xref: /illumos-gate/usr/src/uts/common/inet/ip/ip_if.c (revision d8a7fe16f62711cdc5c4267da8b34ff24a6b668c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 /*
28  * This file contains the interface control functions for IP.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/stropts.h>
35 #include <sys/strsun.h>
36 #include <sys/sysmacros.h>
37 #include <sys/strsubr.h>
38 #include <sys/strlog.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <sys/cmn_err.h>
42 #include <sys/kstat.h>
43 #include <sys/debug.h>
44 #include <sys/zone.h>
45 #include <sys/sunldi.h>
46 #include <sys/file.h>
47 #include <sys/bitmap.h>
48 #include <sys/cpuvar.h>
49 #include <sys/time.h>
50 #include <sys/ctype.h>
51 #include <sys/kmem.h>
52 #include <sys/systm.h>
53 #include <sys/param.h>
54 #include <sys/socket.h>
55 #include <sys/isa_defs.h>
56 #include <net/if.h>
57 #include <net/if_arp.h>
58 #include <net/if_types.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <sys/sockio.h>
62 #include <netinet/in.h>
63 #include <netinet/ip6.h>
64 #include <netinet/icmp6.h>
65 #include <netinet/igmp_var.h>
66 #include <sys/policy.h>
67 #include <sys/ethernet.h>
68 #include <sys/callb.h>
69 #include <sys/md5.h>
70 
71 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
72 #include <inet/mi.h>
73 #include <inet/nd.h>
74 #include <inet/arp.h>
75 #include <inet/ip_arp.h>
76 #include <inet/mib2.h>
77 #include <inet/ip.h>
78 #include <inet/ip6.h>
79 #include <inet/ip6_asp.h>
80 #include <inet/tcp.h>
81 #include <inet/ip_multi.h>
82 #include <inet/ip_ire.h>
83 #include <inet/ip_ftable.h>
84 #include <inet/ip_rts.h>
85 #include <inet/ip_ndp.h>
86 #include <inet/ip_if.h>
87 #include <inet/ip_impl.h>
88 #include <inet/sctp_ip.h>
89 #include <inet/ip_netinfo.h>
90 #include <inet/ilb_ip.h>
91 
92 #include <netinet/igmp.h>
93 #include <inet/ip_listutils.h>
94 #include <inet/ipclassifier.h>
95 #include <sys/mac_client.h>
96 #include <sys/dld.h>
97 
98 #include <sys/systeminfo.h>
99 #include <sys/bootconf.h>
100 
101 #include <sys/tsol/tndb.h>
102 #include <sys/tsol/tnet.h>
103 
104 /* The character which tells where the ill_name ends */
105 #define	IPIF_SEPARATOR_CHAR	':'
106 
107 /* IP ioctl function table entry */
108 typedef struct ipft_s {
109 	int	ipft_cmd;
110 	pfi_t	ipft_pfi;
111 	int	ipft_min_size;
112 	int	ipft_flags;
113 } ipft_t;
114 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
115 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
116 
117 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
118 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
119 		    char *value, caddr_t cp, cred_t *ioc_cr);
120 
121 static boolean_t ill_is_quiescent(ill_t *);
122 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
123 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
124 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
125     mblk_t *mp, boolean_t need_up);
126 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
127     mblk_t *mp, boolean_t need_up);
128 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
129     queue_t *q, mblk_t *mp, boolean_t need_up);
130 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
131     mblk_t *mp);
132 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
133     mblk_t *mp);
134 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
135     queue_t *q, mblk_t *mp, boolean_t need_up);
136 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
137     int ioccmd, struct linkblk *li);
138 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
139 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
140 static void	ipsq_flush(ill_t *ill);
141 
142 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
143     queue_t *q, mblk_t *mp, boolean_t need_up);
144 static void	ipsq_delete(ipsq_t *);
145 
146 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
147     boolean_t initialize, boolean_t insert, int *errorp);
148 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
149 static void	ipif_delete_bcast_ires(ipif_t *ipif);
150 static int	ipif_add_ires_v4(ipif_t *, boolean_t);
151 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
152 		    boolean_t isv6);
153 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
154 static void	ipif_free(ipif_t *ipif);
155 static void	ipif_free_tail(ipif_t *ipif);
156 static void	ipif_set_default(ipif_t *ipif);
157 static int	ipif_set_values(queue_t *q, mblk_t *mp,
158     char *interf_name, uint_t *ppa);
159 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
160     queue_t *q);
161 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
162     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
163     ip_stack_t *);
164 
165 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
166 static void	ill_delete_interface_type(ill_if_t *);
167 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
168 static void	ill_dl_down(ill_t *ill);
169 static void	ill_down(ill_t *ill);
170 static void	ill_down_ipifs(ill_t *, boolean_t);
171 static void	ill_free_mib(ill_t *ill);
172 static void	ill_glist_delete(ill_t *);
173 static void	ill_phyint_reinit(ill_t *ill);
174 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
175 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
176 static void	ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
177 
178 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
179 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
180 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
181 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
182 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
183 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
184 static ip_v4mapinfo_func_t ip_ib_v4_mapping;
185 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
186 static ip_v4mapinfo_func_t ip_mbcast_mapping;
187 static void 	ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
188 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
189 static void	phyint_free(phyint_t *);
190 
191 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
192 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
193 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
194 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
195 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
196 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
197     dl_capability_sub_t *);
198 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
199 static void	ill_capability_dld_reset_fill(ill_t *, mblk_t *);
200 static void	ill_capability_dld_ack(ill_t *, mblk_t *,
201 		    dl_capability_sub_t *);
202 static void	ill_capability_dld_enable(ill_t *);
203 static void	ill_capability_ack_thr(void *);
204 static void	ill_capability_lso_enable(ill_t *);
205 
206 static ill_t	*ill_prev_usesrc(ill_t *);
207 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
208 static void	ill_disband_usesrc_group(ill_t *);
209 static void	ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);
210 
211 #ifdef DEBUG
212 static	void	ill_trace_cleanup(const ill_t *);
213 static	void	ipif_trace_cleanup(const ipif_t *);
214 #endif
215 
216 /*
217  * if we go over the memory footprint limit more than once in this msec
218  * interval, we'll start pruning aggressively.
219  */
220 int ip_min_frag_prune_time = 0;
221 
222 static ipft_t	ip_ioctl_ftbl[] = {
223 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
224 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
225 		IPFT_F_NO_REPLY },
226 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
227 	{ 0 }
228 };
229 
230 /* Simple ICMP IP Header Template */
231 static ipha_t icmp_ipha = {
232 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
233 };
234 
235 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
236 
237 static ip_m_t   ip_m_tbl[] = {
238 	{ DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
239 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
240 	    ip_nodef_v6intfid },
241 	{ DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
242 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
243 	    ip_nodef_v6intfid },
244 	{ DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
245 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
246 	    ip_nodef_v6intfid },
247 	{ DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
248 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
249 	    ip_nodef_v6intfid },
250 	{ DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
251 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
252 	    ip_nodef_v6intfid },
253 	{ DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
254 	    ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
255 	    ip_nodef_v6intfid },
256 	{ DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
257 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
258 	    ip_ipv4_v6destintfid },
259 	{ DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
260 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
261 	    ip_ipv6_v6destintfid },
262 	{ DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
263 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
264 	    ip_nodef_v6intfid },
265 	{ SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
266 	    NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
267 	{ SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
268 	    NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
269 	{ DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
270 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
271 	    ip_nodef_v6intfid }
272 };
273 
274 static ill_t	ill_null;		/* Empty ILL for init. */
275 char	ipif_loopback_name[] = "lo0";
276 static char *ipv4_forward_suffix = ":ip_forwarding";
277 static char *ipv6_forward_suffix = ":ip6_forwarding";
278 static	sin6_t	sin6_null;	/* Zero address for quick clears */
279 static	sin_t	sin_null;	/* Zero address for quick clears */
280 
281 /* When set search for unused ipif_seqid */
282 static ipif_t	ipif_zero;
283 
284 /*
285  * ppa arena is created after these many
286  * interfaces have been plumbed.
287  */
288 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
289 
290 /*
291  * Allocate per-interface mibs.
292  * Returns true if ok. False otherwise.
293  *  ipsq  may not yet be allocated (loopback case ).
294  */
295 static boolean_t
296 ill_allocate_mibs(ill_t *ill)
297 {
298 	/* Already allocated? */
299 	if (ill->ill_ip_mib != NULL) {
300 		if (ill->ill_isv6)
301 			ASSERT(ill->ill_icmp6_mib != NULL);
302 		return (B_TRUE);
303 	}
304 
305 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
306 	    KM_NOSLEEP);
307 	if (ill->ill_ip_mib == NULL) {
308 		return (B_FALSE);
309 	}
310 
311 	/* Setup static information */
312 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
313 	    sizeof (mib2_ipIfStatsEntry_t));
314 	if (ill->ill_isv6) {
315 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
316 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
317 		    sizeof (mib2_ipv6AddrEntry_t));
318 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
319 		    sizeof (mib2_ipv6RouteEntry_t));
320 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
321 		    sizeof (mib2_ipv6NetToMediaEntry_t));
322 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
323 		    sizeof (ipv6_member_t));
324 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
325 		    sizeof (ipv6_grpsrc_t));
326 	} else {
327 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
328 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
329 		    sizeof (mib2_ipAddrEntry_t));
330 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
331 		    sizeof (mib2_ipRouteEntry_t));
332 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
333 		    sizeof (mib2_ipNetToMediaEntry_t));
334 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
335 		    sizeof (ip_member_t));
336 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
337 		    sizeof (ip_grpsrc_t));
338 
339 		/*
340 		 * For a v4 ill, we are done at this point, because per ill
341 		 * icmp mibs are only used for v6.
342 		 */
343 		return (B_TRUE);
344 	}
345 
346 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
347 	    KM_NOSLEEP);
348 	if (ill->ill_icmp6_mib == NULL) {
349 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
350 		ill->ill_ip_mib = NULL;
351 		return (B_FALSE);
352 	}
353 	/* static icmp info */
354 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
355 	    sizeof (mib2_ipv6IfIcmpEntry_t);
356 	/*
357 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
358 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
359 	 * -> ill_phyint_reinit
360 	 */
361 	return (B_TRUE);
362 }
363 
364 /*
365  * Completely vaporize a lower level tap and all associated interfaces.
366  * ill_delete is called only out of ip_close when the device control
367  * stream is being closed.
368  */
369 void
370 ill_delete(ill_t *ill)
371 {
372 	ipif_t	*ipif;
373 	ill_t	*prev_ill;
374 	ip_stack_t	*ipst = ill->ill_ipst;
375 
376 	/*
377 	 * ill_delete may be forcibly entering the ipsq. The previous
378 	 * ioctl may not have completed and may need to be aborted.
379 	 * ipsq_flush takes care of it. If we don't need to enter the
380 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
381 	 * ill_delete_tail is sufficient.
382 	 */
383 	ipsq_flush(ill);
384 
385 	/*
386 	 * Nuke all interfaces.  ipif_free will take down the interface,
387 	 * remove it from the list, and free the data structure.
388 	 * Walk down the ipif list and remove the logical interfaces
389 	 * first before removing the main ipif. We can't unplumb
390 	 * zeroth interface first in the case of IPv6 as update_conn_ill
391 	 * -> ip_ll_multireq de-references ill_ipif for checking
392 	 * POINTOPOINT.
393 	 *
394 	 * If ill_ipif was not properly initialized (i.e low on memory),
395 	 * then no interfaces to clean up. In this case just clean up the
396 	 * ill.
397 	 */
398 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
399 		ipif_free(ipif);
400 
401 	/*
402 	 * clean out all the nce_t entries that depend on this
403 	 * ill for the ill_phys_addr.
404 	 */
405 	nce_flush(ill, B_TRUE);
406 
407 	/* Clean up msgs on pending upcalls for mrouted */
408 	reset_mrt_ill(ill);
409 
410 	update_conn_ill(ill, ipst);
411 
412 	/*
413 	 * Remove multicast references added as a result of calls to
414 	 * ip_join_allmulti().
415 	 */
416 	ip_purge_allmulti(ill);
417 
418 	/*
419 	 * If the ill being deleted is under IPMP, boot it out of the illgrp.
420 	 */
421 	if (IS_UNDER_IPMP(ill))
422 		ipmp_ill_leave_illgrp(ill);
423 
424 	/*
425 	 * ill_down will arrange to blow off any IRE's dependent on this
426 	 * ILL, and shut down fragmentation reassembly.
427 	 */
428 	ill_down(ill);
429 
430 	/* Let SCTP know, so that it can remove this from its list. */
431 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
432 
433 	/*
434 	 * Walk all CONNs that can have a reference on an ire or nce for this
435 	 * ill (we actually walk all that now have stale references).
436 	 */
437 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
438 
439 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
440 	if (ill->ill_isv6)
441 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);
442 
443 	/*
444 	 * If an address on this ILL is being used as a source address then
445 	 * clear out the pointers in other ILLs that point to this ILL.
446 	 */
447 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
448 	if (ill->ill_usesrc_grp_next != NULL) {
449 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
450 			ill_disband_usesrc_group(ill);
451 		} else {	/* consumer of the usesrc ILL */
452 			prev_ill = ill_prev_usesrc(ill);
453 			prev_ill->ill_usesrc_grp_next =
454 			    ill->ill_usesrc_grp_next;
455 		}
456 	}
457 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
458 }
459 
460 static void
461 ipif_non_duplicate(ipif_t *ipif)
462 {
463 	ill_t *ill = ipif->ipif_ill;
464 	mutex_enter(&ill->ill_lock);
465 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
466 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
467 		ASSERT(ill->ill_ipif_dup_count > 0);
468 		ill->ill_ipif_dup_count--;
469 	}
470 	mutex_exit(&ill->ill_lock);
471 }
472 
473 /*
474  * ill_delete_tail is called from ip_modclose after all references
475  * to the closing ill are gone. The wait is done in ip_modclose
476  */
477 void
478 ill_delete_tail(ill_t *ill)
479 {
480 	mblk_t	**mpp;
481 	ipif_t	*ipif;
482 	ip_stack_t	*ipst = ill->ill_ipst;
483 
484 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
485 		ipif_non_duplicate(ipif);
486 		(void) ipif_down_tail(ipif);
487 	}
488 
489 	ASSERT(ill->ill_ipif_dup_count == 0);
490 
491 	/*
492 	 * If polling capability is enabled (which signifies direct
493 	 * upcall into IP and driver has ill saved as a handle),
494 	 * we need to make sure that unbind has completed before we
495 	 * let the ill disappear and driver no longer has any reference
496 	 * to this ill.
497 	 */
498 	mutex_enter(&ill->ill_lock);
499 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
500 		cv_wait(&ill->ill_cv, &ill->ill_lock);
501 	mutex_exit(&ill->ill_lock);
502 	ASSERT(!(ill->ill_capabilities &
503 	    (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
504 
505 	if (ill->ill_net_type != IRE_LOOPBACK)
506 		qprocsoff(ill->ill_rq);
507 
508 	/*
509 	 * We do an ipsq_flush once again now. New messages could have
510 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
511 	 * could also have landed up if an ioctl thread had looked up
512 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
513 	 * enqueued the ioctl when we did the ipsq_flush last time.
514 	 */
515 	ipsq_flush(ill);
516 
517 	/*
518 	 * Free capabilities.
519 	 */
520 	if (ill->ill_hcksum_capab != NULL) {
521 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
522 		ill->ill_hcksum_capab = NULL;
523 	}
524 
525 	if (ill->ill_zerocopy_capab != NULL) {
526 		kmem_free(ill->ill_zerocopy_capab,
527 		    sizeof (ill_zerocopy_capab_t));
528 		ill->ill_zerocopy_capab = NULL;
529 	}
530 
531 	if (ill->ill_lso_capab != NULL) {
532 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
533 		ill->ill_lso_capab = NULL;
534 	}
535 
536 	if (ill->ill_dld_capab != NULL) {
537 		kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
538 		ill->ill_dld_capab = NULL;
539 	}
540 
541 	while (ill->ill_ipif != NULL)
542 		ipif_free_tail(ill->ill_ipif);
543 
544 	/*
545 	 * We have removed all references to ilm from conn and the ones joined
546 	 * within the kernel.
547 	 *
548 	 * We don't walk conns, mrts and ires because
549 	 *
550 	 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
551 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
552 	 *    ill references.
553 	 */
554 
555 	/*
556 	 * If this ill is an IPMP meta-interface, blow away the illgrp.  This
557 	 * is safe to do because the illgrp has already been unlinked from the
558 	 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
559 	 */
560 	if (IS_IPMP(ill)) {
561 		ipmp_illgrp_destroy(ill->ill_grp);
562 		ill->ill_grp = NULL;
563 	}
564 
565 	/*
566 	 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
567 	 * could free the phyint. No more reference to the phyint after this
568 	 * point.
569 	 */
570 	(void) ill_glist_delete(ill);
571 
572 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
573 	if (ill->ill_ndd_name != NULL)
574 		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
575 	rw_exit(&ipst->ips_ip_g_nd_lock);
576 
577 	if (ill->ill_frag_ptr != NULL) {
578 		uint_t count;
579 
580 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
581 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
582 		}
583 		mi_free(ill->ill_frag_ptr);
584 		ill->ill_frag_ptr = NULL;
585 		ill->ill_frag_hash_tbl = NULL;
586 	}
587 
588 	freemsg(ill->ill_nd_lla_mp);
589 	/* Free all retained control messages. */
590 	mpp = &ill->ill_first_mp_to_free;
591 	do {
592 		while (mpp[0]) {
593 			mblk_t  *mp;
594 			mblk_t  *mp1;
595 
596 			mp = mpp[0];
597 			mpp[0] = mp->b_next;
598 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
599 				mp1->b_next = NULL;
600 				mp1->b_prev = NULL;
601 			}
602 			freemsg(mp);
603 		}
604 	} while (mpp++ != &ill->ill_last_mp_to_free);
605 
606 	ill_free_mib(ill);
607 
608 #ifdef DEBUG
609 	ill_trace_cleanup(ill);
610 #endif
611 
612 	/* The default multicast interface might have changed */
613 	ire_increment_multicast_generation(ipst, ill->ill_isv6);
614 
615 	/* Drop refcnt here */
616 	netstack_rele(ill->ill_ipst->ips_netstack);
617 	ill->ill_ipst = NULL;
618 }
619 
620 static void
621 ill_free_mib(ill_t *ill)
622 {
623 	ip_stack_t *ipst = ill->ill_ipst;
624 
625 	/*
626 	 * MIB statistics must not be lost, so when an interface
627 	 * goes away the counter values will be added to the global
628 	 * MIBs.
629 	 */
630 	if (ill->ill_ip_mib != NULL) {
631 		if (ill->ill_isv6) {
632 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
633 			    ill->ill_ip_mib);
634 		} else {
635 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
636 			    ill->ill_ip_mib);
637 		}
638 
639 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
640 		ill->ill_ip_mib = NULL;
641 	}
642 	if (ill->ill_icmp6_mib != NULL) {
643 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
644 		    ill->ill_icmp6_mib);
645 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
646 		ill->ill_icmp6_mib = NULL;
647 	}
648 }
649 
650 /*
651  * Concatenate together a physical address and a sap.
652  *
653  * Sap_lengths are interpreted as follows:
654  *   sap_length == 0	==>	no sap
655  *   sap_length > 0	==>	sap is at the head of the dlpi address
656  *   sap_length < 0	==>	sap is at the tail of the dlpi address
657  */
658 static void
659 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
660     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
661 {
662 	uint16_t sap_addr = (uint16_t)sap_src;
663 
664 	if (sap_length == 0) {
665 		if (phys_src == NULL)
666 			bzero(dst, phys_length);
667 		else
668 			bcopy(phys_src, dst, phys_length);
669 	} else if (sap_length < 0) {
670 		if (phys_src == NULL)
671 			bzero(dst, phys_length);
672 		else
673 			bcopy(phys_src, dst, phys_length);
674 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
675 	} else {
676 		bcopy(&sap_addr, dst, sizeof (sap_addr));
677 		if (phys_src == NULL)
678 			bzero((char *)dst + sap_length, phys_length);
679 		else
680 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
681 	}
682 }
683 
684 /*
685  * Generate a dl_unitdata_req mblk for the device and address given.
686  * addr_length is the length of the physical portion of the address.
687  * If addr is NULL include an all zero address of the specified length.
688  * TRUE? In any case, addr_length is taken to be the entire length of the
689  * dlpi address, including the absolute value of sap_length.
690  */
691 mblk_t *
692 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
693 		t_scalar_t sap_length)
694 {
695 	dl_unitdata_req_t *dlur;
696 	mblk_t	*mp;
697 	t_scalar_t	abs_sap_length;		/* absolute value */
698 
699 	abs_sap_length = ABS(sap_length);
700 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
701 	    DL_UNITDATA_REQ);
702 	if (mp == NULL)
703 		return (NULL);
704 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
705 	/* HACK: accomodate incompatible DLPI drivers */
706 	if (addr_length == 8)
707 		addr_length = 6;
708 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
709 	dlur->dl_dest_addr_offset = sizeof (*dlur);
710 	dlur->dl_priority.dl_min = 0;
711 	dlur->dl_priority.dl_max = 0;
712 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
713 	    (uchar_t *)&dlur[1]);
714 	return (mp);
715 }
716 
717 /*
718  * Add the pending mp to the list. There can be only 1 pending mp
719  * in the list. Any exclusive ioctl that needs to wait for a response
720  * from another module or driver needs to use this function to set
721  * the ipx_pending_mp to the ioctl mblk and wait for the response from
722  * the other module/driver. This is also used while waiting for the
723  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
724  */
725 boolean_t
726 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
727     int waitfor)
728 {
729 	ipxop_t	*ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
730 
731 	ASSERT(IAM_WRITER_IPIF(ipif));
732 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
733 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
734 	ASSERT(ipx->ipx_pending_mp == NULL);
735 	/*
736 	 * The caller may be using a different ipif than the one passed into
737 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
738 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
739 	 * that `ipx_current_ipif == ipif'.
740 	 */
741 	ASSERT(ipx->ipx_current_ipif != NULL);
742 
743 	/*
744 	 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
745 	 * driver.
746 	 */
747 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
748 	    (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
749 	    (DB_TYPE(add_mp) == M_PCPROTO));
750 
751 	if (connp != NULL) {
752 		ASSERT(MUTEX_HELD(&connp->conn_lock));
753 		/*
754 		 * Return error if the conn has started closing. The conn
755 		 * could have finished cleaning up the pending mp list,
756 		 * If so we should not add another mp to the list negating
757 		 * the cleanup.
758 		 */
759 		if (connp->conn_state_flags & CONN_CLOSING)
760 			return (B_FALSE);
761 	}
762 	mutex_enter(&ipx->ipx_lock);
763 	ipx->ipx_pending_ipif = ipif;
764 	/*
765 	 * Note down the queue in b_queue. This will be returned by
766 	 * ipsq_pending_mp_get. Caller will then use these values to restart
767 	 * the processing
768 	 */
769 	add_mp->b_next = NULL;
770 	add_mp->b_queue = q;
771 	ipx->ipx_pending_mp = add_mp;
772 	ipx->ipx_waitfor = waitfor;
773 	mutex_exit(&ipx->ipx_lock);
774 
775 	if (connp != NULL)
776 		connp->conn_oper_pending_ill = ipif->ipif_ill;
777 
778 	return (B_TRUE);
779 }
780 
781 /*
782  * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
783  * queued in the list.
784  */
785 mblk_t *
786 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
787 {
788 	mblk_t	*curr = NULL;
789 	ipxop_t	*ipx = ipsq->ipsq_xop;
790 
791 	*connpp = NULL;
792 	mutex_enter(&ipx->ipx_lock);
793 	if (ipx->ipx_pending_mp == NULL) {
794 		mutex_exit(&ipx->ipx_lock);
795 		return (NULL);
796 	}
797 
798 	/* There can be only 1 such excl message */
799 	curr = ipx->ipx_pending_mp;
800 	ASSERT(curr->b_next == NULL);
801 	ipx->ipx_pending_ipif = NULL;
802 	ipx->ipx_pending_mp = NULL;
803 	ipx->ipx_waitfor = 0;
804 	mutex_exit(&ipx->ipx_lock);
805 
806 	if (CONN_Q(curr->b_queue)) {
807 		/*
808 		 * This mp did a refhold on the conn, at the start of the ioctl.
809 		 * So we can safely return a pointer to the conn to the caller.
810 		 */
811 		*connpp = Q_TO_CONN(curr->b_queue);
812 	} else {
813 		*connpp = NULL;
814 	}
815 	curr->b_next = NULL;
816 	curr->b_prev = NULL;
817 	return (curr);
818 }
819 
820 /*
821  * Cleanup the ioctl mp queued in ipx_pending_mp
822  * - Called in the ill_delete path
823  * - Called in the M_ERROR or M_HANGUP path on the ill.
824  * - Called in the conn close path.
825  */
826 boolean_t
827 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
828 {
829 	mblk_t	*mp;
830 	ipxop_t	*ipx;
831 	queue_t	*q;
832 	ipif_t	*ipif;
833 	int	cmd;
834 
835 	ASSERT(IAM_WRITER_ILL(ill));
836 	ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
837 
838 	/*
839 	 * If connp is null, unconditionally clean up the ipx_pending_mp.
840 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
841 	 * even if it is meant for another ill, since we have to enqueue
842 	 * a new mp now in ipx_pending_mp to complete the ipif_down.
843 	 * If connp is non-null we are called from the conn close path.
844 	 */
845 	mutex_enter(&ipx->ipx_lock);
846 	mp = ipx->ipx_pending_mp;
847 	if (mp == NULL || (connp != NULL &&
848 	    mp->b_queue != CONNP_TO_WQ(connp))) {
849 		mutex_exit(&ipx->ipx_lock);
850 		return (B_FALSE);
851 	}
852 	/* Now remove from the ipx_pending_mp */
853 	ipx->ipx_pending_mp = NULL;
854 	q = mp->b_queue;
855 	mp->b_next = NULL;
856 	mp->b_prev = NULL;
857 	mp->b_queue = NULL;
858 
859 	ipif = ipx->ipx_pending_ipif;
860 	ipx->ipx_pending_ipif = NULL;
861 	ipx->ipx_waitfor = 0;
862 	ipx->ipx_current_ipif = NULL;
863 	cmd = ipx->ipx_current_ioctl;
864 	ipx->ipx_current_ioctl = 0;
865 	ipx->ipx_current_done = B_TRUE;
866 	mutex_exit(&ipx->ipx_lock);
867 
868 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
869 		DTRACE_PROBE4(ipif__ioctl,
870 		    char *, "ipsq_pending_mp_cleanup",
871 		    int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
872 		    ipif_t *, ipif);
873 		if (connp == NULL) {
874 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
875 		} else {
876 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
877 			mutex_enter(&ipif->ipif_ill->ill_lock);
878 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
879 			mutex_exit(&ipif->ipif_ill->ill_lock);
880 		}
881 	} else {
882 		/*
883 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
884 		 * be just inet_freemsg. we have to restart it
885 		 * otherwise the thread will be stuck.
886 		 */
887 		inet_freemsg(mp);
888 	}
889 	return (B_TRUE);
890 }
891 
892 /*
893  * Called in the conn close path and ill delete path
894  */
895 static void
896 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
897 {
898 	ipsq_t	*ipsq;
899 	mblk_t	*prev;
900 	mblk_t	*curr;
901 	mblk_t	*next;
902 	queue_t	*rq, *wq;
903 	mblk_t	*tmp_list = NULL;
904 
905 	ASSERT(IAM_WRITER_ILL(ill));
906 	if (connp != NULL)
907 		wq = CONNP_TO_WQ(connp);
908 	else
909 		wq = ill->ill_wq;
910 	rq = RD(wq);
911 
912 	ipsq = ill->ill_phyint->phyint_ipsq;
913 	/*
914 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
915 	 * In the case of ioctl from a conn, there can be only 1 mp
916 	 * queued on the ipsq. If an ill is being unplumbed, only messages
917 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
918 	 * ioctls meant for this ill form conn's are not flushed. They will
919 	 * be processed during ipsq_exit and will not find the ill and will
920 	 * return error.
921 	 */
922 	mutex_enter(&ipsq->ipsq_lock);
923 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
924 	    curr = next) {
925 		next = curr->b_next;
926 		if (curr->b_queue == wq || curr->b_queue == rq) {
927 			/* Unlink the mblk from the pending mp list */
928 			if (prev != NULL) {
929 				prev->b_next = curr->b_next;
930 			} else {
931 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
932 				ipsq->ipsq_xopq_mphead = curr->b_next;
933 			}
934 			if (ipsq->ipsq_xopq_mptail == curr)
935 				ipsq->ipsq_xopq_mptail = prev;
936 			/*
937 			 * Create a temporary list and release the ipsq lock
938 			 * New elements are added to the head of the tmp_list
939 			 */
940 			curr->b_next = tmp_list;
941 			tmp_list = curr;
942 		} else {
943 			prev = curr;
944 		}
945 	}
946 	mutex_exit(&ipsq->ipsq_lock);
947 
948 	while (tmp_list != NULL) {
949 		curr = tmp_list;
950 		tmp_list = curr->b_next;
951 		curr->b_next = NULL;
952 		curr->b_prev = NULL;
953 		curr->b_queue = NULL;
954 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
955 			DTRACE_PROBE4(ipif__ioctl,
956 			    char *, "ipsq_xopq_mp_cleanup",
957 			    int, 0, ill_t *, NULL, ipif_t *, NULL);
958 			ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
959 			    CONN_CLOSE : NO_COPYOUT, NULL);
960 		} else {
961 			/*
962 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
963 			 * this can't be just inet_freemsg. we have to
964 			 * restart it otherwise the thread will be stuck.
965 			 */
966 			inet_freemsg(curr);
967 		}
968 	}
969 }
970 
971 /*
972  * This conn has started closing. Cleanup any pending ioctl from this conn.
973  * STREAMS ensures that there can be at most 1 active ioctl on a stream.
974  */
975 void
976 conn_ioctl_cleanup(conn_t *connp)
977 {
978 	ipsq_t	*ipsq;
979 	ill_t	*ill;
980 	boolean_t refheld;
981 
982 	/*
983 	 * Check for a queued ioctl. If the ioctl has not yet started, the mp
984 	 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
985 	 * started the mp could be present in ipx_pending_mp. Note that if
986 	 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
987 	 * not yet queued anywhere. In this case, the conn close code will wait
988 	 * until the conn_ref is dropped. If the stream was a tcp stream, then
989 	 * tcp_close will wait first until all ioctls have completed for this
990 	 * conn.
991 	 */
992 	mutex_enter(&connp->conn_lock);
993 	ill = connp->conn_oper_pending_ill;
994 	if (ill == NULL) {
995 		mutex_exit(&connp->conn_lock);
996 		return;
997 	}
998 
999 	/*
1000 	 * We may not be able to refhold the ill if the ill/ipif
1001 	 * is changing. But we need to make sure that the ill will
1002 	 * not vanish. So we just bump up the ill_waiter count.
1003 	 */
1004 	refheld = ill_waiter_inc(ill);
1005 	mutex_exit(&connp->conn_lock);
1006 	if (refheld) {
1007 		if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1008 			ill_waiter_dcr(ill);
1009 			/*
1010 			 * Check whether this ioctl has started and is
1011 			 * pending. If it is not found there then check
1012 			 * whether this ioctl has not even started and is in
1013 			 * the ipsq_xopq list.
1014 			 */
1015 			if (!ipsq_pending_mp_cleanup(ill, connp))
1016 				ipsq_xopq_mp_cleanup(ill, connp);
1017 			ipsq = ill->ill_phyint->phyint_ipsq;
1018 			ipsq_exit(ipsq);
1019 			return;
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * The ill is also closing and we could not bump up the
1025 	 * ill_waiter_count or we could not enter the ipsq. Leave
1026 	 * the cleanup to ill_delete
1027 	 */
1028 	mutex_enter(&connp->conn_lock);
1029 	while (connp->conn_oper_pending_ill != NULL)
1030 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1031 	mutex_exit(&connp->conn_lock);
1032 	if (refheld)
1033 		ill_waiter_dcr(ill);
1034 }
1035 
1036 /*
1037  * ipcl_walk function for cleaning up conn_*_ill fields.
1038  * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1039  * conn_bound_if in place. We prefer dropping
1040  * packets instead of sending them out the wrong interface, or accepting
1041  * packets from the wrong ifindex.
1042  */
1043 static void
1044 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1045 {
1046 	ill_t	*ill = (ill_t *)arg;
1047 
1048 	mutex_enter(&connp->conn_lock);
1049 	if (connp->conn_dhcpinit_ill == ill) {
1050 		connp->conn_dhcpinit_ill = NULL;
1051 		ASSERT(ill->ill_dhcpinit != 0);
1052 		atomic_dec_32(&ill->ill_dhcpinit);
1053 		ill_set_inputfn(ill);
1054 	}
1055 	mutex_exit(&connp->conn_lock);
1056 }
1057 
1058 static int
1059 ill_down_ipifs_tail(ill_t *ill)
1060 {
1061 	ipif_t	*ipif;
1062 	int err;
1063 
1064 	ASSERT(IAM_WRITER_ILL(ill));
1065 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1066 		ipif_non_duplicate(ipif);
1067 		/*
1068 		 * ipif_down_tail will call arp_ll_down on the last ipif
1069 		 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1070 		 */
1071 		if ((err = ipif_down_tail(ipif)) != 0)
1072 			return (err);
1073 	}
1074 	return (0);
1075 }
1076 
1077 /* ARGSUSED */
1078 void
1079 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1080 {
1081 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1082 	(void) ill_down_ipifs_tail(q->q_ptr);
1083 	freemsg(mp);
1084 	ipsq_current_finish(ipsq);
1085 }
1086 
1087 /*
1088  * ill_down_start is called when we want to down this ill and bring it up again
1089  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1090  * all interfaces, but don't tear down any plumbing.
1091  */
1092 boolean_t
1093 ill_down_start(queue_t *q, mblk_t *mp)
1094 {
1095 	ill_t	*ill = q->q_ptr;
1096 	ipif_t	*ipif;
1097 
1098 	ASSERT(IAM_WRITER_ILL(ill));
1099 	mutex_enter(&ill->ill_lock);
1100 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
1101 	/* no more nce addition allowed */
1102 	mutex_exit(&ill->ill_lock);
1103 
1104 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1105 		(void) ipif_down(ipif, NULL, NULL);
1106 
1107 	ill_down(ill);
1108 
1109 	/*
1110 	 * Walk all CONNs that can have a reference on an ire or nce for this
1111 	 * ill (we actually walk all that now have stale references).
1112 	 */
1113 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);
1114 
1115 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
1116 	if (ill->ill_isv6)
1117 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);
1118 
1119 
1120 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1121 
1122 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1123 
1124 	/*
1125 	 * Atomically test and add the pending mp if references are active.
1126 	 */
1127 	mutex_enter(&ill->ill_lock);
1128 	if (!ill_is_quiescent(ill)) {
1129 		/* call cannot fail since `conn_t *' argument is NULL */
1130 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1131 		    mp, ILL_DOWN);
1132 		mutex_exit(&ill->ill_lock);
1133 		return (B_FALSE);
1134 	}
1135 	mutex_exit(&ill->ill_lock);
1136 	return (B_TRUE);
1137 }
1138 
1139 static void
1140 ill_down(ill_t *ill)
1141 {
1142 	mblk_t	*mp;
1143 	ip_stack_t	*ipst = ill->ill_ipst;
1144 
1145 	/*
1146 	 * Blow off any IREs dependent on this ILL.
1147 	 * The caller needs to handle conn_ixa_cleanup
1148 	 */
1149 	ill_delete_ires(ill);
1150 
1151 	ire_walk_ill(0, 0, ill_downi, ill, ill);
1152 
1153 	/* Remove any conn_*_ill depending on this ill */
1154 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1155 
1156 	/*
1157 	 * Free state for additional IREs.
1158 	 */
1159 	mutex_enter(&ill->ill_saved_ire_lock);
1160 	mp = ill->ill_saved_ire_mp;
1161 	ill->ill_saved_ire_mp = NULL;
1162 	ill->ill_saved_ire_cnt = 0;
1163 	mutex_exit(&ill->ill_saved_ire_lock);
1164 	freemsg(mp);
1165 }
1166 
1167 /*
1168  * ire_walk routine used to delete every IRE that depends on
1169  * 'ill'.  (Always called as writer.)
1170  *
1171  * Note: since the routes added by the kernel are deleted separately,
1172  * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1173  *
1174  * We also remove references on ire_nce_cache entries that refer to the ill.
1175  */
1176 void
1177 ill_downi(ire_t *ire, char *ill_arg)
1178 {
1179 	ill_t	*ill = (ill_t *)ill_arg;
1180 	nce_t	*nce;
1181 
1182 	mutex_enter(&ire->ire_lock);
1183 	nce = ire->ire_nce_cache;
1184 	if (nce != NULL && nce->nce_ill == ill)
1185 		ire->ire_nce_cache = NULL;
1186 	else
1187 		nce = NULL;
1188 	mutex_exit(&ire->ire_lock);
1189 	if (nce != NULL)
1190 		nce_refrele(nce);
1191 	if (ire->ire_ill == ill)
1192 		ire_delete(ire);
1193 }
1194 
1195 /* Remove IRE_IF_CLONE on this ill */
1196 void
1197 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1198 {
1199 	ill_t	*ill = (ill_t *)ill_arg;
1200 
1201 	ASSERT(ire->ire_type & IRE_IF_CLONE);
1202 	if (ire->ire_ill == ill)
1203 		ire_delete(ire);
1204 }
1205 
1206 /* Consume an M_IOCACK of the fastpath probe. */
1207 void
1208 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1209 {
1210 	mblk_t	*mp1 = mp;
1211 
1212 	/*
1213 	 * If this was the first attempt turn on the fastpath probing.
1214 	 */
1215 	mutex_enter(&ill->ill_lock);
1216 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1217 		ill->ill_dlpi_fastpath_state = IDS_OK;
1218 	mutex_exit(&ill->ill_lock);
1219 
1220 	/* Free the M_IOCACK mblk, hold on to the data */
1221 	mp = mp->b_cont;
1222 	freeb(mp1);
1223 	if (mp == NULL)
1224 		return;
1225 	if (mp->b_cont != NULL)
1226 		nce_fastpath_update(ill, mp);
1227 	else
1228 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1229 	freemsg(mp);
1230 }
1231 
1232 /*
1233  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1234  * The data portion of the request is a dl_unitdata_req_t template for
1235  * what we would send downstream in the absence of a fastpath confirmation.
1236  */
1237 int
1238 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1239 {
1240 	struct iocblk	*ioc;
1241 	mblk_t	*mp;
1242 
1243 	if (dlur_mp == NULL)
1244 		return (EINVAL);
1245 
1246 	mutex_enter(&ill->ill_lock);
1247 	switch (ill->ill_dlpi_fastpath_state) {
1248 	case IDS_FAILED:
1249 		/*
1250 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1251 		 * support it.
1252 		 */
1253 		mutex_exit(&ill->ill_lock);
1254 		return (ENOTSUP);
1255 	case IDS_UNKNOWN:
1256 		/* This is the first probe */
1257 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1258 		break;
1259 	default:
1260 		break;
1261 	}
1262 	mutex_exit(&ill->ill_lock);
1263 
1264 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1265 		return (EAGAIN);
1266 
1267 	mp->b_cont = copyb(dlur_mp);
1268 	if (mp->b_cont == NULL) {
1269 		freeb(mp);
1270 		return (EAGAIN);
1271 	}
1272 
1273 	ioc = (struct iocblk *)mp->b_rptr;
1274 	ioc->ioc_count = msgdsize(mp->b_cont);
1275 
1276 	DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1277 	    char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1278 	putnext(ill->ill_wq, mp);
1279 	return (0);
1280 }
1281 
1282 void
1283 ill_capability_probe(ill_t *ill)
1284 {
1285 	mblk_t	*mp;
1286 
1287 	ASSERT(IAM_WRITER_ILL(ill));
1288 
1289 	if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1290 	    ill->ill_dlpi_capab_state != IDCS_FAILED)
1291 		return;
1292 
1293 	/*
1294 	 * We are starting a new cycle of capability negotiation.
1295 	 * Free up the capab reset messages of any previous incarnation.
1296 	 * We will do a fresh allocation when we get the response to our probe
1297 	 */
1298 	if (ill->ill_capab_reset_mp != NULL) {
1299 		freemsg(ill->ill_capab_reset_mp);
1300 		ill->ill_capab_reset_mp = NULL;
1301 	}
1302 
1303 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1304 
1305 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1306 	if (mp == NULL)
1307 		return;
1308 
1309 	ill_capability_send(ill, mp);
1310 	ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1311 }
1312 
1313 void
1314 ill_capability_reset(ill_t *ill, boolean_t reneg)
1315 {
1316 	ASSERT(IAM_WRITER_ILL(ill));
1317 
1318 	if (ill->ill_dlpi_capab_state != IDCS_OK)
1319 		return;
1320 
1321 	ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1322 
1323 	ill_capability_send(ill, ill->ill_capab_reset_mp);
1324 	ill->ill_capab_reset_mp = NULL;
1325 	/*
1326 	 * We turn off all capabilities except those pertaining to
1327 	 * direct function call capabilities viz. ILL_CAPAB_DLD*
1328 	 * which will be turned off by the corresponding reset functions.
1329 	 */
1330 	ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM  | ILL_CAPAB_ZEROCOPY);
1331 }
1332 
1333 static void
1334 ill_capability_reset_alloc(ill_t *ill)
1335 {
1336 	mblk_t *mp;
1337 	size_t	size = 0;
1338 	int	err;
1339 	dl_capability_req_t	*capb;
1340 
1341 	ASSERT(IAM_WRITER_ILL(ill));
1342 	ASSERT(ill->ill_capab_reset_mp == NULL);
1343 
1344 	if (ILL_HCKSUM_CAPABLE(ill)) {
1345 		size += sizeof (dl_capability_sub_t) +
1346 		    sizeof (dl_capab_hcksum_t);
1347 	}
1348 
1349 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1350 		size += sizeof (dl_capability_sub_t) +
1351 		    sizeof (dl_capab_zerocopy_t);
1352 	}
1353 
1354 	if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1355 		size += sizeof (dl_capability_sub_t) +
1356 		    sizeof (dl_capab_dld_t);
1357 	}
1358 
1359 	mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1360 	    STR_NOSIG, &err);
1361 
1362 	mp->b_datap->db_type = M_PROTO;
1363 	bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1364 
1365 	capb = (dl_capability_req_t *)mp->b_rptr;
1366 	capb->dl_primitive = DL_CAPABILITY_REQ;
1367 	capb->dl_sub_offset = sizeof (dl_capability_req_t);
1368 	capb->dl_sub_length = size;
1369 
1370 	mp->b_wptr += sizeof (dl_capability_req_t);
1371 
1372 	/*
1373 	 * Each handler fills in the corresponding dl_capability_sub_t
1374 	 * inside the mblk,
1375 	 */
1376 	ill_capability_hcksum_reset_fill(ill, mp);
1377 	ill_capability_zerocopy_reset_fill(ill, mp);
1378 	ill_capability_dld_reset_fill(ill, mp);
1379 
1380 	ill->ill_capab_reset_mp = mp;
1381 }
1382 
1383 static void
1384 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1385 {
1386 	dl_capab_id_t *id_ic;
1387 	uint_t sub_dl_cap = outers->dl_cap;
1388 	dl_capability_sub_t *inners;
1389 	uint8_t *capend;
1390 
1391 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1392 
1393 	/*
1394 	 * Note: range checks here are not absolutely sufficient to
1395 	 * make us robust against malformed messages sent by drivers;
1396 	 * this is in keeping with the rest of IP's dlpi handling.
1397 	 * (Remember, it's coming from something else in the kernel
1398 	 * address space)
1399 	 */
1400 
1401 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1402 	if (capend > mp->b_wptr) {
1403 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1404 		    "malformed sub-capability too long for mblk");
1405 		return;
1406 	}
1407 
1408 	id_ic = (dl_capab_id_t *)(outers + 1);
1409 
1410 	if (outers->dl_length < sizeof (*id_ic) ||
1411 	    (inners = &id_ic->id_subcap,
1412 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1413 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1414 		    "encapsulated capab type %d too long for mblk",
1415 		    inners->dl_cap);
1416 		return;
1417 	}
1418 
1419 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1420 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1421 		    "isn't as expected; pass-thru module(s) detected, "
1422 		    "discarding capability\n", inners->dl_cap));
1423 		return;
1424 	}
1425 
1426 	/* Process the encapsulated sub-capability */
1427 	ill_capability_dispatch(ill, mp, inners);
1428 }
1429 
1430 static void
1431 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1432 {
1433 	dl_capability_sub_t *dl_subcap;
1434 
1435 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1436 		return;
1437 
1438 	/*
1439 	 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1440 	 * initialized below since it is not used by DLD.
1441 	 */
1442 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1443 	dl_subcap->dl_cap = DL_CAPAB_DLD;
1444 	dl_subcap->dl_length = sizeof (dl_capab_dld_t);
1445 
1446 	mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1447 }
1448 
1449 static void
1450 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1451 {
1452 	/*
1453 	 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1454 	 * is only to get the VRRP capability.
1455 	 *
1456 	 * Note that we cannot check ill_ipif_up_count here since
1457 	 * ill_ipif_up_count is only incremented when the resolver is setup.
1458 	 * That is done asynchronously, and can race with this function.
1459 	 */
1460 	if (!ill->ill_dl_up) {
1461 		if (subp->dl_cap == DL_CAPAB_VRRP)
1462 			ill_capability_vrrp_ack(ill, mp, subp);
1463 		return;
1464 	}
1465 
1466 	switch (subp->dl_cap) {
1467 	case DL_CAPAB_HCKSUM:
1468 		ill_capability_hcksum_ack(ill, mp, subp);
1469 		break;
1470 	case DL_CAPAB_ZEROCOPY:
1471 		ill_capability_zerocopy_ack(ill, mp, subp);
1472 		break;
1473 	case DL_CAPAB_DLD:
1474 		ill_capability_dld_ack(ill, mp, subp);
1475 		break;
1476 	case DL_CAPAB_VRRP:
1477 		break;
1478 	default:
1479 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1480 		    subp->dl_cap));
1481 	}
1482 }
1483 
1484 /*
1485  * Process the vrrp capability received from a DLS Provider. isub must point
1486  * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1487  */
1488 static void
1489 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1490 {
1491 	dl_capab_vrrp_t	*vrrp;
1492 	uint_t		sub_dl_cap = isub->dl_cap;
1493 	uint8_t		*capend;
1494 
1495 	ASSERT(IAM_WRITER_ILL(ill));
1496 	ASSERT(sub_dl_cap == DL_CAPAB_VRRP);
1497 
1498 	/*
1499 	 * Note: range checks here are not absolutely sufficient to
1500 	 * make us robust against malformed messages sent by drivers;
1501 	 * this is in keeping with the rest of IP's dlpi handling.
1502 	 * (Remember, it's coming from something else in the kernel
1503 	 * address space)
1504 	 */
1505 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1506 	if (capend > mp->b_wptr) {
1507 		cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1508 		    "malformed sub-capability too long for mblk");
1509 		return;
1510 	}
1511 	vrrp = (dl_capab_vrrp_t *)(isub + 1);
1512 
1513 	/*
1514 	 * Compare the IP address family and set ILLF_VRRP for the right ill.
1515 	 */
1516 	if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1517 	    (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1518 		ill->ill_flags |= ILLF_VRRP;
1519 	}
1520 }
1521 
1522 /*
1523  * Process a hardware checksum offload capability negotiation ack received
1524  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1525  * of a DL_CAPABILITY_ACK message.
1526  */
1527 static void
1528 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1529 {
1530 	dl_capability_req_t	*ocap;
1531 	dl_capab_hcksum_t	*ihck, *ohck;
1532 	ill_hcksum_capab_t	**ill_hcksum;
1533 	mblk_t			*nmp = NULL;
1534 	uint_t			sub_dl_cap = isub->dl_cap;
1535 	uint8_t			*capend;
1536 
1537 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
1538 
1539 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
1540 
1541 	/*
1542 	 * Note: range checks here are not absolutely sufficient to
1543 	 * make us robust against malformed messages sent by drivers;
1544 	 * this is in keeping with the rest of IP's dlpi handling.
1545 	 * (Remember, it's coming from something else in the kernel
1546 	 * address space)
1547 	 */
1548 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1549 	if (capend > mp->b_wptr) {
1550 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1551 		    "malformed sub-capability too long for mblk");
1552 		return;
1553 	}
1554 
1555 	/*
1556 	 * There are two types of acks we process here:
1557 	 * 1. acks in reply to a (first form) generic capability req
1558 	 *    (no ENABLE flag set)
1559 	 * 2. acks in reply to a ENABLE capability req.
1560 	 *    (ENABLE flag set)
1561 	 */
1562 	ihck = (dl_capab_hcksum_t *)(isub + 1);
1563 
1564 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1565 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1566 		    "unsupported hardware checksum "
1567 		    "sub-capability (version %d, expected %d)",
1568 		    ihck->hcksum_version, HCKSUM_VERSION_1);
1569 		return;
1570 	}
1571 
1572 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1573 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1574 		    "checksum capability isn't as expected; pass-thru "
1575 		    "module(s) detected, discarding capability\n"));
1576 		return;
1577 	}
1578 
1579 #define	CURR_HCKSUM_CAPAB				\
1580 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
1581 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
1582 
1583 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1584 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1585 		/* do ENABLE processing */
1586 		if (*ill_hcksum == NULL) {
1587 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1588 			    KM_NOSLEEP);
1589 
1590 			if (*ill_hcksum == NULL) {
1591 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1592 				    "could not enable hcksum version %d "
1593 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1594 				    ill->ill_name);
1595 				return;
1596 			}
1597 		}
1598 
1599 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1600 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1601 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1602 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
1603 		    "has enabled hardware checksumming\n ",
1604 		    ill->ill_name));
1605 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1606 		/*
1607 		 * Enabling hardware checksum offload
1608 		 * Currently IP supports {TCP,UDP}/IPv4
1609 		 * partial and full cksum offload and
1610 		 * IPv4 header checksum offload.
1611 		 * Allocate new mblk which will
1612 		 * contain a new capability request
1613 		 * to enable hardware checksum offload.
1614 		 */
1615 		uint_t	size;
1616 		uchar_t	*rptr;
1617 
1618 		size = sizeof (dl_capability_req_t) +
1619 		    sizeof (dl_capability_sub_t) + isub->dl_length;
1620 
1621 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1622 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1623 			    "could not enable hardware cksum for %s (ENOMEM)\n",
1624 			    ill->ill_name);
1625 			return;
1626 		}
1627 
1628 		rptr = nmp->b_rptr;
1629 		/* initialize dl_capability_req_t */
1630 		ocap = (dl_capability_req_t *)nmp->b_rptr;
1631 		ocap->dl_sub_offset =
1632 		    sizeof (dl_capability_req_t);
1633 		ocap->dl_sub_length =
1634 		    sizeof (dl_capability_sub_t) +
1635 		    isub->dl_length;
1636 		nmp->b_rptr += sizeof (dl_capability_req_t);
1637 
1638 		/* initialize dl_capability_sub_t */
1639 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
1640 		nmp->b_rptr += sizeof (*isub);
1641 
1642 		/* initialize dl_capab_hcksum_t */
1643 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
1644 		bcopy(ihck, ohck, sizeof (*ihck));
1645 
1646 		nmp->b_rptr = rptr;
1647 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
1648 
1649 		/* Set ENABLE flag */
1650 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1651 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
1652 
1653 		/*
1654 		 * nmp points to a DL_CAPABILITY_REQ message to enable
1655 		 * hardware checksum acceleration.
1656 		 */
1657 		ill_capability_send(ill, nmp);
1658 	} else {
1659 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1660 		    "advertised %x hardware checksum capability flags\n",
1661 		    ill->ill_name, ihck->hcksum_txflags));
1662 	}
1663 }
1664 
1665 static void
1666 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1667 {
1668 	dl_capab_hcksum_t *hck_subcap;
1669 	dl_capability_sub_t *dl_subcap;
1670 
1671 	if (!ILL_HCKSUM_CAPABLE(ill))
1672 		return;
1673 
1674 	ASSERT(ill->ill_hcksum_capab != NULL);
1675 
1676 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1677 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1678 	dl_subcap->dl_length = sizeof (*hck_subcap);
1679 
1680 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1681 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1682 	hck_subcap->hcksum_txflags = 0;
1683 
1684 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1685 }
1686 
1687 static void
1688 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1689 {
1690 	mblk_t *nmp = NULL;
1691 	dl_capability_req_t *oc;
1692 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
1693 	ill_zerocopy_capab_t **ill_zerocopy_capab;
1694 	uint_t sub_dl_cap = isub->dl_cap;
1695 	uint8_t *capend;
1696 
1697 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
1698 
1699 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
1700 
1701 	/*
1702 	 * Note: range checks here are not absolutely sufficient to
1703 	 * make us robust against malformed messages sent by drivers;
1704 	 * this is in keeping with the rest of IP's dlpi handling.
1705 	 * (Remember, it's coming from something else in the kernel
1706 	 * address space)
1707 	 */
1708 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1709 	if (capend > mp->b_wptr) {
1710 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1711 		    "malformed sub-capability too long for mblk");
1712 		return;
1713 	}
1714 
1715 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1716 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1717 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1718 		    "unsupported ZEROCOPY sub-capability (version %d, "
1719 		    "expected %d)", zc_ic->zerocopy_version,
1720 		    ZEROCOPY_VERSION_1);
1721 		return;
1722 	}
1723 
1724 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1725 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1726 		    "capability isn't as expected; pass-thru module(s) "
1727 		    "detected, discarding capability\n"));
1728 		return;
1729 	}
1730 
1731 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1732 		if (*ill_zerocopy_capab == NULL) {
1733 			*ill_zerocopy_capab =
1734 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1735 			    KM_NOSLEEP);
1736 
1737 			if (*ill_zerocopy_capab == NULL) {
1738 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1739 				    "could not enable Zero-copy version %d "
1740 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1741 				    ill->ill_name);
1742 				return;
1743 			}
1744 		}
1745 
1746 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1747 		    "supports Zero-copy version %d\n", ill->ill_name,
1748 		    ZEROCOPY_VERSION_1));
1749 
1750 		(*ill_zerocopy_capab)->ill_zerocopy_version =
1751 		    zc_ic->zerocopy_version;
1752 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
1753 		    zc_ic->zerocopy_flags;
1754 
1755 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1756 	} else {
1757 		uint_t size;
1758 		uchar_t *rptr;
1759 
1760 		size = sizeof (dl_capability_req_t) +
1761 		    sizeof (dl_capability_sub_t) +
1762 		    sizeof (dl_capab_zerocopy_t);
1763 
1764 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1765 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1766 			    "could not enable zerocopy for %s (ENOMEM)\n",
1767 			    ill->ill_name);
1768 			return;
1769 		}
1770 
1771 		rptr = nmp->b_rptr;
1772 		/* initialize dl_capability_req_t */
1773 		oc = (dl_capability_req_t *)rptr;
1774 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
1775 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1776 		    sizeof (dl_capab_zerocopy_t);
1777 		rptr += sizeof (dl_capability_req_t);
1778 
1779 		/* initialize dl_capability_sub_t */
1780 		bcopy(isub, rptr, sizeof (*isub));
1781 		rptr += sizeof (*isub);
1782 
1783 		/* initialize dl_capab_zerocopy_t */
1784 		zc_oc = (dl_capab_zerocopy_t *)rptr;
1785 		*zc_oc = *zc_ic;
1786 
1787 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1788 		    "to enable zero-copy version %d\n", ill->ill_name,
1789 		    ZEROCOPY_VERSION_1));
1790 
1791 		/* set VMSAFE_MEM flag */
1792 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
1793 
1794 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1795 		ill_capability_send(ill, nmp);
1796 	}
1797 }
1798 
1799 static void
1800 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1801 {
1802 	dl_capab_zerocopy_t *zerocopy_subcap;
1803 	dl_capability_sub_t *dl_subcap;
1804 
1805 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1806 		return;
1807 
1808 	ASSERT(ill->ill_zerocopy_capab != NULL);
1809 
1810 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1811 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1812 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
1813 
1814 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1815 	zerocopy_subcap->zerocopy_version =
1816 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
1817 	zerocopy_subcap->zerocopy_flags = 0;
1818 
1819 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1820 }
1821 
1822 /*
1823  * DLD capability
1824  * Refer to dld.h for more information regarding the purpose and usage
1825  * of this capability.
1826  */
1827 static void
1828 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1829 {
1830 	dl_capab_dld_t		*dld_ic, dld;
1831 	uint_t			sub_dl_cap = isub->dl_cap;
1832 	uint8_t			*capend;
1833 	ill_dld_capab_t		*idc;
1834 
1835 	ASSERT(IAM_WRITER_ILL(ill));
1836 	ASSERT(sub_dl_cap == DL_CAPAB_DLD);
1837 
1838 	/*
1839 	 * Note: range checks here are not absolutely sufficient to
1840 	 * make us robust against malformed messages sent by drivers;
1841 	 * this is in keeping with the rest of IP's dlpi handling.
1842 	 * (Remember, it's coming from something else in the kernel
1843 	 * address space)
1844 	 */
1845 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1846 	if (capend > mp->b_wptr) {
1847 		cmn_err(CE_WARN, "ill_capability_dld_ack: "
1848 		    "malformed sub-capability too long for mblk");
1849 		return;
1850 	}
1851 	dld_ic = (dl_capab_dld_t *)(isub + 1);
1852 	if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1853 		cmn_err(CE_CONT, "ill_capability_dld_ack: "
1854 		    "unsupported DLD sub-capability (version %d, "
1855 		    "expected %d)", dld_ic->dld_version,
1856 		    DLD_CURRENT_VERSION);
1857 		return;
1858 	}
1859 	if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1860 		ip1dbg(("ill_capability_dld_ack: mid token for dld "
1861 		    "capability isn't as expected; pass-thru module(s) "
1862 		    "detected, discarding capability\n"));
1863 		return;
1864 	}
1865 
1866 	/*
1867 	 * Copy locally to ensure alignment.
1868 	 */
1869 	bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
1870 
1871 	if ((idc = ill->ill_dld_capab) == NULL) {
1872 		idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1873 		if (idc == NULL) {
1874 			cmn_err(CE_WARN, "ill_capability_dld_ack: "
1875 			    "could not enable DLD version %d "
1876 			    "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1877 			    ill->ill_name);
1878 			return;
1879 		}
1880 		ill->ill_dld_capab = idc;
1881 	}
1882 	idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1883 	idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1884 	ip1dbg(("ill_capability_dld_ack: interface %s "
1885 	    "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
1886 
1887 	ill_capability_dld_enable(ill);
1888 }
1889 
1890 /*
1891  * Typically capability negotiation between IP and the driver happens via
1892  * DLPI message exchange. However GLD also offers a direct function call
1893  * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1894  * But arbitrary function calls into IP or GLD are not permitted, since both
1895  * of them are protected by their own perimeter mechanism. The perimeter can
1896  * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1897  * these perimeters is IP -> MAC. Thus for example to enable the squeue
1898  * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1899  * to enter the mac perimeter and then do the direct function calls into
1900  * GLD to enable squeue polling. The ring related callbacks from the mac into
1901  * the stack to add, bind, quiesce, restart or cleanup a ring are all
1902  * protected by the mac perimeter.
1903  */
1904 static void
1905 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1906 {
1907 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1908 	int			err;
1909 
1910 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1911 	    DLD_ENABLE);
1912 	ASSERT(err == 0);
1913 }
1914 
1915 static void
1916 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1917 {
1918 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1919 	int			err;
1920 
1921 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1922 	    DLD_DISABLE);
1923 	ASSERT(err == 0);
1924 }
1925 
1926 boolean_t
1927 ill_mac_perim_held(ill_t *ill)
1928 {
1929 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1930 
1931 	return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
1932 	    DLD_QUERY));
1933 }
1934 
1935 static void
1936 ill_capability_direct_enable(ill_t *ill)
1937 {
1938 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1939 	ill_dld_direct_t	*idd = &idc->idc_direct;
1940 	dld_capab_direct_t	direct;
1941 	int			rc;
1942 
1943 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
1944 
1945 	bzero(&direct, sizeof (direct));
1946 	direct.di_rx_cf = (uintptr_t)ip_input;
1947 	direct.di_rx_ch = ill;
1948 
1949 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
1950 	    DLD_ENABLE);
1951 	if (rc == 0) {
1952 		idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
1953 		idd->idd_tx_dh = direct.di_tx_dh;
1954 		idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
1955 		idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
1956 		idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
1957 		idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
1958 		ASSERT(idd->idd_tx_cb_df != NULL);
1959 		ASSERT(idd->idd_tx_fctl_df != NULL);
1960 		ASSERT(idd->idd_tx_df != NULL);
1961 		/*
1962 		 * One time registration of flow enable callback function
1963 		 */
1964 		ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
1965 		    ill_flow_enable, ill);
1966 		ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
1967 		DTRACE_PROBE1(direct_on, (ill_t *), ill);
1968 	} else {
1969 		cmn_err(CE_WARN, "warning: could not enable DIRECT "
1970 		    "capability, rc = %d\n", rc);
1971 		DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
1972 	}
1973 }
1974 
1975 static void
1976 ill_capability_poll_enable(ill_t *ill)
1977 {
1978 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1979 	dld_capab_poll_t	poll;
1980 	int			rc;
1981 
1982 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
1983 
1984 	bzero(&poll, sizeof (poll));
1985 	poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
1986 	poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
1987 	poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
1988 	poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
1989 	poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
1990 	poll.poll_ring_ch = ill;
1991 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
1992 	    DLD_ENABLE);
1993 	if (rc == 0) {
1994 		ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
1995 		DTRACE_PROBE1(poll_on, (ill_t *), ill);
1996 	} else {
1997 		ip1dbg(("warning: could not enable POLL "
1998 		    "capability, rc = %d\n", rc));
1999 		DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2000 	}
2001 }
2002 
2003 /*
2004  * Enable the LSO capability.
2005  */
2006 static void
2007 ill_capability_lso_enable(ill_t *ill)
2008 {
2009 	ill_dld_capab_t	*idc = ill->ill_dld_capab;
2010 	dld_capab_lso_t	lso;
2011 	int rc;
2012 
2013 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2014 
2015 	if (ill->ill_lso_capab == NULL) {
2016 		ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2017 		    KM_NOSLEEP);
2018 		if (ill->ill_lso_capab == NULL) {
2019 			cmn_err(CE_WARN, "ill_capability_lso_enable: "
2020 			    "could not enable LSO for %s (ENOMEM)\n",
2021 			    ill->ill_name);
2022 			return;
2023 		}
2024 	}
2025 
2026 	bzero(&lso, sizeof (lso));
2027 	if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2028 	    DLD_ENABLE)) == 0) {
2029 		ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2030 		ill->ill_lso_capab->ill_lso_max = lso.lso_max;
2031 		ill->ill_capabilities |= ILL_CAPAB_LSO;
2032 		ip1dbg(("ill_capability_lso_enable: interface %s "
2033 		    "has enabled LSO\n ", ill->ill_name));
2034 	} else {
2035 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2036 		ill->ill_lso_capab = NULL;
2037 		DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2038 	}
2039 }
2040 
2041 static void
2042 ill_capability_dld_enable(ill_t *ill)
2043 {
2044 	mac_perim_handle_t mph;
2045 
2046 	ASSERT(IAM_WRITER_ILL(ill));
2047 
2048 	if (ill->ill_isv6)
2049 		return;
2050 
2051 	ill_mac_perim_enter(ill, &mph);
2052 	if (!ill->ill_isv6) {
2053 		ill_capability_direct_enable(ill);
2054 		ill_capability_poll_enable(ill);
2055 		ill_capability_lso_enable(ill);
2056 	}
2057 	ill->ill_capabilities |= ILL_CAPAB_DLD;
2058 	ill_mac_perim_exit(ill, mph);
2059 }
2060 
2061 static void
2062 ill_capability_dld_disable(ill_t *ill)
2063 {
2064 	ill_dld_capab_t	*idc;
2065 	ill_dld_direct_t *idd;
2066 	mac_perim_handle_t	mph;
2067 
2068 	ASSERT(IAM_WRITER_ILL(ill));
2069 
2070 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2071 		return;
2072 
2073 	ill_mac_perim_enter(ill, &mph);
2074 
2075 	idc = ill->ill_dld_capab;
2076 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2077 		/*
2078 		 * For performance we avoid locks in the transmit data path
2079 		 * and don't maintain a count of the number of threads using
2080 		 * direct calls. Thus some threads could be using direct
2081 		 * transmit calls to GLD, even after the capability mechanism
2082 		 * turns it off. This is still safe since the handles used in
2083 		 * the direct calls continue to be valid until the unplumb is
2084 		 * completed. Remove the callback that was added (1-time) at
2085 		 * capab enable time.
2086 		 */
2087 		mutex_enter(&ill->ill_lock);
2088 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2089 		mutex_exit(&ill->ill_lock);
2090 		if (ill->ill_flownotify_mh != NULL) {
2091 			idd = &idc->idc_direct;
2092 			idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2093 			    ill->ill_flownotify_mh);
2094 			ill->ill_flownotify_mh = NULL;
2095 		}
2096 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2097 		    NULL, DLD_DISABLE);
2098 	}
2099 
2100 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2101 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2102 		ip_squeue_clean_all(ill);
2103 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2104 		    NULL, DLD_DISABLE);
2105 	}
2106 
2107 	if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2108 		ASSERT(ill->ill_lso_capab != NULL);
2109 		/*
2110 		 * Clear the capability flag for LSO but retain the
2111 		 * ill_lso_capab structure since it's possible that another
2112 		 * thread is still referring to it.  The structure only gets
2113 		 * deallocated when we destroy the ill.
2114 		 */
2115 
2116 		ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2117 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2118 		    NULL, DLD_DISABLE);
2119 	}
2120 
2121 	ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2122 	ill_mac_perim_exit(ill, mph);
2123 }
2124 
2125 /*
2126  * Capability Negotiation protocol
2127  *
2128  * We don't wait for DLPI capability operations to finish during interface
2129  * bringup or teardown. Doing so would introduce more asynchrony and the
2130  * interface up/down operations will need multiple return and restarts.
2131  * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
2132  * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
2133  * exclusive operation won't start until the DLPI operations of the previous
2134  * exclusive operation complete.
2135  *
2136  * The capability state machine is shown below.
2137  *
2138  * state		next state		event, action
2139  *
2140  * IDCS_UNKNOWN 	IDCS_PROBE_SENT		ill_capability_probe
2141  * IDCS_PROBE_SENT	IDCS_OK			ill_capability_ack
2142  * IDCS_PROBE_SENT	IDCS_FAILED		ip_rput_dlpi_writer (nack)
2143  * IDCS_OK		IDCS_RENEG		Receipt of DL_NOTE_CAPAB_RENEG
2144  * IDCS_OK		IDCS_RESET_SENT		ill_capability_reset
2145  * IDCS_RESET_SENT	IDCS_UNKNOWN		ill_capability_ack_thr
2146  * IDCS_RENEG		IDCS_PROBE_SENT		ill_capability_ack_thr ->
2147  *						    ill_capability_probe.
2148  */
2149 
2150 /*
2151  * Dedicated thread started from ip_stack_init that handles capability
2152  * disable. This thread ensures the taskq dispatch does not fail by waiting
2153  * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2154  * that direct calls to DLD are done in a cv_waitable context.
2155  */
2156 void
2157 ill_taskq_dispatch(ip_stack_t *ipst)
2158 {
2159 	callb_cpr_t cprinfo;
2160 	char 	name[64];
2161 	mblk_t	*mp;
2162 
2163 	(void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2164 	    ipst->ips_netstack->netstack_stackid);
2165 	CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2166 	    name);
2167 	mutex_enter(&ipst->ips_capab_taskq_lock);
2168 
2169 	for (;;) {
2170 		mp = ipst->ips_capab_taskq_head;
2171 		while (mp != NULL) {
2172 			ipst->ips_capab_taskq_head = mp->b_next;
2173 			if (ipst->ips_capab_taskq_head == NULL)
2174 				ipst->ips_capab_taskq_tail = NULL;
2175 			mutex_exit(&ipst->ips_capab_taskq_lock);
2176 			mp->b_next = NULL;
2177 
2178 			VERIFY(taskq_dispatch(system_taskq,
2179 			    ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
2180 			mutex_enter(&ipst->ips_capab_taskq_lock);
2181 			mp = ipst->ips_capab_taskq_head;
2182 		}
2183 
2184 		if (ipst->ips_capab_taskq_quit)
2185 			break;
2186 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2187 		cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2188 		CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2189 	}
2190 	VERIFY(ipst->ips_capab_taskq_head == NULL);
2191 	VERIFY(ipst->ips_capab_taskq_tail == NULL);
2192 	CALLB_CPR_EXIT(&cprinfo);
2193 	thread_exit();
2194 }
2195 
2196 /*
2197  * Consume a new-style hardware capabilities negotiation ack.
2198  * Called via taskq on receipt of DL_CAPABILITY_ACK.
2199  */
2200 static void
2201 ill_capability_ack_thr(void *arg)
2202 {
2203 	mblk_t	*mp = arg;
2204 	dl_capability_ack_t *capp;
2205 	dl_capability_sub_t *subp, *endp;
2206 	ill_t	*ill;
2207 	boolean_t reneg;
2208 
2209 	ill = (ill_t *)mp->b_prev;
2210 	mp->b_prev = NULL;
2211 
2212 	VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
2213 
2214 	if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2215 	    ill->ill_dlpi_capab_state == IDCS_RENEG) {
2216 		/*
2217 		 * We have received the ack for our DL_CAPAB reset request.
2218 		 * There isnt' anything in the message that needs processing.
2219 		 * All message based capabilities have been disabled, now
2220 		 * do the function call based capability disable.
2221 		 */
2222 		reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2223 		ill_capability_dld_disable(ill);
2224 		ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2225 		if (reneg)
2226 			ill_capability_probe(ill);
2227 		goto done;
2228 	}
2229 
2230 	if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2231 		ill->ill_dlpi_capab_state = IDCS_OK;
2232 
2233 	capp = (dl_capability_ack_t *)mp->b_rptr;
2234 
2235 	if (capp->dl_sub_length == 0) {
2236 		/* no new-style capabilities */
2237 		goto done;
2238 	}
2239 
2240 	/* make sure the driver supplied correct dl_sub_length */
2241 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2242 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2243 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2244 		goto done;
2245 	}
2246 
2247 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2248 	/*
2249 	 * There are sub-capabilities. Process the ones we know about.
2250 	 * Loop until we don't have room for another sub-cap header..
2251 	 */
2252 	for (subp = SC(capp, capp->dl_sub_offset),
2253 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2254 	    subp <= endp;
2255 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
2256 
2257 		switch (subp->dl_cap) {
2258 		case DL_CAPAB_ID_WRAPPER:
2259 			ill_capability_id_ack(ill, mp, subp);
2260 			break;
2261 		default:
2262 			ill_capability_dispatch(ill, mp, subp);
2263 			break;
2264 		}
2265 	}
2266 #undef SC
2267 done:
2268 	inet_freemsg(mp);
2269 	ill_capability_done(ill);
2270 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
2271 }
2272 
2273 /*
2274  * This needs to be started in a taskq thread to provide a cv_waitable
2275  * context.
2276  */
2277 void
2278 ill_capability_ack(ill_t *ill, mblk_t *mp)
2279 {
2280 	ip_stack_t	*ipst = ill->ill_ipst;
2281 
2282 	mp->b_prev = (mblk_t *)ill;
2283 	ASSERT(mp->b_next == NULL);
2284 
2285 	if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2286 	    TQ_NOSLEEP) != 0)
2287 		return;
2288 
2289 	/*
2290 	 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2291 	 * which will do the dispatch using TQ_SLEEP to guarantee success.
2292 	 */
2293 	mutex_enter(&ipst->ips_capab_taskq_lock);
2294 	if (ipst->ips_capab_taskq_head == NULL) {
2295 		ASSERT(ipst->ips_capab_taskq_tail == NULL);
2296 		ipst->ips_capab_taskq_head = mp;
2297 	} else {
2298 		ipst->ips_capab_taskq_tail->b_next = mp;
2299 	}
2300 	ipst->ips_capab_taskq_tail = mp;
2301 
2302 	cv_signal(&ipst->ips_capab_taskq_cv);
2303 	mutex_exit(&ipst->ips_capab_taskq_lock);
2304 }
2305 
2306 /*
2307  * This routine is called to scan the fragmentation reassembly table for
2308  * the specified ILL for any packets that are starting to smell.
2309  * dead_interval is the maximum time in seconds that will be tolerated.  It
2310  * will either be the value specified in ip_g_frag_timeout, or zero if the
2311  * ILL is shutting down and it is time to blow everything off.
2312  *
2313  * It returns the number of seconds (as a time_t) that the next frag timer
2314  * should be scheduled for, 0 meaning that the timer doesn't need to be
2315  * re-started.  Note that the method of calculating next_timeout isn't
2316  * entirely accurate since time will flow between the time we grab
2317  * current_time and the time we schedule the next timeout.  This isn't a
2318  * big problem since this is the timer for sending an ICMP reassembly time
2319  * exceeded messages, and it doesn't have to be exactly accurate.
2320  *
2321  * This function is
2322  * sometimes called as writer, although this is not required.
2323  */
2324 time_t
2325 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2326 {
2327 	ipfb_t	*ipfb;
2328 	ipfb_t	*endp;
2329 	ipf_t	*ipf;
2330 	ipf_t	*ipfnext;
2331 	mblk_t	*mp;
2332 	time_t	current_time = gethrestime_sec();
2333 	time_t	next_timeout = 0;
2334 	uint32_t	hdr_length;
2335 	mblk_t	*send_icmp_head;
2336 	mblk_t	*send_icmp_head_v6;
2337 	ip_stack_t *ipst = ill->ill_ipst;
2338 	ip_recv_attr_t iras;
2339 
2340 	bzero(&iras, sizeof (iras));
2341 	iras.ira_flags = 0;
2342 	iras.ira_ill = iras.ira_rill = ill;
2343 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2344 	iras.ira_rifindex = iras.ira_ruifindex;
2345 
2346 	ipfb = ill->ill_frag_hash_tbl;
2347 	if (ipfb == NULL)
2348 		return (B_FALSE);
2349 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2350 	/* Walk the frag hash table. */
2351 	for (; ipfb < endp; ipfb++) {
2352 		send_icmp_head = NULL;
2353 		send_icmp_head_v6 = NULL;
2354 		mutex_enter(&ipfb->ipfb_lock);
2355 		while ((ipf = ipfb->ipfb_ipf) != 0) {
2356 			time_t frag_time = current_time - ipf->ipf_timestamp;
2357 			time_t frag_timeout;
2358 
2359 			if (frag_time < dead_interval) {
2360 				/*
2361 				 * There are some outstanding fragments
2362 				 * that will timeout later.  Make note of
2363 				 * the time so that we can reschedule the
2364 				 * next timeout appropriately.
2365 				 */
2366 				frag_timeout = dead_interval - frag_time;
2367 				if (next_timeout == 0 ||
2368 				    frag_timeout < next_timeout) {
2369 					next_timeout = frag_timeout;
2370 				}
2371 				break;
2372 			}
2373 			/* Time's up.  Get it out of here. */
2374 			hdr_length = ipf->ipf_nf_hdr_len;
2375 			ipfnext = ipf->ipf_hash_next;
2376 			if (ipfnext)
2377 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2378 			*ipf->ipf_ptphn = ipfnext;
2379 			mp = ipf->ipf_mp->b_cont;
2380 			for (; mp; mp = mp->b_cont) {
2381 				/* Extra points for neatness. */
2382 				IP_REASS_SET_START(mp, 0);
2383 				IP_REASS_SET_END(mp, 0);
2384 			}
2385 			mp = ipf->ipf_mp->b_cont;
2386 			atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2387 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2388 			ipfb->ipfb_count -= ipf->ipf_count;
2389 			ASSERT(ipfb->ipfb_frag_pkts > 0);
2390 			ipfb->ipfb_frag_pkts--;
2391 			/*
2392 			 * We do not send any icmp message from here because
2393 			 * we currently are holding the ipfb_lock for this
2394 			 * hash chain. If we try and send any icmp messages
2395 			 * from here we may end up via a put back into ip
2396 			 * trying to get the same lock, causing a recursive
2397 			 * mutex panic. Instead we build a list and send all
2398 			 * the icmp messages after we have dropped the lock.
2399 			 */
2400 			if (ill->ill_isv6) {
2401 				if (hdr_length != 0) {
2402 					mp->b_next = send_icmp_head_v6;
2403 					send_icmp_head_v6 = mp;
2404 				} else {
2405 					freemsg(mp);
2406 				}
2407 			} else {
2408 				if (hdr_length != 0) {
2409 					mp->b_next = send_icmp_head;
2410 					send_icmp_head = mp;
2411 				} else {
2412 					freemsg(mp);
2413 				}
2414 			}
2415 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2416 			ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2417 			freeb(ipf->ipf_mp);
2418 		}
2419 		mutex_exit(&ipfb->ipfb_lock);
2420 		/*
2421 		 * Now need to send any icmp messages that we delayed from
2422 		 * above.
2423 		 */
2424 		while (send_icmp_head_v6 != NULL) {
2425 			ip6_t *ip6h;
2426 
2427 			mp = send_icmp_head_v6;
2428 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
2429 			mp->b_next = NULL;
2430 			ip6h = (ip6_t *)mp->b_rptr;
2431 			iras.ira_flags = 0;
2432 			/*
2433 			 * This will result in an incorrect ALL_ZONES zoneid
2434 			 * for multicast packets, but we
2435 			 * don't send ICMP errors for those in any case.
2436 			 */
2437 			iras.ira_zoneid =
2438 			    ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2439 			    ill, ipst);
2440 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2441 			icmp_time_exceeded_v6(mp,
2442 			    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2443 			    &iras);
2444 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2445 		}
2446 		while (send_icmp_head != NULL) {
2447 			ipaddr_t dst;
2448 
2449 			mp = send_icmp_head;
2450 			send_icmp_head = send_icmp_head->b_next;
2451 			mp->b_next = NULL;
2452 
2453 			dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
2454 
2455 			iras.ira_flags = IRAF_IS_IPV4;
2456 			/*
2457 			 * This will result in an incorrect ALL_ZONES zoneid
2458 			 * for broadcast and multicast packets, but we
2459 			 * don't send ICMP errors for those in any case.
2460 			 */
2461 			iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2462 			    ill, ipst);
2463 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2464 			icmp_time_exceeded(mp,
2465 			    ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2466 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2467 		}
2468 	}
2469 	/*
2470 	 * A non-dying ILL will use the return value to decide whether to
2471 	 * restart the frag timer, and for how long.
2472 	 */
2473 	return (next_timeout);
2474 }
2475 
2476 /*
2477  * This routine is called when the approximate count of mblk memory used
2478  * for the specified ILL has exceeded max_count.
2479  */
2480 void
2481 ill_frag_prune(ill_t *ill, uint_t max_count)
2482 {
2483 	ipfb_t	*ipfb;
2484 	ipf_t	*ipf;
2485 	size_t	count;
2486 	clock_t now;
2487 
2488 	/*
2489 	 * If we are here within ip_min_frag_prune_time msecs remove
2490 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2491 	 * ill_frag_free_num_pkts.
2492 	 */
2493 	mutex_enter(&ill->ill_lock);
2494 	now = ddi_get_lbolt();
2495 	if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2496 	    (ip_min_frag_prune_time != 0 ?
2497 	    ip_min_frag_prune_time : msec_per_tick)) {
2498 
2499 		ill->ill_frag_free_num_pkts++;
2500 
2501 	} else {
2502 		ill->ill_frag_free_num_pkts = 0;
2503 	}
2504 	ill->ill_last_frag_clean_time = now;
2505 	mutex_exit(&ill->ill_lock);
2506 
2507 	/*
2508 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
2509 	 */
2510 	if (ill->ill_frag_free_num_pkts != 0) {
2511 		int ix;
2512 
2513 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2514 			ipfb = &ill->ill_frag_hash_tbl[ix];
2515 			mutex_enter(&ipfb->ipfb_lock);
2516 			if (ipfb->ipfb_ipf != NULL) {
2517 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2518 				    ill->ill_frag_free_num_pkts);
2519 			}
2520 			mutex_exit(&ipfb->ipfb_lock);
2521 		}
2522 	}
2523 	/*
2524 	 * While the reassembly list for this ILL is too big, prune a fragment
2525 	 * queue by age, oldest first.
2526 	 */
2527 	while (ill->ill_frag_count > max_count) {
2528 		int	ix;
2529 		ipfb_t	*oipfb = NULL;
2530 		uint_t	oldest = UINT_MAX;
2531 
2532 		count = 0;
2533 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2534 			ipfb = &ill->ill_frag_hash_tbl[ix];
2535 			mutex_enter(&ipfb->ipfb_lock);
2536 			ipf = ipfb->ipfb_ipf;
2537 			if (ipf != NULL && ipf->ipf_gen < oldest) {
2538 				oldest = ipf->ipf_gen;
2539 				oipfb = ipfb;
2540 			}
2541 			count += ipfb->ipfb_count;
2542 			mutex_exit(&ipfb->ipfb_lock);
2543 		}
2544 		if (oipfb == NULL)
2545 			break;
2546 
2547 		if (count <= max_count)
2548 			return;	/* Somebody beat us to it, nothing to do */
2549 		mutex_enter(&oipfb->ipfb_lock);
2550 		ipf = oipfb->ipfb_ipf;
2551 		if (ipf != NULL) {
2552 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
2553 		}
2554 		mutex_exit(&oipfb->ipfb_lock);
2555 	}
2556 }
2557 
2558 /*
2559  * free 'free_cnt' fragmented packets starting at ipf.
2560  */
2561 void
2562 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2563 {
2564 	size_t	count;
2565 	mblk_t	*mp;
2566 	mblk_t	*tmp;
2567 	ipf_t **ipfp = ipf->ipf_ptphn;
2568 
2569 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2570 	ASSERT(ipfp != NULL);
2571 	ASSERT(ipf != NULL);
2572 
2573 	while (ipf != NULL && free_cnt-- > 0) {
2574 		count = ipf->ipf_count;
2575 		mp = ipf->ipf_mp;
2576 		ipf = ipf->ipf_hash_next;
2577 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
2578 			IP_REASS_SET_START(tmp, 0);
2579 			IP_REASS_SET_END(tmp, 0);
2580 		}
2581 		atomic_add_32(&ill->ill_frag_count, -count);
2582 		ASSERT(ipfb->ipfb_count >= count);
2583 		ipfb->ipfb_count -= count;
2584 		ASSERT(ipfb->ipfb_frag_pkts > 0);
2585 		ipfb->ipfb_frag_pkts--;
2586 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2587 		ip_drop_input("ipIfStatsReasmFails", mp, ill);
2588 		freemsg(mp);
2589 	}
2590 
2591 	if (ipf)
2592 		ipf->ipf_ptphn = ipfp;
2593 	ipfp[0] = ipf;
2594 }
2595 
2596 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
2597 	"obsolete and may be removed in a future release of Solaris.  Use " \
2598 	"ifconfig(1M) to manipulate the forwarding status of an interface."
2599 
2600 /*
2601  * For obsolete per-interface forwarding configuration;
2602  * called in response to ND_GET.
2603  */
2604 /* ARGSUSED */
2605 static int
2606 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
2607 {
2608 	ill_t *ill = (ill_t *)cp;
2609 
2610 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
2611 
2612 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
2613 	return (0);
2614 }
2615 
2616 /*
2617  * For obsolete per-interface forwarding configuration;
2618  * called in response to ND_SET.
2619  */
2620 /* ARGSUSED */
2621 static int
2622 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
2623     cred_t *ioc_cr)
2624 {
2625 	long value;
2626 	int retval;
2627 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
2628 
2629 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
2630 
2631 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
2632 	    value < 0 || value > 1) {
2633 		return (EINVAL);
2634 	}
2635 
2636 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2637 	retval = ill_forward_set((ill_t *)cp, (value != 0));
2638 	rw_exit(&ipst->ips_ill_g_lock);
2639 	return (retval);
2640 }
2641 
2642 /*
2643  * Helper function for ill_forward_set().
2644  */
2645 static void
2646 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2647 {
2648 	ip_stack_t	*ipst = ill->ill_ipst;
2649 
2650 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2651 
2652 	ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2653 	    (enable ? "Enabling" : "Disabling"),
2654 	    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2655 	mutex_enter(&ill->ill_lock);
2656 	if (enable)
2657 		ill->ill_flags |= ILLF_ROUTER;
2658 	else
2659 		ill->ill_flags &= ~ILLF_ROUTER;
2660 	mutex_exit(&ill->ill_lock);
2661 	if (ill->ill_isv6)
2662 		ill_set_nce_router_flags(ill, enable);
2663 	/* Notify routing socket listeners of this change. */
2664 	if (ill->ill_ipif != NULL)
2665 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2666 }
2667 
2668 /*
2669  * Set an ill's ILLF_ROUTER flag appropriately.  Send up RTS_IFINFO routing
2670  * socket messages for each interface whose flags we change.
2671  */
2672 int
2673 ill_forward_set(ill_t *ill, boolean_t enable)
2674 {
2675 	ipmp_illgrp_t *illg;
2676 	ip_stack_t *ipst = ill->ill_ipst;
2677 
2678 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2679 
2680 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2681 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2682 		return (0);
2683 
2684 	if (IS_LOOPBACK(ill))
2685 		return (EINVAL);
2686 
2687 	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2688 		/*
2689 		 * Update all of the interfaces in the group.
2690 		 */
2691 		illg = ill->ill_grp;
2692 		ill = list_head(&illg->ig_if);
2693 		for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2694 			ill_forward_set_on_ill(ill, enable);
2695 
2696 		/*
2697 		 * Update the IPMP meta-interface.
2698 		 */
2699 		ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2700 		return (0);
2701 	}
2702 
2703 	ill_forward_set_on_ill(ill, enable);
2704 	return (0);
2705 }
2706 
2707 /*
2708  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
2709  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2710  * set or clear.
2711  */
2712 static void
2713 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2714 {
2715 	ipif_t *ipif;
2716 	ncec_t *ncec;
2717 	nce_t *nce;
2718 
2719 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2720 		/*
2721 		 * NOTE: we match across the illgrp because nce's for
2722 		 * addresses on IPMP interfaces have an nce_ill that points to
2723 		 * the bound underlying ill.
2724 		 */
2725 		nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2726 		if (nce != NULL) {
2727 			ncec = nce->nce_common;
2728 			mutex_enter(&ncec->ncec_lock);
2729 			if (enable)
2730 				ncec->ncec_flags |= NCE_F_ISROUTER;
2731 			else
2732 				ncec->ncec_flags &= ~NCE_F_ISROUTER;
2733 			mutex_exit(&ncec->ncec_lock);
2734 			nce_refrele(nce);
2735 		}
2736 	}
2737 }
2738 
2739 /*
2740  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
2741  * for this ill.  Make sure the v6/v4 question has been answered about this
2742  * ill.  The creation of this ndd variable is only for backwards compatibility.
2743  * The preferred way to control per-interface IP forwarding is through the
2744  * ILLF_ROUTER interface flag.
2745  */
2746 static int
2747 ill_set_ndd_name(ill_t *ill)
2748 {
2749 	char *suffix;
2750 	ip_stack_t	*ipst = ill->ill_ipst;
2751 
2752 	ASSERT(IAM_WRITER_ILL(ill));
2753 
2754 	if (ill->ill_isv6)
2755 		suffix = ipv6_forward_suffix;
2756 	else
2757 		suffix = ipv4_forward_suffix;
2758 
2759 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
2760 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
2761 	/*
2762 	 * Copies over the '\0'.
2763 	 * Note that strlen(suffix) is always bounded.
2764 	 */
2765 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
2766 	    strlen(suffix) + 1);
2767 
2768 	/*
2769 	 * Use of the nd table requires holding the reader lock.
2770 	 * Modifying the nd table thru nd_load/nd_unload requires
2771 	 * the writer lock.
2772 	 */
2773 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
2774 	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
2775 	    nd_ill_forward_set, (caddr_t)ill)) {
2776 		/*
2777 		 * If the nd_load failed, it only meant that it could not
2778 		 * allocate a new bunch of room for further NDD expansion.
2779 		 * Because of that, the ill_ndd_name will be set to 0, and
2780 		 * this interface is at the mercy of the global ip_forwarding
2781 		 * variable.
2782 		 */
2783 		rw_exit(&ipst->ips_ip_g_nd_lock);
2784 		ill->ill_ndd_name = NULL;
2785 		return (ENOMEM);
2786 	}
2787 	rw_exit(&ipst->ips_ip_g_nd_lock);
2788 	return (0);
2789 }
2790 
2791 /*
2792  * Intializes the context structure and returns the first ill in the list
2793  * cuurently start_list and end_list can have values:
2794  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
2795  * IP_V4_G_HEAD		Traverse IPV4 list only.
2796  * IP_V6_G_HEAD		Traverse IPV6 list only.
2797  */
2798 
2799 /*
2800  * We don't check for CONDEMNED ills here. Caller must do that if
2801  * necessary under the ill lock.
2802  */
2803 ill_t *
2804 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2805     ip_stack_t *ipst)
2806 {
2807 	ill_if_t *ifp;
2808 	ill_t *ill;
2809 	avl_tree_t *avl_tree;
2810 
2811 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2812 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
2813 
2814 	/*
2815 	 * setup the lists to search
2816 	 */
2817 	if (end_list != MAX_G_HEADS) {
2818 		ctx->ctx_current_list = start_list;
2819 		ctx->ctx_last_list = end_list;
2820 	} else {
2821 		ctx->ctx_last_list = MAX_G_HEADS - 1;
2822 		ctx->ctx_current_list = 0;
2823 	}
2824 
2825 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2826 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2827 		if (ifp != (ill_if_t *)
2828 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2829 			avl_tree = &ifp->illif_avl_by_ppa;
2830 			ill = avl_first(avl_tree);
2831 			/*
2832 			 * ill is guaranteed to be non NULL or ifp should have
2833 			 * not existed.
2834 			 */
2835 			ASSERT(ill != NULL);
2836 			return (ill);
2837 		}
2838 		ctx->ctx_current_list++;
2839 	}
2840 
2841 	return (NULL);
2842 }
2843 
2844 /*
2845  * returns the next ill in the list. ill_first() must have been called
2846  * before calling ill_next() or bad things will happen.
2847  */
2848 
2849 /*
2850  * We don't check for CONDEMNED ills here. Caller must do that if
2851  * necessary under the ill lock.
2852  */
2853 ill_t *
2854 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2855 {
2856 	ill_if_t *ifp;
2857 	ill_t *ill;
2858 	ip_stack_t	*ipst = lastill->ill_ipst;
2859 
2860 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
2861 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2862 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2863 	    AVL_AFTER)) != NULL) {
2864 		return (ill);
2865 	}
2866 
2867 	/* goto next ill_ifp in the list. */
2868 	ifp = lastill->ill_ifptr->illif_next;
2869 
2870 	/* make sure not at end of circular list */
2871 	while (ifp ==
2872 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2873 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
2874 			return (NULL);
2875 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2876 	}
2877 
2878 	return (avl_first(&ifp->illif_avl_by_ppa));
2879 }
2880 
2881 /*
2882  * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2883  * The final number (PPA) must not have any leading zeros.  Upon success, a
2884  * pointer to the start of the PPA is returned; otherwise NULL is returned.
2885  */
2886 static char *
2887 ill_get_ppa_ptr(char *name)
2888 {
2889 	int namelen = strlen(name);
2890 	int end_ndx = namelen - 1;
2891 	int ppa_ndx, i;
2892 
2893 	/*
2894 	 * Check that the first character is [a-zA-Z], and that the last
2895 	 * character is [0-9].
2896 	 */
2897 	if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2898 		return (NULL);
2899 
2900 	/*
2901 	 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
2902 	 */
2903 	for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2904 		if (!isdigit(name[ppa_ndx - 1]))
2905 			break;
2906 
2907 	if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
2908 		return (NULL);
2909 
2910 	/*
2911 	 * Check that the intermediate characters are [a-z0-9.]
2912 	 */
2913 	for (i = 1; i < ppa_ndx; i++) {
2914 		if (!isalpha(name[i]) && !isdigit(name[i]) &&
2915 		    name[i] != '.' && name[i] != '_') {
2916 			return (NULL);
2917 		}
2918 	}
2919 
2920 	return (name + ppa_ndx);
2921 }
2922 
2923 /*
2924  * use avl tree to locate the ill.
2925  */
2926 static ill_t *
2927 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2928 {
2929 	char *ppa_ptr = NULL;
2930 	int len;
2931 	uint_t ppa;
2932 	ill_t *ill = NULL;
2933 	ill_if_t *ifp;
2934 	int list;
2935 
2936 	/*
2937 	 * get ppa ptr
2938 	 */
2939 	if (isv6)
2940 		list = IP_V6_G_HEAD;
2941 	else
2942 		list = IP_V4_G_HEAD;
2943 
2944 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2945 		return (NULL);
2946 	}
2947 
2948 	len = ppa_ptr - name + 1;
2949 
2950 	ppa = stoi(&ppa_ptr);
2951 
2952 	ifp = IP_VX_ILL_G_LIST(list, ipst);
2953 
2954 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2955 		/*
2956 		 * match is done on len - 1 as the name is not null
2957 		 * terminated it contains ppa in addition to the interface
2958 		 * name.
2959 		 */
2960 		if ((ifp->illif_name_len == len) &&
2961 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
2962 			break;
2963 		} else {
2964 			ifp = ifp->illif_next;
2965 		}
2966 	}
2967 
2968 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2969 		/*
2970 		 * Even the interface type does not exist.
2971 		 */
2972 		return (NULL);
2973 	}
2974 
2975 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2976 	if (ill != NULL) {
2977 		mutex_enter(&ill->ill_lock);
2978 		if (ILL_CAN_LOOKUP(ill)) {
2979 			ill_refhold_locked(ill);
2980 			mutex_exit(&ill->ill_lock);
2981 			return (ill);
2982 		}
2983 		mutex_exit(&ill->ill_lock);
2984 	}
2985 	return (NULL);
2986 }
2987 
2988 /*
2989  * comparison function for use with avl.
2990  */
2991 static int
2992 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
2993 {
2994 	uint_t ppa;
2995 	uint_t ill_ppa;
2996 
2997 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
2998 
2999 	ppa = *((uint_t *)ppa_ptr);
3000 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
3001 	/*
3002 	 * We want the ill with the lowest ppa to be on the
3003 	 * top.
3004 	 */
3005 	if (ill_ppa < ppa)
3006 		return (1);
3007 	if (ill_ppa > ppa)
3008 		return (-1);
3009 	return (0);
3010 }
3011 
3012 /*
3013  * remove an interface type from the global list.
3014  */
3015 static void
3016 ill_delete_interface_type(ill_if_t *interface)
3017 {
3018 	ASSERT(interface != NULL);
3019 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
3020 
3021 	avl_destroy(&interface->illif_avl_by_ppa);
3022 	if (interface->illif_ppa_arena != NULL)
3023 		vmem_destroy(interface->illif_ppa_arena);
3024 
3025 	remque(interface);
3026 
3027 	mi_free(interface);
3028 }
3029 
3030 /*
3031  * remove ill from the global list.
3032  */
3033 static void
3034 ill_glist_delete(ill_t *ill)
3035 {
3036 	ip_stack_t	*ipst;
3037 	phyint_t	*phyi;
3038 
3039 	if (ill == NULL)
3040 		return;
3041 	ipst = ill->ill_ipst;
3042 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3043 
3044 	/*
3045 	 * If the ill was never inserted into the AVL tree
3046 	 * we skip the if branch.
3047 	 */
3048 	if (ill->ill_ifptr != NULL) {
3049 		/*
3050 		 * remove from AVL tree and free ppa number
3051 		 */
3052 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
3053 
3054 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3055 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
3056 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3057 		}
3058 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
3059 			ill_delete_interface_type(ill->ill_ifptr);
3060 		}
3061 
3062 		/*
3063 		 * Indicate ill is no longer in the list.
3064 		 */
3065 		ill->ill_ifptr = NULL;
3066 		ill->ill_name_length = 0;
3067 		ill->ill_name[0] = '\0';
3068 		ill->ill_ppa = UINT_MAX;
3069 	}
3070 
3071 	/* Generate one last event for this ill. */
3072 	ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3073 	    ill->ill_name_length);
3074 
3075 	ASSERT(ill->ill_phyint != NULL);
3076 	phyi = ill->ill_phyint;
3077 	ill->ill_phyint = NULL;
3078 
3079 	/*
3080 	 * ill_init allocates a phyint always to store the copy
3081 	 * of flags relevant to phyint. At that point in time, we could
3082 	 * not assign the name and hence phyint_illv4/v6 could not be
3083 	 * initialized. Later in ipif_set_values, we assign the name to
3084 	 * the ill, at which point in time we assign phyint_illv4/v6.
3085 	 * Thus we don't rely on phyint_illv6 to be initialized always.
3086 	 */
3087 	if (ill->ill_flags & ILLF_IPV6)
3088 		phyi->phyint_illv6 = NULL;
3089 	else
3090 		phyi->phyint_illv4 = NULL;
3091 
3092 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3093 		rw_exit(&ipst->ips_ill_g_lock);
3094 		return;
3095 	}
3096 
3097 	/*
3098 	 * There are no ills left on this phyint; pull it out of the phyint
3099 	 * avl trees, and free it.
3100 	 */
3101 	if (phyi->phyint_ifindex > 0) {
3102 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3103 		    phyi);
3104 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3105 		    phyi);
3106 	}
3107 	rw_exit(&ipst->ips_ill_g_lock);
3108 
3109 	phyint_free(phyi);
3110 }
3111 
3112 /*
3113  * allocate a ppa, if the number of plumbed interfaces of this type are
3114  * less than ill_no_arena do a linear search to find a unused ppa.
3115  * When the number goes beyond ill_no_arena switch to using an arena.
3116  * Note: ppa value of zero cannot be allocated from vmem_arena as it
3117  * is the return value for an error condition, so allocation starts at one
3118  * and is decremented by one.
3119  */
3120 static int
3121 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3122 {
3123 	ill_t *tmp_ill;
3124 	uint_t start, end;
3125 	int ppa;
3126 
3127 	if (ifp->illif_ppa_arena == NULL &&
3128 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3129 		/*
3130 		 * Create an arena.
3131 		 */
3132 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3133 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3134 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3135 			/* allocate what has already been assigned */
3136 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3137 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3138 		    tmp_ill, AVL_AFTER)) {
3139 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3140 			    1,		/* size */
3141 			    1,		/* align/quantum */
3142 			    0,		/* phase */
3143 			    0,		/* nocross */
3144 			    /* minaddr */
3145 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3146 			    /* maxaddr */
3147 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3148 			    VM_NOSLEEP|VM_FIRSTFIT);
3149 			if (ppa == 0) {
3150 				ip1dbg(("ill_alloc_ppa: ppa allocation"
3151 				    " failed while switching"));
3152 				vmem_destroy(ifp->illif_ppa_arena);
3153 				ifp->illif_ppa_arena = NULL;
3154 				break;
3155 			}
3156 		}
3157 	}
3158 
3159 	if (ifp->illif_ppa_arena != NULL) {
3160 		if (ill->ill_ppa == UINT_MAX) {
3161 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3162 			    1, VM_NOSLEEP|VM_FIRSTFIT);
3163 			if (ppa == 0)
3164 				return (EAGAIN);
3165 			ill->ill_ppa = --ppa;
3166 		} else {
3167 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3168 			    1, 		/* size */
3169 			    1, 		/* align/quantum */
3170 			    0, 		/* phase */
3171 			    0, 		/* nocross */
3172 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3173 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3174 			    VM_NOSLEEP|VM_FIRSTFIT);
3175 			/*
3176 			 * Most likely the allocation failed because
3177 			 * the requested ppa was in use.
3178 			 */
3179 			if (ppa == 0)
3180 				return (EEXIST);
3181 		}
3182 		return (0);
3183 	}
3184 
3185 	/*
3186 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
3187 	 * been plumbed to create one. Do a linear search to get a unused ppa.
3188 	 */
3189 	if (ill->ill_ppa == UINT_MAX) {
3190 		end = UINT_MAX - 1;
3191 		start = 0;
3192 	} else {
3193 		end = start = ill->ill_ppa;
3194 	}
3195 
3196 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3197 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3198 		if (start++ >= end) {
3199 			if (ill->ill_ppa == UINT_MAX)
3200 				return (EAGAIN);
3201 			else
3202 				return (EEXIST);
3203 		}
3204 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3205 	}
3206 	ill->ill_ppa = start;
3207 	return (0);
3208 }
3209 
3210 /*
3211  * Insert ill into the list of configured ill's. Once this function completes,
3212  * the ill is globally visible and is available through lookups. More precisely
3213  * this happens after the caller drops the ill_g_lock.
3214  */
3215 static int
3216 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3217 {
3218 	ill_if_t *ill_interface;
3219 	avl_index_t where = 0;
3220 	int error;
3221 	int name_length;
3222 	int index;
3223 	boolean_t check_length = B_FALSE;
3224 	ip_stack_t	*ipst = ill->ill_ipst;
3225 
3226 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
3227 
3228 	name_length = mi_strlen(name) + 1;
3229 
3230 	if (isv6)
3231 		index = IP_V6_G_HEAD;
3232 	else
3233 		index = IP_V4_G_HEAD;
3234 
3235 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3236 	/*
3237 	 * Search for interface type based on name
3238 	 */
3239 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3240 		if ((ill_interface->illif_name_len == name_length) &&
3241 		    (strcmp(ill_interface->illif_name, name) == 0)) {
3242 			break;
3243 		}
3244 		ill_interface = ill_interface->illif_next;
3245 	}
3246 
3247 	/*
3248 	 * Interface type not found, create one.
3249 	 */
3250 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3251 		ill_g_head_t ghead;
3252 
3253 		/*
3254 		 * allocate ill_if_t structure
3255 		 */
3256 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
3257 		if (ill_interface == NULL) {
3258 			return (ENOMEM);
3259 		}
3260 
3261 		(void) strcpy(ill_interface->illif_name, name);
3262 		ill_interface->illif_name_len = name_length;
3263 
3264 		avl_create(&ill_interface->illif_avl_by_ppa,
3265 		    ill_compare_ppa, sizeof (ill_t),
3266 		    offsetof(struct ill_s, ill_avl_byppa));
3267 
3268 		/*
3269 		 * link the structure in the back to maintain order
3270 		 * of configuration for ifconfig output.
3271 		 */
3272 		ghead = ipst->ips_ill_g_heads[index];
3273 		insque(ill_interface, ghead.ill_g_list_tail);
3274 	}
3275 
3276 	if (ill->ill_ppa == UINT_MAX)
3277 		check_length = B_TRUE;
3278 
3279 	error = ill_alloc_ppa(ill_interface, ill);
3280 	if (error != 0) {
3281 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3282 			ill_delete_interface_type(ill->ill_ifptr);
3283 		return (error);
3284 	}
3285 
3286 	/*
3287 	 * When the ppa is choosen by the system, check that there is
3288 	 * enough space to insert ppa. if a specific ppa was passed in this
3289 	 * check is not required as the interface name passed in will have
3290 	 * the right ppa in it.
3291 	 */
3292 	if (check_length) {
3293 		/*
3294 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3295 		 */
3296 		char buf[sizeof (uint_t) * 3];
3297 
3298 		/*
3299 		 * convert ppa to string to calculate the amount of space
3300 		 * required for it in the name.
3301 		 */
3302 		numtos(ill->ill_ppa, buf);
3303 
3304 		/* Do we have enough space to insert ppa ? */
3305 
3306 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3307 			/* Free ppa and interface type struct */
3308 			if (ill_interface->illif_ppa_arena != NULL) {
3309 				vmem_free(ill_interface->illif_ppa_arena,
3310 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3311 			}
3312 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3313 				ill_delete_interface_type(ill->ill_ifptr);
3314 
3315 			return (EINVAL);
3316 		}
3317 	}
3318 
3319 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3320 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
3321 
3322 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
3323 	    &where);
3324 	ill->ill_ifptr = ill_interface;
3325 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
3326 
3327 	ill_phyint_reinit(ill);
3328 	return (0);
3329 }
3330 
3331 /* Initialize the per phyint ipsq used for serialization */
3332 static boolean_t
3333 ipsq_init(ill_t *ill, boolean_t enter)
3334 {
3335 	ipsq_t  *ipsq;
3336 	ipxop_t	*ipx;
3337 
3338 	if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3339 		return (B_FALSE);
3340 
3341 	ill->ill_phyint->phyint_ipsq = ipsq;
3342 	ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3343 	ipx->ipx_ipsq = ipsq;
3344 	ipsq->ipsq_next = ipsq;
3345 	ipsq->ipsq_phyint = ill->ill_phyint;
3346 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3347 	mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3348 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
3349 	if (enter) {
3350 		ipx->ipx_writer = curthread;
3351 		ipx->ipx_forced = B_FALSE;
3352 		ipx->ipx_reentry_cnt = 1;
3353 #ifdef DEBUG
3354 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3355 #endif
3356 	}
3357 	return (B_TRUE);
3358 }
3359 
3360 /*
3361  * ill_init is called by ip_open when a device control stream is opened.
3362  * It does a few initializations, and shoots a DL_INFO_REQ message down
3363  * to the driver.  The response is later picked up in ip_rput_dlpi and
3364  * used to set up default mechanisms for talking to the driver.  (Always
3365  * called as writer.)
3366  *
3367  * If this function returns error, ip_open will call ip_close which in
3368  * turn will call ill_delete to clean up any memory allocated here that
3369  * is not yet freed.
3370  */
3371 int
3372 ill_init(queue_t *q, ill_t *ill)
3373 {
3374 	int	count;
3375 	dl_info_req_t	*dlir;
3376 	mblk_t	*info_mp;
3377 	uchar_t *frag_ptr;
3378 
3379 	/*
3380 	 * The ill is initialized to zero by mi_alloc*(). In addition
3381 	 * some fields already contain valid values, initialized in
3382 	 * ip_open(), before we reach here.
3383 	 */
3384 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3385 	mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3386 	ill->ill_saved_ire_cnt = 0;
3387 
3388 	ill->ill_rq = q;
3389 	ill->ill_wq = WR(q);
3390 
3391 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3392 	    BPRI_HI);
3393 	if (info_mp == NULL)
3394 		return (ENOMEM);
3395 
3396 	/*
3397 	 * Allocate sufficient space to contain our fragment hash table and
3398 	 * the device name.
3399 	 */
3400 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
3401 	    2 * LIFNAMSIZ + strlen(ipv6_forward_suffix));
3402 	if (frag_ptr == NULL) {
3403 		freemsg(info_mp);
3404 		return (ENOMEM);
3405 	}
3406 	ill->ill_frag_ptr = frag_ptr;
3407 	ill->ill_frag_free_num_pkts = 0;
3408 	ill->ill_last_frag_clean_time = 0;
3409 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3410 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3411 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3412 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3413 		    NULL, MUTEX_DEFAULT, NULL);
3414 	}
3415 
3416 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3417 	if (ill->ill_phyint == NULL) {
3418 		freemsg(info_mp);
3419 		mi_free(frag_ptr);
3420 		return (ENOMEM);
3421 	}
3422 
3423 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3424 	/*
3425 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
3426 	 * at this point because of the following reason. If we can't
3427 	 * enter the ipsq at some point and cv_wait, the writer that
3428 	 * wakes us up tries to locate us using the list of all phyints
3429 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3430 	 * If we don't set it now, we risk a missed wakeup.
3431 	 */
3432 	ill->ill_phyint->phyint_illv4 = ill;
3433 	ill->ill_ppa = UINT_MAX;
3434 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3435 
3436 	ill_set_inputfn(ill);
3437 
3438 	if (!ipsq_init(ill, B_TRUE)) {
3439 		freemsg(info_mp);
3440 		mi_free(frag_ptr);
3441 		mi_free(ill->ill_phyint);
3442 		return (ENOMEM);
3443 	}
3444 
3445 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
3446 
3447 	/* Frag queue limit stuff */
3448 	ill->ill_frag_count = 0;
3449 	ill->ill_ipf_gen = 0;
3450 
3451 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3452 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3453 	ill->ill_global_timer = INFINITY;
3454 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3455 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3456 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3457 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3458 
3459 	/*
3460 	 * Initialize IPv6 configuration variables.  The IP module is always
3461 	 * opened as an IPv4 module.  Instead tracking down the cases where
3462 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
3463 	 * here for convenience, this has no effect until the ill is set to do
3464 	 * IPv6.
3465 	 */
3466 	ill->ill_reachable_time = ND_REACHABLE_TIME;
3467 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3468 	ill->ill_max_buf = ND_MAX_Q;
3469 	ill->ill_refcnt = 0;
3470 
3471 	/* Send down the Info Request to the driver. */
3472 	info_mp->b_datap->db_type = M_PCPROTO;
3473 	dlir = (dl_info_req_t *)info_mp->b_rptr;
3474 	info_mp->b_wptr = (uchar_t *)&dlir[1];
3475 	dlir->dl_primitive = DL_INFO_REQ;
3476 
3477 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3478 
3479 	qprocson(q);
3480 	ill_dlpi_send(ill, info_mp);
3481 
3482 	return (0);
3483 }
3484 
3485 /*
3486  * ill_dls_info
3487  * creates datalink socket info from the device.
3488  */
3489 int
3490 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3491 {
3492 	size_t	len;
3493 
3494 	sdl->sdl_family = AF_LINK;
3495 	sdl->sdl_index = ill_get_upper_ifindex(ill);
3496 	sdl->sdl_type = ill->ill_type;
3497 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3498 	len = strlen(sdl->sdl_data);
3499 	ASSERT(len < 256);
3500 	sdl->sdl_nlen = (uchar_t)len;
3501 	sdl->sdl_alen = ill->ill_phys_addr_length;
3502 	sdl->sdl_slen = 0;
3503 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3504 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
3505 
3506 	return (sizeof (struct sockaddr_dl));
3507 }
3508 
3509 /*
3510  * ill_xarp_info
3511  * creates xarp info from the device.
3512  */
3513 static int
3514 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3515 {
3516 	sdl->sdl_family = AF_LINK;
3517 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3518 	sdl->sdl_type = ill->ill_type;
3519 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3520 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3521 	sdl->sdl_alen = ill->ill_phys_addr_length;
3522 	sdl->sdl_slen = 0;
3523 	return (sdl->sdl_nlen);
3524 }
3525 
3526 static int
3527 loopback_kstat_update(kstat_t *ksp, int rw)
3528 {
3529 	kstat_named_t *kn;
3530 	netstackid_t	stackid;
3531 	netstack_t	*ns;
3532 	ip_stack_t	*ipst;
3533 
3534 	if (ksp == NULL || ksp->ks_data == NULL)
3535 		return (EIO);
3536 
3537 	if (rw == KSTAT_WRITE)
3538 		return (EACCES);
3539 
3540 	kn = KSTAT_NAMED_PTR(ksp);
3541 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
3542 
3543 	ns = netstack_find_by_stackid(stackid);
3544 	if (ns == NULL)
3545 		return (-1);
3546 
3547 	ipst = ns->netstack_ip;
3548 	if (ipst == NULL) {
3549 		netstack_rele(ns);
3550 		return (-1);
3551 	}
3552 	kn[0].value.ui32 = ipst->ips_loopback_packets;
3553 	kn[1].value.ui32 = ipst->ips_loopback_packets;
3554 	netstack_rele(ns);
3555 	return (0);
3556 }
3557 
3558 /*
3559  * Has ifindex been plumbed already?
3560  */
3561 static boolean_t
3562 phyint_exists(uint_t index, ip_stack_t *ipst)
3563 {
3564 	ASSERT(index != 0);
3565 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3566 
3567 	return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3568 	    &index, NULL) != NULL);
3569 }
3570 
3571 /* Pick a unique ifindex */
3572 boolean_t
3573 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3574 {
3575 	uint_t starting_index;
3576 
3577 	if (!ipst->ips_ill_index_wrap) {
3578 		*indexp = ipst->ips_ill_index++;
3579 		if (ipst->ips_ill_index == 0) {
3580 			/* Reached the uint_t limit Next time wrap  */
3581 			ipst->ips_ill_index_wrap = B_TRUE;
3582 		}
3583 		return (B_TRUE);
3584 	}
3585 
3586 	/*
3587 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
3588 	 * at this point and don't want to call any function that attempts
3589 	 * to get the lock again.
3590 	 */
3591 	starting_index = ipst->ips_ill_index++;
3592 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
3593 		if (ipst->ips_ill_index != 0 &&
3594 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
3595 			/* found unused index - use it */
3596 			*indexp = ipst->ips_ill_index;
3597 			return (B_TRUE);
3598 		}
3599 	}
3600 
3601 	/*
3602 	 * all interface indicies are inuse.
3603 	 */
3604 	return (B_FALSE);
3605 }
3606 
3607 /*
3608  * Assign a unique interface index for the phyint.
3609  */
3610 static boolean_t
3611 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3612 {
3613 	ASSERT(phyi->phyint_ifindex == 0);
3614 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3615 }
3616 
3617 /*
3618  * Initialize the flags on `phyi' as per the provided mactype.
3619  */
3620 static void
3621 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3622 {
3623 	uint64_t flags = 0;
3624 
3625 	/*
3626 	 * Initialize PHYI_RUNNING and PHYI_FAILED.  For non-IPMP interfaces,
3627 	 * we always presume the underlying hardware is working and set
3628 	 * PHYI_RUNNING (if it's not, the driver will subsequently send a
3629 	 * DL_NOTE_LINK_DOWN message).  For IPMP interfaces, at initialization
3630 	 * there are no active interfaces in the group so we set PHYI_FAILED.
3631 	 */
3632 	if (mactype == SUNW_DL_IPMP)
3633 		flags |= PHYI_FAILED;
3634 	else
3635 		flags |= PHYI_RUNNING;
3636 
3637 	switch (mactype) {
3638 	case SUNW_DL_VNI:
3639 		flags |= PHYI_VIRTUAL;
3640 		break;
3641 	case SUNW_DL_IPMP:
3642 		flags |= PHYI_IPMP;
3643 		break;
3644 	case DL_LOOP:
3645 		flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3646 		break;
3647 	}
3648 
3649 	mutex_enter(&phyi->phyint_lock);
3650 	phyi->phyint_flags |= flags;
3651 	mutex_exit(&phyi->phyint_lock);
3652 }
3653 
3654 /*
3655  * Return a pointer to the ill which matches the supplied name.  Note that
3656  * the ill name length includes the null termination character.  (May be
3657  * called as writer.)
3658  * If do_alloc and the interface is "lo0" it will be automatically created.
3659  * Cannot bump up reference on condemned ills. So dup detect can't be done
3660  * using this func.
3661  */
3662 ill_t *
3663 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3664     boolean_t *did_alloc, ip_stack_t *ipst)
3665 {
3666 	ill_t	*ill;
3667 	ipif_t	*ipif;
3668 	ipsq_t	*ipsq;
3669 	kstat_named_t	*kn;
3670 	boolean_t isloopback;
3671 	in6_addr_t ov6addr;
3672 
3673 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
3674 
3675 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3676 	ill = ill_find_by_name(name, isv6, ipst);
3677 	rw_exit(&ipst->ips_ill_g_lock);
3678 	if (ill != NULL)
3679 		return (ill);
3680 
3681 	/*
3682 	 * Couldn't find it.  Does this happen to be a lookup for the
3683 	 * loopback device and are we allowed to allocate it?
3684 	 */
3685 	if (!isloopback || !do_alloc)
3686 		return (NULL);
3687 
3688 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3689 	ill = ill_find_by_name(name, isv6, ipst);
3690 	if (ill != NULL) {
3691 		rw_exit(&ipst->ips_ill_g_lock);
3692 		return (ill);
3693 	}
3694 
3695 	/* Create the loopback device on demand */
3696 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3697 	    sizeof (ipif_loopback_name), BPRI_MED));
3698 	if (ill == NULL)
3699 		goto done;
3700 
3701 	*ill = ill_null;
3702 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
3703 	ill->ill_ipst = ipst;
3704 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3705 	netstack_hold(ipst->ips_netstack);
3706 	/*
3707 	 * For exclusive stacks we set the zoneid to zero
3708 	 * to make IP operate as if in the global zone.
3709 	 */
3710 	ill->ill_zoneid = GLOBAL_ZONEID;
3711 
3712 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3713 	if (ill->ill_phyint == NULL)
3714 		goto done;
3715 
3716 	if (isv6)
3717 		ill->ill_phyint->phyint_illv6 = ill;
3718 	else
3719 		ill->ill_phyint->phyint_illv4 = ill;
3720 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3721 	phyint_flags_init(ill->ill_phyint, DL_LOOP);
3722 
3723 	if (isv6) {
3724 		ill->ill_isv6 = B_TRUE;
3725 		ill->ill_max_frag = ip_loopback_mtu_v6plus;
3726 	} else {
3727 		ill->ill_max_frag = ip_loopback_mtuplus;
3728 	}
3729 	if (!ill_allocate_mibs(ill))
3730 		goto done;
3731 	ill->ill_current_frag = ill->ill_max_frag;
3732 	ill->ill_mtu = ill->ill_max_frag;	/* Initial value */
3733 	/*
3734 	 * ipif_loopback_name can't be pointed at directly because its used
3735 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
3736 	 * from the glist, ill_glist_delete() sets the first character of
3737 	 * ill_name to '\0'.
3738 	 */
3739 	ill->ill_name = (char *)ill + sizeof (*ill);
3740 	(void) strcpy(ill->ill_name, ipif_loopback_name);
3741 	ill->ill_name_length = sizeof (ipif_loopback_name);
3742 	/* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3743 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3744 
3745 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3746 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3747 	ill->ill_global_timer = INFINITY;
3748 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3749 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3750 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3751 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3752 
3753 	/* No resolver here. */
3754 	ill->ill_net_type = IRE_LOOPBACK;
3755 
3756 	/* Initialize the ipsq */
3757 	if (!ipsq_init(ill, B_FALSE))
3758 		goto done;
3759 
3760 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3761 	if (ipif == NULL)
3762 		goto done;
3763 
3764 	ill->ill_flags = ILLF_MULTICAST;
3765 
3766 	ov6addr = ipif->ipif_v6lcl_addr;
3767 	/* Set up default loopback address and mask. */
3768 	if (!isv6) {
3769 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
3770 
3771 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3772 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3773 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3774 		    ipif->ipif_v6subnet);
3775 		ill->ill_flags |= ILLF_IPV4;
3776 	} else {
3777 		ipif->ipif_v6lcl_addr = ipv6_loopback;
3778 		ipif->ipif_v6net_mask = ipv6_all_ones;
3779 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3780 		    ipif->ipif_v6subnet);
3781 		ill->ill_flags |= ILLF_IPV6;
3782 	}
3783 
3784 	/*
3785 	 * Chain us in at the end of the ill list. hold the ill
3786 	 * before we make it globally visible. 1 for the lookup.
3787 	 */
3788 	ill->ill_refcnt = 0;
3789 	ill_refhold(ill);
3790 
3791 	ill->ill_frag_count = 0;
3792 	ill->ill_frag_free_num_pkts = 0;
3793 	ill->ill_last_frag_clean_time = 0;
3794 
3795 	ipsq = ill->ill_phyint->phyint_ipsq;
3796 
3797 	ill_set_inputfn(ill);
3798 
3799 	if (ill_glist_insert(ill, "lo", isv6) != 0)
3800 		cmn_err(CE_PANIC, "cannot insert loopback interface");
3801 
3802 	/* Let SCTP know so that it can add this to its list */
3803 	sctp_update_ill(ill, SCTP_ILL_INSERT);
3804 
3805 	/*
3806 	 * We have already assigned ipif_v6lcl_addr above, but we need to
3807 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3808 	 * requires to be after ill_glist_insert() since we need the
3809 	 * ill_index set. Pass on ipv6_loopback as the old address.
3810 	 */
3811 	sctp_update_ipif_addr(ipif, ov6addr);
3812 
3813 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
3814 
3815 	/*
3816 	 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3817 	 * If so, free our original one.
3818 	 */
3819 	if (ipsq != ill->ill_phyint->phyint_ipsq)
3820 		ipsq_delete(ipsq);
3821 
3822 	if (ipst->ips_loopback_ksp == NULL) {
3823 		/* Export loopback interface statistics */
3824 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3825 		    ipif_loopback_name, "net",
3826 		    KSTAT_TYPE_NAMED, 2, 0,
3827 		    ipst->ips_netstack->netstack_stackid);
3828 		if (ipst->ips_loopback_ksp != NULL) {
3829 			ipst->ips_loopback_ksp->ks_update =
3830 			    loopback_kstat_update;
3831 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3832 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3833 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
3834 			ipst->ips_loopback_ksp->ks_private =
3835 			    (void *)(uintptr_t)ipst->ips_netstack->
3836 			    netstack_stackid;
3837 			kstat_install(ipst->ips_loopback_ksp);
3838 		}
3839 	}
3840 
3841 	*did_alloc = B_TRUE;
3842 	rw_exit(&ipst->ips_ill_g_lock);
3843 	ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3844 	    NE_PLUMB, ill->ill_name, ill->ill_name_length);
3845 	return (ill);
3846 done:
3847 	if (ill != NULL) {
3848 		if (ill->ill_phyint != NULL) {
3849 			ipsq = ill->ill_phyint->phyint_ipsq;
3850 			if (ipsq != NULL) {
3851 				ipsq->ipsq_phyint = NULL;
3852 				ipsq_delete(ipsq);
3853 			}
3854 			mi_free(ill->ill_phyint);
3855 		}
3856 		ill_free_mib(ill);
3857 		if (ill->ill_ipst != NULL)
3858 			netstack_rele(ill->ill_ipst->ips_netstack);
3859 		mi_free(ill);
3860 	}
3861 	rw_exit(&ipst->ips_ill_g_lock);
3862 	return (NULL);
3863 }
3864 
3865 /*
3866  * For IPP calls - use the ip_stack_t for global stack.
3867  */
3868 ill_t *
3869 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3870 {
3871 	ip_stack_t	*ipst;
3872 	ill_t		*ill;
3873 
3874 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
3875 	if (ipst == NULL) {
3876 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3877 		return (NULL);
3878 	}
3879 
3880 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
3881 	netstack_rele(ipst->ips_netstack);
3882 	return (ill);
3883 }
3884 
3885 /*
3886  * Return a pointer to the ill which matches the index and IP version type.
3887  */
3888 ill_t *
3889 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3890 {
3891 	ill_t	*ill;
3892 	phyint_t *phyi;
3893 
3894 	/*
3895 	 * Indexes are stored in the phyint - a common structure
3896 	 * to both IPv4 and IPv6.
3897 	 */
3898 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3899 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3900 	    (void *) &index, NULL);
3901 	if (phyi != NULL) {
3902 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3903 		if (ill != NULL) {
3904 			mutex_enter(&ill->ill_lock);
3905 			if (!ILL_IS_CONDEMNED(ill)) {
3906 				ill_refhold_locked(ill);
3907 				mutex_exit(&ill->ill_lock);
3908 				rw_exit(&ipst->ips_ill_g_lock);
3909 				return (ill);
3910 			}
3911 			mutex_exit(&ill->ill_lock);
3912 		}
3913 	}
3914 	rw_exit(&ipst->ips_ill_g_lock);
3915 	return (NULL);
3916 }
3917 
3918 /*
3919  * Verify whether or not an interface index is valid.
3920  * It can be zero (meaning "reset") or an interface index assigned
3921  * to a non-VNI interface. (We don't use VNI interface to send packets.)
3922  */
3923 boolean_t
3924 ip_ifindex_valid(uint_t ifindex, boolean_t isv6, ip_stack_t *ipst)
3925 {
3926 	ill_t		*ill;
3927 
3928 	if (ifindex == 0)
3929 		return (B_TRUE);
3930 
3931 	ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
3932 	if (ill == NULL)
3933 		return (B_FALSE);
3934 	if (IS_VNI(ill)) {
3935 		ill_refrele(ill);
3936 		return (B_FALSE);
3937 	}
3938 	ill_refrele(ill);
3939 	return (B_TRUE);
3940 }
3941 
3942 /*
3943  * Return the ifindex next in sequence after the passed in ifindex.
3944  * If there is no next ifindex for the given protocol, return 0.
3945  */
3946 uint_t
3947 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3948 {
3949 	phyint_t *phyi;
3950 	phyint_t *phyi_initial;
3951 	uint_t   ifindex;
3952 
3953 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3954 
3955 	if (index == 0) {
3956 		phyi = avl_first(
3957 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3958 	} else {
3959 		phyi = phyi_initial = avl_find(
3960 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3961 		    (void *) &index, NULL);
3962 	}
3963 
3964 	for (; phyi != NULL;
3965 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3966 	    phyi, AVL_AFTER)) {
3967 		/*
3968 		 * If we're not returning the first interface in the tree
3969 		 * and we still haven't moved past the phyint_t that
3970 		 * corresponds to index, avl_walk needs to be called again
3971 		 */
3972 		if (!((index != 0) && (phyi == phyi_initial))) {
3973 			if (isv6) {
3974 				if ((phyi->phyint_illv6) &&
3975 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3976 				    (phyi->phyint_illv6->ill_isv6 == 1))
3977 					break;
3978 			} else {
3979 				if ((phyi->phyint_illv4) &&
3980 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3981 				    (phyi->phyint_illv4->ill_isv6 == 0))
3982 					break;
3983 			}
3984 		}
3985 	}
3986 
3987 	rw_exit(&ipst->ips_ill_g_lock);
3988 
3989 	if (phyi != NULL)
3990 		ifindex = phyi->phyint_ifindex;
3991 	else
3992 		ifindex = 0;
3993 
3994 	return (ifindex);
3995 }
3996 
3997 /*
3998  * Return the ifindex for the named interface.
3999  * If there is no next ifindex for the interface, return 0.
4000  */
4001 uint_t
4002 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
4003 {
4004 	phyint_t	*phyi;
4005 	avl_index_t	where = 0;
4006 	uint_t		ifindex;
4007 
4008 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4009 
4010 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4011 	    name, &where)) == NULL) {
4012 		rw_exit(&ipst->ips_ill_g_lock);
4013 		return (0);
4014 	}
4015 
4016 	ifindex = phyi->phyint_ifindex;
4017 
4018 	rw_exit(&ipst->ips_ill_g_lock);
4019 
4020 	return (ifindex);
4021 }
4022 
4023 /*
4024  * Return the ifindex to be used by upper layer protocols for instance
4025  * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4026  */
4027 uint_t
4028 ill_get_upper_ifindex(const ill_t *ill)
4029 {
4030 	if (IS_UNDER_IPMP(ill))
4031 		return (ipmp_ill_get_ipmp_ifindex(ill));
4032 	else
4033 		return (ill->ill_phyint->phyint_ifindex);
4034 }
4035 
4036 
4037 /*
4038  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4039  * that gives a running thread a reference to the ill. This reference must be
4040  * released by the thread when it is done accessing the ill and related
4041  * objects. ill_refcnt can not be used to account for static references
4042  * such as other structures pointing to an ill. Callers must generally
4043  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4044  * or be sure that the ill is not being deleted or changing state before
4045  * calling the refhold functions. A non-zero ill_refcnt ensures that the
4046  * ill won't change any of its critical state such as address, netmask etc.
4047  */
4048 void
4049 ill_refhold(ill_t *ill)
4050 {
4051 	mutex_enter(&ill->ill_lock);
4052 	ill->ill_refcnt++;
4053 	ILL_TRACE_REF(ill);
4054 	mutex_exit(&ill->ill_lock);
4055 }
4056 
4057 void
4058 ill_refhold_locked(ill_t *ill)
4059 {
4060 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4061 	ill->ill_refcnt++;
4062 	ILL_TRACE_REF(ill);
4063 }
4064 
4065 /* Returns true if we managed to get a refhold */
4066 boolean_t
4067 ill_check_and_refhold(ill_t *ill)
4068 {
4069 	mutex_enter(&ill->ill_lock);
4070 	if (!ILL_IS_CONDEMNED(ill)) {
4071 		ill_refhold_locked(ill);
4072 		mutex_exit(&ill->ill_lock);
4073 		return (B_TRUE);
4074 	}
4075 	mutex_exit(&ill->ill_lock);
4076 	return (B_FALSE);
4077 }
4078 
4079 /*
4080  * Must not be called while holding any locks. Otherwise if this is
4081  * the last reference to be released, there is a chance of recursive mutex
4082  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4083  * to restart an ioctl.
4084  */
4085 void
4086 ill_refrele(ill_t *ill)
4087 {
4088 	mutex_enter(&ill->ill_lock);
4089 	ASSERT(ill->ill_refcnt != 0);
4090 	ill->ill_refcnt--;
4091 	ILL_UNTRACE_REF(ill);
4092 	if (ill->ill_refcnt != 0) {
4093 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
4094 		mutex_exit(&ill->ill_lock);
4095 		return;
4096 	}
4097 
4098 	/* Drops the ill_lock */
4099 	ipif_ill_refrele_tail(ill);
4100 }
4101 
4102 /*
4103  * Obtain a weak reference count on the ill. This reference ensures the
4104  * ill won't be freed, but the ill may change any of its critical state
4105  * such as netmask, address etc. Returns an error if the ill has started
4106  * closing.
4107  */
4108 boolean_t
4109 ill_waiter_inc(ill_t *ill)
4110 {
4111 	mutex_enter(&ill->ill_lock);
4112 	if (ill->ill_state_flags & ILL_CONDEMNED) {
4113 		mutex_exit(&ill->ill_lock);
4114 		return (B_FALSE);
4115 	}
4116 	ill->ill_waiters++;
4117 	mutex_exit(&ill->ill_lock);
4118 	return (B_TRUE);
4119 }
4120 
4121 void
4122 ill_waiter_dcr(ill_t *ill)
4123 {
4124 	mutex_enter(&ill->ill_lock);
4125 	ill->ill_waiters--;
4126 	if (ill->ill_waiters == 0)
4127 		cv_broadcast(&ill->ill_cv);
4128 	mutex_exit(&ill->ill_lock);
4129 }
4130 
4131 /*
4132  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4133  * driver.  We construct best guess defaults for lower level information that
4134  * we need.  If an interface is brought up without injection of any overriding
4135  * information from outside, we have to be ready to go with these defaults.
4136  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4137  * we primarely want the dl_provider_style.
4138  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4139  * at which point we assume the other part of the information is valid.
4140  */
4141 void
4142 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4143 {
4144 	uchar_t		*brdcst_addr;
4145 	uint_t		brdcst_addr_length, phys_addr_length;
4146 	t_scalar_t	sap_length;
4147 	dl_info_ack_t	*dlia;
4148 	ip_m_t		*ipm;
4149 	dl_qos_cl_sel1_t *sel1;
4150 	int		min_mtu;
4151 
4152 	ASSERT(IAM_WRITER_ILL(ill));
4153 
4154 	/*
4155 	 * Till the ill is fully up  the ill is not globally visible.
4156 	 * So no need for a lock.
4157 	 */
4158 	dlia = (dl_info_ack_t *)mp->b_rptr;
4159 	ill->ill_mactype = dlia->dl_mac_type;
4160 
4161 	ipm = ip_m_lookup(dlia->dl_mac_type);
4162 	if (ipm == NULL) {
4163 		ipm = ip_m_lookup(DL_OTHER);
4164 		ASSERT(ipm != NULL);
4165 	}
4166 	ill->ill_media = ipm;
4167 
4168 	/*
4169 	 * When the new DLPI stuff is ready we'll pull lengths
4170 	 * from dlia.
4171 	 */
4172 	if (dlia->dl_version == DL_VERSION_2) {
4173 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
4174 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4175 		    brdcst_addr_length);
4176 		if (brdcst_addr == NULL) {
4177 			brdcst_addr_length = 0;
4178 		}
4179 		sap_length = dlia->dl_sap_length;
4180 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4181 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4182 		    brdcst_addr_length, sap_length, phys_addr_length));
4183 	} else {
4184 		brdcst_addr_length = 6;
4185 		brdcst_addr = ip_six_byte_all_ones;
4186 		sap_length = -2;
4187 		phys_addr_length = brdcst_addr_length;
4188 	}
4189 
4190 	ill->ill_bcast_addr_length = brdcst_addr_length;
4191 	ill->ill_phys_addr_length = phys_addr_length;
4192 	ill->ill_sap_length = sap_length;
4193 
4194 	/*
4195 	 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4196 	 * but we must ensure a minimum IP MTU is used since other bits of
4197 	 * IP will fly apart otherwise.
4198 	 */
4199 	min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4200 	ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4201 	ill->ill_current_frag = ill->ill_max_frag;
4202 	ill->ill_mtu = ill->ill_max_frag;
4203 
4204 	ill->ill_type = ipm->ip_m_type;
4205 
4206 	if (!ill->ill_dlpi_style_set) {
4207 		if (dlia->dl_provider_style == DL_STYLE2)
4208 			ill->ill_needs_attach = 1;
4209 
4210 		phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
4211 
4212 		/*
4213 		 * Allocate the first ipif on this ill.  We don't delay it
4214 		 * further as ioctl handling assumes at least one ipif exists.
4215 		 *
4216 		 * At this point we don't know whether the ill is v4 or v6.
4217 		 * We will know this whan the SIOCSLIFNAME happens and
4218 		 * the correct value for ill_isv6 will be assigned in
4219 		 * ipif_set_values(). We need to hold the ill lock and
4220 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4221 		 * the wakeup.
4222 		 */
4223 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
4224 		    dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4225 		mutex_enter(&ill->ill_lock);
4226 		ASSERT(ill->ill_dlpi_style_set == 0);
4227 		ill->ill_dlpi_style_set = 1;
4228 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4229 		cv_broadcast(&ill->ill_cv);
4230 		mutex_exit(&ill->ill_lock);
4231 		freemsg(mp);
4232 		return;
4233 	}
4234 	ASSERT(ill->ill_ipif != NULL);
4235 	/*
4236 	 * We know whether it is IPv4 or IPv6 now, as this is the
4237 	 * second DL_INFO_ACK we are recieving in response to the
4238 	 * DL_INFO_REQ sent in ipif_set_values.
4239 	 */
4240 	ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4241 	/*
4242 	 * Clear all the flags that were set based on ill_bcast_addr_length
4243 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
4244 	 * changed now and we need to re-evaluate.
4245 	 */
4246 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4247 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
4248 
4249 	/*
4250 	 * Free ill_bcast_mp as things could have changed now.
4251 	 *
4252 	 * NOTE: The IPMP meta-interface is special-cased because it starts
4253 	 * with no underlying interfaces (and thus an unknown broadcast
4254 	 * address length), but we enforce that an interface is broadcast-
4255 	 * capable as part of allowing it to join a group.
4256 	 */
4257 	if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4258 		if (ill->ill_bcast_mp != NULL)
4259 			freemsg(ill->ill_bcast_mp);
4260 		ill->ill_net_type = IRE_IF_NORESOLVER;
4261 
4262 		ill->ill_bcast_mp = ill_dlur_gen(NULL,
4263 		    ill->ill_phys_addr_length,
4264 		    ill->ill_sap,
4265 		    ill->ill_sap_length);
4266 
4267 		if (ill->ill_isv6)
4268 			/*
4269 			 * Note: xresolv interfaces will eventually need NOARP
4270 			 * set here as well, but that will require those
4271 			 * external resolvers to have some knowledge of
4272 			 * that flag and act appropriately. Not to be changed
4273 			 * at present.
4274 			 */
4275 			ill->ill_flags |= ILLF_NONUD;
4276 		else
4277 			ill->ill_flags |= ILLF_NOARP;
4278 
4279 		if (ill->ill_mactype == SUNW_DL_VNI) {
4280 			ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4281 		} else if (ill->ill_phys_addr_length == 0 ||
4282 		    ill->ill_mactype == DL_IPV4 ||
4283 		    ill->ill_mactype == DL_IPV6) {
4284 			/*
4285 			 * The underying link is point-to-point, so mark the
4286 			 * interface as such.  We can do IP multicast over
4287 			 * such a link since it transmits all network-layer
4288 			 * packets to the remote side the same way.
4289 			 */
4290 			ill->ill_flags |= ILLF_MULTICAST;
4291 			ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4292 		}
4293 	} else {
4294 		ill->ill_net_type = IRE_IF_RESOLVER;
4295 		if (ill->ill_bcast_mp != NULL)
4296 			freemsg(ill->ill_bcast_mp);
4297 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4298 		    ill->ill_bcast_addr_length, ill->ill_sap,
4299 		    ill->ill_sap_length);
4300 		/*
4301 		 * Later detect lack of DLPI driver multicast
4302 		 * capability by catching DL_ENABMULTI errors in
4303 		 * ip_rput_dlpi.
4304 		 */
4305 		ill->ill_flags |= ILLF_MULTICAST;
4306 		if (!ill->ill_isv6)
4307 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4308 	}
4309 
4310 	/* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4311 	if (ill->ill_mactype == SUNW_DL_IPMP)
4312 		ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
4313 
4314 	/* By default an interface does not support any CoS marking */
4315 	ill->ill_flags &= ~ILLF_COS_ENABLED;
4316 
4317 	/*
4318 	 * If we get QoS information in DL_INFO_ACK, the device supports
4319 	 * some form of CoS marking, set ILLF_COS_ENABLED.
4320 	 */
4321 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4322 	    dlia->dl_qos_length);
4323 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4324 		ill->ill_flags |= ILLF_COS_ENABLED;
4325 	}
4326 
4327 	/* Clear any previous error indication. */
4328 	ill->ill_error = 0;
4329 	freemsg(mp);
4330 }
4331 
4332 /*
4333  * Perform various checks to verify that an address would make sense as a
4334  * local, remote, or subnet interface address.
4335  */
4336 static boolean_t
4337 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4338 {
4339 	ipaddr_t	net_mask;
4340 
4341 	/*
4342 	 * Don't allow all zeroes, or all ones, but allow
4343 	 * all ones netmask.
4344 	 */
4345 	if ((net_mask = ip_net_mask(addr)) == 0)
4346 		return (B_FALSE);
4347 	/* A given netmask overrides the "guess" netmask */
4348 	if (subnet_mask != 0)
4349 		net_mask = subnet_mask;
4350 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4351 	    (addr == (addr | ~net_mask)))) {
4352 		return (B_FALSE);
4353 	}
4354 
4355 	/*
4356 	 * Even if the netmask is all ones, we do not allow address to be
4357 	 * 255.255.255.255
4358 	 */
4359 	if (addr == INADDR_BROADCAST)
4360 		return (B_FALSE);
4361 
4362 	if (CLASSD(addr))
4363 		return (B_FALSE);
4364 
4365 	return (B_TRUE);
4366 }
4367 
4368 #define	V6_IPIF_LINKLOCAL(p)	\
4369 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
4370 
4371 /*
4372  * Compare two given ipifs and check if the second one is better than
4373  * the first one using the order of preference (not taking deprecated
4374  * into acount) specified in ipif_lookup_multicast().
4375  */
4376 static boolean_t
4377 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4378 {
4379 	/* Check the least preferred first. */
4380 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4381 		/* If both ipifs are the same, use the first one. */
4382 		if (IS_LOOPBACK(new_ipif->ipif_ill))
4383 			return (B_FALSE);
4384 		else
4385 			return (B_TRUE);
4386 	}
4387 
4388 	/* For IPv6, check for link local address. */
4389 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4390 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4391 		    V6_IPIF_LINKLOCAL(new_ipif)) {
4392 			/* The second one is equal or less preferred. */
4393 			return (B_FALSE);
4394 		} else {
4395 			return (B_TRUE);
4396 		}
4397 	}
4398 
4399 	/* Then check for point to point interface. */
4400 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4401 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4402 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4403 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4404 			return (B_FALSE);
4405 		} else {
4406 			return (B_TRUE);
4407 		}
4408 	}
4409 
4410 	/* old_ipif is a normal interface, so no need to use the new one. */
4411 	return (B_FALSE);
4412 }
4413 
4414 /*
4415  * Find a mulitcast-capable ipif given an IP instance and zoneid.
4416  * The ipif must be up, and its ill must multicast-capable, not
4417  * condemned, not an underlying interface in an IPMP group, and
4418  * not a VNI interface.  Order of preference:
4419  *
4420  * 	1a. normal
4421  * 	1b. normal, but deprecated
4422  * 	2a. point to point
4423  * 	2b. point to point, but deprecated
4424  * 	3a. link local
4425  * 	3b. link local, but deprecated
4426  * 	4. loopback.
4427  */
4428 static ipif_t *
4429 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4430 {
4431 	ill_t			*ill;
4432 	ill_walk_context_t	ctx;
4433 	ipif_t			*ipif;
4434 	ipif_t			*saved_ipif = NULL;
4435 	ipif_t			*dep_ipif = NULL;
4436 
4437 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4438 	if (isv6)
4439 		ill = ILL_START_WALK_V6(&ctx, ipst);
4440 	else
4441 		ill = ILL_START_WALK_V4(&ctx, ipst);
4442 
4443 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4444 		mutex_enter(&ill->ill_lock);
4445 		if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4446 		    ILL_IS_CONDEMNED(ill) ||
4447 		    !(ill->ill_flags & ILLF_MULTICAST)) {
4448 			mutex_exit(&ill->ill_lock);
4449 			continue;
4450 		}
4451 		for (ipif = ill->ill_ipif; ipif != NULL;
4452 		    ipif = ipif->ipif_next) {
4453 			if (zoneid != ipif->ipif_zoneid &&
4454 			    zoneid != ALL_ZONES &&
4455 			    ipif->ipif_zoneid != ALL_ZONES) {
4456 				continue;
4457 			}
4458 			if (!(ipif->ipif_flags & IPIF_UP) ||
4459 			    IPIF_IS_CONDEMNED(ipif)) {
4460 				continue;
4461 			}
4462 
4463 			/*
4464 			 * Found one candidate.  If it is deprecated,
4465 			 * remember it in dep_ipif.  If it is not deprecated,
4466 			 * remember it in saved_ipif.
4467 			 */
4468 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
4469 				if (dep_ipif == NULL) {
4470 					dep_ipif = ipif;
4471 				} else if (ipif_comp_multi(dep_ipif, ipif,
4472 				    isv6)) {
4473 					/*
4474 					 * If the previous dep_ipif does not
4475 					 * belong to the same ill, we've done
4476 					 * a ipif_refhold() on it.  So we need
4477 					 * to release it.
4478 					 */
4479 					if (dep_ipif->ipif_ill != ill)
4480 						ipif_refrele(dep_ipif);
4481 					dep_ipif = ipif;
4482 				}
4483 				continue;
4484 			}
4485 			if (saved_ipif == NULL) {
4486 				saved_ipif = ipif;
4487 			} else {
4488 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4489 					if (saved_ipif->ipif_ill != ill)
4490 						ipif_refrele(saved_ipif);
4491 					saved_ipif = ipif;
4492 				}
4493 			}
4494 		}
4495 		/*
4496 		 * Before going to the next ill, do a ipif_refhold() on the
4497 		 * saved ones.
4498 		 */
4499 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4500 			ipif_refhold_locked(saved_ipif);
4501 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4502 			ipif_refhold_locked(dep_ipif);
4503 		mutex_exit(&ill->ill_lock);
4504 	}
4505 	rw_exit(&ipst->ips_ill_g_lock);
4506 
4507 	/*
4508 	 * If we have only the saved_ipif, return it.  But if we have both
4509 	 * saved_ipif and dep_ipif, check to see which one is better.
4510 	 */
4511 	if (saved_ipif != NULL) {
4512 		if (dep_ipif != NULL) {
4513 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4514 				ipif_refrele(saved_ipif);
4515 				return (dep_ipif);
4516 			} else {
4517 				ipif_refrele(dep_ipif);
4518 				return (saved_ipif);
4519 			}
4520 		}
4521 		return (saved_ipif);
4522 	} else {
4523 		return (dep_ipif);
4524 	}
4525 }
4526 
4527 ill_t *
4528 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4529 {
4530 	ipif_t *ipif;
4531 	ill_t *ill;
4532 
4533 	ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4534 	if (ipif == NULL)
4535 		return (NULL);
4536 
4537 	ill = ipif->ipif_ill;
4538 	ill_refhold(ill);
4539 	ipif_refrele(ipif);
4540 	return (ill);
4541 }
4542 
4543 /*
4544  * This function is called when an application does not specify an interface
4545  * to be used for multicast traffic (joining a group/sending data).  It
4546  * calls ire_lookup_multi() to look for an interface route for the
4547  * specified multicast group.  Doing this allows the administrator to add
4548  * prefix routes for multicast to indicate which interface to be used for
4549  * multicast traffic in the above scenario.  The route could be for all
4550  * multicast (224.0/4), for a single multicast group (a /32 route) or
4551  * anything in between.  If there is no such multicast route, we just find
4552  * any multicast capable interface and return it.  The returned ipif
4553  * is refhold'ed.
4554  *
4555  * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4556  * unicast table. This is used by CGTP.
4557  */
4558 ill_t *
4559 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4560     boolean_t *multirtp, ipaddr_t *setsrcp)
4561 {
4562 	ill_t			*ill;
4563 
4564 	ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4565 	if (ill != NULL)
4566 		return (ill);
4567 
4568 	return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4569 }
4570 
4571 /*
4572  * Look for an ipif with the specified interface address and destination.
4573  * The destination address is used only for matching point-to-point interfaces.
4574  */
4575 ipif_t *
4576 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4577 {
4578 	ipif_t	*ipif;
4579 	ill_t	*ill;
4580 	ill_walk_context_t ctx;
4581 
4582 	/*
4583 	 * First match all the point-to-point interfaces
4584 	 * before looking at non-point-to-point interfaces.
4585 	 * This is done to avoid returning non-point-to-point
4586 	 * ipif instead of unnumbered point-to-point ipif.
4587 	 */
4588 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4589 	ill = ILL_START_WALK_V4(&ctx, ipst);
4590 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4591 		mutex_enter(&ill->ill_lock);
4592 		for (ipif = ill->ill_ipif; ipif != NULL;
4593 		    ipif = ipif->ipif_next) {
4594 			/* Allow the ipif to be down */
4595 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4596 			    (ipif->ipif_lcl_addr == if_addr) &&
4597 			    (ipif->ipif_pp_dst_addr == dst)) {
4598 				if (!IPIF_IS_CONDEMNED(ipif)) {
4599 					ipif_refhold_locked(ipif);
4600 					mutex_exit(&ill->ill_lock);
4601 					rw_exit(&ipst->ips_ill_g_lock);
4602 					return (ipif);
4603 				}
4604 			}
4605 		}
4606 		mutex_exit(&ill->ill_lock);
4607 	}
4608 	rw_exit(&ipst->ips_ill_g_lock);
4609 
4610 	/* lookup the ipif based on interface address */
4611 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4612 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
4613 	return (ipif);
4614 }
4615 
4616 /*
4617  * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4618  */
4619 static ipif_t *
4620 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4621     zoneid_t zoneid, ip_stack_t *ipst)
4622 {
4623 	ipif_t  *ipif;
4624 	ill_t   *ill;
4625 	boolean_t ptp = B_FALSE;
4626 	ill_walk_context_t	ctx;
4627 	boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4628 	boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
4629 
4630 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4631 	/*
4632 	 * Repeat twice, first based on local addresses and
4633 	 * next time for pointopoint.
4634 	 */
4635 repeat:
4636 	ill = ILL_START_WALK_V4(&ctx, ipst);
4637 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4638 		if (match_ill != NULL && ill != match_ill &&
4639 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4640 			continue;
4641 		}
4642 		mutex_enter(&ill->ill_lock);
4643 		for (ipif = ill->ill_ipif; ipif != NULL;
4644 		    ipif = ipif->ipif_next) {
4645 			if (zoneid != ALL_ZONES &&
4646 			    zoneid != ipif->ipif_zoneid &&
4647 			    ipif->ipif_zoneid != ALL_ZONES)
4648 				continue;
4649 
4650 			if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4651 				continue;
4652 
4653 			/* Allow the ipif to be down */
4654 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4655 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4656 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4657 			    (ipif->ipif_pp_dst_addr == addr))) {
4658 				if (!IPIF_IS_CONDEMNED(ipif)) {
4659 					ipif_refhold_locked(ipif);
4660 					mutex_exit(&ill->ill_lock);
4661 					rw_exit(&ipst->ips_ill_g_lock);
4662 					return (ipif);
4663 				}
4664 			}
4665 		}
4666 		mutex_exit(&ill->ill_lock);
4667 	}
4668 
4669 	/* If we already did the ptp case, then we are done */
4670 	if (ptp) {
4671 		rw_exit(&ipst->ips_ill_g_lock);
4672 		return (NULL);
4673 	}
4674 	ptp = B_TRUE;
4675 	goto repeat;
4676 }
4677 
4678 /*
4679  * Lookup an ipif with the specified address.  For point-to-point links we
4680  * look for matches on either the destination address or the local address,
4681  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
4682  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
4683  * (or illgrp if `match_ill' is in an IPMP group).
4684  */
4685 ipif_t *
4686 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4687     ip_stack_t *ipst)
4688 {
4689 	return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4690 	    zoneid, ipst));
4691 }
4692 
4693 /*
4694  * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4695  * except that we will only return an address if it is not marked as
4696  * IPIF_DUPLICATE
4697  */
4698 ipif_t *
4699 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4700     ip_stack_t *ipst)
4701 {
4702 	return (ipif_lookup_addr_common(addr, match_ill,
4703 	    (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4704 	    zoneid, ipst));
4705 }
4706 
4707 /*
4708  * Special abbreviated version of ipif_lookup_addr() that doesn't match
4709  * `match_ill' across the IPMP group.  This function is only needed in some
4710  * corner-cases; almost everything should use ipif_lookup_addr().
4711  */
4712 ipif_t *
4713 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4714 {
4715 	ASSERT(match_ill != NULL);
4716 	return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4717 	    ipst));
4718 }
4719 
4720 /*
4721  * Look for an ipif with the specified address. For point-point links
4722  * we look for matches on either the destination address and the local
4723  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4724  * is set.
4725  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
4726  * ill (or illgrp if `match_ill' is in an IPMP group).
4727  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4728  */
4729 zoneid_t
4730 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4731 {
4732 	zoneid_t zoneid;
4733 	ipif_t  *ipif;
4734 	ill_t   *ill;
4735 	boolean_t ptp = B_FALSE;
4736 	ill_walk_context_t	ctx;
4737 
4738 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4739 	/*
4740 	 * Repeat twice, first based on local addresses and
4741 	 * next time for pointopoint.
4742 	 */
4743 repeat:
4744 	ill = ILL_START_WALK_V4(&ctx, ipst);
4745 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4746 		if (match_ill != NULL && ill != match_ill &&
4747 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4748 			continue;
4749 		}
4750 		mutex_enter(&ill->ill_lock);
4751 		for (ipif = ill->ill_ipif; ipif != NULL;
4752 		    ipif = ipif->ipif_next) {
4753 			/* Allow the ipif to be down */
4754 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4755 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4756 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4757 			    (ipif->ipif_pp_dst_addr == addr)) &&
4758 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4759 				zoneid = ipif->ipif_zoneid;
4760 				mutex_exit(&ill->ill_lock);
4761 				rw_exit(&ipst->ips_ill_g_lock);
4762 				/*
4763 				 * If ipif_zoneid was ALL_ZONES then we have
4764 				 * a trusted extensions shared IP address.
4765 				 * In that case GLOBAL_ZONEID works to send.
4766 				 */
4767 				if (zoneid == ALL_ZONES)
4768 					zoneid = GLOBAL_ZONEID;
4769 				return (zoneid);
4770 			}
4771 		}
4772 		mutex_exit(&ill->ill_lock);
4773 	}
4774 
4775 	/* If we already did the ptp case, then we are done */
4776 	if (ptp) {
4777 		rw_exit(&ipst->ips_ill_g_lock);
4778 		return (ALL_ZONES);
4779 	}
4780 	ptp = B_TRUE;
4781 	goto repeat;
4782 }
4783 
4784 /*
4785  * Look for an ipif that matches the specified remote address i.e. the
4786  * ipif that would receive the specified packet.
4787  * First look for directly connected interfaces and then do a recursive
4788  * IRE lookup and pick the first ipif corresponding to the source address in the
4789  * ire.
4790  * Returns: held ipif
4791  *
4792  * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4793  */
4794 ipif_t *
4795 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4796 {
4797 	ipif_t	*ipif;
4798 
4799 	ASSERT(!ill->ill_isv6);
4800 
4801 	/*
4802 	 * Someone could be changing this ipif currently or change it
4803 	 * after we return this. Thus  a few packets could use the old
4804 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
4805 	 * will atomically be updated or cleaned up with the new value
4806 	 * Thus we don't need a lock to check the flags or other attrs below.
4807 	 */
4808 	mutex_enter(&ill->ill_lock);
4809 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4810 		if (IPIF_IS_CONDEMNED(ipif))
4811 			continue;
4812 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4813 		    ipif->ipif_zoneid != ALL_ZONES)
4814 			continue;
4815 		/* Allow the ipif to be down */
4816 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4817 			if ((ipif->ipif_pp_dst_addr == addr) ||
4818 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4819 			    ipif->ipif_lcl_addr == addr)) {
4820 				ipif_refhold_locked(ipif);
4821 				mutex_exit(&ill->ill_lock);
4822 				return (ipif);
4823 			}
4824 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4825 			ipif_refhold_locked(ipif);
4826 			mutex_exit(&ill->ill_lock);
4827 			return (ipif);
4828 		}
4829 	}
4830 	mutex_exit(&ill->ill_lock);
4831 	/*
4832 	 * For a remote destination it isn't possible to nail down a particular
4833 	 * ipif.
4834 	 */
4835 
4836 	/* Pick the first interface */
4837 	ipif = ipif_get_next_ipif(NULL, ill);
4838 	return (ipif);
4839 }
4840 
4841 /*
4842  * This func does not prevent refcnt from increasing. But if
4843  * the caller has taken steps to that effect, then this func
4844  * can be used to determine whether the ill has become quiescent
4845  */
4846 static boolean_t
4847 ill_is_quiescent(ill_t *ill)
4848 {
4849 	ipif_t	*ipif;
4850 
4851 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4852 
4853 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4854 		if (ipif->ipif_refcnt != 0)
4855 			return (B_FALSE);
4856 	}
4857 	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4858 		return (B_FALSE);
4859 	}
4860 	return (B_TRUE);
4861 }
4862 
4863 boolean_t
4864 ill_is_freeable(ill_t *ill)
4865 {
4866 	ipif_t	*ipif;
4867 
4868 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4869 
4870 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4871 		if (ipif->ipif_refcnt != 0) {
4872 			return (B_FALSE);
4873 		}
4874 	}
4875 	if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4876 		return (B_FALSE);
4877 	}
4878 	return (B_TRUE);
4879 }
4880 
4881 /*
4882  * This func does not prevent refcnt from increasing. But if
4883  * the caller has taken steps to that effect, then this func
4884  * can be used to determine whether the ipif has become quiescent
4885  */
4886 static boolean_t
4887 ipif_is_quiescent(ipif_t *ipif)
4888 {
4889 	ill_t *ill;
4890 
4891 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4892 
4893 	if (ipif->ipif_refcnt != 0)
4894 		return (B_FALSE);
4895 
4896 	ill = ipif->ipif_ill;
4897 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4898 	    ill->ill_logical_down) {
4899 		return (B_TRUE);
4900 	}
4901 
4902 	/* This is the last ipif going down or being deleted on this ill */
4903 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4904 		return (B_FALSE);
4905 	}
4906 
4907 	return (B_TRUE);
4908 }
4909 
4910 /*
4911  * return true if the ipif can be destroyed: the ipif has to be quiescent
4912  * with zero references from ire/ilm to it.
4913  */
4914 static boolean_t
4915 ipif_is_freeable(ipif_t *ipif)
4916 {
4917 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4918 	ASSERT(ipif->ipif_id != 0);
4919 	return (ipif->ipif_refcnt == 0);
4920 }
4921 
4922 /*
4923  * The ipif/ill/ire has been refreled. Do the tail processing.
4924  * Determine if the ipif or ill in question has become quiescent and if so
4925  * wakeup close and/or restart any queued pending ioctl that is waiting
4926  * for the ipif_down (or ill_down)
4927  */
4928 void
4929 ipif_ill_refrele_tail(ill_t *ill)
4930 {
4931 	mblk_t	*mp;
4932 	conn_t	*connp;
4933 	ipsq_t	*ipsq;
4934 	ipxop_t	*ipx;
4935 	ipif_t	*ipif;
4936 	dl_notify_ind_t *dlindp;
4937 
4938 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4939 
4940 	if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4941 		/* ip_modclose() may be waiting */
4942 		cv_broadcast(&ill->ill_cv);
4943 	}
4944 
4945 	ipsq = ill->ill_phyint->phyint_ipsq;
4946 	mutex_enter(&ipsq->ipsq_lock);
4947 	ipx = ipsq->ipsq_xop;
4948 	mutex_enter(&ipx->ipx_lock);
4949 	if (ipx->ipx_waitfor == 0)	/* no one's waiting; bail */
4950 		goto unlock;
4951 
4952 	ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
4953 
4954 	ipif = ipx->ipx_pending_ipif;
4955 	if (ipif->ipif_ill != ill) 	/* wait is for another ill; bail */
4956 		goto unlock;
4957 
4958 	switch (ipx->ipx_waitfor) {
4959 	case IPIF_DOWN:
4960 		if (!ipif_is_quiescent(ipif))
4961 			goto unlock;
4962 		break;
4963 	case IPIF_FREE:
4964 		if (!ipif_is_freeable(ipif))
4965 			goto unlock;
4966 		break;
4967 	case ILL_DOWN:
4968 		if (!ill_is_quiescent(ill))
4969 			goto unlock;
4970 		break;
4971 	case ILL_FREE:
4972 		/*
4973 		 * ILL_FREE is only for loopback; normal ill teardown waits
4974 		 * synchronously in ip_modclose() without using ipx_waitfor,
4975 		 * handled by the cv_broadcast() at the top of this function.
4976 		 */
4977 		if (!ill_is_freeable(ill))
4978 			goto unlock;
4979 		break;
4980 	default:
4981 		cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4982 		    (void *)ipsq, ipx->ipx_waitfor);
4983 	}
4984 
4985 	ill_refhold_locked(ill);	/* for qwriter_ip() call below */
4986 	mutex_exit(&ipx->ipx_lock);
4987 	mp = ipsq_pending_mp_get(ipsq, &connp);
4988 	mutex_exit(&ipsq->ipsq_lock);
4989 	mutex_exit(&ill->ill_lock);
4990 
4991 	ASSERT(mp != NULL);
4992 	/*
4993 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4994 	 * we can only get here when the current operation decides it
4995 	 * it needs to quiesce via ipsq_pending_mp_add().
4996 	 */
4997 	switch (mp->b_datap->db_type) {
4998 	case M_PCPROTO:
4999 	case M_PROTO:
5000 		/*
5001 		 * For now, only DL_NOTIFY_IND messages can use this facility.
5002 		 */
5003 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
5004 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
5005 
5006 		switch (dlindp->dl_notification) {
5007 		case DL_NOTE_PHYS_ADDR:
5008 			qwriter_ip(ill, ill->ill_rq, mp,
5009 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
5010 			return;
5011 		case DL_NOTE_REPLUMB:
5012 			qwriter_ip(ill, ill->ill_rq, mp,
5013 			    ill_replumb_tail, CUR_OP, B_TRUE);
5014 			return;
5015 		default:
5016 			ASSERT(0);
5017 			ill_refrele(ill);
5018 		}
5019 		break;
5020 
5021 	case M_ERROR:
5022 	case M_HANGUP:
5023 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5024 		    B_TRUE);
5025 		return;
5026 
5027 	case M_IOCTL:
5028 	case M_IOCDATA:
5029 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5030 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5031 		return;
5032 
5033 	default:
5034 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5035 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5036 	}
5037 	return;
5038 unlock:
5039 	mutex_exit(&ipsq->ipsq_lock);
5040 	mutex_exit(&ipx->ipx_lock);
5041 	mutex_exit(&ill->ill_lock);
5042 }
5043 
5044 #ifdef DEBUG
5045 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5046 static void
5047 th_trace_rrecord(th_trace_t *th_trace)
5048 {
5049 	tr_buf_t *tr_buf;
5050 	uint_t lastref;
5051 
5052 	lastref = th_trace->th_trace_lastref;
5053 	lastref++;
5054 	if (lastref == TR_BUF_MAX)
5055 		lastref = 0;
5056 	th_trace->th_trace_lastref = lastref;
5057 	tr_buf = &th_trace->th_trbuf[lastref];
5058 	tr_buf->tr_time = ddi_get_lbolt();
5059 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5060 }
5061 
5062 static void
5063 th_trace_free(void *value)
5064 {
5065 	th_trace_t *th_trace = value;
5066 
5067 	ASSERT(th_trace->th_refcnt == 0);
5068 	kmem_free(th_trace, sizeof (*th_trace));
5069 }
5070 
5071 /*
5072  * Find or create the per-thread hash table used to track object references.
5073  * The ipst argument is NULL if we shouldn't allocate.
5074  *
5075  * Accesses per-thread data, so there's no need to lock here.
5076  */
5077 static mod_hash_t *
5078 th_trace_gethash(ip_stack_t *ipst)
5079 {
5080 	th_hash_t *thh;
5081 
5082 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5083 		mod_hash_t *mh;
5084 		char name[256];
5085 		size_t objsize, rshift;
5086 		int retv;
5087 
5088 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5089 			return (NULL);
5090 		(void) snprintf(name, sizeof (name), "th_trace_%p",
5091 		    (void *)curthread);
5092 
5093 		/*
5094 		 * We use mod_hash_create_extended here rather than the more
5095 		 * obvious mod_hash_create_ptrhash because the latter has a
5096 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
5097 		 * block.
5098 		 */
5099 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5100 		    MAX(sizeof (ire_t), sizeof (ncec_t)));
5101 		rshift = highbit(objsize);
5102 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5103 		    th_trace_free, mod_hash_byptr, (void *)rshift,
5104 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
5105 		if (mh == NULL) {
5106 			kmem_free(thh, sizeof (*thh));
5107 			return (NULL);
5108 		}
5109 		thh->thh_hash = mh;
5110 		thh->thh_ipst = ipst;
5111 		/*
5112 		 * We trace ills, ipifs, ires, and nces.  All of these are
5113 		 * per-IP-stack, so the lock on the thread list is as well.
5114 		 */
5115 		rw_enter(&ip_thread_rwlock, RW_WRITER);
5116 		list_insert_tail(&ip_thread_list, thh);
5117 		rw_exit(&ip_thread_rwlock);
5118 		retv = tsd_set(ip_thread_data, thh);
5119 		ASSERT(retv == 0);
5120 	}
5121 	return (thh != NULL ? thh->thh_hash : NULL);
5122 }
5123 
5124 boolean_t
5125 th_trace_ref(const void *obj, ip_stack_t *ipst)
5126 {
5127 	th_trace_t *th_trace;
5128 	mod_hash_t *mh;
5129 	mod_hash_val_t val;
5130 
5131 	if ((mh = th_trace_gethash(ipst)) == NULL)
5132 		return (B_FALSE);
5133 
5134 	/*
5135 	 * Attempt to locate the trace buffer for this obj and thread.
5136 	 * If it does not exist, then allocate a new trace buffer and
5137 	 * insert into the hash.
5138 	 */
5139 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5140 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5141 		if (th_trace == NULL)
5142 			return (B_FALSE);
5143 
5144 		th_trace->th_id = curthread;
5145 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5146 		    (mod_hash_val_t)th_trace) != 0) {
5147 			kmem_free(th_trace, sizeof (th_trace_t));
5148 			return (B_FALSE);
5149 		}
5150 	} else {
5151 		th_trace = (th_trace_t *)val;
5152 	}
5153 
5154 	ASSERT(th_trace->th_refcnt >= 0 &&
5155 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
5156 
5157 	th_trace->th_refcnt++;
5158 	th_trace_rrecord(th_trace);
5159 	return (B_TRUE);
5160 }
5161 
5162 /*
5163  * For the purpose of tracing a reference release, we assume that global
5164  * tracing is always on and that the same thread initiated the reference hold
5165  * is releasing.
5166  */
5167 void
5168 th_trace_unref(const void *obj)
5169 {
5170 	int retv;
5171 	mod_hash_t *mh;
5172 	th_trace_t *th_trace;
5173 	mod_hash_val_t val;
5174 
5175 	mh = th_trace_gethash(NULL);
5176 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5177 	ASSERT(retv == 0);
5178 	th_trace = (th_trace_t *)val;
5179 
5180 	ASSERT(th_trace->th_refcnt > 0);
5181 	th_trace->th_refcnt--;
5182 	th_trace_rrecord(th_trace);
5183 }
5184 
5185 /*
5186  * If tracing has been disabled, then we assume that the reference counts are
5187  * now useless, and we clear them out before destroying the entries.
5188  */
5189 void
5190 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5191 {
5192 	th_hash_t	*thh;
5193 	mod_hash_t	*mh;
5194 	mod_hash_val_t	val;
5195 	th_trace_t	*th_trace;
5196 	int		retv;
5197 
5198 	rw_enter(&ip_thread_rwlock, RW_READER);
5199 	for (thh = list_head(&ip_thread_list); thh != NULL;
5200 	    thh = list_next(&ip_thread_list, thh)) {
5201 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5202 		    &val) == 0) {
5203 			th_trace = (th_trace_t *)val;
5204 			if (trace_disable)
5205 				th_trace->th_refcnt = 0;
5206 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5207 			ASSERT(retv == 0);
5208 		}
5209 	}
5210 	rw_exit(&ip_thread_rwlock);
5211 }
5212 
5213 void
5214 ipif_trace_ref(ipif_t *ipif)
5215 {
5216 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5217 
5218 	if (ipif->ipif_trace_disable)
5219 		return;
5220 
5221 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5222 		ipif->ipif_trace_disable = B_TRUE;
5223 		ipif_trace_cleanup(ipif);
5224 	}
5225 }
5226 
5227 void
5228 ipif_untrace_ref(ipif_t *ipif)
5229 {
5230 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5231 
5232 	if (!ipif->ipif_trace_disable)
5233 		th_trace_unref(ipif);
5234 }
5235 
5236 void
5237 ill_trace_ref(ill_t *ill)
5238 {
5239 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5240 
5241 	if (ill->ill_trace_disable)
5242 		return;
5243 
5244 	if (!th_trace_ref(ill, ill->ill_ipst)) {
5245 		ill->ill_trace_disable = B_TRUE;
5246 		ill_trace_cleanup(ill);
5247 	}
5248 }
5249 
5250 void
5251 ill_untrace_ref(ill_t *ill)
5252 {
5253 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5254 
5255 	if (!ill->ill_trace_disable)
5256 		th_trace_unref(ill);
5257 }
5258 
5259 /*
5260  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
5261  * failure, ipif_trace_disable is set.
5262  */
5263 static void
5264 ipif_trace_cleanup(const ipif_t *ipif)
5265 {
5266 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5267 }
5268 
5269 /*
5270  * Called when ill is unplumbed or when memory alloc fails.  Note that on
5271  * failure, ill_trace_disable is set.
5272  */
5273 static void
5274 ill_trace_cleanup(const ill_t *ill)
5275 {
5276 	th_trace_cleanup(ill, ill->ill_trace_disable);
5277 }
5278 #endif /* DEBUG */
5279 
5280 void
5281 ipif_refhold_locked(ipif_t *ipif)
5282 {
5283 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5284 	ipif->ipif_refcnt++;
5285 	IPIF_TRACE_REF(ipif);
5286 }
5287 
5288 void
5289 ipif_refhold(ipif_t *ipif)
5290 {
5291 	ill_t	*ill;
5292 
5293 	ill = ipif->ipif_ill;
5294 	mutex_enter(&ill->ill_lock);
5295 	ipif->ipif_refcnt++;
5296 	IPIF_TRACE_REF(ipif);
5297 	mutex_exit(&ill->ill_lock);
5298 }
5299 
5300 /*
5301  * Must not be called while holding any locks. Otherwise if this is
5302  * the last reference to be released there is a chance of recursive mutex
5303  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5304  * to restart an ioctl.
5305  */
5306 void
5307 ipif_refrele(ipif_t *ipif)
5308 {
5309 	ill_t	*ill;
5310 
5311 	ill = ipif->ipif_ill;
5312 
5313 	mutex_enter(&ill->ill_lock);
5314 	ASSERT(ipif->ipif_refcnt != 0);
5315 	ipif->ipif_refcnt--;
5316 	IPIF_UNTRACE_REF(ipif);
5317 	if (ipif->ipif_refcnt != 0) {
5318 		mutex_exit(&ill->ill_lock);
5319 		return;
5320 	}
5321 
5322 	/* Drops the ill_lock */
5323 	ipif_ill_refrele_tail(ill);
5324 }
5325 
5326 ipif_t *
5327 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5328 {
5329 	ipif_t	*ipif;
5330 
5331 	mutex_enter(&ill->ill_lock);
5332 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5333 	    ipif != NULL; ipif = ipif->ipif_next) {
5334 		if (IPIF_IS_CONDEMNED(ipif))
5335 			continue;
5336 		ipif_refhold_locked(ipif);
5337 		mutex_exit(&ill->ill_lock);
5338 		return (ipif);
5339 	}
5340 	mutex_exit(&ill->ill_lock);
5341 	return (NULL);
5342 }
5343 
5344 /*
5345  * TODO: make this table extendible at run time
5346  * Return a pointer to the mac type info for 'mac_type'
5347  */
5348 static ip_m_t *
5349 ip_m_lookup(t_uscalar_t mac_type)
5350 {
5351 	ip_m_t	*ipm;
5352 
5353 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5354 		if (ipm->ip_m_mac_type == mac_type)
5355 			return (ipm);
5356 	return (NULL);
5357 }
5358 
5359 /*
5360  * Make a link layer address from the multicast IP address *addr.
5361  * To form the link layer address, invoke the ip_m_v*mapping function
5362  * associated with the link-layer type.
5363  */
5364 void
5365 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5366 {
5367 	ip_m_t *ipm;
5368 
5369 	if (ill->ill_net_type == IRE_IF_NORESOLVER)
5370 		return;
5371 
5372 	ASSERT(addr != NULL);
5373 
5374 	ipm = ip_m_lookup(ill->ill_mactype);
5375 	if (ipm == NULL ||
5376 	    (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5377 	    (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5378 		ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5379 		    ill->ill_name, ill->ill_mactype));
5380 		return;
5381 	}
5382 	if (ill->ill_isv6)
5383 		(*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5384 	else
5385 		(*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5386 }
5387 
5388 /*
5389  * ip_rt_add is called to add an IPv4 route to the forwarding table.
5390  * ill is passed in to associate it with the correct interface.
5391  * If ire_arg is set, then we return the held IRE in that location.
5392  */
5393 int
5394 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5395     ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5396     boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5397 {
5398 	ire_t	*ire, *nire;
5399 	ire_t	*gw_ire = NULL;
5400 	ipif_t	*ipif = NULL;
5401 	uint_t	type;
5402 	int	match_flags = MATCH_IRE_TYPE;
5403 	tsol_gc_t *gc = NULL;
5404 	tsol_gcgrp_t *gcgrp = NULL;
5405 	boolean_t gcgrp_xtraref = B_FALSE;
5406 	boolean_t cgtp_broadcast;
5407 
5408 	ip1dbg(("ip_rt_add:"));
5409 
5410 	if (ire_arg != NULL)
5411 		*ire_arg = NULL;
5412 
5413 	/*
5414 	 * If this is the case of RTF_HOST being set, then we set the netmask
5415 	 * to all ones (regardless if one was supplied).
5416 	 */
5417 	if (flags & RTF_HOST)
5418 		mask = IP_HOST_MASK;
5419 
5420 	/*
5421 	 * Prevent routes with a zero gateway from being created (since
5422 	 * interfaces can currently be plumbed and brought up no assigned
5423 	 * address).
5424 	 */
5425 	if (gw_addr == 0)
5426 		return (ENETUNREACH);
5427 	/*
5428 	 * Get the ipif, if any, corresponding to the gw_addr
5429 	 * If -ifp was specified we restrict ourselves to the ill, otherwise
5430 	 * we match on the gatway and destination to handle unnumbered pt-pt
5431 	 * interfaces.
5432 	 */
5433 	if (ill != NULL)
5434 		ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5435 	else
5436 		ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5437 	if (ipif != NULL) {
5438 		if (IS_VNI(ipif->ipif_ill)) {
5439 			ipif_refrele(ipif);
5440 			return (EINVAL);
5441 		}
5442 	}
5443 
5444 	/*
5445 	 * GateD will attempt to create routes with a loopback interface
5446 	 * address as the gateway and with RTF_GATEWAY set.  We allow
5447 	 * these routes to be added, but create them as interface routes
5448 	 * since the gateway is an interface address.
5449 	 */
5450 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5451 		flags &= ~RTF_GATEWAY;
5452 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5453 		    mask == IP_HOST_MASK) {
5454 			ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5455 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5456 			    NULL);
5457 			if (ire != NULL) {
5458 				ire_refrele(ire);
5459 				ipif_refrele(ipif);
5460 				return (EEXIST);
5461 			}
5462 			ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5463 			    "for 0x%x\n", (void *)ipif,
5464 			    ipif->ipif_ire_type,
5465 			    ntohl(ipif->ipif_lcl_addr)));
5466 			ire = ire_create(
5467 			    (uchar_t *)&dst_addr,	/* dest address */
5468 			    (uchar_t *)&mask,		/* mask */
5469 			    NULL,			/* no gateway */
5470 			    ipif->ipif_ire_type,	/* LOOPBACK */
5471 			    ipif->ipif_ill,
5472 			    zoneid,
5473 			    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5474 			    NULL,
5475 			    ipst);
5476 
5477 			if (ire == NULL) {
5478 				ipif_refrele(ipif);
5479 				return (ENOMEM);
5480 			}
5481 			/* src address assigned by the caller? */
5482 			if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5483 				ire->ire_setsrc_addr = src_addr;
5484 
5485 			nire = ire_add(ire);
5486 			if (nire == NULL) {
5487 				/*
5488 				 * In the result of failure, ire_add() will have
5489 				 * already deleted the ire in question, so there
5490 				 * is no need to do that here.
5491 				 */
5492 				ipif_refrele(ipif);
5493 				return (ENOMEM);
5494 			}
5495 			/*
5496 			 * Check if it was a duplicate entry. This handles
5497 			 * the case of two racing route adds for the same route
5498 			 */
5499 			if (nire != ire) {
5500 				ASSERT(nire->ire_identical_ref > 1);
5501 				ire_delete(nire);
5502 				ire_refrele(nire);
5503 				ipif_refrele(ipif);
5504 				return (EEXIST);
5505 			}
5506 			ire = nire;
5507 			goto save_ire;
5508 		}
5509 	}
5510 
5511 	/*
5512 	 * The routes for multicast with CGTP are quite special in that
5513 	 * the gateway is the local interface address, yet RTF_GATEWAY
5514 	 * is set. We turn off RTF_GATEWAY to provide compatibility with
5515 	 * this undocumented and unusual use of multicast routes.
5516 	 */
5517 	if ((flags & RTF_MULTIRT) && ipif != NULL)
5518 		flags &= ~RTF_GATEWAY;
5519 
5520 	/*
5521 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
5522 	 * and the gateway address provided is one of the system's interface
5523 	 * addresses.  By using the routing socket interface and supplying an
5524 	 * RTA_IFP sockaddr with an interface index, an alternate method of
5525 	 * specifying an interface route to be created is available which uses
5526 	 * the interface index that specifies the outgoing interface rather than
5527 	 * the address of an outgoing interface (which may not be able to
5528 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
5529 	 * flag, routes can be specified which not only specify the next-hop to
5530 	 * be used when routing to a certain prefix, but also which outgoing
5531 	 * interface should be used.
5532 	 *
5533 	 * Previously, interfaces would have unique addresses assigned to them
5534 	 * and so the address assigned to a particular interface could be used
5535 	 * to identify a particular interface.  One exception to this was the
5536 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5537 	 *
5538 	 * With the advent of IPv6 and its link-local addresses, this
5539 	 * restriction was relaxed and interfaces could share addresses between
5540 	 * themselves.  In fact, typically all of the link-local interfaces on
5541 	 * an IPv6 node or router will have the same link-local address.  In
5542 	 * order to differentiate between these interfaces, the use of an
5543 	 * interface index is necessary and this index can be carried inside a
5544 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
5545 	 * of using the interface index, however, is that all of the ipif's that
5546 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
5547 	 * cannot be used to differentiate between ipif's (or logical
5548 	 * interfaces) that belong to the same ill (physical interface).
5549 	 *
5550 	 * For example, in the following case involving IPv4 interfaces and
5551 	 * logical interfaces
5552 	 *
5553 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
5554 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0
5555 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0
5556 	 *
5557 	 * the ipif's corresponding to each of these interface routes can be
5558 	 * uniquely identified by the "gateway" (actually interface address).
5559 	 *
5560 	 * In this case involving multiple IPv6 default routes to a particular
5561 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
5562 	 * default route is of interest:
5563 	 *
5564 	 *	default		fe80::123:4567:89ab:cdef	U	if0
5565 	 *	default		fe80::123:4567:89ab:cdef	U	if1
5566 	 */
5567 
5568 	/* RTF_GATEWAY not set */
5569 	if (!(flags & RTF_GATEWAY)) {
5570 		if (sp != NULL) {
5571 			ip2dbg(("ip_rt_add: gateway security attributes "
5572 			    "cannot be set with interface route\n"));
5573 			if (ipif != NULL)
5574 				ipif_refrele(ipif);
5575 			return (EINVAL);
5576 		}
5577 
5578 		/*
5579 		 * Whether or not ill (RTA_IFP) is set, we require that
5580 		 * the gateway is one of our local addresses.
5581 		 */
5582 		if (ipif == NULL)
5583 			return (ENETUNREACH);
5584 
5585 		/*
5586 		 * We use MATCH_IRE_ILL here. If the caller specified an
5587 		 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5588 		 * we use the ill derived from the gateway address.
5589 		 * We can always match the gateway address since we record it
5590 		 * in ire_gateway_addr.
5591 		 * We don't allow RTA_IFP to specify a different ill than the
5592 		 * one matching the ipif to make sure we can delete the route.
5593 		 */
5594 		match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5595 		if (ill == NULL) {
5596 			ill = ipif->ipif_ill;
5597 		} else if (ill != ipif->ipif_ill) {
5598 			ipif_refrele(ipif);
5599 			return (EINVAL);
5600 		}
5601 
5602 		/*
5603 		 * We check for an existing entry at this point.
5604 		 *
5605 		 * Since a netmask isn't passed in via the ioctl interface
5606 		 * (SIOCADDRT), we don't check for a matching netmask in that
5607 		 * case.
5608 		 */
5609 		if (!ioctl_msg)
5610 			match_flags |= MATCH_IRE_MASK;
5611 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5612 		    IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5613 		    NULL);
5614 		if (ire != NULL) {
5615 			ire_refrele(ire);
5616 			ipif_refrele(ipif);
5617 			return (EEXIST);
5618 		}
5619 
5620 		/*
5621 		 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or
5622 		 * IRE_IF_RESOLVER with the modified address, netmask, and
5623 		 * gateway.
5624 		 */
5625 		ire = ire_create(
5626 		    (uchar_t *)&dst_addr,
5627 		    (uint8_t *)&mask,
5628 		    (uint8_t *)&gw_addr,
5629 		    ill->ill_net_type,
5630 		    ill,
5631 		    zoneid,
5632 		    flags,
5633 		    NULL,
5634 		    ipst);
5635 		if (ire == NULL) {
5636 			ipif_refrele(ipif);
5637 			return (ENOMEM);
5638 		}
5639 
5640 		/*
5641 		 * Some software (for example, GateD and Sun Cluster) attempts
5642 		 * to create (what amount to) IRE_PREFIX routes with the
5643 		 * loopback address as the gateway.  This is primarily done to
5644 		 * set up prefixes with the RTF_REJECT flag set (for example,
5645 		 * when generating aggregate routes.)
5646 		 *
5647 		 * If the IRE type (as defined by ill->ill_net_type) is
5648 		 * IRE_LOOPBACK, then we map the request into a
5649 		 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5650 		 * these interface routes, by definition, can only be that.
5651 		 *
5652 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5653 		 * routine, but rather using ire_create() directly.
5654 		 *
5655 		 */
5656 		if (ill->ill_net_type == IRE_LOOPBACK) {
5657 			ire->ire_type = IRE_IF_NORESOLVER;
5658 			ire->ire_flags |= RTF_BLACKHOLE;
5659 		}
5660 
5661 		/* src address assigned by the caller? */
5662 		if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5663 			ire->ire_setsrc_addr = src_addr;
5664 
5665 		nire = ire_add(ire);
5666 		if (nire == NULL) {
5667 			/*
5668 			 * In the result of failure, ire_add() will have
5669 			 * already deleted the ire in question, so there
5670 			 * is no need to do that here.
5671 			 */
5672 			ipif_refrele(ipif);
5673 			return (ENOMEM);
5674 		}
5675 		/*
5676 		 * Check if it was a duplicate entry. This handles
5677 		 * the case of two racing route adds for the same route
5678 		 */
5679 		if (nire != ire) {
5680 			ire_delete(nire);
5681 			ire_refrele(nire);
5682 			ipif_refrele(ipif);
5683 			return (EEXIST);
5684 		}
5685 		ire = nire;
5686 		goto save_ire;
5687 	}
5688 
5689 	/*
5690 	 * Get an interface IRE for the specified gateway.
5691 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5692 	 * gateway, it is currently unreachable and we fail the request
5693 	 * accordingly.
5694 	 * If RTA_IFP was specified we look on that particular ill.
5695 	 */
5696 	if (ill != NULL)
5697 		match_flags |= MATCH_IRE_ILL;
5698 
5699 	/* Check whether the gateway is reachable. */
5700 again:
5701 	type = IRE_INTERFACE;
5702 	if (flags & RTF_INDIRECT)
5703 		type |= IRE_OFFLINK;
5704 
5705 	gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5706 	    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5707 	if (gw_ire == NULL) {
5708 		/*
5709 		 * With IPMP, we allow host routes to influence in.mpathd's
5710 		 * target selection.  However, if the test addresses are on
5711 		 * their own network, the above lookup will fail since the
5712 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
5713 		 * hidden test IREs to be found and try again.
5714 		 */
5715 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))  {
5716 			match_flags |= MATCH_IRE_TESTHIDDEN;
5717 			goto again;
5718 		}
5719 
5720 		if (ipif != NULL)
5721 			ipif_refrele(ipif);
5722 		return (ENETUNREACH);
5723 	}
5724 
5725 	/*
5726 	 * We create one of three types of IREs as a result of this request
5727 	 * based on the netmask.  A netmask of all ones (which is automatically
5728 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5729 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5730 	 * created.  Otherwise, an IRE_PREFIX route is created for the
5731 	 * destination prefix.
5732 	 */
5733 	if (mask == IP_HOST_MASK)
5734 		type = IRE_HOST;
5735 	else if (mask == 0)
5736 		type = IRE_DEFAULT;
5737 	else
5738 		type = IRE_PREFIX;
5739 
5740 	/* check for a duplicate entry */
5741 	ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5742 	    ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5743 	    0, ipst, NULL);
5744 	if (ire != NULL) {
5745 		if (ipif != NULL)
5746 			ipif_refrele(ipif);
5747 		ire_refrele(gw_ire);
5748 		ire_refrele(ire);
5749 		return (EEXIST);
5750 	}
5751 
5752 	/* Security attribute exists */
5753 	if (sp != NULL) {
5754 		tsol_gcgrp_addr_t ga;
5755 
5756 		/* find or create the gateway credentials group */
5757 		ga.ga_af = AF_INET;
5758 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
5759 
5760 		/* we hold reference to it upon success */
5761 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
5762 		if (gcgrp == NULL) {
5763 			if (ipif != NULL)
5764 				ipif_refrele(ipif);
5765 			ire_refrele(gw_ire);
5766 			return (ENOMEM);
5767 		}
5768 
5769 		/*
5770 		 * Create and add the security attribute to the group; a
5771 		 * reference to the group is made upon allocating a new
5772 		 * entry successfully.  If it finds an already-existing
5773 		 * entry for the security attribute in the group, it simply
5774 		 * returns it and no new reference is made to the group.
5775 		 */
5776 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5777 		if (gc == NULL) {
5778 			if (ipif != NULL)
5779 				ipif_refrele(ipif);
5780 			/* release reference held by gcgrp_lookup */
5781 			GCGRP_REFRELE(gcgrp);
5782 			ire_refrele(gw_ire);
5783 			return (ENOMEM);
5784 		}
5785 	}
5786 
5787 	/* Create the IRE. */
5788 	ire = ire_create(
5789 	    (uchar_t *)&dst_addr,		/* dest address */
5790 	    (uchar_t *)&mask,			/* mask */
5791 	    (uchar_t *)&gw_addr,		/* gateway address */
5792 	    (ushort_t)type,			/* IRE type */
5793 	    ill,
5794 	    zoneid,
5795 	    flags,
5796 	    gc,					/* security attribute */
5797 	    ipst);
5798 
5799 	/*
5800 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
5801 	 * reference to the 'gcgrp'. We can now release the extra reference
5802 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
5803 	 */
5804 	if (gcgrp_xtraref)
5805 		GCGRP_REFRELE(gcgrp);
5806 	if (ire == NULL) {
5807 		if (gc != NULL)
5808 			GC_REFRELE(gc);
5809 		if (ipif != NULL)
5810 			ipif_refrele(ipif);
5811 		ire_refrele(gw_ire);
5812 		return (ENOMEM);
5813 	}
5814 
5815 	/* Before we add, check if an extra CGTP broadcast is needed */
5816 	cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5817 	    ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);
5818 
5819 	/* src address assigned by the caller? */
5820 	if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5821 		ire->ire_setsrc_addr = src_addr;
5822 
5823 	/*
5824 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5825 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5826 	 */
5827 
5828 	/* Add the new IRE. */
5829 	nire = ire_add(ire);
5830 	if (nire == NULL) {
5831 		/*
5832 		 * In the result of failure, ire_add() will have
5833 		 * already deleted the ire in question, so there
5834 		 * is no need to do that here.
5835 		 */
5836 		if (ipif != NULL)
5837 			ipif_refrele(ipif);
5838 		ire_refrele(gw_ire);
5839 		return (ENOMEM);
5840 	}
5841 	/*
5842 	 * Check if it was a duplicate entry. This handles
5843 	 * the case of two racing route adds for the same route
5844 	 */
5845 	if (nire != ire) {
5846 		ire_delete(nire);
5847 		ire_refrele(nire);
5848 		if (ipif != NULL)
5849 			ipif_refrele(ipif);
5850 		ire_refrele(gw_ire);
5851 		return (EEXIST);
5852 	}
5853 	ire = nire;
5854 
5855 	if (flags & RTF_MULTIRT) {
5856 		/*
5857 		 * Invoke the CGTP (multirouting) filtering module
5858 		 * to add the dst address in the filtering database.
5859 		 * Replicated inbound packets coming from that address
5860 		 * will be filtered to discard the duplicates.
5861 		 * It is not necessary to call the CGTP filter hook
5862 		 * when the dst address is a broadcast or multicast,
5863 		 * because an IP source address cannot be a broadcast
5864 		 * or a multicast.
5865 		 */
5866 		if (cgtp_broadcast) {
5867 			ip_cgtp_bcast_add(ire, ipst);
5868 			goto save_ire;
5869 		}
5870 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5871 		    !CLASSD(ire->ire_addr)) {
5872 			int res;
5873 			ipif_t *src_ipif;
5874 
5875 			/* Find the source address corresponding to gw_ire */
5876 			src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5877 			    NULL, zoneid, ipst);
5878 			if (src_ipif != NULL) {
5879 				res = ipst->ips_ip_cgtp_filter_ops->
5880 				    cfo_add_dest_v4(
5881 				    ipst->ips_netstack->netstack_stackid,
5882 				    ire->ire_addr,
5883 				    ire->ire_gateway_addr,
5884 				    ire->ire_setsrc_addr,
5885 				    src_ipif->ipif_lcl_addr);
5886 				ipif_refrele(src_ipif);
5887 			} else {
5888 				res = EADDRNOTAVAIL;
5889 			}
5890 			if (res != 0) {
5891 				if (ipif != NULL)
5892 					ipif_refrele(ipif);
5893 				ire_refrele(gw_ire);
5894 				ire_delete(ire);
5895 				ire_refrele(ire);	/* Held in ire_add */
5896 				return (res);
5897 			}
5898 		}
5899 	}
5900 
5901 save_ire:
5902 	if (gw_ire != NULL) {
5903 		ire_refrele(gw_ire);
5904 		gw_ire = NULL;
5905 	}
5906 	if (ill != NULL) {
5907 		/*
5908 		 * Save enough information so that we can recreate the IRE if
5909 		 * the interface goes down and then up.  The metrics associated
5910 		 * with the route will be saved as well when rts_setmetrics() is
5911 		 * called after the IRE has been created.  In the case where
5912 		 * memory cannot be allocated, none of this information will be
5913 		 * saved.
5914 		 */
5915 		ill_save_ire(ill, ire);
5916 	}
5917 	if (ioctl_msg)
5918 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5919 	if (ire_arg != NULL) {
5920 		/*
5921 		 * Store the ire that was successfully added into where ire_arg
5922 		 * points to so that callers don't have to look it up
5923 		 * themselves (but they are responsible for ire_refrele()ing
5924 		 * the ire when they are finished with it).
5925 		 */
5926 		*ire_arg = ire;
5927 	} else {
5928 		ire_refrele(ire);		/* Held in ire_add */
5929 	}
5930 	if (ipif != NULL)
5931 		ipif_refrele(ipif);
5932 	return (0);
5933 }
5934 
5935 /*
5936  * ip_rt_delete is called to delete an IPv4 route.
5937  * ill is passed in to associate it with the correct interface.
5938  */
5939 /* ARGSUSED4 */
5940 int
5941 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5942     uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5943     ip_stack_t *ipst, zoneid_t zoneid)
5944 {
5945 	ire_t	*ire = NULL;
5946 	ipif_t	*ipif;
5947 	uint_t	type;
5948 	uint_t	match_flags = MATCH_IRE_TYPE;
5949 	int	err = 0;
5950 
5951 	ip1dbg(("ip_rt_delete:"));
5952 	/*
5953 	 * If this is the case of RTF_HOST being set, then we set the netmask
5954 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
5955 	 */
5956 	if (flags & RTF_HOST) {
5957 		mask = IP_HOST_MASK;
5958 		match_flags |= MATCH_IRE_MASK;
5959 	} else if (rtm_addrs & RTA_NETMASK) {
5960 		match_flags |= MATCH_IRE_MASK;
5961 	}
5962 
5963 	/*
5964 	 * Note that RTF_GATEWAY is never set on a delete, therefore
5965 	 * we check if the gateway address is one of our interfaces first,
5966 	 * and fall back on RTF_GATEWAY routes.
5967 	 *
5968 	 * This makes it possible to delete an original
5969 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
5970 	 * However, we have RTF_KERNEL set on the ones created by ipif_up
5971 	 * and those can not be deleted here.
5972 	 *
5973 	 * We use MATCH_IRE_ILL if we know the interface. If the caller
5974 	 * specified an interface (from the RTA_IFP sockaddr) we use it,
5975 	 * otherwise we use the ill derived from the gateway address.
5976 	 * We can always match the gateway address since we record it
5977 	 * in ire_gateway_addr.
5978 	 *
5979 	 * For more detail on specifying routes by gateway address and by
5980 	 * interface index, see the comments in ip_rt_add().
5981 	 */
5982 	ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5983 	if (ipif != NULL) {
5984 		ill_t	*ill_match;
5985 
5986 		if (ill != NULL)
5987 			ill_match = ill;
5988 		else
5989 			ill_match = ipif->ipif_ill;
5990 
5991 		match_flags |= MATCH_IRE_ILL;
5992 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
5993 			ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5994 			    ill_match, ALL_ZONES, NULL, match_flags, 0, ipst,
5995 			    NULL);
5996 		}
5997 		if (ire == NULL) {
5998 			match_flags |= MATCH_IRE_GW;
5999 			ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6000 			    IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6001 			    match_flags, 0, ipst, NULL);
6002 		}
6003 		/* Avoid deleting routes created by kernel from an ipif */
6004 		if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6005 			ire_refrele(ire);
6006 			ire = NULL;
6007 		}
6008 
6009 		/* Restore in case we didn't find a match */
6010 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6011 	}
6012 
6013 	if (ire == NULL) {
6014 		/*
6015 		 * At this point, the gateway address is not one of our own
6016 		 * addresses or a matching interface route was not found.  We
6017 		 * set the IRE type to lookup based on whether
6018 		 * this is a host route, a default route or just a prefix.
6019 		 *
6020 		 * If an ill was passed in, then the lookup is based on an
6021 		 * interface index so MATCH_IRE_ILL is added to match_flags.
6022 		 */
6023 		match_flags |= MATCH_IRE_GW;
6024 		if (ill != NULL)
6025 			match_flags |= MATCH_IRE_ILL;
6026 		if (mask == IP_HOST_MASK)
6027 			type = IRE_HOST;
6028 		else if (mask == 0)
6029 			type = IRE_DEFAULT;
6030 		else
6031 			type = IRE_PREFIX;
6032 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6033 		    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
6034 	}
6035 
6036 	if (ipif != NULL) {
6037 		ipif_refrele(ipif);
6038 		ipif = NULL;
6039 	}
6040 
6041 	if (ire == NULL)
6042 		return (ESRCH);
6043 
6044 	if (ire->ire_flags & RTF_MULTIRT) {
6045 		/*
6046 		 * Invoke the CGTP (multirouting) filtering module
6047 		 * to remove the dst address from the filtering database.
6048 		 * Packets coming from that address will no longer be
6049 		 * filtered to remove duplicates.
6050 		 */
6051 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6052 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6053 			    ipst->ips_netstack->netstack_stackid,
6054 			    ire->ire_addr, ire->ire_gateway_addr);
6055 		}
6056 		ip_cgtp_bcast_delete(ire, ipst);
6057 	}
6058 
6059 	ill = ire->ire_ill;
6060 	if (ill != NULL)
6061 		ill_remove_saved_ire(ill, ire);
6062 	if (ioctl_msg)
6063 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6064 	ire_delete(ire);
6065 	ire_refrele(ire);
6066 	return (err);
6067 }
6068 
6069 /*
6070  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6071  */
6072 /* ARGSUSED */
6073 int
6074 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6075     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6076 {
6077 	ipaddr_t dst_addr;
6078 	ipaddr_t gw_addr;
6079 	ipaddr_t mask;
6080 	int error = 0;
6081 	mblk_t *mp1;
6082 	struct rtentry *rt;
6083 	ipif_t *ipif = NULL;
6084 	ip_stack_t	*ipst;
6085 
6086 	ASSERT(q->q_next == NULL);
6087 	ipst = CONNQ_TO_IPST(q);
6088 
6089 	ip1dbg(("ip_siocaddrt:"));
6090 	/* Existence of mp1 verified in ip_wput_nondata */
6091 	mp1 = mp->b_cont->b_cont;
6092 	rt = (struct rtentry *)mp1->b_rptr;
6093 
6094 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6095 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6096 
6097 	/*
6098 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
6099 	 * to a particular host address.  In this case, we set the netmask to
6100 	 * all ones for the particular destination address.  Otherwise,
6101 	 * determine the netmask to be used based on dst_addr and the interfaces
6102 	 * in use.
6103 	 */
6104 	if (rt->rt_flags & RTF_HOST) {
6105 		mask = IP_HOST_MASK;
6106 	} else {
6107 		/*
6108 		 * Note that ip_subnet_mask returns a zero mask in the case of
6109 		 * default (an all-zeroes address).
6110 		 */
6111 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6112 	}
6113 
6114 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6115 	    B_TRUE, NULL, ipst, ALL_ZONES);
6116 	if (ipif != NULL)
6117 		ipif_refrele(ipif);
6118 	return (error);
6119 }
6120 
6121 /*
6122  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6123  */
6124 /* ARGSUSED */
6125 int
6126 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6127     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6128 {
6129 	ipaddr_t dst_addr;
6130 	ipaddr_t gw_addr;
6131 	ipaddr_t mask;
6132 	int error;
6133 	mblk_t *mp1;
6134 	struct rtentry *rt;
6135 	ipif_t *ipif = NULL;
6136 	ip_stack_t	*ipst;
6137 
6138 	ASSERT(q->q_next == NULL);
6139 	ipst = CONNQ_TO_IPST(q);
6140 
6141 	ip1dbg(("ip_siocdelrt:"));
6142 	/* Existence of mp1 verified in ip_wput_nondata */
6143 	mp1 = mp->b_cont->b_cont;
6144 	rt = (struct rtentry *)mp1->b_rptr;
6145 
6146 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6147 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6148 
6149 	/*
6150 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
6151 	 * to a particular host address.  In this case, we set the netmask to
6152 	 * all ones for the particular destination address.  Otherwise,
6153 	 * determine the netmask to be used based on dst_addr and the interfaces
6154 	 * in use.
6155 	 */
6156 	if (rt->rt_flags & RTF_HOST) {
6157 		mask = IP_HOST_MASK;
6158 	} else {
6159 		/*
6160 		 * Note that ip_subnet_mask returns a zero mask in the case of
6161 		 * default (an all-zeroes address).
6162 		 */
6163 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6164 	}
6165 
6166 	error = ip_rt_delete(dst_addr, mask, gw_addr,
6167 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6168 	    ipst, ALL_ZONES);
6169 	if (ipif != NULL)
6170 		ipif_refrele(ipif);
6171 	return (error);
6172 }
6173 
6174 /*
6175  * Enqueue the mp onto the ipsq, chained by b_next.
6176  * b_prev stores the function to be executed later, and b_queue the queue
6177  * where this mp originated.
6178  */
6179 void
6180 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6181     ill_t *pending_ill)
6182 {
6183 	conn_t	*connp;
6184 	ipxop_t *ipx = ipsq->ipsq_xop;
6185 
6186 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6187 	ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6188 	ASSERT(func != NULL);
6189 
6190 	mp->b_queue = q;
6191 	mp->b_prev = (void *)func;
6192 	mp->b_next = NULL;
6193 
6194 	switch (type) {
6195 	case CUR_OP:
6196 		if (ipx->ipx_mptail != NULL) {
6197 			ASSERT(ipx->ipx_mphead != NULL);
6198 			ipx->ipx_mptail->b_next = mp;
6199 		} else {
6200 			ASSERT(ipx->ipx_mphead == NULL);
6201 			ipx->ipx_mphead = mp;
6202 		}
6203 		ipx->ipx_mptail = mp;
6204 		break;
6205 
6206 	case NEW_OP:
6207 		if (ipsq->ipsq_xopq_mptail != NULL) {
6208 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6209 			ipsq->ipsq_xopq_mptail->b_next = mp;
6210 		} else {
6211 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6212 			ipsq->ipsq_xopq_mphead = mp;
6213 		}
6214 		ipsq->ipsq_xopq_mptail = mp;
6215 		ipx->ipx_ipsq_queued = B_TRUE;
6216 		break;
6217 
6218 	case SWITCH_OP:
6219 		ASSERT(ipsq->ipsq_swxop != NULL);
6220 		/* only one switch operation is currently allowed */
6221 		ASSERT(ipsq->ipsq_switch_mp == NULL);
6222 		ipsq->ipsq_switch_mp = mp;
6223 		ipx->ipx_ipsq_queued = B_TRUE;
6224 		break;
6225 	default:
6226 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6227 	}
6228 
6229 	if (CONN_Q(q) && pending_ill != NULL) {
6230 		connp = Q_TO_CONN(q);
6231 		ASSERT(MUTEX_HELD(&connp->conn_lock));
6232 		connp->conn_oper_pending_ill = pending_ill;
6233 	}
6234 }
6235 
6236 /*
6237  * Dequeue the next message that requested exclusive access to this IPSQ's
6238  * xop.  Specifically:
6239  *
6240  *  1. If we're still processing the current operation on `ipsq', then
6241  *     dequeue the next message for the operation (from ipx_mphead), or
6242  *     return NULL if there are no queued messages for the operation.
6243  *     These messages are queued via CUR_OP to qwriter_ip() and friends.
6244  *
6245  *  2. If the current operation on `ipsq' has completed (ipx_current_ipif is
6246  *     not set) see if the ipsq has requested an xop switch.  If so, switch
6247  *     `ipsq' to a different xop.  Xop switches only happen when joining or
6248  *     leaving IPMP groups and require a careful dance -- see the comments
6249  *     in-line below for details.  If we're leaving a group xop or if we're
6250  *     joining a group xop and become writer on it, then we proceed to (3).
6251  *     Otherwise, we return NULL and exit the xop.
6252  *
6253  *  3. For each IPSQ in the xop, return any switch operation stored on
6254  *     ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6255  *     any other messages queued on the IPSQ.  Otherwise, dequeue the next
6256  *     exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6257  *     Note that if the phyint tied to `ipsq' is not using IPMP there will
6258  *     only be one IPSQ in the xop.  Otherwise, there will be one IPSQ for
6259  *     each phyint in the group, including the IPMP meta-interface phyint.
6260  */
6261 static mblk_t *
6262 ipsq_dq(ipsq_t *ipsq)
6263 {
6264 	ill_t	*illv4, *illv6;
6265 	mblk_t	*mp;
6266 	ipsq_t	*xopipsq;
6267 	ipsq_t	*leftipsq = NULL;
6268 	ipxop_t *ipx;
6269 	phyint_t *phyi = ipsq->ipsq_phyint;
6270 	ip_stack_t *ipst = ipsq->ipsq_ipst;
6271 	boolean_t emptied = B_FALSE;
6272 
6273 	/*
6274 	 * Grab all the locks we need in the defined order (ill_g_lock ->
6275 	 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6276 	 */
6277 	rw_enter(&ipst->ips_ill_g_lock,
6278 	    ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6279 	mutex_enter(&ipsq->ipsq_lock);
6280 	ipx = ipsq->ipsq_xop;
6281 	mutex_enter(&ipx->ipx_lock);
6282 
6283 	/*
6284 	 * Dequeue the next message associated with the current exclusive
6285 	 * operation, if any.
6286 	 */
6287 	if ((mp = ipx->ipx_mphead) != NULL) {
6288 		ipx->ipx_mphead = mp->b_next;
6289 		if (ipx->ipx_mphead == NULL)
6290 			ipx->ipx_mptail = NULL;
6291 		mp->b_next = (void *)ipsq;
6292 		goto out;
6293 	}
6294 
6295 	if (ipx->ipx_current_ipif != NULL)
6296 		goto empty;
6297 
6298 	if (ipsq->ipsq_swxop != NULL) {
6299 		/*
6300 		 * The exclusive operation that is now being completed has
6301 		 * requested a switch to a different xop.  This happens
6302 		 * when an interface joins or leaves an IPMP group.  Joins
6303 		 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6304 		 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6305 		 * (phyint_free()), or interface plumb for an ill type
6306 		 * not in the IPMP group (ip_rput_dlpi_writer()).
6307 		 *
6308 		 * Xop switches are not allowed on the IPMP meta-interface.
6309 		 */
6310 		ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6311 		ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6312 		DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
6313 
6314 		if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6315 			/*
6316 			 * We're switching back to our own xop, so we have two
6317 			 * xop's to drain/exit: our own, and the group xop
6318 			 * that we are leaving.
6319 			 *
6320 			 * First, pull ourselves out of the group ipsq list.
6321 			 * This is safe since we're writer on ill_g_lock.
6322 			 */
6323 			ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
6324 
6325 			xopipsq = ipx->ipx_ipsq;
6326 			while (xopipsq->ipsq_next != ipsq)
6327 				xopipsq = xopipsq->ipsq_next;
6328 
6329 			xopipsq->ipsq_next = ipsq->ipsq_next;
6330 			ipsq->ipsq_next = ipsq;
6331 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6332 			ipsq->ipsq_swxop = NULL;
6333 
6334 			/*
6335 			 * Second, prepare to exit the group xop.  The actual
6336 			 * ipsq_exit() is done at the end of this function
6337 			 * since we cannot hold any locks across ipsq_exit().
6338 			 * Note that although we drop the group's ipx_lock, no
6339 			 * threads can proceed since we're still ipx_writer.
6340 			 */
6341 			leftipsq = xopipsq;
6342 			mutex_exit(&ipx->ipx_lock);
6343 
6344 			/*
6345 			 * Third, set ipx to point to our own xop (which was
6346 			 * inactive and therefore can be entered).
6347 			 */
6348 			ipx = ipsq->ipsq_xop;
6349 			mutex_enter(&ipx->ipx_lock);
6350 			ASSERT(ipx->ipx_writer == NULL);
6351 			ASSERT(ipx->ipx_current_ipif == NULL);
6352 		} else {
6353 			/*
6354 			 * We're switching from our own xop to a group xop.
6355 			 * The requestor of the switch must ensure that the
6356 			 * group xop cannot go away (e.g. by ensuring the
6357 			 * phyint associated with the xop cannot go away).
6358 			 *
6359 			 * If we can become writer on our new xop, then we'll
6360 			 * do the drain.  Otherwise, the current writer of our
6361 			 * new xop will do the drain when it exits.
6362 			 *
6363 			 * First, splice ourselves into the group IPSQ list.
6364 			 * This is safe since we're writer on ill_g_lock.
6365 			 */
6366 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6367 
6368 			xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6369 			while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6370 				xopipsq = xopipsq->ipsq_next;
6371 
6372 			xopipsq->ipsq_next = ipsq;
6373 			ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6374 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6375 			ipsq->ipsq_swxop = NULL;
6376 
6377 			/*
6378 			 * Second, exit our own xop, since it's now unused.
6379 			 * This is safe since we've got the only reference.
6380 			 */
6381 			ASSERT(ipx->ipx_writer == curthread);
6382 			ipx->ipx_writer = NULL;
6383 			VERIFY(--ipx->ipx_reentry_cnt == 0);
6384 			ipx->ipx_ipsq_queued = B_FALSE;
6385 			mutex_exit(&ipx->ipx_lock);
6386 
6387 			/*
6388 			 * Third, set ipx to point to our new xop, and check
6389 			 * if we can become writer on it.  If we cannot, then
6390 			 * the current writer will drain the IPSQ group when
6391 			 * it exits.  Our ipsq_xop is guaranteed to be stable
6392 			 * because we're still holding ipsq_lock.
6393 			 */
6394 			ipx = ipsq->ipsq_xop;
6395 			mutex_enter(&ipx->ipx_lock);
6396 			if (ipx->ipx_writer != NULL ||
6397 			    ipx->ipx_current_ipif != NULL) {
6398 				goto out;
6399 			}
6400 		}
6401 
6402 		/*
6403 		 * Fourth, become writer on our new ipx before we continue
6404 		 * with the drain.  Note that we never dropped ipsq_lock
6405 		 * above, so no other thread could've raced with us to
6406 		 * become writer first.  Also, we're holding ipx_lock, so
6407 		 * no other thread can examine the ipx right now.
6408 		 */
6409 		ASSERT(ipx->ipx_current_ipif == NULL);
6410 		ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6411 		VERIFY(ipx->ipx_reentry_cnt++ == 0);
6412 		ipx->ipx_writer = curthread;
6413 		ipx->ipx_forced = B_FALSE;
6414 #ifdef DEBUG
6415 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6416 #endif
6417 	}
6418 
6419 	xopipsq = ipsq;
6420 	do {
6421 		/*
6422 		 * So that other operations operate on a consistent and
6423 		 * complete phyint, a switch message on an IPSQ must be
6424 		 * handled prior to any other operations on that IPSQ.
6425 		 */
6426 		if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6427 			xopipsq->ipsq_switch_mp = NULL;
6428 			ASSERT(mp->b_next == NULL);
6429 			mp->b_next = (void *)xopipsq;
6430 			goto out;
6431 		}
6432 
6433 		if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6434 			xopipsq->ipsq_xopq_mphead = mp->b_next;
6435 			if (xopipsq->ipsq_xopq_mphead == NULL)
6436 				xopipsq->ipsq_xopq_mptail = NULL;
6437 			mp->b_next = (void *)xopipsq;
6438 			goto out;
6439 		}
6440 	} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6441 empty:
6442 	/*
6443 	 * There are no messages.  Further, we are holding ipx_lock, hence no
6444 	 * new messages can end up on any IPSQ in the xop.
6445 	 */
6446 	ipx->ipx_writer = NULL;
6447 	ipx->ipx_forced = B_FALSE;
6448 	VERIFY(--ipx->ipx_reentry_cnt == 0);
6449 	ipx->ipx_ipsq_queued = B_FALSE;
6450 	emptied = B_TRUE;
6451 #ifdef	DEBUG
6452 	ipx->ipx_depth = 0;
6453 #endif
6454 out:
6455 	mutex_exit(&ipx->ipx_lock);
6456 	mutex_exit(&ipsq->ipsq_lock);
6457 
6458 	/*
6459 	 * If we completely emptied the xop, then wake up any threads waiting
6460 	 * to enter any of the IPSQ's associated with it.
6461 	 */
6462 	if (emptied) {
6463 		xopipsq = ipsq;
6464 		do {
6465 			if ((phyi = xopipsq->ipsq_phyint) == NULL)
6466 				continue;
6467 
6468 			illv4 = phyi->phyint_illv4;
6469 			illv6 = phyi->phyint_illv6;
6470 
6471 			GRAB_ILL_LOCKS(illv4, illv6);
6472 			if (illv4 != NULL)
6473 				cv_broadcast(&illv4->ill_cv);
6474 			if (illv6 != NULL)
6475 				cv_broadcast(&illv6->ill_cv);
6476 			RELEASE_ILL_LOCKS(illv4, illv6);
6477 		} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6478 	}
6479 	rw_exit(&ipst->ips_ill_g_lock);
6480 
6481 	/*
6482 	 * Now that all locks are dropped, exit the IPSQ we left.
6483 	 */
6484 	if (leftipsq != NULL)
6485 		ipsq_exit(leftipsq);
6486 
6487 	return (mp);
6488 }
6489 
6490 /*
6491  * Return completion status of previously initiated DLPI operations on
6492  * ills in the purview of an ipsq.
6493  */
6494 static boolean_t
6495 ipsq_dlpi_done(ipsq_t *ipsq)
6496 {
6497 	ipsq_t		*ipsq_start;
6498 	phyint_t	*phyi;
6499 	ill_t		*ill;
6500 
6501 	ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6502 	ipsq_start = ipsq;
6503 
6504 	do {
6505 		/*
6506 		 * The only current users of this function are ipsq_try_enter
6507 		 * and ipsq_enter which have made sure that ipsq_writer is
6508 		 * NULL before we reach here. ill_dlpi_pending is modified
6509 		 * only by an ipsq writer
6510 		 */
6511 		ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6512 		phyi = ipsq->ipsq_phyint;
6513 		/*
6514 		 * phyi could be NULL if a phyint that is part of an
6515 		 * IPMP group is being unplumbed. A more detailed
6516 		 * comment is in ipmp_grp_update_kstats()
6517 		 */
6518 		if (phyi != NULL) {
6519 			ill = phyi->phyint_illv4;
6520 			if (ill != NULL &&
6521 			    (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6522 			    ill->ill_arl_dlpi_pending))
6523 				return (B_FALSE);
6524 
6525 			ill = phyi->phyint_illv6;
6526 			if (ill != NULL &&
6527 			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
6528 				return (B_FALSE);
6529 		}
6530 
6531 	} while ((ipsq = ipsq->ipsq_next) != ipsq_start);
6532 
6533 	return (B_TRUE);
6534 }
6535 
6536 /*
6537  * Enter the ipsq corresponding to ill, by waiting synchronously till
6538  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
6539  * will have to drain completely before ipsq_enter returns success.
6540  * ipx_current_ipif will be set if some exclusive op is in progress,
6541  * and the ipsq_exit logic will start the next enqueued op after
6542  * completion of the current op. If 'force' is used, we don't wait
6543  * for the enqueued ops. This is needed when a conn_close wants to
6544  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6545  * of an ill can also use this option. But we dont' use it currently.
6546  */
6547 #define	ENTER_SQ_WAIT_TICKS 100
6548 boolean_t
6549 ipsq_enter(ill_t *ill, boolean_t force, int type)
6550 {
6551 	ipsq_t	*ipsq;
6552 	ipxop_t *ipx;
6553 	boolean_t waited_enough = B_FALSE;
6554 	ip_stack_t *ipst = ill->ill_ipst;
6555 
6556 	/*
6557 	 * Note that the relationship between ill and ipsq is fixed as long as
6558 	 * the ill is not ILL_CONDEMNED.  Holding ipsq_lock ensures the
6559 	 * relationship between the IPSQ and xop cannot change.  However,
6560 	 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6561 	 * while we're waiting.  We wait on ill_cv and rely on ipsq_exit()
6562 	 * waking up all ills in the xop when it becomes available.
6563 	 */
6564 	for (;;) {
6565 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6566 		mutex_enter(&ill->ill_lock);
6567 		if (ill->ill_state_flags & ILL_CONDEMNED) {
6568 			mutex_exit(&ill->ill_lock);
6569 			rw_exit(&ipst->ips_ill_g_lock);
6570 			return (B_FALSE);
6571 		}
6572 
6573 		ipsq = ill->ill_phyint->phyint_ipsq;
6574 		mutex_enter(&ipsq->ipsq_lock);
6575 		ipx = ipsq->ipsq_xop;
6576 		mutex_enter(&ipx->ipx_lock);
6577 
6578 		if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6579 		    (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6580 		    waited_enough))
6581 			break;
6582 
6583 		rw_exit(&ipst->ips_ill_g_lock);
6584 
6585 		if (!force || ipx->ipx_writer != NULL) {
6586 			mutex_exit(&ipx->ipx_lock);
6587 			mutex_exit(&ipsq->ipsq_lock);
6588 			cv_wait(&ill->ill_cv, &ill->ill_lock);
6589 		} else {
6590 			mutex_exit(&ipx->ipx_lock);
6591 			mutex_exit(&ipsq->ipsq_lock);
6592 			(void) cv_reltimedwait(&ill->ill_cv,
6593 			    &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6594 			waited_enough = B_TRUE;
6595 		}
6596 		mutex_exit(&ill->ill_lock);
6597 	}
6598 
6599 	ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6600 	ASSERT(ipx->ipx_reentry_cnt == 0);
6601 	ipx->ipx_writer = curthread;
6602 	ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6603 	ipx->ipx_reentry_cnt++;
6604 #ifdef DEBUG
6605 	ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6606 #endif
6607 	mutex_exit(&ipx->ipx_lock);
6608 	mutex_exit(&ipsq->ipsq_lock);
6609 	mutex_exit(&ill->ill_lock);
6610 	rw_exit(&ipst->ips_ill_g_lock);
6611 
6612 	return (B_TRUE);
6613 }
6614 
6615 /*
6616  * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6617  * across the call to the core interface ipsq_try_enter() and hence calls this
6618  * function directly. This is explained more fully in ipif_set_values().
6619  * In order to support the above constraint, ipsq_try_enter is implemented as
6620  * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6621  */
6622 static ipsq_t *
6623 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6624     int type, boolean_t reentry_ok)
6625 {
6626 	ipsq_t	*ipsq;
6627 	ipxop_t	*ipx;
6628 	ip_stack_t *ipst = ill->ill_ipst;
6629 
6630 	/*
6631 	 * lock ordering:
6632 	 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6633 	 *
6634 	 * ipx of an ipsq can't change when ipsq_lock is held.
6635 	 */
6636 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6637 	GRAB_CONN_LOCK(q);
6638 	mutex_enter(&ill->ill_lock);
6639 	ipsq = ill->ill_phyint->phyint_ipsq;
6640 	mutex_enter(&ipsq->ipsq_lock);
6641 	ipx = ipsq->ipsq_xop;
6642 	mutex_enter(&ipx->ipx_lock);
6643 
6644 	/*
6645 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
6646 	 *    (Note: If the caller does not specify reentry_ok then neither
6647 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
6648 	 *    again. Otherwise it can lead to an infinite loop
6649 	 * 2. Enter the ipsq if there is no current writer and this attempted
6650 	 *    entry is part of the current operation
6651 	 * 3. Enter the ipsq if there is no current writer and this is a new
6652 	 *    operation and the operation queue is empty and there is no
6653 	 *    operation currently in progress and if all previously initiated
6654 	 *    DLPI operations have completed.
6655 	 */
6656 	if ((ipx->ipx_writer == curthread && reentry_ok) ||
6657 	    (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6658 	    !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6659 	    ipsq_dlpi_done(ipsq))))) {
6660 		/* Success. */
6661 		ipx->ipx_reentry_cnt++;
6662 		ipx->ipx_writer = curthread;
6663 		ipx->ipx_forced = B_FALSE;
6664 		mutex_exit(&ipx->ipx_lock);
6665 		mutex_exit(&ipsq->ipsq_lock);
6666 		mutex_exit(&ill->ill_lock);
6667 		RELEASE_CONN_LOCK(q);
6668 #ifdef DEBUG
6669 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6670 #endif
6671 		return (ipsq);
6672 	}
6673 
6674 	if (func != NULL)
6675 		ipsq_enq(ipsq, q, mp, func, type, ill);
6676 
6677 	mutex_exit(&ipx->ipx_lock);
6678 	mutex_exit(&ipsq->ipsq_lock);
6679 	mutex_exit(&ill->ill_lock);
6680 	RELEASE_CONN_LOCK(q);
6681 	return (NULL);
6682 }
6683 
6684 /*
6685  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6686  * certain critical operations like plumbing (i.e. most set ioctls), etc.
6687  * There is one ipsq per phyint. The ipsq
6688  * serializes exclusive ioctls issued by applications on a per ipsq basis in
6689  * ipsq_xopq_mphead. It also protects against multiple threads executing in
6690  * the ipsq. Responses from the driver pertain to the current ioctl (say a
6691  * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6692  * up the interface) and are enqueued in ipx_mphead.
6693  *
6694  * If a thread does not want to reenter the ipsq when it is already writer,
6695  * it must make sure that the specified reentry point to be called later
6696  * when the ipsq is empty, nor any code path starting from the specified reentry
6697  * point must never ever try to enter the ipsq again. Otherwise it can lead
6698  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6699  * When the thread that is currently exclusive finishes, it (ipsq_exit)
6700  * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6701  * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6702  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6703  * ioctl if the current ioctl has completed. If the current ioctl is still
6704  * in progress it simply returns. The current ioctl could be waiting for
6705  * a response from another module (the driver or could be waiting for
6706  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6707  * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6708  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6709  * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6710  * all associated DLPI operations have completed.
6711  */
6712 
6713 /*
6714  * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
6715  * and `ill' cannot both be specified).  Returns a pointer to the entered IPSQ
6716  * on success, or NULL on failure.  The caller ensures ipif/ill is valid by
6717  * refholding it as necessary.  If the IPSQ cannot be entered and `func' is
6718  * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
6719  * can be entered.  If `func' is NULL, then `q' and `mp' are ignored.
6720  */
6721 ipsq_t *
6722 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6723     ipsq_func_t func, int type, boolean_t reentry_ok)
6724 {
6725 	ip_stack_t	*ipst;
6726 	ipsq_t		*ipsq;
6727 
6728 	/* Only 1 of ipif or ill can be specified */
6729 	ASSERT((ipif != NULL) ^ (ill != NULL));
6730 
6731 	if (ipif != NULL)
6732 		ill = ipif->ipif_ill;
6733 	ipst = ill->ill_ipst;
6734 
6735 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6736 	ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6737 	rw_exit(&ipst->ips_ill_g_lock);
6738 
6739 	return (ipsq);
6740 }
6741 
6742 /*
6743  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
6744  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
6745  * cannot be entered, the mp is queued for completion.
6746  */
6747 void
6748 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6749     boolean_t reentry_ok)
6750 {
6751 	ipsq_t	*ipsq;
6752 
6753 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
6754 
6755 	/*
6756 	 * Drop the caller's refhold on the ill.  This is safe since we either
6757 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
6758 	 * IPSQ, in which case we return without accessing ill anymore.  This
6759 	 * is needed because func needs to see the correct refcount.
6760 	 * e.g. removeif can work only then.
6761 	 */
6762 	ill_refrele(ill);
6763 	if (ipsq != NULL) {
6764 		(*func)(ipsq, q, mp, NULL);
6765 		ipsq_exit(ipsq);
6766 	}
6767 }
6768 
6769 /*
6770  * Exit the specified IPSQ.  If this is the final exit on it then drain it
6771  * prior to exiting.  Caller must be writer on the specified IPSQ.
6772  */
6773 void
6774 ipsq_exit(ipsq_t *ipsq)
6775 {
6776 	mblk_t *mp;
6777 	ipsq_t *mp_ipsq;
6778 	queue_t	*q;
6779 	phyint_t *phyi;
6780 	ipsq_func_t func;
6781 
6782 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6783 
6784 	ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6785 	if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6786 		ipsq->ipsq_xop->ipx_reentry_cnt--;
6787 		return;
6788 	}
6789 
6790 	for (;;) {
6791 		phyi = ipsq->ipsq_phyint;
6792 		mp = ipsq_dq(ipsq);
6793 		mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
6794 
6795 		/*
6796 		 * If we've changed to a new IPSQ, and the phyint associated
6797 		 * with the old one has gone away, free the old IPSQ.  Note
6798 		 * that this cannot happen while the IPSQ is in a group.
6799 		 */
6800 		if (mp_ipsq != ipsq && phyi == NULL) {
6801 			ASSERT(ipsq->ipsq_next == ipsq);
6802 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6803 			ipsq_delete(ipsq);
6804 		}
6805 
6806 		if (mp == NULL)
6807 			break;
6808 
6809 		q = mp->b_queue;
6810 		func = (ipsq_func_t)mp->b_prev;
6811 		ipsq = mp_ipsq;
6812 		mp->b_next = mp->b_prev = NULL;
6813 		mp->b_queue = NULL;
6814 
6815 		/*
6816 		 * If 'q' is an conn queue, it is valid, since we did a
6817 		 * a refhold on the conn at the start of the ioctl.
6818 		 * If 'q' is an ill queue, it is valid, since close of an
6819 		 * ill will clean up its IPSQ.
6820 		 */
6821 		(*func)(ipsq, q, mp, NULL);
6822 	}
6823 }
6824 
6825 /*
6826  * Used to start any igmp or mld timers that could not be started
6827  * while holding ill_mcast_lock. The timers can't be started while holding
6828  * the lock, since mld/igmp_start_timers may need to call untimeout()
6829  * which can't be done while holding the lock which the timeout handler
6830  * acquires. Otherwise
6831  * there could be a deadlock since the timeout handlers
6832  * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6833  * ill_mcast_lock.
6834  */
6835 void
6836 ill_mcast_timer_start(ip_stack_t *ipst)
6837 {
6838 	int		next;
6839 
6840 	mutex_enter(&ipst->ips_igmp_timer_lock);
6841 	next = ipst->ips_igmp_deferred_next;
6842 	ipst->ips_igmp_deferred_next = INFINITY;
6843 	mutex_exit(&ipst->ips_igmp_timer_lock);
6844 
6845 	if (next != INFINITY)
6846 		igmp_start_timers(next, ipst);
6847 
6848 	mutex_enter(&ipst->ips_mld_timer_lock);
6849 	next = ipst->ips_mld_deferred_next;
6850 	ipst->ips_mld_deferred_next = INFINITY;
6851 	mutex_exit(&ipst->ips_mld_timer_lock);
6852 
6853 	if (next != INFINITY)
6854 		mld_start_timers(next, ipst);
6855 }
6856 
6857 /*
6858  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
6859  * and `ioccmd'.
6860  */
6861 void
6862 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6863 {
6864 	ill_t *ill = ipif->ipif_ill;
6865 	ipxop_t *ipx = ipsq->ipsq_xop;
6866 
6867 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6868 	ASSERT(ipx->ipx_current_ipif == NULL);
6869 	ASSERT(ipx->ipx_current_ioctl == 0);
6870 
6871 	ipx->ipx_current_done = B_FALSE;
6872 	ipx->ipx_current_ioctl = ioccmd;
6873 	mutex_enter(&ipx->ipx_lock);
6874 	ipx->ipx_current_ipif = ipif;
6875 	mutex_exit(&ipx->ipx_lock);
6876 
6877 	/*
6878 	 * Set IPIF_CHANGING on one or more ipifs associated with the
6879 	 * current exclusive operation.  IPIF_CHANGING prevents any new
6880 	 * references to the ipif (so that the references will eventually
6881 	 * drop to zero) and also prevents any "get" operations (e.g.,
6882 	 * SIOCGLIFFLAGS) from being able to access the ipif until the
6883 	 * operation has completed and the ipif is again in a stable state.
6884 	 *
6885 	 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6886 	 * ioctl.  For internal operations (where ioccmd is zero), all ipifs
6887 	 * on the ill are marked with IPIF_CHANGING since it's unclear which
6888 	 * ipifs will be affected.
6889 	 *
6890 	 * Note that SIOCLIFREMOVEIF is a special case as it sets
6891 	 * IPIF_CONDEMNED internally after identifying the right ipif to
6892 	 * operate on.
6893 	 */
6894 	switch (ioccmd) {
6895 	case SIOCLIFREMOVEIF:
6896 		break;
6897 	case 0:
6898 		mutex_enter(&ill->ill_lock);
6899 		ipif = ipif->ipif_ill->ill_ipif;
6900 		for (; ipif != NULL; ipif = ipif->ipif_next)
6901 			ipif->ipif_state_flags |= IPIF_CHANGING;
6902 		mutex_exit(&ill->ill_lock);
6903 		break;
6904 	default:
6905 		mutex_enter(&ill->ill_lock);
6906 		ipif->ipif_state_flags |= IPIF_CHANGING;
6907 		mutex_exit(&ill->ill_lock);
6908 	}
6909 }
6910 
6911 /*
6912  * Finish the current exclusive operation on `ipsq'.  Usually, this will allow
6913  * the next exclusive operation to begin once we ipsq_exit().  However, if
6914  * pending DLPI operations remain, then we will wait for the queue to drain
6915  * before allowing the next exclusive operation to begin.  This ensures that
6916  * DLPI operations from one exclusive operation are never improperly processed
6917  * as part of a subsequent exclusive operation.
6918  */
6919 void
6920 ipsq_current_finish(ipsq_t *ipsq)
6921 {
6922 	ipxop_t	*ipx = ipsq->ipsq_xop;
6923 	t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6924 	ipif_t	*ipif = ipx->ipx_current_ipif;
6925 
6926 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6927 
6928 	/*
6929 	 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6930 	 * (but in that case, IPIF_CHANGING will already be clear and no
6931 	 * pending DLPI messages can remain).
6932 	 */
6933 	if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6934 		ill_t *ill = ipif->ipif_ill;
6935 
6936 		mutex_enter(&ill->ill_lock);
6937 		dlpi_pending = ill->ill_dlpi_pending;
6938 		if (ipx->ipx_current_ioctl == 0) {
6939 			ipif = ill->ill_ipif;
6940 			for (; ipif != NULL; ipif = ipif->ipif_next)
6941 				ipif->ipif_state_flags &= ~IPIF_CHANGING;
6942 		} else {
6943 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
6944 		}
6945 		mutex_exit(&ill->ill_lock);
6946 	}
6947 
6948 	ASSERT(!ipx->ipx_current_done);
6949 	ipx->ipx_current_done = B_TRUE;
6950 	ipx->ipx_current_ioctl = 0;
6951 	if (dlpi_pending == DL_PRIM_INVAL) {
6952 		mutex_enter(&ipx->ipx_lock);
6953 		ipx->ipx_current_ipif = NULL;
6954 		mutex_exit(&ipx->ipx_lock);
6955 	}
6956 }
6957 
6958 /*
6959  * The ill is closing. Flush all messages on the ipsq that originated
6960  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
6961  * for this ill since ipsq_enter could not have entered until then.
6962  * New messages can't be queued since the CONDEMNED flag is set.
6963  */
6964 static void
6965 ipsq_flush(ill_t *ill)
6966 {
6967 	queue_t	*q;
6968 	mblk_t	*prev;
6969 	mblk_t	*mp;
6970 	mblk_t	*mp_next;
6971 	ipxop_t	*ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
6972 
6973 	ASSERT(IAM_WRITER_ILL(ill));
6974 
6975 	/*
6976 	 * Flush any messages sent up by the driver.
6977 	 */
6978 	mutex_enter(&ipx->ipx_lock);
6979 	for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
6980 		mp_next = mp->b_next;
6981 		q = mp->b_queue;
6982 		if (q == ill->ill_rq || q == ill->ill_wq) {
6983 			/* dequeue mp */
6984 			if (prev == NULL)
6985 				ipx->ipx_mphead = mp->b_next;
6986 			else
6987 				prev->b_next = mp->b_next;
6988 			if (ipx->ipx_mptail == mp) {
6989 				ASSERT(mp_next == NULL);
6990 				ipx->ipx_mptail = prev;
6991 			}
6992 			inet_freemsg(mp);
6993 		} else {
6994 			prev = mp;
6995 		}
6996 	}
6997 	mutex_exit(&ipx->ipx_lock);
6998 	(void) ipsq_pending_mp_cleanup(ill, NULL);
6999 	ipsq_xopq_mp_cleanup(ill, NULL);
7000 }
7001 
7002 /*
7003  * Parse an ifreq or lifreq struct coming down ioctls and refhold
7004  * and return the associated ipif.
7005  * Return value:
7006  *	Non zero: An error has occurred. ci may not be filled out.
7007  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7008  *	a held ipif in ci.ci_ipif.
7009  */
7010 int
7011 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7012     cmd_info_t *ci)
7013 {
7014 	char		*name;
7015 	struct ifreq    *ifr;
7016 	struct lifreq    *lifr;
7017 	ipif_t		*ipif = NULL;
7018 	ill_t		*ill;
7019 	conn_t		*connp;
7020 	boolean_t	isv6;
7021 	boolean_t	exists;
7022 	mblk_t		*mp1;
7023 	zoneid_t	zoneid;
7024 	ip_stack_t	*ipst;
7025 
7026 	if (q->q_next != NULL) {
7027 		ill = (ill_t *)q->q_ptr;
7028 		isv6 = ill->ill_isv6;
7029 		connp = NULL;
7030 		zoneid = ALL_ZONES;
7031 		ipst = ill->ill_ipst;
7032 	} else {
7033 		ill = NULL;
7034 		connp = Q_TO_CONN(q);
7035 		isv6 = (connp->conn_family == AF_INET6);
7036 		zoneid = connp->conn_zoneid;
7037 		if (zoneid == GLOBAL_ZONEID) {
7038 			/* global zone can access ipifs in all zones */
7039 			zoneid = ALL_ZONES;
7040 		}
7041 		ipst = connp->conn_netstack->netstack_ip;
7042 	}
7043 
7044 	/* Has been checked in ip_wput_nondata */
7045 	mp1 = mp->b_cont->b_cont;
7046 
7047 	if (ipip->ipi_cmd_type == IF_CMD) {
7048 		/* This a old style SIOC[GS]IF* command */
7049 		ifr = (struct ifreq *)mp1->b_rptr;
7050 		/*
7051 		 * Null terminate the string to protect against buffer
7052 		 * overrun. String was generated by user code and may not
7053 		 * be trusted.
7054 		 */
7055 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
7056 		name = ifr->ifr_name;
7057 		ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7058 		ci->ci_sin6 = NULL;
7059 		ci->ci_lifr = (struct lifreq *)ifr;
7060 	} else {
7061 		/* This a new style SIOC[GS]LIF* command */
7062 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7063 		lifr = (struct lifreq *)mp1->b_rptr;
7064 		/*
7065 		 * Null terminate the string to protect against buffer
7066 		 * overrun. String was generated by user code and may not
7067 		 * be trusted.
7068 		 */
7069 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
7070 		name = lifr->lifr_name;
7071 		ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7072 		ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7073 		ci->ci_lifr = lifr;
7074 	}
7075 
7076 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
7077 		/*
7078 		 * The ioctl will be failed if the ioctl comes down
7079 		 * an conn stream
7080 		 */
7081 		if (ill == NULL) {
7082 			/*
7083 			 * Not an ill queue, return EINVAL same as the
7084 			 * old error code.
7085 			 */
7086 			return (ENXIO);
7087 		}
7088 		ipif = ill->ill_ipif;
7089 		ipif_refhold(ipif);
7090 	} else {
7091 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
7092 		    &exists, isv6, zoneid, ipst);
7093 
7094 		/*
7095 		 * Ensure that get ioctls don't see any internal state changes
7096 		 * caused by set ioctls by deferring them if IPIF_CHANGING is
7097 		 * set.
7098 		 */
7099 		if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) &&
7100 		    !IAM_WRITER_IPIF(ipif)) {
7101 			ipsq_t	*ipsq;
7102 
7103 			if (connp != NULL)
7104 				mutex_enter(&connp->conn_lock);
7105 			mutex_enter(&ipif->ipif_ill->ill_lock);
7106 			if (IPIF_IS_CHANGING(ipif) &&
7107 			    !IPIF_IS_CONDEMNED(ipif)) {
7108 				ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
7109 				mutex_enter(&ipsq->ipsq_lock);
7110 				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
7111 				mutex_exit(&ipif->ipif_ill->ill_lock);
7112 				ipsq_enq(ipsq, q, mp, ip_process_ioctl,
7113 				    NEW_OP, ipif->ipif_ill);
7114 				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
7115 				mutex_exit(&ipsq->ipsq_lock);
7116 				if (connp != NULL)
7117 					mutex_exit(&connp->conn_lock);
7118 				ipif_refrele(ipif);
7119 				return (EINPROGRESS);
7120 			}
7121 			mutex_exit(&ipif->ipif_ill->ill_lock);
7122 			if (connp != NULL)
7123 				mutex_exit(&connp->conn_lock);
7124 		}
7125 	}
7126 
7127 	/*
7128 	 * Old style [GS]IFCMD does not admit IPv6 ipif
7129 	 */
7130 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7131 		ipif_refrele(ipif);
7132 		return (ENXIO);
7133 	}
7134 
7135 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7136 	    name[0] == '\0') {
7137 		/*
7138 		 * Handle a or a SIOC?IF* with a null name
7139 		 * during plumb (on the ill queue before the I_PLINK).
7140 		 */
7141 		ipif = ill->ill_ipif;
7142 		ipif_refhold(ipif);
7143 	}
7144 
7145 	if (ipif == NULL)
7146 		return (ENXIO);
7147 
7148 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7149 	    int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);
7150 
7151 	ci->ci_ipif = ipif;
7152 	return (0);
7153 }
7154 
7155 /*
7156  * Return the total number of ipifs.
7157  */
7158 static uint_t
7159 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7160 {
7161 	uint_t numifs = 0;
7162 	ill_t	*ill;
7163 	ill_walk_context_t	ctx;
7164 	ipif_t	*ipif;
7165 
7166 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7167 	ill = ILL_START_WALK_V4(&ctx, ipst);
7168 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7169 		if (IS_UNDER_IPMP(ill))
7170 			continue;
7171 		for (ipif = ill->ill_ipif; ipif != NULL;
7172 		    ipif = ipif->ipif_next) {
7173 			if (ipif->ipif_zoneid == zoneid ||
7174 			    ipif->ipif_zoneid == ALL_ZONES)
7175 				numifs++;
7176 		}
7177 	}
7178 	rw_exit(&ipst->ips_ill_g_lock);
7179 	return (numifs);
7180 }
7181 
7182 /*
7183  * Return the total number of ipifs.
7184  */
7185 static uint_t
7186 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7187 {
7188 	uint_t numifs = 0;
7189 	ill_t	*ill;
7190 	ipif_t	*ipif;
7191 	ill_walk_context_t	ctx;
7192 
7193 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
7194 
7195 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7196 	if (family == AF_INET)
7197 		ill = ILL_START_WALK_V4(&ctx, ipst);
7198 	else if (family == AF_INET6)
7199 		ill = ILL_START_WALK_V6(&ctx, ipst);
7200 	else
7201 		ill = ILL_START_WALK_ALL(&ctx, ipst);
7202 
7203 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7204 		if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7205 			continue;
7206 
7207 		for (ipif = ill->ill_ipif; ipif != NULL;
7208 		    ipif = ipif->ipif_next) {
7209 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7210 			    !(lifn_flags & LIFC_NOXMIT))
7211 				continue;
7212 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7213 			    !(lifn_flags & LIFC_TEMPORARY))
7214 				continue;
7215 			if (((ipif->ipif_flags &
7216 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7217 			    IPIF_DEPRECATED)) ||
7218 			    IS_LOOPBACK(ill) ||
7219 			    !(ipif->ipif_flags & IPIF_UP)) &&
7220 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
7221 				continue;
7222 
7223 			if (zoneid != ipif->ipif_zoneid &&
7224 			    ipif->ipif_zoneid != ALL_ZONES &&
7225 			    (zoneid != GLOBAL_ZONEID ||
7226 			    !(lifn_flags & LIFC_ALLZONES)))
7227 				continue;
7228 
7229 			numifs++;
7230 		}
7231 	}
7232 	rw_exit(&ipst->ips_ill_g_lock);
7233 	return (numifs);
7234 }
7235 
7236 uint_t
7237 ip_get_lifsrcofnum(ill_t *ill)
7238 {
7239 	uint_t numifs = 0;
7240 	ill_t	*ill_head = ill;
7241 	ip_stack_t	*ipst = ill->ill_ipst;
7242 
7243 	/*
7244 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7245 	 * other thread may be trying to relink the ILLs in this usesrc group
7246 	 * and adjusting the ill_usesrc_grp_next pointers
7247 	 */
7248 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7249 	if ((ill->ill_usesrc_ifindex == 0) &&
7250 	    (ill->ill_usesrc_grp_next != NULL)) {
7251 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7252 		    ill = ill->ill_usesrc_grp_next)
7253 			numifs++;
7254 	}
7255 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7256 
7257 	return (numifs);
7258 }
7259 
7260 /* Null values are passed in for ipif, sin, and ifreq */
7261 /* ARGSUSED */
7262 int
7263 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7264     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7265 {
7266 	int *nump;
7267 	conn_t *connp = Q_TO_CONN(q);
7268 
7269 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7270 
7271 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
7272 	nump = (int *)mp->b_cont->b_cont->b_rptr;
7273 
7274 	*nump = ip_get_numifs(connp->conn_zoneid,
7275 	    connp->conn_netstack->netstack_ip);
7276 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7277 	return (0);
7278 }
7279 
7280 /* Null values are passed in for ipif, sin, and ifreq */
7281 /* ARGSUSED */
7282 int
7283 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7284     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7285 {
7286 	struct lifnum *lifn;
7287 	mblk_t	*mp1;
7288 	conn_t *connp = Q_TO_CONN(q);
7289 
7290 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7291 
7292 	/* Existence checked in ip_wput_nondata */
7293 	mp1 = mp->b_cont->b_cont;
7294 
7295 	lifn = (struct lifnum *)mp1->b_rptr;
7296 	switch (lifn->lifn_family) {
7297 	case AF_UNSPEC:
7298 	case AF_INET:
7299 	case AF_INET6:
7300 		break;
7301 	default:
7302 		return (EAFNOSUPPORT);
7303 	}
7304 
7305 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7306 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7307 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7308 	return (0);
7309 }
7310 
7311 /* ARGSUSED */
7312 int
7313 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7314     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7315 {
7316 	STRUCT_HANDLE(ifconf, ifc);
7317 	mblk_t *mp1;
7318 	struct iocblk *iocp;
7319 	struct ifreq *ifr;
7320 	ill_walk_context_t	ctx;
7321 	ill_t	*ill;
7322 	ipif_t	*ipif;
7323 	struct sockaddr_in *sin;
7324 	int32_t	ifclen;
7325 	zoneid_t zoneid;
7326 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7327 
7328 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
7329 
7330 	ip1dbg(("ip_sioctl_get_ifconf"));
7331 	/* Existence verified in ip_wput_nondata */
7332 	mp1 = mp->b_cont->b_cont;
7333 	iocp = (struct iocblk *)mp->b_rptr;
7334 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7335 
7336 	/*
7337 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
7338 	 * the user buffer address and length into which the list of struct
7339 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
7340 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7341 	 * the SIOCGIFCONF operation was redefined to simply provide
7342 	 * a large output buffer into which we are supposed to jam the ifreq
7343 	 * array.  The same ioctl command code was used, despite the fact that
7344 	 * both the applications and the kernel code had to change, thus making
7345 	 * it impossible to support both interfaces.
7346 	 *
7347 	 * For reasons not good enough to try to explain, the following
7348 	 * algorithm is used for deciding what to do with one of these:
7349 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7350 	 * form with the output buffer coming down as the continuation message.
7351 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7352 	 * and we have to copy in the ifconf structure to find out how big the
7353 	 * output buffer is and where to copy out to.  Sure no problem...
7354 	 *
7355 	 */
7356 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7357 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7358 		int numifs = 0;
7359 		size_t ifc_bufsize;
7360 
7361 		/*
7362 		 * Must be (better be!) continuation of a TRANSPARENT
7363 		 * IOCTL.  We just copied in the ifconf structure.
7364 		 */
7365 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7366 		    (struct ifconf *)mp1->b_rptr);
7367 
7368 		/*
7369 		 * Allocate a buffer to hold requested information.
7370 		 *
7371 		 * If ifc_len is larger than what is needed, we only
7372 		 * allocate what we will use.
7373 		 *
7374 		 * If ifc_len is smaller than what is needed, return
7375 		 * EINVAL.
7376 		 *
7377 		 * XXX: the ill_t structure can hava 2 counters, for
7378 		 * v4 and v6 (not just ill_ipif_up_count) to store the
7379 		 * number of interfaces for a device, so we don't need
7380 		 * to count them here...
7381 		 */
7382 		numifs = ip_get_numifs(zoneid, ipst);
7383 
7384 		ifclen = STRUCT_FGET(ifc, ifc_len);
7385 		ifc_bufsize = numifs * sizeof (struct ifreq);
7386 		if (ifc_bufsize > ifclen) {
7387 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7388 				/* old behaviour */
7389 				return (EINVAL);
7390 			} else {
7391 				ifc_bufsize = ifclen;
7392 			}
7393 		}
7394 
7395 		mp1 = mi_copyout_alloc(q, mp,
7396 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7397 		if (mp1 == NULL)
7398 			return (ENOMEM);
7399 
7400 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7401 	}
7402 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7403 	/*
7404 	 * the SIOCGIFCONF ioctl only knows about
7405 	 * IPv4 addresses, so don't try to tell
7406 	 * it about interfaces with IPv6-only
7407 	 * addresses. (Last parm 'isv6' is B_FALSE)
7408 	 */
7409 
7410 	ifr = (struct ifreq *)mp1->b_rptr;
7411 
7412 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7413 	ill = ILL_START_WALK_V4(&ctx, ipst);
7414 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7415 		if (IS_UNDER_IPMP(ill))
7416 			continue;
7417 		for (ipif = ill->ill_ipif; ipif != NULL;
7418 		    ipif = ipif->ipif_next) {
7419 			if (zoneid != ipif->ipif_zoneid &&
7420 			    ipif->ipif_zoneid != ALL_ZONES)
7421 				continue;
7422 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7423 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7424 					/* old behaviour */
7425 					rw_exit(&ipst->ips_ill_g_lock);
7426 					return (EINVAL);
7427 				} else {
7428 					goto if_copydone;
7429 				}
7430 			}
7431 			ipif_get_name(ipif, ifr->ifr_name,
7432 			    sizeof (ifr->ifr_name));
7433 			sin = (sin_t *)&ifr->ifr_addr;
7434 			*sin = sin_null;
7435 			sin->sin_family = AF_INET;
7436 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7437 			ifr++;
7438 		}
7439 	}
7440 if_copydone:
7441 	rw_exit(&ipst->ips_ill_g_lock);
7442 	mp1->b_wptr = (uchar_t *)ifr;
7443 
7444 	if (STRUCT_BUF(ifc) != NULL) {
7445 		STRUCT_FSET(ifc, ifc_len,
7446 		    (int)((uchar_t *)ifr - mp1->b_rptr));
7447 	}
7448 	return (0);
7449 }
7450 
7451 /*
7452  * Get the interfaces using the address hosted on the interface passed in,
7453  * as a source adddress
7454  */
7455 /* ARGSUSED */
7456 int
7457 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7458     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7459 {
7460 	mblk_t *mp1;
7461 	ill_t	*ill, *ill_head;
7462 	ipif_t	*ipif, *orig_ipif;
7463 	int	numlifs = 0;
7464 	size_t	lifs_bufsize, lifsmaxlen;
7465 	struct	lifreq *lifr;
7466 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7467 	uint_t	ifindex;
7468 	zoneid_t zoneid;
7469 	boolean_t isv6 = B_FALSE;
7470 	struct	sockaddr_in	*sin;
7471 	struct	sockaddr_in6	*sin6;
7472 	STRUCT_HANDLE(lifsrcof, lifs);
7473 	ip_stack_t		*ipst;
7474 
7475 	ipst = CONNQ_TO_IPST(q);
7476 
7477 	ASSERT(q->q_next == NULL);
7478 
7479 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7480 
7481 	/* Existence verified in ip_wput_nondata */
7482 	mp1 = mp->b_cont->b_cont;
7483 
7484 	/*
7485 	 * Must be (better be!) continuation of a TRANSPARENT
7486 	 * IOCTL.  We just copied in the lifsrcof structure.
7487 	 */
7488 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7489 	    (struct lifsrcof *)mp1->b_rptr);
7490 
7491 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7492 		return (EINVAL);
7493 
7494 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7495 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7496 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7497 	if (ipif == NULL) {
7498 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7499 		    ifindex));
7500 		return (ENXIO);
7501 	}
7502 
7503 	/* Allocate a buffer to hold requested information */
7504 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7505 	lifs_bufsize = numlifs * sizeof (struct lifreq);
7506 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
7507 	/* The actual size needed is always returned in lifs_len */
7508 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
7509 
7510 	/* If the amount we need is more than what is passed in, abort */
7511 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7512 		ipif_refrele(ipif);
7513 		return (0);
7514 	}
7515 
7516 	mp1 = mi_copyout_alloc(q, mp,
7517 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7518 	if (mp1 == NULL) {
7519 		ipif_refrele(ipif);
7520 		return (ENOMEM);
7521 	}
7522 
7523 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7524 	bzero(mp1->b_rptr, lifs_bufsize);
7525 
7526 	lifr = (struct lifreq *)mp1->b_rptr;
7527 
7528 	ill = ill_head = ipif->ipif_ill;
7529 	orig_ipif = ipif;
7530 
7531 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7532 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7533 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7534 
7535 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
7536 	for (; (ill != NULL) && (ill != ill_head);
7537 	    ill = ill->ill_usesrc_grp_next) {
7538 
7539 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7540 			break;
7541 
7542 		ipif = ill->ill_ipif;
7543 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7544 		if (ipif->ipif_isv6) {
7545 			sin6 = (sin6_t *)&lifr->lifr_addr;
7546 			*sin6 = sin6_null;
7547 			sin6->sin6_family = AF_INET6;
7548 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7549 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
7550 			    &ipif->ipif_v6net_mask);
7551 		} else {
7552 			sin = (sin_t *)&lifr->lifr_addr;
7553 			*sin = sin_null;
7554 			sin->sin_family = AF_INET;
7555 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7556 			lifr->lifr_addrlen = ip_mask_to_plen(
7557 			    ipif->ipif_net_mask);
7558 		}
7559 		lifr++;
7560 	}
7561 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7562 	rw_exit(&ipst->ips_ill_g_lock);
7563 	ipif_refrele(orig_ipif);
7564 	mp1->b_wptr = (uchar_t *)lifr;
7565 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
7566 
7567 	return (0);
7568 }
7569 
7570 /* ARGSUSED */
7571 int
7572 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7573     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7574 {
7575 	mblk_t *mp1;
7576 	int	list;
7577 	ill_t	*ill;
7578 	ipif_t	*ipif;
7579 	int	flags;
7580 	int	numlifs = 0;
7581 	size_t	lifc_bufsize;
7582 	struct	lifreq *lifr;
7583 	sa_family_t	family;
7584 	struct	sockaddr_in	*sin;
7585 	struct	sockaddr_in6	*sin6;
7586 	ill_walk_context_t	ctx;
7587 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7588 	int32_t	lifclen;
7589 	zoneid_t zoneid;
7590 	STRUCT_HANDLE(lifconf, lifc);
7591 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7592 
7593 	ip1dbg(("ip_sioctl_get_lifconf"));
7594 
7595 	ASSERT(q->q_next == NULL);
7596 
7597 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7598 
7599 	/* Existence verified in ip_wput_nondata */
7600 	mp1 = mp->b_cont->b_cont;
7601 
7602 	/*
7603 	 * An extended version of SIOCGIFCONF that takes an
7604 	 * additional address family and flags field.
7605 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
7606 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7607 	 * interfaces are omitted.
7608 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
7609 	 * unless LIFC_TEMPORARY is specified.
7610 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7611 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7612 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7613 	 * has priority over LIFC_NOXMIT.
7614 	 */
7615 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
7616 
7617 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7618 		return (EINVAL);
7619 
7620 	/*
7621 	 * Must be (better be!) continuation of a TRANSPARENT
7622 	 * IOCTL.  We just copied in the lifconf structure.
7623 	 */
7624 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
7625 
7626 	family = STRUCT_FGET(lifc, lifc_family);
7627 	flags = STRUCT_FGET(lifc, lifc_flags);
7628 
7629 	switch (family) {
7630 	case AF_UNSPEC:
7631 		/*
7632 		 * walk all ILL's.
7633 		 */
7634 		list = MAX_G_HEADS;
7635 		break;
7636 	case AF_INET:
7637 		/*
7638 		 * walk only IPV4 ILL's.
7639 		 */
7640 		list = IP_V4_G_HEAD;
7641 		break;
7642 	case AF_INET6:
7643 		/*
7644 		 * walk only IPV6 ILL's.
7645 		 */
7646 		list = IP_V6_G_HEAD;
7647 		break;
7648 	default:
7649 		return (EAFNOSUPPORT);
7650 	}
7651 
7652 	/*
7653 	 * Allocate a buffer to hold requested information.
7654 	 *
7655 	 * If lifc_len is larger than what is needed, we only
7656 	 * allocate what we will use.
7657 	 *
7658 	 * If lifc_len is smaller than what is needed, return
7659 	 * EINVAL.
7660 	 */
7661 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7662 	lifc_bufsize = numlifs * sizeof (struct lifreq);
7663 	lifclen = STRUCT_FGET(lifc, lifc_len);
7664 	if (lifc_bufsize > lifclen) {
7665 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7666 			return (EINVAL);
7667 		else
7668 			lifc_bufsize = lifclen;
7669 	}
7670 
7671 	mp1 = mi_copyout_alloc(q, mp,
7672 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7673 	if (mp1 == NULL)
7674 		return (ENOMEM);
7675 
7676 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7677 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7678 
7679 	lifr = (struct lifreq *)mp1->b_rptr;
7680 
7681 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7682 	ill = ill_first(list, list, &ctx, ipst);
7683 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7684 		if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7685 			continue;
7686 
7687 		for (ipif = ill->ill_ipif; ipif != NULL;
7688 		    ipif = ipif->ipif_next) {
7689 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7690 			    !(flags & LIFC_NOXMIT))
7691 				continue;
7692 
7693 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7694 			    !(flags & LIFC_TEMPORARY))
7695 				continue;
7696 
7697 			if (((ipif->ipif_flags &
7698 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7699 			    IPIF_DEPRECATED)) ||
7700 			    IS_LOOPBACK(ill) ||
7701 			    !(ipif->ipif_flags & IPIF_UP)) &&
7702 			    (flags & LIFC_EXTERNAL_SOURCE))
7703 				continue;
7704 
7705 			if (zoneid != ipif->ipif_zoneid &&
7706 			    ipif->ipif_zoneid != ALL_ZONES &&
7707 			    (zoneid != GLOBAL_ZONEID ||
7708 			    !(flags & LIFC_ALLZONES)))
7709 				continue;
7710 
7711 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7712 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7713 					rw_exit(&ipst->ips_ill_g_lock);
7714 					return (EINVAL);
7715 				} else {
7716 					goto lif_copydone;
7717 				}
7718 			}
7719 
7720 			ipif_get_name(ipif, lifr->lifr_name,
7721 			    sizeof (lifr->lifr_name));
7722 			lifr->lifr_type = ill->ill_type;
7723 			if (ipif->ipif_isv6) {
7724 				sin6 = (sin6_t *)&lifr->lifr_addr;
7725 				*sin6 = sin6_null;
7726 				sin6->sin6_family = AF_INET6;
7727 				sin6->sin6_addr =
7728 				    ipif->ipif_v6lcl_addr;
7729 				lifr->lifr_addrlen =
7730 				    ip_mask_to_plen_v6(
7731 				    &ipif->ipif_v6net_mask);
7732 			} else {
7733 				sin = (sin_t *)&lifr->lifr_addr;
7734 				*sin = sin_null;
7735 				sin->sin_family = AF_INET;
7736 				sin->sin_addr.s_addr =
7737 				    ipif->ipif_lcl_addr;
7738 				lifr->lifr_addrlen =
7739 				    ip_mask_to_plen(
7740 				    ipif->ipif_net_mask);
7741 			}
7742 			lifr++;
7743 		}
7744 	}
7745 lif_copydone:
7746 	rw_exit(&ipst->ips_ill_g_lock);
7747 
7748 	mp1->b_wptr = (uchar_t *)lifr;
7749 	if (STRUCT_BUF(lifc) != NULL) {
7750 		STRUCT_FSET(lifc, lifc_len,
7751 		    (int)((uchar_t *)lifr - mp1->b_rptr));
7752 	}
7753 	return (0);
7754 }
7755 
7756 static void
7757 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7758 {
7759 	ip6_asp_t *table;
7760 	size_t table_size;
7761 	mblk_t *data_mp;
7762 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7763 	ip_stack_t	*ipst;
7764 
7765 	if (q->q_next == NULL)
7766 		ipst = CONNQ_TO_IPST(q);
7767 	else
7768 		ipst = ILLQ_TO_IPST(q);
7769 
7770 	/* These two ioctls are I_STR only */
7771 	if (iocp->ioc_count == TRANSPARENT) {
7772 		miocnak(q, mp, 0, EINVAL);
7773 		return;
7774 	}
7775 
7776 	data_mp = mp->b_cont;
7777 	if (data_mp == NULL) {
7778 		/* The user passed us a NULL argument */
7779 		table = NULL;
7780 		table_size = iocp->ioc_count;
7781 	} else {
7782 		/*
7783 		 * The user provided a table.  The stream head
7784 		 * may have copied in the user data in chunks,
7785 		 * so make sure everything is pulled up
7786 		 * properly.
7787 		 */
7788 		if (MBLKL(data_mp) < iocp->ioc_count) {
7789 			mblk_t *new_data_mp;
7790 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
7791 			    NULL) {
7792 				miocnak(q, mp, 0, ENOMEM);
7793 				return;
7794 			}
7795 			freemsg(data_mp);
7796 			data_mp = new_data_mp;
7797 			mp->b_cont = data_mp;
7798 		}
7799 		table = (ip6_asp_t *)data_mp->b_rptr;
7800 		table_size = iocp->ioc_count;
7801 	}
7802 
7803 	switch (iocp->ioc_cmd) {
7804 	case SIOCGIP6ADDRPOLICY:
7805 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7806 		if (iocp->ioc_rval == -1)
7807 			iocp->ioc_error = EINVAL;
7808 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7809 		else if (table != NULL &&
7810 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7811 			ip6_asp_t *src = table;
7812 			ip6_asp32_t *dst = (void *)table;
7813 			int count = table_size / sizeof (ip6_asp_t);
7814 			int i;
7815 
7816 			/*
7817 			 * We need to do an in-place shrink of the array
7818 			 * to match the alignment attributes of the
7819 			 * 32-bit ABI looking at it.
7820 			 */
7821 			/* LINTED: logical expression always true: op "||" */
7822 			ASSERT(sizeof (*src) > sizeof (*dst));
7823 			for (i = 1; i < count; i++)
7824 				bcopy(src + i, dst + i, sizeof (*dst));
7825 		}
7826 #endif
7827 		break;
7828 
7829 	case SIOCSIP6ADDRPOLICY:
7830 		ASSERT(mp->b_prev == NULL);
7831 		mp->b_prev = (void *)q;
7832 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7833 		/*
7834 		 * We pass in the datamodel here so that the ip6_asp_replace()
7835 		 * routine can handle converting from 32-bit to native formats
7836 		 * where necessary.
7837 		 *
7838 		 * A better way to handle this might be to convert the inbound
7839 		 * data structure here, and hang it off a new 'mp'; thus the
7840 		 * ip6_asp_replace() logic would always be dealing with native
7841 		 * format data structures..
7842 		 *
7843 		 * (An even simpler way to handle these ioctls is to just
7844 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
7845 		 * and just recompile everything that depends on it.)
7846 		 */
7847 #endif
7848 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7849 		    iocp->ioc_flag & IOC_MODELS);
7850 		return;
7851 	}
7852 
7853 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7854 	qreply(q, mp);
7855 }
7856 
7857 static void
7858 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7859 {
7860 	mblk_t 		*data_mp;
7861 	struct dstinforeq	*dir;
7862 	uint8_t		*end, *cur;
7863 	in6_addr_t	*daddr, *saddr;
7864 	ipaddr_t	v4daddr;
7865 	ire_t		*ire;
7866 	ipaddr_t	v4setsrc;
7867 	in6_addr_t	v6setsrc;
7868 	char		*slabel, *dlabel;
7869 	boolean_t	isipv4;
7870 	int		match_ire;
7871 	ill_t		*dst_ill;
7872 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7873 	conn_t		*connp = Q_TO_CONN(q);
7874 	zoneid_t	zoneid = IPCL_ZONEID(connp);
7875 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
7876 	uint64_t	ipif_flags;
7877 
7878 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7879 
7880 	/*
7881 	 * This ioctl is I_STR only, and must have a
7882 	 * data mblk following the M_IOCTL mblk.
7883 	 */
7884 	data_mp = mp->b_cont;
7885 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7886 		miocnak(q, mp, 0, EINVAL);
7887 		return;
7888 	}
7889 
7890 	if (MBLKL(data_mp) < iocp->ioc_count) {
7891 		mblk_t *new_data_mp;
7892 
7893 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7894 			miocnak(q, mp, 0, ENOMEM);
7895 			return;
7896 		}
7897 		freemsg(data_mp);
7898 		data_mp = new_data_mp;
7899 		mp->b_cont = data_mp;
7900 	}
7901 	match_ire = MATCH_IRE_DSTONLY;
7902 
7903 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
7904 	    end - cur >= sizeof (struct dstinforeq);
7905 	    cur += sizeof (struct dstinforeq)) {
7906 		dir = (struct dstinforeq *)cur;
7907 		daddr = &dir->dir_daddr;
7908 		saddr = &dir->dir_saddr;
7909 
7910 		/*
7911 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7912 		 * v4 mapped addresses; ire_ftable_lookup_v6()
7913 		 * and ip_select_source_v6() do not.
7914 		 */
7915 		dir->dir_dscope = ip_addr_scope_v6(daddr);
7916 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
7917 
7918 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7919 		if (isipv4) {
7920 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7921 			v4setsrc = INADDR_ANY;
7922 			ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7923 			    NULL, match_ire, B_TRUE, 0, ipst, &v4setsrc, NULL,
7924 			    NULL);
7925 		} else {
7926 			v6setsrc = ipv6_all_zeros;
7927 			ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7928 			    NULL, match_ire, B_TRUE, 0, ipst, &v6setsrc, NULL,
7929 			    NULL);
7930 		}
7931 		ASSERT(ire != NULL);
7932 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7933 			ire_refrele(ire);
7934 			dir->dir_dreachable = 0;
7935 
7936 			/* move on to next dst addr */
7937 			continue;
7938 		}
7939 		dir->dir_dreachable = 1;
7940 
7941 		dst_ill = ire_nexthop_ill(ire);
7942 		if (dst_ill == NULL) {
7943 			ire_refrele(ire);
7944 			continue;
7945 		}
7946 
7947 		/* With ipmp we most likely look at the ipmp ill here */
7948 		dir->dir_dmactype = dst_ill->ill_mactype;
7949 
7950 		if (isipv4) {
7951 			ipaddr_t v4saddr;
7952 
7953 			if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7954 			    connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7955 			    &v4saddr, NULL, &ipif_flags) != 0) {
7956 				v4saddr = INADDR_ANY;
7957 				ipif_flags = 0;
7958 			}
7959 			IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7960 		} else {
7961 			if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7962 			    zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7963 			    saddr, NULL, &ipif_flags) != 0) {
7964 				*saddr = ipv6_all_zeros;
7965 				ipif_flags = 0;
7966 			}
7967 		}
7968 
7969 		dir->dir_sscope = ip_addr_scope_v6(saddr);
7970 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
7971 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7972 		dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7973 		ire_refrele(ire);
7974 		ill_refrele(dst_ill);
7975 	}
7976 	miocack(q, mp, iocp->ioc_count, 0);
7977 }
7978 
7979 /*
7980  * Check if this is an address assigned to this machine.
7981  * Skips interfaces that are down by using ire checks.
7982  * Translates mapped addresses to v4 addresses and then
7983  * treats them as such, returning true if the v4 address
7984  * associated with this mapped address is configured.
7985  * Note: Applications will have to be careful what they do
7986  * with the response; use of mapped addresses limits
7987  * what can be done with the socket, especially with
7988  * respect to socket options and ioctls - neither IPv4
7989  * options nor IPv6 sticky options/ancillary data options
7990  * may be used.
7991  */
7992 /* ARGSUSED */
7993 int
7994 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7995     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
7996 {
7997 	struct sioc_addrreq *sia;
7998 	sin_t *sin;
7999 	ire_t *ire;
8000 	mblk_t *mp1;
8001 	zoneid_t zoneid;
8002 	ip_stack_t	*ipst;
8003 
8004 	ip1dbg(("ip_sioctl_tmyaddr"));
8005 
8006 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8007 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8008 	ipst = CONNQ_TO_IPST(q);
8009 
8010 	/* Existence verified in ip_wput_nondata */
8011 	mp1 = mp->b_cont->b_cont;
8012 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8013 	sin = (sin_t *)&sia->sa_addr;
8014 	switch (sin->sin_family) {
8015 	case AF_INET6: {
8016 		sin6_t *sin6 = (sin6_t *)sin;
8017 
8018 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8019 			ipaddr_t v4_addr;
8020 
8021 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8022 			    v4_addr);
8023 			ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8024 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8025 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8026 		} else {
8027 			in6_addr_t v6addr;
8028 
8029 			v6addr = sin6->sin6_addr;
8030 			ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8031 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8032 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8033 		}
8034 		break;
8035 	}
8036 	case AF_INET: {
8037 		ipaddr_t v4addr;
8038 
8039 		v4addr = sin->sin_addr.s_addr;
8040 		ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8041 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8042 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8043 		break;
8044 	}
8045 	default:
8046 		return (EAFNOSUPPORT);
8047 	}
8048 	if (ire != NULL) {
8049 		sia->sa_res = 1;
8050 		ire_refrele(ire);
8051 	} else {
8052 		sia->sa_res = 0;
8053 	}
8054 	return (0);
8055 }
8056 
8057 /*
8058  * Check if this is an address assigned on-link i.e. neighbor,
8059  * and makes sure it's reachable from the current zone.
8060  * Returns true for my addresses as well.
8061  * Translates mapped addresses to v4 addresses and then
8062  * treats them as such, returning true if the v4 address
8063  * associated with this mapped address is configured.
8064  * Note: Applications will have to be careful what they do
8065  * with the response; use of mapped addresses limits
8066  * what can be done with the socket, especially with
8067  * respect to socket options and ioctls - neither IPv4
8068  * options nor IPv6 sticky options/ancillary data options
8069  * may be used.
8070  */
8071 /* ARGSUSED */
8072 int
8073 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8074     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8075 {
8076 	struct sioc_addrreq *sia;
8077 	sin_t *sin;
8078 	mblk_t	*mp1;
8079 	ire_t *ire = NULL;
8080 	zoneid_t zoneid;
8081 	ip_stack_t	*ipst;
8082 
8083 	ip1dbg(("ip_sioctl_tonlink"));
8084 
8085 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8086 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8087 	ipst = CONNQ_TO_IPST(q);
8088 
8089 	/* Existence verified in ip_wput_nondata */
8090 	mp1 = mp->b_cont->b_cont;
8091 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8092 	sin = (sin_t *)&sia->sa_addr;
8093 
8094 	/*
8095 	 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8096 	 * to make sure we only look at on-link unicast address.
8097 	 */
8098 	switch (sin->sin_family) {
8099 	case AF_INET6: {
8100 		sin6_t *sin6 = (sin6_t *)sin;
8101 
8102 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8103 			ipaddr_t v4_addr;
8104 
8105 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8106 			    v4_addr);
8107 			if (!CLASSD(v4_addr)) {
8108 				ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8109 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8110 				    0, ipst, NULL);
8111 			}
8112 		} else {
8113 			in6_addr_t v6addr;
8114 
8115 			v6addr = sin6->sin6_addr;
8116 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8117 				ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8118 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8119 				    ipst, NULL);
8120 			}
8121 		}
8122 		break;
8123 	}
8124 	case AF_INET: {
8125 		ipaddr_t v4addr;
8126 
8127 		v4addr = sin->sin_addr.s_addr;
8128 		if (!CLASSD(v4addr)) {
8129 			ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8130 			    zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8131 		}
8132 		break;
8133 	}
8134 	default:
8135 		return (EAFNOSUPPORT);
8136 	}
8137 	sia->sa_res = 0;
8138 	if (ire != NULL) {
8139 		ASSERT(!(ire->ire_type & IRE_MULTICAST));
8140 
8141 		if ((ire->ire_type & IRE_ONLINK) &&
8142 		    !(ire->ire_type & IRE_BROADCAST))
8143 			sia->sa_res = 1;
8144 		ire_refrele(ire);
8145 	}
8146 	return (0);
8147 }
8148 
8149 /*
8150  * TBD: implement when kernel maintaines a list of site prefixes.
8151  */
8152 /* ARGSUSED */
8153 int
8154 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8155     ip_ioctl_cmd_t *ipip, void *ifreq)
8156 {
8157 	return (ENXIO);
8158 }
8159 
8160 /* ARP IOCTLs. */
8161 /* ARGSUSED */
8162 int
8163 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8164     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8165 {
8166 	int		err;
8167 	ipaddr_t	ipaddr;
8168 	struct iocblk	*iocp;
8169 	conn_t		*connp;
8170 	struct arpreq	*ar;
8171 	struct xarpreq	*xar;
8172 	int		arp_flags, flags, alength;
8173 	uchar_t		*lladdr;
8174 	ip_stack_t	*ipst;
8175 	ill_t		*ill = ipif->ipif_ill;
8176 	ill_t		*proxy_ill = NULL;
8177 	ipmp_arpent_t	*entp = NULL;
8178 	boolean_t	proxyarp = B_FALSE;
8179 	boolean_t	if_arp_ioctl = B_FALSE;
8180 	ncec_t		*ncec = NULL;
8181 	nce_t		*nce;
8182 
8183 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8184 	connp = Q_TO_CONN(q);
8185 	ipst = connp->conn_netstack->netstack_ip;
8186 	iocp = (struct iocblk *)mp->b_rptr;
8187 
8188 	if (ipip->ipi_cmd_type == XARP_CMD) {
8189 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8190 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8191 		ar = NULL;
8192 
8193 		arp_flags = xar->xarp_flags;
8194 		lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8195 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8196 		/*
8197 		 * Validate against user's link layer address length
8198 		 * input and name and addr length limits.
8199 		 */
8200 		alength = ill->ill_phys_addr_length;
8201 		if (ipip->ipi_cmd == SIOCSXARP) {
8202 			if (alength != xar->xarp_ha.sdl_alen ||
8203 			    (alength + xar->xarp_ha.sdl_nlen >
8204 			    sizeof (xar->xarp_ha.sdl_data)))
8205 				return (EINVAL);
8206 		}
8207 	} else {
8208 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8209 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8210 		xar = NULL;
8211 
8212 		arp_flags = ar->arp_flags;
8213 		lladdr = (uchar_t *)ar->arp_ha.sa_data;
8214 		/*
8215 		 * Theoretically, the sa_family could tell us what link
8216 		 * layer type this operation is trying to deal with. By
8217 		 * common usage AF_UNSPEC means ethernet. We'll assume
8218 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8219 		 * for now. Our new SIOC*XARP ioctls can be used more
8220 		 * generally.
8221 		 *
8222 		 * If the underlying media happens to have a non 6 byte
8223 		 * address, arp module will fail set/get, but the del
8224 		 * operation will succeed.
8225 		 */
8226 		alength = 6;
8227 		if ((ipip->ipi_cmd != SIOCDARP) &&
8228 		    (alength != ill->ill_phys_addr_length)) {
8229 			return (EINVAL);
8230 		}
8231 	}
8232 
8233 	/* Translate ATF* flags to NCE* flags */
8234 	flags = 0;
8235 	if (arp_flags & ATF_AUTHORITY)
8236 		flags |= NCE_F_AUTHORITY;
8237 	if (arp_flags & ATF_PERM)
8238 		flags |= NCE_F_NONUD; /* not subject to aging */
8239 	if (arp_flags & ATF_PUBL)
8240 		flags |= NCE_F_PUBLISH;
8241 
8242 	/*
8243 	 * IPMP ARP special handling:
8244 	 *
8245 	 * 1. Since ARP mappings must appear consistent across the group,
8246 	 *    prohibit changing ARP mappings on the underlying interfaces.
8247 	 *
8248 	 * 2. Since ARP mappings for IPMP data addresses are maintained by
8249 	 *    IP itself, prohibit changing them.
8250 	 *
8251 	 * 3. For proxy ARP, use a functioning hardware address in the group,
8252 	 *    provided one exists.  If one doesn't, just add the entry as-is;
8253 	 *    ipmp_illgrp_refresh_arpent() will refresh it if things change.
8254 	 */
8255 	if (IS_UNDER_IPMP(ill)) {
8256 		if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8257 			return (EPERM);
8258 	}
8259 	if (IS_IPMP(ill)) {
8260 		ipmp_illgrp_t *illg = ill->ill_grp;
8261 
8262 		switch (ipip->ipi_cmd) {
8263 		case SIOCSARP:
8264 		case SIOCSXARP:
8265 			proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8266 			if (proxy_ill != NULL) {
8267 				proxyarp = B_TRUE;
8268 				if (!ipmp_ill_is_active(proxy_ill))
8269 					proxy_ill = ipmp_illgrp_next_ill(illg);
8270 				if (proxy_ill != NULL)
8271 					lladdr = proxy_ill->ill_phys_addr;
8272 			}
8273 			/* FALLTHRU */
8274 		}
8275 	}
8276 
8277 	ipaddr = sin->sin_addr.s_addr;
8278 	/*
8279 	 * don't match across illgrp per case (1) and (2).
8280 	 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8281 	 */
8282 	nce = nce_lookup_v4(ill, &ipaddr);
8283 	if (nce != NULL)
8284 		ncec = nce->nce_common;
8285 
8286 	switch (iocp->ioc_cmd) {
8287 	case SIOCDARP:
8288 	case SIOCDXARP: {
8289 		/*
8290 		 * Delete the NCE if any.
8291 		 */
8292 		if (ncec == NULL) {
8293 			iocp->ioc_error = ENXIO;
8294 			break;
8295 		}
8296 		/* Don't allow changes to arp mappings of local addresses. */
8297 		if (NCE_MYADDR(ncec)) {
8298 			nce_refrele(nce);
8299 			return (ENOTSUP);
8300 		}
8301 		iocp->ioc_error = 0;
8302 
8303 		/*
8304 		 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8305 		 * This will delete all the nce entries on the under_ills.
8306 		 */
8307 		ncec_delete(ncec);
8308 		/*
8309 		 * Once the NCE has been deleted, then the ire_dep* consistency
8310 		 * mechanism will find any IRE which depended on the now
8311 		 * condemned NCE (as part of sending packets).
8312 		 * That mechanism handles redirects by deleting redirects
8313 		 * that refer to UNREACHABLE nces.
8314 		 */
8315 		break;
8316 	}
8317 	case SIOCGARP:
8318 	case SIOCGXARP:
8319 		if (ncec != NULL) {
8320 			lladdr = ncec->ncec_lladdr;
8321 			flags = ncec->ncec_flags;
8322 			iocp->ioc_error = 0;
8323 			ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8324 		} else {
8325 			iocp->ioc_error = ENXIO;
8326 		}
8327 		break;
8328 	case SIOCSARP:
8329 	case SIOCSXARP:
8330 		/* Don't allow changes to arp mappings of local addresses. */
8331 		if (ncec != NULL && NCE_MYADDR(ncec)) {
8332 			nce_refrele(nce);
8333 			return (ENOTSUP);
8334 		}
8335 
8336 		/* static arp entries will undergo NUD if ATF_PERM is not set */
8337 		flags |= NCE_F_STATIC;
8338 		if (!if_arp_ioctl) {
8339 			ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8340 			    lladdr, alength, flags);
8341 		} else {
8342 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8343 			if (ipif != NULL) {
8344 				ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8345 				    lladdr, alength, flags);
8346 				ipif_refrele(ipif);
8347 			}
8348 		}
8349 		if (nce != NULL) {
8350 			nce_refrele(nce);
8351 			nce = NULL;
8352 		}
8353 		/*
8354 		 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8355 		 * by nce_add_common()
8356 		 */
8357 		err = nce_lookup_then_add_v4(ill, lladdr,
8358 		    ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8359 		    &nce);
8360 		if (err == EEXIST) {
8361 			ncec = nce->nce_common;
8362 			mutex_enter(&ncec->ncec_lock);
8363 			ncec->ncec_state = ND_REACHABLE;
8364 			ncec->ncec_flags = flags;
8365 			nce_update(ncec, ND_UNCHANGED, lladdr);
8366 			mutex_exit(&ncec->ncec_lock);
8367 			err = 0;
8368 		}
8369 		if (nce != NULL) {
8370 			nce_refrele(nce);
8371 			nce = NULL;
8372 		}
8373 		if (IS_IPMP(ill) && err == 0) {
8374 			entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8375 			    proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8376 			    flags);
8377 			if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8378 				iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8379 				break;
8380 			}
8381 		}
8382 		iocp->ioc_error = err;
8383 	}
8384 
8385 	if (nce != NULL) {
8386 		nce_refrele(nce);
8387 	}
8388 
8389 	/*
8390 	 * If we created an IPMP ARP entry, mark that we've notified ARP.
8391 	 */
8392 	if (entp != NULL)
8393 		ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
8394 
8395 	return (iocp->ioc_error);
8396 }
8397 
8398 /*
8399  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8400  * the associated sin and refhold and return the associated ipif via `ci'.
8401  */
8402 int
8403 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8404     cmd_info_t *ci)
8405 {
8406 	mblk_t	*mp1;
8407 	sin_t	*sin;
8408 	conn_t	*connp;
8409 	ipif_t	*ipif;
8410 	ire_t	*ire = NULL;
8411 	ill_t	*ill = NULL;
8412 	boolean_t exists;
8413 	ip_stack_t *ipst;
8414 	struct arpreq *ar;
8415 	struct xarpreq *xar;
8416 	struct sockaddr_dl *sdl;
8417 
8418 	/* ioctl comes down on a conn */
8419 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8420 	connp = Q_TO_CONN(q);
8421 	if (connp->conn_family == AF_INET6)
8422 		return (ENXIO);
8423 
8424 	ipst = connp->conn_netstack->netstack_ip;
8425 
8426 	/* Verified in ip_wput_nondata */
8427 	mp1 = mp->b_cont->b_cont;
8428 
8429 	if (ipip->ipi_cmd_type == XARP_CMD) {
8430 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8431 		xar = (struct xarpreq *)mp1->b_rptr;
8432 		sin = (sin_t *)&xar->xarp_pa;
8433 		sdl = &xar->xarp_ha;
8434 
8435 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8436 			return (ENXIO);
8437 		if (sdl->sdl_nlen >= LIFNAMSIZ)
8438 			return (EINVAL);
8439 	} else {
8440 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8441 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8442 		ar = (struct arpreq *)mp1->b_rptr;
8443 		sin = (sin_t *)&ar->arp_pa;
8444 	}
8445 
8446 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8447 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8448 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8449 		if (ipif == NULL)
8450 			return (ENXIO);
8451 		if (ipif->ipif_id != 0) {
8452 			ipif_refrele(ipif);
8453 			return (ENXIO);
8454 		}
8455 	} else {
8456 		/*
8457 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8458 		 * of 0: use the IP address to find the ipif.  If the IP
8459 		 * address is an IPMP test address, ire_ftable_lookup() will
8460 		 * find the wrong ill, so we first do an ipif_lookup_addr().
8461 		 */
8462 		ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8463 		    ipst);
8464 		if (ipif == NULL) {
8465 			ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8466 			    0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8467 			    NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8468 			if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8469 				if (ire != NULL)
8470 					ire_refrele(ire);
8471 				return (ENXIO);
8472 			}
8473 			ASSERT(ire != NULL && ill != NULL);
8474 			ipif = ill->ill_ipif;
8475 			ipif_refhold(ipif);
8476 			ire_refrele(ire);
8477 		}
8478 	}
8479 
8480 	if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8481 		ipif_refrele(ipif);
8482 		return (ENXIO);
8483 	}
8484 
8485 	ci->ci_sin = sin;
8486 	ci->ci_ipif = ipif;
8487 	return (0);
8488 }
8489 
8490 /*
8491  * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
8492  * value of `ioccmd'.  While an illgrp is linked to an ipmp_grp_t, it is
8493  * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8494  * up and thus an ill can join that illgrp.
8495  *
8496  * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8497  * open()/close() primarily because close() is not allowed to fail or block
8498  * forever.  On the other hand, I_PUNLINK *can* fail, and there's no reason
8499  * why anyone should ever need to I_PUNLINK an in-use IPMP stream.  To ensure
8500  * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8501  * I_PUNLINK) we defer linking to I_PLINK.  Separately, we also fail attempts
8502  * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
8503  * state if I_UNLINK didn't occur.
8504  *
8505  * Note that for each plumb/unplumb operation, we may end up here more than
8506  * once because of the way ifconfig works.  However, it's OK to link the same
8507  * illgrp more than once, or unlink an illgrp that's already unlinked.
8508  */
8509 static int
8510 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8511 {
8512 	int err;
8513 	ip_stack_t *ipst = ill->ill_ipst;
8514 
8515 	ASSERT(IS_IPMP(ill));
8516 	ASSERT(IAM_WRITER_ILL(ill));
8517 
8518 	switch (ioccmd) {
8519 	case I_LINK:
8520 		return (ENOTSUP);
8521 
8522 	case I_PLINK:
8523 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8524 		ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8525 		rw_exit(&ipst->ips_ipmp_lock);
8526 		break;
8527 
8528 	case I_PUNLINK:
8529 		/*
8530 		 * Require all UP ipifs be brought down prior to unlinking the
8531 		 * illgrp so any associated IREs (and other state) is torched.
8532 		 */
8533 		if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8534 			return (EBUSY);
8535 
8536 		/*
8537 		 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8538 		 * with an SIOCSLIFGROUPNAME request from an ill trying to
8539 		 * join this group.  Specifically: ills trying to join grab
8540 		 * ipmp_lock and bump a "pending join" counter checked by
8541 		 * ipmp_illgrp_unlink_grp().  During the unlink no new pending
8542 		 * joins can occur (since we have ipmp_lock).  Once we drop
8543 		 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8544 		 * find the illgrp (since we unlinked it) and will return
8545 		 * EAFNOSUPPORT.  This will then take them back through the
8546 		 * IPMP meta-interface plumbing logic in ifconfig, and thus
8547 		 * back through I_PLINK above.
8548 		 */
8549 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8550 		err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8551 		rw_exit(&ipst->ips_ipmp_lock);
8552 		return (err);
8553 	default:
8554 		break;
8555 	}
8556 	return (0);
8557 }
8558 
8559 /*
8560  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8561  * atomically set/clear the muxids. Also complete the ioctl by acking or
8562  * naking it.  Note that the code is structured such that the link type,
8563  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
8564  * its clones use the persistent link, while pppd(1M) and perhaps many
8565  * other daemons may use non-persistent link.  When combined with some
8566  * ill_t states, linking and unlinking lower streams may be used as
8567  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8568  */
8569 /* ARGSUSED */
8570 void
8571 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8572 {
8573 	mblk_t		*mp1;
8574 	struct linkblk	*li;
8575 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8576 	int		err = 0;
8577 
8578 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8579 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
8580 
8581 	mp1 = mp->b_cont;	/* This is the linkblk info */
8582 	li = (struct linkblk *)mp1->b_rptr;
8583 
8584 	err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8585 	if (err == EINPROGRESS)
8586 		return;
8587 done:
8588 	if (err == 0)
8589 		miocack(q, mp, 0, 0);
8590 	else
8591 		miocnak(q, mp, 0, err);
8592 
8593 	/* Conn was refheld in ip_sioctl_copyin_setup */
8594 	if (CONN_Q(q))
8595 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8596 }
8597 
8598 /*
8599  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
8600  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
8601  * module stream).  If `doconsist' is set, then do the extended consistency
8602  * checks requested by ifconfig(1M) and (atomically) set ill_muxid here.
8603  * Returns zero on success, EINPROGRESS if the operation is still pending, or
8604  * an error code on failure.
8605  */
8606 static int
8607 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8608     struct linkblk *li)
8609 {
8610 	int		err = 0;
8611 	ill_t  		*ill;
8612 	queue_t		*ipwq, *dwq;
8613 	const char	*name;
8614 	struct qinit	*qinfo;
8615 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8616 	boolean_t	entered_ipsq = B_FALSE;
8617 	boolean_t	is_ip = B_FALSE;
8618 	arl_t		*arl;
8619 
8620 	/*
8621 	 * Walk the lower stream to verify it's the IP module stream.
8622 	 * The IP module is identified by its name, wput function,
8623 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
8624 	 * (li->l_qbot) will not vanish until this ioctl completes.
8625 	 */
8626 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8627 		qinfo = ipwq->q_qinfo;
8628 		name = qinfo->qi_minfo->mi_idname;
8629 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
8630 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8631 			is_ip = B_TRUE;
8632 			break;
8633 		}
8634 		if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8635 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8636 			break;
8637 		}
8638 	}
8639 
8640 	/*
8641 	 * If this isn't an IP module stream, bail.
8642 	 */
8643 	if (ipwq == NULL)
8644 		return (0);
8645 
8646 	if (!is_ip) {
8647 		arl = (arl_t *)ipwq->q_ptr;
8648 		ill = arl_to_ill(arl);
8649 		if (ill == NULL)
8650 			return (0);
8651 	} else {
8652 		ill = ipwq->q_ptr;
8653 	}
8654 	ASSERT(ill != NULL);
8655 
8656 	if (ipsq == NULL) {
8657 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8658 		    NEW_OP, B_FALSE);
8659 		if (ipsq == NULL) {
8660 			if (!is_ip)
8661 				ill_refrele(ill);
8662 			return (EINPROGRESS);
8663 		}
8664 		entered_ipsq = B_TRUE;
8665 	}
8666 	ASSERT(IAM_WRITER_ILL(ill));
8667 	mutex_enter(&ill->ill_lock);
8668 	if (!is_ip) {
8669 		if (islink && ill->ill_muxid == 0) {
8670 			/*
8671 			 * Plumbing has to be done with IP plumbed first, arp
8672 			 * second, but here we have arp being plumbed first.
8673 			 */
8674 			mutex_exit(&ill->ill_lock);
8675 			ipsq_exit(ipsq);
8676 			ill_refrele(ill);
8677 			return (EINVAL);
8678 		}
8679 	}
8680 	mutex_exit(&ill->ill_lock);
8681 	if (!is_ip) {
8682 		arl->arl_muxid = islink ? li->l_index : 0;
8683 		ill_refrele(ill);
8684 		goto done;
8685 	}
8686 
8687 	if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8688 		goto done;
8689 
8690 	/*
8691 	 * As part of I_{P}LINKing, stash the number of downstream modules and
8692 	 * the read queue of the module immediately below IP in the ill.
8693 	 * These are used during the capability negotiation below.
8694 	 */
8695 	ill->ill_lmod_rq = NULL;
8696 	ill->ill_lmod_cnt = 0;
8697 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
8698 		ill->ill_lmod_rq = RD(dwq);
8699 		for (; dwq != NULL; dwq = dwq->q_next)
8700 			ill->ill_lmod_cnt++;
8701 	}
8702 
8703 	ill->ill_muxid = islink ? li->l_index : 0;
8704 
8705 	/*
8706 	 * Mark the ipsq busy until the capability operations initiated below
8707 	 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8708 	 * returns, but the capability operation may complete asynchronously
8709 	 * much later.
8710 	 */
8711 	ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8712 	/*
8713 	 * If there's at least one up ipif on this ill, then we're bound to
8714 	 * the underlying driver via DLPI.  In that case, renegotiate
8715 	 * capabilities to account for any possible change in modules
8716 	 * interposed between IP and the driver.
8717 	 */
8718 	if (ill->ill_ipif_up_count > 0) {
8719 		if (islink)
8720 			ill_capability_probe(ill);
8721 		else
8722 			ill_capability_reset(ill, B_FALSE);
8723 	}
8724 	ipsq_current_finish(ipsq);
8725 done:
8726 	if (entered_ipsq)
8727 		ipsq_exit(ipsq);
8728 
8729 	return (err);
8730 }
8731 
8732 /*
8733  * Search the ioctl command in the ioctl tables and return a pointer
8734  * to the ioctl command information. The ioctl command tables are
8735  * static and fully populated at compile time.
8736  */
8737 ip_ioctl_cmd_t *
8738 ip_sioctl_lookup(int ioc_cmd)
8739 {
8740 	int index;
8741 	ip_ioctl_cmd_t *ipip;
8742 	ip_ioctl_cmd_t *ipip_end;
8743 
8744 	if (ioc_cmd == IPI_DONTCARE)
8745 		return (NULL);
8746 
8747 	/*
8748 	 * Do a 2 step search. First search the indexed table
8749 	 * based on the least significant byte of the ioctl cmd.
8750 	 * If we don't find a match, then search the misc table
8751 	 * serially.
8752 	 */
8753 	index = ioc_cmd & 0xFF;
8754 	if (index < ip_ndx_ioctl_count) {
8755 		ipip = &ip_ndx_ioctl_table[index];
8756 		if (ipip->ipi_cmd == ioc_cmd) {
8757 			/* Found a match in the ndx table */
8758 			return (ipip);
8759 		}
8760 	}
8761 
8762 	/* Search the misc table */
8763 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8764 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8765 		if (ipip->ipi_cmd == ioc_cmd)
8766 			/* Found a match in the misc table */
8767 			return (ipip);
8768 	}
8769 
8770 	return (NULL);
8771 }
8772 
8773 /*
8774  * Wrapper function for resuming deferred ioctl processing
8775  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
8776  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
8777  */
8778 /* ARGSUSED */
8779 void
8780 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
8781     void *dummy_arg)
8782 {
8783 	ip_sioctl_copyin_setup(q, mp);
8784 }
8785 
8786 /*
8787  * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
8788  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
8789  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
8790  * We establish here the size of the block to be copied in.  mi_copyin
8791  * arranges for this to happen, an processing continues in ip_wput_nondata with
8792  * an M_IOCDATA message.
8793  */
8794 void
8795 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
8796 {
8797 	int	copyin_size;
8798 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8799 	ip_ioctl_cmd_t *ipip;
8800 	cred_t *cr;
8801 	ip_stack_t	*ipst;
8802 
8803 	if (CONN_Q(q))
8804 		ipst = CONNQ_TO_IPST(q);
8805 	else
8806 		ipst = ILLQ_TO_IPST(q);
8807 
8808 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
8809 	if (ipip == NULL) {
8810 		/*
8811 		 * The ioctl is not one we understand or own.
8812 		 * Pass it along to be processed down stream,
8813 		 * if this is a module instance of IP, else nak
8814 		 * the ioctl.
8815 		 */
8816 		if (q->q_next == NULL) {
8817 			goto nak;
8818 		} else {
8819 			putnext(q, mp);
8820 			return;
8821 		}
8822 	}
8823 
8824 	/*
8825 	 * If this is deferred, then we will do all the checks when we
8826 	 * come back.
8827 	 */
8828 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
8829 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
8830 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
8831 		return;
8832 	}
8833 
8834 	/*
8835 	 * Only allow a very small subset of IP ioctls on this stream if
8836 	 * IP is a module and not a driver. Allowing ioctls to be processed
8837 	 * in this case may cause assert failures or data corruption.
8838 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
8839 	 * ioctls allowed on an IP module stream, after which this stream
8840 	 * normally becomes a multiplexor (at which time the stream head
8841 	 * will fail all ioctls).
8842 	 */
8843 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
8844 		goto nak;
8845 	}
8846 
8847 	/* Make sure we have ioctl data to process. */
8848 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
8849 		goto nak;
8850 
8851 	/*
8852 	 * Prefer dblk credential over ioctl credential; some synthesized
8853 	 * ioctls have kcred set because there's no way to crhold()
8854 	 * a credential in some contexts.  (ioc_cr is not crfree() by
8855 	 * the framework; the caller of ioctl needs to hold the reference
8856 	 * for the duration of the call).
8857 	 */
8858 	cr = msg_getcred(mp, NULL);
8859 	if (cr == NULL)
8860 		cr = iocp->ioc_cr;
8861 
8862 	/* Make sure normal users don't send down privileged ioctls */
8863 	if ((ipip->ipi_flags & IPI_PRIV) &&
8864 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
8865 		/* We checked the privilege earlier but log it here */
8866 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
8867 		return;
8868 	}
8869 
8870 	/*
8871 	 * The ioctl command tables can only encode fixed length
8872 	 * ioctl data. If the length is variable, the table will
8873 	 * encode the length as zero. Such special cases are handled
8874 	 * below in the switch.
8875 	 */
8876 	if (ipip->ipi_copyin_size != 0) {
8877 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
8878 		return;
8879 	}
8880 
8881 	switch (iocp->ioc_cmd) {
8882 	case O_SIOCGIFCONF:
8883 	case SIOCGIFCONF:
8884 		/*
8885 		 * This IOCTL is hilarious.  See comments in
8886 		 * ip_sioctl_get_ifconf for the story.
8887 		 */
8888 		if (iocp->ioc_count == TRANSPARENT)
8889 			copyin_size = SIZEOF_STRUCT(ifconf,
8890 			    iocp->ioc_flag);
8891 		else
8892 			copyin_size = iocp->ioc_count;
8893 		mi_copyin(q, mp, NULL, copyin_size);
8894 		return;
8895 
8896 	case O_SIOCGLIFCONF:
8897 	case SIOCGLIFCONF:
8898 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
8899 		mi_copyin(q, mp, NULL, copyin_size);
8900 		return;
8901 
8902 	case SIOCGLIFSRCOF:
8903 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
8904 		mi_copyin(q, mp, NULL, copyin_size);
8905 		return;
8906 	case SIOCGIP6ADDRPOLICY:
8907 		ip_sioctl_ip6addrpolicy(q, mp);
8908 		ip6_asp_table_refrele(ipst);
8909 		return;
8910 
8911 	case SIOCSIP6ADDRPOLICY:
8912 		ip_sioctl_ip6addrpolicy(q, mp);
8913 		return;
8914 
8915 	case SIOCGDSTINFO:
8916 		ip_sioctl_dstinfo(q, mp);
8917 		ip6_asp_table_refrele(ipst);
8918 		return;
8919 
8920 	case I_PLINK:
8921 	case I_PUNLINK:
8922 	case I_LINK:
8923 	case I_UNLINK:
8924 		/*
8925 		 * We treat non-persistent link similarly as the persistent
8926 		 * link case, in terms of plumbing/unplumbing, as well as
8927 		 * dynamic re-plumbing events indicator.  See comments
8928 		 * in ip_sioctl_plink() for more.
8929 		 *
8930 		 * Request can be enqueued in the 'ipsq' while waiting
8931 		 * to become exclusive. So bump up the conn ref.
8932 		 */
8933 		if (CONN_Q(q))
8934 			CONN_INC_REF(Q_TO_CONN(q));
8935 		ip_sioctl_plink(NULL, q, mp, NULL);
8936 		return;
8937 
8938 	case ND_GET:
8939 	case ND_SET:
8940 		/*
8941 		 * Use of the nd table requires holding the reader lock.
8942 		 * Modifying the nd table thru nd_load/nd_unload requires
8943 		 * the writer lock.
8944 		 */
8945 		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
8946 		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
8947 			rw_exit(&ipst->ips_ip_g_nd_lock);
8948 
8949 			if (iocp->ioc_error)
8950 				iocp->ioc_count = 0;
8951 			mp->b_datap->db_type = M_IOCACK;
8952 			qreply(q, mp);
8953 			return;
8954 		}
8955 		rw_exit(&ipst->ips_ip_g_nd_lock);
8956 		/*
8957 		 * We don't understand this subioctl of ND_GET / ND_SET.
8958 		 * Maybe intended for some driver / module below us
8959 		 */
8960 		if (q->q_next) {
8961 			putnext(q, mp);
8962 		} else {
8963 			iocp->ioc_error = ENOENT;
8964 			mp->b_datap->db_type = M_IOCNAK;
8965 			iocp->ioc_count = 0;
8966 			qreply(q, mp);
8967 		}
8968 		return;
8969 
8970 	case IP_IOCTL:
8971 		ip_wput_ioctl(q, mp);
8972 		return;
8973 
8974 	case SIOCILB:
8975 		/* The ioctl length varies depending on the ILB command. */
8976 		copyin_size = iocp->ioc_count;
8977 		if (copyin_size < sizeof (ilb_cmd_t))
8978 			goto nak;
8979 		mi_copyin(q, mp, NULL, copyin_size);
8980 		return;
8981 
8982 	default:
8983 		cmn_err(CE_PANIC, "should not happen ");
8984 	}
8985 nak:
8986 	if (mp->b_cont != NULL) {
8987 		freemsg(mp->b_cont);
8988 		mp->b_cont = NULL;
8989 	}
8990 	iocp->ioc_error = EINVAL;
8991 	mp->b_datap->db_type = M_IOCNAK;
8992 	iocp->ioc_count = 0;
8993 	qreply(q, mp);
8994 }
8995 
8996 static void
8997 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
8998 {
8999 	struct arpreq *ar;
9000 	struct xarpreq *xar;
9001 	mblk_t	*tmp;
9002 	struct iocblk *iocp;
9003 	int x_arp_ioctl = B_FALSE;
9004 	int *flagsp;
9005 	char *storage = NULL;
9006 
9007 	ASSERT(ill != NULL);
9008 
9009 	iocp = (struct iocblk *)mp->b_rptr;
9010 	ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);
9011 
9012 	tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9013 	if ((iocp->ioc_cmd == SIOCGXARP) ||
9014 	    (iocp->ioc_cmd == SIOCSXARP)) {
9015 		x_arp_ioctl = B_TRUE;
9016 		xar = (struct xarpreq *)tmp->b_rptr;
9017 		flagsp = &xar->xarp_flags;
9018 		storage = xar->xarp_ha.sdl_data;
9019 	} else {
9020 		ar = (struct arpreq *)tmp->b_rptr;
9021 		flagsp = &ar->arp_flags;
9022 		storage = ar->arp_ha.sa_data;
9023 	}
9024 
9025 	/*
9026 	 * We're done if this is not an SIOCG{X}ARP
9027 	 */
9028 	if (x_arp_ioctl) {
9029 		storage += ill_xarp_info(&xar->xarp_ha, ill);
9030 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9031 		    sizeof (xar->xarp_ha.sdl_data)) {
9032 			iocp->ioc_error = EINVAL;
9033 			return;
9034 		}
9035 	}
9036 	*flagsp = ATF_INUSE;
9037 	/*
9038 	 * If /sbin/arp told us we are the authority using the "permanent"
9039 	 * flag, or if this is one of my addresses print "permanent"
9040 	 * in the /sbin/arp output.
9041 	 */
9042 	if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9043 		*flagsp |= ATF_AUTHORITY;
9044 	if (flags & NCE_F_NONUD)
9045 		*flagsp |= ATF_PERM; /* not subject to aging */
9046 	if (flags & NCE_F_PUBLISH)
9047 		*flagsp |= ATF_PUBL;
9048 	if (hwaddr != NULL) {
9049 		*flagsp |= ATF_COM;
9050 		bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9051 	}
9052 }
9053 
9054 /*
9055  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9056  * interface) create the next available logical interface for this
9057  * physical interface.
9058  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
9059  * ipif with the specified name.
9060  *
9061  * If the address family is not AF_UNSPEC then set the address as well.
9062  *
9063  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9064  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9065  *
9066  * Executed as a writer on the ill.
9067  * So no lock is needed to traverse the ipif chain, or examine the
9068  * phyint flags.
9069  */
9070 /* ARGSUSED */
9071 int
9072 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9073     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9074 {
9075 	mblk_t	*mp1;
9076 	struct lifreq *lifr;
9077 	boolean_t	isv6;
9078 	boolean_t	exists;
9079 	char 	*name;
9080 	char	*endp;
9081 	char	*cp;
9082 	int	namelen;
9083 	ipif_t	*ipif;
9084 	long	id;
9085 	ipsq_t	*ipsq;
9086 	ill_t	*ill;
9087 	sin_t	*sin;
9088 	int	err = 0;
9089 	boolean_t found_sep = B_FALSE;
9090 	conn_t	*connp;
9091 	zoneid_t zoneid;
9092 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
9093 
9094 	ASSERT(q->q_next == NULL);
9095 	ip1dbg(("ip_sioctl_addif\n"));
9096 	/* Existence of mp1 has been checked in ip_wput_nondata */
9097 	mp1 = mp->b_cont->b_cont;
9098 	/*
9099 	 * Null terminate the string to protect against buffer
9100 	 * overrun. String was generated by user code and may not
9101 	 * be trusted.
9102 	 */
9103 	lifr = (struct lifreq *)mp1->b_rptr;
9104 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
9105 	name = lifr->lifr_name;
9106 	ASSERT(CONN_Q(q));
9107 	connp = Q_TO_CONN(q);
9108 	isv6 = (connp->conn_family == AF_INET6);
9109 	zoneid = connp->conn_zoneid;
9110 	namelen = mi_strlen(name);
9111 	if (namelen == 0)
9112 		return (EINVAL);
9113 
9114 	exists = B_FALSE;
9115 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9116 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
9117 		/*
9118 		 * Allow creating lo0 using SIOCLIFADDIF.
9119 		 * can't be any other writer thread. So can pass null below
9120 		 * for the last 4 args to ipif_lookup_name.
9121 		 */
9122 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9123 		    &exists, isv6, zoneid, ipst);
9124 		/* Prevent any further action */
9125 		if (ipif == NULL) {
9126 			return (ENOBUFS);
9127 		} else if (!exists) {
9128 			/* We created the ipif now and as writer */
9129 			ipif_refrele(ipif);
9130 			return (0);
9131 		} else {
9132 			ill = ipif->ipif_ill;
9133 			ill_refhold(ill);
9134 			ipif_refrele(ipif);
9135 		}
9136 	} else {
9137 		/* Look for a colon in the name. */
9138 		endp = &name[namelen];
9139 		for (cp = endp; --cp > name; ) {
9140 			if (*cp == IPIF_SEPARATOR_CHAR) {
9141 				found_sep = B_TRUE;
9142 				/*
9143 				 * Reject any non-decimal aliases for plumbing
9144 				 * of logical interfaces. Aliases with leading
9145 				 * zeroes are also rejected as they introduce
9146 				 * ambiguity in the naming of the interfaces.
9147 				 * Comparing with "0" takes care of all such
9148 				 * cases.
9149 				 */
9150 				if ((strncmp("0", cp+1, 1)) == 0)
9151 					return (EINVAL);
9152 
9153 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9154 				    id <= 0 || *endp != '\0') {
9155 					return (EINVAL);
9156 				}
9157 				*cp = '\0';
9158 				break;
9159 			}
9160 		}
9161 		ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9162 		if (found_sep)
9163 			*cp = IPIF_SEPARATOR_CHAR;
9164 		if (ill == NULL)
9165 			return (ENXIO);
9166 	}
9167 
9168 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9169 	    B_TRUE);
9170 
9171 	/*
9172 	 * Release the refhold due to the lookup, now that we are excl
9173 	 * or we are just returning
9174 	 */
9175 	ill_refrele(ill);
9176 
9177 	if (ipsq == NULL)
9178 		return (EINPROGRESS);
9179 
9180 	/* We are now exclusive on the IPSQ */
9181 	ASSERT(IAM_WRITER_ILL(ill));
9182 
9183 	if (found_sep) {
9184 		/* Now see if there is an IPIF with this unit number. */
9185 		for (ipif = ill->ill_ipif; ipif != NULL;
9186 		    ipif = ipif->ipif_next) {
9187 			if (ipif->ipif_id == id) {
9188 				err = EEXIST;
9189 				goto done;
9190 			}
9191 		}
9192 	}
9193 
9194 	/*
9195 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9196 	 * of lo0.  Plumbing for lo0:0 happens in ipif_lookup_on_name()
9197 	 * instead.
9198 	 */
9199 	if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9200 	    B_TRUE, B_TRUE, &err)) == NULL) {
9201 		goto done;
9202 	}
9203 
9204 	/* Return created name with ioctl */
9205 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9206 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9207 	ip1dbg(("created %s\n", lifr->lifr_name));
9208 
9209 	/* Set address */
9210 	sin = (sin_t *)&lifr->lifr_addr;
9211 	if (sin->sin_family != AF_UNSPEC) {
9212 		err = ip_sioctl_addr(ipif, sin, q, mp,
9213 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9214 	}
9215 
9216 done:
9217 	ipsq_exit(ipsq);
9218 	return (err);
9219 }
9220 
9221 /*
9222  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9223  * interface) delete it based on the IP address (on this physical interface).
9224  * Otherwise delete it based on the ipif_id.
9225  * Also, special handling to allow a removeif of lo0.
9226  */
9227 /* ARGSUSED */
9228 int
9229 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9230     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9231 {
9232 	conn_t		*connp;
9233 	ill_t		*ill = ipif->ipif_ill;
9234 	boolean_t	 success;
9235 	ip_stack_t	*ipst;
9236 
9237 	ipst = CONNQ_TO_IPST(q);
9238 
9239 	ASSERT(q->q_next == NULL);
9240 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9241 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9242 	ASSERT(IAM_WRITER_IPIF(ipif));
9243 
9244 	connp = Q_TO_CONN(q);
9245 	/*
9246 	 * Special case for unplumbing lo0 (the loopback physical interface).
9247 	 * If unplumbing lo0, the incoming address structure has been
9248 	 * initialized to all zeros. When unplumbing lo0, all its logical
9249 	 * interfaces must be removed too.
9250 	 *
9251 	 * Note that this interface may be called to remove a specific
9252 	 * loopback logical interface (eg, lo0:1). But in that case
9253 	 * ipif->ipif_id != 0 so that the code path for that case is the
9254 	 * same as any other interface (meaning it skips the code directly
9255 	 * below).
9256 	 */
9257 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9258 		if (sin->sin_family == AF_UNSPEC &&
9259 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9260 			/*
9261 			 * Mark it condemned. No new ref. will be made to ill.
9262 			 */
9263 			mutex_enter(&ill->ill_lock);
9264 			ill->ill_state_flags |= ILL_CONDEMNED;
9265 			for (ipif = ill->ill_ipif; ipif != NULL;
9266 			    ipif = ipif->ipif_next) {
9267 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
9268 			}
9269 			mutex_exit(&ill->ill_lock);
9270 
9271 			ipif = ill->ill_ipif;
9272 			/* unplumb the loopback interface */
9273 			ill_delete(ill);
9274 			mutex_enter(&connp->conn_lock);
9275 			mutex_enter(&ill->ill_lock);
9276 
9277 			/* Are any references to this ill active */
9278 			if (ill_is_freeable(ill)) {
9279 				mutex_exit(&ill->ill_lock);
9280 				mutex_exit(&connp->conn_lock);
9281 				ill_delete_tail(ill);
9282 				mi_free(ill);
9283 				return (0);
9284 			}
9285 			success = ipsq_pending_mp_add(connp, ipif,
9286 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
9287 			mutex_exit(&connp->conn_lock);
9288 			mutex_exit(&ill->ill_lock);
9289 			if (success)
9290 				return (EINPROGRESS);
9291 			else
9292 				return (EINTR);
9293 		}
9294 	}
9295 
9296 	if (ipif->ipif_id == 0) {
9297 		ipsq_t *ipsq;
9298 
9299 		/* Find based on address */
9300 		if (ipif->ipif_isv6) {
9301 			sin6_t *sin6;
9302 
9303 			if (sin->sin_family != AF_INET6)
9304 				return (EAFNOSUPPORT);
9305 
9306 			sin6 = (sin6_t *)sin;
9307 			/* We are a writer, so we should be able to lookup */
9308 			ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9309 			    ipst);
9310 		} else {
9311 			if (sin->sin_family != AF_INET)
9312 				return (EAFNOSUPPORT);
9313 
9314 			/* We are a writer, so we should be able to lookup */
9315 			ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9316 			    ipst);
9317 		}
9318 		if (ipif == NULL) {
9319 			return (EADDRNOTAVAIL);
9320 		}
9321 
9322 		/*
9323 		 * It is possible for a user to send an SIOCLIFREMOVEIF with
9324 		 * lifr_name of the physical interface but with an ip address
9325 		 * lifr_addr of a logical interface plumbed over it.
9326 		 * So update ipx_current_ipif now that ipif points to the
9327 		 * correct one.
9328 		 */
9329 		ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9330 		ipsq->ipsq_xop->ipx_current_ipif = ipif;
9331 
9332 		/* This is a writer */
9333 		ipif_refrele(ipif);
9334 	}
9335 
9336 	/*
9337 	 * Can not delete instance zero since it is tied to the ill.
9338 	 */
9339 	if (ipif->ipif_id == 0)
9340 		return (EBUSY);
9341 
9342 	mutex_enter(&ill->ill_lock);
9343 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
9344 	mutex_exit(&ill->ill_lock);
9345 
9346 	ipif_free(ipif);
9347 
9348 	mutex_enter(&connp->conn_lock);
9349 	mutex_enter(&ill->ill_lock);
9350 
9351 	/* Are any references to this ipif active */
9352 	if (ipif_is_freeable(ipif)) {
9353 		mutex_exit(&ill->ill_lock);
9354 		mutex_exit(&connp->conn_lock);
9355 		ipif_non_duplicate(ipif);
9356 		(void) ipif_down_tail(ipif);
9357 		ipif_free_tail(ipif); /* frees ipif */
9358 		return (0);
9359 	}
9360 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9361 	    IPIF_FREE);
9362 	mutex_exit(&ill->ill_lock);
9363 	mutex_exit(&connp->conn_lock);
9364 	if (success)
9365 		return (EINPROGRESS);
9366 	else
9367 		return (EINTR);
9368 }
9369 
9370 /*
9371  * Restart the removeif ioctl. The refcnt has gone down to 0.
9372  * The ipif is already condemned. So can't find it thru lookups.
9373  */
9374 /* ARGSUSED */
9375 int
9376 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9377     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9378 {
9379 	ill_t *ill = ipif->ipif_ill;
9380 
9381 	ASSERT(IAM_WRITER_IPIF(ipif));
9382 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
9383 
9384 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9385 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9386 
9387 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9388 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
9389 		ill_delete_tail(ill);
9390 		mi_free(ill);
9391 		return (0);
9392 	}
9393 
9394 	ipif_non_duplicate(ipif);
9395 	(void) ipif_down_tail(ipif);
9396 	ipif_free_tail(ipif);
9397 
9398 	return (0);
9399 }
9400 
9401 /*
9402  * Set the local interface address.
9403  * Allow an address of all zero when the interface is down.
9404  */
9405 /* ARGSUSED */
9406 int
9407 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9408     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9409 {
9410 	int err = 0;
9411 	in6_addr_t v6addr;
9412 	boolean_t need_up = B_FALSE;
9413 
9414 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9415 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9416 
9417 	ASSERT(IAM_WRITER_IPIF(ipif));
9418 
9419 	if (ipif->ipif_isv6) {
9420 		sin6_t *sin6;
9421 		ill_t *ill;
9422 		phyint_t *phyi;
9423 
9424 		if (sin->sin_family != AF_INET6)
9425 			return (EAFNOSUPPORT);
9426 
9427 		sin6 = (sin6_t *)sin;
9428 		v6addr = sin6->sin6_addr;
9429 		ill = ipif->ipif_ill;
9430 		phyi = ill->ill_phyint;
9431 
9432 		/*
9433 		 * Enforce that true multicast interfaces have a link-local
9434 		 * address for logical unit 0.
9435 		 */
9436 		if (ipif->ipif_id == 0 &&
9437 		    (ill->ill_flags & ILLF_MULTICAST) &&
9438 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9439 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9440 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
9441 			return (EADDRNOTAVAIL);
9442 		}
9443 
9444 		/*
9445 		 * up interfaces shouldn't have the unspecified address
9446 		 * unless they also have the IPIF_NOLOCAL flags set and
9447 		 * have a subnet assigned.
9448 		 */
9449 		if ((ipif->ipif_flags & IPIF_UP) &&
9450 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9451 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9452 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9453 			return (EADDRNOTAVAIL);
9454 		}
9455 
9456 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9457 			return (EADDRNOTAVAIL);
9458 	} else {
9459 		ipaddr_t addr;
9460 
9461 		if (sin->sin_family != AF_INET)
9462 			return (EAFNOSUPPORT);
9463 
9464 		addr = sin->sin_addr.s_addr;
9465 
9466 		/* Allow 0 as the local address. */
9467 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9468 			return (EADDRNOTAVAIL);
9469 
9470 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9471 	}
9472 
9473 	/*
9474 	 * Even if there is no change we redo things just to rerun
9475 	 * ipif_set_default.
9476 	 */
9477 	if (ipif->ipif_flags & IPIF_UP) {
9478 		/*
9479 		 * Setting a new local address, make sure
9480 		 * we have net and subnet bcast ire's for
9481 		 * the old address if we need them.
9482 		 */
9483 		/*
9484 		 * If the interface is already marked up,
9485 		 * we call ipif_down which will take care
9486 		 * of ditching any IREs that have been set
9487 		 * up based on the old interface address.
9488 		 */
9489 		err = ipif_logical_down(ipif, q, mp);
9490 		if (err == EINPROGRESS)
9491 			return (err);
9492 		(void) ipif_down_tail(ipif);
9493 		need_up = 1;
9494 	}
9495 
9496 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9497 	return (err);
9498 }
9499 
9500 int
9501 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9502     boolean_t need_up)
9503 {
9504 	in6_addr_t v6addr;
9505 	in6_addr_t ov6addr;
9506 	ipaddr_t addr;
9507 	sin6_t	*sin6;
9508 	int	sinlen;
9509 	int	err = 0;
9510 	ill_t	*ill = ipif->ipif_ill;
9511 	boolean_t need_dl_down;
9512 	boolean_t need_arp_down;
9513 	struct iocblk *iocp;
9514 
9515 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
9516 
9517 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9518 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9519 	ASSERT(IAM_WRITER_IPIF(ipif));
9520 
9521 	/* Must cancel any pending timer before taking the ill_lock */
9522 	if (ipif->ipif_recovery_id != 0)
9523 		(void) untimeout(ipif->ipif_recovery_id);
9524 	ipif->ipif_recovery_id = 0;
9525 
9526 	if (ipif->ipif_isv6) {
9527 		sin6 = (sin6_t *)sin;
9528 		v6addr = sin6->sin6_addr;
9529 		sinlen = sizeof (struct sockaddr_in6);
9530 	} else {
9531 		addr = sin->sin_addr.s_addr;
9532 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9533 		sinlen = sizeof (struct sockaddr_in);
9534 	}
9535 	mutex_enter(&ill->ill_lock);
9536 	ov6addr = ipif->ipif_v6lcl_addr;
9537 	ipif->ipif_v6lcl_addr = v6addr;
9538 	sctp_update_ipif_addr(ipif, ov6addr);
9539 	ipif->ipif_addr_ready = 0;
9540 
9541 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
9542 
9543 	/*
9544 	 * If the interface was previously marked as a duplicate, then since
9545 	 * we've now got a "new" address, it should no longer be considered a
9546 	 * duplicate -- even if the "new" address is the same as the old one.
9547 	 * Note that if all ipifs are down, we may have a pending ARP down
9548 	 * event to handle.  This is because we want to recover from duplicates
9549 	 * and thus delay tearing down ARP until the duplicates have been
9550 	 * removed or disabled.
9551 	 */
9552 	need_dl_down = need_arp_down = B_FALSE;
9553 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
9554 		need_arp_down = !need_up;
9555 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
9556 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9557 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9558 			need_dl_down = B_TRUE;
9559 		}
9560 	}
9561 
9562 	ipif_set_default(ipif);
9563 
9564 	/*
9565 	 * If we've just manually set the IPv6 link-local address (0th ipif),
9566 	 * tag the ill so that future updates to the interface ID don't result
9567 	 * in this address getting automatically reconfigured from under the
9568 	 * administrator.
9569 	 */
9570 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
9571 		ill->ill_manual_linklocal = 1;
9572 
9573 	/*
9574 	 * When publishing an interface address change event, we only notify
9575 	 * the event listeners of the new address.  It is assumed that if they
9576 	 * actively care about the addresses assigned that they will have
9577 	 * already discovered the previous address assigned (if there was one.)
9578 	 *
9579 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
9580 	 */
9581 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9582 		ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9583 		    NE_ADDRESS_CHANGE, sin, sinlen);
9584 	}
9585 
9586 	mutex_exit(&ill->ill_lock);
9587 
9588 	if (need_up) {
9589 		/*
9590 		 * Now bring the interface back up.  If this
9591 		 * is the only IPIF for the ILL, ipif_up
9592 		 * will have to re-bind to the device, so
9593 		 * we may get back EINPROGRESS, in which
9594 		 * case, this IOCTL will get completed in
9595 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
9596 		 */
9597 		err = ipif_up(ipif, q, mp);
9598 	} else {
9599 		/* Perhaps ilgs should use this ill */
9600 		update_conn_ill(NULL, ill->ill_ipst);
9601 	}
9602 
9603 	if (need_dl_down)
9604 		ill_dl_down(ill);
9605 
9606 	if (need_arp_down && !ill->ill_isv6)
9607 		(void) ipif_arp_down(ipif);
9608 
9609 	/*
9610 	 * The default multicast interface might have changed (for
9611 	 * instance if the IPv6 scope of the address changed)
9612 	 */
9613 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
9614 
9615 	return (err);
9616 }
9617 
9618 /*
9619  * Restart entry point to restart the address set operation after the
9620  * refcounts have dropped to zero.
9621  */
9622 /* ARGSUSED */
9623 int
9624 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9625     ip_ioctl_cmd_t *ipip, void *ifreq)
9626 {
9627 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9628 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9629 	ASSERT(IAM_WRITER_IPIF(ipif));
9630 	(void) ipif_down_tail(ipif);
9631 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9632 }
9633 
9634 /* ARGSUSED */
9635 int
9636 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9637     ip_ioctl_cmd_t *ipip, void *if_req)
9638 {
9639 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9640 	struct lifreq *lifr = (struct lifreq *)if_req;
9641 
9642 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9643 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9644 	/*
9645 	 * The net mask and address can't change since we have a
9646 	 * reference to the ipif. So no lock is necessary.
9647 	 */
9648 	if (ipif->ipif_isv6) {
9649 		*sin6 = sin6_null;
9650 		sin6->sin6_family = AF_INET6;
9651 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9652 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9653 		lifr->lifr_addrlen =
9654 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9655 	} else {
9656 		*sin = sin_null;
9657 		sin->sin_family = AF_INET;
9658 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9659 		if (ipip->ipi_cmd_type == LIF_CMD) {
9660 			lifr->lifr_addrlen =
9661 			    ip_mask_to_plen(ipif->ipif_net_mask);
9662 		}
9663 	}
9664 	return (0);
9665 }
9666 
9667 /*
9668  * Set the destination address for a pt-pt interface.
9669  */
9670 /* ARGSUSED */
9671 int
9672 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9673     ip_ioctl_cmd_t *ipip, void *if_req)
9674 {
9675 	int err = 0;
9676 	in6_addr_t v6addr;
9677 	boolean_t need_up = B_FALSE;
9678 
9679 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
9680 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9681 	ASSERT(IAM_WRITER_IPIF(ipif));
9682 
9683 	if (ipif->ipif_isv6) {
9684 		sin6_t *sin6;
9685 
9686 		if (sin->sin_family != AF_INET6)
9687 			return (EAFNOSUPPORT);
9688 
9689 		sin6 = (sin6_t *)sin;
9690 		v6addr = sin6->sin6_addr;
9691 
9692 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9693 			return (EADDRNOTAVAIL);
9694 	} else {
9695 		ipaddr_t addr;
9696 
9697 		if (sin->sin_family != AF_INET)
9698 			return (EAFNOSUPPORT);
9699 
9700 		addr = sin->sin_addr.s_addr;
9701 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9702 			return (EADDRNOTAVAIL);
9703 
9704 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9705 	}
9706 
9707 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
9708 		return (0);	/* No change */
9709 
9710 	if (ipif->ipif_flags & IPIF_UP) {
9711 		/*
9712 		 * If the interface is already marked up,
9713 		 * we call ipif_down which will take care
9714 		 * of ditching any IREs that have been set
9715 		 * up based on the old pp dst address.
9716 		 */
9717 		err = ipif_logical_down(ipif, q, mp);
9718 		if (err == EINPROGRESS)
9719 			return (err);
9720 		(void) ipif_down_tail(ipif);
9721 		need_up = B_TRUE;
9722 	}
9723 	/*
9724 	 * could return EINPROGRESS. If so ioctl will complete in
9725 	 * ip_rput_dlpi_writer
9726 	 */
9727 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
9728 	return (err);
9729 }
9730 
9731 static int
9732 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9733     boolean_t need_up)
9734 {
9735 	in6_addr_t v6addr;
9736 	ill_t	*ill = ipif->ipif_ill;
9737 	int	err = 0;
9738 	boolean_t need_dl_down;
9739 	boolean_t need_arp_down;
9740 
9741 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
9742 	    ipif->ipif_id, (void *)ipif));
9743 
9744 	/* Must cancel any pending timer before taking the ill_lock */
9745 	if (ipif->ipif_recovery_id != 0)
9746 		(void) untimeout(ipif->ipif_recovery_id);
9747 	ipif->ipif_recovery_id = 0;
9748 
9749 	if (ipif->ipif_isv6) {
9750 		sin6_t *sin6;
9751 
9752 		sin6 = (sin6_t *)sin;
9753 		v6addr = sin6->sin6_addr;
9754 	} else {
9755 		ipaddr_t addr;
9756 
9757 		addr = sin->sin_addr.s_addr;
9758 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9759 	}
9760 	mutex_enter(&ill->ill_lock);
9761 	/* Set point to point destination address. */
9762 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
9763 		/*
9764 		 * Allow this as a means of creating logical
9765 		 * pt-pt interfaces on top of e.g. an Ethernet.
9766 		 * XXX Undocumented HACK for testing.
9767 		 * pt-pt interfaces are created with NUD disabled.
9768 		 */
9769 		ipif->ipif_flags |= IPIF_POINTOPOINT;
9770 		ipif->ipif_flags &= ~IPIF_BROADCAST;
9771 		if (ipif->ipif_isv6)
9772 			ill->ill_flags |= ILLF_NONUD;
9773 	}
9774 
9775 	/*
9776 	 * If the interface was previously marked as a duplicate, then since
9777 	 * we've now got a "new" address, it should no longer be considered a
9778 	 * duplicate -- even if the "new" address is the same as the old one.
9779 	 * Note that if all ipifs are down, we may have a pending ARP down
9780 	 * event to handle.
9781 	 */
9782 	need_dl_down = need_arp_down = B_FALSE;
9783 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
9784 		need_arp_down = !need_up;
9785 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
9786 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9787 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9788 			need_dl_down = B_TRUE;
9789 		}
9790 	}
9791 
9792 	/*
9793 	 * If we've just manually set the IPv6 destination link-local address
9794 	 * (0th ipif), tag the ill so that future updates to the destination
9795 	 * interface ID (as can happen with interfaces over IP tunnels) don't
9796 	 * result in this address getting automatically reconfigured from
9797 	 * under the administrator.
9798 	 */
9799 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
9800 		ill->ill_manual_dst_linklocal = 1;
9801 
9802 	/* Set the new address. */
9803 	ipif->ipif_v6pp_dst_addr = v6addr;
9804 	/* Make sure subnet tracks pp_dst */
9805 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
9806 	mutex_exit(&ill->ill_lock);
9807 
9808 	if (need_up) {
9809 		/*
9810 		 * Now bring the interface back up.  If this
9811 		 * is the only IPIF for the ILL, ipif_up
9812 		 * will have to re-bind to the device, so
9813 		 * we may get back EINPROGRESS, in which
9814 		 * case, this IOCTL will get completed in
9815 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
9816 		 */
9817 		err = ipif_up(ipif, q, mp);
9818 	}
9819 
9820 	if (need_dl_down)
9821 		ill_dl_down(ill);
9822 	if (need_arp_down && !ipif->ipif_isv6)
9823 		(void) ipif_arp_down(ipif);
9824 
9825 	return (err);
9826 }
9827 
9828 /*
9829  * Restart entry point to restart the dstaddress set operation after the
9830  * refcounts have dropped to zero.
9831  */
9832 /* ARGSUSED */
9833 int
9834 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9835     ip_ioctl_cmd_t *ipip, void *ifreq)
9836 {
9837 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
9838 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9839 	(void) ipif_down_tail(ipif);
9840 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
9841 }
9842 
9843 /* ARGSUSED */
9844 int
9845 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9846     ip_ioctl_cmd_t *ipip, void *if_req)
9847 {
9848 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
9849 
9850 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
9851 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9852 	/*
9853 	 * Get point to point destination address. The addresses can't
9854 	 * change since we hold a reference to the ipif.
9855 	 */
9856 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
9857 		return (EADDRNOTAVAIL);
9858 
9859 	if (ipif->ipif_isv6) {
9860 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9861 		*sin6 = sin6_null;
9862 		sin6->sin6_family = AF_INET6;
9863 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
9864 	} else {
9865 		*sin = sin_null;
9866 		sin->sin_family = AF_INET;
9867 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
9868 	}
9869 	return (0);
9870 }
9871 
9872 /*
9873  * Check which flags will change by the given flags being set
9874  * silently ignore flags which userland is not allowed to control.
9875  * (Because these flags may change between SIOCGLIFFLAGS and
9876  * SIOCSLIFFLAGS, and that's outside of userland's control,
9877  * we need to silently ignore them rather than fail.)
9878  */
9879 static void
9880 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
9881     uint64_t *offp)
9882 {
9883 	ill_t		*ill = ipif->ipif_ill;
9884 	phyint_t 	*phyi = ill->ill_phyint;
9885 	uint64_t	cantchange_flags, intf_flags;
9886 	uint64_t	turn_on, turn_off;
9887 
9888 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
9889 	cantchange_flags = IFF_CANTCHANGE;
9890 	if (IS_IPMP(ill))
9891 		cantchange_flags |= IFF_IPMP_CANTCHANGE;
9892 	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
9893 	turn_off = intf_flags & turn_on;
9894 	turn_on ^= turn_off;
9895 	*onp = turn_on;
9896 	*offp = turn_off;
9897 }
9898 
9899 /*
9900  * Set interface flags.  Many flags require special handling (e.g.,
9901  * bringing the interface down); see below for details.
9902  *
9903  * NOTE : We really don't enforce that ipif_id zero should be used
9904  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
9905  *	  is because applications generally does SICGLIFFLAGS and
9906  *	  ORs in the new flags (that affects the logical) and does a
9907  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
9908  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
9909  *	  flags that will be turned on is correct with respect to
9910  *	  ipif_id 0. For backward compatibility reasons, it is not done.
9911  */
9912 /* ARGSUSED */
9913 int
9914 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9915     ip_ioctl_cmd_t *ipip, void *if_req)
9916 {
9917 	uint64_t turn_on;
9918 	uint64_t turn_off;
9919 	int	err = 0;
9920 	phyint_t *phyi;
9921 	ill_t *ill;
9922 	conn_t *connp;
9923 	uint64_t intf_flags;
9924 	boolean_t phyint_flags_modified = B_FALSE;
9925 	uint64_t flags;
9926 	struct ifreq *ifr;
9927 	struct lifreq *lifr;
9928 	boolean_t set_linklocal = B_FALSE;
9929 
9930 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
9931 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9932 
9933 	ASSERT(IAM_WRITER_IPIF(ipif));
9934 
9935 	ill = ipif->ipif_ill;
9936 	phyi = ill->ill_phyint;
9937 
9938 	if (ipip->ipi_cmd_type == IF_CMD) {
9939 		ifr = (struct ifreq *)if_req;
9940 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
9941 	} else {
9942 		lifr = (struct lifreq *)if_req;
9943 		flags = lifr->lifr_flags;
9944 	}
9945 
9946 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
9947 
9948 	/*
9949 	 * Have the flags been set correctly until now?
9950 	 */
9951 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
9952 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
9953 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
9954 	/*
9955 	 * Compare the new flags to the old, and partition
9956 	 * into those coming on and those going off.
9957 	 * For the 16 bit command keep the bits above bit 16 unchanged.
9958 	 */
9959 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
9960 		flags |= intf_flags & ~0xFFFF;
9961 
9962 	/*
9963 	 * Explicitly fail attempts to change flags that are always invalid on
9964 	 * an IPMP meta-interface.
9965 	 */
9966 	if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
9967 		return (EINVAL);
9968 
9969 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
9970 	if ((turn_on|turn_off) == 0)
9971 		return (0);	/* No change */
9972 
9973 	/*
9974 	 * All test addresses must be IFF_DEPRECATED (to ensure source address
9975 	 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
9976 	 * allow it to be turned off.
9977 	 */
9978 	if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
9979 	    (turn_on|intf_flags) & IFF_NOFAILOVER)
9980 		return (EINVAL);
9981 
9982 	if ((connp = Q_TO_CONN(q)) == NULL)
9983 		return (EINVAL);
9984 
9985 	/*
9986 	 * Only vrrp control socket is allowed to change IFF_UP and
9987 	 * IFF_NOACCEPT flags when IFF_VRRP is set.
9988 	 */
9989 	if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
9990 		if (!connp->conn_isvrrp)
9991 			return (EINVAL);
9992 	}
9993 
9994 	/*
9995 	 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
9996 	 * VRRP control socket.
9997 	 */
9998 	if ((turn_off | turn_on) & IFF_NOACCEPT) {
9999 		if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10000 			return (EINVAL);
10001 	}
10002 
10003 	if (turn_on & IFF_NOFAILOVER) {
10004 		turn_on |= IFF_DEPRECATED;
10005 		flags |= IFF_DEPRECATED;
10006 	}
10007 
10008 	/*
10009 	 * On underlying interfaces, only allow applications to manage test
10010 	 * addresses -- otherwise, they may get confused when the address
10011 	 * moves as part of being brought up.  Likewise, prevent an
10012 	 * application-managed test address from being converted to a data
10013 	 * address.  To prevent migration of administratively up addresses in
10014 	 * the kernel, we don't allow them to be converted either.
10015 	 */
10016 	if (IS_UNDER_IPMP(ill)) {
10017 		const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
10018 
10019 		if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10020 			return (EINVAL);
10021 
10022 		if ((turn_off & IFF_NOFAILOVER) &&
10023 		    (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
10024 			return (EINVAL);
10025 	}
10026 
10027 	/*
10028 	 * Only allow IFF_TEMPORARY flag to be set on
10029 	 * IPv6 interfaces.
10030 	 */
10031 	if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10032 		return (EINVAL);
10033 
10034 	/*
10035 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
10036 	 */
10037 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10038 		return (EINVAL);
10039 
10040 	/*
10041 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
10042 	 * interfaces.  It makes no sense in that context.
10043 	 */
10044 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10045 		return (EINVAL);
10046 
10047 	/*
10048 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
10049 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10050 	 * If the link local address isn't set, and can be set, it will get
10051 	 * set later on in this function.
10052 	 */
10053 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10054 	    (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10055 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10056 		if (ipif_cant_setlinklocal(ipif))
10057 			return (EINVAL);
10058 		set_linklocal = B_TRUE;
10059 	}
10060 
10061 	/*
10062 	 * If we modify physical interface flags, we'll potentially need to
10063 	 * send up two routing socket messages for the changes (one for the
10064 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
10065 	 */
10066 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10067 		phyint_flags_modified = B_TRUE;
10068 
10069 	/*
10070 	 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10071 	 * (otherwise, we'd immediately use them, defeating standby).  Also,
10072 	 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10073 	 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10074 	 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared.  We
10075 	 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
10076 	 * will not be honored.
10077 	 */
10078 	if (turn_on & PHYI_STANDBY) {
10079 		/*
10080 		 * No need to grab ill_g_usesrc_lock here; see the
10081 		 * synchronization notes in ip.c.
10082 		 */
10083 		if (ill->ill_usesrc_grp_next != NULL ||
10084 		    intf_flags & PHYI_INACTIVE)
10085 			return (EINVAL);
10086 		if (!(flags & PHYI_FAILED)) {
10087 			flags |= PHYI_INACTIVE;
10088 			turn_on |= PHYI_INACTIVE;
10089 		}
10090 	}
10091 
10092 	if (turn_off & PHYI_STANDBY) {
10093 		flags &= ~PHYI_INACTIVE;
10094 		turn_off |= PHYI_INACTIVE;
10095 	}
10096 
10097 	/*
10098 	 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10099 	 * would end up on.
10100 	 */
10101 	if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10102 	    (PHYI_FAILED | PHYI_INACTIVE))
10103 		return (EINVAL);
10104 
10105 	/*
10106 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
10107 	 * status of the interface.
10108 	 */
10109 	if ((turn_on | turn_off) & ILLF_ROUTER)
10110 		(void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10111 
10112 	/*
10113 	 * If the interface is not UP and we are not going to
10114 	 * bring it UP, record the flags and return. When the
10115 	 * interface comes UP later, the right actions will be
10116 	 * taken.
10117 	 */
10118 	if (!(ipif->ipif_flags & IPIF_UP) &&
10119 	    !(turn_on & IPIF_UP)) {
10120 		/* Record new flags in their respective places. */
10121 		mutex_enter(&ill->ill_lock);
10122 		mutex_enter(&ill->ill_phyint->phyint_lock);
10123 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10124 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10125 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10126 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10127 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10128 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10129 		mutex_exit(&ill->ill_lock);
10130 		mutex_exit(&ill->ill_phyint->phyint_lock);
10131 
10132 		/*
10133 		 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10134 		 * same to the kernel: if any of them has been set by
10135 		 * userland, the interface cannot be used for data traffic.
10136 		 */
10137 		if ((turn_on|turn_off) &
10138 		    (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10139 			ASSERT(!IS_IPMP(ill));
10140 			/*
10141 			 * It's possible the ill is part of an "anonymous"
10142 			 * IPMP group rather than a real group.  In that case,
10143 			 * there are no other interfaces in the group and thus
10144 			 * no need to call ipmp_phyint_refresh_active().
10145 			 */
10146 			if (IS_UNDER_IPMP(ill))
10147 				ipmp_phyint_refresh_active(phyi);
10148 		}
10149 
10150 		if (phyint_flags_modified) {
10151 			if (phyi->phyint_illv4 != NULL) {
10152 				ip_rts_ifmsg(phyi->phyint_illv4->
10153 				    ill_ipif, RTSQ_DEFAULT);
10154 			}
10155 			if (phyi->phyint_illv6 != NULL) {
10156 				ip_rts_ifmsg(phyi->phyint_illv6->
10157 				    ill_ipif, RTSQ_DEFAULT);
10158 			}
10159 		}
10160 		/* The default multicast interface might have changed */
10161 		ire_increment_multicast_generation(ill->ill_ipst,
10162 		    ill->ill_isv6);
10163 
10164 		return (0);
10165 	} else if (set_linklocal) {
10166 		mutex_enter(&ill->ill_lock);
10167 		if (set_linklocal)
10168 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10169 		mutex_exit(&ill->ill_lock);
10170 	}
10171 
10172 	/*
10173 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
10174 	 * or point-to-point interfaces with an unspecified destination. We do
10175 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10176 	 * have a subnet assigned, which is how in.ndpd currently manages its
10177 	 * onlink prefix list when no addresses are configured with those
10178 	 * prefixes.
10179 	 */
10180 	if (ipif->ipif_isv6 &&
10181 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10182 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10183 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10184 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10185 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10186 		return (EINVAL);
10187 	}
10188 
10189 	/*
10190 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10191 	 * from being brought up.
10192 	 */
10193 	if (!ipif->ipif_isv6 &&
10194 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10195 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10196 		return (EINVAL);
10197 	}
10198 
10199 	/*
10200 	 * If we are going to change one or more of the flags that are
10201 	 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10202 	 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10203 	 * IPIF_NOFAILOVER, we will take special action.  This is
10204 	 * done by bring the ipif down, changing the flags and bringing
10205 	 * it back up again.  For IPIF_NOFAILOVER, the act of bringing it
10206 	 * back up will trigger the address to be moved.
10207 	 *
10208 	 * If we are going to change IFF_NOACCEPT, we need to bring
10209 	 * all the ipifs down then bring them up again.	 The act of
10210 	 * bringing all the ipifs back up will trigger the local
10211 	 * ires being recreated with "no_accept" set/cleared.
10212 	 *
10213 	 * Note that ILLF_NOACCEPT is always set separately from the
10214 	 * other flags.
10215 	 */
10216 	if ((turn_on|turn_off) &
10217 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10218 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
10219 	    IPIF_NOFAILOVER)) {
10220 		/*
10221 		 * ipif_down() will ire_delete bcast ire's for the subnet,
10222 		 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10223 		 * entries shared between multiple ipifs on the same subnet.
10224 		 */
10225 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10226 		    !(turn_off & IPIF_UP)) {
10227 			if (ipif->ipif_flags & IPIF_UP)
10228 				ill->ill_logical_down = 1;
10229 			turn_on &= ~IPIF_UP;
10230 		}
10231 		err = ipif_down(ipif, q, mp);
10232 		ip1dbg(("ipif_down returns %d err ", err));
10233 		if (err == EINPROGRESS)
10234 			return (err);
10235 		(void) ipif_down_tail(ipif);
10236 	} else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10237 		/*
10238 		 * If we can quiesce the ill, then continue.  If not, then
10239 		 * ip_sioctl_flags_tail() will be called from
10240 		 * ipif_ill_refrele_tail().
10241 		 */
10242 		ill_down_ipifs(ill, B_TRUE);
10243 
10244 		mutex_enter(&connp->conn_lock);
10245 		mutex_enter(&ill->ill_lock);
10246 		if (!ill_is_quiescent(ill)) {
10247 			boolean_t success;
10248 
10249 			success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10250 			    q, mp, ILL_DOWN);
10251 			mutex_exit(&ill->ill_lock);
10252 			mutex_exit(&connp->conn_lock);
10253 			return (success ? EINPROGRESS : EINTR);
10254 		}
10255 		mutex_exit(&ill->ill_lock);
10256 		mutex_exit(&connp->conn_lock);
10257 	}
10258 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10259 }
10260 
10261 static int
10262 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10263 {
10264 	ill_t	*ill;
10265 	phyint_t *phyi;
10266 	uint64_t turn_on, turn_off;
10267 	boolean_t phyint_flags_modified = B_FALSE;
10268 	int	err = 0;
10269 	boolean_t set_linklocal = B_FALSE;
10270 
10271 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10272 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
10273 
10274 	ASSERT(IAM_WRITER_IPIF(ipif));
10275 
10276 	ill = ipif->ipif_ill;
10277 	phyi = ill->ill_phyint;
10278 
10279 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10280 
10281 	/*
10282 	 * IFF_UP is handled separately.
10283 	 */
10284 	turn_on &= ~IFF_UP;
10285 	turn_off &= ~IFF_UP;
10286 
10287 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10288 		phyint_flags_modified = B_TRUE;
10289 
10290 	/*
10291 	 * Now we change the flags. Track current value of
10292 	 * other flags in their respective places.
10293 	 */
10294 	mutex_enter(&ill->ill_lock);
10295 	mutex_enter(&phyi->phyint_lock);
10296 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10297 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10298 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10299 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10300 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10301 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10302 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10303 		set_linklocal = B_TRUE;
10304 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10305 	}
10306 
10307 	mutex_exit(&ill->ill_lock);
10308 	mutex_exit(&phyi->phyint_lock);
10309 
10310 	if (set_linklocal)
10311 		(void) ipif_setlinklocal(ipif);
10312 
10313 	/*
10314 	 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10315 	 * the kernel: if any of them has been set by userland, the interface
10316 	 * cannot be used for data traffic.
10317 	 */
10318 	if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10319 		ASSERT(!IS_IPMP(ill));
10320 		/*
10321 		 * It's possible the ill is part of an "anonymous" IPMP group
10322 		 * rather than a real group.  In that case, there are no other
10323 		 * interfaces in the group and thus no need for us to call
10324 		 * ipmp_phyint_refresh_active().
10325 		 */
10326 		if (IS_UNDER_IPMP(ill))
10327 			ipmp_phyint_refresh_active(phyi);
10328 	}
10329 
10330 	if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10331 		/*
10332 		 * If the ILLF_NOACCEPT flag is changed, bring up all the
10333 		 * ipifs that were brought down.
10334 		 *
10335 		 * The routing sockets messages are sent as the result
10336 		 * of ill_up_ipifs(), further, SCTP's IPIF list was updated
10337 		 * as well.
10338 		 */
10339 		err = ill_up_ipifs(ill, q, mp);
10340 	} else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10341 		/*
10342 		 * XXX ipif_up really does not know whether a phyint flags
10343 		 * was modified or not. So, it sends up information on
10344 		 * only one routing sockets message. As we don't bring up
10345 		 * the interface and also set PHYI_ flags simultaneously
10346 		 * it should be okay.
10347 		 */
10348 		err = ipif_up(ipif, q, mp);
10349 	} else {
10350 		/*
10351 		 * Make sure routing socket sees all changes to the flags.
10352 		 * ipif_up_done* handles this when we use ipif_up.
10353 		 */
10354 		if (phyint_flags_modified) {
10355 			if (phyi->phyint_illv4 != NULL) {
10356 				ip_rts_ifmsg(phyi->phyint_illv4->
10357 				    ill_ipif, RTSQ_DEFAULT);
10358 			}
10359 			if (phyi->phyint_illv6 != NULL) {
10360 				ip_rts_ifmsg(phyi->phyint_illv6->
10361 				    ill_ipif, RTSQ_DEFAULT);
10362 			}
10363 		} else {
10364 			ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10365 		}
10366 		/*
10367 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
10368 		 * this in need_up case.
10369 		 */
10370 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10371 	}
10372 
10373 	/* The default multicast interface might have changed */
10374 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10375 	return (err);
10376 }
10377 
10378 /*
10379  * Restart the flags operation now that the refcounts have dropped to zero.
10380  */
10381 /* ARGSUSED */
10382 int
10383 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10384     ip_ioctl_cmd_t *ipip, void *if_req)
10385 {
10386 	uint64_t flags;
10387 	struct ifreq *ifr = if_req;
10388 	struct lifreq *lifr = if_req;
10389 	uint64_t turn_on, turn_off;
10390 
10391 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10392 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10393 
10394 	if (ipip->ipi_cmd_type == IF_CMD) {
10395 		/* cast to uint16_t prevents unwanted sign extension */
10396 		flags = (uint16_t)ifr->ifr_flags;
10397 	} else {
10398 		flags = lifr->lifr_flags;
10399 	}
10400 
10401 	/*
10402 	 * If this function call is a result of the ILLF_NOACCEPT flag
10403 	 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10404 	 */
10405 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10406 	if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10407 		(void) ipif_down_tail(ipif);
10408 
10409 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10410 }
10411 
10412 /*
10413  * Can operate on either a module or a driver queue.
10414  */
10415 /* ARGSUSED */
10416 int
10417 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10418     ip_ioctl_cmd_t *ipip, void *if_req)
10419 {
10420 	/*
10421 	 * Has the flags been set correctly till now ?
10422 	 */
10423 	ill_t *ill = ipif->ipif_ill;
10424 	phyint_t *phyi = ill->ill_phyint;
10425 
10426 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10427 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10428 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10429 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10430 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10431 
10432 	/*
10433 	 * Need a lock since some flags can be set even when there are
10434 	 * references to the ipif.
10435 	 */
10436 	mutex_enter(&ill->ill_lock);
10437 	if (ipip->ipi_cmd_type == IF_CMD) {
10438 		struct ifreq *ifr = (struct ifreq *)if_req;
10439 
10440 		/* Get interface flags (low 16 only). */
10441 		ifr->ifr_flags = ((ipif->ipif_flags |
10442 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
10443 	} else {
10444 		struct lifreq *lifr = (struct lifreq *)if_req;
10445 
10446 		/* Get interface flags. */
10447 		lifr->lifr_flags = ipif->ipif_flags |
10448 		    ill->ill_flags | phyi->phyint_flags;
10449 	}
10450 	mutex_exit(&ill->ill_lock);
10451 	return (0);
10452 }
10453 
10454 /*
10455  * We allow the MTU to be set on an ILL, but not have it be different
10456  * for different IPIFs since we don't actually send packets on IPIFs.
10457  */
10458 /* ARGSUSED */
10459 int
10460 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10461     ip_ioctl_cmd_t *ipip, void *if_req)
10462 {
10463 	int mtu;
10464 	int ip_min_mtu;
10465 	struct ifreq	*ifr;
10466 	struct lifreq *lifr;
10467 	ill_t	*ill;
10468 
10469 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10470 	    ipif->ipif_id, (void *)ipif));
10471 	if (ipip->ipi_cmd_type == IF_CMD) {
10472 		ifr = (struct ifreq *)if_req;
10473 		mtu = ifr->ifr_metric;
10474 	} else {
10475 		lifr = (struct lifreq *)if_req;
10476 		mtu = lifr->lifr_mtu;
10477 	}
10478 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
10479 	if (ipif->ipif_id != 0)
10480 		return (EINVAL);
10481 
10482 	ill = ipif->ipif_ill;
10483 	if (ipif->ipif_isv6)
10484 		ip_min_mtu = IPV6_MIN_MTU;
10485 	else
10486 		ip_min_mtu = IP_MIN_MTU;
10487 
10488 	mutex_enter(&ill->ill_lock);
10489 	if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10490 		mutex_exit(&ill->ill_lock);
10491 		return (EINVAL);
10492 	}
10493 	/*
10494 	 * The dce and fragmentation code can handle changes to ill_mtu
10495 	 * concurrent with sending/fragmenting packets.
10496 	 */
10497 	ill->ill_mtu = mtu;
10498 	ill->ill_flags |= ILLF_FIXEDMTU;
10499 	mutex_exit(&ill->ill_lock);
10500 
10501 	/*
10502 	 * Make sure all dce_generation checks find out
10503 	 * that ill_mtu has changed.
10504 	 */
10505 	dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
10506 
10507 	/* Update the MTU in SCTP's list */
10508 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10509 	return (0);
10510 }
10511 
10512 /* Get interface MTU. */
10513 /* ARGSUSED */
10514 int
10515 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10516 	ip_ioctl_cmd_t *ipip, void *if_req)
10517 {
10518 	struct ifreq	*ifr;
10519 	struct lifreq	*lifr;
10520 
10521 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10522 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10523 
10524 	/*
10525 	 * We allow a get on any logical interface even though the set
10526 	 * can only be done on logical unit 0.
10527 	 */
10528 	if (ipip->ipi_cmd_type == IF_CMD) {
10529 		ifr = (struct ifreq *)if_req;
10530 		ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10531 	} else {
10532 		lifr = (struct lifreq *)if_req;
10533 		lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10534 	}
10535 	return (0);
10536 }
10537 
10538 /* Set interface broadcast address. */
10539 /* ARGSUSED2 */
10540 int
10541 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10542 	ip_ioctl_cmd_t *ipip, void *if_req)
10543 {
10544 	ipaddr_t addr;
10545 	ire_t	*ire;
10546 	ill_t		*ill = ipif->ipif_ill;
10547 	ip_stack_t	*ipst = ill->ill_ipst;
10548 
10549 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10550 	    ipif->ipif_id));
10551 
10552 	ASSERT(IAM_WRITER_IPIF(ipif));
10553 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10554 		return (EADDRNOTAVAIL);
10555 
10556 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
10557 
10558 	if (sin->sin_family != AF_INET)
10559 		return (EAFNOSUPPORT);
10560 
10561 	addr = sin->sin_addr.s_addr;
10562 	if (ipif->ipif_flags & IPIF_UP) {
10563 		/*
10564 		 * If we are already up, make sure the new
10565 		 * broadcast address makes sense.  If it does,
10566 		 * there should be an IRE for it already.
10567 		 */
10568 		ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10569 		    ill, ipif->ipif_zoneid, NULL,
10570 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10571 		if (ire == NULL) {
10572 			return (EINVAL);
10573 		} else {
10574 			ire_refrele(ire);
10575 		}
10576 	}
10577 	/*
10578 	 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10579 	 * needs to already exist we never need to change the set of
10580 	 * IRE_BROADCASTs when we are UP.
10581 	 */
10582 	if (addr != ipif->ipif_brd_addr)
10583 		IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
10584 
10585 	return (0);
10586 }
10587 
10588 /* Get interface broadcast address. */
10589 /* ARGSUSED */
10590 int
10591 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10592     ip_ioctl_cmd_t *ipip, void *if_req)
10593 {
10594 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10595 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10596 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10597 		return (EADDRNOTAVAIL);
10598 
10599 	/* IPIF_BROADCAST not possible with IPv6 */
10600 	ASSERT(!ipif->ipif_isv6);
10601 	*sin = sin_null;
10602 	sin->sin_family = AF_INET;
10603 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
10604 	return (0);
10605 }
10606 
10607 /*
10608  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10609  */
10610 /* ARGSUSED */
10611 int
10612 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10613     ip_ioctl_cmd_t *ipip, void *if_req)
10614 {
10615 	int err = 0;
10616 	in6_addr_t v6mask;
10617 
10618 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10619 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10620 
10621 	ASSERT(IAM_WRITER_IPIF(ipif));
10622 
10623 	if (ipif->ipif_isv6) {
10624 		sin6_t *sin6;
10625 
10626 		if (sin->sin_family != AF_INET6)
10627 			return (EAFNOSUPPORT);
10628 
10629 		sin6 = (sin6_t *)sin;
10630 		v6mask = sin6->sin6_addr;
10631 	} else {
10632 		ipaddr_t mask;
10633 
10634 		if (sin->sin_family != AF_INET)
10635 			return (EAFNOSUPPORT);
10636 
10637 		mask = sin->sin_addr.s_addr;
10638 		V4MASK_TO_V6(mask, v6mask);
10639 	}
10640 
10641 	/*
10642 	 * No big deal if the interface isn't already up, or the mask
10643 	 * isn't really changing, or this is pt-pt.
10644 	 */
10645 	if (!(ipif->ipif_flags & IPIF_UP) ||
10646 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10647 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10648 		ipif->ipif_v6net_mask = v6mask;
10649 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10650 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
10651 			    ipif->ipif_v6net_mask,
10652 			    ipif->ipif_v6subnet);
10653 		}
10654 		return (0);
10655 	}
10656 	/*
10657 	 * Make sure we have valid net and subnet broadcast ire's
10658 	 * for the old netmask, if needed by other logical interfaces.
10659 	 */
10660 	err = ipif_logical_down(ipif, q, mp);
10661 	if (err == EINPROGRESS)
10662 		return (err);
10663 	(void) ipif_down_tail(ipif);
10664 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
10665 	return (err);
10666 }
10667 
10668 static int
10669 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
10670 {
10671 	in6_addr_t v6mask;
10672 	int err = 0;
10673 
10674 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
10675 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10676 
10677 	if (ipif->ipif_isv6) {
10678 		sin6_t *sin6;
10679 
10680 		sin6 = (sin6_t *)sin;
10681 		v6mask = sin6->sin6_addr;
10682 	} else {
10683 		ipaddr_t mask;
10684 
10685 		mask = sin->sin_addr.s_addr;
10686 		V4MASK_TO_V6(mask, v6mask);
10687 	}
10688 
10689 	ipif->ipif_v6net_mask = v6mask;
10690 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10691 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
10692 		    ipif->ipif_v6subnet);
10693 	}
10694 	err = ipif_up(ipif, q, mp);
10695 
10696 	if (err == 0 || err == EINPROGRESS) {
10697 		/*
10698 		 * The interface must be DL_BOUND if this packet has to
10699 		 * go out on the wire. Since we only go through a logical
10700 		 * down and are bound with the driver during an internal
10701 		 * down/up that is satisfied.
10702 		 */
10703 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
10704 			/* Potentially broadcast an address mask reply. */
10705 			ipif_mask_reply(ipif);
10706 		}
10707 	}
10708 	return (err);
10709 }
10710 
10711 /* ARGSUSED */
10712 int
10713 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10714     ip_ioctl_cmd_t *ipip, void *if_req)
10715 {
10716 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
10717 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10718 	(void) ipif_down_tail(ipif);
10719 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
10720 }
10721 
10722 /* Get interface net mask. */
10723 /* ARGSUSED */
10724 int
10725 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10726     ip_ioctl_cmd_t *ipip, void *if_req)
10727 {
10728 	struct lifreq *lifr = (struct lifreq *)if_req;
10729 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
10730 
10731 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
10732 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10733 
10734 	/*
10735 	 * net mask can't change since we have a reference to the ipif.
10736 	 */
10737 	if (ipif->ipif_isv6) {
10738 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10739 		*sin6 = sin6_null;
10740 		sin6->sin6_family = AF_INET6;
10741 		sin6->sin6_addr = ipif->ipif_v6net_mask;
10742 		lifr->lifr_addrlen =
10743 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10744 	} else {
10745 		*sin = sin_null;
10746 		sin->sin_family = AF_INET;
10747 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
10748 		if (ipip->ipi_cmd_type == LIF_CMD) {
10749 			lifr->lifr_addrlen =
10750 			    ip_mask_to_plen(ipif->ipif_net_mask);
10751 		}
10752 	}
10753 	return (0);
10754 }
10755 
10756 /* ARGSUSED */
10757 int
10758 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10759     ip_ioctl_cmd_t *ipip, void *if_req)
10760 {
10761 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
10762 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10763 
10764 	/*
10765 	 * Since no applications should ever be setting metrics on underlying
10766 	 * interfaces, we explicitly fail to smoke 'em out.
10767 	 */
10768 	if (IS_UNDER_IPMP(ipif->ipif_ill))
10769 		return (EINVAL);
10770 
10771 	/*
10772 	 * Set interface metric.  We don't use this for
10773 	 * anything but we keep track of it in case it is
10774 	 * important to routing applications or such.
10775 	 */
10776 	if (ipip->ipi_cmd_type == IF_CMD) {
10777 		struct ifreq    *ifr;
10778 
10779 		ifr = (struct ifreq *)if_req;
10780 		ipif->ipif_metric = ifr->ifr_metric;
10781 	} else {
10782 		struct lifreq   *lifr;
10783 
10784 		lifr = (struct lifreq *)if_req;
10785 		ipif->ipif_metric = lifr->lifr_metric;
10786 	}
10787 	return (0);
10788 }
10789 
10790 /* ARGSUSED */
10791 int
10792 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10793     ip_ioctl_cmd_t *ipip, void *if_req)
10794 {
10795 	/* Get interface metric. */
10796 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
10797 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10798 
10799 	if (ipip->ipi_cmd_type == IF_CMD) {
10800 		struct ifreq    *ifr;
10801 
10802 		ifr = (struct ifreq *)if_req;
10803 		ifr->ifr_metric = ipif->ipif_metric;
10804 	} else {
10805 		struct lifreq   *lifr;
10806 
10807 		lifr = (struct lifreq *)if_req;
10808 		lifr->lifr_metric = ipif->ipif_metric;
10809 	}
10810 
10811 	return (0);
10812 }
10813 
10814 /* ARGSUSED */
10815 int
10816 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10817     ip_ioctl_cmd_t *ipip, void *if_req)
10818 {
10819 	int	arp_muxid;
10820 
10821 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
10822 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10823 	/*
10824 	 * Set the muxid returned from I_PLINK.
10825 	 */
10826 	if (ipip->ipi_cmd_type == IF_CMD) {
10827 		struct ifreq *ifr = (struct ifreq *)if_req;
10828 
10829 		ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
10830 		arp_muxid = ifr->ifr_arp_muxid;
10831 	} else {
10832 		struct lifreq *lifr = (struct lifreq *)if_req;
10833 
10834 		ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
10835 		arp_muxid = lifr->lifr_arp_muxid;
10836 	}
10837 	arl_set_muxid(ipif->ipif_ill, arp_muxid);
10838 	return (0);
10839 }
10840 
10841 /* ARGSUSED */
10842 int
10843 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10844     ip_ioctl_cmd_t *ipip, void *if_req)
10845 {
10846 	int	arp_muxid = 0;
10847 
10848 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
10849 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10850 	/*
10851 	 * Get the muxid saved in ill for I_PUNLINK.
10852 	 */
10853 	arp_muxid = arl_get_muxid(ipif->ipif_ill);
10854 	if (ipip->ipi_cmd_type == IF_CMD) {
10855 		struct ifreq *ifr = (struct ifreq *)if_req;
10856 
10857 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
10858 		ifr->ifr_arp_muxid = arp_muxid;
10859 	} else {
10860 		struct lifreq *lifr = (struct lifreq *)if_req;
10861 
10862 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
10863 		lifr->lifr_arp_muxid = arp_muxid;
10864 	}
10865 	return (0);
10866 }
10867 
10868 /*
10869  * Set the subnet prefix. Does not modify the broadcast address.
10870  */
10871 /* ARGSUSED */
10872 int
10873 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10874     ip_ioctl_cmd_t *ipip, void *if_req)
10875 {
10876 	int err = 0;
10877 	in6_addr_t v6addr;
10878 	in6_addr_t v6mask;
10879 	boolean_t need_up = B_FALSE;
10880 	int addrlen;
10881 
10882 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
10883 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10884 
10885 	ASSERT(IAM_WRITER_IPIF(ipif));
10886 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
10887 
10888 	if (ipif->ipif_isv6) {
10889 		sin6_t *sin6;
10890 
10891 		if (sin->sin_family != AF_INET6)
10892 			return (EAFNOSUPPORT);
10893 
10894 		sin6 = (sin6_t *)sin;
10895 		v6addr = sin6->sin6_addr;
10896 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
10897 			return (EADDRNOTAVAIL);
10898 	} else {
10899 		ipaddr_t addr;
10900 
10901 		if (sin->sin_family != AF_INET)
10902 			return (EAFNOSUPPORT);
10903 
10904 		addr = sin->sin_addr.s_addr;
10905 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
10906 			return (EADDRNOTAVAIL);
10907 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10908 		/* Add 96 bits */
10909 		addrlen += IPV6_ABITS - IP_ABITS;
10910 	}
10911 
10912 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
10913 		return (EINVAL);
10914 
10915 	/* Check if bits in the address is set past the mask */
10916 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
10917 		return (EINVAL);
10918 
10919 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
10920 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
10921 		return (0);	/* No change */
10922 
10923 	if (ipif->ipif_flags & IPIF_UP) {
10924 		/*
10925 		 * If the interface is already marked up,
10926 		 * we call ipif_down which will take care
10927 		 * of ditching any IREs that have been set
10928 		 * up based on the old interface address.
10929 		 */
10930 		err = ipif_logical_down(ipif, q, mp);
10931 		if (err == EINPROGRESS)
10932 			return (err);
10933 		(void) ipif_down_tail(ipif);
10934 		need_up = B_TRUE;
10935 	}
10936 
10937 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
10938 	return (err);
10939 }
10940 
10941 static int
10942 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
10943     queue_t *q, mblk_t *mp, boolean_t need_up)
10944 {
10945 	ill_t	*ill = ipif->ipif_ill;
10946 	int	err = 0;
10947 
10948 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
10949 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10950 
10951 	/* Set the new address. */
10952 	mutex_enter(&ill->ill_lock);
10953 	ipif->ipif_v6net_mask = v6mask;
10954 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10955 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
10956 		    ipif->ipif_v6subnet);
10957 	}
10958 	mutex_exit(&ill->ill_lock);
10959 
10960 	if (need_up) {
10961 		/*
10962 		 * Now bring the interface back up.  If this
10963 		 * is the only IPIF for the ILL, ipif_up
10964 		 * will have to re-bind to the device, so
10965 		 * we may get back EINPROGRESS, in which
10966 		 * case, this IOCTL will get completed in
10967 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
10968 		 */
10969 		err = ipif_up(ipif, q, mp);
10970 		if (err == EINPROGRESS)
10971 			return (err);
10972 	}
10973 	return (err);
10974 }
10975 
10976 /* ARGSUSED */
10977 int
10978 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10979     ip_ioctl_cmd_t *ipip, void *if_req)
10980 {
10981 	int	addrlen;
10982 	in6_addr_t v6addr;
10983 	in6_addr_t v6mask;
10984 	struct lifreq *lifr = (struct lifreq *)if_req;
10985 
10986 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
10987 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10988 	(void) ipif_down_tail(ipif);
10989 
10990 	addrlen = lifr->lifr_addrlen;
10991 	if (ipif->ipif_isv6) {
10992 		sin6_t *sin6;
10993 
10994 		sin6 = (sin6_t *)sin;
10995 		v6addr = sin6->sin6_addr;
10996 	} else {
10997 		ipaddr_t addr;
10998 
10999 		addr = sin->sin_addr.s_addr;
11000 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11001 		addrlen += IPV6_ABITS - IP_ABITS;
11002 	}
11003 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
11004 
11005 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11006 }
11007 
11008 /* ARGSUSED */
11009 int
11010 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11011     ip_ioctl_cmd_t *ipip, void *if_req)
11012 {
11013 	struct lifreq *lifr = (struct lifreq *)if_req;
11014 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
11015 
11016 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11017 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11018 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11019 
11020 	if (ipif->ipif_isv6) {
11021 		*sin6 = sin6_null;
11022 		sin6->sin6_family = AF_INET6;
11023 		sin6->sin6_addr = ipif->ipif_v6subnet;
11024 		lifr->lifr_addrlen =
11025 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11026 	} else {
11027 		*sin = sin_null;
11028 		sin->sin_family = AF_INET;
11029 		sin->sin_addr.s_addr = ipif->ipif_subnet;
11030 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11031 	}
11032 	return (0);
11033 }
11034 
11035 /*
11036  * Set the IPv6 address token.
11037  */
11038 /* ARGSUSED */
11039 int
11040 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11041     ip_ioctl_cmd_t *ipi, void *if_req)
11042 {
11043 	ill_t *ill = ipif->ipif_ill;
11044 	int err;
11045 	in6_addr_t v6addr;
11046 	in6_addr_t v6mask;
11047 	boolean_t need_up = B_FALSE;
11048 	int i;
11049 	sin6_t *sin6 = (sin6_t *)sin;
11050 	struct lifreq *lifr = (struct lifreq *)if_req;
11051 	int addrlen;
11052 
11053 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11054 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11055 	ASSERT(IAM_WRITER_IPIF(ipif));
11056 
11057 	addrlen = lifr->lifr_addrlen;
11058 	/* Only allow for logical unit zero i.e. not on "le0:17" */
11059 	if (ipif->ipif_id != 0)
11060 		return (EINVAL);
11061 
11062 	if (!ipif->ipif_isv6)
11063 		return (EINVAL);
11064 
11065 	if (addrlen > IPV6_ABITS)
11066 		return (EINVAL);
11067 
11068 	v6addr = sin6->sin6_addr;
11069 
11070 	/*
11071 	 * The length of the token is the length from the end.  To get
11072 	 * the proper mask for this, compute the mask of the bits not
11073 	 * in the token; ie. the prefix, and then xor to get the mask.
11074 	 */
11075 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11076 		return (EINVAL);
11077 	for (i = 0; i < 4; i++) {
11078 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11079 	}
11080 
11081 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11082 	    ill->ill_token_length == addrlen)
11083 		return (0);	/* No change */
11084 
11085 	if (ipif->ipif_flags & IPIF_UP) {
11086 		err = ipif_logical_down(ipif, q, mp);
11087 		if (err == EINPROGRESS)
11088 			return (err);
11089 		(void) ipif_down_tail(ipif);
11090 		need_up = B_TRUE;
11091 	}
11092 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11093 	return (err);
11094 }
11095 
11096 static int
11097 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11098     mblk_t *mp, boolean_t need_up)
11099 {
11100 	in6_addr_t v6addr;
11101 	in6_addr_t v6mask;
11102 	ill_t	*ill = ipif->ipif_ill;
11103 	int	i;
11104 	int	err = 0;
11105 
11106 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11107 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11108 	v6addr = sin6->sin6_addr;
11109 	/*
11110 	 * The length of the token is the length from the end.  To get
11111 	 * the proper mask for this, compute the mask of the bits not
11112 	 * in the token; ie. the prefix, and then xor to get the mask.
11113 	 */
11114 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11115 	for (i = 0; i < 4; i++)
11116 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11117 
11118 	mutex_enter(&ill->ill_lock);
11119 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11120 	ill->ill_token_length = addrlen;
11121 	ill->ill_manual_token = 1;
11122 
11123 	/* Reconfigure the link-local address based on this new token */
11124 	ipif_setlinklocal(ill->ill_ipif);
11125 
11126 	mutex_exit(&ill->ill_lock);
11127 
11128 	if (need_up) {
11129 		/*
11130 		 * Now bring the interface back up.  If this
11131 		 * is the only IPIF for the ILL, ipif_up
11132 		 * will have to re-bind to the device, so
11133 		 * we may get back EINPROGRESS, in which
11134 		 * case, this IOCTL will get completed in
11135 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11136 		 */
11137 		err = ipif_up(ipif, q, mp);
11138 		if (err == EINPROGRESS)
11139 			return (err);
11140 	}
11141 	return (err);
11142 }
11143 
11144 /* ARGSUSED */
11145 int
11146 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11147     ip_ioctl_cmd_t *ipi, void *if_req)
11148 {
11149 	ill_t *ill;
11150 	sin6_t *sin6 = (sin6_t *)sin;
11151 	struct lifreq *lifr = (struct lifreq *)if_req;
11152 
11153 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11154 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11155 	if (ipif->ipif_id != 0)
11156 		return (EINVAL);
11157 
11158 	ill = ipif->ipif_ill;
11159 	if (!ill->ill_isv6)
11160 		return (ENXIO);
11161 
11162 	*sin6 = sin6_null;
11163 	sin6->sin6_family = AF_INET6;
11164 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11165 	sin6->sin6_addr = ill->ill_token;
11166 	lifr->lifr_addrlen = ill->ill_token_length;
11167 	return (0);
11168 }
11169 
11170 /*
11171  * Set (hardware) link specific information that might override
11172  * what was acquired through the DL_INFO_ACK.
11173  */
11174 /* ARGSUSED */
11175 int
11176 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11177     ip_ioctl_cmd_t *ipi, void *if_req)
11178 {
11179 	ill_t		*ill = ipif->ipif_ill;
11180 	int		ip_min_mtu;
11181 	struct lifreq	*lifr = (struct lifreq *)if_req;
11182 	lif_ifinfo_req_t *lir;
11183 
11184 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11185 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11186 	lir = &lifr->lifr_ifinfo;
11187 	ASSERT(IAM_WRITER_IPIF(ipif));
11188 
11189 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
11190 	if (ipif->ipif_id != 0)
11191 		return (EINVAL);
11192 
11193 	/* Set interface MTU. */
11194 	if (ipif->ipif_isv6)
11195 		ip_min_mtu = IPV6_MIN_MTU;
11196 	else
11197 		ip_min_mtu = IP_MIN_MTU;
11198 
11199 	/*
11200 	 * Verify values before we set anything. Allow zero to
11201 	 * mean unspecified.
11202 	 *
11203 	 * XXX We should be able to set the user-defined lir_mtu to some value
11204 	 * that is greater than ill_current_frag but less than ill_max_frag- the
11205 	 * ill_max_frag value tells us the max MTU that can be handled by the
11206 	 * datalink, whereas the ill_current_frag is dynamically computed for
11207 	 * some link-types like tunnels, based on the tunnel PMTU. However,
11208 	 * since there is currently no way of distinguishing between
11209 	 * administratively fixed link mtu values (e.g., those set via
11210 	 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11211 	 * for tunnels) we conservatively choose the  ill_current_frag as the
11212 	 * upper-bound.
11213 	 */
11214 	if (lir->lir_maxmtu != 0 &&
11215 	    (lir->lir_maxmtu > ill->ill_current_frag ||
11216 	    lir->lir_maxmtu < ip_min_mtu))
11217 		return (EINVAL);
11218 	if (lir->lir_reachtime != 0 &&
11219 	    lir->lir_reachtime > ND_MAX_REACHTIME)
11220 		return (EINVAL);
11221 	if (lir->lir_reachretrans != 0 &&
11222 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11223 		return (EINVAL);
11224 
11225 	mutex_enter(&ill->ill_lock);
11226 	/*
11227 	 * The dce and fragmentation code can handle changes to ill_mtu
11228 	 * concurrent with sending/fragmenting packets.
11229 	 */
11230 	if (lir->lir_maxmtu != 0)
11231 		ill->ill_user_mtu = lir->lir_maxmtu;
11232 
11233 	if (lir->lir_reachtime != 0)
11234 		ill->ill_reachable_time = lir->lir_reachtime;
11235 
11236 	if (lir->lir_reachretrans != 0)
11237 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
11238 
11239 	ill->ill_max_hops = lir->lir_maxhops;
11240 	ill->ill_max_buf = ND_MAX_Q;
11241 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11242 		/*
11243 		 * ill_mtu is the actual interface MTU, obtained as the min
11244 		 * of user-configured mtu and the value announced by the
11245 		 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11246 		 * we have already made the choice of requiring
11247 		 * ill_user_mtu < ill_current_frag by the time we get here,
11248 		 * the ill_mtu effectively gets assigned to the ill_user_mtu
11249 		 * here.
11250 		 */
11251 		ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11252 	}
11253 	mutex_exit(&ill->ill_lock);
11254 
11255 	/*
11256 	 * Make sure all dce_generation checks find out
11257 	 * that ill_mtu has changed.
11258 	 */
11259 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11260 		dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
11261 
11262 	/*
11263 	 * Refresh IPMP meta-interface MTU if necessary.
11264 	 */
11265 	if (IS_UNDER_IPMP(ill))
11266 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
11267 
11268 	return (0);
11269 }
11270 
11271 /* ARGSUSED */
11272 int
11273 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11274     ip_ioctl_cmd_t *ipi, void *if_req)
11275 {
11276 	struct lif_ifinfo_req *lir;
11277 	ill_t *ill = ipif->ipif_ill;
11278 
11279 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11280 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11281 	if (ipif->ipif_id != 0)
11282 		return (EINVAL);
11283 
11284 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11285 	lir->lir_maxhops = ill->ill_max_hops;
11286 	lir->lir_reachtime = ill->ill_reachable_time;
11287 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11288 	lir->lir_maxmtu = ill->ill_mtu;
11289 
11290 	return (0);
11291 }
11292 
11293 /*
11294  * Return best guess as to the subnet mask for the specified address.
11295  * Based on the subnet masks for all the configured interfaces.
11296  *
11297  * We end up returning a zero mask in the case of default, multicast or
11298  * experimental.
11299  */
11300 static ipaddr_t
11301 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11302 {
11303 	ipaddr_t net_mask;
11304 	ill_t	*ill;
11305 	ipif_t	*ipif;
11306 	ill_walk_context_t ctx;
11307 	ipif_t	*fallback_ipif = NULL;
11308 
11309 	net_mask = ip_net_mask(addr);
11310 	if (net_mask == 0) {
11311 		*ipifp = NULL;
11312 		return (0);
11313 	}
11314 
11315 	/* Let's check to see if this is maybe a local subnet route. */
11316 	/* this function only applies to IPv4 interfaces */
11317 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11318 	ill = ILL_START_WALK_V4(&ctx, ipst);
11319 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11320 		mutex_enter(&ill->ill_lock);
11321 		for (ipif = ill->ill_ipif; ipif != NULL;
11322 		    ipif = ipif->ipif_next) {
11323 			if (IPIF_IS_CONDEMNED(ipif))
11324 				continue;
11325 			if (!(ipif->ipif_flags & IPIF_UP))
11326 				continue;
11327 			if ((ipif->ipif_subnet & net_mask) ==
11328 			    (addr & net_mask)) {
11329 				/*
11330 				 * Don't trust pt-pt interfaces if there are
11331 				 * other interfaces.
11332 				 */
11333 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11334 					if (fallback_ipif == NULL) {
11335 						ipif_refhold_locked(ipif);
11336 						fallback_ipif = ipif;
11337 					}
11338 					continue;
11339 				}
11340 
11341 				/*
11342 				 * Fine. Just assume the same net mask as the
11343 				 * directly attached subnet interface is using.
11344 				 */
11345 				ipif_refhold_locked(ipif);
11346 				mutex_exit(&ill->ill_lock);
11347 				rw_exit(&ipst->ips_ill_g_lock);
11348 				if (fallback_ipif != NULL)
11349 					ipif_refrele(fallback_ipif);
11350 				*ipifp = ipif;
11351 				return (ipif->ipif_net_mask);
11352 			}
11353 		}
11354 		mutex_exit(&ill->ill_lock);
11355 	}
11356 	rw_exit(&ipst->ips_ill_g_lock);
11357 
11358 	*ipifp = fallback_ipif;
11359 	return ((fallback_ipif != NULL) ?
11360 	    fallback_ipif->ipif_net_mask : net_mask);
11361 }
11362 
11363 /*
11364  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11365  */
11366 static void
11367 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11368 {
11369 	IOCP	iocp;
11370 	ipft_t	*ipft;
11371 	ipllc_t	*ipllc;
11372 	mblk_t	*mp1;
11373 	cred_t	*cr;
11374 	int	error = 0;
11375 	conn_t	*connp;
11376 
11377 	ip1dbg(("ip_wput_ioctl"));
11378 	iocp = (IOCP)mp->b_rptr;
11379 	mp1 = mp->b_cont;
11380 	if (mp1 == NULL) {
11381 		iocp->ioc_error = EINVAL;
11382 		mp->b_datap->db_type = M_IOCNAK;
11383 		iocp->ioc_count = 0;
11384 		qreply(q, mp);
11385 		return;
11386 	}
11387 
11388 	/*
11389 	 * These IOCTLs provide various control capabilities to
11390 	 * upstream agents such as ULPs and processes.	There
11391 	 * are currently two such IOCTLs implemented.  They
11392 	 * are used by TCP to provide update information for
11393 	 * existing IREs and to forcibly delete an IRE for a
11394 	 * host that is not responding, thereby forcing an
11395 	 * attempt at a new route.
11396 	 */
11397 	iocp->ioc_error = EINVAL;
11398 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11399 		goto done;
11400 
11401 	ipllc = (ipllc_t *)mp1->b_rptr;
11402 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11403 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11404 			break;
11405 	}
11406 	/*
11407 	 * prefer credential from mblk over ioctl;
11408 	 * see ip_sioctl_copyin_setup
11409 	 */
11410 	cr = msg_getcred(mp, NULL);
11411 	if (cr == NULL)
11412 		cr = iocp->ioc_cr;
11413 
11414 	/*
11415 	 * Refhold the conn in case the request gets queued up in some lookup
11416 	 */
11417 	ASSERT(CONN_Q(q));
11418 	connp = Q_TO_CONN(q);
11419 	CONN_INC_REF(connp);
11420 	if (ipft->ipft_pfi &&
11421 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11422 	    pullupmsg(mp1, ipft->ipft_min_size))) {
11423 		error = (*ipft->ipft_pfi)(q,
11424 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11425 	}
11426 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11427 		/*
11428 		 * CONN_OPER_PENDING_DONE happens in the function called
11429 		 * through ipft_pfi above.
11430 		 */
11431 		return;
11432 	}
11433 
11434 	CONN_OPER_PENDING_DONE(connp);
11435 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11436 		freemsg(mp);
11437 		return;
11438 	}
11439 	iocp->ioc_error = error;
11440 
11441 done:
11442 	mp->b_datap->db_type = M_IOCACK;
11443 	if (iocp->ioc_error)
11444 		iocp->ioc_count = 0;
11445 	qreply(q, mp);
11446 }
11447 
11448 /*
11449  * Assign a unique id for the ipif. This is used by sctp_addr.c
11450  * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11451  */
11452 static void
11453 ipif_assign_seqid(ipif_t *ipif)
11454 {
11455 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
11456 
11457 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
11458 }
11459 
11460 /*
11461  * Clone the contents of `sipif' to `dipif'.  Requires that both ipifs are
11462  * administratively down (i.e., no DAD), of the same type, and locked.  Note
11463  * that the clone is complete -- including the seqid -- and the expectation is
11464  * that the caller will either free or overwrite `sipif' before it's unlocked.
11465  */
11466 static void
11467 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11468 {
11469 	ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11470 	ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11471 	ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11472 	ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11473 	ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
11474 
11475 	dipif->ipif_flags = sipif->ipif_flags;
11476 	dipif->ipif_metric = sipif->ipif_metric;
11477 	dipif->ipif_zoneid = sipif->ipif_zoneid;
11478 	dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11479 	dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11480 	dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11481 	dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11482 	dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
11483 
11484 	/*
11485 	 * As per the comment atop the function, we assume that these sipif
11486 	 * fields will be changed before sipif is unlocked.
11487 	 */
11488 	dipif->ipif_seqid = sipif->ipif_seqid;
11489 	dipif->ipif_state_flags = sipif->ipif_state_flags;
11490 }
11491 
11492 /*
11493  * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
11494  * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
11495  * (unreferenced) ipif.  Also, if `sipif' is used by the current xop, then
11496  * transfer the xop to `dipif'.  Requires that all ipifs are administratively
11497  * down (i.e., no DAD), of the same type, and unlocked.
11498  */
11499 static void
11500 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11501 {
11502 	ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11503 	ipxop_t *ipx = ipsq->ipsq_xop;
11504 
11505 	ASSERT(sipif != dipif);
11506 	ASSERT(sipif != virgipif);
11507 
11508 	/*
11509 	 * Grab all of the locks that protect the ipif in a defined order.
11510 	 */
11511 	GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11512 
11513 	ipif_clone(sipif, dipif);
11514 	if (virgipif != NULL) {
11515 		ipif_clone(virgipif, sipif);
11516 		mi_free(virgipif);
11517 	}
11518 
11519 	RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11520 
11521 	/*
11522 	 * Transfer ownership of the current xop, if necessary.
11523 	 */
11524 	if (ipx->ipx_current_ipif == sipif) {
11525 		ASSERT(ipx->ipx_pending_ipif == NULL);
11526 		mutex_enter(&ipx->ipx_lock);
11527 		ipx->ipx_current_ipif = dipif;
11528 		mutex_exit(&ipx->ipx_lock);
11529 	}
11530 
11531 	if (virgipif == NULL)
11532 		mi_free(sipif);
11533 }
11534 
11535 /*
11536  * checks if:
11537  *	- <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11538  *	- logical interface is within the allowed range
11539  */
11540 static int
11541 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11542 {
11543 	if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11544 		return (ENAMETOOLONG);
11545 
11546 	if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11547 		return (ERANGE);
11548 	return (0);
11549 }
11550 
11551 /*
11552  * Insert the ipif, so that the list of ipifs on the ill will be sorted
11553  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11554  * be inserted into the first space available in the list. The value of
11555  * ipif_id will then be set to the appropriate value for its position.
11556  */
11557 static int
11558 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11559 {
11560 	ill_t *ill;
11561 	ipif_t *tipif;
11562 	ipif_t **tipifp;
11563 	int id, err;
11564 	ip_stack_t	*ipst;
11565 
11566 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11567 	    IAM_WRITER_IPIF(ipif));
11568 
11569 	ill = ipif->ipif_ill;
11570 	ASSERT(ill != NULL);
11571 	ipst = ill->ill_ipst;
11572 
11573 	/*
11574 	 * In the case of lo0:0 we already hold the ill_g_lock.
11575 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11576 	 * ipif_insert.
11577 	 */
11578 	if (acquire_g_lock)
11579 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11580 	mutex_enter(&ill->ill_lock);
11581 	id = ipif->ipif_id;
11582 	tipifp = &(ill->ill_ipif);
11583 	if (id == -1) {	/* need to find a real id */
11584 		id = 0;
11585 		while ((tipif = *tipifp) != NULL) {
11586 			ASSERT(tipif->ipif_id >= id);
11587 			if (tipif->ipif_id != id)
11588 				break; /* non-consecutive id */
11589 			id++;
11590 			tipifp = &(tipif->ipif_next);
11591 		}
11592 		if ((err = is_lifname_valid(ill, id)) != 0) {
11593 			mutex_exit(&ill->ill_lock);
11594 			if (acquire_g_lock)
11595 				rw_exit(&ipst->ips_ill_g_lock);
11596 			return (err);
11597 		}
11598 		ipif->ipif_id = id; /* assign new id */
11599 	} else if ((err = is_lifname_valid(ill, id)) == 0) {
11600 		/* we have a real id; insert ipif in the right place */
11601 		while ((tipif = *tipifp) != NULL) {
11602 			ASSERT(tipif->ipif_id != id);
11603 			if (tipif->ipif_id > id)
11604 				break; /* found correct location */
11605 			tipifp = &(tipif->ipif_next);
11606 		}
11607 	} else {
11608 		mutex_exit(&ill->ill_lock);
11609 		if (acquire_g_lock)
11610 			rw_exit(&ipst->ips_ill_g_lock);
11611 		return (err);
11612 	}
11613 
11614 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
11615 
11616 	ipif->ipif_next = tipif;
11617 	*tipifp = ipif;
11618 	mutex_exit(&ill->ill_lock);
11619 	if (acquire_g_lock)
11620 		rw_exit(&ipst->ips_ill_g_lock);
11621 
11622 	return (0);
11623 }
11624 
11625 static void
11626 ipif_remove(ipif_t *ipif)
11627 {
11628 	ipif_t	**ipifp;
11629 	ill_t	*ill = ipif->ipif_ill;
11630 
11631 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
11632 
11633 	mutex_enter(&ill->ill_lock);
11634 	ipifp = &ill->ill_ipif;
11635 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11636 		if (*ipifp == ipif) {
11637 			*ipifp = ipif->ipif_next;
11638 			break;
11639 		}
11640 	}
11641 	mutex_exit(&ill->ill_lock);
11642 }
11643 
11644 /*
11645  * Allocate and initialize a new interface control structure.  (Always
11646  * called as writer.)
11647  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
11648  * is not part of the global linked list of ills. ipif_seqid is unique
11649  * in the system and to preserve the uniqueness, it is assigned only
11650  * when ill becomes part of the global list. At that point ill will
11651  * have a name. If it doesn't get assigned here, it will get assigned
11652  * in ipif_set_values() as part of SIOCSLIFNAME processing.
11653  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
11654  * the interface flags or any other information from the DL_INFO_ACK for
11655  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
11656  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
11657  * second DL_INFO_ACK comes in from the driver.
11658  */
11659 static ipif_t *
11660 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
11661     boolean_t insert, int *errorp)
11662 {
11663 	int err;
11664 	ipif_t	*ipif;
11665 	ip_stack_t *ipst = ill->ill_ipst;
11666 
11667 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
11668 	    ill->ill_name, id, (void *)ill));
11669 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
11670 
11671 	if (errorp != NULL)
11672 		*errorp = 0;
11673 
11674 	if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
11675 		if (errorp != NULL)
11676 			*errorp = ENOMEM;
11677 		return (NULL);
11678 	}
11679 	*ipif = ipif_zero;	/* start clean */
11680 
11681 	ipif->ipif_ill = ill;
11682 	ipif->ipif_id = id;	/* could be -1 */
11683 	/*
11684 	 * Inherit the zoneid from the ill; for the shared stack instance
11685 	 * this is always the global zone
11686 	 */
11687 	ipif->ipif_zoneid = ill->ill_zoneid;
11688 
11689 	ipif->ipif_refcnt = 0;
11690 
11691 	if (insert) {
11692 		if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
11693 			mi_free(ipif);
11694 			if (errorp != NULL)
11695 				*errorp = err;
11696 			return (NULL);
11697 		}
11698 		/* -1 id should have been replaced by real id */
11699 		id = ipif->ipif_id;
11700 		ASSERT(id >= 0);
11701 	}
11702 
11703 	if (ill->ill_name[0] != '\0')
11704 		ipif_assign_seqid(ipif);
11705 
11706 	/*
11707 	 * If this is the zeroth ipif on the IPMP ill, create the illgrp
11708 	 * (which must not exist yet because the zeroth ipif is created once
11709 	 * per ill).  However, do not not link it to the ipmp_grp_t until
11710 	 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
11711 	 */
11712 	if (id == 0 && IS_IPMP(ill)) {
11713 		if (ipmp_illgrp_create(ill) == NULL) {
11714 			if (insert) {
11715 				rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11716 				ipif_remove(ipif);
11717 				rw_exit(&ipst->ips_ill_g_lock);
11718 			}
11719 			mi_free(ipif);
11720 			if (errorp != NULL)
11721 				*errorp = ENOMEM;
11722 			return (NULL);
11723 		}
11724 	}
11725 
11726 	/*
11727 	 * We grab ill_lock to protect the flag changes.  The ipif is still
11728 	 * not up and can't be looked up until the ioctl completes and the
11729 	 * IPIF_CHANGING flag is cleared.
11730 	 */
11731 	mutex_enter(&ill->ill_lock);
11732 
11733 	ipif->ipif_ire_type = ire_type;
11734 
11735 	if (ipif->ipif_isv6) {
11736 		ill->ill_flags |= ILLF_IPV6;
11737 	} else {
11738 		ipaddr_t inaddr_any = INADDR_ANY;
11739 
11740 		ill->ill_flags |= ILLF_IPV4;
11741 
11742 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
11743 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11744 		    &ipif->ipif_v6lcl_addr);
11745 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11746 		    &ipif->ipif_v6subnet);
11747 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11748 		    &ipif->ipif_v6net_mask);
11749 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11750 		    &ipif->ipif_v6brd_addr);
11751 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11752 		    &ipif->ipif_v6pp_dst_addr);
11753 	}
11754 
11755 	/*
11756 	 * Don't set the interface flags etc. now, will do it in
11757 	 * ip_ll_subnet_defaults.
11758 	 */
11759 	if (!initialize)
11760 		goto out;
11761 
11762 	/*
11763 	 * NOTE: The IPMP meta-interface is special-cased because it starts
11764 	 * with no underlying interfaces (and thus an unknown broadcast
11765 	 * address length), but all interfaces that can be placed into an IPMP
11766 	 * group are required to be broadcast-capable.
11767 	 */
11768 	if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
11769 		/*
11770 		 * Later detect lack of DLPI driver multicast capability by
11771 		 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
11772 		 */
11773 		ill->ill_flags |= ILLF_MULTICAST;
11774 		if (!ipif->ipif_isv6)
11775 			ipif->ipif_flags |= IPIF_BROADCAST;
11776 	} else {
11777 		if (ill->ill_net_type != IRE_LOOPBACK) {
11778 			if (ipif->ipif_isv6)
11779 				/*
11780 				 * Note: xresolv interfaces will eventually need
11781 				 * NOARP set here as well, but that will require
11782 				 * those external resolvers to have some
11783 				 * knowledge of that flag and act appropriately.
11784 				 * Not to be changed at present.
11785 				 */
11786 				ill->ill_flags |= ILLF_NONUD;
11787 			else
11788 				ill->ill_flags |= ILLF_NOARP;
11789 		}
11790 		if (ill->ill_phys_addr_length == 0) {
11791 			if (IS_VNI(ill)) {
11792 				ipif->ipif_flags |= IPIF_NOXMIT;
11793 			} else {
11794 				/* pt-pt supports multicast. */
11795 				ill->ill_flags |= ILLF_MULTICAST;
11796 				if (ill->ill_net_type != IRE_LOOPBACK)
11797 					ipif->ipif_flags |= IPIF_POINTOPOINT;
11798 			}
11799 		}
11800 	}
11801 out:
11802 	mutex_exit(&ill->ill_lock);
11803 	return (ipif);
11804 }
11805 
11806 /*
11807  * Remove the neighbor cache entries associated with this logical
11808  * interface.
11809  */
11810 int
11811 ipif_arp_down(ipif_t *ipif)
11812 {
11813 	ill_t	*ill = ipif->ipif_ill;
11814 	int	err = 0;
11815 
11816 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
11817 	ASSERT(IAM_WRITER_IPIF(ipif));
11818 
11819 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
11820 	    ill_t *, ill, ipif_t *, ipif);
11821 	ipif_nce_down(ipif);
11822 
11823 	/*
11824 	 * If this is the last ipif that is going down and there are no
11825 	 * duplicate addresses we may yet attempt to re-probe, then we need to
11826 	 * clean up ARP completely.
11827 	 */
11828 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
11829 	    !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
11830 		/*
11831 		 * If this was the last ipif on an IPMP interface, purge any
11832 		 * static ARP entries associated with it.
11833 		 */
11834 		if (IS_IPMP(ill))
11835 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
11836 
11837 		/* UNBIND, DETACH */
11838 		err = arp_ll_down(ill);
11839 	}
11840 
11841 	return (err);
11842 }
11843 
11844 /*
11845  * Get the resolver set up for a new IP address.  (Always called as writer.)
11846  * Called both for IPv4 and IPv6 interfaces, though it only does some
11847  * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
11848  *
11849  * The enumerated value res_act tunes the behavior:
11850  * 	* Res_act_initial: set up all the resolver structures for a new
11851  *	  IP address.
11852  *	* Res_act_defend: tell ARP that it needs to send a single gratuitous
11853  *	  ARP message in defense of the address.
11854  *	* Res_act_rebind: tell ARP to change the hardware address for an IP
11855  *	  address (and issue gratuitous ARPs).  Used by ipmp_ill_bind_ipif().
11856  *
11857  * Returns zero on success, or an errno upon failure.
11858  */
11859 int
11860 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
11861 {
11862 	ill_t		*ill = ipif->ipif_ill;
11863 	int		err;
11864 	boolean_t	was_dup;
11865 
11866 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
11867 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
11868 	ASSERT(IAM_WRITER_IPIF(ipif));
11869 
11870 	was_dup = B_FALSE;
11871 	if (res_act == Res_act_initial) {
11872 		ipif->ipif_addr_ready = 0;
11873 		/*
11874 		 * We're bringing an interface up here.  There's no way that we
11875 		 * should need to shut down ARP now.
11876 		 */
11877 		mutex_enter(&ill->ill_lock);
11878 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
11879 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
11880 			ill->ill_ipif_dup_count--;
11881 			was_dup = B_TRUE;
11882 		}
11883 		mutex_exit(&ill->ill_lock);
11884 	}
11885 	if (ipif->ipif_recovery_id != 0)
11886 		(void) untimeout(ipif->ipif_recovery_id);
11887 	ipif->ipif_recovery_id = 0;
11888 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
11889 		ipif->ipif_addr_ready = 1;
11890 		return (0);
11891 	}
11892 	/* NDP will set the ipif_addr_ready flag when it's ready */
11893 	if (ill->ill_isv6)
11894 		return (0);
11895 
11896 	err = ipif_arp_up(ipif, res_act, was_dup);
11897 	return (err);
11898 }
11899 
11900 /*
11901  * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
11902  * when a link has just gone back up.
11903  */
11904 static void
11905 ipif_nce_start_dad(ipif_t *ipif)
11906 {
11907 	ncec_t *ncec;
11908 	ill_t *ill = ipif->ipif_ill;
11909 	boolean_t isv6 = ill->ill_isv6;
11910 
11911 	if (isv6) {
11912 		ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
11913 		    &ipif->ipif_v6lcl_addr);
11914 	} else {
11915 		ipaddr_t v4addr;
11916 
11917 		if (ill->ill_net_type != IRE_IF_RESOLVER ||
11918 		    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
11919 		    ipif->ipif_lcl_addr == INADDR_ANY) {
11920 			/*
11921 			 * If we can't contact ARP for some reason,
11922 			 * that's not really a problem.  Just send
11923 			 * out the routing socket notification that
11924 			 * DAD completion would have done, and continue.
11925 			 */
11926 			ipif_mask_reply(ipif);
11927 			ipif_up_notify(ipif);
11928 			ipif->ipif_addr_ready = 1;
11929 			return;
11930 		}
11931 
11932 		IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
11933 		ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
11934 	}
11935 
11936 	if (ncec == NULL) {
11937 		ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n",
11938 		    (void *)ipif));
11939 		return;
11940 	}
11941 	if (!nce_restart_dad(ncec)) {
11942 		/*
11943 		 * If we can't restart DAD for some reason, that's not really a
11944 		 * problem.  Just send out the routing socket notification that
11945 		 * DAD completion would have done, and continue.
11946 		 */
11947 		ipif_up_notify(ipif);
11948 		ipif->ipif_addr_ready = 1;
11949 	}
11950 	ncec_refrele(ncec);
11951 }
11952 
11953 /*
11954  * Restart duplicate address detection on all interfaces on the given ill.
11955  *
11956  * This is called when an interface transitions from down to up
11957  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
11958  *
11959  * Note that since the underlying physical link has transitioned, we must cause
11960  * at least one routing socket message to be sent here, either via DAD
11961  * completion or just by default on the first ipif.  (If we don't do this, then
11962  * in.mpathd will see long delays when doing link-based failure recovery.)
11963  */
11964 void
11965 ill_restart_dad(ill_t *ill, boolean_t went_up)
11966 {
11967 	ipif_t *ipif;
11968 
11969 	if (ill == NULL)
11970 		return;
11971 
11972 	/*
11973 	 * If layer two doesn't support duplicate address detection, then just
11974 	 * send the routing socket message now and be done with it.
11975 	 */
11976 	if (!ill->ill_isv6 && arp_no_defense) {
11977 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
11978 		return;
11979 	}
11980 
11981 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
11982 		if (went_up) {
11983 
11984 			if (ipif->ipif_flags & IPIF_UP) {
11985 				ipif_nce_start_dad(ipif);
11986 			} else if (ipif->ipif_flags & IPIF_DUPLICATE) {
11987 				/*
11988 				 * kick off the bring-up process now.
11989 				 */
11990 				ipif_do_recovery(ipif);
11991 			} else {
11992 				/*
11993 				 * Unfortunately, the first ipif is "special"
11994 				 * and represents the underlying ill in the
11995 				 * routing socket messages.  Thus, when this
11996 				 * one ipif is down, we must still notify so
11997 				 * that the user knows the IFF_RUNNING status
11998 				 * change.  (If the first ipif is up, then
11999 				 * we'll handle eventual routing socket
12000 				 * notification via DAD completion.)
12001 				 */
12002 				if (ipif == ill->ill_ipif) {
12003 					ip_rts_ifmsg(ill->ill_ipif,
12004 					    RTSQ_DEFAULT);
12005 				}
12006 			}
12007 		} else {
12008 			/*
12009 			 * After link down, we'll need to send a new routing
12010 			 * message when the link comes back, so clear
12011 			 * ipif_addr_ready.
12012 			 */
12013 			ipif->ipif_addr_ready = 0;
12014 		}
12015 	}
12016 
12017 	/*
12018 	 * If we've torn down links, then notify the user right away.
12019 	 */
12020 	if (!went_up)
12021 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12022 }
12023 
12024 static void
12025 ipsq_delete(ipsq_t *ipsq)
12026 {
12027 	ipxop_t *ipx = ipsq->ipsq_xop;
12028 
12029 	ipsq->ipsq_ipst = NULL;
12030 	ASSERT(ipsq->ipsq_phyint == NULL);
12031 	ASSERT(ipsq->ipsq_xop != NULL);
12032 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12033 	ASSERT(ipx->ipx_pending_mp == NULL);
12034 	kmem_free(ipsq, sizeof (ipsq_t));
12035 }
12036 
12037 static int
12038 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12039 {
12040 	int err = 0;
12041 	ipif_t *ipif;
12042 
12043 	if (ill == NULL)
12044 		return (0);
12045 
12046 	ASSERT(IAM_WRITER_ILL(ill));
12047 	ill->ill_up_ipifs = B_TRUE;
12048 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12049 		if (ipif->ipif_was_up) {
12050 			if (!(ipif->ipif_flags & IPIF_UP))
12051 				err = ipif_up(ipif, q, mp);
12052 			ipif->ipif_was_up = B_FALSE;
12053 			if (err != 0) {
12054 				ASSERT(err == EINPROGRESS);
12055 				return (err);
12056 			}
12057 		}
12058 	}
12059 	ill->ill_up_ipifs = B_FALSE;
12060 	return (0);
12061 }
12062 
12063 /*
12064  * This function is called to bring up all the ipifs that were up before
12065  * bringing the ill down via ill_down_ipifs().
12066  */
12067 int
12068 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12069 {
12070 	int err;
12071 
12072 	ASSERT(IAM_WRITER_ILL(ill));
12073 
12074 	if (ill->ill_replumbing) {
12075 		ill->ill_replumbing = 0;
12076 		/*
12077 		 * Send down REPLUMB_DONE notification followed by the
12078 		 * BIND_REQ on the arp stream.
12079 		 */
12080 		if (!ill->ill_isv6)
12081 			arp_send_replumb_conf(ill);
12082 	}
12083 	err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12084 	if (err != 0)
12085 		return (err);
12086 
12087 	return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12088 }
12089 
12090 /*
12091  * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12092  * down the ipifs without sending DL_UNBIND_REQ to the driver.
12093  */
12094 static void
12095 ill_down_ipifs(ill_t *ill, boolean_t logical)
12096 {
12097 	ipif_t *ipif;
12098 
12099 	ASSERT(IAM_WRITER_ILL(ill));
12100 
12101 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12102 		/*
12103 		 * We go through the ipif_down logic even if the ipif
12104 		 * is already down, since routes can be added based
12105 		 * on down ipifs. Going through ipif_down once again
12106 		 * will delete any IREs created based on these routes.
12107 		 */
12108 		if (ipif->ipif_flags & IPIF_UP)
12109 			ipif->ipif_was_up = B_TRUE;
12110 
12111 		if (logical) {
12112 			(void) ipif_logical_down(ipif, NULL, NULL);
12113 			ipif_non_duplicate(ipif);
12114 			(void) ipif_down_tail(ipif);
12115 		} else {
12116 			(void) ipif_down(ipif, NULL, NULL);
12117 		}
12118 	}
12119 }
12120 
12121 /*
12122  * Redo source address selection.  This makes IXAF_VERIFY_SOURCE take
12123  * a look again at valid source addresses.
12124  * This should be called each time after the set of source addresses has been
12125  * changed.
12126  */
12127 void
12128 ip_update_source_selection(ip_stack_t *ipst)
12129 {
12130 	/* We skip past SRC_GENERATION_VERIFY */
12131 	if (atomic_add_32_nv(&ipst->ips_src_generation, 1) ==
12132 	    SRC_GENERATION_VERIFY)
12133 		atomic_add_32(&ipst->ips_src_generation, 1);
12134 }
12135 
12136 /*
12137  * Finish the group join started in ip_sioctl_groupname().
12138  */
12139 /* ARGSUSED */
12140 static void
12141 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12142 {
12143 	ill_t		*ill = q->q_ptr;
12144 	phyint_t	*phyi = ill->ill_phyint;
12145 	ipmp_grp_t	*grp = phyi->phyint_grp;
12146 	ip_stack_t	*ipst = ill->ill_ipst;
12147 
12148 	/* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
12149 	ASSERT(!IS_IPMP(ill) && grp != NULL);
12150 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12151 
12152 	if (phyi->phyint_illv4 != NULL) {
12153 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12154 		VERIFY(grp->gr_pendv4-- > 0);
12155 		rw_exit(&ipst->ips_ipmp_lock);
12156 		ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12157 	}
12158 	if (phyi->phyint_illv6 != NULL) {
12159 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12160 		VERIFY(grp->gr_pendv6-- > 0);
12161 		rw_exit(&ipst->ips_ipmp_lock);
12162 		ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12163 	}
12164 	freemsg(mp);
12165 }
12166 
12167 /*
12168  * Process an SIOCSLIFGROUPNAME request.
12169  */
12170 /* ARGSUSED */
12171 int
12172 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12173     ip_ioctl_cmd_t *ipip, void *ifreq)
12174 {
12175 	struct lifreq	*lifr = ifreq;
12176 	ill_t		*ill = ipif->ipif_ill;
12177 	ip_stack_t	*ipst = ill->ill_ipst;
12178 	phyint_t	*phyi = ill->ill_phyint;
12179 	ipmp_grp_t	*grp = phyi->phyint_grp;
12180 	mblk_t		*ipsq_mp;
12181 	int		err = 0;
12182 
12183 	/*
12184 	 * Note that phyint_grp can only change here, where we're exclusive.
12185 	 */
12186 	ASSERT(IAM_WRITER_ILL(ill));
12187 
12188 	if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12189 	    (phyi->phyint_flags & PHYI_VIRTUAL))
12190 		return (EINVAL);
12191 
12192 	lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
12193 
12194 	rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12195 
12196 	/*
12197 	 * If the name hasn't changed, there's nothing to do.
12198 	 */
12199 	if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12200 		goto unlock;
12201 
12202 	/*
12203 	 * Handle requests to rename an IPMP meta-interface.
12204 	 *
12205 	 * Note that creation of the IPMP meta-interface is handled in
12206 	 * userland through the standard plumbing sequence.  As part of the
12207 	 * plumbing the IPMP meta-interface, its initial groupname is set to
12208 	 * the name of the interface (see ipif_set_values_tail()).
12209 	 */
12210 	if (IS_IPMP(ill)) {
12211 		err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12212 		goto unlock;
12213 	}
12214 
12215 	/*
12216 	 * Handle requests to add or remove an IP interface from a group.
12217 	 */
12218 	if (lifr->lifr_groupname[0] != '\0') {			/* add */
12219 		/*
12220 		 * Moves are handled by first removing the interface from
12221 		 * its existing group, and then adding it to another group.
12222 		 * So, fail if it's already in a group.
12223 		 */
12224 		if (IS_UNDER_IPMP(ill)) {
12225 			err = EALREADY;
12226 			goto unlock;
12227 		}
12228 
12229 		grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12230 		if (grp == NULL) {
12231 			err = ENOENT;
12232 			goto unlock;
12233 		}
12234 
12235 		/*
12236 		 * Check if the phyint and its ills are suitable for
12237 		 * inclusion into the group.
12238 		 */
12239 		if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12240 			goto unlock;
12241 
12242 		/*
12243 		 * Checks pass; join the group, and enqueue the remaining
12244 		 * illgrp joins for when we've become part of the group xop
12245 		 * and are exclusive across its IPSQs.  Since qwriter_ip()
12246 		 * requires an mblk_t to scribble on, and since `mp' will be
12247 		 * freed as part of completing the ioctl, allocate another.
12248 		 */
12249 		if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
12250 			err = ENOMEM;
12251 			goto unlock;
12252 		}
12253 
12254 		/*
12255 		 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12256 		 * IPMP meta-interface ills needed by `phyi' cannot go away
12257 		 * before ip_join_illgrps() is called back.  See the comments
12258 		 * in ip_sioctl_plink_ipmp() for more.
12259 		 */
12260 		if (phyi->phyint_illv4 != NULL)
12261 			grp->gr_pendv4++;
12262 		if (phyi->phyint_illv6 != NULL)
12263 			grp->gr_pendv6++;
12264 
12265 		rw_exit(&ipst->ips_ipmp_lock);
12266 
12267 		ipmp_phyint_join_grp(phyi, grp);
12268 		ill_refhold(ill);
12269 		qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12270 		    SWITCH_OP, B_FALSE);
12271 		return (0);
12272 	} else {
12273 		/*
12274 		 * Request to remove the interface from a group.  If the
12275 		 * interface is not in a group, this trivially succeeds.
12276 		 */
12277 		rw_exit(&ipst->ips_ipmp_lock);
12278 		if (IS_UNDER_IPMP(ill))
12279 			ipmp_phyint_leave_grp(phyi);
12280 		return (0);
12281 	}
12282 unlock:
12283 	rw_exit(&ipst->ips_ipmp_lock);
12284 	return (err);
12285 }
12286 
12287 /*
12288  * Process an SIOCGLIFBINDING request.
12289  */
12290 /* ARGSUSED */
12291 int
12292 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12293     ip_ioctl_cmd_t *ipip, void *ifreq)
12294 {
12295 	ill_t		*ill;
12296 	struct lifreq	*lifr = ifreq;
12297 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12298 
12299 	if (!IS_IPMP(ipif->ipif_ill))
12300 		return (EINVAL);
12301 
12302 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12303 	if ((ill = ipif->ipif_bound_ill) == NULL)
12304 		lifr->lifr_binding[0] = '\0';
12305 	else
12306 		(void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12307 	rw_exit(&ipst->ips_ipmp_lock);
12308 	return (0);
12309 }
12310 
12311 /*
12312  * Process an SIOCGLIFGROUPNAME request.
12313  */
12314 /* ARGSUSED */
12315 int
12316 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12317     ip_ioctl_cmd_t *ipip, void *ifreq)
12318 {
12319 	ipmp_grp_t	*grp;
12320 	struct lifreq	*lifr = ifreq;
12321 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12322 
12323 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12324 	if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12325 		lifr->lifr_groupname[0] = '\0';
12326 	else
12327 		(void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12328 	rw_exit(&ipst->ips_ipmp_lock);
12329 	return (0);
12330 }
12331 
12332 /*
12333  * Process an SIOCGLIFGROUPINFO request.
12334  */
12335 /* ARGSUSED */
12336 int
12337 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12338     ip_ioctl_cmd_t *ipip, void *dummy)
12339 {
12340 	ipmp_grp_t	*grp;
12341 	lifgroupinfo_t	*lifgr;
12342 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
12343 
12344 	/* ip_wput_nondata() verified mp->b_cont->b_cont */
12345 	lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12346 	lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
12347 
12348 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12349 	if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12350 		rw_exit(&ipst->ips_ipmp_lock);
12351 		return (ENOENT);
12352 	}
12353 	ipmp_grp_info(grp, lifgr);
12354 	rw_exit(&ipst->ips_ipmp_lock);
12355 	return (0);
12356 }
12357 
12358 static void
12359 ill_dl_down(ill_t *ill)
12360 {
12361 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);
12362 
12363 	/*
12364 	 * The ill is down; unbind but stay attached since we're still
12365 	 * associated with a PPA. If we have negotiated DLPI capabilites
12366 	 * with the data link service provider (IDS_OK) then reset them.
12367 	 * The interval between unbinding and rebinding is potentially
12368 	 * unbounded hence we cannot assume things will be the same.
12369 	 * The DLPI capabilities will be probed again when the data link
12370 	 * is brought up.
12371 	 */
12372 	mblk_t	*mp = ill->ill_unbind_mp;
12373 
12374 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
12375 
12376 	if (!ill->ill_replumbing) {
12377 		/* Free all ilms for this ill */
12378 		update_conn_ill(ill, ill->ill_ipst);
12379 	} else {
12380 		ill_leave_multicast(ill);
12381 	}
12382 
12383 	ill->ill_unbind_mp = NULL;
12384 	if (mp != NULL) {
12385 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12386 		    dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12387 		    ill->ill_name));
12388 		mutex_enter(&ill->ill_lock);
12389 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12390 		mutex_exit(&ill->ill_lock);
12391 		/*
12392 		 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12393 		 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12394 		 * ill_capability_dld_disable disable rightaway. If this is not
12395 		 * an unplumb operation then the disable happens on receipt of
12396 		 * the capab ack via ip_rput_dlpi_writer ->
12397 		 * ill_capability_ack_thr. In both cases the order of
12398 		 * the operations seen by DLD is capability disable followed
12399 		 * by DL_UNBIND. Also the DLD capability disable needs a
12400 		 * cv_wait'able context.
12401 		 */
12402 		if (ill->ill_state_flags & ILL_CONDEMNED)
12403 			ill_capability_dld_disable(ill);
12404 		ill_capability_reset(ill, B_FALSE);
12405 		ill_dlpi_send(ill, mp);
12406 	}
12407 	mutex_enter(&ill->ill_lock);
12408 	ill->ill_dl_up = 0;
12409 	ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12410 	mutex_exit(&ill->ill_lock);
12411 }
12412 
12413 void
12414 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12415 {
12416 	union DL_primitives *dlp;
12417 	t_uscalar_t prim;
12418 	boolean_t waitack = B_FALSE;
12419 
12420 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12421 
12422 	dlp = (union DL_primitives *)mp->b_rptr;
12423 	prim = dlp->dl_primitive;
12424 
12425 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12426 	    dl_primstr(prim), prim, ill->ill_name));
12427 
12428 	switch (prim) {
12429 	case DL_PHYS_ADDR_REQ:
12430 	{
12431 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12432 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12433 		break;
12434 	}
12435 	case DL_BIND_REQ:
12436 		mutex_enter(&ill->ill_lock);
12437 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12438 		mutex_exit(&ill->ill_lock);
12439 		break;
12440 	}
12441 
12442 	/*
12443 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12444 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12445 	 * we only wait for the ACK of the DL_UNBIND_REQ.
12446 	 */
12447 	mutex_enter(&ill->ill_lock);
12448 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12449 	    (prim == DL_UNBIND_REQ)) {
12450 		ill->ill_dlpi_pending = prim;
12451 		waitack = B_TRUE;
12452 	}
12453 
12454 	mutex_exit(&ill->ill_lock);
12455 	DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12456 	    char *, dl_primstr(prim), ill_t *, ill);
12457 	putnext(ill->ill_wq, mp);
12458 
12459 	/*
12460 	 * There is no ack for DL_NOTIFY_CONF messages
12461 	 */
12462 	if (waitack && prim == DL_NOTIFY_CONF)
12463 		ill_dlpi_done(ill, prim);
12464 }
12465 
12466 /*
12467  * Helper function for ill_dlpi_send().
12468  */
12469 /* ARGSUSED */
12470 static void
12471 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12472 {
12473 	ill_dlpi_send(q->q_ptr, mp);
12474 }
12475 
12476 /*
12477  * Send a DLPI control message to the driver but make sure there
12478  * is only one outstanding message. Uses ill_dlpi_pending to tell
12479  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12480  * when an ACK or a NAK is received to process the next queued message.
12481  */
12482 void
12483 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12484 {
12485 	mblk_t **mpp;
12486 
12487 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12488 
12489 	/*
12490 	 * To ensure that any DLPI requests for current exclusive operation
12491 	 * are always completely sent before any DLPI messages for other
12492 	 * operations, require writer access before enqueuing.
12493 	 */
12494 	if (!IAM_WRITER_ILL(ill)) {
12495 		ill_refhold(ill);
12496 		/* qwriter_ip() does the ill_refrele() */
12497 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12498 		    NEW_OP, B_TRUE);
12499 		return;
12500 	}
12501 
12502 	mutex_enter(&ill->ill_lock);
12503 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12504 		/* Must queue message. Tail insertion */
12505 		mpp = &ill->ill_dlpi_deferred;
12506 		while (*mpp != NULL)
12507 			mpp = &((*mpp)->b_next);
12508 
12509 		ip1dbg(("ill_dlpi_send: deferring request for %s "
12510 		    "while %s pending\n", ill->ill_name,
12511 		    dl_primstr(ill->ill_dlpi_pending)));
12512 
12513 		*mpp = mp;
12514 		mutex_exit(&ill->ill_lock);
12515 		return;
12516 	}
12517 	mutex_exit(&ill->ill_lock);
12518 	ill_dlpi_dispatch(ill, mp);
12519 }
12520 
12521 void
12522 ill_capability_send(ill_t *ill, mblk_t *mp)
12523 {
12524 	ill->ill_capab_pending_cnt++;
12525 	ill_dlpi_send(ill, mp);
12526 }
12527 
12528 void
12529 ill_capability_done(ill_t *ill)
12530 {
12531 	ASSERT(ill->ill_capab_pending_cnt != 0);
12532 
12533 	ill_dlpi_done(ill, DL_CAPABILITY_REQ);
12534 
12535 	ill->ill_capab_pending_cnt--;
12536 	if (ill->ill_capab_pending_cnt == 0 &&
12537 	    ill->ill_dlpi_capab_state == IDCS_OK)
12538 		ill_capability_reset_alloc(ill);
12539 }
12540 
12541 /*
12542  * Send all deferred DLPI messages without waiting for their ACKs.
12543  */
12544 void
12545 ill_dlpi_send_deferred(ill_t *ill)
12546 {
12547 	mblk_t *mp, *nextmp;
12548 
12549 	/*
12550 	 * Clear ill_dlpi_pending so that the message is not queued in
12551 	 * ill_dlpi_send().
12552 	 */
12553 	mutex_enter(&ill->ill_lock);
12554 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12555 	mp = ill->ill_dlpi_deferred;
12556 	ill->ill_dlpi_deferred = NULL;
12557 	mutex_exit(&ill->ill_lock);
12558 
12559 	for (; mp != NULL; mp = nextmp) {
12560 		nextmp = mp->b_next;
12561 		mp->b_next = NULL;
12562 		ill_dlpi_send(ill, mp);
12563 	}
12564 }
12565 
12566 /*
12567  * Check if the DLPI primitive `prim' is pending; print a warning if not.
12568  */
12569 boolean_t
12570 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12571 {
12572 	t_uscalar_t pending;
12573 
12574 	mutex_enter(&ill->ill_lock);
12575 	if (ill->ill_dlpi_pending == prim) {
12576 		mutex_exit(&ill->ill_lock);
12577 		return (B_TRUE);
12578 	}
12579 
12580 	/*
12581 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12582 	 * without waiting, so don't print any warnings in that case.
12583 	 */
12584 	if (ill->ill_state_flags & ILL_CONDEMNED) {
12585 		mutex_exit(&ill->ill_lock);
12586 		return (B_FALSE);
12587 	}
12588 	pending = ill->ill_dlpi_pending;
12589 	mutex_exit(&ill->ill_lock);
12590 
12591 	if (pending == DL_PRIM_INVAL) {
12592 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12593 		    "received unsolicited ack for %s on %s\n",
12594 		    dl_primstr(prim), ill->ill_name);
12595 	} else {
12596 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12597 		    "received unexpected ack for %s on %s (expecting %s)\n",
12598 		    dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12599 	}
12600 	return (B_FALSE);
12601 }
12602 
12603 /*
12604  * Complete the current DLPI operation associated with `prim' on `ill' and
12605  * start the next queued DLPI operation (if any).  If there are no queued DLPI
12606  * operations and the ill's current exclusive IPSQ operation has finished
12607  * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12608  * allow the next exclusive IPSQ operation to begin upon ipsq_exit().  See
12609  * the comments above ipsq_current_finish() for details.
12610  */
12611 void
12612 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12613 {
12614 	mblk_t *mp;
12615 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12616 	ipxop_t *ipx = ipsq->ipsq_xop;
12617 
12618 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12619 	mutex_enter(&ill->ill_lock);
12620 
12621 	ASSERT(prim != DL_PRIM_INVAL);
12622 	ASSERT(ill->ill_dlpi_pending == prim);
12623 
12624 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
12625 	    dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
12626 
12627 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
12628 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
12629 		if (ipx->ipx_current_done) {
12630 			mutex_enter(&ipx->ipx_lock);
12631 			ipx->ipx_current_ipif = NULL;
12632 			mutex_exit(&ipx->ipx_lock);
12633 		}
12634 		cv_signal(&ill->ill_cv);
12635 		mutex_exit(&ill->ill_lock);
12636 		return;
12637 	}
12638 
12639 	ill->ill_dlpi_deferred = mp->b_next;
12640 	mp->b_next = NULL;
12641 	mutex_exit(&ill->ill_lock);
12642 
12643 	ill_dlpi_dispatch(ill, mp);
12644 }
12645 
12646 /*
12647  * Queue a (multicast) DLPI control message to be sent to the driver by
12648  * later calling ill_dlpi_send_queued.
12649  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12650  * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
12651  * for the same group to race.
12652  * We send DLPI control messages in order using ill_lock.
12653  * For IPMP we should be called on the cast_ill.
12654  */
12655 void
12656 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
12657 {
12658 	mblk_t **mpp;
12659 
12660 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12661 
12662 	mutex_enter(&ill->ill_lock);
12663 	/* Must queue message. Tail insertion */
12664 	mpp = &ill->ill_dlpi_deferred;
12665 	while (*mpp != NULL)
12666 		mpp = &((*mpp)->b_next);
12667 
12668 	*mpp = mp;
12669 	mutex_exit(&ill->ill_lock);
12670 }
12671 
12672 /*
12673  * Send the messages that were queued. Make sure there is only
12674  * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
12675  * when an ACK or a NAK is received to process the next queued message.
12676  * For IPMP we are called on the upper ill, but when send what is queued
12677  * on the cast_ill.
12678  */
12679 void
12680 ill_dlpi_send_queued(ill_t *ill)
12681 {
12682 	mblk_t	*mp;
12683 	union DL_primitives *dlp;
12684 	t_uscalar_t prim;
12685 	ill_t *release_ill = NULL;
12686 
12687 	if (IS_IPMP(ill)) {
12688 		/* On the upper IPMP ill. */
12689 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
12690 		if (release_ill == NULL) {
12691 			/* Avoid ever sending anything down to the ipmpstub */
12692 			return;
12693 		}
12694 		ill = release_ill;
12695 	}
12696 	mutex_enter(&ill->ill_lock);
12697 	while ((mp = ill->ill_dlpi_deferred) != NULL) {
12698 		if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12699 			/* Can't send. Somebody else will send it */
12700 			mutex_exit(&ill->ill_lock);
12701 			goto done;
12702 		}
12703 		ill->ill_dlpi_deferred = mp->b_next;
12704 		mp->b_next = NULL;
12705 		if (!ill->ill_dl_up) {
12706 			/*
12707 			 * Nobody there. All multicast addresses will be
12708 			 * re-joined when we get the DL_BIND_ACK bringing the
12709 			 * interface up.
12710 			 */
12711 			freemsg(mp);
12712 			continue;
12713 		}
12714 		dlp = (union DL_primitives *)mp->b_rptr;
12715 		prim = dlp->dl_primitive;
12716 
12717 		if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12718 		    (prim == DL_UNBIND_REQ)) {
12719 			ill->ill_dlpi_pending = prim;
12720 		}
12721 		mutex_exit(&ill->ill_lock);
12722 
12723 		DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
12724 		    char *, dl_primstr(prim), ill_t *, ill);
12725 		putnext(ill->ill_wq, mp);
12726 		mutex_enter(&ill->ill_lock);
12727 	}
12728 	mutex_exit(&ill->ill_lock);
12729 done:
12730 	if (release_ill != NULL)
12731 		ill_refrele(release_ill);
12732 }
12733 
12734 /*
12735  * Queue an IP (IGMP/MLD) message to be sent by IP from
12736  * ill_mcast_send_queued
12737  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12738  * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
12739  * group to race.
12740  * We send them in order using ill_lock.
12741  * For IPMP we are called on the upper ill, but we queue on the cast_ill.
12742  */
12743 void
12744 ill_mcast_queue(ill_t *ill, mblk_t *mp)
12745 {
12746 	mblk_t **mpp;
12747 	ill_t *release_ill = NULL;
12748 
12749 	ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));
12750 
12751 	if (IS_IPMP(ill)) {
12752 		/* On the upper IPMP ill. */
12753 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
12754 		if (release_ill == NULL) {
12755 			/* Discard instead of queuing for the ipmp interface */
12756 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12757 			ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
12758 			    mp, ill);
12759 			freemsg(mp);
12760 			return;
12761 		}
12762 		ill = release_ill;
12763 	}
12764 
12765 	mutex_enter(&ill->ill_lock);
12766 	/* Must queue message. Tail insertion */
12767 	mpp = &ill->ill_mcast_deferred;
12768 	while (*mpp != NULL)
12769 		mpp = &((*mpp)->b_next);
12770 
12771 	*mpp = mp;
12772 	mutex_exit(&ill->ill_lock);
12773 	if (release_ill != NULL)
12774 		ill_refrele(release_ill);
12775 }
12776 
12777 /*
12778  * Send the IP packets that were queued by ill_mcast_queue.
12779  * These are IGMP/MLD packets.
12780  *
12781  * For IPMP we are called on the upper ill, but when send what is queued
12782  * on the cast_ill.
12783  *
12784  * Request loopback of the report if we are acting as a multicast
12785  * router, so that the process-level routing demon can hear it.
12786  * This will run multiple times for the same group if there are members
12787  * on the same group for multiple ipif's on the same ill. The
12788  * igmp_input/mld_input code will suppress this due to the loopback thus we
12789  * always loopback membership report.
12790  *
12791  * We also need to make sure that this does not get load balanced
12792  * by IPMP. We do this by passing an ill to ip_output_simple.
12793  */
12794 void
12795 ill_mcast_send_queued(ill_t *ill)
12796 {
12797 	mblk_t	*mp;
12798 	ip_xmit_attr_t ixas;
12799 	ill_t *release_ill = NULL;
12800 
12801 	if (IS_IPMP(ill)) {
12802 		/* On the upper IPMP ill. */
12803 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
12804 		if (release_ill == NULL) {
12805 			/*
12806 			 * We should have no messages on the ipmp interface
12807 			 * but no point in trying to send them.
12808 			 */
12809 			return;
12810 		}
12811 		ill = release_ill;
12812 	}
12813 	bzero(&ixas, sizeof (ixas));
12814 	ixas.ixa_zoneid = ALL_ZONES;
12815 	ixas.ixa_cred = kcred;
12816 	ixas.ixa_cpid = NOPID;
12817 	ixas.ixa_tsl = NULL;
12818 	/*
12819 	 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
12820 	 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
12821 	 * That is necessary to handle IGMP/MLD snooping switches.
12822 	 */
12823 	ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
12824 	ixas.ixa_ipst = ill->ill_ipst;
12825 
12826 	mutex_enter(&ill->ill_lock);
12827 	while ((mp = ill->ill_mcast_deferred) != NULL) {
12828 		ill->ill_mcast_deferred = mp->b_next;
12829 		mp->b_next = NULL;
12830 		if (!ill->ill_dl_up) {
12831 			/*
12832 			 * Nobody there. Just drop the ip packets.
12833 			 * IGMP/MLD will resend later, if this is a replumb.
12834 			 */
12835 			freemsg(mp);
12836 			continue;
12837 		}
12838 		mutex_enter(&ill->ill_phyint->phyint_lock);
12839 		if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
12840 			/*
12841 			 * When the ill is getting deactivated, we only want to
12842 			 * send the DLPI messages, so drop IGMP/MLD packets.
12843 			 * DLPI messages are handled by ill_dlpi_send_queued()
12844 			 */
12845 			mutex_exit(&ill->ill_phyint->phyint_lock);
12846 			freemsg(mp);
12847 			continue;
12848 		}
12849 		mutex_exit(&ill->ill_phyint->phyint_lock);
12850 		mutex_exit(&ill->ill_lock);
12851 
12852 		/* Check whether we are sending IPv4 or IPv6. */
12853 		if (ill->ill_isv6) {
12854 			ip6_t  *ip6h = (ip6_t *)mp->b_rptr;
12855 
12856 			ixas.ixa_multicast_ttl = ip6h->ip6_hops;
12857 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
12858 		} else {
12859 			ipha_t *ipha = (ipha_t *)mp->b_rptr;
12860 
12861 			ixas.ixa_multicast_ttl = ipha->ipha_ttl;
12862 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
12863 			ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
12864 		}
12865 
12866 		ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
12867 		(void) ip_output_simple(mp, &ixas);
12868 		ixa_cleanup(&ixas);
12869 
12870 		mutex_enter(&ill->ill_lock);
12871 	}
12872 	mutex_exit(&ill->ill_lock);
12873 
12874 done:
12875 	if (release_ill != NULL)
12876 		ill_refrele(release_ill);
12877 }
12878 
12879 /*
12880  * Take down a specific interface, but don't lose any information about it.
12881  * (Always called as writer.)
12882  * This function goes through the down sequence even if the interface is
12883  * already down. There are 2 reasons.
12884  * a. Currently we permit interface routes that depend on down interfaces
12885  *    to be added. This behaviour itself is questionable. However it appears
12886  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
12887  *    time. We go thru the cleanup in order to remove these routes.
12888  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
12889  *    DL_ERROR_ACK in response to the DL_BIND request. The interface is
12890  *    down, but we need to cleanup i.e. do ill_dl_down and
12891  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
12892  *
12893  * IP-MT notes:
12894  *
12895  * Model of reference to interfaces.
12896  *
12897  * The following members in ipif_t track references to the ipif.
12898  *	int     ipif_refcnt;    Active reference count
12899  *
12900  * The following members in ill_t track references to the ill.
12901  *	int             ill_refcnt;     active refcnt
12902  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
12903  *	uint_t          ill_ncec_cnt;	Number of ncecs referencing ill
12904  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
12905  *	uint_t          ill_ilm_cnt;	Number of ilms referencing ill
12906  *
12907  * Reference to an ipif or ill can be obtained in any of the following ways.
12908  *
12909  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
12910  * Pointers to ipif / ill from other data structures viz ire and conn.
12911  * Implicit reference to the ipif / ill by holding a reference to the ire.
12912  *
12913  * The ipif/ill lookup functions return a reference held ipif / ill.
12914  * ipif_refcnt and ill_refcnt track the reference counts respectively.
12915  * This is a purely dynamic reference count associated with threads holding
12916  * references to the ipif / ill. Pointers from other structures do not
12917  * count towards this reference count.
12918  *
12919  * ill_ire_cnt is the number of ire's associated with the
12920  * ill. This is incremented whenever a new ire is created referencing the
12921  * ill. This is done atomically inside ire_add_v[46] where the ire is
12922  * actually added to the ire hash table. The count is decremented in
12923  * ire_inactive where the ire is destroyed.
12924  *
12925  * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill.
12926  * This is incremented atomically in
12927  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
12928  * table. Similarly it is decremented in ncec_inactive() where the ncec
12929  * is destroyed.
12930  *
12931  * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is
12932  * incremented atomically in nce_add() where the nce is actually added to the
12933  * ill_nce. Similarly it is decremented in nce_inactive() where the nce
12934  * is destroyed.
12935  *
12936  * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in
12937  * ilm_add() and decremented before the ilm is freed in ilm_delete().
12938  *
12939  * Flow of ioctls involving interface down/up
12940  *
12941  * The following is the sequence of an attempt to set some critical flags on an
12942  * up interface.
12943  * ip_sioctl_flags
12944  * ipif_down
12945  * wait for ipif to be quiescent
12946  * ipif_down_tail
12947  * ip_sioctl_flags_tail
12948  *
12949  * All set ioctls that involve down/up sequence would have a skeleton similar
12950  * to the above. All the *tail functions are called after the refcounts have
12951  * dropped to the appropriate values.
12952  *
12953  * SIOC ioctls during the IPIF_CHANGING interval.
12954  *
12955  * Threads handling SIOC set ioctls serialize on the squeue, but this
12956  * is not done for SIOC get ioctls. Since a set ioctl can cause several
12957  * steps of internal changes to the state, some of which are visible in
12958  * ipif_flags (such as IFF_UP being cleared and later set), and we want
12959  * the set ioctl to be atomic related to the get ioctls, the SIOC get code
12960  * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
12961  * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
12962  * the current exclusive operation completes. The IPIF_CHANGING check
12963  * and enqueue is atomic using the ill_lock and ipsq_lock. The
12964  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
12965  * change while the ill_lock is held. Before dropping the ill_lock we acquire
12966  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
12967  * until we release the ipsq_lock, even though the ill/ipif state flags
12968  * can change after we drop the ill_lock.
12969  */
12970 int
12971 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
12972 {
12973 	ill_t		*ill = ipif->ipif_ill;
12974 	conn_t		*connp;
12975 	boolean_t	success;
12976 	boolean_t	ipif_was_up = B_FALSE;
12977 	ip_stack_t	*ipst = ill->ill_ipst;
12978 
12979 	ASSERT(IAM_WRITER_IPIF(ipif));
12980 
12981 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12982 
12983 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
12984 	    ill_t *, ill, ipif_t *, ipif);
12985 
12986 	if (ipif->ipif_flags & IPIF_UP) {
12987 		mutex_enter(&ill->ill_lock);
12988 		ipif->ipif_flags &= ~IPIF_UP;
12989 		ASSERT(ill->ill_ipif_up_count > 0);
12990 		--ill->ill_ipif_up_count;
12991 		mutex_exit(&ill->ill_lock);
12992 		ipif_was_up = B_TRUE;
12993 		/* Update status in SCTP's list */
12994 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
12995 		ill_nic_event_dispatch(ipif->ipif_ill,
12996 		    MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
12997 	}
12998 
12999 	/*
13000 	 * Blow away memberships we established in ipif_multicast_up().
13001 	 */
13002 	ipif_multicast_down(ipif);
13003 
13004 	/*
13005 	 * Remove from the mapping for __sin6_src_id. We insert only
13006 	 * when the address is not INADDR_ANY. As IPv4 addresses are
13007 	 * stored as mapped addresses, we need to check for mapped
13008 	 * INADDR_ANY also.
13009 	 */
13010 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13011 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13012 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13013 		int err;
13014 
13015 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13016 		    ipif->ipif_zoneid, ipst);
13017 		if (err != 0) {
13018 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
13019 		}
13020 	}
13021 
13022 	if (ipif_was_up) {
13023 		/* only delete if we'd added ire's before */
13024 		if (ipif->ipif_isv6)
13025 			ipif_delete_ires_v6(ipif);
13026 		else
13027 			ipif_delete_ires_v4(ipif);
13028 	}
13029 
13030 	if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13031 		/*
13032 		 * Since the interface is now down, it may have just become
13033 		 * inactive.  Note that this needs to be done even for a
13034 		 * lll_logical_down(), or ARP entries will not get correctly
13035 		 * restored when the interface comes back up.
13036 		 */
13037 		if (IS_UNDER_IPMP(ill))
13038 			ipmp_ill_refresh_active(ill);
13039 	}
13040 
13041 	/*
13042 	 * neighbor-discovery or arp entries for this interface. The ipif
13043 	 * has to be quiesced, so we walk all the nce's and delete those
13044 	 * that point at the ipif->ipif_ill. At the same time, we also
13045 	 * update IPMP so that ipifs for data addresses are unbound. We dont
13046 	 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13047 	 * that for ipif_down_tail()
13048 	 */
13049 	ipif_nce_down(ipif);
13050 
13051 	/*
13052 	 * If this is the last ipif on the ill, we also need to remove
13053 	 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13054 	 * never succeed.
13055 	 */
13056 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13057 		ire_walk_ill(0, 0, ill_downi, ill, ill);
13058 
13059 	/*
13060 	 * Walk all CONNs that can have a reference on an ire for this
13061 	 * ipif (we actually walk all that now have stale references).
13062 	 */
13063 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
13064 
13065 	/*
13066 	 * If mp is NULL the caller will wait for the appropriate refcnt.
13067 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
13068 	 * and ill_delete -> ipif_free -> ipif_down
13069 	 */
13070 	if (mp == NULL) {
13071 		ASSERT(q == NULL);
13072 		return (0);
13073 	}
13074 
13075 	if (CONN_Q(q)) {
13076 		connp = Q_TO_CONN(q);
13077 		mutex_enter(&connp->conn_lock);
13078 	} else {
13079 		connp = NULL;
13080 	}
13081 	mutex_enter(&ill->ill_lock);
13082 	/*
13083 	 * Are there any ire's pointing to this ipif that are still active ?
13084 	 * If this is the last ipif going down, are there any ire's pointing
13085 	 * to this ill that are still active ?
13086 	 */
13087 	if (ipif_is_quiescent(ipif)) {
13088 		mutex_exit(&ill->ill_lock);
13089 		if (connp != NULL)
13090 			mutex_exit(&connp->conn_lock);
13091 		return (0);
13092 	}
13093 
13094 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13095 	    ill->ill_name, (void *)ill));
13096 	/*
13097 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13098 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13099 	 * which in turn is called by the last refrele on the ipif/ill/ire.
13100 	 */
13101 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13102 	if (!success) {
13103 		/* The conn is closing. So just return */
13104 		ASSERT(connp != NULL);
13105 		mutex_exit(&ill->ill_lock);
13106 		mutex_exit(&connp->conn_lock);
13107 		return (EINTR);
13108 	}
13109 
13110 	mutex_exit(&ill->ill_lock);
13111 	if (connp != NULL)
13112 		mutex_exit(&connp->conn_lock);
13113 	return (EINPROGRESS);
13114 }
13115 
13116 int
13117 ipif_down_tail(ipif_t *ipif)
13118 {
13119 	ill_t	*ill = ipif->ipif_ill;
13120 	int	err = 0;
13121 
13122 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13123 	    ill_t *, ill, ipif_t *, ipif);
13124 
13125 	/*
13126 	 * Skip any loopback interface (null wq).
13127 	 * If this is the last logical interface on the ill
13128 	 * have ill_dl_down tell the driver we are gone (unbind)
13129 	 * Note that lun 0 can ipif_down even though
13130 	 * there are other logical units that are up.
13131 	 * This occurs e.g. when we change a "significant" IFF_ flag.
13132 	 */
13133 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13134 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13135 	    ill->ill_dl_up) {
13136 		ill_dl_down(ill);
13137 	}
13138 	if (!ipif->ipif_isv6)
13139 		err = ipif_arp_down(ipif);
13140 
13141 	ill->ill_logical_down = 0;
13142 
13143 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13144 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13145 	return (err);
13146 }
13147 
13148 /*
13149  * Bring interface logically down without bringing the physical interface
13150  * down e.g. when the netmask is changed. This avoids long lasting link
13151  * negotiations between an ethernet interface and a certain switches.
13152  */
13153 static int
13154 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13155 {
13156 	DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13157 	    ill_t *, ipif->ipif_ill, ipif_t *, ipif);
13158 
13159 	/*
13160 	 * The ill_logical_down flag is a transient flag. It is set here
13161 	 * and is cleared once the down has completed in ipif_down_tail.
13162 	 * This flag does not indicate whether the ill stream is in the
13163 	 * DL_BOUND state with the driver. Instead this flag is used by
13164 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13165 	 * the driver. The state of the ill stream i.e. whether it is
13166 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13167 	 */
13168 	ipif->ipif_ill->ill_logical_down = 1;
13169 	return (ipif_down(ipif, q, mp));
13170 }
13171 
13172 /*
13173  * Initiate deallocate of an IPIF. Always called as writer. Called by
13174  * ill_delete or ip_sioctl_removeif.
13175  */
13176 static void
13177 ipif_free(ipif_t *ipif)
13178 {
13179 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13180 
13181 	ASSERT(IAM_WRITER_IPIF(ipif));
13182 
13183 	if (ipif->ipif_recovery_id != 0)
13184 		(void) untimeout(ipif->ipif_recovery_id);
13185 	ipif->ipif_recovery_id = 0;
13186 
13187 	/*
13188 	 * Take down the interface. We can be called either from ill_delete
13189 	 * or from ip_sioctl_removeif.
13190 	 */
13191 	(void) ipif_down(ipif, NULL, NULL);
13192 
13193 	/*
13194 	 * Now that the interface is down, there's no chance it can still
13195 	 * become a duplicate.  Cancel any timer that may have been set while
13196 	 * tearing down.
13197 	 */
13198 	if (ipif->ipif_recovery_id != 0)
13199 		(void) untimeout(ipif->ipif_recovery_id);
13200 	ipif->ipif_recovery_id = 0;
13201 
13202 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13203 	/* Remove pointers to this ill in the multicast routing tables */
13204 	reset_mrt_vif_ipif(ipif);
13205 	/* If necessary, clear the cached source ipif rotor. */
13206 	if (ipif->ipif_ill->ill_src_ipif == ipif)
13207 		ipif->ipif_ill->ill_src_ipif = NULL;
13208 	rw_exit(&ipst->ips_ill_g_lock);
13209 }
13210 
13211 static void
13212 ipif_free_tail(ipif_t *ipif)
13213 {
13214 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13215 
13216 	/*
13217 	 * Need to hold both ill_g_lock and ill_lock while
13218 	 * inserting or removing an ipif from the linked list
13219 	 * of ipifs hanging off the ill.
13220 	 */
13221 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13222 
13223 #ifdef DEBUG
13224 	ipif_trace_cleanup(ipif);
13225 #endif
13226 
13227 	/* Ask SCTP to take it out of it list */
13228 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13229 	ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);
13230 
13231 	/* Get it out of the ILL interface list. */
13232 	ipif_remove(ipif);
13233 	rw_exit(&ipst->ips_ill_g_lock);
13234 
13235 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13236 	ASSERT(ipif->ipif_recovery_id == 0);
13237 	ASSERT(ipif->ipif_ire_local == NULL);
13238 	ASSERT(ipif->ipif_ire_if == NULL);
13239 
13240 	/* Free the memory. */
13241 	mi_free(ipif);
13242 }
13243 
13244 /*
13245  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13246  * is zero.
13247  */
13248 void
13249 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13250 {
13251 	char	lbuf[LIFNAMSIZ];
13252 	char	*name;
13253 	size_t	name_len;
13254 
13255 	buf[0] = '\0';
13256 	name = ipif->ipif_ill->ill_name;
13257 	name_len = ipif->ipif_ill->ill_name_length;
13258 	if (ipif->ipif_id != 0) {
13259 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13260 		    ipif->ipif_id);
13261 		name = lbuf;
13262 		name_len = mi_strlen(name) + 1;
13263 	}
13264 	len -= 1;
13265 	buf[len] = '\0';
13266 	len = MIN(len, name_len);
13267 	bcopy(name, buf, len);
13268 }
13269 
13270 /*
13271  * Sets `buf' to an ill name.
13272  */
13273 void
13274 ill_get_name(const ill_t *ill, char *buf, int len)
13275 {
13276 	char	*name;
13277 	size_t	name_len;
13278 
13279 	name = ill->ill_name;
13280 	name_len = ill->ill_name_length;
13281 	len -= 1;
13282 	buf[len] = '\0';
13283 	len = MIN(len, name_len);
13284 	bcopy(name, buf, len);
13285 }
13286 
13287 /*
13288  * Find an IPIF based on the name passed in.  Names can be of the form <phys>
13289  * (e.g., le0) or <phys>:<#> (e.g., le0:1).  When there is no colon, the
13290  * implied unit id is zero. <phys> must correspond to the name of an ILL.
13291  * (May be called as writer.)
13292  */
13293 static ipif_t *
13294 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13295     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13296 {
13297 	char	*cp;
13298 	char	*endp;
13299 	long	id;
13300 	ill_t	*ill;
13301 	ipif_t	*ipif;
13302 	uint_t	ire_type;
13303 	boolean_t did_alloc = B_FALSE;
13304 
13305 	/*
13306 	 * If the caller wants to us to create the ipif, make sure we have a
13307 	 * valid zoneid
13308 	 */
13309 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
13310 
13311 	if (namelen == 0) {
13312 		return (NULL);
13313 	}
13314 
13315 	*exists = B_FALSE;
13316 	/* Look for a colon in the name. */
13317 	endp = &name[namelen];
13318 	for (cp = endp; --cp > name; ) {
13319 		if (*cp == IPIF_SEPARATOR_CHAR)
13320 			break;
13321 	}
13322 
13323 	if (*cp == IPIF_SEPARATOR_CHAR) {
13324 		/*
13325 		 * Reject any non-decimal aliases for logical
13326 		 * interfaces. Aliases with leading zeroes
13327 		 * are also rejected as they introduce ambiguity
13328 		 * in the naming of the interfaces.
13329 		 * In order to confirm with existing semantics,
13330 		 * and to not break any programs/script relying
13331 		 * on that behaviour, if<0>:0 is considered to be
13332 		 * a valid interface.
13333 		 *
13334 		 * If alias has two or more digits and the first
13335 		 * is zero, fail.
13336 		 */
13337 		if (&cp[2] < endp && cp[1] == '0') {
13338 			return (NULL);
13339 		}
13340 	}
13341 
13342 	if (cp <= name) {
13343 		cp = endp;
13344 	} else {
13345 		*cp = '\0';
13346 	}
13347 
13348 	/*
13349 	 * Look up the ILL, based on the portion of the name
13350 	 * before the slash. ill_lookup_on_name returns a held ill.
13351 	 * Temporary to check whether ill exists already. If so
13352 	 * ill_lookup_on_name will clear it.
13353 	 */
13354 	ill = ill_lookup_on_name(name, do_alloc, isv6,
13355 	    &did_alloc, ipst);
13356 	if (cp != endp)
13357 		*cp = IPIF_SEPARATOR_CHAR;
13358 	if (ill == NULL)
13359 		return (NULL);
13360 
13361 	/* Establish the unit number in the name. */
13362 	id = 0;
13363 	if (cp < endp && *endp == '\0') {
13364 		/* If there was a colon, the unit number follows. */
13365 		cp++;
13366 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13367 			ill_refrele(ill);
13368 			return (NULL);
13369 		}
13370 	}
13371 
13372 	mutex_enter(&ill->ill_lock);
13373 	/* Now see if there is an IPIF with this unit number. */
13374 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13375 		if (ipif->ipif_id == id) {
13376 			if (zoneid != ALL_ZONES &&
13377 			    zoneid != ipif->ipif_zoneid &&
13378 			    ipif->ipif_zoneid != ALL_ZONES) {
13379 				mutex_exit(&ill->ill_lock);
13380 				ill_refrele(ill);
13381 				return (NULL);
13382 			}
13383 			if (IPIF_CAN_LOOKUP(ipif)) {
13384 				ipif_refhold_locked(ipif);
13385 				mutex_exit(&ill->ill_lock);
13386 				if (!did_alloc)
13387 					*exists = B_TRUE;
13388 				/*
13389 				 * Drop locks before calling ill_refrele
13390 				 * since it can potentially call into
13391 				 * ipif_ill_refrele_tail which can end up
13392 				 * in trying to acquire any lock.
13393 				 */
13394 				ill_refrele(ill);
13395 				return (ipif);
13396 			}
13397 		}
13398 	}
13399 
13400 	if (!do_alloc) {
13401 		mutex_exit(&ill->ill_lock);
13402 		ill_refrele(ill);
13403 		return (NULL);
13404 	}
13405 
13406 	/*
13407 	 * If none found, atomically allocate and return a new one.
13408 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13409 	 * to support "receive only" use of lo0:1 etc. as is still done
13410 	 * below as an initial guess.
13411 	 * However, this is now likely to be overriden later in ipif_up_done()
13412 	 * when we know for sure what address has been configured on the
13413 	 * interface, since we might have more than one loopback interface
13414 	 * with a loopback address, e.g. in the case of zones, and all the
13415 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13416 	 */
13417 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13418 		ire_type = IRE_LOOPBACK;
13419 	else
13420 		ire_type = IRE_LOCAL;
13421 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13422 	if (ipif != NULL)
13423 		ipif_refhold_locked(ipif);
13424 	mutex_exit(&ill->ill_lock);
13425 	ill_refrele(ill);
13426 	return (ipif);
13427 }
13428 
13429 /*
13430  * This routine is called whenever a new address comes up on an ipif.  If
13431  * we are configured to respond to address mask requests, then we are supposed
13432  * to broadcast an address mask reply at this time.  This routine is also
13433  * called if we are already up, but a netmask change is made.  This is legal
13434  * but might not make the system manager very popular.	(May be called
13435  * as writer.)
13436  */
13437 void
13438 ipif_mask_reply(ipif_t *ipif)
13439 {
13440 	icmph_t	*icmph;
13441 	ipha_t	*ipha;
13442 	mblk_t	*mp;
13443 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13444 	ip_xmit_attr_t ixas;
13445 
13446 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
13447 
13448 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13449 		return;
13450 
13451 	/* ICMP mask reply is IPv4 only */
13452 	ASSERT(!ipif->ipif_isv6);
13453 	/* ICMP mask reply is not for a loopback interface */
13454 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
13455 
13456 	if (ipif->ipif_lcl_addr == INADDR_ANY)
13457 		return;
13458 
13459 	mp = allocb(REPLY_LEN, BPRI_HI);
13460 	if (mp == NULL)
13461 		return;
13462 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
13463 
13464 	ipha = (ipha_t *)mp->b_rptr;
13465 	bzero(ipha, REPLY_LEN);
13466 	*ipha = icmp_ipha;
13467 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13468 	ipha->ipha_src = ipif->ipif_lcl_addr;
13469 	ipha->ipha_dst = ipif->ipif_brd_addr;
13470 	ipha->ipha_length = htons(REPLY_LEN);
13471 	ipha->ipha_ident = 0;
13472 
13473 	icmph = (icmph_t *)&ipha[1];
13474 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
13475 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
13476 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
13477 
13478 	bzero(&ixas, sizeof (ixas));
13479 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13480 	ixas.ixa_flags |= IXAF_SET_SOURCE;
13481 	ixas.ixa_zoneid = ALL_ZONES;
13482 	ixas.ixa_ifindex = 0;
13483 	ixas.ixa_ipst = ipst;
13484 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
13485 	(void) ip_output_simple(mp, &ixas);
13486 	ixa_cleanup(&ixas);
13487 #undef	REPLY_LEN
13488 }
13489 
13490 /*
13491  * Join the ipif specific multicast groups.
13492  * Must be called after a mapping has been set up in the resolver.  (Always
13493  * called as writer.)
13494  */
13495 void
13496 ipif_multicast_up(ipif_t *ipif)
13497 {
13498 	int err;
13499 	ill_t *ill;
13500 	ilm_t *ilm;
13501 
13502 	ASSERT(IAM_WRITER_IPIF(ipif));
13503 
13504 	ill = ipif->ipif_ill;
13505 
13506 	ip1dbg(("ipif_multicast_up\n"));
13507 	if (!(ill->ill_flags & ILLF_MULTICAST) ||
13508 	    ipif->ipif_allhosts_ilm != NULL)
13509 		return;
13510 
13511 	if (ipif->ipif_isv6) {
13512 		in6_addr_t v6allmc = ipv6_all_hosts_mcast;
13513 		in6_addr_t v6solmc = ipv6_solicited_node_mcast;
13514 
13515 		v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
13516 
13517 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
13518 			return;
13519 
13520 		ip1dbg(("ipif_multicast_up - addmulti\n"));
13521 
13522 		/*
13523 		 * Join the all hosts multicast address.  We skip this for
13524 		 * underlying IPMP interfaces since they should be invisible.
13525 		 */
13526 		if (!IS_UNDER_IPMP(ill)) {
13527 			ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
13528 			    &err);
13529 			if (ilm == NULL) {
13530 				ASSERT(err != 0);
13531 				ip0dbg(("ipif_multicast_up: "
13532 				    "all_hosts_mcast failed %d\n", err));
13533 				return;
13534 			}
13535 			ipif->ipif_allhosts_ilm = ilm;
13536 		}
13537 
13538 		/*
13539 		 * Enable multicast for the solicited node multicast address.
13540 		 * If IPMP we need to put the membership on the upper ill.
13541 		 */
13542 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
13543 			ill_t *mcast_ill = NULL;
13544 			boolean_t need_refrele;
13545 
13546 			if (IS_UNDER_IPMP(ill) &&
13547 			    (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
13548 				need_refrele = B_TRUE;
13549 			} else {
13550 				mcast_ill = ill;
13551 				need_refrele = B_FALSE;
13552 			}
13553 
13554 			ilm = ip_addmulti(&v6solmc, mcast_ill,
13555 			    ipif->ipif_zoneid, &err);
13556 			if (need_refrele)
13557 				ill_refrele(mcast_ill);
13558 
13559 			if (ilm == NULL) {
13560 				ASSERT(err != 0);
13561 				ip0dbg(("ipif_multicast_up: solicited MC"
13562 				    " failed %d\n", err));
13563 				if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
13564 					ipif->ipif_allhosts_ilm = NULL;
13565 					(void) ip_delmulti(ilm);
13566 				}
13567 				return;
13568 			}
13569 			ipif->ipif_solmulti_ilm = ilm;
13570 		}
13571 	} else {
13572 		in6_addr_t v6group;
13573 
13574 		if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
13575 			return;
13576 
13577 		/* Join the all hosts multicast address */
13578 		ip1dbg(("ipif_multicast_up - addmulti\n"));
13579 		IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);
13580 
13581 		ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
13582 		if (ilm == NULL) {
13583 			ASSERT(err != 0);
13584 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
13585 			return;
13586 		}
13587 		ipif->ipif_allhosts_ilm = ilm;
13588 	}
13589 }
13590 
13591 /*
13592  * Blow away any multicast groups that we joined in ipif_multicast_up().
13593  * (ilms from explicit memberships are handled in conn_update_ill.)
13594  */
13595 void
13596 ipif_multicast_down(ipif_t *ipif)
13597 {
13598 	ASSERT(IAM_WRITER_IPIF(ipif));
13599 
13600 	ip1dbg(("ipif_multicast_down\n"));
13601 
13602 	if (ipif->ipif_allhosts_ilm != NULL) {
13603 		(void) ip_delmulti(ipif->ipif_allhosts_ilm);
13604 		ipif->ipif_allhosts_ilm = NULL;
13605 	}
13606 	if (ipif->ipif_solmulti_ilm != NULL) {
13607 		(void) ip_delmulti(ipif->ipif_solmulti_ilm);
13608 		ipif->ipif_solmulti_ilm = NULL;
13609 	}
13610 }
13611 
13612 /*
13613  * Used when an interface comes up to recreate any extra routes on this
13614  * interface.
13615  */
13616 int
13617 ill_recover_saved_ire(ill_t *ill)
13618 {
13619 	mblk_t		*mp;
13620 	ip_stack_t	*ipst = ill->ill_ipst;
13621 
13622 	ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));
13623 
13624 	mutex_enter(&ill->ill_saved_ire_lock);
13625 	for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
13626 		ire_t		*ire, *nire;
13627 		ifrt_t		*ifrt;
13628 
13629 		ifrt = (ifrt_t *)mp->b_rptr;
13630 		/*
13631 		 * Create a copy of the IRE with the saved address and netmask.
13632 		 */
13633 		if (ill->ill_isv6) {
13634 			ire = ire_create_v6(
13635 			    &ifrt->ifrt_v6addr,
13636 			    &ifrt->ifrt_v6mask,
13637 			    &ifrt->ifrt_v6gateway_addr,
13638 			    ifrt->ifrt_type,
13639 			    ill,
13640 			    ifrt->ifrt_zoneid,
13641 			    ifrt->ifrt_flags,
13642 			    NULL,
13643 			    ipst);
13644 		} else {
13645 			ire = ire_create(
13646 			    (uint8_t *)&ifrt->ifrt_addr,
13647 			    (uint8_t *)&ifrt->ifrt_mask,
13648 			    (uint8_t *)&ifrt->ifrt_gateway_addr,
13649 			    ifrt->ifrt_type,
13650 			    ill,
13651 			    ifrt->ifrt_zoneid,
13652 			    ifrt->ifrt_flags,
13653 			    NULL,
13654 			    ipst);
13655 		}
13656 		if (ire == NULL) {
13657 			mutex_exit(&ill->ill_saved_ire_lock);
13658 			return (ENOMEM);
13659 		}
13660 
13661 		if (ifrt->ifrt_flags & RTF_SETSRC) {
13662 			if (ill->ill_isv6) {
13663 				ire->ire_setsrc_addr_v6 =
13664 				    ifrt->ifrt_v6setsrc_addr;
13665 			} else {
13666 				ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
13667 			}
13668 		}
13669 
13670 		/*
13671 		 * Some software (for example, GateD and Sun Cluster) attempts
13672 		 * to create (what amount to) IRE_PREFIX routes with the
13673 		 * loopback address as the gateway.  This is primarily done to
13674 		 * set up prefixes with the RTF_REJECT flag set (for example,
13675 		 * when generating aggregate routes.)
13676 		 *
13677 		 * If the IRE type (as defined by ill->ill_net_type) is
13678 		 * IRE_LOOPBACK, then we map the request into a
13679 		 * IRE_IF_NORESOLVER.
13680 		 */
13681 		if (ill->ill_net_type == IRE_LOOPBACK)
13682 			ire->ire_type = IRE_IF_NORESOLVER;
13683 
13684 		/*
13685 		 * ire held by ire_add, will be refreled' towards the
13686 		 * the end of ipif_up_done
13687 		 */
13688 		nire = ire_add(ire);
13689 		/*
13690 		 * Check if it was a duplicate entry. This handles
13691 		 * the case of two racing route adds for the same route
13692 		 */
13693 		if (nire == NULL) {
13694 			ip1dbg(("ill_recover_saved_ire: FAILED\n"));
13695 		} else if (nire != ire) {
13696 			ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
13697 			    (void *)nire));
13698 			ire_delete(nire);
13699 		} else {
13700 			ip1dbg(("ill_recover_saved_ire: added ire %p\n",
13701 			    (void *)nire));
13702 		}
13703 		if (nire != NULL)
13704 			ire_refrele(nire);
13705 	}
13706 	mutex_exit(&ill->ill_saved_ire_lock);
13707 	return (0);
13708 }
13709 
13710 /*
13711  * Used to set the netmask and broadcast address to default values when the
13712  * interface is brought up.  (Always called as writer.)
13713  */
13714 static void
13715 ipif_set_default(ipif_t *ipif)
13716 {
13717 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
13718 
13719 	if (!ipif->ipif_isv6) {
13720 		/*
13721 		 * Interface holds an IPv4 address. Default
13722 		 * mask is the natural netmask.
13723 		 */
13724 		if (!ipif->ipif_net_mask) {
13725 			ipaddr_t	v4mask;
13726 
13727 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
13728 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
13729 		}
13730 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13731 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
13732 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
13733 		} else {
13734 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
13735 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
13736 		}
13737 		/*
13738 		 * NOTE: SunOS 4.X does this even if the broadcast address
13739 		 * has been already set thus we do the same here.
13740 		 */
13741 		if (ipif->ipif_flags & IPIF_BROADCAST) {
13742 			ipaddr_t	v4addr;
13743 
13744 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
13745 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
13746 		}
13747 	} else {
13748 		/*
13749 		 * Interface holds an IPv6-only address.  Default
13750 		 * mask is all-ones.
13751 		 */
13752 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
13753 			ipif->ipif_v6net_mask = ipv6_all_ones;
13754 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13755 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
13756 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
13757 		} else {
13758 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
13759 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
13760 		}
13761 	}
13762 }
13763 
13764 /*
13765  * Return 0 if this address can be used as local address without causing
13766  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
13767  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
13768  * Note that the same IPv6 link-local address is allowed as long as the ills
13769  * are not on the same link.
13770  */
13771 int
13772 ip_addr_availability_check(ipif_t *new_ipif)
13773 {
13774 	in6_addr_t our_v6addr;
13775 	ill_t *ill;
13776 	ipif_t *ipif;
13777 	ill_walk_context_t ctx;
13778 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
13779 
13780 	ASSERT(IAM_WRITER_IPIF(new_ipif));
13781 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
13782 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
13783 
13784 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
13785 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
13786 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
13787 		return (0);
13788 
13789 	our_v6addr = new_ipif->ipif_v6lcl_addr;
13790 
13791 	if (new_ipif->ipif_isv6)
13792 		ill = ILL_START_WALK_V6(&ctx, ipst);
13793 	else
13794 		ill = ILL_START_WALK_V4(&ctx, ipst);
13795 
13796 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
13797 		for (ipif = ill->ill_ipif; ipif != NULL;
13798 		    ipif = ipif->ipif_next) {
13799 			if ((ipif == new_ipif) ||
13800 			    !(ipif->ipif_flags & IPIF_UP) ||
13801 			    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
13802 			    !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
13803 			    &our_v6addr))
13804 				continue;
13805 
13806 			if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
13807 				new_ipif->ipif_flags |= IPIF_UNNUMBERED;
13808 			else if (ipif->ipif_flags & IPIF_POINTOPOINT)
13809 				ipif->ipif_flags |= IPIF_UNNUMBERED;
13810 			else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
13811 			    IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
13812 			    !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
13813 				continue;
13814 			else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
13815 			    ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
13816 				continue;
13817 			else if (new_ipif->ipif_ill == ill)
13818 				return (EADDRINUSE);
13819 			else
13820 				return (EADDRNOTAVAIL);
13821 		}
13822 	}
13823 
13824 	return (0);
13825 }
13826 
13827 /*
13828  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
13829  * IREs for the ipif.
13830  * When the routine returns EINPROGRESS then mp has been consumed and
13831  * the ioctl will be acked from ip_rput_dlpi.
13832  */
13833 int
13834 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
13835 {
13836 	ill_t		*ill = ipif->ipif_ill;
13837 	boolean_t 	isv6 = ipif->ipif_isv6;
13838 	int		err = 0;
13839 	boolean_t	success;
13840 	uint_t		ipif_orig_id;
13841 	ip_stack_t	*ipst = ill->ill_ipst;
13842 
13843 	ASSERT(IAM_WRITER_IPIF(ipif));
13844 
13845 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13846 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
13847 	    ill_t *, ill, ipif_t *, ipif);
13848 
13849 	/* Shouldn't get here if it is already up. */
13850 	if (ipif->ipif_flags & IPIF_UP)
13851 		return (EALREADY);
13852 
13853 	/*
13854 	 * If this is a request to bring up a data address on an interface
13855 	 * under IPMP, then move the address to its IPMP meta-interface and
13856 	 * try to bring it up.  One complication is that the zeroth ipif for
13857 	 * an ill is special, in that every ill always has one, and that code
13858 	 * throughout IP deferences ill->ill_ipif without holding any locks.
13859 	 */
13860 	if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
13861 	    (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
13862 		ipif_t	*stubipif = NULL, *moveipif = NULL;
13863 		ill_t	*ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
13864 
13865 		/*
13866 		 * The ipif being brought up should be quiesced.  If it's not,
13867 		 * something has gone amiss and we need to bail out.  (If it's
13868 		 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
13869 		 */
13870 		mutex_enter(&ill->ill_lock);
13871 		if (!ipif_is_quiescent(ipif)) {
13872 			mutex_exit(&ill->ill_lock);
13873 			return (EINVAL);
13874 		}
13875 		mutex_exit(&ill->ill_lock);
13876 
13877 		/*
13878 		 * If we're going to need to allocate ipifs, do it prior
13879 		 * to starting the move (and grabbing locks).
13880 		 */
13881 		if (ipif->ipif_id == 0) {
13882 			if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
13883 			    B_FALSE, &err)) == NULL) {
13884 				return (err);
13885 			}
13886 			if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
13887 			    B_FALSE, &err)) == NULL) {
13888 				mi_free(moveipif);
13889 				return (err);
13890 			}
13891 		}
13892 
13893 		/*
13894 		 * Grab or transfer the ipif to move.  During the move, keep
13895 		 * ill_g_lock held to prevent any ill walker threads from
13896 		 * seeing things in an inconsistent state.
13897 		 */
13898 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13899 		if (ipif->ipif_id != 0) {
13900 			ipif_remove(ipif);
13901 		} else {
13902 			ipif_transfer(ipif, moveipif, stubipif);
13903 			ipif = moveipif;
13904 		}
13905 
13906 		/*
13907 		 * Place the ipif on the IPMP ill.  If the zeroth ipif on
13908 		 * the IPMP ill is a stub (0.0.0.0 down address) then we
13909 		 * replace that one.  Otherwise, pick the next available slot.
13910 		 */
13911 		ipif->ipif_ill = ipmp_ill;
13912 		ipif_orig_id = ipif->ipif_id;
13913 
13914 		if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
13915 			ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
13916 			ipif = ipmp_ill->ill_ipif;
13917 		} else {
13918 			ipif->ipif_id = -1;
13919 			if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
13920 				/*
13921 				 * No more available ipif_id's -- put it back
13922 				 * on the original ill and fail the operation.
13923 				 * Since we're writer on the ill, we can be
13924 				 * sure our old slot is still available.
13925 				 */
13926 				ipif->ipif_id = ipif_orig_id;
13927 				ipif->ipif_ill = ill;
13928 				if (ipif_orig_id == 0) {
13929 					ipif_transfer(ipif, ill->ill_ipif,
13930 					    NULL);
13931 				} else {
13932 					VERIFY(ipif_insert(ipif, B_FALSE) == 0);
13933 				}
13934 				rw_exit(&ipst->ips_ill_g_lock);
13935 				return (err);
13936 			}
13937 		}
13938 		rw_exit(&ipst->ips_ill_g_lock);
13939 
13940 		/*
13941 		 * Tell SCTP that the ipif has moved.  Note that even if we
13942 		 * had to allocate a new ipif, the original sequence id was
13943 		 * preserved and therefore SCTP won't know.
13944 		 */
13945 		sctp_move_ipif(ipif, ill, ipmp_ill);
13946 
13947 		/*
13948 		 * If the ipif being brought up was on slot zero, then we
13949 		 * first need to bring up the placeholder we stuck there.  In
13950 		 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
13951 		 * call to ipif_up() itself, if we successfully bring up the
13952 		 * placeholder, we'll check ill_move_ipif and bring it up too.
13953 		 */
13954 		if (ipif_orig_id == 0) {
13955 			ASSERT(ill->ill_move_ipif == NULL);
13956 			ill->ill_move_ipif = ipif;
13957 			if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
13958 				ASSERT(ill->ill_move_ipif == NULL);
13959 			if (err != EINPROGRESS)
13960 				ill->ill_move_ipif = NULL;
13961 			return (err);
13962 		}
13963 
13964 		/*
13965 		 * Bring it up on the IPMP ill.
13966 		 */
13967 		return (ipif_up(ipif, q, mp));
13968 	}
13969 
13970 	/* Skip arp/ndp for any loopback interface. */
13971 	if (ill->ill_wq != NULL) {
13972 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
13973 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
13974 
13975 		if (!ill->ill_dl_up) {
13976 			/*
13977 			 * ill_dl_up is not yet set. i.e. we are yet to
13978 			 * DL_BIND with the driver and this is the first
13979 			 * logical interface on the ill to become "up".
13980 			 * Tell the driver to get going (via DL_BIND_REQ).
13981 			 * Note that changing "significant" IFF_ flags
13982 			 * address/netmask etc cause a down/up dance, but
13983 			 * does not cause an unbind (DL_UNBIND) with the driver
13984 			 */
13985 			return (ill_dl_up(ill, ipif, mp, q));
13986 		}
13987 
13988 		/*
13989 		 * ipif_resolver_up may end up needeing to bind/attach
13990 		 * the ARP stream, which in turn necessitates a
13991 		 * DLPI message exchange with the driver. ioctls are
13992 		 * serialized and so we cannot send more than one
13993 		 * interface up message at a time. If ipif_resolver_up
13994 		 * does need to wait for the DLPI handshake for the ARP stream,
13995 		 * we get EINPROGRESS and we will complete in arp_bringup_done.
13996 		 */
13997 
13998 		ASSERT(connp != NULL || !CONN_Q(q));
13999 		if (connp != NULL)
14000 			mutex_enter(&connp->conn_lock);
14001 		mutex_enter(&ill->ill_lock);
14002 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14003 		mutex_exit(&ill->ill_lock);
14004 		if (connp != NULL)
14005 			mutex_exit(&connp->conn_lock);
14006 		if (!success)
14007 			return (EINTR);
14008 
14009 		/*
14010 		 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14011 		 * complete when ipif_ndp_up returns.
14012 		 */
14013 		err = ipif_resolver_up(ipif, Res_act_initial);
14014 		if (err == EINPROGRESS) {
14015 			/* We will complete it in arp_bringup_done() */
14016 			return (err);
14017 		}
14018 
14019 		if (isv6 && err == 0)
14020 			err = ipif_ndp_up(ipif, B_TRUE);
14021 
14022 		ASSERT(err != EINPROGRESS);
14023 		mp = ipsq_pending_mp_get(ipsq, &connp);
14024 		ASSERT(mp != NULL);
14025 		if (err != 0)
14026 			return (err);
14027 	} else {
14028 		/*
14029 		 * Interfaces without underlying hardware don't do duplicate
14030 		 * address detection.
14031 		 */
14032 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14033 		ipif->ipif_addr_ready = 1;
14034 		err = ill_add_ires(ill);
14035 		/* allocation failure? */
14036 		if (err != 0)
14037 			return (err);
14038 	}
14039 
14040 	err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14041 	if (err == 0 && ill->ill_move_ipif != NULL) {
14042 		ipif = ill->ill_move_ipif;
14043 		ill->ill_move_ipif = NULL;
14044 		return (ipif_up(ipif, q, mp));
14045 	}
14046 	return (err);
14047 }
14048 
14049 /*
14050  * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14051  * The identical set of IREs need to be removed in ill_delete_ires().
14052  */
14053 int
14054 ill_add_ires(ill_t *ill)
14055 {
14056 	ire_t	*ire;
14057 	in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14058 	in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);
14059 
14060 	if (ill->ill_ire_multicast != NULL)
14061 		return (0);
14062 
14063 	/*
14064 	 * provide some dummy ire_addr for creating the ire.
14065 	 */
14066 	if (ill->ill_isv6) {
14067 		ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14068 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14069 	} else {
14070 		ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14071 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14072 	}
14073 	if (ire == NULL)
14074 		return (ENOMEM);
14075 
14076 	ill->ill_ire_multicast = ire;
14077 	return (0);
14078 }
14079 
14080 void
14081 ill_delete_ires(ill_t *ill)
14082 {
14083 	if (ill->ill_ire_multicast != NULL) {
14084 		/*
14085 		 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14086 		 * which was taken without any th_tracing enabled.
14087 		 * We also mark it as condemned (note that it was never added)
14088 		 * so that caching conn's can move off of it.
14089 		 */
14090 		ire_make_condemned(ill->ill_ire_multicast);
14091 		ire_refrele_notr(ill->ill_ire_multicast);
14092 		ill->ill_ire_multicast = NULL;
14093 	}
14094 }
14095 
14096 /*
14097  * Perform a bind for the physical device.
14098  * When the routine returns EINPROGRESS then mp has been consumed and
14099  * the ioctl will be acked from ip_rput_dlpi.
14100  * Allocate an unbind message and save it until ipif_down.
14101  */
14102 static int
14103 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14104 {
14105 	mblk_t	*bind_mp = NULL;
14106 	mblk_t	*unbind_mp = NULL;
14107 	conn_t	*connp;
14108 	boolean_t success;
14109 	int	err;
14110 
14111 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);
14112 
14113 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14114 	ASSERT(IAM_WRITER_ILL(ill));
14115 	ASSERT(mp != NULL);
14116 
14117 	/*
14118 	 * Make sure we have an IRE_MULTICAST in case we immediately
14119 	 * start receiving packets.
14120 	 */
14121 	err = ill_add_ires(ill);
14122 	if (err != 0)
14123 		goto bad;
14124 
14125 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14126 	    DL_BIND_REQ);
14127 	if (bind_mp == NULL)
14128 		goto bad;
14129 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14130 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
14131 
14132 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
14133 	if (unbind_mp == NULL)
14134 		goto bad;
14135 
14136 	/*
14137 	 * Record state needed to complete this operation when the
14138 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
14139 	 */
14140 	connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14141 	ASSERT(connp != NULL || !CONN_Q(q));
14142 	GRAB_CONN_LOCK(q);
14143 	mutex_enter(&ipif->ipif_ill->ill_lock);
14144 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14145 	mutex_exit(&ipif->ipif_ill->ill_lock);
14146 	RELEASE_CONN_LOCK(q);
14147 	if (!success)
14148 		goto bad;
14149 
14150 	/*
14151 	 * Save the unbind message for ill_dl_down(); it will be consumed when
14152 	 * the interface goes down.
14153 	 */
14154 	ASSERT(ill->ill_unbind_mp == NULL);
14155 	ill->ill_unbind_mp = unbind_mp;
14156 
14157 	ill_dlpi_send(ill, bind_mp);
14158 	/* Send down link-layer capabilities probe if not already done. */
14159 	ill_capability_probe(ill);
14160 
14161 	/*
14162 	 * Sysid used to rely on the fact that netboots set domainname
14163 	 * and the like. Now that miniroot boots aren't strictly netboots
14164 	 * and miniroot network configuration is driven from userland
14165 	 * these things still need to be set. This situation can be detected
14166 	 * by comparing the interface being configured here to the one
14167 	 * dhcifname was set to reference by the boot loader. Once sysid is
14168 	 * converted to use dhcp_ipc_getinfo() this call can go away.
14169 	 */
14170 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14171 	    (strcmp(ill->ill_name, dhcifname) == 0) &&
14172 	    (strlen(srpc_domain) == 0)) {
14173 		if (dhcpinit() != 0)
14174 			cmn_err(CE_WARN, "no cached dhcp response");
14175 	}
14176 
14177 	/*
14178 	 * This operation will complete in ip_rput_dlpi with either
14179 	 * a DL_BIND_ACK or DL_ERROR_ACK.
14180 	 */
14181 	return (EINPROGRESS);
14182 bad:
14183 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
14184 
14185 	freemsg(bind_mp);
14186 	freemsg(unbind_mp);
14187 	return (ENOMEM);
14188 }
14189 
14190 /* Add room for tcp+ip headers */
14191 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
14192 
14193 /*
14194  * DLPI and ARP is up.
14195  * Create all the IREs associated with an interface. Bring up multicast.
14196  * Set the interface flag and finish other initialization
14197  * that potentially had to be deferred to after DL_BIND_ACK.
14198  */
14199 int
14200 ipif_up_done(ipif_t *ipif)
14201 {
14202 	ill_t		*ill = ipif->ipif_ill;
14203 	int		err = 0;
14204 	boolean_t	loopback = B_FALSE;
14205 	boolean_t	update_src_selection = B_TRUE;
14206 	ipif_t		*tmp_ipif;
14207 
14208 	ip1dbg(("ipif_up_done(%s:%u)\n",
14209 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
14210 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14211 	    ill_t *, ill, ipif_t *, ipif);
14212 
14213 	/* Check if this is a loopback interface */
14214 	if (ipif->ipif_ill->ill_wq == NULL)
14215 		loopback = B_TRUE;
14216 
14217 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14218 
14219 	/*
14220 	 * If all other interfaces for this ill are down or DEPRECATED,
14221 	 * or otherwise unsuitable for source address selection,
14222 	 * reset the src generation numbers to make sure source
14223 	 * address selection gets to take this new ipif into account.
14224 	 * No need to hold ill_lock while traversing the ipif list since
14225 	 * we are writer
14226 	 */
14227 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14228 	    tmp_ipif = tmp_ipif->ipif_next) {
14229 		if (((tmp_ipif->ipif_flags &
14230 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14231 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14232 		    (tmp_ipif == ipif))
14233 			continue;
14234 		/* first useable pre-existing interface */
14235 		update_src_selection = B_FALSE;
14236 		break;
14237 	}
14238 	if (update_src_selection)
14239 		ip_update_source_selection(ill->ill_ipst);
14240 
14241 	if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14242 		nce_t *loop_nce = NULL;
14243 		uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);
14244 
14245 		/*
14246 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14247 		 * ipif_lookup_on_name(), but in the case of zones we can have
14248 		 * several loopback addresses on lo0. So all the interfaces with
14249 		 * loopback addresses need to be marked IRE_LOOPBACK.
14250 		 */
14251 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14252 		    htonl(INADDR_LOOPBACK))
14253 			ipif->ipif_ire_type = IRE_LOOPBACK;
14254 		else
14255 			ipif->ipif_ire_type = IRE_LOCAL;
14256 		if (ill->ill_net_type != IRE_LOOPBACK)
14257 			flags |= NCE_F_PUBLISH;
14258 
14259 		/* add unicast nce for the local addr */
14260 		err = nce_lookup_then_add_v4(ill, NULL,
14261 		    ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14262 		    ND_REACHABLE, &loop_nce);
14263 		/* A shared-IP zone sees EEXIST for lo0:N */
14264 		if (err == 0 || err == EEXIST) {
14265 			ipif->ipif_added_nce = 1;
14266 			loop_nce->nce_ipif_cnt++;
14267 			nce_refrele(loop_nce);
14268 			err = 0;
14269 		} else {
14270 			ASSERT(loop_nce == NULL);
14271 			return (err);
14272 		}
14273 	}
14274 
14275 	/* Create all the IREs associated with this interface */
14276 	err = ipif_add_ires_v4(ipif, loopback);
14277 	if (err != 0) {
14278 		/*
14279 		 * see comments about return value from
14280 		 * ip_addr_availability_check() in ipif_add_ires_v4().
14281 		 */
14282 		if (err != EADDRINUSE) {
14283 			(void) ipif_arp_down(ipif);
14284 		} else {
14285 			/*
14286 			 * Make IPMP aware of the deleted ipif so that
14287 			 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14288 			 * can be completed. Note that we do not want to
14289 			 * destroy the nce that was created on the ipmp_ill
14290 			 * for the active copy of the duplicate address in
14291 			 * use.
14292 			 */
14293 			if (IS_IPMP(ill))
14294 				ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14295 			err = EADDRNOTAVAIL;
14296 		}
14297 		return (err);
14298 	}
14299 
14300 	if (ill->ill_ipif_up_count == 1 && !loopback) {
14301 		/* Recover any additional IREs entries for this ill */
14302 		(void) ill_recover_saved_ire(ill);
14303 	}
14304 
14305 	if (ill->ill_need_recover_multicast) {
14306 		/*
14307 		 * Need to recover all multicast memberships in the driver.
14308 		 * This had to be deferred until we had attached.  The same
14309 		 * code exists in ipif_up_done_v6() to recover IPv6
14310 		 * memberships.
14311 		 *
14312 		 * Note that it would be preferable to unconditionally do the
14313 		 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14314 		 * that since ill_join_allmulti() depends on ill_dl_up being
14315 		 * set, and it is not set until we receive a DL_BIND_ACK after
14316 		 * having called ill_dl_up().
14317 		 */
14318 		ill_recover_multicast(ill);
14319 	}
14320 
14321 	if (ill->ill_ipif_up_count == 1) {
14322 		/*
14323 		 * Since the interface is now up, it may now be active.
14324 		 */
14325 		if (IS_UNDER_IPMP(ill))
14326 			ipmp_ill_refresh_active(ill);
14327 
14328 		/*
14329 		 * If this is an IPMP interface, we may now be able to
14330 		 * establish ARP entries.
14331 		 */
14332 		if (IS_IPMP(ill))
14333 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
14334 	}
14335 
14336 	/* Join the allhosts multicast address */
14337 	ipif_multicast_up(ipif);
14338 
14339 	if (!loopback && !update_src_selection &&
14340 	    !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14341 		ip_update_source_selection(ill->ill_ipst);
14342 
14343 	if (!loopback && ipif->ipif_addr_ready) {
14344 		/* Broadcast an address mask reply. */
14345 		ipif_mask_reply(ipif);
14346 	}
14347 	/* Perhaps ilgs should use this ill */
14348 	update_conn_ill(NULL, ill->ill_ipst);
14349 
14350 	/*
14351 	 * This had to be deferred until we had bound.  Tell routing sockets and
14352 	 * others that this interface is up if it looks like the address has
14353 	 * been validated.  Otherwise, if it isn't ready yet, wait for
14354 	 * duplicate address detection to do its thing.
14355 	 */
14356 	if (ipif->ipif_addr_ready)
14357 		ipif_up_notify(ipif);
14358 	return (0);
14359 }
14360 
14361 /*
14362  * Add the IREs associated with the ipif.
14363  * Those MUST be explicitly removed in ipif_delete_ires_v4.
14364  */
14365 static int
14366 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14367 {
14368 	ill_t		*ill = ipif->ipif_ill;
14369 	ip_stack_t	*ipst = ill->ill_ipst;
14370 	ire_t		*ire_array[20];
14371 	ire_t		**irep = ire_array;
14372 	ire_t		**irep1;
14373 	ipaddr_t	net_mask = 0;
14374 	ipaddr_t	subnet_mask, route_mask;
14375 	int		err;
14376 	ire_t		*ire_local = NULL;	/* LOCAL or LOOPBACK */
14377 	ire_t		*ire_if = NULL;
14378 
14379 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14380 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14381 		/*
14382 		 * If we're on a labeled system then make sure that zone-
14383 		 * private addresses have proper remote host database entries.
14384 		 */
14385 		if (is_system_labeled() &&
14386 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
14387 		    !tsol_check_interface_address(ipif))
14388 			return (EINVAL);
14389 
14390 		/* Register the source address for __sin6_src_id */
14391 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14392 		    ipif->ipif_zoneid, ipst);
14393 		if (err != 0) {
14394 			ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14395 			return (err);
14396 		}
14397 
14398 		/* If the interface address is set, create the local IRE. */
14399 		ire_local = ire_create(
14400 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
14401 		    (uchar_t *)&ip_g_all_ones,		/* mask */
14402 		    NULL,				/* no gateway */
14403 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
14404 		    ipif->ipif_ill,
14405 		    ipif->ipif_zoneid,
14406 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14407 		    RTF_PRIVATE : 0) | RTF_KERNEL,
14408 		    NULL,
14409 		    ipst);
14410 		ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14411 		    " for 0x%x\n", (void *)ipif, (void *)ire_local,
14412 		    ipif->ipif_ire_type,
14413 		    ntohl(ipif->ipif_lcl_addr)));
14414 		if (ire_local == NULL) {
14415 			ip1dbg(("ipif_up_done: NULL ire_local\n"));
14416 			err = ENOMEM;
14417 			goto bad;
14418 		}
14419 	} else {
14420 		ip1dbg((
14421 		    "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14422 		    ipif->ipif_ire_type,
14423 		    ntohl(ipif->ipif_lcl_addr),
14424 		    (uint_t)ipif->ipif_flags));
14425 	}
14426 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14427 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14428 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14429 	} else {
14430 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
14431 	}
14432 
14433 	subnet_mask = ipif->ipif_net_mask;
14434 
14435 	/*
14436 	 * If mask was not specified, use natural netmask of
14437 	 * interface address. Also, store this mask back into the
14438 	 * ipif struct.
14439 	 */
14440 	if (subnet_mask == 0) {
14441 		subnet_mask = net_mask;
14442 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14443 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14444 		    ipif->ipif_v6subnet);
14445 	}
14446 
14447 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14448 	if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14449 	    ipif->ipif_subnet != INADDR_ANY) {
14450 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14451 
14452 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14453 			route_mask = IP_HOST_MASK;
14454 		} else {
14455 			route_mask = subnet_mask;
14456 		}
14457 
14458 		ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
14459 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
14460 		    (void *)ipif, (void *)ill, ill->ill_net_type,
14461 		    ntohl(ipif->ipif_subnet)));
14462 		ire_if = ire_create(
14463 		    (uchar_t *)&ipif->ipif_subnet,
14464 		    (uchar_t *)&route_mask,
14465 		    (uchar_t *)&ipif->ipif_lcl_addr,
14466 		    ill->ill_net_type,
14467 		    ill,
14468 		    ipif->ipif_zoneid,
14469 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14470 		    RTF_PRIVATE: 0) | RTF_KERNEL,
14471 		    NULL,
14472 		    ipst);
14473 		if (ire_if == NULL) {
14474 			ip1dbg(("ipif_up_done: NULL ire_if\n"));
14475 			err = ENOMEM;
14476 			goto bad;
14477 		}
14478 	}
14479 
14480 	/*
14481 	 * Create any necessary broadcast IREs.
14482 	 */
14483 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
14484 	    !(ipif->ipif_flags & IPIF_NOXMIT))
14485 		irep = ipif_create_bcast_ires(ipif, irep);
14486 
14487 	/* If an earlier ire_create failed, get out now */
14488 	for (irep1 = irep; irep1 > ire_array; ) {
14489 		irep1--;
14490 		if (*irep1 == NULL) {
14491 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
14492 			err = ENOMEM;
14493 			goto bad;
14494 		}
14495 	}
14496 
14497 	/*
14498 	 * Need to atomically check for IP address availability under
14499 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
14500 	 * ills or new ipifs can be added while we are checking availability.
14501 	 */
14502 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14503 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
14504 	/* Mark it up, and increment counters. */
14505 	ipif->ipif_flags |= IPIF_UP;
14506 	ill->ill_ipif_up_count++;
14507 	err = ip_addr_availability_check(ipif);
14508 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
14509 	rw_exit(&ipst->ips_ill_g_lock);
14510 
14511 	if (err != 0) {
14512 		/*
14513 		 * Our address may already be up on the same ill. In this case,
14514 		 * the ARP entry for our ipif replaced the one for the other
14515 		 * ipif. So we don't want to delete it (otherwise the other ipif
14516 		 * would be unable to send packets).
14517 		 * ip_addr_availability_check() identifies this case for us and
14518 		 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
14519 		 * which is the expected error code.
14520 		 */
14521 		ill->ill_ipif_up_count--;
14522 		ipif->ipif_flags &= ~IPIF_UP;
14523 		goto bad;
14524 	}
14525 
14526 	/*
14527 	 * Add in all newly created IREs.  ire_create_bcast() has
14528 	 * already checked for duplicates of the IRE_BROADCAST type.
14529 	 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
14530 	 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
14531 	 * a /32 route.
14532 	 */
14533 	if (ire_if != NULL) {
14534 		ire_if = ire_add(ire_if);
14535 		if (ire_if == NULL) {
14536 			err = ENOMEM;
14537 			goto bad2;
14538 		}
14539 #ifdef DEBUG
14540 		ire_refhold_notr(ire_if);
14541 		ire_refrele(ire_if);
14542 #endif
14543 	}
14544 	if (ire_local != NULL) {
14545 		ire_local = ire_add(ire_local);
14546 		if (ire_local == NULL) {
14547 			err = ENOMEM;
14548 			goto bad2;
14549 		}
14550 #ifdef DEBUG
14551 		ire_refhold_notr(ire_local);
14552 		ire_refrele(ire_local);
14553 #endif
14554 	}
14555 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14556 	if (ire_local != NULL)
14557 		ipif->ipif_ire_local = ire_local;
14558 	if (ire_if != NULL)
14559 		ipif->ipif_ire_if = ire_if;
14560 	rw_exit(&ipst->ips_ill_g_lock);
14561 	ire_local = NULL;
14562 	ire_if = NULL;
14563 
14564 	/*
14565 	 * We first add all of them, and if that succeeds we refrele the
14566 	 * bunch. That enables us to delete all of them should any of the
14567 	 * ire_adds fail.
14568 	 */
14569 	for (irep1 = irep; irep1 > ire_array; ) {
14570 		irep1--;
14571 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
14572 		*irep1 = ire_add(*irep1);
14573 		if (*irep1 == NULL) {
14574 			err = ENOMEM;
14575 			goto bad2;
14576 		}
14577 	}
14578 
14579 	for (irep1 = irep; irep1 > ire_array; ) {
14580 		irep1--;
14581 		/* refheld by ire_add. */
14582 		if (*irep1 != NULL) {
14583 			ire_refrele(*irep1);
14584 			*irep1 = NULL;
14585 		}
14586 	}
14587 
14588 	if (!loopback) {
14589 		/*
14590 		 * If the broadcast address has been set, make sure it makes
14591 		 * sense based on the interface address.
14592 		 * Only match on ill since we are sharing broadcast addresses.
14593 		 */
14594 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
14595 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
14596 			ire_t	*ire;
14597 
14598 			ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
14599 			    IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
14600 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);
14601 
14602 			if (ire == NULL) {
14603 				/*
14604 				 * If there isn't a matching broadcast IRE,
14605 				 * revert to the default for this netmask.
14606 				 */
14607 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
14608 				mutex_enter(&ipif->ipif_ill->ill_lock);
14609 				ipif_set_default(ipif);
14610 				mutex_exit(&ipif->ipif_ill->ill_lock);
14611 			} else {
14612 				ire_refrele(ire);
14613 			}
14614 		}
14615 
14616 	}
14617 	return (0);
14618 
14619 bad2:
14620 	ill->ill_ipif_up_count--;
14621 	ipif->ipif_flags &= ~IPIF_UP;
14622 
14623 bad:
14624 	ip1dbg(("ipif_add_ires: FAILED \n"));
14625 	if (ire_local != NULL)
14626 		ire_delete(ire_local);
14627 	if (ire_if != NULL)
14628 		ire_delete(ire_if);
14629 
14630 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14631 	ire_local = ipif->ipif_ire_local;
14632 	ipif->ipif_ire_local = NULL;
14633 	ire_if = ipif->ipif_ire_if;
14634 	ipif->ipif_ire_if = NULL;
14635 	rw_exit(&ipst->ips_ill_g_lock);
14636 	if (ire_local != NULL) {
14637 		ire_delete(ire_local);
14638 		ire_refrele_notr(ire_local);
14639 	}
14640 	if (ire_if != NULL) {
14641 		ire_delete(ire_if);
14642 		ire_refrele_notr(ire_if);
14643 	}
14644 
14645 	while (irep > ire_array) {
14646 		irep--;
14647 		if (*irep != NULL) {
14648 			ire_delete(*irep);
14649 		}
14650 	}
14651 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
14652 
14653 	return (err);
14654 }
14655 
14656 /* Remove all the IREs created by ipif_add_ires_v4 */
14657 void
14658 ipif_delete_ires_v4(ipif_t *ipif)
14659 {
14660 	ill_t		*ill = ipif->ipif_ill;
14661 	ip_stack_t	*ipst = ill->ill_ipst;
14662 	ire_t		*ire;
14663 
14664 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14665 	ire = ipif->ipif_ire_local;
14666 	ipif->ipif_ire_local = NULL;
14667 	rw_exit(&ipst->ips_ill_g_lock);
14668 	if (ire != NULL) {
14669 		/*
14670 		 * Move count to ipif so we don't loose the count due to
14671 		 * a down/up dance.
14672 		 */
14673 		atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
14674 
14675 		ire_delete(ire);
14676 		ire_refrele_notr(ire);
14677 	}
14678 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14679 	ire = ipif->ipif_ire_if;
14680 	ipif->ipif_ire_if = NULL;
14681 	rw_exit(&ipst->ips_ill_g_lock);
14682 	if (ire != NULL) {
14683 		ire_delete(ire);
14684 		ire_refrele_notr(ire);
14685 	}
14686 
14687 	/*
14688 	 * Delete the broadcast IREs.
14689 	 */
14690 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
14691 	    !(ipif->ipif_flags & IPIF_NOXMIT))
14692 		ipif_delete_bcast_ires(ipif);
14693 }
14694 
14695 /*
14696  * Checks for availbility of a usable source address (if there is one) when the
14697  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
14698  * this selection is done regardless of the destination.
14699  */
14700 boolean_t
14701 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
14702     ip_stack_t *ipst)
14703 {
14704 	ipif_t		*ipif = NULL;
14705 	ill_t		*uill;
14706 
14707 	ASSERT(ifindex != 0);
14708 
14709 	uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
14710 	if (uill == NULL)
14711 		return (B_FALSE);
14712 
14713 	mutex_enter(&uill->ill_lock);
14714 	for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14715 		if (IPIF_IS_CONDEMNED(ipif))
14716 			continue;
14717 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
14718 			continue;
14719 		if (!(ipif->ipif_flags & IPIF_UP))
14720 			continue;
14721 		if (ipif->ipif_zoneid != zoneid)
14722 			continue;
14723 		if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
14724 		    ipif->ipif_lcl_addr == INADDR_ANY)
14725 			continue;
14726 		mutex_exit(&uill->ill_lock);
14727 		ill_refrele(uill);
14728 		return (B_TRUE);
14729 	}
14730 	mutex_exit(&uill->ill_lock);
14731 	ill_refrele(uill);
14732 	return (B_FALSE);
14733 }
14734 
14735 /*
14736  * Find an ipif with a good local address on the ill+zoneid.
14737  */
14738 ipif_t *
14739 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
14740 {
14741 	ipif_t		*ipif;
14742 
14743 	mutex_enter(&ill->ill_lock);
14744 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14745 		if (IPIF_IS_CONDEMNED(ipif))
14746 			continue;
14747 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
14748 			continue;
14749 		if (!(ipif->ipif_flags & IPIF_UP))
14750 			continue;
14751 		if (ipif->ipif_zoneid != zoneid &&
14752 		    ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
14753 			continue;
14754 		if (ill->ill_isv6 ?
14755 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
14756 		    ipif->ipif_lcl_addr == INADDR_ANY)
14757 			continue;
14758 		ipif_refhold_locked(ipif);
14759 		mutex_exit(&ill->ill_lock);
14760 		return (ipif);
14761 	}
14762 	mutex_exit(&ill->ill_lock);
14763 	return (NULL);
14764 }
14765 
14766 /*
14767  * IP source address type, sorted from worst to best.  For a given type,
14768  * always prefer IP addresses on the same subnet.  All-zones addresses are
14769  * suboptimal because they pose problems with unlabeled destinations.
14770  */
14771 typedef enum {
14772 	IPIF_NONE,
14773 	IPIF_DIFFNET_DEPRECATED, 	/* deprecated and different subnet */
14774 	IPIF_SAMENET_DEPRECATED, 	/* deprecated and same subnet */
14775 	IPIF_DIFFNET_ALLZONES,		/* allzones and different subnet */
14776 	IPIF_SAMENET_ALLZONES,		/* allzones and same subnet */
14777 	IPIF_DIFFNET,			/* normal and different subnet */
14778 	IPIF_SAMENET,			/* normal and same subnet */
14779 	IPIF_LOCALADDR			/* local loopback */
14780 } ipif_type_t;
14781 
14782 /*
14783  * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
14784  * `zoneid'.  We rate usable ipifs from low -> high as per the ipif_type_t
14785  * enumeration, and return the highest-rated ipif.  If there's a tie, we pick
14786  * the first one, unless IPMP is used in which case we round-robin among them;
14787  * see below for more.
14788  *
14789  * Returns NULL if there is no suitable source address for the ill.
14790  * This only occurs when there is no valid source address for the ill.
14791  */
14792 ipif_t *
14793 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
14794     boolean_t allow_usesrc, boolean_t *notreadyp)
14795 {
14796 	ill_t	*usill = NULL;
14797 	ill_t	*ipmp_ill = NULL;
14798 	ipif_t	*start_ipif, *next_ipif, *ipif, *best_ipif;
14799 	ipif_type_t type, best_type;
14800 	tsol_tpc_t *src_rhtp, *dst_rhtp;
14801 	ip_stack_t *ipst = ill->ill_ipst;
14802 	boolean_t samenet;
14803 
14804 	if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
14805 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
14806 		    B_FALSE, ipst);
14807 		if (usill != NULL)
14808 			ill = usill;	/* Select source from usesrc ILL */
14809 		else
14810 			return (NULL);
14811 	}
14812 
14813 	/*
14814 	 * Test addresses should never be used for source address selection,
14815 	 * so if we were passed one, switch to the IPMP meta-interface.
14816 	 */
14817 	if (IS_UNDER_IPMP(ill)) {
14818 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
14819 			ill = ipmp_ill;	/* Select source from IPMP ill */
14820 		else
14821 			return (NULL);
14822 	}
14823 
14824 	/*
14825 	 * If we're dealing with an unlabeled destination on a labeled system,
14826 	 * make sure that we ignore source addresses that are incompatible with
14827 	 * the destination's default label.  That destination's default label
14828 	 * must dominate the minimum label on the source address.
14829 	 */
14830 	dst_rhtp = NULL;
14831 	if (is_system_labeled()) {
14832 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
14833 		if (dst_rhtp == NULL)
14834 			return (NULL);
14835 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
14836 			TPC_RELE(dst_rhtp);
14837 			dst_rhtp = NULL;
14838 		}
14839 	}
14840 
14841 	/*
14842 	 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
14843 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
14844 	 * After selecting the right ipif, under ill_lock make sure ipif is
14845 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
14846 	 * we retry. Inside the loop we still need to check for CONDEMNED,
14847 	 * but not under a lock.
14848 	 */
14849 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14850 retry:
14851 	/*
14852 	 * For source address selection, we treat the ipif list as circular
14853 	 * and continue until we get back to where we started.  This allows
14854 	 * IPMP to vary source address selection (which improves inbound load
14855 	 * spreading) by caching its last ending point and starting from
14856 	 * there.  NOTE: we don't have to worry about ill_src_ipif changing
14857 	 * ills since that can't happen on the IPMP ill.
14858 	 */
14859 	start_ipif = ill->ill_ipif;
14860 	if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
14861 		start_ipif = ill->ill_src_ipif;
14862 
14863 	ipif = start_ipif;
14864 	best_ipif = NULL;
14865 	best_type = IPIF_NONE;
14866 	do {
14867 		if ((next_ipif = ipif->ipif_next) == NULL)
14868 			next_ipif = ill->ill_ipif;
14869 
14870 		if (IPIF_IS_CONDEMNED(ipif))
14871 			continue;
14872 		/* Always skip NOLOCAL and ANYCAST interfaces */
14873 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
14874 			continue;
14875 		/* Always skip NOACCEPT interfaces */
14876 		if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
14877 			continue;
14878 		if (!(ipif->ipif_flags & IPIF_UP))
14879 			continue;
14880 
14881 		if (!ipif->ipif_addr_ready) {
14882 			if (notreadyp != NULL)
14883 				*notreadyp = B_TRUE;
14884 			continue;
14885 		}
14886 
14887 		if (zoneid != ALL_ZONES &&
14888 		    ipif->ipif_zoneid != zoneid &&
14889 		    ipif->ipif_zoneid != ALL_ZONES)
14890 			continue;
14891 
14892 		/*
14893 		 * Interfaces with 0.0.0.0 address are allowed to be UP, but
14894 		 * are not valid as source addresses.
14895 		 */
14896 		if (ipif->ipif_lcl_addr == INADDR_ANY)
14897 			continue;
14898 
14899 		/*
14900 		 * Check compatibility of local address for destination's
14901 		 * default label if we're on a labeled system.	Incompatible
14902 		 * addresses can't be used at all.
14903 		 */
14904 		if (dst_rhtp != NULL) {
14905 			boolean_t incompat;
14906 
14907 			src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
14908 			    IPV4_VERSION, B_FALSE);
14909 			if (src_rhtp == NULL)
14910 				continue;
14911 			incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
14912 			    src_rhtp->tpc_tp.tp_doi !=
14913 			    dst_rhtp->tpc_tp.tp_doi ||
14914 			    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
14915 			    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
14916 			    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
14917 			    src_rhtp->tpc_tp.tp_sl_set_cipso));
14918 			TPC_RELE(src_rhtp);
14919 			if (incompat)
14920 				continue;
14921 		}
14922 
14923 		samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
14924 
14925 		if (ipif->ipif_lcl_addr == dst) {
14926 			type = IPIF_LOCALADDR;
14927 		} else if (ipif->ipif_flags & IPIF_DEPRECATED) {
14928 			type = samenet ? IPIF_SAMENET_DEPRECATED :
14929 			    IPIF_DIFFNET_DEPRECATED;
14930 		} else if (ipif->ipif_zoneid == ALL_ZONES) {
14931 			type = samenet ? IPIF_SAMENET_ALLZONES :
14932 			    IPIF_DIFFNET_ALLZONES;
14933 		} else {
14934 			type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
14935 		}
14936 
14937 		if (type > best_type) {
14938 			best_type = type;
14939 			best_ipif = ipif;
14940 			if (best_type == IPIF_LOCALADDR)
14941 				break; /* can't get better */
14942 		}
14943 	} while ((ipif = next_ipif) != start_ipif);
14944 
14945 	if ((ipif = best_ipif) != NULL) {
14946 		mutex_enter(&ipif->ipif_ill->ill_lock);
14947 		if (IPIF_IS_CONDEMNED(ipif)) {
14948 			mutex_exit(&ipif->ipif_ill->ill_lock);
14949 			goto retry;
14950 		}
14951 		ipif_refhold_locked(ipif);
14952 
14953 		/*
14954 		 * For IPMP, update the source ipif rotor to the next ipif,
14955 		 * provided we can look it up.  (We must not use it if it's
14956 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
14957 		 * ipif_free() checked ill_src_ipif.)
14958 		 */
14959 		if (IS_IPMP(ill) && ipif != NULL) {
14960 			next_ipif = ipif->ipif_next;
14961 			if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
14962 				ill->ill_src_ipif = next_ipif;
14963 			else
14964 				ill->ill_src_ipif = NULL;
14965 		}
14966 		mutex_exit(&ipif->ipif_ill->ill_lock);
14967 	}
14968 
14969 	rw_exit(&ipst->ips_ill_g_lock);
14970 	if (usill != NULL)
14971 		ill_refrele(usill);
14972 	if (ipmp_ill != NULL)
14973 		ill_refrele(ipmp_ill);
14974 	if (dst_rhtp != NULL)
14975 		TPC_RELE(dst_rhtp);
14976 
14977 #ifdef DEBUG
14978 	if (ipif == NULL) {
14979 		char buf1[INET6_ADDRSTRLEN];
14980 
14981 		ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
14982 		    ill->ill_name,
14983 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
14984 	} else {
14985 		char buf1[INET6_ADDRSTRLEN];
14986 		char buf2[INET6_ADDRSTRLEN];
14987 
14988 		ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
14989 		    ipif->ipif_ill->ill_name,
14990 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
14991 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
14992 		    buf2, sizeof (buf2))));
14993 	}
14994 #endif /* DEBUG */
14995 	return (ipif);
14996 }
14997 
14998 /*
14999  * Pick a source address based on the destination ill and an optional setsrc
15000  * address.
15001  * The result is stored in srcp. If generation is set, then put the source
15002  * generation number there before we look for the source address (to avoid
15003  * missing changes in the set of source addresses.
15004  * If flagsp is set, then us it to pass back ipif_flags.
15005  *
15006  * If the caller wants to cache the returned source address and detect when
15007  * that might be stale, the caller should pass in a generation argument,
15008  * which the caller can later compare against ips_src_generation
15009  *
15010  * The precedence order for selecting an IPv4 source address is:
15011  *  - RTF_SETSRC on the offlink ire always wins.
15012  *  - If usrsrc is set, swap the ill to be the usesrc one.
15013  *  - If IPMP is used on the ill, select a random address from the most
15014  *    preferred ones below:
15015  * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15016  * 2. Not deprecated, not ALL_ZONES
15017  * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15018  * 4. Not deprecated, ALL_ZONES
15019  * 5. If onlink destination, same subnet and deprecated
15020  * 6. Deprecated.
15021  *
15022  * We have lower preference for ALL_ZONES IP addresses,
15023  * as they pose problems with unlabeled destinations.
15024  *
15025  * Note that when multiple IP addresses match e.g., #1 we pick
15026  * the first one if IPMP is not in use. With IPMP we randomize.
15027  */
15028 int
15029 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15030     ipaddr_t multicast_ifaddr,
15031     zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15032     uint32_t *generation, uint64_t *flagsp)
15033 {
15034 	ipif_t *ipif;
15035 	boolean_t notready = B_FALSE;	/* Set if !ipif_addr_ready found */
15036 
15037 	if (flagsp != NULL)
15038 		*flagsp = 0;
15039 
15040 	/*
15041 	 * Need to grab the generation number before we check to
15042 	 * avoid a race with a change to the set of local addresses.
15043 	 * No lock needed since the thread which updates the set of local
15044 	 * addresses use ipif/ill locks and exit those (hence a store memory
15045 	 * barrier) before doing the atomic increase of ips_src_generation.
15046 	 */
15047 	if (generation != NULL) {
15048 		*generation = ipst->ips_src_generation;
15049 	}
15050 
15051 	if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15052 		*srcp = multicast_ifaddr;
15053 		return (0);
15054 	}
15055 
15056 	/* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15057 	if (setsrc != INADDR_ANY) {
15058 		*srcp = setsrc;
15059 		return (0);
15060 	}
15061 	ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, &notready);
15062 	if (ipif == NULL) {
15063 		if (notready)
15064 			return (ENETDOWN);
15065 		else
15066 			return (EADDRNOTAVAIL);
15067 	}
15068 	*srcp = ipif->ipif_lcl_addr;
15069 	if (flagsp != NULL)
15070 		*flagsp = ipif->ipif_flags;
15071 	ipif_refrele(ipif);
15072 	return (0);
15073 }
15074 
15075 /* ARGSUSED */
15076 int
15077 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15078 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15079 {
15080 	/*
15081 	 * ill_phyint_reinit merged the v4 and v6 into a single
15082 	 * ipsq.  We might not have been able to complete the
15083 	 * operation in ipif_set_values, if we could not become
15084 	 * exclusive.  If so restart it here.
15085 	 */
15086 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15087 }
15088 
15089 /*
15090  * Can operate on either a module or a driver queue.
15091  * Returns an error if not a module queue.
15092  */
15093 /* ARGSUSED */
15094 int
15095 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15096     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15097 {
15098 	queue_t		*q1 = q;
15099 	char 		*cp;
15100 	char		interf_name[LIFNAMSIZ];
15101 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
15102 
15103 	if (q->q_next == NULL) {
15104 		ip1dbg((
15105 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
15106 		return (EINVAL);
15107 	}
15108 
15109 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
15110 		return (EALREADY);
15111 
15112 	do {
15113 		q1 = q1->q_next;
15114 	} while (q1->q_next);
15115 	cp = q1->q_qinfo->qi_minfo->mi_idname;
15116 	(void) sprintf(interf_name, "%s%d", cp, ppa);
15117 
15118 	/*
15119 	 * Here we are not going to delay the ioack until after
15120 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15121 	 * original ioctl message before sending the requests.
15122 	 */
15123 	return (ipif_set_values(q, mp, interf_name, &ppa));
15124 }
15125 
15126 /* ARGSUSED */
15127 int
15128 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15129     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15130 {
15131 	return (ENXIO);
15132 }
15133 
15134 /*
15135  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
15136  * `irep'.  Returns a pointer to the next free `irep' entry
15137  * A mirror exists in ipif_delete_bcast_ires().
15138  *
15139  * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15140  * done in ire_add.
15141  */
15142 static ire_t **
15143 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15144 {
15145 	ipaddr_t addr;
15146 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15147 	ipaddr_t subnetmask = ipif->ipif_net_mask;
15148 	ill_t *ill = ipif->ipif_ill;
15149 	zoneid_t zoneid = ipif->ipif_zoneid;
15150 
15151 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
15152 
15153 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15154 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15155 
15156 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15157 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15158 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15159 
15160 	irep = ire_create_bcast(ill, 0, zoneid, irep);
15161 	irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);
15162 
15163 	/*
15164 	 * For backward compatibility, we create net broadcast IREs based on
15165 	 * the old "IP address class system", since some old machines only
15166 	 * respond to these class derived net broadcast.  However, we must not
15167 	 * create these net broadcast IREs if the subnetmask is shorter than
15168 	 * the IP address class based derived netmask.  Otherwise, we may
15169 	 * create a net broadcast address which is the same as an IP address
15170 	 * on the subnet -- and then TCP will refuse to talk to that address.
15171 	 */
15172 	if (netmask < subnetmask) {
15173 		addr = netmask & ipif->ipif_subnet;
15174 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15175 		irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15176 	}
15177 
15178 	/*
15179 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15180 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15181 	 * created.  Creating these broadcast IREs will only create confusion
15182 	 * as `addr' will be the same as the IP address.
15183 	 */
15184 	if (subnetmask != 0xFFFFFFFF) {
15185 		addr = ipif->ipif_subnet;
15186 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15187 		irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15188 	}
15189 
15190 	return (irep);
15191 }
15192 
15193 /*
15194  * Mirror of ipif_create_bcast_ires()
15195  */
15196 static void
15197 ipif_delete_bcast_ires(ipif_t *ipif)
15198 {
15199 	ipaddr_t	addr;
15200 	ipaddr_t	netmask = ip_net_mask(ipif->ipif_lcl_addr);
15201 	ipaddr_t	subnetmask = ipif->ipif_net_mask;
15202 	ill_t		*ill = ipif->ipif_ill;
15203 	zoneid_t	zoneid = ipif->ipif_zoneid;
15204 	ire_t		*ire;
15205 
15206 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15207 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15208 
15209 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15210 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15211 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15212 
15213 	ire = ire_lookup_bcast(ill, 0, zoneid);
15214 	ASSERT(ire != NULL);
15215 	ire_delete(ire); ire_refrele(ire);
15216 	ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15217 	ASSERT(ire != NULL);
15218 	ire_delete(ire); ire_refrele(ire);
15219 
15220 	/*
15221 	 * For backward compatibility, we create net broadcast IREs based on
15222 	 * the old "IP address class system", since some old machines only
15223 	 * respond to these class derived net broadcast.  However, we must not
15224 	 * create these net broadcast IREs if the subnetmask is shorter than
15225 	 * the IP address class based derived netmask.  Otherwise, we may
15226 	 * create a net broadcast address which is the same as an IP address
15227 	 * on the subnet -- and then TCP will refuse to talk to that address.
15228 	 */
15229 	if (netmask < subnetmask) {
15230 		addr = netmask & ipif->ipif_subnet;
15231 		ire = ire_lookup_bcast(ill, addr, zoneid);
15232 		ASSERT(ire != NULL);
15233 		ire_delete(ire); ire_refrele(ire);
15234 		ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15235 		ASSERT(ire != NULL);
15236 		ire_delete(ire); ire_refrele(ire);
15237 	}
15238 
15239 	/*
15240 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15241 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15242 	 * created.  Creating these broadcast IREs will only create confusion
15243 	 * as `addr' will be the same as the IP address.
15244 	 */
15245 	if (subnetmask != 0xFFFFFFFF) {
15246 		addr = ipif->ipif_subnet;
15247 		ire = ire_lookup_bcast(ill, addr, zoneid);
15248 		ASSERT(ire != NULL);
15249 		ire_delete(ire); ire_refrele(ire);
15250 		ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15251 		ASSERT(ire != NULL);
15252 		ire_delete(ire); ire_refrele(ire);
15253 	}
15254 }
15255 
15256 /*
15257  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15258  * from lifr_flags and the name from lifr_name.
15259  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15260  * since ipif_lookup_on_name uses the _isv6 flags when matching.
15261  * Returns EINPROGRESS when mp has been consumed by queueing it on
15262  * ipx_pending_mp and the ioctl will complete in ip_rput.
15263  *
15264  * Can operate on either a module or a driver queue.
15265  * Returns an error if not a module queue.
15266  */
15267 /* ARGSUSED */
15268 int
15269 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15270     ip_ioctl_cmd_t *ipip, void *if_req)
15271 {
15272 	ill_t	*ill = q->q_ptr;
15273 	phyint_t *phyi;
15274 	ip_stack_t *ipst;
15275 	struct lifreq *lifr = if_req;
15276 	uint64_t new_flags;
15277 
15278 	ASSERT(ipif != NULL);
15279 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
15280 
15281 	if (q->q_next == NULL) {
15282 		ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15283 		return (EINVAL);
15284 	}
15285 
15286 	/*
15287 	 * If we are not writer on 'q' then this interface exists already
15288 	 * and previous lookups (ip_extract_lifreq()) found this ipif --
15289 	 * so return EALREADY.
15290 	 */
15291 	if (ill != ipif->ipif_ill)
15292 		return (EALREADY);
15293 
15294 	if (ill->ill_name[0] != '\0')
15295 		return (EALREADY);
15296 
15297 	/*
15298 	 * If there's another ill already with the requested name, ensure
15299 	 * that it's of the same type.  Otherwise, ill_phyint_reinit() will
15300 	 * fuse together two unrelated ills, which will cause chaos.
15301 	 */
15302 	ipst = ill->ill_ipst;
15303 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15304 	    lifr->lifr_name, NULL);
15305 	if (phyi != NULL) {
15306 		ill_t *ill_mate = phyi->phyint_illv4;
15307 
15308 		if (ill_mate == NULL)
15309 			ill_mate = phyi->phyint_illv6;
15310 		ASSERT(ill_mate != NULL);
15311 
15312 		if (ill_mate->ill_media->ip_m_mac_type !=
15313 		    ill->ill_media->ip_m_mac_type) {
15314 			ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15315 			    "use the same ill name on differing media\n"));
15316 			return (EINVAL);
15317 		}
15318 	}
15319 
15320 	/*
15321 	 * We start off as IFF_IPV4 in ipif_allocate and become
15322 	 * IFF_IPV4 or IFF_IPV6 here depending  on lifr_flags value.
15323 	 * The only flags that we read from user space are IFF_IPV4,
15324 	 * IFF_IPV6, and IFF_BROADCAST.
15325 	 *
15326 	 * This ill has not been inserted into the global list.
15327 	 * So we are still single threaded and don't need any lock
15328 	 *
15329 	 * Saniy check the flags.
15330 	 */
15331 
15332 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
15333 	    ((lifr->lifr_flags & IFF_IPV6) ||
15334 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15335 		ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15336 		    "or IPv6 i.e., no broadcast \n"));
15337 		return (EINVAL);
15338 	}
15339 
15340 	new_flags =
15341 	    lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);
15342 
15343 	if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15344 		ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15345 		    "IFF_IPV4 or IFF_IPV6\n"));
15346 		return (EINVAL);
15347 	}
15348 
15349 	/*
15350 	 * We always start off as IPv4, so only need to check for IPv6.
15351 	 */
15352 	if ((new_flags & IFF_IPV6) != 0) {
15353 		ill->ill_flags |= ILLF_IPV6;
15354 		ill->ill_flags &= ~ILLF_IPV4;
15355 	}
15356 
15357 	if ((new_flags & IFF_BROADCAST) != 0)
15358 		ipif->ipif_flags |= IPIF_BROADCAST;
15359 	else
15360 		ipif->ipif_flags &= ~IPIF_BROADCAST;
15361 
15362 	/* We started off as V4. */
15363 	if (ill->ill_flags & ILLF_IPV6) {
15364 		ill->ill_phyint->phyint_illv6 = ill;
15365 		ill->ill_phyint->phyint_illv4 = NULL;
15366 	}
15367 
15368 	return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15369 }
15370 
15371 /* ARGSUSED */
15372 int
15373 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15374     ip_ioctl_cmd_t *ipip, void *if_req)
15375 {
15376 	/*
15377 	 * ill_phyint_reinit merged the v4 and v6 into a single
15378 	 * ipsq.  We might not have been able to complete the
15379 	 * slifname in ipif_set_values, if we could not become
15380 	 * exclusive.  If so restart it here
15381 	 */
15382 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15383 }
15384 
15385 /*
15386  * Return a pointer to the ipif which matches the index, IP version type and
15387  * zoneid.
15388  */
15389 ipif_t *
15390 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15391     ip_stack_t *ipst)
15392 {
15393 	ill_t	*ill;
15394 	ipif_t	*ipif = NULL;
15395 
15396 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
15397 	if (ill != NULL) {
15398 		mutex_enter(&ill->ill_lock);
15399 		for (ipif = ill->ill_ipif; ipif != NULL;
15400 		    ipif = ipif->ipif_next) {
15401 			if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15402 			    zoneid == ipif->ipif_zoneid ||
15403 			    ipif->ipif_zoneid == ALL_ZONES)) {
15404 				ipif_refhold_locked(ipif);
15405 				break;
15406 			}
15407 		}
15408 		mutex_exit(&ill->ill_lock);
15409 		ill_refrele(ill);
15410 	}
15411 	return (ipif);
15412 }
15413 
15414 /*
15415  * Change an existing physical interface's index. If the new index
15416  * is acceptable we update the index and the phyint_list_avl_by_index tree.
15417  * Finally, we update other systems which may have a dependence on the
15418  * index value.
15419  */
15420 /* ARGSUSED */
15421 int
15422 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15423     ip_ioctl_cmd_t *ipip, void *ifreq)
15424 {
15425 	ill_t		*ill;
15426 	phyint_t	*phyi;
15427 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15428 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15429 	uint_t	old_index, index;
15430 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15431 	avl_index_t	where;
15432 
15433 	if (ipip->ipi_cmd_type == IF_CMD)
15434 		index = ifr->ifr_index;
15435 	else
15436 		index = lifr->lifr_index;
15437 
15438 	/*
15439 	 * Only allow on physical interface. Also, index zero is illegal.
15440 	 */
15441 	ill = ipif->ipif_ill;
15442 	phyi = ill->ill_phyint;
15443 	if (ipif->ipif_id != 0 || index == 0) {
15444 		return (EINVAL);
15445 	}
15446 
15447 	/* If the index is not changing, no work to do */
15448 	if (phyi->phyint_ifindex == index)
15449 		return (0);
15450 
15451 	/*
15452 	 * Use phyint_exists() to determine if the new interface index
15453 	 * is already in use. If the index is unused then we need to
15454 	 * change the phyint's position in the phyint_list_avl_by_index
15455 	 * tree. If we do not do this, subsequent lookups (using the new
15456 	 * index value) will not find the phyint.
15457 	 */
15458 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15459 	if (phyint_exists(index, ipst)) {
15460 		rw_exit(&ipst->ips_ill_g_lock);
15461 		return (EEXIST);
15462 	}
15463 
15464 	/*
15465 	 * The new index is unused. Set it in the phyint. However we must not
15466 	 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
15467 	 * changes. The event must be bound to old ifindex value.
15468 	 */
15469 	ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
15470 	    &index, sizeof (index));
15471 
15472 	old_index = phyi->phyint_ifindex;
15473 	phyi->phyint_ifindex = index;
15474 
15475 	avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
15476 	(void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15477 	    &index, &where);
15478 	avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15479 	    phyi, where);
15480 	rw_exit(&ipst->ips_ill_g_lock);
15481 
15482 	/* Update SCTP's ILL list */
15483 	sctp_ill_reindex(ill, old_index);
15484 
15485 	/* Send the routing sockets message */
15486 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
15487 	if (ILL_OTHER(ill))
15488 		ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
15489 
15490 	/* Perhaps ilgs should use this ill */
15491 	update_conn_ill(NULL, ill->ill_ipst);
15492 	return (0);
15493 }
15494 
15495 /* ARGSUSED */
15496 int
15497 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15498     ip_ioctl_cmd_t *ipip, void *ifreq)
15499 {
15500 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15501 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15502 
15503 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
15504 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15505 	/* Get the interface index */
15506 	if (ipip->ipi_cmd_type == IF_CMD) {
15507 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
15508 	} else {
15509 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
15510 	}
15511 	return (0);
15512 }
15513 
15514 /* ARGSUSED */
15515 int
15516 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15517     ip_ioctl_cmd_t *ipip, void *ifreq)
15518 {
15519 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15520 
15521 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
15522 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15523 	/* Get the interface zone */
15524 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
15525 	lifr->lifr_zoneid = ipif->ipif_zoneid;
15526 	return (0);
15527 }
15528 
15529 /*
15530  * Set the zoneid of an interface.
15531  */
15532 /* ARGSUSED */
15533 int
15534 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15535     ip_ioctl_cmd_t *ipip, void *ifreq)
15536 {
15537 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15538 	int err = 0;
15539 	boolean_t need_up = B_FALSE;
15540 	zone_t *zptr;
15541 	zone_status_t status;
15542 	zoneid_t zoneid;
15543 
15544 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
15545 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
15546 		if (!is_system_labeled())
15547 			return (ENOTSUP);
15548 		zoneid = GLOBAL_ZONEID;
15549 	}
15550 
15551 	/* cannot assign instance zero to a non-global zone */
15552 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
15553 		return (ENOTSUP);
15554 
15555 	/*
15556 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
15557 	 * the event of a race with the zone shutdown processing, since IP
15558 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
15559 	 * interface will be cleaned up even if the zone is shut down
15560 	 * immediately after the status check. If the interface can't be brought
15561 	 * down right away, and the zone is shut down before the restart
15562 	 * function is called, we resolve the possible races by rechecking the
15563 	 * zone status in the restart function.
15564 	 */
15565 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
15566 		return (EINVAL);
15567 	status = zone_status_get(zptr);
15568 	zone_rele(zptr);
15569 
15570 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
15571 		return (EINVAL);
15572 
15573 	if (ipif->ipif_flags & IPIF_UP) {
15574 		/*
15575 		 * If the interface is already marked up,
15576 		 * we call ipif_down which will take care
15577 		 * of ditching any IREs that have been set
15578 		 * up based on the old interface address.
15579 		 */
15580 		err = ipif_logical_down(ipif, q, mp);
15581 		if (err == EINPROGRESS)
15582 			return (err);
15583 		(void) ipif_down_tail(ipif);
15584 		need_up = B_TRUE;
15585 	}
15586 
15587 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
15588 	return (err);
15589 }
15590 
15591 static int
15592 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
15593     queue_t *q, mblk_t *mp, boolean_t need_up)
15594 {
15595 	int	err = 0;
15596 	ip_stack_t	*ipst;
15597 
15598 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
15599 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15600 
15601 	if (CONN_Q(q))
15602 		ipst = CONNQ_TO_IPST(q);
15603 	else
15604 		ipst = ILLQ_TO_IPST(q);
15605 
15606 	/*
15607 	 * For exclusive stacks we don't allow a different zoneid than
15608 	 * global.
15609 	 */
15610 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
15611 	    zoneid != GLOBAL_ZONEID)
15612 		return (EINVAL);
15613 
15614 	/* Set the new zone id. */
15615 	ipif->ipif_zoneid = zoneid;
15616 
15617 	/* Update sctp list */
15618 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
15619 
15620 	/* The default multicast interface might have changed */
15621 	ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);
15622 
15623 	if (need_up) {
15624 		/*
15625 		 * Now bring the interface back up.  If this
15626 		 * is the only IPIF for the ILL, ipif_up
15627 		 * will have to re-bind to the device, so
15628 		 * we may get back EINPROGRESS, in which
15629 		 * case, this IOCTL will get completed in
15630 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
15631 		 */
15632 		err = ipif_up(ipif, q, mp);
15633 	}
15634 	return (err);
15635 }
15636 
15637 /* ARGSUSED */
15638 int
15639 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15640     ip_ioctl_cmd_t *ipip, void *if_req)
15641 {
15642 	struct lifreq *lifr = (struct lifreq *)if_req;
15643 	zoneid_t zoneid;
15644 	zone_t *zptr;
15645 	zone_status_t status;
15646 
15647 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
15648 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
15649 		zoneid = GLOBAL_ZONEID;
15650 
15651 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
15652 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15653 
15654 	/*
15655 	 * We recheck the zone status to resolve the following race condition:
15656 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
15657 	 * 2) hme0:1 is up and can't be brought down right away;
15658 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
15659 	 * 3) zone "myzone" is halted; the zone status switches to
15660 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
15661 	 * the interfaces to remove - hme0:1 is not returned because it's not
15662 	 * yet in "myzone", so it won't be removed;
15663 	 * 4) the restart function for SIOCSLIFZONE is called; without the
15664 	 * status check here, we would have hme0:1 in "myzone" after it's been
15665 	 * destroyed.
15666 	 * Note that if the status check fails, we need to bring the interface
15667 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
15668 	 * ipif_up_done[_v6]().
15669 	 */
15670 	status = ZONE_IS_UNINITIALIZED;
15671 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
15672 		status = zone_status_get(zptr);
15673 		zone_rele(zptr);
15674 	}
15675 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
15676 		if (ipif->ipif_isv6) {
15677 			(void) ipif_up_done_v6(ipif);
15678 		} else {
15679 			(void) ipif_up_done(ipif);
15680 		}
15681 		return (EINVAL);
15682 	}
15683 
15684 	(void) ipif_down_tail(ipif);
15685 
15686 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
15687 	    B_TRUE));
15688 }
15689 
15690 /*
15691  * Return the number of addresses on `ill' with one or more of the values
15692  * in `set' set and all of the values in `clear' clear.
15693  */
15694 static uint_t
15695 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
15696 {
15697 	ipif_t	*ipif;
15698 	uint_t	cnt = 0;
15699 
15700 	ASSERT(IAM_WRITER_ILL(ill));
15701 
15702 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
15703 		if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
15704 			cnt++;
15705 
15706 	return (cnt);
15707 }
15708 
15709 /*
15710  * Return the number of migratable addresses on `ill' that are under
15711  * application control.
15712  */
15713 uint_t
15714 ill_appaddr_cnt(const ill_t *ill)
15715 {
15716 	return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
15717 	    IPIF_NOFAILOVER));
15718 }
15719 
15720 /*
15721  * Return the number of point-to-point addresses on `ill'.
15722  */
15723 uint_t
15724 ill_ptpaddr_cnt(const ill_t *ill)
15725 {
15726 	return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
15727 }
15728 
15729 /* ARGSUSED */
15730 int
15731 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15732 	ip_ioctl_cmd_t *ipip, void *ifreq)
15733 {
15734 	struct lifreq	*lifr = ifreq;
15735 
15736 	ASSERT(q->q_next == NULL);
15737 	ASSERT(CONN_Q(q));
15738 
15739 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
15740 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15741 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
15742 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
15743 
15744 	return (0);
15745 }
15746 
15747 /* Find the previous ILL in this usesrc group */
15748 static ill_t *
15749 ill_prev_usesrc(ill_t *uill)
15750 {
15751 	ill_t *ill;
15752 
15753 	for (ill = uill->ill_usesrc_grp_next;
15754 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
15755 	    ill = ill->ill_usesrc_grp_next)
15756 		/* do nothing */;
15757 	return (ill);
15758 }
15759 
15760 /*
15761  * Release all members of the usesrc group. This routine is called
15762  * from ill_delete when the interface being unplumbed is the
15763  * group head.
15764  *
15765  * This silently clears the usesrc that ifconfig setup.
15766  * An alternative would be to keep that ifindex, and drop packets on the floor
15767  * since no source address can be selected.
15768  * Even if we keep the current semantics, don't need a lock and a linked list.
15769  * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
15770  * the one that is being removed. Issue is how we return the usesrc users
15771  * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
15772  * ill_usesrc_ifindex matching a target ill. We could also do that with an
15773  * ill walk, but the walker would need to insert in the ioctl response.
15774  */
15775 static void
15776 ill_disband_usesrc_group(ill_t *uill)
15777 {
15778 	ill_t *next_ill, *tmp_ill;
15779 	ip_stack_t	*ipst = uill->ill_ipst;
15780 
15781 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
15782 	next_ill = uill->ill_usesrc_grp_next;
15783 
15784 	do {
15785 		ASSERT(next_ill != NULL);
15786 		tmp_ill = next_ill->ill_usesrc_grp_next;
15787 		ASSERT(tmp_ill != NULL);
15788 		next_ill->ill_usesrc_grp_next = NULL;
15789 		next_ill->ill_usesrc_ifindex = 0;
15790 		next_ill = tmp_ill;
15791 	} while (next_ill->ill_usesrc_ifindex != 0);
15792 	uill->ill_usesrc_grp_next = NULL;
15793 }
15794 
15795 /*
15796  * Remove the client usesrc ILL from the list and relink to a new list
15797  */
15798 int
15799 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
15800 {
15801 	ill_t *ill, *tmp_ill;
15802 	ip_stack_t	*ipst = ucill->ill_ipst;
15803 
15804 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
15805 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
15806 
15807 	/*
15808 	 * Check if the usesrc client ILL passed in is not already
15809 	 * in use as a usesrc ILL i.e one whose source address is
15810 	 * in use OR a usesrc ILL is not already in use as a usesrc
15811 	 * client ILL
15812 	 */
15813 	if ((ucill->ill_usesrc_ifindex == 0) ||
15814 	    (uill->ill_usesrc_ifindex != 0)) {
15815 		return (-1);
15816 	}
15817 
15818 	ill = ill_prev_usesrc(ucill);
15819 	ASSERT(ill->ill_usesrc_grp_next != NULL);
15820 
15821 	/* Remove from the current list */
15822 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
15823 		/* Only two elements in the list */
15824 		ASSERT(ill->ill_usesrc_ifindex == 0);
15825 		ill->ill_usesrc_grp_next = NULL;
15826 	} else {
15827 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
15828 	}
15829 
15830 	if (ifindex == 0) {
15831 		ucill->ill_usesrc_ifindex = 0;
15832 		ucill->ill_usesrc_grp_next = NULL;
15833 		return (0);
15834 	}
15835 
15836 	ucill->ill_usesrc_ifindex = ifindex;
15837 	tmp_ill = uill->ill_usesrc_grp_next;
15838 	uill->ill_usesrc_grp_next = ucill;
15839 	ucill->ill_usesrc_grp_next =
15840 	    (tmp_ill != NULL) ? tmp_ill : uill;
15841 	return (0);
15842 }
15843 
15844 /*
15845  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
15846  * ip.c for locking details.
15847  */
15848 /* ARGSUSED */
15849 int
15850 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15851     ip_ioctl_cmd_t *ipip, void *ifreq)
15852 {
15853 	struct lifreq *lifr = (struct lifreq *)ifreq;
15854 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
15855 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
15856 	int err = 0, ret;
15857 	uint_t ifindex;
15858 	ipsq_t *ipsq = NULL;
15859 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15860 
15861 	ASSERT(IAM_WRITER_IPIF(ipif));
15862 	ASSERT(q->q_next == NULL);
15863 	ASSERT(CONN_Q(q));
15864 
15865 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
15866 
15867 	ifindex = lifr->lifr_index;
15868 	if (ifindex == 0) {
15869 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
15870 			/* non usesrc group interface, nothing to reset */
15871 			return (0);
15872 		}
15873 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
15874 		/* valid reset request */
15875 		reset_flg = B_TRUE;
15876 	}
15877 
15878 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15879 	if (usesrc_ill == NULL) {
15880 		return (ENXIO);
15881 	}
15882 
15883 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
15884 	    NEW_OP, B_TRUE);
15885 	if (ipsq == NULL) {
15886 		err = EINPROGRESS;
15887 		/* Operation enqueued on the ipsq of the usesrc ILL */
15888 		goto done;
15889 	}
15890 
15891 	/* USESRC isn't currently supported with IPMP */
15892 	if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
15893 		err = ENOTSUP;
15894 		goto done;
15895 	}
15896 
15897 	/*
15898 	 * USESRC isn't compatible with the STANDBY flag.  (STANDBY is only
15899 	 * used by IPMP underlying interfaces, but someone might think it's
15900 	 * more general and try to use it independently with VNI.)
15901 	 */
15902 	if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
15903 		err = ENOTSUP;
15904 		goto done;
15905 	}
15906 
15907 	/*
15908 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
15909 	 * already a client then return EINVAL
15910 	 */
15911 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
15912 		err = EINVAL;
15913 		goto done;
15914 	}
15915 
15916 	/*
15917 	 * If the ill_usesrc_ifindex field is already set to what it needs to
15918 	 * be then this is a duplicate operation.
15919 	 */
15920 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
15921 		err = 0;
15922 		goto done;
15923 	}
15924 
15925 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
15926 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
15927 	    usesrc_ill->ill_isv6));
15928 
15929 	/*
15930 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
15931 	 * and the ill_usesrc_ifindex fields
15932 	 */
15933 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
15934 
15935 	if (reset_flg) {
15936 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
15937 		if (ret != 0) {
15938 			err = EINVAL;
15939 		}
15940 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
15941 		goto done;
15942 	}
15943 
15944 	/*
15945 	 * Four possibilities to consider:
15946 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
15947 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
15948 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
15949 	 * 4. Both are part of their respective usesrc groups
15950 	 */
15951 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
15952 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
15953 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
15954 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
15955 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
15956 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
15957 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
15958 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
15959 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
15960 		/* Insert at head of list */
15961 		usesrc_cli_ill->ill_usesrc_grp_next =
15962 		    usesrc_ill->ill_usesrc_grp_next;
15963 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
15964 	} else {
15965 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
15966 		    ifindex);
15967 		if (ret != 0)
15968 			err = EINVAL;
15969 	}
15970 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
15971 
15972 done:
15973 	if (ipsq != NULL)
15974 		ipsq_exit(ipsq);
15975 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
15976 	ill_refrele(usesrc_ill);
15977 
15978 	/* Let conn_ixa caching know that source address selection changed */
15979 	ip_update_source_selection(ipst);
15980 
15981 	return (err);
15982 }
15983 
15984 /*
15985  * comparison function used by avl.
15986  */
15987 static int
15988 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
15989 {
15990 
15991 	uint_t index;
15992 
15993 	ASSERT(phyip != NULL && index_ptr != NULL);
15994 
15995 	index = *((uint_t *)index_ptr);
15996 	/*
15997 	 * let the phyint with the lowest index be on top.
15998 	 */
15999 	if (((phyint_t *)phyip)->phyint_ifindex < index)
16000 		return (1);
16001 	if (((phyint_t *)phyip)->phyint_ifindex > index)
16002 		return (-1);
16003 	return (0);
16004 }
16005 
16006 /*
16007  * comparison function used by avl.
16008  */
16009 static int
16010 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16011 {
16012 	ill_t *ill;
16013 	int res = 0;
16014 
16015 	ASSERT(phyip != NULL && name_ptr != NULL);
16016 
16017 	if (((phyint_t *)phyip)->phyint_illv4)
16018 		ill = ((phyint_t *)phyip)->phyint_illv4;
16019 	else
16020 		ill = ((phyint_t *)phyip)->phyint_illv6;
16021 	ASSERT(ill != NULL);
16022 
16023 	res = strcmp(ill->ill_name, (char *)name_ptr);
16024 	if (res > 0)
16025 		return (1);
16026 	else if (res < 0)
16027 		return (-1);
16028 	return (0);
16029 }
16030 
16031 /*
16032  * This function is called on the unplumb path via ill_glist_delete() when
16033  * there are no ills left on the phyint and thus the phyint can be freed.
16034  */
16035 static void
16036 phyint_free(phyint_t *phyi)
16037 {
16038 	ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
16039 
16040 	ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
16041 
16042 	/*
16043 	 * If this phyint was an IPMP meta-interface, blow away the group.
16044 	 * This is safe to do because all of the illgrps have already been
16045 	 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16046 	 * If we're cleaning up as a result of failed initialization,
16047 	 * phyint_grp may be NULL.
16048 	 */
16049 	if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16050 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16051 		ipmp_grp_destroy(phyi->phyint_grp);
16052 		phyi->phyint_grp = NULL;
16053 		rw_exit(&ipst->ips_ipmp_lock);
16054 	}
16055 
16056 	/*
16057 	 * If this interface was under IPMP, take it out of the group.
16058 	 */
16059 	if (phyi->phyint_grp != NULL)
16060 		ipmp_phyint_leave_grp(phyi);
16061 
16062 	/*
16063 	 * Delete the phyint and disassociate its ipsq.  The ipsq itself
16064 	 * will be freed in ipsq_exit().
16065 	 */
16066 	phyi->phyint_ipsq->ipsq_phyint = NULL;
16067 	phyi->phyint_name[0] = '\0';
16068 
16069 	mi_free(phyi);
16070 }
16071 
16072 /*
16073  * Attach the ill to the phyint structure which can be shared by both
16074  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16075  * function is called from ipif_set_values and ill_lookup_on_name (for
16076  * loopback) where we know the name of the ill. We lookup the ill and if
16077  * there is one present already with the name use that phyint. Otherwise
16078  * reuse the one allocated by ill_init.
16079  */
16080 static void
16081 ill_phyint_reinit(ill_t *ill)
16082 {
16083 	boolean_t isv6 = ill->ill_isv6;
16084 	phyint_t *phyi_old;
16085 	phyint_t *phyi;
16086 	avl_index_t where = 0;
16087 	ill_t	*ill_other = NULL;
16088 	ip_stack_t	*ipst = ill->ill_ipst;
16089 
16090 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16091 
16092 	phyi_old = ill->ill_phyint;
16093 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16094 	    phyi_old->phyint_illv6 == NULL));
16095 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16096 	    phyi_old->phyint_illv4 == NULL));
16097 	ASSERT(phyi_old->phyint_ifindex == 0);
16098 
16099 	/*
16100 	 * Now that our ill has a name, set it in the phyint.
16101 	 */
16102 	(void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
16103 
16104 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16105 	    ill->ill_name, &where);
16106 
16107 	/*
16108 	 * 1. We grabbed the ill_g_lock before inserting this ill into
16109 	 *    the global list of ills. So no other thread could have located
16110 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
16111 	 * 2. Now locate the other protocol instance of this ill.
16112 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
16113 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16114 	 *    of neither ill can change.
16115 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16116 	 *    other ill.
16117 	 * 5. Release all locks.
16118 	 */
16119 
16120 	/*
16121 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16122 	 * we are initializing IPv4.
16123 	 */
16124 	if (phyi != NULL) {
16125 		ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16126 		ASSERT(ill_other->ill_phyint != NULL);
16127 		ASSERT((isv6 && !ill_other->ill_isv6) ||
16128 		    (!isv6 && ill_other->ill_isv6));
16129 		GRAB_ILL_LOCKS(ill, ill_other);
16130 		/*
16131 		 * We are potentially throwing away phyint_flags which
16132 		 * could be different from the one that we obtain from
16133 		 * ill_other->ill_phyint. But it is okay as we are assuming
16134 		 * that the state maintained within IP is correct.
16135 		 */
16136 		mutex_enter(&phyi->phyint_lock);
16137 		if (isv6) {
16138 			ASSERT(phyi->phyint_illv6 == NULL);
16139 			phyi->phyint_illv6 = ill;
16140 		} else {
16141 			ASSERT(phyi->phyint_illv4 == NULL);
16142 			phyi->phyint_illv4 = ill;
16143 		}
16144 
16145 		/*
16146 		 * Delete the old phyint and make its ipsq eligible
16147 		 * to be freed in ipsq_exit().
16148 		 */
16149 		phyi_old->phyint_illv4 = NULL;
16150 		phyi_old->phyint_illv6 = NULL;
16151 		phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16152 		phyi_old->phyint_name[0] = '\0';
16153 		mi_free(phyi_old);
16154 	} else {
16155 		mutex_enter(&ill->ill_lock);
16156 		/*
16157 		 * We don't need to acquire any lock, since
16158 		 * the ill is not yet visible globally  and we
16159 		 * have not yet released the ill_g_lock.
16160 		 */
16161 		phyi = phyi_old;
16162 		mutex_enter(&phyi->phyint_lock);
16163 		/* XXX We need a recovery strategy here. */
16164 		if (!phyint_assign_ifindex(phyi, ipst))
16165 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
16166 
16167 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16168 		    (void *)phyi, where);
16169 
16170 		(void) avl_find(&ipst->ips_phyint_g_list->
16171 		    phyint_list_avl_by_index,
16172 		    &phyi->phyint_ifindex, &where);
16173 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16174 		    (void *)phyi, where);
16175 	}
16176 
16177 	/*
16178 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
16179 	 * pending mp is not affected because that is per ill basis.
16180 	 */
16181 	ill->ill_phyint = phyi;
16182 
16183 	/*
16184 	 * Now that the phyint's ifindex has been assigned, complete the
16185 	 * remaining
16186 	 */
16187 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16188 	if (ill->ill_isv6) {
16189 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16190 		    ill->ill_phyint->phyint_ifindex;
16191 		ill->ill_mcast_type = ipst->ips_mld_max_version;
16192 	} else {
16193 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
16194 	}
16195 
16196 	/*
16197 	 * Generate an event within the hooks framework to indicate that
16198 	 * a new interface has just been added to IP.  For this event to
16199 	 * be generated, the network interface must, at least, have an
16200 	 * ifindex assigned to it.  (We don't generate the event for
16201 	 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16202 	 *
16203 	 * This needs to be run inside the ill_g_lock perimeter to ensure
16204 	 * that the ordering of delivered events to listeners matches the
16205 	 * order of them in the kernel.
16206 	 */
16207 	if (!IS_LOOPBACK(ill)) {
16208 		ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16209 		    ill->ill_name_length);
16210 	}
16211 	RELEASE_ILL_LOCKS(ill, ill_other);
16212 	mutex_exit(&phyi->phyint_lock);
16213 }
16214 
16215 /*
16216  * Notify any downstream modules of the name of this interface.
16217  * An M_IOCTL is used even though we don't expect a successful reply.
16218  * Any reply message from the driver (presumably an M_IOCNAK) will
16219  * eventually get discarded somewhere upstream.  The message format is
16220  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16221  * to IP.
16222  */
16223 static void
16224 ip_ifname_notify(ill_t *ill, queue_t *q)
16225 {
16226 	mblk_t *mp1, *mp2;
16227 	struct iocblk *iocp;
16228 	struct lifreq *lifr;
16229 
16230 	mp1 = mkiocb(SIOCSLIFNAME);
16231 	if (mp1 == NULL)
16232 		return;
16233 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16234 	if (mp2 == NULL) {
16235 		freeb(mp1);
16236 		return;
16237 	}
16238 
16239 	mp1->b_cont = mp2;
16240 	iocp = (struct iocblk *)mp1->b_rptr;
16241 	iocp->ioc_count = sizeof (struct lifreq);
16242 
16243 	lifr = (struct lifreq *)mp2->b_rptr;
16244 	mp2->b_wptr += sizeof (struct lifreq);
16245 	bzero(lifr, sizeof (struct lifreq));
16246 
16247 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16248 	lifr->lifr_ppa = ill->ill_ppa;
16249 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
16250 
16251 	DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",
16252 	    char *, "SIOCSLIFNAME", ill_t *, ill);
16253 	putnext(q, mp1);
16254 }
16255 
16256 static int
16257 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16258 {
16259 	int		err;
16260 	ip_stack_t	*ipst = ill->ill_ipst;
16261 	phyint_t	*phyi = ill->ill_phyint;
16262 
16263 	/* Set the obsolete NDD per-interface forwarding name. */
16264 	err = ill_set_ndd_name(ill);
16265 	if (err != 0) {
16266 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
16267 		    err);
16268 	}
16269 
16270 	/*
16271 	 * Now that ill_name is set, the configuration for the IPMP
16272 	 * meta-interface can be performed.
16273 	 */
16274 	if (IS_IPMP(ill)) {
16275 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16276 		/*
16277 		 * If phyi->phyint_grp is NULL, then this is the first IPMP
16278 		 * meta-interface and we need to create the IPMP group.
16279 		 */
16280 		if (phyi->phyint_grp == NULL) {
16281 			/*
16282 			 * If someone has renamed another IPMP group to have
16283 			 * the same name as our interface, bail.
16284 			 */
16285 			if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16286 				rw_exit(&ipst->ips_ipmp_lock);
16287 				return (EEXIST);
16288 			}
16289 			phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16290 			if (phyi->phyint_grp == NULL) {
16291 				rw_exit(&ipst->ips_ipmp_lock);
16292 				return (ENOMEM);
16293 			}
16294 		}
16295 		rw_exit(&ipst->ips_ipmp_lock);
16296 	}
16297 
16298 	/* Tell downstream modules where they are. */
16299 	ip_ifname_notify(ill, q);
16300 
16301 	/*
16302 	 * ill_dl_phys returns EINPROGRESS in the usual case.
16303 	 * Error cases are ENOMEM ...
16304 	 */
16305 	err = ill_dl_phys(ill, ipif, mp, q);
16306 
16307 	if (ill->ill_isv6) {
16308 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16309 		if (ipst->ips_mld_slowtimeout_id == 0) {
16310 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16311 			    (void *)ipst,
16312 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16313 		}
16314 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16315 	} else {
16316 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16317 		if (ipst->ips_igmp_slowtimeout_id == 0) {
16318 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16319 			    (void *)ipst,
16320 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16321 		}
16322 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16323 	}
16324 
16325 	return (err);
16326 }
16327 
16328 /*
16329  * Common routine for ppa and ifname setting. Should be called exclusive.
16330  *
16331  * Returns EINPROGRESS when mp has been consumed by queueing it on
16332  * ipx_pending_mp and the ioctl will complete in ip_rput.
16333  *
16334  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16335  * the new name and new ppa in lifr_name and lifr_ppa respectively.
16336  * For SLIFNAME, we pass these values back to the userland.
16337  */
16338 static int
16339 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16340 {
16341 	ill_t	*ill;
16342 	ipif_t	*ipif;
16343 	ipsq_t	*ipsq;
16344 	char	*ppa_ptr;
16345 	char	*old_ptr;
16346 	char	old_char;
16347 	int	error;
16348 	ip_stack_t	*ipst;
16349 
16350 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16351 	ASSERT(q->q_next != NULL);
16352 	ASSERT(interf_name != NULL);
16353 
16354 	ill = (ill_t *)q->q_ptr;
16355 	ipst = ill->ill_ipst;
16356 
16357 	ASSERT(ill->ill_ipst != NULL);
16358 	ASSERT(ill->ill_name[0] == '\0');
16359 	ASSERT(IAM_WRITER_ILL(ill));
16360 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16361 	ASSERT(ill->ill_ppa == UINT_MAX);
16362 
16363 	ill->ill_defend_start = ill->ill_defend_count = 0;
16364 	/* The ppa is sent down by ifconfig or is chosen */
16365 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16366 		return (EINVAL);
16367 	}
16368 
16369 	/*
16370 	 * make sure ppa passed in is same as ppa in the name.
16371 	 * This check is not made when ppa == UINT_MAX in that case ppa
16372 	 * in the name could be anything. System will choose a ppa and
16373 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16374 	 */
16375 	if (*new_ppa_ptr != UINT_MAX) {
16376 		/* stoi changes the pointer */
16377 		old_ptr = ppa_ptr;
16378 		/*
16379 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16380 		 * (they don't have an externally visible ppa).  We assign one
16381 		 * here so that we can manage the interface.  Note that in
16382 		 * the past this value was always 0 for DLPI 1 drivers.
16383 		 */
16384 		if (*new_ppa_ptr == 0)
16385 			*new_ppa_ptr = stoi(&old_ptr);
16386 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16387 			return (EINVAL);
16388 	}
16389 	/*
16390 	 * terminate string before ppa
16391 	 * save char at that location.
16392 	 */
16393 	old_char = ppa_ptr[0];
16394 	ppa_ptr[0] = '\0';
16395 
16396 	ill->ill_ppa = *new_ppa_ptr;
16397 	/*
16398 	 * Finish as much work now as possible before calling ill_glist_insert
16399 	 * which makes the ill globally visible and also merges it with the
16400 	 * other protocol instance of this phyint. The remaining work is
16401 	 * done after entering the ipsq which may happen sometime later.
16402 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
16403 	 */
16404 	ipif = ill->ill_ipif;
16405 
16406 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
16407 	ipif_assign_seqid(ipif);
16408 
16409 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16410 		ill->ill_flags |= ILLF_IPV4;
16411 
16412 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
16413 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
16414 
16415 	if (ill->ill_flags & ILLF_IPV6) {
16416 
16417 		ill->ill_isv6 = B_TRUE;
16418 		ill_set_inputfn(ill);
16419 		if (ill->ill_rq != NULL) {
16420 			ill->ill_rq->q_qinfo = &iprinitv6;
16421 		}
16422 
16423 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16424 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16425 		ipif->ipif_v6subnet = ipv6_all_zeros;
16426 		ipif->ipif_v6net_mask = ipv6_all_zeros;
16427 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
16428 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16429 		ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16430 		/*
16431 		 * point-to-point or Non-mulicast capable
16432 		 * interfaces won't do NUD unless explicitly
16433 		 * configured to do so.
16434 		 */
16435 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
16436 		    !(ill->ill_flags & ILLF_MULTICAST)) {
16437 			ill->ill_flags |= ILLF_NONUD;
16438 		}
16439 		/* Make sure IPv4 specific flag is not set on IPv6 if */
16440 		if (ill->ill_flags & ILLF_NOARP) {
16441 			/*
16442 			 * Note: xresolv interfaces will eventually need
16443 			 * NOARP set here as well, but that will require
16444 			 * those external resolvers to have some
16445 			 * knowledge of that flag and act appropriately.
16446 			 * Not to be changed at present.
16447 			 */
16448 			ill->ill_flags &= ~ILLF_NOARP;
16449 		}
16450 		/*
16451 		 * Set the ILLF_ROUTER flag according to the global
16452 		 * IPv6 forwarding policy.
16453 		 */
16454 		if (ipst->ips_ipv6_forward != 0)
16455 			ill->ill_flags |= ILLF_ROUTER;
16456 	} else if (ill->ill_flags & ILLF_IPV4) {
16457 		ill->ill_isv6 = B_FALSE;
16458 		ill_set_inputfn(ill);
16459 		ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
16460 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
16461 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
16462 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
16463 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
16464 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
16465 		/*
16466 		 * Set the ILLF_ROUTER flag according to the global
16467 		 * IPv4 forwarding policy.
16468 		 */
16469 		if (ipst->ips_ip_g_forward != 0)
16470 			ill->ill_flags |= ILLF_ROUTER;
16471 	}
16472 
16473 	ASSERT(ill->ill_phyint != NULL);
16474 
16475 	/*
16476 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
16477 	 * be completed in ill_glist_insert -> ill_phyint_reinit
16478 	 */
16479 	if (!ill_allocate_mibs(ill))
16480 		return (ENOMEM);
16481 
16482 	/*
16483 	 * Pick a default sap until we get the DL_INFO_ACK back from
16484 	 * the driver.
16485 	 */
16486 	ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
16487 	    ill->ill_media->ip_m_ipv4sap;
16488 
16489 	ill->ill_ifname_pending = 1;
16490 	ill->ill_ifname_pending_err = 0;
16491 
16492 	/*
16493 	 * When the first ipif comes up in ipif_up_done(), multicast groups
16494 	 * that were joined while this ill was not bound to the DLPI link need
16495 	 * to be recovered by ill_recover_multicast().
16496 	 */
16497 	ill->ill_need_recover_multicast = 1;
16498 
16499 	ill_refhold(ill);
16500 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16501 	if ((error = ill_glist_insert(ill, interf_name,
16502 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
16503 		ill->ill_ppa = UINT_MAX;
16504 		ill->ill_name[0] = '\0';
16505 		/*
16506 		 * undo null termination done above.
16507 		 */
16508 		ppa_ptr[0] = old_char;
16509 		rw_exit(&ipst->ips_ill_g_lock);
16510 		ill_refrele(ill);
16511 		return (error);
16512 	}
16513 
16514 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
16515 
16516 	/*
16517 	 * When we return the buffer pointed to by interf_name should contain
16518 	 * the same name as in ill_name.
16519 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
16520 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
16521 	 * so copy full name and update the ppa ptr.
16522 	 * When ppa passed in != UINT_MAX all values are correct just undo
16523 	 * null termination, this saves a bcopy.
16524 	 */
16525 	if (*new_ppa_ptr == UINT_MAX) {
16526 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
16527 		*new_ppa_ptr = ill->ill_ppa;
16528 	} else {
16529 		/*
16530 		 * undo null termination done above.
16531 		 */
16532 		ppa_ptr[0] = old_char;
16533 	}
16534 
16535 	/* Let SCTP know about this ILL */
16536 	sctp_update_ill(ill, SCTP_ILL_INSERT);
16537 
16538 	/*
16539 	 * ill_glist_insert has made the ill visible globally, and
16540 	 * ill_phyint_reinit could have changed the ipsq. At this point,
16541 	 * we need to hold the ips_ill_g_lock across the call to enter the
16542 	 * ipsq to enforce atomicity and prevent reordering. In the event
16543 	 * the ipsq has changed, and if the new ipsq is currently busy,
16544 	 * we need to make sure that this half-completed ioctl is ahead of
16545 	 * any subsequent ioctl. We achieve this by not dropping the
16546 	 * ips_ill_g_lock which prevents any ill lookup itself thereby
16547 	 * ensuring that new ioctls can't start.
16548 	 */
16549 	ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
16550 	    B_TRUE);
16551 
16552 	rw_exit(&ipst->ips_ill_g_lock);
16553 	ill_refrele(ill);
16554 	if (ipsq == NULL)
16555 		return (EINPROGRESS);
16556 
16557 	/*
16558 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
16559 	 */
16560 	if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
16561 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
16562 	else
16563 		ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
16564 
16565 	error = ipif_set_values_tail(ill, ipif, mp, q);
16566 	ipsq_exit(ipsq);
16567 	if (error != 0 && error != EINPROGRESS) {
16568 		/*
16569 		 * restore previous values
16570 		 */
16571 		ill->ill_isv6 = B_FALSE;
16572 		ill_set_inputfn(ill);
16573 	}
16574 	return (error);
16575 }
16576 
16577 void
16578 ipif_init(ip_stack_t *ipst)
16579 {
16580 	int i;
16581 
16582 	for (i = 0; i < MAX_G_HEADS; i++) {
16583 		ipst->ips_ill_g_heads[i].ill_g_list_head =
16584 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
16585 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
16586 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
16587 	}
16588 
16589 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16590 	    ill_phyint_compare_index,
16591 	    sizeof (phyint_t),
16592 	    offsetof(struct phyint, phyint_avl_by_index));
16593 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16594 	    ill_phyint_compare_name,
16595 	    sizeof (phyint_t),
16596 	    offsetof(struct phyint, phyint_avl_by_name));
16597 }
16598 
16599 /*
16600  * Save enough information so that we can recreate the IRE if
16601  * the interface goes down and then up.
16602  */
16603 void
16604 ill_save_ire(ill_t *ill, ire_t *ire)
16605 {
16606 	mblk_t	*save_mp;
16607 
16608 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
16609 	if (save_mp != NULL) {
16610 		ifrt_t	*ifrt;
16611 
16612 		save_mp->b_wptr += sizeof (ifrt_t);
16613 		ifrt = (ifrt_t *)save_mp->b_rptr;
16614 		bzero(ifrt, sizeof (ifrt_t));
16615 		ifrt->ifrt_type = ire->ire_type;
16616 		if (ire->ire_ipversion == IPV4_VERSION) {
16617 			ASSERT(!ill->ill_isv6);
16618 			ifrt->ifrt_addr = ire->ire_addr;
16619 			ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
16620 			ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
16621 			ifrt->ifrt_mask = ire->ire_mask;
16622 		} else {
16623 			ASSERT(ill->ill_isv6);
16624 			ifrt->ifrt_v6addr = ire->ire_addr_v6;
16625 			/* ire_gateway_addr_v6 can change due to RTM_CHANGE */
16626 			mutex_enter(&ire->ire_lock);
16627 			ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
16628 			mutex_exit(&ire->ire_lock);
16629 			ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
16630 			ifrt->ifrt_v6mask = ire->ire_mask_v6;
16631 		}
16632 		ifrt->ifrt_flags = ire->ire_flags;
16633 		ifrt->ifrt_zoneid = ire->ire_zoneid;
16634 		mutex_enter(&ill->ill_saved_ire_lock);
16635 		save_mp->b_cont = ill->ill_saved_ire_mp;
16636 		ill->ill_saved_ire_mp = save_mp;
16637 		ill->ill_saved_ire_cnt++;
16638 		mutex_exit(&ill->ill_saved_ire_lock);
16639 	}
16640 }
16641 
16642 /*
16643  * Remove one entry from ill_saved_ire_mp.
16644  */
16645 void
16646 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
16647 {
16648 	mblk_t	**mpp;
16649 	mblk_t	*mp;
16650 	ifrt_t	*ifrt;
16651 
16652 	/* Remove from ill_saved_ire_mp list if it is there */
16653 	mutex_enter(&ill->ill_saved_ire_lock);
16654 	for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
16655 	    mpp = &(*mpp)->b_cont) {
16656 		in6_addr_t	gw_addr_v6;
16657 
16658 		/*
16659 		 * On a given ill, the tuple of address, gateway, mask,
16660 		 * ire_type, and zoneid is unique for each saved IRE.
16661 		 */
16662 		mp = *mpp;
16663 		ifrt = (ifrt_t *)mp->b_rptr;
16664 		/* ire_gateway_addr_v6 can change - need lock */
16665 		mutex_enter(&ire->ire_lock);
16666 		gw_addr_v6 = ire->ire_gateway_addr_v6;
16667 		mutex_exit(&ire->ire_lock);
16668 
16669 		if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
16670 		    ifrt->ifrt_type != ire->ire_type)
16671 			continue;
16672 
16673 		if (ill->ill_isv6 ?
16674 		    (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
16675 		    &ire->ire_addr_v6) &&
16676 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
16677 		    &gw_addr_v6) &&
16678 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
16679 		    &ire->ire_mask_v6)) :
16680 		    (ifrt->ifrt_addr == ire->ire_addr &&
16681 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
16682 		    ifrt->ifrt_mask == ire->ire_mask)) {
16683 			*mpp = mp->b_cont;
16684 			ill->ill_saved_ire_cnt--;
16685 			freeb(mp);
16686 			break;
16687 		}
16688 	}
16689 	mutex_exit(&ill->ill_saved_ire_lock);
16690 }
16691 
16692 /*
16693  * IP multirouting broadcast routes handling
16694  * Append CGTP broadcast IREs to regular ones created
16695  * at ifconfig time.
16696  * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
16697  * the destination and the gateway are broadcast addresses.
16698  * The caller has verified that the destination is an IRE_BROADCAST and that
16699  * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
16700  * we create a MULTIRT IRE_BROADCAST.
16701  * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything
16702  * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
16703  */
16704 static void
16705 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
16706 {
16707 	ire_t *ire_prim;
16708 
16709 	ASSERT(ire != NULL);
16710 
16711 	ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
16712 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
16713 	    NULL);
16714 	if (ire_prim != NULL) {
16715 		/*
16716 		 * We are in the special case of broadcasts for
16717 		 * CGTP. We add an IRE_BROADCAST that holds
16718 		 * the RTF_MULTIRT flag, the destination
16719 		 * address and the low level
16720 		 * info of ire_prim. In other words, CGTP
16721 		 * broadcast is added to the redundant ipif.
16722 		 */
16723 		ill_t *ill_prim;
16724 		ire_t  *bcast_ire;
16725 
16726 		ill_prim = ire_prim->ire_ill;
16727 
16728 		ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
16729 		    (void *)ire_prim, (void *)ill_prim));
16730 
16731 		bcast_ire = ire_create(
16732 		    (uchar_t *)&ire->ire_addr,
16733 		    (uchar_t *)&ip_g_all_ones,
16734 		    (uchar_t *)&ire->ire_gateway_addr,
16735 		    IRE_BROADCAST,
16736 		    ill_prim,
16737 		    GLOBAL_ZONEID,	/* CGTP is only for the global zone */
16738 		    ire->ire_flags | RTF_KERNEL,
16739 		    NULL,
16740 		    ipst);
16741 
16742 		/*
16743 		 * Here we assume that ire_add does head insertion so that
16744 		 * the added IRE_BROADCAST comes before the existing IRE_HOST.
16745 		 */
16746 		if (bcast_ire != NULL) {
16747 			if (ire->ire_flags & RTF_SETSRC) {
16748 				bcast_ire->ire_setsrc_addr =
16749 				    ire->ire_setsrc_addr;
16750 			}
16751 			bcast_ire = ire_add(bcast_ire);
16752 			if (bcast_ire != NULL) {
16753 				ip2dbg(("ip_cgtp_filter_bcast_add: "
16754 				    "added bcast_ire %p\n",
16755 				    (void *)bcast_ire));
16756 
16757 				ill_save_ire(ill_prim, bcast_ire);
16758 				ire_refrele(bcast_ire);
16759 			}
16760 		}
16761 		ire_refrele(ire_prim);
16762 	}
16763 }
16764 
16765 /*
16766  * IP multirouting broadcast routes handling
16767  * Remove the broadcast ire.
16768  * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
16769  * the destination and the gateway are broadcast addresses.
16770  * The caller has only verified that RTF_MULTIRT was set. We check
16771  * that the destination is broadcast and that the gateway is a broadcast
16772  * address, and if so delete the IRE added by ip_cgtp_bcast_add().
16773  */
16774 static void
16775 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
16776 {
16777 	ASSERT(ire != NULL);
16778 
16779 	if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
16780 		ire_t *ire_prim;
16781 
16782 		ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
16783 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
16784 		    ipst, NULL);
16785 		if (ire_prim != NULL) {
16786 			ill_t *ill_prim;
16787 			ire_t  *bcast_ire;
16788 
16789 			ill_prim = ire_prim->ire_ill;
16790 
16791 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
16792 			    "ire_prim %p, ill_prim %p\n",
16793 			    (void *)ire_prim, (void *)ill_prim));
16794 
16795 			bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
16796 			    ire->ire_gateway_addr, IRE_BROADCAST,
16797 			    ill_prim, ALL_ZONES, NULL,
16798 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
16799 			    MATCH_IRE_MASK, 0, ipst, NULL);
16800 
16801 			if (bcast_ire != NULL) {
16802 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
16803 				    "looked up bcast_ire %p\n",
16804 				    (void *)bcast_ire));
16805 				ill_remove_saved_ire(bcast_ire->ire_ill,
16806 				    bcast_ire);
16807 				ire_delete(bcast_ire);
16808 				ire_refrele(bcast_ire);
16809 			}
16810 			ire_refrele(ire_prim);
16811 		}
16812 	}
16813 }
16814 
16815 /*
16816  * Derive an interface id from the link layer address.
16817  * Knows about IEEE 802 and IEEE EUI-64 mappings.
16818  */
16819 static void
16820 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16821 {
16822 	char		*addr;
16823 
16824 	/*
16825 	 * Note that some IPv6 interfaces get plumbed over links that claim to
16826 	 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
16827 	 * PPP links).  The ETHERADDRL check here ensures that we only set the
16828 	 * interface ID on IPv6 interfaces above links that actually have real
16829 	 * Ethernet addresses.
16830 	 */
16831 	if (ill->ill_phys_addr_length == ETHERADDRL) {
16832 		/* Form EUI-64 like address */
16833 		addr = (char *)&v6addr->s6_addr32[2];
16834 		bcopy(ill->ill_phys_addr, addr, 3);
16835 		addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
16836 		addr[3] = (char)0xff;
16837 		addr[4] = (char)0xfe;
16838 		bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
16839 	}
16840 }
16841 
16842 /* ARGSUSED */
16843 static void
16844 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16845 {
16846 }
16847 
16848 typedef struct ipmp_ifcookie {
16849 	uint32_t	ic_hostid;
16850 	char		ic_ifname[LIFNAMSIZ];
16851 	char		ic_zonename[ZONENAME_MAX];
16852 } ipmp_ifcookie_t;
16853 
16854 /*
16855  * Construct a pseudo-random interface ID for the IPMP interface that's both
16856  * predictable and (almost) guaranteed to be unique.
16857  */
16858 static void
16859 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16860 {
16861 	zone_t		*zp;
16862 	uint8_t		*addr;
16863 	uchar_t		hash[16];
16864 	ulong_t 	hostid;
16865 	MD5_CTX		ctx;
16866 	ipmp_ifcookie_t	ic = { 0 };
16867 
16868 	ASSERT(IS_IPMP(ill));
16869 
16870 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
16871 	ic.ic_hostid = htonl((uint32_t)hostid);
16872 
16873 	(void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
16874 
16875 	if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
16876 		(void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
16877 		zone_rele(zp);
16878 	}
16879 
16880 	MD5Init(&ctx);
16881 	MD5Update(&ctx, &ic, sizeof (ic));
16882 	MD5Final(hash, &ctx);
16883 
16884 	/*
16885 	 * Map the hash to an interface ID per the basic approach in RFC3041.
16886 	 */
16887 	addr = &v6addr->s6_addr8[8];
16888 	bcopy(hash + 8, addr, sizeof (uint64_t));
16889 	addr[0] &= ~0x2;				/* set local bit */
16890 }
16891 
16892 /*
16893  * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
16894  */
16895 static void
16896 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
16897 {
16898 	phyint_t *phyi = ill->ill_phyint;
16899 
16900 	/*
16901 	 * Check PHYI_MULTI_BCAST and length of physical
16902 	 * address to determine if we use the mapping or the
16903 	 * broadcast address.
16904 	 */
16905 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
16906 	    ill->ill_phys_addr_length != ETHERADDRL) {
16907 		ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
16908 		return;
16909 	}
16910 	m_physaddr[0] = 0x33;
16911 	m_physaddr[1] = 0x33;
16912 	m_physaddr[2] = m_ip6addr[12];
16913 	m_physaddr[3] = m_ip6addr[13];
16914 	m_physaddr[4] = m_ip6addr[14];
16915 	m_physaddr[5] = m_ip6addr[15];
16916 }
16917 
16918 /*
16919  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.
16920  */
16921 static void
16922 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
16923 {
16924 	phyint_t *phyi = ill->ill_phyint;
16925 
16926 	/*
16927 	 * Check PHYI_MULTI_BCAST and length of physical
16928 	 * address to determine if we use the mapping or the
16929 	 * broadcast address.
16930 	 */
16931 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
16932 	    ill->ill_phys_addr_length != ETHERADDRL) {
16933 		ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
16934 		return;
16935 	}
16936 	m_physaddr[0] = 0x01;
16937 	m_physaddr[1] = 0x00;
16938 	m_physaddr[2] = 0x5e;
16939 	m_physaddr[3] = m_ipaddr[1] & 0x7f;
16940 	m_physaddr[4] = m_ipaddr[2];
16941 	m_physaddr[5] = m_ipaddr[3];
16942 }
16943 
16944 /* ARGSUSED */
16945 static void
16946 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
16947 {
16948 	/*
16949 	 * for the MULTI_BCAST case and other cases when we want to
16950 	 * use the link-layer broadcast address for multicast.
16951 	 */
16952 	uint8_t	*bphys_addr;
16953 	dl_unitdata_req_t *dlur;
16954 
16955 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
16956 	if (ill->ill_sap_length < 0) {
16957 		bphys_addr = (uchar_t *)dlur +
16958 		    dlur->dl_dest_addr_offset;
16959 	} else  {
16960 		bphys_addr = (uchar_t *)dlur +
16961 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
16962 	}
16963 
16964 	bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
16965 }
16966 
16967 /*
16968  * Derive IPoIB interface id from the link layer address.
16969  */
16970 static void
16971 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16972 {
16973 	char		*addr;
16974 
16975 	ASSERT(ill->ill_phys_addr_length == 20);
16976 	addr = (char *)&v6addr->s6_addr32[2];
16977 	bcopy(ill->ill_phys_addr + 12, addr, 8);
16978 	/*
16979 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
16980 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
16981 	 * rules. In these cases, the IBA considers these GUIDs to be in
16982 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
16983 	 * required; vendors are required not to assign global EUI-64's
16984 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
16985 	 * of the interface identifier. Whether the GUID is in modified
16986 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
16987 	 * bit set to 1.
16988 	 */
16989 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
16990 }
16991 
16992 /*
16993  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
16994  * Note on mapping from multicast IP addresses to IPoIB multicast link
16995  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
16996  * The format of an IPoIB multicast address is:
16997  *
16998  *  4 byte QPN      Scope Sign.  Pkey
16999  * +--------------------------------------------+
17000  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17001  * +--------------------------------------------+
17002  *
17003  * The Scope and Pkey components are properties of the IBA port and
17004  * network interface. They can be ascertained from the broadcast address.
17005  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17006  */
17007 static void
17008 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17009 {
17010 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17011 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17012 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17013 	uint8_t	*bphys_addr;
17014 	dl_unitdata_req_t *dlur;
17015 
17016 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17017 
17018 	/*
17019 	 * RFC 4391: IPv4 MGID is 28-bit long.
17020 	 */
17021 	m_physaddr[16] = m_ipaddr[0] & 0x0f;
17022 	m_physaddr[17] = m_ipaddr[1];
17023 	m_physaddr[18] = m_ipaddr[2];
17024 	m_physaddr[19] = m_ipaddr[3];
17025 
17026 
17027 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17028 	if (ill->ill_sap_length < 0) {
17029 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17030 	} else  {
17031 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17032 		    ill->ill_sap_length;
17033 	}
17034 	/*
17035 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17036 	 */
17037 	m_physaddr[5] = bphys_addr[5];
17038 	m_physaddr[8] = bphys_addr[8];
17039 	m_physaddr[9] = bphys_addr[9];
17040 }
17041 
17042 static void
17043 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17044 {
17045 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17046 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17047 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17048 	uint8_t	*bphys_addr;
17049 	dl_unitdata_req_t *dlur;
17050 
17051 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17052 
17053 	/*
17054 	 * RFC 4391: IPv4 MGID is 80-bit long.
17055 	 */
17056 	bcopy(&m_ipaddr[6], &m_physaddr[10], 10);
17057 
17058 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17059 	if (ill->ill_sap_length < 0) {
17060 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17061 	} else  {
17062 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17063 		    ill->ill_sap_length;
17064 	}
17065 	/*
17066 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17067 	 */
17068 	m_physaddr[5] = bphys_addr[5];
17069 	m_physaddr[8] = bphys_addr[8];
17070 	m_physaddr[9] = bphys_addr[9];
17071 }
17072 
17073 /*
17074  * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17075  * tunnel).  The IPv4 address simply get placed in the lower 4 bytes of the
17076  * IPv6 interface id.  This is a suggested mechanism described in section 3.7
17077  * of RFC4213.
17078  */
17079 static void
17080 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17081 {
17082 	ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17083 	v6addr->s6_addr32[2] = 0;
17084 	bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17085 }
17086 
17087 /*
17088  * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17089  * tunnel).  The lower 8 bytes of the IPv6 address simply become the interface
17090  * id.
17091  */
17092 static void
17093 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17094 {
17095 	in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
17096 
17097 	ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17098 	bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17099 }
17100 
17101 static void
17102 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17103 {
17104 	ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17105 }
17106 
17107 static void
17108 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17109 {
17110 	ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17111 }
17112 
17113 static void
17114 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17115 {
17116 	ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17117 }
17118 
17119 static void
17120 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17121 {
17122 	ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17123 }
17124 
17125 /*
17126  * Lookup an ill and verify that the zoneid has an ipif on that ill.
17127  * Returns an held ill, or NULL.
17128  */
17129 ill_t *
17130 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17131     ip_stack_t *ipst)
17132 {
17133 	ill_t	*ill;
17134 	ipif_t	*ipif;
17135 
17136 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
17137 	if (ill == NULL)
17138 		return (NULL);
17139 
17140 	mutex_enter(&ill->ill_lock);
17141 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17142 		if (IPIF_IS_CONDEMNED(ipif))
17143 			continue;
17144 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17145 		    ipif->ipif_zoneid != ALL_ZONES)
17146 			continue;
17147 
17148 		mutex_exit(&ill->ill_lock);
17149 		return (ill);
17150 	}
17151 	mutex_exit(&ill->ill_lock);
17152 	ill_refrele(ill);
17153 	return (NULL);
17154 }
17155 
17156 /*
17157  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17158  * If a pointer to an ipif_t is returned then the caller will need to do
17159  * an ill_refrele().
17160  */
17161 ipif_t *
17162 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17163     ip_stack_t *ipst)
17164 {
17165 	ipif_t *ipif;
17166 	ill_t *ill;
17167 
17168 	ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17169 	if (ill == NULL)
17170 		return (NULL);
17171 
17172 	mutex_enter(&ill->ill_lock);
17173 	if (ill->ill_state_flags & ILL_CONDEMNED) {
17174 		mutex_exit(&ill->ill_lock);
17175 		ill_refrele(ill);
17176 		return (NULL);
17177 	}
17178 
17179 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17180 		if (!IPIF_CAN_LOOKUP(ipif))
17181 			continue;
17182 		if (lifidx == ipif->ipif_id) {
17183 			ipif_refhold_locked(ipif);
17184 			break;
17185 		}
17186 	}
17187 
17188 	mutex_exit(&ill->ill_lock);
17189 	ill_refrele(ill);
17190 	return (ipif);
17191 }
17192 
17193 /*
17194  * Set ill_inputfn based on the current know state.
17195  * This needs to be called when any of the factors taken into
17196  * account changes.
17197  */
17198 void
17199 ill_set_inputfn(ill_t *ill)
17200 {
17201 	ip_stack_t	*ipst = ill->ill_ipst;
17202 
17203 	if (ill->ill_isv6) {
17204 		if (is_system_labeled())
17205 			ill->ill_inputfn = ill_input_full_v6;
17206 		else
17207 			ill->ill_inputfn = ill_input_short_v6;
17208 	} else {
17209 		if (is_system_labeled())
17210 			ill->ill_inputfn = ill_input_full_v4;
17211 		else if (ill->ill_dhcpinit != 0)
17212 			ill->ill_inputfn = ill_input_full_v4;
17213 		else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17214 		    != NULL)
17215 			ill->ill_inputfn = ill_input_full_v4;
17216 		else if (ipst->ips_ip_cgtp_filter &&
17217 		    ipst->ips_ip_cgtp_filter_ops != NULL)
17218 			ill->ill_inputfn = ill_input_full_v4;
17219 		else
17220 			ill->ill_inputfn = ill_input_short_v4;
17221 	}
17222 }
17223 
17224 /*
17225  * Re-evaluate ill_inputfn for all the IPv4 ills.
17226  * Used when RSVP and CGTP comes and goes.
17227  */
17228 void
17229 ill_set_inputfn_all(ip_stack_t *ipst)
17230 {
17231 	ill_walk_context_t	ctx;
17232 	ill_t			*ill;
17233 
17234 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17235 	ill = ILL_START_WALK_V4(&ctx, ipst);
17236 	for (; ill != NULL; ill = ill_next(&ctx, ill))
17237 		ill_set_inputfn(ill);
17238 
17239 	rw_exit(&ipst->ips_ill_g_lock);
17240 }
17241 
17242 /*
17243  * Set the physical address information for `ill' to the contents of the
17244  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
17245  * asynchronous if `ill' cannot immediately be quiesced -- in which case
17246  * EINPROGRESS will be returned.
17247  */
17248 int
17249 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
17250 {
17251 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17252 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
17253 
17254 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17255 
17256 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17257 	    dlindp->dl_data != DL_CURR_DEST_ADDR &&
17258 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17259 		/* Changing DL_IPV6_TOKEN is not yet supported */
17260 		return (0);
17261 	}
17262 
17263 	/*
17264 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
17265 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
17266 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
17267 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
17268 	 */
17269 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17270 		freemsg(mp);
17271 		return (ENOMEM);
17272 	}
17273 
17274 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17275 	mutex_enter(&ill->ill_lock);
17276 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17277 	/* no more nce addition allowed */
17278 	mutex_exit(&ill->ill_lock);
17279 
17280 	/*
17281 	 * If we can quiesce the ill, then set the address.  If not, then
17282 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17283 	 */
17284 	ill_down_ipifs(ill, B_TRUE);
17285 	mutex_enter(&ill->ill_lock);
17286 	if (!ill_is_quiescent(ill)) {
17287 		/* call cannot fail since `conn_t *' argument is NULL */
17288 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17289 		    mp, ILL_DOWN);
17290 		mutex_exit(&ill->ill_lock);
17291 		return (EINPROGRESS);
17292 	}
17293 	mutex_exit(&ill->ill_lock);
17294 
17295 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17296 	return (0);
17297 }
17298 
17299 /*
17300  * Once the ill associated with `q' has quiesced, set its physical address
17301  * information to the values in `addrmp'.  Note that two copies of `addrmp'
17302  * are passed (linked by b_cont), since we sometimes need to save two distinct
17303  * copies in the ill_t, and our context doesn't permit sleeping or allocation
17304  * failure (we'll free the other copy if it's not needed).  Since the ill_t
17305  * is quiesced, we know any stale nce's with the old address information have
17306  * already been removed, so we don't need to call nce_flush().
17307  */
17308 /* ARGSUSED */
17309 static void
17310 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17311 {
17312 	ill_t		*ill = q->q_ptr;
17313 	mblk_t		*addrmp2 = unlinkb(addrmp);
17314 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17315 	uint_t		addrlen, addroff;
17316 	int		status;
17317 
17318 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17319 
17320 	addroff	= dlindp->dl_addr_offset;
17321 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
17322 
17323 	switch (dlindp->dl_data) {
17324 	case DL_IPV6_LINK_LAYER_ADDR:
17325 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
17326 		freemsg(addrmp2);
17327 		break;
17328 
17329 	case DL_CURR_DEST_ADDR:
17330 		freemsg(ill->ill_dest_addr_mp);
17331 		ill->ill_dest_addr = addrmp->b_rptr + addroff;
17332 		ill->ill_dest_addr_mp = addrmp;
17333 		if (ill->ill_isv6) {
17334 			ill_setdesttoken(ill);
17335 			ipif_setdestlinklocal(ill->ill_ipif);
17336 		}
17337 		freemsg(addrmp2);
17338 		break;
17339 
17340 	case DL_CURR_PHYS_ADDR:
17341 		freemsg(ill->ill_phys_addr_mp);
17342 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
17343 		ill->ill_phys_addr_mp = addrmp;
17344 		ill->ill_phys_addr_length = addrlen;
17345 		if (ill->ill_isv6)
17346 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17347 		else
17348 			freemsg(addrmp2);
17349 		if (ill->ill_isv6) {
17350 			ill_setdefaulttoken(ill);
17351 			ipif_setlinklocal(ill->ill_ipif);
17352 		}
17353 		break;
17354 	default:
17355 		ASSERT(0);
17356 	}
17357 
17358 	/*
17359 	 * If there are ipifs to bring up, ill_up_ipifs() will return
17360 	 * EINPROGRESS, and ipsq_current_finish() will be called by
17361 	 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17362 	 * brought up.
17363 	 */
17364 	status = ill_up_ipifs(ill, q, addrmp);
17365 	mutex_enter(&ill->ill_lock);
17366 	if (ill->ill_dl_up)
17367 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17368 	mutex_exit(&ill->ill_lock);
17369 	if (status != EINPROGRESS)
17370 		ipsq_current_finish(ipsq);
17371 }
17372 
17373 /*
17374  * Helper routine for setting the ill_nd_lla fields.
17375  */
17376 void
17377 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17378 {
17379 	freemsg(ill->ill_nd_lla_mp);
17380 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
17381 	ill->ill_nd_lla_mp = ndmp;
17382 	ill->ill_nd_lla_len = addrlen;
17383 }
17384 
17385 /*
17386  * Replumb the ill.
17387  */
17388 int
17389 ill_replumb(ill_t *ill, mblk_t *mp)
17390 {
17391 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17392 
17393 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17394 
17395 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17396 
17397 	mutex_enter(&ill->ill_lock);
17398 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17399 	/* no more nce addition allowed */
17400 	mutex_exit(&ill->ill_lock);
17401 
17402 	/*
17403 	 * If we can quiesce the ill, then continue.  If not, then
17404 	 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
17405 	 */
17406 	ill_down_ipifs(ill, B_FALSE);
17407 
17408 	mutex_enter(&ill->ill_lock);
17409 	if (!ill_is_quiescent(ill)) {
17410 		/* call cannot fail since `conn_t *' argument is NULL */
17411 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17412 		    mp, ILL_DOWN);
17413 		mutex_exit(&ill->ill_lock);
17414 		return (EINPROGRESS);
17415 	}
17416 	mutex_exit(&ill->ill_lock);
17417 
17418 	ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
17419 	return (0);
17420 }
17421 
17422 /* ARGSUSED */
17423 static void
17424 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
17425 {
17426 	ill_t *ill = q->q_ptr;
17427 	int err;
17428 	conn_t *connp = NULL;
17429 
17430 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17431 	freemsg(ill->ill_replumb_mp);
17432 	ill->ill_replumb_mp = copyb(mp);
17433 
17434 	if (ill->ill_replumb_mp == NULL) {
17435 		/* out of memory */
17436 		ipsq_current_finish(ipsq);
17437 		return;
17438 	}
17439 
17440 	mutex_enter(&ill->ill_lock);
17441 	ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
17442 	    ill->ill_rq, ill->ill_replumb_mp, 0);
17443 	mutex_exit(&ill->ill_lock);
17444 
17445 	if (!ill->ill_up_ipifs) {
17446 		/* already closing */
17447 		ipsq_current_finish(ipsq);
17448 		return;
17449 	}
17450 	ill->ill_replumbing = 1;
17451 	err = ill_down_ipifs_tail(ill);
17452 
17453 	/*
17454 	 * Successfully quiesced and brought down the interface, now we send
17455 	 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
17456 	 * DL_NOTE_REPLUMB message.
17457 	 */
17458 	mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
17459 	    DL_NOTIFY_CONF);
17460 	ASSERT(mp != NULL);
17461 	((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
17462 	    DL_NOTE_REPLUMB_DONE;
17463 	ill_dlpi_send(ill, mp);
17464 
17465 	/*
17466 	 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
17467 	 * streams have to be unbound. When all the DLPI exchanges are done,
17468 	 * ipsq_current_finish() will be called by arp_bringup_done(). The
17469 	 * remainder of ipif bringup via ill_up_ipifs() will also be done in
17470 	 * arp_bringup_done().
17471 	 */
17472 	ASSERT(ill->ill_replumb_mp != NULL);
17473 	if (err == EINPROGRESS)
17474 		return;
17475 	else
17476 		ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
17477 	ASSERT(connp == NULL);
17478 	if (err == 0 && ill->ill_replumb_mp != NULL &&
17479 	    ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
17480 		return;
17481 	}
17482 	ipsq_current_finish(ipsq);
17483 }
17484 
17485 /*
17486  * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
17487  * which is `bufsize' bytes.  On success, zero is returned and `buf' updated
17488  * as per the ioctl.  On failure, an errno is returned.
17489  */
17490 static int
17491 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
17492 {
17493 	int rval;
17494 	struct strioctl iocb;
17495 
17496 	iocb.ic_cmd = cmd;
17497 	iocb.ic_timout = 15;
17498 	iocb.ic_len = bufsize;
17499 	iocb.ic_dp = buf;
17500 
17501 	return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
17502 }
17503 
17504 /*
17505  * Issue an SIOCGLIFCONF for address family `af' and store the result into a
17506  * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
17507  */
17508 static int
17509 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
17510     uint_t *bufsizep, cred_t *cr)
17511 {
17512 	int err;
17513 	struct lifnum lifn;
17514 
17515 	bzero(&lifn, sizeof (lifn));
17516 	lifn.lifn_family = af;
17517 	lifn.lifn_flags = LIFC_UNDER_IPMP;
17518 
17519 	if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
17520 		return (err);
17521 
17522 	/*
17523 	 * Pad the interface count to account for additional interfaces that
17524 	 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
17525 	 */
17526 	lifn.lifn_count += 4;
17527 	bzero(lifcp, sizeof (*lifcp));
17528 	lifcp->lifc_flags = LIFC_UNDER_IPMP;
17529 	lifcp->lifc_family = af;
17530 	lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
17531 	lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
17532 
17533 	err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
17534 	if (err != 0) {
17535 		kmem_free(lifcp->lifc_buf, *bufsizep);
17536 		return (err);
17537 	}
17538 
17539 	return (0);
17540 }
17541 
17542 /*
17543  * Helper for ip_interface_cleanup() that removes the loopback interface.
17544  */
17545 static void
17546 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
17547 {
17548 	int err;
17549 	struct lifreq lifr;
17550 
17551 	bzero(&lifr, sizeof (lifr));
17552 	(void) strcpy(lifr.lifr_name, ipif_loopback_name);
17553 
17554 	err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
17555 	if (err != 0) {
17556 		ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
17557 		    "error %d\n", isv6 ? "v6" : "v4", err));
17558 	}
17559 }
17560 
17561 /*
17562  * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
17563  * groups and that IPMP data addresses are down.  These conditions must be met
17564  * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
17565  */
17566 static void
17567 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
17568 {
17569 	int af = isv6 ? AF_INET6 : AF_INET;
17570 	int i, nifs;
17571 	int err;
17572 	uint_t bufsize;
17573 	uint_t lifrsize = sizeof (struct lifreq);
17574 	struct lifconf lifc;
17575 	struct lifreq *lifrp;
17576 
17577 	if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
17578 		cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
17579 		    "(error %d); any IPMP interfaces cannot be shutdown", err);
17580 		return;
17581 	}
17582 
17583 	nifs = lifc.lifc_len / lifrsize;
17584 	for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
17585 		err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
17586 		if (err != 0) {
17587 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
17588 			    "flags: error %d", lifrp->lifr_name, err);
17589 			continue;
17590 		}
17591 
17592 		if (lifrp->lifr_flags & IFF_IPMP) {
17593 			if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
17594 				continue;
17595 
17596 			lifrp->lifr_flags &= ~IFF_UP;
17597 			err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
17598 			if (err != 0) {
17599 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
17600 				    "bring down (error %d); IPMP interface may "
17601 				    "not be shutdown", lifrp->lifr_name, err);
17602 			}
17603 
17604 			/*
17605 			 * Check if IFF_DUPLICATE is still set -- and if so,
17606 			 * reset the address to clear it.
17607 			 */
17608 			err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
17609 			if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
17610 				continue;
17611 
17612 			err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
17613 			if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
17614 			    lifrp, lifrsize, cr)) != 0) {
17615 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
17616 				    "reset DAD (error %d); IPMP interface may "
17617 				    "not be shutdown", lifrp->lifr_name, err);
17618 			}
17619 			continue;
17620 		}
17621 
17622 		lifrp->lifr_groupname[0] = '\0';
17623 		err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr);
17624 		if (err != 0) {
17625 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave "
17626 			    "IPMP group (error %d); associated IPMP interface "
17627 			    "may not be shutdown", lifrp->lifr_name, err);
17628 			continue;
17629 		}
17630 	}
17631 
17632 	kmem_free(lifc.lifc_buf, bufsize);
17633 }
17634 
17635 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
17636 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
17637 
17638 /*
17639  * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
17640  * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
17641  * when the user-level processes in the zone are killed and the latter are
17642  * cleaned up by str_stack_shutdown().
17643  */
17644 void
17645 ip_interface_cleanup(ip_stack_t *ipst)
17646 {
17647 	ldi_handle_t	lh;
17648 	ldi_ident_t	li;
17649 	cred_t		*cr;
17650 	int		err;
17651 	int		i;
17652 	char		*devs[] = { UDP6DEV, UDPDEV };
17653 	netstackid_t	stackid = ipst->ips_netstack->netstack_stackid;
17654 
17655 	if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
17656 		cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
17657 		    " error %d", err);
17658 		return;
17659 	}
17660 
17661 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
17662 	ASSERT(cr != NULL);
17663 
17664 	/*
17665 	 * NOTE: loop executes exactly twice and is hardcoded to know that the
17666 	 * first iteration is IPv6.  (Unrolling yields repetitious code, hence
17667 	 * the loop.)
17668 	 */
17669 	for (i = 0; i < 2; i++) {
17670 		err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
17671 		if (err != 0) {
17672 			cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
17673 			    " error %d", devs[i], err);
17674 			continue;
17675 		}
17676 
17677 		ip_loopback_removeif(lh, i == 0, cr);
17678 		ip_ipmp_cleanup(lh, i == 0, cr);
17679 
17680 		(void) ldi_close(lh, FREAD|FWRITE, cr);
17681 	}
17682 
17683 	ldi_ident_release(li);
17684 	crfree(cr);
17685 }
17686 
17687 /*
17688  * This needs to be in-sync with nic_event_t definition
17689  */
17690 static const char *
17691 ill_hook_event2str(nic_event_t event)
17692 {
17693 	switch (event) {
17694 	case NE_PLUMB:
17695 		return ("PLUMB");
17696 	case NE_UNPLUMB:
17697 		return ("UNPLUMB");
17698 	case NE_UP:
17699 		return ("UP");
17700 	case NE_DOWN:
17701 		return ("DOWN");
17702 	case NE_ADDRESS_CHANGE:
17703 		return ("ADDRESS_CHANGE");
17704 	case NE_LIF_UP:
17705 		return ("LIF_UP");
17706 	case NE_LIF_DOWN:
17707 		return ("LIF_DOWN");
17708 	case NE_IFINDEX_CHANGE:
17709 		return ("IFINDEX_CHANGE");
17710 	default:
17711 		return ("UNKNOWN");
17712 	}
17713 }
17714 
17715 void
17716 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
17717     nic_event_data_t data, size_t datalen)
17718 {
17719 	ip_stack_t		*ipst = ill->ill_ipst;
17720 	hook_nic_event_int_t	*info;
17721 	const char		*str = NULL;
17722 
17723 	/* create a new nic event info */
17724 	if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
17725 		goto fail;
17726 
17727 	info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
17728 	info->hnei_event.hne_lif = lif;
17729 	info->hnei_event.hne_event = event;
17730 	info->hnei_event.hne_protocol = ill->ill_isv6 ?
17731 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
17732 	info->hnei_event.hne_data = NULL;
17733 	info->hnei_event.hne_datalen = 0;
17734 	info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
17735 
17736 	if (data != NULL && datalen != 0) {
17737 		info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
17738 		if (info->hnei_event.hne_data == NULL)
17739 			goto fail;
17740 		bcopy(data, info->hnei_event.hne_data, datalen);
17741 		info->hnei_event.hne_datalen = datalen;
17742 	}
17743 
17744 	if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
17745 	    DDI_NOSLEEP) == DDI_SUCCESS)
17746 		return;
17747 
17748 fail:
17749 	if (info != NULL) {
17750 		if (info->hnei_event.hne_data != NULL) {
17751 			kmem_free(info->hnei_event.hne_data,
17752 			    info->hnei_event.hne_datalen);
17753 		}
17754 		kmem_free(info, sizeof (hook_nic_event_t));
17755 	}
17756 	str = ill_hook_event2str(event);
17757 	ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
17758 	    "information for %s (ENOMEM)\n", str, ill->ill_name));
17759 }
17760 
17761 static int
17762 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
17763 {
17764 	int		err = 0;
17765 	const in_addr_t	*addr = NULL;
17766 	nce_t		*nce = NULL;
17767 	ill_t		*ill = ipif->ipif_ill;
17768 	ill_t		*bound_ill;
17769 	boolean_t	added_ipif = B_FALSE;
17770 	uint16_t	state;
17771 	uint16_t	flags;
17772 
17773 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
17774 	    ill_t *, ill, ipif_t *, ipif);
17775 	if (ipif->ipif_lcl_addr != INADDR_ANY) {
17776 		addr = &ipif->ipif_lcl_addr;
17777 	}
17778 
17779 	if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
17780 		if (res_act != Res_act_initial)
17781 			return (EINVAL);
17782 	}
17783 
17784 	if (addr != NULL) {
17785 		ipmp_illgrp_t	*illg = ill->ill_grp;
17786 
17787 		/* add unicast nce for the local addr */
17788 
17789 		if (IS_IPMP(ill)) {
17790 			/*
17791 			 * If we're here via ipif_up(), then the ipif
17792 			 * won't be bound yet -- add it to the group,
17793 			 * which will bind it if possible. (We would
17794 			 * add it in ipif_up(), but deleting on failure
17795 			 * there is gruesome.)  If we're here via
17796 			 * ipmp_ill_bind_ipif(), then the ipif has
17797 			 * already been added to the group and we
17798 			 * just need to use the binding.
17799 			 */
17800 			if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
17801 				bound_ill  = ipmp_illgrp_add_ipif(illg, ipif);
17802 				if (bound_ill == NULL) {
17803 					/*
17804 					 * We couldn't bind the ipif to an ill
17805 					 * yet, so we have nothing to publish.
17806 					 * Mark the address as ready and return.
17807 					 */
17808 					ipif->ipif_addr_ready = 1;
17809 					return (0);
17810 				}
17811 				added_ipif = B_TRUE;
17812 			}
17813 		} else {
17814 			bound_ill = ill;
17815 		}
17816 
17817 		flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
17818 		    NCE_F_NONUD);
17819 		/*
17820 		 * If this is an initial bring-up (or the ipif was never
17821 		 * completely brought up), do DAD.  Otherwise, we're here
17822 		 * because IPMP has rebound an address to this ill: send
17823 		 * unsolicited advertisements (ARP announcements) to
17824 		 * inform others.
17825 		 */
17826 		if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
17827 			state = ND_UNCHANGED; /* compute in nce_add_common() */
17828 		} else {
17829 			state = ND_REACHABLE;
17830 			flags |= NCE_F_UNSOL_ADV;
17831 		}
17832 
17833 retry:
17834 		err = nce_lookup_then_add_v4(ill,
17835 		    bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
17836 		    addr, flags, state, &nce);
17837 
17838 		/*
17839 		 * note that we may encounter EEXIST if we are moving
17840 		 * the nce as a result of a rebind operation.
17841 		 */
17842 		switch (err) {
17843 		case 0:
17844 			ipif->ipif_added_nce = 1;
17845 			nce->nce_ipif_cnt++;
17846 			break;
17847 		case EEXIST:
17848 			ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
17849 			    ill->ill_name));
17850 			if (!NCE_MYADDR(nce->nce_common)) {
17851 				/*
17852 				 * A leftover nce from before this address
17853 				 * existed
17854 				 */
17855 				ncec_delete(nce->nce_common);
17856 				nce_refrele(nce);
17857 				nce = NULL;
17858 				goto retry;
17859 			}
17860 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
17861 				nce_refrele(nce);
17862 				nce = NULL;
17863 				ip1dbg(("ipif_arp_up: NCE already exists "
17864 				    "for %s:%u\n", ill->ill_name,
17865 				    ipif->ipif_id));
17866 				goto arp_up_done;
17867 			}
17868 			/*
17869 			 * Duplicate local addresses are permissible for
17870 			 * IPIF_POINTOPOINT interfaces which will get marked
17871 			 * IPIF_UNNUMBERED later in
17872 			 * ip_addr_availability_check().
17873 			 *
17874 			 * The nce_ipif_cnt field tracks the number of
17875 			 * ipifs that have nce_addr as their local address.
17876 			 */
17877 			ipif->ipif_addr_ready = 1;
17878 			ipif->ipif_added_nce = 1;
17879 			nce->nce_ipif_cnt++;
17880 			err = 0;
17881 			break;
17882 		default:
17883 			ASSERT(nce == NULL);
17884 			goto arp_up_done;
17885 		}
17886 		if (arp_no_defense) {
17887 			if ((ipif->ipif_flags & IPIF_UP) &&
17888 			    !ipif->ipif_addr_ready)
17889 				ipif_up_notify(ipif);
17890 			ipif->ipif_addr_ready = 1;
17891 		}
17892 	} else {
17893 		/* zero address. nothing to publish */
17894 		ipif->ipif_addr_ready = 1;
17895 	}
17896 	if (nce != NULL)
17897 		nce_refrele(nce);
17898 arp_up_done:
17899 	if (added_ipif && err != 0)
17900 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
17901 	return (err);
17902 }
17903 
17904 int
17905 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
17906 {
17907 	int 		err = 0;
17908 	ill_t 		*ill = ipif->ipif_ill;
17909 	boolean_t	first_interface, wait_for_dlpi = B_FALSE;
17910 
17911 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
17912 	    ill_t *, ill, ipif_t *, ipif);
17913 
17914 	/*
17915 	 * need to bring up ARP or setup mcast mapping only
17916 	 * when the first interface is coming UP.
17917 	 */
17918 	first_interface = (ill->ill_ipif_up_count == 0 &&
17919 	    ill->ill_ipif_dup_count == 0 && !was_dup);
17920 
17921 	if (res_act == Res_act_initial && first_interface) {
17922 		/*
17923 		 * Send ATTACH + BIND
17924 		 */
17925 		err = arp_ll_up(ill);
17926 		if (err != EINPROGRESS && err != 0)
17927 			return (err);
17928 
17929 		/*
17930 		 * Add NCE for local address. Start DAD.
17931 		 * we'll wait to hear that DAD has finished
17932 		 * before using the interface.
17933 		 */
17934 		if (err == EINPROGRESS)
17935 			wait_for_dlpi = B_TRUE;
17936 	}
17937 
17938 	if (!wait_for_dlpi)
17939 		(void) ipif_arp_up_done_tail(ipif, res_act);
17940 
17941 	return (!wait_for_dlpi ? 0 : EINPROGRESS);
17942 }
17943 
17944 /*
17945  * Finish processing of "arp_up" after all the DLPI message
17946  * exchanges have completed between arp and the driver.
17947  */
17948 void
17949 arp_bringup_done(ill_t *ill, int err)
17950 {
17951 	mblk_t	*mp1;
17952 	ipif_t  *ipif;
17953 	conn_t *connp = NULL;
17954 	ipsq_t	*ipsq;
17955 	queue_t *q;
17956 
17957 	ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));
17958 
17959 	ASSERT(IAM_WRITER_ILL(ill));
17960 
17961 	ipsq = ill->ill_phyint->phyint_ipsq;
17962 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
17963 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
17964 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
17965 	if (mp1 == NULL) /* bringup was aborted by the user */
17966 		return;
17967 
17968 	/*
17969 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
17970 	 * must have an associated conn_t.  Otherwise, we're bringing this
17971 	 * interface back up as part of handling an asynchronous event (e.g.,
17972 	 * physical address change).
17973 	 */
17974 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
17975 		ASSERT(connp != NULL);
17976 		q = CONNP_TO_WQ(connp);
17977 	} else {
17978 		ASSERT(connp == NULL);
17979 		q = ill->ill_rq;
17980 	}
17981 	if (err == 0) {
17982 		if (ipif->ipif_isv6) {
17983 			if ((err = ipif_up_done_v6(ipif)) != 0)
17984 				ip0dbg(("arp_bringup_done: init failed\n"));
17985 		} else {
17986 			err = ipif_arp_up_done_tail(ipif, Res_act_initial);
17987 			if (err != 0 ||
17988 			    (err = ipif_up_done(ipif)) != 0) {
17989 				ip0dbg(("arp_bringup_done: "
17990 				    "init failed err %x\n", err));
17991 				(void) ipif_arp_down(ipif);
17992 			}
17993 
17994 		}
17995 	} else {
17996 		ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
17997 	}
17998 
17999 	if ((err == 0) && (ill->ill_up_ipifs)) {
18000 		err = ill_up_ipifs(ill, q, mp1);
18001 		if (err == EINPROGRESS)
18002 			return;
18003 	}
18004 
18005 	/*
18006 	 * If we have a moved ipif to bring up, and everything has succeeded
18007 	 * to this point, bring it up on the IPMP ill.  Otherwise, leave it
18008 	 * down -- the admin can try to bring it up by hand if need be.
18009 	 */
18010 	if (ill->ill_move_ipif != NULL) {
18011 		ipif = ill->ill_move_ipif;
18012 		ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18013 		    ipif->ipif_ill->ill_name));
18014 		ill->ill_move_ipif = NULL;
18015 		if (err == 0) {
18016 			err = ipif_up(ipif, q, mp1);
18017 			if (err == EINPROGRESS)
18018 				return;
18019 		}
18020 	}
18021 
18022 	/*
18023 	 * The operation must complete without EINPROGRESS since
18024 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18025 	 * Otherwise, the operation will be stuck forever in the ipsq.
18026 	 */
18027 	ASSERT(err != EINPROGRESS);
18028 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18029 		DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18030 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18031 		    ill_t *, ill, ipif_t *, ipif);
18032 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18033 	} else {
18034 		ipsq_current_finish(ipsq);
18035 	}
18036 }
18037 
18038 /*
18039  * Finish processing of arp replumb after all the DLPI message
18040  * exchanges have completed between arp and the driver.
18041  */
18042 void
18043 arp_replumb_done(ill_t *ill, int err)
18044 {
18045 	mblk_t	*mp1;
18046 	ipif_t  *ipif;
18047 	conn_t *connp = NULL;
18048 	ipsq_t	*ipsq;
18049 	queue_t *q;
18050 
18051 	ASSERT(IAM_WRITER_ILL(ill));
18052 
18053 	ipsq = ill->ill_phyint->phyint_ipsq;
18054 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18055 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18056 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18057 	if (mp1 == NULL) {
18058 		ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18059 		    ipsq->ipsq_xop->ipx_current_ioctl));
18060 		/* bringup was aborted by the user */
18061 		return;
18062 	}
18063 	/*
18064 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18065 	 * must have an associated conn_t.  Otherwise, we're bringing this
18066 	 * interface back up as part of handling an asynchronous event (e.g.,
18067 	 * physical address change).
18068 	 */
18069 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18070 		ASSERT(connp != NULL);
18071 		q = CONNP_TO_WQ(connp);
18072 	} else {
18073 		ASSERT(connp == NULL);
18074 		q = ill->ill_rq;
18075 	}
18076 	if ((err == 0) && (ill->ill_up_ipifs)) {
18077 		err = ill_up_ipifs(ill, q, mp1);
18078 		if (err == EINPROGRESS)
18079 			return;
18080 	}
18081 	/*
18082 	 * The operation must complete without EINPROGRESS since
18083 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18084 	 * Otherwise, the operation will be stuck forever in the ipsq.
18085 	 */
18086 	ASSERT(err != EINPROGRESS);
18087 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18088 		DTRACE_PROBE4(ipif__ioctl, char *,
18089 		    "arp_replumb_done finish",
18090 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18091 		    ill_t *, ill, ipif_t *, ipif);
18092 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18093 	} else {
18094 		ipsq_current_finish(ipsq);
18095 	}
18096 }
18097 
18098 void
18099 ipif_up_notify(ipif_t *ipif)
18100 {
18101 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18102 	ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18103 	sctp_update_ipif(ipif, SCTP_IPIF_UP);
18104 	ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18105 	    NE_LIF_UP, NULL, 0);
18106 }
18107 
18108 /*
18109  * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18110  * this assumes the context is cv_wait'able.  Hence it shouldnt' be used on
18111  * TPI end points with STREAMS modules pushed above.  This is assured by not
18112  * having the IPI_MODOK flag for the ioctl.  And IP ensures the ILB ioctl
18113  * never ends up on an ipsq, otherwise we may end up processing the ioctl
18114  * while unwinding from the ispq and that could be a thread from the bottom.
18115  */
18116 /* ARGSUSED */
18117 int
18118 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18119     ip_ioctl_cmd_t *ipip, void *arg)
18120 {
18121 	mblk_t *cmd_mp = mp->b_cont->b_cont;
18122 	ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18123 	int ret = 0;
18124 	int i;
18125 	size_t size;
18126 	ip_stack_t *ipst;
18127 	zoneid_t zoneid;
18128 	ilb_stack_t *ilbs;
18129 
18130 	ipst = CONNQ_TO_IPST(q);
18131 	ilbs = ipst->ips_netstack->netstack_ilb;
18132 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18133 
18134 	switch (command) {
18135 	case ILB_CREATE_RULE: {
18136 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18137 
18138 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18139 			ret = EINVAL;
18140 			break;
18141 		}
18142 
18143 		ret = ilb_rule_add(ilbs, zoneid, cmd);
18144 		break;
18145 	}
18146 	case ILB_DESTROY_RULE:
18147 	case ILB_ENABLE_RULE:
18148 	case ILB_DISABLE_RULE: {
18149 		ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
18150 
18151 		if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18152 			ret = EINVAL;
18153 			break;
18154 		}
18155 
18156 		if (cmd->flags & ILB_RULE_ALLRULES) {
18157 			if (command == ILB_DESTROY_RULE) {
18158 				ilb_rule_del_all(ilbs, zoneid);
18159 				break;
18160 			} else if (command == ILB_ENABLE_RULE) {
18161 				ilb_rule_enable_all(ilbs, zoneid);
18162 				break;
18163 			} else if (command == ILB_DISABLE_RULE) {
18164 				ilb_rule_disable_all(ilbs, zoneid);
18165 				break;
18166 			}
18167 		} else {
18168 			if (command == ILB_DESTROY_RULE) {
18169 				ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18170 			} else if (command == ILB_ENABLE_RULE) {
18171 				ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18172 				    NULL);
18173 			} else if (command == ILB_DISABLE_RULE) {
18174 				ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18175 				    NULL);
18176 			}
18177 		}
18178 		break;
18179 	}
18180 	case ILB_NUM_RULES: {
18181 		ilb_num_rules_cmd_t *cmd;
18182 
18183 		if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18184 			ret = EINVAL;
18185 			break;
18186 		}
18187 		cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18188 		ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18189 		break;
18190 	}
18191 	case ILB_RULE_NAMES: {
18192 		ilb_rule_names_cmd_t *cmd;
18193 
18194 		cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18195 		if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18196 		    cmd->num_names == 0) {
18197 			ret = EINVAL;
18198 			break;
18199 		}
18200 		size = cmd->num_names * ILB_RULE_NAMESZ;
18201 		if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18202 		    size != cmd_mp->b_wptr) {
18203 			ret = EINVAL;
18204 			break;
18205 		}
18206 		ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18207 		break;
18208 	}
18209 	case ILB_NUM_SERVERS: {
18210 		ilb_num_servers_cmd_t *cmd;
18211 
18212 		if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18213 			ret = EINVAL;
18214 			break;
18215 		}
18216 		cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18217 		ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18218 		    &(cmd->num));
18219 		break;
18220 	}
18221 	case ILB_LIST_RULE: {
18222 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18223 
18224 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18225 			ret = EINVAL;
18226 			break;
18227 		}
18228 		ret = ilb_rule_list(ilbs, zoneid, cmd);
18229 		break;
18230 	}
18231 	case ILB_LIST_SERVERS: {
18232 		ilb_servers_info_cmd_t *cmd;
18233 
18234 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18235 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18236 		    cmd->num_servers == 0) {
18237 			ret = EINVAL;
18238 			break;
18239 		}
18240 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18241 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18242 		    size != cmd_mp->b_wptr) {
18243 			ret = EINVAL;
18244 			break;
18245 		}
18246 
18247 		ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18248 		    &cmd->num_servers);
18249 		break;
18250 	}
18251 	case ILB_ADD_SERVERS: {
18252 		ilb_servers_info_cmd_t *cmd;
18253 		ilb_rule_t *rule;
18254 
18255 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18256 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18257 			ret = EINVAL;
18258 			break;
18259 		}
18260 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18261 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18262 		    size != cmd_mp->b_wptr) {
18263 			ret = EINVAL;
18264 			break;
18265 		}
18266 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18267 		if (rule == NULL) {
18268 			ASSERT(ret != 0);
18269 			break;
18270 		}
18271 		for (i = 0; i < cmd->num_servers; i++) {
18272 			ilb_server_info_t *s;
18273 
18274 			s = &cmd->servers[i];
18275 			s->err = ilb_server_add(ilbs, rule, s);
18276 		}
18277 		ILB_RULE_REFRELE(rule);
18278 		break;
18279 	}
18280 	case ILB_DEL_SERVERS:
18281 	case ILB_ENABLE_SERVERS:
18282 	case ILB_DISABLE_SERVERS: {
18283 		ilb_servers_cmd_t *cmd;
18284 		ilb_rule_t *rule;
18285 		int (*f)();
18286 
18287 		cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18288 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18289 			ret = EINVAL;
18290 			break;
18291 		}
18292 		size = cmd->num_servers * sizeof (ilb_server_arg_t);
18293 		if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18294 		    size != cmd_mp->b_wptr) {
18295 			ret = EINVAL;
18296 			break;
18297 		}
18298 
18299 		if (command == ILB_DEL_SERVERS)
18300 			f = ilb_server_del;
18301 		else if (command == ILB_ENABLE_SERVERS)
18302 			f = ilb_server_enable;
18303 		else if (command == ILB_DISABLE_SERVERS)
18304 			f = ilb_server_disable;
18305 
18306 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18307 		if (rule == NULL) {
18308 			ASSERT(ret != 0);
18309 			break;
18310 		}
18311 
18312 		for (i = 0; i < cmd->num_servers; i++) {
18313 			ilb_server_arg_t *s;
18314 
18315 			s = &cmd->servers[i];
18316 			s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18317 		}
18318 		ILB_RULE_REFRELE(rule);
18319 		break;
18320 	}
18321 	case ILB_LIST_NAT_TABLE: {
18322 		ilb_list_nat_cmd_t *cmd;
18323 
18324 		cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18325 		if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18326 			ret = EINVAL;
18327 			break;
18328 		}
18329 		size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18330 		if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18331 		    size != cmd_mp->b_wptr) {
18332 			ret = EINVAL;
18333 			break;
18334 		}
18335 
18336 		ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18337 		    &cmd->flags);
18338 		break;
18339 	}
18340 	case ILB_LIST_STICKY_TABLE: {
18341 		ilb_list_sticky_cmd_t *cmd;
18342 
18343 		cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18344 		if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18345 			ret = EINVAL;
18346 			break;
18347 		}
18348 		size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18349 		if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18350 		    size != cmd_mp->b_wptr) {
18351 			ret = EINVAL;
18352 			break;
18353 		}
18354 
18355 		ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18356 		    &cmd->num_sticky, &cmd->flags);
18357 		break;
18358 	}
18359 	default:
18360 		ret = EINVAL;
18361 		break;
18362 	}
18363 done:
18364 	return (ret);
18365 }
18366 
18367 /* Remove all cache entries for this logical interface */
18368 void
18369 ipif_nce_down(ipif_t *ipif)
18370 {
18371 	ill_t *ill = ipif->ipif_ill;
18372 	nce_t *nce;
18373 
18374 	DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18375 	    ill_t *, ill, ipif_t *, ipif);
18376 	if (ipif->ipif_added_nce) {
18377 		if (ipif->ipif_isv6)
18378 			nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
18379 		else
18380 			nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);
18381 		if (nce != NULL) {
18382 			if (--nce->nce_ipif_cnt == 0)
18383 				ncec_delete(nce->nce_common);
18384 			ipif->ipif_added_nce = 0;
18385 			nce_refrele(nce);
18386 		} else {
18387 			/*
18388 			 * nce may already be NULL because it was already
18389 			 * flushed, e.g., due to a call to nce_flush
18390 			 */
18391 			ipif->ipif_added_nce = 0;
18392 		}
18393 	}
18394 	/*
18395 	 * Make IPMP aware of the deleted data address.
18396 	 */
18397 	if (IS_IPMP(ill))
18398 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18399 
18400 	/*
18401 	 * Remove all other nces dependent on this ill when the last ipif
18402 	 * is going away.
18403 	 */
18404 	if (ill->ill_ipif_up_count == 0) {
18405 		ncec_walk(ill, (pfi_t)ncec_delete_per_ill,
18406 		    (uchar_t *)ill, ill->ill_ipst);
18407 		if (IS_UNDER_IPMP(ill))
18408 			nce_flush(ill, B_TRUE);
18409 	}
18410 }
18411