1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved. 27 * Copyright 2025 Oxide Computer Company 28 */ 29 30 /* 31 * This file contains the interface control functions for IP. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/dlpi.h> 37 #include <sys/stropts.h> 38 #include <sys/strsun.h> 39 #include <sys/sysmacros.h> 40 #include <sys/strsubr.h> 41 #include <sys/strlog.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/kstat.h> 46 #include <sys/debug.h> 47 #include <sys/zone.h> 48 #include <sys/sunldi.h> 49 #include <sys/file.h> 50 #include <sys/bitmap.h> 51 #include <sys/cpuvar.h> 52 #include <sys/time.h> 53 #include <sys/ctype.h> 54 #include <sys/kmem.h> 55 #include <sys/systm.h> 56 #include <sys/param.h> 57 #include <sys/socket.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/if_types.h> 62 #include <net/if_dl.h> 63 #include <net/route.h> 64 #include <sys/sockio.h> 65 #include <netinet/in.h> 66 #include <netinet/ip6.h> 67 #include <netinet/icmp6.h> 68 #include <netinet/igmp_var.h> 69 #include <sys/policy.h> 70 #include <sys/ethernet.h> 71 #include <sys/callb.h> 72 #include <sys/md5.h> 73 74 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 75 #include <inet/mi.h> 76 #include <inet/nd.h> 77 #include <inet/tunables.h> 78 #include <inet/arp.h> 79 #include <inet/ip_arp.h> 80 #include <inet/mib2.h> 81 #include <inet/ip.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_ftable.h> 88 #include <inet/ip_rts.h> 89 #include <inet/ip_ndp.h> 90 #include <inet/ip_if.h> 91 #include <inet/ip_impl.h> 92 #include <inet/sctp_ip.h> 93 #include <inet/ip_netinfo.h> 94 #include <inet/ilb_ip.h> 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac_client.h> 100 #include <sys/dld.h> 101 #include <sys/mac_flow.h> 102 103 #include <sys/systeminfo.h> 104 #include <sys/bootconf.h> 105 106 #include <sys/tsol/tndb.h> 107 #include <sys/tsol/tnet.h> 108 109 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 110 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 111 112 /* The character which tells where the ill_name ends */ 113 #define IPIF_SEPARATOR_CHAR ':' 114 115 /* IP ioctl function table entry */ 116 typedef struct ipft_s { 117 int ipft_cmd; 118 pfi_t ipft_pfi; 119 int ipft_min_size; 120 int ipft_flags; 121 } ipft_t; 122 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 123 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 124 125 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 126 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 127 char *value, caddr_t cp, cred_t *ioc_cr); 128 129 static boolean_t ill_is_quiescent(ill_t *); 130 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 131 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 132 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 135 mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 137 queue_t *q, mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 139 mblk_t *mp); 140 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp); 142 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 145 int ioccmd, struct linkblk *li); 146 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 147 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 148 static void ipsq_flush(ill_t *ill); 149 150 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 151 queue_t *q, mblk_t *mp, boolean_t need_up); 152 static void ipsq_delete(ipsq_t *); 153 154 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 155 boolean_t initialize, boolean_t insert, int *errorp); 156 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 157 static void ipif_delete_bcast_ires(ipif_t *ipif); 158 static int ipif_add_ires_v4(ipif_t *, boolean_t); 159 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 160 boolean_t isv6); 161 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 162 static void ipif_free(ipif_t *ipif); 163 static void ipif_free_tail(ipif_t *ipif); 164 static void ipif_set_default(ipif_t *ipif); 165 static int ipif_set_values(queue_t *q, mblk_t *mp, 166 char *interf_name, uint_t *ppa); 167 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 168 queue_t *q); 169 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 170 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 171 ip_stack_t *); 172 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 173 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 174 int *error, ip_stack_t *); 175 176 static int ill_alloc_ppa(ill_if_t *, ill_t *); 177 static void ill_delete_interface_type(ill_if_t *); 178 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 179 static void ill_dl_down(ill_t *ill); 180 static void ill_down(ill_t *ill); 181 static void ill_down_ipifs(ill_t *, boolean_t); 182 static void ill_free_mib(ill_t *ill); 183 static void ill_glist_delete(ill_t *); 184 static void ill_phyint_reinit(ill_t *ill); 185 static void ill_set_nce_router_flags(ill_t *, boolean_t); 186 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 187 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 188 189 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 190 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 191 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 192 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 193 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 194 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 195 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 196 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 197 static ip_v4mapinfo_func_t ip_mbcast_mapping; 198 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 199 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 200 static void phyint_free(phyint_t *); 201 202 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 203 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 204 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 205 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 206 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 207 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 208 dl_capability_sub_t *); 209 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 210 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 211 static void ill_capability_dld_ack(ill_t *, mblk_t *, 212 dl_capability_sub_t *); 213 static void ill_capability_dld_enable(ill_t *); 214 static void ill_capability_ack_thr(void *); 215 static void ill_capability_lso_enable(ill_t *); 216 217 static ill_t *ill_prev_usesrc(ill_t *); 218 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 219 static void ill_disband_usesrc_group(ill_t *); 220 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 221 222 #ifdef DEBUG 223 static void ill_trace_cleanup(const ill_t *); 224 static void ipif_trace_cleanup(const ipif_t *); 225 #endif 226 227 static void ill_dlpi_clear_deferred(ill_t *ill); 228 229 static void phyint_flags_init(phyint_t *, t_uscalar_t); 230 231 /* 232 * if we go over the memory footprint limit more than once in this msec 233 * interval, we'll start pruning aggressively. 234 */ 235 int ip_min_frag_prune_time = 0; 236 237 static ipft_t ip_ioctl_ftbl[] = { 238 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 239 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 240 IPFT_F_NO_REPLY }, 241 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 242 { 0 } 243 }; 244 245 /* Simple ICMP IP Header Template */ 246 static ipha_t icmp_ipha = { 247 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 248 }; 249 250 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 251 252 static ip_m_t ip_m_tbl[] = { 253 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 254 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 255 ip_nodef_v6intfid }, 256 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 257 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 258 ip_nodef_v6intfid }, 259 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 260 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 261 ip_nodef_v6intfid }, 262 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 263 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 264 ip_nodef_v6intfid }, 265 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 266 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 267 ip_nodef_v6intfid }, 268 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 269 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 270 ip_nodef_v6intfid }, 271 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 272 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 273 ip_ipv4_v6destintfid }, 274 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 275 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 276 ip_ipv6_v6destintfid }, 277 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 278 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 279 ip_nodef_v6intfid }, 280 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 281 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 282 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 283 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 284 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 285 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 286 ip_nodef_v6intfid } 287 }; 288 289 char ipif_loopback_name[] = "lo0"; 290 291 /* These are used by all IP network modules. */ 292 sin6_t sin6_null; /* Zero address for quick clears */ 293 sin_t sin_null; /* Zero address for quick clears */ 294 295 /* When set search for unused ipif_seqid */ 296 static ipif_t ipif_zero; 297 298 /* 299 * ppa arena is created after these many 300 * interfaces have been plumbed. 301 */ 302 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 303 304 /* 305 * Allocate per-interface mibs. 306 * Returns true if ok. False otherwise. 307 * ipsq may not yet be allocated (loopback case ). 308 */ 309 static boolean_t 310 ill_allocate_mibs(ill_t *ill) 311 { 312 /* Already allocated? */ 313 if (ill->ill_ip_mib != NULL) { 314 if (ill->ill_isv6) 315 ASSERT(ill->ill_icmp6_mib != NULL); 316 return (B_TRUE); 317 } 318 319 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 320 KM_NOSLEEP); 321 if (ill->ill_ip_mib == NULL) { 322 return (B_FALSE); 323 } 324 325 /* Setup static information */ 326 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 327 sizeof (mib2_ipIfStatsEntry_t)); 328 if (ill->ill_isv6) { 329 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 330 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 331 sizeof (mib2_ipv6AddrEntry_t)); 332 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 333 sizeof (mib2_ipv6RouteEntry_t)); 334 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 335 sizeof (mib2_ipv6NetToMediaEntry_t)); 336 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 337 sizeof (ipv6_member_t)); 338 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 339 sizeof (ipv6_grpsrc_t)); 340 } else { 341 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 342 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 343 sizeof (mib2_ipAddrEntry_t)); 344 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 345 sizeof (mib2_ipRouteEntry_t)); 346 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 347 sizeof (mib2_ipNetToMediaEntry_t)); 348 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 349 sizeof (ip_member_t)); 350 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 351 sizeof (ip_grpsrc_t)); 352 353 /* 354 * For a v4 ill, we are done at this point, because per ill 355 * icmp mibs are only used for v6. 356 */ 357 return (B_TRUE); 358 } 359 360 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 361 KM_NOSLEEP); 362 if (ill->ill_icmp6_mib == NULL) { 363 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 364 ill->ill_ip_mib = NULL; 365 return (B_FALSE); 366 } 367 /* static icmp info */ 368 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 369 sizeof (mib2_ipv6IfIcmpEntry_t); 370 /* 371 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 372 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 373 * -> ill_phyint_reinit 374 */ 375 return (B_TRUE); 376 } 377 378 /* 379 * Completely vaporize a lower level tap and all associated interfaces. 380 * ill_delete is called only out of ip_close when the device control 381 * stream is being closed. 382 */ 383 void 384 ill_delete(ill_t *ill) 385 { 386 ipif_t *ipif; 387 ill_t *prev_ill; 388 ip_stack_t *ipst = ill->ill_ipst; 389 390 /* 391 * ill_delete may be forcibly entering the ipsq. The previous 392 * ioctl may not have completed and may need to be aborted. 393 * ipsq_flush takes care of it. If we don't need to enter the 394 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 395 * ill_delete_tail is sufficient. 396 */ 397 ipsq_flush(ill); 398 399 /* 400 * Nuke all interfaces. ipif_free will take down the interface, 401 * remove it from the list, and free the data structure. 402 * Walk down the ipif list and remove the logical interfaces 403 * first before removing the main ipif. We can't unplumb 404 * zeroth interface first in the case of IPv6 as update_conn_ill 405 * -> ip_ll_multireq de-references ill_ipif for checking 406 * POINTOPOINT. 407 * 408 * If ill_ipif was not properly initialized (i.e low on memory), 409 * then no interfaces to clean up. In this case just clean up the 410 * ill. 411 */ 412 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 413 ipif_free(ipif); 414 415 /* 416 * clean out all the nce_t entries that depend on this 417 * ill for the ill_phys_addr. 418 */ 419 nce_flush(ill, B_TRUE); 420 421 /* Clean up msgs on pending upcalls for mrouted */ 422 reset_mrt_ill(ill); 423 424 update_conn_ill(ill, ipst); 425 426 /* 427 * Remove multicast references added as a result of calls to 428 * ip_join_allmulti(). 429 */ 430 ip_purge_allmulti(ill); 431 432 /* 433 * If the ill being deleted is under IPMP, boot it out of the illgrp. 434 */ 435 if (IS_UNDER_IPMP(ill)) 436 ipmp_ill_leave_illgrp(ill); 437 438 /* 439 * ill_down will arrange to blow off any IRE's dependent on this 440 * ILL, and shut down fragmentation reassembly. 441 */ 442 ill_down(ill); 443 444 /* Let SCTP know, so that it can remove this from its list. */ 445 sctp_update_ill(ill, SCTP_ILL_REMOVE); 446 447 /* 448 * Walk all CONNs that can have a reference on an ire or nce for this 449 * ill (we actually walk all that now have stale references). 450 */ 451 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 452 453 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 454 if (ill->ill_isv6) 455 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 456 457 /* 458 * If an address on this ILL is being used as a source address then 459 * clear out the pointers in other ILLs that point to this ILL. 460 */ 461 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 462 if (ill->ill_usesrc_grp_next != NULL) { 463 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 464 ill_disband_usesrc_group(ill); 465 } else { /* consumer of the usesrc ILL */ 466 prev_ill = ill_prev_usesrc(ill); 467 prev_ill->ill_usesrc_grp_next = 468 ill->ill_usesrc_grp_next; 469 } 470 } 471 rw_exit(&ipst->ips_ill_g_usesrc_lock); 472 } 473 474 static void 475 ipif_non_duplicate(ipif_t *ipif) 476 { 477 ill_t *ill = ipif->ipif_ill; 478 mutex_enter(&ill->ill_lock); 479 if (ipif->ipif_flags & IPIF_DUPLICATE) { 480 ipif->ipif_flags &= ~IPIF_DUPLICATE; 481 ASSERT(ill->ill_ipif_dup_count > 0); 482 ill->ill_ipif_dup_count--; 483 } 484 mutex_exit(&ill->ill_lock); 485 } 486 487 /* 488 * ill_delete_tail is called from ip_modclose after all references 489 * to the closing ill are gone. The wait is done in ip_modclose 490 */ 491 void 492 ill_delete_tail(ill_t *ill) 493 { 494 mblk_t **mpp; 495 ipif_t *ipif; 496 ip_stack_t *ipst = ill->ill_ipst; 497 498 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 499 ipif_non_duplicate(ipif); 500 (void) ipif_down_tail(ipif); 501 } 502 503 ASSERT(ill->ill_ipif_dup_count == 0); 504 505 /* 506 * If polling capability is enabled (which signifies direct 507 * upcall into IP and driver has ill saved as a handle), 508 * we need to make sure that unbind has completed before we 509 * let the ill disappear and driver no longer has any reference 510 * to this ill. 511 */ 512 mutex_enter(&ill->ill_lock); 513 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 514 cv_wait(&ill->ill_cv, &ill->ill_lock); 515 mutex_exit(&ill->ill_lock); 516 ASSERT(!(ill->ill_capabilities & 517 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 518 519 if (ill->ill_net_type != IRE_LOOPBACK) 520 qprocsoff(ill->ill_rq); 521 522 /* 523 * We do an ipsq_flush once again now. New messages could have 524 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 525 * could also have landed up if an ioctl thread had looked up 526 * the ill before we set the ILL_CONDEMNED flag, but not yet 527 * enqueued the ioctl when we did the ipsq_flush last time. 528 */ 529 ipsq_flush(ill); 530 531 /* 532 * Free capabilities. 533 */ 534 if (ill->ill_hcksum_capab != NULL) { 535 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 536 ill->ill_hcksum_capab = NULL; 537 } 538 539 if (ill->ill_zerocopy_capab != NULL) { 540 kmem_free(ill->ill_zerocopy_capab, 541 sizeof (ill_zerocopy_capab_t)); 542 ill->ill_zerocopy_capab = NULL; 543 } 544 545 if (ill->ill_lso_capab != NULL) { 546 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 547 ill->ill_lso_capab = NULL; 548 } 549 550 if (ill->ill_dld_capab != NULL) { 551 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 552 ill->ill_dld_capab = NULL; 553 } 554 555 /* Clean up ill_allowed_ips* related state */ 556 if (ill->ill_allowed_ips != NULL) { 557 ASSERT(ill->ill_allowed_ips_cnt > 0); 558 kmem_free(ill->ill_allowed_ips, 559 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 560 ill->ill_allowed_ips = NULL; 561 ill->ill_allowed_ips_cnt = 0; 562 } 563 564 while (ill->ill_ipif != NULL) 565 ipif_free_tail(ill->ill_ipif); 566 567 /* 568 * We have removed all references to ilm from conn and the ones joined 569 * within the kernel. 570 * 571 * We don't walk conns, mrts and ires because 572 * 573 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 574 * 2) ill_down ->ill_downi walks all the ires and cleans up 575 * ill references. 576 */ 577 578 /* 579 * If this ill is an IPMP meta-interface, blow away the illgrp. This 580 * is safe to do because the illgrp has already been unlinked from the 581 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 582 */ 583 if (IS_IPMP(ill)) { 584 ipmp_illgrp_destroy(ill->ill_grp); 585 ill->ill_grp = NULL; 586 } 587 588 if (ill->ill_mphysaddr_list != NULL) { 589 multiphysaddr_t *mpa, *tmpa; 590 591 mpa = ill->ill_mphysaddr_list; 592 ill->ill_mphysaddr_list = NULL; 593 while (mpa) { 594 tmpa = mpa->mpa_next; 595 kmem_free(mpa, sizeof (*mpa)); 596 mpa = tmpa; 597 } 598 } 599 /* 600 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 601 * could free the phyint. No more reference to the phyint after this 602 * point. 603 */ 604 (void) ill_glist_delete(ill); 605 606 if (ill->ill_frag_ptr != NULL) { 607 uint_t count; 608 609 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 610 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 611 } 612 mi_free(ill->ill_frag_ptr); 613 ill->ill_frag_ptr = NULL; 614 ill->ill_frag_hash_tbl = NULL; 615 } 616 617 freemsg(ill->ill_nd_lla_mp); 618 /* Free all retained control messages. */ 619 mpp = &ill->ill_first_mp_to_free; 620 do { 621 while (mpp[0]) { 622 mblk_t *mp; 623 mblk_t *mp1; 624 625 mp = mpp[0]; 626 mpp[0] = mp->b_next; 627 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 628 mp1->b_next = NULL; 629 mp1->b_prev = NULL; 630 } 631 freemsg(mp); 632 } 633 } while (mpp++ != &ill->ill_last_mp_to_free); 634 635 ill_free_mib(ill); 636 637 #ifdef DEBUG 638 ill_trace_cleanup(ill); 639 #endif 640 641 /* The default multicast interface might have changed */ 642 ire_increment_multicast_generation(ipst, ill->ill_isv6); 643 644 /* Drop refcnt here */ 645 netstack_rele(ill->ill_ipst->ips_netstack); 646 ill->ill_ipst = NULL; 647 } 648 649 static void 650 ill_free_mib(ill_t *ill) 651 { 652 ip_stack_t *ipst = ill->ill_ipst; 653 654 /* 655 * MIB statistics must not be lost, so when an interface 656 * goes away the counter values will be added to the global 657 * MIBs. 658 */ 659 if (ill->ill_ip_mib != NULL) { 660 if (ill->ill_isv6) { 661 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 662 ill->ill_ip_mib); 663 } else { 664 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 665 ill->ill_ip_mib); 666 } 667 668 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 669 ill->ill_ip_mib = NULL; 670 } 671 if (ill->ill_icmp6_mib != NULL) { 672 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 673 ill->ill_icmp6_mib); 674 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 675 ill->ill_icmp6_mib = NULL; 676 } 677 } 678 679 /* 680 * Concatenate together a physical address and a sap. 681 * 682 * Sap_lengths are interpreted as follows: 683 * sap_length == 0 ==> no sap 684 * sap_length > 0 ==> sap is at the head of the dlpi address 685 * sap_length < 0 ==> sap is at the tail of the dlpi address 686 */ 687 static void 688 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 689 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 690 { 691 uint16_t sap_addr = (uint16_t)sap_src; 692 693 if (sap_length == 0) { 694 if (phys_src == NULL) 695 bzero(dst, phys_length); 696 else 697 bcopy(phys_src, dst, phys_length); 698 } else if (sap_length < 0) { 699 if (phys_src == NULL) 700 bzero(dst, phys_length); 701 else 702 bcopy(phys_src, dst, phys_length); 703 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 704 } else { 705 bcopy(&sap_addr, dst, sizeof (sap_addr)); 706 if (phys_src == NULL) 707 bzero((char *)dst + sap_length, phys_length); 708 else 709 bcopy(phys_src, (char *)dst + sap_length, phys_length); 710 } 711 } 712 713 /* 714 * Generate a dl_unitdata_req mblk for the device and address given. 715 * addr_length is the length of the physical portion of the address. 716 * If addr is NULL include an all zero address of the specified length. 717 * TRUE? In any case, addr_length is taken to be the entire length of the 718 * dlpi address, including the absolute value of sap_length. 719 */ 720 mblk_t * 721 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 722 t_scalar_t sap_length) 723 { 724 dl_unitdata_req_t *dlur; 725 mblk_t *mp; 726 t_scalar_t abs_sap_length; /* absolute value */ 727 728 abs_sap_length = ABS(sap_length); 729 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 730 DL_UNITDATA_REQ); 731 if (mp == NULL) 732 return (NULL); 733 dlur = (dl_unitdata_req_t *)mp->b_rptr; 734 /* HACK: accomodate incompatible DLPI drivers */ 735 if (addr_length == 8) 736 addr_length = 6; 737 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 738 dlur->dl_dest_addr_offset = sizeof (*dlur); 739 dlur->dl_priority.dl_min = 0; 740 dlur->dl_priority.dl_max = 0; 741 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 742 (uchar_t *)&dlur[1]); 743 return (mp); 744 } 745 746 /* 747 * Add the pending mp to the list. There can be only 1 pending mp 748 * in the list. Any exclusive ioctl that needs to wait for a response 749 * from another module or driver needs to use this function to set 750 * the ipx_pending_mp to the ioctl mblk and wait for the response from 751 * the other module/driver. This is also used while waiting for the 752 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 753 */ 754 boolean_t 755 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 756 int waitfor) 757 { 758 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 759 760 ASSERT(IAM_WRITER_IPIF(ipif)); 761 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 762 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 763 ASSERT(ipx->ipx_pending_mp == NULL); 764 /* 765 * The caller may be using a different ipif than the one passed into 766 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 767 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 768 * that `ipx_current_ipif == ipif'. 769 */ 770 ASSERT(ipx->ipx_current_ipif != NULL); 771 772 /* 773 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 774 * driver. 775 */ 776 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 777 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 778 (DB_TYPE(add_mp) == M_PCPROTO)); 779 780 if (connp != NULL) { 781 ASSERT(MUTEX_HELD(&connp->conn_lock)); 782 /* 783 * Return error if the conn has started closing. The conn 784 * could have finished cleaning up the pending mp list, 785 * If so we should not add another mp to the list negating 786 * the cleanup. 787 */ 788 if (connp->conn_state_flags & CONN_CLOSING) 789 return (B_FALSE); 790 } 791 mutex_enter(&ipx->ipx_lock); 792 ipx->ipx_pending_ipif = ipif; 793 /* 794 * Note down the queue in b_queue. This will be returned by 795 * ipsq_pending_mp_get. Caller will then use these values to restart 796 * the processing 797 */ 798 add_mp->b_next = NULL; 799 add_mp->b_queue = q; 800 ipx->ipx_pending_mp = add_mp; 801 ipx->ipx_waitfor = waitfor; 802 mutex_exit(&ipx->ipx_lock); 803 804 if (connp != NULL) 805 connp->conn_oper_pending_ill = ipif->ipif_ill; 806 807 return (B_TRUE); 808 } 809 810 /* 811 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 812 * queued in the list. 813 */ 814 mblk_t * 815 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 816 { 817 mblk_t *curr = NULL; 818 ipxop_t *ipx = ipsq->ipsq_xop; 819 820 *connpp = NULL; 821 mutex_enter(&ipx->ipx_lock); 822 if (ipx->ipx_pending_mp == NULL) { 823 mutex_exit(&ipx->ipx_lock); 824 return (NULL); 825 } 826 827 /* There can be only 1 such excl message */ 828 curr = ipx->ipx_pending_mp; 829 ASSERT(curr->b_next == NULL); 830 ipx->ipx_pending_ipif = NULL; 831 ipx->ipx_pending_mp = NULL; 832 ipx->ipx_waitfor = 0; 833 mutex_exit(&ipx->ipx_lock); 834 835 if (CONN_Q(curr->b_queue)) { 836 /* 837 * This mp did a refhold on the conn, at the start of the ioctl. 838 * So we can safely return a pointer to the conn to the caller. 839 */ 840 *connpp = Q_TO_CONN(curr->b_queue); 841 } else { 842 *connpp = NULL; 843 } 844 curr->b_next = NULL; 845 curr->b_prev = NULL; 846 return (curr); 847 } 848 849 /* 850 * Cleanup the ioctl mp queued in ipx_pending_mp 851 * - Called in the ill_delete path 852 * - Called in the M_ERROR or M_HANGUP path on the ill. 853 * - Called in the conn close path. 854 * 855 * Returns success on finding the pending mblk associated with the ioctl or 856 * exclusive operation in progress, failure otherwise. 857 */ 858 boolean_t 859 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 860 { 861 mblk_t *mp; 862 ipxop_t *ipx; 863 queue_t *q; 864 ipif_t *ipif; 865 int cmd; 866 867 ASSERT(IAM_WRITER_ILL(ill)); 868 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 869 870 mutex_enter(&ipx->ipx_lock); 871 mp = ipx->ipx_pending_mp; 872 if (connp != NULL) { 873 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 874 /* 875 * Nothing to clean since the conn that is closing 876 * does not have a matching pending mblk in 877 * ipx_pending_mp. 878 */ 879 mutex_exit(&ipx->ipx_lock); 880 return (B_FALSE); 881 } 882 } else { 883 /* 884 * A non-zero ill_error signifies we are called in the 885 * M_ERROR or M_HANGUP path and we need to unconditionally 886 * abort any current ioctl and do the corresponding cleanup. 887 * A zero ill_error means we are in the ill_delete path and 888 * we do the cleanup only if there is a pending mp. 889 */ 890 if (mp == NULL && ill->ill_error == 0) { 891 mutex_exit(&ipx->ipx_lock); 892 return (B_FALSE); 893 } 894 } 895 896 /* Now remove from the ipx_pending_mp */ 897 ipx->ipx_pending_mp = NULL; 898 ipif = ipx->ipx_pending_ipif; 899 ipx->ipx_pending_ipif = NULL; 900 ipx->ipx_waitfor = 0; 901 ipx->ipx_current_ipif = NULL; 902 cmd = ipx->ipx_current_ioctl; 903 ipx->ipx_current_ioctl = 0; 904 ipx->ipx_current_done = B_TRUE; 905 mutex_exit(&ipx->ipx_lock); 906 907 if (mp == NULL) 908 return (B_FALSE); 909 910 q = mp->b_queue; 911 mp->b_next = NULL; 912 mp->b_prev = NULL; 913 mp->b_queue = NULL; 914 915 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 916 DTRACE_PROBE4(ipif__ioctl, 917 char *, "ipsq_pending_mp_cleanup", 918 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 919 ipif_t *, ipif); 920 if (connp == NULL) { 921 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 922 } else { 923 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 924 mutex_enter(&ipif->ipif_ill->ill_lock); 925 ipif->ipif_state_flags &= ~IPIF_CHANGING; 926 mutex_exit(&ipif->ipif_ill->ill_lock); 927 } 928 } else { 929 inet_freemsg(mp); 930 } 931 return (B_TRUE); 932 } 933 934 /* 935 * Called in the conn close path and ill delete path 936 */ 937 static void 938 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 939 { 940 ipsq_t *ipsq; 941 mblk_t *prev; 942 mblk_t *curr; 943 mblk_t *next; 944 queue_t *wq, *rq = NULL; 945 mblk_t *tmp_list = NULL; 946 947 ASSERT(IAM_WRITER_ILL(ill)); 948 if (connp != NULL) 949 wq = CONNP_TO_WQ(connp); 950 else 951 wq = ill->ill_wq; 952 953 /* 954 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 955 * against this here. 956 */ 957 if (wq != NULL) 958 rq = RD(wq); 959 960 ipsq = ill->ill_phyint->phyint_ipsq; 961 /* 962 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 963 * In the case of ioctl from a conn, there can be only 1 mp 964 * queued on the ipsq. If an ill is being unplumbed flush all 965 * the messages. 966 */ 967 mutex_enter(&ipsq->ipsq_lock); 968 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 969 curr = next) { 970 next = curr->b_next; 971 if (connp == NULL || 972 (curr->b_queue == wq || curr->b_queue == rq)) { 973 /* Unlink the mblk from the pending mp list */ 974 if (prev != NULL) { 975 prev->b_next = curr->b_next; 976 } else { 977 ASSERT(ipsq->ipsq_xopq_mphead == curr); 978 ipsq->ipsq_xopq_mphead = curr->b_next; 979 } 980 if (ipsq->ipsq_xopq_mptail == curr) 981 ipsq->ipsq_xopq_mptail = prev; 982 /* 983 * Create a temporary list and release the ipsq lock 984 * New elements are added to the head of the tmp_list 985 */ 986 curr->b_next = tmp_list; 987 tmp_list = curr; 988 } else { 989 prev = curr; 990 } 991 } 992 mutex_exit(&ipsq->ipsq_lock); 993 994 while (tmp_list != NULL) { 995 curr = tmp_list; 996 tmp_list = curr->b_next; 997 curr->b_next = NULL; 998 curr->b_prev = NULL; 999 wq = curr->b_queue; 1000 curr->b_queue = NULL; 1001 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1002 DTRACE_PROBE4(ipif__ioctl, 1003 char *, "ipsq_xopq_mp_cleanup", 1004 int, 0, ill_t *, NULL, ipif_t *, NULL); 1005 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 1006 CONN_CLOSE : NO_COPYOUT, NULL); 1007 } else { 1008 /* 1009 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1010 * this can't be just inet_freemsg. we have to 1011 * restart it otherwise the thread will be stuck. 1012 */ 1013 inet_freemsg(curr); 1014 } 1015 } 1016 } 1017 1018 /* 1019 * This conn has started closing. Cleanup any pending ioctl from this conn. 1020 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 1021 */ 1022 void 1023 conn_ioctl_cleanup(conn_t *connp) 1024 { 1025 ipsq_t *ipsq; 1026 ill_t *ill; 1027 boolean_t refheld; 1028 1029 /* 1030 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1031 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1032 * started the mp could be present in ipx_pending_mp. Note that if 1033 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1034 * not yet queued anywhere. In this case, the conn close code will wait 1035 * until the conn_ref is dropped. If the stream was a tcp stream, then 1036 * tcp_close will wait first until all ioctls have completed for this 1037 * conn. 1038 */ 1039 mutex_enter(&connp->conn_lock); 1040 ill = connp->conn_oper_pending_ill; 1041 if (ill == NULL) { 1042 mutex_exit(&connp->conn_lock); 1043 return; 1044 } 1045 1046 /* 1047 * We may not be able to refhold the ill if the ill/ipif 1048 * is changing. But we need to make sure that the ill will 1049 * not vanish. So we just bump up the ill_waiter count. 1050 */ 1051 refheld = ill_waiter_inc(ill); 1052 mutex_exit(&connp->conn_lock); 1053 if (refheld) { 1054 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1055 ill_waiter_dcr(ill); 1056 /* 1057 * Check whether this ioctl has started and is 1058 * pending. If it is not found there then check 1059 * whether this ioctl has not even started and is in 1060 * the ipsq_xopq list. 1061 */ 1062 if (!ipsq_pending_mp_cleanup(ill, connp)) 1063 ipsq_xopq_mp_cleanup(ill, connp); 1064 ipsq = ill->ill_phyint->phyint_ipsq; 1065 ipsq_exit(ipsq); 1066 return; 1067 } 1068 } 1069 1070 /* 1071 * The ill is also closing and we could not bump up the 1072 * ill_waiter_count or we could not enter the ipsq. Leave 1073 * the cleanup to ill_delete 1074 */ 1075 mutex_enter(&connp->conn_lock); 1076 while (connp->conn_oper_pending_ill != NULL) 1077 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1078 mutex_exit(&connp->conn_lock); 1079 if (refheld) 1080 ill_waiter_dcr(ill); 1081 } 1082 1083 /* 1084 * ipcl_walk function for cleaning up conn_*_ill fields. 1085 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1086 * conn_bound_if in place. We prefer dropping 1087 * packets instead of sending them out the wrong interface, or accepting 1088 * packets from the wrong ifindex. 1089 */ 1090 static void 1091 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1092 { 1093 ill_t *ill = (ill_t *)arg; 1094 1095 mutex_enter(&connp->conn_lock); 1096 if (connp->conn_dhcpinit_ill == ill) { 1097 connp->conn_dhcpinit_ill = NULL; 1098 ASSERT(ill->ill_dhcpinit != 0); 1099 atomic_dec_32(&ill->ill_dhcpinit); 1100 ill_set_inputfn(ill); 1101 } 1102 mutex_exit(&connp->conn_lock); 1103 } 1104 1105 static int 1106 ill_down_ipifs_tail(ill_t *ill) 1107 { 1108 ipif_t *ipif; 1109 int err; 1110 1111 ASSERT(IAM_WRITER_ILL(ill)); 1112 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1113 ipif_non_duplicate(ipif); 1114 /* 1115 * ipif_down_tail will call arp_ll_down on the last ipif 1116 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1117 */ 1118 if ((err = ipif_down_tail(ipif)) != 0) 1119 return (err); 1120 } 1121 return (0); 1122 } 1123 1124 /* ARGSUSED */ 1125 void 1126 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1127 { 1128 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1129 (void) ill_down_ipifs_tail(q->q_ptr); 1130 freemsg(mp); 1131 ipsq_current_finish(ipsq); 1132 } 1133 1134 /* 1135 * ill_down_start is called when we want to down this ill and bring it up again 1136 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1137 * all interfaces, but don't tear down any plumbing. 1138 */ 1139 boolean_t 1140 ill_down_start(queue_t *q, mblk_t *mp) 1141 { 1142 ill_t *ill = q->q_ptr; 1143 ipif_t *ipif; 1144 1145 ASSERT(IAM_WRITER_ILL(ill)); 1146 /* 1147 * It is possible that some ioctl is already in progress while we 1148 * received the M_ERROR / M_HANGUP in which case, we need to abort 1149 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1150 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1151 * the in progress ioctl from ever completing. 1152 * 1153 * The thread that started the ioctl (if any) must have returned, 1154 * since we are now executing as writer. After the 2 calls below, 1155 * the state of the ipsq and the ill would reflect no trace of any 1156 * pending operation. Subsequently if there is any response to the 1157 * original ioctl from the driver, it would be discarded as an 1158 * unsolicited message from the driver. 1159 */ 1160 (void) ipsq_pending_mp_cleanup(ill, NULL); 1161 ill_dlpi_clear_deferred(ill); 1162 1163 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1164 (void) ipif_down(ipif, NULL, NULL); 1165 1166 ill_down(ill); 1167 1168 /* 1169 * Walk all CONNs that can have a reference on an ire or nce for this 1170 * ill (we actually walk all that now have stale references). 1171 */ 1172 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1173 1174 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1175 if (ill->ill_isv6) 1176 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1177 1178 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1179 1180 /* 1181 * Atomically test and add the pending mp if references are active. 1182 */ 1183 mutex_enter(&ill->ill_lock); 1184 if (!ill_is_quiescent(ill)) { 1185 /* call cannot fail since `conn_t *' argument is NULL */ 1186 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1187 mp, ILL_DOWN); 1188 mutex_exit(&ill->ill_lock); 1189 return (B_FALSE); 1190 } 1191 mutex_exit(&ill->ill_lock); 1192 return (B_TRUE); 1193 } 1194 1195 static void 1196 ill_down(ill_t *ill) 1197 { 1198 mblk_t *mp; 1199 ip_stack_t *ipst = ill->ill_ipst; 1200 1201 /* 1202 * Blow off any IREs dependent on this ILL. 1203 * The caller needs to handle conn_ixa_cleanup 1204 */ 1205 ill_delete_ires(ill); 1206 1207 ire_walk_ill(0, 0, ill_downi, ill, ill); 1208 1209 /* Remove any conn_*_ill depending on this ill */ 1210 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1211 1212 /* 1213 * Free state for additional IREs. 1214 */ 1215 mutex_enter(&ill->ill_saved_ire_lock); 1216 mp = ill->ill_saved_ire_mp; 1217 ill->ill_saved_ire_mp = NULL; 1218 ill->ill_saved_ire_cnt = 0; 1219 mutex_exit(&ill->ill_saved_ire_lock); 1220 freemsg(mp); 1221 } 1222 1223 /* 1224 * ire_walk routine used to delete every IRE that depends on 1225 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1226 * 1227 * Note: since the routes added by the kernel are deleted separately, 1228 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1229 * 1230 * We also remove references on ire_nce_cache entries that refer to the ill. 1231 */ 1232 void 1233 ill_downi(ire_t *ire, char *ill_arg) 1234 { 1235 ill_t *ill = (ill_t *)ill_arg; 1236 nce_t *nce; 1237 1238 mutex_enter(&ire->ire_lock); 1239 nce = ire->ire_nce_cache; 1240 if (nce != NULL && nce->nce_ill == ill) 1241 ire->ire_nce_cache = NULL; 1242 else 1243 nce = NULL; 1244 mutex_exit(&ire->ire_lock); 1245 if (nce != NULL) 1246 nce_refrele(nce); 1247 if (ire->ire_ill == ill) { 1248 /* 1249 * The existing interface binding for ire must be 1250 * deleted before trying to bind the route to another 1251 * interface. However, since we are using the contents of the 1252 * ire after ire_delete, the caller has to ensure that 1253 * CONDEMNED (deleted) ire's are not removed from the list 1254 * when ire_delete() returns. Currently ill_downi() is 1255 * only called as part of ire_walk*() routines, so that 1256 * the irb_refhold() done by ire_walk*() will ensure that 1257 * ire_delete() does not lead to ire_inactive(). 1258 */ 1259 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1260 ire_delete(ire); 1261 if (ire->ire_unbound) 1262 ire_rebind(ire); 1263 } 1264 } 1265 1266 /* Remove IRE_IF_CLONE on this ill */ 1267 void 1268 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1269 { 1270 ill_t *ill = (ill_t *)ill_arg; 1271 1272 ASSERT(ire->ire_type & IRE_IF_CLONE); 1273 if (ire->ire_ill == ill) 1274 ire_delete(ire); 1275 } 1276 1277 /* Consume an M_IOCACK of the fastpath probe. */ 1278 void 1279 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1280 { 1281 mblk_t *mp1 = mp; 1282 1283 /* 1284 * If this was the first attempt turn on the fastpath probing. 1285 */ 1286 mutex_enter(&ill->ill_lock); 1287 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1288 ill->ill_dlpi_fastpath_state = IDS_OK; 1289 mutex_exit(&ill->ill_lock); 1290 1291 /* Free the M_IOCACK mblk, hold on to the data */ 1292 mp = mp->b_cont; 1293 freeb(mp1); 1294 if (mp == NULL) 1295 return; 1296 if (mp->b_cont != NULL) 1297 nce_fastpath_update(ill, mp); 1298 else 1299 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1300 freemsg(mp); 1301 } 1302 1303 /* 1304 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1305 * The data portion of the request is a dl_unitdata_req_t template for 1306 * what we would send downstream in the absence of a fastpath confirmation. 1307 */ 1308 int 1309 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1310 { 1311 struct iocblk *ioc; 1312 mblk_t *mp; 1313 1314 if (dlur_mp == NULL) 1315 return (EINVAL); 1316 1317 mutex_enter(&ill->ill_lock); 1318 switch (ill->ill_dlpi_fastpath_state) { 1319 case IDS_FAILED: 1320 /* 1321 * Driver NAKed the first fastpath ioctl - assume it doesn't 1322 * support it. 1323 */ 1324 mutex_exit(&ill->ill_lock); 1325 return (ENOTSUP); 1326 case IDS_UNKNOWN: 1327 /* This is the first probe */ 1328 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1329 break; 1330 default: 1331 break; 1332 } 1333 mutex_exit(&ill->ill_lock); 1334 1335 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1336 return (EAGAIN); 1337 1338 mp->b_cont = copyb(dlur_mp); 1339 if (mp->b_cont == NULL) { 1340 freeb(mp); 1341 return (EAGAIN); 1342 } 1343 1344 ioc = (struct iocblk *)mp->b_rptr; 1345 ioc->ioc_count = msgdsize(mp->b_cont); 1346 1347 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1348 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1349 putnext(ill->ill_wq, mp); 1350 return (0); 1351 } 1352 1353 void 1354 ill_capability_probe(ill_t *ill) 1355 { 1356 mblk_t *mp; 1357 1358 ASSERT(IAM_WRITER_ILL(ill)); 1359 1360 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1361 ill->ill_dlpi_capab_state != IDCS_FAILED) 1362 return; 1363 1364 /* 1365 * We are starting a new cycle of capability negotiation. 1366 * Free up the capab reset messages of any previous incarnation. 1367 * We will do a fresh allocation when we get the response to our probe 1368 */ 1369 if (ill->ill_capab_reset_mp != NULL) { 1370 freemsg(ill->ill_capab_reset_mp); 1371 ill->ill_capab_reset_mp = NULL; 1372 } 1373 1374 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1375 1376 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1377 if (mp == NULL) 1378 return; 1379 1380 ill_capability_send(ill, mp); 1381 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1382 } 1383 1384 void 1385 ill_capability_reset(ill_t *ill, boolean_t reneg) 1386 { 1387 ASSERT(IAM_WRITER_ILL(ill)); 1388 1389 if (ill->ill_dlpi_capab_state != IDCS_OK) 1390 return; 1391 1392 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1393 1394 ill_capability_send(ill, ill->ill_capab_reset_mp); 1395 ill->ill_capab_reset_mp = NULL; 1396 /* 1397 * We turn off all capabilities except those pertaining to 1398 * direct function call capabilities viz. ILL_CAPAB_DLD* 1399 * which will be turned off by the corresponding reset functions. 1400 */ 1401 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1402 } 1403 1404 static void 1405 ill_capability_reset_alloc(ill_t *ill) 1406 { 1407 mblk_t *mp; 1408 size_t size = 0; 1409 int err; 1410 dl_capability_req_t *capb; 1411 1412 ASSERT(IAM_WRITER_ILL(ill)); 1413 ASSERT(ill->ill_capab_reset_mp == NULL); 1414 1415 if (ILL_HCKSUM_CAPABLE(ill)) { 1416 size += sizeof (dl_capability_sub_t) + 1417 sizeof (dl_capab_hcksum_t); 1418 } 1419 1420 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1421 size += sizeof (dl_capability_sub_t) + 1422 sizeof (dl_capab_zerocopy_t); 1423 } 1424 1425 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1426 size += sizeof (dl_capability_sub_t) + 1427 sizeof (dl_capab_dld_t); 1428 } 1429 1430 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1431 STR_NOSIG, &err); 1432 1433 mp->b_datap->db_type = M_PROTO; 1434 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1435 1436 capb = (dl_capability_req_t *)mp->b_rptr; 1437 capb->dl_primitive = DL_CAPABILITY_REQ; 1438 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1439 capb->dl_sub_length = size; 1440 1441 mp->b_wptr += sizeof (dl_capability_req_t); 1442 1443 /* 1444 * Each handler fills in the corresponding dl_capability_sub_t 1445 * inside the mblk, 1446 */ 1447 ill_capability_hcksum_reset_fill(ill, mp); 1448 ill_capability_zerocopy_reset_fill(ill, mp); 1449 ill_capability_dld_reset_fill(ill, mp); 1450 1451 ill->ill_capab_reset_mp = mp; 1452 } 1453 1454 static void 1455 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1456 { 1457 dl_capab_id_t *id_ic; 1458 uint_t sub_dl_cap = outers->dl_cap; 1459 dl_capability_sub_t *inners; 1460 uint8_t *capend; 1461 1462 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1463 1464 /* 1465 * Note: range checks here are not absolutely sufficient to 1466 * make us robust against malformed messages sent by drivers; 1467 * this is in keeping with the rest of IP's dlpi handling. 1468 * (Remember, it's coming from something else in the kernel 1469 * address space) 1470 */ 1471 1472 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1473 if (capend > mp->b_wptr) { 1474 cmn_err(CE_WARN, "ill_capability_id_ack: " 1475 "malformed sub-capability too long for mblk"); 1476 return; 1477 } 1478 1479 id_ic = (dl_capab_id_t *)(outers + 1); 1480 1481 inners = &id_ic->id_subcap; 1482 if (outers->dl_length < sizeof (*id_ic) || 1483 inners->dl_length > (outers->dl_length - sizeof (*inners))) { 1484 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1485 "encapsulated capab type %d too long for mblk", 1486 inners->dl_cap); 1487 return; 1488 } 1489 1490 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1491 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1492 "isn't as expected; pass-thru module(s) detected, " 1493 "discarding capability\n", inners->dl_cap)); 1494 return; 1495 } 1496 1497 /* Process the encapsulated sub-capability */ 1498 ill_capability_dispatch(ill, mp, inners); 1499 } 1500 1501 static void 1502 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1503 { 1504 dl_capability_sub_t *dl_subcap; 1505 1506 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1507 return; 1508 1509 /* 1510 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1511 * initialized below since it is not used by DLD. 1512 */ 1513 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1514 dl_subcap->dl_cap = DL_CAPAB_DLD; 1515 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1516 1517 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1518 } 1519 1520 static void 1521 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1522 { 1523 /* 1524 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1525 * is only to get the VRRP capability. 1526 * 1527 * Note that we cannot check ill_ipif_up_count here since 1528 * ill_ipif_up_count is only incremented when the resolver is setup. 1529 * That is done asynchronously, and can race with this function. 1530 */ 1531 if (!ill->ill_dl_up) { 1532 if (subp->dl_cap == DL_CAPAB_VRRP) 1533 ill_capability_vrrp_ack(ill, mp, subp); 1534 return; 1535 } 1536 1537 switch (subp->dl_cap) { 1538 case DL_CAPAB_HCKSUM: 1539 ill_capability_hcksum_ack(ill, mp, subp); 1540 break; 1541 case DL_CAPAB_ZEROCOPY: 1542 ill_capability_zerocopy_ack(ill, mp, subp); 1543 break; 1544 case DL_CAPAB_DLD: 1545 ill_capability_dld_ack(ill, mp, subp); 1546 break; 1547 case DL_CAPAB_VRRP: 1548 break; 1549 default: 1550 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1551 subp->dl_cap)); 1552 } 1553 } 1554 1555 /* 1556 * Process the vrrp capability received from a DLS Provider. isub must point 1557 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1558 */ 1559 static void 1560 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1561 { 1562 dl_capab_vrrp_t *vrrp; 1563 uint_t sub_dl_cap = isub->dl_cap; 1564 uint8_t *capend; 1565 1566 ASSERT(IAM_WRITER_ILL(ill)); 1567 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1568 1569 /* 1570 * Note: range checks here are not absolutely sufficient to 1571 * make us robust against malformed messages sent by drivers; 1572 * this is in keeping with the rest of IP's dlpi handling. 1573 * (Remember, it's coming from something else in the kernel 1574 * address space) 1575 */ 1576 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1577 if (capend > mp->b_wptr) { 1578 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1579 "malformed sub-capability too long for mblk"); 1580 return; 1581 } 1582 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1583 1584 /* 1585 * Compare the IP address family and set ILLF_VRRP for the right ill. 1586 */ 1587 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1588 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1589 ill->ill_flags |= ILLF_VRRP; 1590 } 1591 } 1592 1593 /* 1594 * Process a hardware checksum offload capability negotiation ack received 1595 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1596 * of a DL_CAPABILITY_ACK message. 1597 */ 1598 static void 1599 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1600 { 1601 dl_capability_req_t *ocap; 1602 dl_capab_hcksum_t *ihck, *ohck; 1603 ill_hcksum_capab_t **ill_hcksum; 1604 mblk_t *nmp = NULL; 1605 uint_t sub_dl_cap = isub->dl_cap; 1606 uint8_t *capend; 1607 1608 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1609 1610 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1611 1612 /* 1613 * Note: range checks here are not absolutely sufficient to 1614 * make us robust against malformed messages sent by drivers; 1615 * this is in keeping with the rest of IP's dlpi handling. 1616 * (Remember, it's coming from something else in the kernel 1617 * address space) 1618 */ 1619 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1620 if (capend > mp->b_wptr) { 1621 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1622 "malformed sub-capability too long for mblk"); 1623 return; 1624 } 1625 1626 /* 1627 * There are two types of acks we process here: 1628 * 1. acks in reply to a (first form) generic capability req 1629 * (no ENABLE flag set) 1630 * 2. acks in reply to a ENABLE capability req. 1631 * (ENABLE flag set) 1632 */ 1633 ihck = (dl_capab_hcksum_t *)(isub + 1); 1634 1635 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1636 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1637 "unsupported hardware checksum " 1638 "sub-capability (version %d, expected %d)", 1639 ihck->hcksum_version, HCKSUM_VERSION_1); 1640 return; 1641 } 1642 1643 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1644 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1645 "checksum capability isn't as expected; pass-thru " 1646 "module(s) detected, discarding capability\n")); 1647 return; 1648 } 1649 1650 #define CURR_HCKSUM_CAPAB \ 1651 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1652 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1653 1654 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1655 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1656 /* do ENABLE processing */ 1657 if (*ill_hcksum == NULL) { 1658 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1659 KM_NOSLEEP); 1660 1661 if (*ill_hcksum == NULL) { 1662 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1663 "could not enable hcksum version %d " 1664 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1665 ill->ill_name); 1666 return; 1667 } 1668 } 1669 1670 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1671 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1672 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1673 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1674 "has enabled hardware checksumming\n ", 1675 ill->ill_name)); 1676 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1677 /* 1678 * Enabling hardware checksum offload 1679 * Currently IP supports {TCP,UDP}/IPv4 1680 * partial and full cksum offload and 1681 * IPv4 header checksum offload. 1682 * Allocate new mblk which will 1683 * contain a new capability request 1684 * to enable hardware checksum offload. 1685 */ 1686 uint_t size; 1687 uchar_t *rptr; 1688 1689 size = sizeof (dl_capability_req_t) + 1690 sizeof (dl_capability_sub_t) + isub->dl_length; 1691 1692 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1693 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1694 "could not enable hardware cksum for %s (ENOMEM)\n", 1695 ill->ill_name); 1696 return; 1697 } 1698 1699 rptr = nmp->b_rptr; 1700 /* initialize dl_capability_req_t */ 1701 ocap = (dl_capability_req_t *)nmp->b_rptr; 1702 ocap->dl_sub_offset = 1703 sizeof (dl_capability_req_t); 1704 ocap->dl_sub_length = 1705 sizeof (dl_capability_sub_t) + 1706 isub->dl_length; 1707 nmp->b_rptr += sizeof (dl_capability_req_t); 1708 1709 /* initialize dl_capability_sub_t */ 1710 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1711 nmp->b_rptr += sizeof (*isub); 1712 1713 /* initialize dl_capab_hcksum_t */ 1714 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1715 bcopy(ihck, ohck, sizeof (*ihck)); 1716 1717 nmp->b_rptr = rptr; 1718 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1719 1720 /* Set ENABLE flag */ 1721 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1722 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1723 1724 /* 1725 * nmp points to a DL_CAPABILITY_REQ message to enable 1726 * hardware checksum acceleration. 1727 */ 1728 ill_capability_send(ill, nmp); 1729 } else { 1730 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1731 "advertised %x hardware checksum capability flags\n", 1732 ill->ill_name, ihck->hcksum_txflags)); 1733 } 1734 } 1735 1736 static void 1737 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1738 { 1739 dl_capab_hcksum_t *hck_subcap; 1740 dl_capability_sub_t *dl_subcap; 1741 1742 if (!ILL_HCKSUM_CAPABLE(ill)) 1743 return; 1744 1745 ASSERT(ill->ill_hcksum_capab != NULL); 1746 1747 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1748 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1749 dl_subcap->dl_length = sizeof (*hck_subcap); 1750 1751 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1752 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1753 hck_subcap->hcksum_txflags = 0; 1754 1755 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1756 } 1757 1758 static void 1759 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1760 { 1761 mblk_t *nmp = NULL; 1762 dl_capability_req_t *oc; 1763 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1764 ill_zerocopy_capab_t **ill_zerocopy_capab; 1765 uint_t sub_dl_cap = isub->dl_cap; 1766 uint8_t *capend; 1767 1768 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1769 1770 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1771 1772 /* 1773 * Note: range checks here are not absolutely sufficient to 1774 * make us robust against malformed messages sent by drivers; 1775 * this is in keeping with the rest of IP's dlpi handling. 1776 * (Remember, it's coming from something else in the kernel 1777 * address space) 1778 */ 1779 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1780 if (capend > mp->b_wptr) { 1781 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1782 "malformed sub-capability too long for mblk"); 1783 return; 1784 } 1785 1786 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1787 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1788 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1789 "unsupported ZEROCOPY sub-capability (version %d, " 1790 "expected %d)", zc_ic->zerocopy_version, 1791 ZEROCOPY_VERSION_1); 1792 return; 1793 } 1794 1795 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1796 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1797 "capability isn't as expected; pass-thru module(s) " 1798 "detected, discarding capability\n")); 1799 return; 1800 } 1801 1802 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1803 if (*ill_zerocopy_capab == NULL) { 1804 *ill_zerocopy_capab = 1805 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1806 KM_NOSLEEP); 1807 1808 if (*ill_zerocopy_capab == NULL) { 1809 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1810 "could not enable Zero-copy version %d " 1811 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1812 ill->ill_name); 1813 return; 1814 } 1815 } 1816 1817 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1818 "supports Zero-copy version %d\n", ill->ill_name, 1819 ZEROCOPY_VERSION_1)); 1820 1821 (*ill_zerocopy_capab)->ill_zerocopy_version = 1822 zc_ic->zerocopy_version; 1823 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1824 zc_ic->zerocopy_flags; 1825 1826 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1827 } else { 1828 uint_t size; 1829 uchar_t *rptr; 1830 1831 size = sizeof (dl_capability_req_t) + 1832 sizeof (dl_capability_sub_t) + 1833 sizeof (dl_capab_zerocopy_t); 1834 1835 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1836 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1837 "could not enable zerocopy for %s (ENOMEM)\n", 1838 ill->ill_name); 1839 return; 1840 } 1841 1842 rptr = nmp->b_rptr; 1843 /* initialize dl_capability_req_t */ 1844 oc = (dl_capability_req_t *)rptr; 1845 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1846 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1847 sizeof (dl_capab_zerocopy_t); 1848 rptr += sizeof (dl_capability_req_t); 1849 1850 /* initialize dl_capability_sub_t */ 1851 bcopy(isub, rptr, sizeof (*isub)); 1852 rptr += sizeof (*isub); 1853 1854 /* initialize dl_capab_zerocopy_t */ 1855 zc_oc = (dl_capab_zerocopy_t *)rptr; 1856 *zc_oc = *zc_ic; 1857 1858 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1859 "to enable zero-copy version %d\n", ill->ill_name, 1860 ZEROCOPY_VERSION_1)); 1861 1862 /* set VMSAFE_MEM flag */ 1863 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1864 1865 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1866 ill_capability_send(ill, nmp); 1867 } 1868 } 1869 1870 static void 1871 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1872 { 1873 dl_capab_zerocopy_t *zerocopy_subcap; 1874 dl_capability_sub_t *dl_subcap; 1875 1876 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1877 return; 1878 1879 ASSERT(ill->ill_zerocopy_capab != NULL); 1880 1881 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1882 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1883 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1884 1885 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1886 zerocopy_subcap->zerocopy_version = 1887 ill->ill_zerocopy_capab->ill_zerocopy_version; 1888 zerocopy_subcap->zerocopy_flags = 0; 1889 1890 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1891 } 1892 1893 /* 1894 * DLD capability 1895 * Refer to dld.h for more information regarding the purpose and usage 1896 * of this capability. 1897 */ 1898 static void 1899 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1900 { 1901 dl_capab_dld_t *dld_ic, dld; 1902 uint_t sub_dl_cap = isub->dl_cap; 1903 uint8_t *capend; 1904 ill_dld_capab_t *idc; 1905 1906 ASSERT(IAM_WRITER_ILL(ill)); 1907 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1908 1909 /* 1910 * Note: range checks here are not absolutely sufficient to 1911 * make us robust against malformed messages sent by drivers; 1912 * this is in keeping with the rest of IP's dlpi handling. 1913 * (Remember, it's coming from something else in the kernel 1914 * address space) 1915 */ 1916 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1917 if (capend > mp->b_wptr) { 1918 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1919 "malformed sub-capability too long for mblk"); 1920 return; 1921 } 1922 dld_ic = (dl_capab_dld_t *)(isub + 1); 1923 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1924 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1925 "unsupported DLD sub-capability (version %d, " 1926 "expected %d)", dld_ic->dld_version, 1927 DLD_CURRENT_VERSION); 1928 return; 1929 } 1930 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1931 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1932 "capability isn't as expected; pass-thru module(s) " 1933 "detected, discarding capability\n")); 1934 return; 1935 } 1936 1937 /* 1938 * Copy locally to ensure alignment. 1939 */ 1940 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1941 1942 if ((idc = ill->ill_dld_capab) == NULL) { 1943 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1944 if (idc == NULL) { 1945 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1946 "could not enable DLD version %d " 1947 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1948 ill->ill_name); 1949 return; 1950 } 1951 ill->ill_dld_capab = idc; 1952 } 1953 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1954 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1955 ip1dbg(("ill_capability_dld_ack: interface %s " 1956 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1957 1958 ill_capability_dld_enable(ill); 1959 } 1960 1961 /* 1962 * Typically capability negotiation between IP and the driver happens via 1963 * DLPI message exchange. However GLD also offers a direct function call 1964 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1965 * But arbitrary function calls into IP or GLD are not permitted, since both 1966 * of them are protected by their own perimeter mechanism. The perimeter can 1967 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1968 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1969 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1970 * to enter the mac perimeter and then do the direct function calls into 1971 * GLD to enable squeue polling. The ring related callbacks from the mac into 1972 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1973 * protected by the mac perimeter. 1974 */ 1975 static void 1976 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1977 { 1978 ill_dld_capab_t *idc = ill->ill_dld_capab; 1979 int err; 1980 1981 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1982 DLD_ENABLE); 1983 ASSERT(err == 0); 1984 } 1985 1986 static void 1987 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1988 { 1989 ill_dld_capab_t *idc = ill->ill_dld_capab; 1990 int err; 1991 1992 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1993 DLD_DISABLE); 1994 ASSERT(err == 0); 1995 } 1996 1997 boolean_t 1998 ill_mac_perim_held(ill_t *ill) 1999 { 2000 ill_dld_capab_t *idc = ill->ill_dld_capab; 2001 2002 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 2003 DLD_QUERY)); 2004 } 2005 2006 static void 2007 ill_capability_direct_enable(ill_t *ill) 2008 { 2009 ill_dld_capab_t *idc = ill->ill_dld_capab; 2010 ill_dld_direct_t *idd = &idc->idc_direct; 2011 dld_capab_direct_t direct; 2012 int rc; 2013 2014 ASSERT(IAM_WRITER_ILL(ill)); 2015 2016 bzero(&direct, sizeof (direct)); 2017 if (ill->ill_isv6) { 2018 direct.di_rx_cf = (uintptr_t)ip_input_v6; 2019 } else { 2020 direct.di_rx_cf = (uintptr_t)ip_input; 2021 } 2022 direct.di_rx_ch = ill; 2023 2024 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2025 DLD_ENABLE); 2026 if (rc == 0) { 2027 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2028 idd->idd_tx_dh = direct.di_tx_dh; 2029 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2030 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2031 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2032 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2033 ASSERT(idd->idd_tx_cb_df != NULL); 2034 ASSERT(idd->idd_tx_fctl_df != NULL); 2035 ASSERT(idd->idd_tx_df != NULL); 2036 /* 2037 * One time registration of flow enable callback function 2038 */ 2039 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2040 ill_flow_enable, ill); 2041 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2042 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2043 } else { 2044 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2045 "capability, rc = %d\n", rc); 2046 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2047 } 2048 } 2049 2050 static void 2051 ill_capability_poll_enable(ill_t *ill) 2052 { 2053 ill_dld_capab_t *idc = ill->ill_dld_capab; 2054 dld_capab_poll_t poll; 2055 int rc; 2056 2057 ASSERT(IAM_WRITER_ILL(ill)); 2058 2059 bzero(&poll, sizeof (poll)); 2060 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2061 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2062 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2063 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2064 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2065 poll.poll_ring_ch = ill; 2066 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2067 DLD_ENABLE); 2068 if (rc == 0) { 2069 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2070 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2071 } else { 2072 ip1dbg(("warning: could not enable POLL " 2073 "capability, rc = %d\n", rc)); 2074 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2075 } 2076 } 2077 2078 /* 2079 * Enable the LSO capability. 2080 */ 2081 static void 2082 ill_capability_lso_enable(ill_t *ill) 2083 { 2084 ill_dld_capab_t *idc = ill->ill_dld_capab; 2085 dld_capab_lso_t lso; 2086 int rc; 2087 2088 ASSERT(IAM_WRITER_ILL(ill)); 2089 2090 if (ill->ill_lso_capab == NULL) { 2091 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2092 KM_NOSLEEP); 2093 if (ill->ill_lso_capab == NULL) { 2094 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2095 "could not enable LSO for %s (ENOMEM)\n", 2096 ill->ill_name); 2097 return; 2098 } 2099 } 2100 2101 bzero(&lso, sizeof (lso)); 2102 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2103 DLD_ENABLE)) == 0) { 2104 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2105 ill->ill_lso_capab->ill_lso_max_tcpv4 = lso.lso_max_tcpv4; 2106 ill->ill_lso_capab->ill_lso_max_tcpv6 = lso.lso_max_tcpv6; 2107 ill->ill_capabilities |= ILL_CAPAB_LSO; 2108 ip1dbg(("ill_capability_lso_enable: interface %s " 2109 "has enabled LSO\n ", ill->ill_name)); 2110 } else { 2111 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2112 ill->ill_lso_capab = NULL; 2113 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2114 } 2115 } 2116 2117 static void 2118 ill_capability_dld_enable(ill_t *ill) 2119 { 2120 mac_perim_handle_t mph; 2121 2122 ASSERT(IAM_WRITER_ILL(ill)); 2123 2124 ill_mac_perim_enter(ill, &mph); 2125 ill_capability_direct_enable(ill); 2126 ill_capability_poll_enable(ill); 2127 ill_capability_lso_enable(ill); 2128 ill->ill_capabilities |= ILL_CAPAB_DLD; 2129 ill_mac_perim_exit(ill, mph); 2130 } 2131 2132 static void 2133 ill_capability_dld_disable(ill_t *ill) 2134 { 2135 ill_dld_capab_t *idc; 2136 ill_dld_direct_t *idd; 2137 mac_perim_handle_t mph; 2138 2139 ASSERT(IAM_WRITER_ILL(ill)); 2140 2141 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2142 return; 2143 2144 ill_mac_perim_enter(ill, &mph); 2145 2146 idc = ill->ill_dld_capab; 2147 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2148 /* 2149 * For performance we avoid locks in the transmit data path 2150 * and don't maintain a count of the number of threads using 2151 * direct calls. Thus some threads could be using direct 2152 * transmit calls to GLD, even after the capability mechanism 2153 * turns it off. This is still safe since the handles used in 2154 * the direct calls continue to be valid until the unplumb is 2155 * completed. Remove the callback that was added (1-time) at 2156 * capab enable time. 2157 */ 2158 mutex_enter(&ill->ill_lock); 2159 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2160 mutex_exit(&ill->ill_lock); 2161 if (ill->ill_flownotify_mh != NULL) { 2162 idd = &idc->idc_direct; 2163 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2164 ill->ill_flownotify_mh); 2165 ill->ill_flownotify_mh = NULL; 2166 } 2167 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2168 NULL, DLD_DISABLE); 2169 } 2170 2171 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2172 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2173 ip_squeue_clean_all(ill); 2174 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2175 NULL, DLD_DISABLE); 2176 } 2177 2178 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2179 ASSERT(ill->ill_lso_capab != NULL); 2180 /* 2181 * Clear the capability flag for LSO but retain the 2182 * ill_lso_capab structure since it's possible that another 2183 * thread is still referring to it. The structure only gets 2184 * deallocated when we destroy the ill. 2185 */ 2186 2187 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2188 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2189 NULL, DLD_DISABLE); 2190 } 2191 2192 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2193 ill_mac_perim_exit(ill, mph); 2194 } 2195 2196 /* 2197 * Capability Negotiation protocol 2198 * 2199 * We don't wait for DLPI capability operations to finish during interface 2200 * bringup or teardown. Doing so would introduce more asynchrony and the 2201 * interface up/down operations will need multiple return and restarts. 2202 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2203 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2204 * exclusive operation won't start until the DLPI operations of the previous 2205 * exclusive operation complete. 2206 * 2207 * The capability state machine is shown below. 2208 * 2209 * state next state event, action 2210 * 2211 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2212 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2213 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2214 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2215 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2216 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2217 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2218 * ill_capability_probe. 2219 */ 2220 2221 /* 2222 * Dedicated thread started from ip_stack_init that handles capability 2223 * disable. This thread ensures the taskq dispatch does not fail by waiting 2224 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2225 * that direct calls to DLD are done in a cv_waitable context. 2226 */ 2227 void 2228 ill_taskq_dispatch(ip_stack_t *ipst) 2229 { 2230 callb_cpr_t cprinfo; 2231 char name[64]; 2232 mblk_t *mp; 2233 2234 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2235 ipst->ips_netstack->netstack_stackid); 2236 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2237 name); 2238 mutex_enter(&ipst->ips_capab_taskq_lock); 2239 2240 for (;;) { 2241 mp = ipst->ips_capab_taskq_head; 2242 while (mp != NULL) { 2243 ipst->ips_capab_taskq_head = mp->b_next; 2244 if (ipst->ips_capab_taskq_head == NULL) 2245 ipst->ips_capab_taskq_tail = NULL; 2246 mutex_exit(&ipst->ips_capab_taskq_lock); 2247 mp->b_next = NULL; 2248 2249 VERIFY(taskq_dispatch(system_taskq, 2250 ill_capability_ack_thr, mp, TQ_SLEEP) != 2251 TASKQID_INVALID); 2252 mutex_enter(&ipst->ips_capab_taskq_lock); 2253 mp = ipst->ips_capab_taskq_head; 2254 } 2255 2256 if (ipst->ips_capab_taskq_quit) 2257 break; 2258 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2259 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2260 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2261 } 2262 VERIFY(ipst->ips_capab_taskq_head == NULL); 2263 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2264 CALLB_CPR_EXIT(&cprinfo); 2265 thread_exit(); 2266 } 2267 2268 /* 2269 * Consume a new-style hardware capabilities negotiation ack. 2270 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2271 */ 2272 static void 2273 ill_capability_ack_thr(void *arg) 2274 { 2275 mblk_t *mp = arg; 2276 dl_capability_ack_t *capp; 2277 dl_capability_sub_t *subp, *endp; 2278 ill_t *ill; 2279 boolean_t reneg; 2280 2281 ill = (ill_t *)mp->b_prev; 2282 mp->b_prev = NULL; 2283 2284 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2285 2286 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2287 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2288 /* 2289 * We have received the ack for our DL_CAPAB reset request. 2290 * There isnt' anything in the message that needs processing. 2291 * All message based capabilities have been disabled, now 2292 * do the function call based capability disable. 2293 */ 2294 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2295 ill_capability_dld_disable(ill); 2296 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2297 if (reneg) 2298 ill_capability_probe(ill); 2299 goto done; 2300 } 2301 2302 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2303 ill->ill_dlpi_capab_state = IDCS_OK; 2304 2305 capp = (dl_capability_ack_t *)mp->b_rptr; 2306 2307 if (capp->dl_sub_length == 0) { 2308 /* no new-style capabilities */ 2309 goto done; 2310 } 2311 2312 /* make sure the driver supplied correct dl_sub_length */ 2313 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2314 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2315 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2316 goto done; 2317 } 2318 2319 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2320 /* 2321 * There are sub-capabilities. Process the ones we know about. 2322 * Loop until we don't have room for another sub-cap header.. 2323 */ 2324 for (subp = SC(capp, capp->dl_sub_offset), 2325 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2326 subp <= endp; 2327 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2328 2329 switch (subp->dl_cap) { 2330 case DL_CAPAB_ID_WRAPPER: 2331 ill_capability_id_ack(ill, mp, subp); 2332 break; 2333 default: 2334 ill_capability_dispatch(ill, mp, subp); 2335 break; 2336 } 2337 } 2338 #undef SC 2339 done: 2340 inet_freemsg(mp); 2341 ill_capability_done(ill); 2342 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2343 } 2344 2345 /* 2346 * This needs to be started in a taskq thread to provide a cv_waitable 2347 * context. 2348 */ 2349 void 2350 ill_capability_ack(ill_t *ill, mblk_t *mp) 2351 { 2352 ip_stack_t *ipst = ill->ill_ipst; 2353 2354 mp->b_prev = (mblk_t *)ill; 2355 ASSERT(mp->b_next == NULL); 2356 2357 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2358 TQ_NOSLEEP) != TASKQID_INVALID) 2359 return; 2360 2361 /* 2362 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2363 * which will do the dispatch using TQ_SLEEP to guarantee success. 2364 */ 2365 mutex_enter(&ipst->ips_capab_taskq_lock); 2366 if (ipst->ips_capab_taskq_head == NULL) { 2367 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2368 ipst->ips_capab_taskq_head = mp; 2369 } else { 2370 ipst->ips_capab_taskq_tail->b_next = mp; 2371 } 2372 ipst->ips_capab_taskq_tail = mp; 2373 2374 cv_signal(&ipst->ips_capab_taskq_cv); 2375 mutex_exit(&ipst->ips_capab_taskq_lock); 2376 } 2377 2378 /* 2379 * This routine is called to scan the fragmentation reassembly table for 2380 * the specified ILL for any packets that are starting to smell. 2381 * dead_interval is the maximum time in seconds that will be tolerated. It 2382 * will either be the value specified in ip_g_frag_timeout, or zero if the 2383 * ILL is shutting down and it is time to blow everything off. 2384 * 2385 * It returns the number of seconds (as a time_t) that the next frag timer 2386 * should be scheduled for, 0 meaning that the timer doesn't need to be 2387 * re-started. Note that the method of calculating next_timeout isn't 2388 * entirely accurate since time will flow between the time we grab 2389 * current_time and the time we schedule the next timeout. This isn't a 2390 * big problem since this is the timer for sending an ICMP reassembly time 2391 * exceeded messages, and it doesn't have to be exactly accurate. 2392 * 2393 * This function is 2394 * sometimes called as writer, although this is not required. 2395 */ 2396 time_t 2397 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2398 { 2399 ipfb_t *ipfb; 2400 ipfb_t *endp; 2401 ipf_t *ipf; 2402 ipf_t *ipfnext; 2403 mblk_t *mp; 2404 time_t current_time = gethrestime_sec(); 2405 time_t next_timeout = 0; 2406 uint32_t hdr_length; 2407 mblk_t *send_icmp_head; 2408 mblk_t *send_icmp_head_v6; 2409 ip_stack_t *ipst = ill->ill_ipst; 2410 ip_recv_attr_t iras; 2411 2412 bzero(&iras, sizeof (iras)); 2413 iras.ira_flags = 0; 2414 iras.ira_ill = iras.ira_rill = ill; 2415 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2416 iras.ira_rifindex = iras.ira_ruifindex; 2417 2418 ipfb = ill->ill_frag_hash_tbl; 2419 if (ipfb == NULL) 2420 return (B_FALSE); 2421 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2422 /* Walk the frag hash table. */ 2423 for (; ipfb < endp; ipfb++) { 2424 send_icmp_head = NULL; 2425 send_icmp_head_v6 = NULL; 2426 mutex_enter(&ipfb->ipfb_lock); 2427 while ((ipf = ipfb->ipfb_ipf) != 0) { 2428 time_t frag_time = current_time - ipf->ipf_timestamp; 2429 time_t frag_timeout; 2430 2431 if (frag_time < dead_interval) { 2432 /* 2433 * There are some outstanding fragments 2434 * that will timeout later. Make note of 2435 * the time so that we can reschedule the 2436 * next timeout appropriately. 2437 */ 2438 frag_timeout = dead_interval - frag_time; 2439 if (next_timeout == 0 || 2440 frag_timeout < next_timeout) { 2441 next_timeout = frag_timeout; 2442 } 2443 break; 2444 } 2445 /* Time's up. Get it out of here. */ 2446 hdr_length = ipf->ipf_nf_hdr_len; 2447 ipfnext = ipf->ipf_hash_next; 2448 if (ipfnext) 2449 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2450 *ipf->ipf_ptphn = ipfnext; 2451 mp = ipf->ipf_mp->b_cont; 2452 for (; mp; mp = mp->b_cont) { 2453 /* Extra points for neatness. */ 2454 IP_REASS_SET_START(mp, 0); 2455 IP_REASS_SET_END(mp, 0); 2456 } 2457 mp = ipf->ipf_mp->b_cont; 2458 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2459 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2460 ipfb->ipfb_count -= ipf->ipf_count; 2461 ASSERT(ipfb->ipfb_frag_pkts > 0); 2462 ipfb->ipfb_frag_pkts--; 2463 /* 2464 * We do not send any icmp message from here because 2465 * we currently are holding the ipfb_lock for this 2466 * hash chain. If we try and send any icmp messages 2467 * from here we may end up via a put back into ip 2468 * trying to get the same lock, causing a recursive 2469 * mutex panic. Instead we build a list and send all 2470 * the icmp messages after we have dropped the lock. 2471 */ 2472 if (ill->ill_isv6) { 2473 if (hdr_length != 0) { 2474 mp->b_next = send_icmp_head_v6; 2475 send_icmp_head_v6 = mp; 2476 } else { 2477 freemsg(mp); 2478 } 2479 } else { 2480 if (hdr_length != 0) { 2481 mp->b_next = send_icmp_head; 2482 send_icmp_head = mp; 2483 } else { 2484 freemsg(mp); 2485 } 2486 } 2487 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2488 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2489 freeb(ipf->ipf_mp); 2490 } 2491 mutex_exit(&ipfb->ipfb_lock); 2492 /* 2493 * Now need to send any icmp messages that we delayed from 2494 * above. 2495 */ 2496 while (send_icmp_head_v6 != NULL) { 2497 ip6_t *ip6h; 2498 2499 mp = send_icmp_head_v6; 2500 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2501 mp->b_next = NULL; 2502 ip6h = (ip6_t *)mp->b_rptr; 2503 iras.ira_flags = 0; 2504 /* 2505 * This will result in an incorrect ALL_ZONES zoneid 2506 * for multicast packets, but we 2507 * don't send ICMP errors for those in any case. 2508 */ 2509 iras.ira_zoneid = 2510 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2511 ill, ipst); 2512 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2513 icmp_time_exceeded_v6(mp, 2514 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2515 &iras); 2516 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2517 } 2518 while (send_icmp_head != NULL) { 2519 ipaddr_t dst; 2520 2521 mp = send_icmp_head; 2522 send_icmp_head = send_icmp_head->b_next; 2523 mp->b_next = NULL; 2524 2525 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2526 2527 iras.ira_flags = IRAF_IS_IPV4; 2528 /* 2529 * This will result in an incorrect ALL_ZONES zoneid 2530 * for broadcast and multicast packets, but we 2531 * don't send ICMP errors for those in any case. 2532 */ 2533 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2534 ill, ipst); 2535 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2536 icmp_time_exceeded(mp, 2537 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2538 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2539 } 2540 } 2541 /* 2542 * A non-dying ILL will use the return value to decide whether to 2543 * restart the frag timer, and for how long. 2544 */ 2545 return (next_timeout); 2546 } 2547 2548 /* 2549 * This routine is called when the approximate count of mblk memory used 2550 * for the specified ILL has exceeded max_count. 2551 */ 2552 void 2553 ill_frag_prune(ill_t *ill, uint_t max_count) 2554 { 2555 ipfb_t *ipfb; 2556 ipf_t *ipf; 2557 size_t count; 2558 clock_t now; 2559 2560 /* 2561 * If we are here within ip_min_frag_prune_time msecs remove 2562 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2563 * ill_frag_free_num_pkts. 2564 */ 2565 mutex_enter(&ill->ill_lock); 2566 now = ddi_get_lbolt(); 2567 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2568 (ip_min_frag_prune_time != 0 ? 2569 ip_min_frag_prune_time : msec_per_tick)) { 2570 2571 ill->ill_frag_free_num_pkts++; 2572 2573 } else { 2574 ill->ill_frag_free_num_pkts = 0; 2575 } 2576 ill->ill_last_frag_clean_time = now; 2577 mutex_exit(&ill->ill_lock); 2578 2579 /* 2580 * free ill_frag_free_num_pkts oldest packets from each bucket. 2581 */ 2582 if (ill->ill_frag_free_num_pkts != 0) { 2583 int ix; 2584 2585 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2586 ipfb = &ill->ill_frag_hash_tbl[ix]; 2587 mutex_enter(&ipfb->ipfb_lock); 2588 if (ipfb->ipfb_ipf != NULL) { 2589 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2590 ill->ill_frag_free_num_pkts); 2591 } 2592 mutex_exit(&ipfb->ipfb_lock); 2593 } 2594 } 2595 /* 2596 * While the reassembly list for this ILL is too big, prune a fragment 2597 * queue by age, oldest first. 2598 */ 2599 while (ill->ill_frag_count > max_count) { 2600 int ix; 2601 ipfb_t *oipfb = NULL; 2602 uint_t oldest = UINT_MAX; 2603 2604 count = 0; 2605 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2606 ipfb = &ill->ill_frag_hash_tbl[ix]; 2607 mutex_enter(&ipfb->ipfb_lock); 2608 ipf = ipfb->ipfb_ipf; 2609 if (ipf != NULL && ipf->ipf_gen < oldest) { 2610 oldest = ipf->ipf_gen; 2611 oipfb = ipfb; 2612 } 2613 count += ipfb->ipfb_count; 2614 mutex_exit(&ipfb->ipfb_lock); 2615 } 2616 if (oipfb == NULL) 2617 break; 2618 2619 if (count <= max_count) 2620 return; /* Somebody beat us to it, nothing to do */ 2621 mutex_enter(&oipfb->ipfb_lock); 2622 ipf = oipfb->ipfb_ipf; 2623 if (ipf != NULL) { 2624 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2625 } 2626 mutex_exit(&oipfb->ipfb_lock); 2627 } 2628 } 2629 2630 /* 2631 * free 'free_cnt' fragmented packets starting at ipf. 2632 */ 2633 void 2634 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2635 { 2636 size_t count; 2637 mblk_t *mp; 2638 mblk_t *tmp; 2639 ipf_t **ipfp = ipf->ipf_ptphn; 2640 2641 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2642 ASSERT(ipfp != NULL); 2643 ASSERT(ipf != NULL); 2644 2645 while (ipf != NULL && free_cnt-- > 0) { 2646 count = ipf->ipf_count; 2647 mp = ipf->ipf_mp; 2648 ipf = ipf->ipf_hash_next; 2649 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2650 IP_REASS_SET_START(tmp, 0); 2651 IP_REASS_SET_END(tmp, 0); 2652 } 2653 atomic_add_32(&ill->ill_frag_count, -count); 2654 ASSERT(ipfb->ipfb_count >= count); 2655 ipfb->ipfb_count -= count; 2656 ASSERT(ipfb->ipfb_frag_pkts > 0); 2657 ipfb->ipfb_frag_pkts--; 2658 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2659 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2660 freemsg(mp); 2661 } 2662 2663 if (ipf) 2664 ipf->ipf_ptphn = ipfp; 2665 ipfp[0] = ipf; 2666 } 2667 2668 /* 2669 * Helper function for ill_forward_set(). 2670 */ 2671 static void 2672 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2673 { 2674 ip_stack_t *ipst = ill->ill_ipst; 2675 2676 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2677 2678 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2679 (enable ? "Enabling" : "Disabling"), 2680 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2681 mutex_enter(&ill->ill_lock); 2682 if (enable) 2683 ill->ill_flags |= ILLF_ROUTER; 2684 else 2685 ill->ill_flags &= ~ILLF_ROUTER; 2686 mutex_exit(&ill->ill_lock); 2687 if (ill->ill_isv6) 2688 ill_set_nce_router_flags(ill, enable); 2689 /* Notify routing socket listeners of this change. */ 2690 if (ill->ill_ipif != NULL) 2691 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2692 } 2693 2694 /* 2695 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2696 * socket messages for each interface whose flags we change. 2697 */ 2698 int 2699 ill_forward_set(ill_t *ill, boolean_t enable) 2700 { 2701 ipmp_illgrp_t *illg; 2702 ip_stack_t *ipst = ill->ill_ipst; 2703 2704 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2705 2706 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2707 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2708 return (0); 2709 2710 if (IS_LOOPBACK(ill)) 2711 return (EINVAL); 2712 2713 if (enable && ill->ill_allowed_ips_cnt > 0) 2714 return (EPERM); 2715 2716 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2717 /* 2718 * Update all of the interfaces in the group. 2719 */ 2720 illg = ill->ill_grp; 2721 ill = list_head(&illg->ig_if); 2722 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2723 ill_forward_set_on_ill(ill, enable); 2724 2725 /* 2726 * Update the IPMP meta-interface. 2727 */ 2728 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2729 return (0); 2730 } 2731 2732 ill_forward_set_on_ill(ill, enable); 2733 return (0); 2734 } 2735 2736 /* 2737 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2738 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2739 * set or clear. 2740 */ 2741 static void 2742 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2743 { 2744 ipif_t *ipif; 2745 ncec_t *ncec; 2746 nce_t *nce; 2747 2748 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2749 /* 2750 * NOTE: we match across the illgrp because nce's for 2751 * addresses on IPMP interfaces have an nce_ill that points to 2752 * the bound underlying ill. 2753 */ 2754 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2755 if (nce != NULL) { 2756 ncec = nce->nce_common; 2757 mutex_enter(&ncec->ncec_lock); 2758 if (enable) 2759 ncec->ncec_flags |= NCE_F_ISROUTER; 2760 else 2761 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2762 mutex_exit(&ncec->ncec_lock); 2763 nce_refrele(nce); 2764 } 2765 } 2766 } 2767 2768 /* 2769 * Intializes the context structure and returns the first ill in the list 2770 * cuurently start_list and end_list can have values: 2771 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2772 * IP_V4_G_HEAD Traverse IPV4 list only. 2773 * IP_V6_G_HEAD Traverse IPV6 list only. 2774 */ 2775 2776 /* 2777 * We don't check for CONDEMNED ills here. Caller must do that if 2778 * necessary under the ill lock. 2779 */ 2780 ill_t * 2781 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2782 ip_stack_t *ipst) 2783 { 2784 ill_if_t *ifp; 2785 ill_t *ill; 2786 avl_tree_t *avl_tree; 2787 2788 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2789 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2790 2791 /* 2792 * setup the lists to search 2793 */ 2794 if (end_list != MAX_G_HEADS) { 2795 ctx->ctx_current_list = start_list; 2796 ctx->ctx_last_list = end_list; 2797 } else { 2798 ctx->ctx_last_list = MAX_G_HEADS - 1; 2799 ctx->ctx_current_list = 0; 2800 } 2801 2802 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2803 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2804 if (ifp != (ill_if_t *) 2805 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2806 avl_tree = &ifp->illif_avl_by_ppa; 2807 ill = avl_first(avl_tree); 2808 /* 2809 * ill is guaranteed to be non NULL or ifp should have 2810 * not existed. 2811 */ 2812 ASSERT(ill != NULL); 2813 return (ill); 2814 } 2815 ctx->ctx_current_list++; 2816 } 2817 2818 return (NULL); 2819 } 2820 2821 /* 2822 * returns the next ill in the list. ill_first() must have been called 2823 * before calling ill_next() or bad things will happen. 2824 */ 2825 2826 /* 2827 * We don't check for CONDEMNED ills here. Caller must do that if 2828 * necessary under the ill lock. 2829 */ 2830 ill_t * 2831 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2832 { 2833 ill_if_t *ifp; 2834 ill_t *ill; 2835 ip_stack_t *ipst = lastill->ill_ipst; 2836 2837 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2838 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2839 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2840 AVL_AFTER)) != NULL) { 2841 return (ill); 2842 } 2843 2844 /* goto next ill_ifp in the list. */ 2845 ifp = lastill->ill_ifptr->illif_next; 2846 2847 /* make sure not at end of circular list */ 2848 while (ifp == 2849 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2850 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2851 return (NULL); 2852 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2853 } 2854 2855 return (avl_first(&ifp->illif_avl_by_ppa)); 2856 } 2857 2858 /* 2859 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2860 * The final number (PPA) must not have any leading zeros. Upon success, a 2861 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2862 */ 2863 static char * 2864 ill_get_ppa_ptr(char *name) 2865 { 2866 int namelen = strlen(name); 2867 int end_ndx = namelen - 1; 2868 int ppa_ndx, i; 2869 2870 /* 2871 * Check that the first character is [a-zA-Z], and that the last 2872 * character is [0-9]. 2873 */ 2874 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2875 return (NULL); 2876 2877 /* 2878 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2879 */ 2880 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2881 if (!isdigit(name[ppa_ndx - 1])) 2882 break; 2883 2884 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2885 return (NULL); 2886 2887 /* 2888 * Check that the intermediate characters are [a-z0-9.] 2889 */ 2890 for (i = 1; i < ppa_ndx; i++) { 2891 if (!isalpha(name[i]) && !isdigit(name[i]) && 2892 name[i] != '.' && name[i] != '_') { 2893 return (NULL); 2894 } 2895 } 2896 2897 return (name + ppa_ndx); 2898 } 2899 2900 /* 2901 * use avl tree to locate the ill. 2902 */ 2903 static ill_t * 2904 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2905 { 2906 char *ppa_ptr = NULL; 2907 int len; 2908 uint_t ppa; 2909 ill_t *ill = NULL; 2910 ill_if_t *ifp; 2911 int list; 2912 2913 /* 2914 * get ppa ptr 2915 */ 2916 if (isv6) 2917 list = IP_V6_G_HEAD; 2918 else 2919 list = IP_V4_G_HEAD; 2920 2921 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2922 return (NULL); 2923 } 2924 2925 len = ppa_ptr - name + 1; 2926 2927 ppa = stoi(&ppa_ptr); 2928 2929 ifp = IP_VX_ILL_G_LIST(list, ipst); 2930 2931 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2932 /* 2933 * match is done on len - 1 as the name is not null 2934 * terminated it contains ppa in addition to the interface 2935 * name. 2936 */ 2937 if ((ifp->illif_name_len == len) && 2938 bcmp(ifp->illif_name, name, len - 1) == 0) { 2939 break; 2940 } else { 2941 ifp = ifp->illif_next; 2942 } 2943 } 2944 2945 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2946 /* 2947 * Even the interface type does not exist. 2948 */ 2949 return (NULL); 2950 } 2951 2952 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2953 if (ill != NULL) { 2954 mutex_enter(&ill->ill_lock); 2955 if (ILL_CAN_LOOKUP(ill)) { 2956 ill_refhold_locked(ill); 2957 mutex_exit(&ill->ill_lock); 2958 return (ill); 2959 } 2960 mutex_exit(&ill->ill_lock); 2961 } 2962 return (NULL); 2963 } 2964 2965 /* 2966 * comparison function for use with avl. 2967 */ 2968 static int 2969 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2970 { 2971 uint_t ppa; 2972 uint_t ill_ppa; 2973 2974 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2975 2976 ppa = *((uint_t *)ppa_ptr); 2977 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2978 /* 2979 * We want the ill with the lowest ppa to be on the 2980 * top. 2981 */ 2982 if (ill_ppa < ppa) 2983 return (1); 2984 if (ill_ppa > ppa) 2985 return (-1); 2986 return (0); 2987 } 2988 2989 /* 2990 * remove an interface type from the global list. 2991 */ 2992 static void 2993 ill_delete_interface_type(ill_if_t *interface) 2994 { 2995 ASSERT(interface != NULL); 2996 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2997 2998 avl_destroy(&interface->illif_avl_by_ppa); 2999 if (interface->illif_ppa_arena != NULL) 3000 vmem_destroy(interface->illif_ppa_arena); 3001 3002 remque(interface); 3003 3004 mi_free(interface); 3005 } 3006 3007 /* 3008 * remove ill from the global list. 3009 */ 3010 static void 3011 ill_glist_delete(ill_t *ill) 3012 { 3013 ip_stack_t *ipst; 3014 phyint_t *phyi; 3015 3016 if (ill == NULL) 3017 return; 3018 ipst = ill->ill_ipst; 3019 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3020 3021 /* 3022 * If the ill was never inserted into the AVL tree 3023 * we skip the if branch. 3024 */ 3025 if (ill->ill_ifptr != NULL) { 3026 /* 3027 * remove from AVL tree and free ppa number 3028 */ 3029 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3030 3031 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3032 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3033 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3034 } 3035 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3036 ill_delete_interface_type(ill->ill_ifptr); 3037 } 3038 3039 /* 3040 * Indicate ill is no longer in the list. 3041 */ 3042 ill->ill_ifptr = NULL; 3043 ill->ill_name_length = 0; 3044 ill->ill_name[0] = '\0'; 3045 ill->ill_ppa = UINT_MAX; 3046 } 3047 3048 /* Generate one last event for this ill. */ 3049 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3050 ill->ill_name_length); 3051 3052 ASSERT(ill->ill_phyint != NULL); 3053 phyi = ill->ill_phyint; 3054 ill->ill_phyint = NULL; 3055 3056 /* 3057 * ill_init allocates a phyint always to store the copy 3058 * of flags relevant to phyint. At that point in time, we could 3059 * not assign the name and hence phyint_illv4/v6 could not be 3060 * initialized. Later in ipif_set_values, we assign the name to 3061 * the ill, at which point in time we assign phyint_illv4/v6. 3062 * Thus we don't rely on phyint_illv6 to be initialized always. 3063 */ 3064 if (ill->ill_flags & ILLF_IPV6) 3065 phyi->phyint_illv6 = NULL; 3066 else 3067 phyi->phyint_illv4 = NULL; 3068 3069 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3070 rw_exit(&ipst->ips_ill_g_lock); 3071 return; 3072 } 3073 3074 /* 3075 * There are no ills left on this phyint; pull it out of the phyint 3076 * avl trees, and free it. 3077 */ 3078 if (phyi->phyint_ifindex > 0) { 3079 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3080 phyi); 3081 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3082 phyi); 3083 } 3084 rw_exit(&ipst->ips_ill_g_lock); 3085 3086 phyint_free(phyi); 3087 } 3088 3089 /* 3090 * allocate a ppa, if the number of plumbed interfaces of this type are 3091 * less than ill_no_arena do a linear search to find a unused ppa. 3092 * When the number goes beyond ill_no_arena switch to using an arena. 3093 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3094 * is the return value for an error condition, so allocation starts at one 3095 * and is decremented by one. 3096 */ 3097 static int 3098 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3099 { 3100 ill_t *tmp_ill; 3101 uint_t start, end; 3102 int ppa; 3103 3104 if (ifp->illif_ppa_arena == NULL && 3105 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3106 /* 3107 * Create an arena. 3108 */ 3109 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3110 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3111 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3112 /* allocate what has already been assigned */ 3113 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3114 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3115 tmp_ill, AVL_AFTER)) { 3116 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3117 1, /* size */ 3118 1, /* align/quantum */ 3119 0, /* phase */ 3120 0, /* nocross */ 3121 /* minaddr */ 3122 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3123 /* maxaddr */ 3124 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3125 VM_NOSLEEP|VM_FIRSTFIT); 3126 if (ppa == 0) { 3127 ip1dbg(("ill_alloc_ppa: ppa allocation" 3128 " failed while switching")); 3129 vmem_destroy(ifp->illif_ppa_arena); 3130 ifp->illif_ppa_arena = NULL; 3131 break; 3132 } 3133 } 3134 } 3135 3136 if (ifp->illif_ppa_arena != NULL) { 3137 if (ill->ill_ppa == UINT_MAX) { 3138 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3139 1, VM_NOSLEEP|VM_FIRSTFIT); 3140 if (ppa == 0) 3141 return (EAGAIN); 3142 ill->ill_ppa = --ppa; 3143 } else { 3144 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3145 1, /* size */ 3146 1, /* align/quantum */ 3147 0, /* phase */ 3148 0, /* nocross */ 3149 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3150 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3151 VM_NOSLEEP|VM_FIRSTFIT); 3152 /* 3153 * Most likely the allocation failed because 3154 * the requested ppa was in use. 3155 */ 3156 if (ppa == 0) 3157 return (EEXIST); 3158 } 3159 return (0); 3160 } 3161 3162 /* 3163 * No arena is in use and not enough (>ill_no_arena) interfaces have 3164 * been plumbed to create one. Do a linear search to get a unused ppa. 3165 */ 3166 if (ill->ill_ppa == UINT_MAX) { 3167 end = UINT_MAX - 1; 3168 start = 0; 3169 } else { 3170 end = start = ill->ill_ppa; 3171 } 3172 3173 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3174 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3175 if (start++ >= end) { 3176 if (ill->ill_ppa == UINT_MAX) 3177 return (EAGAIN); 3178 else 3179 return (EEXIST); 3180 } 3181 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3182 } 3183 ill->ill_ppa = start; 3184 return (0); 3185 } 3186 3187 /* 3188 * Insert ill into the list of configured ill's. Once this function completes, 3189 * the ill is globally visible and is available through lookups. More precisely 3190 * this happens after the caller drops the ill_g_lock. 3191 */ 3192 static int 3193 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3194 { 3195 ill_if_t *ill_interface; 3196 avl_index_t where = 0; 3197 int error; 3198 int name_length; 3199 int index; 3200 boolean_t check_length = B_FALSE; 3201 ip_stack_t *ipst = ill->ill_ipst; 3202 3203 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3204 3205 name_length = mi_strlen(name) + 1; 3206 3207 if (isv6) 3208 index = IP_V6_G_HEAD; 3209 else 3210 index = IP_V4_G_HEAD; 3211 3212 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3213 /* 3214 * Search for interface type based on name 3215 */ 3216 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3217 if ((ill_interface->illif_name_len == name_length) && 3218 (strcmp(ill_interface->illif_name, name) == 0)) { 3219 break; 3220 } 3221 ill_interface = ill_interface->illif_next; 3222 } 3223 3224 /* 3225 * Interface type not found, create one. 3226 */ 3227 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3228 ill_g_head_t ghead; 3229 3230 /* 3231 * allocate ill_if_t structure 3232 */ 3233 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3234 if (ill_interface == NULL) { 3235 return (ENOMEM); 3236 } 3237 3238 (void) strcpy(ill_interface->illif_name, name); 3239 ill_interface->illif_name_len = name_length; 3240 3241 avl_create(&ill_interface->illif_avl_by_ppa, 3242 ill_compare_ppa, sizeof (ill_t), 3243 offsetof(struct ill_s, ill_avl_byppa)); 3244 3245 /* 3246 * link the structure in the back to maintain order 3247 * of configuration for ifconfig output. 3248 */ 3249 ghead = ipst->ips_ill_g_heads[index]; 3250 insque(ill_interface, ghead.ill_g_list_tail); 3251 } 3252 3253 if (ill->ill_ppa == UINT_MAX) 3254 check_length = B_TRUE; 3255 3256 error = ill_alloc_ppa(ill_interface, ill); 3257 if (error != 0) { 3258 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3259 ill_delete_interface_type(ill->ill_ifptr); 3260 return (error); 3261 } 3262 3263 /* 3264 * When the ppa is choosen by the system, check that there is 3265 * enough space to insert ppa. if a specific ppa was passed in this 3266 * check is not required as the interface name passed in will have 3267 * the right ppa in it. 3268 */ 3269 if (check_length) { 3270 /* 3271 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3272 */ 3273 char buf[sizeof (uint_t) * 3]; 3274 3275 /* 3276 * convert ppa to string to calculate the amount of space 3277 * required for it in the name. 3278 */ 3279 numtos(ill->ill_ppa, buf); 3280 3281 /* Do we have enough space to insert ppa ? */ 3282 3283 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3284 /* Free ppa and interface type struct */ 3285 if (ill_interface->illif_ppa_arena != NULL) { 3286 vmem_free(ill_interface->illif_ppa_arena, 3287 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3288 } 3289 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3290 ill_delete_interface_type(ill->ill_ifptr); 3291 3292 return (EINVAL); 3293 } 3294 } 3295 3296 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3297 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3298 3299 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3300 &where); 3301 ill->ill_ifptr = ill_interface; 3302 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3303 3304 ill_phyint_reinit(ill); 3305 return (0); 3306 } 3307 3308 /* Initialize the per phyint ipsq used for serialization */ 3309 static boolean_t 3310 ipsq_init(ill_t *ill, boolean_t enter) 3311 { 3312 ipsq_t *ipsq; 3313 ipxop_t *ipx; 3314 3315 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3316 return (B_FALSE); 3317 3318 ill->ill_phyint->phyint_ipsq = ipsq; 3319 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3320 ipx->ipx_ipsq = ipsq; 3321 ipsq->ipsq_next = ipsq; 3322 ipsq->ipsq_phyint = ill->ill_phyint; 3323 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3324 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3325 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3326 if (enter) { 3327 ipx->ipx_writer = curthread; 3328 ipx->ipx_forced = B_FALSE; 3329 ipx->ipx_reentry_cnt = 1; 3330 #ifdef DEBUG 3331 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3332 #endif 3333 } 3334 return (B_TRUE); 3335 } 3336 3337 /* 3338 * Here we perform initialisation of the ill_t common to both regular 3339 * interface ILLs and the special loopback ILL created by ill_lookup_on_name. 3340 */ 3341 static int 3342 ill_init_common(ill_t *ill, queue_t *q, boolean_t isv6, boolean_t is_loopback, 3343 boolean_t ipsq_enter) 3344 { 3345 int count; 3346 uchar_t *frag_ptr; 3347 3348 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3349 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3350 ill->ill_saved_ire_cnt = 0; 3351 3352 if (is_loopback) { 3353 ill->ill_max_frag = isv6 ? ip_loopback_mtu_v6plus : 3354 ip_loopback_mtuplus; 3355 /* 3356 * No resolver here. 3357 */ 3358 ill->ill_net_type = IRE_LOOPBACK; 3359 } else { 3360 ill->ill_rq = q; 3361 ill->ill_wq = WR(q); 3362 ill->ill_ppa = UINT_MAX; 3363 } 3364 3365 ill->ill_isv6 = isv6; 3366 3367 /* 3368 * Allocate sufficient space to contain our fragment hash table and 3369 * the device name. 3370 */ 3371 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3372 if (frag_ptr == NULL) 3373 return (ENOMEM); 3374 ill->ill_frag_ptr = frag_ptr; 3375 ill->ill_frag_free_num_pkts = 0; 3376 ill->ill_last_frag_clean_time = 0; 3377 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3378 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3379 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3380 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3381 NULL, MUTEX_DEFAULT, NULL); 3382 } 3383 3384 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3385 if (ill->ill_phyint == NULL) { 3386 mi_free(frag_ptr); 3387 return (ENOMEM); 3388 } 3389 3390 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3391 if (isv6) { 3392 ill->ill_phyint->phyint_illv6 = ill; 3393 } else { 3394 ill->ill_phyint->phyint_illv4 = ill; 3395 } 3396 if (is_loopback) { 3397 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3398 } 3399 3400 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3401 3402 ill_set_inputfn(ill); 3403 3404 if (!ipsq_init(ill, ipsq_enter)) { 3405 mi_free(frag_ptr); 3406 mi_free(ill->ill_phyint); 3407 return (ENOMEM); 3408 } 3409 3410 /* Frag queue limit stuff */ 3411 ill->ill_frag_count = 0; 3412 ill->ill_ipf_gen = 0; 3413 3414 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3415 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3416 ill->ill_global_timer = INFINITY; 3417 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3418 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3419 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3420 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3421 3422 /* 3423 * Initialize IPv6 configuration variables. The IP module is always 3424 * opened as an IPv4 module. Instead tracking down the cases where 3425 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3426 * here for convenience, this has no effect until the ill is set to do 3427 * IPv6. 3428 */ 3429 ill->ill_reachable_time = ND_REACHABLE_TIME; 3430 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3431 ill->ill_max_buf = ND_MAX_Q; 3432 ill->ill_refcnt = 0; 3433 3434 return (0); 3435 } 3436 3437 /* 3438 * ill_init is called by ip_open when a device control stream is opened. 3439 * It does a few initializations, and shoots a DL_INFO_REQ message down 3440 * to the driver. The response is later picked up in ip_rput_dlpi and 3441 * used to set up default mechanisms for talking to the driver. (Always 3442 * called as writer.) 3443 * 3444 * If this function returns error, ip_open will call ip_close which in 3445 * turn will call ill_delete to clean up any memory allocated here that 3446 * is not yet freed. 3447 * 3448 * Note: ill_ipst and ill_zoneid must be set before calling ill_init. 3449 */ 3450 int 3451 ill_init(queue_t *q, ill_t *ill) 3452 { 3453 int ret; 3454 dl_info_req_t *dlir; 3455 mblk_t *info_mp; 3456 3457 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3458 BPRI_HI); 3459 if (info_mp == NULL) 3460 return (ENOMEM); 3461 3462 /* 3463 * For now pretend this is a v4 ill. We need to set phyint_ill* 3464 * at this point because of the following reason. If we can't 3465 * enter the ipsq at some point and cv_wait, the writer that 3466 * wakes us up tries to locate us using the list of all phyints 3467 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3468 * If we don't set it now, we risk a missed wakeup. 3469 */ 3470 if ((ret = ill_init_common(ill, q, B_FALSE, B_FALSE, B_TRUE)) != 0) { 3471 freemsg(info_mp); 3472 return (ret); 3473 } 3474 3475 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3476 3477 /* Send down the Info Request to the driver. */ 3478 info_mp->b_datap->db_type = M_PCPROTO; 3479 dlir = (dl_info_req_t *)info_mp->b_rptr; 3480 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3481 dlir->dl_primitive = DL_INFO_REQ; 3482 3483 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3484 3485 qprocson(q); 3486 ill_dlpi_send(ill, info_mp); 3487 3488 return (0); 3489 } 3490 3491 /* 3492 * ill_dls_info 3493 * creates datalink socket info from the device. 3494 */ 3495 int 3496 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3497 { 3498 size_t len; 3499 3500 sdl->sdl_family = AF_LINK; 3501 sdl->sdl_index = ill_get_upper_ifindex(ill); 3502 sdl->sdl_type = ill->ill_type; 3503 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3504 len = strlen(sdl->sdl_data); 3505 ASSERT(len < 256); 3506 sdl->sdl_nlen = (uchar_t)len; 3507 sdl->sdl_alen = ill->ill_phys_addr_length; 3508 sdl->sdl_slen = 0; 3509 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3510 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3511 3512 return (sizeof (struct sockaddr_dl)); 3513 } 3514 3515 /* 3516 * ill_xarp_info 3517 * creates xarp info from the device. 3518 */ 3519 static int 3520 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3521 { 3522 sdl->sdl_family = AF_LINK; 3523 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3524 sdl->sdl_type = ill->ill_type; 3525 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3526 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3527 sdl->sdl_alen = ill->ill_phys_addr_length; 3528 sdl->sdl_slen = 0; 3529 return (sdl->sdl_nlen); 3530 } 3531 3532 static int 3533 loopback_kstat_update(kstat_t *ksp, int rw) 3534 { 3535 kstat_named_t *kn; 3536 netstackid_t stackid; 3537 netstack_t *ns; 3538 ip_stack_t *ipst; 3539 3540 if (ksp == NULL || ksp->ks_data == NULL) 3541 return (EIO); 3542 3543 if (rw == KSTAT_WRITE) 3544 return (EACCES); 3545 3546 kn = KSTAT_NAMED_PTR(ksp); 3547 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3548 3549 ns = netstack_find_by_stackid(stackid); 3550 if (ns == NULL) 3551 return (-1); 3552 3553 ipst = ns->netstack_ip; 3554 if (ipst == NULL) { 3555 netstack_rele(ns); 3556 return (-1); 3557 } 3558 kn[0].value.ui32 = ipst->ips_loopback_packets; 3559 kn[1].value.ui32 = ipst->ips_loopback_packets; 3560 netstack_rele(ns); 3561 return (0); 3562 } 3563 3564 /* 3565 * Has ifindex been plumbed already? 3566 */ 3567 static boolean_t 3568 phyint_exists(uint_t index, ip_stack_t *ipst) 3569 { 3570 ASSERT(index != 0); 3571 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3572 3573 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3574 &index, NULL) != NULL); 3575 } 3576 3577 /* 3578 * Pick a unique ifindex. 3579 * When the index counter passes IF_INDEX_MAX for the first time, the wrap 3580 * flag is set so that next time time ip_assign_ifindex() is called, it 3581 * falls through and resets the index counter back to 1, the minimum value 3582 * for the interface index. The logic below assumes that ips_ill_index 3583 * can hold a value of IF_INDEX_MAX+1 without there being any loss 3584 * (i.e. reset back to 0.) 3585 */ 3586 boolean_t 3587 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3588 { 3589 uint_t loops; 3590 3591 if (!ipst->ips_ill_index_wrap) { 3592 *indexp = ipst->ips_ill_index++; 3593 if (ipst->ips_ill_index > IF_INDEX_MAX) { 3594 /* 3595 * Reached the maximum ifindex value, set the wrap 3596 * flag to indicate that it is no longer possible 3597 * to assume that a given index is unallocated. 3598 */ 3599 ipst->ips_ill_index_wrap = B_TRUE; 3600 } 3601 return (B_TRUE); 3602 } 3603 3604 if (ipst->ips_ill_index > IF_INDEX_MAX) 3605 ipst->ips_ill_index = 1; 3606 3607 /* 3608 * Start reusing unused indexes. Note that we hold the ill_g_lock 3609 * at this point and don't want to call any function that attempts 3610 * to get the lock again. 3611 */ 3612 for (loops = IF_INDEX_MAX; loops > 0; loops--) { 3613 if (!phyint_exists(ipst->ips_ill_index, ipst)) { 3614 /* found unused index - use it */ 3615 *indexp = ipst->ips_ill_index; 3616 return (B_TRUE); 3617 } 3618 3619 ipst->ips_ill_index++; 3620 if (ipst->ips_ill_index > IF_INDEX_MAX) 3621 ipst->ips_ill_index = 1; 3622 } 3623 3624 /* 3625 * all interface indicies are inuse. 3626 */ 3627 return (B_FALSE); 3628 } 3629 3630 /* 3631 * Assign a unique interface index for the phyint. 3632 */ 3633 static boolean_t 3634 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3635 { 3636 ASSERT(phyi->phyint_ifindex == 0); 3637 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3638 } 3639 3640 /* 3641 * Initialize the flags on `phyi' as per the provided mactype. 3642 */ 3643 static void 3644 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3645 { 3646 uint64_t flags = 0; 3647 3648 /* 3649 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3650 * we always presume the underlying hardware is working and set 3651 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3652 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3653 * there are no active interfaces in the group so we set PHYI_FAILED. 3654 */ 3655 if (mactype == SUNW_DL_IPMP) 3656 flags |= PHYI_FAILED; 3657 else 3658 flags |= PHYI_RUNNING; 3659 3660 switch (mactype) { 3661 case SUNW_DL_VNI: 3662 flags |= PHYI_VIRTUAL; 3663 break; 3664 case SUNW_DL_IPMP: 3665 flags |= PHYI_IPMP; 3666 break; 3667 case DL_LOOP: 3668 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3669 break; 3670 } 3671 3672 mutex_enter(&phyi->phyint_lock); 3673 phyi->phyint_flags |= flags; 3674 mutex_exit(&phyi->phyint_lock); 3675 } 3676 3677 /* 3678 * Return a pointer to the ill which matches the supplied name. Note that 3679 * the ill name length includes the null termination character. (May be 3680 * called as writer.) 3681 * If do_alloc and the interface is "lo0" it will be automatically created. 3682 * Cannot bump up reference on condemned ills. So dup detect can't be done 3683 * using this func. 3684 */ 3685 ill_t * 3686 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3687 boolean_t *did_alloc, ip_stack_t *ipst) 3688 { 3689 ill_t *ill; 3690 ipif_t *ipif; 3691 ipsq_t *ipsq; 3692 kstat_named_t *kn; 3693 boolean_t isloopback; 3694 in6_addr_t ov6addr; 3695 3696 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3697 3698 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3699 ill = ill_find_by_name(name, isv6, ipst); 3700 rw_exit(&ipst->ips_ill_g_lock); 3701 if (ill != NULL) 3702 return (ill); 3703 3704 /* 3705 * Couldn't find it. Does this happen to be a lookup for the 3706 * loopback device and are we allowed to allocate it? 3707 */ 3708 if (!isloopback || !do_alloc) 3709 return (NULL); 3710 3711 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3712 ill = ill_find_by_name(name, isv6, ipst); 3713 if (ill != NULL) { 3714 rw_exit(&ipst->ips_ill_g_lock); 3715 return (ill); 3716 } 3717 3718 /* Create the loopback device on demand */ 3719 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3720 sizeof (ipif_loopback_name), BPRI_MED)); 3721 if (ill == NULL) 3722 goto done; 3723 3724 bzero(ill, sizeof (*ill)); 3725 ill->ill_ipst = ipst; 3726 netstack_hold(ipst->ips_netstack); 3727 /* 3728 * For exclusive stacks we set the zoneid to zero 3729 * to make IP operate as if in the global zone. 3730 */ 3731 ill->ill_zoneid = GLOBAL_ZONEID; 3732 3733 if (ill_init_common(ill, NULL, isv6, B_TRUE, B_FALSE) != 0) 3734 goto done; 3735 3736 if (!ill_allocate_mibs(ill)) 3737 goto done; 3738 3739 ill->ill_current_frag = ill->ill_max_frag; 3740 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3741 ill->ill_mc_mtu = ill->ill_mtu; 3742 /* 3743 * ipif_loopback_name can't be pointed at directly because its used 3744 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3745 * from the glist, ill_glist_delete() sets the first character of 3746 * ill_name to '\0'. 3747 */ 3748 ill->ill_name = (char *)ill + sizeof (*ill); 3749 (void) strcpy(ill->ill_name, ipif_loopback_name); 3750 ill->ill_name_length = sizeof (ipif_loopback_name); 3751 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3752 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3753 3754 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3755 if (ipif == NULL) 3756 goto done; 3757 3758 ill->ill_flags = ILLF_MULTICAST; 3759 3760 ov6addr = ipif->ipif_v6lcl_addr; 3761 /* Set up default loopback address and mask. */ 3762 if (!isv6) { 3763 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3764 3765 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3766 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3767 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3768 ipif->ipif_v6subnet); 3769 ill->ill_flags |= ILLF_IPV4; 3770 } else { 3771 ipif->ipif_v6lcl_addr = ipv6_loopback; 3772 ipif->ipif_v6net_mask = ipv6_all_ones; 3773 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3774 ipif->ipif_v6subnet); 3775 ill->ill_flags |= ILLF_IPV6; 3776 } 3777 3778 /* 3779 * Chain us in at the end of the ill list. hold the ill 3780 * before we make it globally visible. 1 for the lookup. 3781 */ 3782 ill_refhold(ill); 3783 3784 ipsq = ill->ill_phyint->phyint_ipsq; 3785 3786 if (ill_glist_insert(ill, "lo", isv6) != 0) 3787 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3788 3789 /* Let SCTP know so that it can add this to its list */ 3790 sctp_update_ill(ill, SCTP_ILL_INSERT); 3791 3792 /* 3793 * We have already assigned ipif_v6lcl_addr above, but we need to 3794 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3795 * requires to be after ill_glist_insert() since we need the 3796 * ill_index set. Pass on ipv6_loopback as the old address. 3797 */ 3798 sctp_update_ipif_addr(ipif, ov6addr); 3799 3800 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3801 3802 /* 3803 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3804 * If so, free our original one. 3805 */ 3806 if (ipsq != ill->ill_phyint->phyint_ipsq) 3807 ipsq_delete(ipsq); 3808 3809 if (ipst->ips_loopback_ksp == NULL) { 3810 /* Export loopback interface statistics */ 3811 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3812 ipif_loopback_name, "net", 3813 KSTAT_TYPE_NAMED, 2, 0, 3814 ipst->ips_netstack->netstack_stackid); 3815 if (ipst->ips_loopback_ksp != NULL) { 3816 ipst->ips_loopback_ksp->ks_update = 3817 loopback_kstat_update; 3818 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3819 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3820 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3821 ipst->ips_loopback_ksp->ks_private = 3822 (void *)(uintptr_t)ipst->ips_netstack-> 3823 netstack_stackid; 3824 kstat_install(ipst->ips_loopback_ksp); 3825 } 3826 } 3827 3828 *did_alloc = B_TRUE; 3829 rw_exit(&ipst->ips_ill_g_lock); 3830 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3831 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3832 return (ill); 3833 done: 3834 if (ill != NULL) { 3835 if (ill->ill_phyint != NULL) { 3836 ipsq = ill->ill_phyint->phyint_ipsq; 3837 if (ipsq != NULL) { 3838 ipsq->ipsq_phyint = NULL; 3839 ipsq_delete(ipsq); 3840 } 3841 mi_free(ill->ill_phyint); 3842 } 3843 ill_free_mib(ill); 3844 if (ill->ill_ipst != NULL) 3845 netstack_rele(ill->ill_ipst->ips_netstack); 3846 mi_free(ill); 3847 } 3848 rw_exit(&ipst->ips_ill_g_lock); 3849 return (NULL); 3850 } 3851 3852 /* 3853 * For IPP calls - use the ip_stack_t for global stack. 3854 */ 3855 ill_t * 3856 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3857 { 3858 ip_stack_t *ipst; 3859 ill_t *ill; 3860 netstack_t *ns; 3861 3862 ns = netstack_find_by_stackid(GLOBAL_NETSTACKID); 3863 3864 if ((ipst = ns->netstack_ip) == NULL) { 3865 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3866 netstack_rele(ns); 3867 return (NULL); 3868 } 3869 3870 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3871 netstack_rele(ns); 3872 return (ill); 3873 } 3874 3875 /* 3876 * Return a pointer to the ill which matches the index and IP version type. 3877 */ 3878 ill_t * 3879 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3880 { 3881 ill_t *ill; 3882 phyint_t *phyi; 3883 3884 /* 3885 * Indexes are stored in the phyint - a common structure 3886 * to both IPv4 and IPv6. 3887 */ 3888 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3889 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3890 (void *) &index, NULL); 3891 if (phyi != NULL) { 3892 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3893 if (ill != NULL) { 3894 mutex_enter(&ill->ill_lock); 3895 if (!ILL_IS_CONDEMNED(ill)) { 3896 ill_refhold_locked(ill); 3897 mutex_exit(&ill->ill_lock); 3898 rw_exit(&ipst->ips_ill_g_lock); 3899 return (ill); 3900 } 3901 mutex_exit(&ill->ill_lock); 3902 } 3903 } 3904 rw_exit(&ipst->ips_ill_g_lock); 3905 return (NULL); 3906 } 3907 3908 /* 3909 * Verify whether or not an interface index is valid for the specified zoneid 3910 * to transmit packets. 3911 * It can be zero (meaning "reset") or an interface index assigned 3912 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3913 */ 3914 boolean_t 3915 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3916 ip_stack_t *ipst) 3917 { 3918 ill_t *ill; 3919 3920 if (ifindex == 0) 3921 return (B_TRUE); 3922 3923 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3924 if (ill == NULL) 3925 return (B_FALSE); 3926 if (IS_VNI(ill)) { 3927 ill_refrele(ill); 3928 return (B_FALSE); 3929 } 3930 ill_refrele(ill); 3931 return (B_TRUE); 3932 } 3933 3934 /* 3935 * Return the ifindex next in sequence after the passed in ifindex. 3936 * If there is no next ifindex for the given protocol, return 0. 3937 */ 3938 uint_t 3939 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3940 { 3941 phyint_t *phyi; 3942 phyint_t *phyi_initial; 3943 uint_t ifindex; 3944 3945 phyi_initial = NULL; 3946 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3947 3948 if (index == 0) { 3949 phyi = avl_first( 3950 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3951 } else { 3952 phyi = phyi_initial = avl_find( 3953 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3954 (void *) &index, NULL); 3955 } 3956 3957 for (; phyi != NULL; 3958 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3959 phyi, AVL_AFTER)) { 3960 /* 3961 * If we're not returning the first interface in the tree 3962 * and we still haven't moved past the phyint_t that 3963 * corresponds to index, avl_walk needs to be called again 3964 */ 3965 if (!((index != 0) && (phyi == phyi_initial))) { 3966 if (isv6) { 3967 if ((phyi->phyint_illv6) && 3968 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3969 (phyi->phyint_illv6->ill_isv6 == 1)) 3970 break; 3971 } else { 3972 if ((phyi->phyint_illv4) && 3973 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3974 (phyi->phyint_illv4->ill_isv6 == 0)) 3975 break; 3976 } 3977 } 3978 } 3979 3980 rw_exit(&ipst->ips_ill_g_lock); 3981 3982 if (phyi != NULL) 3983 ifindex = phyi->phyint_ifindex; 3984 else 3985 ifindex = 0; 3986 3987 return (ifindex); 3988 } 3989 3990 /* 3991 * Return the ifindex for the named interface. 3992 * If there is no next ifindex for the interface, return 0. 3993 */ 3994 uint_t 3995 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3996 { 3997 phyint_t *phyi; 3998 avl_index_t where = 0; 3999 uint_t ifindex; 4000 4001 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4002 4003 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4004 name, &where)) == NULL) { 4005 rw_exit(&ipst->ips_ill_g_lock); 4006 return (0); 4007 } 4008 4009 ifindex = phyi->phyint_ifindex; 4010 4011 rw_exit(&ipst->ips_ill_g_lock); 4012 4013 return (ifindex); 4014 } 4015 4016 /* 4017 * Return the ifindex to be used by upper layer protocols for instance 4018 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4019 */ 4020 uint_t 4021 ill_get_upper_ifindex(const ill_t *ill) 4022 { 4023 if (IS_UNDER_IPMP(ill)) 4024 return (ipmp_ill_get_ipmp_ifindex(ill)); 4025 else 4026 return (ill->ill_phyint->phyint_ifindex); 4027 } 4028 4029 4030 /* 4031 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4032 * that gives a running thread a reference to the ill. This reference must be 4033 * released by the thread when it is done accessing the ill and related 4034 * objects. ill_refcnt can not be used to account for static references 4035 * such as other structures pointing to an ill. Callers must generally 4036 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4037 * or be sure that the ill is not being deleted or changing state before 4038 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4039 * ill won't change any of its critical state such as address, netmask etc. 4040 */ 4041 void 4042 ill_refhold(ill_t *ill) 4043 { 4044 mutex_enter(&ill->ill_lock); 4045 ill->ill_refcnt++; 4046 ILL_TRACE_REF(ill); 4047 mutex_exit(&ill->ill_lock); 4048 } 4049 4050 void 4051 ill_refhold_locked(ill_t *ill) 4052 { 4053 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4054 ill->ill_refcnt++; 4055 ILL_TRACE_REF(ill); 4056 } 4057 4058 /* Returns true if we managed to get a refhold */ 4059 boolean_t 4060 ill_check_and_refhold(ill_t *ill) 4061 { 4062 mutex_enter(&ill->ill_lock); 4063 if (!ILL_IS_CONDEMNED(ill)) { 4064 ill_refhold_locked(ill); 4065 mutex_exit(&ill->ill_lock); 4066 return (B_TRUE); 4067 } 4068 mutex_exit(&ill->ill_lock); 4069 return (B_FALSE); 4070 } 4071 4072 /* 4073 * Must not be called while holding any locks. Otherwise if this is 4074 * the last reference to be released, there is a chance of recursive mutex 4075 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4076 * to restart an ioctl. 4077 */ 4078 void 4079 ill_refrele(ill_t *ill) 4080 { 4081 mutex_enter(&ill->ill_lock); 4082 ASSERT(ill->ill_refcnt != 0); 4083 ill->ill_refcnt--; 4084 ILL_UNTRACE_REF(ill); 4085 if (ill->ill_refcnt != 0) { 4086 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4087 mutex_exit(&ill->ill_lock); 4088 return; 4089 } 4090 4091 /* Drops the ill_lock */ 4092 ipif_ill_refrele_tail(ill); 4093 } 4094 4095 /* 4096 * Obtain a weak reference count on the ill. This reference ensures the 4097 * ill won't be freed, but the ill may change any of its critical state 4098 * such as netmask, address etc. Returns an error if the ill has started 4099 * closing. 4100 */ 4101 boolean_t 4102 ill_waiter_inc(ill_t *ill) 4103 { 4104 mutex_enter(&ill->ill_lock); 4105 if (ill->ill_state_flags & ILL_CONDEMNED) { 4106 mutex_exit(&ill->ill_lock); 4107 return (B_FALSE); 4108 } 4109 ill->ill_waiters++; 4110 mutex_exit(&ill->ill_lock); 4111 return (B_TRUE); 4112 } 4113 4114 void 4115 ill_waiter_dcr(ill_t *ill) 4116 { 4117 mutex_enter(&ill->ill_lock); 4118 ill->ill_waiters--; 4119 if (ill->ill_waiters == 0) 4120 cv_broadcast(&ill->ill_cv); 4121 mutex_exit(&ill->ill_lock); 4122 } 4123 4124 /* 4125 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4126 * driver. We construct best guess defaults for lower level information that 4127 * we need. If an interface is brought up without injection of any overriding 4128 * information from outside, we have to be ready to go with these defaults. 4129 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4130 * we primarely want the dl_provider_style. 4131 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4132 * at which point we assume the other part of the information is valid. 4133 */ 4134 void 4135 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4136 { 4137 uchar_t *brdcst_addr; 4138 uint_t brdcst_addr_length, phys_addr_length; 4139 t_scalar_t sap_length; 4140 dl_info_ack_t *dlia; 4141 ip_m_t *ipm; 4142 dl_qos_cl_sel1_t *sel1; 4143 int min_mtu; 4144 4145 ASSERT(IAM_WRITER_ILL(ill)); 4146 4147 /* 4148 * Till the ill is fully up the ill is not globally visible. 4149 * So no need for a lock. 4150 */ 4151 dlia = (dl_info_ack_t *)mp->b_rptr; 4152 ill->ill_mactype = dlia->dl_mac_type; 4153 4154 ipm = ip_m_lookup(dlia->dl_mac_type); 4155 if (ipm == NULL) { 4156 ipm = ip_m_lookup(DL_OTHER); 4157 ASSERT(ipm != NULL); 4158 } 4159 ill->ill_media = ipm; 4160 4161 /* 4162 * When the new DLPI stuff is ready we'll pull lengths 4163 * from dlia. 4164 */ 4165 if (dlia->dl_version == DL_VERSION_2) { 4166 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4167 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4168 brdcst_addr_length); 4169 if (brdcst_addr == NULL) { 4170 brdcst_addr_length = 0; 4171 } 4172 sap_length = dlia->dl_sap_length; 4173 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4174 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4175 brdcst_addr_length, sap_length, phys_addr_length)); 4176 } else { 4177 brdcst_addr_length = 6; 4178 brdcst_addr = ip_six_byte_all_ones; 4179 sap_length = -2; 4180 phys_addr_length = brdcst_addr_length; 4181 } 4182 4183 ill->ill_bcast_addr_length = brdcst_addr_length; 4184 ill->ill_phys_addr_length = phys_addr_length; 4185 ill->ill_sap_length = sap_length; 4186 4187 /* 4188 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4189 * but we must ensure a minimum IP MTU is used since other bits of 4190 * IP will fly apart otherwise. 4191 */ 4192 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4193 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4194 ill->ill_current_frag = ill->ill_max_frag; 4195 ill->ill_mtu = ill->ill_max_frag; 4196 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */ 4197 4198 ill->ill_type = ipm->ip_m_type; 4199 4200 if (!ill->ill_dlpi_style_set) { 4201 if (dlia->dl_provider_style == DL_STYLE2) 4202 ill->ill_needs_attach = 1; 4203 4204 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4205 4206 /* 4207 * Allocate the first ipif on this ill. We don't delay it 4208 * further as ioctl handling assumes at least one ipif exists. 4209 * 4210 * At this point we don't know whether the ill is v4 or v6. 4211 * We will know this whan the SIOCSLIFNAME happens and 4212 * the correct value for ill_isv6 will be assigned in 4213 * ipif_set_values(). We need to hold the ill lock and 4214 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4215 * the wakeup. 4216 */ 4217 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4218 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4219 mutex_enter(&ill->ill_lock); 4220 ASSERT(ill->ill_dlpi_style_set == 0); 4221 ill->ill_dlpi_style_set = 1; 4222 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4223 cv_broadcast(&ill->ill_cv); 4224 mutex_exit(&ill->ill_lock); 4225 freemsg(mp); 4226 return; 4227 } 4228 ASSERT(ill->ill_ipif != NULL); 4229 /* 4230 * We know whether it is IPv4 or IPv6 now, as this is the 4231 * second DL_INFO_ACK we are recieving in response to the 4232 * DL_INFO_REQ sent in ipif_set_values. 4233 */ 4234 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4235 /* 4236 * Clear all the flags that were set based on ill_bcast_addr_length 4237 * and ill_phys_addr_length (in ipif_set_values) as these could have 4238 * changed now and we need to re-evaluate. 4239 */ 4240 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4241 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4242 4243 /* 4244 * Free ill_bcast_mp as things could have changed now. 4245 * 4246 * NOTE: The IPMP meta-interface is special-cased because it starts 4247 * with no underlying interfaces (and thus an unknown broadcast 4248 * address length), but we enforce that an interface is broadcast- 4249 * capable as part of allowing it to join a group. 4250 */ 4251 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4252 if (ill->ill_bcast_mp != NULL) 4253 freemsg(ill->ill_bcast_mp); 4254 ill->ill_net_type = IRE_IF_NORESOLVER; 4255 4256 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4257 ill->ill_phys_addr_length, 4258 ill->ill_sap, 4259 ill->ill_sap_length); 4260 4261 if (ill->ill_isv6) 4262 /* 4263 * Note: xresolv interfaces will eventually need NOARP 4264 * set here as well, but that will require those 4265 * external resolvers to have some knowledge of 4266 * that flag and act appropriately. Not to be changed 4267 * at present. 4268 */ 4269 ill->ill_flags |= ILLF_NONUD; 4270 else 4271 ill->ill_flags |= ILLF_NOARP; 4272 4273 if (ill->ill_mactype == SUNW_DL_VNI) { 4274 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4275 } else if (ill->ill_phys_addr_length == 0 || 4276 ill->ill_mactype == DL_IPV4 || 4277 ill->ill_mactype == DL_IPV6) { 4278 /* 4279 * The underying link is point-to-point, so mark the 4280 * interface as such. We can do IP multicast over 4281 * such a link since it transmits all network-layer 4282 * packets to the remote side the same way. 4283 */ 4284 ill->ill_flags |= ILLF_MULTICAST; 4285 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4286 } 4287 } else { 4288 ill->ill_net_type = IRE_IF_RESOLVER; 4289 if (ill->ill_bcast_mp != NULL) 4290 freemsg(ill->ill_bcast_mp); 4291 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4292 ill->ill_bcast_addr_length, ill->ill_sap, 4293 ill->ill_sap_length); 4294 /* 4295 * Later detect lack of DLPI driver multicast 4296 * capability by catching DL_ENABMULTI errors in 4297 * ip_rput_dlpi. 4298 */ 4299 ill->ill_flags |= ILLF_MULTICAST; 4300 if (!ill->ill_isv6) 4301 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4302 } 4303 4304 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4305 if (ill->ill_mactype == SUNW_DL_IPMP) 4306 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4307 4308 /* By default an interface does not support any CoS marking */ 4309 ill->ill_flags &= ~ILLF_COS_ENABLED; 4310 4311 /* 4312 * If we get QoS information in DL_INFO_ACK, the device supports 4313 * some form of CoS marking, set ILLF_COS_ENABLED. 4314 */ 4315 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4316 dlia->dl_qos_length); 4317 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4318 ill->ill_flags |= ILLF_COS_ENABLED; 4319 } 4320 4321 /* Clear any previous error indication. */ 4322 ill->ill_error = 0; 4323 freemsg(mp); 4324 } 4325 4326 /* 4327 * Perform various checks to verify that an address would make sense as a 4328 * local, remote, or subnet interface address. 4329 */ 4330 static boolean_t 4331 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4332 { 4333 ipaddr_t net_mask; 4334 4335 /* 4336 * Don't allow all zeroes, or all ones, but allow 4337 * all ones netmask. 4338 */ 4339 if ((net_mask = ip_net_mask(addr)) == 0) 4340 return (B_FALSE); 4341 /* A given netmask overrides the "guess" netmask */ 4342 if (subnet_mask != 0) 4343 net_mask = subnet_mask; 4344 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4345 (addr == (addr | ~net_mask)))) { 4346 return (B_FALSE); 4347 } 4348 4349 /* 4350 * Even if the netmask is all ones, we do not allow address to be 4351 * 255.255.255.255 4352 */ 4353 if (addr == INADDR_BROADCAST) 4354 return (B_FALSE); 4355 4356 if (CLASSD(addr)) 4357 return (B_FALSE); 4358 4359 return (B_TRUE); 4360 } 4361 4362 #define V6_IPIF_LINKLOCAL(p) \ 4363 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4364 4365 /* 4366 * Compare two given ipifs and check if the second one is better than 4367 * the first one using the order of preference (not taking deprecated 4368 * into acount) specified in ipif_lookup_multicast(). 4369 */ 4370 static boolean_t 4371 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4372 { 4373 /* Check the least preferred first. */ 4374 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4375 /* If both ipifs are the same, use the first one. */ 4376 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4377 return (B_FALSE); 4378 else 4379 return (B_TRUE); 4380 } 4381 4382 /* For IPv6, check for link local address. */ 4383 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4384 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4385 V6_IPIF_LINKLOCAL(new_ipif)) { 4386 /* The second one is equal or less preferred. */ 4387 return (B_FALSE); 4388 } else { 4389 return (B_TRUE); 4390 } 4391 } 4392 4393 /* Then check for point to point interface. */ 4394 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4395 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4396 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4397 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4398 return (B_FALSE); 4399 } else { 4400 return (B_TRUE); 4401 } 4402 } 4403 4404 /* old_ipif is a normal interface, so no need to use the new one. */ 4405 return (B_FALSE); 4406 } 4407 4408 /* 4409 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4410 * The ipif must be up, and its ill must multicast-capable, not 4411 * condemned, not an underlying interface in an IPMP group, and 4412 * not a VNI interface. Order of preference: 4413 * 4414 * 1a. normal 4415 * 1b. normal, but deprecated 4416 * 2a. point to point 4417 * 2b. point to point, but deprecated 4418 * 3a. link local 4419 * 3b. link local, but deprecated 4420 * 4. loopback. 4421 */ 4422 static ipif_t * 4423 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4424 { 4425 ill_t *ill; 4426 ill_walk_context_t ctx; 4427 ipif_t *ipif; 4428 ipif_t *saved_ipif = NULL; 4429 ipif_t *dep_ipif = NULL; 4430 4431 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4432 if (isv6) 4433 ill = ILL_START_WALK_V6(&ctx, ipst); 4434 else 4435 ill = ILL_START_WALK_V4(&ctx, ipst); 4436 4437 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4438 mutex_enter(&ill->ill_lock); 4439 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4440 ILL_IS_CONDEMNED(ill) || 4441 !(ill->ill_flags & ILLF_MULTICAST)) { 4442 mutex_exit(&ill->ill_lock); 4443 continue; 4444 } 4445 for (ipif = ill->ill_ipif; ipif != NULL; 4446 ipif = ipif->ipif_next) { 4447 if (zoneid != ipif->ipif_zoneid && 4448 zoneid != ALL_ZONES && 4449 ipif->ipif_zoneid != ALL_ZONES) { 4450 continue; 4451 } 4452 if (!(ipif->ipif_flags & IPIF_UP) || 4453 IPIF_IS_CONDEMNED(ipif)) { 4454 continue; 4455 } 4456 4457 /* 4458 * Found one candidate. If it is deprecated, 4459 * remember it in dep_ipif. If it is not deprecated, 4460 * remember it in saved_ipif. 4461 */ 4462 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4463 if (dep_ipif == NULL) { 4464 dep_ipif = ipif; 4465 } else if (ipif_comp_multi(dep_ipif, ipif, 4466 isv6)) { 4467 /* 4468 * If the previous dep_ipif does not 4469 * belong to the same ill, we've done 4470 * a ipif_refhold() on it. So we need 4471 * to release it. 4472 */ 4473 if (dep_ipif->ipif_ill != ill) 4474 ipif_refrele(dep_ipif); 4475 dep_ipif = ipif; 4476 } 4477 continue; 4478 } 4479 if (saved_ipif == NULL) { 4480 saved_ipif = ipif; 4481 } else { 4482 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4483 if (saved_ipif->ipif_ill != ill) 4484 ipif_refrele(saved_ipif); 4485 saved_ipif = ipif; 4486 } 4487 } 4488 } 4489 /* 4490 * Before going to the next ill, do a ipif_refhold() on the 4491 * saved ones. 4492 */ 4493 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4494 ipif_refhold_locked(saved_ipif); 4495 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4496 ipif_refhold_locked(dep_ipif); 4497 mutex_exit(&ill->ill_lock); 4498 } 4499 rw_exit(&ipst->ips_ill_g_lock); 4500 4501 /* 4502 * If we have only the saved_ipif, return it. But if we have both 4503 * saved_ipif and dep_ipif, check to see which one is better. 4504 */ 4505 if (saved_ipif != NULL) { 4506 if (dep_ipif != NULL) { 4507 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4508 ipif_refrele(saved_ipif); 4509 return (dep_ipif); 4510 } else { 4511 ipif_refrele(dep_ipif); 4512 return (saved_ipif); 4513 } 4514 } 4515 return (saved_ipif); 4516 } else { 4517 return (dep_ipif); 4518 } 4519 } 4520 4521 ill_t * 4522 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4523 { 4524 ipif_t *ipif; 4525 ill_t *ill; 4526 4527 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4528 if (ipif == NULL) 4529 return (NULL); 4530 4531 ill = ipif->ipif_ill; 4532 ill_refhold(ill); 4533 ipif_refrele(ipif); 4534 return (ill); 4535 } 4536 4537 /* 4538 * This function is called when an application does not specify an interface 4539 * to be used for multicast traffic (joining a group/sending data). It 4540 * calls ire_lookup_multi() to look for an interface route for the 4541 * specified multicast group. Doing this allows the administrator to add 4542 * prefix routes for multicast to indicate which interface to be used for 4543 * multicast traffic in the above scenario. The route could be for all 4544 * multicast (224.0/4), for a single multicast group (a /32 route) or 4545 * anything in between. If there is no such multicast route, we just find 4546 * any multicast capable interface and return it. The returned ipif 4547 * is refhold'ed. 4548 * 4549 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4550 * unicast table. This is used by CGTP. 4551 */ 4552 ill_t * 4553 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4554 boolean_t *multirtp, ipaddr_t *setsrcp) 4555 { 4556 ill_t *ill; 4557 4558 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4559 if (ill != NULL) 4560 return (ill); 4561 4562 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4563 } 4564 4565 /* 4566 * Look for an ipif with the specified interface address and destination. 4567 * The destination address is used only for matching point-to-point interfaces. 4568 */ 4569 ipif_t * 4570 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4571 { 4572 ipif_t *ipif; 4573 ill_t *ill; 4574 ill_walk_context_t ctx; 4575 4576 /* 4577 * First match all the point-to-point interfaces 4578 * before looking at non-point-to-point interfaces. 4579 * This is done to avoid returning non-point-to-point 4580 * ipif instead of unnumbered point-to-point ipif. 4581 */ 4582 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4583 ill = ILL_START_WALK_V4(&ctx, ipst); 4584 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4585 mutex_enter(&ill->ill_lock); 4586 for (ipif = ill->ill_ipif; ipif != NULL; 4587 ipif = ipif->ipif_next) { 4588 /* Allow the ipif to be down */ 4589 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4590 (ipif->ipif_lcl_addr == if_addr) && 4591 (ipif->ipif_pp_dst_addr == dst)) { 4592 if (!IPIF_IS_CONDEMNED(ipif)) { 4593 ipif_refhold_locked(ipif); 4594 mutex_exit(&ill->ill_lock); 4595 rw_exit(&ipst->ips_ill_g_lock); 4596 return (ipif); 4597 } 4598 } 4599 } 4600 mutex_exit(&ill->ill_lock); 4601 } 4602 rw_exit(&ipst->ips_ill_g_lock); 4603 4604 /* lookup the ipif based on interface address */ 4605 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4606 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4607 return (ipif); 4608 } 4609 4610 /* 4611 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4612 */ 4613 static ipif_t * 4614 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4615 zoneid_t zoneid, ip_stack_t *ipst) 4616 { 4617 ipif_t *ipif; 4618 ill_t *ill; 4619 boolean_t ptp = B_FALSE; 4620 ill_walk_context_t ctx; 4621 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4622 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4623 4624 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4625 /* 4626 * Repeat twice, first based on local addresses and 4627 * next time for pointopoint. 4628 */ 4629 repeat: 4630 ill = ILL_START_WALK_V4(&ctx, ipst); 4631 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4632 if (match_ill != NULL && ill != match_ill && 4633 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4634 continue; 4635 } 4636 mutex_enter(&ill->ill_lock); 4637 for (ipif = ill->ill_ipif; ipif != NULL; 4638 ipif = ipif->ipif_next) { 4639 if (zoneid != ALL_ZONES && 4640 zoneid != ipif->ipif_zoneid && 4641 ipif->ipif_zoneid != ALL_ZONES) 4642 continue; 4643 4644 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4645 continue; 4646 4647 /* Allow the ipif to be down */ 4648 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4649 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4650 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4651 (ipif->ipif_pp_dst_addr == addr))) { 4652 if (!IPIF_IS_CONDEMNED(ipif)) { 4653 ipif_refhold_locked(ipif); 4654 mutex_exit(&ill->ill_lock); 4655 rw_exit(&ipst->ips_ill_g_lock); 4656 return (ipif); 4657 } 4658 } 4659 } 4660 mutex_exit(&ill->ill_lock); 4661 } 4662 4663 /* If we already did the ptp case, then we are done */ 4664 if (ptp) { 4665 rw_exit(&ipst->ips_ill_g_lock); 4666 return (NULL); 4667 } 4668 ptp = B_TRUE; 4669 goto repeat; 4670 } 4671 4672 /* 4673 * Lookup an ipif with the specified address. For point-to-point links we 4674 * look for matches on either the destination address or the local address, 4675 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4676 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4677 * (or illgrp if `match_ill' is in an IPMP group). 4678 */ 4679 ipif_t * 4680 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4681 ip_stack_t *ipst) 4682 { 4683 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4684 zoneid, ipst)); 4685 } 4686 4687 /* 4688 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4689 * except that we will only return an address if it is not marked as 4690 * IPIF_DUPLICATE 4691 */ 4692 ipif_t * 4693 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4694 ip_stack_t *ipst) 4695 { 4696 return (ipif_lookup_addr_common(addr, match_ill, 4697 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4698 zoneid, ipst)); 4699 } 4700 4701 /* 4702 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4703 * `match_ill' across the IPMP group. This function is only needed in some 4704 * corner-cases; almost everything should use ipif_lookup_addr(). 4705 */ 4706 ipif_t * 4707 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4708 { 4709 ASSERT(match_ill != NULL); 4710 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4711 ipst)); 4712 } 4713 4714 /* 4715 * Look for an ipif with the specified address. For point-point links 4716 * we look for matches on either the destination address and the local 4717 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4718 * is set. 4719 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4720 * ill (or illgrp if `match_ill' is in an IPMP group). 4721 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4722 */ 4723 zoneid_t 4724 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4725 { 4726 zoneid_t zoneid; 4727 ipif_t *ipif; 4728 ill_t *ill; 4729 boolean_t ptp = B_FALSE; 4730 ill_walk_context_t ctx; 4731 4732 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4733 /* 4734 * Repeat twice, first based on local addresses and 4735 * next time for pointopoint. 4736 */ 4737 repeat: 4738 ill = ILL_START_WALK_V4(&ctx, ipst); 4739 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4740 if (match_ill != NULL && ill != match_ill && 4741 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4742 continue; 4743 } 4744 mutex_enter(&ill->ill_lock); 4745 for (ipif = ill->ill_ipif; ipif != NULL; 4746 ipif = ipif->ipif_next) { 4747 /* Allow the ipif to be down */ 4748 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4749 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4750 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4751 (ipif->ipif_pp_dst_addr == addr)) && 4752 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4753 zoneid = ipif->ipif_zoneid; 4754 mutex_exit(&ill->ill_lock); 4755 rw_exit(&ipst->ips_ill_g_lock); 4756 /* 4757 * If ipif_zoneid was ALL_ZONES then we have 4758 * a trusted extensions shared IP address. 4759 * In that case GLOBAL_ZONEID works to send. 4760 */ 4761 if (zoneid == ALL_ZONES) 4762 zoneid = GLOBAL_ZONEID; 4763 return (zoneid); 4764 } 4765 } 4766 mutex_exit(&ill->ill_lock); 4767 } 4768 4769 /* If we already did the ptp case, then we are done */ 4770 if (ptp) { 4771 rw_exit(&ipst->ips_ill_g_lock); 4772 return (ALL_ZONES); 4773 } 4774 ptp = B_TRUE; 4775 goto repeat; 4776 } 4777 4778 /* 4779 * Look for an ipif that matches the specified remote address i.e. the 4780 * ipif that would receive the specified packet. 4781 * First look for directly connected interfaces and then do a recursive 4782 * IRE lookup and pick the first ipif corresponding to the source address in the 4783 * ire. 4784 * Returns: held ipif 4785 * 4786 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4787 */ 4788 ipif_t * 4789 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4790 { 4791 ipif_t *ipif; 4792 4793 ASSERT(!ill->ill_isv6); 4794 4795 /* 4796 * Someone could be changing this ipif currently or change it 4797 * after we return this. Thus a few packets could use the old 4798 * old values. However structure updates/creates (ire, ilg, ilm etc) 4799 * will atomically be updated or cleaned up with the new value 4800 * Thus we don't need a lock to check the flags or other attrs below. 4801 */ 4802 mutex_enter(&ill->ill_lock); 4803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4804 if (IPIF_IS_CONDEMNED(ipif)) 4805 continue; 4806 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4807 ipif->ipif_zoneid != ALL_ZONES) 4808 continue; 4809 /* Allow the ipif to be down */ 4810 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4811 if ((ipif->ipif_pp_dst_addr == addr) || 4812 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4813 ipif->ipif_lcl_addr == addr)) { 4814 ipif_refhold_locked(ipif); 4815 mutex_exit(&ill->ill_lock); 4816 return (ipif); 4817 } 4818 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4819 ipif_refhold_locked(ipif); 4820 mutex_exit(&ill->ill_lock); 4821 return (ipif); 4822 } 4823 } 4824 mutex_exit(&ill->ill_lock); 4825 /* 4826 * For a remote destination it isn't possible to nail down a particular 4827 * ipif. 4828 */ 4829 4830 /* Pick the first interface */ 4831 ipif = ipif_get_next_ipif(NULL, ill); 4832 return (ipif); 4833 } 4834 4835 /* 4836 * This func does not prevent refcnt from increasing. But if 4837 * the caller has taken steps to that effect, then this func 4838 * can be used to determine whether the ill has become quiescent 4839 */ 4840 static boolean_t 4841 ill_is_quiescent(ill_t *ill) 4842 { 4843 ipif_t *ipif; 4844 4845 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4846 4847 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4848 if (ipif->ipif_refcnt != 0) 4849 return (B_FALSE); 4850 } 4851 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4852 return (B_FALSE); 4853 } 4854 return (B_TRUE); 4855 } 4856 4857 boolean_t 4858 ill_is_freeable(ill_t *ill) 4859 { 4860 ipif_t *ipif; 4861 4862 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4863 4864 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4865 if (ipif->ipif_refcnt != 0) { 4866 return (B_FALSE); 4867 } 4868 } 4869 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4870 return (B_FALSE); 4871 } 4872 return (B_TRUE); 4873 } 4874 4875 /* 4876 * This func does not prevent refcnt from increasing. But if 4877 * the caller has taken steps to that effect, then this func 4878 * can be used to determine whether the ipif has become quiescent 4879 */ 4880 static boolean_t 4881 ipif_is_quiescent(ipif_t *ipif) 4882 { 4883 ill_t *ill; 4884 4885 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4886 4887 if (ipif->ipif_refcnt != 0) 4888 return (B_FALSE); 4889 4890 ill = ipif->ipif_ill; 4891 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4892 ill->ill_logical_down) { 4893 return (B_TRUE); 4894 } 4895 4896 /* This is the last ipif going down or being deleted on this ill */ 4897 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4898 return (B_FALSE); 4899 } 4900 4901 return (B_TRUE); 4902 } 4903 4904 /* 4905 * return true if the ipif can be destroyed: the ipif has to be quiescent 4906 * with zero references from ire/ilm to it. 4907 */ 4908 static boolean_t 4909 ipif_is_freeable(ipif_t *ipif) 4910 { 4911 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4912 ASSERT(ipif->ipif_id != 0); 4913 return (ipif->ipif_refcnt == 0); 4914 } 4915 4916 /* 4917 * The ipif/ill/ire has been refreled. Do the tail processing. 4918 * Determine if the ipif or ill in question has become quiescent and if so 4919 * wakeup close and/or restart any queued pending ioctl that is waiting 4920 * for the ipif_down (or ill_down) 4921 */ 4922 void 4923 ipif_ill_refrele_tail(ill_t *ill) 4924 { 4925 mblk_t *mp; 4926 conn_t *connp; 4927 ipsq_t *ipsq; 4928 ipxop_t *ipx; 4929 ipif_t *ipif; 4930 dl_notify_ind_t *dlindp; 4931 4932 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4933 4934 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4935 /* ip_modclose() may be waiting */ 4936 cv_broadcast(&ill->ill_cv); 4937 } 4938 4939 ipsq = ill->ill_phyint->phyint_ipsq; 4940 mutex_enter(&ipsq->ipsq_lock); 4941 ipx = ipsq->ipsq_xop; 4942 mutex_enter(&ipx->ipx_lock); 4943 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4944 goto unlock; 4945 4946 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4947 4948 ipif = ipx->ipx_pending_ipif; 4949 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4950 goto unlock; 4951 4952 switch (ipx->ipx_waitfor) { 4953 case IPIF_DOWN: 4954 if (!ipif_is_quiescent(ipif)) 4955 goto unlock; 4956 break; 4957 case IPIF_FREE: 4958 if (!ipif_is_freeable(ipif)) 4959 goto unlock; 4960 break; 4961 case ILL_DOWN: 4962 if (!ill_is_quiescent(ill)) 4963 goto unlock; 4964 break; 4965 case ILL_FREE: 4966 /* 4967 * ILL_FREE is only for loopback; normal ill teardown waits 4968 * synchronously in ip_modclose() without using ipx_waitfor, 4969 * handled by the cv_broadcast() at the top of this function. 4970 */ 4971 if (!ill_is_freeable(ill)) 4972 goto unlock; 4973 break; 4974 default: 4975 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4976 (void *)ipsq, ipx->ipx_waitfor); 4977 } 4978 4979 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4980 mutex_exit(&ipx->ipx_lock); 4981 mp = ipsq_pending_mp_get(ipsq, &connp); 4982 mutex_exit(&ipsq->ipsq_lock); 4983 mutex_exit(&ill->ill_lock); 4984 4985 ASSERT(mp != NULL); 4986 /* 4987 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4988 * we can only get here when the current operation decides it 4989 * it needs to quiesce via ipsq_pending_mp_add(). 4990 */ 4991 switch (mp->b_datap->db_type) { 4992 case M_PCPROTO: 4993 case M_PROTO: 4994 /* 4995 * For now, only DL_NOTIFY_IND messages can use this facility. 4996 */ 4997 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4998 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4999 5000 switch (dlindp->dl_notification) { 5001 case DL_NOTE_PHYS_ADDR: 5002 qwriter_ip(ill, ill->ill_rq, mp, 5003 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5004 return; 5005 case DL_NOTE_REPLUMB: 5006 qwriter_ip(ill, ill->ill_rq, mp, 5007 ill_replumb_tail, CUR_OP, B_TRUE); 5008 return; 5009 default: 5010 ASSERT(0); 5011 ill_refrele(ill); 5012 } 5013 break; 5014 5015 case M_ERROR: 5016 case M_HANGUP: 5017 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5018 B_TRUE); 5019 return; 5020 5021 case M_IOCTL: 5022 case M_IOCDATA: 5023 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5024 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5025 return; 5026 5027 default: 5028 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5029 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5030 } 5031 return; 5032 unlock: 5033 mutex_exit(&ipsq->ipsq_lock); 5034 mutex_exit(&ipx->ipx_lock); 5035 mutex_exit(&ill->ill_lock); 5036 } 5037 5038 #ifdef DEBUG 5039 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5040 static void 5041 th_trace_rrecord(th_trace_t *th_trace) 5042 { 5043 tr_buf_t *tr_buf; 5044 uint_t lastref; 5045 5046 lastref = th_trace->th_trace_lastref; 5047 lastref++; 5048 if (lastref == TR_BUF_MAX) 5049 lastref = 0; 5050 th_trace->th_trace_lastref = lastref; 5051 tr_buf = &th_trace->th_trbuf[lastref]; 5052 tr_buf->tr_time = ddi_get_lbolt(); 5053 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5054 } 5055 5056 static void 5057 th_trace_free(void *value) 5058 { 5059 th_trace_t *th_trace = value; 5060 5061 ASSERT(th_trace->th_refcnt == 0); 5062 kmem_free(th_trace, sizeof (*th_trace)); 5063 } 5064 5065 /* 5066 * Find or create the per-thread hash table used to track object references. 5067 * The ipst argument is NULL if we shouldn't allocate. 5068 * 5069 * Accesses per-thread data, so there's no need to lock here. 5070 */ 5071 static mod_hash_t * 5072 th_trace_gethash(ip_stack_t *ipst) 5073 { 5074 th_hash_t *thh; 5075 5076 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5077 mod_hash_t *mh; 5078 char name[256]; 5079 size_t objsize, rshift; 5080 int retv; 5081 5082 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5083 return (NULL); 5084 (void) snprintf(name, sizeof (name), "th_trace_%p", 5085 (void *)curthread); 5086 5087 /* 5088 * We use mod_hash_create_extended here rather than the more 5089 * obvious mod_hash_create_ptrhash because the latter has a 5090 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5091 * block. 5092 */ 5093 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5094 MAX(sizeof (ire_t), sizeof (ncec_t))); 5095 rshift = highbit(objsize); 5096 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5097 th_trace_free, mod_hash_byptr, (void *)rshift, 5098 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5099 if (mh == NULL) { 5100 kmem_free(thh, sizeof (*thh)); 5101 return (NULL); 5102 } 5103 thh->thh_hash = mh; 5104 thh->thh_ipst = ipst; 5105 /* 5106 * We trace ills, ipifs, ires, and nces. All of these are 5107 * per-IP-stack, so the lock on the thread list is as well. 5108 */ 5109 rw_enter(&ip_thread_rwlock, RW_WRITER); 5110 list_insert_tail(&ip_thread_list, thh); 5111 rw_exit(&ip_thread_rwlock); 5112 retv = tsd_set(ip_thread_data, thh); 5113 ASSERT(retv == 0); 5114 } 5115 return (thh != NULL ? thh->thh_hash : NULL); 5116 } 5117 5118 boolean_t 5119 th_trace_ref(const void *obj, ip_stack_t *ipst) 5120 { 5121 th_trace_t *th_trace; 5122 mod_hash_t *mh; 5123 mod_hash_val_t val; 5124 5125 if ((mh = th_trace_gethash(ipst)) == NULL) 5126 return (B_FALSE); 5127 5128 /* 5129 * Attempt to locate the trace buffer for this obj and thread. 5130 * If it does not exist, then allocate a new trace buffer and 5131 * insert into the hash. 5132 */ 5133 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5134 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5135 if (th_trace == NULL) 5136 return (B_FALSE); 5137 5138 th_trace->th_id = curthread; 5139 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5140 (mod_hash_val_t)th_trace) != 0) { 5141 kmem_free(th_trace, sizeof (th_trace_t)); 5142 return (B_FALSE); 5143 } 5144 } else { 5145 th_trace = (th_trace_t *)val; 5146 } 5147 5148 ASSERT(th_trace->th_refcnt >= 0 && 5149 th_trace->th_refcnt < TR_BUF_MAX - 1); 5150 5151 th_trace->th_refcnt++; 5152 th_trace_rrecord(th_trace); 5153 return (B_TRUE); 5154 } 5155 5156 /* 5157 * For the purpose of tracing a reference release, we assume that global 5158 * tracing is always on and that the same thread initiated the reference hold 5159 * is releasing. 5160 */ 5161 void 5162 th_trace_unref(const void *obj) 5163 { 5164 int retv; 5165 mod_hash_t *mh; 5166 th_trace_t *th_trace; 5167 mod_hash_val_t val; 5168 5169 mh = th_trace_gethash(NULL); 5170 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5171 ASSERT(retv == 0); 5172 th_trace = (th_trace_t *)val; 5173 5174 ASSERT(th_trace->th_refcnt > 0); 5175 th_trace->th_refcnt--; 5176 th_trace_rrecord(th_trace); 5177 } 5178 5179 /* 5180 * If tracing has been disabled, then we assume that the reference counts are 5181 * now useless, and we clear them out before destroying the entries. 5182 */ 5183 void 5184 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5185 { 5186 th_hash_t *thh; 5187 mod_hash_t *mh; 5188 mod_hash_val_t val; 5189 th_trace_t *th_trace; 5190 int retv; 5191 5192 rw_enter(&ip_thread_rwlock, RW_READER); 5193 for (thh = list_head(&ip_thread_list); thh != NULL; 5194 thh = list_next(&ip_thread_list, thh)) { 5195 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5196 &val) == 0) { 5197 th_trace = (th_trace_t *)val; 5198 if (trace_disable) 5199 th_trace->th_refcnt = 0; 5200 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5201 ASSERT(retv == 0); 5202 } 5203 } 5204 rw_exit(&ip_thread_rwlock); 5205 } 5206 5207 void 5208 ipif_trace_ref(ipif_t *ipif) 5209 { 5210 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5211 5212 if (ipif->ipif_trace_disable) 5213 return; 5214 5215 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5216 ipif->ipif_trace_disable = B_TRUE; 5217 ipif_trace_cleanup(ipif); 5218 } 5219 } 5220 5221 void 5222 ipif_untrace_ref(ipif_t *ipif) 5223 { 5224 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5225 5226 if (!ipif->ipif_trace_disable) 5227 th_trace_unref(ipif); 5228 } 5229 5230 void 5231 ill_trace_ref(ill_t *ill) 5232 { 5233 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5234 5235 if (ill->ill_trace_disable) 5236 return; 5237 5238 if (!th_trace_ref(ill, ill->ill_ipst)) { 5239 ill->ill_trace_disable = B_TRUE; 5240 ill_trace_cleanup(ill); 5241 } 5242 } 5243 5244 void 5245 ill_untrace_ref(ill_t *ill) 5246 { 5247 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5248 5249 if (!ill->ill_trace_disable) 5250 th_trace_unref(ill); 5251 } 5252 5253 /* 5254 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5255 * failure, ipif_trace_disable is set. 5256 */ 5257 static void 5258 ipif_trace_cleanup(const ipif_t *ipif) 5259 { 5260 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5261 } 5262 5263 /* 5264 * Called when ill is unplumbed or when memory alloc fails. Note that on 5265 * failure, ill_trace_disable is set. 5266 */ 5267 static void 5268 ill_trace_cleanup(const ill_t *ill) 5269 { 5270 th_trace_cleanup(ill, ill->ill_trace_disable); 5271 } 5272 #endif /* DEBUG */ 5273 5274 void 5275 ipif_refhold_locked(ipif_t *ipif) 5276 { 5277 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5278 ipif->ipif_refcnt++; 5279 IPIF_TRACE_REF(ipif); 5280 } 5281 5282 void 5283 ipif_refhold(ipif_t *ipif) 5284 { 5285 ill_t *ill; 5286 5287 ill = ipif->ipif_ill; 5288 mutex_enter(&ill->ill_lock); 5289 ipif->ipif_refcnt++; 5290 IPIF_TRACE_REF(ipif); 5291 mutex_exit(&ill->ill_lock); 5292 } 5293 5294 /* 5295 * Must not be called while holding any locks. Otherwise if this is 5296 * the last reference to be released there is a chance of recursive mutex 5297 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5298 * to restart an ioctl. 5299 */ 5300 void 5301 ipif_refrele(ipif_t *ipif) 5302 { 5303 ill_t *ill; 5304 5305 ill = ipif->ipif_ill; 5306 5307 mutex_enter(&ill->ill_lock); 5308 ASSERT(ipif->ipif_refcnt != 0); 5309 ipif->ipif_refcnt--; 5310 IPIF_UNTRACE_REF(ipif); 5311 if (ipif->ipif_refcnt != 0) { 5312 mutex_exit(&ill->ill_lock); 5313 return; 5314 } 5315 5316 /* Drops the ill_lock */ 5317 ipif_ill_refrele_tail(ill); 5318 } 5319 5320 ipif_t * 5321 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5322 { 5323 ipif_t *ipif; 5324 5325 mutex_enter(&ill->ill_lock); 5326 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5327 ipif != NULL; ipif = ipif->ipif_next) { 5328 if (IPIF_IS_CONDEMNED(ipif)) 5329 continue; 5330 ipif_refhold_locked(ipif); 5331 mutex_exit(&ill->ill_lock); 5332 return (ipif); 5333 } 5334 mutex_exit(&ill->ill_lock); 5335 return (NULL); 5336 } 5337 5338 /* 5339 * TODO: make this table extendible at run time 5340 * Return a pointer to the mac type info for 'mac_type' 5341 */ 5342 static ip_m_t * 5343 ip_m_lookup(t_uscalar_t mac_type) 5344 { 5345 ip_m_t *ipm; 5346 5347 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5348 if (ipm->ip_m_mac_type == mac_type) 5349 return (ipm); 5350 return (NULL); 5351 } 5352 5353 /* 5354 * Make a link layer address from the multicast IP address *addr. 5355 * To form the link layer address, invoke the ip_m_v*mapping function 5356 * associated with the link-layer type. 5357 */ 5358 void 5359 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5360 { 5361 ip_m_t *ipm; 5362 5363 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5364 return; 5365 5366 ASSERT(addr != NULL); 5367 5368 ipm = ip_m_lookup(ill->ill_mactype); 5369 if (ipm == NULL || 5370 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5371 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5372 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5373 ill->ill_name, ill->ill_mactype)); 5374 return; 5375 } 5376 if (ill->ill_isv6) 5377 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5378 else 5379 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5380 } 5381 5382 /* 5383 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5384 * Otherwise returns B_TRUE. 5385 * 5386 * The netmask can be verified to be contiguous with 32 shifts and or 5387 * operations. Take the contiguous mask (in host byte order) and compute 5388 * mask | mask << 1 | mask << 2 | ... | mask << 31 5389 * the result will be the same as the 'mask' for contiguous mask. 5390 */ 5391 static boolean_t 5392 ip_contiguous_mask(uint32_t mask) 5393 { 5394 uint32_t m = mask; 5395 int i; 5396 5397 for (i = 1; i < 32; i++) 5398 m |= (mask << i); 5399 5400 return (m == mask); 5401 } 5402 5403 /* 5404 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5405 * ill is passed in to associate it with the correct interface. 5406 * If ire_arg is set, then we return the held IRE in that location. 5407 */ 5408 int 5409 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5410 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5411 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5412 { 5413 ire_t *ire, *nire; 5414 ire_t *gw_ire = NULL; 5415 ipif_t *ipif = NULL; 5416 uint_t type; 5417 int match_flags = MATCH_IRE_TYPE; 5418 tsol_gc_t *gc = NULL; 5419 tsol_gcgrp_t *gcgrp = NULL; 5420 boolean_t gcgrp_xtraref = B_FALSE; 5421 boolean_t cgtp_broadcast; 5422 boolean_t unbound = B_FALSE; 5423 5424 ip1dbg(("ip_rt_add:")); 5425 5426 if (ire_arg != NULL) 5427 *ire_arg = NULL; 5428 5429 /* disallow non-contiguous netmasks */ 5430 if (!ip_contiguous_mask(ntohl(mask))) 5431 return (ENOTSUP); 5432 5433 /* 5434 * If this is the case of RTF_HOST being set, then we set the netmask 5435 * to all ones (regardless if one was supplied). 5436 */ 5437 if (flags & RTF_HOST) 5438 mask = IP_HOST_MASK; 5439 5440 /* 5441 * Prevent routes with a zero gateway from being created (since 5442 * interfaces can currently be plumbed and brought up no assigned 5443 * address). 5444 */ 5445 if (gw_addr == 0) 5446 return (ENETUNREACH); 5447 /* 5448 * Get the ipif, if any, corresponding to the gw_addr 5449 * If -ifp was specified we restrict ourselves to the ill, otherwise 5450 * we match on the gatway and destination to handle unnumbered pt-pt 5451 * interfaces. 5452 */ 5453 if (ill != NULL) 5454 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5455 else 5456 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5457 if (ipif != NULL) { 5458 if (IS_VNI(ipif->ipif_ill)) { 5459 ipif_refrele(ipif); 5460 return (EINVAL); 5461 } 5462 } 5463 5464 /* 5465 * GateD will attempt to create routes with a loopback interface 5466 * address as the gateway and with RTF_GATEWAY set. We allow 5467 * these routes to be added, but create them as interface routes 5468 * since the gateway is an interface address. 5469 */ 5470 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5471 flags &= ~RTF_GATEWAY; 5472 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5473 mask == IP_HOST_MASK) { 5474 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5475 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5476 NULL); 5477 if (ire != NULL) { 5478 ire_refrele(ire); 5479 ipif_refrele(ipif); 5480 return (EEXIST); 5481 } 5482 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5483 "for 0x%x\n", (void *)ipif, 5484 ipif->ipif_ire_type, 5485 ntohl(ipif->ipif_lcl_addr))); 5486 ire = ire_create( 5487 (uchar_t *)&dst_addr, /* dest address */ 5488 (uchar_t *)&mask, /* mask */ 5489 NULL, /* no gateway */ 5490 ipif->ipif_ire_type, /* LOOPBACK */ 5491 ipif->ipif_ill, 5492 zoneid, 5493 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5494 NULL, 5495 ipst); 5496 5497 if (ire == NULL) { 5498 ipif_refrele(ipif); 5499 return (ENOMEM); 5500 } 5501 /* src address assigned by the caller? */ 5502 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5503 ire->ire_setsrc_addr = src_addr; 5504 5505 nire = ire_add(ire); 5506 if (nire == NULL) { 5507 /* 5508 * In the result of failure, ire_add() will have 5509 * already deleted the ire in question, so there 5510 * is no need to do that here. 5511 */ 5512 ipif_refrele(ipif); 5513 return (ENOMEM); 5514 } 5515 /* 5516 * Check if it was a duplicate entry. This handles 5517 * the case of two racing route adds for the same route 5518 */ 5519 if (nire != ire) { 5520 ASSERT(nire->ire_identical_ref > 1); 5521 ire_delete(nire); 5522 ire_refrele(nire); 5523 ipif_refrele(ipif); 5524 return (EEXIST); 5525 } 5526 ire = nire; 5527 goto save_ire; 5528 } 5529 } 5530 5531 /* 5532 * The routes for multicast with CGTP are quite special in that 5533 * the gateway is the local interface address, yet RTF_GATEWAY 5534 * is set. We turn off RTF_GATEWAY to provide compatibility with 5535 * this undocumented and unusual use of multicast routes. 5536 */ 5537 if ((flags & RTF_MULTIRT) && ipif != NULL) 5538 flags &= ~RTF_GATEWAY; 5539 5540 /* 5541 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5542 * and the gateway address provided is one of the system's interface 5543 * addresses. By using the routing socket interface and supplying an 5544 * RTA_IFP sockaddr with an interface index, an alternate method of 5545 * specifying an interface route to be created is available which uses 5546 * the interface index that specifies the outgoing interface rather than 5547 * the address of an outgoing interface (which may not be able to 5548 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5549 * flag, routes can be specified which not only specify the next-hop to 5550 * be used when routing to a certain prefix, but also which outgoing 5551 * interface should be used. 5552 * 5553 * Previously, interfaces would have unique addresses assigned to them 5554 * and so the address assigned to a particular interface could be used 5555 * to identify a particular interface. One exception to this was the 5556 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5557 * 5558 * With the advent of IPv6 and its link-local addresses, this 5559 * restriction was relaxed and interfaces could share addresses between 5560 * themselves. In fact, typically all of the link-local interfaces on 5561 * an IPv6 node or router will have the same link-local address. In 5562 * order to differentiate between these interfaces, the use of an 5563 * interface index is necessary and this index can be carried inside a 5564 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5565 * of using the interface index, however, is that all of the ipif's that 5566 * are part of an ill have the same index and so the RTA_IFP sockaddr 5567 * cannot be used to differentiate between ipif's (or logical 5568 * interfaces) that belong to the same ill (physical interface). 5569 * 5570 * For example, in the following case involving IPv4 interfaces and 5571 * logical interfaces 5572 * 5573 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5574 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5575 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5576 * 5577 * the ipif's corresponding to each of these interface routes can be 5578 * uniquely identified by the "gateway" (actually interface address). 5579 * 5580 * In this case involving multiple IPv6 default routes to a particular 5581 * link-local gateway, the use of RTA_IFP is necessary to specify which 5582 * default route is of interest: 5583 * 5584 * default fe80::123:4567:89ab:cdef U if0 5585 * default fe80::123:4567:89ab:cdef U if1 5586 */ 5587 5588 /* RTF_GATEWAY not set */ 5589 if (!(flags & RTF_GATEWAY)) { 5590 if (sp != NULL) { 5591 ip2dbg(("ip_rt_add: gateway security attributes " 5592 "cannot be set with interface route\n")); 5593 if (ipif != NULL) 5594 ipif_refrele(ipif); 5595 return (EINVAL); 5596 } 5597 5598 /* 5599 * Whether or not ill (RTA_IFP) is set, we require that 5600 * the gateway is one of our local addresses. 5601 */ 5602 if (ipif == NULL) 5603 return (ENETUNREACH); 5604 5605 /* 5606 * We use MATCH_IRE_ILL here. If the caller specified an 5607 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5608 * we use the ill derived from the gateway address. 5609 * We can always match the gateway address since we record it 5610 * in ire_gateway_addr. 5611 * We don't allow RTA_IFP to specify a different ill than the 5612 * one matching the ipif to make sure we can delete the route. 5613 */ 5614 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5615 if (ill == NULL) { 5616 ill = ipif->ipif_ill; 5617 } else if (ill != ipif->ipif_ill) { 5618 ipif_refrele(ipif); 5619 return (EINVAL); 5620 } 5621 5622 /* 5623 * We check for an existing entry at this point. 5624 * 5625 * Since a netmask isn't passed in via the ioctl interface 5626 * (SIOCADDRT), we don't check for a matching netmask in that 5627 * case. 5628 */ 5629 if (!ioctl_msg) 5630 match_flags |= MATCH_IRE_MASK; 5631 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5632 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5633 NULL); 5634 if (ire != NULL) { 5635 ire_refrele(ire); 5636 ipif_refrele(ipif); 5637 return (EEXIST); 5638 } 5639 5640 /* 5641 * Some software (for example, GateD and Sun Cluster) attempts 5642 * to create (what amount to) IRE_PREFIX routes with the 5643 * loopback address as the gateway. This is primarily done to 5644 * set up prefixes with the RTF_REJECT flag set (for example, 5645 * when generating aggregate routes.) 5646 * 5647 * If the IRE type (as defined by ill->ill_net_type) would be 5648 * IRE_LOOPBACK, then we map the request into a 5649 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5650 * these interface routes, by definition, can only be that. 5651 * 5652 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5653 * routine, but rather using ire_create() directly. 5654 * 5655 */ 5656 type = ill->ill_net_type; 5657 if (type == IRE_LOOPBACK) { 5658 type = IRE_IF_NORESOLVER; 5659 flags |= RTF_BLACKHOLE; 5660 } 5661 5662 /* 5663 * Create a copy of the IRE_IF_NORESOLVER or 5664 * IRE_IF_RESOLVER with the modified address, netmask, and 5665 * gateway. 5666 */ 5667 ire = ire_create( 5668 (uchar_t *)&dst_addr, 5669 (uint8_t *)&mask, 5670 (uint8_t *)&gw_addr, 5671 type, 5672 ill, 5673 zoneid, 5674 flags, 5675 NULL, 5676 ipst); 5677 if (ire == NULL) { 5678 ipif_refrele(ipif); 5679 return (ENOMEM); 5680 } 5681 5682 /* src address assigned by the caller? */ 5683 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5684 ire->ire_setsrc_addr = src_addr; 5685 5686 nire = ire_add(ire); 5687 if (nire == NULL) { 5688 /* 5689 * In the result of failure, ire_add() will have 5690 * already deleted the ire in question, so there 5691 * is no need to do that here. 5692 */ 5693 ipif_refrele(ipif); 5694 return (ENOMEM); 5695 } 5696 /* 5697 * Check if it was a duplicate entry. This handles 5698 * the case of two racing route adds for the same route 5699 */ 5700 if (nire != ire) { 5701 ire_delete(nire); 5702 ire_refrele(nire); 5703 ipif_refrele(ipif); 5704 return (EEXIST); 5705 } 5706 ire = nire; 5707 goto save_ire; 5708 } 5709 5710 /* 5711 * Get an interface IRE for the specified gateway. 5712 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5713 * gateway, it is currently unreachable and we fail the request 5714 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5715 * is an IRE_LOCAL or IRE_LOOPBACK. 5716 * If RTA_IFP was specified we look on that particular ill. 5717 */ 5718 if (ill != NULL) 5719 match_flags |= MATCH_IRE_ILL; 5720 5721 /* Check whether the gateway is reachable. */ 5722 again: 5723 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5724 if (flags & RTF_INDIRECT) 5725 type |= IRE_OFFLINK; 5726 5727 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5728 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5729 if (gw_ire == NULL) { 5730 /* 5731 * With IPMP, we allow host routes to influence in.mpathd's 5732 * target selection. However, if the test addresses are on 5733 * their own network, the above lookup will fail since the 5734 * underlying IRE_INTERFACEs are marked hidden. So allow 5735 * hidden test IREs to be found and try again. 5736 */ 5737 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5738 match_flags |= MATCH_IRE_TESTHIDDEN; 5739 goto again; 5740 } 5741 if (ipif != NULL) 5742 ipif_refrele(ipif); 5743 return (ENETUNREACH); 5744 } 5745 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5746 ire_refrele(gw_ire); 5747 if (ipif != NULL) 5748 ipif_refrele(ipif); 5749 return (ENETUNREACH); 5750 } 5751 5752 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5753 unbound = B_TRUE; 5754 if (ipst->ips_ip_strict_src_multihoming > 0) 5755 ill = gw_ire->ire_ill; 5756 } 5757 5758 /* 5759 * We create one of three types of IREs as a result of this request 5760 * based on the netmask. A netmask of all ones (which is automatically 5761 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5762 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5763 * created. Otherwise, an IRE_PREFIX route is created for the 5764 * destination prefix. 5765 */ 5766 if (mask == IP_HOST_MASK) 5767 type = IRE_HOST; 5768 else if (mask == 0) 5769 type = IRE_DEFAULT; 5770 else 5771 type = IRE_PREFIX; 5772 5773 /* check for a duplicate entry */ 5774 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5775 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5776 0, ipst, NULL); 5777 if (ire != NULL) { 5778 if (ipif != NULL) 5779 ipif_refrele(ipif); 5780 ire_refrele(gw_ire); 5781 ire_refrele(ire); 5782 return (EEXIST); 5783 } 5784 5785 /* Security attribute exists */ 5786 if (sp != NULL) { 5787 tsol_gcgrp_addr_t ga; 5788 5789 /* find or create the gateway credentials group */ 5790 ga.ga_af = AF_INET; 5791 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5792 5793 /* we hold reference to it upon success */ 5794 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5795 if (gcgrp == NULL) { 5796 if (ipif != NULL) 5797 ipif_refrele(ipif); 5798 ire_refrele(gw_ire); 5799 return (ENOMEM); 5800 } 5801 5802 /* 5803 * Create and add the security attribute to the group; a 5804 * reference to the group is made upon allocating a new 5805 * entry successfully. If it finds an already-existing 5806 * entry for the security attribute in the group, it simply 5807 * returns it and no new reference is made to the group. 5808 */ 5809 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5810 if (gc == NULL) { 5811 if (ipif != NULL) 5812 ipif_refrele(ipif); 5813 /* release reference held by gcgrp_lookup */ 5814 GCGRP_REFRELE(gcgrp); 5815 ire_refrele(gw_ire); 5816 return (ENOMEM); 5817 } 5818 } 5819 5820 /* Create the IRE. */ 5821 ire = ire_create( 5822 (uchar_t *)&dst_addr, /* dest address */ 5823 (uchar_t *)&mask, /* mask */ 5824 (uchar_t *)&gw_addr, /* gateway address */ 5825 (ushort_t)type, /* IRE type */ 5826 ill, 5827 zoneid, 5828 flags, 5829 gc, /* security attribute */ 5830 ipst); 5831 5832 /* 5833 * The ire holds a reference to the 'gc' and the 'gc' holds a 5834 * reference to the 'gcgrp'. We can now release the extra reference 5835 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5836 */ 5837 if (gcgrp_xtraref) 5838 GCGRP_REFRELE(gcgrp); 5839 if (ire == NULL) { 5840 if (gc != NULL) 5841 GC_REFRELE(gc); 5842 if (ipif != NULL) 5843 ipif_refrele(ipif); 5844 ire_refrele(gw_ire); 5845 return (ENOMEM); 5846 } 5847 5848 /* Before we add, check if an extra CGTP broadcast is needed */ 5849 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5850 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5851 5852 /* src address assigned by the caller? */ 5853 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5854 ire->ire_setsrc_addr = src_addr; 5855 5856 ire->ire_unbound = unbound; 5857 5858 /* 5859 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5860 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5861 */ 5862 5863 /* Add the new IRE. */ 5864 nire = ire_add(ire); 5865 if (nire == NULL) { 5866 /* 5867 * In the result of failure, ire_add() will have 5868 * already deleted the ire in question, so there 5869 * is no need to do that here. 5870 */ 5871 if (ipif != NULL) 5872 ipif_refrele(ipif); 5873 ire_refrele(gw_ire); 5874 return (ENOMEM); 5875 } 5876 /* 5877 * Check if it was a duplicate entry. This handles 5878 * the case of two racing route adds for the same route 5879 */ 5880 if (nire != ire) { 5881 ire_delete(nire); 5882 ire_refrele(nire); 5883 if (ipif != NULL) 5884 ipif_refrele(ipif); 5885 ire_refrele(gw_ire); 5886 return (EEXIST); 5887 } 5888 ire = nire; 5889 5890 if (flags & RTF_MULTIRT) { 5891 /* 5892 * Invoke the CGTP (multirouting) filtering module 5893 * to add the dst address in the filtering database. 5894 * Replicated inbound packets coming from that address 5895 * will be filtered to discard the duplicates. 5896 * It is not necessary to call the CGTP filter hook 5897 * when the dst address is a broadcast or multicast, 5898 * because an IP source address cannot be a broadcast 5899 * or a multicast. 5900 */ 5901 if (cgtp_broadcast) { 5902 ip_cgtp_bcast_add(ire, ipst); 5903 goto save_ire; 5904 } 5905 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5906 !CLASSD(ire->ire_addr)) { 5907 int res; 5908 ipif_t *src_ipif; 5909 5910 /* Find the source address corresponding to gw_ire */ 5911 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5912 NULL, zoneid, ipst); 5913 if (src_ipif != NULL) { 5914 res = ipst->ips_ip_cgtp_filter_ops-> 5915 cfo_add_dest_v4( 5916 ipst->ips_netstack->netstack_stackid, 5917 ire->ire_addr, 5918 ire->ire_gateway_addr, 5919 ire->ire_setsrc_addr, 5920 src_ipif->ipif_lcl_addr); 5921 ipif_refrele(src_ipif); 5922 } else { 5923 res = EADDRNOTAVAIL; 5924 } 5925 if (res != 0) { 5926 if (ipif != NULL) 5927 ipif_refrele(ipif); 5928 ire_refrele(gw_ire); 5929 ire_delete(ire); 5930 ire_refrele(ire); /* Held in ire_add */ 5931 return (res); 5932 } 5933 } 5934 } 5935 5936 save_ire: 5937 if (gw_ire != NULL) { 5938 ire_refrele(gw_ire); 5939 gw_ire = NULL; 5940 } 5941 if (ill != NULL) { 5942 /* 5943 * Save enough information so that we can recreate the IRE if 5944 * the interface goes down and then up. The metrics associated 5945 * with the route will be saved as well when rts_setmetrics() is 5946 * called after the IRE has been created. In the case where 5947 * memory cannot be allocated, none of this information will be 5948 * saved. 5949 */ 5950 ill_save_ire(ill, ire); 5951 } 5952 if (ioctl_msg) 5953 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5954 if (ire_arg != NULL) { 5955 /* 5956 * Store the ire that was successfully added into where ire_arg 5957 * points to so that callers don't have to look it up 5958 * themselves (but they are responsible for ire_refrele()ing 5959 * the ire when they are finished with it). 5960 */ 5961 *ire_arg = ire; 5962 } else { 5963 ire_refrele(ire); /* Held in ire_add */ 5964 } 5965 if (ipif != NULL) 5966 ipif_refrele(ipif); 5967 return (0); 5968 } 5969 5970 /* 5971 * ip_rt_delete is called to delete an IPv4 route. 5972 * ill is passed in to associate it with the correct interface. 5973 */ 5974 /* ARGSUSED4 */ 5975 int 5976 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5977 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5978 ip_stack_t *ipst, zoneid_t zoneid) 5979 { 5980 ire_t *ire = NULL; 5981 ipif_t *ipif; 5982 uint_t type; 5983 uint_t match_flags = MATCH_IRE_TYPE; 5984 int err = 0; 5985 5986 ip1dbg(("ip_rt_delete:")); 5987 /* 5988 * If this is the case of RTF_HOST being set, then we set the netmask 5989 * to all ones. Otherwise, we use the netmask if one was supplied. 5990 */ 5991 if (flags & RTF_HOST) { 5992 mask = IP_HOST_MASK; 5993 match_flags |= MATCH_IRE_MASK; 5994 } else if (rtm_addrs & RTA_NETMASK) { 5995 match_flags |= MATCH_IRE_MASK; 5996 } 5997 5998 /* 5999 * Note that RTF_GATEWAY is never set on a delete, therefore 6000 * we check if the gateway address is one of our interfaces first, 6001 * and fall back on RTF_GATEWAY routes. 6002 * 6003 * This makes it possible to delete an original 6004 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6005 * However, we have RTF_KERNEL set on the ones created by ipif_up 6006 * and those can not be deleted here. 6007 * 6008 * We use MATCH_IRE_ILL if we know the interface. If the caller 6009 * specified an interface (from the RTA_IFP sockaddr) we use it, 6010 * otherwise we use the ill derived from the gateway address. 6011 * We can always match the gateway address since we record it 6012 * in ire_gateway_addr. 6013 * 6014 * For more detail on specifying routes by gateway address and by 6015 * interface index, see the comments in ip_rt_add(). 6016 */ 6017 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6018 if (ipif != NULL) { 6019 ill_t *ill_match; 6020 6021 if (ill != NULL) 6022 ill_match = ill; 6023 else 6024 ill_match = ipif->ipif_ill; 6025 6026 match_flags |= MATCH_IRE_ILL; 6027 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6028 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6029 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6030 match_flags, 0, ipst, NULL); 6031 } 6032 if (ire == NULL) { 6033 match_flags |= MATCH_IRE_GW; 6034 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6035 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6036 match_flags, 0, ipst, NULL); 6037 } 6038 /* Avoid deleting routes created by kernel from an ipif */ 6039 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6040 ire_refrele(ire); 6041 ire = NULL; 6042 } 6043 6044 /* Restore in case we didn't find a match */ 6045 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6046 } 6047 6048 if (ire == NULL) { 6049 /* 6050 * At this point, the gateway address is not one of our own 6051 * addresses or a matching interface route was not found. We 6052 * set the IRE type to lookup based on whether 6053 * this is a host route, a default route or just a prefix. 6054 * 6055 * If an ill was passed in, then the lookup is based on an 6056 * interface index so MATCH_IRE_ILL is added to match_flags. 6057 */ 6058 match_flags |= MATCH_IRE_GW; 6059 if (ill != NULL) 6060 match_flags |= MATCH_IRE_ILL; 6061 if (mask == IP_HOST_MASK) 6062 type = IRE_HOST; 6063 else if (mask == 0) 6064 type = IRE_DEFAULT; 6065 else 6066 type = IRE_PREFIX; 6067 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6068 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6069 } 6070 6071 if (ipif != NULL) { 6072 ipif_refrele(ipif); 6073 ipif = NULL; 6074 } 6075 6076 if (ire == NULL) 6077 return (ESRCH); 6078 6079 if (ire->ire_flags & RTF_MULTIRT) { 6080 /* 6081 * Invoke the CGTP (multirouting) filtering module 6082 * to remove the dst address from the filtering database. 6083 * Packets coming from that address will no longer be 6084 * filtered to remove duplicates. 6085 */ 6086 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6087 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6088 ipst->ips_netstack->netstack_stackid, 6089 ire->ire_addr, ire->ire_gateway_addr); 6090 } 6091 ip_cgtp_bcast_delete(ire, ipst); 6092 } 6093 6094 ill = ire->ire_ill; 6095 if (ill != NULL) 6096 ill_remove_saved_ire(ill, ire); 6097 if (ioctl_msg) 6098 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6099 ire_delete(ire); 6100 ire_refrele(ire); 6101 return (err); 6102 } 6103 6104 /* 6105 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6106 */ 6107 /* ARGSUSED */ 6108 int 6109 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6110 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6111 { 6112 ipaddr_t dst_addr; 6113 ipaddr_t gw_addr; 6114 ipaddr_t mask; 6115 int error = 0; 6116 mblk_t *mp1; 6117 struct rtentry *rt; 6118 ipif_t *ipif = NULL; 6119 ip_stack_t *ipst; 6120 6121 ASSERT(q->q_next == NULL); 6122 ipst = CONNQ_TO_IPST(q); 6123 6124 ip1dbg(("ip_siocaddrt:")); 6125 /* Existence of mp1 verified in ip_wput_nondata */ 6126 mp1 = mp->b_cont->b_cont; 6127 rt = (struct rtentry *)mp1->b_rptr; 6128 6129 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6130 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6131 6132 /* 6133 * If the RTF_HOST flag is on, this is a request to assign a gateway 6134 * to a particular host address. In this case, we set the netmask to 6135 * all ones for the particular destination address. Otherwise, 6136 * determine the netmask to be used based on dst_addr and the interfaces 6137 * in use. 6138 */ 6139 if (rt->rt_flags & RTF_HOST) { 6140 mask = IP_HOST_MASK; 6141 } else { 6142 /* 6143 * Note that ip_subnet_mask returns a zero mask in the case of 6144 * default (an all-zeroes address). 6145 */ 6146 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6147 } 6148 6149 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6150 B_TRUE, NULL, ipst, ALL_ZONES); 6151 if (ipif != NULL) 6152 ipif_refrele(ipif); 6153 return (error); 6154 } 6155 6156 /* 6157 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6158 */ 6159 /* ARGSUSED */ 6160 int 6161 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6162 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6163 { 6164 ipaddr_t dst_addr; 6165 ipaddr_t gw_addr; 6166 ipaddr_t mask; 6167 int error; 6168 mblk_t *mp1; 6169 struct rtentry *rt; 6170 ipif_t *ipif = NULL; 6171 ip_stack_t *ipst; 6172 6173 ASSERT(q->q_next == NULL); 6174 ipst = CONNQ_TO_IPST(q); 6175 6176 ip1dbg(("ip_siocdelrt:")); 6177 /* Existence of mp1 verified in ip_wput_nondata */ 6178 mp1 = mp->b_cont->b_cont; 6179 rt = (struct rtentry *)mp1->b_rptr; 6180 6181 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6182 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6183 6184 /* 6185 * If the RTF_HOST flag is on, this is a request to delete a gateway 6186 * to a particular host address. In this case, we set the netmask to 6187 * all ones for the particular destination address. Otherwise, 6188 * determine the netmask to be used based on dst_addr and the interfaces 6189 * in use. 6190 */ 6191 if (rt->rt_flags & RTF_HOST) { 6192 mask = IP_HOST_MASK; 6193 } else { 6194 /* 6195 * Note that ip_subnet_mask returns a zero mask in the case of 6196 * default (an all-zeroes address). 6197 */ 6198 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6199 } 6200 6201 error = ip_rt_delete(dst_addr, mask, gw_addr, 6202 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6203 ipst, ALL_ZONES); 6204 if (ipif != NULL) 6205 ipif_refrele(ipif); 6206 return (error); 6207 } 6208 6209 /* 6210 * Enqueue the mp onto the ipsq, chained by b_next. 6211 * b_prev stores the function to be executed later, and b_queue the queue 6212 * where this mp originated. 6213 */ 6214 void 6215 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6216 ill_t *pending_ill) 6217 { 6218 conn_t *connp; 6219 ipxop_t *ipx = ipsq->ipsq_xop; 6220 6221 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6222 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6223 ASSERT(func != NULL); 6224 6225 mp->b_queue = q; 6226 mp->b_prev = (void *)func; 6227 mp->b_next = NULL; 6228 6229 switch (type) { 6230 case CUR_OP: 6231 if (ipx->ipx_mptail != NULL) { 6232 ASSERT(ipx->ipx_mphead != NULL); 6233 ipx->ipx_mptail->b_next = mp; 6234 } else { 6235 ASSERT(ipx->ipx_mphead == NULL); 6236 ipx->ipx_mphead = mp; 6237 } 6238 ipx->ipx_mptail = mp; 6239 break; 6240 6241 case NEW_OP: 6242 if (ipsq->ipsq_xopq_mptail != NULL) { 6243 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6244 ipsq->ipsq_xopq_mptail->b_next = mp; 6245 } else { 6246 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6247 ipsq->ipsq_xopq_mphead = mp; 6248 } 6249 ipsq->ipsq_xopq_mptail = mp; 6250 ipx->ipx_ipsq_queued = B_TRUE; 6251 break; 6252 6253 case SWITCH_OP: 6254 ASSERT(ipsq->ipsq_swxop != NULL); 6255 /* only one switch operation is currently allowed */ 6256 ASSERT(ipsq->ipsq_switch_mp == NULL); 6257 ipsq->ipsq_switch_mp = mp; 6258 ipx->ipx_ipsq_queued = B_TRUE; 6259 break; 6260 default: 6261 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6262 } 6263 6264 if (CONN_Q(q) && pending_ill != NULL) { 6265 connp = Q_TO_CONN(q); 6266 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6267 connp->conn_oper_pending_ill = pending_ill; 6268 } 6269 } 6270 6271 /* 6272 * Dequeue the next message that requested exclusive access to this IPSQ's 6273 * xop. Specifically: 6274 * 6275 * 1. If we're still processing the current operation on `ipsq', then 6276 * dequeue the next message for the operation (from ipx_mphead), or 6277 * return NULL if there are no queued messages for the operation. 6278 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6279 * 6280 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6281 * not set) see if the ipsq has requested an xop switch. If so, switch 6282 * `ipsq' to a different xop. Xop switches only happen when joining or 6283 * leaving IPMP groups and require a careful dance -- see the comments 6284 * in-line below for details. If we're leaving a group xop or if we're 6285 * joining a group xop and become writer on it, then we proceed to (3). 6286 * Otherwise, we return NULL and exit the xop. 6287 * 6288 * 3. For each IPSQ in the xop, return any switch operation stored on 6289 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6290 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6291 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6292 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6293 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6294 * each phyint in the group, including the IPMP meta-interface phyint. 6295 */ 6296 static mblk_t * 6297 ipsq_dq(ipsq_t *ipsq) 6298 { 6299 ill_t *illv4, *illv6; 6300 mblk_t *mp; 6301 ipsq_t *xopipsq; 6302 ipsq_t *leftipsq = NULL; 6303 ipxop_t *ipx; 6304 phyint_t *phyi = ipsq->ipsq_phyint; 6305 ip_stack_t *ipst = ipsq->ipsq_ipst; 6306 boolean_t emptied = B_FALSE; 6307 6308 /* 6309 * Grab all the locks we need in the defined order (ill_g_lock -> 6310 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6311 */ 6312 rw_enter(&ipst->ips_ill_g_lock, 6313 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6314 mutex_enter(&ipsq->ipsq_lock); 6315 ipx = ipsq->ipsq_xop; 6316 mutex_enter(&ipx->ipx_lock); 6317 6318 /* 6319 * Dequeue the next message associated with the current exclusive 6320 * operation, if any. 6321 */ 6322 if ((mp = ipx->ipx_mphead) != NULL) { 6323 ipx->ipx_mphead = mp->b_next; 6324 if (ipx->ipx_mphead == NULL) 6325 ipx->ipx_mptail = NULL; 6326 mp->b_next = (void *)ipsq; 6327 goto out; 6328 } 6329 6330 if (ipx->ipx_current_ipif != NULL) 6331 goto empty; 6332 6333 if (ipsq->ipsq_swxop != NULL) { 6334 /* 6335 * The exclusive operation that is now being completed has 6336 * requested a switch to a different xop. This happens 6337 * when an interface joins or leaves an IPMP group. Joins 6338 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6339 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6340 * (phyint_free()), or interface plumb for an ill type 6341 * not in the IPMP group (ip_rput_dlpi_writer()). 6342 * 6343 * Xop switches are not allowed on the IPMP meta-interface. 6344 */ 6345 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6346 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6347 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6348 6349 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6350 /* 6351 * We're switching back to our own xop, so we have two 6352 * xop's to drain/exit: our own, and the group xop 6353 * that we are leaving. 6354 * 6355 * First, pull ourselves out of the group ipsq list. 6356 * This is safe since we're writer on ill_g_lock. 6357 */ 6358 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6359 6360 xopipsq = ipx->ipx_ipsq; 6361 while (xopipsq->ipsq_next != ipsq) 6362 xopipsq = xopipsq->ipsq_next; 6363 6364 xopipsq->ipsq_next = ipsq->ipsq_next; 6365 ipsq->ipsq_next = ipsq; 6366 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6367 ipsq->ipsq_swxop = NULL; 6368 6369 /* 6370 * Second, prepare to exit the group xop. The actual 6371 * ipsq_exit() is done at the end of this function 6372 * since we cannot hold any locks across ipsq_exit(). 6373 * Note that although we drop the group's ipx_lock, no 6374 * threads can proceed since we're still ipx_writer. 6375 */ 6376 leftipsq = xopipsq; 6377 mutex_exit(&ipx->ipx_lock); 6378 6379 /* 6380 * Third, set ipx to point to our own xop (which was 6381 * inactive and therefore can be entered). 6382 */ 6383 ipx = ipsq->ipsq_xop; 6384 mutex_enter(&ipx->ipx_lock); 6385 ASSERT(ipx->ipx_writer == NULL); 6386 ASSERT(ipx->ipx_current_ipif == NULL); 6387 } else { 6388 /* 6389 * We're switching from our own xop to a group xop. 6390 * The requestor of the switch must ensure that the 6391 * group xop cannot go away (e.g. by ensuring the 6392 * phyint associated with the xop cannot go away). 6393 * 6394 * If we can become writer on our new xop, then we'll 6395 * do the drain. Otherwise, the current writer of our 6396 * new xop will do the drain when it exits. 6397 * 6398 * First, splice ourselves into the group IPSQ list. 6399 * This is safe since we're writer on ill_g_lock. 6400 */ 6401 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6402 6403 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6404 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6405 xopipsq = xopipsq->ipsq_next; 6406 6407 xopipsq->ipsq_next = ipsq; 6408 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6409 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6410 ipsq->ipsq_swxop = NULL; 6411 6412 /* 6413 * Second, exit our own xop, since it's now unused. 6414 * This is safe since we've got the only reference. 6415 */ 6416 ASSERT(ipx->ipx_writer == curthread); 6417 ipx->ipx_writer = NULL; 6418 VERIFY(--ipx->ipx_reentry_cnt == 0); 6419 ipx->ipx_ipsq_queued = B_FALSE; 6420 mutex_exit(&ipx->ipx_lock); 6421 6422 /* 6423 * Third, set ipx to point to our new xop, and check 6424 * if we can become writer on it. If we cannot, then 6425 * the current writer will drain the IPSQ group when 6426 * it exits. Our ipsq_xop is guaranteed to be stable 6427 * because we're still holding ipsq_lock. 6428 */ 6429 ipx = ipsq->ipsq_xop; 6430 mutex_enter(&ipx->ipx_lock); 6431 if (ipx->ipx_writer != NULL || 6432 ipx->ipx_current_ipif != NULL) { 6433 goto out; 6434 } 6435 } 6436 6437 /* 6438 * Fourth, become writer on our new ipx before we continue 6439 * with the drain. Note that we never dropped ipsq_lock 6440 * above, so no other thread could've raced with us to 6441 * become writer first. Also, we're holding ipx_lock, so 6442 * no other thread can examine the ipx right now. 6443 */ 6444 ASSERT(ipx->ipx_current_ipif == NULL); 6445 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6446 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6447 ipx->ipx_writer = curthread; 6448 ipx->ipx_forced = B_FALSE; 6449 #ifdef DEBUG 6450 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6451 #endif 6452 } 6453 6454 xopipsq = ipsq; 6455 do { 6456 /* 6457 * So that other operations operate on a consistent and 6458 * complete phyint, a switch message on an IPSQ must be 6459 * handled prior to any other operations on that IPSQ. 6460 */ 6461 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6462 xopipsq->ipsq_switch_mp = NULL; 6463 ASSERT(mp->b_next == NULL); 6464 mp->b_next = (void *)xopipsq; 6465 goto out; 6466 } 6467 6468 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6469 xopipsq->ipsq_xopq_mphead = mp->b_next; 6470 if (xopipsq->ipsq_xopq_mphead == NULL) 6471 xopipsq->ipsq_xopq_mptail = NULL; 6472 mp->b_next = (void *)xopipsq; 6473 goto out; 6474 } 6475 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6476 empty: 6477 /* 6478 * There are no messages. Further, we are holding ipx_lock, hence no 6479 * new messages can end up on any IPSQ in the xop. 6480 */ 6481 ipx->ipx_writer = NULL; 6482 ipx->ipx_forced = B_FALSE; 6483 VERIFY(--ipx->ipx_reentry_cnt == 0); 6484 ipx->ipx_ipsq_queued = B_FALSE; 6485 emptied = B_TRUE; 6486 #ifdef DEBUG 6487 ipx->ipx_depth = 0; 6488 #endif 6489 out: 6490 mutex_exit(&ipx->ipx_lock); 6491 mutex_exit(&ipsq->ipsq_lock); 6492 6493 /* 6494 * If we completely emptied the xop, then wake up any threads waiting 6495 * to enter any of the IPSQ's associated with it. 6496 */ 6497 if (emptied) { 6498 xopipsq = ipsq; 6499 do { 6500 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6501 continue; 6502 6503 illv4 = phyi->phyint_illv4; 6504 illv6 = phyi->phyint_illv6; 6505 6506 GRAB_ILL_LOCKS(illv4, illv6); 6507 if (illv4 != NULL) 6508 cv_broadcast(&illv4->ill_cv); 6509 if (illv6 != NULL) 6510 cv_broadcast(&illv6->ill_cv); 6511 RELEASE_ILL_LOCKS(illv4, illv6); 6512 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6513 } 6514 rw_exit(&ipst->ips_ill_g_lock); 6515 6516 /* 6517 * Now that all locks are dropped, exit the IPSQ we left. 6518 */ 6519 if (leftipsq != NULL) 6520 ipsq_exit(leftipsq); 6521 6522 return (mp); 6523 } 6524 6525 /* 6526 * Return completion status of previously initiated DLPI operations on 6527 * ills in the purview of an ipsq. 6528 */ 6529 static boolean_t 6530 ipsq_dlpi_done(ipsq_t *ipsq) 6531 { 6532 ipsq_t *ipsq_start; 6533 phyint_t *phyi; 6534 ill_t *ill; 6535 6536 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6537 ipsq_start = ipsq; 6538 6539 do { 6540 /* 6541 * The only current users of this function are ipsq_try_enter 6542 * and ipsq_enter which have made sure that ipsq_writer is 6543 * NULL before we reach here. ill_dlpi_pending is modified 6544 * only by an ipsq writer 6545 */ 6546 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6547 phyi = ipsq->ipsq_phyint; 6548 /* 6549 * phyi could be NULL if a phyint that is part of an 6550 * IPMP group is being unplumbed. A more detailed 6551 * comment is in ipmp_grp_update_kstats() 6552 */ 6553 if (phyi != NULL) { 6554 ill = phyi->phyint_illv4; 6555 if (ill != NULL && 6556 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6557 ill->ill_arl_dlpi_pending)) 6558 return (B_FALSE); 6559 6560 ill = phyi->phyint_illv6; 6561 if (ill != NULL && 6562 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6563 return (B_FALSE); 6564 } 6565 6566 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6567 6568 return (B_TRUE); 6569 } 6570 6571 /* 6572 * Enter the ipsq corresponding to ill, by waiting synchronously till 6573 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6574 * will have to drain completely before ipsq_enter returns success. 6575 * ipx_current_ipif will be set if some exclusive op is in progress, 6576 * and the ipsq_exit logic will start the next enqueued op after 6577 * completion of the current op. If 'force' is used, we don't wait 6578 * for the enqueued ops. This is needed when a conn_close wants to 6579 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6580 * of an ill can also use this option. But we dont' use it currently. 6581 */ 6582 #define ENTER_SQ_WAIT_TICKS 100 6583 boolean_t 6584 ipsq_enter(ill_t *ill, boolean_t force, int type) 6585 { 6586 ipsq_t *ipsq; 6587 ipxop_t *ipx; 6588 boolean_t waited_enough = B_FALSE; 6589 ip_stack_t *ipst = ill->ill_ipst; 6590 6591 /* 6592 * Note that the relationship between ill and ipsq is fixed as long as 6593 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6594 * relationship between the IPSQ and xop cannot change. However, 6595 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6596 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6597 * waking up all ills in the xop when it becomes available. 6598 */ 6599 for (;;) { 6600 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6601 mutex_enter(&ill->ill_lock); 6602 if (ill->ill_state_flags & ILL_CONDEMNED) { 6603 mutex_exit(&ill->ill_lock); 6604 rw_exit(&ipst->ips_ill_g_lock); 6605 return (B_FALSE); 6606 } 6607 6608 ipsq = ill->ill_phyint->phyint_ipsq; 6609 mutex_enter(&ipsq->ipsq_lock); 6610 ipx = ipsq->ipsq_xop; 6611 mutex_enter(&ipx->ipx_lock); 6612 6613 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6614 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6615 waited_enough)) 6616 break; 6617 6618 rw_exit(&ipst->ips_ill_g_lock); 6619 6620 if (!force || ipx->ipx_writer != NULL) { 6621 mutex_exit(&ipx->ipx_lock); 6622 mutex_exit(&ipsq->ipsq_lock); 6623 cv_wait(&ill->ill_cv, &ill->ill_lock); 6624 } else { 6625 mutex_exit(&ipx->ipx_lock); 6626 mutex_exit(&ipsq->ipsq_lock); 6627 (void) cv_reltimedwait(&ill->ill_cv, 6628 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6629 waited_enough = B_TRUE; 6630 } 6631 mutex_exit(&ill->ill_lock); 6632 } 6633 6634 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6635 ASSERT(ipx->ipx_reentry_cnt == 0); 6636 ipx->ipx_writer = curthread; 6637 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6638 ipx->ipx_reentry_cnt++; 6639 #ifdef DEBUG 6640 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6641 #endif 6642 mutex_exit(&ipx->ipx_lock); 6643 mutex_exit(&ipsq->ipsq_lock); 6644 mutex_exit(&ill->ill_lock); 6645 rw_exit(&ipst->ips_ill_g_lock); 6646 6647 return (B_TRUE); 6648 } 6649 6650 /* 6651 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6652 * across the call to the core interface ipsq_try_enter() and hence calls this 6653 * function directly. This is explained more fully in ipif_set_values(). 6654 * In order to support the above constraint, ipsq_try_enter is implemented as 6655 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6656 */ 6657 static ipsq_t * 6658 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6659 int type, boolean_t reentry_ok) 6660 { 6661 ipsq_t *ipsq; 6662 ipxop_t *ipx; 6663 ip_stack_t *ipst = ill->ill_ipst; 6664 6665 /* 6666 * lock ordering: 6667 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6668 * 6669 * ipx of an ipsq can't change when ipsq_lock is held. 6670 */ 6671 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6672 GRAB_CONN_LOCK(q); 6673 mutex_enter(&ill->ill_lock); 6674 ipsq = ill->ill_phyint->phyint_ipsq; 6675 mutex_enter(&ipsq->ipsq_lock); 6676 ipx = ipsq->ipsq_xop; 6677 mutex_enter(&ipx->ipx_lock); 6678 6679 /* 6680 * 1. Enter the ipsq if we are already writer and reentry is ok. 6681 * (Note: If the caller does not specify reentry_ok then neither 6682 * 'func' nor any of its callees must ever attempt to enter the ipsq 6683 * again. Otherwise it can lead to an infinite loop 6684 * 2. Enter the ipsq if there is no current writer and this attempted 6685 * entry is part of the current operation 6686 * 3. Enter the ipsq if there is no current writer and this is a new 6687 * operation and the operation queue is empty and there is no 6688 * operation currently in progress and if all previously initiated 6689 * DLPI operations have completed. 6690 */ 6691 if ((ipx->ipx_writer == curthread && reentry_ok) || 6692 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6693 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6694 ipsq_dlpi_done(ipsq))))) { 6695 /* Success. */ 6696 ipx->ipx_reentry_cnt++; 6697 ipx->ipx_writer = curthread; 6698 ipx->ipx_forced = B_FALSE; 6699 mutex_exit(&ipx->ipx_lock); 6700 mutex_exit(&ipsq->ipsq_lock); 6701 mutex_exit(&ill->ill_lock); 6702 RELEASE_CONN_LOCK(q); 6703 #ifdef DEBUG 6704 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6705 #endif 6706 return (ipsq); 6707 } 6708 6709 if (func != NULL) 6710 ipsq_enq(ipsq, q, mp, func, type, ill); 6711 6712 mutex_exit(&ipx->ipx_lock); 6713 mutex_exit(&ipsq->ipsq_lock); 6714 mutex_exit(&ill->ill_lock); 6715 RELEASE_CONN_LOCK(q); 6716 return (NULL); 6717 } 6718 6719 /* 6720 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6721 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6722 * There is one ipsq per phyint. The ipsq 6723 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6724 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6725 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6726 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6727 * up the interface) and are enqueued in ipx_mphead. 6728 * 6729 * If a thread does not want to reenter the ipsq when it is already writer, 6730 * it must make sure that the specified reentry point to be called later 6731 * when the ipsq is empty, nor any code path starting from the specified reentry 6732 * point must never ever try to enter the ipsq again. Otherwise it can lead 6733 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6734 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6735 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6736 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6737 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6738 * ioctl if the current ioctl has completed. If the current ioctl is still 6739 * in progress it simply returns. The current ioctl could be waiting for 6740 * a response from another module (the driver or could be waiting for 6741 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6742 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6743 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6744 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6745 * all associated DLPI operations have completed. 6746 */ 6747 6748 /* 6749 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6750 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6751 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6752 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6753 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6754 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6755 */ 6756 ipsq_t * 6757 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6758 ipsq_func_t func, int type, boolean_t reentry_ok) 6759 { 6760 ip_stack_t *ipst; 6761 ipsq_t *ipsq; 6762 6763 /* Only 1 of ipif or ill can be specified */ 6764 ASSERT((ipif != NULL) ^ (ill != NULL)); 6765 6766 if (ipif != NULL) 6767 ill = ipif->ipif_ill; 6768 ipst = ill->ill_ipst; 6769 6770 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6771 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6772 rw_exit(&ipst->ips_ill_g_lock); 6773 6774 return (ipsq); 6775 } 6776 6777 /* 6778 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6779 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6780 * cannot be entered, the mp is queued for completion. 6781 */ 6782 void 6783 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6784 boolean_t reentry_ok) 6785 { 6786 ipsq_t *ipsq; 6787 6788 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6789 6790 /* 6791 * Drop the caller's refhold on the ill. This is safe since we either 6792 * entered the IPSQ (and thus are exclusive), or failed to enter the 6793 * IPSQ, in which case we return without accessing ill anymore. This 6794 * is needed because func needs to see the correct refcount. 6795 * e.g. removeif can work only then. 6796 */ 6797 ill_refrele(ill); 6798 if (ipsq != NULL) { 6799 (*func)(ipsq, q, mp, NULL); 6800 ipsq_exit(ipsq); 6801 } 6802 } 6803 6804 /* 6805 * Exit the specified IPSQ. If this is the final exit on it then drain it 6806 * prior to exiting. Caller must be writer on the specified IPSQ. 6807 */ 6808 void 6809 ipsq_exit(ipsq_t *ipsq) 6810 { 6811 mblk_t *mp; 6812 ipsq_t *mp_ipsq; 6813 queue_t *q; 6814 phyint_t *phyi; 6815 ipsq_func_t func; 6816 6817 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6818 6819 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6820 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6821 ipsq->ipsq_xop->ipx_reentry_cnt--; 6822 return; 6823 } 6824 6825 for (;;) { 6826 phyi = ipsq->ipsq_phyint; 6827 mp = ipsq_dq(ipsq); 6828 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6829 6830 /* 6831 * If we've changed to a new IPSQ, and the phyint associated 6832 * with the old one has gone away, free the old IPSQ. Note 6833 * that this cannot happen while the IPSQ is in a group. 6834 */ 6835 if (mp_ipsq != ipsq && phyi == NULL) { 6836 ASSERT(ipsq->ipsq_next == ipsq); 6837 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6838 ipsq_delete(ipsq); 6839 } 6840 6841 if (mp == NULL) 6842 break; 6843 6844 q = mp->b_queue; 6845 func = (ipsq_func_t)mp->b_prev; 6846 ipsq = mp_ipsq; 6847 mp->b_next = mp->b_prev = NULL; 6848 mp->b_queue = NULL; 6849 6850 /* 6851 * If 'q' is an conn queue, it is valid, since we did a 6852 * a refhold on the conn at the start of the ioctl. 6853 * If 'q' is an ill queue, it is valid, since close of an 6854 * ill will clean up its IPSQ. 6855 */ 6856 (*func)(ipsq, q, mp, NULL); 6857 } 6858 } 6859 6860 /* 6861 * Used to start any igmp or mld timers that could not be started 6862 * while holding ill_mcast_lock. The timers can't be started while holding 6863 * the lock, since mld/igmp_start_timers may need to call untimeout() 6864 * which can't be done while holding the lock which the timeout handler 6865 * acquires. Otherwise 6866 * there could be a deadlock since the timeout handlers 6867 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6868 * ill_mcast_lock. 6869 */ 6870 void 6871 ill_mcast_timer_start(ip_stack_t *ipst) 6872 { 6873 int next; 6874 6875 mutex_enter(&ipst->ips_igmp_timer_lock); 6876 next = ipst->ips_igmp_deferred_next; 6877 ipst->ips_igmp_deferred_next = INFINITY; 6878 mutex_exit(&ipst->ips_igmp_timer_lock); 6879 6880 if (next != INFINITY) 6881 igmp_start_timers(next, ipst); 6882 6883 mutex_enter(&ipst->ips_mld_timer_lock); 6884 next = ipst->ips_mld_deferred_next; 6885 ipst->ips_mld_deferred_next = INFINITY; 6886 mutex_exit(&ipst->ips_mld_timer_lock); 6887 6888 if (next != INFINITY) 6889 mld_start_timers(next, ipst); 6890 } 6891 6892 /* 6893 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6894 * and `ioccmd'. 6895 */ 6896 void 6897 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6898 { 6899 ill_t *ill = ipif->ipif_ill; 6900 ipxop_t *ipx = ipsq->ipsq_xop; 6901 6902 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6903 ASSERT(ipx->ipx_current_ipif == NULL); 6904 ASSERT(ipx->ipx_current_ioctl == 0); 6905 6906 ipx->ipx_current_done = B_FALSE; 6907 ipx->ipx_current_ioctl = ioccmd; 6908 mutex_enter(&ipx->ipx_lock); 6909 ipx->ipx_current_ipif = ipif; 6910 mutex_exit(&ipx->ipx_lock); 6911 6912 /* 6913 * Set IPIF_CHANGING on one or more ipifs associated with the 6914 * current exclusive operation. IPIF_CHANGING prevents any new 6915 * references to the ipif (so that the references will eventually 6916 * drop to zero) and also prevents any "get" operations (e.g., 6917 * SIOCGLIFFLAGS) from being able to access the ipif until the 6918 * operation has completed and the ipif is again in a stable state. 6919 * 6920 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6921 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6922 * on the ill are marked with IPIF_CHANGING since it's unclear which 6923 * ipifs will be affected. 6924 * 6925 * Note that SIOCLIFREMOVEIF is a special case as it sets 6926 * IPIF_CONDEMNED internally after identifying the right ipif to 6927 * operate on. 6928 */ 6929 switch (ioccmd) { 6930 case SIOCLIFREMOVEIF: 6931 break; 6932 case 0: 6933 mutex_enter(&ill->ill_lock); 6934 ipif = ipif->ipif_ill->ill_ipif; 6935 for (; ipif != NULL; ipif = ipif->ipif_next) 6936 ipif->ipif_state_flags |= IPIF_CHANGING; 6937 mutex_exit(&ill->ill_lock); 6938 break; 6939 default: 6940 mutex_enter(&ill->ill_lock); 6941 ipif->ipif_state_flags |= IPIF_CHANGING; 6942 mutex_exit(&ill->ill_lock); 6943 } 6944 } 6945 6946 /* 6947 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6948 * the next exclusive operation to begin once we ipsq_exit(). However, if 6949 * pending DLPI operations remain, then we will wait for the queue to drain 6950 * before allowing the next exclusive operation to begin. This ensures that 6951 * DLPI operations from one exclusive operation are never improperly processed 6952 * as part of a subsequent exclusive operation. 6953 */ 6954 void 6955 ipsq_current_finish(ipsq_t *ipsq) 6956 { 6957 ipxop_t *ipx = ipsq->ipsq_xop; 6958 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6959 ipif_t *ipif = ipx->ipx_current_ipif; 6960 6961 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6962 6963 /* 6964 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6965 * (but in that case, IPIF_CHANGING will already be clear and no 6966 * pending DLPI messages can remain). 6967 */ 6968 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6969 ill_t *ill = ipif->ipif_ill; 6970 6971 mutex_enter(&ill->ill_lock); 6972 dlpi_pending = ill->ill_dlpi_pending; 6973 if (ipx->ipx_current_ioctl == 0) { 6974 ipif = ill->ill_ipif; 6975 for (; ipif != NULL; ipif = ipif->ipif_next) 6976 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6977 } else { 6978 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6979 } 6980 mutex_exit(&ill->ill_lock); 6981 } 6982 6983 ASSERT(!ipx->ipx_current_done); 6984 ipx->ipx_current_done = B_TRUE; 6985 ipx->ipx_current_ioctl = 0; 6986 if (dlpi_pending == DL_PRIM_INVAL) { 6987 mutex_enter(&ipx->ipx_lock); 6988 ipx->ipx_current_ipif = NULL; 6989 mutex_exit(&ipx->ipx_lock); 6990 } 6991 } 6992 6993 /* 6994 * The ill is closing. Flush all messages on the ipsq that originated 6995 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6996 * for this ill since ipsq_enter could not have entered until then. 6997 * New messages can't be queued since the CONDEMNED flag is set. 6998 */ 6999 static void 7000 ipsq_flush(ill_t *ill) 7001 { 7002 queue_t *q; 7003 mblk_t *prev; 7004 mblk_t *mp; 7005 mblk_t *mp_next; 7006 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7007 7008 ASSERT(IAM_WRITER_ILL(ill)); 7009 7010 /* 7011 * Flush any messages sent up by the driver. 7012 */ 7013 mutex_enter(&ipx->ipx_lock); 7014 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7015 mp_next = mp->b_next; 7016 q = mp->b_queue; 7017 if (q == ill->ill_rq || q == ill->ill_wq) { 7018 /* dequeue mp */ 7019 if (prev == NULL) 7020 ipx->ipx_mphead = mp->b_next; 7021 else 7022 prev->b_next = mp->b_next; 7023 if (ipx->ipx_mptail == mp) { 7024 ASSERT(mp_next == NULL); 7025 ipx->ipx_mptail = prev; 7026 } 7027 inet_freemsg(mp); 7028 } else { 7029 prev = mp; 7030 } 7031 } 7032 mutex_exit(&ipx->ipx_lock); 7033 (void) ipsq_pending_mp_cleanup(ill, NULL); 7034 ipsq_xopq_mp_cleanup(ill, NULL); 7035 } 7036 7037 /* 7038 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7039 * and return the associated ipif. 7040 * Return value: 7041 * Non zero: An error has occurred. ci may not be filled out. 7042 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7043 * a held ipif in ci.ci_ipif. 7044 */ 7045 int 7046 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7047 cmd_info_t *ci) 7048 { 7049 char *name; 7050 struct ifreq *ifr; 7051 struct lifreq *lifr; 7052 ipif_t *ipif = NULL; 7053 ill_t *ill; 7054 conn_t *connp; 7055 boolean_t isv6; 7056 int err; 7057 mblk_t *mp1; 7058 zoneid_t zoneid; 7059 ip_stack_t *ipst; 7060 7061 if (q->q_next != NULL) { 7062 ill = (ill_t *)q->q_ptr; 7063 isv6 = ill->ill_isv6; 7064 connp = NULL; 7065 zoneid = ALL_ZONES; 7066 ipst = ill->ill_ipst; 7067 } else { 7068 ill = NULL; 7069 connp = Q_TO_CONN(q); 7070 isv6 = (connp->conn_family == AF_INET6); 7071 zoneid = connp->conn_zoneid; 7072 if (zoneid == GLOBAL_ZONEID) { 7073 /* global zone can access ipifs in all zones */ 7074 zoneid = ALL_ZONES; 7075 } 7076 ipst = connp->conn_netstack->netstack_ip; 7077 } 7078 7079 /* Has been checked in ip_wput_nondata */ 7080 mp1 = mp->b_cont->b_cont; 7081 7082 if (ipip->ipi_cmd_type == IF_CMD) { 7083 /* This a old style SIOC[GS]IF* command */ 7084 ifr = (struct ifreq *)mp1->b_rptr; 7085 /* 7086 * Null terminate the string to protect against buffer 7087 * overrun. String was generated by user code and may not 7088 * be trusted. 7089 */ 7090 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7091 name = ifr->ifr_name; 7092 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7093 ci->ci_sin6 = NULL; 7094 ci->ci_lifr = (struct lifreq *)ifr; 7095 } else { 7096 /* This a new style SIOC[GS]LIF* command */ 7097 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7098 lifr = (struct lifreq *)mp1->b_rptr; 7099 /* 7100 * Null terminate the string to protect against buffer 7101 * overrun. String was generated by user code and may not 7102 * be trusted. 7103 */ 7104 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7105 name = lifr->lifr_name; 7106 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7107 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7108 ci->ci_lifr = lifr; 7109 } 7110 7111 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7112 /* 7113 * The ioctl will be failed if the ioctl comes down 7114 * an conn stream 7115 */ 7116 if (ill == NULL) { 7117 /* 7118 * Not an ill queue, return EINVAL same as the 7119 * old error code. 7120 */ 7121 return (ENXIO); 7122 } 7123 ipif = ill->ill_ipif; 7124 ipif_refhold(ipif); 7125 } else { 7126 /* 7127 * Ensure that ioctls don't see any internal state changes 7128 * caused by set ioctls by deferring them if IPIF_CHANGING is 7129 * set. 7130 */ 7131 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7132 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7133 if (ipif == NULL) { 7134 if (err == EINPROGRESS) 7135 return (err); 7136 err = 0; /* Ensure we don't use it below */ 7137 } 7138 } 7139 7140 /* 7141 * Old style [GS]IFCMD does not admit IPv6 ipif 7142 */ 7143 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7144 ipif_refrele(ipif); 7145 return (ENXIO); 7146 } 7147 7148 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7149 name[0] == '\0') { 7150 /* 7151 * Handle a or a SIOC?IF* with a null name 7152 * during plumb (on the ill queue before the I_PLINK). 7153 */ 7154 ipif = ill->ill_ipif; 7155 ipif_refhold(ipif); 7156 } 7157 7158 if (ipif == NULL) 7159 return (ENXIO); 7160 7161 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7162 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7163 7164 ci->ci_ipif = ipif; 7165 return (0); 7166 } 7167 7168 /* 7169 * Return the total number of ipifs. 7170 */ 7171 static uint_t 7172 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7173 { 7174 uint_t numifs = 0; 7175 ill_t *ill; 7176 ill_walk_context_t ctx; 7177 ipif_t *ipif; 7178 7179 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7180 ill = ILL_START_WALK_V4(&ctx, ipst); 7181 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7182 if (IS_UNDER_IPMP(ill)) 7183 continue; 7184 for (ipif = ill->ill_ipif; ipif != NULL; 7185 ipif = ipif->ipif_next) { 7186 if (ipif->ipif_zoneid == zoneid || 7187 ipif->ipif_zoneid == ALL_ZONES) 7188 numifs++; 7189 } 7190 } 7191 rw_exit(&ipst->ips_ill_g_lock); 7192 return (numifs); 7193 } 7194 7195 /* 7196 * Return the total number of ipifs. 7197 */ 7198 static uint_t 7199 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7200 { 7201 uint_t numifs = 0; 7202 ill_t *ill; 7203 ipif_t *ipif; 7204 ill_walk_context_t ctx; 7205 7206 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7207 7208 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7209 if (family == AF_INET) 7210 ill = ILL_START_WALK_V4(&ctx, ipst); 7211 else if (family == AF_INET6) 7212 ill = ILL_START_WALK_V6(&ctx, ipst); 7213 else 7214 ill = ILL_START_WALK_ALL(&ctx, ipst); 7215 7216 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7217 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7218 continue; 7219 7220 for (ipif = ill->ill_ipif; ipif != NULL; 7221 ipif = ipif->ipif_next) { 7222 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7223 !(lifn_flags & LIFC_NOXMIT)) 7224 continue; 7225 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7226 !(lifn_flags & LIFC_TEMPORARY)) 7227 continue; 7228 if (((ipif->ipif_flags & 7229 (IPIF_NOXMIT|IPIF_NOLOCAL| 7230 IPIF_DEPRECATED)) || 7231 IS_LOOPBACK(ill) || 7232 !(ipif->ipif_flags & IPIF_UP)) && 7233 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7234 continue; 7235 7236 if (zoneid != ipif->ipif_zoneid && 7237 ipif->ipif_zoneid != ALL_ZONES && 7238 (zoneid != GLOBAL_ZONEID || 7239 !(lifn_flags & LIFC_ALLZONES))) 7240 continue; 7241 7242 numifs++; 7243 } 7244 } 7245 rw_exit(&ipst->ips_ill_g_lock); 7246 return (numifs); 7247 } 7248 7249 uint_t 7250 ip_get_lifsrcofnum(ill_t *ill) 7251 { 7252 uint_t numifs = 0; 7253 ill_t *ill_head = ill; 7254 ip_stack_t *ipst = ill->ill_ipst; 7255 7256 /* 7257 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7258 * other thread may be trying to relink the ILLs in this usesrc group 7259 * and adjusting the ill_usesrc_grp_next pointers 7260 */ 7261 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7262 if ((ill->ill_usesrc_ifindex == 0) && 7263 (ill->ill_usesrc_grp_next != NULL)) { 7264 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7265 ill = ill->ill_usesrc_grp_next) 7266 numifs++; 7267 } 7268 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7269 7270 return (numifs); 7271 } 7272 7273 /* Null values are passed in for ipif, sin, and ifreq */ 7274 /* ARGSUSED */ 7275 int 7276 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7277 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7278 { 7279 int *nump; 7280 conn_t *connp = Q_TO_CONN(q); 7281 7282 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7283 7284 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7285 nump = (int *)mp->b_cont->b_cont->b_rptr; 7286 7287 *nump = ip_get_numifs(connp->conn_zoneid, 7288 connp->conn_netstack->netstack_ip); 7289 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7290 return (0); 7291 } 7292 7293 /* Null values are passed in for ipif, sin, and ifreq */ 7294 /* ARGSUSED */ 7295 int 7296 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7297 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7298 { 7299 struct lifnum *lifn; 7300 mblk_t *mp1; 7301 conn_t *connp = Q_TO_CONN(q); 7302 7303 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7304 7305 /* Existence checked in ip_wput_nondata */ 7306 mp1 = mp->b_cont->b_cont; 7307 7308 lifn = (struct lifnum *)mp1->b_rptr; 7309 switch (lifn->lifn_family) { 7310 case AF_UNSPEC: 7311 case AF_INET: 7312 case AF_INET6: 7313 break; 7314 default: 7315 return (EAFNOSUPPORT); 7316 } 7317 7318 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7319 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7320 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7321 return (0); 7322 } 7323 7324 /* ARGSUSED */ 7325 int 7326 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7327 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7328 { 7329 STRUCT_HANDLE(ifconf, ifc); 7330 mblk_t *mp1; 7331 struct iocblk *iocp; 7332 struct ifreq *ifr; 7333 ill_walk_context_t ctx; 7334 ill_t *ill; 7335 ipif_t *ipif; 7336 struct sockaddr_in *sin; 7337 int32_t ifclen; 7338 zoneid_t zoneid; 7339 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7340 7341 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7342 7343 ip1dbg(("ip_sioctl_get_ifconf")); 7344 /* Existence verified in ip_wput_nondata */ 7345 mp1 = mp->b_cont->b_cont; 7346 iocp = (struct iocblk *)mp->b_rptr; 7347 zoneid = Q_TO_CONN(q)->conn_zoneid; 7348 7349 /* 7350 * The original SIOCGIFCONF passed in a struct ifconf which specified 7351 * the user buffer address and length into which the list of struct 7352 * ifreqs was to be copied. Since AT&T Streams does not seem to 7353 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7354 * the SIOCGIFCONF operation was redefined to simply provide 7355 * a large output buffer into which we are supposed to jam the ifreq 7356 * array. The same ioctl command code was used, despite the fact that 7357 * both the applications and the kernel code had to change, thus making 7358 * it impossible to support both interfaces. 7359 * 7360 * For reasons not good enough to try to explain, the following 7361 * algorithm is used for deciding what to do with one of these: 7362 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7363 * form with the output buffer coming down as the continuation message. 7364 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7365 * and we have to copy in the ifconf structure to find out how big the 7366 * output buffer is and where to copy out to. Sure no problem... 7367 * 7368 */ 7369 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7370 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7371 int numifs = 0; 7372 size_t ifc_bufsize; 7373 7374 /* 7375 * Must be (better be!) continuation of a TRANSPARENT 7376 * IOCTL. We just copied in the ifconf structure. 7377 */ 7378 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7379 (struct ifconf *)mp1->b_rptr); 7380 7381 /* 7382 * Allocate a buffer to hold requested information. 7383 * 7384 * If ifc_len is larger than what is needed, we only 7385 * allocate what we will use. 7386 * 7387 * If ifc_len is smaller than what is needed, return 7388 * EINVAL. 7389 * 7390 * XXX: the ill_t structure can hava 2 counters, for 7391 * v4 and v6 (not just ill_ipif_up_count) to store the 7392 * number of interfaces for a device, so we don't need 7393 * to count them here... 7394 */ 7395 numifs = ip_get_numifs(zoneid, ipst); 7396 7397 ifclen = STRUCT_FGET(ifc, ifc_len); 7398 ifc_bufsize = numifs * sizeof (struct ifreq); 7399 if (ifc_bufsize > ifclen) { 7400 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7401 /* old behaviour */ 7402 return (EINVAL); 7403 } else { 7404 ifc_bufsize = ifclen; 7405 } 7406 } 7407 7408 mp1 = mi_copyout_alloc(q, mp, 7409 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7410 if (mp1 == NULL) 7411 return (ENOMEM); 7412 7413 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7414 } 7415 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7416 /* 7417 * the SIOCGIFCONF ioctl only knows about 7418 * IPv4 addresses, so don't try to tell 7419 * it about interfaces with IPv6-only 7420 * addresses. (Last parm 'isv6' is B_FALSE) 7421 */ 7422 7423 ifr = (struct ifreq *)mp1->b_rptr; 7424 7425 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7426 ill = ILL_START_WALK_V4(&ctx, ipst); 7427 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7428 if (IS_UNDER_IPMP(ill)) 7429 continue; 7430 for (ipif = ill->ill_ipif; ipif != NULL; 7431 ipif = ipif->ipif_next) { 7432 if (zoneid != ipif->ipif_zoneid && 7433 ipif->ipif_zoneid != ALL_ZONES) 7434 continue; 7435 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7436 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7437 /* old behaviour */ 7438 rw_exit(&ipst->ips_ill_g_lock); 7439 return (EINVAL); 7440 } else { 7441 goto if_copydone; 7442 } 7443 } 7444 ipif_get_name(ipif, ifr->ifr_name, 7445 sizeof (ifr->ifr_name)); 7446 sin = (sin_t *)&ifr->ifr_addr; 7447 *sin = sin_null; 7448 sin->sin_family = AF_INET; 7449 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7450 ifr++; 7451 } 7452 } 7453 if_copydone: 7454 rw_exit(&ipst->ips_ill_g_lock); 7455 mp1->b_wptr = (uchar_t *)ifr; 7456 7457 if (STRUCT_BUF(ifc) != NULL) { 7458 STRUCT_FSET(ifc, ifc_len, 7459 (int)((uchar_t *)ifr - mp1->b_rptr)); 7460 } 7461 return (0); 7462 } 7463 7464 /* 7465 * Get the interfaces using the address hosted on the interface passed in, 7466 * as a source adddress 7467 */ 7468 /* ARGSUSED */ 7469 int 7470 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7471 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7472 { 7473 mblk_t *mp1; 7474 ill_t *ill, *ill_head; 7475 ipif_t *ipif, *orig_ipif; 7476 int numlifs = 0; 7477 size_t lifs_bufsize, lifsmaxlen; 7478 struct lifreq *lifr; 7479 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7480 uint_t ifindex; 7481 zoneid_t zoneid; 7482 boolean_t isv6 = B_FALSE; 7483 struct sockaddr_in *sin; 7484 struct sockaddr_in6 *sin6; 7485 STRUCT_HANDLE(lifsrcof, lifs); 7486 ip_stack_t *ipst; 7487 7488 ipst = CONNQ_TO_IPST(q); 7489 7490 ASSERT(q->q_next == NULL); 7491 7492 zoneid = Q_TO_CONN(q)->conn_zoneid; 7493 7494 /* Existence verified in ip_wput_nondata */ 7495 mp1 = mp->b_cont->b_cont; 7496 7497 /* 7498 * Must be (better be!) continuation of a TRANSPARENT 7499 * IOCTL. We just copied in the lifsrcof structure. 7500 */ 7501 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7502 (struct lifsrcof *)mp1->b_rptr); 7503 7504 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7505 return (EINVAL); 7506 7507 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7508 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7509 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7510 if (ipif == NULL) { 7511 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7512 ifindex)); 7513 return (ENXIO); 7514 } 7515 7516 /* Allocate a buffer to hold requested information */ 7517 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7518 lifs_bufsize = numlifs * sizeof (struct lifreq); 7519 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7520 /* The actual size needed is always returned in lifs_len */ 7521 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7522 7523 /* If the amount we need is more than what is passed in, abort */ 7524 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7525 ipif_refrele(ipif); 7526 return (0); 7527 } 7528 7529 mp1 = mi_copyout_alloc(q, mp, 7530 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7531 if (mp1 == NULL) { 7532 ipif_refrele(ipif); 7533 return (ENOMEM); 7534 } 7535 7536 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7537 bzero(mp1->b_rptr, lifs_bufsize); 7538 7539 lifr = (struct lifreq *)mp1->b_rptr; 7540 7541 ill = ill_head = ipif->ipif_ill; 7542 orig_ipif = ipif; 7543 7544 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7545 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7546 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7547 7548 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7549 for (; (ill != NULL) && (ill != ill_head); 7550 ill = ill->ill_usesrc_grp_next) { 7551 7552 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7553 break; 7554 7555 ipif = ill->ill_ipif; 7556 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7557 if (ipif->ipif_isv6) { 7558 sin6 = (sin6_t *)&lifr->lifr_addr; 7559 *sin6 = sin6_null; 7560 sin6->sin6_family = AF_INET6; 7561 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7562 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7563 &ipif->ipif_v6net_mask); 7564 } else { 7565 sin = (sin_t *)&lifr->lifr_addr; 7566 *sin = sin_null; 7567 sin->sin_family = AF_INET; 7568 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7569 lifr->lifr_addrlen = ip_mask_to_plen( 7570 ipif->ipif_net_mask); 7571 } 7572 lifr++; 7573 } 7574 rw_exit(&ipst->ips_ill_g_lock); 7575 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7576 ipif_refrele(orig_ipif); 7577 mp1->b_wptr = (uchar_t *)lifr; 7578 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7579 7580 return (0); 7581 } 7582 7583 /* ARGSUSED */ 7584 int 7585 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7586 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7587 { 7588 mblk_t *mp1; 7589 int list; 7590 ill_t *ill; 7591 ipif_t *ipif; 7592 int flags; 7593 int numlifs = 0; 7594 size_t lifc_bufsize; 7595 struct lifreq *lifr; 7596 sa_family_t family; 7597 struct sockaddr_in *sin; 7598 struct sockaddr_in6 *sin6; 7599 ill_walk_context_t ctx; 7600 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7601 int32_t lifclen; 7602 zoneid_t zoneid; 7603 STRUCT_HANDLE(lifconf, lifc); 7604 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7605 7606 ip1dbg(("ip_sioctl_get_lifconf")); 7607 7608 ASSERT(q->q_next == NULL); 7609 7610 zoneid = Q_TO_CONN(q)->conn_zoneid; 7611 7612 /* Existence verified in ip_wput_nondata */ 7613 mp1 = mp->b_cont->b_cont; 7614 7615 /* 7616 * An extended version of SIOCGIFCONF that takes an 7617 * additional address family and flags field. 7618 * AF_UNSPEC retrieve both IPv4 and IPv6. 7619 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7620 * interfaces are omitted. 7621 * Similarly, IPIF_TEMPORARY interfaces are omitted 7622 * unless LIFC_TEMPORARY is specified. 7623 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7624 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7625 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7626 * has priority over LIFC_NOXMIT. 7627 */ 7628 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7629 7630 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7631 return (EINVAL); 7632 7633 /* 7634 * Must be (better be!) continuation of a TRANSPARENT 7635 * IOCTL. We just copied in the lifconf structure. 7636 */ 7637 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7638 7639 family = STRUCT_FGET(lifc, lifc_family); 7640 flags = STRUCT_FGET(lifc, lifc_flags); 7641 7642 switch (family) { 7643 case AF_UNSPEC: 7644 /* 7645 * walk all ILL's. 7646 */ 7647 list = MAX_G_HEADS; 7648 break; 7649 case AF_INET: 7650 /* 7651 * walk only IPV4 ILL's. 7652 */ 7653 list = IP_V4_G_HEAD; 7654 break; 7655 case AF_INET6: 7656 /* 7657 * walk only IPV6 ILL's. 7658 */ 7659 list = IP_V6_G_HEAD; 7660 break; 7661 default: 7662 return (EAFNOSUPPORT); 7663 } 7664 7665 /* 7666 * Allocate a buffer to hold requested information. 7667 * 7668 * If lifc_len is larger than what is needed, we only 7669 * allocate what we will use. 7670 * 7671 * If lifc_len is smaller than what is needed, return 7672 * EINVAL. 7673 */ 7674 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7675 lifc_bufsize = numlifs * sizeof (struct lifreq); 7676 lifclen = STRUCT_FGET(lifc, lifc_len); 7677 if (lifc_bufsize > lifclen) { 7678 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7679 return (EINVAL); 7680 else 7681 lifc_bufsize = lifclen; 7682 } 7683 7684 mp1 = mi_copyout_alloc(q, mp, 7685 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7686 if (mp1 == NULL) 7687 return (ENOMEM); 7688 7689 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7690 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7691 7692 lifr = (struct lifreq *)mp1->b_rptr; 7693 7694 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7695 ill = ill_first(list, list, &ctx, ipst); 7696 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7697 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7698 continue; 7699 7700 for (ipif = ill->ill_ipif; ipif != NULL; 7701 ipif = ipif->ipif_next) { 7702 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7703 !(flags & LIFC_NOXMIT)) 7704 continue; 7705 7706 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7707 !(flags & LIFC_TEMPORARY)) 7708 continue; 7709 7710 if (((ipif->ipif_flags & 7711 (IPIF_NOXMIT|IPIF_NOLOCAL| 7712 IPIF_DEPRECATED)) || 7713 IS_LOOPBACK(ill) || 7714 !(ipif->ipif_flags & IPIF_UP)) && 7715 (flags & LIFC_EXTERNAL_SOURCE)) 7716 continue; 7717 7718 if (zoneid != ipif->ipif_zoneid && 7719 ipif->ipif_zoneid != ALL_ZONES && 7720 (zoneid != GLOBAL_ZONEID || 7721 !(flags & LIFC_ALLZONES))) 7722 continue; 7723 7724 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7725 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7726 rw_exit(&ipst->ips_ill_g_lock); 7727 return (EINVAL); 7728 } else { 7729 goto lif_copydone; 7730 } 7731 } 7732 7733 ipif_get_name(ipif, lifr->lifr_name, 7734 sizeof (lifr->lifr_name)); 7735 lifr->lifr_type = ill->ill_type; 7736 if (ipif->ipif_isv6) { 7737 sin6 = (sin6_t *)&lifr->lifr_addr; 7738 *sin6 = sin6_null; 7739 sin6->sin6_family = AF_INET6; 7740 sin6->sin6_addr = 7741 ipif->ipif_v6lcl_addr; 7742 lifr->lifr_addrlen = 7743 ip_mask_to_plen_v6( 7744 &ipif->ipif_v6net_mask); 7745 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 7746 sin6->sin6_scope_id = 7747 ill->ill_phyint->phyint_ifindex; 7748 } 7749 } else { 7750 sin = (sin_t *)&lifr->lifr_addr; 7751 *sin = sin_null; 7752 sin->sin_family = AF_INET; 7753 sin->sin_addr.s_addr = 7754 ipif->ipif_lcl_addr; 7755 lifr->lifr_addrlen = 7756 ip_mask_to_plen( 7757 ipif->ipif_net_mask); 7758 } 7759 lifr++; 7760 } 7761 } 7762 lif_copydone: 7763 rw_exit(&ipst->ips_ill_g_lock); 7764 7765 mp1->b_wptr = (uchar_t *)lifr; 7766 if (STRUCT_BUF(lifc) != NULL) { 7767 STRUCT_FSET(lifc, lifc_len, 7768 (int)((uchar_t *)lifr - mp1->b_rptr)); 7769 } 7770 return (0); 7771 } 7772 7773 static void 7774 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7775 { 7776 ip6_asp_t *table; 7777 size_t table_size; 7778 mblk_t *data_mp; 7779 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7780 ip_stack_t *ipst; 7781 7782 if (q->q_next == NULL) 7783 ipst = CONNQ_TO_IPST(q); 7784 else 7785 ipst = ILLQ_TO_IPST(q); 7786 7787 /* These two ioctls are I_STR only */ 7788 if (iocp->ioc_count == TRANSPARENT) { 7789 miocnak(q, mp, 0, EINVAL); 7790 return; 7791 } 7792 7793 data_mp = mp->b_cont; 7794 if (data_mp == NULL) { 7795 /* The user passed us a NULL argument */ 7796 table = NULL; 7797 table_size = iocp->ioc_count; 7798 } else { 7799 /* 7800 * The user provided a table. The stream head 7801 * may have copied in the user data in chunks, 7802 * so make sure everything is pulled up 7803 * properly. 7804 */ 7805 if (MBLKL(data_mp) < iocp->ioc_count) { 7806 mblk_t *new_data_mp; 7807 if ((new_data_mp = msgpullup(data_mp, -1)) == 7808 NULL) { 7809 miocnak(q, mp, 0, ENOMEM); 7810 return; 7811 } 7812 freemsg(data_mp); 7813 data_mp = new_data_mp; 7814 mp->b_cont = data_mp; 7815 } 7816 table = (ip6_asp_t *)data_mp->b_rptr; 7817 table_size = iocp->ioc_count; 7818 } 7819 7820 switch (iocp->ioc_cmd) { 7821 case SIOCGIP6ADDRPOLICY: 7822 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7823 if (iocp->ioc_rval == -1) 7824 iocp->ioc_error = EINVAL; 7825 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7826 else if (table != NULL && 7827 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7828 ip6_asp_t *src = table; 7829 ip6_asp32_t *dst = (void *)table; 7830 int count = table_size / sizeof (ip6_asp_t); 7831 int i; 7832 7833 /* 7834 * We need to do an in-place shrink of the array 7835 * to match the alignment attributes of the 7836 * 32-bit ABI looking at it. 7837 */ 7838 /* LINTED: logical expression always true: op "||" */ 7839 ASSERT(sizeof (*src) > sizeof (*dst)); 7840 for (i = 1; i < count; i++) 7841 bcopy(src + i, dst + i, sizeof (*dst)); 7842 } 7843 #endif 7844 break; 7845 7846 case SIOCSIP6ADDRPOLICY: 7847 ASSERT(mp->b_prev == NULL); 7848 mp->b_prev = (void *)q; 7849 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7850 /* 7851 * We pass in the datamodel here so that the ip6_asp_replace() 7852 * routine can handle converting from 32-bit to native formats 7853 * where necessary. 7854 * 7855 * A better way to handle this might be to convert the inbound 7856 * data structure here, and hang it off a new 'mp'; thus the 7857 * ip6_asp_replace() logic would always be dealing with native 7858 * format data structures.. 7859 * 7860 * (An even simpler way to handle these ioctls is to just 7861 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7862 * and just recompile everything that depends on it.) 7863 */ 7864 #endif 7865 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7866 iocp->ioc_flag & IOC_MODELS); 7867 return; 7868 } 7869 7870 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7871 qreply(q, mp); 7872 } 7873 7874 static void 7875 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7876 { 7877 mblk_t *data_mp; 7878 struct dstinforeq *dir; 7879 uint8_t *end, *cur; 7880 in6_addr_t *daddr, *saddr; 7881 ipaddr_t v4daddr; 7882 ire_t *ire; 7883 ipaddr_t v4setsrc; 7884 in6_addr_t v6setsrc; 7885 char *slabel, *dlabel; 7886 boolean_t isipv4; 7887 int match_ire; 7888 ill_t *dst_ill; 7889 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7890 conn_t *connp = Q_TO_CONN(q); 7891 zoneid_t zoneid = IPCL_ZONEID(connp); 7892 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7893 uint64_t ipif_flags; 7894 7895 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7896 7897 /* 7898 * This ioctl is I_STR only, and must have a 7899 * data mblk following the M_IOCTL mblk. 7900 */ 7901 data_mp = mp->b_cont; 7902 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7903 miocnak(q, mp, 0, EINVAL); 7904 return; 7905 } 7906 7907 if (MBLKL(data_mp) < iocp->ioc_count) { 7908 mblk_t *new_data_mp; 7909 7910 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7911 miocnak(q, mp, 0, ENOMEM); 7912 return; 7913 } 7914 freemsg(data_mp); 7915 data_mp = new_data_mp; 7916 mp->b_cont = data_mp; 7917 } 7918 match_ire = MATCH_IRE_DSTONLY; 7919 7920 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7921 end - cur >= sizeof (struct dstinforeq); 7922 cur += sizeof (struct dstinforeq)) { 7923 dir = (struct dstinforeq *)cur; 7924 daddr = &dir->dir_daddr; 7925 saddr = &dir->dir_saddr; 7926 7927 /* 7928 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7929 * v4 mapped addresses; ire_ftable_lookup_v6() 7930 * and ip_select_source_v6() do not. 7931 */ 7932 dir->dir_dscope = ip_addr_scope_v6(daddr); 7933 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7934 7935 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7936 if (isipv4) { 7937 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7938 v4setsrc = INADDR_ANY; 7939 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7940 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7941 NULL, NULL); 7942 } else { 7943 v6setsrc = ipv6_all_zeros; 7944 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7945 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7946 NULL, NULL); 7947 } 7948 ASSERT(ire != NULL); 7949 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7950 ire_refrele(ire); 7951 dir->dir_dreachable = 0; 7952 7953 /* move on to next dst addr */ 7954 continue; 7955 } 7956 dir->dir_dreachable = 1; 7957 7958 dst_ill = ire_nexthop_ill(ire); 7959 if (dst_ill == NULL) { 7960 ire_refrele(ire); 7961 continue; 7962 } 7963 7964 /* With ipmp we most likely look at the ipmp ill here */ 7965 dir->dir_dmactype = dst_ill->ill_mactype; 7966 7967 if (isipv4) { 7968 ipaddr_t v4saddr; 7969 7970 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7971 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7972 &v4saddr, NULL, &ipif_flags) != 0) { 7973 v4saddr = INADDR_ANY; 7974 ipif_flags = 0; 7975 } 7976 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7977 } else { 7978 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7979 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7980 saddr, NULL, &ipif_flags) != 0) { 7981 *saddr = ipv6_all_zeros; 7982 ipif_flags = 0; 7983 } 7984 } 7985 7986 dir->dir_sscope = ip_addr_scope_v6(saddr); 7987 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7988 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7989 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7990 ire_refrele(ire); 7991 ill_refrele(dst_ill); 7992 } 7993 miocack(q, mp, iocp->ioc_count, 0); 7994 } 7995 7996 /* 7997 * Check if this is an address assigned to this machine. 7998 * Skips interfaces that are down by using ire checks. 7999 * Translates mapped addresses to v4 addresses and then 8000 * treats them as such, returning true if the v4 address 8001 * associated with this mapped address is configured. 8002 * Note: Applications will have to be careful what they do 8003 * with the response; use of mapped addresses limits 8004 * what can be done with the socket, especially with 8005 * respect to socket options and ioctls - neither IPv4 8006 * options nor IPv6 sticky options/ancillary data options 8007 * may be used. 8008 */ 8009 /* ARGSUSED */ 8010 int 8011 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8012 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8013 { 8014 struct sioc_addrreq *sia; 8015 sin_t *sin; 8016 ire_t *ire; 8017 mblk_t *mp1; 8018 zoneid_t zoneid; 8019 ip_stack_t *ipst; 8020 8021 ip1dbg(("ip_sioctl_tmyaddr")); 8022 8023 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8024 zoneid = Q_TO_CONN(q)->conn_zoneid; 8025 ipst = CONNQ_TO_IPST(q); 8026 8027 /* Existence verified in ip_wput_nondata */ 8028 mp1 = mp->b_cont->b_cont; 8029 sia = (struct sioc_addrreq *)mp1->b_rptr; 8030 sin = (sin_t *)&sia->sa_addr; 8031 switch (sin->sin_family) { 8032 case AF_INET6: { 8033 sin6_t *sin6 = (sin6_t *)sin; 8034 8035 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8036 ipaddr_t v4_addr; 8037 8038 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8039 v4_addr); 8040 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8041 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8042 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8043 } else { 8044 in6_addr_t v6addr; 8045 8046 v6addr = sin6->sin6_addr; 8047 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8048 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8049 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8050 } 8051 break; 8052 } 8053 case AF_INET: { 8054 ipaddr_t v4addr; 8055 8056 v4addr = sin->sin_addr.s_addr; 8057 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8058 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8059 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8060 break; 8061 } 8062 default: 8063 return (EAFNOSUPPORT); 8064 } 8065 if (ire != NULL) { 8066 sia->sa_res = 1; 8067 ire_refrele(ire); 8068 } else { 8069 sia->sa_res = 0; 8070 } 8071 return (0); 8072 } 8073 8074 /* 8075 * Check if this is an address assigned on-link i.e. neighbor, 8076 * and makes sure it's reachable from the current zone. 8077 * Returns true for my addresses as well. 8078 * Translates mapped addresses to v4 addresses and then 8079 * treats them as such, returning true if the v4 address 8080 * associated with this mapped address is configured. 8081 * Note: Applications will have to be careful what they do 8082 * with the response; use of mapped addresses limits 8083 * what can be done with the socket, especially with 8084 * respect to socket options and ioctls - neither IPv4 8085 * options nor IPv6 sticky options/ancillary data options 8086 * may be used. 8087 */ 8088 /* ARGSUSED */ 8089 int 8090 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8091 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8092 { 8093 struct sioc_addrreq *sia; 8094 sin_t *sin; 8095 mblk_t *mp1; 8096 ire_t *ire = NULL; 8097 zoneid_t zoneid; 8098 ip_stack_t *ipst; 8099 8100 ip1dbg(("ip_sioctl_tonlink")); 8101 8102 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8103 zoneid = Q_TO_CONN(q)->conn_zoneid; 8104 ipst = CONNQ_TO_IPST(q); 8105 8106 /* Existence verified in ip_wput_nondata */ 8107 mp1 = mp->b_cont->b_cont; 8108 sia = (struct sioc_addrreq *)mp1->b_rptr; 8109 sin = (sin_t *)&sia->sa_addr; 8110 8111 /* 8112 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8113 * to make sure we only look at on-link unicast address. 8114 */ 8115 switch (sin->sin_family) { 8116 case AF_INET6: { 8117 sin6_t *sin6 = (sin6_t *)sin; 8118 8119 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8120 ipaddr_t v4_addr; 8121 8122 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8123 v4_addr); 8124 if (!CLASSD(v4_addr)) { 8125 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8126 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8127 0, ipst, NULL); 8128 } 8129 } else { 8130 in6_addr_t v6addr; 8131 8132 v6addr = sin6->sin6_addr; 8133 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8134 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8135 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8136 ipst, NULL); 8137 } 8138 } 8139 break; 8140 } 8141 case AF_INET: { 8142 ipaddr_t v4addr; 8143 8144 v4addr = sin->sin_addr.s_addr; 8145 if (!CLASSD(v4addr)) { 8146 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8147 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8148 } 8149 break; 8150 } 8151 default: 8152 return (EAFNOSUPPORT); 8153 } 8154 sia->sa_res = 0; 8155 if (ire != NULL) { 8156 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8157 8158 if ((ire->ire_type & IRE_ONLINK) && 8159 !(ire->ire_type & IRE_BROADCAST)) 8160 sia->sa_res = 1; 8161 ire_refrele(ire); 8162 } 8163 return (0); 8164 } 8165 8166 /* 8167 * TBD: implement when kernel maintaines a list of site prefixes. 8168 */ 8169 /* ARGSUSED */ 8170 int 8171 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8172 ip_ioctl_cmd_t *ipip, void *ifreq) 8173 { 8174 return (ENXIO); 8175 } 8176 8177 /* ARP IOCTLs. */ 8178 /* ARGSUSED */ 8179 int 8180 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8181 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8182 { 8183 int err; 8184 ipaddr_t ipaddr; 8185 struct iocblk *iocp; 8186 conn_t *connp; 8187 struct arpreq *ar; 8188 struct xarpreq *xar; 8189 int arp_flags, flags, alength; 8190 uchar_t *lladdr; 8191 ip_stack_t *ipst; 8192 ill_t *ill = ipif->ipif_ill; 8193 ill_t *proxy_ill = NULL; 8194 ipmp_arpent_t *entp = NULL; 8195 boolean_t proxyarp = B_FALSE; 8196 boolean_t if_arp_ioctl = B_FALSE; 8197 ncec_t *ncec = NULL; 8198 nce_t *nce; 8199 8200 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8201 connp = Q_TO_CONN(q); 8202 ipst = connp->conn_netstack->netstack_ip; 8203 iocp = (struct iocblk *)mp->b_rptr; 8204 8205 if (ipip->ipi_cmd_type == XARP_CMD) { 8206 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8207 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8208 ar = NULL; 8209 8210 arp_flags = xar->xarp_flags; 8211 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8212 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8213 /* 8214 * Validate against user's link layer address length 8215 * input and name and addr length limits. 8216 */ 8217 alength = ill->ill_phys_addr_length; 8218 if (ipip->ipi_cmd == SIOCSXARP) { 8219 if (alength != xar->xarp_ha.sdl_alen || 8220 (alength + xar->xarp_ha.sdl_nlen > 8221 sizeof (xar->xarp_ha.sdl_data))) 8222 return (EINVAL); 8223 } 8224 } else { 8225 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8226 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8227 xar = NULL; 8228 8229 arp_flags = ar->arp_flags; 8230 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8231 /* 8232 * Theoretically, the sa_family could tell us what link 8233 * layer type this operation is trying to deal with. By 8234 * common usage AF_UNSPEC means ethernet. We'll assume 8235 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8236 * for now. Our new SIOC*XARP ioctls can be used more 8237 * generally. 8238 * 8239 * If the underlying media happens to have a non 6 byte 8240 * address, arp module will fail set/get, but the del 8241 * operation will succeed. 8242 */ 8243 alength = 6; 8244 if ((ipip->ipi_cmd != SIOCDARP) && 8245 (alength != ill->ill_phys_addr_length)) { 8246 return (EINVAL); 8247 } 8248 } 8249 8250 /* Translate ATF* flags to NCE* flags */ 8251 flags = 0; 8252 if (arp_flags & ATF_AUTHORITY) 8253 flags |= NCE_F_AUTHORITY; 8254 if (arp_flags & ATF_PERM) 8255 flags |= NCE_F_NONUD; /* not subject to aging */ 8256 if (arp_flags & ATF_PUBL) 8257 flags |= NCE_F_PUBLISH; 8258 8259 /* 8260 * IPMP ARP special handling: 8261 * 8262 * 1. Since ARP mappings must appear consistent across the group, 8263 * prohibit changing ARP mappings on the underlying interfaces. 8264 * 8265 * 2. Since ARP mappings for IPMP data addresses are maintained by 8266 * IP itself, prohibit changing them. 8267 * 8268 * 3. For proxy ARP, use a functioning hardware address in the group, 8269 * provided one exists. If one doesn't, just add the entry as-is; 8270 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8271 */ 8272 if (IS_UNDER_IPMP(ill)) { 8273 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8274 return (EPERM); 8275 } 8276 if (IS_IPMP(ill)) { 8277 ipmp_illgrp_t *illg = ill->ill_grp; 8278 8279 switch (ipip->ipi_cmd) { 8280 case SIOCSARP: 8281 case SIOCSXARP: 8282 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8283 if (proxy_ill != NULL) { 8284 proxyarp = B_TRUE; 8285 if (!ipmp_ill_is_active(proxy_ill)) 8286 proxy_ill = ipmp_illgrp_next_ill(illg); 8287 if (proxy_ill != NULL) 8288 lladdr = proxy_ill->ill_phys_addr; 8289 } 8290 /* FALLTHRU */ 8291 } 8292 } 8293 8294 ipaddr = sin->sin_addr.s_addr; 8295 /* 8296 * don't match across illgrp per case (1) and (2). 8297 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8298 */ 8299 nce = nce_lookup_v4(ill, &ipaddr); 8300 if (nce != NULL) 8301 ncec = nce->nce_common; 8302 8303 switch (iocp->ioc_cmd) { 8304 case SIOCDARP: 8305 case SIOCDXARP: { 8306 /* 8307 * Delete the NCE if any. 8308 */ 8309 if (ncec == NULL) { 8310 iocp->ioc_error = ENXIO; 8311 break; 8312 } 8313 /* Don't allow changes to arp mappings of local addresses. */ 8314 if (NCE_MYADDR(ncec)) { 8315 nce_refrele(nce); 8316 return (ENOTSUP); 8317 } 8318 iocp->ioc_error = 0; 8319 8320 /* 8321 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8322 * This will delete all the nce entries on the under_ills. 8323 */ 8324 ncec_delete(ncec); 8325 /* 8326 * Once the NCE has been deleted, then the ire_dep* consistency 8327 * mechanism will find any IRE which depended on the now 8328 * condemned NCE (as part of sending packets). 8329 * That mechanism handles redirects by deleting redirects 8330 * that refer to UNREACHABLE nces. 8331 */ 8332 break; 8333 } 8334 case SIOCGARP: 8335 case SIOCGXARP: 8336 if (ncec != NULL) { 8337 lladdr = ncec->ncec_lladdr; 8338 flags = ncec->ncec_flags; 8339 iocp->ioc_error = 0; 8340 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8341 } else { 8342 iocp->ioc_error = ENXIO; 8343 } 8344 break; 8345 case SIOCSARP: 8346 case SIOCSXARP: 8347 /* Don't allow changes to arp mappings of local addresses. */ 8348 if (ncec != NULL && NCE_MYADDR(ncec)) { 8349 nce_refrele(nce); 8350 return (ENOTSUP); 8351 } 8352 8353 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8354 flags |= NCE_F_STATIC; 8355 if (!if_arp_ioctl) { 8356 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8357 lladdr, alength, flags); 8358 } else { 8359 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8360 if (ipif != NULL) { 8361 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8362 lladdr, alength, flags); 8363 ipif_refrele(ipif); 8364 } 8365 } 8366 if (nce != NULL) { 8367 nce_refrele(nce); 8368 nce = NULL; 8369 } 8370 /* 8371 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8372 * by nce_add_common() 8373 */ 8374 err = nce_lookup_then_add_v4(ill, lladdr, 8375 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8376 &nce); 8377 if (err == EEXIST) { 8378 ncec = nce->nce_common; 8379 mutex_enter(&ncec->ncec_lock); 8380 ncec->ncec_state = ND_REACHABLE; 8381 ncec->ncec_flags = flags; 8382 nce_update(ncec, ND_UNCHANGED, lladdr); 8383 mutex_exit(&ncec->ncec_lock); 8384 err = 0; 8385 } 8386 if (nce != NULL) { 8387 nce_refrele(nce); 8388 nce = NULL; 8389 } 8390 if (IS_IPMP(ill) && err == 0) { 8391 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8392 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8393 flags); 8394 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8395 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8396 break; 8397 } 8398 } 8399 iocp->ioc_error = err; 8400 } 8401 8402 if (nce != NULL) { 8403 nce_refrele(nce); 8404 } 8405 8406 /* 8407 * If we created an IPMP ARP entry, mark that we've notified ARP. 8408 */ 8409 if (entp != NULL) 8410 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8411 8412 return (iocp->ioc_error); 8413 } 8414 8415 /* 8416 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8417 * the associated sin and refhold and return the associated ipif via `ci'. 8418 */ 8419 int 8420 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8421 cmd_info_t *ci) 8422 { 8423 mblk_t *mp1; 8424 sin_t *sin; 8425 conn_t *connp; 8426 ipif_t *ipif; 8427 ire_t *ire = NULL; 8428 ill_t *ill = NULL; 8429 boolean_t exists; 8430 ip_stack_t *ipst; 8431 struct arpreq *ar; 8432 struct xarpreq *xar; 8433 struct sockaddr_dl *sdl; 8434 8435 /* ioctl comes down on a conn */ 8436 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8437 connp = Q_TO_CONN(q); 8438 if (connp->conn_family == AF_INET6) 8439 return (ENXIO); 8440 8441 ipst = connp->conn_netstack->netstack_ip; 8442 8443 /* Verified in ip_wput_nondata */ 8444 mp1 = mp->b_cont->b_cont; 8445 8446 if (ipip->ipi_cmd_type == XARP_CMD) { 8447 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8448 xar = (struct xarpreq *)mp1->b_rptr; 8449 sin = (sin_t *)&xar->xarp_pa; 8450 sdl = &xar->xarp_ha; 8451 8452 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8453 return (ENXIO); 8454 if (sdl->sdl_nlen >= LIFNAMSIZ) 8455 return (EINVAL); 8456 } else { 8457 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8458 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8459 ar = (struct arpreq *)mp1->b_rptr; 8460 sin = (sin_t *)&ar->arp_pa; 8461 } 8462 8463 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8464 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8465 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8466 if (ipif == NULL) 8467 return (ENXIO); 8468 if (ipif->ipif_id != 0) { 8469 ipif_refrele(ipif); 8470 return (ENXIO); 8471 } 8472 } else { 8473 /* 8474 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8475 * of 0: use the IP address to find the ipif. If the IP 8476 * address is an IPMP test address, ire_ftable_lookup() will 8477 * find the wrong ill, so we first do an ipif_lookup_addr(). 8478 */ 8479 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8480 ipst); 8481 if (ipif == NULL) { 8482 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8483 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8484 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8485 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8486 if (ire != NULL) 8487 ire_refrele(ire); 8488 return (ENXIO); 8489 } 8490 ASSERT(ire != NULL && ill != NULL); 8491 ipif = ill->ill_ipif; 8492 ipif_refhold(ipif); 8493 ire_refrele(ire); 8494 } 8495 } 8496 8497 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8498 ipif_refrele(ipif); 8499 return (ENXIO); 8500 } 8501 8502 ci->ci_sin = sin; 8503 ci->ci_ipif = ipif; 8504 return (0); 8505 } 8506 8507 /* 8508 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8509 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8510 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8511 * up and thus an ill can join that illgrp. 8512 * 8513 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8514 * open()/close() primarily because close() is not allowed to fail or block 8515 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8516 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8517 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8518 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8519 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8520 * state if I_UNLINK didn't occur. 8521 * 8522 * Note that for each plumb/unplumb operation, we may end up here more than 8523 * once because of the way ifconfig works. However, it's OK to link the same 8524 * illgrp more than once, or unlink an illgrp that's already unlinked. 8525 */ 8526 static int 8527 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8528 { 8529 int err; 8530 ip_stack_t *ipst = ill->ill_ipst; 8531 8532 ASSERT(IS_IPMP(ill)); 8533 ASSERT(IAM_WRITER_ILL(ill)); 8534 8535 switch (ioccmd) { 8536 case I_LINK: 8537 return (ENOTSUP); 8538 8539 case I_PLINK: 8540 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8541 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8542 rw_exit(&ipst->ips_ipmp_lock); 8543 break; 8544 8545 case I_PUNLINK: 8546 /* 8547 * Require all UP ipifs be brought down prior to unlinking the 8548 * illgrp so any associated IREs (and other state) is torched. 8549 */ 8550 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8551 return (EBUSY); 8552 8553 /* 8554 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8555 * with an SIOCSLIFGROUPNAME request from an ill trying to 8556 * join this group. Specifically: ills trying to join grab 8557 * ipmp_lock and bump a "pending join" counter checked by 8558 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8559 * joins can occur (since we have ipmp_lock). Once we drop 8560 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8561 * find the illgrp (since we unlinked it) and will return 8562 * EAFNOSUPPORT. This will then take them back through the 8563 * IPMP meta-interface plumbing logic in ifconfig, and thus 8564 * back through I_PLINK above. 8565 */ 8566 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8567 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8568 rw_exit(&ipst->ips_ipmp_lock); 8569 return (err); 8570 default: 8571 break; 8572 } 8573 return (0); 8574 } 8575 8576 /* 8577 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8578 * atomically set/clear the muxids. Also complete the ioctl by acking or 8579 * naking it. Note that the code is structured such that the link type, 8580 * whether it's persistent or not, is treated equally. ifconfig(8) and 8581 * its clones use the persistent link, while pppd(8) and perhaps many 8582 * other daemons may use non-persistent link. When combined with some 8583 * ill_t states, linking and unlinking lower streams may be used as 8584 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8585 */ 8586 /* ARGSUSED */ 8587 void 8588 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8589 { 8590 mblk_t *mp1; 8591 struct linkblk *li; 8592 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8593 int err = 0; 8594 8595 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8596 ioccmd == I_LINK || ioccmd == I_UNLINK); 8597 8598 mp1 = mp->b_cont; /* This is the linkblk info */ 8599 li = (struct linkblk *)mp1->b_rptr; 8600 8601 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8602 if (err == EINPROGRESS) 8603 return; 8604 if (err == 0) 8605 miocack(q, mp, 0, 0); 8606 else 8607 miocnak(q, mp, 0, err); 8608 8609 /* Conn was refheld in ip_sioctl_copyin_setup */ 8610 if (CONN_Q(q)) { 8611 CONN_DEC_IOCTLREF(Q_TO_CONN(q)); 8612 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8613 } 8614 } 8615 8616 /* 8617 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8618 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8619 * module stream). 8620 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8621 * an error code on failure. 8622 */ 8623 static int 8624 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8625 struct linkblk *li) 8626 { 8627 int err = 0; 8628 ill_t *ill; 8629 queue_t *ipwq, *dwq; 8630 const char *name; 8631 struct qinit *qinfo; 8632 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8633 boolean_t entered_ipsq = B_FALSE; 8634 boolean_t is_ip = B_FALSE; 8635 arl_t *arl; 8636 8637 /* 8638 * Walk the lower stream to verify it's the IP module stream. 8639 * The IP module is identified by its name, wput function, 8640 * and non-NULL q_next. STREAMS ensures that the lower stream 8641 * (li->l_qbot) will not vanish until this ioctl completes. 8642 */ 8643 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8644 qinfo = ipwq->q_qinfo; 8645 name = qinfo->qi_minfo->mi_idname; 8646 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8647 qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) { 8648 is_ip = B_TRUE; 8649 break; 8650 } 8651 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8652 qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) { 8653 break; 8654 } 8655 } 8656 8657 /* 8658 * If this isn't an IP module stream, bail. 8659 */ 8660 if (ipwq == NULL) 8661 return (0); 8662 8663 if (!is_ip) { 8664 arl = (arl_t *)ipwq->q_ptr; 8665 ill = arl_to_ill(arl); 8666 if (ill == NULL) 8667 return (0); 8668 } else { 8669 ill = ipwq->q_ptr; 8670 } 8671 ASSERT(ill != NULL); 8672 8673 if (ipsq == NULL) { 8674 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8675 NEW_OP, B_FALSE); 8676 if (ipsq == NULL) { 8677 if (!is_ip) 8678 ill_refrele(ill); 8679 return (EINPROGRESS); 8680 } 8681 entered_ipsq = B_TRUE; 8682 } 8683 ASSERT(IAM_WRITER_ILL(ill)); 8684 mutex_enter(&ill->ill_lock); 8685 if (!is_ip) { 8686 if (islink && ill->ill_muxid == 0) { 8687 /* 8688 * Plumbing has to be done with IP plumbed first, arp 8689 * second, but here we have arp being plumbed first. 8690 */ 8691 mutex_exit(&ill->ill_lock); 8692 if (entered_ipsq) 8693 ipsq_exit(ipsq); 8694 ill_refrele(ill); 8695 return (EINVAL); 8696 } 8697 } 8698 mutex_exit(&ill->ill_lock); 8699 if (!is_ip) { 8700 arl->arl_muxid = islink ? li->l_index : 0; 8701 ill_refrele(ill); 8702 goto done; 8703 } 8704 8705 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8706 goto done; 8707 8708 /* 8709 * As part of I_{P}LINKing, stash the number of downstream modules and 8710 * the read queue of the module immediately below IP in the ill. 8711 * These are used during the capability negotiation below. 8712 */ 8713 ill->ill_lmod_rq = NULL; 8714 ill->ill_lmod_cnt = 0; 8715 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8716 ill->ill_lmod_rq = RD(dwq); 8717 for (; dwq != NULL; dwq = dwq->q_next) 8718 ill->ill_lmod_cnt++; 8719 } 8720 8721 ill->ill_muxid = islink ? li->l_index : 0; 8722 8723 /* 8724 * Mark the ipsq busy until the capability operations initiated below 8725 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8726 * returns, but the capability operation may complete asynchronously 8727 * much later. 8728 */ 8729 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8730 /* 8731 * If there's at least one up ipif on this ill, then we're bound to 8732 * the underlying driver via DLPI. In that case, renegotiate 8733 * capabilities to account for any possible change in modules 8734 * interposed between IP and the driver. 8735 */ 8736 if (ill->ill_ipif_up_count > 0) { 8737 if (islink) 8738 ill_capability_probe(ill); 8739 else 8740 ill_capability_reset(ill, B_FALSE); 8741 } 8742 ipsq_current_finish(ipsq); 8743 done: 8744 if (entered_ipsq) 8745 ipsq_exit(ipsq); 8746 8747 return (err); 8748 } 8749 8750 /* 8751 * Search the ioctl command in the ioctl tables and return a pointer 8752 * to the ioctl command information. The ioctl command tables are 8753 * static and fully populated at compile time. 8754 */ 8755 ip_ioctl_cmd_t * 8756 ip_sioctl_lookup(int ioc_cmd) 8757 { 8758 int index; 8759 ip_ioctl_cmd_t *ipip; 8760 ip_ioctl_cmd_t *ipip_end; 8761 8762 if (ioc_cmd == IPI_DONTCARE) 8763 return (NULL); 8764 8765 /* 8766 * Do a 2 step search. First search the indexed table 8767 * based on the least significant byte of the ioctl cmd. 8768 * If we don't find a match, then search the misc table 8769 * serially. 8770 */ 8771 index = ioc_cmd & 0xFF; 8772 if (index < ip_ndx_ioctl_count) { 8773 ipip = &ip_ndx_ioctl_table[index]; 8774 if (ipip->ipi_cmd == ioc_cmd) { 8775 /* Found a match in the ndx table */ 8776 return (ipip); 8777 } 8778 } 8779 8780 /* Search the misc table */ 8781 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8782 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8783 if (ipip->ipi_cmd == ioc_cmd) 8784 /* Found a match in the misc table */ 8785 return (ipip); 8786 } 8787 8788 return (NULL); 8789 } 8790 8791 /* 8792 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8793 */ 8794 static boolean_t 8795 getset_ioctl_checks(mblk_t *mp) 8796 { 8797 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8798 mblk_t *mp1 = mp->b_cont; 8799 mod_ioc_prop_t *pioc; 8800 uint_t flags; 8801 uint_t pioc_size; 8802 8803 /* do sanity checks on various arguments */ 8804 if (mp1 == NULL || iocp->ioc_count == 0 || 8805 iocp->ioc_count == TRANSPARENT) { 8806 return (B_FALSE); 8807 } 8808 if (msgdsize(mp1) < iocp->ioc_count) { 8809 if (!pullupmsg(mp1, iocp->ioc_count)) 8810 return (B_FALSE); 8811 } 8812 8813 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8814 8815 /* sanity checks on mpr_valsize */ 8816 pioc_size = sizeof (mod_ioc_prop_t); 8817 if (pioc->mpr_valsize != 0) 8818 pioc_size += pioc->mpr_valsize - 1; 8819 8820 if (iocp->ioc_count != pioc_size) 8821 return (B_FALSE); 8822 8823 flags = pioc->mpr_flags; 8824 if (iocp->ioc_cmd == SIOCSETPROP) { 8825 /* 8826 * One can either reset the value to it's default value or 8827 * change the current value or append/remove the value from 8828 * a multi-valued properties. 8829 */ 8830 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8831 flags != MOD_PROP_ACTIVE && 8832 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8833 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8834 return (B_FALSE); 8835 } else { 8836 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8837 8838 /* 8839 * One can retrieve only one kind of property information 8840 * at a time. 8841 */ 8842 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8843 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8844 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8845 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8846 return (B_FALSE); 8847 } 8848 8849 return (B_TRUE); 8850 } 8851 8852 /* 8853 * process the SIOC{SET|GET}PROP ioctl's 8854 */ 8855 /* ARGSUSED */ 8856 static void 8857 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8858 { 8859 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8860 mblk_t *mp1 = mp->b_cont; 8861 mod_ioc_prop_t *pioc; 8862 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8863 ip_stack_t *ipst; 8864 netstack_t *stack; 8865 cred_t *cr; 8866 boolean_t set; 8867 int err; 8868 8869 ASSERT(q->q_next == NULL); 8870 ASSERT(CONN_Q(q)); 8871 8872 if (!getset_ioctl_checks(mp)) { 8873 miocnak(q, mp, 0, EINVAL); 8874 return; 8875 } 8876 ipst = CONNQ_TO_IPST(q); 8877 stack = ipst->ips_netstack; 8878 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8879 8880 switch (pioc->mpr_proto) { 8881 case MOD_PROTO_IP: 8882 case MOD_PROTO_IPV4: 8883 case MOD_PROTO_IPV6: 8884 ptbl = ipst->ips_propinfo_tbl; 8885 break; 8886 case MOD_PROTO_RAWIP: 8887 ptbl = stack->netstack_icmp->is_propinfo_tbl; 8888 break; 8889 case MOD_PROTO_TCP: 8890 ptbl = stack->netstack_tcp->tcps_propinfo_tbl; 8891 break; 8892 case MOD_PROTO_UDP: 8893 ptbl = stack->netstack_udp->us_propinfo_tbl; 8894 break; 8895 case MOD_PROTO_SCTP: 8896 ptbl = stack->netstack_sctp->sctps_propinfo_tbl; 8897 break; 8898 default: 8899 miocnak(q, mp, 0, EINVAL); 8900 return; 8901 } 8902 8903 pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto); 8904 if (pinfo == NULL) { 8905 miocnak(q, mp, 0, ENOENT); 8906 return; 8907 } 8908 8909 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8910 if (set && pinfo->mpi_setf != NULL) { 8911 cr = msg_getcred(mp, NULL); 8912 if (cr == NULL) 8913 cr = iocp->ioc_cr; 8914 err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname, 8915 pioc->mpr_val, pioc->mpr_flags); 8916 } else if (!set && pinfo->mpi_getf != NULL) { 8917 err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname, 8918 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8919 } else { 8920 err = EPERM; 8921 } 8922 8923 if (err != 0) { 8924 miocnak(q, mp, 0, err); 8925 } else { 8926 if (set) 8927 miocack(q, mp, 0, 0); 8928 else /* For get, we need to return back the data */ 8929 miocack(q, mp, iocp->ioc_count, 0); 8930 } 8931 } 8932 8933 /* 8934 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8935 * as several routing daemons have unfortunately used this 'unpublished' 8936 * but well-known ioctls. 8937 */ 8938 /* ARGSUSED */ 8939 static void 8940 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8941 { 8942 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8943 mblk_t *mp1 = mp->b_cont; 8944 char *pname, *pval, *buf; 8945 uint_t bufsize, proto; 8946 mod_prop_info_t *pinfo = NULL; 8947 ip_stack_t *ipst; 8948 int err = 0; 8949 8950 ASSERT(CONN_Q(q)); 8951 ipst = CONNQ_TO_IPST(q); 8952 8953 if (iocp->ioc_count == 0 || mp1 == NULL) { 8954 miocnak(q, mp, 0, EINVAL); 8955 return; 8956 } 8957 8958 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8959 pval = buf = pname = (char *)mp1->b_rptr; 8960 bufsize = MBLKL(mp1); 8961 8962 if (strcmp(pname, "ip_forwarding") == 0) { 8963 pname = "forwarding"; 8964 proto = MOD_PROTO_IPV4; 8965 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8966 pname = "forwarding"; 8967 proto = MOD_PROTO_IPV6; 8968 } else { 8969 miocnak(q, mp, 0, EINVAL); 8970 return; 8971 } 8972 8973 pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto); 8974 8975 switch (iocp->ioc_cmd) { 8976 case ND_GET: 8977 if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf, 8978 bufsize, 0)) == 0) { 8979 miocack(q, mp, iocp->ioc_count, 0); 8980 return; 8981 } 8982 break; 8983 case ND_SET: 8984 /* 8985 * buffer will have property name and value in the following 8986 * format, 8987 * <property name>'\0'<property value>'\0', extract them; 8988 */ 8989 while (*pval++) 8990 noop; 8991 8992 if (!*pval || pval >= (char *)mp1->b_wptr) { 8993 err = EINVAL; 8994 } else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL, 8995 pinfo, NULL, pval, 0)) == 0) { 8996 miocack(q, mp, 0, 0); 8997 return; 8998 } 8999 break; 9000 default: 9001 err = EINVAL; 9002 break; 9003 } 9004 miocnak(q, mp, 0, err); 9005 } 9006 9007 /* 9008 * Wrapper function for resuming deferred ioctl processing 9009 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9010 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9011 */ 9012 /* ARGSUSED */ 9013 void 9014 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9015 void *dummy_arg) 9016 { 9017 ip_sioctl_copyin_setup(q, mp); 9018 } 9019 9020 /* 9021 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9022 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9023 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9024 * We establish here the size of the block to be copied in. mi_copyin 9025 * arranges for this to happen, an processing continues in ip_wput_nondata with 9026 * an M_IOCDATA message. 9027 */ 9028 void 9029 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9030 { 9031 int copyin_size; 9032 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9033 ip_ioctl_cmd_t *ipip; 9034 cred_t *cr; 9035 ip_stack_t *ipst; 9036 9037 if (CONN_Q(q)) 9038 ipst = CONNQ_TO_IPST(q); 9039 else 9040 ipst = ILLQ_TO_IPST(q); 9041 9042 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9043 if (ipip == NULL) { 9044 /* 9045 * The ioctl is not one we understand or own. 9046 * Pass it along to be processed down stream, 9047 * if this is a module instance of IP, else nak 9048 * the ioctl. 9049 */ 9050 if (q->q_next == NULL) { 9051 goto nak; 9052 } else { 9053 putnext(q, mp); 9054 return; 9055 } 9056 } 9057 9058 /* 9059 * If this is deferred, then we will do all the checks when we 9060 * come back. 9061 */ 9062 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9063 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9064 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9065 return; 9066 } 9067 9068 /* 9069 * Only allow a very small subset of IP ioctls on this stream if 9070 * IP is a module and not a driver. Allowing ioctls to be processed 9071 * in this case may cause assert failures or data corruption. 9072 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9073 * ioctls allowed on an IP module stream, after which this stream 9074 * normally becomes a multiplexor (at which time the stream head 9075 * will fail all ioctls). 9076 */ 9077 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9078 goto nak; 9079 } 9080 9081 /* Make sure we have ioctl data to process. */ 9082 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9083 goto nak; 9084 9085 /* 9086 * Prefer dblk credential over ioctl credential; some synthesized 9087 * ioctls have kcred set because there's no way to crhold() 9088 * a credential in some contexts. (ioc_cr is not crfree() by 9089 * the framework; the caller of ioctl needs to hold the reference 9090 * for the duration of the call). 9091 */ 9092 cr = msg_getcred(mp, NULL); 9093 if (cr == NULL) 9094 cr = iocp->ioc_cr; 9095 9096 /* Make sure normal users don't send down privileged ioctls */ 9097 if ((ipip->ipi_flags & IPI_PRIV) && 9098 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9099 /* We checked the privilege earlier but log it here */ 9100 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9101 return; 9102 } 9103 9104 /* 9105 * The ioctl command tables can only encode fixed length 9106 * ioctl data. If the length is variable, the table will 9107 * encode the length as zero. Such special cases are handled 9108 * below in the switch. 9109 */ 9110 if (ipip->ipi_copyin_size != 0) { 9111 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9112 return; 9113 } 9114 9115 switch (iocp->ioc_cmd) { 9116 case O_SIOCGIFCONF: 9117 case SIOCGIFCONF: 9118 /* 9119 * This IOCTL is hilarious. See comments in 9120 * ip_sioctl_get_ifconf for the story. 9121 */ 9122 if (iocp->ioc_count == TRANSPARENT) 9123 copyin_size = SIZEOF_STRUCT(ifconf, 9124 iocp->ioc_flag); 9125 else 9126 copyin_size = iocp->ioc_count; 9127 mi_copyin(q, mp, NULL, copyin_size); 9128 return; 9129 9130 case O_SIOCGLIFCONF: 9131 case SIOCGLIFCONF: 9132 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9133 mi_copyin(q, mp, NULL, copyin_size); 9134 return; 9135 9136 case SIOCGLIFSRCOF: 9137 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9138 mi_copyin(q, mp, NULL, copyin_size); 9139 return; 9140 9141 case SIOCGIP6ADDRPOLICY: 9142 ip_sioctl_ip6addrpolicy(q, mp); 9143 ip6_asp_table_refrele(ipst); 9144 return; 9145 9146 case SIOCSIP6ADDRPOLICY: 9147 ip_sioctl_ip6addrpolicy(q, mp); 9148 return; 9149 9150 case SIOCGDSTINFO: 9151 ip_sioctl_dstinfo(q, mp); 9152 ip6_asp_table_refrele(ipst); 9153 return; 9154 9155 case ND_SET: 9156 case ND_GET: 9157 ip_process_legacy_nddprop(q, mp); 9158 return; 9159 9160 case SIOCSETPROP: 9161 case SIOCGETPROP: 9162 ip_sioctl_getsetprop(q, mp); 9163 return; 9164 9165 case I_PLINK: 9166 case I_PUNLINK: 9167 case I_LINK: 9168 case I_UNLINK: 9169 /* 9170 * We treat non-persistent link similarly as the persistent 9171 * link case, in terms of plumbing/unplumbing, as well as 9172 * dynamic re-plumbing events indicator. See comments 9173 * in ip_sioctl_plink() for more. 9174 * 9175 * Request can be enqueued in the 'ipsq' while waiting 9176 * to become exclusive. So bump up the conn ref. 9177 */ 9178 if (CONN_Q(q)) { 9179 CONN_INC_REF(Q_TO_CONN(q)); 9180 CONN_INC_IOCTLREF(Q_TO_CONN(q)) 9181 } 9182 ip_sioctl_plink(NULL, q, mp, NULL); 9183 return; 9184 9185 case IP_IOCTL: 9186 ip_wput_ioctl(q, mp); 9187 return; 9188 9189 case SIOCILB: 9190 /* The ioctl length varies depending on the ILB command. */ 9191 copyin_size = iocp->ioc_count; 9192 if (copyin_size < sizeof (ilb_cmd_t)) 9193 goto nak; 9194 mi_copyin(q, mp, NULL, copyin_size); 9195 return; 9196 9197 default: 9198 cmn_err(CE_WARN, "Unknown ioctl %d/0x%x slipped through.", 9199 iocp->ioc_cmd, iocp->ioc_cmd); 9200 /* FALLTHRU */ 9201 } 9202 nak: 9203 if (mp->b_cont != NULL) { 9204 freemsg(mp->b_cont); 9205 mp->b_cont = NULL; 9206 } 9207 iocp->ioc_error = EINVAL; 9208 mp->b_datap->db_type = M_IOCNAK; 9209 iocp->ioc_count = 0; 9210 qreply(q, mp); 9211 } 9212 9213 static void 9214 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9215 { 9216 struct arpreq *ar; 9217 struct xarpreq *xar; 9218 mblk_t *tmp; 9219 struct iocblk *iocp; 9220 int x_arp_ioctl = B_FALSE; 9221 int *flagsp; 9222 char *storage = NULL; 9223 9224 ASSERT(ill != NULL); 9225 9226 iocp = (struct iocblk *)mp->b_rptr; 9227 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9228 9229 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9230 if ((iocp->ioc_cmd == SIOCGXARP) || 9231 (iocp->ioc_cmd == SIOCSXARP)) { 9232 x_arp_ioctl = B_TRUE; 9233 xar = (struct xarpreq *)tmp->b_rptr; 9234 flagsp = &xar->xarp_flags; 9235 storage = xar->xarp_ha.sdl_data; 9236 } else { 9237 ar = (struct arpreq *)tmp->b_rptr; 9238 flagsp = &ar->arp_flags; 9239 storage = ar->arp_ha.sa_data; 9240 } 9241 9242 /* 9243 * We're done if this is not an SIOCG{X}ARP 9244 */ 9245 if (x_arp_ioctl) { 9246 storage += ill_xarp_info(&xar->xarp_ha, ill); 9247 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9248 sizeof (xar->xarp_ha.sdl_data)) { 9249 iocp->ioc_error = EINVAL; 9250 return; 9251 } 9252 } 9253 *flagsp = ATF_INUSE; 9254 /* 9255 * If /sbin/arp told us we are the authority using the "permanent" 9256 * flag, or if this is one of my addresses print "permanent" 9257 * in the /sbin/arp output. 9258 */ 9259 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9260 *flagsp |= ATF_AUTHORITY; 9261 if (flags & NCE_F_NONUD) 9262 *flagsp |= ATF_PERM; /* not subject to aging */ 9263 if (flags & NCE_F_PUBLISH) 9264 *flagsp |= ATF_PUBL; 9265 if (hwaddr != NULL) { 9266 *flagsp |= ATF_COM; 9267 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9268 } 9269 } 9270 9271 /* 9272 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9273 * interface) create the next available logical interface for this 9274 * physical interface. 9275 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9276 * ipif with the specified name. 9277 * 9278 * If the address family is not AF_UNSPEC then set the address as well. 9279 * 9280 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9281 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9282 * 9283 * Executed as a writer on the ill. 9284 * So no lock is needed to traverse the ipif chain, or examine the 9285 * phyint flags. 9286 */ 9287 /* ARGSUSED */ 9288 int 9289 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9290 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9291 { 9292 mblk_t *mp1; 9293 struct lifreq *lifr; 9294 boolean_t isv6; 9295 boolean_t exists; 9296 char *name; 9297 char *endp; 9298 char *cp; 9299 int namelen; 9300 ipif_t *ipif; 9301 long id; 9302 ipsq_t *ipsq; 9303 ill_t *ill; 9304 sin_t *sin; 9305 int err = 0; 9306 boolean_t found_sep = B_FALSE; 9307 conn_t *connp; 9308 zoneid_t zoneid; 9309 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9310 9311 ASSERT(q->q_next == NULL); 9312 ip1dbg(("ip_sioctl_addif\n")); 9313 /* Existence of mp1 has been checked in ip_wput_nondata */ 9314 mp1 = mp->b_cont->b_cont; 9315 /* 9316 * Null terminate the string to protect against buffer 9317 * overrun. String was generated by user code and may not 9318 * be trusted. 9319 */ 9320 lifr = (struct lifreq *)mp1->b_rptr; 9321 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9322 name = lifr->lifr_name; 9323 ASSERT(CONN_Q(q)); 9324 connp = Q_TO_CONN(q); 9325 isv6 = (connp->conn_family == AF_INET6); 9326 zoneid = connp->conn_zoneid; 9327 namelen = mi_strlen(name); 9328 if (namelen == 0) 9329 return (EINVAL); 9330 9331 exists = B_FALSE; 9332 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9333 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9334 /* 9335 * Allow creating lo0 using SIOCLIFADDIF. 9336 * can't be any other writer thread. So can pass null below 9337 * for the last 4 args to ipif_lookup_name. 9338 */ 9339 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9340 &exists, isv6, zoneid, ipst); 9341 /* Prevent any further action */ 9342 if (ipif == NULL) { 9343 return (ENOBUFS); 9344 } else if (!exists) { 9345 /* We created the ipif now and as writer */ 9346 ipif_refrele(ipif); 9347 return (0); 9348 } else { 9349 ill = ipif->ipif_ill; 9350 ill_refhold(ill); 9351 ipif_refrele(ipif); 9352 } 9353 } else { 9354 /* Look for a colon in the name. */ 9355 endp = &name[namelen]; 9356 for (cp = endp; --cp > name; ) { 9357 if (*cp == IPIF_SEPARATOR_CHAR) { 9358 found_sep = B_TRUE; 9359 /* 9360 * Reject any non-decimal aliases for plumbing 9361 * of logical interfaces. Aliases with leading 9362 * zeroes are also rejected as they introduce 9363 * ambiguity in the naming of the interfaces. 9364 * Comparing with "0" takes care of all such 9365 * cases. 9366 */ 9367 if ((strncmp("0", cp+1, 1)) == 0) 9368 return (EINVAL); 9369 9370 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9371 id <= 0 || *endp != '\0') { 9372 return (EINVAL); 9373 } 9374 *cp = '\0'; 9375 break; 9376 } 9377 } 9378 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9379 if (found_sep) 9380 *cp = IPIF_SEPARATOR_CHAR; 9381 if (ill == NULL) 9382 return (ENXIO); 9383 } 9384 9385 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9386 B_TRUE); 9387 9388 /* 9389 * Release the refhold due to the lookup, now that we are excl 9390 * or we are just returning 9391 */ 9392 ill_refrele(ill); 9393 9394 if (ipsq == NULL) 9395 return (EINPROGRESS); 9396 9397 /* We are now exclusive on the IPSQ */ 9398 ASSERT(IAM_WRITER_ILL(ill)); 9399 9400 if (found_sep) { 9401 /* Now see if there is an IPIF with this unit number. */ 9402 for (ipif = ill->ill_ipif; ipif != NULL; 9403 ipif = ipif->ipif_next) { 9404 if (ipif->ipif_id == id) { 9405 err = EEXIST; 9406 goto done; 9407 } 9408 } 9409 } 9410 9411 /* 9412 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9413 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9414 * instead. 9415 */ 9416 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9417 B_TRUE, B_TRUE, &err)) == NULL) { 9418 goto done; 9419 } 9420 9421 /* Return created name with ioctl */ 9422 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9423 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9424 ip1dbg(("created %s\n", lifr->lifr_name)); 9425 9426 /* Set address */ 9427 sin = (sin_t *)&lifr->lifr_addr; 9428 if (sin->sin_family != AF_UNSPEC) { 9429 err = ip_sioctl_addr(ipif, sin, q, mp, 9430 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9431 } 9432 9433 done: 9434 ipsq_exit(ipsq); 9435 return (err); 9436 } 9437 9438 /* 9439 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9440 * interface) delete it based on the IP address (on this physical interface). 9441 * Otherwise delete it based on the ipif_id. 9442 * Also, special handling to allow a removeif of lo0. 9443 */ 9444 /* ARGSUSED */ 9445 int 9446 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9447 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9448 { 9449 conn_t *connp; 9450 ill_t *ill = ipif->ipif_ill; 9451 boolean_t success; 9452 ip_stack_t *ipst; 9453 9454 ipst = CONNQ_TO_IPST(q); 9455 9456 ASSERT(q->q_next == NULL); 9457 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9458 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9459 ASSERT(IAM_WRITER_IPIF(ipif)); 9460 9461 connp = Q_TO_CONN(q); 9462 /* 9463 * Special case for unplumbing lo0 (the loopback physical interface). 9464 * If unplumbing lo0, the incoming address structure has been 9465 * initialized to all zeros. When unplumbing lo0, all its logical 9466 * interfaces must be removed too. 9467 * 9468 * Note that this interface may be called to remove a specific 9469 * loopback logical interface (eg, lo0:1). But in that case 9470 * ipif->ipif_id != 0 so that the code path for that case is the 9471 * same as any other interface (meaning it skips the code directly 9472 * below). 9473 */ 9474 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9475 if (sin->sin_family == AF_UNSPEC && 9476 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9477 /* 9478 * Mark it condemned. No new ref. will be made to ill. 9479 */ 9480 mutex_enter(&ill->ill_lock); 9481 ill->ill_state_flags |= ILL_CONDEMNED; 9482 for (ipif = ill->ill_ipif; ipif != NULL; 9483 ipif = ipif->ipif_next) { 9484 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9485 } 9486 mutex_exit(&ill->ill_lock); 9487 9488 ipif = ill->ill_ipif; 9489 /* unplumb the loopback interface */ 9490 ill_delete(ill); 9491 mutex_enter(&connp->conn_lock); 9492 mutex_enter(&ill->ill_lock); 9493 9494 /* Are any references to this ill active */ 9495 if (ill_is_freeable(ill)) { 9496 mutex_exit(&ill->ill_lock); 9497 mutex_exit(&connp->conn_lock); 9498 ill_delete_tail(ill); 9499 mi_free(ill); 9500 return (0); 9501 } 9502 success = ipsq_pending_mp_add(connp, ipif, 9503 CONNP_TO_WQ(connp), mp, ILL_FREE); 9504 mutex_exit(&connp->conn_lock); 9505 mutex_exit(&ill->ill_lock); 9506 if (success) 9507 return (EINPROGRESS); 9508 else 9509 return (EINTR); 9510 } 9511 } 9512 9513 if (ipif->ipif_id == 0) { 9514 ipsq_t *ipsq; 9515 9516 /* Find based on address */ 9517 if (ipif->ipif_isv6) { 9518 sin6_t *sin6; 9519 9520 if (sin->sin_family != AF_INET6) 9521 return (EAFNOSUPPORT); 9522 9523 sin6 = (sin6_t *)sin; 9524 /* We are a writer, so we should be able to lookup */ 9525 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9526 ipst); 9527 } else { 9528 if (sin->sin_family != AF_INET) 9529 return (EAFNOSUPPORT); 9530 9531 /* We are a writer, so we should be able to lookup */ 9532 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9533 ipst); 9534 } 9535 if (ipif == NULL) { 9536 return (EADDRNOTAVAIL); 9537 } 9538 9539 /* 9540 * It is possible for a user to send an SIOCLIFREMOVEIF with 9541 * lifr_name of the physical interface but with an ip address 9542 * lifr_addr of a logical interface plumbed over it. 9543 * So update ipx_current_ipif now that ipif points to the 9544 * correct one. 9545 */ 9546 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9547 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9548 9549 /* This is a writer */ 9550 ipif_refrele(ipif); 9551 } 9552 9553 /* 9554 * Can not delete instance zero since it is tied to the ill. 9555 */ 9556 if (ipif->ipif_id == 0) 9557 return (EBUSY); 9558 9559 mutex_enter(&ill->ill_lock); 9560 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9561 mutex_exit(&ill->ill_lock); 9562 9563 ipif_free(ipif); 9564 9565 mutex_enter(&connp->conn_lock); 9566 mutex_enter(&ill->ill_lock); 9567 9568 /* Are any references to this ipif active */ 9569 if (ipif_is_freeable(ipif)) { 9570 mutex_exit(&ill->ill_lock); 9571 mutex_exit(&connp->conn_lock); 9572 ipif_non_duplicate(ipif); 9573 (void) ipif_down_tail(ipif); 9574 ipif_free_tail(ipif); /* frees ipif */ 9575 return (0); 9576 } 9577 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9578 IPIF_FREE); 9579 mutex_exit(&ill->ill_lock); 9580 mutex_exit(&connp->conn_lock); 9581 if (success) 9582 return (EINPROGRESS); 9583 else 9584 return (EINTR); 9585 } 9586 9587 /* 9588 * Restart the removeif ioctl. The refcnt has gone down to 0. 9589 * The ipif is already condemned. So can't find it thru lookups. 9590 */ 9591 /* ARGSUSED */ 9592 int 9593 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9594 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9595 { 9596 ill_t *ill = ipif->ipif_ill; 9597 9598 ASSERT(IAM_WRITER_IPIF(ipif)); 9599 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9600 9601 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9602 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9603 9604 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9605 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9606 ill_delete_tail(ill); 9607 mi_free(ill); 9608 return (0); 9609 } 9610 9611 ipif_non_duplicate(ipif); 9612 (void) ipif_down_tail(ipif); 9613 ipif_free_tail(ipif); 9614 9615 return (0); 9616 } 9617 9618 /* 9619 * Set the local interface address using the given prefix and ill_token. 9620 */ 9621 /* ARGSUSED */ 9622 int 9623 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9624 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9625 { 9626 int err; 9627 in6_addr_t v6addr; 9628 sin6_t *sin6; 9629 ill_t *ill; 9630 int i; 9631 9632 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9633 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9634 9635 ASSERT(IAM_WRITER_IPIF(ipif)); 9636 9637 if (!ipif->ipif_isv6) 9638 return (EINVAL); 9639 9640 if (sin->sin_family != AF_INET6) 9641 return (EAFNOSUPPORT); 9642 9643 sin6 = (sin6_t *)sin; 9644 v6addr = sin6->sin6_addr; 9645 ill = ipif->ipif_ill; 9646 9647 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9648 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9649 return (EADDRNOTAVAIL); 9650 9651 for (i = 0; i < 4; i++) 9652 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9653 9654 err = ip_sioctl_addr(ipif, sin, q, mp, 9655 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9656 return (err); 9657 } 9658 9659 /* 9660 * Restart entry point to restart the address set operation after the 9661 * refcounts have dropped to zero. 9662 */ 9663 /* ARGSUSED */ 9664 int 9665 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9666 ip_ioctl_cmd_t *ipip, void *ifreq) 9667 { 9668 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9669 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9670 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9671 } 9672 9673 /* 9674 * Set the local interface address. 9675 * Allow an address of all zero when the interface is down. 9676 */ 9677 /* ARGSUSED */ 9678 int 9679 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9680 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9681 { 9682 int err = 0; 9683 in6_addr_t v6addr; 9684 boolean_t need_up = B_FALSE; 9685 ill_t *ill; 9686 int i; 9687 9688 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9689 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9690 9691 ASSERT(IAM_WRITER_IPIF(ipif)); 9692 9693 ill = ipif->ipif_ill; 9694 if (ipif->ipif_isv6) { 9695 sin6_t *sin6; 9696 phyint_t *phyi; 9697 9698 if (sin->sin_family != AF_INET6) 9699 return (EAFNOSUPPORT); 9700 9701 sin6 = (sin6_t *)sin; 9702 v6addr = sin6->sin6_addr; 9703 phyi = ill->ill_phyint; 9704 9705 /* 9706 * Enforce that true multicast interfaces have a link-local 9707 * address for logical unit 0. 9708 * 9709 * However for those ipif's for which link-local address was 9710 * not created by default, also allow setting :: as the address. 9711 * This scenario would arise, when we delete an address on ipif 9712 * with logical unit 0, we would want to set :: as the address. 9713 */ 9714 if (ipif->ipif_id == 0 && 9715 (ill->ill_flags & ILLF_MULTICAST) && 9716 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9717 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9718 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9719 9720 /* 9721 * if default link-local was not created by kernel for 9722 * this ill, allow setting :: as the address on ipif:0. 9723 */ 9724 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9725 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9726 return (EADDRNOTAVAIL); 9727 } else { 9728 return (EADDRNOTAVAIL); 9729 } 9730 } 9731 9732 /* 9733 * up interfaces shouldn't have the unspecified address 9734 * unless they also have the IPIF_NOLOCAL flags set and 9735 * have a subnet assigned. 9736 */ 9737 if ((ipif->ipif_flags & IPIF_UP) && 9738 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9739 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9740 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9741 return (EADDRNOTAVAIL); 9742 } 9743 9744 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9745 return (EADDRNOTAVAIL); 9746 } else { 9747 ipaddr_t addr; 9748 9749 if (sin->sin_family != AF_INET) 9750 return (EAFNOSUPPORT); 9751 9752 addr = sin->sin_addr.s_addr; 9753 9754 /* Allow INADDR_ANY as the local address. */ 9755 if (addr != INADDR_ANY && 9756 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9757 return (EADDRNOTAVAIL); 9758 9759 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9760 } 9761 /* 9762 * verify that the address being configured is permitted by the 9763 * ill_allowed_ips[] for the interface. 9764 */ 9765 if (ill->ill_allowed_ips_cnt > 0) { 9766 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) { 9767 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i], 9768 &v6addr)) 9769 break; 9770 } 9771 if (i == ill->ill_allowed_ips_cnt) { 9772 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr); 9773 return (EPERM); 9774 } 9775 } 9776 /* 9777 * Even if there is no change we redo things just to rerun 9778 * ipif_set_default. 9779 */ 9780 if (ipif->ipif_flags & IPIF_UP) { 9781 /* 9782 * Setting a new local address, make sure 9783 * we have net and subnet bcast ire's for 9784 * the old address if we need them. 9785 */ 9786 /* 9787 * If the interface is already marked up, 9788 * we call ipif_down which will take care 9789 * of ditching any IREs that have been set 9790 * up based on the old interface address. 9791 */ 9792 err = ipif_logical_down(ipif, q, mp); 9793 if (err == EINPROGRESS) 9794 return (err); 9795 (void) ipif_down_tail(ipif); 9796 need_up = 1; 9797 } 9798 9799 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9800 return (err); 9801 } 9802 9803 int 9804 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9805 boolean_t need_up) 9806 { 9807 in6_addr_t v6addr; 9808 in6_addr_t ov6addr; 9809 ipaddr_t addr; 9810 sin6_t *sin6; 9811 int sinlen; 9812 int err = 0; 9813 ill_t *ill = ipif->ipif_ill; 9814 boolean_t need_dl_down; 9815 boolean_t need_arp_down; 9816 struct iocblk *iocp; 9817 9818 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9819 9820 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9821 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9822 ASSERT(IAM_WRITER_IPIF(ipif)); 9823 9824 /* Must cancel any pending timer before taking the ill_lock */ 9825 if (ipif->ipif_recovery_id != 0) 9826 (void) untimeout(ipif->ipif_recovery_id); 9827 ipif->ipif_recovery_id = 0; 9828 9829 if (ipif->ipif_isv6) { 9830 sin6 = (sin6_t *)sin; 9831 v6addr = sin6->sin6_addr; 9832 sinlen = sizeof (struct sockaddr_in6); 9833 } else { 9834 addr = sin->sin_addr.s_addr; 9835 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9836 sinlen = sizeof (struct sockaddr_in); 9837 } 9838 mutex_enter(&ill->ill_lock); 9839 ov6addr = ipif->ipif_v6lcl_addr; 9840 ipif->ipif_v6lcl_addr = v6addr; 9841 sctp_update_ipif_addr(ipif, ov6addr); 9842 ipif->ipif_addr_ready = 0; 9843 9844 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9845 9846 /* 9847 * If the interface was previously marked as a duplicate, then since 9848 * we've now got a "new" address, it should no longer be considered a 9849 * duplicate -- even if the "new" address is the same as the old one. 9850 * Note that if all ipifs are down, we may have a pending ARP down 9851 * event to handle. This is because we want to recover from duplicates 9852 * and thus delay tearing down ARP until the duplicates have been 9853 * removed or disabled. 9854 */ 9855 need_dl_down = need_arp_down = B_FALSE; 9856 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9857 need_arp_down = !need_up; 9858 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9859 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9860 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9861 need_dl_down = B_TRUE; 9862 } 9863 } 9864 9865 ipif_set_default(ipif); 9866 9867 /* 9868 * If we've just manually set the IPv6 link-local address (0th ipif), 9869 * tag the ill so that future updates to the interface ID don't result 9870 * in this address getting automatically reconfigured from under the 9871 * administrator. 9872 */ 9873 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9874 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9875 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9876 ill->ill_manual_linklocal = 1; 9877 } 9878 9879 /* 9880 * When publishing an interface address change event, we only notify 9881 * the event listeners of the new address. It is assumed that if they 9882 * actively care about the addresses assigned that they will have 9883 * already discovered the previous address assigned (if there was one.) 9884 * 9885 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9886 */ 9887 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9888 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9889 NE_ADDRESS_CHANGE, sin, sinlen); 9890 } 9891 9892 mutex_exit(&ill->ill_lock); 9893 9894 if (need_up) { 9895 /* 9896 * Now bring the interface back up. If this 9897 * is the only IPIF for the ILL, ipif_up 9898 * will have to re-bind to the device, so 9899 * we may get back EINPROGRESS, in which 9900 * case, this IOCTL will get completed in 9901 * ip_rput_dlpi when we see the DL_BIND_ACK. 9902 */ 9903 err = ipif_up(ipif, q, mp); 9904 } else { 9905 /* Perhaps ilgs should use this ill */ 9906 update_conn_ill(NULL, ill->ill_ipst); 9907 } 9908 9909 if (need_dl_down) 9910 ill_dl_down(ill); 9911 9912 if (need_arp_down && !ill->ill_isv6) 9913 (void) ipif_arp_down(ipif); 9914 9915 /* 9916 * The default multicast interface might have changed (for 9917 * instance if the IPv6 scope of the address changed) 9918 */ 9919 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9920 9921 return (err); 9922 } 9923 9924 /* 9925 * Restart entry point to restart the address set operation after the 9926 * refcounts have dropped to zero. 9927 */ 9928 /* ARGSUSED */ 9929 int 9930 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9931 ip_ioctl_cmd_t *ipip, void *ifreq) 9932 { 9933 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9934 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9935 ASSERT(IAM_WRITER_IPIF(ipif)); 9936 (void) ipif_down_tail(ipif); 9937 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9938 } 9939 9940 /* ARGSUSED */ 9941 int 9942 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9943 ip_ioctl_cmd_t *ipip, void *if_req) 9944 { 9945 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9946 struct lifreq *lifr = (struct lifreq *)if_req; 9947 9948 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9949 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9950 /* 9951 * The net mask and address can't change since we have a 9952 * reference to the ipif. So no lock is necessary. 9953 */ 9954 if (ipif->ipif_isv6) { 9955 *sin6 = sin6_null; 9956 sin6->sin6_family = AF_INET6; 9957 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9958 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 9959 sin6->sin6_scope_id = 9960 ipif->ipif_ill->ill_phyint->phyint_ifindex; 9961 } 9962 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9963 lifr->lifr_addrlen = 9964 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9965 } else { 9966 *sin = sin_null; 9967 sin->sin_family = AF_INET; 9968 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9969 if (ipip->ipi_cmd_type == LIF_CMD) { 9970 lifr->lifr_addrlen = 9971 ip_mask_to_plen(ipif->ipif_net_mask); 9972 } 9973 } 9974 return (0); 9975 } 9976 9977 /* 9978 * Set the destination address for a pt-pt interface. 9979 */ 9980 /* ARGSUSED */ 9981 int 9982 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9983 ip_ioctl_cmd_t *ipip, void *if_req) 9984 { 9985 int err = 0; 9986 in6_addr_t v6addr; 9987 boolean_t need_up = B_FALSE; 9988 9989 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9990 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9991 ASSERT(IAM_WRITER_IPIF(ipif)); 9992 9993 if (ipif->ipif_isv6) { 9994 sin6_t *sin6; 9995 9996 if (sin->sin_family != AF_INET6) 9997 return (EAFNOSUPPORT); 9998 9999 sin6 = (sin6_t *)sin; 10000 v6addr = sin6->sin6_addr; 10001 10002 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10003 return (EADDRNOTAVAIL); 10004 } else { 10005 ipaddr_t addr; 10006 10007 if (sin->sin_family != AF_INET) 10008 return (EAFNOSUPPORT); 10009 10010 addr = sin->sin_addr.s_addr; 10011 if (addr != INADDR_ANY && 10012 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 10013 return (EADDRNOTAVAIL); 10014 } 10015 10016 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10017 } 10018 10019 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10020 return (0); /* No change */ 10021 10022 if (ipif->ipif_flags & IPIF_UP) { 10023 /* 10024 * If the interface is already marked up, 10025 * we call ipif_down which will take care 10026 * of ditching any IREs that have been set 10027 * up based on the old pp dst address. 10028 */ 10029 err = ipif_logical_down(ipif, q, mp); 10030 if (err == EINPROGRESS) 10031 return (err); 10032 (void) ipif_down_tail(ipif); 10033 need_up = B_TRUE; 10034 } 10035 /* 10036 * could return EINPROGRESS. If so ioctl will complete in 10037 * ip_rput_dlpi_writer 10038 */ 10039 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10040 return (err); 10041 } 10042 10043 static int 10044 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10045 boolean_t need_up) 10046 { 10047 in6_addr_t v6addr; 10048 ill_t *ill = ipif->ipif_ill; 10049 int err = 0; 10050 boolean_t need_dl_down; 10051 boolean_t need_arp_down; 10052 10053 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10054 ipif->ipif_id, (void *)ipif)); 10055 10056 /* Must cancel any pending timer before taking the ill_lock */ 10057 if (ipif->ipif_recovery_id != 0) 10058 (void) untimeout(ipif->ipif_recovery_id); 10059 ipif->ipif_recovery_id = 0; 10060 10061 if (ipif->ipif_isv6) { 10062 sin6_t *sin6; 10063 10064 sin6 = (sin6_t *)sin; 10065 v6addr = sin6->sin6_addr; 10066 } else { 10067 ipaddr_t addr; 10068 10069 addr = sin->sin_addr.s_addr; 10070 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10071 } 10072 mutex_enter(&ill->ill_lock); 10073 /* Set point to point destination address. */ 10074 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10075 /* 10076 * Allow this as a means of creating logical 10077 * pt-pt interfaces on top of e.g. an Ethernet. 10078 * XXX Undocumented HACK for testing. 10079 * pt-pt interfaces are created with NUD disabled. 10080 */ 10081 ipif->ipif_flags |= IPIF_POINTOPOINT; 10082 ipif->ipif_flags &= ~IPIF_BROADCAST; 10083 if (ipif->ipif_isv6) 10084 ill->ill_flags |= ILLF_NONUD; 10085 } 10086 10087 /* 10088 * If the interface was previously marked as a duplicate, then since 10089 * we've now got a "new" address, it should no longer be considered a 10090 * duplicate -- even if the "new" address is the same as the old one. 10091 * Note that if all ipifs are down, we may have a pending ARP down 10092 * event to handle. 10093 */ 10094 need_dl_down = need_arp_down = B_FALSE; 10095 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10096 need_arp_down = !need_up; 10097 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10098 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10099 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10100 need_dl_down = B_TRUE; 10101 } 10102 } 10103 10104 /* 10105 * If we've just manually set the IPv6 destination link-local address 10106 * (0th ipif), tag the ill so that future updates to the destination 10107 * interface ID (as can happen with interfaces over IP tunnels) don't 10108 * result in this address getting automatically reconfigured from 10109 * under the administrator. 10110 */ 10111 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10112 ill->ill_manual_dst_linklocal = 1; 10113 10114 /* Set the new address. */ 10115 ipif->ipif_v6pp_dst_addr = v6addr; 10116 /* Make sure subnet tracks pp_dst */ 10117 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10118 mutex_exit(&ill->ill_lock); 10119 10120 if (need_up) { 10121 /* 10122 * Now bring the interface back up. If this 10123 * is the only IPIF for the ILL, ipif_up 10124 * will have to re-bind to the device, so 10125 * we may get back EINPROGRESS, in which 10126 * case, this IOCTL will get completed in 10127 * ip_rput_dlpi when we see the DL_BIND_ACK. 10128 */ 10129 err = ipif_up(ipif, q, mp); 10130 } 10131 10132 if (need_dl_down) 10133 ill_dl_down(ill); 10134 if (need_arp_down && !ipif->ipif_isv6) 10135 (void) ipif_arp_down(ipif); 10136 10137 return (err); 10138 } 10139 10140 /* 10141 * Restart entry point to restart the dstaddress set operation after the 10142 * refcounts have dropped to zero. 10143 */ 10144 /* ARGSUSED */ 10145 int 10146 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10147 ip_ioctl_cmd_t *ipip, void *ifreq) 10148 { 10149 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10150 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10151 (void) ipif_down_tail(ipif); 10152 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10153 } 10154 10155 /* ARGSUSED */ 10156 int 10157 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10158 ip_ioctl_cmd_t *ipip, void *if_req) 10159 { 10160 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10161 10162 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10163 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10164 /* 10165 * Get point to point destination address. The addresses can't 10166 * change since we hold a reference to the ipif. 10167 */ 10168 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10169 return (EADDRNOTAVAIL); 10170 10171 if (ipif->ipif_isv6) { 10172 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10173 *sin6 = sin6_null; 10174 sin6->sin6_family = AF_INET6; 10175 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10176 } else { 10177 *sin = sin_null; 10178 sin->sin_family = AF_INET; 10179 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10180 } 10181 return (0); 10182 } 10183 10184 /* 10185 * Check which flags will change by the given flags being set 10186 * silently ignore flags which userland is not allowed to control. 10187 * (Because these flags may change between SIOCGLIFFLAGS and 10188 * SIOCSLIFFLAGS, and that's outside of userland's control, 10189 * we need to silently ignore them rather than fail.) 10190 */ 10191 static void 10192 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10193 uint64_t *offp) 10194 { 10195 ill_t *ill = ipif->ipif_ill; 10196 phyint_t *phyi = ill->ill_phyint; 10197 uint64_t cantchange_flags, intf_flags; 10198 uint64_t turn_on, turn_off; 10199 10200 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10201 cantchange_flags = IFF_CANTCHANGE; 10202 if (IS_IPMP(ill)) 10203 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10204 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10205 turn_off = intf_flags & turn_on; 10206 turn_on ^= turn_off; 10207 *onp = turn_on; 10208 *offp = turn_off; 10209 } 10210 10211 /* 10212 * Set interface flags. Many flags require special handling (e.g., 10213 * bringing the interface down); see below for details. 10214 * 10215 * NOTE : We really don't enforce that ipif_id zero should be used 10216 * for setting any flags other than IFF_LOGINT_FLAGS. This 10217 * is because applications generally does SICGLIFFLAGS and 10218 * ORs in the new flags (that affects the logical) and does a 10219 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10220 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10221 * flags that will be turned on is correct with respect to 10222 * ipif_id 0. For backward compatibility reasons, it is not done. 10223 */ 10224 /* ARGSUSED */ 10225 int 10226 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10227 ip_ioctl_cmd_t *ipip, void *if_req) 10228 { 10229 uint64_t turn_on; 10230 uint64_t turn_off; 10231 int err = 0; 10232 phyint_t *phyi; 10233 ill_t *ill; 10234 conn_t *connp; 10235 uint64_t intf_flags; 10236 boolean_t phyint_flags_modified = B_FALSE; 10237 uint64_t flags; 10238 struct ifreq *ifr; 10239 struct lifreq *lifr; 10240 boolean_t set_linklocal = B_FALSE; 10241 10242 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10243 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10244 10245 ASSERT(IAM_WRITER_IPIF(ipif)); 10246 10247 ill = ipif->ipif_ill; 10248 phyi = ill->ill_phyint; 10249 10250 if (ipip->ipi_cmd_type == IF_CMD) { 10251 ifr = (struct ifreq *)if_req; 10252 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10253 } else { 10254 lifr = (struct lifreq *)if_req; 10255 flags = lifr->lifr_flags; 10256 } 10257 10258 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10259 10260 /* 10261 * Have the flags been set correctly until now? 10262 */ 10263 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10264 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10265 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10266 /* 10267 * Compare the new flags to the old, and partition 10268 * into those coming on and those going off. 10269 * For the 16 bit command keep the bits above bit 16 unchanged. 10270 */ 10271 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10272 flags |= intf_flags & ~0xFFFF; 10273 10274 /* 10275 * Explicitly fail attempts to change flags that are always invalid on 10276 * an IPMP meta-interface. 10277 */ 10278 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10279 return (EINVAL); 10280 10281 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10282 if ((turn_on|turn_off) == 0) 10283 return (0); /* No change */ 10284 10285 /* 10286 * All test addresses must be IFF_DEPRECATED (to ensure source address 10287 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10288 * allow it to be turned off. 10289 */ 10290 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10291 (turn_on|intf_flags) & IFF_NOFAILOVER) 10292 return (EINVAL); 10293 10294 if ((connp = Q_TO_CONN(q)) == NULL) 10295 return (EINVAL); 10296 10297 /* 10298 * Only vrrp control socket is allowed to change IFF_UP and 10299 * IFF_NOACCEPT flags when IFF_VRRP is set. 10300 */ 10301 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10302 if (!connp->conn_isvrrp) 10303 return (EINVAL); 10304 } 10305 10306 /* 10307 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10308 * VRRP control socket. 10309 */ 10310 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10311 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10312 return (EINVAL); 10313 } 10314 10315 if (turn_on & IFF_NOFAILOVER) { 10316 turn_on |= IFF_DEPRECATED; 10317 flags |= IFF_DEPRECATED; 10318 } 10319 10320 /* 10321 * On underlying interfaces, only allow applications to manage test 10322 * addresses -- otherwise, they may get confused when the address 10323 * moves as part of being brought up. Likewise, prevent an 10324 * application-managed test address from being converted to a data 10325 * address. To prevent migration of administratively up addresses in 10326 * the kernel, we don't allow them to be converted either. 10327 */ 10328 if (IS_UNDER_IPMP(ill)) { 10329 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10330 10331 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10332 return (EINVAL); 10333 10334 if ((turn_off & IFF_NOFAILOVER) && 10335 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10336 return (EINVAL); 10337 } 10338 10339 /* 10340 * Only allow IFF_TEMPORARY flag to be set on 10341 * IPv6 interfaces. 10342 */ 10343 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10344 return (EINVAL); 10345 10346 /* 10347 * cannot turn off IFF_NOXMIT on VNI interfaces. 10348 */ 10349 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10350 return (EINVAL); 10351 10352 /* 10353 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10354 * interfaces. It makes no sense in that context. 10355 */ 10356 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10357 return (EINVAL); 10358 10359 /* 10360 * For IPv6 ipif_id 0, don't allow the interface to be up without 10361 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10362 * If the link local address isn't set, and can be set, it will get 10363 * set later on in this function. 10364 */ 10365 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10366 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10367 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10368 if (ipif_cant_setlinklocal(ipif)) 10369 return (EINVAL); 10370 set_linklocal = B_TRUE; 10371 } 10372 10373 /* 10374 * If we modify physical interface flags, we'll potentially need to 10375 * send up two routing socket messages for the changes (one for the 10376 * IPv4 ill, and another for the IPv6 ill). Note that here. 10377 */ 10378 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10379 phyint_flags_modified = B_TRUE; 10380 10381 /* 10382 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10383 * (otherwise, we'd immediately use them, defeating standby). Also, 10384 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10385 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10386 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10387 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10388 * will not be honored. 10389 */ 10390 if (turn_on & PHYI_STANDBY) { 10391 /* 10392 * No need to grab ill_g_usesrc_lock here; see the 10393 * synchronization notes in ip.c. 10394 */ 10395 if (ill->ill_usesrc_grp_next != NULL || 10396 intf_flags & PHYI_INACTIVE) 10397 return (EINVAL); 10398 if (!(flags & PHYI_FAILED)) { 10399 flags |= PHYI_INACTIVE; 10400 turn_on |= PHYI_INACTIVE; 10401 } 10402 } 10403 10404 if (turn_off & PHYI_STANDBY) { 10405 flags &= ~PHYI_INACTIVE; 10406 turn_off |= PHYI_INACTIVE; 10407 } 10408 10409 /* 10410 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10411 * would end up on. 10412 */ 10413 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10414 (PHYI_FAILED | PHYI_INACTIVE)) 10415 return (EINVAL); 10416 10417 /* 10418 * If ILLF_ROUTER changes, we need to change the ip forwarding 10419 * status of the interface. 10420 */ 10421 if ((turn_on | turn_off) & ILLF_ROUTER) { 10422 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10423 if (err != 0) 10424 return (err); 10425 } 10426 10427 /* 10428 * If the interface is not UP and we are not going to 10429 * bring it UP, record the flags and return. When the 10430 * interface comes UP later, the right actions will be 10431 * taken. 10432 */ 10433 if (!(ipif->ipif_flags & IPIF_UP) && 10434 !(turn_on & IPIF_UP)) { 10435 /* Record new flags in their respective places. */ 10436 mutex_enter(&ill->ill_lock); 10437 mutex_enter(&ill->ill_phyint->phyint_lock); 10438 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10439 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10440 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10441 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10442 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10443 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10444 mutex_exit(&ill->ill_lock); 10445 mutex_exit(&ill->ill_phyint->phyint_lock); 10446 10447 /* 10448 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10449 * same to the kernel: if any of them has been set by 10450 * userland, the interface cannot be used for data traffic. 10451 */ 10452 if ((turn_on|turn_off) & 10453 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10454 ASSERT(!IS_IPMP(ill)); 10455 /* 10456 * It's possible the ill is part of an "anonymous" 10457 * IPMP group rather than a real group. In that case, 10458 * there are no other interfaces in the group and thus 10459 * no need to call ipmp_phyint_refresh_active(). 10460 */ 10461 if (IS_UNDER_IPMP(ill)) 10462 ipmp_phyint_refresh_active(phyi); 10463 } 10464 10465 if (phyint_flags_modified) { 10466 if (phyi->phyint_illv4 != NULL) { 10467 ip_rts_ifmsg(phyi->phyint_illv4-> 10468 ill_ipif, RTSQ_DEFAULT); 10469 } 10470 if (phyi->phyint_illv6 != NULL) { 10471 ip_rts_ifmsg(phyi->phyint_illv6-> 10472 ill_ipif, RTSQ_DEFAULT); 10473 } 10474 } 10475 /* The default multicast interface might have changed */ 10476 ire_increment_multicast_generation(ill->ill_ipst, 10477 ill->ill_isv6); 10478 10479 return (0); 10480 } else if (set_linklocal) { 10481 mutex_enter(&ill->ill_lock); 10482 if (set_linklocal) 10483 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10484 mutex_exit(&ill->ill_lock); 10485 } 10486 10487 /* 10488 * Disallow IPv6 interfaces coming up that have the unspecified address, 10489 * or point-to-point interfaces with an unspecified destination. We do 10490 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10491 * have a subnet assigned, which is how in.ndpd currently manages its 10492 * onlink prefix list when no addresses are configured with those 10493 * prefixes. 10494 */ 10495 if (ipif->ipif_isv6 && 10496 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10497 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10498 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10499 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10500 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10501 return (EINVAL); 10502 } 10503 10504 /* 10505 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10506 * from being brought up. 10507 */ 10508 if (!ipif->ipif_isv6 && 10509 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10510 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10511 return (EINVAL); 10512 } 10513 10514 /* 10515 * If we are going to change one or more of the flags that are 10516 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10517 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10518 * IPIF_NOFAILOVER, we will take special action. This is 10519 * done by bring the ipif down, changing the flags and bringing 10520 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10521 * back up will trigger the address to be moved. 10522 * 10523 * If we are going to change IFF_NOACCEPT, we need to bring 10524 * all the ipifs down then bring them up again. The act of 10525 * bringing all the ipifs back up will trigger the local 10526 * ires being recreated with "no_accept" set/cleared. 10527 * 10528 * Note that ILLF_NOACCEPT is always set separately from the 10529 * other flags. 10530 */ 10531 if ((turn_on|turn_off) & 10532 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10533 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10534 IPIF_NOFAILOVER)) { 10535 /* 10536 * ipif_down() will ire_delete bcast ire's for the subnet, 10537 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10538 * entries shared between multiple ipifs on the same subnet. 10539 */ 10540 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10541 !(turn_off & IPIF_UP)) { 10542 if (ipif->ipif_flags & IPIF_UP) 10543 ill->ill_logical_down = 1; 10544 turn_on &= ~IPIF_UP; 10545 } 10546 err = ipif_down(ipif, q, mp); 10547 ip1dbg(("ipif_down returns %d err ", err)); 10548 if (err == EINPROGRESS) 10549 return (err); 10550 (void) ipif_down_tail(ipif); 10551 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10552 /* 10553 * If we can quiesce the ill, then continue. If not, then 10554 * ip_sioctl_flags_tail() will be called from 10555 * ipif_ill_refrele_tail(). 10556 */ 10557 ill_down_ipifs(ill, B_TRUE); 10558 10559 mutex_enter(&connp->conn_lock); 10560 mutex_enter(&ill->ill_lock); 10561 if (!ill_is_quiescent(ill)) { 10562 boolean_t success; 10563 10564 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10565 q, mp, ILL_DOWN); 10566 mutex_exit(&ill->ill_lock); 10567 mutex_exit(&connp->conn_lock); 10568 return (success ? EINPROGRESS : EINTR); 10569 } 10570 mutex_exit(&ill->ill_lock); 10571 mutex_exit(&connp->conn_lock); 10572 } 10573 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10574 } 10575 10576 static int 10577 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10578 { 10579 ill_t *ill; 10580 phyint_t *phyi; 10581 uint64_t turn_on, turn_off; 10582 boolean_t phyint_flags_modified = B_FALSE; 10583 int err = 0; 10584 boolean_t set_linklocal = B_FALSE; 10585 10586 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10587 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10588 10589 ASSERT(IAM_WRITER_IPIF(ipif)); 10590 10591 ill = ipif->ipif_ill; 10592 phyi = ill->ill_phyint; 10593 10594 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10595 10596 /* 10597 * IFF_UP is handled separately. 10598 */ 10599 turn_on &= ~IFF_UP; 10600 turn_off &= ~IFF_UP; 10601 10602 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10603 phyint_flags_modified = B_TRUE; 10604 10605 /* 10606 * Now we change the flags. Track current value of 10607 * other flags in their respective places. 10608 */ 10609 mutex_enter(&ill->ill_lock); 10610 mutex_enter(&phyi->phyint_lock); 10611 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10612 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10613 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10614 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10615 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10616 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10617 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10618 set_linklocal = B_TRUE; 10619 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10620 } 10621 10622 mutex_exit(&ill->ill_lock); 10623 mutex_exit(&phyi->phyint_lock); 10624 10625 if (set_linklocal) 10626 (void) ipif_setlinklocal(ipif); 10627 10628 /* 10629 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10630 * the kernel: if any of them has been set by userland, the interface 10631 * cannot be used for data traffic. 10632 */ 10633 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10634 ASSERT(!IS_IPMP(ill)); 10635 /* 10636 * It's possible the ill is part of an "anonymous" IPMP group 10637 * rather than a real group. In that case, there are no other 10638 * interfaces in the group and thus no need for us to call 10639 * ipmp_phyint_refresh_active(). 10640 */ 10641 if (IS_UNDER_IPMP(ill)) 10642 ipmp_phyint_refresh_active(phyi); 10643 } 10644 10645 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10646 /* 10647 * If the ILLF_NOACCEPT flag is changed, bring up all the 10648 * ipifs that were brought down. 10649 * 10650 * The routing sockets messages are sent as the result 10651 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10652 * as well. 10653 */ 10654 err = ill_up_ipifs(ill, q, mp); 10655 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10656 /* 10657 * XXX ipif_up really does not know whether a phyint flags 10658 * was modified or not. So, it sends up information on 10659 * only one routing sockets message. As we don't bring up 10660 * the interface and also set PHYI_ flags simultaneously 10661 * it should be okay. 10662 */ 10663 err = ipif_up(ipif, q, mp); 10664 } else { 10665 /* 10666 * Make sure routing socket sees all changes to the flags. 10667 * ipif_up_done* handles this when we use ipif_up. 10668 */ 10669 if (phyint_flags_modified) { 10670 if (phyi->phyint_illv4 != NULL) { 10671 ip_rts_ifmsg(phyi->phyint_illv4-> 10672 ill_ipif, RTSQ_DEFAULT); 10673 } 10674 if (phyi->phyint_illv6 != NULL) { 10675 ip_rts_ifmsg(phyi->phyint_illv6-> 10676 ill_ipif, RTSQ_DEFAULT); 10677 } 10678 } else { 10679 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10680 } 10681 /* 10682 * Update the flags in SCTP's IPIF list, ipif_up() will do 10683 * this in need_up case. 10684 */ 10685 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10686 } 10687 10688 /* The default multicast interface might have changed */ 10689 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10690 return (err); 10691 } 10692 10693 /* 10694 * Restart the flags operation now that the refcounts have dropped to zero. 10695 */ 10696 /* ARGSUSED */ 10697 int 10698 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10699 ip_ioctl_cmd_t *ipip, void *if_req) 10700 { 10701 uint64_t flags; 10702 struct ifreq *ifr = if_req; 10703 struct lifreq *lifr = if_req; 10704 uint64_t turn_on, turn_off; 10705 10706 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10707 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10708 10709 if (ipip->ipi_cmd_type == IF_CMD) { 10710 /* cast to uint16_t prevents unwanted sign extension */ 10711 flags = (uint16_t)ifr->ifr_flags; 10712 } else { 10713 flags = lifr->lifr_flags; 10714 } 10715 10716 /* 10717 * If this function call is a result of the ILLF_NOACCEPT flag 10718 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10719 */ 10720 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10721 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10722 (void) ipif_down_tail(ipif); 10723 10724 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10725 } 10726 10727 /* 10728 * Can operate on either a module or a driver queue. 10729 */ 10730 /* ARGSUSED */ 10731 int 10732 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10733 ip_ioctl_cmd_t *ipip, void *if_req) 10734 { 10735 /* 10736 * Has the flags been set correctly till now ? 10737 */ 10738 ill_t *ill = ipif->ipif_ill; 10739 phyint_t *phyi = ill->ill_phyint; 10740 10741 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10742 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10743 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10744 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10745 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10746 10747 /* 10748 * Need a lock since some flags can be set even when there are 10749 * references to the ipif. 10750 */ 10751 mutex_enter(&ill->ill_lock); 10752 if (ipip->ipi_cmd_type == IF_CMD) { 10753 struct ifreq *ifr = (struct ifreq *)if_req; 10754 10755 /* Get interface flags (low 16 only). */ 10756 ifr->ifr_flags = ((ipif->ipif_flags | 10757 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10758 } else { 10759 struct lifreq *lifr = (struct lifreq *)if_req; 10760 10761 /* Get interface flags. */ 10762 lifr->lifr_flags = ipif->ipif_flags | 10763 ill->ill_flags | phyi->phyint_flags; 10764 } 10765 mutex_exit(&ill->ill_lock); 10766 return (0); 10767 } 10768 10769 /* 10770 * We allow the MTU to be set on an ILL, but not have it be different 10771 * for different IPIFs since we don't actually send packets on IPIFs. 10772 */ 10773 /* ARGSUSED */ 10774 int 10775 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10776 ip_ioctl_cmd_t *ipip, void *if_req) 10777 { 10778 int mtu; 10779 int ip_min_mtu; 10780 struct ifreq *ifr; 10781 struct lifreq *lifr; 10782 ill_t *ill; 10783 10784 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10785 ipif->ipif_id, (void *)ipif)); 10786 if (ipip->ipi_cmd_type == IF_CMD) { 10787 ifr = (struct ifreq *)if_req; 10788 mtu = ifr->ifr_metric; 10789 } else { 10790 lifr = (struct lifreq *)if_req; 10791 mtu = lifr->lifr_mtu; 10792 } 10793 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10794 if (ipif->ipif_id != 0) 10795 return (EINVAL); 10796 10797 ill = ipif->ipif_ill; 10798 if (ipif->ipif_isv6) 10799 ip_min_mtu = IPV6_MIN_MTU; 10800 else 10801 ip_min_mtu = IP_MIN_MTU; 10802 10803 mutex_enter(&ill->ill_lock); 10804 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10805 mutex_exit(&ill->ill_lock); 10806 return (EINVAL); 10807 } 10808 /* Avoid increasing ill_mc_mtu */ 10809 if (ill->ill_mc_mtu > mtu) 10810 ill->ill_mc_mtu = mtu; 10811 10812 /* 10813 * The dce and fragmentation code can handle changes to ill_mtu 10814 * concurrent with sending/fragmenting packets. 10815 */ 10816 ill->ill_mtu = mtu; 10817 ill->ill_flags |= ILLF_FIXEDMTU; 10818 mutex_exit(&ill->ill_lock); 10819 10820 /* 10821 * Make sure all dce_generation checks find out 10822 * that ill_mtu/ill_mc_mtu has changed. 10823 */ 10824 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10825 10826 /* 10827 * Refresh IPMP meta-interface MTU if necessary. 10828 */ 10829 if (IS_UNDER_IPMP(ill)) 10830 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10831 10832 /* Update the MTU in SCTP's list */ 10833 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10834 return (0); 10835 } 10836 10837 /* Get interface MTU. */ 10838 /* ARGSUSED */ 10839 int 10840 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10841 ip_ioctl_cmd_t *ipip, void *if_req) 10842 { 10843 struct ifreq *ifr; 10844 struct lifreq *lifr; 10845 10846 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10847 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10848 10849 /* 10850 * We allow a get on any logical interface even though the set 10851 * can only be done on logical unit 0. 10852 */ 10853 if (ipip->ipi_cmd_type == IF_CMD) { 10854 ifr = (struct ifreq *)if_req; 10855 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10856 } else { 10857 lifr = (struct lifreq *)if_req; 10858 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10859 } 10860 return (0); 10861 } 10862 10863 /* Set interface broadcast address. */ 10864 /* ARGSUSED2 */ 10865 int 10866 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10867 ip_ioctl_cmd_t *ipip, void *if_req) 10868 { 10869 ipaddr_t addr; 10870 ire_t *ire; 10871 ill_t *ill = ipif->ipif_ill; 10872 ip_stack_t *ipst = ill->ill_ipst; 10873 10874 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10875 ipif->ipif_id)); 10876 10877 ASSERT(IAM_WRITER_IPIF(ipif)); 10878 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10879 return (EADDRNOTAVAIL); 10880 10881 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10882 10883 if (sin->sin_family != AF_INET) 10884 return (EAFNOSUPPORT); 10885 10886 addr = sin->sin_addr.s_addr; 10887 10888 if (ipif->ipif_flags & IPIF_UP) { 10889 /* 10890 * If we are already up, make sure the new 10891 * broadcast address makes sense. If it does, 10892 * there should be an IRE for it already. 10893 */ 10894 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10895 ill, ipif->ipif_zoneid, NULL, 10896 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10897 if (ire == NULL) { 10898 return (EINVAL); 10899 } else { 10900 ire_refrele(ire); 10901 } 10902 } 10903 /* 10904 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10905 * needs to already exist we never need to change the set of 10906 * IRE_BROADCASTs when we are UP. 10907 */ 10908 if (addr != ipif->ipif_brd_addr) 10909 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10910 10911 return (0); 10912 } 10913 10914 /* Get interface broadcast address. */ 10915 /* ARGSUSED */ 10916 int 10917 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10918 ip_ioctl_cmd_t *ipip, void *if_req) 10919 { 10920 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10921 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10922 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10923 return (EADDRNOTAVAIL); 10924 10925 /* IPIF_BROADCAST not possible with IPv6 */ 10926 ASSERT(!ipif->ipif_isv6); 10927 *sin = sin_null; 10928 sin->sin_family = AF_INET; 10929 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10930 return (0); 10931 } 10932 10933 /* 10934 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10935 */ 10936 /* ARGSUSED */ 10937 int 10938 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10939 ip_ioctl_cmd_t *ipip, void *if_req) 10940 { 10941 int err = 0; 10942 in6_addr_t v6mask; 10943 10944 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10945 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10946 10947 ASSERT(IAM_WRITER_IPIF(ipif)); 10948 10949 if (ipif->ipif_isv6) { 10950 sin6_t *sin6; 10951 10952 if (sin->sin_family != AF_INET6) 10953 return (EAFNOSUPPORT); 10954 10955 sin6 = (sin6_t *)sin; 10956 v6mask = sin6->sin6_addr; 10957 } else { 10958 ipaddr_t mask; 10959 10960 if (sin->sin_family != AF_INET) 10961 return (EAFNOSUPPORT); 10962 10963 mask = sin->sin_addr.s_addr; 10964 if (!ip_contiguous_mask(ntohl(mask))) 10965 return (ENOTSUP); 10966 V4MASK_TO_V6(mask, v6mask); 10967 } 10968 10969 /* 10970 * No big deal if the interface isn't already up, or the mask 10971 * isn't really changing, or this is pt-pt. 10972 */ 10973 if (!(ipif->ipif_flags & IPIF_UP) || 10974 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10975 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10976 ipif->ipif_v6net_mask = v6mask; 10977 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10978 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10979 ipif->ipif_v6net_mask, 10980 ipif->ipif_v6subnet); 10981 } 10982 return (0); 10983 } 10984 /* 10985 * Make sure we have valid net and subnet broadcast ire's 10986 * for the old netmask, if needed by other logical interfaces. 10987 */ 10988 err = ipif_logical_down(ipif, q, mp); 10989 if (err == EINPROGRESS) 10990 return (err); 10991 (void) ipif_down_tail(ipif); 10992 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10993 return (err); 10994 } 10995 10996 static int 10997 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10998 { 10999 in6_addr_t v6mask; 11000 int err = 0; 11001 11002 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11003 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11004 11005 if (ipif->ipif_isv6) { 11006 sin6_t *sin6; 11007 11008 sin6 = (sin6_t *)sin; 11009 v6mask = sin6->sin6_addr; 11010 } else { 11011 ipaddr_t mask; 11012 11013 mask = sin->sin_addr.s_addr; 11014 V4MASK_TO_V6(mask, v6mask); 11015 } 11016 11017 ipif->ipif_v6net_mask = v6mask; 11018 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11019 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11020 ipif->ipif_v6subnet); 11021 } 11022 err = ipif_up(ipif, q, mp); 11023 11024 if (err == 0 || err == EINPROGRESS) { 11025 /* 11026 * The interface must be DL_BOUND if this packet has to 11027 * go out on the wire. Since we only go through a logical 11028 * down and are bound with the driver during an internal 11029 * down/up that is satisfied. 11030 */ 11031 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11032 /* Potentially broadcast an address mask reply. */ 11033 ipif_mask_reply(ipif); 11034 } 11035 } 11036 return (err); 11037 } 11038 11039 /* ARGSUSED */ 11040 int 11041 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11042 ip_ioctl_cmd_t *ipip, void *if_req) 11043 { 11044 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11045 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11046 (void) ipif_down_tail(ipif); 11047 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11048 } 11049 11050 /* Get interface net mask. */ 11051 /* ARGSUSED */ 11052 int 11053 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11054 ip_ioctl_cmd_t *ipip, void *if_req) 11055 { 11056 struct lifreq *lifr = (struct lifreq *)if_req; 11057 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11058 11059 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11060 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11061 11062 /* 11063 * net mask can't change since we have a reference to the ipif. 11064 */ 11065 if (ipif->ipif_isv6) { 11066 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11067 *sin6 = sin6_null; 11068 sin6->sin6_family = AF_INET6; 11069 sin6->sin6_addr = ipif->ipif_v6net_mask; 11070 lifr->lifr_addrlen = 11071 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11072 } else { 11073 *sin = sin_null; 11074 sin->sin_family = AF_INET; 11075 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11076 if (ipip->ipi_cmd_type == LIF_CMD) { 11077 lifr->lifr_addrlen = 11078 ip_mask_to_plen(ipif->ipif_net_mask); 11079 } 11080 } 11081 return (0); 11082 } 11083 11084 /* ARGSUSED */ 11085 int 11086 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11087 ip_ioctl_cmd_t *ipip, void *if_req) 11088 { 11089 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11090 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11091 11092 /* 11093 * Since no applications should ever be setting metrics on underlying 11094 * interfaces, we explicitly fail to smoke 'em out. 11095 */ 11096 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11097 return (EINVAL); 11098 11099 /* 11100 * Set interface metric. We don't use this for 11101 * anything but we keep track of it in case it is 11102 * important to routing applications or such. 11103 */ 11104 if (ipip->ipi_cmd_type == IF_CMD) { 11105 struct ifreq *ifr; 11106 11107 ifr = (struct ifreq *)if_req; 11108 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11109 } else { 11110 struct lifreq *lifr; 11111 11112 lifr = (struct lifreq *)if_req; 11113 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11114 } 11115 return (0); 11116 } 11117 11118 /* ARGSUSED */ 11119 int 11120 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11121 ip_ioctl_cmd_t *ipip, void *if_req) 11122 { 11123 /* Get interface metric. */ 11124 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11125 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11126 11127 if (ipip->ipi_cmd_type == IF_CMD) { 11128 struct ifreq *ifr; 11129 11130 ifr = (struct ifreq *)if_req; 11131 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11132 } else { 11133 struct lifreq *lifr; 11134 11135 lifr = (struct lifreq *)if_req; 11136 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11137 } 11138 11139 return (0); 11140 } 11141 11142 /* ARGSUSED */ 11143 int 11144 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11145 ip_ioctl_cmd_t *ipip, void *if_req) 11146 { 11147 int arp_muxid; 11148 11149 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11150 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11151 /* 11152 * Set the muxid returned from I_PLINK. 11153 */ 11154 if (ipip->ipi_cmd_type == IF_CMD) { 11155 struct ifreq *ifr = (struct ifreq *)if_req; 11156 11157 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11158 arp_muxid = ifr->ifr_arp_muxid; 11159 } else { 11160 struct lifreq *lifr = (struct lifreq *)if_req; 11161 11162 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11163 arp_muxid = lifr->lifr_arp_muxid; 11164 } 11165 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11166 return (0); 11167 } 11168 11169 /* ARGSUSED */ 11170 int 11171 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11172 ip_ioctl_cmd_t *ipip, void *if_req) 11173 { 11174 int arp_muxid = 0; 11175 11176 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11177 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11178 /* 11179 * Get the muxid saved in ill for I_PUNLINK. 11180 */ 11181 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11182 if (ipip->ipi_cmd_type == IF_CMD) { 11183 struct ifreq *ifr = (struct ifreq *)if_req; 11184 11185 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11186 ifr->ifr_arp_muxid = arp_muxid; 11187 } else { 11188 struct lifreq *lifr = (struct lifreq *)if_req; 11189 11190 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11191 lifr->lifr_arp_muxid = arp_muxid; 11192 } 11193 return (0); 11194 } 11195 11196 /* 11197 * Set the subnet prefix. Does not modify the broadcast address. 11198 */ 11199 /* ARGSUSED */ 11200 int 11201 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11202 ip_ioctl_cmd_t *ipip, void *if_req) 11203 { 11204 int err = 0; 11205 in6_addr_t v6addr; 11206 in6_addr_t v6mask; 11207 boolean_t need_up = B_FALSE; 11208 int addrlen; 11209 11210 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11211 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11212 11213 ASSERT(IAM_WRITER_IPIF(ipif)); 11214 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11215 11216 if (ipif->ipif_isv6) { 11217 sin6_t *sin6; 11218 11219 if (sin->sin_family != AF_INET6) 11220 return (EAFNOSUPPORT); 11221 11222 sin6 = (sin6_t *)sin; 11223 v6addr = sin6->sin6_addr; 11224 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11225 return (EADDRNOTAVAIL); 11226 } else { 11227 ipaddr_t addr; 11228 11229 if (sin->sin_family != AF_INET) 11230 return (EAFNOSUPPORT); 11231 11232 addr = sin->sin_addr.s_addr; 11233 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11234 return (EADDRNOTAVAIL); 11235 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11236 /* Add 96 bits */ 11237 addrlen += IPV6_ABITS - IP_ABITS; 11238 } 11239 11240 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11241 return (EINVAL); 11242 11243 /* Check if bits in the address is set past the mask */ 11244 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11245 return (EINVAL); 11246 11247 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11248 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11249 return (0); /* No change */ 11250 11251 if (ipif->ipif_flags & IPIF_UP) { 11252 /* 11253 * If the interface is already marked up, 11254 * we call ipif_down which will take care 11255 * of ditching any IREs that have been set 11256 * up based on the old interface address. 11257 */ 11258 err = ipif_logical_down(ipif, q, mp); 11259 if (err == EINPROGRESS) 11260 return (err); 11261 (void) ipif_down_tail(ipif); 11262 need_up = B_TRUE; 11263 } 11264 11265 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11266 return (err); 11267 } 11268 11269 static int 11270 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11271 queue_t *q, mblk_t *mp, boolean_t need_up) 11272 { 11273 ill_t *ill = ipif->ipif_ill; 11274 int err = 0; 11275 11276 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11277 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11278 11279 /* Set the new address. */ 11280 mutex_enter(&ill->ill_lock); 11281 ipif->ipif_v6net_mask = v6mask; 11282 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11283 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11284 ipif->ipif_v6subnet); 11285 } 11286 mutex_exit(&ill->ill_lock); 11287 11288 if (need_up) { 11289 /* 11290 * Now bring the interface back up. If this 11291 * is the only IPIF for the ILL, ipif_up 11292 * will have to re-bind to the device, so 11293 * we may get back EINPROGRESS, in which 11294 * case, this IOCTL will get completed in 11295 * ip_rput_dlpi when we see the DL_BIND_ACK. 11296 */ 11297 err = ipif_up(ipif, q, mp); 11298 if (err == EINPROGRESS) 11299 return (err); 11300 } 11301 return (err); 11302 } 11303 11304 /* ARGSUSED */ 11305 int 11306 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11307 ip_ioctl_cmd_t *ipip, void *if_req) 11308 { 11309 int addrlen; 11310 in6_addr_t v6addr; 11311 in6_addr_t v6mask; 11312 struct lifreq *lifr = (struct lifreq *)if_req; 11313 11314 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11315 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11316 (void) ipif_down_tail(ipif); 11317 11318 addrlen = lifr->lifr_addrlen; 11319 if (ipif->ipif_isv6) { 11320 sin6_t *sin6; 11321 11322 sin6 = (sin6_t *)sin; 11323 v6addr = sin6->sin6_addr; 11324 } else { 11325 ipaddr_t addr; 11326 11327 addr = sin->sin_addr.s_addr; 11328 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11329 addrlen += IPV6_ABITS - IP_ABITS; 11330 } 11331 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11332 11333 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11334 } 11335 11336 /* ARGSUSED */ 11337 int 11338 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11339 ip_ioctl_cmd_t *ipip, void *if_req) 11340 { 11341 struct lifreq *lifr = (struct lifreq *)if_req; 11342 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11343 11344 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11345 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11346 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11347 11348 if (ipif->ipif_isv6) { 11349 *sin6 = sin6_null; 11350 sin6->sin6_family = AF_INET6; 11351 sin6->sin6_addr = ipif->ipif_v6subnet; 11352 lifr->lifr_addrlen = 11353 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11354 } else { 11355 *sin = sin_null; 11356 sin->sin_family = AF_INET; 11357 sin->sin_addr.s_addr = ipif->ipif_subnet; 11358 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11359 } 11360 return (0); 11361 } 11362 11363 /* 11364 * Set the IPv6 address token. 11365 */ 11366 /* ARGSUSED */ 11367 int 11368 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11369 ip_ioctl_cmd_t *ipi, void *if_req) 11370 { 11371 ill_t *ill = ipif->ipif_ill; 11372 int err; 11373 in6_addr_t v6addr; 11374 in6_addr_t v6mask; 11375 boolean_t need_up = B_FALSE; 11376 int i; 11377 sin6_t *sin6 = (sin6_t *)sin; 11378 struct lifreq *lifr = (struct lifreq *)if_req; 11379 int addrlen; 11380 11381 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11382 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11383 ASSERT(IAM_WRITER_IPIF(ipif)); 11384 11385 addrlen = lifr->lifr_addrlen; 11386 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11387 if (ipif->ipif_id != 0) 11388 return (EINVAL); 11389 11390 if (!ipif->ipif_isv6) 11391 return (EINVAL); 11392 11393 if (addrlen > IPV6_ABITS) 11394 return (EINVAL); 11395 11396 v6addr = sin6->sin6_addr; 11397 11398 /* 11399 * The length of the token is the length from the end. To get 11400 * the proper mask for this, compute the mask of the bits not 11401 * in the token; ie. the prefix, and then xor to get the mask. 11402 */ 11403 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11404 return (EINVAL); 11405 for (i = 0; i < 4; i++) { 11406 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11407 } 11408 11409 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11410 ill->ill_token_length == addrlen) 11411 return (0); /* No change */ 11412 11413 if (ipif->ipif_flags & IPIF_UP) { 11414 err = ipif_logical_down(ipif, q, mp); 11415 if (err == EINPROGRESS) 11416 return (err); 11417 (void) ipif_down_tail(ipif); 11418 need_up = B_TRUE; 11419 } 11420 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11421 return (err); 11422 } 11423 11424 static int 11425 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11426 mblk_t *mp, boolean_t need_up) 11427 { 11428 in6_addr_t v6addr; 11429 in6_addr_t v6mask; 11430 ill_t *ill = ipif->ipif_ill; 11431 int i; 11432 int err = 0; 11433 11434 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11435 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11436 v6addr = sin6->sin6_addr; 11437 /* 11438 * The length of the token is the length from the end. To get 11439 * the proper mask for this, compute the mask of the bits not 11440 * in the token; ie. the prefix, and then xor to get the mask. 11441 */ 11442 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11443 for (i = 0; i < 4; i++) 11444 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11445 11446 mutex_enter(&ill->ill_lock); 11447 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11448 ill->ill_token_length = addrlen; 11449 ill->ill_manual_token = 1; 11450 11451 /* Reconfigure the link-local address based on this new token */ 11452 ipif_setlinklocal(ill->ill_ipif); 11453 11454 mutex_exit(&ill->ill_lock); 11455 11456 if (need_up) { 11457 /* 11458 * Now bring the interface back up. If this 11459 * is the only IPIF for the ILL, ipif_up 11460 * will have to re-bind to the device, so 11461 * we may get back EINPROGRESS, in which 11462 * case, this IOCTL will get completed in 11463 * ip_rput_dlpi when we see the DL_BIND_ACK. 11464 */ 11465 err = ipif_up(ipif, q, mp); 11466 if (err == EINPROGRESS) 11467 return (err); 11468 } 11469 return (err); 11470 } 11471 11472 /* ARGSUSED */ 11473 int 11474 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11475 ip_ioctl_cmd_t *ipi, void *if_req) 11476 { 11477 ill_t *ill; 11478 sin6_t *sin6 = (sin6_t *)sin; 11479 struct lifreq *lifr = (struct lifreq *)if_req; 11480 11481 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11482 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11483 if (ipif->ipif_id != 0) 11484 return (EINVAL); 11485 11486 ill = ipif->ipif_ill; 11487 if (!ill->ill_isv6) 11488 return (ENXIO); 11489 11490 *sin6 = sin6_null; 11491 sin6->sin6_family = AF_INET6; 11492 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11493 sin6->sin6_addr = ill->ill_token; 11494 lifr->lifr_addrlen = ill->ill_token_length; 11495 return (0); 11496 } 11497 11498 /* 11499 * Set (hardware) link specific information that might override 11500 * what was acquired through the DL_INFO_ACK. 11501 */ 11502 /* ARGSUSED */ 11503 int 11504 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11505 ip_ioctl_cmd_t *ipi, void *if_req) 11506 { 11507 ill_t *ill = ipif->ipif_ill; 11508 int ip_min_mtu; 11509 struct lifreq *lifr = (struct lifreq *)if_req; 11510 lif_ifinfo_req_t *lir; 11511 11512 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11513 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11514 lir = &lifr->lifr_ifinfo; 11515 ASSERT(IAM_WRITER_IPIF(ipif)); 11516 11517 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11518 if (ipif->ipif_id != 0) 11519 return (EINVAL); 11520 11521 /* Set interface MTU. */ 11522 if (ipif->ipif_isv6) 11523 ip_min_mtu = IPV6_MIN_MTU; 11524 else 11525 ip_min_mtu = IP_MIN_MTU; 11526 11527 /* 11528 * Verify values before we set anything. Allow zero to 11529 * mean unspecified. 11530 * 11531 * XXX We should be able to set the user-defined lir_mtu to some value 11532 * that is greater than ill_current_frag but less than ill_max_frag- the 11533 * ill_max_frag value tells us the max MTU that can be handled by the 11534 * datalink, whereas the ill_current_frag is dynamically computed for 11535 * some link-types like tunnels, based on the tunnel PMTU. However, 11536 * since there is currently no way of distinguishing between 11537 * administratively fixed link mtu values (e.g., those set via 11538 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11539 * for tunnels) we conservatively choose the ill_current_frag as the 11540 * upper-bound. 11541 */ 11542 if (lir->lir_maxmtu != 0 && 11543 (lir->lir_maxmtu > ill->ill_current_frag || 11544 lir->lir_maxmtu < ip_min_mtu)) 11545 return (EINVAL); 11546 if (lir->lir_reachtime != 0 && 11547 lir->lir_reachtime > ND_MAX_REACHTIME) 11548 return (EINVAL); 11549 if (lir->lir_reachretrans != 0 && 11550 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11551 return (EINVAL); 11552 11553 mutex_enter(&ill->ill_lock); 11554 /* 11555 * The dce and fragmentation code can handle changes to ill_mtu 11556 * concurrent with sending/fragmenting packets. 11557 */ 11558 if (lir->lir_maxmtu != 0) 11559 ill->ill_user_mtu = lir->lir_maxmtu; 11560 11561 if (lir->lir_reachtime != 0) 11562 ill->ill_reachable_time = lir->lir_reachtime; 11563 11564 if (lir->lir_reachretrans != 0) 11565 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11566 11567 ill->ill_max_hops = lir->lir_maxhops; 11568 ill->ill_max_buf = ND_MAX_Q; 11569 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11570 /* 11571 * ill_mtu is the actual interface MTU, obtained as the min 11572 * of user-configured mtu and the value announced by the 11573 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11574 * we have already made the choice of requiring 11575 * ill_user_mtu < ill_current_frag by the time we get here, 11576 * the ill_mtu effectively gets assigned to the ill_user_mtu 11577 * here. 11578 */ 11579 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11580 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu); 11581 } 11582 mutex_exit(&ill->ill_lock); 11583 11584 /* 11585 * Make sure all dce_generation checks find out 11586 * that ill_mtu/ill_mc_mtu has changed. 11587 */ 11588 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11589 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11590 11591 /* 11592 * Refresh IPMP meta-interface MTU if necessary. 11593 */ 11594 if (IS_UNDER_IPMP(ill)) 11595 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11596 11597 return (0); 11598 } 11599 11600 /* ARGSUSED */ 11601 int 11602 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11603 ip_ioctl_cmd_t *ipi, void *if_req) 11604 { 11605 struct lif_ifinfo_req *lir; 11606 ill_t *ill = ipif->ipif_ill; 11607 11608 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11609 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11610 if (ipif->ipif_id != 0) 11611 return (EINVAL); 11612 11613 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11614 lir->lir_maxhops = ill->ill_max_hops; 11615 lir->lir_reachtime = ill->ill_reachable_time; 11616 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11617 lir->lir_maxmtu = ill->ill_mtu; 11618 11619 return (0); 11620 } 11621 11622 /* 11623 * Return best guess as to the subnet mask for the specified address. 11624 * Based on the subnet masks for all the configured interfaces. 11625 * 11626 * We end up returning a zero mask in the case of default, multicast or 11627 * experimental. 11628 */ 11629 static ipaddr_t 11630 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11631 { 11632 ipaddr_t net_mask; 11633 ill_t *ill; 11634 ipif_t *ipif; 11635 ill_walk_context_t ctx; 11636 ipif_t *fallback_ipif = NULL; 11637 11638 net_mask = ip_net_mask(addr); 11639 if (net_mask == 0) { 11640 *ipifp = NULL; 11641 return (0); 11642 } 11643 11644 /* Let's check to see if this is maybe a local subnet route. */ 11645 /* this function only applies to IPv4 interfaces */ 11646 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11647 ill = ILL_START_WALK_V4(&ctx, ipst); 11648 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11649 mutex_enter(&ill->ill_lock); 11650 for (ipif = ill->ill_ipif; ipif != NULL; 11651 ipif = ipif->ipif_next) { 11652 if (IPIF_IS_CONDEMNED(ipif)) 11653 continue; 11654 if (!(ipif->ipif_flags & IPIF_UP)) 11655 continue; 11656 if ((ipif->ipif_subnet & net_mask) == 11657 (addr & net_mask)) { 11658 /* 11659 * Don't trust pt-pt interfaces if there are 11660 * other interfaces. 11661 */ 11662 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11663 if (fallback_ipif == NULL) { 11664 ipif_refhold_locked(ipif); 11665 fallback_ipif = ipif; 11666 } 11667 continue; 11668 } 11669 11670 /* 11671 * Fine. Just assume the same net mask as the 11672 * directly attached subnet interface is using. 11673 */ 11674 ipif_refhold_locked(ipif); 11675 mutex_exit(&ill->ill_lock); 11676 rw_exit(&ipst->ips_ill_g_lock); 11677 if (fallback_ipif != NULL) 11678 ipif_refrele(fallback_ipif); 11679 *ipifp = ipif; 11680 return (ipif->ipif_net_mask); 11681 } 11682 } 11683 mutex_exit(&ill->ill_lock); 11684 } 11685 rw_exit(&ipst->ips_ill_g_lock); 11686 11687 *ipifp = fallback_ipif; 11688 return ((fallback_ipif != NULL) ? 11689 fallback_ipif->ipif_net_mask : net_mask); 11690 } 11691 11692 /* 11693 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11694 */ 11695 static void 11696 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11697 { 11698 IOCP iocp; 11699 ipft_t *ipft; 11700 ipllc_t *ipllc; 11701 mblk_t *mp1; 11702 cred_t *cr; 11703 int error = 0; 11704 conn_t *connp; 11705 11706 ip1dbg(("ip_wput_ioctl")); 11707 iocp = (IOCP)mp->b_rptr; 11708 mp1 = mp->b_cont; 11709 if (mp1 == NULL) { 11710 iocp->ioc_error = EINVAL; 11711 mp->b_datap->db_type = M_IOCNAK; 11712 iocp->ioc_count = 0; 11713 qreply(q, mp); 11714 return; 11715 } 11716 11717 /* 11718 * These IOCTLs provide various control capabilities to 11719 * upstream agents such as ULPs and processes. There 11720 * are currently two such IOCTLs implemented. They 11721 * are used by TCP to provide update information for 11722 * existing IREs and to forcibly delete an IRE for a 11723 * host that is not responding, thereby forcing an 11724 * attempt at a new route. 11725 */ 11726 iocp->ioc_error = EINVAL; 11727 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11728 goto done; 11729 11730 ipllc = (ipllc_t *)mp1->b_rptr; 11731 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11732 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11733 break; 11734 } 11735 /* 11736 * prefer credential from mblk over ioctl; 11737 * see ip_sioctl_copyin_setup 11738 */ 11739 cr = msg_getcred(mp, NULL); 11740 if (cr == NULL) 11741 cr = iocp->ioc_cr; 11742 11743 /* 11744 * Refhold the conn in case the request gets queued up in some lookup 11745 */ 11746 ASSERT(CONN_Q(q)); 11747 connp = Q_TO_CONN(q); 11748 CONN_INC_REF(connp); 11749 CONN_INC_IOCTLREF(connp); 11750 if (ipft->ipft_pfi && 11751 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11752 pullupmsg(mp1, ipft->ipft_min_size))) { 11753 error = (*ipft->ipft_pfi)(q, 11754 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11755 } 11756 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11757 /* 11758 * CONN_OPER_PENDING_DONE happens in the function called 11759 * through ipft_pfi above. 11760 */ 11761 return; 11762 } 11763 11764 CONN_DEC_IOCTLREF(connp); 11765 CONN_OPER_PENDING_DONE(connp); 11766 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11767 freemsg(mp); 11768 return; 11769 } 11770 iocp->ioc_error = error; 11771 11772 done: 11773 mp->b_datap->db_type = M_IOCACK; 11774 if (iocp->ioc_error) 11775 iocp->ioc_count = 0; 11776 qreply(q, mp); 11777 } 11778 11779 /* 11780 * Assign a unique id for the ipif. This is used by sctp_addr.c 11781 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11782 */ 11783 static void 11784 ipif_assign_seqid(ipif_t *ipif) 11785 { 11786 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11787 11788 ipif->ipif_seqid = atomic_inc_64_nv(&ipst->ips_ipif_g_seqid); 11789 } 11790 11791 /* 11792 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11793 * administratively down (i.e., no DAD), of the same type, and locked. Note 11794 * that the clone is complete -- including the seqid -- and the expectation is 11795 * that the caller will either free or overwrite `sipif' before it's unlocked. 11796 */ 11797 static void 11798 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11799 { 11800 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11801 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11802 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11803 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11804 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11805 11806 dipif->ipif_flags = sipif->ipif_flags; 11807 dipif->ipif_zoneid = sipif->ipif_zoneid; 11808 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11809 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11810 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11811 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11812 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11813 11814 /* 11815 * As per the comment atop the function, we assume that these sipif 11816 * fields will be changed before sipif is unlocked. 11817 */ 11818 dipif->ipif_seqid = sipif->ipif_seqid; 11819 dipif->ipif_state_flags = sipif->ipif_state_flags; 11820 } 11821 11822 /* 11823 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11824 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11825 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11826 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11827 * down (i.e., no DAD), of the same type, and unlocked. 11828 */ 11829 static void 11830 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11831 { 11832 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11833 ipxop_t *ipx = ipsq->ipsq_xop; 11834 11835 ASSERT(sipif != dipif); 11836 ASSERT(sipif != virgipif); 11837 11838 /* 11839 * Grab all of the locks that protect the ipif in a defined order. 11840 */ 11841 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11842 11843 ipif_clone(sipif, dipif); 11844 if (virgipif != NULL) { 11845 ipif_clone(virgipif, sipif); 11846 mi_free(virgipif); 11847 } 11848 11849 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11850 11851 /* 11852 * Transfer ownership of the current xop, if necessary. 11853 */ 11854 if (ipx->ipx_current_ipif == sipif) { 11855 ASSERT(ipx->ipx_pending_ipif == NULL); 11856 mutex_enter(&ipx->ipx_lock); 11857 ipx->ipx_current_ipif = dipif; 11858 mutex_exit(&ipx->ipx_lock); 11859 } 11860 11861 if (virgipif == NULL) 11862 mi_free(sipif); 11863 } 11864 11865 /* 11866 * checks if: 11867 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11868 * - logical interface is within the allowed range 11869 */ 11870 static int 11871 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11872 { 11873 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11874 return (ENAMETOOLONG); 11875 11876 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11877 return (ERANGE); 11878 return (0); 11879 } 11880 11881 /* 11882 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11883 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11884 * be inserted into the first space available in the list. The value of 11885 * ipif_id will then be set to the appropriate value for its position. 11886 */ 11887 static int 11888 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11889 { 11890 ill_t *ill; 11891 ipif_t *tipif; 11892 ipif_t **tipifp; 11893 int id, err; 11894 ip_stack_t *ipst; 11895 11896 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11897 IAM_WRITER_IPIF(ipif)); 11898 11899 ill = ipif->ipif_ill; 11900 ASSERT(ill != NULL); 11901 ipst = ill->ill_ipst; 11902 11903 /* 11904 * In the case of lo0:0 we already hold the ill_g_lock. 11905 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11906 * ipif_insert. 11907 */ 11908 if (acquire_g_lock) 11909 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11910 mutex_enter(&ill->ill_lock); 11911 id = ipif->ipif_id; 11912 tipifp = &(ill->ill_ipif); 11913 if (id == -1) { /* need to find a real id */ 11914 id = 0; 11915 while ((tipif = *tipifp) != NULL) { 11916 ASSERT(tipif->ipif_id >= id); 11917 if (tipif->ipif_id != id) 11918 break; /* non-consecutive id */ 11919 id++; 11920 tipifp = &(tipif->ipif_next); 11921 } 11922 if ((err = is_lifname_valid(ill, id)) != 0) { 11923 mutex_exit(&ill->ill_lock); 11924 if (acquire_g_lock) 11925 rw_exit(&ipst->ips_ill_g_lock); 11926 return (err); 11927 } 11928 ipif->ipif_id = id; /* assign new id */ 11929 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11930 /* we have a real id; insert ipif in the right place */ 11931 while ((tipif = *tipifp) != NULL) { 11932 ASSERT(tipif->ipif_id != id); 11933 if (tipif->ipif_id > id) 11934 break; /* found correct location */ 11935 tipifp = &(tipif->ipif_next); 11936 } 11937 } else { 11938 mutex_exit(&ill->ill_lock); 11939 if (acquire_g_lock) 11940 rw_exit(&ipst->ips_ill_g_lock); 11941 return (err); 11942 } 11943 11944 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11945 11946 ipif->ipif_next = tipif; 11947 *tipifp = ipif; 11948 mutex_exit(&ill->ill_lock); 11949 if (acquire_g_lock) 11950 rw_exit(&ipst->ips_ill_g_lock); 11951 11952 return (0); 11953 } 11954 11955 static void 11956 ipif_remove(ipif_t *ipif) 11957 { 11958 ipif_t **ipifp; 11959 ill_t *ill = ipif->ipif_ill; 11960 11961 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11962 11963 mutex_enter(&ill->ill_lock); 11964 ipifp = &ill->ill_ipif; 11965 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11966 if (*ipifp == ipif) { 11967 *ipifp = ipif->ipif_next; 11968 break; 11969 } 11970 } 11971 mutex_exit(&ill->ill_lock); 11972 } 11973 11974 /* 11975 * Allocate and initialize a new interface control structure. (Always 11976 * called as writer.) 11977 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11978 * is not part of the global linked list of ills. ipif_seqid is unique 11979 * in the system and to preserve the uniqueness, it is assigned only 11980 * when ill becomes part of the global list. At that point ill will 11981 * have a name. If it doesn't get assigned here, it will get assigned 11982 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11983 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11984 * the interface flags or any other information from the DL_INFO_ACK for 11985 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11986 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11987 * second DL_INFO_ACK comes in from the driver. 11988 */ 11989 static ipif_t * 11990 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11991 boolean_t insert, int *errorp) 11992 { 11993 int err; 11994 ipif_t *ipif; 11995 ip_stack_t *ipst = ill->ill_ipst; 11996 11997 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11998 ill->ill_name, id, (void *)ill)); 11999 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12000 12001 if (errorp != NULL) 12002 *errorp = 0; 12003 12004 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 12005 if (errorp != NULL) 12006 *errorp = ENOMEM; 12007 return (NULL); 12008 } 12009 *ipif = ipif_zero; /* start clean */ 12010 12011 ipif->ipif_ill = ill; 12012 ipif->ipif_id = id; /* could be -1 */ 12013 /* 12014 * Inherit the zoneid from the ill; for the shared stack instance 12015 * this is always the global zone 12016 */ 12017 ipif->ipif_zoneid = ill->ill_zoneid; 12018 12019 ipif->ipif_refcnt = 0; 12020 12021 if (insert) { 12022 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 12023 mi_free(ipif); 12024 if (errorp != NULL) 12025 *errorp = err; 12026 return (NULL); 12027 } 12028 /* -1 id should have been replaced by real id */ 12029 id = ipif->ipif_id; 12030 ASSERT(id >= 0); 12031 } 12032 12033 if (ill->ill_name[0] != '\0') 12034 ipif_assign_seqid(ipif); 12035 12036 /* 12037 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12038 * (which must not exist yet because the zeroth ipif is created once 12039 * per ill). However, do not not link it to the ipmp_grp_t until 12040 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12041 */ 12042 if (id == 0 && IS_IPMP(ill)) { 12043 if (ipmp_illgrp_create(ill) == NULL) { 12044 if (insert) { 12045 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12046 ipif_remove(ipif); 12047 rw_exit(&ipst->ips_ill_g_lock); 12048 } 12049 mi_free(ipif); 12050 if (errorp != NULL) 12051 *errorp = ENOMEM; 12052 return (NULL); 12053 } 12054 } 12055 12056 /* 12057 * We grab ill_lock to protect the flag changes. The ipif is still 12058 * not up and can't be looked up until the ioctl completes and the 12059 * IPIF_CHANGING flag is cleared. 12060 */ 12061 mutex_enter(&ill->ill_lock); 12062 12063 ipif->ipif_ire_type = ire_type; 12064 12065 if (ipif->ipif_isv6) { 12066 ill->ill_flags |= ILLF_IPV6; 12067 } else { 12068 ipaddr_t inaddr_any = INADDR_ANY; 12069 12070 ill->ill_flags |= ILLF_IPV4; 12071 12072 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12073 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12074 &ipif->ipif_v6lcl_addr); 12075 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12076 &ipif->ipif_v6subnet); 12077 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12078 &ipif->ipif_v6net_mask); 12079 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12080 &ipif->ipif_v6brd_addr); 12081 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12082 &ipif->ipif_v6pp_dst_addr); 12083 } 12084 12085 /* 12086 * Don't set the interface flags etc. now, will do it in 12087 * ip_ll_subnet_defaults. 12088 */ 12089 if (!initialize) 12090 goto out; 12091 12092 /* 12093 * NOTE: The IPMP meta-interface is special-cased because it starts 12094 * with no underlying interfaces (and thus an unknown broadcast 12095 * address length), but all interfaces that can be placed into an IPMP 12096 * group are required to be broadcast-capable. 12097 */ 12098 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12099 /* 12100 * Later detect lack of DLPI driver multicast capability by 12101 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12102 */ 12103 ill->ill_flags |= ILLF_MULTICAST; 12104 if (!ipif->ipif_isv6) 12105 ipif->ipif_flags |= IPIF_BROADCAST; 12106 } else { 12107 if (ill->ill_net_type != IRE_LOOPBACK) { 12108 if (ipif->ipif_isv6) 12109 /* 12110 * Note: xresolv interfaces will eventually need 12111 * NOARP set here as well, but that will require 12112 * those external resolvers to have some 12113 * knowledge of that flag and act appropriately. 12114 * Not to be changed at present. 12115 */ 12116 ill->ill_flags |= ILLF_NONUD; 12117 else 12118 ill->ill_flags |= ILLF_NOARP; 12119 } 12120 if (ill->ill_phys_addr_length == 0) { 12121 if (IS_VNI(ill)) { 12122 ipif->ipif_flags |= IPIF_NOXMIT; 12123 } else { 12124 /* pt-pt supports multicast. */ 12125 ill->ill_flags |= ILLF_MULTICAST; 12126 if (ill->ill_net_type != IRE_LOOPBACK) 12127 ipif->ipif_flags |= IPIF_POINTOPOINT; 12128 } 12129 } 12130 } 12131 out: 12132 mutex_exit(&ill->ill_lock); 12133 return (ipif); 12134 } 12135 12136 /* 12137 * Remove the neighbor cache entries associated with this logical 12138 * interface. 12139 */ 12140 int 12141 ipif_arp_down(ipif_t *ipif) 12142 { 12143 ill_t *ill = ipif->ipif_ill; 12144 int err = 0; 12145 12146 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12147 ASSERT(IAM_WRITER_IPIF(ipif)); 12148 12149 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12150 ill_t *, ill, ipif_t *, ipif); 12151 ipif_nce_down(ipif); 12152 12153 /* 12154 * If this is the last ipif that is going down and there are no 12155 * duplicate addresses we may yet attempt to re-probe, then we need to 12156 * clean up ARP completely. 12157 */ 12158 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12159 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12160 /* 12161 * If this was the last ipif on an IPMP interface, purge any 12162 * static ARP entries associated with it. 12163 */ 12164 if (IS_IPMP(ill)) 12165 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12166 12167 /* UNBIND, DETACH */ 12168 err = arp_ll_down(ill); 12169 } 12170 12171 return (err); 12172 } 12173 12174 /* 12175 * Get the resolver set up for a new IP address. (Always called as writer.) 12176 * Called both for IPv4 and IPv6 interfaces, though it only does some 12177 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12178 * 12179 * The enumerated value res_act tunes the behavior: 12180 * * Res_act_initial: set up all the resolver structures for a new 12181 * IP address. 12182 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12183 * ARP message in defense of the address. 12184 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12185 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12186 * 12187 * Returns zero on success, or an errno upon failure. 12188 */ 12189 int 12190 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12191 { 12192 ill_t *ill = ipif->ipif_ill; 12193 int err; 12194 boolean_t was_dup; 12195 12196 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12197 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12198 ASSERT(IAM_WRITER_IPIF(ipif)); 12199 12200 was_dup = B_FALSE; 12201 if (res_act == Res_act_initial) { 12202 ipif->ipif_addr_ready = 0; 12203 /* 12204 * We're bringing an interface up here. There's no way that we 12205 * should need to shut down ARP now. 12206 */ 12207 mutex_enter(&ill->ill_lock); 12208 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12209 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12210 ill->ill_ipif_dup_count--; 12211 was_dup = B_TRUE; 12212 } 12213 mutex_exit(&ill->ill_lock); 12214 } 12215 if (ipif->ipif_recovery_id != 0) 12216 (void) untimeout(ipif->ipif_recovery_id); 12217 ipif->ipif_recovery_id = 0; 12218 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12219 ipif->ipif_addr_ready = 1; 12220 return (0); 12221 } 12222 /* NDP will set the ipif_addr_ready flag when it's ready */ 12223 if (ill->ill_isv6) 12224 return (0); 12225 12226 err = ipif_arp_up(ipif, res_act, was_dup); 12227 return (err); 12228 } 12229 12230 /* 12231 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12232 * when a link has just gone back up. 12233 */ 12234 static void 12235 ipif_nce_start_dad(ipif_t *ipif) 12236 { 12237 ncec_t *ncec; 12238 ill_t *ill = ipif->ipif_ill; 12239 boolean_t isv6 = ill->ill_isv6; 12240 12241 if (isv6) { 12242 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12243 &ipif->ipif_v6lcl_addr); 12244 } else { 12245 ipaddr_t v4addr; 12246 12247 if (ill->ill_net_type != IRE_IF_RESOLVER || 12248 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12249 ipif->ipif_lcl_addr == INADDR_ANY) { 12250 /* 12251 * If we can't contact ARP for some reason, 12252 * that's not really a problem. Just send 12253 * out the routing socket notification that 12254 * DAD completion would have done, and continue. 12255 */ 12256 ipif_mask_reply(ipif); 12257 ipif_up_notify(ipif); 12258 ipif->ipif_addr_ready = 1; 12259 return; 12260 } 12261 12262 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12263 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12264 } 12265 12266 if (ncec == NULL) { 12267 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12268 (void *)ipif)); 12269 return; 12270 } 12271 if (!nce_restart_dad(ncec)) { 12272 /* 12273 * If we can't restart DAD for some reason, that's not really a 12274 * problem. Just send out the routing socket notification that 12275 * DAD completion would have done, and continue. 12276 */ 12277 ipif_up_notify(ipif); 12278 ipif->ipif_addr_ready = 1; 12279 } 12280 ncec_refrele(ncec); 12281 } 12282 12283 /* 12284 * Restart duplicate address detection on all interfaces on the given ill. 12285 * 12286 * This is called when an interface transitions from down to up 12287 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12288 * 12289 * Note that since the underlying physical link has transitioned, we must cause 12290 * at least one routing socket message to be sent here, either via DAD 12291 * completion or just by default on the first ipif. (If we don't do this, then 12292 * in.mpathd will see long delays when doing link-based failure recovery.) 12293 */ 12294 void 12295 ill_restart_dad(ill_t *ill, boolean_t went_up) 12296 { 12297 ipif_t *ipif; 12298 12299 if (ill == NULL) 12300 return; 12301 12302 /* 12303 * If layer two doesn't support duplicate address detection, then just 12304 * send the routing socket message now and be done with it. 12305 */ 12306 if (!ill->ill_isv6 && arp_no_defense) { 12307 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12308 return; 12309 } 12310 12311 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12312 if (went_up) { 12313 12314 if (ipif->ipif_flags & IPIF_UP) { 12315 ipif_nce_start_dad(ipif); 12316 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12317 /* 12318 * kick off the bring-up process now. 12319 */ 12320 ipif_do_recovery(ipif); 12321 } else { 12322 /* 12323 * Unfortunately, the first ipif is "special" 12324 * and represents the underlying ill in the 12325 * routing socket messages. Thus, when this 12326 * one ipif is down, we must still notify so 12327 * that the user knows the IFF_RUNNING status 12328 * change. (If the first ipif is up, then 12329 * we'll handle eventual routing socket 12330 * notification via DAD completion.) 12331 */ 12332 if (ipif == ill->ill_ipif) { 12333 ip_rts_ifmsg(ill->ill_ipif, 12334 RTSQ_DEFAULT); 12335 } 12336 } 12337 } else { 12338 /* 12339 * After link down, we'll need to send a new routing 12340 * message when the link comes back, so clear 12341 * ipif_addr_ready. 12342 */ 12343 ipif->ipif_addr_ready = 0; 12344 } 12345 } 12346 12347 /* 12348 * If we've torn down links, then notify the user right away. 12349 */ 12350 if (!went_up) 12351 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12352 } 12353 12354 static void 12355 ipsq_delete(ipsq_t *ipsq) 12356 { 12357 ipxop_t *ipx = ipsq->ipsq_xop; 12358 12359 ipsq->ipsq_ipst = NULL; 12360 ASSERT(ipsq->ipsq_phyint == NULL); 12361 ASSERT(ipsq->ipsq_xop != NULL); 12362 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12363 ASSERT(ipx->ipx_pending_mp == NULL); 12364 kmem_free(ipsq, sizeof (ipsq_t)); 12365 } 12366 12367 static int 12368 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12369 { 12370 int err = 0; 12371 ipif_t *ipif; 12372 12373 if (ill == NULL) 12374 return (0); 12375 12376 ASSERT(IAM_WRITER_ILL(ill)); 12377 ill->ill_up_ipifs = B_TRUE; 12378 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12379 if (ipif->ipif_was_up) { 12380 if (!(ipif->ipif_flags & IPIF_UP)) 12381 err = ipif_up(ipif, q, mp); 12382 ipif->ipif_was_up = B_FALSE; 12383 if (err != 0) { 12384 ASSERT(err == EINPROGRESS); 12385 return (err); 12386 } 12387 } 12388 } 12389 ill->ill_up_ipifs = B_FALSE; 12390 return (0); 12391 } 12392 12393 /* 12394 * This function is called to bring up all the ipifs that were up before 12395 * bringing the ill down via ill_down_ipifs(). 12396 */ 12397 int 12398 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12399 { 12400 int err; 12401 12402 ASSERT(IAM_WRITER_ILL(ill)); 12403 12404 if (ill->ill_replumbing) { 12405 ill->ill_replumbing = 0; 12406 /* 12407 * Send down REPLUMB_DONE notification followed by the 12408 * BIND_REQ on the arp stream. 12409 */ 12410 if (!ill->ill_isv6) 12411 arp_send_replumb_conf(ill); 12412 } 12413 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12414 if (err != 0) 12415 return (err); 12416 12417 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12418 } 12419 12420 /* 12421 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12422 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12423 */ 12424 static void 12425 ill_down_ipifs(ill_t *ill, boolean_t logical) 12426 { 12427 ipif_t *ipif; 12428 12429 ASSERT(IAM_WRITER_ILL(ill)); 12430 12431 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12432 /* 12433 * We go through the ipif_down logic even if the ipif 12434 * is already down, since routes can be added based 12435 * on down ipifs. Going through ipif_down once again 12436 * will delete any IREs created based on these routes. 12437 */ 12438 if (ipif->ipif_flags & IPIF_UP) 12439 ipif->ipif_was_up = B_TRUE; 12440 12441 if (logical) { 12442 (void) ipif_logical_down(ipif, NULL, NULL); 12443 ipif_non_duplicate(ipif); 12444 (void) ipif_down_tail(ipif); 12445 } else { 12446 (void) ipif_down(ipif, NULL, NULL); 12447 } 12448 } 12449 } 12450 12451 /* 12452 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12453 * a look again at valid source addresses. 12454 * This should be called each time after the set of source addresses has been 12455 * changed. 12456 */ 12457 void 12458 ip_update_source_selection(ip_stack_t *ipst) 12459 { 12460 /* We skip past SRC_GENERATION_VERIFY */ 12461 if (atomic_inc_32_nv(&ipst->ips_src_generation) == 12462 SRC_GENERATION_VERIFY) 12463 atomic_inc_32(&ipst->ips_src_generation); 12464 } 12465 12466 /* 12467 * Finish the group join started in ip_sioctl_groupname(). 12468 */ 12469 /* ARGSUSED */ 12470 static void 12471 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12472 { 12473 ill_t *ill = q->q_ptr; 12474 phyint_t *phyi = ill->ill_phyint; 12475 ipmp_grp_t *grp = phyi->phyint_grp; 12476 ip_stack_t *ipst = ill->ill_ipst; 12477 12478 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12479 ASSERT(!IS_IPMP(ill) && grp != NULL); 12480 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12481 12482 if (phyi->phyint_illv4 != NULL) { 12483 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12484 VERIFY(grp->gr_pendv4-- > 0); 12485 rw_exit(&ipst->ips_ipmp_lock); 12486 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12487 } 12488 if (phyi->phyint_illv6 != NULL) { 12489 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12490 VERIFY(grp->gr_pendv6-- > 0); 12491 rw_exit(&ipst->ips_ipmp_lock); 12492 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12493 } 12494 freemsg(mp); 12495 } 12496 12497 /* 12498 * Process an SIOCSLIFGROUPNAME request. 12499 */ 12500 /* ARGSUSED */ 12501 int 12502 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12503 ip_ioctl_cmd_t *ipip, void *ifreq) 12504 { 12505 struct lifreq *lifr = ifreq; 12506 ill_t *ill = ipif->ipif_ill; 12507 ip_stack_t *ipst = ill->ill_ipst; 12508 phyint_t *phyi = ill->ill_phyint; 12509 ipmp_grp_t *grp = phyi->phyint_grp; 12510 mblk_t *ipsq_mp; 12511 int err = 0; 12512 12513 /* 12514 * Note that phyint_grp can only change here, where we're exclusive. 12515 */ 12516 ASSERT(IAM_WRITER_ILL(ill)); 12517 12518 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12519 (phyi->phyint_flags & PHYI_VIRTUAL)) 12520 return (EINVAL); 12521 12522 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12523 12524 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12525 12526 /* 12527 * If the name hasn't changed, there's nothing to do. 12528 */ 12529 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12530 goto unlock; 12531 12532 /* 12533 * Handle requests to rename an IPMP meta-interface. 12534 * 12535 * Note that creation of the IPMP meta-interface is handled in 12536 * userland through the standard plumbing sequence. As part of the 12537 * plumbing the IPMP meta-interface, its initial groupname is set to 12538 * the name of the interface (see ipif_set_values_tail()). 12539 */ 12540 if (IS_IPMP(ill)) { 12541 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12542 goto unlock; 12543 } 12544 12545 /* 12546 * Handle requests to add or remove an IP interface from a group. 12547 */ 12548 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12549 /* 12550 * Moves are handled by first removing the interface from 12551 * its existing group, and then adding it to another group. 12552 * So, fail if it's already in a group. 12553 */ 12554 if (IS_UNDER_IPMP(ill)) { 12555 err = EALREADY; 12556 goto unlock; 12557 } 12558 12559 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12560 if (grp == NULL) { 12561 err = ENOENT; 12562 goto unlock; 12563 } 12564 12565 /* 12566 * Check if the phyint and its ills are suitable for 12567 * inclusion into the group. 12568 */ 12569 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12570 goto unlock; 12571 12572 /* 12573 * Checks pass; join the group, and enqueue the remaining 12574 * illgrp joins for when we've become part of the group xop 12575 * and are exclusive across its IPSQs. Since qwriter_ip() 12576 * requires an mblk_t to scribble on, and since `mp' will be 12577 * freed as part of completing the ioctl, allocate another. 12578 */ 12579 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12580 err = ENOMEM; 12581 goto unlock; 12582 } 12583 12584 /* 12585 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12586 * IPMP meta-interface ills needed by `phyi' cannot go away 12587 * before ip_join_illgrps() is called back. See the comments 12588 * in ip_sioctl_plink_ipmp() for more. 12589 */ 12590 if (phyi->phyint_illv4 != NULL) 12591 grp->gr_pendv4++; 12592 if (phyi->phyint_illv6 != NULL) 12593 grp->gr_pendv6++; 12594 12595 rw_exit(&ipst->ips_ipmp_lock); 12596 12597 ipmp_phyint_join_grp(phyi, grp); 12598 ill_refhold(ill); 12599 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12600 SWITCH_OP, B_FALSE); 12601 return (0); 12602 } else { 12603 /* 12604 * Request to remove the interface from a group. If the 12605 * interface is not in a group, this trivially succeeds. 12606 */ 12607 rw_exit(&ipst->ips_ipmp_lock); 12608 if (IS_UNDER_IPMP(ill)) 12609 ipmp_phyint_leave_grp(phyi); 12610 return (0); 12611 } 12612 unlock: 12613 rw_exit(&ipst->ips_ipmp_lock); 12614 return (err); 12615 } 12616 12617 /* 12618 * Process an SIOCGLIFBINDING request. 12619 */ 12620 /* ARGSUSED */ 12621 int 12622 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12623 ip_ioctl_cmd_t *ipip, void *ifreq) 12624 { 12625 ill_t *ill; 12626 struct lifreq *lifr = ifreq; 12627 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12628 12629 if (!IS_IPMP(ipif->ipif_ill)) 12630 return (EINVAL); 12631 12632 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12633 if ((ill = ipif->ipif_bound_ill) == NULL) 12634 lifr->lifr_binding[0] = '\0'; 12635 else 12636 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12637 rw_exit(&ipst->ips_ipmp_lock); 12638 return (0); 12639 } 12640 12641 /* 12642 * Process an SIOCGLIFGROUPNAME request. 12643 */ 12644 /* ARGSUSED */ 12645 int 12646 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12647 ip_ioctl_cmd_t *ipip, void *ifreq) 12648 { 12649 ipmp_grp_t *grp; 12650 struct lifreq *lifr = ifreq; 12651 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12652 12653 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12654 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12655 lifr->lifr_groupname[0] = '\0'; 12656 else 12657 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12658 rw_exit(&ipst->ips_ipmp_lock); 12659 return (0); 12660 } 12661 12662 /* 12663 * Process an SIOCGLIFGROUPINFO request. 12664 */ 12665 /* ARGSUSED */ 12666 int 12667 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12668 ip_ioctl_cmd_t *ipip, void *dummy) 12669 { 12670 ipmp_grp_t *grp; 12671 lifgroupinfo_t *lifgr; 12672 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12673 12674 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12675 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12676 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12677 12678 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12679 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12680 rw_exit(&ipst->ips_ipmp_lock); 12681 return (ENOENT); 12682 } 12683 ipmp_grp_info(grp, lifgr); 12684 rw_exit(&ipst->ips_ipmp_lock); 12685 return (0); 12686 } 12687 12688 static void 12689 ill_dl_down(ill_t *ill) 12690 { 12691 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12692 12693 /* 12694 * The ill is down; unbind but stay attached since we're still 12695 * associated with a PPA. If we have negotiated DLPI capabilites 12696 * with the data link service provider (IDS_OK) then reset them. 12697 * The interval between unbinding and rebinding is potentially 12698 * unbounded hence we cannot assume things will be the same. 12699 * The DLPI capabilities will be probed again when the data link 12700 * is brought up. 12701 */ 12702 mblk_t *mp = ill->ill_unbind_mp; 12703 12704 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12705 12706 if (!ill->ill_replumbing) { 12707 /* Free all ilms for this ill */ 12708 update_conn_ill(ill, ill->ill_ipst); 12709 } else { 12710 ill_leave_multicast(ill); 12711 } 12712 12713 ill->ill_unbind_mp = NULL; 12714 if (mp != NULL) { 12715 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12716 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12717 ill->ill_name)); 12718 mutex_enter(&ill->ill_lock); 12719 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12720 mutex_exit(&ill->ill_lock); 12721 /* 12722 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12723 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12724 * ill_capability_dld_disable disable rightaway. If this is not 12725 * an unplumb operation then the disable happens on receipt of 12726 * the capab ack via ip_rput_dlpi_writer -> 12727 * ill_capability_ack_thr. In both cases the order of 12728 * the operations seen by DLD is capability disable followed 12729 * by DL_UNBIND. Also the DLD capability disable needs a 12730 * cv_wait'able context. 12731 */ 12732 if (ill->ill_state_flags & ILL_CONDEMNED) 12733 ill_capability_dld_disable(ill); 12734 ill_capability_reset(ill, B_FALSE); 12735 ill_dlpi_send(ill, mp); 12736 } 12737 mutex_enter(&ill->ill_lock); 12738 ill->ill_dl_up = 0; 12739 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12740 mutex_exit(&ill->ill_lock); 12741 } 12742 12743 void 12744 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12745 { 12746 union DL_primitives *dlp; 12747 t_uscalar_t prim; 12748 boolean_t waitack = B_FALSE; 12749 12750 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12751 12752 dlp = (union DL_primitives *)mp->b_rptr; 12753 prim = dlp->dl_primitive; 12754 12755 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12756 dl_primstr(prim), prim, ill->ill_name)); 12757 12758 switch (prim) { 12759 case DL_PHYS_ADDR_REQ: 12760 { 12761 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12762 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12763 break; 12764 } 12765 case DL_BIND_REQ: 12766 mutex_enter(&ill->ill_lock); 12767 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12768 mutex_exit(&ill->ill_lock); 12769 break; 12770 } 12771 12772 /* 12773 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12774 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12775 * we only wait for the ACK of the DL_UNBIND_REQ. 12776 */ 12777 mutex_enter(&ill->ill_lock); 12778 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12779 (prim == DL_UNBIND_REQ)) { 12780 ill->ill_dlpi_pending = prim; 12781 waitack = B_TRUE; 12782 } 12783 12784 mutex_exit(&ill->ill_lock); 12785 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12786 char *, dl_primstr(prim), ill_t *, ill); 12787 putnext(ill->ill_wq, mp); 12788 12789 /* 12790 * There is no ack for DL_NOTIFY_CONF messages 12791 */ 12792 if (waitack && prim == DL_NOTIFY_CONF) 12793 ill_dlpi_done(ill, prim); 12794 } 12795 12796 /* 12797 * Helper function for ill_dlpi_send(). 12798 */ 12799 /* ARGSUSED */ 12800 static void 12801 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12802 { 12803 ill_dlpi_send(q->q_ptr, mp); 12804 } 12805 12806 /* 12807 * Send a DLPI control message to the driver but make sure there 12808 * is only one outstanding message. Uses ill_dlpi_pending to tell 12809 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12810 * when an ACK or a NAK is received to process the next queued message. 12811 */ 12812 void 12813 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12814 { 12815 mblk_t **mpp; 12816 12817 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12818 12819 /* 12820 * To ensure that any DLPI requests for current exclusive operation 12821 * are always completely sent before any DLPI messages for other 12822 * operations, require writer access before enqueuing. 12823 */ 12824 if (!IAM_WRITER_ILL(ill)) { 12825 ill_refhold(ill); 12826 /* qwriter_ip() does the ill_refrele() */ 12827 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12828 NEW_OP, B_TRUE); 12829 return; 12830 } 12831 12832 mutex_enter(&ill->ill_lock); 12833 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12834 /* Must queue message. Tail insertion */ 12835 mpp = &ill->ill_dlpi_deferred; 12836 while (*mpp != NULL) 12837 mpp = &((*mpp)->b_next); 12838 12839 ip1dbg(("ill_dlpi_send: deferring request for %s " 12840 "while %s pending\n", ill->ill_name, 12841 dl_primstr(ill->ill_dlpi_pending))); 12842 12843 *mpp = mp; 12844 mutex_exit(&ill->ill_lock); 12845 return; 12846 } 12847 mutex_exit(&ill->ill_lock); 12848 ill_dlpi_dispatch(ill, mp); 12849 } 12850 12851 void 12852 ill_capability_send(ill_t *ill, mblk_t *mp) 12853 { 12854 ill->ill_capab_pending_cnt++; 12855 ill_dlpi_send(ill, mp); 12856 } 12857 12858 void 12859 ill_capability_done(ill_t *ill) 12860 { 12861 ASSERT(ill->ill_capab_pending_cnt != 0); 12862 12863 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12864 12865 ill->ill_capab_pending_cnt--; 12866 if (ill->ill_capab_pending_cnt == 0 && 12867 ill->ill_dlpi_capab_state == IDCS_OK) 12868 ill_capability_reset_alloc(ill); 12869 } 12870 12871 /* 12872 * Send all deferred DLPI messages without waiting for their ACKs. 12873 */ 12874 void 12875 ill_dlpi_send_deferred(ill_t *ill) 12876 { 12877 mblk_t *mp, *nextmp; 12878 12879 /* 12880 * Clear ill_dlpi_pending so that the message is not queued in 12881 * ill_dlpi_send(). 12882 */ 12883 mutex_enter(&ill->ill_lock); 12884 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12885 mp = ill->ill_dlpi_deferred; 12886 ill->ill_dlpi_deferred = NULL; 12887 mutex_exit(&ill->ill_lock); 12888 12889 for (; mp != NULL; mp = nextmp) { 12890 nextmp = mp->b_next; 12891 mp->b_next = NULL; 12892 ill_dlpi_send(ill, mp); 12893 } 12894 } 12895 12896 /* 12897 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12898 * or M_HANGUP 12899 */ 12900 static void 12901 ill_dlpi_clear_deferred(ill_t *ill) 12902 { 12903 mblk_t *mp, *nextmp; 12904 12905 mutex_enter(&ill->ill_lock); 12906 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12907 mp = ill->ill_dlpi_deferred; 12908 ill->ill_dlpi_deferred = NULL; 12909 mutex_exit(&ill->ill_lock); 12910 12911 for (; mp != NULL; mp = nextmp) { 12912 nextmp = mp->b_next; 12913 inet_freemsg(mp); 12914 } 12915 } 12916 12917 /* 12918 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12919 */ 12920 boolean_t 12921 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12922 { 12923 t_uscalar_t pending; 12924 12925 mutex_enter(&ill->ill_lock); 12926 if (ill->ill_dlpi_pending == prim) { 12927 mutex_exit(&ill->ill_lock); 12928 return (B_TRUE); 12929 } 12930 12931 /* 12932 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12933 * without waiting, so don't print any warnings in that case. 12934 */ 12935 if (ill->ill_state_flags & ILL_CONDEMNED) { 12936 mutex_exit(&ill->ill_lock); 12937 return (B_FALSE); 12938 } 12939 pending = ill->ill_dlpi_pending; 12940 mutex_exit(&ill->ill_lock); 12941 12942 if (pending == DL_PRIM_INVAL) { 12943 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12944 "received unsolicited ack for %s on %s\n", 12945 dl_primstr(prim), ill->ill_name); 12946 } else { 12947 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12948 "received unexpected ack for %s on %s (expecting %s)\n", 12949 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12950 } 12951 return (B_FALSE); 12952 } 12953 12954 /* 12955 * Complete the current DLPI operation associated with `prim' on `ill' and 12956 * start the next queued DLPI operation (if any). If there are no queued DLPI 12957 * operations and the ill's current exclusive IPSQ operation has finished 12958 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12959 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12960 * the comments above ipsq_current_finish() for details. 12961 */ 12962 void 12963 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12964 { 12965 mblk_t *mp; 12966 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12967 ipxop_t *ipx = ipsq->ipsq_xop; 12968 12969 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12970 mutex_enter(&ill->ill_lock); 12971 12972 ASSERT(prim != DL_PRIM_INVAL); 12973 ASSERT(ill->ill_dlpi_pending == prim); 12974 12975 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12976 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12977 12978 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12979 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12980 if (ipx->ipx_current_done) { 12981 mutex_enter(&ipx->ipx_lock); 12982 ipx->ipx_current_ipif = NULL; 12983 mutex_exit(&ipx->ipx_lock); 12984 } 12985 cv_signal(&ill->ill_cv); 12986 mutex_exit(&ill->ill_lock); 12987 return; 12988 } 12989 12990 ill->ill_dlpi_deferred = mp->b_next; 12991 mp->b_next = NULL; 12992 mutex_exit(&ill->ill_lock); 12993 12994 ill_dlpi_dispatch(ill, mp); 12995 } 12996 12997 /* 12998 * Queue a (multicast) DLPI control message to be sent to the driver by 12999 * later calling ill_dlpi_send_queued. 13000 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13001 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 13002 * for the same group to race. 13003 * We send DLPI control messages in order using ill_lock. 13004 * For IPMP we should be called on the cast_ill. 13005 */ 13006 void 13007 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 13008 { 13009 mblk_t **mpp; 13010 13011 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 13012 13013 mutex_enter(&ill->ill_lock); 13014 /* Must queue message. Tail insertion */ 13015 mpp = &ill->ill_dlpi_deferred; 13016 while (*mpp != NULL) 13017 mpp = &((*mpp)->b_next); 13018 13019 *mpp = mp; 13020 mutex_exit(&ill->ill_lock); 13021 } 13022 13023 /* 13024 * Send the messages that were queued. Make sure there is only 13025 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 13026 * when an ACK or a NAK is received to process the next queued message. 13027 * For IPMP we are called on the upper ill, but when send what is queued 13028 * on the cast_ill. 13029 */ 13030 void 13031 ill_dlpi_send_queued(ill_t *ill) 13032 { 13033 mblk_t *mp; 13034 union DL_primitives *dlp; 13035 t_uscalar_t prim; 13036 ill_t *release_ill = NULL; 13037 13038 if (IS_IPMP(ill)) { 13039 /* On the upper IPMP ill. */ 13040 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13041 if (release_ill == NULL) { 13042 /* Avoid ever sending anything down to the ipmpstub */ 13043 return; 13044 } 13045 ill = release_ill; 13046 } 13047 mutex_enter(&ill->ill_lock); 13048 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13049 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13050 /* Can't send. Somebody else will send it */ 13051 mutex_exit(&ill->ill_lock); 13052 goto done; 13053 } 13054 ill->ill_dlpi_deferred = mp->b_next; 13055 mp->b_next = NULL; 13056 if (!ill->ill_dl_up) { 13057 /* 13058 * Nobody there. All multicast addresses will be 13059 * re-joined when we get the DL_BIND_ACK bringing the 13060 * interface up. 13061 */ 13062 freemsg(mp); 13063 continue; 13064 } 13065 dlp = (union DL_primitives *)mp->b_rptr; 13066 prim = dlp->dl_primitive; 13067 13068 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13069 (prim == DL_UNBIND_REQ)) { 13070 ill->ill_dlpi_pending = prim; 13071 } 13072 mutex_exit(&ill->ill_lock); 13073 13074 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13075 char *, dl_primstr(prim), ill_t *, ill); 13076 putnext(ill->ill_wq, mp); 13077 mutex_enter(&ill->ill_lock); 13078 } 13079 mutex_exit(&ill->ill_lock); 13080 done: 13081 if (release_ill != NULL) 13082 ill_refrele(release_ill); 13083 } 13084 13085 /* 13086 * Queue an IP (IGMP/MLD) message to be sent by IP from 13087 * ill_mcast_send_queued 13088 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13089 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13090 * group to race. 13091 * We send them in order using ill_lock. 13092 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13093 */ 13094 void 13095 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13096 { 13097 mblk_t **mpp; 13098 ill_t *release_ill = NULL; 13099 13100 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13101 13102 if (IS_IPMP(ill)) { 13103 /* On the upper IPMP ill. */ 13104 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13105 if (release_ill == NULL) { 13106 /* Discard instead of queuing for the ipmp interface */ 13107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13108 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13109 mp, ill); 13110 freemsg(mp); 13111 return; 13112 } 13113 ill = release_ill; 13114 } 13115 13116 mutex_enter(&ill->ill_lock); 13117 /* Must queue message. Tail insertion */ 13118 mpp = &ill->ill_mcast_deferred; 13119 while (*mpp != NULL) 13120 mpp = &((*mpp)->b_next); 13121 13122 *mpp = mp; 13123 mutex_exit(&ill->ill_lock); 13124 if (release_ill != NULL) 13125 ill_refrele(release_ill); 13126 } 13127 13128 /* 13129 * Send the IP packets that were queued by ill_mcast_queue. 13130 * These are IGMP/MLD packets. 13131 * 13132 * For IPMP we are called on the upper ill, but when send what is queued 13133 * on the cast_ill. 13134 * 13135 * Request loopback of the report if we are acting as a multicast 13136 * router, so that the process-level routing demon can hear it. 13137 * This will run multiple times for the same group if there are members 13138 * on the same group for multiple ipif's on the same ill. The 13139 * igmp_input/mld_input code will suppress this due to the loopback thus we 13140 * always loopback membership report. 13141 * 13142 * We also need to make sure that this does not get load balanced 13143 * by IPMP. We do this by passing an ill to ip_output_simple. 13144 */ 13145 void 13146 ill_mcast_send_queued(ill_t *ill) 13147 { 13148 mblk_t *mp; 13149 ip_xmit_attr_t ixas; 13150 ill_t *release_ill = NULL; 13151 13152 if (IS_IPMP(ill)) { 13153 /* On the upper IPMP ill. */ 13154 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13155 if (release_ill == NULL) { 13156 /* 13157 * We should have no messages on the ipmp interface 13158 * but no point in trying to send them. 13159 */ 13160 return; 13161 } 13162 ill = release_ill; 13163 } 13164 bzero(&ixas, sizeof (ixas)); 13165 ixas.ixa_zoneid = ALL_ZONES; 13166 ixas.ixa_cred = kcred; 13167 ixas.ixa_cpid = NOPID; 13168 ixas.ixa_tsl = NULL; 13169 /* 13170 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13171 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13172 * That is necessary to handle IGMP/MLD snooping switches. 13173 */ 13174 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13175 ixas.ixa_ipst = ill->ill_ipst; 13176 13177 mutex_enter(&ill->ill_lock); 13178 while ((mp = ill->ill_mcast_deferred) != NULL) { 13179 ill->ill_mcast_deferred = mp->b_next; 13180 mp->b_next = NULL; 13181 if (!ill->ill_dl_up) { 13182 /* 13183 * Nobody there. Just drop the ip packets. 13184 * IGMP/MLD will resend later, if this is a replumb. 13185 */ 13186 freemsg(mp); 13187 continue; 13188 } 13189 mutex_enter(&ill->ill_phyint->phyint_lock); 13190 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13191 /* 13192 * When the ill is getting deactivated, we only want to 13193 * send the DLPI messages, so drop IGMP/MLD packets. 13194 * DLPI messages are handled by ill_dlpi_send_queued() 13195 */ 13196 mutex_exit(&ill->ill_phyint->phyint_lock); 13197 freemsg(mp); 13198 continue; 13199 } 13200 mutex_exit(&ill->ill_phyint->phyint_lock); 13201 mutex_exit(&ill->ill_lock); 13202 13203 /* Check whether we are sending IPv4 or IPv6. */ 13204 if (ill->ill_isv6) { 13205 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13206 13207 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13208 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13209 } else { 13210 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13211 13212 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13213 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13214 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13215 } 13216 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13217 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13218 (void) ip_output_simple(mp, &ixas); 13219 ixa_cleanup(&ixas); 13220 13221 mutex_enter(&ill->ill_lock); 13222 } 13223 mutex_exit(&ill->ill_lock); 13224 13225 done: 13226 if (release_ill != NULL) 13227 ill_refrele(release_ill); 13228 } 13229 13230 /* 13231 * Take down a specific interface, but don't lose any information about it. 13232 * (Always called as writer.) 13233 * This function goes through the down sequence even if the interface is 13234 * already down. There are 2 reasons. 13235 * a. Currently we permit interface routes that depend on down interfaces 13236 * to be added. This behaviour itself is questionable. However it appears 13237 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13238 * time. We go thru the cleanup in order to remove these routes. 13239 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13240 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13241 * down, but we need to cleanup i.e. do ill_dl_down and 13242 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13243 * 13244 * IP-MT notes: 13245 * 13246 * Model of reference to interfaces. 13247 * 13248 * The following members in ipif_t track references to the ipif. 13249 * int ipif_refcnt; Active reference count 13250 * 13251 * The following members in ill_t track references to the ill. 13252 * int ill_refcnt; active refcnt 13253 * uint_t ill_ire_cnt; Number of ires referencing ill 13254 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13255 * uint_t ill_nce_cnt; Number of nces referencing ill 13256 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13257 * 13258 * Reference to an ipif or ill can be obtained in any of the following ways. 13259 * 13260 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13261 * Pointers to ipif / ill from other data structures viz ire and conn. 13262 * Implicit reference to the ipif / ill by holding a reference to the ire. 13263 * 13264 * The ipif/ill lookup functions return a reference held ipif / ill. 13265 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13266 * This is a purely dynamic reference count associated with threads holding 13267 * references to the ipif / ill. Pointers from other structures do not 13268 * count towards this reference count. 13269 * 13270 * ill_ire_cnt is the number of ire's associated with the 13271 * ill. This is incremented whenever a new ire is created referencing the 13272 * ill. This is done atomically inside ire_add_v[46] where the ire is 13273 * actually added to the ire hash table. The count is decremented in 13274 * ire_inactive where the ire is destroyed. 13275 * 13276 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13277 * This is incremented atomically in 13278 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13279 * table. Similarly it is decremented in ncec_inactive() where the ncec 13280 * is destroyed. 13281 * 13282 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13283 * incremented atomically in nce_add() where the nce is actually added to the 13284 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13285 * is destroyed. 13286 * 13287 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13288 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13289 * 13290 * Flow of ioctls involving interface down/up 13291 * 13292 * The following is the sequence of an attempt to set some critical flags on an 13293 * up interface. 13294 * ip_sioctl_flags 13295 * ipif_down 13296 * wait for ipif to be quiescent 13297 * ipif_down_tail 13298 * ip_sioctl_flags_tail 13299 * 13300 * All set ioctls that involve down/up sequence would have a skeleton similar 13301 * to the above. All the *tail functions are called after the refcounts have 13302 * dropped to the appropriate values. 13303 * 13304 * SIOC ioctls during the IPIF_CHANGING interval. 13305 * 13306 * Threads handling SIOC set ioctls serialize on the squeue, but this 13307 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13308 * steps of internal changes to the state, some of which are visible in 13309 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13310 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13311 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13312 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13313 * the current exclusive operation completes. The IPIF_CHANGING check 13314 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13315 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13316 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13317 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13318 * until we release the ipsq_lock, even though the ill/ipif state flags 13319 * can change after we drop the ill_lock. 13320 */ 13321 int 13322 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13323 { 13324 ill_t *ill = ipif->ipif_ill; 13325 conn_t *connp; 13326 boolean_t success; 13327 boolean_t ipif_was_up = B_FALSE; 13328 ip_stack_t *ipst = ill->ill_ipst; 13329 13330 ASSERT(IAM_WRITER_IPIF(ipif)); 13331 13332 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13333 13334 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13335 ill_t *, ill, ipif_t *, ipif); 13336 13337 if (ipif->ipif_flags & IPIF_UP) { 13338 mutex_enter(&ill->ill_lock); 13339 ipif->ipif_flags &= ~IPIF_UP; 13340 ASSERT(ill->ill_ipif_up_count > 0); 13341 --ill->ill_ipif_up_count; 13342 mutex_exit(&ill->ill_lock); 13343 ipif_was_up = B_TRUE; 13344 /* Update status in SCTP's list */ 13345 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13346 ill_nic_event_dispatch(ipif->ipif_ill, 13347 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13348 } 13349 13350 /* 13351 * Removal of the last ipif from an ill may result in a DL_UNBIND 13352 * being sent to the driver, and we must not send any data packets to 13353 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13354 * ire and nce entries used in the data path will be cleaned 13355 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13356 * sure on new entries will be added until the ill is bound 13357 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13358 * receipt of a DL_BIND_ACK. 13359 */ 13360 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13361 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13362 ill->ill_dl_up) { 13363 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13364 } 13365 13366 /* 13367 * Blow away memberships we established in ipif_multicast_up(). 13368 */ 13369 ipif_multicast_down(ipif); 13370 13371 /* 13372 * Remove from the mapping for __sin6_src_id. We insert only 13373 * when the address is not INADDR_ANY. As IPv4 addresses are 13374 * stored as mapped addresses, we need to check for mapped 13375 * INADDR_ANY also. 13376 */ 13377 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13378 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13379 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13380 int err; 13381 13382 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13383 ipif->ipif_zoneid, ipst); 13384 if (err != 0) { 13385 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13386 } 13387 } 13388 13389 if (ipif_was_up) { 13390 /* only delete if we'd added ire's before */ 13391 if (ipif->ipif_isv6) 13392 ipif_delete_ires_v6(ipif); 13393 else 13394 ipif_delete_ires_v4(ipif); 13395 } 13396 13397 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13398 /* 13399 * Since the interface is now down, it may have just become 13400 * inactive. Note that this needs to be done even for a 13401 * lll_logical_down(), or ARP entries will not get correctly 13402 * restored when the interface comes back up. 13403 */ 13404 if (IS_UNDER_IPMP(ill)) 13405 ipmp_ill_refresh_active(ill); 13406 } 13407 13408 /* 13409 * neighbor-discovery or arp entries for this interface. The ipif 13410 * has to be quiesced, so we walk all the nce's and delete those 13411 * that point at the ipif->ipif_ill. At the same time, we also 13412 * update IPMP so that ipifs for data addresses are unbound. We dont 13413 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13414 * that for ipif_down_tail() 13415 */ 13416 ipif_nce_down(ipif); 13417 13418 /* 13419 * If this is the last ipif on the ill, we also need to remove 13420 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13421 * never succeed. 13422 */ 13423 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13424 ire_walk_ill(0, 0, ill_downi, ill, ill); 13425 13426 /* 13427 * Walk all CONNs that can have a reference on an ire for this 13428 * ipif (we actually walk all that now have stale references). 13429 */ 13430 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13431 13432 /* 13433 * If mp is NULL the caller will wait for the appropriate refcnt. 13434 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13435 * and ill_delete -> ipif_free -> ipif_down 13436 */ 13437 if (mp == NULL) { 13438 ASSERT(q == NULL); 13439 return (0); 13440 } 13441 13442 if (CONN_Q(q)) { 13443 connp = Q_TO_CONN(q); 13444 mutex_enter(&connp->conn_lock); 13445 } else { 13446 connp = NULL; 13447 } 13448 mutex_enter(&ill->ill_lock); 13449 /* 13450 * Are there any ire's pointing to this ipif that are still active ? 13451 * If this is the last ipif going down, are there any ire's pointing 13452 * to this ill that are still active ? 13453 */ 13454 if (ipif_is_quiescent(ipif)) { 13455 mutex_exit(&ill->ill_lock); 13456 if (connp != NULL) 13457 mutex_exit(&connp->conn_lock); 13458 return (0); 13459 } 13460 13461 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13462 ill->ill_name, (void *)ill)); 13463 /* 13464 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13465 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13466 * which in turn is called by the last refrele on the ipif/ill/ire. 13467 */ 13468 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13469 if (!success) { 13470 /* The conn is closing. So just return */ 13471 ASSERT(connp != NULL); 13472 mutex_exit(&ill->ill_lock); 13473 mutex_exit(&connp->conn_lock); 13474 return (EINTR); 13475 } 13476 13477 mutex_exit(&ill->ill_lock); 13478 if (connp != NULL) 13479 mutex_exit(&connp->conn_lock); 13480 return (EINPROGRESS); 13481 } 13482 13483 int 13484 ipif_down_tail(ipif_t *ipif) 13485 { 13486 ill_t *ill = ipif->ipif_ill; 13487 int err = 0; 13488 13489 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13490 ill_t *, ill, ipif_t *, ipif); 13491 13492 /* 13493 * Skip any loopback interface (null wq). 13494 * If this is the last logical interface on the ill 13495 * have ill_dl_down tell the driver we are gone (unbind) 13496 * Note that lun 0 can ipif_down even though 13497 * there are other logical units that are up. 13498 * This occurs e.g. when we change a "significant" IFF_ flag. 13499 */ 13500 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13501 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13502 ill->ill_dl_up) { 13503 ill_dl_down(ill); 13504 } 13505 if (!ipif->ipif_isv6) 13506 err = ipif_arp_down(ipif); 13507 13508 ill->ill_logical_down = 0; 13509 13510 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13511 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13512 return (err); 13513 } 13514 13515 /* 13516 * Bring interface logically down without bringing the physical interface 13517 * down e.g. when the netmask is changed. This avoids long lasting link 13518 * negotiations between an ethernet interface and a certain switches. 13519 */ 13520 static int 13521 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13522 { 13523 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13524 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13525 13526 /* 13527 * The ill_logical_down flag is a transient flag. It is set here 13528 * and is cleared once the down has completed in ipif_down_tail. 13529 * This flag does not indicate whether the ill stream is in the 13530 * DL_BOUND state with the driver. Instead this flag is used by 13531 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13532 * the driver. The state of the ill stream i.e. whether it is 13533 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13534 */ 13535 ipif->ipif_ill->ill_logical_down = 1; 13536 return (ipif_down(ipif, q, mp)); 13537 } 13538 13539 /* 13540 * Initiate deallocate of an IPIF. Always called as writer. Called by 13541 * ill_delete or ip_sioctl_removeif. 13542 */ 13543 static void 13544 ipif_free(ipif_t *ipif) 13545 { 13546 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13547 13548 ASSERT(IAM_WRITER_IPIF(ipif)); 13549 13550 if (ipif->ipif_recovery_id != 0) 13551 (void) untimeout(ipif->ipif_recovery_id); 13552 ipif->ipif_recovery_id = 0; 13553 13554 /* 13555 * Take down the interface. We can be called either from ill_delete 13556 * or from ip_sioctl_removeif. 13557 */ 13558 (void) ipif_down(ipif, NULL, NULL); 13559 13560 /* 13561 * Now that the interface is down, there's no chance it can still 13562 * become a duplicate. Cancel any timer that may have been set while 13563 * tearing down. 13564 */ 13565 if (ipif->ipif_recovery_id != 0) 13566 (void) untimeout(ipif->ipif_recovery_id); 13567 ipif->ipif_recovery_id = 0; 13568 13569 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13570 /* Remove pointers to this ill in the multicast routing tables */ 13571 reset_mrt_vif_ipif(ipif); 13572 /* If necessary, clear the cached source ipif rotor. */ 13573 if (ipif->ipif_ill->ill_src_ipif == ipif) 13574 ipif->ipif_ill->ill_src_ipif = NULL; 13575 rw_exit(&ipst->ips_ill_g_lock); 13576 } 13577 13578 static void 13579 ipif_free_tail(ipif_t *ipif) 13580 { 13581 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13582 13583 /* 13584 * Need to hold both ill_g_lock and ill_lock while 13585 * inserting or removing an ipif from the linked list 13586 * of ipifs hanging off the ill. 13587 */ 13588 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13589 13590 #ifdef DEBUG 13591 ipif_trace_cleanup(ipif); 13592 #endif 13593 13594 /* Ask SCTP to take it out of it list */ 13595 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13596 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13597 13598 /* Get it out of the ILL interface list. */ 13599 ipif_remove(ipif); 13600 rw_exit(&ipst->ips_ill_g_lock); 13601 13602 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13603 ASSERT(ipif->ipif_recovery_id == 0); 13604 ASSERT(ipif->ipif_ire_local == NULL); 13605 ASSERT(ipif->ipif_ire_if == NULL); 13606 13607 /* Free the memory. */ 13608 mi_free(ipif); 13609 } 13610 13611 /* 13612 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13613 * is zero. 13614 */ 13615 void 13616 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13617 { 13618 char lbuf[LIFNAMSIZ]; 13619 char *name; 13620 size_t name_len; 13621 13622 buf[0] = '\0'; 13623 name = ipif->ipif_ill->ill_name; 13624 name_len = ipif->ipif_ill->ill_name_length; 13625 if (ipif->ipif_id != 0) { 13626 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13627 ipif->ipif_id); 13628 name = lbuf; 13629 name_len = mi_strlen(name) + 1; 13630 } 13631 len -= 1; 13632 buf[len] = '\0'; 13633 len = MIN(len, name_len); 13634 bcopy(name, buf, len); 13635 } 13636 13637 /* 13638 * Sets `buf' to an ill name. 13639 */ 13640 void 13641 ill_get_name(const ill_t *ill, char *buf, int len) 13642 { 13643 char *name; 13644 size_t name_len; 13645 13646 name = ill->ill_name; 13647 name_len = ill->ill_name_length; 13648 len -= 1; 13649 buf[len] = '\0'; 13650 len = MIN(len, name_len); 13651 bcopy(name, buf, len); 13652 } 13653 13654 /* 13655 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13656 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13657 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13658 * (May be called as writer.) 13659 */ 13660 static ipif_t * 13661 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13662 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13663 { 13664 char *cp; 13665 char *endp; 13666 long id; 13667 ill_t *ill; 13668 ipif_t *ipif; 13669 uint_t ire_type; 13670 boolean_t did_alloc = B_FALSE; 13671 char last; 13672 13673 /* 13674 * If the caller wants to us to create the ipif, make sure we have a 13675 * valid zoneid 13676 */ 13677 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13678 13679 if (namelen == 0) { 13680 return (NULL); 13681 } 13682 13683 *exists = B_FALSE; 13684 /* Look for a colon in the name. */ 13685 endp = &name[namelen]; 13686 for (cp = endp; --cp > name; ) { 13687 if (*cp == IPIF_SEPARATOR_CHAR) 13688 break; 13689 } 13690 13691 if (*cp == IPIF_SEPARATOR_CHAR) { 13692 /* 13693 * Reject any non-decimal aliases for logical 13694 * interfaces. Aliases with leading zeroes 13695 * are also rejected as they introduce ambiguity 13696 * in the naming of the interfaces. 13697 * In order to confirm with existing semantics, 13698 * and to not break any programs/script relying 13699 * on that behaviour, if<0>:0 is considered to be 13700 * a valid interface. 13701 * 13702 * If alias has two or more digits and the first 13703 * is zero, fail. 13704 */ 13705 if (&cp[2] < endp && cp[1] == '0') { 13706 return (NULL); 13707 } 13708 } 13709 13710 if (cp <= name) { 13711 cp = endp; 13712 } 13713 last = *cp; 13714 *cp = '\0'; 13715 13716 /* 13717 * Look up the ILL, based on the portion of the name 13718 * before the slash. ill_lookup_on_name returns a held ill. 13719 * Temporary to check whether ill exists already. If so 13720 * ill_lookup_on_name will clear it. 13721 */ 13722 ill = ill_lookup_on_name(name, do_alloc, isv6, 13723 &did_alloc, ipst); 13724 *cp = last; 13725 if (ill == NULL) 13726 return (NULL); 13727 13728 /* Establish the unit number in the name. */ 13729 id = 0; 13730 if (cp < endp && *endp == '\0') { 13731 /* If there was a colon, the unit number follows. */ 13732 cp++; 13733 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13734 ill_refrele(ill); 13735 return (NULL); 13736 } 13737 } 13738 13739 mutex_enter(&ill->ill_lock); 13740 /* Now see if there is an IPIF with this unit number. */ 13741 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13742 if (ipif->ipif_id == id) { 13743 if (zoneid != ALL_ZONES && 13744 zoneid != ipif->ipif_zoneid && 13745 ipif->ipif_zoneid != ALL_ZONES) { 13746 mutex_exit(&ill->ill_lock); 13747 ill_refrele(ill); 13748 return (NULL); 13749 } 13750 if (IPIF_CAN_LOOKUP(ipif)) { 13751 ipif_refhold_locked(ipif); 13752 mutex_exit(&ill->ill_lock); 13753 if (!did_alloc) 13754 *exists = B_TRUE; 13755 /* 13756 * Drop locks before calling ill_refrele 13757 * since it can potentially call into 13758 * ipif_ill_refrele_tail which can end up 13759 * in trying to acquire any lock. 13760 */ 13761 ill_refrele(ill); 13762 return (ipif); 13763 } 13764 } 13765 } 13766 13767 if (!do_alloc) { 13768 mutex_exit(&ill->ill_lock); 13769 ill_refrele(ill); 13770 return (NULL); 13771 } 13772 13773 /* 13774 * If none found, atomically allocate and return a new one. 13775 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13776 * to support "receive only" use of lo0:1 etc. as is still done 13777 * below as an initial guess. 13778 * However, this is now likely to be overriden later in ipif_up_done() 13779 * when we know for sure what address has been configured on the 13780 * interface, since we might have more than one loopback interface 13781 * with a loopback address, e.g. in the case of zones, and all the 13782 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13783 */ 13784 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13785 ire_type = IRE_LOOPBACK; 13786 else 13787 ire_type = IRE_LOCAL; 13788 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13789 if (ipif != NULL) 13790 ipif_refhold_locked(ipif); 13791 mutex_exit(&ill->ill_lock); 13792 ill_refrele(ill); 13793 return (ipif); 13794 } 13795 13796 /* 13797 * Variant of the above that queues the request on the ipsq when 13798 * IPIF_CHANGING is set. 13799 */ 13800 static ipif_t * 13801 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13802 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13803 ip_stack_t *ipst) 13804 { 13805 char *cp; 13806 char *endp; 13807 long id; 13808 ill_t *ill; 13809 ipif_t *ipif; 13810 boolean_t did_alloc = B_FALSE; 13811 ipsq_t *ipsq; 13812 13813 if (error != NULL) 13814 *error = 0; 13815 13816 if (namelen == 0) { 13817 if (error != NULL) 13818 *error = ENXIO; 13819 return (NULL); 13820 } 13821 13822 /* Look for a colon in the name. */ 13823 endp = &name[namelen]; 13824 for (cp = endp; --cp > name; ) { 13825 if (*cp == IPIF_SEPARATOR_CHAR) 13826 break; 13827 } 13828 13829 if (*cp == IPIF_SEPARATOR_CHAR) { 13830 /* 13831 * Reject any non-decimal aliases for logical 13832 * interfaces. Aliases with leading zeroes 13833 * are also rejected as they introduce ambiguity 13834 * in the naming of the interfaces. 13835 * In order to confirm with existing semantics, 13836 * and to not break any programs/script relying 13837 * on that behaviour, if<0>:0 is considered to be 13838 * a valid interface. 13839 * 13840 * If alias has two or more digits and the first 13841 * is zero, fail. 13842 */ 13843 if (&cp[2] < endp && cp[1] == '0') { 13844 if (error != NULL) 13845 *error = EINVAL; 13846 return (NULL); 13847 } 13848 } 13849 13850 if (cp <= name) { 13851 cp = endp; 13852 } else { 13853 *cp = '\0'; 13854 } 13855 13856 /* 13857 * Look up the ILL, based on the portion of the name 13858 * before the slash. ill_lookup_on_name returns a held ill. 13859 * Temporary to check whether ill exists already. If so 13860 * ill_lookup_on_name will clear it. 13861 */ 13862 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13863 if (cp != endp) 13864 *cp = IPIF_SEPARATOR_CHAR; 13865 if (ill == NULL) 13866 return (NULL); 13867 13868 /* Establish the unit number in the name. */ 13869 id = 0; 13870 if (cp < endp && *endp == '\0') { 13871 /* If there was a colon, the unit number follows. */ 13872 cp++; 13873 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13874 ill_refrele(ill); 13875 if (error != NULL) 13876 *error = ENXIO; 13877 return (NULL); 13878 } 13879 } 13880 13881 GRAB_CONN_LOCK(q); 13882 mutex_enter(&ill->ill_lock); 13883 /* Now see if there is an IPIF with this unit number. */ 13884 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13885 if (ipif->ipif_id == id) { 13886 if (zoneid != ALL_ZONES && 13887 zoneid != ipif->ipif_zoneid && 13888 ipif->ipif_zoneid != ALL_ZONES) { 13889 mutex_exit(&ill->ill_lock); 13890 RELEASE_CONN_LOCK(q); 13891 ill_refrele(ill); 13892 if (error != NULL) 13893 *error = ENXIO; 13894 return (NULL); 13895 } 13896 13897 if (!(IPIF_IS_CHANGING(ipif) || 13898 IPIF_IS_CONDEMNED(ipif)) || 13899 IAM_WRITER_IPIF(ipif)) { 13900 ipif_refhold_locked(ipif); 13901 mutex_exit(&ill->ill_lock); 13902 /* 13903 * Drop locks before calling ill_refrele 13904 * since it can potentially call into 13905 * ipif_ill_refrele_tail which can end up 13906 * in trying to acquire any lock. 13907 */ 13908 RELEASE_CONN_LOCK(q); 13909 ill_refrele(ill); 13910 return (ipif); 13911 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13912 ipsq = ill->ill_phyint->phyint_ipsq; 13913 mutex_enter(&ipsq->ipsq_lock); 13914 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13915 mutex_exit(&ill->ill_lock); 13916 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13917 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13918 mutex_exit(&ipsq->ipsq_lock); 13919 RELEASE_CONN_LOCK(q); 13920 ill_refrele(ill); 13921 if (error != NULL) 13922 *error = EINPROGRESS; 13923 return (NULL); 13924 } 13925 } 13926 } 13927 RELEASE_CONN_LOCK(q); 13928 mutex_exit(&ill->ill_lock); 13929 ill_refrele(ill); 13930 if (error != NULL) 13931 *error = ENXIO; 13932 return (NULL); 13933 } 13934 13935 /* 13936 * This routine is called whenever a new address comes up on an ipif. If 13937 * we are configured to respond to address mask requests, then we are supposed 13938 * to broadcast an address mask reply at this time. This routine is also 13939 * called if we are already up, but a netmask change is made. This is legal 13940 * but might not make the system manager very popular. (May be called 13941 * as writer.) 13942 */ 13943 void 13944 ipif_mask_reply(ipif_t *ipif) 13945 { 13946 icmph_t *icmph; 13947 ipha_t *ipha; 13948 mblk_t *mp; 13949 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13950 ip_xmit_attr_t ixas; 13951 13952 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13953 13954 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13955 return; 13956 13957 /* ICMP mask reply is IPv4 only */ 13958 ASSERT(!ipif->ipif_isv6); 13959 /* ICMP mask reply is not for a loopback interface */ 13960 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13961 13962 if (ipif->ipif_lcl_addr == INADDR_ANY) 13963 return; 13964 13965 mp = allocb(REPLY_LEN, BPRI_HI); 13966 if (mp == NULL) 13967 return; 13968 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13969 13970 ipha = (ipha_t *)mp->b_rptr; 13971 bzero(ipha, REPLY_LEN); 13972 *ipha = icmp_ipha; 13973 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13974 ipha->ipha_src = ipif->ipif_lcl_addr; 13975 ipha->ipha_dst = ipif->ipif_brd_addr; 13976 ipha->ipha_length = htons(REPLY_LEN); 13977 ipha->ipha_ident = 0; 13978 13979 icmph = (icmph_t *)&ipha[1]; 13980 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13981 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13982 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13983 13984 bzero(&ixas, sizeof (ixas)); 13985 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13986 ixas.ixa_zoneid = ALL_ZONES; 13987 ixas.ixa_ifindex = 0; 13988 ixas.ixa_ipst = ipst; 13989 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13990 (void) ip_output_simple(mp, &ixas); 13991 ixa_cleanup(&ixas); 13992 #undef REPLY_LEN 13993 } 13994 13995 /* 13996 * Join the ipif specific multicast groups. 13997 * Must be called after a mapping has been set up in the resolver. (Always 13998 * called as writer.) 13999 */ 14000 void 14001 ipif_multicast_up(ipif_t *ipif) 14002 { 14003 int err; 14004 ill_t *ill; 14005 ilm_t *ilm; 14006 14007 ASSERT(IAM_WRITER_IPIF(ipif)); 14008 14009 ill = ipif->ipif_ill; 14010 14011 ip1dbg(("ipif_multicast_up\n")); 14012 if (!(ill->ill_flags & ILLF_MULTICAST) || 14013 ipif->ipif_allhosts_ilm != NULL) 14014 return; 14015 14016 if (ipif->ipif_isv6) { 14017 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 14018 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 14019 14020 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 14021 14022 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14023 return; 14024 14025 ip1dbg(("ipif_multicast_up - addmulti\n")); 14026 14027 /* 14028 * Join the all hosts multicast address. We skip this for 14029 * underlying IPMP interfaces since they should be invisible. 14030 */ 14031 if (!IS_UNDER_IPMP(ill)) { 14032 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 14033 &err); 14034 if (ilm == NULL) { 14035 ASSERT(err != 0); 14036 ip0dbg(("ipif_multicast_up: " 14037 "all_hosts_mcast failed %d\n", err)); 14038 return; 14039 } 14040 ipif->ipif_allhosts_ilm = ilm; 14041 } 14042 14043 /* 14044 * Enable multicast for the solicited node multicast address. 14045 * If IPMP we need to put the membership on the upper ill. 14046 */ 14047 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 14048 ill_t *mcast_ill = NULL; 14049 boolean_t need_refrele; 14050 14051 if (IS_UNDER_IPMP(ill) && 14052 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 14053 need_refrele = B_TRUE; 14054 } else { 14055 mcast_ill = ill; 14056 need_refrele = B_FALSE; 14057 } 14058 14059 ilm = ip_addmulti(&v6solmc, mcast_ill, 14060 ipif->ipif_zoneid, &err); 14061 if (need_refrele) 14062 ill_refrele(mcast_ill); 14063 14064 if (ilm == NULL) { 14065 ASSERT(err != 0); 14066 ip0dbg(("ipif_multicast_up: solicited MC" 14067 " failed %d\n", err)); 14068 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14069 ipif->ipif_allhosts_ilm = NULL; 14070 (void) ip_delmulti(ilm); 14071 } 14072 return; 14073 } 14074 ipif->ipif_solmulti_ilm = ilm; 14075 } 14076 } else { 14077 in6_addr_t v6group; 14078 14079 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14080 return; 14081 14082 /* Join the all hosts multicast address */ 14083 ip1dbg(("ipif_multicast_up - addmulti\n")); 14084 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14085 14086 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14087 if (ilm == NULL) { 14088 ASSERT(err != 0); 14089 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14090 return; 14091 } 14092 ipif->ipif_allhosts_ilm = ilm; 14093 } 14094 } 14095 14096 /* 14097 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14098 * (ilms from explicit memberships are handled in conn_update_ill.) 14099 */ 14100 void 14101 ipif_multicast_down(ipif_t *ipif) 14102 { 14103 ASSERT(IAM_WRITER_IPIF(ipif)); 14104 14105 ip1dbg(("ipif_multicast_down\n")); 14106 14107 if (ipif->ipif_allhosts_ilm != NULL) { 14108 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14109 ipif->ipif_allhosts_ilm = NULL; 14110 } 14111 if (ipif->ipif_solmulti_ilm != NULL) { 14112 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14113 ipif->ipif_solmulti_ilm = NULL; 14114 } 14115 } 14116 14117 /* 14118 * Used when an interface comes up to recreate any extra routes on this 14119 * interface. 14120 */ 14121 int 14122 ill_recover_saved_ire(ill_t *ill) 14123 { 14124 mblk_t *mp; 14125 ip_stack_t *ipst = ill->ill_ipst; 14126 14127 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14128 14129 mutex_enter(&ill->ill_saved_ire_lock); 14130 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14131 ire_t *ire, *nire; 14132 ifrt_t *ifrt; 14133 14134 ifrt = (ifrt_t *)mp->b_rptr; 14135 /* 14136 * Create a copy of the IRE with the saved address and netmask. 14137 */ 14138 if (ill->ill_isv6) { 14139 ire = ire_create_v6( 14140 &ifrt->ifrt_v6addr, 14141 &ifrt->ifrt_v6mask, 14142 &ifrt->ifrt_v6gateway_addr, 14143 ifrt->ifrt_type, 14144 ill, 14145 ifrt->ifrt_zoneid, 14146 ifrt->ifrt_flags, 14147 NULL, 14148 ipst); 14149 } else { 14150 ire = ire_create( 14151 (uint8_t *)&ifrt->ifrt_addr, 14152 (uint8_t *)&ifrt->ifrt_mask, 14153 (uint8_t *)&ifrt->ifrt_gateway_addr, 14154 ifrt->ifrt_type, 14155 ill, 14156 ifrt->ifrt_zoneid, 14157 ifrt->ifrt_flags, 14158 NULL, 14159 ipst); 14160 } 14161 if (ire == NULL) { 14162 mutex_exit(&ill->ill_saved_ire_lock); 14163 return (ENOMEM); 14164 } 14165 14166 if (ifrt->ifrt_flags & RTF_SETSRC) { 14167 if (ill->ill_isv6) { 14168 ire->ire_setsrc_addr_v6 = 14169 ifrt->ifrt_v6setsrc_addr; 14170 } else { 14171 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14172 } 14173 } 14174 14175 /* 14176 * Some software (for example, GateD and Sun Cluster) attempts 14177 * to create (what amount to) IRE_PREFIX routes with the 14178 * loopback address as the gateway. This is primarily done to 14179 * set up prefixes with the RTF_REJECT flag set (for example, 14180 * when generating aggregate routes.) 14181 * 14182 * If the IRE type (as defined by ill->ill_net_type) is 14183 * IRE_LOOPBACK, then we map the request into a 14184 * IRE_IF_NORESOLVER. 14185 */ 14186 if (ill->ill_net_type == IRE_LOOPBACK) 14187 ire->ire_type = IRE_IF_NORESOLVER; 14188 14189 /* 14190 * ire held by ire_add, will be refreled' towards the 14191 * the end of ipif_up_done 14192 */ 14193 nire = ire_add(ire); 14194 /* 14195 * Check if it was a duplicate entry. This handles 14196 * the case of two racing route adds for the same route 14197 */ 14198 if (nire == NULL) { 14199 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14200 } else if (nire != ire) { 14201 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14202 (void *)nire)); 14203 ire_delete(nire); 14204 } else { 14205 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14206 (void *)nire)); 14207 } 14208 if (nire != NULL) 14209 ire_refrele(nire); 14210 } 14211 mutex_exit(&ill->ill_saved_ire_lock); 14212 return (0); 14213 } 14214 14215 /* 14216 * Used to set the netmask and broadcast address to default values when the 14217 * interface is brought up. (Always called as writer.) 14218 */ 14219 static void 14220 ipif_set_default(ipif_t *ipif) 14221 { 14222 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14223 14224 if (!ipif->ipif_isv6) { 14225 /* 14226 * Interface holds an IPv4 address. Default 14227 * mask is the natural netmask. 14228 */ 14229 if (!ipif->ipif_net_mask) { 14230 ipaddr_t v4mask; 14231 14232 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14233 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14234 } 14235 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14236 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14237 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14238 } else { 14239 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14240 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14241 } 14242 /* 14243 * NOTE: SunOS 4.X does this even if the broadcast address 14244 * has been already set thus we do the same here. 14245 */ 14246 if (ipif->ipif_flags & IPIF_BROADCAST) { 14247 ipaddr_t v4addr; 14248 14249 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14250 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14251 } 14252 } else { 14253 /* 14254 * Interface holds an IPv6-only address. Default 14255 * mask is all-ones. 14256 */ 14257 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14258 ipif->ipif_v6net_mask = ipv6_all_ones; 14259 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14260 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14261 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14262 } else { 14263 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14264 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14265 } 14266 } 14267 } 14268 14269 /* 14270 * Return 0 if this address can be used as local address without causing 14271 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14272 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14273 * Note that the same IPv6 link-local address is allowed as long as the ills 14274 * are not on the same link. 14275 */ 14276 int 14277 ip_addr_availability_check(ipif_t *new_ipif) 14278 { 14279 in6_addr_t our_v6addr; 14280 ill_t *ill; 14281 ipif_t *ipif; 14282 ill_walk_context_t ctx; 14283 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14284 14285 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14286 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14287 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14288 14289 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14290 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14291 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14292 return (0); 14293 14294 our_v6addr = new_ipif->ipif_v6lcl_addr; 14295 14296 if (new_ipif->ipif_isv6) 14297 ill = ILL_START_WALK_V6(&ctx, ipst); 14298 else 14299 ill = ILL_START_WALK_V4(&ctx, ipst); 14300 14301 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14302 for (ipif = ill->ill_ipif; ipif != NULL; 14303 ipif = ipif->ipif_next) { 14304 if ((ipif == new_ipif) || 14305 !(ipif->ipif_flags & IPIF_UP) || 14306 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14307 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14308 &our_v6addr)) 14309 continue; 14310 14311 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14312 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14313 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14314 ipif->ipif_flags |= IPIF_UNNUMBERED; 14315 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14316 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14317 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14318 continue; 14319 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14320 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14321 continue; 14322 else if (new_ipif->ipif_ill == ill) 14323 return (EADDRINUSE); 14324 else 14325 return (EADDRNOTAVAIL); 14326 } 14327 } 14328 14329 return (0); 14330 } 14331 14332 /* 14333 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14334 * IREs for the ipif. 14335 * When the routine returns EINPROGRESS then mp has been consumed and 14336 * the ioctl will be acked from ip_rput_dlpi. 14337 */ 14338 int 14339 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14340 { 14341 ill_t *ill = ipif->ipif_ill; 14342 boolean_t isv6 = ipif->ipif_isv6; 14343 int err = 0; 14344 boolean_t success; 14345 uint_t ipif_orig_id; 14346 ip_stack_t *ipst = ill->ill_ipst; 14347 14348 ASSERT(IAM_WRITER_IPIF(ipif)); 14349 14350 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14351 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14352 ill_t *, ill, ipif_t *, ipif); 14353 14354 /* Shouldn't get here if it is already up. */ 14355 if (ipif->ipif_flags & IPIF_UP) 14356 return (EALREADY); 14357 14358 /* 14359 * If this is a request to bring up a data address on an interface 14360 * under IPMP, then move the address to its IPMP meta-interface and 14361 * try to bring it up. One complication is that the zeroth ipif for 14362 * an ill is special, in that every ill always has one, and that code 14363 * throughout IP deferences ill->ill_ipif without holding any locks. 14364 */ 14365 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14366 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14367 ipif_t *stubipif = NULL, *moveipif = NULL; 14368 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14369 14370 /* 14371 * The ipif being brought up should be quiesced. If it's not, 14372 * something has gone amiss and we need to bail out. (If it's 14373 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14374 */ 14375 mutex_enter(&ill->ill_lock); 14376 if (!ipif_is_quiescent(ipif)) { 14377 mutex_exit(&ill->ill_lock); 14378 return (EINVAL); 14379 } 14380 mutex_exit(&ill->ill_lock); 14381 14382 /* 14383 * If we're going to need to allocate ipifs, do it prior 14384 * to starting the move (and grabbing locks). 14385 */ 14386 if (ipif->ipif_id == 0) { 14387 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14388 B_FALSE, &err)) == NULL) { 14389 return (err); 14390 } 14391 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14392 B_FALSE, &err)) == NULL) { 14393 mi_free(moveipif); 14394 return (err); 14395 } 14396 } 14397 14398 /* 14399 * Grab or transfer the ipif to move. During the move, keep 14400 * ill_g_lock held to prevent any ill walker threads from 14401 * seeing things in an inconsistent state. 14402 */ 14403 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14404 if (ipif->ipif_id != 0) { 14405 ipif_remove(ipif); 14406 } else { 14407 ipif_transfer(ipif, moveipif, stubipif); 14408 ipif = moveipif; 14409 } 14410 14411 /* 14412 * Place the ipif on the IPMP ill. If the zeroth ipif on 14413 * the IPMP ill is a stub (0.0.0.0 down address) then we 14414 * replace that one. Otherwise, pick the next available slot. 14415 */ 14416 ipif->ipif_ill = ipmp_ill; 14417 ipif_orig_id = ipif->ipif_id; 14418 14419 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14420 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14421 ipif = ipmp_ill->ill_ipif; 14422 } else { 14423 ipif->ipif_id = -1; 14424 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14425 /* 14426 * No more available ipif_id's -- put it back 14427 * on the original ill and fail the operation. 14428 * Since we're writer on the ill, we can be 14429 * sure our old slot is still available. 14430 */ 14431 ipif->ipif_id = ipif_orig_id; 14432 ipif->ipif_ill = ill; 14433 if (ipif_orig_id == 0) { 14434 ipif_transfer(ipif, ill->ill_ipif, 14435 NULL); 14436 } else { 14437 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14438 } 14439 rw_exit(&ipst->ips_ill_g_lock); 14440 return (err); 14441 } 14442 } 14443 rw_exit(&ipst->ips_ill_g_lock); 14444 14445 /* 14446 * Tell SCTP that the ipif has moved. Note that even if we 14447 * had to allocate a new ipif, the original sequence id was 14448 * preserved and therefore SCTP won't know. 14449 */ 14450 sctp_move_ipif(ipif, ill, ipmp_ill); 14451 14452 /* 14453 * If the ipif being brought up was on slot zero, then we 14454 * first need to bring up the placeholder we stuck there. In 14455 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14456 * call to ipif_up() itself, if we successfully bring up the 14457 * placeholder, we'll check ill_move_ipif and bring it up too. 14458 */ 14459 if (ipif_orig_id == 0) { 14460 ASSERT(ill->ill_move_ipif == NULL); 14461 ill->ill_move_ipif = ipif; 14462 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14463 ASSERT(ill->ill_move_ipif == NULL); 14464 if (err != EINPROGRESS) 14465 ill->ill_move_ipif = NULL; 14466 return (err); 14467 } 14468 14469 /* 14470 * Bring it up on the IPMP ill. 14471 */ 14472 return (ipif_up(ipif, q, mp)); 14473 } 14474 14475 /* Skip arp/ndp for any loopback interface. */ 14476 if (ill->ill_wq != NULL) { 14477 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14478 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14479 14480 if (!ill->ill_dl_up) { 14481 /* 14482 * ill_dl_up is not yet set. i.e. we are yet to 14483 * DL_BIND with the driver and this is the first 14484 * logical interface on the ill to become "up". 14485 * Tell the driver to get going (via DL_BIND_REQ). 14486 * Note that changing "significant" IFF_ flags 14487 * address/netmask etc cause a down/up dance, but 14488 * does not cause an unbind (DL_UNBIND) with the driver 14489 */ 14490 return (ill_dl_up(ill, ipif, mp, q)); 14491 } 14492 14493 /* 14494 * ipif_resolver_up may end up needeing to bind/attach 14495 * the ARP stream, which in turn necessitates a 14496 * DLPI message exchange with the driver. ioctls are 14497 * serialized and so we cannot send more than one 14498 * interface up message at a time. If ipif_resolver_up 14499 * does need to wait for the DLPI handshake for the ARP stream, 14500 * we get EINPROGRESS and we will complete in arp_bringup_done. 14501 */ 14502 14503 ASSERT(connp != NULL || !CONN_Q(q)); 14504 if (connp != NULL) 14505 mutex_enter(&connp->conn_lock); 14506 mutex_enter(&ill->ill_lock); 14507 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14508 mutex_exit(&ill->ill_lock); 14509 if (connp != NULL) 14510 mutex_exit(&connp->conn_lock); 14511 if (!success) 14512 return (EINTR); 14513 14514 /* 14515 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14516 * complete when ipif_ndp_up returns. 14517 */ 14518 err = ipif_resolver_up(ipif, Res_act_initial); 14519 if (err == EINPROGRESS) { 14520 /* We will complete it in arp_bringup_done() */ 14521 return (err); 14522 } 14523 14524 if (isv6 && err == 0) 14525 err = ipif_ndp_up(ipif, B_TRUE); 14526 14527 ASSERT(err != EINPROGRESS); 14528 mp = ipsq_pending_mp_get(ipsq, &connp); 14529 ASSERT(mp != NULL); 14530 if (err != 0) 14531 return (err); 14532 } else { 14533 /* 14534 * Interfaces without underlying hardware don't do duplicate 14535 * address detection. 14536 */ 14537 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14538 ipif->ipif_addr_ready = 1; 14539 err = ill_add_ires(ill); 14540 /* allocation failure? */ 14541 if (err != 0) 14542 return (err); 14543 } 14544 14545 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14546 if (err == 0 && ill->ill_move_ipif != NULL) { 14547 ipif = ill->ill_move_ipif; 14548 ill->ill_move_ipif = NULL; 14549 return (ipif_up(ipif, q, mp)); 14550 } 14551 return (err); 14552 } 14553 14554 /* 14555 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14556 * The identical set of IREs need to be removed in ill_delete_ires(). 14557 */ 14558 int 14559 ill_add_ires(ill_t *ill) 14560 { 14561 ire_t *ire; 14562 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14563 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14564 14565 if (ill->ill_ire_multicast != NULL) 14566 return (0); 14567 14568 /* 14569 * provide some dummy ire_addr for creating the ire. 14570 */ 14571 if (ill->ill_isv6) { 14572 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14573 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14574 } else { 14575 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14576 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14577 } 14578 if (ire == NULL) 14579 return (ENOMEM); 14580 14581 ill->ill_ire_multicast = ire; 14582 return (0); 14583 } 14584 14585 void 14586 ill_delete_ires(ill_t *ill) 14587 { 14588 if (ill->ill_ire_multicast != NULL) { 14589 /* 14590 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14591 * which was taken without any th_tracing enabled. 14592 * We also mark it as condemned (note that it was never added) 14593 * so that caching conn's can move off of it. 14594 */ 14595 ire_make_condemned(ill->ill_ire_multicast); 14596 ire_refrele_notr(ill->ill_ire_multicast); 14597 ill->ill_ire_multicast = NULL; 14598 } 14599 } 14600 14601 /* 14602 * Perform a bind for the physical device. 14603 * When the routine returns EINPROGRESS then mp has been consumed and 14604 * the ioctl will be acked from ip_rput_dlpi. 14605 * Allocate an unbind message and save it until ipif_down. 14606 */ 14607 static int 14608 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14609 { 14610 mblk_t *bind_mp = NULL; 14611 mblk_t *unbind_mp = NULL; 14612 conn_t *connp; 14613 boolean_t success; 14614 int err; 14615 14616 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14617 14618 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14619 ASSERT(IAM_WRITER_ILL(ill)); 14620 ASSERT(mp != NULL); 14621 14622 /* 14623 * Make sure we have an IRE_MULTICAST in case we immediately 14624 * start receiving packets. 14625 */ 14626 err = ill_add_ires(ill); 14627 if (err != 0) 14628 goto bad; 14629 14630 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14631 DL_BIND_REQ); 14632 if (bind_mp == NULL) 14633 goto bad; 14634 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14635 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14636 14637 /* 14638 * ill_unbind_mp would be non-null if the following sequence had 14639 * happened: 14640 * - send DL_BIND_REQ to driver, wait for response 14641 * - multiple ioctls that need to bring the ipif up are encountered, 14642 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ. 14643 * These ioctls will then be enqueued on the ipsq 14644 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ 14645 * At this point, the pending ioctls in the ipsq will be drained, and 14646 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with 14647 * a non-null ill->ill_unbind_mp 14648 */ 14649 if (ill->ill_unbind_mp == NULL) { 14650 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), 14651 DL_UNBIND_REQ); 14652 if (unbind_mp == NULL) 14653 goto bad; 14654 } 14655 /* 14656 * Record state needed to complete this operation when the 14657 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14658 */ 14659 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14660 ASSERT(connp != NULL || !CONN_Q(q)); 14661 GRAB_CONN_LOCK(q); 14662 mutex_enter(&ipif->ipif_ill->ill_lock); 14663 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14664 mutex_exit(&ipif->ipif_ill->ill_lock); 14665 RELEASE_CONN_LOCK(q); 14666 if (!success) 14667 goto bad; 14668 14669 /* 14670 * Save the unbind message for ill_dl_down(); it will be consumed when 14671 * the interface goes down. 14672 */ 14673 if (ill->ill_unbind_mp == NULL) 14674 ill->ill_unbind_mp = unbind_mp; 14675 14676 ill_dlpi_send(ill, bind_mp); 14677 /* Send down link-layer capabilities probe if not already done. */ 14678 ill_capability_probe(ill); 14679 14680 /* 14681 * Sysid used to rely on the fact that netboots set domainname 14682 * and the like. Now that miniroot boots aren't strictly netboots 14683 * and miniroot network configuration is driven from userland 14684 * these things still need to be set. This situation can be detected 14685 * by comparing the interface being configured here to the one 14686 * dhcifname was set to reference by the boot loader. Once sysid is 14687 * converted to use dhcp_ipc_getinfo() this call can go away. 14688 */ 14689 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14690 (strcmp(ill->ill_name, dhcifname) == 0) && 14691 (strlen(srpc_domain) == 0)) { 14692 if (dhcpinit() != 0) 14693 cmn_err(CE_WARN, "no cached dhcp response"); 14694 } 14695 14696 /* 14697 * This operation will complete in ip_rput_dlpi with either 14698 * a DL_BIND_ACK or DL_ERROR_ACK. 14699 */ 14700 return (EINPROGRESS); 14701 bad: 14702 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14703 14704 freemsg(bind_mp); 14705 freemsg(unbind_mp); 14706 return (ENOMEM); 14707 } 14708 14709 /* Add room for tcp+ip headers */ 14710 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14711 14712 /* 14713 * DLPI and ARP is up. 14714 * Create all the IREs associated with an interface. Bring up multicast. 14715 * Set the interface flag and finish other initialization 14716 * that potentially had to be deferred to after DL_BIND_ACK. 14717 */ 14718 int 14719 ipif_up_done(ipif_t *ipif) 14720 { 14721 ill_t *ill = ipif->ipif_ill; 14722 int err = 0; 14723 boolean_t loopback = B_FALSE; 14724 boolean_t update_src_selection = B_TRUE; 14725 ipif_t *tmp_ipif; 14726 14727 ip1dbg(("ipif_up_done(%s:%u)\n", 14728 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14729 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14730 ill_t *, ill, ipif_t *, ipif); 14731 14732 /* Check if this is a loopback interface */ 14733 if (ipif->ipif_ill->ill_wq == NULL) 14734 loopback = B_TRUE; 14735 14736 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14737 14738 /* 14739 * If all other interfaces for this ill are down or DEPRECATED, 14740 * or otherwise unsuitable for source address selection, 14741 * reset the src generation numbers to make sure source 14742 * address selection gets to take this new ipif into account. 14743 * No need to hold ill_lock while traversing the ipif list since 14744 * we are writer 14745 */ 14746 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14747 tmp_ipif = tmp_ipif->ipif_next) { 14748 if (((tmp_ipif->ipif_flags & 14749 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14750 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14751 (tmp_ipif == ipif)) 14752 continue; 14753 /* first useable pre-existing interface */ 14754 update_src_selection = B_FALSE; 14755 break; 14756 } 14757 if (update_src_selection) 14758 ip_update_source_selection(ill->ill_ipst); 14759 14760 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14761 nce_t *loop_nce = NULL; 14762 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14763 14764 /* 14765 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14766 * ipif_lookup_on_name(), but in the case of zones we can have 14767 * several loopback addresses on lo0. So all the interfaces with 14768 * loopback addresses need to be marked IRE_LOOPBACK. 14769 */ 14770 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14771 htonl(INADDR_LOOPBACK)) 14772 ipif->ipif_ire_type = IRE_LOOPBACK; 14773 else 14774 ipif->ipif_ire_type = IRE_LOCAL; 14775 if (ill->ill_net_type != IRE_LOOPBACK) 14776 flags |= NCE_F_PUBLISH; 14777 14778 /* add unicast nce for the local addr */ 14779 err = nce_lookup_then_add_v4(ill, NULL, 14780 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14781 ND_REACHABLE, &loop_nce); 14782 /* A shared-IP zone sees EEXIST for lo0:N */ 14783 if (err == 0 || err == EEXIST) { 14784 ipif->ipif_added_nce = 1; 14785 loop_nce->nce_ipif_cnt++; 14786 nce_refrele(loop_nce); 14787 err = 0; 14788 } else { 14789 ASSERT(loop_nce == NULL); 14790 return (err); 14791 } 14792 } 14793 14794 /* Create all the IREs associated with this interface */ 14795 err = ipif_add_ires_v4(ipif, loopback); 14796 if (err != 0) { 14797 /* 14798 * see comments about return value from 14799 * ip_addr_availability_check() in ipif_add_ires_v4(). 14800 */ 14801 if (err != EADDRINUSE) { 14802 (void) ipif_arp_down(ipif); 14803 } else { 14804 /* 14805 * Make IPMP aware of the deleted ipif so that 14806 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14807 * can be completed. Note that we do not want to 14808 * destroy the nce that was created on the ipmp_ill 14809 * for the active copy of the duplicate address in 14810 * use. 14811 */ 14812 if (IS_IPMP(ill)) 14813 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14814 err = EADDRNOTAVAIL; 14815 } 14816 return (err); 14817 } 14818 14819 if (ill->ill_ipif_up_count == 1 && !loopback) { 14820 /* Recover any additional IREs entries for this ill */ 14821 (void) ill_recover_saved_ire(ill); 14822 } 14823 14824 if (ill->ill_need_recover_multicast) { 14825 /* 14826 * Need to recover all multicast memberships in the driver. 14827 * This had to be deferred until we had attached. The same 14828 * code exists in ipif_up_done_v6() to recover IPv6 14829 * memberships. 14830 * 14831 * Note that it would be preferable to unconditionally do the 14832 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14833 * that since ill_join_allmulti() depends on ill_dl_up being 14834 * set, and it is not set until we receive a DL_BIND_ACK after 14835 * having called ill_dl_up(). 14836 */ 14837 ill_recover_multicast(ill); 14838 } 14839 14840 if (ill->ill_ipif_up_count == 1) { 14841 /* 14842 * Since the interface is now up, it may now be active. 14843 */ 14844 if (IS_UNDER_IPMP(ill)) 14845 ipmp_ill_refresh_active(ill); 14846 14847 /* 14848 * If this is an IPMP interface, we may now be able to 14849 * establish ARP entries. 14850 */ 14851 if (IS_IPMP(ill)) 14852 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14853 } 14854 14855 /* Join the allhosts multicast address */ 14856 ipif_multicast_up(ipif); 14857 14858 if (!loopback && !update_src_selection && 14859 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14860 ip_update_source_selection(ill->ill_ipst); 14861 14862 if (!loopback && ipif->ipif_addr_ready) { 14863 /* Broadcast an address mask reply. */ 14864 ipif_mask_reply(ipif); 14865 } 14866 /* Perhaps ilgs should use this ill */ 14867 update_conn_ill(NULL, ill->ill_ipst); 14868 14869 /* 14870 * This had to be deferred until we had bound. Tell routing sockets and 14871 * others that this interface is up if it looks like the address has 14872 * been validated. Otherwise, if it isn't ready yet, wait for 14873 * duplicate address detection to do its thing. 14874 */ 14875 if (ipif->ipif_addr_ready) 14876 ipif_up_notify(ipif); 14877 return (0); 14878 } 14879 14880 /* 14881 * Add the IREs associated with the ipif. 14882 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14883 */ 14884 static int 14885 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14886 { 14887 ill_t *ill = ipif->ipif_ill; 14888 ip_stack_t *ipst = ill->ill_ipst; 14889 ire_t *ire_array[20]; 14890 ire_t **irep = ire_array; 14891 ire_t **irep1; 14892 ipaddr_t net_mask = 0; 14893 ipaddr_t subnet_mask, route_mask; 14894 int err; 14895 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14896 ire_t *ire_if = NULL; 14897 uchar_t *gw; 14898 14899 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14900 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14901 /* 14902 * If we're on a labeled system then make sure that zone- 14903 * private addresses have proper remote host database entries. 14904 */ 14905 if (is_system_labeled() && 14906 ipif->ipif_ire_type != IRE_LOOPBACK && 14907 !tsol_check_interface_address(ipif)) 14908 return (EINVAL); 14909 14910 /* Register the source address for __sin6_src_id */ 14911 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14912 ipif->ipif_zoneid, ipst); 14913 if (err != 0) { 14914 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14915 return (err); 14916 } 14917 14918 if (loopback) 14919 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14920 else 14921 gw = NULL; 14922 14923 /* If the interface address is set, create the local IRE. */ 14924 ire_local = ire_create( 14925 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14926 (uchar_t *)&ip_g_all_ones, /* mask */ 14927 gw, /* gateway */ 14928 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14929 ipif->ipif_ill, 14930 ipif->ipif_zoneid, 14931 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14932 RTF_PRIVATE : 0) | RTF_KERNEL, 14933 NULL, 14934 ipst); 14935 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14936 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14937 ipif->ipif_ire_type, 14938 ntohl(ipif->ipif_lcl_addr))); 14939 if (ire_local == NULL) { 14940 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14941 err = ENOMEM; 14942 goto bad; 14943 } 14944 } else { 14945 ip1dbg(( 14946 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14947 ipif->ipif_ire_type, 14948 ntohl(ipif->ipif_lcl_addr), 14949 (uint_t)ipif->ipif_flags)); 14950 } 14951 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14952 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14953 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14954 } else { 14955 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14956 } 14957 14958 subnet_mask = ipif->ipif_net_mask; 14959 14960 /* 14961 * If mask was not specified, use natural netmask of 14962 * interface address. Also, store this mask back into the 14963 * ipif struct. 14964 */ 14965 if (subnet_mask == 0) { 14966 subnet_mask = net_mask; 14967 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14968 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14969 ipif->ipif_v6subnet); 14970 } 14971 14972 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14973 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14974 ipif->ipif_subnet != INADDR_ANY) { 14975 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14976 14977 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14978 route_mask = IP_HOST_MASK; 14979 } else { 14980 route_mask = subnet_mask; 14981 } 14982 14983 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14984 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14985 (void *)ipif, (void *)ill, ill->ill_net_type, 14986 ntohl(ipif->ipif_subnet))); 14987 ire_if = ire_create( 14988 (uchar_t *)&ipif->ipif_subnet, 14989 (uchar_t *)&route_mask, 14990 (uchar_t *)&ipif->ipif_lcl_addr, 14991 ill->ill_net_type, 14992 ill, 14993 ipif->ipif_zoneid, 14994 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14995 RTF_PRIVATE: 0) | RTF_KERNEL, 14996 NULL, 14997 ipst); 14998 if (ire_if == NULL) { 14999 ip1dbg(("ipif_up_done: NULL ire_if\n")); 15000 err = ENOMEM; 15001 goto bad; 15002 } 15003 } 15004 15005 /* 15006 * Create any necessary broadcast IREs. 15007 */ 15008 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15009 !(ipif->ipif_flags & IPIF_NOXMIT)) 15010 irep = ipif_create_bcast_ires(ipif, irep); 15011 15012 /* If an earlier ire_create failed, get out now */ 15013 for (irep1 = irep; irep1 > ire_array; ) { 15014 irep1--; 15015 if (*irep1 == NULL) { 15016 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 15017 err = ENOMEM; 15018 goto bad; 15019 } 15020 } 15021 15022 /* 15023 * Need to atomically check for IP address availability under 15024 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 15025 * ills or new ipifs can be added while we are checking availability. 15026 */ 15027 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15028 mutex_enter(&ipst->ips_ip_addr_avail_lock); 15029 /* Mark it up, and increment counters. */ 15030 ipif->ipif_flags |= IPIF_UP; 15031 ill->ill_ipif_up_count++; 15032 err = ip_addr_availability_check(ipif); 15033 mutex_exit(&ipst->ips_ip_addr_avail_lock); 15034 rw_exit(&ipst->ips_ill_g_lock); 15035 15036 if (err != 0) { 15037 /* 15038 * Our address may already be up on the same ill. In this case, 15039 * the ARP entry for our ipif replaced the one for the other 15040 * ipif. So we don't want to delete it (otherwise the other ipif 15041 * would be unable to send packets). 15042 * ip_addr_availability_check() identifies this case for us and 15043 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 15044 * which is the expected error code. 15045 */ 15046 ill->ill_ipif_up_count--; 15047 ipif->ipif_flags &= ~IPIF_UP; 15048 goto bad; 15049 } 15050 15051 /* 15052 * Add in all newly created IREs. ire_create_bcast() has 15053 * already checked for duplicates of the IRE_BROADCAST type. 15054 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 15055 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 15056 * a /32 route. 15057 */ 15058 if (ire_if != NULL) { 15059 ire_if = ire_add(ire_if); 15060 if (ire_if == NULL) { 15061 err = ENOMEM; 15062 goto bad2; 15063 } 15064 #ifdef DEBUG 15065 ire_refhold_notr(ire_if); 15066 ire_refrele(ire_if); 15067 #endif 15068 } 15069 if (ire_local != NULL) { 15070 ire_local = ire_add(ire_local); 15071 if (ire_local == NULL) { 15072 err = ENOMEM; 15073 goto bad2; 15074 } 15075 #ifdef DEBUG 15076 ire_refhold_notr(ire_local); 15077 ire_refrele(ire_local); 15078 #endif 15079 } 15080 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15081 if (ire_local != NULL) 15082 ipif->ipif_ire_local = ire_local; 15083 if (ire_if != NULL) 15084 ipif->ipif_ire_if = ire_if; 15085 rw_exit(&ipst->ips_ill_g_lock); 15086 ire_local = NULL; 15087 ire_if = NULL; 15088 15089 /* 15090 * We first add all of them, and if that succeeds we refrele the 15091 * bunch. That enables us to delete all of them should any of the 15092 * ire_adds fail. 15093 */ 15094 for (irep1 = irep; irep1 > ire_array; ) { 15095 irep1--; 15096 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15097 *irep1 = ire_add(*irep1); 15098 if (*irep1 == NULL) { 15099 err = ENOMEM; 15100 goto bad2; 15101 } 15102 } 15103 15104 for (irep1 = irep; irep1 > ire_array; ) { 15105 irep1--; 15106 /* refheld by ire_add. */ 15107 if (*irep1 != NULL) { 15108 ire_refrele(*irep1); 15109 *irep1 = NULL; 15110 } 15111 } 15112 15113 if (!loopback) { 15114 /* 15115 * If the broadcast address has been set, make sure it makes 15116 * sense based on the interface address. 15117 * Only match on ill since we are sharing broadcast addresses. 15118 */ 15119 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15120 (ipif->ipif_flags & IPIF_BROADCAST)) { 15121 ire_t *ire; 15122 15123 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15124 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15125 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15126 15127 if (ire == NULL) { 15128 /* 15129 * If there isn't a matching broadcast IRE, 15130 * revert to the default for this netmask. 15131 */ 15132 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15133 mutex_enter(&ipif->ipif_ill->ill_lock); 15134 ipif_set_default(ipif); 15135 mutex_exit(&ipif->ipif_ill->ill_lock); 15136 } else { 15137 ire_refrele(ire); 15138 } 15139 } 15140 15141 } 15142 return (0); 15143 15144 bad2: 15145 ill->ill_ipif_up_count--; 15146 ipif->ipif_flags &= ~IPIF_UP; 15147 15148 bad: 15149 ip1dbg(("ipif_add_ires: FAILED \n")); 15150 if (ire_local != NULL) 15151 ire_delete(ire_local); 15152 if (ire_if != NULL) 15153 ire_delete(ire_if); 15154 15155 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15156 ire_local = ipif->ipif_ire_local; 15157 ipif->ipif_ire_local = NULL; 15158 ire_if = ipif->ipif_ire_if; 15159 ipif->ipif_ire_if = NULL; 15160 rw_exit(&ipst->ips_ill_g_lock); 15161 if (ire_local != NULL) { 15162 ire_delete(ire_local); 15163 ire_refrele_notr(ire_local); 15164 } 15165 if (ire_if != NULL) { 15166 ire_delete(ire_if); 15167 ire_refrele_notr(ire_if); 15168 } 15169 15170 while (irep > ire_array) { 15171 irep--; 15172 if (*irep != NULL) { 15173 ire_delete(*irep); 15174 } 15175 } 15176 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15177 15178 return (err); 15179 } 15180 15181 /* Remove all the IREs created by ipif_add_ires_v4 */ 15182 void 15183 ipif_delete_ires_v4(ipif_t *ipif) 15184 { 15185 ill_t *ill = ipif->ipif_ill; 15186 ip_stack_t *ipst = ill->ill_ipst; 15187 ire_t *ire; 15188 15189 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15190 ire = ipif->ipif_ire_local; 15191 ipif->ipif_ire_local = NULL; 15192 rw_exit(&ipst->ips_ill_g_lock); 15193 if (ire != NULL) { 15194 /* 15195 * Move count to ipif so we don't loose the count due to 15196 * a down/up dance. 15197 */ 15198 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15199 15200 ire_delete(ire); 15201 ire_refrele_notr(ire); 15202 } 15203 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15204 ire = ipif->ipif_ire_if; 15205 ipif->ipif_ire_if = NULL; 15206 rw_exit(&ipst->ips_ill_g_lock); 15207 if (ire != NULL) { 15208 ire_delete(ire); 15209 ire_refrele_notr(ire); 15210 } 15211 15212 /* 15213 * Delete the broadcast IREs. 15214 */ 15215 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15216 !(ipif->ipif_flags & IPIF_NOXMIT)) 15217 ipif_delete_bcast_ires(ipif); 15218 } 15219 15220 /* 15221 * Checks for availbility of a usable source address (if there is one) when the 15222 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15223 * this selection is done regardless of the destination. 15224 */ 15225 boolean_t 15226 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15227 ip_stack_t *ipst) 15228 { 15229 ipif_t *ipif = NULL; 15230 ill_t *uill; 15231 15232 ASSERT(ifindex != 0); 15233 15234 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15235 if (uill == NULL) 15236 return (B_FALSE); 15237 15238 mutex_enter(&uill->ill_lock); 15239 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15240 if (IPIF_IS_CONDEMNED(ipif)) 15241 continue; 15242 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15243 continue; 15244 if (!(ipif->ipif_flags & IPIF_UP)) 15245 continue; 15246 if (ipif->ipif_zoneid != zoneid) 15247 continue; 15248 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15249 ipif->ipif_lcl_addr == INADDR_ANY) 15250 continue; 15251 mutex_exit(&uill->ill_lock); 15252 ill_refrele(uill); 15253 return (B_TRUE); 15254 } 15255 mutex_exit(&uill->ill_lock); 15256 ill_refrele(uill); 15257 return (B_FALSE); 15258 } 15259 15260 /* 15261 * Find an ipif with a good local address on the ill+zoneid. 15262 */ 15263 ipif_t * 15264 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15265 { 15266 ipif_t *ipif; 15267 15268 mutex_enter(&ill->ill_lock); 15269 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15270 if (IPIF_IS_CONDEMNED(ipif)) 15271 continue; 15272 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15273 continue; 15274 if (!(ipif->ipif_flags & IPIF_UP)) 15275 continue; 15276 if (ipif->ipif_zoneid != zoneid && 15277 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15278 continue; 15279 if (ill->ill_isv6 ? 15280 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15281 ipif->ipif_lcl_addr == INADDR_ANY) 15282 continue; 15283 ipif_refhold_locked(ipif); 15284 mutex_exit(&ill->ill_lock); 15285 return (ipif); 15286 } 15287 mutex_exit(&ill->ill_lock); 15288 return (NULL); 15289 } 15290 15291 /* 15292 * IP source address type, sorted from worst to best. For a given type, 15293 * always prefer IP addresses on the same subnet. All-zones addresses are 15294 * suboptimal because they pose problems with unlabeled destinations. 15295 */ 15296 typedef enum { 15297 IPIF_NONE, 15298 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15299 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15300 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15301 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15302 IPIF_DIFFNET, /* normal and different subnet */ 15303 IPIF_SAMENET, /* normal and same subnet */ 15304 IPIF_LOCALADDR /* local loopback */ 15305 } ipif_type_t; 15306 15307 /* 15308 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15309 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15310 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15311 * the first one, unless IPMP is used in which case we round-robin among them; 15312 * see below for more. 15313 * 15314 * Returns NULL if there is no suitable source address for the ill. 15315 * This only occurs when there is no valid source address for the ill. 15316 */ 15317 ipif_t * 15318 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15319 boolean_t allow_usesrc, boolean_t *notreadyp) 15320 { 15321 ill_t *usill = NULL; 15322 ill_t *ipmp_ill = NULL; 15323 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15324 ipif_type_t type, best_type; 15325 tsol_tpc_t *src_rhtp, *dst_rhtp; 15326 ip_stack_t *ipst = ill->ill_ipst; 15327 boolean_t samenet; 15328 15329 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15330 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15331 B_FALSE, ipst); 15332 if (usill != NULL) 15333 ill = usill; /* Select source from usesrc ILL */ 15334 else 15335 return (NULL); 15336 } 15337 15338 /* 15339 * Test addresses should never be used for source address selection, 15340 * so if we were passed one, switch to the IPMP meta-interface. 15341 */ 15342 if (IS_UNDER_IPMP(ill)) { 15343 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15344 ill = ipmp_ill; /* Select source from IPMP ill */ 15345 else 15346 return (NULL); 15347 } 15348 15349 /* 15350 * If we're dealing with an unlabeled destination on a labeled system, 15351 * make sure that we ignore source addresses that are incompatible with 15352 * the destination's default label. That destination's default label 15353 * must dominate the minimum label on the source address. 15354 */ 15355 dst_rhtp = NULL; 15356 if (is_system_labeled()) { 15357 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15358 if (dst_rhtp == NULL) 15359 return (NULL); 15360 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15361 TPC_RELE(dst_rhtp); 15362 dst_rhtp = NULL; 15363 } 15364 } 15365 15366 /* 15367 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15368 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15369 * After selecting the right ipif, under ill_lock make sure ipif is 15370 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15371 * we retry. Inside the loop we still need to check for CONDEMNED, 15372 * but not under a lock. 15373 */ 15374 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15375 retry: 15376 /* 15377 * For source address selection, we treat the ipif list as circular 15378 * and continue until we get back to where we started. This allows 15379 * IPMP to vary source address selection (which improves inbound load 15380 * spreading) by caching its last ending point and starting from 15381 * there. NOTE: we don't have to worry about ill_src_ipif changing 15382 * ills since that can't happen on the IPMP ill. 15383 */ 15384 start_ipif = ill->ill_ipif; 15385 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15386 start_ipif = ill->ill_src_ipif; 15387 15388 ipif = start_ipif; 15389 best_ipif = NULL; 15390 best_type = IPIF_NONE; 15391 do { 15392 if ((next_ipif = ipif->ipif_next) == NULL) 15393 next_ipif = ill->ill_ipif; 15394 15395 if (IPIF_IS_CONDEMNED(ipif)) 15396 continue; 15397 /* Always skip NOLOCAL and ANYCAST interfaces */ 15398 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15399 continue; 15400 /* Always skip NOACCEPT interfaces */ 15401 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15402 continue; 15403 if (!(ipif->ipif_flags & IPIF_UP)) 15404 continue; 15405 15406 if (!ipif->ipif_addr_ready) { 15407 if (notreadyp != NULL) 15408 *notreadyp = B_TRUE; 15409 continue; 15410 } 15411 15412 if (zoneid != ALL_ZONES && 15413 ipif->ipif_zoneid != zoneid && 15414 ipif->ipif_zoneid != ALL_ZONES) 15415 continue; 15416 15417 /* 15418 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15419 * are not valid as source addresses. 15420 */ 15421 if (ipif->ipif_lcl_addr == INADDR_ANY) 15422 continue; 15423 15424 /* 15425 * Check compatibility of local address for destination's 15426 * default label if we're on a labeled system. Incompatible 15427 * addresses can't be used at all. 15428 */ 15429 if (dst_rhtp != NULL) { 15430 boolean_t incompat; 15431 15432 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15433 IPV4_VERSION, B_FALSE); 15434 if (src_rhtp == NULL) 15435 continue; 15436 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15437 src_rhtp->tpc_tp.tp_doi != 15438 dst_rhtp->tpc_tp.tp_doi || 15439 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15440 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15441 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15442 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15443 TPC_RELE(src_rhtp); 15444 if (incompat) 15445 continue; 15446 } 15447 15448 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15449 15450 if (ipif->ipif_lcl_addr == dst) { 15451 type = IPIF_LOCALADDR; 15452 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15453 type = samenet ? IPIF_SAMENET_DEPRECATED : 15454 IPIF_DIFFNET_DEPRECATED; 15455 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15456 type = samenet ? IPIF_SAMENET_ALLZONES : 15457 IPIF_DIFFNET_ALLZONES; 15458 } else { 15459 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15460 } 15461 15462 if (type > best_type) { 15463 best_type = type; 15464 best_ipif = ipif; 15465 if (best_type == IPIF_LOCALADDR) 15466 break; /* can't get better */ 15467 } 15468 } while ((ipif = next_ipif) != start_ipif); 15469 15470 if ((ipif = best_ipif) != NULL) { 15471 mutex_enter(&ipif->ipif_ill->ill_lock); 15472 if (IPIF_IS_CONDEMNED(ipif)) { 15473 mutex_exit(&ipif->ipif_ill->ill_lock); 15474 goto retry; 15475 } 15476 ipif_refhold_locked(ipif); 15477 15478 /* 15479 * For IPMP, update the source ipif rotor to the next ipif, 15480 * provided we can look it up. (We must not use it if it's 15481 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15482 * ipif_free() checked ill_src_ipif.) 15483 */ 15484 if (IS_IPMP(ill) && ipif != NULL) { 15485 next_ipif = ipif->ipif_next; 15486 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15487 ill->ill_src_ipif = next_ipif; 15488 else 15489 ill->ill_src_ipif = NULL; 15490 } 15491 mutex_exit(&ipif->ipif_ill->ill_lock); 15492 } 15493 15494 rw_exit(&ipst->ips_ill_g_lock); 15495 if (usill != NULL) 15496 ill_refrele(usill); 15497 if (ipmp_ill != NULL) 15498 ill_refrele(ipmp_ill); 15499 if (dst_rhtp != NULL) 15500 TPC_RELE(dst_rhtp); 15501 15502 #ifdef DEBUG 15503 if (ipif == NULL) { 15504 char buf1[INET6_ADDRSTRLEN]; 15505 15506 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15507 ill->ill_name, 15508 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15509 } else { 15510 char buf1[INET6_ADDRSTRLEN]; 15511 char buf2[INET6_ADDRSTRLEN]; 15512 15513 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15514 ipif->ipif_ill->ill_name, 15515 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15516 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15517 buf2, sizeof (buf2)))); 15518 } 15519 #endif /* DEBUG */ 15520 return (ipif); 15521 } 15522 15523 /* 15524 * Pick a source address based on the destination ill and an optional setsrc 15525 * address. 15526 * The result is stored in srcp. If generation is set, then put the source 15527 * generation number there before we look for the source address (to avoid 15528 * missing changes in the set of source addresses. 15529 * If flagsp is set, then us it to pass back ipif_flags. 15530 * 15531 * If the caller wants to cache the returned source address and detect when 15532 * that might be stale, the caller should pass in a generation argument, 15533 * which the caller can later compare against ips_src_generation 15534 * 15535 * The precedence order for selecting an IPv4 source address is: 15536 * - RTF_SETSRC on the offlink ire always wins. 15537 * - If usrsrc is set, swap the ill to be the usesrc one. 15538 * - If IPMP is used on the ill, select a random address from the most 15539 * preferred ones below: 15540 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15541 * 2. Not deprecated, not ALL_ZONES 15542 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15543 * 4. Not deprecated, ALL_ZONES 15544 * 5. If onlink destination, same subnet and deprecated 15545 * 6. Deprecated. 15546 * 15547 * We have lower preference for ALL_ZONES IP addresses, 15548 * as they pose problems with unlabeled destinations. 15549 * 15550 * Note that when multiple IP addresses match e.g., #1 we pick 15551 * the first one if IPMP is not in use. With IPMP we randomize. 15552 */ 15553 int 15554 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15555 ipaddr_t multicast_ifaddr, 15556 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15557 uint32_t *generation, uint64_t *flagsp) 15558 { 15559 ipif_t *ipif; 15560 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15561 15562 if (flagsp != NULL) 15563 *flagsp = 0; 15564 15565 /* 15566 * Need to grab the generation number before we check to 15567 * avoid a race with a change to the set of local addresses. 15568 * No lock needed since the thread which updates the set of local 15569 * addresses use ipif/ill locks and exit those (hence a store memory 15570 * barrier) before doing the atomic increase of ips_src_generation. 15571 */ 15572 if (generation != NULL) { 15573 *generation = ipst->ips_src_generation; 15574 } 15575 15576 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15577 *srcp = multicast_ifaddr; 15578 return (0); 15579 } 15580 15581 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15582 if (setsrc != INADDR_ANY) { 15583 *srcp = setsrc; 15584 return (0); 15585 } 15586 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15587 if (ipif == NULL) { 15588 if (notready) 15589 return (ENETDOWN); 15590 else 15591 return (EADDRNOTAVAIL); 15592 } 15593 *srcp = ipif->ipif_lcl_addr; 15594 if (flagsp != NULL) 15595 *flagsp = ipif->ipif_flags; 15596 ipif_refrele(ipif); 15597 return (0); 15598 } 15599 15600 /* ARGSUSED */ 15601 int 15602 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15603 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15604 { 15605 /* 15606 * ill_phyint_reinit merged the v4 and v6 into a single 15607 * ipsq. We might not have been able to complete the 15608 * operation in ipif_set_values, if we could not become 15609 * exclusive. If so restart it here. 15610 */ 15611 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15612 } 15613 15614 /* 15615 * Can operate on either a module or a driver queue. 15616 * Returns an error if not a module queue. 15617 */ 15618 /* ARGSUSED */ 15619 int 15620 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15621 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15622 { 15623 queue_t *q1 = q; 15624 char *cp; 15625 char interf_name[LIFNAMSIZ]; 15626 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15627 15628 if (q->q_next == NULL) { 15629 ip1dbg(( 15630 "if_unitsel: IF_UNITSEL: no q_next\n")); 15631 return (EINVAL); 15632 } 15633 15634 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15635 return (EALREADY); 15636 15637 do { 15638 q1 = q1->q_next; 15639 } while (q1->q_next); 15640 cp = q1->q_qinfo->qi_minfo->mi_idname; 15641 (void) sprintf(interf_name, "%s%d", cp, ppa); 15642 15643 /* 15644 * Here we are not going to delay the ioack until after 15645 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15646 * original ioctl message before sending the requests. 15647 */ 15648 return (ipif_set_values(q, mp, interf_name, &ppa)); 15649 } 15650 15651 /* ARGSUSED */ 15652 int 15653 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15654 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15655 { 15656 return (ENXIO); 15657 } 15658 15659 /* 15660 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15661 * `irep'. Returns a pointer to the next free `irep' entry 15662 * A mirror exists in ipif_delete_bcast_ires(). 15663 * 15664 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15665 * done in ire_add. 15666 */ 15667 static ire_t ** 15668 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15669 { 15670 ipaddr_t addr; 15671 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15672 ipaddr_t subnetmask = ipif->ipif_net_mask; 15673 ill_t *ill = ipif->ipif_ill; 15674 zoneid_t zoneid = ipif->ipif_zoneid; 15675 15676 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15677 15678 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15679 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15680 15681 if (ipif->ipif_lcl_addr == INADDR_ANY || 15682 (ipif->ipif_flags & IPIF_NOLOCAL)) 15683 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15684 15685 irep = ire_create_bcast(ill, 0, zoneid, irep); 15686 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15687 15688 /* 15689 * For backward compatibility, we create net broadcast IREs based on 15690 * the old "IP address class system", since some old machines only 15691 * respond to these class derived net broadcast. However, we must not 15692 * create these net broadcast IREs if the subnetmask is shorter than 15693 * the IP address class based derived netmask. Otherwise, we may 15694 * create a net broadcast address which is the same as an IP address 15695 * on the subnet -- and then TCP will refuse to talk to that address. 15696 */ 15697 if (netmask < subnetmask) { 15698 addr = netmask & ipif->ipif_subnet; 15699 irep = ire_create_bcast(ill, addr, zoneid, irep); 15700 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15701 } 15702 15703 /* 15704 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15705 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15706 * created. Creating these broadcast IREs will only create confusion 15707 * as `addr' will be the same as the IP address. 15708 */ 15709 if (subnetmask != 0xFFFFFFFF) { 15710 addr = ipif->ipif_subnet; 15711 irep = ire_create_bcast(ill, addr, zoneid, irep); 15712 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15713 } 15714 15715 return (irep); 15716 } 15717 15718 /* 15719 * Mirror of ipif_create_bcast_ires() 15720 */ 15721 static void 15722 ipif_delete_bcast_ires(ipif_t *ipif) 15723 { 15724 ipaddr_t addr; 15725 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15726 ipaddr_t subnetmask = ipif->ipif_net_mask; 15727 ill_t *ill = ipif->ipif_ill; 15728 zoneid_t zoneid = ipif->ipif_zoneid; 15729 ire_t *ire; 15730 15731 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15732 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15733 15734 if (ipif->ipif_lcl_addr == INADDR_ANY || 15735 (ipif->ipif_flags & IPIF_NOLOCAL)) 15736 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15737 15738 ire = ire_lookup_bcast(ill, 0, zoneid); 15739 ASSERT(ire != NULL); 15740 ire_delete(ire); ire_refrele(ire); 15741 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15742 ASSERT(ire != NULL); 15743 ire_delete(ire); ire_refrele(ire); 15744 15745 /* 15746 * For backward compatibility, we create net broadcast IREs based on 15747 * the old "IP address class system", since some old machines only 15748 * respond to these class derived net broadcast. However, we must not 15749 * create these net broadcast IREs if the subnetmask is shorter than 15750 * the IP address class based derived netmask. Otherwise, we may 15751 * create a net broadcast address which is the same as an IP address 15752 * on the subnet -- and then TCP will refuse to talk to that address. 15753 */ 15754 if (netmask < subnetmask) { 15755 addr = netmask & ipif->ipif_subnet; 15756 ire = ire_lookup_bcast(ill, addr, zoneid); 15757 ASSERT(ire != NULL); 15758 ire_delete(ire); ire_refrele(ire); 15759 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15760 ASSERT(ire != NULL); 15761 ire_delete(ire); ire_refrele(ire); 15762 } 15763 15764 /* 15765 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15766 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15767 * created. Creating these broadcast IREs will only create confusion 15768 * as `addr' will be the same as the IP address. 15769 */ 15770 if (subnetmask != 0xFFFFFFFF) { 15771 addr = ipif->ipif_subnet; 15772 ire = ire_lookup_bcast(ill, addr, zoneid); 15773 ASSERT(ire != NULL); 15774 ire_delete(ire); ire_refrele(ire); 15775 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15776 ASSERT(ire != NULL); 15777 ire_delete(ire); ire_refrele(ire); 15778 } 15779 } 15780 15781 /* 15782 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15783 * from lifr_flags and the name from lifr_name. 15784 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15785 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15786 * Returns EINPROGRESS when mp has been consumed by queueing it on 15787 * ipx_pending_mp and the ioctl will complete in ip_rput. 15788 * 15789 * Can operate on either a module or a driver queue. 15790 * Returns an error if not a module queue. 15791 */ 15792 /* ARGSUSED */ 15793 int 15794 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15795 ip_ioctl_cmd_t *ipip, void *if_req) 15796 { 15797 ill_t *ill = q->q_ptr; 15798 phyint_t *phyi; 15799 ip_stack_t *ipst; 15800 struct lifreq *lifr = if_req; 15801 uint64_t new_flags; 15802 15803 ASSERT(ipif != NULL); 15804 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15805 15806 if (q->q_next == NULL) { 15807 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15808 return (EINVAL); 15809 } 15810 15811 /* 15812 * If we are not writer on 'q' then this interface exists already 15813 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15814 * so return EALREADY. 15815 */ 15816 if (ill != ipif->ipif_ill) 15817 return (EALREADY); 15818 15819 if (ill->ill_name[0] != '\0') 15820 return (EALREADY); 15821 15822 /* 15823 * If there's another ill already with the requested name, ensure 15824 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15825 * fuse together two unrelated ills, which will cause chaos. 15826 */ 15827 ipst = ill->ill_ipst; 15828 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15829 lifr->lifr_name, NULL); 15830 if (phyi != NULL) { 15831 ill_t *ill_mate = phyi->phyint_illv4; 15832 15833 if (ill_mate == NULL) 15834 ill_mate = phyi->phyint_illv6; 15835 ASSERT(ill_mate != NULL); 15836 15837 if (ill_mate->ill_media->ip_m_mac_type != 15838 ill->ill_media->ip_m_mac_type) { 15839 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15840 "use the same ill name on differing media\n")); 15841 return (EINVAL); 15842 } 15843 } 15844 15845 /* 15846 * We start off as IFF_IPV4 in ipif_allocate and become 15847 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15848 * The only flags that we read from user space are IFF_IPV4, 15849 * IFF_IPV6, and IFF_BROADCAST. 15850 * 15851 * This ill has not been inserted into the global list. 15852 * So we are still single threaded and don't need any lock 15853 * 15854 * Saniy check the flags. 15855 */ 15856 15857 if ((lifr->lifr_flags & IFF_BROADCAST) && 15858 ((lifr->lifr_flags & IFF_IPV6) || 15859 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15860 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15861 "or IPv6 i.e., no broadcast \n")); 15862 return (EINVAL); 15863 } 15864 15865 new_flags = 15866 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15867 15868 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15869 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15870 "IFF_IPV4 or IFF_IPV6\n")); 15871 return (EINVAL); 15872 } 15873 15874 /* 15875 * We always start off as IPv4, so only need to check for IPv6. 15876 */ 15877 if ((new_flags & IFF_IPV6) != 0) { 15878 ill->ill_flags |= ILLF_IPV6; 15879 ill->ill_flags &= ~ILLF_IPV4; 15880 15881 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15882 ill->ill_flags |= ILLF_NOLINKLOCAL; 15883 } 15884 15885 if ((new_flags & IFF_BROADCAST) != 0) 15886 ipif->ipif_flags |= IPIF_BROADCAST; 15887 else 15888 ipif->ipif_flags &= ~IPIF_BROADCAST; 15889 15890 /* We started off as V4. */ 15891 if (ill->ill_flags & ILLF_IPV6) { 15892 ill->ill_phyint->phyint_illv6 = ill; 15893 ill->ill_phyint->phyint_illv4 = NULL; 15894 } 15895 15896 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15897 } 15898 15899 /* ARGSUSED */ 15900 int 15901 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15902 ip_ioctl_cmd_t *ipip, void *if_req) 15903 { 15904 /* 15905 * ill_phyint_reinit merged the v4 and v6 into a single 15906 * ipsq. We might not have been able to complete the 15907 * slifname in ipif_set_values, if we could not become 15908 * exclusive. If so restart it here 15909 */ 15910 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15911 } 15912 15913 /* 15914 * Return a pointer to the ipif which matches the index, IP version type and 15915 * zoneid. 15916 */ 15917 ipif_t * 15918 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15919 ip_stack_t *ipst) 15920 { 15921 ill_t *ill; 15922 ipif_t *ipif = NULL; 15923 15924 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15925 if (ill != NULL) { 15926 mutex_enter(&ill->ill_lock); 15927 for (ipif = ill->ill_ipif; ipif != NULL; 15928 ipif = ipif->ipif_next) { 15929 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15930 zoneid == ipif->ipif_zoneid || 15931 ipif->ipif_zoneid == ALL_ZONES)) { 15932 ipif_refhold_locked(ipif); 15933 break; 15934 } 15935 } 15936 mutex_exit(&ill->ill_lock); 15937 ill_refrele(ill); 15938 } 15939 return (ipif); 15940 } 15941 15942 /* 15943 * Change an existing physical interface's index. If the new index 15944 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15945 * Finally, we update other systems which may have a dependence on the 15946 * index value. 15947 */ 15948 /* ARGSUSED */ 15949 int 15950 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15951 ip_ioctl_cmd_t *ipip, void *ifreq) 15952 { 15953 ill_t *ill; 15954 phyint_t *phyi; 15955 struct ifreq *ifr = (struct ifreq *)ifreq; 15956 struct lifreq *lifr = (struct lifreq *)ifreq; 15957 uint_t old_index, index; 15958 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15959 avl_index_t where; 15960 15961 if (ipip->ipi_cmd_type == IF_CMD) 15962 index = ifr->ifr_index; 15963 else 15964 index = lifr->lifr_index; 15965 15966 /* 15967 * Only allow on physical interface. Also, index zero is illegal. 15968 */ 15969 ill = ipif->ipif_ill; 15970 phyi = ill->ill_phyint; 15971 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) { 15972 return (EINVAL); 15973 } 15974 15975 /* If the index is not changing, no work to do */ 15976 if (phyi->phyint_ifindex == index) 15977 return (0); 15978 15979 /* 15980 * Use phyint_exists() to determine if the new interface index 15981 * is already in use. If the index is unused then we need to 15982 * change the phyint's position in the phyint_list_avl_by_index 15983 * tree. If we do not do this, subsequent lookups (using the new 15984 * index value) will not find the phyint. 15985 */ 15986 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15987 if (phyint_exists(index, ipst)) { 15988 rw_exit(&ipst->ips_ill_g_lock); 15989 return (EEXIST); 15990 } 15991 15992 /* 15993 * The new index is unused. Set it in the phyint. However we must not 15994 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15995 * changes. The event must be bound to old ifindex value. 15996 */ 15997 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15998 &index, sizeof (index)); 15999 16000 old_index = phyi->phyint_ifindex; 16001 phyi->phyint_ifindex = index; 16002 16003 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 16004 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16005 &index, &where); 16006 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16007 phyi, where); 16008 rw_exit(&ipst->ips_ill_g_lock); 16009 16010 /* Update SCTP's ILL list */ 16011 sctp_ill_reindex(ill, old_index); 16012 16013 /* Send the routing sockets message */ 16014 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 16015 if (ILL_OTHER(ill)) 16016 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 16017 16018 /* Perhaps ilgs should use this ill */ 16019 update_conn_ill(NULL, ill->ill_ipst); 16020 return (0); 16021 } 16022 16023 /* ARGSUSED */ 16024 int 16025 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16026 ip_ioctl_cmd_t *ipip, void *ifreq) 16027 { 16028 struct ifreq *ifr = (struct ifreq *)ifreq; 16029 struct lifreq *lifr = (struct lifreq *)ifreq; 16030 16031 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 16032 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16033 /* Get the interface index */ 16034 if (ipip->ipi_cmd_type == IF_CMD) { 16035 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16036 } else { 16037 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16038 } 16039 return (0); 16040 } 16041 16042 /* ARGSUSED */ 16043 int 16044 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16045 ip_ioctl_cmd_t *ipip, void *ifreq) 16046 { 16047 struct lifreq *lifr = (struct lifreq *)ifreq; 16048 16049 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 16050 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16051 /* Get the interface zone */ 16052 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16053 lifr->lifr_zoneid = ipif->ipif_zoneid; 16054 return (0); 16055 } 16056 16057 /* 16058 * Set the zoneid of an interface. 16059 */ 16060 /* ARGSUSED */ 16061 int 16062 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16063 ip_ioctl_cmd_t *ipip, void *ifreq) 16064 { 16065 struct lifreq *lifr = (struct lifreq *)ifreq; 16066 int err = 0; 16067 boolean_t need_up = B_FALSE; 16068 zone_t *zptr; 16069 zone_status_t status; 16070 zoneid_t zoneid; 16071 16072 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16073 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16074 if (!is_system_labeled()) 16075 return (ENOTSUP); 16076 zoneid = GLOBAL_ZONEID; 16077 } 16078 16079 /* cannot assign instance zero to a non-global zone */ 16080 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16081 return (ENOTSUP); 16082 16083 /* 16084 * Cannot assign to a zone that doesn't exist or is shutting down. In 16085 * the event of a race with the zone shutdown processing, since IP 16086 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16087 * interface will be cleaned up even if the zone is shut down 16088 * immediately after the status check. If the interface can't be brought 16089 * down right away, and the zone is shut down before the restart 16090 * function is called, we resolve the possible races by rechecking the 16091 * zone status in the restart function. 16092 */ 16093 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16094 return (EINVAL); 16095 status = zone_status_get(zptr); 16096 zone_rele(zptr); 16097 16098 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16099 return (EINVAL); 16100 16101 if (ipif->ipif_flags & IPIF_UP) { 16102 /* 16103 * If the interface is already marked up, 16104 * we call ipif_down which will take care 16105 * of ditching any IREs that have been set 16106 * up based on the old interface address. 16107 */ 16108 err = ipif_logical_down(ipif, q, mp); 16109 if (err == EINPROGRESS) 16110 return (err); 16111 (void) ipif_down_tail(ipif); 16112 need_up = B_TRUE; 16113 } 16114 16115 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16116 return (err); 16117 } 16118 16119 static int 16120 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16121 queue_t *q, mblk_t *mp, boolean_t need_up) 16122 { 16123 int err = 0; 16124 ip_stack_t *ipst; 16125 16126 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16127 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16128 16129 if (CONN_Q(q)) 16130 ipst = CONNQ_TO_IPST(q); 16131 else 16132 ipst = ILLQ_TO_IPST(q); 16133 16134 /* 16135 * For exclusive stacks we don't allow a different zoneid than 16136 * global. 16137 */ 16138 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16139 zoneid != GLOBAL_ZONEID) 16140 return (EINVAL); 16141 16142 /* Set the new zone id. */ 16143 ipif->ipif_zoneid = zoneid; 16144 16145 /* Update sctp list */ 16146 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16147 16148 /* The default multicast interface might have changed */ 16149 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16150 16151 if (need_up) { 16152 /* 16153 * Now bring the interface back up. If this 16154 * is the only IPIF for the ILL, ipif_up 16155 * will have to re-bind to the device, so 16156 * we may get back EINPROGRESS, in which 16157 * case, this IOCTL will get completed in 16158 * ip_rput_dlpi when we see the DL_BIND_ACK. 16159 */ 16160 err = ipif_up(ipif, q, mp); 16161 } 16162 return (err); 16163 } 16164 16165 /* ARGSUSED */ 16166 int 16167 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16168 ip_ioctl_cmd_t *ipip, void *if_req) 16169 { 16170 struct lifreq *lifr = (struct lifreq *)if_req; 16171 zoneid_t zoneid; 16172 zone_t *zptr; 16173 zone_status_t status; 16174 16175 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16176 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16177 zoneid = GLOBAL_ZONEID; 16178 16179 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16180 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16181 16182 /* 16183 * We recheck the zone status to resolve the following race condition: 16184 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16185 * 2) hme0:1 is up and can't be brought down right away; 16186 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16187 * 3) zone "myzone" is halted; the zone status switches to 16188 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16189 * the interfaces to remove - hme0:1 is not returned because it's not 16190 * yet in "myzone", so it won't be removed; 16191 * 4) the restart function for SIOCSLIFZONE is called; without the 16192 * status check here, we would have hme0:1 in "myzone" after it's been 16193 * destroyed. 16194 * Note that if the status check fails, we need to bring the interface 16195 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16196 * ipif_up_done[_v6](). 16197 */ 16198 status = ZONE_IS_UNINITIALIZED; 16199 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16200 status = zone_status_get(zptr); 16201 zone_rele(zptr); 16202 } 16203 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16204 if (ipif->ipif_isv6) { 16205 (void) ipif_up_done_v6(ipif); 16206 } else { 16207 (void) ipif_up_done(ipif); 16208 } 16209 return (EINVAL); 16210 } 16211 16212 (void) ipif_down_tail(ipif); 16213 16214 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16215 B_TRUE)); 16216 } 16217 16218 /* 16219 * Return the number of addresses on `ill' with one or more of the values 16220 * in `set' set and all of the values in `clear' clear. 16221 */ 16222 static uint_t 16223 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16224 { 16225 ipif_t *ipif; 16226 uint_t cnt = 0; 16227 16228 ASSERT(IAM_WRITER_ILL(ill)); 16229 16230 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16231 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16232 cnt++; 16233 16234 return (cnt); 16235 } 16236 16237 /* 16238 * Return the number of migratable addresses on `ill' that are under 16239 * application control. 16240 */ 16241 uint_t 16242 ill_appaddr_cnt(const ill_t *ill) 16243 { 16244 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16245 IPIF_NOFAILOVER)); 16246 } 16247 16248 /* 16249 * Return the number of point-to-point addresses on `ill'. 16250 */ 16251 uint_t 16252 ill_ptpaddr_cnt(const ill_t *ill) 16253 { 16254 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16255 } 16256 16257 /* ARGSUSED */ 16258 int 16259 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16260 ip_ioctl_cmd_t *ipip, void *ifreq) 16261 { 16262 struct lifreq *lifr = ifreq; 16263 16264 ASSERT(q->q_next == NULL); 16265 ASSERT(CONN_Q(q)); 16266 16267 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16268 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16269 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16270 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16271 16272 return (0); 16273 } 16274 16275 /* Find the previous ILL in this usesrc group */ 16276 static ill_t * 16277 ill_prev_usesrc(ill_t *uill) 16278 { 16279 ill_t *ill; 16280 16281 for (ill = uill->ill_usesrc_grp_next; 16282 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16283 ill = ill->ill_usesrc_grp_next) 16284 /* do nothing */; 16285 return (ill); 16286 } 16287 16288 /* 16289 * Release all members of the usesrc group. This routine is called 16290 * from ill_delete when the interface being unplumbed is the 16291 * group head. 16292 * 16293 * This silently clears the usesrc that ifconfig setup. 16294 * An alternative would be to keep that ifindex, and drop packets on the floor 16295 * since no source address can be selected. 16296 * Even if we keep the current semantics, don't need a lock and a linked list. 16297 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16298 * the one that is being removed. Issue is how we return the usesrc users 16299 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16300 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16301 * ill walk, but the walker would need to insert in the ioctl response. 16302 */ 16303 static void 16304 ill_disband_usesrc_group(ill_t *uill) 16305 { 16306 ill_t *next_ill, *tmp_ill; 16307 ip_stack_t *ipst = uill->ill_ipst; 16308 16309 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16310 next_ill = uill->ill_usesrc_grp_next; 16311 16312 do { 16313 ASSERT(next_ill != NULL); 16314 tmp_ill = next_ill->ill_usesrc_grp_next; 16315 ASSERT(tmp_ill != NULL); 16316 next_ill->ill_usesrc_grp_next = NULL; 16317 next_ill->ill_usesrc_ifindex = 0; 16318 next_ill = tmp_ill; 16319 } while (next_ill->ill_usesrc_ifindex != 0); 16320 uill->ill_usesrc_grp_next = NULL; 16321 } 16322 16323 /* 16324 * Remove the client usesrc ILL from the list and relink to a new list 16325 */ 16326 int 16327 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16328 { 16329 ill_t *ill, *tmp_ill; 16330 ip_stack_t *ipst = ucill->ill_ipst; 16331 16332 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16333 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16334 16335 /* 16336 * Check if the usesrc client ILL passed in is not already 16337 * in use as a usesrc ILL i.e one whose source address is 16338 * in use OR a usesrc ILL is not already in use as a usesrc 16339 * client ILL 16340 */ 16341 if ((ucill->ill_usesrc_ifindex == 0) || 16342 (uill->ill_usesrc_ifindex != 0)) { 16343 return (-1); 16344 } 16345 16346 ill = ill_prev_usesrc(ucill); 16347 ASSERT(ill->ill_usesrc_grp_next != NULL); 16348 16349 /* Remove from the current list */ 16350 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16351 /* Only two elements in the list */ 16352 ASSERT(ill->ill_usesrc_ifindex == 0); 16353 ill->ill_usesrc_grp_next = NULL; 16354 } else { 16355 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16356 } 16357 16358 if (ifindex == 0) { 16359 ucill->ill_usesrc_ifindex = 0; 16360 ucill->ill_usesrc_grp_next = NULL; 16361 return (0); 16362 } 16363 16364 ucill->ill_usesrc_ifindex = ifindex; 16365 tmp_ill = uill->ill_usesrc_grp_next; 16366 uill->ill_usesrc_grp_next = ucill; 16367 ucill->ill_usesrc_grp_next = 16368 (tmp_ill != NULL) ? tmp_ill : uill; 16369 return (0); 16370 } 16371 16372 /* 16373 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16374 * ip.c for locking details. 16375 */ 16376 /* ARGSUSED */ 16377 int 16378 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16379 ip_ioctl_cmd_t *ipip, void *ifreq) 16380 { 16381 struct lifreq *lifr = (struct lifreq *)ifreq; 16382 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16383 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16384 int err = 0, ret; 16385 uint_t ifindex; 16386 ipsq_t *ipsq = NULL; 16387 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16388 16389 ASSERT(IAM_WRITER_IPIF(ipif)); 16390 ASSERT(q->q_next == NULL); 16391 ASSERT(CONN_Q(q)); 16392 16393 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16394 16395 ifindex = lifr->lifr_index; 16396 if (ifindex == 0) { 16397 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16398 /* non usesrc group interface, nothing to reset */ 16399 return (0); 16400 } 16401 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16402 /* valid reset request */ 16403 reset_flg = B_TRUE; 16404 } 16405 16406 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16407 if (usesrc_ill == NULL) 16408 return (ENXIO); 16409 if (usesrc_ill == ipif->ipif_ill) { 16410 ill_refrele(usesrc_ill); 16411 return (EINVAL); 16412 } 16413 16414 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16415 NEW_OP, B_TRUE); 16416 if (ipsq == NULL) { 16417 err = EINPROGRESS; 16418 /* Operation enqueued on the ipsq of the usesrc ILL */ 16419 goto done; 16420 } 16421 16422 /* USESRC isn't currently supported with IPMP */ 16423 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16424 err = ENOTSUP; 16425 goto done; 16426 } 16427 16428 /* 16429 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16430 * used by IPMP underlying interfaces, but someone might think it's 16431 * more general and try to use it independently with VNI.) 16432 */ 16433 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16434 err = ENOTSUP; 16435 goto done; 16436 } 16437 16438 /* 16439 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16440 * already a client then return EINVAL 16441 */ 16442 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16443 err = EINVAL; 16444 goto done; 16445 } 16446 16447 /* 16448 * If the ill_usesrc_ifindex field is already set to what it needs to 16449 * be then this is a duplicate operation. 16450 */ 16451 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16452 err = 0; 16453 goto done; 16454 } 16455 16456 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16457 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16458 usesrc_ill->ill_isv6)); 16459 16460 /* 16461 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16462 * and the ill_usesrc_ifindex fields 16463 */ 16464 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16465 16466 if (reset_flg) { 16467 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16468 if (ret != 0) { 16469 err = EINVAL; 16470 } 16471 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16472 goto done; 16473 } 16474 16475 /* 16476 * Four possibilities to consider: 16477 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16478 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16479 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16480 * 4. Both are part of their respective usesrc groups 16481 */ 16482 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16483 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16484 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16485 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16486 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16487 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16488 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16489 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16490 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16491 /* Insert at head of list */ 16492 usesrc_cli_ill->ill_usesrc_grp_next = 16493 usesrc_ill->ill_usesrc_grp_next; 16494 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16495 } else { 16496 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16497 ifindex); 16498 if (ret != 0) 16499 err = EINVAL; 16500 } 16501 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16502 16503 done: 16504 if (ipsq != NULL) 16505 ipsq_exit(ipsq); 16506 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16507 ill_refrele(usesrc_ill); 16508 16509 /* Let conn_ixa caching know that source address selection changed */ 16510 ip_update_source_selection(ipst); 16511 16512 return (err); 16513 } 16514 16515 /* ARGSUSED */ 16516 int 16517 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16518 ip_ioctl_cmd_t *ipip, void *if_req) 16519 { 16520 struct lifreq *lifr = (struct lifreq *)if_req; 16521 ill_t *ill = ipif->ipif_ill; 16522 16523 /* 16524 * Need a lock since IFF_UP can be set even when there are 16525 * references to the ipif. 16526 */ 16527 mutex_enter(&ill->ill_lock); 16528 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16529 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16530 else 16531 lifr->lifr_dadstate = DAD_DONE; 16532 mutex_exit(&ill->ill_lock); 16533 return (0); 16534 } 16535 16536 /* 16537 * comparison function used by avl. 16538 */ 16539 static int 16540 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16541 { 16542 16543 uint_t index; 16544 16545 ASSERT(phyip != NULL && index_ptr != NULL); 16546 16547 index = *((uint_t *)index_ptr); 16548 /* 16549 * let the phyint with the lowest index be on top. 16550 */ 16551 if (((phyint_t *)phyip)->phyint_ifindex < index) 16552 return (1); 16553 if (((phyint_t *)phyip)->phyint_ifindex > index) 16554 return (-1); 16555 return (0); 16556 } 16557 16558 /* 16559 * comparison function used by avl. 16560 */ 16561 static int 16562 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16563 { 16564 ill_t *ill; 16565 int res = 0; 16566 16567 ASSERT(phyip != NULL && name_ptr != NULL); 16568 16569 if (((phyint_t *)phyip)->phyint_illv4) 16570 ill = ((phyint_t *)phyip)->phyint_illv4; 16571 else 16572 ill = ((phyint_t *)phyip)->phyint_illv6; 16573 ASSERT(ill != NULL); 16574 16575 res = strcmp(ill->ill_name, (char *)name_ptr); 16576 if (res > 0) 16577 return (1); 16578 else if (res < 0) 16579 return (-1); 16580 return (0); 16581 } 16582 16583 /* 16584 * This function is called on the unplumb path via ill_glist_delete() when 16585 * there are no ills left on the phyint and thus the phyint can be freed. 16586 */ 16587 static void 16588 phyint_free(phyint_t *phyi) 16589 { 16590 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16591 16592 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16593 16594 /* 16595 * If this phyint was an IPMP meta-interface, blow away the group. 16596 * This is safe to do because all of the illgrps have already been 16597 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16598 * If we're cleaning up as a result of failed initialization, 16599 * phyint_grp may be NULL. 16600 */ 16601 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16602 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16603 ipmp_grp_destroy(phyi->phyint_grp); 16604 phyi->phyint_grp = NULL; 16605 rw_exit(&ipst->ips_ipmp_lock); 16606 } 16607 16608 /* 16609 * If this interface was under IPMP, take it out of the group. 16610 */ 16611 if (phyi->phyint_grp != NULL) 16612 ipmp_phyint_leave_grp(phyi); 16613 16614 /* 16615 * Delete the phyint and disassociate its ipsq. The ipsq itself 16616 * will be freed in ipsq_exit(). 16617 */ 16618 phyi->phyint_ipsq->ipsq_phyint = NULL; 16619 phyi->phyint_name[0] = '\0'; 16620 16621 mi_free(phyi); 16622 } 16623 16624 /* 16625 * Attach the ill to the phyint structure which can be shared by both 16626 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16627 * function is called from ipif_set_values and ill_lookup_on_name (for 16628 * loopback) where we know the name of the ill. We lookup the ill and if 16629 * there is one present already with the name use that phyint. Otherwise 16630 * reuse the one allocated by ill_init. 16631 */ 16632 static void 16633 ill_phyint_reinit(ill_t *ill) 16634 { 16635 boolean_t isv6 = ill->ill_isv6; 16636 phyint_t *phyi_old; 16637 phyint_t *phyi; 16638 avl_index_t where = 0; 16639 ill_t *ill_other = NULL; 16640 ip_stack_t *ipst = ill->ill_ipst; 16641 16642 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16643 16644 phyi_old = ill->ill_phyint; 16645 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16646 phyi_old->phyint_illv6 == NULL)); 16647 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16648 phyi_old->phyint_illv4 == NULL)); 16649 ASSERT(phyi_old->phyint_ifindex == 0); 16650 16651 /* 16652 * Now that our ill has a name, set it in the phyint. 16653 */ 16654 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16655 16656 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16657 ill->ill_name, &where); 16658 16659 /* 16660 * 1. We grabbed the ill_g_lock before inserting this ill into 16661 * the global list of ills. So no other thread could have located 16662 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16663 * 2. Now locate the other protocol instance of this ill. 16664 * 3. Now grab both ill locks in the right order, and the phyint lock of 16665 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16666 * of neither ill can change. 16667 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16668 * other ill. 16669 * 5. Release all locks. 16670 */ 16671 16672 /* 16673 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16674 * we are initializing IPv4. 16675 */ 16676 if (phyi != NULL) { 16677 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16678 ASSERT(ill_other->ill_phyint != NULL); 16679 ASSERT((isv6 && !ill_other->ill_isv6) || 16680 (!isv6 && ill_other->ill_isv6)); 16681 GRAB_ILL_LOCKS(ill, ill_other); 16682 /* 16683 * We are potentially throwing away phyint_flags which 16684 * could be different from the one that we obtain from 16685 * ill_other->ill_phyint. But it is okay as we are assuming 16686 * that the state maintained within IP is correct. 16687 */ 16688 mutex_enter(&phyi->phyint_lock); 16689 if (isv6) { 16690 ASSERT(phyi->phyint_illv6 == NULL); 16691 phyi->phyint_illv6 = ill; 16692 } else { 16693 ASSERT(phyi->phyint_illv4 == NULL); 16694 phyi->phyint_illv4 = ill; 16695 } 16696 16697 /* 16698 * Delete the old phyint and make its ipsq eligible 16699 * to be freed in ipsq_exit(). 16700 */ 16701 phyi_old->phyint_illv4 = NULL; 16702 phyi_old->phyint_illv6 = NULL; 16703 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16704 phyi_old->phyint_name[0] = '\0'; 16705 mi_free(phyi_old); 16706 } else { 16707 mutex_enter(&ill->ill_lock); 16708 /* 16709 * We don't need to acquire any lock, since 16710 * the ill is not yet visible globally and we 16711 * have not yet released the ill_g_lock. 16712 */ 16713 phyi = phyi_old; 16714 mutex_enter(&phyi->phyint_lock); 16715 /* XXX We need a recovery strategy here. */ 16716 if (!phyint_assign_ifindex(phyi, ipst)) 16717 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16718 16719 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16720 (void *)phyi, where); 16721 16722 (void) avl_find(&ipst->ips_phyint_g_list-> 16723 phyint_list_avl_by_index, 16724 &phyi->phyint_ifindex, &where); 16725 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16726 (void *)phyi, where); 16727 } 16728 16729 /* 16730 * Reassigning ill_phyint automatically reassigns the ipsq also. 16731 * pending mp is not affected because that is per ill basis. 16732 */ 16733 ill->ill_phyint = phyi; 16734 16735 /* 16736 * Now that the phyint's ifindex has been assigned, complete the 16737 * remaining 16738 */ 16739 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16740 if (ill->ill_isv6) { 16741 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16742 ill->ill_phyint->phyint_ifindex; 16743 ill->ill_mcast_type = ipst->ips_mld_max_version; 16744 } else { 16745 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16746 } 16747 16748 /* 16749 * Generate an event within the hooks framework to indicate that 16750 * a new interface has just been added to IP. For this event to 16751 * be generated, the network interface must, at least, have an 16752 * ifindex assigned to it. (We don't generate the event for 16753 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16754 * 16755 * This needs to be run inside the ill_g_lock perimeter to ensure 16756 * that the ordering of delivered events to listeners matches the 16757 * order of them in the kernel. 16758 */ 16759 if (!IS_LOOPBACK(ill)) { 16760 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16761 ill->ill_name_length); 16762 } 16763 RELEASE_ILL_LOCKS(ill, ill_other); 16764 mutex_exit(&phyi->phyint_lock); 16765 } 16766 16767 /* 16768 * Notify any downstream modules of the name of this interface. 16769 * An M_IOCTL is used even though we don't expect a successful reply. 16770 * Any reply message from the driver (presumably an M_IOCNAK) will 16771 * eventually get discarded somewhere upstream. The message format is 16772 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16773 * to IP. 16774 */ 16775 static void 16776 ip_ifname_notify(ill_t *ill, queue_t *q) 16777 { 16778 mblk_t *mp1, *mp2; 16779 struct iocblk *iocp; 16780 struct lifreq *lifr; 16781 16782 mp1 = mkiocb(SIOCSLIFNAME); 16783 if (mp1 == NULL) 16784 return; 16785 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16786 if (mp2 == NULL) { 16787 freeb(mp1); 16788 return; 16789 } 16790 16791 mp1->b_cont = mp2; 16792 iocp = (struct iocblk *)mp1->b_rptr; 16793 iocp->ioc_count = sizeof (struct lifreq); 16794 16795 lifr = (struct lifreq *)mp2->b_rptr; 16796 mp2->b_wptr += sizeof (struct lifreq); 16797 bzero(lifr, sizeof (struct lifreq)); 16798 16799 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16800 lifr->lifr_ppa = ill->ill_ppa; 16801 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16802 16803 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16804 char *, "SIOCSLIFNAME", ill_t *, ill); 16805 putnext(q, mp1); 16806 } 16807 16808 static int 16809 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16810 { 16811 int err; 16812 ip_stack_t *ipst = ill->ill_ipst; 16813 phyint_t *phyi = ill->ill_phyint; 16814 16815 /* 16816 * Now that ill_name is set, the configuration for the IPMP 16817 * meta-interface can be performed. 16818 */ 16819 if (IS_IPMP(ill)) { 16820 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16821 /* 16822 * If phyi->phyint_grp is NULL, then this is the first IPMP 16823 * meta-interface and we need to create the IPMP group. 16824 */ 16825 if (phyi->phyint_grp == NULL) { 16826 /* 16827 * If someone has renamed another IPMP group to have 16828 * the same name as our interface, bail. 16829 */ 16830 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16831 rw_exit(&ipst->ips_ipmp_lock); 16832 return (EEXIST); 16833 } 16834 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16835 if (phyi->phyint_grp == NULL) { 16836 rw_exit(&ipst->ips_ipmp_lock); 16837 return (ENOMEM); 16838 } 16839 } 16840 rw_exit(&ipst->ips_ipmp_lock); 16841 } 16842 16843 /* Tell downstream modules where they are. */ 16844 ip_ifname_notify(ill, q); 16845 16846 /* 16847 * ill_dl_phys returns EINPROGRESS in the usual case. 16848 * Error cases are ENOMEM ... 16849 */ 16850 err = ill_dl_phys(ill, ipif, mp, q); 16851 16852 if (ill->ill_isv6) { 16853 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16854 if (ipst->ips_mld_slowtimeout_id == 0) { 16855 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16856 (void *)ipst, 16857 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16858 } 16859 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16860 } else { 16861 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16862 if (ipst->ips_igmp_slowtimeout_id == 0) { 16863 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16864 (void *)ipst, 16865 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16866 } 16867 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16868 } 16869 16870 return (err); 16871 } 16872 16873 /* 16874 * Common routine for ppa and ifname setting. Should be called exclusive. 16875 * 16876 * Returns EINPROGRESS when mp has been consumed by queueing it on 16877 * ipx_pending_mp and the ioctl will complete in ip_rput. 16878 * 16879 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16880 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16881 * For SLIFNAME, we pass these values back to the userland. 16882 */ 16883 static int 16884 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16885 { 16886 ill_t *ill; 16887 ipif_t *ipif; 16888 ipsq_t *ipsq; 16889 char *ppa_ptr; 16890 char *old_ptr; 16891 char old_char; 16892 int error; 16893 ip_stack_t *ipst; 16894 16895 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16896 ASSERT(q->q_next != NULL); 16897 ASSERT(interf_name != NULL); 16898 16899 ill = (ill_t *)q->q_ptr; 16900 ipst = ill->ill_ipst; 16901 16902 ASSERT(ill->ill_ipst != NULL); 16903 ASSERT(ill->ill_name[0] == '\0'); 16904 ASSERT(IAM_WRITER_ILL(ill)); 16905 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16906 ASSERT(ill->ill_ppa == UINT_MAX); 16907 16908 ill->ill_defend_start = ill->ill_defend_count = 0; 16909 /* The ppa is sent down by ifconfig or is chosen */ 16910 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16911 return (EINVAL); 16912 } 16913 16914 /* 16915 * make sure ppa passed in is same as ppa in the name. 16916 * This check is not made when ppa == UINT_MAX in that case ppa 16917 * in the name could be anything. System will choose a ppa and 16918 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16919 */ 16920 if (*new_ppa_ptr != UINT_MAX) { 16921 /* stoi changes the pointer */ 16922 old_ptr = ppa_ptr; 16923 /* 16924 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16925 * (they don't have an externally visible ppa). We assign one 16926 * here so that we can manage the interface. Note that in 16927 * the past this value was always 0 for DLPI 1 drivers. 16928 */ 16929 if (*new_ppa_ptr == 0) 16930 *new_ppa_ptr = stoi(&old_ptr); 16931 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16932 return (EINVAL); 16933 } 16934 /* 16935 * terminate string before ppa 16936 * save char at that location. 16937 */ 16938 old_char = ppa_ptr[0]; 16939 ppa_ptr[0] = '\0'; 16940 16941 ill->ill_ppa = *new_ppa_ptr; 16942 /* 16943 * Finish as much work now as possible before calling ill_glist_insert 16944 * which makes the ill globally visible and also merges it with the 16945 * other protocol instance of this phyint. The remaining work is 16946 * done after entering the ipsq which may happen sometime later. 16947 */ 16948 ipif = ill->ill_ipif; 16949 16950 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16951 ipif_assign_seqid(ipif); 16952 16953 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16954 ill->ill_flags |= ILLF_IPV4; 16955 16956 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16957 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16958 16959 if (ill->ill_flags & ILLF_IPV6) { 16960 16961 ill->ill_isv6 = B_TRUE; 16962 ill_set_inputfn(ill); 16963 if (ill->ill_rq != NULL) { 16964 ill->ill_rq->q_qinfo = &iprinitv6; 16965 } 16966 16967 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16968 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16969 ipif->ipif_v6subnet = ipv6_all_zeros; 16970 ipif->ipif_v6net_mask = ipv6_all_zeros; 16971 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16972 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16973 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16974 /* 16975 * point-to-point or Non-mulicast capable 16976 * interfaces won't do NUD unless explicitly 16977 * configured to do so. 16978 */ 16979 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16980 !(ill->ill_flags & ILLF_MULTICAST)) { 16981 ill->ill_flags |= ILLF_NONUD; 16982 } 16983 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16984 if (ill->ill_flags & ILLF_NOARP) { 16985 /* 16986 * Note: xresolv interfaces will eventually need 16987 * NOARP set here as well, but that will require 16988 * those external resolvers to have some 16989 * knowledge of that flag and act appropriately. 16990 * Not to be changed at present. 16991 */ 16992 ill->ill_flags &= ~ILLF_NOARP; 16993 } 16994 /* 16995 * Set the ILLF_ROUTER flag according to the global 16996 * IPv6 forwarding policy. 16997 */ 16998 if (ipst->ips_ipv6_forwarding != 0) 16999 ill->ill_flags |= ILLF_ROUTER; 17000 } else if (ill->ill_flags & ILLF_IPV4) { 17001 ill->ill_isv6 = B_FALSE; 17002 ill_set_inputfn(ill); 17003 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 17004 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 17005 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 17006 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 17007 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 17008 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 17009 /* 17010 * Set the ILLF_ROUTER flag according to the global 17011 * IPv4 forwarding policy. 17012 */ 17013 if (ipst->ips_ip_forwarding != 0) 17014 ill->ill_flags |= ILLF_ROUTER; 17015 } 17016 17017 ASSERT(ill->ill_phyint != NULL); 17018 17019 /* 17020 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 17021 * be completed in ill_glist_insert -> ill_phyint_reinit 17022 */ 17023 if (!ill_allocate_mibs(ill)) 17024 return (ENOMEM); 17025 17026 /* 17027 * Pick a default sap until we get the DL_INFO_ACK back from 17028 * the driver. 17029 */ 17030 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 17031 ill->ill_media->ip_m_ipv4sap; 17032 17033 ill->ill_ifname_pending = 1; 17034 ill->ill_ifname_pending_err = 0; 17035 17036 /* 17037 * When the first ipif comes up in ipif_up_done(), multicast groups 17038 * that were joined while this ill was not bound to the DLPI link need 17039 * to be recovered by ill_recover_multicast(). 17040 */ 17041 ill->ill_need_recover_multicast = 1; 17042 17043 ill_refhold(ill); 17044 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17045 if ((error = ill_glist_insert(ill, interf_name, 17046 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 17047 ill->ill_ppa = UINT_MAX; 17048 ill->ill_name[0] = '\0'; 17049 /* 17050 * undo null termination done above. 17051 */ 17052 ppa_ptr[0] = old_char; 17053 rw_exit(&ipst->ips_ill_g_lock); 17054 ill_refrele(ill); 17055 return (error); 17056 } 17057 17058 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 17059 17060 /* 17061 * When we return the buffer pointed to by interf_name should contain 17062 * the same name as in ill_name. 17063 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 17064 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 17065 * so copy full name and update the ppa ptr. 17066 * When ppa passed in != UINT_MAX all values are correct just undo 17067 * null termination, this saves a bcopy. 17068 */ 17069 if (*new_ppa_ptr == UINT_MAX) { 17070 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 17071 *new_ppa_ptr = ill->ill_ppa; 17072 } else { 17073 /* 17074 * undo null termination done above. 17075 */ 17076 ppa_ptr[0] = old_char; 17077 } 17078 17079 /* Let SCTP know about this ILL */ 17080 sctp_update_ill(ill, SCTP_ILL_INSERT); 17081 17082 /* 17083 * ill_glist_insert has made the ill visible globally, and 17084 * ill_phyint_reinit could have changed the ipsq. At this point, 17085 * we need to hold the ips_ill_g_lock across the call to enter the 17086 * ipsq to enforce atomicity and prevent reordering. In the event 17087 * the ipsq has changed, and if the new ipsq is currently busy, 17088 * we need to make sure that this half-completed ioctl is ahead of 17089 * any subsequent ioctl. We achieve this by not dropping the 17090 * ips_ill_g_lock which prevents any ill lookup itself thereby 17091 * ensuring that new ioctls can't start. 17092 */ 17093 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17094 B_TRUE); 17095 17096 rw_exit(&ipst->ips_ill_g_lock); 17097 ill_refrele(ill); 17098 if (ipsq == NULL) 17099 return (EINPROGRESS); 17100 17101 /* 17102 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17103 */ 17104 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17105 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17106 else 17107 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17108 17109 error = ipif_set_values_tail(ill, ipif, mp, q); 17110 ipsq_exit(ipsq); 17111 if (error != 0 && error != EINPROGRESS) { 17112 /* 17113 * restore previous values 17114 */ 17115 ill->ill_isv6 = B_FALSE; 17116 ill_set_inputfn(ill); 17117 } 17118 return (error); 17119 } 17120 17121 void 17122 ipif_init(ip_stack_t *ipst) 17123 { 17124 int i; 17125 17126 for (i = 0; i < MAX_G_HEADS; i++) { 17127 ipst->ips_ill_g_heads[i].ill_g_list_head = 17128 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17129 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17130 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17131 } 17132 17133 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17134 ill_phyint_compare_index, 17135 sizeof (phyint_t), 17136 offsetof(struct phyint, phyint_avl_by_index)); 17137 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17138 ill_phyint_compare_name, 17139 sizeof (phyint_t), 17140 offsetof(struct phyint, phyint_avl_by_name)); 17141 } 17142 17143 /* 17144 * Save enough information so that we can recreate the IRE if 17145 * the interface goes down and then up. 17146 */ 17147 void 17148 ill_save_ire(ill_t *ill, ire_t *ire) 17149 { 17150 mblk_t *save_mp; 17151 17152 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17153 if (save_mp != NULL) { 17154 ifrt_t *ifrt; 17155 17156 save_mp->b_wptr += sizeof (ifrt_t); 17157 ifrt = (ifrt_t *)save_mp->b_rptr; 17158 bzero(ifrt, sizeof (ifrt_t)); 17159 ifrt->ifrt_type = ire->ire_type; 17160 if (ire->ire_ipversion == IPV4_VERSION) { 17161 ASSERT(!ill->ill_isv6); 17162 ifrt->ifrt_addr = ire->ire_addr; 17163 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17164 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17165 ifrt->ifrt_mask = ire->ire_mask; 17166 } else { 17167 ASSERT(ill->ill_isv6); 17168 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17169 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17170 mutex_enter(&ire->ire_lock); 17171 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17172 mutex_exit(&ire->ire_lock); 17173 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17174 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17175 } 17176 ifrt->ifrt_flags = ire->ire_flags; 17177 ifrt->ifrt_zoneid = ire->ire_zoneid; 17178 mutex_enter(&ill->ill_saved_ire_lock); 17179 save_mp->b_cont = ill->ill_saved_ire_mp; 17180 ill->ill_saved_ire_mp = save_mp; 17181 ill->ill_saved_ire_cnt++; 17182 mutex_exit(&ill->ill_saved_ire_lock); 17183 } 17184 } 17185 17186 /* 17187 * Remove one entry from ill_saved_ire_mp. 17188 */ 17189 void 17190 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17191 { 17192 mblk_t **mpp; 17193 mblk_t *mp; 17194 ifrt_t *ifrt; 17195 17196 /* Remove from ill_saved_ire_mp list if it is there */ 17197 mutex_enter(&ill->ill_saved_ire_lock); 17198 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17199 mpp = &(*mpp)->b_cont) { 17200 in6_addr_t gw_addr_v6; 17201 17202 /* 17203 * On a given ill, the tuple of address, gateway, mask, 17204 * ire_type, and zoneid is unique for each saved IRE. 17205 */ 17206 mp = *mpp; 17207 ifrt = (ifrt_t *)mp->b_rptr; 17208 /* ire_gateway_addr_v6 can change - need lock */ 17209 mutex_enter(&ire->ire_lock); 17210 gw_addr_v6 = ire->ire_gateway_addr_v6; 17211 mutex_exit(&ire->ire_lock); 17212 17213 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17214 ifrt->ifrt_type != ire->ire_type) 17215 continue; 17216 17217 if (ill->ill_isv6 ? 17218 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17219 &ire->ire_addr_v6) && 17220 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17221 &gw_addr_v6) && 17222 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17223 &ire->ire_mask_v6)) : 17224 (ifrt->ifrt_addr == ire->ire_addr && 17225 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17226 ifrt->ifrt_mask == ire->ire_mask)) { 17227 *mpp = mp->b_cont; 17228 ill->ill_saved_ire_cnt--; 17229 freeb(mp); 17230 break; 17231 } 17232 } 17233 mutex_exit(&ill->ill_saved_ire_lock); 17234 } 17235 17236 /* 17237 * IP multirouting broadcast routes handling 17238 * Append CGTP broadcast IREs to regular ones created 17239 * at ifconfig time. 17240 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17241 * the destination and the gateway are broadcast addresses. 17242 * The caller has verified that the destination is an IRE_BROADCAST and that 17243 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17244 * we create a MULTIRT IRE_BROADCAST. 17245 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17246 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17247 */ 17248 static void 17249 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17250 { 17251 ire_t *ire_prim; 17252 17253 ASSERT(ire != NULL); 17254 17255 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17256 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17257 NULL); 17258 if (ire_prim != NULL) { 17259 /* 17260 * We are in the special case of broadcasts for 17261 * CGTP. We add an IRE_BROADCAST that holds 17262 * the RTF_MULTIRT flag, the destination 17263 * address and the low level 17264 * info of ire_prim. In other words, CGTP 17265 * broadcast is added to the redundant ipif. 17266 */ 17267 ill_t *ill_prim; 17268 ire_t *bcast_ire; 17269 17270 ill_prim = ire_prim->ire_ill; 17271 17272 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17273 (void *)ire_prim, (void *)ill_prim)); 17274 17275 bcast_ire = ire_create( 17276 (uchar_t *)&ire->ire_addr, 17277 (uchar_t *)&ip_g_all_ones, 17278 (uchar_t *)&ire->ire_gateway_addr, 17279 IRE_BROADCAST, 17280 ill_prim, 17281 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17282 ire->ire_flags | RTF_KERNEL, 17283 NULL, 17284 ipst); 17285 17286 /* 17287 * Here we assume that ire_add does head insertion so that 17288 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17289 */ 17290 if (bcast_ire != NULL) { 17291 if (ire->ire_flags & RTF_SETSRC) { 17292 bcast_ire->ire_setsrc_addr = 17293 ire->ire_setsrc_addr; 17294 } 17295 bcast_ire = ire_add(bcast_ire); 17296 if (bcast_ire != NULL) { 17297 ip2dbg(("ip_cgtp_filter_bcast_add: " 17298 "added bcast_ire %p\n", 17299 (void *)bcast_ire)); 17300 17301 ill_save_ire(ill_prim, bcast_ire); 17302 ire_refrele(bcast_ire); 17303 } 17304 } 17305 ire_refrele(ire_prim); 17306 } 17307 } 17308 17309 /* 17310 * IP multirouting broadcast routes handling 17311 * Remove the broadcast ire. 17312 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17313 * the destination and the gateway are broadcast addresses. 17314 * The caller has only verified that RTF_MULTIRT was set. We check 17315 * that the destination is broadcast and that the gateway is a broadcast 17316 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17317 */ 17318 static void 17319 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17320 { 17321 ASSERT(ire != NULL); 17322 17323 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17324 ire_t *ire_prim; 17325 17326 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17327 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17328 ipst, NULL); 17329 if (ire_prim != NULL) { 17330 ill_t *ill_prim; 17331 ire_t *bcast_ire; 17332 17333 ill_prim = ire_prim->ire_ill; 17334 17335 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17336 "ire_prim %p, ill_prim %p\n", 17337 (void *)ire_prim, (void *)ill_prim)); 17338 17339 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17340 ire->ire_gateway_addr, IRE_BROADCAST, 17341 ill_prim, ALL_ZONES, NULL, 17342 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17343 MATCH_IRE_MASK, 0, ipst, NULL); 17344 17345 if (bcast_ire != NULL) { 17346 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17347 "looked up bcast_ire %p\n", 17348 (void *)bcast_ire)); 17349 ill_remove_saved_ire(bcast_ire->ire_ill, 17350 bcast_ire); 17351 ire_delete(bcast_ire); 17352 ire_refrele(bcast_ire); 17353 } 17354 ire_refrele(ire_prim); 17355 } 17356 } 17357 } 17358 17359 /* 17360 * Derive an interface id from the link layer address. 17361 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17362 */ 17363 static void 17364 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17365 { 17366 char *addr; 17367 17368 /* 17369 * Note that some IPv6 interfaces get plumbed over links that claim to 17370 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17371 * PPP links). The ETHERADDRL check here ensures that we only set the 17372 * interface ID on IPv6 interfaces above links that actually have real 17373 * Ethernet addresses. 17374 */ 17375 if (ill->ill_phys_addr_length == ETHERADDRL) { 17376 /* Form EUI-64 like address */ 17377 addr = (char *)&v6addr->s6_addr32[2]; 17378 bcopy(ill->ill_phys_addr, addr, 3); 17379 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17380 addr[3] = (char)0xff; 17381 addr[4] = (char)0xfe; 17382 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17383 } 17384 } 17385 17386 /* ARGSUSED */ 17387 static void 17388 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17389 { 17390 } 17391 17392 typedef struct ipmp_ifcookie { 17393 uint32_t ic_hostid; 17394 char ic_ifname[LIFNAMSIZ]; 17395 char ic_zonename[ZONENAME_MAX]; 17396 } ipmp_ifcookie_t; 17397 17398 /* 17399 * Construct a pseudo-random interface ID for the IPMP interface that's both 17400 * predictable and (almost) guaranteed to be unique. 17401 */ 17402 static void 17403 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17404 { 17405 zone_t *zp; 17406 uint8_t *addr; 17407 uchar_t hash[16]; 17408 ulong_t hostid; 17409 MD5_CTX ctx; 17410 ipmp_ifcookie_t ic = { 0 }; 17411 17412 ASSERT(IS_IPMP(ill)); 17413 17414 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17415 ic.ic_hostid = htonl((uint32_t)hostid); 17416 17417 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17418 17419 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17420 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17421 zone_rele(zp); 17422 } 17423 17424 MD5Init(&ctx); 17425 MD5Update(&ctx, &ic, sizeof (ic)); 17426 MD5Final(hash, &ctx); 17427 17428 /* 17429 * Map the hash to an interface ID per the basic approach in RFC3041. 17430 */ 17431 addr = &v6addr->s6_addr8[8]; 17432 bcopy(hash + 8, addr, sizeof (uint64_t)); 17433 addr[0] &= ~0x2; /* set local bit */ 17434 } 17435 17436 /* 17437 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17438 */ 17439 static void 17440 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17441 { 17442 phyint_t *phyi = ill->ill_phyint; 17443 17444 /* 17445 * Check PHYI_MULTI_BCAST and length of physical 17446 * address to determine if we use the mapping or the 17447 * broadcast address. 17448 */ 17449 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17450 ill->ill_phys_addr_length != ETHERADDRL) { 17451 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17452 return; 17453 } 17454 m_physaddr[0] = 0x33; 17455 m_physaddr[1] = 0x33; 17456 m_physaddr[2] = m_ip6addr[12]; 17457 m_physaddr[3] = m_ip6addr[13]; 17458 m_physaddr[4] = m_ip6addr[14]; 17459 m_physaddr[5] = m_ip6addr[15]; 17460 } 17461 17462 /* 17463 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17464 */ 17465 static void 17466 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17467 { 17468 phyint_t *phyi = ill->ill_phyint; 17469 17470 /* 17471 * Check PHYI_MULTI_BCAST and length of physical 17472 * address to determine if we use the mapping or the 17473 * broadcast address. 17474 */ 17475 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17476 ill->ill_phys_addr_length != ETHERADDRL) { 17477 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17478 return; 17479 } 17480 m_physaddr[0] = 0x01; 17481 m_physaddr[1] = 0x00; 17482 m_physaddr[2] = 0x5e; 17483 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17484 m_physaddr[4] = m_ipaddr[2]; 17485 m_physaddr[5] = m_ipaddr[3]; 17486 } 17487 17488 /* ARGSUSED */ 17489 static void 17490 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17491 { 17492 /* 17493 * for the MULTI_BCAST case and other cases when we want to 17494 * use the link-layer broadcast address for multicast. 17495 */ 17496 uint8_t *bphys_addr; 17497 dl_unitdata_req_t *dlur; 17498 17499 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17500 if (ill->ill_sap_length < 0) { 17501 bphys_addr = (uchar_t *)dlur + 17502 dlur->dl_dest_addr_offset; 17503 } else { 17504 bphys_addr = (uchar_t *)dlur + 17505 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17506 } 17507 17508 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17509 } 17510 17511 /* 17512 * Derive IPoIB interface id from the link layer address. 17513 */ 17514 static void 17515 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17516 { 17517 char *addr; 17518 17519 ASSERT(ill->ill_phys_addr_length == 20); 17520 addr = (char *)&v6addr->s6_addr32[2]; 17521 bcopy(ill->ill_phys_addr + 12, addr, 8); 17522 /* 17523 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17524 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17525 * rules. In these cases, the IBA considers these GUIDs to be in 17526 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17527 * required; vendors are required not to assign global EUI-64's 17528 * that differ only in u/l bit values, thus guaranteeing uniqueness 17529 * of the interface identifier. Whether the GUID is in modified 17530 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17531 * bit set to 1. 17532 */ 17533 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17534 } 17535 17536 /* 17537 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17538 * Note on mapping from multicast IP addresses to IPoIB multicast link 17539 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17540 * The format of an IPoIB multicast address is: 17541 * 17542 * 4 byte QPN Scope Sign. Pkey 17543 * +--------------------------------------------+ 17544 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17545 * +--------------------------------------------+ 17546 * 17547 * The Scope and Pkey components are properties of the IBA port and 17548 * network interface. They can be ascertained from the broadcast address. 17549 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17550 */ 17551 static void 17552 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17553 { 17554 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17555 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17556 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17557 uint8_t *bphys_addr; 17558 dl_unitdata_req_t *dlur; 17559 17560 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17561 17562 /* 17563 * RFC 4391: IPv4 MGID is 28-bit long. 17564 */ 17565 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17566 m_physaddr[17] = m_ipaddr[1]; 17567 m_physaddr[18] = m_ipaddr[2]; 17568 m_physaddr[19] = m_ipaddr[3]; 17569 17570 17571 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17572 if (ill->ill_sap_length < 0) { 17573 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17574 } else { 17575 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17576 ill->ill_sap_length; 17577 } 17578 /* 17579 * Now fill in the IBA scope/Pkey values from the broadcast address. 17580 */ 17581 m_physaddr[5] = bphys_addr[5]; 17582 m_physaddr[8] = bphys_addr[8]; 17583 m_physaddr[9] = bphys_addr[9]; 17584 } 17585 17586 static void 17587 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17588 { 17589 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17590 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17591 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17592 uint8_t *bphys_addr; 17593 dl_unitdata_req_t *dlur; 17594 17595 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17596 17597 /* 17598 * RFC 4391: IPv4 MGID is 80-bit long. 17599 */ 17600 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17601 17602 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17603 if (ill->ill_sap_length < 0) { 17604 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17605 } else { 17606 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17607 ill->ill_sap_length; 17608 } 17609 /* 17610 * Now fill in the IBA scope/Pkey values from the broadcast address. 17611 */ 17612 m_physaddr[5] = bphys_addr[5]; 17613 m_physaddr[8] = bphys_addr[8]; 17614 m_physaddr[9] = bphys_addr[9]; 17615 } 17616 17617 /* 17618 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17619 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17620 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17621 * of RFC4213. 17622 */ 17623 static void 17624 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17625 { 17626 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17627 v6addr->s6_addr32[2] = 0; 17628 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17629 } 17630 17631 /* 17632 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17633 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17634 * id. 17635 */ 17636 static void 17637 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17638 { 17639 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17640 17641 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17642 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17643 } 17644 17645 static void 17646 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17647 { 17648 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17649 } 17650 17651 static void 17652 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17653 { 17654 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17655 } 17656 17657 static void 17658 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17659 { 17660 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17661 } 17662 17663 static void 17664 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17665 { 17666 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17667 } 17668 17669 /* 17670 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17671 * Returns an held ill, or NULL. 17672 */ 17673 ill_t * 17674 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17675 ip_stack_t *ipst) 17676 { 17677 ill_t *ill; 17678 ipif_t *ipif; 17679 17680 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17681 if (ill == NULL) 17682 return (NULL); 17683 17684 mutex_enter(&ill->ill_lock); 17685 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17686 if (IPIF_IS_CONDEMNED(ipif)) 17687 continue; 17688 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17689 ipif->ipif_zoneid != ALL_ZONES) 17690 continue; 17691 17692 mutex_exit(&ill->ill_lock); 17693 return (ill); 17694 } 17695 mutex_exit(&ill->ill_lock); 17696 ill_refrele(ill); 17697 return (NULL); 17698 } 17699 17700 /* 17701 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17702 * If a pointer to an ipif_t is returned then the caller will need to do 17703 * an ill_refrele(). 17704 */ 17705 ipif_t * 17706 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17707 ip_stack_t *ipst) 17708 { 17709 ipif_t *ipif; 17710 ill_t *ill; 17711 17712 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17713 if (ill == NULL) 17714 return (NULL); 17715 17716 mutex_enter(&ill->ill_lock); 17717 if (ill->ill_state_flags & ILL_CONDEMNED) { 17718 mutex_exit(&ill->ill_lock); 17719 ill_refrele(ill); 17720 return (NULL); 17721 } 17722 17723 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17724 if (!IPIF_CAN_LOOKUP(ipif)) 17725 continue; 17726 if (lifidx == ipif->ipif_id) { 17727 ipif_refhold_locked(ipif); 17728 break; 17729 } 17730 } 17731 17732 mutex_exit(&ill->ill_lock); 17733 ill_refrele(ill); 17734 return (ipif); 17735 } 17736 17737 /* 17738 * Set ill_inputfn based on the current know state. 17739 * This needs to be called when any of the factors taken into 17740 * account changes. 17741 */ 17742 void 17743 ill_set_inputfn(ill_t *ill) 17744 { 17745 ip_stack_t *ipst = ill->ill_ipst; 17746 17747 if (ill->ill_isv6) { 17748 if (is_system_labeled()) 17749 ill->ill_inputfn = ill_input_full_v6; 17750 else 17751 ill->ill_inputfn = ill_input_short_v6; 17752 } else { 17753 if (is_system_labeled()) 17754 ill->ill_inputfn = ill_input_full_v4; 17755 else if (ill->ill_dhcpinit != 0) 17756 ill->ill_inputfn = ill_input_full_v4; 17757 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17758 != NULL) 17759 ill->ill_inputfn = ill_input_full_v4; 17760 else if (ipst->ips_ip_cgtp_filter && 17761 ipst->ips_ip_cgtp_filter_ops != NULL) 17762 ill->ill_inputfn = ill_input_full_v4; 17763 else 17764 ill->ill_inputfn = ill_input_short_v4; 17765 } 17766 } 17767 17768 /* 17769 * Re-evaluate ill_inputfn for all the IPv4 ills. 17770 * Used when RSVP and CGTP comes and goes. 17771 */ 17772 void 17773 ill_set_inputfn_all(ip_stack_t *ipst) 17774 { 17775 ill_walk_context_t ctx; 17776 ill_t *ill; 17777 17778 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17779 ill = ILL_START_WALK_V4(&ctx, ipst); 17780 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17781 ill_set_inputfn(ill); 17782 17783 rw_exit(&ipst->ips_ill_g_lock); 17784 } 17785 17786 /* 17787 * Set the physical address information for `ill' to the contents of the 17788 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17789 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17790 * EINPROGRESS will be returned. 17791 */ 17792 int 17793 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17794 { 17795 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17796 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17797 17798 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17799 17800 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17801 dlindp->dl_data != DL_CURR_DEST_ADDR && 17802 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17803 /* Changing DL_IPV6_TOKEN is not yet supported */ 17804 return (0); 17805 } 17806 17807 /* 17808 * We need to store up to two copies of `mp' in `ill'. Due to the 17809 * design of ipsq_pending_mp_add(), we can't pass them as separate 17810 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17811 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17812 */ 17813 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17814 freemsg(mp); 17815 return (ENOMEM); 17816 } 17817 17818 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17819 17820 /* 17821 * Since we'll only do a logical down, we can't rely on ipif_down 17822 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17823 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17824 * case, to quiesce ire's and nce's for ill_is_quiescent. 17825 */ 17826 mutex_enter(&ill->ill_lock); 17827 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17828 /* no more ire/nce addition allowed */ 17829 mutex_exit(&ill->ill_lock); 17830 17831 /* 17832 * If we can quiesce the ill, then set the address. If not, then 17833 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17834 */ 17835 ill_down_ipifs(ill, B_TRUE); 17836 mutex_enter(&ill->ill_lock); 17837 if (!ill_is_quiescent(ill)) { 17838 /* call cannot fail since `conn_t *' argument is NULL */ 17839 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17840 mp, ILL_DOWN); 17841 mutex_exit(&ill->ill_lock); 17842 return (EINPROGRESS); 17843 } 17844 mutex_exit(&ill->ill_lock); 17845 17846 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17847 return (0); 17848 } 17849 17850 /* 17851 * When the allowed-ips link property is set on the datalink, IP receives a 17852 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips() 17853 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then 17854 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the 17855 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[] 17856 * array. 17857 */ 17858 void 17859 ill_set_allowed_ips(ill_t *ill, mblk_t *mp) 17860 { 17861 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17862 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr; 17863 mac_protect_t *mrp; 17864 int i; 17865 17866 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17867 mrp = (mac_protect_t *)&dlip[1]; 17868 17869 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */ 17870 kmem_free(ill->ill_allowed_ips, 17871 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17872 ill->ill_allowed_ips_cnt = 0; 17873 ill->ill_allowed_ips = NULL; 17874 mutex_enter(&ill->ill_phyint->phyint_lock); 17875 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT; 17876 mutex_exit(&ill->ill_phyint->phyint_lock); 17877 return; 17878 } 17879 17880 if (ill->ill_allowed_ips != NULL) { 17881 kmem_free(ill->ill_allowed_ips, 17882 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17883 } 17884 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt; 17885 ill->ill_allowed_ips = kmem_alloc( 17886 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP); 17887 for (i = 0; i < mrp->mp_ipaddrcnt; i++) 17888 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr; 17889 17890 mutex_enter(&ill->ill_phyint->phyint_lock); 17891 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT; 17892 mutex_exit(&ill->ill_phyint->phyint_lock); 17893 } 17894 17895 /* 17896 * Once the ill associated with `q' has quiesced, set its physical address 17897 * information to the values in `addrmp'. Note that two copies of `addrmp' 17898 * are passed (linked by b_cont), since we sometimes need to save two distinct 17899 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17900 * failure (we'll free the other copy if it's not needed). Since the ill_t 17901 * is quiesced, we know any stale nce's with the old address information have 17902 * already been removed, so we don't need to call nce_flush(). 17903 */ 17904 /* ARGSUSED */ 17905 static void 17906 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17907 { 17908 ill_t *ill = q->q_ptr; 17909 mblk_t *addrmp2 = unlinkb(addrmp); 17910 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17911 uint_t addrlen, addroff; 17912 int status; 17913 17914 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17915 17916 addroff = dlindp->dl_addr_offset; 17917 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17918 17919 switch (dlindp->dl_data) { 17920 case DL_IPV6_LINK_LAYER_ADDR: 17921 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17922 freemsg(addrmp2); 17923 break; 17924 17925 case DL_CURR_DEST_ADDR: 17926 freemsg(ill->ill_dest_addr_mp); 17927 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17928 ill->ill_dest_addr_mp = addrmp; 17929 if (ill->ill_isv6) { 17930 ill_setdesttoken(ill); 17931 ipif_setdestlinklocal(ill->ill_ipif); 17932 } 17933 freemsg(addrmp2); 17934 break; 17935 17936 case DL_CURR_PHYS_ADDR: 17937 freemsg(ill->ill_phys_addr_mp); 17938 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17939 ill->ill_phys_addr_mp = addrmp; 17940 ill->ill_phys_addr_length = addrlen; 17941 if (ill->ill_isv6) 17942 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17943 else 17944 freemsg(addrmp2); 17945 if (ill->ill_isv6) { 17946 ill_setdefaulttoken(ill); 17947 ipif_setlinklocal(ill->ill_ipif); 17948 } 17949 break; 17950 default: 17951 ASSERT(0); 17952 } 17953 17954 /* 17955 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17956 * as we bring the ipifs up again. 17957 */ 17958 mutex_enter(&ill->ill_lock); 17959 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17960 mutex_exit(&ill->ill_lock); 17961 /* 17962 * If there are ipifs to bring up, ill_up_ipifs() will return 17963 * EINPROGRESS, and ipsq_current_finish() will be called by 17964 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17965 * brought up. 17966 */ 17967 status = ill_up_ipifs(ill, q, addrmp); 17968 if (status != EINPROGRESS) 17969 ipsq_current_finish(ipsq); 17970 } 17971 17972 /* 17973 * Helper routine for setting the ill_nd_lla fields. 17974 */ 17975 void 17976 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17977 { 17978 freemsg(ill->ill_nd_lla_mp); 17979 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17980 ill->ill_nd_lla_mp = ndmp; 17981 ill->ill_nd_lla_len = addrlen; 17982 } 17983 17984 /* 17985 * Replumb the ill. 17986 */ 17987 int 17988 ill_replumb(ill_t *ill, mblk_t *mp) 17989 { 17990 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17991 17992 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17993 17994 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17995 17996 /* 17997 * If we can quiesce the ill, then continue. If not, then 17998 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17999 */ 18000 ill_down_ipifs(ill, B_FALSE); 18001 18002 mutex_enter(&ill->ill_lock); 18003 if (!ill_is_quiescent(ill)) { 18004 /* call cannot fail since `conn_t *' argument is NULL */ 18005 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 18006 mp, ILL_DOWN); 18007 mutex_exit(&ill->ill_lock); 18008 return (EINPROGRESS); 18009 } 18010 mutex_exit(&ill->ill_lock); 18011 18012 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 18013 return (0); 18014 } 18015 18016 /* ARGSUSED */ 18017 static void 18018 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 18019 { 18020 ill_t *ill = q->q_ptr; 18021 int err; 18022 conn_t *connp = NULL; 18023 18024 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18025 freemsg(ill->ill_replumb_mp); 18026 ill->ill_replumb_mp = copyb(mp); 18027 18028 if (ill->ill_replumb_mp == NULL) { 18029 /* out of memory */ 18030 ipsq_current_finish(ipsq); 18031 return; 18032 } 18033 18034 mutex_enter(&ill->ill_lock); 18035 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 18036 ill->ill_rq, ill->ill_replumb_mp, 0); 18037 mutex_exit(&ill->ill_lock); 18038 18039 if (!ill->ill_up_ipifs) { 18040 /* already closing */ 18041 ipsq_current_finish(ipsq); 18042 return; 18043 } 18044 ill->ill_replumbing = 1; 18045 err = ill_down_ipifs_tail(ill); 18046 18047 /* 18048 * Successfully quiesced and brought down the interface, now we send 18049 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 18050 * DL_NOTE_REPLUMB message. 18051 */ 18052 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 18053 DL_NOTIFY_CONF); 18054 ASSERT(mp != NULL); 18055 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 18056 DL_NOTE_REPLUMB_DONE; 18057 ill_dlpi_send(ill, mp); 18058 18059 /* 18060 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 18061 * streams have to be unbound. When all the DLPI exchanges are done, 18062 * ipsq_current_finish() will be called by arp_bringup_done(). The 18063 * remainder of ipif bringup via ill_up_ipifs() will also be done in 18064 * arp_bringup_done(). 18065 */ 18066 ASSERT(ill->ill_replumb_mp != NULL); 18067 if (err == EINPROGRESS) 18068 return; 18069 else 18070 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 18071 ASSERT(connp == NULL); 18072 if (err == 0 && ill->ill_replumb_mp != NULL && 18073 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 18074 return; 18075 } 18076 ipsq_current_finish(ipsq); 18077 } 18078 18079 /* 18080 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 18081 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 18082 * as per the ioctl. On failure, an errno is returned. 18083 */ 18084 static int 18085 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 18086 { 18087 int rval; 18088 struct strioctl iocb; 18089 18090 iocb.ic_cmd = cmd; 18091 iocb.ic_timout = 15; 18092 iocb.ic_len = bufsize; 18093 iocb.ic_dp = buf; 18094 18095 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 18096 } 18097 18098 /* 18099 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 18100 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 18101 */ 18102 static int 18103 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 18104 uint_t *bufsizep, cred_t *cr) 18105 { 18106 int err; 18107 struct lifnum lifn; 18108 18109 bzero(&lifn, sizeof (lifn)); 18110 lifn.lifn_family = af; 18111 lifn.lifn_flags = LIFC_UNDER_IPMP; 18112 18113 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 18114 return (err); 18115 18116 /* 18117 * Pad the interface count to account for additional interfaces that 18118 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18119 */ 18120 lifn.lifn_count += 4; 18121 bzero(lifcp, sizeof (*lifcp)); 18122 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18123 lifcp->lifc_family = af; 18124 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18125 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18126 18127 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18128 if (err != 0) { 18129 kmem_free(lifcp->lifc_buf, *bufsizep); 18130 return (err); 18131 } 18132 18133 return (0); 18134 } 18135 18136 /* 18137 * Helper for ip_interface_cleanup() that removes the loopback interface. 18138 */ 18139 static void 18140 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18141 { 18142 int err; 18143 struct lifreq lifr; 18144 18145 bzero(&lifr, sizeof (lifr)); 18146 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18147 18148 /* 18149 * Attempt to remove the interface. It may legitimately not exist 18150 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18151 */ 18152 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18153 if (err != 0 && err != ENXIO) { 18154 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18155 "error %d\n", isv6 ? "v6" : "v4", err)); 18156 } 18157 } 18158 18159 /* 18160 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18161 * groups and that IPMP data addresses are down. These conditions must be met 18162 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18163 */ 18164 static void 18165 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18166 { 18167 int af = isv6 ? AF_INET6 : AF_INET; 18168 int i, nifs; 18169 int err; 18170 uint_t bufsize; 18171 uint_t lifrsize = sizeof (struct lifreq); 18172 struct lifconf lifc; 18173 struct lifreq *lifrp; 18174 18175 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18176 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18177 "(error %d); any IPMP interfaces cannot be shutdown", err); 18178 return; 18179 } 18180 18181 nifs = lifc.lifc_len / lifrsize; 18182 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18183 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18184 if (err != 0) { 18185 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18186 "flags: error %d", lifrp->lifr_name, err); 18187 continue; 18188 } 18189 18190 if (lifrp->lifr_flags & IFF_IPMP) { 18191 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18192 continue; 18193 18194 lifrp->lifr_flags &= ~IFF_UP; 18195 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18196 if (err != 0) { 18197 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18198 "bring down (error %d); IPMP interface may " 18199 "not be shutdown", lifrp->lifr_name, err); 18200 } 18201 18202 /* 18203 * Check if IFF_DUPLICATE is still set -- and if so, 18204 * reset the address to clear it. 18205 */ 18206 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18207 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18208 continue; 18209 18210 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18211 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18212 lifrp, lifrsize, cr)) != 0) { 18213 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18214 "reset DAD (error %d); IPMP interface may " 18215 "not be shutdown", lifrp->lifr_name, err); 18216 } 18217 continue; 18218 } 18219 18220 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18221 lifrp->lifr_groupname[0] = '\0'; 18222 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18223 lifrsize, cr)) != 0) { 18224 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18225 "leave IPMP group (error %d); associated " 18226 "IPMP interface may not be shutdown", 18227 lifrp->lifr_name, err); 18228 continue; 18229 } 18230 } 18231 } 18232 18233 kmem_free(lifc.lifc_buf, bufsize); 18234 } 18235 18236 #define UDPDEV "/devices/pseudo/udp@0:udp" 18237 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18238 18239 /* 18240 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18241 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18242 * when the user-level processes in the zone are killed and the latter are 18243 * cleaned up by str_stack_shutdown(). 18244 */ 18245 void 18246 ip_interface_cleanup(ip_stack_t *ipst) 18247 { 18248 ldi_handle_t lh; 18249 ldi_ident_t li; 18250 cred_t *cr; 18251 int err; 18252 int i; 18253 char *devs[] = { UDP6DEV, UDPDEV }; 18254 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18255 18256 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18257 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18258 " error %d", err); 18259 return; 18260 } 18261 18262 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18263 ASSERT(cr != NULL); 18264 18265 /* 18266 * NOTE: loop executes exactly twice and is hardcoded to know that the 18267 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18268 * the loop.) 18269 */ 18270 for (i = 0; i < 2; i++) { 18271 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18272 if (err != 0) { 18273 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18274 " error %d", devs[i], err); 18275 continue; 18276 } 18277 18278 ip_loopback_removeif(lh, i == 0, cr); 18279 ip_ipmp_cleanup(lh, i == 0, cr); 18280 18281 (void) ldi_close(lh, FREAD|FWRITE, cr); 18282 } 18283 18284 ldi_ident_release(li); 18285 crfree(cr); 18286 } 18287 18288 /* 18289 * This needs to be in-sync with nic_event_t definition 18290 */ 18291 static const char * 18292 ill_hook_event2str(nic_event_t event) 18293 { 18294 switch (event) { 18295 case NE_PLUMB: 18296 return ("PLUMB"); 18297 case NE_UNPLUMB: 18298 return ("UNPLUMB"); 18299 case NE_UP: 18300 return ("UP"); 18301 case NE_DOWN: 18302 return ("DOWN"); 18303 case NE_ADDRESS_CHANGE: 18304 return ("ADDRESS_CHANGE"); 18305 case NE_LIF_UP: 18306 return ("LIF_UP"); 18307 case NE_LIF_DOWN: 18308 return ("LIF_DOWN"); 18309 case NE_IFINDEX_CHANGE: 18310 return ("IFINDEX_CHANGE"); 18311 default: 18312 return ("UNKNOWN"); 18313 } 18314 } 18315 18316 void 18317 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18318 nic_event_data_t data, size_t datalen) 18319 { 18320 ip_stack_t *ipst = ill->ill_ipst; 18321 hook_nic_event_int_t *info; 18322 const char *str = NULL; 18323 18324 /* create a new nic event info */ 18325 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18326 goto fail; 18327 18328 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18329 info->hnei_event.hne_lif = lif; 18330 info->hnei_event.hne_event = event; 18331 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18332 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18333 info->hnei_event.hne_data = NULL; 18334 info->hnei_event.hne_datalen = 0; 18335 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18336 18337 if (data != NULL && datalen != 0) { 18338 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18339 if (info->hnei_event.hne_data == NULL) 18340 goto fail; 18341 bcopy(data, info->hnei_event.hne_data, datalen); 18342 info->hnei_event.hne_datalen = datalen; 18343 } 18344 18345 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18346 DDI_NOSLEEP) == DDI_SUCCESS) 18347 return; 18348 18349 fail: 18350 if (info != NULL) { 18351 if (info->hnei_event.hne_data != NULL) { 18352 kmem_free(info->hnei_event.hne_data, 18353 info->hnei_event.hne_datalen); 18354 } 18355 kmem_free(info, sizeof (hook_nic_event_t)); 18356 } 18357 str = ill_hook_event2str(event); 18358 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18359 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18360 } 18361 18362 static int 18363 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18364 { 18365 int err = 0; 18366 const in_addr_t *addr = NULL; 18367 nce_t *nce = NULL; 18368 ill_t *ill = ipif->ipif_ill; 18369 ill_t *bound_ill; 18370 boolean_t added_ipif = B_FALSE; 18371 uint16_t state; 18372 uint16_t flags; 18373 18374 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18375 ill_t *, ill, ipif_t *, ipif); 18376 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18377 addr = &ipif->ipif_lcl_addr; 18378 } 18379 18380 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18381 if (res_act != Res_act_initial) 18382 return (EINVAL); 18383 } 18384 18385 if (addr != NULL) { 18386 ipmp_illgrp_t *illg = ill->ill_grp; 18387 18388 /* add unicast nce for the local addr */ 18389 18390 if (IS_IPMP(ill)) { 18391 /* 18392 * If we're here via ipif_up(), then the ipif 18393 * won't be bound yet -- add it to the group, 18394 * which will bind it if possible. (We would 18395 * add it in ipif_up(), but deleting on failure 18396 * there is gruesome.) If we're here via 18397 * ipmp_ill_bind_ipif(), then the ipif has 18398 * already been added to the group and we 18399 * just need to use the binding. 18400 */ 18401 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18402 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18403 if (bound_ill == NULL) { 18404 /* 18405 * We couldn't bind the ipif to an ill 18406 * yet, so we have nothing to publish. 18407 * Mark the address as ready and return. 18408 */ 18409 ipif->ipif_addr_ready = 1; 18410 return (0); 18411 } 18412 added_ipif = B_TRUE; 18413 } 18414 } else { 18415 bound_ill = ill; 18416 } 18417 18418 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18419 NCE_F_NONUD); 18420 /* 18421 * If this is an initial bring-up (or the ipif was never 18422 * completely brought up), do DAD. Otherwise, we're here 18423 * because IPMP has rebound an address to this ill: send 18424 * unsolicited advertisements (ARP announcements) to 18425 * inform others. 18426 */ 18427 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18428 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18429 } else { 18430 state = ND_REACHABLE; 18431 flags |= NCE_F_UNSOL_ADV; 18432 } 18433 18434 retry: 18435 err = nce_lookup_then_add_v4(ill, 18436 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18437 addr, flags, state, &nce); 18438 18439 /* 18440 * note that we may encounter EEXIST if we are moving 18441 * the nce as a result of a rebind operation. 18442 */ 18443 switch (err) { 18444 case 0: 18445 ipif->ipif_added_nce = 1; 18446 nce->nce_ipif_cnt++; 18447 break; 18448 case EEXIST: 18449 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18450 ill->ill_name)); 18451 if (!NCE_MYADDR(nce->nce_common)) { 18452 /* 18453 * A leftover nce from before this address 18454 * existed 18455 */ 18456 ncec_delete(nce->nce_common); 18457 nce_refrele(nce); 18458 nce = NULL; 18459 goto retry; 18460 } 18461 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18462 nce_refrele(nce); 18463 nce = NULL; 18464 ip1dbg(("ipif_arp_up: NCE already exists " 18465 "for %s:%u\n", ill->ill_name, 18466 ipif->ipif_id)); 18467 goto arp_up_done; 18468 } 18469 /* 18470 * Duplicate local addresses are permissible for 18471 * IPIF_POINTOPOINT interfaces which will get marked 18472 * IPIF_UNNUMBERED later in 18473 * ip_addr_availability_check(). 18474 * 18475 * The nce_ipif_cnt field tracks the number of 18476 * ipifs that have nce_addr as their local address. 18477 */ 18478 ipif->ipif_addr_ready = 1; 18479 ipif->ipif_added_nce = 1; 18480 nce->nce_ipif_cnt++; 18481 err = 0; 18482 break; 18483 default: 18484 ASSERT(nce == NULL); 18485 goto arp_up_done; 18486 } 18487 if (arp_no_defense) { 18488 if ((ipif->ipif_flags & IPIF_UP) && 18489 !ipif->ipif_addr_ready) 18490 ipif_up_notify(ipif); 18491 ipif->ipif_addr_ready = 1; 18492 } 18493 } else { 18494 /* zero address. nothing to publish */ 18495 ipif->ipif_addr_ready = 1; 18496 } 18497 if (nce != NULL) 18498 nce_refrele(nce); 18499 arp_up_done: 18500 if (added_ipif && err != 0) 18501 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18502 return (err); 18503 } 18504 18505 int 18506 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18507 { 18508 int err = 0; 18509 ill_t *ill = ipif->ipif_ill; 18510 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18511 18512 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18513 ill_t *, ill, ipif_t *, ipif); 18514 18515 /* 18516 * need to bring up ARP or setup mcast mapping only 18517 * when the first interface is coming UP. 18518 */ 18519 first_interface = (ill->ill_ipif_up_count == 0 && 18520 ill->ill_ipif_dup_count == 0 && !was_dup); 18521 18522 if (res_act == Res_act_initial && first_interface) { 18523 /* 18524 * Send ATTACH + BIND 18525 */ 18526 err = arp_ll_up(ill); 18527 if (err != EINPROGRESS && err != 0) 18528 return (err); 18529 18530 /* 18531 * Add NCE for local address. Start DAD. 18532 * we'll wait to hear that DAD has finished 18533 * before using the interface. 18534 */ 18535 if (err == EINPROGRESS) 18536 wait_for_dlpi = B_TRUE; 18537 } 18538 18539 if (!wait_for_dlpi) 18540 (void) ipif_arp_up_done_tail(ipif, res_act); 18541 18542 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18543 } 18544 18545 /* 18546 * Finish processing of "arp_up" after all the DLPI message 18547 * exchanges have completed between arp and the driver. 18548 */ 18549 void 18550 arp_bringup_done(ill_t *ill, int err) 18551 { 18552 mblk_t *mp1; 18553 ipif_t *ipif; 18554 conn_t *connp = NULL; 18555 ipsq_t *ipsq; 18556 queue_t *q; 18557 18558 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18559 18560 ASSERT(IAM_WRITER_ILL(ill)); 18561 18562 ipsq = ill->ill_phyint->phyint_ipsq; 18563 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18564 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18565 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18566 if (mp1 == NULL) /* bringup was aborted by the user */ 18567 return; 18568 18569 /* 18570 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18571 * must have an associated conn_t. Otherwise, we're bringing this 18572 * interface back up as part of handling an asynchronous event (e.g., 18573 * physical address change). 18574 */ 18575 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18576 ASSERT(connp != NULL); 18577 q = CONNP_TO_WQ(connp); 18578 } else { 18579 ASSERT(connp == NULL); 18580 q = ill->ill_rq; 18581 } 18582 if (err == 0) { 18583 if (ipif->ipif_isv6) { 18584 if ((err = ipif_up_done_v6(ipif)) != 0) 18585 ip0dbg(("arp_bringup_done: init failed\n")); 18586 } else { 18587 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18588 if (err != 0 || 18589 (err = ipif_up_done(ipif)) != 0) { 18590 ip0dbg(("arp_bringup_done: " 18591 "init failed err %x\n", err)); 18592 (void) ipif_arp_down(ipif); 18593 } 18594 18595 } 18596 } else { 18597 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18598 } 18599 18600 if ((err == 0) && (ill->ill_up_ipifs)) { 18601 err = ill_up_ipifs(ill, q, mp1); 18602 if (err == EINPROGRESS) 18603 return; 18604 } 18605 18606 /* 18607 * If we have a moved ipif to bring up, and everything has succeeded 18608 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18609 * down -- the admin can try to bring it up by hand if need be. 18610 */ 18611 if (ill->ill_move_ipif != NULL) { 18612 ipif = ill->ill_move_ipif; 18613 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18614 ipif->ipif_ill->ill_name)); 18615 ill->ill_move_ipif = NULL; 18616 if (err == 0) { 18617 err = ipif_up(ipif, q, mp1); 18618 if (err == EINPROGRESS) 18619 return; 18620 } 18621 } 18622 18623 /* 18624 * The operation must complete without EINPROGRESS since 18625 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18626 * Otherwise, the operation will be stuck forever in the ipsq. 18627 */ 18628 ASSERT(err != EINPROGRESS); 18629 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18630 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18631 int, ipsq->ipsq_xop->ipx_current_ioctl, 18632 ill_t *, ill, ipif_t *, ipif); 18633 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18634 } else { 18635 ipsq_current_finish(ipsq); 18636 } 18637 } 18638 18639 /* 18640 * Finish processing of arp replumb after all the DLPI message 18641 * exchanges have completed between arp and the driver. 18642 */ 18643 void 18644 arp_replumb_done(ill_t *ill, int err) 18645 { 18646 mblk_t *mp1; 18647 ipif_t *ipif; 18648 conn_t *connp = NULL; 18649 ipsq_t *ipsq; 18650 queue_t *q; 18651 18652 ASSERT(IAM_WRITER_ILL(ill)); 18653 18654 ipsq = ill->ill_phyint->phyint_ipsq; 18655 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18656 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18657 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18658 if (mp1 == NULL) { 18659 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18660 ipsq->ipsq_xop->ipx_current_ioctl)); 18661 /* bringup was aborted by the user */ 18662 return; 18663 } 18664 /* 18665 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18666 * must have an associated conn_t. Otherwise, we're bringing this 18667 * interface back up as part of handling an asynchronous event (e.g., 18668 * physical address change). 18669 */ 18670 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18671 ASSERT(connp != NULL); 18672 q = CONNP_TO_WQ(connp); 18673 } else { 18674 ASSERT(connp == NULL); 18675 q = ill->ill_rq; 18676 } 18677 if ((err == 0) && (ill->ill_up_ipifs)) { 18678 err = ill_up_ipifs(ill, q, mp1); 18679 if (err == EINPROGRESS) 18680 return; 18681 } 18682 /* 18683 * The operation must complete without EINPROGRESS since 18684 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18685 * Otherwise, the operation will be stuck forever in the ipsq. 18686 */ 18687 ASSERT(err != EINPROGRESS); 18688 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18689 DTRACE_PROBE4(ipif__ioctl, char *, 18690 "arp_replumb_done finish", 18691 int, ipsq->ipsq_xop->ipx_current_ioctl, 18692 ill_t *, ill, ipif_t *, ipif); 18693 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18694 } else { 18695 ipsq_current_finish(ipsq); 18696 } 18697 } 18698 18699 void 18700 ipif_up_notify(ipif_t *ipif) 18701 { 18702 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18703 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18704 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18705 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18706 NE_LIF_UP, NULL, 0); 18707 } 18708 18709 /* 18710 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18711 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18712 * TPI end points with STREAMS modules pushed above. This is assured by not 18713 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18714 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18715 * while unwinding from the ispq and that could be a thread from the bottom. 18716 */ 18717 /* ARGSUSED */ 18718 int 18719 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18720 ip_ioctl_cmd_t *ipip, void *arg) 18721 { 18722 mblk_t *cmd_mp = mp->b_cont->b_cont; 18723 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18724 int ret = 0; 18725 int i; 18726 size_t size; 18727 ip_stack_t *ipst; 18728 zoneid_t zoneid; 18729 ilb_stack_t *ilbs; 18730 18731 ipst = CONNQ_TO_IPST(q); 18732 ilbs = ipst->ips_netstack->netstack_ilb; 18733 zoneid = Q_TO_CONN(q)->conn_zoneid; 18734 18735 switch (command) { 18736 case ILB_CREATE_RULE: { 18737 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18738 18739 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18740 ret = EINVAL; 18741 break; 18742 } 18743 18744 ret = ilb_rule_add(ilbs, zoneid, cmd); 18745 break; 18746 } 18747 case ILB_DESTROY_RULE: 18748 case ILB_ENABLE_RULE: 18749 case ILB_DISABLE_RULE: { 18750 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18751 18752 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18753 ret = EINVAL; 18754 break; 18755 } 18756 18757 if (cmd->flags & ILB_RULE_ALLRULES) { 18758 if (command == ILB_DESTROY_RULE) { 18759 ilb_rule_del_all(ilbs, zoneid); 18760 break; 18761 } else if (command == ILB_ENABLE_RULE) { 18762 ilb_rule_enable_all(ilbs, zoneid); 18763 break; 18764 } else if (command == ILB_DISABLE_RULE) { 18765 ilb_rule_disable_all(ilbs, zoneid); 18766 break; 18767 } 18768 } else { 18769 if (command == ILB_DESTROY_RULE) { 18770 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18771 } else if (command == ILB_ENABLE_RULE) { 18772 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18773 NULL); 18774 } else if (command == ILB_DISABLE_RULE) { 18775 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18776 NULL); 18777 } 18778 } 18779 break; 18780 } 18781 case ILB_NUM_RULES: { 18782 ilb_num_rules_cmd_t *cmd; 18783 18784 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18785 ret = EINVAL; 18786 break; 18787 } 18788 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18789 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18790 break; 18791 } 18792 case ILB_RULE_NAMES: { 18793 ilb_rule_names_cmd_t *cmd; 18794 18795 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18796 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18797 cmd->num_names == 0) { 18798 ret = EINVAL; 18799 break; 18800 } 18801 size = cmd->num_names * ILB_RULE_NAMESZ; 18802 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18803 size != cmd_mp->b_wptr) { 18804 ret = EINVAL; 18805 break; 18806 } 18807 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18808 break; 18809 } 18810 case ILB_NUM_SERVERS: { 18811 ilb_num_servers_cmd_t *cmd; 18812 18813 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18814 ret = EINVAL; 18815 break; 18816 } 18817 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18818 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18819 &(cmd->num)); 18820 break; 18821 } 18822 case ILB_LIST_RULE: { 18823 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18824 18825 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18826 ret = EINVAL; 18827 break; 18828 } 18829 ret = ilb_rule_list(ilbs, zoneid, cmd); 18830 break; 18831 } 18832 case ILB_LIST_SERVERS: { 18833 ilb_servers_info_cmd_t *cmd; 18834 18835 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18836 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18837 cmd->num_servers == 0) { 18838 ret = EINVAL; 18839 break; 18840 } 18841 size = cmd->num_servers * sizeof (ilb_server_info_t); 18842 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18843 size != cmd_mp->b_wptr) { 18844 ret = EINVAL; 18845 break; 18846 } 18847 18848 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18849 &cmd->num_servers); 18850 break; 18851 } 18852 case ILB_ADD_SERVERS: { 18853 ilb_servers_info_cmd_t *cmd; 18854 ilb_rule_t *rule; 18855 18856 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18857 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18858 ret = EINVAL; 18859 break; 18860 } 18861 size = cmd->num_servers * sizeof (ilb_server_info_t); 18862 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18863 size != cmd_mp->b_wptr) { 18864 ret = EINVAL; 18865 break; 18866 } 18867 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18868 if (rule == NULL) { 18869 ASSERT(ret != 0); 18870 break; 18871 } 18872 for (i = 0; i < cmd->num_servers; i++) { 18873 ilb_server_info_t *s; 18874 18875 s = &cmd->servers[i]; 18876 s->err = ilb_server_add(ilbs, rule, s); 18877 } 18878 ILB_RULE_REFRELE(rule); 18879 break; 18880 } 18881 case ILB_DEL_SERVERS: 18882 case ILB_ENABLE_SERVERS: 18883 case ILB_DISABLE_SERVERS: { 18884 ilb_servers_cmd_t *cmd; 18885 ilb_rule_t *rule; 18886 int (*f)(); 18887 18888 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18889 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18890 ret = EINVAL; 18891 break; 18892 } 18893 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18894 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18895 size != cmd_mp->b_wptr) { 18896 ret = EINVAL; 18897 break; 18898 } 18899 18900 if (command == ILB_DEL_SERVERS) 18901 f = ilb_server_del; 18902 else if (command == ILB_ENABLE_SERVERS) 18903 f = ilb_server_enable; 18904 else if (command == ILB_DISABLE_SERVERS) 18905 f = ilb_server_disable; 18906 18907 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18908 if (rule == NULL) { 18909 ASSERT(ret != 0); 18910 break; 18911 } 18912 18913 for (i = 0; i < cmd->num_servers; i++) { 18914 ilb_server_arg_t *s; 18915 18916 s = &cmd->servers[i]; 18917 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18918 } 18919 ILB_RULE_REFRELE(rule); 18920 break; 18921 } 18922 case ILB_LIST_NAT_TABLE: { 18923 ilb_list_nat_cmd_t *cmd; 18924 18925 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18926 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18927 ret = EINVAL; 18928 break; 18929 } 18930 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18931 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18932 size != cmd_mp->b_wptr) { 18933 ret = EINVAL; 18934 break; 18935 } 18936 18937 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18938 &cmd->flags); 18939 break; 18940 } 18941 case ILB_LIST_STICKY_TABLE: { 18942 ilb_list_sticky_cmd_t *cmd; 18943 18944 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18945 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18946 ret = EINVAL; 18947 break; 18948 } 18949 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18950 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18951 size != cmd_mp->b_wptr) { 18952 ret = EINVAL; 18953 break; 18954 } 18955 18956 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18957 &cmd->num_sticky, &cmd->flags); 18958 break; 18959 } 18960 default: 18961 ret = EINVAL; 18962 break; 18963 } 18964 done: 18965 return (ret); 18966 } 18967 18968 /* Remove all cache entries for this logical interface */ 18969 void 18970 ipif_nce_down(ipif_t *ipif) 18971 { 18972 ill_t *ill = ipif->ipif_ill; 18973 nce_t *nce; 18974 18975 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18976 ill_t *, ill, ipif_t *, ipif); 18977 if (ipif->ipif_added_nce) { 18978 if (ipif->ipif_isv6) 18979 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18980 else 18981 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18982 if (nce != NULL) { 18983 if (--nce->nce_ipif_cnt == 0) 18984 ncec_delete(nce->nce_common); 18985 ipif->ipif_added_nce = 0; 18986 nce_refrele(nce); 18987 } else { 18988 /* 18989 * nce may already be NULL because it was already 18990 * flushed, e.g., due to a call to nce_flush 18991 */ 18992 ipif->ipif_added_nce = 0; 18993 } 18994 } 18995 /* 18996 * Make IPMP aware of the deleted data address. 18997 */ 18998 if (IS_IPMP(ill)) 18999 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 19000 19001 /* 19002 * Remove all other nces dependent on this ill when the last ipif 19003 * is going away. 19004 */ 19005 if (ill->ill_ipif_up_count == 0) { 19006 ncec_walk(ill, ncec_delete_per_ill, ill, ill->ill_ipst); 19007 if (IS_UNDER_IPMP(ill)) 19008 nce_flush(ill, B_TRUE); 19009 } 19010 } 19011 19012 /* 19013 * find the first interface that uses usill for its source address. 19014 */ 19015 ill_t * 19016 ill_lookup_usesrc(ill_t *usill) 19017 { 19018 ip_stack_t *ipst = usill->ill_ipst; 19019 ill_t *ill; 19020 19021 ASSERT(usill != NULL); 19022 19023 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 19024 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 19025 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19026 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 19027 ill = ill->ill_usesrc_grp_next) { 19028 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 19029 !ILL_IS_CONDEMNED(ill)) { 19030 ill_refhold(ill); 19031 break; 19032 } 19033 } 19034 rw_exit(&ipst->ips_ill_g_lock); 19035 rw_exit(&ipst->ips_ill_g_usesrc_lock); 19036 return (ill); 19037 } 19038 19039 /* 19040 * This comment applies to both ip_sioctl_get_ifhwaddr and 19041 * ip_sioctl_get_lifhwaddr as the basic function of these two functions 19042 * is the same. 19043 * 19044 * The goal here is to find an IP interface that corresponds to the name 19045 * provided by the caller in the ifreq/lifreq structure held in the mblk_t 19046 * chain and to fill out a sockaddr/sockaddr_storage structure with the 19047 * mac address. 19048 * 19049 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number 19050 * of different reasons: 19051 * ENXIO - the device name is not known to IP. 19052 * EADDRNOTAVAIL - the device has no hardware address. This is indicated 19053 * by ill_phys_addr not pointing to an actual address. 19054 * EPFNOSUPPORT - this will indicate that a request is being made for a 19055 * mac address that will not fit in the data structure supplier (struct 19056 * sockaddr). 19057 * 19058 */ 19059 /* ARGSUSED */ 19060 int 19061 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19062 ip_ioctl_cmd_t *ipip, void *if_req) 19063 { 19064 struct sockaddr *sock; 19065 struct ifreq *ifr; 19066 mblk_t *mp1; 19067 ill_t *ill; 19068 19069 ASSERT(ipif != NULL); 19070 ill = ipif->ipif_ill; 19071 19072 if (ill->ill_phys_addr == NULL) { 19073 return (EADDRNOTAVAIL); 19074 } 19075 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) { 19076 return (EPFNOSUPPORT); 19077 } 19078 19079 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name)); 19080 19081 /* Existence of mp1 has been checked in ip_wput_nondata */ 19082 mp1 = mp->b_cont->b_cont; 19083 ifr = (struct ifreq *)mp1->b_rptr; 19084 19085 sock = &ifr->ifr_addr; 19086 /* 19087 * The "family" field in the returned structure is set to a value 19088 * that represents the type of device to which the address belongs. 19089 * The value returned may differ to that on Linux but it will still 19090 * represent the correct symbol on Solaris. 19091 */ 19092 sock->sa_family = arp_hw_type(ill->ill_mactype); 19093 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length); 19094 19095 return (0); 19096 } 19097 19098 /* 19099 * The expection of applications using SIOCGIFHWADDR is that data will 19100 * be returned in the sa_data field of the sockaddr structure. With 19101 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux 19102 * equivalent. In light of this, struct sockaddr_dl is used as it 19103 * offers more space for address storage in sll_data. 19104 */ 19105 /* ARGSUSED */ 19106 int 19107 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19108 ip_ioctl_cmd_t *ipip, void *if_req) 19109 { 19110 struct sockaddr_dl *sock; 19111 struct lifreq *lifr; 19112 mblk_t *mp1; 19113 ill_t *ill; 19114 19115 ASSERT(ipif != NULL); 19116 ill = ipif->ipif_ill; 19117 19118 if (ill->ill_phys_addr == NULL) { 19119 return (EADDRNOTAVAIL); 19120 } 19121 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) { 19122 return (EPFNOSUPPORT); 19123 } 19124 19125 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name)); 19126 19127 /* Existence of mp1 has been checked in ip_wput_nondata */ 19128 mp1 = mp->b_cont->b_cont; 19129 lifr = (struct lifreq *)mp1->b_rptr; 19130 19131 /* 19132 * sockaddr_ll is used here because it is also the structure used in 19133 * responding to the same ioctl in sockpfp. The only other choice is 19134 * sockaddr_dl which contains fields that are not required here 19135 * because its purpose is different. 19136 */ 19137 lifr->lifr_type = ill->ill_type; 19138 sock = (struct sockaddr_dl *)&lifr->lifr_addr; 19139 sock->sdl_family = AF_LINK; 19140 sock->sdl_index = ill->ill_phyint->phyint_ifindex; 19141 sock->sdl_type = ill->ill_mactype; 19142 sock->sdl_nlen = 0; 19143 sock->sdl_slen = 0; 19144 sock->sdl_alen = ill->ill_phys_addr_length; 19145 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length); 19146 19147 return (0); 19148 } 19149