1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/mib2.h> 76 #include <inet/ip.h> 77 #include <inet/ip6.h> 78 #include <inet/ip6_asp.h> 79 #include <inet/tcp.h> 80 #include <inet/ip_multi.h> 81 #include <inet/ip_ire.h> 82 #include <inet/ip_ftable.h> 83 #include <inet/ip_rts.h> 84 #include <inet/ip_ndp.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_impl.h> 87 #include <inet/tun.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 91 #include <net/pfkeyv2.h> 92 #include <inet/ipsec_info.h> 93 #include <inet/sadb.h> 94 #include <inet/ipsec_impl.h> 95 #include <sys/iphada.h> 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac_client.h> 101 #include <sys/dld.h> 102 103 #include <sys/systeminfo.h> 104 #include <sys/bootconf.h> 105 106 #include <sys/tsol/tndb.h> 107 #include <sys/tsol/tnet.h> 108 109 /* The character which tells where the ill_name ends */ 110 #define IPIF_SEPARATOR_CHAR ':' 111 112 /* IP ioctl function table entry */ 113 typedef struct ipft_s { 114 int ipft_cmd; 115 pfi_t ipft_pfi; 116 int ipft_min_size; 117 int ipft_flags; 118 } ipft_t; 119 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 120 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 121 122 typedef struct ip_sock_ar_s { 123 union { 124 area_t ip_sock_area; 125 ared_t ip_sock_ared; 126 areq_t ip_sock_areq; 127 } ip_sock_ar_u; 128 queue_t *ip_sock_ar_q; 129 } ip_sock_ar_t; 130 131 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 132 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 133 char *value, caddr_t cp, cred_t *ioc_cr); 134 135 static boolean_t ill_is_quiescent(ill_t *); 136 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 137 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 138 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 147 mblk_t *mp); 148 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 149 queue_t *q, mblk_t *mp, boolean_t need_up); 150 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 151 int ioccmd, struct linkblk *li, boolean_t doconsist); 152 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 153 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 154 static void ipsq_flush(ill_t *ill); 155 156 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 157 queue_t *q, mblk_t *mp, boolean_t need_up); 158 static void ipsq_delete(ipsq_t *); 159 160 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 161 boolean_t initialize, boolean_t insert); 162 static void ipif_check_bcast_ires(ipif_t *test_ipif); 163 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 164 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 165 boolean_t isv6); 166 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 167 static void ipif_delete_cache_ire(ire_t *, char *); 168 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 169 static void ipif_free(ipif_t *ipif); 170 static void ipif_free_tail(ipif_t *ipif); 171 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static void ipif_update_other_ipifs(ipif_t *old_ipif); 182 183 static int ill_alloc_ppa(ill_if_t *, ill_t *); 184 static int ill_arp_off(ill_t *ill); 185 static int ill_arp_on(ill_t *ill); 186 static void ill_delete_interface_type(ill_if_t *); 187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 188 static void ill_dl_down(ill_t *ill); 189 static void ill_down(ill_t *ill); 190 static void ill_downi(ire_t *ire, char *ill_arg); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static void ill_phyint_reinit(ill_t *ill); 194 static void ill_set_nce_router_flags(ill_t *, boolean_t); 195 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 196 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 197 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 198 static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo; 199 static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo; 200 static void ipif_save_ire(ipif_t *, ire_t *); 201 static void ipif_remove_ire(ipif_t *, ire_t *); 202 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 203 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 204 static void phyint_free(phyint_t *); 205 206 /* 207 * Per-ill IPsec capabilities management. 208 */ 209 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 210 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 211 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 212 static void ill_ipsec_capab_delete(ill_t *, uint_t); 213 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 214 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 215 boolean_t); 216 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 217 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 218 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *); 219 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 220 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *); 221 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 222 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 223 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 224 dl_capability_sub_t *); 225 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 226 static int ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *, 227 int *); 228 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 229 static void ill_capability_dld_ack(ill_t *, mblk_t *, 230 dl_capability_sub_t *); 231 static void ill_capability_dld_enable(ill_t *); 232 static void ill_capability_ack_thr(void *); 233 static void ill_capability_lso_enable(ill_t *); 234 static void ill_capability_send(ill_t *, mblk_t *); 235 236 static ill_t *ill_prev_usesrc(ill_t *); 237 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 238 static void ill_disband_usesrc_group(ill_t *); 239 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 240 241 #ifdef DEBUG 242 static void ill_trace_cleanup(const ill_t *); 243 static void ipif_trace_cleanup(const ipif_t *); 244 #endif 245 246 /* 247 * if we go over the memory footprint limit more than once in this msec 248 * interval, we'll start pruning aggressively. 249 */ 250 int ip_min_frag_prune_time = 0; 251 252 /* 253 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 254 * and the IPsec DOI 255 */ 256 #define MAX_IPSEC_ALGS 256 257 258 #define BITSPERBYTE 8 259 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 260 261 #define IPSEC_ALG_ENABLE(algs, algid) \ 262 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 263 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 264 265 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 266 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 267 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 268 269 typedef uint8_t ipsec_capab_elem_t; 270 271 /* 272 * Per-algorithm parameters. Note that at present, only encryption 273 * algorithms have variable keysize (IKE does not provide a way to negotiate 274 * auth algorithm keysize). 275 * 276 * All sizes here are in bits. 277 */ 278 typedef struct 279 { 280 uint16_t minkeylen; 281 uint16_t maxkeylen; 282 } ipsec_capab_algparm_t; 283 284 /* 285 * Per-ill capabilities. 286 */ 287 struct ill_ipsec_capab_s { 288 ipsec_capab_elem_t *encr_hw_algs; 289 ipsec_capab_elem_t *auth_hw_algs; 290 uint32_t algs_size; /* size of _hw_algs in bytes */ 291 /* algorithm key lengths */ 292 ipsec_capab_algparm_t *encr_algparm; 293 uint32_t encr_algparm_size; 294 uint32_t encr_algparm_end; 295 }; 296 297 /* 298 * The field values are larger than strictly necessary for simple 299 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 300 */ 301 static area_t ip_area_template = { 302 AR_ENTRY_ADD, /* area_cmd */ 303 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 304 /* area_name_offset */ 305 /* area_name_length temporarily holds this structure length */ 306 sizeof (area_t), /* area_name_length */ 307 IP_ARP_PROTO_TYPE, /* area_proto */ 308 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 309 IP_ADDR_LEN, /* area_proto_addr_length */ 310 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 311 /* area_proto_mask_offset */ 312 0, /* area_flags */ 313 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 314 /* area_hw_addr_offset */ 315 /* Zero length hw_addr_length means 'use your idea of the address' */ 316 0 /* area_hw_addr_length */ 317 }; 318 319 /* 320 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 321 * support 322 */ 323 static area_t ip6_area_template = { 324 AR_ENTRY_ADD, /* area_cmd */ 325 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 326 /* area_name_offset */ 327 /* area_name_length temporarily holds this structure length */ 328 sizeof (area_t), /* area_name_length */ 329 IP_ARP_PROTO_TYPE, /* area_proto */ 330 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 331 IPV6_ADDR_LEN, /* area_proto_addr_length */ 332 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 333 /* area_proto_mask_offset */ 334 0, /* area_flags */ 335 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 336 /* area_hw_addr_offset */ 337 /* Zero length hw_addr_length means 'use your idea of the address' */ 338 0 /* area_hw_addr_length */ 339 }; 340 341 static ared_t ip_ared_template = { 342 AR_ENTRY_DELETE, 343 sizeof (ared_t) + IP_ADDR_LEN, 344 sizeof (ared_t), 345 IP_ARP_PROTO_TYPE, 346 sizeof (ared_t), 347 IP_ADDR_LEN, 348 0 349 }; 350 351 static ared_t ip6_ared_template = { 352 AR_ENTRY_DELETE, 353 sizeof (ared_t) + IPV6_ADDR_LEN, 354 sizeof (ared_t), 355 IP_ARP_PROTO_TYPE, 356 sizeof (ared_t), 357 IPV6_ADDR_LEN, 358 0 359 }; 360 361 /* 362 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 363 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 364 * areq is used). 365 */ 366 static areq_t ip_areq_template = { 367 AR_ENTRY_QUERY, /* cmd */ 368 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 369 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 370 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 371 sizeof (areq_t), /* target addr offset */ 372 IP_ADDR_LEN, /* target addr_length */ 373 0, /* flags */ 374 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 375 IP_ADDR_LEN, /* sender addr length */ 376 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 377 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 378 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 379 /* anything else filled in by the code */ 380 }; 381 382 static arc_t ip_aru_template = { 383 AR_INTERFACE_UP, 384 sizeof (arc_t), /* Name offset */ 385 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 386 }; 387 388 static arc_t ip_ard_template = { 389 AR_INTERFACE_DOWN, 390 sizeof (arc_t), /* Name offset */ 391 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 392 }; 393 394 static arc_t ip_aron_template = { 395 AR_INTERFACE_ON, 396 sizeof (arc_t), /* Name offset */ 397 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 398 }; 399 400 static arc_t ip_aroff_template = { 401 AR_INTERFACE_OFF, 402 sizeof (arc_t), /* Name offset */ 403 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 404 }; 405 406 static arma_t ip_arma_multi_template = { 407 AR_MAPPING_ADD, 408 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 409 /* Name offset */ 410 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 411 IP_ARP_PROTO_TYPE, 412 sizeof (arma_t), /* proto_addr_offset */ 413 IP_ADDR_LEN, /* proto_addr_length */ 414 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 415 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 416 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 417 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 418 IP_MAX_HW_LEN, /* hw_addr_length */ 419 0, /* hw_mapping_start */ 420 }; 421 422 static ipft_t ip_ioctl_ftbl[] = { 423 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 424 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 425 IPFT_F_NO_REPLY }, 426 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 427 IPFT_F_NO_REPLY }, 428 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 429 { 0 } 430 }; 431 432 /* Simple ICMP IP Header Template */ 433 static ipha_t icmp_ipha = { 434 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 435 }; 436 437 /* Flag descriptors for ip_ipif_report */ 438 static nv_t ipif_nv_tbl[] = { 439 { IPIF_UP, "UP" }, 440 { IPIF_BROADCAST, "BROADCAST" }, 441 { ILLF_DEBUG, "DEBUG" }, 442 { PHYI_LOOPBACK, "LOOPBACK" }, 443 { IPIF_POINTOPOINT, "POINTOPOINT" }, 444 { ILLF_NOTRAILERS, "NOTRAILERS" }, 445 { PHYI_RUNNING, "RUNNING" }, 446 { ILLF_NOARP, "NOARP" }, 447 { PHYI_PROMISC, "PROMISC" }, 448 { PHYI_ALLMULTI, "ALLMULTI" }, 449 { PHYI_INTELLIGENT, "INTELLIGENT" }, 450 { ILLF_MULTICAST, "MULTICAST" }, 451 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 452 { IPIF_UNNUMBERED, "UNNUMBERED" }, 453 { IPIF_DHCPRUNNING, "DHCP" }, 454 { IPIF_PRIVATE, "PRIVATE" }, 455 { IPIF_NOXMIT, "NOXMIT" }, 456 { IPIF_NOLOCAL, "NOLOCAL" }, 457 { IPIF_DEPRECATED, "DEPRECATED" }, 458 { IPIF_PREFERRED, "PREFERRED" }, 459 { IPIF_TEMPORARY, "TEMPORARY" }, 460 { IPIF_ADDRCONF, "ADDRCONF" }, 461 { PHYI_VIRTUAL, "VIRTUAL" }, 462 { ILLF_ROUTER, "ROUTER" }, 463 { ILLF_NONUD, "NONUD" }, 464 { IPIF_ANYCAST, "ANYCAST" }, 465 { ILLF_NORTEXCH, "NORTEXCH" }, 466 { ILLF_IPV4, "IPV4" }, 467 { ILLF_IPV6, "IPV6" }, 468 { IPIF_NOFAILOVER, "NOFAILOVER" }, 469 { PHYI_FAILED, "FAILED" }, 470 { PHYI_STANDBY, "STANDBY" }, 471 { PHYI_INACTIVE, "INACTIVE" }, 472 { PHYI_OFFLINE, "OFFLINE" }, 473 { PHYI_IPMP, "IPMP" } 474 }; 475 476 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 477 478 static ip_m_t ip_m_tbl[] = { 479 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 480 ip_ether_v6intfid }, 481 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 482 ip_nodef_v6intfid }, 483 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 484 ip_nodef_v6intfid }, 485 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 486 ip_nodef_v6intfid }, 487 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 488 ip_ether_v6intfid }, 489 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 490 ip_ib_v6intfid }, 491 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL }, 492 { SUNW_DL_IPMP, IFT_OTHER, NULL, NULL, ip_ipmp_v6intfid }, 493 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 494 ip_nodef_v6intfid } 495 }; 496 497 static ill_t ill_null; /* Empty ILL for init. */ 498 char ipif_loopback_name[] = "lo0"; 499 static char *ipv4_forward_suffix = ":ip_forwarding"; 500 static char *ipv6_forward_suffix = ":ip6_forwarding"; 501 static sin6_t sin6_null; /* Zero address for quick clears */ 502 static sin_t sin_null; /* Zero address for quick clears */ 503 504 /* When set search for unused ipif_seqid */ 505 static ipif_t ipif_zero; 506 507 /* 508 * ppa arena is created after these many 509 * interfaces have been plumbed. 510 */ 511 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 512 513 /* 514 * Allocate per-interface mibs. 515 * Returns true if ok. False otherwise. 516 * ipsq may not yet be allocated (loopback case ). 517 */ 518 static boolean_t 519 ill_allocate_mibs(ill_t *ill) 520 { 521 /* Already allocated? */ 522 if (ill->ill_ip_mib != NULL) { 523 if (ill->ill_isv6) 524 ASSERT(ill->ill_icmp6_mib != NULL); 525 return (B_TRUE); 526 } 527 528 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 529 KM_NOSLEEP); 530 if (ill->ill_ip_mib == NULL) { 531 return (B_FALSE); 532 } 533 534 /* Setup static information */ 535 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 536 sizeof (mib2_ipIfStatsEntry_t)); 537 if (ill->ill_isv6) { 538 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 539 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 540 sizeof (mib2_ipv6AddrEntry_t)); 541 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 542 sizeof (mib2_ipv6RouteEntry_t)); 543 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 544 sizeof (mib2_ipv6NetToMediaEntry_t)); 545 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 546 sizeof (ipv6_member_t)); 547 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 548 sizeof (ipv6_grpsrc_t)); 549 } else { 550 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 551 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 552 sizeof (mib2_ipAddrEntry_t)); 553 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 554 sizeof (mib2_ipRouteEntry_t)); 555 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 556 sizeof (mib2_ipNetToMediaEntry_t)); 557 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 558 sizeof (ip_member_t)); 559 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 560 sizeof (ip_grpsrc_t)); 561 562 /* 563 * For a v4 ill, we are done at this point, because per ill 564 * icmp mibs are only used for v6. 565 */ 566 return (B_TRUE); 567 } 568 569 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 570 KM_NOSLEEP); 571 if (ill->ill_icmp6_mib == NULL) { 572 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 573 ill->ill_ip_mib = NULL; 574 return (B_FALSE); 575 } 576 /* static icmp info */ 577 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 578 sizeof (mib2_ipv6IfIcmpEntry_t); 579 /* 580 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 581 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 582 * -> ill_phyint_reinit 583 */ 584 return (B_TRUE); 585 } 586 587 /* 588 * Common code for preparation of ARP commands. Two points to remember: 589 * 1) The ill_name is tacked on at the end of the allocated space so 590 * the templates name_offset field must contain the total space 591 * to allocate less the name length. 592 * 593 * 2) The templates name_length field should contain the *template* 594 * length. We use it as a parameter to bcopy() and then write 595 * the real ill_name_length into the name_length field of the copy. 596 * (Always called as writer.) 597 */ 598 mblk_t * 599 ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr) 600 { 601 arc_t *arc = (arc_t *)template; 602 char *cp; 603 int len; 604 mblk_t *mp; 605 uint_t name_length = ill->ill_name_length; 606 uint_t template_len = arc->arc_name_length; 607 608 len = arc->arc_name_offset + name_length; 609 mp = allocb(len, BPRI_HI); 610 if (mp == NULL) 611 return (NULL); 612 cp = (char *)mp->b_rptr; 613 mp->b_wptr = (uchar_t *)&cp[len]; 614 if (template_len) 615 bcopy(template, cp, template_len); 616 if (len > template_len) 617 bzero(&cp[template_len], len - template_len); 618 mp->b_datap->db_type = M_PROTO; 619 620 arc = (arc_t *)cp; 621 arc->arc_name_length = name_length; 622 cp = (char *)arc + arc->arc_name_offset; 623 bcopy(ill->ill_name, cp, name_length); 624 625 if (addr) { 626 area_t *area = (area_t *)mp->b_rptr; 627 628 cp = (char *)area + area->area_proto_addr_offset; 629 bcopy(addr, cp, area->area_proto_addr_length); 630 if (area->area_cmd == AR_ENTRY_ADD) { 631 cp = (char *)area; 632 len = area->area_proto_addr_length; 633 if (area->area_proto_mask_offset) 634 cp += area->area_proto_mask_offset; 635 else 636 cp += area->area_proto_addr_offset + len; 637 while (len-- > 0) 638 *cp++ = (char)~0; 639 } 640 } 641 return (mp); 642 } 643 644 mblk_t * 645 ipif_area_alloc(ipif_t *ipif, uint_t optflags) 646 { 647 caddr_t addr; 648 mblk_t *mp; 649 area_t *area; 650 uchar_t *areap; 651 ill_t *ill = ipif->ipif_ill; 652 653 if (ill->ill_isv6) { 654 ASSERT(ill->ill_flags & ILLF_XRESOLV); 655 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 656 areap = (uchar_t *)&ip6_area_template; 657 } else { 658 addr = (caddr_t)&ipif->ipif_lcl_addr; 659 areap = (uchar_t *)&ip_area_template; 660 } 661 662 if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL) 663 return (NULL); 664 665 /* 666 * IPMP requires that the hardware address be included in all 667 * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on. 668 * If there are no active underlying ills in the group (and thus no 669 * hardware address, DAD will be deferred until an underlying ill 670 * becomes active. 671 */ 672 if (IS_IPMP(ill)) { 673 if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) { 674 freemsg(mp); 675 return (NULL); 676 } 677 } else { 678 ill_refhold(ill); 679 } 680 681 area = (area_t *)mp->b_rptr; 682 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 683 area->area_flags |= optflags; 684 area->area_hw_addr_length = ill->ill_phys_addr_length; 685 bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset, 686 area->area_hw_addr_length); 687 688 ill_refrele(ill); 689 return (mp); 690 } 691 692 mblk_t * 693 ipif_ared_alloc(ipif_t *ipif) 694 { 695 caddr_t addr; 696 uchar_t *aredp; 697 698 if (ipif->ipif_ill->ill_isv6) { 699 ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV); 700 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 701 aredp = (uchar_t *)&ip6_ared_template; 702 } else { 703 addr = (caddr_t)&ipif->ipif_lcl_addr; 704 aredp = (uchar_t *)&ip_ared_template; 705 } 706 707 return (ill_arp_alloc(ipif->ipif_ill, aredp, addr)); 708 } 709 710 mblk_t * 711 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 712 { 713 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 714 (char *)&addr)); 715 } 716 717 mblk_t * 718 ill_arie_alloc(ill_t *ill, const char *grifname, const void *template) 719 { 720 mblk_t *mp = ill_arp_alloc(ill, template, 0); 721 arie_t *arie; 722 723 if (mp != NULL) { 724 arie = (arie_t *)mp->b_rptr; 725 (void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ); 726 } 727 return (mp); 728 } 729 730 /* 731 * Completely vaporize a lower level tap and all associated interfaces. 732 * ill_delete is called only out of ip_close when the device control 733 * stream is being closed. 734 */ 735 void 736 ill_delete(ill_t *ill) 737 { 738 ipif_t *ipif; 739 ill_t *prev_ill; 740 ip_stack_t *ipst = ill->ill_ipst; 741 742 /* 743 * ill_delete may be forcibly entering the ipsq. The previous 744 * ioctl may not have completed and may need to be aborted. 745 * ipsq_flush takes care of it. If we don't need to enter the 746 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 747 * ill_delete_tail is sufficient. 748 */ 749 ipsq_flush(ill); 750 751 /* 752 * Nuke all interfaces. ipif_free will take down the interface, 753 * remove it from the list, and free the data structure. 754 * Walk down the ipif list and remove the logical interfaces 755 * first before removing the main ipif. We can't unplumb 756 * zeroth interface first in the case of IPv6 as reset_conn_ill 757 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 758 * POINTOPOINT. 759 * 760 * If ill_ipif was not properly initialized (i.e low on memory), 761 * then no interfaces to clean up. In this case just clean up the 762 * ill. 763 */ 764 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 765 ipif_free(ipif); 766 767 /* 768 * Used only by ill_arp_on and ill_arp_off, which are writers. 769 * So nobody can be using this mp now. Free the mp allocated for 770 * honoring ILLF_NOARP 771 */ 772 freemsg(ill->ill_arp_on_mp); 773 ill->ill_arp_on_mp = NULL; 774 775 /* Clean up msgs on pending upcalls for mrouted */ 776 reset_mrt_ill(ill); 777 778 /* 779 * ipif_free -> reset_conn_ipif will remove all multicast 780 * references for IPv4. For IPv6, we need to do it here as 781 * it points only at ills. 782 */ 783 reset_conn_ill(ill); 784 785 /* 786 * Remove multicast references added as a result of calls to 787 * ip_join_allmulti(). 788 */ 789 ip_purge_allmulti(ill); 790 791 /* 792 * If the ill being deleted is under IPMP, boot it out of the illgrp. 793 */ 794 if (IS_UNDER_IPMP(ill)) 795 ipmp_ill_leave_illgrp(ill); 796 797 /* 798 * ill_down will arrange to blow off any IRE's dependent on this 799 * ILL, and shut down fragmentation reassembly. 800 */ 801 ill_down(ill); 802 803 /* Let SCTP know, so that it can remove this from its list. */ 804 sctp_update_ill(ill, SCTP_ILL_REMOVE); 805 806 /* 807 * If an address on this ILL is being used as a source address then 808 * clear out the pointers in other ILLs that point to this ILL. 809 */ 810 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 811 if (ill->ill_usesrc_grp_next != NULL) { 812 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 813 ill_disband_usesrc_group(ill); 814 } else { /* consumer of the usesrc ILL */ 815 prev_ill = ill_prev_usesrc(ill); 816 prev_ill->ill_usesrc_grp_next = 817 ill->ill_usesrc_grp_next; 818 } 819 } 820 rw_exit(&ipst->ips_ill_g_usesrc_lock); 821 } 822 823 static void 824 ipif_non_duplicate(ipif_t *ipif) 825 { 826 ill_t *ill = ipif->ipif_ill; 827 mutex_enter(&ill->ill_lock); 828 if (ipif->ipif_flags & IPIF_DUPLICATE) { 829 ipif->ipif_flags &= ~IPIF_DUPLICATE; 830 ASSERT(ill->ill_ipif_dup_count > 0); 831 ill->ill_ipif_dup_count--; 832 } 833 mutex_exit(&ill->ill_lock); 834 } 835 836 /* 837 * ill_delete_tail is called from ip_modclose after all references 838 * to the closing ill are gone. The wait is done in ip_modclose 839 */ 840 void 841 ill_delete_tail(ill_t *ill) 842 { 843 mblk_t **mpp; 844 ipif_t *ipif; 845 ip_stack_t *ipst = ill->ill_ipst; 846 847 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 848 ipif_non_duplicate(ipif); 849 ipif_down_tail(ipif); 850 } 851 852 ASSERT(ill->ill_ipif_dup_count == 0 && 853 ill->ill_arp_down_mp == NULL && 854 ill->ill_arp_del_mapping_mp == NULL); 855 856 /* 857 * If polling capability is enabled (which signifies direct 858 * upcall into IP and driver has ill saved as a handle), 859 * we need to make sure that unbind has completed before we 860 * let the ill disappear and driver no longer has any reference 861 * to this ill. 862 */ 863 mutex_enter(&ill->ill_lock); 864 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 865 cv_wait(&ill->ill_cv, &ill->ill_lock); 866 mutex_exit(&ill->ill_lock); 867 ASSERT(!(ill->ill_capabilities & 868 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 869 870 if (ill->ill_net_type != IRE_LOOPBACK) 871 qprocsoff(ill->ill_rq); 872 873 /* 874 * We do an ipsq_flush once again now. New messages could have 875 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 876 * could also have landed up if an ioctl thread had looked up 877 * the ill before we set the ILL_CONDEMNED flag, but not yet 878 * enqueued the ioctl when we did the ipsq_flush last time. 879 */ 880 ipsq_flush(ill); 881 882 /* 883 * Free capabilities. 884 */ 885 if (ill->ill_ipsec_capab_ah != NULL) { 886 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 887 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 888 ill->ill_ipsec_capab_ah = NULL; 889 } 890 891 if (ill->ill_ipsec_capab_esp != NULL) { 892 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 893 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 894 ill->ill_ipsec_capab_esp = NULL; 895 } 896 897 if (ill->ill_mdt_capab != NULL) { 898 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 899 ill->ill_mdt_capab = NULL; 900 } 901 902 if (ill->ill_hcksum_capab != NULL) { 903 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 904 ill->ill_hcksum_capab = NULL; 905 } 906 907 if (ill->ill_zerocopy_capab != NULL) { 908 kmem_free(ill->ill_zerocopy_capab, 909 sizeof (ill_zerocopy_capab_t)); 910 ill->ill_zerocopy_capab = NULL; 911 } 912 913 if (ill->ill_lso_capab != NULL) { 914 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 915 ill->ill_lso_capab = NULL; 916 } 917 918 if (ill->ill_dld_capab != NULL) { 919 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 920 ill->ill_dld_capab = NULL; 921 } 922 923 while (ill->ill_ipif != NULL) 924 ipif_free_tail(ill->ill_ipif); 925 926 /* 927 * We have removed all references to ilm from conn and the ones joined 928 * within the kernel. 929 * 930 * We don't walk conns, mrts and ires because 931 * 932 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 933 * 2) ill_down ->ill_downi walks all the ires and cleans up 934 * ill references. 935 */ 936 ASSERT(ilm_walk_ill(ill) == 0); 937 938 /* 939 * If this ill is an IPMP meta-interface, blow away the illgrp. This 940 * is safe to do because the illgrp has already been unlinked from the 941 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 942 */ 943 if (IS_IPMP(ill)) { 944 ipmp_illgrp_destroy(ill->ill_grp); 945 ill->ill_grp = NULL; 946 } 947 948 /* 949 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 950 * could free the phyint. No more reference to the phyint after this 951 * point. 952 */ 953 (void) ill_glist_delete(ill); 954 955 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 956 if (ill->ill_ndd_name != NULL) 957 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 958 rw_exit(&ipst->ips_ip_g_nd_lock); 959 960 if (ill->ill_frag_ptr != NULL) { 961 uint_t count; 962 963 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 964 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 965 } 966 mi_free(ill->ill_frag_ptr); 967 ill->ill_frag_ptr = NULL; 968 ill->ill_frag_hash_tbl = NULL; 969 } 970 971 freemsg(ill->ill_nd_lla_mp); 972 /* Free all retained control messages. */ 973 mpp = &ill->ill_first_mp_to_free; 974 do { 975 while (mpp[0]) { 976 mblk_t *mp; 977 mblk_t *mp1; 978 979 mp = mpp[0]; 980 mpp[0] = mp->b_next; 981 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 982 mp1->b_next = NULL; 983 mp1->b_prev = NULL; 984 } 985 freemsg(mp); 986 } 987 } while (mpp++ != &ill->ill_last_mp_to_free); 988 989 ill_free_mib(ill); 990 991 #ifdef DEBUG 992 ill_trace_cleanup(ill); 993 #endif 994 995 /* Drop refcnt here */ 996 netstack_rele(ill->ill_ipst->ips_netstack); 997 ill->ill_ipst = NULL; 998 } 999 1000 static void 1001 ill_free_mib(ill_t *ill) 1002 { 1003 ip_stack_t *ipst = ill->ill_ipst; 1004 1005 /* 1006 * MIB statistics must not be lost, so when an interface 1007 * goes away the counter values will be added to the global 1008 * MIBs. 1009 */ 1010 if (ill->ill_ip_mib != NULL) { 1011 if (ill->ill_isv6) { 1012 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 1013 ill->ill_ip_mib); 1014 } else { 1015 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 1016 ill->ill_ip_mib); 1017 } 1018 1019 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 1020 ill->ill_ip_mib = NULL; 1021 } 1022 if (ill->ill_icmp6_mib != NULL) { 1023 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 1024 ill->ill_icmp6_mib); 1025 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 1026 ill->ill_icmp6_mib = NULL; 1027 } 1028 } 1029 1030 /* 1031 * Concatenate together a physical address and a sap. 1032 * 1033 * Sap_lengths are interpreted as follows: 1034 * sap_length == 0 ==> no sap 1035 * sap_length > 0 ==> sap is at the head of the dlpi address 1036 * sap_length < 0 ==> sap is at the tail of the dlpi address 1037 */ 1038 static void 1039 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1040 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1041 { 1042 uint16_t sap_addr = (uint16_t)sap_src; 1043 1044 if (sap_length == 0) { 1045 if (phys_src == NULL) 1046 bzero(dst, phys_length); 1047 else 1048 bcopy(phys_src, dst, phys_length); 1049 } else if (sap_length < 0) { 1050 if (phys_src == NULL) 1051 bzero(dst, phys_length); 1052 else 1053 bcopy(phys_src, dst, phys_length); 1054 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1055 } else { 1056 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1057 if (phys_src == NULL) 1058 bzero((char *)dst + sap_length, phys_length); 1059 else 1060 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1061 } 1062 } 1063 1064 /* 1065 * Generate a dl_unitdata_req mblk for the device and address given. 1066 * addr_length is the length of the physical portion of the address. 1067 * If addr is NULL include an all zero address of the specified length. 1068 * TRUE? In any case, addr_length is taken to be the entire length of the 1069 * dlpi address, including the absolute value of sap_length. 1070 */ 1071 mblk_t * 1072 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1073 t_scalar_t sap_length) 1074 { 1075 dl_unitdata_req_t *dlur; 1076 mblk_t *mp; 1077 t_scalar_t abs_sap_length; /* absolute value */ 1078 1079 abs_sap_length = ABS(sap_length); 1080 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1081 DL_UNITDATA_REQ); 1082 if (mp == NULL) 1083 return (NULL); 1084 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1085 /* HACK: accomodate incompatible DLPI drivers */ 1086 if (addr_length == 8) 1087 addr_length = 6; 1088 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1089 dlur->dl_dest_addr_offset = sizeof (*dlur); 1090 dlur->dl_priority.dl_min = 0; 1091 dlur->dl_priority.dl_max = 0; 1092 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1093 (uchar_t *)&dlur[1]); 1094 return (mp); 1095 } 1096 1097 /* 1098 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1099 * Return an error if we already have 1 or more ioctls in progress. 1100 * This is used only for non-exclusive ioctls. Currently this is used 1101 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1102 * and thus need to use ipsq_pending_mp_add. 1103 */ 1104 boolean_t 1105 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1106 { 1107 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1108 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1109 /* 1110 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1111 */ 1112 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1113 (add_mp->b_datap->db_type == M_IOCTL)); 1114 1115 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1116 /* 1117 * Return error if the conn has started closing. The conn 1118 * could have finished cleaning up the pending mp list, 1119 * If so we should not add another mp to the list negating 1120 * the cleanup. 1121 */ 1122 if (connp->conn_state_flags & CONN_CLOSING) 1123 return (B_FALSE); 1124 /* 1125 * Add the pending mp to the head of the list, chained by b_next. 1126 * Note down the conn on which the ioctl request came, in b_prev. 1127 * This will be used to later get the conn, when we get a response 1128 * on the ill queue, from some other module (typically arp) 1129 */ 1130 add_mp->b_next = (void *)ill->ill_pending_mp; 1131 add_mp->b_queue = CONNP_TO_WQ(connp); 1132 ill->ill_pending_mp = add_mp; 1133 if (connp != NULL) 1134 connp->conn_oper_pending_ill = ill; 1135 return (B_TRUE); 1136 } 1137 1138 /* 1139 * Retrieve the ill_pending_mp and return it. We have to walk the list 1140 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1141 */ 1142 mblk_t * 1143 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1144 { 1145 mblk_t *prev = NULL; 1146 mblk_t *curr = NULL; 1147 uint_t id; 1148 conn_t *connp; 1149 1150 /* 1151 * When the conn closes, conn_ioctl_cleanup needs to clean 1152 * up the pending mp, but it does not know the ioc_id and 1153 * passes in a zero for it. 1154 */ 1155 mutex_enter(&ill->ill_lock); 1156 if (ioc_id != 0) 1157 *connpp = NULL; 1158 1159 /* Search the list for the appropriate ioctl based on ioc_id */ 1160 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1161 prev = curr, curr = curr->b_next) { 1162 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1163 connp = Q_TO_CONN(curr->b_queue); 1164 /* Match based on the ioc_id or based on the conn */ 1165 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1166 break; 1167 } 1168 1169 if (curr != NULL) { 1170 /* Unlink the mblk from the pending mp list */ 1171 if (prev != NULL) { 1172 prev->b_next = curr->b_next; 1173 } else { 1174 ASSERT(ill->ill_pending_mp == curr); 1175 ill->ill_pending_mp = curr->b_next; 1176 } 1177 1178 /* 1179 * conn refcnt must have been bumped up at the start of 1180 * the ioctl. So we can safely access the conn. 1181 */ 1182 ASSERT(CONN_Q(curr->b_queue)); 1183 *connpp = Q_TO_CONN(curr->b_queue); 1184 curr->b_next = NULL; 1185 curr->b_queue = NULL; 1186 } 1187 1188 mutex_exit(&ill->ill_lock); 1189 1190 return (curr); 1191 } 1192 1193 /* 1194 * Add the pending mp to the list. There can be only 1 pending mp 1195 * in the list. Any exclusive ioctl that needs to wait for a response 1196 * from another module or driver needs to use this function to set 1197 * the ipx_pending_mp to the ioctl mblk and wait for the response from 1198 * the other module/driver. This is also used while waiting for the 1199 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1200 */ 1201 boolean_t 1202 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1203 int waitfor) 1204 { 1205 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 1206 1207 ASSERT(IAM_WRITER_IPIF(ipif)); 1208 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1209 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1210 ASSERT(ipx->ipx_pending_mp == NULL); 1211 /* 1212 * The caller may be using a different ipif than the one passed into 1213 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1214 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1215 * that `ipx_current_ipif == ipif'. 1216 */ 1217 ASSERT(ipx->ipx_current_ipif != NULL); 1218 1219 /* 1220 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1221 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1222 */ 1223 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1224 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1225 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1226 1227 if (connp != NULL) { 1228 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1229 /* 1230 * Return error if the conn has started closing. The conn 1231 * could have finished cleaning up the pending mp list, 1232 * If so we should not add another mp to the list negating 1233 * the cleanup. 1234 */ 1235 if (connp->conn_state_flags & CONN_CLOSING) 1236 return (B_FALSE); 1237 } 1238 mutex_enter(&ipx->ipx_lock); 1239 ipx->ipx_pending_ipif = ipif; 1240 /* 1241 * Note down the queue in b_queue. This will be returned by 1242 * ipsq_pending_mp_get. Caller will then use these values to restart 1243 * the processing 1244 */ 1245 add_mp->b_next = NULL; 1246 add_mp->b_queue = q; 1247 ipx->ipx_pending_mp = add_mp; 1248 ipx->ipx_waitfor = waitfor; 1249 mutex_exit(&ipx->ipx_lock); 1250 1251 if (connp != NULL) 1252 connp->conn_oper_pending_ill = ipif->ipif_ill; 1253 1254 return (B_TRUE); 1255 } 1256 1257 /* 1258 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 1259 * queued in the list. 1260 */ 1261 mblk_t * 1262 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1263 { 1264 mblk_t *curr = NULL; 1265 ipxop_t *ipx = ipsq->ipsq_xop; 1266 1267 *connpp = NULL; 1268 mutex_enter(&ipx->ipx_lock); 1269 if (ipx->ipx_pending_mp == NULL) { 1270 mutex_exit(&ipx->ipx_lock); 1271 return (NULL); 1272 } 1273 1274 /* There can be only 1 such excl message */ 1275 curr = ipx->ipx_pending_mp; 1276 ASSERT(curr->b_next == NULL); 1277 ipx->ipx_pending_ipif = NULL; 1278 ipx->ipx_pending_mp = NULL; 1279 ipx->ipx_waitfor = 0; 1280 mutex_exit(&ipx->ipx_lock); 1281 1282 if (CONN_Q(curr->b_queue)) { 1283 /* 1284 * This mp did a refhold on the conn, at the start of the ioctl. 1285 * So we can safely return a pointer to the conn to the caller. 1286 */ 1287 *connpp = Q_TO_CONN(curr->b_queue); 1288 } else { 1289 *connpp = NULL; 1290 } 1291 curr->b_next = NULL; 1292 curr->b_prev = NULL; 1293 return (curr); 1294 } 1295 1296 /* 1297 * Cleanup the ioctl mp queued in ipx_pending_mp 1298 * - Called in the ill_delete path 1299 * - Called in the M_ERROR or M_HANGUP path on the ill. 1300 * - Called in the conn close path. 1301 */ 1302 boolean_t 1303 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1304 { 1305 mblk_t *mp; 1306 ipxop_t *ipx; 1307 queue_t *q; 1308 ipif_t *ipif; 1309 1310 ASSERT(IAM_WRITER_ILL(ill)); 1311 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 1312 1313 /* 1314 * If connp is null, unconditionally clean up the ipx_pending_mp. 1315 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1316 * even if it is meant for another ill, since we have to enqueue 1317 * a new mp now in ipx_pending_mp to complete the ipif_down. 1318 * If connp is non-null we are called from the conn close path. 1319 */ 1320 mutex_enter(&ipx->ipx_lock); 1321 mp = ipx->ipx_pending_mp; 1322 if (mp == NULL || (connp != NULL && 1323 mp->b_queue != CONNP_TO_WQ(connp))) { 1324 mutex_exit(&ipx->ipx_lock); 1325 return (B_FALSE); 1326 } 1327 /* Now remove from the ipx_pending_mp */ 1328 ipx->ipx_pending_mp = NULL; 1329 q = mp->b_queue; 1330 mp->b_next = NULL; 1331 mp->b_prev = NULL; 1332 mp->b_queue = NULL; 1333 1334 ipif = ipx->ipx_pending_ipif; 1335 ipx->ipx_pending_ipif = NULL; 1336 ipx->ipx_waitfor = 0; 1337 ipx->ipx_current_ipif = NULL; 1338 ipx->ipx_current_ioctl = 0; 1339 ipx->ipx_current_done = B_TRUE; 1340 mutex_exit(&ipx->ipx_lock); 1341 1342 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1343 if (connp == NULL) { 1344 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1345 } else { 1346 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1347 mutex_enter(&ipif->ipif_ill->ill_lock); 1348 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1349 mutex_exit(&ipif->ipif_ill->ill_lock); 1350 } 1351 } else { 1352 /* 1353 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1354 * be just inet_freemsg. we have to restart it 1355 * otherwise the thread will be stuck. 1356 */ 1357 inet_freemsg(mp); 1358 } 1359 return (B_TRUE); 1360 } 1361 1362 /* 1363 * The ill is closing. Cleanup all the pending mps. Called exclusively 1364 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1365 * knows this ill, and hence nobody can add an mp to this list 1366 */ 1367 static void 1368 ill_pending_mp_cleanup(ill_t *ill) 1369 { 1370 mblk_t *mp; 1371 queue_t *q; 1372 1373 ASSERT(IAM_WRITER_ILL(ill)); 1374 1375 mutex_enter(&ill->ill_lock); 1376 /* 1377 * Every mp on the pending mp list originating from an ioctl 1378 * added 1 to the conn refcnt, at the start of the ioctl. 1379 * So bump it down now. See comments in ip_wput_nondata() 1380 */ 1381 while (ill->ill_pending_mp != NULL) { 1382 mp = ill->ill_pending_mp; 1383 ill->ill_pending_mp = mp->b_next; 1384 mutex_exit(&ill->ill_lock); 1385 1386 q = mp->b_queue; 1387 ASSERT(CONN_Q(q)); 1388 mp->b_next = NULL; 1389 mp->b_prev = NULL; 1390 mp->b_queue = NULL; 1391 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1392 mutex_enter(&ill->ill_lock); 1393 } 1394 ill->ill_pending_ipif = NULL; 1395 1396 mutex_exit(&ill->ill_lock); 1397 } 1398 1399 /* 1400 * Called in the conn close path and ill delete path 1401 */ 1402 static void 1403 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1404 { 1405 ipsq_t *ipsq; 1406 mblk_t *prev; 1407 mblk_t *curr; 1408 mblk_t *next; 1409 queue_t *q; 1410 mblk_t *tmp_list = NULL; 1411 1412 ASSERT(IAM_WRITER_ILL(ill)); 1413 if (connp != NULL) 1414 q = CONNP_TO_WQ(connp); 1415 else 1416 q = ill->ill_wq; 1417 1418 ipsq = ill->ill_phyint->phyint_ipsq; 1419 /* 1420 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1421 * In the case of ioctl from a conn, there can be only 1 mp 1422 * queued on the ipsq. If an ill is being unplumbed, only messages 1423 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1424 * ioctls meant for this ill form conn's are not flushed. They will 1425 * be processed during ipsq_exit and will not find the ill and will 1426 * return error. 1427 */ 1428 mutex_enter(&ipsq->ipsq_lock); 1429 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1430 curr = next) { 1431 next = curr->b_next; 1432 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1433 /* Unlink the mblk from the pending mp list */ 1434 if (prev != NULL) { 1435 prev->b_next = curr->b_next; 1436 } else { 1437 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1438 ipsq->ipsq_xopq_mphead = curr->b_next; 1439 } 1440 if (ipsq->ipsq_xopq_mptail == curr) 1441 ipsq->ipsq_xopq_mptail = prev; 1442 /* 1443 * Create a temporary list and release the ipsq lock 1444 * New elements are added to the head of the tmp_list 1445 */ 1446 curr->b_next = tmp_list; 1447 tmp_list = curr; 1448 } else { 1449 prev = curr; 1450 } 1451 } 1452 mutex_exit(&ipsq->ipsq_lock); 1453 1454 while (tmp_list != NULL) { 1455 curr = tmp_list; 1456 tmp_list = curr->b_next; 1457 curr->b_next = NULL; 1458 curr->b_prev = NULL; 1459 curr->b_queue = NULL; 1460 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1461 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1462 CONN_CLOSE : NO_COPYOUT, NULL); 1463 } else { 1464 /* 1465 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1466 * this can't be just inet_freemsg. we have to 1467 * restart it otherwise the thread will be stuck. 1468 */ 1469 inet_freemsg(curr); 1470 } 1471 } 1472 } 1473 1474 /* 1475 * This conn has started closing. Cleanup any pending ioctl from this conn. 1476 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1477 */ 1478 void 1479 conn_ioctl_cleanup(conn_t *connp) 1480 { 1481 mblk_t *curr; 1482 ipsq_t *ipsq; 1483 ill_t *ill; 1484 boolean_t refheld; 1485 1486 /* 1487 * Is any exclusive ioctl pending ? If so clean it up. If the 1488 * ioctl has not yet started, the mp is pending in the list headed by 1489 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1490 * ipx_pending_mp. If the ioctl timed out in the streamhead but 1491 * is currently executing now the mp is not queued anywhere but 1492 * conn_oper_pending_ill is null. The conn close will wait 1493 * till the conn_ref drops to zero. 1494 */ 1495 mutex_enter(&connp->conn_lock); 1496 ill = connp->conn_oper_pending_ill; 1497 if (ill == NULL) { 1498 mutex_exit(&connp->conn_lock); 1499 return; 1500 } 1501 1502 curr = ill_pending_mp_get(ill, &connp, 0); 1503 if (curr != NULL) { 1504 mutex_exit(&connp->conn_lock); 1505 CONN_DEC_REF(connp); 1506 inet_freemsg(curr); 1507 return; 1508 } 1509 /* 1510 * We may not be able to refhold the ill if the ill/ipif 1511 * is changing. But we need to make sure that the ill will 1512 * not vanish. So we just bump up the ill_waiter count. 1513 */ 1514 refheld = ill_waiter_inc(ill); 1515 mutex_exit(&connp->conn_lock); 1516 if (refheld) { 1517 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1518 ill_waiter_dcr(ill); 1519 /* 1520 * Check whether this ioctl has started and is 1521 * pending. If it is not found there then check 1522 * whether this ioctl has not even started and is in 1523 * the ipsq_xopq list. 1524 */ 1525 if (!ipsq_pending_mp_cleanup(ill, connp)) 1526 ipsq_xopq_mp_cleanup(ill, connp); 1527 ipsq = ill->ill_phyint->phyint_ipsq; 1528 ipsq_exit(ipsq); 1529 return; 1530 } 1531 } 1532 1533 /* 1534 * The ill is also closing and we could not bump up the 1535 * ill_waiter_count or we could not enter the ipsq. Leave 1536 * the cleanup to ill_delete 1537 */ 1538 mutex_enter(&connp->conn_lock); 1539 while (connp->conn_oper_pending_ill != NULL) 1540 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1541 mutex_exit(&connp->conn_lock); 1542 if (refheld) 1543 ill_waiter_dcr(ill); 1544 } 1545 1546 /* 1547 * ipcl_walk function for cleaning up conn_*_ill fields. 1548 */ 1549 static void 1550 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1551 { 1552 ill_t *ill = (ill_t *)arg; 1553 ire_t *ire; 1554 1555 mutex_enter(&connp->conn_lock); 1556 if (connp->conn_multicast_ill == ill) { 1557 /* Revert to late binding */ 1558 connp->conn_multicast_ill = NULL; 1559 } 1560 if (connp->conn_incoming_ill == ill) 1561 connp->conn_incoming_ill = NULL; 1562 if (connp->conn_outgoing_ill == ill) 1563 connp->conn_outgoing_ill = NULL; 1564 if (connp->conn_dhcpinit_ill == ill) { 1565 connp->conn_dhcpinit_ill = NULL; 1566 ASSERT(ill->ill_dhcpinit != 0); 1567 atomic_dec_32(&ill->ill_dhcpinit); 1568 } 1569 if (connp->conn_ire_cache != NULL) { 1570 ire = connp->conn_ire_cache; 1571 /* 1572 * Source address selection makes it possible for IRE_CACHE 1573 * entries to be created with ire_stq coming from interface X 1574 * and ipif coming from interface Y. Thus whenever interface 1575 * X goes down, remove all references to it by checking both 1576 * on ire_ipif and ire_stq. 1577 */ 1578 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1579 (ire->ire_type == IRE_CACHE && 1580 ire->ire_stq == ill->ill_wq)) { 1581 connp->conn_ire_cache = NULL; 1582 mutex_exit(&connp->conn_lock); 1583 ire_refrele_notr(ire); 1584 return; 1585 } 1586 } 1587 mutex_exit(&connp->conn_lock); 1588 } 1589 1590 /* ARGSUSED */ 1591 void 1592 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1593 { 1594 ill_t *ill = q->q_ptr; 1595 ipif_t *ipif; 1596 1597 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1598 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1599 ipif_non_duplicate(ipif); 1600 ipif_down_tail(ipif); 1601 } 1602 freemsg(mp); 1603 ipsq_current_finish(ipsq); 1604 } 1605 1606 /* 1607 * ill_down_start is called when we want to down this ill and bring it up again 1608 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1609 * all interfaces, but don't tear down any plumbing. 1610 */ 1611 boolean_t 1612 ill_down_start(queue_t *q, mblk_t *mp) 1613 { 1614 ill_t *ill = q->q_ptr; 1615 ipif_t *ipif; 1616 1617 ASSERT(IAM_WRITER_ILL(ill)); 1618 1619 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1620 (void) ipif_down(ipif, NULL, NULL); 1621 1622 ill_down(ill); 1623 1624 (void) ipsq_pending_mp_cleanup(ill, NULL); 1625 1626 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1627 1628 /* 1629 * Atomically test and add the pending mp if references are active. 1630 */ 1631 mutex_enter(&ill->ill_lock); 1632 if (!ill_is_quiescent(ill)) { 1633 /* call cannot fail since `conn_t *' argument is NULL */ 1634 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1635 mp, ILL_DOWN); 1636 mutex_exit(&ill->ill_lock); 1637 return (B_FALSE); 1638 } 1639 mutex_exit(&ill->ill_lock); 1640 return (B_TRUE); 1641 } 1642 1643 static void 1644 ill_down(ill_t *ill) 1645 { 1646 ip_stack_t *ipst = ill->ill_ipst; 1647 1648 /* Blow off any IREs dependent on this ILL. */ 1649 ire_walk(ill_downi, ill, ipst); 1650 1651 /* Remove any conn_*_ill depending on this ill */ 1652 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1653 } 1654 1655 /* 1656 * ire_walk routine used to delete every IRE that depends on queues 1657 * associated with 'ill'. (Always called as writer.) 1658 */ 1659 static void 1660 ill_downi(ire_t *ire, char *ill_arg) 1661 { 1662 ill_t *ill = (ill_t *)ill_arg; 1663 1664 /* 1665 * Source address selection makes it possible for IRE_CACHE 1666 * entries to be created with ire_stq coming from interface X 1667 * and ipif coming from interface Y. Thus whenever interface 1668 * X goes down, remove all references to it by checking both 1669 * on ire_ipif and ire_stq. 1670 */ 1671 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1672 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1673 ire_delete(ire); 1674 } 1675 } 1676 1677 /* 1678 * Remove ire/nce from the fastpath list. 1679 */ 1680 void 1681 ill_fastpath_nack(ill_t *ill) 1682 { 1683 nce_fastpath_list_dispatch(ill, NULL, NULL); 1684 } 1685 1686 /* Consume an M_IOCACK of the fastpath probe. */ 1687 void 1688 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1689 { 1690 mblk_t *mp1 = mp; 1691 1692 /* 1693 * If this was the first attempt turn on the fastpath probing. 1694 */ 1695 mutex_enter(&ill->ill_lock); 1696 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1697 ill->ill_dlpi_fastpath_state = IDS_OK; 1698 mutex_exit(&ill->ill_lock); 1699 1700 /* Free the M_IOCACK mblk, hold on to the data */ 1701 mp = mp->b_cont; 1702 freeb(mp1); 1703 if (mp == NULL) 1704 return; 1705 if (mp->b_cont != NULL) { 1706 /* 1707 * Update all IRE's or NCE's that are waiting for 1708 * fastpath update. 1709 */ 1710 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1711 mp1 = mp->b_cont; 1712 freeb(mp); 1713 mp = mp1; 1714 } else { 1715 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1716 } 1717 1718 freeb(mp); 1719 } 1720 1721 /* 1722 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1723 * The data portion of the request is a dl_unitdata_req_t template for 1724 * what we would send downstream in the absence of a fastpath confirmation. 1725 */ 1726 int 1727 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1728 { 1729 struct iocblk *ioc; 1730 mblk_t *mp; 1731 1732 if (dlur_mp == NULL) 1733 return (EINVAL); 1734 1735 mutex_enter(&ill->ill_lock); 1736 switch (ill->ill_dlpi_fastpath_state) { 1737 case IDS_FAILED: 1738 /* 1739 * Driver NAKed the first fastpath ioctl - assume it doesn't 1740 * support it. 1741 */ 1742 mutex_exit(&ill->ill_lock); 1743 return (ENOTSUP); 1744 case IDS_UNKNOWN: 1745 /* This is the first probe */ 1746 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1747 break; 1748 default: 1749 break; 1750 } 1751 mutex_exit(&ill->ill_lock); 1752 1753 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1754 return (EAGAIN); 1755 1756 mp->b_cont = copyb(dlur_mp); 1757 if (mp->b_cont == NULL) { 1758 freeb(mp); 1759 return (EAGAIN); 1760 } 1761 1762 ioc = (struct iocblk *)mp->b_rptr; 1763 ioc->ioc_count = msgdsize(mp->b_cont); 1764 1765 putnext(ill->ill_wq, mp); 1766 return (0); 1767 } 1768 1769 void 1770 ill_capability_probe(ill_t *ill) 1771 { 1772 mblk_t *mp; 1773 1774 ASSERT(IAM_WRITER_ILL(ill)); 1775 1776 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1777 ill->ill_dlpi_capab_state != IDCS_FAILED) 1778 return; 1779 1780 /* 1781 * We are starting a new cycle of capability negotiation. 1782 * Free up the capab reset messages of any previous incarnation. 1783 * We will do a fresh allocation when we get the response to our probe 1784 */ 1785 if (ill->ill_capab_reset_mp != NULL) { 1786 freemsg(ill->ill_capab_reset_mp); 1787 ill->ill_capab_reset_mp = NULL; 1788 } 1789 1790 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1791 1792 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1793 if (mp == NULL) 1794 return; 1795 1796 ill_capability_send(ill, mp); 1797 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1798 } 1799 1800 void 1801 ill_capability_reset(ill_t *ill, boolean_t reneg) 1802 { 1803 ASSERT(IAM_WRITER_ILL(ill)); 1804 1805 if (ill->ill_dlpi_capab_state != IDCS_OK) 1806 return; 1807 1808 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1809 1810 ill_capability_send(ill, ill->ill_capab_reset_mp); 1811 ill->ill_capab_reset_mp = NULL; 1812 /* 1813 * We turn off all capabilities except those pertaining to 1814 * direct function call capabilities viz. ILL_CAPAB_DLD* 1815 * which will be turned off by the corresponding reset functions. 1816 */ 1817 ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM | 1818 ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP); 1819 } 1820 1821 static void 1822 ill_capability_reset_alloc(ill_t *ill) 1823 { 1824 mblk_t *mp; 1825 size_t size = 0; 1826 int err; 1827 dl_capability_req_t *capb; 1828 1829 ASSERT(IAM_WRITER_ILL(ill)); 1830 ASSERT(ill->ill_capab_reset_mp == NULL); 1831 1832 if (ILL_MDT_CAPABLE(ill)) 1833 size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1834 1835 if (ILL_HCKSUM_CAPABLE(ill)) { 1836 size += sizeof (dl_capability_sub_t) + 1837 sizeof (dl_capab_hcksum_t); 1838 } 1839 1840 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1841 size += sizeof (dl_capability_sub_t) + 1842 sizeof (dl_capab_zerocopy_t); 1843 } 1844 1845 if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) { 1846 size += sizeof (dl_capability_sub_t); 1847 size += ill_capability_ipsec_reset_size(ill, NULL, NULL, 1848 NULL, NULL); 1849 } 1850 1851 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1852 size += sizeof (dl_capability_sub_t) + 1853 sizeof (dl_capab_dld_t); 1854 } 1855 1856 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1857 STR_NOSIG, &err); 1858 1859 mp->b_datap->db_type = M_PROTO; 1860 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1861 1862 capb = (dl_capability_req_t *)mp->b_rptr; 1863 capb->dl_primitive = DL_CAPABILITY_REQ; 1864 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1865 capb->dl_sub_length = size; 1866 1867 mp->b_wptr += sizeof (dl_capability_req_t); 1868 1869 /* 1870 * Each handler fills in the corresponding dl_capability_sub_t 1871 * inside the mblk, 1872 */ 1873 ill_capability_mdt_reset_fill(ill, mp); 1874 ill_capability_hcksum_reset_fill(ill, mp); 1875 ill_capability_zerocopy_reset_fill(ill, mp); 1876 ill_capability_ipsec_reset_fill(ill, mp); 1877 ill_capability_dld_reset_fill(ill, mp); 1878 1879 ill->ill_capab_reset_mp = mp; 1880 } 1881 1882 static void 1883 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1884 { 1885 dl_capab_id_t *id_ic; 1886 uint_t sub_dl_cap = outers->dl_cap; 1887 dl_capability_sub_t *inners; 1888 uint8_t *capend; 1889 1890 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1891 1892 /* 1893 * Note: range checks here are not absolutely sufficient to 1894 * make us robust against malformed messages sent by drivers; 1895 * this is in keeping with the rest of IP's dlpi handling. 1896 * (Remember, it's coming from something else in the kernel 1897 * address space) 1898 */ 1899 1900 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1901 if (capend > mp->b_wptr) { 1902 cmn_err(CE_WARN, "ill_capability_id_ack: " 1903 "malformed sub-capability too long for mblk"); 1904 return; 1905 } 1906 1907 id_ic = (dl_capab_id_t *)(outers + 1); 1908 1909 if (outers->dl_length < sizeof (*id_ic) || 1910 (inners = &id_ic->id_subcap, 1911 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1912 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1913 "encapsulated capab type %d too long for mblk", 1914 inners->dl_cap); 1915 return; 1916 } 1917 1918 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1919 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1920 "isn't as expected; pass-thru module(s) detected, " 1921 "discarding capability\n", inners->dl_cap)); 1922 return; 1923 } 1924 1925 /* Process the encapsulated sub-capability */ 1926 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1927 } 1928 1929 /* 1930 * Process Multidata Transmit capability negotiation ack received from a 1931 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1932 * DL_CAPABILITY_ACK message. 1933 */ 1934 static void 1935 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1936 { 1937 mblk_t *nmp = NULL; 1938 dl_capability_req_t *oc; 1939 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1940 ill_mdt_capab_t **ill_mdt_capab; 1941 uint_t sub_dl_cap = isub->dl_cap; 1942 uint8_t *capend; 1943 1944 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1945 1946 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1947 1948 /* 1949 * Note: range checks here are not absolutely sufficient to 1950 * make us robust against malformed messages sent by drivers; 1951 * this is in keeping with the rest of IP's dlpi handling. 1952 * (Remember, it's coming from something else in the kernel 1953 * address space) 1954 */ 1955 1956 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1957 if (capend > mp->b_wptr) { 1958 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1959 "malformed sub-capability too long for mblk"); 1960 return; 1961 } 1962 1963 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1964 1965 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1966 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1967 "unsupported MDT sub-capability (version %d, expected %d)", 1968 mdt_ic->mdt_version, MDT_VERSION_2); 1969 return; 1970 } 1971 1972 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1973 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1974 "capability isn't as expected; pass-thru module(s) " 1975 "detected, discarding capability\n")); 1976 return; 1977 } 1978 1979 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1980 1981 if (*ill_mdt_capab == NULL) { 1982 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1983 KM_NOSLEEP); 1984 if (*ill_mdt_capab == NULL) { 1985 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1986 "could not enable MDT version %d " 1987 "for %s (ENOMEM)\n", MDT_VERSION_2, 1988 ill->ill_name); 1989 return; 1990 } 1991 } 1992 1993 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1994 "MDT version %d (%d bytes leading, %d bytes trailing " 1995 "header spaces, %d max pld bufs, %d span limit)\n", 1996 ill->ill_name, MDT_VERSION_2, 1997 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1998 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1999 2000 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2001 (*ill_mdt_capab)->ill_mdt_on = 1; 2002 /* 2003 * Round the following values to the nearest 32-bit; ULP 2004 * may further adjust them to accomodate for additional 2005 * protocol headers. We pass these values to ULP during 2006 * bind time. 2007 */ 2008 (*ill_mdt_capab)->ill_mdt_hdr_head = 2009 roundup(mdt_ic->mdt_hdr_head, 4); 2010 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2011 roundup(mdt_ic->mdt_hdr_tail, 4); 2012 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2013 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2014 2015 ill->ill_capabilities |= ILL_CAPAB_MDT; 2016 } else { 2017 uint_t size; 2018 uchar_t *rptr; 2019 2020 size = sizeof (dl_capability_req_t) + 2021 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2022 2023 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2024 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2025 "could not enable MDT for %s (ENOMEM)\n", 2026 ill->ill_name); 2027 return; 2028 } 2029 2030 rptr = nmp->b_rptr; 2031 /* initialize dl_capability_req_t */ 2032 oc = (dl_capability_req_t *)nmp->b_rptr; 2033 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2034 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2035 sizeof (dl_capab_mdt_t); 2036 nmp->b_rptr += sizeof (dl_capability_req_t); 2037 2038 /* initialize dl_capability_sub_t */ 2039 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2040 nmp->b_rptr += sizeof (*isub); 2041 2042 /* initialize dl_capab_mdt_t */ 2043 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2044 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2045 2046 nmp->b_rptr = rptr; 2047 2048 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2049 "to enable MDT version %d\n", ill->ill_name, 2050 MDT_VERSION_2)); 2051 2052 /* set ENABLE flag */ 2053 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2054 2055 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2056 ill_capability_send(ill, nmp); 2057 } 2058 } 2059 2060 static void 2061 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp) 2062 { 2063 dl_capab_mdt_t *mdt_subcap; 2064 dl_capability_sub_t *dl_subcap; 2065 2066 if (!ILL_MDT_CAPABLE(ill)) 2067 return; 2068 2069 ASSERT(ill->ill_mdt_capab != NULL); 2070 2071 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2072 dl_subcap->dl_cap = DL_CAPAB_MDT; 2073 dl_subcap->dl_length = sizeof (*mdt_subcap); 2074 2075 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2076 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2077 mdt_subcap->mdt_flags = 0; 2078 mdt_subcap->mdt_hdr_head = 0; 2079 mdt_subcap->mdt_hdr_tail = 0; 2080 2081 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2082 } 2083 2084 static void 2085 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 2086 { 2087 dl_capability_sub_t *dl_subcap; 2088 2089 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2090 return; 2091 2092 /* 2093 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 2094 * initialized below since it is not used by DLD. 2095 */ 2096 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2097 dl_subcap->dl_cap = DL_CAPAB_DLD; 2098 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 2099 2100 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 2101 } 2102 2103 /* 2104 * Send a DL_NOTIFY_REQ to the specified ill to enable 2105 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2106 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2107 * acceleration. 2108 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2109 */ 2110 static boolean_t 2111 ill_enable_promisc_notify(ill_t *ill) 2112 { 2113 mblk_t *mp; 2114 dl_notify_req_t *req; 2115 2116 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2117 2118 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2119 if (mp == NULL) 2120 return (B_FALSE); 2121 2122 req = (dl_notify_req_t *)mp->b_rptr; 2123 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2124 DL_NOTE_PROMISC_OFF_PHYS; 2125 2126 ill_dlpi_send(ill, mp); 2127 2128 return (B_TRUE); 2129 } 2130 2131 /* 2132 * Allocate an IPsec capability request which will be filled by our 2133 * caller to turn on support for one or more algorithms. 2134 */ 2135 static mblk_t * 2136 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2137 { 2138 mblk_t *nmp; 2139 dl_capability_req_t *ocap; 2140 dl_capab_ipsec_t *ocip; 2141 dl_capab_ipsec_t *icip; 2142 uint8_t *ptr; 2143 icip = (dl_capab_ipsec_t *)(isub + 1); 2144 2145 /* 2146 * The first time around, we send a DL_NOTIFY_REQ to enable 2147 * PROMISC_ON/OFF notification from the provider. We need to 2148 * do this before enabling the algorithms to avoid leakage of 2149 * cleartext packets. 2150 */ 2151 2152 if (!ill_enable_promisc_notify(ill)) 2153 return (NULL); 2154 2155 /* 2156 * Allocate new mblk which will contain a new capability 2157 * request to enable the capabilities. 2158 */ 2159 2160 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2161 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2162 if (nmp == NULL) 2163 return (NULL); 2164 2165 ptr = nmp->b_rptr; 2166 2167 /* initialize dl_capability_req_t */ 2168 ocap = (dl_capability_req_t *)ptr; 2169 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2170 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2171 ptr += sizeof (dl_capability_req_t); 2172 2173 /* initialize dl_capability_sub_t */ 2174 bcopy(isub, ptr, sizeof (*isub)); 2175 ptr += sizeof (*isub); 2176 2177 /* initialize dl_capab_ipsec_t */ 2178 ocip = (dl_capab_ipsec_t *)ptr; 2179 bcopy(icip, ocip, sizeof (*icip)); 2180 2181 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2182 return (nmp); 2183 } 2184 2185 /* 2186 * Process an IPsec capability negotiation ack received from a DLS Provider. 2187 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2188 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2189 */ 2190 static void 2191 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2192 { 2193 dl_capab_ipsec_t *icip; 2194 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2195 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2196 uint_t cipher, nciphers; 2197 mblk_t *nmp; 2198 uint_t alg_len; 2199 boolean_t need_sadb_dump; 2200 uint_t sub_dl_cap = isub->dl_cap; 2201 ill_ipsec_capab_t **ill_capab; 2202 uint64_t ill_capab_flag; 2203 uint8_t *capend, *ciphend; 2204 boolean_t sadb_resync; 2205 2206 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2207 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2208 2209 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2210 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2211 ill_capab_flag = ILL_CAPAB_AH; 2212 } else { 2213 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2214 ill_capab_flag = ILL_CAPAB_ESP; 2215 } 2216 2217 /* 2218 * If the ill capability structure exists, then this incoming 2219 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2220 * If this is so, then we'd need to resynchronize the SADB 2221 * after re-enabling the offloaded ciphers. 2222 */ 2223 sadb_resync = (*ill_capab != NULL); 2224 2225 /* 2226 * Note: range checks here are not absolutely sufficient to 2227 * make us robust against malformed messages sent by drivers; 2228 * this is in keeping with the rest of IP's dlpi handling. 2229 * (Remember, it's coming from something else in the kernel 2230 * address space) 2231 */ 2232 2233 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2234 if (capend > mp->b_wptr) { 2235 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2236 "malformed sub-capability too long for mblk"); 2237 return; 2238 } 2239 2240 /* 2241 * There are two types of acks we process here: 2242 * 1. acks in reply to a (first form) generic capability req 2243 * (no ENABLE flag set) 2244 * 2. acks in reply to a ENABLE capability req. 2245 * (ENABLE flag set) 2246 * 2247 * We process the subcapability passed as argument as follows: 2248 * 1 do initializations 2249 * 1.1 initialize nmp = NULL 2250 * 1.2 set need_sadb_dump to B_FALSE 2251 * 2 for each cipher in subcapability: 2252 * 2.1 if ENABLE flag is set: 2253 * 2.1.1 update per-ill ipsec capabilities info 2254 * 2.1.2 set need_sadb_dump to B_TRUE 2255 * 2.2 if ENABLE flag is not set: 2256 * 2.2.1 if nmp is NULL: 2257 * 2.2.1.1 allocate and initialize nmp 2258 * 2.2.1.2 init current pos in nmp 2259 * 2.2.2 copy current cipher to current pos in nmp 2260 * 2.2.3 set ENABLE flag in nmp 2261 * 2.2.4 update current pos 2262 * 3 if nmp is not equal to NULL, send enable request 2263 * 3.1 send capability request 2264 * 4 if need_sadb_dump is B_TRUE 2265 * 4.1 enable promiscuous on/off notifications 2266 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2267 * AH or ESP SA's to interface. 2268 */ 2269 2270 nmp = NULL; 2271 oalg = NULL; 2272 need_sadb_dump = B_FALSE; 2273 icip = (dl_capab_ipsec_t *)(isub + 1); 2274 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2275 2276 nciphers = icip->cip_nciphers; 2277 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2278 2279 if (ciphend > capend) { 2280 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2281 "too many ciphers for sub-capability len"); 2282 return; 2283 } 2284 2285 for (cipher = 0; cipher < nciphers; cipher++) { 2286 alg_len = sizeof (dl_capab_ipsec_alg_t); 2287 2288 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2289 /* 2290 * TBD: when we provide a way to disable capabilities 2291 * from above, need to manage the request-pending state 2292 * and fail if we were not expecting this ACK. 2293 */ 2294 IPSECHW_DEBUG(IPSECHW_CAPAB, 2295 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2296 2297 /* 2298 * Update IPsec capabilities for this ill 2299 */ 2300 2301 if (*ill_capab == NULL) { 2302 IPSECHW_DEBUG(IPSECHW_CAPAB, 2303 ("ill_capability_ipsec_ack: " 2304 "allocating ipsec_capab for ill\n")); 2305 *ill_capab = ill_ipsec_capab_alloc(); 2306 2307 if (*ill_capab == NULL) { 2308 cmn_err(CE_WARN, 2309 "ill_capability_ipsec_ack: " 2310 "could not enable IPsec Hardware " 2311 "acceleration for %s (ENOMEM)\n", 2312 ill->ill_name); 2313 return; 2314 } 2315 } 2316 2317 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2318 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2319 2320 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2321 cmn_err(CE_WARN, 2322 "ill_capability_ipsec_ack: " 2323 "malformed IPsec algorithm id %d", 2324 ialg->alg_prim); 2325 continue; 2326 } 2327 2328 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2329 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2330 ialg->alg_prim); 2331 } else { 2332 ipsec_capab_algparm_t *alp; 2333 2334 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2335 ialg->alg_prim); 2336 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2337 ialg->alg_prim)) { 2338 cmn_err(CE_WARN, 2339 "ill_capability_ipsec_ack: " 2340 "no space for IPsec alg id %d", 2341 ialg->alg_prim); 2342 continue; 2343 } 2344 alp = &((*ill_capab)->encr_algparm[ 2345 ialg->alg_prim]); 2346 alp->minkeylen = ialg->alg_minbits; 2347 alp->maxkeylen = ialg->alg_maxbits; 2348 } 2349 ill->ill_capabilities |= ill_capab_flag; 2350 /* 2351 * indicate that a capability was enabled, which 2352 * will be used below to kick off a SADB dump 2353 * to the ill. 2354 */ 2355 need_sadb_dump = B_TRUE; 2356 } else { 2357 IPSECHW_DEBUG(IPSECHW_CAPAB, 2358 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2359 ialg->alg_prim)); 2360 2361 if (nmp == NULL) { 2362 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2363 if (nmp == NULL) { 2364 /* 2365 * Sending the PROMISC_ON/OFF 2366 * notification request failed. 2367 * We cannot enable the algorithms 2368 * since the Provider will not 2369 * notify IP of promiscous mode 2370 * changes, which could lead 2371 * to leakage of packets. 2372 */ 2373 cmn_err(CE_WARN, 2374 "ill_capability_ipsec_ack: " 2375 "could not enable IPsec Hardware " 2376 "acceleration for %s (ENOMEM)\n", 2377 ill->ill_name); 2378 return; 2379 } 2380 /* ptr to current output alg specifier */ 2381 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2382 } 2383 2384 /* 2385 * Copy current alg specifier, set ENABLE 2386 * flag, and advance to next output alg. 2387 * For now we enable all IPsec capabilities. 2388 */ 2389 ASSERT(oalg != NULL); 2390 bcopy(ialg, oalg, alg_len); 2391 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2392 nmp->b_wptr += alg_len; 2393 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2394 } 2395 2396 /* move to next input algorithm specifier */ 2397 ialg = (dl_capab_ipsec_alg_t *) 2398 ((char *)ialg + alg_len); 2399 } 2400 2401 if (nmp != NULL) 2402 /* 2403 * nmp points to a DL_CAPABILITY_REQ message to enable 2404 * IPsec hardware acceleration. 2405 */ 2406 ill_capability_send(ill, nmp); 2407 2408 if (need_sadb_dump) 2409 /* 2410 * An acknowledgement corresponding to a request to 2411 * enable acceleration was received, notify SADB. 2412 */ 2413 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2414 } 2415 2416 /* 2417 * Given an mblk with enough space in it, create sub-capability entries for 2418 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2419 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2420 * in preparation for the reset the DL_CAPABILITY_REQ message. 2421 */ 2422 static void 2423 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2424 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2425 { 2426 dl_capab_ipsec_t *oipsec; 2427 dl_capab_ipsec_alg_t *oalg; 2428 dl_capability_sub_t *dl_subcap; 2429 int i, k; 2430 2431 ASSERT(nciphers > 0); 2432 ASSERT(ill_cap != NULL); 2433 ASSERT(mp != NULL); 2434 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2435 2436 /* dl_capability_sub_t for "stype" */ 2437 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2438 dl_subcap->dl_cap = stype; 2439 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2440 mp->b_wptr += sizeof (dl_capability_sub_t); 2441 2442 /* dl_capab_ipsec_t for "stype" */ 2443 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2444 oipsec->cip_version = 1; 2445 oipsec->cip_nciphers = nciphers; 2446 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2447 2448 /* create entries for "stype" AUTH ciphers */ 2449 for (i = 0; i < ill_cap->algs_size; i++) { 2450 for (k = 0; k < BITSPERBYTE; k++) { 2451 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2452 continue; 2453 2454 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2455 bzero((void *)oalg, sizeof (*oalg)); 2456 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2457 oalg->alg_prim = k + (BITSPERBYTE * i); 2458 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2459 } 2460 } 2461 /* create entries for "stype" ENCR ciphers */ 2462 for (i = 0; i < ill_cap->algs_size; i++) { 2463 for (k = 0; k < BITSPERBYTE; k++) { 2464 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2465 continue; 2466 2467 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2468 bzero((void *)oalg, sizeof (*oalg)); 2469 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2470 oalg->alg_prim = k + (BITSPERBYTE * i); 2471 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2472 } 2473 } 2474 } 2475 2476 /* 2477 * Macro to count number of 1s in a byte (8-bit word). The total count is 2478 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2479 * POPC instruction, but our macro is more flexible for an arbitrary length 2480 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2481 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2482 * stays that way, we can reduce the number of iterations required. 2483 */ 2484 #define COUNT_1S(val, sum) { \ 2485 uint8_t x = val & 0xff; \ 2486 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2487 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2488 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2489 } 2490 2491 /* ARGSUSED */ 2492 static int 2493 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp, 2494 int *esp_cntp, int *esp_lenp) 2495 { 2496 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2497 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2498 uint64_t ill_capabilities = ill->ill_capabilities; 2499 int ah_cnt = 0, esp_cnt = 0; 2500 int ah_len = 0, esp_len = 0; 2501 int i, size = 0; 2502 2503 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2504 return (0); 2505 2506 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2507 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2508 2509 /* Find out the number of ciphers for AH */ 2510 if (cap_ah != NULL) { 2511 for (i = 0; i < cap_ah->algs_size; i++) { 2512 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2513 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2514 } 2515 if (ah_cnt > 0) { 2516 size += sizeof (dl_capability_sub_t) + 2517 sizeof (dl_capab_ipsec_t); 2518 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2519 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2520 size += ah_len; 2521 } 2522 } 2523 2524 /* Find out the number of ciphers for ESP */ 2525 if (cap_esp != NULL) { 2526 for (i = 0; i < cap_esp->algs_size; i++) { 2527 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2528 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2529 } 2530 if (esp_cnt > 0) { 2531 size += sizeof (dl_capability_sub_t) + 2532 sizeof (dl_capab_ipsec_t); 2533 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2534 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2535 size += esp_len; 2536 } 2537 } 2538 2539 if (ah_cntp != NULL) 2540 *ah_cntp = ah_cnt; 2541 if (ah_lenp != NULL) 2542 *ah_lenp = ah_len; 2543 if (esp_cntp != NULL) 2544 *esp_cntp = esp_cnt; 2545 if (esp_lenp != NULL) 2546 *esp_lenp = esp_len; 2547 2548 return (size); 2549 } 2550 2551 /* ARGSUSED */ 2552 static void 2553 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp) 2554 { 2555 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2556 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2557 int ah_cnt = 0, esp_cnt = 0; 2558 int ah_len = 0, esp_len = 0; 2559 int size; 2560 2561 size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len, 2562 &esp_cnt, &esp_len); 2563 if (size == 0) 2564 return; 2565 2566 /* 2567 * Clear the capability flags for IPsec HA but retain the ill 2568 * capability structures since it's possible that another thread 2569 * is still referring to them. The structures only get deallocated 2570 * when we destroy the ill. 2571 * 2572 * Various places check the flags to see if the ill is capable of 2573 * hardware acceleration, and by clearing them we ensure that new 2574 * outbound IPsec packets are sent down encrypted. 2575 */ 2576 2577 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2578 if (ah_cnt > 0) { 2579 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2580 cap_ah, mp); 2581 } 2582 2583 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2584 if (esp_cnt > 0) { 2585 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2586 cap_esp, mp); 2587 } 2588 2589 /* 2590 * At this point we've composed a bunch of sub-capabilities to be 2591 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2592 * by the caller. Upon receiving this reset message, the driver 2593 * must stop inbound decryption (by destroying all inbound SAs) 2594 * and let the corresponding packets come in encrypted. 2595 */ 2596 } 2597 2598 static void 2599 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2600 boolean_t encapsulated) 2601 { 2602 boolean_t legacy = B_FALSE; 2603 2604 /* 2605 * Note that only the following two sub-capabilities may be 2606 * considered as "legacy", since their original definitions 2607 * do not incorporate the dl_mid_t module ID token, and hence 2608 * may require the use of the wrapper sub-capability. 2609 */ 2610 switch (subp->dl_cap) { 2611 case DL_CAPAB_IPSEC_AH: 2612 case DL_CAPAB_IPSEC_ESP: 2613 legacy = B_TRUE; 2614 break; 2615 } 2616 2617 /* 2618 * For legacy sub-capabilities which don't incorporate a queue_t 2619 * pointer in their structures, discard them if we detect that 2620 * there are intermediate modules in between IP and the driver. 2621 */ 2622 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2623 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2624 "%d discarded; %d module(s) present below IP\n", 2625 subp->dl_cap, ill->ill_lmod_cnt)); 2626 return; 2627 } 2628 2629 switch (subp->dl_cap) { 2630 case DL_CAPAB_IPSEC_AH: 2631 case DL_CAPAB_IPSEC_ESP: 2632 ill_capability_ipsec_ack(ill, mp, subp); 2633 break; 2634 case DL_CAPAB_MDT: 2635 ill_capability_mdt_ack(ill, mp, subp); 2636 break; 2637 case DL_CAPAB_HCKSUM: 2638 ill_capability_hcksum_ack(ill, mp, subp); 2639 break; 2640 case DL_CAPAB_ZEROCOPY: 2641 ill_capability_zerocopy_ack(ill, mp, subp); 2642 break; 2643 case DL_CAPAB_DLD: 2644 ill_capability_dld_ack(ill, mp, subp); 2645 break; 2646 default: 2647 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2648 subp->dl_cap)); 2649 } 2650 } 2651 2652 /* 2653 * Process a hardware checksum offload capability negotiation ack received 2654 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2655 * of a DL_CAPABILITY_ACK message. 2656 */ 2657 static void 2658 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2659 { 2660 dl_capability_req_t *ocap; 2661 dl_capab_hcksum_t *ihck, *ohck; 2662 ill_hcksum_capab_t **ill_hcksum; 2663 mblk_t *nmp = NULL; 2664 uint_t sub_dl_cap = isub->dl_cap; 2665 uint8_t *capend; 2666 2667 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 2668 2669 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 2670 2671 /* 2672 * Note: range checks here are not absolutely sufficient to 2673 * make us robust against malformed messages sent by drivers; 2674 * this is in keeping with the rest of IP's dlpi handling. 2675 * (Remember, it's coming from something else in the kernel 2676 * address space) 2677 */ 2678 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2679 if (capend > mp->b_wptr) { 2680 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2681 "malformed sub-capability too long for mblk"); 2682 return; 2683 } 2684 2685 /* 2686 * There are two types of acks we process here: 2687 * 1. acks in reply to a (first form) generic capability req 2688 * (no ENABLE flag set) 2689 * 2. acks in reply to a ENABLE capability req. 2690 * (ENABLE flag set) 2691 */ 2692 ihck = (dl_capab_hcksum_t *)(isub + 1); 2693 2694 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 2695 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 2696 "unsupported hardware checksum " 2697 "sub-capability (version %d, expected %d)", 2698 ihck->hcksum_version, HCKSUM_VERSION_1); 2699 return; 2700 } 2701 2702 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 2703 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 2704 "checksum capability isn't as expected; pass-thru " 2705 "module(s) detected, discarding capability\n")); 2706 return; 2707 } 2708 2709 #define CURR_HCKSUM_CAPAB \ 2710 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 2711 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 2712 2713 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 2714 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 2715 /* do ENABLE processing */ 2716 if (*ill_hcksum == NULL) { 2717 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 2718 KM_NOSLEEP); 2719 2720 if (*ill_hcksum == NULL) { 2721 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2722 "could not enable hcksum version %d " 2723 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 2724 ill->ill_name); 2725 return; 2726 } 2727 } 2728 2729 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 2730 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 2731 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 2732 ip1dbg(("ill_capability_hcksum_ack: interface %s " 2733 "has enabled hardware checksumming\n ", 2734 ill->ill_name)); 2735 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 2736 /* 2737 * Enabling hardware checksum offload 2738 * Currently IP supports {TCP,UDP}/IPv4 2739 * partial and full cksum offload and 2740 * IPv4 header checksum offload. 2741 * Allocate new mblk which will 2742 * contain a new capability request 2743 * to enable hardware checksum offload. 2744 */ 2745 uint_t size; 2746 uchar_t *rptr; 2747 2748 size = sizeof (dl_capability_req_t) + 2749 sizeof (dl_capability_sub_t) + isub->dl_length; 2750 2751 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2752 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2753 "could not enable hardware cksum for %s (ENOMEM)\n", 2754 ill->ill_name); 2755 return; 2756 } 2757 2758 rptr = nmp->b_rptr; 2759 /* initialize dl_capability_req_t */ 2760 ocap = (dl_capability_req_t *)nmp->b_rptr; 2761 ocap->dl_sub_offset = 2762 sizeof (dl_capability_req_t); 2763 ocap->dl_sub_length = 2764 sizeof (dl_capability_sub_t) + 2765 isub->dl_length; 2766 nmp->b_rptr += sizeof (dl_capability_req_t); 2767 2768 /* initialize dl_capability_sub_t */ 2769 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2770 nmp->b_rptr += sizeof (*isub); 2771 2772 /* initialize dl_capab_hcksum_t */ 2773 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 2774 bcopy(ihck, ohck, sizeof (*ihck)); 2775 2776 nmp->b_rptr = rptr; 2777 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2778 2779 /* Set ENABLE flag */ 2780 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 2781 ohck->hcksum_txflags |= HCKSUM_ENABLE; 2782 2783 /* 2784 * nmp points to a DL_CAPABILITY_REQ message to enable 2785 * hardware checksum acceleration. 2786 */ 2787 ill_capability_send(ill, nmp); 2788 } else { 2789 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 2790 "advertised %x hardware checksum capability flags\n", 2791 ill->ill_name, ihck->hcksum_txflags)); 2792 } 2793 } 2794 2795 static void 2796 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 2797 { 2798 dl_capab_hcksum_t *hck_subcap; 2799 dl_capability_sub_t *dl_subcap; 2800 2801 if (!ILL_HCKSUM_CAPABLE(ill)) 2802 return; 2803 2804 ASSERT(ill->ill_hcksum_capab != NULL); 2805 2806 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2807 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 2808 dl_subcap->dl_length = sizeof (*hck_subcap); 2809 2810 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 2811 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 2812 hck_subcap->hcksum_txflags = 0; 2813 2814 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 2815 } 2816 2817 static void 2818 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2819 { 2820 mblk_t *nmp = NULL; 2821 dl_capability_req_t *oc; 2822 dl_capab_zerocopy_t *zc_ic, *zc_oc; 2823 ill_zerocopy_capab_t **ill_zerocopy_capab; 2824 uint_t sub_dl_cap = isub->dl_cap; 2825 uint8_t *capend; 2826 2827 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 2828 2829 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 2830 2831 /* 2832 * Note: range checks here are not absolutely sufficient to 2833 * make us robust against malformed messages sent by drivers; 2834 * this is in keeping with the rest of IP's dlpi handling. 2835 * (Remember, it's coming from something else in the kernel 2836 * address space) 2837 */ 2838 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2839 if (capend > mp->b_wptr) { 2840 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2841 "malformed sub-capability too long for mblk"); 2842 return; 2843 } 2844 2845 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 2846 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 2847 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 2848 "unsupported ZEROCOPY sub-capability (version %d, " 2849 "expected %d)", zc_ic->zerocopy_version, 2850 ZEROCOPY_VERSION_1); 2851 return; 2852 } 2853 2854 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 2855 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 2856 "capability isn't as expected; pass-thru module(s) " 2857 "detected, discarding capability\n")); 2858 return; 2859 } 2860 2861 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 2862 if (*ill_zerocopy_capab == NULL) { 2863 *ill_zerocopy_capab = 2864 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 2865 KM_NOSLEEP); 2866 2867 if (*ill_zerocopy_capab == NULL) { 2868 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2869 "could not enable Zero-copy version %d " 2870 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 2871 ill->ill_name); 2872 return; 2873 } 2874 } 2875 2876 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 2877 "supports Zero-copy version %d\n", ill->ill_name, 2878 ZEROCOPY_VERSION_1)); 2879 2880 (*ill_zerocopy_capab)->ill_zerocopy_version = 2881 zc_ic->zerocopy_version; 2882 (*ill_zerocopy_capab)->ill_zerocopy_flags = 2883 zc_ic->zerocopy_flags; 2884 2885 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 2886 } else { 2887 uint_t size; 2888 uchar_t *rptr; 2889 2890 size = sizeof (dl_capability_req_t) + 2891 sizeof (dl_capability_sub_t) + 2892 sizeof (dl_capab_zerocopy_t); 2893 2894 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2895 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2896 "could not enable zerocopy for %s (ENOMEM)\n", 2897 ill->ill_name); 2898 return; 2899 } 2900 2901 rptr = nmp->b_rptr; 2902 /* initialize dl_capability_req_t */ 2903 oc = (dl_capability_req_t *)rptr; 2904 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2905 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2906 sizeof (dl_capab_zerocopy_t); 2907 rptr += sizeof (dl_capability_req_t); 2908 2909 /* initialize dl_capability_sub_t */ 2910 bcopy(isub, rptr, sizeof (*isub)); 2911 rptr += sizeof (*isub); 2912 2913 /* initialize dl_capab_zerocopy_t */ 2914 zc_oc = (dl_capab_zerocopy_t *)rptr; 2915 *zc_oc = *zc_ic; 2916 2917 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 2918 "to enable zero-copy version %d\n", ill->ill_name, 2919 ZEROCOPY_VERSION_1)); 2920 2921 /* set VMSAFE_MEM flag */ 2922 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 2923 2924 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 2925 ill_capability_send(ill, nmp); 2926 } 2927 } 2928 2929 static void 2930 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 2931 { 2932 dl_capab_zerocopy_t *zerocopy_subcap; 2933 dl_capability_sub_t *dl_subcap; 2934 2935 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 2936 return; 2937 2938 ASSERT(ill->ill_zerocopy_capab != NULL); 2939 2940 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2941 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 2942 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 2943 2944 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 2945 zerocopy_subcap->zerocopy_version = 2946 ill->ill_zerocopy_capab->ill_zerocopy_version; 2947 zerocopy_subcap->zerocopy_flags = 0; 2948 2949 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 2950 } 2951 2952 /* 2953 * DLD capability 2954 * Refer to dld.h for more information regarding the purpose and usage 2955 * of this capability. 2956 */ 2957 static void 2958 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2959 { 2960 dl_capab_dld_t *dld_ic, dld; 2961 uint_t sub_dl_cap = isub->dl_cap; 2962 uint8_t *capend; 2963 ill_dld_capab_t *idc; 2964 2965 ASSERT(IAM_WRITER_ILL(ill)); 2966 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 2967 2968 /* 2969 * Note: range checks here are not absolutely sufficient to 2970 * make us robust against malformed messages sent by drivers; 2971 * this is in keeping with the rest of IP's dlpi handling. 2972 * (Remember, it's coming from something else in the kernel 2973 * address space) 2974 */ 2975 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2976 if (capend > mp->b_wptr) { 2977 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2978 "malformed sub-capability too long for mblk"); 2979 return; 2980 } 2981 dld_ic = (dl_capab_dld_t *)(isub + 1); 2982 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 2983 cmn_err(CE_CONT, "ill_capability_dld_ack: " 2984 "unsupported DLD sub-capability (version %d, " 2985 "expected %d)", dld_ic->dld_version, 2986 DLD_CURRENT_VERSION); 2987 return; 2988 } 2989 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 2990 ip1dbg(("ill_capability_dld_ack: mid token for dld " 2991 "capability isn't as expected; pass-thru module(s) " 2992 "detected, discarding capability\n")); 2993 return; 2994 } 2995 2996 /* 2997 * Copy locally to ensure alignment. 2998 */ 2999 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 3000 3001 if ((idc = ill->ill_dld_capab) == NULL) { 3002 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 3003 if (idc == NULL) { 3004 cmn_err(CE_WARN, "ill_capability_dld_ack: " 3005 "could not enable DLD version %d " 3006 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 3007 ill->ill_name); 3008 return; 3009 } 3010 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 3011 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 3012 ill->ill_dld_capab = idc; 3013 } 3014 ip1dbg(("ill_capability_dld_ack: interface %s " 3015 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 3016 3017 ill_capability_dld_enable(ill); 3018 } 3019 3020 /* 3021 * Typically capability negotiation between IP and the driver happens via 3022 * DLPI message exchange. However GLD also offers a direct function call 3023 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 3024 * But arbitrary function calls into IP or GLD are not permitted, since both 3025 * of them are protected by their own perimeter mechanism. The perimeter can 3026 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 3027 * these perimeters is IP -> MAC. Thus for example to enable the squeue 3028 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 3029 * to enter the mac perimeter and then do the direct function calls into 3030 * GLD to enable squeue polling. The ring related callbacks from the mac into 3031 * the stack to add, bind, quiesce, restart or cleanup a ring are all 3032 * protected by the mac perimeter. 3033 */ 3034 static void 3035 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 3036 { 3037 ill_dld_capab_t *idc = ill->ill_dld_capab; 3038 int err; 3039 3040 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 3041 DLD_ENABLE); 3042 ASSERT(err == 0); 3043 } 3044 3045 static void 3046 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 3047 { 3048 ill_dld_capab_t *idc = ill->ill_dld_capab; 3049 int err; 3050 3051 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 3052 DLD_DISABLE); 3053 ASSERT(err == 0); 3054 } 3055 3056 boolean_t 3057 ill_mac_perim_held(ill_t *ill) 3058 { 3059 ill_dld_capab_t *idc = ill->ill_dld_capab; 3060 3061 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 3062 DLD_QUERY)); 3063 } 3064 3065 static void 3066 ill_capability_direct_enable(ill_t *ill) 3067 { 3068 ill_dld_capab_t *idc = ill->ill_dld_capab; 3069 ill_dld_direct_t *idd = &idc->idc_direct; 3070 dld_capab_direct_t direct; 3071 int rc; 3072 3073 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3074 3075 bzero(&direct, sizeof (direct)); 3076 direct.di_rx_cf = (uintptr_t)ip_input; 3077 direct.di_rx_ch = ill; 3078 3079 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 3080 DLD_ENABLE); 3081 if (rc == 0) { 3082 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 3083 idd->idd_tx_dh = direct.di_tx_dh; 3084 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 3085 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 3086 /* 3087 * One time registration of flow enable callback function 3088 */ 3089 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 3090 ill_flow_enable, ill); 3091 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 3092 DTRACE_PROBE1(direct_on, (ill_t *), ill); 3093 } else { 3094 cmn_err(CE_WARN, "warning: could not enable DIRECT " 3095 "capability, rc = %d\n", rc); 3096 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 3097 } 3098 } 3099 3100 static void 3101 ill_capability_poll_enable(ill_t *ill) 3102 { 3103 ill_dld_capab_t *idc = ill->ill_dld_capab; 3104 dld_capab_poll_t poll; 3105 int rc; 3106 3107 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3108 3109 bzero(&poll, sizeof (poll)); 3110 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 3111 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 3112 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 3113 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 3114 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 3115 poll.poll_ring_ch = ill; 3116 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 3117 DLD_ENABLE); 3118 if (rc == 0) { 3119 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 3120 DTRACE_PROBE1(poll_on, (ill_t *), ill); 3121 } else { 3122 ip1dbg(("warning: could not enable POLL " 3123 "capability, rc = %d\n", rc)); 3124 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 3125 } 3126 } 3127 3128 /* 3129 * Enable the LSO capability. 3130 */ 3131 static void 3132 ill_capability_lso_enable(ill_t *ill) 3133 { 3134 ill_dld_capab_t *idc = ill->ill_dld_capab; 3135 dld_capab_lso_t lso; 3136 int rc; 3137 3138 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3139 3140 if (ill->ill_lso_capab == NULL) { 3141 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3142 KM_NOSLEEP); 3143 if (ill->ill_lso_capab == NULL) { 3144 cmn_err(CE_WARN, "ill_capability_lso_enable: " 3145 "could not enable LSO for %s (ENOMEM)\n", 3146 ill->ill_name); 3147 return; 3148 } 3149 } 3150 3151 bzero(&lso, sizeof (lso)); 3152 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 3153 DLD_ENABLE)) == 0) { 3154 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 3155 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 3156 ill->ill_capabilities |= ILL_CAPAB_DLD_LSO; 3157 ip1dbg(("ill_capability_lso_enable: interface %s " 3158 "has enabled LSO\n ", ill->ill_name)); 3159 } else { 3160 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 3161 ill->ill_lso_capab = NULL; 3162 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 3163 } 3164 } 3165 3166 static void 3167 ill_capability_dld_enable(ill_t *ill) 3168 { 3169 mac_perim_handle_t mph; 3170 3171 ASSERT(IAM_WRITER_ILL(ill)); 3172 3173 if (ill->ill_isv6) 3174 return; 3175 3176 ill_mac_perim_enter(ill, &mph); 3177 if (!ill->ill_isv6) { 3178 ill_capability_direct_enable(ill); 3179 ill_capability_poll_enable(ill); 3180 ill_capability_lso_enable(ill); 3181 } 3182 ill->ill_capabilities |= ILL_CAPAB_DLD; 3183 ill_mac_perim_exit(ill, mph); 3184 } 3185 3186 static void 3187 ill_capability_dld_disable(ill_t *ill) 3188 { 3189 ill_dld_capab_t *idc; 3190 ill_dld_direct_t *idd; 3191 mac_perim_handle_t mph; 3192 3193 ASSERT(IAM_WRITER_ILL(ill)); 3194 3195 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 3196 return; 3197 3198 ill_mac_perim_enter(ill, &mph); 3199 3200 idc = ill->ill_dld_capab; 3201 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 3202 /* 3203 * For performance we avoid locks in the transmit data path 3204 * and don't maintain a count of the number of threads using 3205 * direct calls. Thus some threads could be using direct 3206 * transmit calls to GLD, even after the capability mechanism 3207 * turns it off. This is still safe since the handles used in 3208 * the direct calls continue to be valid until the unplumb is 3209 * completed. Remove the callback that was added (1-time) at 3210 * capab enable time. 3211 */ 3212 mutex_enter(&ill->ill_lock); 3213 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 3214 mutex_exit(&ill->ill_lock); 3215 if (ill->ill_flownotify_mh != NULL) { 3216 idd = &idc->idc_direct; 3217 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 3218 ill->ill_flownotify_mh); 3219 ill->ill_flownotify_mh = NULL; 3220 } 3221 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 3222 NULL, DLD_DISABLE); 3223 } 3224 3225 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 3226 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 3227 ip_squeue_clean_all(ill); 3228 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 3229 NULL, DLD_DISABLE); 3230 } 3231 3232 if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) { 3233 ASSERT(ill->ill_lso_capab != NULL); 3234 /* 3235 * Clear the capability flag for LSO but retain the 3236 * ill_lso_capab structure since it's possible that another 3237 * thread is still referring to it. The structure only gets 3238 * deallocated when we destroy the ill. 3239 */ 3240 3241 ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO; 3242 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 3243 NULL, DLD_DISABLE); 3244 } 3245 3246 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 3247 ill_mac_perim_exit(ill, mph); 3248 } 3249 3250 /* 3251 * Capability Negotiation protocol 3252 * 3253 * We don't wait for DLPI capability operations to finish during interface 3254 * bringup or teardown. Doing so would introduce more asynchrony and the 3255 * interface up/down operations will need multiple return and restarts. 3256 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 3257 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 3258 * exclusive operation won't start until the DLPI operations of the previous 3259 * exclusive operation complete. 3260 * 3261 * The capability state machine is shown below. 3262 * 3263 * state next state event, action 3264 * 3265 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 3266 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 3267 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 3268 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 3269 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 3270 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 3271 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 3272 * ill_capability_probe. 3273 */ 3274 3275 /* 3276 * Dedicated thread started from ip_stack_init that handles capability 3277 * disable. This thread ensures the taskq dispatch does not fail by waiting 3278 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 3279 * that direct calls to DLD are done in a cv_waitable context. 3280 */ 3281 void 3282 ill_taskq_dispatch(ip_stack_t *ipst) 3283 { 3284 callb_cpr_t cprinfo; 3285 char name[64]; 3286 mblk_t *mp; 3287 3288 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 3289 ipst->ips_netstack->netstack_stackid); 3290 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 3291 name); 3292 mutex_enter(&ipst->ips_capab_taskq_lock); 3293 3294 for (;;) { 3295 mp = list_head(&ipst->ips_capab_taskq_list); 3296 while (mp != NULL) { 3297 list_remove(&ipst->ips_capab_taskq_list, mp); 3298 mutex_exit(&ipst->ips_capab_taskq_lock); 3299 VERIFY(taskq_dispatch(system_taskq, 3300 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 3301 mutex_enter(&ipst->ips_capab_taskq_lock); 3302 mp = list_head(&ipst->ips_capab_taskq_list); 3303 } 3304 3305 if (ipst->ips_capab_taskq_quit) 3306 break; 3307 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3308 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 3309 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 3310 } 3311 VERIFY(list_head(&ipst->ips_capab_taskq_list) == NULL); 3312 CALLB_CPR_EXIT(&cprinfo); 3313 thread_exit(); 3314 } 3315 3316 /* 3317 * Consume a new-style hardware capabilities negotiation ack. 3318 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 3319 */ 3320 static void 3321 ill_capability_ack_thr(void *arg) 3322 { 3323 mblk_t *mp = arg; 3324 dl_capability_ack_t *capp; 3325 dl_capability_sub_t *subp, *endp; 3326 ill_t *ill; 3327 boolean_t reneg; 3328 3329 ill = (ill_t *)mp->b_prev; 3330 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 3331 3332 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 3333 ill->ill_dlpi_capab_state == IDCS_RENEG) { 3334 /* 3335 * We have received the ack for our DL_CAPAB reset request. 3336 * There isnt' anything in the message that needs processing. 3337 * All message based capabilities have been disabled, now 3338 * do the function call based capability disable. 3339 */ 3340 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 3341 ill_capability_dld_disable(ill); 3342 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 3343 if (reneg) 3344 ill_capability_probe(ill); 3345 goto done; 3346 } 3347 3348 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 3349 ill->ill_dlpi_capab_state = IDCS_OK; 3350 3351 capp = (dl_capability_ack_t *)mp->b_rptr; 3352 3353 if (capp->dl_sub_length == 0) { 3354 /* no new-style capabilities */ 3355 goto done; 3356 } 3357 3358 /* make sure the driver supplied correct dl_sub_length */ 3359 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3360 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3361 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3362 goto done; 3363 } 3364 3365 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3366 /* 3367 * There are sub-capabilities. Process the ones we know about. 3368 * Loop until we don't have room for another sub-cap header.. 3369 */ 3370 for (subp = SC(capp, capp->dl_sub_offset), 3371 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3372 subp <= endp; 3373 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3374 3375 switch (subp->dl_cap) { 3376 case DL_CAPAB_ID_WRAPPER: 3377 ill_capability_id_ack(ill, mp, subp); 3378 break; 3379 default: 3380 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3381 break; 3382 } 3383 } 3384 #undef SC 3385 done: 3386 inet_freemsg(mp); 3387 ill_capability_done(ill); 3388 ipsq_exit(ill->ill_phyint->phyint_ipsq); 3389 } 3390 3391 /* 3392 * This needs to be started in a taskq thread to provide a cv_waitable 3393 * context. 3394 */ 3395 void 3396 ill_capability_ack(ill_t *ill, mblk_t *mp) 3397 { 3398 ip_stack_t *ipst = ill->ill_ipst; 3399 3400 mp->b_prev = (mblk_t *)ill; 3401 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 3402 TQ_NOSLEEP) != 0) 3403 return; 3404 3405 /* 3406 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 3407 * which will do the dispatch using TQ_SLEEP to guarantee success. 3408 */ 3409 mutex_enter(&ipst->ips_capab_taskq_lock); 3410 list_insert_tail(&ipst->ips_capab_taskq_list, mp); 3411 cv_signal(&ipst->ips_capab_taskq_cv); 3412 mutex_exit(&ipst->ips_capab_taskq_lock); 3413 } 3414 3415 /* 3416 * This routine is called to scan the fragmentation reassembly table for 3417 * the specified ILL for any packets that are starting to smell. 3418 * dead_interval is the maximum time in seconds that will be tolerated. It 3419 * will either be the value specified in ip_g_frag_timeout, or zero if the 3420 * ILL is shutting down and it is time to blow everything off. 3421 * 3422 * It returns the number of seconds (as a time_t) that the next frag timer 3423 * should be scheduled for, 0 meaning that the timer doesn't need to be 3424 * re-started. Note that the method of calculating next_timeout isn't 3425 * entirely accurate since time will flow between the time we grab 3426 * current_time and the time we schedule the next timeout. This isn't a 3427 * big problem since this is the timer for sending an ICMP reassembly time 3428 * exceeded messages, and it doesn't have to be exactly accurate. 3429 * 3430 * This function is 3431 * sometimes called as writer, although this is not required. 3432 */ 3433 time_t 3434 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3435 { 3436 ipfb_t *ipfb; 3437 ipfb_t *endp; 3438 ipf_t *ipf; 3439 ipf_t *ipfnext; 3440 mblk_t *mp; 3441 time_t current_time = gethrestime_sec(); 3442 time_t next_timeout = 0; 3443 uint32_t hdr_length; 3444 mblk_t *send_icmp_head; 3445 mblk_t *send_icmp_head_v6; 3446 zoneid_t zoneid; 3447 ip_stack_t *ipst = ill->ill_ipst; 3448 3449 ipfb = ill->ill_frag_hash_tbl; 3450 if (ipfb == NULL) 3451 return (B_FALSE); 3452 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3453 /* Walk the frag hash table. */ 3454 for (; ipfb < endp; ipfb++) { 3455 send_icmp_head = NULL; 3456 send_icmp_head_v6 = NULL; 3457 mutex_enter(&ipfb->ipfb_lock); 3458 while ((ipf = ipfb->ipfb_ipf) != 0) { 3459 time_t frag_time = current_time - ipf->ipf_timestamp; 3460 time_t frag_timeout; 3461 3462 if (frag_time < dead_interval) { 3463 /* 3464 * There are some outstanding fragments 3465 * that will timeout later. Make note of 3466 * the time so that we can reschedule the 3467 * next timeout appropriately. 3468 */ 3469 frag_timeout = dead_interval - frag_time; 3470 if (next_timeout == 0 || 3471 frag_timeout < next_timeout) { 3472 next_timeout = frag_timeout; 3473 } 3474 break; 3475 } 3476 /* Time's up. Get it out of here. */ 3477 hdr_length = ipf->ipf_nf_hdr_len; 3478 ipfnext = ipf->ipf_hash_next; 3479 if (ipfnext) 3480 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3481 *ipf->ipf_ptphn = ipfnext; 3482 mp = ipf->ipf_mp->b_cont; 3483 for (; mp; mp = mp->b_cont) { 3484 /* Extra points for neatness. */ 3485 IP_REASS_SET_START(mp, 0); 3486 IP_REASS_SET_END(mp, 0); 3487 } 3488 mp = ipf->ipf_mp->b_cont; 3489 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3490 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3491 ipfb->ipfb_count -= ipf->ipf_count; 3492 ASSERT(ipfb->ipfb_frag_pkts > 0); 3493 ipfb->ipfb_frag_pkts--; 3494 /* 3495 * We do not send any icmp message from here because 3496 * we currently are holding the ipfb_lock for this 3497 * hash chain. If we try and send any icmp messages 3498 * from here we may end up via a put back into ip 3499 * trying to get the same lock, causing a recursive 3500 * mutex panic. Instead we build a list and send all 3501 * the icmp messages after we have dropped the lock. 3502 */ 3503 if (ill->ill_isv6) { 3504 if (hdr_length != 0) { 3505 mp->b_next = send_icmp_head_v6; 3506 send_icmp_head_v6 = mp; 3507 } else { 3508 freemsg(mp); 3509 } 3510 } else { 3511 if (hdr_length != 0) { 3512 mp->b_next = send_icmp_head; 3513 send_icmp_head = mp; 3514 } else { 3515 freemsg(mp); 3516 } 3517 } 3518 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3519 freeb(ipf->ipf_mp); 3520 } 3521 mutex_exit(&ipfb->ipfb_lock); 3522 /* 3523 * Now need to send any icmp messages that we delayed from 3524 * above. 3525 */ 3526 while (send_icmp_head_v6 != NULL) { 3527 ip6_t *ip6h; 3528 3529 mp = send_icmp_head_v6; 3530 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3531 mp->b_next = NULL; 3532 if (mp->b_datap->db_type == M_CTL) 3533 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3534 else 3535 ip6h = (ip6_t *)mp->b_rptr; 3536 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3537 ill, ipst); 3538 if (zoneid == ALL_ZONES) { 3539 freemsg(mp); 3540 } else { 3541 icmp_time_exceeded_v6(ill->ill_wq, mp, 3542 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3543 B_FALSE, zoneid, ipst); 3544 } 3545 } 3546 while (send_icmp_head != NULL) { 3547 ipaddr_t dst; 3548 3549 mp = send_icmp_head; 3550 send_icmp_head = send_icmp_head->b_next; 3551 mp->b_next = NULL; 3552 3553 if (mp->b_datap->db_type == M_CTL) 3554 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3555 else 3556 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3557 3558 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3559 if (zoneid == ALL_ZONES) { 3560 freemsg(mp); 3561 } else { 3562 icmp_time_exceeded(ill->ill_wq, mp, 3563 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3564 ipst); 3565 } 3566 } 3567 } 3568 /* 3569 * A non-dying ILL will use the return value to decide whether to 3570 * restart the frag timer, and for how long. 3571 */ 3572 return (next_timeout); 3573 } 3574 3575 /* 3576 * This routine is called when the approximate count of mblk memory used 3577 * for the specified ILL has exceeded max_count. 3578 */ 3579 void 3580 ill_frag_prune(ill_t *ill, uint_t max_count) 3581 { 3582 ipfb_t *ipfb; 3583 ipf_t *ipf; 3584 size_t count; 3585 3586 /* 3587 * If we are here within ip_min_frag_prune_time msecs remove 3588 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3589 * ill_frag_free_num_pkts. 3590 */ 3591 mutex_enter(&ill->ill_lock); 3592 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3593 (ip_min_frag_prune_time != 0 ? 3594 ip_min_frag_prune_time : msec_per_tick)) { 3595 3596 ill->ill_frag_free_num_pkts++; 3597 3598 } else { 3599 ill->ill_frag_free_num_pkts = 0; 3600 } 3601 ill->ill_last_frag_clean_time = lbolt; 3602 mutex_exit(&ill->ill_lock); 3603 3604 /* 3605 * free ill_frag_free_num_pkts oldest packets from each bucket. 3606 */ 3607 if (ill->ill_frag_free_num_pkts != 0) { 3608 int ix; 3609 3610 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3611 ipfb = &ill->ill_frag_hash_tbl[ix]; 3612 mutex_enter(&ipfb->ipfb_lock); 3613 if (ipfb->ipfb_ipf != NULL) { 3614 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3615 ill->ill_frag_free_num_pkts); 3616 } 3617 mutex_exit(&ipfb->ipfb_lock); 3618 } 3619 } 3620 /* 3621 * While the reassembly list for this ILL is too big, prune a fragment 3622 * queue by age, oldest first. 3623 */ 3624 while (ill->ill_frag_count > max_count) { 3625 int ix; 3626 ipfb_t *oipfb = NULL; 3627 uint_t oldest = UINT_MAX; 3628 3629 count = 0; 3630 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3631 ipfb = &ill->ill_frag_hash_tbl[ix]; 3632 mutex_enter(&ipfb->ipfb_lock); 3633 ipf = ipfb->ipfb_ipf; 3634 if (ipf != NULL && ipf->ipf_gen < oldest) { 3635 oldest = ipf->ipf_gen; 3636 oipfb = ipfb; 3637 } 3638 count += ipfb->ipfb_count; 3639 mutex_exit(&ipfb->ipfb_lock); 3640 } 3641 if (oipfb == NULL) 3642 break; 3643 3644 if (count <= max_count) 3645 return; /* Somebody beat us to it, nothing to do */ 3646 mutex_enter(&oipfb->ipfb_lock); 3647 ipf = oipfb->ipfb_ipf; 3648 if (ipf != NULL) { 3649 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3650 } 3651 mutex_exit(&oipfb->ipfb_lock); 3652 } 3653 } 3654 3655 /* 3656 * free 'free_cnt' fragmented packets starting at ipf. 3657 */ 3658 void 3659 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3660 { 3661 size_t count; 3662 mblk_t *mp; 3663 mblk_t *tmp; 3664 ipf_t **ipfp = ipf->ipf_ptphn; 3665 3666 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3667 ASSERT(ipfp != NULL); 3668 ASSERT(ipf != NULL); 3669 3670 while (ipf != NULL && free_cnt-- > 0) { 3671 count = ipf->ipf_count; 3672 mp = ipf->ipf_mp; 3673 ipf = ipf->ipf_hash_next; 3674 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3675 IP_REASS_SET_START(tmp, 0); 3676 IP_REASS_SET_END(tmp, 0); 3677 } 3678 atomic_add_32(&ill->ill_frag_count, -count); 3679 ASSERT(ipfb->ipfb_count >= count); 3680 ipfb->ipfb_count -= count; 3681 ASSERT(ipfb->ipfb_frag_pkts > 0); 3682 ipfb->ipfb_frag_pkts--; 3683 freemsg(mp); 3684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3685 } 3686 3687 if (ipf) 3688 ipf->ipf_ptphn = ipfp; 3689 ipfp[0] = ipf; 3690 } 3691 3692 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3693 "obsolete and may be removed in a future release of Solaris. Use " \ 3694 "ifconfig(1M) to manipulate the forwarding status of an interface." 3695 3696 /* 3697 * For obsolete per-interface forwarding configuration; 3698 * called in response to ND_GET. 3699 */ 3700 /* ARGSUSED */ 3701 static int 3702 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3703 { 3704 ill_t *ill = (ill_t *)cp; 3705 3706 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3707 3708 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3709 return (0); 3710 } 3711 3712 /* 3713 * For obsolete per-interface forwarding configuration; 3714 * called in response to ND_SET. 3715 */ 3716 /* ARGSUSED */ 3717 static int 3718 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3719 cred_t *ioc_cr) 3720 { 3721 long value; 3722 int retval; 3723 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3724 3725 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3726 3727 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3728 value < 0 || value > 1) { 3729 return (EINVAL); 3730 } 3731 3732 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3733 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3734 rw_exit(&ipst->ips_ill_g_lock); 3735 return (retval); 3736 } 3737 3738 /* 3739 * Helper function for ill_forward_set(). 3740 */ 3741 static void 3742 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 3743 { 3744 ip_stack_t *ipst = ill->ill_ipst; 3745 3746 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3747 3748 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3749 (enable ? "Enabling" : "Disabling"), 3750 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3751 mutex_enter(&ill->ill_lock); 3752 if (enable) 3753 ill->ill_flags |= ILLF_ROUTER; 3754 else 3755 ill->ill_flags &= ~ILLF_ROUTER; 3756 mutex_exit(&ill->ill_lock); 3757 if (ill->ill_isv6) 3758 ill_set_nce_router_flags(ill, enable); 3759 /* Notify routing socket listeners of this change. */ 3760 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 3761 } 3762 3763 /* 3764 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 3765 * socket messages for each interface whose flags we change. 3766 */ 3767 int 3768 ill_forward_set(ill_t *ill, boolean_t enable) 3769 { 3770 ipmp_illgrp_t *illg; 3771 ip_stack_t *ipst = ill->ill_ipst; 3772 3773 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3774 3775 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3776 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3777 return (0); 3778 3779 if (IS_LOOPBACK(ill)) 3780 return (EINVAL); 3781 3782 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 3783 /* 3784 * Update all of the interfaces in the group. 3785 */ 3786 illg = ill->ill_grp; 3787 ill = list_head(&illg->ig_if); 3788 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 3789 ill_forward_set_on_ill(ill, enable); 3790 3791 /* 3792 * Update the IPMP meta-interface. 3793 */ 3794 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 3795 return (0); 3796 } 3797 3798 ill_forward_set_on_ill(ill, enable); 3799 return (0); 3800 } 3801 3802 /* 3803 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3804 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3805 * set or clear. 3806 */ 3807 static void 3808 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3809 { 3810 ipif_t *ipif; 3811 nce_t *nce; 3812 3813 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3814 /* 3815 * NOTE: we match across the illgrp because nce's for 3816 * addresses on IPMP interfaces have an nce_ill that points to 3817 * the bound underlying ill. 3818 */ 3819 nce = ndp_lookup_v6(ill, B_TRUE, &ipif->ipif_v6lcl_addr, 3820 B_FALSE); 3821 if (nce != NULL) { 3822 mutex_enter(&nce->nce_lock); 3823 if (enable) 3824 nce->nce_flags |= NCE_F_ISROUTER; 3825 else 3826 nce->nce_flags &= ~NCE_F_ISROUTER; 3827 mutex_exit(&nce->nce_lock); 3828 NCE_REFRELE(nce); 3829 } 3830 } 3831 } 3832 3833 /* 3834 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3835 * for this ill. Make sure the v6/v4 question has been answered about this 3836 * ill. The creation of this ndd variable is only for backwards compatibility. 3837 * The preferred way to control per-interface IP forwarding is through the 3838 * ILLF_ROUTER interface flag. 3839 */ 3840 static int 3841 ill_set_ndd_name(ill_t *ill) 3842 { 3843 char *suffix; 3844 ip_stack_t *ipst = ill->ill_ipst; 3845 3846 ASSERT(IAM_WRITER_ILL(ill)); 3847 3848 if (ill->ill_isv6) 3849 suffix = ipv6_forward_suffix; 3850 else 3851 suffix = ipv4_forward_suffix; 3852 3853 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3854 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3855 /* 3856 * Copies over the '\0'. 3857 * Note that strlen(suffix) is always bounded. 3858 */ 3859 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3860 strlen(suffix) + 1); 3861 3862 /* 3863 * Use of the nd table requires holding the reader lock. 3864 * Modifying the nd table thru nd_load/nd_unload requires 3865 * the writer lock. 3866 */ 3867 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 3868 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3869 nd_ill_forward_set, (caddr_t)ill)) { 3870 /* 3871 * If the nd_load failed, it only meant that it could not 3872 * allocate a new bunch of room for further NDD expansion. 3873 * Because of that, the ill_ndd_name will be set to 0, and 3874 * this interface is at the mercy of the global ip_forwarding 3875 * variable. 3876 */ 3877 rw_exit(&ipst->ips_ip_g_nd_lock); 3878 ill->ill_ndd_name = NULL; 3879 return (ENOMEM); 3880 } 3881 rw_exit(&ipst->ips_ip_g_nd_lock); 3882 return (0); 3883 } 3884 3885 /* 3886 * Intializes the context structure and returns the first ill in the list 3887 * cuurently start_list and end_list can have values: 3888 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3889 * IP_V4_G_HEAD Traverse IPV4 list only. 3890 * IP_V6_G_HEAD Traverse IPV6 list only. 3891 */ 3892 3893 /* 3894 * We don't check for CONDEMNED ills here. Caller must do that if 3895 * necessary under the ill lock. 3896 */ 3897 ill_t * 3898 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 3899 ip_stack_t *ipst) 3900 { 3901 ill_if_t *ifp; 3902 ill_t *ill; 3903 avl_tree_t *avl_tree; 3904 3905 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3906 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3907 3908 /* 3909 * setup the lists to search 3910 */ 3911 if (end_list != MAX_G_HEADS) { 3912 ctx->ctx_current_list = start_list; 3913 ctx->ctx_last_list = end_list; 3914 } else { 3915 ctx->ctx_last_list = MAX_G_HEADS - 1; 3916 ctx->ctx_current_list = 0; 3917 } 3918 3919 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3920 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3921 if (ifp != (ill_if_t *) 3922 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3923 avl_tree = &ifp->illif_avl_by_ppa; 3924 ill = avl_first(avl_tree); 3925 /* 3926 * ill is guaranteed to be non NULL or ifp should have 3927 * not existed. 3928 */ 3929 ASSERT(ill != NULL); 3930 return (ill); 3931 } 3932 ctx->ctx_current_list++; 3933 } 3934 3935 return (NULL); 3936 } 3937 3938 /* 3939 * returns the next ill in the list. ill_first() must have been called 3940 * before calling ill_next() or bad things will happen. 3941 */ 3942 3943 /* 3944 * We don't check for CONDEMNED ills here. Caller must do that if 3945 * necessary under the ill lock. 3946 */ 3947 ill_t * 3948 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3949 { 3950 ill_if_t *ifp; 3951 ill_t *ill; 3952 ip_stack_t *ipst = lastill->ill_ipst; 3953 3954 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3955 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 3956 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3957 AVL_AFTER)) != NULL) { 3958 return (ill); 3959 } 3960 3961 /* goto next ill_ifp in the list. */ 3962 ifp = lastill->ill_ifptr->illif_next; 3963 3964 /* make sure not at end of circular list */ 3965 while (ifp == 3966 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3967 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3968 return (NULL); 3969 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3970 } 3971 3972 return (avl_first(&ifp->illif_avl_by_ppa)); 3973 } 3974 3975 /* 3976 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 3977 * The final number (PPA) must not have any leading zeros. Upon success, a 3978 * pointer to the start of the PPA is returned; otherwise NULL is returned. 3979 */ 3980 static char * 3981 ill_get_ppa_ptr(char *name) 3982 { 3983 int namelen = strlen(name); 3984 int end_ndx = namelen - 1; 3985 int ppa_ndx, i; 3986 3987 /* 3988 * Check that the first character is [a-zA-Z], and that the last 3989 * character is [0-9]. 3990 */ 3991 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 3992 return (NULL); 3993 3994 /* 3995 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 3996 */ 3997 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 3998 if (!isdigit(name[ppa_ndx - 1])) 3999 break; 4000 4001 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 4002 return (NULL); 4003 4004 /* 4005 * Check that the intermediate characters are [a-z0-9.] 4006 */ 4007 for (i = 1; i < ppa_ndx; i++) { 4008 if (!isalpha(name[i]) && !isdigit(name[i]) && 4009 name[i] != '.' && name[i] != '_') { 4010 return (NULL); 4011 } 4012 } 4013 4014 return (name + ppa_ndx); 4015 } 4016 4017 /* 4018 * use avl tree to locate the ill. 4019 */ 4020 static ill_t * 4021 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4022 ipsq_func_t func, int *error, ip_stack_t *ipst) 4023 { 4024 char *ppa_ptr = NULL; 4025 int len; 4026 uint_t ppa; 4027 ill_t *ill = NULL; 4028 ill_if_t *ifp; 4029 int list; 4030 ipsq_t *ipsq; 4031 4032 if (error != NULL) 4033 *error = 0; 4034 4035 /* 4036 * get ppa ptr 4037 */ 4038 if (isv6) 4039 list = IP_V6_G_HEAD; 4040 else 4041 list = IP_V4_G_HEAD; 4042 4043 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4044 if (error != NULL) 4045 *error = ENXIO; 4046 return (NULL); 4047 } 4048 4049 len = ppa_ptr - name + 1; 4050 4051 ppa = stoi(&ppa_ptr); 4052 4053 ifp = IP_VX_ILL_G_LIST(list, ipst); 4054 4055 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4056 /* 4057 * match is done on len - 1 as the name is not null 4058 * terminated it contains ppa in addition to the interface 4059 * name. 4060 */ 4061 if ((ifp->illif_name_len == len) && 4062 bcmp(ifp->illif_name, name, len - 1) == 0) { 4063 break; 4064 } else { 4065 ifp = ifp->illif_next; 4066 } 4067 } 4068 4069 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4070 /* 4071 * Even the interface type does not exist. 4072 */ 4073 if (error != NULL) 4074 *error = ENXIO; 4075 return (NULL); 4076 } 4077 4078 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4079 if (ill != NULL) { 4080 /* 4081 * The block comment at the start of ipif_down 4082 * explains the use of the macros used below 4083 */ 4084 GRAB_CONN_LOCK(q); 4085 mutex_enter(&ill->ill_lock); 4086 if (ILL_CAN_LOOKUP(ill)) { 4087 ill_refhold_locked(ill); 4088 mutex_exit(&ill->ill_lock); 4089 RELEASE_CONN_LOCK(q); 4090 return (ill); 4091 } else if (ILL_CAN_WAIT(ill, q)) { 4092 ipsq = ill->ill_phyint->phyint_ipsq; 4093 mutex_enter(&ipsq->ipsq_lock); 4094 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 4095 mutex_exit(&ill->ill_lock); 4096 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4097 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 4098 mutex_exit(&ipsq->ipsq_lock); 4099 RELEASE_CONN_LOCK(q); 4100 if (error != NULL) 4101 *error = EINPROGRESS; 4102 return (NULL); 4103 } 4104 mutex_exit(&ill->ill_lock); 4105 RELEASE_CONN_LOCK(q); 4106 } 4107 if (error != NULL) 4108 *error = ENXIO; 4109 return (NULL); 4110 } 4111 4112 /* 4113 * comparison function for use with avl. 4114 */ 4115 static int 4116 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4117 { 4118 uint_t ppa; 4119 uint_t ill_ppa; 4120 4121 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4122 4123 ppa = *((uint_t *)ppa_ptr); 4124 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4125 /* 4126 * We want the ill with the lowest ppa to be on the 4127 * top. 4128 */ 4129 if (ill_ppa < ppa) 4130 return (1); 4131 if (ill_ppa > ppa) 4132 return (-1); 4133 return (0); 4134 } 4135 4136 /* 4137 * remove an interface type from the global list. 4138 */ 4139 static void 4140 ill_delete_interface_type(ill_if_t *interface) 4141 { 4142 ASSERT(interface != NULL); 4143 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4144 4145 avl_destroy(&interface->illif_avl_by_ppa); 4146 if (interface->illif_ppa_arena != NULL) 4147 vmem_destroy(interface->illif_ppa_arena); 4148 4149 remque(interface); 4150 4151 mi_free(interface); 4152 } 4153 4154 /* 4155 * remove ill from the global list. 4156 */ 4157 static void 4158 ill_glist_delete(ill_t *ill) 4159 { 4160 ip_stack_t *ipst; 4161 phyint_t *phyi; 4162 4163 if (ill == NULL) 4164 return; 4165 ipst = ill->ill_ipst; 4166 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4167 4168 /* 4169 * If the ill was never inserted into the AVL tree 4170 * we skip the if branch. 4171 */ 4172 if (ill->ill_ifptr != NULL) { 4173 /* 4174 * remove from AVL tree and free ppa number 4175 */ 4176 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4177 4178 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4179 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4180 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4181 } 4182 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4183 ill_delete_interface_type(ill->ill_ifptr); 4184 } 4185 4186 /* 4187 * Indicate ill is no longer in the list. 4188 */ 4189 ill->ill_ifptr = NULL; 4190 ill->ill_name_length = 0; 4191 ill->ill_name[0] = '\0'; 4192 ill->ill_ppa = UINT_MAX; 4193 } 4194 4195 /* Generate one last event for this ill. */ 4196 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 4197 ill->ill_name_length); 4198 4199 ASSERT(ill->ill_phyint != NULL); 4200 phyi = ill->ill_phyint; 4201 ill->ill_phyint = NULL; 4202 4203 /* 4204 * ill_init allocates a phyint always to store the copy 4205 * of flags relevant to phyint. At that point in time, we could 4206 * not assign the name and hence phyint_illv4/v6 could not be 4207 * initialized. Later in ipif_set_values, we assign the name to 4208 * the ill, at which point in time we assign phyint_illv4/v6. 4209 * Thus we don't rely on phyint_illv6 to be initialized always. 4210 */ 4211 if (ill->ill_flags & ILLF_IPV6) 4212 phyi->phyint_illv6 = NULL; 4213 else 4214 phyi->phyint_illv4 = NULL; 4215 4216 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 4217 rw_exit(&ipst->ips_ill_g_lock); 4218 return; 4219 } 4220 4221 /* 4222 * There are no ills left on this phyint; pull it out of the phyint 4223 * avl trees, and free it. 4224 */ 4225 if (phyi->phyint_ifindex > 0) { 4226 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4227 phyi); 4228 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4229 phyi); 4230 } 4231 rw_exit(&ipst->ips_ill_g_lock); 4232 4233 phyint_free(phyi); 4234 } 4235 4236 /* 4237 * allocate a ppa, if the number of plumbed interfaces of this type are 4238 * less than ill_no_arena do a linear search to find a unused ppa. 4239 * When the number goes beyond ill_no_arena switch to using an arena. 4240 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4241 * is the return value for an error condition, so allocation starts at one 4242 * and is decremented by one. 4243 */ 4244 static int 4245 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4246 { 4247 ill_t *tmp_ill; 4248 uint_t start, end; 4249 int ppa; 4250 4251 if (ifp->illif_ppa_arena == NULL && 4252 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4253 /* 4254 * Create an arena. 4255 */ 4256 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4257 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4258 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4259 /* allocate what has already been assigned */ 4260 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4261 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4262 tmp_ill, AVL_AFTER)) { 4263 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4264 1, /* size */ 4265 1, /* align/quantum */ 4266 0, /* phase */ 4267 0, /* nocross */ 4268 /* minaddr */ 4269 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4270 /* maxaddr */ 4271 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4272 VM_NOSLEEP|VM_FIRSTFIT); 4273 if (ppa == 0) { 4274 ip1dbg(("ill_alloc_ppa: ppa allocation" 4275 " failed while switching")); 4276 vmem_destroy(ifp->illif_ppa_arena); 4277 ifp->illif_ppa_arena = NULL; 4278 break; 4279 } 4280 } 4281 } 4282 4283 if (ifp->illif_ppa_arena != NULL) { 4284 if (ill->ill_ppa == UINT_MAX) { 4285 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4286 1, VM_NOSLEEP|VM_FIRSTFIT); 4287 if (ppa == 0) 4288 return (EAGAIN); 4289 ill->ill_ppa = --ppa; 4290 } else { 4291 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4292 1, /* size */ 4293 1, /* align/quantum */ 4294 0, /* phase */ 4295 0, /* nocross */ 4296 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4297 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4298 VM_NOSLEEP|VM_FIRSTFIT); 4299 /* 4300 * Most likely the allocation failed because 4301 * the requested ppa was in use. 4302 */ 4303 if (ppa == 0) 4304 return (EEXIST); 4305 } 4306 return (0); 4307 } 4308 4309 /* 4310 * No arena is in use and not enough (>ill_no_arena) interfaces have 4311 * been plumbed to create one. Do a linear search to get a unused ppa. 4312 */ 4313 if (ill->ill_ppa == UINT_MAX) { 4314 end = UINT_MAX - 1; 4315 start = 0; 4316 } else { 4317 end = start = ill->ill_ppa; 4318 } 4319 4320 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4321 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4322 if (start++ >= end) { 4323 if (ill->ill_ppa == UINT_MAX) 4324 return (EAGAIN); 4325 else 4326 return (EEXIST); 4327 } 4328 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4329 } 4330 ill->ill_ppa = start; 4331 return (0); 4332 } 4333 4334 /* 4335 * Insert ill into the list of configured ill's. Once this function completes, 4336 * the ill is globally visible and is available through lookups. More precisely 4337 * this happens after the caller drops the ill_g_lock. 4338 */ 4339 static int 4340 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4341 { 4342 ill_if_t *ill_interface; 4343 avl_index_t where = 0; 4344 int error; 4345 int name_length; 4346 int index; 4347 boolean_t check_length = B_FALSE; 4348 ip_stack_t *ipst = ill->ill_ipst; 4349 4350 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4351 4352 name_length = mi_strlen(name) + 1; 4353 4354 if (isv6) 4355 index = IP_V6_G_HEAD; 4356 else 4357 index = IP_V4_G_HEAD; 4358 4359 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4360 /* 4361 * Search for interface type based on name 4362 */ 4363 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4364 if ((ill_interface->illif_name_len == name_length) && 4365 (strcmp(ill_interface->illif_name, name) == 0)) { 4366 break; 4367 } 4368 ill_interface = ill_interface->illif_next; 4369 } 4370 4371 /* 4372 * Interface type not found, create one. 4373 */ 4374 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4375 ill_g_head_t ghead; 4376 4377 /* 4378 * allocate ill_if_t structure 4379 */ 4380 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4381 if (ill_interface == NULL) { 4382 return (ENOMEM); 4383 } 4384 4385 (void) strcpy(ill_interface->illif_name, name); 4386 ill_interface->illif_name_len = name_length; 4387 4388 avl_create(&ill_interface->illif_avl_by_ppa, 4389 ill_compare_ppa, sizeof (ill_t), 4390 offsetof(struct ill_s, ill_avl_byppa)); 4391 4392 /* 4393 * link the structure in the back to maintain order 4394 * of configuration for ifconfig output. 4395 */ 4396 ghead = ipst->ips_ill_g_heads[index]; 4397 insque(ill_interface, ghead.ill_g_list_tail); 4398 } 4399 4400 if (ill->ill_ppa == UINT_MAX) 4401 check_length = B_TRUE; 4402 4403 error = ill_alloc_ppa(ill_interface, ill); 4404 if (error != 0) { 4405 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4406 ill_delete_interface_type(ill->ill_ifptr); 4407 return (error); 4408 } 4409 4410 /* 4411 * When the ppa is choosen by the system, check that there is 4412 * enough space to insert ppa. if a specific ppa was passed in this 4413 * check is not required as the interface name passed in will have 4414 * the right ppa in it. 4415 */ 4416 if (check_length) { 4417 /* 4418 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4419 */ 4420 char buf[sizeof (uint_t) * 3]; 4421 4422 /* 4423 * convert ppa to string to calculate the amount of space 4424 * required for it in the name. 4425 */ 4426 numtos(ill->ill_ppa, buf); 4427 4428 /* Do we have enough space to insert ppa ? */ 4429 4430 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4431 /* Free ppa and interface type struct */ 4432 if (ill_interface->illif_ppa_arena != NULL) { 4433 vmem_free(ill_interface->illif_ppa_arena, 4434 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4435 } 4436 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4437 ill_delete_interface_type(ill->ill_ifptr); 4438 4439 return (EINVAL); 4440 } 4441 } 4442 4443 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4444 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4445 4446 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4447 &where); 4448 ill->ill_ifptr = ill_interface; 4449 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4450 4451 ill_phyint_reinit(ill); 4452 return (0); 4453 } 4454 4455 /* Initialize the per phyint ipsq used for serialization */ 4456 static boolean_t 4457 ipsq_init(ill_t *ill, boolean_t enter) 4458 { 4459 ipsq_t *ipsq; 4460 ipxop_t *ipx; 4461 4462 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 4463 return (B_FALSE); 4464 4465 ill->ill_phyint->phyint_ipsq = ipsq; 4466 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 4467 ipx->ipx_ipsq = ipsq; 4468 ipsq->ipsq_next = ipsq; 4469 ipsq->ipsq_phyint = ill->ill_phyint; 4470 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4471 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 4472 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4473 if (enter) { 4474 ipx->ipx_writer = curthread; 4475 ipx->ipx_forced = B_FALSE; 4476 ipx->ipx_reentry_cnt = 1; 4477 #ifdef DEBUG 4478 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 4479 #endif 4480 } 4481 return (B_TRUE); 4482 } 4483 4484 /* 4485 * ill_init is called by ip_open when a device control stream is opened. 4486 * It does a few initializations, and shoots a DL_INFO_REQ message down 4487 * to the driver. The response is later picked up in ip_rput_dlpi and 4488 * used to set up default mechanisms for talking to the driver. (Always 4489 * called as writer.) 4490 * 4491 * If this function returns error, ip_open will call ip_close which in 4492 * turn will call ill_delete to clean up any memory allocated here that 4493 * is not yet freed. 4494 */ 4495 int 4496 ill_init(queue_t *q, ill_t *ill) 4497 { 4498 int count; 4499 dl_info_req_t *dlir; 4500 mblk_t *info_mp; 4501 uchar_t *frag_ptr; 4502 4503 /* 4504 * The ill is initialized to zero by mi_alloc*(). In addition 4505 * some fields already contain valid values, initialized in 4506 * ip_open(), before we reach here. 4507 */ 4508 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4509 4510 ill->ill_rq = q; 4511 ill->ill_wq = WR(q); 4512 4513 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4514 BPRI_HI); 4515 if (info_mp == NULL) 4516 return (ENOMEM); 4517 4518 /* 4519 * Allocate sufficient space to contain our fragment hash table and 4520 * the device name. 4521 */ 4522 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4523 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4524 if (frag_ptr == NULL) { 4525 freemsg(info_mp); 4526 return (ENOMEM); 4527 } 4528 ill->ill_frag_ptr = frag_ptr; 4529 ill->ill_frag_free_num_pkts = 0; 4530 ill->ill_last_frag_clean_time = 0; 4531 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4532 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4533 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4534 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4535 NULL, MUTEX_DEFAULT, NULL); 4536 } 4537 4538 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4539 if (ill->ill_phyint == NULL) { 4540 freemsg(info_mp); 4541 mi_free(frag_ptr); 4542 return (ENOMEM); 4543 } 4544 4545 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4546 /* 4547 * For now pretend this is a v4 ill. We need to set phyint_ill* 4548 * at this point because of the following reason. If we can't 4549 * enter the ipsq at some point and cv_wait, the writer that 4550 * wakes us up tries to locate us using the list of all phyints 4551 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4552 * If we don't set it now, we risk a missed wakeup. 4553 */ 4554 ill->ill_phyint->phyint_illv4 = ill; 4555 ill->ill_ppa = UINT_MAX; 4556 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4557 4558 if (!ipsq_init(ill, B_TRUE)) { 4559 freemsg(info_mp); 4560 mi_free(frag_ptr); 4561 mi_free(ill->ill_phyint); 4562 return (ENOMEM); 4563 } 4564 4565 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4566 4567 /* Frag queue limit stuff */ 4568 ill->ill_frag_count = 0; 4569 ill->ill_ipf_gen = 0; 4570 4571 ill->ill_global_timer = INFINITY; 4572 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4573 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4574 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4575 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4576 4577 /* 4578 * Initialize IPv6 configuration variables. The IP module is always 4579 * opened as an IPv4 module. Instead tracking down the cases where 4580 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4581 * here for convenience, this has no effect until the ill is set to do 4582 * IPv6. 4583 */ 4584 ill->ill_reachable_time = ND_REACHABLE_TIME; 4585 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4586 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4587 ill->ill_max_buf = ND_MAX_Q; 4588 ill->ill_refcnt = 0; 4589 4590 /* Send down the Info Request to the driver. */ 4591 info_mp->b_datap->db_type = M_PCPROTO; 4592 dlir = (dl_info_req_t *)info_mp->b_rptr; 4593 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4594 dlir->dl_primitive = DL_INFO_REQ; 4595 4596 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4597 4598 qprocson(q); 4599 ill_dlpi_send(ill, info_mp); 4600 4601 return (0); 4602 } 4603 4604 /* 4605 * ill_dls_info 4606 * creates datalink socket info from the device. 4607 */ 4608 int 4609 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4610 { 4611 size_t len; 4612 ill_t *ill = ipif->ipif_ill; 4613 4614 sdl->sdl_family = AF_LINK; 4615 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4616 sdl->sdl_type = ill->ill_type; 4617 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4618 len = strlen(sdl->sdl_data); 4619 ASSERT(len < 256); 4620 sdl->sdl_nlen = (uchar_t)len; 4621 sdl->sdl_alen = ill->ill_phys_addr_length; 4622 sdl->sdl_slen = 0; 4623 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4624 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4625 4626 return (sizeof (struct sockaddr_dl)); 4627 } 4628 4629 /* 4630 * ill_xarp_info 4631 * creates xarp info from the device. 4632 */ 4633 static int 4634 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4635 { 4636 sdl->sdl_family = AF_LINK; 4637 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4638 sdl->sdl_type = ill->ill_type; 4639 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4640 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4641 sdl->sdl_alen = ill->ill_phys_addr_length; 4642 sdl->sdl_slen = 0; 4643 return (sdl->sdl_nlen); 4644 } 4645 4646 static int 4647 loopback_kstat_update(kstat_t *ksp, int rw) 4648 { 4649 kstat_named_t *kn; 4650 netstackid_t stackid; 4651 netstack_t *ns; 4652 ip_stack_t *ipst; 4653 4654 if (ksp == NULL || ksp->ks_data == NULL) 4655 return (EIO); 4656 4657 if (rw == KSTAT_WRITE) 4658 return (EACCES); 4659 4660 kn = KSTAT_NAMED_PTR(ksp); 4661 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4662 4663 ns = netstack_find_by_stackid(stackid); 4664 if (ns == NULL) 4665 return (-1); 4666 4667 ipst = ns->netstack_ip; 4668 if (ipst == NULL) { 4669 netstack_rele(ns); 4670 return (-1); 4671 } 4672 kn[0].value.ui32 = ipst->ips_loopback_packets; 4673 kn[1].value.ui32 = ipst->ips_loopback_packets; 4674 netstack_rele(ns); 4675 return (0); 4676 } 4677 4678 /* 4679 * Has ifindex been plumbed already? 4680 */ 4681 boolean_t 4682 phyint_exists(uint_t index, ip_stack_t *ipst) 4683 { 4684 ASSERT(index != 0); 4685 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4686 4687 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4688 &index, NULL) != NULL); 4689 } 4690 4691 /* Pick a unique ifindex */ 4692 boolean_t 4693 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4694 { 4695 uint_t starting_index; 4696 4697 if (!ipst->ips_ill_index_wrap) { 4698 *indexp = ipst->ips_ill_index++; 4699 if (ipst->ips_ill_index == 0) { 4700 /* Reached the uint_t limit Next time wrap */ 4701 ipst->ips_ill_index_wrap = B_TRUE; 4702 } 4703 return (B_TRUE); 4704 } 4705 4706 /* 4707 * Start reusing unused indexes. Note that we hold the ill_g_lock 4708 * at this point and don't want to call any function that attempts 4709 * to get the lock again. 4710 */ 4711 starting_index = ipst->ips_ill_index++; 4712 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4713 if (ipst->ips_ill_index != 0 && 4714 !phyint_exists(ipst->ips_ill_index, ipst)) { 4715 /* found unused index - use it */ 4716 *indexp = ipst->ips_ill_index; 4717 return (B_TRUE); 4718 } 4719 } 4720 4721 /* 4722 * all interface indicies are inuse. 4723 */ 4724 return (B_FALSE); 4725 } 4726 4727 /* 4728 * Assign a unique interface index for the phyint. 4729 */ 4730 static boolean_t 4731 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4732 { 4733 ASSERT(phyi->phyint_ifindex == 0); 4734 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4735 } 4736 4737 /* 4738 * Return a pointer to the ill which matches the supplied name. Note that 4739 * the ill name length includes the null termination character. (May be 4740 * called as writer.) 4741 * If do_alloc and the interface is "lo0" it will be automatically created. 4742 * Cannot bump up reference on condemned ills. So dup detect can't be done 4743 * using this func. 4744 */ 4745 ill_t * 4746 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4747 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4748 ip_stack_t *ipst) 4749 { 4750 ill_t *ill; 4751 ipif_t *ipif; 4752 ipsq_t *ipsq; 4753 kstat_named_t *kn; 4754 boolean_t isloopback; 4755 in6_addr_t ov6addr; 4756 4757 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4758 4759 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4760 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4761 rw_exit(&ipst->ips_ill_g_lock); 4762 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4763 return (ill); 4764 4765 /* 4766 * Couldn't find it. Does this happen to be a lookup for the 4767 * loopback device and are we allowed to allocate it? 4768 */ 4769 if (!isloopback || !do_alloc) 4770 return (NULL); 4771 4772 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4773 4774 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4775 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4776 rw_exit(&ipst->ips_ill_g_lock); 4777 return (ill); 4778 } 4779 4780 /* Create the loopback device on demand */ 4781 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4782 sizeof (ipif_loopback_name), BPRI_MED)); 4783 if (ill == NULL) 4784 goto done; 4785 4786 *ill = ill_null; 4787 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4788 ill->ill_ipst = ipst; 4789 netstack_hold(ipst->ips_netstack); 4790 /* 4791 * For exclusive stacks we set the zoneid to zero 4792 * to make IP operate as if in the global zone. 4793 */ 4794 ill->ill_zoneid = GLOBAL_ZONEID; 4795 4796 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4797 if (ill->ill_phyint == NULL) 4798 goto done; 4799 4800 if (isv6) 4801 ill->ill_phyint->phyint_illv6 = ill; 4802 else 4803 ill->ill_phyint->phyint_illv4 = ill; 4804 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4805 ill->ill_max_frag = IP_LOOPBACK_MTU; 4806 /* Add room for tcp+ip headers */ 4807 if (isv6) { 4808 ill->ill_isv6 = B_TRUE; 4809 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4810 } else { 4811 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4812 } 4813 if (!ill_allocate_mibs(ill)) 4814 goto done; 4815 ill->ill_max_mtu = ill->ill_max_frag; 4816 /* 4817 * ipif_loopback_name can't be pointed at directly because its used 4818 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4819 * from the glist, ill_glist_delete() sets the first character of 4820 * ill_name to '\0'. 4821 */ 4822 ill->ill_name = (char *)ill + sizeof (*ill); 4823 (void) strcpy(ill->ill_name, ipif_loopback_name); 4824 ill->ill_name_length = sizeof (ipif_loopback_name); 4825 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4826 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4827 4828 ill->ill_global_timer = INFINITY; 4829 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4830 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4831 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4832 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4833 4834 /* No resolver here. */ 4835 ill->ill_net_type = IRE_LOOPBACK; 4836 4837 /* Initialize the ipsq */ 4838 if (!ipsq_init(ill, B_FALSE)) 4839 goto done; 4840 4841 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); 4842 if (ipif == NULL) 4843 goto done; 4844 4845 ill->ill_flags = ILLF_MULTICAST; 4846 4847 ov6addr = ipif->ipif_v6lcl_addr; 4848 /* Set up default loopback address and mask. */ 4849 if (!isv6) { 4850 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4851 4852 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4853 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4854 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4855 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4856 ipif->ipif_v6subnet); 4857 ill->ill_flags |= ILLF_IPV4; 4858 } else { 4859 ipif->ipif_v6lcl_addr = ipv6_loopback; 4860 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4861 ipif->ipif_v6net_mask = ipv6_all_ones; 4862 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4863 ipif->ipif_v6subnet); 4864 ill->ill_flags |= ILLF_IPV6; 4865 } 4866 4867 /* 4868 * Chain us in at the end of the ill list. hold the ill 4869 * before we make it globally visible. 1 for the lookup. 4870 */ 4871 ill->ill_refcnt = 0; 4872 ill_refhold(ill); 4873 4874 ill->ill_frag_count = 0; 4875 ill->ill_frag_free_num_pkts = 0; 4876 ill->ill_last_frag_clean_time = 0; 4877 4878 ipsq = ill->ill_phyint->phyint_ipsq; 4879 4880 if (ill_glist_insert(ill, "lo", isv6) != 0) 4881 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4882 4883 /* Let SCTP know so that it can add this to its list */ 4884 sctp_update_ill(ill, SCTP_ILL_INSERT); 4885 4886 /* 4887 * We have already assigned ipif_v6lcl_addr above, but we need to 4888 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 4889 * requires to be after ill_glist_insert() since we need the 4890 * ill_index set. Pass on ipv6_loopback as the old address. 4891 */ 4892 sctp_update_ipif_addr(ipif, ov6addr); 4893 4894 /* 4895 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 4896 * If so, free our original one. 4897 */ 4898 if (ipsq != ill->ill_phyint->phyint_ipsq) 4899 ipsq_delete(ipsq); 4900 4901 /* 4902 * Delay this till the ipif is allocated as ipif_allocate 4903 * de-references ill_phyint for getting the ifindex. We 4904 * can't do this before ipif_allocate because ill_phyint_reinit 4905 * -> phyint_assign_ifindex expects ipif to be present. 4906 */ 4907 mutex_enter(&ill->ill_phyint->phyint_lock); 4908 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4909 mutex_exit(&ill->ill_phyint->phyint_lock); 4910 4911 if (ipst->ips_loopback_ksp == NULL) { 4912 /* Export loopback interface statistics */ 4913 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 4914 ipif_loopback_name, "net", 4915 KSTAT_TYPE_NAMED, 2, 0, 4916 ipst->ips_netstack->netstack_stackid); 4917 if (ipst->ips_loopback_ksp != NULL) { 4918 ipst->ips_loopback_ksp->ks_update = 4919 loopback_kstat_update; 4920 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 4921 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4922 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4923 ipst->ips_loopback_ksp->ks_private = 4924 (void *)(uintptr_t)ipst->ips_netstack-> 4925 netstack_stackid; 4926 kstat_install(ipst->ips_loopback_ksp); 4927 } 4928 } 4929 4930 if (error != NULL) 4931 *error = 0; 4932 *did_alloc = B_TRUE; 4933 rw_exit(&ipst->ips_ill_g_lock); 4934 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 4935 NE_PLUMB, ill->ill_name, ill->ill_name_length); 4936 return (ill); 4937 done: 4938 if (ill != NULL) { 4939 if (ill->ill_phyint != NULL) { 4940 ipsq = ill->ill_phyint->phyint_ipsq; 4941 if (ipsq != NULL) { 4942 ipsq->ipsq_phyint = NULL; 4943 ipsq_delete(ipsq); 4944 } 4945 mi_free(ill->ill_phyint); 4946 } 4947 ill_free_mib(ill); 4948 if (ill->ill_ipst != NULL) 4949 netstack_rele(ill->ill_ipst->ips_netstack); 4950 mi_free(ill); 4951 } 4952 rw_exit(&ipst->ips_ill_g_lock); 4953 if (error != NULL) 4954 *error = ENOMEM; 4955 return (NULL); 4956 } 4957 4958 /* 4959 * For IPP calls - use the ip_stack_t for global stack. 4960 */ 4961 ill_t * 4962 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 4963 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 4964 { 4965 ip_stack_t *ipst; 4966 ill_t *ill; 4967 4968 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 4969 if (ipst == NULL) { 4970 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 4971 return (NULL); 4972 } 4973 4974 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 4975 netstack_rele(ipst->ips_netstack); 4976 return (ill); 4977 } 4978 4979 /* 4980 * Return a pointer to the ill which matches the index and IP version type. 4981 */ 4982 ill_t * 4983 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4984 ipsq_func_t func, int *err, ip_stack_t *ipst) 4985 { 4986 ill_t *ill; 4987 ipsq_t *ipsq; 4988 phyint_t *phyi; 4989 4990 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4991 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4992 4993 if (err != NULL) 4994 *err = 0; 4995 4996 /* 4997 * Indexes are stored in the phyint - a common structure 4998 * to both IPv4 and IPv6. 4999 */ 5000 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5001 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5002 (void *) &index, NULL); 5003 if (phyi != NULL) { 5004 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5005 if (ill != NULL) { 5006 /* 5007 * The block comment at the start of ipif_down 5008 * explains the use of the macros used below 5009 */ 5010 GRAB_CONN_LOCK(q); 5011 mutex_enter(&ill->ill_lock); 5012 if (ILL_CAN_LOOKUP(ill)) { 5013 ill_refhold_locked(ill); 5014 mutex_exit(&ill->ill_lock); 5015 RELEASE_CONN_LOCK(q); 5016 rw_exit(&ipst->ips_ill_g_lock); 5017 return (ill); 5018 } else if (ILL_CAN_WAIT(ill, q)) { 5019 ipsq = ill->ill_phyint->phyint_ipsq; 5020 mutex_enter(&ipsq->ipsq_lock); 5021 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5022 rw_exit(&ipst->ips_ill_g_lock); 5023 mutex_exit(&ill->ill_lock); 5024 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5025 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5026 mutex_exit(&ipsq->ipsq_lock); 5027 RELEASE_CONN_LOCK(q); 5028 if (err != NULL) 5029 *err = EINPROGRESS; 5030 return (NULL); 5031 } 5032 RELEASE_CONN_LOCK(q); 5033 mutex_exit(&ill->ill_lock); 5034 } 5035 } 5036 rw_exit(&ipst->ips_ill_g_lock); 5037 if (err != NULL) 5038 *err = ENXIO; 5039 return (NULL); 5040 } 5041 5042 /* 5043 * Return the ifindex next in sequence after the passed in ifindex. 5044 * If there is no next ifindex for the given protocol, return 0. 5045 */ 5046 uint_t 5047 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5048 { 5049 phyint_t *phyi; 5050 phyint_t *phyi_initial; 5051 uint_t ifindex; 5052 5053 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5054 5055 if (index == 0) { 5056 phyi = avl_first( 5057 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5058 } else { 5059 phyi = phyi_initial = avl_find( 5060 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5061 (void *) &index, NULL); 5062 } 5063 5064 for (; phyi != NULL; 5065 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5066 phyi, AVL_AFTER)) { 5067 /* 5068 * If we're not returning the first interface in the tree 5069 * and we still haven't moved past the phyint_t that 5070 * corresponds to index, avl_walk needs to be called again 5071 */ 5072 if (!((index != 0) && (phyi == phyi_initial))) { 5073 if (isv6) { 5074 if ((phyi->phyint_illv6) && 5075 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5076 (phyi->phyint_illv6->ill_isv6 == 1)) 5077 break; 5078 } else { 5079 if ((phyi->phyint_illv4) && 5080 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5081 (phyi->phyint_illv4->ill_isv6 == 0)) 5082 break; 5083 } 5084 } 5085 } 5086 5087 rw_exit(&ipst->ips_ill_g_lock); 5088 5089 if (phyi != NULL) 5090 ifindex = phyi->phyint_ifindex; 5091 else 5092 ifindex = 0; 5093 5094 return (ifindex); 5095 } 5096 5097 /* 5098 * Return the ifindex for the named interface. 5099 * If there is no next ifindex for the interface, return 0. 5100 */ 5101 uint_t 5102 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5103 { 5104 phyint_t *phyi; 5105 avl_index_t where = 0; 5106 uint_t ifindex; 5107 5108 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5109 5110 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5111 name, &where)) == NULL) { 5112 rw_exit(&ipst->ips_ill_g_lock); 5113 return (0); 5114 } 5115 5116 ifindex = phyi->phyint_ifindex; 5117 5118 rw_exit(&ipst->ips_ill_g_lock); 5119 5120 return (ifindex); 5121 } 5122 5123 /* 5124 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5125 * that gives a running thread a reference to the ill. This reference must be 5126 * released by the thread when it is done accessing the ill and related 5127 * objects. ill_refcnt can not be used to account for static references 5128 * such as other structures pointing to an ill. Callers must generally 5129 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5130 * or be sure that the ill is not being deleted or changing state before 5131 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5132 * ill won't change any of its critical state such as address, netmask etc. 5133 */ 5134 void 5135 ill_refhold(ill_t *ill) 5136 { 5137 mutex_enter(&ill->ill_lock); 5138 ill->ill_refcnt++; 5139 ILL_TRACE_REF(ill); 5140 mutex_exit(&ill->ill_lock); 5141 } 5142 5143 void 5144 ill_refhold_locked(ill_t *ill) 5145 { 5146 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5147 ill->ill_refcnt++; 5148 ILL_TRACE_REF(ill); 5149 } 5150 5151 int 5152 ill_check_and_refhold(ill_t *ill) 5153 { 5154 mutex_enter(&ill->ill_lock); 5155 if (ILL_CAN_LOOKUP(ill)) { 5156 ill_refhold_locked(ill); 5157 mutex_exit(&ill->ill_lock); 5158 return (0); 5159 } 5160 mutex_exit(&ill->ill_lock); 5161 return (ILL_LOOKUP_FAILED); 5162 } 5163 5164 /* 5165 * Must not be called while holding any locks. Otherwise if this is 5166 * the last reference to be released, there is a chance of recursive mutex 5167 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5168 * to restart an ioctl. 5169 */ 5170 void 5171 ill_refrele(ill_t *ill) 5172 { 5173 mutex_enter(&ill->ill_lock); 5174 ASSERT(ill->ill_refcnt != 0); 5175 ill->ill_refcnt--; 5176 ILL_UNTRACE_REF(ill); 5177 if (ill->ill_refcnt != 0) { 5178 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5179 mutex_exit(&ill->ill_lock); 5180 return; 5181 } 5182 5183 /* Drops the ill_lock */ 5184 ipif_ill_refrele_tail(ill); 5185 } 5186 5187 /* 5188 * Obtain a weak reference count on the ill. This reference ensures the 5189 * ill won't be freed, but the ill may change any of its critical state 5190 * such as netmask, address etc. Returns an error if the ill has started 5191 * closing. 5192 */ 5193 boolean_t 5194 ill_waiter_inc(ill_t *ill) 5195 { 5196 mutex_enter(&ill->ill_lock); 5197 if (ill->ill_state_flags & ILL_CONDEMNED) { 5198 mutex_exit(&ill->ill_lock); 5199 return (B_FALSE); 5200 } 5201 ill->ill_waiters++; 5202 mutex_exit(&ill->ill_lock); 5203 return (B_TRUE); 5204 } 5205 5206 void 5207 ill_waiter_dcr(ill_t *ill) 5208 { 5209 mutex_enter(&ill->ill_lock); 5210 ill->ill_waiters--; 5211 if (ill->ill_waiters == 0) 5212 cv_broadcast(&ill->ill_cv); 5213 mutex_exit(&ill->ill_lock); 5214 } 5215 5216 /* 5217 * Named Dispatch routine to produce a formatted report on all ILLs. 5218 * This report is accessed by using the ndd utility to "get" ND variable 5219 * "ip_ill_status". 5220 */ 5221 /* ARGSUSED */ 5222 int 5223 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5224 { 5225 ill_t *ill; 5226 ill_walk_context_t ctx; 5227 ip_stack_t *ipst; 5228 5229 ipst = CONNQ_TO_IPST(q); 5230 5231 (void) mi_mpprintf(mp, 5232 "ILL " MI_COL_HDRPAD_STR 5233 /* 01234567[89ABCDEF] */ 5234 "rq " MI_COL_HDRPAD_STR 5235 /* 01234567[89ABCDEF] */ 5236 "wq " MI_COL_HDRPAD_STR 5237 /* 01234567[89ABCDEF] */ 5238 "upcnt mxfrg err name"); 5239 /* 12345 12345 123 xxxxxxxx */ 5240 5241 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5242 ill = ILL_START_WALK_ALL(&ctx, ipst); 5243 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5244 (void) mi_mpprintf(mp, 5245 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5246 "%05u %05u %03d %s", 5247 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5248 ill->ill_ipif_up_count, 5249 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5250 } 5251 rw_exit(&ipst->ips_ill_g_lock); 5252 5253 return (0); 5254 } 5255 5256 /* 5257 * Named Dispatch routine to produce a formatted report on all IPIFs. 5258 * This report is accessed by using the ndd utility to "get" ND variable 5259 * "ip_ipif_status". 5260 */ 5261 /* ARGSUSED */ 5262 int 5263 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5264 { 5265 char buf1[INET6_ADDRSTRLEN]; 5266 char buf2[INET6_ADDRSTRLEN]; 5267 char buf3[INET6_ADDRSTRLEN]; 5268 char buf4[INET6_ADDRSTRLEN]; 5269 char buf5[INET6_ADDRSTRLEN]; 5270 char buf6[INET6_ADDRSTRLEN]; 5271 char buf[LIFNAMSIZ]; 5272 ill_t *ill; 5273 ipif_t *ipif; 5274 nv_t *nvp; 5275 uint64_t flags; 5276 zoneid_t zoneid; 5277 ill_walk_context_t ctx; 5278 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5279 5280 (void) mi_mpprintf(mp, 5281 "IPIF metric mtu in/out/forward name zone flags...\n" 5282 "\tlocal address\n" 5283 "\tsrc address\n" 5284 "\tsubnet\n" 5285 "\tmask\n" 5286 "\tbroadcast\n" 5287 "\tp-p-dst"); 5288 5289 ASSERT(q->q_next == NULL); 5290 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5291 5292 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5293 ill = ILL_START_WALK_ALL(&ctx, ipst); 5294 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5295 for (ipif = ill->ill_ipif; ipif != NULL; 5296 ipif = ipif->ipif_next) { 5297 if (zoneid != GLOBAL_ZONEID && 5298 zoneid != ipif->ipif_zoneid && 5299 ipif->ipif_zoneid != ALL_ZONES) 5300 continue; 5301 5302 ipif_get_name(ipif, buf, sizeof (buf)); 5303 (void) mi_mpprintf(mp, 5304 MI_COL_PTRFMT_STR 5305 "%04u %05u %u/%u/%u %s %d", 5306 (void *)ipif, 5307 ipif->ipif_metric, ipif->ipif_mtu, 5308 ipif->ipif_ib_pkt_count, 5309 ipif->ipif_ob_pkt_count, 5310 ipif->ipif_fo_pkt_count, 5311 buf, 5312 ipif->ipif_zoneid); 5313 5314 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5315 ipif->ipif_ill->ill_phyint->phyint_flags; 5316 5317 /* Tack on text strings for any flags. */ 5318 nvp = ipif_nv_tbl; 5319 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5320 if (nvp->nv_value & flags) 5321 (void) mi_mpprintf_nr(mp, " %s", 5322 nvp->nv_name); 5323 } 5324 (void) mi_mpprintf(mp, 5325 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5326 inet_ntop(AF_INET6, 5327 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5328 inet_ntop(AF_INET6, 5329 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5330 inet_ntop(AF_INET6, 5331 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5332 inet_ntop(AF_INET6, 5333 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5334 inet_ntop(AF_INET6, 5335 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5336 inet_ntop(AF_INET6, 5337 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5338 } 5339 } 5340 rw_exit(&ipst->ips_ill_g_lock); 5341 return (0); 5342 } 5343 5344 /* 5345 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5346 * driver. We construct best guess defaults for lower level information that 5347 * we need. If an interface is brought up without injection of any overriding 5348 * information from outside, we have to be ready to go with these defaults. 5349 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5350 * we primarely want the dl_provider_style. 5351 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5352 * at which point we assume the other part of the information is valid. 5353 */ 5354 void 5355 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5356 { 5357 uchar_t *brdcst_addr; 5358 uint_t brdcst_addr_length, phys_addr_length; 5359 t_scalar_t sap_length; 5360 dl_info_ack_t *dlia; 5361 ip_m_t *ipm; 5362 dl_qos_cl_sel1_t *sel1; 5363 int min_mtu; 5364 5365 ASSERT(IAM_WRITER_ILL(ill)); 5366 5367 /* 5368 * Till the ill is fully up ILL_CHANGING will be set and 5369 * the ill is not globally visible. So no need for a lock. 5370 */ 5371 dlia = (dl_info_ack_t *)mp->b_rptr; 5372 ill->ill_mactype = dlia->dl_mac_type; 5373 5374 ipm = ip_m_lookup(dlia->dl_mac_type); 5375 if (ipm == NULL) { 5376 ipm = ip_m_lookup(DL_OTHER); 5377 ASSERT(ipm != NULL); 5378 } 5379 ill->ill_media = ipm; 5380 5381 /* 5382 * When the new DLPI stuff is ready we'll pull lengths 5383 * from dlia. 5384 */ 5385 if (dlia->dl_version == DL_VERSION_2) { 5386 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5387 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5388 brdcst_addr_length); 5389 if (brdcst_addr == NULL) { 5390 brdcst_addr_length = 0; 5391 } 5392 sap_length = dlia->dl_sap_length; 5393 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5394 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5395 brdcst_addr_length, sap_length, phys_addr_length)); 5396 } else { 5397 brdcst_addr_length = 6; 5398 brdcst_addr = ip_six_byte_all_ones; 5399 sap_length = -2; 5400 phys_addr_length = brdcst_addr_length; 5401 } 5402 5403 ill->ill_bcast_addr_length = brdcst_addr_length; 5404 ill->ill_phys_addr_length = phys_addr_length; 5405 ill->ill_sap_length = sap_length; 5406 5407 /* 5408 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 5409 * but we must ensure a minimum IP MTU is used since other bits of 5410 * IP will fly apart otherwise. 5411 */ 5412 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 5413 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 5414 ill->ill_max_mtu = ill->ill_max_frag; 5415 5416 ill->ill_type = ipm->ip_m_type; 5417 5418 if (!ill->ill_dlpi_style_set) { 5419 if (dlia->dl_provider_style == DL_STYLE2) 5420 ill->ill_needs_attach = 1; 5421 5422 /* 5423 * Allocate the first ipif on this ill. We don't delay it 5424 * further as ioctl handling assumes atleast one ipif to 5425 * be present. 5426 * 5427 * At this point we don't know whether the ill is v4 or v6. 5428 * We will know this whan the SIOCSLIFNAME happens and 5429 * the correct value for ill_isv6 will be assigned in 5430 * ipif_set_values(). We need to hold the ill lock and 5431 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5432 * the wakeup. 5433 */ 5434 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5435 dlia->dl_provider_style != DL_STYLE2, B_TRUE); 5436 mutex_enter(&ill->ill_lock); 5437 ASSERT(ill->ill_dlpi_style_set == 0); 5438 ill->ill_dlpi_style_set = 1; 5439 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5440 cv_broadcast(&ill->ill_cv); 5441 mutex_exit(&ill->ill_lock); 5442 freemsg(mp); 5443 return; 5444 } 5445 ASSERT(ill->ill_ipif != NULL); 5446 /* 5447 * We know whether it is IPv4 or IPv6 now, as this is the 5448 * second DL_INFO_ACK we are recieving in response to the 5449 * DL_INFO_REQ sent in ipif_set_values. 5450 */ 5451 if (ill->ill_isv6) 5452 ill->ill_sap = IP6_DL_SAP; 5453 else 5454 ill->ill_sap = IP_DL_SAP; 5455 /* 5456 * Set ipif_mtu which is used to set the IRE's 5457 * ire_max_frag value. The driver could have sent 5458 * a different mtu from what it sent last time. No 5459 * need to call ipif_mtu_change because IREs have 5460 * not yet been created. 5461 */ 5462 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5463 /* 5464 * Clear all the flags that were set based on ill_bcast_addr_length 5465 * and ill_phys_addr_length (in ipif_set_values) as these could have 5466 * changed now and we need to re-evaluate. 5467 */ 5468 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5469 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5470 5471 /* 5472 * Free ill_resolver_mp and ill_bcast_mp as things could have 5473 * changed now. 5474 * 5475 * NOTE: The IPMP meta-interface is special-cased because it starts 5476 * with no underlying interfaces (and thus an unknown broadcast 5477 * address length), but we enforce that an interface is broadcast- 5478 * capable as part of allowing it to join a group. 5479 */ 5480 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 5481 if (ill->ill_resolver_mp != NULL) 5482 freemsg(ill->ill_resolver_mp); 5483 if (ill->ill_bcast_mp != NULL) 5484 freemsg(ill->ill_bcast_mp); 5485 if (ill->ill_flags & ILLF_XRESOLV) 5486 ill->ill_net_type = IRE_IF_RESOLVER; 5487 else 5488 ill->ill_net_type = IRE_IF_NORESOLVER; 5489 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5490 ill->ill_phys_addr_length, 5491 ill->ill_sap, 5492 ill->ill_sap_length); 5493 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5494 5495 if (ill->ill_isv6) 5496 /* 5497 * Note: xresolv interfaces will eventually need NOARP 5498 * set here as well, but that will require those 5499 * external resolvers to have some knowledge of 5500 * that flag and act appropriately. Not to be changed 5501 * at present. 5502 */ 5503 ill->ill_flags |= ILLF_NONUD; 5504 else 5505 ill->ill_flags |= ILLF_NOARP; 5506 5507 if (ill->ill_phys_addr_length == 0) { 5508 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5509 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5510 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5511 } else { 5512 /* pt-pt supports multicast. */ 5513 ill->ill_flags |= ILLF_MULTICAST; 5514 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5515 } 5516 } 5517 } else { 5518 ill->ill_net_type = IRE_IF_RESOLVER; 5519 if (ill->ill_bcast_mp != NULL) 5520 freemsg(ill->ill_bcast_mp); 5521 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5522 ill->ill_bcast_addr_length, ill->ill_sap, 5523 ill->ill_sap_length); 5524 /* 5525 * Later detect lack of DLPI driver multicast 5526 * capability by catching DL_ENABMULTI errors in 5527 * ip_rput_dlpi. 5528 */ 5529 ill->ill_flags |= ILLF_MULTICAST; 5530 if (!ill->ill_isv6) 5531 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5532 } 5533 5534 /* For IPMP, PHYI_IPMP should already be set by ipif_allocate() */ 5535 if (ill->ill_mactype == SUNW_DL_IPMP) 5536 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 5537 5538 /* By default an interface does not support any CoS marking */ 5539 ill->ill_flags &= ~ILLF_COS_ENABLED; 5540 5541 /* 5542 * If we get QoS information in DL_INFO_ACK, the device supports 5543 * some form of CoS marking, set ILLF_COS_ENABLED. 5544 */ 5545 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5546 dlia->dl_qos_length); 5547 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5548 ill->ill_flags |= ILLF_COS_ENABLED; 5549 } 5550 5551 /* Clear any previous error indication. */ 5552 ill->ill_error = 0; 5553 freemsg(mp); 5554 } 5555 5556 /* 5557 * Perform various checks to verify that an address would make sense as a 5558 * local, remote, or subnet interface address. 5559 */ 5560 static boolean_t 5561 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5562 { 5563 ipaddr_t net_mask; 5564 5565 /* 5566 * Don't allow all zeroes, or all ones, but allow 5567 * all ones netmask. 5568 */ 5569 if ((net_mask = ip_net_mask(addr)) == 0) 5570 return (B_FALSE); 5571 /* A given netmask overrides the "guess" netmask */ 5572 if (subnet_mask != 0) 5573 net_mask = subnet_mask; 5574 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5575 (addr == (addr | ~net_mask)))) { 5576 return (B_FALSE); 5577 } 5578 5579 /* 5580 * Even if the netmask is all ones, we do not allow address to be 5581 * 255.255.255.255 5582 */ 5583 if (addr == INADDR_BROADCAST) 5584 return (B_FALSE); 5585 5586 if (CLASSD(addr)) 5587 return (B_FALSE); 5588 5589 return (B_TRUE); 5590 } 5591 5592 #define V6_IPIF_LINKLOCAL(p) \ 5593 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5594 5595 /* 5596 * Compare two given ipifs and check if the second one is better than 5597 * the first one using the order of preference (not taking deprecated 5598 * into acount) specified in ipif_lookup_multicast(). 5599 */ 5600 static boolean_t 5601 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5602 { 5603 /* Check the least preferred first. */ 5604 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5605 /* If both ipifs are the same, use the first one. */ 5606 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5607 return (B_FALSE); 5608 else 5609 return (B_TRUE); 5610 } 5611 5612 /* For IPv6, check for link local address. */ 5613 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5614 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5615 V6_IPIF_LINKLOCAL(new_ipif)) { 5616 /* The second one is equal or less preferred. */ 5617 return (B_FALSE); 5618 } else { 5619 return (B_TRUE); 5620 } 5621 } 5622 5623 /* Then check for point to point interface. */ 5624 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5625 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5626 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5627 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5628 return (B_FALSE); 5629 } else { 5630 return (B_TRUE); 5631 } 5632 } 5633 5634 /* old_ipif is a normal interface, so no need to use the new one. */ 5635 return (B_FALSE); 5636 } 5637 5638 /* 5639 * Find a mulitcast-capable ipif given an IP instance and zoneid. 5640 * The ipif must be up, and its ill must multicast-capable, not 5641 * condemned, not an underlying interface in an IPMP group, and 5642 * not a VNI interface. Order of preference: 5643 * 5644 * 1a. normal 5645 * 1b. normal, but deprecated 5646 * 2a. point to point 5647 * 2b. point to point, but deprecated 5648 * 3a. link local 5649 * 3b. link local, but deprecated 5650 * 4. loopback. 5651 */ 5652 ipif_t * 5653 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5654 { 5655 ill_t *ill; 5656 ill_walk_context_t ctx; 5657 ipif_t *ipif; 5658 ipif_t *saved_ipif = NULL; 5659 ipif_t *dep_ipif = NULL; 5660 5661 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5662 if (isv6) 5663 ill = ILL_START_WALK_V6(&ctx, ipst); 5664 else 5665 ill = ILL_START_WALK_V4(&ctx, ipst); 5666 5667 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5668 mutex_enter(&ill->ill_lock); 5669 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) || 5670 !(ill->ill_flags & ILLF_MULTICAST)) { 5671 mutex_exit(&ill->ill_lock); 5672 continue; 5673 } 5674 for (ipif = ill->ill_ipif; ipif != NULL; 5675 ipif = ipif->ipif_next) { 5676 if (zoneid != ipif->ipif_zoneid && 5677 zoneid != ALL_ZONES && 5678 ipif->ipif_zoneid != ALL_ZONES) { 5679 continue; 5680 } 5681 if (!(ipif->ipif_flags & IPIF_UP) || 5682 !IPIF_CAN_LOOKUP(ipif)) { 5683 continue; 5684 } 5685 5686 /* 5687 * Found one candidate. If it is deprecated, 5688 * remember it in dep_ipif. If it is not deprecated, 5689 * remember it in saved_ipif. 5690 */ 5691 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5692 if (dep_ipif == NULL) { 5693 dep_ipif = ipif; 5694 } else if (ipif_comp_multi(dep_ipif, ipif, 5695 isv6)) { 5696 /* 5697 * If the previous dep_ipif does not 5698 * belong to the same ill, we've done 5699 * a ipif_refhold() on it. So we need 5700 * to release it. 5701 */ 5702 if (dep_ipif->ipif_ill != ill) 5703 ipif_refrele(dep_ipif); 5704 dep_ipif = ipif; 5705 } 5706 continue; 5707 } 5708 if (saved_ipif == NULL) { 5709 saved_ipif = ipif; 5710 } else { 5711 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5712 if (saved_ipif->ipif_ill != ill) 5713 ipif_refrele(saved_ipif); 5714 saved_ipif = ipif; 5715 } 5716 } 5717 } 5718 /* 5719 * Before going to the next ill, do a ipif_refhold() on the 5720 * saved ones. 5721 */ 5722 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5723 ipif_refhold_locked(saved_ipif); 5724 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5725 ipif_refhold_locked(dep_ipif); 5726 mutex_exit(&ill->ill_lock); 5727 } 5728 rw_exit(&ipst->ips_ill_g_lock); 5729 5730 /* 5731 * If we have only the saved_ipif, return it. But if we have both 5732 * saved_ipif and dep_ipif, check to see which one is better. 5733 */ 5734 if (saved_ipif != NULL) { 5735 if (dep_ipif != NULL) { 5736 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5737 ipif_refrele(saved_ipif); 5738 return (dep_ipif); 5739 } else { 5740 ipif_refrele(dep_ipif); 5741 return (saved_ipif); 5742 } 5743 } 5744 return (saved_ipif); 5745 } else { 5746 return (dep_ipif); 5747 } 5748 } 5749 5750 /* 5751 * This function is called when an application does not specify an interface 5752 * to be used for multicast traffic (joining a group/sending data). It 5753 * calls ire_lookup_multi() to look for an interface route for the 5754 * specified multicast group. Doing this allows the administrator to add 5755 * prefix routes for multicast to indicate which interface to be used for 5756 * multicast traffic in the above scenario. The route could be for all 5757 * multicast (224.0/4), for a single multicast group (a /32 route) or 5758 * anything in between. If there is no such multicast route, we just find 5759 * any multicast capable interface and return it. The returned ipif 5760 * is refhold'ed. 5761 */ 5762 ipif_t * 5763 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5764 { 5765 ire_t *ire; 5766 ipif_t *ipif; 5767 5768 ire = ire_lookup_multi(group, zoneid, ipst); 5769 if (ire != NULL) { 5770 ipif = ire->ire_ipif; 5771 ipif_refhold(ipif); 5772 ire_refrele(ire); 5773 return (ipif); 5774 } 5775 5776 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5777 } 5778 5779 /* 5780 * Look for an ipif with the specified interface address and destination. 5781 * The destination address is used only for matching point-to-point interfaces. 5782 */ 5783 ipif_t * 5784 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5785 ipsq_func_t func, int *error, ip_stack_t *ipst) 5786 { 5787 ipif_t *ipif; 5788 ill_t *ill; 5789 ill_walk_context_t ctx; 5790 ipsq_t *ipsq; 5791 5792 if (error != NULL) 5793 *error = 0; 5794 5795 /* 5796 * First match all the point-to-point interfaces 5797 * before looking at non-point-to-point interfaces. 5798 * This is done to avoid returning non-point-to-point 5799 * ipif instead of unnumbered point-to-point ipif. 5800 */ 5801 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5802 ill = ILL_START_WALK_V4(&ctx, ipst); 5803 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5804 GRAB_CONN_LOCK(q); 5805 mutex_enter(&ill->ill_lock); 5806 for (ipif = ill->ill_ipif; ipif != NULL; 5807 ipif = ipif->ipif_next) { 5808 /* Allow the ipif to be down */ 5809 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5810 (ipif->ipif_lcl_addr == if_addr) && 5811 (ipif->ipif_pp_dst_addr == dst)) { 5812 /* 5813 * The block comment at the start of ipif_down 5814 * explains the use of the macros used below 5815 */ 5816 if (IPIF_CAN_LOOKUP(ipif)) { 5817 ipif_refhold_locked(ipif); 5818 mutex_exit(&ill->ill_lock); 5819 RELEASE_CONN_LOCK(q); 5820 rw_exit(&ipst->ips_ill_g_lock); 5821 return (ipif); 5822 } else if (IPIF_CAN_WAIT(ipif, q)) { 5823 ipsq = ill->ill_phyint->phyint_ipsq; 5824 mutex_enter(&ipsq->ipsq_lock); 5825 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5826 mutex_exit(&ill->ill_lock); 5827 rw_exit(&ipst->ips_ill_g_lock); 5828 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5829 ill); 5830 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5831 mutex_exit(&ipsq->ipsq_lock); 5832 RELEASE_CONN_LOCK(q); 5833 if (error != NULL) 5834 *error = EINPROGRESS; 5835 return (NULL); 5836 } 5837 } 5838 } 5839 mutex_exit(&ill->ill_lock); 5840 RELEASE_CONN_LOCK(q); 5841 } 5842 rw_exit(&ipst->ips_ill_g_lock); 5843 5844 /* lookup the ipif based on interface address */ 5845 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5846 ipst); 5847 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5848 return (ipif); 5849 } 5850 5851 /* 5852 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 5853 */ 5854 static ipif_t * 5855 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp, 5856 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 5857 ip_stack_t *ipst) 5858 { 5859 ipif_t *ipif; 5860 ill_t *ill; 5861 boolean_t ptp = B_FALSE; 5862 ipsq_t *ipsq; 5863 ill_walk_context_t ctx; 5864 5865 if (error != NULL) 5866 *error = 0; 5867 5868 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5869 /* 5870 * Repeat twice, first based on local addresses and 5871 * next time for pointopoint. 5872 */ 5873 repeat: 5874 ill = ILL_START_WALK_V4(&ctx, ipst); 5875 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5876 if (match_ill != NULL && ill != match_ill && 5877 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 5878 continue; 5879 } 5880 GRAB_CONN_LOCK(q); 5881 mutex_enter(&ill->ill_lock); 5882 for (ipif = ill->ill_ipif; ipif != NULL; 5883 ipif = ipif->ipif_next) { 5884 if (zoneid != ALL_ZONES && 5885 zoneid != ipif->ipif_zoneid && 5886 ipif->ipif_zoneid != ALL_ZONES) 5887 continue; 5888 /* Allow the ipif to be down */ 5889 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5890 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5891 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5892 (ipif->ipif_pp_dst_addr == addr))) { 5893 /* 5894 * The block comment at the start of ipif_down 5895 * explains the use of the macros used below 5896 */ 5897 if (IPIF_CAN_LOOKUP(ipif)) { 5898 ipif_refhold_locked(ipif); 5899 mutex_exit(&ill->ill_lock); 5900 RELEASE_CONN_LOCK(q); 5901 rw_exit(&ipst->ips_ill_g_lock); 5902 return (ipif); 5903 } else if (IPIF_CAN_WAIT(ipif, q)) { 5904 ipsq = ill->ill_phyint->phyint_ipsq; 5905 mutex_enter(&ipsq->ipsq_lock); 5906 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5907 mutex_exit(&ill->ill_lock); 5908 rw_exit(&ipst->ips_ill_g_lock); 5909 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5910 ill); 5911 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5912 mutex_exit(&ipsq->ipsq_lock); 5913 RELEASE_CONN_LOCK(q); 5914 if (error != NULL) 5915 *error = EINPROGRESS; 5916 return (NULL); 5917 } 5918 } 5919 } 5920 mutex_exit(&ill->ill_lock); 5921 RELEASE_CONN_LOCK(q); 5922 } 5923 5924 /* If we already did the ptp case, then we are done */ 5925 if (ptp) { 5926 rw_exit(&ipst->ips_ill_g_lock); 5927 if (error != NULL) 5928 *error = ENXIO; 5929 return (NULL); 5930 } 5931 ptp = B_TRUE; 5932 goto repeat; 5933 } 5934 5935 /* 5936 * Check if the address exists in the system. 5937 * We don't hold the conn_lock as we will not perform defered ipsqueue 5938 * operation. 5939 */ 5940 boolean_t 5941 ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 5942 { 5943 ipif_t *ipif; 5944 ill_t *ill; 5945 ill_walk_context_t ctx; 5946 5947 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5948 5949 ill = ILL_START_WALK_V4(&ctx, ipst); 5950 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5951 mutex_enter(&ill->ill_lock); 5952 for (ipif = ill->ill_ipif; ipif != NULL; 5953 ipif = ipif->ipif_next) { 5954 if (zoneid != ALL_ZONES && 5955 zoneid != ipif->ipif_zoneid && 5956 ipif->ipif_zoneid != ALL_ZONES) 5957 continue; 5958 /* Allow the ipif to be down */ 5959 /* 5960 * XXX Different from ipif_lookup_addr(), we don't do 5961 * twice lookups. As from bind()'s point of view, we 5962 * may return once we find a match. 5963 */ 5964 if (((ipif->ipif_lcl_addr == addr) && 5965 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5966 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5967 (ipif->ipif_pp_dst_addr == addr))) { 5968 /* 5969 * Allow bind() to be successful even if the 5970 * ipif is with IPIF_CHANGING bit set. 5971 */ 5972 mutex_exit(&ill->ill_lock); 5973 rw_exit(&ipst->ips_ill_g_lock); 5974 return (B_TRUE); 5975 } 5976 } 5977 mutex_exit(&ill->ill_lock); 5978 } 5979 5980 rw_exit(&ipst->ips_ill_g_lock); 5981 return (B_FALSE); 5982 } 5983 5984 /* 5985 * Lookup an ipif with the specified address. For point-to-point links we 5986 * look for matches on either the destination address or the local address, 5987 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 5988 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 5989 * (or illgrp if `match_ill' is in an IPMP group). 5990 */ 5991 ipif_t * 5992 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5993 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5994 { 5995 return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp, 5996 func, error, ipst)); 5997 } 5998 5999 /* 6000 * Special abbreviated version of ipif_lookup_addr() that doesn't match 6001 * `match_ill' across the IPMP group. This function is only needed in some 6002 * corner-cases; almost everything should use ipif_lookup_addr(). 6003 */ 6004 static ipif_t * 6005 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6006 { 6007 ASSERT(match_ill != NULL); 6008 return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES, 6009 NULL, NULL, NULL, NULL, ipst)); 6010 } 6011 6012 /* 6013 * Look for an ipif with the specified address. For point-point links 6014 * we look for matches on either the destination address and the local 6015 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6016 * is set. 6017 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 6018 * ill (or illgrp if `match_ill' is in an IPMP group). 6019 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6020 */ 6021 zoneid_t 6022 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6023 { 6024 zoneid_t zoneid; 6025 ipif_t *ipif; 6026 ill_t *ill; 6027 boolean_t ptp = B_FALSE; 6028 ill_walk_context_t ctx; 6029 6030 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6031 /* 6032 * Repeat twice, first based on local addresses and 6033 * next time for pointopoint. 6034 */ 6035 repeat: 6036 ill = ILL_START_WALK_V4(&ctx, ipst); 6037 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6038 if (match_ill != NULL && ill != match_ill && 6039 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 6040 continue; 6041 } 6042 mutex_enter(&ill->ill_lock); 6043 for (ipif = ill->ill_ipif; ipif != NULL; 6044 ipif = ipif->ipif_next) { 6045 /* Allow the ipif to be down */ 6046 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6047 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6048 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6049 (ipif->ipif_pp_dst_addr == addr)) && 6050 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6051 zoneid = ipif->ipif_zoneid; 6052 mutex_exit(&ill->ill_lock); 6053 rw_exit(&ipst->ips_ill_g_lock); 6054 /* 6055 * If ipif_zoneid was ALL_ZONES then we have 6056 * a trusted extensions shared IP address. 6057 * In that case GLOBAL_ZONEID works to send. 6058 */ 6059 if (zoneid == ALL_ZONES) 6060 zoneid = GLOBAL_ZONEID; 6061 return (zoneid); 6062 } 6063 } 6064 mutex_exit(&ill->ill_lock); 6065 } 6066 6067 /* If we already did the ptp case, then we are done */ 6068 if (ptp) { 6069 rw_exit(&ipst->ips_ill_g_lock); 6070 return (ALL_ZONES); 6071 } 6072 ptp = B_TRUE; 6073 goto repeat; 6074 } 6075 6076 /* 6077 * Look for an ipif that matches the specified remote address i.e. the 6078 * ipif that would receive the specified packet. 6079 * First look for directly connected interfaces and then do a recursive 6080 * IRE lookup and pick the first ipif corresponding to the source address in the 6081 * ire. 6082 * Returns: held ipif 6083 */ 6084 ipif_t * 6085 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6086 { 6087 ipif_t *ipif; 6088 ire_t *ire; 6089 ip_stack_t *ipst = ill->ill_ipst; 6090 6091 ASSERT(!ill->ill_isv6); 6092 6093 /* 6094 * Someone could be changing this ipif currently or change it 6095 * after we return this. Thus a few packets could use the old 6096 * old values. However structure updates/creates (ire, ilg, ilm etc) 6097 * will atomically be updated or cleaned up with the new value 6098 * Thus we don't need a lock to check the flags or other attrs below. 6099 */ 6100 mutex_enter(&ill->ill_lock); 6101 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6102 if (!IPIF_CAN_LOOKUP(ipif)) 6103 continue; 6104 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6105 ipif->ipif_zoneid != ALL_ZONES) 6106 continue; 6107 /* Allow the ipif to be down */ 6108 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6109 if ((ipif->ipif_pp_dst_addr == addr) || 6110 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6111 ipif->ipif_lcl_addr == addr)) { 6112 ipif_refhold_locked(ipif); 6113 mutex_exit(&ill->ill_lock); 6114 return (ipif); 6115 } 6116 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6117 ipif_refhold_locked(ipif); 6118 mutex_exit(&ill->ill_lock); 6119 return (ipif); 6120 } 6121 } 6122 mutex_exit(&ill->ill_lock); 6123 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6124 NULL, MATCH_IRE_RECURSIVE, ipst); 6125 if (ire != NULL) { 6126 /* 6127 * The callers of this function wants to know the 6128 * interface on which they have to send the replies 6129 * back. For IREs that have ire_stq and ire_ipif 6130 * derived from different ills, we really don't care 6131 * what we return here. 6132 */ 6133 ipif = ire->ire_ipif; 6134 if (ipif != NULL) { 6135 ipif_refhold(ipif); 6136 ire_refrele(ire); 6137 return (ipif); 6138 } 6139 ire_refrele(ire); 6140 } 6141 /* Pick the first interface */ 6142 ipif = ipif_get_next_ipif(NULL, ill); 6143 return (ipif); 6144 } 6145 6146 /* 6147 * This func does not prevent refcnt from increasing. But if 6148 * the caller has taken steps to that effect, then this func 6149 * can be used to determine whether the ill has become quiescent 6150 */ 6151 static boolean_t 6152 ill_is_quiescent(ill_t *ill) 6153 { 6154 ipif_t *ipif; 6155 6156 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6157 6158 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6159 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6160 return (B_FALSE); 6161 } 6162 } 6163 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6164 return (B_FALSE); 6165 } 6166 return (B_TRUE); 6167 } 6168 6169 boolean_t 6170 ill_is_freeable(ill_t *ill) 6171 { 6172 ipif_t *ipif; 6173 6174 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6175 6176 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6177 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6178 return (B_FALSE); 6179 } 6180 } 6181 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6182 return (B_FALSE); 6183 } 6184 return (B_TRUE); 6185 } 6186 6187 /* 6188 * This func does not prevent refcnt from increasing. But if 6189 * the caller has taken steps to that effect, then this func 6190 * can be used to determine whether the ipif has become quiescent 6191 */ 6192 static boolean_t 6193 ipif_is_quiescent(ipif_t *ipif) 6194 { 6195 ill_t *ill; 6196 6197 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6198 6199 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6200 return (B_FALSE); 6201 } 6202 6203 ill = ipif->ipif_ill; 6204 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6205 ill->ill_logical_down) { 6206 return (B_TRUE); 6207 } 6208 6209 /* This is the last ipif going down or being deleted on this ill */ 6210 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6211 return (B_FALSE); 6212 } 6213 6214 return (B_TRUE); 6215 } 6216 6217 /* 6218 * return true if the ipif can be destroyed: the ipif has to be quiescent 6219 * with zero references from ire/nce/ilm to it. 6220 */ 6221 static boolean_t 6222 ipif_is_freeable(ipif_t *ipif) 6223 { 6224 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6225 ASSERT(ipif->ipif_id != 0); 6226 return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); 6227 } 6228 6229 /* 6230 * The ipif/ill/ire has been refreled. Do the tail processing. 6231 * Determine if the ipif or ill in question has become quiescent and if so 6232 * wakeup close and/or restart any queued pending ioctl that is waiting 6233 * for the ipif_down (or ill_down) 6234 */ 6235 void 6236 ipif_ill_refrele_tail(ill_t *ill) 6237 { 6238 mblk_t *mp; 6239 conn_t *connp; 6240 ipsq_t *ipsq; 6241 ipxop_t *ipx; 6242 ipif_t *ipif; 6243 dl_notify_ind_t *dlindp; 6244 6245 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6246 6247 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 6248 /* ip_modclose() may be waiting */ 6249 cv_broadcast(&ill->ill_cv); 6250 } 6251 6252 ipsq = ill->ill_phyint->phyint_ipsq; 6253 mutex_enter(&ipsq->ipsq_lock); 6254 ipx = ipsq->ipsq_xop; 6255 mutex_enter(&ipx->ipx_lock); 6256 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 6257 goto unlock; 6258 6259 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 6260 6261 ipif = ipx->ipx_pending_ipif; 6262 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 6263 goto unlock; 6264 6265 switch (ipx->ipx_waitfor) { 6266 case IPIF_DOWN: 6267 if (!ipif_is_quiescent(ipif)) 6268 goto unlock; 6269 break; 6270 case IPIF_FREE: 6271 if (!ipif_is_freeable(ipif)) 6272 goto unlock; 6273 break; 6274 case ILL_DOWN: 6275 if (!ill_is_quiescent(ill)) 6276 goto unlock; 6277 break; 6278 case ILL_FREE: 6279 /* 6280 * ILL_FREE is only for loopback; normal ill teardown waits 6281 * synchronously in ip_modclose() without using ipx_waitfor, 6282 * handled by the cv_broadcast() at the top of this function. 6283 */ 6284 if (!ill_is_freeable(ill)) 6285 goto unlock; 6286 break; 6287 default: 6288 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 6289 (void *)ipsq, ipx->ipx_waitfor); 6290 } 6291 6292 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 6293 mutex_exit(&ipx->ipx_lock); 6294 mp = ipsq_pending_mp_get(ipsq, &connp); 6295 mutex_exit(&ipsq->ipsq_lock); 6296 mutex_exit(&ill->ill_lock); 6297 6298 ASSERT(mp != NULL); 6299 /* 6300 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6301 * we can only get here when the current operation decides it 6302 * it needs to quiesce via ipsq_pending_mp_add(). 6303 */ 6304 switch (mp->b_datap->db_type) { 6305 case M_PCPROTO: 6306 case M_PROTO: 6307 /* 6308 * For now, only DL_NOTIFY_IND messages can use this facility. 6309 */ 6310 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6311 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6312 6313 switch (dlindp->dl_notification) { 6314 case DL_NOTE_PHYS_ADDR: 6315 qwriter_ip(ill, ill->ill_rq, mp, 6316 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6317 return; 6318 default: 6319 ASSERT(0); 6320 ill_refrele(ill); 6321 } 6322 break; 6323 6324 case M_ERROR: 6325 case M_HANGUP: 6326 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6327 B_TRUE); 6328 return; 6329 6330 case M_IOCTL: 6331 case M_IOCDATA: 6332 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6333 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6334 return; 6335 6336 default: 6337 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6338 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6339 } 6340 return; 6341 unlock: 6342 mutex_exit(&ipsq->ipsq_lock); 6343 mutex_exit(&ipx->ipx_lock); 6344 mutex_exit(&ill->ill_lock); 6345 } 6346 6347 #ifdef DEBUG 6348 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6349 static void 6350 th_trace_rrecord(th_trace_t *th_trace) 6351 { 6352 tr_buf_t *tr_buf; 6353 uint_t lastref; 6354 6355 lastref = th_trace->th_trace_lastref; 6356 lastref++; 6357 if (lastref == TR_BUF_MAX) 6358 lastref = 0; 6359 th_trace->th_trace_lastref = lastref; 6360 tr_buf = &th_trace->th_trbuf[lastref]; 6361 tr_buf->tr_time = lbolt; 6362 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6363 } 6364 6365 static void 6366 th_trace_free(void *value) 6367 { 6368 th_trace_t *th_trace = value; 6369 6370 ASSERT(th_trace->th_refcnt == 0); 6371 kmem_free(th_trace, sizeof (*th_trace)); 6372 } 6373 6374 /* 6375 * Find or create the per-thread hash table used to track object references. 6376 * The ipst argument is NULL if we shouldn't allocate. 6377 * 6378 * Accesses per-thread data, so there's no need to lock here. 6379 */ 6380 static mod_hash_t * 6381 th_trace_gethash(ip_stack_t *ipst) 6382 { 6383 th_hash_t *thh; 6384 6385 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6386 mod_hash_t *mh; 6387 char name[256]; 6388 size_t objsize, rshift; 6389 int retv; 6390 6391 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6392 return (NULL); 6393 (void) snprintf(name, sizeof (name), "th_trace_%p", 6394 (void *)curthread); 6395 6396 /* 6397 * We use mod_hash_create_extended here rather than the more 6398 * obvious mod_hash_create_ptrhash because the latter has a 6399 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6400 * block. 6401 */ 6402 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6403 MAX(sizeof (ire_t), sizeof (nce_t))); 6404 rshift = highbit(objsize); 6405 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6406 th_trace_free, mod_hash_byptr, (void *)rshift, 6407 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6408 if (mh == NULL) { 6409 kmem_free(thh, sizeof (*thh)); 6410 return (NULL); 6411 } 6412 thh->thh_hash = mh; 6413 thh->thh_ipst = ipst; 6414 /* 6415 * We trace ills, ipifs, ires, and nces. All of these are 6416 * per-IP-stack, so the lock on the thread list is as well. 6417 */ 6418 rw_enter(&ip_thread_rwlock, RW_WRITER); 6419 list_insert_tail(&ip_thread_list, thh); 6420 rw_exit(&ip_thread_rwlock); 6421 retv = tsd_set(ip_thread_data, thh); 6422 ASSERT(retv == 0); 6423 } 6424 return (thh != NULL ? thh->thh_hash : NULL); 6425 } 6426 6427 boolean_t 6428 th_trace_ref(const void *obj, ip_stack_t *ipst) 6429 { 6430 th_trace_t *th_trace; 6431 mod_hash_t *mh; 6432 mod_hash_val_t val; 6433 6434 if ((mh = th_trace_gethash(ipst)) == NULL) 6435 return (B_FALSE); 6436 6437 /* 6438 * Attempt to locate the trace buffer for this obj and thread. 6439 * If it does not exist, then allocate a new trace buffer and 6440 * insert into the hash. 6441 */ 6442 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6443 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6444 if (th_trace == NULL) 6445 return (B_FALSE); 6446 6447 th_trace->th_id = curthread; 6448 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6449 (mod_hash_val_t)th_trace) != 0) { 6450 kmem_free(th_trace, sizeof (th_trace_t)); 6451 return (B_FALSE); 6452 } 6453 } else { 6454 th_trace = (th_trace_t *)val; 6455 } 6456 6457 ASSERT(th_trace->th_refcnt >= 0 && 6458 th_trace->th_refcnt < TR_BUF_MAX - 1); 6459 6460 th_trace->th_refcnt++; 6461 th_trace_rrecord(th_trace); 6462 return (B_TRUE); 6463 } 6464 6465 /* 6466 * For the purpose of tracing a reference release, we assume that global 6467 * tracing is always on and that the same thread initiated the reference hold 6468 * is releasing. 6469 */ 6470 void 6471 th_trace_unref(const void *obj) 6472 { 6473 int retv; 6474 mod_hash_t *mh; 6475 th_trace_t *th_trace; 6476 mod_hash_val_t val; 6477 6478 mh = th_trace_gethash(NULL); 6479 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6480 ASSERT(retv == 0); 6481 th_trace = (th_trace_t *)val; 6482 6483 ASSERT(th_trace->th_refcnt > 0); 6484 th_trace->th_refcnt--; 6485 th_trace_rrecord(th_trace); 6486 } 6487 6488 /* 6489 * If tracing has been disabled, then we assume that the reference counts are 6490 * now useless, and we clear them out before destroying the entries. 6491 */ 6492 void 6493 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6494 { 6495 th_hash_t *thh; 6496 mod_hash_t *mh; 6497 mod_hash_val_t val; 6498 th_trace_t *th_trace; 6499 int retv; 6500 6501 rw_enter(&ip_thread_rwlock, RW_READER); 6502 for (thh = list_head(&ip_thread_list); thh != NULL; 6503 thh = list_next(&ip_thread_list, thh)) { 6504 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6505 &val) == 0) { 6506 th_trace = (th_trace_t *)val; 6507 if (trace_disable) 6508 th_trace->th_refcnt = 0; 6509 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6510 ASSERT(retv == 0); 6511 } 6512 } 6513 rw_exit(&ip_thread_rwlock); 6514 } 6515 6516 void 6517 ipif_trace_ref(ipif_t *ipif) 6518 { 6519 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6520 6521 if (ipif->ipif_trace_disable) 6522 return; 6523 6524 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6525 ipif->ipif_trace_disable = B_TRUE; 6526 ipif_trace_cleanup(ipif); 6527 } 6528 } 6529 6530 void 6531 ipif_untrace_ref(ipif_t *ipif) 6532 { 6533 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6534 6535 if (!ipif->ipif_trace_disable) 6536 th_trace_unref(ipif); 6537 } 6538 6539 void 6540 ill_trace_ref(ill_t *ill) 6541 { 6542 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6543 6544 if (ill->ill_trace_disable) 6545 return; 6546 6547 if (!th_trace_ref(ill, ill->ill_ipst)) { 6548 ill->ill_trace_disable = B_TRUE; 6549 ill_trace_cleanup(ill); 6550 } 6551 } 6552 6553 void 6554 ill_untrace_ref(ill_t *ill) 6555 { 6556 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6557 6558 if (!ill->ill_trace_disable) 6559 th_trace_unref(ill); 6560 } 6561 6562 /* 6563 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6564 * failure, ipif_trace_disable is set. 6565 */ 6566 static void 6567 ipif_trace_cleanup(const ipif_t *ipif) 6568 { 6569 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6570 } 6571 6572 /* 6573 * Called when ill is unplumbed or when memory alloc fails. Note that on 6574 * failure, ill_trace_disable is set. 6575 */ 6576 static void 6577 ill_trace_cleanup(const ill_t *ill) 6578 { 6579 th_trace_cleanup(ill, ill->ill_trace_disable); 6580 } 6581 #endif /* DEBUG */ 6582 6583 void 6584 ipif_refhold_locked(ipif_t *ipif) 6585 { 6586 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6587 ipif->ipif_refcnt++; 6588 IPIF_TRACE_REF(ipif); 6589 } 6590 6591 void 6592 ipif_refhold(ipif_t *ipif) 6593 { 6594 ill_t *ill; 6595 6596 ill = ipif->ipif_ill; 6597 mutex_enter(&ill->ill_lock); 6598 ipif->ipif_refcnt++; 6599 IPIF_TRACE_REF(ipif); 6600 mutex_exit(&ill->ill_lock); 6601 } 6602 6603 /* 6604 * Must not be called while holding any locks. Otherwise if this is 6605 * the last reference to be released there is a chance of recursive mutex 6606 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6607 * to restart an ioctl. 6608 */ 6609 void 6610 ipif_refrele(ipif_t *ipif) 6611 { 6612 ill_t *ill; 6613 6614 ill = ipif->ipif_ill; 6615 6616 mutex_enter(&ill->ill_lock); 6617 ASSERT(ipif->ipif_refcnt != 0); 6618 ipif->ipif_refcnt--; 6619 IPIF_UNTRACE_REF(ipif); 6620 if (ipif->ipif_refcnt != 0) { 6621 mutex_exit(&ill->ill_lock); 6622 return; 6623 } 6624 6625 /* Drops the ill_lock */ 6626 ipif_ill_refrele_tail(ill); 6627 } 6628 6629 ipif_t * 6630 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6631 { 6632 ipif_t *ipif; 6633 6634 mutex_enter(&ill->ill_lock); 6635 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6636 ipif != NULL; ipif = ipif->ipif_next) { 6637 if (!IPIF_CAN_LOOKUP(ipif)) 6638 continue; 6639 ipif_refhold_locked(ipif); 6640 mutex_exit(&ill->ill_lock); 6641 return (ipif); 6642 } 6643 mutex_exit(&ill->ill_lock); 6644 return (NULL); 6645 } 6646 6647 /* 6648 * TODO: make this table extendible at run time 6649 * Return a pointer to the mac type info for 'mac_type' 6650 */ 6651 static ip_m_t * 6652 ip_m_lookup(t_uscalar_t mac_type) 6653 { 6654 ip_m_t *ipm; 6655 6656 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6657 if (ipm->ip_m_mac_type == mac_type) 6658 return (ipm); 6659 return (NULL); 6660 } 6661 6662 /* 6663 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6664 * ipif_arg is passed in to associate it with the correct interface. 6665 * We may need to restart this operation if the ipif cannot be looked up 6666 * due to an exclusive operation that is currently in progress. The restart 6667 * entry point is specified by 'func' 6668 */ 6669 int 6670 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6671 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6672 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6673 struct rtsa_s *sp, ip_stack_t *ipst) 6674 { 6675 ire_t *ire; 6676 ire_t *gw_ire = NULL; 6677 ipif_t *ipif = NULL; 6678 boolean_t ipif_refheld = B_FALSE; 6679 uint_t type; 6680 int match_flags = MATCH_IRE_TYPE; 6681 int error; 6682 tsol_gc_t *gc = NULL; 6683 tsol_gcgrp_t *gcgrp = NULL; 6684 boolean_t gcgrp_xtraref = B_FALSE; 6685 6686 ip1dbg(("ip_rt_add:")); 6687 6688 if (ire_arg != NULL) 6689 *ire_arg = NULL; 6690 6691 /* 6692 * If this is the case of RTF_HOST being set, then we set the netmask 6693 * to all ones (regardless if one was supplied). 6694 */ 6695 if (flags & RTF_HOST) 6696 mask = IP_HOST_MASK; 6697 6698 /* 6699 * Prevent routes with a zero gateway from being created (since 6700 * interfaces can currently be plumbed and brought up no assigned 6701 * address). 6702 */ 6703 if (gw_addr == 0) 6704 return (ENETUNREACH); 6705 /* 6706 * Get the ipif, if any, corresponding to the gw_addr 6707 */ 6708 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6709 ipst); 6710 if (ipif != NULL) { 6711 if (IS_VNI(ipif->ipif_ill)) { 6712 ipif_refrele(ipif); 6713 return (EINVAL); 6714 } 6715 ipif_refheld = B_TRUE; 6716 } else if (error == EINPROGRESS) { 6717 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6718 return (EINPROGRESS); 6719 } else { 6720 error = 0; 6721 } 6722 6723 if (ipif != NULL) { 6724 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6725 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6726 } else { 6727 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6728 } 6729 6730 /* 6731 * GateD will attempt to create routes with a loopback interface 6732 * address as the gateway and with RTF_GATEWAY set. We allow 6733 * these routes to be added, but create them as interface routes 6734 * since the gateway is an interface address. 6735 */ 6736 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6737 flags &= ~RTF_GATEWAY; 6738 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6739 mask == IP_HOST_MASK) { 6740 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6741 ALL_ZONES, NULL, match_flags, ipst); 6742 if (ire != NULL) { 6743 ire_refrele(ire); 6744 if (ipif_refheld) 6745 ipif_refrele(ipif); 6746 return (EEXIST); 6747 } 6748 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6749 "for 0x%x\n", (void *)ipif, 6750 ipif->ipif_ire_type, 6751 ntohl(ipif->ipif_lcl_addr))); 6752 ire = ire_create( 6753 (uchar_t *)&dst_addr, /* dest address */ 6754 (uchar_t *)&mask, /* mask */ 6755 (uchar_t *)&ipif->ipif_src_addr, 6756 NULL, /* no gateway */ 6757 &ipif->ipif_mtu, 6758 NULL, 6759 ipif->ipif_rq, /* recv-from queue */ 6760 NULL, /* no send-to queue */ 6761 ipif->ipif_ire_type, /* LOOPBACK */ 6762 ipif, 6763 0, 6764 0, 6765 0, 6766 (ipif->ipif_flags & IPIF_PRIVATE) ? 6767 RTF_PRIVATE : 0, 6768 &ire_uinfo_null, 6769 NULL, 6770 NULL, 6771 ipst); 6772 6773 if (ire == NULL) { 6774 if (ipif_refheld) 6775 ipif_refrele(ipif); 6776 return (ENOMEM); 6777 } 6778 error = ire_add(&ire, q, mp, func, B_FALSE); 6779 if (error == 0) 6780 goto save_ire; 6781 if (ipif_refheld) 6782 ipif_refrele(ipif); 6783 return (error); 6784 6785 } 6786 } 6787 6788 /* 6789 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6790 * and the gateway address provided is one of the system's interface 6791 * addresses. By using the routing socket interface and supplying an 6792 * RTA_IFP sockaddr with an interface index, an alternate method of 6793 * specifying an interface route to be created is available which uses 6794 * the interface index that specifies the outgoing interface rather than 6795 * the address of an outgoing interface (which may not be able to 6796 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6797 * flag, routes can be specified which not only specify the next-hop to 6798 * be used when routing to a certain prefix, but also which outgoing 6799 * interface should be used. 6800 * 6801 * Previously, interfaces would have unique addresses assigned to them 6802 * and so the address assigned to a particular interface could be used 6803 * to identify a particular interface. One exception to this was the 6804 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6805 * 6806 * With the advent of IPv6 and its link-local addresses, this 6807 * restriction was relaxed and interfaces could share addresses between 6808 * themselves. In fact, typically all of the link-local interfaces on 6809 * an IPv6 node or router will have the same link-local address. In 6810 * order to differentiate between these interfaces, the use of an 6811 * interface index is necessary and this index can be carried inside a 6812 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6813 * of using the interface index, however, is that all of the ipif's that 6814 * are part of an ill have the same index and so the RTA_IFP sockaddr 6815 * cannot be used to differentiate between ipif's (or logical 6816 * interfaces) that belong to the same ill (physical interface). 6817 * 6818 * For example, in the following case involving IPv4 interfaces and 6819 * logical interfaces 6820 * 6821 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6822 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6823 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6824 * 6825 * the ipif's corresponding to each of these interface routes can be 6826 * uniquely identified by the "gateway" (actually interface address). 6827 * 6828 * In this case involving multiple IPv6 default routes to a particular 6829 * link-local gateway, the use of RTA_IFP is necessary to specify which 6830 * default route is of interest: 6831 * 6832 * default fe80::123:4567:89ab:cdef U if0 6833 * default fe80::123:4567:89ab:cdef U if1 6834 */ 6835 6836 /* RTF_GATEWAY not set */ 6837 if (!(flags & RTF_GATEWAY)) { 6838 queue_t *stq; 6839 6840 if (sp != NULL) { 6841 ip2dbg(("ip_rt_add: gateway security attributes " 6842 "cannot be set with interface route\n")); 6843 if (ipif_refheld) 6844 ipif_refrele(ipif); 6845 return (EINVAL); 6846 } 6847 6848 /* 6849 * As the interface index specified with the RTA_IFP sockaddr is 6850 * the same for all ipif's off of an ill, the matching logic 6851 * below uses MATCH_IRE_ILL if such an index was specified. 6852 * This means that routes sharing the same prefix when added 6853 * using a RTA_IFP sockaddr must have distinct interface 6854 * indices (namely, they must be on distinct ill's). 6855 * 6856 * On the other hand, since the gateway address will usually be 6857 * different for each ipif on the system, the matching logic 6858 * uses MATCH_IRE_IPIF in the case of a traditional interface 6859 * route. This means that interface routes for the same prefix 6860 * can be created if they belong to distinct ipif's and if a 6861 * RTA_IFP sockaddr is not present. 6862 */ 6863 if (ipif_arg != NULL) { 6864 if (ipif_refheld) { 6865 ipif_refrele(ipif); 6866 ipif_refheld = B_FALSE; 6867 } 6868 ipif = ipif_arg; 6869 match_flags |= MATCH_IRE_ILL; 6870 } else { 6871 /* 6872 * Check the ipif corresponding to the gw_addr 6873 */ 6874 if (ipif == NULL) 6875 return (ENETUNREACH); 6876 match_flags |= MATCH_IRE_IPIF; 6877 } 6878 ASSERT(ipif != NULL); 6879 6880 /* 6881 * We check for an existing entry at this point. 6882 * 6883 * Since a netmask isn't passed in via the ioctl interface 6884 * (SIOCADDRT), we don't check for a matching netmask in that 6885 * case. 6886 */ 6887 if (!ioctl_msg) 6888 match_flags |= MATCH_IRE_MASK; 6889 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6890 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6891 if (ire != NULL) { 6892 ire_refrele(ire); 6893 if (ipif_refheld) 6894 ipif_refrele(ipif); 6895 return (EEXIST); 6896 } 6897 6898 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6899 ? ipif->ipif_rq : ipif->ipif_wq; 6900 6901 /* 6902 * Create a copy of the IRE_LOOPBACK, 6903 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6904 * the modified address and netmask. 6905 */ 6906 ire = ire_create( 6907 (uchar_t *)&dst_addr, 6908 (uint8_t *)&mask, 6909 (uint8_t *)&ipif->ipif_src_addr, 6910 NULL, 6911 &ipif->ipif_mtu, 6912 NULL, 6913 NULL, 6914 stq, 6915 ipif->ipif_net_type, 6916 ipif, 6917 0, 6918 0, 6919 0, 6920 flags, 6921 &ire_uinfo_null, 6922 NULL, 6923 NULL, 6924 ipst); 6925 if (ire == NULL) { 6926 if (ipif_refheld) 6927 ipif_refrele(ipif); 6928 return (ENOMEM); 6929 } 6930 6931 /* 6932 * Some software (for example, GateD and Sun Cluster) attempts 6933 * to create (what amount to) IRE_PREFIX routes with the 6934 * loopback address as the gateway. This is primarily done to 6935 * set up prefixes with the RTF_REJECT flag set (for example, 6936 * when generating aggregate routes.) 6937 * 6938 * If the IRE type (as defined by ipif->ipif_net_type) is 6939 * IRE_LOOPBACK, then we map the request into a 6940 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 6941 * these interface routes, by definition, can only be that. 6942 * 6943 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6944 * routine, but rather using ire_create() directly. 6945 * 6946 */ 6947 if (ipif->ipif_net_type == IRE_LOOPBACK) { 6948 ire->ire_type = IRE_IF_NORESOLVER; 6949 ire->ire_flags |= RTF_BLACKHOLE; 6950 } 6951 6952 error = ire_add(&ire, q, mp, func, B_FALSE); 6953 if (error == 0) 6954 goto save_ire; 6955 6956 /* 6957 * In the result of failure, ire_add() will have already 6958 * deleted the ire in question, so there is no need to 6959 * do that here. 6960 */ 6961 if (ipif_refheld) 6962 ipif_refrele(ipif); 6963 return (error); 6964 } 6965 if (ipif_refheld) { 6966 ipif_refrele(ipif); 6967 ipif_refheld = B_FALSE; 6968 } 6969 6970 /* 6971 * Get an interface IRE for the specified gateway. 6972 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6973 * gateway, it is currently unreachable and we fail the request 6974 * accordingly. 6975 */ 6976 ipif = ipif_arg; 6977 if (ipif_arg != NULL) 6978 match_flags |= MATCH_IRE_ILL; 6979 again: 6980 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6981 ALL_ZONES, 0, NULL, match_flags, ipst); 6982 if (gw_ire == NULL) { 6983 /* 6984 * With IPMP, we allow host routes to influence in.mpathd's 6985 * target selection. However, if the test addresses are on 6986 * their own network, the above lookup will fail since the 6987 * underlying IRE_INTERFACEs are marked hidden. So allow 6988 * hidden test IREs to be found and try again. 6989 */ 6990 if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) { 6991 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 6992 goto again; 6993 } 6994 return (ENETUNREACH); 6995 } 6996 6997 /* 6998 * We create one of three types of IREs as a result of this request 6999 * based on the netmask. A netmask of all ones (which is automatically 7000 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7001 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7002 * created. Otherwise, an IRE_PREFIX route is created for the 7003 * destination prefix. 7004 */ 7005 if (mask == IP_HOST_MASK) 7006 type = IRE_HOST; 7007 else if (mask == 0) 7008 type = IRE_DEFAULT; 7009 else 7010 type = IRE_PREFIX; 7011 7012 /* check for a duplicate entry */ 7013 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7014 NULL, ALL_ZONES, 0, NULL, 7015 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7016 if (ire != NULL) { 7017 ire_refrele(gw_ire); 7018 ire_refrele(ire); 7019 return (EEXIST); 7020 } 7021 7022 /* Security attribute exists */ 7023 if (sp != NULL) { 7024 tsol_gcgrp_addr_t ga; 7025 7026 /* find or create the gateway credentials group */ 7027 ga.ga_af = AF_INET; 7028 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7029 7030 /* we hold reference to it upon success */ 7031 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7032 if (gcgrp == NULL) { 7033 ire_refrele(gw_ire); 7034 return (ENOMEM); 7035 } 7036 7037 /* 7038 * Create and add the security attribute to the group; a 7039 * reference to the group is made upon allocating a new 7040 * entry successfully. If it finds an already-existing 7041 * entry for the security attribute in the group, it simply 7042 * returns it and no new reference is made to the group. 7043 */ 7044 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7045 if (gc == NULL) { 7046 /* release reference held by gcgrp_lookup */ 7047 GCGRP_REFRELE(gcgrp); 7048 ire_refrele(gw_ire); 7049 return (ENOMEM); 7050 } 7051 } 7052 7053 /* Create the IRE. */ 7054 ire = ire_create( 7055 (uchar_t *)&dst_addr, /* dest address */ 7056 (uchar_t *)&mask, /* mask */ 7057 /* src address assigned by the caller? */ 7058 (uchar_t *)(((src_addr != INADDR_ANY) && 7059 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7060 (uchar_t *)&gw_addr, /* gateway address */ 7061 &gw_ire->ire_max_frag, 7062 NULL, /* no src nce */ 7063 NULL, /* no recv-from queue */ 7064 NULL, /* no send-to queue */ 7065 (ushort_t)type, /* IRE type */ 7066 ipif_arg, 7067 0, 7068 0, 7069 0, 7070 flags, 7071 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7072 gc, /* security attribute */ 7073 NULL, 7074 ipst); 7075 7076 /* 7077 * The ire holds a reference to the 'gc' and the 'gc' holds a 7078 * reference to the 'gcgrp'. We can now release the extra reference 7079 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7080 */ 7081 if (gcgrp_xtraref) 7082 GCGRP_REFRELE(gcgrp); 7083 if (ire == NULL) { 7084 if (gc != NULL) 7085 GC_REFRELE(gc); 7086 ire_refrele(gw_ire); 7087 return (ENOMEM); 7088 } 7089 7090 /* 7091 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7092 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7093 */ 7094 7095 /* Add the new IRE. */ 7096 error = ire_add(&ire, q, mp, func, B_FALSE); 7097 if (error != 0) { 7098 /* 7099 * In the result of failure, ire_add() will have already 7100 * deleted the ire in question, so there is no need to 7101 * do that here. 7102 */ 7103 ire_refrele(gw_ire); 7104 return (error); 7105 } 7106 7107 if (flags & RTF_MULTIRT) { 7108 /* 7109 * Invoke the CGTP (multirouting) filtering module 7110 * to add the dst address in the filtering database. 7111 * Replicated inbound packets coming from that address 7112 * will be filtered to discard the duplicates. 7113 * It is not necessary to call the CGTP filter hook 7114 * when the dst address is a broadcast or multicast, 7115 * because an IP source address cannot be a broadcast 7116 * or a multicast. 7117 */ 7118 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7119 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7120 if (ire_dst != NULL) { 7121 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7122 ire_refrele(ire_dst); 7123 goto save_ire; 7124 } 7125 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7126 !CLASSD(ire->ire_addr)) { 7127 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7128 ipst->ips_netstack->netstack_stackid, 7129 ire->ire_addr, 7130 ire->ire_gateway_addr, 7131 ire->ire_src_addr, 7132 gw_ire->ire_src_addr); 7133 if (res != 0) { 7134 ire_refrele(gw_ire); 7135 ire_delete(ire); 7136 return (res); 7137 } 7138 } 7139 } 7140 7141 /* 7142 * Now that the prefix IRE entry has been created, delete any 7143 * existing gateway IRE cache entries as well as any IRE caches 7144 * using the gateway, and force them to be created through 7145 * ip_newroute. 7146 */ 7147 if (gc != NULL) { 7148 ASSERT(gcgrp != NULL); 7149 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7150 } 7151 7152 save_ire: 7153 if (gw_ire != NULL) { 7154 ire_refrele(gw_ire); 7155 } 7156 if (ipif != NULL) { 7157 /* 7158 * Save enough information so that we can recreate the IRE if 7159 * the interface goes down and then up. The metrics associated 7160 * with the route will be saved as well when rts_setmetrics() is 7161 * called after the IRE has been created. In the case where 7162 * memory cannot be allocated, none of this information will be 7163 * saved. 7164 */ 7165 ipif_save_ire(ipif, ire); 7166 } 7167 if (ioctl_msg) 7168 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7169 if (ire_arg != NULL) { 7170 /* 7171 * Store the ire that was successfully added into where ire_arg 7172 * points to so that callers don't have to look it up 7173 * themselves (but they are responsible for ire_refrele()ing 7174 * the ire when they are finished with it). 7175 */ 7176 *ire_arg = ire; 7177 } else { 7178 ire_refrele(ire); /* Held in ire_add */ 7179 } 7180 if (ipif_refheld) 7181 ipif_refrele(ipif); 7182 return (0); 7183 } 7184 7185 /* 7186 * ip_rt_delete is called to delete an IPv4 route. 7187 * ipif_arg is passed in to associate it with the correct interface. 7188 * We may need to restart this operation if the ipif cannot be looked up 7189 * due to an exclusive operation that is currently in progress. The restart 7190 * entry point is specified by 'func' 7191 */ 7192 /* ARGSUSED4 */ 7193 int 7194 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7195 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7196 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7197 { 7198 ire_t *ire = NULL; 7199 ipif_t *ipif; 7200 boolean_t ipif_refheld = B_FALSE; 7201 uint_t type; 7202 uint_t match_flags = MATCH_IRE_TYPE; 7203 int err = 0; 7204 7205 ip1dbg(("ip_rt_delete:")); 7206 /* 7207 * If this is the case of RTF_HOST being set, then we set the netmask 7208 * to all ones. Otherwise, we use the netmask if one was supplied. 7209 */ 7210 if (flags & RTF_HOST) { 7211 mask = IP_HOST_MASK; 7212 match_flags |= MATCH_IRE_MASK; 7213 } else if (rtm_addrs & RTA_NETMASK) { 7214 match_flags |= MATCH_IRE_MASK; 7215 } 7216 7217 /* 7218 * Note that RTF_GATEWAY is never set on a delete, therefore 7219 * we check if the gateway address is one of our interfaces first, 7220 * and fall back on RTF_GATEWAY routes. 7221 * 7222 * This makes it possible to delete an original 7223 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7224 * 7225 * As the interface index specified with the RTA_IFP sockaddr is the 7226 * same for all ipif's off of an ill, the matching logic below uses 7227 * MATCH_IRE_ILL if such an index was specified. This means a route 7228 * sharing the same prefix and interface index as the the route 7229 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7230 * is specified in the request. 7231 * 7232 * On the other hand, since the gateway address will usually be 7233 * different for each ipif on the system, the matching logic 7234 * uses MATCH_IRE_IPIF in the case of a traditional interface 7235 * route. This means that interface routes for the same prefix can be 7236 * uniquely identified if they belong to distinct ipif's and if a 7237 * RTA_IFP sockaddr is not present. 7238 * 7239 * For more detail on specifying routes by gateway address and by 7240 * interface index, see the comments in ip_rt_add(). 7241 */ 7242 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7243 ipst); 7244 if (ipif != NULL) 7245 ipif_refheld = B_TRUE; 7246 else if (err == EINPROGRESS) 7247 return (err); 7248 else 7249 err = 0; 7250 if (ipif != NULL) { 7251 if (ipif_arg != NULL) { 7252 if (ipif_refheld) { 7253 ipif_refrele(ipif); 7254 ipif_refheld = B_FALSE; 7255 } 7256 ipif = ipif_arg; 7257 match_flags |= MATCH_IRE_ILL; 7258 } else { 7259 match_flags |= MATCH_IRE_IPIF; 7260 } 7261 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7262 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7263 ALL_ZONES, NULL, match_flags, ipst); 7264 } 7265 if (ire == NULL) { 7266 ire = ire_ftable_lookup(dst_addr, mask, 0, 7267 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7268 match_flags, ipst); 7269 } 7270 } 7271 7272 if (ire == NULL) { 7273 /* 7274 * At this point, the gateway address is not one of our own 7275 * addresses or a matching interface route was not found. We 7276 * set the IRE type to lookup based on whether 7277 * this is a host route, a default route or just a prefix. 7278 * 7279 * If an ipif_arg was passed in, then the lookup is based on an 7280 * interface index so MATCH_IRE_ILL is added to match_flags. 7281 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7282 * set as the route being looked up is not a traditional 7283 * interface route. 7284 */ 7285 match_flags &= ~MATCH_IRE_IPIF; 7286 match_flags |= MATCH_IRE_GW; 7287 if (ipif_arg != NULL) 7288 match_flags |= MATCH_IRE_ILL; 7289 if (mask == IP_HOST_MASK) 7290 type = IRE_HOST; 7291 else if (mask == 0) 7292 type = IRE_DEFAULT; 7293 else 7294 type = IRE_PREFIX; 7295 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7296 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7297 } 7298 7299 if (ipif_refheld) 7300 ipif_refrele(ipif); 7301 7302 /* ipif is not refheld anymore */ 7303 if (ire == NULL) 7304 return (ESRCH); 7305 7306 if (ire->ire_flags & RTF_MULTIRT) { 7307 /* 7308 * Invoke the CGTP (multirouting) filtering module 7309 * to remove the dst address from the filtering database. 7310 * Packets coming from that address will no longer be 7311 * filtered to remove duplicates. 7312 */ 7313 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7314 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7315 ipst->ips_netstack->netstack_stackid, 7316 ire->ire_addr, ire->ire_gateway_addr); 7317 } 7318 ip_cgtp_bcast_delete(ire, ipst); 7319 } 7320 7321 ipif = ire->ire_ipif; 7322 if (ipif != NULL) 7323 ipif_remove_ire(ipif, ire); 7324 if (ioctl_msg) 7325 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7326 ire_delete(ire); 7327 ire_refrele(ire); 7328 return (err); 7329 } 7330 7331 /* 7332 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7333 */ 7334 /* ARGSUSED */ 7335 int 7336 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7337 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7338 { 7339 ipaddr_t dst_addr; 7340 ipaddr_t gw_addr; 7341 ipaddr_t mask; 7342 int error = 0; 7343 mblk_t *mp1; 7344 struct rtentry *rt; 7345 ipif_t *ipif = NULL; 7346 ip_stack_t *ipst; 7347 7348 ASSERT(q->q_next == NULL); 7349 ipst = CONNQ_TO_IPST(q); 7350 7351 ip1dbg(("ip_siocaddrt:")); 7352 /* Existence of mp1 verified in ip_wput_nondata */ 7353 mp1 = mp->b_cont->b_cont; 7354 rt = (struct rtentry *)mp1->b_rptr; 7355 7356 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7357 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7358 7359 /* 7360 * If the RTF_HOST flag is on, this is a request to assign a gateway 7361 * to a particular host address. In this case, we set the netmask to 7362 * all ones for the particular destination address. Otherwise, 7363 * determine the netmask to be used based on dst_addr and the interfaces 7364 * in use. 7365 */ 7366 if (rt->rt_flags & RTF_HOST) { 7367 mask = IP_HOST_MASK; 7368 } else { 7369 /* 7370 * Note that ip_subnet_mask returns a zero mask in the case of 7371 * default (an all-zeroes address). 7372 */ 7373 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7374 } 7375 7376 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7377 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7378 if (ipif != NULL) 7379 ipif_refrele(ipif); 7380 return (error); 7381 } 7382 7383 /* 7384 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7385 */ 7386 /* ARGSUSED */ 7387 int 7388 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7389 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7390 { 7391 ipaddr_t dst_addr; 7392 ipaddr_t gw_addr; 7393 ipaddr_t mask; 7394 int error; 7395 mblk_t *mp1; 7396 struct rtentry *rt; 7397 ipif_t *ipif = NULL; 7398 ip_stack_t *ipst; 7399 7400 ASSERT(q->q_next == NULL); 7401 ipst = CONNQ_TO_IPST(q); 7402 7403 ip1dbg(("ip_siocdelrt:")); 7404 /* Existence of mp1 verified in ip_wput_nondata */ 7405 mp1 = mp->b_cont->b_cont; 7406 rt = (struct rtentry *)mp1->b_rptr; 7407 7408 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7409 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7410 7411 /* 7412 * If the RTF_HOST flag is on, this is a request to delete a gateway 7413 * to a particular host address. In this case, we set the netmask to 7414 * all ones for the particular destination address. Otherwise, 7415 * determine the netmask to be used based on dst_addr and the interfaces 7416 * in use. 7417 */ 7418 if (rt->rt_flags & RTF_HOST) { 7419 mask = IP_HOST_MASK; 7420 } else { 7421 /* 7422 * Note that ip_subnet_mask returns a zero mask in the case of 7423 * default (an all-zeroes address). 7424 */ 7425 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7426 } 7427 7428 error = ip_rt_delete(dst_addr, mask, gw_addr, 7429 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7430 mp, ip_process_ioctl, ipst); 7431 if (ipif != NULL) 7432 ipif_refrele(ipif); 7433 return (error); 7434 } 7435 7436 /* 7437 * Enqueue the mp onto the ipsq, chained by b_next. 7438 * b_prev stores the function to be executed later, and b_queue the queue 7439 * where this mp originated. 7440 */ 7441 void 7442 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7443 ill_t *pending_ill) 7444 { 7445 conn_t *connp; 7446 ipxop_t *ipx = ipsq->ipsq_xop; 7447 7448 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7449 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 7450 ASSERT(func != NULL); 7451 7452 mp->b_queue = q; 7453 mp->b_prev = (void *)func; 7454 mp->b_next = NULL; 7455 7456 switch (type) { 7457 case CUR_OP: 7458 if (ipx->ipx_mptail != NULL) { 7459 ASSERT(ipx->ipx_mphead != NULL); 7460 ipx->ipx_mptail->b_next = mp; 7461 } else { 7462 ASSERT(ipx->ipx_mphead == NULL); 7463 ipx->ipx_mphead = mp; 7464 } 7465 ipx->ipx_mptail = mp; 7466 break; 7467 7468 case NEW_OP: 7469 if (ipsq->ipsq_xopq_mptail != NULL) { 7470 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7471 ipsq->ipsq_xopq_mptail->b_next = mp; 7472 } else { 7473 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7474 ipsq->ipsq_xopq_mphead = mp; 7475 } 7476 ipsq->ipsq_xopq_mptail = mp; 7477 ipx->ipx_ipsq_queued = B_TRUE; 7478 break; 7479 7480 case SWITCH_OP: 7481 ASSERT(ipsq->ipsq_swxop != NULL); 7482 /* only one switch operation is currently allowed */ 7483 ASSERT(ipsq->ipsq_switch_mp == NULL); 7484 ipsq->ipsq_switch_mp = mp; 7485 ipx->ipx_ipsq_queued = B_TRUE; 7486 break; 7487 default: 7488 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7489 } 7490 7491 if (CONN_Q(q) && pending_ill != NULL) { 7492 connp = Q_TO_CONN(q); 7493 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7494 connp->conn_oper_pending_ill = pending_ill; 7495 } 7496 } 7497 7498 /* 7499 * Dequeue the next message that requested exclusive access to this IPSQ's 7500 * xop. Specifically: 7501 * 7502 * 1. If we're still processing the current operation on `ipsq', then 7503 * dequeue the next message for the operation (from ipx_mphead), or 7504 * return NULL if there are no queued messages for the operation. 7505 * These messages are queued via CUR_OP to qwriter_ip() and friends. 7506 * 7507 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 7508 * not set) see if the ipsq has requested an xop switch. If so, switch 7509 * `ipsq' to a different xop. Xop switches only happen when joining or 7510 * leaving IPMP groups and require a careful dance -- see the comments 7511 * in-line below for details. If we're leaving a group xop or if we're 7512 * joining a group xop and become writer on it, then we proceed to (3). 7513 * Otherwise, we return NULL and exit the xop. 7514 * 7515 * 3. For each IPSQ in the xop, return any switch operation stored on 7516 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 7517 * any other messages queued on the IPSQ. Otherwise, dequeue the next 7518 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 7519 * Note that if the phyint tied to `ipsq' is not using IPMP there will 7520 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 7521 * each phyint in the group, including the IPMP meta-interface phyint. 7522 */ 7523 static mblk_t * 7524 ipsq_dq(ipsq_t *ipsq) 7525 { 7526 ill_t *illv4, *illv6; 7527 mblk_t *mp; 7528 ipsq_t *xopipsq; 7529 ipsq_t *leftipsq = NULL; 7530 ipxop_t *ipx; 7531 phyint_t *phyi = ipsq->ipsq_phyint; 7532 ip_stack_t *ipst = ipsq->ipsq_ipst; 7533 boolean_t emptied = B_FALSE; 7534 7535 /* 7536 * Grab all the locks we need in the defined order (ill_g_lock -> 7537 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 7538 */ 7539 rw_enter(&ipst->ips_ill_g_lock, 7540 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 7541 mutex_enter(&ipsq->ipsq_lock); 7542 ipx = ipsq->ipsq_xop; 7543 mutex_enter(&ipx->ipx_lock); 7544 7545 /* 7546 * Dequeue the next message associated with the current exclusive 7547 * operation, if any. 7548 */ 7549 if ((mp = ipx->ipx_mphead) != NULL) { 7550 ipx->ipx_mphead = mp->b_next; 7551 if (ipx->ipx_mphead == NULL) 7552 ipx->ipx_mptail = NULL; 7553 mp->b_next = (void *)ipsq; 7554 goto out; 7555 } 7556 7557 if (ipx->ipx_current_ipif != NULL) 7558 goto empty; 7559 7560 if (ipsq->ipsq_swxop != NULL) { 7561 /* 7562 * The exclusive operation that is now being completed has 7563 * requested a switch to a different xop. This happens 7564 * when an interface joins or leaves an IPMP group. Joins 7565 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 7566 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 7567 * (phyint_free()), or interface plumb for an ill type 7568 * not in the IPMP group (ip_rput_dlpi_writer()). 7569 * 7570 * Xop switches are not allowed on the IPMP meta-interface. 7571 */ 7572 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 7573 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 7574 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 7575 7576 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 7577 /* 7578 * We're switching back to our own xop, so we have two 7579 * xop's to drain/exit: our own, and the group xop 7580 * that we are leaving. 7581 * 7582 * First, pull ourselves out of the group ipsq list. 7583 * This is safe since we're writer on ill_g_lock. 7584 */ 7585 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 7586 7587 xopipsq = ipx->ipx_ipsq; 7588 while (xopipsq->ipsq_next != ipsq) 7589 xopipsq = xopipsq->ipsq_next; 7590 7591 xopipsq->ipsq_next = ipsq->ipsq_next; 7592 ipsq->ipsq_next = ipsq; 7593 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7594 ipsq->ipsq_swxop = NULL; 7595 7596 /* 7597 * Second, prepare to exit the group xop. The actual 7598 * ipsq_exit() is done at the end of this function 7599 * since we cannot hold any locks across ipsq_exit(). 7600 * Note that although we drop the group's ipx_lock, no 7601 * threads can proceed since we're still ipx_writer. 7602 */ 7603 leftipsq = xopipsq; 7604 mutex_exit(&ipx->ipx_lock); 7605 7606 /* 7607 * Third, set ipx to point to our own xop (which was 7608 * inactive and therefore can be entered). 7609 */ 7610 ipx = ipsq->ipsq_xop; 7611 mutex_enter(&ipx->ipx_lock); 7612 ASSERT(ipx->ipx_writer == NULL); 7613 ASSERT(ipx->ipx_current_ipif == NULL); 7614 } else { 7615 /* 7616 * We're switching from our own xop to a group xop. 7617 * The requestor of the switch must ensure that the 7618 * group xop cannot go away (e.g. by ensuring the 7619 * phyint associated with the xop cannot go away). 7620 * 7621 * If we can become writer on our new xop, then we'll 7622 * do the drain. Otherwise, the current writer of our 7623 * new xop will do the drain when it exits. 7624 * 7625 * First, splice ourselves into the group IPSQ list. 7626 * This is safe since we're writer on ill_g_lock. 7627 */ 7628 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7629 7630 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 7631 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 7632 xopipsq = xopipsq->ipsq_next; 7633 7634 xopipsq->ipsq_next = ipsq; 7635 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 7636 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7637 ipsq->ipsq_swxop = NULL; 7638 7639 /* 7640 * Second, exit our own xop, since it's now unused. 7641 * This is safe since we've got the only reference. 7642 */ 7643 ASSERT(ipx->ipx_writer == curthread); 7644 ipx->ipx_writer = NULL; 7645 VERIFY(--ipx->ipx_reentry_cnt == 0); 7646 ipx->ipx_ipsq_queued = B_FALSE; 7647 mutex_exit(&ipx->ipx_lock); 7648 7649 /* 7650 * Third, set ipx to point to our new xop, and check 7651 * if we can become writer on it. If we cannot, then 7652 * the current writer will drain the IPSQ group when 7653 * it exits. Our ipsq_xop is guaranteed to be stable 7654 * because we're still holding ipsq_lock. 7655 */ 7656 ipx = ipsq->ipsq_xop; 7657 mutex_enter(&ipx->ipx_lock); 7658 if (ipx->ipx_writer != NULL || 7659 ipx->ipx_current_ipif != NULL) { 7660 goto out; 7661 } 7662 } 7663 7664 /* 7665 * Fourth, become writer on our new ipx before we continue 7666 * with the drain. Note that we never dropped ipsq_lock 7667 * above, so no other thread could've raced with us to 7668 * become writer first. Also, we're holding ipx_lock, so 7669 * no other thread can examine the ipx right now. 7670 */ 7671 ASSERT(ipx->ipx_current_ipif == NULL); 7672 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7673 VERIFY(ipx->ipx_reentry_cnt++ == 0); 7674 ipx->ipx_writer = curthread; 7675 ipx->ipx_forced = B_FALSE; 7676 #ifdef DEBUG 7677 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7678 #endif 7679 } 7680 7681 xopipsq = ipsq; 7682 do { 7683 /* 7684 * So that other operations operate on a consistent and 7685 * complete phyint, a switch message on an IPSQ must be 7686 * handled prior to any other operations on that IPSQ. 7687 */ 7688 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 7689 xopipsq->ipsq_switch_mp = NULL; 7690 ASSERT(mp->b_next == NULL); 7691 mp->b_next = (void *)xopipsq; 7692 goto out; 7693 } 7694 7695 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 7696 xopipsq->ipsq_xopq_mphead = mp->b_next; 7697 if (xopipsq->ipsq_xopq_mphead == NULL) 7698 xopipsq->ipsq_xopq_mptail = NULL; 7699 mp->b_next = (void *)xopipsq; 7700 goto out; 7701 } 7702 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7703 empty: 7704 /* 7705 * There are no messages. Further, we are holding ipx_lock, hence no 7706 * new messages can end up on any IPSQ in the xop. 7707 */ 7708 ipx->ipx_writer = NULL; 7709 ipx->ipx_forced = B_FALSE; 7710 VERIFY(--ipx->ipx_reentry_cnt == 0); 7711 ipx->ipx_ipsq_queued = B_FALSE; 7712 emptied = B_TRUE; 7713 #ifdef DEBUG 7714 ipx->ipx_depth = 0; 7715 #endif 7716 out: 7717 mutex_exit(&ipx->ipx_lock); 7718 mutex_exit(&ipsq->ipsq_lock); 7719 7720 /* 7721 * If we completely emptied the xop, then wake up any threads waiting 7722 * to enter any of the IPSQ's associated with it. 7723 */ 7724 if (emptied) { 7725 xopipsq = ipsq; 7726 do { 7727 if ((phyi = xopipsq->ipsq_phyint) == NULL) 7728 continue; 7729 7730 illv4 = phyi->phyint_illv4; 7731 illv6 = phyi->phyint_illv6; 7732 7733 GRAB_ILL_LOCKS(illv4, illv6); 7734 if (illv4 != NULL) 7735 cv_broadcast(&illv4->ill_cv); 7736 if (illv6 != NULL) 7737 cv_broadcast(&illv6->ill_cv); 7738 RELEASE_ILL_LOCKS(illv4, illv6); 7739 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7740 } 7741 rw_exit(&ipst->ips_ill_g_lock); 7742 7743 /* 7744 * Now that all locks are dropped, exit the IPSQ we left. 7745 */ 7746 if (leftipsq != NULL) 7747 ipsq_exit(leftipsq); 7748 7749 return (mp); 7750 } 7751 7752 /* 7753 * Enter the ipsq corresponding to ill, by waiting synchronously till 7754 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7755 * will have to drain completely before ipsq_enter returns success. 7756 * ipx_current_ipif will be set if some exclusive op is in progress, 7757 * and the ipsq_exit logic will start the next enqueued op after 7758 * completion of the current op. If 'force' is used, we don't wait 7759 * for the enqueued ops. This is needed when a conn_close wants to 7760 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7761 * of an ill can also use this option. But we dont' use it currently. 7762 */ 7763 #define ENTER_SQ_WAIT_TICKS 100 7764 boolean_t 7765 ipsq_enter(ill_t *ill, boolean_t force, int type) 7766 { 7767 ipsq_t *ipsq; 7768 ipxop_t *ipx; 7769 boolean_t waited_enough = B_FALSE; 7770 7771 /* 7772 * Note that the relationship between ill and ipsq is fixed as long as 7773 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 7774 * relationship between the IPSQ and xop cannot change. However, 7775 * since we cannot hold ipsq_lock across the cv_wait(), it may change 7776 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 7777 * waking up all ills in the xop when it becomes available. 7778 */ 7779 mutex_enter(&ill->ill_lock); 7780 for (;;) { 7781 if (ill->ill_state_flags & ILL_CONDEMNED) { 7782 mutex_exit(&ill->ill_lock); 7783 return (B_FALSE); 7784 } 7785 7786 ipsq = ill->ill_phyint->phyint_ipsq; 7787 mutex_enter(&ipsq->ipsq_lock); 7788 ipx = ipsq->ipsq_xop; 7789 mutex_enter(&ipx->ipx_lock); 7790 7791 if (ipx->ipx_writer == NULL && (type == CUR_OP || 7792 ipx->ipx_current_ipif == NULL || waited_enough)) 7793 break; 7794 7795 if (!force || ipx->ipx_writer != NULL) { 7796 mutex_exit(&ipx->ipx_lock); 7797 mutex_exit(&ipsq->ipsq_lock); 7798 cv_wait(&ill->ill_cv, &ill->ill_lock); 7799 } else { 7800 mutex_exit(&ipx->ipx_lock); 7801 mutex_exit(&ipsq->ipsq_lock); 7802 (void) cv_timedwait(&ill->ill_cv, 7803 &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS); 7804 waited_enough = B_TRUE; 7805 } 7806 } 7807 7808 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7809 ASSERT(ipx->ipx_reentry_cnt == 0); 7810 ipx->ipx_writer = curthread; 7811 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 7812 ipx->ipx_reentry_cnt++; 7813 #ifdef DEBUG 7814 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7815 #endif 7816 mutex_exit(&ipx->ipx_lock); 7817 mutex_exit(&ipsq->ipsq_lock); 7818 mutex_exit(&ill->ill_lock); 7819 return (B_TRUE); 7820 } 7821 7822 boolean_t 7823 ill_perim_enter(ill_t *ill) 7824 { 7825 return (ipsq_enter(ill, B_FALSE, CUR_OP)); 7826 } 7827 7828 void 7829 ill_perim_exit(ill_t *ill) 7830 { 7831 ipsq_exit(ill->ill_phyint->phyint_ipsq); 7832 } 7833 7834 /* 7835 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7836 * certain critical operations like plumbing (i.e. most set ioctls), multicast 7837 * joins, igmp/mld timers, etc. There is one ipsq per phyint. The ipsq 7838 * serializes exclusive ioctls issued by applications on a per ipsq basis in 7839 * ipsq_xopq_mphead. It also protects against multiple threads executing in 7840 * the ipsq. Responses from the driver pertain to the current ioctl (say a 7841 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 7842 * up the interface) and are enqueued in ipx_mphead. 7843 * 7844 * If a thread does not want to reenter the ipsq when it is already writer, 7845 * it must make sure that the specified reentry point to be called later 7846 * when the ipsq is empty, nor any code path starting from the specified reentry 7847 * point must never ever try to enter the ipsq again. Otherwise it can lead 7848 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7849 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7850 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 7851 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 7852 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7853 * ioctl if the current ioctl has completed. If the current ioctl is still 7854 * in progress it simply returns. The current ioctl could be waiting for 7855 * a response from another module (arp or the driver or could be waiting for 7856 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 7857 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 7858 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7859 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 7860 * all associated DLPI operations have completed. 7861 */ 7862 7863 /* 7864 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 7865 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 7866 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 7867 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 7868 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 7869 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 7870 */ 7871 ipsq_t * 7872 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7873 ipsq_func_t func, int type, boolean_t reentry_ok) 7874 { 7875 ipsq_t *ipsq; 7876 ipxop_t *ipx; 7877 7878 /* Only 1 of ipif or ill can be specified */ 7879 ASSERT((ipif != NULL) ^ (ill != NULL)); 7880 if (ipif != NULL) 7881 ill = ipif->ipif_ill; 7882 7883 /* 7884 * lock ordering: conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 7885 * ipx of an ipsq can't change when ipsq_lock is held. 7886 */ 7887 GRAB_CONN_LOCK(q); 7888 mutex_enter(&ill->ill_lock); 7889 ipsq = ill->ill_phyint->phyint_ipsq; 7890 mutex_enter(&ipsq->ipsq_lock); 7891 ipx = ipsq->ipsq_xop; 7892 mutex_enter(&ipx->ipx_lock); 7893 7894 /* 7895 * 1. Enter the ipsq if we are already writer and reentry is ok. 7896 * (Note: If the caller does not specify reentry_ok then neither 7897 * 'func' nor any of its callees must ever attempt to enter the ipsq 7898 * again. Otherwise it can lead to an infinite loop 7899 * 2. Enter the ipsq if there is no current writer and this attempted 7900 * entry is part of the current operation 7901 * 3. Enter the ipsq if there is no current writer and this is a new 7902 * operation and the operation queue is empty and there is no 7903 * operation currently in progress 7904 */ 7905 if ((ipx->ipx_writer == curthread && reentry_ok) || 7906 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 7907 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL)))) { 7908 /* Success. */ 7909 ipx->ipx_reentry_cnt++; 7910 ipx->ipx_writer = curthread; 7911 ipx->ipx_forced = B_FALSE; 7912 mutex_exit(&ipx->ipx_lock); 7913 mutex_exit(&ipsq->ipsq_lock); 7914 mutex_exit(&ill->ill_lock); 7915 RELEASE_CONN_LOCK(q); 7916 #ifdef DEBUG 7917 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7918 #endif 7919 return (ipsq); 7920 } 7921 7922 if (func != NULL) 7923 ipsq_enq(ipsq, q, mp, func, type, ill); 7924 7925 mutex_exit(&ipx->ipx_lock); 7926 mutex_exit(&ipsq->ipsq_lock); 7927 mutex_exit(&ill->ill_lock); 7928 RELEASE_CONN_LOCK(q); 7929 return (NULL); 7930 } 7931 7932 /* 7933 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7934 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7935 * cannot be entered, the mp is queued for completion. 7936 */ 7937 void 7938 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7939 boolean_t reentry_ok) 7940 { 7941 ipsq_t *ipsq; 7942 7943 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7944 7945 /* 7946 * Drop the caller's refhold on the ill. This is safe since we either 7947 * entered the IPSQ (and thus are exclusive), or failed to enter the 7948 * IPSQ, in which case we return without accessing ill anymore. This 7949 * is needed because func needs to see the correct refcount. 7950 * e.g. removeif can work only then. 7951 */ 7952 ill_refrele(ill); 7953 if (ipsq != NULL) { 7954 (*func)(ipsq, q, mp, NULL); 7955 ipsq_exit(ipsq); 7956 } 7957 } 7958 7959 /* 7960 * Exit the specified IPSQ. If this is the final exit on it then drain it 7961 * prior to exiting. Caller must be writer on the specified IPSQ. 7962 */ 7963 void 7964 ipsq_exit(ipsq_t *ipsq) 7965 { 7966 mblk_t *mp; 7967 ipsq_t *mp_ipsq; 7968 queue_t *q; 7969 phyint_t *phyi; 7970 ipsq_func_t func; 7971 7972 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7973 7974 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 7975 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 7976 ipsq->ipsq_xop->ipx_reentry_cnt--; 7977 return; 7978 } 7979 7980 for (;;) { 7981 phyi = ipsq->ipsq_phyint; 7982 mp = ipsq_dq(ipsq); 7983 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 7984 7985 /* 7986 * If we've changed to a new IPSQ, and the phyint associated 7987 * with the old one has gone away, free the old IPSQ. Note 7988 * that this cannot happen while the IPSQ is in a group. 7989 */ 7990 if (mp_ipsq != ipsq && phyi == NULL) { 7991 ASSERT(ipsq->ipsq_next == ipsq); 7992 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7993 ipsq_delete(ipsq); 7994 } 7995 7996 if (mp == NULL) 7997 break; 7998 7999 q = mp->b_queue; 8000 func = (ipsq_func_t)mp->b_prev; 8001 ipsq = mp_ipsq; 8002 mp->b_next = mp->b_prev = NULL; 8003 mp->b_queue = NULL; 8004 8005 /* 8006 * If 'q' is an conn queue, it is valid, since we did a 8007 * a refhold on the conn at the start of the ioctl. 8008 * If 'q' is an ill queue, it is valid, since close of an 8009 * ill will clean up its IPSQ. 8010 */ 8011 (*func)(ipsq, q, mp, NULL); 8012 } 8013 } 8014 8015 /* 8016 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8017 * and `ioccmd'. 8018 */ 8019 void 8020 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8021 { 8022 ipxop_t *ipx = ipsq->ipsq_xop; 8023 8024 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8025 ASSERT(ipx->ipx_current_ipif == NULL); 8026 ASSERT(ipx->ipx_current_ioctl == 0); 8027 8028 ipx->ipx_current_done = B_FALSE; 8029 ipx->ipx_current_ioctl = ioccmd; 8030 mutex_enter(&ipx->ipx_lock); 8031 ipx->ipx_current_ipif = ipif; 8032 mutex_exit(&ipx->ipx_lock); 8033 } 8034 8035 /* 8036 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 8037 * the next exclusive operation to begin once we ipsq_exit(). However, if 8038 * pending DLPI operations remain, then we will wait for the queue to drain 8039 * before allowing the next exclusive operation to begin. This ensures that 8040 * DLPI operations from one exclusive operation are never improperly processed 8041 * as part of a subsequent exclusive operation. 8042 */ 8043 void 8044 ipsq_current_finish(ipsq_t *ipsq) 8045 { 8046 ipxop_t *ipx = ipsq->ipsq_xop; 8047 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 8048 ipif_t *ipif = ipx->ipx_current_ipif; 8049 8050 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8051 8052 /* 8053 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 8054 * (but in that case, IPIF_CHANGING will already be clear and no 8055 * pending DLPI messages can remain). 8056 */ 8057 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 8058 ill_t *ill = ipif->ipif_ill; 8059 8060 mutex_enter(&ill->ill_lock); 8061 dlpi_pending = ill->ill_dlpi_pending; 8062 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8063 mutex_exit(&ill->ill_lock); 8064 } 8065 8066 ASSERT(!ipx->ipx_current_done); 8067 ipx->ipx_current_done = B_TRUE; 8068 ipx->ipx_current_ioctl = 0; 8069 if (dlpi_pending == DL_PRIM_INVAL) { 8070 mutex_enter(&ipx->ipx_lock); 8071 ipx->ipx_current_ipif = NULL; 8072 mutex_exit(&ipx->ipx_lock); 8073 } 8074 } 8075 8076 /* 8077 * The ill is closing. Flush all messages on the ipsq that originated 8078 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8079 * for this ill since ipsq_enter could not have entered until then. 8080 * New messages can't be queued since the CONDEMNED flag is set. 8081 */ 8082 static void 8083 ipsq_flush(ill_t *ill) 8084 { 8085 queue_t *q; 8086 mblk_t *prev; 8087 mblk_t *mp; 8088 mblk_t *mp_next; 8089 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 8090 8091 ASSERT(IAM_WRITER_ILL(ill)); 8092 8093 /* 8094 * Flush any messages sent up by the driver. 8095 */ 8096 mutex_enter(&ipx->ipx_lock); 8097 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 8098 mp_next = mp->b_next; 8099 q = mp->b_queue; 8100 if (q == ill->ill_rq || q == ill->ill_wq) { 8101 /* dequeue mp */ 8102 if (prev == NULL) 8103 ipx->ipx_mphead = mp->b_next; 8104 else 8105 prev->b_next = mp->b_next; 8106 if (ipx->ipx_mptail == mp) { 8107 ASSERT(mp_next == NULL); 8108 ipx->ipx_mptail = prev; 8109 } 8110 inet_freemsg(mp); 8111 } else { 8112 prev = mp; 8113 } 8114 } 8115 mutex_exit(&ipx->ipx_lock); 8116 (void) ipsq_pending_mp_cleanup(ill, NULL); 8117 ipsq_xopq_mp_cleanup(ill, NULL); 8118 ill_pending_mp_cleanup(ill); 8119 } 8120 8121 /* 8122 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8123 * refhold and return the associated ipif 8124 */ 8125 /* ARGSUSED */ 8126 int 8127 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8128 cmd_info_t *ci, ipsq_func_t func) 8129 { 8130 boolean_t exists; 8131 struct iftun_req *ta; 8132 ipif_t *ipif; 8133 ill_t *ill; 8134 boolean_t isv6; 8135 mblk_t *mp1; 8136 int error; 8137 conn_t *connp; 8138 ip_stack_t *ipst; 8139 8140 /* Existence verified in ip_wput_nondata */ 8141 mp1 = mp->b_cont->b_cont; 8142 ta = (struct iftun_req *)mp1->b_rptr; 8143 /* 8144 * Null terminate the string to protect against buffer 8145 * overrun. String was generated by user code and may not 8146 * be trusted. 8147 */ 8148 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8149 8150 connp = Q_TO_CONN(q); 8151 isv6 = connp->conn_af_isv6; 8152 ipst = connp->conn_netstack->netstack_ip; 8153 8154 /* Disallows implicit create */ 8155 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8156 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8157 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8158 if (ipif == NULL) 8159 return (error); 8160 8161 if (ipif->ipif_id != 0) { 8162 /* 8163 * We really don't want to set/get tunnel parameters 8164 * on virtual tunnel interfaces. Only allow the 8165 * base tunnel to do these. 8166 */ 8167 ipif_refrele(ipif); 8168 return (EINVAL); 8169 } 8170 8171 /* 8172 * Send down to tunnel mod for ioctl processing. 8173 * Will finish ioctl in ip_rput_other(). 8174 */ 8175 ill = ipif->ipif_ill; 8176 if (ill->ill_net_type == IRE_LOOPBACK) { 8177 ipif_refrele(ipif); 8178 return (EOPNOTSUPP); 8179 } 8180 8181 if (ill->ill_wq == NULL) { 8182 ipif_refrele(ipif); 8183 return (ENXIO); 8184 } 8185 /* 8186 * Mark the ioctl as coming from an IPv6 interface for 8187 * tun's convenience. 8188 */ 8189 if (ill->ill_isv6) 8190 ta->ifta_flags |= 0x80000000; 8191 ci->ci_ipif = ipif; 8192 return (0); 8193 } 8194 8195 /* 8196 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8197 * and return the associated ipif. 8198 * Return value: 8199 * Non zero: An error has occurred. ci may not be filled out. 8200 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8201 * a held ipif in ci.ci_ipif. 8202 */ 8203 int 8204 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8205 cmd_info_t *ci, ipsq_func_t func) 8206 { 8207 char *name; 8208 struct ifreq *ifr; 8209 struct lifreq *lifr; 8210 ipif_t *ipif = NULL; 8211 ill_t *ill; 8212 conn_t *connp; 8213 boolean_t isv6; 8214 boolean_t exists; 8215 int err; 8216 mblk_t *mp1; 8217 zoneid_t zoneid; 8218 ip_stack_t *ipst; 8219 8220 if (q->q_next != NULL) { 8221 ill = (ill_t *)q->q_ptr; 8222 isv6 = ill->ill_isv6; 8223 connp = NULL; 8224 zoneid = ALL_ZONES; 8225 ipst = ill->ill_ipst; 8226 } else { 8227 ill = NULL; 8228 connp = Q_TO_CONN(q); 8229 isv6 = connp->conn_af_isv6; 8230 zoneid = connp->conn_zoneid; 8231 if (zoneid == GLOBAL_ZONEID) { 8232 /* global zone can access ipifs in all zones */ 8233 zoneid = ALL_ZONES; 8234 } 8235 ipst = connp->conn_netstack->netstack_ip; 8236 } 8237 8238 /* Has been checked in ip_wput_nondata */ 8239 mp1 = mp->b_cont->b_cont; 8240 8241 if (ipip->ipi_cmd_type == IF_CMD) { 8242 /* This a old style SIOC[GS]IF* command */ 8243 ifr = (struct ifreq *)mp1->b_rptr; 8244 /* 8245 * Null terminate the string to protect against buffer 8246 * overrun. String was generated by user code and may not 8247 * be trusted. 8248 */ 8249 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8250 name = ifr->ifr_name; 8251 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 8252 ci->ci_sin6 = NULL; 8253 ci->ci_lifr = (struct lifreq *)ifr; 8254 } else { 8255 /* This a new style SIOC[GS]LIF* command */ 8256 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8257 lifr = (struct lifreq *)mp1->b_rptr; 8258 /* 8259 * Null terminate the string to protect against buffer 8260 * overrun. String was generated by user code and may not 8261 * be trusted. 8262 */ 8263 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8264 name = lifr->lifr_name; 8265 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 8266 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 8267 ci->ci_lifr = lifr; 8268 } 8269 8270 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8271 /* 8272 * The ioctl will be failed if the ioctl comes down 8273 * an conn stream 8274 */ 8275 if (ill == NULL) { 8276 /* 8277 * Not an ill queue, return EINVAL same as the 8278 * old error code. 8279 */ 8280 return (ENXIO); 8281 } 8282 ipif = ill->ill_ipif; 8283 ipif_refhold(ipif); 8284 } else { 8285 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8286 &exists, isv6, zoneid, 8287 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8288 ipst); 8289 if (ipif == NULL) { 8290 if (err == EINPROGRESS) 8291 return (err); 8292 err = 0; /* Ensure we don't use it below */ 8293 } 8294 } 8295 8296 /* 8297 * Old style [GS]IFCMD does not admit IPv6 ipif 8298 */ 8299 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8300 ipif_refrele(ipif); 8301 return (ENXIO); 8302 } 8303 8304 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8305 name[0] == '\0') { 8306 /* 8307 * Handle a or a SIOC?IF* with a null name 8308 * during plumb (on the ill queue before the I_PLINK). 8309 */ 8310 ipif = ill->ill_ipif; 8311 ipif_refhold(ipif); 8312 } 8313 8314 if (ipif == NULL) 8315 return (ENXIO); 8316 8317 ci->ci_ipif = ipif; 8318 return (0); 8319 } 8320 8321 /* 8322 * Return the total number of ipifs. 8323 */ 8324 static uint_t 8325 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8326 { 8327 uint_t numifs = 0; 8328 ill_t *ill; 8329 ill_walk_context_t ctx; 8330 ipif_t *ipif; 8331 8332 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8333 ill = ILL_START_WALK_V4(&ctx, ipst); 8334 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8335 if (IS_UNDER_IPMP(ill)) 8336 continue; 8337 for (ipif = ill->ill_ipif; ipif != NULL; 8338 ipif = ipif->ipif_next) { 8339 if (ipif->ipif_zoneid == zoneid || 8340 ipif->ipif_zoneid == ALL_ZONES) 8341 numifs++; 8342 } 8343 } 8344 rw_exit(&ipst->ips_ill_g_lock); 8345 return (numifs); 8346 } 8347 8348 /* 8349 * Return the total number of ipifs. 8350 */ 8351 static uint_t 8352 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8353 { 8354 uint_t numifs = 0; 8355 ill_t *ill; 8356 ipif_t *ipif; 8357 ill_walk_context_t ctx; 8358 8359 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8360 8361 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8362 if (family == AF_INET) 8363 ill = ILL_START_WALK_V4(&ctx, ipst); 8364 else if (family == AF_INET6) 8365 ill = ILL_START_WALK_V6(&ctx, ipst); 8366 else 8367 ill = ILL_START_WALK_ALL(&ctx, ipst); 8368 8369 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8370 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 8371 continue; 8372 8373 for (ipif = ill->ill_ipif; ipif != NULL; 8374 ipif = ipif->ipif_next) { 8375 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8376 !(lifn_flags & LIFC_NOXMIT)) 8377 continue; 8378 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8379 !(lifn_flags & LIFC_TEMPORARY)) 8380 continue; 8381 if (((ipif->ipif_flags & 8382 (IPIF_NOXMIT|IPIF_NOLOCAL| 8383 IPIF_DEPRECATED)) || 8384 IS_LOOPBACK(ill) || 8385 !(ipif->ipif_flags & IPIF_UP)) && 8386 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8387 continue; 8388 8389 if (zoneid != ipif->ipif_zoneid && 8390 ipif->ipif_zoneid != ALL_ZONES && 8391 (zoneid != GLOBAL_ZONEID || 8392 !(lifn_flags & LIFC_ALLZONES))) 8393 continue; 8394 8395 numifs++; 8396 } 8397 } 8398 rw_exit(&ipst->ips_ill_g_lock); 8399 return (numifs); 8400 } 8401 8402 uint_t 8403 ip_get_lifsrcofnum(ill_t *ill) 8404 { 8405 uint_t numifs = 0; 8406 ill_t *ill_head = ill; 8407 ip_stack_t *ipst = ill->ill_ipst; 8408 8409 /* 8410 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8411 * other thread may be trying to relink the ILLs in this usesrc group 8412 * and adjusting the ill_usesrc_grp_next pointers 8413 */ 8414 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8415 if ((ill->ill_usesrc_ifindex == 0) && 8416 (ill->ill_usesrc_grp_next != NULL)) { 8417 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8418 ill = ill->ill_usesrc_grp_next) 8419 numifs++; 8420 } 8421 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8422 8423 return (numifs); 8424 } 8425 8426 /* Null values are passed in for ipif, sin, and ifreq */ 8427 /* ARGSUSED */ 8428 int 8429 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8430 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8431 { 8432 int *nump; 8433 conn_t *connp = Q_TO_CONN(q); 8434 8435 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8436 8437 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8438 nump = (int *)mp->b_cont->b_cont->b_rptr; 8439 8440 *nump = ip_get_numifs(connp->conn_zoneid, 8441 connp->conn_netstack->netstack_ip); 8442 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8443 return (0); 8444 } 8445 8446 /* Null values are passed in for ipif, sin, and ifreq */ 8447 /* ARGSUSED */ 8448 int 8449 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8450 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8451 { 8452 struct lifnum *lifn; 8453 mblk_t *mp1; 8454 conn_t *connp = Q_TO_CONN(q); 8455 8456 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8457 8458 /* Existence checked in ip_wput_nondata */ 8459 mp1 = mp->b_cont->b_cont; 8460 8461 lifn = (struct lifnum *)mp1->b_rptr; 8462 switch (lifn->lifn_family) { 8463 case AF_UNSPEC: 8464 case AF_INET: 8465 case AF_INET6: 8466 break; 8467 default: 8468 return (EAFNOSUPPORT); 8469 } 8470 8471 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8472 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8473 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8474 return (0); 8475 } 8476 8477 /* ARGSUSED */ 8478 int 8479 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8480 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8481 { 8482 STRUCT_HANDLE(ifconf, ifc); 8483 mblk_t *mp1; 8484 struct iocblk *iocp; 8485 struct ifreq *ifr; 8486 ill_walk_context_t ctx; 8487 ill_t *ill; 8488 ipif_t *ipif; 8489 struct sockaddr_in *sin; 8490 int32_t ifclen; 8491 zoneid_t zoneid; 8492 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8493 8494 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8495 8496 ip1dbg(("ip_sioctl_get_ifconf")); 8497 /* Existence verified in ip_wput_nondata */ 8498 mp1 = mp->b_cont->b_cont; 8499 iocp = (struct iocblk *)mp->b_rptr; 8500 zoneid = Q_TO_CONN(q)->conn_zoneid; 8501 8502 /* 8503 * The original SIOCGIFCONF passed in a struct ifconf which specified 8504 * the user buffer address and length into which the list of struct 8505 * ifreqs was to be copied. Since AT&T Streams does not seem to 8506 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8507 * the SIOCGIFCONF operation was redefined to simply provide 8508 * a large output buffer into which we are supposed to jam the ifreq 8509 * array. The same ioctl command code was used, despite the fact that 8510 * both the applications and the kernel code had to change, thus making 8511 * it impossible to support both interfaces. 8512 * 8513 * For reasons not good enough to try to explain, the following 8514 * algorithm is used for deciding what to do with one of these: 8515 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8516 * form with the output buffer coming down as the continuation message. 8517 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8518 * and we have to copy in the ifconf structure to find out how big the 8519 * output buffer is and where to copy out to. Sure no problem... 8520 * 8521 */ 8522 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8523 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8524 int numifs = 0; 8525 size_t ifc_bufsize; 8526 8527 /* 8528 * Must be (better be!) continuation of a TRANSPARENT 8529 * IOCTL. We just copied in the ifconf structure. 8530 */ 8531 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8532 (struct ifconf *)mp1->b_rptr); 8533 8534 /* 8535 * Allocate a buffer to hold requested information. 8536 * 8537 * If ifc_len is larger than what is needed, we only 8538 * allocate what we will use. 8539 * 8540 * If ifc_len is smaller than what is needed, return 8541 * EINVAL. 8542 * 8543 * XXX: the ill_t structure can hava 2 counters, for 8544 * v4 and v6 (not just ill_ipif_up_count) to store the 8545 * number of interfaces for a device, so we don't need 8546 * to count them here... 8547 */ 8548 numifs = ip_get_numifs(zoneid, ipst); 8549 8550 ifclen = STRUCT_FGET(ifc, ifc_len); 8551 ifc_bufsize = numifs * sizeof (struct ifreq); 8552 if (ifc_bufsize > ifclen) { 8553 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8554 /* old behaviour */ 8555 return (EINVAL); 8556 } else { 8557 ifc_bufsize = ifclen; 8558 } 8559 } 8560 8561 mp1 = mi_copyout_alloc(q, mp, 8562 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8563 if (mp1 == NULL) 8564 return (ENOMEM); 8565 8566 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8567 } 8568 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8569 /* 8570 * the SIOCGIFCONF ioctl only knows about 8571 * IPv4 addresses, so don't try to tell 8572 * it about interfaces with IPv6-only 8573 * addresses. (Last parm 'isv6' is B_FALSE) 8574 */ 8575 8576 ifr = (struct ifreq *)mp1->b_rptr; 8577 8578 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8579 ill = ILL_START_WALK_V4(&ctx, ipst); 8580 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8581 if (IS_UNDER_IPMP(ill)) 8582 continue; 8583 for (ipif = ill->ill_ipif; ipif != NULL; 8584 ipif = ipif->ipif_next) { 8585 if (zoneid != ipif->ipif_zoneid && 8586 ipif->ipif_zoneid != ALL_ZONES) 8587 continue; 8588 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8589 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8590 /* old behaviour */ 8591 rw_exit(&ipst->ips_ill_g_lock); 8592 return (EINVAL); 8593 } else { 8594 goto if_copydone; 8595 } 8596 } 8597 ipif_get_name(ipif, ifr->ifr_name, 8598 sizeof (ifr->ifr_name)); 8599 sin = (sin_t *)&ifr->ifr_addr; 8600 *sin = sin_null; 8601 sin->sin_family = AF_INET; 8602 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8603 ifr++; 8604 } 8605 } 8606 if_copydone: 8607 rw_exit(&ipst->ips_ill_g_lock); 8608 mp1->b_wptr = (uchar_t *)ifr; 8609 8610 if (STRUCT_BUF(ifc) != NULL) { 8611 STRUCT_FSET(ifc, ifc_len, 8612 (int)((uchar_t *)ifr - mp1->b_rptr)); 8613 } 8614 return (0); 8615 } 8616 8617 /* 8618 * Get the interfaces using the address hosted on the interface passed in, 8619 * as a source adddress 8620 */ 8621 /* ARGSUSED */ 8622 int 8623 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8624 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8625 { 8626 mblk_t *mp1; 8627 ill_t *ill, *ill_head; 8628 ipif_t *ipif, *orig_ipif; 8629 int numlifs = 0; 8630 size_t lifs_bufsize, lifsmaxlen; 8631 struct lifreq *lifr; 8632 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8633 uint_t ifindex; 8634 zoneid_t zoneid; 8635 int err = 0; 8636 boolean_t isv6 = B_FALSE; 8637 struct sockaddr_in *sin; 8638 struct sockaddr_in6 *sin6; 8639 STRUCT_HANDLE(lifsrcof, lifs); 8640 ip_stack_t *ipst; 8641 8642 ipst = CONNQ_TO_IPST(q); 8643 8644 ASSERT(q->q_next == NULL); 8645 8646 zoneid = Q_TO_CONN(q)->conn_zoneid; 8647 8648 /* Existence verified in ip_wput_nondata */ 8649 mp1 = mp->b_cont->b_cont; 8650 8651 /* 8652 * Must be (better be!) continuation of a TRANSPARENT 8653 * IOCTL. We just copied in the lifsrcof structure. 8654 */ 8655 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8656 (struct lifsrcof *)mp1->b_rptr); 8657 8658 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8659 return (EINVAL); 8660 8661 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8662 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8663 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8664 ip_process_ioctl, &err, ipst); 8665 if (ipif == NULL) { 8666 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8667 ifindex)); 8668 return (err); 8669 } 8670 8671 /* Allocate a buffer to hold requested information */ 8672 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8673 lifs_bufsize = numlifs * sizeof (struct lifreq); 8674 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8675 /* The actual size needed is always returned in lifs_len */ 8676 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8677 8678 /* If the amount we need is more than what is passed in, abort */ 8679 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8680 ipif_refrele(ipif); 8681 return (0); 8682 } 8683 8684 mp1 = mi_copyout_alloc(q, mp, 8685 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8686 if (mp1 == NULL) { 8687 ipif_refrele(ipif); 8688 return (ENOMEM); 8689 } 8690 8691 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8692 bzero(mp1->b_rptr, lifs_bufsize); 8693 8694 lifr = (struct lifreq *)mp1->b_rptr; 8695 8696 ill = ill_head = ipif->ipif_ill; 8697 orig_ipif = ipif; 8698 8699 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8700 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8701 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8702 8703 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8704 for (; (ill != NULL) && (ill != ill_head); 8705 ill = ill->ill_usesrc_grp_next) { 8706 8707 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8708 break; 8709 8710 ipif = ill->ill_ipif; 8711 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8712 if (ipif->ipif_isv6) { 8713 sin6 = (sin6_t *)&lifr->lifr_addr; 8714 *sin6 = sin6_null; 8715 sin6->sin6_family = AF_INET6; 8716 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8717 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8718 &ipif->ipif_v6net_mask); 8719 } else { 8720 sin = (sin_t *)&lifr->lifr_addr; 8721 *sin = sin_null; 8722 sin->sin_family = AF_INET; 8723 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8724 lifr->lifr_addrlen = ip_mask_to_plen( 8725 ipif->ipif_net_mask); 8726 } 8727 lifr++; 8728 } 8729 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8730 rw_exit(&ipst->ips_ill_g_lock); 8731 ipif_refrele(orig_ipif); 8732 mp1->b_wptr = (uchar_t *)lifr; 8733 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8734 8735 return (0); 8736 } 8737 8738 /* ARGSUSED */ 8739 int 8740 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8741 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8742 { 8743 mblk_t *mp1; 8744 int list; 8745 ill_t *ill; 8746 ipif_t *ipif; 8747 int flags; 8748 int numlifs = 0; 8749 size_t lifc_bufsize; 8750 struct lifreq *lifr; 8751 sa_family_t family; 8752 struct sockaddr_in *sin; 8753 struct sockaddr_in6 *sin6; 8754 ill_walk_context_t ctx; 8755 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8756 int32_t lifclen; 8757 zoneid_t zoneid; 8758 STRUCT_HANDLE(lifconf, lifc); 8759 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8760 8761 ip1dbg(("ip_sioctl_get_lifconf")); 8762 8763 ASSERT(q->q_next == NULL); 8764 8765 zoneid = Q_TO_CONN(q)->conn_zoneid; 8766 8767 /* Existence verified in ip_wput_nondata */ 8768 mp1 = mp->b_cont->b_cont; 8769 8770 /* 8771 * An extended version of SIOCGIFCONF that takes an 8772 * additional address family and flags field. 8773 * AF_UNSPEC retrieve both IPv4 and IPv6. 8774 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8775 * interfaces are omitted. 8776 * Similarly, IPIF_TEMPORARY interfaces are omitted 8777 * unless LIFC_TEMPORARY is specified. 8778 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8779 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8780 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8781 * has priority over LIFC_NOXMIT. 8782 */ 8783 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8784 8785 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8786 return (EINVAL); 8787 8788 /* 8789 * Must be (better be!) continuation of a TRANSPARENT 8790 * IOCTL. We just copied in the lifconf structure. 8791 */ 8792 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8793 8794 family = STRUCT_FGET(lifc, lifc_family); 8795 flags = STRUCT_FGET(lifc, lifc_flags); 8796 8797 switch (family) { 8798 case AF_UNSPEC: 8799 /* 8800 * walk all ILL's. 8801 */ 8802 list = MAX_G_HEADS; 8803 break; 8804 case AF_INET: 8805 /* 8806 * walk only IPV4 ILL's. 8807 */ 8808 list = IP_V4_G_HEAD; 8809 break; 8810 case AF_INET6: 8811 /* 8812 * walk only IPV6 ILL's. 8813 */ 8814 list = IP_V6_G_HEAD; 8815 break; 8816 default: 8817 return (EAFNOSUPPORT); 8818 } 8819 8820 /* 8821 * Allocate a buffer to hold requested information. 8822 * 8823 * If lifc_len is larger than what is needed, we only 8824 * allocate what we will use. 8825 * 8826 * If lifc_len is smaller than what is needed, return 8827 * EINVAL. 8828 */ 8829 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8830 lifc_bufsize = numlifs * sizeof (struct lifreq); 8831 lifclen = STRUCT_FGET(lifc, lifc_len); 8832 if (lifc_bufsize > lifclen) { 8833 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8834 return (EINVAL); 8835 else 8836 lifc_bufsize = lifclen; 8837 } 8838 8839 mp1 = mi_copyout_alloc(q, mp, 8840 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8841 if (mp1 == NULL) 8842 return (ENOMEM); 8843 8844 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8845 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8846 8847 lifr = (struct lifreq *)mp1->b_rptr; 8848 8849 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8850 ill = ill_first(list, list, &ctx, ipst); 8851 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8852 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 8853 continue; 8854 8855 for (ipif = ill->ill_ipif; ipif != NULL; 8856 ipif = ipif->ipif_next) { 8857 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8858 !(flags & LIFC_NOXMIT)) 8859 continue; 8860 8861 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8862 !(flags & LIFC_TEMPORARY)) 8863 continue; 8864 8865 if (((ipif->ipif_flags & 8866 (IPIF_NOXMIT|IPIF_NOLOCAL| 8867 IPIF_DEPRECATED)) || 8868 IS_LOOPBACK(ill) || 8869 !(ipif->ipif_flags & IPIF_UP)) && 8870 (flags & LIFC_EXTERNAL_SOURCE)) 8871 continue; 8872 8873 if (zoneid != ipif->ipif_zoneid && 8874 ipif->ipif_zoneid != ALL_ZONES && 8875 (zoneid != GLOBAL_ZONEID || 8876 !(flags & LIFC_ALLZONES))) 8877 continue; 8878 8879 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8880 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8881 rw_exit(&ipst->ips_ill_g_lock); 8882 return (EINVAL); 8883 } else { 8884 goto lif_copydone; 8885 } 8886 } 8887 8888 ipif_get_name(ipif, lifr->lifr_name, 8889 sizeof (lifr->lifr_name)); 8890 lifr->lifr_type = ill->ill_type; 8891 if (ipif->ipif_isv6) { 8892 sin6 = (sin6_t *)&lifr->lifr_addr; 8893 *sin6 = sin6_null; 8894 sin6->sin6_family = AF_INET6; 8895 sin6->sin6_addr = 8896 ipif->ipif_v6lcl_addr; 8897 lifr->lifr_addrlen = 8898 ip_mask_to_plen_v6( 8899 &ipif->ipif_v6net_mask); 8900 } else { 8901 sin = (sin_t *)&lifr->lifr_addr; 8902 *sin = sin_null; 8903 sin->sin_family = AF_INET; 8904 sin->sin_addr.s_addr = 8905 ipif->ipif_lcl_addr; 8906 lifr->lifr_addrlen = 8907 ip_mask_to_plen( 8908 ipif->ipif_net_mask); 8909 } 8910 lifr++; 8911 } 8912 } 8913 lif_copydone: 8914 rw_exit(&ipst->ips_ill_g_lock); 8915 8916 mp1->b_wptr = (uchar_t *)lifr; 8917 if (STRUCT_BUF(lifc) != NULL) { 8918 STRUCT_FSET(lifc, lifc_len, 8919 (int)((uchar_t *)lifr - mp1->b_rptr)); 8920 } 8921 return (0); 8922 } 8923 8924 static void 8925 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8926 { 8927 ip6_asp_t *table; 8928 size_t table_size; 8929 mblk_t *data_mp; 8930 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8931 ip_stack_t *ipst; 8932 8933 if (q->q_next == NULL) 8934 ipst = CONNQ_TO_IPST(q); 8935 else 8936 ipst = ILLQ_TO_IPST(q); 8937 8938 /* These two ioctls are I_STR only */ 8939 if (iocp->ioc_count == TRANSPARENT) { 8940 miocnak(q, mp, 0, EINVAL); 8941 return; 8942 } 8943 8944 data_mp = mp->b_cont; 8945 if (data_mp == NULL) { 8946 /* The user passed us a NULL argument */ 8947 table = NULL; 8948 table_size = iocp->ioc_count; 8949 } else { 8950 /* 8951 * The user provided a table. The stream head 8952 * may have copied in the user data in chunks, 8953 * so make sure everything is pulled up 8954 * properly. 8955 */ 8956 if (MBLKL(data_mp) < iocp->ioc_count) { 8957 mblk_t *new_data_mp; 8958 if ((new_data_mp = msgpullup(data_mp, -1)) == 8959 NULL) { 8960 miocnak(q, mp, 0, ENOMEM); 8961 return; 8962 } 8963 freemsg(data_mp); 8964 data_mp = new_data_mp; 8965 mp->b_cont = data_mp; 8966 } 8967 table = (ip6_asp_t *)data_mp->b_rptr; 8968 table_size = iocp->ioc_count; 8969 } 8970 8971 switch (iocp->ioc_cmd) { 8972 case SIOCGIP6ADDRPOLICY: 8973 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 8974 if (iocp->ioc_rval == -1) 8975 iocp->ioc_error = EINVAL; 8976 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8977 else if (table != NULL && 8978 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8979 ip6_asp_t *src = table; 8980 ip6_asp32_t *dst = (void *)table; 8981 int count = table_size / sizeof (ip6_asp_t); 8982 int i; 8983 8984 /* 8985 * We need to do an in-place shrink of the array 8986 * to match the alignment attributes of the 8987 * 32-bit ABI looking at it. 8988 */ 8989 /* LINTED: logical expression always true: op "||" */ 8990 ASSERT(sizeof (*src) > sizeof (*dst)); 8991 for (i = 1; i < count; i++) 8992 bcopy(src + i, dst + i, sizeof (*dst)); 8993 } 8994 #endif 8995 break; 8996 8997 case SIOCSIP6ADDRPOLICY: 8998 ASSERT(mp->b_prev == NULL); 8999 mp->b_prev = (void *)q; 9000 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9001 /* 9002 * We pass in the datamodel here so that the ip6_asp_replace() 9003 * routine can handle converting from 32-bit to native formats 9004 * where necessary. 9005 * 9006 * A better way to handle this might be to convert the inbound 9007 * data structure here, and hang it off a new 'mp'; thus the 9008 * ip6_asp_replace() logic would always be dealing with native 9009 * format data structures.. 9010 * 9011 * (An even simpler way to handle these ioctls is to just 9012 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9013 * and just recompile everything that depends on it.) 9014 */ 9015 #endif 9016 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9017 iocp->ioc_flag & IOC_MODELS); 9018 return; 9019 } 9020 9021 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9022 qreply(q, mp); 9023 } 9024 9025 static void 9026 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9027 { 9028 mblk_t *data_mp; 9029 struct dstinforeq *dir; 9030 uint8_t *end, *cur; 9031 in6_addr_t *daddr, *saddr; 9032 ipaddr_t v4daddr; 9033 ire_t *ire; 9034 char *slabel, *dlabel; 9035 boolean_t isipv4; 9036 int match_ire; 9037 ill_t *dst_ill; 9038 ipif_t *src_ipif, *ire_ipif; 9039 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9040 zoneid_t zoneid; 9041 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9042 9043 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9044 zoneid = Q_TO_CONN(q)->conn_zoneid; 9045 9046 /* 9047 * This ioctl is I_STR only, and must have a 9048 * data mblk following the M_IOCTL mblk. 9049 */ 9050 data_mp = mp->b_cont; 9051 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9052 miocnak(q, mp, 0, EINVAL); 9053 return; 9054 } 9055 9056 if (MBLKL(data_mp) < iocp->ioc_count) { 9057 mblk_t *new_data_mp; 9058 9059 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9060 miocnak(q, mp, 0, ENOMEM); 9061 return; 9062 } 9063 freemsg(data_mp); 9064 data_mp = new_data_mp; 9065 mp->b_cont = data_mp; 9066 } 9067 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9068 9069 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9070 end - cur >= sizeof (struct dstinforeq); 9071 cur += sizeof (struct dstinforeq)) { 9072 dir = (struct dstinforeq *)cur; 9073 daddr = &dir->dir_daddr; 9074 saddr = &dir->dir_saddr; 9075 9076 /* 9077 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9078 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9079 * and ipif_select_source[_v6]() do not. 9080 */ 9081 dir->dir_dscope = ip_addr_scope_v6(daddr); 9082 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9083 9084 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9085 if (isipv4) { 9086 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9087 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9088 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9089 } else { 9090 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9091 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9092 } 9093 if (ire == NULL) { 9094 dir->dir_dreachable = 0; 9095 9096 /* move on to next dst addr */ 9097 continue; 9098 } 9099 dir->dir_dreachable = 1; 9100 9101 ire_ipif = ire->ire_ipif; 9102 if (ire_ipif == NULL) 9103 goto next_dst; 9104 9105 /* 9106 * We expect to get back an interface ire or a 9107 * gateway ire cache entry. For both types, the 9108 * output interface is ire_ipif->ipif_ill. 9109 */ 9110 dst_ill = ire_ipif->ipif_ill; 9111 dir->dir_dmactype = dst_ill->ill_mactype; 9112 9113 if (isipv4) { 9114 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9115 } else { 9116 src_ipif = ipif_select_source_v6(dst_ill, 9117 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid); 9118 } 9119 if (src_ipif == NULL) 9120 goto next_dst; 9121 9122 *saddr = src_ipif->ipif_v6lcl_addr; 9123 dir->dir_sscope = ip_addr_scope_v6(saddr); 9124 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9125 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9126 dir->dir_sdeprecated = 9127 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9128 ipif_refrele(src_ipif); 9129 next_dst: 9130 ire_refrele(ire); 9131 } 9132 miocack(q, mp, iocp->ioc_count, 0); 9133 } 9134 9135 /* 9136 * Check if this is an address assigned to this machine. 9137 * Skips interfaces that are down by using ire checks. 9138 * Translates mapped addresses to v4 addresses and then 9139 * treats them as such, returning true if the v4 address 9140 * associated with this mapped address is configured. 9141 * Note: Applications will have to be careful what they do 9142 * with the response; use of mapped addresses limits 9143 * what can be done with the socket, especially with 9144 * respect to socket options and ioctls - neither IPv4 9145 * options nor IPv6 sticky options/ancillary data options 9146 * may be used. 9147 */ 9148 /* ARGSUSED */ 9149 int 9150 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9151 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9152 { 9153 struct sioc_addrreq *sia; 9154 sin_t *sin; 9155 ire_t *ire; 9156 mblk_t *mp1; 9157 zoneid_t zoneid; 9158 ip_stack_t *ipst; 9159 9160 ip1dbg(("ip_sioctl_tmyaddr")); 9161 9162 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9163 zoneid = Q_TO_CONN(q)->conn_zoneid; 9164 ipst = CONNQ_TO_IPST(q); 9165 9166 /* Existence verified in ip_wput_nondata */ 9167 mp1 = mp->b_cont->b_cont; 9168 sia = (struct sioc_addrreq *)mp1->b_rptr; 9169 sin = (sin_t *)&sia->sa_addr; 9170 switch (sin->sin_family) { 9171 case AF_INET6: { 9172 sin6_t *sin6 = (sin6_t *)sin; 9173 9174 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9175 ipaddr_t v4_addr; 9176 9177 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9178 v4_addr); 9179 ire = ire_ctable_lookup(v4_addr, 0, 9180 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9181 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9182 } else { 9183 in6_addr_t v6addr; 9184 9185 v6addr = sin6->sin6_addr; 9186 ire = ire_ctable_lookup_v6(&v6addr, 0, 9187 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9188 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9189 } 9190 break; 9191 } 9192 case AF_INET: { 9193 ipaddr_t v4addr; 9194 9195 v4addr = sin->sin_addr.s_addr; 9196 ire = ire_ctable_lookup(v4addr, 0, 9197 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9198 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9199 break; 9200 } 9201 default: 9202 return (EAFNOSUPPORT); 9203 } 9204 if (ire != NULL) { 9205 sia->sa_res = 1; 9206 ire_refrele(ire); 9207 } else { 9208 sia->sa_res = 0; 9209 } 9210 return (0); 9211 } 9212 9213 /* 9214 * Check if this is an address assigned on-link i.e. neighbor, 9215 * and makes sure it's reachable from the current zone. 9216 * Returns true for my addresses as well. 9217 * Translates mapped addresses to v4 addresses and then 9218 * treats them as such, returning true if the v4 address 9219 * associated with this mapped address is configured. 9220 * Note: Applications will have to be careful what they do 9221 * with the response; use of mapped addresses limits 9222 * what can be done with the socket, especially with 9223 * respect to socket options and ioctls - neither IPv4 9224 * options nor IPv6 sticky options/ancillary data options 9225 * may be used. 9226 */ 9227 /* ARGSUSED */ 9228 int 9229 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9230 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9231 { 9232 struct sioc_addrreq *sia; 9233 sin_t *sin; 9234 mblk_t *mp1; 9235 ire_t *ire = NULL; 9236 zoneid_t zoneid; 9237 ip_stack_t *ipst; 9238 9239 ip1dbg(("ip_sioctl_tonlink")); 9240 9241 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9242 zoneid = Q_TO_CONN(q)->conn_zoneid; 9243 ipst = CONNQ_TO_IPST(q); 9244 9245 /* Existence verified in ip_wput_nondata */ 9246 mp1 = mp->b_cont->b_cont; 9247 sia = (struct sioc_addrreq *)mp1->b_rptr; 9248 sin = (sin_t *)&sia->sa_addr; 9249 9250 /* 9251 * Match addresses with a zero gateway field to avoid 9252 * routes going through a router. 9253 * Exclude broadcast and multicast addresses. 9254 */ 9255 switch (sin->sin_family) { 9256 case AF_INET6: { 9257 sin6_t *sin6 = (sin6_t *)sin; 9258 9259 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9260 ipaddr_t v4_addr; 9261 9262 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9263 v4_addr); 9264 if (!CLASSD(v4_addr)) { 9265 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9266 NULL, NULL, zoneid, NULL, 9267 MATCH_IRE_GW, ipst); 9268 } 9269 } else { 9270 in6_addr_t v6addr; 9271 in6_addr_t v6gw; 9272 9273 v6addr = sin6->sin6_addr; 9274 v6gw = ipv6_all_zeros; 9275 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9276 ire = ire_route_lookup_v6(&v6addr, 0, 9277 &v6gw, 0, NULL, NULL, zoneid, 9278 NULL, MATCH_IRE_GW, ipst); 9279 } 9280 } 9281 break; 9282 } 9283 case AF_INET: { 9284 ipaddr_t v4addr; 9285 9286 v4addr = sin->sin_addr.s_addr; 9287 if (!CLASSD(v4addr)) { 9288 ire = ire_route_lookup(v4addr, 0, 0, 0, 9289 NULL, NULL, zoneid, NULL, 9290 MATCH_IRE_GW, ipst); 9291 } 9292 break; 9293 } 9294 default: 9295 return (EAFNOSUPPORT); 9296 } 9297 sia->sa_res = 0; 9298 if (ire != NULL) { 9299 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9300 IRE_LOCAL|IRE_LOOPBACK)) { 9301 sia->sa_res = 1; 9302 } 9303 ire_refrele(ire); 9304 } 9305 return (0); 9306 } 9307 9308 /* 9309 * TBD: implement when kernel maintaines a list of site prefixes. 9310 */ 9311 /* ARGSUSED */ 9312 int 9313 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9314 ip_ioctl_cmd_t *ipip, void *ifreq) 9315 { 9316 return (ENXIO); 9317 } 9318 9319 /* ARGSUSED */ 9320 int 9321 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9322 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9323 { 9324 ill_t *ill; 9325 mblk_t *mp1; 9326 conn_t *connp; 9327 boolean_t success; 9328 9329 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9330 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9331 /* ioctl comes down on an conn */ 9332 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9333 connp = Q_TO_CONN(q); 9334 9335 mp->b_datap->db_type = M_IOCTL; 9336 9337 /* 9338 * Send down a copy. (copymsg does not copy b_next/b_prev). 9339 * The original mp contains contaminated b_next values due to 'mi', 9340 * which is needed to do the mi_copy_done. Unfortunately if we 9341 * send down the original mblk itself and if we are popped due to an 9342 * an unplumb before the response comes back from tunnel, 9343 * the streamhead (which does a freemsg) will see this contaminated 9344 * message and the assertion in freemsg about non-null b_next/b_prev 9345 * will panic a DEBUG kernel. 9346 */ 9347 mp1 = copymsg(mp); 9348 if (mp1 == NULL) 9349 return (ENOMEM); 9350 9351 ill = ipif->ipif_ill; 9352 mutex_enter(&connp->conn_lock); 9353 mutex_enter(&ill->ill_lock); 9354 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9355 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9356 mp, 0); 9357 } else { 9358 success = ill_pending_mp_add(ill, connp, mp); 9359 } 9360 mutex_exit(&ill->ill_lock); 9361 mutex_exit(&connp->conn_lock); 9362 9363 if (success) { 9364 ip1dbg(("sending down tunparam request ")); 9365 putnext(ill->ill_wq, mp1); 9366 return (EINPROGRESS); 9367 } else { 9368 /* The conn has started closing */ 9369 freemsg(mp1); 9370 return (EINTR); 9371 } 9372 } 9373 9374 /* 9375 * ARP IOCTLs. 9376 * How does IP get in the business of fronting ARP configuration/queries? 9377 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9378 * are by tradition passed in through a datagram socket. That lands in IP. 9379 * As it happens, this is just as well since the interface is quite crude in 9380 * that it passes in no information about protocol or hardware types, or 9381 * interface association. After making the protocol assumption, IP is in 9382 * the position to look up the name of the ILL, which ARP will need, and 9383 * format a request that can be handled by ARP. The request is passed up 9384 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9385 * back a response. ARP supports its own set of more general IOCTLs, in 9386 * case anyone is interested. 9387 */ 9388 /* ARGSUSED */ 9389 int 9390 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9391 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9392 { 9393 mblk_t *mp1; 9394 mblk_t *mp2; 9395 mblk_t *pending_mp; 9396 ipaddr_t ipaddr; 9397 area_t *area; 9398 struct iocblk *iocp; 9399 conn_t *connp; 9400 struct arpreq *ar; 9401 struct xarpreq *xar; 9402 int flags, alength; 9403 uchar_t *lladdr; 9404 ire_t *ire; 9405 ip_stack_t *ipst; 9406 ill_t *ill = ipif->ipif_ill; 9407 ill_t *proxy_ill = NULL; 9408 ipmp_arpent_t *entp = NULL; 9409 boolean_t if_arp_ioctl = B_FALSE; 9410 boolean_t proxyarp = B_FALSE; 9411 9412 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9413 connp = Q_TO_CONN(q); 9414 ipst = connp->conn_netstack->netstack_ip; 9415 9416 if (ipip->ipi_cmd_type == XARP_CMD) { 9417 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9418 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9419 ar = NULL; 9420 9421 flags = xar->xarp_flags; 9422 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 9423 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9424 /* 9425 * Validate against user's link layer address length 9426 * input and name and addr length limits. 9427 */ 9428 alength = ill->ill_phys_addr_length; 9429 if (ipip->ipi_cmd == SIOCSXARP) { 9430 if (alength != xar->xarp_ha.sdl_alen || 9431 (alength + xar->xarp_ha.sdl_nlen > 9432 sizeof (xar->xarp_ha.sdl_data))) 9433 return (EINVAL); 9434 } 9435 } else { 9436 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9437 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9438 xar = NULL; 9439 9440 flags = ar->arp_flags; 9441 lladdr = (uchar_t *)ar->arp_ha.sa_data; 9442 /* 9443 * Theoretically, the sa_family could tell us what link 9444 * layer type this operation is trying to deal with. By 9445 * common usage AF_UNSPEC means ethernet. We'll assume 9446 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9447 * for now. Our new SIOC*XARP ioctls can be used more 9448 * generally. 9449 * 9450 * If the underlying media happens to have a non 6 byte 9451 * address, arp module will fail set/get, but the del 9452 * operation will succeed. 9453 */ 9454 alength = 6; 9455 if ((ipip->ipi_cmd != SIOCDARP) && 9456 (alength != ill->ill_phys_addr_length)) { 9457 return (EINVAL); 9458 } 9459 } 9460 9461 ipaddr = sin->sin_addr.s_addr; 9462 9463 /* 9464 * IPMP ARP special handling: 9465 * 9466 * 1. Since ARP mappings must appear consistent across the group, 9467 * prohibit changing ARP mappings on the underlying interfaces. 9468 * 9469 * 2. Since ARP mappings for IPMP data addresses are maintained by 9470 * IP itself, prohibit changing them. 9471 * 9472 * 3. For proxy ARP, use a functioning hardware address in the group, 9473 * provided one exists. If one doesn't, just add the entry as-is; 9474 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 9475 */ 9476 if (IS_UNDER_IPMP(ill)) { 9477 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 9478 return (EPERM); 9479 } 9480 if (IS_IPMP(ill)) { 9481 ipmp_illgrp_t *illg = ill->ill_grp; 9482 9483 switch (ipip->ipi_cmd) { 9484 case SIOCSARP: 9485 case SIOCSXARP: 9486 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 9487 if (proxy_ill != NULL) { 9488 proxyarp = B_TRUE; 9489 if (!ipmp_ill_is_active(proxy_ill)) 9490 proxy_ill = ipmp_illgrp_next_ill(illg); 9491 if (proxy_ill != NULL) 9492 lladdr = proxy_ill->ill_phys_addr; 9493 } 9494 /* FALLTHRU */ 9495 case SIOCDARP: 9496 case SIOCDXARP: 9497 ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL, 9498 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 9499 if (ire != NULL) { 9500 ire_refrele(ire); 9501 return (EPERM); 9502 } 9503 } 9504 } 9505 9506 /* 9507 * We are going to pass up to ARP a packet chain that looks 9508 * like: 9509 * 9510 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9511 * 9512 * Get a copy of the original IOCTL mblk to head the chain, 9513 * to be sent up (in mp1). Also get another copy to store 9514 * in the ill_pending_mp list, for matching the response 9515 * when it comes back from ARP. 9516 */ 9517 mp1 = copyb(mp); 9518 pending_mp = copymsg(mp); 9519 if (mp1 == NULL || pending_mp == NULL) { 9520 if (mp1 != NULL) 9521 freeb(mp1); 9522 if (pending_mp != NULL) 9523 inet_freemsg(pending_mp); 9524 return (ENOMEM); 9525 } 9526 9527 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9528 (caddr_t)&ipaddr); 9529 if (mp2 == NULL) { 9530 freeb(mp1); 9531 inet_freemsg(pending_mp); 9532 return (ENOMEM); 9533 } 9534 /* Put together the chain. */ 9535 mp1->b_cont = mp2; 9536 mp1->b_datap->db_type = M_IOCTL; 9537 mp2->b_cont = mp; 9538 mp2->b_datap->db_type = M_DATA; 9539 9540 iocp = (struct iocblk *)mp1->b_rptr; 9541 9542 /* 9543 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9544 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9545 * cp_private field (or cp_rval on 32-bit systems) in place of the 9546 * ioc_count field; set ioc_count to be correct. 9547 */ 9548 iocp->ioc_count = MBLKL(mp1->b_cont); 9549 9550 /* 9551 * Set the proper command in the ARP message. 9552 * Convert the SIOC{G|S|D}ARP calls into our 9553 * AR_ENTRY_xxx calls. 9554 */ 9555 area = (area_t *)mp2->b_rptr; 9556 switch (iocp->ioc_cmd) { 9557 case SIOCDARP: 9558 case SIOCDXARP: 9559 /* 9560 * We defer deleting the corresponding IRE until 9561 * we return from arp. 9562 */ 9563 area->area_cmd = AR_ENTRY_DELETE; 9564 area->area_proto_mask_offset = 0; 9565 break; 9566 case SIOCGARP: 9567 case SIOCGXARP: 9568 area->area_cmd = AR_ENTRY_SQUERY; 9569 area->area_proto_mask_offset = 0; 9570 break; 9571 case SIOCSARP: 9572 case SIOCSXARP: 9573 /* 9574 * Delete the corresponding ire to make sure IP will 9575 * pick up any change from arp. 9576 */ 9577 if (!if_arp_ioctl) { 9578 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9579 } else { 9580 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9581 if (ipif != NULL) { 9582 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9583 ipst); 9584 ipif_refrele(ipif); 9585 } 9586 } 9587 break; 9588 } 9589 iocp->ioc_cmd = area->area_cmd; 9590 9591 /* 9592 * Fill in the rest of the ARP operation fields. 9593 */ 9594 area->area_hw_addr_length = alength; 9595 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9596 9597 /* Translate the flags. */ 9598 if (flags & ATF_PERM) 9599 area->area_flags |= ACE_F_PERMANENT; 9600 if (flags & ATF_PUBL) 9601 area->area_flags |= ACE_F_PUBLISH; 9602 if (flags & ATF_AUTHORITY) 9603 area->area_flags |= ACE_F_AUTHORITY; 9604 9605 /* 9606 * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it 9607 * so that IP can update ARP as the active ills in the group change. 9608 */ 9609 if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD && 9610 (area->area_flags & ACE_F_PERMANENT)) { 9611 entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp); 9612 9613 /* 9614 * The second part of the conditional below handles a corner 9615 * case: if this is proxy ARP and the IPMP group has no active 9616 * interfaces, we can't send the request to ARP now since it 9617 * won't be able to build an ACE. So we return success and 9618 * notify ARP about the proxy ARP entry once an interface 9619 * becomes active. 9620 */ 9621 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 9622 mp2->b_cont = NULL; 9623 inet_freemsg(mp1); 9624 inet_freemsg(pending_mp); 9625 return (entp == NULL ? ENOMEM : 0); 9626 } 9627 } 9628 9629 /* 9630 * Before sending 'mp' to ARP, we have to clear the b_next 9631 * and b_prev. Otherwise if STREAMS encounters such a message 9632 * in freemsg(), (because ARP can close any time) it can cause 9633 * a panic. But mi code needs the b_next and b_prev values of 9634 * mp->b_cont, to complete the ioctl. So we store it here 9635 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9636 * when the response comes down from ARP. 9637 */ 9638 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9639 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9640 mp->b_cont->b_next = NULL; 9641 mp->b_cont->b_prev = NULL; 9642 9643 mutex_enter(&connp->conn_lock); 9644 mutex_enter(&ill->ill_lock); 9645 /* conn has not yet started closing, hence this can't fail */ 9646 if (ipip->ipi_flags & IPI_WR) { 9647 VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9648 pending_mp, 0) != 0); 9649 } else { 9650 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9651 } 9652 mutex_exit(&ill->ill_lock); 9653 mutex_exit(&connp->conn_lock); 9654 9655 /* 9656 * Up to ARP it goes. The response will come back in ip_wput() as an 9657 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9658 */ 9659 putnext(ill->ill_rq, mp1); 9660 9661 /* 9662 * If we created an IPMP ARP entry, mark that we've notified ARP. 9663 */ 9664 if (entp != NULL) 9665 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 9666 9667 return (EINPROGRESS); 9668 } 9669 9670 /* 9671 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9672 * the associated sin and refhold and return the associated ipif via `ci'. 9673 */ 9674 int 9675 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9676 cmd_info_t *ci, ipsq_func_t func) 9677 { 9678 mblk_t *mp1; 9679 int err; 9680 sin_t *sin; 9681 conn_t *connp; 9682 ipif_t *ipif; 9683 ire_t *ire = NULL; 9684 ill_t *ill = NULL; 9685 boolean_t exists; 9686 ip_stack_t *ipst; 9687 struct arpreq *ar; 9688 struct xarpreq *xar; 9689 struct sockaddr_dl *sdl; 9690 9691 /* ioctl comes down on a conn */ 9692 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9693 connp = Q_TO_CONN(q); 9694 if (connp->conn_af_isv6) 9695 return (ENXIO); 9696 9697 ipst = connp->conn_netstack->netstack_ip; 9698 9699 /* Verified in ip_wput_nondata */ 9700 mp1 = mp->b_cont->b_cont; 9701 9702 if (ipip->ipi_cmd_type == XARP_CMD) { 9703 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9704 xar = (struct xarpreq *)mp1->b_rptr; 9705 sin = (sin_t *)&xar->xarp_pa; 9706 sdl = &xar->xarp_ha; 9707 9708 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9709 return (ENXIO); 9710 if (sdl->sdl_nlen >= LIFNAMSIZ) 9711 return (EINVAL); 9712 } else { 9713 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9714 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9715 ar = (struct arpreq *)mp1->b_rptr; 9716 sin = (sin_t *)&ar->arp_pa; 9717 } 9718 9719 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9720 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9721 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9722 mp, func, &err, ipst); 9723 if (ipif == NULL) 9724 return (err); 9725 if (ipif->ipif_id != 0) { 9726 ipif_refrele(ipif); 9727 return (ENXIO); 9728 } 9729 } else { 9730 /* 9731 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 9732 * of 0: use the IP address to find the ipif. If the IP 9733 * address is an IPMP test address, ire_ftable_lookup() will 9734 * find the wrong ill, so we first do an ipif_lookup_addr(). 9735 */ 9736 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 9737 CONNP_TO_WQ(connp), mp, func, &err, ipst); 9738 if (ipif == NULL) { 9739 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0, 9740 IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL, 9741 MATCH_IRE_TYPE, ipst); 9742 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9743 if (ire != NULL) 9744 ire_refrele(ire); 9745 return (ENXIO); 9746 } 9747 ipif = ill->ill_ipif; 9748 ipif_refhold(ipif); 9749 ire_refrele(ire); 9750 } 9751 } 9752 9753 if (ipif->ipif_net_type != IRE_IF_RESOLVER) { 9754 ipif_refrele(ipif); 9755 return (ENXIO); 9756 } 9757 9758 ci->ci_sin = sin; 9759 ci->ci_ipif = ipif; 9760 return (0); 9761 } 9762 9763 /* 9764 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 9765 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 9766 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 9767 * up and thus an ill can join that illgrp. 9768 * 9769 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 9770 * open()/close() primarily because close() is not allowed to fail or block 9771 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 9772 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 9773 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 9774 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 9775 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 9776 * state if I_UNLINK didn't occur. 9777 * 9778 * Note that for each plumb/unplumb operation, we may end up here more than 9779 * once because of the way ifconfig works. However, it's OK to link the same 9780 * illgrp more than once, or unlink an illgrp that's already unlinked. 9781 */ 9782 static int 9783 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 9784 { 9785 int err; 9786 ip_stack_t *ipst = ill->ill_ipst; 9787 9788 ASSERT(IS_IPMP(ill)); 9789 ASSERT(IAM_WRITER_ILL(ill)); 9790 9791 switch (ioccmd) { 9792 case I_LINK: 9793 return (ENOTSUP); 9794 9795 case I_PLINK: 9796 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9797 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 9798 rw_exit(&ipst->ips_ipmp_lock); 9799 break; 9800 9801 case I_PUNLINK: 9802 /* 9803 * Require all UP ipifs be brought down prior to unlinking the 9804 * illgrp so any associated IREs (and other state) is torched. 9805 */ 9806 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 9807 return (EBUSY); 9808 9809 /* 9810 * NOTE: We hold ipmp_lock across the unlink to prevent a race 9811 * with an SIOCSLIFGROUPNAME request from an ill trying to 9812 * join this group. Specifically: ills trying to join grab 9813 * ipmp_lock and bump a "pending join" counter checked by 9814 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 9815 * joins can occur (since we have ipmp_lock). Once we drop 9816 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 9817 * find the illgrp (since we unlinked it) and will return 9818 * EAFNOSUPPORT. This will then take them back through the 9819 * IPMP meta-interface plumbing logic in ifconfig, and thus 9820 * back through I_PLINK above. 9821 */ 9822 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9823 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 9824 rw_exit(&ipst->ips_ipmp_lock); 9825 return (err); 9826 default: 9827 break; 9828 } 9829 return (0); 9830 } 9831 9832 /* 9833 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9834 * atomically set/clear the muxids. Also complete the ioctl by acking or 9835 * naking it. Note that the code is structured such that the link type, 9836 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9837 * its clones use the persistent link, while pppd(1M) and perhaps many 9838 * other daemons may use non-persistent link. When combined with some 9839 * ill_t states, linking and unlinking lower streams may be used as 9840 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9841 */ 9842 /* ARGSUSED */ 9843 void 9844 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9845 { 9846 mblk_t *mp1, *mp2; 9847 struct linkblk *li; 9848 struct ipmx_s *ipmxp; 9849 ill_t *ill; 9850 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9851 int err = 0; 9852 boolean_t entered_ipsq = B_FALSE; 9853 boolean_t islink; 9854 ip_stack_t *ipst; 9855 9856 if (CONN_Q(q)) 9857 ipst = CONNQ_TO_IPST(q); 9858 else 9859 ipst = ILLQ_TO_IPST(q); 9860 9861 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9862 ioccmd == I_LINK || ioccmd == I_UNLINK); 9863 9864 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9865 9866 mp1 = mp->b_cont; /* This is the linkblk info */ 9867 li = (struct linkblk *)mp1->b_rptr; 9868 9869 /* 9870 * ARP has added this special mblk, and the utility is asking us 9871 * to perform consistency checks, and also atomically set the 9872 * muxid. Ifconfig is an example. It achieves this by using 9873 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9874 * to /dev/udp[6] stream for use as the mux when plinking the IP 9875 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9876 * and other comments in this routine for more details. 9877 */ 9878 mp2 = mp1->b_cont; /* This is added by ARP */ 9879 9880 /* 9881 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9882 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9883 * get the special mblk above. For backward compatibility, we 9884 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9885 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9886 * not atomic, and can leave the streams unplumbable if the utility 9887 * is interrupted before it does the SIOCSLIFMUXID. 9888 */ 9889 if (mp2 == NULL) { 9890 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9891 if (err == EINPROGRESS) 9892 return; 9893 goto done; 9894 } 9895 9896 /* 9897 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9898 * ARP has appended this last mblk to tell us whether the lower stream 9899 * is an arp-dev stream or an IP module stream. 9900 */ 9901 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9902 if (ipmxp->ipmx_arpdev_stream) { 9903 /* 9904 * The lower stream is the arp-dev stream. 9905 */ 9906 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9907 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9908 if (ill == NULL) { 9909 if (err == EINPROGRESS) 9910 return; 9911 err = EINVAL; 9912 goto done; 9913 } 9914 9915 if (ipsq == NULL) { 9916 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9917 NEW_OP, B_FALSE); 9918 if (ipsq == NULL) { 9919 ill_refrele(ill); 9920 return; 9921 } 9922 entered_ipsq = B_TRUE; 9923 } 9924 ASSERT(IAM_WRITER_ILL(ill)); 9925 ill_refrele(ill); 9926 9927 /* 9928 * To ensure consistency between IP and ARP, the following 9929 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9930 * This is because the muxid's are stored in the IP stream on 9931 * the ill. 9932 * 9933 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9934 * the ARP stream. On an arp-dev stream, IP checks that it is 9935 * not yet plinked, and it also checks that the corresponding 9936 * IP stream is already plinked. 9937 * 9938 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9939 * punlinking the IP stream. IP does not allow punlink of the 9940 * IP stream unless the arp stream has been punlinked. 9941 */ 9942 if ((islink && 9943 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9944 (!islink && ill->ill_arp_muxid != li->l_index)) { 9945 err = EINVAL; 9946 goto done; 9947 } 9948 9949 if (IS_IPMP(ill) && 9950 (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9951 goto done; 9952 9953 ill->ill_arp_muxid = islink ? li->l_index : 0; 9954 } else { 9955 /* 9956 * The lower stream is probably an IP module stream. Do 9957 * consistency checking. 9958 */ 9959 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9960 if (err == EINPROGRESS) 9961 return; 9962 } 9963 done: 9964 if (err == 0) 9965 miocack(q, mp, 0, 0); 9966 else 9967 miocnak(q, mp, 0, err); 9968 9969 /* Conn was refheld in ip_sioctl_copyin_setup */ 9970 if (CONN_Q(q)) 9971 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9972 if (entered_ipsq) 9973 ipsq_exit(ipsq); 9974 } 9975 9976 /* 9977 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9978 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9979 * module stream). If `doconsist' is set, then do the extended consistency 9980 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9981 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9982 * an error code on failure. 9983 */ 9984 static int 9985 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9986 struct linkblk *li, boolean_t doconsist) 9987 { 9988 int err = 0; 9989 ill_t *ill; 9990 queue_t *ipwq, *dwq; 9991 const char *name; 9992 struct qinit *qinfo; 9993 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9994 boolean_t entered_ipsq = B_FALSE; 9995 9996 /* 9997 * Walk the lower stream to verify it's the IP module stream. 9998 * The IP module is identified by its name, wput function, 9999 * and non-NULL q_next. STREAMS ensures that the lower stream 10000 * (li->l_qbot) will not vanish until this ioctl completes. 10001 */ 10002 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 10003 qinfo = ipwq->q_qinfo; 10004 name = qinfo->qi_minfo->mi_idname; 10005 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 10006 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 10007 break; 10008 } 10009 } 10010 10011 /* 10012 * If this isn't an IP module stream, bail. 10013 */ 10014 if (ipwq == NULL) 10015 return (0); 10016 10017 ill = ipwq->q_ptr; 10018 ASSERT(ill != NULL); 10019 10020 if (ipsq == NULL) { 10021 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10022 NEW_OP, B_FALSE); 10023 if (ipsq == NULL) 10024 return (EINPROGRESS); 10025 entered_ipsq = B_TRUE; 10026 } 10027 ASSERT(IAM_WRITER_ILL(ill)); 10028 10029 if (doconsist) { 10030 /* 10031 * Consistency checking requires that I_{P}LINK occurs 10032 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10033 * occurs prior to clearing ill_arp_muxid. 10034 */ 10035 if ((islink && ill->ill_ip_muxid != 0) || 10036 (!islink && ill->ill_arp_muxid != 0)) { 10037 err = EINVAL; 10038 goto done; 10039 } 10040 } 10041 10042 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 10043 goto done; 10044 10045 /* 10046 * As part of I_{P}LINKing, stash the number of downstream modules and 10047 * the read queue of the module immediately below IP in the ill. 10048 * These are used during the capability negotiation below. 10049 */ 10050 ill->ill_lmod_rq = NULL; 10051 ill->ill_lmod_cnt = 0; 10052 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10053 ill->ill_lmod_rq = RD(dwq); 10054 for (; dwq != NULL; dwq = dwq->q_next) 10055 ill->ill_lmod_cnt++; 10056 } 10057 10058 if (doconsist) 10059 ill->ill_ip_muxid = islink ? li->l_index : 0; 10060 10061 /* 10062 * Mark the ipsq busy until the capability operations initiated below 10063 * complete. The PLINK/UNLINK ioctl itself completes when our caller 10064 * returns, but the capability operation may complete asynchronously 10065 * much later. 10066 */ 10067 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 10068 /* 10069 * If there's at least one up ipif on this ill, then we're bound to 10070 * the underlying driver via DLPI. In that case, renegotiate 10071 * capabilities to account for any possible change in modules 10072 * interposed between IP and the driver. 10073 */ 10074 if (ill->ill_ipif_up_count > 0) { 10075 if (islink) 10076 ill_capability_probe(ill); 10077 else 10078 ill_capability_reset(ill, B_FALSE); 10079 } 10080 ipsq_current_finish(ipsq); 10081 done: 10082 if (entered_ipsq) 10083 ipsq_exit(ipsq); 10084 10085 return (err); 10086 } 10087 10088 /* 10089 * Search the ioctl command in the ioctl tables and return a pointer 10090 * to the ioctl command information. The ioctl command tables are 10091 * static and fully populated at compile time. 10092 */ 10093 ip_ioctl_cmd_t * 10094 ip_sioctl_lookup(int ioc_cmd) 10095 { 10096 int index; 10097 ip_ioctl_cmd_t *ipip; 10098 ip_ioctl_cmd_t *ipip_end; 10099 10100 if (ioc_cmd == IPI_DONTCARE) 10101 return (NULL); 10102 10103 /* 10104 * Do a 2 step search. First search the indexed table 10105 * based on the least significant byte of the ioctl cmd. 10106 * If we don't find a match, then search the misc table 10107 * serially. 10108 */ 10109 index = ioc_cmd & 0xFF; 10110 if (index < ip_ndx_ioctl_count) { 10111 ipip = &ip_ndx_ioctl_table[index]; 10112 if (ipip->ipi_cmd == ioc_cmd) { 10113 /* Found a match in the ndx table */ 10114 return (ipip); 10115 } 10116 } 10117 10118 /* Search the misc table */ 10119 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10120 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10121 if (ipip->ipi_cmd == ioc_cmd) 10122 /* Found a match in the misc table */ 10123 return (ipip); 10124 } 10125 10126 return (NULL); 10127 } 10128 10129 /* 10130 * Wrapper function for resuming deferred ioctl processing 10131 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10132 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10133 */ 10134 /* ARGSUSED */ 10135 void 10136 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10137 void *dummy_arg) 10138 { 10139 ip_sioctl_copyin_setup(q, mp); 10140 } 10141 10142 /* 10143 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10144 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10145 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10146 * We establish here the size of the block to be copied in. mi_copyin 10147 * arranges for this to happen, an processing continues in ip_wput with 10148 * an M_IOCDATA message. 10149 */ 10150 void 10151 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10152 { 10153 int copyin_size; 10154 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10155 ip_ioctl_cmd_t *ipip; 10156 cred_t *cr; 10157 ip_stack_t *ipst; 10158 10159 if (CONN_Q(q)) 10160 ipst = CONNQ_TO_IPST(q); 10161 else 10162 ipst = ILLQ_TO_IPST(q); 10163 10164 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10165 if (ipip == NULL) { 10166 /* 10167 * The ioctl is not one we understand or own. 10168 * Pass it along to be processed down stream, 10169 * if this is a module instance of IP, else nak 10170 * the ioctl. 10171 */ 10172 if (q->q_next == NULL) { 10173 goto nak; 10174 } else { 10175 putnext(q, mp); 10176 return; 10177 } 10178 } 10179 10180 /* 10181 * If this is deferred, then we will do all the checks when we 10182 * come back. 10183 */ 10184 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10185 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10186 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10187 return; 10188 } 10189 10190 /* 10191 * Only allow a very small subset of IP ioctls on this stream if 10192 * IP is a module and not a driver. Allowing ioctls to be processed 10193 * in this case may cause assert failures or data corruption. 10194 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10195 * ioctls allowed on an IP module stream, after which this stream 10196 * normally becomes a multiplexor (at which time the stream head 10197 * will fail all ioctls). 10198 */ 10199 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10200 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10201 /* 10202 * Pass common Streams ioctls which the IP 10203 * module does not own or consume along to 10204 * be processed down stream. 10205 */ 10206 putnext(q, mp); 10207 return; 10208 } else { 10209 goto nak; 10210 } 10211 } 10212 10213 /* Make sure we have ioctl data to process. */ 10214 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10215 goto nak; 10216 10217 /* 10218 * Prefer dblk credential over ioctl credential; some synthesized 10219 * ioctls have kcred set because there's no way to crhold() 10220 * a credential in some contexts. (ioc_cr is not crfree() by 10221 * the framework; the caller of ioctl needs to hold the reference 10222 * for the duration of the call). 10223 */ 10224 cr = msg_getcred(mp, NULL); 10225 if (cr == NULL) 10226 cr = iocp->ioc_cr; 10227 10228 /* Make sure normal users don't send down privileged ioctls */ 10229 if ((ipip->ipi_flags & IPI_PRIV) && 10230 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10231 /* We checked the privilege earlier but log it here */ 10232 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10233 return; 10234 } 10235 10236 /* 10237 * The ioctl command tables can only encode fixed length 10238 * ioctl data. If the length is variable, the table will 10239 * encode the length as zero. Such special cases are handled 10240 * below in the switch. 10241 */ 10242 if (ipip->ipi_copyin_size != 0) { 10243 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10244 return; 10245 } 10246 10247 switch (iocp->ioc_cmd) { 10248 case O_SIOCGIFCONF: 10249 case SIOCGIFCONF: 10250 /* 10251 * This IOCTL is hilarious. See comments in 10252 * ip_sioctl_get_ifconf for the story. 10253 */ 10254 if (iocp->ioc_count == TRANSPARENT) 10255 copyin_size = SIZEOF_STRUCT(ifconf, 10256 iocp->ioc_flag); 10257 else 10258 copyin_size = iocp->ioc_count; 10259 mi_copyin(q, mp, NULL, copyin_size); 10260 return; 10261 10262 case O_SIOCGLIFCONF: 10263 case SIOCGLIFCONF: 10264 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10265 mi_copyin(q, mp, NULL, copyin_size); 10266 return; 10267 10268 case SIOCGLIFSRCOF: 10269 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10270 mi_copyin(q, mp, NULL, copyin_size); 10271 return; 10272 case SIOCGIP6ADDRPOLICY: 10273 ip_sioctl_ip6addrpolicy(q, mp); 10274 ip6_asp_table_refrele(ipst); 10275 return; 10276 10277 case SIOCSIP6ADDRPOLICY: 10278 ip_sioctl_ip6addrpolicy(q, mp); 10279 return; 10280 10281 case SIOCGDSTINFO: 10282 ip_sioctl_dstinfo(q, mp); 10283 ip6_asp_table_refrele(ipst); 10284 return; 10285 10286 case I_PLINK: 10287 case I_PUNLINK: 10288 case I_LINK: 10289 case I_UNLINK: 10290 /* 10291 * We treat non-persistent link similarly as the persistent 10292 * link case, in terms of plumbing/unplumbing, as well as 10293 * dynamic re-plumbing events indicator. See comments 10294 * in ip_sioctl_plink() for more. 10295 * 10296 * Request can be enqueued in the 'ipsq' while waiting 10297 * to become exclusive. So bump up the conn ref. 10298 */ 10299 if (CONN_Q(q)) 10300 CONN_INC_REF(Q_TO_CONN(q)); 10301 ip_sioctl_plink(NULL, q, mp, NULL); 10302 return; 10303 10304 case ND_GET: 10305 case ND_SET: 10306 /* 10307 * Use of the nd table requires holding the reader lock. 10308 * Modifying the nd table thru nd_load/nd_unload requires 10309 * the writer lock. 10310 */ 10311 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10312 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10313 rw_exit(&ipst->ips_ip_g_nd_lock); 10314 10315 if (iocp->ioc_error) 10316 iocp->ioc_count = 0; 10317 mp->b_datap->db_type = M_IOCACK; 10318 qreply(q, mp); 10319 return; 10320 } 10321 rw_exit(&ipst->ips_ip_g_nd_lock); 10322 /* 10323 * We don't understand this subioctl of ND_GET / ND_SET. 10324 * Maybe intended for some driver / module below us 10325 */ 10326 if (q->q_next) { 10327 putnext(q, mp); 10328 } else { 10329 iocp->ioc_error = ENOENT; 10330 mp->b_datap->db_type = M_IOCNAK; 10331 iocp->ioc_count = 0; 10332 qreply(q, mp); 10333 } 10334 return; 10335 10336 case IP_IOCTL: 10337 ip_wput_ioctl(q, mp); 10338 return; 10339 default: 10340 cmn_err(CE_PANIC, "should not happen "); 10341 } 10342 nak: 10343 if (mp->b_cont != NULL) { 10344 freemsg(mp->b_cont); 10345 mp->b_cont = NULL; 10346 } 10347 iocp->ioc_error = EINVAL; 10348 mp->b_datap->db_type = M_IOCNAK; 10349 iocp->ioc_count = 0; 10350 qreply(q, mp); 10351 } 10352 10353 /* ip_wput hands off ARP IOCTL responses to us */ 10354 /* ARGSUSED3 */ 10355 void 10356 ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10357 { 10358 struct arpreq *ar; 10359 struct xarpreq *xar; 10360 area_t *area; 10361 mblk_t *area_mp; 10362 struct iocblk *iocp; 10363 mblk_t *orig_ioc_mp, *tmp; 10364 struct iocblk *orig_iocp; 10365 ill_t *ill; 10366 conn_t *connp = NULL; 10367 mblk_t *pending_mp; 10368 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10369 int *flagsp; 10370 char *storage = NULL; 10371 sin_t *sin; 10372 ipaddr_t addr; 10373 int err; 10374 ip_stack_t *ipst; 10375 10376 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 10377 ill = q->q_ptr; 10378 ASSERT(ill != NULL); 10379 ipst = ill->ill_ipst; 10380 10381 /* 10382 * We should get back from ARP a packet chain that looks like: 10383 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10384 */ 10385 if (!(area_mp = mp->b_cont) || 10386 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10387 !(orig_ioc_mp = area_mp->b_cont) || 10388 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10389 freemsg(mp); 10390 return; 10391 } 10392 10393 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10394 10395 tmp = (orig_ioc_mp->b_cont)->b_cont; 10396 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10397 (orig_iocp->ioc_cmd == SIOCSXARP) || 10398 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10399 x_arp_ioctl = B_TRUE; 10400 xar = (struct xarpreq *)tmp->b_rptr; 10401 sin = (sin_t *)&xar->xarp_pa; 10402 flagsp = &xar->xarp_flags; 10403 storage = xar->xarp_ha.sdl_data; 10404 if (xar->xarp_ha.sdl_nlen != 0) 10405 ifx_arp_ioctl = B_TRUE; 10406 } else { 10407 ar = (struct arpreq *)tmp->b_rptr; 10408 sin = (sin_t *)&ar->arp_pa; 10409 flagsp = &ar->arp_flags; 10410 storage = ar->arp_ha.sa_data; 10411 } 10412 10413 iocp = (struct iocblk *)mp->b_rptr; 10414 10415 /* 10416 * Find the pending message; if we're exclusive, it'll be on our IPSQ. 10417 * Otherwise, we can find it from our ioc_id. 10418 */ 10419 if (ipsq != NULL) 10420 pending_mp = ipsq_pending_mp_get(ipsq, &connp); 10421 else 10422 pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 10423 10424 if (pending_mp == NULL) { 10425 ASSERT(connp == NULL); 10426 inet_freemsg(mp); 10427 return; 10428 } 10429 ASSERT(connp != NULL); 10430 q = CONNP_TO_WQ(connp); 10431 10432 /* Uncouple the internally generated IOCTL from the original one */ 10433 area = (area_t *)area_mp->b_rptr; 10434 area_mp->b_cont = NULL; 10435 10436 /* 10437 * Restore the b_next and b_prev used by mi code. This is needed 10438 * to complete the ioctl using mi* functions. We stored them in 10439 * the pending mp prior to sending the request to ARP. 10440 */ 10441 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10442 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10443 inet_freemsg(pending_mp); 10444 10445 /* 10446 * We're done if there was an error or if this is not an SIOCG{X}ARP 10447 * Catch the case where there is an IRE_CACHE by no entry in the 10448 * arp table. 10449 */ 10450 addr = sin->sin_addr.s_addr; 10451 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10452 ire_t *ire; 10453 dl_unitdata_req_t *dlup; 10454 mblk_t *llmp; 10455 int addr_len; 10456 ill_t *ipsqill = NULL; 10457 10458 if (ifx_arp_ioctl) { 10459 /* 10460 * There's no need to lookup the ill, since 10461 * we've already done that when we started 10462 * processing the ioctl and sent the message 10463 * to ARP on that ill. So use the ill that 10464 * is stored in q->q_ptr. 10465 */ 10466 ipsqill = ill; 10467 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10468 ipsqill->ill_ipif, ALL_ZONES, 10469 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10470 } else { 10471 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10472 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10473 if (ire != NULL) 10474 ipsqill = ire_to_ill(ire); 10475 } 10476 10477 if ((x_arp_ioctl) && (ipsqill != NULL)) 10478 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10479 10480 if (ire != NULL) { 10481 /* 10482 * Since the ire obtained from cachetable is used for 10483 * mac addr copying below, treat an incomplete ire as if 10484 * as if we never found it. 10485 */ 10486 if (ire->ire_nce != NULL && 10487 ire->ire_nce->nce_state != ND_REACHABLE) { 10488 ire_refrele(ire); 10489 ire = NULL; 10490 ipsqill = NULL; 10491 goto errack; 10492 } 10493 *flagsp = ATF_INUSE; 10494 llmp = (ire->ire_nce != NULL ? 10495 ire->ire_nce->nce_res_mp : NULL); 10496 if (llmp != NULL && ipsqill != NULL) { 10497 uchar_t *macaddr; 10498 10499 addr_len = ipsqill->ill_phys_addr_length; 10500 if (x_arp_ioctl && ((addr_len + 10501 ipsqill->ill_name_length) > 10502 sizeof (xar->xarp_ha.sdl_data))) { 10503 ire_refrele(ire); 10504 freemsg(mp); 10505 ip_ioctl_finish(q, orig_ioc_mp, 10506 EINVAL, NO_COPYOUT, ipsq); 10507 return; 10508 } 10509 *flagsp |= ATF_COM; 10510 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10511 if (ipsqill->ill_sap_length < 0) 10512 macaddr = llmp->b_rptr + 10513 dlup->dl_dest_addr_offset; 10514 else 10515 macaddr = llmp->b_rptr + 10516 dlup->dl_dest_addr_offset + 10517 ipsqill->ill_sap_length; 10518 /* 10519 * For SIOCGARP, MAC address length 10520 * validation has already been done 10521 * before the ioctl was issued to ARP to 10522 * allow it to progress only on 6 byte 10523 * addressable (ethernet like) media. Thus 10524 * the mac address copying can not overwrite 10525 * the sa_data area below. 10526 */ 10527 bcopy(macaddr, storage, addr_len); 10528 } 10529 /* Ditch the internal IOCTL. */ 10530 freemsg(mp); 10531 ire_refrele(ire); 10532 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10533 return; 10534 } 10535 } 10536 10537 /* 10538 * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE 10539 * on the IPMP meta-interface, ensure any ARP entries added in 10540 * ip_sioctl_arp() are deleted. 10541 */ 10542 if (IS_IPMP(ill) && 10543 ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) || 10544 ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) { 10545 ipmp_illgrp_t *illg = ill->ill_grp; 10546 ipmp_arpent_t *entp; 10547 10548 if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL) 10549 ipmp_illgrp_destroy_arpent(illg, entp); 10550 } 10551 10552 /* 10553 * Delete the coresponding IRE_CACHE if any. 10554 * Reset the error if there was one (in case there was no entry 10555 * in arp.) 10556 */ 10557 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10558 ipif_t *ipintf = NULL; 10559 10560 if (ifx_arp_ioctl) { 10561 /* 10562 * There's no need to lookup the ill, since 10563 * we've already done that when we started 10564 * processing the ioctl and sent the message 10565 * to ARP on that ill. So use the ill that 10566 * is stored in q->q_ptr. 10567 */ 10568 ipintf = ill->ill_ipif; 10569 } 10570 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10571 /* 10572 * The address in "addr" may be an entry for a 10573 * router. If that's true, then any off-net 10574 * IRE_CACHE entries that go through the router 10575 * with address "addr" must be clobbered. Use 10576 * ire_walk to achieve this goal. 10577 */ 10578 if (ifx_arp_ioctl) 10579 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10580 ire_delete_cache_gw, (char *)&addr, ill); 10581 else 10582 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10583 ALL_ZONES, ipst); 10584 iocp->ioc_error = 0; 10585 } 10586 } 10587 errack: 10588 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10589 err = iocp->ioc_error; 10590 freemsg(mp); 10591 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq); 10592 return; 10593 } 10594 10595 /* 10596 * Completion of an SIOCG{X}ARP. Translate the information from 10597 * the area_t into the struct {x}arpreq. 10598 */ 10599 if (x_arp_ioctl) { 10600 storage += ill_xarp_info(&xar->xarp_ha, ill); 10601 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10602 sizeof (xar->xarp_ha.sdl_data)) { 10603 freemsg(mp); 10604 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10605 ipsq); 10606 return; 10607 } 10608 } 10609 *flagsp = ATF_INUSE; 10610 if (area->area_flags & ACE_F_PERMANENT) 10611 *flagsp |= ATF_PERM; 10612 if (area->area_flags & ACE_F_PUBLISH) 10613 *flagsp |= ATF_PUBL; 10614 if (area->area_flags & ACE_F_AUTHORITY) 10615 *flagsp |= ATF_AUTHORITY; 10616 if (area->area_hw_addr_length != 0) { 10617 *flagsp |= ATF_COM; 10618 /* 10619 * For SIOCGARP, MAC address length validation has 10620 * already been done before the ioctl was issued to ARP 10621 * to allow it to progress only on 6 byte addressable 10622 * (ethernet like) media. Thus the mac address copying 10623 * can not overwrite the sa_data area below. 10624 */ 10625 bcopy((char *)area + area->area_hw_addr_offset, 10626 storage, area->area_hw_addr_length); 10627 } 10628 10629 /* Ditch the internal IOCTL. */ 10630 freemsg(mp); 10631 /* Complete the original. */ 10632 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10633 } 10634 10635 /* 10636 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10637 * interface) create the next available logical interface for this 10638 * physical interface. 10639 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10640 * ipif with the specified name. 10641 * 10642 * If the address family is not AF_UNSPEC then set the address as well. 10643 * 10644 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10645 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10646 * 10647 * Executed as a writer on the ill. 10648 * So no lock is needed to traverse the ipif chain, or examine the 10649 * phyint flags. 10650 */ 10651 /* ARGSUSED */ 10652 int 10653 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10654 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10655 { 10656 mblk_t *mp1; 10657 struct lifreq *lifr; 10658 boolean_t isv6; 10659 boolean_t exists; 10660 char *name; 10661 char *endp; 10662 char *cp; 10663 int namelen; 10664 ipif_t *ipif; 10665 long id; 10666 ipsq_t *ipsq; 10667 ill_t *ill; 10668 sin_t *sin; 10669 int err = 0; 10670 boolean_t found_sep = B_FALSE; 10671 conn_t *connp; 10672 zoneid_t zoneid; 10673 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10674 10675 ASSERT(q->q_next == NULL); 10676 ip1dbg(("ip_sioctl_addif\n")); 10677 /* Existence of mp1 has been checked in ip_wput_nondata */ 10678 mp1 = mp->b_cont->b_cont; 10679 /* 10680 * Null terminate the string to protect against buffer 10681 * overrun. String was generated by user code and may not 10682 * be trusted. 10683 */ 10684 lifr = (struct lifreq *)mp1->b_rptr; 10685 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10686 name = lifr->lifr_name; 10687 ASSERT(CONN_Q(q)); 10688 connp = Q_TO_CONN(q); 10689 isv6 = connp->conn_af_isv6; 10690 zoneid = connp->conn_zoneid; 10691 namelen = mi_strlen(name); 10692 if (namelen == 0) 10693 return (EINVAL); 10694 10695 exists = B_FALSE; 10696 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10697 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10698 /* 10699 * Allow creating lo0 using SIOCLIFADDIF. 10700 * can't be any other writer thread. So can pass null below 10701 * for the last 4 args to ipif_lookup_name. 10702 */ 10703 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10704 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10705 /* Prevent any further action */ 10706 if (ipif == NULL) { 10707 return (ENOBUFS); 10708 } else if (!exists) { 10709 /* We created the ipif now and as writer */ 10710 ipif_refrele(ipif); 10711 return (0); 10712 } else { 10713 ill = ipif->ipif_ill; 10714 ill_refhold(ill); 10715 ipif_refrele(ipif); 10716 } 10717 } else { 10718 /* Look for a colon in the name. */ 10719 endp = &name[namelen]; 10720 for (cp = endp; --cp > name; ) { 10721 if (*cp == IPIF_SEPARATOR_CHAR) { 10722 found_sep = B_TRUE; 10723 /* 10724 * Reject any non-decimal aliases for plumbing 10725 * of logical interfaces. Aliases with leading 10726 * zeroes are also rejected as they introduce 10727 * ambiguity in the naming of the interfaces. 10728 * Comparing with "0" takes care of all such 10729 * cases. 10730 */ 10731 if ((strncmp("0", cp+1, 1)) == 0) 10732 return (EINVAL); 10733 10734 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10735 id <= 0 || *endp != '\0') { 10736 return (EINVAL); 10737 } 10738 *cp = '\0'; 10739 break; 10740 } 10741 } 10742 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10743 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10744 if (found_sep) 10745 *cp = IPIF_SEPARATOR_CHAR; 10746 if (ill == NULL) 10747 return (err); 10748 } 10749 10750 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10751 B_TRUE); 10752 10753 /* 10754 * Release the refhold due to the lookup, now that we are excl 10755 * or we are just returning 10756 */ 10757 ill_refrele(ill); 10758 10759 if (ipsq == NULL) 10760 return (EINPROGRESS); 10761 10762 /* We are now exclusive on the IPSQ */ 10763 ASSERT(IAM_WRITER_ILL(ill)); 10764 10765 if (found_sep) { 10766 /* Now see if there is an IPIF with this unit number. */ 10767 for (ipif = ill->ill_ipif; ipif != NULL; 10768 ipif = ipif->ipif_next) { 10769 if (ipif->ipif_id == id) { 10770 err = EEXIST; 10771 goto done; 10772 } 10773 } 10774 } 10775 10776 /* 10777 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10778 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 10779 * instead. 10780 */ 10781 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 10782 B_TRUE, B_TRUE)) == NULL) { 10783 err = ENOBUFS; 10784 goto done; 10785 } 10786 10787 /* Return created name with ioctl */ 10788 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10789 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10790 ip1dbg(("created %s\n", lifr->lifr_name)); 10791 10792 /* Set address */ 10793 sin = (sin_t *)&lifr->lifr_addr; 10794 if (sin->sin_family != AF_UNSPEC) { 10795 err = ip_sioctl_addr(ipif, sin, q, mp, 10796 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10797 } 10798 10799 done: 10800 ipsq_exit(ipsq); 10801 return (err); 10802 } 10803 10804 /* 10805 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10806 * interface) delete it based on the IP address (on this physical interface). 10807 * Otherwise delete it based on the ipif_id. 10808 * Also, special handling to allow a removeif of lo0. 10809 */ 10810 /* ARGSUSED */ 10811 int 10812 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10813 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10814 { 10815 conn_t *connp; 10816 ill_t *ill = ipif->ipif_ill; 10817 boolean_t success; 10818 ip_stack_t *ipst; 10819 10820 ipst = CONNQ_TO_IPST(q); 10821 10822 ASSERT(q->q_next == NULL); 10823 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10824 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10825 ASSERT(IAM_WRITER_IPIF(ipif)); 10826 10827 connp = Q_TO_CONN(q); 10828 /* 10829 * Special case for unplumbing lo0 (the loopback physical interface). 10830 * If unplumbing lo0, the incoming address structure has been 10831 * initialized to all zeros. When unplumbing lo0, all its logical 10832 * interfaces must be removed too. 10833 * 10834 * Note that this interface may be called to remove a specific 10835 * loopback logical interface (eg, lo0:1). But in that case 10836 * ipif->ipif_id != 0 so that the code path for that case is the 10837 * same as any other interface (meaning it skips the code directly 10838 * below). 10839 */ 10840 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10841 if (sin->sin_family == AF_UNSPEC && 10842 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10843 /* 10844 * Mark it condemned. No new ref. will be made to ill. 10845 */ 10846 mutex_enter(&ill->ill_lock); 10847 ill->ill_state_flags |= ILL_CONDEMNED; 10848 for (ipif = ill->ill_ipif; ipif != NULL; 10849 ipif = ipif->ipif_next) { 10850 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10851 } 10852 mutex_exit(&ill->ill_lock); 10853 10854 ipif = ill->ill_ipif; 10855 /* unplumb the loopback interface */ 10856 ill_delete(ill); 10857 mutex_enter(&connp->conn_lock); 10858 mutex_enter(&ill->ill_lock); 10859 10860 /* Are any references to this ill active */ 10861 if (ill_is_freeable(ill)) { 10862 mutex_exit(&ill->ill_lock); 10863 mutex_exit(&connp->conn_lock); 10864 ill_delete_tail(ill); 10865 mi_free(ill); 10866 return (0); 10867 } 10868 success = ipsq_pending_mp_add(connp, ipif, 10869 CONNP_TO_WQ(connp), mp, ILL_FREE); 10870 mutex_exit(&connp->conn_lock); 10871 mutex_exit(&ill->ill_lock); 10872 if (success) 10873 return (EINPROGRESS); 10874 else 10875 return (EINTR); 10876 } 10877 } 10878 10879 if (ipif->ipif_id == 0) { 10880 ipsq_t *ipsq; 10881 10882 /* Find based on address */ 10883 if (ipif->ipif_isv6) { 10884 sin6_t *sin6; 10885 10886 if (sin->sin_family != AF_INET6) 10887 return (EAFNOSUPPORT); 10888 10889 sin6 = (sin6_t *)sin; 10890 /* We are a writer, so we should be able to lookup */ 10891 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 10892 ipst); 10893 } else { 10894 if (sin->sin_family != AF_INET) 10895 return (EAFNOSUPPORT); 10896 10897 /* We are a writer, so we should be able to lookup */ 10898 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 10899 ipst); 10900 } 10901 if (ipif == NULL) { 10902 return (EADDRNOTAVAIL); 10903 } 10904 10905 /* 10906 * It is possible for a user to send an SIOCLIFREMOVEIF with 10907 * lifr_name of the physical interface but with an ip address 10908 * lifr_addr of a logical interface plumbed over it. 10909 * So update ipx_current_ipif now that ipif points to the 10910 * correct one. 10911 */ 10912 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10913 ipsq->ipsq_xop->ipx_current_ipif = ipif; 10914 10915 /* This is a writer */ 10916 ipif_refrele(ipif); 10917 } 10918 10919 /* 10920 * Can not delete instance zero since it is tied to the ill. 10921 */ 10922 if (ipif->ipif_id == 0) 10923 return (EBUSY); 10924 10925 mutex_enter(&ill->ill_lock); 10926 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10927 mutex_exit(&ill->ill_lock); 10928 10929 ipif_free(ipif); 10930 10931 mutex_enter(&connp->conn_lock); 10932 mutex_enter(&ill->ill_lock); 10933 10934 /* Are any references to this ipif active */ 10935 if (ipif_is_freeable(ipif)) { 10936 mutex_exit(&ill->ill_lock); 10937 mutex_exit(&connp->conn_lock); 10938 ipif_non_duplicate(ipif); 10939 ipif_down_tail(ipif); 10940 ipif_free_tail(ipif); /* frees ipif */ 10941 return (0); 10942 } 10943 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10944 IPIF_FREE); 10945 mutex_exit(&ill->ill_lock); 10946 mutex_exit(&connp->conn_lock); 10947 if (success) 10948 return (EINPROGRESS); 10949 else 10950 return (EINTR); 10951 } 10952 10953 /* 10954 * Restart the removeif ioctl. The refcnt has gone down to 0. 10955 * The ipif is already condemned. So can't find it thru lookups. 10956 */ 10957 /* ARGSUSED */ 10958 int 10959 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10960 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10961 { 10962 ill_t *ill = ipif->ipif_ill; 10963 10964 ASSERT(IAM_WRITER_IPIF(ipif)); 10965 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10966 10967 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10968 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10969 10970 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10971 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10972 ill_delete_tail(ill); 10973 mi_free(ill); 10974 return (0); 10975 } 10976 10977 ipif_non_duplicate(ipif); 10978 ipif_down_tail(ipif); 10979 ipif_free_tail(ipif); 10980 10981 ILL_UNMARK_CHANGING(ill); 10982 return (0); 10983 } 10984 10985 /* 10986 * Set the local interface address. 10987 * Allow an address of all zero when the interface is down. 10988 */ 10989 /* ARGSUSED */ 10990 int 10991 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10992 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10993 { 10994 int err = 0; 10995 in6_addr_t v6addr; 10996 boolean_t need_up = B_FALSE; 10997 10998 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10999 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11000 11001 ASSERT(IAM_WRITER_IPIF(ipif)); 11002 11003 if (ipif->ipif_isv6) { 11004 sin6_t *sin6; 11005 ill_t *ill; 11006 phyint_t *phyi; 11007 11008 if (sin->sin_family != AF_INET6) 11009 return (EAFNOSUPPORT); 11010 11011 sin6 = (sin6_t *)sin; 11012 v6addr = sin6->sin6_addr; 11013 ill = ipif->ipif_ill; 11014 phyi = ill->ill_phyint; 11015 11016 /* 11017 * Enforce that true multicast interfaces have a link-local 11018 * address for logical unit 0. 11019 */ 11020 if (ipif->ipif_id == 0 && 11021 (ill->ill_flags & ILLF_MULTICAST) && 11022 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11023 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11024 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11025 return (EADDRNOTAVAIL); 11026 } 11027 11028 /* 11029 * up interfaces shouldn't have the unspecified address 11030 * unless they also have the IPIF_NOLOCAL flags set and 11031 * have a subnet assigned. 11032 */ 11033 if ((ipif->ipif_flags & IPIF_UP) && 11034 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11035 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11036 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11037 return (EADDRNOTAVAIL); 11038 } 11039 11040 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11041 return (EADDRNOTAVAIL); 11042 } else { 11043 ipaddr_t addr; 11044 11045 if (sin->sin_family != AF_INET) 11046 return (EAFNOSUPPORT); 11047 11048 addr = sin->sin_addr.s_addr; 11049 11050 /* Allow 0 as the local address. */ 11051 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11052 return (EADDRNOTAVAIL); 11053 11054 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11055 } 11056 11057 /* 11058 * Even if there is no change we redo things just to rerun 11059 * ipif_set_default. 11060 */ 11061 if (ipif->ipif_flags & IPIF_UP) { 11062 /* 11063 * Setting a new local address, make sure 11064 * we have net and subnet bcast ire's for 11065 * the old address if we need them. 11066 */ 11067 if (!ipif->ipif_isv6) 11068 ipif_check_bcast_ires(ipif); 11069 /* 11070 * If the interface is already marked up, 11071 * we call ipif_down which will take care 11072 * of ditching any IREs that have been set 11073 * up based on the old interface address. 11074 */ 11075 err = ipif_logical_down(ipif, q, mp); 11076 if (err == EINPROGRESS) 11077 return (err); 11078 ipif_down_tail(ipif); 11079 need_up = 1; 11080 } 11081 11082 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11083 return (err); 11084 } 11085 11086 int 11087 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11088 boolean_t need_up) 11089 { 11090 in6_addr_t v6addr; 11091 in6_addr_t ov6addr; 11092 ipaddr_t addr; 11093 sin6_t *sin6; 11094 int sinlen; 11095 int err = 0; 11096 ill_t *ill = ipif->ipif_ill; 11097 boolean_t need_dl_down; 11098 boolean_t need_arp_down; 11099 struct iocblk *iocp; 11100 11101 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11102 11103 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11104 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11105 ASSERT(IAM_WRITER_IPIF(ipif)); 11106 11107 /* Must cancel any pending timer before taking the ill_lock */ 11108 if (ipif->ipif_recovery_id != 0) 11109 (void) untimeout(ipif->ipif_recovery_id); 11110 ipif->ipif_recovery_id = 0; 11111 11112 if (ipif->ipif_isv6) { 11113 sin6 = (sin6_t *)sin; 11114 v6addr = sin6->sin6_addr; 11115 sinlen = sizeof (struct sockaddr_in6); 11116 } else { 11117 addr = sin->sin_addr.s_addr; 11118 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11119 sinlen = sizeof (struct sockaddr_in); 11120 } 11121 mutex_enter(&ill->ill_lock); 11122 ov6addr = ipif->ipif_v6lcl_addr; 11123 ipif->ipif_v6lcl_addr = v6addr; 11124 sctp_update_ipif_addr(ipif, ov6addr); 11125 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11126 ipif->ipif_v6src_addr = ipv6_all_zeros; 11127 } else { 11128 ipif->ipif_v6src_addr = v6addr; 11129 } 11130 ipif->ipif_addr_ready = 0; 11131 11132 /* 11133 * If the interface was previously marked as a duplicate, then since 11134 * we've now got a "new" address, it should no longer be considered a 11135 * duplicate -- even if the "new" address is the same as the old one. 11136 * Note that if all ipifs are down, we may have a pending ARP down 11137 * event to handle. This is because we want to recover from duplicates 11138 * and thus delay tearing down ARP until the duplicates have been 11139 * removed or disabled. 11140 */ 11141 need_dl_down = need_arp_down = B_FALSE; 11142 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11143 need_arp_down = !need_up; 11144 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11145 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11146 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11147 need_dl_down = B_TRUE; 11148 } 11149 } 11150 11151 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11152 !ill->ill_is_6to4tun) { 11153 queue_t *wqp = ill->ill_wq; 11154 11155 /* 11156 * The local address of this interface is a 6to4 address, 11157 * check if this interface is in fact a 6to4 tunnel or just 11158 * an interface configured with a 6to4 address. We are only 11159 * interested in the former. 11160 */ 11161 if (wqp != NULL) { 11162 while ((wqp->q_next != NULL) && 11163 (wqp->q_next->q_qinfo != NULL) && 11164 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11165 11166 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11167 == TUN6TO4_MODID) { 11168 /* set for use in IP */ 11169 ill->ill_is_6to4tun = 1; 11170 break; 11171 } 11172 wqp = wqp->q_next; 11173 } 11174 } 11175 } 11176 11177 ipif_set_default(ipif); 11178 11179 /* 11180 * When publishing an interface address change event, we only notify 11181 * the event listeners of the new address. It is assumed that if they 11182 * actively care about the addresses assigned that they will have 11183 * already discovered the previous address assigned (if there was one.) 11184 * 11185 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11186 */ 11187 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11188 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 11189 NE_ADDRESS_CHANGE, sin, sinlen); 11190 } 11191 11192 mutex_exit(&ill->ill_lock); 11193 11194 if (need_up) { 11195 /* 11196 * Now bring the interface back up. If this 11197 * is the only IPIF for the ILL, ipif_up 11198 * will have to re-bind to the device, so 11199 * we may get back EINPROGRESS, in which 11200 * case, this IOCTL will get completed in 11201 * ip_rput_dlpi when we see the DL_BIND_ACK. 11202 */ 11203 err = ipif_up(ipif, q, mp); 11204 } 11205 11206 if (need_dl_down) 11207 ill_dl_down(ill); 11208 if (need_arp_down) 11209 ipif_resolver_down(ipif); 11210 11211 return (err); 11212 } 11213 11214 /* 11215 * Restart entry point to restart the address set operation after the 11216 * refcounts have dropped to zero. 11217 */ 11218 /* ARGSUSED */ 11219 int 11220 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11221 ip_ioctl_cmd_t *ipip, void *ifreq) 11222 { 11223 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11224 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11225 ASSERT(IAM_WRITER_IPIF(ipif)); 11226 ipif_down_tail(ipif); 11227 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11228 } 11229 11230 /* ARGSUSED */ 11231 int 11232 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11233 ip_ioctl_cmd_t *ipip, void *if_req) 11234 { 11235 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11236 struct lifreq *lifr = (struct lifreq *)if_req; 11237 11238 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11239 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11240 /* 11241 * The net mask and address can't change since we have a 11242 * reference to the ipif. So no lock is necessary. 11243 */ 11244 if (ipif->ipif_isv6) { 11245 *sin6 = sin6_null; 11246 sin6->sin6_family = AF_INET6; 11247 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11248 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11249 lifr->lifr_addrlen = 11250 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11251 } else { 11252 *sin = sin_null; 11253 sin->sin_family = AF_INET; 11254 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11255 if (ipip->ipi_cmd_type == LIF_CMD) { 11256 lifr->lifr_addrlen = 11257 ip_mask_to_plen(ipif->ipif_net_mask); 11258 } 11259 } 11260 return (0); 11261 } 11262 11263 /* 11264 * Set the destination address for a pt-pt interface. 11265 */ 11266 /* ARGSUSED */ 11267 int 11268 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11269 ip_ioctl_cmd_t *ipip, void *if_req) 11270 { 11271 int err = 0; 11272 in6_addr_t v6addr; 11273 boolean_t need_up = B_FALSE; 11274 11275 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11276 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11277 ASSERT(IAM_WRITER_IPIF(ipif)); 11278 11279 if (ipif->ipif_isv6) { 11280 sin6_t *sin6; 11281 11282 if (sin->sin_family != AF_INET6) 11283 return (EAFNOSUPPORT); 11284 11285 sin6 = (sin6_t *)sin; 11286 v6addr = sin6->sin6_addr; 11287 11288 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11289 return (EADDRNOTAVAIL); 11290 } else { 11291 ipaddr_t addr; 11292 11293 if (sin->sin_family != AF_INET) 11294 return (EAFNOSUPPORT); 11295 11296 addr = sin->sin_addr.s_addr; 11297 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11298 return (EADDRNOTAVAIL); 11299 11300 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11301 } 11302 11303 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11304 return (0); /* No change */ 11305 11306 if (ipif->ipif_flags & IPIF_UP) { 11307 /* 11308 * If the interface is already marked up, 11309 * we call ipif_down which will take care 11310 * of ditching any IREs that have been set 11311 * up based on the old pp dst address. 11312 */ 11313 err = ipif_logical_down(ipif, q, mp); 11314 if (err == EINPROGRESS) 11315 return (err); 11316 ipif_down_tail(ipif); 11317 need_up = B_TRUE; 11318 } 11319 /* 11320 * could return EINPROGRESS. If so ioctl will complete in 11321 * ip_rput_dlpi_writer 11322 */ 11323 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11324 return (err); 11325 } 11326 11327 static int 11328 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11329 boolean_t need_up) 11330 { 11331 in6_addr_t v6addr; 11332 ill_t *ill = ipif->ipif_ill; 11333 int err = 0; 11334 boolean_t need_dl_down; 11335 boolean_t need_arp_down; 11336 11337 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11338 ipif->ipif_id, (void *)ipif)); 11339 11340 /* Must cancel any pending timer before taking the ill_lock */ 11341 if (ipif->ipif_recovery_id != 0) 11342 (void) untimeout(ipif->ipif_recovery_id); 11343 ipif->ipif_recovery_id = 0; 11344 11345 if (ipif->ipif_isv6) { 11346 sin6_t *sin6; 11347 11348 sin6 = (sin6_t *)sin; 11349 v6addr = sin6->sin6_addr; 11350 } else { 11351 ipaddr_t addr; 11352 11353 addr = sin->sin_addr.s_addr; 11354 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11355 } 11356 mutex_enter(&ill->ill_lock); 11357 /* Set point to point destination address. */ 11358 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11359 /* 11360 * Allow this as a means of creating logical 11361 * pt-pt interfaces on top of e.g. an Ethernet. 11362 * XXX Undocumented HACK for testing. 11363 * pt-pt interfaces are created with NUD disabled. 11364 */ 11365 ipif->ipif_flags |= IPIF_POINTOPOINT; 11366 ipif->ipif_flags &= ~IPIF_BROADCAST; 11367 if (ipif->ipif_isv6) 11368 ill->ill_flags |= ILLF_NONUD; 11369 } 11370 11371 /* 11372 * If the interface was previously marked as a duplicate, then since 11373 * we've now got a "new" address, it should no longer be considered a 11374 * duplicate -- even if the "new" address is the same as the old one. 11375 * Note that if all ipifs are down, we may have a pending ARP down 11376 * event to handle. 11377 */ 11378 need_dl_down = need_arp_down = B_FALSE; 11379 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11380 need_arp_down = !need_up; 11381 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11382 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11383 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11384 need_dl_down = B_TRUE; 11385 } 11386 } 11387 11388 /* Set the new address. */ 11389 ipif->ipif_v6pp_dst_addr = v6addr; 11390 /* Make sure subnet tracks pp_dst */ 11391 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11392 mutex_exit(&ill->ill_lock); 11393 11394 if (need_up) { 11395 /* 11396 * Now bring the interface back up. If this 11397 * is the only IPIF for the ILL, ipif_up 11398 * will have to re-bind to the device, so 11399 * we may get back EINPROGRESS, in which 11400 * case, this IOCTL will get completed in 11401 * ip_rput_dlpi when we see the DL_BIND_ACK. 11402 */ 11403 err = ipif_up(ipif, q, mp); 11404 } 11405 11406 if (need_dl_down) 11407 ill_dl_down(ill); 11408 if (need_arp_down) 11409 ipif_resolver_down(ipif); 11410 11411 return (err); 11412 } 11413 11414 /* 11415 * Restart entry point to restart the dstaddress set operation after the 11416 * refcounts have dropped to zero. 11417 */ 11418 /* ARGSUSED */ 11419 int 11420 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11421 ip_ioctl_cmd_t *ipip, void *ifreq) 11422 { 11423 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11424 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11425 ipif_down_tail(ipif); 11426 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11427 } 11428 11429 /* ARGSUSED */ 11430 int 11431 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11432 ip_ioctl_cmd_t *ipip, void *if_req) 11433 { 11434 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11435 11436 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11437 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11438 /* 11439 * Get point to point destination address. The addresses can't 11440 * change since we hold a reference to the ipif. 11441 */ 11442 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11443 return (EADDRNOTAVAIL); 11444 11445 if (ipif->ipif_isv6) { 11446 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11447 *sin6 = sin6_null; 11448 sin6->sin6_family = AF_INET6; 11449 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11450 } else { 11451 *sin = sin_null; 11452 sin->sin_family = AF_INET; 11453 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11454 } 11455 return (0); 11456 } 11457 11458 /* 11459 * Set interface flags. Many flags require special handling (e.g., 11460 * bringing the interface down); see below for details. 11461 * 11462 * NOTE : We really don't enforce that ipif_id zero should be used 11463 * for setting any flags other than IFF_LOGINT_FLAGS. This 11464 * is because applications generally does SICGLIFFLAGS and 11465 * ORs in the new flags (that affects the logical) and does a 11466 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11467 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11468 * flags that will be turned on is correct with respect to 11469 * ipif_id 0. For backward compatibility reasons, it is not done. 11470 */ 11471 /* ARGSUSED */ 11472 int 11473 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11474 ip_ioctl_cmd_t *ipip, void *if_req) 11475 { 11476 uint64_t turn_on; 11477 uint64_t turn_off; 11478 int err = 0; 11479 phyint_t *phyi; 11480 ill_t *ill; 11481 uint64_t intf_flags, cantchange_flags; 11482 boolean_t phyint_flags_modified = B_FALSE; 11483 uint64_t flags; 11484 struct ifreq *ifr; 11485 struct lifreq *lifr; 11486 boolean_t set_linklocal = B_FALSE; 11487 boolean_t zero_source = B_FALSE; 11488 11489 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11490 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11491 11492 ASSERT(IAM_WRITER_IPIF(ipif)); 11493 11494 ill = ipif->ipif_ill; 11495 phyi = ill->ill_phyint; 11496 11497 if (ipip->ipi_cmd_type == IF_CMD) { 11498 ifr = (struct ifreq *)if_req; 11499 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11500 } else { 11501 lifr = (struct lifreq *)if_req; 11502 flags = lifr->lifr_flags; 11503 } 11504 11505 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11506 11507 /* 11508 * Have the flags been set correctly until now? 11509 */ 11510 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11511 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11512 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11513 /* 11514 * Compare the new flags to the old, and partition 11515 * into those coming on and those going off. 11516 * For the 16 bit command keep the bits above bit 16 unchanged. 11517 */ 11518 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11519 flags |= intf_flags & ~0xFFFF; 11520 11521 /* 11522 * Explicitly fail attempts to change flags that are always invalid on 11523 * an IPMP meta-interface. 11524 */ 11525 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 11526 return (EINVAL); 11527 11528 /* 11529 * Check which flags will change; silently ignore flags which userland 11530 * is not allowed to control. (Because these flags may change between 11531 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's 11532 * control, we need to silently ignore them rather than fail.) 11533 */ 11534 cantchange_flags = IFF_CANTCHANGE; 11535 if (IS_IPMP(ill)) 11536 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11537 11538 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11539 if (turn_on == 0) 11540 return (0); /* No change */ 11541 11542 turn_off = intf_flags & turn_on; 11543 turn_on ^= turn_off; 11544 11545 /* 11546 * All test addresses must be IFF_DEPRECATED (to ensure source address 11547 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 11548 * allow it to be turned off. 11549 */ 11550 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 11551 (turn_on|intf_flags) & IFF_NOFAILOVER) 11552 return (EINVAL); 11553 11554 if (turn_on & IFF_NOFAILOVER) { 11555 turn_on |= IFF_DEPRECATED; 11556 flags |= IFF_DEPRECATED; 11557 } 11558 11559 /* 11560 * On underlying interfaces, only allow applications to manage test 11561 * addresses -- otherwise, they may get confused when the address 11562 * moves as part of being brought up. Likewise, prevent an 11563 * application-managed test address from being converted to a data 11564 * address. To prevent migration of administratively up addresses in 11565 * the kernel, we don't allow them to be converted either. 11566 */ 11567 if (IS_UNDER_IPMP(ill)) { 11568 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 11569 11570 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 11571 return (EINVAL); 11572 11573 if ((turn_off & IFF_NOFAILOVER) && 11574 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 11575 return (EINVAL); 11576 } 11577 11578 /* 11579 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11580 * IPv6 interfaces. 11581 */ 11582 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11583 return (EINVAL); 11584 11585 /* 11586 * cannot turn off IFF_NOXMIT on VNI interfaces. 11587 */ 11588 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11589 return (EINVAL); 11590 11591 /* 11592 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11593 * interfaces. It makes no sense in that context. 11594 */ 11595 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11596 return (EINVAL); 11597 11598 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11599 zero_source = B_TRUE; 11600 11601 /* 11602 * For IPv6 ipif_id 0, don't allow the interface to be up without 11603 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11604 * If the link local address isn't set, and can be set, it will get 11605 * set later on in this function. 11606 */ 11607 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11608 (flags & IFF_UP) && !zero_source && 11609 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11610 if (ipif_cant_setlinklocal(ipif)) 11611 return (EINVAL); 11612 set_linklocal = B_TRUE; 11613 } 11614 11615 /* 11616 * If we modify physical interface flags, we'll potentially need to 11617 * send up two routing socket messages for the changes (one for the 11618 * IPv4 ill, and another for the IPv6 ill). Note that here. 11619 */ 11620 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11621 phyint_flags_modified = B_TRUE; 11622 11623 /* 11624 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 11625 * (otherwise, we'd immediately use them, defeating standby). Also, 11626 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 11627 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 11628 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 11629 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 11630 * will not be honored. 11631 */ 11632 if (turn_on & PHYI_STANDBY) { 11633 /* 11634 * No need to grab ill_g_usesrc_lock here; see the 11635 * synchronization notes in ip.c. 11636 */ 11637 if (ill->ill_usesrc_grp_next != NULL || 11638 intf_flags & PHYI_INACTIVE) 11639 return (EINVAL); 11640 if (!(flags & PHYI_FAILED)) { 11641 flags |= PHYI_INACTIVE; 11642 turn_on |= PHYI_INACTIVE; 11643 } 11644 } 11645 11646 if (turn_off & PHYI_STANDBY) { 11647 flags &= ~PHYI_INACTIVE; 11648 turn_off |= PHYI_INACTIVE; 11649 } 11650 11651 /* 11652 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 11653 * would end up on. 11654 */ 11655 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 11656 (PHYI_FAILED | PHYI_INACTIVE)) 11657 return (EINVAL); 11658 11659 /* 11660 * If ILLF_ROUTER changes, we need to change the ip forwarding 11661 * status of the interface. 11662 */ 11663 if ((turn_on | turn_off) & ILLF_ROUTER) 11664 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11665 11666 /* 11667 * If the interface is not UP and we are not going to 11668 * bring it UP, record the flags and return. When the 11669 * interface comes UP later, the right actions will be 11670 * taken. 11671 */ 11672 if (!(ipif->ipif_flags & IPIF_UP) && 11673 !(turn_on & IPIF_UP)) { 11674 /* Record new flags in their respective places. */ 11675 mutex_enter(&ill->ill_lock); 11676 mutex_enter(&ill->ill_phyint->phyint_lock); 11677 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11678 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11679 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11680 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11681 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11682 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11683 mutex_exit(&ill->ill_lock); 11684 mutex_exit(&ill->ill_phyint->phyint_lock); 11685 11686 /* 11687 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 11688 * same to the kernel: if any of them has been set by 11689 * userland, the interface cannot be used for data traffic. 11690 */ 11691 if ((turn_on|turn_off) & 11692 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11693 ASSERT(!IS_IPMP(ill)); 11694 /* 11695 * It's possible the ill is part of an "anonymous" 11696 * IPMP group rather than a real group. In that case, 11697 * there are no other interfaces in the group and thus 11698 * no need to call ipmp_phyint_refresh_active(). 11699 */ 11700 if (IS_UNDER_IPMP(ill)) 11701 ipmp_phyint_refresh_active(phyi); 11702 } 11703 11704 if (phyint_flags_modified) { 11705 if (phyi->phyint_illv4 != NULL) { 11706 ip_rts_ifmsg(phyi->phyint_illv4-> 11707 ill_ipif, RTSQ_DEFAULT); 11708 } 11709 if (phyi->phyint_illv6 != NULL) { 11710 ip_rts_ifmsg(phyi->phyint_illv6-> 11711 ill_ipif, RTSQ_DEFAULT); 11712 } 11713 } 11714 return (0); 11715 } else if (set_linklocal || zero_source) { 11716 mutex_enter(&ill->ill_lock); 11717 if (set_linklocal) 11718 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11719 if (zero_source) 11720 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11721 mutex_exit(&ill->ill_lock); 11722 } 11723 11724 /* 11725 * Disallow IPv6 interfaces coming up that have the unspecified address, 11726 * or point-to-point interfaces with an unspecified destination. We do 11727 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11728 * have a subnet assigned, which is how in.ndpd currently manages its 11729 * onlink prefix list when no addresses are configured with those 11730 * prefixes. 11731 */ 11732 if (ipif->ipif_isv6 && 11733 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11734 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11735 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11736 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11737 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11738 return (EINVAL); 11739 } 11740 11741 /* 11742 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11743 * from being brought up. 11744 */ 11745 if (!ipif->ipif_isv6 && 11746 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11747 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11748 return (EINVAL); 11749 } 11750 11751 /* 11752 * The only flag changes that we currently take specific action on are 11753 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 11754 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 11755 * IPIF_NOFAILOVER. This is done by bring the ipif down, changing the 11756 * flags and bringing it back up again. For IPIF_NOFAILOVER, the act 11757 * of bringing it back up will trigger the address to be moved. 11758 */ 11759 if ((turn_on|turn_off) & 11760 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11761 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 11762 IPIF_NOFAILOVER)) { 11763 /* 11764 * Taking this ipif down, make sure we have 11765 * valid net and subnet bcast ire's for other 11766 * logical interfaces, if we need them. 11767 */ 11768 if (!ipif->ipif_isv6) 11769 ipif_check_bcast_ires(ipif); 11770 11771 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11772 !(turn_off & IPIF_UP)) { 11773 if (ipif->ipif_flags & IPIF_UP) 11774 ill->ill_logical_down = 1; 11775 turn_on &= ~IPIF_UP; 11776 } 11777 err = ipif_down(ipif, q, mp); 11778 ip1dbg(("ipif_down returns %d err ", err)); 11779 if (err == EINPROGRESS) 11780 return (err); 11781 ipif_down_tail(ipif); 11782 } 11783 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11784 } 11785 11786 static int 11787 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11788 { 11789 ill_t *ill; 11790 phyint_t *phyi; 11791 uint64_t turn_on, turn_off; 11792 uint64_t intf_flags, cantchange_flags; 11793 boolean_t phyint_flags_modified = B_FALSE; 11794 int err = 0; 11795 boolean_t set_linklocal = B_FALSE; 11796 boolean_t zero_source = B_FALSE; 11797 11798 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11799 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11800 11801 ASSERT(IAM_WRITER_IPIF(ipif)); 11802 11803 ill = ipif->ipif_ill; 11804 phyi = ill->ill_phyint; 11805 11806 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11807 cantchange_flags = IFF_CANTCHANGE | IFF_UP; 11808 if (IS_IPMP(ill)) 11809 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11810 11811 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11812 turn_off = intf_flags & turn_on; 11813 turn_on ^= turn_off; 11814 11815 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11816 phyint_flags_modified = B_TRUE; 11817 11818 /* 11819 * Now we change the flags. Track current value of 11820 * other flags in their respective places. 11821 */ 11822 mutex_enter(&ill->ill_lock); 11823 mutex_enter(&phyi->phyint_lock); 11824 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11825 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11826 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11827 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11828 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11829 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11830 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11831 set_linklocal = B_TRUE; 11832 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11833 } 11834 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11835 zero_source = B_TRUE; 11836 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11837 } 11838 mutex_exit(&ill->ill_lock); 11839 mutex_exit(&phyi->phyint_lock); 11840 11841 if (set_linklocal) 11842 (void) ipif_setlinklocal(ipif); 11843 11844 if (zero_source) 11845 ipif->ipif_v6src_addr = ipv6_all_zeros; 11846 else 11847 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11848 11849 /* 11850 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 11851 * the kernel: if any of them has been set by userland, the interface 11852 * cannot be used for data traffic. 11853 */ 11854 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11855 ASSERT(!IS_IPMP(ill)); 11856 /* 11857 * It's possible the ill is part of an "anonymous" IPMP group 11858 * rather than a real group. In that case, there are no other 11859 * interfaces in the group and thus no need for us to call 11860 * ipmp_phyint_refresh_active(). 11861 */ 11862 if (IS_UNDER_IPMP(ill)) 11863 ipmp_phyint_refresh_active(phyi); 11864 } 11865 11866 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 11867 /* 11868 * XXX ipif_up really does not know whether a phyint flags 11869 * was modified or not. So, it sends up information on 11870 * only one routing sockets message. As we don't bring up 11871 * the interface and also set PHYI_ flags simultaneously 11872 * it should be okay. 11873 */ 11874 err = ipif_up(ipif, q, mp); 11875 } else { 11876 /* 11877 * Make sure routing socket sees all changes to the flags. 11878 * ipif_up_done* handles this when we use ipif_up. 11879 */ 11880 if (phyint_flags_modified) { 11881 if (phyi->phyint_illv4 != NULL) { 11882 ip_rts_ifmsg(phyi->phyint_illv4-> 11883 ill_ipif, RTSQ_DEFAULT); 11884 } 11885 if (phyi->phyint_illv6 != NULL) { 11886 ip_rts_ifmsg(phyi->phyint_illv6-> 11887 ill_ipif, RTSQ_DEFAULT); 11888 } 11889 } else { 11890 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 11891 } 11892 /* 11893 * Update the flags in SCTP's IPIF list, ipif_up() will do 11894 * this in need_up case. 11895 */ 11896 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11897 } 11898 return (err); 11899 } 11900 11901 /* 11902 * Restart the flags operation now that the refcounts have dropped to zero. 11903 */ 11904 /* ARGSUSED */ 11905 int 11906 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11907 ip_ioctl_cmd_t *ipip, void *if_req) 11908 { 11909 uint64_t flags; 11910 struct ifreq *ifr = if_req; 11911 struct lifreq *lifr = if_req; 11912 11913 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11914 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11915 11916 ipif_down_tail(ipif); 11917 if (ipip->ipi_cmd_type == IF_CMD) { 11918 /* cast to uint16_t prevents unwanted sign extension */ 11919 flags = (uint16_t)ifr->ifr_flags; 11920 } else { 11921 flags = lifr->lifr_flags; 11922 } 11923 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11924 } 11925 11926 /* 11927 * Can operate on either a module or a driver queue. 11928 */ 11929 /* ARGSUSED */ 11930 int 11931 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11932 ip_ioctl_cmd_t *ipip, void *if_req) 11933 { 11934 /* 11935 * Has the flags been set correctly till now ? 11936 */ 11937 ill_t *ill = ipif->ipif_ill; 11938 phyint_t *phyi = ill->ill_phyint; 11939 11940 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11941 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11942 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11943 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11944 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11945 11946 /* 11947 * Need a lock since some flags can be set even when there are 11948 * references to the ipif. 11949 */ 11950 mutex_enter(&ill->ill_lock); 11951 if (ipip->ipi_cmd_type == IF_CMD) { 11952 struct ifreq *ifr = (struct ifreq *)if_req; 11953 11954 /* Get interface flags (low 16 only). */ 11955 ifr->ifr_flags = ((ipif->ipif_flags | 11956 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11957 } else { 11958 struct lifreq *lifr = (struct lifreq *)if_req; 11959 11960 /* Get interface flags. */ 11961 lifr->lifr_flags = ipif->ipif_flags | 11962 ill->ill_flags | phyi->phyint_flags; 11963 } 11964 mutex_exit(&ill->ill_lock); 11965 return (0); 11966 } 11967 11968 /* ARGSUSED */ 11969 int 11970 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11971 ip_ioctl_cmd_t *ipip, void *if_req) 11972 { 11973 int mtu; 11974 int ip_min_mtu; 11975 struct ifreq *ifr; 11976 struct lifreq *lifr; 11977 ire_t *ire; 11978 ip_stack_t *ipst; 11979 11980 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11981 ipif->ipif_id, (void *)ipif)); 11982 if (ipip->ipi_cmd_type == IF_CMD) { 11983 ifr = (struct ifreq *)if_req; 11984 mtu = ifr->ifr_metric; 11985 } else { 11986 lifr = (struct lifreq *)if_req; 11987 mtu = lifr->lifr_mtu; 11988 } 11989 11990 if (ipif->ipif_isv6) 11991 ip_min_mtu = IPV6_MIN_MTU; 11992 else 11993 ip_min_mtu = IP_MIN_MTU; 11994 11995 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11996 return (EINVAL); 11997 11998 /* 11999 * Change the MTU size in all relevant ire's. 12000 * Mtu change Vs. new ire creation - protocol below. 12001 * First change ipif_mtu and the ire_max_frag of the 12002 * interface ire. Then do an ire walk and change the 12003 * ire_max_frag of all affected ires. During ire_add 12004 * under the bucket lock, set the ire_max_frag of the 12005 * new ire being created from the ipif/ire from which 12006 * it is being derived. If an mtu change happens after 12007 * the ire is added, the new ire will be cleaned up. 12008 * Conversely if the mtu change happens before the ire 12009 * is added, ire_add will see the new value of the mtu. 12010 */ 12011 ipif->ipif_mtu = mtu; 12012 ipif->ipif_flags |= IPIF_FIXEDMTU; 12013 12014 if (ipif->ipif_isv6) 12015 ire = ipif_to_ire_v6(ipif); 12016 else 12017 ire = ipif_to_ire(ipif); 12018 if (ire != NULL) { 12019 ire->ire_max_frag = ipif->ipif_mtu; 12020 ire_refrele(ire); 12021 } 12022 ipst = ipif->ipif_ill->ill_ipst; 12023 if (ipif->ipif_flags & IPIF_UP) { 12024 if (ipif->ipif_isv6) 12025 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12026 ipst); 12027 else 12028 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12029 ipst); 12030 } 12031 /* Update the MTU in SCTP's list */ 12032 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12033 return (0); 12034 } 12035 12036 /* Get interface MTU. */ 12037 /* ARGSUSED */ 12038 int 12039 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12040 ip_ioctl_cmd_t *ipip, void *if_req) 12041 { 12042 struct ifreq *ifr; 12043 struct lifreq *lifr; 12044 12045 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12046 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12047 if (ipip->ipi_cmd_type == IF_CMD) { 12048 ifr = (struct ifreq *)if_req; 12049 ifr->ifr_metric = ipif->ipif_mtu; 12050 } else { 12051 lifr = (struct lifreq *)if_req; 12052 lifr->lifr_mtu = ipif->ipif_mtu; 12053 } 12054 return (0); 12055 } 12056 12057 /* Set interface broadcast address. */ 12058 /* ARGSUSED2 */ 12059 int 12060 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12061 ip_ioctl_cmd_t *ipip, void *if_req) 12062 { 12063 ipaddr_t addr; 12064 ire_t *ire; 12065 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12066 12067 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12068 ipif->ipif_id)); 12069 12070 ASSERT(IAM_WRITER_IPIF(ipif)); 12071 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12072 return (EADDRNOTAVAIL); 12073 12074 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12075 12076 if (sin->sin_family != AF_INET) 12077 return (EAFNOSUPPORT); 12078 12079 addr = sin->sin_addr.s_addr; 12080 if (ipif->ipif_flags & IPIF_UP) { 12081 /* 12082 * If we are already up, make sure the new 12083 * broadcast address makes sense. If it does, 12084 * there should be an IRE for it already. 12085 * Don't match on ipif, only on the ill 12086 * since we are sharing these now. 12087 */ 12088 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12089 ipif, ALL_ZONES, NULL, 12090 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12091 if (ire == NULL) { 12092 return (EINVAL); 12093 } else { 12094 ire_refrele(ire); 12095 } 12096 } 12097 /* 12098 * Changing the broadcast addr for this ipif. 12099 * Make sure we have valid net and subnet bcast 12100 * ire's for other logical interfaces, if needed. 12101 */ 12102 if (addr != ipif->ipif_brd_addr) 12103 ipif_check_bcast_ires(ipif); 12104 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12105 return (0); 12106 } 12107 12108 /* Get interface broadcast address. */ 12109 /* ARGSUSED */ 12110 int 12111 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12112 ip_ioctl_cmd_t *ipip, void *if_req) 12113 { 12114 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12115 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12116 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12117 return (EADDRNOTAVAIL); 12118 12119 /* IPIF_BROADCAST not possible with IPv6 */ 12120 ASSERT(!ipif->ipif_isv6); 12121 *sin = sin_null; 12122 sin->sin_family = AF_INET; 12123 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12124 return (0); 12125 } 12126 12127 /* 12128 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12129 */ 12130 /* ARGSUSED */ 12131 int 12132 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12133 ip_ioctl_cmd_t *ipip, void *if_req) 12134 { 12135 int err = 0; 12136 in6_addr_t v6mask; 12137 12138 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12139 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12140 12141 ASSERT(IAM_WRITER_IPIF(ipif)); 12142 12143 if (ipif->ipif_isv6) { 12144 sin6_t *sin6; 12145 12146 if (sin->sin_family != AF_INET6) 12147 return (EAFNOSUPPORT); 12148 12149 sin6 = (sin6_t *)sin; 12150 v6mask = sin6->sin6_addr; 12151 } else { 12152 ipaddr_t mask; 12153 12154 if (sin->sin_family != AF_INET) 12155 return (EAFNOSUPPORT); 12156 12157 mask = sin->sin_addr.s_addr; 12158 V4MASK_TO_V6(mask, v6mask); 12159 } 12160 12161 /* 12162 * No big deal if the interface isn't already up, or the mask 12163 * isn't really changing, or this is pt-pt. 12164 */ 12165 if (!(ipif->ipif_flags & IPIF_UP) || 12166 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12167 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12168 ipif->ipif_v6net_mask = v6mask; 12169 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12170 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12171 ipif->ipif_v6net_mask, 12172 ipif->ipif_v6subnet); 12173 } 12174 return (0); 12175 } 12176 /* 12177 * Make sure we have valid net and subnet broadcast ire's 12178 * for the old netmask, if needed by other logical interfaces. 12179 */ 12180 if (!ipif->ipif_isv6) 12181 ipif_check_bcast_ires(ipif); 12182 12183 err = ipif_logical_down(ipif, q, mp); 12184 if (err == EINPROGRESS) 12185 return (err); 12186 ipif_down_tail(ipif); 12187 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12188 return (err); 12189 } 12190 12191 static int 12192 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12193 { 12194 in6_addr_t v6mask; 12195 int err = 0; 12196 12197 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12198 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12199 12200 if (ipif->ipif_isv6) { 12201 sin6_t *sin6; 12202 12203 sin6 = (sin6_t *)sin; 12204 v6mask = sin6->sin6_addr; 12205 } else { 12206 ipaddr_t mask; 12207 12208 mask = sin->sin_addr.s_addr; 12209 V4MASK_TO_V6(mask, v6mask); 12210 } 12211 12212 ipif->ipif_v6net_mask = v6mask; 12213 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12214 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12215 ipif->ipif_v6subnet); 12216 } 12217 err = ipif_up(ipif, q, mp); 12218 12219 if (err == 0 || err == EINPROGRESS) { 12220 /* 12221 * The interface must be DL_BOUND if this packet has to 12222 * go out on the wire. Since we only go through a logical 12223 * down and are bound with the driver during an internal 12224 * down/up that is satisfied. 12225 */ 12226 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12227 /* Potentially broadcast an address mask reply. */ 12228 ipif_mask_reply(ipif); 12229 } 12230 } 12231 return (err); 12232 } 12233 12234 /* ARGSUSED */ 12235 int 12236 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12237 ip_ioctl_cmd_t *ipip, void *if_req) 12238 { 12239 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12240 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12241 ipif_down_tail(ipif); 12242 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12243 } 12244 12245 /* Get interface net mask. */ 12246 /* ARGSUSED */ 12247 int 12248 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12249 ip_ioctl_cmd_t *ipip, void *if_req) 12250 { 12251 struct lifreq *lifr = (struct lifreq *)if_req; 12252 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12253 12254 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12255 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12256 12257 /* 12258 * net mask can't change since we have a reference to the ipif. 12259 */ 12260 if (ipif->ipif_isv6) { 12261 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12262 *sin6 = sin6_null; 12263 sin6->sin6_family = AF_INET6; 12264 sin6->sin6_addr = ipif->ipif_v6net_mask; 12265 lifr->lifr_addrlen = 12266 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12267 } else { 12268 *sin = sin_null; 12269 sin->sin_family = AF_INET; 12270 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12271 if (ipip->ipi_cmd_type == LIF_CMD) { 12272 lifr->lifr_addrlen = 12273 ip_mask_to_plen(ipif->ipif_net_mask); 12274 } 12275 } 12276 return (0); 12277 } 12278 12279 /* ARGSUSED */ 12280 int 12281 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12282 ip_ioctl_cmd_t *ipip, void *if_req) 12283 { 12284 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12285 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12286 12287 /* 12288 * Since no applications should ever be setting metrics on underlying 12289 * interfaces, we explicitly fail to smoke 'em out. 12290 */ 12291 if (IS_UNDER_IPMP(ipif->ipif_ill)) 12292 return (EINVAL); 12293 12294 /* 12295 * Set interface metric. We don't use this for 12296 * anything but we keep track of it in case it is 12297 * important to routing applications or such. 12298 */ 12299 if (ipip->ipi_cmd_type == IF_CMD) { 12300 struct ifreq *ifr; 12301 12302 ifr = (struct ifreq *)if_req; 12303 ipif->ipif_metric = ifr->ifr_metric; 12304 } else { 12305 struct lifreq *lifr; 12306 12307 lifr = (struct lifreq *)if_req; 12308 ipif->ipif_metric = lifr->lifr_metric; 12309 } 12310 return (0); 12311 } 12312 12313 /* ARGSUSED */ 12314 int 12315 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12316 ip_ioctl_cmd_t *ipip, void *if_req) 12317 { 12318 /* Get interface metric. */ 12319 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12320 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12321 12322 if (ipip->ipi_cmd_type == IF_CMD) { 12323 struct ifreq *ifr; 12324 12325 ifr = (struct ifreq *)if_req; 12326 ifr->ifr_metric = ipif->ipif_metric; 12327 } else { 12328 struct lifreq *lifr; 12329 12330 lifr = (struct lifreq *)if_req; 12331 lifr->lifr_metric = ipif->ipif_metric; 12332 } 12333 12334 return (0); 12335 } 12336 12337 /* ARGSUSED */ 12338 int 12339 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12340 ip_ioctl_cmd_t *ipip, void *if_req) 12341 { 12342 12343 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12344 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12345 /* 12346 * Set the muxid returned from I_PLINK. 12347 */ 12348 if (ipip->ipi_cmd_type == IF_CMD) { 12349 struct ifreq *ifr = (struct ifreq *)if_req; 12350 12351 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12352 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12353 } else { 12354 struct lifreq *lifr = (struct lifreq *)if_req; 12355 12356 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12357 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12358 } 12359 return (0); 12360 } 12361 12362 /* ARGSUSED */ 12363 int 12364 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12365 ip_ioctl_cmd_t *ipip, void *if_req) 12366 { 12367 12368 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12369 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12370 /* 12371 * Get the muxid saved in ill for I_PUNLINK. 12372 */ 12373 if (ipip->ipi_cmd_type == IF_CMD) { 12374 struct ifreq *ifr = (struct ifreq *)if_req; 12375 12376 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12377 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12378 } else { 12379 struct lifreq *lifr = (struct lifreq *)if_req; 12380 12381 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12382 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12383 } 12384 return (0); 12385 } 12386 12387 /* 12388 * Set the subnet prefix. Does not modify the broadcast address. 12389 */ 12390 /* ARGSUSED */ 12391 int 12392 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12393 ip_ioctl_cmd_t *ipip, void *if_req) 12394 { 12395 int err = 0; 12396 in6_addr_t v6addr; 12397 in6_addr_t v6mask; 12398 boolean_t need_up = B_FALSE; 12399 int addrlen; 12400 12401 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12402 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12403 12404 ASSERT(IAM_WRITER_IPIF(ipif)); 12405 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12406 12407 if (ipif->ipif_isv6) { 12408 sin6_t *sin6; 12409 12410 if (sin->sin_family != AF_INET6) 12411 return (EAFNOSUPPORT); 12412 12413 sin6 = (sin6_t *)sin; 12414 v6addr = sin6->sin6_addr; 12415 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12416 return (EADDRNOTAVAIL); 12417 } else { 12418 ipaddr_t addr; 12419 12420 if (sin->sin_family != AF_INET) 12421 return (EAFNOSUPPORT); 12422 12423 addr = sin->sin_addr.s_addr; 12424 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12425 return (EADDRNOTAVAIL); 12426 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12427 /* Add 96 bits */ 12428 addrlen += IPV6_ABITS - IP_ABITS; 12429 } 12430 12431 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12432 return (EINVAL); 12433 12434 /* Check if bits in the address is set past the mask */ 12435 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12436 return (EINVAL); 12437 12438 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12439 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12440 return (0); /* No change */ 12441 12442 if (ipif->ipif_flags & IPIF_UP) { 12443 /* 12444 * If the interface is already marked up, 12445 * we call ipif_down which will take care 12446 * of ditching any IREs that have been set 12447 * up based on the old interface address. 12448 */ 12449 err = ipif_logical_down(ipif, q, mp); 12450 if (err == EINPROGRESS) 12451 return (err); 12452 ipif_down_tail(ipif); 12453 need_up = B_TRUE; 12454 } 12455 12456 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12457 return (err); 12458 } 12459 12460 static int 12461 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12462 queue_t *q, mblk_t *mp, boolean_t need_up) 12463 { 12464 ill_t *ill = ipif->ipif_ill; 12465 int err = 0; 12466 12467 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12468 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12469 12470 /* Set the new address. */ 12471 mutex_enter(&ill->ill_lock); 12472 ipif->ipif_v6net_mask = v6mask; 12473 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12474 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12475 ipif->ipif_v6subnet); 12476 } 12477 mutex_exit(&ill->ill_lock); 12478 12479 if (need_up) { 12480 /* 12481 * Now bring the interface back up. If this 12482 * is the only IPIF for the ILL, ipif_up 12483 * will have to re-bind to the device, so 12484 * we may get back EINPROGRESS, in which 12485 * case, this IOCTL will get completed in 12486 * ip_rput_dlpi when we see the DL_BIND_ACK. 12487 */ 12488 err = ipif_up(ipif, q, mp); 12489 if (err == EINPROGRESS) 12490 return (err); 12491 } 12492 return (err); 12493 } 12494 12495 /* ARGSUSED */ 12496 int 12497 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12498 ip_ioctl_cmd_t *ipip, void *if_req) 12499 { 12500 int addrlen; 12501 in6_addr_t v6addr; 12502 in6_addr_t v6mask; 12503 struct lifreq *lifr = (struct lifreq *)if_req; 12504 12505 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12506 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12507 ipif_down_tail(ipif); 12508 12509 addrlen = lifr->lifr_addrlen; 12510 if (ipif->ipif_isv6) { 12511 sin6_t *sin6; 12512 12513 sin6 = (sin6_t *)sin; 12514 v6addr = sin6->sin6_addr; 12515 } else { 12516 ipaddr_t addr; 12517 12518 addr = sin->sin_addr.s_addr; 12519 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12520 addrlen += IPV6_ABITS - IP_ABITS; 12521 } 12522 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12523 12524 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12525 } 12526 12527 /* ARGSUSED */ 12528 int 12529 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12530 ip_ioctl_cmd_t *ipip, void *if_req) 12531 { 12532 struct lifreq *lifr = (struct lifreq *)if_req; 12533 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12534 12535 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12536 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12537 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12538 12539 if (ipif->ipif_isv6) { 12540 *sin6 = sin6_null; 12541 sin6->sin6_family = AF_INET6; 12542 sin6->sin6_addr = ipif->ipif_v6subnet; 12543 lifr->lifr_addrlen = 12544 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12545 } else { 12546 *sin = sin_null; 12547 sin->sin_family = AF_INET; 12548 sin->sin_addr.s_addr = ipif->ipif_subnet; 12549 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12550 } 12551 return (0); 12552 } 12553 12554 /* 12555 * Set the IPv6 address token. 12556 */ 12557 /* ARGSUSED */ 12558 int 12559 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12560 ip_ioctl_cmd_t *ipi, void *if_req) 12561 { 12562 ill_t *ill = ipif->ipif_ill; 12563 int err; 12564 in6_addr_t v6addr; 12565 in6_addr_t v6mask; 12566 boolean_t need_up = B_FALSE; 12567 int i; 12568 sin6_t *sin6 = (sin6_t *)sin; 12569 struct lifreq *lifr = (struct lifreq *)if_req; 12570 int addrlen; 12571 12572 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12573 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12574 ASSERT(IAM_WRITER_IPIF(ipif)); 12575 12576 addrlen = lifr->lifr_addrlen; 12577 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12578 if (ipif->ipif_id != 0) 12579 return (EINVAL); 12580 12581 if (!ipif->ipif_isv6) 12582 return (EINVAL); 12583 12584 if (addrlen > IPV6_ABITS) 12585 return (EINVAL); 12586 12587 v6addr = sin6->sin6_addr; 12588 12589 /* 12590 * The length of the token is the length from the end. To get 12591 * the proper mask for this, compute the mask of the bits not 12592 * in the token; ie. the prefix, and then xor to get the mask. 12593 */ 12594 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12595 return (EINVAL); 12596 for (i = 0; i < 4; i++) { 12597 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12598 } 12599 12600 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12601 ill->ill_token_length == addrlen) 12602 return (0); /* No change */ 12603 12604 if (ipif->ipif_flags & IPIF_UP) { 12605 err = ipif_logical_down(ipif, q, mp); 12606 if (err == EINPROGRESS) 12607 return (err); 12608 ipif_down_tail(ipif); 12609 need_up = B_TRUE; 12610 } 12611 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12612 return (err); 12613 } 12614 12615 static int 12616 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12617 mblk_t *mp, boolean_t need_up) 12618 { 12619 in6_addr_t v6addr; 12620 in6_addr_t v6mask; 12621 ill_t *ill = ipif->ipif_ill; 12622 int i; 12623 int err = 0; 12624 12625 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12626 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12627 v6addr = sin6->sin6_addr; 12628 /* 12629 * The length of the token is the length from the end. To get 12630 * the proper mask for this, compute the mask of the bits not 12631 * in the token; ie. the prefix, and then xor to get the mask. 12632 */ 12633 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12634 for (i = 0; i < 4; i++) 12635 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12636 12637 mutex_enter(&ill->ill_lock); 12638 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12639 ill->ill_token_length = addrlen; 12640 mutex_exit(&ill->ill_lock); 12641 12642 if (need_up) { 12643 /* 12644 * Now bring the interface back up. If this 12645 * is the only IPIF for the ILL, ipif_up 12646 * will have to re-bind to the device, so 12647 * we may get back EINPROGRESS, in which 12648 * case, this IOCTL will get completed in 12649 * ip_rput_dlpi when we see the DL_BIND_ACK. 12650 */ 12651 err = ipif_up(ipif, q, mp); 12652 if (err == EINPROGRESS) 12653 return (err); 12654 } 12655 return (err); 12656 } 12657 12658 /* ARGSUSED */ 12659 int 12660 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12661 ip_ioctl_cmd_t *ipi, void *if_req) 12662 { 12663 ill_t *ill; 12664 sin6_t *sin6 = (sin6_t *)sin; 12665 struct lifreq *lifr = (struct lifreq *)if_req; 12666 12667 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12668 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12669 if (ipif->ipif_id != 0) 12670 return (EINVAL); 12671 12672 ill = ipif->ipif_ill; 12673 if (!ill->ill_isv6) 12674 return (ENXIO); 12675 12676 *sin6 = sin6_null; 12677 sin6->sin6_family = AF_INET6; 12678 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12679 sin6->sin6_addr = ill->ill_token; 12680 lifr->lifr_addrlen = ill->ill_token_length; 12681 return (0); 12682 } 12683 12684 /* 12685 * Set (hardware) link specific information that might override 12686 * what was acquired through the DL_INFO_ACK. 12687 * The logic is as follows. 12688 * 12689 * become exclusive 12690 * set CHANGING flag 12691 * change mtu on affected IREs 12692 * clear CHANGING flag 12693 * 12694 * An ire add that occurs before the CHANGING flag is set will have its mtu 12695 * changed by the ip_sioctl_lnkinfo. 12696 * 12697 * During the time the CHANGING flag is set, no new ires will be added to the 12698 * bucket, and ire add will fail (due the CHANGING flag). 12699 * 12700 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12701 * before it is added to the bucket. 12702 * 12703 * Obviously only 1 thread can set the CHANGING flag and we need to become 12704 * exclusive to set the flag. 12705 */ 12706 /* ARGSUSED */ 12707 int 12708 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12709 ip_ioctl_cmd_t *ipi, void *if_req) 12710 { 12711 ill_t *ill = ipif->ipif_ill; 12712 ipif_t *nipif; 12713 int ip_min_mtu; 12714 boolean_t mtu_walk = B_FALSE; 12715 struct lifreq *lifr = (struct lifreq *)if_req; 12716 lif_ifinfo_req_t *lir; 12717 ire_t *ire; 12718 12719 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12720 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12721 lir = &lifr->lifr_ifinfo; 12722 ASSERT(IAM_WRITER_IPIF(ipif)); 12723 12724 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12725 if (ipif->ipif_id != 0) 12726 return (EINVAL); 12727 12728 /* Set interface MTU. */ 12729 if (ipif->ipif_isv6) 12730 ip_min_mtu = IPV6_MIN_MTU; 12731 else 12732 ip_min_mtu = IP_MIN_MTU; 12733 12734 /* 12735 * Verify values before we set anything. Allow zero to 12736 * mean unspecified. 12737 */ 12738 if (lir->lir_maxmtu != 0 && 12739 (lir->lir_maxmtu > ill->ill_max_frag || 12740 lir->lir_maxmtu < ip_min_mtu)) 12741 return (EINVAL); 12742 if (lir->lir_reachtime != 0 && 12743 lir->lir_reachtime > ND_MAX_REACHTIME) 12744 return (EINVAL); 12745 if (lir->lir_reachretrans != 0 && 12746 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12747 return (EINVAL); 12748 12749 mutex_enter(&ill->ill_lock); 12750 ill->ill_state_flags |= ILL_CHANGING; 12751 for (nipif = ill->ill_ipif; nipif != NULL; 12752 nipif = nipif->ipif_next) { 12753 nipif->ipif_state_flags |= IPIF_CHANGING; 12754 } 12755 12756 if (lir->lir_maxmtu != 0) { 12757 ill->ill_max_mtu = lir->lir_maxmtu; 12758 ill->ill_user_mtu = lir->lir_maxmtu; 12759 mtu_walk = B_TRUE; 12760 } 12761 mutex_exit(&ill->ill_lock); 12762 12763 if (lir->lir_reachtime != 0) 12764 ill->ill_reachable_time = lir->lir_reachtime; 12765 12766 if (lir->lir_reachretrans != 0) 12767 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12768 12769 ill->ill_max_hops = lir->lir_maxhops; 12770 12771 ill->ill_max_buf = ND_MAX_Q; 12772 12773 if (mtu_walk) { 12774 /* 12775 * Set the MTU on all ipifs associated with this ill except 12776 * for those whose MTU was fixed via SIOCSLIFMTU. 12777 */ 12778 for (nipif = ill->ill_ipif; nipif != NULL; 12779 nipif = nipif->ipif_next) { 12780 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12781 continue; 12782 12783 nipif->ipif_mtu = ill->ill_max_mtu; 12784 12785 if (!(nipif->ipif_flags & IPIF_UP)) 12786 continue; 12787 12788 if (nipif->ipif_isv6) 12789 ire = ipif_to_ire_v6(nipif); 12790 else 12791 ire = ipif_to_ire(nipif); 12792 if (ire != NULL) { 12793 ire->ire_max_frag = ipif->ipif_mtu; 12794 ire_refrele(ire); 12795 } 12796 12797 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12798 nipif, ill); 12799 } 12800 } 12801 12802 mutex_enter(&ill->ill_lock); 12803 for (nipif = ill->ill_ipif; nipif != NULL; 12804 nipif = nipif->ipif_next) { 12805 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12806 } 12807 ILL_UNMARK_CHANGING(ill); 12808 mutex_exit(&ill->ill_lock); 12809 12810 /* 12811 * Refresh IPMP meta-interface MTU if necessary. 12812 */ 12813 if (IS_UNDER_IPMP(ill)) 12814 ipmp_illgrp_refresh_mtu(ill->ill_grp); 12815 12816 return (0); 12817 } 12818 12819 /* ARGSUSED */ 12820 int 12821 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12822 ip_ioctl_cmd_t *ipi, void *if_req) 12823 { 12824 struct lif_ifinfo_req *lir; 12825 ill_t *ill = ipif->ipif_ill; 12826 12827 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12828 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12829 if (ipif->ipif_id != 0) 12830 return (EINVAL); 12831 12832 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12833 lir->lir_maxhops = ill->ill_max_hops; 12834 lir->lir_reachtime = ill->ill_reachable_time; 12835 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12836 lir->lir_maxmtu = ill->ill_max_mtu; 12837 12838 return (0); 12839 } 12840 12841 /* 12842 * Return best guess as to the subnet mask for the specified address. 12843 * Based on the subnet masks for all the configured interfaces. 12844 * 12845 * We end up returning a zero mask in the case of default, multicast or 12846 * experimental. 12847 */ 12848 static ipaddr_t 12849 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 12850 { 12851 ipaddr_t net_mask; 12852 ill_t *ill; 12853 ipif_t *ipif; 12854 ill_walk_context_t ctx; 12855 ipif_t *fallback_ipif = NULL; 12856 12857 net_mask = ip_net_mask(addr); 12858 if (net_mask == 0) { 12859 *ipifp = NULL; 12860 return (0); 12861 } 12862 12863 /* Let's check to see if this is maybe a local subnet route. */ 12864 /* this function only applies to IPv4 interfaces */ 12865 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 12866 ill = ILL_START_WALK_V4(&ctx, ipst); 12867 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12868 mutex_enter(&ill->ill_lock); 12869 for (ipif = ill->ill_ipif; ipif != NULL; 12870 ipif = ipif->ipif_next) { 12871 if (!IPIF_CAN_LOOKUP(ipif)) 12872 continue; 12873 if (!(ipif->ipif_flags & IPIF_UP)) 12874 continue; 12875 if ((ipif->ipif_subnet & net_mask) == 12876 (addr & net_mask)) { 12877 /* 12878 * Don't trust pt-pt interfaces if there are 12879 * other interfaces. 12880 */ 12881 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12882 if (fallback_ipif == NULL) { 12883 ipif_refhold_locked(ipif); 12884 fallback_ipif = ipif; 12885 } 12886 continue; 12887 } 12888 12889 /* 12890 * Fine. Just assume the same net mask as the 12891 * directly attached subnet interface is using. 12892 */ 12893 ipif_refhold_locked(ipif); 12894 mutex_exit(&ill->ill_lock); 12895 rw_exit(&ipst->ips_ill_g_lock); 12896 if (fallback_ipif != NULL) 12897 ipif_refrele(fallback_ipif); 12898 *ipifp = ipif; 12899 return (ipif->ipif_net_mask); 12900 } 12901 } 12902 mutex_exit(&ill->ill_lock); 12903 } 12904 rw_exit(&ipst->ips_ill_g_lock); 12905 12906 *ipifp = fallback_ipif; 12907 return ((fallback_ipif != NULL) ? 12908 fallback_ipif->ipif_net_mask : net_mask); 12909 } 12910 12911 /* 12912 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12913 */ 12914 static void 12915 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12916 { 12917 IOCP iocp; 12918 ipft_t *ipft; 12919 ipllc_t *ipllc; 12920 mblk_t *mp1; 12921 cred_t *cr; 12922 int error = 0; 12923 conn_t *connp; 12924 12925 ip1dbg(("ip_wput_ioctl")); 12926 iocp = (IOCP)mp->b_rptr; 12927 mp1 = mp->b_cont; 12928 if (mp1 == NULL) { 12929 iocp->ioc_error = EINVAL; 12930 mp->b_datap->db_type = M_IOCNAK; 12931 iocp->ioc_count = 0; 12932 qreply(q, mp); 12933 return; 12934 } 12935 12936 /* 12937 * These IOCTLs provide various control capabilities to 12938 * upstream agents such as ULPs and processes. There 12939 * are currently two such IOCTLs implemented. They 12940 * are used by TCP to provide update information for 12941 * existing IREs and to forcibly delete an IRE for a 12942 * host that is not responding, thereby forcing an 12943 * attempt at a new route. 12944 */ 12945 iocp->ioc_error = EINVAL; 12946 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12947 goto done; 12948 12949 ipllc = (ipllc_t *)mp1->b_rptr; 12950 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12951 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12952 break; 12953 } 12954 /* 12955 * prefer credential from mblk over ioctl; 12956 * see ip_sioctl_copyin_setup 12957 */ 12958 cr = msg_getcred(mp, NULL); 12959 if (cr == NULL) 12960 cr = iocp->ioc_cr; 12961 12962 /* 12963 * Refhold the conn in case the request gets queued up in some lookup 12964 */ 12965 ASSERT(CONN_Q(q)); 12966 connp = Q_TO_CONN(q); 12967 CONN_INC_REF(connp); 12968 if (ipft->ipft_pfi && 12969 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12970 pullupmsg(mp1, ipft->ipft_min_size))) { 12971 error = (*ipft->ipft_pfi)(q, 12972 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12973 } 12974 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12975 /* 12976 * CONN_OPER_PENDING_DONE happens in the function called 12977 * through ipft_pfi above. 12978 */ 12979 return; 12980 } 12981 12982 CONN_OPER_PENDING_DONE(connp); 12983 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12984 freemsg(mp); 12985 return; 12986 } 12987 iocp->ioc_error = error; 12988 12989 done: 12990 mp->b_datap->db_type = M_IOCACK; 12991 if (iocp->ioc_error) 12992 iocp->ioc_count = 0; 12993 qreply(q, mp); 12994 } 12995 12996 /* 12997 * Lookup an ipif using the sequence id (ipif_seqid) 12998 */ 12999 ipif_t * 13000 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13001 { 13002 ipif_t *ipif; 13003 13004 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13005 13006 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13007 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13008 return (ipif); 13009 } 13010 return (NULL); 13011 } 13012 13013 /* 13014 * Assign a unique id for the ipif. This is used later when we send 13015 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13016 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13017 * IRE is added, we verify that ipif has not disappeared. 13018 */ 13019 13020 static void 13021 ipif_assign_seqid(ipif_t *ipif) 13022 { 13023 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13024 13025 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13026 } 13027 13028 /* 13029 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 13030 * administratively down (i.e., no DAD), of the same type, and locked. Note 13031 * that the clone is complete -- including the seqid -- and the expectation is 13032 * that the caller will either free or overwrite `sipif' before it's unlocked. 13033 */ 13034 static void 13035 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 13036 { 13037 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 13038 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 13039 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 13040 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 13041 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 13042 ASSERT(sipif->ipif_arp_del_mp == NULL); 13043 ASSERT(dipif->ipif_arp_del_mp == NULL); 13044 ASSERT(sipif->ipif_igmp_rpt == NULL); 13045 ASSERT(dipif->ipif_igmp_rpt == NULL); 13046 ASSERT(sipif->ipif_multicast_up == 0); 13047 ASSERT(dipif->ipif_multicast_up == 0); 13048 ASSERT(sipif->ipif_joined_allhosts == 0); 13049 ASSERT(dipif->ipif_joined_allhosts == 0); 13050 13051 dipif->ipif_mtu = sipif->ipif_mtu; 13052 dipif->ipif_flags = sipif->ipif_flags; 13053 dipif->ipif_metric = sipif->ipif_metric; 13054 dipif->ipif_zoneid = sipif->ipif_zoneid; 13055 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 13056 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 13057 dipif->ipif_v6src_addr = sipif->ipif_v6src_addr; 13058 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 13059 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 13060 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 13061 13062 /* 13063 * While dipif is down right now, it might've been up before. Since 13064 * it's changing identity, its packet counters need to be reset. 13065 */ 13066 dipif->ipif_ib_pkt_count = 0; 13067 dipif->ipif_ob_pkt_count = 0; 13068 dipif->ipif_fo_pkt_count = 0; 13069 13070 /* 13071 * As per the comment atop the function, we assume that these sipif 13072 * fields will be changed before sipif is unlocked. 13073 */ 13074 dipif->ipif_seqid = sipif->ipif_seqid; 13075 dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp; 13076 dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt; 13077 dipif->ipif_state_flags = sipif->ipif_state_flags; 13078 } 13079 13080 /* 13081 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 13082 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 13083 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 13084 * transfer the xop to `dipif'. Requires that all ipifs are administratively 13085 * down (i.e., no DAD), of the same type, and unlocked. 13086 */ 13087 static void 13088 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 13089 { 13090 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 13091 ipxop_t *ipx = ipsq->ipsq_xop; 13092 13093 ASSERT(sipif != dipif); 13094 ASSERT(sipif != virgipif); 13095 13096 /* 13097 * Grab all of the locks that protect the ipif in a defined order. 13098 */ 13099 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13100 if (sipif > dipif) { 13101 mutex_enter(&sipif->ipif_saved_ire_lock); 13102 mutex_enter(&dipif->ipif_saved_ire_lock); 13103 } else { 13104 mutex_enter(&dipif->ipif_saved_ire_lock); 13105 mutex_enter(&sipif->ipif_saved_ire_lock); 13106 } 13107 13108 ipif_clone(sipif, dipif); 13109 if (virgipif != NULL) { 13110 ipif_clone(virgipif, sipif); 13111 mi_free(virgipif); 13112 } 13113 13114 mutex_exit(&sipif->ipif_saved_ire_lock); 13115 mutex_exit(&dipif->ipif_saved_ire_lock); 13116 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13117 13118 /* 13119 * Transfer ownership of the current xop, if necessary. 13120 */ 13121 if (ipx->ipx_current_ipif == sipif) { 13122 ASSERT(ipx->ipx_pending_ipif == NULL); 13123 mutex_enter(&ipx->ipx_lock); 13124 ipx->ipx_current_ipif = dipif; 13125 mutex_exit(&ipx->ipx_lock); 13126 } 13127 13128 if (virgipif == NULL) 13129 mi_free(sipif); 13130 } 13131 13132 /* 13133 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13134 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13135 * be inserted into the first space available in the list. The value of 13136 * ipif_id will then be set to the appropriate value for its position. 13137 */ 13138 static int 13139 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 13140 { 13141 ill_t *ill; 13142 ipif_t *tipif; 13143 ipif_t **tipifp; 13144 int id; 13145 ip_stack_t *ipst; 13146 13147 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13148 IAM_WRITER_IPIF(ipif)); 13149 13150 ill = ipif->ipif_ill; 13151 ASSERT(ill != NULL); 13152 ipst = ill->ill_ipst; 13153 13154 /* 13155 * In the case of lo0:0 we already hold the ill_g_lock. 13156 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13157 * ipif_insert. 13158 */ 13159 if (acquire_g_lock) 13160 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13161 mutex_enter(&ill->ill_lock); 13162 id = ipif->ipif_id; 13163 tipifp = &(ill->ill_ipif); 13164 if (id == -1) { /* need to find a real id */ 13165 id = 0; 13166 while ((tipif = *tipifp) != NULL) { 13167 ASSERT(tipif->ipif_id >= id); 13168 if (tipif->ipif_id != id) 13169 break; /* non-consecutive id */ 13170 id++; 13171 tipifp = &(tipif->ipif_next); 13172 } 13173 /* limit number of logical interfaces */ 13174 if (id >= ipst->ips_ip_addrs_per_if) { 13175 mutex_exit(&ill->ill_lock); 13176 if (acquire_g_lock) 13177 rw_exit(&ipst->ips_ill_g_lock); 13178 return (-1); 13179 } 13180 ipif->ipif_id = id; /* assign new id */ 13181 } else if (id < ipst->ips_ip_addrs_per_if) { 13182 /* we have a real id; insert ipif in the right place */ 13183 while ((tipif = *tipifp) != NULL) { 13184 ASSERT(tipif->ipif_id != id); 13185 if (tipif->ipif_id > id) 13186 break; /* found correct location */ 13187 tipifp = &(tipif->ipif_next); 13188 } 13189 } else { 13190 mutex_exit(&ill->ill_lock); 13191 if (acquire_g_lock) 13192 rw_exit(&ipst->ips_ill_g_lock); 13193 return (-1); 13194 } 13195 13196 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13197 13198 ipif->ipif_next = tipif; 13199 *tipifp = ipif; 13200 mutex_exit(&ill->ill_lock); 13201 if (acquire_g_lock) 13202 rw_exit(&ipst->ips_ill_g_lock); 13203 13204 return (0); 13205 } 13206 13207 static void 13208 ipif_remove(ipif_t *ipif) 13209 { 13210 ipif_t **ipifp; 13211 ill_t *ill = ipif->ipif_ill; 13212 13213 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13214 13215 mutex_enter(&ill->ill_lock); 13216 ipifp = &ill->ill_ipif; 13217 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13218 if (*ipifp == ipif) { 13219 *ipifp = ipif->ipif_next; 13220 break; 13221 } 13222 } 13223 mutex_exit(&ill->ill_lock); 13224 } 13225 13226 /* 13227 * Allocate and initialize a new interface control structure. (Always 13228 * called as writer.) 13229 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13230 * is not part of the global linked list of ills. ipif_seqid is unique 13231 * in the system and to preserve the uniqueness, it is assigned only 13232 * when ill becomes part of the global list. At that point ill will 13233 * have a name. If it doesn't get assigned here, it will get assigned 13234 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13235 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13236 * the interface flags or any other information from the DL_INFO_ACK for 13237 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13238 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13239 * second DL_INFO_ACK comes in from the driver. 13240 */ 13241 static ipif_t * 13242 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 13243 boolean_t insert) 13244 { 13245 ipif_t *ipif; 13246 phyint_t *phyi = ill->ill_phyint; 13247 ip_stack_t *ipst = ill->ill_ipst; 13248 13249 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13250 ill->ill_name, id, (void *)ill)); 13251 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13252 13253 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13254 return (NULL); 13255 *ipif = ipif_zero; /* start clean */ 13256 13257 ipif->ipif_ill = ill; 13258 ipif->ipif_id = id; /* could be -1 */ 13259 /* 13260 * Inherit the zoneid from the ill; for the shared stack instance 13261 * this is always the global zone 13262 */ 13263 ipif->ipif_zoneid = ill->ill_zoneid; 13264 13265 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13266 13267 ipif->ipif_refcnt = 0; 13268 ipif->ipif_saved_ire_cnt = 0; 13269 13270 if (insert) { 13271 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { 13272 mi_free(ipif); 13273 return (NULL); 13274 } 13275 /* -1 id should have been replaced by real id */ 13276 id = ipif->ipif_id; 13277 ASSERT(id >= 0); 13278 } 13279 13280 if (ill->ill_name[0] != '\0') 13281 ipif_assign_seqid(ipif); 13282 13283 /* 13284 * If this is ipif zero, configure ill/phyint-wide information. 13285 * Defer most configuration until we're guaranteed we're attached. 13286 */ 13287 if (id == 0) { 13288 if (ill->ill_mactype == SUNW_DL_IPMP) { 13289 /* 13290 * Set PHYI_IPMP and also set PHYI_FAILED since there 13291 * are no active interfaces. Similarly, PHYI_RUNNING 13292 * isn't set until the group has an active interface. 13293 */ 13294 mutex_enter(&phyi->phyint_lock); 13295 phyi->phyint_flags |= (PHYI_IPMP | PHYI_FAILED); 13296 mutex_exit(&phyi->phyint_lock); 13297 13298 /* 13299 * Create the illgrp (which must not exist yet because 13300 * the zeroth ipif is created once per ill). However, 13301 * do not not link it to the ipmp_grp_t until I_PLINK 13302 * is called; see ip_sioctl_plink_ipmp() for details. 13303 */ 13304 if (ipmp_illgrp_create(ill) == NULL) { 13305 if (insert) { 13306 rw_enter(&ipst->ips_ill_g_lock, 13307 RW_WRITER); 13308 ipif_remove(ipif); 13309 rw_exit(&ipst->ips_ill_g_lock); 13310 } 13311 mi_free(ipif); 13312 return (NULL); 13313 } 13314 } else { 13315 /* 13316 * By default, PHYI_RUNNING is set when the zeroth 13317 * ipif is created. For other ipifs, we don't touch 13318 * it since DLPI notifications may have changed it. 13319 */ 13320 mutex_enter(&phyi->phyint_lock); 13321 phyi->phyint_flags |= PHYI_RUNNING; 13322 mutex_exit(&phyi->phyint_lock); 13323 } 13324 } 13325 13326 /* 13327 * We grab the ill_lock and phyint_lock to protect the flag changes. 13328 * The ipif is still not up and can't be looked up until the 13329 * ioctl completes and the IPIF_CHANGING flag is cleared. 13330 */ 13331 mutex_enter(&ill->ill_lock); 13332 mutex_enter(&phyi->phyint_lock); 13333 13334 ipif->ipif_ire_type = ire_type; 13335 13336 if (ipif->ipif_isv6) { 13337 ill->ill_flags |= ILLF_IPV6; 13338 } else { 13339 ipaddr_t inaddr_any = INADDR_ANY; 13340 13341 ill->ill_flags |= ILLF_IPV4; 13342 13343 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13344 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13345 &ipif->ipif_v6lcl_addr); 13346 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13347 &ipif->ipif_v6src_addr); 13348 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13349 &ipif->ipif_v6subnet); 13350 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13351 &ipif->ipif_v6net_mask); 13352 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13353 &ipif->ipif_v6brd_addr); 13354 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13355 &ipif->ipif_v6pp_dst_addr); 13356 } 13357 13358 /* 13359 * Don't set the interface flags etc. now, will do it in 13360 * ip_ll_subnet_defaults. 13361 */ 13362 if (!initialize) 13363 goto out; 13364 13365 ipif->ipif_mtu = ill->ill_max_mtu; 13366 13367 /* 13368 * NOTE: The IPMP meta-interface is special-cased because it starts 13369 * with no underlying interfaces (and thus an unknown broadcast 13370 * address length), but all interfaces that can be placed into an IPMP 13371 * group are required to be broadcast-capable. 13372 */ 13373 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 13374 /* 13375 * Later detect lack of DLPI driver multicast 13376 * capability by catching DL_ENABMULTI errors in 13377 * ip_rput_dlpi. 13378 */ 13379 ill->ill_flags |= ILLF_MULTICAST; 13380 if (!ipif->ipif_isv6) 13381 ipif->ipif_flags |= IPIF_BROADCAST; 13382 } else { 13383 if (ill->ill_net_type != IRE_LOOPBACK) { 13384 if (ipif->ipif_isv6) 13385 /* 13386 * Note: xresolv interfaces will eventually need 13387 * NOARP set here as well, but that will require 13388 * those external resolvers to have some 13389 * knowledge of that flag and act appropriately. 13390 * Not to be changed at present. 13391 */ 13392 ill->ill_flags |= ILLF_NONUD; 13393 else 13394 ill->ill_flags |= ILLF_NOARP; 13395 } 13396 if (ill->ill_phys_addr_length == 0) { 13397 if (ill->ill_mactype == SUNW_DL_VNI) { 13398 ipif->ipif_flags |= IPIF_NOXMIT; 13399 phyi->phyint_flags |= PHYI_VIRTUAL; 13400 } else { 13401 /* pt-pt supports multicast. */ 13402 ill->ill_flags |= ILLF_MULTICAST; 13403 if (ill->ill_net_type == IRE_LOOPBACK) { 13404 phyi->phyint_flags |= 13405 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13406 } else { 13407 ipif->ipif_flags |= IPIF_POINTOPOINT; 13408 } 13409 } 13410 } 13411 } 13412 out: 13413 mutex_exit(&phyi->phyint_lock); 13414 mutex_exit(&ill->ill_lock); 13415 return (ipif); 13416 } 13417 13418 /* 13419 * If appropriate, send a message up to the resolver delete the entry 13420 * for the address of this interface which is going out of business. 13421 * (Always called as writer). 13422 * 13423 * NOTE : We need to check for NULL mps as some of the fields are 13424 * initialized only for some interface types. See ipif_resolver_up() 13425 * for details. 13426 */ 13427 void 13428 ipif_resolver_down(ipif_t *ipif) 13429 { 13430 mblk_t *mp; 13431 ill_t *ill = ipif->ipif_ill; 13432 13433 ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13434 ASSERT(IAM_WRITER_IPIF(ipif)); 13435 13436 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13437 return; 13438 13439 /* Delete the mapping for the local address */ 13440 mp = ipif->ipif_arp_del_mp; 13441 if (mp != NULL) { 13442 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13443 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13444 putnext(ill->ill_rq, mp); 13445 ipif->ipif_arp_del_mp = NULL; 13446 } 13447 13448 /* 13449 * Make IPMP aware of the deleted data address. 13450 */ 13451 if (IS_IPMP(ill)) 13452 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13453 13454 /* 13455 * If this is the last ipif that is going down and there are no 13456 * duplicate addresses we may yet attempt to re-probe, then we need to 13457 * clean up ARP completely. 13458 */ 13459 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13460 /* 13461 * If this was the last ipif on an IPMP interface, purge any 13462 * IPMP ARP entries associated with it. 13463 */ 13464 if (IS_IPMP(ill)) 13465 ipmp_illgrp_refresh_arpent(ill->ill_grp); 13466 13467 /* Send up AR_INTERFACE_DOWN message */ 13468 mp = ill->ill_arp_down_mp; 13469 if (mp != NULL) { 13470 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13471 *(unsigned *)mp->b_rptr, ill->ill_name, 13472 ipif->ipif_id)); 13473 putnext(ill->ill_rq, mp); 13474 ill->ill_arp_down_mp = NULL; 13475 } 13476 13477 /* Tell ARP to delete the multicast mappings */ 13478 mp = ill->ill_arp_del_mapping_mp; 13479 if (mp != NULL) { 13480 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13481 *(unsigned *)mp->b_rptr, ill->ill_name, 13482 ipif->ipif_id)); 13483 putnext(ill->ill_rq, mp); 13484 ill->ill_arp_del_mapping_mp = NULL; 13485 } 13486 } 13487 } 13488 13489 /* 13490 * Set up the multicast mappings for `ipif' in ARP. If `arp_add_mapping_mp' 13491 * is non-NULL, then upon success it will contain an mblk that can be passed 13492 * to ARP to create the mapping. Otherwise, if it's NULL, upon success ARP 13493 * will have already been notified to create the mapping. Returns zero on 13494 * success, -1 upon failure. 13495 */ 13496 int 13497 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13498 { 13499 mblk_t *del_mp = NULL; 13500 mblk_t *add_mp = NULL; 13501 mblk_t *mp; 13502 ill_t *ill = ipif->ipif_ill; 13503 phyint_t *phyi = ill->ill_phyint; 13504 ipaddr_t addr, mask, extract_mask = 0; 13505 arma_t *arma; 13506 uint8_t *maddr, *bphys_addr; 13507 uint32_t hw_start; 13508 dl_unitdata_req_t *dlur; 13509 13510 ASSERT(IAM_WRITER_IPIF(ipif)); 13511 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13512 return (0); 13513 13514 /* 13515 * IPMP meta-interfaces don't have any inherent multicast mappings, 13516 * and instead use the ones on the underlying interfaces. 13517 */ 13518 if (IS_IPMP(ill)) 13519 return (0); 13520 13521 /* 13522 * Delete the existing mapping from ARP. Normally, ipif_down() -> 13523 * ipif_resolver_down() will send this up to ARP, but it may be that 13524 * we are enabling PHYI_MULTI_BCAST via ip_rput_dlpi_writer(). 13525 */ 13526 mp = ill->ill_arp_del_mapping_mp; 13527 if (mp != NULL) { 13528 ip1dbg(("ipif_arp_setup_multicast: arp cmd %x for %s:%u\n", 13529 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13530 putnext(ill->ill_rq, mp); 13531 ill->ill_arp_del_mapping_mp = NULL; 13532 } 13533 13534 if (arp_add_mapping_mp != NULL) 13535 *arp_add_mapping_mp = NULL; 13536 13537 /* 13538 * Check that the address is not to long for the constant 13539 * length reserved in the template arma_t. 13540 */ 13541 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13542 return (-1); 13543 13544 /* Add mapping mblk */ 13545 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13546 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13547 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13548 (caddr_t)&addr); 13549 if (add_mp == NULL) 13550 return (-1); 13551 arma = (arma_t *)add_mp->b_rptr; 13552 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13553 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13554 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13555 13556 /* 13557 * Determine the broadcast address. 13558 */ 13559 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13560 if (ill->ill_sap_length < 0) 13561 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13562 else 13563 bphys_addr = (uchar_t *)dlur + 13564 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13565 /* 13566 * Check PHYI_MULTI_BCAST and length of physical 13567 * address to determine if we use the mapping or the 13568 * broadcast address. 13569 */ 13570 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13571 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13572 bphys_addr, maddr, &hw_start, &extract_mask)) 13573 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13574 13575 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13576 (ill->ill_flags & ILLF_MULTICAST)) { 13577 /* Make sure this will not match the "exact" entry. */ 13578 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13579 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13580 (caddr_t)&addr); 13581 if (del_mp == NULL) { 13582 freemsg(add_mp); 13583 return (-1); 13584 } 13585 bcopy(&extract_mask, (char *)arma + 13586 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13587 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13588 /* Use link-layer broadcast address for MULTI_BCAST */ 13589 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13590 ip2dbg(("ipif_arp_setup_multicast: adding" 13591 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13592 } else { 13593 arma->arma_hw_mapping_start = hw_start; 13594 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13595 " ARP setup for %s\n", ill->ill_name)); 13596 } 13597 } else { 13598 freemsg(add_mp); 13599 ASSERT(del_mp == NULL); 13600 /* It is neither MULTICAST nor MULTI_BCAST */ 13601 return (0); 13602 } 13603 ASSERT(add_mp != NULL && del_mp != NULL); 13604 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13605 ill->ill_arp_del_mapping_mp = del_mp; 13606 if (arp_add_mapping_mp != NULL) { 13607 /* The caller just wants the mblks allocated */ 13608 *arp_add_mapping_mp = add_mp; 13609 } else { 13610 /* The caller wants us to send it to arp */ 13611 putnext(ill->ill_rq, add_mp); 13612 } 13613 return (0); 13614 } 13615 13616 /* 13617 * Get the resolver set up for a new IP address. (Always called as writer.) 13618 * Called both for IPv4 and IPv6 interfaces, though it only sets up the 13619 * resolver for v6 if it's an ILLF_XRESOLV interface. Honors ILLF_NOARP. 13620 * 13621 * The enumerated value res_act tunes the behavior: 13622 * * Res_act_initial: set up all the resolver structures for a new 13623 * IP address. 13624 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 13625 * ARP message in defense of the address. 13626 * * Res_act_rebind: tell ARP to change the hardware address for an IP 13627 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 13628 * 13629 * Returns zero on success, or an errno upon failure. 13630 */ 13631 int 13632 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13633 { 13634 mblk_t *arp_up_mp = NULL; 13635 mblk_t *arp_down_mp = NULL; 13636 mblk_t *arp_add_mp = NULL; 13637 mblk_t *arp_del_mp = NULL; 13638 mblk_t *arp_add_mapping_mp = NULL; 13639 mblk_t *arp_del_mapping_mp = NULL; 13640 ill_t *ill = ipif->ipif_ill; 13641 int err = ENOMEM; 13642 boolean_t added_ipif = B_FALSE; 13643 boolean_t publish; 13644 boolean_t was_dup; 13645 13646 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13647 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13648 ASSERT(IAM_WRITER_IPIF(ipif)); 13649 13650 was_dup = B_FALSE; 13651 if (res_act == Res_act_initial) { 13652 ipif->ipif_addr_ready = 0; 13653 /* 13654 * We're bringing an interface up here. There's no way that we 13655 * should need to shut down ARP now. 13656 */ 13657 mutex_enter(&ill->ill_lock); 13658 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13659 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13660 ill->ill_ipif_dup_count--; 13661 was_dup = B_TRUE; 13662 } 13663 mutex_exit(&ill->ill_lock); 13664 } 13665 if (ipif->ipif_recovery_id != 0) 13666 (void) untimeout(ipif->ipif_recovery_id); 13667 ipif->ipif_recovery_id = 0; 13668 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13669 ipif->ipif_addr_ready = 1; 13670 return (0); 13671 } 13672 /* NDP will set the ipif_addr_ready flag when it's ready */ 13673 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13674 return (0); 13675 13676 if (ill->ill_isv6) { 13677 /* 13678 * External resolver for IPv6 13679 */ 13680 ASSERT(res_act == Res_act_initial); 13681 publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr); 13682 } else { 13683 /* 13684 * IPv4 arp case. If the ARP stream has already started 13685 * closing, fail this request for ARP bringup. Else 13686 * record the fact that an ARP bringup is pending. 13687 */ 13688 mutex_enter(&ill->ill_lock); 13689 if (ill->ill_arp_closing) { 13690 mutex_exit(&ill->ill_lock); 13691 err = EINVAL; 13692 goto failed; 13693 } else { 13694 if (ill->ill_ipif_up_count == 0 && 13695 ill->ill_ipif_dup_count == 0 && !was_dup) 13696 ill->ill_arp_bringup_pending = 1; 13697 mutex_exit(&ill->ill_lock); 13698 } 13699 publish = (ipif->ipif_lcl_addr != INADDR_ANY); 13700 } 13701 13702 if (IS_IPMP(ill) && publish) { 13703 /* 13704 * If we're here via ipif_up(), then the ipif won't be bound 13705 * yet -- add it to the group, which will bind it if possible. 13706 * (We would add it in ipif_up(), but deleting on failure 13707 * there is gruesome.) If we're here via ipmp_ill_bind_ipif(), 13708 * then the ipif has already been added to the group and we 13709 * just need to use the binding. 13710 */ 13711 if (ipmp_ipif_bound_ill(ipif) == NULL) { 13712 if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) { 13713 /* 13714 * We couldn't bind the ipif to an ill yet, 13715 * so we have nothing to publish. 13716 */ 13717 publish = B_FALSE; 13718 } 13719 added_ipif = B_TRUE; 13720 } 13721 } 13722 13723 /* 13724 * Add an entry for the local address in ARP only if it 13725 * is not UNNUMBERED and it is suitable for publishing. 13726 */ 13727 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) { 13728 if (res_act == Res_act_defend) { 13729 arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND); 13730 if (arp_add_mp == NULL) 13731 goto failed; 13732 /* 13733 * If we're just defending our address now, then 13734 * there's no need to set up ARP multicast mappings. 13735 * The publish command is enough. 13736 */ 13737 goto done; 13738 } 13739 13740 /* 13741 * Allocate an ARP add message and an ARP delete message (the 13742 * latter is saved for use when the address goes down). 13743 */ 13744 if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL) 13745 goto failed; 13746 13747 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 13748 goto failed; 13749 13750 if (res_act != Res_act_initial) 13751 goto arp_setup_multicast; 13752 } else { 13753 if (res_act != Res_act_initial) 13754 goto done; 13755 } 13756 /* 13757 * Need to bring up ARP or setup multicast mapping only 13758 * when the first interface is coming UP. 13759 */ 13760 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup) 13761 goto done; 13762 13763 /* 13764 * Allocate an ARP down message (to be saved) and an ARP up message. 13765 */ 13766 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13767 if (arp_down_mp == NULL) 13768 goto failed; 13769 13770 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13771 if (arp_up_mp == NULL) 13772 goto failed; 13773 13774 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13775 goto done; 13776 13777 arp_setup_multicast: 13778 /* 13779 * Setup the multicast mappings. This function initializes 13780 * ill_arp_del_mapping_mp also. This does not need to be done for 13781 * IPv6, or for the IPMP interface (since it has no link-layer). 13782 */ 13783 if (!ill->ill_isv6 && !IS_IPMP(ill)) { 13784 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13785 if (err != 0) 13786 goto failed; 13787 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13788 ASSERT(arp_add_mapping_mp != NULL); 13789 } 13790 done: 13791 if (arp_up_mp != NULL) { 13792 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13793 ill->ill_name, ipif->ipif_id)); 13794 putnext(ill->ill_rq, arp_up_mp); 13795 arp_up_mp = NULL; 13796 } 13797 if (arp_add_mp != NULL) { 13798 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13799 ill->ill_name, ipif->ipif_id)); 13800 /* 13801 * If it's an extended ARP implementation, then we'll wait to 13802 * hear that DAD has finished before using the interface. 13803 */ 13804 if (!ill->ill_arp_extend) 13805 ipif->ipif_addr_ready = 1; 13806 putnext(ill->ill_rq, arp_add_mp); 13807 arp_add_mp = NULL; 13808 } else { 13809 ipif->ipif_addr_ready = 1; 13810 } 13811 if (arp_add_mapping_mp != NULL) { 13812 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13813 ill->ill_name, ipif->ipif_id)); 13814 putnext(ill->ill_rq, arp_add_mapping_mp); 13815 arp_add_mapping_mp = NULL; 13816 } 13817 13818 if (res_act == Res_act_initial) { 13819 if (ill->ill_flags & ILLF_NOARP) 13820 err = ill_arp_off(ill); 13821 else 13822 err = ill_arp_on(ill); 13823 if (err != 0) { 13824 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", 13825 err)); 13826 goto failed; 13827 } 13828 } 13829 13830 if (arp_del_mp != NULL) { 13831 ASSERT(ipif->ipif_arp_del_mp == NULL); 13832 ipif->ipif_arp_del_mp = arp_del_mp; 13833 } 13834 if (arp_down_mp != NULL) { 13835 ASSERT(ill->ill_arp_down_mp == NULL); 13836 ill->ill_arp_down_mp = arp_down_mp; 13837 } 13838 if (arp_del_mapping_mp != NULL) { 13839 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13840 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13841 } 13842 13843 return ((ill->ill_ipif_up_count != 0 || was_dup || 13844 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13845 failed: 13846 ip1dbg(("ipif_resolver_up: FAILED\n")); 13847 if (added_ipif) 13848 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13849 freemsg(arp_add_mp); 13850 freemsg(arp_del_mp); 13851 freemsg(arp_add_mapping_mp); 13852 freemsg(arp_up_mp); 13853 freemsg(arp_down_mp); 13854 ill->ill_arp_bringup_pending = 0; 13855 return (err); 13856 } 13857 13858 /* 13859 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13860 * just gone back up. 13861 */ 13862 static void 13863 ipif_arp_start_dad(ipif_t *ipif) 13864 { 13865 ill_t *ill = ipif->ipif_ill; 13866 mblk_t *arp_add_mp; 13867 13868 /* ACE_F_UNVERIFIED restarts DAD */ 13869 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13870 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13871 ipif->ipif_lcl_addr == INADDR_ANY || 13872 (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) { 13873 /* 13874 * If we can't contact ARP for some reason, that's not really a 13875 * problem. Just send out the routing socket notification that 13876 * DAD completion would have done, and continue. 13877 */ 13878 ipif_mask_reply(ipif); 13879 ipif_up_notify(ipif); 13880 ipif->ipif_addr_ready = 1; 13881 return; 13882 } 13883 13884 putnext(ill->ill_rq, arp_add_mp); 13885 } 13886 13887 static void 13888 ipif_ndp_start_dad(ipif_t *ipif) 13889 { 13890 nce_t *nce; 13891 13892 nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr, 13893 B_FALSE); 13894 if (nce == NULL) 13895 return; 13896 13897 if (!ndp_restart_dad(nce)) { 13898 /* 13899 * If we can't restart DAD for some reason, that's not really a 13900 * problem. Just send out the routing socket notification that 13901 * DAD completion would have done, and continue. 13902 */ 13903 ipif_up_notify(ipif); 13904 ipif->ipif_addr_ready = 1; 13905 } 13906 NCE_REFRELE(nce); 13907 } 13908 13909 /* 13910 * Restart duplicate address detection on all interfaces on the given ill. 13911 * 13912 * This is called when an interface transitions from down to up 13913 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13914 * 13915 * Note that since the underlying physical link has transitioned, we must cause 13916 * at least one routing socket message to be sent here, either via DAD 13917 * completion or just by default on the first ipif. (If we don't do this, then 13918 * in.mpathd will see long delays when doing link-based failure recovery.) 13919 */ 13920 void 13921 ill_restart_dad(ill_t *ill, boolean_t went_up) 13922 { 13923 ipif_t *ipif; 13924 13925 if (ill == NULL) 13926 return; 13927 13928 /* 13929 * If layer two doesn't support duplicate address detection, then just 13930 * send the routing socket message now and be done with it. 13931 */ 13932 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13933 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13934 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13935 return; 13936 } 13937 13938 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13939 if (went_up) { 13940 if (ipif->ipif_flags & IPIF_UP) { 13941 if (ill->ill_isv6) 13942 ipif_ndp_start_dad(ipif); 13943 else 13944 ipif_arp_start_dad(ipif); 13945 } else if (ill->ill_isv6 && 13946 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13947 /* 13948 * For IPv4, the ARP module itself will 13949 * automatically start the DAD process when it 13950 * sees DL_NOTE_LINK_UP. We respond to the 13951 * AR_CN_READY at the completion of that task. 13952 * For IPv6, we must kick off the bring-up 13953 * process now. 13954 */ 13955 ndp_do_recovery(ipif); 13956 } else { 13957 /* 13958 * Unfortunately, the first ipif is "special" 13959 * and represents the underlying ill in the 13960 * routing socket messages. Thus, when this 13961 * one ipif is down, we must still notify so 13962 * that the user knows the IFF_RUNNING status 13963 * change. (If the first ipif is up, then 13964 * we'll handle eventual routing socket 13965 * notification via DAD completion.) 13966 */ 13967 if (ipif == ill->ill_ipif) { 13968 ip_rts_ifmsg(ill->ill_ipif, 13969 RTSQ_DEFAULT); 13970 } 13971 } 13972 } else { 13973 /* 13974 * After link down, we'll need to send a new routing 13975 * message when the link comes back, so clear 13976 * ipif_addr_ready. 13977 */ 13978 ipif->ipif_addr_ready = 0; 13979 } 13980 } 13981 13982 /* 13983 * If we've torn down links, then notify the user right away. 13984 */ 13985 if (!went_up) 13986 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13987 } 13988 13989 static void 13990 ipsq_delete(ipsq_t *ipsq) 13991 { 13992 ipxop_t *ipx = ipsq->ipsq_xop; 13993 13994 ipsq->ipsq_ipst = NULL; 13995 ASSERT(ipsq->ipsq_phyint == NULL); 13996 ASSERT(ipsq->ipsq_xop != NULL); 13997 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 13998 ASSERT(ipx->ipx_pending_mp == NULL); 13999 kmem_free(ipsq, sizeof (ipsq_t)); 14000 } 14001 14002 static int 14003 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 14004 { 14005 int err; 14006 ipif_t *ipif; 14007 14008 if (ill == NULL) 14009 return (0); 14010 14011 /* 14012 * Except for ipif_state_flags and ill_state_flags the other 14013 * fields of the ipif/ill that are modified below are protected 14014 * implicitly since we are a writer. We would have tried to down 14015 * even an ipif that was already down, in ill_down_ipifs. So we 14016 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14017 */ 14018 ASSERT(IAM_WRITER_ILL(ill)); 14019 14020 ill->ill_up_ipifs = B_TRUE; 14021 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14022 mutex_enter(&ill->ill_lock); 14023 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14024 mutex_exit(&ill->ill_lock); 14025 if (ipif->ipif_was_up) { 14026 if (!(ipif->ipif_flags & IPIF_UP)) 14027 err = ipif_up(ipif, q, mp); 14028 ipif->ipif_was_up = B_FALSE; 14029 if (err != 0) { 14030 ASSERT(err == EINPROGRESS); 14031 return (err); 14032 } 14033 } 14034 } 14035 mutex_enter(&ill->ill_lock); 14036 ill->ill_state_flags &= ~ILL_CHANGING; 14037 mutex_exit(&ill->ill_lock); 14038 ill->ill_up_ipifs = B_FALSE; 14039 return (0); 14040 } 14041 14042 /* 14043 * This function is called to bring up all the ipifs that were up before 14044 * bringing the ill down via ill_down_ipifs(). 14045 */ 14046 int 14047 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14048 { 14049 int err; 14050 14051 ASSERT(IAM_WRITER_ILL(ill)); 14052 14053 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 14054 if (err != 0) 14055 return (err); 14056 14057 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 14058 } 14059 14060 /* 14061 * Bring down any IPIF_UP ipifs on ill. 14062 */ 14063 static void 14064 ill_down_ipifs(ill_t *ill) 14065 { 14066 ipif_t *ipif; 14067 14068 ASSERT(IAM_WRITER_ILL(ill)); 14069 14070 /* 14071 * Except for ipif_state_flags the other fields of the ipif/ill that 14072 * are modified below are protected implicitly since we are a writer 14073 */ 14074 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14075 /* 14076 * We go through the ipif_down logic even if the ipif 14077 * is already down, since routes can be added based 14078 * on down ipifs. Going through ipif_down once again 14079 * will delete any IREs created based on these routes. 14080 */ 14081 if (ipif->ipif_flags & IPIF_UP) 14082 ipif->ipif_was_up = B_TRUE; 14083 14084 mutex_enter(&ill->ill_lock); 14085 ipif->ipif_state_flags |= IPIF_CHANGING; 14086 mutex_exit(&ill->ill_lock); 14087 14088 /* 14089 * Need to re-create net/subnet bcast ires if 14090 * they are dependent on ipif. 14091 */ 14092 if (!ipif->ipif_isv6) 14093 ipif_check_bcast_ires(ipif); 14094 (void) ipif_logical_down(ipif, NULL, NULL); 14095 ipif_non_duplicate(ipif); 14096 ipif_down_tail(ipif); 14097 } 14098 } 14099 14100 /* 14101 * Redo source address selection. This is called when a 14102 * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up. 14103 */ 14104 void 14105 ill_update_source_selection(ill_t *ill) 14106 { 14107 ipif_t *ipif; 14108 14109 ASSERT(IAM_WRITER_ILL(ill)); 14110 14111 /* 14112 * Underlying interfaces are only used for test traffic and thus 14113 * should always send with their (deprecated) source addresses. 14114 */ 14115 if (IS_UNDER_IPMP(ill)) 14116 return; 14117 14118 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14119 if (ill->ill_isv6) 14120 ipif_recreate_interface_routes_v6(NULL, ipif); 14121 else 14122 ipif_recreate_interface_routes(NULL, ipif); 14123 } 14124 } 14125 14126 /* 14127 * Finish the group join started in ip_sioctl_groupname(). 14128 */ 14129 /* ARGSUSED */ 14130 static void 14131 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 14132 { 14133 ill_t *ill = q->q_ptr; 14134 phyint_t *phyi = ill->ill_phyint; 14135 ipmp_grp_t *grp = phyi->phyint_grp; 14136 ip_stack_t *ipst = ill->ill_ipst; 14137 14138 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 14139 ASSERT(!IS_IPMP(ill) && grp != NULL); 14140 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14141 14142 if (phyi->phyint_illv4 != NULL) { 14143 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14144 VERIFY(grp->gr_pendv4-- > 0); 14145 rw_exit(&ipst->ips_ipmp_lock); 14146 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 14147 } 14148 if (phyi->phyint_illv6 != NULL) { 14149 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14150 VERIFY(grp->gr_pendv6-- > 0); 14151 rw_exit(&ipst->ips_ipmp_lock); 14152 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 14153 } 14154 freemsg(mp); 14155 } 14156 14157 /* 14158 * Process an SIOCSLIFGROUPNAME request. 14159 */ 14160 /* ARGSUSED */ 14161 int 14162 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14163 ip_ioctl_cmd_t *ipip, void *ifreq) 14164 { 14165 struct lifreq *lifr = ifreq; 14166 ill_t *ill = ipif->ipif_ill; 14167 ip_stack_t *ipst = ill->ill_ipst; 14168 phyint_t *phyi = ill->ill_phyint; 14169 ipmp_grp_t *grp = phyi->phyint_grp; 14170 mblk_t *ipsq_mp; 14171 int err = 0; 14172 14173 /* 14174 * Note that phyint_grp can only change here, where we're exclusive. 14175 */ 14176 ASSERT(IAM_WRITER_ILL(ill)); 14177 14178 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 14179 (phyi->phyint_flags & PHYI_VIRTUAL)) 14180 return (EINVAL); 14181 14182 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 14183 14184 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14185 14186 /* 14187 * If the name hasn't changed, there's nothing to do. 14188 */ 14189 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 14190 goto unlock; 14191 14192 /* 14193 * Handle requests to rename an IPMP meta-interface. 14194 * 14195 * Note that creation of the IPMP meta-interface is handled in 14196 * userland through the standard plumbing sequence. As part of the 14197 * plumbing the IPMP meta-interface, its initial groupname is set to 14198 * the name of the interface (see ipif_set_values_tail()). 14199 */ 14200 if (IS_IPMP(ill)) { 14201 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 14202 goto unlock; 14203 } 14204 14205 /* 14206 * Handle requests to add or remove an IP interface from a group. 14207 */ 14208 if (lifr->lifr_groupname[0] != '\0') { /* add */ 14209 /* 14210 * Moves are handled by first removing the interface from 14211 * its existing group, and then adding it to another group. 14212 * So, fail if it's already in a group. 14213 */ 14214 if (IS_UNDER_IPMP(ill)) { 14215 err = EALREADY; 14216 goto unlock; 14217 } 14218 14219 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 14220 if (grp == NULL) { 14221 err = ENOENT; 14222 goto unlock; 14223 } 14224 14225 /* 14226 * Check if the phyint and its ills are suitable for 14227 * inclusion into the group. 14228 */ 14229 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 14230 goto unlock; 14231 14232 /* 14233 * Checks pass; join the group, and enqueue the remaining 14234 * illgrp joins for when we've become part of the group xop 14235 * and are exclusive across its IPSQs. Since qwriter_ip() 14236 * requires an mblk_t to scribble on, and since `mp' will be 14237 * freed as part of completing the ioctl, allocate another. 14238 */ 14239 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 14240 err = ENOMEM; 14241 goto unlock; 14242 } 14243 14244 /* 14245 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 14246 * IPMP meta-interface ills needed by `phyi' cannot go away 14247 * before ip_join_illgrps() is called back. See the comments 14248 * in ip_sioctl_plink_ipmp() for more. 14249 */ 14250 if (phyi->phyint_illv4 != NULL) 14251 grp->gr_pendv4++; 14252 if (phyi->phyint_illv6 != NULL) 14253 grp->gr_pendv6++; 14254 14255 rw_exit(&ipst->ips_ipmp_lock); 14256 14257 ipmp_phyint_join_grp(phyi, grp); 14258 ill_refhold(ill); 14259 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 14260 SWITCH_OP, B_FALSE); 14261 return (0); 14262 } else { 14263 /* 14264 * Request to remove the interface from a group. If the 14265 * interface is not in a group, this trivially succeeds. 14266 */ 14267 rw_exit(&ipst->ips_ipmp_lock); 14268 if (IS_UNDER_IPMP(ill)) 14269 ipmp_phyint_leave_grp(phyi); 14270 return (0); 14271 } 14272 unlock: 14273 rw_exit(&ipst->ips_ipmp_lock); 14274 return (err); 14275 } 14276 14277 /* 14278 * Process an SIOCGLIFBINDING request. 14279 */ 14280 /* ARGSUSED */ 14281 int 14282 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14283 ip_ioctl_cmd_t *ipip, void *ifreq) 14284 { 14285 ill_t *ill; 14286 struct lifreq *lifr = ifreq; 14287 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14288 14289 if (!IS_IPMP(ipif->ipif_ill)) 14290 return (EINVAL); 14291 14292 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14293 if ((ill = ipif->ipif_bound_ill) == NULL) 14294 lifr->lifr_binding[0] = '\0'; 14295 else 14296 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 14297 rw_exit(&ipst->ips_ipmp_lock); 14298 return (0); 14299 } 14300 14301 /* 14302 * Process an SIOCGLIFGROUPNAME request. 14303 */ 14304 /* ARGSUSED */ 14305 int 14306 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14307 ip_ioctl_cmd_t *ipip, void *ifreq) 14308 { 14309 ipmp_grp_t *grp; 14310 struct lifreq *lifr = ifreq; 14311 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14312 14313 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14314 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 14315 lifr->lifr_groupname[0] = '\0'; 14316 else 14317 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 14318 rw_exit(&ipst->ips_ipmp_lock); 14319 return (0); 14320 } 14321 14322 /* 14323 * Process an SIOCGLIFGROUPINFO request. 14324 */ 14325 /* ARGSUSED */ 14326 int 14327 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14328 ip_ioctl_cmd_t *ipip, void *dummy) 14329 { 14330 ipmp_grp_t *grp; 14331 lifgroupinfo_t *lifgr; 14332 ip_stack_t *ipst = CONNQ_TO_IPST(q); 14333 14334 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 14335 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 14336 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 14337 14338 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14339 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 14340 rw_exit(&ipst->ips_ipmp_lock); 14341 return (ENOENT); 14342 } 14343 ipmp_grp_info(grp, lifgr); 14344 rw_exit(&ipst->ips_ipmp_lock); 14345 return (0); 14346 } 14347 14348 static void 14349 ill_dl_down(ill_t *ill) 14350 { 14351 /* 14352 * The ill is down; unbind but stay attached since we're still 14353 * associated with a PPA. If we have negotiated DLPI capabilites 14354 * with the data link service provider (IDS_OK) then reset them. 14355 * The interval between unbinding and rebinding is potentially 14356 * unbounded hence we cannot assume things will be the same. 14357 * The DLPI capabilities will be probed again when the data link 14358 * is brought up. 14359 */ 14360 mblk_t *mp = ill->ill_unbind_mp; 14361 14362 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 14363 14364 ill->ill_unbind_mp = NULL; 14365 if (mp != NULL) { 14366 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 14367 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 14368 ill->ill_name)); 14369 mutex_enter(&ill->ill_lock); 14370 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 14371 mutex_exit(&ill->ill_lock); 14372 /* 14373 * ip_rput does not pass up normal (M_PROTO) DLPI messages 14374 * after ILL_CONDEMNED is set. So in the unplumb case, we call 14375 * ill_capability_dld_disable disable rightaway. If this is not 14376 * an unplumb operation then the disable happens on receipt of 14377 * the capab ack via ip_rput_dlpi_writer -> 14378 * ill_capability_ack_thr. In both cases the order of 14379 * the operations seen by DLD is capability disable followed 14380 * by DL_UNBIND. Also the DLD capability disable needs a 14381 * cv_wait'able context. 14382 */ 14383 if (ill->ill_state_flags & ILL_CONDEMNED) 14384 ill_capability_dld_disable(ill); 14385 ill_capability_reset(ill, B_FALSE); 14386 ill_dlpi_send(ill, mp); 14387 } 14388 14389 /* 14390 * Toss all of our multicast memberships. We could keep them, but 14391 * then we'd have to do bookkeeping of any joins and leaves performed 14392 * by the application while the the interface is down (we can't just 14393 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 14394 * on a downed interface). 14395 */ 14396 ill_leave_multicast(ill); 14397 14398 mutex_enter(&ill->ill_lock); 14399 ill->ill_dl_up = 0; 14400 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 14401 mutex_exit(&ill->ill_lock); 14402 } 14403 14404 static void 14405 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 14406 { 14407 union DL_primitives *dlp; 14408 t_uscalar_t prim; 14409 14410 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14411 14412 dlp = (union DL_primitives *)mp->b_rptr; 14413 prim = dlp->dl_primitive; 14414 14415 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 14416 dl_primstr(prim), prim, ill->ill_name)); 14417 14418 switch (prim) { 14419 case DL_PHYS_ADDR_REQ: 14420 { 14421 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 14422 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 14423 break; 14424 } 14425 case DL_BIND_REQ: 14426 mutex_enter(&ill->ill_lock); 14427 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14428 mutex_exit(&ill->ill_lock); 14429 break; 14430 } 14431 14432 /* 14433 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 14434 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 14435 * we only wait for the ACK of the DL_UNBIND_REQ. 14436 */ 14437 mutex_enter(&ill->ill_lock); 14438 if (!(ill->ill_state_flags & ILL_CONDEMNED) || (prim == DL_UNBIND_REQ)) 14439 ill->ill_dlpi_pending = prim; 14440 14441 mutex_exit(&ill->ill_lock); 14442 putnext(ill->ill_wq, mp); 14443 } 14444 14445 /* 14446 * Helper function for ill_dlpi_send(). 14447 */ 14448 /* ARGSUSED */ 14449 static void 14450 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 14451 { 14452 ill_dlpi_send(q->q_ptr, mp); 14453 } 14454 14455 /* 14456 * Send a DLPI control message to the driver but make sure there 14457 * is only one outstanding message. Uses ill_dlpi_pending to tell 14458 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 14459 * when an ACK or a NAK is received to process the next queued message. 14460 */ 14461 void 14462 ill_dlpi_send(ill_t *ill, mblk_t *mp) 14463 { 14464 mblk_t **mpp; 14465 14466 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14467 14468 /* 14469 * To ensure that any DLPI requests for current exclusive operation 14470 * are always completely sent before any DLPI messages for other 14471 * operations, require writer access before enqueuing. 14472 */ 14473 if (!IAM_WRITER_ILL(ill)) { 14474 ill_refhold(ill); 14475 /* qwriter_ip() does the ill_refrele() */ 14476 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 14477 NEW_OP, B_TRUE); 14478 return; 14479 } 14480 14481 mutex_enter(&ill->ill_lock); 14482 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 14483 /* Must queue message. Tail insertion */ 14484 mpp = &ill->ill_dlpi_deferred; 14485 while (*mpp != NULL) 14486 mpp = &((*mpp)->b_next); 14487 14488 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 14489 ill->ill_name)); 14490 14491 *mpp = mp; 14492 mutex_exit(&ill->ill_lock); 14493 return; 14494 } 14495 mutex_exit(&ill->ill_lock); 14496 ill_dlpi_dispatch(ill, mp); 14497 } 14498 14499 static void 14500 ill_capability_send(ill_t *ill, mblk_t *mp) 14501 { 14502 ill->ill_capab_pending_cnt++; 14503 ill_dlpi_send(ill, mp); 14504 } 14505 14506 void 14507 ill_capability_done(ill_t *ill) 14508 { 14509 ASSERT(ill->ill_capab_pending_cnt != 0); 14510 14511 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14512 14513 ill->ill_capab_pending_cnt--; 14514 if (ill->ill_capab_pending_cnt == 0 && 14515 ill->ill_dlpi_capab_state == IDCS_OK) 14516 ill_capability_reset_alloc(ill); 14517 } 14518 14519 /* 14520 * Send all deferred DLPI messages without waiting for their ACKs. 14521 */ 14522 void 14523 ill_dlpi_send_deferred(ill_t *ill) 14524 { 14525 mblk_t *mp, *nextmp; 14526 14527 /* 14528 * Clear ill_dlpi_pending so that the message is not queued in 14529 * ill_dlpi_send(). 14530 */ 14531 mutex_enter(&ill->ill_lock); 14532 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14533 mp = ill->ill_dlpi_deferred; 14534 ill->ill_dlpi_deferred = NULL; 14535 mutex_exit(&ill->ill_lock); 14536 14537 for (; mp != NULL; mp = nextmp) { 14538 nextmp = mp->b_next; 14539 mp->b_next = NULL; 14540 ill_dlpi_send(ill, mp); 14541 } 14542 } 14543 14544 /* 14545 * Check if the DLPI primitive `prim' is pending; print a warning if not. 14546 */ 14547 boolean_t 14548 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 14549 { 14550 t_uscalar_t pending; 14551 14552 mutex_enter(&ill->ill_lock); 14553 if (ill->ill_dlpi_pending == prim) { 14554 mutex_exit(&ill->ill_lock); 14555 return (B_TRUE); 14556 } 14557 14558 /* 14559 * During teardown, ill_dlpi_dispatch() will send DLPI requests 14560 * without waiting, so don't print any warnings in that case. 14561 */ 14562 if (ill->ill_state_flags & ILL_CONDEMNED) { 14563 mutex_exit(&ill->ill_lock); 14564 return (B_FALSE); 14565 } 14566 pending = ill->ill_dlpi_pending; 14567 mutex_exit(&ill->ill_lock); 14568 14569 if (pending == DL_PRIM_INVAL) { 14570 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14571 "received unsolicited ack for %s on %s\n", 14572 dl_primstr(prim), ill->ill_name); 14573 } else { 14574 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14575 "received unexpected ack for %s on %s (expecting %s)\n", 14576 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 14577 } 14578 return (B_FALSE); 14579 } 14580 14581 /* 14582 * Complete the current DLPI operation associated with `prim' on `ill' and 14583 * start the next queued DLPI operation (if any). If there are no queued DLPI 14584 * operations and the ill's current exclusive IPSQ operation has finished 14585 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 14586 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 14587 * the comments above ipsq_current_finish() for details. 14588 */ 14589 void 14590 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 14591 { 14592 mblk_t *mp; 14593 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14594 ipxop_t *ipx = ipsq->ipsq_xop; 14595 14596 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14597 mutex_enter(&ill->ill_lock); 14598 14599 ASSERT(prim != DL_PRIM_INVAL); 14600 ASSERT(ill->ill_dlpi_pending == prim); 14601 14602 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 14603 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 14604 14605 if ((mp = ill->ill_dlpi_deferred) == NULL) { 14606 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14607 if (ipx->ipx_current_done) { 14608 mutex_enter(&ipx->ipx_lock); 14609 ipx->ipx_current_ipif = NULL; 14610 mutex_exit(&ipx->ipx_lock); 14611 } 14612 cv_signal(&ill->ill_cv); 14613 mutex_exit(&ill->ill_lock); 14614 return; 14615 } 14616 14617 ill->ill_dlpi_deferred = mp->b_next; 14618 mp->b_next = NULL; 14619 mutex_exit(&ill->ill_lock); 14620 14621 ill_dlpi_dispatch(ill, mp); 14622 } 14623 14624 void 14625 conn_delete_ire(conn_t *connp, caddr_t arg) 14626 { 14627 ipif_t *ipif = (ipif_t *)arg; 14628 ire_t *ire; 14629 14630 /* 14631 * Look at the cached ires on conns which has pointers to ipifs. 14632 * We just call ire_refrele which clears up the reference 14633 * to ire. Called when a conn closes. Also called from ipif_free 14634 * to cleanup indirect references to the stale ipif via the cached ire. 14635 */ 14636 mutex_enter(&connp->conn_lock); 14637 ire = connp->conn_ire_cache; 14638 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 14639 connp->conn_ire_cache = NULL; 14640 mutex_exit(&connp->conn_lock); 14641 IRE_REFRELE_NOTR(ire); 14642 return; 14643 } 14644 mutex_exit(&connp->conn_lock); 14645 14646 } 14647 14648 /* 14649 * Some operations (e.g., ipif_down()) conditionally delete a number 14650 * of IREs. Those IREs may have been previously cached in the conn structure. 14651 * This ipcl_walk() walker function releases all references to such IREs based 14652 * on the condemned flag. 14653 */ 14654 /* ARGSUSED */ 14655 void 14656 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 14657 { 14658 ire_t *ire; 14659 14660 mutex_enter(&connp->conn_lock); 14661 ire = connp->conn_ire_cache; 14662 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 14663 connp->conn_ire_cache = NULL; 14664 mutex_exit(&connp->conn_lock); 14665 IRE_REFRELE_NOTR(ire); 14666 return; 14667 } 14668 mutex_exit(&connp->conn_lock); 14669 } 14670 14671 /* 14672 * Take down a specific interface, but don't lose any information about it. 14673 * (Always called as writer.) 14674 * This function goes through the down sequence even if the interface is 14675 * already down. There are 2 reasons. 14676 * a. Currently we permit interface routes that depend on down interfaces 14677 * to be added. This behaviour itself is questionable. However it appears 14678 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 14679 * time. We go thru the cleanup in order to remove these routes. 14680 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 14681 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 14682 * down, but we need to cleanup i.e. do ill_dl_down and 14683 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 14684 * 14685 * IP-MT notes: 14686 * 14687 * Model of reference to interfaces. 14688 * 14689 * The following members in ipif_t track references to the ipif. 14690 * int ipif_refcnt; Active reference count 14691 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 14692 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 14693 * 14694 * The following members in ill_t track references to the ill. 14695 * int ill_refcnt; active refcnt 14696 * uint_t ill_ire_cnt; Number of ires referencing ill 14697 * uint_t ill_nce_cnt; Number of nces referencing ill 14698 * uint_t ill_ilm_cnt; Number of ilms referencing ill 14699 * 14700 * Reference to an ipif or ill can be obtained in any of the following ways. 14701 * 14702 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 14703 * Pointers to ipif / ill from other data structures viz ire and conn. 14704 * Implicit reference to the ipif / ill by holding a reference to the ire. 14705 * 14706 * The ipif/ill lookup functions return a reference held ipif / ill. 14707 * ipif_refcnt and ill_refcnt track the reference counts respectively. 14708 * This is a purely dynamic reference count associated with threads holding 14709 * references to the ipif / ill. Pointers from other structures do not 14710 * count towards this reference count. 14711 * 14712 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 14713 * associated with the ipif/ill. This is incremented whenever a new 14714 * ire is created referencing the ipif/ill. This is done atomically inside 14715 * ire_add_v[46] where the ire is actually added to the ire hash table. 14716 * The count is decremented in ire_inactive where the ire is destroyed. 14717 * 14718 * nce's reference ill's thru nce_ill and the count of nce's associated with 14719 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 14720 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 14721 * table. Similarly it is decremented in ndp_inactive() where the nce 14722 * is destroyed. 14723 * 14724 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 14725 * is incremented in ilm_add_v6() and decremented before the ilm is freed 14726 * in ilm_walker_cleanup() or ilm_delete(). 14727 * 14728 * Flow of ioctls involving interface down/up 14729 * 14730 * The following is the sequence of an attempt to set some critical flags on an 14731 * up interface. 14732 * ip_sioctl_flags 14733 * ipif_down 14734 * wait for ipif to be quiescent 14735 * ipif_down_tail 14736 * ip_sioctl_flags_tail 14737 * 14738 * All set ioctls that involve down/up sequence would have a skeleton similar 14739 * to the above. All the *tail functions are called after the refcounts have 14740 * dropped to the appropriate values. 14741 * 14742 * The mechanism to quiesce an ipif is as follows. 14743 * 14744 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 14745 * on the ipif. Callers either pass a flag requesting wait or the lookup 14746 * functions will return NULL. 14747 * 14748 * Delete all ires referencing this ipif 14749 * 14750 * Any thread attempting to do an ipif_refhold on an ipif that has been 14751 * obtained thru a cached pointer will first make sure that 14752 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 14753 * increment the refcount. 14754 * 14755 * The above guarantees that the ipif refcount will eventually come down to 14756 * zero and the ipif will quiesce, once all threads that currently hold a 14757 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 14758 * ipif_refcount has dropped to zero and all ire's associated with this ipif 14759 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 14760 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 14761 * in ip.h 14762 * 14763 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 14764 * 14765 * Threads trying to lookup an ipif or ill can pass a flag requesting 14766 * wait and restart if the ipif / ill cannot be looked up currently. 14767 * For eg. bind, and route operations (Eg. route add / delete) cannot return 14768 * failure if the ipif is currently undergoing an exclusive operation, and 14769 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 14770 * is restarted by ipsq_exit() when the current exclusive operation completes. 14771 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 14772 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 14773 * change while the ill_lock is held. Before dropping the ill_lock we acquire 14774 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 14775 * until we release the ipsq_lock, even though the the ill/ipif state flags 14776 * can change after we drop the ill_lock. 14777 * 14778 * An attempt to send out a packet using an ipif that is currently 14779 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 14780 * operation and restart it later when the exclusive condition on the ipif ends. 14781 * This is an example of not passing the wait flag to the lookup functions. For 14782 * example an attempt to refhold and use conn->conn_multicast_ipif and send 14783 * out a multicast packet on that ipif will fail while the ipif is 14784 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 14785 * currently IPIF_CHANGING will also fail. 14786 */ 14787 int 14788 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14789 { 14790 ill_t *ill = ipif->ipif_ill; 14791 conn_t *connp; 14792 boolean_t success; 14793 boolean_t ipif_was_up = B_FALSE; 14794 ip_stack_t *ipst = ill->ill_ipst; 14795 14796 ASSERT(IAM_WRITER_IPIF(ipif)); 14797 14798 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14799 14800 if (ipif->ipif_flags & IPIF_UP) { 14801 mutex_enter(&ill->ill_lock); 14802 ipif->ipif_flags &= ~IPIF_UP; 14803 ASSERT(ill->ill_ipif_up_count > 0); 14804 --ill->ill_ipif_up_count; 14805 mutex_exit(&ill->ill_lock); 14806 ipif_was_up = B_TRUE; 14807 /* Update status in SCTP's list */ 14808 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 14809 ill_nic_event_dispatch(ipif->ipif_ill, 14810 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 14811 } 14812 14813 /* 14814 * Blow away memberships we established in ipif_multicast_up(). 14815 */ 14816 ipif_multicast_down(ipif); 14817 14818 /* 14819 * Remove from the mapping for __sin6_src_id. We insert only 14820 * when the address is not INADDR_ANY. As IPv4 addresses are 14821 * stored as mapped addresses, we need to check for mapped 14822 * INADDR_ANY also. 14823 */ 14824 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 14825 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 14826 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14827 int err; 14828 14829 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 14830 ipif->ipif_zoneid, ipst); 14831 if (err != 0) { 14832 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 14833 } 14834 } 14835 14836 /* 14837 * Delete all IRE's pointing at this ipif or its source address. 14838 */ 14839 if (ipif->ipif_isv6) { 14840 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14841 ipst); 14842 } else { 14843 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14844 ipst); 14845 } 14846 14847 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 14848 /* 14849 * Since the interface is now down, it may have just become 14850 * inactive. Note that this needs to be done even for a 14851 * lll_logical_down(), or ARP entries will not get correctly 14852 * restored when the interface comes back up. 14853 */ 14854 if (IS_UNDER_IPMP(ill)) 14855 ipmp_ill_refresh_active(ill); 14856 } 14857 14858 /* 14859 * Cleaning up the conn_ire_cache or conns must be done only after the 14860 * ires have been deleted above. Otherwise a thread could end up 14861 * caching an ire in a conn after we have finished the cleanup of the 14862 * conn. The caching is done after making sure that the ire is not yet 14863 * condemned. Also documented in the block comment above ip_output 14864 */ 14865 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 14866 /* Also, delete the ires cached in SCTP */ 14867 sctp_ire_cache_flush(ipif); 14868 14869 /* 14870 * Update any other ipifs which have used "our" local address as 14871 * a source address. This entails removing and recreating IRE_INTERFACE 14872 * entries for such ipifs. 14873 */ 14874 if (ipif->ipif_isv6) 14875 ipif_update_other_ipifs_v6(ipif); 14876 else 14877 ipif_update_other_ipifs(ipif); 14878 14879 /* 14880 * neighbor-discovery or arp entries for this interface. 14881 */ 14882 ipif_ndp_down(ipif); 14883 14884 /* 14885 * If mp is NULL the caller will wait for the appropriate refcnt. 14886 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 14887 * and ill_delete -> ipif_free -> ipif_down 14888 */ 14889 if (mp == NULL) { 14890 ASSERT(q == NULL); 14891 return (0); 14892 } 14893 14894 if (CONN_Q(q)) { 14895 connp = Q_TO_CONN(q); 14896 mutex_enter(&connp->conn_lock); 14897 } else { 14898 connp = NULL; 14899 } 14900 mutex_enter(&ill->ill_lock); 14901 /* 14902 * Are there any ire's pointing to this ipif that are still active ? 14903 * If this is the last ipif going down, are there any ire's pointing 14904 * to this ill that are still active ? 14905 */ 14906 if (ipif_is_quiescent(ipif)) { 14907 mutex_exit(&ill->ill_lock); 14908 if (connp != NULL) 14909 mutex_exit(&connp->conn_lock); 14910 return (0); 14911 } 14912 14913 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 14914 ill->ill_name, (void *)ill)); 14915 /* 14916 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 14917 * drops down, the operation will be restarted by ipif_ill_refrele_tail 14918 * which in turn is called by the last refrele on the ipif/ill/ire. 14919 */ 14920 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 14921 if (!success) { 14922 /* The conn is closing. So just return */ 14923 ASSERT(connp != NULL); 14924 mutex_exit(&ill->ill_lock); 14925 mutex_exit(&connp->conn_lock); 14926 return (EINTR); 14927 } 14928 14929 mutex_exit(&ill->ill_lock); 14930 if (connp != NULL) 14931 mutex_exit(&connp->conn_lock); 14932 return (EINPROGRESS); 14933 } 14934 14935 void 14936 ipif_down_tail(ipif_t *ipif) 14937 { 14938 ill_t *ill = ipif->ipif_ill; 14939 14940 /* 14941 * Skip any loopback interface (null wq). 14942 * If this is the last logical interface on the ill 14943 * have ill_dl_down tell the driver we are gone (unbind) 14944 * Note that lun 0 can ipif_down even though 14945 * there are other logical units that are up. 14946 * This occurs e.g. when we change a "significant" IFF_ flag. 14947 */ 14948 if (ill->ill_wq != NULL && !ill->ill_logical_down && 14949 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 14950 ill->ill_dl_up) { 14951 ill_dl_down(ill); 14952 } 14953 ill->ill_logical_down = 0; 14954 14955 /* 14956 * Has to be after removing the routes in ipif_down_delete_ire. 14957 */ 14958 ipif_resolver_down(ipif); 14959 14960 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 14961 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 14962 } 14963 14964 /* 14965 * Bring interface logically down without bringing the physical interface 14966 * down e.g. when the netmask is changed. This avoids long lasting link 14967 * negotiations between an ethernet interface and a certain switches. 14968 */ 14969 static int 14970 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14971 { 14972 /* 14973 * The ill_logical_down flag is a transient flag. It is set here 14974 * and is cleared once the down has completed in ipif_down_tail. 14975 * This flag does not indicate whether the ill stream is in the 14976 * DL_BOUND state with the driver. Instead this flag is used by 14977 * ipif_down_tail to determine whether to DL_UNBIND the stream with 14978 * the driver. The state of the ill stream i.e. whether it is 14979 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 14980 */ 14981 ipif->ipif_ill->ill_logical_down = 1; 14982 return (ipif_down(ipif, q, mp)); 14983 } 14984 14985 /* 14986 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 14987 * If the usesrc client ILL is already part of a usesrc group or not, 14988 * in either case a ire_stq with the matching usesrc client ILL will 14989 * locate the IRE's that need to be deleted. We want IREs to be created 14990 * with the new source address. 14991 */ 14992 static void 14993 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 14994 { 14995 ill_t *ucill = (ill_t *)ill_arg; 14996 14997 ASSERT(IAM_WRITER_ILL(ucill)); 14998 14999 if (ire->ire_stq == NULL) 15000 return; 15001 15002 if ((ire->ire_type == IRE_CACHE) && 15003 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 15004 ire_delete(ire); 15005 } 15006 15007 /* 15008 * ire_walk routine to delete every IRE dependent on the interface 15009 * address that is going down. (Always called as writer.) 15010 * Works for both v4 and v6. 15011 * In addition for checking for ire_ipif matches it also checks for 15012 * IRE_CACHE entries which have the same source address as the 15013 * disappearing ipif since ipif_select_source might have picked 15014 * that source. Note that ipif_down/ipif_update_other_ipifs takes 15015 * care of any IRE_INTERFACE with the disappearing source address. 15016 */ 15017 static void 15018 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 15019 { 15020 ipif_t *ipif = (ipif_t *)ipif_arg; 15021 15022 ASSERT(IAM_WRITER_IPIF(ipif)); 15023 if (ire->ire_ipif == NULL) 15024 return; 15025 15026 if (ire->ire_ipif != ipif) { 15027 /* 15028 * Look for a matching source address. 15029 */ 15030 if (ire->ire_type != IRE_CACHE) 15031 return; 15032 if (ipif->ipif_flags & IPIF_NOLOCAL) 15033 return; 15034 15035 if (ire->ire_ipversion == IPV4_VERSION) { 15036 if (ire->ire_src_addr != ipif->ipif_src_addr) 15037 return; 15038 } else { 15039 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 15040 &ipif->ipif_v6lcl_addr)) 15041 return; 15042 } 15043 ire_delete(ire); 15044 return; 15045 } 15046 /* 15047 * ire_delete() will do an ire_flush_cache which will delete 15048 * all ire_ipif matches 15049 */ 15050 ire_delete(ire); 15051 } 15052 15053 /* 15054 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 15055 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 15056 * 2) when an interface is brought up or down (on that ill). 15057 * This ensures that the IRE_CACHE entries don't retain stale source 15058 * address selection results. 15059 */ 15060 void 15061 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 15062 { 15063 ill_t *ill = (ill_t *)ill_arg; 15064 15065 ASSERT(IAM_WRITER_ILL(ill)); 15066 ASSERT(ire->ire_type == IRE_CACHE); 15067 15068 /* 15069 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 15070 * ill, but we only want to delete the IRE if ire_ipif matches. 15071 */ 15072 ASSERT(ire->ire_ipif != NULL); 15073 if (ill == ire->ire_ipif->ipif_ill) 15074 ire_delete(ire); 15075 } 15076 15077 /* 15078 * Delete all the IREs whose ire_stq's reference `ill_arg'. IPMP uses this 15079 * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references 15080 * the IPMP ill. 15081 */ 15082 void 15083 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 15084 { 15085 ill_t *ill = (ill_t *)ill_arg; 15086 15087 ASSERT(IAM_WRITER_ILL(ill)); 15088 ASSERT(ire->ire_type == IRE_CACHE); 15089 15090 /* 15091 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 15092 * ill, but we only want to delete the IRE if ire_stq matches. 15093 */ 15094 if (ire->ire_stq->q_ptr == ill_arg) 15095 ire_delete(ire); 15096 } 15097 15098 /* 15099 * Delete all broadcast IREs with a source address on `ill_arg'. 15100 */ 15101 static void 15102 ill_broadcast_delete(ire_t *ire, char *ill_arg) 15103 { 15104 ill_t *ill = (ill_t *)ill_arg; 15105 15106 ASSERT(IAM_WRITER_ILL(ill)); 15107 ASSERT(ire->ire_type == IRE_BROADCAST); 15108 15109 if (ire->ire_ipif->ipif_ill == ill) 15110 ire_delete(ire); 15111 } 15112 15113 /* 15114 * Initiate deallocate of an IPIF. Always called as writer. Called by 15115 * ill_delete or ip_sioctl_removeif. 15116 */ 15117 static void 15118 ipif_free(ipif_t *ipif) 15119 { 15120 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15121 15122 ASSERT(IAM_WRITER_IPIF(ipif)); 15123 15124 if (ipif->ipif_recovery_id != 0) 15125 (void) untimeout(ipif->ipif_recovery_id); 15126 ipif->ipif_recovery_id = 0; 15127 15128 /* Remove conn references */ 15129 reset_conn_ipif(ipif); 15130 15131 /* 15132 * Make sure we have valid net and subnet broadcast ire's for the 15133 * other ipif's which share them with this ipif. 15134 */ 15135 if (!ipif->ipif_isv6) 15136 ipif_check_bcast_ires(ipif); 15137 15138 /* 15139 * Take down the interface. We can be called either from ill_delete 15140 * or from ip_sioctl_removeif. 15141 */ 15142 (void) ipif_down(ipif, NULL, NULL); 15143 15144 /* 15145 * Now that the interface is down, there's no chance it can still 15146 * become a duplicate. Cancel any timer that may have been set while 15147 * tearing down. 15148 */ 15149 if (ipif->ipif_recovery_id != 0) 15150 (void) untimeout(ipif->ipif_recovery_id); 15151 ipif->ipif_recovery_id = 0; 15152 15153 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15154 /* Remove pointers to this ill in the multicast routing tables */ 15155 reset_mrt_vif_ipif(ipif); 15156 /* If necessary, clear the cached source ipif rotor. */ 15157 if (ipif->ipif_ill->ill_src_ipif == ipif) 15158 ipif->ipif_ill->ill_src_ipif = NULL; 15159 rw_exit(&ipst->ips_ill_g_lock); 15160 } 15161 15162 static void 15163 ipif_free_tail(ipif_t *ipif) 15164 { 15165 mblk_t *mp; 15166 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15167 15168 /* 15169 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 15170 */ 15171 mutex_enter(&ipif->ipif_saved_ire_lock); 15172 mp = ipif->ipif_saved_ire_mp; 15173 ipif->ipif_saved_ire_mp = NULL; 15174 mutex_exit(&ipif->ipif_saved_ire_lock); 15175 freemsg(mp); 15176 15177 /* 15178 * Need to hold both ill_g_lock and ill_lock while 15179 * inserting or removing an ipif from the linked list 15180 * of ipifs hanging off the ill. 15181 */ 15182 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15183 15184 ASSERT(ilm_walk_ipif(ipif) == 0); 15185 15186 #ifdef DEBUG 15187 ipif_trace_cleanup(ipif); 15188 #endif 15189 15190 /* Ask SCTP to take it out of it list */ 15191 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 15192 15193 /* Get it out of the ILL interface list. */ 15194 ipif_remove(ipif); 15195 rw_exit(&ipst->ips_ill_g_lock); 15196 15197 mutex_destroy(&ipif->ipif_saved_ire_lock); 15198 15199 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 15200 ASSERT(ipif->ipif_recovery_id == 0); 15201 15202 /* Free the memory. */ 15203 mi_free(ipif); 15204 } 15205 15206 /* 15207 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 15208 * is zero. 15209 */ 15210 void 15211 ipif_get_name(const ipif_t *ipif, char *buf, int len) 15212 { 15213 char lbuf[LIFNAMSIZ]; 15214 char *name; 15215 size_t name_len; 15216 15217 buf[0] = '\0'; 15218 name = ipif->ipif_ill->ill_name; 15219 name_len = ipif->ipif_ill->ill_name_length; 15220 if (ipif->ipif_id != 0) { 15221 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 15222 ipif->ipif_id); 15223 name = lbuf; 15224 name_len = mi_strlen(name) + 1; 15225 } 15226 len -= 1; 15227 buf[len] = '\0'; 15228 len = MIN(len, name_len); 15229 bcopy(name, buf, len); 15230 } 15231 15232 /* 15233 * Find an IPIF based on the name passed in. Names can be of the 15234 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 15235 * The <phys> string can have forms like <dev><#> (e.g., le0), 15236 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 15237 * When there is no colon, the implied unit id is zero. <phys> must 15238 * correspond to the name of an ILL. (May be called as writer.) 15239 */ 15240 static ipif_t * 15241 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 15242 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 15243 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 15244 { 15245 char *cp; 15246 char *endp; 15247 long id; 15248 ill_t *ill; 15249 ipif_t *ipif; 15250 uint_t ire_type; 15251 boolean_t did_alloc = B_FALSE; 15252 ipsq_t *ipsq; 15253 15254 if (error != NULL) 15255 *error = 0; 15256 15257 /* 15258 * If the caller wants to us to create the ipif, make sure we have a 15259 * valid zoneid 15260 */ 15261 ASSERT(!do_alloc || zoneid != ALL_ZONES); 15262 15263 if (namelen == 0) { 15264 if (error != NULL) 15265 *error = ENXIO; 15266 return (NULL); 15267 } 15268 15269 *exists = B_FALSE; 15270 /* Look for a colon in the name. */ 15271 endp = &name[namelen]; 15272 for (cp = endp; --cp > name; ) { 15273 if (*cp == IPIF_SEPARATOR_CHAR) 15274 break; 15275 } 15276 15277 if (*cp == IPIF_SEPARATOR_CHAR) { 15278 /* 15279 * Reject any non-decimal aliases for logical 15280 * interfaces. Aliases with leading zeroes 15281 * are also rejected as they introduce ambiguity 15282 * in the naming of the interfaces. 15283 * In order to confirm with existing semantics, 15284 * and to not break any programs/script relying 15285 * on that behaviour, if<0>:0 is considered to be 15286 * a valid interface. 15287 * 15288 * If alias has two or more digits and the first 15289 * is zero, fail. 15290 */ 15291 if (&cp[2] < endp && cp[1] == '0') { 15292 if (error != NULL) 15293 *error = EINVAL; 15294 return (NULL); 15295 } 15296 } 15297 15298 if (cp <= name) { 15299 cp = endp; 15300 } else { 15301 *cp = '\0'; 15302 } 15303 15304 /* 15305 * Look up the ILL, based on the portion of the name 15306 * before the slash. ill_lookup_on_name returns a held ill. 15307 * Temporary to check whether ill exists already. If so 15308 * ill_lookup_on_name will clear it. 15309 */ 15310 ill = ill_lookup_on_name(name, do_alloc, isv6, 15311 q, mp, func, error, &did_alloc, ipst); 15312 if (cp != endp) 15313 *cp = IPIF_SEPARATOR_CHAR; 15314 if (ill == NULL) 15315 return (NULL); 15316 15317 /* Establish the unit number in the name. */ 15318 id = 0; 15319 if (cp < endp && *endp == '\0') { 15320 /* If there was a colon, the unit number follows. */ 15321 cp++; 15322 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 15323 ill_refrele(ill); 15324 if (error != NULL) 15325 *error = ENXIO; 15326 return (NULL); 15327 } 15328 } 15329 15330 GRAB_CONN_LOCK(q); 15331 mutex_enter(&ill->ill_lock); 15332 /* Now see if there is an IPIF with this unit number. */ 15333 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15334 if (ipif->ipif_id == id) { 15335 if (zoneid != ALL_ZONES && 15336 zoneid != ipif->ipif_zoneid && 15337 ipif->ipif_zoneid != ALL_ZONES) { 15338 mutex_exit(&ill->ill_lock); 15339 RELEASE_CONN_LOCK(q); 15340 ill_refrele(ill); 15341 if (error != NULL) 15342 *error = ENXIO; 15343 return (NULL); 15344 } 15345 /* 15346 * The block comment at the start of ipif_down 15347 * explains the use of the macros used below 15348 */ 15349 if (IPIF_CAN_LOOKUP(ipif)) { 15350 ipif_refhold_locked(ipif); 15351 mutex_exit(&ill->ill_lock); 15352 if (!did_alloc) 15353 *exists = B_TRUE; 15354 /* 15355 * Drop locks before calling ill_refrele 15356 * since it can potentially call into 15357 * ipif_ill_refrele_tail which can end up 15358 * in trying to acquire any lock. 15359 */ 15360 RELEASE_CONN_LOCK(q); 15361 ill_refrele(ill); 15362 return (ipif); 15363 } else if (IPIF_CAN_WAIT(ipif, q)) { 15364 ipsq = ill->ill_phyint->phyint_ipsq; 15365 mutex_enter(&ipsq->ipsq_lock); 15366 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 15367 mutex_exit(&ill->ill_lock); 15368 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 15369 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 15370 mutex_exit(&ipsq->ipsq_lock); 15371 RELEASE_CONN_LOCK(q); 15372 ill_refrele(ill); 15373 if (error != NULL) 15374 *error = EINPROGRESS; 15375 return (NULL); 15376 } 15377 } 15378 } 15379 RELEASE_CONN_LOCK(q); 15380 15381 if (!do_alloc) { 15382 mutex_exit(&ill->ill_lock); 15383 ill_refrele(ill); 15384 if (error != NULL) 15385 *error = ENXIO; 15386 return (NULL); 15387 } 15388 15389 /* 15390 * If none found, atomically allocate and return a new one. 15391 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 15392 * to support "receive only" use of lo0:1 etc. as is still done 15393 * below as an initial guess. 15394 * However, this is now likely to be overriden later in ipif_up_done() 15395 * when we know for sure what address has been configured on the 15396 * interface, since we might have more than one loopback interface 15397 * with a loopback address, e.g. in the case of zones, and all the 15398 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 15399 */ 15400 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 15401 ire_type = IRE_LOOPBACK; 15402 else 15403 ire_type = IRE_LOCAL; 15404 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); 15405 if (ipif != NULL) 15406 ipif_refhold_locked(ipif); 15407 else if (error != NULL) 15408 *error = ENOMEM; 15409 mutex_exit(&ill->ill_lock); 15410 ill_refrele(ill); 15411 return (ipif); 15412 } 15413 15414 /* 15415 * This routine is called whenever a new address comes up on an ipif. If 15416 * we are configured to respond to address mask requests, then we are supposed 15417 * to broadcast an address mask reply at this time. This routine is also 15418 * called if we are already up, but a netmask change is made. This is legal 15419 * but might not make the system manager very popular. (May be called 15420 * as writer.) 15421 */ 15422 void 15423 ipif_mask_reply(ipif_t *ipif) 15424 { 15425 icmph_t *icmph; 15426 ipha_t *ipha; 15427 mblk_t *mp; 15428 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15429 15430 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 15431 15432 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 15433 return; 15434 15435 /* ICMP mask reply is IPv4 only */ 15436 ASSERT(!ipif->ipif_isv6); 15437 /* ICMP mask reply is not for a loopback interface */ 15438 ASSERT(ipif->ipif_ill->ill_wq != NULL); 15439 15440 mp = allocb(REPLY_LEN, BPRI_HI); 15441 if (mp == NULL) 15442 return; 15443 mp->b_wptr = mp->b_rptr + REPLY_LEN; 15444 15445 ipha = (ipha_t *)mp->b_rptr; 15446 bzero(ipha, REPLY_LEN); 15447 *ipha = icmp_ipha; 15448 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 15449 ipha->ipha_src = ipif->ipif_src_addr; 15450 ipha->ipha_dst = ipif->ipif_brd_addr; 15451 ipha->ipha_length = htons(REPLY_LEN); 15452 ipha->ipha_ident = 0; 15453 15454 icmph = (icmph_t *)&ipha[1]; 15455 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 15456 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 15457 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 15458 15459 put(ipif->ipif_wq, mp); 15460 15461 #undef REPLY_LEN 15462 } 15463 15464 /* 15465 * When the mtu in the ipif changes, we call this routine through ire_walk 15466 * to update all the relevant IREs. 15467 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15468 */ 15469 static void 15470 ipif_mtu_change(ire_t *ire, char *ipif_arg) 15471 { 15472 ipif_t *ipif = (ipif_t *)ipif_arg; 15473 15474 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 15475 return; 15476 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 15477 } 15478 15479 /* 15480 * When the mtu in the ill changes, we call this routine through ire_walk 15481 * to update all the relevant IREs. 15482 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15483 */ 15484 void 15485 ill_mtu_change(ire_t *ire, char *ill_arg) 15486 { 15487 ill_t *ill = (ill_t *)ill_arg; 15488 15489 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 15490 return; 15491 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 15492 } 15493 15494 /* 15495 * Join the ipif specific multicast groups. 15496 * Must be called after a mapping has been set up in the resolver. (Always 15497 * called as writer.) 15498 */ 15499 void 15500 ipif_multicast_up(ipif_t *ipif) 15501 { 15502 int err; 15503 ill_t *ill; 15504 15505 ASSERT(IAM_WRITER_IPIF(ipif)); 15506 15507 ill = ipif->ipif_ill; 15508 15509 ip1dbg(("ipif_multicast_up\n")); 15510 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 15511 return; 15512 15513 if (ipif->ipif_isv6) { 15514 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 15515 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 15516 15517 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15518 15519 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15520 return; 15521 15522 ip1dbg(("ipif_multicast_up - addmulti\n")); 15523 15524 /* 15525 * Join the all hosts multicast address. We skip this for 15526 * underlying IPMP interfaces since they should be invisible. 15527 */ 15528 if (!IS_UNDER_IPMP(ill)) { 15529 err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid, 15530 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15531 if (err != 0) { 15532 ip0dbg(("ipif_multicast_up: " 15533 "all_hosts_mcast failed %d\n", err)); 15534 return; 15535 } 15536 ipif->ipif_joined_allhosts = 1; 15537 } 15538 15539 /* 15540 * Enable multicast for the solicited node multicast address 15541 */ 15542 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15543 err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid, 15544 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15545 if (err != 0) { 15546 ip0dbg(("ipif_multicast_up: solicited MC" 15547 " failed %d\n", err)); 15548 if (ipif->ipif_joined_allhosts) { 15549 (void) ip_delmulti_v6(&v6allmc, ill, 15550 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15551 ipif->ipif_joined_allhosts = 0; 15552 } 15553 return; 15554 } 15555 } 15556 } else { 15557 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 15558 return; 15559 15560 /* Join the all hosts multicast address */ 15561 ip1dbg(("ipif_multicast_up - addmulti\n")); 15562 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 15563 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15564 if (err) { 15565 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 15566 return; 15567 } 15568 } 15569 ipif->ipif_multicast_up = 1; 15570 } 15571 15572 /* 15573 * Blow away any multicast groups that we joined in ipif_multicast_up(). 15574 * (Explicit memberships are blown away in ill_leave_multicast() when the 15575 * ill is brought down.) 15576 */ 15577 void 15578 ipif_multicast_down(ipif_t *ipif) 15579 { 15580 int err; 15581 15582 ASSERT(IAM_WRITER_IPIF(ipif)); 15583 15584 ip1dbg(("ipif_multicast_down\n")); 15585 if (!ipif->ipif_multicast_up) 15586 return; 15587 15588 ip1dbg(("ipif_multicast_down - delmulti\n")); 15589 15590 if (!ipif->ipif_isv6) { 15591 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 15592 B_TRUE); 15593 if (err != 0) 15594 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 15595 15596 ipif->ipif_multicast_up = 0; 15597 return; 15598 } 15599 15600 /* 15601 * Leave the all-hosts multicast address. 15602 */ 15603 if (ipif->ipif_joined_allhosts) { 15604 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 15605 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15606 if (err != 0) { 15607 ip0dbg(("ipif_multicast_down: all_hosts_mcast " 15608 "failed %d\n", err)); 15609 } 15610 ipif->ipif_joined_allhosts = 0; 15611 } 15612 15613 /* 15614 * Disable multicast for the solicited node multicast address 15615 */ 15616 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15617 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 15618 15619 ipv6_multi.s6_addr32[3] |= 15620 ipif->ipif_v6lcl_addr.s6_addr32[3]; 15621 15622 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 15623 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15624 if (err != 0) { 15625 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 15626 err)); 15627 } 15628 } 15629 15630 ipif->ipif_multicast_up = 0; 15631 } 15632 15633 /* 15634 * Used when an interface comes up to recreate any extra routes on this 15635 * interface. 15636 */ 15637 static ire_t ** 15638 ipif_recover_ire(ipif_t *ipif) 15639 { 15640 mblk_t *mp; 15641 ire_t **ipif_saved_irep; 15642 ire_t **irep; 15643 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15644 15645 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 15646 ipif->ipif_id)); 15647 15648 mutex_enter(&ipif->ipif_saved_ire_lock); 15649 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 15650 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 15651 if (ipif_saved_irep == NULL) { 15652 mutex_exit(&ipif->ipif_saved_ire_lock); 15653 return (NULL); 15654 } 15655 15656 irep = ipif_saved_irep; 15657 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 15658 ire_t *ire; 15659 queue_t *rfq; 15660 queue_t *stq; 15661 ifrt_t *ifrt; 15662 uchar_t *src_addr; 15663 uchar_t *gateway_addr; 15664 ushort_t type; 15665 15666 /* 15667 * When the ire was initially created and then added in 15668 * ip_rt_add(), it was created either using ipif->ipif_net_type 15669 * in the case of a traditional interface route, or as one of 15670 * the IRE_OFFSUBNET types (with the exception of 15671 * IRE_HOST types ire which is created by icmp_redirect() and 15672 * which we don't need to save or recover). In the case where 15673 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 15674 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 15675 * to satisfy software like GateD and Sun Cluster which creates 15676 * routes using the the loopback interface's address as a 15677 * gateway. 15678 * 15679 * As ifrt->ifrt_type reflects the already updated ire_type, 15680 * ire_create() will be called in the same way here as 15681 * in ip_rt_add(), namely using ipif->ipif_net_type when 15682 * the route looks like a traditional interface route (where 15683 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 15684 * the saved ifrt->ifrt_type. This means that in the case where 15685 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 15686 * ire_create() will be an IRE_LOOPBACK, it will then be turned 15687 * into an IRE_IF_NORESOLVER and then added by ire_add(). 15688 */ 15689 ifrt = (ifrt_t *)mp->b_rptr; 15690 ASSERT(ifrt->ifrt_type != IRE_CACHE); 15691 if (ifrt->ifrt_type & IRE_INTERFACE) { 15692 rfq = NULL; 15693 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 15694 ? ipif->ipif_rq : ipif->ipif_wq; 15695 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15696 ? (uint8_t *)&ifrt->ifrt_src_addr 15697 : (uint8_t *)&ipif->ipif_src_addr; 15698 gateway_addr = NULL; 15699 type = ipif->ipif_net_type; 15700 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 15701 /* Recover multiroute broadcast IRE. */ 15702 rfq = ipif->ipif_rq; 15703 stq = ipif->ipif_wq; 15704 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15705 ? (uint8_t *)&ifrt->ifrt_src_addr 15706 : (uint8_t *)&ipif->ipif_src_addr; 15707 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15708 type = ifrt->ifrt_type; 15709 } else { 15710 rfq = NULL; 15711 stq = NULL; 15712 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15713 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 15714 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15715 type = ifrt->ifrt_type; 15716 } 15717 15718 /* 15719 * Create a copy of the IRE with the saved address and netmask. 15720 */ 15721 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 15722 "0x%x/0x%x\n", 15723 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 15724 ntohl(ifrt->ifrt_addr), 15725 ntohl(ifrt->ifrt_mask))); 15726 ire = ire_create( 15727 (uint8_t *)&ifrt->ifrt_addr, 15728 (uint8_t *)&ifrt->ifrt_mask, 15729 src_addr, 15730 gateway_addr, 15731 &ifrt->ifrt_max_frag, 15732 NULL, 15733 rfq, 15734 stq, 15735 type, 15736 ipif, 15737 0, 15738 0, 15739 0, 15740 ifrt->ifrt_flags, 15741 &ifrt->ifrt_iulp_info, 15742 NULL, 15743 NULL, 15744 ipst); 15745 15746 if (ire == NULL) { 15747 mutex_exit(&ipif->ipif_saved_ire_lock); 15748 kmem_free(ipif_saved_irep, 15749 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 15750 return (NULL); 15751 } 15752 15753 /* 15754 * Some software (for example, GateD and Sun Cluster) attempts 15755 * to create (what amount to) IRE_PREFIX routes with the 15756 * loopback address as the gateway. This is primarily done to 15757 * set up prefixes with the RTF_REJECT flag set (for example, 15758 * when generating aggregate routes.) 15759 * 15760 * If the IRE type (as defined by ipif->ipif_net_type) is 15761 * IRE_LOOPBACK, then we map the request into a 15762 * IRE_IF_NORESOLVER. 15763 */ 15764 if (ipif->ipif_net_type == IRE_LOOPBACK) 15765 ire->ire_type = IRE_IF_NORESOLVER; 15766 /* 15767 * ire held by ire_add, will be refreled' towards the 15768 * the end of ipif_up_done 15769 */ 15770 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 15771 *irep = ire; 15772 irep++; 15773 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 15774 } 15775 mutex_exit(&ipif->ipif_saved_ire_lock); 15776 return (ipif_saved_irep); 15777 } 15778 15779 /* 15780 * Used to set the netmask and broadcast address to default values when the 15781 * interface is brought up. (Always called as writer.) 15782 */ 15783 static void 15784 ipif_set_default(ipif_t *ipif) 15785 { 15786 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 15787 15788 if (!ipif->ipif_isv6) { 15789 /* 15790 * Interface holds an IPv4 address. Default 15791 * mask is the natural netmask. 15792 */ 15793 if (!ipif->ipif_net_mask) { 15794 ipaddr_t v4mask; 15795 15796 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 15797 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 15798 } 15799 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15800 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15801 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15802 } else { 15803 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15804 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15805 } 15806 /* 15807 * NOTE: SunOS 4.X does this even if the broadcast address 15808 * has been already set thus we do the same here. 15809 */ 15810 if (ipif->ipif_flags & IPIF_BROADCAST) { 15811 ipaddr_t v4addr; 15812 15813 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 15814 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 15815 } 15816 } else { 15817 /* 15818 * Interface holds an IPv6-only address. Default 15819 * mask is all-ones. 15820 */ 15821 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 15822 ipif->ipif_v6net_mask = ipv6_all_ones; 15823 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15824 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15825 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15826 } else { 15827 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15828 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15829 } 15830 } 15831 } 15832 15833 /* 15834 * Return 0 if this address can be used as local address without causing 15835 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 15836 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 15837 * Note that the same IPv6 link-local address is allowed as long as the ills 15838 * are not on the same link. 15839 */ 15840 int 15841 ip_addr_availability_check(ipif_t *new_ipif) 15842 { 15843 in6_addr_t our_v6addr; 15844 ill_t *ill; 15845 ipif_t *ipif; 15846 ill_walk_context_t ctx; 15847 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 15848 15849 ASSERT(IAM_WRITER_IPIF(new_ipif)); 15850 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 15851 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 15852 15853 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 15854 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 15855 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 15856 return (0); 15857 15858 our_v6addr = new_ipif->ipif_v6lcl_addr; 15859 15860 if (new_ipif->ipif_isv6) 15861 ill = ILL_START_WALK_V6(&ctx, ipst); 15862 else 15863 ill = ILL_START_WALK_V4(&ctx, ipst); 15864 15865 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 15866 for (ipif = ill->ill_ipif; ipif != NULL; 15867 ipif = ipif->ipif_next) { 15868 if ((ipif == new_ipif) || 15869 !(ipif->ipif_flags & IPIF_UP) || 15870 (ipif->ipif_flags & IPIF_UNNUMBERED) || 15871 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 15872 &our_v6addr)) 15873 continue; 15874 15875 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 15876 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 15877 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 15878 ipif->ipif_flags |= IPIF_UNNUMBERED; 15879 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 15880 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 15881 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 15882 continue; 15883 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 15884 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 15885 continue; 15886 else if (new_ipif->ipif_ill == ill) 15887 return (EADDRINUSE); 15888 else 15889 return (EADDRNOTAVAIL); 15890 } 15891 } 15892 15893 return (0); 15894 } 15895 15896 /* 15897 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 15898 * IREs for the ipif. 15899 * When the routine returns EINPROGRESS then mp has been consumed and 15900 * the ioctl will be acked from ip_rput_dlpi. 15901 */ 15902 int 15903 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 15904 { 15905 ill_t *ill = ipif->ipif_ill; 15906 boolean_t isv6 = ipif->ipif_isv6; 15907 int err = 0; 15908 boolean_t success; 15909 uint_t ipif_orig_id; 15910 ip_stack_t *ipst = ill->ill_ipst; 15911 15912 ASSERT(IAM_WRITER_IPIF(ipif)); 15913 15914 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 15915 15916 /* Shouldn't get here if it is already up. */ 15917 if (ipif->ipif_flags & IPIF_UP) 15918 return (EALREADY); 15919 15920 /* 15921 * If this is a request to bring up a data address on an interface 15922 * under IPMP, then move the address to its IPMP meta-interface and 15923 * try to bring it up. One complication is that the zeroth ipif for 15924 * an ill is special, in that every ill always has one, and that code 15925 * throughout IP deferences ill->ill_ipif without holding any locks. 15926 */ 15927 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 15928 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 15929 ipif_t *stubipif = NULL, *moveipif = NULL; 15930 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 15931 15932 /* 15933 * The ipif being brought up should be quiesced. If it's not, 15934 * something has gone amiss and we need to bail out. (If it's 15935 * quiesced, we know it will remain so via IPIF_CHANGING.) 15936 */ 15937 mutex_enter(&ill->ill_lock); 15938 if (!ipif_is_quiescent(ipif)) { 15939 mutex_exit(&ill->ill_lock); 15940 return (EINVAL); 15941 } 15942 mutex_exit(&ill->ill_lock); 15943 15944 /* 15945 * If we're going to need to allocate ipifs, do it prior 15946 * to starting the move (and grabbing locks). 15947 */ 15948 if (ipif->ipif_id == 0) { 15949 moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15950 B_FALSE); 15951 stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15952 B_FALSE); 15953 if (moveipif == NULL || stubipif == NULL) { 15954 mi_free(moveipif); 15955 mi_free(stubipif); 15956 return (ENOMEM); 15957 } 15958 } 15959 15960 /* 15961 * Grab or transfer the ipif to move. During the move, keep 15962 * ill_g_lock held to prevent any ill walker threads from 15963 * seeing things in an inconsistent state. 15964 */ 15965 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15966 if (ipif->ipif_id != 0) { 15967 ipif_remove(ipif); 15968 } else { 15969 ipif_transfer(ipif, moveipif, stubipif); 15970 ipif = moveipif; 15971 } 15972 15973 /* 15974 * Place the ipif on the IPMP ill. If the zeroth ipif on 15975 * the IPMP ill is a stub (0.0.0.0 down address) then we 15976 * replace that one. Otherwise, pick the next available slot. 15977 */ 15978 ipif->ipif_ill = ipmp_ill; 15979 ipif_orig_id = ipif->ipif_id; 15980 15981 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 15982 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 15983 ipif = ipmp_ill->ill_ipif; 15984 } else { 15985 ipif->ipif_id = -1; 15986 if (ipif_insert(ipif, B_FALSE) != 0) { 15987 /* 15988 * No more available ipif_id's -- put it back 15989 * on the original ill and fail the operation. 15990 * Since we're writer on the ill, we can be 15991 * sure our old slot is still available. 15992 */ 15993 ipif->ipif_id = ipif_orig_id; 15994 ipif->ipif_ill = ill; 15995 if (ipif_orig_id == 0) { 15996 ipif_transfer(ipif, ill->ill_ipif, 15997 NULL); 15998 } else { 15999 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 16000 } 16001 rw_exit(&ipst->ips_ill_g_lock); 16002 return (ENOMEM); 16003 } 16004 } 16005 rw_exit(&ipst->ips_ill_g_lock); 16006 16007 /* 16008 * Tell SCTP that the ipif has moved. Note that even if we 16009 * had to allocate a new ipif, the original sequence id was 16010 * preserved and therefore SCTP won't know. 16011 */ 16012 sctp_move_ipif(ipif, ill, ipmp_ill); 16013 16014 /* 16015 * If the ipif being brought up was on slot zero, then we 16016 * first need to bring up the placeholder we stuck there. In 16017 * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call 16018 * to ipif_up() itself, if we successfully bring up the 16019 * placeholder, we'll check ill_move_ipif and bring it up too. 16020 */ 16021 if (ipif_orig_id == 0) { 16022 ASSERT(ill->ill_move_ipif == NULL); 16023 ill->ill_move_ipif = ipif; 16024 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 16025 ASSERT(ill->ill_move_ipif == NULL); 16026 if (err != EINPROGRESS) 16027 ill->ill_move_ipif = NULL; 16028 return (err); 16029 } 16030 16031 /* 16032 * Bring it up on the IPMP ill. 16033 */ 16034 return (ipif_up(ipif, q, mp)); 16035 } 16036 16037 /* Skip arp/ndp for any loopback interface. */ 16038 if (ill->ill_wq != NULL) { 16039 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 16040 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 16041 16042 if (!ill->ill_dl_up) { 16043 /* 16044 * ill_dl_up is not yet set. i.e. we are yet to 16045 * DL_BIND with the driver and this is the first 16046 * logical interface on the ill to become "up". 16047 * Tell the driver to get going (via DL_BIND_REQ). 16048 * Note that changing "significant" IFF_ flags 16049 * address/netmask etc cause a down/up dance, but 16050 * does not cause an unbind (DL_UNBIND) with the driver 16051 */ 16052 return (ill_dl_up(ill, ipif, mp, q)); 16053 } 16054 16055 /* 16056 * ipif_resolver_up may end up sending an 16057 * AR_INTERFACE_UP message to ARP, which would, in 16058 * turn send a DLPI message to the driver. ioctls are 16059 * serialized and so we cannot send more than one 16060 * interface up message at a time. If ipif_resolver_up 16061 * does send an interface up message to ARP, we get 16062 * EINPROGRESS and we will complete in ip_arp_done. 16063 */ 16064 16065 ASSERT(connp != NULL || !CONN_Q(q)); 16066 if (connp != NULL) 16067 mutex_enter(&connp->conn_lock); 16068 mutex_enter(&ill->ill_lock); 16069 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16070 mutex_exit(&ill->ill_lock); 16071 if (connp != NULL) 16072 mutex_exit(&connp->conn_lock); 16073 if (!success) 16074 return (EINTR); 16075 16076 /* 16077 * Crank up the resolver. For IPv6, this cranks up the 16078 * external resolver if one is configured, but even if an 16079 * external resolver isn't configured, it must be called to 16080 * reset DAD state. For IPv6, if an external resolver is not 16081 * being used, ipif_resolver_up() will never return 16082 * EINPROGRESS, so we can always call ipif_ndp_up() here. 16083 * Note that if an external resolver is being used, there's no 16084 * need to call ipif_ndp_up() since it will do nothing. 16085 */ 16086 err = ipif_resolver_up(ipif, Res_act_initial); 16087 if (err == EINPROGRESS) { 16088 /* We will complete it in ip_arp_done() */ 16089 return (err); 16090 } 16091 16092 if (isv6 && err == 0) 16093 err = ipif_ndp_up(ipif, B_TRUE); 16094 16095 ASSERT(err != EINPROGRESS); 16096 mp = ipsq_pending_mp_get(ipsq, &connp); 16097 ASSERT(mp != NULL); 16098 if (err != 0) 16099 return (err); 16100 } else { 16101 /* 16102 * Interfaces without underlying hardware don't do duplicate 16103 * address detection. 16104 */ 16105 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 16106 ipif->ipif_addr_ready = 1; 16107 } 16108 16109 err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif); 16110 if (err == 0 && ill->ill_move_ipif != NULL) { 16111 ipif = ill->ill_move_ipif; 16112 ill->ill_move_ipif = NULL; 16113 return (ipif_up(ipif, q, mp)); 16114 } 16115 return (err); 16116 } 16117 16118 /* 16119 * Perform a bind for the physical device. 16120 * When the routine returns EINPROGRESS then mp has been consumed and 16121 * the ioctl will be acked from ip_rput_dlpi. 16122 * Allocate an unbind message and save it until ipif_down. 16123 */ 16124 static int 16125 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16126 { 16127 areq_t *areq; 16128 mblk_t *areq_mp = NULL; 16129 mblk_t *bind_mp = NULL; 16130 mblk_t *unbind_mp = NULL; 16131 conn_t *connp; 16132 boolean_t success; 16133 uint16_t sap_addr; 16134 16135 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 16136 ASSERT(IAM_WRITER_ILL(ill)); 16137 ASSERT(mp != NULL); 16138 16139 /* Create a resolver cookie for ARP */ 16140 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 16141 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 16142 if (areq_mp == NULL) 16143 return (ENOMEM); 16144 16145 freemsg(ill->ill_resolver_mp); 16146 ill->ill_resolver_mp = areq_mp; 16147 areq = (areq_t *)areq_mp->b_rptr; 16148 sap_addr = ill->ill_sap; 16149 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 16150 } 16151 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 16152 DL_BIND_REQ); 16153 if (bind_mp == NULL) 16154 goto bad; 16155 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 16156 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 16157 16158 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 16159 if (unbind_mp == NULL) 16160 goto bad; 16161 16162 /* 16163 * Record state needed to complete this operation when the 16164 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 16165 */ 16166 ASSERT(WR(q)->q_next == NULL); 16167 connp = Q_TO_CONN(q); 16168 16169 mutex_enter(&connp->conn_lock); 16170 mutex_enter(&ipif->ipif_ill->ill_lock); 16171 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16172 mutex_exit(&ipif->ipif_ill->ill_lock); 16173 mutex_exit(&connp->conn_lock); 16174 if (!success) 16175 goto bad; 16176 16177 /* 16178 * Save the unbind message for ill_dl_down(); it will be consumed when 16179 * the interface goes down. 16180 */ 16181 ASSERT(ill->ill_unbind_mp == NULL); 16182 ill->ill_unbind_mp = unbind_mp; 16183 16184 ill_dlpi_send(ill, bind_mp); 16185 /* Send down link-layer capabilities probe if not already done. */ 16186 ill_capability_probe(ill); 16187 16188 /* 16189 * Sysid used to rely on the fact that netboots set domainname 16190 * and the like. Now that miniroot boots aren't strictly netboots 16191 * and miniroot network configuration is driven from userland 16192 * these things still need to be set. This situation can be detected 16193 * by comparing the interface being configured here to the one 16194 * dhcifname was set to reference by the boot loader. Once sysid is 16195 * converted to use dhcp_ipc_getinfo() this call can go away. 16196 */ 16197 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 16198 (strcmp(ill->ill_name, dhcifname) == 0) && 16199 (strlen(srpc_domain) == 0)) { 16200 if (dhcpinit() != 0) 16201 cmn_err(CE_WARN, "no cached dhcp response"); 16202 } 16203 16204 /* 16205 * This operation will complete in ip_rput_dlpi with either 16206 * a DL_BIND_ACK or DL_ERROR_ACK. 16207 */ 16208 return (EINPROGRESS); 16209 bad: 16210 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 16211 16212 freemsg(bind_mp); 16213 freemsg(unbind_mp); 16214 return (ENOMEM); 16215 } 16216 16217 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 16218 16219 /* 16220 * DLPI and ARP is up. 16221 * Create all the IREs associated with an interface bring up multicast. 16222 * Set the interface flag and finish other initialization 16223 * that potentially had to be differed to after DL_BIND_ACK. 16224 */ 16225 int 16226 ipif_up_done(ipif_t *ipif) 16227 { 16228 ire_t *ire_array[20]; 16229 ire_t **irep = ire_array; 16230 ire_t **irep1; 16231 ipaddr_t net_mask = 0; 16232 ipaddr_t subnet_mask, route_mask; 16233 ill_t *ill = ipif->ipif_ill; 16234 queue_t *stq; 16235 ipif_t *src_ipif; 16236 ipif_t *tmp_ipif; 16237 boolean_t flush_ire_cache = B_TRUE; 16238 int err = 0; 16239 ire_t **ipif_saved_irep = NULL; 16240 int ipif_saved_ire_cnt; 16241 int cnt; 16242 boolean_t src_ipif_held = B_FALSE; 16243 boolean_t loopback = B_FALSE; 16244 ip_stack_t *ipst = ill->ill_ipst; 16245 16246 ip1dbg(("ipif_up_done(%s:%u)\n", 16247 ipif->ipif_ill->ill_name, ipif->ipif_id)); 16248 /* Check if this is a loopback interface */ 16249 if (ipif->ipif_ill->ill_wq == NULL) 16250 loopback = B_TRUE; 16251 16252 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16253 /* 16254 * If all other interfaces for this ill are down or DEPRECATED, 16255 * or otherwise unsuitable for source address selection, remove 16256 * any IRE_CACHE entries for this ill to make sure source 16257 * address selection gets to take this new ipif into account. 16258 * No need to hold ill_lock while traversing the ipif list since 16259 * we are writer 16260 */ 16261 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 16262 tmp_ipif = tmp_ipif->ipif_next) { 16263 if (((tmp_ipif->ipif_flags & 16264 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 16265 !(tmp_ipif->ipif_flags & IPIF_UP)) || 16266 (tmp_ipif == ipif)) 16267 continue; 16268 /* first useable pre-existing interface */ 16269 flush_ire_cache = B_FALSE; 16270 break; 16271 } 16272 if (flush_ire_cache) 16273 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16274 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 16275 16276 /* 16277 * Figure out which way the send-to queue should go. Only 16278 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 16279 * should show up here. 16280 */ 16281 switch (ill->ill_net_type) { 16282 case IRE_IF_RESOLVER: 16283 stq = ill->ill_rq; 16284 break; 16285 case IRE_IF_NORESOLVER: 16286 case IRE_LOOPBACK: 16287 stq = ill->ill_wq; 16288 break; 16289 default: 16290 return (EINVAL); 16291 } 16292 16293 if (IS_LOOPBACK(ill)) { 16294 /* 16295 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 16296 * ipif_lookup_on_name(), but in the case of zones we can have 16297 * several loopback addresses on lo0. So all the interfaces with 16298 * loopback addresses need to be marked IRE_LOOPBACK. 16299 */ 16300 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 16301 htonl(INADDR_LOOPBACK)) 16302 ipif->ipif_ire_type = IRE_LOOPBACK; 16303 else 16304 ipif->ipif_ire_type = IRE_LOCAL; 16305 } 16306 16307 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) || 16308 ((ipif->ipif_flags & IPIF_DEPRECATED) && 16309 !(ipif->ipif_flags & IPIF_NOFAILOVER))) { 16310 /* 16311 * Can't use our source address. Select a different 16312 * source address for the IRE_INTERFACE and IRE_LOCAL 16313 */ 16314 src_ipif = ipif_select_source(ipif->ipif_ill, 16315 ipif->ipif_subnet, ipif->ipif_zoneid); 16316 if (src_ipif == NULL) 16317 src_ipif = ipif; /* Last resort */ 16318 else 16319 src_ipif_held = B_TRUE; 16320 } else { 16321 src_ipif = ipif; 16322 } 16323 16324 /* Create all the IREs associated with this interface */ 16325 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16326 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16327 16328 /* 16329 * If we're on a labeled system then make sure that zone- 16330 * private addresses have proper remote host database entries. 16331 */ 16332 if (is_system_labeled() && 16333 ipif->ipif_ire_type != IRE_LOOPBACK && 16334 !tsol_check_interface_address(ipif)) 16335 return (EINVAL); 16336 16337 /* Register the source address for __sin6_src_id */ 16338 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 16339 ipif->ipif_zoneid, ipst); 16340 if (err != 0) { 16341 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 16342 return (err); 16343 } 16344 16345 /* If the interface address is set, create the local IRE. */ 16346 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 16347 (void *)ipif, 16348 ipif->ipif_ire_type, 16349 ntohl(ipif->ipif_lcl_addr))); 16350 *irep++ = ire_create( 16351 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 16352 (uchar_t *)&ip_g_all_ones, /* mask */ 16353 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 16354 NULL, /* no gateway */ 16355 &ip_loopback_mtuplus, /* max frag size */ 16356 NULL, 16357 ipif->ipif_rq, /* recv-from queue */ 16358 NULL, /* no send-to queue */ 16359 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 16360 ipif, 16361 0, 16362 0, 16363 0, 16364 (ipif->ipif_flags & IPIF_PRIVATE) ? 16365 RTF_PRIVATE : 0, 16366 &ire_uinfo_null, 16367 NULL, 16368 NULL, 16369 ipst); 16370 } else { 16371 ip1dbg(( 16372 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 16373 ipif->ipif_ire_type, 16374 ntohl(ipif->ipif_lcl_addr), 16375 (uint_t)ipif->ipif_flags)); 16376 } 16377 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16378 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16379 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16380 } else { 16381 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 16382 } 16383 16384 subnet_mask = ipif->ipif_net_mask; 16385 16386 /* 16387 * If mask was not specified, use natural netmask of 16388 * interface address. Also, store this mask back into the 16389 * ipif struct. 16390 */ 16391 if (subnet_mask == 0) { 16392 subnet_mask = net_mask; 16393 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 16394 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 16395 ipif->ipif_v6subnet); 16396 } 16397 16398 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 16399 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 16400 ipif->ipif_subnet != INADDR_ANY) { 16401 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 16402 16403 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 16404 route_mask = IP_HOST_MASK; 16405 } else { 16406 route_mask = subnet_mask; 16407 } 16408 16409 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 16410 "creating if IRE ill_net_type 0x%x for 0x%x\n", 16411 (void *)ipif, (void *)ill, 16412 ill->ill_net_type, 16413 ntohl(ipif->ipif_subnet))); 16414 *irep++ = ire_create( 16415 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 16416 (uchar_t *)&route_mask, /* mask */ 16417 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 16418 NULL, /* no gateway */ 16419 &ipif->ipif_mtu, /* max frag */ 16420 NULL, 16421 NULL, /* no recv queue */ 16422 stq, /* send-to queue */ 16423 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16424 ipif, 16425 0, 16426 0, 16427 0, 16428 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 16429 &ire_uinfo_null, 16430 NULL, 16431 NULL, 16432 ipst); 16433 } 16434 16435 /* 16436 * Create any necessary broadcast IREs. 16437 */ 16438 if (ipif->ipif_flags & IPIF_BROADCAST) 16439 irep = ipif_create_bcast_ires(ipif, irep); 16440 16441 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16442 16443 /* If an earlier ire_create failed, get out now */ 16444 for (irep1 = irep; irep1 > ire_array; ) { 16445 irep1--; 16446 if (*irep1 == NULL) { 16447 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 16448 err = ENOMEM; 16449 goto bad; 16450 } 16451 } 16452 16453 /* 16454 * Need to atomically check for IP address availability under 16455 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 16456 * ills or new ipifs can be added while we are checking availability. 16457 */ 16458 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16459 mutex_enter(&ipst->ips_ip_addr_avail_lock); 16460 /* Mark it up, and increment counters. */ 16461 ipif->ipif_flags |= IPIF_UP; 16462 ill->ill_ipif_up_count++; 16463 err = ip_addr_availability_check(ipif); 16464 mutex_exit(&ipst->ips_ip_addr_avail_lock); 16465 rw_exit(&ipst->ips_ill_g_lock); 16466 16467 if (err != 0) { 16468 /* 16469 * Our address may already be up on the same ill. In this case, 16470 * the ARP entry for our ipif replaced the one for the other 16471 * ipif. So we don't want to delete it (otherwise the other ipif 16472 * would be unable to send packets). 16473 * ip_addr_availability_check() identifies this case for us and 16474 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 16475 * which is the expected error code. 16476 */ 16477 if (err == EADDRINUSE) { 16478 freemsg(ipif->ipif_arp_del_mp); 16479 ipif->ipif_arp_del_mp = NULL; 16480 err = EADDRNOTAVAIL; 16481 } 16482 ill->ill_ipif_up_count--; 16483 ipif->ipif_flags &= ~IPIF_UP; 16484 goto bad; 16485 } 16486 16487 /* 16488 * Add in all newly created IREs. ire_create_bcast() has 16489 * already checked for duplicates of the IRE_BROADCAST type. 16490 */ 16491 for (irep1 = irep; irep1 > ire_array; ) { 16492 irep1--; 16493 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 16494 /* 16495 * refheld by ire_add. refele towards the end of the func 16496 */ 16497 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 16498 } 16499 16500 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 16501 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 16502 ipif_saved_irep = ipif_recover_ire(ipif); 16503 16504 if (!loopback) { 16505 /* 16506 * If the broadcast address has been set, make sure it makes 16507 * sense based on the interface address. 16508 * Only match on ill since we are sharing broadcast addresses. 16509 */ 16510 if ((ipif->ipif_brd_addr != INADDR_ANY) && 16511 (ipif->ipif_flags & IPIF_BROADCAST)) { 16512 ire_t *ire; 16513 16514 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 16515 IRE_BROADCAST, ipif, ALL_ZONES, 16516 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 16517 16518 if (ire == NULL) { 16519 /* 16520 * If there isn't a matching broadcast IRE, 16521 * revert to the default for this netmask. 16522 */ 16523 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16524 mutex_enter(&ipif->ipif_ill->ill_lock); 16525 ipif_set_default(ipif); 16526 mutex_exit(&ipif->ipif_ill->ill_lock); 16527 } else { 16528 ire_refrele(ire); 16529 } 16530 } 16531 16532 } 16533 16534 if (ill->ill_need_recover_multicast) { 16535 /* 16536 * Need to recover all multicast memberships in the driver. 16537 * This had to be deferred until we had attached. The same 16538 * code exists in ipif_up_done_v6() to recover IPv6 16539 * memberships. 16540 * 16541 * Note that it would be preferable to unconditionally do the 16542 * ill_recover_multicast() in ill_dl_up(), but we cannot do 16543 * that since ill_join_allmulti() depends on ill_dl_up being 16544 * set, and it is not set until we receive a DL_BIND_ACK after 16545 * having called ill_dl_up(). 16546 */ 16547 ill_recover_multicast(ill); 16548 } 16549 16550 if (ill->ill_ipif_up_count == 1) { 16551 /* 16552 * Since the interface is now up, it may now be active. 16553 */ 16554 if (IS_UNDER_IPMP(ill)) 16555 ipmp_ill_refresh_active(ill); 16556 16557 /* 16558 * If this is an IPMP interface, we may now be able to 16559 * establish ARP entries. 16560 */ 16561 if (IS_IPMP(ill)) 16562 ipmp_illgrp_refresh_arpent(ill->ill_grp); 16563 } 16564 16565 /* Join the allhosts multicast address */ 16566 ipif_multicast_up(ipif); 16567 16568 /* 16569 * See if anybody else would benefit from our new ipif. 16570 */ 16571 if (!loopback && 16572 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16573 ill_update_source_selection(ill); 16574 } 16575 16576 for (irep1 = irep; irep1 > ire_array; ) { 16577 irep1--; 16578 if (*irep1 != NULL) { 16579 /* was held in ire_add */ 16580 ire_refrele(*irep1); 16581 } 16582 } 16583 16584 cnt = ipif_saved_ire_cnt; 16585 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 16586 if (*irep1 != NULL) { 16587 /* was held in ire_add */ 16588 ire_refrele(*irep1); 16589 } 16590 } 16591 16592 if (!loopback && ipif->ipif_addr_ready) { 16593 /* Broadcast an address mask reply. */ 16594 ipif_mask_reply(ipif); 16595 } 16596 if (ipif_saved_irep != NULL) { 16597 kmem_free(ipif_saved_irep, 16598 ipif_saved_ire_cnt * sizeof (ire_t *)); 16599 } 16600 if (src_ipif_held) 16601 ipif_refrele(src_ipif); 16602 16603 /* 16604 * This had to be deferred until we had bound. Tell routing sockets and 16605 * others that this interface is up if it looks like the address has 16606 * been validated. Otherwise, if it isn't ready yet, wait for 16607 * duplicate address detection to do its thing. 16608 */ 16609 if (ipif->ipif_addr_ready) 16610 ipif_up_notify(ipif); 16611 return (0); 16612 16613 bad: 16614 ip1dbg(("ipif_up_done: FAILED \n")); 16615 16616 while (irep > ire_array) { 16617 irep--; 16618 if (*irep != NULL) 16619 ire_delete(*irep); 16620 } 16621 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 16622 16623 if (ipif_saved_irep != NULL) { 16624 kmem_free(ipif_saved_irep, 16625 ipif_saved_ire_cnt * sizeof (ire_t *)); 16626 } 16627 if (src_ipif_held) 16628 ipif_refrele(src_ipif); 16629 16630 ipif_resolver_down(ipif); 16631 return (err); 16632 } 16633 16634 /* 16635 * Turn off the ARP with the ILLF_NOARP flag. 16636 */ 16637 static int 16638 ill_arp_off(ill_t *ill) 16639 { 16640 mblk_t *arp_off_mp = NULL; 16641 mblk_t *arp_on_mp = NULL; 16642 16643 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 16644 16645 ASSERT(IAM_WRITER_ILL(ill)); 16646 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16647 16648 /* 16649 * If the on message is still around we've already done 16650 * an arp_off without doing an arp_on thus there is no 16651 * work needed. 16652 */ 16653 if (ill->ill_arp_on_mp != NULL) 16654 return (0); 16655 16656 /* 16657 * Allocate an ARP on message (to be saved) and an ARP off message 16658 */ 16659 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 16660 if (!arp_off_mp) 16661 return (ENOMEM); 16662 16663 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 16664 if (!arp_on_mp) 16665 goto failed; 16666 16667 ASSERT(ill->ill_arp_on_mp == NULL); 16668 ill->ill_arp_on_mp = arp_on_mp; 16669 16670 /* Send an AR_INTERFACE_OFF request */ 16671 putnext(ill->ill_rq, arp_off_mp); 16672 return (0); 16673 failed: 16674 16675 if (arp_off_mp) 16676 freemsg(arp_off_mp); 16677 return (ENOMEM); 16678 } 16679 16680 /* 16681 * Turn on ARP by turning off the ILLF_NOARP flag. 16682 */ 16683 static int 16684 ill_arp_on(ill_t *ill) 16685 { 16686 mblk_t *mp; 16687 16688 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 16689 16690 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16691 16692 ASSERT(IAM_WRITER_ILL(ill)); 16693 /* 16694 * Send an AR_INTERFACE_ON request if we have already done 16695 * an arp_off (which allocated the message). 16696 */ 16697 if (ill->ill_arp_on_mp != NULL) { 16698 mp = ill->ill_arp_on_mp; 16699 ill->ill_arp_on_mp = NULL; 16700 putnext(ill->ill_rq, mp); 16701 } 16702 return (0); 16703 } 16704 16705 /* 16706 * Checks for availbility of a usable source address (if there is one) when the 16707 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 16708 * this selection is done regardless of the destination. 16709 */ 16710 boolean_t 16711 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 16712 { 16713 uint_t ifindex; 16714 ipif_t *ipif = NULL; 16715 ill_t *uill; 16716 boolean_t isv6; 16717 ip_stack_t *ipst = ill->ill_ipst; 16718 16719 ASSERT(ill != NULL); 16720 16721 isv6 = ill->ill_isv6; 16722 ifindex = ill->ill_usesrc_ifindex; 16723 if (ifindex != 0) { 16724 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 16725 NULL, ipst); 16726 if (uill == NULL) 16727 return (NULL); 16728 mutex_enter(&uill->ill_lock); 16729 for (ipif = uill->ill_ipif; ipif != NULL; 16730 ipif = ipif->ipif_next) { 16731 if (!IPIF_CAN_LOOKUP(ipif)) 16732 continue; 16733 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16734 continue; 16735 if (!(ipif->ipif_flags & IPIF_UP)) 16736 continue; 16737 if (ipif->ipif_zoneid != zoneid) 16738 continue; 16739 if ((isv6 && 16740 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 16741 (ipif->ipif_lcl_addr == INADDR_ANY)) 16742 continue; 16743 mutex_exit(&uill->ill_lock); 16744 ill_refrele(uill); 16745 return (B_TRUE); 16746 } 16747 mutex_exit(&uill->ill_lock); 16748 ill_refrele(uill); 16749 } 16750 return (B_FALSE); 16751 } 16752 16753 /* 16754 * IP source address type, sorted from worst to best. For a given type, 16755 * always prefer IP addresses on the same subnet. All-zones addresses are 16756 * suboptimal because they pose problems with unlabeled destinations. 16757 */ 16758 typedef enum { 16759 IPIF_NONE, 16760 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 16761 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 16762 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 16763 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 16764 IPIF_DIFFNET, /* normal and different subnet */ 16765 IPIF_SAMENET /* normal and same subnet */ 16766 } ipif_type_t; 16767 16768 /* 16769 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 16770 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 16771 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 16772 * the first one, unless IPMP is used in which case we round-robin among them; 16773 * see below for more. 16774 * 16775 * Returns NULL if there is no suitable source address for the ill. 16776 * This only occurs when there is no valid source address for the ill. 16777 */ 16778 ipif_t * 16779 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 16780 { 16781 ill_t *usill = NULL; 16782 ill_t *ipmp_ill = NULL; 16783 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 16784 ipif_type_t type, best_type; 16785 tsol_tpc_t *src_rhtp, *dst_rhtp; 16786 ip_stack_t *ipst = ill->ill_ipst; 16787 boolean_t samenet; 16788 16789 if (ill->ill_usesrc_ifindex != 0) { 16790 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 16791 B_FALSE, NULL, NULL, NULL, NULL, ipst); 16792 if (usill != NULL) 16793 ill = usill; /* Select source from usesrc ILL */ 16794 else 16795 return (NULL); 16796 } 16797 16798 /* 16799 * Test addresses should never be used for source address selection, 16800 * so if we were passed one, switch to the IPMP meta-interface. 16801 */ 16802 if (IS_UNDER_IPMP(ill)) { 16803 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 16804 ill = ipmp_ill; /* Select source from IPMP ill */ 16805 else 16806 return (NULL); 16807 } 16808 16809 /* 16810 * If we're dealing with an unlabeled destination on a labeled system, 16811 * make sure that we ignore source addresses that are incompatible with 16812 * the destination's default label. That destination's default label 16813 * must dominate the minimum label on the source address. 16814 */ 16815 dst_rhtp = NULL; 16816 if (is_system_labeled()) { 16817 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 16818 if (dst_rhtp == NULL) 16819 return (NULL); 16820 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 16821 TPC_RELE(dst_rhtp); 16822 dst_rhtp = NULL; 16823 } 16824 } 16825 16826 /* 16827 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 16828 * can be deleted. But an ipif/ill can get CONDEMNED any time. 16829 * After selecting the right ipif, under ill_lock make sure ipif is 16830 * not condemned, and increment refcnt. If ipif is CONDEMNED, 16831 * we retry. Inside the loop we still need to check for CONDEMNED, 16832 * but not under a lock. 16833 */ 16834 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16835 retry: 16836 /* 16837 * For source address selection, we treat the ipif list as circular 16838 * and continue until we get back to where we started. This allows 16839 * IPMP to vary source address selection (which improves inbound load 16840 * spreading) by caching its last ending point and starting from 16841 * there. NOTE: we don't have to worry about ill_src_ipif changing 16842 * ills since that can't happen on the IPMP ill. 16843 */ 16844 start_ipif = ill->ill_ipif; 16845 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 16846 start_ipif = ill->ill_src_ipif; 16847 16848 ipif = start_ipif; 16849 best_ipif = NULL; 16850 best_type = IPIF_NONE; 16851 do { 16852 if ((next_ipif = ipif->ipif_next) == NULL) 16853 next_ipif = ill->ill_ipif; 16854 16855 if (!IPIF_CAN_LOOKUP(ipif)) 16856 continue; 16857 /* Always skip NOLOCAL and ANYCAST interfaces */ 16858 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16859 continue; 16860 if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready) 16861 continue; 16862 if (ipif->ipif_zoneid != zoneid && 16863 ipif->ipif_zoneid != ALL_ZONES) 16864 continue; 16865 16866 /* 16867 * Interfaces with 0.0.0.0 address are allowed to be UP, but 16868 * are not valid as source addresses. 16869 */ 16870 if (ipif->ipif_lcl_addr == INADDR_ANY) 16871 continue; 16872 16873 /* 16874 * Check compatibility of local address for destination's 16875 * default label if we're on a labeled system. Incompatible 16876 * addresses can't be used at all. 16877 */ 16878 if (dst_rhtp != NULL) { 16879 boolean_t incompat; 16880 16881 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 16882 IPV4_VERSION, B_FALSE); 16883 if (src_rhtp == NULL) 16884 continue; 16885 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 16886 src_rhtp->tpc_tp.tp_doi != 16887 dst_rhtp->tpc_tp.tp_doi || 16888 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 16889 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 16890 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 16891 src_rhtp->tpc_tp.tp_sl_set_cipso)); 16892 TPC_RELE(src_rhtp); 16893 if (incompat) 16894 continue; 16895 } 16896 16897 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 16898 16899 if (ipif->ipif_flags & IPIF_DEPRECATED) { 16900 type = samenet ? IPIF_SAMENET_DEPRECATED : 16901 IPIF_DIFFNET_DEPRECATED; 16902 } else if (ipif->ipif_zoneid == ALL_ZONES) { 16903 type = samenet ? IPIF_SAMENET_ALLZONES : 16904 IPIF_DIFFNET_ALLZONES; 16905 } else { 16906 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 16907 } 16908 16909 if (type > best_type) { 16910 best_type = type; 16911 best_ipif = ipif; 16912 if (best_type == IPIF_SAMENET) 16913 break; /* can't get better */ 16914 } 16915 } while ((ipif = next_ipif) != start_ipif); 16916 16917 if ((ipif = best_ipif) != NULL) { 16918 mutex_enter(&ipif->ipif_ill->ill_lock); 16919 if (!IPIF_CAN_LOOKUP(ipif)) { 16920 mutex_exit(&ipif->ipif_ill->ill_lock); 16921 goto retry; 16922 } 16923 ipif_refhold_locked(ipif); 16924 16925 /* 16926 * For IPMP, update the source ipif rotor to the next ipif, 16927 * provided we can look it up. (We must not use it if it's 16928 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 16929 * ipif_free() checked ill_src_ipif.) 16930 */ 16931 if (IS_IPMP(ill) && ipif != NULL) { 16932 next_ipif = ipif->ipif_next; 16933 if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif)) 16934 ill->ill_src_ipif = next_ipif; 16935 else 16936 ill->ill_src_ipif = NULL; 16937 } 16938 mutex_exit(&ipif->ipif_ill->ill_lock); 16939 } 16940 16941 rw_exit(&ipst->ips_ill_g_lock); 16942 if (usill != NULL) 16943 ill_refrele(usill); 16944 if (ipmp_ill != NULL) 16945 ill_refrele(ipmp_ill); 16946 if (dst_rhtp != NULL) 16947 TPC_RELE(dst_rhtp); 16948 16949 #ifdef DEBUG 16950 if (ipif == NULL) { 16951 char buf1[INET6_ADDRSTRLEN]; 16952 16953 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 16954 ill->ill_name, 16955 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 16956 } else { 16957 char buf1[INET6_ADDRSTRLEN]; 16958 char buf2[INET6_ADDRSTRLEN]; 16959 16960 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 16961 ipif->ipif_ill->ill_name, 16962 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 16963 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 16964 buf2, sizeof (buf2)))); 16965 } 16966 #endif /* DEBUG */ 16967 return (ipif); 16968 } 16969 16970 /* 16971 * If old_ipif is not NULL, see if ipif was derived from old 16972 * ipif and if so, recreate the interface route by re-doing 16973 * source address selection. This happens when ipif_down -> 16974 * ipif_update_other_ipifs calls us. 16975 * 16976 * If old_ipif is NULL, just redo the source address selection 16977 * if needed. This happens when ipif_up_done calls us. 16978 */ 16979 static void 16980 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 16981 { 16982 ire_t *ire; 16983 ire_t *ipif_ire; 16984 queue_t *stq; 16985 ipif_t *nipif; 16986 ill_t *ill; 16987 boolean_t need_rele = B_FALSE; 16988 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16989 16990 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 16991 ASSERT(IAM_WRITER_IPIF(ipif)); 16992 16993 ill = ipif->ipif_ill; 16994 if (!(ipif->ipif_flags & 16995 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16996 /* 16997 * Can't possibly have borrowed the source 16998 * from old_ipif. 16999 */ 17000 return; 17001 } 17002 17003 /* 17004 * Is there any work to be done? No work if the address 17005 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 17006 * ipif_select_source() does not borrow addresses from 17007 * NOLOCAL and ANYCAST interfaces). 17008 */ 17009 if ((old_ipif != NULL) && 17010 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 17011 (old_ipif->ipif_ill->ill_wq == NULL) || 17012 (old_ipif->ipif_flags & 17013 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 17014 return; 17015 } 17016 17017 /* 17018 * Perform the same checks as when creating the 17019 * IRE_INTERFACE in ipif_up_done. 17020 */ 17021 if (!(ipif->ipif_flags & IPIF_UP)) 17022 return; 17023 17024 if ((ipif->ipif_flags & IPIF_NOXMIT) || 17025 (ipif->ipif_subnet == INADDR_ANY)) 17026 return; 17027 17028 ipif_ire = ipif_to_ire(ipif); 17029 if (ipif_ire == NULL) 17030 return; 17031 17032 /* 17033 * We know that ipif uses some other source for its 17034 * IRE_INTERFACE. Is it using the source of this 17035 * old_ipif? 17036 */ 17037 if (old_ipif != NULL && 17038 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 17039 ire_refrele(ipif_ire); 17040 return; 17041 } 17042 if (ip_debug > 2) { 17043 /* ip1dbg */ 17044 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 17045 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 17046 } 17047 17048 stq = ipif_ire->ire_stq; 17049 17050 /* 17051 * Can't use our source address. Select a different 17052 * source address for the IRE_INTERFACE. 17053 */ 17054 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 17055 if (nipif == NULL) { 17056 /* Last resort - all ipif's have IPIF_NOLOCAL */ 17057 nipif = ipif; 17058 } else { 17059 need_rele = B_TRUE; 17060 } 17061 17062 ire = ire_create( 17063 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 17064 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 17065 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 17066 NULL, /* no gateway */ 17067 &ipif->ipif_mtu, /* max frag */ 17068 NULL, /* no src nce */ 17069 NULL, /* no recv from queue */ 17070 stq, /* send-to queue */ 17071 ill->ill_net_type, /* IF_[NO]RESOLVER */ 17072 ipif, 17073 0, 17074 0, 17075 0, 17076 0, 17077 &ire_uinfo_null, 17078 NULL, 17079 NULL, 17080 ipst); 17081 17082 if (ire != NULL) { 17083 ire_t *ret_ire; 17084 int error; 17085 17086 /* 17087 * We don't need ipif_ire anymore. We need to delete 17088 * before we add so that ire_add does not detect 17089 * duplicates. 17090 */ 17091 ire_delete(ipif_ire); 17092 ret_ire = ire; 17093 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 17094 ASSERT(error == 0); 17095 ASSERT(ire == ret_ire); 17096 /* Held in ire_add */ 17097 ire_refrele(ret_ire); 17098 } 17099 /* 17100 * Either we are falling through from above or could not 17101 * allocate a replacement. 17102 */ 17103 ire_refrele(ipif_ire); 17104 if (need_rele) 17105 ipif_refrele(nipif); 17106 } 17107 17108 /* 17109 * This old_ipif is going away. 17110 * 17111 * Determine if any other ipif's are using our address as 17112 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 17113 * IPIF_DEPRECATED). 17114 * Find the IRE_INTERFACE for such ipifs and recreate them 17115 * to use an different source address following the rules in 17116 * ipif_up_done. 17117 */ 17118 static void 17119 ipif_update_other_ipifs(ipif_t *old_ipif) 17120 { 17121 ipif_t *ipif; 17122 ill_t *ill; 17123 char buf[INET6_ADDRSTRLEN]; 17124 17125 ASSERT(IAM_WRITER_IPIF(old_ipif)); 17126 17127 ill = old_ipif->ipif_ill; 17128 17129 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name, 17130 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf)))); 17131 17132 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17133 if (ipif == old_ipif) 17134 continue; 17135 ipif_recreate_interface_routes(old_ipif, ipif); 17136 } 17137 } 17138 17139 /* ARGSUSED */ 17140 int 17141 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17142 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17143 { 17144 /* 17145 * ill_phyint_reinit merged the v4 and v6 into a single 17146 * ipsq. We might not have been able to complete the 17147 * operation in ipif_set_values, if we could not become 17148 * exclusive. If so restart it here. 17149 */ 17150 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17151 } 17152 17153 /* 17154 * Can operate on either a module or a driver queue. 17155 * Returns an error if not a module queue. 17156 */ 17157 /* ARGSUSED */ 17158 int 17159 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17160 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17161 { 17162 queue_t *q1 = q; 17163 char *cp; 17164 char interf_name[LIFNAMSIZ]; 17165 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 17166 17167 if (q->q_next == NULL) { 17168 ip1dbg(( 17169 "if_unitsel: IF_UNITSEL: no q_next\n")); 17170 return (EINVAL); 17171 } 17172 17173 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 17174 return (EALREADY); 17175 17176 do { 17177 q1 = q1->q_next; 17178 } while (q1->q_next); 17179 cp = q1->q_qinfo->qi_minfo->mi_idname; 17180 (void) sprintf(interf_name, "%s%d", cp, ppa); 17181 17182 /* 17183 * Here we are not going to delay the ioack until after 17184 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 17185 * original ioctl message before sending the requests. 17186 */ 17187 return (ipif_set_values(q, mp, interf_name, &ppa)); 17188 } 17189 17190 /* ARGSUSED */ 17191 int 17192 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17193 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17194 { 17195 return (ENXIO); 17196 } 17197 17198 /* 17199 * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the 17200 * minimum (but complete) set exist. This is necessary when adding or 17201 * removing an interface to/from an IPMP group, since interfaces in an 17202 * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever 17203 * its test address subnets overlap with IPMP data addresses). It's also 17204 * used to refresh the IRE_BROADCAST entries associated with the IPMP 17205 * interface when the nominated broadcast interface changes. 17206 */ 17207 void 17208 ill_refresh_bcast(ill_t *ill) 17209 { 17210 ire_t *ire_array[12]; /* max ipif_create_bcast_ires() can create */ 17211 ire_t **irep; 17212 ipif_t *ipif; 17213 17214 ASSERT(!ill->ill_isv6); 17215 ASSERT(IAM_WRITER_ILL(ill)); 17216 17217 /* 17218 * Remove any old broadcast IREs. 17219 */ 17220 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST, 17221 ill_broadcast_delete, ill, ill); 17222 17223 /* 17224 * Create new ones for any ipifs that are up and broadcast-capable. 17225 */ 17226 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17227 if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) != 17228 (IPIF_UP|IPIF_BROADCAST)) 17229 continue; 17230 17231 irep = ipif_create_bcast_ires(ipif, ire_array); 17232 while (irep-- > ire_array) { 17233 (void) ire_add(irep, NULL, NULL, NULL, B_FALSE); 17234 if (*irep != NULL) 17235 ire_refrele(*irep); 17236 } 17237 } 17238 } 17239 17240 /* 17241 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 17242 * `irep'. Returns a pointer to the next free `irep' entry (just like 17243 * ire_check_and_create_bcast()). 17244 */ 17245 static ire_t ** 17246 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 17247 { 17248 ipaddr_t addr; 17249 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 17250 ipaddr_t subnetmask = ipif->ipif_net_mask; 17251 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 17252 17253 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 17254 17255 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 17256 17257 if (ipif->ipif_lcl_addr == INADDR_ANY || 17258 (ipif->ipif_flags & IPIF_NOLOCAL)) 17259 netmask = htonl(IN_CLASSA_NET); /* fallback */ 17260 17261 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 17262 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 17263 17264 /* 17265 * For backward compatibility, we create net broadcast IREs based on 17266 * the old "IP address class system", since some old machines only 17267 * respond to these class derived net broadcast. However, we must not 17268 * create these net broadcast IREs if the subnetmask is shorter than 17269 * the IP address class based derived netmask. Otherwise, we may 17270 * create a net broadcast address which is the same as an IP address 17271 * on the subnet -- and then TCP will refuse to talk to that address. 17272 */ 17273 if (netmask < subnetmask) { 17274 addr = netmask & ipif->ipif_subnet; 17275 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17276 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 17277 flags); 17278 } 17279 17280 /* 17281 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 17282 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 17283 * created. Creating these broadcast IREs will only create confusion 17284 * as `addr' will be the same as the IP address. 17285 */ 17286 if (subnetmask != 0xFFFFFFFF) { 17287 addr = ipif->ipif_subnet; 17288 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17289 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 17290 irep, flags); 17291 } 17292 17293 return (irep); 17294 } 17295 17296 /* 17297 * Broadcast IRE info structure used in the functions below. Since we 17298 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 17299 */ 17300 typedef struct bcast_ireinfo { 17301 uchar_t bi_type; /* BCAST_* value from below */ 17302 uchar_t bi_willdie:1, /* will this IRE be going away? */ 17303 bi_needrep:1, /* do we need to replace it? */ 17304 bi_haverep:1, /* have we replaced it? */ 17305 bi_pad:5; 17306 ipaddr_t bi_addr; /* IRE address */ 17307 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 17308 } bcast_ireinfo_t; 17309 17310 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 17311 17312 /* 17313 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 17314 * return B_TRUE if it should immediately be used to recreate the IRE. 17315 */ 17316 static boolean_t 17317 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 17318 { 17319 ipaddr_t addr; 17320 17321 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 17322 17323 switch (bireinfop->bi_type) { 17324 case BCAST_NET: 17325 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 17326 if (addr != bireinfop->bi_addr) 17327 return (B_FALSE); 17328 break; 17329 case BCAST_SUBNET: 17330 if (ipif->ipif_subnet != bireinfop->bi_addr) 17331 return (B_FALSE); 17332 break; 17333 } 17334 17335 bireinfop->bi_needrep = 1; 17336 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 17337 if (bireinfop->bi_backup == NULL) 17338 bireinfop->bi_backup = ipif; 17339 return (B_FALSE); 17340 } 17341 return (B_TRUE); 17342 } 17343 17344 /* 17345 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 17346 * them ala ire_check_and_create_bcast(). 17347 */ 17348 static ire_t ** 17349 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 17350 { 17351 ipaddr_t mask, addr; 17352 17353 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 17354 17355 addr = bireinfop->bi_addr; 17356 irep = ire_create_bcast(ipif, addr, irep); 17357 17358 switch (bireinfop->bi_type) { 17359 case BCAST_NET: 17360 mask = ip_net_mask(ipif->ipif_subnet); 17361 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17362 break; 17363 case BCAST_SUBNET: 17364 mask = ipif->ipif_net_mask; 17365 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17366 break; 17367 } 17368 17369 bireinfop->bi_haverep = 1; 17370 return (irep); 17371 } 17372 17373 /* 17374 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 17375 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 17376 * that are going away are still needed. If so, have ipif_create_bcast() 17377 * recreate them (except for the deprecated case, as explained below). 17378 */ 17379 static ire_t ** 17380 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 17381 ire_t **irep) 17382 { 17383 int i; 17384 ipif_t *ipif; 17385 17386 ASSERT(!ill->ill_isv6); 17387 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17388 /* 17389 * Skip this ipif if it's (a) the one being taken down, (b) 17390 * not in the same zone, or (c) has no valid local address. 17391 */ 17392 if (ipif == test_ipif || 17393 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 17394 ipif->ipif_subnet == 0 || 17395 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 17396 (IPIF_UP|IPIF_BROADCAST)) 17397 continue; 17398 17399 /* 17400 * For each dying IRE that hasn't yet been replaced, see if 17401 * `ipif' needs it and whether the IRE should be recreated on 17402 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 17403 * will return B_FALSE even if `ipif' needs the IRE on the 17404 * hopes that we'll later find a needy non-deprecated ipif. 17405 * However, the ipif is recorded in bi_backup for possible 17406 * subsequent use by ipif_check_bcast_ires(). 17407 */ 17408 for (i = 0; i < BCAST_COUNT; i++) { 17409 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 17410 continue; 17411 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 17412 continue; 17413 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 17414 } 17415 17416 /* 17417 * If we've replaced all of the broadcast IREs that are going 17418 * to be taken down, we know we're done. 17419 */ 17420 for (i = 0; i < BCAST_COUNT; i++) { 17421 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 17422 break; 17423 } 17424 if (i == BCAST_COUNT) 17425 break; 17426 } 17427 return (irep); 17428 } 17429 17430 /* 17431 * Check if `test_ipif' (which is going away) is associated with any existing 17432 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 17433 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 17434 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 17435 * 17436 * This is necessary because broadcast IREs are shared. In particular, a 17437 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 17438 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 17439 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 17440 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 17441 * same zone, they will share the same set of broadcast IREs. 17442 * 17443 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 17444 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 17445 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 17446 */ 17447 static void 17448 ipif_check_bcast_ires(ipif_t *test_ipif) 17449 { 17450 ill_t *ill = test_ipif->ipif_ill; 17451 ire_t *ire, *ire_array[12]; /* see note above */ 17452 ire_t **irep1, **irep = &ire_array[0]; 17453 uint_t i, willdie; 17454 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 17455 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 17456 17457 ASSERT(!test_ipif->ipif_isv6); 17458 ASSERT(IAM_WRITER_IPIF(test_ipif)); 17459 17460 /* 17461 * No broadcast IREs for the LOOPBACK interface 17462 * or others such as point to point and IPIF_NOXMIT. 17463 */ 17464 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 17465 (test_ipif->ipif_flags & IPIF_NOXMIT)) 17466 return; 17467 17468 bzero(bireinfo, sizeof (bireinfo)); 17469 bireinfo[0].bi_type = BCAST_ALLZEROES; 17470 bireinfo[0].bi_addr = 0; 17471 17472 bireinfo[1].bi_type = BCAST_ALLONES; 17473 bireinfo[1].bi_addr = INADDR_BROADCAST; 17474 17475 bireinfo[2].bi_type = BCAST_NET; 17476 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 17477 17478 if (test_ipif->ipif_net_mask != 0) 17479 mask = test_ipif->ipif_net_mask; 17480 bireinfo[3].bi_type = BCAST_SUBNET; 17481 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 17482 17483 /* 17484 * Figure out what (if any) broadcast IREs will die as a result of 17485 * `test_ipif' going away. If none will die, we're done. 17486 */ 17487 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 17488 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 17489 test_ipif, ALL_ZONES, NULL, 17490 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 17491 if (ire != NULL) { 17492 willdie++; 17493 bireinfo[i].bi_willdie = 1; 17494 ire_refrele(ire); 17495 } 17496 } 17497 17498 if (willdie == 0) 17499 return; 17500 17501 /* 17502 * Walk through all the ipifs that will be affected by the dying IREs, 17503 * and recreate the IREs as necessary. Note that all interfaces in an 17504 * IPMP illgrp share the same broadcast IREs, and thus the entire 17505 * illgrp must be walked, starting with the IPMP meta-interface (so 17506 * that broadcast IREs end up on it whenever possible). 17507 */ 17508 if (IS_UNDER_IPMP(ill)) 17509 ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 17510 17511 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17512 17513 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 17514 ipmp_illgrp_t *illg = ill->ill_grp; 17515 17516 ill = list_head(&illg->ig_if); 17517 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) { 17518 for (i = 0; i < BCAST_COUNT; i++) { 17519 if (bireinfo[i].bi_willdie && 17520 !bireinfo[i].bi_haverep) 17521 break; 17522 } 17523 if (i == BCAST_COUNT) 17524 break; 17525 17526 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17527 } 17528 } 17529 17530 /* 17531 * Scan through the set of broadcast IREs and see if there are any 17532 * that we need to replace that have not yet been replaced. If so, 17533 * replace them using the appropriate backup ipif. 17534 */ 17535 for (i = 0; i < BCAST_COUNT; i++) { 17536 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 17537 irep = ipif_create_bcast(bireinfo[i].bi_backup, 17538 &bireinfo[i], irep); 17539 } 17540 17541 /* 17542 * If we can't create all of them, don't add any of them. (Code in 17543 * ip_wput_ire() and ire_to_ill() assumes that we always have a 17544 * non-loopback copy and loopback copy for a given address.) 17545 */ 17546 for (irep1 = irep; irep1 > ire_array; ) { 17547 irep1--; 17548 if (*irep1 == NULL) { 17549 ip0dbg(("ipif_check_bcast_ires: can't create " 17550 "IRE_BROADCAST, memory allocation failure\n")); 17551 while (irep > ire_array) { 17552 irep--; 17553 if (*irep != NULL) 17554 ire_delete(*irep); 17555 } 17556 return; 17557 } 17558 } 17559 17560 for (irep1 = irep; irep1 > ire_array; ) { 17561 irep1--; 17562 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 17563 ire_refrele(*irep1); /* Held in ire_add */ 17564 } 17565 } 17566 17567 /* 17568 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 17569 * from lifr_flags and the name from lifr_name. 17570 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 17571 * since ipif_lookup_on_name uses the _isv6 flags when matching. 17572 * Returns EINPROGRESS when mp has been consumed by queueing it on 17573 * ill_pending_mp and the ioctl will complete in ip_rput. 17574 * 17575 * Can operate on either a module or a driver queue. 17576 * Returns an error if not a module queue. 17577 */ 17578 /* ARGSUSED */ 17579 int 17580 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17581 ip_ioctl_cmd_t *ipip, void *if_req) 17582 { 17583 ill_t *ill = q->q_ptr; 17584 phyint_t *phyi; 17585 ip_stack_t *ipst; 17586 struct lifreq *lifr = if_req; 17587 17588 ASSERT(ipif != NULL); 17589 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 17590 17591 if (q->q_next == NULL) { 17592 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 17593 return (EINVAL); 17594 } 17595 17596 /* 17597 * If we are not writer on 'q' then this interface exists already 17598 * and previous lookups (ip_extract_lifreq()) found this ipif -- 17599 * so return EALREADY. 17600 */ 17601 if (ill != ipif->ipif_ill) 17602 return (EALREADY); 17603 17604 if (ill->ill_name[0] != '\0') 17605 return (EALREADY); 17606 17607 /* 17608 * Set all the flags. Allows all kinds of override. Provide some 17609 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 17610 * unless there is either multicast/broadcast support in the driver 17611 * or it is a pt-pt link. 17612 */ 17613 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 17614 /* Meaningless to IP thus don't allow them to be set. */ 17615 ip1dbg(("ip_setname: EINVAL 1\n")); 17616 return (EINVAL); 17617 } 17618 17619 /* 17620 * If there's another ill already with the requested name, ensure 17621 * that it's of the same type. Otherwise, ill_phyint_reinit() will 17622 * fuse together two unrelated ills, which will cause chaos. 17623 */ 17624 ipst = ill->ill_ipst; 17625 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17626 lifr->lifr_name, NULL); 17627 if (phyi != NULL) { 17628 ill_t *ill_mate = phyi->phyint_illv4; 17629 17630 if (ill_mate == NULL) 17631 ill_mate = phyi->phyint_illv6; 17632 ASSERT(ill_mate != NULL); 17633 17634 if (ill_mate->ill_media->ip_m_mac_type != 17635 ill->ill_media->ip_m_mac_type) { 17636 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 17637 "use the same ill name on differing media\n")); 17638 return (EINVAL); 17639 } 17640 } 17641 17642 /* 17643 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 17644 * ill_bcast_addr_length info. 17645 */ 17646 if (!ill->ill_needs_attach && 17647 ((lifr->lifr_flags & IFF_MULTICAST) && 17648 !(lifr->lifr_flags & IFF_POINTOPOINT) && 17649 ill->ill_bcast_addr_length == 0)) { 17650 /* Link not broadcast/pt-pt capable i.e. no multicast */ 17651 ip1dbg(("ip_setname: EINVAL 2\n")); 17652 return (EINVAL); 17653 } 17654 if ((lifr->lifr_flags & IFF_BROADCAST) && 17655 ((lifr->lifr_flags & IFF_IPV6) || 17656 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 17657 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 17658 ip1dbg(("ip_setname: EINVAL 3\n")); 17659 return (EINVAL); 17660 } 17661 if (lifr->lifr_flags & IFF_UP) { 17662 /* Can only be set with SIOCSLIFFLAGS */ 17663 ip1dbg(("ip_setname: EINVAL 4\n")); 17664 return (EINVAL); 17665 } 17666 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 17667 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 17668 ip1dbg(("ip_setname: EINVAL 5\n")); 17669 return (EINVAL); 17670 } 17671 /* 17672 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 17673 */ 17674 if ((lifr->lifr_flags & IFF_XRESOLV) && 17675 !(lifr->lifr_flags & IFF_IPV6) && 17676 !(ipif->ipif_isv6)) { 17677 ip1dbg(("ip_setname: EINVAL 6\n")); 17678 return (EINVAL); 17679 } 17680 17681 /* 17682 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 17683 * we have all the flags here. So, we assign rather than we OR. 17684 * We can't OR the flags here because we don't want to set 17685 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 17686 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 17687 * on lifr_flags value here. 17688 */ 17689 /* 17690 * This ill has not been inserted into the global list. 17691 * So we are still single threaded and don't need any lock 17692 */ 17693 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 17694 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 17695 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 17696 17697 /* We started off as V4. */ 17698 if (ill->ill_flags & ILLF_IPV6) { 17699 ill->ill_phyint->phyint_illv6 = ill; 17700 ill->ill_phyint->phyint_illv4 = NULL; 17701 } 17702 17703 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 17704 } 17705 17706 /* ARGSUSED */ 17707 int 17708 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17709 ip_ioctl_cmd_t *ipip, void *if_req) 17710 { 17711 /* 17712 * ill_phyint_reinit merged the v4 and v6 into a single 17713 * ipsq. We might not have been able to complete the 17714 * slifname in ipif_set_values, if we could not become 17715 * exclusive. If so restart it here 17716 */ 17717 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17718 } 17719 17720 /* 17721 * Return a pointer to the ipif which matches the index, IP version type and 17722 * zoneid. 17723 */ 17724 ipif_t * 17725 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 17726 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 17727 { 17728 ill_t *ill; 17729 ipif_t *ipif = NULL; 17730 17731 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 17732 (q != NULL && mp != NULL && func != NULL && err != NULL)); 17733 17734 if (err != NULL) 17735 *err = 0; 17736 17737 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 17738 if (ill != NULL) { 17739 mutex_enter(&ill->ill_lock); 17740 for (ipif = ill->ill_ipif; ipif != NULL; 17741 ipif = ipif->ipif_next) { 17742 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 17743 zoneid == ipif->ipif_zoneid || 17744 ipif->ipif_zoneid == ALL_ZONES)) { 17745 ipif_refhold_locked(ipif); 17746 break; 17747 } 17748 } 17749 mutex_exit(&ill->ill_lock); 17750 ill_refrele(ill); 17751 if (ipif == NULL && err != NULL) 17752 *err = ENXIO; 17753 } 17754 return (ipif); 17755 } 17756 17757 /* 17758 * Change an existing physical interface's index. If the new index 17759 * is acceptable we update the index and the phyint_list_avl_by_index tree. 17760 * Finally, we update other systems which may have a dependence on the 17761 * index value. 17762 */ 17763 /* ARGSUSED */ 17764 int 17765 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17766 ip_ioctl_cmd_t *ipip, void *ifreq) 17767 { 17768 ill_t *ill; 17769 phyint_t *phyi; 17770 struct ifreq *ifr = (struct ifreq *)ifreq; 17771 struct lifreq *lifr = (struct lifreq *)ifreq; 17772 uint_t old_index, index; 17773 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17774 avl_index_t where; 17775 17776 if (ipip->ipi_cmd_type == IF_CMD) 17777 index = ifr->ifr_index; 17778 else 17779 index = lifr->lifr_index; 17780 17781 /* 17782 * Only allow on physical interface. Also, index zero is illegal. 17783 */ 17784 ill = ipif->ipif_ill; 17785 phyi = ill->ill_phyint; 17786 if (ipif->ipif_id != 0 || index == 0) { 17787 return (EINVAL); 17788 } 17789 17790 /* If the index is not changing, no work to do */ 17791 if (phyi->phyint_ifindex == index) 17792 return (0); 17793 17794 /* 17795 * Use phyint_exists() to determine if the new interface index 17796 * is already in use. If the index is unused then we need to 17797 * change the phyint's position in the phyint_list_avl_by_index 17798 * tree. If we do not do this, subsequent lookups (using the new 17799 * index value) will not find the phyint. 17800 */ 17801 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17802 if (phyint_exists(index, ipst)) { 17803 rw_exit(&ipst->ips_ill_g_lock); 17804 return (EEXIST); 17805 } 17806 17807 /* The new index is unused. Set it in the phyint. */ 17808 old_index = phyi->phyint_ifindex; 17809 phyi->phyint_ifindex = index; 17810 17811 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 17812 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17813 &index, &where); 17814 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17815 phyi, where); 17816 rw_exit(&ipst->ips_ill_g_lock); 17817 17818 /* Update SCTP's ILL list */ 17819 sctp_ill_reindex(ill, old_index); 17820 17821 /* Send the routing sockets message */ 17822 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 17823 if (ILL_OTHER(ill)) 17824 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 17825 17826 return (0); 17827 } 17828 17829 /* ARGSUSED */ 17830 int 17831 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17832 ip_ioctl_cmd_t *ipip, void *ifreq) 17833 { 17834 struct ifreq *ifr = (struct ifreq *)ifreq; 17835 struct lifreq *lifr = (struct lifreq *)ifreq; 17836 17837 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 17838 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17839 /* Get the interface index */ 17840 if (ipip->ipi_cmd_type == IF_CMD) { 17841 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17842 } else { 17843 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17844 } 17845 return (0); 17846 } 17847 17848 /* ARGSUSED */ 17849 int 17850 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17851 ip_ioctl_cmd_t *ipip, void *ifreq) 17852 { 17853 struct lifreq *lifr = (struct lifreq *)ifreq; 17854 17855 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 17856 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17857 /* Get the interface zone */ 17858 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17859 lifr->lifr_zoneid = ipif->ipif_zoneid; 17860 return (0); 17861 } 17862 17863 /* 17864 * Set the zoneid of an interface. 17865 */ 17866 /* ARGSUSED */ 17867 int 17868 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17869 ip_ioctl_cmd_t *ipip, void *ifreq) 17870 { 17871 struct lifreq *lifr = (struct lifreq *)ifreq; 17872 int err = 0; 17873 boolean_t need_up = B_FALSE; 17874 zone_t *zptr; 17875 zone_status_t status; 17876 zoneid_t zoneid; 17877 17878 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17879 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 17880 if (!is_system_labeled()) 17881 return (ENOTSUP); 17882 zoneid = GLOBAL_ZONEID; 17883 } 17884 17885 /* cannot assign instance zero to a non-global zone */ 17886 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 17887 return (ENOTSUP); 17888 17889 /* 17890 * Cannot assign to a zone that doesn't exist or is shutting down. In 17891 * the event of a race with the zone shutdown processing, since IP 17892 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 17893 * interface will be cleaned up even if the zone is shut down 17894 * immediately after the status check. If the interface can't be brought 17895 * down right away, and the zone is shut down before the restart 17896 * function is called, we resolve the possible races by rechecking the 17897 * zone status in the restart function. 17898 */ 17899 if ((zptr = zone_find_by_id(zoneid)) == NULL) 17900 return (EINVAL); 17901 status = zone_status_get(zptr); 17902 zone_rele(zptr); 17903 17904 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 17905 return (EINVAL); 17906 17907 if (ipif->ipif_flags & IPIF_UP) { 17908 /* 17909 * If the interface is already marked up, 17910 * we call ipif_down which will take care 17911 * of ditching any IREs that have been set 17912 * up based on the old interface address. 17913 */ 17914 err = ipif_logical_down(ipif, q, mp); 17915 if (err == EINPROGRESS) 17916 return (err); 17917 ipif_down_tail(ipif); 17918 need_up = B_TRUE; 17919 } 17920 17921 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 17922 return (err); 17923 } 17924 17925 static int 17926 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 17927 queue_t *q, mblk_t *mp, boolean_t need_up) 17928 { 17929 int err = 0; 17930 ip_stack_t *ipst; 17931 17932 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 17933 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17934 17935 if (CONN_Q(q)) 17936 ipst = CONNQ_TO_IPST(q); 17937 else 17938 ipst = ILLQ_TO_IPST(q); 17939 17940 /* 17941 * For exclusive stacks we don't allow a different zoneid than 17942 * global. 17943 */ 17944 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 17945 zoneid != GLOBAL_ZONEID) 17946 return (EINVAL); 17947 17948 /* Set the new zone id. */ 17949 ipif->ipif_zoneid = zoneid; 17950 17951 /* Update sctp list */ 17952 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 17953 17954 if (need_up) { 17955 /* 17956 * Now bring the interface back up. If this 17957 * is the only IPIF for the ILL, ipif_up 17958 * will have to re-bind to the device, so 17959 * we may get back EINPROGRESS, in which 17960 * case, this IOCTL will get completed in 17961 * ip_rput_dlpi when we see the DL_BIND_ACK. 17962 */ 17963 err = ipif_up(ipif, q, mp); 17964 } 17965 return (err); 17966 } 17967 17968 /* ARGSUSED */ 17969 int 17970 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17971 ip_ioctl_cmd_t *ipip, void *if_req) 17972 { 17973 struct lifreq *lifr = (struct lifreq *)if_req; 17974 zoneid_t zoneid; 17975 zone_t *zptr; 17976 zone_status_t status; 17977 17978 ASSERT(ipif->ipif_id != 0); 17979 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17980 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 17981 zoneid = GLOBAL_ZONEID; 17982 17983 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 17984 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17985 17986 /* 17987 * We recheck the zone status to resolve the following race condition: 17988 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 17989 * 2) hme0:1 is up and can't be brought down right away; 17990 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 17991 * 3) zone "myzone" is halted; the zone status switches to 17992 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 17993 * the interfaces to remove - hme0:1 is not returned because it's not 17994 * yet in "myzone", so it won't be removed; 17995 * 4) the restart function for SIOCSLIFZONE is called; without the 17996 * status check here, we would have hme0:1 in "myzone" after it's been 17997 * destroyed. 17998 * Note that if the status check fails, we need to bring the interface 17999 * back to its state prior to ip_sioctl_slifzone(), hence the call to 18000 * ipif_up_done[_v6](). 18001 */ 18002 status = ZONE_IS_UNINITIALIZED; 18003 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 18004 status = zone_status_get(zptr); 18005 zone_rele(zptr); 18006 } 18007 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 18008 if (ipif->ipif_isv6) { 18009 (void) ipif_up_done_v6(ipif); 18010 } else { 18011 (void) ipif_up_done(ipif); 18012 } 18013 return (EINVAL); 18014 } 18015 18016 ipif_down_tail(ipif); 18017 18018 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 18019 B_TRUE)); 18020 } 18021 18022 /* 18023 * Return the number of addresses on `ill' with one or more of the values 18024 * in `set' set and all of the values in `clear' clear. 18025 */ 18026 static uint_t 18027 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 18028 { 18029 ipif_t *ipif; 18030 uint_t cnt = 0; 18031 18032 ASSERT(IAM_WRITER_ILL(ill)); 18033 18034 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 18035 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 18036 cnt++; 18037 18038 return (cnt); 18039 } 18040 18041 /* 18042 * Return the number of migratable addresses on `ill' that are under 18043 * application control. 18044 */ 18045 uint_t 18046 ill_appaddr_cnt(const ill_t *ill) 18047 { 18048 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 18049 IPIF_NOFAILOVER)); 18050 } 18051 18052 /* 18053 * Return the number of point-to-point addresses on `ill'. 18054 */ 18055 uint_t 18056 ill_ptpaddr_cnt(const ill_t *ill) 18057 { 18058 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 18059 } 18060 18061 /* ARGSUSED */ 18062 int 18063 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18064 ip_ioctl_cmd_t *ipip, void *ifreq) 18065 { 18066 struct lifreq *lifr = ifreq; 18067 18068 ASSERT(q->q_next == NULL); 18069 ASSERT(CONN_Q(q)); 18070 18071 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 18072 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 18073 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 18074 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 18075 18076 return (0); 18077 } 18078 18079 /* Find the previous ILL in this usesrc group */ 18080 static ill_t * 18081 ill_prev_usesrc(ill_t *uill) 18082 { 18083 ill_t *ill; 18084 18085 for (ill = uill->ill_usesrc_grp_next; 18086 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 18087 ill = ill->ill_usesrc_grp_next) 18088 /* do nothing */; 18089 return (ill); 18090 } 18091 18092 /* 18093 * Release all members of the usesrc group. This routine is called 18094 * from ill_delete when the interface being unplumbed is the 18095 * group head. 18096 */ 18097 static void 18098 ill_disband_usesrc_group(ill_t *uill) 18099 { 18100 ill_t *next_ill, *tmp_ill; 18101 ip_stack_t *ipst = uill->ill_ipst; 18102 18103 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18104 next_ill = uill->ill_usesrc_grp_next; 18105 18106 do { 18107 ASSERT(next_ill != NULL); 18108 tmp_ill = next_ill->ill_usesrc_grp_next; 18109 ASSERT(tmp_ill != NULL); 18110 next_ill->ill_usesrc_grp_next = NULL; 18111 next_ill->ill_usesrc_ifindex = 0; 18112 next_ill = tmp_ill; 18113 } while (next_ill->ill_usesrc_ifindex != 0); 18114 uill->ill_usesrc_grp_next = NULL; 18115 } 18116 18117 /* 18118 * Remove the client usesrc ILL from the list and relink to a new list 18119 */ 18120 int 18121 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 18122 { 18123 ill_t *ill, *tmp_ill; 18124 ip_stack_t *ipst = ucill->ill_ipst; 18125 18126 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 18127 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18128 18129 /* 18130 * Check if the usesrc client ILL passed in is not already 18131 * in use as a usesrc ILL i.e one whose source address is 18132 * in use OR a usesrc ILL is not already in use as a usesrc 18133 * client ILL 18134 */ 18135 if ((ucill->ill_usesrc_ifindex == 0) || 18136 (uill->ill_usesrc_ifindex != 0)) { 18137 return (-1); 18138 } 18139 18140 ill = ill_prev_usesrc(ucill); 18141 ASSERT(ill->ill_usesrc_grp_next != NULL); 18142 18143 /* Remove from the current list */ 18144 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 18145 /* Only two elements in the list */ 18146 ASSERT(ill->ill_usesrc_ifindex == 0); 18147 ill->ill_usesrc_grp_next = NULL; 18148 } else { 18149 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 18150 } 18151 18152 if (ifindex == 0) { 18153 ucill->ill_usesrc_ifindex = 0; 18154 ucill->ill_usesrc_grp_next = NULL; 18155 return (0); 18156 } 18157 18158 ucill->ill_usesrc_ifindex = ifindex; 18159 tmp_ill = uill->ill_usesrc_grp_next; 18160 uill->ill_usesrc_grp_next = ucill; 18161 ucill->ill_usesrc_grp_next = 18162 (tmp_ill != NULL) ? tmp_ill : uill; 18163 return (0); 18164 } 18165 18166 /* 18167 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 18168 * ip.c for locking details. 18169 */ 18170 /* ARGSUSED */ 18171 int 18172 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18173 ip_ioctl_cmd_t *ipip, void *ifreq) 18174 { 18175 struct lifreq *lifr = (struct lifreq *)ifreq; 18176 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 18177 ill_flag_changed = B_FALSE; 18178 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 18179 int err = 0, ret; 18180 uint_t ifindex; 18181 ipsq_t *ipsq = NULL; 18182 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18183 18184 ASSERT(IAM_WRITER_IPIF(ipif)); 18185 ASSERT(q->q_next == NULL); 18186 ASSERT(CONN_Q(q)); 18187 18188 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 18189 18190 ifindex = lifr->lifr_index; 18191 if (ifindex == 0) { 18192 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 18193 /* non usesrc group interface, nothing to reset */ 18194 return (0); 18195 } 18196 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 18197 /* valid reset request */ 18198 reset_flg = B_TRUE; 18199 } 18200 18201 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 18202 ip_process_ioctl, &err, ipst); 18203 if (usesrc_ill == NULL) { 18204 return (err); 18205 } 18206 18207 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 18208 NEW_OP, B_TRUE); 18209 if (ipsq == NULL) { 18210 err = EINPROGRESS; 18211 /* Operation enqueued on the ipsq of the usesrc ILL */ 18212 goto done; 18213 } 18214 18215 /* USESRC isn't currently supported with IPMP */ 18216 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 18217 err = ENOTSUP; 18218 goto done; 18219 } 18220 18221 /* 18222 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 18223 * used by IPMP underlying interfaces, but someone might think it's 18224 * more general and try to use it independently with VNI.) 18225 */ 18226 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 18227 err = ENOTSUP; 18228 goto done; 18229 } 18230 18231 /* 18232 * If the client is already in use as a usesrc_ill or a usesrc_ill is 18233 * already a client then return EINVAL 18234 */ 18235 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 18236 err = EINVAL; 18237 goto done; 18238 } 18239 18240 /* 18241 * If the ill_usesrc_ifindex field is already set to what it needs to 18242 * be then this is a duplicate operation. 18243 */ 18244 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 18245 err = 0; 18246 goto done; 18247 } 18248 18249 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 18250 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 18251 usesrc_ill->ill_isv6)); 18252 18253 /* 18254 * The next step ensures that no new ires will be created referencing 18255 * the client ill, until the ILL_CHANGING flag is cleared. Then 18256 * we go through an ire walk deleting all ire caches that reference 18257 * the client ill. New ires referencing the client ill that are added 18258 * to the ire table before the ILL_CHANGING flag is set, will be 18259 * cleaned up by the ire walk below. Attempt to add new ires referencing 18260 * the client ill while the ILL_CHANGING flag is set will be failed 18261 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 18262 * checks (under the ill_g_usesrc_lock) that the ire being added 18263 * is not stale, i.e the ire_stq and ire_ipif are consistent and 18264 * belong to the same usesrc group. 18265 */ 18266 mutex_enter(&usesrc_cli_ill->ill_lock); 18267 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 18268 mutex_exit(&usesrc_cli_ill->ill_lock); 18269 ill_flag_changed = B_TRUE; 18270 18271 if (ipif->ipif_isv6) 18272 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18273 ALL_ZONES, ipst); 18274 else 18275 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18276 ALL_ZONES, ipst); 18277 18278 /* 18279 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 18280 * and the ill_usesrc_ifindex fields 18281 */ 18282 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18283 18284 if (reset_flg) { 18285 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 18286 if (ret != 0) { 18287 err = EINVAL; 18288 } 18289 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18290 goto done; 18291 } 18292 18293 /* 18294 * Four possibilities to consider: 18295 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 18296 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 18297 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 18298 * 4. Both are part of their respective usesrc groups 18299 */ 18300 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 18301 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18302 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 18303 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18304 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18305 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 18306 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 18307 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18308 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18309 /* Insert at head of list */ 18310 usesrc_cli_ill->ill_usesrc_grp_next = 18311 usesrc_ill->ill_usesrc_grp_next; 18312 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18313 } else { 18314 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 18315 ifindex); 18316 if (ret != 0) 18317 err = EINVAL; 18318 } 18319 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18320 18321 done: 18322 if (ill_flag_changed) { 18323 mutex_enter(&usesrc_cli_ill->ill_lock); 18324 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 18325 mutex_exit(&usesrc_cli_ill->ill_lock); 18326 } 18327 if (ipsq != NULL) 18328 ipsq_exit(ipsq); 18329 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 18330 ill_refrele(usesrc_ill); 18331 return (err); 18332 } 18333 18334 /* 18335 * comparison function used by avl. 18336 */ 18337 static int 18338 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 18339 { 18340 18341 uint_t index; 18342 18343 ASSERT(phyip != NULL && index_ptr != NULL); 18344 18345 index = *((uint_t *)index_ptr); 18346 /* 18347 * let the phyint with the lowest index be on top. 18348 */ 18349 if (((phyint_t *)phyip)->phyint_ifindex < index) 18350 return (1); 18351 if (((phyint_t *)phyip)->phyint_ifindex > index) 18352 return (-1); 18353 return (0); 18354 } 18355 18356 /* 18357 * comparison function used by avl. 18358 */ 18359 static int 18360 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 18361 { 18362 ill_t *ill; 18363 int res = 0; 18364 18365 ASSERT(phyip != NULL && name_ptr != NULL); 18366 18367 if (((phyint_t *)phyip)->phyint_illv4) 18368 ill = ((phyint_t *)phyip)->phyint_illv4; 18369 else 18370 ill = ((phyint_t *)phyip)->phyint_illv6; 18371 ASSERT(ill != NULL); 18372 18373 res = strcmp(ill->ill_name, (char *)name_ptr); 18374 if (res > 0) 18375 return (1); 18376 else if (res < 0) 18377 return (-1); 18378 return (0); 18379 } 18380 18381 /* 18382 * This function is called on the unplumb path via ill_glist_delete() when 18383 * there are no ills left on the phyint and thus the phyint can be freed. 18384 */ 18385 static void 18386 phyint_free(phyint_t *phyi) 18387 { 18388 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 18389 18390 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 18391 18392 /* 18393 * If this phyint was an IPMP meta-interface, blow away the group. 18394 * This is safe to do because all of the illgrps have already been 18395 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 18396 * If we're cleaning up as a result of failed initialization, 18397 * phyint_grp may be NULL. 18398 */ 18399 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 18400 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18401 ipmp_grp_destroy(phyi->phyint_grp); 18402 phyi->phyint_grp = NULL; 18403 rw_exit(&ipst->ips_ipmp_lock); 18404 } 18405 18406 /* 18407 * If this interface was under IPMP, take it out of the group. 18408 */ 18409 if (phyi->phyint_grp != NULL) 18410 ipmp_phyint_leave_grp(phyi); 18411 18412 /* 18413 * Delete the phyint and disassociate its ipsq. The ipsq itself 18414 * will be freed in ipsq_exit(). 18415 */ 18416 phyi->phyint_ipsq->ipsq_phyint = NULL; 18417 phyi->phyint_name[0] = '\0'; 18418 18419 mi_free(phyi); 18420 } 18421 18422 /* 18423 * Attach the ill to the phyint structure which can be shared by both 18424 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 18425 * function is called from ipif_set_values and ill_lookup_on_name (for 18426 * loopback) where we know the name of the ill. We lookup the ill and if 18427 * there is one present already with the name use that phyint. Otherwise 18428 * reuse the one allocated by ill_init. 18429 */ 18430 static void 18431 ill_phyint_reinit(ill_t *ill) 18432 { 18433 boolean_t isv6 = ill->ill_isv6; 18434 phyint_t *phyi_old; 18435 phyint_t *phyi; 18436 avl_index_t where = 0; 18437 ill_t *ill_other = NULL; 18438 ip_stack_t *ipst = ill->ill_ipst; 18439 18440 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 18441 18442 phyi_old = ill->ill_phyint; 18443 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 18444 phyi_old->phyint_illv6 == NULL)); 18445 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 18446 phyi_old->phyint_illv4 == NULL)); 18447 ASSERT(phyi_old->phyint_ifindex == 0); 18448 18449 /* 18450 * Now that our ill has a name, set it in the phyint. 18451 */ 18452 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 18453 18454 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18455 ill->ill_name, &where); 18456 18457 /* 18458 * 1. We grabbed the ill_g_lock before inserting this ill into 18459 * the global list of ills. So no other thread could have located 18460 * this ill and hence the ipsq of this ill is guaranteed to be empty. 18461 * 2. Now locate the other protocol instance of this ill. 18462 * 3. Now grab both ill locks in the right order, and the phyint lock of 18463 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 18464 * of neither ill can change. 18465 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 18466 * other ill. 18467 * 5. Release all locks. 18468 */ 18469 18470 /* 18471 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 18472 * we are initializing IPv4. 18473 */ 18474 if (phyi != NULL) { 18475 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 18476 ASSERT(ill_other->ill_phyint != NULL); 18477 ASSERT((isv6 && !ill_other->ill_isv6) || 18478 (!isv6 && ill_other->ill_isv6)); 18479 GRAB_ILL_LOCKS(ill, ill_other); 18480 /* 18481 * We are potentially throwing away phyint_flags which 18482 * could be different from the one that we obtain from 18483 * ill_other->ill_phyint. But it is okay as we are assuming 18484 * that the state maintained within IP is correct. 18485 */ 18486 mutex_enter(&phyi->phyint_lock); 18487 if (isv6) { 18488 ASSERT(phyi->phyint_illv6 == NULL); 18489 phyi->phyint_illv6 = ill; 18490 } else { 18491 ASSERT(phyi->phyint_illv4 == NULL); 18492 phyi->phyint_illv4 = ill; 18493 } 18494 18495 /* 18496 * Delete the old phyint and make its ipsq eligible 18497 * to be freed in ipsq_exit(). 18498 */ 18499 phyi_old->phyint_illv4 = NULL; 18500 phyi_old->phyint_illv6 = NULL; 18501 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 18502 phyi_old->phyint_name[0] = '\0'; 18503 mi_free(phyi_old); 18504 } else { 18505 mutex_enter(&ill->ill_lock); 18506 /* 18507 * We don't need to acquire any lock, since 18508 * the ill is not yet visible globally and we 18509 * have not yet released the ill_g_lock. 18510 */ 18511 phyi = phyi_old; 18512 mutex_enter(&phyi->phyint_lock); 18513 /* XXX We need a recovery strategy here. */ 18514 if (!phyint_assign_ifindex(phyi, ipst)) 18515 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 18516 18517 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18518 (void *)phyi, where); 18519 18520 (void) avl_find(&ipst->ips_phyint_g_list-> 18521 phyint_list_avl_by_index, 18522 &phyi->phyint_ifindex, &where); 18523 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18524 (void *)phyi, where); 18525 } 18526 18527 /* 18528 * Reassigning ill_phyint automatically reassigns the ipsq also. 18529 * pending mp is not affected because that is per ill basis. 18530 */ 18531 ill->ill_phyint = phyi; 18532 18533 /* 18534 * Now that the phyint's ifindex has been assigned, complete the 18535 * remaining 18536 */ 18537 18538 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 18539 if (ill->ill_isv6) { 18540 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18541 ill->ill_phyint->phyint_ifindex; 18542 ill->ill_mcast_type = ipst->ips_mld_max_version; 18543 } else { 18544 ill->ill_mcast_type = ipst->ips_igmp_max_version; 18545 } 18546 18547 /* 18548 * Generate an event within the hooks framework to indicate that 18549 * a new interface has just been added to IP. For this event to 18550 * be generated, the network interface must, at least, have an 18551 * ifindex assigned to it. 18552 * 18553 * This needs to be run inside the ill_g_lock perimeter to ensure 18554 * that the ordering of delivered events to listeners matches the 18555 * order of them in the kernel. 18556 * 18557 * This function could be called from ill_lookup_on_name. In that case 18558 * the interface is loopback "lo", which will not generate a NIC event. 18559 */ 18560 if (ill->ill_name_length <= 2 || 18561 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 18562 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 18563 ill->ill_name_length); 18564 } 18565 RELEASE_ILL_LOCKS(ill, ill_other); 18566 mutex_exit(&phyi->phyint_lock); 18567 } 18568 18569 /* 18570 * Notify any downstream modules of the name of this interface. 18571 * An M_IOCTL is used even though we don't expect a successful reply. 18572 * Any reply message from the driver (presumably an M_IOCNAK) will 18573 * eventually get discarded somewhere upstream. The message format is 18574 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 18575 * to IP. 18576 */ 18577 static void 18578 ip_ifname_notify(ill_t *ill, queue_t *q) 18579 { 18580 mblk_t *mp1, *mp2; 18581 struct iocblk *iocp; 18582 struct lifreq *lifr; 18583 18584 mp1 = mkiocb(SIOCSLIFNAME); 18585 if (mp1 == NULL) 18586 return; 18587 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 18588 if (mp2 == NULL) { 18589 freeb(mp1); 18590 return; 18591 } 18592 18593 mp1->b_cont = mp2; 18594 iocp = (struct iocblk *)mp1->b_rptr; 18595 iocp->ioc_count = sizeof (struct lifreq); 18596 18597 lifr = (struct lifreq *)mp2->b_rptr; 18598 mp2->b_wptr += sizeof (struct lifreq); 18599 bzero(lifr, sizeof (struct lifreq)); 18600 18601 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 18602 lifr->lifr_ppa = ill->ill_ppa; 18603 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 18604 18605 putnext(q, mp1); 18606 } 18607 18608 static int 18609 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18610 { 18611 int err; 18612 ip_stack_t *ipst = ill->ill_ipst; 18613 phyint_t *phyi = ill->ill_phyint; 18614 18615 /* Set the obsolete NDD per-interface forwarding name. */ 18616 err = ill_set_ndd_name(ill); 18617 if (err != 0) { 18618 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 18619 err); 18620 } 18621 18622 /* 18623 * Now that ill_name is set, the configuration for the IPMP 18624 * meta-interface can be performed. 18625 */ 18626 if (IS_IPMP(ill)) { 18627 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18628 /* 18629 * If phyi->phyint_grp is NULL, then this is the first IPMP 18630 * meta-interface and we need to create the IPMP group. 18631 */ 18632 if (phyi->phyint_grp == NULL) { 18633 /* 18634 * If someone has renamed another IPMP group to have 18635 * the same name as our interface, bail. 18636 */ 18637 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 18638 rw_exit(&ipst->ips_ipmp_lock); 18639 return (EEXIST); 18640 } 18641 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 18642 if (phyi->phyint_grp == NULL) { 18643 rw_exit(&ipst->ips_ipmp_lock); 18644 return (ENOMEM); 18645 } 18646 } 18647 rw_exit(&ipst->ips_ipmp_lock); 18648 } 18649 18650 /* Tell downstream modules where they are. */ 18651 ip_ifname_notify(ill, q); 18652 18653 /* 18654 * ill_dl_phys returns EINPROGRESS in the usual case. 18655 * Error cases are ENOMEM ... 18656 */ 18657 err = ill_dl_phys(ill, ipif, mp, q); 18658 18659 /* 18660 * If there is no IRE expiration timer running, get one started. 18661 * igmp and mld timers will be triggered by the first multicast 18662 */ 18663 if (ipst->ips_ip_ire_expire_id == 0) { 18664 /* 18665 * acquire the lock and check again. 18666 */ 18667 mutex_enter(&ipst->ips_ip_trash_timer_lock); 18668 if (ipst->ips_ip_ire_expire_id == 0) { 18669 ipst->ips_ip_ire_expire_id = timeout( 18670 ip_trash_timer_expire, ipst, 18671 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 18672 } 18673 mutex_exit(&ipst->ips_ip_trash_timer_lock); 18674 } 18675 18676 if (ill->ill_isv6) { 18677 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 18678 if (ipst->ips_mld_slowtimeout_id == 0) { 18679 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 18680 (void *)ipst, 18681 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18682 } 18683 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 18684 } else { 18685 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 18686 if (ipst->ips_igmp_slowtimeout_id == 0) { 18687 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 18688 (void *)ipst, 18689 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18690 } 18691 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 18692 } 18693 18694 return (err); 18695 } 18696 18697 /* 18698 * Common routine for ppa and ifname setting. Should be called exclusive. 18699 * 18700 * Returns EINPROGRESS when mp has been consumed by queueing it on 18701 * ill_pending_mp and the ioctl will complete in ip_rput. 18702 * 18703 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 18704 * the new name and new ppa in lifr_name and lifr_ppa respectively. 18705 * For SLIFNAME, we pass these values back to the userland. 18706 */ 18707 static int 18708 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 18709 { 18710 ill_t *ill; 18711 ipif_t *ipif; 18712 ipsq_t *ipsq; 18713 char *ppa_ptr; 18714 char *old_ptr; 18715 char old_char; 18716 int error; 18717 ip_stack_t *ipst; 18718 18719 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 18720 ASSERT(q->q_next != NULL); 18721 ASSERT(interf_name != NULL); 18722 18723 ill = (ill_t *)q->q_ptr; 18724 ipst = ill->ill_ipst; 18725 18726 ASSERT(ill->ill_ipst != NULL); 18727 ASSERT(ill->ill_name[0] == '\0'); 18728 ASSERT(IAM_WRITER_ILL(ill)); 18729 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 18730 ASSERT(ill->ill_ppa == UINT_MAX); 18731 18732 /* The ppa is sent down by ifconfig or is chosen */ 18733 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 18734 return (EINVAL); 18735 } 18736 18737 /* 18738 * make sure ppa passed in is same as ppa in the name. 18739 * This check is not made when ppa == UINT_MAX in that case ppa 18740 * in the name could be anything. System will choose a ppa and 18741 * update new_ppa_ptr and inter_name to contain the choosen ppa. 18742 */ 18743 if (*new_ppa_ptr != UINT_MAX) { 18744 /* stoi changes the pointer */ 18745 old_ptr = ppa_ptr; 18746 /* 18747 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 18748 * (they don't have an externally visible ppa). We assign one 18749 * here so that we can manage the interface. Note that in 18750 * the past this value was always 0 for DLPI 1 drivers. 18751 */ 18752 if (*new_ppa_ptr == 0) 18753 *new_ppa_ptr = stoi(&old_ptr); 18754 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 18755 return (EINVAL); 18756 } 18757 /* 18758 * terminate string before ppa 18759 * save char at that location. 18760 */ 18761 old_char = ppa_ptr[0]; 18762 ppa_ptr[0] = '\0'; 18763 18764 ill->ill_ppa = *new_ppa_ptr; 18765 /* 18766 * Finish as much work now as possible before calling ill_glist_insert 18767 * which makes the ill globally visible and also merges it with the 18768 * other protocol instance of this phyint. The remaining work is 18769 * done after entering the ipsq which may happen sometime later. 18770 * ill_set_ndd_name occurs after the ill has been made globally visible. 18771 */ 18772 ipif = ill->ill_ipif; 18773 18774 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 18775 ipif_assign_seqid(ipif); 18776 18777 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 18778 ill->ill_flags |= ILLF_IPV4; 18779 18780 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 18781 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 18782 18783 if (ill->ill_flags & ILLF_IPV6) { 18784 18785 ill->ill_isv6 = B_TRUE; 18786 if (ill->ill_rq != NULL) { 18787 ill->ill_rq->q_qinfo = &iprinitv6; 18788 ill->ill_wq->q_qinfo = &ipwinitv6; 18789 } 18790 18791 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 18792 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 18793 ipif->ipif_v6src_addr = ipv6_all_zeros; 18794 ipif->ipif_v6subnet = ipv6_all_zeros; 18795 ipif->ipif_v6net_mask = ipv6_all_zeros; 18796 ipif->ipif_v6brd_addr = ipv6_all_zeros; 18797 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 18798 /* 18799 * point-to-point or Non-mulicast capable 18800 * interfaces won't do NUD unless explicitly 18801 * configured to do so. 18802 */ 18803 if (ipif->ipif_flags & IPIF_POINTOPOINT || 18804 !(ill->ill_flags & ILLF_MULTICAST)) { 18805 ill->ill_flags |= ILLF_NONUD; 18806 } 18807 /* Make sure IPv4 specific flag is not set on IPv6 if */ 18808 if (ill->ill_flags & ILLF_NOARP) { 18809 /* 18810 * Note: xresolv interfaces will eventually need 18811 * NOARP set here as well, but that will require 18812 * those external resolvers to have some 18813 * knowledge of that flag and act appropriately. 18814 * Not to be changed at present. 18815 */ 18816 ill->ill_flags &= ~ILLF_NOARP; 18817 } 18818 /* 18819 * Set the ILLF_ROUTER flag according to the global 18820 * IPv6 forwarding policy. 18821 */ 18822 if (ipst->ips_ipv6_forward != 0) 18823 ill->ill_flags |= ILLF_ROUTER; 18824 } else if (ill->ill_flags & ILLF_IPV4) { 18825 ill->ill_isv6 = B_FALSE; 18826 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 18827 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 18828 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 18829 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 18830 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 18831 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 18832 /* 18833 * Set the ILLF_ROUTER flag according to the global 18834 * IPv4 forwarding policy. 18835 */ 18836 if (ipst->ips_ip_g_forward != 0) 18837 ill->ill_flags |= ILLF_ROUTER; 18838 } 18839 18840 ASSERT(ill->ill_phyint != NULL); 18841 18842 /* 18843 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 18844 * be completed in ill_glist_insert -> ill_phyint_reinit 18845 */ 18846 if (!ill_allocate_mibs(ill)) 18847 return (ENOMEM); 18848 18849 /* 18850 * Pick a default sap until we get the DL_INFO_ACK back from 18851 * the driver. 18852 */ 18853 if (ill->ill_sap == 0) { 18854 if (ill->ill_isv6) 18855 ill->ill_sap = IP6_DL_SAP; 18856 else 18857 ill->ill_sap = IP_DL_SAP; 18858 } 18859 18860 ill->ill_ifname_pending = 1; 18861 ill->ill_ifname_pending_err = 0; 18862 18863 /* 18864 * When the first ipif comes up in ipif_up_done(), multicast groups 18865 * that were joined while this ill was not bound to the DLPI link need 18866 * to be recovered by ill_recover_multicast(). 18867 */ 18868 ill->ill_need_recover_multicast = 1; 18869 18870 ill_refhold(ill); 18871 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18872 if ((error = ill_glist_insert(ill, interf_name, 18873 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 18874 ill->ill_ppa = UINT_MAX; 18875 ill->ill_name[0] = '\0'; 18876 /* 18877 * undo null termination done above. 18878 */ 18879 ppa_ptr[0] = old_char; 18880 rw_exit(&ipst->ips_ill_g_lock); 18881 ill_refrele(ill); 18882 return (error); 18883 } 18884 18885 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 18886 18887 /* 18888 * When we return the buffer pointed to by interf_name should contain 18889 * the same name as in ill_name. 18890 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 18891 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 18892 * so copy full name and update the ppa ptr. 18893 * When ppa passed in != UINT_MAX all values are correct just undo 18894 * null termination, this saves a bcopy. 18895 */ 18896 if (*new_ppa_ptr == UINT_MAX) { 18897 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 18898 *new_ppa_ptr = ill->ill_ppa; 18899 } else { 18900 /* 18901 * undo null termination done above. 18902 */ 18903 ppa_ptr[0] = old_char; 18904 } 18905 18906 /* Let SCTP know about this ILL */ 18907 sctp_update_ill(ill, SCTP_ILL_INSERT); 18908 18909 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 18910 B_TRUE); 18911 18912 rw_exit(&ipst->ips_ill_g_lock); 18913 ill_refrele(ill); 18914 if (ipsq == NULL) 18915 return (EINPROGRESS); 18916 18917 /* 18918 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 18919 */ 18920 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 18921 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 18922 else 18923 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 18924 18925 error = ipif_set_values_tail(ill, ipif, mp, q); 18926 ipsq_exit(ipsq); 18927 if (error != 0 && error != EINPROGRESS) { 18928 /* 18929 * restore previous values 18930 */ 18931 ill->ill_isv6 = B_FALSE; 18932 } 18933 return (error); 18934 } 18935 18936 void 18937 ipif_init(ip_stack_t *ipst) 18938 { 18939 int i; 18940 18941 for (i = 0; i < MAX_G_HEADS; i++) { 18942 ipst->ips_ill_g_heads[i].ill_g_list_head = 18943 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18944 ipst->ips_ill_g_heads[i].ill_g_list_tail = 18945 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18946 } 18947 18948 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18949 ill_phyint_compare_index, 18950 sizeof (phyint_t), 18951 offsetof(struct phyint, phyint_avl_by_index)); 18952 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18953 ill_phyint_compare_name, 18954 sizeof (phyint_t), 18955 offsetof(struct phyint, phyint_avl_by_name)); 18956 } 18957 18958 /* 18959 * Lookup the ipif corresponding to the onlink destination address. For 18960 * point-to-point interfaces, it matches with remote endpoint destination 18961 * address. For point-to-multipoint interfaces it only tries to match the 18962 * destination with the interface's subnet address. The longest, most specific 18963 * match is found to take care of such rare network configurations like - 18964 * le0: 129.146.1.1/16 18965 * le1: 129.146.2.2/24 18966 * 18967 * This is used by SO_DONTROUTE and IP_NEXTHOP. Since neither of those are 18968 * supported on underlying interfaces in an IPMP group, underlying interfaces 18969 * are ignored when looking up a match. (If we didn't ignore them, we'd 18970 * risk using a test address as a source for outgoing traffic.) 18971 */ 18972 ipif_t * 18973 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 18974 { 18975 ipif_t *ipif, *best_ipif; 18976 ill_t *ill; 18977 ill_walk_context_t ctx; 18978 18979 ASSERT(zoneid != ALL_ZONES); 18980 best_ipif = NULL; 18981 18982 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18983 ill = ILL_START_WALK_V4(&ctx, ipst); 18984 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18985 if (IS_UNDER_IPMP(ill)) 18986 continue; 18987 mutex_enter(&ill->ill_lock); 18988 for (ipif = ill->ill_ipif; ipif != NULL; 18989 ipif = ipif->ipif_next) { 18990 if (!IPIF_CAN_LOOKUP(ipif)) 18991 continue; 18992 if (ipif->ipif_zoneid != zoneid && 18993 ipif->ipif_zoneid != ALL_ZONES) 18994 continue; 18995 /* 18996 * Point-to-point case. Look for exact match with 18997 * destination address. 18998 */ 18999 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19000 if (ipif->ipif_pp_dst_addr == addr) { 19001 ipif_refhold_locked(ipif); 19002 mutex_exit(&ill->ill_lock); 19003 rw_exit(&ipst->ips_ill_g_lock); 19004 if (best_ipif != NULL) 19005 ipif_refrele(best_ipif); 19006 return (ipif); 19007 } 19008 } else if (ipif->ipif_subnet == (addr & 19009 ipif->ipif_net_mask)) { 19010 /* 19011 * Point-to-multipoint case. Looping through to 19012 * find the most specific match. If there are 19013 * multiple best match ipif's then prefer ipif's 19014 * that are UP. If there is only one best match 19015 * ipif and it is DOWN we must still return it. 19016 */ 19017 if ((best_ipif == NULL) || 19018 (ipif->ipif_net_mask > 19019 best_ipif->ipif_net_mask) || 19020 ((ipif->ipif_net_mask == 19021 best_ipif->ipif_net_mask) && 19022 ((ipif->ipif_flags & IPIF_UP) && 19023 (!(best_ipif->ipif_flags & IPIF_UP))))) { 19024 ipif_refhold_locked(ipif); 19025 mutex_exit(&ill->ill_lock); 19026 rw_exit(&ipst->ips_ill_g_lock); 19027 if (best_ipif != NULL) 19028 ipif_refrele(best_ipif); 19029 best_ipif = ipif; 19030 rw_enter(&ipst->ips_ill_g_lock, 19031 RW_READER); 19032 mutex_enter(&ill->ill_lock); 19033 } 19034 } 19035 } 19036 mutex_exit(&ill->ill_lock); 19037 } 19038 rw_exit(&ipst->ips_ill_g_lock); 19039 return (best_ipif); 19040 } 19041 19042 /* 19043 * Save enough information so that we can recreate the IRE if 19044 * the interface goes down and then up. 19045 */ 19046 static void 19047 ipif_save_ire(ipif_t *ipif, ire_t *ire) 19048 { 19049 mblk_t *save_mp; 19050 19051 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 19052 if (save_mp != NULL) { 19053 ifrt_t *ifrt; 19054 19055 save_mp->b_wptr += sizeof (ifrt_t); 19056 ifrt = (ifrt_t *)save_mp->b_rptr; 19057 bzero(ifrt, sizeof (ifrt_t)); 19058 ifrt->ifrt_type = ire->ire_type; 19059 ifrt->ifrt_addr = ire->ire_addr; 19060 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 19061 ifrt->ifrt_src_addr = ire->ire_src_addr; 19062 ifrt->ifrt_mask = ire->ire_mask; 19063 ifrt->ifrt_flags = ire->ire_flags; 19064 ifrt->ifrt_max_frag = ire->ire_max_frag; 19065 mutex_enter(&ipif->ipif_saved_ire_lock); 19066 save_mp->b_cont = ipif->ipif_saved_ire_mp; 19067 ipif->ipif_saved_ire_mp = save_mp; 19068 ipif->ipif_saved_ire_cnt++; 19069 mutex_exit(&ipif->ipif_saved_ire_lock); 19070 } 19071 } 19072 19073 static void 19074 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 19075 { 19076 mblk_t **mpp; 19077 mblk_t *mp; 19078 ifrt_t *ifrt; 19079 19080 /* Remove from ipif_saved_ire_mp list if it is there */ 19081 mutex_enter(&ipif->ipif_saved_ire_lock); 19082 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 19083 mpp = &(*mpp)->b_cont) { 19084 /* 19085 * On a given ipif, the triple of address, gateway and 19086 * mask is unique for each saved IRE (in the case of 19087 * ordinary interface routes, the gateway address is 19088 * all-zeroes). 19089 */ 19090 mp = *mpp; 19091 ifrt = (ifrt_t *)mp->b_rptr; 19092 if (ifrt->ifrt_addr == ire->ire_addr && 19093 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 19094 ifrt->ifrt_mask == ire->ire_mask) { 19095 *mpp = mp->b_cont; 19096 ipif->ipif_saved_ire_cnt--; 19097 freeb(mp); 19098 break; 19099 } 19100 } 19101 mutex_exit(&ipif->ipif_saved_ire_lock); 19102 } 19103 19104 /* 19105 * IP multirouting broadcast routes handling 19106 * Append CGTP broadcast IREs to regular ones created 19107 * at ifconfig time. 19108 */ 19109 static void 19110 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 19111 { 19112 ire_t *ire_prim; 19113 19114 ASSERT(ire != NULL); 19115 ASSERT(ire_dst != NULL); 19116 19117 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19118 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19119 if (ire_prim != NULL) { 19120 /* 19121 * We are in the special case of broadcasts for 19122 * CGTP. We add an IRE_BROADCAST that holds 19123 * the RTF_MULTIRT flag, the destination 19124 * address of ire_dst and the low level 19125 * info of ire_prim. In other words, CGTP 19126 * broadcast is added to the redundant ipif. 19127 */ 19128 ipif_t *ipif_prim; 19129 ire_t *bcast_ire; 19130 19131 ipif_prim = ire_prim->ire_ipif; 19132 19133 ip2dbg(("ip_cgtp_filter_bcast_add: " 19134 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19135 (void *)ire_dst, (void *)ire_prim, 19136 (void *)ipif_prim)); 19137 19138 bcast_ire = ire_create( 19139 (uchar_t *)&ire->ire_addr, 19140 (uchar_t *)&ip_g_all_ones, 19141 (uchar_t *)&ire_dst->ire_src_addr, 19142 (uchar_t *)&ire->ire_gateway_addr, 19143 &ipif_prim->ipif_mtu, 19144 NULL, 19145 ipif_prim->ipif_rq, 19146 ipif_prim->ipif_wq, 19147 IRE_BROADCAST, 19148 ipif_prim, 19149 0, 19150 0, 19151 0, 19152 ire->ire_flags, 19153 &ire_uinfo_null, 19154 NULL, 19155 NULL, 19156 ipst); 19157 19158 if (bcast_ire != NULL) { 19159 19160 if (ire_add(&bcast_ire, NULL, NULL, NULL, 19161 B_FALSE) == 0) { 19162 ip2dbg(("ip_cgtp_filter_bcast_add: " 19163 "added bcast_ire %p\n", 19164 (void *)bcast_ire)); 19165 19166 ipif_save_ire(bcast_ire->ire_ipif, 19167 bcast_ire); 19168 ire_refrele(bcast_ire); 19169 } 19170 } 19171 ire_refrele(ire_prim); 19172 } 19173 } 19174 19175 /* 19176 * IP multirouting broadcast routes handling 19177 * Remove the broadcast ire 19178 */ 19179 static void 19180 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 19181 { 19182 ire_t *ire_dst; 19183 19184 ASSERT(ire != NULL); 19185 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 19186 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19187 if (ire_dst != NULL) { 19188 ire_t *ire_prim; 19189 19190 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19191 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19192 if (ire_prim != NULL) { 19193 ipif_t *ipif_prim; 19194 ire_t *bcast_ire; 19195 19196 ipif_prim = ire_prim->ire_ipif; 19197 19198 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19199 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19200 (void *)ire_dst, (void *)ire_prim, 19201 (void *)ipif_prim)); 19202 19203 bcast_ire = ire_ctable_lookup(ire->ire_addr, 19204 ire->ire_gateway_addr, 19205 IRE_BROADCAST, 19206 ipif_prim, ALL_ZONES, 19207 NULL, 19208 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 19209 MATCH_IRE_MASK, ipst); 19210 19211 if (bcast_ire != NULL) { 19212 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19213 "looked up bcast_ire %p\n", 19214 (void *)bcast_ire)); 19215 ipif_remove_ire(bcast_ire->ire_ipif, 19216 bcast_ire); 19217 ire_delete(bcast_ire); 19218 ire_refrele(bcast_ire); 19219 } 19220 ire_refrele(ire_prim); 19221 } 19222 ire_refrele(ire_dst); 19223 } 19224 } 19225 19226 /* 19227 * IPsec hardware acceleration capabilities related functions. 19228 */ 19229 19230 /* 19231 * Free a per-ill IPsec capabilities structure. 19232 */ 19233 static void 19234 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 19235 { 19236 if (capab->auth_hw_algs != NULL) 19237 kmem_free(capab->auth_hw_algs, capab->algs_size); 19238 if (capab->encr_hw_algs != NULL) 19239 kmem_free(capab->encr_hw_algs, capab->algs_size); 19240 if (capab->encr_algparm != NULL) 19241 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 19242 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 19243 } 19244 19245 /* 19246 * Allocate a new per-ill IPsec capabilities structure. This structure 19247 * is specific to an IPsec protocol (AH or ESP). It is implemented as 19248 * an array which specifies, for each algorithm, whether this algorithm 19249 * is supported by the ill or not. 19250 */ 19251 static ill_ipsec_capab_t * 19252 ill_ipsec_capab_alloc(void) 19253 { 19254 ill_ipsec_capab_t *capab; 19255 uint_t nelems; 19256 19257 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 19258 if (capab == NULL) 19259 return (NULL); 19260 19261 /* we need one bit per algorithm */ 19262 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 19263 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 19264 19265 /* allocate memory to store algorithm flags */ 19266 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19267 if (capab->encr_hw_algs == NULL) 19268 goto nomem; 19269 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19270 if (capab->auth_hw_algs == NULL) 19271 goto nomem; 19272 /* 19273 * Leave encr_algparm NULL for now since we won't need it half 19274 * the time 19275 */ 19276 return (capab); 19277 19278 nomem: 19279 ill_ipsec_capab_free(capab); 19280 return (NULL); 19281 } 19282 19283 /* 19284 * Resize capability array. Since we're exclusive, this is OK. 19285 */ 19286 static boolean_t 19287 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 19288 { 19289 ipsec_capab_algparm_t *nalp, *oalp; 19290 uint32_t olen, nlen; 19291 19292 oalp = capab->encr_algparm; 19293 olen = capab->encr_algparm_size; 19294 19295 if (oalp != NULL) { 19296 if (algid < capab->encr_algparm_end) 19297 return (B_TRUE); 19298 } 19299 19300 nlen = (algid + 1) * sizeof (*nalp); 19301 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 19302 if (nalp == NULL) 19303 return (B_FALSE); 19304 19305 if (oalp != NULL) { 19306 bcopy(oalp, nalp, olen); 19307 kmem_free(oalp, olen); 19308 } 19309 capab->encr_algparm = nalp; 19310 capab->encr_algparm_size = nlen; 19311 capab->encr_algparm_end = algid + 1; 19312 19313 return (B_TRUE); 19314 } 19315 19316 /* 19317 * Compare the capabilities of the specified ill with the protocol 19318 * and algorithms specified by the SA passed as argument. 19319 * If they match, returns B_TRUE, B_FALSE if they do not match. 19320 * 19321 * The ill can be passed as a pointer to it, or by specifying its index 19322 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 19323 * 19324 * Called by ipsec_out_is_accelerated() do decide whether an outbound 19325 * packet is eligible for hardware acceleration, and by 19326 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 19327 * to a particular ill. 19328 */ 19329 boolean_t 19330 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 19331 ipsa_t *sa, netstack_t *ns) 19332 { 19333 boolean_t sa_isv6; 19334 uint_t algid; 19335 struct ill_ipsec_capab_s *cpp; 19336 boolean_t need_refrele = B_FALSE; 19337 ip_stack_t *ipst = ns->netstack_ip; 19338 19339 if (ill == NULL) { 19340 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 19341 NULL, NULL, NULL, ipst); 19342 if (ill == NULL) { 19343 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 19344 return (B_FALSE); 19345 } 19346 need_refrele = B_TRUE; 19347 } 19348 19349 /* 19350 * Use the address length specified by the SA to determine 19351 * if it corresponds to a IPv6 address, and fail the matching 19352 * if the isv6 flag passed as argument does not match. 19353 * Note: this check is used for SADB capability checking before 19354 * sending SA information to an ill. 19355 */ 19356 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 19357 if (sa_isv6 != ill_isv6) 19358 /* protocol mismatch */ 19359 goto done; 19360 19361 /* 19362 * Check if the ill supports the protocol, algorithm(s) and 19363 * key size(s) specified by the SA, and get the pointers to 19364 * the algorithms supported by the ill. 19365 */ 19366 switch (sa->ipsa_type) { 19367 19368 case SADB_SATYPE_ESP: 19369 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 19370 /* ill does not support ESP acceleration */ 19371 goto done; 19372 cpp = ill->ill_ipsec_capab_esp; 19373 algid = sa->ipsa_auth_alg; 19374 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 19375 goto done; 19376 algid = sa->ipsa_encr_alg; 19377 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 19378 goto done; 19379 if (algid < cpp->encr_algparm_end) { 19380 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 19381 if (sa->ipsa_encrkeybits < alp->minkeylen) 19382 goto done; 19383 if (sa->ipsa_encrkeybits > alp->maxkeylen) 19384 goto done; 19385 } 19386 break; 19387 19388 case SADB_SATYPE_AH: 19389 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 19390 /* ill does not support AH acceleration */ 19391 goto done; 19392 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 19393 ill->ill_ipsec_capab_ah->auth_hw_algs)) 19394 goto done; 19395 break; 19396 } 19397 19398 if (need_refrele) 19399 ill_refrele(ill); 19400 return (B_TRUE); 19401 done: 19402 if (need_refrele) 19403 ill_refrele(ill); 19404 return (B_FALSE); 19405 } 19406 19407 /* 19408 * Add a new ill to the list of IPsec capable ills. 19409 * Called from ill_capability_ipsec_ack() when an ACK was received 19410 * indicating that IPsec hardware processing was enabled for an ill. 19411 * 19412 * ill must point to the ill for which acceleration was enabled. 19413 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 19414 */ 19415 static void 19416 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 19417 { 19418 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 19419 uint_t sa_type; 19420 uint_t ipproto; 19421 ip_stack_t *ipst = ill->ill_ipst; 19422 19423 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 19424 (dl_cap == DL_CAPAB_IPSEC_ESP)); 19425 19426 switch (dl_cap) { 19427 case DL_CAPAB_IPSEC_AH: 19428 sa_type = SADB_SATYPE_AH; 19429 ills = &ipst->ips_ipsec_capab_ills_ah; 19430 ipproto = IPPROTO_AH; 19431 break; 19432 case DL_CAPAB_IPSEC_ESP: 19433 sa_type = SADB_SATYPE_ESP; 19434 ills = &ipst->ips_ipsec_capab_ills_esp; 19435 ipproto = IPPROTO_ESP; 19436 break; 19437 } 19438 19439 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19440 19441 /* 19442 * Add ill index to list of hardware accelerators. If 19443 * already in list, do nothing. 19444 */ 19445 for (cur_ill = *ills; cur_ill != NULL && 19446 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 19447 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 19448 ; 19449 19450 if (cur_ill == NULL) { 19451 /* if this is a new entry for this ill */ 19452 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 19453 if (new_ill == NULL) { 19454 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19455 return; 19456 } 19457 19458 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 19459 new_ill->ill_isv6 = ill->ill_isv6; 19460 new_ill->next = *ills; 19461 *ills = new_ill; 19462 } else if (!sadb_resync) { 19463 /* not resync'ing SADB and an entry exists for this ill */ 19464 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19465 return; 19466 } 19467 19468 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19469 19470 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 19471 /* 19472 * IPsec module for protocol loaded, initiate dump 19473 * of the SADB to this ill. 19474 */ 19475 sadb_ill_download(ill, sa_type); 19476 } 19477 19478 /* 19479 * Remove an ill from the list of IPsec capable ills. 19480 */ 19481 static void 19482 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 19483 { 19484 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 19485 ip_stack_t *ipst = ill->ill_ipst; 19486 19487 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 19488 dl_cap == DL_CAPAB_IPSEC_ESP); 19489 19490 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 19491 &ipst->ips_ipsec_capab_ills_esp; 19492 19493 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19494 19495 prev_ill = NULL; 19496 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 19497 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 19498 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 19499 ; 19500 if (cur_ill == NULL) { 19501 /* entry not found */ 19502 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19503 return; 19504 } 19505 if (prev_ill == NULL) { 19506 /* entry at front of list */ 19507 *ills = NULL; 19508 } else { 19509 prev_ill->next = cur_ill->next; 19510 } 19511 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 19512 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19513 } 19514 19515 /* 19516 * Called by SADB to send a DL_CONTROL_REQ message to every ill 19517 * supporting the specified IPsec protocol acceleration. 19518 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 19519 * We free the mblk and, if sa is non-null, release the held referece. 19520 */ 19521 void 19522 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 19523 netstack_t *ns) 19524 { 19525 ipsec_capab_ill_t *ici, *cur_ici; 19526 ill_t *ill; 19527 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 19528 ip_stack_t *ipst = ns->netstack_ip; 19529 19530 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 19531 ipst->ips_ipsec_capab_ills_esp; 19532 19533 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 19534 19535 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 19536 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 19537 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 19538 19539 /* 19540 * Handle the case where the ill goes away while the SADB is 19541 * attempting to send messages. If it's going away, it's 19542 * nuking its shadow SADB, so we don't care.. 19543 */ 19544 19545 if (ill == NULL) 19546 continue; 19547 19548 if (sa != NULL) { 19549 /* 19550 * Make sure capabilities match before 19551 * sending SA to ill. 19552 */ 19553 if (!ipsec_capab_match(ill, cur_ici->ill_index, 19554 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 19555 ill_refrele(ill); 19556 continue; 19557 } 19558 19559 mutex_enter(&sa->ipsa_lock); 19560 sa->ipsa_flags |= IPSA_F_HW; 19561 mutex_exit(&sa->ipsa_lock); 19562 } 19563 19564 /* 19565 * Copy template message, and add it to the front 19566 * of the mblk ship list. We want to avoid holding 19567 * the ipsec_capab_ills_lock while sending the 19568 * message to the ills. 19569 * 19570 * The b_next and b_prev are temporarily used 19571 * to build a list of mblks to be sent down, and to 19572 * save the ill to which they must be sent. 19573 */ 19574 nmp = copymsg(mp); 19575 if (nmp == NULL) { 19576 ill_refrele(ill); 19577 continue; 19578 } 19579 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 19580 nmp->b_next = mp_ship_list; 19581 mp_ship_list = nmp; 19582 nmp->b_prev = (mblk_t *)ill; 19583 } 19584 19585 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19586 19587 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 19588 /* restore the mblk to a sane state */ 19589 next_mp = nmp->b_next; 19590 nmp->b_next = NULL; 19591 ill = (ill_t *)nmp->b_prev; 19592 nmp->b_prev = NULL; 19593 19594 ill_dlpi_send(ill, nmp); 19595 ill_refrele(ill); 19596 } 19597 19598 if (sa != NULL) 19599 IPSA_REFRELE(sa); 19600 freemsg(mp); 19601 } 19602 19603 /* 19604 * Derive an interface id from the link layer address. 19605 * Knows about IEEE 802 and IEEE EUI-64 mappings. 19606 */ 19607 static boolean_t 19608 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19609 { 19610 char *addr; 19611 19612 if (ill->ill_phys_addr_length != ETHERADDRL) 19613 return (B_FALSE); 19614 19615 /* Form EUI-64 like address */ 19616 addr = (char *)&v6addr->s6_addr32[2]; 19617 bcopy(ill->ill_phys_addr, addr, 3); 19618 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 19619 addr[3] = (char)0xff; 19620 addr[4] = (char)0xfe; 19621 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 19622 return (B_TRUE); 19623 } 19624 19625 /* ARGSUSED */ 19626 static boolean_t 19627 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19628 { 19629 return (B_FALSE); 19630 } 19631 19632 typedef struct ipmp_ifcookie { 19633 uint32_t ic_hostid; 19634 char ic_ifname[LIFNAMSIZ]; 19635 char ic_zonename[ZONENAME_MAX]; 19636 } ipmp_ifcookie_t; 19637 19638 /* 19639 * Construct a pseudo-random interface ID for the IPMP interface that's both 19640 * predictable and (almost) guaranteed to be unique. 19641 */ 19642 static boolean_t 19643 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19644 { 19645 zone_t *zp; 19646 uint8_t *addr; 19647 uchar_t hash[16]; 19648 ulong_t hostid; 19649 MD5_CTX ctx; 19650 ipmp_ifcookie_t ic = { 0 }; 19651 19652 ASSERT(IS_IPMP(ill)); 19653 19654 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 19655 ic.ic_hostid = htonl((uint32_t)hostid); 19656 19657 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 19658 19659 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 19660 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 19661 zone_rele(zp); 19662 } 19663 19664 MD5Init(&ctx); 19665 MD5Update(&ctx, &ic, sizeof (ic)); 19666 MD5Final(hash, &ctx); 19667 19668 /* 19669 * Map the hash to an interface ID per the basic approach in RFC3041. 19670 */ 19671 addr = &v6addr->s6_addr8[8]; 19672 bcopy(hash + 8, addr, sizeof (uint64_t)); 19673 addr[0] &= ~0x2; /* set local bit */ 19674 19675 return (B_TRUE); 19676 } 19677 19678 /* ARGSUSED */ 19679 static boolean_t 19680 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19681 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19682 { 19683 /* 19684 * Multicast address mappings used over Ethernet/802.X. 19685 * This address is used as a base for mappings. 19686 */ 19687 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 19688 0x00, 0x00, 0x00}; 19689 19690 /* 19691 * Extract low order 32 bits from IPv6 multicast address. 19692 * Or that into the link layer address, starting from the 19693 * second byte. 19694 */ 19695 *hw_start = 2; 19696 v6_extract_mask->s6_addr32[0] = 0; 19697 v6_extract_mask->s6_addr32[1] = 0; 19698 v6_extract_mask->s6_addr32[2] = 0; 19699 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19700 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 19701 return (B_TRUE); 19702 } 19703 19704 /* 19705 * Indicate by return value whether multicast is supported. If not, 19706 * this code should not touch/change any parameters. 19707 */ 19708 /* ARGSUSED */ 19709 static boolean_t 19710 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19711 uint32_t *hw_start, ipaddr_t *extract_mask) 19712 { 19713 /* 19714 * Multicast address mappings used over Ethernet/802.X. 19715 * This address is used as a base for mappings. 19716 */ 19717 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 19718 0x00, 0x00, 0x00 }; 19719 19720 if (phys_length != ETHERADDRL) 19721 return (B_FALSE); 19722 19723 *extract_mask = htonl(0x007fffff); 19724 *hw_start = 2; 19725 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 19726 return (B_TRUE); 19727 } 19728 19729 /* 19730 * Derive IPoIB interface id from the link layer address. 19731 */ 19732 static boolean_t 19733 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19734 { 19735 char *addr; 19736 19737 if (ill->ill_phys_addr_length != 20) 19738 return (B_FALSE); 19739 addr = (char *)&v6addr->s6_addr32[2]; 19740 bcopy(ill->ill_phys_addr + 12, addr, 8); 19741 /* 19742 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 19743 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 19744 * rules. In these cases, the IBA considers these GUIDs to be in 19745 * "Modified EUI-64" format, and thus toggling the u/l bit is not 19746 * required; vendors are required not to assign global EUI-64's 19747 * that differ only in u/l bit values, thus guaranteeing uniqueness 19748 * of the interface identifier. Whether the GUID is in modified 19749 * or proper EUI-64 format, the ipv6 identifier must have the u/l 19750 * bit set to 1. 19751 */ 19752 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 19753 return (B_TRUE); 19754 } 19755 19756 /* 19757 * Note on mapping from multicast IP addresses to IPoIB multicast link 19758 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 19759 * The format of an IPoIB multicast address is: 19760 * 19761 * 4 byte QPN Scope Sign. Pkey 19762 * +--------------------------------------------+ 19763 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 19764 * +--------------------------------------------+ 19765 * 19766 * The Scope and Pkey components are properties of the IBA port and 19767 * network interface. They can be ascertained from the broadcast address. 19768 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 19769 */ 19770 19771 static boolean_t 19772 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19773 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19774 { 19775 /* 19776 * Base IPoIB IPv6 multicast address used for mappings. 19777 * Does not contain the IBA scope/Pkey values. 19778 */ 19779 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19780 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 19781 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19782 19783 /* 19784 * Extract low order 80 bits from IPv6 multicast address. 19785 * Or that into the link layer address, starting from the 19786 * sixth byte. 19787 */ 19788 *hw_start = 6; 19789 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 19790 19791 /* 19792 * Now fill in the IBA scope/Pkey values from the broadcast address. 19793 */ 19794 *(maddr + 5) = *(bphys_addr + 5); 19795 *(maddr + 8) = *(bphys_addr + 8); 19796 *(maddr + 9) = *(bphys_addr + 9); 19797 19798 v6_extract_mask->s6_addr32[0] = 0; 19799 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 19800 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 19801 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19802 return (B_TRUE); 19803 } 19804 19805 static boolean_t 19806 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19807 uint32_t *hw_start, ipaddr_t *extract_mask) 19808 { 19809 /* 19810 * Base IPoIB IPv4 multicast address used for mappings. 19811 * Does not contain the IBA scope/Pkey values. 19812 */ 19813 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19814 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 19815 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19816 19817 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 19818 return (B_FALSE); 19819 19820 /* 19821 * Extract low order 28 bits from IPv4 multicast address. 19822 * Or that into the link layer address, starting from the 19823 * sixteenth byte. 19824 */ 19825 *extract_mask = htonl(0x0fffffff); 19826 *hw_start = 16; 19827 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 19828 19829 /* 19830 * Now fill in the IBA scope/Pkey values from the broadcast address. 19831 */ 19832 *(maddr + 5) = *(bphys_addr + 5); 19833 *(maddr + 8) = *(bphys_addr + 8); 19834 *(maddr + 9) = *(bphys_addr + 9); 19835 return (B_TRUE); 19836 } 19837 19838 /* 19839 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 19840 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 19841 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 19842 * the link-local address is preferred. 19843 */ 19844 boolean_t 19845 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 19846 { 19847 ipif_t *ipif; 19848 ipif_t *maybe_ipif = NULL; 19849 19850 mutex_enter(&ill->ill_lock); 19851 if (ill->ill_state_flags & ILL_CONDEMNED) { 19852 mutex_exit(&ill->ill_lock); 19853 if (ipifp != NULL) 19854 *ipifp = NULL; 19855 return (B_FALSE); 19856 } 19857 19858 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19859 if (!IPIF_CAN_LOOKUP(ipif)) 19860 continue; 19861 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 19862 ipif->ipif_zoneid != ALL_ZONES) 19863 continue; 19864 if ((ipif->ipif_flags & flags) != flags) 19865 continue; 19866 19867 if (ipifp == NULL) { 19868 mutex_exit(&ill->ill_lock); 19869 ASSERT(maybe_ipif == NULL); 19870 return (B_TRUE); 19871 } 19872 if (!ill->ill_isv6 || 19873 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 19874 ipif_refhold_locked(ipif); 19875 mutex_exit(&ill->ill_lock); 19876 *ipifp = ipif; 19877 return (B_TRUE); 19878 } 19879 if (maybe_ipif == NULL) 19880 maybe_ipif = ipif; 19881 } 19882 if (ipifp != NULL) { 19883 if (maybe_ipif != NULL) 19884 ipif_refhold_locked(maybe_ipif); 19885 *ipifp = maybe_ipif; 19886 } 19887 mutex_exit(&ill->ill_lock); 19888 return (maybe_ipif != NULL); 19889 } 19890 19891 /* 19892 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 19893 * If a pointer to an ipif_t is returned then the caller will need to do 19894 * an ill_refrele(). 19895 */ 19896 ipif_t * 19897 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 19898 ip_stack_t *ipst) 19899 { 19900 ipif_t *ipif; 19901 ill_t *ill; 19902 19903 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 19904 ipst); 19905 if (ill == NULL) 19906 return (NULL); 19907 19908 mutex_enter(&ill->ill_lock); 19909 if (ill->ill_state_flags & ILL_CONDEMNED) { 19910 mutex_exit(&ill->ill_lock); 19911 ill_refrele(ill); 19912 return (NULL); 19913 } 19914 19915 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19916 if (!IPIF_CAN_LOOKUP(ipif)) 19917 continue; 19918 if (lifidx == ipif->ipif_id) { 19919 ipif_refhold_locked(ipif); 19920 break; 19921 } 19922 } 19923 19924 mutex_exit(&ill->ill_lock); 19925 ill_refrele(ill); 19926 return (ipif); 19927 } 19928 19929 /* 19930 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 19931 * There is one exceptions IRE_BROADCAST are difficult to recreate, 19932 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 19933 * for details. 19934 */ 19935 void 19936 ill_fastpath_flush(ill_t *ill) 19937 { 19938 ip_stack_t *ipst = ill->ill_ipst; 19939 19940 nce_fastpath_list_dispatch(ill, NULL, NULL); 19941 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 19942 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 19943 } 19944 19945 /* 19946 * Set the physical address information for `ill' to the contents of the 19947 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 19948 * asynchronous if `ill' cannot immediately be quiesced -- in which case 19949 * EINPROGRESS will be returned. 19950 */ 19951 int 19952 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 19953 { 19954 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19955 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 19956 19957 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19958 19959 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 19960 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 19961 /* Changing DL_IPV6_TOKEN is not yet supported */ 19962 return (0); 19963 } 19964 19965 /* 19966 * We need to store up to two copies of `mp' in `ill'. Due to the 19967 * design of ipsq_pending_mp_add(), we can't pass them as separate 19968 * arguments to ill_set_phys_addr_tail(). Instead, chain them 19969 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 19970 */ 19971 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 19972 freemsg(mp); 19973 return (ENOMEM); 19974 } 19975 19976 ipsq_current_start(ipsq, ill->ill_ipif, 0); 19977 19978 /* 19979 * If we can quiesce the ill, then set the address. If not, then 19980 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 19981 */ 19982 ill_down_ipifs(ill); 19983 mutex_enter(&ill->ill_lock); 19984 if (!ill_is_quiescent(ill)) { 19985 /* call cannot fail since `conn_t *' argument is NULL */ 19986 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 19987 mp, ILL_DOWN); 19988 mutex_exit(&ill->ill_lock); 19989 return (EINPROGRESS); 19990 } 19991 mutex_exit(&ill->ill_lock); 19992 19993 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 19994 return (0); 19995 } 19996 19997 /* 19998 * Once the ill associated with `q' has quiesced, set its physical address 19999 * information to the values in `addrmp'. Note that two copies of `addrmp' 20000 * are passed (linked by b_cont), since we sometimes need to save two distinct 20001 * copies in the ill_t, and our context doesn't permit sleeping or allocation 20002 * failure (we'll free the other copy if it's not needed). Since the ill_t 20003 * is quiesced, we know any stale IREs with the old address information have 20004 * already been removed, so we don't need to call ill_fastpath_flush(). 20005 */ 20006 /* ARGSUSED */ 20007 static void 20008 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 20009 { 20010 ill_t *ill = q->q_ptr; 20011 mblk_t *addrmp2 = unlinkb(addrmp); 20012 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 20013 uint_t addrlen, addroff; 20014 20015 ASSERT(IAM_WRITER_IPSQ(ipsq)); 20016 20017 addroff = dlindp->dl_addr_offset; 20018 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 20019 20020 switch (dlindp->dl_data) { 20021 case DL_IPV6_LINK_LAYER_ADDR: 20022 ill_set_ndmp(ill, addrmp, addroff, addrlen); 20023 freemsg(addrmp2); 20024 break; 20025 20026 case DL_CURR_PHYS_ADDR: 20027 freemsg(ill->ill_phys_addr_mp); 20028 ill->ill_phys_addr = addrmp->b_rptr + addroff; 20029 ill->ill_phys_addr_mp = addrmp; 20030 ill->ill_phys_addr_length = addrlen; 20031 20032 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 20033 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 20034 else 20035 freemsg(addrmp2); 20036 break; 20037 default: 20038 ASSERT(0); 20039 } 20040 20041 /* 20042 * If there are ipifs to bring up, ill_up_ipifs() will return 20043 * EINPROGRESS, and ipsq_current_finish() will be called by 20044 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 20045 * brought up. 20046 */ 20047 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 20048 ipsq_current_finish(ipsq); 20049 } 20050 20051 /* 20052 * Helper routine for setting the ill_nd_lla fields. 20053 */ 20054 void 20055 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 20056 { 20057 freemsg(ill->ill_nd_lla_mp); 20058 ill->ill_nd_lla = ndmp->b_rptr + addroff; 20059 ill->ill_nd_lla_mp = ndmp; 20060 ill->ill_nd_lla_len = addrlen; 20061 } 20062 20063 major_t IP_MAJ; 20064 #define IP "ip" 20065 20066 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 20067 #define UDPDEV "/devices/pseudo/udp@0:udp" 20068 20069 /* 20070 * Issue REMOVEIF ioctls to have the loopback interfaces 20071 * go away. Other interfaces are either I_LINKed or I_PLINKed; 20072 * the former going away when the user-level processes in the zone 20073 * are killed * and the latter are cleaned up by the stream head 20074 * str_stack_shutdown callback that undoes all I_PLINKs. 20075 */ 20076 void 20077 ip_loopback_cleanup(ip_stack_t *ipst) 20078 { 20079 int error; 20080 ldi_handle_t lh = NULL; 20081 ldi_ident_t li = NULL; 20082 int rval; 20083 cred_t *cr; 20084 struct strioctl iocb; 20085 struct lifreq lifreq; 20086 20087 IP_MAJ = ddi_name_to_major(IP); 20088 20089 #ifdef NS_DEBUG 20090 (void) printf("ip_loopback_cleanup() stackid %d\n", 20091 ipst->ips_netstack->netstack_stackid); 20092 #endif 20093 20094 bzero(&lifreq, sizeof (lifreq)); 20095 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 20096 20097 error = ldi_ident_from_major(IP_MAJ, &li); 20098 if (error) { 20099 #ifdef DEBUG 20100 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 20101 error); 20102 #endif 20103 return; 20104 } 20105 20106 cr = zone_get_kcred(netstackid_to_zoneid( 20107 ipst->ips_netstack->netstack_stackid)); 20108 ASSERT(cr != NULL); 20109 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 20110 if (error) { 20111 #ifdef DEBUG 20112 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 20113 error); 20114 #endif 20115 goto out; 20116 } 20117 iocb.ic_cmd = SIOCLIFREMOVEIF; 20118 iocb.ic_timout = 15; 20119 iocb.ic_len = sizeof (lifreq); 20120 iocb.ic_dp = (char *)&lifreq; 20121 20122 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20123 /* LINTED - statement has no consequent */ 20124 if (error) { 20125 #ifdef NS_DEBUG 20126 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20127 "UDP6 error %d\n", error); 20128 #endif 20129 } 20130 (void) ldi_close(lh, FREAD|FWRITE, cr); 20131 lh = NULL; 20132 20133 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 20134 if (error) { 20135 #ifdef NS_DEBUG 20136 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 20137 error); 20138 #endif 20139 goto out; 20140 } 20141 20142 iocb.ic_cmd = SIOCLIFREMOVEIF; 20143 iocb.ic_timout = 15; 20144 iocb.ic_len = sizeof (lifreq); 20145 iocb.ic_dp = (char *)&lifreq; 20146 20147 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20148 /* LINTED - statement has no consequent */ 20149 if (error) { 20150 #ifdef NS_DEBUG 20151 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20152 "UDP error %d\n", error); 20153 #endif 20154 } 20155 (void) ldi_close(lh, FREAD|FWRITE, cr); 20156 lh = NULL; 20157 20158 out: 20159 /* Close layered handles */ 20160 if (lh) 20161 (void) ldi_close(lh, FREAD|FWRITE, cr); 20162 if (li) 20163 ldi_ident_release(li); 20164 20165 crfree(cr); 20166 } 20167 20168 /* 20169 * This needs to be in-sync with nic_event_t definition 20170 */ 20171 static const char * 20172 ill_hook_event2str(nic_event_t event) 20173 { 20174 switch (event) { 20175 case NE_PLUMB: 20176 return ("PLUMB"); 20177 case NE_UNPLUMB: 20178 return ("UNPLUMB"); 20179 case NE_UP: 20180 return ("UP"); 20181 case NE_DOWN: 20182 return ("DOWN"); 20183 case NE_ADDRESS_CHANGE: 20184 return ("ADDRESS_CHANGE"); 20185 case NE_LIF_UP: 20186 return ("LIF_UP"); 20187 case NE_LIF_DOWN: 20188 return ("LIF_DOWN"); 20189 default: 20190 return ("UNKNOWN"); 20191 } 20192 } 20193 20194 void 20195 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 20196 nic_event_data_t data, size_t datalen) 20197 { 20198 ip_stack_t *ipst = ill->ill_ipst; 20199 hook_nic_event_int_t *info; 20200 const char *str = NULL; 20201 20202 /* create a new nic event info */ 20203 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 20204 goto fail; 20205 20206 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 20207 info->hnei_event.hne_lif = lif; 20208 info->hnei_event.hne_event = event; 20209 info->hnei_event.hne_protocol = ill->ill_isv6 ? 20210 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 20211 info->hnei_event.hne_data = NULL; 20212 info->hnei_event.hne_datalen = 0; 20213 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 20214 20215 if (data != NULL && datalen != 0) { 20216 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 20217 if (info->hnei_event.hne_data == NULL) 20218 goto fail; 20219 bcopy(data, info->hnei_event.hne_data, datalen); 20220 info->hnei_event.hne_datalen = datalen; 20221 } 20222 20223 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 20224 DDI_NOSLEEP) == DDI_SUCCESS) 20225 return; 20226 20227 fail: 20228 if (info != NULL) { 20229 if (info->hnei_event.hne_data != NULL) { 20230 kmem_free(info->hnei_event.hne_data, 20231 info->hnei_event.hne_datalen); 20232 } 20233 kmem_free(info, sizeof (hook_nic_event_t)); 20234 } 20235 str = ill_hook_event2str(event); 20236 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 20237 "information for %s (ENOMEM)\n", str, ill->ill_name)); 20238 } 20239 20240 void 20241 ipif_up_notify(ipif_t *ipif) 20242 { 20243 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 20244 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 20245 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20246 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 20247 NE_LIF_UP, NULL, 0); 20248 } 20249