele = B_TRUE; 3421 if (irb_ptr == NULL) { 3422 /* 3423 * This assumes that the ire has not added 3424 * a reference to the ipif. 3425 */ 3426 ire->ire_ipif = NULL; 3427 ire_delete(ire); 3428 if (pire != NULL) { 3429 IRB_REFRELE(pire->ire_bucket); 3430 ire_refrele(pire); 3431 } 3432 *ire_p = NULL; 3433 return (EINVAL); 3434 } 3435 } else { 3436 irb_ptr = &(ip_cache_table[IRE_ADDR_HASH(ire->ire_addr, 3437 ip_cache_table_size)]); 3438 } 3439 3440 /* 3441 * Start the atomic add of the ire. Grab the ill locks, 3442 * ill_g_usesrc_lock and the bucket lock. Check for condemned 3443 * 3444 * If ipif or ill is changing ire_atomic_start() may queue the 3445 * request and return EINPROGRESS. 3446 * To avoid lock order problems, get the ndp4.ndp_g_lock. 3447 */ 3448 mutex_enter(&ndp4.ndp_g_lock); 3449 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 3450 if (error != 0) { 3451 mutex_exit(&ndp4.ndp_g_lock); 3452 /* 3453 * We don't know whether it is a valid ipif or not. 3454 * So, set it to NULL. This assumes that the ire has not added 3455 * a reference to the ipif. 3456 */ 3457 ire->ire_ipif = NULL; 3458 ire_delete(ire); 3459 if (pire != NULL) { 3460 IRB_REFRELE(pire->ire_bucket); 3461 ire_refrele(pire); 3462 } 3463 *ire_p = NULL; 3464 if (need_refrele) 3465 IRB_REFRELE(irb_ptr); 3466 return (error); 3467 } 3468 /* 3469 * To avoid creating ires having stale values for the ire_max_frag 3470 * we get the latest value atomically here. For more details 3471 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 3472 * in ip_rput_dlpi_writer 3473 */ 3474 if (ire->ire_max_fragp == NULL) { 3475 if (CLASSD(ire->ire_addr)) 3476 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 3477 else 3478 ire->ire_max_frag = pire->ire_max_frag; 3479 } else { 3480 uint_t max_frag; 3481 3482 max_frag = *ire->ire_max_fragp; 3483 ire->ire_max_fragp = NULL; 3484 ire->ire_max_frag = max_frag; 3485 } 3486 /* 3487 * Atomically check for duplicate and insert in the table. 3488 */ 3489 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 3490 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 3491 continue; 3492 if (ire->ire_ipif != NULL) { 3493 /* 3494 * We do MATCH_IRE_ILL implicitly here for IREs 3495 * with a non-null ire_ipif, including IRE_CACHEs. 3496 * As ire_ipif and ire_stq could point to two 3497 * different ills, we can't pass just ire_ipif to 3498 * ire_match_args and get a match on both ills. 3499 * This is just needed for duplicate checks here and 3500 * so we don't add an extra argument to 3501 * ire_match_args for this. Do it locally. 3502 * 3503 * NOTE : Currently there is no part of the code 3504 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 3505 * match for IRE_CACHEs. Thus we don't want to 3506 * extend the arguments to ire_match_args. 3507 */ 3508 if (ire1->ire_stq != ire->ire_stq) 3509 continue; 3510 /* 3511 * Multiroute IRE_CACHEs for a given destination can 3512 * have the same ire_ipif, typically if their source 3513 * address is forced using RTF_SETSRC, and the same 3514 * send-to queue. We differentiate them using the parent 3515 * handle. 3516 */ 3517 if (ire->ire_type == IRE_CACHE && 3518 (ire1->ire_flags & RTF_MULTIRT) && 3519 (ire->ire_flags & RTF_MULTIRT) && 3520 (ire1->ire_phandle != ire->ire_phandle)) 3521 continue; 3522 } 3523 if (ire1->ire_zoneid != ire->ire_zoneid) 3524 continue; 3525 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 3526 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 3527 ire->ire_zoneid, 0, NULL, flags)) { 3528 /* 3529 * Return the old ire after doing a REFHOLD. 3530 * As most of the callers continue to use the IRE 3531 * after adding, we return a held ire. This will 3532 * avoid a lookup in the caller again. If the callers 3533 * don't want to use it, they need to do a REFRELE. 3534 */ 3535 ip1dbg(("found dup ire existing %p new %p", 3536 (void *)ire1, (void *)ire)); 3537 IRE_REFHOLD(ire1); 3538 ire_atomic_end(irb_ptr, ire); 3539 mutex_exit(&ndp4.ndp_g_lock); 3540 ire_delete(ire); 3541 if (pire != NULL) { 3542 /* 3543 * Assert that it is not removed from the 3544 * list yet. 3545 */ 3546 ASSERT(pire->ire_ptpn != NULL); 3547 IRB_REFRELE(pire->ire_bucket); 3548 ire_refrele(pire); 3549 } 3550 *ire_p = ire1; 3551 if (need_refrele) 3552 IRB_REFRELE(irb_ptr); 3553 return (0); 3554 } 3555 } 3556 if (ire->ire_type & IRE_CACHE) { 3557 ASSERT(ire->ire_stq != NULL); 3558 nce = ndp_lookup_v4(ire_to_ill(ire), 3559 ((ire->ire_gateway_addr != INADDR_ANY) ? 3560 &ire->ire_gateway_addr : &ire->ire_addr), 3561 B_TRUE); 3562 if (nce != NULL) 3563 mutex_enter(&nce->nce_lock); 3564 /* 3565 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 3566 * and the caller has prohibited the addition of incomplete 3567 * ire's, we fail the add. Note that nce_state could be 3568 * something other than ND_REACHABLE if nce_reinit has just 3569 * kicked in and reset the nce. 3570 */ 3571 if ((nce == NULL) || 3572 (nce->nce_flags & NCE_F_CONDEMNED) || 3573 (!allow_unresolved && 3574 ((nce->nce_state & ND_REACHABLE) == 0))) { 3575 if (nce != NULL) 3576 mutex_exit(&nce->nce_lock); 3577 ire_atomic_end(irb_ptr, ire); 3578 mutex_exit(&ndp4.ndp_g_lock); 3579 if (nce != NULL) 3580 NCE_REFRELE(nce); 3581 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 3582 ire_delete(ire); 3583 if (pire != NULL) { 3584 IRB_REFRELE(pire->ire_bucket); 3585 ire_refrele(pire); 3586 } 3587 *ire_p = NULL; 3588 if (need_refrele) 3589 IRB_REFRELE(irb_ptr); 3590 return (EINVAL); 3591 } else { 3592 ire->ire_nce = nce; 3593 mutex_exit(&nce->nce_lock); 3594 /* 3595 * We are associating this nce to the ire, so 3596 * change the nce ref taken in ndp_lookup_v4() from 3597 * NCE_REFHOLD to NCE_REFHOLD_NOTR 3598 */ 3599 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 3600 } 3601 } 3602 /* 3603 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 3604 * grouping identical addresses together on the hash chain. We also 3605 * don't want to send multiple copies out if there are two ills part 3606 * of the same group. Thus we group the ires with same addr and same 3607 * ill group together so that ip_wput_ire can easily skip all the 3608 * ires with same addr and same group after sending the first copy. 3609 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3610 * interested in such groupings only for broadcasts. 3611 * 3612 * NOTE : If the interfaces are brought up first and then grouped, 3613 * illgrp_insert will handle it. We come here when the interfaces 3614 * are already in group and we are bringing them UP. 3615 * 3616 * Find the first entry that matches ire_addr. *irep will be null 3617 * if no match. 3618 */ 3619 irep = (ire_t **)irb_ptr; 3620 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3621 irep = &ire1->ire_next; 3622 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3623 /* 3624 * We found some ire (i.e *irep) with a matching addr. We 3625 * want to group ires with same addr and same ill group 3626 * together. 3627 * 3628 * First get to the entry that matches our address and 3629 * ill group i.e stop as soon as we find the first ire 3630 * matching the ill group and address. If there is only 3631 * an address match, we should walk and look for some 3632 * group match. These are some of the possible scenarios : 3633 * 3634 * 1) There are no groups at all i.e all ire's ill_group 3635 * are NULL. In that case we will essentially group 3636 * all the ires with the same addr together. Same as 3637 * the "else" block of this "if". 3638 * 3639 * 2) There are some groups and this ire's ill_group is 3640 * NULL. In this case, we will first find the group 3641 * that matches the address and a NULL group. Then 3642 * we will insert the ire at the end of that group. 3643 * 3644 * 3) There are some groups and this ires's ill_group is 3645 * non-NULL. In this case we will first find the group 3646 * that matches the address and the ill_group. Then 3647 * we will insert the ire at the end of that group. 3648 */ 3649 /* LINTED : constant in conditional context */ 3650 while (1) { 3651 ire1 = *irep; 3652 if ((ire1->ire_next == NULL) || 3653 (ire1->ire_next->ire_addr != ire->ire_addr) || 3654 (ire1->ire_type != IRE_BROADCAST) || 3655 (ire1->ire_ipif->ipif_ill->ill_group == 3656 ire->ire_ipif->ipif_ill->ill_group)) 3657 break; 3658 irep = &ire1->ire_next; 3659 } 3660 ASSERT(*irep != NULL); 3661 irep = &((*irep)->ire_next); 3662 3663 /* 3664 * Either we have hit the end of the list or the address 3665 * did not match or the group *matched*. If we found 3666 * a match on the group, skip to the end of the group. 3667 */ 3668 while (*irep != NULL) { 3669 ire1 = *irep; 3670 if ((ire1->ire_addr != ire->ire_addr) || 3671 (ire1->ire_type != IRE_BROADCAST) || 3672 (ire1->ire_ipif->ipif_ill->ill_group != 3673 ire->ire_ipif->ipif_ill->ill_group)) 3674 break; 3675 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3676 ire1->ire_ipif == ire->ire_ipif) { 3677 irep = &ire1->ire_next; 3678 break; 3679 } 3680 irep = &ire1->ire_next; 3681 } 3682 } else if (*irep != NULL) { 3683 /* 3684 * Find the last ire which matches ire_addr. 3685 * Needed to do tail insertion among entries with the same 3686 * ire_addr. 3687 */ 3688 while (ire->ire_addr == ire1->ire_addr) { 3689 irep = &ire1->ire_next; 3690 ire1 = *irep; 3691 if (ire1 == NULL) 3692 break; 3693 } 3694 } 3695 3696 /* Insert at *irep */ 3697 ire1 = *irep; 3698 if (ire1 != NULL) 3699 ire1->ire_ptpn = &ire->ire_next; 3700 ire->ire_next = ire1; 3701 /* Link the new one in. */ 3702 ire->ire_ptpn = irep; 3703 3704 /* 3705 * ire_walk routines de-reference ire_next without holding 3706 * a lock. Before we point to the new ire, we want to make 3707 * sure the store that sets the ire_next of the new ire 3708 * reaches global visibility, so that ire_walk routines 3709 * don't see a truncated list of ires i.e if the ire_next 3710 * of the new ire gets set after we do "*irep = ire" due 3711 * to re-ordering, the ire_walk thread will see a NULL 3712 * once it accesses the ire_next of the new ire. 3713 * membar_producer() makes sure that the following store 3714 * happens *after* all of the above stores. 3715 */ 3716 membar_producer(); 3717 *irep = ire; 3718 ire->ire_bucket = irb_ptr; 3719 /* 3720 * We return a bumped up IRE above. Keep it symmetrical 3721 * so that the callers will always have to release. This 3722 * helps the callers of this function because they continue 3723 * to use the IRE after adding and hence they don't have to 3724 * lookup again after we return the IRE. 3725 * 3726 * NOTE : We don't have to use atomics as this is appearing 3727 * in the list for the first time and no one else can bump 3728 * up the reference count on this yet. 3729 */ 3730 IRE_REFHOLD_LOCKED(ire); 3731 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 3732 3733 irb_ptr->irb_ire_cnt++; 3734 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3735 irb_ptr->irb_nire++; 3736 3737 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3738 irb_ptr->irb_tmp_ire_cnt++; 3739 3740 if (ire->ire_ipif != NULL) { 3741 ire->ire_ipif->ipif_ire_cnt++; 3742 if (ire->ire_stq != NULL) { 3743 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3744 stq_ill->ill_ire_cnt++; 3745 } 3746 } else { 3747 ASSERT(ire->ire_stq == NULL); 3748 } 3749 3750 ire_atomic_end(irb_ptr, ire); 3751 mutex_exit(&ndp4.ndp_g_lock); 3752 3753 if (pire != NULL) { 3754 /* Assert that it is not removed from the list yet */ 3755 ASSERT(pire->ire_ptpn != NULL); 3756 IRB_REFRELE(pire->ire_bucket); 3757 ire_refrele(pire); 3758 } 3759 3760 if (ire->ire_type != IRE_CACHE) { 3761 /* 3762 * For ire's with host mask see if there is an entry 3763 * in the cache. If there is one flush the whole cache as 3764 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3765 * If no entry is found than there is no need to flush the 3766 * cache. 3767 */ 3768 if (ire->ire_mask == IP_HOST_MASK) { 3769 ire_t *lire; 3770 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3771 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3772 if (lire != NULL) { 3773 ire_refrele(lire); 3774 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3775 } 3776 } else { 3777 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3778 } 3779 } 3780 /* 3781 * We had to delay the fast path probe until the ire is inserted 3782 * in the list. Otherwise the fast path ack won't find the ire in 3783 * the table. 3784 */ 3785 if (ire->ire_type == IRE_CACHE || ire->ire_type == IRE_BROADCAST) 3786 ire_fastpath(ire); 3787 if (ire->ire_ipif != NULL) 3788 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3789 *ire_p = ire; 3790 if (need_refrele) { 3791 IRB_REFRELE(irb_ptr); 3792 } 3793 return (0); 3794 } 3795 3796 /* 3797 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3798 * do the final cleanup for this ire. 3799 */ 3800 void 3801 ire_cleanup(ire_t *ire) 3802 { 3803 ire_t *ire_next; 3804 3805 ASSERT(ire != NULL); 3806 3807 while (ire != NULL) { 3808 ire_next = ire->ire_next; 3809 if (ire->ire_ipversion == IPV4_VERSION) { 3810 ire_delete_v4(ire); 3811 BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted); 3812 } else { 3813 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3814 ire_delete_v6(ire); 3815 BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted); 3816 } 3817 /* 3818 * Now it's really out of the list. Before doing the 3819 * REFRELE, set ire_next to NULL as ire_inactive asserts 3820 * so. 3821 */ 3822 ire->ire_next = NULL; 3823 IRE_REFRELE_NOTR(ire); 3824 ire = ire_next; 3825 } 3826 } 3827 3828 /* 3829 * IRB_REFRELE is the only caller of the function. It calls to unlink 3830 * all the CONDEMNED ires from this bucket. 3831 */ 3832 ire_t * 3833 ire_unlink(irb_t *irb) 3834 { 3835 ire_t *ire; 3836 ire_t *ire1; 3837 ire_t **ptpn; 3838 ire_t *ire_list = NULL; 3839 3840 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3841 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3842 (irb->irb_refcnt == 0)); 3843 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3844 ASSERT(irb->irb_ire != NULL); 3845 3846 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3847 ire1 = ire->ire_next; 3848 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3849 ptpn = ire->ire_ptpn; 3850 ire1 = ire->ire_next; 3851 if (ire1) 3852 ire1->ire_ptpn = ptpn; 3853 *ptpn = ire1; 3854 ire->ire_ptpn = NULL; 3855 ire->ire_next = NULL; 3856 if (ire->ire_type == IRE_DEFAULT) { 3857 /* 3858 * IRE is out of the list. We need to adjust 3859 * the accounting before the caller drops 3860 * the lock. 3861 */ 3862 if (ire->ire_ipversion == IPV6_VERSION) { 3863 ASSERT(ipv6_ire_default_count != 0); 3864 ipv6_ire_default_count--; 3865 } 3866 } 3867 /* 3868 * We need to call ire_delete_v4 or ire_delete_v6 3869 * to clean up the cache or the redirects pointing at 3870 * the default gateway. We need to drop the lock 3871 * as ire_flush_cache/ire_delete_host_redircts require 3872 * so. But we can't drop the lock, as ire_unlink needs 3873 * to atomically remove the ires from the list. 3874 * So, create a temporary list of CONDEMNED ires 3875 * for doing ire_delete_v4/ire_delete_v6 operations 3876 * later on. 3877 */ 3878 ire->ire_next = ire_list; 3879 ire_list = ire; 3880 } 3881 } 3882 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3883 return (ire_list); 3884 } 3885 3886 /* 3887 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3888 * ARP message on any of its interface queue, it scans the nce table and 3889 * deletes and calls ndp_delete() for the appropriate nce. This action 3890 * also deletes all the neighbor/ire cache entries for that address. 3891 * This function is called from ip_arp_news in ip.c and also for 3892 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3893 * true if it finds a nce entry which is used by ip_arp_news to determine if 3894 * it needs to do an ire_walk_v4. The return value is also used for the 3895 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3896 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3897 * ip_if->ipif_ill also needs to be matched. 3898 */ 3899 boolean_t 3900 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif) 3901 { 3902 ill_t *ill; 3903 nce_t *nce; 3904 3905 ill = (ipif ? ipif->ipif_ill : NULL); 3906 3907 if (ill != NULL) { 3908 /* 3909 * clean up the nce (and any relevant ire's) that matches 3910 * on addr and ill. 3911 */ 3912 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3913 if (nce != NULL) { 3914 ndp_delete(nce); 3915 return (B_TRUE); 3916 } 3917 } else { 3918 /* 3919 * ill is wildcard. clean up all nce's and 3920 * ire's that match on addr 3921 */ 3922 nce_clookup_t cl; 3923 3924 cl.ncecl_addr = addr; 3925 cl.ncecl_found = B_FALSE; 3926 3927 ndp_walk_common(&ndp4, NULL, 3928 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3929 3930 /* 3931 * ncecl_found would be set by ip_nce_clookup_and_delete if 3932 * we found a matching nce. 3933 */ 3934 return (cl.ncecl_found); 3935 } 3936 return (B_FALSE); 3937 3938 } 3939 3940 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3941 static void 3942 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 3943 { 3944 nce_clookup_t *cl = (nce_clookup_t *)arg; 3945 ipaddr_t nce_addr; 3946 3947 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 3948 if (nce_addr == cl->ncecl_addr) { 3949 cl->ncecl_found = B_TRUE; 3950 /* clean up the nce (and any relevant ire's) */ 3951 ndp_delete(nce); 3952 } 3953 } 3954 3955 /* 3956 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 3957 * when there are no ire's left in the bucket. Returns TRUE if the bucket 3958 * is deleted and freed. 3959 */ 3960 boolean_t 3961 irb_inactive(irb_t *irb) 3962 { 3963 struct rt_entry *rt; 3964 struct radix_node *rn; 3965 3966 rt = IRB2RT(irb); 3967 rn = (struct radix_node *)rt; 3968 3969 /* first remove it from the radix tree. */ 3970 RADIX_NODE_HEAD_WLOCK(ip_ftable); 3971 rw_enter(&irb->irb_lock, RW_WRITER); 3972 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 3973 rn = ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 3974 ip_ftable); 3975 DTRACE_PROBE1(irb__free, rt_t *, rt); 3976 ASSERT((void *)rn == (void *)rt); 3977 Free(rt, rt_entry_cache); 3978 /* irb_lock is freed */ 3979 RADIX_NODE_HEAD_UNLOCK(ip_ftable); 3980 return (B_TRUE); 3981 } 3982 rw_exit(&irb->irb_lock); 3983 RADIX_NODE_HEAD_UNLOCK(ip_ftable); 3984 return (B_FALSE); 3985 } 3986 3987 /* 3988 * Delete the specified IRE. 3989 */ 3990 void 3991 ire_delete(ire_t *ire) 3992 { 3993 ire_t *ire1; 3994 ire_t **ptpn; 3995 irb_t *irb; 3996 3997 if ((irb = ire->ire_bucket) == NULL) { 3998 /* 3999 * It was never inserted in the list. Should call REFRELE 4000 * to free this IRE. 4001 */ 4002 IRE_REFRELE_NOTR(ire); 4003 return; 4004 } 4005 4006 rw_enter(&irb->irb_lock, RW_WRITER); 4007 4008 if (irb->irb_rr_origin == ire) { 4009 irb->irb_rr_origin = NULL; 4010 } 4011 4012 /* 4013 * In case of V4 we might still be waiting for fastpath ack. 4014 */ 4015 if (ire->ire_ipversion == IPV4_VERSION && ire->ire_stq != NULL) { 4016 ill_t *ill; 4017 4018 ill = ire_to_ill(ire); 4019 if (ill != NULL) 4020 ire_fastpath_list_delete(ill, ire); 4021 } 4022 4023 if (ire->ire_ptpn == NULL) { 4024 /* 4025 * Some other thread has removed us from the list. 4026 * It should have done the REFRELE for us. 4027 */ 4028 rw_exit(&irb->irb_lock); 4029 return; 4030 } 4031 4032 if (irb->irb_refcnt != 0) { 4033 /* 4034 * The last thread to leave this bucket will 4035 * delete this ire. 4036 */ 4037 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 4038 irb->irb_ire_cnt--; 4039 if (ire->ire_marks & IRE_MARK_TEMPORARY) 4040 irb->irb_tmp_ire_cnt--; 4041 ire->ire_marks |= IRE_MARK_CONDEMNED; 4042 } 4043 irb->irb_marks |= IRB_MARK_CONDEMNED; 4044 rw_exit(&irb->irb_lock); 4045 return; 4046 } 4047 4048 /* 4049 * Normally to delete an ire, we walk the bucket. While we 4050 * walk the bucket, we normally bump up irb_refcnt and hence 4051 * we return from above where we mark CONDEMNED and the ire 4052 * gets deleted from ire_unlink. This case is where somebody 4053 * knows the ire e.g by doing a lookup, and wants to delete the 4054 * IRE. irb_refcnt would be 0 in this case if nobody is walking 4055 * the bucket. 4056 */ 4057 ptpn = ire->ire_ptpn; 4058 ire1 = ire->ire_next; 4059 if (ire1 != NULL) 4060 ire1->ire_ptpn = ptpn; 4061 ASSERT(ptpn != NULL); 4062 *ptpn = ire1; 4063 ire->ire_ptpn = NULL; 4064 ire->ire_next = NULL; 4065 if (ire->ire_ipversion == IPV6_VERSION) { 4066 BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted); 4067 } else { 4068 BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted); 4069 } 4070 /* 4071 * ip_wput/ip_wput_v6 checks this flag to see whether 4072 * it should still use the cached ire or not. 4073 */ 4074 ire->ire_marks |= IRE_MARK_CONDEMNED; 4075 if (ire->ire_type == IRE_DEFAULT) { 4076 /* 4077 * IRE is out of the list. We need to adjust the 4078 * accounting before we drop the lock. 4079 */ 4080 if (ire->ire_ipversion == IPV6_VERSION) { 4081 ASSERT(ipv6_ire_default_count != 0); 4082 ipv6_ire_default_count--; 4083 } 4084 } 4085 irb->irb_ire_cnt--; 4086 4087 if (ire->ire_marks & IRE_MARK_TEMPORARY) 4088 irb->irb_tmp_ire_cnt--; 4089 rw_exit(&irb->irb_lock); 4090 4091 if (ire->ire_ipversion == IPV6_VERSION) { 4092 ire_delete_v6(ire); 4093 } else { 4094 ire_delete_v4(ire); 4095 } 4096 /* 4097 * We removed it from the list. Decrement the 4098 * reference count. 4099 */ 4100 IRE_REFRELE_NOTR(ire); 4101 } 4102 4103 /* 4104 * Delete the specified IRE. 4105 * All calls should use ire_delete(). 4106 * Sometimes called as writer though not required by this function. 4107 * 4108 * NOTE : This function is called only if the ire was added 4109 * in the list. 4110 */ 4111 static void 4112 ire_delete_v4(ire_t *ire) 4113 { 4114 ASSERT(ire->ire_refcnt >= 1); 4115 ASSERT(ire->ire_ipversion == IPV4_VERSION); 4116 4117 if (ire->ire_type != IRE_CACHE) 4118 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 4119 if (ire->ire_type == IRE_DEFAULT) { 4120 /* 4121 * when a default gateway is going away 4122 * delete all the host redirects pointing at that 4123 * gateway. 4124 */ 4125 ire_delete_host_redirects(ire->ire_gateway_addr); 4126 } 4127 } 4128 4129 /* 4130 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 4131 * to free the ire when the reference count goes to zero. 4132 */ 4133 void 4134 ire_inactive(ire_t *ire) 4135 { 4136 nce_t *nce; 4137 ill_t *ill = NULL; 4138 ill_t *stq_ill = NULL; 4139 ill_t *in_ill = NULL; 4140 ipif_t *ipif; 4141 boolean_t need_wakeup = B_FALSE; 4142 irb_t *irb; 4143 4144 ASSERT(ire->ire_refcnt == 0); 4145 ASSERT(ire->ire_ptpn == NULL); 4146 ASSERT(ire->ire_next == NULL); 4147 4148 if (ire->ire_gw_secattr != NULL) { 4149 ire_gw_secattr_free(ire->ire_gw_secattr); 4150 ire->ire_gw_secattr = NULL; 4151 } 4152 4153 if (ire->ire_mp != NULL) { 4154 ASSERT(ire->ire_fastpath == NULL); 4155 ASSERT(ire->ire_bucket == NULL); 4156 mutex_destroy(&ire->ire_lock); 4157 BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed); 4158 if (ire->ire_nce != NULL) 4159 NCE_REFRELE_NOTR(ire->ire_nce); 4160 freeb(ire->ire_mp); 4161 return; 4162 } 4163 4164 if ((nce = ire->ire_nce) != NULL) { 4165 NCE_REFRELE_NOTR(nce); 4166 ire->ire_nce = NULL; 4167 } 4168 4169 if (ire->ire_ipif == NULL) 4170 goto end; 4171 4172 ipif = ire->ire_ipif; 4173 ill = ipif->ipif_ill; 4174 4175 if (ire->ire_bucket == NULL) { 4176 /* The ire was never inserted in the table. */ 4177 goto end; 4178 } 4179 4180 /* 4181 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 4182 * non-null ill_ire_count also goes down by 1. If the in_ill is 4183 * non-null either ill_mrtun_refcnt or ill_srcif_refcnt goes down by 1. 4184 * 4185 * The ipif that is associated with an ire is ire->ire_ipif and 4186 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 4187 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 4188 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 4189 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 4190 * different. If this is different from ire->ire_ipif->ipif_ill and 4191 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 4192 * ipif_ill_refrele_tail on the stq_ill. If mobile ip is in use 4193 * in_ill could be non-null. If it is a reverse tunnel related ire 4194 * ill_mrtun_refcnt is non-zero. If it is forward tunnel related ire 4195 * ill_srcif_refcnt is non-null. 4196 */ 4197 4198 if (ire->ire_stq != NULL) 4199 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 4200 if (ire->ire_in_ill != NULL) 4201 in_ill = ire->ire_in_ill; 4202 4203 if ((stq_ill == NULL || stq_ill == ill) && (in_ill == NULL)) { 4204 /* Optimize the most common case */ 4205 mutex_enter(&ill->ill_lock); 4206 ASSERT(ipif->ipif_ire_cnt != 0); 4207 ipif->ipif_ire_cnt--; 4208 if (ipif->ipif_ire_cnt == 0) 4209 need_wakeup = B_TRUE; 4210 if (stq_ill != NULL) { 4211 ASSERT(stq_ill->ill_ire_cnt != 0); 4212 stq_ill->ill_ire_cnt--; 4213 if (stq_ill->ill_ire_cnt == 0) 4214 need_wakeup = B_TRUE; 4215 } 4216 if (need_wakeup) { 4217 /* Drops the ill lock */ 4218 ipif_ill_refrele_tail(ill); 4219 } else { 4220 mutex_exit(&ill->ill_lock); 4221 } 4222 } else { 4223 /* 4224 * We can't grab all the ill locks at the same time. 4225 * It can lead to recursive lock enter in the call to 4226 * ipif_ill_refrele_tail and later. Instead do it 1 at 4227 * a time. 4228 */ 4229 mutex_enter(&ill->ill_lock); 4230 ASSERT(ipif->ipif_ire_cnt != 0); 4231 ipif->ipif_ire_cnt--; 4232 if (ipif->ipif_ire_cnt == 0) { 4233 /* Drops the lock */ 4234 ipif_ill_refrele_tail(ill); 4235 } else { 4236 mutex_exit(&ill->ill_lock); 4237 } 4238 if (stq_ill != NULL) { 4239 mutex_enter(&stq_ill->ill_lock); 4240 ASSERT(stq_ill->ill_ire_cnt != 0); 4241 stq_ill->ill_ire_cnt--; 4242 if (stq_ill->ill_ire_cnt == 0) { 4243 /* Drops the ill lock */ 4244 ipif_ill_refrele_tail(stq_ill); 4245 } else { 4246 mutex_exit(&stq_ill->ill_lock); 4247 } 4248 } 4249 if (in_ill != NULL) { 4250 mutex_enter(&in_ill->ill_lock); 4251 if (ire->ire_type == IRE_MIPRTUN) { 4252 /* 4253 * Mobile IP reverse tunnel ire. 4254 * Decrement table count and the 4255 * ill reference count. This signifies 4256 * mipagent is deleting reverse tunnel 4257 * route for a particular mobile node. 4258 */ 4259 mutex_enter(&ire_mrtun_lock); 4260 ire_mrtun_count--; 4261 mutex_exit(&ire_mrtun_lock); 4262 ASSERT(in_ill->ill_mrtun_refcnt != 0); 4263 in_ill->ill_mrtun_refcnt--; 4264 if (in_ill->ill_mrtun_refcnt == 0) { 4265 /* Drops the ill lock */ 4266 ipif_ill_refrele_tail(in_ill); 4267 } else { 4268 mutex_exit(&in_ill->ill_lock); 4269 } 4270 } else { 4271 mutex_enter(&ire_srcif_table_lock); 4272 ire_srcif_table_count--; 4273 mutex_exit(&ire_srcif_table_lock); 4274 ASSERT(in_ill->ill_srcif_refcnt != 0); 4275 in_ill->ill_srcif_refcnt--; 4276 if (in_ill->ill_srcif_refcnt == 0) { 4277 /* Drops the ill lock */ 4278 ipif_ill_refrele_tail(in_ill); 4279 } else { 4280 mutex_exit(&in_ill->ill_lock); 4281 } 4282 } 4283 } 4284 } 4285 end: 4286 /* This should be true for both V4 and V6 */ 4287 ASSERT(ire->ire_fastpath == NULL); 4288 4289 if ((ire->ire_type & IRE_FORWARDTABLE) && 4290 (ire->ire_ipversion == IPV4_VERSION) && 4291 ((irb = ire->ire_bucket) != NULL)) { 4292 rw_enter(&irb->irb_lock, RW_WRITER); 4293 irb->irb_nire--; 4294 /* 4295 * Instead of examining the conditions for freeing 4296 * the radix node here, we do it by calling 4297 * IRB_REFRELE which is a single point in the code 4298 * that embeds that logic. Bump up the refcnt to 4299 * be able to call IRB_REFRELE 4300 */ 4301 IRB_REFHOLD_LOCKED(irb); 4302 rw_exit(&irb->irb_lock); 4303 IRB_REFRELE(irb); 4304 } 4305 ire->ire_ipif = NULL; 4306 4307 if (ire->ire_in_ill != NULL) { 4308 ire->ire_in_ill = NULL; 4309 } 4310 4311 #ifdef IRE_DEBUG 4312 ire_trace_inactive(ire); 4313 #endif 4314 mutex_destroy(&ire->ire_lock); 4315 if (ire->ire_ipversion == IPV6_VERSION) { 4316 BUMP_IRE_STATS(ire_stats_v6, ire_stats_freed); 4317 } else { 4318 BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed); 4319 } 4320 ASSERT(ire->ire_mp == NULL); 4321 /* Has been allocated out of the cache */ 4322 kmem_cache_free(ire_cache, ire); 4323 } 4324 4325 /* 4326 * ire_walk routine to delete all IRE_CACHE/IRE_HOST_REDIRECT entries 4327 * that have a given gateway address. 4328 */ 4329 void 4330 ire_delete_cache_gw(ire_t *ire, char *cp) 4331 { 4332 ipaddr_t gw_addr; 4333 4334 if (!(ire->ire_type & (IRE_CACHE|IRE_HOST_REDIRECT))) 4335 return; 4336 4337 bcopy(cp, &gw_addr, sizeof (gw_addr)); 4338 if (ire->ire_gateway_addr == gw_addr) { 4339 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 4340 (int)ntohl(ire->ire_addr), ire->ire_type, 4341 (int)ntohl(ire->ire_gateway_addr))); 4342 ire_delete(ire); 4343 } 4344 } 4345 4346 /* 4347 * Remove all IRE_CACHE entries that match the ire specified. 4348 * 4349 * The flag argument indicates if the flush request is due to addition 4350 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 4351 * 4352 * This routine takes only the IREs from the forwarding table and flushes 4353 * the corresponding entries from the cache table. 4354 * 4355 * When flushing due to the deletion of an old route, it 4356 * just checks the cache handles (ire_phandle and ire_ihandle) and 4357 * deletes the ones that match. 4358 * 4359 * When flushing due to the creation of a new route, it checks 4360 * if a cache entry's address matches the one in the IRE and 4361 * that the cache entry's parent has a less specific mask than the 4362 * one in IRE. The destination of such a cache entry could be the 4363 * gateway for other cache entries, so we need to flush those as 4364 * well by looking for gateway addresses matching the IRE's address. 4365 */ 4366 void 4367 ire_flush_cache_v4(ire_t *ire, int flag) 4368 { 4369 int i; 4370 ire_t *cire; 4371 irb_t *irb; 4372 4373 if (ire->ire_type & IRE_CACHE) 4374 return; 4375 4376 /* 4377 * If a default is just created, there is no point 4378 * in going through the cache, as there will not be any 4379 * cached ires. 4380 */ 4381 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 4382 return; 4383 if (flag == IRE_FLUSH_ADD) { 4384 /* 4385 * This selective flush is due to the addition of 4386 * new IRE. 4387 */ 4388 for (i = 0; i < ip_cache_table_size; i++) { 4389 irb = &ip_cache_table[i]; 4390 if ((cire = irb->irb_ire) == NULL) 4391 continue; 4392 IRB_REFHOLD(irb); 4393 for (cire = irb->irb_ire; cire != NULL; 4394 cire = cire->ire_next) { 4395 if (cire->ire_type != IRE_CACHE) 4396 continue; 4397 /* 4398 * If 'cire' belongs to the same subnet 4399 * as the new ire being added, and 'cire' 4400 * is derived from a prefix that is less 4401 * specific than the new ire being added, 4402 * we need to flush 'cire'; for instance, 4403 * when a new interface comes up. 4404 */ 4405 if (((cire->ire_addr & ire->ire_mask) == 4406 (ire->ire_addr & ire->ire_mask)) && 4407 (ip_mask_to_plen(cire->ire_cmask) <= 4408 ire->ire_masklen)) { 4409 ire_delete(cire); 4410 continue; 4411 } 4412 /* 4413 * This is the case when the ire_gateway_addr 4414 * of 'cire' belongs to the same subnet as 4415 * the new ire being added. 4416 * Flushing such ires is sometimes required to 4417 * avoid misrouting: say we have a machine with 4418 * two interfaces (I1 and I2), a default router 4419 * R on the I1 subnet, and a host route to an 4420 * off-link destination D with a gateway G on 4421 * the I2 subnet. 4422 * Under normal operation, we will have an 4423 * on-link cache entry for G and an off-link 4424 * cache entry for D with G as ire_gateway_addr, 4425 * traffic to D will reach its destination 4426 * through gateway G. 4427 * If the administrator does 'ifconfig I2 down', 4428 * the cache entries for D and G will be 4429 * flushed. However, G will now be resolved as 4430 * an off-link destination using R (the default 4431 * router) as gateway. Then D will also be 4432 * resolved as an off-link destination using G 4433 * as gateway - this behavior is due to 4434 * compatibility reasons, see comment in 4435 * ire_ihandle_lookup_offlink(). Traffic to D 4436 * will go to the router R and probably won't 4437 * reach the destination. 4438 * The administrator then does 'ifconfig I2 up'. 4439 * Since G is on the I2 subnet, this routine 4440 * will flush its cache entry. It must also 4441 * flush the cache entry for D, otherwise 4442 * traffic will stay misrouted until the IRE 4443 * times out. 4444 */ 4445 if ((cire->ire_gateway_addr & ire->ire_mask) == 4446 (ire->ire_addr & ire->ire_mask)) { 4447 ire_delete(cire); 4448 continue; 4449 } 4450 } 4451 IRB_REFRELE(irb); 4452 } 4453 } else { 4454 /* 4455 * delete the cache entries based on 4456 * handle in the IRE as this IRE is 4457 * being deleted/changed. 4458 */ 4459 for (i = 0; i < ip_cache_table_size; i++) { 4460 irb = &ip_cache_table[i]; 4461 if ((cire = irb->irb_ire) == NULL) 4462 continue; 4463 IRB_REFHOLD(irb); 4464 for (cire = irb->irb_ire; cire != NULL; 4465 cire = cire->ire_next) { 4466 if (cire->ire_type != IRE_CACHE) 4467 continue; 4468 if ((cire->ire_phandle == 0 || 4469 cire->ire_phandle != ire->ire_phandle) && 4470 (cire->ire_ihandle == 0 || 4471 cire->ire_ihandle != ire->ire_ihandle)) 4472 continue; 4473 ire_delete(cire); 4474 } 4475 IRB_REFRELE(irb); 4476 } 4477 } 4478 } 4479 4480 /* 4481 * Matches the arguments passed with the values in the ire. 4482 * 4483 * Note: for match types that match using "ipif" passed in, ipif 4484 * must be checked for non-NULL before calling this routine. 4485 */ 4486 boolean_t 4487 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4488 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 4489 const ts_label_t *tsl, int match_flags) 4490 { 4491 ill_t *ire_ill = NULL, *dst_ill; 4492 ill_t *ipif_ill = NULL; 4493 ill_group_t *ire_ill_group = NULL; 4494 ill_group_t *ipif_ill_group = NULL; 4495 4496 ASSERT(ire->ire_ipversion == IPV4_VERSION); 4497 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 4498 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 4499 (ipif != NULL && !ipif->ipif_isv6)); 4500 ASSERT(!(match_flags & MATCH_IRE_WQ)); 4501 4502 /* 4503 * HIDDEN cache entries have to be looked up specifically with 4504 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 4505 * when the interface is FAILED or INACTIVE. In that case, 4506 * any IRE_CACHES that exists should be marked with 4507 * IRE_MARK_HIDDEN. So, we don't really need to match below 4508 * for IRE_MARK_HIDDEN. But we do so for consistency. 4509 */ 4510 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 4511 (ire->ire_marks & IRE_MARK_HIDDEN)) 4512 return (B_FALSE); 4513 4514 /* 4515 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 4516 * is used. In that case the routing table is bypassed and the 4517 * packets are sent directly to the specified nexthop. The 4518 * IRE_CACHE entry representing this route should be marked 4519 * with IRE_MARK_PRIVATE_ADDR. 4520 */ 4521 4522 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 4523 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 4524 return (B_FALSE); 4525 4526 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 4527 ire->ire_zoneid != ALL_ZONES) { 4528 /* 4529 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 4530 * valid and does not match that of ire_zoneid, a failure to 4531 * match is reported at this point. Otherwise, since some IREs 4532 * that are available in the global zone can be used in local 4533 * zones, additional checks need to be performed: 4534 * 4535 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 4536 * entries should never be matched in this situation. 4537 * 4538 * IRE entries that have an interface associated with them 4539 * should in general not match unless they are an IRE_LOCAL 4540 * or in the case when MATCH_IRE_DEFAULT has been set in 4541 * the caller. In the case of the former, checking of the 4542 * other fields supplied should take place. 4543 * 4544 * In the case where MATCH_IRE_DEFAULT has been set, 4545 * all of the ipif's associated with the IRE's ill are 4546 * checked to see if there is a matching zoneid. If any 4547 * one ipif has a matching zoneid, this IRE is a 4548 * potential candidate so checking of the other fields 4549 * takes place. 4550 * 4551 * In the case where the IRE_INTERFACE has a usable source 4552 * address (indicated by ill_usesrc_ifindex) in the 4553 * correct zone then it's permitted to return this IRE 4554 */ 4555 if (match_flags & MATCH_IRE_ZONEONLY) 4556 return (B_FALSE); 4557 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 4558 return (B_FALSE); 4559 /* 4560 * Note, IRE_INTERFACE can have the stq as NULL. For 4561 * example, if the default multicast route is tied to 4562 * the loopback address. 4563 */ 4564 if ((ire->ire_type & IRE_INTERFACE) && 4565 (ire->ire_stq != NULL)) { 4566 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 4567 /* 4568 * If there is a usable source address in the 4569 * zone, then it's ok to return an 4570 * IRE_INTERFACE 4571 */ 4572 if (ipif_usesrc_avail(dst_ill, zoneid)) { 4573 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 4574 (void *)dst_ill, 4575 (ire->ire_addr == (addr & mask)))); 4576 } else { 4577 ip3dbg(("ire_match_args: src_ipif NULL" 4578 " dst_ill %p\n", (void *)dst_ill)); 4579 return (B_FALSE); 4580 } 4581 } 4582 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 4583 !(ire->ire_type & IRE_INTERFACE)) { 4584 ipif_t *tipif; 4585 4586 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 4587 return (B_FALSE); 4588 } 4589 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 4590 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 4591 tipif != NULL; tipif = tipif->ipif_next) { 4592 if (IPIF_CAN_LOOKUP(tipif) && 4593 (tipif->ipif_flags & IPIF_UP) && 4594 (tipif->ipif_zoneid == zoneid || 4595 tipif->ipif_zoneid == ALL_ZONES)) 4596 break; 4597 } 4598 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 4599 if (tipif == NULL) { 4600 return (B_FALSE); 4601 } 4602 } 4603 } 4604 4605 /* 4606 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 4607 * somebody wants to send out on a particular interface which 4608 * is given by ire_stq and hence use ire_stq to derive the ill 4609 * value. ire_ipif for IRE_CACHES is just the means of getting 4610 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 4611 * ire_to_ill does the right thing for this. 4612 */ 4613 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 4614 ire_ill = ire_to_ill(ire); 4615 if (ire_ill != NULL) 4616 ire_ill_group = ire_ill->ill_group; 4617 ipif_ill = ipif->ipif_ill; 4618 ipif_ill_group = ipif_ill->ill_group; 4619 } 4620 4621 if ((ire->ire_addr == (addr & mask)) && 4622 ((!(match_flags & MATCH_IRE_GW)) || 4623 (ire->ire_gateway_addr == gateway)) && 4624 ((!(match_flags & MATCH_IRE_TYPE)) || 4625 (ire->ire_type & type)) && 4626 ((!(match_flags & MATCH_IRE_SRC)) || 4627 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4628 ((!(match_flags & MATCH_IRE_IPIF)) || 4629 (ire->ire_ipif == ipif)) && 4630 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4631 (ire->ire_type != IRE_CACHE || 4632 ire->ire_marks & IRE_MARK_HIDDEN)) && 4633 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4634 (ire->ire_type != IRE_CACHE || 4635 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4636 ((!(match_flags & MATCH_IRE_ILL)) || 4637 (ire_ill == ipif_ill)) && 4638 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4639 (ire->ire_ihandle == ihandle)) && 4640 ((!(match_flags & MATCH_IRE_MASK)) || 4641 (ire->ire_mask == mask)) && 4642 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4643 (ire_ill == ipif_ill) || 4644 (ire_ill_group != NULL && 4645 ire_ill_group == ipif_ill_group)) && 4646 ((!(match_flags & MATCH_IRE_SECATTR)) || 4647 (!is_system_labeled()) || 4648 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4649 /* We found the matched IRE */ 4650 return (B_TRUE); 4651 } 4652 return (B_FALSE); 4653 } 4654 4655 4656 /* 4657 * Lookup for a route in all the tables 4658 */ 4659 ire_t * 4660 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4661 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4662 const ts_label_t *tsl, int flags) 4663 { 4664 ire_t *ire = NULL; 4665 4666 /* 4667 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4668 * MATCH_IRE_ILL is set. 4669 */ 4670 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4671 (ipif == NULL)) 4672 return (NULL); 4673 4674 /* 4675 * might be asking for a cache lookup, 4676 * This is not best way to lookup cache, 4677 * user should call ire_cache_lookup directly. 4678 * 4679 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4680 * in the forwarding table, if the applicable type flags were set. 4681 */ 4682 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4683 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4684 tsl, flags); 4685 if (ire != NULL) 4686 return (ire); 4687 } 4688 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4689 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4690 zoneid, 0, tsl, flags); 4691 } 4692 return (ire); 4693 } 4694 4695 4696 /* 4697 * Delete the IRE cache for the gateway and all IRE caches whose 4698 * ire_gateway_addr points to this gateway, and allow them to 4699 * be created on demand by ip_newroute. 4700 */ 4701 void 4702 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid) 4703 { 4704 irb_t *irb; 4705 ire_t *ire; 4706 4707 irb = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4708 IRB_REFHOLD(irb); 4709 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4710 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4711 continue; 4712 4713 ASSERT(ire->ire_mask == IP_HOST_MASK); 4714 ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); 4715 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4716 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4717 ire_delete(ire); 4718 } 4719 } 4720 IRB_REFRELE(irb); 4721 4722 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid); 4723 } 4724 4725 /* 4726 * Looks up cache table for a route. 4727 * specific lookup can be indicated by 4728 * passing the MATCH_* flags and the 4729 * necessary parameters. 4730 */ 4731 ire_t * 4732 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4733 zoneid_t zoneid, const ts_label_t *tsl, int flags) 4734 { 4735 irb_t *irb_ptr; 4736 ire_t *ire; 4737 4738 /* 4739 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4740 * MATCH_IRE_ILL is set. 4741 */ 4742 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4743 (ipif == NULL)) 4744 return (NULL); 4745 4746 irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4747 rw_enter(&irb_ptr->irb_lock, RW_READER); 4748 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4749 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4750 continue; 4751 ASSERT(ire->ire_mask == IP_HOST_MASK); 4752 ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); 4753 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4754 ipif, zoneid, 0, tsl, flags)) { 4755 IRE_REFHOLD(ire); 4756 rw_exit(&irb_ptr->irb_lock); 4757 return (ire); 4758 } 4759 } 4760 rw_exit(&irb_ptr->irb_lock); 4761 return (NULL); 4762 } 4763 4764 /* 4765 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4766 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4767 * to the hidden ones. 4768 */ 4769 ire_t * 4770 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl) 4771 { 4772 irb_t *irb_ptr; 4773 ire_t *ire; 4774 4775 irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4776 rw_enter(&irb_ptr->irb_lock, RW_READER); 4777 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4778 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4779 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4780 continue; 4781 } 4782 if (ire->ire_addr == addr) { 4783 /* 4784 * Finally, check if the security policy has any 4785 * restriction on using this route for the specified 4786 * message. 4787 */ 4788 if (tsl != NULL && 4789 ire->ire_gw_secattr != NULL && 4790 tsol_ire_match_gwattr(ire, tsl) != 0) { 4791 continue; 4792 } 4793 4794 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4795 ire->ire_zoneid == ALL_ZONES || 4796 ire->ire_type == IRE_LOCAL) { 4797 IRE_REFHOLD(ire); 4798 rw_exit(&irb_ptr->irb_lock); 4799 return (ire); 4800 } 4801 } 4802 } 4803 rw_exit(&irb_ptr->irb_lock); 4804 return (NULL); 4805 } 4806 4807 /* 4808 * Locate the interface ire that is tied to the cache ire 'cire' via 4809 * cire->ire_ihandle. 4810 * 4811 * We are trying to create the cache ire for an offlink destn based 4812 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4813 * as found by ip_newroute(). We are called from ip_newroute() in 4814 * the IRE_CACHE case. 4815 */ 4816 ire_t * 4817 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4818 { 4819 ire_t *ire; 4820 int match_flags; 4821 ipaddr_t gw_addr; 4822 ipif_t *gw_ipif; 4823 4824 ASSERT(cire != NULL && pire != NULL); 4825 4826 /* 4827 * We don't need to specify the zoneid to ire_ftable_lookup() below 4828 * because the ihandle refers to an ipif which can be in only one zone. 4829 */ 4830 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4831 /* 4832 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4833 * for on-link hosts. We should never be here for onlink. 4834 * Thus, use MATCH_IRE_ILL_GROUP. 4835 */ 4836 if (pire->ire_ipif != NULL) 4837 match_flags |= MATCH_IRE_ILL_GROUP; 4838 /* 4839 * We know that the mask of the interface ire equals cire->ire_cmask. 4840 * (When ip_newroute() created 'cire' for the gateway it set its 4841 * cmask from the interface ire's mask) 4842 */ 4843 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4844 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4845 NULL, match_flags); 4846 if (ire != NULL) 4847 return (ire); 4848 /* 4849 * If we didn't find an interface ire above, we can't declare failure. 4850 * For backwards compatibility, we need to support prefix routes 4851 * pointing to next hop gateways that are not on-link. 4852 * 4853 * Assume we are trying to ping some offlink destn, and we have the 4854 * routing table below. 4855 * 4856 * Eg. default - gw1 <--- pire (line 1) 4857 * gw1 - gw2 (line 2) 4858 * gw2 - hme0 (line 3) 4859 * 4860 * If we already have a cache ire for gw1 in 'cire', the 4861 * ire_ftable_lookup above would have failed, since there is no 4862 * interface ire to reach gw1. We will fallthru below. 4863 * 4864 * Here we duplicate the steps that ire_ftable_lookup() did in 4865 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 4866 * The differences are the following 4867 * i. We want the interface ire only, so we call ire_ftable_lookup() 4868 * instead of ire_route_lookup() 4869 * ii. We look for only prefix routes in the 1st call below. 4870 * ii. We want to match on the ihandle in the 2nd call below. 4871 */ 4872 match_flags = MATCH_IRE_TYPE; 4873 if (pire->ire_ipif != NULL) 4874 match_flags |= MATCH_IRE_ILL_GROUP; 4875 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 4876 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags); 4877 if (ire == NULL) 4878 return (NULL); 4879 /* 4880 * At this point 'ire' corresponds to the entry shown in line 2. 4881 * gw_addr is 'gw2' in the example above. 4882 */ 4883 gw_addr = ire->ire_gateway_addr; 4884 gw_ipif = ire->ire_ipif; 4885 ire_refrele(ire); 4886 4887 match_flags |= MATCH_IRE_IHANDLE; 4888 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 4889 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags); 4890 return (ire); 4891 } 4892 4893 /* 4894 * ire_mrtun_lookup() is called by ip_rput() when packet is to be 4895 * tunneled through reverse tunnel. This is only supported for 4896 * IPv4 packets 4897 */ 4898 4899 ire_t * 4900 ire_mrtun_lookup(ipaddr_t srcaddr, ill_t *ill) 4901 { 4902 irb_t *irb_ptr; 4903 ire_t *ire; 4904 4905 ASSERT(ill != NULL); 4906 ASSERT(!(ill->ill_isv6)); 4907 4908 if (ip_mrtun_table == NULL) 4909 return (NULL); 4910 irb_ptr = &ip_mrtun_table[IRE_ADDR_HASH(srcaddr, IP_MRTUN_TABLE_SIZE)]; 4911 rw_enter(&irb_ptr->irb_lock, RW_READER); 4912 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4913 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4914 continue; 4915 if ((ire->ire_in_src_addr == srcaddr) && 4916 ire->ire_in_ill == ill) { 4917 IRE_REFHOLD(ire); 4918 rw_exit(&irb_ptr->irb_lock); 4919 return (ire); 4920 } 4921 } 4922 rw_exit(&irb_ptr->irb_lock); 4923 return (NULL); 4924 } 4925 4926 /* 4927 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 4928 * ire associated with the specified ipif. 4929 * 4930 * This might occasionally be called when IPIF_UP is not set since 4931 * the IP_MULTICAST_IF as well as creating interface routes 4932 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 4933 * 4934 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 4935 * the ipif, this routine might return NULL. 4936 */ 4937 ire_t * 4938 ipif_to_ire(const ipif_t *ipif) 4939 { 4940 ire_t *ire; 4941 4942 ASSERT(!ipif->ipif_isv6); 4943 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 4944 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 4945 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 4946 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4947 /* In this case we need to lookup destination address. */ 4948 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 4949 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 4950 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK)); 4951 } else { 4952 ire = ire_ftable_lookup(ipif->ipif_subnet, 4953 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 4954 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 4955 MATCH_IRE_MASK)); 4956 } 4957 return (ire); 4958 } 4959 4960 /* 4961 * ire_walk function. 4962 * Count the number of IRE_CACHE entries in different categories. 4963 */ 4964 void 4965 ire_cache_count(ire_t *ire, char *arg) 4966 { 4967 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 4968 4969 if (ire->ire_type != IRE_CACHE) 4970 return; 4971 4972 icc->icc_total++; 4973 4974 if (ire->ire_ipversion == IPV6_VERSION) { 4975 mutex_enter(&ire->ire_lock); 4976 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4977 mutex_exit(&ire->ire_lock); 4978 icc->icc_onlink++; 4979 return; 4980 } 4981 mutex_exit(&ire->ire_lock); 4982 } else { 4983 if (ire->ire_gateway_addr == 0) { 4984 icc->icc_onlink++; 4985 return; 4986 } 4987 } 4988 4989 ASSERT(ire->ire_ipif != NULL); 4990 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 4991 icc->icc_pmtu++; 4992 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4993 ire->ire_ib_pkt_count) 4994 icc->icc_offlink++; 4995 else 4996 icc->icc_unused++; 4997 } 4998 4999 /* 5000 * ire_walk function called by ip_trash_ire_reclaim(). 5001 * Free a fraction of the IRE_CACHE cache entries. The fractions are 5002 * different for different categories of IRE_CACHE entries. 5003 * A fraction of zero means to not free any in that category. 5004 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 5005 * is N then every Nth hash bucket chain will be freed. 5006 */ 5007 void 5008 ire_cache_reclaim(ire_t *ire, char *arg) 5009 { 5010 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 5011 uint_t rand; 5012 5013 if (ire->ire_type != IRE_CACHE) 5014 return; 5015 5016 if (ire->ire_ipversion == IPV6_VERSION) { 5017 rand = (uint_t)lbolt + 5018 IRE_ADDR_HASH_V6(ire->ire_addr_v6, ip6_cache_table_size); 5019 mutex_enter(&ire->ire_lock); 5020 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 5021 mutex_exit(&ire->ire_lock); 5022 if (icr->icr_onlink != 0 && 5023 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 5024 ire_delete(ire); 5025 return; 5026 } 5027 goto done; 5028 } 5029 mutex_exit(&ire->ire_lock); 5030 } else { 5031 rand = (uint_t)lbolt + 5032 IRE_ADDR_HASH(ire->ire_addr, ip_cache_table_size); 5033 if (ire->ire_gateway_addr == 0) { 5034 if (icr->icr_onlink != 0 && 5035 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 5036 ire_delete(ire); 5037 return; 5038 } 5039 goto done; 5040 } 5041 } 5042 /* Not onlink IRE */ 5043 ASSERT(ire->ire_ipif != NULL); 5044 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 5045 /* Use ptmu fraction */ 5046 if (icr->icr_pmtu != 0 && 5047 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 5048 ire_delete(ire); 5049 return; 5050 } 5051 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 5052 ire->ire_ib_pkt_count) { 5053 /* Use offlink fraction */ 5054 if (icr->icr_offlink != 0 && 5055 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 5056 ire_delete(ire); 5057 return; 5058 } 5059 } else { 5060 /* Use unused fraction */ 5061 if (icr->icr_unused != 0 && 5062 (rand/icr->icr_unused)*icr->icr_unused == rand) { 5063 ire_delete(ire); 5064 return; 5065 } 5066 } 5067 done: 5068 /* 5069 * Update tire_mark so that those that haven't been used since this 5070 * reclaim will be considered unused next time we reclaim. 5071 */ 5072 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 5073 } 5074 5075 static void 5076 power2_roundup(uint32_t *value) 5077 { 5078 int i; 5079 5080 for (i = 1; i < 31; i++) { 5081 if (*value <= (1 << i)) 5082 break; 5083 } 5084 *value = (1 << i); 5085 } 5086 5087 void 5088 ip_ire_init() 5089 { 5090 int i; 5091 5092 mutex_init(&ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 5093 mutex_init(&ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 5094 mutex_init(&ire_mrtun_lock, NULL, MUTEX_DEFAULT, NULL); 5095 mutex_init(&ire_srcif_table_lock, NULL, MUTEX_DEFAULT, NULL); 5096 mutex_init(&ndp4.ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5097 5098 rn_init(); 5099 (void) rn_inithead((void **)&ip_ftable, 32); 5100 /* 5101 * mark kernel ip ftable with RNF_SUNW_FT flag. 5102 */ 5103 ip_ftable->rnh_treetop->rn_flags |= RNF_SUNW_FT; 5104 rt_entry_cache = kmem_cache_create("rt_entry", 5105 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 5106 5107 /* Calculate the IPv4 cache table size. */ 5108 ip_cache_table_size = MAX(ip_cache_table_size, 5109 ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) / 5110 ip_ire_max_bucket_cnt)); 5111 if (ip_cache_table_size > ip_max_cache_table_size) 5112 ip_cache_table_size = ip_max_cache_table_size; 5113 /* 5114 * Make sure that the table size is always a power of 2. The 5115 * hash macro IRE_ADDR_HASH() depends on that. 5116 */ 5117 power2_roundup(&ip_cache_table_size); 5118 5119 ip_cache_table = (irb_t *)kmem_zalloc(ip_cache_table_size * 5120 sizeof (irb_t), KM_SLEEP); 5121 5122 for (i = 0; i < ip_cache_table_size; i++) { 5123 rw_init(&ip_cache_table[i].irb_lock, NULL, 5124 RW_DEFAULT, NULL); 5125 } 5126 5127 /* Calculate the IPv6 cache table size. */ 5128 ip6_cache_table_size = MAX(ip6_cache_table_size, 5129 ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) / 5130 ip6_ire_max_bucket_cnt)); 5131 if (ip6_cache_table_size > ip6_max_cache_table_size) 5132 ip6_cache_table_size = ip6_max_cache_table_size; 5133 /* 5134 * Make sure that the table size is always a power of 2. The 5135 * hash macro IRE_ADDR_HASH_V6() depends on that. 5136 */ 5137 power2_roundup(&ip6_cache_table_size); 5138 5139 ip_cache_table_v6 = (irb_t *)kmem_zalloc(ip6_cache_table_size * 5140 sizeof (irb_t), KM_SLEEP); 5141 5142 for (i = 0; i < ip6_cache_table_size; i++) { 5143 rw_init(&ip_cache_table_v6[i].irb_lock, NULL, 5144 RW_DEFAULT, NULL); 5145 } 5146 /* 5147 * Create ire caches, ire_reclaim() 5148 * will give IRE_CACHE back to system when needed. 5149 * This needs to be done here before anything else, since 5150 * ire_add() expects the cache to be created. 5151 */ 5152 ire_cache = kmem_cache_create("ire_cache", 5153 sizeof (ire_t), 0, ip_ire_constructor, 5154 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 5155 5156 /* 5157 * Initialize ip_mrtun_table to NULL now, it will be 5158 * populated by ip_rt_add if reverse tunnel is created 5159 */ 5160 ip_mrtun_table = NULL; 5161 5162 /* 5163 * Make sure that the forwarding table size is a power of 2. 5164 * The IRE*_ADDR_HASH() macroes depend on that. 5165 */ 5166 power2_roundup(&ip6_ftable_hash_size); 5167 } 5168 5169 void 5170 ip_ire_fini() 5171 { 5172 int i; 5173 5174 mutex_destroy(&ire_ft_init_lock); 5175 mutex_destroy(&ire_handle_lock); 5176 mutex_destroy(&ndp4.ndp_g_lock); 5177 5178 rn_fini(); 5179 RADIX_NODE_HEAD_DESTROY(ip_ftable); 5180 kmem_cache_destroy(rt_entry_cache); 5181 5182 for (i = 0; i < ip_cache_table_size; i++) { 5183 rw_destroy(&ip_cache_table[i].irb_lock); 5184 } 5185 kmem_free(ip_cache_table, ip_cache_table_size * sizeof (irb_t)); 5186 5187 for (i = 0; i < ip6_cache_table_size; i++) { 5188 rw_destroy(&ip_cache_table_v6[i].irb_lock); 5189 } 5190 kmem_free(ip_cache_table_v6, ip6_cache_table_size * sizeof (irb_t)); 5191 5192 if (ip_mrtun_table != NULL) { 5193 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5194 rw_destroy(&ip_mrtun_table[i].irb_lock); 5195 } 5196 kmem_free(ip_mrtun_table, IP_MRTUN_TABLE_SIZE * sizeof (irb_t)); 5197 } 5198 kmem_cache_destroy(ire_cache); 5199 } 5200 5201 int 5202 ire_add_mrtun(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) 5203 { 5204 ire_t *ire1; 5205 irb_t *irb_ptr; 5206 ire_t **irep; 5207 ire_t *ire; 5208 int i; 5209 uint_t max_frag; 5210 ill_t *stq_ill; 5211 int error; 5212 5213 ire = *ire_p; 5214 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5215 /* Is ip_mrtun_table empty ? */ 5216 5217 if (ip_mrtun_table == NULL) { 5218 /* create the mrtun table */ 5219 mutex_enter(&ire_mrtun_lock); 5220 if (ip_mrtun_table == NULL) { 5221 ip_mrtun_table = 5222 (irb_t *)kmem_zalloc(IP_MRTUN_TABLE_SIZE * 5223 sizeof (irb_t), KM_NOSLEEP); 5224 5225 if (ip_mrtun_table == NULL) { 5226 ip2dbg(("ire_add_mrtun: allocation failure\n")); 5227 mutex_exit(&ire_mrtun_lock); 5228 ire_refrele(ire); 5229 *ire_p = NULL; 5230 return (ENOMEM); 5231 } 5232 5233 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5234 rw_init(&ip_mrtun_table[i].irb_lock, NULL, 5235 RW_DEFAULT, NULL); 5236 } 5237 ip2dbg(("ire_add_mrtun: mrtun table is created\n")); 5238 } 5239 /* some other thread got it and created the table */ 5240 mutex_exit(&ire_mrtun_lock); 5241 } 5242 5243 /* 5244 * Check for duplicate in the bucket and insert in the table 5245 */ 5246 irb_ptr = &(ip_mrtun_table[IRE_ADDR_HASH(ire->ire_in_src_addr, 5247 IP_MRTUN_TABLE_SIZE)]); 5248 5249 /* 5250 * Start the atomic add of the ire. Grab the ill locks, 5251 * ill_g_usesrc_lock and the bucket lock. 5252 * 5253 * If ipif or ill is changing ire_atomic_start() may queue the 5254 * request and return EINPROGRESS. 5255 */ 5256 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 5257 if (error != 0) { 5258 /* 5259 * We don't know whether it is a valid ipif or not. 5260 * So, set it to NULL. This assumes that the ire has not added 5261 * a reference to the ipif. 5262 */ 5263 ire->ire_ipif = NULL; 5264 ire_delete(ire); 5265 ip1dbg(("ire_add_mrtun: ire_atomic_start failed\n")); 5266 *ire_p = NULL; 5267 return (error); 5268 } 5269 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 5270 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 5271 continue; 5272 /* has anyone inserted the route in the meanwhile ? */ 5273 if (ire1->ire_in_ill == ire->ire_in_ill && 5274 ire1->ire_in_src_addr == ire->ire_in_src_addr) { 5275 ip1dbg(("ire_add_mrtun: Duplicate entry exists\n")); 5276 IRE_REFHOLD(ire1); 5277 ire_atomic_end(irb_ptr, ire); 5278 ire_delete(ire); 5279 /* Return the old ire */ 5280 *ire_p = ire1; 5281 return (0); 5282 } 5283 } 5284 5285 /* Atomically set the ire_max_frag */ 5286 max_frag = *ire->ire_max_fragp; 5287 ire->ire_max_fragp = NULL; 5288 ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET); 5289 ASSERT(ire->ire_type != IRE_CACHE); 5290 irep = (ire_t **)irb_ptr; 5291 if (*irep != NULL) { 5292 /* Find the last ire which matches ire_in_src_addr */ 5293 ire1 = *irep; 5294 while (ire1->ire_in_src_addr == ire->ire_in_src_addr) { 5295 irep = &ire1->ire_next; 5296 ire1 = *irep; 5297 if (ire1 == NULL) 5298 break; 5299 } 5300 } 5301 ire1 = *irep; 5302 if (ire1 != NULL) 5303 ire1->ire_ptpn = &ire->ire_next; 5304 ire->ire_next = ire1; 5305 /* Link the new one in. */ 5306 ire->ire_ptpn = irep; 5307 membar_producer(); 5308 *irep = ire; 5309 ire->ire_bucket = irb_ptr; 5310 IRE_REFHOLD_LOCKED(ire); 5311 5312 ip2dbg(("ire_add_mrtun: created and linked ire %p\n", (void *)*irep)); 5313 5314 /* 5315 * Protect ire_mrtun_count and ill_mrtun_refcnt from 5316 * another thread trying to add ire in the table 5317 */ 5318 mutex_enter(&ire_mrtun_lock); 5319 ire_mrtun_count++; 5320 mutex_exit(&ire_mrtun_lock); 5321 /* 5322 * ill_mrtun_refcnt is protected by the ill_lock held via 5323 * ire_atomic_start 5324 */ 5325 ire->ire_in_ill->ill_mrtun_refcnt++; 5326 5327 if (ire->ire_ipif != NULL) { 5328 ire->ire_ipif->ipif_ire_cnt++; 5329 if (ire->ire_stq != NULL) { 5330 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 5331 stq_ill->ill_ire_cnt++; 5332 } 5333 } else { 5334 ASSERT(ire->ire_stq == NULL); 5335 } 5336 5337 ire_atomic_end(irb_ptr, ire); 5338 ire_fastpath(ire); 5339 *ire_p = ire; 5340 return (0); 5341 } 5342 5343 5344 /* Walks down the mrtun table */ 5345 5346 void 5347 ire_walk_ill_mrtun(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 5348 ill_t *ill) 5349 { 5350 irb_t *irb; 5351 ire_t *ire; 5352 int i; 5353 int ret; 5354 5355 ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | 5356 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 5357 ASSERT(match_flags == 0 || ire_type == IRE_MIPRTUN); 5358 5359 mutex_enter(&ire_mrtun_lock); 5360 if (ire_mrtun_count == 0) { 5361 mutex_exit(&ire_mrtun_lock); 5362 return; 5363 } 5364 mutex_exit(&ire_mrtun_lock); 5365 5366 ip2dbg(("ire_walk_ill_mrtun:walking the reverse tunnel table \n")); 5367 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5368 5369 irb = &(ip_mrtun_table[i]); 5370 if (irb->irb_ire == NULL) 5371 continue; 5372 IRB_REFHOLD(irb); 5373 for (ire = irb->irb_ire; ire != NULL; 5374 ire = ire->ire_next) { 5375 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5376 if (match_flags != 0) { 5377 ret = ire_walk_ill_match( 5378 match_flags, ire_type, 5379 ire, ill, ALL_ZONES); 5380 } 5381 if (match_flags == 0 || ret) 5382 (*func)(ire, arg); 5383 } 5384 IRB_REFRELE(irb); 5385 } 5386 } 5387 5388 /* 5389 * Source interface based lookup routine (IPV4 only). 5390 * This routine is called only when RTA_SRCIFP bitflag is set 5391 * by routing socket while adding/deleting the route and it is 5392 * also called from ip_rput() when packets arrive from an interface 5393 * for which ill_srcif_ref_cnt is positive. This function is useful 5394 * when a packet coming from one interface must be forwarded to another 5395 * designated interface to reach the correct node. This function is also 5396 * called from ip_newroute when the link-layer address of an ire is resolved. 5397 * We need to make sure that ip_newroute searches for IRE_IF_RESOLVER type 5398 * ires--thus the ire_type parameter is needed. 5399 */ 5400 5401 ire_t * 5402 ire_srcif_table_lookup(ipaddr_t dst_addr, int ire_type, ipif_t *ipif, 5403 ill_t *in_ill, int flags) 5404 { 5405 irb_t *irb_ptr; 5406 ire_t *ire; 5407 irb_t *ire_srcif_table; 5408 5409 ASSERT(in_ill != NULL && !in_ill->ill_isv6); 5410 ASSERT(!(flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) || 5411 (ipif != NULL && !ipif->ipif_isv6)); 5412 5413 /* 5414 * No need to lock the ill since it is refheld by the caller of this 5415 * function 5416 */ 5417 if (in_ill->ill_srcif_table == NULL) { 5418 return (NULL); 5419 } 5420 5421 if (!(flags & MATCH_IRE_TYPE)) { 5422 flags |= MATCH_IRE_TYPE; 5423 ire_type = IRE_INTERFACE; 5424 } 5425 ire_srcif_table = in_ill->ill_srcif_table; 5426 irb_ptr = &ire_srcif_table[IRE_ADDR_HASH(dst_addr, 5427 IP_SRCIF_TABLE_SIZE)]; 5428 rw_enter(&irb_ptr->irb_lock, RW_READER); 5429 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 5430 if (ire->ire_marks & IRE_MARK_CONDEMNED) 5431 continue; 5432 if (ire_match_args(ire, dst_addr, ire->ire_mask, 0, 5433 ire_type, ipif, ire->ire_zoneid, 0, NULL, flags)) { 5434 IRE_REFHOLD(ire); 5435 rw_exit(&irb_ptr->irb_lock); 5436 return (ire); 5437 } 5438 } 5439 /* Not Found */ 5440 rw_exit(&irb_ptr->irb_lock); 5441 return (NULL); 5442 } 5443 5444 5445 /* 5446 * Adds the ire into the special routing table which is hanging off of 5447 * the src_ipif->ipif_ill. It also increments the refcnt in the ill. 5448 * The forward table contains only IRE_IF_RESOLVER, IRE_IF_NORESOLVER 5449 * i,e. IRE_INTERFACE entries. Originally the dlureq_mp field is NULL 5450 * for IRE_IF_RESOLVER entry because we do not have the dst_addr's 5451 * link-layer address at the time of addition. 5452 * Upon resolving the address from ARP, dlureq_mp field is updated with 5453 * proper information in ire_update_srcif_v4. 5454 */ 5455 static int 5456 ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) 5457 { 5458 ire_t *ire1; 5459 irb_t *ire_srcifp_table = NULL; 5460 irb_t *irb_ptr = NULL; 5461 ire_t **irep; 5462 ire_t *ire; 5463 int flags; 5464 int i; 5465 ill_t *stq_ill; 5466 uint_t max_frag; 5467 int error = 0; 5468 5469 ire = *ire_p; 5470 ASSERT(ire->ire_in_ill != NULL); 5471 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5472 ASSERT(ire->ire_type == IRE_IF_NORESOLVER || 5473 ire->ire_type == IRE_IF_RESOLVER); 5474 5475 ire->ire_mask = IP_HOST_MASK; 5476 /* 5477 * Update ire_nce->nce_res_mp with NULL value upon creation; 5478 * first free the default res_mp created by ire_nce_init. 5479 */ 5480 freeb(ire->ire_nce->nce_res_mp); 5481 if (ire->ire_type == IRE_IF_RESOLVER) { 5482 /* 5483 * assign NULL now, it will be updated 5484 * with correct value upon returning from 5485 * ARP 5486 */ 5487 ire->ire_nce->nce_res_mp = NULL; 5488 } else { 5489 ire->ire_nce->nce_res_mp = ill_dlur_gen(NULL, 5490 ire->ire_ipif->ipif_ill->ill_phys_addr_length, 5491 ire->ire_ipif->ipif_ill->ill_sap, 5492 ire->ire_ipif->ipif_ill->ill_sap_length); 5493 } 5494 /* Make sure the address is properly masked. */ 5495 ire->ire_addr &= ire->ire_mask; 5496 5497 ASSERT(ire->ire_max_fragp != NULL); 5498 max_frag = *ire->ire_max_fragp; 5499 ire->ire_max_fragp = NULL; 5500 ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET); 5501 5502 mutex_enter(&ire->ire_in_ill->ill_lock); 5503 if (ire->ire_in_ill->ill_srcif_table == NULL) { 5504 /* create the incoming interface based table */ 5505 ire->ire_in_ill->ill_srcif_table = 5506 (irb_t *)kmem_zalloc(IP_SRCIF_TABLE_SIZE * 5507 sizeof (irb_t), KM_NOSLEEP); 5508 if (ire->ire_in_ill->ill_srcif_table == NULL) { 5509 ip1dbg(("ire_add_srcif_v4: Allocation fail\n")); 5510 mutex_exit(&ire->ire_in_ill->ill_lock); 5511 ire_delete(ire); 5512 *ire_p = NULL; 5513 return (ENOMEM); 5514 } 5515 ire_srcifp_table = ire->ire_in_ill->ill_srcif_table; 5516 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 5517 rw_init(&ire_srcifp_table[i].irb_lock, NULL, 5518 RW_DEFAULT, NULL); 5519 } 5520 ip2dbg(("ire_add_srcif_v4: table created for ill %p\n", 5521 (void *)ire->ire_in_ill)); 5522 } 5523 /* Check for duplicate and insert */ 5524 ASSERT(ire->ire_in_ill->ill_srcif_table != NULL); 5525 irb_ptr = 5526 &(ire->ire_in_ill->ill_srcif_table[IRE_ADDR_HASH(ire->ire_addr, 5527 IP_SRCIF_TABLE_SIZE)]); 5528 mutex_exit(&ire->ire_in_ill->ill_lock); 5529 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 5530 flags |= MATCH_IRE_IPIF; 5531 5532 /* 5533 * Start the atomic add of the ire. Grab the ill locks, 5534 * ill_g_usesrc_lock and the bucket lock. 5535 * 5536 * If ipif or ill is changing ire_atomic_start() may queue the 5537 * request and return EINPROGRESS. 5538 */ 5539 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 5540 if (error != 0) { 5541 /* 5542 * We don't know whether it is a valid ipif or not. 5543 * So, set it to NULL. This assumes that the ire has not added 5544 * a reference to the ipif. 5545 */ 5546 ire->ire_ipif = NULL; 5547 ire_delete(ire); 5548 ip1dbg(("ire_add_srcif_v4: ire_atomic_start failed\n")); 5549 *ire_p = NULL; 5550 return (error); 5551 } 5552 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 5553 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 5554 continue; 5555 if (ire1->ire_zoneid != ire->ire_zoneid) 5556 continue; 5557 /* Has anyone inserted route in the meanwhile ? */ 5558 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 0, 5559 ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, NULL, 5560 flags)) { 5561 ip1dbg(("ire_add_srcif_v4 : Duplicate entry exists\n")); 5562 IRE_REFHOLD(ire1); 5563 ire_atomic_end(irb_ptr, ire); 5564 ire_delete(ire); 5565 /* Return old ire as in ire_add_v4 */ 5566 *ire_p = ire1; 5567 return (0); 5568 } 5569 } 5570 irep = (ire_t **)irb_ptr; 5571 if (*irep != NULL) { 5572 /* Find the last ire which matches ire_addr */ 5573 ire1 = *irep; 5574 while (ire1->ire_addr == ire->ire_addr) { 5575 irep = &ire1->ire_next; 5576 ire1 = *irep; 5577 if (ire1 == NULL) 5578 break; 5579 } 5580 } 5581 ire1 = *irep; 5582 if (ire1 != NULL) 5583 ire1->ire_ptpn = &ire->ire_next; 5584 ire->ire_next = ire1; 5585 /* Link the new one in. */ 5586 ire->ire_ptpn = irep; 5587 membar_producer(); 5588 *irep = ire; 5589 ire->ire_bucket = irb_ptr; 5590 IRE_REFHOLD_LOCKED(ire); 5591 5592 /* 5593 * Protect ire_in_ill->ill_srcif_refcnt and table reference count. 5594 * Note, ire_atomic_start already grabs the ire_in_ill->ill_lock 5595 * so ill_srcif_refcnt is already protected. 5596 */ 5597 ire->ire_in_ill->ill_srcif_refcnt++; 5598 mutex_enter(&ire_srcif_table_lock); 5599 ire_srcif_table_count++; 5600 mutex_exit(&ire_srcif_table_lock); 5601 irb_ptr->irb_ire_cnt++; 5602 if (ire->ire_ipif != NULL) { 5603 ire->ire_ipif->ipif_ire_cnt++; 5604 if (ire->ire_stq != NULL) { 5605 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 5606 stq_ill->ill_ire_cnt++; 5607 } 5608 } else { 5609 ASSERT(ire->ire_stq == NULL); 5610 } 5611 5612 ire_atomic_end(irb_ptr, ire); 5613 *ire_p = ire; 5614 return (0); 5615 } 5616 5617 5618 /* 5619 * This function is called by ire_add_then_send when ARP request comes 5620 * back to ip_wput->ire_add_then_send for resolved ire in the interface 5621 * based routing table. At this point, it only needs to update the resolver 5622 * information for the ire. The passed ire is returned to the caller as it 5623 * is the ire which is created as mblk. 5624 */ 5625 5626 static ire_t * 5627 ire_update_srcif_v4(ire_t *ire) 5628 { 5629 ire_t *ire1; 5630 irb_t *irb; 5631 int error; 5632 5633 ASSERT(ire->ire_type != IRE_MIPRTUN && 5634 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER); 5635 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5636 5637 /* 5638 * This ire is from ARP. Update 5639 * ire_nce->nce_res_mp info 5640 */ 5641 ire1 = ire_srcif_table_lookup(ire->ire_addr, 5642 IRE_IF_RESOLVER, ire->ire_ipif, 5643 ire->ire_in_ill, 5644 MATCH_IRE_ILL | MATCH_IRE_TYPE); 5645 if (ire1 == NULL) { 5646 /* Mobile node registration expired ? */ 5647 ire_delete(ire); 5648 return (NULL); 5649 } 5650 irb = ire1->ire_bucket; 5651 ASSERT(irb != NULL); 5652 /* 5653 * Start the atomic add of the ire. Grab the ill locks, 5654 * ill_g_usesrc_lock and the bucket lock. 5655 */ 5656 error = ire_atomic_start(irb, ire1, NULL, NULL, NULL); 5657 if (error != 0) { 5658 /* 5659 * We don't know whether it is a valid ipif or not. 5660 * So, set it to NULL. This assumes that the ire has not added 5661 * a reference to the ipif. 5662 */ 5663 ire->ire_ipif = NULL; 5664 ire_delete(ire); 5665 ip1dbg(("ire_update_srcif_v4: ire_atomic_start failed\n")); 5666 return (NULL); 5667 } 5668 ASSERT(ire->ire_max_fragp == NULL); 5669 ire->ire_max_frag = ire1->ire_max_frag; 5670 /* 5671 * Update resolver information and 5672 * send-to queue. 5673 */ 5674 ASSERT(ire->ire_nce->nce_res_mp != NULL); 5675 ire1->ire_nce->nce_res_mp = copyb(ire->ire_nce->nce_res_mp); 5676 if (ire1->ire_nce->nce_res_mp == NULL) { 5677 ip0dbg(("ire_update_srcif: copyb failed\n")); 5678 ire_refrele(ire1); 5679 ire_refrele(ire); 5680 ire_atomic_end(irb, ire1); 5681 return (NULL); 5682 } 5683 ire1->ire_stq = ire->ire_stq; 5684 5685 ASSERT(ire->ire_nce->nce_fp_mp == NULL); 5686 5687 ire_atomic_end(irb, ire1); 5688 ire_refrele(ire1); 5689 /* Return the passed ire */ 5690 return (ire); /* Update done */ 5691 } 5692 5693 5694 /* 5695 * Check if another multirt route resolution is needed. 5696 * B_TRUE is returned is there remain a resolvable route, 5697 * or if no route for that dst is resolved yet. 5698 * B_FALSE is returned if all routes for that dst are resolved 5699 * or if the remaining unresolved routes are actually not 5700 * resolvable. 5701 * This only works in the global zone. 5702 */ 5703 boolean_t 5704 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl) 5705 { 5706 ire_t *first_fire; 5707 ire_t *first_cire; 5708 ire_t *fire; 5709 ire_t *cire; 5710 irb_t *firb; 5711 irb_t *cirb; 5712 int unres_cnt = 0; 5713 boolean_t resolvable = B_FALSE; 5714 5715 /* Retrieve the first IRE_HOST that matches the destination */ 5716 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 5717 NULL, ALL_ZONES, 0, tsl, 5718 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 5719 5720 /* No route at all */ 5721 if (first_fire == NULL) { 5722 return (B_TRUE); 5723 } 5724 5725 firb = first_fire->ire_bucket; 5726 ASSERT(firb != NULL); 5727 5728 /* Retrieve the first IRE_CACHE ire for that destination. */ 5729 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl); 5730 5731 /* No resolved route. */ 5732 if (first_cire == NULL) { 5733 ire_refrele(first_fire); 5734 return (B_TRUE); 5735 } 5736 5737 /* 5738 * At least one route is resolved. Here we look through the forward 5739 * and cache tables, to compare the number of declared routes 5740 * with the number of resolved routes. The search for a resolvable 5741 * route is performed only if at least one route remains 5742 * unresolved. 5743 */ 5744 cirb = first_cire->ire_bucket; 5745 ASSERT(cirb != NULL); 5746 5747 /* Count the number of routes to that dest that are declared. */ 5748 IRB_REFHOLD(firb); 5749 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 5750 if (!(fire->ire_flags & RTF_MULTIRT)) 5751 continue; 5752 if (fire->ire_addr != dst) 5753 continue; 5754 unres_cnt++; 5755 } 5756 IRB_REFRELE(firb); 5757 5758 /* Then subtract the number of routes to that dst that are resolved */ 5759 IRB_REFHOLD(cirb); 5760 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 5761 if (!(cire->ire_flags & RTF_MULTIRT)) 5762 continue; 5763 if (cire->ire_addr != dst) 5764 continue; 5765 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 5766 continue; 5767 unres_cnt--; 5768 } 5769 IRB_REFRELE(cirb); 5770 5771 /* At least one route is unresolved; search for a resolvable route. */ 5772 if (unres_cnt > 0) 5773 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 5774 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl); 5775 5776 if (first_fire != NULL) 5777 ire_refrele(first_fire); 5778 5779 if (first_cire != NULL) 5780 ire_refrele(first_cire); 5781 5782 return (resolvable); 5783 } 5784 5785 5786 /* 5787 * Explore a forward_table bucket, starting from fire_arg. 5788 * fire_arg MUST be an IRE_HOST entry. 5789 * 5790 * Return B_TRUE and update *ire_arg and *fire_arg 5791 * if at least one resolvable route is found. *ire_arg 5792 * is the IRE entry for *fire_arg's gateway. 5793 * 5794 * Return B_FALSE otherwise (all routes are resolved or 5795 * the remaining unresolved routes are all unresolvable). 5796 * 5797 * The IRE selection relies on a priority mechanism 5798 * driven by the flags passed in by the caller. 5799 * The caller, such as ip_newroute_ipif(), can get the most 5800 * relevant ire at each stage of a multiple route resolution. 5801 * 5802 * The rules are: 5803 * 5804 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 5805 * ires are preferred for the gateway. This gives the highest 5806 * priority to routes that can be resolved without using 5807 * a resolver. 5808 * 5809 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 5810 * is specified but no IRE_CACHETABLE ire entry for the gateway 5811 * is found, the following rules apply. 5812 * 5813 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 5814 * ires for the gateway, that have not been tried since 5815 * a configurable amount of time, are preferred. 5816 * This applies when a resolver must be invoked for 5817 * a missing route, but we don't want to use the resolver 5818 * upon each packet emission. If no such resolver is found, 5819 * B_FALSE is returned. 5820 * The MULTIRT_USESTAMP flag can be combined with 5821 * MULTIRT_CACHEGW. 5822 * 5823 * - if MULTIRT_USESTAMP is not specified in flags, the first 5824 * unresolved but resolvable route is selected. 5825 * 5826 * - Otherwise, there is no resolvalble route, and 5827 * B_FALSE is returned. 5828 * 5829 * At last, MULTIRT_SETSTAMP can be specified in flags to 5830 * request the timestamp of unresolvable routes to 5831 * be refreshed. This prevents the useless exploration 5832 * of those routes for a while, when MULTIRT_USESTAMP is used. 5833 * 5834 * This only works in the global zone. 5835 */ 5836 boolean_t 5837 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 5838 const ts_label_t *tsl) 5839 { 5840 clock_t delta; 5841 ire_t *best_fire = NULL; 5842 ire_t *best_cire = NULL; 5843 ire_t *first_fire; 5844 ire_t *first_cire; 5845 ire_t *fire; 5846 ire_t *cire; 5847 irb_t *firb = NULL; 5848 irb_t *cirb = NULL; 5849 ire_t *gw_ire; 5850 boolean_t already_resolved; 5851 boolean_t res; 5852 ipaddr_t dst; 5853 ipaddr_t gw; 5854 5855 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 5856 (void *)*ire_arg, (void *)*fire_arg, flags)); 5857 5858 ASSERT(ire_arg != NULL); 5859 ASSERT(fire_arg != NULL); 5860 5861 /* Not an IRE_HOST ire; give up. */ 5862 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 5863 return (B_FALSE); 5864 } 5865 5866 /* This is the first IRE_HOST ire for that destination. */ 5867 first_fire = *fire_arg; 5868 firb = first_fire->ire_bucket; 5869 ASSERT(firb != NULL); 5870 5871 dst = first_fire->ire_addr; 5872 5873 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 5874 5875 /* 5876 * Retrieve the first IRE_CACHE ire for that destination; 5877 * if we don't find one, no route for that dest is 5878 * resolved yet. 5879 */ 5880 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl); 5881 if (first_cire != NULL) { 5882 cirb = first_cire->ire_bucket; 5883 } 5884 5885 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 5886 5887 /* 5888 * Search for a resolvable route, giving the top priority 5889 * to routes that can be resolved without any call to the resolver. 5890 */ 5891 IRB_REFHOLD(firb); 5892 5893 if (!CLASSD(dst)) { 5894 /* 5895 * For all multiroute IRE_HOST ires for that destination, 5896 * check if the route via the IRE_HOST's gateway is 5897 * resolved yet. 5898 */ 5899 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 5900 5901 if (!(fire->ire_flags & RTF_MULTIRT)) 5902 continue; 5903 if (fire->ire_addr != dst) 5904 continue; 5905 5906 if (fire->ire_gw_secattr != NULL && 5907 tsol_ire_match_gwattr(fire, tsl) != 0) { 5908 continue; 5909 } 5910 5911 gw = fire->ire_gateway_addr; 5912 5913 ip2dbg(("ire_multirt_lookup: fire %p, " 5914 "ire_addr %08x, ire_gateway_addr %08x\n", 5915 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 5916 5917 already_resolved = B_FALSE; 5918 5919 if (first_cire != NULL) { 5920 ASSERT(cirb != NULL); 5921 5922 IRB_REFHOLD(cirb); 5923 /* 5924 * For all IRE_CACHE ires for that 5925 * destination. 5926 */ 5927 for (cire = first_cire; 5928 cire != NULL; 5929 cire = cire->ire_next) { 5930 5931 if (!(cire->ire_flags & RTF_MULTIRT)) 5932 continue; 5933 if (cire->ire_addr != dst) 5934 continue; 5935 if (cire->ire_marks & 5936 (IRE_MARK_CONDEMNED | 5937 IRE_MARK_HIDDEN)) 5938 continue; 5939 5940 if (cire->ire_gw_secattr != NULL && 5941 tsol_ire_match_gwattr(cire, 5942 tsl) != 0) { 5943 continue; 5944 } 5945 5946 /* 5947 * Check if the IRE_CACHE's gateway 5948 * matches the IRE_HOST's gateway. 5949 */ 5950 if (cire->ire_gateway_addr == gw) { 5951 already_resolved = B_TRUE; 5952 break; 5953 } 5954 } 5955 IRB_REFRELE(cirb); 5956 } 5957 5958 /* 5959 * This route is already resolved; 5960 * proceed with next one. 5961 */ 5962 if (already_resolved) { 5963 ip2dbg(("ire_multirt_lookup: found cire %p, " 5964 "already resolved\n", (void *)cire)); 5965 continue; 5966 } 5967 5968 /* 5969 * The route is unresolved; is it actually 5970 * resolvable, i.e. is there a cache or a resolver 5971 * for the gateway? 5972 */ 5973 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 5974 ALL_ZONES, tsl, 5975 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR); 5976 5977 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 5978 (void *)gw_ire)); 5979 5980 /* 5981 * If gw_ire is typed IRE_CACHETABLE, 5982 * this route can be resolved without any call to the 5983 * resolver. If the MULTIRT_CACHEGW flag is set, 5984 * give the top priority to this ire and exit the 5985 * loop. 5986 * This is typically the case when an ARP reply 5987 * is processed through ip_wput_nondata(). 5988 */ 5989 if ((flags & MULTIRT_CACHEGW) && 5990 (gw_ire != NULL) && 5991 (gw_ire->ire_type & IRE_CACHETABLE)) { 5992 ASSERT(gw_ire->ire_nce == NULL || 5993 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5994 /* 5995 * Release the resolver associated to the 5996 * previous candidate best ire, if any. 5997 */ 5998 if (best_cire != NULL) { 5999 ire_refrele(best_cire); 6000 ASSERT(best_fire != NULL); 6001 } 6002 6003 best_fire = fire; 6004 best_cire = gw_ire; 6005 6006 ip2dbg(("ire_multirt_lookup: found top prio " 6007 "best_fire %p, best_cire %p\n", 6008 (void *)best_fire, (void *)best_cire)); 6009 break; 6010 } 6011 6012 /* 6013 * Compute the time elapsed since our preceding 6014 * attempt to resolve that route. 6015 * If the MULTIRT_USESTAMP flag is set, we take that 6016 * route into account only if this time interval 6017 * exceeds ip_multirt_resolution_interval; 6018 * this prevents us from attempting to resolve a 6019 * broken route upon each sending of a packet. 6020 */ 6021 delta = lbolt - fire->ire_last_used_time; 6022 delta = TICK_TO_MSEC(delta); 6023 6024 res = (boolean_t) 6025 ((delta > ip_multirt_resolution_interval) || 6026 (!(flags & MULTIRT_USESTAMP))); 6027 6028 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 6029 "res %d\n", 6030 (void *)fire, delta, res)); 6031 6032 if (res) { 6033 /* 6034 * We are here if MULTIRT_USESTAMP flag is set 6035 * and the resolver for fire's gateway 6036 * has not been tried since 6037 * ip_multirt_resolution_interval, or if 6038 * MULTIRT_USESTAMP is not set but gw_ire did 6039 * not fill the conditions for MULTIRT_CACHEGW, 6040 * or if neither MULTIRT_USESTAMP nor 6041 * MULTIRT_CACHEGW are set. 6042 */ 6043 if (gw_ire != NULL) { 6044 if (best_fire == NULL) { 6045 ASSERT(best_cire == NULL); 6046 6047 best_fire = fire; 6048 best_cire = gw_ire; 6049 6050 ip2dbg(("ire_multirt_lookup:" 6051 "found candidate " 6052 "best_fire %p, " 6053 "best_cire %p\n", 6054 (void *)best_fire, 6055 (void *)best_cire)); 6056 6057 /* 6058 * If MULTIRT_CACHEGW is not 6059 * set, we ignore the top 6060 * priority ires that can 6061 * be resolved without any 6062 * call to the resolver; 6063 * In that case, there is 6064 * actually no need 6065 * to continue the loop. 6066 */ 6067 if (!(flags & 6068 MULTIRT_CACHEGW)) { 6069 break; 6070 } 6071 continue; 6072 } 6073 } else { 6074 /* 6075 * No resolver for the gateway: the 6076 * route is not resolvable. 6077 * If the MULTIRT_SETSTAMP flag is 6078 * set, we stamp the IRE_HOST ire, 6079 * so we will not select it again 6080 * during this resolution interval. 6081 */ 6082 if (flags & MULTIRT_SETSTAMP) 6083 fire->ire_last_used_time = 6084 lbolt; 6085 } 6086 } 6087 6088 if (gw_ire != NULL) 6089 ire_refrele(gw_ire); 6090 } 6091 } else { /* CLASSD(dst) */ 6092 6093 for (fire = first_fire; 6094 fire != NULL; 6095 fire = fire->ire_next) { 6096 6097 if (!(fire->ire_flags & RTF_MULTIRT)) 6098 continue; 6099 if (fire->ire_addr != dst) 6100 continue; 6101 6102 if (fire->ire_gw_secattr != NULL && 6103 tsol_ire_match_gwattr(fire, tsl) != 0) { 6104 continue; 6105 } 6106 6107 already_resolved = B_FALSE; 6108 6109 gw = fire->ire_gateway_addr; 6110 6111 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 6112 NULL, NULL, ALL_ZONES, 0, tsl, 6113 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 6114 MATCH_IRE_SECATTR); 6115 6116 /* No resolver for the gateway; we skip this ire. */ 6117 if (gw_ire == NULL) { 6118 continue; 6119 } 6120 ASSERT(gw_ire->ire_nce == NULL || 6121 gw_ire->ire_nce->nce_state == ND_REACHABLE); 6122 6123 if (first_cire != NULL) { 6124 6125 IRB_REFHOLD(cirb); 6126 /* 6127 * For all IRE_CACHE ires for that 6128 * destination. 6129 */ 6130 for (cire = first_cire; 6131 cire != NULL; 6132 cire = cire->ire_next) { 6133 6134 if (!(cire->ire_flags & RTF_MULTIRT)) 6135 continue; 6136 if (cire->ire_addr != dst) 6137 continue; 6138 if (cire->ire_marks & 6139 (IRE_MARK_CONDEMNED | 6140 IRE_MARK_HIDDEN)) 6141 continue; 6142 6143 if (cire->ire_gw_secattr != NULL && 6144 tsol_ire_match_gwattr(cire, 6145 tsl) != 0) { 6146 continue; 6147 } 6148 6149 /* 6150 * Cache entries are linked to the 6151 * parent routes using the parent handle 6152 * (ire_phandle). If no cache entry has 6153 * the same handle as fire, fire is 6154 * still unresolved. 6155 */ 6156 ASSERT(cire->ire_phandle != 0); 6157 if (cire->ire_phandle == 6158 fire->ire_phandle) { 6159 already_resolved = B_TRUE; 6160 break; 6161 } 6162 } 6163 IRB_REFRELE(cirb); 6164 } 6165 6166 /* 6167 * This route is already resolved; proceed with 6168 * next one. 6169 */ 6170 if (already_resolved) { 6171 ire_refrele(gw_ire); 6172 continue; 6173 } 6174 6175 /* 6176 * Compute the time elapsed since our preceding 6177 * attempt to resolve that route. 6178 * If the MULTIRT_USESTAMP flag is set, we take 6179 * that route into account only if this time 6180 * interval exceeds ip_multirt_resolution_interval; 6181 * this prevents us from attempting to resolve a 6182 * broken route upon each sending of a packet. 6183 */ 6184 delta = lbolt - fire->ire_last_used_time; 6185 delta = TICK_TO_MSEC(delta); 6186 6187 res = (boolean_t) 6188 ((delta > ip_multirt_resolution_interval) || 6189 (!(flags & MULTIRT_USESTAMP))); 6190 6191 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 6192 "flags %04x, res %d\n", 6193 (void *)fire, delta, flags, res)); 6194 6195 if (res) { 6196 if (best_cire != NULL) { 6197 /* 6198 * Release the resolver associated 6199 * to the preceding candidate best 6200 * ire, if any. 6201 */ 6202 ire_refrele(best_cire); 6203 ASSERT(best_fire != NULL); 6204 } 6205 best_fire = fire; 6206 best_cire = gw_ire; 6207 continue; 6208 } 6209 6210 ire_refrele(gw_ire); 6211 } 6212 } 6213 6214 if (best_fire != NULL) { 6215 IRE_REFHOLD(best_fire); 6216 } 6217 IRB_REFRELE(firb); 6218 6219 /* Release the first IRE_CACHE we initially looked up, if any. */ 6220 if (first_cire != NULL) 6221 ire_refrele(first_cire); 6222 6223 /* Found a resolvable route. */ 6224 if (best_fire != NULL) { 6225 ASSERT(best_cire != NULL); 6226 6227 if (*fire_arg != NULL) 6228 ire_refrele(*fire_arg); 6229 if (*ire_arg != NULL) 6230 ire_refrele(*ire_arg); 6231 6232 /* 6233 * Update the passed-in arguments with the 6234 * resolvable multirt route we found. 6235 */ 6236 *fire_arg = best_fire; 6237 *ire_arg = best_cire; 6238 6239 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 6240 "*fire_arg %p, *ire_arg %p\n", 6241 (void *)best_fire, (void *)best_cire)); 6242 6243 return (B_TRUE); 6244 } 6245 6246 ASSERT(best_cire == NULL); 6247 6248 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 6249 "*ire_arg %p\n", 6250 (void *)*fire_arg, (void *)*ire_arg)); 6251 6252 /* No resolvable route. */ 6253 return (B_FALSE); 6254 } 6255 6256 /* 6257 * The purpose of the next two functions is to provide some external access to 6258 * routing/l2 lookup functionality while hiding the implementation of routing 6259 * and interface data structures (IRE/ILL). Thus, interfaces are passed/ 6260 * returned by name instead of by ILL reference. These functions are used by 6261 * IP Filter. 6262 * Return a link layer header suitable for an IP packet being sent to the 6263 * dst_addr IP address. The interface associated with the route is put into 6264 * ifname, which must be a buffer of LIFNAMSIZ bytes. The dst_addr is the 6265 * packet's ultimate destination address, not a router address. 6266 * 6267 * This function is used when the caller wants to know the outbound interface 6268 * and MAC header for a packet given only the address. 6269 */ 6270 mblk_t * 6271 ip_nexthop_route(const struct sockaddr *target, char *ifname) 6272 { 6273 struct nce_s *nce; 6274 ire_t *dir; 6275 ill_t *ill; 6276 mblk_t *mp, *tmp_mp; 6277 6278 /* parameter sanity */ 6279 if (ifname == NULL || target == NULL) 6280 return (NULL); 6281 6282 /* Find the route entry, if it exists. */ 6283 switch (target->sa_family) { 6284 case AF_INET: 6285 dir = ire_route_lookup( 6286 ((struct sockaddr_in *)target)->sin_addr.s_addr, 6287 0xffffffff, 6288 0, 0, NULL, NULL, ALL_ZONES, NULL, 6289 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE); 6290 break; 6291 case AF_INET6: 6292 dir = ire_route_lookup_v6( 6293 &((struct sockaddr_in6 *)target)->sin6_addr, 6294 NULL, 6295 0, 0, NULL, NULL, ALL_ZONES, NULL, 6296 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE); 6297 if ((dir != NULL) && (dir->ire_nce == NULL)) { 6298 ire_refrele(dir); 6299 dir = NULL; 6300 } 6301 break; 6302 default: 6303 dir = NULL; 6304 break; 6305 } 6306 6307 if (dir == NULL) { 6308 return (NULL); 6309 } 6310 6311 /* Map the IRE to an ILL so we can fill in ifname. */ 6312 ill = ire_to_ill(dir); 6313 if (ill == NULL) { 6314 ire_refrele(dir); 6315 return (NULL); 6316 } 6317 (void) strncpy(ifname, ill->ill_name, LIFNAMSIZ); 6318 6319 if ((dir->ire_type & (IRE_CACHE|IRE_BROADCAST)) == 0) { 6320 mp = copyb(ill->ill_resolver_mp); 6321 ire_refrele(dir); 6322 return (mp); 6323 } 6324 6325 /* Return a copy of the header to the caller. */ 6326 switch (target->sa_family) { 6327 case AF_INET : 6328 if (dir->ire_nce != NULL && 6329 dir->ire_nce->nce_state == ND_REACHABLE) { 6330 if (dir->ire_nce->nce_fp_mp != NULL) 6331 tmp_mp = dir->ire_nce->nce_fp_mp; 6332 else 6333 tmp_mp = dir->ire_nce->nce_fp_mp; 6334 if ((mp = dupb(tmp_mp)) == NULL) 6335 mp = copyb(tmp_mp); 6336 } else { 6337 mp = copyb(ill->ill_resolver_mp); 6338 } 6339 break; 6340 case AF_INET6 : 6341 nce = dir->ire_nce; 6342 if (nce->nce_fp_mp != NULL) { 6343 if ((mp = dupb(nce->nce_fp_mp)) == NULL) 6344 mp = copyb(nce->nce_fp_mp); 6345 } else if (nce->nce_res_mp != NULL) { 6346 if ((mp = dupb(nce->nce_res_mp)) == NULL) 6347 mp = copyb(nce->nce_res_mp); 6348 } else { 6349 mp = NULL; 6350 } 6351 break; 6352 } 6353 6354 ire_refrele(dir); 6355 return (mp); 6356 } 6357 6358 6359 /* 6360 * Return a link layer header suitable for an IP packet being sent to the 6361 * dst_addr IP address on the specified output interface. The dst_addr 6362 * may be the packet's ultimate destination or a predetermined next hop 6363 * router's address. 6364 * ifname must be nul-terminated. 6365 * 6366 * This function is used when the caller knows the outbound interface (usually 6367 * because it was specified by policy) and only needs the MAC header for a 6368 * packet. 6369 */ 6370 mblk_t * 6371 ip_nexthop(const struct sockaddr *target, const char *ifname) 6372 { 6373 struct nce_s *nce; 6374 ill_walk_context_t ctx; 6375 t_uscalar_t sap; 6376 ire_t *dir; 6377 ill_t *ill; 6378 mblk_t *mp; 6379 6380 /* parameter sanity */ 6381 if (ifname == NULL || target == NULL) 6382 return (NULL); 6383 6384 switch (target->sa_family) { 6385 case AF_INET : 6386 sap = IP_DL_SAP; 6387 break; 6388 case AF_INET6 : 6389 sap = IP6_DL_SAP; 6390 break; 6391 default: 6392 return (NULL); 6393 } 6394 6395 /* Lock ill_g_lock before walking through the list */ 6396 rw_enter(&ill_g_lock, RW_READER); 6397 /* 6398 * Can we find the interface name among those currently configured? 6399 */ 6400 for (ill = ILL_START_WALK_ALL(&ctx); ill != NULL; 6401 ill = ill_next(&ctx, ill)) { 6402 if ((strcmp(ifname, ill->ill_name) == 0) && 6403 (ill->ill_sap == sap)) 6404 break; 6405 } 6406 if (ill == NULL || ill->ill_ipif == NULL) { 6407 rw_exit(&ill_g_lock); 6408 return (NULL); 6409 } 6410 6411 mutex_enter(&ill->ill_lock); 6412 if (!ILL_CAN_LOOKUP(ill)) { 6413 mutex_exit(&ill->ill_lock); 6414 rw_exit(&ill_g_lock); 6415 return (NULL); 6416 } 6417 ill_refhold_locked(ill); 6418 mutex_exit(&ill->ill_lock); 6419 rw_exit(&ill_g_lock); 6420 6421 /* Find the resolver entry, if it exists. */ 6422 switch (target->sa_family) { 6423 case AF_INET: 6424 dir = ire_route_lookup( 6425 ((struct sockaddr_in *)target)->sin_addr.s_addr, 6426 0xffffffff, 6427 0, 0, ill->ill_ipif, NULL, ALL_ZONES, NULL, 6428 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| 6429 MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF); 6430 if ((dir != NULL) && dir->ire_nce != NULL && 6431 dir->ire_nce->nce_state != ND_REACHABLE) { 6432 ire_refrele(dir); 6433 dir = NULL; 6434 } 6435 break; 6436 case AF_INET6: 6437 dir = ire_route_lookup_v6( 6438 &((struct sockaddr_in6 *)target)->sin6_addr, NULL, 6439 0, 0, ill->ill_ipif, NULL, ALL_ZONES, NULL, 6440 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| 6441 MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF); 6442 if ((dir != NULL) && (dir->ire_nce == NULL)) { 6443 ire_refrele(dir); 6444 dir = NULL; 6445 } 6446 break; 6447 default: 6448 dir = NULL; 6449 break; 6450 } 6451 6452 if (dir == NULL) { 6453 return (NULL); 6454 } 6455 6456 if ((dir->ire_type & (IRE_CACHE|IRE_BROADCAST)) == 0) { 6457 mp = copyb(ill->ill_resolver_mp); 6458 ill_refrele(ill); 6459 ire_refrele(dir); 6460 return (mp); 6461 } 6462 6463 /* Return a copy of the header to the caller. */ 6464 switch (target->sa_family) { 6465 case AF_INET : 6466 if (dir->ire_nce->nce_fp_mp != NULL) { 6467 if ((mp = dupb(dir->ire_nce->nce_fp_mp)) == NULL) 6468 mp = copyb(dir->ire_nce->nce_fp_mp); 6469 } else if (dir->ire_nce->nce_res_mp != NULL) { 6470 if ((mp = dupb(dir->ire_nce->nce_res_mp)) == NULL) 6471 mp = copyb(dir->ire_nce->nce_res_mp); 6472 } else { 6473 mp = copyb(ill->ill_resolver_mp); 6474 } 6475 break; 6476 case AF_INET6 : 6477 nce = dir->ire_nce; 6478 if (nce->nce_fp_mp != NULL) { 6479 if ((mp = dupb(nce->nce_fp_mp)) == NULL) 6480 mp = copyb(nce->nce_fp_mp); 6481 } else if (nce->nce_res_mp != NULL) { 6482 if ((mp = dupb(nce->nce_res_mp)) == NULL) 6483 mp = copyb(nce->nce_res_mp); 6484 } else { 6485 mp = NULL; 6486 } 6487 break; 6488 } 6489 6490 ire_refrele(dir); 6491 ill_refrele(ill); 6492 return (mp); 6493 } 6494 6495 /* 6496 * IRE iterator for inbound and loopback broadcast processing. 6497 * Given an IRE_BROADCAST ire, walk the ires with the same destination 6498 * address, but skip over the passed-in ire. Returns the next ire without 6499 * a hold - assumes that the caller holds a reference on the IRE bucket. 6500 */ 6501 ire_t * 6502 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 6503 { 6504 ill_t *ill; 6505 6506 if (curr == NULL) { 6507 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 6508 curr = curr->ire_next) { 6509 if (curr->ire_addr == ire->ire_addr) 6510 break; 6511 } 6512 } else { 6513 curr = curr->ire_next; 6514 } 6515 ill = ire_to_ill(ire); 6516 for (; curr != NULL; curr = curr->ire_next) { 6517 if (curr->ire_addr != ire->ire_addr) { 6518 /* 6519 * All the IREs to a given destination are contiguous; 6520 * break out once the address doesn't match. 6521 */ 6522 break; 6523 } 6524 if (curr == ire) { 6525 /* skip over the passed-in ire */ 6526 continue; 6527 } 6528 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 6529 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 6530 /* 6531 * If the passed-in ire is loopback, skip over 6532 * non-loopback ires and vice versa. 6533 */ 6534 continue; 6535 } 6536 if (ire_to_ill(curr) != ill) { 6537 /* skip over IREs going through a different interface */ 6538 continue; 6539 } 6540 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 6541 /* skip over deleted IREs */ 6542 continue; 6543 } 6544 return (curr); 6545 } 6546 return (NULL); 6547 } 6548 6549 #ifdef IRE_DEBUG 6550 th_trace_t * 6551 th_trace_ire_lookup(ire_t *ire) 6552 { 6553 int bucket_id; 6554 th_trace_t *th_trace; 6555 6556 ASSERT(MUTEX_HELD(&ire->ire_lock)); 6557 6558 bucket_id = IP_TR_HASH(curthread); 6559 ASSERT(bucket_id < IP_TR_HASH_MAX); 6560 6561 for (th_trace = ire->ire_trace[bucket_id]; th_trace != NULL; 6562 th_trace = th_trace->th_next) { 6563 if (th_trace->th_id == curthread) 6564 return (th_trace); 6565 } 6566 return (NULL); 6567 } 6568 6569 void 6570 ire_trace_ref(ire_t *ire) 6571 { 6572 int bucket_id; 6573 th_trace_t *th_trace; 6574 6575 /* 6576 * Attempt to locate the trace buffer for the curthread. 6577 * If it does not exist, then allocate a new trace buffer 6578 * and link it in list of trace bufs for this ipif, at the head 6579 */ 6580 mutex_enter(&ire->ire_lock); 6581 if (ire->ire_trace_disable == B_TRUE) { 6582 mutex_exit(&ire->ire_lock); 6583 return; 6584 } 6585 th_trace = th_trace_ire_lookup(ire); 6586 if (th_trace == NULL) { 6587 bucket_id = IP_TR_HASH(curthread); 6588 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6589 KM_NOSLEEP); 6590 if (th_trace == NULL) { 6591 ire->ire_trace_disable = B_TRUE; 6592 mutex_exit(&ire->ire_lock); 6593 ire_trace_inactive(ire); 6594 return; 6595 } 6596 6597 th_trace->th_id = curthread; 6598 th_trace->th_next = ire->ire_trace[bucket_id]; 6599 th_trace->th_prev = &ire->ire_trace[bucket_id]; 6600 if (th_trace->th_next != NULL) 6601 th_trace->th_next->th_prev = &th_trace->th_next; 6602 ire->ire_trace[bucket_id] = th_trace; 6603 } 6604 ASSERT(th_trace->th_refcnt < TR_BUF_MAX - 1); 6605 th_trace->th_refcnt++; 6606 th_trace_rrecord(th_trace); 6607 mutex_exit(&ire->ire_lock); 6608 } 6609 6610 void 6611 ire_trace_free(th_trace_t *th_trace) 6612 { 6613 /* unlink th_trace and free it */ 6614 *th_trace->th_prev = th_trace->th_next; 6615 if (th_trace->th_next != NULL) 6616 th_trace->th_next->th_prev = th_trace->th_prev; 6617 th_trace->th_next = NULL; 6618 th_trace->th_prev = NULL; 6619 kmem_free(th_trace, sizeof (th_trace_t)); 6620 } 6621 6622 void 6623 ire_untrace_ref(ire_t *ire) 6624 { 6625 th_trace_t *th_trace; 6626 6627 mutex_enter(&ire->ire_lock); 6628 6629 if (ire->ire_trace_disable == B_TRUE) { 6630 mutex_exit(&ire->ire_lock); 6631 return; 6632 } 6633 6634 th_trace = th_trace_ire_lookup(ire); 6635 ASSERT(th_trace != NULL && th_trace->th_refcnt > 0); 6636 th_trace_rrecord(th_trace); 6637 th_trace->th_refcnt--; 6638 6639 if (th_trace->th_refcnt == 0) 6640 ire_trace_free(th_trace); 6641 6642 mutex_exit(&ire->ire_lock); 6643 } 6644 6645 static void 6646 ire_trace_inactive(ire_t *ire) 6647 { 6648 th_trace_t *th_trace; 6649 int i; 6650 6651 mutex_enter(&ire->ire_lock); 6652 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6653 while (ire->ire_trace[i] != NULL) { 6654 th_trace = ire->ire_trace[i]; 6655 6656 /* unlink th_trace and free it */ 6657 ire->ire_trace[i] = th_trace->th_next; 6658 if (th_trace->th_next != NULL) 6659 th_trace->th_next->th_prev = 6660 &ire->ire_trace[i]; 6661 6662 th_trace->th_next = NULL; 6663 th_trace->th_prev = NULL; 6664 kmem_free(th_trace, sizeof (th_trace_t)); 6665 } 6666 } 6667 6668 mutex_exit(&ire->ire_lock); 6669 } 6670 6671 /* ARGSUSED */ 6672 void 6673 ire_thread_exit(ire_t *ire, caddr_t arg) 6674 { 6675 th_trace_t *th_trace; 6676 6677 mutex_enter(&ire->ire_lock); 6678 th_trace = th_trace_ire_lookup(ire); 6679 if (th_trace == NULL) { 6680 mutex_exit(&ire->ire_lock); 6681 return; 6682 } 6683 ASSERT(th_trace->th_refcnt == 0); 6684 6685 ire_trace_free(th_trace); 6686 mutex_exit(&ire->ire_lock); 6687 } 6688 6689 #endif 6690 6691 /* 6692 * Generate a message chain with an arp request to resolve the in_ire. 6693 * It is assumed that in_ire itself is currently in the ire cache table, 6694 * so we create a fake_ire filled with enough information about ire_addr etc. 6695 * to retrieve in_ire when the DL_UNITDATA response from the resolver 6696 * comes back. The fake_ire itself is created by calling esballoc with 6697 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 6698 * invoked when the mblk containing fake_ire is freed. 6699 */ 6700 void 6701 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 6702 { 6703 areq_t *areq; 6704 ipaddr_t *addrp; 6705 mblk_t *ire_mp, *dlureq_mp; 6706 ire_t *ire, *buf; 6707 size_t bufsize; 6708 frtn_t *frtnp; 6709 ill_t *ill; 6710 6711 /* 6712 * Construct message chain for the resolver 6713 * of the form: 6714 * ARP_REQ_MBLK-->IRE_MBLK 6715 * 6716 * NOTE : If the response does not 6717 * come back, ARP frees the packet. For this reason, 6718 * we can't REFHOLD the bucket of save_ire to prevent 6719 * deletions. We may not be able to REFRELE the bucket 6720 * if the response never comes back. Thus, before 6721 * adding the ire, ire_add_v4 will make sure that the 6722 * interface route does not get deleted. This is the 6723 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 6724 * where we can always prevent deletions because of 6725 * the synchronous nature of adding IRES i.e 6726 * ire_add_then_send is called after creating the IRE. 6727 */ 6728 6729 /* 6730 * We use esballoc to allocate the second part(the ire_t size mblk) 6731 * of the message chain depicted above. THis mblk will be freed 6732 * by arp when there is a timeout, and otherwise passed to IP 6733 * and IP will * free it after processing the ARP response. 6734 */ 6735 6736 bufsize = sizeof (ire_t) + sizeof (frtn_t); 6737 buf = kmem_alloc(bufsize, KM_NOSLEEP); 6738 if (buf == NULL) { 6739 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 6740 return; 6741 } 6742 frtnp = (frtn_t *)(buf + 1); 6743 frtnp->free_arg = (caddr_t)buf; 6744 frtnp->free_func = ire_freemblk; 6745 6746 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 6747 6748 if (ire_mp == NULL) { 6749 ip1dbg(("ire_arpresolve: esballoc failed\n")); 6750 kmem_free(buf, bufsize); 6751 return; 6752 } 6753 ASSERT(in_ire->ire_nce != NULL); 6754 dlureq_mp = copyb(dst_ill->ill_resolver_mp); 6755 if (dlureq_mp == NULL) { 6756 kmem_free(buf, bufsize); 6757 return; 6758 } 6759 6760 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 6761 ire = (ire_t *)buf; 6762 /* 6763 * keep enough info in the fake ire so that we can pull up 6764 * the incomplete ire (in_ire) after result comes back from 6765 * arp and make it complete. 6766 */ 6767 *ire = ire_null; 6768 ire->ire_u = in_ire->ire_u; 6769 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 6770 ire->ire_ipif = in_ire->ire_ipif; 6771 ire->ire_stq = in_ire->ire_stq; 6772 ill = ire_to_ill(ire); 6773 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 6774 ire->ire_zoneid = in_ire->ire_zoneid; 6775 /* 6776 * ire_freemblk will be called when ire_mp is freed, both for 6777 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 6778 * when the arp resolution failed. 6779 */ 6780 ire->ire_marks |= IRE_MARK_UNCACHED; 6781 ire->ire_mp = ire_mp; 6782 ire_mp->b_wptr = (uchar_t *)&ire[1]; 6783 ire_mp->b_cont = NULL; 6784 ASSERT(dlureq_mp != NULL); 6785 linkb(dlureq_mp, ire_mp); 6786 6787 /* 6788 * Fill in the source and dest addrs for the resolver. 6789 * NOTE: this depends on memory layouts imposed by 6790 * ill_init(). 6791 */ 6792 areq = (areq_t *)dlureq_mp->b_rptr; 6793 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 6794 *addrp = ire->ire_src_addr; 6795 6796 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 6797 if (ire->ire_gateway_addr != INADDR_ANY) { 6798 *addrp = ire->ire_gateway_addr; 6799 } else { 6800 *addrp = ire->ire_addr; 6801 } 6802 6803 /* Up to the resolver. */ 6804 if (canputnext(dst_ill->ill_rq)) { 6805 putnext(dst_ill->ill_rq, dlureq_mp); 6806 } else { 6807 /* Prepare for cleanup */ 6808 freemsg(dlureq_mp); 6809 } 6810 } 6811 6812 /* 6813 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 6814 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 6815 * 6816 * This function can be called by ARP via free routine for ire_mp or 6817 * by IPv4(both host and forwarding path) via ire_delete 6818 * in case ARP resolution fails. 6819 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 6820 * (for IP to talk to ARP, it still has to send AR* messages). 6821 * 6822 * Note that the ARP/IP merge should replace the functioanlity by providing 6823 * direct function calls to clean up unresolved entries in ire/nce lists. 6824 */ 6825 void 6826 ire_freemblk(ire_t *ire_mp) 6827 { 6828 nce_t *nce = NULL; 6829 ill_t *ill; 6830 6831 ASSERT(ire_mp != NULL); 6832 6833 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 6834 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 6835 (void *)ire_mp)); 6836 goto cleanup; 6837 } 6838 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 6839 goto cleanup; /* everything succeeded. just free and return */ 6840 } 6841 6842 /* 6843 * the arp information corresponding to this ire_mp was not 6844 * transferred to a ire_cache entry. Need 6845 * to clean up incomplete ire's and nce, if necessary. 6846 */ 6847 ASSERT(ire_mp->ire_stq != NULL); 6848 ASSERT(ire_mp->ire_stq_ifindex != 0); 6849 /* 6850 * Get any nce's corresponding to this ire_mp. We first have to 6851 * make sure that the ill is still around. 6852 */ 6853 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, B_FALSE, 6854 NULL, NULL, NULL, NULL); 6855 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 6856 (ill->ill_state_flags & ILL_CONDEMNED)) { 6857 /* 6858 * ill went away. no nce to clean up. 6859 * Note that the ill_state_flags could be set to 6860 * ILL_CONDEMNED after this point, but if we know 6861 * that it is CONDEMNED now, we just bail out quickly. 6862 */ 6863 if (ill != NULL) 6864 ill_refrele(ill); 6865 goto cleanup; 6866 } 6867 nce = ndp_lookup_v4(ill, 6868 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 6869 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 6870 B_FALSE); 6871 ill_refrele(ill); 6872 6873 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 6874 /* 6875 * some incomplete nce was found. 6876 */ 6877 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 6878 nce_t *, nce, ire_t *, ire_mp); 6879 /* 6880 * Send the icmp_unreachable messages for the queued mblks in 6881 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 6882 * for this ire 6883 */ 6884 arp_resolv_failed(nce); 6885 /* 6886 * Delete the nce and clean up all ire's pointing at this nce 6887 * in the cachetable 6888 */ 6889 ndp_delete(nce); 6890 } 6891 if (nce != NULL) 6892 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 6893 6894 cleanup: 6895 /* 6896 * Get rid of the ire buffer 6897 * We call kmem_free here(instead of ire_delete()), since 6898 * this is the freeb's callback. 6899 */ 6900 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 6901 } 6902 6903 6904 /* 6905 * create the neighbor cache entry nce_t for IRE_CACHE and 6906 * non-loopback IRE_BROADCAST ire's. Note that IRE_BROADCAST 6907 * (non-loopback) entries have the nce_res_mp set to the 6908 * template passed in (generated from ill_bcast_mp); IRE_CACHE ire's 6909 * contain the information for the nexthop (ire_gateway_addr) in the 6910 * case of indirect routes, and for the dst itself (ire_addr) in the 6911 * case of direct routes, with the nce_res_mp containing a template 6912 * DL_UNITDATA request. 6913 * 6914 * This function always consumes res_mp and fp_mp. 6915 * 6916 * The actual association of the ire_nce to the nce created here is 6917 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 6918 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 6919 * the ire_nce assignment is done in ire_add_then_send, and mobile-ip 6920 * where the assignment is done in ire_add_mrtun(). 6921 */ 6922 int 6923 ire_nce_init(ire_t *ire, mblk_t *fp_mp, mblk_t *res_mp) 6924 { 6925 in_addr_t addr4, mask4; 6926 int err; 6927 nce_t *arpce = NULL; 6928 ill_t *ire_ill; 6929 uint16_t nce_state, nce_flags; 6930 6931 if (ire->ire_stq == NULL) { 6932 if (res_mp) 6933 freemsg(res_mp); 6934 if (fp_mp) 6935 freemsg(fp_mp); 6936 return (0); /* no need to create nce for local/loopback */ 6937 } 6938 6939 mask4 = IP_HOST_MASK; 6940 switch (ire->ire_type) { 6941 case IRE_CACHE: 6942 if (ire->ire_gateway_addr != INADDR_ANY) 6943 addr4 = ire->ire_gateway_addr; /* 'G' route */ 6944 else 6945 addr4 = ire->ire_addr; /* direct route */ 6946 break; 6947 case IRE_BROADCAST: 6948 addr4 = ire->ire_addr; 6949 break; 6950 default: 6951 if (res_mp) 6952 freemsg(res_mp); 6953 if (fp_mp) 6954 freemsg(fp_mp); 6955 return (0); 6956 } 6957 6958 /* 6959 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 6960 * rules in ire_forward_src_ipif. We want the dlureq_mp 6961 * for the outgoing interface, which we get from the ire_stq. 6962 */ 6963 ire_ill = ire_to_ill(ire); 6964 6965 /* 6966 * if we are creating an nce for the first time, and this is 6967 * a NORESOLVER interface, atomically create the nce in the 6968 * REACHABLE state; else create it in the ND_INITIAL state. 6969 */ 6970 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) { 6971 nce_state = ND_REACHABLE; 6972 nce_flags = NCE_F_PERMANENT; 6973 } else { 6974 if (fp_mp != NULL) 6975 nce_state = ND_REACHABLE; 6976 else 6977 nce_state = ND_INITIAL; 6978 nce_flags = 0; 6979 } 6980 6981 err = ndp_lookup_then_add(ire_ill, NULL, 6982 &addr4, &mask4, NULL, 0, nce_flags, nce_state, &arpce, 6983 fp_mp, res_mp); 6984 6985 ip1dbg(("ire 0x%p addr 0x%lx mask 0x%lx type 0x%x; " 6986 "found nce 0x%p err %d\n", (void *)ire, (ulong_t)addr4, 6987 (ulong_t)mask4, ire->ire_type, (void *)arpce, err)); 6988 6989 switch (err) { 6990 case 0: 6991 break; 6992 case EEXIST: 6993 /* 6994 * return a pointer to an existing nce_t; 6995 * note that the ire-nce mapping is many-one, i.e., 6996 * multiple ire's could point to the same nce_t; 6997 */ 6998 if (fp_mp != NULL) { 6999 freemsg(fp_mp); 7000 } 7001 if (res_mp != NULL) { 7002 freemsg(res_mp); 7003 } 7004 break; 7005 default: 7006 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 7007 if (res_mp) 7008 freemsg(res_mp); 7009 if (fp_mp) 7010 freemsg(fp_mp); 7011 return (EINVAL); 7012 } 7013 #if DEBUG 7014 /* 7015 * if an nce_fp_mp was passed in, we should be picking up an 7016 * existing nce_t in the ND_REACHABLE state. 7017 */ 7018 mutex_enter(&arpce->nce_lock); 7019 ASSERT(arpce->nce_fp_mp == NULL || arpce->nce_state == ND_REACHABLE); 7020 mutex_exit(&arpce->nce_lock); 7021 #endif 7022 if (ire->ire_type == IRE_BROADCAST) { 7023 /* 7024 * Two bcast ires are created for each interface; 7025 * 1. loopback copy (which does not have an 7026 * ire_stq, and therefore has no ire_nce), and, 7027 * 2. the non-loopback copy, which has the nce_res_mp 7028 * initialized to a copy of the ill_bcast_mp, and 7029 * is marked as ND_REACHABLE at this point. 7030 * This nce does not undergo any further state changes, 7031 * and exists as long as the interface is plumbed. 7032 * Note: we do the ire_nce assignment here for IRE_BROADCAST 7033 * because some functions like ill_mark_bcast() inline the 7034 * ire_add functionality; 7035 */ 7036 mutex_enter(&arpce->nce_lock); 7037 arpce->nce_state = ND_REACHABLE; 7038 arpce->nce_flags |= NCE_F_PERMANENT; 7039 arpce->nce_last = TICK_TO_MSEC(lbolt64); 7040 ire->ire_nce = arpce; 7041 mutex_exit(&arpce->nce_lock); 7042 /* 7043 * We are associating this nce to the ire, 7044 * so change the nce ref taken in 7045 * ndp_lookup_then_add_v4() from 7046 * NCE_REFHOLD to NCE_REFHOLD_NOTR 7047 */ 7048 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 7049 } else { 7050 if (NCE_EXPIRED(arpce)) 7051 arpce = nce_reinit(arpce); 7052 if (arpce != NULL) { 7053 /* 7054 * We are not using this nce_t just yet so release 7055 * the ref taken in ndp_lookup_then_add_v4() 7056 */ 7057 NCE_REFRELE(arpce); 7058 } else { 7059 ip0dbg(("can't reinit arpce for ill 0x%p;\n", 7060 (void *)ire_ill)); 7061 } 7062 } 7063 return (0); 7064 } 7065