1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved. 27 */ 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strsubr.h> 40 #include <sys/strlog.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/kstat.h> 45 #include <sys/debug.h> 46 #include <sys/zone.h> 47 #include <sys/sunldi.h> 48 #include <sys/file.h> 49 #include <sys/bitmap.h> 50 #include <sys/cpuvar.h> 51 #include <sys/time.h> 52 #include <sys/ctype.h> 53 #include <sys/kmem.h> 54 #include <sys/systm.h> 55 #include <sys/param.h> 56 #include <sys/socket.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <netinet/ip6.h> 66 #include <netinet/icmp6.h> 67 #include <netinet/igmp_var.h> 68 #include <sys/policy.h> 69 #include <sys/ethernet.h> 70 #include <sys/callb.h> 71 #include <sys/md5.h> 72 73 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 74 #include <inet/mi.h> 75 #include <inet/nd.h> 76 #include <inet/tunables.h> 77 #include <inet/arp.h> 78 #include <inet/ip_arp.h> 79 #include <inet/mib2.h> 80 #include <inet/ip.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_ftable.h> 87 #include <inet/ip_rts.h> 88 #include <inet/ip_ndp.h> 89 #include <inet/ip_if.h> 90 #include <inet/ip_impl.h> 91 #include <inet/sctp_ip.h> 92 #include <inet/ip_netinfo.h> 93 #include <inet/ilb_ip.h> 94 95 #include <netinet/igmp.h> 96 #include <inet/ip_listutils.h> 97 #include <inet/ipclassifier.h> 98 #include <sys/mac_client.h> 99 #include <sys/dld.h> 100 #include <sys/mac_flow.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 109 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 110 111 /* The character which tells where the ill_name ends */ 112 #define IPIF_SEPARATOR_CHAR ':' 113 114 /* IP ioctl function table entry */ 115 typedef struct ipft_s { 116 int ipft_cmd; 117 pfi_t ipft_pfi; 118 int ipft_min_size; 119 int ipft_flags; 120 } ipft_t; 121 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 122 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 123 124 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 125 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 126 char *value, caddr_t cp, cred_t *ioc_cr); 127 128 static boolean_t ill_is_quiescent(ill_t *); 129 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 130 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 131 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 132 mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 134 mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 136 queue_t *q, mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 138 mblk_t *mp); 139 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp); 141 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 144 int ioccmd, struct linkblk *li); 145 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 146 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 147 static void ipsq_flush(ill_t *ill); 148 149 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 150 queue_t *q, mblk_t *mp, boolean_t need_up); 151 static void ipsq_delete(ipsq_t *); 152 153 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 154 boolean_t initialize, boolean_t insert, int *errorp); 155 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 156 static void ipif_delete_bcast_ires(ipif_t *ipif); 157 static int ipif_add_ires_v4(ipif_t *, boolean_t); 158 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 159 boolean_t isv6); 160 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 161 static void ipif_free(ipif_t *ipif); 162 static void ipif_free_tail(ipif_t *ipif); 163 static void ipif_set_default(ipif_t *ipif); 164 static int ipif_set_values(queue_t *q, mblk_t *mp, 165 char *interf_name, uint_t *ppa); 166 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 167 queue_t *q); 168 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 169 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 170 ip_stack_t *); 171 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 172 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 173 int *error, ip_stack_t *); 174 175 static int ill_alloc_ppa(ill_if_t *, ill_t *); 176 static void ill_delete_interface_type(ill_if_t *); 177 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 178 static void ill_dl_down(ill_t *ill); 179 static void ill_down(ill_t *ill); 180 static void ill_down_ipifs(ill_t *, boolean_t); 181 static void ill_free_mib(ill_t *ill); 182 static void ill_glist_delete(ill_t *); 183 static void ill_phyint_reinit(ill_t *ill); 184 static void ill_set_nce_router_flags(ill_t *, boolean_t); 185 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 186 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 187 188 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 189 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 190 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 191 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 192 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 193 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 194 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 195 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 196 static ip_v4mapinfo_func_t ip_mbcast_mapping; 197 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 198 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 199 static void phyint_free(phyint_t *); 200 201 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 202 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 203 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 204 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 205 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 206 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 207 dl_capability_sub_t *); 208 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 209 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 210 static void ill_capability_dld_ack(ill_t *, mblk_t *, 211 dl_capability_sub_t *); 212 static void ill_capability_dld_enable(ill_t *); 213 static void ill_capability_ack_thr(void *); 214 static void ill_capability_lso_enable(ill_t *); 215 216 static ill_t *ill_prev_usesrc(ill_t *); 217 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 218 static void ill_disband_usesrc_group(ill_t *); 219 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 220 221 #ifdef DEBUG 222 static void ill_trace_cleanup(const ill_t *); 223 static void ipif_trace_cleanup(const ipif_t *); 224 #endif 225 226 static void ill_dlpi_clear_deferred(ill_t *ill); 227 228 static void phyint_flags_init(phyint_t *, t_uscalar_t); 229 230 /* 231 * if we go over the memory footprint limit more than once in this msec 232 * interval, we'll start pruning aggressively. 233 */ 234 int ip_min_frag_prune_time = 0; 235 236 static ipft_t ip_ioctl_ftbl[] = { 237 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 238 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 239 IPFT_F_NO_REPLY }, 240 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 241 { 0 } 242 }; 243 244 /* Simple ICMP IP Header Template */ 245 static ipha_t icmp_ipha = { 246 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 247 }; 248 249 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 250 251 static ip_m_t ip_m_tbl[] = { 252 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 259 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 260 ip_nodef_v6intfid }, 261 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 262 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 263 ip_nodef_v6intfid }, 264 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 265 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 266 ip_nodef_v6intfid }, 267 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 268 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 269 ip_nodef_v6intfid }, 270 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 271 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 272 ip_ipv4_v6destintfid }, 273 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 274 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 275 ip_ipv6_v6destintfid }, 276 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 277 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 278 ip_nodef_v6intfid }, 279 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 280 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 281 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 282 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 283 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 284 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 285 ip_nodef_v6intfid } 286 }; 287 288 char ipif_loopback_name[] = "lo0"; 289 290 /* These are used by all IP network modules. */ 291 sin6_t sin6_null; /* Zero address for quick clears */ 292 sin_t sin_null; /* Zero address for quick clears */ 293 294 /* When set search for unused ipif_seqid */ 295 static ipif_t ipif_zero; 296 297 /* 298 * ppa arena is created after these many 299 * interfaces have been plumbed. 300 */ 301 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 302 303 /* 304 * Allocate per-interface mibs. 305 * Returns true if ok. False otherwise. 306 * ipsq may not yet be allocated (loopback case ). 307 */ 308 static boolean_t 309 ill_allocate_mibs(ill_t *ill) 310 { 311 /* Already allocated? */ 312 if (ill->ill_ip_mib != NULL) { 313 if (ill->ill_isv6) 314 ASSERT(ill->ill_icmp6_mib != NULL); 315 return (B_TRUE); 316 } 317 318 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 319 KM_NOSLEEP); 320 if (ill->ill_ip_mib == NULL) { 321 return (B_FALSE); 322 } 323 324 /* Setup static information */ 325 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 326 sizeof (mib2_ipIfStatsEntry_t)); 327 if (ill->ill_isv6) { 328 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 329 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 330 sizeof (mib2_ipv6AddrEntry_t)); 331 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 332 sizeof (mib2_ipv6RouteEntry_t)); 333 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 334 sizeof (mib2_ipv6NetToMediaEntry_t)); 335 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 336 sizeof (ipv6_member_t)); 337 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 338 sizeof (ipv6_grpsrc_t)); 339 } else { 340 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 341 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 342 sizeof (mib2_ipAddrEntry_t)); 343 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 344 sizeof (mib2_ipRouteEntry_t)); 345 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 346 sizeof (mib2_ipNetToMediaEntry_t)); 347 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 348 sizeof (ip_member_t)); 349 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 350 sizeof (ip_grpsrc_t)); 351 352 /* 353 * For a v4 ill, we are done at this point, because per ill 354 * icmp mibs are only used for v6. 355 */ 356 return (B_TRUE); 357 } 358 359 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 360 KM_NOSLEEP); 361 if (ill->ill_icmp6_mib == NULL) { 362 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 363 ill->ill_ip_mib = NULL; 364 return (B_FALSE); 365 } 366 /* static icmp info */ 367 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 368 sizeof (mib2_ipv6IfIcmpEntry_t); 369 /* 370 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 371 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 372 * -> ill_phyint_reinit 373 */ 374 return (B_TRUE); 375 } 376 377 /* 378 * Completely vaporize a lower level tap and all associated interfaces. 379 * ill_delete is called only out of ip_close when the device control 380 * stream is being closed. 381 */ 382 void 383 ill_delete(ill_t *ill) 384 { 385 ipif_t *ipif; 386 ill_t *prev_ill; 387 ip_stack_t *ipst = ill->ill_ipst; 388 389 /* 390 * ill_delete may be forcibly entering the ipsq. The previous 391 * ioctl may not have completed and may need to be aborted. 392 * ipsq_flush takes care of it. If we don't need to enter the 393 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 394 * ill_delete_tail is sufficient. 395 */ 396 ipsq_flush(ill); 397 398 /* 399 * Nuke all interfaces. ipif_free will take down the interface, 400 * remove it from the list, and free the data structure. 401 * Walk down the ipif list and remove the logical interfaces 402 * first before removing the main ipif. We can't unplumb 403 * zeroth interface first in the case of IPv6 as update_conn_ill 404 * -> ip_ll_multireq de-references ill_ipif for checking 405 * POINTOPOINT. 406 * 407 * If ill_ipif was not properly initialized (i.e low on memory), 408 * then no interfaces to clean up. In this case just clean up the 409 * ill. 410 */ 411 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 412 ipif_free(ipif); 413 414 /* 415 * clean out all the nce_t entries that depend on this 416 * ill for the ill_phys_addr. 417 */ 418 nce_flush(ill, B_TRUE); 419 420 /* Clean up msgs on pending upcalls for mrouted */ 421 reset_mrt_ill(ill); 422 423 update_conn_ill(ill, ipst); 424 425 /* 426 * Remove multicast references added as a result of calls to 427 * ip_join_allmulti(). 428 */ 429 ip_purge_allmulti(ill); 430 431 /* 432 * If the ill being deleted is under IPMP, boot it out of the illgrp. 433 */ 434 if (IS_UNDER_IPMP(ill)) 435 ipmp_ill_leave_illgrp(ill); 436 437 /* 438 * ill_down will arrange to blow off any IRE's dependent on this 439 * ILL, and shut down fragmentation reassembly. 440 */ 441 ill_down(ill); 442 443 /* Let SCTP know, so that it can remove this from its list. */ 444 sctp_update_ill(ill, SCTP_ILL_REMOVE); 445 446 /* 447 * Walk all CONNs that can have a reference on an ire or nce for this 448 * ill (we actually walk all that now have stale references). 449 */ 450 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 451 452 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 453 if (ill->ill_isv6) 454 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 455 456 /* 457 * If an address on this ILL is being used as a source address then 458 * clear out the pointers in other ILLs that point to this ILL. 459 */ 460 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 461 if (ill->ill_usesrc_grp_next != NULL) { 462 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 463 ill_disband_usesrc_group(ill); 464 } else { /* consumer of the usesrc ILL */ 465 prev_ill = ill_prev_usesrc(ill); 466 prev_ill->ill_usesrc_grp_next = 467 ill->ill_usesrc_grp_next; 468 } 469 } 470 rw_exit(&ipst->ips_ill_g_usesrc_lock); 471 } 472 473 static void 474 ipif_non_duplicate(ipif_t *ipif) 475 { 476 ill_t *ill = ipif->ipif_ill; 477 mutex_enter(&ill->ill_lock); 478 if (ipif->ipif_flags & IPIF_DUPLICATE) { 479 ipif->ipif_flags &= ~IPIF_DUPLICATE; 480 ASSERT(ill->ill_ipif_dup_count > 0); 481 ill->ill_ipif_dup_count--; 482 } 483 mutex_exit(&ill->ill_lock); 484 } 485 486 /* 487 * ill_delete_tail is called from ip_modclose after all references 488 * to the closing ill are gone. The wait is done in ip_modclose 489 */ 490 void 491 ill_delete_tail(ill_t *ill) 492 { 493 mblk_t **mpp; 494 ipif_t *ipif; 495 ip_stack_t *ipst = ill->ill_ipst; 496 497 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 498 ipif_non_duplicate(ipif); 499 (void) ipif_down_tail(ipif); 500 } 501 502 ASSERT(ill->ill_ipif_dup_count == 0); 503 504 /* 505 * If polling capability is enabled (which signifies direct 506 * upcall into IP and driver has ill saved as a handle), 507 * we need to make sure that unbind has completed before we 508 * let the ill disappear and driver no longer has any reference 509 * to this ill. 510 */ 511 mutex_enter(&ill->ill_lock); 512 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 513 cv_wait(&ill->ill_cv, &ill->ill_lock); 514 mutex_exit(&ill->ill_lock); 515 ASSERT(!(ill->ill_capabilities & 516 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 517 518 if (ill->ill_net_type != IRE_LOOPBACK) 519 qprocsoff(ill->ill_rq); 520 521 /* 522 * We do an ipsq_flush once again now. New messages could have 523 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 524 * could also have landed up if an ioctl thread had looked up 525 * the ill before we set the ILL_CONDEMNED flag, but not yet 526 * enqueued the ioctl when we did the ipsq_flush last time. 527 */ 528 ipsq_flush(ill); 529 530 /* 531 * Free capabilities. 532 */ 533 if (ill->ill_hcksum_capab != NULL) { 534 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 535 ill->ill_hcksum_capab = NULL; 536 } 537 538 if (ill->ill_zerocopy_capab != NULL) { 539 kmem_free(ill->ill_zerocopy_capab, 540 sizeof (ill_zerocopy_capab_t)); 541 ill->ill_zerocopy_capab = NULL; 542 } 543 544 if (ill->ill_lso_capab != NULL) { 545 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 546 ill->ill_lso_capab = NULL; 547 } 548 549 if (ill->ill_dld_capab != NULL) { 550 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 551 ill->ill_dld_capab = NULL; 552 } 553 554 /* Clean up ill_allowed_ips* related state */ 555 if (ill->ill_allowed_ips != NULL) { 556 ASSERT(ill->ill_allowed_ips_cnt > 0); 557 kmem_free(ill->ill_allowed_ips, 558 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 559 ill->ill_allowed_ips = NULL; 560 ill->ill_allowed_ips_cnt = 0; 561 } 562 563 while (ill->ill_ipif != NULL) 564 ipif_free_tail(ill->ill_ipif); 565 566 /* 567 * We have removed all references to ilm from conn and the ones joined 568 * within the kernel. 569 * 570 * We don't walk conns, mrts and ires because 571 * 572 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 573 * 2) ill_down ->ill_downi walks all the ires and cleans up 574 * ill references. 575 */ 576 577 /* 578 * If this ill is an IPMP meta-interface, blow away the illgrp. This 579 * is safe to do because the illgrp has already been unlinked from the 580 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 581 */ 582 if (IS_IPMP(ill)) { 583 ipmp_illgrp_destroy(ill->ill_grp); 584 ill->ill_grp = NULL; 585 } 586 587 if (ill->ill_mphysaddr_list != NULL) { 588 multiphysaddr_t *mpa, *tmpa; 589 590 mpa = ill->ill_mphysaddr_list; 591 ill->ill_mphysaddr_list = NULL; 592 while (mpa) { 593 tmpa = mpa->mpa_next; 594 kmem_free(mpa, sizeof (*mpa)); 595 mpa = tmpa; 596 } 597 } 598 /* 599 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 600 * could free the phyint. No more reference to the phyint after this 601 * point. 602 */ 603 (void) ill_glist_delete(ill); 604 605 if (ill->ill_frag_ptr != NULL) { 606 uint_t count; 607 608 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 609 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 610 } 611 mi_free(ill->ill_frag_ptr); 612 ill->ill_frag_ptr = NULL; 613 ill->ill_frag_hash_tbl = NULL; 614 } 615 616 freemsg(ill->ill_nd_lla_mp); 617 /* Free all retained control messages. */ 618 mpp = &ill->ill_first_mp_to_free; 619 do { 620 while (mpp[0]) { 621 mblk_t *mp; 622 mblk_t *mp1; 623 624 mp = mpp[0]; 625 mpp[0] = mp->b_next; 626 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 627 mp1->b_next = NULL; 628 mp1->b_prev = NULL; 629 } 630 freemsg(mp); 631 } 632 } while (mpp++ != &ill->ill_last_mp_to_free); 633 634 ill_free_mib(ill); 635 636 #ifdef DEBUG 637 ill_trace_cleanup(ill); 638 #endif 639 640 /* The default multicast interface might have changed */ 641 ire_increment_multicast_generation(ipst, ill->ill_isv6); 642 643 /* Drop refcnt here */ 644 netstack_rele(ill->ill_ipst->ips_netstack); 645 ill->ill_ipst = NULL; 646 } 647 648 static void 649 ill_free_mib(ill_t *ill) 650 { 651 ip_stack_t *ipst = ill->ill_ipst; 652 653 /* 654 * MIB statistics must not be lost, so when an interface 655 * goes away the counter values will be added to the global 656 * MIBs. 657 */ 658 if (ill->ill_ip_mib != NULL) { 659 if (ill->ill_isv6) { 660 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 661 ill->ill_ip_mib); 662 } else { 663 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 664 ill->ill_ip_mib); 665 } 666 667 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 668 ill->ill_ip_mib = NULL; 669 } 670 if (ill->ill_icmp6_mib != NULL) { 671 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 672 ill->ill_icmp6_mib); 673 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 674 ill->ill_icmp6_mib = NULL; 675 } 676 } 677 678 /* 679 * Concatenate together a physical address and a sap. 680 * 681 * Sap_lengths are interpreted as follows: 682 * sap_length == 0 ==> no sap 683 * sap_length > 0 ==> sap is at the head of the dlpi address 684 * sap_length < 0 ==> sap is at the tail of the dlpi address 685 */ 686 static void 687 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 688 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 689 { 690 uint16_t sap_addr = (uint16_t)sap_src; 691 692 if (sap_length == 0) { 693 if (phys_src == NULL) 694 bzero(dst, phys_length); 695 else 696 bcopy(phys_src, dst, phys_length); 697 } else if (sap_length < 0) { 698 if (phys_src == NULL) 699 bzero(dst, phys_length); 700 else 701 bcopy(phys_src, dst, phys_length); 702 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 703 } else { 704 bcopy(&sap_addr, dst, sizeof (sap_addr)); 705 if (phys_src == NULL) 706 bzero((char *)dst + sap_length, phys_length); 707 else 708 bcopy(phys_src, (char *)dst + sap_length, phys_length); 709 } 710 } 711 712 /* 713 * Generate a dl_unitdata_req mblk for the device and address given. 714 * addr_length is the length of the physical portion of the address. 715 * If addr is NULL include an all zero address of the specified length. 716 * TRUE? In any case, addr_length is taken to be the entire length of the 717 * dlpi address, including the absolute value of sap_length. 718 */ 719 mblk_t * 720 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 721 t_scalar_t sap_length) 722 { 723 dl_unitdata_req_t *dlur; 724 mblk_t *mp; 725 t_scalar_t abs_sap_length; /* absolute value */ 726 727 abs_sap_length = ABS(sap_length); 728 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 729 DL_UNITDATA_REQ); 730 if (mp == NULL) 731 return (NULL); 732 dlur = (dl_unitdata_req_t *)mp->b_rptr; 733 /* HACK: accomodate incompatible DLPI drivers */ 734 if (addr_length == 8) 735 addr_length = 6; 736 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 737 dlur->dl_dest_addr_offset = sizeof (*dlur); 738 dlur->dl_priority.dl_min = 0; 739 dlur->dl_priority.dl_max = 0; 740 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 741 (uchar_t *)&dlur[1]); 742 return (mp); 743 } 744 745 /* 746 * Add the pending mp to the list. There can be only 1 pending mp 747 * in the list. Any exclusive ioctl that needs to wait for a response 748 * from another module or driver needs to use this function to set 749 * the ipx_pending_mp to the ioctl mblk and wait for the response from 750 * the other module/driver. This is also used while waiting for the 751 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 752 */ 753 boolean_t 754 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 755 int waitfor) 756 { 757 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 758 759 ASSERT(IAM_WRITER_IPIF(ipif)); 760 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 761 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 762 ASSERT(ipx->ipx_pending_mp == NULL); 763 /* 764 * The caller may be using a different ipif than the one passed into 765 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 766 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 767 * that `ipx_current_ipif == ipif'. 768 */ 769 ASSERT(ipx->ipx_current_ipif != NULL); 770 771 /* 772 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 773 * driver. 774 */ 775 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 776 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 777 (DB_TYPE(add_mp) == M_PCPROTO)); 778 779 if (connp != NULL) { 780 ASSERT(MUTEX_HELD(&connp->conn_lock)); 781 /* 782 * Return error if the conn has started closing. The conn 783 * could have finished cleaning up the pending mp list, 784 * If so we should not add another mp to the list negating 785 * the cleanup. 786 */ 787 if (connp->conn_state_flags & CONN_CLOSING) 788 return (B_FALSE); 789 } 790 mutex_enter(&ipx->ipx_lock); 791 ipx->ipx_pending_ipif = ipif; 792 /* 793 * Note down the queue in b_queue. This will be returned by 794 * ipsq_pending_mp_get. Caller will then use these values to restart 795 * the processing 796 */ 797 add_mp->b_next = NULL; 798 add_mp->b_queue = q; 799 ipx->ipx_pending_mp = add_mp; 800 ipx->ipx_waitfor = waitfor; 801 mutex_exit(&ipx->ipx_lock); 802 803 if (connp != NULL) 804 connp->conn_oper_pending_ill = ipif->ipif_ill; 805 806 return (B_TRUE); 807 } 808 809 /* 810 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 811 * queued in the list. 812 */ 813 mblk_t * 814 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 815 { 816 mblk_t *curr = NULL; 817 ipxop_t *ipx = ipsq->ipsq_xop; 818 819 *connpp = NULL; 820 mutex_enter(&ipx->ipx_lock); 821 if (ipx->ipx_pending_mp == NULL) { 822 mutex_exit(&ipx->ipx_lock); 823 return (NULL); 824 } 825 826 /* There can be only 1 such excl message */ 827 curr = ipx->ipx_pending_mp; 828 ASSERT(curr->b_next == NULL); 829 ipx->ipx_pending_ipif = NULL; 830 ipx->ipx_pending_mp = NULL; 831 ipx->ipx_waitfor = 0; 832 mutex_exit(&ipx->ipx_lock); 833 834 if (CONN_Q(curr->b_queue)) { 835 /* 836 * This mp did a refhold on the conn, at the start of the ioctl. 837 * So we can safely return a pointer to the conn to the caller. 838 */ 839 *connpp = Q_TO_CONN(curr->b_queue); 840 } else { 841 *connpp = NULL; 842 } 843 curr->b_next = NULL; 844 curr->b_prev = NULL; 845 return (curr); 846 } 847 848 /* 849 * Cleanup the ioctl mp queued in ipx_pending_mp 850 * - Called in the ill_delete path 851 * - Called in the M_ERROR or M_HANGUP path on the ill. 852 * - Called in the conn close path. 853 * 854 * Returns success on finding the pending mblk associated with the ioctl or 855 * exclusive operation in progress, failure otherwise. 856 */ 857 boolean_t 858 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 859 { 860 mblk_t *mp; 861 ipxop_t *ipx; 862 queue_t *q; 863 ipif_t *ipif; 864 int cmd; 865 866 ASSERT(IAM_WRITER_ILL(ill)); 867 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 868 869 mutex_enter(&ipx->ipx_lock); 870 mp = ipx->ipx_pending_mp; 871 if (connp != NULL) { 872 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 873 /* 874 * Nothing to clean since the conn that is closing 875 * does not have a matching pending mblk in 876 * ipx_pending_mp. 877 */ 878 mutex_exit(&ipx->ipx_lock); 879 return (B_FALSE); 880 } 881 } else { 882 /* 883 * A non-zero ill_error signifies we are called in the 884 * M_ERROR or M_HANGUP path and we need to unconditionally 885 * abort any current ioctl and do the corresponding cleanup. 886 * A zero ill_error means we are in the ill_delete path and 887 * we do the cleanup only if there is a pending mp. 888 */ 889 if (mp == NULL && ill->ill_error == 0) { 890 mutex_exit(&ipx->ipx_lock); 891 return (B_FALSE); 892 } 893 } 894 895 /* Now remove from the ipx_pending_mp */ 896 ipx->ipx_pending_mp = NULL; 897 ipif = ipx->ipx_pending_ipif; 898 ipx->ipx_pending_ipif = NULL; 899 ipx->ipx_waitfor = 0; 900 ipx->ipx_current_ipif = NULL; 901 cmd = ipx->ipx_current_ioctl; 902 ipx->ipx_current_ioctl = 0; 903 ipx->ipx_current_done = B_TRUE; 904 mutex_exit(&ipx->ipx_lock); 905 906 if (mp == NULL) 907 return (B_FALSE); 908 909 q = mp->b_queue; 910 mp->b_next = NULL; 911 mp->b_prev = NULL; 912 mp->b_queue = NULL; 913 914 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 915 DTRACE_PROBE4(ipif__ioctl, 916 char *, "ipsq_pending_mp_cleanup", 917 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 918 ipif_t *, ipif); 919 if (connp == NULL) { 920 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 921 } else { 922 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 923 mutex_enter(&ipif->ipif_ill->ill_lock); 924 ipif->ipif_state_flags &= ~IPIF_CHANGING; 925 mutex_exit(&ipif->ipif_ill->ill_lock); 926 } 927 } else { 928 inet_freemsg(mp); 929 } 930 return (B_TRUE); 931 } 932 933 /* 934 * Called in the conn close path and ill delete path 935 */ 936 static void 937 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 938 { 939 ipsq_t *ipsq; 940 mblk_t *prev; 941 mblk_t *curr; 942 mblk_t *next; 943 queue_t *wq, *rq = NULL; 944 mblk_t *tmp_list = NULL; 945 946 ASSERT(IAM_WRITER_ILL(ill)); 947 if (connp != NULL) 948 wq = CONNP_TO_WQ(connp); 949 else 950 wq = ill->ill_wq; 951 952 /* 953 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 954 * against this here. 955 */ 956 if (wq != NULL) 957 rq = RD(wq); 958 959 ipsq = ill->ill_phyint->phyint_ipsq; 960 /* 961 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 962 * In the case of ioctl from a conn, there can be only 1 mp 963 * queued on the ipsq. If an ill is being unplumbed flush all 964 * the messages. 965 */ 966 mutex_enter(&ipsq->ipsq_lock); 967 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 968 curr = next) { 969 next = curr->b_next; 970 if (connp == NULL || 971 (curr->b_queue == wq || curr->b_queue == rq)) { 972 /* Unlink the mblk from the pending mp list */ 973 if (prev != NULL) { 974 prev->b_next = curr->b_next; 975 } else { 976 ASSERT(ipsq->ipsq_xopq_mphead == curr); 977 ipsq->ipsq_xopq_mphead = curr->b_next; 978 } 979 if (ipsq->ipsq_xopq_mptail == curr) 980 ipsq->ipsq_xopq_mptail = prev; 981 /* 982 * Create a temporary list and release the ipsq lock 983 * New elements are added to the head of the tmp_list 984 */ 985 curr->b_next = tmp_list; 986 tmp_list = curr; 987 } else { 988 prev = curr; 989 } 990 } 991 mutex_exit(&ipsq->ipsq_lock); 992 993 while (tmp_list != NULL) { 994 curr = tmp_list; 995 tmp_list = curr->b_next; 996 curr->b_next = NULL; 997 curr->b_prev = NULL; 998 wq = curr->b_queue; 999 curr->b_queue = NULL; 1000 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1001 DTRACE_PROBE4(ipif__ioctl, 1002 char *, "ipsq_xopq_mp_cleanup", 1003 int, 0, ill_t *, NULL, ipif_t *, NULL); 1004 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 1005 CONN_CLOSE : NO_COPYOUT, NULL); 1006 } else { 1007 /* 1008 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1009 * this can't be just inet_freemsg. we have to 1010 * restart it otherwise the thread will be stuck. 1011 */ 1012 inet_freemsg(curr); 1013 } 1014 } 1015 } 1016 1017 /* 1018 * This conn has started closing. Cleanup any pending ioctl from this conn. 1019 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 1020 */ 1021 void 1022 conn_ioctl_cleanup(conn_t *connp) 1023 { 1024 ipsq_t *ipsq; 1025 ill_t *ill; 1026 boolean_t refheld; 1027 1028 /* 1029 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1030 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1031 * started the mp could be present in ipx_pending_mp. Note that if 1032 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1033 * not yet queued anywhere. In this case, the conn close code will wait 1034 * until the conn_ref is dropped. If the stream was a tcp stream, then 1035 * tcp_close will wait first until all ioctls have completed for this 1036 * conn. 1037 */ 1038 mutex_enter(&connp->conn_lock); 1039 ill = connp->conn_oper_pending_ill; 1040 if (ill == NULL) { 1041 mutex_exit(&connp->conn_lock); 1042 return; 1043 } 1044 1045 /* 1046 * We may not be able to refhold the ill if the ill/ipif 1047 * is changing. But we need to make sure that the ill will 1048 * not vanish. So we just bump up the ill_waiter count. 1049 */ 1050 refheld = ill_waiter_inc(ill); 1051 mutex_exit(&connp->conn_lock); 1052 if (refheld) { 1053 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1054 ill_waiter_dcr(ill); 1055 /* 1056 * Check whether this ioctl has started and is 1057 * pending. If it is not found there then check 1058 * whether this ioctl has not even started and is in 1059 * the ipsq_xopq list. 1060 */ 1061 if (!ipsq_pending_mp_cleanup(ill, connp)) 1062 ipsq_xopq_mp_cleanup(ill, connp); 1063 ipsq = ill->ill_phyint->phyint_ipsq; 1064 ipsq_exit(ipsq); 1065 return; 1066 } 1067 } 1068 1069 /* 1070 * The ill is also closing and we could not bump up the 1071 * ill_waiter_count or we could not enter the ipsq. Leave 1072 * the cleanup to ill_delete 1073 */ 1074 mutex_enter(&connp->conn_lock); 1075 while (connp->conn_oper_pending_ill != NULL) 1076 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1077 mutex_exit(&connp->conn_lock); 1078 if (refheld) 1079 ill_waiter_dcr(ill); 1080 } 1081 1082 /* 1083 * ipcl_walk function for cleaning up conn_*_ill fields. 1084 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1085 * conn_bound_if in place. We prefer dropping 1086 * packets instead of sending them out the wrong interface, or accepting 1087 * packets from the wrong ifindex. 1088 */ 1089 static void 1090 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1091 { 1092 ill_t *ill = (ill_t *)arg; 1093 1094 mutex_enter(&connp->conn_lock); 1095 if (connp->conn_dhcpinit_ill == ill) { 1096 connp->conn_dhcpinit_ill = NULL; 1097 ASSERT(ill->ill_dhcpinit != 0); 1098 atomic_dec_32(&ill->ill_dhcpinit); 1099 ill_set_inputfn(ill); 1100 } 1101 mutex_exit(&connp->conn_lock); 1102 } 1103 1104 static int 1105 ill_down_ipifs_tail(ill_t *ill) 1106 { 1107 ipif_t *ipif; 1108 int err; 1109 1110 ASSERT(IAM_WRITER_ILL(ill)); 1111 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1112 ipif_non_duplicate(ipif); 1113 /* 1114 * ipif_down_tail will call arp_ll_down on the last ipif 1115 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1116 */ 1117 if ((err = ipif_down_tail(ipif)) != 0) 1118 return (err); 1119 } 1120 return (0); 1121 } 1122 1123 /* ARGSUSED */ 1124 void 1125 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1126 { 1127 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1128 (void) ill_down_ipifs_tail(q->q_ptr); 1129 freemsg(mp); 1130 ipsq_current_finish(ipsq); 1131 } 1132 1133 /* 1134 * ill_down_start is called when we want to down this ill and bring it up again 1135 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1136 * all interfaces, but don't tear down any plumbing. 1137 */ 1138 boolean_t 1139 ill_down_start(queue_t *q, mblk_t *mp) 1140 { 1141 ill_t *ill = q->q_ptr; 1142 ipif_t *ipif; 1143 1144 ASSERT(IAM_WRITER_ILL(ill)); 1145 /* 1146 * It is possible that some ioctl is already in progress while we 1147 * received the M_ERROR / M_HANGUP in which case, we need to abort 1148 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1149 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1150 * the in progress ioctl from ever completing. 1151 * 1152 * The thread that started the ioctl (if any) must have returned, 1153 * since we are now executing as writer. After the 2 calls below, 1154 * the state of the ipsq and the ill would reflect no trace of any 1155 * pending operation. Subsequently if there is any response to the 1156 * original ioctl from the driver, it would be discarded as an 1157 * unsolicited message from the driver. 1158 */ 1159 (void) ipsq_pending_mp_cleanup(ill, NULL); 1160 ill_dlpi_clear_deferred(ill); 1161 1162 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1163 (void) ipif_down(ipif, NULL, NULL); 1164 1165 ill_down(ill); 1166 1167 /* 1168 * Walk all CONNs that can have a reference on an ire or nce for this 1169 * ill (we actually walk all that now have stale references). 1170 */ 1171 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1172 1173 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1174 if (ill->ill_isv6) 1175 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1176 1177 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1178 1179 /* 1180 * Atomically test and add the pending mp if references are active. 1181 */ 1182 mutex_enter(&ill->ill_lock); 1183 if (!ill_is_quiescent(ill)) { 1184 /* call cannot fail since `conn_t *' argument is NULL */ 1185 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1186 mp, ILL_DOWN); 1187 mutex_exit(&ill->ill_lock); 1188 return (B_FALSE); 1189 } 1190 mutex_exit(&ill->ill_lock); 1191 return (B_TRUE); 1192 } 1193 1194 static void 1195 ill_down(ill_t *ill) 1196 { 1197 mblk_t *mp; 1198 ip_stack_t *ipst = ill->ill_ipst; 1199 1200 /* 1201 * Blow off any IREs dependent on this ILL. 1202 * The caller needs to handle conn_ixa_cleanup 1203 */ 1204 ill_delete_ires(ill); 1205 1206 ire_walk_ill(0, 0, ill_downi, ill, ill); 1207 1208 /* Remove any conn_*_ill depending on this ill */ 1209 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1210 1211 /* 1212 * Free state for additional IREs. 1213 */ 1214 mutex_enter(&ill->ill_saved_ire_lock); 1215 mp = ill->ill_saved_ire_mp; 1216 ill->ill_saved_ire_mp = NULL; 1217 ill->ill_saved_ire_cnt = 0; 1218 mutex_exit(&ill->ill_saved_ire_lock); 1219 freemsg(mp); 1220 } 1221 1222 /* 1223 * ire_walk routine used to delete every IRE that depends on 1224 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1225 * 1226 * Note: since the routes added by the kernel are deleted separately, 1227 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1228 * 1229 * We also remove references on ire_nce_cache entries that refer to the ill. 1230 */ 1231 void 1232 ill_downi(ire_t *ire, char *ill_arg) 1233 { 1234 ill_t *ill = (ill_t *)ill_arg; 1235 nce_t *nce; 1236 1237 mutex_enter(&ire->ire_lock); 1238 nce = ire->ire_nce_cache; 1239 if (nce != NULL && nce->nce_ill == ill) 1240 ire->ire_nce_cache = NULL; 1241 else 1242 nce = NULL; 1243 mutex_exit(&ire->ire_lock); 1244 if (nce != NULL) 1245 nce_refrele(nce); 1246 if (ire->ire_ill == ill) { 1247 /* 1248 * The existing interface binding for ire must be 1249 * deleted before trying to bind the route to another 1250 * interface. However, since we are using the contents of the 1251 * ire after ire_delete, the caller has to ensure that 1252 * CONDEMNED (deleted) ire's are not removed from the list 1253 * when ire_delete() returns. Currently ill_downi() is 1254 * only called as part of ire_walk*() routines, so that 1255 * the irb_refhold() done by ire_walk*() will ensure that 1256 * ire_delete() does not lead to ire_inactive(). 1257 */ 1258 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1259 ire_delete(ire); 1260 if (ire->ire_unbound) 1261 ire_rebind(ire); 1262 } 1263 } 1264 1265 /* Remove IRE_IF_CLONE on this ill */ 1266 void 1267 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1268 { 1269 ill_t *ill = (ill_t *)ill_arg; 1270 1271 ASSERT(ire->ire_type & IRE_IF_CLONE); 1272 if (ire->ire_ill == ill) 1273 ire_delete(ire); 1274 } 1275 1276 /* Consume an M_IOCACK of the fastpath probe. */ 1277 void 1278 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1279 { 1280 mblk_t *mp1 = mp; 1281 1282 /* 1283 * If this was the first attempt turn on the fastpath probing. 1284 */ 1285 mutex_enter(&ill->ill_lock); 1286 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1287 ill->ill_dlpi_fastpath_state = IDS_OK; 1288 mutex_exit(&ill->ill_lock); 1289 1290 /* Free the M_IOCACK mblk, hold on to the data */ 1291 mp = mp->b_cont; 1292 freeb(mp1); 1293 if (mp == NULL) 1294 return; 1295 if (mp->b_cont != NULL) 1296 nce_fastpath_update(ill, mp); 1297 else 1298 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1299 freemsg(mp); 1300 } 1301 1302 /* 1303 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1304 * The data portion of the request is a dl_unitdata_req_t template for 1305 * what we would send downstream in the absence of a fastpath confirmation. 1306 */ 1307 int 1308 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1309 { 1310 struct iocblk *ioc; 1311 mblk_t *mp; 1312 1313 if (dlur_mp == NULL) 1314 return (EINVAL); 1315 1316 mutex_enter(&ill->ill_lock); 1317 switch (ill->ill_dlpi_fastpath_state) { 1318 case IDS_FAILED: 1319 /* 1320 * Driver NAKed the first fastpath ioctl - assume it doesn't 1321 * support it. 1322 */ 1323 mutex_exit(&ill->ill_lock); 1324 return (ENOTSUP); 1325 case IDS_UNKNOWN: 1326 /* This is the first probe */ 1327 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1328 break; 1329 default: 1330 break; 1331 } 1332 mutex_exit(&ill->ill_lock); 1333 1334 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1335 return (EAGAIN); 1336 1337 mp->b_cont = copyb(dlur_mp); 1338 if (mp->b_cont == NULL) { 1339 freeb(mp); 1340 return (EAGAIN); 1341 } 1342 1343 ioc = (struct iocblk *)mp->b_rptr; 1344 ioc->ioc_count = msgdsize(mp->b_cont); 1345 1346 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1347 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1348 putnext(ill->ill_wq, mp); 1349 return (0); 1350 } 1351 1352 void 1353 ill_capability_probe(ill_t *ill) 1354 { 1355 mblk_t *mp; 1356 1357 ASSERT(IAM_WRITER_ILL(ill)); 1358 1359 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1360 ill->ill_dlpi_capab_state != IDCS_FAILED) 1361 return; 1362 1363 /* 1364 * We are starting a new cycle of capability negotiation. 1365 * Free up the capab reset messages of any previous incarnation. 1366 * We will do a fresh allocation when we get the response to our probe 1367 */ 1368 if (ill->ill_capab_reset_mp != NULL) { 1369 freemsg(ill->ill_capab_reset_mp); 1370 ill->ill_capab_reset_mp = NULL; 1371 } 1372 1373 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1374 1375 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1376 if (mp == NULL) 1377 return; 1378 1379 ill_capability_send(ill, mp); 1380 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1381 } 1382 1383 void 1384 ill_capability_reset(ill_t *ill, boolean_t reneg) 1385 { 1386 ASSERT(IAM_WRITER_ILL(ill)); 1387 1388 if (ill->ill_dlpi_capab_state != IDCS_OK) 1389 return; 1390 1391 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1392 1393 ill_capability_send(ill, ill->ill_capab_reset_mp); 1394 ill->ill_capab_reset_mp = NULL; 1395 /* 1396 * We turn off all capabilities except those pertaining to 1397 * direct function call capabilities viz. ILL_CAPAB_DLD* 1398 * which will be turned off by the corresponding reset functions. 1399 */ 1400 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1401 } 1402 1403 static void 1404 ill_capability_reset_alloc(ill_t *ill) 1405 { 1406 mblk_t *mp; 1407 size_t size = 0; 1408 int err; 1409 dl_capability_req_t *capb; 1410 1411 ASSERT(IAM_WRITER_ILL(ill)); 1412 ASSERT(ill->ill_capab_reset_mp == NULL); 1413 1414 if (ILL_HCKSUM_CAPABLE(ill)) { 1415 size += sizeof (dl_capability_sub_t) + 1416 sizeof (dl_capab_hcksum_t); 1417 } 1418 1419 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1420 size += sizeof (dl_capability_sub_t) + 1421 sizeof (dl_capab_zerocopy_t); 1422 } 1423 1424 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1425 size += sizeof (dl_capability_sub_t) + 1426 sizeof (dl_capab_dld_t); 1427 } 1428 1429 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1430 STR_NOSIG, &err); 1431 1432 mp->b_datap->db_type = M_PROTO; 1433 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1434 1435 capb = (dl_capability_req_t *)mp->b_rptr; 1436 capb->dl_primitive = DL_CAPABILITY_REQ; 1437 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1438 capb->dl_sub_length = size; 1439 1440 mp->b_wptr += sizeof (dl_capability_req_t); 1441 1442 /* 1443 * Each handler fills in the corresponding dl_capability_sub_t 1444 * inside the mblk, 1445 */ 1446 ill_capability_hcksum_reset_fill(ill, mp); 1447 ill_capability_zerocopy_reset_fill(ill, mp); 1448 ill_capability_dld_reset_fill(ill, mp); 1449 1450 ill->ill_capab_reset_mp = mp; 1451 } 1452 1453 static void 1454 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1455 { 1456 dl_capab_id_t *id_ic; 1457 uint_t sub_dl_cap = outers->dl_cap; 1458 dl_capability_sub_t *inners; 1459 uint8_t *capend; 1460 1461 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1462 1463 /* 1464 * Note: range checks here are not absolutely sufficient to 1465 * make us robust against malformed messages sent by drivers; 1466 * this is in keeping with the rest of IP's dlpi handling. 1467 * (Remember, it's coming from something else in the kernel 1468 * address space) 1469 */ 1470 1471 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1472 if (capend > mp->b_wptr) { 1473 cmn_err(CE_WARN, "ill_capability_id_ack: " 1474 "malformed sub-capability too long for mblk"); 1475 return; 1476 } 1477 1478 id_ic = (dl_capab_id_t *)(outers + 1); 1479 1480 if (outers->dl_length < sizeof (*id_ic) || 1481 (inners = &id_ic->id_subcap, 1482 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1483 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1484 "encapsulated capab type %d too long for mblk", 1485 inners->dl_cap); 1486 return; 1487 } 1488 1489 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1490 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1491 "isn't as expected; pass-thru module(s) detected, " 1492 "discarding capability\n", inners->dl_cap)); 1493 return; 1494 } 1495 1496 /* Process the encapsulated sub-capability */ 1497 ill_capability_dispatch(ill, mp, inners); 1498 } 1499 1500 static void 1501 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1502 { 1503 dl_capability_sub_t *dl_subcap; 1504 1505 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1506 return; 1507 1508 /* 1509 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1510 * initialized below since it is not used by DLD. 1511 */ 1512 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1513 dl_subcap->dl_cap = DL_CAPAB_DLD; 1514 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1515 1516 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1517 } 1518 1519 static void 1520 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1521 { 1522 /* 1523 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1524 * is only to get the VRRP capability. 1525 * 1526 * Note that we cannot check ill_ipif_up_count here since 1527 * ill_ipif_up_count is only incremented when the resolver is setup. 1528 * That is done asynchronously, and can race with this function. 1529 */ 1530 if (!ill->ill_dl_up) { 1531 if (subp->dl_cap == DL_CAPAB_VRRP) 1532 ill_capability_vrrp_ack(ill, mp, subp); 1533 return; 1534 } 1535 1536 switch (subp->dl_cap) { 1537 case DL_CAPAB_HCKSUM: 1538 ill_capability_hcksum_ack(ill, mp, subp); 1539 break; 1540 case DL_CAPAB_ZEROCOPY: 1541 ill_capability_zerocopy_ack(ill, mp, subp); 1542 break; 1543 case DL_CAPAB_DLD: 1544 ill_capability_dld_ack(ill, mp, subp); 1545 break; 1546 case DL_CAPAB_VRRP: 1547 break; 1548 default: 1549 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1550 subp->dl_cap)); 1551 } 1552 } 1553 1554 /* 1555 * Process the vrrp capability received from a DLS Provider. isub must point 1556 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1557 */ 1558 static void 1559 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1560 { 1561 dl_capab_vrrp_t *vrrp; 1562 uint_t sub_dl_cap = isub->dl_cap; 1563 uint8_t *capend; 1564 1565 ASSERT(IAM_WRITER_ILL(ill)); 1566 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1567 1568 /* 1569 * Note: range checks here are not absolutely sufficient to 1570 * make us robust against malformed messages sent by drivers; 1571 * this is in keeping with the rest of IP's dlpi handling. 1572 * (Remember, it's coming from something else in the kernel 1573 * address space) 1574 */ 1575 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1576 if (capend > mp->b_wptr) { 1577 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1578 "malformed sub-capability too long for mblk"); 1579 return; 1580 } 1581 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1582 1583 /* 1584 * Compare the IP address family and set ILLF_VRRP for the right ill. 1585 */ 1586 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1587 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1588 ill->ill_flags |= ILLF_VRRP; 1589 } 1590 } 1591 1592 /* 1593 * Process a hardware checksum offload capability negotiation ack received 1594 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1595 * of a DL_CAPABILITY_ACK message. 1596 */ 1597 static void 1598 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1599 { 1600 dl_capability_req_t *ocap; 1601 dl_capab_hcksum_t *ihck, *ohck; 1602 ill_hcksum_capab_t **ill_hcksum; 1603 mblk_t *nmp = NULL; 1604 uint_t sub_dl_cap = isub->dl_cap; 1605 uint8_t *capend; 1606 1607 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1608 1609 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1610 1611 /* 1612 * Note: range checks here are not absolutely sufficient to 1613 * make us robust against malformed messages sent by drivers; 1614 * this is in keeping with the rest of IP's dlpi handling. 1615 * (Remember, it's coming from something else in the kernel 1616 * address space) 1617 */ 1618 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1619 if (capend > mp->b_wptr) { 1620 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1621 "malformed sub-capability too long for mblk"); 1622 return; 1623 } 1624 1625 /* 1626 * There are two types of acks we process here: 1627 * 1. acks in reply to a (first form) generic capability req 1628 * (no ENABLE flag set) 1629 * 2. acks in reply to a ENABLE capability req. 1630 * (ENABLE flag set) 1631 */ 1632 ihck = (dl_capab_hcksum_t *)(isub + 1); 1633 1634 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1635 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1636 "unsupported hardware checksum " 1637 "sub-capability (version %d, expected %d)", 1638 ihck->hcksum_version, HCKSUM_VERSION_1); 1639 return; 1640 } 1641 1642 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1643 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1644 "checksum capability isn't as expected; pass-thru " 1645 "module(s) detected, discarding capability\n")); 1646 return; 1647 } 1648 1649 #define CURR_HCKSUM_CAPAB \ 1650 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1651 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1652 1653 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1654 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1655 /* do ENABLE processing */ 1656 if (*ill_hcksum == NULL) { 1657 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1658 KM_NOSLEEP); 1659 1660 if (*ill_hcksum == NULL) { 1661 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1662 "could not enable hcksum version %d " 1663 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1664 ill->ill_name); 1665 return; 1666 } 1667 } 1668 1669 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1670 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1671 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1672 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1673 "has enabled hardware checksumming\n ", 1674 ill->ill_name)); 1675 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1676 /* 1677 * Enabling hardware checksum offload 1678 * Currently IP supports {TCP,UDP}/IPv4 1679 * partial and full cksum offload and 1680 * IPv4 header checksum offload. 1681 * Allocate new mblk which will 1682 * contain a new capability request 1683 * to enable hardware checksum offload. 1684 */ 1685 uint_t size; 1686 uchar_t *rptr; 1687 1688 size = sizeof (dl_capability_req_t) + 1689 sizeof (dl_capability_sub_t) + isub->dl_length; 1690 1691 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1692 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1693 "could not enable hardware cksum for %s (ENOMEM)\n", 1694 ill->ill_name); 1695 return; 1696 } 1697 1698 rptr = nmp->b_rptr; 1699 /* initialize dl_capability_req_t */ 1700 ocap = (dl_capability_req_t *)nmp->b_rptr; 1701 ocap->dl_sub_offset = 1702 sizeof (dl_capability_req_t); 1703 ocap->dl_sub_length = 1704 sizeof (dl_capability_sub_t) + 1705 isub->dl_length; 1706 nmp->b_rptr += sizeof (dl_capability_req_t); 1707 1708 /* initialize dl_capability_sub_t */ 1709 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1710 nmp->b_rptr += sizeof (*isub); 1711 1712 /* initialize dl_capab_hcksum_t */ 1713 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1714 bcopy(ihck, ohck, sizeof (*ihck)); 1715 1716 nmp->b_rptr = rptr; 1717 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1718 1719 /* Set ENABLE flag */ 1720 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1721 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1722 1723 /* 1724 * nmp points to a DL_CAPABILITY_REQ message to enable 1725 * hardware checksum acceleration. 1726 */ 1727 ill_capability_send(ill, nmp); 1728 } else { 1729 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1730 "advertised %x hardware checksum capability flags\n", 1731 ill->ill_name, ihck->hcksum_txflags)); 1732 } 1733 } 1734 1735 static void 1736 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1737 { 1738 dl_capab_hcksum_t *hck_subcap; 1739 dl_capability_sub_t *dl_subcap; 1740 1741 if (!ILL_HCKSUM_CAPABLE(ill)) 1742 return; 1743 1744 ASSERT(ill->ill_hcksum_capab != NULL); 1745 1746 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1747 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1748 dl_subcap->dl_length = sizeof (*hck_subcap); 1749 1750 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1751 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1752 hck_subcap->hcksum_txflags = 0; 1753 1754 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1755 } 1756 1757 static void 1758 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1759 { 1760 mblk_t *nmp = NULL; 1761 dl_capability_req_t *oc; 1762 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1763 ill_zerocopy_capab_t **ill_zerocopy_capab; 1764 uint_t sub_dl_cap = isub->dl_cap; 1765 uint8_t *capend; 1766 1767 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1768 1769 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1770 1771 /* 1772 * Note: range checks here are not absolutely sufficient to 1773 * make us robust against malformed messages sent by drivers; 1774 * this is in keeping with the rest of IP's dlpi handling. 1775 * (Remember, it's coming from something else in the kernel 1776 * address space) 1777 */ 1778 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1779 if (capend > mp->b_wptr) { 1780 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1781 "malformed sub-capability too long for mblk"); 1782 return; 1783 } 1784 1785 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1786 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1787 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1788 "unsupported ZEROCOPY sub-capability (version %d, " 1789 "expected %d)", zc_ic->zerocopy_version, 1790 ZEROCOPY_VERSION_1); 1791 return; 1792 } 1793 1794 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1795 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1796 "capability isn't as expected; pass-thru module(s) " 1797 "detected, discarding capability\n")); 1798 return; 1799 } 1800 1801 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1802 if (*ill_zerocopy_capab == NULL) { 1803 *ill_zerocopy_capab = 1804 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1805 KM_NOSLEEP); 1806 1807 if (*ill_zerocopy_capab == NULL) { 1808 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1809 "could not enable Zero-copy version %d " 1810 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1811 ill->ill_name); 1812 return; 1813 } 1814 } 1815 1816 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1817 "supports Zero-copy version %d\n", ill->ill_name, 1818 ZEROCOPY_VERSION_1)); 1819 1820 (*ill_zerocopy_capab)->ill_zerocopy_version = 1821 zc_ic->zerocopy_version; 1822 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1823 zc_ic->zerocopy_flags; 1824 1825 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1826 } else { 1827 uint_t size; 1828 uchar_t *rptr; 1829 1830 size = sizeof (dl_capability_req_t) + 1831 sizeof (dl_capability_sub_t) + 1832 sizeof (dl_capab_zerocopy_t); 1833 1834 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1835 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1836 "could not enable zerocopy for %s (ENOMEM)\n", 1837 ill->ill_name); 1838 return; 1839 } 1840 1841 rptr = nmp->b_rptr; 1842 /* initialize dl_capability_req_t */ 1843 oc = (dl_capability_req_t *)rptr; 1844 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1845 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1846 sizeof (dl_capab_zerocopy_t); 1847 rptr += sizeof (dl_capability_req_t); 1848 1849 /* initialize dl_capability_sub_t */ 1850 bcopy(isub, rptr, sizeof (*isub)); 1851 rptr += sizeof (*isub); 1852 1853 /* initialize dl_capab_zerocopy_t */ 1854 zc_oc = (dl_capab_zerocopy_t *)rptr; 1855 *zc_oc = *zc_ic; 1856 1857 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1858 "to enable zero-copy version %d\n", ill->ill_name, 1859 ZEROCOPY_VERSION_1)); 1860 1861 /* set VMSAFE_MEM flag */ 1862 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1863 1864 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1865 ill_capability_send(ill, nmp); 1866 } 1867 } 1868 1869 static void 1870 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1871 { 1872 dl_capab_zerocopy_t *zerocopy_subcap; 1873 dl_capability_sub_t *dl_subcap; 1874 1875 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1876 return; 1877 1878 ASSERT(ill->ill_zerocopy_capab != NULL); 1879 1880 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1881 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1882 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1883 1884 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1885 zerocopy_subcap->zerocopy_version = 1886 ill->ill_zerocopy_capab->ill_zerocopy_version; 1887 zerocopy_subcap->zerocopy_flags = 0; 1888 1889 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1890 } 1891 1892 /* 1893 * DLD capability 1894 * Refer to dld.h for more information regarding the purpose and usage 1895 * of this capability. 1896 */ 1897 static void 1898 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1899 { 1900 dl_capab_dld_t *dld_ic, dld; 1901 uint_t sub_dl_cap = isub->dl_cap; 1902 uint8_t *capend; 1903 ill_dld_capab_t *idc; 1904 1905 ASSERT(IAM_WRITER_ILL(ill)); 1906 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1907 1908 /* 1909 * Note: range checks here are not absolutely sufficient to 1910 * make us robust against malformed messages sent by drivers; 1911 * this is in keeping with the rest of IP's dlpi handling. 1912 * (Remember, it's coming from something else in the kernel 1913 * address space) 1914 */ 1915 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1916 if (capend > mp->b_wptr) { 1917 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1918 "malformed sub-capability too long for mblk"); 1919 return; 1920 } 1921 dld_ic = (dl_capab_dld_t *)(isub + 1); 1922 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1923 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1924 "unsupported DLD sub-capability (version %d, " 1925 "expected %d)", dld_ic->dld_version, 1926 DLD_CURRENT_VERSION); 1927 return; 1928 } 1929 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1930 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1931 "capability isn't as expected; pass-thru module(s) " 1932 "detected, discarding capability\n")); 1933 return; 1934 } 1935 1936 /* 1937 * Copy locally to ensure alignment. 1938 */ 1939 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1940 1941 if ((idc = ill->ill_dld_capab) == NULL) { 1942 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1943 if (idc == NULL) { 1944 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1945 "could not enable DLD version %d " 1946 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1947 ill->ill_name); 1948 return; 1949 } 1950 ill->ill_dld_capab = idc; 1951 } 1952 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1953 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1954 ip1dbg(("ill_capability_dld_ack: interface %s " 1955 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1956 1957 ill_capability_dld_enable(ill); 1958 } 1959 1960 /* 1961 * Typically capability negotiation between IP and the driver happens via 1962 * DLPI message exchange. However GLD also offers a direct function call 1963 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1964 * But arbitrary function calls into IP or GLD are not permitted, since both 1965 * of them are protected by their own perimeter mechanism. The perimeter can 1966 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1967 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1968 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1969 * to enter the mac perimeter and then do the direct function calls into 1970 * GLD to enable squeue polling. The ring related callbacks from the mac into 1971 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1972 * protected by the mac perimeter. 1973 */ 1974 static void 1975 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1976 { 1977 ill_dld_capab_t *idc = ill->ill_dld_capab; 1978 int err; 1979 1980 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1981 DLD_ENABLE); 1982 ASSERT(err == 0); 1983 } 1984 1985 static void 1986 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1987 { 1988 ill_dld_capab_t *idc = ill->ill_dld_capab; 1989 int err; 1990 1991 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1992 DLD_DISABLE); 1993 ASSERT(err == 0); 1994 } 1995 1996 boolean_t 1997 ill_mac_perim_held(ill_t *ill) 1998 { 1999 ill_dld_capab_t *idc = ill->ill_dld_capab; 2000 2001 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 2002 DLD_QUERY)); 2003 } 2004 2005 static void 2006 ill_capability_direct_enable(ill_t *ill) 2007 { 2008 ill_dld_capab_t *idc = ill->ill_dld_capab; 2009 ill_dld_direct_t *idd = &idc->idc_direct; 2010 dld_capab_direct_t direct; 2011 int rc; 2012 2013 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2014 2015 bzero(&direct, sizeof (direct)); 2016 direct.di_rx_cf = (uintptr_t)ip_input; 2017 direct.di_rx_ch = ill; 2018 2019 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2020 DLD_ENABLE); 2021 if (rc == 0) { 2022 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2023 idd->idd_tx_dh = direct.di_tx_dh; 2024 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2025 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2026 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2027 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2028 ASSERT(idd->idd_tx_cb_df != NULL); 2029 ASSERT(idd->idd_tx_fctl_df != NULL); 2030 ASSERT(idd->idd_tx_df != NULL); 2031 /* 2032 * One time registration of flow enable callback function 2033 */ 2034 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2035 ill_flow_enable, ill); 2036 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2037 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2038 } else { 2039 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2040 "capability, rc = %d\n", rc); 2041 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2042 } 2043 } 2044 2045 static void 2046 ill_capability_poll_enable(ill_t *ill) 2047 { 2048 ill_dld_capab_t *idc = ill->ill_dld_capab; 2049 dld_capab_poll_t poll; 2050 int rc; 2051 2052 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2053 2054 bzero(&poll, sizeof (poll)); 2055 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2056 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2057 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2058 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2059 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2060 poll.poll_ring_ch = ill; 2061 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2062 DLD_ENABLE); 2063 if (rc == 0) { 2064 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2065 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2066 } else { 2067 ip1dbg(("warning: could not enable POLL " 2068 "capability, rc = %d\n", rc)); 2069 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2070 } 2071 } 2072 2073 /* 2074 * Enable the LSO capability. 2075 */ 2076 static void 2077 ill_capability_lso_enable(ill_t *ill) 2078 { 2079 ill_dld_capab_t *idc = ill->ill_dld_capab; 2080 dld_capab_lso_t lso; 2081 int rc; 2082 2083 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2084 2085 if (ill->ill_lso_capab == NULL) { 2086 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2087 KM_NOSLEEP); 2088 if (ill->ill_lso_capab == NULL) { 2089 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2090 "could not enable LSO for %s (ENOMEM)\n", 2091 ill->ill_name); 2092 return; 2093 } 2094 } 2095 2096 bzero(&lso, sizeof (lso)); 2097 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2098 DLD_ENABLE)) == 0) { 2099 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2100 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2101 ill->ill_capabilities |= ILL_CAPAB_LSO; 2102 ip1dbg(("ill_capability_lso_enable: interface %s " 2103 "has enabled LSO\n ", ill->ill_name)); 2104 } else { 2105 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2106 ill->ill_lso_capab = NULL; 2107 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2108 } 2109 } 2110 2111 static void 2112 ill_capability_dld_enable(ill_t *ill) 2113 { 2114 mac_perim_handle_t mph; 2115 2116 ASSERT(IAM_WRITER_ILL(ill)); 2117 2118 if (ill->ill_isv6) 2119 return; 2120 2121 ill_mac_perim_enter(ill, &mph); 2122 if (!ill->ill_isv6) { 2123 ill_capability_direct_enable(ill); 2124 ill_capability_poll_enable(ill); 2125 ill_capability_lso_enable(ill); 2126 } 2127 ill->ill_capabilities |= ILL_CAPAB_DLD; 2128 ill_mac_perim_exit(ill, mph); 2129 } 2130 2131 static void 2132 ill_capability_dld_disable(ill_t *ill) 2133 { 2134 ill_dld_capab_t *idc; 2135 ill_dld_direct_t *idd; 2136 mac_perim_handle_t mph; 2137 2138 ASSERT(IAM_WRITER_ILL(ill)); 2139 2140 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2141 return; 2142 2143 ill_mac_perim_enter(ill, &mph); 2144 2145 idc = ill->ill_dld_capab; 2146 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2147 /* 2148 * For performance we avoid locks in the transmit data path 2149 * and don't maintain a count of the number of threads using 2150 * direct calls. Thus some threads could be using direct 2151 * transmit calls to GLD, even after the capability mechanism 2152 * turns it off. This is still safe since the handles used in 2153 * the direct calls continue to be valid until the unplumb is 2154 * completed. Remove the callback that was added (1-time) at 2155 * capab enable time. 2156 */ 2157 mutex_enter(&ill->ill_lock); 2158 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2159 mutex_exit(&ill->ill_lock); 2160 if (ill->ill_flownotify_mh != NULL) { 2161 idd = &idc->idc_direct; 2162 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2163 ill->ill_flownotify_mh); 2164 ill->ill_flownotify_mh = NULL; 2165 } 2166 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2167 NULL, DLD_DISABLE); 2168 } 2169 2170 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2171 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2172 ip_squeue_clean_all(ill); 2173 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2174 NULL, DLD_DISABLE); 2175 } 2176 2177 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2178 ASSERT(ill->ill_lso_capab != NULL); 2179 /* 2180 * Clear the capability flag for LSO but retain the 2181 * ill_lso_capab structure since it's possible that another 2182 * thread is still referring to it. The structure only gets 2183 * deallocated when we destroy the ill. 2184 */ 2185 2186 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2187 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2188 NULL, DLD_DISABLE); 2189 } 2190 2191 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2192 ill_mac_perim_exit(ill, mph); 2193 } 2194 2195 /* 2196 * Capability Negotiation protocol 2197 * 2198 * We don't wait for DLPI capability operations to finish during interface 2199 * bringup or teardown. Doing so would introduce more asynchrony and the 2200 * interface up/down operations will need multiple return and restarts. 2201 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2202 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2203 * exclusive operation won't start until the DLPI operations of the previous 2204 * exclusive operation complete. 2205 * 2206 * The capability state machine is shown below. 2207 * 2208 * state next state event, action 2209 * 2210 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2211 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2212 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2213 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2214 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2215 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2216 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2217 * ill_capability_probe. 2218 */ 2219 2220 /* 2221 * Dedicated thread started from ip_stack_init that handles capability 2222 * disable. This thread ensures the taskq dispatch does not fail by waiting 2223 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2224 * that direct calls to DLD are done in a cv_waitable context. 2225 */ 2226 void 2227 ill_taskq_dispatch(ip_stack_t *ipst) 2228 { 2229 callb_cpr_t cprinfo; 2230 char name[64]; 2231 mblk_t *mp; 2232 2233 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2234 ipst->ips_netstack->netstack_stackid); 2235 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2236 name); 2237 mutex_enter(&ipst->ips_capab_taskq_lock); 2238 2239 for (;;) { 2240 mp = ipst->ips_capab_taskq_head; 2241 while (mp != NULL) { 2242 ipst->ips_capab_taskq_head = mp->b_next; 2243 if (ipst->ips_capab_taskq_head == NULL) 2244 ipst->ips_capab_taskq_tail = NULL; 2245 mutex_exit(&ipst->ips_capab_taskq_lock); 2246 mp->b_next = NULL; 2247 2248 VERIFY(taskq_dispatch(system_taskq, 2249 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2250 mutex_enter(&ipst->ips_capab_taskq_lock); 2251 mp = ipst->ips_capab_taskq_head; 2252 } 2253 2254 if (ipst->ips_capab_taskq_quit) 2255 break; 2256 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2257 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2258 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2259 } 2260 VERIFY(ipst->ips_capab_taskq_head == NULL); 2261 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2262 CALLB_CPR_EXIT(&cprinfo); 2263 thread_exit(); 2264 } 2265 2266 /* 2267 * Consume a new-style hardware capabilities negotiation ack. 2268 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2269 */ 2270 static void 2271 ill_capability_ack_thr(void *arg) 2272 { 2273 mblk_t *mp = arg; 2274 dl_capability_ack_t *capp; 2275 dl_capability_sub_t *subp, *endp; 2276 ill_t *ill; 2277 boolean_t reneg; 2278 2279 ill = (ill_t *)mp->b_prev; 2280 mp->b_prev = NULL; 2281 2282 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2283 2284 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2285 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2286 /* 2287 * We have received the ack for our DL_CAPAB reset request. 2288 * There isnt' anything in the message that needs processing. 2289 * All message based capabilities have been disabled, now 2290 * do the function call based capability disable. 2291 */ 2292 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2293 ill_capability_dld_disable(ill); 2294 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2295 if (reneg) 2296 ill_capability_probe(ill); 2297 goto done; 2298 } 2299 2300 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2301 ill->ill_dlpi_capab_state = IDCS_OK; 2302 2303 capp = (dl_capability_ack_t *)mp->b_rptr; 2304 2305 if (capp->dl_sub_length == 0) { 2306 /* no new-style capabilities */ 2307 goto done; 2308 } 2309 2310 /* make sure the driver supplied correct dl_sub_length */ 2311 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2312 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2313 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2314 goto done; 2315 } 2316 2317 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2318 /* 2319 * There are sub-capabilities. Process the ones we know about. 2320 * Loop until we don't have room for another sub-cap header.. 2321 */ 2322 for (subp = SC(capp, capp->dl_sub_offset), 2323 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2324 subp <= endp; 2325 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2326 2327 switch (subp->dl_cap) { 2328 case DL_CAPAB_ID_WRAPPER: 2329 ill_capability_id_ack(ill, mp, subp); 2330 break; 2331 default: 2332 ill_capability_dispatch(ill, mp, subp); 2333 break; 2334 } 2335 } 2336 #undef SC 2337 done: 2338 inet_freemsg(mp); 2339 ill_capability_done(ill); 2340 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2341 } 2342 2343 /* 2344 * This needs to be started in a taskq thread to provide a cv_waitable 2345 * context. 2346 */ 2347 void 2348 ill_capability_ack(ill_t *ill, mblk_t *mp) 2349 { 2350 ip_stack_t *ipst = ill->ill_ipst; 2351 2352 mp->b_prev = (mblk_t *)ill; 2353 ASSERT(mp->b_next == NULL); 2354 2355 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2356 TQ_NOSLEEP) != 0) 2357 return; 2358 2359 /* 2360 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2361 * which will do the dispatch using TQ_SLEEP to guarantee success. 2362 */ 2363 mutex_enter(&ipst->ips_capab_taskq_lock); 2364 if (ipst->ips_capab_taskq_head == NULL) { 2365 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2366 ipst->ips_capab_taskq_head = mp; 2367 } else { 2368 ipst->ips_capab_taskq_tail->b_next = mp; 2369 } 2370 ipst->ips_capab_taskq_tail = mp; 2371 2372 cv_signal(&ipst->ips_capab_taskq_cv); 2373 mutex_exit(&ipst->ips_capab_taskq_lock); 2374 } 2375 2376 /* 2377 * This routine is called to scan the fragmentation reassembly table for 2378 * the specified ILL for any packets that are starting to smell. 2379 * dead_interval is the maximum time in seconds that will be tolerated. It 2380 * will either be the value specified in ip_g_frag_timeout, or zero if the 2381 * ILL is shutting down and it is time to blow everything off. 2382 * 2383 * It returns the number of seconds (as a time_t) that the next frag timer 2384 * should be scheduled for, 0 meaning that the timer doesn't need to be 2385 * re-started. Note that the method of calculating next_timeout isn't 2386 * entirely accurate since time will flow between the time we grab 2387 * current_time and the time we schedule the next timeout. This isn't a 2388 * big problem since this is the timer for sending an ICMP reassembly time 2389 * exceeded messages, and it doesn't have to be exactly accurate. 2390 * 2391 * This function is 2392 * sometimes called as writer, although this is not required. 2393 */ 2394 time_t 2395 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2396 { 2397 ipfb_t *ipfb; 2398 ipfb_t *endp; 2399 ipf_t *ipf; 2400 ipf_t *ipfnext; 2401 mblk_t *mp; 2402 time_t current_time = gethrestime_sec(); 2403 time_t next_timeout = 0; 2404 uint32_t hdr_length; 2405 mblk_t *send_icmp_head; 2406 mblk_t *send_icmp_head_v6; 2407 ip_stack_t *ipst = ill->ill_ipst; 2408 ip_recv_attr_t iras; 2409 2410 bzero(&iras, sizeof (iras)); 2411 iras.ira_flags = 0; 2412 iras.ira_ill = iras.ira_rill = ill; 2413 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2414 iras.ira_rifindex = iras.ira_ruifindex; 2415 2416 ipfb = ill->ill_frag_hash_tbl; 2417 if (ipfb == NULL) 2418 return (B_FALSE); 2419 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2420 /* Walk the frag hash table. */ 2421 for (; ipfb < endp; ipfb++) { 2422 send_icmp_head = NULL; 2423 send_icmp_head_v6 = NULL; 2424 mutex_enter(&ipfb->ipfb_lock); 2425 while ((ipf = ipfb->ipfb_ipf) != 0) { 2426 time_t frag_time = current_time - ipf->ipf_timestamp; 2427 time_t frag_timeout; 2428 2429 if (frag_time < dead_interval) { 2430 /* 2431 * There are some outstanding fragments 2432 * that will timeout later. Make note of 2433 * the time so that we can reschedule the 2434 * next timeout appropriately. 2435 */ 2436 frag_timeout = dead_interval - frag_time; 2437 if (next_timeout == 0 || 2438 frag_timeout < next_timeout) { 2439 next_timeout = frag_timeout; 2440 } 2441 break; 2442 } 2443 /* Time's up. Get it out of here. */ 2444 hdr_length = ipf->ipf_nf_hdr_len; 2445 ipfnext = ipf->ipf_hash_next; 2446 if (ipfnext) 2447 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2448 *ipf->ipf_ptphn = ipfnext; 2449 mp = ipf->ipf_mp->b_cont; 2450 for (; mp; mp = mp->b_cont) { 2451 /* Extra points for neatness. */ 2452 IP_REASS_SET_START(mp, 0); 2453 IP_REASS_SET_END(mp, 0); 2454 } 2455 mp = ipf->ipf_mp->b_cont; 2456 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2457 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2458 ipfb->ipfb_count -= ipf->ipf_count; 2459 ASSERT(ipfb->ipfb_frag_pkts > 0); 2460 ipfb->ipfb_frag_pkts--; 2461 /* 2462 * We do not send any icmp message from here because 2463 * we currently are holding the ipfb_lock for this 2464 * hash chain. If we try and send any icmp messages 2465 * from here we may end up via a put back into ip 2466 * trying to get the same lock, causing a recursive 2467 * mutex panic. Instead we build a list and send all 2468 * the icmp messages after we have dropped the lock. 2469 */ 2470 if (ill->ill_isv6) { 2471 if (hdr_length != 0) { 2472 mp->b_next = send_icmp_head_v6; 2473 send_icmp_head_v6 = mp; 2474 } else { 2475 freemsg(mp); 2476 } 2477 } else { 2478 if (hdr_length != 0) { 2479 mp->b_next = send_icmp_head; 2480 send_icmp_head = mp; 2481 } else { 2482 freemsg(mp); 2483 } 2484 } 2485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2486 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2487 freeb(ipf->ipf_mp); 2488 } 2489 mutex_exit(&ipfb->ipfb_lock); 2490 /* 2491 * Now need to send any icmp messages that we delayed from 2492 * above. 2493 */ 2494 while (send_icmp_head_v6 != NULL) { 2495 ip6_t *ip6h; 2496 2497 mp = send_icmp_head_v6; 2498 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2499 mp->b_next = NULL; 2500 ip6h = (ip6_t *)mp->b_rptr; 2501 iras.ira_flags = 0; 2502 /* 2503 * This will result in an incorrect ALL_ZONES zoneid 2504 * for multicast packets, but we 2505 * don't send ICMP errors for those in any case. 2506 */ 2507 iras.ira_zoneid = 2508 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2509 ill, ipst); 2510 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2511 icmp_time_exceeded_v6(mp, 2512 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2513 &iras); 2514 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2515 } 2516 while (send_icmp_head != NULL) { 2517 ipaddr_t dst; 2518 2519 mp = send_icmp_head; 2520 send_icmp_head = send_icmp_head->b_next; 2521 mp->b_next = NULL; 2522 2523 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2524 2525 iras.ira_flags = IRAF_IS_IPV4; 2526 /* 2527 * This will result in an incorrect ALL_ZONES zoneid 2528 * for broadcast and multicast packets, but we 2529 * don't send ICMP errors for those in any case. 2530 */ 2531 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2532 ill, ipst); 2533 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2534 icmp_time_exceeded(mp, 2535 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2536 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2537 } 2538 } 2539 /* 2540 * A non-dying ILL will use the return value to decide whether to 2541 * restart the frag timer, and for how long. 2542 */ 2543 return (next_timeout); 2544 } 2545 2546 /* 2547 * This routine is called when the approximate count of mblk memory used 2548 * for the specified ILL has exceeded max_count. 2549 */ 2550 void 2551 ill_frag_prune(ill_t *ill, uint_t max_count) 2552 { 2553 ipfb_t *ipfb; 2554 ipf_t *ipf; 2555 size_t count; 2556 clock_t now; 2557 2558 /* 2559 * If we are here within ip_min_frag_prune_time msecs remove 2560 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2561 * ill_frag_free_num_pkts. 2562 */ 2563 mutex_enter(&ill->ill_lock); 2564 now = ddi_get_lbolt(); 2565 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2566 (ip_min_frag_prune_time != 0 ? 2567 ip_min_frag_prune_time : msec_per_tick)) { 2568 2569 ill->ill_frag_free_num_pkts++; 2570 2571 } else { 2572 ill->ill_frag_free_num_pkts = 0; 2573 } 2574 ill->ill_last_frag_clean_time = now; 2575 mutex_exit(&ill->ill_lock); 2576 2577 /* 2578 * free ill_frag_free_num_pkts oldest packets from each bucket. 2579 */ 2580 if (ill->ill_frag_free_num_pkts != 0) { 2581 int ix; 2582 2583 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2584 ipfb = &ill->ill_frag_hash_tbl[ix]; 2585 mutex_enter(&ipfb->ipfb_lock); 2586 if (ipfb->ipfb_ipf != NULL) { 2587 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2588 ill->ill_frag_free_num_pkts); 2589 } 2590 mutex_exit(&ipfb->ipfb_lock); 2591 } 2592 } 2593 /* 2594 * While the reassembly list for this ILL is too big, prune a fragment 2595 * queue by age, oldest first. 2596 */ 2597 while (ill->ill_frag_count > max_count) { 2598 int ix; 2599 ipfb_t *oipfb = NULL; 2600 uint_t oldest = UINT_MAX; 2601 2602 count = 0; 2603 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2604 ipfb = &ill->ill_frag_hash_tbl[ix]; 2605 mutex_enter(&ipfb->ipfb_lock); 2606 ipf = ipfb->ipfb_ipf; 2607 if (ipf != NULL && ipf->ipf_gen < oldest) { 2608 oldest = ipf->ipf_gen; 2609 oipfb = ipfb; 2610 } 2611 count += ipfb->ipfb_count; 2612 mutex_exit(&ipfb->ipfb_lock); 2613 } 2614 if (oipfb == NULL) 2615 break; 2616 2617 if (count <= max_count) 2618 return; /* Somebody beat us to it, nothing to do */ 2619 mutex_enter(&oipfb->ipfb_lock); 2620 ipf = oipfb->ipfb_ipf; 2621 if (ipf != NULL) { 2622 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2623 } 2624 mutex_exit(&oipfb->ipfb_lock); 2625 } 2626 } 2627 2628 /* 2629 * free 'free_cnt' fragmented packets starting at ipf. 2630 */ 2631 void 2632 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2633 { 2634 size_t count; 2635 mblk_t *mp; 2636 mblk_t *tmp; 2637 ipf_t **ipfp = ipf->ipf_ptphn; 2638 2639 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2640 ASSERT(ipfp != NULL); 2641 ASSERT(ipf != NULL); 2642 2643 while (ipf != NULL && free_cnt-- > 0) { 2644 count = ipf->ipf_count; 2645 mp = ipf->ipf_mp; 2646 ipf = ipf->ipf_hash_next; 2647 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2648 IP_REASS_SET_START(tmp, 0); 2649 IP_REASS_SET_END(tmp, 0); 2650 } 2651 atomic_add_32(&ill->ill_frag_count, -count); 2652 ASSERT(ipfb->ipfb_count >= count); 2653 ipfb->ipfb_count -= count; 2654 ASSERT(ipfb->ipfb_frag_pkts > 0); 2655 ipfb->ipfb_frag_pkts--; 2656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2657 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2658 freemsg(mp); 2659 } 2660 2661 if (ipf) 2662 ipf->ipf_ptphn = ipfp; 2663 ipfp[0] = ipf; 2664 } 2665 2666 /* 2667 * Helper function for ill_forward_set(). 2668 */ 2669 static void 2670 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2671 { 2672 ip_stack_t *ipst = ill->ill_ipst; 2673 2674 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2675 2676 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2677 (enable ? "Enabling" : "Disabling"), 2678 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2679 mutex_enter(&ill->ill_lock); 2680 if (enable) 2681 ill->ill_flags |= ILLF_ROUTER; 2682 else 2683 ill->ill_flags &= ~ILLF_ROUTER; 2684 mutex_exit(&ill->ill_lock); 2685 if (ill->ill_isv6) 2686 ill_set_nce_router_flags(ill, enable); 2687 /* Notify routing socket listeners of this change. */ 2688 if (ill->ill_ipif != NULL) 2689 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2690 } 2691 2692 /* 2693 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2694 * socket messages for each interface whose flags we change. 2695 */ 2696 int 2697 ill_forward_set(ill_t *ill, boolean_t enable) 2698 { 2699 ipmp_illgrp_t *illg; 2700 ip_stack_t *ipst = ill->ill_ipst; 2701 2702 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2703 2704 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2705 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2706 return (0); 2707 2708 if (IS_LOOPBACK(ill)) 2709 return (EINVAL); 2710 2711 if (enable && ill->ill_allowed_ips_cnt > 0) 2712 return (EPERM); 2713 2714 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2715 /* 2716 * Update all of the interfaces in the group. 2717 */ 2718 illg = ill->ill_grp; 2719 ill = list_head(&illg->ig_if); 2720 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2721 ill_forward_set_on_ill(ill, enable); 2722 2723 /* 2724 * Update the IPMP meta-interface. 2725 */ 2726 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2727 return (0); 2728 } 2729 2730 ill_forward_set_on_ill(ill, enable); 2731 return (0); 2732 } 2733 2734 /* 2735 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2736 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2737 * set or clear. 2738 */ 2739 static void 2740 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2741 { 2742 ipif_t *ipif; 2743 ncec_t *ncec; 2744 nce_t *nce; 2745 2746 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2747 /* 2748 * NOTE: we match across the illgrp because nce's for 2749 * addresses on IPMP interfaces have an nce_ill that points to 2750 * the bound underlying ill. 2751 */ 2752 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2753 if (nce != NULL) { 2754 ncec = nce->nce_common; 2755 mutex_enter(&ncec->ncec_lock); 2756 if (enable) 2757 ncec->ncec_flags |= NCE_F_ISROUTER; 2758 else 2759 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2760 mutex_exit(&ncec->ncec_lock); 2761 nce_refrele(nce); 2762 } 2763 } 2764 } 2765 2766 /* 2767 * Intializes the context structure and returns the first ill in the list 2768 * cuurently start_list and end_list can have values: 2769 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2770 * IP_V4_G_HEAD Traverse IPV4 list only. 2771 * IP_V6_G_HEAD Traverse IPV6 list only. 2772 */ 2773 2774 /* 2775 * We don't check for CONDEMNED ills here. Caller must do that if 2776 * necessary under the ill lock. 2777 */ 2778 ill_t * 2779 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2780 ip_stack_t *ipst) 2781 { 2782 ill_if_t *ifp; 2783 ill_t *ill; 2784 avl_tree_t *avl_tree; 2785 2786 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2787 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2788 2789 /* 2790 * setup the lists to search 2791 */ 2792 if (end_list != MAX_G_HEADS) { 2793 ctx->ctx_current_list = start_list; 2794 ctx->ctx_last_list = end_list; 2795 } else { 2796 ctx->ctx_last_list = MAX_G_HEADS - 1; 2797 ctx->ctx_current_list = 0; 2798 } 2799 2800 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2801 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2802 if (ifp != (ill_if_t *) 2803 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2804 avl_tree = &ifp->illif_avl_by_ppa; 2805 ill = avl_first(avl_tree); 2806 /* 2807 * ill is guaranteed to be non NULL or ifp should have 2808 * not existed. 2809 */ 2810 ASSERT(ill != NULL); 2811 return (ill); 2812 } 2813 ctx->ctx_current_list++; 2814 } 2815 2816 return (NULL); 2817 } 2818 2819 /* 2820 * returns the next ill in the list. ill_first() must have been called 2821 * before calling ill_next() or bad things will happen. 2822 */ 2823 2824 /* 2825 * We don't check for CONDEMNED ills here. Caller must do that if 2826 * necessary under the ill lock. 2827 */ 2828 ill_t * 2829 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2830 { 2831 ill_if_t *ifp; 2832 ill_t *ill; 2833 ip_stack_t *ipst = lastill->ill_ipst; 2834 2835 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2836 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2837 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2838 AVL_AFTER)) != NULL) { 2839 return (ill); 2840 } 2841 2842 /* goto next ill_ifp in the list. */ 2843 ifp = lastill->ill_ifptr->illif_next; 2844 2845 /* make sure not at end of circular list */ 2846 while (ifp == 2847 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2848 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2849 return (NULL); 2850 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2851 } 2852 2853 return (avl_first(&ifp->illif_avl_by_ppa)); 2854 } 2855 2856 /* 2857 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2858 * The final number (PPA) must not have any leading zeros. Upon success, a 2859 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2860 */ 2861 static char * 2862 ill_get_ppa_ptr(char *name) 2863 { 2864 int namelen = strlen(name); 2865 int end_ndx = namelen - 1; 2866 int ppa_ndx, i; 2867 2868 /* 2869 * Check that the first character is [a-zA-Z], and that the last 2870 * character is [0-9]. 2871 */ 2872 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2873 return (NULL); 2874 2875 /* 2876 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2877 */ 2878 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2879 if (!isdigit(name[ppa_ndx - 1])) 2880 break; 2881 2882 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2883 return (NULL); 2884 2885 /* 2886 * Check that the intermediate characters are [a-z0-9.] 2887 */ 2888 for (i = 1; i < ppa_ndx; i++) { 2889 if (!isalpha(name[i]) && !isdigit(name[i]) && 2890 name[i] != '.' && name[i] != '_') { 2891 return (NULL); 2892 } 2893 } 2894 2895 return (name + ppa_ndx); 2896 } 2897 2898 /* 2899 * use avl tree to locate the ill. 2900 */ 2901 static ill_t * 2902 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2903 { 2904 char *ppa_ptr = NULL; 2905 int len; 2906 uint_t ppa; 2907 ill_t *ill = NULL; 2908 ill_if_t *ifp; 2909 int list; 2910 2911 /* 2912 * get ppa ptr 2913 */ 2914 if (isv6) 2915 list = IP_V6_G_HEAD; 2916 else 2917 list = IP_V4_G_HEAD; 2918 2919 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2920 return (NULL); 2921 } 2922 2923 len = ppa_ptr - name + 1; 2924 2925 ppa = stoi(&ppa_ptr); 2926 2927 ifp = IP_VX_ILL_G_LIST(list, ipst); 2928 2929 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2930 /* 2931 * match is done on len - 1 as the name is not null 2932 * terminated it contains ppa in addition to the interface 2933 * name. 2934 */ 2935 if ((ifp->illif_name_len == len) && 2936 bcmp(ifp->illif_name, name, len - 1) == 0) { 2937 break; 2938 } else { 2939 ifp = ifp->illif_next; 2940 } 2941 } 2942 2943 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2944 /* 2945 * Even the interface type does not exist. 2946 */ 2947 return (NULL); 2948 } 2949 2950 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2951 if (ill != NULL) { 2952 mutex_enter(&ill->ill_lock); 2953 if (ILL_CAN_LOOKUP(ill)) { 2954 ill_refhold_locked(ill); 2955 mutex_exit(&ill->ill_lock); 2956 return (ill); 2957 } 2958 mutex_exit(&ill->ill_lock); 2959 } 2960 return (NULL); 2961 } 2962 2963 /* 2964 * comparison function for use with avl. 2965 */ 2966 static int 2967 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2968 { 2969 uint_t ppa; 2970 uint_t ill_ppa; 2971 2972 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2973 2974 ppa = *((uint_t *)ppa_ptr); 2975 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2976 /* 2977 * We want the ill with the lowest ppa to be on the 2978 * top. 2979 */ 2980 if (ill_ppa < ppa) 2981 return (1); 2982 if (ill_ppa > ppa) 2983 return (-1); 2984 return (0); 2985 } 2986 2987 /* 2988 * remove an interface type from the global list. 2989 */ 2990 static void 2991 ill_delete_interface_type(ill_if_t *interface) 2992 { 2993 ASSERT(interface != NULL); 2994 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2995 2996 avl_destroy(&interface->illif_avl_by_ppa); 2997 if (interface->illif_ppa_arena != NULL) 2998 vmem_destroy(interface->illif_ppa_arena); 2999 3000 remque(interface); 3001 3002 mi_free(interface); 3003 } 3004 3005 /* 3006 * remove ill from the global list. 3007 */ 3008 static void 3009 ill_glist_delete(ill_t *ill) 3010 { 3011 ip_stack_t *ipst; 3012 phyint_t *phyi; 3013 3014 if (ill == NULL) 3015 return; 3016 ipst = ill->ill_ipst; 3017 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3018 3019 /* 3020 * If the ill was never inserted into the AVL tree 3021 * we skip the if branch. 3022 */ 3023 if (ill->ill_ifptr != NULL) { 3024 /* 3025 * remove from AVL tree and free ppa number 3026 */ 3027 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3028 3029 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3030 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3031 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3032 } 3033 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3034 ill_delete_interface_type(ill->ill_ifptr); 3035 } 3036 3037 /* 3038 * Indicate ill is no longer in the list. 3039 */ 3040 ill->ill_ifptr = NULL; 3041 ill->ill_name_length = 0; 3042 ill->ill_name[0] = '\0'; 3043 ill->ill_ppa = UINT_MAX; 3044 } 3045 3046 /* Generate one last event for this ill. */ 3047 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3048 ill->ill_name_length); 3049 3050 ASSERT(ill->ill_phyint != NULL); 3051 phyi = ill->ill_phyint; 3052 ill->ill_phyint = NULL; 3053 3054 /* 3055 * ill_init allocates a phyint always to store the copy 3056 * of flags relevant to phyint. At that point in time, we could 3057 * not assign the name and hence phyint_illv4/v6 could not be 3058 * initialized. Later in ipif_set_values, we assign the name to 3059 * the ill, at which point in time we assign phyint_illv4/v6. 3060 * Thus we don't rely on phyint_illv6 to be initialized always. 3061 */ 3062 if (ill->ill_flags & ILLF_IPV6) 3063 phyi->phyint_illv6 = NULL; 3064 else 3065 phyi->phyint_illv4 = NULL; 3066 3067 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3068 rw_exit(&ipst->ips_ill_g_lock); 3069 return; 3070 } 3071 3072 /* 3073 * There are no ills left on this phyint; pull it out of the phyint 3074 * avl trees, and free it. 3075 */ 3076 if (phyi->phyint_ifindex > 0) { 3077 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3078 phyi); 3079 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3080 phyi); 3081 } 3082 rw_exit(&ipst->ips_ill_g_lock); 3083 3084 phyint_free(phyi); 3085 } 3086 3087 /* 3088 * allocate a ppa, if the number of plumbed interfaces of this type are 3089 * less than ill_no_arena do a linear search to find a unused ppa. 3090 * When the number goes beyond ill_no_arena switch to using an arena. 3091 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3092 * is the return value for an error condition, so allocation starts at one 3093 * and is decremented by one. 3094 */ 3095 static int 3096 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3097 { 3098 ill_t *tmp_ill; 3099 uint_t start, end; 3100 int ppa; 3101 3102 if (ifp->illif_ppa_arena == NULL && 3103 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3104 /* 3105 * Create an arena. 3106 */ 3107 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3108 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3109 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3110 /* allocate what has already been assigned */ 3111 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3112 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3113 tmp_ill, AVL_AFTER)) { 3114 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3115 1, /* size */ 3116 1, /* align/quantum */ 3117 0, /* phase */ 3118 0, /* nocross */ 3119 /* minaddr */ 3120 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3121 /* maxaddr */ 3122 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3123 VM_NOSLEEP|VM_FIRSTFIT); 3124 if (ppa == 0) { 3125 ip1dbg(("ill_alloc_ppa: ppa allocation" 3126 " failed while switching")); 3127 vmem_destroy(ifp->illif_ppa_arena); 3128 ifp->illif_ppa_arena = NULL; 3129 break; 3130 } 3131 } 3132 } 3133 3134 if (ifp->illif_ppa_arena != NULL) { 3135 if (ill->ill_ppa == UINT_MAX) { 3136 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3137 1, VM_NOSLEEP|VM_FIRSTFIT); 3138 if (ppa == 0) 3139 return (EAGAIN); 3140 ill->ill_ppa = --ppa; 3141 } else { 3142 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3143 1, /* size */ 3144 1, /* align/quantum */ 3145 0, /* phase */ 3146 0, /* nocross */ 3147 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3148 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3149 VM_NOSLEEP|VM_FIRSTFIT); 3150 /* 3151 * Most likely the allocation failed because 3152 * the requested ppa was in use. 3153 */ 3154 if (ppa == 0) 3155 return (EEXIST); 3156 } 3157 return (0); 3158 } 3159 3160 /* 3161 * No arena is in use and not enough (>ill_no_arena) interfaces have 3162 * been plumbed to create one. Do a linear search to get a unused ppa. 3163 */ 3164 if (ill->ill_ppa == UINT_MAX) { 3165 end = UINT_MAX - 1; 3166 start = 0; 3167 } else { 3168 end = start = ill->ill_ppa; 3169 } 3170 3171 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3172 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3173 if (start++ >= end) { 3174 if (ill->ill_ppa == UINT_MAX) 3175 return (EAGAIN); 3176 else 3177 return (EEXIST); 3178 } 3179 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3180 } 3181 ill->ill_ppa = start; 3182 return (0); 3183 } 3184 3185 /* 3186 * Insert ill into the list of configured ill's. Once this function completes, 3187 * the ill is globally visible and is available through lookups. More precisely 3188 * this happens after the caller drops the ill_g_lock. 3189 */ 3190 static int 3191 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3192 { 3193 ill_if_t *ill_interface; 3194 avl_index_t where = 0; 3195 int error; 3196 int name_length; 3197 int index; 3198 boolean_t check_length = B_FALSE; 3199 ip_stack_t *ipst = ill->ill_ipst; 3200 3201 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3202 3203 name_length = mi_strlen(name) + 1; 3204 3205 if (isv6) 3206 index = IP_V6_G_HEAD; 3207 else 3208 index = IP_V4_G_HEAD; 3209 3210 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3211 /* 3212 * Search for interface type based on name 3213 */ 3214 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3215 if ((ill_interface->illif_name_len == name_length) && 3216 (strcmp(ill_interface->illif_name, name) == 0)) { 3217 break; 3218 } 3219 ill_interface = ill_interface->illif_next; 3220 } 3221 3222 /* 3223 * Interface type not found, create one. 3224 */ 3225 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3226 ill_g_head_t ghead; 3227 3228 /* 3229 * allocate ill_if_t structure 3230 */ 3231 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3232 if (ill_interface == NULL) { 3233 return (ENOMEM); 3234 } 3235 3236 (void) strcpy(ill_interface->illif_name, name); 3237 ill_interface->illif_name_len = name_length; 3238 3239 avl_create(&ill_interface->illif_avl_by_ppa, 3240 ill_compare_ppa, sizeof (ill_t), 3241 offsetof(struct ill_s, ill_avl_byppa)); 3242 3243 /* 3244 * link the structure in the back to maintain order 3245 * of configuration for ifconfig output. 3246 */ 3247 ghead = ipst->ips_ill_g_heads[index]; 3248 insque(ill_interface, ghead.ill_g_list_tail); 3249 } 3250 3251 if (ill->ill_ppa == UINT_MAX) 3252 check_length = B_TRUE; 3253 3254 error = ill_alloc_ppa(ill_interface, ill); 3255 if (error != 0) { 3256 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3257 ill_delete_interface_type(ill->ill_ifptr); 3258 return (error); 3259 } 3260 3261 /* 3262 * When the ppa is choosen by the system, check that there is 3263 * enough space to insert ppa. if a specific ppa was passed in this 3264 * check is not required as the interface name passed in will have 3265 * the right ppa in it. 3266 */ 3267 if (check_length) { 3268 /* 3269 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3270 */ 3271 char buf[sizeof (uint_t) * 3]; 3272 3273 /* 3274 * convert ppa to string to calculate the amount of space 3275 * required for it in the name. 3276 */ 3277 numtos(ill->ill_ppa, buf); 3278 3279 /* Do we have enough space to insert ppa ? */ 3280 3281 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3282 /* Free ppa and interface type struct */ 3283 if (ill_interface->illif_ppa_arena != NULL) { 3284 vmem_free(ill_interface->illif_ppa_arena, 3285 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3286 } 3287 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3288 ill_delete_interface_type(ill->ill_ifptr); 3289 3290 return (EINVAL); 3291 } 3292 } 3293 3294 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3295 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3296 3297 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3298 &where); 3299 ill->ill_ifptr = ill_interface; 3300 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3301 3302 ill_phyint_reinit(ill); 3303 return (0); 3304 } 3305 3306 /* Initialize the per phyint ipsq used for serialization */ 3307 static boolean_t 3308 ipsq_init(ill_t *ill, boolean_t enter) 3309 { 3310 ipsq_t *ipsq; 3311 ipxop_t *ipx; 3312 3313 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3314 return (B_FALSE); 3315 3316 ill->ill_phyint->phyint_ipsq = ipsq; 3317 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3318 ipx->ipx_ipsq = ipsq; 3319 ipsq->ipsq_next = ipsq; 3320 ipsq->ipsq_phyint = ill->ill_phyint; 3321 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3322 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3323 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3324 if (enter) { 3325 ipx->ipx_writer = curthread; 3326 ipx->ipx_forced = B_FALSE; 3327 ipx->ipx_reentry_cnt = 1; 3328 #ifdef DEBUG 3329 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3330 #endif 3331 } 3332 return (B_TRUE); 3333 } 3334 3335 /* 3336 * Here we perform initialisation of the ill_t common to both regular 3337 * interface ILLs and the special loopback ILL created by ill_lookup_on_name. 3338 */ 3339 static int 3340 ill_init_common(ill_t *ill, queue_t *q, boolean_t isv6, boolean_t is_loopback, 3341 boolean_t ipsq_enter) 3342 { 3343 int count; 3344 uchar_t *frag_ptr; 3345 3346 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3347 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3348 ill->ill_saved_ire_cnt = 0; 3349 3350 if (is_loopback) { 3351 ill->ill_max_frag = isv6 ? ip_loopback_mtu_v6plus : 3352 ip_loopback_mtuplus; 3353 /* 3354 * No resolver here. 3355 */ 3356 ill->ill_net_type = IRE_LOOPBACK; 3357 } else { 3358 ill->ill_rq = q; 3359 ill->ill_wq = WR(q); 3360 ill->ill_ppa = UINT_MAX; 3361 } 3362 3363 ill->ill_isv6 = isv6; 3364 3365 /* 3366 * Allocate sufficient space to contain our fragment hash table and 3367 * the device name. 3368 */ 3369 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3370 if (frag_ptr == NULL) 3371 return (ENOMEM); 3372 ill->ill_frag_ptr = frag_ptr; 3373 ill->ill_frag_free_num_pkts = 0; 3374 ill->ill_last_frag_clean_time = 0; 3375 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3376 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3377 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3378 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3379 NULL, MUTEX_DEFAULT, NULL); 3380 } 3381 3382 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3383 if (ill->ill_phyint == NULL) { 3384 mi_free(frag_ptr); 3385 return (ENOMEM); 3386 } 3387 3388 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3389 if (isv6) { 3390 ill->ill_phyint->phyint_illv6 = ill; 3391 } else { 3392 ill->ill_phyint->phyint_illv4 = ill; 3393 } 3394 if (is_loopback) { 3395 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3396 } 3397 3398 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3399 3400 ill_set_inputfn(ill); 3401 3402 if (!ipsq_init(ill, ipsq_enter)) { 3403 mi_free(frag_ptr); 3404 mi_free(ill->ill_phyint); 3405 return (ENOMEM); 3406 } 3407 3408 /* Frag queue limit stuff */ 3409 ill->ill_frag_count = 0; 3410 ill->ill_ipf_gen = 0; 3411 3412 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3413 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3414 ill->ill_global_timer = INFINITY; 3415 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3416 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3417 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3418 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3419 3420 /* 3421 * Initialize IPv6 configuration variables. The IP module is always 3422 * opened as an IPv4 module. Instead tracking down the cases where 3423 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3424 * here for convenience, this has no effect until the ill is set to do 3425 * IPv6. 3426 */ 3427 ill->ill_reachable_time = ND_REACHABLE_TIME; 3428 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3429 ill->ill_max_buf = ND_MAX_Q; 3430 ill->ill_refcnt = 0; 3431 3432 return (0); 3433 } 3434 3435 /* 3436 * ill_init is called by ip_open when a device control stream is opened. 3437 * It does a few initializations, and shoots a DL_INFO_REQ message down 3438 * to the driver. The response is later picked up in ip_rput_dlpi and 3439 * used to set up default mechanisms for talking to the driver. (Always 3440 * called as writer.) 3441 * 3442 * If this function returns error, ip_open will call ip_close which in 3443 * turn will call ill_delete to clean up any memory allocated here that 3444 * is not yet freed. 3445 * 3446 * Note: ill_ipst and ill_zoneid must be set before calling ill_init. 3447 */ 3448 int 3449 ill_init(queue_t *q, ill_t *ill) 3450 { 3451 int ret; 3452 dl_info_req_t *dlir; 3453 mblk_t *info_mp; 3454 3455 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3456 BPRI_HI); 3457 if (info_mp == NULL) 3458 return (ENOMEM); 3459 3460 /* 3461 * For now pretend this is a v4 ill. We need to set phyint_ill* 3462 * at this point because of the following reason. If we can't 3463 * enter the ipsq at some point and cv_wait, the writer that 3464 * wakes us up tries to locate us using the list of all phyints 3465 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3466 * If we don't set it now, we risk a missed wakeup. 3467 */ 3468 if ((ret = ill_init_common(ill, q, B_FALSE, B_FALSE, B_TRUE)) != 0) { 3469 freemsg(info_mp); 3470 return (ret); 3471 } 3472 3473 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3474 3475 /* Send down the Info Request to the driver. */ 3476 info_mp->b_datap->db_type = M_PCPROTO; 3477 dlir = (dl_info_req_t *)info_mp->b_rptr; 3478 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3479 dlir->dl_primitive = DL_INFO_REQ; 3480 3481 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3482 3483 qprocson(q); 3484 ill_dlpi_send(ill, info_mp); 3485 3486 return (0); 3487 } 3488 3489 /* 3490 * ill_dls_info 3491 * creates datalink socket info from the device. 3492 */ 3493 int 3494 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3495 { 3496 size_t len; 3497 3498 sdl->sdl_family = AF_LINK; 3499 sdl->sdl_index = ill_get_upper_ifindex(ill); 3500 sdl->sdl_type = ill->ill_type; 3501 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3502 len = strlen(sdl->sdl_data); 3503 ASSERT(len < 256); 3504 sdl->sdl_nlen = (uchar_t)len; 3505 sdl->sdl_alen = ill->ill_phys_addr_length; 3506 sdl->sdl_slen = 0; 3507 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3508 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3509 3510 return (sizeof (struct sockaddr_dl)); 3511 } 3512 3513 /* 3514 * ill_xarp_info 3515 * creates xarp info from the device. 3516 */ 3517 static int 3518 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3519 { 3520 sdl->sdl_family = AF_LINK; 3521 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3522 sdl->sdl_type = ill->ill_type; 3523 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3524 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3525 sdl->sdl_alen = ill->ill_phys_addr_length; 3526 sdl->sdl_slen = 0; 3527 return (sdl->sdl_nlen); 3528 } 3529 3530 static int 3531 loopback_kstat_update(kstat_t *ksp, int rw) 3532 { 3533 kstat_named_t *kn; 3534 netstackid_t stackid; 3535 netstack_t *ns; 3536 ip_stack_t *ipst; 3537 3538 if (ksp == NULL || ksp->ks_data == NULL) 3539 return (EIO); 3540 3541 if (rw == KSTAT_WRITE) 3542 return (EACCES); 3543 3544 kn = KSTAT_NAMED_PTR(ksp); 3545 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3546 3547 ns = netstack_find_by_stackid(stackid); 3548 if (ns == NULL) 3549 return (-1); 3550 3551 ipst = ns->netstack_ip; 3552 if (ipst == NULL) { 3553 netstack_rele(ns); 3554 return (-1); 3555 } 3556 kn[0].value.ui32 = ipst->ips_loopback_packets; 3557 kn[1].value.ui32 = ipst->ips_loopback_packets; 3558 netstack_rele(ns); 3559 return (0); 3560 } 3561 3562 /* 3563 * Has ifindex been plumbed already? 3564 */ 3565 static boolean_t 3566 phyint_exists(uint_t index, ip_stack_t *ipst) 3567 { 3568 ASSERT(index != 0); 3569 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3570 3571 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3572 &index, NULL) != NULL); 3573 } 3574 3575 /* 3576 * Pick a unique ifindex. 3577 * When the index counter passes IF_INDEX_MAX for the first time, the wrap 3578 * flag is set so that next time time ip_assign_ifindex() is called, it 3579 * falls through and resets the index counter back to 1, the minimum value 3580 * for the interface index. The logic below assumes that ips_ill_index 3581 * can hold a value of IF_INDEX_MAX+1 without there being any loss 3582 * (i.e. reset back to 0.) 3583 */ 3584 boolean_t 3585 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3586 { 3587 uint_t loops; 3588 3589 if (!ipst->ips_ill_index_wrap) { 3590 *indexp = ipst->ips_ill_index++; 3591 if (ipst->ips_ill_index > IF_INDEX_MAX) { 3592 /* 3593 * Reached the maximum ifindex value, set the wrap 3594 * flag to indicate that it is no longer possible 3595 * to assume that a given index is unallocated. 3596 */ 3597 ipst->ips_ill_index_wrap = B_TRUE; 3598 } 3599 return (B_TRUE); 3600 } 3601 3602 if (ipst->ips_ill_index > IF_INDEX_MAX) 3603 ipst->ips_ill_index = 1; 3604 3605 /* 3606 * Start reusing unused indexes. Note that we hold the ill_g_lock 3607 * at this point and don't want to call any function that attempts 3608 * to get the lock again. 3609 */ 3610 for (loops = IF_INDEX_MAX; loops > 0; loops--) { 3611 if (!phyint_exists(ipst->ips_ill_index, ipst)) { 3612 /* found unused index - use it */ 3613 *indexp = ipst->ips_ill_index; 3614 return (B_TRUE); 3615 } 3616 3617 ipst->ips_ill_index++; 3618 if (ipst->ips_ill_index > IF_INDEX_MAX) 3619 ipst->ips_ill_index = 1; 3620 } 3621 3622 /* 3623 * all interface indicies are inuse. 3624 */ 3625 return (B_FALSE); 3626 } 3627 3628 /* 3629 * Assign a unique interface index for the phyint. 3630 */ 3631 static boolean_t 3632 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3633 { 3634 ASSERT(phyi->phyint_ifindex == 0); 3635 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3636 } 3637 3638 /* 3639 * Initialize the flags on `phyi' as per the provided mactype. 3640 */ 3641 static void 3642 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3643 { 3644 uint64_t flags = 0; 3645 3646 /* 3647 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3648 * we always presume the underlying hardware is working and set 3649 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3650 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3651 * there are no active interfaces in the group so we set PHYI_FAILED. 3652 */ 3653 if (mactype == SUNW_DL_IPMP) 3654 flags |= PHYI_FAILED; 3655 else 3656 flags |= PHYI_RUNNING; 3657 3658 switch (mactype) { 3659 case SUNW_DL_VNI: 3660 flags |= PHYI_VIRTUAL; 3661 break; 3662 case SUNW_DL_IPMP: 3663 flags |= PHYI_IPMP; 3664 break; 3665 case DL_LOOP: 3666 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3667 break; 3668 } 3669 3670 mutex_enter(&phyi->phyint_lock); 3671 phyi->phyint_flags |= flags; 3672 mutex_exit(&phyi->phyint_lock); 3673 } 3674 3675 /* 3676 * Return a pointer to the ill which matches the supplied name. Note that 3677 * the ill name length includes the null termination character. (May be 3678 * called as writer.) 3679 * If do_alloc and the interface is "lo0" it will be automatically created. 3680 * Cannot bump up reference on condemned ills. So dup detect can't be done 3681 * using this func. 3682 */ 3683 ill_t * 3684 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3685 boolean_t *did_alloc, ip_stack_t *ipst) 3686 { 3687 ill_t *ill; 3688 ipif_t *ipif; 3689 ipsq_t *ipsq; 3690 kstat_named_t *kn; 3691 boolean_t isloopback; 3692 in6_addr_t ov6addr; 3693 3694 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3695 3696 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3697 ill = ill_find_by_name(name, isv6, ipst); 3698 rw_exit(&ipst->ips_ill_g_lock); 3699 if (ill != NULL) 3700 return (ill); 3701 3702 /* 3703 * Couldn't find it. Does this happen to be a lookup for the 3704 * loopback device and are we allowed to allocate it? 3705 */ 3706 if (!isloopback || !do_alloc) 3707 return (NULL); 3708 3709 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3710 ill = ill_find_by_name(name, isv6, ipst); 3711 if (ill != NULL) { 3712 rw_exit(&ipst->ips_ill_g_lock); 3713 return (ill); 3714 } 3715 3716 /* Create the loopback device on demand */ 3717 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3718 sizeof (ipif_loopback_name), BPRI_MED)); 3719 if (ill == NULL) 3720 goto done; 3721 3722 bzero(ill, sizeof (*ill)); 3723 ill->ill_ipst = ipst; 3724 netstack_hold(ipst->ips_netstack); 3725 /* 3726 * For exclusive stacks we set the zoneid to zero 3727 * to make IP operate as if in the global zone. 3728 */ 3729 ill->ill_zoneid = GLOBAL_ZONEID; 3730 3731 if (ill_init_common(ill, NULL, isv6, B_TRUE, B_FALSE) != 0) 3732 goto done; 3733 3734 if (!ill_allocate_mibs(ill)) 3735 goto done; 3736 3737 ill->ill_current_frag = ill->ill_max_frag; 3738 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3739 ill->ill_mc_mtu = ill->ill_mtu; 3740 /* 3741 * ipif_loopback_name can't be pointed at directly because its used 3742 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3743 * from the glist, ill_glist_delete() sets the first character of 3744 * ill_name to '\0'. 3745 */ 3746 ill->ill_name = (char *)ill + sizeof (*ill); 3747 (void) strcpy(ill->ill_name, ipif_loopback_name); 3748 ill->ill_name_length = sizeof (ipif_loopback_name); 3749 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3750 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3751 3752 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3753 if (ipif == NULL) 3754 goto done; 3755 3756 ill->ill_flags = ILLF_MULTICAST; 3757 3758 ov6addr = ipif->ipif_v6lcl_addr; 3759 /* Set up default loopback address and mask. */ 3760 if (!isv6) { 3761 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3762 3763 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3764 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3765 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3766 ipif->ipif_v6subnet); 3767 ill->ill_flags |= ILLF_IPV4; 3768 } else { 3769 ipif->ipif_v6lcl_addr = ipv6_loopback; 3770 ipif->ipif_v6net_mask = ipv6_all_ones; 3771 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3772 ipif->ipif_v6subnet); 3773 ill->ill_flags |= ILLF_IPV6; 3774 } 3775 3776 /* 3777 * Chain us in at the end of the ill list. hold the ill 3778 * before we make it globally visible. 1 for the lookup. 3779 */ 3780 ill_refhold(ill); 3781 3782 ipsq = ill->ill_phyint->phyint_ipsq; 3783 3784 if (ill_glist_insert(ill, "lo", isv6) != 0) 3785 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3786 3787 /* Let SCTP know so that it can add this to its list */ 3788 sctp_update_ill(ill, SCTP_ILL_INSERT); 3789 3790 /* 3791 * We have already assigned ipif_v6lcl_addr above, but we need to 3792 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3793 * requires to be after ill_glist_insert() since we need the 3794 * ill_index set. Pass on ipv6_loopback as the old address. 3795 */ 3796 sctp_update_ipif_addr(ipif, ov6addr); 3797 3798 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3799 3800 /* 3801 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3802 * If so, free our original one. 3803 */ 3804 if (ipsq != ill->ill_phyint->phyint_ipsq) 3805 ipsq_delete(ipsq); 3806 3807 if (ipst->ips_loopback_ksp == NULL) { 3808 /* Export loopback interface statistics */ 3809 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3810 ipif_loopback_name, "net", 3811 KSTAT_TYPE_NAMED, 2, 0, 3812 ipst->ips_netstack->netstack_stackid); 3813 if (ipst->ips_loopback_ksp != NULL) { 3814 ipst->ips_loopback_ksp->ks_update = 3815 loopback_kstat_update; 3816 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3817 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3818 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3819 ipst->ips_loopback_ksp->ks_private = 3820 (void *)(uintptr_t)ipst->ips_netstack-> 3821 netstack_stackid; 3822 kstat_install(ipst->ips_loopback_ksp); 3823 } 3824 } 3825 3826 *did_alloc = B_TRUE; 3827 rw_exit(&ipst->ips_ill_g_lock); 3828 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3829 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3830 return (ill); 3831 done: 3832 if (ill != NULL) { 3833 if (ill->ill_phyint != NULL) { 3834 ipsq = ill->ill_phyint->phyint_ipsq; 3835 if (ipsq != NULL) { 3836 ipsq->ipsq_phyint = NULL; 3837 ipsq_delete(ipsq); 3838 } 3839 mi_free(ill->ill_phyint); 3840 } 3841 ill_free_mib(ill); 3842 if (ill->ill_ipst != NULL) 3843 netstack_rele(ill->ill_ipst->ips_netstack); 3844 mi_free(ill); 3845 } 3846 rw_exit(&ipst->ips_ill_g_lock); 3847 return (NULL); 3848 } 3849 3850 /* 3851 * For IPP calls - use the ip_stack_t for global stack. 3852 */ 3853 ill_t * 3854 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3855 { 3856 ip_stack_t *ipst; 3857 ill_t *ill; 3858 netstack_t *ns; 3859 3860 ns = netstack_find_by_stackid(GLOBAL_NETSTACKID); 3861 3862 if ((ipst = ns->netstack_ip) == NULL) { 3863 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3864 netstack_rele(ns); 3865 return (NULL); 3866 } 3867 3868 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3869 netstack_rele(ns); 3870 return (ill); 3871 } 3872 3873 /* 3874 * Return a pointer to the ill which matches the index and IP version type. 3875 */ 3876 ill_t * 3877 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3878 { 3879 ill_t *ill; 3880 phyint_t *phyi; 3881 3882 /* 3883 * Indexes are stored in the phyint - a common structure 3884 * to both IPv4 and IPv6. 3885 */ 3886 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3887 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3888 (void *) &index, NULL); 3889 if (phyi != NULL) { 3890 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3891 if (ill != NULL) { 3892 mutex_enter(&ill->ill_lock); 3893 if (!ILL_IS_CONDEMNED(ill)) { 3894 ill_refhold_locked(ill); 3895 mutex_exit(&ill->ill_lock); 3896 rw_exit(&ipst->ips_ill_g_lock); 3897 return (ill); 3898 } 3899 mutex_exit(&ill->ill_lock); 3900 } 3901 } 3902 rw_exit(&ipst->ips_ill_g_lock); 3903 return (NULL); 3904 } 3905 3906 /* 3907 * Verify whether or not an interface index is valid for the specified zoneid 3908 * to transmit packets. 3909 * It can be zero (meaning "reset") or an interface index assigned 3910 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3911 */ 3912 boolean_t 3913 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3914 ip_stack_t *ipst) 3915 { 3916 ill_t *ill; 3917 3918 if (ifindex == 0) 3919 return (B_TRUE); 3920 3921 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3922 if (ill == NULL) 3923 return (B_FALSE); 3924 if (IS_VNI(ill)) { 3925 ill_refrele(ill); 3926 return (B_FALSE); 3927 } 3928 ill_refrele(ill); 3929 return (B_TRUE); 3930 } 3931 3932 /* 3933 * Return the ifindex next in sequence after the passed in ifindex. 3934 * If there is no next ifindex for the given protocol, return 0. 3935 */ 3936 uint_t 3937 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3938 { 3939 phyint_t *phyi; 3940 phyint_t *phyi_initial; 3941 uint_t ifindex; 3942 3943 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3944 3945 if (index == 0) { 3946 phyi = avl_first( 3947 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3948 } else { 3949 phyi = phyi_initial = avl_find( 3950 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3951 (void *) &index, NULL); 3952 } 3953 3954 for (; phyi != NULL; 3955 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3956 phyi, AVL_AFTER)) { 3957 /* 3958 * If we're not returning the first interface in the tree 3959 * and we still haven't moved past the phyint_t that 3960 * corresponds to index, avl_walk needs to be called again 3961 */ 3962 if (!((index != 0) && (phyi == phyi_initial))) { 3963 if (isv6) { 3964 if ((phyi->phyint_illv6) && 3965 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3966 (phyi->phyint_illv6->ill_isv6 == 1)) 3967 break; 3968 } else { 3969 if ((phyi->phyint_illv4) && 3970 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3971 (phyi->phyint_illv4->ill_isv6 == 0)) 3972 break; 3973 } 3974 } 3975 } 3976 3977 rw_exit(&ipst->ips_ill_g_lock); 3978 3979 if (phyi != NULL) 3980 ifindex = phyi->phyint_ifindex; 3981 else 3982 ifindex = 0; 3983 3984 return (ifindex); 3985 } 3986 3987 /* 3988 * Return the ifindex for the named interface. 3989 * If there is no next ifindex for the interface, return 0. 3990 */ 3991 uint_t 3992 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3993 { 3994 phyint_t *phyi; 3995 avl_index_t where = 0; 3996 uint_t ifindex; 3997 3998 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3999 4000 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4001 name, &where)) == NULL) { 4002 rw_exit(&ipst->ips_ill_g_lock); 4003 return (0); 4004 } 4005 4006 ifindex = phyi->phyint_ifindex; 4007 4008 rw_exit(&ipst->ips_ill_g_lock); 4009 4010 return (ifindex); 4011 } 4012 4013 /* 4014 * Return the ifindex to be used by upper layer protocols for instance 4015 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4016 */ 4017 uint_t 4018 ill_get_upper_ifindex(const ill_t *ill) 4019 { 4020 if (IS_UNDER_IPMP(ill)) 4021 return (ipmp_ill_get_ipmp_ifindex(ill)); 4022 else 4023 return (ill->ill_phyint->phyint_ifindex); 4024 } 4025 4026 4027 /* 4028 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4029 * that gives a running thread a reference to the ill. This reference must be 4030 * released by the thread when it is done accessing the ill and related 4031 * objects. ill_refcnt can not be used to account for static references 4032 * such as other structures pointing to an ill. Callers must generally 4033 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4034 * or be sure that the ill is not being deleted or changing state before 4035 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4036 * ill won't change any of its critical state such as address, netmask etc. 4037 */ 4038 void 4039 ill_refhold(ill_t *ill) 4040 { 4041 mutex_enter(&ill->ill_lock); 4042 ill->ill_refcnt++; 4043 ILL_TRACE_REF(ill); 4044 mutex_exit(&ill->ill_lock); 4045 } 4046 4047 void 4048 ill_refhold_locked(ill_t *ill) 4049 { 4050 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4051 ill->ill_refcnt++; 4052 ILL_TRACE_REF(ill); 4053 } 4054 4055 /* Returns true if we managed to get a refhold */ 4056 boolean_t 4057 ill_check_and_refhold(ill_t *ill) 4058 { 4059 mutex_enter(&ill->ill_lock); 4060 if (!ILL_IS_CONDEMNED(ill)) { 4061 ill_refhold_locked(ill); 4062 mutex_exit(&ill->ill_lock); 4063 return (B_TRUE); 4064 } 4065 mutex_exit(&ill->ill_lock); 4066 return (B_FALSE); 4067 } 4068 4069 /* 4070 * Must not be called while holding any locks. Otherwise if this is 4071 * the last reference to be released, there is a chance of recursive mutex 4072 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4073 * to restart an ioctl. 4074 */ 4075 void 4076 ill_refrele(ill_t *ill) 4077 { 4078 mutex_enter(&ill->ill_lock); 4079 ASSERT(ill->ill_refcnt != 0); 4080 ill->ill_refcnt--; 4081 ILL_UNTRACE_REF(ill); 4082 if (ill->ill_refcnt != 0) { 4083 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4084 mutex_exit(&ill->ill_lock); 4085 return; 4086 } 4087 4088 /* Drops the ill_lock */ 4089 ipif_ill_refrele_tail(ill); 4090 } 4091 4092 /* 4093 * Obtain a weak reference count on the ill. This reference ensures the 4094 * ill won't be freed, but the ill may change any of its critical state 4095 * such as netmask, address etc. Returns an error if the ill has started 4096 * closing. 4097 */ 4098 boolean_t 4099 ill_waiter_inc(ill_t *ill) 4100 { 4101 mutex_enter(&ill->ill_lock); 4102 if (ill->ill_state_flags & ILL_CONDEMNED) { 4103 mutex_exit(&ill->ill_lock); 4104 return (B_FALSE); 4105 } 4106 ill->ill_waiters++; 4107 mutex_exit(&ill->ill_lock); 4108 return (B_TRUE); 4109 } 4110 4111 void 4112 ill_waiter_dcr(ill_t *ill) 4113 { 4114 mutex_enter(&ill->ill_lock); 4115 ill->ill_waiters--; 4116 if (ill->ill_waiters == 0) 4117 cv_broadcast(&ill->ill_cv); 4118 mutex_exit(&ill->ill_lock); 4119 } 4120 4121 /* 4122 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4123 * driver. We construct best guess defaults for lower level information that 4124 * we need. If an interface is brought up without injection of any overriding 4125 * information from outside, we have to be ready to go with these defaults. 4126 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4127 * we primarely want the dl_provider_style. 4128 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4129 * at which point we assume the other part of the information is valid. 4130 */ 4131 void 4132 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4133 { 4134 uchar_t *brdcst_addr; 4135 uint_t brdcst_addr_length, phys_addr_length; 4136 t_scalar_t sap_length; 4137 dl_info_ack_t *dlia; 4138 ip_m_t *ipm; 4139 dl_qos_cl_sel1_t *sel1; 4140 int min_mtu; 4141 4142 ASSERT(IAM_WRITER_ILL(ill)); 4143 4144 /* 4145 * Till the ill is fully up the ill is not globally visible. 4146 * So no need for a lock. 4147 */ 4148 dlia = (dl_info_ack_t *)mp->b_rptr; 4149 ill->ill_mactype = dlia->dl_mac_type; 4150 4151 ipm = ip_m_lookup(dlia->dl_mac_type); 4152 if (ipm == NULL) { 4153 ipm = ip_m_lookup(DL_OTHER); 4154 ASSERT(ipm != NULL); 4155 } 4156 ill->ill_media = ipm; 4157 4158 /* 4159 * When the new DLPI stuff is ready we'll pull lengths 4160 * from dlia. 4161 */ 4162 if (dlia->dl_version == DL_VERSION_2) { 4163 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4164 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4165 brdcst_addr_length); 4166 if (brdcst_addr == NULL) { 4167 brdcst_addr_length = 0; 4168 } 4169 sap_length = dlia->dl_sap_length; 4170 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4171 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4172 brdcst_addr_length, sap_length, phys_addr_length)); 4173 } else { 4174 brdcst_addr_length = 6; 4175 brdcst_addr = ip_six_byte_all_ones; 4176 sap_length = -2; 4177 phys_addr_length = brdcst_addr_length; 4178 } 4179 4180 ill->ill_bcast_addr_length = brdcst_addr_length; 4181 ill->ill_phys_addr_length = phys_addr_length; 4182 ill->ill_sap_length = sap_length; 4183 4184 /* 4185 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4186 * but we must ensure a minimum IP MTU is used since other bits of 4187 * IP will fly apart otherwise. 4188 */ 4189 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4190 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4191 ill->ill_current_frag = ill->ill_max_frag; 4192 ill->ill_mtu = ill->ill_max_frag; 4193 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */ 4194 4195 ill->ill_type = ipm->ip_m_type; 4196 4197 if (!ill->ill_dlpi_style_set) { 4198 if (dlia->dl_provider_style == DL_STYLE2) 4199 ill->ill_needs_attach = 1; 4200 4201 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4202 4203 /* 4204 * Allocate the first ipif on this ill. We don't delay it 4205 * further as ioctl handling assumes at least one ipif exists. 4206 * 4207 * At this point we don't know whether the ill is v4 or v6. 4208 * We will know this whan the SIOCSLIFNAME happens and 4209 * the correct value for ill_isv6 will be assigned in 4210 * ipif_set_values(). We need to hold the ill lock and 4211 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4212 * the wakeup. 4213 */ 4214 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4215 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4216 mutex_enter(&ill->ill_lock); 4217 ASSERT(ill->ill_dlpi_style_set == 0); 4218 ill->ill_dlpi_style_set = 1; 4219 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4220 cv_broadcast(&ill->ill_cv); 4221 mutex_exit(&ill->ill_lock); 4222 freemsg(mp); 4223 return; 4224 } 4225 ASSERT(ill->ill_ipif != NULL); 4226 /* 4227 * We know whether it is IPv4 or IPv6 now, as this is the 4228 * second DL_INFO_ACK we are recieving in response to the 4229 * DL_INFO_REQ sent in ipif_set_values. 4230 */ 4231 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4232 /* 4233 * Clear all the flags that were set based on ill_bcast_addr_length 4234 * and ill_phys_addr_length (in ipif_set_values) as these could have 4235 * changed now and we need to re-evaluate. 4236 */ 4237 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4238 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4239 4240 /* 4241 * Free ill_bcast_mp as things could have changed now. 4242 * 4243 * NOTE: The IPMP meta-interface is special-cased because it starts 4244 * with no underlying interfaces (and thus an unknown broadcast 4245 * address length), but we enforce that an interface is broadcast- 4246 * capable as part of allowing it to join a group. 4247 */ 4248 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4249 if (ill->ill_bcast_mp != NULL) 4250 freemsg(ill->ill_bcast_mp); 4251 ill->ill_net_type = IRE_IF_NORESOLVER; 4252 4253 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4254 ill->ill_phys_addr_length, 4255 ill->ill_sap, 4256 ill->ill_sap_length); 4257 4258 if (ill->ill_isv6) 4259 /* 4260 * Note: xresolv interfaces will eventually need NOARP 4261 * set here as well, but that will require those 4262 * external resolvers to have some knowledge of 4263 * that flag and act appropriately. Not to be changed 4264 * at present. 4265 */ 4266 ill->ill_flags |= ILLF_NONUD; 4267 else 4268 ill->ill_flags |= ILLF_NOARP; 4269 4270 if (ill->ill_mactype == SUNW_DL_VNI) { 4271 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4272 } else if (ill->ill_phys_addr_length == 0 || 4273 ill->ill_mactype == DL_IPV4 || 4274 ill->ill_mactype == DL_IPV6) { 4275 /* 4276 * The underying link is point-to-point, so mark the 4277 * interface as such. We can do IP multicast over 4278 * such a link since it transmits all network-layer 4279 * packets to the remote side the same way. 4280 */ 4281 ill->ill_flags |= ILLF_MULTICAST; 4282 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4283 } 4284 } else { 4285 ill->ill_net_type = IRE_IF_RESOLVER; 4286 if (ill->ill_bcast_mp != NULL) 4287 freemsg(ill->ill_bcast_mp); 4288 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4289 ill->ill_bcast_addr_length, ill->ill_sap, 4290 ill->ill_sap_length); 4291 /* 4292 * Later detect lack of DLPI driver multicast 4293 * capability by catching DL_ENABMULTI errors in 4294 * ip_rput_dlpi. 4295 */ 4296 ill->ill_flags |= ILLF_MULTICAST; 4297 if (!ill->ill_isv6) 4298 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4299 } 4300 4301 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4302 if (ill->ill_mactype == SUNW_DL_IPMP) 4303 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4304 4305 /* By default an interface does not support any CoS marking */ 4306 ill->ill_flags &= ~ILLF_COS_ENABLED; 4307 4308 /* 4309 * If we get QoS information in DL_INFO_ACK, the device supports 4310 * some form of CoS marking, set ILLF_COS_ENABLED. 4311 */ 4312 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4313 dlia->dl_qos_length); 4314 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4315 ill->ill_flags |= ILLF_COS_ENABLED; 4316 } 4317 4318 /* Clear any previous error indication. */ 4319 ill->ill_error = 0; 4320 freemsg(mp); 4321 } 4322 4323 /* 4324 * Perform various checks to verify that an address would make sense as a 4325 * local, remote, or subnet interface address. 4326 */ 4327 static boolean_t 4328 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4329 { 4330 ipaddr_t net_mask; 4331 4332 /* 4333 * Don't allow all zeroes, or all ones, but allow 4334 * all ones netmask. 4335 */ 4336 if ((net_mask = ip_net_mask(addr)) == 0) 4337 return (B_FALSE); 4338 /* A given netmask overrides the "guess" netmask */ 4339 if (subnet_mask != 0) 4340 net_mask = subnet_mask; 4341 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4342 (addr == (addr | ~net_mask)))) { 4343 return (B_FALSE); 4344 } 4345 4346 /* 4347 * Even if the netmask is all ones, we do not allow address to be 4348 * 255.255.255.255 4349 */ 4350 if (addr == INADDR_BROADCAST) 4351 return (B_FALSE); 4352 4353 if (CLASSD(addr)) 4354 return (B_FALSE); 4355 4356 return (B_TRUE); 4357 } 4358 4359 #define V6_IPIF_LINKLOCAL(p) \ 4360 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4361 4362 /* 4363 * Compare two given ipifs and check if the second one is better than 4364 * the first one using the order of preference (not taking deprecated 4365 * into acount) specified in ipif_lookup_multicast(). 4366 */ 4367 static boolean_t 4368 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4369 { 4370 /* Check the least preferred first. */ 4371 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4372 /* If both ipifs are the same, use the first one. */ 4373 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4374 return (B_FALSE); 4375 else 4376 return (B_TRUE); 4377 } 4378 4379 /* For IPv6, check for link local address. */ 4380 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4381 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4382 V6_IPIF_LINKLOCAL(new_ipif)) { 4383 /* The second one is equal or less preferred. */ 4384 return (B_FALSE); 4385 } else { 4386 return (B_TRUE); 4387 } 4388 } 4389 4390 /* Then check for point to point interface. */ 4391 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4392 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4393 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4394 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4395 return (B_FALSE); 4396 } else { 4397 return (B_TRUE); 4398 } 4399 } 4400 4401 /* old_ipif is a normal interface, so no need to use the new one. */ 4402 return (B_FALSE); 4403 } 4404 4405 /* 4406 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4407 * The ipif must be up, and its ill must multicast-capable, not 4408 * condemned, not an underlying interface in an IPMP group, and 4409 * not a VNI interface. Order of preference: 4410 * 4411 * 1a. normal 4412 * 1b. normal, but deprecated 4413 * 2a. point to point 4414 * 2b. point to point, but deprecated 4415 * 3a. link local 4416 * 3b. link local, but deprecated 4417 * 4. loopback. 4418 */ 4419 static ipif_t * 4420 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4421 { 4422 ill_t *ill; 4423 ill_walk_context_t ctx; 4424 ipif_t *ipif; 4425 ipif_t *saved_ipif = NULL; 4426 ipif_t *dep_ipif = NULL; 4427 4428 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4429 if (isv6) 4430 ill = ILL_START_WALK_V6(&ctx, ipst); 4431 else 4432 ill = ILL_START_WALK_V4(&ctx, ipst); 4433 4434 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4435 mutex_enter(&ill->ill_lock); 4436 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4437 ILL_IS_CONDEMNED(ill) || 4438 !(ill->ill_flags & ILLF_MULTICAST)) { 4439 mutex_exit(&ill->ill_lock); 4440 continue; 4441 } 4442 for (ipif = ill->ill_ipif; ipif != NULL; 4443 ipif = ipif->ipif_next) { 4444 if (zoneid != ipif->ipif_zoneid && 4445 zoneid != ALL_ZONES && 4446 ipif->ipif_zoneid != ALL_ZONES) { 4447 continue; 4448 } 4449 if (!(ipif->ipif_flags & IPIF_UP) || 4450 IPIF_IS_CONDEMNED(ipif)) { 4451 continue; 4452 } 4453 4454 /* 4455 * Found one candidate. If it is deprecated, 4456 * remember it in dep_ipif. If it is not deprecated, 4457 * remember it in saved_ipif. 4458 */ 4459 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4460 if (dep_ipif == NULL) { 4461 dep_ipif = ipif; 4462 } else if (ipif_comp_multi(dep_ipif, ipif, 4463 isv6)) { 4464 /* 4465 * If the previous dep_ipif does not 4466 * belong to the same ill, we've done 4467 * a ipif_refhold() on it. So we need 4468 * to release it. 4469 */ 4470 if (dep_ipif->ipif_ill != ill) 4471 ipif_refrele(dep_ipif); 4472 dep_ipif = ipif; 4473 } 4474 continue; 4475 } 4476 if (saved_ipif == NULL) { 4477 saved_ipif = ipif; 4478 } else { 4479 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4480 if (saved_ipif->ipif_ill != ill) 4481 ipif_refrele(saved_ipif); 4482 saved_ipif = ipif; 4483 } 4484 } 4485 } 4486 /* 4487 * Before going to the next ill, do a ipif_refhold() on the 4488 * saved ones. 4489 */ 4490 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4491 ipif_refhold_locked(saved_ipif); 4492 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4493 ipif_refhold_locked(dep_ipif); 4494 mutex_exit(&ill->ill_lock); 4495 } 4496 rw_exit(&ipst->ips_ill_g_lock); 4497 4498 /* 4499 * If we have only the saved_ipif, return it. But if we have both 4500 * saved_ipif and dep_ipif, check to see which one is better. 4501 */ 4502 if (saved_ipif != NULL) { 4503 if (dep_ipif != NULL) { 4504 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4505 ipif_refrele(saved_ipif); 4506 return (dep_ipif); 4507 } else { 4508 ipif_refrele(dep_ipif); 4509 return (saved_ipif); 4510 } 4511 } 4512 return (saved_ipif); 4513 } else { 4514 return (dep_ipif); 4515 } 4516 } 4517 4518 ill_t * 4519 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4520 { 4521 ipif_t *ipif; 4522 ill_t *ill; 4523 4524 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4525 if (ipif == NULL) 4526 return (NULL); 4527 4528 ill = ipif->ipif_ill; 4529 ill_refhold(ill); 4530 ipif_refrele(ipif); 4531 return (ill); 4532 } 4533 4534 /* 4535 * This function is called when an application does not specify an interface 4536 * to be used for multicast traffic (joining a group/sending data). It 4537 * calls ire_lookup_multi() to look for an interface route for the 4538 * specified multicast group. Doing this allows the administrator to add 4539 * prefix routes for multicast to indicate which interface to be used for 4540 * multicast traffic in the above scenario. The route could be for all 4541 * multicast (224.0/4), for a single multicast group (a /32 route) or 4542 * anything in between. If there is no such multicast route, we just find 4543 * any multicast capable interface and return it. The returned ipif 4544 * is refhold'ed. 4545 * 4546 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4547 * unicast table. This is used by CGTP. 4548 */ 4549 ill_t * 4550 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4551 boolean_t *multirtp, ipaddr_t *setsrcp) 4552 { 4553 ill_t *ill; 4554 4555 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4556 if (ill != NULL) 4557 return (ill); 4558 4559 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4560 } 4561 4562 /* 4563 * Look for an ipif with the specified interface address and destination. 4564 * The destination address is used only for matching point-to-point interfaces. 4565 */ 4566 ipif_t * 4567 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4568 { 4569 ipif_t *ipif; 4570 ill_t *ill; 4571 ill_walk_context_t ctx; 4572 4573 /* 4574 * First match all the point-to-point interfaces 4575 * before looking at non-point-to-point interfaces. 4576 * This is done to avoid returning non-point-to-point 4577 * ipif instead of unnumbered point-to-point ipif. 4578 */ 4579 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4580 ill = ILL_START_WALK_V4(&ctx, ipst); 4581 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4582 mutex_enter(&ill->ill_lock); 4583 for (ipif = ill->ill_ipif; ipif != NULL; 4584 ipif = ipif->ipif_next) { 4585 /* Allow the ipif to be down */ 4586 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4587 (ipif->ipif_lcl_addr == if_addr) && 4588 (ipif->ipif_pp_dst_addr == dst)) { 4589 if (!IPIF_IS_CONDEMNED(ipif)) { 4590 ipif_refhold_locked(ipif); 4591 mutex_exit(&ill->ill_lock); 4592 rw_exit(&ipst->ips_ill_g_lock); 4593 return (ipif); 4594 } 4595 } 4596 } 4597 mutex_exit(&ill->ill_lock); 4598 } 4599 rw_exit(&ipst->ips_ill_g_lock); 4600 4601 /* lookup the ipif based on interface address */ 4602 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4603 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4604 return (ipif); 4605 } 4606 4607 /* 4608 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4609 */ 4610 static ipif_t * 4611 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4612 zoneid_t zoneid, ip_stack_t *ipst) 4613 { 4614 ipif_t *ipif; 4615 ill_t *ill; 4616 boolean_t ptp = B_FALSE; 4617 ill_walk_context_t ctx; 4618 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4619 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4620 4621 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4622 /* 4623 * Repeat twice, first based on local addresses and 4624 * next time for pointopoint. 4625 */ 4626 repeat: 4627 ill = ILL_START_WALK_V4(&ctx, ipst); 4628 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4629 if (match_ill != NULL && ill != match_ill && 4630 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4631 continue; 4632 } 4633 mutex_enter(&ill->ill_lock); 4634 for (ipif = ill->ill_ipif; ipif != NULL; 4635 ipif = ipif->ipif_next) { 4636 if (zoneid != ALL_ZONES && 4637 zoneid != ipif->ipif_zoneid && 4638 ipif->ipif_zoneid != ALL_ZONES) 4639 continue; 4640 4641 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4642 continue; 4643 4644 /* Allow the ipif to be down */ 4645 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4646 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4647 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4648 (ipif->ipif_pp_dst_addr == addr))) { 4649 if (!IPIF_IS_CONDEMNED(ipif)) { 4650 ipif_refhold_locked(ipif); 4651 mutex_exit(&ill->ill_lock); 4652 rw_exit(&ipst->ips_ill_g_lock); 4653 return (ipif); 4654 } 4655 } 4656 } 4657 mutex_exit(&ill->ill_lock); 4658 } 4659 4660 /* If we already did the ptp case, then we are done */ 4661 if (ptp) { 4662 rw_exit(&ipst->ips_ill_g_lock); 4663 return (NULL); 4664 } 4665 ptp = B_TRUE; 4666 goto repeat; 4667 } 4668 4669 /* 4670 * Lookup an ipif with the specified address. For point-to-point links we 4671 * look for matches on either the destination address or the local address, 4672 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4673 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4674 * (or illgrp if `match_ill' is in an IPMP group). 4675 */ 4676 ipif_t * 4677 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4678 ip_stack_t *ipst) 4679 { 4680 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4681 zoneid, ipst)); 4682 } 4683 4684 /* 4685 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4686 * except that we will only return an address if it is not marked as 4687 * IPIF_DUPLICATE 4688 */ 4689 ipif_t * 4690 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4691 ip_stack_t *ipst) 4692 { 4693 return (ipif_lookup_addr_common(addr, match_ill, 4694 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4695 zoneid, ipst)); 4696 } 4697 4698 /* 4699 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4700 * `match_ill' across the IPMP group. This function is only needed in some 4701 * corner-cases; almost everything should use ipif_lookup_addr(). 4702 */ 4703 ipif_t * 4704 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4705 { 4706 ASSERT(match_ill != NULL); 4707 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4708 ipst)); 4709 } 4710 4711 /* 4712 * Look for an ipif with the specified address. For point-point links 4713 * we look for matches on either the destination address and the local 4714 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4715 * is set. 4716 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4717 * ill (or illgrp if `match_ill' is in an IPMP group). 4718 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4719 */ 4720 zoneid_t 4721 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4722 { 4723 zoneid_t zoneid; 4724 ipif_t *ipif; 4725 ill_t *ill; 4726 boolean_t ptp = B_FALSE; 4727 ill_walk_context_t ctx; 4728 4729 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4730 /* 4731 * Repeat twice, first based on local addresses and 4732 * next time for pointopoint. 4733 */ 4734 repeat: 4735 ill = ILL_START_WALK_V4(&ctx, ipst); 4736 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4737 if (match_ill != NULL && ill != match_ill && 4738 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4739 continue; 4740 } 4741 mutex_enter(&ill->ill_lock); 4742 for (ipif = ill->ill_ipif; ipif != NULL; 4743 ipif = ipif->ipif_next) { 4744 /* Allow the ipif to be down */ 4745 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4746 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4747 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4748 (ipif->ipif_pp_dst_addr == addr)) && 4749 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4750 zoneid = ipif->ipif_zoneid; 4751 mutex_exit(&ill->ill_lock); 4752 rw_exit(&ipst->ips_ill_g_lock); 4753 /* 4754 * If ipif_zoneid was ALL_ZONES then we have 4755 * a trusted extensions shared IP address. 4756 * In that case GLOBAL_ZONEID works to send. 4757 */ 4758 if (zoneid == ALL_ZONES) 4759 zoneid = GLOBAL_ZONEID; 4760 return (zoneid); 4761 } 4762 } 4763 mutex_exit(&ill->ill_lock); 4764 } 4765 4766 /* If we already did the ptp case, then we are done */ 4767 if (ptp) { 4768 rw_exit(&ipst->ips_ill_g_lock); 4769 return (ALL_ZONES); 4770 } 4771 ptp = B_TRUE; 4772 goto repeat; 4773 } 4774 4775 /* 4776 * Look for an ipif that matches the specified remote address i.e. the 4777 * ipif that would receive the specified packet. 4778 * First look for directly connected interfaces and then do a recursive 4779 * IRE lookup and pick the first ipif corresponding to the source address in the 4780 * ire. 4781 * Returns: held ipif 4782 * 4783 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4784 */ 4785 ipif_t * 4786 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4787 { 4788 ipif_t *ipif; 4789 4790 ASSERT(!ill->ill_isv6); 4791 4792 /* 4793 * Someone could be changing this ipif currently or change it 4794 * after we return this. Thus a few packets could use the old 4795 * old values. However structure updates/creates (ire, ilg, ilm etc) 4796 * will atomically be updated or cleaned up with the new value 4797 * Thus we don't need a lock to check the flags or other attrs below. 4798 */ 4799 mutex_enter(&ill->ill_lock); 4800 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4801 if (IPIF_IS_CONDEMNED(ipif)) 4802 continue; 4803 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4804 ipif->ipif_zoneid != ALL_ZONES) 4805 continue; 4806 /* Allow the ipif to be down */ 4807 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4808 if ((ipif->ipif_pp_dst_addr == addr) || 4809 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4810 ipif->ipif_lcl_addr == addr)) { 4811 ipif_refhold_locked(ipif); 4812 mutex_exit(&ill->ill_lock); 4813 return (ipif); 4814 } 4815 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4816 ipif_refhold_locked(ipif); 4817 mutex_exit(&ill->ill_lock); 4818 return (ipif); 4819 } 4820 } 4821 mutex_exit(&ill->ill_lock); 4822 /* 4823 * For a remote destination it isn't possible to nail down a particular 4824 * ipif. 4825 */ 4826 4827 /* Pick the first interface */ 4828 ipif = ipif_get_next_ipif(NULL, ill); 4829 return (ipif); 4830 } 4831 4832 /* 4833 * This func does not prevent refcnt from increasing. But if 4834 * the caller has taken steps to that effect, then this func 4835 * can be used to determine whether the ill has become quiescent 4836 */ 4837 static boolean_t 4838 ill_is_quiescent(ill_t *ill) 4839 { 4840 ipif_t *ipif; 4841 4842 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4843 4844 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4845 if (ipif->ipif_refcnt != 0) 4846 return (B_FALSE); 4847 } 4848 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4849 return (B_FALSE); 4850 } 4851 return (B_TRUE); 4852 } 4853 4854 boolean_t 4855 ill_is_freeable(ill_t *ill) 4856 { 4857 ipif_t *ipif; 4858 4859 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4860 4861 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4862 if (ipif->ipif_refcnt != 0) { 4863 return (B_FALSE); 4864 } 4865 } 4866 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4867 return (B_FALSE); 4868 } 4869 return (B_TRUE); 4870 } 4871 4872 /* 4873 * This func does not prevent refcnt from increasing. But if 4874 * the caller has taken steps to that effect, then this func 4875 * can be used to determine whether the ipif has become quiescent 4876 */ 4877 static boolean_t 4878 ipif_is_quiescent(ipif_t *ipif) 4879 { 4880 ill_t *ill; 4881 4882 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4883 4884 if (ipif->ipif_refcnt != 0) 4885 return (B_FALSE); 4886 4887 ill = ipif->ipif_ill; 4888 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4889 ill->ill_logical_down) { 4890 return (B_TRUE); 4891 } 4892 4893 /* This is the last ipif going down or being deleted on this ill */ 4894 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4895 return (B_FALSE); 4896 } 4897 4898 return (B_TRUE); 4899 } 4900 4901 /* 4902 * return true if the ipif can be destroyed: the ipif has to be quiescent 4903 * with zero references from ire/ilm to it. 4904 */ 4905 static boolean_t 4906 ipif_is_freeable(ipif_t *ipif) 4907 { 4908 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4909 ASSERT(ipif->ipif_id != 0); 4910 return (ipif->ipif_refcnt == 0); 4911 } 4912 4913 /* 4914 * The ipif/ill/ire has been refreled. Do the tail processing. 4915 * Determine if the ipif or ill in question has become quiescent and if so 4916 * wakeup close and/or restart any queued pending ioctl that is waiting 4917 * for the ipif_down (or ill_down) 4918 */ 4919 void 4920 ipif_ill_refrele_tail(ill_t *ill) 4921 { 4922 mblk_t *mp; 4923 conn_t *connp; 4924 ipsq_t *ipsq; 4925 ipxop_t *ipx; 4926 ipif_t *ipif; 4927 dl_notify_ind_t *dlindp; 4928 4929 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4930 4931 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4932 /* ip_modclose() may be waiting */ 4933 cv_broadcast(&ill->ill_cv); 4934 } 4935 4936 ipsq = ill->ill_phyint->phyint_ipsq; 4937 mutex_enter(&ipsq->ipsq_lock); 4938 ipx = ipsq->ipsq_xop; 4939 mutex_enter(&ipx->ipx_lock); 4940 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4941 goto unlock; 4942 4943 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4944 4945 ipif = ipx->ipx_pending_ipif; 4946 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4947 goto unlock; 4948 4949 switch (ipx->ipx_waitfor) { 4950 case IPIF_DOWN: 4951 if (!ipif_is_quiescent(ipif)) 4952 goto unlock; 4953 break; 4954 case IPIF_FREE: 4955 if (!ipif_is_freeable(ipif)) 4956 goto unlock; 4957 break; 4958 case ILL_DOWN: 4959 if (!ill_is_quiescent(ill)) 4960 goto unlock; 4961 break; 4962 case ILL_FREE: 4963 /* 4964 * ILL_FREE is only for loopback; normal ill teardown waits 4965 * synchronously in ip_modclose() without using ipx_waitfor, 4966 * handled by the cv_broadcast() at the top of this function. 4967 */ 4968 if (!ill_is_freeable(ill)) 4969 goto unlock; 4970 break; 4971 default: 4972 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4973 (void *)ipsq, ipx->ipx_waitfor); 4974 } 4975 4976 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4977 mutex_exit(&ipx->ipx_lock); 4978 mp = ipsq_pending_mp_get(ipsq, &connp); 4979 mutex_exit(&ipsq->ipsq_lock); 4980 mutex_exit(&ill->ill_lock); 4981 4982 ASSERT(mp != NULL); 4983 /* 4984 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4985 * we can only get here when the current operation decides it 4986 * it needs to quiesce via ipsq_pending_mp_add(). 4987 */ 4988 switch (mp->b_datap->db_type) { 4989 case M_PCPROTO: 4990 case M_PROTO: 4991 /* 4992 * For now, only DL_NOTIFY_IND messages can use this facility. 4993 */ 4994 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4995 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4996 4997 switch (dlindp->dl_notification) { 4998 case DL_NOTE_PHYS_ADDR: 4999 qwriter_ip(ill, ill->ill_rq, mp, 5000 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5001 return; 5002 case DL_NOTE_REPLUMB: 5003 qwriter_ip(ill, ill->ill_rq, mp, 5004 ill_replumb_tail, CUR_OP, B_TRUE); 5005 return; 5006 default: 5007 ASSERT(0); 5008 ill_refrele(ill); 5009 } 5010 break; 5011 5012 case M_ERROR: 5013 case M_HANGUP: 5014 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5015 B_TRUE); 5016 return; 5017 5018 case M_IOCTL: 5019 case M_IOCDATA: 5020 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5021 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5022 return; 5023 5024 default: 5025 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5026 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5027 } 5028 return; 5029 unlock: 5030 mutex_exit(&ipsq->ipsq_lock); 5031 mutex_exit(&ipx->ipx_lock); 5032 mutex_exit(&ill->ill_lock); 5033 } 5034 5035 #ifdef DEBUG 5036 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5037 static void 5038 th_trace_rrecord(th_trace_t *th_trace) 5039 { 5040 tr_buf_t *tr_buf; 5041 uint_t lastref; 5042 5043 lastref = th_trace->th_trace_lastref; 5044 lastref++; 5045 if (lastref == TR_BUF_MAX) 5046 lastref = 0; 5047 th_trace->th_trace_lastref = lastref; 5048 tr_buf = &th_trace->th_trbuf[lastref]; 5049 tr_buf->tr_time = ddi_get_lbolt(); 5050 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5051 } 5052 5053 static void 5054 th_trace_free(void *value) 5055 { 5056 th_trace_t *th_trace = value; 5057 5058 ASSERT(th_trace->th_refcnt == 0); 5059 kmem_free(th_trace, sizeof (*th_trace)); 5060 } 5061 5062 /* 5063 * Find or create the per-thread hash table used to track object references. 5064 * The ipst argument is NULL if we shouldn't allocate. 5065 * 5066 * Accesses per-thread data, so there's no need to lock here. 5067 */ 5068 static mod_hash_t * 5069 th_trace_gethash(ip_stack_t *ipst) 5070 { 5071 th_hash_t *thh; 5072 5073 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5074 mod_hash_t *mh; 5075 char name[256]; 5076 size_t objsize, rshift; 5077 int retv; 5078 5079 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5080 return (NULL); 5081 (void) snprintf(name, sizeof (name), "th_trace_%p", 5082 (void *)curthread); 5083 5084 /* 5085 * We use mod_hash_create_extended here rather than the more 5086 * obvious mod_hash_create_ptrhash because the latter has a 5087 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5088 * block. 5089 */ 5090 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5091 MAX(sizeof (ire_t), sizeof (ncec_t))); 5092 rshift = highbit(objsize); 5093 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5094 th_trace_free, mod_hash_byptr, (void *)rshift, 5095 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5096 if (mh == NULL) { 5097 kmem_free(thh, sizeof (*thh)); 5098 return (NULL); 5099 } 5100 thh->thh_hash = mh; 5101 thh->thh_ipst = ipst; 5102 /* 5103 * We trace ills, ipifs, ires, and nces. All of these are 5104 * per-IP-stack, so the lock on the thread list is as well. 5105 */ 5106 rw_enter(&ip_thread_rwlock, RW_WRITER); 5107 list_insert_tail(&ip_thread_list, thh); 5108 rw_exit(&ip_thread_rwlock); 5109 retv = tsd_set(ip_thread_data, thh); 5110 ASSERT(retv == 0); 5111 } 5112 return (thh != NULL ? thh->thh_hash : NULL); 5113 } 5114 5115 boolean_t 5116 th_trace_ref(const void *obj, ip_stack_t *ipst) 5117 { 5118 th_trace_t *th_trace; 5119 mod_hash_t *mh; 5120 mod_hash_val_t val; 5121 5122 if ((mh = th_trace_gethash(ipst)) == NULL) 5123 return (B_FALSE); 5124 5125 /* 5126 * Attempt to locate the trace buffer for this obj and thread. 5127 * If it does not exist, then allocate a new trace buffer and 5128 * insert into the hash. 5129 */ 5130 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5131 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5132 if (th_trace == NULL) 5133 return (B_FALSE); 5134 5135 th_trace->th_id = curthread; 5136 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5137 (mod_hash_val_t)th_trace) != 0) { 5138 kmem_free(th_trace, sizeof (th_trace_t)); 5139 return (B_FALSE); 5140 } 5141 } else { 5142 th_trace = (th_trace_t *)val; 5143 } 5144 5145 ASSERT(th_trace->th_refcnt >= 0 && 5146 th_trace->th_refcnt < TR_BUF_MAX - 1); 5147 5148 th_trace->th_refcnt++; 5149 th_trace_rrecord(th_trace); 5150 return (B_TRUE); 5151 } 5152 5153 /* 5154 * For the purpose of tracing a reference release, we assume that global 5155 * tracing is always on and that the same thread initiated the reference hold 5156 * is releasing. 5157 */ 5158 void 5159 th_trace_unref(const void *obj) 5160 { 5161 int retv; 5162 mod_hash_t *mh; 5163 th_trace_t *th_trace; 5164 mod_hash_val_t val; 5165 5166 mh = th_trace_gethash(NULL); 5167 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5168 ASSERT(retv == 0); 5169 th_trace = (th_trace_t *)val; 5170 5171 ASSERT(th_trace->th_refcnt > 0); 5172 th_trace->th_refcnt--; 5173 th_trace_rrecord(th_trace); 5174 } 5175 5176 /* 5177 * If tracing has been disabled, then we assume that the reference counts are 5178 * now useless, and we clear them out before destroying the entries. 5179 */ 5180 void 5181 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5182 { 5183 th_hash_t *thh; 5184 mod_hash_t *mh; 5185 mod_hash_val_t val; 5186 th_trace_t *th_trace; 5187 int retv; 5188 5189 rw_enter(&ip_thread_rwlock, RW_READER); 5190 for (thh = list_head(&ip_thread_list); thh != NULL; 5191 thh = list_next(&ip_thread_list, thh)) { 5192 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5193 &val) == 0) { 5194 th_trace = (th_trace_t *)val; 5195 if (trace_disable) 5196 th_trace->th_refcnt = 0; 5197 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5198 ASSERT(retv == 0); 5199 } 5200 } 5201 rw_exit(&ip_thread_rwlock); 5202 } 5203 5204 void 5205 ipif_trace_ref(ipif_t *ipif) 5206 { 5207 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5208 5209 if (ipif->ipif_trace_disable) 5210 return; 5211 5212 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5213 ipif->ipif_trace_disable = B_TRUE; 5214 ipif_trace_cleanup(ipif); 5215 } 5216 } 5217 5218 void 5219 ipif_untrace_ref(ipif_t *ipif) 5220 { 5221 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5222 5223 if (!ipif->ipif_trace_disable) 5224 th_trace_unref(ipif); 5225 } 5226 5227 void 5228 ill_trace_ref(ill_t *ill) 5229 { 5230 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5231 5232 if (ill->ill_trace_disable) 5233 return; 5234 5235 if (!th_trace_ref(ill, ill->ill_ipst)) { 5236 ill->ill_trace_disable = B_TRUE; 5237 ill_trace_cleanup(ill); 5238 } 5239 } 5240 5241 void 5242 ill_untrace_ref(ill_t *ill) 5243 { 5244 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5245 5246 if (!ill->ill_trace_disable) 5247 th_trace_unref(ill); 5248 } 5249 5250 /* 5251 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5252 * failure, ipif_trace_disable is set. 5253 */ 5254 static void 5255 ipif_trace_cleanup(const ipif_t *ipif) 5256 { 5257 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5258 } 5259 5260 /* 5261 * Called when ill is unplumbed or when memory alloc fails. Note that on 5262 * failure, ill_trace_disable is set. 5263 */ 5264 static void 5265 ill_trace_cleanup(const ill_t *ill) 5266 { 5267 th_trace_cleanup(ill, ill->ill_trace_disable); 5268 } 5269 #endif /* DEBUG */ 5270 5271 void 5272 ipif_refhold_locked(ipif_t *ipif) 5273 { 5274 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5275 ipif->ipif_refcnt++; 5276 IPIF_TRACE_REF(ipif); 5277 } 5278 5279 void 5280 ipif_refhold(ipif_t *ipif) 5281 { 5282 ill_t *ill; 5283 5284 ill = ipif->ipif_ill; 5285 mutex_enter(&ill->ill_lock); 5286 ipif->ipif_refcnt++; 5287 IPIF_TRACE_REF(ipif); 5288 mutex_exit(&ill->ill_lock); 5289 } 5290 5291 /* 5292 * Must not be called while holding any locks. Otherwise if this is 5293 * the last reference to be released there is a chance of recursive mutex 5294 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5295 * to restart an ioctl. 5296 */ 5297 void 5298 ipif_refrele(ipif_t *ipif) 5299 { 5300 ill_t *ill; 5301 5302 ill = ipif->ipif_ill; 5303 5304 mutex_enter(&ill->ill_lock); 5305 ASSERT(ipif->ipif_refcnt != 0); 5306 ipif->ipif_refcnt--; 5307 IPIF_UNTRACE_REF(ipif); 5308 if (ipif->ipif_refcnt != 0) { 5309 mutex_exit(&ill->ill_lock); 5310 return; 5311 } 5312 5313 /* Drops the ill_lock */ 5314 ipif_ill_refrele_tail(ill); 5315 } 5316 5317 ipif_t * 5318 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5319 { 5320 ipif_t *ipif; 5321 5322 mutex_enter(&ill->ill_lock); 5323 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5324 ipif != NULL; ipif = ipif->ipif_next) { 5325 if (IPIF_IS_CONDEMNED(ipif)) 5326 continue; 5327 ipif_refhold_locked(ipif); 5328 mutex_exit(&ill->ill_lock); 5329 return (ipif); 5330 } 5331 mutex_exit(&ill->ill_lock); 5332 return (NULL); 5333 } 5334 5335 /* 5336 * TODO: make this table extendible at run time 5337 * Return a pointer to the mac type info for 'mac_type' 5338 */ 5339 static ip_m_t * 5340 ip_m_lookup(t_uscalar_t mac_type) 5341 { 5342 ip_m_t *ipm; 5343 5344 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5345 if (ipm->ip_m_mac_type == mac_type) 5346 return (ipm); 5347 return (NULL); 5348 } 5349 5350 /* 5351 * Make a link layer address from the multicast IP address *addr. 5352 * To form the link layer address, invoke the ip_m_v*mapping function 5353 * associated with the link-layer type. 5354 */ 5355 void 5356 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5357 { 5358 ip_m_t *ipm; 5359 5360 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5361 return; 5362 5363 ASSERT(addr != NULL); 5364 5365 ipm = ip_m_lookup(ill->ill_mactype); 5366 if (ipm == NULL || 5367 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5368 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5369 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5370 ill->ill_name, ill->ill_mactype)); 5371 return; 5372 } 5373 if (ill->ill_isv6) 5374 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5375 else 5376 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5377 } 5378 5379 /* 5380 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5381 * Otherwise returns B_TRUE. 5382 * 5383 * The netmask can be verified to be contiguous with 32 shifts and or 5384 * operations. Take the contiguous mask (in host byte order) and compute 5385 * mask | mask << 1 | mask << 2 | ... | mask << 31 5386 * the result will be the same as the 'mask' for contiguous mask. 5387 */ 5388 static boolean_t 5389 ip_contiguous_mask(uint32_t mask) 5390 { 5391 uint32_t m = mask; 5392 int i; 5393 5394 for (i = 1; i < 32; i++) 5395 m |= (mask << i); 5396 5397 return (m == mask); 5398 } 5399 5400 /* 5401 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5402 * ill is passed in to associate it with the correct interface. 5403 * If ire_arg is set, then we return the held IRE in that location. 5404 */ 5405 int 5406 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5407 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5408 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5409 { 5410 ire_t *ire, *nire; 5411 ire_t *gw_ire = NULL; 5412 ipif_t *ipif = NULL; 5413 uint_t type; 5414 int match_flags = MATCH_IRE_TYPE; 5415 tsol_gc_t *gc = NULL; 5416 tsol_gcgrp_t *gcgrp = NULL; 5417 boolean_t gcgrp_xtraref = B_FALSE; 5418 boolean_t cgtp_broadcast; 5419 boolean_t unbound = B_FALSE; 5420 5421 ip1dbg(("ip_rt_add:")); 5422 5423 if (ire_arg != NULL) 5424 *ire_arg = NULL; 5425 5426 /* disallow non-contiguous netmasks */ 5427 if (!ip_contiguous_mask(ntohl(mask))) 5428 return (ENOTSUP); 5429 5430 /* 5431 * If this is the case of RTF_HOST being set, then we set the netmask 5432 * to all ones (regardless if one was supplied). 5433 */ 5434 if (flags & RTF_HOST) 5435 mask = IP_HOST_MASK; 5436 5437 /* 5438 * Prevent routes with a zero gateway from being created (since 5439 * interfaces can currently be plumbed and brought up no assigned 5440 * address). 5441 */ 5442 if (gw_addr == 0) 5443 return (ENETUNREACH); 5444 /* 5445 * Get the ipif, if any, corresponding to the gw_addr 5446 * If -ifp was specified we restrict ourselves to the ill, otherwise 5447 * we match on the gatway and destination to handle unnumbered pt-pt 5448 * interfaces. 5449 */ 5450 if (ill != NULL) 5451 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5452 else 5453 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5454 if (ipif != NULL) { 5455 if (IS_VNI(ipif->ipif_ill)) { 5456 ipif_refrele(ipif); 5457 return (EINVAL); 5458 } 5459 } 5460 5461 /* 5462 * GateD will attempt to create routes with a loopback interface 5463 * address as the gateway and with RTF_GATEWAY set. We allow 5464 * these routes to be added, but create them as interface routes 5465 * since the gateway is an interface address. 5466 */ 5467 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5468 flags &= ~RTF_GATEWAY; 5469 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5470 mask == IP_HOST_MASK) { 5471 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5472 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5473 NULL); 5474 if (ire != NULL) { 5475 ire_refrele(ire); 5476 ipif_refrele(ipif); 5477 return (EEXIST); 5478 } 5479 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5480 "for 0x%x\n", (void *)ipif, 5481 ipif->ipif_ire_type, 5482 ntohl(ipif->ipif_lcl_addr))); 5483 ire = ire_create( 5484 (uchar_t *)&dst_addr, /* dest address */ 5485 (uchar_t *)&mask, /* mask */ 5486 NULL, /* no gateway */ 5487 ipif->ipif_ire_type, /* LOOPBACK */ 5488 ipif->ipif_ill, 5489 zoneid, 5490 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5491 NULL, 5492 ipst); 5493 5494 if (ire == NULL) { 5495 ipif_refrele(ipif); 5496 return (ENOMEM); 5497 } 5498 /* src address assigned by the caller? */ 5499 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5500 ire->ire_setsrc_addr = src_addr; 5501 5502 nire = ire_add(ire); 5503 if (nire == NULL) { 5504 /* 5505 * In the result of failure, ire_add() will have 5506 * already deleted the ire in question, so there 5507 * is no need to do that here. 5508 */ 5509 ipif_refrele(ipif); 5510 return (ENOMEM); 5511 } 5512 /* 5513 * Check if it was a duplicate entry. This handles 5514 * the case of two racing route adds for the same route 5515 */ 5516 if (nire != ire) { 5517 ASSERT(nire->ire_identical_ref > 1); 5518 ire_delete(nire); 5519 ire_refrele(nire); 5520 ipif_refrele(ipif); 5521 return (EEXIST); 5522 } 5523 ire = nire; 5524 goto save_ire; 5525 } 5526 } 5527 5528 /* 5529 * The routes for multicast with CGTP are quite special in that 5530 * the gateway is the local interface address, yet RTF_GATEWAY 5531 * is set. We turn off RTF_GATEWAY to provide compatibility with 5532 * this undocumented and unusual use of multicast routes. 5533 */ 5534 if ((flags & RTF_MULTIRT) && ipif != NULL) 5535 flags &= ~RTF_GATEWAY; 5536 5537 /* 5538 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5539 * and the gateway address provided is one of the system's interface 5540 * addresses. By using the routing socket interface and supplying an 5541 * RTA_IFP sockaddr with an interface index, an alternate method of 5542 * specifying an interface route to be created is available which uses 5543 * the interface index that specifies the outgoing interface rather than 5544 * the address of an outgoing interface (which may not be able to 5545 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5546 * flag, routes can be specified which not only specify the next-hop to 5547 * be used when routing to a certain prefix, but also which outgoing 5548 * interface should be used. 5549 * 5550 * Previously, interfaces would have unique addresses assigned to them 5551 * and so the address assigned to a particular interface could be used 5552 * to identify a particular interface. One exception to this was the 5553 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5554 * 5555 * With the advent of IPv6 and its link-local addresses, this 5556 * restriction was relaxed and interfaces could share addresses between 5557 * themselves. In fact, typically all of the link-local interfaces on 5558 * an IPv6 node or router will have the same link-local address. In 5559 * order to differentiate between these interfaces, the use of an 5560 * interface index is necessary and this index can be carried inside a 5561 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5562 * of using the interface index, however, is that all of the ipif's that 5563 * are part of an ill have the same index and so the RTA_IFP sockaddr 5564 * cannot be used to differentiate between ipif's (or logical 5565 * interfaces) that belong to the same ill (physical interface). 5566 * 5567 * For example, in the following case involving IPv4 interfaces and 5568 * logical interfaces 5569 * 5570 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5571 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5572 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5573 * 5574 * the ipif's corresponding to each of these interface routes can be 5575 * uniquely identified by the "gateway" (actually interface address). 5576 * 5577 * In this case involving multiple IPv6 default routes to a particular 5578 * link-local gateway, the use of RTA_IFP is necessary to specify which 5579 * default route is of interest: 5580 * 5581 * default fe80::123:4567:89ab:cdef U if0 5582 * default fe80::123:4567:89ab:cdef U if1 5583 */ 5584 5585 /* RTF_GATEWAY not set */ 5586 if (!(flags & RTF_GATEWAY)) { 5587 if (sp != NULL) { 5588 ip2dbg(("ip_rt_add: gateway security attributes " 5589 "cannot be set with interface route\n")); 5590 if (ipif != NULL) 5591 ipif_refrele(ipif); 5592 return (EINVAL); 5593 } 5594 5595 /* 5596 * Whether or not ill (RTA_IFP) is set, we require that 5597 * the gateway is one of our local addresses. 5598 */ 5599 if (ipif == NULL) 5600 return (ENETUNREACH); 5601 5602 /* 5603 * We use MATCH_IRE_ILL here. If the caller specified an 5604 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5605 * we use the ill derived from the gateway address. 5606 * We can always match the gateway address since we record it 5607 * in ire_gateway_addr. 5608 * We don't allow RTA_IFP to specify a different ill than the 5609 * one matching the ipif to make sure we can delete the route. 5610 */ 5611 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5612 if (ill == NULL) { 5613 ill = ipif->ipif_ill; 5614 } else if (ill != ipif->ipif_ill) { 5615 ipif_refrele(ipif); 5616 return (EINVAL); 5617 } 5618 5619 /* 5620 * We check for an existing entry at this point. 5621 * 5622 * Since a netmask isn't passed in via the ioctl interface 5623 * (SIOCADDRT), we don't check for a matching netmask in that 5624 * case. 5625 */ 5626 if (!ioctl_msg) 5627 match_flags |= MATCH_IRE_MASK; 5628 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5629 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5630 NULL); 5631 if (ire != NULL) { 5632 ire_refrele(ire); 5633 ipif_refrele(ipif); 5634 return (EEXIST); 5635 } 5636 5637 /* 5638 * Some software (for example, GateD and Sun Cluster) attempts 5639 * to create (what amount to) IRE_PREFIX routes with the 5640 * loopback address as the gateway. This is primarily done to 5641 * set up prefixes with the RTF_REJECT flag set (for example, 5642 * when generating aggregate routes.) 5643 * 5644 * If the IRE type (as defined by ill->ill_net_type) would be 5645 * IRE_LOOPBACK, then we map the request into a 5646 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5647 * these interface routes, by definition, can only be that. 5648 * 5649 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5650 * routine, but rather using ire_create() directly. 5651 * 5652 */ 5653 type = ill->ill_net_type; 5654 if (type == IRE_LOOPBACK) { 5655 type = IRE_IF_NORESOLVER; 5656 flags |= RTF_BLACKHOLE; 5657 } 5658 5659 /* 5660 * Create a copy of the IRE_IF_NORESOLVER or 5661 * IRE_IF_RESOLVER with the modified address, netmask, and 5662 * gateway. 5663 */ 5664 ire = ire_create( 5665 (uchar_t *)&dst_addr, 5666 (uint8_t *)&mask, 5667 (uint8_t *)&gw_addr, 5668 type, 5669 ill, 5670 zoneid, 5671 flags, 5672 NULL, 5673 ipst); 5674 if (ire == NULL) { 5675 ipif_refrele(ipif); 5676 return (ENOMEM); 5677 } 5678 5679 /* src address assigned by the caller? */ 5680 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5681 ire->ire_setsrc_addr = src_addr; 5682 5683 nire = ire_add(ire); 5684 if (nire == NULL) { 5685 /* 5686 * In the result of failure, ire_add() will have 5687 * already deleted the ire in question, so there 5688 * is no need to do that here. 5689 */ 5690 ipif_refrele(ipif); 5691 return (ENOMEM); 5692 } 5693 /* 5694 * Check if it was a duplicate entry. This handles 5695 * the case of two racing route adds for the same route 5696 */ 5697 if (nire != ire) { 5698 ire_delete(nire); 5699 ire_refrele(nire); 5700 ipif_refrele(ipif); 5701 return (EEXIST); 5702 } 5703 ire = nire; 5704 goto save_ire; 5705 } 5706 5707 /* 5708 * Get an interface IRE for the specified gateway. 5709 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5710 * gateway, it is currently unreachable and we fail the request 5711 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5712 * is an IRE_LOCAL or IRE_LOOPBACK. 5713 * If RTA_IFP was specified we look on that particular ill. 5714 */ 5715 if (ill != NULL) 5716 match_flags |= MATCH_IRE_ILL; 5717 5718 /* Check whether the gateway is reachable. */ 5719 again: 5720 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5721 if (flags & RTF_INDIRECT) 5722 type |= IRE_OFFLINK; 5723 5724 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5725 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5726 if (gw_ire == NULL) { 5727 /* 5728 * With IPMP, we allow host routes to influence in.mpathd's 5729 * target selection. However, if the test addresses are on 5730 * their own network, the above lookup will fail since the 5731 * underlying IRE_INTERFACEs are marked hidden. So allow 5732 * hidden test IREs to be found and try again. 5733 */ 5734 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5735 match_flags |= MATCH_IRE_TESTHIDDEN; 5736 goto again; 5737 } 5738 if (ipif != NULL) 5739 ipif_refrele(ipif); 5740 return (ENETUNREACH); 5741 } 5742 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5743 ire_refrele(gw_ire); 5744 if (ipif != NULL) 5745 ipif_refrele(ipif); 5746 return (ENETUNREACH); 5747 } 5748 5749 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5750 unbound = B_TRUE; 5751 if (ipst->ips_ip_strict_src_multihoming > 0) 5752 ill = gw_ire->ire_ill; 5753 } 5754 5755 /* 5756 * We create one of three types of IREs as a result of this request 5757 * based on the netmask. A netmask of all ones (which is automatically 5758 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5759 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5760 * created. Otherwise, an IRE_PREFIX route is created for the 5761 * destination prefix. 5762 */ 5763 if (mask == IP_HOST_MASK) 5764 type = IRE_HOST; 5765 else if (mask == 0) 5766 type = IRE_DEFAULT; 5767 else 5768 type = IRE_PREFIX; 5769 5770 /* check for a duplicate entry */ 5771 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5772 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5773 0, ipst, NULL); 5774 if (ire != NULL) { 5775 if (ipif != NULL) 5776 ipif_refrele(ipif); 5777 ire_refrele(gw_ire); 5778 ire_refrele(ire); 5779 return (EEXIST); 5780 } 5781 5782 /* Security attribute exists */ 5783 if (sp != NULL) { 5784 tsol_gcgrp_addr_t ga; 5785 5786 /* find or create the gateway credentials group */ 5787 ga.ga_af = AF_INET; 5788 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5789 5790 /* we hold reference to it upon success */ 5791 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5792 if (gcgrp == NULL) { 5793 if (ipif != NULL) 5794 ipif_refrele(ipif); 5795 ire_refrele(gw_ire); 5796 return (ENOMEM); 5797 } 5798 5799 /* 5800 * Create and add the security attribute to the group; a 5801 * reference to the group is made upon allocating a new 5802 * entry successfully. If it finds an already-existing 5803 * entry for the security attribute in the group, it simply 5804 * returns it and no new reference is made to the group. 5805 */ 5806 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5807 if (gc == NULL) { 5808 if (ipif != NULL) 5809 ipif_refrele(ipif); 5810 /* release reference held by gcgrp_lookup */ 5811 GCGRP_REFRELE(gcgrp); 5812 ire_refrele(gw_ire); 5813 return (ENOMEM); 5814 } 5815 } 5816 5817 /* Create the IRE. */ 5818 ire = ire_create( 5819 (uchar_t *)&dst_addr, /* dest address */ 5820 (uchar_t *)&mask, /* mask */ 5821 (uchar_t *)&gw_addr, /* gateway address */ 5822 (ushort_t)type, /* IRE type */ 5823 ill, 5824 zoneid, 5825 flags, 5826 gc, /* security attribute */ 5827 ipst); 5828 5829 /* 5830 * The ire holds a reference to the 'gc' and the 'gc' holds a 5831 * reference to the 'gcgrp'. We can now release the extra reference 5832 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5833 */ 5834 if (gcgrp_xtraref) 5835 GCGRP_REFRELE(gcgrp); 5836 if (ire == NULL) { 5837 if (gc != NULL) 5838 GC_REFRELE(gc); 5839 if (ipif != NULL) 5840 ipif_refrele(ipif); 5841 ire_refrele(gw_ire); 5842 return (ENOMEM); 5843 } 5844 5845 /* Before we add, check if an extra CGTP broadcast is needed */ 5846 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5847 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5848 5849 /* src address assigned by the caller? */ 5850 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5851 ire->ire_setsrc_addr = src_addr; 5852 5853 ire->ire_unbound = unbound; 5854 5855 /* 5856 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5857 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5858 */ 5859 5860 /* Add the new IRE. */ 5861 nire = ire_add(ire); 5862 if (nire == NULL) { 5863 /* 5864 * In the result of failure, ire_add() will have 5865 * already deleted the ire in question, so there 5866 * is no need to do that here. 5867 */ 5868 if (ipif != NULL) 5869 ipif_refrele(ipif); 5870 ire_refrele(gw_ire); 5871 return (ENOMEM); 5872 } 5873 /* 5874 * Check if it was a duplicate entry. This handles 5875 * the case of two racing route adds for the same route 5876 */ 5877 if (nire != ire) { 5878 ire_delete(nire); 5879 ire_refrele(nire); 5880 if (ipif != NULL) 5881 ipif_refrele(ipif); 5882 ire_refrele(gw_ire); 5883 return (EEXIST); 5884 } 5885 ire = nire; 5886 5887 if (flags & RTF_MULTIRT) { 5888 /* 5889 * Invoke the CGTP (multirouting) filtering module 5890 * to add the dst address in the filtering database. 5891 * Replicated inbound packets coming from that address 5892 * will be filtered to discard the duplicates. 5893 * It is not necessary to call the CGTP filter hook 5894 * when the dst address is a broadcast or multicast, 5895 * because an IP source address cannot be a broadcast 5896 * or a multicast. 5897 */ 5898 if (cgtp_broadcast) { 5899 ip_cgtp_bcast_add(ire, ipst); 5900 goto save_ire; 5901 } 5902 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5903 !CLASSD(ire->ire_addr)) { 5904 int res; 5905 ipif_t *src_ipif; 5906 5907 /* Find the source address corresponding to gw_ire */ 5908 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5909 NULL, zoneid, ipst); 5910 if (src_ipif != NULL) { 5911 res = ipst->ips_ip_cgtp_filter_ops-> 5912 cfo_add_dest_v4( 5913 ipst->ips_netstack->netstack_stackid, 5914 ire->ire_addr, 5915 ire->ire_gateway_addr, 5916 ire->ire_setsrc_addr, 5917 src_ipif->ipif_lcl_addr); 5918 ipif_refrele(src_ipif); 5919 } else { 5920 res = EADDRNOTAVAIL; 5921 } 5922 if (res != 0) { 5923 if (ipif != NULL) 5924 ipif_refrele(ipif); 5925 ire_refrele(gw_ire); 5926 ire_delete(ire); 5927 ire_refrele(ire); /* Held in ire_add */ 5928 return (res); 5929 } 5930 } 5931 } 5932 5933 save_ire: 5934 if (gw_ire != NULL) { 5935 ire_refrele(gw_ire); 5936 gw_ire = NULL; 5937 } 5938 if (ill != NULL) { 5939 /* 5940 * Save enough information so that we can recreate the IRE if 5941 * the interface goes down and then up. The metrics associated 5942 * with the route will be saved as well when rts_setmetrics() is 5943 * called after the IRE has been created. In the case where 5944 * memory cannot be allocated, none of this information will be 5945 * saved. 5946 */ 5947 ill_save_ire(ill, ire); 5948 } 5949 if (ioctl_msg) 5950 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5951 if (ire_arg != NULL) { 5952 /* 5953 * Store the ire that was successfully added into where ire_arg 5954 * points to so that callers don't have to look it up 5955 * themselves (but they are responsible for ire_refrele()ing 5956 * the ire when they are finished with it). 5957 */ 5958 *ire_arg = ire; 5959 } else { 5960 ire_refrele(ire); /* Held in ire_add */ 5961 } 5962 if (ipif != NULL) 5963 ipif_refrele(ipif); 5964 return (0); 5965 } 5966 5967 /* 5968 * ip_rt_delete is called to delete an IPv4 route. 5969 * ill is passed in to associate it with the correct interface. 5970 */ 5971 /* ARGSUSED4 */ 5972 int 5973 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5974 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5975 ip_stack_t *ipst, zoneid_t zoneid) 5976 { 5977 ire_t *ire = NULL; 5978 ipif_t *ipif; 5979 uint_t type; 5980 uint_t match_flags = MATCH_IRE_TYPE; 5981 int err = 0; 5982 5983 ip1dbg(("ip_rt_delete:")); 5984 /* 5985 * If this is the case of RTF_HOST being set, then we set the netmask 5986 * to all ones. Otherwise, we use the netmask if one was supplied. 5987 */ 5988 if (flags & RTF_HOST) { 5989 mask = IP_HOST_MASK; 5990 match_flags |= MATCH_IRE_MASK; 5991 } else if (rtm_addrs & RTA_NETMASK) { 5992 match_flags |= MATCH_IRE_MASK; 5993 } 5994 5995 /* 5996 * Note that RTF_GATEWAY is never set on a delete, therefore 5997 * we check if the gateway address is one of our interfaces first, 5998 * and fall back on RTF_GATEWAY routes. 5999 * 6000 * This makes it possible to delete an original 6001 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6002 * However, we have RTF_KERNEL set on the ones created by ipif_up 6003 * and those can not be deleted here. 6004 * 6005 * We use MATCH_IRE_ILL if we know the interface. If the caller 6006 * specified an interface (from the RTA_IFP sockaddr) we use it, 6007 * otherwise we use the ill derived from the gateway address. 6008 * We can always match the gateway address since we record it 6009 * in ire_gateway_addr. 6010 * 6011 * For more detail on specifying routes by gateway address and by 6012 * interface index, see the comments in ip_rt_add(). 6013 */ 6014 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6015 if (ipif != NULL) { 6016 ill_t *ill_match; 6017 6018 if (ill != NULL) 6019 ill_match = ill; 6020 else 6021 ill_match = ipif->ipif_ill; 6022 6023 match_flags |= MATCH_IRE_ILL; 6024 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6025 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6026 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6027 match_flags, 0, ipst, NULL); 6028 } 6029 if (ire == NULL) { 6030 match_flags |= MATCH_IRE_GW; 6031 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6032 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6033 match_flags, 0, ipst, NULL); 6034 } 6035 /* Avoid deleting routes created by kernel from an ipif */ 6036 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6037 ire_refrele(ire); 6038 ire = NULL; 6039 } 6040 6041 /* Restore in case we didn't find a match */ 6042 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6043 } 6044 6045 if (ire == NULL) { 6046 /* 6047 * At this point, the gateway address is not one of our own 6048 * addresses or a matching interface route was not found. We 6049 * set the IRE type to lookup based on whether 6050 * this is a host route, a default route or just a prefix. 6051 * 6052 * If an ill was passed in, then the lookup is based on an 6053 * interface index so MATCH_IRE_ILL is added to match_flags. 6054 */ 6055 match_flags |= MATCH_IRE_GW; 6056 if (ill != NULL) 6057 match_flags |= MATCH_IRE_ILL; 6058 if (mask == IP_HOST_MASK) 6059 type = IRE_HOST; 6060 else if (mask == 0) 6061 type = IRE_DEFAULT; 6062 else 6063 type = IRE_PREFIX; 6064 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6065 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6066 } 6067 6068 if (ipif != NULL) { 6069 ipif_refrele(ipif); 6070 ipif = NULL; 6071 } 6072 6073 if (ire == NULL) 6074 return (ESRCH); 6075 6076 if (ire->ire_flags & RTF_MULTIRT) { 6077 /* 6078 * Invoke the CGTP (multirouting) filtering module 6079 * to remove the dst address from the filtering database. 6080 * Packets coming from that address will no longer be 6081 * filtered to remove duplicates. 6082 */ 6083 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6084 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6085 ipst->ips_netstack->netstack_stackid, 6086 ire->ire_addr, ire->ire_gateway_addr); 6087 } 6088 ip_cgtp_bcast_delete(ire, ipst); 6089 } 6090 6091 ill = ire->ire_ill; 6092 if (ill != NULL) 6093 ill_remove_saved_ire(ill, ire); 6094 if (ioctl_msg) 6095 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6096 ire_delete(ire); 6097 ire_refrele(ire); 6098 return (err); 6099 } 6100 6101 /* 6102 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6103 */ 6104 /* ARGSUSED */ 6105 int 6106 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6107 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6108 { 6109 ipaddr_t dst_addr; 6110 ipaddr_t gw_addr; 6111 ipaddr_t mask; 6112 int error = 0; 6113 mblk_t *mp1; 6114 struct rtentry *rt; 6115 ipif_t *ipif = NULL; 6116 ip_stack_t *ipst; 6117 6118 ASSERT(q->q_next == NULL); 6119 ipst = CONNQ_TO_IPST(q); 6120 6121 ip1dbg(("ip_siocaddrt:")); 6122 /* Existence of mp1 verified in ip_wput_nondata */ 6123 mp1 = mp->b_cont->b_cont; 6124 rt = (struct rtentry *)mp1->b_rptr; 6125 6126 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6127 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6128 6129 /* 6130 * If the RTF_HOST flag is on, this is a request to assign a gateway 6131 * to a particular host address. In this case, we set the netmask to 6132 * all ones for the particular destination address. Otherwise, 6133 * determine the netmask to be used based on dst_addr and the interfaces 6134 * in use. 6135 */ 6136 if (rt->rt_flags & RTF_HOST) { 6137 mask = IP_HOST_MASK; 6138 } else { 6139 /* 6140 * Note that ip_subnet_mask returns a zero mask in the case of 6141 * default (an all-zeroes address). 6142 */ 6143 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6144 } 6145 6146 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6147 B_TRUE, NULL, ipst, ALL_ZONES); 6148 if (ipif != NULL) 6149 ipif_refrele(ipif); 6150 return (error); 6151 } 6152 6153 /* 6154 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6155 */ 6156 /* ARGSUSED */ 6157 int 6158 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6159 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6160 { 6161 ipaddr_t dst_addr; 6162 ipaddr_t gw_addr; 6163 ipaddr_t mask; 6164 int error; 6165 mblk_t *mp1; 6166 struct rtentry *rt; 6167 ipif_t *ipif = NULL; 6168 ip_stack_t *ipst; 6169 6170 ASSERT(q->q_next == NULL); 6171 ipst = CONNQ_TO_IPST(q); 6172 6173 ip1dbg(("ip_siocdelrt:")); 6174 /* Existence of mp1 verified in ip_wput_nondata */ 6175 mp1 = mp->b_cont->b_cont; 6176 rt = (struct rtentry *)mp1->b_rptr; 6177 6178 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6179 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6180 6181 /* 6182 * If the RTF_HOST flag is on, this is a request to delete a gateway 6183 * to a particular host address. In this case, we set the netmask to 6184 * all ones for the particular destination address. Otherwise, 6185 * determine the netmask to be used based on dst_addr and the interfaces 6186 * in use. 6187 */ 6188 if (rt->rt_flags & RTF_HOST) { 6189 mask = IP_HOST_MASK; 6190 } else { 6191 /* 6192 * Note that ip_subnet_mask returns a zero mask in the case of 6193 * default (an all-zeroes address). 6194 */ 6195 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6196 } 6197 6198 error = ip_rt_delete(dst_addr, mask, gw_addr, 6199 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6200 ipst, ALL_ZONES); 6201 if (ipif != NULL) 6202 ipif_refrele(ipif); 6203 return (error); 6204 } 6205 6206 /* 6207 * Enqueue the mp onto the ipsq, chained by b_next. 6208 * b_prev stores the function to be executed later, and b_queue the queue 6209 * where this mp originated. 6210 */ 6211 void 6212 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6213 ill_t *pending_ill) 6214 { 6215 conn_t *connp; 6216 ipxop_t *ipx = ipsq->ipsq_xop; 6217 6218 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6219 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6220 ASSERT(func != NULL); 6221 6222 mp->b_queue = q; 6223 mp->b_prev = (void *)func; 6224 mp->b_next = NULL; 6225 6226 switch (type) { 6227 case CUR_OP: 6228 if (ipx->ipx_mptail != NULL) { 6229 ASSERT(ipx->ipx_mphead != NULL); 6230 ipx->ipx_mptail->b_next = mp; 6231 } else { 6232 ASSERT(ipx->ipx_mphead == NULL); 6233 ipx->ipx_mphead = mp; 6234 } 6235 ipx->ipx_mptail = mp; 6236 break; 6237 6238 case NEW_OP: 6239 if (ipsq->ipsq_xopq_mptail != NULL) { 6240 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6241 ipsq->ipsq_xopq_mptail->b_next = mp; 6242 } else { 6243 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6244 ipsq->ipsq_xopq_mphead = mp; 6245 } 6246 ipsq->ipsq_xopq_mptail = mp; 6247 ipx->ipx_ipsq_queued = B_TRUE; 6248 break; 6249 6250 case SWITCH_OP: 6251 ASSERT(ipsq->ipsq_swxop != NULL); 6252 /* only one switch operation is currently allowed */ 6253 ASSERT(ipsq->ipsq_switch_mp == NULL); 6254 ipsq->ipsq_switch_mp = mp; 6255 ipx->ipx_ipsq_queued = B_TRUE; 6256 break; 6257 default: 6258 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6259 } 6260 6261 if (CONN_Q(q) && pending_ill != NULL) { 6262 connp = Q_TO_CONN(q); 6263 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6264 connp->conn_oper_pending_ill = pending_ill; 6265 } 6266 } 6267 6268 /* 6269 * Dequeue the next message that requested exclusive access to this IPSQ's 6270 * xop. Specifically: 6271 * 6272 * 1. If we're still processing the current operation on `ipsq', then 6273 * dequeue the next message for the operation (from ipx_mphead), or 6274 * return NULL if there are no queued messages for the operation. 6275 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6276 * 6277 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6278 * not set) see if the ipsq has requested an xop switch. If so, switch 6279 * `ipsq' to a different xop. Xop switches only happen when joining or 6280 * leaving IPMP groups and require a careful dance -- see the comments 6281 * in-line below for details. If we're leaving a group xop or if we're 6282 * joining a group xop and become writer on it, then we proceed to (3). 6283 * Otherwise, we return NULL and exit the xop. 6284 * 6285 * 3. For each IPSQ in the xop, return any switch operation stored on 6286 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6287 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6288 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6289 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6290 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6291 * each phyint in the group, including the IPMP meta-interface phyint. 6292 */ 6293 static mblk_t * 6294 ipsq_dq(ipsq_t *ipsq) 6295 { 6296 ill_t *illv4, *illv6; 6297 mblk_t *mp; 6298 ipsq_t *xopipsq; 6299 ipsq_t *leftipsq = NULL; 6300 ipxop_t *ipx; 6301 phyint_t *phyi = ipsq->ipsq_phyint; 6302 ip_stack_t *ipst = ipsq->ipsq_ipst; 6303 boolean_t emptied = B_FALSE; 6304 6305 /* 6306 * Grab all the locks we need in the defined order (ill_g_lock -> 6307 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6308 */ 6309 rw_enter(&ipst->ips_ill_g_lock, 6310 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6311 mutex_enter(&ipsq->ipsq_lock); 6312 ipx = ipsq->ipsq_xop; 6313 mutex_enter(&ipx->ipx_lock); 6314 6315 /* 6316 * Dequeue the next message associated with the current exclusive 6317 * operation, if any. 6318 */ 6319 if ((mp = ipx->ipx_mphead) != NULL) { 6320 ipx->ipx_mphead = mp->b_next; 6321 if (ipx->ipx_mphead == NULL) 6322 ipx->ipx_mptail = NULL; 6323 mp->b_next = (void *)ipsq; 6324 goto out; 6325 } 6326 6327 if (ipx->ipx_current_ipif != NULL) 6328 goto empty; 6329 6330 if (ipsq->ipsq_swxop != NULL) { 6331 /* 6332 * The exclusive operation that is now being completed has 6333 * requested a switch to a different xop. This happens 6334 * when an interface joins or leaves an IPMP group. Joins 6335 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6336 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6337 * (phyint_free()), or interface plumb for an ill type 6338 * not in the IPMP group (ip_rput_dlpi_writer()). 6339 * 6340 * Xop switches are not allowed on the IPMP meta-interface. 6341 */ 6342 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6343 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6344 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6345 6346 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6347 /* 6348 * We're switching back to our own xop, so we have two 6349 * xop's to drain/exit: our own, and the group xop 6350 * that we are leaving. 6351 * 6352 * First, pull ourselves out of the group ipsq list. 6353 * This is safe since we're writer on ill_g_lock. 6354 */ 6355 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6356 6357 xopipsq = ipx->ipx_ipsq; 6358 while (xopipsq->ipsq_next != ipsq) 6359 xopipsq = xopipsq->ipsq_next; 6360 6361 xopipsq->ipsq_next = ipsq->ipsq_next; 6362 ipsq->ipsq_next = ipsq; 6363 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6364 ipsq->ipsq_swxop = NULL; 6365 6366 /* 6367 * Second, prepare to exit the group xop. The actual 6368 * ipsq_exit() is done at the end of this function 6369 * since we cannot hold any locks across ipsq_exit(). 6370 * Note that although we drop the group's ipx_lock, no 6371 * threads can proceed since we're still ipx_writer. 6372 */ 6373 leftipsq = xopipsq; 6374 mutex_exit(&ipx->ipx_lock); 6375 6376 /* 6377 * Third, set ipx to point to our own xop (which was 6378 * inactive and therefore can be entered). 6379 */ 6380 ipx = ipsq->ipsq_xop; 6381 mutex_enter(&ipx->ipx_lock); 6382 ASSERT(ipx->ipx_writer == NULL); 6383 ASSERT(ipx->ipx_current_ipif == NULL); 6384 } else { 6385 /* 6386 * We're switching from our own xop to a group xop. 6387 * The requestor of the switch must ensure that the 6388 * group xop cannot go away (e.g. by ensuring the 6389 * phyint associated with the xop cannot go away). 6390 * 6391 * If we can become writer on our new xop, then we'll 6392 * do the drain. Otherwise, the current writer of our 6393 * new xop will do the drain when it exits. 6394 * 6395 * First, splice ourselves into the group IPSQ list. 6396 * This is safe since we're writer on ill_g_lock. 6397 */ 6398 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6399 6400 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6401 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6402 xopipsq = xopipsq->ipsq_next; 6403 6404 xopipsq->ipsq_next = ipsq; 6405 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6406 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6407 ipsq->ipsq_swxop = NULL; 6408 6409 /* 6410 * Second, exit our own xop, since it's now unused. 6411 * This is safe since we've got the only reference. 6412 */ 6413 ASSERT(ipx->ipx_writer == curthread); 6414 ipx->ipx_writer = NULL; 6415 VERIFY(--ipx->ipx_reentry_cnt == 0); 6416 ipx->ipx_ipsq_queued = B_FALSE; 6417 mutex_exit(&ipx->ipx_lock); 6418 6419 /* 6420 * Third, set ipx to point to our new xop, and check 6421 * if we can become writer on it. If we cannot, then 6422 * the current writer will drain the IPSQ group when 6423 * it exits. Our ipsq_xop is guaranteed to be stable 6424 * because we're still holding ipsq_lock. 6425 */ 6426 ipx = ipsq->ipsq_xop; 6427 mutex_enter(&ipx->ipx_lock); 6428 if (ipx->ipx_writer != NULL || 6429 ipx->ipx_current_ipif != NULL) { 6430 goto out; 6431 } 6432 } 6433 6434 /* 6435 * Fourth, become writer on our new ipx before we continue 6436 * with the drain. Note that we never dropped ipsq_lock 6437 * above, so no other thread could've raced with us to 6438 * become writer first. Also, we're holding ipx_lock, so 6439 * no other thread can examine the ipx right now. 6440 */ 6441 ASSERT(ipx->ipx_current_ipif == NULL); 6442 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6443 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6444 ipx->ipx_writer = curthread; 6445 ipx->ipx_forced = B_FALSE; 6446 #ifdef DEBUG 6447 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6448 #endif 6449 } 6450 6451 xopipsq = ipsq; 6452 do { 6453 /* 6454 * So that other operations operate on a consistent and 6455 * complete phyint, a switch message on an IPSQ must be 6456 * handled prior to any other operations on that IPSQ. 6457 */ 6458 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6459 xopipsq->ipsq_switch_mp = NULL; 6460 ASSERT(mp->b_next == NULL); 6461 mp->b_next = (void *)xopipsq; 6462 goto out; 6463 } 6464 6465 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6466 xopipsq->ipsq_xopq_mphead = mp->b_next; 6467 if (xopipsq->ipsq_xopq_mphead == NULL) 6468 xopipsq->ipsq_xopq_mptail = NULL; 6469 mp->b_next = (void *)xopipsq; 6470 goto out; 6471 } 6472 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6473 empty: 6474 /* 6475 * There are no messages. Further, we are holding ipx_lock, hence no 6476 * new messages can end up on any IPSQ in the xop. 6477 */ 6478 ipx->ipx_writer = NULL; 6479 ipx->ipx_forced = B_FALSE; 6480 VERIFY(--ipx->ipx_reentry_cnt == 0); 6481 ipx->ipx_ipsq_queued = B_FALSE; 6482 emptied = B_TRUE; 6483 #ifdef DEBUG 6484 ipx->ipx_depth = 0; 6485 #endif 6486 out: 6487 mutex_exit(&ipx->ipx_lock); 6488 mutex_exit(&ipsq->ipsq_lock); 6489 6490 /* 6491 * If we completely emptied the xop, then wake up any threads waiting 6492 * to enter any of the IPSQ's associated with it. 6493 */ 6494 if (emptied) { 6495 xopipsq = ipsq; 6496 do { 6497 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6498 continue; 6499 6500 illv4 = phyi->phyint_illv4; 6501 illv6 = phyi->phyint_illv6; 6502 6503 GRAB_ILL_LOCKS(illv4, illv6); 6504 if (illv4 != NULL) 6505 cv_broadcast(&illv4->ill_cv); 6506 if (illv6 != NULL) 6507 cv_broadcast(&illv6->ill_cv); 6508 RELEASE_ILL_LOCKS(illv4, illv6); 6509 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6510 } 6511 rw_exit(&ipst->ips_ill_g_lock); 6512 6513 /* 6514 * Now that all locks are dropped, exit the IPSQ we left. 6515 */ 6516 if (leftipsq != NULL) 6517 ipsq_exit(leftipsq); 6518 6519 return (mp); 6520 } 6521 6522 /* 6523 * Return completion status of previously initiated DLPI operations on 6524 * ills in the purview of an ipsq. 6525 */ 6526 static boolean_t 6527 ipsq_dlpi_done(ipsq_t *ipsq) 6528 { 6529 ipsq_t *ipsq_start; 6530 phyint_t *phyi; 6531 ill_t *ill; 6532 6533 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6534 ipsq_start = ipsq; 6535 6536 do { 6537 /* 6538 * The only current users of this function are ipsq_try_enter 6539 * and ipsq_enter which have made sure that ipsq_writer is 6540 * NULL before we reach here. ill_dlpi_pending is modified 6541 * only by an ipsq writer 6542 */ 6543 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6544 phyi = ipsq->ipsq_phyint; 6545 /* 6546 * phyi could be NULL if a phyint that is part of an 6547 * IPMP group is being unplumbed. A more detailed 6548 * comment is in ipmp_grp_update_kstats() 6549 */ 6550 if (phyi != NULL) { 6551 ill = phyi->phyint_illv4; 6552 if (ill != NULL && 6553 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6554 ill->ill_arl_dlpi_pending)) 6555 return (B_FALSE); 6556 6557 ill = phyi->phyint_illv6; 6558 if (ill != NULL && 6559 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6560 return (B_FALSE); 6561 } 6562 6563 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6564 6565 return (B_TRUE); 6566 } 6567 6568 /* 6569 * Enter the ipsq corresponding to ill, by waiting synchronously till 6570 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6571 * will have to drain completely before ipsq_enter returns success. 6572 * ipx_current_ipif will be set if some exclusive op is in progress, 6573 * and the ipsq_exit logic will start the next enqueued op after 6574 * completion of the current op. If 'force' is used, we don't wait 6575 * for the enqueued ops. This is needed when a conn_close wants to 6576 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6577 * of an ill can also use this option. But we dont' use it currently. 6578 */ 6579 #define ENTER_SQ_WAIT_TICKS 100 6580 boolean_t 6581 ipsq_enter(ill_t *ill, boolean_t force, int type) 6582 { 6583 ipsq_t *ipsq; 6584 ipxop_t *ipx; 6585 boolean_t waited_enough = B_FALSE; 6586 ip_stack_t *ipst = ill->ill_ipst; 6587 6588 /* 6589 * Note that the relationship between ill and ipsq is fixed as long as 6590 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6591 * relationship between the IPSQ and xop cannot change. However, 6592 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6593 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6594 * waking up all ills in the xop when it becomes available. 6595 */ 6596 for (;;) { 6597 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6598 mutex_enter(&ill->ill_lock); 6599 if (ill->ill_state_flags & ILL_CONDEMNED) { 6600 mutex_exit(&ill->ill_lock); 6601 rw_exit(&ipst->ips_ill_g_lock); 6602 return (B_FALSE); 6603 } 6604 6605 ipsq = ill->ill_phyint->phyint_ipsq; 6606 mutex_enter(&ipsq->ipsq_lock); 6607 ipx = ipsq->ipsq_xop; 6608 mutex_enter(&ipx->ipx_lock); 6609 6610 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6611 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6612 waited_enough)) 6613 break; 6614 6615 rw_exit(&ipst->ips_ill_g_lock); 6616 6617 if (!force || ipx->ipx_writer != NULL) { 6618 mutex_exit(&ipx->ipx_lock); 6619 mutex_exit(&ipsq->ipsq_lock); 6620 cv_wait(&ill->ill_cv, &ill->ill_lock); 6621 } else { 6622 mutex_exit(&ipx->ipx_lock); 6623 mutex_exit(&ipsq->ipsq_lock); 6624 (void) cv_reltimedwait(&ill->ill_cv, 6625 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6626 waited_enough = B_TRUE; 6627 } 6628 mutex_exit(&ill->ill_lock); 6629 } 6630 6631 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6632 ASSERT(ipx->ipx_reentry_cnt == 0); 6633 ipx->ipx_writer = curthread; 6634 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6635 ipx->ipx_reentry_cnt++; 6636 #ifdef DEBUG 6637 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6638 #endif 6639 mutex_exit(&ipx->ipx_lock); 6640 mutex_exit(&ipsq->ipsq_lock); 6641 mutex_exit(&ill->ill_lock); 6642 rw_exit(&ipst->ips_ill_g_lock); 6643 6644 return (B_TRUE); 6645 } 6646 6647 /* 6648 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6649 * across the call to the core interface ipsq_try_enter() and hence calls this 6650 * function directly. This is explained more fully in ipif_set_values(). 6651 * In order to support the above constraint, ipsq_try_enter is implemented as 6652 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6653 */ 6654 static ipsq_t * 6655 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6656 int type, boolean_t reentry_ok) 6657 { 6658 ipsq_t *ipsq; 6659 ipxop_t *ipx; 6660 ip_stack_t *ipst = ill->ill_ipst; 6661 6662 /* 6663 * lock ordering: 6664 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6665 * 6666 * ipx of an ipsq can't change when ipsq_lock is held. 6667 */ 6668 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6669 GRAB_CONN_LOCK(q); 6670 mutex_enter(&ill->ill_lock); 6671 ipsq = ill->ill_phyint->phyint_ipsq; 6672 mutex_enter(&ipsq->ipsq_lock); 6673 ipx = ipsq->ipsq_xop; 6674 mutex_enter(&ipx->ipx_lock); 6675 6676 /* 6677 * 1. Enter the ipsq if we are already writer and reentry is ok. 6678 * (Note: If the caller does not specify reentry_ok then neither 6679 * 'func' nor any of its callees must ever attempt to enter the ipsq 6680 * again. Otherwise it can lead to an infinite loop 6681 * 2. Enter the ipsq if there is no current writer and this attempted 6682 * entry is part of the current operation 6683 * 3. Enter the ipsq if there is no current writer and this is a new 6684 * operation and the operation queue is empty and there is no 6685 * operation currently in progress and if all previously initiated 6686 * DLPI operations have completed. 6687 */ 6688 if ((ipx->ipx_writer == curthread && reentry_ok) || 6689 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6690 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6691 ipsq_dlpi_done(ipsq))))) { 6692 /* Success. */ 6693 ipx->ipx_reentry_cnt++; 6694 ipx->ipx_writer = curthread; 6695 ipx->ipx_forced = B_FALSE; 6696 mutex_exit(&ipx->ipx_lock); 6697 mutex_exit(&ipsq->ipsq_lock); 6698 mutex_exit(&ill->ill_lock); 6699 RELEASE_CONN_LOCK(q); 6700 #ifdef DEBUG 6701 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6702 #endif 6703 return (ipsq); 6704 } 6705 6706 if (func != NULL) 6707 ipsq_enq(ipsq, q, mp, func, type, ill); 6708 6709 mutex_exit(&ipx->ipx_lock); 6710 mutex_exit(&ipsq->ipsq_lock); 6711 mutex_exit(&ill->ill_lock); 6712 RELEASE_CONN_LOCK(q); 6713 return (NULL); 6714 } 6715 6716 /* 6717 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6718 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6719 * There is one ipsq per phyint. The ipsq 6720 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6721 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6722 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6723 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6724 * up the interface) and are enqueued in ipx_mphead. 6725 * 6726 * If a thread does not want to reenter the ipsq when it is already writer, 6727 * it must make sure that the specified reentry point to be called later 6728 * when the ipsq is empty, nor any code path starting from the specified reentry 6729 * point must never ever try to enter the ipsq again. Otherwise it can lead 6730 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6731 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6732 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6733 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6734 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6735 * ioctl if the current ioctl has completed. If the current ioctl is still 6736 * in progress it simply returns. The current ioctl could be waiting for 6737 * a response from another module (the driver or could be waiting for 6738 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6739 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6740 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6741 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6742 * all associated DLPI operations have completed. 6743 */ 6744 6745 /* 6746 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6747 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6748 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6749 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6750 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6751 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6752 */ 6753 ipsq_t * 6754 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6755 ipsq_func_t func, int type, boolean_t reentry_ok) 6756 { 6757 ip_stack_t *ipst; 6758 ipsq_t *ipsq; 6759 6760 /* Only 1 of ipif or ill can be specified */ 6761 ASSERT((ipif != NULL) ^ (ill != NULL)); 6762 6763 if (ipif != NULL) 6764 ill = ipif->ipif_ill; 6765 ipst = ill->ill_ipst; 6766 6767 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6768 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6769 rw_exit(&ipst->ips_ill_g_lock); 6770 6771 return (ipsq); 6772 } 6773 6774 /* 6775 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6776 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6777 * cannot be entered, the mp is queued for completion. 6778 */ 6779 void 6780 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6781 boolean_t reentry_ok) 6782 { 6783 ipsq_t *ipsq; 6784 6785 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6786 6787 /* 6788 * Drop the caller's refhold on the ill. This is safe since we either 6789 * entered the IPSQ (and thus are exclusive), or failed to enter the 6790 * IPSQ, in which case we return without accessing ill anymore. This 6791 * is needed because func needs to see the correct refcount. 6792 * e.g. removeif can work only then. 6793 */ 6794 ill_refrele(ill); 6795 if (ipsq != NULL) { 6796 (*func)(ipsq, q, mp, NULL); 6797 ipsq_exit(ipsq); 6798 } 6799 } 6800 6801 /* 6802 * Exit the specified IPSQ. If this is the final exit on it then drain it 6803 * prior to exiting. Caller must be writer on the specified IPSQ. 6804 */ 6805 void 6806 ipsq_exit(ipsq_t *ipsq) 6807 { 6808 mblk_t *mp; 6809 ipsq_t *mp_ipsq; 6810 queue_t *q; 6811 phyint_t *phyi; 6812 ipsq_func_t func; 6813 6814 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6815 6816 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6817 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6818 ipsq->ipsq_xop->ipx_reentry_cnt--; 6819 return; 6820 } 6821 6822 for (;;) { 6823 phyi = ipsq->ipsq_phyint; 6824 mp = ipsq_dq(ipsq); 6825 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6826 6827 /* 6828 * If we've changed to a new IPSQ, and the phyint associated 6829 * with the old one has gone away, free the old IPSQ. Note 6830 * that this cannot happen while the IPSQ is in a group. 6831 */ 6832 if (mp_ipsq != ipsq && phyi == NULL) { 6833 ASSERT(ipsq->ipsq_next == ipsq); 6834 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6835 ipsq_delete(ipsq); 6836 } 6837 6838 if (mp == NULL) 6839 break; 6840 6841 q = mp->b_queue; 6842 func = (ipsq_func_t)mp->b_prev; 6843 ipsq = mp_ipsq; 6844 mp->b_next = mp->b_prev = NULL; 6845 mp->b_queue = NULL; 6846 6847 /* 6848 * If 'q' is an conn queue, it is valid, since we did a 6849 * a refhold on the conn at the start of the ioctl. 6850 * If 'q' is an ill queue, it is valid, since close of an 6851 * ill will clean up its IPSQ. 6852 */ 6853 (*func)(ipsq, q, mp, NULL); 6854 } 6855 } 6856 6857 /* 6858 * Used to start any igmp or mld timers that could not be started 6859 * while holding ill_mcast_lock. The timers can't be started while holding 6860 * the lock, since mld/igmp_start_timers may need to call untimeout() 6861 * which can't be done while holding the lock which the timeout handler 6862 * acquires. Otherwise 6863 * there could be a deadlock since the timeout handlers 6864 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6865 * ill_mcast_lock. 6866 */ 6867 void 6868 ill_mcast_timer_start(ip_stack_t *ipst) 6869 { 6870 int next; 6871 6872 mutex_enter(&ipst->ips_igmp_timer_lock); 6873 next = ipst->ips_igmp_deferred_next; 6874 ipst->ips_igmp_deferred_next = INFINITY; 6875 mutex_exit(&ipst->ips_igmp_timer_lock); 6876 6877 if (next != INFINITY) 6878 igmp_start_timers(next, ipst); 6879 6880 mutex_enter(&ipst->ips_mld_timer_lock); 6881 next = ipst->ips_mld_deferred_next; 6882 ipst->ips_mld_deferred_next = INFINITY; 6883 mutex_exit(&ipst->ips_mld_timer_lock); 6884 6885 if (next != INFINITY) 6886 mld_start_timers(next, ipst); 6887 } 6888 6889 /* 6890 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6891 * and `ioccmd'. 6892 */ 6893 void 6894 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6895 { 6896 ill_t *ill = ipif->ipif_ill; 6897 ipxop_t *ipx = ipsq->ipsq_xop; 6898 6899 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6900 ASSERT(ipx->ipx_current_ipif == NULL); 6901 ASSERT(ipx->ipx_current_ioctl == 0); 6902 6903 ipx->ipx_current_done = B_FALSE; 6904 ipx->ipx_current_ioctl = ioccmd; 6905 mutex_enter(&ipx->ipx_lock); 6906 ipx->ipx_current_ipif = ipif; 6907 mutex_exit(&ipx->ipx_lock); 6908 6909 /* 6910 * Set IPIF_CHANGING on one or more ipifs associated with the 6911 * current exclusive operation. IPIF_CHANGING prevents any new 6912 * references to the ipif (so that the references will eventually 6913 * drop to zero) and also prevents any "get" operations (e.g., 6914 * SIOCGLIFFLAGS) from being able to access the ipif until the 6915 * operation has completed and the ipif is again in a stable state. 6916 * 6917 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6918 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6919 * on the ill are marked with IPIF_CHANGING since it's unclear which 6920 * ipifs will be affected. 6921 * 6922 * Note that SIOCLIFREMOVEIF is a special case as it sets 6923 * IPIF_CONDEMNED internally after identifying the right ipif to 6924 * operate on. 6925 */ 6926 switch (ioccmd) { 6927 case SIOCLIFREMOVEIF: 6928 break; 6929 case 0: 6930 mutex_enter(&ill->ill_lock); 6931 ipif = ipif->ipif_ill->ill_ipif; 6932 for (; ipif != NULL; ipif = ipif->ipif_next) 6933 ipif->ipif_state_flags |= IPIF_CHANGING; 6934 mutex_exit(&ill->ill_lock); 6935 break; 6936 default: 6937 mutex_enter(&ill->ill_lock); 6938 ipif->ipif_state_flags |= IPIF_CHANGING; 6939 mutex_exit(&ill->ill_lock); 6940 } 6941 } 6942 6943 /* 6944 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6945 * the next exclusive operation to begin once we ipsq_exit(). However, if 6946 * pending DLPI operations remain, then we will wait for the queue to drain 6947 * before allowing the next exclusive operation to begin. This ensures that 6948 * DLPI operations from one exclusive operation are never improperly processed 6949 * as part of a subsequent exclusive operation. 6950 */ 6951 void 6952 ipsq_current_finish(ipsq_t *ipsq) 6953 { 6954 ipxop_t *ipx = ipsq->ipsq_xop; 6955 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6956 ipif_t *ipif = ipx->ipx_current_ipif; 6957 6958 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6959 6960 /* 6961 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6962 * (but in that case, IPIF_CHANGING will already be clear and no 6963 * pending DLPI messages can remain). 6964 */ 6965 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6966 ill_t *ill = ipif->ipif_ill; 6967 6968 mutex_enter(&ill->ill_lock); 6969 dlpi_pending = ill->ill_dlpi_pending; 6970 if (ipx->ipx_current_ioctl == 0) { 6971 ipif = ill->ill_ipif; 6972 for (; ipif != NULL; ipif = ipif->ipif_next) 6973 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6974 } else { 6975 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6976 } 6977 mutex_exit(&ill->ill_lock); 6978 } 6979 6980 ASSERT(!ipx->ipx_current_done); 6981 ipx->ipx_current_done = B_TRUE; 6982 ipx->ipx_current_ioctl = 0; 6983 if (dlpi_pending == DL_PRIM_INVAL) { 6984 mutex_enter(&ipx->ipx_lock); 6985 ipx->ipx_current_ipif = NULL; 6986 mutex_exit(&ipx->ipx_lock); 6987 } 6988 } 6989 6990 /* 6991 * The ill is closing. Flush all messages on the ipsq that originated 6992 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6993 * for this ill since ipsq_enter could not have entered until then. 6994 * New messages can't be queued since the CONDEMNED flag is set. 6995 */ 6996 static void 6997 ipsq_flush(ill_t *ill) 6998 { 6999 queue_t *q; 7000 mblk_t *prev; 7001 mblk_t *mp; 7002 mblk_t *mp_next; 7003 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7004 7005 ASSERT(IAM_WRITER_ILL(ill)); 7006 7007 /* 7008 * Flush any messages sent up by the driver. 7009 */ 7010 mutex_enter(&ipx->ipx_lock); 7011 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7012 mp_next = mp->b_next; 7013 q = mp->b_queue; 7014 if (q == ill->ill_rq || q == ill->ill_wq) { 7015 /* dequeue mp */ 7016 if (prev == NULL) 7017 ipx->ipx_mphead = mp->b_next; 7018 else 7019 prev->b_next = mp->b_next; 7020 if (ipx->ipx_mptail == mp) { 7021 ASSERT(mp_next == NULL); 7022 ipx->ipx_mptail = prev; 7023 } 7024 inet_freemsg(mp); 7025 } else { 7026 prev = mp; 7027 } 7028 } 7029 mutex_exit(&ipx->ipx_lock); 7030 (void) ipsq_pending_mp_cleanup(ill, NULL); 7031 ipsq_xopq_mp_cleanup(ill, NULL); 7032 } 7033 7034 /* 7035 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7036 * and return the associated ipif. 7037 * Return value: 7038 * Non zero: An error has occurred. ci may not be filled out. 7039 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7040 * a held ipif in ci.ci_ipif. 7041 */ 7042 int 7043 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7044 cmd_info_t *ci) 7045 { 7046 char *name; 7047 struct ifreq *ifr; 7048 struct lifreq *lifr; 7049 ipif_t *ipif = NULL; 7050 ill_t *ill; 7051 conn_t *connp; 7052 boolean_t isv6; 7053 int err; 7054 mblk_t *mp1; 7055 zoneid_t zoneid; 7056 ip_stack_t *ipst; 7057 7058 if (q->q_next != NULL) { 7059 ill = (ill_t *)q->q_ptr; 7060 isv6 = ill->ill_isv6; 7061 connp = NULL; 7062 zoneid = ALL_ZONES; 7063 ipst = ill->ill_ipst; 7064 } else { 7065 ill = NULL; 7066 connp = Q_TO_CONN(q); 7067 isv6 = (connp->conn_family == AF_INET6); 7068 zoneid = connp->conn_zoneid; 7069 if (zoneid == GLOBAL_ZONEID) { 7070 /* global zone can access ipifs in all zones */ 7071 zoneid = ALL_ZONES; 7072 } 7073 ipst = connp->conn_netstack->netstack_ip; 7074 } 7075 7076 /* Has been checked in ip_wput_nondata */ 7077 mp1 = mp->b_cont->b_cont; 7078 7079 if (ipip->ipi_cmd_type == IF_CMD) { 7080 /* This a old style SIOC[GS]IF* command */ 7081 ifr = (struct ifreq *)mp1->b_rptr; 7082 /* 7083 * Null terminate the string to protect against buffer 7084 * overrun. String was generated by user code and may not 7085 * be trusted. 7086 */ 7087 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7088 name = ifr->ifr_name; 7089 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7090 ci->ci_sin6 = NULL; 7091 ci->ci_lifr = (struct lifreq *)ifr; 7092 } else { 7093 /* This a new style SIOC[GS]LIF* command */ 7094 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7095 lifr = (struct lifreq *)mp1->b_rptr; 7096 /* 7097 * Null terminate the string to protect against buffer 7098 * overrun. String was generated by user code and may not 7099 * be trusted. 7100 */ 7101 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7102 name = lifr->lifr_name; 7103 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7104 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7105 ci->ci_lifr = lifr; 7106 } 7107 7108 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7109 /* 7110 * The ioctl will be failed if the ioctl comes down 7111 * an conn stream 7112 */ 7113 if (ill == NULL) { 7114 /* 7115 * Not an ill queue, return EINVAL same as the 7116 * old error code. 7117 */ 7118 return (ENXIO); 7119 } 7120 ipif = ill->ill_ipif; 7121 ipif_refhold(ipif); 7122 } else { 7123 /* 7124 * Ensure that ioctls don't see any internal state changes 7125 * caused by set ioctls by deferring them if IPIF_CHANGING is 7126 * set. 7127 */ 7128 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7129 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7130 if (ipif == NULL) { 7131 if (err == EINPROGRESS) 7132 return (err); 7133 err = 0; /* Ensure we don't use it below */ 7134 } 7135 } 7136 7137 /* 7138 * Old style [GS]IFCMD does not admit IPv6 ipif 7139 */ 7140 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7141 ipif_refrele(ipif); 7142 return (ENXIO); 7143 } 7144 7145 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7146 name[0] == '\0') { 7147 /* 7148 * Handle a or a SIOC?IF* with a null name 7149 * during plumb (on the ill queue before the I_PLINK). 7150 */ 7151 ipif = ill->ill_ipif; 7152 ipif_refhold(ipif); 7153 } 7154 7155 if (ipif == NULL) 7156 return (ENXIO); 7157 7158 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7159 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7160 7161 ci->ci_ipif = ipif; 7162 return (0); 7163 } 7164 7165 /* 7166 * Return the total number of ipifs. 7167 */ 7168 static uint_t 7169 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7170 { 7171 uint_t numifs = 0; 7172 ill_t *ill; 7173 ill_walk_context_t ctx; 7174 ipif_t *ipif; 7175 7176 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7177 ill = ILL_START_WALK_V4(&ctx, ipst); 7178 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7179 if (IS_UNDER_IPMP(ill)) 7180 continue; 7181 for (ipif = ill->ill_ipif; ipif != NULL; 7182 ipif = ipif->ipif_next) { 7183 if (ipif->ipif_zoneid == zoneid || 7184 ipif->ipif_zoneid == ALL_ZONES) 7185 numifs++; 7186 } 7187 } 7188 rw_exit(&ipst->ips_ill_g_lock); 7189 return (numifs); 7190 } 7191 7192 /* 7193 * Return the total number of ipifs. 7194 */ 7195 static uint_t 7196 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7197 { 7198 uint_t numifs = 0; 7199 ill_t *ill; 7200 ipif_t *ipif; 7201 ill_walk_context_t ctx; 7202 7203 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7204 7205 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7206 if (family == AF_INET) 7207 ill = ILL_START_WALK_V4(&ctx, ipst); 7208 else if (family == AF_INET6) 7209 ill = ILL_START_WALK_V6(&ctx, ipst); 7210 else 7211 ill = ILL_START_WALK_ALL(&ctx, ipst); 7212 7213 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7214 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7215 continue; 7216 7217 for (ipif = ill->ill_ipif; ipif != NULL; 7218 ipif = ipif->ipif_next) { 7219 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7220 !(lifn_flags & LIFC_NOXMIT)) 7221 continue; 7222 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7223 !(lifn_flags & LIFC_TEMPORARY)) 7224 continue; 7225 if (((ipif->ipif_flags & 7226 (IPIF_NOXMIT|IPIF_NOLOCAL| 7227 IPIF_DEPRECATED)) || 7228 IS_LOOPBACK(ill) || 7229 !(ipif->ipif_flags & IPIF_UP)) && 7230 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7231 continue; 7232 7233 if (zoneid != ipif->ipif_zoneid && 7234 ipif->ipif_zoneid != ALL_ZONES && 7235 (zoneid != GLOBAL_ZONEID || 7236 !(lifn_flags & LIFC_ALLZONES))) 7237 continue; 7238 7239 numifs++; 7240 } 7241 } 7242 rw_exit(&ipst->ips_ill_g_lock); 7243 return (numifs); 7244 } 7245 7246 uint_t 7247 ip_get_lifsrcofnum(ill_t *ill) 7248 { 7249 uint_t numifs = 0; 7250 ill_t *ill_head = ill; 7251 ip_stack_t *ipst = ill->ill_ipst; 7252 7253 /* 7254 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7255 * other thread may be trying to relink the ILLs in this usesrc group 7256 * and adjusting the ill_usesrc_grp_next pointers 7257 */ 7258 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7259 if ((ill->ill_usesrc_ifindex == 0) && 7260 (ill->ill_usesrc_grp_next != NULL)) { 7261 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7262 ill = ill->ill_usesrc_grp_next) 7263 numifs++; 7264 } 7265 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7266 7267 return (numifs); 7268 } 7269 7270 /* Null values are passed in for ipif, sin, and ifreq */ 7271 /* ARGSUSED */ 7272 int 7273 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7274 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7275 { 7276 int *nump; 7277 conn_t *connp = Q_TO_CONN(q); 7278 7279 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7280 7281 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7282 nump = (int *)mp->b_cont->b_cont->b_rptr; 7283 7284 *nump = ip_get_numifs(connp->conn_zoneid, 7285 connp->conn_netstack->netstack_ip); 7286 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7287 return (0); 7288 } 7289 7290 /* Null values are passed in for ipif, sin, and ifreq */ 7291 /* ARGSUSED */ 7292 int 7293 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7294 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7295 { 7296 struct lifnum *lifn; 7297 mblk_t *mp1; 7298 conn_t *connp = Q_TO_CONN(q); 7299 7300 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7301 7302 /* Existence checked in ip_wput_nondata */ 7303 mp1 = mp->b_cont->b_cont; 7304 7305 lifn = (struct lifnum *)mp1->b_rptr; 7306 switch (lifn->lifn_family) { 7307 case AF_UNSPEC: 7308 case AF_INET: 7309 case AF_INET6: 7310 break; 7311 default: 7312 return (EAFNOSUPPORT); 7313 } 7314 7315 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7316 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7317 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7318 return (0); 7319 } 7320 7321 /* ARGSUSED */ 7322 int 7323 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7324 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7325 { 7326 STRUCT_HANDLE(ifconf, ifc); 7327 mblk_t *mp1; 7328 struct iocblk *iocp; 7329 struct ifreq *ifr; 7330 ill_walk_context_t ctx; 7331 ill_t *ill; 7332 ipif_t *ipif; 7333 struct sockaddr_in *sin; 7334 int32_t ifclen; 7335 zoneid_t zoneid; 7336 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7337 7338 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7339 7340 ip1dbg(("ip_sioctl_get_ifconf")); 7341 /* Existence verified in ip_wput_nondata */ 7342 mp1 = mp->b_cont->b_cont; 7343 iocp = (struct iocblk *)mp->b_rptr; 7344 zoneid = Q_TO_CONN(q)->conn_zoneid; 7345 7346 /* 7347 * The original SIOCGIFCONF passed in a struct ifconf which specified 7348 * the user buffer address and length into which the list of struct 7349 * ifreqs was to be copied. Since AT&T Streams does not seem to 7350 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7351 * the SIOCGIFCONF operation was redefined to simply provide 7352 * a large output buffer into which we are supposed to jam the ifreq 7353 * array. The same ioctl command code was used, despite the fact that 7354 * both the applications and the kernel code had to change, thus making 7355 * it impossible to support both interfaces. 7356 * 7357 * For reasons not good enough to try to explain, the following 7358 * algorithm is used for deciding what to do with one of these: 7359 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7360 * form with the output buffer coming down as the continuation message. 7361 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7362 * and we have to copy in the ifconf structure to find out how big the 7363 * output buffer is and where to copy out to. Sure no problem... 7364 * 7365 */ 7366 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7367 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7368 int numifs = 0; 7369 size_t ifc_bufsize; 7370 7371 /* 7372 * Must be (better be!) continuation of a TRANSPARENT 7373 * IOCTL. We just copied in the ifconf structure. 7374 */ 7375 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7376 (struct ifconf *)mp1->b_rptr); 7377 7378 /* 7379 * Allocate a buffer to hold requested information. 7380 * 7381 * If ifc_len is larger than what is needed, we only 7382 * allocate what we will use. 7383 * 7384 * If ifc_len is smaller than what is needed, return 7385 * EINVAL. 7386 * 7387 * XXX: the ill_t structure can hava 2 counters, for 7388 * v4 and v6 (not just ill_ipif_up_count) to store the 7389 * number of interfaces for a device, so we don't need 7390 * to count them here... 7391 */ 7392 numifs = ip_get_numifs(zoneid, ipst); 7393 7394 ifclen = STRUCT_FGET(ifc, ifc_len); 7395 ifc_bufsize = numifs * sizeof (struct ifreq); 7396 if (ifc_bufsize > ifclen) { 7397 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7398 /* old behaviour */ 7399 return (EINVAL); 7400 } else { 7401 ifc_bufsize = ifclen; 7402 } 7403 } 7404 7405 mp1 = mi_copyout_alloc(q, mp, 7406 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7407 if (mp1 == NULL) 7408 return (ENOMEM); 7409 7410 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7411 } 7412 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7413 /* 7414 * the SIOCGIFCONF ioctl only knows about 7415 * IPv4 addresses, so don't try to tell 7416 * it about interfaces with IPv6-only 7417 * addresses. (Last parm 'isv6' is B_FALSE) 7418 */ 7419 7420 ifr = (struct ifreq *)mp1->b_rptr; 7421 7422 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7423 ill = ILL_START_WALK_V4(&ctx, ipst); 7424 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7425 if (IS_UNDER_IPMP(ill)) 7426 continue; 7427 for (ipif = ill->ill_ipif; ipif != NULL; 7428 ipif = ipif->ipif_next) { 7429 if (zoneid != ipif->ipif_zoneid && 7430 ipif->ipif_zoneid != ALL_ZONES) 7431 continue; 7432 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7433 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7434 /* old behaviour */ 7435 rw_exit(&ipst->ips_ill_g_lock); 7436 return (EINVAL); 7437 } else { 7438 goto if_copydone; 7439 } 7440 } 7441 ipif_get_name(ipif, ifr->ifr_name, 7442 sizeof (ifr->ifr_name)); 7443 sin = (sin_t *)&ifr->ifr_addr; 7444 *sin = sin_null; 7445 sin->sin_family = AF_INET; 7446 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7447 ifr++; 7448 } 7449 } 7450 if_copydone: 7451 rw_exit(&ipst->ips_ill_g_lock); 7452 mp1->b_wptr = (uchar_t *)ifr; 7453 7454 if (STRUCT_BUF(ifc) != NULL) { 7455 STRUCT_FSET(ifc, ifc_len, 7456 (int)((uchar_t *)ifr - mp1->b_rptr)); 7457 } 7458 return (0); 7459 } 7460 7461 /* 7462 * Get the interfaces using the address hosted on the interface passed in, 7463 * as a source adddress 7464 */ 7465 /* ARGSUSED */ 7466 int 7467 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7468 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7469 { 7470 mblk_t *mp1; 7471 ill_t *ill, *ill_head; 7472 ipif_t *ipif, *orig_ipif; 7473 int numlifs = 0; 7474 size_t lifs_bufsize, lifsmaxlen; 7475 struct lifreq *lifr; 7476 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7477 uint_t ifindex; 7478 zoneid_t zoneid; 7479 boolean_t isv6 = B_FALSE; 7480 struct sockaddr_in *sin; 7481 struct sockaddr_in6 *sin6; 7482 STRUCT_HANDLE(lifsrcof, lifs); 7483 ip_stack_t *ipst; 7484 7485 ipst = CONNQ_TO_IPST(q); 7486 7487 ASSERT(q->q_next == NULL); 7488 7489 zoneid = Q_TO_CONN(q)->conn_zoneid; 7490 7491 /* Existence verified in ip_wput_nondata */ 7492 mp1 = mp->b_cont->b_cont; 7493 7494 /* 7495 * Must be (better be!) continuation of a TRANSPARENT 7496 * IOCTL. We just copied in the lifsrcof structure. 7497 */ 7498 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7499 (struct lifsrcof *)mp1->b_rptr); 7500 7501 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7502 return (EINVAL); 7503 7504 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7505 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7506 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7507 if (ipif == NULL) { 7508 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7509 ifindex)); 7510 return (ENXIO); 7511 } 7512 7513 /* Allocate a buffer to hold requested information */ 7514 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7515 lifs_bufsize = numlifs * sizeof (struct lifreq); 7516 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7517 /* The actual size needed is always returned in lifs_len */ 7518 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7519 7520 /* If the amount we need is more than what is passed in, abort */ 7521 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7522 ipif_refrele(ipif); 7523 return (0); 7524 } 7525 7526 mp1 = mi_copyout_alloc(q, mp, 7527 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7528 if (mp1 == NULL) { 7529 ipif_refrele(ipif); 7530 return (ENOMEM); 7531 } 7532 7533 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7534 bzero(mp1->b_rptr, lifs_bufsize); 7535 7536 lifr = (struct lifreq *)mp1->b_rptr; 7537 7538 ill = ill_head = ipif->ipif_ill; 7539 orig_ipif = ipif; 7540 7541 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7542 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7543 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7544 7545 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7546 for (; (ill != NULL) && (ill != ill_head); 7547 ill = ill->ill_usesrc_grp_next) { 7548 7549 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7550 break; 7551 7552 ipif = ill->ill_ipif; 7553 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7554 if (ipif->ipif_isv6) { 7555 sin6 = (sin6_t *)&lifr->lifr_addr; 7556 *sin6 = sin6_null; 7557 sin6->sin6_family = AF_INET6; 7558 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7559 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7560 &ipif->ipif_v6net_mask); 7561 } else { 7562 sin = (sin_t *)&lifr->lifr_addr; 7563 *sin = sin_null; 7564 sin->sin_family = AF_INET; 7565 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7566 lifr->lifr_addrlen = ip_mask_to_plen( 7567 ipif->ipif_net_mask); 7568 } 7569 lifr++; 7570 } 7571 rw_exit(&ipst->ips_ill_g_lock); 7572 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7573 ipif_refrele(orig_ipif); 7574 mp1->b_wptr = (uchar_t *)lifr; 7575 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7576 7577 return (0); 7578 } 7579 7580 /* ARGSUSED */ 7581 int 7582 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7583 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7584 { 7585 mblk_t *mp1; 7586 int list; 7587 ill_t *ill; 7588 ipif_t *ipif; 7589 int flags; 7590 int numlifs = 0; 7591 size_t lifc_bufsize; 7592 struct lifreq *lifr; 7593 sa_family_t family; 7594 struct sockaddr_in *sin; 7595 struct sockaddr_in6 *sin6; 7596 ill_walk_context_t ctx; 7597 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7598 int32_t lifclen; 7599 zoneid_t zoneid; 7600 STRUCT_HANDLE(lifconf, lifc); 7601 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7602 7603 ip1dbg(("ip_sioctl_get_lifconf")); 7604 7605 ASSERT(q->q_next == NULL); 7606 7607 zoneid = Q_TO_CONN(q)->conn_zoneid; 7608 7609 /* Existence verified in ip_wput_nondata */ 7610 mp1 = mp->b_cont->b_cont; 7611 7612 /* 7613 * An extended version of SIOCGIFCONF that takes an 7614 * additional address family and flags field. 7615 * AF_UNSPEC retrieve both IPv4 and IPv6. 7616 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7617 * interfaces are omitted. 7618 * Similarly, IPIF_TEMPORARY interfaces are omitted 7619 * unless LIFC_TEMPORARY is specified. 7620 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7621 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7622 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7623 * has priority over LIFC_NOXMIT. 7624 */ 7625 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7626 7627 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7628 return (EINVAL); 7629 7630 /* 7631 * Must be (better be!) continuation of a TRANSPARENT 7632 * IOCTL. We just copied in the lifconf structure. 7633 */ 7634 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7635 7636 family = STRUCT_FGET(lifc, lifc_family); 7637 flags = STRUCT_FGET(lifc, lifc_flags); 7638 7639 switch (family) { 7640 case AF_UNSPEC: 7641 /* 7642 * walk all ILL's. 7643 */ 7644 list = MAX_G_HEADS; 7645 break; 7646 case AF_INET: 7647 /* 7648 * walk only IPV4 ILL's. 7649 */ 7650 list = IP_V4_G_HEAD; 7651 break; 7652 case AF_INET6: 7653 /* 7654 * walk only IPV6 ILL's. 7655 */ 7656 list = IP_V6_G_HEAD; 7657 break; 7658 default: 7659 return (EAFNOSUPPORT); 7660 } 7661 7662 /* 7663 * Allocate a buffer to hold requested information. 7664 * 7665 * If lifc_len is larger than what is needed, we only 7666 * allocate what we will use. 7667 * 7668 * If lifc_len is smaller than what is needed, return 7669 * EINVAL. 7670 */ 7671 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7672 lifc_bufsize = numlifs * sizeof (struct lifreq); 7673 lifclen = STRUCT_FGET(lifc, lifc_len); 7674 if (lifc_bufsize > lifclen) { 7675 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7676 return (EINVAL); 7677 else 7678 lifc_bufsize = lifclen; 7679 } 7680 7681 mp1 = mi_copyout_alloc(q, mp, 7682 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7683 if (mp1 == NULL) 7684 return (ENOMEM); 7685 7686 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7687 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7688 7689 lifr = (struct lifreq *)mp1->b_rptr; 7690 7691 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7692 ill = ill_first(list, list, &ctx, ipst); 7693 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7694 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7695 continue; 7696 7697 for (ipif = ill->ill_ipif; ipif != NULL; 7698 ipif = ipif->ipif_next) { 7699 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7700 !(flags & LIFC_NOXMIT)) 7701 continue; 7702 7703 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7704 !(flags & LIFC_TEMPORARY)) 7705 continue; 7706 7707 if (((ipif->ipif_flags & 7708 (IPIF_NOXMIT|IPIF_NOLOCAL| 7709 IPIF_DEPRECATED)) || 7710 IS_LOOPBACK(ill) || 7711 !(ipif->ipif_flags & IPIF_UP)) && 7712 (flags & LIFC_EXTERNAL_SOURCE)) 7713 continue; 7714 7715 if (zoneid != ipif->ipif_zoneid && 7716 ipif->ipif_zoneid != ALL_ZONES && 7717 (zoneid != GLOBAL_ZONEID || 7718 !(flags & LIFC_ALLZONES))) 7719 continue; 7720 7721 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7722 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7723 rw_exit(&ipst->ips_ill_g_lock); 7724 return (EINVAL); 7725 } else { 7726 goto lif_copydone; 7727 } 7728 } 7729 7730 ipif_get_name(ipif, lifr->lifr_name, 7731 sizeof (lifr->lifr_name)); 7732 lifr->lifr_type = ill->ill_type; 7733 if (ipif->ipif_isv6) { 7734 sin6 = (sin6_t *)&lifr->lifr_addr; 7735 *sin6 = sin6_null; 7736 sin6->sin6_family = AF_INET6; 7737 sin6->sin6_addr = 7738 ipif->ipif_v6lcl_addr; 7739 lifr->lifr_addrlen = 7740 ip_mask_to_plen_v6( 7741 &ipif->ipif_v6net_mask); 7742 } else { 7743 sin = (sin_t *)&lifr->lifr_addr; 7744 *sin = sin_null; 7745 sin->sin_family = AF_INET; 7746 sin->sin_addr.s_addr = 7747 ipif->ipif_lcl_addr; 7748 lifr->lifr_addrlen = 7749 ip_mask_to_plen( 7750 ipif->ipif_net_mask); 7751 } 7752 lifr++; 7753 } 7754 } 7755 lif_copydone: 7756 rw_exit(&ipst->ips_ill_g_lock); 7757 7758 mp1->b_wptr = (uchar_t *)lifr; 7759 if (STRUCT_BUF(lifc) != NULL) { 7760 STRUCT_FSET(lifc, lifc_len, 7761 (int)((uchar_t *)lifr - mp1->b_rptr)); 7762 } 7763 return (0); 7764 } 7765 7766 static void 7767 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7768 { 7769 ip6_asp_t *table; 7770 size_t table_size; 7771 mblk_t *data_mp; 7772 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7773 ip_stack_t *ipst; 7774 7775 if (q->q_next == NULL) 7776 ipst = CONNQ_TO_IPST(q); 7777 else 7778 ipst = ILLQ_TO_IPST(q); 7779 7780 /* These two ioctls are I_STR only */ 7781 if (iocp->ioc_count == TRANSPARENT) { 7782 miocnak(q, mp, 0, EINVAL); 7783 return; 7784 } 7785 7786 data_mp = mp->b_cont; 7787 if (data_mp == NULL) { 7788 /* The user passed us a NULL argument */ 7789 table = NULL; 7790 table_size = iocp->ioc_count; 7791 } else { 7792 /* 7793 * The user provided a table. The stream head 7794 * may have copied in the user data in chunks, 7795 * so make sure everything is pulled up 7796 * properly. 7797 */ 7798 if (MBLKL(data_mp) < iocp->ioc_count) { 7799 mblk_t *new_data_mp; 7800 if ((new_data_mp = msgpullup(data_mp, -1)) == 7801 NULL) { 7802 miocnak(q, mp, 0, ENOMEM); 7803 return; 7804 } 7805 freemsg(data_mp); 7806 data_mp = new_data_mp; 7807 mp->b_cont = data_mp; 7808 } 7809 table = (ip6_asp_t *)data_mp->b_rptr; 7810 table_size = iocp->ioc_count; 7811 } 7812 7813 switch (iocp->ioc_cmd) { 7814 case SIOCGIP6ADDRPOLICY: 7815 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7816 if (iocp->ioc_rval == -1) 7817 iocp->ioc_error = EINVAL; 7818 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7819 else if (table != NULL && 7820 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7821 ip6_asp_t *src = table; 7822 ip6_asp32_t *dst = (void *)table; 7823 int count = table_size / sizeof (ip6_asp_t); 7824 int i; 7825 7826 /* 7827 * We need to do an in-place shrink of the array 7828 * to match the alignment attributes of the 7829 * 32-bit ABI looking at it. 7830 */ 7831 /* LINTED: logical expression always true: op "||" */ 7832 ASSERT(sizeof (*src) > sizeof (*dst)); 7833 for (i = 1; i < count; i++) 7834 bcopy(src + i, dst + i, sizeof (*dst)); 7835 } 7836 #endif 7837 break; 7838 7839 case SIOCSIP6ADDRPOLICY: 7840 ASSERT(mp->b_prev == NULL); 7841 mp->b_prev = (void *)q; 7842 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7843 /* 7844 * We pass in the datamodel here so that the ip6_asp_replace() 7845 * routine can handle converting from 32-bit to native formats 7846 * where necessary. 7847 * 7848 * A better way to handle this might be to convert the inbound 7849 * data structure here, and hang it off a new 'mp'; thus the 7850 * ip6_asp_replace() logic would always be dealing with native 7851 * format data structures.. 7852 * 7853 * (An even simpler way to handle these ioctls is to just 7854 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7855 * and just recompile everything that depends on it.) 7856 */ 7857 #endif 7858 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7859 iocp->ioc_flag & IOC_MODELS); 7860 return; 7861 } 7862 7863 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7864 qreply(q, mp); 7865 } 7866 7867 static void 7868 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7869 { 7870 mblk_t *data_mp; 7871 struct dstinforeq *dir; 7872 uint8_t *end, *cur; 7873 in6_addr_t *daddr, *saddr; 7874 ipaddr_t v4daddr; 7875 ire_t *ire; 7876 ipaddr_t v4setsrc; 7877 in6_addr_t v6setsrc; 7878 char *slabel, *dlabel; 7879 boolean_t isipv4; 7880 int match_ire; 7881 ill_t *dst_ill; 7882 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7883 conn_t *connp = Q_TO_CONN(q); 7884 zoneid_t zoneid = IPCL_ZONEID(connp); 7885 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7886 uint64_t ipif_flags; 7887 7888 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7889 7890 /* 7891 * This ioctl is I_STR only, and must have a 7892 * data mblk following the M_IOCTL mblk. 7893 */ 7894 data_mp = mp->b_cont; 7895 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7896 miocnak(q, mp, 0, EINVAL); 7897 return; 7898 } 7899 7900 if (MBLKL(data_mp) < iocp->ioc_count) { 7901 mblk_t *new_data_mp; 7902 7903 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7904 miocnak(q, mp, 0, ENOMEM); 7905 return; 7906 } 7907 freemsg(data_mp); 7908 data_mp = new_data_mp; 7909 mp->b_cont = data_mp; 7910 } 7911 match_ire = MATCH_IRE_DSTONLY; 7912 7913 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7914 end - cur >= sizeof (struct dstinforeq); 7915 cur += sizeof (struct dstinforeq)) { 7916 dir = (struct dstinforeq *)cur; 7917 daddr = &dir->dir_daddr; 7918 saddr = &dir->dir_saddr; 7919 7920 /* 7921 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7922 * v4 mapped addresses; ire_ftable_lookup_v6() 7923 * and ip_select_source_v6() do not. 7924 */ 7925 dir->dir_dscope = ip_addr_scope_v6(daddr); 7926 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7927 7928 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7929 if (isipv4) { 7930 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7931 v4setsrc = INADDR_ANY; 7932 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7933 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7934 NULL, NULL); 7935 } else { 7936 v6setsrc = ipv6_all_zeros; 7937 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7938 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7939 NULL, NULL); 7940 } 7941 ASSERT(ire != NULL); 7942 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7943 ire_refrele(ire); 7944 dir->dir_dreachable = 0; 7945 7946 /* move on to next dst addr */ 7947 continue; 7948 } 7949 dir->dir_dreachable = 1; 7950 7951 dst_ill = ire_nexthop_ill(ire); 7952 if (dst_ill == NULL) { 7953 ire_refrele(ire); 7954 continue; 7955 } 7956 7957 /* With ipmp we most likely look at the ipmp ill here */ 7958 dir->dir_dmactype = dst_ill->ill_mactype; 7959 7960 if (isipv4) { 7961 ipaddr_t v4saddr; 7962 7963 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7964 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7965 &v4saddr, NULL, &ipif_flags) != 0) { 7966 v4saddr = INADDR_ANY; 7967 ipif_flags = 0; 7968 } 7969 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7970 } else { 7971 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7972 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7973 saddr, NULL, &ipif_flags) != 0) { 7974 *saddr = ipv6_all_zeros; 7975 ipif_flags = 0; 7976 } 7977 } 7978 7979 dir->dir_sscope = ip_addr_scope_v6(saddr); 7980 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7981 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7982 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7983 ire_refrele(ire); 7984 ill_refrele(dst_ill); 7985 } 7986 miocack(q, mp, iocp->ioc_count, 0); 7987 } 7988 7989 /* 7990 * Check if this is an address assigned to this machine. 7991 * Skips interfaces that are down by using ire checks. 7992 * Translates mapped addresses to v4 addresses and then 7993 * treats them as such, returning true if the v4 address 7994 * associated with this mapped address is configured. 7995 * Note: Applications will have to be careful what they do 7996 * with the response; use of mapped addresses limits 7997 * what can be done with the socket, especially with 7998 * respect to socket options and ioctls - neither IPv4 7999 * options nor IPv6 sticky options/ancillary data options 8000 * may be used. 8001 */ 8002 /* ARGSUSED */ 8003 int 8004 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8005 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8006 { 8007 struct sioc_addrreq *sia; 8008 sin_t *sin; 8009 ire_t *ire; 8010 mblk_t *mp1; 8011 zoneid_t zoneid; 8012 ip_stack_t *ipst; 8013 8014 ip1dbg(("ip_sioctl_tmyaddr")); 8015 8016 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8017 zoneid = Q_TO_CONN(q)->conn_zoneid; 8018 ipst = CONNQ_TO_IPST(q); 8019 8020 /* Existence verified in ip_wput_nondata */ 8021 mp1 = mp->b_cont->b_cont; 8022 sia = (struct sioc_addrreq *)mp1->b_rptr; 8023 sin = (sin_t *)&sia->sa_addr; 8024 switch (sin->sin_family) { 8025 case AF_INET6: { 8026 sin6_t *sin6 = (sin6_t *)sin; 8027 8028 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8029 ipaddr_t v4_addr; 8030 8031 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8032 v4_addr); 8033 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8034 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8035 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8036 } else { 8037 in6_addr_t v6addr; 8038 8039 v6addr = sin6->sin6_addr; 8040 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8041 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8042 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8043 } 8044 break; 8045 } 8046 case AF_INET: { 8047 ipaddr_t v4addr; 8048 8049 v4addr = sin->sin_addr.s_addr; 8050 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8051 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8052 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8053 break; 8054 } 8055 default: 8056 return (EAFNOSUPPORT); 8057 } 8058 if (ire != NULL) { 8059 sia->sa_res = 1; 8060 ire_refrele(ire); 8061 } else { 8062 sia->sa_res = 0; 8063 } 8064 return (0); 8065 } 8066 8067 /* 8068 * Check if this is an address assigned on-link i.e. neighbor, 8069 * and makes sure it's reachable from the current zone. 8070 * Returns true for my addresses as well. 8071 * Translates mapped addresses to v4 addresses and then 8072 * treats them as such, returning true if the v4 address 8073 * associated with this mapped address is configured. 8074 * Note: Applications will have to be careful what they do 8075 * with the response; use of mapped addresses limits 8076 * what can be done with the socket, especially with 8077 * respect to socket options and ioctls - neither IPv4 8078 * options nor IPv6 sticky options/ancillary data options 8079 * may be used. 8080 */ 8081 /* ARGSUSED */ 8082 int 8083 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8084 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8085 { 8086 struct sioc_addrreq *sia; 8087 sin_t *sin; 8088 mblk_t *mp1; 8089 ire_t *ire = NULL; 8090 zoneid_t zoneid; 8091 ip_stack_t *ipst; 8092 8093 ip1dbg(("ip_sioctl_tonlink")); 8094 8095 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8096 zoneid = Q_TO_CONN(q)->conn_zoneid; 8097 ipst = CONNQ_TO_IPST(q); 8098 8099 /* Existence verified in ip_wput_nondata */ 8100 mp1 = mp->b_cont->b_cont; 8101 sia = (struct sioc_addrreq *)mp1->b_rptr; 8102 sin = (sin_t *)&sia->sa_addr; 8103 8104 /* 8105 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8106 * to make sure we only look at on-link unicast address. 8107 */ 8108 switch (sin->sin_family) { 8109 case AF_INET6: { 8110 sin6_t *sin6 = (sin6_t *)sin; 8111 8112 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8113 ipaddr_t v4_addr; 8114 8115 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8116 v4_addr); 8117 if (!CLASSD(v4_addr)) { 8118 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8119 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8120 0, ipst, NULL); 8121 } 8122 } else { 8123 in6_addr_t v6addr; 8124 8125 v6addr = sin6->sin6_addr; 8126 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8127 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8128 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8129 ipst, NULL); 8130 } 8131 } 8132 break; 8133 } 8134 case AF_INET: { 8135 ipaddr_t v4addr; 8136 8137 v4addr = sin->sin_addr.s_addr; 8138 if (!CLASSD(v4addr)) { 8139 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8140 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8141 } 8142 break; 8143 } 8144 default: 8145 return (EAFNOSUPPORT); 8146 } 8147 sia->sa_res = 0; 8148 if (ire != NULL) { 8149 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8150 8151 if ((ire->ire_type & IRE_ONLINK) && 8152 !(ire->ire_type & IRE_BROADCAST)) 8153 sia->sa_res = 1; 8154 ire_refrele(ire); 8155 } 8156 return (0); 8157 } 8158 8159 /* 8160 * TBD: implement when kernel maintaines a list of site prefixes. 8161 */ 8162 /* ARGSUSED */ 8163 int 8164 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8165 ip_ioctl_cmd_t *ipip, void *ifreq) 8166 { 8167 return (ENXIO); 8168 } 8169 8170 /* ARP IOCTLs. */ 8171 /* ARGSUSED */ 8172 int 8173 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8174 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8175 { 8176 int err; 8177 ipaddr_t ipaddr; 8178 struct iocblk *iocp; 8179 conn_t *connp; 8180 struct arpreq *ar; 8181 struct xarpreq *xar; 8182 int arp_flags, flags, alength; 8183 uchar_t *lladdr; 8184 ip_stack_t *ipst; 8185 ill_t *ill = ipif->ipif_ill; 8186 ill_t *proxy_ill = NULL; 8187 ipmp_arpent_t *entp = NULL; 8188 boolean_t proxyarp = B_FALSE; 8189 boolean_t if_arp_ioctl = B_FALSE; 8190 ncec_t *ncec = NULL; 8191 nce_t *nce; 8192 8193 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8194 connp = Q_TO_CONN(q); 8195 ipst = connp->conn_netstack->netstack_ip; 8196 iocp = (struct iocblk *)mp->b_rptr; 8197 8198 if (ipip->ipi_cmd_type == XARP_CMD) { 8199 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8200 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8201 ar = NULL; 8202 8203 arp_flags = xar->xarp_flags; 8204 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8205 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8206 /* 8207 * Validate against user's link layer address length 8208 * input and name and addr length limits. 8209 */ 8210 alength = ill->ill_phys_addr_length; 8211 if (ipip->ipi_cmd == SIOCSXARP) { 8212 if (alength != xar->xarp_ha.sdl_alen || 8213 (alength + xar->xarp_ha.sdl_nlen > 8214 sizeof (xar->xarp_ha.sdl_data))) 8215 return (EINVAL); 8216 } 8217 } else { 8218 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8219 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8220 xar = NULL; 8221 8222 arp_flags = ar->arp_flags; 8223 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8224 /* 8225 * Theoretically, the sa_family could tell us what link 8226 * layer type this operation is trying to deal with. By 8227 * common usage AF_UNSPEC means ethernet. We'll assume 8228 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8229 * for now. Our new SIOC*XARP ioctls can be used more 8230 * generally. 8231 * 8232 * If the underlying media happens to have a non 6 byte 8233 * address, arp module will fail set/get, but the del 8234 * operation will succeed. 8235 */ 8236 alength = 6; 8237 if ((ipip->ipi_cmd != SIOCDARP) && 8238 (alength != ill->ill_phys_addr_length)) { 8239 return (EINVAL); 8240 } 8241 } 8242 8243 /* Translate ATF* flags to NCE* flags */ 8244 flags = 0; 8245 if (arp_flags & ATF_AUTHORITY) 8246 flags |= NCE_F_AUTHORITY; 8247 if (arp_flags & ATF_PERM) 8248 flags |= NCE_F_NONUD; /* not subject to aging */ 8249 if (arp_flags & ATF_PUBL) 8250 flags |= NCE_F_PUBLISH; 8251 8252 /* 8253 * IPMP ARP special handling: 8254 * 8255 * 1. Since ARP mappings must appear consistent across the group, 8256 * prohibit changing ARP mappings on the underlying interfaces. 8257 * 8258 * 2. Since ARP mappings for IPMP data addresses are maintained by 8259 * IP itself, prohibit changing them. 8260 * 8261 * 3. For proxy ARP, use a functioning hardware address in the group, 8262 * provided one exists. If one doesn't, just add the entry as-is; 8263 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8264 */ 8265 if (IS_UNDER_IPMP(ill)) { 8266 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8267 return (EPERM); 8268 } 8269 if (IS_IPMP(ill)) { 8270 ipmp_illgrp_t *illg = ill->ill_grp; 8271 8272 switch (ipip->ipi_cmd) { 8273 case SIOCSARP: 8274 case SIOCSXARP: 8275 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8276 if (proxy_ill != NULL) { 8277 proxyarp = B_TRUE; 8278 if (!ipmp_ill_is_active(proxy_ill)) 8279 proxy_ill = ipmp_illgrp_next_ill(illg); 8280 if (proxy_ill != NULL) 8281 lladdr = proxy_ill->ill_phys_addr; 8282 } 8283 /* FALLTHRU */ 8284 } 8285 } 8286 8287 ipaddr = sin->sin_addr.s_addr; 8288 /* 8289 * don't match across illgrp per case (1) and (2). 8290 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8291 */ 8292 nce = nce_lookup_v4(ill, &ipaddr); 8293 if (nce != NULL) 8294 ncec = nce->nce_common; 8295 8296 switch (iocp->ioc_cmd) { 8297 case SIOCDARP: 8298 case SIOCDXARP: { 8299 /* 8300 * Delete the NCE if any. 8301 */ 8302 if (ncec == NULL) { 8303 iocp->ioc_error = ENXIO; 8304 break; 8305 } 8306 /* Don't allow changes to arp mappings of local addresses. */ 8307 if (NCE_MYADDR(ncec)) { 8308 nce_refrele(nce); 8309 return (ENOTSUP); 8310 } 8311 iocp->ioc_error = 0; 8312 8313 /* 8314 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8315 * This will delete all the nce entries on the under_ills. 8316 */ 8317 ncec_delete(ncec); 8318 /* 8319 * Once the NCE has been deleted, then the ire_dep* consistency 8320 * mechanism will find any IRE which depended on the now 8321 * condemned NCE (as part of sending packets). 8322 * That mechanism handles redirects by deleting redirects 8323 * that refer to UNREACHABLE nces. 8324 */ 8325 break; 8326 } 8327 case SIOCGARP: 8328 case SIOCGXARP: 8329 if (ncec != NULL) { 8330 lladdr = ncec->ncec_lladdr; 8331 flags = ncec->ncec_flags; 8332 iocp->ioc_error = 0; 8333 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8334 } else { 8335 iocp->ioc_error = ENXIO; 8336 } 8337 break; 8338 case SIOCSARP: 8339 case SIOCSXARP: 8340 /* Don't allow changes to arp mappings of local addresses. */ 8341 if (ncec != NULL && NCE_MYADDR(ncec)) { 8342 nce_refrele(nce); 8343 return (ENOTSUP); 8344 } 8345 8346 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8347 flags |= NCE_F_STATIC; 8348 if (!if_arp_ioctl) { 8349 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8350 lladdr, alength, flags); 8351 } else { 8352 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8353 if (ipif != NULL) { 8354 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8355 lladdr, alength, flags); 8356 ipif_refrele(ipif); 8357 } 8358 } 8359 if (nce != NULL) { 8360 nce_refrele(nce); 8361 nce = NULL; 8362 } 8363 /* 8364 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8365 * by nce_add_common() 8366 */ 8367 err = nce_lookup_then_add_v4(ill, lladdr, 8368 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8369 &nce); 8370 if (err == EEXIST) { 8371 ncec = nce->nce_common; 8372 mutex_enter(&ncec->ncec_lock); 8373 ncec->ncec_state = ND_REACHABLE; 8374 ncec->ncec_flags = flags; 8375 nce_update(ncec, ND_UNCHANGED, lladdr); 8376 mutex_exit(&ncec->ncec_lock); 8377 err = 0; 8378 } 8379 if (nce != NULL) { 8380 nce_refrele(nce); 8381 nce = NULL; 8382 } 8383 if (IS_IPMP(ill) && err == 0) { 8384 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8385 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8386 flags); 8387 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8388 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8389 break; 8390 } 8391 } 8392 iocp->ioc_error = err; 8393 } 8394 8395 if (nce != NULL) { 8396 nce_refrele(nce); 8397 } 8398 8399 /* 8400 * If we created an IPMP ARP entry, mark that we've notified ARP. 8401 */ 8402 if (entp != NULL) 8403 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8404 8405 return (iocp->ioc_error); 8406 } 8407 8408 /* 8409 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8410 * the associated sin and refhold and return the associated ipif via `ci'. 8411 */ 8412 int 8413 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8414 cmd_info_t *ci) 8415 { 8416 mblk_t *mp1; 8417 sin_t *sin; 8418 conn_t *connp; 8419 ipif_t *ipif; 8420 ire_t *ire = NULL; 8421 ill_t *ill = NULL; 8422 boolean_t exists; 8423 ip_stack_t *ipst; 8424 struct arpreq *ar; 8425 struct xarpreq *xar; 8426 struct sockaddr_dl *sdl; 8427 8428 /* ioctl comes down on a conn */ 8429 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8430 connp = Q_TO_CONN(q); 8431 if (connp->conn_family == AF_INET6) 8432 return (ENXIO); 8433 8434 ipst = connp->conn_netstack->netstack_ip; 8435 8436 /* Verified in ip_wput_nondata */ 8437 mp1 = mp->b_cont->b_cont; 8438 8439 if (ipip->ipi_cmd_type == XARP_CMD) { 8440 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8441 xar = (struct xarpreq *)mp1->b_rptr; 8442 sin = (sin_t *)&xar->xarp_pa; 8443 sdl = &xar->xarp_ha; 8444 8445 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8446 return (ENXIO); 8447 if (sdl->sdl_nlen >= LIFNAMSIZ) 8448 return (EINVAL); 8449 } else { 8450 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8451 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8452 ar = (struct arpreq *)mp1->b_rptr; 8453 sin = (sin_t *)&ar->arp_pa; 8454 } 8455 8456 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8457 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8458 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8459 if (ipif == NULL) 8460 return (ENXIO); 8461 if (ipif->ipif_id != 0) { 8462 ipif_refrele(ipif); 8463 return (ENXIO); 8464 } 8465 } else { 8466 /* 8467 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8468 * of 0: use the IP address to find the ipif. If the IP 8469 * address is an IPMP test address, ire_ftable_lookup() will 8470 * find the wrong ill, so we first do an ipif_lookup_addr(). 8471 */ 8472 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8473 ipst); 8474 if (ipif == NULL) { 8475 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8476 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8477 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8478 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8479 if (ire != NULL) 8480 ire_refrele(ire); 8481 return (ENXIO); 8482 } 8483 ASSERT(ire != NULL && ill != NULL); 8484 ipif = ill->ill_ipif; 8485 ipif_refhold(ipif); 8486 ire_refrele(ire); 8487 } 8488 } 8489 8490 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8491 ipif_refrele(ipif); 8492 return (ENXIO); 8493 } 8494 8495 ci->ci_sin = sin; 8496 ci->ci_ipif = ipif; 8497 return (0); 8498 } 8499 8500 /* 8501 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8502 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8503 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8504 * up and thus an ill can join that illgrp. 8505 * 8506 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8507 * open()/close() primarily because close() is not allowed to fail or block 8508 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8509 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8510 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8511 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8512 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8513 * state if I_UNLINK didn't occur. 8514 * 8515 * Note that for each plumb/unplumb operation, we may end up here more than 8516 * once because of the way ifconfig works. However, it's OK to link the same 8517 * illgrp more than once, or unlink an illgrp that's already unlinked. 8518 */ 8519 static int 8520 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8521 { 8522 int err; 8523 ip_stack_t *ipst = ill->ill_ipst; 8524 8525 ASSERT(IS_IPMP(ill)); 8526 ASSERT(IAM_WRITER_ILL(ill)); 8527 8528 switch (ioccmd) { 8529 case I_LINK: 8530 return (ENOTSUP); 8531 8532 case I_PLINK: 8533 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8534 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8535 rw_exit(&ipst->ips_ipmp_lock); 8536 break; 8537 8538 case I_PUNLINK: 8539 /* 8540 * Require all UP ipifs be brought down prior to unlinking the 8541 * illgrp so any associated IREs (and other state) is torched. 8542 */ 8543 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8544 return (EBUSY); 8545 8546 /* 8547 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8548 * with an SIOCSLIFGROUPNAME request from an ill trying to 8549 * join this group. Specifically: ills trying to join grab 8550 * ipmp_lock and bump a "pending join" counter checked by 8551 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8552 * joins can occur (since we have ipmp_lock). Once we drop 8553 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8554 * find the illgrp (since we unlinked it) and will return 8555 * EAFNOSUPPORT. This will then take them back through the 8556 * IPMP meta-interface plumbing logic in ifconfig, and thus 8557 * back through I_PLINK above. 8558 */ 8559 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8560 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8561 rw_exit(&ipst->ips_ipmp_lock); 8562 return (err); 8563 default: 8564 break; 8565 } 8566 return (0); 8567 } 8568 8569 /* 8570 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8571 * atomically set/clear the muxids. Also complete the ioctl by acking or 8572 * naking it. Note that the code is structured such that the link type, 8573 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8574 * its clones use the persistent link, while pppd(1M) and perhaps many 8575 * other daemons may use non-persistent link. When combined with some 8576 * ill_t states, linking and unlinking lower streams may be used as 8577 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8578 */ 8579 /* ARGSUSED */ 8580 void 8581 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8582 { 8583 mblk_t *mp1; 8584 struct linkblk *li; 8585 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8586 int err = 0; 8587 8588 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8589 ioccmd == I_LINK || ioccmd == I_UNLINK); 8590 8591 mp1 = mp->b_cont; /* This is the linkblk info */ 8592 li = (struct linkblk *)mp1->b_rptr; 8593 8594 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8595 if (err == EINPROGRESS) 8596 return; 8597 if (err == 0) 8598 miocack(q, mp, 0, 0); 8599 else 8600 miocnak(q, mp, 0, err); 8601 8602 /* Conn was refheld in ip_sioctl_copyin_setup */ 8603 if (CONN_Q(q)) { 8604 CONN_DEC_IOCTLREF(Q_TO_CONN(q)); 8605 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8606 } 8607 } 8608 8609 /* 8610 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8611 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8612 * module stream). 8613 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8614 * an error code on failure. 8615 */ 8616 static int 8617 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8618 struct linkblk *li) 8619 { 8620 int err = 0; 8621 ill_t *ill; 8622 queue_t *ipwq, *dwq; 8623 const char *name; 8624 struct qinit *qinfo; 8625 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8626 boolean_t entered_ipsq = B_FALSE; 8627 boolean_t is_ip = B_FALSE; 8628 arl_t *arl; 8629 8630 /* 8631 * Walk the lower stream to verify it's the IP module stream. 8632 * The IP module is identified by its name, wput function, 8633 * and non-NULL q_next. STREAMS ensures that the lower stream 8634 * (li->l_qbot) will not vanish until this ioctl completes. 8635 */ 8636 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8637 qinfo = ipwq->q_qinfo; 8638 name = qinfo->qi_minfo->mi_idname; 8639 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8640 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8641 is_ip = B_TRUE; 8642 break; 8643 } 8644 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8645 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8646 break; 8647 } 8648 } 8649 8650 /* 8651 * If this isn't an IP module stream, bail. 8652 */ 8653 if (ipwq == NULL) 8654 return (0); 8655 8656 if (!is_ip) { 8657 arl = (arl_t *)ipwq->q_ptr; 8658 ill = arl_to_ill(arl); 8659 if (ill == NULL) 8660 return (0); 8661 } else { 8662 ill = ipwq->q_ptr; 8663 } 8664 ASSERT(ill != NULL); 8665 8666 if (ipsq == NULL) { 8667 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8668 NEW_OP, B_FALSE); 8669 if (ipsq == NULL) { 8670 if (!is_ip) 8671 ill_refrele(ill); 8672 return (EINPROGRESS); 8673 } 8674 entered_ipsq = B_TRUE; 8675 } 8676 ASSERT(IAM_WRITER_ILL(ill)); 8677 mutex_enter(&ill->ill_lock); 8678 if (!is_ip) { 8679 if (islink && ill->ill_muxid == 0) { 8680 /* 8681 * Plumbing has to be done with IP plumbed first, arp 8682 * second, but here we have arp being plumbed first. 8683 */ 8684 mutex_exit(&ill->ill_lock); 8685 if (entered_ipsq) 8686 ipsq_exit(ipsq); 8687 ill_refrele(ill); 8688 return (EINVAL); 8689 } 8690 } 8691 mutex_exit(&ill->ill_lock); 8692 if (!is_ip) { 8693 arl->arl_muxid = islink ? li->l_index : 0; 8694 ill_refrele(ill); 8695 goto done; 8696 } 8697 8698 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8699 goto done; 8700 8701 /* 8702 * As part of I_{P}LINKing, stash the number of downstream modules and 8703 * the read queue of the module immediately below IP in the ill. 8704 * These are used during the capability negotiation below. 8705 */ 8706 ill->ill_lmod_rq = NULL; 8707 ill->ill_lmod_cnt = 0; 8708 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8709 ill->ill_lmod_rq = RD(dwq); 8710 for (; dwq != NULL; dwq = dwq->q_next) 8711 ill->ill_lmod_cnt++; 8712 } 8713 8714 ill->ill_muxid = islink ? li->l_index : 0; 8715 8716 /* 8717 * Mark the ipsq busy until the capability operations initiated below 8718 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8719 * returns, but the capability operation may complete asynchronously 8720 * much later. 8721 */ 8722 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8723 /* 8724 * If there's at least one up ipif on this ill, then we're bound to 8725 * the underlying driver via DLPI. In that case, renegotiate 8726 * capabilities to account for any possible change in modules 8727 * interposed between IP and the driver. 8728 */ 8729 if (ill->ill_ipif_up_count > 0) { 8730 if (islink) 8731 ill_capability_probe(ill); 8732 else 8733 ill_capability_reset(ill, B_FALSE); 8734 } 8735 ipsq_current_finish(ipsq); 8736 done: 8737 if (entered_ipsq) 8738 ipsq_exit(ipsq); 8739 8740 return (err); 8741 } 8742 8743 /* 8744 * Search the ioctl command in the ioctl tables and return a pointer 8745 * to the ioctl command information. The ioctl command tables are 8746 * static and fully populated at compile time. 8747 */ 8748 ip_ioctl_cmd_t * 8749 ip_sioctl_lookup(int ioc_cmd) 8750 { 8751 int index; 8752 ip_ioctl_cmd_t *ipip; 8753 ip_ioctl_cmd_t *ipip_end; 8754 8755 if (ioc_cmd == IPI_DONTCARE) 8756 return (NULL); 8757 8758 /* 8759 * Do a 2 step search. First search the indexed table 8760 * based on the least significant byte of the ioctl cmd. 8761 * If we don't find a match, then search the misc table 8762 * serially. 8763 */ 8764 index = ioc_cmd & 0xFF; 8765 if (index < ip_ndx_ioctl_count) { 8766 ipip = &ip_ndx_ioctl_table[index]; 8767 if (ipip->ipi_cmd == ioc_cmd) { 8768 /* Found a match in the ndx table */ 8769 return (ipip); 8770 } 8771 } 8772 8773 /* Search the misc table */ 8774 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8775 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8776 if (ipip->ipi_cmd == ioc_cmd) 8777 /* Found a match in the misc table */ 8778 return (ipip); 8779 } 8780 8781 return (NULL); 8782 } 8783 8784 /* 8785 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8786 */ 8787 static boolean_t 8788 getset_ioctl_checks(mblk_t *mp) 8789 { 8790 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8791 mblk_t *mp1 = mp->b_cont; 8792 mod_ioc_prop_t *pioc; 8793 uint_t flags; 8794 uint_t pioc_size; 8795 8796 /* do sanity checks on various arguments */ 8797 if (mp1 == NULL || iocp->ioc_count == 0 || 8798 iocp->ioc_count == TRANSPARENT) { 8799 return (B_FALSE); 8800 } 8801 if (msgdsize(mp1) < iocp->ioc_count) { 8802 if (!pullupmsg(mp1, iocp->ioc_count)) 8803 return (B_FALSE); 8804 } 8805 8806 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8807 8808 /* sanity checks on mpr_valsize */ 8809 pioc_size = sizeof (mod_ioc_prop_t); 8810 if (pioc->mpr_valsize != 0) 8811 pioc_size += pioc->mpr_valsize - 1; 8812 8813 if (iocp->ioc_count != pioc_size) 8814 return (B_FALSE); 8815 8816 flags = pioc->mpr_flags; 8817 if (iocp->ioc_cmd == SIOCSETPROP) { 8818 /* 8819 * One can either reset the value to it's default value or 8820 * change the current value or append/remove the value from 8821 * a multi-valued properties. 8822 */ 8823 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8824 flags != MOD_PROP_ACTIVE && 8825 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8826 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8827 return (B_FALSE); 8828 } else { 8829 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8830 8831 /* 8832 * One can retrieve only one kind of property information 8833 * at a time. 8834 */ 8835 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8836 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8837 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8838 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8839 return (B_FALSE); 8840 } 8841 8842 return (B_TRUE); 8843 } 8844 8845 /* 8846 * process the SIOC{SET|GET}PROP ioctl's 8847 */ 8848 /* ARGSUSED */ 8849 static void 8850 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8851 { 8852 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8853 mblk_t *mp1 = mp->b_cont; 8854 mod_ioc_prop_t *pioc; 8855 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8856 ip_stack_t *ipst; 8857 netstack_t *stack; 8858 cred_t *cr; 8859 boolean_t set; 8860 int err; 8861 8862 ASSERT(q->q_next == NULL); 8863 ASSERT(CONN_Q(q)); 8864 8865 if (!getset_ioctl_checks(mp)) { 8866 miocnak(q, mp, 0, EINVAL); 8867 return; 8868 } 8869 ipst = CONNQ_TO_IPST(q); 8870 stack = ipst->ips_netstack; 8871 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8872 8873 switch (pioc->mpr_proto) { 8874 case MOD_PROTO_IP: 8875 case MOD_PROTO_IPV4: 8876 case MOD_PROTO_IPV6: 8877 ptbl = ipst->ips_propinfo_tbl; 8878 break; 8879 case MOD_PROTO_RAWIP: 8880 ptbl = stack->netstack_icmp->is_propinfo_tbl; 8881 break; 8882 case MOD_PROTO_TCP: 8883 ptbl = stack->netstack_tcp->tcps_propinfo_tbl; 8884 break; 8885 case MOD_PROTO_UDP: 8886 ptbl = stack->netstack_udp->us_propinfo_tbl; 8887 break; 8888 case MOD_PROTO_SCTP: 8889 ptbl = stack->netstack_sctp->sctps_propinfo_tbl; 8890 break; 8891 default: 8892 miocnak(q, mp, 0, EINVAL); 8893 return; 8894 } 8895 8896 pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto); 8897 if (pinfo == NULL) { 8898 miocnak(q, mp, 0, ENOENT); 8899 return; 8900 } 8901 8902 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8903 if (set && pinfo->mpi_setf != NULL) { 8904 cr = msg_getcred(mp, NULL); 8905 if (cr == NULL) 8906 cr = iocp->ioc_cr; 8907 err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname, 8908 pioc->mpr_val, pioc->mpr_flags); 8909 } else if (!set && pinfo->mpi_getf != NULL) { 8910 err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname, 8911 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8912 } else { 8913 err = EPERM; 8914 } 8915 8916 if (err != 0) { 8917 miocnak(q, mp, 0, err); 8918 } else { 8919 if (set) 8920 miocack(q, mp, 0, 0); 8921 else /* For get, we need to return back the data */ 8922 miocack(q, mp, iocp->ioc_count, 0); 8923 } 8924 } 8925 8926 /* 8927 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8928 * as several routing daemons have unfortunately used this 'unpublished' 8929 * but well-known ioctls. 8930 */ 8931 /* ARGSUSED */ 8932 static void 8933 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8934 { 8935 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8936 mblk_t *mp1 = mp->b_cont; 8937 char *pname, *pval, *buf; 8938 uint_t bufsize, proto; 8939 mod_prop_info_t *pinfo = NULL; 8940 ip_stack_t *ipst; 8941 int err = 0; 8942 8943 ASSERT(CONN_Q(q)); 8944 ipst = CONNQ_TO_IPST(q); 8945 8946 if (iocp->ioc_count == 0 || mp1 == NULL) { 8947 miocnak(q, mp, 0, EINVAL); 8948 return; 8949 } 8950 8951 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8952 pval = buf = pname = (char *)mp1->b_rptr; 8953 bufsize = MBLKL(mp1); 8954 8955 if (strcmp(pname, "ip_forwarding") == 0) { 8956 pname = "forwarding"; 8957 proto = MOD_PROTO_IPV4; 8958 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8959 pname = "forwarding"; 8960 proto = MOD_PROTO_IPV6; 8961 } else { 8962 miocnak(q, mp, 0, EINVAL); 8963 return; 8964 } 8965 8966 pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto); 8967 8968 switch (iocp->ioc_cmd) { 8969 case ND_GET: 8970 if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf, 8971 bufsize, 0)) == 0) { 8972 miocack(q, mp, iocp->ioc_count, 0); 8973 return; 8974 } 8975 break; 8976 case ND_SET: 8977 /* 8978 * buffer will have property name and value in the following 8979 * format, 8980 * <property name>'\0'<property value>'\0', extract them; 8981 */ 8982 while (*pval++) 8983 noop; 8984 8985 if (!*pval || pval >= (char *)mp1->b_wptr) { 8986 err = EINVAL; 8987 } else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL, 8988 pinfo, NULL, pval, 0)) == 0) { 8989 miocack(q, mp, 0, 0); 8990 return; 8991 } 8992 break; 8993 default: 8994 err = EINVAL; 8995 break; 8996 } 8997 miocnak(q, mp, 0, err); 8998 } 8999 9000 /* 9001 * Wrapper function for resuming deferred ioctl processing 9002 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9003 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9004 */ 9005 /* ARGSUSED */ 9006 void 9007 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9008 void *dummy_arg) 9009 { 9010 ip_sioctl_copyin_setup(q, mp); 9011 } 9012 9013 /* 9014 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9015 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9016 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9017 * We establish here the size of the block to be copied in. mi_copyin 9018 * arranges for this to happen, an processing continues in ip_wput_nondata with 9019 * an M_IOCDATA message. 9020 */ 9021 void 9022 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9023 { 9024 int copyin_size; 9025 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9026 ip_ioctl_cmd_t *ipip; 9027 cred_t *cr; 9028 ip_stack_t *ipst; 9029 9030 if (CONN_Q(q)) 9031 ipst = CONNQ_TO_IPST(q); 9032 else 9033 ipst = ILLQ_TO_IPST(q); 9034 9035 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9036 if (ipip == NULL) { 9037 /* 9038 * The ioctl is not one we understand or own. 9039 * Pass it along to be processed down stream, 9040 * if this is a module instance of IP, else nak 9041 * the ioctl. 9042 */ 9043 if (q->q_next == NULL) { 9044 goto nak; 9045 } else { 9046 putnext(q, mp); 9047 return; 9048 } 9049 } 9050 9051 /* 9052 * If this is deferred, then we will do all the checks when we 9053 * come back. 9054 */ 9055 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9056 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9057 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9058 return; 9059 } 9060 9061 /* 9062 * Only allow a very small subset of IP ioctls on this stream if 9063 * IP is a module and not a driver. Allowing ioctls to be processed 9064 * in this case may cause assert failures or data corruption. 9065 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9066 * ioctls allowed on an IP module stream, after which this stream 9067 * normally becomes a multiplexor (at which time the stream head 9068 * will fail all ioctls). 9069 */ 9070 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9071 goto nak; 9072 } 9073 9074 /* Make sure we have ioctl data to process. */ 9075 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9076 goto nak; 9077 9078 /* 9079 * Prefer dblk credential over ioctl credential; some synthesized 9080 * ioctls have kcred set because there's no way to crhold() 9081 * a credential in some contexts. (ioc_cr is not crfree() by 9082 * the framework; the caller of ioctl needs to hold the reference 9083 * for the duration of the call). 9084 */ 9085 cr = msg_getcred(mp, NULL); 9086 if (cr == NULL) 9087 cr = iocp->ioc_cr; 9088 9089 /* Make sure normal users don't send down privileged ioctls */ 9090 if ((ipip->ipi_flags & IPI_PRIV) && 9091 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9092 /* We checked the privilege earlier but log it here */ 9093 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9094 return; 9095 } 9096 9097 /* 9098 * The ioctl command tables can only encode fixed length 9099 * ioctl data. If the length is variable, the table will 9100 * encode the length as zero. Such special cases are handled 9101 * below in the switch. 9102 */ 9103 if (ipip->ipi_copyin_size != 0) { 9104 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9105 return; 9106 } 9107 9108 switch (iocp->ioc_cmd) { 9109 case O_SIOCGIFCONF: 9110 case SIOCGIFCONF: 9111 /* 9112 * This IOCTL is hilarious. See comments in 9113 * ip_sioctl_get_ifconf for the story. 9114 */ 9115 if (iocp->ioc_count == TRANSPARENT) 9116 copyin_size = SIZEOF_STRUCT(ifconf, 9117 iocp->ioc_flag); 9118 else 9119 copyin_size = iocp->ioc_count; 9120 mi_copyin(q, mp, NULL, copyin_size); 9121 return; 9122 9123 case O_SIOCGLIFCONF: 9124 case SIOCGLIFCONF: 9125 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9126 mi_copyin(q, mp, NULL, copyin_size); 9127 return; 9128 9129 case SIOCGLIFSRCOF: 9130 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9131 mi_copyin(q, mp, NULL, copyin_size); 9132 return; 9133 9134 case SIOCGIP6ADDRPOLICY: 9135 ip_sioctl_ip6addrpolicy(q, mp); 9136 ip6_asp_table_refrele(ipst); 9137 return; 9138 9139 case SIOCSIP6ADDRPOLICY: 9140 ip_sioctl_ip6addrpolicy(q, mp); 9141 return; 9142 9143 case SIOCGDSTINFO: 9144 ip_sioctl_dstinfo(q, mp); 9145 ip6_asp_table_refrele(ipst); 9146 return; 9147 9148 case ND_SET: 9149 case ND_GET: 9150 ip_process_legacy_nddprop(q, mp); 9151 return; 9152 9153 case SIOCSETPROP: 9154 case SIOCGETPROP: 9155 ip_sioctl_getsetprop(q, mp); 9156 return; 9157 9158 case I_PLINK: 9159 case I_PUNLINK: 9160 case I_LINK: 9161 case I_UNLINK: 9162 /* 9163 * We treat non-persistent link similarly as the persistent 9164 * link case, in terms of plumbing/unplumbing, as well as 9165 * dynamic re-plumbing events indicator. See comments 9166 * in ip_sioctl_plink() for more. 9167 * 9168 * Request can be enqueued in the 'ipsq' while waiting 9169 * to become exclusive. So bump up the conn ref. 9170 */ 9171 if (CONN_Q(q)) { 9172 CONN_INC_REF(Q_TO_CONN(q)); 9173 CONN_INC_IOCTLREF(Q_TO_CONN(q)) 9174 } 9175 ip_sioctl_plink(NULL, q, mp, NULL); 9176 return; 9177 9178 case IP_IOCTL: 9179 ip_wput_ioctl(q, mp); 9180 return; 9181 9182 case SIOCILB: 9183 /* The ioctl length varies depending on the ILB command. */ 9184 copyin_size = iocp->ioc_count; 9185 if (copyin_size < sizeof (ilb_cmd_t)) 9186 goto nak; 9187 mi_copyin(q, mp, NULL, copyin_size); 9188 return; 9189 9190 default: 9191 cmn_err(CE_WARN, "Unknown ioctl %d/0x%x slipped through.", 9192 iocp->ioc_cmd, iocp->ioc_cmd); 9193 /* FALLTHRU */ 9194 } 9195 nak: 9196 if (mp->b_cont != NULL) { 9197 freemsg(mp->b_cont); 9198 mp->b_cont = NULL; 9199 } 9200 iocp->ioc_error = EINVAL; 9201 mp->b_datap->db_type = M_IOCNAK; 9202 iocp->ioc_count = 0; 9203 qreply(q, mp); 9204 } 9205 9206 static void 9207 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9208 { 9209 struct arpreq *ar; 9210 struct xarpreq *xar; 9211 mblk_t *tmp; 9212 struct iocblk *iocp; 9213 int x_arp_ioctl = B_FALSE; 9214 int *flagsp; 9215 char *storage = NULL; 9216 9217 ASSERT(ill != NULL); 9218 9219 iocp = (struct iocblk *)mp->b_rptr; 9220 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9221 9222 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9223 if ((iocp->ioc_cmd == SIOCGXARP) || 9224 (iocp->ioc_cmd == SIOCSXARP)) { 9225 x_arp_ioctl = B_TRUE; 9226 xar = (struct xarpreq *)tmp->b_rptr; 9227 flagsp = &xar->xarp_flags; 9228 storage = xar->xarp_ha.sdl_data; 9229 } else { 9230 ar = (struct arpreq *)tmp->b_rptr; 9231 flagsp = &ar->arp_flags; 9232 storage = ar->arp_ha.sa_data; 9233 } 9234 9235 /* 9236 * We're done if this is not an SIOCG{X}ARP 9237 */ 9238 if (x_arp_ioctl) { 9239 storage += ill_xarp_info(&xar->xarp_ha, ill); 9240 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9241 sizeof (xar->xarp_ha.sdl_data)) { 9242 iocp->ioc_error = EINVAL; 9243 return; 9244 } 9245 } 9246 *flagsp = ATF_INUSE; 9247 /* 9248 * If /sbin/arp told us we are the authority using the "permanent" 9249 * flag, or if this is one of my addresses print "permanent" 9250 * in the /sbin/arp output. 9251 */ 9252 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9253 *flagsp |= ATF_AUTHORITY; 9254 if (flags & NCE_F_NONUD) 9255 *flagsp |= ATF_PERM; /* not subject to aging */ 9256 if (flags & NCE_F_PUBLISH) 9257 *flagsp |= ATF_PUBL; 9258 if (hwaddr != NULL) { 9259 *flagsp |= ATF_COM; 9260 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9261 } 9262 } 9263 9264 /* 9265 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9266 * interface) create the next available logical interface for this 9267 * physical interface. 9268 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9269 * ipif with the specified name. 9270 * 9271 * If the address family is not AF_UNSPEC then set the address as well. 9272 * 9273 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9274 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9275 * 9276 * Executed as a writer on the ill. 9277 * So no lock is needed to traverse the ipif chain, or examine the 9278 * phyint flags. 9279 */ 9280 /* ARGSUSED */ 9281 int 9282 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9283 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9284 { 9285 mblk_t *mp1; 9286 struct lifreq *lifr; 9287 boolean_t isv6; 9288 boolean_t exists; 9289 char *name; 9290 char *endp; 9291 char *cp; 9292 int namelen; 9293 ipif_t *ipif; 9294 long id; 9295 ipsq_t *ipsq; 9296 ill_t *ill; 9297 sin_t *sin; 9298 int err = 0; 9299 boolean_t found_sep = B_FALSE; 9300 conn_t *connp; 9301 zoneid_t zoneid; 9302 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9303 9304 ASSERT(q->q_next == NULL); 9305 ip1dbg(("ip_sioctl_addif\n")); 9306 /* Existence of mp1 has been checked in ip_wput_nondata */ 9307 mp1 = mp->b_cont->b_cont; 9308 /* 9309 * Null terminate the string to protect against buffer 9310 * overrun. String was generated by user code and may not 9311 * be trusted. 9312 */ 9313 lifr = (struct lifreq *)mp1->b_rptr; 9314 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9315 name = lifr->lifr_name; 9316 ASSERT(CONN_Q(q)); 9317 connp = Q_TO_CONN(q); 9318 isv6 = (connp->conn_family == AF_INET6); 9319 zoneid = connp->conn_zoneid; 9320 namelen = mi_strlen(name); 9321 if (namelen == 0) 9322 return (EINVAL); 9323 9324 exists = B_FALSE; 9325 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9326 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9327 /* 9328 * Allow creating lo0 using SIOCLIFADDIF. 9329 * can't be any other writer thread. So can pass null below 9330 * for the last 4 args to ipif_lookup_name. 9331 */ 9332 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9333 &exists, isv6, zoneid, ipst); 9334 /* Prevent any further action */ 9335 if (ipif == NULL) { 9336 return (ENOBUFS); 9337 } else if (!exists) { 9338 /* We created the ipif now and as writer */ 9339 ipif_refrele(ipif); 9340 return (0); 9341 } else { 9342 ill = ipif->ipif_ill; 9343 ill_refhold(ill); 9344 ipif_refrele(ipif); 9345 } 9346 } else { 9347 /* Look for a colon in the name. */ 9348 endp = &name[namelen]; 9349 for (cp = endp; --cp > name; ) { 9350 if (*cp == IPIF_SEPARATOR_CHAR) { 9351 found_sep = B_TRUE; 9352 /* 9353 * Reject any non-decimal aliases for plumbing 9354 * of logical interfaces. Aliases with leading 9355 * zeroes are also rejected as they introduce 9356 * ambiguity in the naming of the interfaces. 9357 * Comparing with "0" takes care of all such 9358 * cases. 9359 */ 9360 if ((strncmp("0", cp+1, 1)) == 0) 9361 return (EINVAL); 9362 9363 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9364 id <= 0 || *endp != '\0') { 9365 return (EINVAL); 9366 } 9367 *cp = '\0'; 9368 break; 9369 } 9370 } 9371 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9372 if (found_sep) 9373 *cp = IPIF_SEPARATOR_CHAR; 9374 if (ill == NULL) 9375 return (ENXIO); 9376 } 9377 9378 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9379 B_TRUE); 9380 9381 /* 9382 * Release the refhold due to the lookup, now that we are excl 9383 * or we are just returning 9384 */ 9385 ill_refrele(ill); 9386 9387 if (ipsq == NULL) 9388 return (EINPROGRESS); 9389 9390 /* We are now exclusive on the IPSQ */ 9391 ASSERT(IAM_WRITER_ILL(ill)); 9392 9393 if (found_sep) { 9394 /* Now see if there is an IPIF with this unit number. */ 9395 for (ipif = ill->ill_ipif; ipif != NULL; 9396 ipif = ipif->ipif_next) { 9397 if (ipif->ipif_id == id) { 9398 err = EEXIST; 9399 goto done; 9400 } 9401 } 9402 } 9403 9404 /* 9405 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9406 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9407 * instead. 9408 */ 9409 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9410 B_TRUE, B_TRUE, &err)) == NULL) { 9411 goto done; 9412 } 9413 9414 /* Return created name with ioctl */ 9415 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9416 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9417 ip1dbg(("created %s\n", lifr->lifr_name)); 9418 9419 /* Set address */ 9420 sin = (sin_t *)&lifr->lifr_addr; 9421 if (sin->sin_family != AF_UNSPEC) { 9422 err = ip_sioctl_addr(ipif, sin, q, mp, 9423 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9424 } 9425 9426 done: 9427 ipsq_exit(ipsq); 9428 return (err); 9429 } 9430 9431 /* 9432 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9433 * interface) delete it based on the IP address (on this physical interface). 9434 * Otherwise delete it based on the ipif_id. 9435 * Also, special handling to allow a removeif of lo0. 9436 */ 9437 /* ARGSUSED */ 9438 int 9439 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9440 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9441 { 9442 conn_t *connp; 9443 ill_t *ill = ipif->ipif_ill; 9444 boolean_t success; 9445 ip_stack_t *ipst; 9446 9447 ipst = CONNQ_TO_IPST(q); 9448 9449 ASSERT(q->q_next == NULL); 9450 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9451 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9452 ASSERT(IAM_WRITER_IPIF(ipif)); 9453 9454 connp = Q_TO_CONN(q); 9455 /* 9456 * Special case for unplumbing lo0 (the loopback physical interface). 9457 * If unplumbing lo0, the incoming address structure has been 9458 * initialized to all zeros. When unplumbing lo0, all its logical 9459 * interfaces must be removed too. 9460 * 9461 * Note that this interface may be called to remove a specific 9462 * loopback logical interface (eg, lo0:1). But in that case 9463 * ipif->ipif_id != 0 so that the code path for that case is the 9464 * same as any other interface (meaning it skips the code directly 9465 * below). 9466 */ 9467 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9468 if (sin->sin_family == AF_UNSPEC && 9469 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9470 /* 9471 * Mark it condemned. No new ref. will be made to ill. 9472 */ 9473 mutex_enter(&ill->ill_lock); 9474 ill->ill_state_flags |= ILL_CONDEMNED; 9475 for (ipif = ill->ill_ipif; ipif != NULL; 9476 ipif = ipif->ipif_next) { 9477 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9478 } 9479 mutex_exit(&ill->ill_lock); 9480 9481 ipif = ill->ill_ipif; 9482 /* unplumb the loopback interface */ 9483 ill_delete(ill); 9484 mutex_enter(&connp->conn_lock); 9485 mutex_enter(&ill->ill_lock); 9486 9487 /* Are any references to this ill active */ 9488 if (ill_is_freeable(ill)) { 9489 mutex_exit(&ill->ill_lock); 9490 mutex_exit(&connp->conn_lock); 9491 ill_delete_tail(ill); 9492 mi_free(ill); 9493 return (0); 9494 } 9495 success = ipsq_pending_mp_add(connp, ipif, 9496 CONNP_TO_WQ(connp), mp, ILL_FREE); 9497 mutex_exit(&connp->conn_lock); 9498 mutex_exit(&ill->ill_lock); 9499 if (success) 9500 return (EINPROGRESS); 9501 else 9502 return (EINTR); 9503 } 9504 } 9505 9506 if (ipif->ipif_id == 0) { 9507 ipsq_t *ipsq; 9508 9509 /* Find based on address */ 9510 if (ipif->ipif_isv6) { 9511 sin6_t *sin6; 9512 9513 if (sin->sin_family != AF_INET6) 9514 return (EAFNOSUPPORT); 9515 9516 sin6 = (sin6_t *)sin; 9517 /* We are a writer, so we should be able to lookup */ 9518 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9519 ipst); 9520 } else { 9521 if (sin->sin_family != AF_INET) 9522 return (EAFNOSUPPORT); 9523 9524 /* We are a writer, so we should be able to lookup */ 9525 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9526 ipst); 9527 } 9528 if (ipif == NULL) { 9529 return (EADDRNOTAVAIL); 9530 } 9531 9532 /* 9533 * It is possible for a user to send an SIOCLIFREMOVEIF with 9534 * lifr_name of the physical interface but with an ip address 9535 * lifr_addr of a logical interface plumbed over it. 9536 * So update ipx_current_ipif now that ipif points to the 9537 * correct one. 9538 */ 9539 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9540 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9541 9542 /* This is a writer */ 9543 ipif_refrele(ipif); 9544 } 9545 9546 /* 9547 * Can not delete instance zero since it is tied to the ill. 9548 */ 9549 if (ipif->ipif_id == 0) 9550 return (EBUSY); 9551 9552 mutex_enter(&ill->ill_lock); 9553 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9554 mutex_exit(&ill->ill_lock); 9555 9556 ipif_free(ipif); 9557 9558 mutex_enter(&connp->conn_lock); 9559 mutex_enter(&ill->ill_lock); 9560 9561 /* Are any references to this ipif active */ 9562 if (ipif_is_freeable(ipif)) { 9563 mutex_exit(&ill->ill_lock); 9564 mutex_exit(&connp->conn_lock); 9565 ipif_non_duplicate(ipif); 9566 (void) ipif_down_tail(ipif); 9567 ipif_free_tail(ipif); /* frees ipif */ 9568 return (0); 9569 } 9570 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9571 IPIF_FREE); 9572 mutex_exit(&ill->ill_lock); 9573 mutex_exit(&connp->conn_lock); 9574 if (success) 9575 return (EINPROGRESS); 9576 else 9577 return (EINTR); 9578 } 9579 9580 /* 9581 * Restart the removeif ioctl. The refcnt has gone down to 0. 9582 * The ipif is already condemned. So can't find it thru lookups. 9583 */ 9584 /* ARGSUSED */ 9585 int 9586 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9587 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9588 { 9589 ill_t *ill = ipif->ipif_ill; 9590 9591 ASSERT(IAM_WRITER_IPIF(ipif)); 9592 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9593 9594 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9595 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9596 9597 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9598 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9599 ill_delete_tail(ill); 9600 mi_free(ill); 9601 return (0); 9602 } 9603 9604 ipif_non_duplicate(ipif); 9605 (void) ipif_down_tail(ipif); 9606 ipif_free_tail(ipif); 9607 9608 return (0); 9609 } 9610 9611 /* 9612 * Set the local interface address using the given prefix and ill_token. 9613 */ 9614 /* ARGSUSED */ 9615 int 9616 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9617 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9618 { 9619 int err; 9620 in6_addr_t v6addr; 9621 sin6_t *sin6; 9622 ill_t *ill; 9623 int i; 9624 9625 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9626 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9627 9628 ASSERT(IAM_WRITER_IPIF(ipif)); 9629 9630 if (!ipif->ipif_isv6) 9631 return (EINVAL); 9632 9633 if (sin->sin_family != AF_INET6) 9634 return (EAFNOSUPPORT); 9635 9636 sin6 = (sin6_t *)sin; 9637 v6addr = sin6->sin6_addr; 9638 ill = ipif->ipif_ill; 9639 9640 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9641 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9642 return (EADDRNOTAVAIL); 9643 9644 for (i = 0; i < 4; i++) 9645 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9646 9647 err = ip_sioctl_addr(ipif, sin, q, mp, 9648 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9649 return (err); 9650 } 9651 9652 /* 9653 * Restart entry point to restart the address set operation after the 9654 * refcounts have dropped to zero. 9655 */ 9656 /* ARGSUSED */ 9657 int 9658 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9659 ip_ioctl_cmd_t *ipip, void *ifreq) 9660 { 9661 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9662 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9663 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9664 } 9665 9666 /* 9667 * Set the local interface address. 9668 * Allow an address of all zero when the interface is down. 9669 */ 9670 /* ARGSUSED */ 9671 int 9672 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9673 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9674 { 9675 int err = 0; 9676 in6_addr_t v6addr; 9677 boolean_t need_up = B_FALSE; 9678 ill_t *ill; 9679 int i; 9680 9681 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9682 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9683 9684 ASSERT(IAM_WRITER_IPIF(ipif)); 9685 9686 ill = ipif->ipif_ill; 9687 if (ipif->ipif_isv6) { 9688 sin6_t *sin6; 9689 phyint_t *phyi; 9690 9691 if (sin->sin_family != AF_INET6) 9692 return (EAFNOSUPPORT); 9693 9694 sin6 = (sin6_t *)sin; 9695 v6addr = sin6->sin6_addr; 9696 phyi = ill->ill_phyint; 9697 9698 /* 9699 * Enforce that true multicast interfaces have a link-local 9700 * address for logical unit 0. 9701 * 9702 * However for those ipif's for which link-local address was 9703 * not created by default, also allow setting :: as the address. 9704 * This scenario would arise, when we delete an address on ipif 9705 * with logical unit 0, we would want to set :: as the address. 9706 */ 9707 if (ipif->ipif_id == 0 && 9708 (ill->ill_flags & ILLF_MULTICAST) && 9709 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9710 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9711 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9712 9713 /* 9714 * if default link-local was not created by kernel for 9715 * this ill, allow setting :: as the address on ipif:0. 9716 */ 9717 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9718 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9719 return (EADDRNOTAVAIL); 9720 } else { 9721 return (EADDRNOTAVAIL); 9722 } 9723 } 9724 9725 /* 9726 * up interfaces shouldn't have the unspecified address 9727 * unless they also have the IPIF_NOLOCAL flags set and 9728 * have a subnet assigned. 9729 */ 9730 if ((ipif->ipif_flags & IPIF_UP) && 9731 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9732 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9733 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9734 return (EADDRNOTAVAIL); 9735 } 9736 9737 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9738 return (EADDRNOTAVAIL); 9739 } else { 9740 ipaddr_t addr; 9741 9742 if (sin->sin_family != AF_INET) 9743 return (EAFNOSUPPORT); 9744 9745 addr = sin->sin_addr.s_addr; 9746 9747 /* Allow INADDR_ANY as the local address. */ 9748 if (addr != INADDR_ANY && 9749 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9750 return (EADDRNOTAVAIL); 9751 9752 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9753 } 9754 /* 9755 * verify that the address being configured is permitted by the 9756 * ill_allowed_ips[] for the interface. 9757 */ 9758 if (ill->ill_allowed_ips_cnt > 0) { 9759 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) { 9760 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i], 9761 &v6addr)) 9762 break; 9763 } 9764 if (i == ill->ill_allowed_ips_cnt) { 9765 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr); 9766 return (EPERM); 9767 } 9768 } 9769 /* 9770 * Even if there is no change we redo things just to rerun 9771 * ipif_set_default. 9772 */ 9773 if (ipif->ipif_flags & IPIF_UP) { 9774 /* 9775 * Setting a new local address, make sure 9776 * we have net and subnet bcast ire's for 9777 * the old address if we need them. 9778 */ 9779 /* 9780 * If the interface is already marked up, 9781 * we call ipif_down which will take care 9782 * of ditching any IREs that have been set 9783 * up based on the old interface address. 9784 */ 9785 err = ipif_logical_down(ipif, q, mp); 9786 if (err == EINPROGRESS) 9787 return (err); 9788 (void) ipif_down_tail(ipif); 9789 need_up = 1; 9790 } 9791 9792 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9793 return (err); 9794 } 9795 9796 int 9797 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9798 boolean_t need_up) 9799 { 9800 in6_addr_t v6addr; 9801 in6_addr_t ov6addr; 9802 ipaddr_t addr; 9803 sin6_t *sin6; 9804 int sinlen; 9805 int err = 0; 9806 ill_t *ill = ipif->ipif_ill; 9807 boolean_t need_dl_down; 9808 boolean_t need_arp_down; 9809 struct iocblk *iocp; 9810 9811 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9812 9813 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9814 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9815 ASSERT(IAM_WRITER_IPIF(ipif)); 9816 9817 /* Must cancel any pending timer before taking the ill_lock */ 9818 if (ipif->ipif_recovery_id != 0) 9819 (void) untimeout(ipif->ipif_recovery_id); 9820 ipif->ipif_recovery_id = 0; 9821 9822 if (ipif->ipif_isv6) { 9823 sin6 = (sin6_t *)sin; 9824 v6addr = sin6->sin6_addr; 9825 sinlen = sizeof (struct sockaddr_in6); 9826 } else { 9827 addr = sin->sin_addr.s_addr; 9828 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9829 sinlen = sizeof (struct sockaddr_in); 9830 } 9831 mutex_enter(&ill->ill_lock); 9832 ov6addr = ipif->ipif_v6lcl_addr; 9833 ipif->ipif_v6lcl_addr = v6addr; 9834 sctp_update_ipif_addr(ipif, ov6addr); 9835 ipif->ipif_addr_ready = 0; 9836 9837 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9838 9839 /* 9840 * If the interface was previously marked as a duplicate, then since 9841 * we've now got a "new" address, it should no longer be considered a 9842 * duplicate -- even if the "new" address is the same as the old one. 9843 * Note that if all ipifs are down, we may have a pending ARP down 9844 * event to handle. This is because we want to recover from duplicates 9845 * and thus delay tearing down ARP until the duplicates have been 9846 * removed or disabled. 9847 */ 9848 need_dl_down = need_arp_down = B_FALSE; 9849 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9850 need_arp_down = !need_up; 9851 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9852 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9853 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9854 need_dl_down = B_TRUE; 9855 } 9856 } 9857 9858 ipif_set_default(ipif); 9859 9860 /* 9861 * If we've just manually set the IPv6 link-local address (0th ipif), 9862 * tag the ill so that future updates to the interface ID don't result 9863 * in this address getting automatically reconfigured from under the 9864 * administrator. 9865 */ 9866 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9867 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9868 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9869 ill->ill_manual_linklocal = 1; 9870 } 9871 9872 /* 9873 * When publishing an interface address change event, we only notify 9874 * the event listeners of the new address. It is assumed that if they 9875 * actively care about the addresses assigned that they will have 9876 * already discovered the previous address assigned (if there was one.) 9877 * 9878 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9879 */ 9880 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9881 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9882 NE_ADDRESS_CHANGE, sin, sinlen); 9883 } 9884 9885 mutex_exit(&ill->ill_lock); 9886 9887 if (need_up) { 9888 /* 9889 * Now bring the interface back up. If this 9890 * is the only IPIF for the ILL, ipif_up 9891 * will have to re-bind to the device, so 9892 * we may get back EINPROGRESS, in which 9893 * case, this IOCTL will get completed in 9894 * ip_rput_dlpi when we see the DL_BIND_ACK. 9895 */ 9896 err = ipif_up(ipif, q, mp); 9897 } else { 9898 /* Perhaps ilgs should use this ill */ 9899 update_conn_ill(NULL, ill->ill_ipst); 9900 } 9901 9902 if (need_dl_down) 9903 ill_dl_down(ill); 9904 9905 if (need_arp_down && !ill->ill_isv6) 9906 (void) ipif_arp_down(ipif); 9907 9908 /* 9909 * The default multicast interface might have changed (for 9910 * instance if the IPv6 scope of the address changed) 9911 */ 9912 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9913 9914 return (err); 9915 } 9916 9917 /* 9918 * Restart entry point to restart the address set operation after the 9919 * refcounts have dropped to zero. 9920 */ 9921 /* ARGSUSED */ 9922 int 9923 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9924 ip_ioctl_cmd_t *ipip, void *ifreq) 9925 { 9926 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9927 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9928 ASSERT(IAM_WRITER_IPIF(ipif)); 9929 (void) ipif_down_tail(ipif); 9930 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9931 } 9932 9933 /* ARGSUSED */ 9934 int 9935 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9936 ip_ioctl_cmd_t *ipip, void *if_req) 9937 { 9938 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9939 struct lifreq *lifr = (struct lifreq *)if_req; 9940 9941 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9942 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9943 /* 9944 * The net mask and address can't change since we have a 9945 * reference to the ipif. So no lock is necessary. 9946 */ 9947 if (ipif->ipif_isv6) { 9948 *sin6 = sin6_null; 9949 sin6->sin6_family = AF_INET6; 9950 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9951 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 9952 sin6->sin6_scope_id = 9953 ipif->ipif_ill->ill_phyint->phyint_ifindex; 9954 } 9955 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9956 lifr->lifr_addrlen = 9957 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9958 } else { 9959 *sin = sin_null; 9960 sin->sin_family = AF_INET; 9961 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9962 if (ipip->ipi_cmd_type == LIF_CMD) { 9963 lifr->lifr_addrlen = 9964 ip_mask_to_plen(ipif->ipif_net_mask); 9965 } 9966 } 9967 return (0); 9968 } 9969 9970 /* 9971 * Set the destination address for a pt-pt interface. 9972 */ 9973 /* ARGSUSED */ 9974 int 9975 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9976 ip_ioctl_cmd_t *ipip, void *if_req) 9977 { 9978 int err = 0; 9979 in6_addr_t v6addr; 9980 boolean_t need_up = B_FALSE; 9981 9982 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9983 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9984 ASSERT(IAM_WRITER_IPIF(ipif)); 9985 9986 if (ipif->ipif_isv6) { 9987 sin6_t *sin6; 9988 9989 if (sin->sin_family != AF_INET6) 9990 return (EAFNOSUPPORT); 9991 9992 sin6 = (sin6_t *)sin; 9993 v6addr = sin6->sin6_addr; 9994 9995 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9996 return (EADDRNOTAVAIL); 9997 } else { 9998 ipaddr_t addr; 9999 10000 if (sin->sin_family != AF_INET) 10001 return (EAFNOSUPPORT); 10002 10003 addr = sin->sin_addr.s_addr; 10004 if (addr != INADDR_ANY && 10005 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 10006 return (EADDRNOTAVAIL); 10007 } 10008 10009 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10010 } 10011 10012 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10013 return (0); /* No change */ 10014 10015 if (ipif->ipif_flags & IPIF_UP) { 10016 /* 10017 * If the interface is already marked up, 10018 * we call ipif_down which will take care 10019 * of ditching any IREs that have been set 10020 * up based on the old pp dst address. 10021 */ 10022 err = ipif_logical_down(ipif, q, mp); 10023 if (err == EINPROGRESS) 10024 return (err); 10025 (void) ipif_down_tail(ipif); 10026 need_up = B_TRUE; 10027 } 10028 /* 10029 * could return EINPROGRESS. If so ioctl will complete in 10030 * ip_rput_dlpi_writer 10031 */ 10032 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10033 return (err); 10034 } 10035 10036 static int 10037 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10038 boolean_t need_up) 10039 { 10040 in6_addr_t v6addr; 10041 ill_t *ill = ipif->ipif_ill; 10042 int err = 0; 10043 boolean_t need_dl_down; 10044 boolean_t need_arp_down; 10045 10046 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10047 ipif->ipif_id, (void *)ipif)); 10048 10049 /* Must cancel any pending timer before taking the ill_lock */ 10050 if (ipif->ipif_recovery_id != 0) 10051 (void) untimeout(ipif->ipif_recovery_id); 10052 ipif->ipif_recovery_id = 0; 10053 10054 if (ipif->ipif_isv6) { 10055 sin6_t *sin6; 10056 10057 sin6 = (sin6_t *)sin; 10058 v6addr = sin6->sin6_addr; 10059 } else { 10060 ipaddr_t addr; 10061 10062 addr = sin->sin_addr.s_addr; 10063 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10064 } 10065 mutex_enter(&ill->ill_lock); 10066 /* Set point to point destination address. */ 10067 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10068 /* 10069 * Allow this as a means of creating logical 10070 * pt-pt interfaces on top of e.g. an Ethernet. 10071 * XXX Undocumented HACK for testing. 10072 * pt-pt interfaces are created with NUD disabled. 10073 */ 10074 ipif->ipif_flags |= IPIF_POINTOPOINT; 10075 ipif->ipif_flags &= ~IPIF_BROADCAST; 10076 if (ipif->ipif_isv6) 10077 ill->ill_flags |= ILLF_NONUD; 10078 } 10079 10080 /* 10081 * If the interface was previously marked as a duplicate, then since 10082 * we've now got a "new" address, it should no longer be considered a 10083 * duplicate -- even if the "new" address is the same as the old one. 10084 * Note that if all ipifs are down, we may have a pending ARP down 10085 * event to handle. 10086 */ 10087 need_dl_down = need_arp_down = B_FALSE; 10088 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10089 need_arp_down = !need_up; 10090 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10091 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10092 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10093 need_dl_down = B_TRUE; 10094 } 10095 } 10096 10097 /* 10098 * If we've just manually set the IPv6 destination link-local address 10099 * (0th ipif), tag the ill so that future updates to the destination 10100 * interface ID (as can happen with interfaces over IP tunnels) don't 10101 * result in this address getting automatically reconfigured from 10102 * under the administrator. 10103 */ 10104 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10105 ill->ill_manual_dst_linklocal = 1; 10106 10107 /* Set the new address. */ 10108 ipif->ipif_v6pp_dst_addr = v6addr; 10109 /* Make sure subnet tracks pp_dst */ 10110 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10111 mutex_exit(&ill->ill_lock); 10112 10113 if (need_up) { 10114 /* 10115 * Now bring the interface back up. If this 10116 * is the only IPIF for the ILL, ipif_up 10117 * will have to re-bind to the device, so 10118 * we may get back EINPROGRESS, in which 10119 * case, this IOCTL will get completed in 10120 * ip_rput_dlpi when we see the DL_BIND_ACK. 10121 */ 10122 err = ipif_up(ipif, q, mp); 10123 } 10124 10125 if (need_dl_down) 10126 ill_dl_down(ill); 10127 if (need_arp_down && !ipif->ipif_isv6) 10128 (void) ipif_arp_down(ipif); 10129 10130 return (err); 10131 } 10132 10133 /* 10134 * Restart entry point to restart the dstaddress set operation after the 10135 * refcounts have dropped to zero. 10136 */ 10137 /* ARGSUSED */ 10138 int 10139 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10140 ip_ioctl_cmd_t *ipip, void *ifreq) 10141 { 10142 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10143 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10144 (void) ipif_down_tail(ipif); 10145 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10146 } 10147 10148 /* ARGSUSED */ 10149 int 10150 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10151 ip_ioctl_cmd_t *ipip, void *if_req) 10152 { 10153 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10154 10155 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10156 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10157 /* 10158 * Get point to point destination address. The addresses can't 10159 * change since we hold a reference to the ipif. 10160 */ 10161 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10162 return (EADDRNOTAVAIL); 10163 10164 if (ipif->ipif_isv6) { 10165 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10166 *sin6 = sin6_null; 10167 sin6->sin6_family = AF_INET6; 10168 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10169 } else { 10170 *sin = sin_null; 10171 sin->sin_family = AF_INET; 10172 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10173 } 10174 return (0); 10175 } 10176 10177 /* 10178 * Check which flags will change by the given flags being set 10179 * silently ignore flags which userland is not allowed to control. 10180 * (Because these flags may change between SIOCGLIFFLAGS and 10181 * SIOCSLIFFLAGS, and that's outside of userland's control, 10182 * we need to silently ignore them rather than fail.) 10183 */ 10184 static void 10185 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10186 uint64_t *offp) 10187 { 10188 ill_t *ill = ipif->ipif_ill; 10189 phyint_t *phyi = ill->ill_phyint; 10190 uint64_t cantchange_flags, intf_flags; 10191 uint64_t turn_on, turn_off; 10192 10193 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10194 cantchange_flags = IFF_CANTCHANGE; 10195 if (IS_IPMP(ill)) 10196 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10197 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10198 turn_off = intf_flags & turn_on; 10199 turn_on ^= turn_off; 10200 *onp = turn_on; 10201 *offp = turn_off; 10202 } 10203 10204 /* 10205 * Set interface flags. Many flags require special handling (e.g., 10206 * bringing the interface down); see below for details. 10207 * 10208 * NOTE : We really don't enforce that ipif_id zero should be used 10209 * for setting any flags other than IFF_LOGINT_FLAGS. This 10210 * is because applications generally does SICGLIFFLAGS and 10211 * ORs in the new flags (that affects the logical) and does a 10212 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10213 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10214 * flags that will be turned on is correct with respect to 10215 * ipif_id 0. For backward compatibility reasons, it is not done. 10216 */ 10217 /* ARGSUSED */ 10218 int 10219 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10220 ip_ioctl_cmd_t *ipip, void *if_req) 10221 { 10222 uint64_t turn_on; 10223 uint64_t turn_off; 10224 int err = 0; 10225 phyint_t *phyi; 10226 ill_t *ill; 10227 conn_t *connp; 10228 uint64_t intf_flags; 10229 boolean_t phyint_flags_modified = B_FALSE; 10230 uint64_t flags; 10231 struct ifreq *ifr; 10232 struct lifreq *lifr; 10233 boolean_t set_linklocal = B_FALSE; 10234 10235 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10236 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10237 10238 ASSERT(IAM_WRITER_IPIF(ipif)); 10239 10240 ill = ipif->ipif_ill; 10241 phyi = ill->ill_phyint; 10242 10243 if (ipip->ipi_cmd_type == IF_CMD) { 10244 ifr = (struct ifreq *)if_req; 10245 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10246 } else { 10247 lifr = (struct lifreq *)if_req; 10248 flags = lifr->lifr_flags; 10249 } 10250 10251 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10252 10253 /* 10254 * Have the flags been set correctly until now? 10255 */ 10256 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10257 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10258 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10259 /* 10260 * Compare the new flags to the old, and partition 10261 * into those coming on and those going off. 10262 * For the 16 bit command keep the bits above bit 16 unchanged. 10263 */ 10264 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10265 flags |= intf_flags & ~0xFFFF; 10266 10267 /* 10268 * Explicitly fail attempts to change flags that are always invalid on 10269 * an IPMP meta-interface. 10270 */ 10271 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10272 return (EINVAL); 10273 10274 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10275 if ((turn_on|turn_off) == 0) 10276 return (0); /* No change */ 10277 10278 /* 10279 * All test addresses must be IFF_DEPRECATED (to ensure source address 10280 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10281 * allow it to be turned off. 10282 */ 10283 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10284 (turn_on|intf_flags) & IFF_NOFAILOVER) 10285 return (EINVAL); 10286 10287 if ((connp = Q_TO_CONN(q)) == NULL) 10288 return (EINVAL); 10289 10290 /* 10291 * Only vrrp control socket is allowed to change IFF_UP and 10292 * IFF_NOACCEPT flags when IFF_VRRP is set. 10293 */ 10294 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10295 if (!connp->conn_isvrrp) 10296 return (EINVAL); 10297 } 10298 10299 /* 10300 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10301 * VRRP control socket. 10302 */ 10303 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10304 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10305 return (EINVAL); 10306 } 10307 10308 if (turn_on & IFF_NOFAILOVER) { 10309 turn_on |= IFF_DEPRECATED; 10310 flags |= IFF_DEPRECATED; 10311 } 10312 10313 /* 10314 * On underlying interfaces, only allow applications to manage test 10315 * addresses -- otherwise, they may get confused when the address 10316 * moves as part of being brought up. Likewise, prevent an 10317 * application-managed test address from being converted to a data 10318 * address. To prevent migration of administratively up addresses in 10319 * the kernel, we don't allow them to be converted either. 10320 */ 10321 if (IS_UNDER_IPMP(ill)) { 10322 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10323 10324 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10325 return (EINVAL); 10326 10327 if ((turn_off & IFF_NOFAILOVER) && 10328 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10329 return (EINVAL); 10330 } 10331 10332 /* 10333 * Only allow IFF_TEMPORARY flag to be set on 10334 * IPv6 interfaces. 10335 */ 10336 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10337 return (EINVAL); 10338 10339 /* 10340 * cannot turn off IFF_NOXMIT on VNI interfaces. 10341 */ 10342 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10343 return (EINVAL); 10344 10345 /* 10346 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10347 * interfaces. It makes no sense in that context. 10348 */ 10349 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10350 return (EINVAL); 10351 10352 /* 10353 * For IPv6 ipif_id 0, don't allow the interface to be up without 10354 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10355 * If the link local address isn't set, and can be set, it will get 10356 * set later on in this function. 10357 */ 10358 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10359 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10360 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10361 if (ipif_cant_setlinklocal(ipif)) 10362 return (EINVAL); 10363 set_linklocal = B_TRUE; 10364 } 10365 10366 /* 10367 * If we modify physical interface flags, we'll potentially need to 10368 * send up two routing socket messages for the changes (one for the 10369 * IPv4 ill, and another for the IPv6 ill). Note that here. 10370 */ 10371 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10372 phyint_flags_modified = B_TRUE; 10373 10374 /* 10375 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10376 * (otherwise, we'd immediately use them, defeating standby). Also, 10377 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10378 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10379 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10380 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10381 * will not be honored. 10382 */ 10383 if (turn_on & PHYI_STANDBY) { 10384 /* 10385 * No need to grab ill_g_usesrc_lock here; see the 10386 * synchronization notes in ip.c. 10387 */ 10388 if (ill->ill_usesrc_grp_next != NULL || 10389 intf_flags & PHYI_INACTIVE) 10390 return (EINVAL); 10391 if (!(flags & PHYI_FAILED)) { 10392 flags |= PHYI_INACTIVE; 10393 turn_on |= PHYI_INACTIVE; 10394 } 10395 } 10396 10397 if (turn_off & PHYI_STANDBY) { 10398 flags &= ~PHYI_INACTIVE; 10399 turn_off |= PHYI_INACTIVE; 10400 } 10401 10402 /* 10403 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10404 * would end up on. 10405 */ 10406 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10407 (PHYI_FAILED | PHYI_INACTIVE)) 10408 return (EINVAL); 10409 10410 /* 10411 * If ILLF_ROUTER changes, we need to change the ip forwarding 10412 * status of the interface. 10413 */ 10414 if ((turn_on | turn_off) & ILLF_ROUTER) { 10415 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10416 if (err != 0) 10417 return (err); 10418 } 10419 10420 /* 10421 * If the interface is not UP and we are not going to 10422 * bring it UP, record the flags and return. When the 10423 * interface comes UP later, the right actions will be 10424 * taken. 10425 */ 10426 if (!(ipif->ipif_flags & IPIF_UP) && 10427 !(turn_on & IPIF_UP)) { 10428 /* Record new flags in their respective places. */ 10429 mutex_enter(&ill->ill_lock); 10430 mutex_enter(&ill->ill_phyint->phyint_lock); 10431 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10432 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10433 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10434 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10435 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10436 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10437 mutex_exit(&ill->ill_lock); 10438 mutex_exit(&ill->ill_phyint->phyint_lock); 10439 10440 /* 10441 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10442 * same to the kernel: if any of them has been set by 10443 * userland, the interface cannot be used for data traffic. 10444 */ 10445 if ((turn_on|turn_off) & 10446 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10447 ASSERT(!IS_IPMP(ill)); 10448 /* 10449 * It's possible the ill is part of an "anonymous" 10450 * IPMP group rather than a real group. In that case, 10451 * there are no other interfaces in the group and thus 10452 * no need to call ipmp_phyint_refresh_active(). 10453 */ 10454 if (IS_UNDER_IPMP(ill)) 10455 ipmp_phyint_refresh_active(phyi); 10456 } 10457 10458 if (phyint_flags_modified) { 10459 if (phyi->phyint_illv4 != NULL) { 10460 ip_rts_ifmsg(phyi->phyint_illv4-> 10461 ill_ipif, RTSQ_DEFAULT); 10462 } 10463 if (phyi->phyint_illv6 != NULL) { 10464 ip_rts_ifmsg(phyi->phyint_illv6-> 10465 ill_ipif, RTSQ_DEFAULT); 10466 } 10467 } 10468 /* The default multicast interface might have changed */ 10469 ire_increment_multicast_generation(ill->ill_ipst, 10470 ill->ill_isv6); 10471 10472 return (0); 10473 } else if (set_linklocal) { 10474 mutex_enter(&ill->ill_lock); 10475 if (set_linklocal) 10476 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10477 mutex_exit(&ill->ill_lock); 10478 } 10479 10480 /* 10481 * Disallow IPv6 interfaces coming up that have the unspecified address, 10482 * or point-to-point interfaces with an unspecified destination. We do 10483 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10484 * have a subnet assigned, which is how in.ndpd currently manages its 10485 * onlink prefix list when no addresses are configured with those 10486 * prefixes. 10487 */ 10488 if (ipif->ipif_isv6 && 10489 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10490 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10491 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10492 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10493 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10494 return (EINVAL); 10495 } 10496 10497 /* 10498 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10499 * from being brought up. 10500 */ 10501 if (!ipif->ipif_isv6 && 10502 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10503 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10504 return (EINVAL); 10505 } 10506 10507 /* 10508 * If we are going to change one or more of the flags that are 10509 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10510 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10511 * IPIF_NOFAILOVER, we will take special action. This is 10512 * done by bring the ipif down, changing the flags and bringing 10513 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10514 * back up will trigger the address to be moved. 10515 * 10516 * If we are going to change IFF_NOACCEPT, we need to bring 10517 * all the ipifs down then bring them up again. The act of 10518 * bringing all the ipifs back up will trigger the local 10519 * ires being recreated with "no_accept" set/cleared. 10520 * 10521 * Note that ILLF_NOACCEPT is always set separately from the 10522 * other flags. 10523 */ 10524 if ((turn_on|turn_off) & 10525 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10526 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10527 IPIF_NOFAILOVER)) { 10528 /* 10529 * ipif_down() will ire_delete bcast ire's for the subnet, 10530 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10531 * entries shared between multiple ipifs on the same subnet. 10532 */ 10533 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10534 !(turn_off & IPIF_UP)) { 10535 if (ipif->ipif_flags & IPIF_UP) 10536 ill->ill_logical_down = 1; 10537 turn_on &= ~IPIF_UP; 10538 } 10539 err = ipif_down(ipif, q, mp); 10540 ip1dbg(("ipif_down returns %d err ", err)); 10541 if (err == EINPROGRESS) 10542 return (err); 10543 (void) ipif_down_tail(ipif); 10544 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10545 /* 10546 * If we can quiesce the ill, then continue. If not, then 10547 * ip_sioctl_flags_tail() will be called from 10548 * ipif_ill_refrele_tail(). 10549 */ 10550 ill_down_ipifs(ill, B_TRUE); 10551 10552 mutex_enter(&connp->conn_lock); 10553 mutex_enter(&ill->ill_lock); 10554 if (!ill_is_quiescent(ill)) { 10555 boolean_t success; 10556 10557 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10558 q, mp, ILL_DOWN); 10559 mutex_exit(&ill->ill_lock); 10560 mutex_exit(&connp->conn_lock); 10561 return (success ? EINPROGRESS : EINTR); 10562 } 10563 mutex_exit(&ill->ill_lock); 10564 mutex_exit(&connp->conn_lock); 10565 } 10566 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10567 } 10568 10569 static int 10570 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10571 { 10572 ill_t *ill; 10573 phyint_t *phyi; 10574 uint64_t turn_on, turn_off; 10575 boolean_t phyint_flags_modified = B_FALSE; 10576 int err = 0; 10577 boolean_t set_linklocal = B_FALSE; 10578 10579 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10580 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10581 10582 ASSERT(IAM_WRITER_IPIF(ipif)); 10583 10584 ill = ipif->ipif_ill; 10585 phyi = ill->ill_phyint; 10586 10587 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10588 10589 /* 10590 * IFF_UP is handled separately. 10591 */ 10592 turn_on &= ~IFF_UP; 10593 turn_off &= ~IFF_UP; 10594 10595 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10596 phyint_flags_modified = B_TRUE; 10597 10598 /* 10599 * Now we change the flags. Track current value of 10600 * other flags in their respective places. 10601 */ 10602 mutex_enter(&ill->ill_lock); 10603 mutex_enter(&phyi->phyint_lock); 10604 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10605 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10606 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10607 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10608 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10609 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10610 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10611 set_linklocal = B_TRUE; 10612 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10613 } 10614 10615 mutex_exit(&ill->ill_lock); 10616 mutex_exit(&phyi->phyint_lock); 10617 10618 if (set_linklocal) 10619 (void) ipif_setlinklocal(ipif); 10620 10621 /* 10622 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10623 * the kernel: if any of them has been set by userland, the interface 10624 * cannot be used for data traffic. 10625 */ 10626 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10627 ASSERT(!IS_IPMP(ill)); 10628 /* 10629 * It's possible the ill is part of an "anonymous" IPMP group 10630 * rather than a real group. In that case, there are no other 10631 * interfaces in the group and thus no need for us to call 10632 * ipmp_phyint_refresh_active(). 10633 */ 10634 if (IS_UNDER_IPMP(ill)) 10635 ipmp_phyint_refresh_active(phyi); 10636 } 10637 10638 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10639 /* 10640 * If the ILLF_NOACCEPT flag is changed, bring up all the 10641 * ipifs that were brought down. 10642 * 10643 * The routing sockets messages are sent as the result 10644 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10645 * as well. 10646 */ 10647 err = ill_up_ipifs(ill, q, mp); 10648 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10649 /* 10650 * XXX ipif_up really does not know whether a phyint flags 10651 * was modified or not. So, it sends up information on 10652 * only one routing sockets message. As we don't bring up 10653 * the interface and also set PHYI_ flags simultaneously 10654 * it should be okay. 10655 */ 10656 err = ipif_up(ipif, q, mp); 10657 } else { 10658 /* 10659 * Make sure routing socket sees all changes to the flags. 10660 * ipif_up_done* handles this when we use ipif_up. 10661 */ 10662 if (phyint_flags_modified) { 10663 if (phyi->phyint_illv4 != NULL) { 10664 ip_rts_ifmsg(phyi->phyint_illv4-> 10665 ill_ipif, RTSQ_DEFAULT); 10666 } 10667 if (phyi->phyint_illv6 != NULL) { 10668 ip_rts_ifmsg(phyi->phyint_illv6-> 10669 ill_ipif, RTSQ_DEFAULT); 10670 } 10671 } else { 10672 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10673 } 10674 /* 10675 * Update the flags in SCTP's IPIF list, ipif_up() will do 10676 * this in need_up case. 10677 */ 10678 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10679 } 10680 10681 /* The default multicast interface might have changed */ 10682 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10683 return (err); 10684 } 10685 10686 /* 10687 * Restart the flags operation now that the refcounts have dropped to zero. 10688 */ 10689 /* ARGSUSED */ 10690 int 10691 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10692 ip_ioctl_cmd_t *ipip, void *if_req) 10693 { 10694 uint64_t flags; 10695 struct ifreq *ifr = if_req; 10696 struct lifreq *lifr = if_req; 10697 uint64_t turn_on, turn_off; 10698 10699 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10700 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10701 10702 if (ipip->ipi_cmd_type == IF_CMD) { 10703 /* cast to uint16_t prevents unwanted sign extension */ 10704 flags = (uint16_t)ifr->ifr_flags; 10705 } else { 10706 flags = lifr->lifr_flags; 10707 } 10708 10709 /* 10710 * If this function call is a result of the ILLF_NOACCEPT flag 10711 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10712 */ 10713 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10714 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10715 (void) ipif_down_tail(ipif); 10716 10717 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10718 } 10719 10720 /* 10721 * Can operate on either a module or a driver queue. 10722 */ 10723 /* ARGSUSED */ 10724 int 10725 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10726 ip_ioctl_cmd_t *ipip, void *if_req) 10727 { 10728 /* 10729 * Has the flags been set correctly till now ? 10730 */ 10731 ill_t *ill = ipif->ipif_ill; 10732 phyint_t *phyi = ill->ill_phyint; 10733 10734 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10735 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10736 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10737 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10738 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10739 10740 /* 10741 * Need a lock since some flags can be set even when there are 10742 * references to the ipif. 10743 */ 10744 mutex_enter(&ill->ill_lock); 10745 if (ipip->ipi_cmd_type == IF_CMD) { 10746 struct ifreq *ifr = (struct ifreq *)if_req; 10747 10748 /* Get interface flags (low 16 only). */ 10749 ifr->ifr_flags = ((ipif->ipif_flags | 10750 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10751 } else { 10752 struct lifreq *lifr = (struct lifreq *)if_req; 10753 10754 /* Get interface flags. */ 10755 lifr->lifr_flags = ipif->ipif_flags | 10756 ill->ill_flags | phyi->phyint_flags; 10757 } 10758 mutex_exit(&ill->ill_lock); 10759 return (0); 10760 } 10761 10762 /* 10763 * We allow the MTU to be set on an ILL, but not have it be different 10764 * for different IPIFs since we don't actually send packets on IPIFs. 10765 */ 10766 /* ARGSUSED */ 10767 int 10768 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10769 ip_ioctl_cmd_t *ipip, void *if_req) 10770 { 10771 int mtu; 10772 int ip_min_mtu; 10773 struct ifreq *ifr; 10774 struct lifreq *lifr; 10775 ill_t *ill; 10776 10777 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10778 ipif->ipif_id, (void *)ipif)); 10779 if (ipip->ipi_cmd_type == IF_CMD) { 10780 ifr = (struct ifreq *)if_req; 10781 mtu = ifr->ifr_metric; 10782 } else { 10783 lifr = (struct lifreq *)if_req; 10784 mtu = lifr->lifr_mtu; 10785 } 10786 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10787 if (ipif->ipif_id != 0) 10788 return (EINVAL); 10789 10790 ill = ipif->ipif_ill; 10791 if (ipif->ipif_isv6) 10792 ip_min_mtu = IPV6_MIN_MTU; 10793 else 10794 ip_min_mtu = IP_MIN_MTU; 10795 10796 mutex_enter(&ill->ill_lock); 10797 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10798 mutex_exit(&ill->ill_lock); 10799 return (EINVAL); 10800 } 10801 /* Avoid increasing ill_mc_mtu */ 10802 if (ill->ill_mc_mtu > mtu) 10803 ill->ill_mc_mtu = mtu; 10804 10805 /* 10806 * The dce and fragmentation code can handle changes to ill_mtu 10807 * concurrent with sending/fragmenting packets. 10808 */ 10809 ill->ill_mtu = mtu; 10810 ill->ill_flags |= ILLF_FIXEDMTU; 10811 mutex_exit(&ill->ill_lock); 10812 10813 /* 10814 * Make sure all dce_generation checks find out 10815 * that ill_mtu/ill_mc_mtu has changed. 10816 */ 10817 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10818 10819 /* 10820 * Refresh IPMP meta-interface MTU if necessary. 10821 */ 10822 if (IS_UNDER_IPMP(ill)) 10823 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10824 10825 /* Update the MTU in SCTP's list */ 10826 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10827 return (0); 10828 } 10829 10830 /* Get interface MTU. */ 10831 /* ARGSUSED */ 10832 int 10833 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10834 ip_ioctl_cmd_t *ipip, void *if_req) 10835 { 10836 struct ifreq *ifr; 10837 struct lifreq *lifr; 10838 10839 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10840 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10841 10842 /* 10843 * We allow a get on any logical interface even though the set 10844 * can only be done on logical unit 0. 10845 */ 10846 if (ipip->ipi_cmd_type == IF_CMD) { 10847 ifr = (struct ifreq *)if_req; 10848 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10849 } else { 10850 lifr = (struct lifreq *)if_req; 10851 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10852 } 10853 return (0); 10854 } 10855 10856 /* Set interface broadcast address. */ 10857 /* ARGSUSED2 */ 10858 int 10859 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10860 ip_ioctl_cmd_t *ipip, void *if_req) 10861 { 10862 ipaddr_t addr; 10863 ire_t *ire; 10864 ill_t *ill = ipif->ipif_ill; 10865 ip_stack_t *ipst = ill->ill_ipst; 10866 10867 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10868 ipif->ipif_id)); 10869 10870 ASSERT(IAM_WRITER_IPIF(ipif)); 10871 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10872 return (EADDRNOTAVAIL); 10873 10874 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10875 10876 if (sin->sin_family != AF_INET) 10877 return (EAFNOSUPPORT); 10878 10879 addr = sin->sin_addr.s_addr; 10880 10881 if (ipif->ipif_flags & IPIF_UP) { 10882 /* 10883 * If we are already up, make sure the new 10884 * broadcast address makes sense. If it does, 10885 * there should be an IRE for it already. 10886 */ 10887 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10888 ill, ipif->ipif_zoneid, NULL, 10889 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10890 if (ire == NULL) { 10891 return (EINVAL); 10892 } else { 10893 ire_refrele(ire); 10894 } 10895 } 10896 /* 10897 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10898 * needs to already exist we never need to change the set of 10899 * IRE_BROADCASTs when we are UP. 10900 */ 10901 if (addr != ipif->ipif_brd_addr) 10902 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10903 10904 return (0); 10905 } 10906 10907 /* Get interface broadcast address. */ 10908 /* ARGSUSED */ 10909 int 10910 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10911 ip_ioctl_cmd_t *ipip, void *if_req) 10912 { 10913 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10914 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10915 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10916 return (EADDRNOTAVAIL); 10917 10918 /* IPIF_BROADCAST not possible with IPv6 */ 10919 ASSERT(!ipif->ipif_isv6); 10920 *sin = sin_null; 10921 sin->sin_family = AF_INET; 10922 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10923 return (0); 10924 } 10925 10926 /* 10927 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10928 */ 10929 /* ARGSUSED */ 10930 int 10931 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10932 ip_ioctl_cmd_t *ipip, void *if_req) 10933 { 10934 int err = 0; 10935 in6_addr_t v6mask; 10936 10937 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10938 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10939 10940 ASSERT(IAM_WRITER_IPIF(ipif)); 10941 10942 if (ipif->ipif_isv6) { 10943 sin6_t *sin6; 10944 10945 if (sin->sin_family != AF_INET6) 10946 return (EAFNOSUPPORT); 10947 10948 sin6 = (sin6_t *)sin; 10949 v6mask = sin6->sin6_addr; 10950 } else { 10951 ipaddr_t mask; 10952 10953 if (sin->sin_family != AF_INET) 10954 return (EAFNOSUPPORT); 10955 10956 mask = sin->sin_addr.s_addr; 10957 if (!ip_contiguous_mask(ntohl(mask))) 10958 return (ENOTSUP); 10959 V4MASK_TO_V6(mask, v6mask); 10960 } 10961 10962 /* 10963 * No big deal if the interface isn't already up, or the mask 10964 * isn't really changing, or this is pt-pt. 10965 */ 10966 if (!(ipif->ipif_flags & IPIF_UP) || 10967 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10968 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10969 ipif->ipif_v6net_mask = v6mask; 10970 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10971 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10972 ipif->ipif_v6net_mask, 10973 ipif->ipif_v6subnet); 10974 } 10975 return (0); 10976 } 10977 /* 10978 * Make sure we have valid net and subnet broadcast ire's 10979 * for the old netmask, if needed by other logical interfaces. 10980 */ 10981 err = ipif_logical_down(ipif, q, mp); 10982 if (err == EINPROGRESS) 10983 return (err); 10984 (void) ipif_down_tail(ipif); 10985 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10986 return (err); 10987 } 10988 10989 static int 10990 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10991 { 10992 in6_addr_t v6mask; 10993 int err = 0; 10994 10995 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10996 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10997 10998 if (ipif->ipif_isv6) { 10999 sin6_t *sin6; 11000 11001 sin6 = (sin6_t *)sin; 11002 v6mask = sin6->sin6_addr; 11003 } else { 11004 ipaddr_t mask; 11005 11006 mask = sin->sin_addr.s_addr; 11007 V4MASK_TO_V6(mask, v6mask); 11008 } 11009 11010 ipif->ipif_v6net_mask = v6mask; 11011 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11012 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11013 ipif->ipif_v6subnet); 11014 } 11015 err = ipif_up(ipif, q, mp); 11016 11017 if (err == 0 || err == EINPROGRESS) { 11018 /* 11019 * The interface must be DL_BOUND if this packet has to 11020 * go out on the wire. Since we only go through a logical 11021 * down and are bound with the driver during an internal 11022 * down/up that is satisfied. 11023 */ 11024 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11025 /* Potentially broadcast an address mask reply. */ 11026 ipif_mask_reply(ipif); 11027 } 11028 } 11029 return (err); 11030 } 11031 11032 /* ARGSUSED */ 11033 int 11034 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11035 ip_ioctl_cmd_t *ipip, void *if_req) 11036 { 11037 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11038 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11039 (void) ipif_down_tail(ipif); 11040 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11041 } 11042 11043 /* Get interface net mask. */ 11044 /* ARGSUSED */ 11045 int 11046 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11047 ip_ioctl_cmd_t *ipip, void *if_req) 11048 { 11049 struct lifreq *lifr = (struct lifreq *)if_req; 11050 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11051 11052 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11053 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11054 11055 /* 11056 * net mask can't change since we have a reference to the ipif. 11057 */ 11058 if (ipif->ipif_isv6) { 11059 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11060 *sin6 = sin6_null; 11061 sin6->sin6_family = AF_INET6; 11062 sin6->sin6_addr = ipif->ipif_v6net_mask; 11063 lifr->lifr_addrlen = 11064 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11065 } else { 11066 *sin = sin_null; 11067 sin->sin_family = AF_INET; 11068 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11069 if (ipip->ipi_cmd_type == LIF_CMD) { 11070 lifr->lifr_addrlen = 11071 ip_mask_to_plen(ipif->ipif_net_mask); 11072 } 11073 } 11074 return (0); 11075 } 11076 11077 /* ARGSUSED */ 11078 int 11079 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11080 ip_ioctl_cmd_t *ipip, void *if_req) 11081 { 11082 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11083 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11084 11085 /* 11086 * Since no applications should ever be setting metrics on underlying 11087 * interfaces, we explicitly fail to smoke 'em out. 11088 */ 11089 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11090 return (EINVAL); 11091 11092 /* 11093 * Set interface metric. We don't use this for 11094 * anything but we keep track of it in case it is 11095 * important to routing applications or such. 11096 */ 11097 if (ipip->ipi_cmd_type == IF_CMD) { 11098 struct ifreq *ifr; 11099 11100 ifr = (struct ifreq *)if_req; 11101 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11102 } else { 11103 struct lifreq *lifr; 11104 11105 lifr = (struct lifreq *)if_req; 11106 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11107 } 11108 return (0); 11109 } 11110 11111 /* ARGSUSED */ 11112 int 11113 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11114 ip_ioctl_cmd_t *ipip, void *if_req) 11115 { 11116 /* Get interface metric. */ 11117 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11118 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11119 11120 if (ipip->ipi_cmd_type == IF_CMD) { 11121 struct ifreq *ifr; 11122 11123 ifr = (struct ifreq *)if_req; 11124 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11125 } else { 11126 struct lifreq *lifr; 11127 11128 lifr = (struct lifreq *)if_req; 11129 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11130 } 11131 11132 return (0); 11133 } 11134 11135 /* ARGSUSED */ 11136 int 11137 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11138 ip_ioctl_cmd_t *ipip, void *if_req) 11139 { 11140 int arp_muxid; 11141 11142 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11143 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11144 /* 11145 * Set the muxid returned from I_PLINK. 11146 */ 11147 if (ipip->ipi_cmd_type == IF_CMD) { 11148 struct ifreq *ifr = (struct ifreq *)if_req; 11149 11150 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11151 arp_muxid = ifr->ifr_arp_muxid; 11152 } else { 11153 struct lifreq *lifr = (struct lifreq *)if_req; 11154 11155 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11156 arp_muxid = lifr->lifr_arp_muxid; 11157 } 11158 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11159 return (0); 11160 } 11161 11162 /* ARGSUSED */ 11163 int 11164 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11165 ip_ioctl_cmd_t *ipip, void *if_req) 11166 { 11167 int arp_muxid = 0; 11168 11169 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11170 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11171 /* 11172 * Get the muxid saved in ill for I_PUNLINK. 11173 */ 11174 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11175 if (ipip->ipi_cmd_type == IF_CMD) { 11176 struct ifreq *ifr = (struct ifreq *)if_req; 11177 11178 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11179 ifr->ifr_arp_muxid = arp_muxid; 11180 } else { 11181 struct lifreq *lifr = (struct lifreq *)if_req; 11182 11183 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11184 lifr->lifr_arp_muxid = arp_muxid; 11185 } 11186 return (0); 11187 } 11188 11189 /* 11190 * Set the subnet prefix. Does not modify the broadcast address. 11191 */ 11192 /* ARGSUSED */ 11193 int 11194 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11195 ip_ioctl_cmd_t *ipip, void *if_req) 11196 { 11197 int err = 0; 11198 in6_addr_t v6addr; 11199 in6_addr_t v6mask; 11200 boolean_t need_up = B_FALSE; 11201 int addrlen; 11202 11203 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11204 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11205 11206 ASSERT(IAM_WRITER_IPIF(ipif)); 11207 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11208 11209 if (ipif->ipif_isv6) { 11210 sin6_t *sin6; 11211 11212 if (sin->sin_family != AF_INET6) 11213 return (EAFNOSUPPORT); 11214 11215 sin6 = (sin6_t *)sin; 11216 v6addr = sin6->sin6_addr; 11217 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11218 return (EADDRNOTAVAIL); 11219 } else { 11220 ipaddr_t addr; 11221 11222 if (sin->sin_family != AF_INET) 11223 return (EAFNOSUPPORT); 11224 11225 addr = sin->sin_addr.s_addr; 11226 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11227 return (EADDRNOTAVAIL); 11228 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11229 /* Add 96 bits */ 11230 addrlen += IPV6_ABITS - IP_ABITS; 11231 } 11232 11233 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11234 return (EINVAL); 11235 11236 /* Check if bits in the address is set past the mask */ 11237 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11238 return (EINVAL); 11239 11240 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11241 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11242 return (0); /* No change */ 11243 11244 if (ipif->ipif_flags & IPIF_UP) { 11245 /* 11246 * If the interface is already marked up, 11247 * we call ipif_down which will take care 11248 * of ditching any IREs that have been set 11249 * up based on the old interface address. 11250 */ 11251 err = ipif_logical_down(ipif, q, mp); 11252 if (err == EINPROGRESS) 11253 return (err); 11254 (void) ipif_down_tail(ipif); 11255 need_up = B_TRUE; 11256 } 11257 11258 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11259 return (err); 11260 } 11261 11262 static int 11263 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11264 queue_t *q, mblk_t *mp, boolean_t need_up) 11265 { 11266 ill_t *ill = ipif->ipif_ill; 11267 int err = 0; 11268 11269 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11270 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11271 11272 /* Set the new address. */ 11273 mutex_enter(&ill->ill_lock); 11274 ipif->ipif_v6net_mask = v6mask; 11275 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11276 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11277 ipif->ipif_v6subnet); 11278 } 11279 mutex_exit(&ill->ill_lock); 11280 11281 if (need_up) { 11282 /* 11283 * Now bring the interface back up. If this 11284 * is the only IPIF for the ILL, ipif_up 11285 * will have to re-bind to the device, so 11286 * we may get back EINPROGRESS, in which 11287 * case, this IOCTL will get completed in 11288 * ip_rput_dlpi when we see the DL_BIND_ACK. 11289 */ 11290 err = ipif_up(ipif, q, mp); 11291 if (err == EINPROGRESS) 11292 return (err); 11293 } 11294 return (err); 11295 } 11296 11297 /* ARGSUSED */ 11298 int 11299 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11300 ip_ioctl_cmd_t *ipip, void *if_req) 11301 { 11302 int addrlen; 11303 in6_addr_t v6addr; 11304 in6_addr_t v6mask; 11305 struct lifreq *lifr = (struct lifreq *)if_req; 11306 11307 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11308 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11309 (void) ipif_down_tail(ipif); 11310 11311 addrlen = lifr->lifr_addrlen; 11312 if (ipif->ipif_isv6) { 11313 sin6_t *sin6; 11314 11315 sin6 = (sin6_t *)sin; 11316 v6addr = sin6->sin6_addr; 11317 } else { 11318 ipaddr_t addr; 11319 11320 addr = sin->sin_addr.s_addr; 11321 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11322 addrlen += IPV6_ABITS - IP_ABITS; 11323 } 11324 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11325 11326 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11327 } 11328 11329 /* ARGSUSED */ 11330 int 11331 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11332 ip_ioctl_cmd_t *ipip, void *if_req) 11333 { 11334 struct lifreq *lifr = (struct lifreq *)if_req; 11335 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11336 11337 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11338 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11339 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11340 11341 if (ipif->ipif_isv6) { 11342 *sin6 = sin6_null; 11343 sin6->sin6_family = AF_INET6; 11344 sin6->sin6_addr = ipif->ipif_v6subnet; 11345 lifr->lifr_addrlen = 11346 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11347 } else { 11348 *sin = sin_null; 11349 sin->sin_family = AF_INET; 11350 sin->sin_addr.s_addr = ipif->ipif_subnet; 11351 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11352 } 11353 return (0); 11354 } 11355 11356 /* 11357 * Set the IPv6 address token. 11358 */ 11359 /* ARGSUSED */ 11360 int 11361 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11362 ip_ioctl_cmd_t *ipi, void *if_req) 11363 { 11364 ill_t *ill = ipif->ipif_ill; 11365 int err; 11366 in6_addr_t v6addr; 11367 in6_addr_t v6mask; 11368 boolean_t need_up = B_FALSE; 11369 int i; 11370 sin6_t *sin6 = (sin6_t *)sin; 11371 struct lifreq *lifr = (struct lifreq *)if_req; 11372 int addrlen; 11373 11374 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11375 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11376 ASSERT(IAM_WRITER_IPIF(ipif)); 11377 11378 addrlen = lifr->lifr_addrlen; 11379 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11380 if (ipif->ipif_id != 0) 11381 return (EINVAL); 11382 11383 if (!ipif->ipif_isv6) 11384 return (EINVAL); 11385 11386 if (addrlen > IPV6_ABITS) 11387 return (EINVAL); 11388 11389 v6addr = sin6->sin6_addr; 11390 11391 /* 11392 * The length of the token is the length from the end. To get 11393 * the proper mask for this, compute the mask of the bits not 11394 * in the token; ie. the prefix, and then xor to get the mask. 11395 */ 11396 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11397 return (EINVAL); 11398 for (i = 0; i < 4; i++) { 11399 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11400 } 11401 11402 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11403 ill->ill_token_length == addrlen) 11404 return (0); /* No change */ 11405 11406 if (ipif->ipif_flags & IPIF_UP) { 11407 err = ipif_logical_down(ipif, q, mp); 11408 if (err == EINPROGRESS) 11409 return (err); 11410 (void) ipif_down_tail(ipif); 11411 need_up = B_TRUE; 11412 } 11413 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11414 return (err); 11415 } 11416 11417 static int 11418 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11419 mblk_t *mp, boolean_t need_up) 11420 { 11421 in6_addr_t v6addr; 11422 in6_addr_t v6mask; 11423 ill_t *ill = ipif->ipif_ill; 11424 int i; 11425 int err = 0; 11426 11427 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11428 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11429 v6addr = sin6->sin6_addr; 11430 /* 11431 * The length of the token is the length from the end. To get 11432 * the proper mask for this, compute the mask of the bits not 11433 * in the token; ie. the prefix, and then xor to get the mask. 11434 */ 11435 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11436 for (i = 0; i < 4; i++) 11437 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11438 11439 mutex_enter(&ill->ill_lock); 11440 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11441 ill->ill_token_length = addrlen; 11442 ill->ill_manual_token = 1; 11443 11444 /* Reconfigure the link-local address based on this new token */ 11445 ipif_setlinklocal(ill->ill_ipif); 11446 11447 mutex_exit(&ill->ill_lock); 11448 11449 if (need_up) { 11450 /* 11451 * Now bring the interface back up. If this 11452 * is the only IPIF for the ILL, ipif_up 11453 * will have to re-bind to the device, so 11454 * we may get back EINPROGRESS, in which 11455 * case, this IOCTL will get completed in 11456 * ip_rput_dlpi when we see the DL_BIND_ACK. 11457 */ 11458 err = ipif_up(ipif, q, mp); 11459 if (err == EINPROGRESS) 11460 return (err); 11461 } 11462 return (err); 11463 } 11464 11465 /* ARGSUSED */ 11466 int 11467 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11468 ip_ioctl_cmd_t *ipi, void *if_req) 11469 { 11470 ill_t *ill; 11471 sin6_t *sin6 = (sin6_t *)sin; 11472 struct lifreq *lifr = (struct lifreq *)if_req; 11473 11474 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11475 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11476 if (ipif->ipif_id != 0) 11477 return (EINVAL); 11478 11479 ill = ipif->ipif_ill; 11480 if (!ill->ill_isv6) 11481 return (ENXIO); 11482 11483 *sin6 = sin6_null; 11484 sin6->sin6_family = AF_INET6; 11485 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11486 sin6->sin6_addr = ill->ill_token; 11487 lifr->lifr_addrlen = ill->ill_token_length; 11488 return (0); 11489 } 11490 11491 /* 11492 * Set (hardware) link specific information that might override 11493 * what was acquired through the DL_INFO_ACK. 11494 */ 11495 /* ARGSUSED */ 11496 int 11497 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11498 ip_ioctl_cmd_t *ipi, void *if_req) 11499 { 11500 ill_t *ill = ipif->ipif_ill; 11501 int ip_min_mtu; 11502 struct lifreq *lifr = (struct lifreq *)if_req; 11503 lif_ifinfo_req_t *lir; 11504 11505 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11506 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11507 lir = &lifr->lifr_ifinfo; 11508 ASSERT(IAM_WRITER_IPIF(ipif)); 11509 11510 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11511 if (ipif->ipif_id != 0) 11512 return (EINVAL); 11513 11514 /* Set interface MTU. */ 11515 if (ipif->ipif_isv6) 11516 ip_min_mtu = IPV6_MIN_MTU; 11517 else 11518 ip_min_mtu = IP_MIN_MTU; 11519 11520 /* 11521 * Verify values before we set anything. Allow zero to 11522 * mean unspecified. 11523 * 11524 * XXX We should be able to set the user-defined lir_mtu to some value 11525 * that is greater than ill_current_frag but less than ill_max_frag- the 11526 * ill_max_frag value tells us the max MTU that can be handled by the 11527 * datalink, whereas the ill_current_frag is dynamically computed for 11528 * some link-types like tunnels, based on the tunnel PMTU. However, 11529 * since there is currently no way of distinguishing between 11530 * administratively fixed link mtu values (e.g., those set via 11531 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11532 * for tunnels) we conservatively choose the ill_current_frag as the 11533 * upper-bound. 11534 */ 11535 if (lir->lir_maxmtu != 0 && 11536 (lir->lir_maxmtu > ill->ill_current_frag || 11537 lir->lir_maxmtu < ip_min_mtu)) 11538 return (EINVAL); 11539 if (lir->lir_reachtime != 0 && 11540 lir->lir_reachtime > ND_MAX_REACHTIME) 11541 return (EINVAL); 11542 if (lir->lir_reachretrans != 0 && 11543 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11544 return (EINVAL); 11545 11546 mutex_enter(&ill->ill_lock); 11547 /* 11548 * The dce and fragmentation code can handle changes to ill_mtu 11549 * concurrent with sending/fragmenting packets. 11550 */ 11551 if (lir->lir_maxmtu != 0) 11552 ill->ill_user_mtu = lir->lir_maxmtu; 11553 11554 if (lir->lir_reachtime != 0) 11555 ill->ill_reachable_time = lir->lir_reachtime; 11556 11557 if (lir->lir_reachretrans != 0) 11558 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11559 11560 ill->ill_max_hops = lir->lir_maxhops; 11561 ill->ill_max_buf = ND_MAX_Q; 11562 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11563 /* 11564 * ill_mtu is the actual interface MTU, obtained as the min 11565 * of user-configured mtu and the value announced by the 11566 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11567 * we have already made the choice of requiring 11568 * ill_user_mtu < ill_current_frag by the time we get here, 11569 * the ill_mtu effectively gets assigned to the ill_user_mtu 11570 * here. 11571 */ 11572 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11573 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu); 11574 } 11575 mutex_exit(&ill->ill_lock); 11576 11577 /* 11578 * Make sure all dce_generation checks find out 11579 * that ill_mtu/ill_mc_mtu has changed. 11580 */ 11581 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11582 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11583 11584 /* 11585 * Refresh IPMP meta-interface MTU if necessary. 11586 */ 11587 if (IS_UNDER_IPMP(ill)) 11588 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11589 11590 return (0); 11591 } 11592 11593 /* ARGSUSED */ 11594 int 11595 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11596 ip_ioctl_cmd_t *ipi, void *if_req) 11597 { 11598 struct lif_ifinfo_req *lir; 11599 ill_t *ill = ipif->ipif_ill; 11600 11601 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11602 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11603 if (ipif->ipif_id != 0) 11604 return (EINVAL); 11605 11606 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11607 lir->lir_maxhops = ill->ill_max_hops; 11608 lir->lir_reachtime = ill->ill_reachable_time; 11609 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11610 lir->lir_maxmtu = ill->ill_mtu; 11611 11612 return (0); 11613 } 11614 11615 /* 11616 * Return best guess as to the subnet mask for the specified address. 11617 * Based on the subnet masks for all the configured interfaces. 11618 * 11619 * We end up returning a zero mask in the case of default, multicast or 11620 * experimental. 11621 */ 11622 static ipaddr_t 11623 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11624 { 11625 ipaddr_t net_mask; 11626 ill_t *ill; 11627 ipif_t *ipif; 11628 ill_walk_context_t ctx; 11629 ipif_t *fallback_ipif = NULL; 11630 11631 net_mask = ip_net_mask(addr); 11632 if (net_mask == 0) { 11633 *ipifp = NULL; 11634 return (0); 11635 } 11636 11637 /* Let's check to see if this is maybe a local subnet route. */ 11638 /* this function only applies to IPv4 interfaces */ 11639 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11640 ill = ILL_START_WALK_V4(&ctx, ipst); 11641 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11642 mutex_enter(&ill->ill_lock); 11643 for (ipif = ill->ill_ipif; ipif != NULL; 11644 ipif = ipif->ipif_next) { 11645 if (IPIF_IS_CONDEMNED(ipif)) 11646 continue; 11647 if (!(ipif->ipif_flags & IPIF_UP)) 11648 continue; 11649 if ((ipif->ipif_subnet & net_mask) == 11650 (addr & net_mask)) { 11651 /* 11652 * Don't trust pt-pt interfaces if there are 11653 * other interfaces. 11654 */ 11655 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11656 if (fallback_ipif == NULL) { 11657 ipif_refhold_locked(ipif); 11658 fallback_ipif = ipif; 11659 } 11660 continue; 11661 } 11662 11663 /* 11664 * Fine. Just assume the same net mask as the 11665 * directly attached subnet interface is using. 11666 */ 11667 ipif_refhold_locked(ipif); 11668 mutex_exit(&ill->ill_lock); 11669 rw_exit(&ipst->ips_ill_g_lock); 11670 if (fallback_ipif != NULL) 11671 ipif_refrele(fallback_ipif); 11672 *ipifp = ipif; 11673 return (ipif->ipif_net_mask); 11674 } 11675 } 11676 mutex_exit(&ill->ill_lock); 11677 } 11678 rw_exit(&ipst->ips_ill_g_lock); 11679 11680 *ipifp = fallback_ipif; 11681 return ((fallback_ipif != NULL) ? 11682 fallback_ipif->ipif_net_mask : net_mask); 11683 } 11684 11685 /* 11686 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11687 */ 11688 static void 11689 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11690 { 11691 IOCP iocp; 11692 ipft_t *ipft; 11693 ipllc_t *ipllc; 11694 mblk_t *mp1; 11695 cred_t *cr; 11696 int error = 0; 11697 conn_t *connp; 11698 11699 ip1dbg(("ip_wput_ioctl")); 11700 iocp = (IOCP)mp->b_rptr; 11701 mp1 = mp->b_cont; 11702 if (mp1 == NULL) { 11703 iocp->ioc_error = EINVAL; 11704 mp->b_datap->db_type = M_IOCNAK; 11705 iocp->ioc_count = 0; 11706 qreply(q, mp); 11707 return; 11708 } 11709 11710 /* 11711 * These IOCTLs provide various control capabilities to 11712 * upstream agents such as ULPs and processes. There 11713 * are currently two such IOCTLs implemented. They 11714 * are used by TCP to provide update information for 11715 * existing IREs and to forcibly delete an IRE for a 11716 * host that is not responding, thereby forcing an 11717 * attempt at a new route. 11718 */ 11719 iocp->ioc_error = EINVAL; 11720 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11721 goto done; 11722 11723 ipllc = (ipllc_t *)mp1->b_rptr; 11724 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11725 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11726 break; 11727 } 11728 /* 11729 * prefer credential from mblk over ioctl; 11730 * see ip_sioctl_copyin_setup 11731 */ 11732 cr = msg_getcred(mp, NULL); 11733 if (cr == NULL) 11734 cr = iocp->ioc_cr; 11735 11736 /* 11737 * Refhold the conn in case the request gets queued up in some lookup 11738 */ 11739 ASSERT(CONN_Q(q)); 11740 connp = Q_TO_CONN(q); 11741 CONN_INC_REF(connp); 11742 CONN_INC_IOCTLREF(connp); 11743 if (ipft->ipft_pfi && 11744 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11745 pullupmsg(mp1, ipft->ipft_min_size))) { 11746 error = (*ipft->ipft_pfi)(q, 11747 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11748 } 11749 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11750 /* 11751 * CONN_OPER_PENDING_DONE happens in the function called 11752 * through ipft_pfi above. 11753 */ 11754 return; 11755 } 11756 11757 CONN_DEC_IOCTLREF(connp); 11758 CONN_OPER_PENDING_DONE(connp); 11759 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11760 freemsg(mp); 11761 return; 11762 } 11763 iocp->ioc_error = error; 11764 11765 done: 11766 mp->b_datap->db_type = M_IOCACK; 11767 if (iocp->ioc_error) 11768 iocp->ioc_count = 0; 11769 qreply(q, mp); 11770 } 11771 11772 /* 11773 * Assign a unique id for the ipif. This is used by sctp_addr.c 11774 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11775 */ 11776 static void 11777 ipif_assign_seqid(ipif_t *ipif) 11778 { 11779 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11780 11781 ipif->ipif_seqid = atomic_inc_64_nv(&ipst->ips_ipif_g_seqid); 11782 } 11783 11784 /* 11785 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11786 * administratively down (i.e., no DAD), of the same type, and locked. Note 11787 * that the clone is complete -- including the seqid -- and the expectation is 11788 * that the caller will either free or overwrite `sipif' before it's unlocked. 11789 */ 11790 static void 11791 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11792 { 11793 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11794 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11795 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11796 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11797 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11798 11799 dipif->ipif_flags = sipif->ipif_flags; 11800 dipif->ipif_zoneid = sipif->ipif_zoneid; 11801 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11802 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11803 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11804 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11805 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11806 11807 /* 11808 * As per the comment atop the function, we assume that these sipif 11809 * fields will be changed before sipif is unlocked. 11810 */ 11811 dipif->ipif_seqid = sipif->ipif_seqid; 11812 dipif->ipif_state_flags = sipif->ipif_state_flags; 11813 } 11814 11815 /* 11816 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11817 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11818 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11819 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11820 * down (i.e., no DAD), of the same type, and unlocked. 11821 */ 11822 static void 11823 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11824 { 11825 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11826 ipxop_t *ipx = ipsq->ipsq_xop; 11827 11828 ASSERT(sipif != dipif); 11829 ASSERT(sipif != virgipif); 11830 11831 /* 11832 * Grab all of the locks that protect the ipif in a defined order. 11833 */ 11834 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11835 11836 ipif_clone(sipif, dipif); 11837 if (virgipif != NULL) { 11838 ipif_clone(virgipif, sipif); 11839 mi_free(virgipif); 11840 } 11841 11842 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11843 11844 /* 11845 * Transfer ownership of the current xop, if necessary. 11846 */ 11847 if (ipx->ipx_current_ipif == sipif) { 11848 ASSERT(ipx->ipx_pending_ipif == NULL); 11849 mutex_enter(&ipx->ipx_lock); 11850 ipx->ipx_current_ipif = dipif; 11851 mutex_exit(&ipx->ipx_lock); 11852 } 11853 11854 if (virgipif == NULL) 11855 mi_free(sipif); 11856 } 11857 11858 /* 11859 * checks if: 11860 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11861 * - logical interface is within the allowed range 11862 */ 11863 static int 11864 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11865 { 11866 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11867 return (ENAMETOOLONG); 11868 11869 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11870 return (ERANGE); 11871 return (0); 11872 } 11873 11874 /* 11875 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11876 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11877 * be inserted into the first space available in the list. The value of 11878 * ipif_id will then be set to the appropriate value for its position. 11879 */ 11880 static int 11881 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11882 { 11883 ill_t *ill; 11884 ipif_t *tipif; 11885 ipif_t **tipifp; 11886 int id, err; 11887 ip_stack_t *ipst; 11888 11889 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11890 IAM_WRITER_IPIF(ipif)); 11891 11892 ill = ipif->ipif_ill; 11893 ASSERT(ill != NULL); 11894 ipst = ill->ill_ipst; 11895 11896 /* 11897 * In the case of lo0:0 we already hold the ill_g_lock. 11898 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11899 * ipif_insert. 11900 */ 11901 if (acquire_g_lock) 11902 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11903 mutex_enter(&ill->ill_lock); 11904 id = ipif->ipif_id; 11905 tipifp = &(ill->ill_ipif); 11906 if (id == -1) { /* need to find a real id */ 11907 id = 0; 11908 while ((tipif = *tipifp) != NULL) { 11909 ASSERT(tipif->ipif_id >= id); 11910 if (tipif->ipif_id != id) 11911 break; /* non-consecutive id */ 11912 id++; 11913 tipifp = &(tipif->ipif_next); 11914 } 11915 if ((err = is_lifname_valid(ill, id)) != 0) { 11916 mutex_exit(&ill->ill_lock); 11917 if (acquire_g_lock) 11918 rw_exit(&ipst->ips_ill_g_lock); 11919 return (err); 11920 } 11921 ipif->ipif_id = id; /* assign new id */ 11922 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11923 /* we have a real id; insert ipif in the right place */ 11924 while ((tipif = *tipifp) != NULL) { 11925 ASSERT(tipif->ipif_id != id); 11926 if (tipif->ipif_id > id) 11927 break; /* found correct location */ 11928 tipifp = &(tipif->ipif_next); 11929 } 11930 } else { 11931 mutex_exit(&ill->ill_lock); 11932 if (acquire_g_lock) 11933 rw_exit(&ipst->ips_ill_g_lock); 11934 return (err); 11935 } 11936 11937 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11938 11939 ipif->ipif_next = tipif; 11940 *tipifp = ipif; 11941 mutex_exit(&ill->ill_lock); 11942 if (acquire_g_lock) 11943 rw_exit(&ipst->ips_ill_g_lock); 11944 11945 return (0); 11946 } 11947 11948 static void 11949 ipif_remove(ipif_t *ipif) 11950 { 11951 ipif_t **ipifp; 11952 ill_t *ill = ipif->ipif_ill; 11953 11954 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11955 11956 mutex_enter(&ill->ill_lock); 11957 ipifp = &ill->ill_ipif; 11958 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11959 if (*ipifp == ipif) { 11960 *ipifp = ipif->ipif_next; 11961 break; 11962 } 11963 } 11964 mutex_exit(&ill->ill_lock); 11965 } 11966 11967 /* 11968 * Allocate and initialize a new interface control structure. (Always 11969 * called as writer.) 11970 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11971 * is not part of the global linked list of ills. ipif_seqid is unique 11972 * in the system and to preserve the uniqueness, it is assigned only 11973 * when ill becomes part of the global list. At that point ill will 11974 * have a name. If it doesn't get assigned here, it will get assigned 11975 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11976 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11977 * the interface flags or any other information from the DL_INFO_ACK for 11978 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11979 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11980 * second DL_INFO_ACK comes in from the driver. 11981 */ 11982 static ipif_t * 11983 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11984 boolean_t insert, int *errorp) 11985 { 11986 int err; 11987 ipif_t *ipif; 11988 ip_stack_t *ipst = ill->ill_ipst; 11989 11990 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11991 ill->ill_name, id, (void *)ill)); 11992 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11993 11994 if (errorp != NULL) 11995 *errorp = 0; 11996 11997 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11998 if (errorp != NULL) 11999 *errorp = ENOMEM; 12000 return (NULL); 12001 } 12002 *ipif = ipif_zero; /* start clean */ 12003 12004 ipif->ipif_ill = ill; 12005 ipif->ipif_id = id; /* could be -1 */ 12006 /* 12007 * Inherit the zoneid from the ill; for the shared stack instance 12008 * this is always the global zone 12009 */ 12010 ipif->ipif_zoneid = ill->ill_zoneid; 12011 12012 ipif->ipif_refcnt = 0; 12013 12014 if (insert) { 12015 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 12016 mi_free(ipif); 12017 if (errorp != NULL) 12018 *errorp = err; 12019 return (NULL); 12020 } 12021 /* -1 id should have been replaced by real id */ 12022 id = ipif->ipif_id; 12023 ASSERT(id >= 0); 12024 } 12025 12026 if (ill->ill_name[0] != '\0') 12027 ipif_assign_seqid(ipif); 12028 12029 /* 12030 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12031 * (which must not exist yet because the zeroth ipif is created once 12032 * per ill). However, do not not link it to the ipmp_grp_t until 12033 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12034 */ 12035 if (id == 0 && IS_IPMP(ill)) { 12036 if (ipmp_illgrp_create(ill) == NULL) { 12037 if (insert) { 12038 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12039 ipif_remove(ipif); 12040 rw_exit(&ipst->ips_ill_g_lock); 12041 } 12042 mi_free(ipif); 12043 if (errorp != NULL) 12044 *errorp = ENOMEM; 12045 return (NULL); 12046 } 12047 } 12048 12049 /* 12050 * We grab ill_lock to protect the flag changes. The ipif is still 12051 * not up and can't be looked up until the ioctl completes and the 12052 * IPIF_CHANGING flag is cleared. 12053 */ 12054 mutex_enter(&ill->ill_lock); 12055 12056 ipif->ipif_ire_type = ire_type; 12057 12058 if (ipif->ipif_isv6) { 12059 ill->ill_flags |= ILLF_IPV6; 12060 } else { 12061 ipaddr_t inaddr_any = INADDR_ANY; 12062 12063 ill->ill_flags |= ILLF_IPV4; 12064 12065 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12066 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12067 &ipif->ipif_v6lcl_addr); 12068 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12069 &ipif->ipif_v6subnet); 12070 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12071 &ipif->ipif_v6net_mask); 12072 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12073 &ipif->ipif_v6brd_addr); 12074 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12075 &ipif->ipif_v6pp_dst_addr); 12076 } 12077 12078 /* 12079 * Don't set the interface flags etc. now, will do it in 12080 * ip_ll_subnet_defaults. 12081 */ 12082 if (!initialize) 12083 goto out; 12084 12085 /* 12086 * NOTE: The IPMP meta-interface is special-cased because it starts 12087 * with no underlying interfaces (and thus an unknown broadcast 12088 * address length), but all interfaces that can be placed into an IPMP 12089 * group are required to be broadcast-capable. 12090 */ 12091 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12092 /* 12093 * Later detect lack of DLPI driver multicast capability by 12094 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12095 */ 12096 ill->ill_flags |= ILLF_MULTICAST; 12097 if (!ipif->ipif_isv6) 12098 ipif->ipif_flags |= IPIF_BROADCAST; 12099 } else { 12100 if (ill->ill_net_type != IRE_LOOPBACK) { 12101 if (ipif->ipif_isv6) 12102 /* 12103 * Note: xresolv interfaces will eventually need 12104 * NOARP set here as well, but that will require 12105 * those external resolvers to have some 12106 * knowledge of that flag and act appropriately. 12107 * Not to be changed at present. 12108 */ 12109 ill->ill_flags |= ILLF_NONUD; 12110 else 12111 ill->ill_flags |= ILLF_NOARP; 12112 } 12113 if (ill->ill_phys_addr_length == 0) { 12114 if (IS_VNI(ill)) { 12115 ipif->ipif_flags |= IPIF_NOXMIT; 12116 } else { 12117 /* pt-pt supports multicast. */ 12118 ill->ill_flags |= ILLF_MULTICAST; 12119 if (ill->ill_net_type != IRE_LOOPBACK) 12120 ipif->ipif_flags |= IPIF_POINTOPOINT; 12121 } 12122 } 12123 } 12124 out: 12125 mutex_exit(&ill->ill_lock); 12126 return (ipif); 12127 } 12128 12129 /* 12130 * Remove the neighbor cache entries associated with this logical 12131 * interface. 12132 */ 12133 int 12134 ipif_arp_down(ipif_t *ipif) 12135 { 12136 ill_t *ill = ipif->ipif_ill; 12137 int err = 0; 12138 12139 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12140 ASSERT(IAM_WRITER_IPIF(ipif)); 12141 12142 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12143 ill_t *, ill, ipif_t *, ipif); 12144 ipif_nce_down(ipif); 12145 12146 /* 12147 * If this is the last ipif that is going down and there are no 12148 * duplicate addresses we may yet attempt to re-probe, then we need to 12149 * clean up ARP completely. 12150 */ 12151 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12152 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12153 /* 12154 * If this was the last ipif on an IPMP interface, purge any 12155 * static ARP entries associated with it. 12156 */ 12157 if (IS_IPMP(ill)) 12158 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12159 12160 /* UNBIND, DETACH */ 12161 err = arp_ll_down(ill); 12162 } 12163 12164 return (err); 12165 } 12166 12167 /* 12168 * Get the resolver set up for a new IP address. (Always called as writer.) 12169 * Called both for IPv4 and IPv6 interfaces, though it only does some 12170 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12171 * 12172 * The enumerated value res_act tunes the behavior: 12173 * * Res_act_initial: set up all the resolver structures for a new 12174 * IP address. 12175 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12176 * ARP message in defense of the address. 12177 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12178 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12179 * 12180 * Returns zero on success, or an errno upon failure. 12181 */ 12182 int 12183 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12184 { 12185 ill_t *ill = ipif->ipif_ill; 12186 int err; 12187 boolean_t was_dup; 12188 12189 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12190 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12191 ASSERT(IAM_WRITER_IPIF(ipif)); 12192 12193 was_dup = B_FALSE; 12194 if (res_act == Res_act_initial) { 12195 ipif->ipif_addr_ready = 0; 12196 /* 12197 * We're bringing an interface up here. There's no way that we 12198 * should need to shut down ARP now. 12199 */ 12200 mutex_enter(&ill->ill_lock); 12201 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12202 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12203 ill->ill_ipif_dup_count--; 12204 was_dup = B_TRUE; 12205 } 12206 mutex_exit(&ill->ill_lock); 12207 } 12208 if (ipif->ipif_recovery_id != 0) 12209 (void) untimeout(ipif->ipif_recovery_id); 12210 ipif->ipif_recovery_id = 0; 12211 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12212 ipif->ipif_addr_ready = 1; 12213 return (0); 12214 } 12215 /* NDP will set the ipif_addr_ready flag when it's ready */ 12216 if (ill->ill_isv6) 12217 return (0); 12218 12219 err = ipif_arp_up(ipif, res_act, was_dup); 12220 return (err); 12221 } 12222 12223 /* 12224 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12225 * when a link has just gone back up. 12226 */ 12227 static void 12228 ipif_nce_start_dad(ipif_t *ipif) 12229 { 12230 ncec_t *ncec; 12231 ill_t *ill = ipif->ipif_ill; 12232 boolean_t isv6 = ill->ill_isv6; 12233 12234 if (isv6) { 12235 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12236 &ipif->ipif_v6lcl_addr); 12237 } else { 12238 ipaddr_t v4addr; 12239 12240 if (ill->ill_net_type != IRE_IF_RESOLVER || 12241 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12242 ipif->ipif_lcl_addr == INADDR_ANY) { 12243 /* 12244 * If we can't contact ARP for some reason, 12245 * that's not really a problem. Just send 12246 * out the routing socket notification that 12247 * DAD completion would have done, and continue. 12248 */ 12249 ipif_mask_reply(ipif); 12250 ipif_up_notify(ipif); 12251 ipif->ipif_addr_ready = 1; 12252 return; 12253 } 12254 12255 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12256 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12257 } 12258 12259 if (ncec == NULL) { 12260 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12261 (void *)ipif)); 12262 return; 12263 } 12264 if (!nce_restart_dad(ncec)) { 12265 /* 12266 * If we can't restart DAD for some reason, that's not really a 12267 * problem. Just send out the routing socket notification that 12268 * DAD completion would have done, and continue. 12269 */ 12270 ipif_up_notify(ipif); 12271 ipif->ipif_addr_ready = 1; 12272 } 12273 ncec_refrele(ncec); 12274 } 12275 12276 /* 12277 * Restart duplicate address detection on all interfaces on the given ill. 12278 * 12279 * This is called when an interface transitions from down to up 12280 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12281 * 12282 * Note that since the underlying physical link has transitioned, we must cause 12283 * at least one routing socket message to be sent here, either via DAD 12284 * completion or just by default on the first ipif. (If we don't do this, then 12285 * in.mpathd will see long delays when doing link-based failure recovery.) 12286 */ 12287 void 12288 ill_restart_dad(ill_t *ill, boolean_t went_up) 12289 { 12290 ipif_t *ipif; 12291 12292 if (ill == NULL) 12293 return; 12294 12295 /* 12296 * If layer two doesn't support duplicate address detection, then just 12297 * send the routing socket message now and be done with it. 12298 */ 12299 if (!ill->ill_isv6 && arp_no_defense) { 12300 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12301 return; 12302 } 12303 12304 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12305 if (went_up) { 12306 12307 if (ipif->ipif_flags & IPIF_UP) { 12308 ipif_nce_start_dad(ipif); 12309 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12310 /* 12311 * kick off the bring-up process now. 12312 */ 12313 ipif_do_recovery(ipif); 12314 } else { 12315 /* 12316 * Unfortunately, the first ipif is "special" 12317 * and represents the underlying ill in the 12318 * routing socket messages. Thus, when this 12319 * one ipif is down, we must still notify so 12320 * that the user knows the IFF_RUNNING status 12321 * change. (If the first ipif is up, then 12322 * we'll handle eventual routing socket 12323 * notification via DAD completion.) 12324 */ 12325 if (ipif == ill->ill_ipif) { 12326 ip_rts_ifmsg(ill->ill_ipif, 12327 RTSQ_DEFAULT); 12328 } 12329 } 12330 } else { 12331 /* 12332 * After link down, we'll need to send a new routing 12333 * message when the link comes back, so clear 12334 * ipif_addr_ready. 12335 */ 12336 ipif->ipif_addr_ready = 0; 12337 } 12338 } 12339 12340 /* 12341 * If we've torn down links, then notify the user right away. 12342 */ 12343 if (!went_up) 12344 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12345 } 12346 12347 static void 12348 ipsq_delete(ipsq_t *ipsq) 12349 { 12350 ipxop_t *ipx = ipsq->ipsq_xop; 12351 12352 ipsq->ipsq_ipst = NULL; 12353 ASSERT(ipsq->ipsq_phyint == NULL); 12354 ASSERT(ipsq->ipsq_xop != NULL); 12355 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12356 ASSERT(ipx->ipx_pending_mp == NULL); 12357 kmem_free(ipsq, sizeof (ipsq_t)); 12358 } 12359 12360 static int 12361 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12362 { 12363 int err = 0; 12364 ipif_t *ipif; 12365 12366 if (ill == NULL) 12367 return (0); 12368 12369 ASSERT(IAM_WRITER_ILL(ill)); 12370 ill->ill_up_ipifs = B_TRUE; 12371 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12372 if (ipif->ipif_was_up) { 12373 if (!(ipif->ipif_flags & IPIF_UP)) 12374 err = ipif_up(ipif, q, mp); 12375 ipif->ipif_was_up = B_FALSE; 12376 if (err != 0) { 12377 ASSERT(err == EINPROGRESS); 12378 return (err); 12379 } 12380 } 12381 } 12382 ill->ill_up_ipifs = B_FALSE; 12383 return (0); 12384 } 12385 12386 /* 12387 * This function is called to bring up all the ipifs that were up before 12388 * bringing the ill down via ill_down_ipifs(). 12389 */ 12390 int 12391 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12392 { 12393 int err; 12394 12395 ASSERT(IAM_WRITER_ILL(ill)); 12396 12397 if (ill->ill_replumbing) { 12398 ill->ill_replumbing = 0; 12399 /* 12400 * Send down REPLUMB_DONE notification followed by the 12401 * BIND_REQ on the arp stream. 12402 */ 12403 if (!ill->ill_isv6) 12404 arp_send_replumb_conf(ill); 12405 } 12406 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12407 if (err != 0) 12408 return (err); 12409 12410 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12411 } 12412 12413 /* 12414 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12415 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12416 */ 12417 static void 12418 ill_down_ipifs(ill_t *ill, boolean_t logical) 12419 { 12420 ipif_t *ipif; 12421 12422 ASSERT(IAM_WRITER_ILL(ill)); 12423 12424 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12425 /* 12426 * We go through the ipif_down logic even if the ipif 12427 * is already down, since routes can be added based 12428 * on down ipifs. Going through ipif_down once again 12429 * will delete any IREs created based on these routes. 12430 */ 12431 if (ipif->ipif_flags & IPIF_UP) 12432 ipif->ipif_was_up = B_TRUE; 12433 12434 if (logical) { 12435 (void) ipif_logical_down(ipif, NULL, NULL); 12436 ipif_non_duplicate(ipif); 12437 (void) ipif_down_tail(ipif); 12438 } else { 12439 (void) ipif_down(ipif, NULL, NULL); 12440 } 12441 } 12442 } 12443 12444 /* 12445 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12446 * a look again at valid source addresses. 12447 * This should be called each time after the set of source addresses has been 12448 * changed. 12449 */ 12450 void 12451 ip_update_source_selection(ip_stack_t *ipst) 12452 { 12453 /* We skip past SRC_GENERATION_VERIFY */ 12454 if (atomic_inc_32_nv(&ipst->ips_src_generation) == 12455 SRC_GENERATION_VERIFY) 12456 atomic_inc_32(&ipst->ips_src_generation); 12457 } 12458 12459 /* 12460 * Finish the group join started in ip_sioctl_groupname(). 12461 */ 12462 /* ARGSUSED */ 12463 static void 12464 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12465 { 12466 ill_t *ill = q->q_ptr; 12467 phyint_t *phyi = ill->ill_phyint; 12468 ipmp_grp_t *grp = phyi->phyint_grp; 12469 ip_stack_t *ipst = ill->ill_ipst; 12470 12471 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12472 ASSERT(!IS_IPMP(ill) && grp != NULL); 12473 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12474 12475 if (phyi->phyint_illv4 != NULL) { 12476 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12477 VERIFY(grp->gr_pendv4-- > 0); 12478 rw_exit(&ipst->ips_ipmp_lock); 12479 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12480 } 12481 if (phyi->phyint_illv6 != NULL) { 12482 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12483 VERIFY(grp->gr_pendv6-- > 0); 12484 rw_exit(&ipst->ips_ipmp_lock); 12485 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12486 } 12487 freemsg(mp); 12488 } 12489 12490 /* 12491 * Process an SIOCSLIFGROUPNAME request. 12492 */ 12493 /* ARGSUSED */ 12494 int 12495 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12496 ip_ioctl_cmd_t *ipip, void *ifreq) 12497 { 12498 struct lifreq *lifr = ifreq; 12499 ill_t *ill = ipif->ipif_ill; 12500 ip_stack_t *ipst = ill->ill_ipst; 12501 phyint_t *phyi = ill->ill_phyint; 12502 ipmp_grp_t *grp = phyi->phyint_grp; 12503 mblk_t *ipsq_mp; 12504 int err = 0; 12505 12506 /* 12507 * Note that phyint_grp can only change here, where we're exclusive. 12508 */ 12509 ASSERT(IAM_WRITER_ILL(ill)); 12510 12511 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12512 (phyi->phyint_flags & PHYI_VIRTUAL)) 12513 return (EINVAL); 12514 12515 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12516 12517 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12518 12519 /* 12520 * If the name hasn't changed, there's nothing to do. 12521 */ 12522 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12523 goto unlock; 12524 12525 /* 12526 * Handle requests to rename an IPMP meta-interface. 12527 * 12528 * Note that creation of the IPMP meta-interface is handled in 12529 * userland through the standard plumbing sequence. As part of the 12530 * plumbing the IPMP meta-interface, its initial groupname is set to 12531 * the name of the interface (see ipif_set_values_tail()). 12532 */ 12533 if (IS_IPMP(ill)) { 12534 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12535 goto unlock; 12536 } 12537 12538 /* 12539 * Handle requests to add or remove an IP interface from a group. 12540 */ 12541 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12542 /* 12543 * Moves are handled by first removing the interface from 12544 * its existing group, and then adding it to another group. 12545 * So, fail if it's already in a group. 12546 */ 12547 if (IS_UNDER_IPMP(ill)) { 12548 err = EALREADY; 12549 goto unlock; 12550 } 12551 12552 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12553 if (grp == NULL) { 12554 err = ENOENT; 12555 goto unlock; 12556 } 12557 12558 /* 12559 * Check if the phyint and its ills are suitable for 12560 * inclusion into the group. 12561 */ 12562 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12563 goto unlock; 12564 12565 /* 12566 * Checks pass; join the group, and enqueue the remaining 12567 * illgrp joins for when we've become part of the group xop 12568 * and are exclusive across its IPSQs. Since qwriter_ip() 12569 * requires an mblk_t to scribble on, and since `mp' will be 12570 * freed as part of completing the ioctl, allocate another. 12571 */ 12572 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12573 err = ENOMEM; 12574 goto unlock; 12575 } 12576 12577 /* 12578 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12579 * IPMP meta-interface ills needed by `phyi' cannot go away 12580 * before ip_join_illgrps() is called back. See the comments 12581 * in ip_sioctl_plink_ipmp() for more. 12582 */ 12583 if (phyi->phyint_illv4 != NULL) 12584 grp->gr_pendv4++; 12585 if (phyi->phyint_illv6 != NULL) 12586 grp->gr_pendv6++; 12587 12588 rw_exit(&ipst->ips_ipmp_lock); 12589 12590 ipmp_phyint_join_grp(phyi, grp); 12591 ill_refhold(ill); 12592 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12593 SWITCH_OP, B_FALSE); 12594 return (0); 12595 } else { 12596 /* 12597 * Request to remove the interface from a group. If the 12598 * interface is not in a group, this trivially succeeds. 12599 */ 12600 rw_exit(&ipst->ips_ipmp_lock); 12601 if (IS_UNDER_IPMP(ill)) 12602 ipmp_phyint_leave_grp(phyi); 12603 return (0); 12604 } 12605 unlock: 12606 rw_exit(&ipst->ips_ipmp_lock); 12607 return (err); 12608 } 12609 12610 /* 12611 * Process an SIOCGLIFBINDING request. 12612 */ 12613 /* ARGSUSED */ 12614 int 12615 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12616 ip_ioctl_cmd_t *ipip, void *ifreq) 12617 { 12618 ill_t *ill; 12619 struct lifreq *lifr = ifreq; 12620 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12621 12622 if (!IS_IPMP(ipif->ipif_ill)) 12623 return (EINVAL); 12624 12625 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12626 if ((ill = ipif->ipif_bound_ill) == NULL) 12627 lifr->lifr_binding[0] = '\0'; 12628 else 12629 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12630 rw_exit(&ipst->ips_ipmp_lock); 12631 return (0); 12632 } 12633 12634 /* 12635 * Process an SIOCGLIFGROUPNAME request. 12636 */ 12637 /* ARGSUSED */ 12638 int 12639 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12640 ip_ioctl_cmd_t *ipip, void *ifreq) 12641 { 12642 ipmp_grp_t *grp; 12643 struct lifreq *lifr = ifreq; 12644 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12645 12646 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12647 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12648 lifr->lifr_groupname[0] = '\0'; 12649 else 12650 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12651 rw_exit(&ipst->ips_ipmp_lock); 12652 return (0); 12653 } 12654 12655 /* 12656 * Process an SIOCGLIFGROUPINFO request. 12657 */ 12658 /* ARGSUSED */ 12659 int 12660 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12661 ip_ioctl_cmd_t *ipip, void *dummy) 12662 { 12663 ipmp_grp_t *grp; 12664 lifgroupinfo_t *lifgr; 12665 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12666 12667 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12668 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12669 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12670 12671 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12672 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12673 rw_exit(&ipst->ips_ipmp_lock); 12674 return (ENOENT); 12675 } 12676 ipmp_grp_info(grp, lifgr); 12677 rw_exit(&ipst->ips_ipmp_lock); 12678 return (0); 12679 } 12680 12681 static void 12682 ill_dl_down(ill_t *ill) 12683 { 12684 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12685 12686 /* 12687 * The ill is down; unbind but stay attached since we're still 12688 * associated with a PPA. If we have negotiated DLPI capabilites 12689 * with the data link service provider (IDS_OK) then reset them. 12690 * The interval between unbinding and rebinding is potentially 12691 * unbounded hence we cannot assume things will be the same. 12692 * The DLPI capabilities will be probed again when the data link 12693 * is brought up. 12694 */ 12695 mblk_t *mp = ill->ill_unbind_mp; 12696 12697 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12698 12699 if (!ill->ill_replumbing) { 12700 /* Free all ilms for this ill */ 12701 update_conn_ill(ill, ill->ill_ipst); 12702 } else { 12703 ill_leave_multicast(ill); 12704 } 12705 12706 ill->ill_unbind_mp = NULL; 12707 if (mp != NULL) { 12708 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12709 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12710 ill->ill_name)); 12711 mutex_enter(&ill->ill_lock); 12712 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12713 mutex_exit(&ill->ill_lock); 12714 /* 12715 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12716 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12717 * ill_capability_dld_disable disable rightaway. If this is not 12718 * an unplumb operation then the disable happens on receipt of 12719 * the capab ack via ip_rput_dlpi_writer -> 12720 * ill_capability_ack_thr. In both cases the order of 12721 * the operations seen by DLD is capability disable followed 12722 * by DL_UNBIND. Also the DLD capability disable needs a 12723 * cv_wait'able context. 12724 */ 12725 if (ill->ill_state_flags & ILL_CONDEMNED) 12726 ill_capability_dld_disable(ill); 12727 ill_capability_reset(ill, B_FALSE); 12728 ill_dlpi_send(ill, mp); 12729 } 12730 mutex_enter(&ill->ill_lock); 12731 ill->ill_dl_up = 0; 12732 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12733 mutex_exit(&ill->ill_lock); 12734 } 12735 12736 void 12737 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12738 { 12739 union DL_primitives *dlp; 12740 t_uscalar_t prim; 12741 boolean_t waitack = B_FALSE; 12742 12743 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12744 12745 dlp = (union DL_primitives *)mp->b_rptr; 12746 prim = dlp->dl_primitive; 12747 12748 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12749 dl_primstr(prim), prim, ill->ill_name)); 12750 12751 switch (prim) { 12752 case DL_PHYS_ADDR_REQ: 12753 { 12754 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12755 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12756 break; 12757 } 12758 case DL_BIND_REQ: 12759 mutex_enter(&ill->ill_lock); 12760 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12761 mutex_exit(&ill->ill_lock); 12762 break; 12763 } 12764 12765 /* 12766 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12767 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12768 * we only wait for the ACK of the DL_UNBIND_REQ. 12769 */ 12770 mutex_enter(&ill->ill_lock); 12771 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12772 (prim == DL_UNBIND_REQ)) { 12773 ill->ill_dlpi_pending = prim; 12774 waitack = B_TRUE; 12775 } 12776 12777 mutex_exit(&ill->ill_lock); 12778 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12779 char *, dl_primstr(prim), ill_t *, ill); 12780 putnext(ill->ill_wq, mp); 12781 12782 /* 12783 * There is no ack for DL_NOTIFY_CONF messages 12784 */ 12785 if (waitack && prim == DL_NOTIFY_CONF) 12786 ill_dlpi_done(ill, prim); 12787 } 12788 12789 /* 12790 * Helper function for ill_dlpi_send(). 12791 */ 12792 /* ARGSUSED */ 12793 static void 12794 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12795 { 12796 ill_dlpi_send(q->q_ptr, mp); 12797 } 12798 12799 /* 12800 * Send a DLPI control message to the driver but make sure there 12801 * is only one outstanding message. Uses ill_dlpi_pending to tell 12802 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12803 * when an ACK or a NAK is received to process the next queued message. 12804 */ 12805 void 12806 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12807 { 12808 mblk_t **mpp; 12809 12810 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12811 12812 /* 12813 * To ensure that any DLPI requests for current exclusive operation 12814 * are always completely sent before any DLPI messages for other 12815 * operations, require writer access before enqueuing. 12816 */ 12817 if (!IAM_WRITER_ILL(ill)) { 12818 ill_refhold(ill); 12819 /* qwriter_ip() does the ill_refrele() */ 12820 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12821 NEW_OP, B_TRUE); 12822 return; 12823 } 12824 12825 mutex_enter(&ill->ill_lock); 12826 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12827 /* Must queue message. Tail insertion */ 12828 mpp = &ill->ill_dlpi_deferred; 12829 while (*mpp != NULL) 12830 mpp = &((*mpp)->b_next); 12831 12832 ip1dbg(("ill_dlpi_send: deferring request for %s " 12833 "while %s pending\n", ill->ill_name, 12834 dl_primstr(ill->ill_dlpi_pending))); 12835 12836 *mpp = mp; 12837 mutex_exit(&ill->ill_lock); 12838 return; 12839 } 12840 mutex_exit(&ill->ill_lock); 12841 ill_dlpi_dispatch(ill, mp); 12842 } 12843 12844 void 12845 ill_capability_send(ill_t *ill, mblk_t *mp) 12846 { 12847 ill->ill_capab_pending_cnt++; 12848 ill_dlpi_send(ill, mp); 12849 } 12850 12851 void 12852 ill_capability_done(ill_t *ill) 12853 { 12854 ASSERT(ill->ill_capab_pending_cnt != 0); 12855 12856 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12857 12858 ill->ill_capab_pending_cnt--; 12859 if (ill->ill_capab_pending_cnt == 0 && 12860 ill->ill_dlpi_capab_state == IDCS_OK) 12861 ill_capability_reset_alloc(ill); 12862 } 12863 12864 /* 12865 * Send all deferred DLPI messages without waiting for their ACKs. 12866 */ 12867 void 12868 ill_dlpi_send_deferred(ill_t *ill) 12869 { 12870 mblk_t *mp, *nextmp; 12871 12872 /* 12873 * Clear ill_dlpi_pending so that the message is not queued in 12874 * ill_dlpi_send(). 12875 */ 12876 mutex_enter(&ill->ill_lock); 12877 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12878 mp = ill->ill_dlpi_deferred; 12879 ill->ill_dlpi_deferred = NULL; 12880 mutex_exit(&ill->ill_lock); 12881 12882 for (; mp != NULL; mp = nextmp) { 12883 nextmp = mp->b_next; 12884 mp->b_next = NULL; 12885 ill_dlpi_send(ill, mp); 12886 } 12887 } 12888 12889 /* 12890 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12891 * or M_HANGUP 12892 */ 12893 static void 12894 ill_dlpi_clear_deferred(ill_t *ill) 12895 { 12896 mblk_t *mp, *nextmp; 12897 12898 mutex_enter(&ill->ill_lock); 12899 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12900 mp = ill->ill_dlpi_deferred; 12901 ill->ill_dlpi_deferred = NULL; 12902 mutex_exit(&ill->ill_lock); 12903 12904 for (; mp != NULL; mp = nextmp) { 12905 nextmp = mp->b_next; 12906 inet_freemsg(mp); 12907 } 12908 } 12909 12910 /* 12911 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12912 */ 12913 boolean_t 12914 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12915 { 12916 t_uscalar_t pending; 12917 12918 mutex_enter(&ill->ill_lock); 12919 if (ill->ill_dlpi_pending == prim) { 12920 mutex_exit(&ill->ill_lock); 12921 return (B_TRUE); 12922 } 12923 12924 /* 12925 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12926 * without waiting, so don't print any warnings in that case. 12927 */ 12928 if (ill->ill_state_flags & ILL_CONDEMNED) { 12929 mutex_exit(&ill->ill_lock); 12930 return (B_FALSE); 12931 } 12932 pending = ill->ill_dlpi_pending; 12933 mutex_exit(&ill->ill_lock); 12934 12935 if (pending == DL_PRIM_INVAL) { 12936 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12937 "received unsolicited ack for %s on %s\n", 12938 dl_primstr(prim), ill->ill_name); 12939 } else { 12940 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12941 "received unexpected ack for %s on %s (expecting %s)\n", 12942 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12943 } 12944 return (B_FALSE); 12945 } 12946 12947 /* 12948 * Complete the current DLPI operation associated with `prim' on `ill' and 12949 * start the next queued DLPI operation (if any). If there are no queued DLPI 12950 * operations and the ill's current exclusive IPSQ operation has finished 12951 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12952 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12953 * the comments above ipsq_current_finish() for details. 12954 */ 12955 void 12956 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12957 { 12958 mblk_t *mp; 12959 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12960 ipxop_t *ipx = ipsq->ipsq_xop; 12961 12962 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12963 mutex_enter(&ill->ill_lock); 12964 12965 ASSERT(prim != DL_PRIM_INVAL); 12966 ASSERT(ill->ill_dlpi_pending == prim); 12967 12968 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12969 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12970 12971 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12972 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12973 if (ipx->ipx_current_done) { 12974 mutex_enter(&ipx->ipx_lock); 12975 ipx->ipx_current_ipif = NULL; 12976 mutex_exit(&ipx->ipx_lock); 12977 } 12978 cv_signal(&ill->ill_cv); 12979 mutex_exit(&ill->ill_lock); 12980 return; 12981 } 12982 12983 ill->ill_dlpi_deferred = mp->b_next; 12984 mp->b_next = NULL; 12985 mutex_exit(&ill->ill_lock); 12986 12987 ill_dlpi_dispatch(ill, mp); 12988 } 12989 12990 /* 12991 * Queue a (multicast) DLPI control message to be sent to the driver by 12992 * later calling ill_dlpi_send_queued. 12993 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12994 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12995 * for the same group to race. 12996 * We send DLPI control messages in order using ill_lock. 12997 * For IPMP we should be called on the cast_ill. 12998 */ 12999 void 13000 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 13001 { 13002 mblk_t **mpp; 13003 13004 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 13005 13006 mutex_enter(&ill->ill_lock); 13007 /* Must queue message. Tail insertion */ 13008 mpp = &ill->ill_dlpi_deferred; 13009 while (*mpp != NULL) 13010 mpp = &((*mpp)->b_next); 13011 13012 *mpp = mp; 13013 mutex_exit(&ill->ill_lock); 13014 } 13015 13016 /* 13017 * Send the messages that were queued. Make sure there is only 13018 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 13019 * when an ACK or a NAK is received to process the next queued message. 13020 * For IPMP we are called on the upper ill, but when send what is queued 13021 * on the cast_ill. 13022 */ 13023 void 13024 ill_dlpi_send_queued(ill_t *ill) 13025 { 13026 mblk_t *mp; 13027 union DL_primitives *dlp; 13028 t_uscalar_t prim; 13029 ill_t *release_ill = NULL; 13030 13031 if (IS_IPMP(ill)) { 13032 /* On the upper IPMP ill. */ 13033 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13034 if (release_ill == NULL) { 13035 /* Avoid ever sending anything down to the ipmpstub */ 13036 return; 13037 } 13038 ill = release_ill; 13039 } 13040 mutex_enter(&ill->ill_lock); 13041 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13042 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13043 /* Can't send. Somebody else will send it */ 13044 mutex_exit(&ill->ill_lock); 13045 goto done; 13046 } 13047 ill->ill_dlpi_deferred = mp->b_next; 13048 mp->b_next = NULL; 13049 if (!ill->ill_dl_up) { 13050 /* 13051 * Nobody there. All multicast addresses will be 13052 * re-joined when we get the DL_BIND_ACK bringing the 13053 * interface up. 13054 */ 13055 freemsg(mp); 13056 continue; 13057 } 13058 dlp = (union DL_primitives *)mp->b_rptr; 13059 prim = dlp->dl_primitive; 13060 13061 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13062 (prim == DL_UNBIND_REQ)) { 13063 ill->ill_dlpi_pending = prim; 13064 } 13065 mutex_exit(&ill->ill_lock); 13066 13067 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13068 char *, dl_primstr(prim), ill_t *, ill); 13069 putnext(ill->ill_wq, mp); 13070 mutex_enter(&ill->ill_lock); 13071 } 13072 mutex_exit(&ill->ill_lock); 13073 done: 13074 if (release_ill != NULL) 13075 ill_refrele(release_ill); 13076 } 13077 13078 /* 13079 * Queue an IP (IGMP/MLD) message to be sent by IP from 13080 * ill_mcast_send_queued 13081 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13082 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13083 * group to race. 13084 * We send them in order using ill_lock. 13085 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13086 */ 13087 void 13088 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13089 { 13090 mblk_t **mpp; 13091 ill_t *release_ill = NULL; 13092 13093 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13094 13095 if (IS_IPMP(ill)) { 13096 /* On the upper IPMP ill. */ 13097 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13098 if (release_ill == NULL) { 13099 /* Discard instead of queuing for the ipmp interface */ 13100 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13101 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13102 mp, ill); 13103 freemsg(mp); 13104 return; 13105 } 13106 ill = release_ill; 13107 } 13108 13109 mutex_enter(&ill->ill_lock); 13110 /* Must queue message. Tail insertion */ 13111 mpp = &ill->ill_mcast_deferred; 13112 while (*mpp != NULL) 13113 mpp = &((*mpp)->b_next); 13114 13115 *mpp = mp; 13116 mutex_exit(&ill->ill_lock); 13117 if (release_ill != NULL) 13118 ill_refrele(release_ill); 13119 } 13120 13121 /* 13122 * Send the IP packets that were queued by ill_mcast_queue. 13123 * These are IGMP/MLD packets. 13124 * 13125 * For IPMP we are called on the upper ill, but when send what is queued 13126 * on the cast_ill. 13127 * 13128 * Request loopback of the report if we are acting as a multicast 13129 * router, so that the process-level routing demon can hear it. 13130 * This will run multiple times for the same group if there are members 13131 * on the same group for multiple ipif's on the same ill. The 13132 * igmp_input/mld_input code will suppress this due to the loopback thus we 13133 * always loopback membership report. 13134 * 13135 * We also need to make sure that this does not get load balanced 13136 * by IPMP. We do this by passing an ill to ip_output_simple. 13137 */ 13138 void 13139 ill_mcast_send_queued(ill_t *ill) 13140 { 13141 mblk_t *mp; 13142 ip_xmit_attr_t ixas; 13143 ill_t *release_ill = NULL; 13144 13145 if (IS_IPMP(ill)) { 13146 /* On the upper IPMP ill. */ 13147 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13148 if (release_ill == NULL) { 13149 /* 13150 * We should have no messages on the ipmp interface 13151 * but no point in trying to send them. 13152 */ 13153 return; 13154 } 13155 ill = release_ill; 13156 } 13157 bzero(&ixas, sizeof (ixas)); 13158 ixas.ixa_zoneid = ALL_ZONES; 13159 ixas.ixa_cred = kcred; 13160 ixas.ixa_cpid = NOPID; 13161 ixas.ixa_tsl = NULL; 13162 /* 13163 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13164 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13165 * That is necessary to handle IGMP/MLD snooping switches. 13166 */ 13167 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13168 ixas.ixa_ipst = ill->ill_ipst; 13169 13170 mutex_enter(&ill->ill_lock); 13171 while ((mp = ill->ill_mcast_deferred) != NULL) { 13172 ill->ill_mcast_deferred = mp->b_next; 13173 mp->b_next = NULL; 13174 if (!ill->ill_dl_up) { 13175 /* 13176 * Nobody there. Just drop the ip packets. 13177 * IGMP/MLD will resend later, if this is a replumb. 13178 */ 13179 freemsg(mp); 13180 continue; 13181 } 13182 mutex_enter(&ill->ill_phyint->phyint_lock); 13183 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13184 /* 13185 * When the ill is getting deactivated, we only want to 13186 * send the DLPI messages, so drop IGMP/MLD packets. 13187 * DLPI messages are handled by ill_dlpi_send_queued() 13188 */ 13189 mutex_exit(&ill->ill_phyint->phyint_lock); 13190 freemsg(mp); 13191 continue; 13192 } 13193 mutex_exit(&ill->ill_phyint->phyint_lock); 13194 mutex_exit(&ill->ill_lock); 13195 13196 /* Check whether we are sending IPv4 or IPv6. */ 13197 if (ill->ill_isv6) { 13198 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13199 13200 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13201 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13202 } else { 13203 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13204 13205 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13206 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13207 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13208 } 13209 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13210 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13211 (void) ip_output_simple(mp, &ixas); 13212 ixa_cleanup(&ixas); 13213 13214 mutex_enter(&ill->ill_lock); 13215 } 13216 mutex_exit(&ill->ill_lock); 13217 13218 done: 13219 if (release_ill != NULL) 13220 ill_refrele(release_ill); 13221 } 13222 13223 /* 13224 * Take down a specific interface, but don't lose any information about it. 13225 * (Always called as writer.) 13226 * This function goes through the down sequence even if the interface is 13227 * already down. There are 2 reasons. 13228 * a. Currently we permit interface routes that depend on down interfaces 13229 * to be added. This behaviour itself is questionable. However it appears 13230 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13231 * time. We go thru the cleanup in order to remove these routes. 13232 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13233 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13234 * down, but we need to cleanup i.e. do ill_dl_down and 13235 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13236 * 13237 * IP-MT notes: 13238 * 13239 * Model of reference to interfaces. 13240 * 13241 * The following members in ipif_t track references to the ipif. 13242 * int ipif_refcnt; Active reference count 13243 * 13244 * The following members in ill_t track references to the ill. 13245 * int ill_refcnt; active refcnt 13246 * uint_t ill_ire_cnt; Number of ires referencing ill 13247 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13248 * uint_t ill_nce_cnt; Number of nces referencing ill 13249 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13250 * 13251 * Reference to an ipif or ill can be obtained in any of the following ways. 13252 * 13253 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13254 * Pointers to ipif / ill from other data structures viz ire and conn. 13255 * Implicit reference to the ipif / ill by holding a reference to the ire. 13256 * 13257 * The ipif/ill lookup functions return a reference held ipif / ill. 13258 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13259 * This is a purely dynamic reference count associated with threads holding 13260 * references to the ipif / ill. Pointers from other structures do not 13261 * count towards this reference count. 13262 * 13263 * ill_ire_cnt is the number of ire's associated with the 13264 * ill. This is incremented whenever a new ire is created referencing the 13265 * ill. This is done atomically inside ire_add_v[46] where the ire is 13266 * actually added to the ire hash table. The count is decremented in 13267 * ire_inactive where the ire is destroyed. 13268 * 13269 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13270 * This is incremented atomically in 13271 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13272 * table. Similarly it is decremented in ncec_inactive() where the ncec 13273 * is destroyed. 13274 * 13275 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13276 * incremented atomically in nce_add() where the nce is actually added to the 13277 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13278 * is destroyed. 13279 * 13280 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13281 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13282 * 13283 * Flow of ioctls involving interface down/up 13284 * 13285 * The following is the sequence of an attempt to set some critical flags on an 13286 * up interface. 13287 * ip_sioctl_flags 13288 * ipif_down 13289 * wait for ipif to be quiescent 13290 * ipif_down_tail 13291 * ip_sioctl_flags_tail 13292 * 13293 * All set ioctls that involve down/up sequence would have a skeleton similar 13294 * to the above. All the *tail functions are called after the refcounts have 13295 * dropped to the appropriate values. 13296 * 13297 * SIOC ioctls during the IPIF_CHANGING interval. 13298 * 13299 * Threads handling SIOC set ioctls serialize on the squeue, but this 13300 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13301 * steps of internal changes to the state, some of which are visible in 13302 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13303 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13304 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13305 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13306 * the current exclusive operation completes. The IPIF_CHANGING check 13307 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13308 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13309 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13310 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13311 * until we release the ipsq_lock, even though the ill/ipif state flags 13312 * can change after we drop the ill_lock. 13313 */ 13314 int 13315 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13316 { 13317 ill_t *ill = ipif->ipif_ill; 13318 conn_t *connp; 13319 boolean_t success; 13320 boolean_t ipif_was_up = B_FALSE; 13321 ip_stack_t *ipst = ill->ill_ipst; 13322 13323 ASSERT(IAM_WRITER_IPIF(ipif)); 13324 13325 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13326 13327 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13328 ill_t *, ill, ipif_t *, ipif); 13329 13330 if (ipif->ipif_flags & IPIF_UP) { 13331 mutex_enter(&ill->ill_lock); 13332 ipif->ipif_flags &= ~IPIF_UP; 13333 ASSERT(ill->ill_ipif_up_count > 0); 13334 --ill->ill_ipif_up_count; 13335 mutex_exit(&ill->ill_lock); 13336 ipif_was_up = B_TRUE; 13337 /* Update status in SCTP's list */ 13338 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13339 ill_nic_event_dispatch(ipif->ipif_ill, 13340 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13341 } 13342 13343 /* 13344 * Removal of the last ipif from an ill may result in a DL_UNBIND 13345 * being sent to the driver, and we must not send any data packets to 13346 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13347 * ire and nce entries used in the data path will be cleaned 13348 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13349 * sure on new entries will be added until the ill is bound 13350 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13351 * receipt of a DL_BIND_ACK. 13352 */ 13353 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13354 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13355 ill->ill_dl_up) { 13356 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13357 } 13358 13359 /* 13360 * Blow away memberships we established in ipif_multicast_up(). 13361 */ 13362 ipif_multicast_down(ipif); 13363 13364 /* 13365 * Remove from the mapping for __sin6_src_id. We insert only 13366 * when the address is not INADDR_ANY. As IPv4 addresses are 13367 * stored as mapped addresses, we need to check for mapped 13368 * INADDR_ANY also. 13369 */ 13370 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13371 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13372 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13373 int err; 13374 13375 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13376 ipif->ipif_zoneid, ipst); 13377 if (err != 0) { 13378 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13379 } 13380 } 13381 13382 if (ipif_was_up) { 13383 /* only delete if we'd added ire's before */ 13384 if (ipif->ipif_isv6) 13385 ipif_delete_ires_v6(ipif); 13386 else 13387 ipif_delete_ires_v4(ipif); 13388 } 13389 13390 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13391 /* 13392 * Since the interface is now down, it may have just become 13393 * inactive. Note that this needs to be done even for a 13394 * lll_logical_down(), or ARP entries will not get correctly 13395 * restored when the interface comes back up. 13396 */ 13397 if (IS_UNDER_IPMP(ill)) 13398 ipmp_ill_refresh_active(ill); 13399 } 13400 13401 /* 13402 * neighbor-discovery or arp entries for this interface. The ipif 13403 * has to be quiesced, so we walk all the nce's and delete those 13404 * that point at the ipif->ipif_ill. At the same time, we also 13405 * update IPMP so that ipifs for data addresses are unbound. We dont 13406 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13407 * that for ipif_down_tail() 13408 */ 13409 ipif_nce_down(ipif); 13410 13411 /* 13412 * If this is the last ipif on the ill, we also need to remove 13413 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13414 * never succeed. 13415 */ 13416 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13417 ire_walk_ill(0, 0, ill_downi, ill, ill); 13418 13419 /* 13420 * Walk all CONNs that can have a reference on an ire for this 13421 * ipif (we actually walk all that now have stale references). 13422 */ 13423 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13424 13425 /* 13426 * If mp is NULL the caller will wait for the appropriate refcnt. 13427 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13428 * and ill_delete -> ipif_free -> ipif_down 13429 */ 13430 if (mp == NULL) { 13431 ASSERT(q == NULL); 13432 return (0); 13433 } 13434 13435 if (CONN_Q(q)) { 13436 connp = Q_TO_CONN(q); 13437 mutex_enter(&connp->conn_lock); 13438 } else { 13439 connp = NULL; 13440 } 13441 mutex_enter(&ill->ill_lock); 13442 /* 13443 * Are there any ire's pointing to this ipif that are still active ? 13444 * If this is the last ipif going down, are there any ire's pointing 13445 * to this ill that are still active ? 13446 */ 13447 if (ipif_is_quiescent(ipif)) { 13448 mutex_exit(&ill->ill_lock); 13449 if (connp != NULL) 13450 mutex_exit(&connp->conn_lock); 13451 return (0); 13452 } 13453 13454 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13455 ill->ill_name, (void *)ill)); 13456 /* 13457 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13458 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13459 * which in turn is called by the last refrele on the ipif/ill/ire. 13460 */ 13461 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13462 if (!success) { 13463 /* The conn is closing. So just return */ 13464 ASSERT(connp != NULL); 13465 mutex_exit(&ill->ill_lock); 13466 mutex_exit(&connp->conn_lock); 13467 return (EINTR); 13468 } 13469 13470 mutex_exit(&ill->ill_lock); 13471 if (connp != NULL) 13472 mutex_exit(&connp->conn_lock); 13473 return (EINPROGRESS); 13474 } 13475 13476 int 13477 ipif_down_tail(ipif_t *ipif) 13478 { 13479 ill_t *ill = ipif->ipif_ill; 13480 int err = 0; 13481 13482 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13483 ill_t *, ill, ipif_t *, ipif); 13484 13485 /* 13486 * Skip any loopback interface (null wq). 13487 * If this is the last logical interface on the ill 13488 * have ill_dl_down tell the driver we are gone (unbind) 13489 * Note that lun 0 can ipif_down even though 13490 * there are other logical units that are up. 13491 * This occurs e.g. when we change a "significant" IFF_ flag. 13492 */ 13493 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13494 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13495 ill->ill_dl_up) { 13496 ill_dl_down(ill); 13497 } 13498 if (!ipif->ipif_isv6) 13499 err = ipif_arp_down(ipif); 13500 13501 ill->ill_logical_down = 0; 13502 13503 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13504 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13505 return (err); 13506 } 13507 13508 /* 13509 * Bring interface logically down without bringing the physical interface 13510 * down e.g. when the netmask is changed. This avoids long lasting link 13511 * negotiations between an ethernet interface and a certain switches. 13512 */ 13513 static int 13514 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13515 { 13516 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13517 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13518 13519 /* 13520 * The ill_logical_down flag is a transient flag. It is set here 13521 * and is cleared once the down has completed in ipif_down_tail. 13522 * This flag does not indicate whether the ill stream is in the 13523 * DL_BOUND state with the driver. Instead this flag is used by 13524 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13525 * the driver. The state of the ill stream i.e. whether it is 13526 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13527 */ 13528 ipif->ipif_ill->ill_logical_down = 1; 13529 return (ipif_down(ipif, q, mp)); 13530 } 13531 13532 /* 13533 * Initiate deallocate of an IPIF. Always called as writer. Called by 13534 * ill_delete or ip_sioctl_removeif. 13535 */ 13536 static void 13537 ipif_free(ipif_t *ipif) 13538 { 13539 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13540 13541 ASSERT(IAM_WRITER_IPIF(ipif)); 13542 13543 if (ipif->ipif_recovery_id != 0) 13544 (void) untimeout(ipif->ipif_recovery_id); 13545 ipif->ipif_recovery_id = 0; 13546 13547 /* 13548 * Take down the interface. We can be called either from ill_delete 13549 * or from ip_sioctl_removeif. 13550 */ 13551 (void) ipif_down(ipif, NULL, NULL); 13552 13553 /* 13554 * Now that the interface is down, there's no chance it can still 13555 * become a duplicate. Cancel any timer that may have been set while 13556 * tearing down. 13557 */ 13558 if (ipif->ipif_recovery_id != 0) 13559 (void) untimeout(ipif->ipif_recovery_id); 13560 ipif->ipif_recovery_id = 0; 13561 13562 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13563 /* Remove pointers to this ill in the multicast routing tables */ 13564 reset_mrt_vif_ipif(ipif); 13565 /* If necessary, clear the cached source ipif rotor. */ 13566 if (ipif->ipif_ill->ill_src_ipif == ipif) 13567 ipif->ipif_ill->ill_src_ipif = NULL; 13568 rw_exit(&ipst->ips_ill_g_lock); 13569 } 13570 13571 static void 13572 ipif_free_tail(ipif_t *ipif) 13573 { 13574 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13575 13576 /* 13577 * Need to hold both ill_g_lock and ill_lock while 13578 * inserting or removing an ipif from the linked list 13579 * of ipifs hanging off the ill. 13580 */ 13581 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13582 13583 #ifdef DEBUG 13584 ipif_trace_cleanup(ipif); 13585 #endif 13586 13587 /* Ask SCTP to take it out of it list */ 13588 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13589 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13590 13591 /* Get it out of the ILL interface list. */ 13592 ipif_remove(ipif); 13593 rw_exit(&ipst->ips_ill_g_lock); 13594 13595 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13596 ASSERT(ipif->ipif_recovery_id == 0); 13597 ASSERT(ipif->ipif_ire_local == NULL); 13598 ASSERT(ipif->ipif_ire_if == NULL); 13599 13600 /* Free the memory. */ 13601 mi_free(ipif); 13602 } 13603 13604 /* 13605 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13606 * is zero. 13607 */ 13608 void 13609 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13610 { 13611 char lbuf[LIFNAMSIZ]; 13612 char *name; 13613 size_t name_len; 13614 13615 buf[0] = '\0'; 13616 name = ipif->ipif_ill->ill_name; 13617 name_len = ipif->ipif_ill->ill_name_length; 13618 if (ipif->ipif_id != 0) { 13619 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13620 ipif->ipif_id); 13621 name = lbuf; 13622 name_len = mi_strlen(name) + 1; 13623 } 13624 len -= 1; 13625 buf[len] = '\0'; 13626 len = MIN(len, name_len); 13627 bcopy(name, buf, len); 13628 } 13629 13630 /* 13631 * Sets `buf' to an ill name. 13632 */ 13633 void 13634 ill_get_name(const ill_t *ill, char *buf, int len) 13635 { 13636 char *name; 13637 size_t name_len; 13638 13639 name = ill->ill_name; 13640 name_len = ill->ill_name_length; 13641 len -= 1; 13642 buf[len] = '\0'; 13643 len = MIN(len, name_len); 13644 bcopy(name, buf, len); 13645 } 13646 13647 /* 13648 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13649 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13650 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13651 * (May be called as writer.) 13652 */ 13653 static ipif_t * 13654 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13655 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13656 { 13657 char *cp; 13658 char *endp; 13659 long id; 13660 ill_t *ill; 13661 ipif_t *ipif; 13662 uint_t ire_type; 13663 boolean_t did_alloc = B_FALSE; 13664 char last; 13665 13666 /* 13667 * If the caller wants to us to create the ipif, make sure we have a 13668 * valid zoneid 13669 */ 13670 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13671 13672 if (namelen == 0) { 13673 return (NULL); 13674 } 13675 13676 *exists = B_FALSE; 13677 /* Look for a colon in the name. */ 13678 endp = &name[namelen]; 13679 for (cp = endp; --cp > name; ) { 13680 if (*cp == IPIF_SEPARATOR_CHAR) 13681 break; 13682 } 13683 13684 if (*cp == IPIF_SEPARATOR_CHAR) { 13685 /* 13686 * Reject any non-decimal aliases for logical 13687 * interfaces. Aliases with leading zeroes 13688 * are also rejected as they introduce ambiguity 13689 * in the naming of the interfaces. 13690 * In order to confirm with existing semantics, 13691 * and to not break any programs/script relying 13692 * on that behaviour, if<0>:0 is considered to be 13693 * a valid interface. 13694 * 13695 * If alias has two or more digits and the first 13696 * is zero, fail. 13697 */ 13698 if (&cp[2] < endp && cp[1] == '0') { 13699 return (NULL); 13700 } 13701 } 13702 13703 if (cp <= name) { 13704 cp = endp; 13705 } 13706 last = *cp; 13707 *cp = '\0'; 13708 13709 /* 13710 * Look up the ILL, based on the portion of the name 13711 * before the slash. ill_lookup_on_name returns a held ill. 13712 * Temporary to check whether ill exists already. If so 13713 * ill_lookup_on_name will clear it. 13714 */ 13715 ill = ill_lookup_on_name(name, do_alloc, isv6, 13716 &did_alloc, ipst); 13717 *cp = last; 13718 if (ill == NULL) 13719 return (NULL); 13720 13721 /* Establish the unit number in the name. */ 13722 id = 0; 13723 if (cp < endp && *endp == '\0') { 13724 /* If there was a colon, the unit number follows. */ 13725 cp++; 13726 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13727 ill_refrele(ill); 13728 return (NULL); 13729 } 13730 } 13731 13732 mutex_enter(&ill->ill_lock); 13733 /* Now see if there is an IPIF with this unit number. */ 13734 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13735 if (ipif->ipif_id == id) { 13736 if (zoneid != ALL_ZONES && 13737 zoneid != ipif->ipif_zoneid && 13738 ipif->ipif_zoneid != ALL_ZONES) { 13739 mutex_exit(&ill->ill_lock); 13740 ill_refrele(ill); 13741 return (NULL); 13742 } 13743 if (IPIF_CAN_LOOKUP(ipif)) { 13744 ipif_refhold_locked(ipif); 13745 mutex_exit(&ill->ill_lock); 13746 if (!did_alloc) 13747 *exists = B_TRUE; 13748 /* 13749 * Drop locks before calling ill_refrele 13750 * since it can potentially call into 13751 * ipif_ill_refrele_tail which can end up 13752 * in trying to acquire any lock. 13753 */ 13754 ill_refrele(ill); 13755 return (ipif); 13756 } 13757 } 13758 } 13759 13760 if (!do_alloc) { 13761 mutex_exit(&ill->ill_lock); 13762 ill_refrele(ill); 13763 return (NULL); 13764 } 13765 13766 /* 13767 * If none found, atomically allocate and return a new one. 13768 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13769 * to support "receive only" use of lo0:1 etc. as is still done 13770 * below as an initial guess. 13771 * However, this is now likely to be overriden later in ipif_up_done() 13772 * when we know for sure what address has been configured on the 13773 * interface, since we might have more than one loopback interface 13774 * with a loopback address, e.g. in the case of zones, and all the 13775 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13776 */ 13777 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13778 ire_type = IRE_LOOPBACK; 13779 else 13780 ire_type = IRE_LOCAL; 13781 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13782 if (ipif != NULL) 13783 ipif_refhold_locked(ipif); 13784 mutex_exit(&ill->ill_lock); 13785 ill_refrele(ill); 13786 return (ipif); 13787 } 13788 13789 /* 13790 * Variant of the above that queues the request on the ipsq when 13791 * IPIF_CHANGING is set. 13792 */ 13793 static ipif_t * 13794 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13795 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13796 ip_stack_t *ipst) 13797 { 13798 char *cp; 13799 char *endp; 13800 long id; 13801 ill_t *ill; 13802 ipif_t *ipif; 13803 boolean_t did_alloc = B_FALSE; 13804 ipsq_t *ipsq; 13805 13806 if (error != NULL) 13807 *error = 0; 13808 13809 if (namelen == 0) { 13810 if (error != NULL) 13811 *error = ENXIO; 13812 return (NULL); 13813 } 13814 13815 /* Look for a colon in the name. */ 13816 endp = &name[namelen]; 13817 for (cp = endp; --cp > name; ) { 13818 if (*cp == IPIF_SEPARATOR_CHAR) 13819 break; 13820 } 13821 13822 if (*cp == IPIF_SEPARATOR_CHAR) { 13823 /* 13824 * Reject any non-decimal aliases for logical 13825 * interfaces. Aliases with leading zeroes 13826 * are also rejected as they introduce ambiguity 13827 * in the naming of the interfaces. 13828 * In order to confirm with existing semantics, 13829 * and to not break any programs/script relying 13830 * on that behaviour, if<0>:0 is considered to be 13831 * a valid interface. 13832 * 13833 * If alias has two or more digits and the first 13834 * is zero, fail. 13835 */ 13836 if (&cp[2] < endp && cp[1] == '0') { 13837 if (error != NULL) 13838 *error = EINVAL; 13839 return (NULL); 13840 } 13841 } 13842 13843 if (cp <= name) { 13844 cp = endp; 13845 } else { 13846 *cp = '\0'; 13847 } 13848 13849 /* 13850 * Look up the ILL, based on the portion of the name 13851 * before the slash. ill_lookup_on_name returns a held ill. 13852 * Temporary to check whether ill exists already. If so 13853 * ill_lookup_on_name will clear it. 13854 */ 13855 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13856 if (cp != endp) 13857 *cp = IPIF_SEPARATOR_CHAR; 13858 if (ill == NULL) 13859 return (NULL); 13860 13861 /* Establish the unit number in the name. */ 13862 id = 0; 13863 if (cp < endp && *endp == '\0') { 13864 /* If there was a colon, the unit number follows. */ 13865 cp++; 13866 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13867 ill_refrele(ill); 13868 if (error != NULL) 13869 *error = ENXIO; 13870 return (NULL); 13871 } 13872 } 13873 13874 GRAB_CONN_LOCK(q); 13875 mutex_enter(&ill->ill_lock); 13876 /* Now see if there is an IPIF with this unit number. */ 13877 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13878 if (ipif->ipif_id == id) { 13879 if (zoneid != ALL_ZONES && 13880 zoneid != ipif->ipif_zoneid && 13881 ipif->ipif_zoneid != ALL_ZONES) { 13882 mutex_exit(&ill->ill_lock); 13883 RELEASE_CONN_LOCK(q); 13884 ill_refrele(ill); 13885 if (error != NULL) 13886 *error = ENXIO; 13887 return (NULL); 13888 } 13889 13890 if (!(IPIF_IS_CHANGING(ipif) || 13891 IPIF_IS_CONDEMNED(ipif)) || 13892 IAM_WRITER_IPIF(ipif)) { 13893 ipif_refhold_locked(ipif); 13894 mutex_exit(&ill->ill_lock); 13895 /* 13896 * Drop locks before calling ill_refrele 13897 * since it can potentially call into 13898 * ipif_ill_refrele_tail which can end up 13899 * in trying to acquire any lock. 13900 */ 13901 RELEASE_CONN_LOCK(q); 13902 ill_refrele(ill); 13903 return (ipif); 13904 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13905 ipsq = ill->ill_phyint->phyint_ipsq; 13906 mutex_enter(&ipsq->ipsq_lock); 13907 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13908 mutex_exit(&ill->ill_lock); 13909 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13910 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13911 mutex_exit(&ipsq->ipsq_lock); 13912 RELEASE_CONN_LOCK(q); 13913 ill_refrele(ill); 13914 if (error != NULL) 13915 *error = EINPROGRESS; 13916 return (NULL); 13917 } 13918 } 13919 } 13920 RELEASE_CONN_LOCK(q); 13921 mutex_exit(&ill->ill_lock); 13922 ill_refrele(ill); 13923 if (error != NULL) 13924 *error = ENXIO; 13925 return (NULL); 13926 } 13927 13928 /* 13929 * This routine is called whenever a new address comes up on an ipif. If 13930 * we are configured to respond to address mask requests, then we are supposed 13931 * to broadcast an address mask reply at this time. This routine is also 13932 * called if we are already up, but a netmask change is made. This is legal 13933 * but might not make the system manager very popular. (May be called 13934 * as writer.) 13935 */ 13936 void 13937 ipif_mask_reply(ipif_t *ipif) 13938 { 13939 icmph_t *icmph; 13940 ipha_t *ipha; 13941 mblk_t *mp; 13942 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13943 ip_xmit_attr_t ixas; 13944 13945 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13946 13947 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13948 return; 13949 13950 /* ICMP mask reply is IPv4 only */ 13951 ASSERT(!ipif->ipif_isv6); 13952 /* ICMP mask reply is not for a loopback interface */ 13953 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13954 13955 if (ipif->ipif_lcl_addr == INADDR_ANY) 13956 return; 13957 13958 mp = allocb(REPLY_LEN, BPRI_HI); 13959 if (mp == NULL) 13960 return; 13961 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13962 13963 ipha = (ipha_t *)mp->b_rptr; 13964 bzero(ipha, REPLY_LEN); 13965 *ipha = icmp_ipha; 13966 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13967 ipha->ipha_src = ipif->ipif_lcl_addr; 13968 ipha->ipha_dst = ipif->ipif_brd_addr; 13969 ipha->ipha_length = htons(REPLY_LEN); 13970 ipha->ipha_ident = 0; 13971 13972 icmph = (icmph_t *)&ipha[1]; 13973 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13974 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13975 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13976 13977 bzero(&ixas, sizeof (ixas)); 13978 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13979 ixas.ixa_zoneid = ALL_ZONES; 13980 ixas.ixa_ifindex = 0; 13981 ixas.ixa_ipst = ipst; 13982 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13983 (void) ip_output_simple(mp, &ixas); 13984 ixa_cleanup(&ixas); 13985 #undef REPLY_LEN 13986 } 13987 13988 /* 13989 * Join the ipif specific multicast groups. 13990 * Must be called after a mapping has been set up in the resolver. (Always 13991 * called as writer.) 13992 */ 13993 void 13994 ipif_multicast_up(ipif_t *ipif) 13995 { 13996 int err; 13997 ill_t *ill; 13998 ilm_t *ilm; 13999 14000 ASSERT(IAM_WRITER_IPIF(ipif)); 14001 14002 ill = ipif->ipif_ill; 14003 14004 ip1dbg(("ipif_multicast_up\n")); 14005 if (!(ill->ill_flags & ILLF_MULTICAST) || 14006 ipif->ipif_allhosts_ilm != NULL) 14007 return; 14008 14009 if (ipif->ipif_isv6) { 14010 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 14011 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 14012 14013 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 14014 14015 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14016 return; 14017 14018 ip1dbg(("ipif_multicast_up - addmulti\n")); 14019 14020 /* 14021 * Join the all hosts multicast address. We skip this for 14022 * underlying IPMP interfaces since they should be invisible. 14023 */ 14024 if (!IS_UNDER_IPMP(ill)) { 14025 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 14026 &err); 14027 if (ilm == NULL) { 14028 ASSERT(err != 0); 14029 ip0dbg(("ipif_multicast_up: " 14030 "all_hosts_mcast failed %d\n", err)); 14031 return; 14032 } 14033 ipif->ipif_allhosts_ilm = ilm; 14034 } 14035 14036 /* 14037 * Enable multicast for the solicited node multicast address. 14038 * If IPMP we need to put the membership on the upper ill. 14039 */ 14040 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 14041 ill_t *mcast_ill = NULL; 14042 boolean_t need_refrele; 14043 14044 if (IS_UNDER_IPMP(ill) && 14045 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 14046 need_refrele = B_TRUE; 14047 } else { 14048 mcast_ill = ill; 14049 need_refrele = B_FALSE; 14050 } 14051 14052 ilm = ip_addmulti(&v6solmc, mcast_ill, 14053 ipif->ipif_zoneid, &err); 14054 if (need_refrele) 14055 ill_refrele(mcast_ill); 14056 14057 if (ilm == NULL) { 14058 ASSERT(err != 0); 14059 ip0dbg(("ipif_multicast_up: solicited MC" 14060 " failed %d\n", err)); 14061 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14062 ipif->ipif_allhosts_ilm = NULL; 14063 (void) ip_delmulti(ilm); 14064 } 14065 return; 14066 } 14067 ipif->ipif_solmulti_ilm = ilm; 14068 } 14069 } else { 14070 in6_addr_t v6group; 14071 14072 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14073 return; 14074 14075 /* Join the all hosts multicast address */ 14076 ip1dbg(("ipif_multicast_up - addmulti\n")); 14077 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14078 14079 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14080 if (ilm == NULL) { 14081 ASSERT(err != 0); 14082 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14083 return; 14084 } 14085 ipif->ipif_allhosts_ilm = ilm; 14086 } 14087 } 14088 14089 /* 14090 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14091 * (ilms from explicit memberships are handled in conn_update_ill.) 14092 */ 14093 void 14094 ipif_multicast_down(ipif_t *ipif) 14095 { 14096 ASSERT(IAM_WRITER_IPIF(ipif)); 14097 14098 ip1dbg(("ipif_multicast_down\n")); 14099 14100 if (ipif->ipif_allhosts_ilm != NULL) { 14101 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14102 ipif->ipif_allhosts_ilm = NULL; 14103 } 14104 if (ipif->ipif_solmulti_ilm != NULL) { 14105 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14106 ipif->ipif_solmulti_ilm = NULL; 14107 } 14108 } 14109 14110 /* 14111 * Used when an interface comes up to recreate any extra routes on this 14112 * interface. 14113 */ 14114 int 14115 ill_recover_saved_ire(ill_t *ill) 14116 { 14117 mblk_t *mp; 14118 ip_stack_t *ipst = ill->ill_ipst; 14119 14120 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14121 14122 mutex_enter(&ill->ill_saved_ire_lock); 14123 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14124 ire_t *ire, *nire; 14125 ifrt_t *ifrt; 14126 14127 ifrt = (ifrt_t *)mp->b_rptr; 14128 /* 14129 * Create a copy of the IRE with the saved address and netmask. 14130 */ 14131 if (ill->ill_isv6) { 14132 ire = ire_create_v6( 14133 &ifrt->ifrt_v6addr, 14134 &ifrt->ifrt_v6mask, 14135 &ifrt->ifrt_v6gateway_addr, 14136 ifrt->ifrt_type, 14137 ill, 14138 ifrt->ifrt_zoneid, 14139 ifrt->ifrt_flags, 14140 NULL, 14141 ipst); 14142 } else { 14143 ire = ire_create( 14144 (uint8_t *)&ifrt->ifrt_addr, 14145 (uint8_t *)&ifrt->ifrt_mask, 14146 (uint8_t *)&ifrt->ifrt_gateway_addr, 14147 ifrt->ifrt_type, 14148 ill, 14149 ifrt->ifrt_zoneid, 14150 ifrt->ifrt_flags, 14151 NULL, 14152 ipst); 14153 } 14154 if (ire == NULL) { 14155 mutex_exit(&ill->ill_saved_ire_lock); 14156 return (ENOMEM); 14157 } 14158 14159 if (ifrt->ifrt_flags & RTF_SETSRC) { 14160 if (ill->ill_isv6) { 14161 ire->ire_setsrc_addr_v6 = 14162 ifrt->ifrt_v6setsrc_addr; 14163 } else { 14164 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14165 } 14166 } 14167 14168 /* 14169 * Some software (for example, GateD and Sun Cluster) attempts 14170 * to create (what amount to) IRE_PREFIX routes with the 14171 * loopback address as the gateway. This is primarily done to 14172 * set up prefixes with the RTF_REJECT flag set (for example, 14173 * when generating aggregate routes.) 14174 * 14175 * If the IRE type (as defined by ill->ill_net_type) is 14176 * IRE_LOOPBACK, then we map the request into a 14177 * IRE_IF_NORESOLVER. 14178 */ 14179 if (ill->ill_net_type == IRE_LOOPBACK) 14180 ire->ire_type = IRE_IF_NORESOLVER; 14181 14182 /* 14183 * ire held by ire_add, will be refreled' towards the 14184 * the end of ipif_up_done 14185 */ 14186 nire = ire_add(ire); 14187 /* 14188 * Check if it was a duplicate entry. This handles 14189 * the case of two racing route adds for the same route 14190 */ 14191 if (nire == NULL) { 14192 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14193 } else if (nire != ire) { 14194 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14195 (void *)nire)); 14196 ire_delete(nire); 14197 } else { 14198 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14199 (void *)nire)); 14200 } 14201 if (nire != NULL) 14202 ire_refrele(nire); 14203 } 14204 mutex_exit(&ill->ill_saved_ire_lock); 14205 return (0); 14206 } 14207 14208 /* 14209 * Used to set the netmask and broadcast address to default values when the 14210 * interface is brought up. (Always called as writer.) 14211 */ 14212 static void 14213 ipif_set_default(ipif_t *ipif) 14214 { 14215 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14216 14217 if (!ipif->ipif_isv6) { 14218 /* 14219 * Interface holds an IPv4 address. Default 14220 * mask is the natural netmask. 14221 */ 14222 if (!ipif->ipif_net_mask) { 14223 ipaddr_t v4mask; 14224 14225 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14226 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14227 } 14228 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14229 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14230 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14231 } else { 14232 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14233 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14234 } 14235 /* 14236 * NOTE: SunOS 4.X does this even if the broadcast address 14237 * has been already set thus we do the same here. 14238 */ 14239 if (ipif->ipif_flags & IPIF_BROADCAST) { 14240 ipaddr_t v4addr; 14241 14242 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14243 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14244 } 14245 } else { 14246 /* 14247 * Interface holds an IPv6-only address. Default 14248 * mask is all-ones. 14249 */ 14250 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14251 ipif->ipif_v6net_mask = ipv6_all_ones; 14252 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14253 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14254 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14255 } else { 14256 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14257 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14258 } 14259 } 14260 } 14261 14262 /* 14263 * Return 0 if this address can be used as local address without causing 14264 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14265 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14266 * Note that the same IPv6 link-local address is allowed as long as the ills 14267 * are not on the same link. 14268 */ 14269 int 14270 ip_addr_availability_check(ipif_t *new_ipif) 14271 { 14272 in6_addr_t our_v6addr; 14273 ill_t *ill; 14274 ipif_t *ipif; 14275 ill_walk_context_t ctx; 14276 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14277 14278 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14279 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14280 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14281 14282 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14283 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14284 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14285 return (0); 14286 14287 our_v6addr = new_ipif->ipif_v6lcl_addr; 14288 14289 if (new_ipif->ipif_isv6) 14290 ill = ILL_START_WALK_V6(&ctx, ipst); 14291 else 14292 ill = ILL_START_WALK_V4(&ctx, ipst); 14293 14294 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14295 for (ipif = ill->ill_ipif; ipif != NULL; 14296 ipif = ipif->ipif_next) { 14297 if ((ipif == new_ipif) || 14298 !(ipif->ipif_flags & IPIF_UP) || 14299 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14300 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14301 &our_v6addr)) 14302 continue; 14303 14304 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14305 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14306 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14307 ipif->ipif_flags |= IPIF_UNNUMBERED; 14308 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14309 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14310 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14311 continue; 14312 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14313 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14314 continue; 14315 else if (new_ipif->ipif_ill == ill) 14316 return (EADDRINUSE); 14317 else 14318 return (EADDRNOTAVAIL); 14319 } 14320 } 14321 14322 return (0); 14323 } 14324 14325 /* 14326 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14327 * IREs for the ipif. 14328 * When the routine returns EINPROGRESS then mp has been consumed and 14329 * the ioctl will be acked from ip_rput_dlpi. 14330 */ 14331 int 14332 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14333 { 14334 ill_t *ill = ipif->ipif_ill; 14335 boolean_t isv6 = ipif->ipif_isv6; 14336 int err = 0; 14337 boolean_t success; 14338 uint_t ipif_orig_id; 14339 ip_stack_t *ipst = ill->ill_ipst; 14340 14341 ASSERT(IAM_WRITER_IPIF(ipif)); 14342 14343 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14344 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14345 ill_t *, ill, ipif_t *, ipif); 14346 14347 /* Shouldn't get here if it is already up. */ 14348 if (ipif->ipif_flags & IPIF_UP) 14349 return (EALREADY); 14350 14351 /* 14352 * If this is a request to bring up a data address on an interface 14353 * under IPMP, then move the address to its IPMP meta-interface and 14354 * try to bring it up. One complication is that the zeroth ipif for 14355 * an ill is special, in that every ill always has one, and that code 14356 * throughout IP deferences ill->ill_ipif without holding any locks. 14357 */ 14358 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14359 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14360 ipif_t *stubipif = NULL, *moveipif = NULL; 14361 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14362 14363 /* 14364 * The ipif being brought up should be quiesced. If it's not, 14365 * something has gone amiss and we need to bail out. (If it's 14366 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14367 */ 14368 mutex_enter(&ill->ill_lock); 14369 if (!ipif_is_quiescent(ipif)) { 14370 mutex_exit(&ill->ill_lock); 14371 return (EINVAL); 14372 } 14373 mutex_exit(&ill->ill_lock); 14374 14375 /* 14376 * If we're going to need to allocate ipifs, do it prior 14377 * to starting the move (and grabbing locks). 14378 */ 14379 if (ipif->ipif_id == 0) { 14380 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14381 B_FALSE, &err)) == NULL) { 14382 return (err); 14383 } 14384 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14385 B_FALSE, &err)) == NULL) { 14386 mi_free(moveipif); 14387 return (err); 14388 } 14389 } 14390 14391 /* 14392 * Grab or transfer the ipif to move. During the move, keep 14393 * ill_g_lock held to prevent any ill walker threads from 14394 * seeing things in an inconsistent state. 14395 */ 14396 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14397 if (ipif->ipif_id != 0) { 14398 ipif_remove(ipif); 14399 } else { 14400 ipif_transfer(ipif, moveipif, stubipif); 14401 ipif = moveipif; 14402 } 14403 14404 /* 14405 * Place the ipif on the IPMP ill. If the zeroth ipif on 14406 * the IPMP ill is a stub (0.0.0.0 down address) then we 14407 * replace that one. Otherwise, pick the next available slot. 14408 */ 14409 ipif->ipif_ill = ipmp_ill; 14410 ipif_orig_id = ipif->ipif_id; 14411 14412 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14413 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14414 ipif = ipmp_ill->ill_ipif; 14415 } else { 14416 ipif->ipif_id = -1; 14417 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14418 /* 14419 * No more available ipif_id's -- put it back 14420 * on the original ill and fail the operation. 14421 * Since we're writer on the ill, we can be 14422 * sure our old slot is still available. 14423 */ 14424 ipif->ipif_id = ipif_orig_id; 14425 ipif->ipif_ill = ill; 14426 if (ipif_orig_id == 0) { 14427 ipif_transfer(ipif, ill->ill_ipif, 14428 NULL); 14429 } else { 14430 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14431 } 14432 rw_exit(&ipst->ips_ill_g_lock); 14433 return (err); 14434 } 14435 } 14436 rw_exit(&ipst->ips_ill_g_lock); 14437 14438 /* 14439 * Tell SCTP that the ipif has moved. Note that even if we 14440 * had to allocate a new ipif, the original sequence id was 14441 * preserved and therefore SCTP won't know. 14442 */ 14443 sctp_move_ipif(ipif, ill, ipmp_ill); 14444 14445 /* 14446 * If the ipif being brought up was on slot zero, then we 14447 * first need to bring up the placeholder we stuck there. In 14448 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14449 * call to ipif_up() itself, if we successfully bring up the 14450 * placeholder, we'll check ill_move_ipif and bring it up too. 14451 */ 14452 if (ipif_orig_id == 0) { 14453 ASSERT(ill->ill_move_ipif == NULL); 14454 ill->ill_move_ipif = ipif; 14455 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14456 ASSERT(ill->ill_move_ipif == NULL); 14457 if (err != EINPROGRESS) 14458 ill->ill_move_ipif = NULL; 14459 return (err); 14460 } 14461 14462 /* 14463 * Bring it up on the IPMP ill. 14464 */ 14465 return (ipif_up(ipif, q, mp)); 14466 } 14467 14468 /* Skip arp/ndp for any loopback interface. */ 14469 if (ill->ill_wq != NULL) { 14470 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14471 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14472 14473 if (!ill->ill_dl_up) { 14474 /* 14475 * ill_dl_up is not yet set. i.e. we are yet to 14476 * DL_BIND with the driver and this is the first 14477 * logical interface on the ill to become "up". 14478 * Tell the driver to get going (via DL_BIND_REQ). 14479 * Note that changing "significant" IFF_ flags 14480 * address/netmask etc cause a down/up dance, but 14481 * does not cause an unbind (DL_UNBIND) with the driver 14482 */ 14483 return (ill_dl_up(ill, ipif, mp, q)); 14484 } 14485 14486 /* 14487 * ipif_resolver_up may end up needeing to bind/attach 14488 * the ARP stream, which in turn necessitates a 14489 * DLPI message exchange with the driver. ioctls are 14490 * serialized and so we cannot send more than one 14491 * interface up message at a time. If ipif_resolver_up 14492 * does need to wait for the DLPI handshake for the ARP stream, 14493 * we get EINPROGRESS and we will complete in arp_bringup_done. 14494 */ 14495 14496 ASSERT(connp != NULL || !CONN_Q(q)); 14497 if (connp != NULL) 14498 mutex_enter(&connp->conn_lock); 14499 mutex_enter(&ill->ill_lock); 14500 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14501 mutex_exit(&ill->ill_lock); 14502 if (connp != NULL) 14503 mutex_exit(&connp->conn_lock); 14504 if (!success) 14505 return (EINTR); 14506 14507 /* 14508 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14509 * complete when ipif_ndp_up returns. 14510 */ 14511 err = ipif_resolver_up(ipif, Res_act_initial); 14512 if (err == EINPROGRESS) { 14513 /* We will complete it in arp_bringup_done() */ 14514 return (err); 14515 } 14516 14517 if (isv6 && err == 0) 14518 err = ipif_ndp_up(ipif, B_TRUE); 14519 14520 ASSERT(err != EINPROGRESS); 14521 mp = ipsq_pending_mp_get(ipsq, &connp); 14522 ASSERT(mp != NULL); 14523 if (err != 0) 14524 return (err); 14525 } else { 14526 /* 14527 * Interfaces without underlying hardware don't do duplicate 14528 * address detection. 14529 */ 14530 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14531 ipif->ipif_addr_ready = 1; 14532 err = ill_add_ires(ill); 14533 /* allocation failure? */ 14534 if (err != 0) 14535 return (err); 14536 } 14537 14538 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14539 if (err == 0 && ill->ill_move_ipif != NULL) { 14540 ipif = ill->ill_move_ipif; 14541 ill->ill_move_ipif = NULL; 14542 return (ipif_up(ipif, q, mp)); 14543 } 14544 return (err); 14545 } 14546 14547 /* 14548 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14549 * The identical set of IREs need to be removed in ill_delete_ires(). 14550 */ 14551 int 14552 ill_add_ires(ill_t *ill) 14553 { 14554 ire_t *ire; 14555 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14556 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14557 14558 if (ill->ill_ire_multicast != NULL) 14559 return (0); 14560 14561 /* 14562 * provide some dummy ire_addr for creating the ire. 14563 */ 14564 if (ill->ill_isv6) { 14565 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14566 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14567 } else { 14568 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14569 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14570 } 14571 if (ire == NULL) 14572 return (ENOMEM); 14573 14574 ill->ill_ire_multicast = ire; 14575 return (0); 14576 } 14577 14578 void 14579 ill_delete_ires(ill_t *ill) 14580 { 14581 if (ill->ill_ire_multicast != NULL) { 14582 /* 14583 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14584 * which was taken without any th_tracing enabled. 14585 * We also mark it as condemned (note that it was never added) 14586 * so that caching conn's can move off of it. 14587 */ 14588 ire_make_condemned(ill->ill_ire_multicast); 14589 ire_refrele_notr(ill->ill_ire_multicast); 14590 ill->ill_ire_multicast = NULL; 14591 } 14592 } 14593 14594 /* 14595 * Perform a bind for the physical device. 14596 * When the routine returns EINPROGRESS then mp has been consumed and 14597 * the ioctl will be acked from ip_rput_dlpi. 14598 * Allocate an unbind message and save it until ipif_down. 14599 */ 14600 static int 14601 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14602 { 14603 mblk_t *bind_mp = NULL; 14604 mblk_t *unbind_mp = NULL; 14605 conn_t *connp; 14606 boolean_t success; 14607 int err; 14608 14609 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14610 14611 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14612 ASSERT(IAM_WRITER_ILL(ill)); 14613 ASSERT(mp != NULL); 14614 14615 /* 14616 * Make sure we have an IRE_MULTICAST in case we immediately 14617 * start receiving packets. 14618 */ 14619 err = ill_add_ires(ill); 14620 if (err != 0) 14621 goto bad; 14622 14623 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14624 DL_BIND_REQ); 14625 if (bind_mp == NULL) 14626 goto bad; 14627 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14628 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14629 14630 /* 14631 * ill_unbind_mp would be non-null if the following sequence had 14632 * happened: 14633 * - send DL_BIND_REQ to driver, wait for response 14634 * - multiple ioctls that need to bring the ipif up are encountered, 14635 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ. 14636 * These ioctls will then be enqueued on the ipsq 14637 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ 14638 * At this point, the pending ioctls in the ipsq will be drained, and 14639 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with 14640 * a non-null ill->ill_unbind_mp 14641 */ 14642 if (ill->ill_unbind_mp == NULL) { 14643 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), 14644 DL_UNBIND_REQ); 14645 if (unbind_mp == NULL) 14646 goto bad; 14647 } 14648 /* 14649 * Record state needed to complete this operation when the 14650 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14651 */ 14652 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14653 ASSERT(connp != NULL || !CONN_Q(q)); 14654 GRAB_CONN_LOCK(q); 14655 mutex_enter(&ipif->ipif_ill->ill_lock); 14656 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14657 mutex_exit(&ipif->ipif_ill->ill_lock); 14658 RELEASE_CONN_LOCK(q); 14659 if (!success) 14660 goto bad; 14661 14662 /* 14663 * Save the unbind message for ill_dl_down(); it will be consumed when 14664 * the interface goes down. 14665 */ 14666 if (ill->ill_unbind_mp == NULL) 14667 ill->ill_unbind_mp = unbind_mp; 14668 14669 ill_dlpi_send(ill, bind_mp); 14670 /* Send down link-layer capabilities probe if not already done. */ 14671 ill_capability_probe(ill); 14672 14673 /* 14674 * Sysid used to rely on the fact that netboots set domainname 14675 * and the like. Now that miniroot boots aren't strictly netboots 14676 * and miniroot network configuration is driven from userland 14677 * these things still need to be set. This situation can be detected 14678 * by comparing the interface being configured here to the one 14679 * dhcifname was set to reference by the boot loader. Once sysid is 14680 * converted to use dhcp_ipc_getinfo() this call can go away. 14681 */ 14682 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14683 (strcmp(ill->ill_name, dhcifname) == 0) && 14684 (strlen(srpc_domain) == 0)) { 14685 if (dhcpinit() != 0) 14686 cmn_err(CE_WARN, "no cached dhcp response"); 14687 } 14688 14689 /* 14690 * This operation will complete in ip_rput_dlpi with either 14691 * a DL_BIND_ACK or DL_ERROR_ACK. 14692 */ 14693 return (EINPROGRESS); 14694 bad: 14695 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14696 14697 freemsg(bind_mp); 14698 freemsg(unbind_mp); 14699 return (ENOMEM); 14700 } 14701 14702 /* Add room for tcp+ip headers */ 14703 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14704 14705 /* 14706 * DLPI and ARP is up. 14707 * Create all the IREs associated with an interface. Bring up multicast. 14708 * Set the interface flag and finish other initialization 14709 * that potentially had to be deferred to after DL_BIND_ACK. 14710 */ 14711 int 14712 ipif_up_done(ipif_t *ipif) 14713 { 14714 ill_t *ill = ipif->ipif_ill; 14715 int err = 0; 14716 boolean_t loopback = B_FALSE; 14717 boolean_t update_src_selection = B_TRUE; 14718 ipif_t *tmp_ipif; 14719 14720 ip1dbg(("ipif_up_done(%s:%u)\n", 14721 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14722 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14723 ill_t *, ill, ipif_t *, ipif); 14724 14725 /* Check if this is a loopback interface */ 14726 if (ipif->ipif_ill->ill_wq == NULL) 14727 loopback = B_TRUE; 14728 14729 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14730 14731 /* 14732 * If all other interfaces for this ill are down or DEPRECATED, 14733 * or otherwise unsuitable for source address selection, 14734 * reset the src generation numbers to make sure source 14735 * address selection gets to take this new ipif into account. 14736 * No need to hold ill_lock while traversing the ipif list since 14737 * we are writer 14738 */ 14739 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14740 tmp_ipif = tmp_ipif->ipif_next) { 14741 if (((tmp_ipif->ipif_flags & 14742 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14743 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14744 (tmp_ipif == ipif)) 14745 continue; 14746 /* first useable pre-existing interface */ 14747 update_src_selection = B_FALSE; 14748 break; 14749 } 14750 if (update_src_selection) 14751 ip_update_source_selection(ill->ill_ipst); 14752 14753 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14754 nce_t *loop_nce = NULL; 14755 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14756 14757 /* 14758 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14759 * ipif_lookup_on_name(), but in the case of zones we can have 14760 * several loopback addresses on lo0. So all the interfaces with 14761 * loopback addresses need to be marked IRE_LOOPBACK. 14762 */ 14763 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14764 htonl(INADDR_LOOPBACK)) 14765 ipif->ipif_ire_type = IRE_LOOPBACK; 14766 else 14767 ipif->ipif_ire_type = IRE_LOCAL; 14768 if (ill->ill_net_type != IRE_LOOPBACK) 14769 flags |= NCE_F_PUBLISH; 14770 14771 /* add unicast nce for the local addr */ 14772 err = nce_lookup_then_add_v4(ill, NULL, 14773 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14774 ND_REACHABLE, &loop_nce); 14775 /* A shared-IP zone sees EEXIST for lo0:N */ 14776 if (err == 0 || err == EEXIST) { 14777 ipif->ipif_added_nce = 1; 14778 loop_nce->nce_ipif_cnt++; 14779 nce_refrele(loop_nce); 14780 err = 0; 14781 } else { 14782 ASSERT(loop_nce == NULL); 14783 return (err); 14784 } 14785 } 14786 14787 /* Create all the IREs associated with this interface */ 14788 err = ipif_add_ires_v4(ipif, loopback); 14789 if (err != 0) { 14790 /* 14791 * see comments about return value from 14792 * ip_addr_availability_check() in ipif_add_ires_v4(). 14793 */ 14794 if (err != EADDRINUSE) { 14795 (void) ipif_arp_down(ipif); 14796 } else { 14797 /* 14798 * Make IPMP aware of the deleted ipif so that 14799 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14800 * can be completed. Note that we do not want to 14801 * destroy the nce that was created on the ipmp_ill 14802 * for the active copy of the duplicate address in 14803 * use. 14804 */ 14805 if (IS_IPMP(ill)) 14806 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14807 err = EADDRNOTAVAIL; 14808 } 14809 return (err); 14810 } 14811 14812 if (ill->ill_ipif_up_count == 1 && !loopback) { 14813 /* Recover any additional IREs entries for this ill */ 14814 (void) ill_recover_saved_ire(ill); 14815 } 14816 14817 if (ill->ill_need_recover_multicast) { 14818 /* 14819 * Need to recover all multicast memberships in the driver. 14820 * This had to be deferred until we had attached. The same 14821 * code exists in ipif_up_done_v6() to recover IPv6 14822 * memberships. 14823 * 14824 * Note that it would be preferable to unconditionally do the 14825 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14826 * that since ill_join_allmulti() depends on ill_dl_up being 14827 * set, and it is not set until we receive a DL_BIND_ACK after 14828 * having called ill_dl_up(). 14829 */ 14830 ill_recover_multicast(ill); 14831 } 14832 14833 if (ill->ill_ipif_up_count == 1) { 14834 /* 14835 * Since the interface is now up, it may now be active. 14836 */ 14837 if (IS_UNDER_IPMP(ill)) 14838 ipmp_ill_refresh_active(ill); 14839 14840 /* 14841 * If this is an IPMP interface, we may now be able to 14842 * establish ARP entries. 14843 */ 14844 if (IS_IPMP(ill)) 14845 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14846 } 14847 14848 /* Join the allhosts multicast address */ 14849 ipif_multicast_up(ipif); 14850 14851 if (!loopback && !update_src_selection && 14852 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14853 ip_update_source_selection(ill->ill_ipst); 14854 14855 if (!loopback && ipif->ipif_addr_ready) { 14856 /* Broadcast an address mask reply. */ 14857 ipif_mask_reply(ipif); 14858 } 14859 /* Perhaps ilgs should use this ill */ 14860 update_conn_ill(NULL, ill->ill_ipst); 14861 14862 /* 14863 * This had to be deferred until we had bound. Tell routing sockets and 14864 * others that this interface is up if it looks like the address has 14865 * been validated. Otherwise, if it isn't ready yet, wait for 14866 * duplicate address detection to do its thing. 14867 */ 14868 if (ipif->ipif_addr_ready) 14869 ipif_up_notify(ipif); 14870 return (0); 14871 } 14872 14873 /* 14874 * Add the IREs associated with the ipif. 14875 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14876 */ 14877 static int 14878 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14879 { 14880 ill_t *ill = ipif->ipif_ill; 14881 ip_stack_t *ipst = ill->ill_ipst; 14882 ire_t *ire_array[20]; 14883 ire_t **irep = ire_array; 14884 ire_t **irep1; 14885 ipaddr_t net_mask = 0; 14886 ipaddr_t subnet_mask, route_mask; 14887 int err; 14888 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14889 ire_t *ire_if = NULL; 14890 uchar_t *gw; 14891 14892 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14893 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14894 /* 14895 * If we're on a labeled system then make sure that zone- 14896 * private addresses have proper remote host database entries. 14897 */ 14898 if (is_system_labeled() && 14899 ipif->ipif_ire_type != IRE_LOOPBACK && 14900 !tsol_check_interface_address(ipif)) 14901 return (EINVAL); 14902 14903 /* Register the source address for __sin6_src_id */ 14904 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14905 ipif->ipif_zoneid, ipst); 14906 if (err != 0) { 14907 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14908 return (err); 14909 } 14910 14911 if (loopback) 14912 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14913 else 14914 gw = NULL; 14915 14916 /* If the interface address is set, create the local IRE. */ 14917 ire_local = ire_create( 14918 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14919 (uchar_t *)&ip_g_all_ones, /* mask */ 14920 gw, /* gateway */ 14921 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14922 ipif->ipif_ill, 14923 ipif->ipif_zoneid, 14924 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14925 RTF_PRIVATE : 0) | RTF_KERNEL, 14926 NULL, 14927 ipst); 14928 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14929 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14930 ipif->ipif_ire_type, 14931 ntohl(ipif->ipif_lcl_addr))); 14932 if (ire_local == NULL) { 14933 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14934 err = ENOMEM; 14935 goto bad; 14936 } 14937 } else { 14938 ip1dbg(( 14939 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14940 ipif->ipif_ire_type, 14941 ntohl(ipif->ipif_lcl_addr), 14942 (uint_t)ipif->ipif_flags)); 14943 } 14944 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14945 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14946 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14947 } else { 14948 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14949 } 14950 14951 subnet_mask = ipif->ipif_net_mask; 14952 14953 /* 14954 * If mask was not specified, use natural netmask of 14955 * interface address. Also, store this mask back into the 14956 * ipif struct. 14957 */ 14958 if (subnet_mask == 0) { 14959 subnet_mask = net_mask; 14960 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14961 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14962 ipif->ipif_v6subnet); 14963 } 14964 14965 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14966 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14967 ipif->ipif_subnet != INADDR_ANY) { 14968 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14969 14970 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14971 route_mask = IP_HOST_MASK; 14972 } else { 14973 route_mask = subnet_mask; 14974 } 14975 14976 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14977 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14978 (void *)ipif, (void *)ill, ill->ill_net_type, 14979 ntohl(ipif->ipif_subnet))); 14980 ire_if = ire_create( 14981 (uchar_t *)&ipif->ipif_subnet, 14982 (uchar_t *)&route_mask, 14983 (uchar_t *)&ipif->ipif_lcl_addr, 14984 ill->ill_net_type, 14985 ill, 14986 ipif->ipif_zoneid, 14987 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14988 RTF_PRIVATE: 0) | RTF_KERNEL, 14989 NULL, 14990 ipst); 14991 if (ire_if == NULL) { 14992 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14993 err = ENOMEM; 14994 goto bad; 14995 } 14996 } 14997 14998 /* 14999 * Create any necessary broadcast IREs. 15000 */ 15001 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15002 !(ipif->ipif_flags & IPIF_NOXMIT)) 15003 irep = ipif_create_bcast_ires(ipif, irep); 15004 15005 /* If an earlier ire_create failed, get out now */ 15006 for (irep1 = irep; irep1 > ire_array; ) { 15007 irep1--; 15008 if (*irep1 == NULL) { 15009 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 15010 err = ENOMEM; 15011 goto bad; 15012 } 15013 } 15014 15015 /* 15016 * Need to atomically check for IP address availability under 15017 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 15018 * ills or new ipifs can be added while we are checking availability. 15019 */ 15020 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15021 mutex_enter(&ipst->ips_ip_addr_avail_lock); 15022 /* Mark it up, and increment counters. */ 15023 ipif->ipif_flags |= IPIF_UP; 15024 ill->ill_ipif_up_count++; 15025 err = ip_addr_availability_check(ipif); 15026 mutex_exit(&ipst->ips_ip_addr_avail_lock); 15027 rw_exit(&ipst->ips_ill_g_lock); 15028 15029 if (err != 0) { 15030 /* 15031 * Our address may already be up on the same ill. In this case, 15032 * the ARP entry for our ipif replaced the one for the other 15033 * ipif. So we don't want to delete it (otherwise the other ipif 15034 * would be unable to send packets). 15035 * ip_addr_availability_check() identifies this case for us and 15036 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 15037 * which is the expected error code. 15038 */ 15039 ill->ill_ipif_up_count--; 15040 ipif->ipif_flags &= ~IPIF_UP; 15041 goto bad; 15042 } 15043 15044 /* 15045 * Add in all newly created IREs. ire_create_bcast() has 15046 * already checked for duplicates of the IRE_BROADCAST type. 15047 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 15048 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 15049 * a /32 route. 15050 */ 15051 if (ire_if != NULL) { 15052 ire_if = ire_add(ire_if); 15053 if (ire_if == NULL) { 15054 err = ENOMEM; 15055 goto bad2; 15056 } 15057 #ifdef DEBUG 15058 ire_refhold_notr(ire_if); 15059 ire_refrele(ire_if); 15060 #endif 15061 } 15062 if (ire_local != NULL) { 15063 ire_local = ire_add(ire_local); 15064 if (ire_local == NULL) { 15065 err = ENOMEM; 15066 goto bad2; 15067 } 15068 #ifdef DEBUG 15069 ire_refhold_notr(ire_local); 15070 ire_refrele(ire_local); 15071 #endif 15072 } 15073 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15074 if (ire_local != NULL) 15075 ipif->ipif_ire_local = ire_local; 15076 if (ire_if != NULL) 15077 ipif->ipif_ire_if = ire_if; 15078 rw_exit(&ipst->ips_ill_g_lock); 15079 ire_local = NULL; 15080 ire_if = NULL; 15081 15082 /* 15083 * We first add all of them, and if that succeeds we refrele the 15084 * bunch. That enables us to delete all of them should any of the 15085 * ire_adds fail. 15086 */ 15087 for (irep1 = irep; irep1 > ire_array; ) { 15088 irep1--; 15089 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15090 *irep1 = ire_add(*irep1); 15091 if (*irep1 == NULL) { 15092 err = ENOMEM; 15093 goto bad2; 15094 } 15095 } 15096 15097 for (irep1 = irep; irep1 > ire_array; ) { 15098 irep1--; 15099 /* refheld by ire_add. */ 15100 if (*irep1 != NULL) { 15101 ire_refrele(*irep1); 15102 *irep1 = NULL; 15103 } 15104 } 15105 15106 if (!loopback) { 15107 /* 15108 * If the broadcast address has been set, make sure it makes 15109 * sense based on the interface address. 15110 * Only match on ill since we are sharing broadcast addresses. 15111 */ 15112 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15113 (ipif->ipif_flags & IPIF_BROADCAST)) { 15114 ire_t *ire; 15115 15116 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15117 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15118 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15119 15120 if (ire == NULL) { 15121 /* 15122 * If there isn't a matching broadcast IRE, 15123 * revert to the default for this netmask. 15124 */ 15125 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15126 mutex_enter(&ipif->ipif_ill->ill_lock); 15127 ipif_set_default(ipif); 15128 mutex_exit(&ipif->ipif_ill->ill_lock); 15129 } else { 15130 ire_refrele(ire); 15131 } 15132 } 15133 15134 } 15135 return (0); 15136 15137 bad2: 15138 ill->ill_ipif_up_count--; 15139 ipif->ipif_flags &= ~IPIF_UP; 15140 15141 bad: 15142 ip1dbg(("ipif_add_ires: FAILED \n")); 15143 if (ire_local != NULL) 15144 ire_delete(ire_local); 15145 if (ire_if != NULL) 15146 ire_delete(ire_if); 15147 15148 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15149 ire_local = ipif->ipif_ire_local; 15150 ipif->ipif_ire_local = NULL; 15151 ire_if = ipif->ipif_ire_if; 15152 ipif->ipif_ire_if = NULL; 15153 rw_exit(&ipst->ips_ill_g_lock); 15154 if (ire_local != NULL) { 15155 ire_delete(ire_local); 15156 ire_refrele_notr(ire_local); 15157 } 15158 if (ire_if != NULL) { 15159 ire_delete(ire_if); 15160 ire_refrele_notr(ire_if); 15161 } 15162 15163 while (irep > ire_array) { 15164 irep--; 15165 if (*irep != NULL) { 15166 ire_delete(*irep); 15167 } 15168 } 15169 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15170 15171 return (err); 15172 } 15173 15174 /* Remove all the IREs created by ipif_add_ires_v4 */ 15175 void 15176 ipif_delete_ires_v4(ipif_t *ipif) 15177 { 15178 ill_t *ill = ipif->ipif_ill; 15179 ip_stack_t *ipst = ill->ill_ipst; 15180 ire_t *ire; 15181 15182 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15183 ire = ipif->ipif_ire_local; 15184 ipif->ipif_ire_local = NULL; 15185 rw_exit(&ipst->ips_ill_g_lock); 15186 if (ire != NULL) { 15187 /* 15188 * Move count to ipif so we don't loose the count due to 15189 * a down/up dance. 15190 */ 15191 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15192 15193 ire_delete(ire); 15194 ire_refrele_notr(ire); 15195 } 15196 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15197 ire = ipif->ipif_ire_if; 15198 ipif->ipif_ire_if = NULL; 15199 rw_exit(&ipst->ips_ill_g_lock); 15200 if (ire != NULL) { 15201 ire_delete(ire); 15202 ire_refrele_notr(ire); 15203 } 15204 15205 /* 15206 * Delete the broadcast IREs. 15207 */ 15208 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15209 !(ipif->ipif_flags & IPIF_NOXMIT)) 15210 ipif_delete_bcast_ires(ipif); 15211 } 15212 15213 /* 15214 * Checks for availbility of a usable source address (if there is one) when the 15215 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15216 * this selection is done regardless of the destination. 15217 */ 15218 boolean_t 15219 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15220 ip_stack_t *ipst) 15221 { 15222 ipif_t *ipif = NULL; 15223 ill_t *uill; 15224 15225 ASSERT(ifindex != 0); 15226 15227 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15228 if (uill == NULL) 15229 return (B_FALSE); 15230 15231 mutex_enter(&uill->ill_lock); 15232 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15233 if (IPIF_IS_CONDEMNED(ipif)) 15234 continue; 15235 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15236 continue; 15237 if (!(ipif->ipif_flags & IPIF_UP)) 15238 continue; 15239 if (ipif->ipif_zoneid != zoneid) 15240 continue; 15241 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15242 ipif->ipif_lcl_addr == INADDR_ANY) 15243 continue; 15244 mutex_exit(&uill->ill_lock); 15245 ill_refrele(uill); 15246 return (B_TRUE); 15247 } 15248 mutex_exit(&uill->ill_lock); 15249 ill_refrele(uill); 15250 return (B_FALSE); 15251 } 15252 15253 /* 15254 * Find an ipif with a good local address on the ill+zoneid. 15255 */ 15256 ipif_t * 15257 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15258 { 15259 ipif_t *ipif; 15260 15261 mutex_enter(&ill->ill_lock); 15262 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15263 if (IPIF_IS_CONDEMNED(ipif)) 15264 continue; 15265 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15266 continue; 15267 if (!(ipif->ipif_flags & IPIF_UP)) 15268 continue; 15269 if (ipif->ipif_zoneid != zoneid && 15270 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15271 continue; 15272 if (ill->ill_isv6 ? 15273 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15274 ipif->ipif_lcl_addr == INADDR_ANY) 15275 continue; 15276 ipif_refhold_locked(ipif); 15277 mutex_exit(&ill->ill_lock); 15278 return (ipif); 15279 } 15280 mutex_exit(&ill->ill_lock); 15281 return (NULL); 15282 } 15283 15284 /* 15285 * IP source address type, sorted from worst to best. For a given type, 15286 * always prefer IP addresses on the same subnet. All-zones addresses are 15287 * suboptimal because they pose problems with unlabeled destinations. 15288 */ 15289 typedef enum { 15290 IPIF_NONE, 15291 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15292 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15293 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15294 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15295 IPIF_DIFFNET, /* normal and different subnet */ 15296 IPIF_SAMENET, /* normal and same subnet */ 15297 IPIF_LOCALADDR /* local loopback */ 15298 } ipif_type_t; 15299 15300 /* 15301 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15302 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15303 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15304 * the first one, unless IPMP is used in which case we round-robin among them; 15305 * see below for more. 15306 * 15307 * Returns NULL if there is no suitable source address for the ill. 15308 * This only occurs when there is no valid source address for the ill. 15309 */ 15310 ipif_t * 15311 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15312 boolean_t allow_usesrc, boolean_t *notreadyp) 15313 { 15314 ill_t *usill = NULL; 15315 ill_t *ipmp_ill = NULL; 15316 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15317 ipif_type_t type, best_type; 15318 tsol_tpc_t *src_rhtp, *dst_rhtp; 15319 ip_stack_t *ipst = ill->ill_ipst; 15320 boolean_t samenet; 15321 15322 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15323 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15324 B_FALSE, ipst); 15325 if (usill != NULL) 15326 ill = usill; /* Select source from usesrc ILL */ 15327 else 15328 return (NULL); 15329 } 15330 15331 /* 15332 * Test addresses should never be used for source address selection, 15333 * so if we were passed one, switch to the IPMP meta-interface. 15334 */ 15335 if (IS_UNDER_IPMP(ill)) { 15336 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15337 ill = ipmp_ill; /* Select source from IPMP ill */ 15338 else 15339 return (NULL); 15340 } 15341 15342 /* 15343 * If we're dealing with an unlabeled destination on a labeled system, 15344 * make sure that we ignore source addresses that are incompatible with 15345 * the destination's default label. That destination's default label 15346 * must dominate the minimum label on the source address. 15347 */ 15348 dst_rhtp = NULL; 15349 if (is_system_labeled()) { 15350 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15351 if (dst_rhtp == NULL) 15352 return (NULL); 15353 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15354 TPC_RELE(dst_rhtp); 15355 dst_rhtp = NULL; 15356 } 15357 } 15358 15359 /* 15360 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15361 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15362 * After selecting the right ipif, under ill_lock make sure ipif is 15363 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15364 * we retry. Inside the loop we still need to check for CONDEMNED, 15365 * but not under a lock. 15366 */ 15367 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15368 retry: 15369 /* 15370 * For source address selection, we treat the ipif list as circular 15371 * and continue until we get back to where we started. This allows 15372 * IPMP to vary source address selection (which improves inbound load 15373 * spreading) by caching its last ending point and starting from 15374 * there. NOTE: we don't have to worry about ill_src_ipif changing 15375 * ills since that can't happen on the IPMP ill. 15376 */ 15377 start_ipif = ill->ill_ipif; 15378 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15379 start_ipif = ill->ill_src_ipif; 15380 15381 ipif = start_ipif; 15382 best_ipif = NULL; 15383 best_type = IPIF_NONE; 15384 do { 15385 if ((next_ipif = ipif->ipif_next) == NULL) 15386 next_ipif = ill->ill_ipif; 15387 15388 if (IPIF_IS_CONDEMNED(ipif)) 15389 continue; 15390 /* Always skip NOLOCAL and ANYCAST interfaces */ 15391 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15392 continue; 15393 /* Always skip NOACCEPT interfaces */ 15394 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15395 continue; 15396 if (!(ipif->ipif_flags & IPIF_UP)) 15397 continue; 15398 15399 if (!ipif->ipif_addr_ready) { 15400 if (notreadyp != NULL) 15401 *notreadyp = B_TRUE; 15402 continue; 15403 } 15404 15405 if (zoneid != ALL_ZONES && 15406 ipif->ipif_zoneid != zoneid && 15407 ipif->ipif_zoneid != ALL_ZONES) 15408 continue; 15409 15410 /* 15411 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15412 * are not valid as source addresses. 15413 */ 15414 if (ipif->ipif_lcl_addr == INADDR_ANY) 15415 continue; 15416 15417 /* 15418 * Check compatibility of local address for destination's 15419 * default label if we're on a labeled system. Incompatible 15420 * addresses can't be used at all. 15421 */ 15422 if (dst_rhtp != NULL) { 15423 boolean_t incompat; 15424 15425 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15426 IPV4_VERSION, B_FALSE); 15427 if (src_rhtp == NULL) 15428 continue; 15429 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15430 src_rhtp->tpc_tp.tp_doi != 15431 dst_rhtp->tpc_tp.tp_doi || 15432 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15433 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15434 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15435 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15436 TPC_RELE(src_rhtp); 15437 if (incompat) 15438 continue; 15439 } 15440 15441 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15442 15443 if (ipif->ipif_lcl_addr == dst) { 15444 type = IPIF_LOCALADDR; 15445 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15446 type = samenet ? IPIF_SAMENET_DEPRECATED : 15447 IPIF_DIFFNET_DEPRECATED; 15448 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15449 type = samenet ? IPIF_SAMENET_ALLZONES : 15450 IPIF_DIFFNET_ALLZONES; 15451 } else { 15452 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15453 } 15454 15455 if (type > best_type) { 15456 best_type = type; 15457 best_ipif = ipif; 15458 if (best_type == IPIF_LOCALADDR) 15459 break; /* can't get better */ 15460 } 15461 } while ((ipif = next_ipif) != start_ipif); 15462 15463 if ((ipif = best_ipif) != NULL) { 15464 mutex_enter(&ipif->ipif_ill->ill_lock); 15465 if (IPIF_IS_CONDEMNED(ipif)) { 15466 mutex_exit(&ipif->ipif_ill->ill_lock); 15467 goto retry; 15468 } 15469 ipif_refhold_locked(ipif); 15470 15471 /* 15472 * For IPMP, update the source ipif rotor to the next ipif, 15473 * provided we can look it up. (We must not use it if it's 15474 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15475 * ipif_free() checked ill_src_ipif.) 15476 */ 15477 if (IS_IPMP(ill) && ipif != NULL) { 15478 next_ipif = ipif->ipif_next; 15479 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15480 ill->ill_src_ipif = next_ipif; 15481 else 15482 ill->ill_src_ipif = NULL; 15483 } 15484 mutex_exit(&ipif->ipif_ill->ill_lock); 15485 } 15486 15487 rw_exit(&ipst->ips_ill_g_lock); 15488 if (usill != NULL) 15489 ill_refrele(usill); 15490 if (ipmp_ill != NULL) 15491 ill_refrele(ipmp_ill); 15492 if (dst_rhtp != NULL) 15493 TPC_RELE(dst_rhtp); 15494 15495 #ifdef DEBUG 15496 if (ipif == NULL) { 15497 char buf1[INET6_ADDRSTRLEN]; 15498 15499 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15500 ill->ill_name, 15501 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15502 } else { 15503 char buf1[INET6_ADDRSTRLEN]; 15504 char buf2[INET6_ADDRSTRLEN]; 15505 15506 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15507 ipif->ipif_ill->ill_name, 15508 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15509 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15510 buf2, sizeof (buf2)))); 15511 } 15512 #endif /* DEBUG */ 15513 return (ipif); 15514 } 15515 15516 /* 15517 * Pick a source address based on the destination ill and an optional setsrc 15518 * address. 15519 * The result is stored in srcp. If generation is set, then put the source 15520 * generation number there before we look for the source address (to avoid 15521 * missing changes in the set of source addresses. 15522 * If flagsp is set, then us it to pass back ipif_flags. 15523 * 15524 * If the caller wants to cache the returned source address and detect when 15525 * that might be stale, the caller should pass in a generation argument, 15526 * which the caller can later compare against ips_src_generation 15527 * 15528 * The precedence order for selecting an IPv4 source address is: 15529 * - RTF_SETSRC on the offlink ire always wins. 15530 * - If usrsrc is set, swap the ill to be the usesrc one. 15531 * - If IPMP is used on the ill, select a random address from the most 15532 * preferred ones below: 15533 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15534 * 2. Not deprecated, not ALL_ZONES 15535 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15536 * 4. Not deprecated, ALL_ZONES 15537 * 5. If onlink destination, same subnet and deprecated 15538 * 6. Deprecated. 15539 * 15540 * We have lower preference for ALL_ZONES IP addresses, 15541 * as they pose problems with unlabeled destinations. 15542 * 15543 * Note that when multiple IP addresses match e.g., #1 we pick 15544 * the first one if IPMP is not in use. With IPMP we randomize. 15545 */ 15546 int 15547 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15548 ipaddr_t multicast_ifaddr, 15549 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15550 uint32_t *generation, uint64_t *flagsp) 15551 { 15552 ipif_t *ipif; 15553 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15554 15555 if (flagsp != NULL) 15556 *flagsp = 0; 15557 15558 /* 15559 * Need to grab the generation number before we check to 15560 * avoid a race with a change to the set of local addresses. 15561 * No lock needed since the thread which updates the set of local 15562 * addresses use ipif/ill locks and exit those (hence a store memory 15563 * barrier) before doing the atomic increase of ips_src_generation. 15564 */ 15565 if (generation != NULL) { 15566 *generation = ipst->ips_src_generation; 15567 } 15568 15569 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15570 *srcp = multicast_ifaddr; 15571 return (0); 15572 } 15573 15574 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15575 if (setsrc != INADDR_ANY) { 15576 *srcp = setsrc; 15577 return (0); 15578 } 15579 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15580 if (ipif == NULL) { 15581 if (notready) 15582 return (ENETDOWN); 15583 else 15584 return (EADDRNOTAVAIL); 15585 } 15586 *srcp = ipif->ipif_lcl_addr; 15587 if (flagsp != NULL) 15588 *flagsp = ipif->ipif_flags; 15589 ipif_refrele(ipif); 15590 return (0); 15591 } 15592 15593 /* ARGSUSED */ 15594 int 15595 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15596 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15597 { 15598 /* 15599 * ill_phyint_reinit merged the v4 and v6 into a single 15600 * ipsq. We might not have been able to complete the 15601 * operation in ipif_set_values, if we could not become 15602 * exclusive. If so restart it here. 15603 */ 15604 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15605 } 15606 15607 /* 15608 * Can operate on either a module or a driver queue. 15609 * Returns an error if not a module queue. 15610 */ 15611 /* ARGSUSED */ 15612 int 15613 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15614 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15615 { 15616 queue_t *q1 = q; 15617 char *cp; 15618 char interf_name[LIFNAMSIZ]; 15619 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15620 15621 if (q->q_next == NULL) { 15622 ip1dbg(( 15623 "if_unitsel: IF_UNITSEL: no q_next\n")); 15624 return (EINVAL); 15625 } 15626 15627 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15628 return (EALREADY); 15629 15630 do { 15631 q1 = q1->q_next; 15632 } while (q1->q_next); 15633 cp = q1->q_qinfo->qi_minfo->mi_idname; 15634 (void) sprintf(interf_name, "%s%d", cp, ppa); 15635 15636 /* 15637 * Here we are not going to delay the ioack until after 15638 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15639 * original ioctl message before sending the requests. 15640 */ 15641 return (ipif_set_values(q, mp, interf_name, &ppa)); 15642 } 15643 15644 /* ARGSUSED */ 15645 int 15646 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15647 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15648 { 15649 return (ENXIO); 15650 } 15651 15652 /* 15653 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15654 * `irep'. Returns a pointer to the next free `irep' entry 15655 * A mirror exists in ipif_delete_bcast_ires(). 15656 * 15657 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15658 * done in ire_add. 15659 */ 15660 static ire_t ** 15661 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15662 { 15663 ipaddr_t addr; 15664 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15665 ipaddr_t subnetmask = ipif->ipif_net_mask; 15666 ill_t *ill = ipif->ipif_ill; 15667 zoneid_t zoneid = ipif->ipif_zoneid; 15668 15669 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15670 15671 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15672 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15673 15674 if (ipif->ipif_lcl_addr == INADDR_ANY || 15675 (ipif->ipif_flags & IPIF_NOLOCAL)) 15676 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15677 15678 irep = ire_create_bcast(ill, 0, zoneid, irep); 15679 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15680 15681 /* 15682 * For backward compatibility, we create net broadcast IREs based on 15683 * the old "IP address class system", since some old machines only 15684 * respond to these class derived net broadcast. However, we must not 15685 * create these net broadcast IREs if the subnetmask is shorter than 15686 * the IP address class based derived netmask. Otherwise, we may 15687 * create a net broadcast address which is the same as an IP address 15688 * on the subnet -- and then TCP will refuse to talk to that address. 15689 */ 15690 if (netmask < subnetmask) { 15691 addr = netmask & ipif->ipif_subnet; 15692 irep = ire_create_bcast(ill, addr, zoneid, irep); 15693 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15694 } 15695 15696 /* 15697 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15698 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15699 * created. Creating these broadcast IREs will only create confusion 15700 * as `addr' will be the same as the IP address. 15701 */ 15702 if (subnetmask != 0xFFFFFFFF) { 15703 addr = ipif->ipif_subnet; 15704 irep = ire_create_bcast(ill, addr, zoneid, irep); 15705 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15706 } 15707 15708 return (irep); 15709 } 15710 15711 /* 15712 * Mirror of ipif_create_bcast_ires() 15713 */ 15714 static void 15715 ipif_delete_bcast_ires(ipif_t *ipif) 15716 { 15717 ipaddr_t addr; 15718 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15719 ipaddr_t subnetmask = ipif->ipif_net_mask; 15720 ill_t *ill = ipif->ipif_ill; 15721 zoneid_t zoneid = ipif->ipif_zoneid; 15722 ire_t *ire; 15723 15724 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15725 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15726 15727 if (ipif->ipif_lcl_addr == INADDR_ANY || 15728 (ipif->ipif_flags & IPIF_NOLOCAL)) 15729 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15730 15731 ire = ire_lookup_bcast(ill, 0, zoneid); 15732 ASSERT(ire != NULL); 15733 ire_delete(ire); ire_refrele(ire); 15734 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15735 ASSERT(ire != NULL); 15736 ire_delete(ire); ire_refrele(ire); 15737 15738 /* 15739 * For backward compatibility, we create net broadcast IREs based on 15740 * the old "IP address class system", since some old machines only 15741 * respond to these class derived net broadcast. However, we must not 15742 * create these net broadcast IREs if the subnetmask is shorter than 15743 * the IP address class based derived netmask. Otherwise, we may 15744 * create a net broadcast address which is the same as an IP address 15745 * on the subnet -- and then TCP will refuse to talk to that address. 15746 */ 15747 if (netmask < subnetmask) { 15748 addr = netmask & ipif->ipif_subnet; 15749 ire = ire_lookup_bcast(ill, addr, zoneid); 15750 ASSERT(ire != NULL); 15751 ire_delete(ire); ire_refrele(ire); 15752 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15753 ASSERT(ire != NULL); 15754 ire_delete(ire); ire_refrele(ire); 15755 } 15756 15757 /* 15758 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15759 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15760 * created. Creating these broadcast IREs will only create confusion 15761 * as `addr' will be the same as the IP address. 15762 */ 15763 if (subnetmask != 0xFFFFFFFF) { 15764 addr = ipif->ipif_subnet; 15765 ire = ire_lookup_bcast(ill, addr, zoneid); 15766 ASSERT(ire != NULL); 15767 ire_delete(ire); ire_refrele(ire); 15768 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15769 ASSERT(ire != NULL); 15770 ire_delete(ire); ire_refrele(ire); 15771 } 15772 } 15773 15774 /* 15775 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15776 * from lifr_flags and the name from lifr_name. 15777 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15778 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15779 * Returns EINPROGRESS when mp has been consumed by queueing it on 15780 * ipx_pending_mp and the ioctl will complete in ip_rput. 15781 * 15782 * Can operate on either a module or a driver queue. 15783 * Returns an error if not a module queue. 15784 */ 15785 /* ARGSUSED */ 15786 int 15787 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15788 ip_ioctl_cmd_t *ipip, void *if_req) 15789 { 15790 ill_t *ill = q->q_ptr; 15791 phyint_t *phyi; 15792 ip_stack_t *ipst; 15793 struct lifreq *lifr = if_req; 15794 uint64_t new_flags; 15795 15796 ASSERT(ipif != NULL); 15797 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15798 15799 if (q->q_next == NULL) { 15800 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15801 return (EINVAL); 15802 } 15803 15804 /* 15805 * If we are not writer on 'q' then this interface exists already 15806 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15807 * so return EALREADY. 15808 */ 15809 if (ill != ipif->ipif_ill) 15810 return (EALREADY); 15811 15812 if (ill->ill_name[0] != '\0') 15813 return (EALREADY); 15814 15815 /* 15816 * If there's another ill already with the requested name, ensure 15817 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15818 * fuse together two unrelated ills, which will cause chaos. 15819 */ 15820 ipst = ill->ill_ipst; 15821 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15822 lifr->lifr_name, NULL); 15823 if (phyi != NULL) { 15824 ill_t *ill_mate = phyi->phyint_illv4; 15825 15826 if (ill_mate == NULL) 15827 ill_mate = phyi->phyint_illv6; 15828 ASSERT(ill_mate != NULL); 15829 15830 if (ill_mate->ill_media->ip_m_mac_type != 15831 ill->ill_media->ip_m_mac_type) { 15832 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15833 "use the same ill name on differing media\n")); 15834 return (EINVAL); 15835 } 15836 } 15837 15838 /* 15839 * We start off as IFF_IPV4 in ipif_allocate and become 15840 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15841 * The only flags that we read from user space are IFF_IPV4, 15842 * IFF_IPV6, and IFF_BROADCAST. 15843 * 15844 * This ill has not been inserted into the global list. 15845 * So we are still single threaded and don't need any lock 15846 * 15847 * Saniy check the flags. 15848 */ 15849 15850 if ((lifr->lifr_flags & IFF_BROADCAST) && 15851 ((lifr->lifr_flags & IFF_IPV6) || 15852 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15853 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15854 "or IPv6 i.e., no broadcast \n")); 15855 return (EINVAL); 15856 } 15857 15858 new_flags = 15859 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15860 15861 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15862 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15863 "IFF_IPV4 or IFF_IPV6\n")); 15864 return (EINVAL); 15865 } 15866 15867 /* 15868 * We always start off as IPv4, so only need to check for IPv6. 15869 */ 15870 if ((new_flags & IFF_IPV6) != 0) { 15871 ill->ill_flags |= ILLF_IPV6; 15872 ill->ill_flags &= ~ILLF_IPV4; 15873 15874 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15875 ill->ill_flags |= ILLF_NOLINKLOCAL; 15876 } 15877 15878 if ((new_flags & IFF_BROADCAST) != 0) 15879 ipif->ipif_flags |= IPIF_BROADCAST; 15880 else 15881 ipif->ipif_flags &= ~IPIF_BROADCAST; 15882 15883 /* We started off as V4. */ 15884 if (ill->ill_flags & ILLF_IPV6) { 15885 ill->ill_phyint->phyint_illv6 = ill; 15886 ill->ill_phyint->phyint_illv4 = NULL; 15887 } 15888 15889 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15890 } 15891 15892 /* ARGSUSED */ 15893 int 15894 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15895 ip_ioctl_cmd_t *ipip, void *if_req) 15896 { 15897 /* 15898 * ill_phyint_reinit merged the v4 and v6 into a single 15899 * ipsq. We might not have been able to complete the 15900 * slifname in ipif_set_values, if we could not become 15901 * exclusive. If so restart it here 15902 */ 15903 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15904 } 15905 15906 /* 15907 * Return a pointer to the ipif which matches the index, IP version type and 15908 * zoneid. 15909 */ 15910 ipif_t * 15911 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15912 ip_stack_t *ipst) 15913 { 15914 ill_t *ill; 15915 ipif_t *ipif = NULL; 15916 15917 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15918 if (ill != NULL) { 15919 mutex_enter(&ill->ill_lock); 15920 for (ipif = ill->ill_ipif; ipif != NULL; 15921 ipif = ipif->ipif_next) { 15922 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15923 zoneid == ipif->ipif_zoneid || 15924 ipif->ipif_zoneid == ALL_ZONES)) { 15925 ipif_refhold_locked(ipif); 15926 break; 15927 } 15928 } 15929 mutex_exit(&ill->ill_lock); 15930 ill_refrele(ill); 15931 } 15932 return (ipif); 15933 } 15934 15935 /* 15936 * Change an existing physical interface's index. If the new index 15937 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15938 * Finally, we update other systems which may have a dependence on the 15939 * index value. 15940 */ 15941 /* ARGSUSED */ 15942 int 15943 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15944 ip_ioctl_cmd_t *ipip, void *ifreq) 15945 { 15946 ill_t *ill; 15947 phyint_t *phyi; 15948 struct ifreq *ifr = (struct ifreq *)ifreq; 15949 struct lifreq *lifr = (struct lifreq *)ifreq; 15950 uint_t old_index, index; 15951 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15952 avl_index_t where; 15953 15954 if (ipip->ipi_cmd_type == IF_CMD) 15955 index = ifr->ifr_index; 15956 else 15957 index = lifr->lifr_index; 15958 15959 /* 15960 * Only allow on physical interface. Also, index zero is illegal. 15961 */ 15962 ill = ipif->ipif_ill; 15963 phyi = ill->ill_phyint; 15964 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) { 15965 return (EINVAL); 15966 } 15967 15968 /* If the index is not changing, no work to do */ 15969 if (phyi->phyint_ifindex == index) 15970 return (0); 15971 15972 /* 15973 * Use phyint_exists() to determine if the new interface index 15974 * is already in use. If the index is unused then we need to 15975 * change the phyint's position in the phyint_list_avl_by_index 15976 * tree. If we do not do this, subsequent lookups (using the new 15977 * index value) will not find the phyint. 15978 */ 15979 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15980 if (phyint_exists(index, ipst)) { 15981 rw_exit(&ipst->ips_ill_g_lock); 15982 return (EEXIST); 15983 } 15984 15985 /* 15986 * The new index is unused. Set it in the phyint. However we must not 15987 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15988 * changes. The event must be bound to old ifindex value. 15989 */ 15990 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15991 &index, sizeof (index)); 15992 15993 old_index = phyi->phyint_ifindex; 15994 phyi->phyint_ifindex = index; 15995 15996 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15997 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15998 &index, &where); 15999 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16000 phyi, where); 16001 rw_exit(&ipst->ips_ill_g_lock); 16002 16003 /* Update SCTP's ILL list */ 16004 sctp_ill_reindex(ill, old_index); 16005 16006 /* Send the routing sockets message */ 16007 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 16008 if (ILL_OTHER(ill)) 16009 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 16010 16011 /* Perhaps ilgs should use this ill */ 16012 update_conn_ill(NULL, ill->ill_ipst); 16013 return (0); 16014 } 16015 16016 /* ARGSUSED */ 16017 int 16018 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16019 ip_ioctl_cmd_t *ipip, void *ifreq) 16020 { 16021 struct ifreq *ifr = (struct ifreq *)ifreq; 16022 struct lifreq *lifr = (struct lifreq *)ifreq; 16023 16024 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 16025 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16026 /* Get the interface index */ 16027 if (ipip->ipi_cmd_type == IF_CMD) { 16028 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16029 } else { 16030 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16031 } 16032 return (0); 16033 } 16034 16035 /* ARGSUSED */ 16036 int 16037 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16038 ip_ioctl_cmd_t *ipip, void *ifreq) 16039 { 16040 struct lifreq *lifr = (struct lifreq *)ifreq; 16041 16042 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 16043 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16044 /* Get the interface zone */ 16045 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16046 lifr->lifr_zoneid = ipif->ipif_zoneid; 16047 return (0); 16048 } 16049 16050 /* 16051 * Set the zoneid of an interface. 16052 */ 16053 /* ARGSUSED */ 16054 int 16055 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16056 ip_ioctl_cmd_t *ipip, void *ifreq) 16057 { 16058 struct lifreq *lifr = (struct lifreq *)ifreq; 16059 int err = 0; 16060 boolean_t need_up = B_FALSE; 16061 zone_t *zptr; 16062 zone_status_t status; 16063 zoneid_t zoneid; 16064 16065 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16066 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16067 if (!is_system_labeled()) 16068 return (ENOTSUP); 16069 zoneid = GLOBAL_ZONEID; 16070 } 16071 16072 /* cannot assign instance zero to a non-global zone */ 16073 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16074 return (ENOTSUP); 16075 16076 /* 16077 * Cannot assign to a zone that doesn't exist or is shutting down. In 16078 * the event of a race with the zone shutdown processing, since IP 16079 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16080 * interface will be cleaned up even if the zone is shut down 16081 * immediately after the status check. If the interface can't be brought 16082 * down right away, and the zone is shut down before the restart 16083 * function is called, we resolve the possible races by rechecking the 16084 * zone status in the restart function. 16085 */ 16086 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16087 return (EINVAL); 16088 status = zone_status_get(zptr); 16089 zone_rele(zptr); 16090 16091 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16092 return (EINVAL); 16093 16094 if (ipif->ipif_flags & IPIF_UP) { 16095 /* 16096 * If the interface is already marked up, 16097 * we call ipif_down which will take care 16098 * of ditching any IREs that have been set 16099 * up based on the old interface address. 16100 */ 16101 err = ipif_logical_down(ipif, q, mp); 16102 if (err == EINPROGRESS) 16103 return (err); 16104 (void) ipif_down_tail(ipif); 16105 need_up = B_TRUE; 16106 } 16107 16108 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16109 return (err); 16110 } 16111 16112 static int 16113 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16114 queue_t *q, mblk_t *mp, boolean_t need_up) 16115 { 16116 int err = 0; 16117 ip_stack_t *ipst; 16118 16119 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16120 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16121 16122 if (CONN_Q(q)) 16123 ipst = CONNQ_TO_IPST(q); 16124 else 16125 ipst = ILLQ_TO_IPST(q); 16126 16127 /* 16128 * For exclusive stacks we don't allow a different zoneid than 16129 * global. 16130 */ 16131 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16132 zoneid != GLOBAL_ZONEID) 16133 return (EINVAL); 16134 16135 /* Set the new zone id. */ 16136 ipif->ipif_zoneid = zoneid; 16137 16138 /* Update sctp list */ 16139 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16140 16141 /* The default multicast interface might have changed */ 16142 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16143 16144 if (need_up) { 16145 /* 16146 * Now bring the interface back up. If this 16147 * is the only IPIF for the ILL, ipif_up 16148 * will have to re-bind to the device, so 16149 * we may get back EINPROGRESS, in which 16150 * case, this IOCTL will get completed in 16151 * ip_rput_dlpi when we see the DL_BIND_ACK. 16152 */ 16153 err = ipif_up(ipif, q, mp); 16154 } 16155 return (err); 16156 } 16157 16158 /* ARGSUSED */ 16159 int 16160 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16161 ip_ioctl_cmd_t *ipip, void *if_req) 16162 { 16163 struct lifreq *lifr = (struct lifreq *)if_req; 16164 zoneid_t zoneid; 16165 zone_t *zptr; 16166 zone_status_t status; 16167 16168 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16169 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16170 zoneid = GLOBAL_ZONEID; 16171 16172 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16173 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16174 16175 /* 16176 * We recheck the zone status to resolve the following race condition: 16177 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16178 * 2) hme0:1 is up and can't be brought down right away; 16179 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16180 * 3) zone "myzone" is halted; the zone status switches to 16181 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16182 * the interfaces to remove - hme0:1 is not returned because it's not 16183 * yet in "myzone", so it won't be removed; 16184 * 4) the restart function for SIOCSLIFZONE is called; without the 16185 * status check here, we would have hme0:1 in "myzone" after it's been 16186 * destroyed. 16187 * Note that if the status check fails, we need to bring the interface 16188 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16189 * ipif_up_done[_v6](). 16190 */ 16191 status = ZONE_IS_UNINITIALIZED; 16192 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16193 status = zone_status_get(zptr); 16194 zone_rele(zptr); 16195 } 16196 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16197 if (ipif->ipif_isv6) { 16198 (void) ipif_up_done_v6(ipif); 16199 } else { 16200 (void) ipif_up_done(ipif); 16201 } 16202 return (EINVAL); 16203 } 16204 16205 (void) ipif_down_tail(ipif); 16206 16207 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16208 B_TRUE)); 16209 } 16210 16211 /* 16212 * Return the number of addresses on `ill' with one or more of the values 16213 * in `set' set and all of the values in `clear' clear. 16214 */ 16215 static uint_t 16216 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16217 { 16218 ipif_t *ipif; 16219 uint_t cnt = 0; 16220 16221 ASSERT(IAM_WRITER_ILL(ill)); 16222 16223 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16224 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16225 cnt++; 16226 16227 return (cnt); 16228 } 16229 16230 /* 16231 * Return the number of migratable addresses on `ill' that are under 16232 * application control. 16233 */ 16234 uint_t 16235 ill_appaddr_cnt(const ill_t *ill) 16236 { 16237 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16238 IPIF_NOFAILOVER)); 16239 } 16240 16241 /* 16242 * Return the number of point-to-point addresses on `ill'. 16243 */ 16244 uint_t 16245 ill_ptpaddr_cnt(const ill_t *ill) 16246 { 16247 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16248 } 16249 16250 /* ARGSUSED */ 16251 int 16252 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16253 ip_ioctl_cmd_t *ipip, void *ifreq) 16254 { 16255 struct lifreq *lifr = ifreq; 16256 16257 ASSERT(q->q_next == NULL); 16258 ASSERT(CONN_Q(q)); 16259 16260 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16261 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16262 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16263 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16264 16265 return (0); 16266 } 16267 16268 /* Find the previous ILL in this usesrc group */ 16269 static ill_t * 16270 ill_prev_usesrc(ill_t *uill) 16271 { 16272 ill_t *ill; 16273 16274 for (ill = uill->ill_usesrc_grp_next; 16275 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16276 ill = ill->ill_usesrc_grp_next) 16277 /* do nothing */; 16278 return (ill); 16279 } 16280 16281 /* 16282 * Release all members of the usesrc group. This routine is called 16283 * from ill_delete when the interface being unplumbed is the 16284 * group head. 16285 * 16286 * This silently clears the usesrc that ifconfig setup. 16287 * An alternative would be to keep that ifindex, and drop packets on the floor 16288 * since no source address can be selected. 16289 * Even if we keep the current semantics, don't need a lock and a linked list. 16290 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16291 * the one that is being removed. Issue is how we return the usesrc users 16292 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16293 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16294 * ill walk, but the walker would need to insert in the ioctl response. 16295 */ 16296 static void 16297 ill_disband_usesrc_group(ill_t *uill) 16298 { 16299 ill_t *next_ill, *tmp_ill; 16300 ip_stack_t *ipst = uill->ill_ipst; 16301 16302 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16303 next_ill = uill->ill_usesrc_grp_next; 16304 16305 do { 16306 ASSERT(next_ill != NULL); 16307 tmp_ill = next_ill->ill_usesrc_grp_next; 16308 ASSERT(tmp_ill != NULL); 16309 next_ill->ill_usesrc_grp_next = NULL; 16310 next_ill->ill_usesrc_ifindex = 0; 16311 next_ill = tmp_ill; 16312 } while (next_ill->ill_usesrc_ifindex != 0); 16313 uill->ill_usesrc_grp_next = NULL; 16314 } 16315 16316 /* 16317 * Remove the client usesrc ILL from the list and relink to a new list 16318 */ 16319 int 16320 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16321 { 16322 ill_t *ill, *tmp_ill; 16323 ip_stack_t *ipst = ucill->ill_ipst; 16324 16325 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16326 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16327 16328 /* 16329 * Check if the usesrc client ILL passed in is not already 16330 * in use as a usesrc ILL i.e one whose source address is 16331 * in use OR a usesrc ILL is not already in use as a usesrc 16332 * client ILL 16333 */ 16334 if ((ucill->ill_usesrc_ifindex == 0) || 16335 (uill->ill_usesrc_ifindex != 0)) { 16336 return (-1); 16337 } 16338 16339 ill = ill_prev_usesrc(ucill); 16340 ASSERT(ill->ill_usesrc_grp_next != NULL); 16341 16342 /* Remove from the current list */ 16343 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16344 /* Only two elements in the list */ 16345 ASSERT(ill->ill_usesrc_ifindex == 0); 16346 ill->ill_usesrc_grp_next = NULL; 16347 } else { 16348 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16349 } 16350 16351 if (ifindex == 0) { 16352 ucill->ill_usesrc_ifindex = 0; 16353 ucill->ill_usesrc_grp_next = NULL; 16354 return (0); 16355 } 16356 16357 ucill->ill_usesrc_ifindex = ifindex; 16358 tmp_ill = uill->ill_usesrc_grp_next; 16359 uill->ill_usesrc_grp_next = ucill; 16360 ucill->ill_usesrc_grp_next = 16361 (tmp_ill != NULL) ? tmp_ill : uill; 16362 return (0); 16363 } 16364 16365 /* 16366 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16367 * ip.c for locking details. 16368 */ 16369 /* ARGSUSED */ 16370 int 16371 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16372 ip_ioctl_cmd_t *ipip, void *ifreq) 16373 { 16374 struct lifreq *lifr = (struct lifreq *)ifreq; 16375 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16376 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16377 int err = 0, ret; 16378 uint_t ifindex; 16379 ipsq_t *ipsq = NULL; 16380 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16381 16382 ASSERT(IAM_WRITER_IPIF(ipif)); 16383 ASSERT(q->q_next == NULL); 16384 ASSERT(CONN_Q(q)); 16385 16386 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16387 16388 ifindex = lifr->lifr_index; 16389 if (ifindex == 0) { 16390 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16391 /* non usesrc group interface, nothing to reset */ 16392 return (0); 16393 } 16394 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16395 /* valid reset request */ 16396 reset_flg = B_TRUE; 16397 } 16398 16399 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16400 if (usesrc_ill == NULL) 16401 return (ENXIO); 16402 if (usesrc_ill == ipif->ipif_ill) { 16403 ill_refrele(usesrc_ill); 16404 return (EINVAL); 16405 } 16406 16407 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16408 NEW_OP, B_TRUE); 16409 if (ipsq == NULL) { 16410 err = EINPROGRESS; 16411 /* Operation enqueued on the ipsq of the usesrc ILL */ 16412 goto done; 16413 } 16414 16415 /* USESRC isn't currently supported with IPMP */ 16416 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16417 err = ENOTSUP; 16418 goto done; 16419 } 16420 16421 /* 16422 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16423 * used by IPMP underlying interfaces, but someone might think it's 16424 * more general and try to use it independently with VNI.) 16425 */ 16426 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16427 err = ENOTSUP; 16428 goto done; 16429 } 16430 16431 /* 16432 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16433 * already a client then return EINVAL 16434 */ 16435 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16436 err = EINVAL; 16437 goto done; 16438 } 16439 16440 /* 16441 * If the ill_usesrc_ifindex field is already set to what it needs to 16442 * be then this is a duplicate operation. 16443 */ 16444 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16445 err = 0; 16446 goto done; 16447 } 16448 16449 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16450 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16451 usesrc_ill->ill_isv6)); 16452 16453 /* 16454 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16455 * and the ill_usesrc_ifindex fields 16456 */ 16457 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16458 16459 if (reset_flg) { 16460 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16461 if (ret != 0) { 16462 err = EINVAL; 16463 } 16464 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16465 goto done; 16466 } 16467 16468 /* 16469 * Four possibilities to consider: 16470 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16471 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16472 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16473 * 4. Both are part of their respective usesrc groups 16474 */ 16475 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16476 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16477 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16478 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16479 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16480 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16481 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16482 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16483 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16484 /* Insert at head of list */ 16485 usesrc_cli_ill->ill_usesrc_grp_next = 16486 usesrc_ill->ill_usesrc_grp_next; 16487 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16488 } else { 16489 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16490 ifindex); 16491 if (ret != 0) 16492 err = EINVAL; 16493 } 16494 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16495 16496 done: 16497 if (ipsq != NULL) 16498 ipsq_exit(ipsq); 16499 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16500 ill_refrele(usesrc_ill); 16501 16502 /* Let conn_ixa caching know that source address selection changed */ 16503 ip_update_source_selection(ipst); 16504 16505 return (err); 16506 } 16507 16508 /* ARGSUSED */ 16509 int 16510 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16511 ip_ioctl_cmd_t *ipip, void *if_req) 16512 { 16513 struct lifreq *lifr = (struct lifreq *)if_req; 16514 ill_t *ill = ipif->ipif_ill; 16515 16516 /* 16517 * Need a lock since IFF_UP can be set even when there are 16518 * references to the ipif. 16519 */ 16520 mutex_enter(&ill->ill_lock); 16521 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16522 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16523 else 16524 lifr->lifr_dadstate = DAD_DONE; 16525 mutex_exit(&ill->ill_lock); 16526 return (0); 16527 } 16528 16529 /* 16530 * comparison function used by avl. 16531 */ 16532 static int 16533 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16534 { 16535 16536 uint_t index; 16537 16538 ASSERT(phyip != NULL && index_ptr != NULL); 16539 16540 index = *((uint_t *)index_ptr); 16541 /* 16542 * let the phyint with the lowest index be on top. 16543 */ 16544 if (((phyint_t *)phyip)->phyint_ifindex < index) 16545 return (1); 16546 if (((phyint_t *)phyip)->phyint_ifindex > index) 16547 return (-1); 16548 return (0); 16549 } 16550 16551 /* 16552 * comparison function used by avl. 16553 */ 16554 static int 16555 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16556 { 16557 ill_t *ill; 16558 int res = 0; 16559 16560 ASSERT(phyip != NULL && name_ptr != NULL); 16561 16562 if (((phyint_t *)phyip)->phyint_illv4) 16563 ill = ((phyint_t *)phyip)->phyint_illv4; 16564 else 16565 ill = ((phyint_t *)phyip)->phyint_illv6; 16566 ASSERT(ill != NULL); 16567 16568 res = strcmp(ill->ill_name, (char *)name_ptr); 16569 if (res > 0) 16570 return (1); 16571 else if (res < 0) 16572 return (-1); 16573 return (0); 16574 } 16575 16576 /* 16577 * This function is called on the unplumb path via ill_glist_delete() when 16578 * there are no ills left on the phyint and thus the phyint can be freed. 16579 */ 16580 static void 16581 phyint_free(phyint_t *phyi) 16582 { 16583 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16584 16585 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16586 16587 /* 16588 * If this phyint was an IPMP meta-interface, blow away the group. 16589 * This is safe to do because all of the illgrps have already been 16590 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16591 * If we're cleaning up as a result of failed initialization, 16592 * phyint_grp may be NULL. 16593 */ 16594 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16595 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16596 ipmp_grp_destroy(phyi->phyint_grp); 16597 phyi->phyint_grp = NULL; 16598 rw_exit(&ipst->ips_ipmp_lock); 16599 } 16600 16601 /* 16602 * If this interface was under IPMP, take it out of the group. 16603 */ 16604 if (phyi->phyint_grp != NULL) 16605 ipmp_phyint_leave_grp(phyi); 16606 16607 /* 16608 * Delete the phyint and disassociate its ipsq. The ipsq itself 16609 * will be freed in ipsq_exit(). 16610 */ 16611 phyi->phyint_ipsq->ipsq_phyint = NULL; 16612 phyi->phyint_name[0] = '\0'; 16613 16614 mi_free(phyi); 16615 } 16616 16617 /* 16618 * Attach the ill to the phyint structure which can be shared by both 16619 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16620 * function is called from ipif_set_values and ill_lookup_on_name (for 16621 * loopback) where we know the name of the ill. We lookup the ill and if 16622 * there is one present already with the name use that phyint. Otherwise 16623 * reuse the one allocated by ill_init. 16624 */ 16625 static void 16626 ill_phyint_reinit(ill_t *ill) 16627 { 16628 boolean_t isv6 = ill->ill_isv6; 16629 phyint_t *phyi_old; 16630 phyint_t *phyi; 16631 avl_index_t where = 0; 16632 ill_t *ill_other = NULL; 16633 ip_stack_t *ipst = ill->ill_ipst; 16634 16635 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16636 16637 phyi_old = ill->ill_phyint; 16638 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16639 phyi_old->phyint_illv6 == NULL)); 16640 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16641 phyi_old->phyint_illv4 == NULL)); 16642 ASSERT(phyi_old->phyint_ifindex == 0); 16643 16644 /* 16645 * Now that our ill has a name, set it in the phyint. 16646 */ 16647 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16648 16649 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16650 ill->ill_name, &where); 16651 16652 /* 16653 * 1. We grabbed the ill_g_lock before inserting this ill into 16654 * the global list of ills. So no other thread could have located 16655 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16656 * 2. Now locate the other protocol instance of this ill. 16657 * 3. Now grab both ill locks in the right order, and the phyint lock of 16658 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16659 * of neither ill can change. 16660 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16661 * other ill. 16662 * 5. Release all locks. 16663 */ 16664 16665 /* 16666 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16667 * we are initializing IPv4. 16668 */ 16669 if (phyi != NULL) { 16670 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16671 ASSERT(ill_other->ill_phyint != NULL); 16672 ASSERT((isv6 && !ill_other->ill_isv6) || 16673 (!isv6 && ill_other->ill_isv6)); 16674 GRAB_ILL_LOCKS(ill, ill_other); 16675 /* 16676 * We are potentially throwing away phyint_flags which 16677 * could be different from the one that we obtain from 16678 * ill_other->ill_phyint. But it is okay as we are assuming 16679 * that the state maintained within IP is correct. 16680 */ 16681 mutex_enter(&phyi->phyint_lock); 16682 if (isv6) { 16683 ASSERT(phyi->phyint_illv6 == NULL); 16684 phyi->phyint_illv6 = ill; 16685 } else { 16686 ASSERT(phyi->phyint_illv4 == NULL); 16687 phyi->phyint_illv4 = ill; 16688 } 16689 16690 /* 16691 * Delete the old phyint and make its ipsq eligible 16692 * to be freed in ipsq_exit(). 16693 */ 16694 phyi_old->phyint_illv4 = NULL; 16695 phyi_old->phyint_illv6 = NULL; 16696 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16697 phyi_old->phyint_name[0] = '\0'; 16698 mi_free(phyi_old); 16699 } else { 16700 mutex_enter(&ill->ill_lock); 16701 /* 16702 * We don't need to acquire any lock, since 16703 * the ill is not yet visible globally and we 16704 * have not yet released the ill_g_lock. 16705 */ 16706 phyi = phyi_old; 16707 mutex_enter(&phyi->phyint_lock); 16708 /* XXX We need a recovery strategy here. */ 16709 if (!phyint_assign_ifindex(phyi, ipst)) 16710 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16711 16712 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16713 (void *)phyi, where); 16714 16715 (void) avl_find(&ipst->ips_phyint_g_list-> 16716 phyint_list_avl_by_index, 16717 &phyi->phyint_ifindex, &where); 16718 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16719 (void *)phyi, where); 16720 } 16721 16722 /* 16723 * Reassigning ill_phyint automatically reassigns the ipsq also. 16724 * pending mp is not affected because that is per ill basis. 16725 */ 16726 ill->ill_phyint = phyi; 16727 16728 /* 16729 * Now that the phyint's ifindex has been assigned, complete the 16730 * remaining 16731 */ 16732 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16733 if (ill->ill_isv6) { 16734 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16735 ill->ill_phyint->phyint_ifindex; 16736 ill->ill_mcast_type = ipst->ips_mld_max_version; 16737 } else { 16738 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16739 } 16740 16741 /* 16742 * Generate an event within the hooks framework to indicate that 16743 * a new interface has just been added to IP. For this event to 16744 * be generated, the network interface must, at least, have an 16745 * ifindex assigned to it. (We don't generate the event for 16746 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16747 * 16748 * This needs to be run inside the ill_g_lock perimeter to ensure 16749 * that the ordering of delivered events to listeners matches the 16750 * order of them in the kernel. 16751 */ 16752 if (!IS_LOOPBACK(ill)) { 16753 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16754 ill->ill_name_length); 16755 } 16756 RELEASE_ILL_LOCKS(ill, ill_other); 16757 mutex_exit(&phyi->phyint_lock); 16758 } 16759 16760 /* 16761 * Notify any downstream modules of the name of this interface. 16762 * An M_IOCTL is used even though we don't expect a successful reply. 16763 * Any reply message from the driver (presumably an M_IOCNAK) will 16764 * eventually get discarded somewhere upstream. The message format is 16765 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16766 * to IP. 16767 */ 16768 static void 16769 ip_ifname_notify(ill_t *ill, queue_t *q) 16770 { 16771 mblk_t *mp1, *mp2; 16772 struct iocblk *iocp; 16773 struct lifreq *lifr; 16774 16775 mp1 = mkiocb(SIOCSLIFNAME); 16776 if (mp1 == NULL) 16777 return; 16778 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16779 if (mp2 == NULL) { 16780 freeb(mp1); 16781 return; 16782 } 16783 16784 mp1->b_cont = mp2; 16785 iocp = (struct iocblk *)mp1->b_rptr; 16786 iocp->ioc_count = sizeof (struct lifreq); 16787 16788 lifr = (struct lifreq *)mp2->b_rptr; 16789 mp2->b_wptr += sizeof (struct lifreq); 16790 bzero(lifr, sizeof (struct lifreq)); 16791 16792 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16793 lifr->lifr_ppa = ill->ill_ppa; 16794 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16795 16796 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16797 char *, "SIOCSLIFNAME", ill_t *, ill); 16798 putnext(q, mp1); 16799 } 16800 16801 static int 16802 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16803 { 16804 int err; 16805 ip_stack_t *ipst = ill->ill_ipst; 16806 phyint_t *phyi = ill->ill_phyint; 16807 16808 /* 16809 * Now that ill_name is set, the configuration for the IPMP 16810 * meta-interface can be performed. 16811 */ 16812 if (IS_IPMP(ill)) { 16813 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16814 /* 16815 * If phyi->phyint_grp is NULL, then this is the first IPMP 16816 * meta-interface and we need to create the IPMP group. 16817 */ 16818 if (phyi->phyint_grp == NULL) { 16819 /* 16820 * If someone has renamed another IPMP group to have 16821 * the same name as our interface, bail. 16822 */ 16823 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16824 rw_exit(&ipst->ips_ipmp_lock); 16825 return (EEXIST); 16826 } 16827 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16828 if (phyi->phyint_grp == NULL) { 16829 rw_exit(&ipst->ips_ipmp_lock); 16830 return (ENOMEM); 16831 } 16832 } 16833 rw_exit(&ipst->ips_ipmp_lock); 16834 } 16835 16836 /* Tell downstream modules where they are. */ 16837 ip_ifname_notify(ill, q); 16838 16839 /* 16840 * ill_dl_phys returns EINPROGRESS in the usual case. 16841 * Error cases are ENOMEM ... 16842 */ 16843 err = ill_dl_phys(ill, ipif, mp, q); 16844 16845 if (ill->ill_isv6) { 16846 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16847 if (ipst->ips_mld_slowtimeout_id == 0) { 16848 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16849 (void *)ipst, 16850 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16851 } 16852 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16853 } else { 16854 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16855 if (ipst->ips_igmp_slowtimeout_id == 0) { 16856 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16857 (void *)ipst, 16858 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16859 } 16860 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16861 } 16862 16863 return (err); 16864 } 16865 16866 /* 16867 * Common routine for ppa and ifname setting. Should be called exclusive. 16868 * 16869 * Returns EINPROGRESS when mp has been consumed by queueing it on 16870 * ipx_pending_mp and the ioctl will complete in ip_rput. 16871 * 16872 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16873 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16874 * For SLIFNAME, we pass these values back to the userland. 16875 */ 16876 static int 16877 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16878 { 16879 ill_t *ill; 16880 ipif_t *ipif; 16881 ipsq_t *ipsq; 16882 char *ppa_ptr; 16883 char *old_ptr; 16884 char old_char; 16885 int error; 16886 ip_stack_t *ipst; 16887 16888 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16889 ASSERT(q->q_next != NULL); 16890 ASSERT(interf_name != NULL); 16891 16892 ill = (ill_t *)q->q_ptr; 16893 ipst = ill->ill_ipst; 16894 16895 ASSERT(ill->ill_ipst != NULL); 16896 ASSERT(ill->ill_name[0] == '\0'); 16897 ASSERT(IAM_WRITER_ILL(ill)); 16898 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16899 ASSERT(ill->ill_ppa == UINT_MAX); 16900 16901 ill->ill_defend_start = ill->ill_defend_count = 0; 16902 /* The ppa is sent down by ifconfig or is chosen */ 16903 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16904 return (EINVAL); 16905 } 16906 16907 /* 16908 * make sure ppa passed in is same as ppa in the name. 16909 * This check is not made when ppa == UINT_MAX in that case ppa 16910 * in the name could be anything. System will choose a ppa and 16911 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16912 */ 16913 if (*new_ppa_ptr != UINT_MAX) { 16914 /* stoi changes the pointer */ 16915 old_ptr = ppa_ptr; 16916 /* 16917 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16918 * (they don't have an externally visible ppa). We assign one 16919 * here so that we can manage the interface. Note that in 16920 * the past this value was always 0 for DLPI 1 drivers. 16921 */ 16922 if (*new_ppa_ptr == 0) 16923 *new_ppa_ptr = stoi(&old_ptr); 16924 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16925 return (EINVAL); 16926 } 16927 /* 16928 * terminate string before ppa 16929 * save char at that location. 16930 */ 16931 old_char = ppa_ptr[0]; 16932 ppa_ptr[0] = '\0'; 16933 16934 ill->ill_ppa = *new_ppa_ptr; 16935 /* 16936 * Finish as much work now as possible before calling ill_glist_insert 16937 * which makes the ill globally visible and also merges it with the 16938 * other protocol instance of this phyint. The remaining work is 16939 * done after entering the ipsq which may happen sometime later. 16940 */ 16941 ipif = ill->ill_ipif; 16942 16943 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16944 ipif_assign_seqid(ipif); 16945 16946 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16947 ill->ill_flags |= ILLF_IPV4; 16948 16949 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16950 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16951 16952 if (ill->ill_flags & ILLF_IPV6) { 16953 16954 ill->ill_isv6 = B_TRUE; 16955 ill_set_inputfn(ill); 16956 if (ill->ill_rq != NULL) { 16957 ill->ill_rq->q_qinfo = &iprinitv6; 16958 } 16959 16960 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16961 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16962 ipif->ipif_v6subnet = ipv6_all_zeros; 16963 ipif->ipif_v6net_mask = ipv6_all_zeros; 16964 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16965 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16966 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16967 /* 16968 * point-to-point or Non-mulicast capable 16969 * interfaces won't do NUD unless explicitly 16970 * configured to do so. 16971 */ 16972 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16973 !(ill->ill_flags & ILLF_MULTICAST)) { 16974 ill->ill_flags |= ILLF_NONUD; 16975 } 16976 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16977 if (ill->ill_flags & ILLF_NOARP) { 16978 /* 16979 * Note: xresolv interfaces will eventually need 16980 * NOARP set here as well, but that will require 16981 * those external resolvers to have some 16982 * knowledge of that flag and act appropriately. 16983 * Not to be changed at present. 16984 */ 16985 ill->ill_flags &= ~ILLF_NOARP; 16986 } 16987 /* 16988 * Set the ILLF_ROUTER flag according to the global 16989 * IPv6 forwarding policy. 16990 */ 16991 if (ipst->ips_ipv6_forwarding != 0) 16992 ill->ill_flags |= ILLF_ROUTER; 16993 } else if (ill->ill_flags & ILLF_IPV4) { 16994 ill->ill_isv6 = B_FALSE; 16995 ill_set_inputfn(ill); 16996 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16997 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16998 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16999 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 17000 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 17001 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 17002 /* 17003 * Set the ILLF_ROUTER flag according to the global 17004 * IPv4 forwarding policy. 17005 */ 17006 if (ipst->ips_ip_forwarding != 0) 17007 ill->ill_flags |= ILLF_ROUTER; 17008 } 17009 17010 ASSERT(ill->ill_phyint != NULL); 17011 17012 /* 17013 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 17014 * be completed in ill_glist_insert -> ill_phyint_reinit 17015 */ 17016 if (!ill_allocate_mibs(ill)) 17017 return (ENOMEM); 17018 17019 /* 17020 * Pick a default sap until we get the DL_INFO_ACK back from 17021 * the driver. 17022 */ 17023 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 17024 ill->ill_media->ip_m_ipv4sap; 17025 17026 ill->ill_ifname_pending = 1; 17027 ill->ill_ifname_pending_err = 0; 17028 17029 /* 17030 * When the first ipif comes up in ipif_up_done(), multicast groups 17031 * that were joined while this ill was not bound to the DLPI link need 17032 * to be recovered by ill_recover_multicast(). 17033 */ 17034 ill->ill_need_recover_multicast = 1; 17035 17036 ill_refhold(ill); 17037 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17038 if ((error = ill_glist_insert(ill, interf_name, 17039 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 17040 ill->ill_ppa = UINT_MAX; 17041 ill->ill_name[0] = '\0'; 17042 /* 17043 * undo null termination done above. 17044 */ 17045 ppa_ptr[0] = old_char; 17046 rw_exit(&ipst->ips_ill_g_lock); 17047 ill_refrele(ill); 17048 return (error); 17049 } 17050 17051 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 17052 17053 /* 17054 * When we return the buffer pointed to by interf_name should contain 17055 * the same name as in ill_name. 17056 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 17057 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 17058 * so copy full name and update the ppa ptr. 17059 * When ppa passed in != UINT_MAX all values are correct just undo 17060 * null termination, this saves a bcopy. 17061 */ 17062 if (*new_ppa_ptr == UINT_MAX) { 17063 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 17064 *new_ppa_ptr = ill->ill_ppa; 17065 } else { 17066 /* 17067 * undo null termination done above. 17068 */ 17069 ppa_ptr[0] = old_char; 17070 } 17071 17072 /* Let SCTP know about this ILL */ 17073 sctp_update_ill(ill, SCTP_ILL_INSERT); 17074 17075 /* 17076 * ill_glist_insert has made the ill visible globally, and 17077 * ill_phyint_reinit could have changed the ipsq. At this point, 17078 * we need to hold the ips_ill_g_lock across the call to enter the 17079 * ipsq to enforce atomicity and prevent reordering. In the event 17080 * the ipsq has changed, and if the new ipsq is currently busy, 17081 * we need to make sure that this half-completed ioctl is ahead of 17082 * any subsequent ioctl. We achieve this by not dropping the 17083 * ips_ill_g_lock which prevents any ill lookup itself thereby 17084 * ensuring that new ioctls can't start. 17085 */ 17086 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17087 B_TRUE); 17088 17089 rw_exit(&ipst->ips_ill_g_lock); 17090 ill_refrele(ill); 17091 if (ipsq == NULL) 17092 return (EINPROGRESS); 17093 17094 /* 17095 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17096 */ 17097 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17098 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17099 else 17100 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17101 17102 error = ipif_set_values_tail(ill, ipif, mp, q); 17103 ipsq_exit(ipsq); 17104 if (error != 0 && error != EINPROGRESS) { 17105 /* 17106 * restore previous values 17107 */ 17108 ill->ill_isv6 = B_FALSE; 17109 ill_set_inputfn(ill); 17110 } 17111 return (error); 17112 } 17113 17114 void 17115 ipif_init(ip_stack_t *ipst) 17116 { 17117 int i; 17118 17119 for (i = 0; i < MAX_G_HEADS; i++) { 17120 ipst->ips_ill_g_heads[i].ill_g_list_head = 17121 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17122 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17123 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17124 } 17125 17126 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17127 ill_phyint_compare_index, 17128 sizeof (phyint_t), 17129 offsetof(struct phyint, phyint_avl_by_index)); 17130 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17131 ill_phyint_compare_name, 17132 sizeof (phyint_t), 17133 offsetof(struct phyint, phyint_avl_by_name)); 17134 } 17135 17136 /* 17137 * Save enough information so that we can recreate the IRE if 17138 * the interface goes down and then up. 17139 */ 17140 void 17141 ill_save_ire(ill_t *ill, ire_t *ire) 17142 { 17143 mblk_t *save_mp; 17144 17145 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17146 if (save_mp != NULL) { 17147 ifrt_t *ifrt; 17148 17149 save_mp->b_wptr += sizeof (ifrt_t); 17150 ifrt = (ifrt_t *)save_mp->b_rptr; 17151 bzero(ifrt, sizeof (ifrt_t)); 17152 ifrt->ifrt_type = ire->ire_type; 17153 if (ire->ire_ipversion == IPV4_VERSION) { 17154 ASSERT(!ill->ill_isv6); 17155 ifrt->ifrt_addr = ire->ire_addr; 17156 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17157 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17158 ifrt->ifrt_mask = ire->ire_mask; 17159 } else { 17160 ASSERT(ill->ill_isv6); 17161 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17162 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17163 mutex_enter(&ire->ire_lock); 17164 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17165 mutex_exit(&ire->ire_lock); 17166 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17167 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17168 } 17169 ifrt->ifrt_flags = ire->ire_flags; 17170 ifrt->ifrt_zoneid = ire->ire_zoneid; 17171 mutex_enter(&ill->ill_saved_ire_lock); 17172 save_mp->b_cont = ill->ill_saved_ire_mp; 17173 ill->ill_saved_ire_mp = save_mp; 17174 ill->ill_saved_ire_cnt++; 17175 mutex_exit(&ill->ill_saved_ire_lock); 17176 } 17177 } 17178 17179 /* 17180 * Remove one entry from ill_saved_ire_mp. 17181 */ 17182 void 17183 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17184 { 17185 mblk_t **mpp; 17186 mblk_t *mp; 17187 ifrt_t *ifrt; 17188 17189 /* Remove from ill_saved_ire_mp list if it is there */ 17190 mutex_enter(&ill->ill_saved_ire_lock); 17191 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17192 mpp = &(*mpp)->b_cont) { 17193 in6_addr_t gw_addr_v6; 17194 17195 /* 17196 * On a given ill, the tuple of address, gateway, mask, 17197 * ire_type, and zoneid is unique for each saved IRE. 17198 */ 17199 mp = *mpp; 17200 ifrt = (ifrt_t *)mp->b_rptr; 17201 /* ire_gateway_addr_v6 can change - need lock */ 17202 mutex_enter(&ire->ire_lock); 17203 gw_addr_v6 = ire->ire_gateway_addr_v6; 17204 mutex_exit(&ire->ire_lock); 17205 17206 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17207 ifrt->ifrt_type != ire->ire_type) 17208 continue; 17209 17210 if (ill->ill_isv6 ? 17211 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17212 &ire->ire_addr_v6) && 17213 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17214 &gw_addr_v6) && 17215 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17216 &ire->ire_mask_v6)) : 17217 (ifrt->ifrt_addr == ire->ire_addr && 17218 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17219 ifrt->ifrt_mask == ire->ire_mask)) { 17220 *mpp = mp->b_cont; 17221 ill->ill_saved_ire_cnt--; 17222 freeb(mp); 17223 break; 17224 } 17225 } 17226 mutex_exit(&ill->ill_saved_ire_lock); 17227 } 17228 17229 /* 17230 * IP multirouting broadcast routes handling 17231 * Append CGTP broadcast IREs to regular ones created 17232 * at ifconfig time. 17233 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17234 * the destination and the gateway are broadcast addresses. 17235 * The caller has verified that the destination is an IRE_BROADCAST and that 17236 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17237 * we create a MULTIRT IRE_BROADCAST. 17238 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17239 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17240 */ 17241 static void 17242 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17243 { 17244 ire_t *ire_prim; 17245 17246 ASSERT(ire != NULL); 17247 17248 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17249 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17250 NULL); 17251 if (ire_prim != NULL) { 17252 /* 17253 * We are in the special case of broadcasts for 17254 * CGTP. We add an IRE_BROADCAST that holds 17255 * the RTF_MULTIRT flag, the destination 17256 * address and the low level 17257 * info of ire_prim. In other words, CGTP 17258 * broadcast is added to the redundant ipif. 17259 */ 17260 ill_t *ill_prim; 17261 ire_t *bcast_ire; 17262 17263 ill_prim = ire_prim->ire_ill; 17264 17265 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17266 (void *)ire_prim, (void *)ill_prim)); 17267 17268 bcast_ire = ire_create( 17269 (uchar_t *)&ire->ire_addr, 17270 (uchar_t *)&ip_g_all_ones, 17271 (uchar_t *)&ire->ire_gateway_addr, 17272 IRE_BROADCAST, 17273 ill_prim, 17274 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17275 ire->ire_flags | RTF_KERNEL, 17276 NULL, 17277 ipst); 17278 17279 /* 17280 * Here we assume that ire_add does head insertion so that 17281 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17282 */ 17283 if (bcast_ire != NULL) { 17284 if (ire->ire_flags & RTF_SETSRC) { 17285 bcast_ire->ire_setsrc_addr = 17286 ire->ire_setsrc_addr; 17287 } 17288 bcast_ire = ire_add(bcast_ire); 17289 if (bcast_ire != NULL) { 17290 ip2dbg(("ip_cgtp_filter_bcast_add: " 17291 "added bcast_ire %p\n", 17292 (void *)bcast_ire)); 17293 17294 ill_save_ire(ill_prim, bcast_ire); 17295 ire_refrele(bcast_ire); 17296 } 17297 } 17298 ire_refrele(ire_prim); 17299 } 17300 } 17301 17302 /* 17303 * IP multirouting broadcast routes handling 17304 * Remove the broadcast ire. 17305 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17306 * the destination and the gateway are broadcast addresses. 17307 * The caller has only verified that RTF_MULTIRT was set. We check 17308 * that the destination is broadcast and that the gateway is a broadcast 17309 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17310 */ 17311 static void 17312 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17313 { 17314 ASSERT(ire != NULL); 17315 17316 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17317 ire_t *ire_prim; 17318 17319 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17320 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17321 ipst, NULL); 17322 if (ire_prim != NULL) { 17323 ill_t *ill_prim; 17324 ire_t *bcast_ire; 17325 17326 ill_prim = ire_prim->ire_ill; 17327 17328 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17329 "ire_prim %p, ill_prim %p\n", 17330 (void *)ire_prim, (void *)ill_prim)); 17331 17332 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17333 ire->ire_gateway_addr, IRE_BROADCAST, 17334 ill_prim, ALL_ZONES, NULL, 17335 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17336 MATCH_IRE_MASK, 0, ipst, NULL); 17337 17338 if (bcast_ire != NULL) { 17339 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17340 "looked up bcast_ire %p\n", 17341 (void *)bcast_ire)); 17342 ill_remove_saved_ire(bcast_ire->ire_ill, 17343 bcast_ire); 17344 ire_delete(bcast_ire); 17345 ire_refrele(bcast_ire); 17346 } 17347 ire_refrele(ire_prim); 17348 } 17349 } 17350 } 17351 17352 /* 17353 * Derive an interface id from the link layer address. 17354 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17355 */ 17356 static void 17357 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17358 { 17359 char *addr; 17360 17361 /* 17362 * Note that some IPv6 interfaces get plumbed over links that claim to 17363 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17364 * PPP links). The ETHERADDRL check here ensures that we only set the 17365 * interface ID on IPv6 interfaces above links that actually have real 17366 * Ethernet addresses. 17367 */ 17368 if (ill->ill_phys_addr_length == ETHERADDRL) { 17369 /* Form EUI-64 like address */ 17370 addr = (char *)&v6addr->s6_addr32[2]; 17371 bcopy(ill->ill_phys_addr, addr, 3); 17372 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17373 addr[3] = (char)0xff; 17374 addr[4] = (char)0xfe; 17375 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17376 } 17377 } 17378 17379 /* ARGSUSED */ 17380 static void 17381 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17382 { 17383 } 17384 17385 typedef struct ipmp_ifcookie { 17386 uint32_t ic_hostid; 17387 char ic_ifname[LIFNAMSIZ]; 17388 char ic_zonename[ZONENAME_MAX]; 17389 } ipmp_ifcookie_t; 17390 17391 /* 17392 * Construct a pseudo-random interface ID for the IPMP interface that's both 17393 * predictable and (almost) guaranteed to be unique. 17394 */ 17395 static void 17396 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17397 { 17398 zone_t *zp; 17399 uint8_t *addr; 17400 uchar_t hash[16]; 17401 ulong_t hostid; 17402 MD5_CTX ctx; 17403 ipmp_ifcookie_t ic = { 0 }; 17404 17405 ASSERT(IS_IPMP(ill)); 17406 17407 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17408 ic.ic_hostid = htonl((uint32_t)hostid); 17409 17410 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17411 17412 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17413 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17414 zone_rele(zp); 17415 } 17416 17417 MD5Init(&ctx); 17418 MD5Update(&ctx, &ic, sizeof (ic)); 17419 MD5Final(hash, &ctx); 17420 17421 /* 17422 * Map the hash to an interface ID per the basic approach in RFC3041. 17423 */ 17424 addr = &v6addr->s6_addr8[8]; 17425 bcopy(hash + 8, addr, sizeof (uint64_t)); 17426 addr[0] &= ~0x2; /* set local bit */ 17427 } 17428 17429 /* 17430 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17431 */ 17432 static void 17433 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17434 { 17435 phyint_t *phyi = ill->ill_phyint; 17436 17437 /* 17438 * Check PHYI_MULTI_BCAST and length of physical 17439 * address to determine if we use the mapping or the 17440 * broadcast address. 17441 */ 17442 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17443 ill->ill_phys_addr_length != ETHERADDRL) { 17444 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17445 return; 17446 } 17447 m_physaddr[0] = 0x33; 17448 m_physaddr[1] = 0x33; 17449 m_physaddr[2] = m_ip6addr[12]; 17450 m_physaddr[3] = m_ip6addr[13]; 17451 m_physaddr[4] = m_ip6addr[14]; 17452 m_physaddr[5] = m_ip6addr[15]; 17453 } 17454 17455 /* 17456 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17457 */ 17458 static void 17459 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17460 { 17461 phyint_t *phyi = ill->ill_phyint; 17462 17463 /* 17464 * Check PHYI_MULTI_BCAST and length of physical 17465 * address to determine if we use the mapping or the 17466 * broadcast address. 17467 */ 17468 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17469 ill->ill_phys_addr_length != ETHERADDRL) { 17470 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17471 return; 17472 } 17473 m_physaddr[0] = 0x01; 17474 m_physaddr[1] = 0x00; 17475 m_physaddr[2] = 0x5e; 17476 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17477 m_physaddr[4] = m_ipaddr[2]; 17478 m_physaddr[5] = m_ipaddr[3]; 17479 } 17480 17481 /* ARGSUSED */ 17482 static void 17483 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17484 { 17485 /* 17486 * for the MULTI_BCAST case and other cases when we want to 17487 * use the link-layer broadcast address for multicast. 17488 */ 17489 uint8_t *bphys_addr; 17490 dl_unitdata_req_t *dlur; 17491 17492 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17493 if (ill->ill_sap_length < 0) { 17494 bphys_addr = (uchar_t *)dlur + 17495 dlur->dl_dest_addr_offset; 17496 } else { 17497 bphys_addr = (uchar_t *)dlur + 17498 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17499 } 17500 17501 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17502 } 17503 17504 /* 17505 * Derive IPoIB interface id from the link layer address. 17506 */ 17507 static void 17508 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17509 { 17510 char *addr; 17511 17512 ASSERT(ill->ill_phys_addr_length == 20); 17513 addr = (char *)&v6addr->s6_addr32[2]; 17514 bcopy(ill->ill_phys_addr + 12, addr, 8); 17515 /* 17516 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17517 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17518 * rules. In these cases, the IBA considers these GUIDs to be in 17519 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17520 * required; vendors are required not to assign global EUI-64's 17521 * that differ only in u/l bit values, thus guaranteeing uniqueness 17522 * of the interface identifier. Whether the GUID is in modified 17523 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17524 * bit set to 1. 17525 */ 17526 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17527 } 17528 17529 /* 17530 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17531 * Note on mapping from multicast IP addresses to IPoIB multicast link 17532 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17533 * The format of an IPoIB multicast address is: 17534 * 17535 * 4 byte QPN Scope Sign. Pkey 17536 * +--------------------------------------------+ 17537 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17538 * +--------------------------------------------+ 17539 * 17540 * The Scope and Pkey components are properties of the IBA port and 17541 * network interface. They can be ascertained from the broadcast address. 17542 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17543 */ 17544 static void 17545 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17546 { 17547 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17548 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17549 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17550 uint8_t *bphys_addr; 17551 dl_unitdata_req_t *dlur; 17552 17553 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17554 17555 /* 17556 * RFC 4391: IPv4 MGID is 28-bit long. 17557 */ 17558 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17559 m_physaddr[17] = m_ipaddr[1]; 17560 m_physaddr[18] = m_ipaddr[2]; 17561 m_physaddr[19] = m_ipaddr[3]; 17562 17563 17564 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17565 if (ill->ill_sap_length < 0) { 17566 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17567 } else { 17568 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17569 ill->ill_sap_length; 17570 } 17571 /* 17572 * Now fill in the IBA scope/Pkey values from the broadcast address. 17573 */ 17574 m_physaddr[5] = bphys_addr[5]; 17575 m_physaddr[8] = bphys_addr[8]; 17576 m_physaddr[9] = bphys_addr[9]; 17577 } 17578 17579 static void 17580 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17581 { 17582 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17583 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17584 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17585 uint8_t *bphys_addr; 17586 dl_unitdata_req_t *dlur; 17587 17588 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17589 17590 /* 17591 * RFC 4391: IPv4 MGID is 80-bit long. 17592 */ 17593 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17594 17595 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17596 if (ill->ill_sap_length < 0) { 17597 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17598 } else { 17599 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17600 ill->ill_sap_length; 17601 } 17602 /* 17603 * Now fill in the IBA scope/Pkey values from the broadcast address. 17604 */ 17605 m_physaddr[5] = bphys_addr[5]; 17606 m_physaddr[8] = bphys_addr[8]; 17607 m_physaddr[9] = bphys_addr[9]; 17608 } 17609 17610 /* 17611 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17612 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17613 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17614 * of RFC4213. 17615 */ 17616 static void 17617 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17618 { 17619 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17620 v6addr->s6_addr32[2] = 0; 17621 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17622 } 17623 17624 /* 17625 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17626 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17627 * id. 17628 */ 17629 static void 17630 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17631 { 17632 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17633 17634 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17635 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17636 } 17637 17638 static void 17639 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17640 { 17641 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17642 } 17643 17644 static void 17645 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17646 { 17647 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17648 } 17649 17650 static void 17651 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17652 { 17653 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17654 } 17655 17656 static void 17657 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17658 { 17659 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17660 } 17661 17662 /* 17663 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17664 * Returns an held ill, or NULL. 17665 */ 17666 ill_t * 17667 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17668 ip_stack_t *ipst) 17669 { 17670 ill_t *ill; 17671 ipif_t *ipif; 17672 17673 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17674 if (ill == NULL) 17675 return (NULL); 17676 17677 mutex_enter(&ill->ill_lock); 17678 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17679 if (IPIF_IS_CONDEMNED(ipif)) 17680 continue; 17681 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17682 ipif->ipif_zoneid != ALL_ZONES) 17683 continue; 17684 17685 mutex_exit(&ill->ill_lock); 17686 return (ill); 17687 } 17688 mutex_exit(&ill->ill_lock); 17689 ill_refrele(ill); 17690 return (NULL); 17691 } 17692 17693 /* 17694 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17695 * If a pointer to an ipif_t is returned then the caller will need to do 17696 * an ill_refrele(). 17697 */ 17698 ipif_t * 17699 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17700 ip_stack_t *ipst) 17701 { 17702 ipif_t *ipif; 17703 ill_t *ill; 17704 17705 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17706 if (ill == NULL) 17707 return (NULL); 17708 17709 mutex_enter(&ill->ill_lock); 17710 if (ill->ill_state_flags & ILL_CONDEMNED) { 17711 mutex_exit(&ill->ill_lock); 17712 ill_refrele(ill); 17713 return (NULL); 17714 } 17715 17716 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17717 if (!IPIF_CAN_LOOKUP(ipif)) 17718 continue; 17719 if (lifidx == ipif->ipif_id) { 17720 ipif_refhold_locked(ipif); 17721 break; 17722 } 17723 } 17724 17725 mutex_exit(&ill->ill_lock); 17726 ill_refrele(ill); 17727 return (ipif); 17728 } 17729 17730 /* 17731 * Set ill_inputfn based on the current know state. 17732 * This needs to be called when any of the factors taken into 17733 * account changes. 17734 */ 17735 void 17736 ill_set_inputfn(ill_t *ill) 17737 { 17738 ip_stack_t *ipst = ill->ill_ipst; 17739 17740 if (ill->ill_isv6) { 17741 if (is_system_labeled()) 17742 ill->ill_inputfn = ill_input_full_v6; 17743 else 17744 ill->ill_inputfn = ill_input_short_v6; 17745 } else { 17746 if (is_system_labeled()) 17747 ill->ill_inputfn = ill_input_full_v4; 17748 else if (ill->ill_dhcpinit != 0) 17749 ill->ill_inputfn = ill_input_full_v4; 17750 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17751 != NULL) 17752 ill->ill_inputfn = ill_input_full_v4; 17753 else if (ipst->ips_ip_cgtp_filter && 17754 ipst->ips_ip_cgtp_filter_ops != NULL) 17755 ill->ill_inputfn = ill_input_full_v4; 17756 else 17757 ill->ill_inputfn = ill_input_short_v4; 17758 } 17759 } 17760 17761 /* 17762 * Re-evaluate ill_inputfn for all the IPv4 ills. 17763 * Used when RSVP and CGTP comes and goes. 17764 */ 17765 void 17766 ill_set_inputfn_all(ip_stack_t *ipst) 17767 { 17768 ill_walk_context_t ctx; 17769 ill_t *ill; 17770 17771 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17772 ill = ILL_START_WALK_V4(&ctx, ipst); 17773 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17774 ill_set_inputfn(ill); 17775 17776 rw_exit(&ipst->ips_ill_g_lock); 17777 } 17778 17779 /* 17780 * Set the physical address information for `ill' to the contents of the 17781 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17782 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17783 * EINPROGRESS will be returned. 17784 */ 17785 int 17786 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17787 { 17788 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17789 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17790 17791 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17792 17793 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17794 dlindp->dl_data != DL_CURR_DEST_ADDR && 17795 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17796 /* Changing DL_IPV6_TOKEN is not yet supported */ 17797 return (0); 17798 } 17799 17800 /* 17801 * We need to store up to two copies of `mp' in `ill'. Due to the 17802 * design of ipsq_pending_mp_add(), we can't pass them as separate 17803 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17804 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17805 */ 17806 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17807 freemsg(mp); 17808 return (ENOMEM); 17809 } 17810 17811 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17812 17813 /* 17814 * Since we'll only do a logical down, we can't rely on ipif_down 17815 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17816 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17817 * case, to quiesce ire's and nce's for ill_is_quiescent. 17818 */ 17819 mutex_enter(&ill->ill_lock); 17820 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17821 /* no more ire/nce addition allowed */ 17822 mutex_exit(&ill->ill_lock); 17823 17824 /* 17825 * If we can quiesce the ill, then set the address. If not, then 17826 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17827 */ 17828 ill_down_ipifs(ill, B_TRUE); 17829 mutex_enter(&ill->ill_lock); 17830 if (!ill_is_quiescent(ill)) { 17831 /* call cannot fail since `conn_t *' argument is NULL */ 17832 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17833 mp, ILL_DOWN); 17834 mutex_exit(&ill->ill_lock); 17835 return (EINPROGRESS); 17836 } 17837 mutex_exit(&ill->ill_lock); 17838 17839 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17840 return (0); 17841 } 17842 17843 /* 17844 * When the allowed-ips link property is set on the datalink, IP receives a 17845 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips() 17846 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then 17847 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the 17848 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[] 17849 * array. 17850 */ 17851 void 17852 ill_set_allowed_ips(ill_t *ill, mblk_t *mp) 17853 { 17854 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17855 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr; 17856 mac_protect_t *mrp; 17857 int i; 17858 17859 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17860 mrp = (mac_protect_t *)&dlip[1]; 17861 17862 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */ 17863 kmem_free(ill->ill_allowed_ips, 17864 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17865 ill->ill_allowed_ips_cnt = 0; 17866 ill->ill_allowed_ips = NULL; 17867 mutex_enter(&ill->ill_phyint->phyint_lock); 17868 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT; 17869 mutex_exit(&ill->ill_phyint->phyint_lock); 17870 return; 17871 } 17872 17873 if (ill->ill_allowed_ips != NULL) { 17874 kmem_free(ill->ill_allowed_ips, 17875 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17876 } 17877 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt; 17878 ill->ill_allowed_ips = kmem_alloc( 17879 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP); 17880 for (i = 0; i < mrp->mp_ipaddrcnt; i++) 17881 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr; 17882 17883 mutex_enter(&ill->ill_phyint->phyint_lock); 17884 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT; 17885 mutex_exit(&ill->ill_phyint->phyint_lock); 17886 } 17887 17888 /* 17889 * Once the ill associated with `q' has quiesced, set its physical address 17890 * information to the values in `addrmp'. Note that two copies of `addrmp' 17891 * are passed (linked by b_cont), since we sometimes need to save two distinct 17892 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17893 * failure (we'll free the other copy if it's not needed). Since the ill_t 17894 * is quiesced, we know any stale nce's with the old address information have 17895 * already been removed, so we don't need to call nce_flush(). 17896 */ 17897 /* ARGSUSED */ 17898 static void 17899 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17900 { 17901 ill_t *ill = q->q_ptr; 17902 mblk_t *addrmp2 = unlinkb(addrmp); 17903 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17904 uint_t addrlen, addroff; 17905 int status; 17906 17907 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17908 17909 addroff = dlindp->dl_addr_offset; 17910 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17911 17912 switch (dlindp->dl_data) { 17913 case DL_IPV6_LINK_LAYER_ADDR: 17914 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17915 freemsg(addrmp2); 17916 break; 17917 17918 case DL_CURR_DEST_ADDR: 17919 freemsg(ill->ill_dest_addr_mp); 17920 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17921 ill->ill_dest_addr_mp = addrmp; 17922 if (ill->ill_isv6) { 17923 ill_setdesttoken(ill); 17924 ipif_setdestlinklocal(ill->ill_ipif); 17925 } 17926 freemsg(addrmp2); 17927 break; 17928 17929 case DL_CURR_PHYS_ADDR: 17930 freemsg(ill->ill_phys_addr_mp); 17931 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17932 ill->ill_phys_addr_mp = addrmp; 17933 ill->ill_phys_addr_length = addrlen; 17934 if (ill->ill_isv6) 17935 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17936 else 17937 freemsg(addrmp2); 17938 if (ill->ill_isv6) { 17939 ill_setdefaulttoken(ill); 17940 ipif_setlinklocal(ill->ill_ipif); 17941 } 17942 break; 17943 default: 17944 ASSERT(0); 17945 } 17946 17947 /* 17948 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17949 * as we bring the ipifs up again. 17950 */ 17951 mutex_enter(&ill->ill_lock); 17952 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17953 mutex_exit(&ill->ill_lock); 17954 /* 17955 * If there are ipifs to bring up, ill_up_ipifs() will return 17956 * EINPROGRESS, and ipsq_current_finish() will be called by 17957 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17958 * brought up. 17959 */ 17960 status = ill_up_ipifs(ill, q, addrmp); 17961 if (status != EINPROGRESS) 17962 ipsq_current_finish(ipsq); 17963 } 17964 17965 /* 17966 * Helper routine for setting the ill_nd_lla fields. 17967 */ 17968 void 17969 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17970 { 17971 freemsg(ill->ill_nd_lla_mp); 17972 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17973 ill->ill_nd_lla_mp = ndmp; 17974 ill->ill_nd_lla_len = addrlen; 17975 } 17976 17977 /* 17978 * Replumb the ill. 17979 */ 17980 int 17981 ill_replumb(ill_t *ill, mblk_t *mp) 17982 { 17983 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17984 17985 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17986 17987 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17988 17989 /* 17990 * If we can quiesce the ill, then continue. If not, then 17991 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17992 */ 17993 ill_down_ipifs(ill, B_FALSE); 17994 17995 mutex_enter(&ill->ill_lock); 17996 if (!ill_is_quiescent(ill)) { 17997 /* call cannot fail since `conn_t *' argument is NULL */ 17998 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17999 mp, ILL_DOWN); 18000 mutex_exit(&ill->ill_lock); 18001 return (EINPROGRESS); 18002 } 18003 mutex_exit(&ill->ill_lock); 18004 18005 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 18006 return (0); 18007 } 18008 18009 /* ARGSUSED */ 18010 static void 18011 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 18012 { 18013 ill_t *ill = q->q_ptr; 18014 int err; 18015 conn_t *connp = NULL; 18016 18017 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18018 freemsg(ill->ill_replumb_mp); 18019 ill->ill_replumb_mp = copyb(mp); 18020 18021 if (ill->ill_replumb_mp == NULL) { 18022 /* out of memory */ 18023 ipsq_current_finish(ipsq); 18024 return; 18025 } 18026 18027 mutex_enter(&ill->ill_lock); 18028 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 18029 ill->ill_rq, ill->ill_replumb_mp, 0); 18030 mutex_exit(&ill->ill_lock); 18031 18032 if (!ill->ill_up_ipifs) { 18033 /* already closing */ 18034 ipsq_current_finish(ipsq); 18035 return; 18036 } 18037 ill->ill_replumbing = 1; 18038 err = ill_down_ipifs_tail(ill); 18039 18040 /* 18041 * Successfully quiesced and brought down the interface, now we send 18042 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 18043 * DL_NOTE_REPLUMB message. 18044 */ 18045 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 18046 DL_NOTIFY_CONF); 18047 ASSERT(mp != NULL); 18048 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 18049 DL_NOTE_REPLUMB_DONE; 18050 ill_dlpi_send(ill, mp); 18051 18052 /* 18053 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 18054 * streams have to be unbound. When all the DLPI exchanges are done, 18055 * ipsq_current_finish() will be called by arp_bringup_done(). The 18056 * remainder of ipif bringup via ill_up_ipifs() will also be done in 18057 * arp_bringup_done(). 18058 */ 18059 ASSERT(ill->ill_replumb_mp != NULL); 18060 if (err == EINPROGRESS) 18061 return; 18062 else 18063 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 18064 ASSERT(connp == NULL); 18065 if (err == 0 && ill->ill_replumb_mp != NULL && 18066 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 18067 return; 18068 } 18069 ipsq_current_finish(ipsq); 18070 } 18071 18072 /* 18073 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 18074 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 18075 * as per the ioctl. On failure, an errno is returned. 18076 */ 18077 static int 18078 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 18079 { 18080 int rval; 18081 struct strioctl iocb; 18082 18083 iocb.ic_cmd = cmd; 18084 iocb.ic_timout = 15; 18085 iocb.ic_len = bufsize; 18086 iocb.ic_dp = buf; 18087 18088 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 18089 } 18090 18091 /* 18092 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 18093 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 18094 */ 18095 static int 18096 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 18097 uint_t *bufsizep, cred_t *cr) 18098 { 18099 int err; 18100 struct lifnum lifn; 18101 18102 bzero(&lifn, sizeof (lifn)); 18103 lifn.lifn_family = af; 18104 lifn.lifn_flags = LIFC_UNDER_IPMP; 18105 18106 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 18107 return (err); 18108 18109 /* 18110 * Pad the interface count to account for additional interfaces that 18111 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18112 */ 18113 lifn.lifn_count += 4; 18114 bzero(lifcp, sizeof (*lifcp)); 18115 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18116 lifcp->lifc_family = af; 18117 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18118 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18119 18120 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18121 if (err != 0) { 18122 kmem_free(lifcp->lifc_buf, *bufsizep); 18123 return (err); 18124 } 18125 18126 return (0); 18127 } 18128 18129 /* 18130 * Helper for ip_interface_cleanup() that removes the loopback interface. 18131 */ 18132 static void 18133 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18134 { 18135 int err; 18136 struct lifreq lifr; 18137 18138 bzero(&lifr, sizeof (lifr)); 18139 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18140 18141 /* 18142 * Attempt to remove the interface. It may legitimately not exist 18143 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18144 */ 18145 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18146 if (err != 0 && err != ENXIO) { 18147 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18148 "error %d\n", isv6 ? "v6" : "v4", err)); 18149 } 18150 } 18151 18152 /* 18153 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18154 * groups and that IPMP data addresses are down. These conditions must be met 18155 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18156 */ 18157 static void 18158 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18159 { 18160 int af = isv6 ? AF_INET6 : AF_INET; 18161 int i, nifs; 18162 int err; 18163 uint_t bufsize; 18164 uint_t lifrsize = sizeof (struct lifreq); 18165 struct lifconf lifc; 18166 struct lifreq *lifrp; 18167 18168 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18169 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18170 "(error %d); any IPMP interfaces cannot be shutdown", err); 18171 return; 18172 } 18173 18174 nifs = lifc.lifc_len / lifrsize; 18175 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18176 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18177 if (err != 0) { 18178 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18179 "flags: error %d", lifrp->lifr_name, err); 18180 continue; 18181 } 18182 18183 if (lifrp->lifr_flags & IFF_IPMP) { 18184 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18185 continue; 18186 18187 lifrp->lifr_flags &= ~IFF_UP; 18188 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18189 if (err != 0) { 18190 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18191 "bring down (error %d); IPMP interface may " 18192 "not be shutdown", lifrp->lifr_name, err); 18193 } 18194 18195 /* 18196 * Check if IFF_DUPLICATE is still set -- and if so, 18197 * reset the address to clear it. 18198 */ 18199 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18200 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18201 continue; 18202 18203 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18204 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18205 lifrp, lifrsize, cr)) != 0) { 18206 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18207 "reset DAD (error %d); IPMP interface may " 18208 "not be shutdown", lifrp->lifr_name, err); 18209 } 18210 continue; 18211 } 18212 18213 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18214 lifrp->lifr_groupname[0] = '\0'; 18215 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18216 lifrsize, cr)) != 0) { 18217 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18218 "leave IPMP group (error %d); associated " 18219 "IPMP interface may not be shutdown", 18220 lifrp->lifr_name, err); 18221 continue; 18222 } 18223 } 18224 } 18225 18226 kmem_free(lifc.lifc_buf, bufsize); 18227 } 18228 18229 #define UDPDEV "/devices/pseudo/udp@0:udp" 18230 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18231 18232 /* 18233 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18234 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18235 * when the user-level processes in the zone are killed and the latter are 18236 * cleaned up by str_stack_shutdown(). 18237 */ 18238 void 18239 ip_interface_cleanup(ip_stack_t *ipst) 18240 { 18241 ldi_handle_t lh; 18242 ldi_ident_t li; 18243 cred_t *cr; 18244 int err; 18245 int i; 18246 char *devs[] = { UDP6DEV, UDPDEV }; 18247 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18248 18249 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18250 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18251 " error %d", err); 18252 return; 18253 } 18254 18255 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18256 ASSERT(cr != NULL); 18257 18258 /* 18259 * NOTE: loop executes exactly twice and is hardcoded to know that the 18260 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18261 * the loop.) 18262 */ 18263 for (i = 0; i < 2; i++) { 18264 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18265 if (err != 0) { 18266 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18267 " error %d", devs[i], err); 18268 continue; 18269 } 18270 18271 ip_loopback_removeif(lh, i == 0, cr); 18272 ip_ipmp_cleanup(lh, i == 0, cr); 18273 18274 (void) ldi_close(lh, FREAD|FWRITE, cr); 18275 } 18276 18277 ldi_ident_release(li); 18278 crfree(cr); 18279 } 18280 18281 /* 18282 * This needs to be in-sync with nic_event_t definition 18283 */ 18284 static const char * 18285 ill_hook_event2str(nic_event_t event) 18286 { 18287 switch (event) { 18288 case NE_PLUMB: 18289 return ("PLUMB"); 18290 case NE_UNPLUMB: 18291 return ("UNPLUMB"); 18292 case NE_UP: 18293 return ("UP"); 18294 case NE_DOWN: 18295 return ("DOWN"); 18296 case NE_ADDRESS_CHANGE: 18297 return ("ADDRESS_CHANGE"); 18298 case NE_LIF_UP: 18299 return ("LIF_UP"); 18300 case NE_LIF_DOWN: 18301 return ("LIF_DOWN"); 18302 case NE_IFINDEX_CHANGE: 18303 return ("IFINDEX_CHANGE"); 18304 default: 18305 return ("UNKNOWN"); 18306 } 18307 } 18308 18309 void 18310 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18311 nic_event_data_t data, size_t datalen) 18312 { 18313 ip_stack_t *ipst = ill->ill_ipst; 18314 hook_nic_event_int_t *info; 18315 const char *str = NULL; 18316 18317 /* create a new nic event info */ 18318 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18319 goto fail; 18320 18321 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18322 info->hnei_event.hne_lif = lif; 18323 info->hnei_event.hne_event = event; 18324 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18325 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18326 info->hnei_event.hne_data = NULL; 18327 info->hnei_event.hne_datalen = 0; 18328 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18329 18330 if (data != NULL && datalen != 0) { 18331 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18332 if (info->hnei_event.hne_data == NULL) 18333 goto fail; 18334 bcopy(data, info->hnei_event.hne_data, datalen); 18335 info->hnei_event.hne_datalen = datalen; 18336 } 18337 18338 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18339 DDI_NOSLEEP) == DDI_SUCCESS) 18340 return; 18341 18342 fail: 18343 if (info != NULL) { 18344 if (info->hnei_event.hne_data != NULL) { 18345 kmem_free(info->hnei_event.hne_data, 18346 info->hnei_event.hne_datalen); 18347 } 18348 kmem_free(info, sizeof (hook_nic_event_t)); 18349 } 18350 str = ill_hook_event2str(event); 18351 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18352 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18353 } 18354 18355 static int 18356 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18357 { 18358 int err = 0; 18359 const in_addr_t *addr = NULL; 18360 nce_t *nce = NULL; 18361 ill_t *ill = ipif->ipif_ill; 18362 ill_t *bound_ill; 18363 boolean_t added_ipif = B_FALSE; 18364 uint16_t state; 18365 uint16_t flags; 18366 18367 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18368 ill_t *, ill, ipif_t *, ipif); 18369 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18370 addr = &ipif->ipif_lcl_addr; 18371 } 18372 18373 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18374 if (res_act != Res_act_initial) 18375 return (EINVAL); 18376 } 18377 18378 if (addr != NULL) { 18379 ipmp_illgrp_t *illg = ill->ill_grp; 18380 18381 /* add unicast nce for the local addr */ 18382 18383 if (IS_IPMP(ill)) { 18384 /* 18385 * If we're here via ipif_up(), then the ipif 18386 * won't be bound yet -- add it to the group, 18387 * which will bind it if possible. (We would 18388 * add it in ipif_up(), but deleting on failure 18389 * there is gruesome.) If we're here via 18390 * ipmp_ill_bind_ipif(), then the ipif has 18391 * already been added to the group and we 18392 * just need to use the binding. 18393 */ 18394 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18395 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18396 if (bound_ill == NULL) { 18397 /* 18398 * We couldn't bind the ipif to an ill 18399 * yet, so we have nothing to publish. 18400 * Mark the address as ready and return. 18401 */ 18402 ipif->ipif_addr_ready = 1; 18403 return (0); 18404 } 18405 added_ipif = B_TRUE; 18406 } 18407 } else { 18408 bound_ill = ill; 18409 } 18410 18411 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18412 NCE_F_NONUD); 18413 /* 18414 * If this is an initial bring-up (or the ipif was never 18415 * completely brought up), do DAD. Otherwise, we're here 18416 * because IPMP has rebound an address to this ill: send 18417 * unsolicited advertisements (ARP announcements) to 18418 * inform others. 18419 */ 18420 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18421 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18422 } else { 18423 state = ND_REACHABLE; 18424 flags |= NCE_F_UNSOL_ADV; 18425 } 18426 18427 retry: 18428 err = nce_lookup_then_add_v4(ill, 18429 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18430 addr, flags, state, &nce); 18431 18432 /* 18433 * note that we may encounter EEXIST if we are moving 18434 * the nce as a result of a rebind operation. 18435 */ 18436 switch (err) { 18437 case 0: 18438 ipif->ipif_added_nce = 1; 18439 nce->nce_ipif_cnt++; 18440 break; 18441 case EEXIST: 18442 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18443 ill->ill_name)); 18444 if (!NCE_MYADDR(nce->nce_common)) { 18445 /* 18446 * A leftover nce from before this address 18447 * existed 18448 */ 18449 ncec_delete(nce->nce_common); 18450 nce_refrele(nce); 18451 nce = NULL; 18452 goto retry; 18453 } 18454 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18455 nce_refrele(nce); 18456 nce = NULL; 18457 ip1dbg(("ipif_arp_up: NCE already exists " 18458 "for %s:%u\n", ill->ill_name, 18459 ipif->ipif_id)); 18460 goto arp_up_done; 18461 } 18462 /* 18463 * Duplicate local addresses are permissible for 18464 * IPIF_POINTOPOINT interfaces which will get marked 18465 * IPIF_UNNUMBERED later in 18466 * ip_addr_availability_check(). 18467 * 18468 * The nce_ipif_cnt field tracks the number of 18469 * ipifs that have nce_addr as their local address. 18470 */ 18471 ipif->ipif_addr_ready = 1; 18472 ipif->ipif_added_nce = 1; 18473 nce->nce_ipif_cnt++; 18474 err = 0; 18475 break; 18476 default: 18477 ASSERT(nce == NULL); 18478 goto arp_up_done; 18479 } 18480 if (arp_no_defense) { 18481 if ((ipif->ipif_flags & IPIF_UP) && 18482 !ipif->ipif_addr_ready) 18483 ipif_up_notify(ipif); 18484 ipif->ipif_addr_ready = 1; 18485 } 18486 } else { 18487 /* zero address. nothing to publish */ 18488 ipif->ipif_addr_ready = 1; 18489 } 18490 if (nce != NULL) 18491 nce_refrele(nce); 18492 arp_up_done: 18493 if (added_ipif && err != 0) 18494 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18495 return (err); 18496 } 18497 18498 int 18499 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18500 { 18501 int err = 0; 18502 ill_t *ill = ipif->ipif_ill; 18503 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18504 18505 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18506 ill_t *, ill, ipif_t *, ipif); 18507 18508 /* 18509 * need to bring up ARP or setup mcast mapping only 18510 * when the first interface is coming UP. 18511 */ 18512 first_interface = (ill->ill_ipif_up_count == 0 && 18513 ill->ill_ipif_dup_count == 0 && !was_dup); 18514 18515 if (res_act == Res_act_initial && first_interface) { 18516 /* 18517 * Send ATTACH + BIND 18518 */ 18519 err = arp_ll_up(ill); 18520 if (err != EINPROGRESS && err != 0) 18521 return (err); 18522 18523 /* 18524 * Add NCE for local address. Start DAD. 18525 * we'll wait to hear that DAD has finished 18526 * before using the interface. 18527 */ 18528 if (err == EINPROGRESS) 18529 wait_for_dlpi = B_TRUE; 18530 } 18531 18532 if (!wait_for_dlpi) 18533 (void) ipif_arp_up_done_tail(ipif, res_act); 18534 18535 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18536 } 18537 18538 /* 18539 * Finish processing of "arp_up" after all the DLPI message 18540 * exchanges have completed between arp and the driver. 18541 */ 18542 void 18543 arp_bringup_done(ill_t *ill, int err) 18544 { 18545 mblk_t *mp1; 18546 ipif_t *ipif; 18547 conn_t *connp = NULL; 18548 ipsq_t *ipsq; 18549 queue_t *q; 18550 18551 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18552 18553 ASSERT(IAM_WRITER_ILL(ill)); 18554 18555 ipsq = ill->ill_phyint->phyint_ipsq; 18556 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18557 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18558 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18559 if (mp1 == NULL) /* bringup was aborted by the user */ 18560 return; 18561 18562 /* 18563 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18564 * must have an associated conn_t. Otherwise, we're bringing this 18565 * interface back up as part of handling an asynchronous event (e.g., 18566 * physical address change). 18567 */ 18568 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18569 ASSERT(connp != NULL); 18570 q = CONNP_TO_WQ(connp); 18571 } else { 18572 ASSERT(connp == NULL); 18573 q = ill->ill_rq; 18574 } 18575 if (err == 0) { 18576 if (ipif->ipif_isv6) { 18577 if ((err = ipif_up_done_v6(ipif)) != 0) 18578 ip0dbg(("arp_bringup_done: init failed\n")); 18579 } else { 18580 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18581 if (err != 0 || 18582 (err = ipif_up_done(ipif)) != 0) { 18583 ip0dbg(("arp_bringup_done: " 18584 "init failed err %x\n", err)); 18585 (void) ipif_arp_down(ipif); 18586 } 18587 18588 } 18589 } else { 18590 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18591 } 18592 18593 if ((err == 0) && (ill->ill_up_ipifs)) { 18594 err = ill_up_ipifs(ill, q, mp1); 18595 if (err == EINPROGRESS) 18596 return; 18597 } 18598 18599 /* 18600 * If we have a moved ipif to bring up, and everything has succeeded 18601 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18602 * down -- the admin can try to bring it up by hand if need be. 18603 */ 18604 if (ill->ill_move_ipif != NULL) { 18605 ipif = ill->ill_move_ipif; 18606 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18607 ipif->ipif_ill->ill_name)); 18608 ill->ill_move_ipif = NULL; 18609 if (err == 0) { 18610 err = ipif_up(ipif, q, mp1); 18611 if (err == EINPROGRESS) 18612 return; 18613 } 18614 } 18615 18616 /* 18617 * The operation must complete without EINPROGRESS since 18618 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18619 * Otherwise, the operation will be stuck forever in the ipsq. 18620 */ 18621 ASSERT(err != EINPROGRESS); 18622 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18623 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18624 int, ipsq->ipsq_xop->ipx_current_ioctl, 18625 ill_t *, ill, ipif_t *, ipif); 18626 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18627 } else { 18628 ipsq_current_finish(ipsq); 18629 } 18630 } 18631 18632 /* 18633 * Finish processing of arp replumb after all the DLPI message 18634 * exchanges have completed between arp and the driver. 18635 */ 18636 void 18637 arp_replumb_done(ill_t *ill, int err) 18638 { 18639 mblk_t *mp1; 18640 ipif_t *ipif; 18641 conn_t *connp = NULL; 18642 ipsq_t *ipsq; 18643 queue_t *q; 18644 18645 ASSERT(IAM_WRITER_ILL(ill)); 18646 18647 ipsq = ill->ill_phyint->phyint_ipsq; 18648 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18649 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18650 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18651 if (mp1 == NULL) { 18652 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18653 ipsq->ipsq_xop->ipx_current_ioctl)); 18654 /* bringup was aborted by the user */ 18655 return; 18656 } 18657 /* 18658 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18659 * must have an associated conn_t. Otherwise, we're bringing this 18660 * interface back up as part of handling an asynchronous event (e.g., 18661 * physical address change). 18662 */ 18663 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18664 ASSERT(connp != NULL); 18665 q = CONNP_TO_WQ(connp); 18666 } else { 18667 ASSERT(connp == NULL); 18668 q = ill->ill_rq; 18669 } 18670 if ((err == 0) && (ill->ill_up_ipifs)) { 18671 err = ill_up_ipifs(ill, q, mp1); 18672 if (err == EINPROGRESS) 18673 return; 18674 } 18675 /* 18676 * The operation must complete without EINPROGRESS since 18677 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18678 * Otherwise, the operation will be stuck forever in the ipsq. 18679 */ 18680 ASSERT(err != EINPROGRESS); 18681 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18682 DTRACE_PROBE4(ipif__ioctl, char *, 18683 "arp_replumb_done finish", 18684 int, ipsq->ipsq_xop->ipx_current_ioctl, 18685 ill_t *, ill, ipif_t *, ipif); 18686 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18687 } else { 18688 ipsq_current_finish(ipsq); 18689 } 18690 } 18691 18692 void 18693 ipif_up_notify(ipif_t *ipif) 18694 { 18695 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18696 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18697 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18698 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18699 NE_LIF_UP, NULL, 0); 18700 } 18701 18702 /* 18703 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18704 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18705 * TPI end points with STREAMS modules pushed above. This is assured by not 18706 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18707 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18708 * while unwinding from the ispq and that could be a thread from the bottom. 18709 */ 18710 /* ARGSUSED */ 18711 int 18712 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18713 ip_ioctl_cmd_t *ipip, void *arg) 18714 { 18715 mblk_t *cmd_mp = mp->b_cont->b_cont; 18716 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18717 int ret = 0; 18718 int i; 18719 size_t size; 18720 ip_stack_t *ipst; 18721 zoneid_t zoneid; 18722 ilb_stack_t *ilbs; 18723 18724 ipst = CONNQ_TO_IPST(q); 18725 ilbs = ipst->ips_netstack->netstack_ilb; 18726 zoneid = Q_TO_CONN(q)->conn_zoneid; 18727 18728 switch (command) { 18729 case ILB_CREATE_RULE: { 18730 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18731 18732 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18733 ret = EINVAL; 18734 break; 18735 } 18736 18737 ret = ilb_rule_add(ilbs, zoneid, cmd); 18738 break; 18739 } 18740 case ILB_DESTROY_RULE: 18741 case ILB_ENABLE_RULE: 18742 case ILB_DISABLE_RULE: { 18743 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18744 18745 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18746 ret = EINVAL; 18747 break; 18748 } 18749 18750 if (cmd->flags & ILB_RULE_ALLRULES) { 18751 if (command == ILB_DESTROY_RULE) { 18752 ilb_rule_del_all(ilbs, zoneid); 18753 break; 18754 } else if (command == ILB_ENABLE_RULE) { 18755 ilb_rule_enable_all(ilbs, zoneid); 18756 break; 18757 } else if (command == ILB_DISABLE_RULE) { 18758 ilb_rule_disable_all(ilbs, zoneid); 18759 break; 18760 } 18761 } else { 18762 if (command == ILB_DESTROY_RULE) { 18763 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18764 } else if (command == ILB_ENABLE_RULE) { 18765 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18766 NULL); 18767 } else if (command == ILB_DISABLE_RULE) { 18768 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18769 NULL); 18770 } 18771 } 18772 break; 18773 } 18774 case ILB_NUM_RULES: { 18775 ilb_num_rules_cmd_t *cmd; 18776 18777 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18778 ret = EINVAL; 18779 break; 18780 } 18781 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18782 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18783 break; 18784 } 18785 case ILB_RULE_NAMES: { 18786 ilb_rule_names_cmd_t *cmd; 18787 18788 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18789 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18790 cmd->num_names == 0) { 18791 ret = EINVAL; 18792 break; 18793 } 18794 size = cmd->num_names * ILB_RULE_NAMESZ; 18795 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18796 size != cmd_mp->b_wptr) { 18797 ret = EINVAL; 18798 break; 18799 } 18800 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18801 break; 18802 } 18803 case ILB_NUM_SERVERS: { 18804 ilb_num_servers_cmd_t *cmd; 18805 18806 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18807 ret = EINVAL; 18808 break; 18809 } 18810 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18811 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18812 &(cmd->num)); 18813 break; 18814 } 18815 case ILB_LIST_RULE: { 18816 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18817 18818 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18819 ret = EINVAL; 18820 break; 18821 } 18822 ret = ilb_rule_list(ilbs, zoneid, cmd); 18823 break; 18824 } 18825 case ILB_LIST_SERVERS: { 18826 ilb_servers_info_cmd_t *cmd; 18827 18828 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18829 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18830 cmd->num_servers == 0) { 18831 ret = EINVAL; 18832 break; 18833 } 18834 size = cmd->num_servers * sizeof (ilb_server_info_t); 18835 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18836 size != cmd_mp->b_wptr) { 18837 ret = EINVAL; 18838 break; 18839 } 18840 18841 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18842 &cmd->num_servers); 18843 break; 18844 } 18845 case ILB_ADD_SERVERS: { 18846 ilb_servers_info_cmd_t *cmd; 18847 ilb_rule_t *rule; 18848 18849 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18850 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18851 ret = EINVAL; 18852 break; 18853 } 18854 size = cmd->num_servers * sizeof (ilb_server_info_t); 18855 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18856 size != cmd_mp->b_wptr) { 18857 ret = EINVAL; 18858 break; 18859 } 18860 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18861 if (rule == NULL) { 18862 ASSERT(ret != 0); 18863 break; 18864 } 18865 for (i = 0; i < cmd->num_servers; i++) { 18866 ilb_server_info_t *s; 18867 18868 s = &cmd->servers[i]; 18869 s->err = ilb_server_add(ilbs, rule, s); 18870 } 18871 ILB_RULE_REFRELE(rule); 18872 break; 18873 } 18874 case ILB_DEL_SERVERS: 18875 case ILB_ENABLE_SERVERS: 18876 case ILB_DISABLE_SERVERS: { 18877 ilb_servers_cmd_t *cmd; 18878 ilb_rule_t *rule; 18879 int (*f)(); 18880 18881 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18882 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18883 ret = EINVAL; 18884 break; 18885 } 18886 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18887 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18888 size != cmd_mp->b_wptr) { 18889 ret = EINVAL; 18890 break; 18891 } 18892 18893 if (command == ILB_DEL_SERVERS) 18894 f = ilb_server_del; 18895 else if (command == ILB_ENABLE_SERVERS) 18896 f = ilb_server_enable; 18897 else if (command == ILB_DISABLE_SERVERS) 18898 f = ilb_server_disable; 18899 18900 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18901 if (rule == NULL) { 18902 ASSERT(ret != 0); 18903 break; 18904 } 18905 18906 for (i = 0; i < cmd->num_servers; i++) { 18907 ilb_server_arg_t *s; 18908 18909 s = &cmd->servers[i]; 18910 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18911 } 18912 ILB_RULE_REFRELE(rule); 18913 break; 18914 } 18915 case ILB_LIST_NAT_TABLE: { 18916 ilb_list_nat_cmd_t *cmd; 18917 18918 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18919 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18920 ret = EINVAL; 18921 break; 18922 } 18923 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18924 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18925 size != cmd_mp->b_wptr) { 18926 ret = EINVAL; 18927 break; 18928 } 18929 18930 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18931 &cmd->flags); 18932 break; 18933 } 18934 case ILB_LIST_STICKY_TABLE: { 18935 ilb_list_sticky_cmd_t *cmd; 18936 18937 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18938 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18939 ret = EINVAL; 18940 break; 18941 } 18942 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18943 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18944 size != cmd_mp->b_wptr) { 18945 ret = EINVAL; 18946 break; 18947 } 18948 18949 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18950 &cmd->num_sticky, &cmd->flags); 18951 break; 18952 } 18953 default: 18954 ret = EINVAL; 18955 break; 18956 } 18957 done: 18958 return (ret); 18959 } 18960 18961 /* Remove all cache entries for this logical interface */ 18962 void 18963 ipif_nce_down(ipif_t *ipif) 18964 { 18965 ill_t *ill = ipif->ipif_ill; 18966 nce_t *nce; 18967 18968 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18969 ill_t *, ill, ipif_t *, ipif); 18970 if (ipif->ipif_added_nce) { 18971 if (ipif->ipif_isv6) 18972 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18973 else 18974 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18975 if (nce != NULL) { 18976 if (--nce->nce_ipif_cnt == 0) 18977 ncec_delete(nce->nce_common); 18978 ipif->ipif_added_nce = 0; 18979 nce_refrele(nce); 18980 } else { 18981 /* 18982 * nce may already be NULL because it was already 18983 * flushed, e.g., due to a call to nce_flush 18984 */ 18985 ipif->ipif_added_nce = 0; 18986 } 18987 } 18988 /* 18989 * Make IPMP aware of the deleted data address. 18990 */ 18991 if (IS_IPMP(ill)) 18992 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18993 18994 /* 18995 * Remove all other nces dependent on this ill when the last ipif 18996 * is going away. 18997 */ 18998 if (ill->ill_ipif_up_count == 0) { 18999 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 19000 (uchar_t *)ill, ill->ill_ipst); 19001 if (IS_UNDER_IPMP(ill)) 19002 nce_flush(ill, B_TRUE); 19003 } 19004 } 19005 19006 /* 19007 * find the first interface that uses usill for its source address. 19008 */ 19009 ill_t * 19010 ill_lookup_usesrc(ill_t *usill) 19011 { 19012 ip_stack_t *ipst = usill->ill_ipst; 19013 ill_t *ill; 19014 19015 ASSERT(usill != NULL); 19016 19017 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 19018 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 19019 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19020 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 19021 ill = ill->ill_usesrc_grp_next) { 19022 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 19023 !ILL_IS_CONDEMNED(ill)) { 19024 ill_refhold(ill); 19025 break; 19026 } 19027 } 19028 rw_exit(&ipst->ips_ill_g_lock); 19029 rw_exit(&ipst->ips_ill_g_usesrc_lock); 19030 return (ill); 19031 } 19032 19033 /* 19034 * This comment applies to both ip_sioctl_get_ifhwaddr and 19035 * ip_sioctl_get_lifhwaddr as the basic function of these two functions 19036 * is the same. 19037 * 19038 * The goal here is to find an IP interface that corresponds to the name 19039 * provided by the caller in the ifreq/lifreq structure held in the mblk_t 19040 * chain and to fill out a sockaddr/sockaddr_storage structure with the 19041 * mac address. 19042 * 19043 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number 19044 * of different reasons: 19045 * ENXIO - the device name is not known to IP. 19046 * EADDRNOTAVAIL - the device has no hardware address. This is indicated 19047 * by ill_phys_addr not pointing to an actual address. 19048 * EPFNOSUPPORT - this will indicate that a request is being made for a 19049 * mac address that will not fit in the data structure supplier (struct 19050 * sockaddr). 19051 * 19052 */ 19053 /* ARGSUSED */ 19054 int 19055 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19056 ip_ioctl_cmd_t *ipip, void *if_req) 19057 { 19058 struct sockaddr *sock; 19059 struct ifreq *ifr; 19060 mblk_t *mp1; 19061 ill_t *ill; 19062 19063 ASSERT(ipif != NULL); 19064 ill = ipif->ipif_ill; 19065 19066 if (ill->ill_phys_addr == NULL) { 19067 return (EADDRNOTAVAIL); 19068 } 19069 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) { 19070 return (EPFNOSUPPORT); 19071 } 19072 19073 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name)); 19074 19075 /* Existence of mp1 has been checked in ip_wput_nondata */ 19076 mp1 = mp->b_cont->b_cont; 19077 ifr = (struct ifreq *)mp1->b_rptr; 19078 19079 sock = &ifr->ifr_addr; 19080 /* 19081 * The "family" field in the returned structure is set to a value 19082 * that represents the type of device to which the address belongs. 19083 * The value returned may differ to that on Linux but it will still 19084 * represent the correct symbol on Solaris. 19085 */ 19086 sock->sa_family = arp_hw_type(ill->ill_mactype); 19087 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length); 19088 19089 return (0); 19090 } 19091 19092 /* 19093 * The expection of applications using SIOCGIFHWADDR is that data will 19094 * be returned in the sa_data field of the sockaddr structure. With 19095 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux 19096 * equivalent. In light of this, struct sockaddr_dl is used as it 19097 * offers more space for address storage in sll_data. 19098 */ 19099 /* ARGSUSED */ 19100 int 19101 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19102 ip_ioctl_cmd_t *ipip, void *if_req) 19103 { 19104 struct sockaddr_dl *sock; 19105 struct lifreq *lifr; 19106 mblk_t *mp1; 19107 ill_t *ill; 19108 19109 ASSERT(ipif != NULL); 19110 ill = ipif->ipif_ill; 19111 19112 if (ill->ill_phys_addr == NULL) { 19113 return (EADDRNOTAVAIL); 19114 } 19115 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) { 19116 return (EPFNOSUPPORT); 19117 } 19118 19119 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name)); 19120 19121 /* Existence of mp1 has been checked in ip_wput_nondata */ 19122 mp1 = mp->b_cont->b_cont; 19123 lifr = (struct lifreq *)mp1->b_rptr; 19124 19125 /* 19126 * sockaddr_ll is used here because it is also the structure used in 19127 * responding to the same ioctl in sockpfp. The only other choice is 19128 * sockaddr_dl which contains fields that are not required here 19129 * because its purpose is different. 19130 */ 19131 lifr->lifr_type = ill->ill_type; 19132 sock = (struct sockaddr_dl *)&lifr->lifr_addr; 19133 sock->sdl_family = AF_LINK; 19134 sock->sdl_index = ill->ill_phyint->phyint_ifindex; 19135 sock->sdl_type = ill->ill_mactype; 19136 sock->sdl_nlen = 0; 19137 sock->sdl_slen = 0; 19138 sock->sdl_alen = ill->ill_phys_addr_length; 19139 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length); 19140 19141 return (0); 19142 } 19143