1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/mib2.h> 76 #include <inet/ip.h> 77 #include <inet/ip6.h> 78 #include <inet/ip6_asp.h> 79 #include <inet/tcp.h> 80 #include <inet/ip_multi.h> 81 #include <inet/ip_ire.h> 82 #include <inet/ip_ftable.h> 83 #include <inet/ip_rts.h> 84 #include <inet/ip_ndp.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_impl.h> 87 #include <inet/tun.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 91 #include <net/pfkeyv2.h> 92 #include <inet/ipsec_info.h> 93 #include <inet/sadb.h> 94 #include <inet/ipsec_impl.h> 95 #include <sys/iphada.h> 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac_client.h> 101 #include <sys/dld.h> 102 103 #include <sys/systeminfo.h> 104 #include <sys/bootconf.h> 105 106 #include <sys/tsol/tndb.h> 107 #include <sys/tsol/tnet.h> 108 109 /* The character which tells where the ill_name ends */ 110 #define IPIF_SEPARATOR_CHAR ':' 111 112 /* IP ioctl function table entry */ 113 typedef struct ipft_s { 114 int ipft_cmd; 115 pfi_t ipft_pfi; 116 int ipft_min_size; 117 int ipft_flags; 118 } ipft_t; 119 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 120 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 121 122 typedef struct ip_sock_ar_s { 123 union { 124 area_t ip_sock_area; 125 ared_t ip_sock_ared; 126 areq_t ip_sock_areq; 127 } ip_sock_ar_u; 128 queue_t *ip_sock_ar_q; 129 } ip_sock_ar_t; 130 131 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 132 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 133 char *value, caddr_t cp, cred_t *ioc_cr); 134 135 static boolean_t ill_is_quiescent(ill_t *); 136 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 137 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 138 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 147 mblk_t *mp); 148 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 149 queue_t *q, mblk_t *mp, boolean_t need_up); 150 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 151 int ioccmd, struct linkblk *li, boolean_t doconsist); 152 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 153 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 154 static void ipsq_flush(ill_t *ill); 155 156 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 157 queue_t *q, mblk_t *mp, boolean_t need_up); 158 static void ipsq_delete(ipsq_t *); 159 160 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 161 boolean_t initialize, boolean_t insert); 162 static void ipif_check_bcast_ires(ipif_t *test_ipif); 163 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 164 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 165 boolean_t isv6); 166 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 167 static void ipif_delete_cache_ire(ire_t *, char *); 168 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 169 static void ipif_free(ipif_t *ipif); 170 static void ipif_free_tail(ipif_t *ipif); 171 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static void ipif_update_other_ipifs(ipif_t *old_ipif); 182 183 static int ill_alloc_ppa(ill_if_t *, ill_t *); 184 static int ill_arp_off(ill_t *ill); 185 static int ill_arp_on(ill_t *ill); 186 static void ill_delete_interface_type(ill_if_t *); 187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 188 static void ill_dl_down(ill_t *ill); 189 static void ill_down(ill_t *ill); 190 static void ill_downi(ire_t *ire, char *ill_arg); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static void ill_phyint_reinit(ill_t *ill); 194 static void ill_set_nce_router_flags(ill_t *, boolean_t); 195 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 196 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 197 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 198 static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo; 199 static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo; 200 static void ipif_save_ire(ipif_t *, ire_t *); 201 static void ipif_remove_ire(ipif_t *, ire_t *); 202 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 203 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 204 static void phyint_free(phyint_t *); 205 206 /* 207 * Per-ill IPsec capabilities management. 208 */ 209 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 210 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 211 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 212 static void ill_ipsec_capab_delete(ill_t *, uint_t); 213 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 214 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 215 boolean_t); 216 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 217 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 218 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *); 219 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 220 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *); 221 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 222 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 223 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 224 dl_capability_sub_t *); 225 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 226 static int ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *, 227 int *); 228 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 229 static void ill_capability_dld_ack(ill_t *, mblk_t *, 230 dl_capability_sub_t *); 231 static void ill_capability_dld_enable(ill_t *); 232 static void ill_capability_ack_thr(void *); 233 static void ill_capability_lso_enable(ill_t *); 234 static void ill_capability_send(ill_t *, mblk_t *); 235 236 static ill_t *ill_prev_usesrc(ill_t *); 237 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 238 static void ill_disband_usesrc_group(ill_t *); 239 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 240 241 #ifdef DEBUG 242 static void ill_trace_cleanup(const ill_t *); 243 static void ipif_trace_cleanup(const ipif_t *); 244 #endif 245 246 /* 247 * if we go over the memory footprint limit more than once in this msec 248 * interval, we'll start pruning aggressively. 249 */ 250 int ip_min_frag_prune_time = 0; 251 252 /* 253 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 254 * and the IPsec DOI 255 */ 256 #define MAX_IPSEC_ALGS 256 257 258 #define BITSPERBYTE 8 259 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 260 261 #define IPSEC_ALG_ENABLE(algs, algid) \ 262 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 263 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 264 265 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 266 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 267 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 268 269 typedef uint8_t ipsec_capab_elem_t; 270 271 /* 272 * Per-algorithm parameters. Note that at present, only encryption 273 * algorithms have variable keysize (IKE does not provide a way to negotiate 274 * auth algorithm keysize). 275 * 276 * All sizes here are in bits. 277 */ 278 typedef struct 279 { 280 uint16_t minkeylen; 281 uint16_t maxkeylen; 282 } ipsec_capab_algparm_t; 283 284 /* 285 * Per-ill capabilities. 286 */ 287 struct ill_ipsec_capab_s { 288 ipsec_capab_elem_t *encr_hw_algs; 289 ipsec_capab_elem_t *auth_hw_algs; 290 uint32_t algs_size; /* size of _hw_algs in bytes */ 291 /* algorithm key lengths */ 292 ipsec_capab_algparm_t *encr_algparm; 293 uint32_t encr_algparm_size; 294 uint32_t encr_algparm_end; 295 }; 296 297 /* 298 * The field values are larger than strictly necessary for simple 299 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 300 */ 301 static area_t ip_area_template = { 302 AR_ENTRY_ADD, /* area_cmd */ 303 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 304 /* area_name_offset */ 305 /* area_name_length temporarily holds this structure length */ 306 sizeof (area_t), /* area_name_length */ 307 IP_ARP_PROTO_TYPE, /* area_proto */ 308 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 309 IP_ADDR_LEN, /* area_proto_addr_length */ 310 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 311 /* area_proto_mask_offset */ 312 0, /* area_flags */ 313 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 314 /* area_hw_addr_offset */ 315 /* Zero length hw_addr_length means 'use your idea of the address' */ 316 0 /* area_hw_addr_length */ 317 }; 318 319 /* 320 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 321 * support 322 */ 323 static area_t ip6_area_template = { 324 AR_ENTRY_ADD, /* area_cmd */ 325 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 326 /* area_name_offset */ 327 /* area_name_length temporarily holds this structure length */ 328 sizeof (area_t), /* area_name_length */ 329 IP_ARP_PROTO_TYPE, /* area_proto */ 330 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 331 IPV6_ADDR_LEN, /* area_proto_addr_length */ 332 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 333 /* area_proto_mask_offset */ 334 0, /* area_flags */ 335 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 336 /* area_hw_addr_offset */ 337 /* Zero length hw_addr_length means 'use your idea of the address' */ 338 0 /* area_hw_addr_length */ 339 }; 340 341 static ared_t ip_ared_template = { 342 AR_ENTRY_DELETE, 343 sizeof (ared_t) + IP_ADDR_LEN, 344 sizeof (ared_t), 345 IP_ARP_PROTO_TYPE, 346 sizeof (ared_t), 347 IP_ADDR_LEN, 348 0 349 }; 350 351 static ared_t ip6_ared_template = { 352 AR_ENTRY_DELETE, 353 sizeof (ared_t) + IPV6_ADDR_LEN, 354 sizeof (ared_t), 355 IP_ARP_PROTO_TYPE, 356 sizeof (ared_t), 357 IPV6_ADDR_LEN, 358 0 359 }; 360 361 /* 362 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 363 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 364 * areq is used). 365 */ 366 static areq_t ip_areq_template = { 367 AR_ENTRY_QUERY, /* cmd */ 368 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 369 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 370 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 371 sizeof (areq_t), /* target addr offset */ 372 IP_ADDR_LEN, /* target addr_length */ 373 0, /* flags */ 374 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 375 IP_ADDR_LEN, /* sender addr length */ 376 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 377 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 378 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 379 /* anything else filled in by the code */ 380 }; 381 382 static arc_t ip_aru_template = { 383 AR_INTERFACE_UP, 384 sizeof (arc_t), /* Name offset */ 385 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 386 }; 387 388 static arc_t ip_ard_template = { 389 AR_INTERFACE_DOWN, 390 sizeof (arc_t), /* Name offset */ 391 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 392 }; 393 394 static arc_t ip_aron_template = { 395 AR_INTERFACE_ON, 396 sizeof (arc_t), /* Name offset */ 397 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 398 }; 399 400 static arc_t ip_aroff_template = { 401 AR_INTERFACE_OFF, 402 sizeof (arc_t), /* Name offset */ 403 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 404 }; 405 406 static arma_t ip_arma_multi_template = { 407 AR_MAPPING_ADD, 408 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 409 /* Name offset */ 410 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 411 IP_ARP_PROTO_TYPE, 412 sizeof (arma_t), /* proto_addr_offset */ 413 IP_ADDR_LEN, /* proto_addr_length */ 414 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 415 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 416 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 417 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 418 IP_MAX_HW_LEN, /* hw_addr_length */ 419 0, /* hw_mapping_start */ 420 }; 421 422 static ipft_t ip_ioctl_ftbl[] = { 423 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 424 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 425 IPFT_F_NO_REPLY }, 426 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 427 IPFT_F_NO_REPLY }, 428 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 429 { 0 } 430 }; 431 432 /* Simple ICMP IP Header Template */ 433 static ipha_t icmp_ipha = { 434 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 435 }; 436 437 /* Flag descriptors for ip_ipif_report */ 438 static nv_t ipif_nv_tbl[] = { 439 { IPIF_UP, "UP" }, 440 { IPIF_BROADCAST, "BROADCAST" }, 441 { ILLF_DEBUG, "DEBUG" }, 442 { PHYI_LOOPBACK, "LOOPBACK" }, 443 { IPIF_POINTOPOINT, "POINTOPOINT" }, 444 { ILLF_NOTRAILERS, "NOTRAILERS" }, 445 { PHYI_RUNNING, "RUNNING" }, 446 { ILLF_NOARP, "NOARP" }, 447 { PHYI_PROMISC, "PROMISC" }, 448 { PHYI_ALLMULTI, "ALLMULTI" }, 449 { PHYI_INTELLIGENT, "INTELLIGENT" }, 450 { ILLF_MULTICAST, "MULTICAST" }, 451 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 452 { IPIF_UNNUMBERED, "UNNUMBERED" }, 453 { IPIF_DHCPRUNNING, "DHCP" }, 454 { IPIF_PRIVATE, "PRIVATE" }, 455 { IPIF_NOXMIT, "NOXMIT" }, 456 { IPIF_NOLOCAL, "NOLOCAL" }, 457 { IPIF_DEPRECATED, "DEPRECATED" }, 458 { IPIF_PREFERRED, "PREFERRED" }, 459 { IPIF_TEMPORARY, "TEMPORARY" }, 460 { IPIF_ADDRCONF, "ADDRCONF" }, 461 { PHYI_VIRTUAL, "VIRTUAL" }, 462 { ILLF_ROUTER, "ROUTER" }, 463 { ILLF_NONUD, "NONUD" }, 464 { IPIF_ANYCAST, "ANYCAST" }, 465 { ILLF_NORTEXCH, "NORTEXCH" }, 466 { ILLF_IPV4, "IPV4" }, 467 { ILLF_IPV6, "IPV6" }, 468 { IPIF_NOFAILOVER, "NOFAILOVER" }, 469 { PHYI_FAILED, "FAILED" }, 470 { PHYI_STANDBY, "STANDBY" }, 471 { PHYI_INACTIVE, "INACTIVE" }, 472 { PHYI_OFFLINE, "OFFLINE" }, 473 { PHYI_IPMP, "IPMP" } 474 }; 475 476 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 477 478 static ip_m_t ip_m_tbl[] = { 479 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 480 ip_ether_v6intfid }, 481 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 482 ip_nodef_v6intfid }, 483 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 484 ip_nodef_v6intfid }, 485 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 486 ip_nodef_v6intfid }, 487 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 488 ip_ether_v6intfid }, 489 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 490 ip_ib_v6intfid }, 491 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL }, 492 { SUNW_DL_IPMP, IFT_OTHER, NULL, NULL, ip_ipmp_v6intfid }, 493 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 494 ip_nodef_v6intfid } 495 }; 496 497 static ill_t ill_null; /* Empty ILL for init. */ 498 char ipif_loopback_name[] = "lo0"; 499 static char *ipv4_forward_suffix = ":ip_forwarding"; 500 static char *ipv6_forward_suffix = ":ip6_forwarding"; 501 static sin6_t sin6_null; /* Zero address for quick clears */ 502 static sin_t sin_null; /* Zero address for quick clears */ 503 504 /* When set search for unused ipif_seqid */ 505 static ipif_t ipif_zero; 506 507 /* 508 * ppa arena is created after these many 509 * interfaces have been plumbed. 510 */ 511 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 512 513 /* 514 * Allocate per-interface mibs. 515 * Returns true if ok. False otherwise. 516 * ipsq may not yet be allocated (loopback case ). 517 */ 518 static boolean_t 519 ill_allocate_mibs(ill_t *ill) 520 { 521 /* Already allocated? */ 522 if (ill->ill_ip_mib != NULL) { 523 if (ill->ill_isv6) 524 ASSERT(ill->ill_icmp6_mib != NULL); 525 return (B_TRUE); 526 } 527 528 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 529 KM_NOSLEEP); 530 if (ill->ill_ip_mib == NULL) { 531 return (B_FALSE); 532 } 533 534 /* Setup static information */ 535 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 536 sizeof (mib2_ipIfStatsEntry_t)); 537 if (ill->ill_isv6) { 538 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 539 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 540 sizeof (mib2_ipv6AddrEntry_t)); 541 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 542 sizeof (mib2_ipv6RouteEntry_t)); 543 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 544 sizeof (mib2_ipv6NetToMediaEntry_t)); 545 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 546 sizeof (ipv6_member_t)); 547 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 548 sizeof (ipv6_grpsrc_t)); 549 } else { 550 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 551 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 552 sizeof (mib2_ipAddrEntry_t)); 553 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 554 sizeof (mib2_ipRouteEntry_t)); 555 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 556 sizeof (mib2_ipNetToMediaEntry_t)); 557 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 558 sizeof (ip_member_t)); 559 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 560 sizeof (ip_grpsrc_t)); 561 562 /* 563 * For a v4 ill, we are done at this point, because per ill 564 * icmp mibs are only used for v6. 565 */ 566 return (B_TRUE); 567 } 568 569 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 570 KM_NOSLEEP); 571 if (ill->ill_icmp6_mib == NULL) { 572 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 573 ill->ill_ip_mib = NULL; 574 return (B_FALSE); 575 } 576 /* static icmp info */ 577 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 578 sizeof (mib2_ipv6IfIcmpEntry_t); 579 /* 580 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 581 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 582 * -> ill_phyint_reinit 583 */ 584 return (B_TRUE); 585 } 586 587 /* 588 * Common code for preparation of ARP commands. Two points to remember: 589 * 1) The ill_name is tacked on at the end of the allocated space so 590 * the templates name_offset field must contain the total space 591 * to allocate less the name length. 592 * 593 * 2) The templates name_length field should contain the *template* 594 * length. We use it as a parameter to bcopy() and then write 595 * the real ill_name_length into the name_length field of the copy. 596 * (Always called as writer.) 597 */ 598 mblk_t * 599 ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr) 600 { 601 arc_t *arc = (arc_t *)template; 602 char *cp; 603 int len; 604 mblk_t *mp; 605 uint_t name_length = ill->ill_name_length; 606 uint_t template_len = arc->arc_name_length; 607 608 len = arc->arc_name_offset + name_length; 609 mp = allocb(len, BPRI_HI); 610 if (mp == NULL) 611 return (NULL); 612 cp = (char *)mp->b_rptr; 613 mp->b_wptr = (uchar_t *)&cp[len]; 614 if (template_len) 615 bcopy(template, cp, template_len); 616 if (len > template_len) 617 bzero(&cp[template_len], len - template_len); 618 mp->b_datap->db_type = M_PROTO; 619 620 arc = (arc_t *)cp; 621 arc->arc_name_length = name_length; 622 cp = (char *)arc + arc->arc_name_offset; 623 bcopy(ill->ill_name, cp, name_length); 624 625 if (addr) { 626 area_t *area = (area_t *)mp->b_rptr; 627 628 cp = (char *)area + area->area_proto_addr_offset; 629 bcopy(addr, cp, area->area_proto_addr_length); 630 if (area->area_cmd == AR_ENTRY_ADD) { 631 cp = (char *)area; 632 len = area->area_proto_addr_length; 633 if (area->area_proto_mask_offset) 634 cp += area->area_proto_mask_offset; 635 else 636 cp += area->area_proto_addr_offset + len; 637 while (len-- > 0) 638 *cp++ = (char)~0; 639 } 640 } 641 return (mp); 642 } 643 644 mblk_t * 645 ipif_area_alloc(ipif_t *ipif, uint_t optflags) 646 { 647 caddr_t addr; 648 mblk_t *mp; 649 area_t *area; 650 uchar_t *areap; 651 ill_t *ill = ipif->ipif_ill; 652 653 if (ill->ill_isv6) { 654 ASSERT(ill->ill_flags & ILLF_XRESOLV); 655 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 656 areap = (uchar_t *)&ip6_area_template; 657 } else { 658 addr = (caddr_t)&ipif->ipif_lcl_addr; 659 areap = (uchar_t *)&ip_area_template; 660 } 661 662 if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL) 663 return (NULL); 664 665 /* 666 * IPMP requires that the hardware address be included in all 667 * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on. 668 * If there are no active underlying ills in the group (and thus no 669 * hardware address, DAD will be deferred until an underlying ill 670 * becomes active. 671 */ 672 if (IS_IPMP(ill)) { 673 if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) { 674 freemsg(mp); 675 return (NULL); 676 } 677 } else { 678 ill_refhold(ill); 679 } 680 681 area = (area_t *)mp->b_rptr; 682 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 683 area->area_flags |= optflags; 684 area->area_hw_addr_length = ill->ill_phys_addr_length; 685 bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset, 686 area->area_hw_addr_length); 687 688 ill_refrele(ill); 689 return (mp); 690 } 691 692 mblk_t * 693 ipif_ared_alloc(ipif_t *ipif) 694 { 695 caddr_t addr; 696 uchar_t *aredp; 697 698 if (ipif->ipif_ill->ill_isv6) { 699 ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV); 700 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 701 aredp = (uchar_t *)&ip6_ared_template; 702 } else { 703 addr = (caddr_t)&ipif->ipif_lcl_addr; 704 aredp = (uchar_t *)&ip_ared_template; 705 } 706 707 return (ill_arp_alloc(ipif->ipif_ill, aredp, addr)); 708 } 709 710 mblk_t * 711 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 712 { 713 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 714 (char *)&addr)); 715 } 716 717 mblk_t * 718 ill_arie_alloc(ill_t *ill, const char *grifname, const void *template) 719 { 720 mblk_t *mp = ill_arp_alloc(ill, template, 0); 721 arie_t *arie; 722 723 if (mp != NULL) { 724 arie = (arie_t *)mp->b_rptr; 725 (void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ); 726 } 727 return (mp); 728 } 729 730 /* 731 * Completely vaporize a lower level tap and all associated interfaces. 732 * ill_delete is called only out of ip_close when the device control 733 * stream is being closed. 734 */ 735 void 736 ill_delete(ill_t *ill) 737 { 738 ipif_t *ipif; 739 ill_t *prev_ill; 740 ip_stack_t *ipst = ill->ill_ipst; 741 742 /* 743 * ill_delete may be forcibly entering the ipsq. The previous 744 * ioctl may not have completed and may need to be aborted. 745 * ipsq_flush takes care of it. If we don't need to enter the 746 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 747 * ill_delete_tail is sufficient. 748 */ 749 ipsq_flush(ill); 750 751 /* 752 * Nuke all interfaces. ipif_free will take down the interface, 753 * remove it from the list, and free the data structure. 754 * Walk down the ipif list and remove the logical interfaces 755 * first before removing the main ipif. We can't unplumb 756 * zeroth interface first in the case of IPv6 as reset_conn_ill 757 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 758 * POINTOPOINT. 759 * 760 * If ill_ipif was not properly initialized (i.e low on memory), 761 * then no interfaces to clean up. In this case just clean up the 762 * ill. 763 */ 764 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 765 ipif_free(ipif); 766 767 /* 768 * Used only by ill_arp_on and ill_arp_off, which are writers. 769 * So nobody can be using this mp now. Free the mp allocated for 770 * honoring ILLF_NOARP 771 */ 772 freemsg(ill->ill_arp_on_mp); 773 ill->ill_arp_on_mp = NULL; 774 775 /* Clean up msgs on pending upcalls for mrouted */ 776 reset_mrt_ill(ill); 777 778 /* 779 * ipif_free -> reset_conn_ipif will remove all multicast 780 * references for IPv4. For IPv6, we need to do it here as 781 * it points only at ills. 782 */ 783 reset_conn_ill(ill); 784 785 /* 786 * Remove multicast references added as a result of calls to 787 * ip_join_allmulti(). 788 */ 789 ip_purge_allmulti(ill); 790 791 /* 792 * If the ill being deleted is under IPMP, boot it out of the illgrp. 793 */ 794 if (IS_UNDER_IPMP(ill)) 795 ipmp_ill_leave_illgrp(ill); 796 797 /* 798 * ill_down will arrange to blow off any IRE's dependent on this 799 * ILL, and shut down fragmentation reassembly. 800 */ 801 ill_down(ill); 802 803 /* Let SCTP know, so that it can remove this from its list. */ 804 sctp_update_ill(ill, SCTP_ILL_REMOVE); 805 806 /* 807 * If an address on this ILL is being used as a source address then 808 * clear out the pointers in other ILLs that point to this ILL. 809 */ 810 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 811 if (ill->ill_usesrc_grp_next != NULL) { 812 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 813 ill_disband_usesrc_group(ill); 814 } else { /* consumer of the usesrc ILL */ 815 prev_ill = ill_prev_usesrc(ill); 816 prev_ill->ill_usesrc_grp_next = 817 ill->ill_usesrc_grp_next; 818 } 819 } 820 rw_exit(&ipst->ips_ill_g_usesrc_lock); 821 } 822 823 static void 824 ipif_non_duplicate(ipif_t *ipif) 825 { 826 ill_t *ill = ipif->ipif_ill; 827 mutex_enter(&ill->ill_lock); 828 if (ipif->ipif_flags & IPIF_DUPLICATE) { 829 ipif->ipif_flags &= ~IPIF_DUPLICATE; 830 ASSERT(ill->ill_ipif_dup_count > 0); 831 ill->ill_ipif_dup_count--; 832 } 833 mutex_exit(&ill->ill_lock); 834 } 835 836 /* 837 * ill_delete_tail is called from ip_modclose after all references 838 * to the closing ill are gone. The wait is done in ip_modclose 839 */ 840 void 841 ill_delete_tail(ill_t *ill) 842 { 843 mblk_t **mpp; 844 ipif_t *ipif; 845 ip_stack_t *ipst = ill->ill_ipst; 846 847 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 848 ipif_non_duplicate(ipif); 849 ipif_down_tail(ipif); 850 } 851 852 ASSERT(ill->ill_ipif_dup_count == 0 && 853 ill->ill_arp_down_mp == NULL && 854 ill->ill_arp_del_mapping_mp == NULL); 855 856 /* 857 * If polling capability is enabled (which signifies direct 858 * upcall into IP and driver has ill saved as a handle), 859 * we need to make sure that unbind has completed before we 860 * let the ill disappear and driver no longer has any reference 861 * to this ill. 862 */ 863 mutex_enter(&ill->ill_lock); 864 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 865 cv_wait(&ill->ill_cv, &ill->ill_lock); 866 mutex_exit(&ill->ill_lock); 867 ASSERT(!(ill->ill_capabilities & 868 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 869 870 if (ill->ill_net_type != IRE_LOOPBACK) 871 qprocsoff(ill->ill_rq); 872 873 /* 874 * We do an ipsq_flush once again now. New messages could have 875 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 876 * could also have landed up if an ioctl thread had looked up 877 * the ill before we set the ILL_CONDEMNED flag, but not yet 878 * enqueued the ioctl when we did the ipsq_flush last time. 879 */ 880 ipsq_flush(ill); 881 882 /* 883 * Free capabilities. 884 */ 885 if (ill->ill_ipsec_capab_ah != NULL) { 886 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 887 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 888 ill->ill_ipsec_capab_ah = NULL; 889 } 890 891 if (ill->ill_ipsec_capab_esp != NULL) { 892 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 893 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 894 ill->ill_ipsec_capab_esp = NULL; 895 } 896 897 if (ill->ill_mdt_capab != NULL) { 898 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 899 ill->ill_mdt_capab = NULL; 900 } 901 902 if (ill->ill_hcksum_capab != NULL) { 903 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 904 ill->ill_hcksum_capab = NULL; 905 } 906 907 if (ill->ill_zerocopy_capab != NULL) { 908 kmem_free(ill->ill_zerocopy_capab, 909 sizeof (ill_zerocopy_capab_t)); 910 ill->ill_zerocopy_capab = NULL; 911 } 912 913 if (ill->ill_lso_capab != NULL) { 914 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 915 ill->ill_lso_capab = NULL; 916 } 917 918 if (ill->ill_dld_capab != NULL) { 919 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 920 ill->ill_dld_capab = NULL; 921 } 922 923 while (ill->ill_ipif != NULL) 924 ipif_free_tail(ill->ill_ipif); 925 926 /* 927 * We have removed all references to ilm from conn and the ones joined 928 * within the kernel. 929 * 930 * We don't walk conns, mrts and ires because 931 * 932 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 933 * 2) ill_down ->ill_downi walks all the ires and cleans up 934 * ill references. 935 */ 936 ASSERT(ilm_walk_ill(ill) == 0); 937 938 /* 939 * If this ill is an IPMP meta-interface, blow away the illgrp. This 940 * is safe to do because the illgrp has already been unlinked from the 941 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 942 */ 943 if (IS_IPMP(ill)) { 944 ipmp_illgrp_destroy(ill->ill_grp); 945 ill->ill_grp = NULL; 946 } 947 948 /* 949 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 950 * could free the phyint. No more reference to the phyint after this 951 * point. 952 */ 953 (void) ill_glist_delete(ill); 954 955 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 956 if (ill->ill_ndd_name != NULL) 957 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 958 rw_exit(&ipst->ips_ip_g_nd_lock); 959 960 if (ill->ill_frag_ptr != NULL) { 961 uint_t count; 962 963 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 964 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 965 } 966 mi_free(ill->ill_frag_ptr); 967 ill->ill_frag_ptr = NULL; 968 ill->ill_frag_hash_tbl = NULL; 969 } 970 971 freemsg(ill->ill_nd_lla_mp); 972 /* Free all retained control messages. */ 973 mpp = &ill->ill_first_mp_to_free; 974 do { 975 while (mpp[0]) { 976 mblk_t *mp; 977 mblk_t *mp1; 978 979 mp = mpp[0]; 980 mpp[0] = mp->b_next; 981 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 982 mp1->b_next = NULL; 983 mp1->b_prev = NULL; 984 } 985 freemsg(mp); 986 } 987 } while (mpp++ != &ill->ill_last_mp_to_free); 988 989 ill_free_mib(ill); 990 991 #ifdef DEBUG 992 ill_trace_cleanup(ill); 993 #endif 994 995 /* Drop refcnt here */ 996 netstack_rele(ill->ill_ipst->ips_netstack); 997 ill->ill_ipst = NULL; 998 } 999 1000 static void 1001 ill_free_mib(ill_t *ill) 1002 { 1003 ip_stack_t *ipst = ill->ill_ipst; 1004 1005 /* 1006 * MIB statistics must not be lost, so when an interface 1007 * goes away the counter values will be added to the global 1008 * MIBs. 1009 */ 1010 if (ill->ill_ip_mib != NULL) { 1011 if (ill->ill_isv6) { 1012 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 1013 ill->ill_ip_mib); 1014 } else { 1015 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 1016 ill->ill_ip_mib); 1017 } 1018 1019 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 1020 ill->ill_ip_mib = NULL; 1021 } 1022 if (ill->ill_icmp6_mib != NULL) { 1023 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 1024 ill->ill_icmp6_mib); 1025 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 1026 ill->ill_icmp6_mib = NULL; 1027 } 1028 } 1029 1030 /* 1031 * Concatenate together a physical address and a sap. 1032 * 1033 * Sap_lengths are interpreted as follows: 1034 * sap_length == 0 ==> no sap 1035 * sap_length > 0 ==> sap is at the head of the dlpi address 1036 * sap_length < 0 ==> sap is at the tail of the dlpi address 1037 */ 1038 static void 1039 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1040 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1041 { 1042 uint16_t sap_addr = (uint16_t)sap_src; 1043 1044 if (sap_length == 0) { 1045 if (phys_src == NULL) 1046 bzero(dst, phys_length); 1047 else 1048 bcopy(phys_src, dst, phys_length); 1049 } else if (sap_length < 0) { 1050 if (phys_src == NULL) 1051 bzero(dst, phys_length); 1052 else 1053 bcopy(phys_src, dst, phys_length); 1054 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1055 } else { 1056 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1057 if (phys_src == NULL) 1058 bzero((char *)dst + sap_length, phys_length); 1059 else 1060 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1061 } 1062 } 1063 1064 /* 1065 * Generate a dl_unitdata_req mblk for the device and address given. 1066 * addr_length is the length of the physical portion of the address. 1067 * If addr is NULL include an all zero address of the specified length. 1068 * TRUE? In any case, addr_length is taken to be the entire length of the 1069 * dlpi address, including the absolute value of sap_length. 1070 */ 1071 mblk_t * 1072 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1073 t_scalar_t sap_length) 1074 { 1075 dl_unitdata_req_t *dlur; 1076 mblk_t *mp; 1077 t_scalar_t abs_sap_length; /* absolute value */ 1078 1079 abs_sap_length = ABS(sap_length); 1080 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1081 DL_UNITDATA_REQ); 1082 if (mp == NULL) 1083 return (NULL); 1084 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1085 /* HACK: accomodate incompatible DLPI drivers */ 1086 if (addr_length == 8) 1087 addr_length = 6; 1088 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1089 dlur->dl_dest_addr_offset = sizeof (*dlur); 1090 dlur->dl_priority.dl_min = 0; 1091 dlur->dl_priority.dl_max = 0; 1092 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1093 (uchar_t *)&dlur[1]); 1094 return (mp); 1095 } 1096 1097 /* 1098 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1099 * Return an error if we already have 1 or more ioctls in progress. 1100 * This is used only for non-exclusive ioctls. Currently this is used 1101 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1102 * and thus need to use ipsq_pending_mp_add. 1103 */ 1104 boolean_t 1105 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1106 { 1107 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1108 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1109 /* 1110 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1111 */ 1112 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1113 (add_mp->b_datap->db_type == M_IOCTL)); 1114 1115 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1116 /* 1117 * Return error if the conn has started closing. The conn 1118 * could have finished cleaning up the pending mp list, 1119 * If so we should not add another mp to the list negating 1120 * the cleanup. 1121 */ 1122 if (connp->conn_state_flags & CONN_CLOSING) 1123 return (B_FALSE); 1124 /* 1125 * Add the pending mp to the head of the list, chained by b_next. 1126 * Note down the conn on which the ioctl request came, in b_prev. 1127 * This will be used to later get the conn, when we get a response 1128 * on the ill queue, from some other module (typically arp) 1129 */ 1130 add_mp->b_next = (void *)ill->ill_pending_mp; 1131 add_mp->b_queue = CONNP_TO_WQ(connp); 1132 ill->ill_pending_mp = add_mp; 1133 if (connp != NULL) 1134 connp->conn_oper_pending_ill = ill; 1135 return (B_TRUE); 1136 } 1137 1138 /* 1139 * Retrieve the ill_pending_mp and return it. We have to walk the list 1140 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1141 */ 1142 mblk_t * 1143 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1144 { 1145 mblk_t *prev = NULL; 1146 mblk_t *curr = NULL; 1147 uint_t id; 1148 conn_t *connp; 1149 1150 /* 1151 * When the conn closes, conn_ioctl_cleanup needs to clean 1152 * up the pending mp, but it does not know the ioc_id and 1153 * passes in a zero for it. 1154 */ 1155 mutex_enter(&ill->ill_lock); 1156 if (ioc_id != 0) 1157 *connpp = NULL; 1158 1159 /* Search the list for the appropriate ioctl based on ioc_id */ 1160 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1161 prev = curr, curr = curr->b_next) { 1162 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1163 connp = Q_TO_CONN(curr->b_queue); 1164 /* Match based on the ioc_id or based on the conn */ 1165 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1166 break; 1167 } 1168 1169 if (curr != NULL) { 1170 /* Unlink the mblk from the pending mp list */ 1171 if (prev != NULL) { 1172 prev->b_next = curr->b_next; 1173 } else { 1174 ASSERT(ill->ill_pending_mp == curr); 1175 ill->ill_pending_mp = curr->b_next; 1176 } 1177 1178 /* 1179 * conn refcnt must have been bumped up at the start of 1180 * the ioctl. So we can safely access the conn. 1181 */ 1182 ASSERT(CONN_Q(curr->b_queue)); 1183 *connpp = Q_TO_CONN(curr->b_queue); 1184 curr->b_next = NULL; 1185 curr->b_queue = NULL; 1186 } 1187 1188 mutex_exit(&ill->ill_lock); 1189 1190 return (curr); 1191 } 1192 1193 /* 1194 * Add the pending mp to the list. There can be only 1 pending mp 1195 * in the list. Any exclusive ioctl that needs to wait for a response 1196 * from another module or driver needs to use this function to set 1197 * the ipx_pending_mp to the ioctl mblk and wait for the response from 1198 * the other module/driver. This is also used while waiting for the 1199 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1200 */ 1201 boolean_t 1202 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1203 int waitfor) 1204 { 1205 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 1206 1207 ASSERT(IAM_WRITER_IPIF(ipif)); 1208 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1209 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1210 ASSERT(ipx->ipx_pending_mp == NULL); 1211 /* 1212 * The caller may be using a different ipif than the one passed into 1213 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1214 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1215 * that `ipx_current_ipif == ipif'. 1216 */ 1217 ASSERT(ipx->ipx_current_ipif != NULL); 1218 1219 /* 1220 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1221 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1222 */ 1223 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1224 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1225 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1226 1227 if (connp != NULL) { 1228 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1229 /* 1230 * Return error if the conn has started closing. The conn 1231 * could have finished cleaning up the pending mp list, 1232 * If so we should not add another mp to the list negating 1233 * the cleanup. 1234 */ 1235 if (connp->conn_state_flags & CONN_CLOSING) 1236 return (B_FALSE); 1237 } 1238 mutex_enter(&ipx->ipx_lock); 1239 ipx->ipx_pending_ipif = ipif; 1240 /* 1241 * Note down the queue in b_queue. This will be returned by 1242 * ipsq_pending_mp_get. Caller will then use these values to restart 1243 * the processing 1244 */ 1245 add_mp->b_next = NULL; 1246 add_mp->b_queue = q; 1247 ipx->ipx_pending_mp = add_mp; 1248 ipx->ipx_waitfor = waitfor; 1249 mutex_exit(&ipx->ipx_lock); 1250 1251 if (connp != NULL) 1252 connp->conn_oper_pending_ill = ipif->ipif_ill; 1253 1254 return (B_TRUE); 1255 } 1256 1257 /* 1258 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 1259 * queued in the list. 1260 */ 1261 mblk_t * 1262 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1263 { 1264 mblk_t *curr = NULL; 1265 ipxop_t *ipx = ipsq->ipsq_xop; 1266 1267 *connpp = NULL; 1268 mutex_enter(&ipx->ipx_lock); 1269 if (ipx->ipx_pending_mp == NULL) { 1270 mutex_exit(&ipx->ipx_lock); 1271 return (NULL); 1272 } 1273 1274 /* There can be only 1 such excl message */ 1275 curr = ipx->ipx_pending_mp; 1276 ASSERT(curr->b_next == NULL); 1277 ipx->ipx_pending_ipif = NULL; 1278 ipx->ipx_pending_mp = NULL; 1279 ipx->ipx_waitfor = 0; 1280 mutex_exit(&ipx->ipx_lock); 1281 1282 if (CONN_Q(curr->b_queue)) { 1283 /* 1284 * This mp did a refhold on the conn, at the start of the ioctl. 1285 * So we can safely return a pointer to the conn to the caller. 1286 */ 1287 *connpp = Q_TO_CONN(curr->b_queue); 1288 } else { 1289 *connpp = NULL; 1290 } 1291 curr->b_next = NULL; 1292 curr->b_prev = NULL; 1293 return (curr); 1294 } 1295 1296 /* 1297 * Cleanup the ioctl mp queued in ipx_pending_mp 1298 * - Called in the ill_delete path 1299 * - Called in the M_ERROR or M_HANGUP path on the ill. 1300 * - Called in the conn close path. 1301 */ 1302 boolean_t 1303 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1304 { 1305 mblk_t *mp; 1306 ipxop_t *ipx; 1307 queue_t *q; 1308 ipif_t *ipif; 1309 1310 ASSERT(IAM_WRITER_ILL(ill)); 1311 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 1312 1313 /* 1314 * If connp is null, unconditionally clean up the ipx_pending_mp. 1315 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1316 * even if it is meant for another ill, since we have to enqueue 1317 * a new mp now in ipx_pending_mp to complete the ipif_down. 1318 * If connp is non-null we are called from the conn close path. 1319 */ 1320 mutex_enter(&ipx->ipx_lock); 1321 mp = ipx->ipx_pending_mp; 1322 if (mp == NULL || (connp != NULL && 1323 mp->b_queue != CONNP_TO_WQ(connp))) { 1324 mutex_exit(&ipx->ipx_lock); 1325 return (B_FALSE); 1326 } 1327 /* Now remove from the ipx_pending_mp */ 1328 ipx->ipx_pending_mp = NULL; 1329 q = mp->b_queue; 1330 mp->b_next = NULL; 1331 mp->b_prev = NULL; 1332 mp->b_queue = NULL; 1333 1334 ipif = ipx->ipx_pending_ipif; 1335 ipx->ipx_pending_ipif = NULL; 1336 ipx->ipx_waitfor = 0; 1337 ipx->ipx_current_ipif = NULL; 1338 ipx->ipx_current_ioctl = 0; 1339 ipx->ipx_current_done = B_TRUE; 1340 mutex_exit(&ipx->ipx_lock); 1341 1342 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1343 if (connp == NULL) { 1344 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1345 } else { 1346 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1347 mutex_enter(&ipif->ipif_ill->ill_lock); 1348 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1349 mutex_exit(&ipif->ipif_ill->ill_lock); 1350 } 1351 } else { 1352 /* 1353 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1354 * be just inet_freemsg. we have to restart it 1355 * otherwise the thread will be stuck. 1356 */ 1357 inet_freemsg(mp); 1358 } 1359 return (B_TRUE); 1360 } 1361 1362 /* 1363 * The ill is closing. Cleanup all the pending mps. Called exclusively 1364 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1365 * knows this ill, and hence nobody can add an mp to this list 1366 */ 1367 static void 1368 ill_pending_mp_cleanup(ill_t *ill) 1369 { 1370 mblk_t *mp; 1371 queue_t *q; 1372 1373 ASSERT(IAM_WRITER_ILL(ill)); 1374 1375 mutex_enter(&ill->ill_lock); 1376 /* 1377 * Every mp on the pending mp list originating from an ioctl 1378 * added 1 to the conn refcnt, at the start of the ioctl. 1379 * So bump it down now. See comments in ip_wput_nondata() 1380 */ 1381 while (ill->ill_pending_mp != NULL) { 1382 mp = ill->ill_pending_mp; 1383 ill->ill_pending_mp = mp->b_next; 1384 mutex_exit(&ill->ill_lock); 1385 1386 q = mp->b_queue; 1387 ASSERT(CONN_Q(q)); 1388 mp->b_next = NULL; 1389 mp->b_prev = NULL; 1390 mp->b_queue = NULL; 1391 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1392 mutex_enter(&ill->ill_lock); 1393 } 1394 ill->ill_pending_ipif = NULL; 1395 1396 mutex_exit(&ill->ill_lock); 1397 } 1398 1399 /* 1400 * Called in the conn close path and ill delete path 1401 */ 1402 static void 1403 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1404 { 1405 ipsq_t *ipsq; 1406 mblk_t *prev; 1407 mblk_t *curr; 1408 mblk_t *next; 1409 queue_t *q; 1410 mblk_t *tmp_list = NULL; 1411 1412 ASSERT(IAM_WRITER_ILL(ill)); 1413 if (connp != NULL) 1414 q = CONNP_TO_WQ(connp); 1415 else 1416 q = ill->ill_wq; 1417 1418 ipsq = ill->ill_phyint->phyint_ipsq; 1419 /* 1420 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1421 * In the case of ioctl from a conn, there can be only 1 mp 1422 * queued on the ipsq. If an ill is being unplumbed, only messages 1423 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1424 * ioctls meant for this ill form conn's are not flushed. They will 1425 * be processed during ipsq_exit and will not find the ill and will 1426 * return error. 1427 */ 1428 mutex_enter(&ipsq->ipsq_lock); 1429 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1430 curr = next) { 1431 next = curr->b_next; 1432 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1433 /* Unlink the mblk from the pending mp list */ 1434 if (prev != NULL) { 1435 prev->b_next = curr->b_next; 1436 } else { 1437 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1438 ipsq->ipsq_xopq_mphead = curr->b_next; 1439 } 1440 if (ipsq->ipsq_xopq_mptail == curr) 1441 ipsq->ipsq_xopq_mptail = prev; 1442 /* 1443 * Create a temporary list and release the ipsq lock 1444 * New elements are added to the head of the tmp_list 1445 */ 1446 curr->b_next = tmp_list; 1447 tmp_list = curr; 1448 } else { 1449 prev = curr; 1450 } 1451 } 1452 mutex_exit(&ipsq->ipsq_lock); 1453 1454 while (tmp_list != NULL) { 1455 curr = tmp_list; 1456 tmp_list = curr->b_next; 1457 curr->b_next = NULL; 1458 curr->b_prev = NULL; 1459 curr->b_queue = NULL; 1460 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1461 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1462 CONN_CLOSE : NO_COPYOUT, NULL); 1463 } else { 1464 /* 1465 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1466 * this can't be just inet_freemsg. we have to 1467 * restart it otherwise the thread will be stuck. 1468 */ 1469 inet_freemsg(curr); 1470 } 1471 } 1472 } 1473 1474 /* 1475 * This conn has started closing. Cleanup any pending ioctl from this conn. 1476 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1477 */ 1478 void 1479 conn_ioctl_cleanup(conn_t *connp) 1480 { 1481 mblk_t *curr; 1482 ipsq_t *ipsq; 1483 ill_t *ill; 1484 boolean_t refheld; 1485 1486 /* 1487 * Is any exclusive ioctl pending ? If so clean it up. If the 1488 * ioctl has not yet started, the mp is pending in the list headed by 1489 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1490 * ipx_pending_mp. If the ioctl timed out in the streamhead but 1491 * is currently executing now the mp is not queued anywhere but 1492 * conn_oper_pending_ill is null. The conn close will wait 1493 * till the conn_ref drops to zero. 1494 */ 1495 mutex_enter(&connp->conn_lock); 1496 ill = connp->conn_oper_pending_ill; 1497 if (ill == NULL) { 1498 mutex_exit(&connp->conn_lock); 1499 return; 1500 } 1501 1502 curr = ill_pending_mp_get(ill, &connp, 0); 1503 if (curr != NULL) { 1504 mutex_exit(&connp->conn_lock); 1505 CONN_DEC_REF(connp); 1506 inet_freemsg(curr); 1507 return; 1508 } 1509 /* 1510 * We may not be able to refhold the ill if the ill/ipif 1511 * is changing. But we need to make sure that the ill will 1512 * not vanish. So we just bump up the ill_waiter count. 1513 */ 1514 refheld = ill_waiter_inc(ill); 1515 mutex_exit(&connp->conn_lock); 1516 if (refheld) { 1517 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1518 ill_waiter_dcr(ill); 1519 /* 1520 * Check whether this ioctl has started and is 1521 * pending. If it is not found there then check 1522 * whether this ioctl has not even started and is in 1523 * the ipsq_xopq list. 1524 */ 1525 if (!ipsq_pending_mp_cleanup(ill, connp)) 1526 ipsq_xopq_mp_cleanup(ill, connp); 1527 ipsq = ill->ill_phyint->phyint_ipsq; 1528 ipsq_exit(ipsq); 1529 return; 1530 } 1531 } 1532 1533 /* 1534 * The ill is also closing and we could not bump up the 1535 * ill_waiter_count or we could not enter the ipsq. Leave 1536 * the cleanup to ill_delete 1537 */ 1538 mutex_enter(&connp->conn_lock); 1539 while (connp->conn_oper_pending_ill != NULL) 1540 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1541 mutex_exit(&connp->conn_lock); 1542 if (refheld) 1543 ill_waiter_dcr(ill); 1544 } 1545 1546 /* 1547 * ipcl_walk function for cleaning up conn_*_ill fields. 1548 */ 1549 static void 1550 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1551 { 1552 ill_t *ill = (ill_t *)arg; 1553 ire_t *ire; 1554 1555 mutex_enter(&connp->conn_lock); 1556 if (connp->conn_multicast_ill == ill) { 1557 /* Revert to late binding */ 1558 connp->conn_multicast_ill = NULL; 1559 } 1560 if (connp->conn_incoming_ill == ill) 1561 connp->conn_incoming_ill = NULL; 1562 if (connp->conn_outgoing_ill == ill) 1563 connp->conn_outgoing_ill = NULL; 1564 if (connp->conn_dhcpinit_ill == ill) { 1565 connp->conn_dhcpinit_ill = NULL; 1566 ASSERT(ill->ill_dhcpinit != 0); 1567 atomic_dec_32(&ill->ill_dhcpinit); 1568 } 1569 if (connp->conn_ire_cache != NULL) { 1570 ire = connp->conn_ire_cache; 1571 /* 1572 * Source address selection makes it possible for IRE_CACHE 1573 * entries to be created with ire_stq coming from interface X 1574 * and ipif coming from interface Y. Thus whenever interface 1575 * X goes down, remove all references to it by checking both 1576 * on ire_ipif and ire_stq. 1577 */ 1578 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1579 (ire->ire_type == IRE_CACHE && 1580 ire->ire_stq == ill->ill_wq)) { 1581 connp->conn_ire_cache = NULL; 1582 mutex_exit(&connp->conn_lock); 1583 ire_refrele_notr(ire); 1584 return; 1585 } 1586 } 1587 mutex_exit(&connp->conn_lock); 1588 } 1589 1590 /* ARGSUSED */ 1591 void 1592 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1593 { 1594 ill_t *ill = q->q_ptr; 1595 ipif_t *ipif; 1596 1597 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1598 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1599 ipif_non_duplicate(ipif); 1600 ipif_down_tail(ipif); 1601 } 1602 freemsg(mp); 1603 ipsq_current_finish(ipsq); 1604 } 1605 1606 /* 1607 * ill_down_start is called when we want to down this ill and bring it up again 1608 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1609 * all interfaces, but don't tear down any plumbing. 1610 */ 1611 boolean_t 1612 ill_down_start(queue_t *q, mblk_t *mp) 1613 { 1614 ill_t *ill = q->q_ptr; 1615 ipif_t *ipif; 1616 1617 ASSERT(IAM_WRITER_ILL(ill)); 1618 1619 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1620 (void) ipif_down(ipif, NULL, NULL); 1621 1622 ill_down(ill); 1623 1624 (void) ipsq_pending_mp_cleanup(ill, NULL); 1625 1626 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1627 1628 /* 1629 * Atomically test and add the pending mp if references are active. 1630 */ 1631 mutex_enter(&ill->ill_lock); 1632 if (!ill_is_quiescent(ill)) { 1633 /* call cannot fail since `conn_t *' argument is NULL */ 1634 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1635 mp, ILL_DOWN); 1636 mutex_exit(&ill->ill_lock); 1637 return (B_FALSE); 1638 } 1639 mutex_exit(&ill->ill_lock); 1640 return (B_TRUE); 1641 } 1642 1643 static void 1644 ill_down(ill_t *ill) 1645 { 1646 ip_stack_t *ipst = ill->ill_ipst; 1647 1648 /* Blow off any IREs dependent on this ILL. */ 1649 ire_walk(ill_downi, ill, ipst); 1650 1651 /* Remove any conn_*_ill depending on this ill */ 1652 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1653 } 1654 1655 /* 1656 * ire_walk routine used to delete every IRE that depends on queues 1657 * associated with 'ill'. (Always called as writer.) 1658 */ 1659 static void 1660 ill_downi(ire_t *ire, char *ill_arg) 1661 { 1662 ill_t *ill = (ill_t *)ill_arg; 1663 1664 /* 1665 * Source address selection makes it possible for IRE_CACHE 1666 * entries to be created with ire_stq coming from interface X 1667 * and ipif coming from interface Y. Thus whenever interface 1668 * X goes down, remove all references to it by checking both 1669 * on ire_ipif and ire_stq. 1670 */ 1671 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1672 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1673 ire_delete(ire); 1674 } 1675 } 1676 1677 /* 1678 * Remove ire/nce from the fastpath list. 1679 */ 1680 void 1681 ill_fastpath_nack(ill_t *ill) 1682 { 1683 nce_fastpath_list_dispatch(ill, NULL, NULL); 1684 } 1685 1686 /* Consume an M_IOCACK of the fastpath probe. */ 1687 void 1688 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1689 { 1690 mblk_t *mp1 = mp; 1691 1692 /* 1693 * If this was the first attempt turn on the fastpath probing. 1694 */ 1695 mutex_enter(&ill->ill_lock); 1696 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1697 ill->ill_dlpi_fastpath_state = IDS_OK; 1698 mutex_exit(&ill->ill_lock); 1699 1700 /* Free the M_IOCACK mblk, hold on to the data */ 1701 mp = mp->b_cont; 1702 freeb(mp1); 1703 if (mp == NULL) 1704 return; 1705 if (mp->b_cont != NULL) { 1706 /* 1707 * Update all IRE's or NCE's that are waiting for 1708 * fastpath update. 1709 */ 1710 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1711 mp1 = mp->b_cont; 1712 freeb(mp); 1713 mp = mp1; 1714 } else { 1715 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1716 } 1717 1718 freeb(mp); 1719 } 1720 1721 /* 1722 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1723 * The data portion of the request is a dl_unitdata_req_t template for 1724 * what we would send downstream in the absence of a fastpath confirmation. 1725 */ 1726 int 1727 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1728 { 1729 struct iocblk *ioc; 1730 mblk_t *mp; 1731 1732 if (dlur_mp == NULL) 1733 return (EINVAL); 1734 1735 mutex_enter(&ill->ill_lock); 1736 switch (ill->ill_dlpi_fastpath_state) { 1737 case IDS_FAILED: 1738 /* 1739 * Driver NAKed the first fastpath ioctl - assume it doesn't 1740 * support it. 1741 */ 1742 mutex_exit(&ill->ill_lock); 1743 return (ENOTSUP); 1744 case IDS_UNKNOWN: 1745 /* This is the first probe */ 1746 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1747 break; 1748 default: 1749 break; 1750 } 1751 mutex_exit(&ill->ill_lock); 1752 1753 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1754 return (EAGAIN); 1755 1756 mp->b_cont = copyb(dlur_mp); 1757 if (mp->b_cont == NULL) { 1758 freeb(mp); 1759 return (EAGAIN); 1760 } 1761 1762 ioc = (struct iocblk *)mp->b_rptr; 1763 ioc->ioc_count = msgdsize(mp->b_cont); 1764 1765 putnext(ill->ill_wq, mp); 1766 return (0); 1767 } 1768 1769 void 1770 ill_capability_probe(ill_t *ill) 1771 { 1772 mblk_t *mp; 1773 1774 ASSERT(IAM_WRITER_ILL(ill)); 1775 1776 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1777 ill->ill_dlpi_capab_state != IDCS_FAILED) 1778 return; 1779 1780 /* 1781 * We are starting a new cycle of capability negotiation. 1782 * Free up the capab reset messages of any previous incarnation. 1783 * We will do a fresh allocation when we get the response to our probe 1784 */ 1785 if (ill->ill_capab_reset_mp != NULL) { 1786 freemsg(ill->ill_capab_reset_mp); 1787 ill->ill_capab_reset_mp = NULL; 1788 } 1789 1790 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1791 1792 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1793 if (mp == NULL) 1794 return; 1795 1796 ill_capability_send(ill, mp); 1797 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1798 } 1799 1800 void 1801 ill_capability_reset(ill_t *ill, boolean_t reneg) 1802 { 1803 ASSERT(IAM_WRITER_ILL(ill)); 1804 1805 if (ill->ill_dlpi_capab_state != IDCS_OK) 1806 return; 1807 1808 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1809 1810 ill_capability_send(ill, ill->ill_capab_reset_mp); 1811 ill->ill_capab_reset_mp = NULL; 1812 /* 1813 * We turn off all capabilities except those pertaining to 1814 * direct function call capabilities viz. ILL_CAPAB_DLD* 1815 * which will be turned off by the corresponding reset functions. 1816 */ 1817 ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM | 1818 ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP); 1819 } 1820 1821 static void 1822 ill_capability_reset_alloc(ill_t *ill) 1823 { 1824 mblk_t *mp; 1825 size_t size = 0; 1826 int err; 1827 dl_capability_req_t *capb; 1828 1829 ASSERT(IAM_WRITER_ILL(ill)); 1830 ASSERT(ill->ill_capab_reset_mp == NULL); 1831 1832 if (ILL_MDT_CAPABLE(ill)) 1833 size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1834 1835 if (ILL_HCKSUM_CAPABLE(ill)) { 1836 size += sizeof (dl_capability_sub_t) + 1837 sizeof (dl_capab_hcksum_t); 1838 } 1839 1840 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1841 size += sizeof (dl_capability_sub_t) + 1842 sizeof (dl_capab_zerocopy_t); 1843 } 1844 1845 if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) { 1846 size += sizeof (dl_capability_sub_t); 1847 size += ill_capability_ipsec_reset_size(ill, NULL, NULL, 1848 NULL, NULL); 1849 } 1850 1851 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1852 size += sizeof (dl_capability_sub_t) + 1853 sizeof (dl_capab_dld_t); 1854 } 1855 1856 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1857 STR_NOSIG, &err); 1858 1859 mp->b_datap->db_type = M_PROTO; 1860 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1861 1862 capb = (dl_capability_req_t *)mp->b_rptr; 1863 capb->dl_primitive = DL_CAPABILITY_REQ; 1864 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1865 capb->dl_sub_length = size; 1866 1867 mp->b_wptr += sizeof (dl_capability_req_t); 1868 1869 /* 1870 * Each handler fills in the corresponding dl_capability_sub_t 1871 * inside the mblk, 1872 */ 1873 ill_capability_mdt_reset_fill(ill, mp); 1874 ill_capability_hcksum_reset_fill(ill, mp); 1875 ill_capability_zerocopy_reset_fill(ill, mp); 1876 ill_capability_ipsec_reset_fill(ill, mp); 1877 ill_capability_dld_reset_fill(ill, mp); 1878 1879 ill->ill_capab_reset_mp = mp; 1880 } 1881 1882 static void 1883 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1884 { 1885 dl_capab_id_t *id_ic; 1886 uint_t sub_dl_cap = outers->dl_cap; 1887 dl_capability_sub_t *inners; 1888 uint8_t *capend; 1889 1890 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1891 1892 /* 1893 * Note: range checks here are not absolutely sufficient to 1894 * make us robust against malformed messages sent by drivers; 1895 * this is in keeping with the rest of IP's dlpi handling. 1896 * (Remember, it's coming from something else in the kernel 1897 * address space) 1898 */ 1899 1900 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1901 if (capend > mp->b_wptr) { 1902 cmn_err(CE_WARN, "ill_capability_id_ack: " 1903 "malformed sub-capability too long for mblk"); 1904 return; 1905 } 1906 1907 id_ic = (dl_capab_id_t *)(outers + 1); 1908 1909 if (outers->dl_length < sizeof (*id_ic) || 1910 (inners = &id_ic->id_subcap, 1911 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1912 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1913 "encapsulated capab type %d too long for mblk", 1914 inners->dl_cap); 1915 return; 1916 } 1917 1918 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1919 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1920 "isn't as expected; pass-thru module(s) detected, " 1921 "discarding capability\n", inners->dl_cap)); 1922 return; 1923 } 1924 1925 /* Process the encapsulated sub-capability */ 1926 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1927 } 1928 1929 /* 1930 * Process Multidata Transmit capability negotiation ack received from a 1931 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1932 * DL_CAPABILITY_ACK message. 1933 */ 1934 static void 1935 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1936 { 1937 mblk_t *nmp = NULL; 1938 dl_capability_req_t *oc; 1939 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1940 ill_mdt_capab_t **ill_mdt_capab; 1941 uint_t sub_dl_cap = isub->dl_cap; 1942 uint8_t *capend; 1943 1944 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1945 1946 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1947 1948 /* 1949 * Note: range checks here are not absolutely sufficient to 1950 * make us robust against malformed messages sent by drivers; 1951 * this is in keeping with the rest of IP's dlpi handling. 1952 * (Remember, it's coming from something else in the kernel 1953 * address space) 1954 */ 1955 1956 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1957 if (capend > mp->b_wptr) { 1958 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1959 "malformed sub-capability too long for mblk"); 1960 return; 1961 } 1962 1963 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1964 1965 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1966 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1967 "unsupported MDT sub-capability (version %d, expected %d)", 1968 mdt_ic->mdt_version, MDT_VERSION_2); 1969 return; 1970 } 1971 1972 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1973 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1974 "capability isn't as expected; pass-thru module(s) " 1975 "detected, discarding capability\n")); 1976 return; 1977 } 1978 1979 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1980 1981 if (*ill_mdt_capab == NULL) { 1982 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1983 KM_NOSLEEP); 1984 if (*ill_mdt_capab == NULL) { 1985 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1986 "could not enable MDT version %d " 1987 "for %s (ENOMEM)\n", MDT_VERSION_2, 1988 ill->ill_name); 1989 return; 1990 } 1991 } 1992 1993 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1994 "MDT version %d (%d bytes leading, %d bytes trailing " 1995 "header spaces, %d max pld bufs, %d span limit)\n", 1996 ill->ill_name, MDT_VERSION_2, 1997 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1998 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1999 2000 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2001 (*ill_mdt_capab)->ill_mdt_on = 1; 2002 /* 2003 * Round the following values to the nearest 32-bit; ULP 2004 * may further adjust them to accomodate for additional 2005 * protocol headers. We pass these values to ULP during 2006 * bind time. 2007 */ 2008 (*ill_mdt_capab)->ill_mdt_hdr_head = 2009 roundup(mdt_ic->mdt_hdr_head, 4); 2010 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2011 roundup(mdt_ic->mdt_hdr_tail, 4); 2012 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2013 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2014 2015 ill->ill_capabilities |= ILL_CAPAB_MDT; 2016 } else { 2017 uint_t size; 2018 uchar_t *rptr; 2019 2020 size = sizeof (dl_capability_req_t) + 2021 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2022 2023 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2024 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2025 "could not enable MDT for %s (ENOMEM)\n", 2026 ill->ill_name); 2027 return; 2028 } 2029 2030 rptr = nmp->b_rptr; 2031 /* initialize dl_capability_req_t */ 2032 oc = (dl_capability_req_t *)nmp->b_rptr; 2033 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2034 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2035 sizeof (dl_capab_mdt_t); 2036 nmp->b_rptr += sizeof (dl_capability_req_t); 2037 2038 /* initialize dl_capability_sub_t */ 2039 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2040 nmp->b_rptr += sizeof (*isub); 2041 2042 /* initialize dl_capab_mdt_t */ 2043 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2044 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2045 2046 nmp->b_rptr = rptr; 2047 2048 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2049 "to enable MDT version %d\n", ill->ill_name, 2050 MDT_VERSION_2)); 2051 2052 /* set ENABLE flag */ 2053 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2054 2055 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2056 ill_capability_send(ill, nmp); 2057 } 2058 } 2059 2060 static void 2061 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp) 2062 { 2063 dl_capab_mdt_t *mdt_subcap; 2064 dl_capability_sub_t *dl_subcap; 2065 2066 if (!ILL_MDT_CAPABLE(ill)) 2067 return; 2068 2069 ASSERT(ill->ill_mdt_capab != NULL); 2070 2071 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2072 dl_subcap->dl_cap = DL_CAPAB_MDT; 2073 dl_subcap->dl_length = sizeof (*mdt_subcap); 2074 2075 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2076 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2077 mdt_subcap->mdt_flags = 0; 2078 mdt_subcap->mdt_hdr_head = 0; 2079 mdt_subcap->mdt_hdr_tail = 0; 2080 2081 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2082 } 2083 2084 static void 2085 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 2086 { 2087 dl_capability_sub_t *dl_subcap; 2088 2089 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2090 return; 2091 2092 /* 2093 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 2094 * initialized below since it is not used by DLD. 2095 */ 2096 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2097 dl_subcap->dl_cap = DL_CAPAB_DLD; 2098 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 2099 2100 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 2101 } 2102 2103 /* 2104 * Send a DL_NOTIFY_REQ to the specified ill to enable 2105 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2106 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2107 * acceleration. 2108 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2109 */ 2110 static boolean_t 2111 ill_enable_promisc_notify(ill_t *ill) 2112 { 2113 mblk_t *mp; 2114 dl_notify_req_t *req; 2115 2116 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2117 2118 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2119 if (mp == NULL) 2120 return (B_FALSE); 2121 2122 req = (dl_notify_req_t *)mp->b_rptr; 2123 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2124 DL_NOTE_PROMISC_OFF_PHYS; 2125 2126 ill_dlpi_send(ill, mp); 2127 2128 return (B_TRUE); 2129 } 2130 2131 /* 2132 * Allocate an IPsec capability request which will be filled by our 2133 * caller to turn on support for one or more algorithms. 2134 */ 2135 static mblk_t * 2136 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2137 { 2138 mblk_t *nmp; 2139 dl_capability_req_t *ocap; 2140 dl_capab_ipsec_t *ocip; 2141 dl_capab_ipsec_t *icip; 2142 uint8_t *ptr; 2143 icip = (dl_capab_ipsec_t *)(isub + 1); 2144 2145 /* 2146 * The first time around, we send a DL_NOTIFY_REQ to enable 2147 * PROMISC_ON/OFF notification from the provider. We need to 2148 * do this before enabling the algorithms to avoid leakage of 2149 * cleartext packets. 2150 */ 2151 2152 if (!ill_enable_promisc_notify(ill)) 2153 return (NULL); 2154 2155 /* 2156 * Allocate new mblk which will contain a new capability 2157 * request to enable the capabilities. 2158 */ 2159 2160 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2161 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2162 if (nmp == NULL) 2163 return (NULL); 2164 2165 ptr = nmp->b_rptr; 2166 2167 /* initialize dl_capability_req_t */ 2168 ocap = (dl_capability_req_t *)ptr; 2169 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2170 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2171 ptr += sizeof (dl_capability_req_t); 2172 2173 /* initialize dl_capability_sub_t */ 2174 bcopy(isub, ptr, sizeof (*isub)); 2175 ptr += sizeof (*isub); 2176 2177 /* initialize dl_capab_ipsec_t */ 2178 ocip = (dl_capab_ipsec_t *)ptr; 2179 bcopy(icip, ocip, sizeof (*icip)); 2180 2181 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2182 return (nmp); 2183 } 2184 2185 /* 2186 * Process an IPsec capability negotiation ack received from a DLS Provider. 2187 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2188 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2189 */ 2190 static void 2191 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2192 { 2193 dl_capab_ipsec_t *icip; 2194 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2195 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2196 uint_t cipher, nciphers; 2197 mblk_t *nmp; 2198 uint_t alg_len; 2199 boolean_t need_sadb_dump; 2200 uint_t sub_dl_cap = isub->dl_cap; 2201 ill_ipsec_capab_t **ill_capab; 2202 uint64_t ill_capab_flag; 2203 uint8_t *capend, *ciphend; 2204 boolean_t sadb_resync; 2205 2206 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2207 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2208 2209 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2210 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2211 ill_capab_flag = ILL_CAPAB_AH; 2212 } else { 2213 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2214 ill_capab_flag = ILL_CAPAB_ESP; 2215 } 2216 2217 /* 2218 * If the ill capability structure exists, then this incoming 2219 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2220 * If this is so, then we'd need to resynchronize the SADB 2221 * after re-enabling the offloaded ciphers. 2222 */ 2223 sadb_resync = (*ill_capab != NULL); 2224 2225 /* 2226 * Note: range checks here are not absolutely sufficient to 2227 * make us robust against malformed messages sent by drivers; 2228 * this is in keeping with the rest of IP's dlpi handling. 2229 * (Remember, it's coming from something else in the kernel 2230 * address space) 2231 */ 2232 2233 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2234 if (capend > mp->b_wptr) { 2235 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2236 "malformed sub-capability too long for mblk"); 2237 return; 2238 } 2239 2240 /* 2241 * There are two types of acks we process here: 2242 * 1. acks in reply to a (first form) generic capability req 2243 * (no ENABLE flag set) 2244 * 2. acks in reply to a ENABLE capability req. 2245 * (ENABLE flag set) 2246 * 2247 * We process the subcapability passed as argument as follows: 2248 * 1 do initializations 2249 * 1.1 initialize nmp = NULL 2250 * 1.2 set need_sadb_dump to B_FALSE 2251 * 2 for each cipher in subcapability: 2252 * 2.1 if ENABLE flag is set: 2253 * 2.1.1 update per-ill ipsec capabilities info 2254 * 2.1.2 set need_sadb_dump to B_TRUE 2255 * 2.2 if ENABLE flag is not set: 2256 * 2.2.1 if nmp is NULL: 2257 * 2.2.1.1 allocate and initialize nmp 2258 * 2.2.1.2 init current pos in nmp 2259 * 2.2.2 copy current cipher to current pos in nmp 2260 * 2.2.3 set ENABLE flag in nmp 2261 * 2.2.4 update current pos 2262 * 3 if nmp is not equal to NULL, send enable request 2263 * 3.1 send capability request 2264 * 4 if need_sadb_dump is B_TRUE 2265 * 4.1 enable promiscuous on/off notifications 2266 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2267 * AH or ESP SA's to interface. 2268 */ 2269 2270 nmp = NULL; 2271 oalg = NULL; 2272 need_sadb_dump = B_FALSE; 2273 icip = (dl_capab_ipsec_t *)(isub + 1); 2274 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2275 2276 nciphers = icip->cip_nciphers; 2277 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2278 2279 if (ciphend > capend) { 2280 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2281 "too many ciphers for sub-capability len"); 2282 return; 2283 } 2284 2285 for (cipher = 0; cipher < nciphers; cipher++) { 2286 alg_len = sizeof (dl_capab_ipsec_alg_t); 2287 2288 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2289 /* 2290 * TBD: when we provide a way to disable capabilities 2291 * from above, need to manage the request-pending state 2292 * and fail if we were not expecting this ACK. 2293 */ 2294 IPSECHW_DEBUG(IPSECHW_CAPAB, 2295 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2296 2297 /* 2298 * Update IPsec capabilities for this ill 2299 */ 2300 2301 if (*ill_capab == NULL) { 2302 IPSECHW_DEBUG(IPSECHW_CAPAB, 2303 ("ill_capability_ipsec_ack: " 2304 "allocating ipsec_capab for ill\n")); 2305 *ill_capab = ill_ipsec_capab_alloc(); 2306 2307 if (*ill_capab == NULL) { 2308 cmn_err(CE_WARN, 2309 "ill_capability_ipsec_ack: " 2310 "could not enable IPsec Hardware " 2311 "acceleration for %s (ENOMEM)\n", 2312 ill->ill_name); 2313 return; 2314 } 2315 } 2316 2317 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2318 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2319 2320 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2321 cmn_err(CE_WARN, 2322 "ill_capability_ipsec_ack: " 2323 "malformed IPsec algorithm id %d", 2324 ialg->alg_prim); 2325 continue; 2326 } 2327 2328 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2329 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2330 ialg->alg_prim); 2331 } else { 2332 ipsec_capab_algparm_t *alp; 2333 2334 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2335 ialg->alg_prim); 2336 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2337 ialg->alg_prim)) { 2338 cmn_err(CE_WARN, 2339 "ill_capability_ipsec_ack: " 2340 "no space for IPsec alg id %d", 2341 ialg->alg_prim); 2342 continue; 2343 } 2344 alp = &((*ill_capab)->encr_algparm[ 2345 ialg->alg_prim]); 2346 alp->minkeylen = ialg->alg_minbits; 2347 alp->maxkeylen = ialg->alg_maxbits; 2348 } 2349 ill->ill_capabilities |= ill_capab_flag; 2350 /* 2351 * indicate that a capability was enabled, which 2352 * will be used below to kick off a SADB dump 2353 * to the ill. 2354 */ 2355 need_sadb_dump = B_TRUE; 2356 } else { 2357 IPSECHW_DEBUG(IPSECHW_CAPAB, 2358 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2359 ialg->alg_prim)); 2360 2361 if (nmp == NULL) { 2362 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2363 if (nmp == NULL) { 2364 /* 2365 * Sending the PROMISC_ON/OFF 2366 * notification request failed. 2367 * We cannot enable the algorithms 2368 * since the Provider will not 2369 * notify IP of promiscous mode 2370 * changes, which could lead 2371 * to leakage of packets. 2372 */ 2373 cmn_err(CE_WARN, 2374 "ill_capability_ipsec_ack: " 2375 "could not enable IPsec Hardware " 2376 "acceleration for %s (ENOMEM)\n", 2377 ill->ill_name); 2378 return; 2379 } 2380 /* ptr to current output alg specifier */ 2381 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2382 } 2383 2384 /* 2385 * Copy current alg specifier, set ENABLE 2386 * flag, and advance to next output alg. 2387 * For now we enable all IPsec capabilities. 2388 */ 2389 ASSERT(oalg != NULL); 2390 bcopy(ialg, oalg, alg_len); 2391 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2392 nmp->b_wptr += alg_len; 2393 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2394 } 2395 2396 /* move to next input algorithm specifier */ 2397 ialg = (dl_capab_ipsec_alg_t *) 2398 ((char *)ialg + alg_len); 2399 } 2400 2401 if (nmp != NULL) 2402 /* 2403 * nmp points to a DL_CAPABILITY_REQ message to enable 2404 * IPsec hardware acceleration. 2405 */ 2406 ill_capability_send(ill, nmp); 2407 2408 if (need_sadb_dump) 2409 /* 2410 * An acknowledgement corresponding to a request to 2411 * enable acceleration was received, notify SADB. 2412 */ 2413 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2414 } 2415 2416 /* 2417 * Given an mblk with enough space in it, create sub-capability entries for 2418 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2419 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2420 * in preparation for the reset the DL_CAPABILITY_REQ message. 2421 */ 2422 static void 2423 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2424 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2425 { 2426 dl_capab_ipsec_t *oipsec; 2427 dl_capab_ipsec_alg_t *oalg; 2428 dl_capability_sub_t *dl_subcap; 2429 int i, k; 2430 2431 ASSERT(nciphers > 0); 2432 ASSERT(ill_cap != NULL); 2433 ASSERT(mp != NULL); 2434 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2435 2436 /* dl_capability_sub_t for "stype" */ 2437 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2438 dl_subcap->dl_cap = stype; 2439 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2440 mp->b_wptr += sizeof (dl_capability_sub_t); 2441 2442 /* dl_capab_ipsec_t for "stype" */ 2443 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2444 oipsec->cip_version = 1; 2445 oipsec->cip_nciphers = nciphers; 2446 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2447 2448 /* create entries for "stype" AUTH ciphers */ 2449 for (i = 0; i < ill_cap->algs_size; i++) { 2450 for (k = 0; k < BITSPERBYTE; k++) { 2451 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2452 continue; 2453 2454 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2455 bzero((void *)oalg, sizeof (*oalg)); 2456 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2457 oalg->alg_prim = k + (BITSPERBYTE * i); 2458 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2459 } 2460 } 2461 /* create entries for "stype" ENCR ciphers */ 2462 for (i = 0; i < ill_cap->algs_size; i++) { 2463 for (k = 0; k < BITSPERBYTE; k++) { 2464 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2465 continue; 2466 2467 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2468 bzero((void *)oalg, sizeof (*oalg)); 2469 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2470 oalg->alg_prim = k + (BITSPERBYTE * i); 2471 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2472 } 2473 } 2474 } 2475 2476 /* 2477 * Macro to count number of 1s in a byte (8-bit word). The total count is 2478 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2479 * POPC instruction, but our macro is more flexible for an arbitrary length 2480 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2481 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2482 * stays that way, we can reduce the number of iterations required. 2483 */ 2484 #define COUNT_1S(val, sum) { \ 2485 uint8_t x = val & 0xff; \ 2486 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2487 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2488 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2489 } 2490 2491 /* ARGSUSED */ 2492 static int 2493 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp, 2494 int *esp_cntp, int *esp_lenp) 2495 { 2496 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2497 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2498 uint64_t ill_capabilities = ill->ill_capabilities; 2499 int ah_cnt = 0, esp_cnt = 0; 2500 int ah_len = 0, esp_len = 0; 2501 int i, size = 0; 2502 2503 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2504 return (0); 2505 2506 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2507 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2508 2509 /* Find out the number of ciphers for AH */ 2510 if (cap_ah != NULL) { 2511 for (i = 0; i < cap_ah->algs_size; i++) { 2512 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2513 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2514 } 2515 if (ah_cnt > 0) { 2516 size += sizeof (dl_capability_sub_t) + 2517 sizeof (dl_capab_ipsec_t); 2518 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2519 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2520 size += ah_len; 2521 } 2522 } 2523 2524 /* Find out the number of ciphers for ESP */ 2525 if (cap_esp != NULL) { 2526 for (i = 0; i < cap_esp->algs_size; i++) { 2527 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2528 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2529 } 2530 if (esp_cnt > 0) { 2531 size += sizeof (dl_capability_sub_t) + 2532 sizeof (dl_capab_ipsec_t); 2533 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2534 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2535 size += esp_len; 2536 } 2537 } 2538 2539 if (ah_cntp != NULL) 2540 *ah_cntp = ah_cnt; 2541 if (ah_lenp != NULL) 2542 *ah_lenp = ah_len; 2543 if (esp_cntp != NULL) 2544 *esp_cntp = esp_cnt; 2545 if (esp_lenp != NULL) 2546 *esp_lenp = esp_len; 2547 2548 return (size); 2549 } 2550 2551 /* ARGSUSED */ 2552 static void 2553 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp) 2554 { 2555 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2556 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2557 int ah_cnt = 0, esp_cnt = 0; 2558 int ah_len = 0, esp_len = 0; 2559 int size; 2560 2561 size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len, 2562 &esp_cnt, &esp_len); 2563 if (size == 0) 2564 return; 2565 2566 /* 2567 * Clear the capability flags for IPsec HA but retain the ill 2568 * capability structures since it's possible that another thread 2569 * is still referring to them. The structures only get deallocated 2570 * when we destroy the ill. 2571 * 2572 * Various places check the flags to see if the ill is capable of 2573 * hardware acceleration, and by clearing them we ensure that new 2574 * outbound IPsec packets are sent down encrypted. 2575 */ 2576 2577 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2578 if (ah_cnt > 0) { 2579 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2580 cap_ah, mp); 2581 } 2582 2583 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2584 if (esp_cnt > 0) { 2585 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2586 cap_esp, mp); 2587 } 2588 2589 /* 2590 * At this point we've composed a bunch of sub-capabilities to be 2591 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2592 * by the caller. Upon receiving this reset message, the driver 2593 * must stop inbound decryption (by destroying all inbound SAs) 2594 * and let the corresponding packets come in encrypted. 2595 */ 2596 } 2597 2598 static void 2599 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2600 boolean_t encapsulated) 2601 { 2602 boolean_t legacy = B_FALSE; 2603 2604 /* 2605 * Note that only the following two sub-capabilities may be 2606 * considered as "legacy", since their original definitions 2607 * do not incorporate the dl_mid_t module ID token, and hence 2608 * may require the use of the wrapper sub-capability. 2609 */ 2610 switch (subp->dl_cap) { 2611 case DL_CAPAB_IPSEC_AH: 2612 case DL_CAPAB_IPSEC_ESP: 2613 legacy = B_TRUE; 2614 break; 2615 } 2616 2617 /* 2618 * For legacy sub-capabilities which don't incorporate a queue_t 2619 * pointer in their structures, discard them if we detect that 2620 * there are intermediate modules in between IP and the driver. 2621 */ 2622 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2623 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2624 "%d discarded; %d module(s) present below IP\n", 2625 subp->dl_cap, ill->ill_lmod_cnt)); 2626 return; 2627 } 2628 2629 switch (subp->dl_cap) { 2630 case DL_CAPAB_IPSEC_AH: 2631 case DL_CAPAB_IPSEC_ESP: 2632 ill_capability_ipsec_ack(ill, mp, subp); 2633 break; 2634 case DL_CAPAB_MDT: 2635 ill_capability_mdt_ack(ill, mp, subp); 2636 break; 2637 case DL_CAPAB_HCKSUM: 2638 ill_capability_hcksum_ack(ill, mp, subp); 2639 break; 2640 case DL_CAPAB_ZEROCOPY: 2641 ill_capability_zerocopy_ack(ill, mp, subp); 2642 break; 2643 case DL_CAPAB_DLD: 2644 ill_capability_dld_ack(ill, mp, subp); 2645 break; 2646 default: 2647 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2648 subp->dl_cap)); 2649 } 2650 } 2651 2652 /* 2653 * Process a hardware checksum offload capability negotiation ack received 2654 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2655 * of a DL_CAPABILITY_ACK message. 2656 */ 2657 static void 2658 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2659 { 2660 dl_capability_req_t *ocap; 2661 dl_capab_hcksum_t *ihck, *ohck; 2662 ill_hcksum_capab_t **ill_hcksum; 2663 mblk_t *nmp = NULL; 2664 uint_t sub_dl_cap = isub->dl_cap; 2665 uint8_t *capend; 2666 2667 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 2668 2669 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 2670 2671 /* 2672 * Note: range checks here are not absolutely sufficient to 2673 * make us robust against malformed messages sent by drivers; 2674 * this is in keeping with the rest of IP's dlpi handling. 2675 * (Remember, it's coming from something else in the kernel 2676 * address space) 2677 */ 2678 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2679 if (capend > mp->b_wptr) { 2680 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2681 "malformed sub-capability too long for mblk"); 2682 return; 2683 } 2684 2685 /* 2686 * There are two types of acks we process here: 2687 * 1. acks in reply to a (first form) generic capability req 2688 * (no ENABLE flag set) 2689 * 2. acks in reply to a ENABLE capability req. 2690 * (ENABLE flag set) 2691 */ 2692 ihck = (dl_capab_hcksum_t *)(isub + 1); 2693 2694 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 2695 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 2696 "unsupported hardware checksum " 2697 "sub-capability (version %d, expected %d)", 2698 ihck->hcksum_version, HCKSUM_VERSION_1); 2699 return; 2700 } 2701 2702 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 2703 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 2704 "checksum capability isn't as expected; pass-thru " 2705 "module(s) detected, discarding capability\n")); 2706 return; 2707 } 2708 2709 #define CURR_HCKSUM_CAPAB \ 2710 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 2711 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 2712 2713 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 2714 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 2715 /* do ENABLE processing */ 2716 if (*ill_hcksum == NULL) { 2717 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 2718 KM_NOSLEEP); 2719 2720 if (*ill_hcksum == NULL) { 2721 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2722 "could not enable hcksum version %d " 2723 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 2724 ill->ill_name); 2725 return; 2726 } 2727 } 2728 2729 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 2730 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 2731 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 2732 ip1dbg(("ill_capability_hcksum_ack: interface %s " 2733 "has enabled hardware checksumming\n ", 2734 ill->ill_name)); 2735 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 2736 /* 2737 * Enabling hardware checksum offload 2738 * Currently IP supports {TCP,UDP}/IPv4 2739 * partial and full cksum offload and 2740 * IPv4 header checksum offload. 2741 * Allocate new mblk which will 2742 * contain a new capability request 2743 * to enable hardware checksum offload. 2744 */ 2745 uint_t size; 2746 uchar_t *rptr; 2747 2748 size = sizeof (dl_capability_req_t) + 2749 sizeof (dl_capability_sub_t) + isub->dl_length; 2750 2751 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2752 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2753 "could not enable hardware cksum for %s (ENOMEM)\n", 2754 ill->ill_name); 2755 return; 2756 } 2757 2758 rptr = nmp->b_rptr; 2759 /* initialize dl_capability_req_t */ 2760 ocap = (dl_capability_req_t *)nmp->b_rptr; 2761 ocap->dl_sub_offset = 2762 sizeof (dl_capability_req_t); 2763 ocap->dl_sub_length = 2764 sizeof (dl_capability_sub_t) + 2765 isub->dl_length; 2766 nmp->b_rptr += sizeof (dl_capability_req_t); 2767 2768 /* initialize dl_capability_sub_t */ 2769 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2770 nmp->b_rptr += sizeof (*isub); 2771 2772 /* initialize dl_capab_hcksum_t */ 2773 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 2774 bcopy(ihck, ohck, sizeof (*ihck)); 2775 2776 nmp->b_rptr = rptr; 2777 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2778 2779 /* Set ENABLE flag */ 2780 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 2781 ohck->hcksum_txflags |= HCKSUM_ENABLE; 2782 2783 /* 2784 * nmp points to a DL_CAPABILITY_REQ message to enable 2785 * hardware checksum acceleration. 2786 */ 2787 ill_capability_send(ill, nmp); 2788 } else { 2789 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 2790 "advertised %x hardware checksum capability flags\n", 2791 ill->ill_name, ihck->hcksum_txflags)); 2792 } 2793 } 2794 2795 static void 2796 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 2797 { 2798 dl_capab_hcksum_t *hck_subcap; 2799 dl_capability_sub_t *dl_subcap; 2800 2801 if (!ILL_HCKSUM_CAPABLE(ill)) 2802 return; 2803 2804 ASSERT(ill->ill_hcksum_capab != NULL); 2805 2806 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2807 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 2808 dl_subcap->dl_length = sizeof (*hck_subcap); 2809 2810 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 2811 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 2812 hck_subcap->hcksum_txflags = 0; 2813 2814 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 2815 } 2816 2817 static void 2818 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2819 { 2820 mblk_t *nmp = NULL; 2821 dl_capability_req_t *oc; 2822 dl_capab_zerocopy_t *zc_ic, *zc_oc; 2823 ill_zerocopy_capab_t **ill_zerocopy_capab; 2824 uint_t sub_dl_cap = isub->dl_cap; 2825 uint8_t *capend; 2826 2827 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 2828 2829 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 2830 2831 /* 2832 * Note: range checks here are not absolutely sufficient to 2833 * make us robust against malformed messages sent by drivers; 2834 * this is in keeping with the rest of IP's dlpi handling. 2835 * (Remember, it's coming from something else in the kernel 2836 * address space) 2837 */ 2838 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2839 if (capend > mp->b_wptr) { 2840 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2841 "malformed sub-capability too long for mblk"); 2842 return; 2843 } 2844 2845 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 2846 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 2847 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 2848 "unsupported ZEROCOPY sub-capability (version %d, " 2849 "expected %d)", zc_ic->zerocopy_version, 2850 ZEROCOPY_VERSION_1); 2851 return; 2852 } 2853 2854 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 2855 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 2856 "capability isn't as expected; pass-thru module(s) " 2857 "detected, discarding capability\n")); 2858 return; 2859 } 2860 2861 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 2862 if (*ill_zerocopy_capab == NULL) { 2863 *ill_zerocopy_capab = 2864 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 2865 KM_NOSLEEP); 2866 2867 if (*ill_zerocopy_capab == NULL) { 2868 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2869 "could not enable Zero-copy version %d " 2870 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 2871 ill->ill_name); 2872 return; 2873 } 2874 } 2875 2876 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 2877 "supports Zero-copy version %d\n", ill->ill_name, 2878 ZEROCOPY_VERSION_1)); 2879 2880 (*ill_zerocopy_capab)->ill_zerocopy_version = 2881 zc_ic->zerocopy_version; 2882 (*ill_zerocopy_capab)->ill_zerocopy_flags = 2883 zc_ic->zerocopy_flags; 2884 2885 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 2886 } else { 2887 uint_t size; 2888 uchar_t *rptr; 2889 2890 size = sizeof (dl_capability_req_t) + 2891 sizeof (dl_capability_sub_t) + 2892 sizeof (dl_capab_zerocopy_t); 2893 2894 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2895 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2896 "could not enable zerocopy for %s (ENOMEM)\n", 2897 ill->ill_name); 2898 return; 2899 } 2900 2901 rptr = nmp->b_rptr; 2902 /* initialize dl_capability_req_t */ 2903 oc = (dl_capability_req_t *)rptr; 2904 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2905 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2906 sizeof (dl_capab_zerocopy_t); 2907 rptr += sizeof (dl_capability_req_t); 2908 2909 /* initialize dl_capability_sub_t */ 2910 bcopy(isub, rptr, sizeof (*isub)); 2911 rptr += sizeof (*isub); 2912 2913 /* initialize dl_capab_zerocopy_t */ 2914 zc_oc = (dl_capab_zerocopy_t *)rptr; 2915 *zc_oc = *zc_ic; 2916 2917 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 2918 "to enable zero-copy version %d\n", ill->ill_name, 2919 ZEROCOPY_VERSION_1)); 2920 2921 /* set VMSAFE_MEM flag */ 2922 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 2923 2924 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 2925 ill_capability_send(ill, nmp); 2926 } 2927 } 2928 2929 static void 2930 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 2931 { 2932 dl_capab_zerocopy_t *zerocopy_subcap; 2933 dl_capability_sub_t *dl_subcap; 2934 2935 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 2936 return; 2937 2938 ASSERT(ill->ill_zerocopy_capab != NULL); 2939 2940 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2941 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 2942 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 2943 2944 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 2945 zerocopy_subcap->zerocopy_version = 2946 ill->ill_zerocopy_capab->ill_zerocopy_version; 2947 zerocopy_subcap->zerocopy_flags = 0; 2948 2949 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 2950 } 2951 2952 /* 2953 * DLD capability 2954 * Refer to dld.h for more information regarding the purpose and usage 2955 * of this capability. 2956 */ 2957 static void 2958 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2959 { 2960 dl_capab_dld_t *dld_ic, dld; 2961 uint_t sub_dl_cap = isub->dl_cap; 2962 uint8_t *capend; 2963 ill_dld_capab_t *idc; 2964 2965 ASSERT(IAM_WRITER_ILL(ill)); 2966 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 2967 2968 /* 2969 * Note: range checks here are not absolutely sufficient to 2970 * make us robust against malformed messages sent by drivers; 2971 * this is in keeping with the rest of IP's dlpi handling. 2972 * (Remember, it's coming from something else in the kernel 2973 * address space) 2974 */ 2975 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2976 if (capend > mp->b_wptr) { 2977 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2978 "malformed sub-capability too long for mblk"); 2979 return; 2980 } 2981 dld_ic = (dl_capab_dld_t *)(isub + 1); 2982 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 2983 cmn_err(CE_CONT, "ill_capability_dld_ack: " 2984 "unsupported DLD sub-capability (version %d, " 2985 "expected %d)", dld_ic->dld_version, 2986 DLD_CURRENT_VERSION); 2987 return; 2988 } 2989 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 2990 ip1dbg(("ill_capability_dld_ack: mid token for dld " 2991 "capability isn't as expected; pass-thru module(s) " 2992 "detected, discarding capability\n")); 2993 return; 2994 } 2995 2996 /* 2997 * Copy locally to ensure alignment. 2998 */ 2999 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 3000 3001 if ((idc = ill->ill_dld_capab) == NULL) { 3002 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 3003 if (idc == NULL) { 3004 cmn_err(CE_WARN, "ill_capability_dld_ack: " 3005 "could not enable DLD version %d " 3006 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 3007 ill->ill_name); 3008 return; 3009 } 3010 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 3011 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 3012 ill->ill_dld_capab = idc; 3013 } 3014 ip1dbg(("ill_capability_dld_ack: interface %s " 3015 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 3016 3017 ill_capability_dld_enable(ill); 3018 } 3019 3020 /* 3021 * Typically capability negotiation between IP and the driver happens via 3022 * DLPI message exchange. However GLD also offers a direct function call 3023 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 3024 * But arbitrary function calls into IP or GLD are not permitted, since both 3025 * of them are protected by their own perimeter mechanism. The perimeter can 3026 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 3027 * these perimeters is IP -> MAC. Thus for example to enable the squeue 3028 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 3029 * to enter the mac perimeter and then do the direct function calls into 3030 * GLD to enable squeue polling. The ring related callbacks from the mac into 3031 * the stack to add, bind, quiesce, restart or cleanup a ring are all 3032 * protected by the mac perimeter. 3033 */ 3034 static void 3035 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 3036 { 3037 ill_dld_capab_t *idc = ill->ill_dld_capab; 3038 int err; 3039 3040 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 3041 DLD_ENABLE); 3042 ASSERT(err == 0); 3043 } 3044 3045 static void 3046 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 3047 { 3048 ill_dld_capab_t *idc = ill->ill_dld_capab; 3049 int err; 3050 3051 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 3052 DLD_DISABLE); 3053 ASSERT(err == 0); 3054 } 3055 3056 boolean_t 3057 ill_mac_perim_held(ill_t *ill) 3058 { 3059 ill_dld_capab_t *idc = ill->ill_dld_capab; 3060 3061 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 3062 DLD_QUERY)); 3063 } 3064 3065 static void 3066 ill_capability_direct_enable(ill_t *ill) 3067 { 3068 ill_dld_capab_t *idc = ill->ill_dld_capab; 3069 ill_dld_direct_t *idd = &idc->idc_direct; 3070 dld_capab_direct_t direct; 3071 int rc; 3072 3073 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3074 3075 bzero(&direct, sizeof (direct)); 3076 direct.di_rx_cf = (uintptr_t)ip_input; 3077 direct.di_rx_ch = ill; 3078 3079 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 3080 DLD_ENABLE); 3081 if (rc == 0) { 3082 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 3083 idd->idd_tx_dh = direct.di_tx_dh; 3084 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 3085 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 3086 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 3087 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 3088 /* 3089 * One time registration of flow enable callback function 3090 */ 3091 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 3092 ill_flow_enable, ill); 3093 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 3094 DTRACE_PROBE1(direct_on, (ill_t *), ill); 3095 } else { 3096 cmn_err(CE_WARN, "warning: could not enable DIRECT " 3097 "capability, rc = %d\n", rc); 3098 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 3099 } 3100 } 3101 3102 static void 3103 ill_capability_poll_enable(ill_t *ill) 3104 { 3105 ill_dld_capab_t *idc = ill->ill_dld_capab; 3106 dld_capab_poll_t poll; 3107 int rc; 3108 3109 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3110 3111 bzero(&poll, sizeof (poll)); 3112 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 3113 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 3114 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 3115 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 3116 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 3117 poll.poll_ring_ch = ill; 3118 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 3119 DLD_ENABLE); 3120 if (rc == 0) { 3121 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 3122 DTRACE_PROBE1(poll_on, (ill_t *), ill); 3123 } else { 3124 ip1dbg(("warning: could not enable POLL " 3125 "capability, rc = %d\n", rc)); 3126 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 3127 } 3128 } 3129 3130 /* 3131 * Enable the LSO capability. 3132 */ 3133 static void 3134 ill_capability_lso_enable(ill_t *ill) 3135 { 3136 ill_dld_capab_t *idc = ill->ill_dld_capab; 3137 dld_capab_lso_t lso; 3138 int rc; 3139 3140 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3141 3142 if (ill->ill_lso_capab == NULL) { 3143 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3144 KM_NOSLEEP); 3145 if (ill->ill_lso_capab == NULL) { 3146 cmn_err(CE_WARN, "ill_capability_lso_enable: " 3147 "could not enable LSO for %s (ENOMEM)\n", 3148 ill->ill_name); 3149 return; 3150 } 3151 } 3152 3153 bzero(&lso, sizeof (lso)); 3154 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 3155 DLD_ENABLE)) == 0) { 3156 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 3157 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 3158 ill->ill_capabilities |= ILL_CAPAB_DLD_LSO; 3159 ip1dbg(("ill_capability_lso_enable: interface %s " 3160 "has enabled LSO\n ", ill->ill_name)); 3161 } else { 3162 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 3163 ill->ill_lso_capab = NULL; 3164 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 3165 } 3166 } 3167 3168 static void 3169 ill_capability_dld_enable(ill_t *ill) 3170 { 3171 mac_perim_handle_t mph; 3172 3173 ASSERT(IAM_WRITER_ILL(ill)); 3174 3175 if (ill->ill_isv6) 3176 return; 3177 3178 ill_mac_perim_enter(ill, &mph); 3179 if (!ill->ill_isv6) { 3180 ill_capability_direct_enable(ill); 3181 ill_capability_poll_enable(ill); 3182 ill_capability_lso_enable(ill); 3183 } 3184 ill->ill_capabilities |= ILL_CAPAB_DLD; 3185 ill_mac_perim_exit(ill, mph); 3186 } 3187 3188 static void 3189 ill_capability_dld_disable(ill_t *ill) 3190 { 3191 ill_dld_capab_t *idc; 3192 ill_dld_direct_t *idd; 3193 mac_perim_handle_t mph; 3194 3195 ASSERT(IAM_WRITER_ILL(ill)); 3196 3197 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 3198 return; 3199 3200 ill_mac_perim_enter(ill, &mph); 3201 3202 idc = ill->ill_dld_capab; 3203 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 3204 /* 3205 * For performance we avoid locks in the transmit data path 3206 * and don't maintain a count of the number of threads using 3207 * direct calls. Thus some threads could be using direct 3208 * transmit calls to GLD, even after the capability mechanism 3209 * turns it off. This is still safe since the handles used in 3210 * the direct calls continue to be valid until the unplumb is 3211 * completed. Remove the callback that was added (1-time) at 3212 * capab enable time. 3213 */ 3214 mutex_enter(&ill->ill_lock); 3215 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 3216 mutex_exit(&ill->ill_lock); 3217 if (ill->ill_flownotify_mh != NULL) { 3218 idd = &idc->idc_direct; 3219 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 3220 ill->ill_flownotify_mh); 3221 ill->ill_flownotify_mh = NULL; 3222 } 3223 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 3224 NULL, DLD_DISABLE); 3225 } 3226 3227 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 3228 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 3229 ip_squeue_clean_all(ill); 3230 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 3231 NULL, DLD_DISABLE); 3232 } 3233 3234 if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) { 3235 ASSERT(ill->ill_lso_capab != NULL); 3236 /* 3237 * Clear the capability flag for LSO but retain the 3238 * ill_lso_capab structure since it's possible that another 3239 * thread is still referring to it. The structure only gets 3240 * deallocated when we destroy the ill. 3241 */ 3242 3243 ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO; 3244 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 3245 NULL, DLD_DISABLE); 3246 } 3247 3248 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 3249 ill_mac_perim_exit(ill, mph); 3250 } 3251 3252 /* 3253 * Capability Negotiation protocol 3254 * 3255 * We don't wait for DLPI capability operations to finish during interface 3256 * bringup or teardown. Doing so would introduce more asynchrony and the 3257 * interface up/down operations will need multiple return and restarts. 3258 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 3259 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 3260 * exclusive operation won't start until the DLPI operations of the previous 3261 * exclusive operation complete. 3262 * 3263 * The capability state machine is shown below. 3264 * 3265 * state next state event, action 3266 * 3267 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 3268 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 3269 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 3270 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 3271 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 3272 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 3273 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 3274 * ill_capability_probe. 3275 */ 3276 3277 /* 3278 * Dedicated thread started from ip_stack_init that handles capability 3279 * disable. This thread ensures the taskq dispatch does not fail by waiting 3280 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 3281 * that direct calls to DLD are done in a cv_waitable context. 3282 */ 3283 void 3284 ill_taskq_dispatch(ip_stack_t *ipst) 3285 { 3286 callb_cpr_t cprinfo; 3287 char name[64]; 3288 mblk_t *mp; 3289 3290 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 3291 ipst->ips_netstack->netstack_stackid); 3292 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 3293 name); 3294 mutex_enter(&ipst->ips_capab_taskq_lock); 3295 3296 for (;;) { 3297 mp = list_head(&ipst->ips_capab_taskq_list); 3298 while (mp != NULL) { 3299 list_remove(&ipst->ips_capab_taskq_list, mp); 3300 mutex_exit(&ipst->ips_capab_taskq_lock); 3301 VERIFY(taskq_dispatch(system_taskq, 3302 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 3303 mutex_enter(&ipst->ips_capab_taskq_lock); 3304 mp = list_head(&ipst->ips_capab_taskq_list); 3305 } 3306 3307 if (ipst->ips_capab_taskq_quit) 3308 break; 3309 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3310 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 3311 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 3312 } 3313 VERIFY(list_head(&ipst->ips_capab_taskq_list) == NULL); 3314 CALLB_CPR_EXIT(&cprinfo); 3315 thread_exit(); 3316 } 3317 3318 /* 3319 * Consume a new-style hardware capabilities negotiation ack. 3320 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 3321 */ 3322 static void 3323 ill_capability_ack_thr(void *arg) 3324 { 3325 mblk_t *mp = arg; 3326 dl_capability_ack_t *capp; 3327 dl_capability_sub_t *subp, *endp; 3328 ill_t *ill; 3329 boolean_t reneg; 3330 3331 ill = (ill_t *)mp->b_prev; 3332 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 3333 3334 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 3335 ill->ill_dlpi_capab_state == IDCS_RENEG) { 3336 /* 3337 * We have received the ack for our DL_CAPAB reset request. 3338 * There isnt' anything in the message that needs processing. 3339 * All message based capabilities have been disabled, now 3340 * do the function call based capability disable. 3341 */ 3342 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 3343 ill_capability_dld_disable(ill); 3344 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 3345 if (reneg) 3346 ill_capability_probe(ill); 3347 goto done; 3348 } 3349 3350 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 3351 ill->ill_dlpi_capab_state = IDCS_OK; 3352 3353 capp = (dl_capability_ack_t *)mp->b_rptr; 3354 3355 if (capp->dl_sub_length == 0) { 3356 /* no new-style capabilities */ 3357 goto done; 3358 } 3359 3360 /* make sure the driver supplied correct dl_sub_length */ 3361 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3362 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3363 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3364 goto done; 3365 } 3366 3367 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3368 /* 3369 * There are sub-capabilities. Process the ones we know about. 3370 * Loop until we don't have room for another sub-cap header.. 3371 */ 3372 for (subp = SC(capp, capp->dl_sub_offset), 3373 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3374 subp <= endp; 3375 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3376 3377 switch (subp->dl_cap) { 3378 case DL_CAPAB_ID_WRAPPER: 3379 ill_capability_id_ack(ill, mp, subp); 3380 break; 3381 default: 3382 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3383 break; 3384 } 3385 } 3386 #undef SC 3387 done: 3388 inet_freemsg(mp); 3389 ill_capability_done(ill); 3390 ipsq_exit(ill->ill_phyint->phyint_ipsq); 3391 } 3392 3393 /* 3394 * This needs to be started in a taskq thread to provide a cv_waitable 3395 * context. 3396 */ 3397 void 3398 ill_capability_ack(ill_t *ill, mblk_t *mp) 3399 { 3400 ip_stack_t *ipst = ill->ill_ipst; 3401 3402 mp->b_prev = (mblk_t *)ill; 3403 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 3404 TQ_NOSLEEP) != 0) 3405 return; 3406 3407 /* 3408 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 3409 * which will do the dispatch using TQ_SLEEP to guarantee success. 3410 */ 3411 mutex_enter(&ipst->ips_capab_taskq_lock); 3412 list_insert_tail(&ipst->ips_capab_taskq_list, mp); 3413 cv_signal(&ipst->ips_capab_taskq_cv); 3414 mutex_exit(&ipst->ips_capab_taskq_lock); 3415 } 3416 3417 /* 3418 * This routine is called to scan the fragmentation reassembly table for 3419 * the specified ILL for any packets that are starting to smell. 3420 * dead_interval is the maximum time in seconds that will be tolerated. It 3421 * will either be the value specified in ip_g_frag_timeout, or zero if the 3422 * ILL is shutting down and it is time to blow everything off. 3423 * 3424 * It returns the number of seconds (as a time_t) that the next frag timer 3425 * should be scheduled for, 0 meaning that the timer doesn't need to be 3426 * re-started. Note that the method of calculating next_timeout isn't 3427 * entirely accurate since time will flow between the time we grab 3428 * current_time and the time we schedule the next timeout. This isn't a 3429 * big problem since this is the timer for sending an ICMP reassembly time 3430 * exceeded messages, and it doesn't have to be exactly accurate. 3431 * 3432 * This function is 3433 * sometimes called as writer, although this is not required. 3434 */ 3435 time_t 3436 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3437 { 3438 ipfb_t *ipfb; 3439 ipfb_t *endp; 3440 ipf_t *ipf; 3441 ipf_t *ipfnext; 3442 mblk_t *mp; 3443 time_t current_time = gethrestime_sec(); 3444 time_t next_timeout = 0; 3445 uint32_t hdr_length; 3446 mblk_t *send_icmp_head; 3447 mblk_t *send_icmp_head_v6; 3448 zoneid_t zoneid; 3449 ip_stack_t *ipst = ill->ill_ipst; 3450 3451 ipfb = ill->ill_frag_hash_tbl; 3452 if (ipfb == NULL) 3453 return (B_FALSE); 3454 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3455 /* Walk the frag hash table. */ 3456 for (; ipfb < endp; ipfb++) { 3457 send_icmp_head = NULL; 3458 send_icmp_head_v6 = NULL; 3459 mutex_enter(&ipfb->ipfb_lock); 3460 while ((ipf = ipfb->ipfb_ipf) != 0) { 3461 time_t frag_time = current_time - ipf->ipf_timestamp; 3462 time_t frag_timeout; 3463 3464 if (frag_time < dead_interval) { 3465 /* 3466 * There are some outstanding fragments 3467 * that will timeout later. Make note of 3468 * the time so that we can reschedule the 3469 * next timeout appropriately. 3470 */ 3471 frag_timeout = dead_interval - frag_time; 3472 if (next_timeout == 0 || 3473 frag_timeout < next_timeout) { 3474 next_timeout = frag_timeout; 3475 } 3476 break; 3477 } 3478 /* Time's up. Get it out of here. */ 3479 hdr_length = ipf->ipf_nf_hdr_len; 3480 ipfnext = ipf->ipf_hash_next; 3481 if (ipfnext) 3482 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3483 *ipf->ipf_ptphn = ipfnext; 3484 mp = ipf->ipf_mp->b_cont; 3485 for (; mp; mp = mp->b_cont) { 3486 /* Extra points for neatness. */ 3487 IP_REASS_SET_START(mp, 0); 3488 IP_REASS_SET_END(mp, 0); 3489 } 3490 mp = ipf->ipf_mp->b_cont; 3491 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3492 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3493 ipfb->ipfb_count -= ipf->ipf_count; 3494 ASSERT(ipfb->ipfb_frag_pkts > 0); 3495 ipfb->ipfb_frag_pkts--; 3496 /* 3497 * We do not send any icmp message from here because 3498 * we currently are holding the ipfb_lock for this 3499 * hash chain. If we try and send any icmp messages 3500 * from here we may end up via a put back into ip 3501 * trying to get the same lock, causing a recursive 3502 * mutex panic. Instead we build a list and send all 3503 * the icmp messages after we have dropped the lock. 3504 */ 3505 if (ill->ill_isv6) { 3506 if (hdr_length != 0) { 3507 mp->b_next = send_icmp_head_v6; 3508 send_icmp_head_v6 = mp; 3509 } else { 3510 freemsg(mp); 3511 } 3512 } else { 3513 if (hdr_length != 0) { 3514 mp->b_next = send_icmp_head; 3515 send_icmp_head = mp; 3516 } else { 3517 freemsg(mp); 3518 } 3519 } 3520 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3521 freeb(ipf->ipf_mp); 3522 } 3523 mutex_exit(&ipfb->ipfb_lock); 3524 /* 3525 * Now need to send any icmp messages that we delayed from 3526 * above. 3527 */ 3528 while (send_icmp_head_v6 != NULL) { 3529 ip6_t *ip6h; 3530 3531 mp = send_icmp_head_v6; 3532 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3533 mp->b_next = NULL; 3534 if (mp->b_datap->db_type == M_CTL) 3535 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3536 else 3537 ip6h = (ip6_t *)mp->b_rptr; 3538 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3539 ill, ipst); 3540 if (zoneid == ALL_ZONES) { 3541 freemsg(mp); 3542 } else { 3543 icmp_time_exceeded_v6(ill->ill_wq, mp, 3544 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3545 B_FALSE, zoneid, ipst); 3546 } 3547 } 3548 while (send_icmp_head != NULL) { 3549 ipaddr_t dst; 3550 3551 mp = send_icmp_head; 3552 send_icmp_head = send_icmp_head->b_next; 3553 mp->b_next = NULL; 3554 3555 if (mp->b_datap->db_type == M_CTL) 3556 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3557 else 3558 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3559 3560 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3561 if (zoneid == ALL_ZONES) { 3562 freemsg(mp); 3563 } else { 3564 icmp_time_exceeded(ill->ill_wq, mp, 3565 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3566 ipst); 3567 } 3568 } 3569 } 3570 /* 3571 * A non-dying ILL will use the return value to decide whether to 3572 * restart the frag timer, and for how long. 3573 */ 3574 return (next_timeout); 3575 } 3576 3577 /* 3578 * This routine is called when the approximate count of mblk memory used 3579 * for the specified ILL has exceeded max_count. 3580 */ 3581 void 3582 ill_frag_prune(ill_t *ill, uint_t max_count) 3583 { 3584 ipfb_t *ipfb; 3585 ipf_t *ipf; 3586 size_t count; 3587 3588 /* 3589 * If we are here within ip_min_frag_prune_time msecs remove 3590 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3591 * ill_frag_free_num_pkts. 3592 */ 3593 mutex_enter(&ill->ill_lock); 3594 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3595 (ip_min_frag_prune_time != 0 ? 3596 ip_min_frag_prune_time : msec_per_tick)) { 3597 3598 ill->ill_frag_free_num_pkts++; 3599 3600 } else { 3601 ill->ill_frag_free_num_pkts = 0; 3602 } 3603 ill->ill_last_frag_clean_time = lbolt; 3604 mutex_exit(&ill->ill_lock); 3605 3606 /* 3607 * free ill_frag_free_num_pkts oldest packets from each bucket. 3608 */ 3609 if (ill->ill_frag_free_num_pkts != 0) { 3610 int ix; 3611 3612 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3613 ipfb = &ill->ill_frag_hash_tbl[ix]; 3614 mutex_enter(&ipfb->ipfb_lock); 3615 if (ipfb->ipfb_ipf != NULL) { 3616 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3617 ill->ill_frag_free_num_pkts); 3618 } 3619 mutex_exit(&ipfb->ipfb_lock); 3620 } 3621 } 3622 /* 3623 * While the reassembly list for this ILL is too big, prune a fragment 3624 * queue by age, oldest first. 3625 */ 3626 while (ill->ill_frag_count > max_count) { 3627 int ix; 3628 ipfb_t *oipfb = NULL; 3629 uint_t oldest = UINT_MAX; 3630 3631 count = 0; 3632 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3633 ipfb = &ill->ill_frag_hash_tbl[ix]; 3634 mutex_enter(&ipfb->ipfb_lock); 3635 ipf = ipfb->ipfb_ipf; 3636 if (ipf != NULL && ipf->ipf_gen < oldest) { 3637 oldest = ipf->ipf_gen; 3638 oipfb = ipfb; 3639 } 3640 count += ipfb->ipfb_count; 3641 mutex_exit(&ipfb->ipfb_lock); 3642 } 3643 if (oipfb == NULL) 3644 break; 3645 3646 if (count <= max_count) 3647 return; /* Somebody beat us to it, nothing to do */ 3648 mutex_enter(&oipfb->ipfb_lock); 3649 ipf = oipfb->ipfb_ipf; 3650 if (ipf != NULL) { 3651 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3652 } 3653 mutex_exit(&oipfb->ipfb_lock); 3654 } 3655 } 3656 3657 /* 3658 * free 'free_cnt' fragmented packets starting at ipf. 3659 */ 3660 void 3661 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3662 { 3663 size_t count; 3664 mblk_t *mp; 3665 mblk_t *tmp; 3666 ipf_t **ipfp = ipf->ipf_ptphn; 3667 3668 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3669 ASSERT(ipfp != NULL); 3670 ASSERT(ipf != NULL); 3671 3672 while (ipf != NULL && free_cnt-- > 0) { 3673 count = ipf->ipf_count; 3674 mp = ipf->ipf_mp; 3675 ipf = ipf->ipf_hash_next; 3676 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3677 IP_REASS_SET_START(tmp, 0); 3678 IP_REASS_SET_END(tmp, 0); 3679 } 3680 atomic_add_32(&ill->ill_frag_count, -count); 3681 ASSERT(ipfb->ipfb_count >= count); 3682 ipfb->ipfb_count -= count; 3683 ASSERT(ipfb->ipfb_frag_pkts > 0); 3684 ipfb->ipfb_frag_pkts--; 3685 freemsg(mp); 3686 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3687 } 3688 3689 if (ipf) 3690 ipf->ipf_ptphn = ipfp; 3691 ipfp[0] = ipf; 3692 } 3693 3694 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3695 "obsolete and may be removed in a future release of Solaris. Use " \ 3696 "ifconfig(1M) to manipulate the forwarding status of an interface." 3697 3698 /* 3699 * For obsolete per-interface forwarding configuration; 3700 * called in response to ND_GET. 3701 */ 3702 /* ARGSUSED */ 3703 static int 3704 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3705 { 3706 ill_t *ill = (ill_t *)cp; 3707 3708 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3709 3710 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3711 return (0); 3712 } 3713 3714 /* 3715 * For obsolete per-interface forwarding configuration; 3716 * called in response to ND_SET. 3717 */ 3718 /* ARGSUSED */ 3719 static int 3720 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3721 cred_t *ioc_cr) 3722 { 3723 long value; 3724 int retval; 3725 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3726 3727 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3728 3729 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3730 value < 0 || value > 1) { 3731 return (EINVAL); 3732 } 3733 3734 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3735 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3736 rw_exit(&ipst->ips_ill_g_lock); 3737 return (retval); 3738 } 3739 3740 /* 3741 * Helper function for ill_forward_set(). 3742 */ 3743 static void 3744 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 3745 { 3746 ip_stack_t *ipst = ill->ill_ipst; 3747 3748 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3749 3750 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3751 (enable ? "Enabling" : "Disabling"), 3752 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3753 mutex_enter(&ill->ill_lock); 3754 if (enable) 3755 ill->ill_flags |= ILLF_ROUTER; 3756 else 3757 ill->ill_flags &= ~ILLF_ROUTER; 3758 mutex_exit(&ill->ill_lock); 3759 if (ill->ill_isv6) 3760 ill_set_nce_router_flags(ill, enable); 3761 /* Notify routing socket listeners of this change. */ 3762 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 3763 } 3764 3765 /* 3766 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 3767 * socket messages for each interface whose flags we change. 3768 */ 3769 int 3770 ill_forward_set(ill_t *ill, boolean_t enable) 3771 { 3772 ipmp_illgrp_t *illg; 3773 ip_stack_t *ipst = ill->ill_ipst; 3774 3775 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3776 3777 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3778 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3779 return (0); 3780 3781 if (IS_LOOPBACK(ill)) 3782 return (EINVAL); 3783 3784 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 3785 /* 3786 * Update all of the interfaces in the group. 3787 */ 3788 illg = ill->ill_grp; 3789 ill = list_head(&illg->ig_if); 3790 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 3791 ill_forward_set_on_ill(ill, enable); 3792 3793 /* 3794 * Update the IPMP meta-interface. 3795 */ 3796 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 3797 return (0); 3798 } 3799 3800 ill_forward_set_on_ill(ill, enable); 3801 return (0); 3802 } 3803 3804 /* 3805 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3806 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3807 * set or clear. 3808 */ 3809 static void 3810 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3811 { 3812 ipif_t *ipif; 3813 nce_t *nce; 3814 3815 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3816 /* 3817 * NOTE: we match across the illgrp because nce's for 3818 * addresses on IPMP interfaces have an nce_ill that points to 3819 * the bound underlying ill. 3820 */ 3821 nce = ndp_lookup_v6(ill, B_TRUE, &ipif->ipif_v6lcl_addr, 3822 B_FALSE); 3823 if (nce != NULL) { 3824 mutex_enter(&nce->nce_lock); 3825 if (enable) 3826 nce->nce_flags |= NCE_F_ISROUTER; 3827 else 3828 nce->nce_flags &= ~NCE_F_ISROUTER; 3829 mutex_exit(&nce->nce_lock); 3830 NCE_REFRELE(nce); 3831 } 3832 } 3833 } 3834 3835 /* 3836 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3837 * for this ill. Make sure the v6/v4 question has been answered about this 3838 * ill. The creation of this ndd variable is only for backwards compatibility. 3839 * The preferred way to control per-interface IP forwarding is through the 3840 * ILLF_ROUTER interface flag. 3841 */ 3842 static int 3843 ill_set_ndd_name(ill_t *ill) 3844 { 3845 char *suffix; 3846 ip_stack_t *ipst = ill->ill_ipst; 3847 3848 ASSERT(IAM_WRITER_ILL(ill)); 3849 3850 if (ill->ill_isv6) 3851 suffix = ipv6_forward_suffix; 3852 else 3853 suffix = ipv4_forward_suffix; 3854 3855 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3856 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3857 /* 3858 * Copies over the '\0'. 3859 * Note that strlen(suffix) is always bounded. 3860 */ 3861 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3862 strlen(suffix) + 1); 3863 3864 /* 3865 * Use of the nd table requires holding the reader lock. 3866 * Modifying the nd table thru nd_load/nd_unload requires 3867 * the writer lock. 3868 */ 3869 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 3870 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3871 nd_ill_forward_set, (caddr_t)ill)) { 3872 /* 3873 * If the nd_load failed, it only meant that it could not 3874 * allocate a new bunch of room for further NDD expansion. 3875 * Because of that, the ill_ndd_name will be set to 0, and 3876 * this interface is at the mercy of the global ip_forwarding 3877 * variable. 3878 */ 3879 rw_exit(&ipst->ips_ip_g_nd_lock); 3880 ill->ill_ndd_name = NULL; 3881 return (ENOMEM); 3882 } 3883 rw_exit(&ipst->ips_ip_g_nd_lock); 3884 return (0); 3885 } 3886 3887 /* 3888 * Intializes the context structure and returns the first ill in the list 3889 * cuurently start_list and end_list can have values: 3890 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3891 * IP_V4_G_HEAD Traverse IPV4 list only. 3892 * IP_V6_G_HEAD Traverse IPV6 list only. 3893 */ 3894 3895 /* 3896 * We don't check for CONDEMNED ills here. Caller must do that if 3897 * necessary under the ill lock. 3898 */ 3899 ill_t * 3900 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 3901 ip_stack_t *ipst) 3902 { 3903 ill_if_t *ifp; 3904 ill_t *ill; 3905 avl_tree_t *avl_tree; 3906 3907 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3908 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3909 3910 /* 3911 * setup the lists to search 3912 */ 3913 if (end_list != MAX_G_HEADS) { 3914 ctx->ctx_current_list = start_list; 3915 ctx->ctx_last_list = end_list; 3916 } else { 3917 ctx->ctx_last_list = MAX_G_HEADS - 1; 3918 ctx->ctx_current_list = 0; 3919 } 3920 3921 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3922 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3923 if (ifp != (ill_if_t *) 3924 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3925 avl_tree = &ifp->illif_avl_by_ppa; 3926 ill = avl_first(avl_tree); 3927 /* 3928 * ill is guaranteed to be non NULL or ifp should have 3929 * not existed. 3930 */ 3931 ASSERT(ill != NULL); 3932 return (ill); 3933 } 3934 ctx->ctx_current_list++; 3935 } 3936 3937 return (NULL); 3938 } 3939 3940 /* 3941 * returns the next ill in the list. ill_first() must have been called 3942 * before calling ill_next() or bad things will happen. 3943 */ 3944 3945 /* 3946 * We don't check for CONDEMNED ills here. Caller must do that if 3947 * necessary under the ill lock. 3948 */ 3949 ill_t * 3950 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3951 { 3952 ill_if_t *ifp; 3953 ill_t *ill; 3954 ip_stack_t *ipst = lastill->ill_ipst; 3955 3956 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3957 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 3958 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3959 AVL_AFTER)) != NULL) { 3960 return (ill); 3961 } 3962 3963 /* goto next ill_ifp in the list. */ 3964 ifp = lastill->ill_ifptr->illif_next; 3965 3966 /* make sure not at end of circular list */ 3967 while (ifp == 3968 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3969 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3970 return (NULL); 3971 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3972 } 3973 3974 return (avl_first(&ifp->illif_avl_by_ppa)); 3975 } 3976 3977 /* 3978 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 3979 * The final number (PPA) must not have any leading zeros. Upon success, a 3980 * pointer to the start of the PPA is returned; otherwise NULL is returned. 3981 */ 3982 static char * 3983 ill_get_ppa_ptr(char *name) 3984 { 3985 int namelen = strlen(name); 3986 int end_ndx = namelen - 1; 3987 int ppa_ndx, i; 3988 3989 /* 3990 * Check that the first character is [a-zA-Z], and that the last 3991 * character is [0-9]. 3992 */ 3993 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 3994 return (NULL); 3995 3996 /* 3997 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 3998 */ 3999 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 4000 if (!isdigit(name[ppa_ndx - 1])) 4001 break; 4002 4003 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 4004 return (NULL); 4005 4006 /* 4007 * Check that the intermediate characters are [a-z0-9.] 4008 */ 4009 for (i = 1; i < ppa_ndx; i++) { 4010 if (!isalpha(name[i]) && !isdigit(name[i]) && 4011 name[i] != '.' && name[i] != '_') { 4012 return (NULL); 4013 } 4014 } 4015 4016 return (name + ppa_ndx); 4017 } 4018 4019 /* 4020 * use avl tree to locate the ill. 4021 */ 4022 static ill_t * 4023 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4024 ipsq_func_t func, int *error, ip_stack_t *ipst) 4025 { 4026 char *ppa_ptr = NULL; 4027 int len; 4028 uint_t ppa; 4029 ill_t *ill = NULL; 4030 ill_if_t *ifp; 4031 int list; 4032 ipsq_t *ipsq; 4033 4034 if (error != NULL) 4035 *error = 0; 4036 4037 /* 4038 * get ppa ptr 4039 */ 4040 if (isv6) 4041 list = IP_V6_G_HEAD; 4042 else 4043 list = IP_V4_G_HEAD; 4044 4045 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4046 if (error != NULL) 4047 *error = ENXIO; 4048 return (NULL); 4049 } 4050 4051 len = ppa_ptr - name + 1; 4052 4053 ppa = stoi(&ppa_ptr); 4054 4055 ifp = IP_VX_ILL_G_LIST(list, ipst); 4056 4057 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4058 /* 4059 * match is done on len - 1 as the name is not null 4060 * terminated it contains ppa in addition to the interface 4061 * name. 4062 */ 4063 if ((ifp->illif_name_len == len) && 4064 bcmp(ifp->illif_name, name, len - 1) == 0) { 4065 break; 4066 } else { 4067 ifp = ifp->illif_next; 4068 } 4069 } 4070 4071 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4072 /* 4073 * Even the interface type does not exist. 4074 */ 4075 if (error != NULL) 4076 *error = ENXIO; 4077 return (NULL); 4078 } 4079 4080 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4081 if (ill != NULL) { 4082 /* 4083 * The block comment at the start of ipif_down 4084 * explains the use of the macros used below 4085 */ 4086 GRAB_CONN_LOCK(q); 4087 mutex_enter(&ill->ill_lock); 4088 if (ILL_CAN_LOOKUP(ill)) { 4089 ill_refhold_locked(ill); 4090 mutex_exit(&ill->ill_lock); 4091 RELEASE_CONN_LOCK(q); 4092 return (ill); 4093 } else if (ILL_CAN_WAIT(ill, q)) { 4094 ipsq = ill->ill_phyint->phyint_ipsq; 4095 mutex_enter(&ipsq->ipsq_lock); 4096 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 4097 mutex_exit(&ill->ill_lock); 4098 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4099 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 4100 mutex_exit(&ipsq->ipsq_lock); 4101 RELEASE_CONN_LOCK(q); 4102 if (error != NULL) 4103 *error = EINPROGRESS; 4104 return (NULL); 4105 } 4106 mutex_exit(&ill->ill_lock); 4107 RELEASE_CONN_LOCK(q); 4108 } 4109 if (error != NULL) 4110 *error = ENXIO; 4111 return (NULL); 4112 } 4113 4114 /* 4115 * comparison function for use with avl. 4116 */ 4117 static int 4118 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4119 { 4120 uint_t ppa; 4121 uint_t ill_ppa; 4122 4123 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4124 4125 ppa = *((uint_t *)ppa_ptr); 4126 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4127 /* 4128 * We want the ill with the lowest ppa to be on the 4129 * top. 4130 */ 4131 if (ill_ppa < ppa) 4132 return (1); 4133 if (ill_ppa > ppa) 4134 return (-1); 4135 return (0); 4136 } 4137 4138 /* 4139 * remove an interface type from the global list. 4140 */ 4141 static void 4142 ill_delete_interface_type(ill_if_t *interface) 4143 { 4144 ASSERT(interface != NULL); 4145 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4146 4147 avl_destroy(&interface->illif_avl_by_ppa); 4148 if (interface->illif_ppa_arena != NULL) 4149 vmem_destroy(interface->illif_ppa_arena); 4150 4151 remque(interface); 4152 4153 mi_free(interface); 4154 } 4155 4156 /* 4157 * remove ill from the global list. 4158 */ 4159 static void 4160 ill_glist_delete(ill_t *ill) 4161 { 4162 ip_stack_t *ipst; 4163 phyint_t *phyi; 4164 4165 if (ill == NULL) 4166 return; 4167 ipst = ill->ill_ipst; 4168 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4169 4170 /* 4171 * If the ill was never inserted into the AVL tree 4172 * we skip the if branch. 4173 */ 4174 if (ill->ill_ifptr != NULL) { 4175 /* 4176 * remove from AVL tree and free ppa number 4177 */ 4178 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4179 4180 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4181 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4182 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4183 } 4184 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4185 ill_delete_interface_type(ill->ill_ifptr); 4186 } 4187 4188 /* 4189 * Indicate ill is no longer in the list. 4190 */ 4191 ill->ill_ifptr = NULL; 4192 ill->ill_name_length = 0; 4193 ill->ill_name[0] = '\0'; 4194 ill->ill_ppa = UINT_MAX; 4195 } 4196 4197 /* Generate one last event for this ill. */ 4198 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 4199 ill->ill_name_length); 4200 4201 ASSERT(ill->ill_phyint != NULL); 4202 phyi = ill->ill_phyint; 4203 ill->ill_phyint = NULL; 4204 4205 /* 4206 * ill_init allocates a phyint always to store the copy 4207 * of flags relevant to phyint. At that point in time, we could 4208 * not assign the name and hence phyint_illv4/v6 could not be 4209 * initialized. Later in ipif_set_values, we assign the name to 4210 * the ill, at which point in time we assign phyint_illv4/v6. 4211 * Thus we don't rely on phyint_illv6 to be initialized always. 4212 */ 4213 if (ill->ill_flags & ILLF_IPV6) 4214 phyi->phyint_illv6 = NULL; 4215 else 4216 phyi->phyint_illv4 = NULL; 4217 4218 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 4219 rw_exit(&ipst->ips_ill_g_lock); 4220 return; 4221 } 4222 4223 /* 4224 * There are no ills left on this phyint; pull it out of the phyint 4225 * avl trees, and free it. 4226 */ 4227 if (phyi->phyint_ifindex > 0) { 4228 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4229 phyi); 4230 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4231 phyi); 4232 } 4233 rw_exit(&ipst->ips_ill_g_lock); 4234 4235 phyint_free(phyi); 4236 } 4237 4238 /* 4239 * allocate a ppa, if the number of plumbed interfaces of this type are 4240 * less than ill_no_arena do a linear search to find a unused ppa. 4241 * When the number goes beyond ill_no_arena switch to using an arena. 4242 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4243 * is the return value for an error condition, so allocation starts at one 4244 * and is decremented by one. 4245 */ 4246 static int 4247 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4248 { 4249 ill_t *tmp_ill; 4250 uint_t start, end; 4251 int ppa; 4252 4253 if (ifp->illif_ppa_arena == NULL && 4254 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4255 /* 4256 * Create an arena. 4257 */ 4258 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4259 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4260 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4261 /* allocate what has already been assigned */ 4262 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4263 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4264 tmp_ill, AVL_AFTER)) { 4265 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4266 1, /* size */ 4267 1, /* align/quantum */ 4268 0, /* phase */ 4269 0, /* nocross */ 4270 /* minaddr */ 4271 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4272 /* maxaddr */ 4273 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4274 VM_NOSLEEP|VM_FIRSTFIT); 4275 if (ppa == 0) { 4276 ip1dbg(("ill_alloc_ppa: ppa allocation" 4277 " failed while switching")); 4278 vmem_destroy(ifp->illif_ppa_arena); 4279 ifp->illif_ppa_arena = NULL; 4280 break; 4281 } 4282 } 4283 } 4284 4285 if (ifp->illif_ppa_arena != NULL) { 4286 if (ill->ill_ppa == UINT_MAX) { 4287 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4288 1, VM_NOSLEEP|VM_FIRSTFIT); 4289 if (ppa == 0) 4290 return (EAGAIN); 4291 ill->ill_ppa = --ppa; 4292 } else { 4293 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4294 1, /* size */ 4295 1, /* align/quantum */ 4296 0, /* phase */ 4297 0, /* nocross */ 4298 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4299 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4300 VM_NOSLEEP|VM_FIRSTFIT); 4301 /* 4302 * Most likely the allocation failed because 4303 * the requested ppa was in use. 4304 */ 4305 if (ppa == 0) 4306 return (EEXIST); 4307 } 4308 return (0); 4309 } 4310 4311 /* 4312 * No arena is in use and not enough (>ill_no_arena) interfaces have 4313 * been plumbed to create one. Do a linear search to get a unused ppa. 4314 */ 4315 if (ill->ill_ppa == UINT_MAX) { 4316 end = UINT_MAX - 1; 4317 start = 0; 4318 } else { 4319 end = start = ill->ill_ppa; 4320 } 4321 4322 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4323 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4324 if (start++ >= end) { 4325 if (ill->ill_ppa == UINT_MAX) 4326 return (EAGAIN); 4327 else 4328 return (EEXIST); 4329 } 4330 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4331 } 4332 ill->ill_ppa = start; 4333 return (0); 4334 } 4335 4336 /* 4337 * Insert ill into the list of configured ill's. Once this function completes, 4338 * the ill is globally visible and is available through lookups. More precisely 4339 * this happens after the caller drops the ill_g_lock. 4340 */ 4341 static int 4342 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4343 { 4344 ill_if_t *ill_interface; 4345 avl_index_t where = 0; 4346 int error; 4347 int name_length; 4348 int index; 4349 boolean_t check_length = B_FALSE; 4350 ip_stack_t *ipst = ill->ill_ipst; 4351 4352 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4353 4354 name_length = mi_strlen(name) + 1; 4355 4356 if (isv6) 4357 index = IP_V6_G_HEAD; 4358 else 4359 index = IP_V4_G_HEAD; 4360 4361 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4362 /* 4363 * Search for interface type based on name 4364 */ 4365 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4366 if ((ill_interface->illif_name_len == name_length) && 4367 (strcmp(ill_interface->illif_name, name) == 0)) { 4368 break; 4369 } 4370 ill_interface = ill_interface->illif_next; 4371 } 4372 4373 /* 4374 * Interface type not found, create one. 4375 */ 4376 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4377 ill_g_head_t ghead; 4378 4379 /* 4380 * allocate ill_if_t structure 4381 */ 4382 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4383 if (ill_interface == NULL) { 4384 return (ENOMEM); 4385 } 4386 4387 (void) strcpy(ill_interface->illif_name, name); 4388 ill_interface->illif_name_len = name_length; 4389 4390 avl_create(&ill_interface->illif_avl_by_ppa, 4391 ill_compare_ppa, sizeof (ill_t), 4392 offsetof(struct ill_s, ill_avl_byppa)); 4393 4394 /* 4395 * link the structure in the back to maintain order 4396 * of configuration for ifconfig output. 4397 */ 4398 ghead = ipst->ips_ill_g_heads[index]; 4399 insque(ill_interface, ghead.ill_g_list_tail); 4400 } 4401 4402 if (ill->ill_ppa == UINT_MAX) 4403 check_length = B_TRUE; 4404 4405 error = ill_alloc_ppa(ill_interface, ill); 4406 if (error != 0) { 4407 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4408 ill_delete_interface_type(ill->ill_ifptr); 4409 return (error); 4410 } 4411 4412 /* 4413 * When the ppa is choosen by the system, check that there is 4414 * enough space to insert ppa. if a specific ppa was passed in this 4415 * check is not required as the interface name passed in will have 4416 * the right ppa in it. 4417 */ 4418 if (check_length) { 4419 /* 4420 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4421 */ 4422 char buf[sizeof (uint_t) * 3]; 4423 4424 /* 4425 * convert ppa to string to calculate the amount of space 4426 * required for it in the name. 4427 */ 4428 numtos(ill->ill_ppa, buf); 4429 4430 /* Do we have enough space to insert ppa ? */ 4431 4432 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4433 /* Free ppa and interface type struct */ 4434 if (ill_interface->illif_ppa_arena != NULL) { 4435 vmem_free(ill_interface->illif_ppa_arena, 4436 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4437 } 4438 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4439 ill_delete_interface_type(ill->ill_ifptr); 4440 4441 return (EINVAL); 4442 } 4443 } 4444 4445 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4446 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4447 4448 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4449 &where); 4450 ill->ill_ifptr = ill_interface; 4451 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4452 4453 ill_phyint_reinit(ill); 4454 return (0); 4455 } 4456 4457 /* Initialize the per phyint ipsq used for serialization */ 4458 static boolean_t 4459 ipsq_init(ill_t *ill, boolean_t enter) 4460 { 4461 ipsq_t *ipsq; 4462 ipxop_t *ipx; 4463 4464 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 4465 return (B_FALSE); 4466 4467 ill->ill_phyint->phyint_ipsq = ipsq; 4468 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 4469 ipx->ipx_ipsq = ipsq; 4470 ipsq->ipsq_next = ipsq; 4471 ipsq->ipsq_phyint = ill->ill_phyint; 4472 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4473 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 4474 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4475 if (enter) { 4476 ipx->ipx_writer = curthread; 4477 ipx->ipx_forced = B_FALSE; 4478 ipx->ipx_reentry_cnt = 1; 4479 #ifdef DEBUG 4480 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 4481 #endif 4482 } 4483 return (B_TRUE); 4484 } 4485 4486 /* 4487 * ill_init is called by ip_open when a device control stream is opened. 4488 * It does a few initializations, and shoots a DL_INFO_REQ message down 4489 * to the driver. The response is later picked up in ip_rput_dlpi and 4490 * used to set up default mechanisms for talking to the driver. (Always 4491 * called as writer.) 4492 * 4493 * If this function returns error, ip_open will call ip_close which in 4494 * turn will call ill_delete to clean up any memory allocated here that 4495 * is not yet freed. 4496 */ 4497 int 4498 ill_init(queue_t *q, ill_t *ill) 4499 { 4500 int count; 4501 dl_info_req_t *dlir; 4502 mblk_t *info_mp; 4503 uchar_t *frag_ptr; 4504 4505 /* 4506 * The ill is initialized to zero by mi_alloc*(). In addition 4507 * some fields already contain valid values, initialized in 4508 * ip_open(), before we reach here. 4509 */ 4510 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4511 4512 ill->ill_rq = q; 4513 ill->ill_wq = WR(q); 4514 4515 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4516 BPRI_HI); 4517 if (info_mp == NULL) 4518 return (ENOMEM); 4519 4520 /* 4521 * Allocate sufficient space to contain our fragment hash table and 4522 * the device name. 4523 */ 4524 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4525 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4526 if (frag_ptr == NULL) { 4527 freemsg(info_mp); 4528 return (ENOMEM); 4529 } 4530 ill->ill_frag_ptr = frag_ptr; 4531 ill->ill_frag_free_num_pkts = 0; 4532 ill->ill_last_frag_clean_time = 0; 4533 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4534 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4535 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4536 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4537 NULL, MUTEX_DEFAULT, NULL); 4538 } 4539 4540 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4541 if (ill->ill_phyint == NULL) { 4542 freemsg(info_mp); 4543 mi_free(frag_ptr); 4544 return (ENOMEM); 4545 } 4546 4547 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4548 /* 4549 * For now pretend this is a v4 ill. We need to set phyint_ill* 4550 * at this point because of the following reason. If we can't 4551 * enter the ipsq at some point and cv_wait, the writer that 4552 * wakes us up tries to locate us using the list of all phyints 4553 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4554 * If we don't set it now, we risk a missed wakeup. 4555 */ 4556 ill->ill_phyint->phyint_illv4 = ill; 4557 ill->ill_ppa = UINT_MAX; 4558 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4559 4560 if (!ipsq_init(ill, B_TRUE)) { 4561 freemsg(info_mp); 4562 mi_free(frag_ptr); 4563 mi_free(ill->ill_phyint); 4564 return (ENOMEM); 4565 } 4566 4567 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4568 4569 /* Frag queue limit stuff */ 4570 ill->ill_frag_count = 0; 4571 ill->ill_ipf_gen = 0; 4572 4573 ill->ill_global_timer = INFINITY; 4574 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4575 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4576 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4577 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4578 4579 /* 4580 * Initialize IPv6 configuration variables. The IP module is always 4581 * opened as an IPv4 module. Instead tracking down the cases where 4582 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4583 * here for convenience, this has no effect until the ill is set to do 4584 * IPv6. 4585 */ 4586 ill->ill_reachable_time = ND_REACHABLE_TIME; 4587 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4588 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4589 ill->ill_max_buf = ND_MAX_Q; 4590 ill->ill_refcnt = 0; 4591 4592 /* Send down the Info Request to the driver. */ 4593 info_mp->b_datap->db_type = M_PCPROTO; 4594 dlir = (dl_info_req_t *)info_mp->b_rptr; 4595 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4596 dlir->dl_primitive = DL_INFO_REQ; 4597 4598 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4599 4600 qprocson(q); 4601 ill_dlpi_send(ill, info_mp); 4602 4603 return (0); 4604 } 4605 4606 /* 4607 * ill_dls_info 4608 * creates datalink socket info from the device. 4609 */ 4610 int 4611 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4612 { 4613 size_t len; 4614 ill_t *ill = ipif->ipif_ill; 4615 4616 sdl->sdl_family = AF_LINK; 4617 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4618 sdl->sdl_type = ill->ill_type; 4619 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4620 len = strlen(sdl->sdl_data); 4621 ASSERT(len < 256); 4622 sdl->sdl_nlen = (uchar_t)len; 4623 sdl->sdl_alen = ill->ill_phys_addr_length; 4624 sdl->sdl_slen = 0; 4625 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4626 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4627 4628 return (sizeof (struct sockaddr_dl)); 4629 } 4630 4631 /* 4632 * ill_xarp_info 4633 * creates xarp info from the device. 4634 */ 4635 static int 4636 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4637 { 4638 sdl->sdl_family = AF_LINK; 4639 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4640 sdl->sdl_type = ill->ill_type; 4641 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4642 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4643 sdl->sdl_alen = ill->ill_phys_addr_length; 4644 sdl->sdl_slen = 0; 4645 return (sdl->sdl_nlen); 4646 } 4647 4648 static int 4649 loopback_kstat_update(kstat_t *ksp, int rw) 4650 { 4651 kstat_named_t *kn; 4652 netstackid_t stackid; 4653 netstack_t *ns; 4654 ip_stack_t *ipst; 4655 4656 if (ksp == NULL || ksp->ks_data == NULL) 4657 return (EIO); 4658 4659 if (rw == KSTAT_WRITE) 4660 return (EACCES); 4661 4662 kn = KSTAT_NAMED_PTR(ksp); 4663 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4664 4665 ns = netstack_find_by_stackid(stackid); 4666 if (ns == NULL) 4667 return (-1); 4668 4669 ipst = ns->netstack_ip; 4670 if (ipst == NULL) { 4671 netstack_rele(ns); 4672 return (-1); 4673 } 4674 kn[0].value.ui32 = ipst->ips_loopback_packets; 4675 kn[1].value.ui32 = ipst->ips_loopback_packets; 4676 netstack_rele(ns); 4677 return (0); 4678 } 4679 4680 /* 4681 * Has ifindex been plumbed already? 4682 */ 4683 boolean_t 4684 phyint_exists(uint_t index, ip_stack_t *ipst) 4685 { 4686 ASSERT(index != 0); 4687 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4688 4689 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4690 &index, NULL) != NULL); 4691 } 4692 4693 /* Pick a unique ifindex */ 4694 boolean_t 4695 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4696 { 4697 uint_t starting_index; 4698 4699 if (!ipst->ips_ill_index_wrap) { 4700 *indexp = ipst->ips_ill_index++; 4701 if (ipst->ips_ill_index == 0) { 4702 /* Reached the uint_t limit Next time wrap */ 4703 ipst->ips_ill_index_wrap = B_TRUE; 4704 } 4705 return (B_TRUE); 4706 } 4707 4708 /* 4709 * Start reusing unused indexes. Note that we hold the ill_g_lock 4710 * at this point and don't want to call any function that attempts 4711 * to get the lock again. 4712 */ 4713 starting_index = ipst->ips_ill_index++; 4714 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4715 if (ipst->ips_ill_index != 0 && 4716 !phyint_exists(ipst->ips_ill_index, ipst)) { 4717 /* found unused index - use it */ 4718 *indexp = ipst->ips_ill_index; 4719 return (B_TRUE); 4720 } 4721 } 4722 4723 /* 4724 * all interface indicies are inuse. 4725 */ 4726 return (B_FALSE); 4727 } 4728 4729 /* 4730 * Assign a unique interface index for the phyint. 4731 */ 4732 static boolean_t 4733 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4734 { 4735 ASSERT(phyi->phyint_ifindex == 0); 4736 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4737 } 4738 4739 /* 4740 * Return a pointer to the ill which matches the supplied name. Note that 4741 * the ill name length includes the null termination character. (May be 4742 * called as writer.) 4743 * If do_alloc and the interface is "lo0" it will be automatically created. 4744 * Cannot bump up reference on condemned ills. So dup detect can't be done 4745 * using this func. 4746 */ 4747 ill_t * 4748 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4749 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4750 ip_stack_t *ipst) 4751 { 4752 ill_t *ill; 4753 ipif_t *ipif; 4754 ipsq_t *ipsq; 4755 kstat_named_t *kn; 4756 boolean_t isloopback; 4757 in6_addr_t ov6addr; 4758 4759 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4760 4761 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4762 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4763 rw_exit(&ipst->ips_ill_g_lock); 4764 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4765 return (ill); 4766 4767 /* 4768 * Couldn't find it. Does this happen to be a lookup for the 4769 * loopback device and are we allowed to allocate it? 4770 */ 4771 if (!isloopback || !do_alloc) 4772 return (NULL); 4773 4774 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4775 4776 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4777 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4778 rw_exit(&ipst->ips_ill_g_lock); 4779 return (ill); 4780 } 4781 4782 /* Create the loopback device on demand */ 4783 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4784 sizeof (ipif_loopback_name), BPRI_MED)); 4785 if (ill == NULL) 4786 goto done; 4787 4788 *ill = ill_null; 4789 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4790 ill->ill_ipst = ipst; 4791 netstack_hold(ipst->ips_netstack); 4792 /* 4793 * For exclusive stacks we set the zoneid to zero 4794 * to make IP operate as if in the global zone. 4795 */ 4796 ill->ill_zoneid = GLOBAL_ZONEID; 4797 4798 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4799 if (ill->ill_phyint == NULL) 4800 goto done; 4801 4802 if (isv6) 4803 ill->ill_phyint->phyint_illv6 = ill; 4804 else 4805 ill->ill_phyint->phyint_illv4 = ill; 4806 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4807 ill->ill_max_frag = IP_LOOPBACK_MTU; 4808 /* Add room for tcp+ip headers */ 4809 if (isv6) { 4810 ill->ill_isv6 = B_TRUE; 4811 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4812 } else { 4813 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4814 } 4815 if (!ill_allocate_mibs(ill)) 4816 goto done; 4817 ill->ill_max_mtu = ill->ill_max_frag; 4818 /* 4819 * ipif_loopback_name can't be pointed at directly because its used 4820 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4821 * from the glist, ill_glist_delete() sets the first character of 4822 * ill_name to '\0'. 4823 */ 4824 ill->ill_name = (char *)ill + sizeof (*ill); 4825 (void) strcpy(ill->ill_name, ipif_loopback_name); 4826 ill->ill_name_length = sizeof (ipif_loopback_name); 4827 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4828 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4829 4830 ill->ill_global_timer = INFINITY; 4831 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4832 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4833 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4834 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4835 4836 /* No resolver here. */ 4837 ill->ill_net_type = IRE_LOOPBACK; 4838 4839 /* Initialize the ipsq */ 4840 if (!ipsq_init(ill, B_FALSE)) 4841 goto done; 4842 4843 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); 4844 if (ipif == NULL) 4845 goto done; 4846 4847 ill->ill_flags = ILLF_MULTICAST; 4848 4849 ov6addr = ipif->ipif_v6lcl_addr; 4850 /* Set up default loopback address and mask. */ 4851 if (!isv6) { 4852 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4853 4854 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4855 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4856 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4857 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4858 ipif->ipif_v6subnet); 4859 ill->ill_flags |= ILLF_IPV4; 4860 } else { 4861 ipif->ipif_v6lcl_addr = ipv6_loopback; 4862 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4863 ipif->ipif_v6net_mask = ipv6_all_ones; 4864 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4865 ipif->ipif_v6subnet); 4866 ill->ill_flags |= ILLF_IPV6; 4867 } 4868 4869 /* 4870 * Chain us in at the end of the ill list. hold the ill 4871 * before we make it globally visible. 1 for the lookup. 4872 */ 4873 ill->ill_refcnt = 0; 4874 ill_refhold(ill); 4875 4876 ill->ill_frag_count = 0; 4877 ill->ill_frag_free_num_pkts = 0; 4878 ill->ill_last_frag_clean_time = 0; 4879 4880 ipsq = ill->ill_phyint->phyint_ipsq; 4881 4882 if (ill_glist_insert(ill, "lo", isv6) != 0) 4883 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4884 4885 /* Let SCTP know so that it can add this to its list */ 4886 sctp_update_ill(ill, SCTP_ILL_INSERT); 4887 4888 /* 4889 * We have already assigned ipif_v6lcl_addr above, but we need to 4890 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 4891 * requires to be after ill_glist_insert() since we need the 4892 * ill_index set. Pass on ipv6_loopback as the old address. 4893 */ 4894 sctp_update_ipif_addr(ipif, ov6addr); 4895 4896 /* 4897 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 4898 * If so, free our original one. 4899 */ 4900 if (ipsq != ill->ill_phyint->phyint_ipsq) 4901 ipsq_delete(ipsq); 4902 4903 /* 4904 * Delay this till the ipif is allocated as ipif_allocate 4905 * de-references ill_phyint for getting the ifindex. We 4906 * can't do this before ipif_allocate because ill_phyint_reinit 4907 * -> phyint_assign_ifindex expects ipif to be present. 4908 */ 4909 mutex_enter(&ill->ill_phyint->phyint_lock); 4910 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4911 mutex_exit(&ill->ill_phyint->phyint_lock); 4912 4913 if (ipst->ips_loopback_ksp == NULL) { 4914 /* Export loopback interface statistics */ 4915 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 4916 ipif_loopback_name, "net", 4917 KSTAT_TYPE_NAMED, 2, 0, 4918 ipst->ips_netstack->netstack_stackid); 4919 if (ipst->ips_loopback_ksp != NULL) { 4920 ipst->ips_loopback_ksp->ks_update = 4921 loopback_kstat_update; 4922 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 4923 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4924 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4925 ipst->ips_loopback_ksp->ks_private = 4926 (void *)(uintptr_t)ipst->ips_netstack-> 4927 netstack_stackid; 4928 kstat_install(ipst->ips_loopback_ksp); 4929 } 4930 } 4931 4932 if (error != NULL) 4933 *error = 0; 4934 *did_alloc = B_TRUE; 4935 rw_exit(&ipst->ips_ill_g_lock); 4936 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 4937 NE_PLUMB, ill->ill_name, ill->ill_name_length); 4938 return (ill); 4939 done: 4940 if (ill != NULL) { 4941 if (ill->ill_phyint != NULL) { 4942 ipsq = ill->ill_phyint->phyint_ipsq; 4943 if (ipsq != NULL) { 4944 ipsq->ipsq_phyint = NULL; 4945 ipsq_delete(ipsq); 4946 } 4947 mi_free(ill->ill_phyint); 4948 } 4949 ill_free_mib(ill); 4950 if (ill->ill_ipst != NULL) 4951 netstack_rele(ill->ill_ipst->ips_netstack); 4952 mi_free(ill); 4953 } 4954 rw_exit(&ipst->ips_ill_g_lock); 4955 if (error != NULL) 4956 *error = ENOMEM; 4957 return (NULL); 4958 } 4959 4960 /* 4961 * For IPP calls - use the ip_stack_t for global stack. 4962 */ 4963 ill_t * 4964 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 4965 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 4966 { 4967 ip_stack_t *ipst; 4968 ill_t *ill; 4969 4970 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 4971 if (ipst == NULL) { 4972 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 4973 return (NULL); 4974 } 4975 4976 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 4977 netstack_rele(ipst->ips_netstack); 4978 return (ill); 4979 } 4980 4981 /* 4982 * Return a pointer to the ill which matches the index and IP version type. 4983 */ 4984 ill_t * 4985 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4986 ipsq_func_t func, int *err, ip_stack_t *ipst) 4987 { 4988 ill_t *ill; 4989 ipsq_t *ipsq; 4990 phyint_t *phyi; 4991 4992 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4993 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4994 4995 if (err != NULL) 4996 *err = 0; 4997 4998 /* 4999 * Indexes are stored in the phyint - a common structure 5000 * to both IPv4 and IPv6. 5001 */ 5002 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5003 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5004 (void *) &index, NULL); 5005 if (phyi != NULL) { 5006 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5007 if (ill != NULL) { 5008 /* 5009 * The block comment at the start of ipif_down 5010 * explains the use of the macros used below 5011 */ 5012 GRAB_CONN_LOCK(q); 5013 mutex_enter(&ill->ill_lock); 5014 if (ILL_CAN_LOOKUP(ill)) { 5015 ill_refhold_locked(ill); 5016 mutex_exit(&ill->ill_lock); 5017 RELEASE_CONN_LOCK(q); 5018 rw_exit(&ipst->ips_ill_g_lock); 5019 return (ill); 5020 } else if (ILL_CAN_WAIT(ill, q)) { 5021 ipsq = ill->ill_phyint->phyint_ipsq; 5022 mutex_enter(&ipsq->ipsq_lock); 5023 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5024 rw_exit(&ipst->ips_ill_g_lock); 5025 mutex_exit(&ill->ill_lock); 5026 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5027 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5028 mutex_exit(&ipsq->ipsq_lock); 5029 RELEASE_CONN_LOCK(q); 5030 if (err != NULL) 5031 *err = EINPROGRESS; 5032 return (NULL); 5033 } 5034 RELEASE_CONN_LOCK(q); 5035 mutex_exit(&ill->ill_lock); 5036 } 5037 } 5038 rw_exit(&ipst->ips_ill_g_lock); 5039 if (err != NULL) 5040 *err = ENXIO; 5041 return (NULL); 5042 } 5043 5044 /* 5045 * Return the ifindex next in sequence after the passed in ifindex. 5046 * If there is no next ifindex for the given protocol, return 0. 5047 */ 5048 uint_t 5049 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5050 { 5051 phyint_t *phyi; 5052 phyint_t *phyi_initial; 5053 uint_t ifindex; 5054 5055 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5056 5057 if (index == 0) { 5058 phyi = avl_first( 5059 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5060 } else { 5061 phyi = phyi_initial = avl_find( 5062 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5063 (void *) &index, NULL); 5064 } 5065 5066 for (; phyi != NULL; 5067 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5068 phyi, AVL_AFTER)) { 5069 /* 5070 * If we're not returning the first interface in the tree 5071 * and we still haven't moved past the phyint_t that 5072 * corresponds to index, avl_walk needs to be called again 5073 */ 5074 if (!((index != 0) && (phyi == phyi_initial))) { 5075 if (isv6) { 5076 if ((phyi->phyint_illv6) && 5077 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5078 (phyi->phyint_illv6->ill_isv6 == 1)) 5079 break; 5080 } else { 5081 if ((phyi->phyint_illv4) && 5082 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5083 (phyi->phyint_illv4->ill_isv6 == 0)) 5084 break; 5085 } 5086 } 5087 } 5088 5089 rw_exit(&ipst->ips_ill_g_lock); 5090 5091 if (phyi != NULL) 5092 ifindex = phyi->phyint_ifindex; 5093 else 5094 ifindex = 0; 5095 5096 return (ifindex); 5097 } 5098 5099 /* 5100 * Return the ifindex for the named interface. 5101 * If there is no next ifindex for the interface, return 0. 5102 */ 5103 uint_t 5104 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5105 { 5106 phyint_t *phyi; 5107 avl_index_t where = 0; 5108 uint_t ifindex; 5109 5110 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5111 5112 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5113 name, &where)) == NULL) { 5114 rw_exit(&ipst->ips_ill_g_lock); 5115 return (0); 5116 } 5117 5118 ifindex = phyi->phyint_ifindex; 5119 5120 rw_exit(&ipst->ips_ill_g_lock); 5121 5122 return (ifindex); 5123 } 5124 5125 /* 5126 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5127 * that gives a running thread a reference to the ill. This reference must be 5128 * released by the thread when it is done accessing the ill and related 5129 * objects. ill_refcnt can not be used to account for static references 5130 * such as other structures pointing to an ill. Callers must generally 5131 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5132 * or be sure that the ill is not being deleted or changing state before 5133 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5134 * ill won't change any of its critical state such as address, netmask etc. 5135 */ 5136 void 5137 ill_refhold(ill_t *ill) 5138 { 5139 mutex_enter(&ill->ill_lock); 5140 ill->ill_refcnt++; 5141 ILL_TRACE_REF(ill); 5142 mutex_exit(&ill->ill_lock); 5143 } 5144 5145 void 5146 ill_refhold_locked(ill_t *ill) 5147 { 5148 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5149 ill->ill_refcnt++; 5150 ILL_TRACE_REF(ill); 5151 } 5152 5153 int 5154 ill_check_and_refhold(ill_t *ill) 5155 { 5156 mutex_enter(&ill->ill_lock); 5157 if (ILL_CAN_LOOKUP(ill)) { 5158 ill_refhold_locked(ill); 5159 mutex_exit(&ill->ill_lock); 5160 return (0); 5161 } 5162 mutex_exit(&ill->ill_lock); 5163 return (ILL_LOOKUP_FAILED); 5164 } 5165 5166 /* 5167 * Must not be called while holding any locks. Otherwise if this is 5168 * the last reference to be released, there is a chance of recursive mutex 5169 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5170 * to restart an ioctl. 5171 */ 5172 void 5173 ill_refrele(ill_t *ill) 5174 { 5175 mutex_enter(&ill->ill_lock); 5176 ASSERT(ill->ill_refcnt != 0); 5177 ill->ill_refcnt--; 5178 ILL_UNTRACE_REF(ill); 5179 if (ill->ill_refcnt != 0) { 5180 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5181 mutex_exit(&ill->ill_lock); 5182 return; 5183 } 5184 5185 /* Drops the ill_lock */ 5186 ipif_ill_refrele_tail(ill); 5187 } 5188 5189 /* 5190 * Obtain a weak reference count on the ill. This reference ensures the 5191 * ill won't be freed, but the ill may change any of its critical state 5192 * such as netmask, address etc. Returns an error if the ill has started 5193 * closing. 5194 */ 5195 boolean_t 5196 ill_waiter_inc(ill_t *ill) 5197 { 5198 mutex_enter(&ill->ill_lock); 5199 if (ill->ill_state_flags & ILL_CONDEMNED) { 5200 mutex_exit(&ill->ill_lock); 5201 return (B_FALSE); 5202 } 5203 ill->ill_waiters++; 5204 mutex_exit(&ill->ill_lock); 5205 return (B_TRUE); 5206 } 5207 5208 void 5209 ill_waiter_dcr(ill_t *ill) 5210 { 5211 mutex_enter(&ill->ill_lock); 5212 ill->ill_waiters--; 5213 if (ill->ill_waiters == 0) 5214 cv_broadcast(&ill->ill_cv); 5215 mutex_exit(&ill->ill_lock); 5216 } 5217 5218 /* 5219 * Named Dispatch routine to produce a formatted report on all ILLs. 5220 * This report is accessed by using the ndd utility to "get" ND variable 5221 * "ip_ill_status". 5222 */ 5223 /* ARGSUSED */ 5224 int 5225 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5226 { 5227 ill_t *ill; 5228 ill_walk_context_t ctx; 5229 ip_stack_t *ipst; 5230 5231 ipst = CONNQ_TO_IPST(q); 5232 5233 (void) mi_mpprintf(mp, 5234 "ILL " MI_COL_HDRPAD_STR 5235 /* 01234567[89ABCDEF] */ 5236 "rq " MI_COL_HDRPAD_STR 5237 /* 01234567[89ABCDEF] */ 5238 "wq " MI_COL_HDRPAD_STR 5239 /* 01234567[89ABCDEF] */ 5240 "upcnt mxfrg err name"); 5241 /* 12345 12345 123 xxxxxxxx */ 5242 5243 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5244 ill = ILL_START_WALK_ALL(&ctx, ipst); 5245 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5246 (void) mi_mpprintf(mp, 5247 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5248 "%05u %05u %03d %s", 5249 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5250 ill->ill_ipif_up_count, 5251 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5252 } 5253 rw_exit(&ipst->ips_ill_g_lock); 5254 5255 return (0); 5256 } 5257 5258 /* 5259 * Named Dispatch routine to produce a formatted report on all IPIFs. 5260 * This report is accessed by using the ndd utility to "get" ND variable 5261 * "ip_ipif_status". 5262 */ 5263 /* ARGSUSED */ 5264 int 5265 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5266 { 5267 char buf1[INET6_ADDRSTRLEN]; 5268 char buf2[INET6_ADDRSTRLEN]; 5269 char buf3[INET6_ADDRSTRLEN]; 5270 char buf4[INET6_ADDRSTRLEN]; 5271 char buf5[INET6_ADDRSTRLEN]; 5272 char buf6[INET6_ADDRSTRLEN]; 5273 char buf[LIFNAMSIZ]; 5274 ill_t *ill; 5275 ipif_t *ipif; 5276 nv_t *nvp; 5277 uint64_t flags; 5278 zoneid_t zoneid; 5279 ill_walk_context_t ctx; 5280 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5281 5282 (void) mi_mpprintf(mp, 5283 "IPIF metric mtu in/out/forward name zone flags...\n" 5284 "\tlocal address\n" 5285 "\tsrc address\n" 5286 "\tsubnet\n" 5287 "\tmask\n" 5288 "\tbroadcast\n" 5289 "\tp-p-dst"); 5290 5291 ASSERT(q->q_next == NULL); 5292 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5293 5294 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5295 ill = ILL_START_WALK_ALL(&ctx, ipst); 5296 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5297 for (ipif = ill->ill_ipif; ipif != NULL; 5298 ipif = ipif->ipif_next) { 5299 if (zoneid != GLOBAL_ZONEID && 5300 zoneid != ipif->ipif_zoneid && 5301 ipif->ipif_zoneid != ALL_ZONES) 5302 continue; 5303 5304 ipif_get_name(ipif, buf, sizeof (buf)); 5305 (void) mi_mpprintf(mp, 5306 MI_COL_PTRFMT_STR 5307 "%04u %05u %u/%u/%u %s %d", 5308 (void *)ipif, 5309 ipif->ipif_metric, ipif->ipif_mtu, 5310 ipif->ipif_ib_pkt_count, 5311 ipif->ipif_ob_pkt_count, 5312 ipif->ipif_fo_pkt_count, 5313 buf, 5314 ipif->ipif_zoneid); 5315 5316 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5317 ipif->ipif_ill->ill_phyint->phyint_flags; 5318 5319 /* Tack on text strings for any flags. */ 5320 nvp = ipif_nv_tbl; 5321 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5322 if (nvp->nv_value & flags) 5323 (void) mi_mpprintf_nr(mp, " %s", 5324 nvp->nv_name); 5325 } 5326 (void) mi_mpprintf(mp, 5327 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5328 inet_ntop(AF_INET6, 5329 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5330 inet_ntop(AF_INET6, 5331 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5332 inet_ntop(AF_INET6, 5333 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5334 inet_ntop(AF_INET6, 5335 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5336 inet_ntop(AF_INET6, 5337 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5338 inet_ntop(AF_INET6, 5339 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5340 } 5341 } 5342 rw_exit(&ipst->ips_ill_g_lock); 5343 return (0); 5344 } 5345 5346 /* 5347 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5348 * driver. We construct best guess defaults for lower level information that 5349 * we need. If an interface is brought up without injection of any overriding 5350 * information from outside, we have to be ready to go with these defaults. 5351 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5352 * we primarely want the dl_provider_style. 5353 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5354 * at which point we assume the other part of the information is valid. 5355 */ 5356 void 5357 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5358 { 5359 uchar_t *brdcst_addr; 5360 uint_t brdcst_addr_length, phys_addr_length; 5361 t_scalar_t sap_length; 5362 dl_info_ack_t *dlia; 5363 ip_m_t *ipm; 5364 dl_qos_cl_sel1_t *sel1; 5365 int min_mtu; 5366 5367 ASSERT(IAM_WRITER_ILL(ill)); 5368 5369 /* 5370 * Till the ill is fully up ILL_CHANGING will be set and 5371 * the ill is not globally visible. So no need for a lock. 5372 */ 5373 dlia = (dl_info_ack_t *)mp->b_rptr; 5374 ill->ill_mactype = dlia->dl_mac_type; 5375 5376 ipm = ip_m_lookup(dlia->dl_mac_type); 5377 if (ipm == NULL) { 5378 ipm = ip_m_lookup(DL_OTHER); 5379 ASSERT(ipm != NULL); 5380 } 5381 ill->ill_media = ipm; 5382 5383 /* 5384 * When the new DLPI stuff is ready we'll pull lengths 5385 * from dlia. 5386 */ 5387 if (dlia->dl_version == DL_VERSION_2) { 5388 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5389 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5390 brdcst_addr_length); 5391 if (brdcst_addr == NULL) { 5392 brdcst_addr_length = 0; 5393 } 5394 sap_length = dlia->dl_sap_length; 5395 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5396 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5397 brdcst_addr_length, sap_length, phys_addr_length)); 5398 } else { 5399 brdcst_addr_length = 6; 5400 brdcst_addr = ip_six_byte_all_ones; 5401 sap_length = -2; 5402 phys_addr_length = brdcst_addr_length; 5403 } 5404 5405 ill->ill_bcast_addr_length = brdcst_addr_length; 5406 ill->ill_phys_addr_length = phys_addr_length; 5407 ill->ill_sap_length = sap_length; 5408 5409 /* 5410 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 5411 * but we must ensure a minimum IP MTU is used since other bits of 5412 * IP will fly apart otherwise. 5413 */ 5414 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 5415 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 5416 ill->ill_max_mtu = ill->ill_max_frag; 5417 5418 ill->ill_type = ipm->ip_m_type; 5419 5420 if (!ill->ill_dlpi_style_set) { 5421 if (dlia->dl_provider_style == DL_STYLE2) 5422 ill->ill_needs_attach = 1; 5423 5424 /* 5425 * Allocate the first ipif on this ill. We don't delay it 5426 * further as ioctl handling assumes atleast one ipif to 5427 * be present. 5428 * 5429 * At this point we don't know whether the ill is v4 or v6. 5430 * We will know this whan the SIOCSLIFNAME happens and 5431 * the correct value for ill_isv6 will be assigned in 5432 * ipif_set_values(). We need to hold the ill lock and 5433 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5434 * the wakeup. 5435 */ 5436 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5437 dlia->dl_provider_style != DL_STYLE2, B_TRUE); 5438 mutex_enter(&ill->ill_lock); 5439 ASSERT(ill->ill_dlpi_style_set == 0); 5440 ill->ill_dlpi_style_set = 1; 5441 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5442 cv_broadcast(&ill->ill_cv); 5443 mutex_exit(&ill->ill_lock); 5444 freemsg(mp); 5445 return; 5446 } 5447 ASSERT(ill->ill_ipif != NULL); 5448 /* 5449 * We know whether it is IPv4 or IPv6 now, as this is the 5450 * second DL_INFO_ACK we are recieving in response to the 5451 * DL_INFO_REQ sent in ipif_set_values. 5452 */ 5453 if (ill->ill_isv6) 5454 ill->ill_sap = IP6_DL_SAP; 5455 else 5456 ill->ill_sap = IP_DL_SAP; 5457 /* 5458 * Set ipif_mtu which is used to set the IRE's 5459 * ire_max_frag value. The driver could have sent 5460 * a different mtu from what it sent last time. No 5461 * need to call ipif_mtu_change because IREs have 5462 * not yet been created. 5463 */ 5464 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5465 /* 5466 * Clear all the flags that were set based on ill_bcast_addr_length 5467 * and ill_phys_addr_length (in ipif_set_values) as these could have 5468 * changed now and we need to re-evaluate. 5469 */ 5470 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5471 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5472 5473 /* 5474 * Free ill_resolver_mp and ill_bcast_mp as things could have 5475 * changed now. 5476 * 5477 * NOTE: The IPMP meta-interface is special-cased because it starts 5478 * with no underlying interfaces (and thus an unknown broadcast 5479 * address length), but we enforce that an interface is broadcast- 5480 * capable as part of allowing it to join a group. 5481 */ 5482 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 5483 if (ill->ill_resolver_mp != NULL) 5484 freemsg(ill->ill_resolver_mp); 5485 if (ill->ill_bcast_mp != NULL) 5486 freemsg(ill->ill_bcast_mp); 5487 if (ill->ill_flags & ILLF_XRESOLV) 5488 ill->ill_net_type = IRE_IF_RESOLVER; 5489 else 5490 ill->ill_net_type = IRE_IF_NORESOLVER; 5491 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5492 ill->ill_phys_addr_length, 5493 ill->ill_sap, 5494 ill->ill_sap_length); 5495 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5496 5497 if (ill->ill_isv6) 5498 /* 5499 * Note: xresolv interfaces will eventually need NOARP 5500 * set here as well, but that will require those 5501 * external resolvers to have some knowledge of 5502 * that flag and act appropriately. Not to be changed 5503 * at present. 5504 */ 5505 ill->ill_flags |= ILLF_NONUD; 5506 else 5507 ill->ill_flags |= ILLF_NOARP; 5508 5509 if (ill->ill_phys_addr_length == 0) { 5510 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5511 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5512 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5513 } else { 5514 /* pt-pt supports multicast. */ 5515 ill->ill_flags |= ILLF_MULTICAST; 5516 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5517 } 5518 } 5519 } else { 5520 ill->ill_net_type = IRE_IF_RESOLVER; 5521 if (ill->ill_bcast_mp != NULL) 5522 freemsg(ill->ill_bcast_mp); 5523 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5524 ill->ill_bcast_addr_length, ill->ill_sap, 5525 ill->ill_sap_length); 5526 /* 5527 * Later detect lack of DLPI driver multicast 5528 * capability by catching DL_ENABMULTI errors in 5529 * ip_rput_dlpi. 5530 */ 5531 ill->ill_flags |= ILLF_MULTICAST; 5532 if (!ill->ill_isv6) 5533 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5534 } 5535 5536 /* For IPMP, PHYI_IPMP should already be set by ipif_allocate() */ 5537 if (ill->ill_mactype == SUNW_DL_IPMP) 5538 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 5539 5540 /* By default an interface does not support any CoS marking */ 5541 ill->ill_flags &= ~ILLF_COS_ENABLED; 5542 5543 /* 5544 * If we get QoS information in DL_INFO_ACK, the device supports 5545 * some form of CoS marking, set ILLF_COS_ENABLED. 5546 */ 5547 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5548 dlia->dl_qos_length); 5549 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5550 ill->ill_flags |= ILLF_COS_ENABLED; 5551 } 5552 5553 /* Clear any previous error indication. */ 5554 ill->ill_error = 0; 5555 freemsg(mp); 5556 } 5557 5558 /* 5559 * Perform various checks to verify that an address would make sense as a 5560 * local, remote, or subnet interface address. 5561 */ 5562 static boolean_t 5563 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5564 { 5565 ipaddr_t net_mask; 5566 5567 /* 5568 * Don't allow all zeroes, or all ones, but allow 5569 * all ones netmask. 5570 */ 5571 if ((net_mask = ip_net_mask(addr)) == 0) 5572 return (B_FALSE); 5573 /* A given netmask overrides the "guess" netmask */ 5574 if (subnet_mask != 0) 5575 net_mask = subnet_mask; 5576 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5577 (addr == (addr | ~net_mask)))) { 5578 return (B_FALSE); 5579 } 5580 5581 /* 5582 * Even if the netmask is all ones, we do not allow address to be 5583 * 255.255.255.255 5584 */ 5585 if (addr == INADDR_BROADCAST) 5586 return (B_FALSE); 5587 5588 if (CLASSD(addr)) 5589 return (B_FALSE); 5590 5591 return (B_TRUE); 5592 } 5593 5594 #define V6_IPIF_LINKLOCAL(p) \ 5595 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5596 5597 /* 5598 * Compare two given ipifs and check if the second one is better than 5599 * the first one using the order of preference (not taking deprecated 5600 * into acount) specified in ipif_lookup_multicast(). 5601 */ 5602 static boolean_t 5603 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5604 { 5605 /* Check the least preferred first. */ 5606 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5607 /* If both ipifs are the same, use the first one. */ 5608 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5609 return (B_FALSE); 5610 else 5611 return (B_TRUE); 5612 } 5613 5614 /* For IPv6, check for link local address. */ 5615 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5616 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5617 V6_IPIF_LINKLOCAL(new_ipif)) { 5618 /* The second one is equal or less preferred. */ 5619 return (B_FALSE); 5620 } else { 5621 return (B_TRUE); 5622 } 5623 } 5624 5625 /* Then check for point to point interface. */ 5626 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5627 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5628 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5629 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5630 return (B_FALSE); 5631 } else { 5632 return (B_TRUE); 5633 } 5634 } 5635 5636 /* old_ipif is a normal interface, so no need to use the new one. */ 5637 return (B_FALSE); 5638 } 5639 5640 /* 5641 * Find a mulitcast-capable ipif given an IP instance and zoneid. 5642 * The ipif must be up, and its ill must multicast-capable, not 5643 * condemned, not an underlying interface in an IPMP group, and 5644 * not a VNI interface. Order of preference: 5645 * 5646 * 1a. normal 5647 * 1b. normal, but deprecated 5648 * 2a. point to point 5649 * 2b. point to point, but deprecated 5650 * 3a. link local 5651 * 3b. link local, but deprecated 5652 * 4. loopback. 5653 */ 5654 ipif_t * 5655 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5656 { 5657 ill_t *ill; 5658 ill_walk_context_t ctx; 5659 ipif_t *ipif; 5660 ipif_t *saved_ipif = NULL; 5661 ipif_t *dep_ipif = NULL; 5662 5663 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5664 if (isv6) 5665 ill = ILL_START_WALK_V6(&ctx, ipst); 5666 else 5667 ill = ILL_START_WALK_V4(&ctx, ipst); 5668 5669 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5670 mutex_enter(&ill->ill_lock); 5671 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) || 5672 !(ill->ill_flags & ILLF_MULTICAST)) { 5673 mutex_exit(&ill->ill_lock); 5674 continue; 5675 } 5676 for (ipif = ill->ill_ipif; ipif != NULL; 5677 ipif = ipif->ipif_next) { 5678 if (zoneid != ipif->ipif_zoneid && 5679 zoneid != ALL_ZONES && 5680 ipif->ipif_zoneid != ALL_ZONES) { 5681 continue; 5682 } 5683 if (!(ipif->ipif_flags & IPIF_UP) || 5684 !IPIF_CAN_LOOKUP(ipif)) { 5685 continue; 5686 } 5687 5688 /* 5689 * Found one candidate. If it is deprecated, 5690 * remember it in dep_ipif. If it is not deprecated, 5691 * remember it in saved_ipif. 5692 */ 5693 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5694 if (dep_ipif == NULL) { 5695 dep_ipif = ipif; 5696 } else if (ipif_comp_multi(dep_ipif, ipif, 5697 isv6)) { 5698 /* 5699 * If the previous dep_ipif does not 5700 * belong to the same ill, we've done 5701 * a ipif_refhold() on it. So we need 5702 * to release it. 5703 */ 5704 if (dep_ipif->ipif_ill != ill) 5705 ipif_refrele(dep_ipif); 5706 dep_ipif = ipif; 5707 } 5708 continue; 5709 } 5710 if (saved_ipif == NULL) { 5711 saved_ipif = ipif; 5712 } else { 5713 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5714 if (saved_ipif->ipif_ill != ill) 5715 ipif_refrele(saved_ipif); 5716 saved_ipif = ipif; 5717 } 5718 } 5719 } 5720 /* 5721 * Before going to the next ill, do a ipif_refhold() on the 5722 * saved ones. 5723 */ 5724 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5725 ipif_refhold_locked(saved_ipif); 5726 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5727 ipif_refhold_locked(dep_ipif); 5728 mutex_exit(&ill->ill_lock); 5729 } 5730 rw_exit(&ipst->ips_ill_g_lock); 5731 5732 /* 5733 * If we have only the saved_ipif, return it. But if we have both 5734 * saved_ipif and dep_ipif, check to see which one is better. 5735 */ 5736 if (saved_ipif != NULL) { 5737 if (dep_ipif != NULL) { 5738 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5739 ipif_refrele(saved_ipif); 5740 return (dep_ipif); 5741 } else { 5742 ipif_refrele(dep_ipif); 5743 return (saved_ipif); 5744 } 5745 } 5746 return (saved_ipif); 5747 } else { 5748 return (dep_ipif); 5749 } 5750 } 5751 5752 /* 5753 * This function is called when an application does not specify an interface 5754 * to be used for multicast traffic (joining a group/sending data). It 5755 * calls ire_lookup_multi() to look for an interface route for the 5756 * specified multicast group. Doing this allows the administrator to add 5757 * prefix routes for multicast to indicate which interface to be used for 5758 * multicast traffic in the above scenario. The route could be for all 5759 * multicast (224.0/4), for a single multicast group (a /32 route) or 5760 * anything in between. If there is no such multicast route, we just find 5761 * any multicast capable interface and return it. The returned ipif 5762 * is refhold'ed. 5763 */ 5764 ipif_t * 5765 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5766 { 5767 ire_t *ire; 5768 ipif_t *ipif; 5769 5770 ire = ire_lookup_multi(group, zoneid, ipst); 5771 if (ire != NULL) { 5772 ipif = ire->ire_ipif; 5773 ipif_refhold(ipif); 5774 ire_refrele(ire); 5775 return (ipif); 5776 } 5777 5778 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5779 } 5780 5781 /* 5782 * Look for an ipif with the specified interface address and destination. 5783 * The destination address is used only for matching point-to-point interfaces. 5784 */ 5785 ipif_t * 5786 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5787 ipsq_func_t func, int *error, ip_stack_t *ipst) 5788 { 5789 ipif_t *ipif; 5790 ill_t *ill; 5791 ill_walk_context_t ctx; 5792 ipsq_t *ipsq; 5793 5794 if (error != NULL) 5795 *error = 0; 5796 5797 /* 5798 * First match all the point-to-point interfaces 5799 * before looking at non-point-to-point interfaces. 5800 * This is done to avoid returning non-point-to-point 5801 * ipif instead of unnumbered point-to-point ipif. 5802 */ 5803 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5804 ill = ILL_START_WALK_V4(&ctx, ipst); 5805 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5806 GRAB_CONN_LOCK(q); 5807 mutex_enter(&ill->ill_lock); 5808 for (ipif = ill->ill_ipif; ipif != NULL; 5809 ipif = ipif->ipif_next) { 5810 /* Allow the ipif to be down */ 5811 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5812 (ipif->ipif_lcl_addr == if_addr) && 5813 (ipif->ipif_pp_dst_addr == dst)) { 5814 /* 5815 * The block comment at the start of ipif_down 5816 * explains the use of the macros used below 5817 */ 5818 if (IPIF_CAN_LOOKUP(ipif)) { 5819 ipif_refhold_locked(ipif); 5820 mutex_exit(&ill->ill_lock); 5821 RELEASE_CONN_LOCK(q); 5822 rw_exit(&ipst->ips_ill_g_lock); 5823 return (ipif); 5824 } else if (IPIF_CAN_WAIT(ipif, q)) { 5825 ipsq = ill->ill_phyint->phyint_ipsq; 5826 mutex_enter(&ipsq->ipsq_lock); 5827 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5828 mutex_exit(&ill->ill_lock); 5829 rw_exit(&ipst->ips_ill_g_lock); 5830 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5831 ill); 5832 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5833 mutex_exit(&ipsq->ipsq_lock); 5834 RELEASE_CONN_LOCK(q); 5835 if (error != NULL) 5836 *error = EINPROGRESS; 5837 return (NULL); 5838 } 5839 } 5840 } 5841 mutex_exit(&ill->ill_lock); 5842 RELEASE_CONN_LOCK(q); 5843 } 5844 rw_exit(&ipst->ips_ill_g_lock); 5845 5846 /* lookup the ipif based on interface address */ 5847 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5848 ipst); 5849 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5850 return (ipif); 5851 } 5852 5853 /* 5854 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 5855 */ 5856 static ipif_t * 5857 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp, 5858 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 5859 ip_stack_t *ipst) 5860 { 5861 ipif_t *ipif; 5862 ill_t *ill; 5863 boolean_t ptp = B_FALSE; 5864 ipsq_t *ipsq; 5865 ill_walk_context_t ctx; 5866 5867 if (error != NULL) 5868 *error = 0; 5869 5870 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5871 /* 5872 * Repeat twice, first based on local addresses and 5873 * next time for pointopoint. 5874 */ 5875 repeat: 5876 ill = ILL_START_WALK_V4(&ctx, ipst); 5877 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5878 if (match_ill != NULL && ill != match_ill && 5879 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 5880 continue; 5881 } 5882 GRAB_CONN_LOCK(q); 5883 mutex_enter(&ill->ill_lock); 5884 for (ipif = ill->ill_ipif; ipif != NULL; 5885 ipif = ipif->ipif_next) { 5886 if (zoneid != ALL_ZONES && 5887 zoneid != ipif->ipif_zoneid && 5888 ipif->ipif_zoneid != ALL_ZONES) 5889 continue; 5890 /* Allow the ipif to be down */ 5891 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5892 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5893 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5894 (ipif->ipif_pp_dst_addr == addr))) { 5895 /* 5896 * The block comment at the start of ipif_down 5897 * explains the use of the macros used below 5898 */ 5899 if (IPIF_CAN_LOOKUP(ipif)) { 5900 ipif_refhold_locked(ipif); 5901 mutex_exit(&ill->ill_lock); 5902 RELEASE_CONN_LOCK(q); 5903 rw_exit(&ipst->ips_ill_g_lock); 5904 return (ipif); 5905 } else if (IPIF_CAN_WAIT(ipif, q)) { 5906 ipsq = ill->ill_phyint->phyint_ipsq; 5907 mutex_enter(&ipsq->ipsq_lock); 5908 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5909 mutex_exit(&ill->ill_lock); 5910 rw_exit(&ipst->ips_ill_g_lock); 5911 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5912 ill); 5913 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5914 mutex_exit(&ipsq->ipsq_lock); 5915 RELEASE_CONN_LOCK(q); 5916 if (error != NULL) 5917 *error = EINPROGRESS; 5918 return (NULL); 5919 } 5920 } 5921 } 5922 mutex_exit(&ill->ill_lock); 5923 RELEASE_CONN_LOCK(q); 5924 } 5925 5926 /* If we already did the ptp case, then we are done */ 5927 if (ptp) { 5928 rw_exit(&ipst->ips_ill_g_lock); 5929 if (error != NULL) 5930 *error = ENXIO; 5931 return (NULL); 5932 } 5933 ptp = B_TRUE; 5934 goto repeat; 5935 } 5936 5937 /* 5938 * Check if the address exists in the system. 5939 * We don't hold the conn_lock as we will not perform defered ipsqueue 5940 * operation. 5941 */ 5942 boolean_t 5943 ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 5944 { 5945 ipif_t *ipif; 5946 ill_t *ill; 5947 ill_walk_context_t ctx; 5948 5949 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5950 5951 ill = ILL_START_WALK_V4(&ctx, ipst); 5952 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5953 mutex_enter(&ill->ill_lock); 5954 for (ipif = ill->ill_ipif; ipif != NULL; 5955 ipif = ipif->ipif_next) { 5956 if (zoneid != ALL_ZONES && 5957 zoneid != ipif->ipif_zoneid && 5958 ipif->ipif_zoneid != ALL_ZONES) 5959 continue; 5960 /* Allow the ipif to be down */ 5961 /* 5962 * XXX Different from ipif_lookup_addr(), we don't do 5963 * twice lookups. As from bind()'s point of view, we 5964 * may return once we find a match. 5965 */ 5966 if (((ipif->ipif_lcl_addr == addr) && 5967 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5968 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5969 (ipif->ipif_pp_dst_addr == addr))) { 5970 /* 5971 * Allow bind() to be successful even if the 5972 * ipif is with IPIF_CHANGING bit set. 5973 */ 5974 mutex_exit(&ill->ill_lock); 5975 rw_exit(&ipst->ips_ill_g_lock); 5976 return (B_TRUE); 5977 } 5978 } 5979 mutex_exit(&ill->ill_lock); 5980 } 5981 5982 rw_exit(&ipst->ips_ill_g_lock); 5983 return (B_FALSE); 5984 } 5985 5986 /* 5987 * Lookup an ipif with the specified address. For point-to-point links we 5988 * look for matches on either the destination address or the local address, 5989 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 5990 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 5991 * (or illgrp if `match_ill' is in an IPMP group). 5992 */ 5993 ipif_t * 5994 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5995 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5996 { 5997 return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp, 5998 func, error, ipst)); 5999 } 6000 6001 /* 6002 * Special abbreviated version of ipif_lookup_addr() that doesn't match 6003 * `match_ill' across the IPMP group. This function is only needed in some 6004 * corner-cases; almost everything should use ipif_lookup_addr(). 6005 */ 6006 static ipif_t * 6007 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6008 { 6009 ASSERT(match_ill != NULL); 6010 return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES, 6011 NULL, NULL, NULL, NULL, ipst)); 6012 } 6013 6014 /* 6015 * Look for an ipif with the specified address. For point-point links 6016 * we look for matches on either the destination address and the local 6017 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6018 * is set. 6019 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 6020 * ill (or illgrp if `match_ill' is in an IPMP group). 6021 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6022 */ 6023 zoneid_t 6024 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6025 { 6026 zoneid_t zoneid; 6027 ipif_t *ipif; 6028 ill_t *ill; 6029 boolean_t ptp = B_FALSE; 6030 ill_walk_context_t ctx; 6031 6032 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6033 /* 6034 * Repeat twice, first based on local addresses and 6035 * next time for pointopoint. 6036 */ 6037 repeat: 6038 ill = ILL_START_WALK_V4(&ctx, ipst); 6039 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6040 if (match_ill != NULL && ill != match_ill && 6041 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 6042 continue; 6043 } 6044 mutex_enter(&ill->ill_lock); 6045 for (ipif = ill->ill_ipif; ipif != NULL; 6046 ipif = ipif->ipif_next) { 6047 /* Allow the ipif to be down */ 6048 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6049 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6050 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6051 (ipif->ipif_pp_dst_addr == addr)) && 6052 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6053 zoneid = ipif->ipif_zoneid; 6054 mutex_exit(&ill->ill_lock); 6055 rw_exit(&ipst->ips_ill_g_lock); 6056 /* 6057 * If ipif_zoneid was ALL_ZONES then we have 6058 * a trusted extensions shared IP address. 6059 * In that case GLOBAL_ZONEID works to send. 6060 */ 6061 if (zoneid == ALL_ZONES) 6062 zoneid = GLOBAL_ZONEID; 6063 return (zoneid); 6064 } 6065 } 6066 mutex_exit(&ill->ill_lock); 6067 } 6068 6069 /* If we already did the ptp case, then we are done */ 6070 if (ptp) { 6071 rw_exit(&ipst->ips_ill_g_lock); 6072 return (ALL_ZONES); 6073 } 6074 ptp = B_TRUE; 6075 goto repeat; 6076 } 6077 6078 /* 6079 * Look for an ipif that matches the specified remote address i.e. the 6080 * ipif that would receive the specified packet. 6081 * First look for directly connected interfaces and then do a recursive 6082 * IRE lookup and pick the first ipif corresponding to the source address in the 6083 * ire. 6084 * Returns: held ipif 6085 */ 6086 ipif_t * 6087 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6088 { 6089 ipif_t *ipif; 6090 ire_t *ire; 6091 ip_stack_t *ipst = ill->ill_ipst; 6092 6093 ASSERT(!ill->ill_isv6); 6094 6095 /* 6096 * Someone could be changing this ipif currently or change it 6097 * after we return this. Thus a few packets could use the old 6098 * old values. However structure updates/creates (ire, ilg, ilm etc) 6099 * will atomically be updated or cleaned up with the new value 6100 * Thus we don't need a lock to check the flags or other attrs below. 6101 */ 6102 mutex_enter(&ill->ill_lock); 6103 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6104 if (!IPIF_CAN_LOOKUP(ipif)) 6105 continue; 6106 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6107 ipif->ipif_zoneid != ALL_ZONES) 6108 continue; 6109 /* Allow the ipif to be down */ 6110 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6111 if ((ipif->ipif_pp_dst_addr == addr) || 6112 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6113 ipif->ipif_lcl_addr == addr)) { 6114 ipif_refhold_locked(ipif); 6115 mutex_exit(&ill->ill_lock); 6116 return (ipif); 6117 } 6118 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6119 ipif_refhold_locked(ipif); 6120 mutex_exit(&ill->ill_lock); 6121 return (ipif); 6122 } 6123 } 6124 mutex_exit(&ill->ill_lock); 6125 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6126 NULL, MATCH_IRE_RECURSIVE, ipst); 6127 if (ire != NULL) { 6128 /* 6129 * The callers of this function wants to know the 6130 * interface on which they have to send the replies 6131 * back. For IREs that have ire_stq and ire_ipif 6132 * derived from different ills, we really don't care 6133 * what we return here. 6134 */ 6135 ipif = ire->ire_ipif; 6136 if (ipif != NULL) { 6137 ipif_refhold(ipif); 6138 ire_refrele(ire); 6139 return (ipif); 6140 } 6141 ire_refrele(ire); 6142 } 6143 /* Pick the first interface */ 6144 ipif = ipif_get_next_ipif(NULL, ill); 6145 return (ipif); 6146 } 6147 6148 /* 6149 * This func does not prevent refcnt from increasing. But if 6150 * the caller has taken steps to that effect, then this func 6151 * can be used to determine whether the ill has become quiescent 6152 */ 6153 static boolean_t 6154 ill_is_quiescent(ill_t *ill) 6155 { 6156 ipif_t *ipif; 6157 6158 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6159 6160 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6161 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6162 return (B_FALSE); 6163 } 6164 } 6165 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6166 return (B_FALSE); 6167 } 6168 return (B_TRUE); 6169 } 6170 6171 boolean_t 6172 ill_is_freeable(ill_t *ill) 6173 { 6174 ipif_t *ipif; 6175 6176 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6177 6178 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6179 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6180 return (B_FALSE); 6181 } 6182 } 6183 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6184 return (B_FALSE); 6185 } 6186 return (B_TRUE); 6187 } 6188 6189 /* 6190 * This func does not prevent refcnt from increasing. But if 6191 * the caller has taken steps to that effect, then this func 6192 * can be used to determine whether the ipif has become quiescent 6193 */ 6194 static boolean_t 6195 ipif_is_quiescent(ipif_t *ipif) 6196 { 6197 ill_t *ill; 6198 6199 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6200 6201 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6202 return (B_FALSE); 6203 } 6204 6205 ill = ipif->ipif_ill; 6206 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6207 ill->ill_logical_down) { 6208 return (B_TRUE); 6209 } 6210 6211 /* This is the last ipif going down or being deleted on this ill */ 6212 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6213 return (B_FALSE); 6214 } 6215 6216 return (B_TRUE); 6217 } 6218 6219 /* 6220 * return true if the ipif can be destroyed: the ipif has to be quiescent 6221 * with zero references from ire/nce/ilm to it. 6222 */ 6223 static boolean_t 6224 ipif_is_freeable(ipif_t *ipif) 6225 { 6226 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6227 ASSERT(ipif->ipif_id != 0); 6228 return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); 6229 } 6230 6231 /* 6232 * The ipif/ill/ire has been refreled. Do the tail processing. 6233 * Determine if the ipif or ill in question has become quiescent and if so 6234 * wakeup close and/or restart any queued pending ioctl that is waiting 6235 * for the ipif_down (or ill_down) 6236 */ 6237 void 6238 ipif_ill_refrele_tail(ill_t *ill) 6239 { 6240 mblk_t *mp; 6241 conn_t *connp; 6242 ipsq_t *ipsq; 6243 ipxop_t *ipx; 6244 ipif_t *ipif; 6245 dl_notify_ind_t *dlindp; 6246 6247 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6248 6249 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 6250 /* ip_modclose() may be waiting */ 6251 cv_broadcast(&ill->ill_cv); 6252 } 6253 6254 ipsq = ill->ill_phyint->phyint_ipsq; 6255 mutex_enter(&ipsq->ipsq_lock); 6256 ipx = ipsq->ipsq_xop; 6257 mutex_enter(&ipx->ipx_lock); 6258 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 6259 goto unlock; 6260 6261 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 6262 6263 ipif = ipx->ipx_pending_ipif; 6264 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 6265 goto unlock; 6266 6267 switch (ipx->ipx_waitfor) { 6268 case IPIF_DOWN: 6269 if (!ipif_is_quiescent(ipif)) 6270 goto unlock; 6271 break; 6272 case IPIF_FREE: 6273 if (!ipif_is_freeable(ipif)) 6274 goto unlock; 6275 break; 6276 case ILL_DOWN: 6277 if (!ill_is_quiescent(ill)) 6278 goto unlock; 6279 break; 6280 case ILL_FREE: 6281 /* 6282 * ILL_FREE is only for loopback; normal ill teardown waits 6283 * synchronously in ip_modclose() without using ipx_waitfor, 6284 * handled by the cv_broadcast() at the top of this function. 6285 */ 6286 if (!ill_is_freeable(ill)) 6287 goto unlock; 6288 break; 6289 default: 6290 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 6291 (void *)ipsq, ipx->ipx_waitfor); 6292 } 6293 6294 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 6295 mutex_exit(&ipx->ipx_lock); 6296 mp = ipsq_pending_mp_get(ipsq, &connp); 6297 mutex_exit(&ipsq->ipsq_lock); 6298 mutex_exit(&ill->ill_lock); 6299 6300 ASSERT(mp != NULL); 6301 /* 6302 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6303 * we can only get here when the current operation decides it 6304 * it needs to quiesce via ipsq_pending_mp_add(). 6305 */ 6306 switch (mp->b_datap->db_type) { 6307 case M_PCPROTO: 6308 case M_PROTO: 6309 /* 6310 * For now, only DL_NOTIFY_IND messages can use this facility. 6311 */ 6312 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6313 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6314 6315 switch (dlindp->dl_notification) { 6316 case DL_NOTE_PHYS_ADDR: 6317 qwriter_ip(ill, ill->ill_rq, mp, 6318 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6319 return; 6320 default: 6321 ASSERT(0); 6322 ill_refrele(ill); 6323 } 6324 break; 6325 6326 case M_ERROR: 6327 case M_HANGUP: 6328 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6329 B_TRUE); 6330 return; 6331 6332 case M_IOCTL: 6333 case M_IOCDATA: 6334 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6335 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6336 return; 6337 6338 default: 6339 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6340 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6341 } 6342 return; 6343 unlock: 6344 mutex_exit(&ipsq->ipsq_lock); 6345 mutex_exit(&ipx->ipx_lock); 6346 mutex_exit(&ill->ill_lock); 6347 } 6348 6349 #ifdef DEBUG 6350 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6351 static void 6352 th_trace_rrecord(th_trace_t *th_trace) 6353 { 6354 tr_buf_t *tr_buf; 6355 uint_t lastref; 6356 6357 lastref = th_trace->th_trace_lastref; 6358 lastref++; 6359 if (lastref == TR_BUF_MAX) 6360 lastref = 0; 6361 th_trace->th_trace_lastref = lastref; 6362 tr_buf = &th_trace->th_trbuf[lastref]; 6363 tr_buf->tr_time = lbolt; 6364 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6365 } 6366 6367 static void 6368 th_trace_free(void *value) 6369 { 6370 th_trace_t *th_trace = value; 6371 6372 ASSERT(th_trace->th_refcnt == 0); 6373 kmem_free(th_trace, sizeof (*th_trace)); 6374 } 6375 6376 /* 6377 * Find or create the per-thread hash table used to track object references. 6378 * The ipst argument is NULL if we shouldn't allocate. 6379 * 6380 * Accesses per-thread data, so there's no need to lock here. 6381 */ 6382 static mod_hash_t * 6383 th_trace_gethash(ip_stack_t *ipst) 6384 { 6385 th_hash_t *thh; 6386 6387 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6388 mod_hash_t *mh; 6389 char name[256]; 6390 size_t objsize, rshift; 6391 int retv; 6392 6393 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6394 return (NULL); 6395 (void) snprintf(name, sizeof (name), "th_trace_%p", 6396 (void *)curthread); 6397 6398 /* 6399 * We use mod_hash_create_extended here rather than the more 6400 * obvious mod_hash_create_ptrhash because the latter has a 6401 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6402 * block. 6403 */ 6404 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6405 MAX(sizeof (ire_t), sizeof (nce_t))); 6406 rshift = highbit(objsize); 6407 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6408 th_trace_free, mod_hash_byptr, (void *)rshift, 6409 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6410 if (mh == NULL) { 6411 kmem_free(thh, sizeof (*thh)); 6412 return (NULL); 6413 } 6414 thh->thh_hash = mh; 6415 thh->thh_ipst = ipst; 6416 /* 6417 * We trace ills, ipifs, ires, and nces. All of these are 6418 * per-IP-stack, so the lock on the thread list is as well. 6419 */ 6420 rw_enter(&ip_thread_rwlock, RW_WRITER); 6421 list_insert_tail(&ip_thread_list, thh); 6422 rw_exit(&ip_thread_rwlock); 6423 retv = tsd_set(ip_thread_data, thh); 6424 ASSERT(retv == 0); 6425 } 6426 return (thh != NULL ? thh->thh_hash : NULL); 6427 } 6428 6429 boolean_t 6430 th_trace_ref(const void *obj, ip_stack_t *ipst) 6431 { 6432 th_trace_t *th_trace; 6433 mod_hash_t *mh; 6434 mod_hash_val_t val; 6435 6436 if ((mh = th_trace_gethash(ipst)) == NULL) 6437 return (B_FALSE); 6438 6439 /* 6440 * Attempt to locate the trace buffer for this obj and thread. 6441 * If it does not exist, then allocate a new trace buffer and 6442 * insert into the hash. 6443 */ 6444 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6445 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6446 if (th_trace == NULL) 6447 return (B_FALSE); 6448 6449 th_trace->th_id = curthread; 6450 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6451 (mod_hash_val_t)th_trace) != 0) { 6452 kmem_free(th_trace, sizeof (th_trace_t)); 6453 return (B_FALSE); 6454 } 6455 } else { 6456 th_trace = (th_trace_t *)val; 6457 } 6458 6459 ASSERT(th_trace->th_refcnt >= 0 && 6460 th_trace->th_refcnt < TR_BUF_MAX - 1); 6461 6462 th_trace->th_refcnt++; 6463 th_trace_rrecord(th_trace); 6464 return (B_TRUE); 6465 } 6466 6467 /* 6468 * For the purpose of tracing a reference release, we assume that global 6469 * tracing is always on and that the same thread initiated the reference hold 6470 * is releasing. 6471 */ 6472 void 6473 th_trace_unref(const void *obj) 6474 { 6475 int retv; 6476 mod_hash_t *mh; 6477 th_trace_t *th_trace; 6478 mod_hash_val_t val; 6479 6480 mh = th_trace_gethash(NULL); 6481 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6482 ASSERT(retv == 0); 6483 th_trace = (th_trace_t *)val; 6484 6485 ASSERT(th_trace->th_refcnt > 0); 6486 th_trace->th_refcnt--; 6487 th_trace_rrecord(th_trace); 6488 } 6489 6490 /* 6491 * If tracing has been disabled, then we assume that the reference counts are 6492 * now useless, and we clear them out before destroying the entries. 6493 */ 6494 void 6495 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6496 { 6497 th_hash_t *thh; 6498 mod_hash_t *mh; 6499 mod_hash_val_t val; 6500 th_trace_t *th_trace; 6501 int retv; 6502 6503 rw_enter(&ip_thread_rwlock, RW_READER); 6504 for (thh = list_head(&ip_thread_list); thh != NULL; 6505 thh = list_next(&ip_thread_list, thh)) { 6506 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6507 &val) == 0) { 6508 th_trace = (th_trace_t *)val; 6509 if (trace_disable) 6510 th_trace->th_refcnt = 0; 6511 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6512 ASSERT(retv == 0); 6513 } 6514 } 6515 rw_exit(&ip_thread_rwlock); 6516 } 6517 6518 void 6519 ipif_trace_ref(ipif_t *ipif) 6520 { 6521 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6522 6523 if (ipif->ipif_trace_disable) 6524 return; 6525 6526 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6527 ipif->ipif_trace_disable = B_TRUE; 6528 ipif_trace_cleanup(ipif); 6529 } 6530 } 6531 6532 void 6533 ipif_untrace_ref(ipif_t *ipif) 6534 { 6535 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6536 6537 if (!ipif->ipif_trace_disable) 6538 th_trace_unref(ipif); 6539 } 6540 6541 void 6542 ill_trace_ref(ill_t *ill) 6543 { 6544 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6545 6546 if (ill->ill_trace_disable) 6547 return; 6548 6549 if (!th_trace_ref(ill, ill->ill_ipst)) { 6550 ill->ill_trace_disable = B_TRUE; 6551 ill_trace_cleanup(ill); 6552 } 6553 } 6554 6555 void 6556 ill_untrace_ref(ill_t *ill) 6557 { 6558 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6559 6560 if (!ill->ill_trace_disable) 6561 th_trace_unref(ill); 6562 } 6563 6564 /* 6565 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6566 * failure, ipif_trace_disable is set. 6567 */ 6568 static void 6569 ipif_trace_cleanup(const ipif_t *ipif) 6570 { 6571 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6572 } 6573 6574 /* 6575 * Called when ill is unplumbed or when memory alloc fails. Note that on 6576 * failure, ill_trace_disable is set. 6577 */ 6578 static void 6579 ill_trace_cleanup(const ill_t *ill) 6580 { 6581 th_trace_cleanup(ill, ill->ill_trace_disable); 6582 } 6583 #endif /* DEBUG */ 6584 6585 void 6586 ipif_refhold_locked(ipif_t *ipif) 6587 { 6588 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6589 ipif->ipif_refcnt++; 6590 IPIF_TRACE_REF(ipif); 6591 } 6592 6593 void 6594 ipif_refhold(ipif_t *ipif) 6595 { 6596 ill_t *ill; 6597 6598 ill = ipif->ipif_ill; 6599 mutex_enter(&ill->ill_lock); 6600 ipif->ipif_refcnt++; 6601 IPIF_TRACE_REF(ipif); 6602 mutex_exit(&ill->ill_lock); 6603 } 6604 6605 /* 6606 * Must not be called while holding any locks. Otherwise if this is 6607 * the last reference to be released there is a chance of recursive mutex 6608 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6609 * to restart an ioctl. 6610 */ 6611 void 6612 ipif_refrele(ipif_t *ipif) 6613 { 6614 ill_t *ill; 6615 6616 ill = ipif->ipif_ill; 6617 6618 mutex_enter(&ill->ill_lock); 6619 ASSERT(ipif->ipif_refcnt != 0); 6620 ipif->ipif_refcnt--; 6621 IPIF_UNTRACE_REF(ipif); 6622 if (ipif->ipif_refcnt != 0) { 6623 mutex_exit(&ill->ill_lock); 6624 return; 6625 } 6626 6627 /* Drops the ill_lock */ 6628 ipif_ill_refrele_tail(ill); 6629 } 6630 6631 ipif_t * 6632 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6633 { 6634 ipif_t *ipif; 6635 6636 mutex_enter(&ill->ill_lock); 6637 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6638 ipif != NULL; ipif = ipif->ipif_next) { 6639 if (!IPIF_CAN_LOOKUP(ipif)) 6640 continue; 6641 ipif_refhold_locked(ipif); 6642 mutex_exit(&ill->ill_lock); 6643 return (ipif); 6644 } 6645 mutex_exit(&ill->ill_lock); 6646 return (NULL); 6647 } 6648 6649 /* 6650 * TODO: make this table extendible at run time 6651 * Return a pointer to the mac type info for 'mac_type' 6652 */ 6653 static ip_m_t * 6654 ip_m_lookup(t_uscalar_t mac_type) 6655 { 6656 ip_m_t *ipm; 6657 6658 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6659 if (ipm->ip_m_mac_type == mac_type) 6660 return (ipm); 6661 return (NULL); 6662 } 6663 6664 /* 6665 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6666 * ipif_arg is passed in to associate it with the correct interface. 6667 * We may need to restart this operation if the ipif cannot be looked up 6668 * due to an exclusive operation that is currently in progress. The restart 6669 * entry point is specified by 'func' 6670 */ 6671 int 6672 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6673 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6674 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6675 struct rtsa_s *sp, ip_stack_t *ipst) 6676 { 6677 ire_t *ire; 6678 ire_t *gw_ire = NULL; 6679 ipif_t *ipif = NULL; 6680 boolean_t ipif_refheld = B_FALSE; 6681 uint_t type; 6682 int match_flags = MATCH_IRE_TYPE; 6683 int error; 6684 tsol_gc_t *gc = NULL; 6685 tsol_gcgrp_t *gcgrp = NULL; 6686 boolean_t gcgrp_xtraref = B_FALSE; 6687 6688 ip1dbg(("ip_rt_add:")); 6689 6690 if (ire_arg != NULL) 6691 *ire_arg = NULL; 6692 6693 /* 6694 * If this is the case of RTF_HOST being set, then we set the netmask 6695 * to all ones (regardless if one was supplied). 6696 */ 6697 if (flags & RTF_HOST) 6698 mask = IP_HOST_MASK; 6699 6700 /* 6701 * Prevent routes with a zero gateway from being created (since 6702 * interfaces can currently be plumbed and brought up no assigned 6703 * address). 6704 */ 6705 if (gw_addr == 0) 6706 return (ENETUNREACH); 6707 /* 6708 * Get the ipif, if any, corresponding to the gw_addr 6709 */ 6710 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6711 ipst); 6712 if (ipif != NULL) { 6713 if (IS_VNI(ipif->ipif_ill)) { 6714 ipif_refrele(ipif); 6715 return (EINVAL); 6716 } 6717 ipif_refheld = B_TRUE; 6718 } else if (error == EINPROGRESS) { 6719 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6720 return (EINPROGRESS); 6721 } else { 6722 error = 0; 6723 } 6724 6725 if (ipif != NULL) { 6726 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6727 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6728 } else { 6729 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6730 } 6731 6732 /* 6733 * GateD will attempt to create routes with a loopback interface 6734 * address as the gateway and with RTF_GATEWAY set. We allow 6735 * these routes to be added, but create them as interface routes 6736 * since the gateway is an interface address. 6737 */ 6738 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6739 flags &= ~RTF_GATEWAY; 6740 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6741 mask == IP_HOST_MASK) { 6742 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6743 ALL_ZONES, NULL, match_flags, ipst); 6744 if (ire != NULL) { 6745 ire_refrele(ire); 6746 if (ipif_refheld) 6747 ipif_refrele(ipif); 6748 return (EEXIST); 6749 } 6750 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6751 "for 0x%x\n", (void *)ipif, 6752 ipif->ipif_ire_type, 6753 ntohl(ipif->ipif_lcl_addr))); 6754 ire = ire_create( 6755 (uchar_t *)&dst_addr, /* dest address */ 6756 (uchar_t *)&mask, /* mask */ 6757 (uchar_t *)&ipif->ipif_src_addr, 6758 NULL, /* no gateway */ 6759 &ipif->ipif_mtu, 6760 NULL, 6761 ipif->ipif_rq, /* recv-from queue */ 6762 NULL, /* no send-to queue */ 6763 ipif->ipif_ire_type, /* LOOPBACK */ 6764 ipif, 6765 0, 6766 0, 6767 0, 6768 (ipif->ipif_flags & IPIF_PRIVATE) ? 6769 RTF_PRIVATE : 0, 6770 &ire_uinfo_null, 6771 NULL, 6772 NULL, 6773 ipst); 6774 6775 if (ire == NULL) { 6776 if (ipif_refheld) 6777 ipif_refrele(ipif); 6778 return (ENOMEM); 6779 } 6780 error = ire_add(&ire, q, mp, func, B_FALSE); 6781 if (error == 0) 6782 goto save_ire; 6783 if (ipif_refheld) 6784 ipif_refrele(ipif); 6785 return (error); 6786 6787 } 6788 } 6789 6790 /* 6791 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6792 * and the gateway address provided is one of the system's interface 6793 * addresses. By using the routing socket interface and supplying an 6794 * RTA_IFP sockaddr with an interface index, an alternate method of 6795 * specifying an interface route to be created is available which uses 6796 * the interface index that specifies the outgoing interface rather than 6797 * the address of an outgoing interface (which may not be able to 6798 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6799 * flag, routes can be specified which not only specify the next-hop to 6800 * be used when routing to a certain prefix, but also which outgoing 6801 * interface should be used. 6802 * 6803 * Previously, interfaces would have unique addresses assigned to them 6804 * and so the address assigned to a particular interface could be used 6805 * to identify a particular interface. One exception to this was the 6806 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6807 * 6808 * With the advent of IPv6 and its link-local addresses, this 6809 * restriction was relaxed and interfaces could share addresses between 6810 * themselves. In fact, typically all of the link-local interfaces on 6811 * an IPv6 node or router will have the same link-local address. In 6812 * order to differentiate between these interfaces, the use of an 6813 * interface index is necessary and this index can be carried inside a 6814 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6815 * of using the interface index, however, is that all of the ipif's that 6816 * are part of an ill have the same index and so the RTA_IFP sockaddr 6817 * cannot be used to differentiate between ipif's (or logical 6818 * interfaces) that belong to the same ill (physical interface). 6819 * 6820 * For example, in the following case involving IPv4 interfaces and 6821 * logical interfaces 6822 * 6823 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6824 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6825 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6826 * 6827 * the ipif's corresponding to each of these interface routes can be 6828 * uniquely identified by the "gateway" (actually interface address). 6829 * 6830 * In this case involving multiple IPv6 default routes to a particular 6831 * link-local gateway, the use of RTA_IFP is necessary to specify which 6832 * default route is of interest: 6833 * 6834 * default fe80::123:4567:89ab:cdef U if0 6835 * default fe80::123:4567:89ab:cdef U if1 6836 */ 6837 6838 /* RTF_GATEWAY not set */ 6839 if (!(flags & RTF_GATEWAY)) { 6840 queue_t *stq; 6841 6842 if (sp != NULL) { 6843 ip2dbg(("ip_rt_add: gateway security attributes " 6844 "cannot be set with interface route\n")); 6845 if (ipif_refheld) 6846 ipif_refrele(ipif); 6847 return (EINVAL); 6848 } 6849 6850 /* 6851 * As the interface index specified with the RTA_IFP sockaddr is 6852 * the same for all ipif's off of an ill, the matching logic 6853 * below uses MATCH_IRE_ILL if such an index was specified. 6854 * This means that routes sharing the same prefix when added 6855 * using a RTA_IFP sockaddr must have distinct interface 6856 * indices (namely, they must be on distinct ill's). 6857 * 6858 * On the other hand, since the gateway address will usually be 6859 * different for each ipif on the system, the matching logic 6860 * uses MATCH_IRE_IPIF in the case of a traditional interface 6861 * route. This means that interface routes for the same prefix 6862 * can be created if they belong to distinct ipif's and if a 6863 * RTA_IFP sockaddr is not present. 6864 */ 6865 if (ipif_arg != NULL) { 6866 if (ipif_refheld) { 6867 ipif_refrele(ipif); 6868 ipif_refheld = B_FALSE; 6869 } 6870 ipif = ipif_arg; 6871 match_flags |= MATCH_IRE_ILL; 6872 } else { 6873 /* 6874 * Check the ipif corresponding to the gw_addr 6875 */ 6876 if (ipif == NULL) 6877 return (ENETUNREACH); 6878 match_flags |= MATCH_IRE_IPIF; 6879 } 6880 ASSERT(ipif != NULL); 6881 6882 /* 6883 * We check for an existing entry at this point. 6884 * 6885 * Since a netmask isn't passed in via the ioctl interface 6886 * (SIOCADDRT), we don't check for a matching netmask in that 6887 * case. 6888 */ 6889 if (!ioctl_msg) 6890 match_flags |= MATCH_IRE_MASK; 6891 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6892 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6893 if (ire != NULL) { 6894 ire_refrele(ire); 6895 if (ipif_refheld) 6896 ipif_refrele(ipif); 6897 return (EEXIST); 6898 } 6899 6900 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6901 ? ipif->ipif_rq : ipif->ipif_wq; 6902 6903 /* 6904 * Create a copy of the IRE_LOOPBACK, 6905 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6906 * the modified address and netmask. 6907 */ 6908 ire = ire_create( 6909 (uchar_t *)&dst_addr, 6910 (uint8_t *)&mask, 6911 (uint8_t *)&ipif->ipif_src_addr, 6912 NULL, 6913 &ipif->ipif_mtu, 6914 NULL, 6915 NULL, 6916 stq, 6917 ipif->ipif_net_type, 6918 ipif, 6919 0, 6920 0, 6921 0, 6922 flags, 6923 &ire_uinfo_null, 6924 NULL, 6925 NULL, 6926 ipst); 6927 if (ire == NULL) { 6928 if (ipif_refheld) 6929 ipif_refrele(ipif); 6930 return (ENOMEM); 6931 } 6932 6933 /* 6934 * Some software (for example, GateD and Sun Cluster) attempts 6935 * to create (what amount to) IRE_PREFIX routes with the 6936 * loopback address as the gateway. This is primarily done to 6937 * set up prefixes with the RTF_REJECT flag set (for example, 6938 * when generating aggregate routes.) 6939 * 6940 * If the IRE type (as defined by ipif->ipif_net_type) is 6941 * IRE_LOOPBACK, then we map the request into a 6942 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 6943 * these interface routes, by definition, can only be that. 6944 * 6945 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6946 * routine, but rather using ire_create() directly. 6947 * 6948 */ 6949 if (ipif->ipif_net_type == IRE_LOOPBACK) { 6950 ire->ire_type = IRE_IF_NORESOLVER; 6951 ire->ire_flags |= RTF_BLACKHOLE; 6952 } 6953 6954 error = ire_add(&ire, q, mp, func, B_FALSE); 6955 if (error == 0) 6956 goto save_ire; 6957 6958 /* 6959 * In the result of failure, ire_add() will have already 6960 * deleted the ire in question, so there is no need to 6961 * do that here. 6962 */ 6963 if (ipif_refheld) 6964 ipif_refrele(ipif); 6965 return (error); 6966 } 6967 if (ipif_refheld) { 6968 ipif_refrele(ipif); 6969 ipif_refheld = B_FALSE; 6970 } 6971 6972 /* 6973 * Get an interface IRE for the specified gateway. 6974 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6975 * gateway, it is currently unreachable and we fail the request 6976 * accordingly. 6977 */ 6978 ipif = ipif_arg; 6979 if (ipif_arg != NULL) 6980 match_flags |= MATCH_IRE_ILL; 6981 again: 6982 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6983 ALL_ZONES, 0, NULL, match_flags, ipst); 6984 if (gw_ire == NULL) { 6985 /* 6986 * With IPMP, we allow host routes to influence in.mpathd's 6987 * target selection. However, if the test addresses are on 6988 * their own network, the above lookup will fail since the 6989 * underlying IRE_INTERFACEs are marked hidden. So allow 6990 * hidden test IREs to be found and try again. 6991 */ 6992 if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) { 6993 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 6994 goto again; 6995 } 6996 return (ENETUNREACH); 6997 } 6998 6999 /* 7000 * We create one of three types of IREs as a result of this request 7001 * based on the netmask. A netmask of all ones (which is automatically 7002 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7003 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7004 * created. Otherwise, an IRE_PREFIX route is created for the 7005 * destination prefix. 7006 */ 7007 if (mask == IP_HOST_MASK) 7008 type = IRE_HOST; 7009 else if (mask == 0) 7010 type = IRE_DEFAULT; 7011 else 7012 type = IRE_PREFIX; 7013 7014 /* check for a duplicate entry */ 7015 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7016 NULL, ALL_ZONES, 0, NULL, 7017 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7018 if (ire != NULL) { 7019 ire_refrele(gw_ire); 7020 ire_refrele(ire); 7021 return (EEXIST); 7022 } 7023 7024 /* Security attribute exists */ 7025 if (sp != NULL) { 7026 tsol_gcgrp_addr_t ga; 7027 7028 /* find or create the gateway credentials group */ 7029 ga.ga_af = AF_INET; 7030 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7031 7032 /* we hold reference to it upon success */ 7033 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7034 if (gcgrp == NULL) { 7035 ire_refrele(gw_ire); 7036 return (ENOMEM); 7037 } 7038 7039 /* 7040 * Create and add the security attribute to the group; a 7041 * reference to the group is made upon allocating a new 7042 * entry successfully. If it finds an already-existing 7043 * entry for the security attribute in the group, it simply 7044 * returns it and no new reference is made to the group. 7045 */ 7046 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7047 if (gc == NULL) { 7048 /* release reference held by gcgrp_lookup */ 7049 GCGRP_REFRELE(gcgrp); 7050 ire_refrele(gw_ire); 7051 return (ENOMEM); 7052 } 7053 } 7054 7055 /* Create the IRE. */ 7056 ire = ire_create( 7057 (uchar_t *)&dst_addr, /* dest address */ 7058 (uchar_t *)&mask, /* mask */ 7059 /* src address assigned by the caller? */ 7060 (uchar_t *)(((src_addr != INADDR_ANY) && 7061 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7062 (uchar_t *)&gw_addr, /* gateway address */ 7063 &gw_ire->ire_max_frag, 7064 NULL, /* no src nce */ 7065 NULL, /* no recv-from queue */ 7066 NULL, /* no send-to queue */ 7067 (ushort_t)type, /* IRE type */ 7068 ipif_arg, 7069 0, 7070 0, 7071 0, 7072 flags, 7073 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7074 gc, /* security attribute */ 7075 NULL, 7076 ipst); 7077 7078 /* 7079 * The ire holds a reference to the 'gc' and the 'gc' holds a 7080 * reference to the 'gcgrp'. We can now release the extra reference 7081 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7082 */ 7083 if (gcgrp_xtraref) 7084 GCGRP_REFRELE(gcgrp); 7085 if (ire == NULL) { 7086 if (gc != NULL) 7087 GC_REFRELE(gc); 7088 ire_refrele(gw_ire); 7089 return (ENOMEM); 7090 } 7091 7092 /* 7093 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7094 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7095 */ 7096 7097 /* Add the new IRE. */ 7098 error = ire_add(&ire, q, mp, func, B_FALSE); 7099 if (error != 0) { 7100 /* 7101 * In the result of failure, ire_add() will have already 7102 * deleted the ire in question, so there is no need to 7103 * do that here. 7104 */ 7105 ire_refrele(gw_ire); 7106 return (error); 7107 } 7108 7109 if (flags & RTF_MULTIRT) { 7110 /* 7111 * Invoke the CGTP (multirouting) filtering module 7112 * to add the dst address in the filtering database. 7113 * Replicated inbound packets coming from that address 7114 * will be filtered to discard the duplicates. 7115 * It is not necessary to call the CGTP filter hook 7116 * when the dst address is a broadcast or multicast, 7117 * because an IP source address cannot be a broadcast 7118 * or a multicast. 7119 */ 7120 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7121 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7122 if (ire_dst != NULL) { 7123 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7124 ire_refrele(ire_dst); 7125 goto save_ire; 7126 } 7127 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7128 !CLASSD(ire->ire_addr)) { 7129 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7130 ipst->ips_netstack->netstack_stackid, 7131 ire->ire_addr, 7132 ire->ire_gateway_addr, 7133 ire->ire_src_addr, 7134 gw_ire->ire_src_addr); 7135 if (res != 0) { 7136 ire_refrele(gw_ire); 7137 ire_delete(ire); 7138 return (res); 7139 } 7140 } 7141 } 7142 7143 /* 7144 * Now that the prefix IRE entry has been created, delete any 7145 * existing gateway IRE cache entries as well as any IRE caches 7146 * using the gateway, and force them to be created through 7147 * ip_newroute. 7148 */ 7149 if (gc != NULL) { 7150 ASSERT(gcgrp != NULL); 7151 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7152 } 7153 7154 save_ire: 7155 if (gw_ire != NULL) { 7156 ire_refrele(gw_ire); 7157 } 7158 if (ipif != NULL) { 7159 /* 7160 * Save enough information so that we can recreate the IRE if 7161 * the interface goes down and then up. The metrics associated 7162 * with the route will be saved as well when rts_setmetrics() is 7163 * called after the IRE has been created. In the case where 7164 * memory cannot be allocated, none of this information will be 7165 * saved. 7166 */ 7167 ipif_save_ire(ipif, ire); 7168 } 7169 if (ioctl_msg) 7170 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7171 if (ire_arg != NULL) { 7172 /* 7173 * Store the ire that was successfully added into where ire_arg 7174 * points to so that callers don't have to look it up 7175 * themselves (but they are responsible for ire_refrele()ing 7176 * the ire when they are finished with it). 7177 */ 7178 *ire_arg = ire; 7179 } else { 7180 ire_refrele(ire); /* Held in ire_add */ 7181 } 7182 if (ipif_refheld) 7183 ipif_refrele(ipif); 7184 return (0); 7185 } 7186 7187 /* 7188 * ip_rt_delete is called to delete an IPv4 route. 7189 * ipif_arg is passed in to associate it with the correct interface. 7190 * We may need to restart this operation if the ipif cannot be looked up 7191 * due to an exclusive operation that is currently in progress. The restart 7192 * entry point is specified by 'func' 7193 */ 7194 /* ARGSUSED4 */ 7195 int 7196 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7197 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7198 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7199 { 7200 ire_t *ire = NULL; 7201 ipif_t *ipif; 7202 boolean_t ipif_refheld = B_FALSE; 7203 uint_t type; 7204 uint_t match_flags = MATCH_IRE_TYPE; 7205 int err = 0; 7206 7207 ip1dbg(("ip_rt_delete:")); 7208 /* 7209 * If this is the case of RTF_HOST being set, then we set the netmask 7210 * to all ones. Otherwise, we use the netmask if one was supplied. 7211 */ 7212 if (flags & RTF_HOST) { 7213 mask = IP_HOST_MASK; 7214 match_flags |= MATCH_IRE_MASK; 7215 } else if (rtm_addrs & RTA_NETMASK) { 7216 match_flags |= MATCH_IRE_MASK; 7217 } 7218 7219 /* 7220 * Note that RTF_GATEWAY is never set on a delete, therefore 7221 * we check if the gateway address is one of our interfaces first, 7222 * and fall back on RTF_GATEWAY routes. 7223 * 7224 * This makes it possible to delete an original 7225 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7226 * 7227 * As the interface index specified with the RTA_IFP sockaddr is the 7228 * same for all ipif's off of an ill, the matching logic below uses 7229 * MATCH_IRE_ILL if such an index was specified. This means a route 7230 * sharing the same prefix and interface index as the the route 7231 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7232 * is specified in the request. 7233 * 7234 * On the other hand, since the gateway address will usually be 7235 * different for each ipif on the system, the matching logic 7236 * uses MATCH_IRE_IPIF in the case of a traditional interface 7237 * route. This means that interface routes for the same prefix can be 7238 * uniquely identified if they belong to distinct ipif's and if a 7239 * RTA_IFP sockaddr is not present. 7240 * 7241 * For more detail on specifying routes by gateway address and by 7242 * interface index, see the comments in ip_rt_add(). 7243 */ 7244 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7245 ipst); 7246 if (ipif != NULL) 7247 ipif_refheld = B_TRUE; 7248 else if (err == EINPROGRESS) 7249 return (err); 7250 else 7251 err = 0; 7252 if (ipif != NULL) { 7253 if (ipif_arg != NULL) { 7254 if (ipif_refheld) { 7255 ipif_refrele(ipif); 7256 ipif_refheld = B_FALSE; 7257 } 7258 ipif = ipif_arg; 7259 match_flags |= MATCH_IRE_ILL; 7260 } else { 7261 match_flags |= MATCH_IRE_IPIF; 7262 } 7263 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7264 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7265 ALL_ZONES, NULL, match_flags, ipst); 7266 } 7267 if (ire == NULL) { 7268 ire = ire_ftable_lookup(dst_addr, mask, 0, 7269 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7270 match_flags, ipst); 7271 } 7272 } 7273 7274 if (ire == NULL) { 7275 /* 7276 * At this point, the gateway address is not one of our own 7277 * addresses or a matching interface route was not found. We 7278 * set the IRE type to lookup based on whether 7279 * this is a host route, a default route or just a prefix. 7280 * 7281 * If an ipif_arg was passed in, then the lookup is based on an 7282 * interface index so MATCH_IRE_ILL is added to match_flags. 7283 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7284 * set as the route being looked up is not a traditional 7285 * interface route. 7286 */ 7287 match_flags &= ~MATCH_IRE_IPIF; 7288 match_flags |= MATCH_IRE_GW; 7289 if (ipif_arg != NULL) 7290 match_flags |= MATCH_IRE_ILL; 7291 if (mask == IP_HOST_MASK) 7292 type = IRE_HOST; 7293 else if (mask == 0) 7294 type = IRE_DEFAULT; 7295 else 7296 type = IRE_PREFIX; 7297 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7298 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7299 } 7300 7301 if (ipif_refheld) 7302 ipif_refrele(ipif); 7303 7304 /* ipif is not refheld anymore */ 7305 if (ire == NULL) 7306 return (ESRCH); 7307 7308 if (ire->ire_flags & RTF_MULTIRT) { 7309 /* 7310 * Invoke the CGTP (multirouting) filtering module 7311 * to remove the dst address from the filtering database. 7312 * Packets coming from that address will no longer be 7313 * filtered to remove duplicates. 7314 */ 7315 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7316 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7317 ipst->ips_netstack->netstack_stackid, 7318 ire->ire_addr, ire->ire_gateway_addr); 7319 } 7320 ip_cgtp_bcast_delete(ire, ipst); 7321 } 7322 7323 ipif = ire->ire_ipif; 7324 if (ipif != NULL) 7325 ipif_remove_ire(ipif, ire); 7326 if (ioctl_msg) 7327 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7328 ire_delete(ire); 7329 ire_refrele(ire); 7330 return (err); 7331 } 7332 7333 /* 7334 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7335 */ 7336 /* ARGSUSED */ 7337 int 7338 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7339 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7340 { 7341 ipaddr_t dst_addr; 7342 ipaddr_t gw_addr; 7343 ipaddr_t mask; 7344 int error = 0; 7345 mblk_t *mp1; 7346 struct rtentry *rt; 7347 ipif_t *ipif = NULL; 7348 ip_stack_t *ipst; 7349 7350 ASSERT(q->q_next == NULL); 7351 ipst = CONNQ_TO_IPST(q); 7352 7353 ip1dbg(("ip_siocaddrt:")); 7354 /* Existence of mp1 verified in ip_wput_nondata */ 7355 mp1 = mp->b_cont->b_cont; 7356 rt = (struct rtentry *)mp1->b_rptr; 7357 7358 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7359 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7360 7361 /* 7362 * If the RTF_HOST flag is on, this is a request to assign a gateway 7363 * to a particular host address. In this case, we set the netmask to 7364 * all ones for the particular destination address. Otherwise, 7365 * determine the netmask to be used based on dst_addr and the interfaces 7366 * in use. 7367 */ 7368 if (rt->rt_flags & RTF_HOST) { 7369 mask = IP_HOST_MASK; 7370 } else { 7371 /* 7372 * Note that ip_subnet_mask returns a zero mask in the case of 7373 * default (an all-zeroes address). 7374 */ 7375 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7376 } 7377 7378 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7379 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7380 if (ipif != NULL) 7381 ipif_refrele(ipif); 7382 return (error); 7383 } 7384 7385 /* 7386 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7387 */ 7388 /* ARGSUSED */ 7389 int 7390 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7391 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7392 { 7393 ipaddr_t dst_addr; 7394 ipaddr_t gw_addr; 7395 ipaddr_t mask; 7396 int error; 7397 mblk_t *mp1; 7398 struct rtentry *rt; 7399 ipif_t *ipif = NULL; 7400 ip_stack_t *ipst; 7401 7402 ASSERT(q->q_next == NULL); 7403 ipst = CONNQ_TO_IPST(q); 7404 7405 ip1dbg(("ip_siocdelrt:")); 7406 /* Existence of mp1 verified in ip_wput_nondata */ 7407 mp1 = mp->b_cont->b_cont; 7408 rt = (struct rtentry *)mp1->b_rptr; 7409 7410 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7411 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7412 7413 /* 7414 * If the RTF_HOST flag is on, this is a request to delete a gateway 7415 * to a particular host address. In this case, we set the netmask to 7416 * all ones for the particular destination address. Otherwise, 7417 * determine the netmask to be used based on dst_addr and the interfaces 7418 * in use. 7419 */ 7420 if (rt->rt_flags & RTF_HOST) { 7421 mask = IP_HOST_MASK; 7422 } else { 7423 /* 7424 * Note that ip_subnet_mask returns a zero mask in the case of 7425 * default (an all-zeroes address). 7426 */ 7427 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7428 } 7429 7430 error = ip_rt_delete(dst_addr, mask, gw_addr, 7431 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7432 mp, ip_process_ioctl, ipst); 7433 if (ipif != NULL) 7434 ipif_refrele(ipif); 7435 return (error); 7436 } 7437 7438 /* 7439 * Enqueue the mp onto the ipsq, chained by b_next. 7440 * b_prev stores the function to be executed later, and b_queue the queue 7441 * where this mp originated. 7442 */ 7443 void 7444 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7445 ill_t *pending_ill) 7446 { 7447 conn_t *connp; 7448 ipxop_t *ipx = ipsq->ipsq_xop; 7449 7450 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7451 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 7452 ASSERT(func != NULL); 7453 7454 mp->b_queue = q; 7455 mp->b_prev = (void *)func; 7456 mp->b_next = NULL; 7457 7458 switch (type) { 7459 case CUR_OP: 7460 if (ipx->ipx_mptail != NULL) { 7461 ASSERT(ipx->ipx_mphead != NULL); 7462 ipx->ipx_mptail->b_next = mp; 7463 } else { 7464 ASSERT(ipx->ipx_mphead == NULL); 7465 ipx->ipx_mphead = mp; 7466 } 7467 ipx->ipx_mptail = mp; 7468 break; 7469 7470 case NEW_OP: 7471 if (ipsq->ipsq_xopq_mptail != NULL) { 7472 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7473 ipsq->ipsq_xopq_mptail->b_next = mp; 7474 } else { 7475 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7476 ipsq->ipsq_xopq_mphead = mp; 7477 } 7478 ipsq->ipsq_xopq_mptail = mp; 7479 ipx->ipx_ipsq_queued = B_TRUE; 7480 break; 7481 7482 case SWITCH_OP: 7483 ASSERT(ipsq->ipsq_swxop != NULL); 7484 /* only one switch operation is currently allowed */ 7485 ASSERT(ipsq->ipsq_switch_mp == NULL); 7486 ipsq->ipsq_switch_mp = mp; 7487 ipx->ipx_ipsq_queued = B_TRUE; 7488 break; 7489 default: 7490 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7491 } 7492 7493 if (CONN_Q(q) && pending_ill != NULL) { 7494 connp = Q_TO_CONN(q); 7495 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7496 connp->conn_oper_pending_ill = pending_ill; 7497 } 7498 } 7499 7500 /* 7501 * Dequeue the next message that requested exclusive access to this IPSQ's 7502 * xop. Specifically: 7503 * 7504 * 1. If we're still processing the current operation on `ipsq', then 7505 * dequeue the next message for the operation (from ipx_mphead), or 7506 * return NULL if there are no queued messages for the operation. 7507 * These messages are queued via CUR_OP to qwriter_ip() and friends. 7508 * 7509 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 7510 * not set) see if the ipsq has requested an xop switch. If so, switch 7511 * `ipsq' to a different xop. Xop switches only happen when joining or 7512 * leaving IPMP groups and require a careful dance -- see the comments 7513 * in-line below for details. If we're leaving a group xop or if we're 7514 * joining a group xop and become writer on it, then we proceed to (3). 7515 * Otherwise, we return NULL and exit the xop. 7516 * 7517 * 3. For each IPSQ in the xop, return any switch operation stored on 7518 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 7519 * any other messages queued on the IPSQ. Otherwise, dequeue the next 7520 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 7521 * Note that if the phyint tied to `ipsq' is not using IPMP there will 7522 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 7523 * each phyint in the group, including the IPMP meta-interface phyint. 7524 */ 7525 static mblk_t * 7526 ipsq_dq(ipsq_t *ipsq) 7527 { 7528 ill_t *illv4, *illv6; 7529 mblk_t *mp; 7530 ipsq_t *xopipsq; 7531 ipsq_t *leftipsq = NULL; 7532 ipxop_t *ipx; 7533 phyint_t *phyi = ipsq->ipsq_phyint; 7534 ip_stack_t *ipst = ipsq->ipsq_ipst; 7535 boolean_t emptied = B_FALSE; 7536 7537 /* 7538 * Grab all the locks we need in the defined order (ill_g_lock -> 7539 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 7540 */ 7541 rw_enter(&ipst->ips_ill_g_lock, 7542 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 7543 mutex_enter(&ipsq->ipsq_lock); 7544 ipx = ipsq->ipsq_xop; 7545 mutex_enter(&ipx->ipx_lock); 7546 7547 /* 7548 * Dequeue the next message associated with the current exclusive 7549 * operation, if any. 7550 */ 7551 if ((mp = ipx->ipx_mphead) != NULL) { 7552 ipx->ipx_mphead = mp->b_next; 7553 if (ipx->ipx_mphead == NULL) 7554 ipx->ipx_mptail = NULL; 7555 mp->b_next = (void *)ipsq; 7556 goto out; 7557 } 7558 7559 if (ipx->ipx_current_ipif != NULL) 7560 goto empty; 7561 7562 if (ipsq->ipsq_swxop != NULL) { 7563 /* 7564 * The exclusive operation that is now being completed has 7565 * requested a switch to a different xop. This happens 7566 * when an interface joins or leaves an IPMP group. Joins 7567 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 7568 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 7569 * (phyint_free()), or interface plumb for an ill type 7570 * not in the IPMP group (ip_rput_dlpi_writer()). 7571 * 7572 * Xop switches are not allowed on the IPMP meta-interface. 7573 */ 7574 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 7575 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 7576 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 7577 7578 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 7579 /* 7580 * We're switching back to our own xop, so we have two 7581 * xop's to drain/exit: our own, and the group xop 7582 * that we are leaving. 7583 * 7584 * First, pull ourselves out of the group ipsq list. 7585 * This is safe since we're writer on ill_g_lock. 7586 */ 7587 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 7588 7589 xopipsq = ipx->ipx_ipsq; 7590 while (xopipsq->ipsq_next != ipsq) 7591 xopipsq = xopipsq->ipsq_next; 7592 7593 xopipsq->ipsq_next = ipsq->ipsq_next; 7594 ipsq->ipsq_next = ipsq; 7595 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7596 ipsq->ipsq_swxop = NULL; 7597 7598 /* 7599 * Second, prepare to exit the group xop. The actual 7600 * ipsq_exit() is done at the end of this function 7601 * since we cannot hold any locks across ipsq_exit(). 7602 * Note that although we drop the group's ipx_lock, no 7603 * threads can proceed since we're still ipx_writer. 7604 */ 7605 leftipsq = xopipsq; 7606 mutex_exit(&ipx->ipx_lock); 7607 7608 /* 7609 * Third, set ipx to point to our own xop (which was 7610 * inactive and therefore can be entered). 7611 */ 7612 ipx = ipsq->ipsq_xop; 7613 mutex_enter(&ipx->ipx_lock); 7614 ASSERT(ipx->ipx_writer == NULL); 7615 ASSERT(ipx->ipx_current_ipif == NULL); 7616 } else { 7617 /* 7618 * We're switching from our own xop to a group xop. 7619 * The requestor of the switch must ensure that the 7620 * group xop cannot go away (e.g. by ensuring the 7621 * phyint associated with the xop cannot go away). 7622 * 7623 * If we can become writer on our new xop, then we'll 7624 * do the drain. Otherwise, the current writer of our 7625 * new xop will do the drain when it exits. 7626 * 7627 * First, splice ourselves into the group IPSQ list. 7628 * This is safe since we're writer on ill_g_lock. 7629 */ 7630 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7631 7632 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 7633 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 7634 xopipsq = xopipsq->ipsq_next; 7635 7636 xopipsq->ipsq_next = ipsq; 7637 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 7638 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7639 ipsq->ipsq_swxop = NULL; 7640 7641 /* 7642 * Second, exit our own xop, since it's now unused. 7643 * This is safe since we've got the only reference. 7644 */ 7645 ASSERT(ipx->ipx_writer == curthread); 7646 ipx->ipx_writer = NULL; 7647 VERIFY(--ipx->ipx_reentry_cnt == 0); 7648 ipx->ipx_ipsq_queued = B_FALSE; 7649 mutex_exit(&ipx->ipx_lock); 7650 7651 /* 7652 * Third, set ipx to point to our new xop, and check 7653 * if we can become writer on it. If we cannot, then 7654 * the current writer will drain the IPSQ group when 7655 * it exits. Our ipsq_xop is guaranteed to be stable 7656 * because we're still holding ipsq_lock. 7657 */ 7658 ipx = ipsq->ipsq_xop; 7659 mutex_enter(&ipx->ipx_lock); 7660 if (ipx->ipx_writer != NULL || 7661 ipx->ipx_current_ipif != NULL) { 7662 goto out; 7663 } 7664 } 7665 7666 /* 7667 * Fourth, become writer on our new ipx before we continue 7668 * with the drain. Note that we never dropped ipsq_lock 7669 * above, so no other thread could've raced with us to 7670 * become writer first. Also, we're holding ipx_lock, so 7671 * no other thread can examine the ipx right now. 7672 */ 7673 ASSERT(ipx->ipx_current_ipif == NULL); 7674 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7675 VERIFY(ipx->ipx_reentry_cnt++ == 0); 7676 ipx->ipx_writer = curthread; 7677 ipx->ipx_forced = B_FALSE; 7678 #ifdef DEBUG 7679 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7680 #endif 7681 } 7682 7683 xopipsq = ipsq; 7684 do { 7685 /* 7686 * So that other operations operate on a consistent and 7687 * complete phyint, a switch message on an IPSQ must be 7688 * handled prior to any other operations on that IPSQ. 7689 */ 7690 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 7691 xopipsq->ipsq_switch_mp = NULL; 7692 ASSERT(mp->b_next == NULL); 7693 mp->b_next = (void *)xopipsq; 7694 goto out; 7695 } 7696 7697 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 7698 xopipsq->ipsq_xopq_mphead = mp->b_next; 7699 if (xopipsq->ipsq_xopq_mphead == NULL) 7700 xopipsq->ipsq_xopq_mptail = NULL; 7701 mp->b_next = (void *)xopipsq; 7702 goto out; 7703 } 7704 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7705 empty: 7706 /* 7707 * There are no messages. Further, we are holding ipx_lock, hence no 7708 * new messages can end up on any IPSQ in the xop. 7709 */ 7710 ipx->ipx_writer = NULL; 7711 ipx->ipx_forced = B_FALSE; 7712 VERIFY(--ipx->ipx_reentry_cnt == 0); 7713 ipx->ipx_ipsq_queued = B_FALSE; 7714 emptied = B_TRUE; 7715 #ifdef DEBUG 7716 ipx->ipx_depth = 0; 7717 #endif 7718 out: 7719 mutex_exit(&ipx->ipx_lock); 7720 mutex_exit(&ipsq->ipsq_lock); 7721 7722 /* 7723 * If we completely emptied the xop, then wake up any threads waiting 7724 * to enter any of the IPSQ's associated with it. 7725 */ 7726 if (emptied) { 7727 xopipsq = ipsq; 7728 do { 7729 if ((phyi = xopipsq->ipsq_phyint) == NULL) 7730 continue; 7731 7732 illv4 = phyi->phyint_illv4; 7733 illv6 = phyi->phyint_illv6; 7734 7735 GRAB_ILL_LOCKS(illv4, illv6); 7736 if (illv4 != NULL) 7737 cv_broadcast(&illv4->ill_cv); 7738 if (illv6 != NULL) 7739 cv_broadcast(&illv6->ill_cv); 7740 RELEASE_ILL_LOCKS(illv4, illv6); 7741 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7742 } 7743 rw_exit(&ipst->ips_ill_g_lock); 7744 7745 /* 7746 * Now that all locks are dropped, exit the IPSQ we left. 7747 */ 7748 if (leftipsq != NULL) 7749 ipsq_exit(leftipsq); 7750 7751 return (mp); 7752 } 7753 7754 /* 7755 * Enter the ipsq corresponding to ill, by waiting synchronously till 7756 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7757 * will have to drain completely before ipsq_enter returns success. 7758 * ipx_current_ipif will be set if some exclusive op is in progress, 7759 * and the ipsq_exit logic will start the next enqueued op after 7760 * completion of the current op. If 'force' is used, we don't wait 7761 * for the enqueued ops. This is needed when a conn_close wants to 7762 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7763 * of an ill can also use this option. But we dont' use it currently. 7764 */ 7765 #define ENTER_SQ_WAIT_TICKS 100 7766 boolean_t 7767 ipsq_enter(ill_t *ill, boolean_t force, int type) 7768 { 7769 ipsq_t *ipsq; 7770 ipxop_t *ipx; 7771 boolean_t waited_enough = B_FALSE; 7772 7773 /* 7774 * Note that the relationship between ill and ipsq is fixed as long as 7775 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 7776 * relationship between the IPSQ and xop cannot change. However, 7777 * since we cannot hold ipsq_lock across the cv_wait(), it may change 7778 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 7779 * waking up all ills in the xop when it becomes available. 7780 */ 7781 mutex_enter(&ill->ill_lock); 7782 for (;;) { 7783 if (ill->ill_state_flags & ILL_CONDEMNED) { 7784 mutex_exit(&ill->ill_lock); 7785 return (B_FALSE); 7786 } 7787 7788 ipsq = ill->ill_phyint->phyint_ipsq; 7789 mutex_enter(&ipsq->ipsq_lock); 7790 ipx = ipsq->ipsq_xop; 7791 mutex_enter(&ipx->ipx_lock); 7792 7793 if (ipx->ipx_writer == NULL && (type == CUR_OP || 7794 ipx->ipx_current_ipif == NULL || waited_enough)) 7795 break; 7796 7797 if (!force || ipx->ipx_writer != NULL) { 7798 mutex_exit(&ipx->ipx_lock); 7799 mutex_exit(&ipsq->ipsq_lock); 7800 cv_wait(&ill->ill_cv, &ill->ill_lock); 7801 } else { 7802 mutex_exit(&ipx->ipx_lock); 7803 mutex_exit(&ipsq->ipsq_lock); 7804 (void) cv_timedwait(&ill->ill_cv, 7805 &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS); 7806 waited_enough = B_TRUE; 7807 } 7808 } 7809 7810 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7811 ASSERT(ipx->ipx_reentry_cnt == 0); 7812 ipx->ipx_writer = curthread; 7813 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 7814 ipx->ipx_reentry_cnt++; 7815 #ifdef DEBUG 7816 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7817 #endif 7818 mutex_exit(&ipx->ipx_lock); 7819 mutex_exit(&ipsq->ipsq_lock); 7820 mutex_exit(&ill->ill_lock); 7821 return (B_TRUE); 7822 } 7823 7824 boolean_t 7825 ill_perim_enter(ill_t *ill) 7826 { 7827 return (ipsq_enter(ill, B_FALSE, CUR_OP)); 7828 } 7829 7830 void 7831 ill_perim_exit(ill_t *ill) 7832 { 7833 ipsq_exit(ill->ill_phyint->phyint_ipsq); 7834 } 7835 7836 /* 7837 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7838 * certain critical operations like plumbing (i.e. most set ioctls), multicast 7839 * joins, igmp/mld timers, etc. There is one ipsq per phyint. The ipsq 7840 * serializes exclusive ioctls issued by applications on a per ipsq basis in 7841 * ipsq_xopq_mphead. It also protects against multiple threads executing in 7842 * the ipsq. Responses from the driver pertain to the current ioctl (say a 7843 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 7844 * up the interface) and are enqueued in ipx_mphead. 7845 * 7846 * If a thread does not want to reenter the ipsq when it is already writer, 7847 * it must make sure that the specified reentry point to be called later 7848 * when the ipsq is empty, nor any code path starting from the specified reentry 7849 * point must never ever try to enter the ipsq again. Otherwise it can lead 7850 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7851 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7852 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 7853 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 7854 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7855 * ioctl if the current ioctl has completed. If the current ioctl is still 7856 * in progress it simply returns. The current ioctl could be waiting for 7857 * a response from another module (arp or the driver or could be waiting for 7858 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 7859 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 7860 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7861 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 7862 * all associated DLPI operations have completed. 7863 */ 7864 7865 /* 7866 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 7867 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 7868 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 7869 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 7870 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 7871 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 7872 */ 7873 ipsq_t * 7874 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7875 ipsq_func_t func, int type, boolean_t reentry_ok) 7876 { 7877 ipsq_t *ipsq; 7878 ipxop_t *ipx; 7879 7880 /* Only 1 of ipif or ill can be specified */ 7881 ASSERT((ipif != NULL) ^ (ill != NULL)); 7882 if (ipif != NULL) 7883 ill = ipif->ipif_ill; 7884 7885 /* 7886 * lock ordering: conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 7887 * ipx of an ipsq can't change when ipsq_lock is held. 7888 */ 7889 GRAB_CONN_LOCK(q); 7890 mutex_enter(&ill->ill_lock); 7891 ipsq = ill->ill_phyint->phyint_ipsq; 7892 mutex_enter(&ipsq->ipsq_lock); 7893 ipx = ipsq->ipsq_xop; 7894 mutex_enter(&ipx->ipx_lock); 7895 7896 /* 7897 * 1. Enter the ipsq if we are already writer and reentry is ok. 7898 * (Note: If the caller does not specify reentry_ok then neither 7899 * 'func' nor any of its callees must ever attempt to enter the ipsq 7900 * again. Otherwise it can lead to an infinite loop 7901 * 2. Enter the ipsq if there is no current writer and this attempted 7902 * entry is part of the current operation 7903 * 3. Enter the ipsq if there is no current writer and this is a new 7904 * operation and the operation queue is empty and there is no 7905 * operation currently in progress 7906 */ 7907 if ((ipx->ipx_writer == curthread && reentry_ok) || 7908 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 7909 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL)))) { 7910 /* Success. */ 7911 ipx->ipx_reentry_cnt++; 7912 ipx->ipx_writer = curthread; 7913 ipx->ipx_forced = B_FALSE; 7914 mutex_exit(&ipx->ipx_lock); 7915 mutex_exit(&ipsq->ipsq_lock); 7916 mutex_exit(&ill->ill_lock); 7917 RELEASE_CONN_LOCK(q); 7918 #ifdef DEBUG 7919 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7920 #endif 7921 return (ipsq); 7922 } 7923 7924 if (func != NULL) 7925 ipsq_enq(ipsq, q, mp, func, type, ill); 7926 7927 mutex_exit(&ipx->ipx_lock); 7928 mutex_exit(&ipsq->ipsq_lock); 7929 mutex_exit(&ill->ill_lock); 7930 RELEASE_CONN_LOCK(q); 7931 return (NULL); 7932 } 7933 7934 /* 7935 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7936 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7937 * cannot be entered, the mp is queued for completion. 7938 */ 7939 void 7940 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7941 boolean_t reentry_ok) 7942 { 7943 ipsq_t *ipsq; 7944 7945 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7946 7947 /* 7948 * Drop the caller's refhold on the ill. This is safe since we either 7949 * entered the IPSQ (and thus are exclusive), or failed to enter the 7950 * IPSQ, in which case we return without accessing ill anymore. This 7951 * is needed because func needs to see the correct refcount. 7952 * e.g. removeif can work only then. 7953 */ 7954 ill_refrele(ill); 7955 if (ipsq != NULL) { 7956 (*func)(ipsq, q, mp, NULL); 7957 ipsq_exit(ipsq); 7958 } 7959 } 7960 7961 /* 7962 * Exit the specified IPSQ. If this is the final exit on it then drain it 7963 * prior to exiting. Caller must be writer on the specified IPSQ. 7964 */ 7965 void 7966 ipsq_exit(ipsq_t *ipsq) 7967 { 7968 mblk_t *mp; 7969 ipsq_t *mp_ipsq; 7970 queue_t *q; 7971 phyint_t *phyi; 7972 ipsq_func_t func; 7973 7974 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7975 7976 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 7977 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 7978 ipsq->ipsq_xop->ipx_reentry_cnt--; 7979 return; 7980 } 7981 7982 for (;;) { 7983 phyi = ipsq->ipsq_phyint; 7984 mp = ipsq_dq(ipsq); 7985 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 7986 7987 /* 7988 * If we've changed to a new IPSQ, and the phyint associated 7989 * with the old one has gone away, free the old IPSQ. Note 7990 * that this cannot happen while the IPSQ is in a group. 7991 */ 7992 if (mp_ipsq != ipsq && phyi == NULL) { 7993 ASSERT(ipsq->ipsq_next == ipsq); 7994 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7995 ipsq_delete(ipsq); 7996 } 7997 7998 if (mp == NULL) 7999 break; 8000 8001 q = mp->b_queue; 8002 func = (ipsq_func_t)mp->b_prev; 8003 ipsq = mp_ipsq; 8004 mp->b_next = mp->b_prev = NULL; 8005 mp->b_queue = NULL; 8006 8007 /* 8008 * If 'q' is an conn queue, it is valid, since we did a 8009 * a refhold on the conn at the start of the ioctl. 8010 * If 'q' is an ill queue, it is valid, since close of an 8011 * ill will clean up its IPSQ. 8012 */ 8013 (*func)(ipsq, q, mp, NULL); 8014 } 8015 } 8016 8017 /* 8018 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8019 * and `ioccmd'. 8020 */ 8021 void 8022 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8023 { 8024 ipxop_t *ipx = ipsq->ipsq_xop; 8025 8026 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8027 ASSERT(ipx->ipx_current_ipif == NULL); 8028 ASSERT(ipx->ipx_current_ioctl == 0); 8029 8030 ipx->ipx_current_done = B_FALSE; 8031 ipx->ipx_current_ioctl = ioccmd; 8032 mutex_enter(&ipx->ipx_lock); 8033 ipx->ipx_current_ipif = ipif; 8034 mutex_exit(&ipx->ipx_lock); 8035 } 8036 8037 /* 8038 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 8039 * the next exclusive operation to begin once we ipsq_exit(). However, if 8040 * pending DLPI operations remain, then we will wait for the queue to drain 8041 * before allowing the next exclusive operation to begin. This ensures that 8042 * DLPI operations from one exclusive operation are never improperly processed 8043 * as part of a subsequent exclusive operation. 8044 */ 8045 void 8046 ipsq_current_finish(ipsq_t *ipsq) 8047 { 8048 ipxop_t *ipx = ipsq->ipsq_xop; 8049 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 8050 ipif_t *ipif = ipx->ipx_current_ipif; 8051 8052 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8053 8054 /* 8055 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 8056 * (but in that case, IPIF_CHANGING will already be clear and no 8057 * pending DLPI messages can remain). 8058 */ 8059 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 8060 ill_t *ill = ipif->ipif_ill; 8061 8062 mutex_enter(&ill->ill_lock); 8063 dlpi_pending = ill->ill_dlpi_pending; 8064 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8065 mutex_exit(&ill->ill_lock); 8066 } 8067 8068 ASSERT(!ipx->ipx_current_done); 8069 ipx->ipx_current_done = B_TRUE; 8070 ipx->ipx_current_ioctl = 0; 8071 if (dlpi_pending == DL_PRIM_INVAL) { 8072 mutex_enter(&ipx->ipx_lock); 8073 ipx->ipx_current_ipif = NULL; 8074 mutex_exit(&ipx->ipx_lock); 8075 } 8076 } 8077 8078 /* 8079 * The ill is closing. Flush all messages on the ipsq that originated 8080 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8081 * for this ill since ipsq_enter could not have entered until then. 8082 * New messages can't be queued since the CONDEMNED flag is set. 8083 */ 8084 static void 8085 ipsq_flush(ill_t *ill) 8086 { 8087 queue_t *q; 8088 mblk_t *prev; 8089 mblk_t *mp; 8090 mblk_t *mp_next; 8091 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 8092 8093 ASSERT(IAM_WRITER_ILL(ill)); 8094 8095 /* 8096 * Flush any messages sent up by the driver. 8097 */ 8098 mutex_enter(&ipx->ipx_lock); 8099 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 8100 mp_next = mp->b_next; 8101 q = mp->b_queue; 8102 if (q == ill->ill_rq || q == ill->ill_wq) { 8103 /* dequeue mp */ 8104 if (prev == NULL) 8105 ipx->ipx_mphead = mp->b_next; 8106 else 8107 prev->b_next = mp->b_next; 8108 if (ipx->ipx_mptail == mp) { 8109 ASSERT(mp_next == NULL); 8110 ipx->ipx_mptail = prev; 8111 } 8112 inet_freemsg(mp); 8113 } else { 8114 prev = mp; 8115 } 8116 } 8117 mutex_exit(&ipx->ipx_lock); 8118 (void) ipsq_pending_mp_cleanup(ill, NULL); 8119 ipsq_xopq_mp_cleanup(ill, NULL); 8120 ill_pending_mp_cleanup(ill); 8121 } 8122 8123 /* 8124 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8125 * refhold and return the associated ipif 8126 */ 8127 /* ARGSUSED */ 8128 int 8129 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8130 cmd_info_t *ci, ipsq_func_t func) 8131 { 8132 boolean_t exists; 8133 struct iftun_req *ta; 8134 ipif_t *ipif; 8135 ill_t *ill; 8136 boolean_t isv6; 8137 mblk_t *mp1; 8138 int error; 8139 conn_t *connp; 8140 ip_stack_t *ipst; 8141 8142 /* Existence verified in ip_wput_nondata */ 8143 mp1 = mp->b_cont->b_cont; 8144 ta = (struct iftun_req *)mp1->b_rptr; 8145 /* 8146 * Null terminate the string to protect against buffer 8147 * overrun. String was generated by user code and may not 8148 * be trusted. 8149 */ 8150 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8151 8152 connp = Q_TO_CONN(q); 8153 isv6 = connp->conn_af_isv6; 8154 ipst = connp->conn_netstack->netstack_ip; 8155 8156 /* Disallows implicit create */ 8157 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8158 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8159 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8160 if (ipif == NULL) 8161 return (error); 8162 8163 if (ipif->ipif_id != 0) { 8164 /* 8165 * We really don't want to set/get tunnel parameters 8166 * on virtual tunnel interfaces. Only allow the 8167 * base tunnel to do these. 8168 */ 8169 ipif_refrele(ipif); 8170 return (EINVAL); 8171 } 8172 8173 /* 8174 * Send down to tunnel mod for ioctl processing. 8175 * Will finish ioctl in ip_rput_other(). 8176 */ 8177 ill = ipif->ipif_ill; 8178 if (ill->ill_net_type == IRE_LOOPBACK) { 8179 ipif_refrele(ipif); 8180 return (EOPNOTSUPP); 8181 } 8182 8183 if (ill->ill_wq == NULL) { 8184 ipif_refrele(ipif); 8185 return (ENXIO); 8186 } 8187 /* 8188 * Mark the ioctl as coming from an IPv6 interface for 8189 * tun's convenience. 8190 */ 8191 if (ill->ill_isv6) 8192 ta->ifta_flags |= 0x80000000; 8193 ci->ci_ipif = ipif; 8194 return (0); 8195 } 8196 8197 /* 8198 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8199 * and return the associated ipif. 8200 * Return value: 8201 * Non zero: An error has occurred. ci may not be filled out. 8202 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8203 * a held ipif in ci.ci_ipif. 8204 */ 8205 int 8206 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8207 cmd_info_t *ci, ipsq_func_t func) 8208 { 8209 char *name; 8210 struct ifreq *ifr; 8211 struct lifreq *lifr; 8212 ipif_t *ipif = NULL; 8213 ill_t *ill; 8214 conn_t *connp; 8215 boolean_t isv6; 8216 boolean_t exists; 8217 int err; 8218 mblk_t *mp1; 8219 zoneid_t zoneid; 8220 ip_stack_t *ipst; 8221 8222 if (q->q_next != NULL) { 8223 ill = (ill_t *)q->q_ptr; 8224 isv6 = ill->ill_isv6; 8225 connp = NULL; 8226 zoneid = ALL_ZONES; 8227 ipst = ill->ill_ipst; 8228 } else { 8229 ill = NULL; 8230 connp = Q_TO_CONN(q); 8231 isv6 = connp->conn_af_isv6; 8232 zoneid = connp->conn_zoneid; 8233 if (zoneid == GLOBAL_ZONEID) { 8234 /* global zone can access ipifs in all zones */ 8235 zoneid = ALL_ZONES; 8236 } 8237 ipst = connp->conn_netstack->netstack_ip; 8238 } 8239 8240 /* Has been checked in ip_wput_nondata */ 8241 mp1 = mp->b_cont->b_cont; 8242 8243 if (ipip->ipi_cmd_type == IF_CMD) { 8244 /* This a old style SIOC[GS]IF* command */ 8245 ifr = (struct ifreq *)mp1->b_rptr; 8246 /* 8247 * Null terminate the string to protect against buffer 8248 * overrun. String was generated by user code and may not 8249 * be trusted. 8250 */ 8251 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8252 name = ifr->ifr_name; 8253 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 8254 ci->ci_sin6 = NULL; 8255 ci->ci_lifr = (struct lifreq *)ifr; 8256 } else { 8257 /* This a new style SIOC[GS]LIF* command */ 8258 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8259 lifr = (struct lifreq *)mp1->b_rptr; 8260 /* 8261 * Null terminate the string to protect against buffer 8262 * overrun. String was generated by user code and may not 8263 * be trusted. 8264 */ 8265 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8266 name = lifr->lifr_name; 8267 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 8268 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 8269 ci->ci_lifr = lifr; 8270 } 8271 8272 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8273 /* 8274 * The ioctl will be failed if the ioctl comes down 8275 * an conn stream 8276 */ 8277 if (ill == NULL) { 8278 /* 8279 * Not an ill queue, return EINVAL same as the 8280 * old error code. 8281 */ 8282 return (ENXIO); 8283 } 8284 ipif = ill->ill_ipif; 8285 ipif_refhold(ipif); 8286 } else { 8287 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8288 &exists, isv6, zoneid, 8289 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8290 ipst); 8291 if (ipif == NULL) { 8292 if (err == EINPROGRESS) 8293 return (err); 8294 err = 0; /* Ensure we don't use it below */ 8295 } 8296 } 8297 8298 /* 8299 * Old style [GS]IFCMD does not admit IPv6 ipif 8300 */ 8301 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8302 ipif_refrele(ipif); 8303 return (ENXIO); 8304 } 8305 8306 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8307 name[0] == '\0') { 8308 /* 8309 * Handle a or a SIOC?IF* with a null name 8310 * during plumb (on the ill queue before the I_PLINK). 8311 */ 8312 ipif = ill->ill_ipif; 8313 ipif_refhold(ipif); 8314 } 8315 8316 if (ipif == NULL) 8317 return (ENXIO); 8318 8319 ci->ci_ipif = ipif; 8320 return (0); 8321 } 8322 8323 /* 8324 * Return the total number of ipifs. 8325 */ 8326 static uint_t 8327 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8328 { 8329 uint_t numifs = 0; 8330 ill_t *ill; 8331 ill_walk_context_t ctx; 8332 ipif_t *ipif; 8333 8334 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8335 ill = ILL_START_WALK_V4(&ctx, ipst); 8336 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8337 if (IS_UNDER_IPMP(ill)) 8338 continue; 8339 for (ipif = ill->ill_ipif; ipif != NULL; 8340 ipif = ipif->ipif_next) { 8341 if (ipif->ipif_zoneid == zoneid || 8342 ipif->ipif_zoneid == ALL_ZONES) 8343 numifs++; 8344 } 8345 } 8346 rw_exit(&ipst->ips_ill_g_lock); 8347 return (numifs); 8348 } 8349 8350 /* 8351 * Return the total number of ipifs. 8352 */ 8353 static uint_t 8354 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8355 { 8356 uint_t numifs = 0; 8357 ill_t *ill; 8358 ipif_t *ipif; 8359 ill_walk_context_t ctx; 8360 8361 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8362 8363 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8364 if (family == AF_INET) 8365 ill = ILL_START_WALK_V4(&ctx, ipst); 8366 else if (family == AF_INET6) 8367 ill = ILL_START_WALK_V6(&ctx, ipst); 8368 else 8369 ill = ILL_START_WALK_ALL(&ctx, ipst); 8370 8371 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8372 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 8373 continue; 8374 8375 for (ipif = ill->ill_ipif; ipif != NULL; 8376 ipif = ipif->ipif_next) { 8377 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8378 !(lifn_flags & LIFC_NOXMIT)) 8379 continue; 8380 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8381 !(lifn_flags & LIFC_TEMPORARY)) 8382 continue; 8383 if (((ipif->ipif_flags & 8384 (IPIF_NOXMIT|IPIF_NOLOCAL| 8385 IPIF_DEPRECATED)) || 8386 IS_LOOPBACK(ill) || 8387 !(ipif->ipif_flags & IPIF_UP)) && 8388 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8389 continue; 8390 8391 if (zoneid != ipif->ipif_zoneid && 8392 ipif->ipif_zoneid != ALL_ZONES && 8393 (zoneid != GLOBAL_ZONEID || 8394 !(lifn_flags & LIFC_ALLZONES))) 8395 continue; 8396 8397 numifs++; 8398 } 8399 } 8400 rw_exit(&ipst->ips_ill_g_lock); 8401 return (numifs); 8402 } 8403 8404 uint_t 8405 ip_get_lifsrcofnum(ill_t *ill) 8406 { 8407 uint_t numifs = 0; 8408 ill_t *ill_head = ill; 8409 ip_stack_t *ipst = ill->ill_ipst; 8410 8411 /* 8412 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8413 * other thread may be trying to relink the ILLs in this usesrc group 8414 * and adjusting the ill_usesrc_grp_next pointers 8415 */ 8416 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8417 if ((ill->ill_usesrc_ifindex == 0) && 8418 (ill->ill_usesrc_grp_next != NULL)) { 8419 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8420 ill = ill->ill_usesrc_grp_next) 8421 numifs++; 8422 } 8423 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8424 8425 return (numifs); 8426 } 8427 8428 /* Null values are passed in for ipif, sin, and ifreq */ 8429 /* ARGSUSED */ 8430 int 8431 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8432 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8433 { 8434 int *nump; 8435 conn_t *connp = Q_TO_CONN(q); 8436 8437 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8438 8439 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8440 nump = (int *)mp->b_cont->b_cont->b_rptr; 8441 8442 *nump = ip_get_numifs(connp->conn_zoneid, 8443 connp->conn_netstack->netstack_ip); 8444 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8445 return (0); 8446 } 8447 8448 /* Null values are passed in for ipif, sin, and ifreq */ 8449 /* ARGSUSED */ 8450 int 8451 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8452 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8453 { 8454 struct lifnum *lifn; 8455 mblk_t *mp1; 8456 conn_t *connp = Q_TO_CONN(q); 8457 8458 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8459 8460 /* Existence checked in ip_wput_nondata */ 8461 mp1 = mp->b_cont->b_cont; 8462 8463 lifn = (struct lifnum *)mp1->b_rptr; 8464 switch (lifn->lifn_family) { 8465 case AF_UNSPEC: 8466 case AF_INET: 8467 case AF_INET6: 8468 break; 8469 default: 8470 return (EAFNOSUPPORT); 8471 } 8472 8473 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8474 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8475 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8476 return (0); 8477 } 8478 8479 /* ARGSUSED */ 8480 int 8481 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8482 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8483 { 8484 STRUCT_HANDLE(ifconf, ifc); 8485 mblk_t *mp1; 8486 struct iocblk *iocp; 8487 struct ifreq *ifr; 8488 ill_walk_context_t ctx; 8489 ill_t *ill; 8490 ipif_t *ipif; 8491 struct sockaddr_in *sin; 8492 int32_t ifclen; 8493 zoneid_t zoneid; 8494 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8495 8496 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8497 8498 ip1dbg(("ip_sioctl_get_ifconf")); 8499 /* Existence verified in ip_wput_nondata */ 8500 mp1 = mp->b_cont->b_cont; 8501 iocp = (struct iocblk *)mp->b_rptr; 8502 zoneid = Q_TO_CONN(q)->conn_zoneid; 8503 8504 /* 8505 * The original SIOCGIFCONF passed in a struct ifconf which specified 8506 * the user buffer address and length into which the list of struct 8507 * ifreqs was to be copied. Since AT&T Streams does not seem to 8508 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8509 * the SIOCGIFCONF operation was redefined to simply provide 8510 * a large output buffer into which we are supposed to jam the ifreq 8511 * array. The same ioctl command code was used, despite the fact that 8512 * both the applications and the kernel code had to change, thus making 8513 * it impossible to support both interfaces. 8514 * 8515 * For reasons not good enough to try to explain, the following 8516 * algorithm is used for deciding what to do with one of these: 8517 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8518 * form with the output buffer coming down as the continuation message. 8519 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8520 * and we have to copy in the ifconf structure to find out how big the 8521 * output buffer is and where to copy out to. Sure no problem... 8522 * 8523 */ 8524 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8525 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8526 int numifs = 0; 8527 size_t ifc_bufsize; 8528 8529 /* 8530 * Must be (better be!) continuation of a TRANSPARENT 8531 * IOCTL. We just copied in the ifconf structure. 8532 */ 8533 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8534 (struct ifconf *)mp1->b_rptr); 8535 8536 /* 8537 * Allocate a buffer to hold requested information. 8538 * 8539 * If ifc_len is larger than what is needed, we only 8540 * allocate what we will use. 8541 * 8542 * If ifc_len is smaller than what is needed, return 8543 * EINVAL. 8544 * 8545 * XXX: the ill_t structure can hava 2 counters, for 8546 * v4 and v6 (not just ill_ipif_up_count) to store the 8547 * number of interfaces for a device, so we don't need 8548 * to count them here... 8549 */ 8550 numifs = ip_get_numifs(zoneid, ipst); 8551 8552 ifclen = STRUCT_FGET(ifc, ifc_len); 8553 ifc_bufsize = numifs * sizeof (struct ifreq); 8554 if (ifc_bufsize > ifclen) { 8555 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8556 /* old behaviour */ 8557 return (EINVAL); 8558 } else { 8559 ifc_bufsize = ifclen; 8560 } 8561 } 8562 8563 mp1 = mi_copyout_alloc(q, mp, 8564 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8565 if (mp1 == NULL) 8566 return (ENOMEM); 8567 8568 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8569 } 8570 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8571 /* 8572 * the SIOCGIFCONF ioctl only knows about 8573 * IPv4 addresses, so don't try to tell 8574 * it about interfaces with IPv6-only 8575 * addresses. (Last parm 'isv6' is B_FALSE) 8576 */ 8577 8578 ifr = (struct ifreq *)mp1->b_rptr; 8579 8580 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8581 ill = ILL_START_WALK_V4(&ctx, ipst); 8582 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8583 if (IS_UNDER_IPMP(ill)) 8584 continue; 8585 for (ipif = ill->ill_ipif; ipif != NULL; 8586 ipif = ipif->ipif_next) { 8587 if (zoneid != ipif->ipif_zoneid && 8588 ipif->ipif_zoneid != ALL_ZONES) 8589 continue; 8590 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8591 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8592 /* old behaviour */ 8593 rw_exit(&ipst->ips_ill_g_lock); 8594 return (EINVAL); 8595 } else { 8596 goto if_copydone; 8597 } 8598 } 8599 ipif_get_name(ipif, ifr->ifr_name, 8600 sizeof (ifr->ifr_name)); 8601 sin = (sin_t *)&ifr->ifr_addr; 8602 *sin = sin_null; 8603 sin->sin_family = AF_INET; 8604 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8605 ifr++; 8606 } 8607 } 8608 if_copydone: 8609 rw_exit(&ipst->ips_ill_g_lock); 8610 mp1->b_wptr = (uchar_t *)ifr; 8611 8612 if (STRUCT_BUF(ifc) != NULL) { 8613 STRUCT_FSET(ifc, ifc_len, 8614 (int)((uchar_t *)ifr - mp1->b_rptr)); 8615 } 8616 return (0); 8617 } 8618 8619 /* 8620 * Get the interfaces using the address hosted on the interface passed in, 8621 * as a source adddress 8622 */ 8623 /* ARGSUSED */ 8624 int 8625 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8626 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8627 { 8628 mblk_t *mp1; 8629 ill_t *ill, *ill_head; 8630 ipif_t *ipif, *orig_ipif; 8631 int numlifs = 0; 8632 size_t lifs_bufsize, lifsmaxlen; 8633 struct lifreq *lifr; 8634 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8635 uint_t ifindex; 8636 zoneid_t zoneid; 8637 int err = 0; 8638 boolean_t isv6 = B_FALSE; 8639 struct sockaddr_in *sin; 8640 struct sockaddr_in6 *sin6; 8641 STRUCT_HANDLE(lifsrcof, lifs); 8642 ip_stack_t *ipst; 8643 8644 ipst = CONNQ_TO_IPST(q); 8645 8646 ASSERT(q->q_next == NULL); 8647 8648 zoneid = Q_TO_CONN(q)->conn_zoneid; 8649 8650 /* Existence verified in ip_wput_nondata */ 8651 mp1 = mp->b_cont->b_cont; 8652 8653 /* 8654 * Must be (better be!) continuation of a TRANSPARENT 8655 * IOCTL. We just copied in the lifsrcof structure. 8656 */ 8657 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8658 (struct lifsrcof *)mp1->b_rptr); 8659 8660 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8661 return (EINVAL); 8662 8663 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8664 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8665 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8666 ip_process_ioctl, &err, ipst); 8667 if (ipif == NULL) { 8668 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8669 ifindex)); 8670 return (err); 8671 } 8672 8673 /* Allocate a buffer to hold requested information */ 8674 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8675 lifs_bufsize = numlifs * sizeof (struct lifreq); 8676 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8677 /* The actual size needed is always returned in lifs_len */ 8678 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8679 8680 /* If the amount we need is more than what is passed in, abort */ 8681 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8682 ipif_refrele(ipif); 8683 return (0); 8684 } 8685 8686 mp1 = mi_copyout_alloc(q, mp, 8687 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8688 if (mp1 == NULL) { 8689 ipif_refrele(ipif); 8690 return (ENOMEM); 8691 } 8692 8693 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8694 bzero(mp1->b_rptr, lifs_bufsize); 8695 8696 lifr = (struct lifreq *)mp1->b_rptr; 8697 8698 ill = ill_head = ipif->ipif_ill; 8699 orig_ipif = ipif; 8700 8701 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8702 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8703 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8704 8705 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8706 for (; (ill != NULL) && (ill != ill_head); 8707 ill = ill->ill_usesrc_grp_next) { 8708 8709 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8710 break; 8711 8712 ipif = ill->ill_ipif; 8713 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8714 if (ipif->ipif_isv6) { 8715 sin6 = (sin6_t *)&lifr->lifr_addr; 8716 *sin6 = sin6_null; 8717 sin6->sin6_family = AF_INET6; 8718 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8719 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8720 &ipif->ipif_v6net_mask); 8721 } else { 8722 sin = (sin_t *)&lifr->lifr_addr; 8723 *sin = sin_null; 8724 sin->sin_family = AF_INET; 8725 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8726 lifr->lifr_addrlen = ip_mask_to_plen( 8727 ipif->ipif_net_mask); 8728 } 8729 lifr++; 8730 } 8731 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8732 rw_exit(&ipst->ips_ill_g_lock); 8733 ipif_refrele(orig_ipif); 8734 mp1->b_wptr = (uchar_t *)lifr; 8735 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8736 8737 return (0); 8738 } 8739 8740 /* ARGSUSED */ 8741 int 8742 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8743 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8744 { 8745 mblk_t *mp1; 8746 int list; 8747 ill_t *ill; 8748 ipif_t *ipif; 8749 int flags; 8750 int numlifs = 0; 8751 size_t lifc_bufsize; 8752 struct lifreq *lifr; 8753 sa_family_t family; 8754 struct sockaddr_in *sin; 8755 struct sockaddr_in6 *sin6; 8756 ill_walk_context_t ctx; 8757 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8758 int32_t lifclen; 8759 zoneid_t zoneid; 8760 STRUCT_HANDLE(lifconf, lifc); 8761 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8762 8763 ip1dbg(("ip_sioctl_get_lifconf")); 8764 8765 ASSERT(q->q_next == NULL); 8766 8767 zoneid = Q_TO_CONN(q)->conn_zoneid; 8768 8769 /* Existence verified in ip_wput_nondata */ 8770 mp1 = mp->b_cont->b_cont; 8771 8772 /* 8773 * An extended version of SIOCGIFCONF that takes an 8774 * additional address family and flags field. 8775 * AF_UNSPEC retrieve both IPv4 and IPv6. 8776 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8777 * interfaces are omitted. 8778 * Similarly, IPIF_TEMPORARY interfaces are omitted 8779 * unless LIFC_TEMPORARY is specified. 8780 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8781 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8782 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8783 * has priority over LIFC_NOXMIT. 8784 */ 8785 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8786 8787 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8788 return (EINVAL); 8789 8790 /* 8791 * Must be (better be!) continuation of a TRANSPARENT 8792 * IOCTL. We just copied in the lifconf structure. 8793 */ 8794 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8795 8796 family = STRUCT_FGET(lifc, lifc_family); 8797 flags = STRUCT_FGET(lifc, lifc_flags); 8798 8799 switch (family) { 8800 case AF_UNSPEC: 8801 /* 8802 * walk all ILL's. 8803 */ 8804 list = MAX_G_HEADS; 8805 break; 8806 case AF_INET: 8807 /* 8808 * walk only IPV4 ILL's. 8809 */ 8810 list = IP_V4_G_HEAD; 8811 break; 8812 case AF_INET6: 8813 /* 8814 * walk only IPV6 ILL's. 8815 */ 8816 list = IP_V6_G_HEAD; 8817 break; 8818 default: 8819 return (EAFNOSUPPORT); 8820 } 8821 8822 /* 8823 * Allocate a buffer to hold requested information. 8824 * 8825 * If lifc_len is larger than what is needed, we only 8826 * allocate what we will use. 8827 * 8828 * If lifc_len is smaller than what is needed, return 8829 * EINVAL. 8830 */ 8831 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8832 lifc_bufsize = numlifs * sizeof (struct lifreq); 8833 lifclen = STRUCT_FGET(lifc, lifc_len); 8834 if (lifc_bufsize > lifclen) { 8835 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8836 return (EINVAL); 8837 else 8838 lifc_bufsize = lifclen; 8839 } 8840 8841 mp1 = mi_copyout_alloc(q, mp, 8842 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8843 if (mp1 == NULL) 8844 return (ENOMEM); 8845 8846 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8847 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8848 8849 lifr = (struct lifreq *)mp1->b_rptr; 8850 8851 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8852 ill = ill_first(list, list, &ctx, ipst); 8853 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8854 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 8855 continue; 8856 8857 for (ipif = ill->ill_ipif; ipif != NULL; 8858 ipif = ipif->ipif_next) { 8859 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8860 !(flags & LIFC_NOXMIT)) 8861 continue; 8862 8863 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8864 !(flags & LIFC_TEMPORARY)) 8865 continue; 8866 8867 if (((ipif->ipif_flags & 8868 (IPIF_NOXMIT|IPIF_NOLOCAL| 8869 IPIF_DEPRECATED)) || 8870 IS_LOOPBACK(ill) || 8871 !(ipif->ipif_flags & IPIF_UP)) && 8872 (flags & LIFC_EXTERNAL_SOURCE)) 8873 continue; 8874 8875 if (zoneid != ipif->ipif_zoneid && 8876 ipif->ipif_zoneid != ALL_ZONES && 8877 (zoneid != GLOBAL_ZONEID || 8878 !(flags & LIFC_ALLZONES))) 8879 continue; 8880 8881 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8882 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8883 rw_exit(&ipst->ips_ill_g_lock); 8884 return (EINVAL); 8885 } else { 8886 goto lif_copydone; 8887 } 8888 } 8889 8890 ipif_get_name(ipif, lifr->lifr_name, 8891 sizeof (lifr->lifr_name)); 8892 lifr->lifr_type = ill->ill_type; 8893 if (ipif->ipif_isv6) { 8894 sin6 = (sin6_t *)&lifr->lifr_addr; 8895 *sin6 = sin6_null; 8896 sin6->sin6_family = AF_INET6; 8897 sin6->sin6_addr = 8898 ipif->ipif_v6lcl_addr; 8899 lifr->lifr_addrlen = 8900 ip_mask_to_plen_v6( 8901 &ipif->ipif_v6net_mask); 8902 } else { 8903 sin = (sin_t *)&lifr->lifr_addr; 8904 *sin = sin_null; 8905 sin->sin_family = AF_INET; 8906 sin->sin_addr.s_addr = 8907 ipif->ipif_lcl_addr; 8908 lifr->lifr_addrlen = 8909 ip_mask_to_plen( 8910 ipif->ipif_net_mask); 8911 } 8912 lifr++; 8913 } 8914 } 8915 lif_copydone: 8916 rw_exit(&ipst->ips_ill_g_lock); 8917 8918 mp1->b_wptr = (uchar_t *)lifr; 8919 if (STRUCT_BUF(lifc) != NULL) { 8920 STRUCT_FSET(lifc, lifc_len, 8921 (int)((uchar_t *)lifr - mp1->b_rptr)); 8922 } 8923 return (0); 8924 } 8925 8926 static void 8927 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8928 { 8929 ip6_asp_t *table; 8930 size_t table_size; 8931 mblk_t *data_mp; 8932 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8933 ip_stack_t *ipst; 8934 8935 if (q->q_next == NULL) 8936 ipst = CONNQ_TO_IPST(q); 8937 else 8938 ipst = ILLQ_TO_IPST(q); 8939 8940 /* These two ioctls are I_STR only */ 8941 if (iocp->ioc_count == TRANSPARENT) { 8942 miocnak(q, mp, 0, EINVAL); 8943 return; 8944 } 8945 8946 data_mp = mp->b_cont; 8947 if (data_mp == NULL) { 8948 /* The user passed us a NULL argument */ 8949 table = NULL; 8950 table_size = iocp->ioc_count; 8951 } else { 8952 /* 8953 * The user provided a table. The stream head 8954 * may have copied in the user data in chunks, 8955 * so make sure everything is pulled up 8956 * properly. 8957 */ 8958 if (MBLKL(data_mp) < iocp->ioc_count) { 8959 mblk_t *new_data_mp; 8960 if ((new_data_mp = msgpullup(data_mp, -1)) == 8961 NULL) { 8962 miocnak(q, mp, 0, ENOMEM); 8963 return; 8964 } 8965 freemsg(data_mp); 8966 data_mp = new_data_mp; 8967 mp->b_cont = data_mp; 8968 } 8969 table = (ip6_asp_t *)data_mp->b_rptr; 8970 table_size = iocp->ioc_count; 8971 } 8972 8973 switch (iocp->ioc_cmd) { 8974 case SIOCGIP6ADDRPOLICY: 8975 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 8976 if (iocp->ioc_rval == -1) 8977 iocp->ioc_error = EINVAL; 8978 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8979 else if (table != NULL && 8980 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8981 ip6_asp_t *src = table; 8982 ip6_asp32_t *dst = (void *)table; 8983 int count = table_size / sizeof (ip6_asp_t); 8984 int i; 8985 8986 /* 8987 * We need to do an in-place shrink of the array 8988 * to match the alignment attributes of the 8989 * 32-bit ABI looking at it. 8990 */ 8991 /* LINTED: logical expression always true: op "||" */ 8992 ASSERT(sizeof (*src) > sizeof (*dst)); 8993 for (i = 1; i < count; i++) 8994 bcopy(src + i, dst + i, sizeof (*dst)); 8995 } 8996 #endif 8997 break; 8998 8999 case SIOCSIP6ADDRPOLICY: 9000 ASSERT(mp->b_prev == NULL); 9001 mp->b_prev = (void *)q; 9002 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9003 /* 9004 * We pass in the datamodel here so that the ip6_asp_replace() 9005 * routine can handle converting from 32-bit to native formats 9006 * where necessary. 9007 * 9008 * A better way to handle this might be to convert the inbound 9009 * data structure here, and hang it off a new 'mp'; thus the 9010 * ip6_asp_replace() logic would always be dealing with native 9011 * format data structures.. 9012 * 9013 * (An even simpler way to handle these ioctls is to just 9014 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9015 * and just recompile everything that depends on it.) 9016 */ 9017 #endif 9018 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9019 iocp->ioc_flag & IOC_MODELS); 9020 return; 9021 } 9022 9023 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9024 qreply(q, mp); 9025 } 9026 9027 static void 9028 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9029 { 9030 mblk_t *data_mp; 9031 struct dstinforeq *dir; 9032 uint8_t *end, *cur; 9033 in6_addr_t *daddr, *saddr; 9034 ipaddr_t v4daddr; 9035 ire_t *ire; 9036 char *slabel, *dlabel; 9037 boolean_t isipv4; 9038 int match_ire; 9039 ill_t *dst_ill; 9040 ipif_t *src_ipif, *ire_ipif; 9041 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9042 zoneid_t zoneid; 9043 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9044 9045 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9046 zoneid = Q_TO_CONN(q)->conn_zoneid; 9047 9048 /* 9049 * This ioctl is I_STR only, and must have a 9050 * data mblk following the M_IOCTL mblk. 9051 */ 9052 data_mp = mp->b_cont; 9053 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9054 miocnak(q, mp, 0, EINVAL); 9055 return; 9056 } 9057 9058 if (MBLKL(data_mp) < iocp->ioc_count) { 9059 mblk_t *new_data_mp; 9060 9061 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9062 miocnak(q, mp, 0, ENOMEM); 9063 return; 9064 } 9065 freemsg(data_mp); 9066 data_mp = new_data_mp; 9067 mp->b_cont = data_mp; 9068 } 9069 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9070 9071 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9072 end - cur >= sizeof (struct dstinforeq); 9073 cur += sizeof (struct dstinforeq)) { 9074 dir = (struct dstinforeq *)cur; 9075 daddr = &dir->dir_daddr; 9076 saddr = &dir->dir_saddr; 9077 9078 /* 9079 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9080 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9081 * and ipif_select_source[_v6]() do not. 9082 */ 9083 dir->dir_dscope = ip_addr_scope_v6(daddr); 9084 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9085 9086 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9087 if (isipv4) { 9088 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9089 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9090 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9091 } else { 9092 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9093 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9094 } 9095 if (ire == NULL) { 9096 dir->dir_dreachable = 0; 9097 9098 /* move on to next dst addr */ 9099 continue; 9100 } 9101 dir->dir_dreachable = 1; 9102 9103 ire_ipif = ire->ire_ipif; 9104 if (ire_ipif == NULL) 9105 goto next_dst; 9106 9107 /* 9108 * We expect to get back an interface ire or a 9109 * gateway ire cache entry. For both types, the 9110 * output interface is ire_ipif->ipif_ill. 9111 */ 9112 dst_ill = ire_ipif->ipif_ill; 9113 dir->dir_dmactype = dst_ill->ill_mactype; 9114 9115 if (isipv4) { 9116 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9117 } else { 9118 src_ipif = ipif_select_source_v6(dst_ill, 9119 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid); 9120 } 9121 if (src_ipif == NULL) 9122 goto next_dst; 9123 9124 *saddr = src_ipif->ipif_v6lcl_addr; 9125 dir->dir_sscope = ip_addr_scope_v6(saddr); 9126 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9127 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9128 dir->dir_sdeprecated = 9129 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9130 ipif_refrele(src_ipif); 9131 next_dst: 9132 ire_refrele(ire); 9133 } 9134 miocack(q, mp, iocp->ioc_count, 0); 9135 } 9136 9137 /* 9138 * Check if this is an address assigned to this machine. 9139 * Skips interfaces that are down by using ire checks. 9140 * Translates mapped addresses to v4 addresses and then 9141 * treats them as such, returning true if the v4 address 9142 * associated with this mapped address is configured. 9143 * Note: Applications will have to be careful what they do 9144 * with the response; use of mapped addresses limits 9145 * what can be done with the socket, especially with 9146 * respect to socket options and ioctls - neither IPv4 9147 * options nor IPv6 sticky options/ancillary data options 9148 * may be used. 9149 */ 9150 /* ARGSUSED */ 9151 int 9152 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9153 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9154 { 9155 struct sioc_addrreq *sia; 9156 sin_t *sin; 9157 ire_t *ire; 9158 mblk_t *mp1; 9159 zoneid_t zoneid; 9160 ip_stack_t *ipst; 9161 9162 ip1dbg(("ip_sioctl_tmyaddr")); 9163 9164 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9165 zoneid = Q_TO_CONN(q)->conn_zoneid; 9166 ipst = CONNQ_TO_IPST(q); 9167 9168 /* Existence verified in ip_wput_nondata */ 9169 mp1 = mp->b_cont->b_cont; 9170 sia = (struct sioc_addrreq *)mp1->b_rptr; 9171 sin = (sin_t *)&sia->sa_addr; 9172 switch (sin->sin_family) { 9173 case AF_INET6: { 9174 sin6_t *sin6 = (sin6_t *)sin; 9175 9176 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9177 ipaddr_t v4_addr; 9178 9179 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9180 v4_addr); 9181 ire = ire_ctable_lookup(v4_addr, 0, 9182 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9183 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9184 } else { 9185 in6_addr_t v6addr; 9186 9187 v6addr = sin6->sin6_addr; 9188 ire = ire_ctable_lookup_v6(&v6addr, 0, 9189 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9190 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9191 } 9192 break; 9193 } 9194 case AF_INET: { 9195 ipaddr_t v4addr; 9196 9197 v4addr = sin->sin_addr.s_addr; 9198 ire = ire_ctable_lookup(v4addr, 0, 9199 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9200 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9201 break; 9202 } 9203 default: 9204 return (EAFNOSUPPORT); 9205 } 9206 if (ire != NULL) { 9207 sia->sa_res = 1; 9208 ire_refrele(ire); 9209 } else { 9210 sia->sa_res = 0; 9211 } 9212 return (0); 9213 } 9214 9215 /* 9216 * Check if this is an address assigned on-link i.e. neighbor, 9217 * and makes sure it's reachable from the current zone. 9218 * Returns true for my addresses as well. 9219 * Translates mapped addresses to v4 addresses and then 9220 * treats them as such, returning true if the v4 address 9221 * associated with this mapped address is configured. 9222 * Note: Applications will have to be careful what they do 9223 * with the response; use of mapped addresses limits 9224 * what can be done with the socket, especially with 9225 * respect to socket options and ioctls - neither IPv4 9226 * options nor IPv6 sticky options/ancillary data options 9227 * may be used. 9228 */ 9229 /* ARGSUSED */ 9230 int 9231 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9232 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9233 { 9234 struct sioc_addrreq *sia; 9235 sin_t *sin; 9236 mblk_t *mp1; 9237 ire_t *ire = NULL; 9238 zoneid_t zoneid; 9239 ip_stack_t *ipst; 9240 9241 ip1dbg(("ip_sioctl_tonlink")); 9242 9243 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9244 zoneid = Q_TO_CONN(q)->conn_zoneid; 9245 ipst = CONNQ_TO_IPST(q); 9246 9247 /* Existence verified in ip_wput_nondata */ 9248 mp1 = mp->b_cont->b_cont; 9249 sia = (struct sioc_addrreq *)mp1->b_rptr; 9250 sin = (sin_t *)&sia->sa_addr; 9251 9252 /* 9253 * Match addresses with a zero gateway field to avoid 9254 * routes going through a router. 9255 * Exclude broadcast and multicast addresses. 9256 */ 9257 switch (sin->sin_family) { 9258 case AF_INET6: { 9259 sin6_t *sin6 = (sin6_t *)sin; 9260 9261 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9262 ipaddr_t v4_addr; 9263 9264 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9265 v4_addr); 9266 if (!CLASSD(v4_addr)) { 9267 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9268 NULL, NULL, zoneid, NULL, 9269 MATCH_IRE_GW, ipst); 9270 } 9271 } else { 9272 in6_addr_t v6addr; 9273 in6_addr_t v6gw; 9274 9275 v6addr = sin6->sin6_addr; 9276 v6gw = ipv6_all_zeros; 9277 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9278 ire = ire_route_lookup_v6(&v6addr, 0, 9279 &v6gw, 0, NULL, NULL, zoneid, 9280 NULL, MATCH_IRE_GW, ipst); 9281 } 9282 } 9283 break; 9284 } 9285 case AF_INET: { 9286 ipaddr_t v4addr; 9287 9288 v4addr = sin->sin_addr.s_addr; 9289 if (!CLASSD(v4addr)) { 9290 ire = ire_route_lookup(v4addr, 0, 0, 0, 9291 NULL, NULL, zoneid, NULL, 9292 MATCH_IRE_GW, ipst); 9293 } 9294 break; 9295 } 9296 default: 9297 return (EAFNOSUPPORT); 9298 } 9299 sia->sa_res = 0; 9300 if (ire != NULL) { 9301 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9302 IRE_LOCAL|IRE_LOOPBACK)) { 9303 sia->sa_res = 1; 9304 } 9305 ire_refrele(ire); 9306 } 9307 return (0); 9308 } 9309 9310 /* 9311 * TBD: implement when kernel maintaines a list of site prefixes. 9312 */ 9313 /* ARGSUSED */ 9314 int 9315 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9316 ip_ioctl_cmd_t *ipip, void *ifreq) 9317 { 9318 return (ENXIO); 9319 } 9320 9321 /* ARGSUSED */ 9322 int 9323 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9324 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9325 { 9326 ill_t *ill; 9327 mblk_t *mp1; 9328 conn_t *connp; 9329 boolean_t success; 9330 9331 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9332 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9333 /* ioctl comes down on an conn */ 9334 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9335 connp = Q_TO_CONN(q); 9336 9337 mp->b_datap->db_type = M_IOCTL; 9338 9339 /* 9340 * Send down a copy. (copymsg does not copy b_next/b_prev). 9341 * The original mp contains contaminated b_next values due to 'mi', 9342 * which is needed to do the mi_copy_done. Unfortunately if we 9343 * send down the original mblk itself and if we are popped due to an 9344 * an unplumb before the response comes back from tunnel, 9345 * the streamhead (which does a freemsg) will see this contaminated 9346 * message and the assertion in freemsg about non-null b_next/b_prev 9347 * will panic a DEBUG kernel. 9348 */ 9349 mp1 = copymsg(mp); 9350 if (mp1 == NULL) 9351 return (ENOMEM); 9352 9353 ill = ipif->ipif_ill; 9354 mutex_enter(&connp->conn_lock); 9355 mutex_enter(&ill->ill_lock); 9356 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9357 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9358 mp, 0); 9359 } else { 9360 success = ill_pending_mp_add(ill, connp, mp); 9361 } 9362 mutex_exit(&ill->ill_lock); 9363 mutex_exit(&connp->conn_lock); 9364 9365 if (success) { 9366 ip1dbg(("sending down tunparam request ")); 9367 putnext(ill->ill_wq, mp1); 9368 return (EINPROGRESS); 9369 } else { 9370 /* The conn has started closing */ 9371 freemsg(mp1); 9372 return (EINTR); 9373 } 9374 } 9375 9376 /* 9377 * ARP IOCTLs. 9378 * How does IP get in the business of fronting ARP configuration/queries? 9379 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9380 * are by tradition passed in through a datagram socket. That lands in IP. 9381 * As it happens, this is just as well since the interface is quite crude in 9382 * that it passes in no information about protocol or hardware types, or 9383 * interface association. After making the protocol assumption, IP is in 9384 * the position to look up the name of the ILL, which ARP will need, and 9385 * format a request that can be handled by ARP. The request is passed up 9386 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9387 * back a response. ARP supports its own set of more general IOCTLs, in 9388 * case anyone is interested. 9389 */ 9390 /* ARGSUSED */ 9391 int 9392 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9393 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9394 { 9395 mblk_t *mp1; 9396 mblk_t *mp2; 9397 mblk_t *pending_mp; 9398 ipaddr_t ipaddr; 9399 area_t *area; 9400 struct iocblk *iocp; 9401 conn_t *connp; 9402 struct arpreq *ar; 9403 struct xarpreq *xar; 9404 int flags, alength; 9405 uchar_t *lladdr; 9406 ire_t *ire; 9407 ip_stack_t *ipst; 9408 ill_t *ill = ipif->ipif_ill; 9409 ill_t *proxy_ill = NULL; 9410 ipmp_arpent_t *entp = NULL; 9411 boolean_t if_arp_ioctl = B_FALSE; 9412 boolean_t proxyarp = B_FALSE; 9413 9414 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9415 connp = Q_TO_CONN(q); 9416 ipst = connp->conn_netstack->netstack_ip; 9417 9418 if (ipip->ipi_cmd_type == XARP_CMD) { 9419 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9420 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9421 ar = NULL; 9422 9423 flags = xar->xarp_flags; 9424 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 9425 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9426 /* 9427 * Validate against user's link layer address length 9428 * input and name and addr length limits. 9429 */ 9430 alength = ill->ill_phys_addr_length; 9431 if (ipip->ipi_cmd == SIOCSXARP) { 9432 if (alength != xar->xarp_ha.sdl_alen || 9433 (alength + xar->xarp_ha.sdl_nlen > 9434 sizeof (xar->xarp_ha.sdl_data))) 9435 return (EINVAL); 9436 } 9437 } else { 9438 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9439 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9440 xar = NULL; 9441 9442 flags = ar->arp_flags; 9443 lladdr = (uchar_t *)ar->arp_ha.sa_data; 9444 /* 9445 * Theoretically, the sa_family could tell us what link 9446 * layer type this operation is trying to deal with. By 9447 * common usage AF_UNSPEC means ethernet. We'll assume 9448 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9449 * for now. Our new SIOC*XARP ioctls can be used more 9450 * generally. 9451 * 9452 * If the underlying media happens to have a non 6 byte 9453 * address, arp module will fail set/get, but the del 9454 * operation will succeed. 9455 */ 9456 alength = 6; 9457 if ((ipip->ipi_cmd != SIOCDARP) && 9458 (alength != ill->ill_phys_addr_length)) { 9459 return (EINVAL); 9460 } 9461 } 9462 9463 ipaddr = sin->sin_addr.s_addr; 9464 9465 /* 9466 * IPMP ARP special handling: 9467 * 9468 * 1. Since ARP mappings must appear consistent across the group, 9469 * prohibit changing ARP mappings on the underlying interfaces. 9470 * 9471 * 2. Since ARP mappings for IPMP data addresses are maintained by 9472 * IP itself, prohibit changing them. 9473 * 9474 * 3. For proxy ARP, use a functioning hardware address in the group, 9475 * provided one exists. If one doesn't, just add the entry as-is; 9476 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 9477 */ 9478 if (IS_UNDER_IPMP(ill)) { 9479 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 9480 return (EPERM); 9481 } 9482 if (IS_IPMP(ill)) { 9483 ipmp_illgrp_t *illg = ill->ill_grp; 9484 9485 switch (ipip->ipi_cmd) { 9486 case SIOCSARP: 9487 case SIOCSXARP: 9488 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 9489 if (proxy_ill != NULL) { 9490 proxyarp = B_TRUE; 9491 if (!ipmp_ill_is_active(proxy_ill)) 9492 proxy_ill = ipmp_illgrp_next_ill(illg); 9493 if (proxy_ill != NULL) 9494 lladdr = proxy_ill->ill_phys_addr; 9495 } 9496 /* FALLTHRU */ 9497 case SIOCDARP: 9498 case SIOCDXARP: 9499 ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL, 9500 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 9501 if (ire != NULL) { 9502 ire_refrele(ire); 9503 return (EPERM); 9504 } 9505 } 9506 } 9507 9508 /* 9509 * We are going to pass up to ARP a packet chain that looks 9510 * like: 9511 * 9512 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9513 * 9514 * Get a copy of the original IOCTL mblk to head the chain, 9515 * to be sent up (in mp1). Also get another copy to store 9516 * in the ill_pending_mp list, for matching the response 9517 * when it comes back from ARP. 9518 */ 9519 mp1 = copyb(mp); 9520 pending_mp = copymsg(mp); 9521 if (mp1 == NULL || pending_mp == NULL) { 9522 if (mp1 != NULL) 9523 freeb(mp1); 9524 if (pending_mp != NULL) 9525 inet_freemsg(pending_mp); 9526 return (ENOMEM); 9527 } 9528 9529 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9530 (caddr_t)&ipaddr); 9531 if (mp2 == NULL) { 9532 freeb(mp1); 9533 inet_freemsg(pending_mp); 9534 return (ENOMEM); 9535 } 9536 /* Put together the chain. */ 9537 mp1->b_cont = mp2; 9538 mp1->b_datap->db_type = M_IOCTL; 9539 mp2->b_cont = mp; 9540 mp2->b_datap->db_type = M_DATA; 9541 9542 iocp = (struct iocblk *)mp1->b_rptr; 9543 9544 /* 9545 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9546 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9547 * cp_private field (or cp_rval on 32-bit systems) in place of the 9548 * ioc_count field; set ioc_count to be correct. 9549 */ 9550 iocp->ioc_count = MBLKL(mp1->b_cont); 9551 9552 /* 9553 * Set the proper command in the ARP message. 9554 * Convert the SIOC{G|S|D}ARP calls into our 9555 * AR_ENTRY_xxx calls. 9556 */ 9557 area = (area_t *)mp2->b_rptr; 9558 switch (iocp->ioc_cmd) { 9559 case SIOCDARP: 9560 case SIOCDXARP: 9561 /* 9562 * We defer deleting the corresponding IRE until 9563 * we return from arp. 9564 */ 9565 area->area_cmd = AR_ENTRY_DELETE; 9566 area->area_proto_mask_offset = 0; 9567 break; 9568 case SIOCGARP: 9569 case SIOCGXARP: 9570 area->area_cmd = AR_ENTRY_SQUERY; 9571 area->area_proto_mask_offset = 0; 9572 break; 9573 case SIOCSARP: 9574 case SIOCSXARP: 9575 /* 9576 * Delete the corresponding ire to make sure IP will 9577 * pick up any change from arp. 9578 */ 9579 if (!if_arp_ioctl) { 9580 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9581 } else { 9582 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9583 if (ipif != NULL) { 9584 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9585 ipst); 9586 ipif_refrele(ipif); 9587 } 9588 } 9589 break; 9590 } 9591 iocp->ioc_cmd = area->area_cmd; 9592 9593 /* 9594 * Fill in the rest of the ARP operation fields. 9595 */ 9596 area->area_hw_addr_length = alength; 9597 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9598 9599 /* Translate the flags. */ 9600 if (flags & ATF_PERM) 9601 area->area_flags |= ACE_F_PERMANENT; 9602 if (flags & ATF_PUBL) 9603 area->area_flags |= ACE_F_PUBLISH; 9604 if (flags & ATF_AUTHORITY) 9605 area->area_flags |= ACE_F_AUTHORITY; 9606 9607 /* 9608 * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it 9609 * so that IP can update ARP as the active ills in the group change. 9610 */ 9611 if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD && 9612 (area->area_flags & ACE_F_PERMANENT)) { 9613 entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp); 9614 9615 /* 9616 * The second part of the conditional below handles a corner 9617 * case: if this is proxy ARP and the IPMP group has no active 9618 * interfaces, we can't send the request to ARP now since it 9619 * won't be able to build an ACE. So we return success and 9620 * notify ARP about the proxy ARP entry once an interface 9621 * becomes active. 9622 */ 9623 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 9624 mp2->b_cont = NULL; 9625 inet_freemsg(mp1); 9626 inet_freemsg(pending_mp); 9627 return (entp == NULL ? ENOMEM : 0); 9628 } 9629 } 9630 9631 /* 9632 * Before sending 'mp' to ARP, we have to clear the b_next 9633 * and b_prev. Otherwise if STREAMS encounters such a message 9634 * in freemsg(), (because ARP can close any time) it can cause 9635 * a panic. But mi code needs the b_next and b_prev values of 9636 * mp->b_cont, to complete the ioctl. So we store it here 9637 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9638 * when the response comes down from ARP. 9639 */ 9640 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9641 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9642 mp->b_cont->b_next = NULL; 9643 mp->b_cont->b_prev = NULL; 9644 9645 mutex_enter(&connp->conn_lock); 9646 mutex_enter(&ill->ill_lock); 9647 /* conn has not yet started closing, hence this can't fail */ 9648 if (ipip->ipi_flags & IPI_WR) { 9649 VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9650 pending_mp, 0) != 0); 9651 } else { 9652 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9653 } 9654 mutex_exit(&ill->ill_lock); 9655 mutex_exit(&connp->conn_lock); 9656 9657 /* 9658 * Up to ARP it goes. The response will come back in ip_wput() as an 9659 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9660 */ 9661 putnext(ill->ill_rq, mp1); 9662 9663 /* 9664 * If we created an IPMP ARP entry, mark that we've notified ARP. 9665 */ 9666 if (entp != NULL) 9667 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 9668 9669 return (EINPROGRESS); 9670 } 9671 9672 /* 9673 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9674 * the associated sin and refhold and return the associated ipif via `ci'. 9675 */ 9676 int 9677 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9678 cmd_info_t *ci, ipsq_func_t func) 9679 { 9680 mblk_t *mp1; 9681 int err; 9682 sin_t *sin; 9683 conn_t *connp; 9684 ipif_t *ipif; 9685 ire_t *ire = NULL; 9686 ill_t *ill = NULL; 9687 boolean_t exists; 9688 ip_stack_t *ipst; 9689 struct arpreq *ar; 9690 struct xarpreq *xar; 9691 struct sockaddr_dl *sdl; 9692 9693 /* ioctl comes down on a conn */ 9694 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9695 connp = Q_TO_CONN(q); 9696 if (connp->conn_af_isv6) 9697 return (ENXIO); 9698 9699 ipst = connp->conn_netstack->netstack_ip; 9700 9701 /* Verified in ip_wput_nondata */ 9702 mp1 = mp->b_cont->b_cont; 9703 9704 if (ipip->ipi_cmd_type == XARP_CMD) { 9705 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9706 xar = (struct xarpreq *)mp1->b_rptr; 9707 sin = (sin_t *)&xar->xarp_pa; 9708 sdl = &xar->xarp_ha; 9709 9710 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9711 return (ENXIO); 9712 if (sdl->sdl_nlen >= LIFNAMSIZ) 9713 return (EINVAL); 9714 } else { 9715 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9716 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9717 ar = (struct arpreq *)mp1->b_rptr; 9718 sin = (sin_t *)&ar->arp_pa; 9719 } 9720 9721 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9722 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9723 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9724 mp, func, &err, ipst); 9725 if (ipif == NULL) 9726 return (err); 9727 if (ipif->ipif_id != 0) { 9728 ipif_refrele(ipif); 9729 return (ENXIO); 9730 } 9731 } else { 9732 /* 9733 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 9734 * of 0: use the IP address to find the ipif. If the IP 9735 * address is an IPMP test address, ire_ftable_lookup() will 9736 * find the wrong ill, so we first do an ipif_lookup_addr(). 9737 */ 9738 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 9739 CONNP_TO_WQ(connp), mp, func, &err, ipst); 9740 if (ipif == NULL) { 9741 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0, 9742 IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL, 9743 MATCH_IRE_TYPE, ipst); 9744 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9745 if (ire != NULL) 9746 ire_refrele(ire); 9747 return (ENXIO); 9748 } 9749 ipif = ill->ill_ipif; 9750 ipif_refhold(ipif); 9751 ire_refrele(ire); 9752 } 9753 } 9754 9755 if (ipif->ipif_net_type != IRE_IF_RESOLVER) { 9756 ipif_refrele(ipif); 9757 return (ENXIO); 9758 } 9759 9760 ci->ci_sin = sin; 9761 ci->ci_ipif = ipif; 9762 return (0); 9763 } 9764 9765 /* 9766 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 9767 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 9768 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 9769 * up and thus an ill can join that illgrp. 9770 * 9771 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 9772 * open()/close() primarily because close() is not allowed to fail or block 9773 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 9774 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 9775 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 9776 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 9777 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 9778 * state if I_UNLINK didn't occur. 9779 * 9780 * Note that for each plumb/unplumb operation, we may end up here more than 9781 * once because of the way ifconfig works. However, it's OK to link the same 9782 * illgrp more than once, or unlink an illgrp that's already unlinked. 9783 */ 9784 static int 9785 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 9786 { 9787 int err; 9788 ip_stack_t *ipst = ill->ill_ipst; 9789 9790 ASSERT(IS_IPMP(ill)); 9791 ASSERT(IAM_WRITER_ILL(ill)); 9792 9793 switch (ioccmd) { 9794 case I_LINK: 9795 return (ENOTSUP); 9796 9797 case I_PLINK: 9798 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9799 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 9800 rw_exit(&ipst->ips_ipmp_lock); 9801 break; 9802 9803 case I_PUNLINK: 9804 /* 9805 * Require all UP ipifs be brought down prior to unlinking the 9806 * illgrp so any associated IREs (and other state) is torched. 9807 */ 9808 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 9809 return (EBUSY); 9810 9811 /* 9812 * NOTE: We hold ipmp_lock across the unlink to prevent a race 9813 * with an SIOCSLIFGROUPNAME request from an ill trying to 9814 * join this group. Specifically: ills trying to join grab 9815 * ipmp_lock and bump a "pending join" counter checked by 9816 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 9817 * joins can occur (since we have ipmp_lock). Once we drop 9818 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 9819 * find the illgrp (since we unlinked it) and will return 9820 * EAFNOSUPPORT. This will then take them back through the 9821 * IPMP meta-interface plumbing logic in ifconfig, and thus 9822 * back through I_PLINK above. 9823 */ 9824 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9825 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 9826 rw_exit(&ipst->ips_ipmp_lock); 9827 return (err); 9828 default: 9829 break; 9830 } 9831 return (0); 9832 } 9833 9834 /* 9835 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9836 * atomically set/clear the muxids. Also complete the ioctl by acking or 9837 * naking it. Note that the code is structured such that the link type, 9838 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9839 * its clones use the persistent link, while pppd(1M) and perhaps many 9840 * other daemons may use non-persistent link. When combined with some 9841 * ill_t states, linking and unlinking lower streams may be used as 9842 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9843 */ 9844 /* ARGSUSED */ 9845 void 9846 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9847 { 9848 mblk_t *mp1, *mp2; 9849 struct linkblk *li; 9850 struct ipmx_s *ipmxp; 9851 ill_t *ill; 9852 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9853 int err = 0; 9854 boolean_t entered_ipsq = B_FALSE; 9855 boolean_t islink; 9856 ip_stack_t *ipst; 9857 9858 if (CONN_Q(q)) 9859 ipst = CONNQ_TO_IPST(q); 9860 else 9861 ipst = ILLQ_TO_IPST(q); 9862 9863 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9864 ioccmd == I_LINK || ioccmd == I_UNLINK); 9865 9866 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9867 9868 mp1 = mp->b_cont; /* This is the linkblk info */ 9869 li = (struct linkblk *)mp1->b_rptr; 9870 9871 /* 9872 * ARP has added this special mblk, and the utility is asking us 9873 * to perform consistency checks, and also atomically set the 9874 * muxid. Ifconfig is an example. It achieves this by using 9875 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9876 * to /dev/udp[6] stream for use as the mux when plinking the IP 9877 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9878 * and other comments in this routine for more details. 9879 */ 9880 mp2 = mp1->b_cont; /* This is added by ARP */ 9881 9882 /* 9883 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9884 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9885 * get the special mblk above. For backward compatibility, we 9886 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9887 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9888 * not atomic, and can leave the streams unplumbable if the utility 9889 * is interrupted before it does the SIOCSLIFMUXID. 9890 */ 9891 if (mp2 == NULL) { 9892 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9893 if (err == EINPROGRESS) 9894 return; 9895 goto done; 9896 } 9897 9898 /* 9899 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9900 * ARP has appended this last mblk to tell us whether the lower stream 9901 * is an arp-dev stream or an IP module stream. 9902 */ 9903 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9904 if (ipmxp->ipmx_arpdev_stream) { 9905 /* 9906 * The lower stream is the arp-dev stream. 9907 */ 9908 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9909 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9910 if (ill == NULL) { 9911 if (err == EINPROGRESS) 9912 return; 9913 err = EINVAL; 9914 goto done; 9915 } 9916 9917 if (ipsq == NULL) { 9918 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9919 NEW_OP, B_FALSE); 9920 if (ipsq == NULL) { 9921 ill_refrele(ill); 9922 return; 9923 } 9924 entered_ipsq = B_TRUE; 9925 } 9926 ASSERT(IAM_WRITER_ILL(ill)); 9927 ill_refrele(ill); 9928 9929 /* 9930 * To ensure consistency between IP and ARP, the following 9931 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9932 * This is because the muxid's are stored in the IP stream on 9933 * the ill. 9934 * 9935 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9936 * the ARP stream. On an arp-dev stream, IP checks that it is 9937 * not yet plinked, and it also checks that the corresponding 9938 * IP stream is already plinked. 9939 * 9940 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9941 * punlinking the IP stream. IP does not allow punlink of the 9942 * IP stream unless the arp stream has been punlinked. 9943 */ 9944 if ((islink && 9945 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9946 (!islink && ill->ill_arp_muxid != li->l_index)) { 9947 err = EINVAL; 9948 goto done; 9949 } 9950 9951 if (IS_IPMP(ill) && 9952 (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9953 goto done; 9954 9955 ill->ill_arp_muxid = islink ? li->l_index : 0; 9956 } else { 9957 /* 9958 * The lower stream is probably an IP module stream. Do 9959 * consistency checking. 9960 */ 9961 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9962 if (err == EINPROGRESS) 9963 return; 9964 } 9965 done: 9966 if (err == 0) 9967 miocack(q, mp, 0, 0); 9968 else 9969 miocnak(q, mp, 0, err); 9970 9971 /* Conn was refheld in ip_sioctl_copyin_setup */ 9972 if (CONN_Q(q)) 9973 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9974 if (entered_ipsq) 9975 ipsq_exit(ipsq); 9976 } 9977 9978 /* 9979 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9980 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9981 * module stream). If `doconsist' is set, then do the extended consistency 9982 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9983 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9984 * an error code on failure. 9985 */ 9986 static int 9987 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9988 struct linkblk *li, boolean_t doconsist) 9989 { 9990 int err = 0; 9991 ill_t *ill; 9992 queue_t *ipwq, *dwq; 9993 const char *name; 9994 struct qinit *qinfo; 9995 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9996 boolean_t entered_ipsq = B_FALSE; 9997 9998 /* 9999 * Walk the lower stream to verify it's the IP module stream. 10000 * The IP module is identified by its name, wput function, 10001 * and non-NULL q_next. STREAMS ensures that the lower stream 10002 * (li->l_qbot) will not vanish until this ioctl completes. 10003 */ 10004 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 10005 qinfo = ipwq->q_qinfo; 10006 name = qinfo->qi_minfo->mi_idname; 10007 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 10008 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 10009 break; 10010 } 10011 } 10012 10013 /* 10014 * If this isn't an IP module stream, bail. 10015 */ 10016 if (ipwq == NULL) 10017 return (0); 10018 10019 ill = ipwq->q_ptr; 10020 ASSERT(ill != NULL); 10021 10022 if (ipsq == NULL) { 10023 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10024 NEW_OP, B_FALSE); 10025 if (ipsq == NULL) 10026 return (EINPROGRESS); 10027 entered_ipsq = B_TRUE; 10028 } 10029 ASSERT(IAM_WRITER_ILL(ill)); 10030 10031 if (doconsist) { 10032 /* 10033 * Consistency checking requires that I_{P}LINK occurs 10034 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10035 * occurs prior to clearing ill_arp_muxid. 10036 */ 10037 if ((islink && ill->ill_ip_muxid != 0) || 10038 (!islink && ill->ill_arp_muxid != 0)) { 10039 err = EINVAL; 10040 goto done; 10041 } 10042 } 10043 10044 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 10045 goto done; 10046 10047 /* 10048 * As part of I_{P}LINKing, stash the number of downstream modules and 10049 * the read queue of the module immediately below IP in the ill. 10050 * These are used during the capability negotiation below. 10051 */ 10052 ill->ill_lmod_rq = NULL; 10053 ill->ill_lmod_cnt = 0; 10054 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10055 ill->ill_lmod_rq = RD(dwq); 10056 for (; dwq != NULL; dwq = dwq->q_next) 10057 ill->ill_lmod_cnt++; 10058 } 10059 10060 if (doconsist) 10061 ill->ill_ip_muxid = islink ? li->l_index : 0; 10062 10063 /* 10064 * Mark the ipsq busy until the capability operations initiated below 10065 * complete. The PLINK/UNLINK ioctl itself completes when our caller 10066 * returns, but the capability operation may complete asynchronously 10067 * much later. 10068 */ 10069 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 10070 /* 10071 * If there's at least one up ipif on this ill, then we're bound to 10072 * the underlying driver via DLPI. In that case, renegotiate 10073 * capabilities to account for any possible change in modules 10074 * interposed between IP and the driver. 10075 */ 10076 if (ill->ill_ipif_up_count > 0) { 10077 if (islink) 10078 ill_capability_probe(ill); 10079 else 10080 ill_capability_reset(ill, B_FALSE); 10081 } 10082 ipsq_current_finish(ipsq); 10083 done: 10084 if (entered_ipsq) 10085 ipsq_exit(ipsq); 10086 10087 return (err); 10088 } 10089 10090 /* 10091 * Search the ioctl command in the ioctl tables and return a pointer 10092 * to the ioctl command information. The ioctl command tables are 10093 * static and fully populated at compile time. 10094 */ 10095 ip_ioctl_cmd_t * 10096 ip_sioctl_lookup(int ioc_cmd) 10097 { 10098 int index; 10099 ip_ioctl_cmd_t *ipip; 10100 ip_ioctl_cmd_t *ipip_end; 10101 10102 if (ioc_cmd == IPI_DONTCARE) 10103 return (NULL); 10104 10105 /* 10106 * Do a 2 step search. First search the indexed table 10107 * based on the least significant byte of the ioctl cmd. 10108 * If we don't find a match, then search the misc table 10109 * serially. 10110 */ 10111 index = ioc_cmd & 0xFF; 10112 if (index < ip_ndx_ioctl_count) { 10113 ipip = &ip_ndx_ioctl_table[index]; 10114 if (ipip->ipi_cmd == ioc_cmd) { 10115 /* Found a match in the ndx table */ 10116 return (ipip); 10117 } 10118 } 10119 10120 /* Search the misc table */ 10121 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10122 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10123 if (ipip->ipi_cmd == ioc_cmd) 10124 /* Found a match in the misc table */ 10125 return (ipip); 10126 } 10127 10128 return (NULL); 10129 } 10130 10131 /* 10132 * Wrapper function for resuming deferred ioctl processing 10133 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10134 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10135 */ 10136 /* ARGSUSED */ 10137 void 10138 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10139 void *dummy_arg) 10140 { 10141 ip_sioctl_copyin_setup(q, mp); 10142 } 10143 10144 /* 10145 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10146 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10147 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10148 * We establish here the size of the block to be copied in. mi_copyin 10149 * arranges for this to happen, an processing continues in ip_wput with 10150 * an M_IOCDATA message. 10151 */ 10152 void 10153 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10154 { 10155 int copyin_size; 10156 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10157 ip_ioctl_cmd_t *ipip; 10158 cred_t *cr; 10159 ip_stack_t *ipst; 10160 10161 if (CONN_Q(q)) 10162 ipst = CONNQ_TO_IPST(q); 10163 else 10164 ipst = ILLQ_TO_IPST(q); 10165 10166 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10167 if (ipip == NULL) { 10168 /* 10169 * The ioctl is not one we understand or own. 10170 * Pass it along to be processed down stream, 10171 * if this is a module instance of IP, else nak 10172 * the ioctl. 10173 */ 10174 if (q->q_next == NULL) { 10175 goto nak; 10176 } else { 10177 putnext(q, mp); 10178 return; 10179 } 10180 } 10181 10182 /* 10183 * If this is deferred, then we will do all the checks when we 10184 * come back. 10185 */ 10186 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10187 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10188 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10189 return; 10190 } 10191 10192 /* 10193 * Only allow a very small subset of IP ioctls on this stream if 10194 * IP is a module and not a driver. Allowing ioctls to be processed 10195 * in this case may cause assert failures or data corruption. 10196 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10197 * ioctls allowed on an IP module stream, after which this stream 10198 * normally becomes a multiplexor (at which time the stream head 10199 * will fail all ioctls). 10200 */ 10201 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10202 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10203 /* 10204 * Pass common Streams ioctls which the IP 10205 * module does not own or consume along to 10206 * be processed down stream. 10207 */ 10208 putnext(q, mp); 10209 return; 10210 } else { 10211 goto nak; 10212 } 10213 } 10214 10215 /* Make sure we have ioctl data to process. */ 10216 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10217 goto nak; 10218 10219 /* 10220 * Prefer dblk credential over ioctl credential; some synthesized 10221 * ioctls have kcred set because there's no way to crhold() 10222 * a credential in some contexts. (ioc_cr is not crfree() by 10223 * the framework; the caller of ioctl needs to hold the reference 10224 * for the duration of the call). 10225 */ 10226 cr = msg_getcred(mp, NULL); 10227 if (cr == NULL) 10228 cr = iocp->ioc_cr; 10229 10230 /* Make sure normal users don't send down privileged ioctls */ 10231 if ((ipip->ipi_flags & IPI_PRIV) && 10232 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10233 /* We checked the privilege earlier but log it here */ 10234 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10235 return; 10236 } 10237 10238 /* 10239 * The ioctl command tables can only encode fixed length 10240 * ioctl data. If the length is variable, the table will 10241 * encode the length as zero. Such special cases are handled 10242 * below in the switch. 10243 */ 10244 if (ipip->ipi_copyin_size != 0) { 10245 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10246 return; 10247 } 10248 10249 switch (iocp->ioc_cmd) { 10250 case O_SIOCGIFCONF: 10251 case SIOCGIFCONF: 10252 /* 10253 * This IOCTL is hilarious. See comments in 10254 * ip_sioctl_get_ifconf for the story. 10255 */ 10256 if (iocp->ioc_count == TRANSPARENT) 10257 copyin_size = SIZEOF_STRUCT(ifconf, 10258 iocp->ioc_flag); 10259 else 10260 copyin_size = iocp->ioc_count; 10261 mi_copyin(q, mp, NULL, copyin_size); 10262 return; 10263 10264 case O_SIOCGLIFCONF: 10265 case SIOCGLIFCONF: 10266 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10267 mi_copyin(q, mp, NULL, copyin_size); 10268 return; 10269 10270 case SIOCGLIFSRCOF: 10271 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10272 mi_copyin(q, mp, NULL, copyin_size); 10273 return; 10274 case SIOCGIP6ADDRPOLICY: 10275 ip_sioctl_ip6addrpolicy(q, mp); 10276 ip6_asp_table_refrele(ipst); 10277 return; 10278 10279 case SIOCSIP6ADDRPOLICY: 10280 ip_sioctl_ip6addrpolicy(q, mp); 10281 return; 10282 10283 case SIOCGDSTINFO: 10284 ip_sioctl_dstinfo(q, mp); 10285 ip6_asp_table_refrele(ipst); 10286 return; 10287 10288 case I_PLINK: 10289 case I_PUNLINK: 10290 case I_LINK: 10291 case I_UNLINK: 10292 /* 10293 * We treat non-persistent link similarly as the persistent 10294 * link case, in terms of plumbing/unplumbing, as well as 10295 * dynamic re-plumbing events indicator. See comments 10296 * in ip_sioctl_plink() for more. 10297 * 10298 * Request can be enqueued in the 'ipsq' while waiting 10299 * to become exclusive. So bump up the conn ref. 10300 */ 10301 if (CONN_Q(q)) 10302 CONN_INC_REF(Q_TO_CONN(q)); 10303 ip_sioctl_plink(NULL, q, mp, NULL); 10304 return; 10305 10306 case ND_GET: 10307 case ND_SET: 10308 /* 10309 * Use of the nd table requires holding the reader lock. 10310 * Modifying the nd table thru nd_load/nd_unload requires 10311 * the writer lock. 10312 */ 10313 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10314 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10315 rw_exit(&ipst->ips_ip_g_nd_lock); 10316 10317 if (iocp->ioc_error) 10318 iocp->ioc_count = 0; 10319 mp->b_datap->db_type = M_IOCACK; 10320 qreply(q, mp); 10321 return; 10322 } 10323 rw_exit(&ipst->ips_ip_g_nd_lock); 10324 /* 10325 * We don't understand this subioctl of ND_GET / ND_SET. 10326 * Maybe intended for some driver / module below us 10327 */ 10328 if (q->q_next) { 10329 putnext(q, mp); 10330 } else { 10331 iocp->ioc_error = ENOENT; 10332 mp->b_datap->db_type = M_IOCNAK; 10333 iocp->ioc_count = 0; 10334 qreply(q, mp); 10335 } 10336 return; 10337 10338 case IP_IOCTL: 10339 ip_wput_ioctl(q, mp); 10340 return; 10341 default: 10342 cmn_err(CE_PANIC, "should not happen "); 10343 } 10344 nak: 10345 if (mp->b_cont != NULL) { 10346 freemsg(mp->b_cont); 10347 mp->b_cont = NULL; 10348 } 10349 iocp->ioc_error = EINVAL; 10350 mp->b_datap->db_type = M_IOCNAK; 10351 iocp->ioc_count = 0; 10352 qreply(q, mp); 10353 } 10354 10355 /* ip_wput hands off ARP IOCTL responses to us */ 10356 /* ARGSUSED3 */ 10357 void 10358 ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10359 { 10360 struct arpreq *ar; 10361 struct xarpreq *xar; 10362 area_t *area; 10363 mblk_t *area_mp; 10364 struct iocblk *iocp; 10365 mblk_t *orig_ioc_mp, *tmp; 10366 struct iocblk *orig_iocp; 10367 ill_t *ill; 10368 conn_t *connp = NULL; 10369 mblk_t *pending_mp; 10370 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10371 int *flagsp; 10372 char *storage = NULL; 10373 sin_t *sin; 10374 ipaddr_t addr; 10375 int err; 10376 ip_stack_t *ipst; 10377 10378 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 10379 ill = q->q_ptr; 10380 ASSERT(ill != NULL); 10381 ipst = ill->ill_ipst; 10382 10383 /* 10384 * We should get back from ARP a packet chain that looks like: 10385 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10386 */ 10387 if (!(area_mp = mp->b_cont) || 10388 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10389 !(orig_ioc_mp = area_mp->b_cont) || 10390 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10391 freemsg(mp); 10392 return; 10393 } 10394 10395 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10396 10397 tmp = (orig_ioc_mp->b_cont)->b_cont; 10398 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10399 (orig_iocp->ioc_cmd == SIOCSXARP) || 10400 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10401 x_arp_ioctl = B_TRUE; 10402 xar = (struct xarpreq *)tmp->b_rptr; 10403 sin = (sin_t *)&xar->xarp_pa; 10404 flagsp = &xar->xarp_flags; 10405 storage = xar->xarp_ha.sdl_data; 10406 if (xar->xarp_ha.sdl_nlen != 0) 10407 ifx_arp_ioctl = B_TRUE; 10408 } else { 10409 ar = (struct arpreq *)tmp->b_rptr; 10410 sin = (sin_t *)&ar->arp_pa; 10411 flagsp = &ar->arp_flags; 10412 storage = ar->arp_ha.sa_data; 10413 } 10414 10415 iocp = (struct iocblk *)mp->b_rptr; 10416 10417 /* 10418 * Find the pending message; if we're exclusive, it'll be on our IPSQ. 10419 * Otherwise, we can find it from our ioc_id. 10420 */ 10421 if (ipsq != NULL) 10422 pending_mp = ipsq_pending_mp_get(ipsq, &connp); 10423 else 10424 pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 10425 10426 if (pending_mp == NULL) { 10427 ASSERT(connp == NULL); 10428 inet_freemsg(mp); 10429 return; 10430 } 10431 ASSERT(connp != NULL); 10432 q = CONNP_TO_WQ(connp); 10433 10434 /* Uncouple the internally generated IOCTL from the original one */ 10435 area = (area_t *)area_mp->b_rptr; 10436 area_mp->b_cont = NULL; 10437 10438 /* 10439 * Restore the b_next and b_prev used by mi code. This is needed 10440 * to complete the ioctl using mi* functions. We stored them in 10441 * the pending mp prior to sending the request to ARP. 10442 */ 10443 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10444 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10445 inet_freemsg(pending_mp); 10446 10447 /* 10448 * We're done if there was an error or if this is not an SIOCG{X}ARP 10449 * Catch the case where there is an IRE_CACHE by no entry in the 10450 * arp table. 10451 */ 10452 addr = sin->sin_addr.s_addr; 10453 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10454 ire_t *ire; 10455 dl_unitdata_req_t *dlup; 10456 mblk_t *llmp; 10457 int addr_len; 10458 ill_t *ipsqill = NULL; 10459 10460 if (ifx_arp_ioctl) { 10461 /* 10462 * There's no need to lookup the ill, since 10463 * we've already done that when we started 10464 * processing the ioctl and sent the message 10465 * to ARP on that ill. So use the ill that 10466 * is stored in q->q_ptr. 10467 */ 10468 ipsqill = ill; 10469 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10470 ipsqill->ill_ipif, ALL_ZONES, 10471 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10472 } else { 10473 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10474 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10475 if (ire != NULL) 10476 ipsqill = ire_to_ill(ire); 10477 } 10478 10479 if ((x_arp_ioctl) && (ipsqill != NULL)) 10480 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10481 10482 if (ire != NULL) { 10483 /* 10484 * Since the ire obtained from cachetable is used for 10485 * mac addr copying below, treat an incomplete ire as if 10486 * as if we never found it. 10487 */ 10488 if (ire->ire_nce != NULL && 10489 ire->ire_nce->nce_state != ND_REACHABLE) { 10490 ire_refrele(ire); 10491 ire = NULL; 10492 ipsqill = NULL; 10493 goto errack; 10494 } 10495 *flagsp = ATF_INUSE; 10496 llmp = (ire->ire_nce != NULL ? 10497 ire->ire_nce->nce_res_mp : NULL); 10498 if (llmp != NULL && ipsqill != NULL) { 10499 uchar_t *macaddr; 10500 10501 addr_len = ipsqill->ill_phys_addr_length; 10502 if (x_arp_ioctl && ((addr_len + 10503 ipsqill->ill_name_length) > 10504 sizeof (xar->xarp_ha.sdl_data))) { 10505 ire_refrele(ire); 10506 freemsg(mp); 10507 ip_ioctl_finish(q, orig_ioc_mp, 10508 EINVAL, NO_COPYOUT, ipsq); 10509 return; 10510 } 10511 *flagsp |= ATF_COM; 10512 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10513 if (ipsqill->ill_sap_length < 0) 10514 macaddr = llmp->b_rptr + 10515 dlup->dl_dest_addr_offset; 10516 else 10517 macaddr = llmp->b_rptr + 10518 dlup->dl_dest_addr_offset + 10519 ipsqill->ill_sap_length; 10520 /* 10521 * For SIOCGARP, MAC address length 10522 * validation has already been done 10523 * before the ioctl was issued to ARP to 10524 * allow it to progress only on 6 byte 10525 * addressable (ethernet like) media. Thus 10526 * the mac address copying can not overwrite 10527 * the sa_data area below. 10528 */ 10529 bcopy(macaddr, storage, addr_len); 10530 } 10531 /* Ditch the internal IOCTL. */ 10532 freemsg(mp); 10533 ire_refrele(ire); 10534 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10535 return; 10536 } 10537 } 10538 10539 /* 10540 * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE 10541 * on the IPMP meta-interface, ensure any ARP entries added in 10542 * ip_sioctl_arp() are deleted. 10543 */ 10544 if (IS_IPMP(ill) && 10545 ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) || 10546 ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) { 10547 ipmp_illgrp_t *illg = ill->ill_grp; 10548 ipmp_arpent_t *entp; 10549 10550 if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL) 10551 ipmp_illgrp_destroy_arpent(illg, entp); 10552 } 10553 10554 /* 10555 * Delete the coresponding IRE_CACHE if any. 10556 * Reset the error if there was one (in case there was no entry 10557 * in arp.) 10558 */ 10559 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10560 ipif_t *ipintf = NULL; 10561 10562 if (ifx_arp_ioctl) { 10563 /* 10564 * There's no need to lookup the ill, since 10565 * we've already done that when we started 10566 * processing the ioctl and sent the message 10567 * to ARP on that ill. So use the ill that 10568 * is stored in q->q_ptr. 10569 */ 10570 ipintf = ill->ill_ipif; 10571 } 10572 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10573 /* 10574 * The address in "addr" may be an entry for a 10575 * router. If that's true, then any off-net 10576 * IRE_CACHE entries that go through the router 10577 * with address "addr" must be clobbered. Use 10578 * ire_walk to achieve this goal. 10579 */ 10580 if (ifx_arp_ioctl) 10581 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10582 ire_delete_cache_gw, (char *)&addr, ill); 10583 else 10584 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10585 ALL_ZONES, ipst); 10586 iocp->ioc_error = 0; 10587 } 10588 } 10589 errack: 10590 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10591 err = iocp->ioc_error; 10592 freemsg(mp); 10593 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq); 10594 return; 10595 } 10596 10597 /* 10598 * Completion of an SIOCG{X}ARP. Translate the information from 10599 * the area_t into the struct {x}arpreq. 10600 */ 10601 if (x_arp_ioctl) { 10602 storage += ill_xarp_info(&xar->xarp_ha, ill); 10603 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10604 sizeof (xar->xarp_ha.sdl_data)) { 10605 freemsg(mp); 10606 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10607 ipsq); 10608 return; 10609 } 10610 } 10611 *flagsp = ATF_INUSE; 10612 if (area->area_flags & ACE_F_PERMANENT) 10613 *flagsp |= ATF_PERM; 10614 if (area->area_flags & ACE_F_PUBLISH) 10615 *flagsp |= ATF_PUBL; 10616 if (area->area_flags & ACE_F_AUTHORITY) 10617 *flagsp |= ATF_AUTHORITY; 10618 if (area->area_hw_addr_length != 0) { 10619 *flagsp |= ATF_COM; 10620 /* 10621 * For SIOCGARP, MAC address length validation has 10622 * already been done before the ioctl was issued to ARP 10623 * to allow it to progress only on 6 byte addressable 10624 * (ethernet like) media. Thus the mac address copying 10625 * can not overwrite the sa_data area below. 10626 */ 10627 bcopy((char *)area + area->area_hw_addr_offset, 10628 storage, area->area_hw_addr_length); 10629 } 10630 10631 /* Ditch the internal IOCTL. */ 10632 freemsg(mp); 10633 /* Complete the original. */ 10634 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10635 } 10636 10637 /* 10638 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10639 * interface) create the next available logical interface for this 10640 * physical interface. 10641 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10642 * ipif with the specified name. 10643 * 10644 * If the address family is not AF_UNSPEC then set the address as well. 10645 * 10646 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10647 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10648 * 10649 * Executed as a writer on the ill. 10650 * So no lock is needed to traverse the ipif chain, or examine the 10651 * phyint flags. 10652 */ 10653 /* ARGSUSED */ 10654 int 10655 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10656 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10657 { 10658 mblk_t *mp1; 10659 struct lifreq *lifr; 10660 boolean_t isv6; 10661 boolean_t exists; 10662 char *name; 10663 char *endp; 10664 char *cp; 10665 int namelen; 10666 ipif_t *ipif; 10667 long id; 10668 ipsq_t *ipsq; 10669 ill_t *ill; 10670 sin_t *sin; 10671 int err = 0; 10672 boolean_t found_sep = B_FALSE; 10673 conn_t *connp; 10674 zoneid_t zoneid; 10675 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10676 10677 ASSERT(q->q_next == NULL); 10678 ip1dbg(("ip_sioctl_addif\n")); 10679 /* Existence of mp1 has been checked in ip_wput_nondata */ 10680 mp1 = mp->b_cont->b_cont; 10681 /* 10682 * Null terminate the string to protect against buffer 10683 * overrun. String was generated by user code and may not 10684 * be trusted. 10685 */ 10686 lifr = (struct lifreq *)mp1->b_rptr; 10687 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10688 name = lifr->lifr_name; 10689 ASSERT(CONN_Q(q)); 10690 connp = Q_TO_CONN(q); 10691 isv6 = connp->conn_af_isv6; 10692 zoneid = connp->conn_zoneid; 10693 namelen = mi_strlen(name); 10694 if (namelen == 0) 10695 return (EINVAL); 10696 10697 exists = B_FALSE; 10698 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10699 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10700 /* 10701 * Allow creating lo0 using SIOCLIFADDIF. 10702 * can't be any other writer thread. So can pass null below 10703 * for the last 4 args to ipif_lookup_name. 10704 */ 10705 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10706 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10707 /* Prevent any further action */ 10708 if (ipif == NULL) { 10709 return (ENOBUFS); 10710 } else if (!exists) { 10711 /* We created the ipif now and as writer */ 10712 ipif_refrele(ipif); 10713 return (0); 10714 } else { 10715 ill = ipif->ipif_ill; 10716 ill_refhold(ill); 10717 ipif_refrele(ipif); 10718 } 10719 } else { 10720 /* Look for a colon in the name. */ 10721 endp = &name[namelen]; 10722 for (cp = endp; --cp > name; ) { 10723 if (*cp == IPIF_SEPARATOR_CHAR) { 10724 found_sep = B_TRUE; 10725 /* 10726 * Reject any non-decimal aliases for plumbing 10727 * of logical interfaces. Aliases with leading 10728 * zeroes are also rejected as they introduce 10729 * ambiguity in the naming of the interfaces. 10730 * Comparing with "0" takes care of all such 10731 * cases. 10732 */ 10733 if ((strncmp("0", cp+1, 1)) == 0) 10734 return (EINVAL); 10735 10736 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10737 id <= 0 || *endp != '\0') { 10738 return (EINVAL); 10739 } 10740 *cp = '\0'; 10741 break; 10742 } 10743 } 10744 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10745 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10746 if (found_sep) 10747 *cp = IPIF_SEPARATOR_CHAR; 10748 if (ill == NULL) 10749 return (err); 10750 } 10751 10752 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10753 B_TRUE); 10754 10755 /* 10756 * Release the refhold due to the lookup, now that we are excl 10757 * or we are just returning 10758 */ 10759 ill_refrele(ill); 10760 10761 if (ipsq == NULL) 10762 return (EINPROGRESS); 10763 10764 /* We are now exclusive on the IPSQ */ 10765 ASSERT(IAM_WRITER_ILL(ill)); 10766 10767 if (found_sep) { 10768 /* Now see if there is an IPIF with this unit number. */ 10769 for (ipif = ill->ill_ipif; ipif != NULL; 10770 ipif = ipif->ipif_next) { 10771 if (ipif->ipif_id == id) { 10772 err = EEXIST; 10773 goto done; 10774 } 10775 } 10776 } 10777 10778 /* 10779 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10780 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 10781 * instead. 10782 */ 10783 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 10784 B_TRUE, B_TRUE)) == NULL) { 10785 err = ENOBUFS; 10786 goto done; 10787 } 10788 10789 /* Return created name with ioctl */ 10790 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10791 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10792 ip1dbg(("created %s\n", lifr->lifr_name)); 10793 10794 /* Set address */ 10795 sin = (sin_t *)&lifr->lifr_addr; 10796 if (sin->sin_family != AF_UNSPEC) { 10797 err = ip_sioctl_addr(ipif, sin, q, mp, 10798 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10799 } 10800 10801 done: 10802 ipsq_exit(ipsq); 10803 return (err); 10804 } 10805 10806 /* 10807 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10808 * interface) delete it based on the IP address (on this physical interface). 10809 * Otherwise delete it based on the ipif_id. 10810 * Also, special handling to allow a removeif of lo0. 10811 */ 10812 /* ARGSUSED */ 10813 int 10814 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10815 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10816 { 10817 conn_t *connp; 10818 ill_t *ill = ipif->ipif_ill; 10819 boolean_t success; 10820 ip_stack_t *ipst; 10821 10822 ipst = CONNQ_TO_IPST(q); 10823 10824 ASSERT(q->q_next == NULL); 10825 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10826 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10827 ASSERT(IAM_WRITER_IPIF(ipif)); 10828 10829 connp = Q_TO_CONN(q); 10830 /* 10831 * Special case for unplumbing lo0 (the loopback physical interface). 10832 * If unplumbing lo0, the incoming address structure has been 10833 * initialized to all zeros. When unplumbing lo0, all its logical 10834 * interfaces must be removed too. 10835 * 10836 * Note that this interface may be called to remove a specific 10837 * loopback logical interface (eg, lo0:1). But in that case 10838 * ipif->ipif_id != 0 so that the code path for that case is the 10839 * same as any other interface (meaning it skips the code directly 10840 * below). 10841 */ 10842 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10843 if (sin->sin_family == AF_UNSPEC && 10844 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10845 /* 10846 * Mark it condemned. No new ref. will be made to ill. 10847 */ 10848 mutex_enter(&ill->ill_lock); 10849 ill->ill_state_flags |= ILL_CONDEMNED; 10850 for (ipif = ill->ill_ipif; ipif != NULL; 10851 ipif = ipif->ipif_next) { 10852 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10853 } 10854 mutex_exit(&ill->ill_lock); 10855 10856 ipif = ill->ill_ipif; 10857 /* unplumb the loopback interface */ 10858 ill_delete(ill); 10859 mutex_enter(&connp->conn_lock); 10860 mutex_enter(&ill->ill_lock); 10861 10862 /* Are any references to this ill active */ 10863 if (ill_is_freeable(ill)) { 10864 mutex_exit(&ill->ill_lock); 10865 mutex_exit(&connp->conn_lock); 10866 ill_delete_tail(ill); 10867 mi_free(ill); 10868 return (0); 10869 } 10870 success = ipsq_pending_mp_add(connp, ipif, 10871 CONNP_TO_WQ(connp), mp, ILL_FREE); 10872 mutex_exit(&connp->conn_lock); 10873 mutex_exit(&ill->ill_lock); 10874 if (success) 10875 return (EINPROGRESS); 10876 else 10877 return (EINTR); 10878 } 10879 } 10880 10881 if (ipif->ipif_id == 0) { 10882 ipsq_t *ipsq; 10883 10884 /* Find based on address */ 10885 if (ipif->ipif_isv6) { 10886 sin6_t *sin6; 10887 10888 if (sin->sin_family != AF_INET6) 10889 return (EAFNOSUPPORT); 10890 10891 sin6 = (sin6_t *)sin; 10892 /* We are a writer, so we should be able to lookup */ 10893 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 10894 ipst); 10895 } else { 10896 if (sin->sin_family != AF_INET) 10897 return (EAFNOSUPPORT); 10898 10899 /* We are a writer, so we should be able to lookup */ 10900 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 10901 ipst); 10902 } 10903 if (ipif == NULL) { 10904 return (EADDRNOTAVAIL); 10905 } 10906 10907 /* 10908 * It is possible for a user to send an SIOCLIFREMOVEIF with 10909 * lifr_name of the physical interface but with an ip address 10910 * lifr_addr of a logical interface plumbed over it. 10911 * So update ipx_current_ipif now that ipif points to the 10912 * correct one. 10913 */ 10914 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10915 ipsq->ipsq_xop->ipx_current_ipif = ipif; 10916 10917 /* This is a writer */ 10918 ipif_refrele(ipif); 10919 } 10920 10921 /* 10922 * Can not delete instance zero since it is tied to the ill. 10923 */ 10924 if (ipif->ipif_id == 0) 10925 return (EBUSY); 10926 10927 mutex_enter(&ill->ill_lock); 10928 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10929 mutex_exit(&ill->ill_lock); 10930 10931 ipif_free(ipif); 10932 10933 mutex_enter(&connp->conn_lock); 10934 mutex_enter(&ill->ill_lock); 10935 10936 /* Are any references to this ipif active */ 10937 if (ipif_is_freeable(ipif)) { 10938 mutex_exit(&ill->ill_lock); 10939 mutex_exit(&connp->conn_lock); 10940 ipif_non_duplicate(ipif); 10941 ipif_down_tail(ipif); 10942 ipif_free_tail(ipif); /* frees ipif */ 10943 return (0); 10944 } 10945 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10946 IPIF_FREE); 10947 mutex_exit(&ill->ill_lock); 10948 mutex_exit(&connp->conn_lock); 10949 if (success) 10950 return (EINPROGRESS); 10951 else 10952 return (EINTR); 10953 } 10954 10955 /* 10956 * Restart the removeif ioctl. The refcnt has gone down to 0. 10957 * The ipif is already condemned. So can't find it thru lookups. 10958 */ 10959 /* ARGSUSED */ 10960 int 10961 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10962 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10963 { 10964 ill_t *ill = ipif->ipif_ill; 10965 10966 ASSERT(IAM_WRITER_IPIF(ipif)); 10967 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10968 10969 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10970 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10971 10972 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10973 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10974 ill_delete_tail(ill); 10975 mi_free(ill); 10976 return (0); 10977 } 10978 10979 ipif_non_duplicate(ipif); 10980 ipif_down_tail(ipif); 10981 ipif_free_tail(ipif); 10982 10983 ILL_UNMARK_CHANGING(ill); 10984 return (0); 10985 } 10986 10987 /* 10988 * Set the local interface address. 10989 * Allow an address of all zero when the interface is down. 10990 */ 10991 /* ARGSUSED */ 10992 int 10993 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10994 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10995 { 10996 int err = 0; 10997 in6_addr_t v6addr; 10998 boolean_t need_up = B_FALSE; 10999 11000 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11001 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11002 11003 ASSERT(IAM_WRITER_IPIF(ipif)); 11004 11005 if (ipif->ipif_isv6) { 11006 sin6_t *sin6; 11007 ill_t *ill; 11008 phyint_t *phyi; 11009 11010 if (sin->sin_family != AF_INET6) 11011 return (EAFNOSUPPORT); 11012 11013 sin6 = (sin6_t *)sin; 11014 v6addr = sin6->sin6_addr; 11015 ill = ipif->ipif_ill; 11016 phyi = ill->ill_phyint; 11017 11018 /* 11019 * Enforce that true multicast interfaces have a link-local 11020 * address for logical unit 0. 11021 */ 11022 if (ipif->ipif_id == 0 && 11023 (ill->ill_flags & ILLF_MULTICAST) && 11024 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11025 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11026 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11027 return (EADDRNOTAVAIL); 11028 } 11029 11030 /* 11031 * up interfaces shouldn't have the unspecified address 11032 * unless they also have the IPIF_NOLOCAL flags set and 11033 * have a subnet assigned. 11034 */ 11035 if ((ipif->ipif_flags & IPIF_UP) && 11036 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11037 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11038 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11039 return (EADDRNOTAVAIL); 11040 } 11041 11042 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11043 return (EADDRNOTAVAIL); 11044 } else { 11045 ipaddr_t addr; 11046 11047 if (sin->sin_family != AF_INET) 11048 return (EAFNOSUPPORT); 11049 11050 addr = sin->sin_addr.s_addr; 11051 11052 /* Allow 0 as the local address. */ 11053 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11054 return (EADDRNOTAVAIL); 11055 11056 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11057 } 11058 11059 /* 11060 * Even if there is no change we redo things just to rerun 11061 * ipif_set_default. 11062 */ 11063 if (ipif->ipif_flags & IPIF_UP) { 11064 /* 11065 * Setting a new local address, make sure 11066 * we have net and subnet bcast ire's for 11067 * the old address if we need them. 11068 */ 11069 if (!ipif->ipif_isv6) 11070 ipif_check_bcast_ires(ipif); 11071 /* 11072 * If the interface is already marked up, 11073 * we call ipif_down which will take care 11074 * of ditching any IREs that have been set 11075 * up based on the old interface address. 11076 */ 11077 err = ipif_logical_down(ipif, q, mp); 11078 if (err == EINPROGRESS) 11079 return (err); 11080 ipif_down_tail(ipif); 11081 need_up = 1; 11082 } 11083 11084 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11085 return (err); 11086 } 11087 11088 int 11089 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11090 boolean_t need_up) 11091 { 11092 in6_addr_t v6addr; 11093 in6_addr_t ov6addr; 11094 ipaddr_t addr; 11095 sin6_t *sin6; 11096 int sinlen; 11097 int err = 0; 11098 ill_t *ill = ipif->ipif_ill; 11099 boolean_t need_dl_down; 11100 boolean_t need_arp_down; 11101 struct iocblk *iocp; 11102 11103 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11104 11105 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11106 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11107 ASSERT(IAM_WRITER_IPIF(ipif)); 11108 11109 /* Must cancel any pending timer before taking the ill_lock */ 11110 if (ipif->ipif_recovery_id != 0) 11111 (void) untimeout(ipif->ipif_recovery_id); 11112 ipif->ipif_recovery_id = 0; 11113 11114 if (ipif->ipif_isv6) { 11115 sin6 = (sin6_t *)sin; 11116 v6addr = sin6->sin6_addr; 11117 sinlen = sizeof (struct sockaddr_in6); 11118 } else { 11119 addr = sin->sin_addr.s_addr; 11120 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11121 sinlen = sizeof (struct sockaddr_in); 11122 } 11123 mutex_enter(&ill->ill_lock); 11124 ov6addr = ipif->ipif_v6lcl_addr; 11125 ipif->ipif_v6lcl_addr = v6addr; 11126 sctp_update_ipif_addr(ipif, ov6addr); 11127 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11128 ipif->ipif_v6src_addr = ipv6_all_zeros; 11129 } else { 11130 ipif->ipif_v6src_addr = v6addr; 11131 } 11132 ipif->ipif_addr_ready = 0; 11133 11134 /* 11135 * If the interface was previously marked as a duplicate, then since 11136 * we've now got a "new" address, it should no longer be considered a 11137 * duplicate -- even if the "new" address is the same as the old one. 11138 * Note that if all ipifs are down, we may have a pending ARP down 11139 * event to handle. This is because we want to recover from duplicates 11140 * and thus delay tearing down ARP until the duplicates have been 11141 * removed or disabled. 11142 */ 11143 need_dl_down = need_arp_down = B_FALSE; 11144 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11145 need_arp_down = !need_up; 11146 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11147 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11148 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11149 need_dl_down = B_TRUE; 11150 } 11151 } 11152 11153 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11154 !ill->ill_is_6to4tun) { 11155 queue_t *wqp = ill->ill_wq; 11156 11157 /* 11158 * The local address of this interface is a 6to4 address, 11159 * check if this interface is in fact a 6to4 tunnel or just 11160 * an interface configured with a 6to4 address. We are only 11161 * interested in the former. 11162 */ 11163 if (wqp != NULL) { 11164 while ((wqp->q_next != NULL) && 11165 (wqp->q_next->q_qinfo != NULL) && 11166 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11167 11168 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11169 == TUN6TO4_MODID) { 11170 /* set for use in IP */ 11171 ill->ill_is_6to4tun = 1; 11172 break; 11173 } 11174 wqp = wqp->q_next; 11175 } 11176 } 11177 } 11178 11179 ipif_set_default(ipif); 11180 11181 /* 11182 * When publishing an interface address change event, we only notify 11183 * the event listeners of the new address. It is assumed that if they 11184 * actively care about the addresses assigned that they will have 11185 * already discovered the previous address assigned (if there was one.) 11186 * 11187 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11188 */ 11189 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11190 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 11191 NE_ADDRESS_CHANGE, sin, sinlen); 11192 } 11193 11194 mutex_exit(&ill->ill_lock); 11195 11196 if (need_up) { 11197 /* 11198 * Now bring the interface back up. If this 11199 * is the only IPIF for the ILL, ipif_up 11200 * will have to re-bind to the device, so 11201 * we may get back EINPROGRESS, in which 11202 * case, this IOCTL will get completed in 11203 * ip_rput_dlpi when we see the DL_BIND_ACK. 11204 */ 11205 err = ipif_up(ipif, q, mp); 11206 } 11207 11208 if (need_dl_down) 11209 ill_dl_down(ill); 11210 if (need_arp_down) 11211 ipif_resolver_down(ipif); 11212 11213 return (err); 11214 } 11215 11216 /* 11217 * Restart entry point to restart the address set operation after the 11218 * refcounts have dropped to zero. 11219 */ 11220 /* ARGSUSED */ 11221 int 11222 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11223 ip_ioctl_cmd_t *ipip, void *ifreq) 11224 { 11225 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11226 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11227 ASSERT(IAM_WRITER_IPIF(ipif)); 11228 ipif_down_tail(ipif); 11229 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11230 } 11231 11232 /* ARGSUSED */ 11233 int 11234 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11235 ip_ioctl_cmd_t *ipip, void *if_req) 11236 { 11237 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11238 struct lifreq *lifr = (struct lifreq *)if_req; 11239 11240 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11241 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11242 /* 11243 * The net mask and address can't change since we have a 11244 * reference to the ipif. So no lock is necessary. 11245 */ 11246 if (ipif->ipif_isv6) { 11247 *sin6 = sin6_null; 11248 sin6->sin6_family = AF_INET6; 11249 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11250 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11251 lifr->lifr_addrlen = 11252 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11253 } else { 11254 *sin = sin_null; 11255 sin->sin_family = AF_INET; 11256 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11257 if (ipip->ipi_cmd_type == LIF_CMD) { 11258 lifr->lifr_addrlen = 11259 ip_mask_to_plen(ipif->ipif_net_mask); 11260 } 11261 } 11262 return (0); 11263 } 11264 11265 /* 11266 * Set the destination address for a pt-pt interface. 11267 */ 11268 /* ARGSUSED */ 11269 int 11270 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11271 ip_ioctl_cmd_t *ipip, void *if_req) 11272 { 11273 int err = 0; 11274 in6_addr_t v6addr; 11275 boolean_t need_up = B_FALSE; 11276 11277 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11278 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11279 ASSERT(IAM_WRITER_IPIF(ipif)); 11280 11281 if (ipif->ipif_isv6) { 11282 sin6_t *sin6; 11283 11284 if (sin->sin_family != AF_INET6) 11285 return (EAFNOSUPPORT); 11286 11287 sin6 = (sin6_t *)sin; 11288 v6addr = sin6->sin6_addr; 11289 11290 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11291 return (EADDRNOTAVAIL); 11292 } else { 11293 ipaddr_t addr; 11294 11295 if (sin->sin_family != AF_INET) 11296 return (EAFNOSUPPORT); 11297 11298 addr = sin->sin_addr.s_addr; 11299 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11300 return (EADDRNOTAVAIL); 11301 11302 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11303 } 11304 11305 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11306 return (0); /* No change */ 11307 11308 if (ipif->ipif_flags & IPIF_UP) { 11309 /* 11310 * If the interface is already marked up, 11311 * we call ipif_down which will take care 11312 * of ditching any IREs that have been set 11313 * up based on the old pp dst address. 11314 */ 11315 err = ipif_logical_down(ipif, q, mp); 11316 if (err == EINPROGRESS) 11317 return (err); 11318 ipif_down_tail(ipif); 11319 need_up = B_TRUE; 11320 } 11321 /* 11322 * could return EINPROGRESS. If so ioctl will complete in 11323 * ip_rput_dlpi_writer 11324 */ 11325 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11326 return (err); 11327 } 11328 11329 static int 11330 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11331 boolean_t need_up) 11332 { 11333 in6_addr_t v6addr; 11334 ill_t *ill = ipif->ipif_ill; 11335 int err = 0; 11336 boolean_t need_dl_down; 11337 boolean_t need_arp_down; 11338 11339 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11340 ipif->ipif_id, (void *)ipif)); 11341 11342 /* Must cancel any pending timer before taking the ill_lock */ 11343 if (ipif->ipif_recovery_id != 0) 11344 (void) untimeout(ipif->ipif_recovery_id); 11345 ipif->ipif_recovery_id = 0; 11346 11347 if (ipif->ipif_isv6) { 11348 sin6_t *sin6; 11349 11350 sin6 = (sin6_t *)sin; 11351 v6addr = sin6->sin6_addr; 11352 } else { 11353 ipaddr_t addr; 11354 11355 addr = sin->sin_addr.s_addr; 11356 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11357 } 11358 mutex_enter(&ill->ill_lock); 11359 /* Set point to point destination address. */ 11360 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11361 /* 11362 * Allow this as a means of creating logical 11363 * pt-pt interfaces on top of e.g. an Ethernet. 11364 * XXX Undocumented HACK for testing. 11365 * pt-pt interfaces are created with NUD disabled. 11366 */ 11367 ipif->ipif_flags |= IPIF_POINTOPOINT; 11368 ipif->ipif_flags &= ~IPIF_BROADCAST; 11369 if (ipif->ipif_isv6) 11370 ill->ill_flags |= ILLF_NONUD; 11371 } 11372 11373 /* 11374 * If the interface was previously marked as a duplicate, then since 11375 * we've now got a "new" address, it should no longer be considered a 11376 * duplicate -- even if the "new" address is the same as the old one. 11377 * Note that if all ipifs are down, we may have a pending ARP down 11378 * event to handle. 11379 */ 11380 need_dl_down = need_arp_down = B_FALSE; 11381 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11382 need_arp_down = !need_up; 11383 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11384 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11385 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11386 need_dl_down = B_TRUE; 11387 } 11388 } 11389 11390 /* Set the new address. */ 11391 ipif->ipif_v6pp_dst_addr = v6addr; 11392 /* Make sure subnet tracks pp_dst */ 11393 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11394 mutex_exit(&ill->ill_lock); 11395 11396 if (need_up) { 11397 /* 11398 * Now bring the interface back up. If this 11399 * is the only IPIF for the ILL, ipif_up 11400 * will have to re-bind to the device, so 11401 * we may get back EINPROGRESS, in which 11402 * case, this IOCTL will get completed in 11403 * ip_rput_dlpi when we see the DL_BIND_ACK. 11404 */ 11405 err = ipif_up(ipif, q, mp); 11406 } 11407 11408 if (need_dl_down) 11409 ill_dl_down(ill); 11410 if (need_arp_down) 11411 ipif_resolver_down(ipif); 11412 11413 return (err); 11414 } 11415 11416 /* 11417 * Restart entry point to restart the dstaddress set operation after the 11418 * refcounts have dropped to zero. 11419 */ 11420 /* ARGSUSED */ 11421 int 11422 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11423 ip_ioctl_cmd_t *ipip, void *ifreq) 11424 { 11425 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11426 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11427 ipif_down_tail(ipif); 11428 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11429 } 11430 11431 /* ARGSUSED */ 11432 int 11433 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11434 ip_ioctl_cmd_t *ipip, void *if_req) 11435 { 11436 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11437 11438 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11439 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11440 /* 11441 * Get point to point destination address. The addresses can't 11442 * change since we hold a reference to the ipif. 11443 */ 11444 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11445 return (EADDRNOTAVAIL); 11446 11447 if (ipif->ipif_isv6) { 11448 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11449 *sin6 = sin6_null; 11450 sin6->sin6_family = AF_INET6; 11451 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11452 } else { 11453 *sin = sin_null; 11454 sin->sin_family = AF_INET; 11455 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11456 } 11457 return (0); 11458 } 11459 11460 /* 11461 * Set interface flags. Many flags require special handling (e.g., 11462 * bringing the interface down); see below for details. 11463 * 11464 * NOTE : We really don't enforce that ipif_id zero should be used 11465 * for setting any flags other than IFF_LOGINT_FLAGS. This 11466 * is because applications generally does SICGLIFFLAGS and 11467 * ORs in the new flags (that affects the logical) and does a 11468 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11469 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11470 * flags that will be turned on is correct with respect to 11471 * ipif_id 0. For backward compatibility reasons, it is not done. 11472 */ 11473 /* ARGSUSED */ 11474 int 11475 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11476 ip_ioctl_cmd_t *ipip, void *if_req) 11477 { 11478 uint64_t turn_on; 11479 uint64_t turn_off; 11480 int err = 0; 11481 phyint_t *phyi; 11482 ill_t *ill; 11483 uint64_t intf_flags, cantchange_flags; 11484 boolean_t phyint_flags_modified = B_FALSE; 11485 uint64_t flags; 11486 struct ifreq *ifr; 11487 struct lifreq *lifr; 11488 boolean_t set_linklocal = B_FALSE; 11489 boolean_t zero_source = B_FALSE; 11490 11491 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11492 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11493 11494 ASSERT(IAM_WRITER_IPIF(ipif)); 11495 11496 ill = ipif->ipif_ill; 11497 phyi = ill->ill_phyint; 11498 11499 if (ipip->ipi_cmd_type == IF_CMD) { 11500 ifr = (struct ifreq *)if_req; 11501 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11502 } else { 11503 lifr = (struct lifreq *)if_req; 11504 flags = lifr->lifr_flags; 11505 } 11506 11507 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11508 11509 /* 11510 * Have the flags been set correctly until now? 11511 */ 11512 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11513 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11514 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11515 /* 11516 * Compare the new flags to the old, and partition 11517 * into those coming on and those going off. 11518 * For the 16 bit command keep the bits above bit 16 unchanged. 11519 */ 11520 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11521 flags |= intf_flags & ~0xFFFF; 11522 11523 /* 11524 * Explicitly fail attempts to change flags that are always invalid on 11525 * an IPMP meta-interface. 11526 */ 11527 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 11528 return (EINVAL); 11529 11530 /* 11531 * Check which flags will change; silently ignore flags which userland 11532 * is not allowed to control. (Because these flags may change between 11533 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's 11534 * control, we need to silently ignore them rather than fail.) 11535 */ 11536 cantchange_flags = IFF_CANTCHANGE; 11537 if (IS_IPMP(ill)) 11538 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11539 11540 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11541 if (turn_on == 0) 11542 return (0); /* No change */ 11543 11544 turn_off = intf_flags & turn_on; 11545 turn_on ^= turn_off; 11546 11547 /* 11548 * All test addresses must be IFF_DEPRECATED (to ensure source address 11549 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 11550 * allow it to be turned off. 11551 */ 11552 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 11553 (turn_on|intf_flags) & IFF_NOFAILOVER) 11554 return (EINVAL); 11555 11556 if (turn_on & IFF_NOFAILOVER) { 11557 turn_on |= IFF_DEPRECATED; 11558 flags |= IFF_DEPRECATED; 11559 } 11560 11561 /* 11562 * On underlying interfaces, only allow applications to manage test 11563 * addresses -- otherwise, they may get confused when the address 11564 * moves as part of being brought up. Likewise, prevent an 11565 * application-managed test address from being converted to a data 11566 * address. To prevent migration of administratively up addresses in 11567 * the kernel, we don't allow them to be converted either. 11568 */ 11569 if (IS_UNDER_IPMP(ill)) { 11570 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 11571 11572 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 11573 return (EINVAL); 11574 11575 if ((turn_off & IFF_NOFAILOVER) && 11576 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 11577 return (EINVAL); 11578 } 11579 11580 /* 11581 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11582 * IPv6 interfaces. 11583 */ 11584 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11585 return (EINVAL); 11586 11587 /* 11588 * cannot turn off IFF_NOXMIT on VNI interfaces. 11589 */ 11590 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11591 return (EINVAL); 11592 11593 /* 11594 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11595 * interfaces. It makes no sense in that context. 11596 */ 11597 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11598 return (EINVAL); 11599 11600 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11601 zero_source = B_TRUE; 11602 11603 /* 11604 * For IPv6 ipif_id 0, don't allow the interface to be up without 11605 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11606 * If the link local address isn't set, and can be set, it will get 11607 * set later on in this function. 11608 */ 11609 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11610 (flags & IFF_UP) && !zero_source && 11611 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11612 if (ipif_cant_setlinklocal(ipif)) 11613 return (EINVAL); 11614 set_linklocal = B_TRUE; 11615 } 11616 11617 /* 11618 * If we modify physical interface flags, we'll potentially need to 11619 * send up two routing socket messages for the changes (one for the 11620 * IPv4 ill, and another for the IPv6 ill). Note that here. 11621 */ 11622 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11623 phyint_flags_modified = B_TRUE; 11624 11625 /* 11626 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 11627 * (otherwise, we'd immediately use them, defeating standby). Also, 11628 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 11629 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 11630 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 11631 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 11632 * will not be honored. 11633 */ 11634 if (turn_on & PHYI_STANDBY) { 11635 /* 11636 * No need to grab ill_g_usesrc_lock here; see the 11637 * synchronization notes in ip.c. 11638 */ 11639 if (ill->ill_usesrc_grp_next != NULL || 11640 intf_flags & PHYI_INACTIVE) 11641 return (EINVAL); 11642 if (!(flags & PHYI_FAILED)) { 11643 flags |= PHYI_INACTIVE; 11644 turn_on |= PHYI_INACTIVE; 11645 } 11646 } 11647 11648 if (turn_off & PHYI_STANDBY) { 11649 flags &= ~PHYI_INACTIVE; 11650 turn_off |= PHYI_INACTIVE; 11651 } 11652 11653 /* 11654 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 11655 * would end up on. 11656 */ 11657 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 11658 (PHYI_FAILED | PHYI_INACTIVE)) 11659 return (EINVAL); 11660 11661 /* 11662 * If ILLF_ROUTER changes, we need to change the ip forwarding 11663 * status of the interface. 11664 */ 11665 if ((turn_on | turn_off) & ILLF_ROUTER) 11666 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11667 11668 /* 11669 * If the interface is not UP and we are not going to 11670 * bring it UP, record the flags and return. When the 11671 * interface comes UP later, the right actions will be 11672 * taken. 11673 */ 11674 if (!(ipif->ipif_flags & IPIF_UP) && 11675 !(turn_on & IPIF_UP)) { 11676 /* Record new flags in their respective places. */ 11677 mutex_enter(&ill->ill_lock); 11678 mutex_enter(&ill->ill_phyint->phyint_lock); 11679 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11680 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11681 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11682 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11683 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11684 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11685 mutex_exit(&ill->ill_lock); 11686 mutex_exit(&ill->ill_phyint->phyint_lock); 11687 11688 /* 11689 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 11690 * same to the kernel: if any of them has been set by 11691 * userland, the interface cannot be used for data traffic. 11692 */ 11693 if ((turn_on|turn_off) & 11694 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11695 ASSERT(!IS_IPMP(ill)); 11696 /* 11697 * It's possible the ill is part of an "anonymous" 11698 * IPMP group rather than a real group. In that case, 11699 * there are no other interfaces in the group and thus 11700 * no need to call ipmp_phyint_refresh_active(). 11701 */ 11702 if (IS_UNDER_IPMP(ill)) 11703 ipmp_phyint_refresh_active(phyi); 11704 } 11705 11706 if (phyint_flags_modified) { 11707 if (phyi->phyint_illv4 != NULL) { 11708 ip_rts_ifmsg(phyi->phyint_illv4-> 11709 ill_ipif, RTSQ_DEFAULT); 11710 } 11711 if (phyi->phyint_illv6 != NULL) { 11712 ip_rts_ifmsg(phyi->phyint_illv6-> 11713 ill_ipif, RTSQ_DEFAULT); 11714 } 11715 } 11716 return (0); 11717 } else if (set_linklocal || zero_source) { 11718 mutex_enter(&ill->ill_lock); 11719 if (set_linklocal) 11720 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11721 if (zero_source) 11722 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11723 mutex_exit(&ill->ill_lock); 11724 } 11725 11726 /* 11727 * Disallow IPv6 interfaces coming up that have the unspecified address, 11728 * or point-to-point interfaces with an unspecified destination. We do 11729 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11730 * have a subnet assigned, which is how in.ndpd currently manages its 11731 * onlink prefix list when no addresses are configured with those 11732 * prefixes. 11733 */ 11734 if (ipif->ipif_isv6 && 11735 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11736 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11737 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11738 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11739 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11740 return (EINVAL); 11741 } 11742 11743 /* 11744 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11745 * from being brought up. 11746 */ 11747 if (!ipif->ipif_isv6 && 11748 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11749 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11750 return (EINVAL); 11751 } 11752 11753 /* 11754 * The only flag changes that we currently take specific action on are 11755 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 11756 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 11757 * IPIF_NOFAILOVER. This is done by bring the ipif down, changing the 11758 * flags and bringing it back up again. For IPIF_NOFAILOVER, the act 11759 * of bringing it back up will trigger the address to be moved. 11760 */ 11761 if ((turn_on|turn_off) & 11762 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11763 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 11764 IPIF_NOFAILOVER)) { 11765 /* 11766 * Taking this ipif down, make sure we have 11767 * valid net and subnet bcast ire's for other 11768 * logical interfaces, if we need them. 11769 */ 11770 if (!ipif->ipif_isv6) 11771 ipif_check_bcast_ires(ipif); 11772 11773 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11774 !(turn_off & IPIF_UP)) { 11775 if (ipif->ipif_flags & IPIF_UP) 11776 ill->ill_logical_down = 1; 11777 turn_on &= ~IPIF_UP; 11778 } 11779 err = ipif_down(ipif, q, mp); 11780 ip1dbg(("ipif_down returns %d err ", err)); 11781 if (err == EINPROGRESS) 11782 return (err); 11783 ipif_down_tail(ipif); 11784 } 11785 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11786 } 11787 11788 static int 11789 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11790 { 11791 ill_t *ill; 11792 phyint_t *phyi; 11793 uint64_t turn_on, turn_off; 11794 uint64_t intf_flags, cantchange_flags; 11795 boolean_t phyint_flags_modified = B_FALSE; 11796 int err = 0; 11797 boolean_t set_linklocal = B_FALSE; 11798 boolean_t zero_source = B_FALSE; 11799 11800 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11801 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11802 11803 ASSERT(IAM_WRITER_IPIF(ipif)); 11804 11805 ill = ipif->ipif_ill; 11806 phyi = ill->ill_phyint; 11807 11808 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11809 cantchange_flags = IFF_CANTCHANGE | IFF_UP; 11810 if (IS_IPMP(ill)) 11811 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11812 11813 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11814 turn_off = intf_flags & turn_on; 11815 turn_on ^= turn_off; 11816 11817 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11818 phyint_flags_modified = B_TRUE; 11819 11820 /* 11821 * Now we change the flags. Track current value of 11822 * other flags in their respective places. 11823 */ 11824 mutex_enter(&ill->ill_lock); 11825 mutex_enter(&phyi->phyint_lock); 11826 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11827 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11828 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11829 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11830 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11831 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11832 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11833 set_linklocal = B_TRUE; 11834 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11835 } 11836 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11837 zero_source = B_TRUE; 11838 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11839 } 11840 mutex_exit(&ill->ill_lock); 11841 mutex_exit(&phyi->phyint_lock); 11842 11843 if (set_linklocal) 11844 (void) ipif_setlinklocal(ipif); 11845 11846 if (zero_source) 11847 ipif->ipif_v6src_addr = ipv6_all_zeros; 11848 else 11849 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11850 11851 /* 11852 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 11853 * the kernel: if any of them has been set by userland, the interface 11854 * cannot be used for data traffic. 11855 */ 11856 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11857 ASSERT(!IS_IPMP(ill)); 11858 /* 11859 * It's possible the ill is part of an "anonymous" IPMP group 11860 * rather than a real group. In that case, there are no other 11861 * interfaces in the group and thus no need for us to call 11862 * ipmp_phyint_refresh_active(). 11863 */ 11864 if (IS_UNDER_IPMP(ill)) 11865 ipmp_phyint_refresh_active(phyi); 11866 } 11867 11868 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 11869 /* 11870 * XXX ipif_up really does not know whether a phyint flags 11871 * was modified or not. So, it sends up information on 11872 * only one routing sockets message. As we don't bring up 11873 * the interface and also set PHYI_ flags simultaneously 11874 * it should be okay. 11875 */ 11876 err = ipif_up(ipif, q, mp); 11877 } else { 11878 /* 11879 * Make sure routing socket sees all changes to the flags. 11880 * ipif_up_done* handles this when we use ipif_up. 11881 */ 11882 if (phyint_flags_modified) { 11883 if (phyi->phyint_illv4 != NULL) { 11884 ip_rts_ifmsg(phyi->phyint_illv4-> 11885 ill_ipif, RTSQ_DEFAULT); 11886 } 11887 if (phyi->phyint_illv6 != NULL) { 11888 ip_rts_ifmsg(phyi->phyint_illv6-> 11889 ill_ipif, RTSQ_DEFAULT); 11890 } 11891 } else { 11892 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 11893 } 11894 /* 11895 * Update the flags in SCTP's IPIF list, ipif_up() will do 11896 * this in need_up case. 11897 */ 11898 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11899 } 11900 return (err); 11901 } 11902 11903 /* 11904 * Restart the flags operation now that the refcounts have dropped to zero. 11905 */ 11906 /* ARGSUSED */ 11907 int 11908 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11909 ip_ioctl_cmd_t *ipip, void *if_req) 11910 { 11911 uint64_t flags; 11912 struct ifreq *ifr = if_req; 11913 struct lifreq *lifr = if_req; 11914 11915 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11916 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11917 11918 ipif_down_tail(ipif); 11919 if (ipip->ipi_cmd_type == IF_CMD) { 11920 /* cast to uint16_t prevents unwanted sign extension */ 11921 flags = (uint16_t)ifr->ifr_flags; 11922 } else { 11923 flags = lifr->lifr_flags; 11924 } 11925 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11926 } 11927 11928 /* 11929 * Can operate on either a module or a driver queue. 11930 */ 11931 /* ARGSUSED */ 11932 int 11933 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11934 ip_ioctl_cmd_t *ipip, void *if_req) 11935 { 11936 /* 11937 * Has the flags been set correctly till now ? 11938 */ 11939 ill_t *ill = ipif->ipif_ill; 11940 phyint_t *phyi = ill->ill_phyint; 11941 11942 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11943 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11944 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11945 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11946 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11947 11948 /* 11949 * Need a lock since some flags can be set even when there are 11950 * references to the ipif. 11951 */ 11952 mutex_enter(&ill->ill_lock); 11953 if (ipip->ipi_cmd_type == IF_CMD) { 11954 struct ifreq *ifr = (struct ifreq *)if_req; 11955 11956 /* Get interface flags (low 16 only). */ 11957 ifr->ifr_flags = ((ipif->ipif_flags | 11958 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11959 } else { 11960 struct lifreq *lifr = (struct lifreq *)if_req; 11961 11962 /* Get interface flags. */ 11963 lifr->lifr_flags = ipif->ipif_flags | 11964 ill->ill_flags | phyi->phyint_flags; 11965 } 11966 mutex_exit(&ill->ill_lock); 11967 return (0); 11968 } 11969 11970 /* ARGSUSED */ 11971 int 11972 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11973 ip_ioctl_cmd_t *ipip, void *if_req) 11974 { 11975 int mtu; 11976 int ip_min_mtu; 11977 struct ifreq *ifr; 11978 struct lifreq *lifr; 11979 ire_t *ire; 11980 ip_stack_t *ipst; 11981 11982 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11983 ipif->ipif_id, (void *)ipif)); 11984 if (ipip->ipi_cmd_type == IF_CMD) { 11985 ifr = (struct ifreq *)if_req; 11986 mtu = ifr->ifr_metric; 11987 } else { 11988 lifr = (struct lifreq *)if_req; 11989 mtu = lifr->lifr_mtu; 11990 } 11991 11992 if (ipif->ipif_isv6) 11993 ip_min_mtu = IPV6_MIN_MTU; 11994 else 11995 ip_min_mtu = IP_MIN_MTU; 11996 11997 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11998 return (EINVAL); 11999 12000 /* 12001 * Change the MTU size in all relevant ire's. 12002 * Mtu change Vs. new ire creation - protocol below. 12003 * First change ipif_mtu and the ire_max_frag of the 12004 * interface ire. Then do an ire walk and change the 12005 * ire_max_frag of all affected ires. During ire_add 12006 * under the bucket lock, set the ire_max_frag of the 12007 * new ire being created from the ipif/ire from which 12008 * it is being derived. If an mtu change happens after 12009 * the ire is added, the new ire will be cleaned up. 12010 * Conversely if the mtu change happens before the ire 12011 * is added, ire_add will see the new value of the mtu. 12012 */ 12013 ipif->ipif_mtu = mtu; 12014 ipif->ipif_flags |= IPIF_FIXEDMTU; 12015 12016 if (ipif->ipif_isv6) 12017 ire = ipif_to_ire_v6(ipif); 12018 else 12019 ire = ipif_to_ire(ipif); 12020 if (ire != NULL) { 12021 ire->ire_max_frag = ipif->ipif_mtu; 12022 ire_refrele(ire); 12023 } 12024 ipst = ipif->ipif_ill->ill_ipst; 12025 if (ipif->ipif_flags & IPIF_UP) { 12026 if (ipif->ipif_isv6) 12027 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12028 ipst); 12029 else 12030 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12031 ipst); 12032 } 12033 /* Update the MTU in SCTP's list */ 12034 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12035 return (0); 12036 } 12037 12038 /* Get interface MTU. */ 12039 /* ARGSUSED */ 12040 int 12041 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12042 ip_ioctl_cmd_t *ipip, void *if_req) 12043 { 12044 struct ifreq *ifr; 12045 struct lifreq *lifr; 12046 12047 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12048 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12049 if (ipip->ipi_cmd_type == IF_CMD) { 12050 ifr = (struct ifreq *)if_req; 12051 ifr->ifr_metric = ipif->ipif_mtu; 12052 } else { 12053 lifr = (struct lifreq *)if_req; 12054 lifr->lifr_mtu = ipif->ipif_mtu; 12055 } 12056 return (0); 12057 } 12058 12059 /* Set interface broadcast address. */ 12060 /* ARGSUSED2 */ 12061 int 12062 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12063 ip_ioctl_cmd_t *ipip, void *if_req) 12064 { 12065 ipaddr_t addr; 12066 ire_t *ire; 12067 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12068 12069 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12070 ipif->ipif_id)); 12071 12072 ASSERT(IAM_WRITER_IPIF(ipif)); 12073 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12074 return (EADDRNOTAVAIL); 12075 12076 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12077 12078 if (sin->sin_family != AF_INET) 12079 return (EAFNOSUPPORT); 12080 12081 addr = sin->sin_addr.s_addr; 12082 if (ipif->ipif_flags & IPIF_UP) { 12083 /* 12084 * If we are already up, make sure the new 12085 * broadcast address makes sense. If it does, 12086 * there should be an IRE for it already. 12087 * Don't match on ipif, only on the ill 12088 * since we are sharing these now. 12089 */ 12090 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12091 ipif, ALL_ZONES, NULL, 12092 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12093 if (ire == NULL) { 12094 return (EINVAL); 12095 } else { 12096 ire_refrele(ire); 12097 } 12098 } 12099 /* 12100 * Changing the broadcast addr for this ipif. 12101 * Make sure we have valid net and subnet bcast 12102 * ire's for other logical interfaces, if needed. 12103 */ 12104 if (addr != ipif->ipif_brd_addr) 12105 ipif_check_bcast_ires(ipif); 12106 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12107 return (0); 12108 } 12109 12110 /* Get interface broadcast address. */ 12111 /* ARGSUSED */ 12112 int 12113 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12114 ip_ioctl_cmd_t *ipip, void *if_req) 12115 { 12116 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12117 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12118 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12119 return (EADDRNOTAVAIL); 12120 12121 /* IPIF_BROADCAST not possible with IPv6 */ 12122 ASSERT(!ipif->ipif_isv6); 12123 *sin = sin_null; 12124 sin->sin_family = AF_INET; 12125 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12126 return (0); 12127 } 12128 12129 /* 12130 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12131 */ 12132 /* ARGSUSED */ 12133 int 12134 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12135 ip_ioctl_cmd_t *ipip, void *if_req) 12136 { 12137 int err = 0; 12138 in6_addr_t v6mask; 12139 12140 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12141 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12142 12143 ASSERT(IAM_WRITER_IPIF(ipif)); 12144 12145 if (ipif->ipif_isv6) { 12146 sin6_t *sin6; 12147 12148 if (sin->sin_family != AF_INET6) 12149 return (EAFNOSUPPORT); 12150 12151 sin6 = (sin6_t *)sin; 12152 v6mask = sin6->sin6_addr; 12153 } else { 12154 ipaddr_t mask; 12155 12156 if (sin->sin_family != AF_INET) 12157 return (EAFNOSUPPORT); 12158 12159 mask = sin->sin_addr.s_addr; 12160 V4MASK_TO_V6(mask, v6mask); 12161 } 12162 12163 /* 12164 * No big deal if the interface isn't already up, or the mask 12165 * isn't really changing, or this is pt-pt. 12166 */ 12167 if (!(ipif->ipif_flags & IPIF_UP) || 12168 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12169 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12170 ipif->ipif_v6net_mask = v6mask; 12171 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12172 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12173 ipif->ipif_v6net_mask, 12174 ipif->ipif_v6subnet); 12175 } 12176 return (0); 12177 } 12178 /* 12179 * Make sure we have valid net and subnet broadcast ire's 12180 * for the old netmask, if needed by other logical interfaces. 12181 */ 12182 if (!ipif->ipif_isv6) 12183 ipif_check_bcast_ires(ipif); 12184 12185 err = ipif_logical_down(ipif, q, mp); 12186 if (err == EINPROGRESS) 12187 return (err); 12188 ipif_down_tail(ipif); 12189 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12190 return (err); 12191 } 12192 12193 static int 12194 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12195 { 12196 in6_addr_t v6mask; 12197 int err = 0; 12198 12199 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12200 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12201 12202 if (ipif->ipif_isv6) { 12203 sin6_t *sin6; 12204 12205 sin6 = (sin6_t *)sin; 12206 v6mask = sin6->sin6_addr; 12207 } else { 12208 ipaddr_t mask; 12209 12210 mask = sin->sin_addr.s_addr; 12211 V4MASK_TO_V6(mask, v6mask); 12212 } 12213 12214 ipif->ipif_v6net_mask = v6mask; 12215 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12216 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12217 ipif->ipif_v6subnet); 12218 } 12219 err = ipif_up(ipif, q, mp); 12220 12221 if (err == 0 || err == EINPROGRESS) { 12222 /* 12223 * The interface must be DL_BOUND if this packet has to 12224 * go out on the wire. Since we only go through a logical 12225 * down and are bound with the driver during an internal 12226 * down/up that is satisfied. 12227 */ 12228 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12229 /* Potentially broadcast an address mask reply. */ 12230 ipif_mask_reply(ipif); 12231 } 12232 } 12233 return (err); 12234 } 12235 12236 /* ARGSUSED */ 12237 int 12238 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12239 ip_ioctl_cmd_t *ipip, void *if_req) 12240 { 12241 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12242 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12243 ipif_down_tail(ipif); 12244 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12245 } 12246 12247 /* Get interface net mask. */ 12248 /* ARGSUSED */ 12249 int 12250 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12251 ip_ioctl_cmd_t *ipip, void *if_req) 12252 { 12253 struct lifreq *lifr = (struct lifreq *)if_req; 12254 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12255 12256 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12257 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12258 12259 /* 12260 * net mask can't change since we have a reference to the ipif. 12261 */ 12262 if (ipif->ipif_isv6) { 12263 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12264 *sin6 = sin6_null; 12265 sin6->sin6_family = AF_INET6; 12266 sin6->sin6_addr = ipif->ipif_v6net_mask; 12267 lifr->lifr_addrlen = 12268 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12269 } else { 12270 *sin = sin_null; 12271 sin->sin_family = AF_INET; 12272 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12273 if (ipip->ipi_cmd_type == LIF_CMD) { 12274 lifr->lifr_addrlen = 12275 ip_mask_to_plen(ipif->ipif_net_mask); 12276 } 12277 } 12278 return (0); 12279 } 12280 12281 /* ARGSUSED */ 12282 int 12283 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12284 ip_ioctl_cmd_t *ipip, void *if_req) 12285 { 12286 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12287 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12288 12289 /* 12290 * Since no applications should ever be setting metrics on underlying 12291 * interfaces, we explicitly fail to smoke 'em out. 12292 */ 12293 if (IS_UNDER_IPMP(ipif->ipif_ill)) 12294 return (EINVAL); 12295 12296 /* 12297 * Set interface metric. We don't use this for 12298 * anything but we keep track of it in case it is 12299 * important to routing applications or such. 12300 */ 12301 if (ipip->ipi_cmd_type == IF_CMD) { 12302 struct ifreq *ifr; 12303 12304 ifr = (struct ifreq *)if_req; 12305 ipif->ipif_metric = ifr->ifr_metric; 12306 } else { 12307 struct lifreq *lifr; 12308 12309 lifr = (struct lifreq *)if_req; 12310 ipif->ipif_metric = lifr->lifr_metric; 12311 } 12312 return (0); 12313 } 12314 12315 /* ARGSUSED */ 12316 int 12317 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12318 ip_ioctl_cmd_t *ipip, void *if_req) 12319 { 12320 /* Get interface metric. */ 12321 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12322 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12323 12324 if (ipip->ipi_cmd_type == IF_CMD) { 12325 struct ifreq *ifr; 12326 12327 ifr = (struct ifreq *)if_req; 12328 ifr->ifr_metric = ipif->ipif_metric; 12329 } else { 12330 struct lifreq *lifr; 12331 12332 lifr = (struct lifreq *)if_req; 12333 lifr->lifr_metric = ipif->ipif_metric; 12334 } 12335 12336 return (0); 12337 } 12338 12339 /* ARGSUSED */ 12340 int 12341 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12342 ip_ioctl_cmd_t *ipip, void *if_req) 12343 { 12344 12345 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12346 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12347 /* 12348 * Set the muxid returned from I_PLINK. 12349 */ 12350 if (ipip->ipi_cmd_type == IF_CMD) { 12351 struct ifreq *ifr = (struct ifreq *)if_req; 12352 12353 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12354 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12355 } else { 12356 struct lifreq *lifr = (struct lifreq *)if_req; 12357 12358 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12359 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12360 } 12361 return (0); 12362 } 12363 12364 /* ARGSUSED */ 12365 int 12366 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12367 ip_ioctl_cmd_t *ipip, void *if_req) 12368 { 12369 12370 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12371 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12372 /* 12373 * Get the muxid saved in ill for I_PUNLINK. 12374 */ 12375 if (ipip->ipi_cmd_type == IF_CMD) { 12376 struct ifreq *ifr = (struct ifreq *)if_req; 12377 12378 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12379 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12380 } else { 12381 struct lifreq *lifr = (struct lifreq *)if_req; 12382 12383 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12384 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12385 } 12386 return (0); 12387 } 12388 12389 /* 12390 * Set the subnet prefix. Does not modify the broadcast address. 12391 */ 12392 /* ARGSUSED */ 12393 int 12394 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12395 ip_ioctl_cmd_t *ipip, void *if_req) 12396 { 12397 int err = 0; 12398 in6_addr_t v6addr; 12399 in6_addr_t v6mask; 12400 boolean_t need_up = B_FALSE; 12401 int addrlen; 12402 12403 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12404 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12405 12406 ASSERT(IAM_WRITER_IPIF(ipif)); 12407 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12408 12409 if (ipif->ipif_isv6) { 12410 sin6_t *sin6; 12411 12412 if (sin->sin_family != AF_INET6) 12413 return (EAFNOSUPPORT); 12414 12415 sin6 = (sin6_t *)sin; 12416 v6addr = sin6->sin6_addr; 12417 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12418 return (EADDRNOTAVAIL); 12419 } else { 12420 ipaddr_t addr; 12421 12422 if (sin->sin_family != AF_INET) 12423 return (EAFNOSUPPORT); 12424 12425 addr = sin->sin_addr.s_addr; 12426 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12427 return (EADDRNOTAVAIL); 12428 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12429 /* Add 96 bits */ 12430 addrlen += IPV6_ABITS - IP_ABITS; 12431 } 12432 12433 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12434 return (EINVAL); 12435 12436 /* Check if bits in the address is set past the mask */ 12437 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12438 return (EINVAL); 12439 12440 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12441 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12442 return (0); /* No change */ 12443 12444 if (ipif->ipif_flags & IPIF_UP) { 12445 /* 12446 * If the interface is already marked up, 12447 * we call ipif_down which will take care 12448 * of ditching any IREs that have been set 12449 * up based on the old interface address. 12450 */ 12451 err = ipif_logical_down(ipif, q, mp); 12452 if (err == EINPROGRESS) 12453 return (err); 12454 ipif_down_tail(ipif); 12455 need_up = B_TRUE; 12456 } 12457 12458 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12459 return (err); 12460 } 12461 12462 static int 12463 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12464 queue_t *q, mblk_t *mp, boolean_t need_up) 12465 { 12466 ill_t *ill = ipif->ipif_ill; 12467 int err = 0; 12468 12469 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12470 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12471 12472 /* Set the new address. */ 12473 mutex_enter(&ill->ill_lock); 12474 ipif->ipif_v6net_mask = v6mask; 12475 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12476 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12477 ipif->ipif_v6subnet); 12478 } 12479 mutex_exit(&ill->ill_lock); 12480 12481 if (need_up) { 12482 /* 12483 * Now bring the interface back up. If this 12484 * is the only IPIF for the ILL, ipif_up 12485 * will have to re-bind to the device, so 12486 * we may get back EINPROGRESS, in which 12487 * case, this IOCTL will get completed in 12488 * ip_rput_dlpi when we see the DL_BIND_ACK. 12489 */ 12490 err = ipif_up(ipif, q, mp); 12491 if (err == EINPROGRESS) 12492 return (err); 12493 } 12494 return (err); 12495 } 12496 12497 /* ARGSUSED */ 12498 int 12499 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12500 ip_ioctl_cmd_t *ipip, void *if_req) 12501 { 12502 int addrlen; 12503 in6_addr_t v6addr; 12504 in6_addr_t v6mask; 12505 struct lifreq *lifr = (struct lifreq *)if_req; 12506 12507 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12508 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12509 ipif_down_tail(ipif); 12510 12511 addrlen = lifr->lifr_addrlen; 12512 if (ipif->ipif_isv6) { 12513 sin6_t *sin6; 12514 12515 sin6 = (sin6_t *)sin; 12516 v6addr = sin6->sin6_addr; 12517 } else { 12518 ipaddr_t addr; 12519 12520 addr = sin->sin_addr.s_addr; 12521 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12522 addrlen += IPV6_ABITS - IP_ABITS; 12523 } 12524 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12525 12526 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12527 } 12528 12529 /* ARGSUSED */ 12530 int 12531 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12532 ip_ioctl_cmd_t *ipip, void *if_req) 12533 { 12534 struct lifreq *lifr = (struct lifreq *)if_req; 12535 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12536 12537 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12538 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12539 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12540 12541 if (ipif->ipif_isv6) { 12542 *sin6 = sin6_null; 12543 sin6->sin6_family = AF_INET6; 12544 sin6->sin6_addr = ipif->ipif_v6subnet; 12545 lifr->lifr_addrlen = 12546 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12547 } else { 12548 *sin = sin_null; 12549 sin->sin_family = AF_INET; 12550 sin->sin_addr.s_addr = ipif->ipif_subnet; 12551 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12552 } 12553 return (0); 12554 } 12555 12556 /* 12557 * Set the IPv6 address token. 12558 */ 12559 /* ARGSUSED */ 12560 int 12561 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12562 ip_ioctl_cmd_t *ipi, void *if_req) 12563 { 12564 ill_t *ill = ipif->ipif_ill; 12565 int err; 12566 in6_addr_t v6addr; 12567 in6_addr_t v6mask; 12568 boolean_t need_up = B_FALSE; 12569 int i; 12570 sin6_t *sin6 = (sin6_t *)sin; 12571 struct lifreq *lifr = (struct lifreq *)if_req; 12572 int addrlen; 12573 12574 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12575 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12576 ASSERT(IAM_WRITER_IPIF(ipif)); 12577 12578 addrlen = lifr->lifr_addrlen; 12579 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12580 if (ipif->ipif_id != 0) 12581 return (EINVAL); 12582 12583 if (!ipif->ipif_isv6) 12584 return (EINVAL); 12585 12586 if (addrlen > IPV6_ABITS) 12587 return (EINVAL); 12588 12589 v6addr = sin6->sin6_addr; 12590 12591 /* 12592 * The length of the token is the length from the end. To get 12593 * the proper mask for this, compute the mask of the bits not 12594 * in the token; ie. the prefix, and then xor to get the mask. 12595 */ 12596 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12597 return (EINVAL); 12598 for (i = 0; i < 4; i++) { 12599 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12600 } 12601 12602 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12603 ill->ill_token_length == addrlen) 12604 return (0); /* No change */ 12605 12606 if (ipif->ipif_flags & IPIF_UP) { 12607 err = ipif_logical_down(ipif, q, mp); 12608 if (err == EINPROGRESS) 12609 return (err); 12610 ipif_down_tail(ipif); 12611 need_up = B_TRUE; 12612 } 12613 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12614 return (err); 12615 } 12616 12617 static int 12618 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12619 mblk_t *mp, boolean_t need_up) 12620 { 12621 in6_addr_t v6addr; 12622 in6_addr_t v6mask; 12623 ill_t *ill = ipif->ipif_ill; 12624 int i; 12625 int err = 0; 12626 12627 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12628 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12629 v6addr = sin6->sin6_addr; 12630 /* 12631 * The length of the token is the length from the end. To get 12632 * the proper mask for this, compute the mask of the bits not 12633 * in the token; ie. the prefix, and then xor to get the mask. 12634 */ 12635 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12636 for (i = 0; i < 4; i++) 12637 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12638 12639 mutex_enter(&ill->ill_lock); 12640 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12641 ill->ill_token_length = addrlen; 12642 mutex_exit(&ill->ill_lock); 12643 12644 if (need_up) { 12645 /* 12646 * Now bring the interface back up. If this 12647 * is the only IPIF for the ILL, ipif_up 12648 * will have to re-bind to the device, so 12649 * we may get back EINPROGRESS, in which 12650 * case, this IOCTL will get completed in 12651 * ip_rput_dlpi when we see the DL_BIND_ACK. 12652 */ 12653 err = ipif_up(ipif, q, mp); 12654 if (err == EINPROGRESS) 12655 return (err); 12656 } 12657 return (err); 12658 } 12659 12660 /* ARGSUSED */ 12661 int 12662 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12663 ip_ioctl_cmd_t *ipi, void *if_req) 12664 { 12665 ill_t *ill; 12666 sin6_t *sin6 = (sin6_t *)sin; 12667 struct lifreq *lifr = (struct lifreq *)if_req; 12668 12669 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12670 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12671 if (ipif->ipif_id != 0) 12672 return (EINVAL); 12673 12674 ill = ipif->ipif_ill; 12675 if (!ill->ill_isv6) 12676 return (ENXIO); 12677 12678 *sin6 = sin6_null; 12679 sin6->sin6_family = AF_INET6; 12680 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12681 sin6->sin6_addr = ill->ill_token; 12682 lifr->lifr_addrlen = ill->ill_token_length; 12683 return (0); 12684 } 12685 12686 /* 12687 * Set (hardware) link specific information that might override 12688 * what was acquired through the DL_INFO_ACK. 12689 * The logic is as follows. 12690 * 12691 * become exclusive 12692 * set CHANGING flag 12693 * change mtu on affected IREs 12694 * clear CHANGING flag 12695 * 12696 * An ire add that occurs before the CHANGING flag is set will have its mtu 12697 * changed by the ip_sioctl_lnkinfo. 12698 * 12699 * During the time the CHANGING flag is set, no new ires will be added to the 12700 * bucket, and ire add will fail (due the CHANGING flag). 12701 * 12702 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12703 * before it is added to the bucket. 12704 * 12705 * Obviously only 1 thread can set the CHANGING flag and we need to become 12706 * exclusive to set the flag. 12707 */ 12708 /* ARGSUSED */ 12709 int 12710 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12711 ip_ioctl_cmd_t *ipi, void *if_req) 12712 { 12713 ill_t *ill = ipif->ipif_ill; 12714 ipif_t *nipif; 12715 int ip_min_mtu; 12716 boolean_t mtu_walk = B_FALSE; 12717 struct lifreq *lifr = (struct lifreq *)if_req; 12718 lif_ifinfo_req_t *lir; 12719 ire_t *ire; 12720 12721 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12722 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12723 lir = &lifr->lifr_ifinfo; 12724 ASSERT(IAM_WRITER_IPIF(ipif)); 12725 12726 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12727 if (ipif->ipif_id != 0) 12728 return (EINVAL); 12729 12730 /* Set interface MTU. */ 12731 if (ipif->ipif_isv6) 12732 ip_min_mtu = IPV6_MIN_MTU; 12733 else 12734 ip_min_mtu = IP_MIN_MTU; 12735 12736 /* 12737 * Verify values before we set anything. Allow zero to 12738 * mean unspecified. 12739 */ 12740 if (lir->lir_maxmtu != 0 && 12741 (lir->lir_maxmtu > ill->ill_max_frag || 12742 lir->lir_maxmtu < ip_min_mtu)) 12743 return (EINVAL); 12744 if (lir->lir_reachtime != 0 && 12745 lir->lir_reachtime > ND_MAX_REACHTIME) 12746 return (EINVAL); 12747 if (lir->lir_reachretrans != 0 && 12748 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12749 return (EINVAL); 12750 12751 mutex_enter(&ill->ill_lock); 12752 ill->ill_state_flags |= ILL_CHANGING; 12753 for (nipif = ill->ill_ipif; nipif != NULL; 12754 nipif = nipif->ipif_next) { 12755 nipif->ipif_state_flags |= IPIF_CHANGING; 12756 } 12757 12758 if (lir->lir_maxmtu != 0) { 12759 ill->ill_max_mtu = lir->lir_maxmtu; 12760 ill->ill_user_mtu = lir->lir_maxmtu; 12761 mtu_walk = B_TRUE; 12762 } 12763 mutex_exit(&ill->ill_lock); 12764 12765 if (lir->lir_reachtime != 0) 12766 ill->ill_reachable_time = lir->lir_reachtime; 12767 12768 if (lir->lir_reachretrans != 0) 12769 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12770 12771 ill->ill_max_hops = lir->lir_maxhops; 12772 12773 ill->ill_max_buf = ND_MAX_Q; 12774 12775 if (mtu_walk) { 12776 /* 12777 * Set the MTU on all ipifs associated with this ill except 12778 * for those whose MTU was fixed via SIOCSLIFMTU. 12779 */ 12780 for (nipif = ill->ill_ipif; nipif != NULL; 12781 nipif = nipif->ipif_next) { 12782 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12783 continue; 12784 12785 nipif->ipif_mtu = ill->ill_max_mtu; 12786 12787 if (!(nipif->ipif_flags & IPIF_UP)) 12788 continue; 12789 12790 if (nipif->ipif_isv6) 12791 ire = ipif_to_ire_v6(nipif); 12792 else 12793 ire = ipif_to_ire(nipif); 12794 if (ire != NULL) { 12795 ire->ire_max_frag = ipif->ipif_mtu; 12796 ire_refrele(ire); 12797 } 12798 12799 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12800 nipif, ill); 12801 } 12802 } 12803 12804 mutex_enter(&ill->ill_lock); 12805 for (nipif = ill->ill_ipif; nipif != NULL; 12806 nipif = nipif->ipif_next) { 12807 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12808 } 12809 ILL_UNMARK_CHANGING(ill); 12810 mutex_exit(&ill->ill_lock); 12811 12812 /* 12813 * Refresh IPMP meta-interface MTU if necessary. 12814 */ 12815 if (IS_UNDER_IPMP(ill)) 12816 ipmp_illgrp_refresh_mtu(ill->ill_grp); 12817 12818 return (0); 12819 } 12820 12821 /* ARGSUSED */ 12822 int 12823 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12824 ip_ioctl_cmd_t *ipi, void *if_req) 12825 { 12826 struct lif_ifinfo_req *lir; 12827 ill_t *ill = ipif->ipif_ill; 12828 12829 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12830 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12831 if (ipif->ipif_id != 0) 12832 return (EINVAL); 12833 12834 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12835 lir->lir_maxhops = ill->ill_max_hops; 12836 lir->lir_reachtime = ill->ill_reachable_time; 12837 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12838 lir->lir_maxmtu = ill->ill_max_mtu; 12839 12840 return (0); 12841 } 12842 12843 /* 12844 * Return best guess as to the subnet mask for the specified address. 12845 * Based on the subnet masks for all the configured interfaces. 12846 * 12847 * We end up returning a zero mask in the case of default, multicast or 12848 * experimental. 12849 */ 12850 static ipaddr_t 12851 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 12852 { 12853 ipaddr_t net_mask; 12854 ill_t *ill; 12855 ipif_t *ipif; 12856 ill_walk_context_t ctx; 12857 ipif_t *fallback_ipif = NULL; 12858 12859 net_mask = ip_net_mask(addr); 12860 if (net_mask == 0) { 12861 *ipifp = NULL; 12862 return (0); 12863 } 12864 12865 /* Let's check to see if this is maybe a local subnet route. */ 12866 /* this function only applies to IPv4 interfaces */ 12867 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 12868 ill = ILL_START_WALK_V4(&ctx, ipst); 12869 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12870 mutex_enter(&ill->ill_lock); 12871 for (ipif = ill->ill_ipif; ipif != NULL; 12872 ipif = ipif->ipif_next) { 12873 if (!IPIF_CAN_LOOKUP(ipif)) 12874 continue; 12875 if (!(ipif->ipif_flags & IPIF_UP)) 12876 continue; 12877 if ((ipif->ipif_subnet & net_mask) == 12878 (addr & net_mask)) { 12879 /* 12880 * Don't trust pt-pt interfaces if there are 12881 * other interfaces. 12882 */ 12883 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12884 if (fallback_ipif == NULL) { 12885 ipif_refhold_locked(ipif); 12886 fallback_ipif = ipif; 12887 } 12888 continue; 12889 } 12890 12891 /* 12892 * Fine. Just assume the same net mask as the 12893 * directly attached subnet interface is using. 12894 */ 12895 ipif_refhold_locked(ipif); 12896 mutex_exit(&ill->ill_lock); 12897 rw_exit(&ipst->ips_ill_g_lock); 12898 if (fallback_ipif != NULL) 12899 ipif_refrele(fallback_ipif); 12900 *ipifp = ipif; 12901 return (ipif->ipif_net_mask); 12902 } 12903 } 12904 mutex_exit(&ill->ill_lock); 12905 } 12906 rw_exit(&ipst->ips_ill_g_lock); 12907 12908 *ipifp = fallback_ipif; 12909 return ((fallback_ipif != NULL) ? 12910 fallback_ipif->ipif_net_mask : net_mask); 12911 } 12912 12913 /* 12914 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12915 */ 12916 static void 12917 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12918 { 12919 IOCP iocp; 12920 ipft_t *ipft; 12921 ipllc_t *ipllc; 12922 mblk_t *mp1; 12923 cred_t *cr; 12924 int error = 0; 12925 conn_t *connp; 12926 12927 ip1dbg(("ip_wput_ioctl")); 12928 iocp = (IOCP)mp->b_rptr; 12929 mp1 = mp->b_cont; 12930 if (mp1 == NULL) { 12931 iocp->ioc_error = EINVAL; 12932 mp->b_datap->db_type = M_IOCNAK; 12933 iocp->ioc_count = 0; 12934 qreply(q, mp); 12935 return; 12936 } 12937 12938 /* 12939 * These IOCTLs provide various control capabilities to 12940 * upstream agents such as ULPs and processes. There 12941 * are currently two such IOCTLs implemented. They 12942 * are used by TCP to provide update information for 12943 * existing IREs and to forcibly delete an IRE for a 12944 * host that is not responding, thereby forcing an 12945 * attempt at a new route. 12946 */ 12947 iocp->ioc_error = EINVAL; 12948 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12949 goto done; 12950 12951 ipllc = (ipllc_t *)mp1->b_rptr; 12952 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12953 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12954 break; 12955 } 12956 /* 12957 * prefer credential from mblk over ioctl; 12958 * see ip_sioctl_copyin_setup 12959 */ 12960 cr = msg_getcred(mp, NULL); 12961 if (cr == NULL) 12962 cr = iocp->ioc_cr; 12963 12964 /* 12965 * Refhold the conn in case the request gets queued up in some lookup 12966 */ 12967 ASSERT(CONN_Q(q)); 12968 connp = Q_TO_CONN(q); 12969 CONN_INC_REF(connp); 12970 if (ipft->ipft_pfi && 12971 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12972 pullupmsg(mp1, ipft->ipft_min_size))) { 12973 error = (*ipft->ipft_pfi)(q, 12974 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12975 } 12976 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12977 /* 12978 * CONN_OPER_PENDING_DONE happens in the function called 12979 * through ipft_pfi above. 12980 */ 12981 return; 12982 } 12983 12984 CONN_OPER_PENDING_DONE(connp); 12985 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12986 freemsg(mp); 12987 return; 12988 } 12989 iocp->ioc_error = error; 12990 12991 done: 12992 mp->b_datap->db_type = M_IOCACK; 12993 if (iocp->ioc_error) 12994 iocp->ioc_count = 0; 12995 qreply(q, mp); 12996 } 12997 12998 /* 12999 * Lookup an ipif using the sequence id (ipif_seqid) 13000 */ 13001 ipif_t * 13002 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13003 { 13004 ipif_t *ipif; 13005 13006 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13007 13008 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13009 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13010 return (ipif); 13011 } 13012 return (NULL); 13013 } 13014 13015 /* 13016 * Assign a unique id for the ipif. This is used later when we send 13017 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13018 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13019 * IRE is added, we verify that ipif has not disappeared. 13020 */ 13021 13022 static void 13023 ipif_assign_seqid(ipif_t *ipif) 13024 { 13025 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13026 13027 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13028 } 13029 13030 /* 13031 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 13032 * administratively down (i.e., no DAD), of the same type, and locked. Note 13033 * that the clone is complete -- including the seqid -- and the expectation is 13034 * that the caller will either free or overwrite `sipif' before it's unlocked. 13035 */ 13036 static void 13037 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 13038 { 13039 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 13040 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 13041 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 13042 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 13043 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 13044 ASSERT(sipif->ipif_arp_del_mp == NULL); 13045 ASSERT(dipif->ipif_arp_del_mp == NULL); 13046 ASSERT(sipif->ipif_igmp_rpt == NULL); 13047 ASSERT(dipif->ipif_igmp_rpt == NULL); 13048 ASSERT(sipif->ipif_multicast_up == 0); 13049 ASSERT(dipif->ipif_multicast_up == 0); 13050 ASSERT(sipif->ipif_joined_allhosts == 0); 13051 ASSERT(dipif->ipif_joined_allhosts == 0); 13052 13053 dipif->ipif_mtu = sipif->ipif_mtu; 13054 dipif->ipif_flags = sipif->ipif_flags; 13055 dipif->ipif_metric = sipif->ipif_metric; 13056 dipif->ipif_zoneid = sipif->ipif_zoneid; 13057 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 13058 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 13059 dipif->ipif_v6src_addr = sipif->ipif_v6src_addr; 13060 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 13061 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 13062 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 13063 13064 /* 13065 * While dipif is down right now, it might've been up before. Since 13066 * it's changing identity, its packet counters need to be reset. 13067 */ 13068 dipif->ipif_ib_pkt_count = 0; 13069 dipif->ipif_ob_pkt_count = 0; 13070 dipif->ipif_fo_pkt_count = 0; 13071 13072 /* 13073 * As per the comment atop the function, we assume that these sipif 13074 * fields will be changed before sipif is unlocked. 13075 */ 13076 dipif->ipif_seqid = sipif->ipif_seqid; 13077 dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp; 13078 dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt; 13079 dipif->ipif_state_flags = sipif->ipif_state_flags; 13080 } 13081 13082 /* 13083 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 13084 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 13085 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 13086 * transfer the xop to `dipif'. Requires that all ipifs are administratively 13087 * down (i.e., no DAD), of the same type, and unlocked. 13088 */ 13089 static void 13090 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 13091 { 13092 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 13093 ipxop_t *ipx = ipsq->ipsq_xop; 13094 13095 ASSERT(sipif != dipif); 13096 ASSERT(sipif != virgipif); 13097 13098 /* 13099 * Grab all of the locks that protect the ipif in a defined order. 13100 */ 13101 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13102 if (sipif > dipif) { 13103 mutex_enter(&sipif->ipif_saved_ire_lock); 13104 mutex_enter(&dipif->ipif_saved_ire_lock); 13105 } else { 13106 mutex_enter(&dipif->ipif_saved_ire_lock); 13107 mutex_enter(&sipif->ipif_saved_ire_lock); 13108 } 13109 13110 ipif_clone(sipif, dipif); 13111 if (virgipif != NULL) { 13112 ipif_clone(virgipif, sipif); 13113 mi_free(virgipif); 13114 } 13115 13116 mutex_exit(&sipif->ipif_saved_ire_lock); 13117 mutex_exit(&dipif->ipif_saved_ire_lock); 13118 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13119 13120 /* 13121 * Transfer ownership of the current xop, if necessary. 13122 */ 13123 if (ipx->ipx_current_ipif == sipif) { 13124 ASSERT(ipx->ipx_pending_ipif == NULL); 13125 mutex_enter(&ipx->ipx_lock); 13126 ipx->ipx_current_ipif = dipif; 13127 mutex_exit(&ipx->ipx_lock); 13128 } 13129 13130 if (virgipif == NULL) 13131 mi_free(sipif); 13132 } 13133 13134 /* 13135 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13136 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13137 * be inserted into the first space available in the list. The value of 13138 * ipif_id will then be set to the appropriate value for its position. 13139 */ 13140 static int 13141 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 13142 { 13143 ill_t *ill; 13144 ipif_t *tipif; 13145 ipif_t **tipifp; 13146 int id; 13147 ip_stack_t *ipst; 13148 13149 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13150 IAM_WRITER_IPIF(ipif)); 13151 13152 ill = ipif->ipif_ill; 13153 ASSERT(ill != NULL); 13154 ipst = ill->ill_ipst; 13155 13156 /* 13157 * In the case of lo0:0 we already hold the ill_g_lock. 13158 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13159 * ipif_insert. 13160 */ 13161 if (acquire_g_lock) 13162 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13163 mutex_enter(&ill->ill_lock); 13164 id = ipif->ipif_id; 13165 tipifp = &(ill->ill_ipif); 13166 if (id == -1) { /* need to find a real id */ 13167 id = 0; 13168 while ((tipif = *tipifp) != NULL) { 13169 ASSERT(tipif->ipif_id >= id); 13170 if (tipif->ipif_id != id) 13171 break; /* non-consecutive id */ 13172 id++; 13173 tipifp = &(tipif->ipif_next); 13174 } 13175 /* limit number of logical interfaces */ 13176 if (id >= ipst->ips_ip_addrs_per_if) { 13177 mutex_exit(&ill->ill_lock); 13178 if (acquire_g_lock) 13179 rw_exit(&ipst->ips_ill_g_lock); 13180 return (-1); 13181 } 13182 ipif->ipif_id = id; /* assign new id */ 13183 } else if (id < ipst->ips_ip_addrs_per_if) { 13184 /* we have a real id; insert ipif in the right place */ 13185 while ((tipif = *tipifp) != NULL) { 13186 ASSERT(tipif->ipif_id != id); 13187 if (tipif->ipif_id > id) 13188 break; /* found correct location */ 13189 tipifp = &(tipif->ipif_next); 13190 } 13191 } else { 13192 mutex_exit(&ill->ill_lock); 13193 if (acquire_g_lock) 13194 rw_exit(&ipst->ips_ill_g_lock); 13195 return (-1); 13196 } 13197 13198 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13199 13200 ipif->ipif_next = tipif; 13201 *tipifp = ipif; 13202 mutex_exit(&ill->ill_lock); 13203 if (acquire_g_lock) 13204 rw_exit(&ipst->ips_ill_g_lock); 13205 13206 return (0); 13207 } 13208 13209 static void 13210 ipif_remove(ipif_t *ipif) 13211 { 13212 ipif_t **ipifp; 13213 ill_t *ill = ipif->ipif_ill; 13214 13215 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13216 13217 mutex_enter(&ill->ill_lock); 13218 ipifp = &ill->ill_ipif; 13219 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13220 if (*ipifp == ipif) { 13221 *ipifp = ipif->ipif_next; 13222 break; 13223 } 13224 } 13225 mutex_exit(&ill->ill_lock); 13226 } 13227 13228 /* 13229 * Allocate and initialize a new interface control structure. (Always 13230 * called as writer.) 13231 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13232 * is not part of the global linked list of ills. ipif_seqid is unique 13233 * in the system and to preserve the uniqueness, it is assigned only 13234 * when ill becomes part of the global list. At that point ill will 13235 * have a name. If it doesn't get assigned here, it will get assigned 13236 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13237 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13238 * the interface flags or any other information from the DL_INFO_ACK for 13239 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13240 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13241 * second DL_INFO_ACK comes in from the driver. 13242 */ 13243 static ipif_t * 13244 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 13245 boolean_t insert) 13246 { 13247 ipif_t *ipif; 13248 phyint_t *phyi = ill->ill_phyint; 13249 ip_stack_t *ipst = ill->ill_ipst; 13250 13251 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13252 ill->ill_name, id, (void *)ill)); 13253 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13254 13255 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13256 return (NULL); 13257 *ipif = ipif_zero; /* start clean */ 13258 13259 ipif->ipif_ill = ill; 13260 ipif->ipif_id = id; /* could be -1 */ 13261 /* 13262 * Inherit the zoneid from the ill; for the shared stack instance 13263 * this is always the global zone 13264 */ 13265 ipif->ipif_zoneid = ill->ill_zoneid; 13266 13267 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13268 13269 ipif->ipif_refcnt = 0; 13270 ipif->ipif_saved_ire_cnt = 0; 13271 13272 if (insert) { 13273 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { 13274 mi_free(ipif); 13275 return (NULL); 13276 } 13277 /* -1 id should have been replaced by real id */ 13278 id = ipif->ipif_id; 13279 ASSERT(id >= 0); 13280 } 13281 13282 if (ill->ill_name[0] != '\0') 13283 ipif_assign_seqid(ipif); 13284 13285 /* 13286 * If this is ipif zero, configure ill/phyint-wide information. 13287 * Defer most configuration until we're guaranteed we're attached. 13288 */ 13289 if (id == 0) { 13290 if (ill->ill_mactype == SUNW_DL_IPMP) { 13291 /* 13292 * Set PHYI_IPMP and also set PHYI_FAILED since there 13293 * are no active interfaces. Similarly, PHYI_RUNNING 13294 * isn't set until the group has an active interface. 13295 */ 13296 mutex_enter(&phyi->phyint_lock); 13297 phyi->phyint_flags |= (PHYI_IPMP | PHYI_FAILED); 13298 mutex_exit(&phyi->phyint_lock); 13299 13300 /* 13301 * Create the illgrp (which must not exist yet because 13302 * the zeroth ipif is created once per ill). However, 13303 * do not not link it to the ipmp_grp_t until I_PLINK 13304 * is called; see ip_sioctl_plink_ipmp() for details. 13305 */ 13306 if (ipmp_illgrp_create(ill) == NULL) { 13307 if (insert) { 13308 rw_enter(&ipst->ips_ill_g_lock, 13309 RW_WRITER); 13310 ipif_remove(ipif); 13311 rw_exit(&ipst->ips_ill_g_lock); 13312 } 13313 mi_free(ipif); 13314 return (NULL); 13315 } 13316 } else { 13317 /* 13318 * By default, PHYI_RUNNING is set when the zeroth 13319 * ipif is created. For other ipifs, we don't touch 13320 * it since DLPI notifications may have changed it. 13321 */ 13322 mutex_enter(&phyi->phyint_lock); 13323 phyi->phyint_flags |= PHYI_RUNNING; 13324 mutex_exit(&phyi->phyint_lock); 13325 } 13326 } 13327 13328 /* 13329 * We grab the ill_lock and phyint_lock to protect the flag changes. 13330 * The ipif is still not up and can't be looked up until the 13331 * ioctl completes and the IPIF_CHANGING flag is cleared. 13332 */ 13333 mutex_enter(&ill->ill_lock); 13334 mutex_enter(&phyi->phyint_lock); 13335 13336 ipif->ipif_ire_type = ire_type; 13337 13338 if (ipif->ipif_isv6) { 13339 ill->ill_flags |= ILLF_IPV6; 13340 } else { 13341 ipaddr_t inaddr_any = INADDR_ANY; 13342 13343 ill->ill_flags |= ILLF_IPV4; 13344 13345 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13346 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13347 &ipif->ipif_v6lcl_addr); 13348 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13349 &ipif->ipif_v6src_addr); 13350 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13351 &ipif->ipif_v6subnet); 13352 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13353 &ipif->ipif_v6net_mask); 13354 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13355 &ipif->ipif_v6brd_addr); 13356 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13357 &ipif->ipif_v6pp_dst_addr); 13358 } 13359 13360 /* 13361 * Don't set the interface flags etc. now, will do it in 13362 * ip_ll_subnet_defaults. 13363 */ 13364 if (!initialize) 13365 goto out; 13366 13367 ipif->ipif_mtu = ill->ill_max_mtu; 13368 13369 /* 13370 * NOTE: The IPMP meta-interface is special-cased because it starts 13371 * with no underlying interfaces (and thus an unknown broadcast 13372 * address length), but all interfaces that can be placed into an IPMP 13373 * group are required to be broadcast-capable. 13374 */ 13375 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 13376 /* 13377 * Later detect lack of DLPI driver multicast 13378 * capability by catching DL_ENABMULTI errors in 13379 * ip_rput_dlpi. 13380 */ 13381 ill->ill_flags |= ILLF_MULTICAST; 13382 if (!ipif->ipif_isv6) 13383 ipif->ipif_flags |= IPIF_BROADCAST; 13384 } else { 13385 if (ill->ill_net_type != IRE_LOOPBACK) { 13386 if (ipif->ipif_isv6) 13387 /* 13388 * Note: xresolv interfaces will eventually need 13389 * NOARP set here as well, but that will require 13390 * those external resolvers to have some 13391 * knowledge of that flag and act appropriately. 13392 * Not to be changed at present. 13393 */ 13394 ill->ill_flags |= ILLF_NONUD; 13395 else 13396 ill->ill_flags |= ILLF_NOARP; 13397 } 13398 if (ill->ill_phys_addr_length == 0) { 13399 if (ill->ill_mactype == SUNW_DL_VNI) { 13400 ipif->ipif_flags |= IPIF_NOXMIT; 13401 phyi->phyint_flags |= PHYI_VIRTUAL; 13402 } else { 13403 /* pt-pt supports multicast. */ 13404 ill->ill_flags |= ILLF_MULTICAST; 13405 if (ill->ill_net_type == IRE_LOOPBACK) { 13406 phyi->phyint_flags |= 13407 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13408 } else { 13409 ipif->ipif_flags |= IPIF_POINTOPOINT; 13410 } 13411 } 13412 } 13413 } 13414 out: 13415 mutex_exit(&phyi->phyint_lock); 13416 mutex_exit(&ill->ill_lock); 13417 return (ipif); 13418 } 13419 13420 /* 13421 * If appropriate, send a message up to the resolver delete the entry 13422 * for the address of this interface which is going out of business. 13423 * (Always called as writer). 13424 * 13425 * NOTE : We need to check for NULL mps as some of the fields are 13426 * initialized only for some interface types. See ipif_resolver_up() 13427 * for details. 13428 */ 13429 void 13430 ipif_resolver_down(ipif_t *ipif) 13431 { 13432 mblk_t *mp; 13433 ill_t *ill = ipif->ipif_ill; 13434 13435 ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13436 ASSERT(IAM_WRITER_IPIF(ipif)); 13437 13438 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13439 return; 13440 13441 /* Delete the mapping for the local address */ 13442 mp = ipif->ipif_arp_del_mp; 13443 if (mp != NULL) { 13444 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13445 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13446 putnext(ill->ill_rq, mp); 13447 ipif->ipif_arp_del_mp = NULL; 13448 } 13449 13450 /* 13451 * Make IPMP aware of the deleted data address. 13452 */ 13453 if (IS_IPMP(ill)) 13454 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13455 13456 /* 13457 * If this is the last ipif that is going down and there are no 13458 * duplicate addresses we may yet attempt to re-probe, then we need to 13459 * clean up ARP completely. 13460 */ 13461 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13462 /* 13463 * If this was the last ipif on an IPMP interface, purge any 13464 * IPMP ARP entries associated with it. 13465 */ 13466 if (IS_IPMP(ill)) 13467 ipmp_illgrp_refresh_arpent(ill->ill_grp); 13468 13469 /* Send up AR_INTERFACE_DOWN message */ 13470 mp = ill->ill_arp_down_mp; 13471 if (mp != NULL) { 13472 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13473 *(unsigned *)mp->b_rptr, ill->ill_name, 13474 ipif->ipif_id)); 13475 putnext(ill->ill_rq, mp); 13476 ill->ill_arp_down_mp = NULL; 13477 } 13478 13479 /* Tell ARP to delete the multicast mappings */ 13480 mp = ill->ill_arp_del_mapping_mp; 13481 if (mp != NULL) { 13482 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13483 *(unsigned *)mp->b_rptr, ill->ill_name, 13484 ipif->ipif_id)); 13485 putnext(ill->ill_rq, mp); 13486 ill->ill_arp_del_mapping_mp = NULL; 13487 } 13488 } 13489 } 13490 13491 /* 13492 * Set up the multicast mappings for `ipif' in ARP. If `arp_add_mapping_mp' 13493 * is non-NULL, then upon success it will contain an mblk that can be passed 13494 * to ARP to create the mapping. Otherwise, if it's NULL, upon success ARP 13495 * will have already been notified to create the mapping. Returns zero on 13496 * success, -1 upon failure. 13497 */ 13498 int 13499 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13500 { 13501 mblk_t *del_mp = NULL; 13502 mblk_t *add_mp = NULL; 13503 mblk_t *mp; 13504 ill_t *ill = ipif->ipif_ill; 13505 phyint_t *phyi = ill->ill_phyint; 13506 ipaddr_t addr, mask, extract_mask = 0; 13507 arma_t *arma; 13508 uint8_t *maddr, *bphys_addr; 13509 uint32_t hw_start; 13510 dl_unitdata_req_t *dlur; 13511 13512 ASSERT(IAM_WRITER_IPIF(ipif)); 13513 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13514 return (0); 13515 13516 /* 13517 * IPMP meta-interfaces don't have any inherent multicast mappings, 13518 * and instead use the ones on the underlying interfaces. 13519 */ 13520 if (IS_IPMP(ill)) 13521 return (0); 13522 13523 /* 13524 * Delete the existing mapping from ARP. Normally, ipif_down() -> 13525 * ipif_resolver_down() will send this up to ARP, but it may be that 13526 * we are enabling PHYI_MULTI_BCAST via ip_rput_dlpi_writer(). 13527 */ 13528 mp = ill->ill_arp_del_mapping_mp; 13529 if (mp != NULL) { 13530 ip1dbg(("ipif_arp_setup_multicast: arp cmd %x for %s:%u\n", 13531 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13532 putnext(ill->ill_rq, mp); 13533 ill->ill_arp_del_mapping_mp = NULL; 13534 } 13535 13536 if (arp_add_mapping_mp != NULL) 13537 *arp_add_mapping_mp = NULL; 13538 13539 /* 13540 * Check that the address is not to long for the constant 13541 * length reserved in the template arma_t. 13542 */ 13543 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13544 return (-1); 13545 13546 /* Add mapping mblk */ 13547 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13548 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13549 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13550 (caddr_t)&addr); 13551 if (add_mp == NULL) 13552 return (-1); 13553 arma = (arma_t *)add_mp->b_rptr; 13554 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13555 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13556 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13557 13558 /* 13559 * Determine the broadcast address. 13560 */ 13561 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13562 if (ill->ill_sap_length < 0) 13563 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13564 else 13565 bphys_addr = (uchar_t *)dlur + 13566 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13567 /* 13568 * Check PHYI_MULTI_BCAST and length of physical 13569 * address to determine if we use the mapping or the 13570 * broadcast address. 13571 */ 13572 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13573 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13574 bphys_addr, maddr, &hw_start, &extract_mask)) 13575 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13576 13577 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13578 (ill->ill_flags & ILLF_MULTICAST)) { 13579 /* Make sure this will not match the "exact" entry. */ 13580 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13581 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13582 (caddr_t)&addr); 13583 if (del_mp == NULL) { 13584 freemsg(add_mp); 13585 return (-1); 13586 } 13587 bcopy(&extract_mask, (char *)arma + 13588 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13589 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13590 /* Use link-layer broadcast address for MULTI_BCAST */ 13591 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13592 ip2dbg(("ipif_arp_setup_multicast: adding" 13593 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13594 } else { 13595 arma->arma_hw_mapping_start = hw_start; 13596 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13597 " ARP setup for %s\n", ill->ill_name)); 13598 } 13599 } else { 13600 freemsg(add_mp); 13601 ASSERT(del_mp == NULL); 13602 /* It is neither MULTICAST nor MULTI_BCAST */ 13603 return (0); 13604 } 13605 ASSERT(add_mp != NULL && del_mp != NULL); 13606 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13607 ill->ill_arp_del_mapping_mp = del_mp; 13608 if (arp_add_mapping_mp != NULL) { 13609 /* The caller just wants the mblks allocated */ 13610 *arp_add_mapping_mp = add_mp; 13611 } else { 13612 /* The caller wants us to send it to arp */ 13613 putnext(ill->ill_rq, add_mp); 13614 } 13615 return (0); 13616 } 13617 13618 /* 13619 * Get the resolver set up for a new IP address. (Always called as writer.) 13620 * Called both for IPv4 and IPv6 interfaces, though it only sets up the 13621 * resolver for v6 if it's an ILLF_XRESOLV interface. Honors ILLF_NOARP. 13622 * 13623 * The enumerated value res_act tunes the behavior: 13624 * * Res_act_initial: set up all the resolver structures for a new 13625 * IP address. 13626 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 13627 * ARP message in defense of the address. 13628 * * Res_act_rebind: tell ARP to change the hardware address for an IP 13629 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 13630 * 13631 * Returns zero on success, or an errno upon failure. 13632 */ 13633 int 13634 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13635 { 13636 mblk_t *arp_up_mp = NULL; 13637 mblk_t *arp_down_mp = NULL; 13638 mblk_t *arp_add_mp = NULL; 13639 mblk_t *arp_del_mp = NULL; 13640 mblk_t *arp_add_mapping_mp = NULL; 13641 mblk_t *arp_del_mapping_mp = NULL; 13642 ill_t *ill = ipif->ipif_ill; 13643 int err = ENOMEM; 13644 boolean_t added_ipif = B_FALSE; 13645 boolean_t publish; 13646 boolean_t was_dup; 13647 13648 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13649 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13650 ASSERT(IAM_WRITER_IPIF(ipif)); 13651 13652 was_dup = B_FALSE; 13653 if (res_act == Res_act_initial) { 13654 ipif->ipif_addr_ready = 0; 13655 /* 13656 * We're bringing an interface up here. There's no way that we 13657 * should need to shut down ARP now. 13658 */ 13659 mutex_enter(&ill->ill_lock); 13660 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13661 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13662 ill->ill_ipif_dup_count--; 13663 was_dup = B_TRUE; 13664 } 13665 mutex_exit(&ill->ill_lock); 13666 } 13667 if (ipif->ipif_recovery_id != 0) 13668 (void) untimeout(ipif->ipif_recovery_id); 13669 ipif->ipif_recovery_id = 0; 13670 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13671 ipif->ipif_addr_ready = 1; 13672 return (0); 13673 } 13674 /* NDP will set the ipif_addr_ready flag when it's ready */ 13675 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13676 return (0); 13677 13678 if (ill->ill_isv6) { 13679 /* 13680 * External resolver for IPv6 13681 */ 13682 ASSERT(res_act == Res_act_initial); 13683 publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr); 13684 } else { 13685 /* 13686 * IPv4 arp case. If the ARP stream has already started 13687 * closing, fail this request for ARP bringup. Else 13688 * record the fact that an ARP bringup is pending. 13689 */ 13690 mutex_enter(&ill->ill_lock); 13691 if (ill->ill_arp_closing) { 13692 mutex_exit(&ill->ill_lock); 13693 err = EINVAL; 13694 goto failed; 13695 } else { 13696 if (ill->ill_ipif_up_count == 0 && 13697 ill->ill_ipif_dup_count == 0 && !was_dup) 13698 ill->ill_arp_bringup_pending = 1; 13699 mutex_exit(&ill->ill_lock); 13700 } 13701 publish = (ipif->ipif_lcl_addr != INADDR_ANY); 13702 } 13703 13704 if (IS_IPMP(ill) && publish) { 13705 /* 13706 * If we're here via ipif_up(), then the ipif won't be bound 13707 * yet -- add it to the group, which will bind it if possible. 13708 * (We would add it in ipif_up(), but deleting on failure 13709 * there is gruesome.) If we're here via ipmp_ill_bind_ipif(), 13710 * then the ipif has already been added to the group and we 13711 * just need to use the binding. 13712 */ 13713 if (ipmp_ipif_bound_ill(ipif) == NULL) { 13714 if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) { 13715 /* 13716 * We couldn't bind the ipif to an ill yet, 13717 * so we have nothing to publish. 13718 */ 13719 publish = B_FALSE; 13720 } 13721 added_ipif = B_TRUE; 13722 } 13723 } 13724 13725 /* 13726 * Add an entry for the local address in ARP only if it 13727 * is not UNNUMBERED and it is suitable for publishing. 13728 */ 13729 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) { 13730 if (res_act == Res_act_defend) { 13731 arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND); 13732 if (arp_add_mp == NULL) 13733 goto failed; 13734 /* 13735 * If we're just defending our address now, then 13736 * there's no need to set up ARP multicast mappings. 13737 * The publish command is enough. 13738 */ 13739 goto done; 13740 } 13741 13742 /* 13743 * Allocate an ARP add message and an ARP delete message (the 13744 * latter is saved for use when the address goes down). 13745 */ 13746 if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL) 13747 goto failed; 13748 13749 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 13750 goto failed; 13751 13752 if (res_act != Res_act_initial) 13753 goto arp_setup_multicast; 13754 } else { 13755 if (res_act != Res_act_initial) 13756 goto done; 13757 } 13758 /* 13759 * Need to bring up ARP or setup multicast mapping only 13760 * when the first interface is coming UP. 13761 */ 13762 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup) 13763 goto done; 13764 13765 /* 13766 * Allocate an ARP down message (to be saved) and an ARP up message. 13767 */ 13768 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13769 if (arp_down_mp == NULL) 13770 goto failed; 13771 13772 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13773 if (arp_up_mp == NULL) 13774 goto failed; 13775 13776 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13777 goto done; 13778 13779 arp_setup_multicast: 13780 /* 13781 * Setup the multicast mappings. This function initializes 13782 * ill_arp_del_mapping_mp also. This does not need to be done for 13783 * IPv6, or for the IPMP interface (since it has no link-layer). 13784 */ 13785 if (!ill->ill_isv6 && !IS_IPMP(ill)) { 13786 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13787 if (err != 0) 13788 goto failed; 13789 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13790 ASSERT(arp_add_mapping_mp != NULL); 13791 } 13792 done: 13793 if (arp_up_mp != NULL) { 13794 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13795 ill->ill_name, ipif->ipif_id)); 13796 putnext(ill->ill_rq, arp_up_mp); 13797 arp_up_mp = NULL; 13798 } 13799 if (arp_add_mp != NULL) { 13800 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13801 ill->ill_name, ipif->ipif_id)); 13802 /* 13803 * If it's an extended ARP implementation, then we'll wait to 13804 * hear that DAD has finished before using the interface. 13805 */ 13806 if (!ill->ill_arp_extend) 13807 ipif->ipif_addr_ready = 1; 13808 putnext(ill->ill_rq, arp_add_mp); 13809 arp_add_mp = NULL; 13810 } else { 13811 ipif->ipif_addr_ready = 1; 13812 } 13813 if (arp_add_mapping_mp != NULL) { 13814 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13815 ill->ill_name, ipif->ipif_id)); 13816 putnext(ill->ill_rq, arp_add_mapping_mp); 13817 arp_add_mapping_mp = NULL; 13818 } 13819 13820 if (res_act == Res_act_initial) { 13821 if (ill->ill_flags & ILLF_NOARP) 13822 err = ill_arp_off(ill); 13823 else 13824 err = ill_arp_on(ill); 13825 if (err != 0) { 13826 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", 13827 err)); 13828 goto failed; 13829 } 13830 } 13831 13832 if (arp_del_mp != NULL) { 13833 ASSERT(ipif->ipif_arp_del_mp == NULL); 13834 ipif->ipif_arp_del_mp = arp_del_mp; 13835 } 13836 if (arp_down_mp != NULL) { 13837 ASSERT(ill->ill_arp_down_mp == NULL); 13838 ill->ill_arp_down_mp = arp_down_mp; 13839 } 13840 if (arp_del_mapping_mp != NULL) { 13841 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13842 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13843 } 13844 13845 return ((ill->ill_ipif_up_count != 0 || was_dup || 13846 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13847 failed: 13848 ip1dbg(("ipif_resolver_up: FAILED\n")); 13849 if (added_ipif) 13850 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13851 freemsg(arp_add_mp); 13852 freemsg(arp_del_mp); 13853 freemsg(arp_add_mapping_mp); 13854 freemsg(arp_up_mp); 13855 freemsg(arp_down_mp); 13856 ill->ill_arp_bringup_pending = 0; 13857 return (err); 13858 } 13859 13860 /* 13861 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13862 * just gone back up. 13863 */ 13864 static void 13865 ipif_arp_start_dad(ipif_t *ipif) 13866 { 13867 ill_t *ill = ipif->ipif_ill; 13868 mblk_t *arp_add_mp; 13869 13870 /* ACE_F_UNVERIFIED restarts DAD */ 13871 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13872 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13873 ipif->ipif_lcl_addr == INADDR_ANY || 13874 (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) { 13875 /* 13876 * If we can't contact ARP for some reason, that's not really a 13877 * problem. Just send out the routing socket notification that 13878 * DAD completion would have done, and continue. 13879 */ 13880 ipif_mask_reply(ipif); 13881 ipif_up_notify(ipif); 13882 ipif->ipif_addr_ready = 1; 13883 return; 13884 } 13885 13886 putnext(ill->ill_rq, arp_add_mp); 13887 } 13888 13889 static void 13890 ipif_ndp_start_dad(ipif_t *ipif) 13891 { 13892 nce_t *nce; 13893 13894 nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr, 13895 B_FALSE); 13896 if (nce == NULL) 13897 return; 13898 13899 if (!ndp_restart_dad(nce)) { 13900 /* 13901 * If we can't restart DAD for some reason, that's not really a 13902 * problem. Just send out the routing socket notification that 13903 * DAD completion would have done, and continue. 13904 */ 13905 ipif_up_notify(ipif); 13906 ipif->ipif_addr_ready = 1; 13907 } 13908 NCE_REFRELE(nce); 13909 } 13910 13911 /* 13912 * Restart duplicate address detection on all interfaces on the given ill. 13913 * 13914 * This is called when an interface transitions from down to up 13915 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13916 * 13917 * Note that since the underlying physical link has transitioned, we must cause 13918 * at least one routing socket message to be sent here, either via DAD 13919 * completion or just by default on the first ipif. (If we don't do this, then 13920 * in.mpathd will see long delays when doing link-based failure recovery.) 13921 */ 13922 void 13923 ill_restart_dad(ill_t *ill, boolean_t went_up) 13924 { 13925 ipif_t *ipif; 13926 13927 if (ill == NULL) 13928 return; 13929 13930 /* 13931 * If layer two doesn't support duplicate address detection, then just 13932 * send the routing socket message now and be done with it. 13933 */ 13934 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13935 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13936 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13937 return; 13938 } 13939 13940 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13941 if (went_up) { 13942 if (ipif->ipif_flags & IPIF_UP) { 13943 if (ill->ill_isv6) 13944 ipif_ndp_start_dad(ipif); 13945 else 13946 ipif_arp_start_dad(ipif); 13947 } else if (ill->ill_isv6 && 13948 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13949 /* 13950 * For IPv4, the ARP module itself will 13951 * automatically start the DAD process when it 13952 * sees DL_NOTE_LINK_UP. We respond to the 13953 * AR_CN_READY at the completion of that task. 13954 * For IPv6, we must kick off the bring-up 13955 * process now. 13956 */ 13957 ndp_do_recovery(ipif); 13958 } else { 13959 /* 13960 * Unfortunately, the first ipif is "special" 13961 * and represents the underlying ill in the 13962 * routing socket messages. Thus, when this 13963 * one ipif is down, we must still notify so 13964 * that the user knows the IFF_RUNNING status 13965 * change. (If the first ipif is up, then 13966 * we'll handle eventual routing socket 13967 * notification via DAD completion.) 13968 */ 13969 if (ipif == ill->ill_ipif) { 13970 ip_rts_ifmsg(ill->ill_ipif, 13971 RTSQ_DEFAULT); 13972 } 13973 } 13974 } else { 13975 /* 13976 * After link down, we'll need to send a new routing 13977 * message when the link comes back, so clear 13978 * ipif_addr_ready. 13979 */ 13980 ipif->ipif_addr_ready = 0; 13981 } 13982 } 13983 13984 /* 13985 * If we've torn down links, then notify the user right away. 13986 */ 13987 if (!went_up) 13988 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13989 } 13990 13991 static void 13992 ipsq_delete(ipsq_t *ipsq) 13993 { 13994 ipxop_t *ipx = ipsq->ipsq_xop; 13995 13996 ipsq->ipsq_ipst = NULL; 13997 ASSERT(ipsq->ipsq_phyint == NULL); 13998 ASSERT(ipsq->ipsq_xop != NULL); 13999 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 14000 ASSERT(ipx->ipx_pending_mp == NULL); 14001 kmem_free(ipsq, sizeof (ipsq_t)); 14002 } 14003 14004 static int 14005 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 14006 { 14007 int err; 14008 ipif_t *ipif; 14009 14010 if (ill == NULL) 14011 return (0); 14012 14013 /* 14014 * Except for ipif_state_flags and ill_state_flags the other 14015 * fields of the ipif/ill that are modified below are protected 14016 * implicitly since we are a writer. We would have tried to down 14017 * even an ipif that was already down, in ill_down_ipifs. So we 14018 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14019 */ 14020 ASSERT(IAM_WRITER_ILL(ill)); 14021 14022 ill->ill_up_ipifs = B_TRUE; 14023 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14024 mutex_enter(&ill->ill_lock); 14025 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14026 mutex_exit(&ill->ill_lock); 14027 if (ipif->ipif_was_up) { 14028 if (!(ipif->ipif_flags & IPIF_UP)) 14029 err = ipif_up(ipif, q, mp); 14030 ipif->ipif_was_up = B_FALSE; 14031 if (err != 0) { 14032 ASSERT(err == EINPROGRESS); 14033 return (err); 14034 } 14035 } 14036 } 14037 mutex_enter(&ill->ill_lock); 14038 ill->ill_state_flags &= ~ILL_CHANGING; 14039 mutex_exit(&ill->ill_lock); 14040 ill->ill_up_ipifs = B_FALSE; 14041 return (0); 14042 } 14043 14044 /* 14045 * This function is called to bring up all the ipifs that were up before 14046 * bringing the ill down via ill_down_ipifs(). 14047 */ 14048 int 14049 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14050 { 14051 int err; 14052 14053 ASSERT(IAM_WRITER_ILL(ill)); 14054 14055 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 14056 if (err != 0) 14057 return (err); 14058 14059 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 14060 } 14061 14062 /* 14063 * Bring down any IPIF_UP ipifs on ill. 14064 */ 14065 static void 14066 ill_down_ipifs(ill_t *ill) 14067 { 14068 ipif_t *ipif; 14069 14070 ASSERT(IAM_WRITER_ILL(ill)); 14071 14072 /* 14073 * Except for ipif_state_flags the other fields of the ipif/ill that 14074 * are modified below are protected implicitly since we are a writer 14075 */ 14076 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14077 /* 14078 * We go through the ipif_down logic even if the ipif 14079 * is already down, since routes can be added based 14080 * on down ipifs. Going through ipif_down once again 14081 * will delete any IREs created based on these routes. 14082 */ 14083 if (ipif->ipif_flags & IPIF_UP) 14084 ipif->ipif_was_up = B_TRUE; 14085 14086 mutex_enter(&ill->ill_lock); 14087 ipif->ipif_state_flags |= IPIF_CHANGING; 14088 mutex_exit(&ill->ill_lock); 14089 14090 /* 14091 * Need to re-create net/subnet bcast ires if 14092 * they are dependent on ipif. 14093 */ 14094 if (!ipif->ipif_isv6) 14095 ipif_check_bcast_ires(ipif); 14096 (void) ipif_logical_down(ipif, NULL, NULL); 14097 ipif_non_duplicate(ipif); 14098 ipif_down_tail(ipif); 14099 } 14100 } 14101 14102 /* 14103 * Redo source address selection. This is called when a 14104 * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up. 14105 */ 14106 void 14107 ill_update_source_selection(ill_t *ill) 14108 { 14109 ipif_t *ipif; 14110 14111 ASSERT(IAM_WRITER_ILL(ill)); 14112 14113 /* 14114 * Underlying interfaces are only used for test traffic and thus 14115 * should always send with their (deprecated) source addresses. 14116 */ 14117 if (IS_UNDER_IPMP(ill)) 14118 return; 14119 14120 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14121 if (ill->ill_isv6) 14122 ipif_recreate_interface_routes_v6(NULL, ipif); 14123 else 14124 ipif_recreate_interface_routes(NULL, ipif); 14125 } 14126 } 14127 14128 /* 14129 * Finish the group join started in ip_sioctl_groupname(). 14130 */ 14131 /* ARGSUSED */ 14132 static void 14133 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 14134 { 14135 ill_t *ill = q->q_ptr; 14136 phyint_t *phyi = ill->ill_phyint; 14137 ipmp_grp_t *grp = phyi->phyint_grp; 14138 ip_stack_t *ipst = ill->ill_ipst; 14139 14140 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 14141 ASSERT(!IS_IPMP(ill) && grp != NULL); 14142 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14143 14144 if (phyi->phyint_illv4 != NULL) { 14145 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14146 VERIFY(grp->gr_pendv4-- > 0); 14147 rw_exit(&ipst->ips_ipmp_lock); 14148 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 14149 } 14150 if (phyi->phyint_illv6 != NULL) { 14151 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14152 VERIFY(grp->gr_pendv6-- > 0); 14153 rw_exit(&ipst->ips_ipmp_lock); 14154 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 14155 } 14156 freemsg(mp); 14157 } 14158 14159 /* 14160 * Process an SIOCSLIFGROUPNAME request. 14161 */ 14162 /* ARGSUSED */ 14163 int 14164 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14165 ip_ioctl_cmd_t *ipip, void *ifreq) 14166 { 14167 struct lifreq *lifr = ifreq; 14168 ill_t *ill = ipif->ipif_ill; 14169 ip_stack_t *ipst = ill->ill_ipst; 14170 phyint_t *phyi = ill->ill_phyint; 14171 ipmp_grp_t *grp = phyi->phyint_grp; 14172 mblk_t *ipsq_mp; 14173 int err = 0; 14174 14175 /* 14176 * Note that phyint_grp can only change here, where we're exclusive. 14177 */ 14178 ASSERT(IAM_WRITER_ILL(ill)); 14179 14180 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 14181 (phyi->phyint_flags & PHYI_VIRTUAL)) 14182 return (EINVAL); 14183 14184 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 14185 14186 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14187 14188 /* 14189 * If the name hasn't changed, there's nothing to do. 14190 */ 14191 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 14192 goto unlock; 14193 14194 /* 14195 * Handle requests to rename an IPMP meta-interface. 14196 * 14197 * Note that creation of the IPMP meta-interface is handled in 14198 * userland through the standard plumbing sequence. As part of the 14199 * plumbing the IPMP meta-interface, its initial groupname is set to 14200 * the name of the interface (see ipif_set_values_tail()). 14201 */ 14202 if (IS_IPMP(ill)) { 14203 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 14204 goto unlock; 14205 } 14206 14207 /* 14208 * Handle requests to add or remove an IP interface from a group. 14209 */ 14210 if (lifr->lifr_groupname[0] != '\0') { /* add */ 14211 /* 14212 * Moves are handled by first removing the interface from 14213 * its existing group, and then adding it to another group. 14214 * So, fail if it's already in a group. 14215 */ 14216 if (IS_UNDER_IPMP(ill)) { 14217 err = EALREADY; 14218 goto unlock; 14219 } 14220 14221 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 14222 if (grp == NULL) { 14223 err = ENOENT; 14224 goto unlock; 14225 } 14226 14227 /* 14228 * Check if the phyint and its ills are suitable for 14229 * inclusion into the group. 14230 */ 14231 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 14232 goto unlock; 14233 14234 /* 14235 * Checks pass; join the group, and enqueue the remaining 14236 * illgrp joins for when we've become part of the group xop 14237 * and are exclusive across its IPSQs. Since qwriter_ip() 14238 * requires an mblk_t to scribble on, and since `mp' will be 14239 * freed as part of completing the ioctl, allocate another. 14240 */ 14241 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 14242 err = ENOMEM; 14243 goto unlock; 14244 } 14245 14246 /* 14247 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 14248 * IPMP meta-interface ills needed by `phyi' cannot go away 14249 * before ip_join_illgrps() is called back. See the comments 14250 * in ip_sioctl_plink_ipmp() for more. 14251 */ 14252 if (phyi->phyint_illv4 != NULL) 14253 grp->gr_pendv4++; 14254 if (phyi->phyint_illv6 != NULL) 14255 grp->gr_pendv6++; 14256 14257 rw_exit(&ipst->ips_ipmp_lock); 14258 14259 ipmp_phyint_join_grp(phyi, grp); 14260 ill_refhold(ill); 14261 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 14262 SWITCH_OP, B_FALSE); 14263 return (0); 14264 } else { 14265 /* 14266 * Request to remove the interface from a group. If the 14267 * interface is not in a group, this trivially succeeds. 14268 */ 14269 rw_exit(&ipst->ips_ipmp_lock); 14270 if (IS_UNDER_IPMP(ill)) 14271 ipmp_phyint_leave_grp(phyi); 14272 return (0); 14273 } 14274 unlock: 14275 rw_exit(&ipst->ips_ipmp_lock); 14276 return (err); 14277 } 14278 14279 /* 14280 * Process an SIOCGLIFBINDING request. 14281 */ 14282 /* ARGSUSED */ 14283 int 14284 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14285 ip_ioctl_cmd_t *ipip, void *ifreq) 14286 { 14287 ill_t *ill; 14288 struct lifreq *lifr = ifreq; 14289 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14290 14291 if (!IS_IPMP(ipif->ipif_ill)) 14292 return (EINVAL); 14293 14294 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14295 if ((ill = ipif->ipif_bound_ill) == NULL) 14296 lifr->lifr_binding[0] = '\0'; 14297 else 14298 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 14299 rw_exit(&ipst->ips_ipmp_lock); 14300 return (0); 14301 } 14302 14303 /* 14304 * Process an SIOCGLIFGROUPNAME request. 14305 */ 14306 /* ARGSUSED */ 14307 int 14308 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14309 ip_ioctl_cmd_t *ipip, void *ifreq) 14310 { 14311 ipmp_grp_t *grp; 14312 struct lifreq *lifr = ifreq; 14313 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14314 14315 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14316 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 14317 lifr->lifr_groupname[0] = '\0'; 14318 else 14319 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 14320 rw_exit(&ipst->ips_ipmp_lock); 14321 return (0); 14322 } 14323 14324 /* 14325 * Process an SIOCGLIFGROUPINFO request. 14326 */ 14327 /* ARGSUSED */ 14328 int 14329 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14330 ip_ioctl_cmd_t *ipip, void *dummy) 14331 { 14332 ipmp_grp_t *grp; 14333 lifgroupinfo_t *lifgr; 14334 ip_stack_t *ipst = CONNQ_TO_IPST(q); 14335 14336 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 14337 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 14338 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 14339 14340 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14341 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 14342 rw_exit(&ipst->ips_ipmp_lock); 14343 return (ENOENT); 14344 } 14345 ipmp_grp_info(grp, lifgr); 14346 rw_exit(&ipst->ips_ipmp_lock); 14347 return (0); 14348 } 14349 14350 static void 14351 ill_dl_down(ill_t *ill) 14352 { 14353 /* 14354 * The ill is down; unbind but stay attached since we're still 14355 * associated with a PPA. If we have negotiated DLPI capabilites 14356 * with the data link service provider (IDS_OK) then reset them. 14357 * The interval between unbinding and rebinding is potentially 14358 * unbounded hence we cannot assume things will be the same. 14359 * The DLPI capabilities will be probed again when the data link 14360 * is brought up. 14361 */ 14362 mblk_t *mp = ill->ill_unbind_mp; 14363 14364 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 14365 14366 ill->ill_unbind_mp = NULL; 14367 if (mp != NULL) { 14368 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 14369 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 14370 ill->ill_name)); 14371 mutex_enter(&ill->ill_lock); 14372 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 14373 mutex_exit(&ill->ill_lock); 14374 /* 14375 * ip_rput does not pass up normal (M_PROTO) DLPI messages 14376 * after ILL_CONDEMNED is set. So in the unplumb case, we call 14377 * ill_capability_dld_disable disable rightaway. If this is not 14378 * an unplumb operation then the disable happens on receipt of 14379 * the capab ack via ip_rput_dlpi_writer -> 14380 * ill_capability_ack_thr. In both cases the order of 14381 * the operations seen by DLD is capability disable followed 14382 * by DL_UNBIND. Also the DLD capability disable needs a 14383 * cv_wait'able context. 14384 */ 14385 if (ill->ill_state_flags & ILL_CONDEMNED) 14386 ill_capability_dld_disable(ill); 14387 ill_capability_reset(ill, B_FALSE); 14388 ill_dlpi_send(ill, mp); 14389 } 14390 14391 /* 14392 * Toss all of our multicast memberships. We could keep them, but 14393 * then we'd have to do bookkeeping of any joins and leaves performed 14394 * by the application while the the interface is down (we can't just 14395 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 14396 * on a downed interface). 14397 */ 14398 ill_leave_multicast(ill); 14399 14400 mutex_enter(&ill->ill_lock); 14401 ill->ill_dl_up = 0; 14402 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 14403 mutex_exit(&ill->ill_lock); 14404 } 14405 14406 static void 14407 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 14408 { 14409 union DL_primitives *dlp; 14410 t_uscalar_t prim; 14411 14412 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14413 14414 dlp = (union DL_primitives *)mp->b_rptr; 14415 prim = dlp->dl_primitive; 14416 14417 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 14418 dl_primstr(prim), prim, ill->ill_name)); 14419 14420 switch (prim) { 14421 case DL_PHYS_ADDR_REQ: 14422 { 14423 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 14424 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 14425 break; 14426 } 14427 case DL_BIND_REQ: 14428 mutex_enter(&ill->ill_lock); 14429 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14430 mutex_exit(&ill->ill_lock); 14431 break; 14432 } 14433 14434 /* 14435 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 14436 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 14437 * we only wait for the ACK of the DL_UNBIND_REQ. 14438 */ 14439 mutex_enter(&ill->ill_lock); 14440 if (!(ill->ill_state_flags & ILL_CONDEMNED) || (prim == DL_UNBIND_REQ)) 14441 ill->ill_dlpi_pending = prim; 14442 14443 mutex_exit(&ill->ill_lock); 14444 putnext(ill->ill_wq, mp); 14445 } 14446 14447 /* 14448 * Helper function for ill_dlpi_send(). 14449 */ 14450 /* ARGSUSED */ 14451 static void 14452 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 14453 { 14454 ill_dlpi_send(q->q_ptr, mp); 14455 } 14456 14457 /* 14458 * Send a DLPI control message to the driver but make sure there 14459 * is only one outstanding message. Uses ill_dlpi_pending to tell 14460 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 14461 * when an ACK or a NAK is received to process the next queued message. 14462 */ 14463 void 14464 ill_dlpi_send(ill_t *ill, mblk_t *mp) 14465 { 14466 mblk_t **mpp; 14467 14468 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14469 14470 /* 14471 * To ensure that any DLPI requests for current exclusive operation 14472 * are always completely sent before any DLPI messages for other 14473 * operations, require writer access before enqueuing. 14474 */ 14475 if (!IAM_WRITER_ILL(ill)) { 14476 ill_refhold(ill); 14477 /* qwriter_ip() does the ill_refrele() */ 14478 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 14479 NEW_OP, B_TRUE); 14480 return; 14481 } 14482 14483 mutex_enter(&ill->ill_lock); 14484 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 14485 /* Must queue message. Tail insertion */ 14486 mpp = &ill->ill_dlpi_deferred; 14487 while (*mpp != NULL) 14488 mpp = &((*mpp)->b_next); 14489 14490 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 14491 ill->ill_name)); 14492 14493 *mpp = mp; 14494 mutex_exit(&ill->ill_lock); 14495 return; 14496 } 14497 mutex_exit(&ill->ill_lock); 14498 ill_dlpi_dispatch(ill, mp); 14499 } 14500 14501 static void 14502 ill_capability_send(ill_t *ill, mblk_t *mp) 14503 { 14504 ill->ill_capab_pending_cnt++; 14505 ill_dlpi_send(ill, mp); 14506 } 14507 14508 void 14509 ill_capability_done(ill_t *ill) 14510 { 14511 ASSERT(ill->ill_capab_pending_cnt != 0); 14512 14513 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14514 14515 ill->ill_capab_pending_cnt--; 14516 if (ill->ill_capab_pending_cnt == 0 && 14517 ill->ill_dlpi_capab_state == IDCS_OK) 14518 ill_capability_reset_alloc(ill); 14519 } 14520 14521 /* 14522 * Send all deferred DLPI messages without waiting for their ACKs. 14523 */ 14524 void 14525 ill_dlpi_send_deferred(ill_t *ill) 14526 { 14527 mblk_t *mp, *nextmp; 14528 14529 /* 14530 * Clear ill_dlpi_pending so that the message is not queued in 14531 * ill_dlpi_send(). 14532 */ 14533 mutex_enter(&ill->ill_lock); 14534 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14535 mp = ill->ill_dlpi_deferred; 14536 ill->ill_dlpi_deferred = NULL; 14537 mutex_exit(&ill->ill_lock); 14538 14539 for (; mp != NULL; mp = nextmp) { 14540 nextmp = mp->b_next; 14541 mp->b_next = NULL; 14542 ill_dlpi_send(ill, mp); 14543 } 14544 } 14545 14546 /* 14547 * Check if the DLPI primitive `prim' is pending; print a warning if not. 14548 */ 14549 boolean_t 14550 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 14551 { 14552 t_uscalar_t pending; 14553 14554 mutex_enter(&ill->ill_lock); 14555 if (ill->ill_dlpi_pending == prim) { 14556 mutex_exit(&ill->ill_lock); 14557 return (B_TRUE); 14558 } 14559 14560 /* 14561 * During teardown, ill_dlpi_dispatch() will send DLPI requests 14562 * without waiting, so don't print any warnings in that case. 14563 */ 14564 if (ill->ill_state_flags & ILL_CONDEMNED) { 14565 mutex_exit(&ill->ill_lock); 14566 return (B_FALSE); 14567 } 14568 pending = ill->ill_dlpi_pending; 14569 mutex_exit(&ill->ill_lock); 14570 14571 if (pending == DL_PRIM_INVAL) { 14572 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14573 "received unsolicited ack for %s on %s\n", 14574 dl_primstr(prim), ill->ill_name); 14575 } else { 14576 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14577 "received unexpected ack for %s on %s (expecting %s)\n", 14578 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 14579 } 14580 return (B_FALSE); 14581 } 14582 14583 /* 14584 * Complete the current DLPI operation associated with `prim' on `ill' and 14585 * start the next queued DLPI operation (if any). If there are no queued DLPI 14586 * operations and the ill's current exclusive IPSQ operation has finished 14587 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 14588 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 14589 * the comments above ipsq_current_finish() for details. 14590 */ 14591 void 14592 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 14593 { 14594 mblk_t *mp; 14595 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14596 ipxop_t *ipx = ipsq->ipsq_xop; 14597 14598 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14599 mutex_enter(&ill->ill_lock); 14600 14601 ASSERT(prim != DL_PRIM_INVAL); 14602 ASSERT(ill->ill_dlpi_pending == prim); 14603 14604 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 14605 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 14606 14607 if ((mp = ill->ill_dlpi_deferred) == NULL) { 14608 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14609 if (ipx->ipx_current_done) { 14610 mutex_enter(&ipx->ipx_lock); 14611 ipx->ipx_current_ipif = NULL; 14612 mutex_exit(&ipx->ipx_lock); 14613 } 14614 cv_signal(&ill->ill_cv); 14615 mutex_exit(&ill->ill_lock); 14616 return; 14617 } 14618 14619 ill->ill_dlpi_deferred = mp->b_next; 14620 mp->b_next = NULL; 14621 mutex_exit(&ill->ill_lock); 14622 14623 ill_dlpi_dispatch(ill, mp); 14624 } 14625 14626 void 14627 conn_delete_ire(conn_t *connp, caddr_t arg) 14628 { 14629 ipif_t *ipif = (ipif_t *)arg; 14630 ire_t *ire; 14631 14632 /* 14633 * Look at the cached ires on conns which has pointers to ipifs. 14634 * We just call ire_refrele which clears up the reference 14635 * to ire. Called when a conn closes. Also called from ipif_free 14636 * to cleanup indirect references to the stale ipif via the cached ire. 14637 */ 14638 mutex_enter(&connp->conn_lock); 14639 ire = connp->conn_ire_cache; 14640 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 14641 connp->conn_ire_cache = NULL; 14642 mutex_exit(&connp->conn_lock); 14643 IRE_REFRELE_NOTR(ire); 14644 return; 14645 } 14646 mutex_exit(&connp->conn_lock); 14647 14648 } 14649 14650 /* 14651 * Some operations (e.g., ipif_down()) conditionally delete a number 14652 * of IREs. Those IREs may have been previously cached in the conn structure. 14653 * This ipcl_walk() walker function releases all references to such IREs based 14654 * on the condemned flag. 14655 */ 14656 /* ARGSUSED */ 14657 void 14658 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 14659 { 14660 ire_t *ire; 14661 14662 mutex_enter(&connp->conn_lock); 14663 ire = connp->conn_ire_cache; 14664 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 14665 connp->conn_ire_cache = NULL; 14666 mutex_exit(&connp->conn_lock); 14667 IRE_REFRELE_NOTR(ire); 14668 return; 14669 } 14670 mutex_exit(&connp->conn_lock); 14671 } 14672 14673 /* 14674 * Take down a specific interface, but don't lose any information about it. 14675 * (Always called as writer.) 14676 * This function goes through the down sequence even if the interface is 14677 * already down. There are 2 reasons. 14678 * a. Currently we permit interface routes that depend on down interfaces 14679 * to be added. This behaviour itself is questionable. However it appears 14680 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 14681 * time. We go thru the cleanup in order to remove these routes. 14682 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 14683 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 14684 * down, but we need to cleanup i.e. do ill_dl_down and 14685 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 14686 * 14687 * IP-MT notes: 14688 * 14689 * Model of reference to interfaces. 14690 * 14691 * The following members in ipif_t track references to the ipif. 14692 * int ipif_refcnt; Active reference count 14693 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 14694 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 14695 * 14696 * The following members in ill_t track references to the ill. 14697 * int ill_refcnt; active refcnt 14698 * uint_t ill_ire_cnt; Number of ires referencing ill 14699 * uint_t ill_nce_cnt; Number of nces referencing ill 14700 * uint_t ill_ilm_cnt; Number of ilms referencing ill 14701 * 14702 * Reference to an ipif or ill can be obtained in any of the following ways. 14703 * 14704 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 14705 * Pointers to ipif / ill from other data structures viz ire and conn. 14706 * Implicit reference to the ipif / ill by holding a reference to the ire. 14707 * 14708 * The ipif/ill lookup functions return a reference held ipif / ill. 14709 * ipif_refcnt and ill_refcnt track the reference counts respectively. 14710 * This is a purely dynamic reference count associated with threads holding 14711 * references to the ipif / ill. Pointers from other structures do not 14712 * count towards this reference count. 14713 * 14714 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 14715 * associated with the ipif/ill. This is incremented whenever a new 14716 * ire is created referencing the ipif/ill. This is done atomically inside 14717 * ire_add_v[46] where the ire is actually added to the ire hash table. 14718 * The count is decremented in ire_inactive where the ire is destroyed. 14719 * 14720 * nce's reference ill's thru nce_ill and the count of nce's associated with 14721 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 14722 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 14723 * table. Similarly it is decremented in ndp_inactive() where the nce 14724 * is destroyed. 14725 * 14726 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 14727 * is incremented in ilm_add_v6() and decremented before the ilm is freed 14728 * in ilm_walker_cleanup() or ilm_delete(). 14729 * 14730 * Flow of ioctls involving interface down/up 14731 * 14732 * The following is the sequence of an attempt to set some critical flags on an 14733 * up interface. 14734 * ip_sioctl_flags 14735 * ipif_down 14736 * wait for ipif to be quiescent 14737 * ipif_down_tail 14738 * ip_sioctl_flags_tail 14739 * 14740 * All set ioctls that involve down/up sequence would have a skeleton similar 14741 * to the above. All the *tail functions are called after the refcounts have 14742 * dropped to the appropriate values. 14743 * 14744 * The mechanism to quiesce an ipif is as follows. 14745 * 14746 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 14747 * on the ipif. Callers either pass a flag requesting wait or the lookup 14748 * functions will return NULL. 14749 * 14750 * Delete all ires referencing this ipif 14751 * 14752 * Any thread attempting to do an ipif_refhold on an ipif that has been 14753 * obtained thru a cached pointer will first make sure that 14754 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 14755 * increment the refcount. 14756 * 14757 * The above guarantees that the ipif refcount will eventually come down to 14758 * zero and the ipif will quiesce, once all threads that currently hold a 14759 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 14760 * ipif_refcount has dropped to zero and all ire's associated with this ipif 14761 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 14762 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 14763 * in ip.h 14764 * 14765 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 14766 * 14767 * Threads trying to lookup an ipif or ill can pass a flag requesting 14768 * wait and restart if the ipif / ill cannot be looked up currently. 14769 * For eg. bind, and route operations (Eg. route add / delete) cannot return 14770 * failure if the ipif is currently undergoing an exclusive operation, and 14771 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 14772 * is restarted by ipsq_exit() when the current exclusive operation completes. 14773 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 14774 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 14775 * change while the ill_lock is held. Before dropping the ill_lock we acquire 14776 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 14777 * until we release the ipsq_lock, even though the the ill/ipif state flags 14778 * can change after we drop the ill_lock. 14779 * 14780 * An attempt to send out a packet using an ipif that is currently 14781 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 14782 * operation and restart it later when the exclusive condition on the ipif ends. 14783 * This is an example of not passing the wait flag to the lookup functions. For 14784 * example an attempt to refhold and use conn->conn_multicast_ipif and send 14785 * out a multicast packet on that ipif will fail while the ipif is 14786 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 14787 * currently IPIF_CHANGING will also fail. 14788 */ 14789 int 14790 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14791 { 14792 ill_t *ill = ipif->ipif_ill; 14793 conn_t *connp; 14794 boolean_t success; 14795 boolean_t ipif_was_up = B_FALSE; 14796 ip_stack_t *ipst = ill->ill_ipst; 14797 14798 ASSERT(IAM_WRITER_IPIF(ipif)); 14799 14800 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14801 14802 if (ipif->ipif_flags & IPIF_UP) { 14803 mutex_enter(&ill->ill_lock); 14804 ipif->ipif_flags &= ~IPIF_UP; 14805 ASSERT(ill->ill_ipif_up_count > 0); 14806 --ill->ill_ipif_up_count; 14807 mutex_exit(&ill->ill_lock); 14808 ipif_was_up = B_TRUE; 14809 /* Update status in SCTP's list */ 14810 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 14811 ill_nic_event_dispatch(ipif->ipif_ill, 14812 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 14813 } 14814 14815 /* 14816 * Blow away memberships we established in ipif_multicast_up(). 14817 */ 14818 ipif_multicast_down(ipif); 14819 14820 /* 14821 * Remove from the mapping for __sin6_src_id. We insert only 14822 * when the address is not INADDR_ANY. As IPv4 addresses are 14823 * stored as mapped addresses, we need to check for mapped 14824 * INADDR_ANY also. 14825 */ 14826 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 14827 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 14828 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14829 int err; 14830 14831 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 14832 ipif->ipif_zoneid, ipst); 14833 if (err != 0) { 14834 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 14835 } 14836 } 14837 14838 /* 14839 * Delete all IRE's pointing at this ipif or its source address. 14840 */ 14841 if (ipif->ipif_isv6) { 14842 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14843 ipst); 14844 } else { 14845 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14846 ipst); 14847 } 14848 14849 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 14850 /* 14851 * Since the interface is now down, it may have just become 14852 * inactive. Note that this needs to be done even for a 14853 * lll_logical_down(), or ARP entries will not get correctly 14854 * restored when the interface comes back up. 14855 */ 14856 if (IS_UNDER_IPMP(ill)) 14857 ipmp_ill_refresh_active(ill); 14858 } 14859 14860 /* 14861 * Cleaning up the conn_ire_cache or conns must be done only after the 14862 * ires have been deleted above. Otherwise a thread could end up 14863 * caching an ire in a conn after we have finished the cleanup of the 14864 * conn. The caching is done after making sure that the ire is not yet 14865 * condemned. Also documented in the block comment above ip_output 14866 */ 14867 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 14868 /* Also, delete the ires cached in SCTP */ 14869 sctp_ire_cache_flush(ipif); 14870 14871 /* 14872 * Update any other ipifs which have used "our" local address as 14873 * a source address. This entails removing and recreating IRE_INTERFACE 14874 * entries for such ipifs. 14875 */ 14876 if (ipif->ipif_isv6) 14877 ipif_update_other_ipifs_v6(ipif); 14878 else 14879 ipif_update_other_ipifs(ipif); 14880 14881 /* 14882 * neighbor-discovery or arp entries for this interface. 14883 */ 14884 ipif_ndp_down(ipif); 14885 14886 /* 14887 * If mp is NULL the caller will wait for the appropriate refcnt. 14888 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 14889 * and ill_delete -> ipif_free -> ipif_down 14890 */ 14891 if (mp == NULL) { 14892 ASSERT(q == NULL); 14893 return (0); 14894 } 14895 14896 if (CONN_Q(q)) { 14897 connp = Q_TO_CONN(q); 14898 mutex_enter(&connp->conn_lock); 14899 } else { 14900 connp = NULL; 14901 } 14902 mutex_enter(&ill->ill_lock); 14903 /* 14904 * Are there any ire's pointing to this ipif that are still active ? 14905 * If this is the last ipif going down, are there any ire's pointing 14906 * to this ill that are still active ? 14907 */ 14908 if (ipif_is_quiescent(ipif)) { 14909 mutex_exit(&ill->ill_lock); 14910 if (connp != NULL) 14911 mutex_exit(&connp->conn_lock); 14912 return (0); 14913 } 14914 14915 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 14916 ill->ill_name, (void *)ill)); 14917 /* 14918 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 14919 * drops down, the operation will be restarted by ipif_ill_refrele_tail 14920 * which in turn is called by the last refrele on the ipif/ill/ire. 14921 */ 14922 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 14923 if (!success) { 14924 /* The conn is closing. So just return */ 14925 ASSERT(connp != NULL); 14926 mutex_exit(&ill->ill_lock); 14927 mutex_exit(&connp->conn_lock); 14928 return (EINTR); 14929 } 14930 14931 mutex_exit(&ill->ill_lock); 14932 if (connp != NULL) 14933 mutex_exit(&connp->conn_lock); 14934 return (EINPROGRESS); 14935 } 14936 14937 void 14938 ipif_down_tail(ipif_t *ipif) 14939 { 14940 ill_t *ill = ipif->ipif_ill; 14941 14942 /* 14943 * Skip any loopback interface (null wq). 14944 * If this is the last logical interface on the ill 14945 * have ill_dl_down tell the driver we are gone (unbind) 14946 * Note that lun 0 can ipif_down even though 14947 * there are other logical units that are up. 14948 * This occurs e.g. when we change a "significant" IFF_ flag. 14949 */ 14950 if (ill->ill_wq != NULL && !ill->ill_logical_down && 14951 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 14952 ill->ill_dl_up) { 14953 ill_dl_down(ill); 14954 } 14955 ill->ill_logical_down = 0; 14956 14957 /* 14958 * Has to be after removing the routes in ipif_down_delete_ire. 14959 */ 14960 ipif_resolver_down(ipif); 14961 14962 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 14963 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 14964 } 14965 14966 /* 14967 * Bring interface logically down without bringing the physical interface 14968 * down e.g. when the netmask is changed. This avoids long lasting link 14969 * negotiations between an ethernet interface and a certain switches. 14970 */ 14971 static int 14972 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14973 { 14974 /* 14975 * The ill_logical_down flag is a transient flag. It is set here 14976 * and is cleared once the down has completed in ipif_down_tail. 14977 * This flag does not indicate whether the ill stream is in the 14978 * DL_BOUND state with the driver. Instead this flag is used by 14979 * ipif_down_tail to determine whether to DL_UNBIND the stream with 14980 * the driver. The state of the ill stream i.e. whether it is 14981 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 14982 */ 14983 ipif->ipif_ill->ill_logical_down = 1; 14984 return (ipif_down(ipif, q, mp)); 14985 } 14986 14987 /* 14988 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 14989 * If the usesrc client ILL is already part of a usesrc group or not, 14990 * in either case a ire_stq with the matching usesrc client ILL will 14991 * locate the IRE's that need to be deleted. We want IREs to be created 14992 * with the new source address. 14993 */ 14994 static void 14995 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 14996 { 14997 ill_t *ucill = (ill_t *)ill_arg; 14998 14999 ASSERT(IAM_WRITER_ILL(ucill)); 15000 15001 if (ire->ire_stq == NULL) 15002 return; 15003 15004 if ((ire->ire_type == IRE_CACHE) && 15005 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 15006 ire_delete(ire); 15007 } 15008 15009 /* 15010 * ire_walk routine to delete every IRE dependent on the interface 15011 * address that is going down. (Always called as writer.) 15012 * Works for both v4 and v6. 15013 * In addition for checking for ire_ipif matches it also checks for 15014 * IRE_CACHE entries which have the same source address as the 15015 * disappearing ipif since ipif_select_source might have picked 15016 * that source. Note that ipif_down/ipif_update_other_ipifs takes 15017 * care of any IRE_INTERFACE with the disappearing source address. 15018 */ 15019 static void 15020 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 15021 { 15022 ipif_t *ipif = (ipif_t *)ipif_arg; 15023 15024 ASSERT(IAM_WRITER_IPIF(ipif)); 15025 if (ire->ire_ipif == NULL) 15026 return; 15027 15028 if (ire->ire_ipif != ipif) { 15029 /* 15030 * Look for a matching source address. 15031 */ 15032 if (ire->ire_type != IRE_CACHE) 15033 return; 15034 if (ipif->ipif_flags & IPIF_NOLOCAL) 15035 return; 15036 15037 if (ire->ire_ipversion == IPV4_VERSION) { 15038 if (ire->ire_src_addr != ipif->ipif_src_addr) 15039 return; 15040 } else { 15041 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 15042 &ipif->ipif_v6lcl_addr)) 15043 return; 15044 } 15045 ire_delete(ire); 15046 return; 15047 } 15048 /* 15049 * ire_delete() will do an ire_flush_cache which will delete 15050 * all ire_ipif matches 15051 */ 15052 ire_delete(ire); 15053 } 15054 15055 /* 15056 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 15057 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 15058 * 2) when an interface is brought up or down (on that ill). 15059 * This ensures that the IRE_CACHE entries don't retain stale source 15060 * address selection results. 15061 */ 15062 void 15063 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 15064 { 15065 ill_t *ill = (ill_t *)ill_arg; 15066 15067 ASSERT(IAM_WRITER_ILL(ill)); 15068 ASSERT(ire->ire_type == IRE_CACHE); 15069 15070 /* 15071 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 15072 * ill, but we only want to delete the IRE if ire_ipif matches. 15073 */ 15074 ASSERT(ire->ire_ipif != NULL); 15075 if (ill == ire->ire_ipif->ipif_ill) 15076 ire_delete(ire); 15077 } 15078 15079 /* 15080 * Delete all the IREs whose ire_stq's reference `ill_arg'. IPMP uses this 15081 * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references 15082 * the IPMP ill. 15083 */ 15084 void 15085 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 15086 { 15087 ill_t *ill = (ill_t *)ill_arg; 15088 15089 ASSERT(IAM_WRITER_ILL(ill)); 15090 ASSERT(ire->ire_type == IRE_CACHE); 15091 15092 /* 15093 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 15094 * ill, but we only want to delete the IRE if ire_stq matches. 15095 */ 15096 if (ire->ire_stq->q_ptr == ill_arg) 15097 ire_delete(ire); 15098 } 15099 15100 /* 15101 * Delete all broadcast IREs with a source address on `ill_arg'. 15102 */ 15103 static void 15104 ill_broadcast_delete(ire_t *ire, char *ill_arg) 15105 { 15106 ill_t *ill = (ill_t *)ill_arg; 15107 15108 ASSERT(IAM_WRITER_ILL(ill)); 15109 ASSERT(ire->ire_type == IRE_BROADCAST); 15110 15111 if (ire->ire_ipif->ipif_ill == ill) 15112 ire_delete(ire); 15113 } 15114 15115 /* 15116 * Initiate deallocate of an IPIF. Always called as writer. Called by 15117 * ill_delete or ip_sioctl_removeif. 15118 */ 15119 static void 15120 ipif_free(ipif_t *ipif) 15121 { 15122 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15123 15124 ASSERT(IAM_WRITER_IPIF(ipif)); 15125 15126 if (ipif->ipif_recovery_id != 0) 15127 (void) untimeout(ipif->ipif_recovery_id); 15128 ipif->ipif_recovery_id = 0; 15129 15130 /* Remove conn references */ 15131 reset_conn_ipif(ipif); 15132 15133 /* 15134 * Make sure we have valid net and subnet broadcast ire's for the 15135 * other ipif's which share them with this ipif. 15136 */ 15137 if (!ipif->ipif_isv6) 15138 ipif_check_bcast_ires(ipif); 15139 15140 /* 15141 * Take down the interface. We can be called either from ill_delete 15142 * or from ip_sioctl_removeif. 15143 */ 15144 (void) ipif_down(ipif, NULL, NULL); 15145 15146 /* 15147 * Now that the interface is down, there's no chance it can still 15148 * become a duplicate. Cancel any timer that may have been set while 15149 * tearing down. 15150 */ 15151 if (ipif->ipif_recovery_id != 0) 15152 (void) untimeout(ipif->ipif_recovery_id); 15153 ipif->ipif_recovery_id = 0; 15154 15155 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15156 /* Remove pointers to this ill in the multicast routing tables */ 15157 reset_mrt_vif_ipif(ipif); 15158 /* If necessary, clear the cached source ipif rotor. */ 15159 if (ipif->ipif_ill->ill_src_ipif == ipif) 15160 ipif->ipif_ill->ill_src_ipif = NULL; 15161 rw_exit(&ipst->ips_ill_g_lock); 15162 } 15163 15164 static void 15165 ipif_free_tail(ipif_t *ipif) 15166 { 15167 mblk_t *mp; 15168 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15169 15170 /* 15171 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 15172 */ 15173 mutex_enter(&ipif->ipif_saved_ire_lock); 15174 mp = ipif->ipif_saved_ire_mp; 15175 ipif->ipif_saved_ire_mp = NULL; 15176 mutex_exit(&ipif->ipif_saved_ire_lock); 15177 freemsg(mp); 15178 15179 /* 15180 * Need to hold both ill_g_lock and ill_lock while 15181 * inserting or removing an ipif from the linked list 15182 * of ipifs hanging off the ill. 15183 */ 15184 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15185 15186 ASSERT(ilm_walk_ipif(ipif) == 0); 15187 15188 #ifdef DEBUG 15189 ipif_trace_cleanup(ipif); 15190 #endif 15191 15192 /* Ask SCTP to take it out of it list */ 15193 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 15194 15195 /* Get it out of the ILL interface list. */ 15196 ipif_remove(ipif); 15197 rw_exit(&ipst->ips_ill_g_lock); 15198 15199 mutex_destroy(&ipif->ipif_saved_ire_lock); 15200 15201 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 15202 ASSERT(ipif->ipif_recovery_id == 0); 15203 15204 /* Free the memory. */ 15205 mi_free(ipif); 15206 } 15207 15208 /* 15209 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 15210 * is zero. 15211 */ 15212 void 15213 ipif_get_name(const ipif_t *ipif, char *buf, int len) 15214 { 15215 char lbuf[LIFNAMSIZ]; 15216 char *name; 15217 size_t name_len; 15218 15219 buf[0] = '\0'; 15220 name = ipif->ipif_ill->ill_name; 15221 name_len = ipif->ipif_ill->ill_name_length; 15222 if (ipif->ipif_id != 0) { 15223 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 15224 ipif->ipif_id); 15225 name = lbuf; 15226 name_len = mi_strlen(name) + 1; 15227 } 15228 len -= 1; 15229 buf[len] = '\0'; 15230 len = MIN(len, name_len); 15231 bcopy(name, buf, len); 15232 } 15233 15234 /* 15235 * Find an IPIF based on the name passed in. Names can be of the 15236 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 15237 * The <phys> string can have forms like <dev><#> (e.g., le0), 15238 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 15239 * When there is no colon, the implied unit id is zero. <phys> must 15240 * correspond to the name of an ILL. (May be called as writer.) 15241 */ 15242 static ipif_t * 15243 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 15244 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 15245 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 15246 { 15247 char *cp; 15248 char *endp; 15249 long id; 15250 ill_t *ill; 15251 ipif_t *ipif; 15252 uint_t ire_type; 15253 boolean_t did_alloc = B_FALSE; 15254 ipsq_t *ipsq; 15255 15256 if (error != NULL) 15257 *error = 0; 15258 15259 /* 15260 * If the caller wants to us to create the ipif, make sure we have a 15261 * valid zoneid 15262 */ 15263 ASSERT(!do_alloc || zoneid != ALL_ZONES); 15264 15265 if (namelen == 0) { 15266 if (error != NULL) 15267 *error = ENXIO; 15268 return (NULL); 15269 } 15270 15271 *exists = B_FALSE; 15272 /* Look for a colon in the name. */ 15273 endp = &name[namelen]; 15274 for (cp = endp; --cp > name; ) { 15275 if (*cp == IPIF_SEPARATOR_CHAR) 15276 break; 15277 } 15278 15279 if (*cp == IPIF_SEPARATOR_CHAR) { 15280 /* 15281 * Reject any non-decimal aliases for logical 15282 * interfaces. Aliases with leading zeroes 15283 * are also rejected as they introduce ambiguity 15284 * in the naming of the interfaces. 15285 * In order to confirm with existing semantics, 15286 * and to not break any programs/script relying 15287 * on that behaviour, if<0>:0 is considered to be 15288 * a valid interface. 15289 * 15290 * If alias has two or more digits and the first 15291 * is zero, fail. 15292 */ 15293 if (&cp[2] < endp && cp[1] == '0') { 15294 if (error != NULL) 15295 *error = EINVAL; 15296 return (NULL); 15297 } 15298 } 15299 15300 if (cp <= name) { 15301 cp = endp; 15302 } else { 15303 *cp = '\0'; 15304 } 15305 15306 /* 15307 * Look up the ILL, based on the portion of the name 15308 * before the slash. ill_lookup_on_name returns a held ill. 15309 * Temporary to check whether ill exists already. If so 15310 * ill_lookup_on_name will clear it. 15311 */ 15312 ill = ill_lookup_on_name(name, do_alloc, isv6, 15313 q, mp, func, error, &did_alloc, ipst); 15314 if (cp != endp) 15315 *cp = IPIF_SEPARATOR_CHAR; 15316 if (ill == NULL) 15317 return (NULL); 15318 15319 /* Establish the unit number in the name. */ 15320 id = 0; 15321 if (cp < endp && *endp == '\0') { 15322 /* If there was a colon, the unit number follows. */ 15323 cp++; 15324 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 15325 ill_refrele(ill); 15326 if (error != NULL) 15327 *error = ENXIO; 15328 return (NULL); 15329 } 15330 } 15331 15332 GRAB_CONN_LOCK(q); 15333 mutex_enter(&ill->ill_lock); 15334 /* Now see if there is an IPIF with this unit number. */ 15335 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15336 if (ipif->ipif_id == id) { 15337 if (zoneid != ALL_ZONES && 15338 zoneid != ipif->ipif_zoneid && 15339 ipif->ipif_zoneid != ALL_ZONES) { 15340 mutex_exit(&ill->ill_lock); 15341 RELEASE_CONN_LOCK(q); 15342 ill_refrele(ill); 15343 if (error != NULL) 15344 *error = ENXIO; 15345 return (NULL); 15346 } 15347 /* 15348 * The block comment at the start of ipif_down 15349 * explains the use of the macros used below 15350 */ 15351 if (IPIF_CAN_LOOKUP(ipif)) { 15352 ipif_refhold_locked(ipif); 15353 mutex_exit(&ill->ill_lock); 15354 if (!did_alloc) 15355 *exists = B_TRUE; 15356 /* 15357 * Drop locks before calling ill_refrele 15358 * since it can potentially call into 15359 * ipif_ill_refrele_tail which can end up 15360 * in trying to acquire any lock. 15361 */ 15362 RELEASE_CONN_LOCK(q); 15363 ill_refrele(ill); 15364 return (ipif); 15365 } else if (IPIF_CAN_WAIT(ipif, q)) { 15366 ipsq = ill->ill_phyint->phyint_ipsq; 15367 mutex_enter(&ipsq->ipsq_lock); 15368 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 15369 mutex_exit(&ill->ill_lock); 15370 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 15371 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 15372 mutex_exit(&ipsq->ipsq_lock); 15373 RELEASE_CONN_LOCK(q); 15374 ill_refrele(ill); 15375 if (error != NULL) 15376 *error = EINPROGRESS; 15377 return (NULL); 15378 } 15379 } 15380 } 15381 RELEASE_CONN_LOCK(q); 15382 15383 if (!do_alloc) { 15384 mutex_exit(&ill->ill_lock); 15385 ill_refrele(ill); 15386 if (error != NULL) 15387 *error = ENXIO; 15388 return (NULL); 15389 } 15390 15391 /* 15392 * If none found, atomically allocate and return a new one. 15393 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 15394 * to support "receive only" use of lo0:1 etc. as is still done 15395 * below as an initial guess. 15396 * However, this is now likely to be overriden later in ipif_up_done() 15397 * when we know for sure what address has been configured on the 15398 * interface, since we might have more than one loopback interface 15399 * with a loopback address, e.g. in the case of zones, and all the 15400 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 15401 */ 15402 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 15403 ire_type = IRE_LOOPBACK; 15404 else 15405 ire_type = IRE_LOCAL; 15406 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); 15407 if (ipif != NULL) 15408 ipif_refhold_locked(ipif); 15409 else if (error != NULL) 15410 *error = ENOMEM; 15411 mutex_exit(&ill->ill_lock); 15412 ill_refrele(ill); 15413 return (ipif); 15414 } 15415 15416 /* 15417 * This routine is called whenever a new address comes up on an ipif. If 15418 * we are configured to respond to address mask requests, then we are supposed 15419 * to broadcast an address mask reply at this time. This routine is also 15420 * called if we are already up, but a netmask change is made. This is legal 15421 * but might not make the system manager very popular. (May be called 15422 * as writer.) 15423 */ 15424 void 15425 ipif_mask_reply(ipif_t *ipif) 15426 { 15427 icmph_t *icmph; 15428 ipha_t *ipha; 15429 mblk_t *mp; 15430 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15431 15432 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 15433 15434 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 15435 return; 15436 15437 /* ICMP mask reply is IPv4 only */ 15438 ASSERT(!ipif->ipif_isv6); 15439 /* ICMP mask reply is not for a loopback interface */ 15440 ASSERT(ipif->ipif_ill->ill_wq != NULL); 15441 15442 mp = allocb(REPLY_LEN, BPRI_HI); 15443 if (mp == NULL) 15444 return; 15445 mp->b_wptr = mp->b_rptr + REPLY_LEN; 15446 15447 ipha = (ipha_t *)mp->b_rptr; 15448 bzero(ipha, REPLY_LEN); 15449 *ipha = icmp_ipha; 15450 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 15451 ipha->ipha_src = ipif->ipif_src_addr; 15452 ipha->ipha_dst = ipif->ipif_brd_addr; 15453 ipha->ipha_length = htons(REPLY_LEN); 15454 ipha->ipha_ident = 0; 15455 15456 icmph = (icmph_t *)&ipha[1]; 15457 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 15458 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 15459 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 15460 15461 put(ipif->ipif_wq, mp); 15462 15463 #undef REPLY_LEN 15464 } 15465 15466 /* 15467 * When the mtu in the ipif changes, we call this routine through ire_walk 15468 * to update all the relevant IREs. 15469 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15470 */ 15471 static void 15472 ipif_mtu_change(ire_t *ire, char *ipif_arg) 15473 { 15474 ipif_t *ipif = (ipif_t *)ipif_arg; 15475 15476 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 15477 return; 15478 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 15479 } 15480 15481 /* 15482 * When the mtu in the ill changes, we call this routine through ire_walk 15483 * to update all the relevant IREs. 15484 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15485 */ 15486 void 15487 ill_mtu_change(ire_t *ire, char *ill_arg) 15488 { 15489 ill_t *ill = (ill_t *)ill_arg; 15490 15491 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 15492 return; 15493 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 15494 } 15495 15496 /* 15497 * Join the ipif specific multicast groups. 15498 * Must be called after a mapping has been set up in the resolver. (Always 15499 * called as writer.) 15500 */ 15501 void 15502 ipif_multicast_up(ipif_t *ipif) 15503 { 15504 int err; 15505 ill_t *ill; 15506 15507 ASSERT(IAM_WRITER_IPIF(ipif)); 15508 15509 ill = ipif->ipif_ill; 15510 15511 ip1dbg(("ipif_multicast_up\n")); 15512 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 15513 return; 15514 15515 if (ipif->ipif_isv6) { 15516 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 15517 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 15518 15519 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15520 15521 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15522 return; 15523 15524 ip1dbg(("ipif_multicast_up - addmulti\n")); 15525 15526 /* 15527 * Join the all hosts multicast address. We skip this for 15528 * underlying IPMP interfaces since they should be invisible. 15529 */ 15530 if (!IS_UNDER_IPMP(ill)) { 15531 err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid, 15532 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15533 if (err != 0) { 15534 ip0dbg(("ipif_multicast_up: " 15535 "all_hosts_mcast failed %d\n", err)); 15536 return; 15537 } 15538 ipif->ipif_joined_allhosts = 1; 15539 } 15540 15541 /* 15542 * Enable multicast for the solicited node multicast address 15543 */ 15544 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15545 err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid, 15546 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15547 if (err != 0) { 15548 ip0dbg(("ipif_multicast_up: solicited MC" 15549 " failed %d\n", err)); 15550 if (ipif->ipif_joined_allhosts) { 15551 (void) ip_delmulti_v6(&v6allmc, ill, 15552 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15553 ipif->ipif_joined_allhosts = 0; 15554 } 15555 return; 15556 } 15557 } 15558 } else { 15559 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 15560 return; 15561 15562 /* Join the all hosts multicast address */ 15563 ip1dbg(("ipif_multicast_up - addmulti\n")); 15564 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 15565 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15566 if (err) { 15567 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 15568 return; 15569 } 15570 } 15571 ipif->ipif_multicast_up = 1; 15572 } 15573 15574 /* 15575 * Blow away any multicast groups that we joined in ipif_multicast_up(). 15576 * (Explicit memberships are blown away in ill_leave_multicast() when the 15577 * ill is brought down.) 15578 */ 15579 void 15580 ipif_multicast_down(ipif_t *ipif) 15581 { 15582 int err; 15583 15584 ASSERT(IAM_WRITER_IPIF(ipif)); 15585 15586 ip1dbg(("ipif_multicast_down\n")); 15587 if (!ipif->ipif_multicast_up) 15588 return; 15589 15590 ip1dbg(("ipif_multicast_down - delmulti\n")); 15591 15592 if (!ipif->ipif_isv6) { 15593 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 15594 B_TRUE); 15595 if (err != 0) 15596 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 15597 15598 ipif->ipif_multicast_up = 0; 15599 return; 15600 } 15601 15602 /* 15603 * Leave the all-hosts multicast address. 15604 */ 15605 if (ipif->ipif_joined_allhosts) { 15606 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 15607 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15608 if (err != 0) { 15609 ip0dbg(("ipif_multicast_down: all_hosts_mcast " 15610 "failed %d\n", err)); 15611 } 15612 ipif->ipif_joined_allhosts = 0; 15613 } 15614 15615 /* 15616 * Disable multicast for the solicited node multicast address 15617 */ 15618 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15619 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 15620 15621 ipv6_multi.s6_addr32[3] |= 15622 ipif->ipif_v6lcl_addr.s6_addr32[3]; 15623 15624 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 15625 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15626 if (err != 0) { 15627 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 15628 err)); 15629 } 15630 } 15631 15632 ipif->ipif_multicast_up = 0; 15633 } 15634 15635 /* 15636 * Used when an interface comes up to recreate any extra routes on this 15637 * interface. 15638 */ 15639 static ire_t ** 15640 ipif_recover_ire(ipif_t *ipif) 15641 { 15642 mblk_t *mp; 15643 ire_t **ipif_saved_irep; 15644 ire_t **irep; 15645 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15646 15647 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 15648 ipif->ipif_id)); 15649 15650 mutex_enter(&ipif->ipif_saved_ire_lock); 15651 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 15652 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 15653 if (ipif_saved_irep == NULL) { 15654 mutex_exit(&ipif->ipif_saved_ire_lock); 15655 return (NULL); 15656 } 15657 15658 irep = ipif_saved_irep; 15659 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 15660 ire_t *ire; 15661 queue_t *rfq; 15662 queue_t *stq; 15663 ifrt_t *ifrt; 15664 uchar_t *src_addr; 15665 uchar_t *gateway_addr; 15666 ushort_t type; 15667 15668 /* 15669 * When the ire was initially created and then added in 15670 * ip_rt_add(), it was created either using ipif->ipif_net_type 15671 * in the case of a traditional interface route, or as one of 15672 * the IRE_OFFSUBNET types (with the exception of 15673 * IRE_HOST types ire which is created by icmp_redirect() and 15674 * which we don't need to save or recover). In the case where 15675 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 15676 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 15677 * to satisfy software like GateD and Sun Cluster which creates 15678 * routes using the the loopback interface's address as a 15679 * gateway. 15680 * 15681 * As ifrt->ifrt_type reflects the already updated ire_type, 15682 * ire_create() will be called in the same way here as 15683 * in ip_rt_add(), namely using ipif->ipif_net_type when 15684 * the route looks like a traditional interface route (where 15685 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 15686 * the saved ifrt->ifrt_type. This means that in the case where 15687 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 15688 * ire_create() will be an IRE_LOOPBACK, it will then be turned 15689 * into an IRE_IF_NORESOLVER and then added by ire_add(). 15690 */ 15691 ifrt = (ifrt_t *)mp->b_rptr; 15692 ASSERT(ifrt->ifrt_type != IRE_CACHE); 15693 if (ifrt->ifrt_type & IRE_INTERFACE) { 15694 rfq = NULL; 15695 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 15696 ? ipif->ipif_rq : ipif->ipif_wq; 15697 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15698 ? (uint8_t *)&ifrt->ifrt_src_addr 15699 : (uint8_t *)&ipif->ipif_src_addr; 15700 gateway_addr = NULL; 15701 type = ipif->ipif_net_type; 15702 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 15703 /* Recover multiroute broadcast IRE. */ 15704 rfq = ipif->ipif_rq; 15705 stq = ipif->ipif_wq; 15706 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15707 ? (uint8_t *)&ifrt->ifrt_src_addr 15708 : (uint8_t *)&ipif->ipif_src_addr; 15709 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15710 type = ifrt->ifrt_type; 15711 } else { 15712 rfq = NULL; 15713 stq = NULL; 15714 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15715 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 15716 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15717 type = ifrt->ifrt_type; 15718 } 15719 15720 /* 15721 * Create a copy of the IRE with the saved address and netmask. 15722 */ 15723 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 15724 "0x%x/0x%x\n", 15725 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 15726 ntohl(ifrt->ifrt_addr), 15727 ntohl(ifrt->ifrt_mask))); 15728 ire = ire_create( 15729 (uint8_t *)&ifrt->ifrt_addr, 15730 (uint8_t *)&ifrt->ifrt_mask, 15731 src_addr, 15732 gateway_addr, 15733 &ifrt->ifrt_max_frag, 15734 NULL, 15735 rfq, 15736 stq, 15737 type, 15738 ipif, 15739 0, 15740 0, 15741 0, 15742 ifrt->ifrt_flags, 15743 &ifrt->ifrt_iulp_info, 15744 NULL, 15745 NULL, 15746 ipst); 15747 15748 if (ire == NULL) { 15749 mutex_exit(&ipif->ipif_saved_ire_lock); 15750 kmem_free(ipif_saved_irep, 15751 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 15752 return (NULL); 15753 } 15754 15755 /* 15756 * Some software (for example, GateD and Sun Cluster) attempts 15757 * to create (what amount to) IRE_PREFIX routes with the 15758 * loopback address as the gateway. This is primarily done to 15759 * set up prefixes with the RTF_REJECT flag set (for example, 15760 * when generating aggregate routes.) 15761 * 15762 * If the IRE type (as defined by ipif->ipif_net_type) is 15763 * IRE_LOOPBACK, then we map the request into a 15764 * IRE_IF_NORESOLVER. 15765 */ 15766 if (ipif->ipif_net_type == IRE_LOOPBACK) 15767 ire->ire_type = IRE_IF_NORESOLVER; 15768 /* 15769 * ire held by ire_add, will be refreled' towards the 15770 * the end of ipif_up_done 15771 */ 15772 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 15773 *irep = ire; 15774 irep++; 15775 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 15776 } 15777 mutex_exit(&ipif->ipif_saved_ire_lock); 15778 return (ipif_saved_irep); 15779 } 15780 15781 /* 15782 * Used to set the netmask and broadcast address to default values when the 15783 * interface is brought up. (Always called as writer.) 15784 */ 15785 static void 15786 ipif_set_default(ipif_t *ipif) 15787 { 15788 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 15789 15790 if (!ipif->ipif_isv6) { 15791 /* 15792 * Interface holds an IPv4 address. Default 15793 * mask is the natural netmask. 15794 */ 15795 if (!ipif->ipif_net_mask) { 15796 ipaddr_t v4mask; 15797 15798 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 15799 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 15800 } 15801 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15802 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15803 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15804 } else { 15805 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15806 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15807 } 15808 /* 15809 * NOTE: SunOS 4.X does this even if the broadcast address 15810 * has been already set thus we do the same here. 15811 */ 15812 if (ipif->ipif_flags & IPIF_BROADCAST) { 15813 ipaddr_t v4addr; 15814 15815 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 15816 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 15817 } 15818 } else { 15819 /* 15820 * Interface holds an IPv6-only address. Default 15821 * mask is all-ones. 15822 */ 15823 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 15824 ipif->ipif_v6net_mask = ipv6_all_ones; 15825 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15826 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15827 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15828 } else { 15829 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15830 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15831 } 15832 } 15833 } 15834 15835 /* 15836 * Return 0 if this address can be used as local address without causing 15837 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 15838 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 15839 * Note that the same IPv6 link-local address is allowed as long as the ills 15840 * are not on the same link. 15841 */ 15842 int 15843 ip_addr_availability_check(ipif_t *new_ipif) 15844 { 15845 in6_addr_t our_v6addr; 15846 ill_t *ill; 15847 ipif_t *ipif; 15848 ill_walk_context_t ctx; 15849 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 15850 15851 ASSERT(IAM_WRITER_IPIF(new_ipif)); 15852 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 15853 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 15854 15855 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 15856 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 15857 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 15858 return (0); 15859 15860 our_v6addr = new_ipif->ipif_v6lcl_addr; 15861 15862 if (new_ipif->ipif_isv6) 15863 ill = ILL_START_WALK_V6(&ctx, ipst); 15864 else 15865 ill = ILL_START_WALK_V4(&ctx, ipst); 15866 15867 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 15868 for (ipif = ill->ill_ipif; ipif != NULL; 15869 ipif = ipif->ipif_next) { 15870 if ((ipif == new_ipif) || 15871 !(ipif->ipif_flags & IPIF_UP) || 15872 (ipif->ipif_flags & IPIF_UNNUMBERED) || 15873 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 15874 &our_v6addr)) 15875 continue; 15876 15877 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 15878 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 15879 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 15880 ipif->ipif_flags |= IPIF_UNNUMBERED; 15881 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 15882 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 15883 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 15884 continue; 15885 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 15886 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 15887 continue; 15888 else if (new_ipif->ipif_ill == ill) 15889 return (EADDRINUSE); 15890 else 15891 return (EADDRNOTAVAIL); 15892 } 15893 } 15894 15895 return (0); 15896 } 15897 15898 /* 15899 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 15900 * IREs for the ipif. 15901 * When the routine returns EINPROGRESS then mp has been consumed and 15902 * the ioctl will be acked from ip_rput_dlpi. 15903 */ 15904 int 15905 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 15906 { 15907 ill_t *ill = ipif->ipif_ill; 15908 boolean_t isv6 = ipif->ipif_isv6; 15909 int err = 0; 15910 boolean_t success; 15911 uint_t ipif_orig_id; 15912 ip_stack_t *ipst = ill->ill_ipst; 15913 15914 ASSERT(IAM_WRITER_IPIF(ipif)); 15915 15916 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 15917 15918 /* Shouldn't get here if it is already up. */ 15919 if (ipif->ipif_flags & IPIF_UP) 15920 return (EALREADY); 15921 15922 /* 15923 * If this is a request to bring up a data address on an interface 15924 * under IPMP, then move the address to its IPMP meta-interface and 15925 * try to bring it up. One complication is that the zeroth ipif for 15926 * an ill is special, in that every ill always has one, and that code 15927 * throughout IP deferences ill->ill_ipif without holding any locks. 15928 */ 15929 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 15930 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 15931 ipif_t *stubipif = NULL, *moveipif = NULL; 15932 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 15933 15934 /* 15935 * The ipif being brought up should be quiesced. If it's not, 15936 * something has gone amiss and we need to bail out. (If it's 15937 * quiesced, we know it will remain so via IPIF_CHANGING.) 15938 */ 15939 mutex_enter(&ill->ill_lock); 15940 if (!ipif_is_quiescent(ipif)) { 15941 mutex_exit(&ill->ill_lock); 15942 return (EINVAL); 15943 } 15944 mutex_exit(&ill->ill_lock); 15945 15946 /* 15947 * If we're going to need to allocate ipifs, do it prior 15948 * to starting the move (and grabbing locks). 15949 */ 15950 if (ipif->ipif_id == 0) { 15951 moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15952 B_FALSE); 15953 stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15954 B_FALSE); 15955 if (moveipif == NULL || stubipif == NULL) { 15956 mi_free(moveipif); 15957 mi_free(stubipif); 15958 return (ENOMEM); 15959 } 15960 } 15961 15962 /* 15963 * Grab or transfer the ipif to move. During the move, keep 15964 * ill_g_lock held to prevent any ill walker threads from 15965 * seeing things in an inconsistent state. 15966 */ 15967 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15968 if (ipif->ipif_id != 0) { 15969 ipif_remove(ipif); 15970 } else { 15971 ipif_transfer(ipif, moveipif, stubipif); 15972 ipif = moveipif; 15973 } 15974 15975 /* 15976 * Place the ipif on the IPMP ill. If the zeroth ipif on 15977 * the IPMP ill is a stub (0.0.0.0 down address) then we 15978 * replace that one. Otherwise, pick the next available slot. 15979 */ 15980 ipif->ipif_ill = ipmp_ill; 15981 ipif_orig_id = ipif->ipif_id; 15982 15983 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 15984 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 15985 ipif = ipmp_ill->ill_ipif; 15986 } else { 15987 ipif->ipif_id = -1; 15988 if (ipif_insert(ipif, B_FALSE) != 0) { 15989 /* 15990 * No more available ipif_id's -- put it back 15991 * on the original ill and fail the operation. 15992 * Since we're writer on the ill, we can be 15993 * sure our old slot is still available. 15994 */ 15995 ipif->ipif_id = ipif_orig_id; 15996 ipif->ipif_ill = ill; 15997 if (ipif_orig_id == 0) { 15998 ipif_transfer(ipif, ill->ill_ipif, 15999 NULL); 16000 } else { 16001 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 16002 } 16003 rw_exit(&ipst->ips_ill_g_lock); 16004 return (ENOMEM); 16005 } 16006 } 16007 rw_exit(&ipst->ips_ill_g_lock); 16008 16009 /* 16010 * Tell SCTP that the ipif has moved. Note that even if we 16011 * had to allocate a new ipif, the original sequence id was 16012 * preserved and therefore SCTP won't know. 16013 */ 16014 sctp_move_ipif(ipif, ill, ipmp_ill); 16015 16016 /* 16017 * If the ipif being brought up was on slot zero, then we 16018 * first need to bring up the placeholder we stuck there. In 16019 * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call 16020 * to ipif_up() itself, if we successfully bring up the 16021 * placeholder, we'll check ill_move_ipif and bring it up too. 16022 */ 16023 if (ipif_orig_id == 0) { 16024 ASSERT(ill->ill_move_ipif == NULL); 16025 ill->ill_move_ipif = ipif; 16026 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 16027 ASSERT(ill->ill_move_ipif == NULL); 16028 if (err != EINPROGRESS) 16029 ill->ill_move_ipif = NULL; 16030 return (err); 16031 } 16032 16033 /* 16034 * Bring it up on the IPMP ill. 16035 */ 16036 return (ipif_up(ipif, q, mp)); 16037 } 16038 16039 /* Skip arp/ndp for any loopback interface. */ 16040 if (ill->ill_wq != NULL) { 16041 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 16042 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 16043 16044 if (!ill->ill_dl_up) { 16045 /* 16046 * ill_dl_up is not yet set. i.e. we are yet to 16047 * DL_BIND with the driver and this is the first 16048 * logical interface on the ill to become "up". 16049 * Tell the driver to get going (via DL_BIND_REQ). 16050 * Note that changing "significant" IFF_ flags 16051 * address/netmask etc cause a down/up dance, but 16052 * does not cause an unbind (DL_UNBIND) with the driver 16053 */ 16054 return (ill_dl_up(ill, ipif, mp, q)); 16055 } 16056 16057 /* 16058 * ipif_resolver_up may end up sending an 16059 * AR_INTERFACE_UP message to ARP, which would, in 16060 * turn send a DLPI message to the driver. ioctls are 16061 * serialized and so we cannot send more than one 16062 * interface up message at a time. If ipif_resolver_up 16063 * does send an interface up message to ARP, we get 16064 * EINPROGRESS and we will complete in ip_arp_done. 16065 */ 16066 16067 ASSERT(connp != NULL || !CONN_Q(q)); 16068 if (connp != NULL) 16069 mutex_enter(&connp->conn_lock); 16070 mutex_enter(&ill->ill_lock); 16071 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16072 mutex_exit(&ill->ill_lock); 16073 if (connp != NULL) 16074 mutex_exit(&connp->conn_lock); 16075 if (!success) 16076 return (EINTR); 16077 16078 /* 16079 * Crank up the resolver. For IPv6, this cranks up the 16080 * external resolver if one is configured, but even if an 16081 * external resolver isn't configured, it must be called to 16082 * reset DAD state. For IPv6, if an external resolver is not 16083 * being used, ipif_resolver_up() will never return 16084 * EINPROGRESS, so we can always call ipif_ndp_up() here. 16085 * Note that if an external resolver is being used, there's no 16086 * need to call ipif_ndp_up() since it will do nothing. 16087 */ 16088 err = ipif_resolver_up(ipif, Res_act_initial); 16089 if (err == EINPROGRESS) { 16090 /* We will complete it in ip_arp_done() */ 16091 return (err); 16092 } 16093 16094 if (isv6 && err == 0) 16095 err = ipif_ndp_up(ipif, B_TRUE); 16096 16097 ASSERT(err != EINPROGRESS); 16098 mp = ipsq_pending_mp_get(ipsq, &connp); 16099 ASSERT(mp != NULL); 16100 if (err != 0) 16101 return (err); 16102 } else { 16103 /* 16104 * Interfaces without underlying hardware don't do duplicate 16105 * address detection. 16106 */ 16107 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 16108 ipif->ipif_addr_ready = 1; 16109 } 16110 16111 err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif); 16112 if (err == 0 && ill->ill_move_ipif != NULL) { 16113 ipif = ill->ill_move_ipif; 16114 ill->ill_move_ipif = NULL; 16115 return (ipif_up(ipif, q, mp)); 16116 } 16117 return (err); 16118 } 16119 16120 /* 16121 * Perform a bind for the physical device. 16122 * When the routine returns EINPROGRESS then mp has been consumed and 16123 * the ioctl will be acked from ip_rput_dlpi. 16124 * Allocate an unbind message and save it until ipif_down. 16125 */ 16126 static int 16127 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16128 { 16129 areq_t *areq; 16130 mblk_t *areq_mp = NULL; 16131 mblk_t *bind_mp = NULL; 16132 mblk_t *unbind_mp = NULL; 16133 conn_t *connp; 16134 boolean_t success; 16135 uint16_t sap_addr; 16136 16137 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 16138 ASSERT(IAM_WRITER_ILL(ill)); 16139 ASSERT(mp != NULL); 16140 16141 /* Create a resolver cookie for ARP */ 16142 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 16143 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 16144 if (areq_mp == NULL) 16145 return (ENOMEM); 16146 16147 freemsg(ill->ill_resolver_mp); 16148 ill->ill_resolver_mp = areq_mp; 16149 areq = (areq_t *)areq_mp->b_rptr; 16150 sap_addr = ill->ill_sap; 16151 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 16152 } 16153 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 16154 DL_BIND_REQ); 16155 if (bind_mp == NULL) 16156 goto bad; 16157 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 16158 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 16159 16160 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 16161 if (unbind_mp == NULL) 16162 goto bad; 16163 16164 /* 16165 * Record state needed to complete this operation when the 16166 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 16167 */ 16168 ASSERT(WR(q)->q_next == NULL); 16169 connp = Q_TO_CONN(q); 16170 16171 mutex_enter(&connp->conn_lock); 16172 mutex_enter(&ipif->ipif_ill->ill_lock); 16173 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16174 mutex_exit(&ipif->ipif_ill->ill_lock); 16175 mutex_exit(&connp->conn_lock); 16176 if (!success) 16177 goto bad; 16178 16179 /* 16180 * Save the unbind message for ill_dl_down(); it will be consumed when 16181 * the interface goes down. 16182 */ 16183 ASSERT(ill->ill_unbind_mp == NULL); 16184 ill->ill_unbind_mp = unbind_mp; 16185 16186 ill_dlpi_send(ill, bind_mp); 16187 /* Send down link-layer capabilities probe if not already done. */ 16188 ill_capability_probe(ill); 16189 16190 /* 16191 * Sysid used to rely on the fact that netboots set domainname 16192 * and the like. Now that miniroot boots aren't strictly netboots 16193 * and miniroot network configuration is driven from userland 16194 * these things still need to be set. This situation can be detected 16195 * by comparing the interface being configured here to the one 16196 * dhcifname was set to reference by the boot loader. Once sysid is 16197 * converted to use dhcp_ipc_getinfo() this call can go away. 16198 */ 16199 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 16200 (strcmp(ill->ill_name, dhcifname) == 0) && 16201 (strlen(srpc_domain) == 0)) { 16202 if (dhcpinit() != 0) 16203 cmn_err(CE_WARN, "no cached dhcp response"); 16204 } 16205 16206 /* 16207 * This operation will complete in ip_rput_dlpi with either 16208 * a DL_BIND_ACK or DL_ERROR_ACK. 16209 */ 16210 return (EINPROGRESS); 16211 bad: 16212 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 16213 16214 freemsg(bind_mp); 16215 freemsg(unbind_mp); 16216 return (ENOMEM); 16217 } 16218 16219 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 16220 16221 /* 16222 * DLPI and ARP is up. 16223 * Create all the IREs associated with an interface bring up multicast. 16224 * Set the interface flag and finish other initialization 16225 * that potentially had to be differed to after DL_BIND_ACK. 16226 */ 16227 int 16228 ipif_up_done(ipif_t *ipif) 16229 { 16230 ire_t *ire_array[20]; 16231 ire_t **irep = ire_array; 16232 ire_t **irep1; 16233 ipaddr_t net_mask = 0; 16234 ipaddr_t subnet_mask, route_mask; 16235 ill_t *ill = ipif->ipif_ill; 16236 queue_t *stq; 16237 ipif_t *src_ipif; 16238 ipif_t *tmp_ipif; 16239 boolean_t flush_ire_cache = B_TRUE; 16240 int err = 0; 16241 ire_t **ipif_saved_irep = NULL; 16242 int ipif_saved_ire_cnt; 16243 int cnt; 16244 boolean_t src_ipif_held = B_FALSE; 16245 boolean_t loopback = B_FALSE; 16246 ip_stack_t *ipst = ill->ill_ipst; 16247 16248 ip1dbg(("ipif_up_done(%s:%u)\n", 16249 ipif->ipif_ill->ill_name, ipif->ipif_id)); 16250 /* Check if this is a loopback interface */ 16251 if (ipif->ipif_ill->ill_wq == NULL) 16252 loopback = B_TRUE; 16253 16254 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16255 /* 16256 * If all other interfaces for this ill are down or DEPRECATED, 16257 * or otherwise unsuitable for source address selection, remove 16258 * any IRE_CACHE entries for this ill to make sure source 16259 * address selection gets to take this new ipif into account. 16260 * No need to hold ill_lock while traversing the ipif list since 16261 * we are writer 16262 */ 16263 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 16264 tmp_ipif = tmp_ipif->ipif_next) { 16265 if (((tmp_ipif->ipif_flags & 16266 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 16267 !(tmp_ipif->ipif_flags & IPIF_UP)) || 16268 (tmp_ipif == ipif)) 16269 continue; 16270 /* first useable pre-existing interface */ 16271 flush_ire_cache = B_FALSE; 16272 break; 16273 } 16274 if (flush_ire_cache) 16275 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16276 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 16277 16278 /* 16279 * Figure out which way the send-to queue should go. Only 16280 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 16281 * should show up here. 16282 */ 16283 switch (ill->ill_net_type) { 16284 case IRE_IF_RESOLVER: 16285 stq = ill->ill_rq; 16286 break; 16287 case IRE_IF_NORESOLVER: 16288 case IRE_LOOPBACK: 16289 stq = ill->ill_wq; 16290 break; 16291 default: 16292 return (EINVAL); 16293 } 16294 16295 if (IS_LOOPBACK(ill)) { 16296 /* 16297 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 16298 * ipif_lookup_on_name(), but in the case of zones we can have 16299 * several loopback addresses on lo0. So all the interfaces with 16300 * loopback addresses need to be marked IRE_LOOPBACK. 16301 */ 16302 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 16303 htonl(INADDR_LOOPBACK)) 16304 ipif->ipif_ire_type = IRE_LOOPBACK; 16305 else 16306 ipif->ipif_ire_type = IRE_LOCAL; 16307 } 16308 16309 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) || 16310 ((ipif->ipif_flags & IPIF_DEPRECATED) && 16311 !(ipif->ipif_flags & IPIF_NOFAILOVER))) { 16312 /* 16313 * Can't use our source address. Select a different 16314 * source address for the IRE_INTERFACE and IRE_LOCAL 16315 */ 16316 src_ipif = ipif_select_source(ipif->ipif_ill, 16317 ipif->ipif_subnet, ipif->ipif_zoneid); 16318 if (src_ipif == NULL) 16319 src_ipif = ipif; /* Last resort */ 16320 else 16321 src_ipif_held = B_TRUE; 16322 } else { 16323 src_ipif = ipif; 16324 } 16325 16326 /* Create all the IREs associated with this interface */ 16327 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16328 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16329 16330 /* 16331 * If we're on a labeled system then make sure that zone- 16332 * private addresses have proper remote host database entries. 16333 */ 16334 if (is_system_labeled() && 16335 ipif->ipif_ire_type != IRE_LOOPBACK && 16336 !tsol_check_interface_address(ipif)) 16337 return (EINVAL); 16338 16339 /* Register the source address for __sin6_src_id */ 16340 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 16341 ipif->ipif_zoneid, ipst); 16342 if (err != 0) { 16343 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 16344 return (err); 16345 } 16346 16347 /* If the interface address is set, create the local IRE. */ 16348 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 16349 (void *)ipif, 16350 ipif->ipif_ire_type, 16351 ntohl(ipif->ipif_lcl_addr))); 16352 *irep++ = ire_create( 16353 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 16354 (uchar_t *)&ip_g_all_ones, /* mask */ 16355 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 16356 NULL, /* no gateway */ 16357 &ip_loopback_mtuplus, /* max frag size */ 16358 NULL, 16359 ipif->ipif_rq, /* recv-from queue */ 16360 NULL, /* no send-to queue */ 16361 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 16362 ipif, 16363 0, 16364 0, 16365 0, 16366 (ipif->ipif_flags & IPIF_PRIVATE) ? 16367 RTF_PRIVATE : 0, 16368 &ire_uinfo_null, 16369 NULL, 16370 NULL, 16371 ipst); 16372 } else { 16373 ip1dbg(( 16374 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 16375 ipif->ipif_ire_type, 16376 ntohl(ipif->ipif_lcl_addr), 16377 (uint_t)ipif->ipif_flags)); 16378 } 16379 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16380 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16381 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16382 } else { 16383 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 16384 } 16385 16386 subnet_mask = ipif->ipif_net_mask; 16387 16388 /* 16389 * If mask was not specified, use natural netmask of 16390 * interface address. Also, store this mask back into the 16391 * ipif struct. 16392 */ 16393 if (subnet_mask == 0) { 16394 subnet_mask = net_mask; 16395 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 16396 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 16397 ipif->ipif_v6subnet); 16398 } 16399 16400 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 16401 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 16402 ipif->ipif_subnet != INADDR_ANY) { 16403 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 16404 16405 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 16406 route_mask = IP_HOST_MASK; 16407 } else { 16408 route_mask = subnet_mask; 16409 } 16410 16411 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 16412 "creating if IRE ill_net_type 0x%x for 0x%x\n", 16413 (void *)ipif, (void *)ill, 16414 ill->ill_net_type, 16415 ntohl(ipif->ipif_subnet))); 16416 *irep++ = ire_create( 16417 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 16418 (uchar_t *)&route_mask, /* mask */ 16419 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 16420 NULL, /* no gateway */ 16421 &ipif->ipif_mtu, /* max frag */ 16422 NULL, 16423 NULL, /* no recv queue */ 16424 stq, /* send-to queue */ 16425 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16426 ipif, 16427 0, 16428 0, 16429 0, 16430 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 16431 &ire_uinfo_null, 16432 NULL, 16433 NULL, 16434 ipst); 16435 } 16436 16437 /* 16438 * Create any necessary broadcast IREs. 16439 */ 16440 if (ipif->ipif_flags & IPIF_BROADCAST) 16441 irep = ipif_create_bcast_ires(ipif, irep); 16442 16443 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16444 16445 /* If an earlier ire_create failed, get out now */ 16446 for (irep1 = irep; irep1 > ire_array; ) { 16447 irep1--; 16448 if (*irep1 == NULL) { 16449 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 16450 err = ENOMEM; 16451 goto bad; 16452 } 16453 } 16454 16455 /* 16456 * Need to atomically check for IP address availability under 16457 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 16458 * ills or new ipifs can be added while we are checking availability. 16459 */ 16460 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16461 mutex_enter(&ipst->ips_ip_addr_avail_lock); 16462 /* Mark it up, and increment counters. */ 16463 ipif->ipif_flags |= IPIF_UP; 16464 ill->ill_ipif_up_count++; 16465 err = ip_addr_availability_check(ipif); 16466 mutex_exit(&ipst->ips_ip_addr_avail_lock); 16467 rw_exit(&ipst->ips_ill_g_lock); 16468 16469 if (err != 0) { 16470 /* 16471 * Our address may already be up on the same ill. In this case, 16472 * the ARP entry for our ipif replaced the one for the other 16473 * ipif. So we don't want to delete it (otherwise the other ipif 16474 * would be unable to send packets). 16475 * ip_addr_availability_check() identifies this case for us and 16476 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 16477 * which is the expected error code. 16478 */ 16479 if (err == EADDRINUSE) { 16480 freemsg(ipif->ipif_arp_del_mp); 16481 ipif->ipif_arp_del_mp = NULL; 16482 err = EADDRNOTAVAIL; 16483 } 16484 ill->ill_ipif_up_count--; 16485 ipif->ipif_flags &= ~IPIF_UP; 16486 goto bad; 16487 } 16488 16489 /* 16490 * Add in all newly created IREs. ire_create_bcast() has 16491 * already checked for duplicates of the IRE_BROADCAST type. 16492 */ 16493 for (irep1 = irep; irep1 > ire_array; ) { 16494 irep1--; 16495 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 16496 /* 16497 * refheld by ire_add. refele towards the end of the func 16498 */ 16499 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 16500 } 16501 16502 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 16503 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 16504 ipif_saved_irep = ipif_recover_ire(ipif); 16505 16506 if (!loopback) { 16507 /* 16508 * If the broadcast address has been set, make sure it makes 16509 * sense based on the interface address. 16510 * Only match on ill since we are sharing broadcast addresses. 16511 */ 16512 if ((ipif->ipif_brd_addr != INADDR_ANY) && 16513 (ipif->ipif_flags & IPIF_BROADCAST)) { 16514 ire_t *ire; 16515 16516 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 16517 IRE_BROADCAST, ipif, ALL_ZONES, 16518 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 16519 16520 if (ire == NULL) { 16521 /* 16522 * If there isn't a matching broadcast IRE, 16523 * revert to the default for this netmask. 16524 */ 16525 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16526 mutex_enter(&ipif->ipif_ill->ill_lock); 16527 ipif_set_default(ipif); 16528 mutex_exit(&ipif->ipif_ill->ill_lock); 16529 } else { 16530 ire_refrele(ire); 16531 } 16532 } 16533 16534 } 16535 16536 if (ill->ill_need_recover_multicast) { 16537 /* 16538 * Need to recover all multicast memberships in the driver. 16539 * This had to be deferred until we had attached. The same 16540 * code exists in ipif_up_done_v6() to recover IPv6 16541 * memberships. 16542 * 16543 * Note that it would be preferable to unconditionally do the 16544 * ill_recover_multicast() in ill_dl_up(), but we cannot do 16545 * that since ill_join_allmulti() depends on ill_dl_up being 16546 * set, and it is not set until we receive a DL_BIND_ACK after 16547 * having called ill_dl_up(). 16548 */ 16549 ill_recover_multicast(ill); 16550 } 16551 16552 if (ill->ill_ipif_up_count == 1) { 16553 /* 16554 * Since the interface is now up, it may now be active. 16555 */ 16556 if (IS_UNDER_IPMP(ill)) 16557 ipmp_ill_refresh_active(ill); 16558 16559 /* 16560 * If this is an IPMP interface, we may now be able to 16561 * establish ARP entries. 16562 */ 16563 if (IS_IPMP(ill)) 16564 ipmp_illgrp_refresh_arpent(ill->ill_grp); 16565 } 16566 16567 /* Join the allhosts multicast address */ 16568 ipif_multicast_up(ipif); 16569 16570 /* 16571 * See if anybody else would benefit from our new ipif. 16572 */ 16573 if (!loopback && 16574 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16575 ill_update_source_selection(ill); 16576 } 16577 16578 for (irep1 = irep; irep1 > ire_array; ) { 16579 irep1--; 16580 if (*irep1 != NULL) { 16581 /* was held in ire_add */ 16582 ire_refrele(*irep1); 16583 } 16584 } 16585 16586 cnt = ipif_saved_ire_cnt; 16587 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 16588 if (*irep1 != NULL) { 16589 /* was held in ire_add */ 16590 ire_refrele(*irep1); 16591 } 16592 } 16593 16594 if (!loopback && ipif->ipif_addr_ready) { 16595 /* Broadcast an address mask reply. */ 16596 ipif_mask_reply(ipif); 16597 } 16598 if (ipif_saved_irep != NULL) { 16599 kmem_free(ipif_saved_irep, 16600 ipif_saved_ire_cnt * sizeof (ire_t *)); 16601 } 16602 if (src_ipif_held) 16603 ipif_refrele(src_ipif); 16604 16605 /* 16606 * This had to be deferred until we had bound. Tell routing sockets and 16607 * others that this interface is up if it looks like the address has 16608 * been validated. Otherwise, if it isn't ready yet, wait for 16609 * duplicate address detection to do its thing. 16610 */ 16611 if (ipif->ipif_addr_ready) 16612 ipif_up_notify(ipif); 16613 return (0); 16614 16615 bad: 16616 ip1dbg(("ipif_up_done: FAILED \n")); 16617 16618 while (irep > ire_array) { 16619 irep--; 16620 if (*irep != NULL) 16621 ire_delete(*irep); 16622 } 16623 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 16624 16625 if (ipif_saved_irep != NULL) { 16626 kmem_free(ipif_saved_irep, 16627 ipif_saved_ire_cnt * sizeof (ire_t *)); 16628 } 16629 if (src_ipif_held) 16630 ipif_refrele(src_ipif); 16631 16632 ipif_resolver_down(ipif); 16633 return (err); 16634 } 16635 16636 /* 16637 * Turn off the ARP with the ILLF_NOARP flag. 16638 */ 16639 static int 16640 ill_arp_off(ill_t *ill) 16641 { 16642 mblk_t *arp_off_mp = NULL; 16643 mblk_t *arp_on_mp = NULL; 16644 16645 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 16646 16647 ASSERT(IAM_WRITER_ILL(ill)); 16648 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16649 16650 /* 16651 * If the on message is still around we've already done 16652 * an arp_off without doing an arp_on thus there is no 16653 * work needed. 16654 */ 16655 if (ill->ill_arp_on_mp != NULL) 16656 return (0); 16657 16658 /* 16659 * Allocate an ARP on message (to be saved) and an ARP off message 16660 */ 16661 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 16662 if (!arp_off_mp) 16663 return (ENOMEM); 16664 16665 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 16666 if (!arp_on_mp) 16667 goto failed; 16668 16669 ASSERT(ill->ill_arp_on_mp == NULL); 16670 ill->ill_arp_on_mp = arp_on_mp; 16671 16672 /* Send an AR_INTERFACE_OFF request */ 16673 putnext(ill->ill_rq, arp_off_mp); 16674 return (0); 16675 failed: 16676 16677 if (arp_off_mp) 16678 freemsg(arp_off_mp); 16679 return (ENOMEM); 16680 } 16681 16682 /* 16683 * Turn on ARP by turning off the ILLF_NOARP flag. 16684 */ 16685 static int 16686 ill_arp_on(ill_t *ill) 16687 { 16688 mblk_t *mp; 16689 16690 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 16691 16692 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16693 16694 ASSERT(IAM_WRITER_ILL(ill)); 16695 /* 16696 * Send an AR_INTERFACE_ON request if we have already done 16697 * an arp_off (which allocated the message). 16698 */ 16699 if (ill->ill_arp_on_mp != NULL) { 16700 mp = ill->ill_arp_on_mp; 16701 ill->ill_arp_on_mp = NULL; 16702 putnext(ill->ill_rq, mp); 16703 } 16704 return (0); 16705 } 16706 16707 /* 16708 * Checks for availbility of a usable source address (if there is one) when the 16709 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 16710 * this selection is done regardless of the destination. 16711 */ 16712 boolean_t 16713 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 16714 { 16715 uint_t ifindex; 16716 ipif_t *ipif = NULL; 16717 ill_t *uill; 16718 boolean_t isv6; 16719 ip_stack_t *ipst = ill->ill_ipst; 16720 16721 ASSERT(ill != NULL); 16722 16723 isv6 = ill->ill_isv6; 16724 ifindex = ill->ill_usesrc_ifindex; 16725 if (ifindex != 0) { 16726 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 16727 NULL, ipst); 16728 if (uill == NULL) 16729 return (NULL); 16730 mutex_enter(&uill->ill_lock); 16731 for (ipif = uill->ill_ipif; ipif != NULL; 16732 ipif = ipif->ipif_next) { 16733 if (!IPIF_CAN_LOOKUP(ipif)) 16734 continue; 16735 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16736 continue; 16737 if (!(ipif->ipif_flags & IPIF_UP)) 16738 continue; 16739 if (ipif->ipif_zoneid != zoneid) 16740 continue; 16741 if ((isv6 && 16742 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 16743 (ipif->ipif_lcl_addr == INADDR_ANY)) 16744 continue; 16745 mutex_exit(&uill->ill_lock); 16746 ill_refrele(uill); 16747 return (B_TRUE); 16748 } 16749 mutex_exit(&uill->ill_lock); 16750 ill_refrele(uill); 16751 } 16752 return (B_FALSE); 16753 } 16754 16755 /* 16756 * IP source address type, sorted from worst to best. For a given type, 16757 * always prefer IP addresses on the same subnet. All-zones addresses are 16758 * suboptimal because they pose problems with unlabeled destinations. 16759 */ 16760 typedef enum { 16761 IPIF_NONE, 16762 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 16763 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 16764 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 16765 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 16766 IPIF_DIFFNET, /* normal and different subnet */ 16767 IPIF_SAMENET /* normal and same subnet */ 16768 } ipif_type_t; 16769 16770 /* 16771 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 16772 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 16773 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 16774 * the first one, unless IPMP is used in which case we round-robin among them; 16775 * see below for more. 16776 * 16777 * Returns NULL if there is no suitable source address for the ill. 16778 * This only occurs when there is no valid source address for the ill. 16779 */ 16780 ipif_t * 16781 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 16782 { 16783 ill_t *usill = NULL; 16784 ill_t *ipmp_ill = NULL; 16785 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 16786 ipif_type_t type, best_type; 16787 tsol_tpc_t *src_rhtp, *dst_rhtp; 16788 ip_stack_t *ipst = ill->ill_ipst; 16789 boolean_t samenet; 16790 16791 if (ill->ill_usesrc_ifindex != 0) { 16792 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 16793 B_FALSE, NULL, NULL, NULL, NULL, ipst); 16794 if (usill != NULL) 16795 ill = usill; /* Select source from usesrc ILL */ 16796 else 16797 return (NULL); 16798 } 16799 16800 /* 16801 * Test addresses should never be used for source address selection, 16802 * so if we were passed one, switch to the IPMP meta-interface. 16803 */ 16804 if (IS_UNDER_IPMP(ill)) { 16805 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 16806 ill = ipmp_ill; /* Select source from IPMP ill */ 16807 else 16808 return (NULL); 16809 } 16810 16811 /* 16812 * If we're dealing with an unlabeled destination on a labeled system, 16813 * make sure that we ignore source addresses that are incompatible with 16814 * the destination's default label. That destination's default label 16815 * must dominate the minimum label on the source address. 16816 */ 16817 dst_rhtp = NULL; 16818 if (is_system_labeled()) { 16819 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 16820 if (dst_rhtp == NULL) 16821 return (NULL); 16822 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 16823 TPC_RELE(dst_rhtp); 16824 dst_rhtp = NULL; 16825 } 16826 } 16827 16828 /* 16829 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 16830 * can be deleted. But an ipif/ill can get CONDEMNED any time. 16831 * After selecting the right ipif, under ill_lock make sure ipif is 16832 * not condemned, and increment refcnt. If ipif is CONDEMNED, 16833 * we retry. Inside the loop we still need to check for CONDEMNED, 16834 * but not under a lock. 16835 */ 16836 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16837 retry: 16838 /* 16839 * For source address selection, we treat the ipif list as circular 16840 * and continue until we get back to where we started. This allows 16841 * IPMP to vary source address selection (which improves inbound load 16842 * spreading) by caching its last ending point and starting from 16843 * there. NOTE: we don't have to worry about ill_src_ipif changing 16844 * ills since that can't happen on the IPMP ill. 16845 */ 16846 start_ipif = ill->ill_ipif; 16847 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 16848 start_ipif = ill->ill_src_ipif; 16849 16850 ipif = start_ipif; 16851 best_ipif = NULL; 16852 best_type = IPIF_NONE; 16853 do { 16854 if ((next_ipif = ipif->ipif_next) == NULL) 16855 next_ipif = ill->ill_ipif; 16856 16857 if (!IPIF_CAN_LOOKUP(ipif)) 16858 continue; 16859 /* Always skip NOLOCAL and ANYCAST interfaces */ 16860 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16861 continue; 16862 if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready) 16863 continue; 16864 if (ipif->ipif_zoneid != zoneid && 16865 ipif->ipif_zoneid != ALL_ZONES) 16866 continue; 16867 16868 /* 16869 * Interfaces with 0.0.0.0 address are allowed to be UP, but 16870 * are not valid as source addresses. 16871 */ 16872 if (ipif->ipif_lcl_addr == INADDR_ANY) 16873 continue; 16874 16875 /* 16876 * Check compatibility of local address for destination's 16877 * default label if we're on a labeled system. Incompatible 16878 * addresses can't be used at all. 16879 */ 16880 if (dst_rhtp != NULL) { 16881 boolean_t incompat; 16882 16883 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 16884 IPV4_VERSION, B_FALSE); 16885 if (src_rhtp == NULL) 16886 continue; 16887 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 16888 src_rhtp->tpc_tp.tp_doi != 16889 dst_rhtp->tpc_tp.tp_doi || 16890 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 16891 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 16892 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 16893 src_rhtp->tpc_tp.tp_sl_set_cipso)); 16894 TPC_RELE(src_rhtp); 16895 if (incompat) 16896 continue; 16897 } 16898 16899 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 16900 16901 if (ipif->ipif_flags & IPIF_DEPRECATED) { 16902 type = samenet ? IPIF_SAMENET_DEPRECATED : 16903 IPIF_DIFFNET_DEPRECATED; 16904 } else if (ipif->ipif_zoneid == ALL_ZONES) { 16905 type = samenet ? IPIF_SAMENET_ALLZONES : 16906 IPIF_DIFFNET_ALLZONES; 16907 } else { 16908 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 16909 } 16910 16911 if (type > best_type) { 16912 best_type = type; 16913 best_ipif = ipif; 16914 if (best_type == IPIF_SAMENET) 16915 break; /* can't get better */ 16916 } 16917 } while ((ipif = next_ipif) != start_ipif); 16918 16919 if ((ipif = best_ipif) != NULL) { 16920 mutex_enter(&ipif->ipif_ill->ill_lock); 16921 if (!IPIF_CAN_LOOKUP(ipif)) { 16922 mutex_exit(&ipif->ipif_ill->ill_lock); 16923 goto retry; 16924 } 16925 ipif_refhold_locked(ipif); 16926 16927 /* 16928 * For IPMP, update the source ipif rotor to the next ipif, 16929 * provided we can look it up. (We must not use it if it's 16930 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 16931 * ipif_free() checked ill_src_ipif.) 16932 */ 16933 if (IS_IPMP(ill) && ipif != NULL) { 16934 next_ipif = ipif->ipif_next; 16935 if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif)) 16936 ill->ill_src_ipif = next_ipif; 16937 else 16938 ill->ill_src_ipif = NULL; 16939 } 16940 mutex_exit(&ipif->ipif_ill->ill_lock); 16941 } 16942 16943 rw_exit(&ipst->ips_ill_g_lock); 16944 if (usill != NULL) 16945 ill_refrele(usill); 16946 if (ipmp_ill != NULL) 16947 ill_refrele(ipmp_ill); 16948 if (dst_rhtp != NULL) 16949 TPC_RELE(dst_rhtp); 16950 16951 #ifdef DEBUG 16952 if (ipif == NULL) { 16953 char buf1[INET6_ADDRSTRLEN]; 16954 16955 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 16956 ill->ill_name, 16957 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 16958 } else { 16959 char buf1[INET6_ADDRSTRLEN]; 16960 char buf2[INET6_ADDRSTRLEN]; 16961 16962 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 16963 ipif->ipif_ill->ill_name, 16964 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 16965 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 16966 buf2, sizeof (buf2)))); 16967 } 16968 #endif /* DEBUG */ 16969 return (ipif); 16970 } 16971 16972 /* 16973 * If old_ipif is not NULL, see if ipif was derived from old 16974 * ipif and if so, recreate the interface route by re-doing 16975 * source address selection. This happens when ipif_down -> 16976 * ipif_update_other_ipifs calls us. 16977 * 16978 * If old_ipif is NULL, just redo the source address selection 16979 * if needed. This happens when ipif_up_done calls us. 16980 */ 16981 static void 16982 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 16983 { 16984 ire_t *ire; 16985 ire_t *ipif_ire; 16986 queue_t *stq; 16987 ipif_t *nipif; 16988 ill_t *ill; 16989 boolean_t need_rele = B_FALSE; 16990 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16991 16992 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 16993 ASSERT(IAM_WRITER_IPIF(ipif)); 16994 16995 ill = ipif->ipif_ill; 16996 if (!(ipif->ipif_flags & 16997 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16998 /* 16999 * Can't possibly have borrowed the source 17000 * from old_ipif. 17001 */ 17002 return; 17003 } 17004 17005 /* 17006 * Is there any work to be done? No work if the address 17007 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 17008 * ipif_select_source() does not borrow addresses from 17009 * NOLOCAL and ANYCAST interfaces). 17010 */ 17011 if ((old_ipif != NULL) && 17012 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 17013 (old_ipif->ipif_ill->ill_wq == NULL) || 17014 (old_ipif->ipif_flags & 17015 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 17016 return; 17017 } 17018 17019 /* 17020 * Perform the same checks as when creating the 17021 * IRE_INTERFACE in ipif_up_done. 17022 */ 17023 if (!(ipif->ipif_flags & IPIF_UP)) 17024 return; 17025 17026 if ((ipif->ipif_flags & IPIF_NOXMIT) || 17027 (ipif->ipif_subnet == INADDR_ANY)) 17028 return; 17029 17030 ipif_ire = ipif_to_ire(ipif); 17031 if (ipif_ire == NULL) 17032 return; 17033 17034 /* 17035 * We know that ipif uses some other source for its 17036 * IRE_INTERFACE. Is it using the source of this 17037 * old_ipif? 17038 */ 17039 if (old_ipif != NULL && 17040 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 17041 ire_refrele(ipif_ire); 17042 return; 17043 } 17044 if (ip_debug > 2) { 17045 /* ip1dbg */ 17046 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 17047 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 17048 } 17049 17050 stq = ipif_ire->ire_stq; 17051 17052 /* 17053 * Can't use our source address. Select a different 17054 * source address for the IRE_INTERFACE. 17055 */ 17056 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 17057 if (nipif == NULL) { 17058 /* Last resort - all ipif's have IPIF_NOLOCAL */ 17059 nipif = ipif; 17060 } else { 17061 need_rele = B_TRUE; 17062 } 17063 17064 ire = ire_create( 17065 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 17066 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 17067 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 17068 NULL, /* no gateway */ 17069 &ipif->ipif_mtu, /* max frag */ 17070 NULL, /* no src nce */ 17071 NULL, /* no recv from queue */ 17072 stq, /* send-to queue */ 17073 ill->ill_net_type, /* IF_[NO]RESOLVER */ 17074 ipif, 17075 0, 17076 0, 17077 0, 17078 0, 17079 &ire_uinfo_null, 17080 NULL, 17081 NULL, 17082 ipst); 17083 17084 if (ire != NULL) { 17085 ire_t *ret_ire; 17086 int error; 17087 17088 /* 17089 * We don't need ipif_ire anymore. We need to delete 17090 * before we add so that ire_add does not detect 17091 * duplicates. 17092 */ 17093 ire_delete(ipif_ire); 17094 ret_ire = ire; 17095 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 17096 ASSERT(error == 0); 17097 ASSERT(ire == ret_ire); 17098 /* Held in ire_add */ 17099 ire_refrele(ret_ire); 17100 } 17101 /* 17102 * Either we are falling through from above or could not 17103 * allocate a replacement. 17104 */ 17105 ire_refrele(ipif_ire); 17106 if (need_rele) 17107 ipif_refrele(nipif); 17108 } 17109 17110 /* 17111 * This old_ipif is going away. 17112 * 17113 * Determine if any other ipif's are using our address as 17114 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 17115 * IPIF_DEPRECATED). 17116 * Find the IRE_INTERFACE for such ipifs and recreate them 17117 * to use an different source address following the rules in 17118 * ipif_up_done. 17119 */ 17120 static void 17121 ipif_update_other_ipifs(ipif_t *old_ipif) 17122 { 17123 ipif_t *ipif; 17124 ill_t *ill; 17125 char buf[INET6_ADDRSTRLEN]; 17126 17127 ASSERT(IAM_WRITER_IPIF(old_ipif)); 17128 17129 ill = old_ipif->ipif_ill; 17130 17131 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name, 17132 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf)))); 17133 17134 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17135 if (ipif == old_ipif) 17136 continue; 17137 ipif_recreate_interface_routes(old_ipif, ipif); 17138 } 17139 } 17140 17141 /* ARGSUSED */ 17142 int 17143 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17144 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17145 { 17146 /* 17147 * ill_phyint_reinit merged the v4 and v6 into a single 17148 * ipsq. We might not have been able to complete the 17149 * operation in ipif_set_values, if we could not become 17150 * exclusive. If so restart it here. 17151 */ 17152 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17153 } 17154 17155 /* 17156 * Can operate on either a module or a driver queue. 17157 * Returns an error if not a module queue. 17158 */ 17159 /* ARGSUSED */ 17160 int 17161 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17162 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17163 { 17164 queue_t *q1 = q; 17165 char *cp; 17166 char interf_name[LIFNAMSIZ]; 17167 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 17168 17169 if (q->q_next == NULL) { 17170 ip1dbg(( 17171 "if_unitsel: IF_UNITSEL: no q_next\n")); 17172 return (EINVAL); 17173 } 17174 17175 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 17176 return (EALREADY); 17177 17178 do { 17179 q1 = q1->q_next; 17180 } while (q1->q_next); 17181 cp = q1->q_qinfo->qi_minfo->mi_idname; 17182 (void) sprintf(interf_name, "%s%d", cp, ppa); 17183 17184 /* 17185 * Here we are not going to delay the ioack until after 17186 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 17187 * original ioctl message before sending the requests. 17188 */ 17189 return (ipif_set_values(q, mp, interf_name, &ppa)); 17190 } 17191 17192 /* ARGSUSED */ 17193 int 17194 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17195 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17196 { 17197 return (ENXIO); 17198 } 17199 17200 /* 17201 * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the 17202 * minimum (but complete) set exist. This is necessary when adding or 17203 * removing an interface to/from an IPMP group, since interfaces in an 17204 * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever 17205 * its test address subnets overlap with IPMP data addresses). It's also 17206 * used to refresh the IRE_BROADCAST entries associated with the IPMP 17207 * interface when the nominated broadcast interface changes. 17208 */ 17209 void 17210 ill_refresh_bcast(ill_t *ill) 17211 { 17212 ire_t *ire_array[12]; /* max ipif_create_bcast_ires() can create */ 17213 ire_t **irep; 17214 ipif_t *ipif; 17215 17216 ASSERT(!ill->ill_isv6); 17217 ASSERT(IAM_WRITER_ILL(ill)); 17218 17219 /* 17220 * Remove any old broadcast IREs. 17221 */ 17222 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST, 17223 ill_broadcast_delete, ill, ill); 17224 17225 /* 17226 * Create new ones for any ipifs that are up and broadcast-capable. 17227 */ 17228 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17229 if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) != 17230 (IPIF_UP|IPIF_BROADCAST)) 17231 continue; 17232 17233 irep = ipif_create_bcast_ires(ipif, ire_array); 17234 while (irep-- > ire_array) { 17235 (void) ire_add(irep, NULL, NULL, NULL, B_FALSE); 17236 if (*irep != NULL) 17237 ire_refrele(*irep); 17238 } 17239 } 17240 } 17241 17242 /* 17243 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 17244 * `irep'. Returns a pointer to the next free `irep' entry (just like 17245 * ire_check_and_create_bcast()). 17246 */ 17247 static ire_t ** 17248 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 17249 { 17250 ipaddr_t addr; 17251 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 17252 ipaddr_t subnetmask = ipif->ipif_net_mask; 17253 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 17254 17255 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 17256 17257 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 17258 17259 if (ipif->ipif_lcl_addr == INADDR_ANY || 17260 (ipif->ipif_flags & IPIF_NOLOCAL)) 17261 netmask = htonl(IN_CLASSA_NET); /* fallback */ 17262 17263 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 17264 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 17265 17266 /* 17267 * For backward compatibility, we create net broadcast IREs based on 17268 * the old "IP address class system", since some old machines only 17269 * respond to these class derived net broadcast. However, we must not 17270 * create these net broadcast IREs if the subnetmask is shorter than 17271 * the IP address class based derived netmask. Otherwise, we may 17272 * create a net broadcast address which is the same as an IP address 17273 * on the subnet -- and then TCP will refuse to talk to that address. 17274 */ 17275 if (netmask < subnetmask) { 17276 addr = netmask & ipif->ipif_subnet; 17277 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17278 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 17279 flags); 17280 } 17281 17282 /* 17283 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 17284 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 17285 * created. Creating these broadcast IREs will only create confusion 17286 * as `addr' will be the same as the IP address. 17287 */ 17288 if (subnetmask != 0xFFFFFFFF) { 17289 addr = ipif->ipif_subnet; 17290 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17291 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 17292 irep, flags); 17293 } 17294 17295 return (irep); 17296 } 17297 17298 /* 17299 * Broadcast IRE info structure used in the functions below. Since we 17300 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 17301 */ 17302 typedef struct bcast_ireinfo { 17303 uchar_t bi_type; /* BCAST_* value from below */ 17304 uchar_t bi_willdie:1, /* will this IRE be going away? */ 17305 bi_needrep:1, /* do we need to replace it? */ 17306 bi_haverep:1, /* have we replaced it? */ 17307 bi_pad:5; 17308 ipaddr_t bi_addr; /* IRE address */ 17309 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 17310 } bcast_ireinfo_t; 17311 17312 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 17313 17314 /* 17315 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 17316 * return B_TRUE if it should immediately be used to recreate the IRE. 17317 */ 17318 static boolean_t 17319 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 17320 { 17321 ipaddr_t addr; 17322 17323 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 17324 17325 switch (bireinfop->bi_type) { 17326 case BCAST_NET: 17327 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 17328 if (addr != bireinfop->bi_addr) 17329 return (B_FALSE); 17330 break; 17331 case BCAST_SUBNET: 17332 if (ipif->ipif_subnet != bireinfop->bi_addr) 17333 return (B_FALSE); 17334 break; 17335 } 17336 17337 bireinfop->bi_needrep = 1; 17338 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 17339 if (bireinfop->bi_backup == NULL) 17340 bireinfop->bi_backup = ipif; 17341 return (B_FALSE); 17342 } 17343 return (B_TRUE); 17344 } 17345 17346 /* 17347 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 17348 * them ala ire_check_and_create_bcast(). 17349 */ 17350 static ire_t ** 17351 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 17352 { 17353 ipaddr_t mask, addr; 17354 17355 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 17356 17357 addr = bireinfop->bi_addr; 17358 irep = ire_create_bcast(ipif, addr, irep); 17359 17360 switch (bireinfop->bi_type) { 17361 case BCAST_NET: 17362 mask = ip_net_mask(ipif->ipif_subnet); 17363 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17364 break; 17365 case BCAST_SUBNET: 17366 mask = ipif->ipif_net_mask; 17367 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17368 break; 17369 } 17370 17371 bireinfop->bi_haverep = 1; 17372 return (irep); 17373 } 17374 17375 /* 17376 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 17377 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 17378 * that are going away are still needed. If so, have ipif_create_bcast() 17379 * recreate them (except for the deprecated case, as explained below). 17380 */ 17381 static ire_t ** 17382 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 17383 ire_t **irep) 17384 { 17385 int i; 17386 ipif_t *ipif; 17387 17388 ASSERT(!ill->ill_isv6); 17389 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17390 /* 17391 * Skip this ipif if it's (a) the one being taken down, (b) 17392 * not in the same zone, or (c) has no valid local address. 17393 */ 17394 if (ipif == test_ipif || 17395 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 17396 ipif->ipif_subnet == 0 || 17397 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 17398 (IPIF_UP|IPIF_BROADCAST)) 17399 continue; 17400 17401 /* 17402 * For each dying IRE that hasn't yet been replaced, see if 17403 * `ipif' needs it and whether the IRE should be recreated on 17404 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 17405 * will return B_FALSE even if `ipif' needs the IRE on the 17406 * hopes that we'll later find a needy non-deprecated ipif. 17407 * However, the ipif is recorded in bi_backup for possible 17408 * subsequent use by ipif_check_bcast_ires(). 17409 */ 17410 for (i = 0; i < BCAST_COUNT; i++) { 17411 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 17412 continue; 17413 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 17414 continue; 17415 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 17416 } 17417 17418 /* 17419 * If we've replaced all of the broadcast IREs that are going 17420 * to be taken down, we know we're done. 17421 */ 17422 for (i = 0; i < BCAST_COUNT; i++) { 17423 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 17424 break; 17425 } 17426 if (i == BCAST_COUNT) 17427 break; 17428 } 17429 return (irep); 17430 } 17431 17432 /* 17433 * Check if `test_ipif' (which is going away) is associated with any existing 17434 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 17435 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 17436 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 17437 * 17438 * This is necessary because broadcast IREs are shared. In particular, a 17439 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 17440 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 17441 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 17442 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 17443 * same zone, they will share the same set of broadcast IREs. 17444 * 17445 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 17446 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 17447 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 17448 */ 17449 static void 17450 ipif_check_bcast_ires(ipif_t *test_ipif) 17451 { 17452 ill_t *ill = test_ipif->ipif_ill; 17453 ire_t *ire, *ire_array[12]; /* see note above */ 17454 ire_t **irep1, **irep = &ire_array[0]; 17455 uint_t i, willdie; 17456 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 17457 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 17458 17459 ASSERT(!test_ipif->ipif_isv6); 17460 ASSERT(IAM_WRITER_IPIF(test_ipif)); 17461 17462 /* 17463 * No broadcast IREs for the LOOPBACK interface 17464 * or others such as point to point and IPIF_NOXMIT. 17465 */ 17466 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 17467 (test_ipif->ipif_flags & IPIF_NOXMIT)) 17468 return; 17469 17470 bzero(bireinfo, sizeof (bireinfo)); 17471 bireinfo[0].bi_type = BCAST_ALLZEROES; 17472 bireinfo[0].bi_addr = 0; 17473 17474 bireinfo[1].bi_type = BCAST_ALLONES; 17475 bireinfo[1].bi_addr = INADDR_BROADCAST; 17476 17477 bireinfo[2].bi_type = BCAST_NET; 17478 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 17479 17480 if (test_ipif->ipif_net_mask != 0) 17481 mask = test_ipif->ipif_net_mask; 17482 bireinfo[3].bi_type = BCAST_SUBNET; 17483 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 17484 17485 /* 17486 * Figure out what (if any) broadcast IREs will die as a result of 17487 * `test_ipif' going away. If none will die, we're done. 17488 */ 17489 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 17490 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 17491 test_ipif, ALL_ZONES, NULL, 17492 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 17493 if (ire != NULL) { 17494 willdie++; 17495 bireinfo[i].bi_willdie = 1; 17496 ire_refrele(ire); 17497 } 17498 } 17499 17500 if (willdie == 0) 17501 return; 17502 17503 /* 17504 * Walk through all the ipifs that will be affected by the dying IREs, 17505 * and recreate the IREs as necessary. Note that all interfaces in an 17506 * IPMP illgrp share the same broadcast IREs, and thus the entire 17507 * illgrp must be walked, starting with the IPMP meta-interface (so 17508 * that broadcast IREs end up on it whenever possible). 17509 */ 17510 if (IS_UNDER_IPMP(ill)) 17511 ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 17512 17513 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17514 17515 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 17516 ipmp_illgrp_t *illg = ill->ill_grp; 17517 17518 ill = list_head(&illg->ig_if); 17519 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) { 17520 for (i = 0; i < BCAST_COUNT; i++) { 17521 if (bireinfo[i].bi_willdie && 17522 !bireinfo[i].bi_haverep) 17523 break; 17524 } 17525 if (i == BCAST_COUNT) 17526 break; 17527 17528 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17529 } 17530 } 17531 17532 /* 17533 * Scan through the set of broadcast IREs and see if there are any 17534 * that we need to replace that have not yet been replaced. If so, 17535 * replace them using the appropriate backup ipif. 17536 */ 17537 for (i = 0; i < BCAST_COUNT; i++) { 17538 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 17539 irep = ipif_create_bcast(bireinfo[i].bi_backup, 17540 &bireinfo[i], irep); 17541 } 17542 17543 /* 17544 * If we can't create all of them, don't add any of them. (Code in 17545 * ip_wput_ire() and ire_to_ill() assumes that we always have a 17546 * non-loopback copy and loopback copy for a given address.) 17547 */ 17548 for (irep1 = irep; irep1 > ire_array; ) { 17549 irep1--; 17550 if (*irep1 == NULL) { 17551 ip0dbg(("ipif_check_bcast_ires: can't create " 17552 "IRE_BROADCAST, memory allocation failure\n")); 17553 while (irep > ire_array) { 17554 irep--; 17555 if (*irep != NULL) 17556 ire_delete(*irep); 17557 } 17558 return; 17559 } 17560 } 17561 17562 for (irep1 = irep; irep1 > ire_array; ) { 17563 irep1--; 17564 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 17565 ire_refrele(*irep1); /* Held in ire_add */ 17566 } 17567 } 17568 17569 /* 17570 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 17571 * from lifr_flags and the name from lifr_name. 17572 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 17573 * since ipif_lookup_on_name uses the _isv6 flags when matching. 17574 * Returns EINPROGRESS when mp has been consumed by queueing it on 17575 * ill_pending_mp and the ioctl will complete in ip_rput. 17576 * 17577 * Can operate on either a module or a driver queue. 17578 * Returns an error if not a module queue. 17579 */ 17580 /* ARGSUSED */ 17581 int 17582 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17583 ip_ioctl_cmd_t *ipip, void *if_req) 17584 { 17585 ill_t *ill = q->q_ptr; 17586 phyint_t *phyi; 17587 ip_stack_t *ipst; 17588 struct lifreq *lifr = if_req; 17589 17590 ASSERT(ipif != NULL); 17591 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 17592 17593 if (q->q_next == NULL) { 17594 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 17595 return (EINVAL); 17596 } 17597 17598 /* 17599 * If we are not writer on 'q' then this interface exists already 17600 * and previous lookups (ip_extract_lifreq()) found this ipif -- 17601 * so return EALREADY. 17602 */ 17603 if (ill != ipif->ipif_ill) 17604 return (EALREADY); 17605 17606 if (ill->ill_name[0] != '\0') 17607 return (EALREADY); 17608 17609 /* 17610 * Set all the flags. Allows all kinds of override. Provide some 17611 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 17612 * unless there is either multicast/broadcast support in the driver 17613 * or it is a pt-pt link. 17614 */ 17615 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 17616 /* Meaningless to IP thus don't allow them to be set. */ 17617 ip1dbg(("ip_setname: EINVAL 1\n")); 17618 return (EINVAL); 17619 } 17620 17621 /* 17622 * If there's another ill already with the requested name, ensure 17623 * that it's of the same type. Otherwise, ill_phyint_reinit() will 17624 * fuse together two unrelated ills, which will cause chaos. 17625 */ 17626 ipst = ill->ill_ipst; 17627 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17628 lifr->lifr_name, NULL); 17629 if (phyi != NULL) { 17630 ill_t *ill_mate = phyi->phyint_illv4; 17631 17632 if (ill_mate == NULL) 17633 ill_mate = phyi->phyint_illv6; 17634 ASSERT(ill_mate != NULL); 17635 17636 if (ill_mate->ill_media->ip_m_mac_type != 17637 ill->ill_media->ip_m_mac_type) { 17638 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 17639 "use the same ill name on differing media\n")); 17640 return (EINVAL); 17641 } 17642 } 17643 17644 /* 17645 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 17646 * ill_bcast_addr_length info. 17647 */ 17648 if (!ill->ill_needs_attach && 17649 ((lifr->lifr_flags & IFF_MULTICAST) && 17650 !(lifr->lifr_flags & IFF_POINTOPOINT) && 17651 ill->ill_bcast_addr_length == 0)) { 17652 /* Link not broadcast/pt-pt capable i.e. no multicast */ 17653 ip1dbg(("ip_setname: EINVAL 2\n")); 17654 return (EINVAL); 17655 } 17656 if ((lifr->lifr_flags & IFF_BROADCAST) && 17657 ((lifr->lifr_flags & IFF_IPV6) || 17658 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 17659 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 17660 ip1dbg(("ip_setname: EINVAL 3\n")); 17661 return (EINVAL); 17662 } 17663 if (lifr->lifr_flags & IFF_UP) { 17664 /* Can only be set with SIOCSLIFFLAGS */ 17665 ip1dbg(("ip_setname: EINVAL 4\n")); 17666 return (EINVAL); 17667 } 17668 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 17669 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 17670 ip1dbg(("ip_setname: EINVAL 5\n")); 17671 return (EINVAL); 17672 } 17673 /* 17674 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 17675 */ 17676 if ((lifr->lifr_flags & IFF_XRESOLV) && 17677 !(lifr->lifr_flags & IFF_IPV6) && 17678 !(ipif->ipif_isv6)) { 17679 ip1dbg(("ip_setname: EINVAL 6\n")); 17680 return (EINVAL); 17681 } 17682 17683 /* 17684 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 17685 * we have all the flags here. So, we assign rather than we OR. 17686 * We can't OR the flags here because we don't want to set 17687 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 17688 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 17689 * on lifr_flags value here. 17690 */ 17691 /* 17692 * This ill has not been inserted into the global list. 17693 * So we are still single threaded and don't need any lock 17694 */ 17695 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 17696 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 17697 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 17698 17699 /* We started off as V4. */ 17700 if (ill->ill_flags & ILLF_IPV6) { 17701 ill->ill_phyint->phyint_illv6 = ill; 17702 ill->ill_phyint->phyint_illv4 = NULL; 17703 } 17704 17705 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 17706 } 17707 17708 /* ARGSUSED */ 17709 int 17710 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17711 ip_ioctl_cmd_t *ipip, void *if_req) 17712 { 17713 /* 17714 * ill_phyint_reinit merged the v4 and v6 into a single 17715 * ipsq. We might not have been able to complete the 17716 * slifname in ipif_set_values, if we could not become 17717 * exclusive. If so restart it here 17718 */ 17719 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17720 } 17721 17722 /* 17723 * Return a pointer to the ipif which matches the index, IP version type and 17724 * zoneid. 17725 */ 17726 ipif_t * 17727 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 17728 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 17729 { 17730 ill_t *ill; 17731 ipif_t *ipif = NULL; 17732 17733 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 17734 (q != NULL && mp != NULL && func != NULL && err != NULL)); 17735 17736 if (err != NULL) 17737 *err = 0; 17738 17739 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 17740 if (ill != NULL) { 17741 mutex_enter(&ill->ill_lock); 17742 for (ipif = ill->ill_ipif; ipif != NULL; 17743 ipif = ipif->ipif_next) { 17744 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 17745 zoneid == ipif->ipif_zoneid || 17746 ipif->ipif_zoneid == ALL_ZONES)) { 17747 ipif_refhold_locked(ipif); 17748 break; 17749 } 17750 } 17751 mutex_exit(&ill->ill_lock); 17752 ill_refrele(ill); 17753 if (ipif == NULL && err != NULL) 17754 *err = ENXIO; 17755 } 17756 return (ipif); 17757 } 17758 17759 /* 17760 * Change an existing physical interface's index. If the new index 17761 * is acceptable we update the index and the phyint_list_avl_by_index tree. 17762 * Finally, we update other systems which may have a dependence on the 17763 * index value. 17764 */ 17765 /* ARGSUSED */ 17766 int 17767 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17768 ip_ioctl_cmd_t *ipip, void *ifreq) 17769 { 17770 ill_t *ill; 17771 phyint_t *phyi; 17772 struct ifreq *ifr = (struct ifreq *)ifreq; 17773 struct lifreq *lifr = (struct lifreq *)ifreq; 17774 uint_t old_index, index; 17775 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17776 avl_index_t where; 17777 17778 if (ipip->ipi_cmd_type == IF_CMD) 17779 index = ifr->ifr_index; 17780 else 17781 index = lifr->lifr_index; 17782 17783 /* 17784 * Only allow on physical interface. Also, index zero is illegal. 17785 */ 17786 ill = ipif->ipif_ill; 17787 phyi = ill->ill_phyint; 17788 if (ipif->ipif_id != 0 || index == 0) { 17789 return (EINVAL); 17790 } 17791 17792 /* If the index is not changing, no work to do */ 17793 if (phyi->phyint_ifindex == index) 17794 return (0); 17795 17796 /* 17797 * Use phyint_exists() to determine if the new interface index 17798 * is already in use. If the index is unused then we need to 17799 * change the phyint's position in the phyint_list_avl_by_index 17800 * tree. If we do not do this, subsequent lookups (using the new 17801 * index value) will not find the phyint. 17802 */ 17803 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17804 if (phyint_exists(index, ipst)) { 17805 rw_exit(&ipst->ips_ill_g_lock); 17806 return (EEXIST); 17807 } 17808 17809 /* The new index is unused. Set it in the phyint. */ 17810 old_index = phyi->phyint_ifindex; 17811 phyi->phyint_ifindex = index; 17812 17813 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 17814 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17815 &index, &where); 17816 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17817 phyi, where); 17818 rw_exit(&ipst->ips_ill_g_lock); 17819 17820 /* Update SCTP's ILL list */ 17821 sctp_ill_reindex(ill, old_index); 17822 17823 /* Send the routing sockets message */ 17824 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 17825 if (ILL_OTHER(ill)) 17826 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 17827 17828 return (0); 17829 } 17830 17831 /* ARGSUSED */ 17832 int 17833 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17834 ip_ioctl_cmd_t *ipip, void *ifreq) 17835 { 17836 struct ifreq *ifr = (struct ifreq *)ifreq; 17837 struct lifreq *lifr = (struct lifreq *)ifreq; 17838 17839 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 17840 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17841 /* Get the interface index */ 17842 if (ipip->ipi_cmd_type == IF_CMD) { 17843 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17844 } else { 17845 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17846 } 17847 return (0); 17848 } 17849 17850 /* ARGSUSED */ 17851 int 17852 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17853 ip_ioctl_cmd_t *ipip, void *ifreq) 17854 { 17855 struct lifreq *lifr = (struct lifreq *)ifreq; 17856 17857 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 17858 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17859 /* Get the interface zone */ 17860 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17861 lifr->lifr_zoneid = ipif->ipif_zoneid; 17862 return (0); 17863 } 17864 17865 /* 17866 * Set the zoneid of an interface. 17867 */ 17868 /* ARGSUSED */ 17869 int 17870 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17871 ip_ioctl_cmd_t *ipip, void *ifreq) 17872 { 17873 struct lifreq *lifr = (struct lifreq *)ifreq; 17874 int err = 0; 17875 boolean_t need_up = B_FALSE; 17876 zone_t *zptr; 17877 zone_status_t status; 17878 zoneid_t zoneid; 17879 17880 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17881 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 17882 if (!is_system_labeled()) 17883 return (ENOTSUP); 17884 zoneid = GLOBAL_ZONEID; 17885 } 17886 17887 /* cannot assign instance zero to a non-global zone */ 17888 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 17889 return (ENOTSUP); 17890 17891 /* 17892 * Cannot assign to a zone that doesn't exist or is shutting down. In 17893 * the event of a race with the zone shutdown processing, since IP 17894 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 17895 * interface will be cleaned up even if the zone is shut down 17896 * immediately after the status check. If the interface can't be brought 17897 * down right away, and the zone is shut down before the restart 17898 * function is called, we resolve the possible races by rechecking the 17899 * zone status in the restart function. 17900 */ 17901 if ((zptr = zone_find_by_id(zoneid)) == NULL) 17902 return (EINVAL); 17903 status = zone_status_get(zptr); 17904 zone_rele(zptr); 17905 17906 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 17907 return (EINVAL); 17908 17909 if (ipif->ipif_flags & IPIF_UP) { 17910 /* 17911 * If the interface is already marked up, 17912 * we call ipif_down which will take care 17913 * of ditching any IREs that have been set 17914 * up based on the old interface address. 17915 */ 17916 err = ipif_logical_down(ipif, q, mp); 17917 if (err == EINPROGRESS) 17918 return (err); 17919 ipif_down_tail(ipif); 17920 need_up = B_TRUE; 17921 } 17922 17923 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 17924 return (err); 17925 } 17926 17927 static int 17928 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 17929 queue_t *q, mblk_t *mp, boolean_t need_up) 17930 { 17931 int err = 0; 17932 ip_stack_t *ipst; 17933 17934 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 17935 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17936 17937 if (CONN_Q(q)) 17938 ipst = CONNQ_TO_IPST(q); 17939 else 17940 ipst = ILLQ_TO_IPST(q); 17941 17942 /* 17943 * For exclusive stacks we don't allow a different zoneid than 17944 * global. 17945 */ 17946 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 17947 zoneid != GLOBAL_ZONEID) 17948 return (EINVAL); 17949 17950 /* Set the new zone id. */ 17951 ipif->ipif_zoneid = zoneid; 17952 17953 /* Update sctp list */ 17954 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 17955 17956 if (need_up) { 17957 /* 17958 * Now bring the interface back up. If this 17959 * is the only IPIF for the ILL, ipif_up 17960 * will have to re-bind to the device, so 17961 * we may get back EINPROGRESS, in which 17962 * case, this IOCTL will get completed in 17963 * ip_rput_dlpi when we see the DL_BIND_ACK. 17964 */ 17965 err = ipif_up(ipif, q, mp); 17966 } 17967 return (err); 17968 } 17969 17970 /* ARGSUSED */ 17971 int 17972 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17973 ip_ioctl_cmd_t *ipip, void *if_req) 17974 { 17975 struct lifreq *lifr = (struct lifreq *)if_req; 17976 zoneid_t zoneid; 17977 zone_t *zptr; 17978 zone_status_t status; 17979 17980 ASSERT(ipif->ipif_id != 0); 17981 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17982 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 17983 zoneid = GLOBAL_ZONEID; 17984 17985 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 17986 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17987 17988 /* 17989 * We recheck the zone status to resolve the following race condition: 17990 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 17991 * 2) hme0:1 is up and can't be brought down right away; 17992 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 17993 * 3) zone "myzone" is halted; the zone status switches to 17994 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 17995 * the interfaces to remove - hme0:1 is not returned because it's not 17996 * yet in "myzone", so it won't be removed; 17997 * 4) the restart function for SIOCSLIFZONE is called; without the 17998 * status check here, we would have hme0:1 in "myzone" after it's been 17999 * destroyed. 18000 * Note that if the status check fails, we need to bring the interface 18001 * back to its state prior to ip_sioctl_slifzone(), hence the call to 18002 * ipif_up_done[_v6](). 18003 */ 18004 status = ZONE_IS_UNINITIALIZED; 18005 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 18006 status = zone_status_get(zptr); 18007 zone_rele(zptr); 18008 } 18009 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 18010 if (ipif->ipif_isv6) { 18011 (void) ipif_up_done_v6(ipif); 18012 } else { 18013 (void) ipif_up_done(ipif); 18014 } 18015 return (EINVAL); 18016 } 18017 18018 ipif_down_tail(ipif); 18019 18020 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 18021 B_TRUE)); 18022 } 18023 18024 /* 18025 * Return the number of addresses on `ill' with one or more of the values 18026 * in `set' set and all of the values in `clear' clear. 18027 */ 18028 static uint_t 18029 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 18030 { 18031 ipif_t *ipif; 18032 uint_t cnt = 0; 18033 18034 ASSERT(IAM_WRITER_ILL(ill)); 18035 18036 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 18037 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 18038 cnt++; 18039 18040 return (cnt); 18041 } 18042 18043 /* 18044 * Return the number of migratable addresses on `ill' that are under 18045 * application control. 18046 */ 18047 uint_t 18048 ill_appaddr_cnt(const ill_t *ill) 18049 { 18050 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 18051 IPIF_NOFAILOVER)); 18052 } 18053 18054 /* 18055 * Return the number of point-to-point addresses on `ill'. 18056 */ 18057 uint_t 18058 ill_ptpaddr_cnt(const ill_t *ill) 18059 { 18060 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 18061 } 18062 18063 /* ARGSUSED */ 18064 int 18065 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18066 ip_ioctl_cmd_t *ipip, void *ifreq) 18067 { 18068 struct lifreq *lifr = ifreq; 18069 18070 ASSERT(q->q_next == NULL); 18071 ASSERT(CONN_Q(q)); 18072 18073 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 18074 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 18075 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 18076 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 18077 18078 return (0); 18079 } 18080 18081 /* Find the previous ILL in this usesrc group */ 18082 static ill_t * 18083 ill_prev_usesrc(ill_t *uill) 18084 { 18085 ill_t *ill; 18086 18087 for (ill = uill->ill_usesrc_grp_next; 18088 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 18089 ill = ill->ill_usesrc_grp_next) 18090 /* do nothing */; 18091 return (ill); 18092 } 18093 18094 /* 18095 * Release all members of the usesrc group. This routine is called 18096 * from ill_delete when the interface being unplumbed is the 18097 * group head. 18098 */ 18099 static void 18100 ill_disband_usesrc_group(ill_t *uill) 18101 { 18102 ill_t *next_ill, *tmp_ill; 18103 ip_stack_t *ipst = uill->ill_ipst; 18104 18105 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18106 next_ill = uill->ill_usesrc_grp_next; 18107 18108 do { 18109 ASSERT(next_ill != NULL); 18110 tmp_ill = next_ill->ill_usesrc_grp_next; 18111 ASSERT(tmp_ill != NULL); 18112 next_ill->ill_usesrc_grp_next = NULL; 18113 next_ill->ill_usesrc_ifindex = 0; 18114 next_ill = tmp_ill; 18115 } while (next_ill->ill_usesrc_ifindex != 0); 18116 uill->ill_usesrc_grp_next = NULL; 18117 } 18118 18119 /* 18120 * Remove the client usesrc ILL from the list and relink to a new list 18121 */ 18122 int 18123 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 18124 { 18125 ill_t *ill, *tmp_ill; 18126 ip_stack_t *ipst = ucill->ill_ipst; 18127 18128 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 18129 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18130 18131 /* 18132 * Check if the usesrc client ILL passed in is not already 18133 * in use as a usesrc ILL i.e one whose source address is 18134 * in use OR a usesrc ILL is not already in use as a usesrc 18135 * client ILL 18136 */ 18137 if ((ucill->ill_usesrc_ifindex == 0) || 18138 (uill->ill_usesrc_ifindex != 0)) { 18139 return (-1); 18140 } 18141 18142 ill = ill_prev_usesrc(ucill); 18143 ASSERT(ill->ill_usesrc_grp_next != NULL); 18144 18145 /* Remove from the current list */ 18146 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 18147 /* Only two elements in the list */ 18148 ASSERT(ill->ill_usesrc_ifindex == 0); 18149 ill->ill_usesrc_grp_next = NULL; 18150 } else { 18151 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 18152 } 18153 18154 if (ifindex == 0) { 18155 ucill->ill_usesrc_ifindex = 0; 18156 ucill->ill_usesrc_grp_next = NULL; 18157 return (0); 18158 } 18159 18160 ucill->ill_usesrc_ifindex = ifindex; 18161 tmp_ill = uill->ill_usesrc_grp_next; 18162 uill->ill_usesrc_grp_next = ucill; 18163 ucill->ill_usesrc_grp_next = 18164 (tmp_ill != NULL) ? tmp_ill : uill; 18165 return (0); 18166 } 18167 18168 /* 18169 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 18170 * ip.c for locking details. 18171 */ 18172 /* ARGSUSED */ 18173 int 18174 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18175 ip_ioctl_cmd_t *ipip, void *ifreq) 18176 { 18177 struct lifreq *lifr = (struct lifreq *)ifreq; 18178 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 18179 ill_flag_changed = B_FALSE; 18180 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 18181 int err = 0, ret; 18182 uint_t ifindex; 18183 ipsq_t *ipsq = NULL; 18184 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18185 18186 ASSERT(IAM_WRITER_IPIF(ipif)); 18187 ASSERT(q->q_next == NULL); 18188 ASSERT(CONN_Q(q)); 18189 18190 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 18191 18192 ifindex = lifr->lifr_index; 18193 if (ifindex == 0) { 18194 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 18195 /* non usesrc group interface, nothing to reset */ 18196 return (0); 18197 } 18198 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 18199 /* valid reset request */ 18200 reset_flg = B_TRUE; 18201 } 18202 18203 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 18204 ip_process_ioctl, &err, ipst); 18205 if (usesrc_ill == NULL) { 18206 return (err); 18207 } 18208 18209 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 18210 NEW_OP, B_TRUE); 18211 if (ipsq == NULL) { 18212 err = EINPROGRESS; 18213 /* Operation enqueued on the ipsq of the usesrc ILL */ 18214 goto done; 18215 } 18216 18217 /* USESRC isn't currently supported with IPMP */ 18218 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 18219 err = ENOTSUP; 18220 goto done; 18221 } 18222 18223 /* 18224 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 18225 * used by IPMP underlying interfaces, but someone might think it's 18226 * more general and try to use it independently with VNI.) 18227 */ 18228 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 18229 err = ENOTSUP; 18230 goto done; 18231 } 18232 18233 /* 18234 * If the client is already in use as a usesrc_ill or a usesrc_ill is 18235 * already a client then return EINVAL 18236 */ 18237 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 18238 err = EINVAL; 18239 goto done; 18240 } 18241 18242 /* 18243 * If the ill_usesrc_ifindex field is already set to what it needs to 18244 * be then this is a duplicate operation. 18245 */ 18246 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 18247 err = 0; 18248 goto done; 18249 } 18250 18251 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 18252 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 18253 usesrc_ill->ill_isv6)); 18254 18255 /* 18256 * The next step ensures that no new ires will be created referencing 18257 * the client ill, until the ILL_CHANGING flag is cleared. Then 18258 * we go through an ire walk deleting all ire caches that reference 18259 * the client ill. New ires referencing the client ill that are added 18260 * to the ire table before the ILL_CHANGING flag is set, will be 18261 * cleaned up by the ire walk below. Attempt to add new ires referencing 18262 * the client ill while the ILL_CHANGING flag is set will be failed 18263 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 18264 * checks (under the ill_g_usesrc_lock) that the ire being added 18265 * is not stale, i.e the ire_stq and ire_ipif are consistent and 18266 * belong to the same usesrc group. 18267 */ 18268 mutex_enter(&usesrc_cli_ill->ill_lock); 18269 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 18270 mutex_exit(&usesrc_cli_ill->ill_lock); 18271 ill_flag_changed = B_TRUE; 18272 18273 if (ipif->ipif_isv6) 18274 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18275 ALL_ZONES, ipst); 18276 else 18277 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18278 ALL_ZONES, ipst); 18279 18280 /* 18281 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 18282 * and the ill_usesrc_ifindex fields 18283 */ 18284 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18285 18286 if (reset_flg) { 18287 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 18288 if (ret != 0) { 18289 err = EINVAL; 18290 } 18291 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18292 goto done; 18293 } 18294 18295 /* 18296 * Four possibilities to consider: 18297 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 18298 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 18299 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 18300 * 4. Both are part of their respective usesrc groups 18301 */ 18302 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 18303 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18304 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 18305 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18306 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18307 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 18308 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 18309 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18310 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18311 /* Insert at head of list */ 18312 usesrc_cli_ill->ill_usesrc_grp_next = 18313 usesrc_ill->ill_usesrc_grp_next; 18314 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18315 } else { 18316 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 18317 ifindex); 18318 if (ret != 0) 18319 err = EINVAL; 18320 } 18321 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18322 18323 done: 18324 if (ill_flag_changed) { 18325 mutex_enter(&usesrc_cli_ill->ill_lock); 18326 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 18327 mutex_exit(&usesrc_cli_ill->ill_lock); 18328 } 18329 if (ipsq != NULL) 18330 ipsq_exit(ipsq); 18331 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 18332 ill_refrele(usesrc_ill); 18333 return (err); 18334 } 18335 18336 /* 18337 * comparison function used by avl. 18338 */ 18339 static int 18340 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 18341 { 18342 18343 uint_t index; 18344 18345 ASSERT(phyip != NULL && index_ptr != NULL); 18346 18347 index = *((uint_t *)index_ptr); 18348 /* 18349 * let the phyint with the lowest index be on top. 18350 */ 18351 if (((phyint_t *)phyip)->phyint_ifindex < index) 18352 return (1); 18353 if (((phyint_t *)phyip)->phyint_ifindex > index) 18354 return (-1); 18355 return (0); 18356 } 18357 18358 /* 18359 * comparison function used by avl. 18360 */ 18361 static int 18362 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 18363 { 18364 ill_t *ill; 18365 int res = 0; 18366 18367 ASSERT(phyip != NULL && name_ptr != NULL); 18368 18369 if (((phyint_t *)phyip)->phyint_illv4) 18370 ill = ((phyint_t *)phyip)->phyint_illv4; 18371 else 18372 ill = ((phyint_t *)phyip)->phyint_illv6; 18373 ASSERT(ill != NULL); 18374 18375 res = strcmp(ill->ill_name, (char *)name_ptr); 18376 if (res > 0) 18377 return (1); 18378 else if (res < 0) 18379 return (-1); 18380 return (0); 18381 } 18382 18383 /* 18384 * This function is called on the unplumb path via ill_glist_delete() when 18385 * there are no ills left on the phyint and thus the phyint can be freed. 18386 */ 18387 static void 18388 phyint_free(phyint_t *phyi) 18389 { 18390 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 18391 18392 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 18393 18394 /* 18395 * If this phyint was an IPMP meta-interface, blow away the group. 18396 * This is safe to do because all of the illgrps have already been 18397 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 18398 * If we're cleaning up as a result of failed initialization, 18399 * phyint_grp may be NULL. 18400 */ 18401 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 18402 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18403 ipmp_grp_destroy(phyi->phyint_grp); 18404 phyi->phyint_grp = NULL; 18405 rw_exit(&ipst->ips_ipmp_lock); 18406 } 18407 18408 /* 18409 * If this interface was under IPMP, take it out of the group. 18410 */ 18411 if (phyi->phyint_grp != NULL) 18412 ipmp_phyint_leave_grp(phyi); 18413 18414 /* 18415 * Delete the phyint and disassociate its ipsq. The ipsq itself 18416 * will be freed in ipsq_exit(). 18417 */ 18418 phyi->phyint_ipsq->ipsq_phyint = NULL; 18419 phyi->phyint_name[0] = '\0'; 18420 18421 mi_free(phyi); 18422 } 18423 18424 /* 18425 * Attach the ill to the phyint structure which can be shared by both 18426 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 18427 * function is called from ipif_set_values and ill_lookup_on_name (for 18428 * loopback) where we know the name of the ill. We lookup the ill and if 18429 * there is one present already with the name use that phyint. Otherwise 18430 * reuse the one allocated by ill_init. 18431 */ 18432 static void 18433 ill_phyint_reinit(ill_t *ill) 18434 { 18435 boolean_t isv6 = ill->ill_isv6; 18436 phyint_t *phyi_old; 18437 phyint_t *phyi; 18438 avl_index_t where = 0; 18439 ill_t *ill_other = NULL; 18440 ip_stack_t *ipst = ill->ill_ipst; 18441 18442 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 18443 18444 phyi_old = ill->ill_phyint; 18445 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 18446 phyi_old->phyint_illv6 == NULL)); 18447 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 18448 phyi_old->phyint_illv4 == NULL)); 18449 ASSERT(phyi_old->phyint_ifindex == 0); 18450 18451 /* 18452 * Now that our ill has a name, set it in the phyint. 18453 */ 18454 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 18455 18456 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18457 ill->ill_name, &where); 18458 18459 /* 18460 * 1. We grabbed the ill_g_lock before inserting this ill into 18461 * the global list of ills. So no other thread could have located 18462 * this ill and hence the ipsq of this ill is guaranteed to be empty. 18463 * 2. Now locate the other protocol instance of this ill. 18464 * 3. Now grab both ill locks in the right order, and the phyint lock of 18465 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 18466 * of neither ill can change. 18467 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 18468 * other ill. 18469 * 5. Release all locks. 18470 */ 18471 18472 /* 18473 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 18474 * we are initializing IPv4. 18475 */ 18476 if (phyi != NULL) { 18477 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 18478 ASSERT(ill_other->ill_phyint != NULL); 18479 ASSERT((isv6 && !ill_other->ill_isv6) || 18480 (!isv6 && ill_other->ill_isv6)); 18481 GRAB_ILL_LOCKS(ill, ill_other); 18482 /* 18483 * We are potentially throwing away phyint_flags which 18484 * could be different from the one that we obtain from 18485 * ill_other->ill_phyint. But it is okay as we are assuming 18486 * that the state maintained within IP is correct. 18487 */ 18488 mutex_enter(&phyi->phyint_lock); 18489 if (isv6) { 18490 ASSERT(phyi->phyint_illv6 == NULL); 18491 phyi->phyint_illv6 = ill; 18492 } else { 18493 ASSERT(phyi->phyint_illv4 == NULL); 18494 phyi->phyint_illv4 = ill; 18495 } 18496 18497 /* 18498 * Delete the old phyint and make its ipsq eligible 18499 * to be freed in ipsq_exit(). 18500 */ 18501 phyi_old->phyint_illv4 = NULL; 18502 phyi_old->phyint_illv6 = NULL; 18503 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 18504 phyi_old->phyint_name[0] = '\0'; 18505 mi_free(phyi_old); 18506 } else { 18507 mutex_enter(&ill->ill_lock); 18508 /* 18509 * We don't need to acquire any lock, since 18510 * the ill is not yet visible globally and we 18511 * have not yet released the ill_g_lock. 18512 */ 18513 phyi = phyi_old; 18514 mutex_enter(&phyi->phyint_lock); 18515 /* XXX We need a recovery strategy here. */ 18516 if (!phyint_assign_ifindex(phyi, ipst)) 18517 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 18518 18519 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18520 (void *)phyi, where); 18521 18522 (void) avl_find(&ipst->ips_phyint_g_list-> 18523 phyint_list_avl_by_index, 18524 &phyi->phyint_ifindex, &where); 18525 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18526 (void *)phyi, where); 18527 } 18528 18529 /* 18530 * Reassigning ill_phyint automatically reassigns the ipsq also. 18531 * pending mp is not affected because that is per ill basis. 18532 */ 18533 ill->ill_phyint = phyi; 18534 18535 /* 18536 * Now that the phyint's ifindex has been assigned, complete the 18537 * remaining 18538 */ 18539 18540 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 18541 if (ill->ill_isv6) { 18542 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18543 ill->ill_phyint->phyint_ifindex; 18544 ill->ill_mcast_type = ipst->ips_mld_max_version; 18545 } else { 18546 ill->ill_mcast_type = ipst->ips_igmp_max_version; 18547 } 18548 18549 /* 18550 * Generate an event within the hooks framework to indicate that 18551 * a new interface has just been added to IP. For this event to 18552 * be generated, the network interface must, at least, have an 18553 * ifindex assigned to it. 18554 * 18555 * This needs to be run inside the ill_g_lock perimeter to ensure 18556 * that the ordering of delivered events to listeners matches the 18557 * order of them in the kernel. 18558 * 18559 * This function could be called from ill_lookup_on_name. In that case 18560 * the interface is loopback "lo", which will not generate a NIC event. 18561 */ 18562 if (ill->ill_name_length <= 2 || 18563 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 18564 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 18565 ill->ill_name_length); 18566 } 18567 RELEASE_ILL_LOCKS(ill, ill_other); 18568 mutex_exit(&phyi->phyint_lock); 18569 } 18570 18571 /* 18572 * Notify any downstream modules of the name of this interface. 18573 * An M_IOCTL is used even though we don't expect a successful reply. 18574 * Any reply message from the driver (presumably an M_IOCNAK) will 18575 * eventually get discarded somewhere upstream. The message format is 18576 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 18577 * to IP. 18578 */ 18579 static void 18580 ip_ifname_notify(ill_t *ill, queue_t *q) 18581 { 18582 mblk_t *mp1, *mp2; 18583 struct iocblk *iocp; 18584 struct lifreq *lifr; 18585 18586 mp1 = mkiocb(SIOCSLIFNAME); 18587 if (mp1 == NULL) 18588 return; 18589 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 18590 if (mp2 == NULL) { 18591 freeb(mp1); 18592 return; 18593 } 18594 18595 mp1->b_cont = mp2; 18596 iocp = (struct iocblk *)mp1->b_rptr; 18597 iocp->ioc_count = sizeof (struct lifreq); 18598 18599 lifr = (struct lifreq *)mp2->b_rptr; 18600 mp2->b_wptr += sizeof (struct lifreq); 18601 bzero(lifr, sizeof (struct lifreq)); 18602 18603 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 18604 lifr->lifr_ppa = ill->ill_ppa; 18605 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 18606 18607 putnext(q, mp1); 18608 } 18609 18610 static int 18611 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18612 { 18613 int err; 18614 ip_stack_t *ipst = ill->ill_ipst; 18615 phyint_t *phyi = ill->ill_phyint; 18616 18617 /* Set the obsolete NDD per-interface forwarding name. */ 18618 err = ill_set_ndd_name(ill); 18619 if (err != 0) { 18620 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 18621 err); 18622 } 18623 18624 /* 18625 * Now that ill_name is set, the configuration for the IPMP 18626 * meta-interface can be performed. 18627 */ 18628 if (IS_IPMP(ill)) { 18629 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18630 /* 18631 * If phyi->phyint_grp is NULL, then this is the first IPMP 18632 * meta-interface and we need to create the IPMP group. 18633 */ 18634 if (phyi->phyint_grp == NULL) { 18635 /* 18636 * If someone has renamed another IPMP group to have 18637 * the same name as our interface, bail. 18638 */ 18639 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 18640 rw_exit(&ipst->ips_ipmp_lock); 18641 return (EEXIST); 18642 } 18643 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 18644 if (phyi->phyint_grp == NULL) { 18645 rw_exit(&ipst->ips_ipmp_lock); 18646 return (ENOMEM); 18647 } 18648 } 18649 rw_exit(&ipst->ips_ipmp_lock); 18650 } 18651 18652 /* Tell downstream modules where they are. */ 18653 ip_ifname_notify(ill, q); 18654 18655 /* 18656 * ill_dl_phys returns EINPROGRESS in the usual case. 18657 * Error cases are ENOMEM ... 18658 */ 18659 err = ill_dl_phys(ill, ipif, mp, q); 18660 18661 /* 18662 * If there is no IRE expiration timer running, get one started. 18663 * igmp and mld timers will be triggered by the first multicast 18664 */ 18665 if (ipst->ips_ip_ire_expire_id == 0) { 18666 /* 18667 * acquire the lock and check again. 18668 */ 18669 mutex_enter(&ipst->ips_ip_trash_timer_lock); 18670 if (ipst->ips_ip_ire_expire_id == 0) { 18671 ipst->ips_ip_ire_expire_id = timeout( 18672 ip_trash_timer_expire, ipst, 18673 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 18674 } 18675 mutex_exit(&ipst->ips_ip_trash_timer_lock); 18676 } 18677 18678 if (ill->ill_isv6) { 18679 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 18680 if (ipst->ips_mld_slowtimeout_id == 0) { 18681 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 18682 (void *)ipst, 18683 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18684 } 18685 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 18686 } else { 18687 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 18688 if (ipst->ips_igmp_slowtimeout_id == 0) { 18689 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 18690 (void *)ipst, 18691 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18692 } 18693 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 18694 } 18695 18696 return (err); 18697 } 18698 18699 /* 18700 * Common routine for ppa and ifname setting. Should be called exclusive. 18701 * 18702 * Returns EINPROGRESS when mp has been consumed by queueing it on 18703 * ill_pending_mp and the ioctl will complete in ip_rput. 18704 * 18705 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 18706 * the new name and new ppa in lifr_name and lifr_ppa respectively. 18707 * For SLIFNAME, we pass these values back to the userland. 18708 */ 18709 static int 18710 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 18711 { 18712 ill_t *ill; 18713 ipif_t *ipif; 18714 ipsq_t *ipsq; 18715 char *ppa_ptr; 18716 char *old_ptr; 18717 char old_char; 18718 int error; 18719 ip_stack_t *ipst; 18720 18721 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 18722 ASSERT(q->q_next != NULL); 18723 ASSERT(interf_name != NULL); 18724 18725 ill = (ill_t *)q->q_ptr; 18726 ipst = ill->ill_ipst; 18727 18728 ASSERT(ill->ill_ipst != NULL); 18729 ASSERT(ill->ill_name[0] == '\0'); 18730 ASSERT(IAM_WRITER_ILL(ill)); 18731 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 18732 ASSERT(ill->ill_ppa == UINT_MAX); 18733 18734 /* The ppa is sent down by ifconfig or is chosen */ 18735 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 18736 return (EINVAL); 18737 } 18738 18739 /* 18740 * make sure ppa passed in is same as ppa in the name. 18741 * This check is not made when ppa == UINT_MAX in that case ppa 18742 * in the name could be anything. System will choose a ppa and 18743 * update new_ppa_ptr and inter_name to contain the choosen ppa. 18744 */ 18745 if (*new_ppa_ptr != UINT_MAX) { 18746 /* stoi changes the pointer */ 18747 old_ptr = ppa_ptr; 18748 /* 18749 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 18750 * (they don't have an externally visible ppa). We assign one 18751 * here so that we can manage the interface. Note that in 18752 * the past this value was always 0 for DLPI 1 drivers. 18753 */ 18754 if (*new_ppa_ptr == 0) 18755 *new_ppa_ptr = stoi(&old_ptr); 18756 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 18757 return (EINVAL); 18758 } 18759 /* 18760 * terminate string before ppa 18761 * save char at that location. 18762 */ 18763 old_char = ppa_ptr[0]; 18764 ppa_ptr[0] = '\0'; 18765 18766 ill->ill_ppa = *new_ppa_ptr; 18767 /* 18768 * Finish as much work now as possible before calling ill_glist_insert 18769 * which makes the ill globally visible and also merges it with the 18770 * other protocol instance of this phyint. The remaining work is 18771 * done after entering the ipsq which may happen sometime later. 18772 * ill_set_ndd_name occurs after the ill has been made globally visible. 18773 */ 18774 ipif = ill->ill_ipif; 18775 18776 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 18777 ipif_assign_seqid(ipif); 18778 18779 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 18780 ill->ill_flags |= ILLF_IPV4; 18781 18782 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 18783 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 18784 18785 if (ill->ill_flags & ILLF_IPV6) { 18786 18787 ill->ill_isv6 = B_TRUE; 18788 if (ill->ill_rq != NULL) { 18789 ill->ill_rq->q_qinfo = &iprinitv6; 18790 ill->ill_wq->q_qinfo = &ipwinitv6; 18791 } 18792 18793 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 18794 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 18795 ipif->ipif_v6src_addr = ipv6_all_zeros; 18796 ipif->ipif_v6subnet = ipv6_all_zeros; 18797 ipif->ipif_v6net_mask = ipv6_all_zeros; 18798 ipif->ipif_v6brd_addr = ipv6_all_zeros; 18799 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 18800 /* 18801 * point-to-point or Non-mulicast capable 18802 * interfaces won't do NUD unless explicitly 18803 * configured to do so. 18804 */ 18805 if (ipif->ipif_flags & IPIF_POINTOPOINT || 18806 !(ill->ill_flags & ILLF_MULTICAST)) { 18807 ill->ill_flags |= ILLF_NONUD; 18808 } 18809 /* Make sure IPv4 specific flag is not set on IPv6 if */ 18810 if (ill->ill_flags & ILLF_NOARP) { 18811 /* 18812 * Note: xresolv interfaces will eventually need 18813 * NOARP set here as well, but that will require 18814 * those external resolvers to have some 18815 * knowledge of that flag and act appropriately. 18816 * Not to be changed at present. 18817 */ 18818 ill->ill_flags &= ~ILLF_NOARP; 18819 } 18820 /* 18821 * Set the ILLF_ROUTER flag according to the global 18822 * IPv6 forwarding policy. 18823 */ 18824 if (ipst->ips_ipv6_forward != 0) 18825 ill->ill_flags |= ILLF_ROUTER; 18826 } else if (ill->ill_flags & ILLF_IPV4) { 18827 ill->ill_isv6 = B_FALSE; 18828 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 18829 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 18830 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 18831 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 18832 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 18833 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 18834 /* 18835 * Set the ILLF_ROUTER flag according to the global 18836 * IPv4 forwarding policy. 18837 */ 18838 if (ipst->ips_ip_g_forward != 0) 18839 ill->ill_flags |= ILLF_ROUTER; 18840 } 18841 18842 ASSERT(ill->ill_phyint != NULL); 18843 18844 /* 18845 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 18846 * be completed in ill_glist_insert -> ill_phyint_reinit 18847 */ 18848 if (!ill_allocate_mibs(ill)) 18849 return (ENOMEM); 18850 18851 /* 18852 * Pick a default sap until we get the DL_INFO_ACK back from 18853 * the driver. 18854 */ 18855 if (ill->ill_sap == 0) { 18856 if (ill->ill_isv6) 18857 ill->ill_sap = IP6_DL_SAP; 18858 else 18859 ill->ill_sap = IP_DL_SAP; 18860 } 18861 18862 ill->ill_ifname_pending = 1; 18863 ill->ill_ifname_pending_err = 0; 18864 18865 /* 18866 * When the first ipif comes up in ipif_up_done(), multicast groups 18867 * that were joined while this ill was not bound to the DLPI link need 18868 * to be recovered by ill_recover_multicast(). 18869 */ 18870 ill->ill_need_recover_multicast = 1; 18871 18872 ill_refhold(ill); 18873 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18874 if ((error = ill_glist_insert(ill, interf_name, 18875 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 18876 ill->ill_ppa = UINT_MAX; 18877 ill->ill_name[0] = '\0'; 18878 /* 18879 * undo null termination done above. 18880 */ 18881 ppa_ptr[0] = old_char; 18882 rw_exit(&ipst->ips_ill_g_lock); 18883 ill_refrele(ill); 18884 return (error); 18885 } 18886 18887 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 18888 18889 /* 18890 * When we return the buffer pointed to by interf_name should contain 18891 * the same name as in ill_name. 18892 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 18893 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 18894 * so copy full name and update the ppa ptr. 18895 * When ppa passed in != UINT_MAX all values are correct just undo 18896 * null termination, this saves a bcopy. 18897 */ 18898 if (*new_ppa_ptr == UINT_MAX) { 18899 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 18900 *new_ppa_ptr = ill->ill_ppa; 18901 } else { 18902 /* 18903 * undo null termination done above. 18904 */ 18905 ppa_ptr[0] = old_char; 18906 } 18907 18908 /* Let SCTP know about this ILL */ 18909 sctp_update_ill(ill, SCTP_ILL_INSERT); 18910 18911 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 18912 B_TRUE); 18913 18914 rw_exit(&ipst->ips_ill_g_lock); 18915 ill_refrele(ill); 18916 if (ipsq == NULL) 18917 return (EINPROGRESS); 18918 18919 /* 18920 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 18921 */ 18922 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 18923 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 18924 else 18925 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 18926 18927 error = ipif_set_values_tail(ill, ipif, mp, q); 18928 ipsq_exit(ipsq); 18929 if (error != 0 && error != EINPROGRESS) { 18930 /* 18931 * restore previous values 18932 */ 18933 ill->ill_isv6 = B_FALSE; 18934 } 18935 return (error); 18936 } 18937 18938 void 18939 ipif_init(ip_stack_t *ipst) 18940 { 18941 int i; 18942 18943 for (i = 0; i < MAX_G_HEADS; i++) { 18944 ipst->ips_ill_g_heads[i].ill_g_list_head = 18945 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18946 ipst->ips_ill_g_heads[i].ill_g_list_tail = 18947 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18948 } 18949 18950 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18951 ill_phyint_compare_index, 18952 sizeof (phyint_t), 18953 offsetof(struct phyint, phyint_avl_by_index)); 18954 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18955 ill_phyint_compare_name, 18956 sizeof (phyint_t), 18957 offsetof(struct phyint, phyint_avl_by_name)); 18958 } 18959 18960 /* 18961 * Lookup the ipif corresponding to the onlink destination address. For 18962 * point-to-point interfaces, it matches with remote endpoint destination 18963 * address. For point-to-multipoint interfaces it only tries to match the 18964 * destination with the interface's subnet address. The longest, most specific 18965 * match is found to take care of such rare network configurations like - 18966 * le0: 129.146.1.1/16 18967 * le1: 129.146.2.2/24 18968 * 18969 * This is used by SO_DONTROUTE and IP_NEXTHOP. Since neither of those are 18970 * supported on underlying interfaces in an IPMP group, underlying interfaces 18971 * are ignored when looking up a match. (If we didn't ignore them, we'd 18972 * risk using a test address as a source for outgoing traffic.) 18973 */ 18974 ipif_t * 18975 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 18976 { 18977 ipif_t *ipif, *best_ipif; 18978 ill_t *ill; 18979 ill_walk_context_t ctx; 18980 18981 ASSERT(zoneid != ALL_ZONES); 18982 best_ipif = NULL; 18983 18984 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18985 ill = ILL_START_WALK_V4(&ctx, ipst); 18986 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18987 if (IS_UNDER_IPMP(ill)) 18988 continue; 18989 mutex_enter(&ill->ill_lock); 18990 for (ipif = ill->ill_ipif; ipif != NULL; 18991 ipif = ipif->ipif_next) { 18992 if (!IPIF_CAN_LOOKUP(ipif)) 18993 continue; 18994 if (ipif->ipif_zoneid != zoneid && 18995 ipif->ipif_zoneid != ALL_ZONES) 18996 continue; 18997 /* 18998 * Point-to-point case. Look for exact match with 18999 * destination address. 19000 */ 19001 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19002 if (ipif->ipif_pp_dst_addr == addr) { 19003 ipif_refhold_locked(ipif); 19004 mutex_exit(&ill->ill_lock); 19005 rw_exit(&ipst->ips_ill_g_lock); 19006 if (best_ipif != NULL) 19007 ipif_refrele(best_ipif); 19008 return (ipif); 19009 } 19010 } else if (ipif->ipif_subnet == (addr & 19011 ipif->ipif_net_mask)) { 19012 /* 19013 * Point-to-multipoint case. Looping through to 19014 * find the most specific match. If there are 19015 * multiple best match ipif's then prefer ipif's 19016 * that are UP. If there is only one best match 19017 * ipif and it is DOWN we must still return it. 19018 */ 19019 if ((best_ipif == NULL) || 19020 (ipif->ipif_net_mask > 19021 best_ipif->ipif_net_mask) || 19022 ((ipif->ipif_net_mask == 19023 best_ipif->ipif_net_mask) && 19024 ((ipif->ipif_flags & IPIF_UP) && 19025 (!(best_ipif->ipif_flags & IPIF_UP))))) { 19026 ipif_refhold_locked(ipif); 19027 mutex_exit(&ill->ill_lock); 19028 rw_exit(&ipst->ips_ill_g_lock); 19029 if (best_ipif != NULL) 19030 ipif_refrele(best_ipif); 19031 best_ipif = ipif; 19032 rw_enter(&ipst->ips_ill_g_lock, 19033 RW_READER); 19034 mutex_enter(&ill->ill_lock); 19035 } 19036 } 19037 } 19038 mutex_exit(&ill->ill_lock); 19039 } 19040 rw_exit(&ipst->ips_ill_g_lock); 19041 return (best_ipif); 19042 } 19043 19044 /* 19045 * Save enough information so that we can recreate the IRE if 19046 * the interface goes down and then up. 19047 */ 19048 static void 19049 ipif_save_ire(ipif_t *ipif, ire_t *ire) 19050 { 19051 mblk_t *save_mp; 19052 19053 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 19054 if (save_mp != NULL) { 19055 ifrt_t *ifrt; 19056 19057 save_mp->b_wptr += sizeof (ifrt_t); 19058 ifrt = (ifrt_t *)save_mp->b_rptr; 19059 bzero(ifrt, sizeof (ifrt_t)); 19060 ifrt->ifrt_type = ire->ire_type; 19061 ifrt->ifrt_addr = ire->ire_addr; 19062 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 19063 ifrt->ifrt_src_addr = ire->ire_src_addr; 19064 ifrt->ifrt_mask = ire->ire_mask; 19065 ifrt->ifrt_flags = ire->ire_flags; 19066 ifrt->ifrt_max_frag = ire->ire_max_frag; 19067 mutex_enter(&ipif->ipif_saved_ire_lock); 19068 save_mp->b_cont = ipif->ipif_saved_ire_mp; 19069 ipif->ipif_saved_ire_mp = save_mp; 19070 ipif->ipif_saved_ire_cnt++; 19071 mutex_exit(&ipif->ipif_saved_ire_lock); 19072 } 19073 } 19074 19075 static void 19076 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 19077 { 19078 mblk_t **mpp; 19079 mblk_t *mp; 19080 ifrt_t *ifrt; 19081 19082 /* Remove from ipif_saved_ire_mp list if it is there */ 19083 mutex_enter(&ipif->ipif_saved_ire_lock); 19084 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 19085 mpp = &(*mpp)->b_cont) { 19086 /* 19087 * On a given ipif, the triple of address, gateway and 19088 * mask is unique for each saved IRE (in the case of 19089 * ordinary interface routes, the gateway address is 19090 * all-zeroes). 19091 */ 19092 mp = *mpp; 19093 ifrt = (ifrt_t *)mp->b_rptr; 19094 if (ifrt->ifrt_addr == ire->ire_addr && 19095 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 19096 ifrt->ifrt_mask == ire->ire_mask) { 19097 *mpp = mp->b_cont; 19098 ipif->ipif_saved_ire_cnt--; 19099 freeb(mp); 19100 break; 19101 } 19102 } 19103 mutex_exit(&ipif->ipif_saved_ire_lock); 19104 } 19105 19106 /* 19107 * IP multirouting broadcast routes handling 19108 * Append CGTP broadcast IREs to regular ones created 19109 * at ifconfig time. 19110 */ 19111 static void 19112 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 19113 { 19114 ire_t *ire_prim; 19115 19116 ASSERT(ire != NULL); 19117 ASSERT(ire_dst != NULL); 19118 19119 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19120 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19121 if (ire_prim != NULL) { 19122 /* 19123 * We are in the special case of broadcasts for 19124 * CGTP. We add an IRE_BROADCAST that holds 19125 * the RTF_MULTIRT flag, the destination 19126 * address of ire_dst and the low level 19127 * info of ire_prim. In other words, CGTP 19128 * broadcast is added to the redundant ipif. 19129 */ 19130 ipif_t *ipif_prim; 19131 ire_t *bcast_ire; 19132 19133 ipif_prim = ire_prim->ire_ipif; 19134 19135 ip2dbg(("ip_cgtp_filter_bcast_add: " 19136 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19137 (void *)ire_dst, (void *)ire_prim, 19138 (void *)ipif_prim)); 19139 19140 bcast_ire = ire_create( 19141 (uchar_t *)&ire->ire_addr, 19142 (uchar_t *)&ip_g_all_ones, 19143 (uchar_t *)&ire_dst->ire_src_addr, 19144 (uchar_t *)&ire->ire_gateway_addr, 19145 &ipif_prim->ipif_mtu, 19146 NULL, 19147 ipif_prim->ipif_rq, 19148 ipif_prim->ipif_wq, 19149 IRE_BROADCAST, 19150 ipif_prim, 19151 0, 19152 0, 19153 0, 19154 ire->ire_flags, 19155 &ire_uinfo_null, 19156 NULL, 19157 NULL, 19158 ipst); 19159 19160 if (bcast_ire != NULL) { 19161 19162 if (ire_add(&bcast_ire, NULL, NULL, NULL, 19163 B_FALSE) == 0) { 19164 ip2dbg(("ip_cgtp_filter_bcast_add: " 19165 "added bcast_ire %p\n", 19166 (void *)bcast_ire)); 19167 19168 ipif_save_ire(bcast_ire->ire_ipif, 19169 bcast_ire); 19170 ire_refrele(bcast_ire); 19171 } 19172 } 19173 ire_refrele(ire_prim); 19174 } 19175 } 19176 19177 /* 19178 * IP multirouting broadcast routes handling 19179 * Remove the broadcast ire 19180 */ 19181 static void 19182 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 19183 { 19184 ire_t *ire_dst; 19185 19186 ASSERT(ire != NULL); 19187 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 19188 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19189 if (ire_dst != NULL) { 19190 ire_t *ire_prim; 19191 19192 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19193 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19194 if (ire_prim != NULL) { 19195 ipif_t *ipif_prim; 19196 ire_t *bcast_ire; 19197 19198 ipif_prim = ire_prim->ire_ipif; 19199 19200 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19201 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19202 (void *)ire_dst, (void *)ire_prim, 19203 (void *)ipif_prim)); 19204 19205 bcast_ire = ire_ctable_lookup(ire->ire_addr, 19206 ire->ire_gateway_addr, 19207 IRE_BROADCAST, 19208 ipif_prim, ALL_ZONES, 19209 NULL, 19210 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 19211 MATCH_IRE_MASK, ipst); 19212 19213 if (bcast_ire != NULL) { 19214 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19215 "looked up bcast_ire %p\n", 19216 (void *)bcast_ire)); 19217 ipif_remove_ire(bcast_ire->ire_ipif, 19218 bcast_ire); 19219 ire_delete(bcast_ire); 19220 ire_refrele(bcast_ire); 19221 } 19222 ire_refrele(ire_prim); 19223 } 19224 ire_refrele(ire_dst); 19225 } 19226 } 19227 19228 /* 19229 * IPsec hardware acceleration capabilities related functions. 19230 */ 19231 19232 /* 19233 * Free a per-ill IPsec capabilities structure. 19234 */ 19235 static void 19236 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 19237 { 19238 if (capab->auth_hw_algs != NULL) 19239 kmem_free(capab->auth_hw_algs, capab->algs_size); 19240 if (capab->encr_hw_algs != NULL) 19241 kmem_free(capab->encr_hw_algs, capab->algs_size); 19242 if (capab->encr_algparm != NULL) 19243 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 19244 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 19245 } 19246 19247 /* 19248 * Allocate a new per-ill IPsec capabilities structure. This structure 19249 * is specific to an IPsec protocol (AH or ESP). It is implemented as 19250 * an array which specifies, for each algorithm, whether this algorithm 19251 * is supported by the ill or not. 19252 */ 19253 static ill_ipsec_capab_t * 19254 ill_ipsec_capab_alloc(void) 19255 { 19256 ill_ipsec_capab_t *capab; 19257 uint_t nelems; 19258 19259 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 19260 if (capab == NULL) 19261 return (NULL); 19262 19263 /* we need one bit per algorithm */ 19264 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 19265 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 19266 19267 /* allocate memory to store algorithm flags */ 19268 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19269 if (capab->encr_hw_algs == NULL) 19270 goto nomem; 19271 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19272 if (capab->auth_hw_algs == NULL) 19273 goto nomem; 19274 /* 19275 * Leave encr_algparm NULL for now since we won't need it half 19276 * the time 19277 */ 19278 return (capab); 19279 19280 nomem: 19281 ill_ipsec_capab_free(capab); 19282 return (NULL); 19283 } 19284 19285 /* 19286 * Resize capability array. Since we're exclusive, this is OK. 19287 */ 19288 static boolean_t 19289 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 19290 { 19291 ipsec_capab_algparm_t *nalp, *oalp; 19292 uint32_t olen, nlen; 19293 19294 oalp = capab->encr_algparm; 19295 olen = capab->encr_algparm_size; 19296 19297 if (oalp != NULL) { 19298 if (algid < capab->encr_algparm_end) 19299 return (B_TRUE); 19300 } 19301 19302 nlen = (algid + 1) * sizeof (*nalp); 19303 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 19304 if (nalp == NULL) 19305 return (B_FALSE); 19306 19307 if (oalp != NULL) { 19308 bcopy(oalp, nalp, olen); 19309 kmem_free(oalp, olen); 19310 } 19311 capab->encr_algparm = nalp; 19312 capab->encr_algparm_size = nlen; 19313 capab->encr_algparm_end = algid + 1; 19314 19315 return (B_TRUE); 19316 } 19317 19318 /* 19319 * Compare the capabilities of the specified ill with the protocol 19320 * and algorithms specified by the SA passed as argument. 19321 * If they match, returns B_TRUE, B_FALSE if they do not match. 19322 * 19323 * The ill can be passed as a pointer to it, or by specifying its index 19324 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 19325 * 19326 * Called by ipsec_out_is_accelerated() do decide whether an outbound 19327 * packet is eligible for hardware acceleration, and by 19328 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 19329 * to a particular ill. 19330 */ 19331 boolean_t 19332 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 19333 ipsa_t *sa, netstack_t *ns) 19334 { 19335 boolean_t sa_isv6; 19336 uint_t algid; 19337 struct ill_ipsec_capab_s *cpp; 19338 boolean_t need_refrele = B_FALSE; 19339 ip_stack_t *ipst = ns->netstack_ip; 19340 19341 if (ill == NULL) { 19342 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 19343 NULL, NULL, NULL, ipst); 19344 if (ill == NULL) { 19345 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 19346 return (B_FALSE); 19347 } 19348 need_refrele = B_TRUE; 19349 } 19350 19351 /* 19352 * Use the address length specified by the SA to determine 19353 * if it corresponds to a IPv6 address, and fail the matching 19354 * if the isv6 flag passed as argument does not match. 19355 * Note: this check is used for SADB capability checking before 19356 * sending SA information to an ill. 19357 */ 19358 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 19359 if (sa_isv6 != ill_isv6) 19360 /* protocol mismatch */ 19361 goto done; 19362 19363 /* 19364 * Check if the ill supports the protocol, algorithm(s) and 19365 * key size(s) specified by the SA, and get the pointers to 19366 * the algorithms supported by the ill. 19367 */ 19368 switch (sa->ipsa_type) { 19369 19370 case SADB_SATYPE_ESP: 19371 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 19372 /* ill does not support ESP acceleration */ 19373 goto done; 19374 cpp = ill->ill_ipsec_capab_esp; 19375 algid = sa->ipsa_auth_alg; 19376 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 19377 goto done; 19378 algid = sa->ipsa_encr_alg; 19379 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 19380 goto done; 19381 if (algid < cpp->encr_algparm_end) { 19382 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 19383 if (sa->ipsa_encrkeybits < alp->minkeylen) 19384 goto done; 19385 if (sa->ipsa_encrkeybits > alp->maxkeylen) 19386 goto done; 19387 } 19388 break; 19389 19390 case SADB_SATYPE_AH: 19391 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 19392 /* ill does not support AH acceleration */ 19393 goto done; 19394 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 19395 ill->ill_ipsec_capab_ah->auth_hw_algs)) 19396 goto done; 19397 break; 19398 } 19399 19400 if (need_refrele) 19401 ill_refrele(ill); 19402 return (B_TRUE); 19403 done: 19404 if (need_refrele) 19405 ill_refrele(ill); 19406 return (B_FALSE); 19407 } 19408 19409 /* 19410 * Add a new ill to the list of IPsec capable ills. 19411 * Called from ill_capability_ipsec_ack() when an ACK was received 19412 * indicating that IPsec hardware processing was enabled for an ill. 19413 * 19414 * ill must point to the ill for which acceleration was enabled. 19415 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 19416 */ 19417 static void 19418 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 19419 { 19420 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 19421 uint_t sa_type; 19422 uint_t ipproto; 19423 ip_stack_t *ipst = ill->ill_ipst; 19424 19425 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 19426 (dl_cap == DL_CAPAB_IPSEC_ESP)); 19427 19428 switch (dl_cap) { 19429 case DL_CAPAB_IPSEC_AH: 19430 sa_type = SADB_SATYPE_AH; 19431 ills = &ipst->ips_ipsec_capab_ills_ah; 19432 ipproto = IPPROTO_AH; 19433 break; 19434 case DL_CAPAB_IPSEC_ESP: 19435 sa_type = SADB_SATYPE_ESP; 19436 ills = &ipst->ips_ipsec_capab_ills_esp; 19437 ipproto = IPPROTO_ESP; 19438 break; 19439 } 19440 19441 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19442 19443 /* 19444 * Add ill index to list of hardware accelerators. If 19445 * already in list, do nothing. 19446 */ 19447 for (cur_ill = *ills; cur_ill != NULL && 19448 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 19449 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 19450 ; 19451 19452 if (cur_ill == NULL) { 19453 /* if this is a new entry for this ill */ 19454 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 19455 if (new_ill == NULL) { 19456 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19457 return; 19458 } 19459 19460 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 19461 new_ill->ill_isv6 = ill->ill_isv6; 19462 new_ill->next = *ills; 19463 *ills = new_ill; 19464 } else if (!sadb_resync) { 19465 /* not resync'ing SADB and an entry exists for this ill */ 19466 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19467 return; 19468 } 19469 19470 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19471 19472 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 19473 /* 19474 * IPsec module for protocol loaded, initiate dump 19475 * of the SADB to this ill. 19476 */ 19477 sadb_ill_download(ill, sa_type); 19478 } 19479 19480 /* 19481 * Remove an ill from the list of IPsec capable ills. 19482 */ 19483 static void 19484 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 19485 { 19486 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 19487 ip_stack_t *ipst = ill->ill_ipst; 19488 19489 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 19490 dl_cap == DL_CAPAB_IPSEC_ESP); 19491 19492 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 19493 &ipst->ips_ipsec_capab_ills_esp; 19494 19495 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19496 19497 prev_ill = NULL; 19498 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 19499 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 19500 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 19501 ; 19502 if (cur_ill == NULL) { 19503 /* entry not found */ 19504 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19505 return; 19506 } 19507 if (prev_ill == NULL) { 19508 /* entry at front of list */ 19509 *ills = NULL; 19510 } else { 19511 prev_ill->next = cur_ill->next; 19512 } 19513 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 19514 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19515 } 19516 19517 /* 19518 * Called by SADB to send a DL_CONTROL_REQ message to every ill 19519 * supporting the specified IPsec protocol acceleration. 19520 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 19521 * We free the mblk and, if sa is non-null, release the held referece. 19522 */ 19523 void 19524 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 19525 netstack_t *ns) 19526 { 19527 ipsec_capab_ill_t *ici, *cur_ici; 19528 ill_t *ill; 19529 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 19530 ip_stack_t *ipst = ns->netstack_ip; 19531 19532 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 19533 ipst->ips_ipsec_capab_ills_esp; 19534 19535 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 19536 19537 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 19538 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 19539 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 19540 19541 /* 19542 * Handle the case where the ill goes away while the SADB is 19543 * attempting to send messages. If it's going away, it's 19544 * nuking its shadow SADB, so we don't care.. 19545 */ 19546 19547 if (ill == NULL) 19548 continue; 19549 19550 if (sa != NULL) { 19551 /* 19552 * Make sure capabilities match before 19553 * sending SA to ill. 19554 */ 19555 if (!ipsec_capab_match(ill, cur_ici->ill_index, 19556 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 19557 ill_refrele(ill); 19558 continue; 19559 } 19560 19561 mutex_enter(&sa->ipsa_lock); 19562 sa->ipsa_flags |= IPSA_F_HW; 19563 mutex_exit(&sa->ipsa_lock); 19564 } 19565 19566 /* 19567 * Copy template message, and add it to the front 19568 * of the mblk ship list. We want to avoid holding 19569 * the ipsec_capab_ills_lock while sending the 19570 * message to the ills. 19571 * 19572 * The b_next and b_prev are temporarily used 19573 * to build a list of mblks to be sent down, and to 19574 * save the ill to which they must be sent. 19575 */ 19576 nmp = copymsg(mp); 19577 if (nmp == NULL) { 19578 ill_refrele(ill); 19579 continue; 19580 } 19581 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 19582 nmp->b_next = mp_ship_list; 19583 mp_ship_list = nmp; 19584 nmp->b_prev = (mblk_t *)ill; 19585 } 19586 19587 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19588 19589 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 19590 /* restore the mblk to a sane state */ 19591 next_mp = nmp->b_next; 19592 nmp->b_next = NULL; 19593 ill = (ill_t *)nmp->b_prev; 19594 nmp->b_prev = NULL; 19595 19596 ill_dlpi_send(ill, nmp); 19597 ill_refrele(ill); 19598 } 19599 19600 if (sa != NULL) 19601 IPSA_REFRELE(sa); 19602 freemsg(mp); 19603 } 19604 19605 /* 19606 * Derive an interface id from the link layer address. 19607 * Knows about IEEE 802 and IEEE EUI-64 mappings. 19608 */ 19609 static boolean_t 19610 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19611 { 19612 char *addr; 19613 19614 if (ill->ill_phys_addr_length != ETHERADDRL) 19615 return (B_FALSE); 19616 19617 /* Form EUI-64 like address */ 19618 addr = (char *)&v6addr->s6_addr32[2]; 19619 bcopy(ill->ill_phys_addr, addr, 3); 19620 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 19621 addr[3] = (char)0xff; 19622 addr[4] = (char)0xfe; 19623 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 19624 return (B_TRUE); 19625 } 19626 19627 /* ARGSUSED */ 19628 static boolean_t 19629 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19630 { 19631 return (B_FALSE); 19632 } 19633 19634 typedef struct ipmp_ifcookie { 19635 uint32_t ic_hostid; 19636 char ic_ifname[LIFNAMSIZ]; 19637 char ic_zonename[ZONENAME_MAX]; 19638 } ipmp_ifcookie_t; 19639 19640 /* 19641 * Construct a pseudo-random interface ID for the IPMP interface that's both 19642 * predictable and (almost) guaranteed to be unique. 19643 */ 19644 static boolean_t 19645 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19646 { 19647 zone_t *zp; 19648 uint8_t *addr; 19649 uchar_t hash[16]; 19650 ulong_t hostid; 19651 MD5_CTX ctx; 19652 ipmp_ifcookie_t ic = { 0 }; 19653 19654 ASSERT(IS_IPMP(ill)); 19655 19656 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 19657 ic.ic_hostid = htonl((uint32_t)hostid); 19658 19659 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 19660 19661 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 19662 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 19663 zone_rele(zp); 19664 } 19665 19666 MD5Init(&ctx); 19667 MD5Update(&ctx, &ic, sizeof (ic)); 19668 MD5Final(hash, &ctx); 19669 19670 /* 19671 * Map the hash to an interface ID per the basic approach in RFC3041. 19672 */ 19673 addr = &v6addr->s6_addr8[8]; 19674 bcopy(hash + 8, addr, sizeof (uint64_t)); 19675 addr[0] &= ~0x2; /* set local bit */ 19676 19677 return (B_TRUE); 19678 } 19679 19680 /* ARGSUSED */ 19681 static boolean_t 19682 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19683 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19684 { 19685 /* 19686 * Multicast address mappings used over Ethernet/802.X. 19687 * This address is used as a base for mappings. 19688 */ 19689 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 19690 0x00, 0x00, 0x00}; 19691 19692 /* 19693 * Extract low order 32 bits from IPv6 multicast address. 19694 * Or that into the link layer address, starting from the 19695 * second byte. 19696 */ 19697 *hw_start = 2; 19698 v6_extract_mask->s6_addr32[0] = 0; 19699 v6_extract_mask->s6_addr32[1] = 0; 19700 v6_extract_mask->s6_addr32[2] = 0; 19701 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19702 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 19703 return (B_TRUE); 19704 } 19705 19706 /* 19707 * Indicate by return value whether multicast is supported. If not, 19708 * this code should not touch/change any parameters. 19709 */ 19710 /* ARGSUSED */ 19711 static boolean_t 19712 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19713 uint32_t *hw_start, ipaddr_t *extract_mask) 19714 { 19715 /* 19716 * Multicast address mappings used over Ethernet/802.X. 19717 * This address is used as a base for mappings. 19718 */ 19719 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 19720 0x00, 0x00, 0x00 }; 19721 19722 if (phys_length != ETHERADDRL) 19723 return (B_FALSE); 19724 19725 *extract_mask = htonl(0x007fffff); 19726 *hw_start = 2; 19727 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 19728 return (B_TRUE); 19729 } 19730 19731 /* 19732 * Derive IPoIB interface id from the link layer address. 19733 */ 19734 static boolean_t 19735 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19736 { 19737 char *addr; 19738 19739 if (ill->ill_phys_addr_length != 20) 19740 return (B_FALSE); 19741 addr = (char *)&v6addr->s6_addr32[2]; 19742 bcopy(ill->ill_phys_addr + 12, addr, 8); 19743 /* 19744 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 19745 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 19746 * rules. In these cases, the IBA considers these GUIDs to be in 19747 * "Modified EUI-64" format, and thus toggling the u/l bit is not 19748 * required; vendors are required not to assign global EUI-64's 19749 * that differ only in u/l bit values, thus guaranteeing uniqueness 19750 * of the interface identifier. Whether the GUID is in modified 19751 * or proper EUI-64 format, the ipv6 identifier must have the u/l 19752 * bit set to 1. 19753 */ 19754 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 19755 return (B_TRUE); 19756 } 19757 19758 /* 19759 * Note on mapping from multicast IP addresses to IPoIB multicast link 19760 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 19761 * The format of an IPoIB multicast address is: 19762 * 19763 * 4 byte QPN Scope Sign. Pkey 19764 * +--------------------------------------------+ 19765 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 19766 * +--------------------------------------------+ 19767 * 19768 * The Scope and Pkey components are properties of the IBA port and 19769 * network interface. They can be ascertained from the broadcast address. 19770 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 19771 */ 19772 19773 static boolean_t 19774 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19775 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19776 { 19777 /* 19778 * Base IPoIB IPv6 multicast address used for mappings. 19779 * Does not contain the IBA scope/Pkey values. 19780 */ 19781 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19782 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 19783 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19784 19785 /* 19786 * Extract low order 80 bits from IPv6 multicast address. 19787 * Or that into the link layer address, starting from the 19788 * sixth byte. 19789 */ 19790 *hw_start = 6; 19791 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 19792 19793 /* 19794 * Now fill in the IBA scope/Pkey values from the broadcast address. 19795 */ 19796 *(maddr + 5) = *(bphys_addr + 5); 19797 *(maddr + 8) = *(bphys_addr + 8); 19798 *(maddr + 9) = *(bphys_addr + 9); 19799 19800 v6_extract_mask->s6_addr32[0] = 0; 19801 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 19802 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 19803 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19804 return (B_TRUE); 19805 } 19806 19807 static boolean_t 19808 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19809 uint32_t *hw_start, ipaddr_t *extract_mask) 19810 { 19811 /* 19812 * Base IPoIB IPv4 multicast address used for mappings. 19813 * Does not contain the IBA scope/Pkey values. 19814 */ 19815 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19816 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 19817 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19818 19819 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 19820 return (B_FALSE); 19821 19822 /* 19823 * Extract low order 28 bits from IPv4 multicast address. 19824 * Or that into the link layer address, starting from the 19825 * sixteenth byte. 19826 */ 19827 *extract_mask = htonl(0x0fffffff); 19828 *hw_start = 16; 19829 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 19830 19831 /* 19832 * Now fill in the IBA scope/Pkey values from the broadcast address. 19833 */ 19834 *(maddr + 5) = *(bphys_addr + 5); 19835 *(maddr + 8) = *(bphys_addr + 8); 19836 *(maddr + 9) = *(bphys_addr + 9); 19837 return (B_TRUE); 19838 } 19839 19840 /* 19841 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 19842 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 19843 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 19844 * the link-local address is preferred. 19845 */ 19846 boolean_t 19847 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 19848 { 19849 ipif_t *ipif; 19850 ipif_t *maybe_ipif = NULL; 19851 19852 mutex_enter(&ill->ill_lock); 19853 if (ill->ill_state_flags & ILL_CONDEMNED) { 19854 mutex_exit(&ill->ill_lock); 19855 if (ipifp != NULL) 19856 *ipifp = NULL; 19857 return (B_FALSE); 19858 } 19859 19860 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19861 if (!IPIF_CAN_LOOKUP(ipif)) 19862 continue; 19863 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 19864 ipif->ipif_zoneid != ALL_ZONES) 19865 continue; 19866 if ((ipif->ipif_flags & flags) != flags) 19867 continue; 19868 19869 if (ipifp == NULL) { 19870 mutex_exit(&ill->ill_lock); 19871 ASSERT(maybe_ipif == NULL); 19872 return (B_TRUE); 19873 } 19874 if (!ill->ill_isv6 || 19875 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 19876 ipif_refhold_locked(ipif); 19877 mutex_exit(&ill->ill_lock); 19878 *ipifp = ipif; 19879 return (B_TRUE); 19880 } 19881 if (maybe_ipif == NULL) 19882 maybe_ipif = ipif; 19883 } 19884 if (ipifp != NULL) { 19885 if (maybe_ipif != NULL) 19886 ipif_refhold_locked(maybe_ipif); 19887 *ipifp = maybe_ipif; 19888 } 19889 mutex_exit(&ill->ill_lock); 19890 return (maybe_ipif != NULL); 19891 } 19892 19893 /* 19894 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 19895 * If a pointer to an ipif_t is returned then the caller will need to do 19896 * an ill_refrele(). 19897 */ 19898 ipif_t * 19899 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 19900 ip_stack_t *ipst) 19901 { 19902 ipif_t *ipif; 19903 ill_t *ill; 19904 19905 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 19906 ipst); 19907 if (ill == NULL) 19908 return (NULL); 19909 19910 mutex_enter(&ill->ill_lock); 19911 if (ill->ill_state_flags & ILL_CONDEMNED) { 19912 mutex_exit(&ill->ill_lock); 19913 ill_refrele(ill); 19914 return (NULL); 19915 } 19916 19917 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19918 if (!IPIF_CAN_LOOKUP(ipif)) 19919 continue; 19920 if (lifidx == ipif->ipif_id) { 19921 ipif_refhold_locked(ipif); 19922 break; 19923 } 19924 } 19925 19926 mutex_exit(&ill->ill_lock); 19927 ill_refrele(ill); 19928 return (ipif); 19929 } 19930 19931 /* 19932 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 19933 * There is one exceptions IRE_BROADCAST are difficult to recreate, 19934 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 19935 * for details. 19936 */ 19937 void 19938 ill_fastpath_flush(ill_t *ill) 19939 { 19940 ip_stack_t *ipst = ill->ill_ipst; 19941 19942 nce_fastpath_list_dispatch(ill, NULL, NULL); 19943 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 19944 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 19945 } 19946 19947 /* 19948 * Set the physical address information for `ill' to the contents of the 19949 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 19950 * asynchronous if `ill' cannot immediately be quiesced -- in which case 19951 * EINPROGRESS will be returned. 19952 */ 19953 int 19954 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 19955 { 19956 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19957 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 19958 19959 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19960 19961 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 19962 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 19963 /* Changing DL_IPV6_TOKEN is not yet supported */ 19964 return (0); 19965 } 19966 19967 /* 19968 * We need to store up to two copies of `mp' in `ill'. Due to the 19969 * design of ipsq_pending_mp_add(), we can't pass them as separate 19970 * arguments to ill_set_phys_addr_tail(). Instead, chain them 19971 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 19972 */ 19973 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 19974 freemsg(mp); 19975 return (ENOMEM); 19976 } 19977 19978 ipsq_current_start(ipsq, ill->ill_ipif, 0); 19979 19980 /* 19981 * If we can quiesce the ill, then set the address. If not, then 19982 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 19983 */ 19984 ill_down_ipifs(ill); 19985 mutex_enter(&ill->ill_lock); 19986 if (!ill_is_quiescent(ill)) { 19987 /* call cannot fail since `conn_t *' argument is NULL */ 19988 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 19989 mp, ILL_DOWN); 19990 mutex_exit(&ill->ill_lock); 19991 return (EINPROGRESS); 19992 } 19993 mutex_exit(&ill->ill_lock); 19994 19995 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 19996 return (0); 19997 } 19998 19999 /* 20000 * Once the ill associated with `q' has quiesced, set its physical address 20001 * information to the values in `addrmp'. Note that two copies of `addrmp' 20002 * are passed (linked by b_cont), since we sometimes need to save two distinct 20003 * copies in the ill_t, and our context doesn't permit sleeping or allocation 20004 * failure (we'll free the other copy if it's not needed). Since the ill_t 20005 * is quiesced, we know any stale IREs with the old address information have 20006 * already been removed, so we don't need to call ill_fastpath_flush(). 20007 */ 20008 /* ARGSUSED */ 20009 static void 20010 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 20011 { 20012 ill_t *ill = q->q_ptr; 20013 mblk_t *addrmp2 = unlinkb(addrmp); 20014 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 20015 uint_t addrlen, addroff; 20016 20017 ASSERT(IAM_WRITER_IPSQ(ipsq)); 20018 20019 addroff = dlindp->dl_addr_offset; 20020 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 20021 20022 switch (dlindp->dl_data) { 20023 case DL_IPV6_LINK_LAYER_ADDR: 20024 ill_set_ndmp(ill, addrmp, addroff, addrlen); 20025 freemsg(addrmp2); 20026 break; 20027 20028 case DL_CURR_PHYS_ADDR: 20029 freemsg(ill->ill_phys_addr_mp); 20030 ill->ill_phys_addr = addrmp->b_rptr + addroff; 20031 ill->ill_phys_addr_mp = addrmp; 20032 ill->ill_phys_addr_length = addrlen; 20033 20034 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 20035 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 20036 else 20037 freemsg(addrmp2); 20038 break; 20039 default: 20040 ASSERT(0); 20041 } 20042 20043 /* 20044 * If there are ipifs to bring up, ill_up_ipifs() will return 20045 * EINPROGRESS, and ipsq_current_finish() will be called by 20046 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 20047 * brought up. 20048 */ 20049 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 20050 ipsq_current_finish(ipsq); 20051 } 20052 20053 /* 20054 * Helper routine for setting the ill_nd_lla fields. 20055 */ 20056 void 20057 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 20058 { 20059 freemsg(ill->ill_nd_lla_mp); 20060 ill->ill_nd_lla = ndmp->b_rptr + addroff; 20061 ill->ill_nd_lla_mp = ndmp; 20062 ill->ill_nd_lla_len = addrlen; 20063 } 20064 20065 major_t IP_MAJ; 20066 #define IP "ip" 20067 20068 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 20069 #define UDPDEV "/devices/pseudo/udp@0:udp" 20070 20071 /* 20072 * Issue REMOVEIF ioctls to have the loopback interfaces 20073 * go away. Other interfaces are either I_LINKed or I_PLINKed; 20074 * the former going away when the user-level processes in the zone 20075 * are killed * and the latter are cleaned up by the stream head 20076 * str_stack_shutdown callback that undoes all I_PLINKs. 20077 */ 20078 void 20079 ip_loopback_cleanup(ip_stack_t *ipst) 20080 { 20081 int error; 20082 ldi_handle_t lh = NULL; 20083 ldi_ident_t li = NULL; 20084 int rval; 20085 cred_t *cr; 20086 struct strioctl iocb; 20087 struct lifreq lifreq; 20088 20089 IP_MAJ = ddi_name_to_major(IP); 20090 20091 #ifdef NS_DEBUG 20092 (void) printf("ip_loopback_cleanup() stackid %d\n", 20093 ipst->ips_netstack->netstack_stackid); 20094 #endif 20095 20096 bzero(&lifreq, sizeof (lifreq)); 20097 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 20098 20099 error = ldi_ident_from_major(IP_MAJ, &li); 20100 if (error) { 20101 #ifdef DEBUG 20102 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 20103 error); 20104 #endif 20105 return; 20106 } 20107 20108 cr = zone_get_kcred(netstackid_to_zoneid( 20109 ipst->ips_netstack->netstack_stackid)); 20110 ASSERT(cr != NULL); 20111 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 20112 if (error) { 20113 #ifdef DEBUG 20114 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 20115 error); 20116 #endif 20117 goto out; 20118 } 20119 iocb.ic_cmd = SIOCLIFREMOVEIF; 20120 iocb.ic_timout = 15; 20121 iocb.ic_len = sizeof (lifreq); 20122 iocb.ic_dp = (char *)&lifreq; 20123 20124 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20125 /* LINTED - statement has no consequent */ 20126 if (error) { 20127 #ifdef NS_DEBUG 20128 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20129 "UDP6 error %d\n", error); 20130 #endif 20131 } 20132 (void) ldi_close(lh, FREAD|FWRITE, cr); 20133 lh = NULL; 20134 20135 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 20136 if (error) { 20137 #ifdef NS_DEBUG 20138 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 20139 error); 20140 #endif 20141 goto out; 20142 } 20143 20144 iocb.ic_cmd = SIOCLIFREMOVEIF; 20145 iocb.ic_timout = 15; 20146 iocb.ic_len = sizeof (lifreq); 20147 iocb.ic_dp = (char *)&lifreq; 20148 20149 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20150 /* LINTED - statement has no consequent */ 20151 if (error) { 20152 #ifdef NS_DEBUG 20153 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20154 "UDP error %d\n", error); 20155 #endif 20156 } 20157 (void) ldi_close(lh, FREAD|FWRITE, cr); 20158 lh = NULL; 20159 20160 out: 20161 /* Close layered handles */ 20162 if (lh) 20163 (void) ldi_close(lh, FREAD|FWRITE, cr); 20164 if (li) 20165 ldi_ident_release(li); 20166 20167 crfree(cr); 20168 } 20169 20170 /* 20171 * This needs to be in-sync with nic_event_t definition 20172 */ 20173 static const char * 20174 ill_hook_event2str(nic_event_t event) 20175 { 20176 switch (event) { 20177 case NE_PLUMB: 20178 return ("PLUMB"); 20179 case NE_UNPLUMB: 20180 return ("UNPLUMB"); 20181 case NE_UP: 20182 return ("UP"); 20183 case NE_DOWN: 20184 return ("DOWN"); 20185 case NE_ADDRESS_CHANGE: 20186 return ("ADDRESS_CHANGE"); 20187 case NE_LIF_UP: 20188 return ("LIF_UP"); 20189 case NE_LIF_DOWN: 20190 return ("LIF_DOWN"); 20191 default: 20192 return ("UNKNOWN"); 20193 } 20194 } 20195 20196 void 20197 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 20198 nic_event_data_t data, size_t datalen) 20199 { 20200 ip_stack_t *ipst = ill->ill_ipst; 20201 hook_nic_event_int_t *info; 20202 const char *str = NULL; 20203 20204 /* create a new nic event info */ 20205 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 20206 goto fail; 20207 20208 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 20209 info->hnei_event.hne_lif = lif; 20210 info->hnei_event.hne_event = event; 20211 info->hnei_event.hne_protocol = ill->ill_isv6 ? 20212 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 20213 info->hnei_event.hne_data = NULL; 20214 info->hnei_event.hne_datalen = 0; 20215 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 20216 20217 if (data != NULL && datalen != 0) { 20218 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 20219 if (info->hnei_event.hne_data == NULL) 20220 goto fail; 20221 bcopy(data, info->hnei_event.hne_data, datalen); 20222 info->hnei_event.hne_datalen = datalen; 20223 } 20224 20225 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 20226 DDI_NOSLEEP) == DDI_SUCCESS) 20227 return; 20228 20229 fail: 20230 if (info != NULL) { 20231 if (info->hnei_event.hne_data != NULL) { 20232 kmem_free(info->hnei_event.hne_data, 20233 info->hnei_event.hne_datalen); 20234 } 20235 kmem_free(info, sizeof (hook_nic_event_t)); 20236 } 20237 str = ill_hook_event2str(event); 20238 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 20239 "information for %s (ENOMEM)\n", str, ill->ill_name)); 20240 } 20241 20242 void 20243 ipif_up_notify(ipif_t *ipif) 20244 { 20245 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 20246 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 20247 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20248 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 20249 NE_LIF_UP, NULL, 0); 20250 } 20251