1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 /* 31 * This file contains the interface control functions for IP. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/dlpi.h> 37 #include <sys/stropts.h> 38 #include <sys/strsun.h> 39 #include <sys/sysmacros.h> 40 #include <sys/strlog.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/kstat.h> 45 #include <sys/debug.h> 46 #include <sys/zone.h> 47 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/param.h> 51 #include <sys/socket.h> 52 #define _SUN_TPI_VERSION 2 53 #include <sys/tihdr.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 87 #include <net/pfkeyv2.h> 88 #include <inet/ipsec_info.h> 89 #include <inet/sadb.h> 90 #include <inet/ipsec_impl.h> 91 #include <sys/iphada.h> 92 93 94 #include <netinet/igmp.h> 95 #include <inet/ip_listutils.h> 96 #include <netinet/ip_mroute.h> 97 #include <inet/ipclassifier.h> 98 #include <sys/mac.h> 99 100 #include <sys/systeminfo.h> 101 #include <sys/bootconf.h> 102 103 /* The character which tells where the ill_name ends */ 104 #define IPIF_SEPARATOR_CHAR ':' 105 106 /* IP ioctl function table entry */ 107 typedef struct ipft_s { 108 int ipft_cmd; 109 pfi_t ipft_pfi; 110 int ipft_min_size; 111 int ipft_flags; 112 } ipft_t; 113 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 114 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 115 116 typedef struct ip_sock_ar_s { 117 union { 118 area_t ip_sock_area; 119 ared_t ip_sock_ared; 120 areq_t ip_sock_areq; 121 } ip_sock_ar_u; 122 queue_t *ip_sock_ar_q; 123 } ip_sock_ar_t; 124 125 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 126 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 127 char *value, caddr_t cp, cred_t *ioc_cr); 128 129 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 130 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 131 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 132 mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 134 mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 136 queue_t *q, mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp); 141 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 144 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 145 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 146 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 147 static void ipsq_flush(ill_t *ill); 148 static void ipsq_clean_all(ill_t *ill); 149 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 150 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 151 queue_t *q, mblk_t *mp, boolean_t need_up); 152 static void ipsq_delete(ipsq_t *); 153 154 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 155 boolean_t initialize); 156 static void ipif_check_bcast_ires(ipif_t *test_ipif); 157 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 158 static void ipif_delete_cache_ire(ire_t *, char *); 159 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 160 static void ipif_down_tail(ipif_t *ipif); 161 static void ipif_free(ipif_t *ipif); 162 static void ipif_free_tail(ipif_t *ipif); 163 static void ipif_mask_reply(ipif_t *); 164 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 165 static void ipif_multicast_down(ipif_t *ipif); 166 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 167 static void ipif_set_default(ipif_t *ipif); 168 static int ipif_set_values(queue_t *q, mblk_t *mp, 169 char *interf_name, uint_t *ppa); 170 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 171 queue_t *q); 172 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 173 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 174 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 175 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 176 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 177 178 static int ill_alloc_ppa(ill_if_t *, ill_t *); 179 static int ill_arp_off(ill_t *ill); 180 static int ill_arp_on(ill_t *ill); 181 static void ill_delete_interface_type(ill_if_t *); 182 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 183 static void ill_down(ill_t *ill); 184 static void ill_downi(ire_t *ire, char *ill_arg); 185 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 186 static void ill_down_tail(ill_t *ill); 187 static void ill_free_mib(ill_t *ill); 188 static void ill_glist_delete(ill_t *); 189 static boolean_t ill_has_usable_ipif(ill_t *); 190 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 191 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 192 static void ill_phyint_free(ill_t *ill); 193 static void ill_phyint_reinit(ill_t *ill); 194 static void ill_set_nce_router_flags(ill_t *, boolean_t); 195 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 196 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 197 static void ill_stq_cache_delete(ire_t *, char *); 198 199 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 200 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 201 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 202 in6_addr_t *); 203 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 204 ipaddr_t *); 205 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 in6_addr_t *); 208 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 ipaddr_t *); 210 211 static void ipif_save_ire(ipif_t *, ire_t *); 212 static void ipif_remove_ire(ipif_t *, ire_t *); 213 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 214 static void ip_cgtp_bcast_delete(ire_t *); 215 216 /* 217 * Per-ill IPsec capabilities management. 218 */ 219 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 220 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 221 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 222 static void ill_ipsec_capab_delete(ill_t *, uint_t); 223 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 224 static void ill_capability_proto(ill_t *, int, mblk_t *); 225 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 226 boolean_t); 227 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 228 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 229 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 230 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 231 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 232 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 234 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 235 dl_capability_sub_t *); 236 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 237 238 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 240 static void ill_capability_dls_reset(ill_t *, mblk_t **); 241 static void ill_capability_dls_disable(ill_t *); 242 243 static void illgrp_cache_delete(ire_t *, char *); 244 static void illgrp_delete(ill_t *ill); 245 static void illgrp_reset_schednext(ill_t *ill); 246 247 static ill_t *ill_prev_usesrc(ill_t *); 248 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 249 static void ill_disband_usesrc_group(ill_t *); 250 251 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 252 253 /* 254 * if we go over the memory footprint limit more than once in this msec 255 * interval, we'll start pruning aggressively. 256 */ 257 int ip_min_frag_prune_time = 0; 258 259 /* 260 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 261 * and the IPsec DOI 262 */ 263 #define MAX_IPSEC_ALGS 256 264 265 #define BITSPERBYTE 8 266 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 267 268 #define IPSEC_ALG_ENABLE(algs, algid) \ 269 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 270 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 271 272 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 273 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 274 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 275 276 typedef uint8_t ipsec_capab_elem_t; 277 278 /* 279 * Per-algorithm parameters. Note that at present, only encryption 280 * algorithms have variable keysize (IKE does not provide a way to negotiate 281 * auth algorithm keysize). 282 * 283 * All sizes here are in bits. 284 */ 285 typedef struct 286 { 287 uint16_t minkeylen; 288 uint16_t maxkeylen; 289 } ipsec_capab_algparm_t; 290 291 /* 292 * Per-ill capabilities. 293 */ 294 struct ill_ipsec_capab_s { 295 ipsec_capab_elem_t *encr_hw_algs; 296 ipsec_capab_elem_t *auth_hw_algs; 297 uint32_t algs_size; /* size of _hw_algs in bytes */ 298 /* algorithm key lengths */ 299 ipsec_capab_algparm_t *encr_algparm; 300 uint32_t encr_algparm_size; 301 uint32_t encr_algparm_end; 302 }; 303 304 /* 305 * List of AH and ESP IPsec acceleration capable ills 306 */ 307 typedef struct ipsec_capab_ill_s { 308 uint_t ill_index; 309 boolean_t ill_isv6; 310 struct ipsec_capab_ill_s *next; 311 } ipsec_capab_ill_t; 312 313 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 314 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 315 krwlock_t ipsec_capab_ills_lock; 316 317 /* 318 * The field values are larger than strictly necessary for simple 319 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 320 */ 321 static area_t ip_area_template = { 322 AR_ENTRY_ADD, /* area_cmd */ 323 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 324 /* area_name_offset */ 325 /* area_name_length temporarily holds this structure length */ 326 sizeof (area_t), /* area_name_length */ 327 IP_ARP_PROTO_TYPE, /* area_proto */ 328 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 329 IP_ADDR_LEN, /* area_proto_addr_length */ 330 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 331 /* area_proto_mask_offset */ 332 0, /* area_flags */ 333 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 334 /* area_hw_addr_offset */ 335 /* Zero length hw_addr_length means 'use your idea of the address' */ 336 0 /* area_hw_addr_length */ 337 }; 338 339 /* 340 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 341 * support 342 */ 343 static area_t ip6_area_template = { 344 AR_ENTRY_ADD, /* area_cmd */ 345 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 346 /* area_name_offset */ 347 /* area_name_length temporarily holds this structure length */ 348 sizeof (area_t), /* area_name_length */ 349 IP_ARP_PROTO_TYPE, /* area_proto */ 350 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 351 IPV6_ADDR_LEN, /* area_proto_addr_length */ 352 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 353 /* area_proto_mask_offset */ 354 0, /* area_flags */ 355 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 356 /* area_hw_addr_offset */ 357 /* Zero length hw_addr_length means 'use your idea of the address' */ 358 0 /* area_hw_addr_length */ 359 }; 360 361 static ared_t ip_ared_template = { 362 AR_ENTRY_DELETE, 363 sizeof (ared_t) + IP_ADDR_LEN, 364 sizeof (ared_t), 365 IP_ARP_PROTO_TYPE, 366 sizeof (ared_t), 367 IP_ADDR_LEN 368 }; 369 370 static ared_t ip6_ared_template = { 371 AR_ENTRY_DELETE, 372 sizeof (ared_t) + IPV6_ADDR_LEN, 373 sizeof (ared_t), 374 IP_ARP_PROTO_TYPE, 375 sizeof (ared_t), 376 IPV6_ADDR_LEN 377 }; 378 379 /* 380 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 381 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 382 * areq is used). 383 */ 384 static areq_t ip_areq_template = { 385 AR_ENTRY_QUERY, /* cmd */ 386 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 387 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 388 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 389 sizeof (areq_t), /* target addr offset */ 390 IP_ADDR_LEN, /* target addr_length */ 391 0, /* flags */ 392 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 393 IP_ADDR_LEN, /* sender addr length */ 394 6, /* xmit_count */ 395 1000, /* (re)xmit_interval in milliseconds */ 396 4 /* max # of requests to buffer */ 397 /* anything else filled in by the code */ 398 }; 399 400 static arc_t ip_aru_template = { 401 AR_INTERFACE_UP, 402 sizeof (arc_t), /* Name offset */ 403 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 404 }; 405 406 static arc_t ip_ard_template = { 407 AR_INTERFACE_DOWN, 408 sizeof (arc_t), /* Name offset */ 409 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 410 }; 411 412 static arc_t ip_aron_template = { 413 AR_INTERFACE_ON, 414 sizeof (arc_t), /* Name offset */ 415 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 416 }; 417 418 static arc_t ip_aroff_template = { 419 AR_INTERFACE_OFF, 420 sizeof (arc_t), /* Name offset */ 421 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 422 }; 423 424 425 static arma_t ip_arma_multi_template = { 426 AR_MAPPING_ADD, 427 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 428 /* Name offset */ 429 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 430 IP_ARP_PROTO_TYPE, 431 sizeof (arma_t), /* proto_addr_offset */ 432 IP_ADDR_LEN, /* proto_addr_length */ 433 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 434 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 435 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 436 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 437 IP_MAX_HW_LEN, /* hw_addr_length */ 438 0, /* hw_mapping_start */ 439 }; 440 441 static ipft_t ip_ioctl_ftbl[] = { 442 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 443 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 446 IPFT_F_NO_REPLY }, 447 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 448 { 0 } 449 }; 450 451 /* Simple ICMP IP Header Template */ 452 static ipha_t icmp_ipha = { 453 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 454 }; 455 456 /* Flag descriptors for ip_ipif_report */ 457 static nv_t ipif_nv_tbl[] = { 458 { IPIF_UP, "UP" }, 459 { IPIF_BROADCAST, "BROADCAST" }, 460 { ILLF_DEBUG, "DEBUG" }, 461 { PHYI_LOOPBACK, "LOOPBACK" }, 462 { IPIF_POINTOPOINT, "POINTOPOINT" }, 463 { ILLF_NOTRAILERS, "NOTRAILERS" }, 464 { PHYI_RUNNING, "RUNNING" }, 465 { ILLF_NOARP, "NOARP" }, 466 { PHYI_PROMISC, "PROMISC" }, 467 { PHYI_ALLMULTI, "ALLMULTI" }, 468 { PHYI_INTELLIGENT, "INTELLIGENT" }, 469 { ILLF_MULTICAST, "MULTICAST" }, 470 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 471 { IPIF_UNNUMBERED, "UNNUMBERED" }, 472 { IPIF_DHCPRUNNING, "DHCP" }, 473 { IPIF_PRIVATE, "PRIVATE" }, 474 { IPIF_NOXMIT, "NOXMIT" }, 475 { IPIF_NOLOCAL, "NOLOCAL" }, 476 { IPIF_DEPRECATED, "DEPRECATED" }, 477 { IPIF_PREFERRED, "PREFERRED" }, 478 { IPIF_TEMPORARY, "TEMPORARY" }, 479 { IPIF_ADDRCONF, "ADDRCONF" }, 480 { PHYI_VIRTUAL, "VIRTUAL" }, 481 { ILLF_ROUTER, "ROUTER" }, 482 { ILLF_NONUD, "NONUD" }, 483 { IPIF_ANYCAST, "ANYCAST" }, 484 { ILLF_NORTEXCH, "NORTEXCH" }, 485 { ILLF_IPV4, "IPV4" }, 486 { ILLF_IPV6, "IPV6" }, 487 { IPIF_MIPRUNNING, "MIP" }, 488 { IPIF_NOFAILOVER, "NOFAILOVER" }, 489 { PHYI_FAILED, "FAILED" }, 490 { PHYI_STANDBY, "STANDBY" }, 491 { PHYI_INACTIVE, "INACTIVE" }, 492 { PHYI_OFFLINE, "OFFLINE" }, 493 }; 494 495 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 496 497 static ip_m_t ip_m_tbl[] = { 498 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_ether_v6intfid }, 500 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_nodef_v6intfid }, 502 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_nodef_v6intfid }, 504 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_nodef_v6intfid }, 506 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 507 ip_ether_v6intfid }, 508 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 509 ip_ib_v6intfid }, 510 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 511 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 512 ip_nodef_v6intfid } 513 }; 514 515 static ill_t ill_null; /* Empty ILL for init. */ 516 char ipif_loopback_name[] = "lo0"; 517 static char *ipv4_forward_suffix = ":ip_forwarding"; 518 static char *ipv6_forward_suffix = ":ip6_forwarding"; 519 static kstat_t *loopback_ksp = NULL; 520 static sin6_t sin6_null; /* Zero address for quick clears */ 521 static sin_t sin_null; /* Zero address for quick clears */ 522 static uint_t ill_index = 1; /* Used to assign interface indicies */ 523 /* When set search for unused index */ 524 static boolean_t ill_index_wrap = B_FALSE; 525 /* When set search for unused ipif_seqid */ 526 static ipif_t ipif_zero; 527 uint_t ipif_src_random; 528 529 /* 530 * For details on the protection offered by these locks please refer 531 * to the notes under the Synchronization section at the start of ip.c 532 */ 533 krwlock_t ill_g_lock; /* The global ill_g_lock */ 534 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 535 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 536 537 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 538 539 /* 540 * illgrp_head/ifgrp_head is protected by IP's perimeter. 541 */ 542 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 543 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 544 545 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 546 547 /* 548 * ppa arena is created after these many 549 * interfaces have been plumbed. 550 */ 551 uint_t ill_no_arena = 12; 552 553 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 554 static phyint_list_t phyint_g_list; /* start of phyint list */ 555 556 /* 557 * Reflects value of FAILBACK variable in IPMP config file 558 * /etc/default/mpathd. Default value is B_TRUE. 559 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 560 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 561 */ 562 static boolean_t ipmp_enable_failback = B_TRUE; 563 564 /* 565 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 566 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 567 * set through platform specific code (Niagara/Ontario). 568 */ 569 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 570 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 571 572 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 573 574 static uint_t 575 ipif_rand(void) 576 { 577 ipif_src_random = ipif_src_random * 1103515245 + 12345; 578 return ((ipif_src_random >> 16) & 0x7fff); 579 } 580 581 /* 582 * Allocate per-interface mibs. Only used for ipv6. 583 * Returns true if ok. False otherwise. 584 * ipsq may not yet be allocated (loopback case ). 585 */ 586 static boolean_t 587 ill_allocate_mibs(ill_t *ill) 588 { 589 ASSERT(ill->ill_isv6); 590 591 /* Already allocated? */ 592 if (ill->ill_ip6_mib != NULL) { 593 ASSERT(ill->ill_icmp6_mib != NULL); 594 return (B_TRUE); 595 } 596 597 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 598 KM_NOSLEEP); 599 if (ill->ill_ip6_mib == NULL) { 600 return (B_FALSE); 601 } 602 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 603 KM_NOSLEEP); 604 if (ill->ill_icmp6_mib == NULL) { 605 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 606 ill->ill_ip6_mib = NULL; 607 return (B_FALSE); 608 } 609 /* 610 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 611 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 612 * -> ill_phyint_reinit 613 */ 614 return (B_TRUE); 615 } 616 617 /* 618 * Common code for preparation of ARP commands. Two points to remember: 619 * 1) The ill_name is tacked on at the end of the allocated space so 620 * the templates name_offset field must contain the total space 621 * to allocate less the name length. 622 * 623 * 2) The templates name_length field should contain the *template* 624 * length. We use it as a parameter to bcopy() and then write 625 * the real ill_name_length into the name_length field of the copy. 626 * (Always called as writer.) 627 */ 628 mblk_t * 629 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 630 { 631 arc_t *arc = (arc_t *)template; 632 char *cp; 633 int len; 634 mblk_t *mp; 635 uint_t name_length = ill->ill_name_length; 636 uint_t template_len = arc->arc_name_length; 637 638 len = arc->arc_name_offset + name_length; 639 mp = allocb(len, BPRI_HI); 640 if (mp == NULL) 641 return (NULL); 642 cp = (char *)mp->b_rptr; 643 mp->b_wptr = (uchar_t *)&cp[len]; 644 if (template_len) 645 bcopy(template, cp, template_len); 646 if (len > template_len) 647 bzero(&cp[template_len], len - template_len); 648 mp->b_datap->db_type = M_PROTO; 649 650 arc = (arc_t *)cp; 651 arc->arc_name_length = name_length; 652 cp = (char *)arc + arc->arc_name_offset; 653 bcopy(ill->ill_name, cp, name_length); 654 655 if (addr) { 656 area_t *area = (area_t *)mp->b_rptr; 657 658 cp = (char *)area + area->area_proto_addr_offset; 659 bcopy(addr, cp, area->area_proto_addr_length); 660 if (area->area_cmd == AR_ENTRY_ADD) { 661 cp = (char *)area; 662 len = area->area_proto_addr_length; 663 if (area->area_proto_mask_offset) 664 cp += area->area_proto_mask_offset; 665 else 666 cp += area->area_proto_addr_offset + len; 667 while (len-- > 0) 668 *cp++ = (char)~0; 669 } 670 } 671 return (mp); 672 } 673 674 /* 675 * Completely vaporize a lower level tap and all associated interfaces. 676 * ill_delete is called only out of ip_close when the device control 677 * stream is being closed. 678 */ 679 void 680 ill_delete(ill_t *ill) 681 { 682 ipif_t *ipif; 683 ill_t *prev_ill; 684 685 /* 686 * ill_delete may be forcibly entering the ipsq. The previous 687 * ioctl may not have completed and may need to be aborted. 688 * ipsq_flush takes care of it. If we don't need to enter the 689 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 690 * ill_delete_tail is sufficient. 691 */ 692 ipsq_flush(ill); 693 694 /* 695 * Nuke all interfaces. ipif_free will take down the interface, 696 * remove it from the list, and free the data structure. 697 * Walk down the ipif list and remove the logical interfaces 698 * first before removing the main ipif. We can't unplumb 699 * zeroth interface first in the case of IPv6 as reset_conn_ill 700 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 701 * POINTOPOINT. 702 * 703 * If ill_ipif was not properly initialized (i.e low on memory), 704 * then no interfaces to clean up. In this case just clean up the 705 * ill. 706 */ 707 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 708 ipif_free(ipif); 709 710 /* 711 * Used only by ill_arp_on and ill_arp_off, which are writers. 712 * So nobody can be using this mp now. Free the mp allocated for 713 * honoring ILLF_NOARP 714 */ 715 freemsg(ill->ill_arp_on_mp); 716 ill->ill_arp_on_mp = NULL; 717 718 /* Clean up msgs on pending upcalls for mrouted */ 719 reset_mrt_ill(ill); 720 721 /* 722 * ipif_free -> reset_conn_ipif will remove all multicast 723 * references for IPv4. For IPv6, we need to do it here as 724 * it points only at ills. 725 */ 726 reset_conn_ill(ill); 727 728 /* 729 * ill_down will arrange to blow off any IRE's dependent on this 730 * ILL, and shut down fragmentation reassembly. 731 */ 732 ill_down(ill); 733 734 /* Let SCTP know, so that it can remove this from its list. */ 735 sctp_update_ill(ill, SCTP_ILL_REMOVE); 736 737 /* 738 * If an address on this ILL is being used as a source address then 739 * clear out the pointers in other ILLs that point to this ILL. 740 */ 741 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 742 if (ill->ill_usesrc_grp_next != NULL) { 743 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 744 ill_disband_usesrc_group(ill); 745 } else { /* consumer of the usesrc ILL */ 746 prev_ill = ill_prev_usesrc(ill); 747 prev_ill->ill_usesrc_grp_next = 748 ill->ill_usesrc_grp_next; 749 } 750 } 751 rw_exit(&ill_g_usesrc_lock); 752 } 753 754 /* 755 * ill_delete_tail is called from ip_modclose after all references 756 * to the closing ill are gone. The wait is done in ip_modclose 757 */ 758 void 759 ill_delete_tail(ill_t *ill) 760 { 761 mblk_t **mpp; 762 ipif_t *ipif; 763 764 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 765 ipif_down_tail(ipif); 766 767 /* 768 * Send the detach if there's one to send (i.e., if we're above a 769 * style 2 DLPI driver). 770 */ 771 if (ill->ill_detach_mp != NULL) { 772 ill_dlpi_send(ill, ill->ill_detach_mp); 773 ill->ill_detach_mp = NULL; 774 } 775 776 /* 777 * If polling capability is enabled (which signifies direct 778 * upcall into IP and driver has ill saved as a handle), 779 * we need to make sure that unbind has completed before we 780 * let the ill disappear and driver no longer has any reference 781 * to this ill. 782 */ 783 mutex_enter(&ill->ill_lock); 784 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) { 785 while (!(ill->ill_state_flags & ILL_DL_UNBIND_DONE)) 786 cv_wait(&ill->ill_cv, &ill->ill_lock); 787 } 788 mutex_exit(&ill->ill_lock); 789 790 if (ill->ill_net_type != IRE_LOOPBACK) 791 qprocsoff(ill->ill_rq); 792 793 /* 794 * We do an ipsq_flush once again now. New messages could have 795 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 796 * could also have landed up if an ioctl thread had looked up 797 * the ill before we set the ILL_CONDEMNED flag, but not yet 798 * enqueued the ioctl when we did the ipsq_flush last time. 799 */ 800 ipsq_flush(ill); 801 802 /* 803 * Free capabilities. 804 */ 805 if (ill->ill_ipsec_capab_ah != NULL) { 806 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 807 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 808 ill->ill_ipsec_capab_ah = NULL; 809 } 810 811 if (ill->ill_ipsec_capab_esp != NULL) { 812 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 813 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 814 ill->ill_ipsec_capab_esp = NULL; 815 } 816 817 if (ill->ill_mdt_capab != NULL) { 818 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 819 ill->ill_mdt_capab = NULL; 820 } 821 822 if (ill->ill_hcksum_capab != NULL) { 823 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 824 ill->ill_hcksum_capab = NULL; 825 } 826 827 if (ill->ill_zerocopy_capab != NULL) { 828 kmem_free(ill->ill_zerocopy_capab, 829 sizeof (ill_zerocopy_capab_t)); 830 ill->ill_zerocopy_capab = NULL; 831 } 832 833 /* 834 * Clean up polling and soft ring capabilities 835 */ 836 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 837 ill_capability_dls_disable(ill); 838 839 if (ill->ill_dls_capab != NULL) { 840 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 841 ill->ill_dls_capab->ill_unbind_conn = NULL; 842 kmem_free(ill->ill_dls_capab, 843 sizeof (ill_dls_capab_t) + 844 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 845 ill->ill_dls_capab = NULL; 846 } 847 848 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 849 850 while (ill->ill_ipif != NULL) 851 ipif_free_tail(ill->ill_ipif); 852 853 ill_down_tail(ill); 854 855 /* 856 * We have removed all references to ilm from conn and the ones joined 857 * within the kernel. 858 * 859 * We don't walk conns, mrts and ires because 860 * 861 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 862 * 2) ill_down ->ill_downi walks all the ires and cleans up 863 * ill references. 864 */ 865 ASSERT(ilm_walk_ill(ill) == 0); 866 /* 867 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 868 * could free the phyint. No more reference to the phyint after this 869 * point. 870 */ 871 (void) ill_glist_delete(ill); 872 873 rw_enter(&ip_g_nd_lock, RW_WRITER); 874 if (ill->ill_ndd_name != NULL) 875 nd_unload(&ip_g_nd, ill->ill_ndd_name); 876 rw_exit(&ip_g_nd_lock); 877 878 879 if (ill->ill_frag_ptr != NULL) { 880 uint_t count; 881 882 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 883 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 884 } 885 mi_free(ill->ill_frag_ptr); 886 ill->ill_frag_ptr = NULL; 887 ill->ill_frag_hash_tbl = NULL; 888 } 889 if (ill->ill_nd_lla_mp != NULL) 890 freemsg(ill->ill_nd_lla_mp); 891 /* Free all retained control messages. */ 892 mpp = &ill->ill_first_mp_to_free; 893 do { 894 while (mpp[0]) { 895 mblk_t *mp; 896 mblk_t *mp1; 897 898 mp = mpp[0]; 899 mpp[0] = mp->b_next; 900 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 901 mp1->b_next = NULL; 902 mp1->b_prev = NULL; 903 } 904 freemsg(mp); 905 } 906 } while (mpp++ != &ill->ill_last_mp_to_free); 907 908 ill_free_mib(ill); 909 ILL_TRACE_CLEANUP(ill); 910 } 911 912 static void 913 ill_free_mib(ill_t *ill) 914 { 915 if (ill->ill_ip6_mib != NULL) { 916 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 917 ill->ill_ip6_mib = NULL; 918 } 919 if (ill->ill_icmp6_mib != NULL) { 920 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 921 ill->ill_icmp6_mib = NULL; 922 } 923 } 924 925 /* 926 * Concatenate together a physical address and a sap. 927 * 928 * Sap_lengths are interpreted as follows: 929 * sap_length == 0 ==> no sap 930 * sap_length > 0 ==> sap is at the head of the dlpi address 931 * sap_length < 0 ==> sap is at the tail of the dlpi address 932 */ 933 static void 934 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 935 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 936 { 937 uint16_t sap_addr = (uint16_t)sap_src; 938 939 if (sap_length == 0) { 940 if (phys_src == NULL) 941 bzero(dst, phys_length); 942 else 943 bcopy(phys_src, dst, phys_length); 944 } else if (sap_length < 0) { 945 if (phys_src == NULL) 946 bzero(dst, phys_length); 947 else 948 bcopy(phys_src, dst, phys_length); 949 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 950 } else { 951 bcopy(&sap_addr, dst, sizeof (sap_addr)); 952 if (phys_src == NULL) 953 bzero((char *)dst + sap_length, phys_length); 954 else 955 bcopy(phys_src, (char *)dst + sap_length, phys_length); 956 } 957 } 958 959 /* 960 * Generate a dl_unitdata_req mblk for the device and address given. 961 * addr_length is the length of the physical portion of the address. 962 * If addr is NULL include an all zero address of the specified length. 963 * TRUE? In any case, addr_length is taken to be the entire length of the 964 * dlpi address, including the absolute value of sap_length. 965 */ 966 mblk_t * 967 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 968 t_scalar_t sap_length) 969 { 970 dl_unitdata_req_t *dlur; 971 mblk_t *mp; 972 t_scalar_t abs_sap_length; /* absolute value */ 973 974 abs_sap_length = ABS(sap_length); 975 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 976 DL_UNITDATA_REQ); 977 if (mp == NULL) 978 return (NULL); 979 dlur = (dl_unitdata_req_t *)mp->b_rptr; 980 /* HACK: accomodate incompatible DLPI drivers */ 981 if (addr_length == 8) 982 addr_length = 6; 983 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 984 dlur->dl_dest_addr_offset = sizeof (*dlur); 985 dlur->dl_priority.dl_min = 0; 986 dlur->dl_priority.dl_max = 0; 987 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 988 (uchar_t *)&dlur[1]); 989 return (mp); 990 } 991 992 /* 993 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 994 * Return an error if we already have 1 or more ioctls in progress. 995 * This is used only for non-exclusive ioctls. Currently this is used 996 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 997 * and thus need to use ipsq_pending_mp_add. 998 */ 999 boolean_t 1000 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1001 { 1002 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1003 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1004 /* 1005 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1006 */ 1007 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1008 (add_mp->b_datap->db_type == M_IOCTL)); 1009 1010 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1011 /* 1012 * Return error if the conn has started closing. The conn 1013 * could have finished cleaning up the pending mp list, 1014 * If so we should not add another mp to the list negating 1015 * the cleanup. 1016 */ 1017 if (connp->conn_state_flags & CONN_CLOSING) 1018 return (B_FALSE); 1019 /* 1020 * Add the pending mp to the head of the list, chained by b_next. 1021 * Note down the conn on which the ioctl request came, in b_prev. 1022 * This will be used to later get the conn, when we get a response 1023 * on the ill queue, from some other module (typically arp) 1024 */ 1025 add_mp->b_next = (void *)ill->ill_pending_mp; 1026 add_mp->b_queue = CONNP_TO_WQ(connp); 1027 ill->ill_pending_mp = add_mp; 1028 if (connp != NULL) 1029 connp->conn_oper_pending_ill = ill; 1030 return (B_TRUE); 1031 } 1032 1033 /* 1034 * Retrieve the ill_pending_mp and return it. We have to walk the list 1035 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1036 */ 1037 mblk_t * 1038 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1039 { 1040 mblk_t *prev = NULL; 1041 mblk_t *curr = NULL; 1042 uint_t id; 1043 conn_t *connp; 1044 1045 /* 1046 * When the conn closes, conn_ioctl_cleanup needs to clean 1047 * up the pending mp, but it does not know the ioc_id and 1048 * passes in a zero for it. 1049 */ 1050 mutex_enter(&ill->ill_lock); 1051 if (ioc_id != 0) 1052 *connpp = NULL; 1053 1054 /* Search the list for the appropriate ioctl based on ioc_id */ 1055 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1056 prev = curr, curr = curr->b_next) { 1057 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1058 connp = Q_TO_CONN(curr->b_queue); 1059 /* Match based on the ioc_id or based on the conn */ 1060 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1061 break; 1062 } 1063 1064 if (curr != NULL) { 1065 /* Unlink the mblk from the pending mp list */ 1066 if (prev != NULL) { 1067 prev->b_next = curr->b_next; 1068 } else { 1069 ASSERT(ill->ill_pending_mp == curr); 1070 ill->ill_pending_mp = curr->b_next; 1071 } 1072 1073 /* 1074 * conn refcnt must have been bumped up at the start of 1075 * the ioctl. So we can safely access the conn. 1076 */ 1077 ASSERT(CONN_Q(curr->b_queue)); 1078 *connpp = Q_TO_CONN(curr->b_queue); 1079 curr->b_next = NULL; 1080 curr->b_queue = NULL; 1081 } 1082 1083 mutex_exit(&ill->ill_lock); 1084 1085 return (curr); 1086 } 1087 1088 /* 1089 * Add the pending mp to the list. There can be only 1 pending mp 1090 * in the list. Any exclusive ioctl that needs to wait for a response 1091 * from another module or driver needs to use this function to set 1092 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1093 * the other module/driver. This is also used while waiting for the 1094 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1095 */ 1096 boolean_t 1097 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1098 int waitfor) 1099 { 1100 ipsq_t *ipsq; 1101 1102 ASSERT(IAM_WRITER_IPIF(ipif)); 1103 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1104 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1105 /* 1106 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1107 * M_ERROR/M_HANGUP from driver 1108 */ 1109 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1110 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1111 1112 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1113 if (connp != NULL) { 1114 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1115 /* 1116 * Return error if the conn has started closing. The conn 1117 * could have finished cleaning up the pending mp list, 1118 * If so we should not add another mp to the list negating 1119 * the cleanup. 1120 */ 1121 if (connp->conn_state_flags & CONN_CLOSING) 1122 return (B_FALSE); 1123 } 1124 mutex_enter(&ipsq->ipsq_lock); 1125 ipsq->ipsq_pending_ipif = ipif; 1126 /* 1127 * Note down the queue in b_queue. This will be returned by 1128 * ipsq_pending_mp_get. Caller will then use these values to restart 1129 * the processing 1130 */ 1131 add_mp->b_next = NULL; 1132 add_mp->b_queue = q; 1133 ipsq->ipsq_pending_mp = add_mp; 1134 ipsq->ipsq_waitfor = waitfor; 1135 /* 1136 * ipsq_current_ipif is needed to restart the operation from 1137 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1138 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1139 * been set until now. 1140 */ 1141 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1142 ASSERT(ipsq->ipsq_current_ipif == NULL); 1143 ipsq->ipsq_current_ipif = ipif; 1144 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1145 } 1146 if (connp != NULL) 1147 connp->conn_oper_pending_ill = ipif->ipif_ill; 1148 mutex_exit(&ipsq->ipsq_lock); 1149 return (B_TRUE); 1150 } 1151 1152 /* 1153 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1154 * queued in the list. 1155 */ 1156 mblk_t * 1157 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1158 { 1159 mblk_t *curr = NULL; 1160 1161 mutex_enter(&ipsq->ipsq_lock); 1162 *connpp = NULL; 1163 if (ipsq->ipsq_pending_mp == NULL) { 1164 mutex_exit(&ipsq->ipsq_lock); 1165 return (NULL); 1166 } 1167 1168 /* There can be only 1 such excl message */ 1169 curr = ipsq->ipsq_pending_mp; 1170 ASSERT(curr != NULL && curr->b_next == NULL); 1171 ipsq->ipsq_pending_ipif = NULL; 1172 ipsq->ipsq_pending_mp = NULL; 1173 ipsq->ipsq_waitfor = 0; 1174 mutex_exit(&ipsq->ipsq_lock); 1175 1176 if (CONN_Q(curr->b_queue)) { 1177 /* 1178 * This mp did a refhold on the conn, at the start of the ioctl. 1179 * So we can safely return a pointer to the conn to the caller. 1180 */ 1181 *connpp = Q_TO_CONN(curr->b_queue); 1182 } else { 1183 *connpp = NULL; 1184 } 1185 curr->b_next = NULL; 1186 curr->b_prev = NULL; 1187 return (curr); 1188 } 1189 1190 /* 1191 * Cleanup the ioctl mp queued in ipsq_pending_mp 1192 * - Called in the ill_delete path 1193 * - Called in the M_ERROR or M_HANGUP path on the ill. 1194 * - Called in the conn close path. 1195 */ 1196 boolean_t 1197 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1198 { 1199 mblk_t *mp; 1200 ipsq_t *ipsq; 1201 queue_t *q; 1202 ipif_t *ipif; 1203 1204 ASSERT(IAM_WRITER_ILL(ill)); 1205 ipsq = ill->ill_phyint->phyint_ipsq; 1206 mutex_enter(&ipsq->ipsq_lock); 1207 /* 1208 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1209 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1210 * even if it is meant for another ill, since we have to enqueue 1211 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1212 * If connp is non-null we are called from the conn close path. 1213 */ 1214 mp = ipsq->ipsq_pending_mp; 1215 if (mp == NULL || (connp != NULL && 1216 mp->b_queue != CONNP_TO_WQ(connp))) { 1217 mutex_exit(&ipsq->ipsq_lock); 1218 return (B_FALSE); 1219 } 1220 /* Now remove from the ipsq_pending_mp */ 1221 ipsq->ipsq_pending_mp = NULL; 1222 q = mp->b_queue; 1223 mp->b_next = NULL; 1224 mp->b_prev = NULL; 1225 mp->b_queue = NULL; 1226 1227 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1228 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1229 if (ill->ill_move_in_progress) { 1230 ILL_CLEAR_MOVE(ill); 1231 } else if (ill->ill_up_ipifs) { 1232 ill_group_cleanup(ill); 1233 } 1234 1235 ipif = ipsq->ipsq_pending_ipif; 1236 ipsq->ipsq_pending_ipif = NULL; 1237 ipsq->ipsq_waitfor = 0; 1238 ipsq->ipsq_current_ipif = NULL; 1239 mutex_exit(&ipsq->ipsq_lock); 1240 1241 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1242 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1243 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1244 } else { 1245 /* 1246 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1247 * be just inet_freemsg. we have to restart it 1248 * otherwise the thread will be stuck. 1249 */ 1250 inet_freemsg(mp); 1251 } 1252 return (B_TRUE); 1253 } 1254 1255 /* 1256 * The ill is closing. Cleanup all the pending mps. Called exclusively 1257 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1258 * knows this ill, and hence nobody can add an mp to this list 1259 */ 1260 static void 1261 ill_pending_mp_cleanup(ill_t *ill) 1262 { 1263 mblk_t *mp; 1264 queue_t *q; 1265 1266 ASSERT(IAM_WRITER_ILL(ill)); 1267 1268 mutex_enter(&ill->ill_lock); 1269 /* 1270 * Every mp on the pending mp list originating from an ioctl 1271 * added 1 to the conn refcnt, at the start of the ioctl. 1272 * So bump it down now. See comments in ip_wput_nondata() 1273 */ 1274 while (ill->ill_pending_mp != NULL) { 1275 mp = ill->ill_pending_mp; 1276 ill->ill_pending_mp = mp->b_next; 1277 mutex_exit(&ill->ill_lock); 1278 1279 q = mp->b_queue; 1280 ASSERT(CONN_Q(q)); 1281 mp->b_next = NULL; 1282 mp->b_prev = NULL; 1283 mp->b_queue = NULL; 1284 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1285 mutex_enter(&ill->ill_lock); 1286 } 1287 ill->ill_pending_ipif = NULL; 1288 1289 mutex_exit(&ill->ill_lock); 1290 } 1291 1292 /* 1293 * Called in the conn close path and ill delete path 1294 */ 1295 static void 1296 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1297 { 1298 ipsq_t *ipsq; 1299 mblk_t *prev; 1300 mblk_t *curr; 1301 mblk_t *next; 1302 queue_t *q; 1303 mblk_t *tmp_list = NULL; 1304 1305 ASSERT(IAM_WRITER_ILL(ill)); 1306 if (connp != NULL) 1307 q = CONNP_TO_WQ(connp); 1308 else 1309 q = ill->ill_wq; 1310 1311 ipsq = ill->ill_phyint->phyint_ipsq; 1312 /* 1313 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1314 * In the case of ioctl from a conn, there can be only 1 mp 1315 * queued on the ipsq. If an ill is being unplumbed, only messages 1316 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1317 * ioctls meant for this ill form conn's are not flushed. They will 1318 * be processed during ipsq_exit and will not find the ill and will 1319 * return error. 1320 */ 1321 mutex_enter(&ipsq->ipsq_lock); 1322 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1323 curr = next) { 1324 next = curr->b_next; 1325 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1326 /* Unlink the mblk from the pending mp list */ 1327 if (prev != NULL) { 1328 prev->b_next = curr->b_next; 1329 } else { 1330 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1331 ipsq->ipsq_xopq_mphead = curr->b_next; 1332 } 1333 if (ipsq->ipsq_xopq_mptail == curr) 1334 ipsq->ipsq_xopq_mptail = prev; 1335 /* 1336 * Create a temporary list and release the ipsq lock 1337 * New elements are added to the head of the tmp_list 1338 */ 1339 curr->b_next = tmp_list; 1340 tmp_list = curr; 1341 } else { 1342 prev = curr; 1343 } 1344 } 1345 mutex_exit(&ipsq->ipsq_lock); 1346 1347 while (tmp_list != NULL) { 1348 curr = tmp_list; 1349 tmp_list = curr->b_next; 1350 curr->b_next = NULL; 1351 curr->b_prev = NULL; 1352 curr->b_queue = NULL; 1353 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1354 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1355 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1356 } else { 1357 /* 1358 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1359 * this can't be just inet_freemsg. we have to 1360 * restart it otherwise the thread will be stuck. 1361 */ 1362 inet_freemsg(curr); 1363 } 1364 } 1365 } 1366 1367 /* 1368 * This conn has started closing. Cleanup any pending ioctl from this conn. 1369 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1370 */ 1371 void 1372 conn_ioctl_cleanup(conn_t *connp) 1373 { 1374 mblk_t *curr; 1375 ipsq_t *ipsq; 1376 ill_t *ill; 1377 boolean_t refheld; 1378 1379 /* 1380 * Is any exclusive ioctl pending ? If so clean it up. If the 1381 * ioctl has not yet started, the mp is pending in the list headed by 1382 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1383 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1384 * is currently executing now the mp is not queued anywhere but 1385 * conn_oper_pending_ill is null. The conn close will wait 1386 * till the conn_ref drops to zero. 1387 */ 1388 mutex_enter(&connp->conn_lock); 1389 ill = connp->conn_oper_pending_ill; 1390 if (ill == NULL) { 1391 mutex_exit(&connp->conn_lock); 1392 return; 1393 } 1394 1395 curr = ill_pending_mp_get(ill, &connp, 0); 1396 if (curr != NULL) { 1397 mutex_exit(&connp->conn_lock); 1398 CONN_DEC_REF(connp); 1399 inet_freemsg(curr); 1400 return; 1401 } 1402 /* 1403 * We may not be able to refhold the ill if the ill/ipif 1404 * is changing. But we need to make sure that the ill will 1405 * not vanish. So we just bump up the ill_waiter count. 1406 */ 1407 refheld = ill_waiter_inc(ill); 1408 mutex_exit(&connp->conn_lock); 1409 if (refheld) { 1410 if (ipsq_enter(ill, B_TRUE)) { 1411 ill_waiter_dcr(ill); 1412 /* 1413 * Check whether this ioctl has started and is 1414 * pending now in ipsq_pending_mp. If it is not 1415 * found there then check whether this ioctl has 1416 * not even started and is in the ipsq_xopq list. 1417 */ 1418 if (!ipsq_pending_mp_cleanup(ill, connp)) 1419 ipsq_xopq_mp_cleanup(ill, connp); 1420 ipsq = ill->ill_phyint->phyint_ipsq; 1421 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1422 return; 1423 } 1424 } 1425 1426 /* 1427 * The ill is also closing and we could not bump up the 1428 * ill_waiter_count or we could not enter the ipsq. Leave 1429 * the cleanup to ill_delete 1430 */ 1431 mutex_enter(&connp->conn_lock); 1432 while (connp->conn_oper_pending_ill != NULL) 1433 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1434 mutex_exit(&connp->conn_lock); 1435 if (refheld) 1436 ill_waiter_dcr(ill); 1437 } 1438 1439 /* 1440 * ipcl_walk function for cleaning up conn_*_ill fields. 1441 */ 1442 static void 1443 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1444 { 1445 ill_t *ill = (ill_t *)arg; 1446 ire_t *ire; 1447 1448 mutex_enter(&connp->conn_lock); 1449 if (connp->conn_multicast_ill == ill) { 1450 /* Revert to late binding */ 1451 connp->conn_multicast_ill = NULL; 1452 connp->conn_orig_multicast_ifindex = 0; 1453 } 1454 if (connp->conn_incoming_ill == ill) 1455 connp->conn_incoming_ill = NULL; 1456 if (connp->conn_outgoing_ill == ill) 1457 connp->conn_outgoing_ill = NULL; 1458 if (connp->conn_outgoing_pill == ill) 1459 connp->conn_outgoing_pill = NULL; 1460 if (connp->conn_nofailover_ill == ill) 1461 connp->conn_nofailover_ill = NULL; 1462 if (connp->conn_xmit_if_ill == ill) 1463 connp->conn_xmit_if_ill = NULL; 1464 if (connp->conn_ire_cache != NULL) { 1465 ire = connp->conn_ire_cache; 1466 /* 1467 * ip_newroute creates IRE_CACHE with ire_stq coming from 1468 * interface X and ipif coming from interface Y, if interface 1469 * X and Y are part of the same IPMPgroup. Thus whenever 1470 * interface X goes down, remove all references to it by 1471 * checking both on ire_ipif and ire_stq. 1472 */ 1473 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1474 (ire->ire_type == IRE_CACHE && 1475 ire->ire_stq == ill->ill_wq)) { 1476 connp->conn_ire_cache = NULL; 1477 mutex_exit(&connp->conn_lock); 1478 ire_refrele_notr(ire); 1479 return; 1480 } 1481 } 1482 mutex_exit(&connp->conn_lock); 1483 1484 } 1485 1486 /* ARGSUSED */ 1487 void 1488 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1489 { 1490 ill_t *ill = q->q_ptr; 1491 ipif_t *ipif; 1492 1493 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1494 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1495 ipif_down_tail(ipif); 1496 ill_down_tail(ill); 1497 freemsg(mp); 1498 ipsq->ipsq_current_ipif = NULL; 1499 } 1500 1501 /* 1502 * ill_down_start is called when we want to down this ill and bring it up again 1503 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1504 * all interfaces, but don't tear down any plumbing. 1505 */ 1506 boolean_t 1507 ill_down_start(queue_t *q, mblk_t *mp) 1508 { 1509 ill_t *ill; 1510 ipif_t *ipif; 1511 1512 ill = q->q_ptr; 1513 1514 ASSERT(IAM_WRITER_ILL(ill)); 1515 1516 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1517 (void) ipif_down(ipif, NULL, NULL); 1518 1519 ill_down(ill); 1520 1521 (void) ipsq_pending_mp_cleanup(ill, NULL); 1522 mutex_enter(&ill->ill_lock); 1523 /* 1524 * Atomically test and add the pending mp if references are 1525 * still active. 1526 */ 1527 if (!ill_is_quiescent(ill)) { 1528 /* 1529 * Get rid of any pending mps and cleanup. Call will 1530 * not fail since we are passing a null connp. 1531 */ 1532 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1533 mp, ILL_DOWN); 1534 mutex_exit(&ill->ill_lock); 1535 return (B_FALSE); 1536 } 1537 mutex_exit(&ill->ill_lock); 1538 return (B_TRUE); 1539 } 1540 1541 static void 1542 ill_down(ill_t *ill) 1543 { 1544 /* Blow off any IREs dependent on this ILL. */ 1545 ire_walk(ill_downi, (char *)ill); 1546 1547 mutex_enter(&ire_mrtun_lock); 1548 if (ire_mrtun_count != 0) { 1549 mutex_exit(&ire_mrtun_lock); 1550 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1551 (char *)ill, NULL); 1552 } else { 1553 mutex_exit(&ire_mrtun_lock); 1554 } 1555 1556 /* 1557 * If any interface based forwarding table exists 1558 * Blow off the ires there dependent on this ill 1559 */ 1560 mutex_enter(&ire_srcif_table_lock); 1561 if (ire_srcif_table_count > 0) { 1562 mutex_exit(&ire_srcif_table_lock); 1563 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1564 } else { 1565 mutex_exit(&ire_srcif_table_lock); 1566 } 1567 1568 /* Remove any conn_*_ill depending on this ill */ 1569 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1570 1571 if (ill->ill_group != NULL) { 1572 illgrp_delete(ill); 1573 } 1574 1575 } 1576 1577 static void 1578 ill_down_tail(ill_t *ill) 1579 { 1580 int i; 1581 1582 /* Destroy ill_srcif_table if it exists */ 1583 /* Lock not reqd really because nobody should be able to access */ 1584 mutex_enter(&ill->ill_lock); 1585 if (ill->ill_srcif_table != NULL) { 1586 ill->ill_srcif_refcnt = 0; 1587 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1588 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1589 } 1590 kmem_free(ill->ill_srcif_table, 1591 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1592 ill->ill_srcif_table = NULL; 1593 ill->ill_srcif_refcnt = 0; 1594 ill->ill_mrtun_refcnt = 0; 1595 } 1596 mutex_exit(&ill->ill_lock); 1597 } 1598 1599 /* 1600 * ire_walk routine used to delete every IRE that depends on queues 1601 * associated with 'ill'. (Always called as writer.) 1602 */ 1603 static void 1604 ill_downi(ire_t *ire, char *ill_arg) 1605 { 1606 ill_t *ill = (ill_t *)ill_arg; 1607 1608 /* 1609 * ip_newroute creates IRE_CACHE with ire_stq coming from 1610 * interface X and ipif coming from interface Y, if interface 1611 * X and Y are part of the same IPMP group. Thus whenever interface 1612 * X goes down, remove all references to it by checking both 1613 * on ire_ipif and ire_stq. 1614 */ 1615 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1616 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1617 ire_delete(ire); 1618 } 1619 } 1620 1621 /* 1622 * A seperate routine for deleting revtun and srcif based routes 1623 * are needed because the ires only deleted when the interface 1624 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1625 * we want to keep mobile IP specific code separate. 1626 */ 1627 static void 1628 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1629 { 1630 ill_t *ill = (ill_t *)ill_arg; 1631 1632 ASSERT(ire->ire_in_ill != NULL); 1633 1634 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1635 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1636 ire_delete(ire); 1637 } 1638 } 1639 1640 /* 1641 * Remove ire/nce from the fastpath list. 1642 */ 1643 void 1644 ill_fastpath_nack(ill_t *ill) 1645 { 1646 if (ill->ill_isv6) { 1647 nce_fastpath_list_dispatch(ill, NULL, NULL); 1648 } else { 1649 ire_fastpath_list_dispatch(ill, NULL, NULL); 1650 } 1651 } 1652 1653 /* Consume an M_IOCACK of the fastpath probe. */ 1654 void 1655 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1656 { 1657 mblk_t *mp1 = mp; 1658 1659 /* 1660 * If this was the first attempt turn on the fastpath probing. 1661 */ 1662 mutex_enter(&ill->ill_lock); 1663 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) 1664 ill->ill_dlpi_fastpath_state = IDMS_OK; 1665 mutex_exit(&ill->ill_lock); 1666 1667 /* Free the M_IOCACK mblk, hold on to the data */ 1668 mp = mp->b_cont; 1669 freeb(mp1); 1670 if (mp == NULL) 1671 return; 1672 if (mp->b_cont != NULL) { 1673 /* 1674 * Update all IRE's or NCE's that are waiting for 1675 * fastpath update. 1676 */ 1677 if (ill->ill_isv6) { 1678 /* 1679 * update nce's in the fastpath list. 1680 */ 1681 nce_fastpath_list_dispatch(ill, 1682 ndp_fastpath_update, mp); 1683 } else { 1684 1685 /* 1686 * update ire's in the fastpath list. 1687 */ 1688 ire_fastpath_list_dispatch(ill, 1689 ire_fastpath_update, mp); 1690 /* 1691 * Check if we need to traverse reverse tunnel table. 1692 * Since there is only single ire_type (IRE_MIPRTUN) 1693 * in the table, we don't need to match on ire_type. 1694 * We have to check ire_mrtun_count and not the 1695 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1696 * on the incoming ill and here we are dealing with 1697 * outgoing ill. 1698 */ 1699 mutex_enter(&ire_mrtun_lock); 1700 if (ire_mrtun_count != 0) { 1701 mutex_exit(&ire_mrtun_lock); 1702 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1703 (void (*)(ire_t *, void *)) 1704 ire_fastpath_update, mp, ill); 1705 } else { 1706 mutex_exit(&ire_mrtun_lock); 1707 } 1708 } 1709 mp1 = mp->b_cont; 1710 freeb(mp); 1711 mp = mp1; 1712 } else { 1713 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1714 } 1715 1716 freeb(mp); 1717 } 1718 1719 /* 1720 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1721 * The data portion of the request is a dl_unitdata_req_t template for 1722 * what we would send downstream in the absence of a fastpath confirmation. 1723 */ 1724 int 1725 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1726 { 1727 struct iocblk *ioc; 1728 mblk_t *mp; 1729 1730 if (dlur_mp == NULL) 1731 return (EINVAL); 1732 1733 mutex_enter(&ill->ill_lock); 1734 switch (ill->ill_dlpi_fastpath_state) { 1735 case IDMS_FAILED: 1736 /* 1737 * Driver NAKed the first fastpath ioctl - assume it doesn't 1738 * support it. 1739 */ 1740 mutex_exit(&ill->ill_lock); 1741 return (ENOTSUP); 1742 case IDMS_UNKNOWN: 1743 /* This is the first probe */ 1744 ill->ill_dlpi_fastpath_state = IDMS_INPROGRESS; 1745 break; 1746 default: 1747 break; 1748 } 1749 mutex_exit(&ill->ill_lock); 1750 1751 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1752 return (EAGAIN); 1753 1754 mp->b_cont = copyb(dlur_mp); 1755 if (mp->b_cont == NULL) { 1756 freeb(mp); 1757 return (EAGAIN); 1758 } 1759 1760 ioc = (struct iocblk *)mp->b_rptr; 1761 ioc->ioc_count = msgdsize(mp->b_cont); 1762 1763 putnext(ill->ill_wq, mp); 1764 return (0); 1765 } 1766 1767 void 1768 ill_capability_probe(ill_t *ill) 1769 { 1770 /* 1771 * Do so only if negotiation is enabled, capabilities are unknown, 1772 * and a capability negotiation is not already in progress. 1773 */ 1774 if (ill->ill_capab_state != IDMS_UNKNOWN && 1775 ill->ill_capab_state != IDMS_RENEG) 1776 return; 1777 1778 ill->ill_capab_state = IDMS_INPROGRESS; 1779 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1780 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1781 } 1782 1783 void 1784 ill_capability_reset(ill_t *ill) 1785 { 1786 mblk_t *sc_mp = NULL; 1787 mblk_t *tmp; 1788 1789 /* 1790 * Note here that we reset the state to UNKNOWN, and later send 1791 * down the DL_CAPABILITY_REQ without first setting the state to 1792 * INPROGRESS. We do this in order to distinguish the 1793 * DL_CAPABILITY_ACK response which may come back in response to 1794 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1795 * also handle the case where the driver doesn't send us back 1796 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1797 * requires the state to be in UNKNOWN anyway. In any case, all 1798 * features are turned off until the state reaches IDMS_OK. 1799 */ 1800 ill->ill_capab_state = IDMS_UNKNOWN; 1801 1802 /* 1803 * Disable sub-capabilities and request a list of sub-capability 1804 * messages which will be sent down to the driver. Each handler 1805 * allocates the corresponding dl_capability_sub_t inside an 1806 * mblk, and links it to the existing sc_mp mblk, or return it 1807 * as sc_mp if it's the first sub-capability (the passed in 1808 * sc_mp is NULL). Upon returning from all capability handlers, 1809 * sc_mp will be pulled-up, before passing it downstream. 1810 */ 1811 ill_capability_mdt_reset(ill, &sc_mp); 1812 ill_capability_hcksum_reset(ill, &sc_mp); 1813 ill_capability_zerocopy_reset(ill, &sc_mp); 1814 ill_capability_ipsec_reset(ill, &sc_mp); 1815 ill_capability_dls_reset(ill, &sc_mp); 1816 1817 /* Nothing to send down in order to disable the capabilities? */ 1818 if (sc_mp == NULL) 1819 return; 1820 1821 tmp = msgpullup(sc_mp, -1); 1822 freemsg(sc_mp); 1823 if ((sc_mp = tmp) == NULL) { 1824 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1825 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1826 return; 1827 } 1828 1829 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1830 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1831 } 1832 1833 /* 1834 * Request or set new-style hardware capabilities supported by DLS provider. 1835 */ 1836 static void 1837 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1838 { 1839 mblk_t *mp; 1840 dl_capability_req_t *capb; 1841 size_t size = 0; 1842 uint8_t *ptr; 1843 1844 if (reqp != NULL) 1845 size = MBLKL(reqp); 1846 1847 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1848 if (mp == NULL) { 1849 freemsg(reqp); 1850 return; 1851 } 1852 ptr = mp->b_rptr; 1853 1854 capb = (dl_capability_req_t *)ptr; 1855 ptr += sizeof (dl_capability_req_t); 1856 1857 if (reqp != NULL) { 1858 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1859 capb->dl_sub_length = size; 1860 bcopy(reqp->b_rptr, ptr, size); 1861 ptr += size; 1862 mp->b_cont = reqp->b_cont; 1863 freeb(reqp); 1864 } 1865 ASSERT(ptr == mp->b_wptr); 1866 1867 ill_dlpi_send(ill, mp); 1868 } 1869 1870 static void 1871 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1872 { 1873 dl_capab_id_t *id_ic; 1874 uint_t sub_dl_cap = outers->dl_cap; 1875 dl_capability_sub_t *inners; 1876 uint8_t *capend; 1877 1878 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1879 1880 /* 1881 * Note: range checks here are not absolutely sufficient to 1882 * make us robust against malformed messages sent by drivers; 1883 * this is in keeping with the rest of IP's dlpi handling. 1884 * (Remember, it's coming from something else in the kernel 1885 * address space) 1886 */ 1887 1888 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1889 if (capend > mp->b_wptr) { 1890 cmn_err(CE_WARN, "ill_capability_id_ack: " 1891 "malformed sub-capability too long for mblk"); 1892 return; 1893 } 1894 1895 id_ic = (dl_capab_id_t *)(outers + 1); 1896 1897 if (outers->dl_length < sizeof (*id_ic) || 1898 (inners = &id_ic->id_subcap, 1899 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1900 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1901 "encapsulated capab type %d too long for mblk", 1902 inners->dl_cap); 1903 return; 1904 } 1905 1906 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1907 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1908 "isn't as expected; pass-thru module(s) detected, " 1909 "discarding capability\n", inners->dl_cap)); 1910 return; 1911 } 1912 1913 /* Process the encapsulated sub-capability */ 1914 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1915 } 1916 1917 /* 1918 * Process Multidata Transmit capability negotiation ack received from a 1919 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1920 * DL_CAPABILITY_ACK message. 1921 */ 1922 static void 1923 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1924 { 1925 mblk_t *nmp = NULL; 1926 dl_capability_req_t *oc; 1927 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1928 ill_mdt_capab_t **ill_mdt_capab; 1929 uint_t sub_dl_cap = isub->dl_cap; 1930 uint8_t *capend; 1931 1932 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1933 1934 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1935 1936 /* 1937 * Note: range checks here are not absolutely sufficient to 1938 * make us robust against malformed messages sent by drivers; 1939 * this is in keeping with the rest of IP's dlpi handling. 1940 * (Remember, it's coming from something else in the kernel 1941 * address space) 1942 */ 1943 1944 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1945 if (capend > mp->b_wptr) { 1946 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1947 "malformed sub-capability too long for mblk"); 1948 return; 1949 } 1950 1951 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1952 1953 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1954 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1955 "unsupported MDT sub-capability (version %d, expected %d)", 1956 mdt_ic->mdt_version, MDT_VERSION_2); 1957 return; 1958 } 1959 1960 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1961 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1962 "capability isn't as expected; pass-thru module(s) " 1963 "detected, discarding capability\n")); 1964 return; 1965 } 1966 1967 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1968 1969 if (*ill_mdt_capab == NULL) { 1970 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1971 KM_NOSLEEP); 1972 1973 if (*ill_mdt_capab == NULL) { 1974 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1975 "could not enable MDT version %d " 1976 "for %s (ENOMEM)\n", MDT_VERSION_2, 1977 ill->ill_name); 1978 return; 1979 } 1980 } 1981 1982 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1983 "MDT version %d (%d bytes leading, %d bytes trailing " 1984 "header spaces, %d max pld bufs, %d span limit)\n", 1985 ill->ill_name, MDT_VERSION_2, 1986 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1987 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1988 1989 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1990 (*ill_mdt_capab)->ill_mdt_on = 1; 1991 /* 1992 * Round the following values to the nearest 32-bit; ULP 1993 * may further adjust them to accomodate for additional 1994 * protocol headers. We pass these values to ULP during 1995 * bind time. 1996 */ 1997 (*ill_mdt_capab)->ill_mdt_hdr_head = 1998 roundup(mdt_ic->mdt_hdr_head, 4); 1999 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2000 roundup(mdt_ic->mdt_hdr_tail, 4); 2001 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2002 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2003 2004 ill->ill_capabilities |= ILL_CAPAB_MDT; 2005 } else { 2006 uint_t size; 2007 uchar_t *rptr; 2008 2009 size = sizeof (dl_capability_req_t) + 2010 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2011 2012 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2013 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2014 "could not enable MDT for %s (ENOMEM)\n", 2015 ill->ill_name); 2016 return; 2017 } 2018 2019 rptr = nmp->b_rptr; 2020 /* initialize dl_capability_req_t */ 2021 oc = (dl_capability_req_t *)nmp->b_rptr; 2022 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2023 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2024 sizeof (dl_capab_mdt_t); 2025 nmp->b_rptr += sizeof (dl_capability_req_t); 2026 2027 /* initialize dl_capability_sub_t */ 2028 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2029 nmp->b_rptr += sizeof (*isub); 2030 2031 /* initialize dl_capab_mdt_t */ 2032 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2033 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2034 2035 nmp->b_rptr = rptr; 2036 2037 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2038 "to enable MDT version %d\n", ill->ill_name, 2039 MDT_VERSION_2)); 2040 2041 /* set ENABLE flag */ 2042 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2043 2044 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2045 ill_dlpi_send(ill, nmp); 2046 } 2047 } 2048 2049 static void 2050 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2051 { 2052 mblk_t *mp; 2053 dl_capab_mdt_t *mdt_subcap; 2054 dl_capability_sub_t *dl_subcap; 2055 int size; 2056 2057 if (!ILL_MDT_CAPABLE(ill)) 2058 return; 2059 2060 ASSERT(ill->ill_mdt_capab != NULL); 2061 /* 2062 * Clear the capability flag for MDT but retain the ill_mdt_capab 2063 * structure since it's possible that another thread is still 2064 * referring to it. The structure only gets deallocated when 2065 * we destroy the ill. 2066 */ 2067 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2068 2069 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2070 2071 mp = allocb(size, BPRI_HI); 2072 if (mp == NULL) { 2073 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2074 "request to disable MDT\n")); 2075 return; 2076 } 2077 2078 mp->b_wptr = mp->b_rptr + size; 2079 2080 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2081 dl_subcap->dl_cap = DL_CAPAB_MDT; 2082 dl_subcap->dl_length = sizeof (*mdt_subcap); 2083 2084 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2085 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2086 mdt_subcap->mdt_flags = 0; 2087 mdt_subcap->mdt_hdr_head = 0; 2088 mdt_subcap->mdt_hdr_tail = 0; 2089 2090 if (*sc_mp != NULL) 2091 linkb(*sc_mp, mp); 2092 else 2093 *sc_mp = mp; 2094 } 2095 2096 /* 2097 * Send a DL_NOTIFY_REQ to the specified ill to enable 2098 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2099 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2100 * acceleration. 2101 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2102 */ 2103 static boolean_t 2104 ill_enable_promisc_notify(ill_t *ill) 2105 { 2106 mblk_t *mp; 2107 dl_notify_req_t *req; 2108 2109 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2110 2111 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2112 if (mp == NULL) 2113 return (B_FALSE); 2114 2115 req = (dl_notify_req_t *)mp->b_rptr; 2116 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2117 DL_NOTE_PROMISC_OFF_PHYS; 2118 2119 ill_dlpi_send(ill, mp); 2120 2121 return (B_TRUE); 2122 } 2123 2124 2125 /* 2126 * Allocate an IPsec capability request which will be filled by our 2127 * caller to turn on support for one or more algorithms. 2128 */ 2129 static mblk_t * 2130 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2131 { 2132 mblk_t *nmp; 2133 dl_capability_req_t *ocap; 2134 dl_capab_ipsec_t *ocip; 2135 dl_capab_ipsec_t *icip; 2136 uint8_t *ptr; 2137 icip = (dl_capab_ipsec_t *)(isub + 1); 2138 2139 /* 2140 * The first time around, we send a DL_NOTIFY_REQ to enable 2141 * PROMISC_ON/OFF notification from the provider. We need to 2142 * do this before enabling the algorithms to avoid leakage of 2143 * cleartext packets. 2144 */ 2145 2146 if (!ill_enable_promisc_notify(ill)) 2147 return (NULL); 2148 2149 /* 2150 * Allocate new mblk which will contain a new capability 2151 * request to enable the capabilities. 2152 */ 2153 2154 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2155 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2156 if (nmp == NULL) 2157 return (NULL); 2158 2159 ptr = nmp->b_rptr; 2160 2161 /* initialize dl_capability_req_t */ 2162 ocap = (dl_capability_req_t *)ptr; 2163 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2164 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2165 ptr += sizeof (dl_capability_req_t); 2166 2167 /* initialize dl_capability_sub_t */ 2168 bcopy(isub, ptr, sizeof (*isub)); 2169 ptr += sizeof (*isub); 2170 2171 /* initialize dl_capab_ipsec_t */ 2172 ocip = (dl_capab_ipsec_t *)ptr; 2173 bcopy(icip, ocip, sizeof (*icip)); 2174 2175 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2176 return (nmp); 2177 } 2178 2179 /* 2180 * Process an IPsec capability negotiation ack received from a DLS Provider. 2181 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2182 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2183 */ 2184 static void 2185 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2186 { 2187 dl_capab_ipsec_t *icip; 2188 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2189 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2190 uint_t cipher, nciphers; 2191 mblk_t *nmp; 2192 uint_t alg_len; 2193 boolean_t need_sadb_dump; 2194 uint_t sub_dl_cap = isub->dl_cap; 2195 ill_ipsec_capab_t **ill_capab; 2196 uint64_t ill_capab_flag; 2197 uint8_t *capend, *ciphend; 2198 boolean_t sadb_resync; 2199 2200 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2201 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2202 2203 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2204 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2205 ill_capab_flag = ILL_CAPAB_AH; 2206 } else { 2207 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2208 ill_capab_flag = ILL_CAPAB_ESP; 2209 } 2210 2211 /* 2212 * If the ill capability structure exists, then this incoming 2213 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2214 * If this is so, then we'd need to resynchronize the SADB 2215 * after re-enabling the offloaded ciphers. 2216 */ 2217 sadb_resync = (*ill_capab != NULL); 2218 2219 /* 2220 * Note: range checks here are not absolutely sufficient to 2221 * make us robust against malformed messages sent by drivers; 2222 * this is in keeping with the rest of IP's dlpi handling. 2223 * (Remember, it's coming from something else in the kernel 2224 * address space) 2225 */ 2226 2227 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2228 if (capend > mp->b_wptr) { 2229 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2230 "malformed sub-capability too long for mblk"); 2231 return; 2232 } 2233 2234 /* 2235 * There are two types of acks we process here: 2236 * 1. acks in reply to a (first form) generic capability req 2237 * (no ENABLE flag set) 2238 * 2. acks in reply to a ENABLE capability req. 2239 * (ENABLE flag set) 2240 * 2241 * We process the subcapability passed as argument as follows: 2242 * 1 do initializations 2243 * 1.1 initialize nmp = NULL 2244 * 1.2 set need_sadb_dump to B_FALSE 2245 * 2 for each cipher in subcapability: 2246 * 2.1 if ENABLE flag is set: 2247 * 2.1.1 update per-ill ipsec capabilities info 2248 * 2.1.2 set need_sadb_dump to B_TRUE 2249 * 2.2 if ENABLE flag is not set: 2250 * 2.2.1 if nmp is NULL: 2251 * 2.2.1.1 allocate and initialize nmp 2252 * 2.2.1.2 init current pos in nmp 2253 * 2.2.2 copy current cipher to current pos in nmp 2254 * 2.2.3 set ENABLE flag in nmp 2255 * 2.2.4 update current pos 2256 * 3 if nmp is not equal to NULL, send enable request 2257 * 3.1 send capability request 2258 * 4 if need_sadb_dump is B_TRUE 2259 * 4.1 enable promiscuous on/off notifications 2260 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2261 * AH or ESP SA's to interface. 2262 */ 2263 2264 nmp = NULL; 2265 oalg = NULL; 2266 need_sadb_dump = B_FALSE; 2267 icip = (dl_capab_ipsec_t *)(isub + 1); 2268 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2269 2270 nciphers = icip->cip_nciphers; 2271 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2272 2273 if (ciphend > capend) { 2274 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2275 "too many ciphers for sub-capability len"); 2276 return; 2277 } 2278 2279 for (cipher = 0; cipher < nciphers; cipher++) { 2280 alg_len = sizeof (dl_capab_ipsec_alg_t); 2281 2282 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2283 /* 2284 * TBD: when we provide a way to disable capabilities 2285 * from above, need to manage the request-pending state 2286 * and fail if we were not expecting this ACK. 2287 */ 2288 IPSECHW_DEBUG(IPSECHW_CAPAB, 2289 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2290 2291 /* 2292 * Update IPsec capabilities for this ill 2293 */ 2294 2295 if (*ill_capab == NULL) { 2296 IPSECHW_DEBUG(IPSECHW_CAPAB, 2297 ("ill_capability_ipsec_ack: " 2298 "allocating ipsec_capab for ill\n")); 2299 *ill_capab = ill_ipsec_capab_alloc(); 2300 2301 if (*ill_capab == NULL) { 2302 cmn_err(CE_WARN, 2303 "ill_capability_ipsec_ack: " 2304 "could not enable IPsec Hardware " 2305 "acceleration for %s (ENOMEM)\n", 2306 ill->ill_name); 2307 return; 2308 } 2309 } 2310 2311 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2312 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2313 2314 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2315 cmn_err(CE_WARN, 2316 "ill_capability_ipsec_ack: " 2317 "malformed IPsec algorithm id %d", 2318 ialg->alg_prim); 2319 continue; 2320 } 2321 2322 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2323 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2324 ialg->alg_prim); 2325 } else { 2326 ipsec_capab_algparm_t *alp; 2327 2328 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2329 ialg->alg_prim); 2330 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2331 ialg->alg_prim)) { 2332 cmn_err(CE_WARN, 2333 "ill_capability_ipsec_ack: " 2334 "no space for IPsec alg id %d", 2335 ialg->alg_prim); 2336 continue; 2337 } 2338 alp = &((*ill_capab)->encr_algparm[ 2339 ialg->alg_prim]); 2340 alp->minkeylen = ialg->alg_minbits; 2341 alp->maxkeylen = ialg->alg_maxbits; 2342 } 2343 ill->ill_capabilities |= ill_capab_flag; 2344 /* 2345 * indicate that a capability was enabled, which 2346 * will be used below to kick off a SADB dump 2347 * to the ill. 2348 */ 2349 need_sadb_dump = B_TRUE; 2350 } else { 2351 IPSECHW_DEBUG(IPSECHW_CAPAB, 2352 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2353 ialg->alg_prim)); 2354 2355 if (nmp == NULL) { 2356 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2357 if (nmp == NULL) { 2358 /* 2359 * Sending the PROMISC_ON/OFF 2360 * notification request failed. 2361 * We cannot enable the algorithms 2362 * since the Provider will not 2363 * notify IP of promiscous mode 2364 * changes, which could lead 2365 * to leakage of packets. 2366 */ 2367 cmn_err(CE_WARN, 2368 "ill_capability_ipsec_ack: " 2369 "could not enable IPsec Hardware " 2370 "acceleration for %s (ENOMEM)\n", 2371 ill->ill_name); 2372 return; 2373 } 2374 /* ptr to current output alg specifier */ 2375 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2376 } 2377 2378 /* 2379 * Copy current alg specifier, set ENABLE 2380 * flag, and advance to next output alg. 2381 * For now we enable all IPsec capabilities. 2382 */ 2383 ASSERT(oalg != NULL); 2384 bcopy(ialg, oalg, alg_len); 2385 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2386 nmp->b_wptr += alg_len; 2387 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2388 } 2389 2390 /* move to next input algorithm specifier */ 2391 ialg = (dl_capab_ipsec_alg_t *) 2392 ((char *)ialg + alg_len); 2393 } 2394 2395 if (nmp != NULL) 2396 /* 2397 * nmp points to a DL_CAPABILITY_REQ message to enable 2398 * IPsec hardware acceleration. 2399 */ 2400 ill_dlpi_send(ill, nmp); 2401 2402 if (need_sadb_dump) 2403 /* 2404 * An acknowledgement corresponding to a request to 2405 * enable acceleration was received, notify SADB. 2406 */ 2407 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2408 } 2409 2410 /* 2411 * Given an mblk with enough space in it, create sub-capability entries for 2412 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2413 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2414 * in preparation for the reset the DL_CAPABILITY_REQ message. 2415 */ 2416 static void 2417 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2418 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2419 { 2420 dl_capab_ipsec_t *oipsec; 2421 dl_capab_ipsec_alg_t *oalg; 2422 dl_capability_sub_t *dl_subcap; 2423 int i, k; 2424 2425 ASSERT(nciphers > 0); 2426 ASSERT(ill_cap != NULL); 2427 ASSERT(mp != NULL); 2428 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2429 2430 /* dl_capability_sub_t for "stype" */ 2431 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2432 dl_subcap->dl_cap = stype; 2433 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2434 mp->b_wptr += sizeof (dl_capability_sub_t); 2435 2436 /* dl_capab_ipsec_t for "stype" */ 2437 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2438 oipsec->cip_version = 1; 2439 oipsec->cip_nciphers = nciphers; 2440 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2441 2442 /* create entries for "stype" AUTH ciphers */ 2443 for (i = 0; i < ill_cap->algs_size; i++) { 2444 for (k = 0; k < BITSPERBYTE; k++) { 2445 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2446 continue; 2447 2448 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2449 bzero((void *)oalg, sizeof (*oalg)); 2450 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2451 oalg->alg_prim = k + (BITSPERBYTE * i); 2452 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2453 } 2454 } 2455 /* create entries for "stype" ENCR ciphers */ 2456 for (i = 0; i < ill_cap->algs_size; i++) { 2457 for (k = 0; k < BITSPERBYTE; k++) { 2458 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2459 continue; 2460 2461 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2462 bzero((void *)oalg, sizeof (*oalg)); 2463 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2464 oalg->alg_prim = k + (BITSPERBYTE * i); 2465 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2466 } 2467 } 2468 } 2469 2470 /* 2471 * Macro to count number of 1s in a byte (8-bit word). The total count is 2472 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2473 * POPC instruction, but our macro is more flexible for an arbitrary length 2474 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2475 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2476 * stays that way, we can reduce the number of iterations required. 2477 */ 2478 #define COUNT_1S(val, sum) { \ 2479 uint8_t x = val & 0xff; \ 2480 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2481 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2482 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2483 } 2484 2485 /* ARGSUSED */ 2486 static void 2487 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2488 { 2489 mblk_t *mp; 2490 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2491 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2492 uint64_t ill_capabilities = ill->ill_capabilities; 2493 int ah_cnt = 0, esp_cnt = 0; 2494 int ah_len = 0, esp_len = 0; 2495 int i, size = 0; 2496 2497 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2498 return; 2499 2500 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2501 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2502 2503 /* Find out the number of ciphers for AH */ 2504 if (cap_ah != NULL) { 2505 for (i = 0; i < cap_ah->algs_size; i++) { 2506 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2507 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2508 } 2509 if (ah_cnt > 0) { 2510 size += sizeof (dl_capability_sub_t) + 2511 sizeof (dl_capab_ipsec_t); 2512 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2513 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2514 size += ah_len; 2515 } 2516 } 2517 2518 /* Find out the number of ciphers for ESP */ 2519 if (cap_esp != NULL) { 2520 for (i = 0; i < cap_esp->algs_size; i++) { 2521 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2522 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2523 } 2524 if (esp_cnt > 0) { 2525 size += sizeof (dl_capability_sub_t) + 2526 sizeof (dl_capab_ipsec_t); 2527 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2528 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2529 size += esp_len; 2530 } 2531 } 2532 2533 if (size == 0) { 2534 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2535 "there's nothing to reset\n")); 2536 return; 2537 } 2538 2539 mp = allocb(size, BPRI_HI); 2540 if (mp == NULL) { 2541 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2542 "request to disable IPSEC Hardware Acceleration\n")); 2543 return; 2544 } 2545 2546 /* 2547 * Clear the capability flags for IPSec HA but retain the ill 2548 * capability structures since it's possible that another thread 2549 * is still referring to them. The structures only get deallocated 2550 * when we destroy the ill. 2551 * 2552 * Various places check the flags to see if the ill is capable of 2553 * hardware acceleration, and by clearing them we ensure that new 2554 * outbound IPSec packets are sent down encrypted. 2555 */ 2556 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2557 2558 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2559 if (ah_cnt > 0) { 2560 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2561 cap_ah, mp); 2562 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2563 } 2564 2565 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2566 if (esp_cnt > 0) { 2567 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2568 cap_esp, mp); 2569 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2570 } 2571 2572 /* 2573 * At this point we've composed a bunch of sub-capabilities to be 2574 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2575 * by the caller. Upon receiving this reset message, the driver 2576 * must stop inbound decryption (by destroying all inbound SAs) 2577 * and let the corresponding packets come in encrypted. 2578 */ 2579 2580 if (*sc_mp != NULL) 2581 linkb(*sc_mp, mp); 2582 else 2583 *sc_mp = mp; 2584 } 2585 2586 static void 2587 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2588 boolean_t encapsulated) 2589 { 2590 boolean_t legacy = B_FALSE; 2591 2592 /* 2593 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2594 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2595 * instructed the driver to disable its advertised capabilities, 2596 * so there's no point in accepting any response at this moment. 2597 */ 2598 if (ill->ill_capab_state == IDMS_UNKNOWN) 2599 return; 2600 2601 /* 2602 * Note that only the following two sub-capabilities may be 2603 * considered as "legacy", since their original definitions 2604 * do not incorporate the dl_mid_t module ID token, and hence 2605 * may require the use of the wrapper sub-capability. 2606 */ 2607 switch (subp->dl_cap) { 2608 case DL_CAPAB_IPSEC_AH: 2609 case DL_CAPAB_IPSEC_ESP: 2610 legacy = B_TRUE; 2611 break; 2612 } 2613 2614 /* 2615 * For legacy sub-capabilities which don't incorporate a queue_t 2616 * pointer in their structures, discard them if we detect that 2617 * there are intermediate modules in between IP and the driver. 2618 */ 2619 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2620 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2621 "%d discarded; %d module(s) present below IP\n", 2622 subp->dl_cap, ill->ill_lmod_cnt)); 2623 return; 2624 } 2625 2626 switch (subp->dl_cap) { 2627 case DL_CAPAB_IPSEC_AH: 2628 case DL_CAPAB_IPSEC_ESP: 2629 ill_capability_ipsec_ack(ill, mp, subp); 2630 break; 2631 case DL_CAPAB_MDT: 2632 ill_capability_mdt_ack(ill, mp, subp); 2633 break; 2634 case DL_CAPAB_HCKSUM: 2635 ill_capability_hcksum_ack(ill, mp, subp); 2636 break; 2637 case DL_CAPAB_ZEROCOPY: 2638 ill_capability_zerocopy_ack(ill, mp, subp); 2639 break; 2640 case DL_CAPAB_POLL: 2641 if (!SOFT_RINGS_ENABLED()) 2642 ill_capability_dls_ack(ill, mp, subp); 2643 break; 2644 case DL_CAPAB_SOFT_RING: 2645 if (SOFT_RINGS_ENABLED()) 2646 ill_capability_dls_ack(ill, mp, subp); 2647 break; 2648 default: 2649 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2650 subp->dl_cap)); 2651 } 2652 } 2653 2654 /* 2655 * As part of negotiating polling capability, the driver tells us 2656 * the default (or normal) blanking interval and packet threshold 2657 * (the receive timer fires if blanking interval is reached or 2658 * the packet threshold is reached). 2659 * 2660 * As part of manipulating the polling interval, we always use our 2661 * estimated interval (avg service time * number of packets queued 2662 * on the squeue) but we try to blank for a minimum of 2663 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2664 * packet threshold during this time. When we are not in polling mode 2665 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2666 * rr_min_blank_ratio but up the packet cnt by a ratio of 2667 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2668 * possible although for a shorter interval. 2669 */ 2670 #define RR_MAX_BLANK_RATIO 20 2671 #define RR_MIN_BLANK_RATIO 10 2672 #define RR_MAX_PKT_CNT_RATIO 3 2673 #define RR_MIN_PKT_CNT_RATIO 3 2674 2675 /* 2676 * These can be tuned via /etc/system. 2677 */ 2678 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2679 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2680 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2681 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2682 2683 static mac_resource_handle_t 2684 ill_ring_add(void *arg, mac_resource_t *mrp) 2685 { 2686 ill_t *ill = (ill_t *)arg; 2687 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2688 ill_rx_ring_t *rx_ring; 2689 int ip_rx_index; 2690 2691 ASSERT(mrp != NULL); 2692 if (mrp->mr_type != MAC_RX_FIFO) { 2693 return (NULL); 2694 } 2695 ASSERT(ill != NULL); 2696 ASSERT(ill->ill_dls_capab != NULL); 2697 2698 mutex_enter(&ill->ill_lock); 2699 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2700 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2701 ASSERT(rx_ring != NULL); 2702 2703 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2704 time_t normal_blank_time = 2705 mrfp->mrf_normal_blank_time; 2706 uint_t normal_pkt_cnt = 2707 mrfp->mrf_normal_pkt_count; 2708 2709 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2710 2711 rx_ring->rr_blank = mrfp->mrf_blank; 2712 rx_ring->rr_handle = mrfp->mrf_arg; 2713 rx_ring->rr_ill = ill; 2714 rx_ring->rr_normal_blank_time = normal_blank_time; 2715 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2716 2717 rx_ring->rr_max_blank_time = 2718 normal_blank_time * rr_max_blank_ratio; 2719 rx_ring->rr_min_blank_time = 2720 normal_blank_time * rr_min_blank_ratio; 2721 rx_ring->rr_max_pkt_cnt = 2722 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2723 rx_ring->rr_min_pkt_cnt = 2724 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2725 2726 rx_ring->rr_ring_state = ILL_RING_INUSE; 2727 mutex_exit(&ill->ill_lock); 2728 2729 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2730 (int), ip_rx_index); 2731 return ((mac_resource_handle_t)rx_ring); 2732 } 2733 } 2734 2735 /* 2736 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2737 * we have devices which can overwhelm this limit, ILL_MAX_RING 2738 * should be made configurable. Meanwhile it cause no panic because 2739 * driver will pass ip_input a NULL handle which will make 2740 * IP allocate the default squeue and Polling mode will not 2741 * be used for this ring. 2742 */ 2743 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2744 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2745 2746 mutex_exit(&ill->ill_lock); 2747 return (NULL); 2748 } 2749 2750 static boolean_t 2751 ill_capability_dls_init(ill_t *ill) 2752 { 2753 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2754 conn_t *connp; 2755 size_t sz; 2756 2757 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2758 if (ill_dls == NULL) { 2759 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2760 "soft_ring enabled for ill=%s (%p) but data " 2761 "structs uninitialized\n", ill->ill_name, 2762 (void *)ill); 2763 } 2764 return (B_TRUE); 2765 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2766 if (ill_dls == NULL) { 2767 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2768 "polling enabled for ill=%s (%p) but data " 2769 "structs uninitialized\n", ill->ill_name, 2770 (void *)ill); 2771 } 2772 return (B_TRUE); 2773 } 2774 2775 if (ill_dls != NULL) { 2776 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2777 /* Soft_Ring or polling is being re-enabled */ 2778 2779 connp = ill_dls->ill_unbind_conn; 2780 ASSERT(rx_ring != NULL); 2781 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2782 bzero((void *)rx_ring, 2783 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2784 ill_dls->ill_ring_tbl = rx_ring; 2785 ill_dls->ill_unbind_conn = connp; 2786 return (B_TRUE); 2787 } 2788 2789 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2790 return (B_FALSE); 2791 2792 sz = sizeof (ill_dls_capab_t); 2793 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2794 2795 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2796 if (ill_dls == NULL) { 2797 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2798 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2799 (void *)ill); 2800 CONN_DEC_REF(connp); 2801 return (B_FALSE); 2802 } 2803 2804 /* Allocate space to hold ring table */ 2805 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2806 ill->ill_dls_capab = ill_dls; 2807 ill_dls->ill_unbind_conn = connp; 2808 return (B_TRUE); 2809 } 2810 2811 /* 2812 * ill_capability_dls_disable: disable soft_ring and/or polling 2813 * capability. Since any of the rings might already be in use, need 2814 * to call ipsq_clean_all() which gets behind the squeue to disable 2815 * direct calls if necessary. 2816 */ 2817 static void 2818 ill_capability_dls_disable(ill_t *ill) 2819 { 2820 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2821 2822 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2823 ipsq_clean_all(ill); 2824 ill_dls->ill_tx = NULL; 2825 ill_dls->ill_tx_handle = NULL; 2826 ill_dls->ill_dls_change_status = NULL; 2827 ill_dls->ill_dls_bind = NULL; 2828 ill_dls->ill_dls_unbind = NULL; 2829 } 2830 2831 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2832 } 2833 2834 static void 2835 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2836 dl_capability_sub_t *isub) 2837 { 2838 uint_t size; 2839 uchar_t *rptr; 2840 dl_capab_dls_t dls, *odls; 2841 ill_dls_capab_t *ill_dls; 2842 mblk_t *nmp = NULL; 2843 dl_capability_req_t *ocap; 2844 uint_t sub_dl_cap = isub->dl_cap; 2845 2846 if (!ill_capability_dls_init(ill)) 2847 return; 2848 ill_dls = ill->ill_dls_capab; 2849 2850 /* Copy locally to get the members aligned */ 2851 bcopy((void *)idls, (void *)&dls, 2852 sizeof (dl_capab_dls_t)); 2853 2854 /* Get the tx function and handle from dld */ 2855 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2856 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2857 2858 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2859 ill_dls->ill_dls_change_status = 2860 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2861 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2862 ill_dls->ill_dls_unbind = 2863 (ip_dls_unbind_t)dls.dls_ring_unbind; 2864 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2865 } 2866 2867 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2868 isub->dl_length; 2869 2870 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2871 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2872 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2873 ill->ill_name, (void *)ill); 2874 return; 2875 } 2876 2877 /* initialize dl_capability_req_t */ 2878 rptr = nmp->b_rptr; 2879 ocap = (dl_capability_req_t *)rptr; 2880 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2881 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2882 rptr += sizeof (dl_capability_req_t); 2883 2884 /* initialize dl_capability_sub_t */ 2885 bcopy(isub, rptr, sizeof (*isub)); 2886 rptr += sizeof (*isub); 2887 2888 odls = (dl_capab_dls_t *)rptr; 2889 rptr += sizeof (dl_capab_dls_t); 2890 2891 /* initialize dl_capab_dls_t to be sent down */ 2892 dls.dls_rx_handle = (uintptr_t)ill; 2893 dls.dls_rx = (uintptr_t)ip_input; 2894 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2895 2896 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2897 dls.dls_ring_cnt = ip_soft_rings_cnt; 2898 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2899 dls.dls_flags = SOFT_RING_ENABLE; 2900 } else { 2901 dls.dls_flags = POLL_ENABLE; 2902 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2903 "to enable polling\n", ill->ill_name)); 2904 } 2905 bcopy((void *)&dls, (void *)odls, 2906 sizeof (dl_capab_dls_t)); 2907 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2908 /* 2909 * nmp points to a DL_CAPABILITY_REQ message to 2910 * enable either soft_ring or polling 2911 */ 2912 ill_dlpi_send(ill, nmp); 2913 } 2914 2915 static void 2916 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2917 { 2918 mblk_t *mp; 2919 dl_capab_dls_t *idls; 2920 dl_capability_sub_t *dl_subcap; 2921 int size; 2922 2923 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2924 return; 2925 2926 ASSERT(ill->ill_dls_capab != NULL); 2927 2928 size = sizeof (*dl_subcap) + sizeof (*idls); 2929 2930 mp = allocb(size, BPRI_HI); 2931 if (mp == NULL) { 2932 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2933 "request to disable soft_ring\n")); 2934 return; 2935 } 2936 2937 mp->b_wptr = mp->b_rptr + size; 2938 2939 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2940 dl_subcap->dl_length = sizeof (*idls); 2941 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2942 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2943 else 2944 dl_subcap->dl_cap = DL_CAPAB_POLL; 2945 2946 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2947 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2948 idls->dls_flags = SOFT_RING_DISABLE; 2949 else 2950 idls->dls_flags = POLL_DISABLE; 2951 2952 if (*sc_mp != NULL) 2953 linkb(*sc_mp, mp); 2954 else 2955 *sc_mp = mp; 2956 } 2957 2958 /* 2959 * Process a soft_ring/poll capability negotiation ack received 2960 * from a DLS Provider.isub must point to the sub-capability 2961 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2962 */ 2963 static void 2964 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2965 { 2966 dl_capab_dls_t *idls; 2967 uint_t sub_dl_cap = isub->dl_cap; 2968 uint8_t *capend; 2969 2970 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2971 sub_dl_cap == DL_CAPAB_POLL); 2972 2973 if (ill->ill_isv6) 2974 return; 2975 2976 /* 2977 * Note: range checks here are not absolutely sufficient to 2978 * make us robust against malformed messages sent by drivers; 2979 * this is in keeping with the rest of IP's dlpi handling. 2980 * (Remember, it's coming from something else in the kernel 2981 * address space) 2982 */ 2983 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2984 if (capend > mp->b_wptr) { 2985 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2986 "malformed sub-capability too long for mblk"); 2987 return; 2988 } 2989 2990 /* 2991 * There are two types of acks we process here: 2992 * 1. acks in reply to a (first form) generic capability req 2993 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2994 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2995 * capability req. 2996 */ 2997 idls = (dl_capab_dls_t *)(isub + 1); 2998 2999 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3000 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3001 "capability isn't as expected; pass-thru " 3002 "module(s) detected, discarding capability\n")); 3003 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3004 /* 3005 * This is a capability renegotitation case. 3006 * The interface better be unusable at this 3007 * point other wise bad things will happen 3008 * if we disable direct calls on a running 3009 * and up interface. 3010 */ 3011 ill_capability_dls_disable(ill); 3012 } 3013 return; 3014 } 3015 3016 switch (idls->dls_flags) { 3017 default: 3018 /* Disable if unknown flag */ 3019 case SOFT_RING_DISABLE: 3020 case POLL_DISABLE: 3021 ill_capability_dls_disable(ill); 3022 break; 3023 case SOFT_RING_CAPABLE: 3024 case POLL_CAPABLE: 3025 /* 3026 * If the capability was already enabled, its safe 3027 * to disable it first to get rid of stale information 3028 * and then start enabling it again. 3029 */ 3030 ill_capability_dls_disable(ill); 3031 ill_capability_dls_capable(ill, idls, isub); 3032 break; 3033 case SOFT_RING_ENABLE: 3034 case POLL_ENABLE: 3035 mutex_enter(&ill->ill_lock); 3036 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3037 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3038 ASSERT(ill->ill_dls_capab != NULL); 3039 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3040 } 3041 if (sub_dl_cap == DL_CAPAB_POLL && 3042 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3043 ASSERT(ill->ill_dls_capab != NULL); 3044 ill->ill_capabilities |= ILL_CAPAB_POLL; 3045 ip1dbg(("ill_capability_dls_ack: interface %s " 3046 "has enabled polling\n", ill->ill_name)); 3047 } 3048 mutex_exit(&ill->ill_lock); 3049 break; 3050 } 3051 } 3052 3053 /* 3054 * Process a hardware checksum offload capability negotiation ack received 3055 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3056 * of a DL_CAPABILITY_ACK message. 3057 */ 3058 static void 3059 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3060 { 3061 dl_capability_req_t *ocap; 3062 dl_capab_hcksum_t *ihck, *ohck; 3063 ill_hcksum_capab_t **ill_hcksum; 3064 mblk_t *nmp = NULL; 3065 uint_t sub_dl_cap = isub->dl_cap; 3066 uint8_t *capend; 3067 3068 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3069 3070 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3071 3072 /* 3073 * Note: range checks here are not absolutely sufficient to 3074 * make us robust against malformed messages sent by drivers; 3075 * this is in keeping with the rest of IP's dlpi handling. 3076 * (Remember, it's coming from something else in the kernel 3077 * address space) 3078 */ 3079 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3080 if (capend > mp->b_wptr) { 3081 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3082 "malformed sub-capability too long for mblk"); 3083 return; 3084 } 3085 3086 /* 3087 * There are two types of acks we process here: 3088 * 1. acks in reply to a (first form) generic capability req 3089 * (no ENABLE flag set) 3090 * 2. acks in reply to a ENABLE capability req. 3091 * (ENABLE flag set) 3092 */ 3093 ihck = (dl_capab_hcksum_t *)(isub + 1); 3094 3095 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3096 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3097 "unsupported hardware checksum " 3098 "sub-capability (version %d, expected %d)", 3099 ihck->hcksum_version, HCKSUM_VERSION_1); 3100 return; 3101 } 3102 3103 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3104 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3105 "checksum capability isn't as expected; pass-thru " 3106 "module(s) detected, discarding capability\n")); 3107 return; 3108 } 3109 3110 #define CURR_HCKSUM_CAPAB \ 3111 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3112 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3113 3114 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3115 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3116 /* do ENABLE processing */ 3117 if (*ill_hcksum == NULL) { 3118 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3119 KM_NOSLEEP); 3120 3121 if (*ill_hcksum == NULL) { 3122 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3123 "could not enable hcksum version %d " 3124 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3125 ill->ill_name); 3126 return; 3127 } 3128 } 3129 3130 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3131 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3132 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3133 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3134 "has enabled hardware checksumming\n ", 3135 ill->ill_name)); 3136 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3137 /* 3138 * Enabling hardware checksum offload 3139 * Currently IP supports {TCP,UDP}/IPv4 3140 * partial and full cksum offload and 3141 * IPv4 header checksum offload. 3142 * Allocate new mblk which will 3143 * contain a new capability request 3144 * to enable hardware checksum offload. 3145 */ 3146 uint_t size; 3147 uchar_t *rptr; 3148 3149 size = sizeof (dl_capability_req_t) + 3150 sizeof (dl_capability_sub_t) + isub->dl_length; 3151 3152 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3153 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3154 "could not enable hardware cksum for %s (ENOMEM)\n", 3155 ill->ill_name); 3156 return; 3157 } 3158 3159 rptr = nmp->b_rptr; 3160 /* initialize dl_capability_req_t */ 3161 ocap = (dl_capability_req_t *)nmp->b_rptr; 3162 ocap->dl_sub_offset = 3163 sizeof (dl_capability_req_t); 3164 ocap->dl_sub_length = 3165 sizeof (dl_capability_sub_t) + 3166 isub->dl_length; 3167 nmp->b_rptr += sizeof (dl_capability_req_t); 3168 3169 /* initialize dl_capability_sub_t */ 3170 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3171 nmp->b_rptr += sizeof (*isub); 3172 3173 /* initialize dl_capab_hcksum_t */ 3174 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3175 bcopy(ihck, ohck, sizeof (*ihck)); 3176 3177 nmp->b_rptr = rptr; 3178 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3179 3180 /* Set ENABLE flag */ 3181 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3182 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3183 3184 /* 3185 * nmp points to a DL_CAPABILITY_REQ message to enable 3186 * hardware checksum acceleration. 3187 */ 3188 ill_dlpi_send(ill, nmp); 3189 } else { 3190 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3191 "advertised %x hardware checksum capability flags\n", 3192 ill->ill_name, ihck->hcksum_txflags)); 3193 } 3194 } 3195 3196 static void 3197 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3198 { 3199 mblk_t *mp; 3200 dl_capab_hcksum_t *hck_subcap; 3201 dl_capability_sub_t *dl_subcap; 3202 int size; 3203 3204 if (!ILL_HCKSUM_CAPABLE(ill)) 3205 return; 3206 3207 ASSERT(ill->ill_hcksum_capab != NULL); 3208 /* 3209 * Clear the capability flag for hardware checksum offload but 3210 * retain the ill_hcksum_capab structure since it's possible that 3211 * another thread is still referring to it. The structure only 3212 * gets deallocated when we destroy the ill. 3213 */ 3214 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3215 3216 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3217 3218 mp = allocb(size, BPRI_HI); 3219 if (mp == NULL) { 3220 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3221 "request to disable hardware checksum offload\n")); 3222 return; 3223 } 3224 3225 mp->b_wptr = mp->b_rptr + size; 3226 3227 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3228 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3229 dl_subcap->dl_length = sizeof (*hck_subcap); 3230 3231 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3232 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3233 hck_subcap->hcksum_txflags = 0; 3234 3235 if (*sc_mp != NULL) 3236 linkb(*sc_mp, mp); 3237 else 3238 *sc_mp = mp; 3239 } 3240 3241 static void 3242 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3243 { 3244 mblk_t *nmp = NULL; 3245 dl_capability_req_t *oc; 3246 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3247 ill_zerocopy_capab_t **ill_zerocopy_capab; 3248 uint_t sub_dl_cap = isub->dl_cap; 3249 uint8_t *capend; 3250 3251 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3252 3253 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3254 3255 /* 3256 * Note: range checks here are not absolutely sufficient to 3257 * make us robust against malformed messages sent by drivers; 3258 * this is in keeping with the rest of IP's dlpi handling. 3259 * (Remember, it's coming from something else in the kernel 3260 * address space) 3261 */ 3262 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3263 if (capend > mp->b_wptr) { 3264 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3265 "malformed sub-capability too long for mblk"); 3266 return; 3267 } 3268 3269 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3270 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3271 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3272 "unsupported ZEROCOPY sub-capability (version %d, " 3273 "expected %d)", zc_ic->zerocopy_version, 3274 ZEROCOPY_VERSION_1); 3275 return; 3276 } 3277 3278 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3279 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3280 "capability isn't as expected; pass-thru module(s) " 3281 "detected, discarding capability\n")); 3282 return; 3283 } 3284 3285 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3286 if (*ill_zerocopy_capab == NULL) { 3287 *ill_zerocopy_capab = 3288 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3289 KM_NOSLEEP); 3290 3291 if (*ill_zerocopy_capab == NULL) { 3292 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3293 "could not enable Zero-copy version %d " 3294 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3295 ill->ill_name); 3296 return; 3297 } 3298 } 3299 3300 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3301 "supports Zero-copy version %d\n", ill->ill_name, 3302 ZEROCOPY_VERSION_1)); 3303 3304 (*ill_zerocopy_capab)->ill_zerocopy_version = 3305 zc_ic->zerocopy_version; 3306 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3307 zc_ic->zerocopy_flags; 3308 3309 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3310 } else { 3311 uint_t size; 3312 uchar_t *rptr; 3313 3314 size = sizeof (dl_capability_req_t) + 3315 sizeof (dl_capability_sub_t) + 3316 sizeof (dl_capab_zerocopy_t); 3317 3318 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3319 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3320 "could not enable zerocopy for %s (ENOMEM)\n", 3321 ill->ill_name); 3322 return; 3323 } 3324 3325 rptr = nmp->b_rptr; 3326 /* initialize dl_capability_req_t */ 3327 oc = (dl_capability_req_t *)rptr; 3328 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3329 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3330 sizeof (dl_capab_zerocopy_t); 3331 rptr += sizeof (dl_capability_req_t); 3332 3333 /* initialize dl_capability_sub_t */ 3334 bcopy(isub, rptr, sizeof (*isub)); 3335 rptr += sizeof (*isub); 3336 3337 /* initialize dl_capab_zerocopy_t */ 3338 zc_oc = (dl_capab_zerocopy_t *)rptr; 3339 *zc_oc = *zc_ic; 3340 3341 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3342 "to enable zero-copy version %d\n", ill->ill_name, 3343 ZEROCOPY_VERSION_1)); 3344 3345 /* set VMSAFE_MEM flag */ 3346 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3347 3348 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3349 ill_dlpi_send(ill, nmp); 3350 } 3351 } 3352 3353 static void 3354 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3355 { 3356 mblk_t *mp; 3357 dl_capab_zerocopy_t *zerocopy_subcap; 3358 dl_capability_sub_t *dl_subcap; 3359 int size; 3360 3361 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3362 return; 3363 3364 ASSERT(ill->ill_zerocopy_capab != NULL); 3365 /* 3366 * Clear the capability flag for Zero-copy but retain the 3367 * ill_zerocopy_capab structure since it's possible that another 3368 * thread is still referring to it. The structure only gets 3369 * deallocated when we destroy the ill. 3370 */ 3371 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3372 3373 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3374 3375 mp = allocb(size, BPRI_HI); 3376 if (mp == NULL) { 3377 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3378 "request to disable Zero-copy\n")); 3379 return; 3380 } 3381 3382 mp->b_wptr = mp->b_rptr + size; 3383 3384 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3385 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3386 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3387 3388 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3389 zerocopy_subcap->zerocopy_version = 3390 ill->ill_zerocopy_capab->ill_zerocopy_version; 3391 zerocopy_subcap->zerocopy_flags = 0; 3392 3393 if (*sc_mp != NULL) 3394 linkb(*sc_mp, mp); 3395 else 3396 *sc_mp = mp; 3397 } 3398 3399 /* 3400 * Consume a new-style hardware capabilities negotiation ack. 3401 * Called from ip_rput_dlpi_writer(). 3402 */ 3403 void 3404 ill_capability_ack(ill_t *ill, mblk_t *mp) 3405 { 3406 dl_capability_ack_t *capp; 3407 dl_capability_sub_t *subp, *endp; 3408 3409 if (ill->ill_capab_state == IDMS_INPROGRESS) 3410 ill->ill_capab_state = IDMS_OK; 3411 3412 capp = (dl_capability_ack_t *)mp->b_rptr; 3413 3414 if (capp->dl_sub_length == 0) 3415 /* no new-style capabilities */ 3416 return; 3417 3418 /* make sure the driver supplied correct dl_sub_length */ 3419 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3420 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3421 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3422 return; 3423 } 3424 3425 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3426 /* 3427 * There are sub-capabilities. Process the ones we know about. 3428 * Loop until we don't have room for another sub-cap header.. 3429 */ 3430 for (subp = SC(capp, capp->dl_sub_offset), 3431 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3432 subp <= endp; 3433 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3434 3435 switch (subp->dl_cap) { 3436 case DL_CAPAB_ID_WRAPPER: 3437 ill_capability_id_ack(ill, mp, subp); 3438 break; 3439 default: 3440 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3441 break; 3442 } 3443 } 3444 #undef SC 3445 } 3446 3447 /* 3448 * This routine is called to scan the fragmentation reassembly table for 3449 * the specified ILL for any packets that are starting to smell. 3450 * dead_interval is the maximum time in seconds that will be tolerated. It 3451 * will either be the value specified in ip_g_frag_timeout, or zero if the 3452 * ILL is shutting down and it is time to blow everything off. 3453 * 3454 * It returns the number of seconds (as a time_t) that the next frag timer 3455 * should be scheduled for, 0 meaning that the timer doesn't need to be 3456 * re-started. Note that the method of calculating next_timeout isn't 3457 * entirely accurate since time will flow between the time we grab 3458 * current_time and the time we schedule the next timeout. This isn't a 3459 * big problem since this is the timer for sending an ICMP reassembly time 3460 * exceeded messages, and it doesn't have to be exactly accurate. 3461 * 3462 * This function is 3463 * sometimes called as writer, although this is not required. 3464 */ 3465 time_t 3466 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3467 { 3468 ipfb_t *ipfb; 3469 ipfb_t *endp; 3470 ipf_t *ipf; 3471 ipf_t *ipfnext; 3472 mblk_t *mp; 3473 time_t current_time = gethrestime_sec(); 3474 time_t next_timeout = 0; 3475 uint32_t hdr_length; 3476 mblk_t *send_icmp_head; 3477 mblk_t *send_icmp_head_v6; 3478 3479 ipfb = ill->ill_frag_hash_tbl; 3480 if (ipfb == NULL) 3481 return (B_FALSE); 3482 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3483 /* Walk the frag hash table. */ 3484 for (; ipfb < endp; ipfb++) { 3485 send_icmp_head = NULL; 3486 send_icmp_head_v6 = NULL; 3487 mutex_enter(&ipfb->ipfb_lock); 3488 while ((ipf = ipfb->ipfb_ipf) != 0) { 3489 time_t frag_time = current_time - ipf->ipf_timestamp; 3490 time_t frag_timeout; 3491 3492 if (frag_time < dead_interval) { 3493 /* 3494 * There are some outstanding fragments 3495 * that will timeout later. Make note of 3496 * the time so that we can reschedule the 3497 * next timeout appropriately. 3498 */ 3499 frag_timeout = dead_interval - frag_time; 3500 if (next_timeout == 0 || 3501 frag_timeout < next_timeout) { 3502 next_timeout = frag_timeout; 3503 } 3504 break; 3505 } 3506 /* Time's up. Get it out of here. */ 3507 hdr_length = ipf->ipf_nf_hdr_len; 3508 ipfnext = ipf->ipf_hash_next; 3509 if (ipfnext) 3510 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3511 *ipf->ipf_ptphn = ipfnext; 3512 mp = ipf->ipf_mp->b_cont; 3513 for (; mp; mp = mp->b_cont) { 3514 /* Extra points for neatness. */ 3515 IP_REASS_SET_START(mp, 0); 3516 IP_REASS_SET_END(mp, 0); 3517 } 3518 mp = ipf->ipf_mp->b_cont; 3519 ill->ill_frag_count -= ipf->ipf_count; 3520 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3521 ipfb->ipfb_count -= ipf->ipf_count; 3522 ASSERT(ipfb->ipfb_frag_pkts > 0); 3523 ipfb->ipfb_frag_pkts--; 3524 /* 3525 * We do not send any icmp message from here because 3526 * we currently are holding the ipfb_lock for this 3527 * hash chain. If we try and send any icmp messages 3528 * from here we may end up via a put back into ip 3529 * trying to get the same lock, causing a recursive 3530 * mutex panic. Instead we build a list and send all 3531 * the icmp messages after we have dropped the lock. 3532 */ 3533 if (ill->ill_isv6) { 3534 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3535 if (hdr_length != 0) { 3536 mp->b_next = send_icmp_head_v6; 3537 send_icmp_head_v6 = mp; 3538 } else { 3539 freemsg(mp); 3540 } 3541 } else { 3542 BUMP_MIB(&ip_mib, ipReasmFails); 3543 if (hdr_length != 0) { 3544 mp->b_next = send_icmp_head; 3545 send_icmp_head = mp; 3546 } else { 3547 freemsg(mp); 3548 } 3549 } 3550 freeb(ipf->ipf_mp); 3551 } 3552 mutex_exit(&ipfb->ipfb_lock); 3553 /* 3554 * Now need to send any icmp messages that we delayed from 3555 * above. 3556 */ 3557 while (send_icmp_head_v6 != NULL) { 3558 mp = send_icmp_head_v6; 3559 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3560 mp->b_next = NULL; 3561 icmp_time_exceeded_v6(ill->ill_wq, mp, 3562 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, B_FALSE); 3563 } 3564 while (send_icmp_head != NULL) { 3565 mp = send_icmp_head; 3566 send_icmp_head = send_icmp_head->b_next; 3567 mp->b_next = NULL; 3568 icmp_time_exceeded(ill->ill_wq, mp, 3569 ICMP_REASSEMBLY_TIME_EXCEEDED); 3570 } 3571 } 3572 /* 3573 * A non-dying ILL will use the return value to decide whether to 3574 * restart the frag timer, and for how long. 3575 */ 3576 return (next_timeout); 3577 } 3578 3579 /* 3580 * This routine is called when the approximate count of mblk memory used 3581 * for the specified ILL has exceeded max_count. 3582 */ 3583 void 3584 ill_frag_prune(ill_t *ill, uint_t max_count) 3585 { 3586 ipfb_t *ipfb; 3587 ipf_t *ipf; 3588 size_t count; 3589 3590 /* 3591 * If we are here within ip_min_frag_prune_time msecs remove 3592 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3593 * ill_frag_free_num_pkts. 3594 */ 3595 mutex_enter(&ill->ill_lock); 3596 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3597 (ip_min_frag_prune_time != 0 ? 3598 ip_min_frag_prune_time : msec_per_tick)) { 3599 3600 ill->ill_frag_free_num_pkts++; 3601 3602 } else { 3603 ill->ill_frag_free_num_pkts = 0; 3604 } 3605 ill->ill_last_frag_clean_time = lbolt; 3606 mutex_exit(&ill->ill_lock); 3607 3608 /* 3609 * free ill_frag_free_num_pkts oldest packets from each bucket. 3610 */ 3611 if (ill->ill_frag_free_num_pkts != 0) { 3612 int ix; 3613 3614 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3615 ipfb = &ill->ill_frag_hash_tbl[ix]; 3616 mutex_enter(&ipfb->ipfb_lock); 3617 if (ipfb->ipfb_ipf != NULL) { 3618 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3619 ill->ill_frag_free_num_pkts); 3620 } 3621 mutex_exit(&ipfb->ipfb_lock); 3622 } 3623 } 3624 /* 3625 * While the reassembly list for this ILL is too big, prune a fragment 3626 * queue by age, oldest first. Note that the per ILL count is 3627 * approximate, while the per frag hash bucket counts are accurate. 3628 */ 3629 while (ill->ill_frag_count > max_count) { 3630 int ix; 3631 ipfb_t *oipfb = NULL; 3632 uint_t oldest = UINT_MAX; 3633 3634 count = 0; 3635 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3636 ipfb = &ill->ill_frag_hash_tbl[ix]; 3637 mutex_enter(&ipfb->ipfb_lock); 3638 ipf = ipfb->ipfb_ipf; 3639 if (ipf != NULL && ipf->ipf_gen < oldest) { 3640 oldest = ipf->ipf_gen; 3641 oipfb = ipfb; 3642 } 3643 count += ipfb->ipfb_count; 3644 mutex_exit(&ipfb->ipfb_lock); 3645 } 3646 /* Refresh the per ILL count */ 3647 ill->ill_frag_count = count; 3648 if (oipfb == NULL) { 3649 ill->ill_frag_count = 0; 3650 break; 3651 } 3652 if (count <= max_count) 3653 return; /* Somebody beat us to it, nothing to do */ 3654 mutex_enter(&oipfb->ipfb_lock); 3655 ipf = oipfb->ipfb_ipf; 3656 if (ipf != NULL) { 3657 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3658 } 3659 mutex_exit(&oipfb->ipfb_lock); 3660 } 3661 } 3662 3663 /* 3664 * free 'free_cnt' fragmented packets starting at ipf. 3665 */ 3666 void 3667 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3668 { 3669 size_t count; 3670 mblk_t *mp; 3671 mblk_t *tmp; 3672 ipf_t **ipfp = ipf->ipf_ptphn; 3673 3674 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3675 ASSERT(ipfp != NULL); 3676 ASSERT(ipf != NULL); 3677 3678 while (ipf != NULL && free_cnt-- > 0) { 3679 count = ipf->ipf_count; 3680 mp = ipf->ipf_mp; 3681 ipf = ipf->ipf_hash_next; 3682 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3683 IP_REASS_SET_START(tmp, 0); 3684 IP_REASS_SET_END(tmp, 0); 3685 } 3686 ill->ill_frag_count -= count; 3687 ASSERT(ipfb->ipfb_count >= count); 3688 ipfb->ipfb_count -= count; 3689 ASSERT(ipfb->ipfb_frag_pkts > 0); 3690 ipfb->ipfb_frag_pkts--; 3691 freemsg(mp); 3692 BUMP_MIB(&ip_mib, ipReasmFails); 3693 } 3694 3695 if (ipf) 3696 ipf->ipf_ptphn = ipfp; 3697 ipfp[0] = ipf; 3698 } 3699 3700 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3701 "obsolete and may be removed in a future release of Solaris. Use " \ 3702 "ifconfig(1M) to manipulate the forwarding status of an interface." 3703 3704 /* 3705 * For obsolete per-interface forwarding configuration; 3706 * called in response to ND_GET. 3707 */ 3708 /* ARGSUSED */ 3709 static int 3710 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3711 { 3712 ill_t *ill = (ill_t *)cp; 3713 3714 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3715 3716 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3717 return (0); 3718 } 3719 3720 /* 3721 * For obsolete per-interface forwarding configuration; 3722 * called in response to ND_SET. 3723 */ 3724 /* ARGSUSED */ 3725 static int 3726 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3727 cred_t *ioc_cr) 3728 { 3729 long value; 3730 int retval; 3731 3732 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3733 3734 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3735 value < 0 || value > 1) { 3736 return (EINVAL); 3737 } 3738 3739 rw_enter(&ill_g_lock, RW_READER); 3740 retval = ill_forward_set(q, mp, (value != 0), cp); 3741 rw_exit(&ill_g_lock); 3742 return (retval); 3743 } 3744 3745 /* 3746 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3747 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3748 * up RTS_IFINFO routing socket messages for each interface whose flags we 3749 * change. 3750 */ 3751 /* ARGSUSED */ 3752 int 3753 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 3754 { 3755 ill_t *ill = (ill_t *)cp; 3756 ill_group_t *illgrp; 3757 3758 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 3759 3760 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3761 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 3762 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 3763 return (EINVAL); 3764 3765 /* 3766 * If the ill is in an IPMP group, set the forwarding policy on all 3767 * members of the group to the same value. 3768 */ 3769 illgrp = ill->ill_group; 3770 if (illgrp != NULL) { 3771 ill_t *tmp_ill; 3772 3773 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3774 tmp_ill = tmp_ill->ill_group_next) { 3775 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3776 (enable ? "Enabling" : "Disabling"), 3777 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3778 tmp_ill->ill_name)); 3779 mutex_enter(&tmp_ill->ill_lock); 3780 if (enable) 3781 tmp_ill->ill_flags |= ILLF_ROUTER; 3782 else 3783 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3784 mutex_exit(&tmp_ill->ill_lock); 3785 if (tmp_ill->ill_isv6) 3786 ill_set_nce_router_flags(tmp_ill, enable); 3787 /* Notify routing socket listeners of this change. */ 3788 ip_rts_ifmsg(tmp_ill->ill_ipif); 3789 } 3790 } else { 3791 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3792 (enable ? "Enabling" : "Disabling"), 3793 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3794 mutex_enter(&ill->ill_lock); 3795 if (enable) 3796 ill->ill_flags |= ILLF_ROUTER; 3797 else 3798 ill->ill_flags &= ~ILLF_ROUTER; 3799 mutex_exit(&ill->ill_lock); 3800 if (ill->ill_isv6) 3801 ill_set_nce_router_flags(ill, enable); 3802 /* Notify routing socket listeners of this change. */ 3803 ip_rts_ifmsg(ill->ill_ipif); 3804 } 3805 3806 return (0); 3807 } 3808 3809 /* 3810 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3811 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3812 * set or clear. 3813 */ 3814 static void 3815 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3816 { 3817 ipif_t *ipif; 3818 nce_t *nce; 3819 3820 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3821 nce = ndp_lookup(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3822 if (nce != NULL) { 3823 mutex_enter(&nce->nce_lock); 3824 if (enable) 3825 nce->nce_flags |= NCE_F_ISROUTER; 3826 else 3827 nce->nce_flags &= ~NCE_F_ISROUTER; 3828 mutex_exit(&nce->nce_lock); 3829 NCE_REFRELE(nce); 3830 } 3831 } 3832 } 3833 3834 /* 3835 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3836 * for this ill. Make sure the v6/v4 question has been answered about this 3837 * ill. The creation of this ndd variable is only for backwards compatibility. 3838 * The preferred way to control per-interface IP forwarding is through the 3839 * ILLF_ROUTER interface flag. 3840 */ 3841 static int 3842 ill_set_ndd_name(ill_t *ill) 3843 { 3844 char *suffix; 3845 3846 ASSERT(IAM_WRITER_ILL(ill)); 3847 3848 if (ill->ill_isv6) 3849 suffix = ipv6_forward_suffix; 3850 else 3851 suffix = ipv4_forward_suffix; 3852 3853 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3854 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3855 /* 3856 * Copies over the '\0'. 3857 * Note that strlen(suffix) is always bounded. 3858 */ 3859 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3860 strlen(suffix) + 1); 3861 3862 /* 3863 * Use of the nd table requires holding the reader lock. 3864 * Modifying the nd table thru nd_load/nd_unload requires 3865 * the writer lock. 3866 */ 3867 rw_enter(&ip_g_nd_lock, RW_WRITER); 3868 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3869 nd_ill_forward_set, (caddr_t)ill)) { 3870 /* 3871 * If the nd_load failed, it only meant that it could not 3872 * allocate a new bunch of room for further NDD expansion. 3873 * Because of that, the ill_ndd_name will be set to 0, and 3874 * this interface is at the mercy of the global ip_forwarding 3875 * variable. 3876 */ 3877 rw_exit(&ip_g_nd_lock); 3878 ill->ill_ndd_name = NULL; 3879 return (ENOMEM); 3880 } 3881 rw_exit(&ip_g_nd_lock); 3882 return (0); 3883 } 3884 3885 /* 3886 * Intializes the context structure and returns the first ill in the list 3887 * cuurently start_list and end_list can have values: 3888 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3889 * IP_V4_G_HEAD Traverse IPV4 list only. 3890 * IP_V6_G_HEAD Traverse IPV6 list only. 3891 */ 3892 3893 /* 3894 * We don't check for CONDEMNED ills here. Caller must do that if 3895 * necessary under the ill lock. 3896 */ 3897 ill_t * 3898 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 3899 { 3900 ill_if_t *ifp; 3901 ill_t *ill; 3902 avl_tree_t *avl_tree; 3903 3904 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3905 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3906 3907 /* 3908 * setup the lists to search 3909 */ 3910 if (end_list != MAX_G_HEADS) { 3911 ctx->ctx_current_list = start_list; 3912 ctx->ctx_last_list = end_list; 3913 } else { 3914 ctx->ctx_last_list = MAX_G_HEADS - 1; 3915 ctx->ctx_current_list = 0; 3916 } 3917 3918 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3919 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3920 if (ifp != (ill_if_t *) 3921 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3922 avl_tree = &ifp->illif_avl_by_ppa; 3923 ill = avl_first(avl_tree); 3924 /* 3925 * ill is guaranteed to be non NULL or ifp should have 3926 * not existed. 3927 */ 3928 ASSERT(ill != NULL); 3929 return (ill); 3930 } 3931 ctx->ctx_current_list++; 3932 } 3933 3934 return (NULL); 3935 } 3936 3937 /* 3938 * returns the next ill in the list. ill_first() must have been called 3939 * before calling ill_next() or bad things will happen. 3940 */ 3941 3942 /* 3943 * We don't check for CONDEMNED ills here. Caller must do that if 3944 * necessary under the ill lock. 3945 */ 3946 ill_t * 3947 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3948 { 3949 ill_if_t *ifp; 3950 ill_t *ill; 3951 3952 3953 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3954 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3955 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 3956 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3957 AVL_AFTER)) != NULL) { 3958 return (ill); 3959 } 3960 3961 /* goto next ill_ifp in the list. */ 3962 ifp = lastill->ill_ifptr->illif_next; 3963 3964 /* make sure not at end of circular list */ 3965 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3966 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3967 return (NULL); 3968 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3969 } 3970 3971 return (avl_first(&ifp->illif_avl_by_ppa)); 3972 } 3973 3974 /* 3975 * Check interface name for correct format which is name+ppa. 3976 * name can contain characters and digits, the right most digits 3977 * make up the ppa number. use of octal is not allowed, name must contain 3978 * a ppa, return pointer to the start of ppa. 3979 * In case of error return NULL. 3980 */ 3981 static char * 3982 ill_get_ppa_ptr(char *name) 3983 { 3984 int namelen = mi_strlen(name); 3985 3986 int len = namelen; 3987 3988 name += len; 3989 while (len > 0) { 3990 name--; 3991 if (*name < '0' || *name > '9') 3992 break; 3993 len--; 3994 } 3995 3996 /* empty string, all digits, or no trailing digits */ 3997 if (len == 0 || len == (int)namelen) 3998 return (NULL); 3999 4000 name++; 4001 /* check for attempted use of octal */ 4002 if (*name == '0' && len != (int)namelen - 1) 4003 return (NULL); 4004 return (name); 4005 } 4006 4007 /* 4008 * use avl tree to locate the ill. 4009 */ 4010 static ill_t * 4011 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4012 ipsq_func_t func, int *error) 4013 { 4014 char *ppa_ptr = NULL; 4015 int len; 4016 uint_t ppa; 4017 ill_t *ill = NULL; 4018 ill_if_t *ifp; 4019 int list; 4020 ipsq_t *ipsq; 4021 4022 if (error != NULL) 4023 *error = 0; 4024 4025 /* 4026 * get ppa ptr 4027 */ 4028 if (isv6) 4029 list = IP_V6_G_HEAD; 4030 else 4031 list = IP_V4_G_HEAD; 4032 4033 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4034 if (error != NULL) 4035 *error = ENXIO; 4036 return (NULL); 4037 } 4038 4039 len = ppa_ptr - name + 1; 4040 4041 ppa = stoi(&ppa_ptr); 4042 4043 ifp = IP_VX_ILL_G_LIST(list); 4044 4045 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4046 /* 4047 * match is done on len - 1 as the name is not null 4048 * terminated it contains ppa in addition to the interface 4049 * name. 4050 */ 4051 if ((ifp->illif_name_len == len) && 4052 bcmp(ifp->illif_name, name, len - 1) == 0) { 4053 break; 4054 } else { 4055 ifp = ifp->illif_next; 4056 } 4057 } 4058 4059 4060 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4061 /* 4062 * Even the interface type does not exist. 4063 */ 4064 if (error != NULL) 4065 *error = ENXIO; 4066 return (NULL); 4067 } 4068 4069 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4070 if (ill != NULL) { 4071 /* 4072 * The block comment at the start of ipif_down 4073 * explains the use of the macros used below 4074 */ 4075 GRAB_CONN_LOCK(q); 4076 mutex_enter(&ill->ill_lock); 4077 if (ILL_CAN_LOOKUP(ill)) { 4078 ill_refhold_locked(ill); 4079 mutex_exit(&ill->ill_lock); 4080 RELEASE_CONN_LOCK(q); 4081 return (ill); 4082 } else if (ILL_CAN_WAIT(ill, q)) { 4083 ipsq = ill->ill_phyint->phyint_ipsq; 4084 mutex_enter(&ipsq->ipsq_lock); 4085 mutex_exit(&ill->ill_lock); 4086 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4087 mutex_exit(&ipsq->ipsq_lock); 4088 RELEASE_CONN_LOCK(q); 4089 *error = EINPROGRESS; 4090 return (NULL); 4091 } 4092 mutex_exit(&ill->ill_lock); 4093 RELEASE_CONN_LOCK(q); 4094 } 4095 if (error != NULL) 4096 *error = ENXIO; 4097 return (NULL); 4098 } 4099 4100 /* 4101 * comparison function for use with avl. 4102 */ 4103 static int 4104 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4105 { 4106 uint_t ppa; 4107 uint_t ill_ppa; 4108 4109 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4110 4111 ppa = *((uint_t *)ppa_ptr); 4112 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4113 /* 4114 * We want the ill with the lowest ppa to be on the 4115 * top. 4116 */ 4117 if (ill_ppa < ppa) 4118 return (1); 4119 if (ill_ppa > ppa) 4120 return (-1); 4121 return (0); 4122 } 4123 4124 /* 4125 * remove an interface type from the global list. 4126 */ 4127 static void 4128 ill_delete_interface_type(ill_if_t *interface) 4129 { 4130 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4131 4132 ASSERT(interface != NULL); 4133 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4134 4135 avl_destroy(&interface->illif_avl_by_ppa); 4136 if (interface->illif_ppa_arena != NULL) 4137 vmem_destroy(interface->illif_ppa_arena); 4138 4139 remque(interface); 4140 4141 mi_free(interface); 4142 } 4143 4144 /* 4145 * remove ill from the global list. 4146 */ 4147 static void 4148 ill_glist_delete(ill_t *ill) 4149 { 4150 if (ill == NULL) 4151 return; 4152 4153 rw_enter(&ill_g_lock, RW_WRITER); 4154 /* 4155 * If the ill was never inserted into the AVL tree 4156 * we skip the if branch. 4157 */ 4158 if (ill->ill_ifptr != NULL) { 4159 /* 4160 * remove from AVL tree and free ppa number 4161 */ 4162 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4163 4164 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4165 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4166 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4167 } 4168 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4169 ill_delete_interface_type(ill->ill_ifptr); 4170 } 4171 4172 /* 4173 * Indicate ill is no longer in the list. 4174 */ 4175 ill->ill_ifptr = NULL; 4176 ill->ill_name_length = 0; 4177 ill->ill_name[0] = '\0'; 4178 ill->ill_ppa = UINT_MAX; 4179 } 4180 ill_phyint_free(ill); 4181 rw_exit(&ill_g_lock); 4182 } 4183 4184 /* 4185 * allocate a ppa, if the number of plumbed interfaces of this type are 4186 * less than ill_no_arena do a linear search to find a unused ppa. 4187 * When the number goes beyond ill_no_arena switch to using an arena. 4188 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4189 * is the return value for an error condition, so allocation starts at one 4190 * and is decremented by one. 4191 */ 4192 static int 4193 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4194 { 4195 ill_t *tmp_ill; 4196 uint_t start, end; 4197 int ppa; 4198 4199 if (ifp->illif_ppa_arena == NULL && 4200 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4201 /* 4202 * Create an arena. 4203 */ 4204 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4205 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4206 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4207 /* allocate what has already been assigned */ 4208 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4209 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4210 tmp_ill, AVL_AFTER)) { 4211 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4212 1, /* size */ 4213 1, /* align/quantum */ 4214 0, /* phase */ 4215 0, /* nocross */ 4216 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4217 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4218 VM_NOSLEEP|VM_FIRSTFIT); 4219 if (ppa == 0) { 4220 ip1dbg(("ill_alloc_ppa: ppa allocation" 4221 " failed while switching")); 4222 vmem_destroy(ifp->illif_ppa_arena); 4223 ifp->illif_ppa_arena = NULL; 4224 break; 4225 } 4226 } 4227 } 4228 4229 if (ifp->illif_ppa_arena != NULL) { 4230 if (ill->ill_ppa == UINT_MAX) { 4231 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4232 1, VM_NOSLEEP|VM_FIRSTFIT); 4233 if (ppa == 0) 4234 return (EAGAIN); 4235 ill->ill_ppa = --ppa; 4236 } else { 4237 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4238 1, /* size */ 4239 1, /* align/quantum */ 4240 0, /* phase */ 4241 0, /* nocross */ 4242 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4243 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4244 VM_NOSLEEP|VM_FIRSTFIT); 4245 /* 4246 * Most likely the allocation failed because 4247 * the requested ppa was in use. 4248 */ 4249 if (ppa == 0) 4250 return (EEXIST); 4251 } 4252 return (0); 4253 } 4254 4255 /* 4256 * No arena is in use and not enough (>ill_no_arena) interfaces have 4257 * been plumbed to create one. Do a linear search to get a unused ppa. 4258 */ 4259 if (ill->ill_ppa == UINT_MAX) { 4260 end = UINT_MAX - 1; 4261 start = 0; 4262 } else { 4263 end = start = ill->ill_ppa; 4264 } 4265 4266 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4267 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4268 if (start++ >= end) { 4269 if (ill->ill_ppa == UINT_MAX) 4270 return (EAGAIN); 4271 else 4272 return (EEXIST); 4273 } 4274 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4275 } 4276 ill->ill_ppa = start; 4277 return (0); 4278 } 4279 4280 /* 4281 * Insert ill into the list of configured ill's. Once this function completes, 4282 * the ill is globally visible and is available through lookups. More precisely 4283 * this happens after the caller drops the ill_g_lock. 4284 */ 4285 static int 4286 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4287 { 4288 ill_if_t *ill_interface; 4289 avl_index_t where = 0; 4290 int error; 4291 int name_length; 4292 int index; 4293 boolean_t check_length = B_FALSE; 4294 4295 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4296 4297 name_length = mi_strlen(name) + 1; 4298 4299 if (isv6) 4300 index = IP_V6_G_HEAD; 4301 else 4302 index = IP_V4_G_HEAD; 4303 4304 ill_interface = IP_VX_ILL_G_LIST(index); 4305 /* 4306 * Search for interface type based on name 4307 */ 4308 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4309 if ((ill_interface->illif_name_len == name_length) && 4310 (strcmp(ill_interface->illif_name, name) == 0)) { 4311 break; 4312 } 4313 ill_interface = ill_interface->illif_next; 4314 } 4315 4316 /* 4317 * Interface type not found, create one. 4318 */ 4319 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4320 4321 ill_g_head_t ghead; 4322 4323 /* 4324 * allocate ill_if_t structure 4325 */ 4326 4327 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4328 if (ill_interface == NULL) { 4329 return (ENOMEM); 4330 } 4331 4332 4333 4334 (void) strcpy(ill_interface->illif_name, name); 4335 ill_interface->illif_name_len = name_length; 4336 4337 avl_create(&ill_interface->illif_avl_by_ppa, 4338 ill_compare_ppa, sizeof (ill_t), 4339 offsetof(struct ill_s, ill_avl_byppa)); 4340 4341 /* 4342 * link the structure in the back to maintain order 4343 * of configuration for ifconfig output. 4344 */ 4345 ghead = ill_g_heads[index]; 4346 insque(ill_interface, ghead.ill_g_list_tail); 4347 4348 } 4349 4350 if (ill->ill_ppa == UINT_MAX) 4351 check_length = B_TRUE; 4352 4353 error = ill_alloc_ppa(ill_interface, ill); 4354 if (error != 0) { 4355 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4356 ill_delete_interface_type(ill->ill_ifptr); 4357 return (error); 4358 } 4359 4360 /* 4361 * When the ppa is choosen by the system, check that there is 4362 * enough space to insert ppa. if a specific ppa was passed in this 4363 * check is not required as the interface name passed in will have 4364 * the right ppa in it. 4365 */ 4366 if (check_length) { 4367 /* 4368 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4369 */ 4370 char buf[sizeof (uint_t) * 3]; 4371 4372 /* 4373 * convert ppa to string to calculate the amount of space 4374 * required for it in the name. 4375 */ 4376 numtos(ill->ill_ppa, buf); 4377 4378 /* Do we have enough space to insert ppa ? */ 4379 4380 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4381 /* Free ppa and interface type struct */ 4382 if (ill_interface->illif_ppa_arena != NULL) { 4383 vmem_free(ill_interface->illif_ppa_arena, 4384 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4385 } 4386 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4387 0) { 4388 ill_delete_interface_type(ill->ill_ifptr); 4389 } 4390 4391 return (EINVAL); 4392 } 4393 } 4394 4395 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4396 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4397 4398 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4399 &where); 4400 ill->ill_ifptr = ill_interface; 4401 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4402 4403 ill_phyint_reinit(ill); 4404 return (0); 4405 } 4406 4407 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4408 static boolean_t 4409 ipsq_init(ill_t *ill) 4410 { 4411 ipsq_t *ipsq; 4412 4413 /* Init the ipsq and impicitly enter as writer */ 4414 ill->ill_phyint->phyint_ipsq = 4415 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4416 if (ill->ill_phyint->phyint_ipsq == NULL) 4417 return (B_FALSE); 4418 ipsq = ill->ill_phyint->phyint_ipsq; 4419 ipsq->ipsq_phyint_list = ill->ill_phyint; 4420 ill->ill_phyint->phyint_ipsq_next = NULL; 4421 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4422 ipsq->ipsq_refs = 1; 4423 ipsq->ipsq_writer = curthread; 4424 ipsq->ipsq_reentry_cnt = 1; 4425 #ifdef ILL_DEBUG 4426 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4427 #endif 4428 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4429 return (B_TRUE); 4430 } 4431 4432 /* 4433 * ill_init is called by ip_open when a device control stream is opened. 4434 * It does a few initializations, and shoots a DL_INFO_REQ message down 4435 * to the driver. The response is later picked up in ip_rput_dlpi and 4436 * used to set up default mechanisms for talking to the driver. (Always 4437 * called as writer.) 4438 * 4439 * If this function returns error, ip_open will call ip_close which in 4440 * turn will call ill_delete to clean up any memory allocated here that 4441 * is not yet freed. 4442 */ 4443 int 4444 ill_init(queue_t *q, ill_t *ill) 4445 { 4446 int count; 4447 dl_info_req_t *dlir; 4448 mblk_t *info_mp; 4449 uchar_t *frag_ptr; 4450 4451 /* 4452 * The ill is initialized to zero by mi_alloc*(). In addition 4453 * some fields already contain valid values, initialized in 4454 * ip_open(), before we reach here. 4455 */ 4456 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4457 4458 ill->ill_rq = q; 4459 ill->ill_wq = WR(q); 4460 4461 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4462 BPRI_HI); 4463 if (info_mp == NULL) 4464 return (ENOMEM); 4465 4466 /* 4467 * Allocate sufficient space to contain our fragment hash table and 4468 * the device name. 4469 */ 4470 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4471 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4472 if (frag_ptr == NULL) { 4473 freemsg(info_mp); 4474 return (ENOMEM); 4475 } 4476 ill->ill_frag_ptr = frag_ptr; 4477 ill->ill_frag_free_num_pkts = 0; 4478 ill->ill_last_frag_clean_time = 0; 4479 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4480 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4481 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4482 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4483 NULL, MUTEX_DEFAULT, NULL); 4484 } 4485 4486 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4487 if (ill->ill_phyint == NULL) { 4488 freemsg(info_mp); 4489 mi_free(frag_ptr); 4490 return (ENOMEM); 4491 } 4492 4493 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4494 /* 4495 * For now pretend this is a v4 ill. We need to set phyint_ill* 4496 * at this point because of the following reason. If we can't 4497 * enter the ipsq at some point and cv_wait, the writer that 4498 * wakes us up tries to locate us using the list of all phyints 4499 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4500 * If we don't set it now, we risk a missed wakeup. 4501 */ 4502 ill->ill_phyint->phyint_illv4 = ill; 4503 ill->ill_ppa = UINT_MAX; 4504 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4505 4506 if (!ipsq_init(ill)) { 4507 freemsg(info_mp); 4508 mi_free(frag_ptr); 4509 mi_free(ill->ill_phyint); 4510 return (ENOMEM); 4511 } 4512 4513 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4514 4515 4516 /* Frag queue limit stuff */ 4517 ill->ill_frag_count = 0; 4518 ill->ill_ipf_gen = 0; 4519 4520 ill->ill_global_timer = INFINITY; 4521 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4522 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4523 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4524 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4525 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4526 4527 /* 4528 * Initialize IPv6 configuration variables. The IP module is always 4529 * opened as an IPv4 module. Instead tracking down the cases where 4530 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4531 * here for convenience, this has no effect until the ill is set to do 4532 * IPv6. 4533 */ 4534 ill->ill_reachable_time = ND_REACHABLE_TIME; 4535 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4536 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4537 ill->ill_max_buf = ND_MAX_Q; 4538 ill->ill_refcnt = 0; 4539 4540 /* Send down the Info Request to the driver. */ 4541 info_mp->b_datap->db_type = M_PCPROTO; 4542 dlir = (dl_info_req_t *)info_mp->b_rptr; 4543 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4544 dlir->dl_primitive = DL_INFO_REQ; 4545 4546 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4547 4548 qprocson(q); 4549 ill_dlpi_send(ill, info_mp); 4550 4551 return (0); 4552 } 4553 4554 /* 4555 * ill_dls_info 4556 * creates datalink socket info from the device. 4557 */ 4558 int 4559 ill_dls_info(struct sockaddr_dl *sdl, ipif_t *ipif) 4560 { 4561 size_t length; 4562 ill_t *ill = ipif->ipif_ill; 4563 4564 sdl->sdl_family = AF_LINK; 4565 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4566 sdl->sdl_type = ipif->ipif_type; 4567 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4568 length = mi_strlen(sdl->sdl_data); 4569 ASSERT(length < 256); 4570 sdl->sdl_nlen = (uchar_t)length; 4571 sdl->sdl_alen = ill->ill_phys_addr_length; 4572 mutex_enter(&ill->ill_lock); 4573 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4574 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4575 ill->ill_phys_addr_length); 4576 } 4577 mutex_exit(&ill->ill_lock); 4578 sdl->sdl_slen = 0; 4579 return (sizeof (struct sockaddr_dl)); 4580 } 4581 4582 /* 4583 * ill_xarp_info 4584 * creates xarp info from the device. 4585 */ 4586 static int 4587 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4588 { 4589 sdl->sdl_family = AF_LINK; 4590 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4591 sdl->sdl_type = ill->ill_type; 4592 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4593 sizeof (sdl->sdl_data)); 4594 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4595 sdl->sdl_alen = ill->ill_phys_addr_length; 4596 sdl->sdl_slen = 0; 4597 return (sdl->sdl_nlen); 4598 } 4599 4600 static int 4601 loopback_kstat_update(kstat_t *ksp, int rw) 4602 { 4603 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4604 4605 if (rw == KSTAT_WRITE) 4606 return (EACCES); 4607 kn[0].value.ui32 = loopback_packets; 4608 kn[1].value.ui32 = loopback_packets; 4609 return (0); 4610 } 4611 4612 4613 /* 4614 * Has ifindex been plumbed already. 4615 */ 4616 static boolean_t 4617 phyint_exists(uint_t index) 4618 { 4619 phyint_t *phyi; 4620 4621 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4622 /* 4623 * Indexes are stored in the phyint - a common structure 4624 * to both IPv4 and IPv6. 4625 */ 4626 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4627 (void *) &index, NULL); 4628 return (phyi != NULL); 4629 } 4630 4631 /* 4632 * Assign a unique interface index for the phyint. 4633 */ 4634 static boolean_t 4635 phyint_assign_ifindex(phyint_t *phyi) 4636 { 4637 uint_t starting_index; 4638 4639 ASSERT(phyi->phyint_ifindex == 0); 4640 if (!ill_index_wrap) { 4641 phyi->phyint_ifindex = ill_index++; 4642 if (ill_index == 0) { 4643 /* Reached the uint_t limit Next time wrap */ 4644 ill_index_wrap = B_TRUE; 4645 } 4646 return (B_TRUE); 4647 } 4648 4649 /* 4650 * Start reusing unused indexes. Note that we hold the ill_g_lock 4651 * at this point and don't want to call any function that attempts 4652 * to get the lock again. 4653 */ 4654 starting_index = ill_index++; 4655 for (; ill_index != starting_index; ill_index++) { 4656 if (ill_index != 0 && !phyint_exists(ill_index)) { 4657 /* found unused index - use it */ 4658 phyi->phyint_ifindex = ill_index; 4659 return (B_TRUE); 4660 } 4661 } 4662 4663 /* 4664 * all interface indicies are inuse. 4665 */ 4666 return (B_FALSE); 4667 } 4668 4669 /* 4670 * Return a pointer to the ill which matches the supplied name. Note that 4671 * the ill name length includes the null termination character. (May be 4672 * called as writer.) 4673 * If do_alloc and the interface is "lo0" it will be automatically created. 4674 * Cannot bump up reference on condemned ills. So dup detect can't be done 4675 * using this func. 4676 */ 4677 ill_t * 4678 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4679 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 4680 { 4681 ill_t *ill; 4682 ipif_t *ipif; 4683 kstat_named_t *kn; 4684 boolean_t isloopback; 4685 ipsq_t *old_ipsq; 4686 4687 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4688 4689 rw_enter(&ill_g_lock, RW_READER); 4690 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4691 rw_exit(&ill_g_lock); 4692 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4693 return (ill); 4694 4695 /* 4696 * Couldn't find it. Does this happen to be a lookup for the 4697 * loopback device and are we allowed to allocate it? 4698 */ 4699 if (!isloopback || !do_alloc) 4700 return (NULL); 4701 4702 rw_enter(&ill_g_lock, RW_WRITER); 4703 4704 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4705 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4706 rw_exit(&ill_g_lock); 4707 return (ill); 4708 } 4709 4710 /* Create the loopback device on demand */ 4711 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4712 sizeof (ipif_loopback_name), BPRI_MED)); 4713 if (ill == NULL) 4714 goto done; 4715 4716 *ill = ill_null; 4717 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4718 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4719 if (ill->ill_phyint == NULL) 4720 goto done; 4721 4722 if (isv6) 4723 ill->ill_phyint->phyint_illv6 = ill; 4724 else 4725 ill->ill_phyint->phyint_illv4 = ill; 4726 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4727 ill->ill_max_frag = IP_LOOPBACK_MTU; 4728 /* Add room for tcp+ip headers */ 4729 if (isv6) { 4730 ill->ill_isv6 = B_TRUE; 4731 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4732 if (!ill_allocate_mibs(ill)) 4733 goto done; 4734 } else { 4735 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4736 } 4737 ill->ill_max_mtu = ill->ill_max_frag; 4738 /* 4739 * ipif_loopback_name can't be pointed at directly because its used 4740 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4741 * from the glist, ill_glist_delete() sets the first character of 4742 * ill_name to '\0'. 4743 */ 4744 ill->ill_name = (char *)ill + sizeof (*ill); 4745 (void) strcpy(ill->ill_name, ipif_loopback_name); 4746 ill->ill_name_length = sizeof (ipif_loopback_name); 4747 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4748 4749 ill->ill_global_timer = INFINITY; 4750 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4751 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4752 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4753 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4754 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4755 4756 /* No resolver here. */ 4757 ill->ill_net_type = IRE_LOOPBACK; 4758 4759 /* Initialize the ipsq */ 4760 if (!ipsq_init(ill)) 4761 goto done; 4762 4763 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4764 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4765 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4766 #ifdef ILL_DEBUG 4767 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4768 #endif 4769 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4770 if (ipif == NULL) 4771 goto done; 4772 4773 ill->ill_flags = ILLF_MULTICAST; 4774 4775 /* Set up default loopback address and mask. */ 4776 if (!isv6) { 4777 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4778 4779 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4780 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4781 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4782 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4783 ipif->ipif_v6subnet); 4784 ill->ill_flags |= ILLF_IPV4; 4785 } else { 4786 ipif->ipif_v6lcl_addr = ipv6_loopback; 4787 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4788 ipif->ipif_v6net_mask = ipv6_all_ones; 4789 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4790 ipif->ipif_v6subnet); 4791 ill->ill_flags |= ILLF_IPV6; 4792 } 4793 4794 /* 4795 * Chain us in at the end of the ill list. hold the ill 4796 * before we make it globally visible. 1 for the lookup. 4797 */ 4798 ill->ill_refcnt = 0; 4799 ill_refhold(ill); 4800 4801 ill->ill_frag_count = 0; 4802 ill->ill_frag_free_num_pkts = 0; 4803 ill->ill_last_frag_clean_time = 0; 4804 4805 old_ipsq = ill->ill_phyint->phyint_ipsq; 4806 4807 if (ill_glist_insert(ill, "lo", isv6) != 0) 4808 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4809 4810 /* Let SCTP know so that it can add this to its list */ 4811 sctp_update_ill(ill, SCTP_ILL_INSERT); 4812 4813 /* Let SCTP know about this IPIF, so that it can add it to its list */ 4814 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 4815 4816 /* 4817 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4818 */ 4819 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4820 /* Loopback ills aren't in any IPMP group */ 4821 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4822 ipsq_delete(old_ipsq); 4823 } 4824 4825 /* 4826 * Delay this till the ipif is allocated as ipif_allocate 4827 * de-references ill_phyint for getting the ifindex. We 4828 * can't do this before ipif_allocate because ill_phyint_reinit 4829 * -> phyint_assign_ifindex expects ipif to be present. 4830 */ 4831 mutex_enter(&ill->ill_phyint->phyint_lock); 4832 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4833 mutex_exit(&ill->ill_phyint->phyint_lock); 4834 4835 if (loopback_ksp == NULL) { 4836 /* Export loopback interface statistics */ 4837 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 4838 KSTAT_TYPE_NAMED, 2, 0); 4839 if (loopback_ksp != NULL) { 4840 loopback_ksp->ks_update = loopback_kstat_update; 4841 kn = KSTAT_NAMED_PTR(loopback_ksp); 4842 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4843 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4844 kstat_install(loopback_ksp); 4845 } 4846 } 4847 4848 if (error != NULL) 4849 *error = 0; 4850 *did_alloc = B_TRUE; 4851 rw_exit(&ill_g_lock); 4852 return (ill); 4853 done: 4854 if (ill != NULL) { 4855 if (ill->ill_phyint != NULL) { 4856 ipsq_t *ipsq; 4857 4858 ipsq = ill->ill_phyint->phyint_ipsq; 4859 if (ipsq != NULL) 4860 kmem_free(ipsq, sizeof (ipsq_t)); 4861 mi_free(ill->ill_phyint); 4862 } 4863 ill_free_mib(ill); 4864 mi_free(ill); 4865 } 4866 rw_exit(&ill_g_lock); 4867 if (error != NULL) 4868 *error = ENOMEM; 4869 return (NULL); 4870 } 4871 4872 /* 4873 * Return a pointer to the ill which matches the index and IP version type. 4874 */ 4875 ill_t * 4876 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4877 ipsq_func_t func, int *err) 4878 { 4879 ill_t *ill; 4880 ipsq_t *ipsq; 4881 phyint_t *phyi; 4882 4883 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4884 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4885 4886 if (err != NULL) 4887 *err = 0; 4888 4889 /* 4890 * Indexes are stored in the phyint - a common structure 4891 * to both IPv4 and IPv6. 4892 */ 4893 rw_enter(&ill_g_lock, RW_READER); 4894 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4895 (void *) &index, NULL); 4896 if (phyi != NULL) { 4897 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4898 if (ill != NULL) { 4899 /* 4900 * The block comment at the start of ipif_down 4901 * explains the use of the macros used below 4902 */ 4903 GRAB_CONN_LOCK(q); 4904 mutex_enter(&ill->ill_lock); 4905 if (ILL_CAN_LOOKUP(ill)) { 4906 ill_refhold_locked(ill); 4907 mutex_exit(&ill->ill_lock); 4908 RELEASE_CONN_LOCK(q); 4909 rw_exit(&ill_g_lock); 4910 return (ill); 4911 } else if (ILL_CAN_WAIT(ill, q)) { 4912 ipsq = ill->ill_phyint->phyint_ipsq; 4913 mutex_enter(&ipsq->ipsq_lock); 4914 rw_exit(&ill_g_lock); 4915 mutex_exit(&ill->ill_lock); 4916 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4917 mutex_exit(&ipsq->ipsq_lock); 4918 RELEASE_CONN_LOCK(q); 4919 *err = EINPROGRESS; 4920 return (NULL); 4921 } 4922 RELEASE_CONN_LOCK(q); 4923 mutex_exit(&ill->ill_lock); 4924 } 4925 } 4926 rw_exit(&ill_g_lock); 4927 if (err != NULL) 4928 *err = ENXIO; 4929 return (NULL); 4930 } 4931 4932 /* 4933 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4934 * that gives a running thread a reference to the ill. This reference must be 4935 * released by the thread when it is done accessing the ill and related 4936 * objects. ill_refcnt can not be used to account for static references 4937 * such as other structures pointing to an ill. Callers must generally 4938 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4939 * or be sure that the ill is not being deleted or changing state before 4940 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4941 * ill won't change any of its critical state such as address, netmask etc. 4942 */ 4943 void 4944 ill_refhold(ill_t *ill) 4945 { 4946 mutex_enter(&ill->ill_lock); 4947 ill->ill_refcnt++; 4948 ILL_TRACE_REF(ill); 4949 mutex_exit(&ill->ill_lock); 4950 } 4951 4952 void 4953 ill_refhold_locked(ill_t *ill) 4954 { 4955 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4956 ill->ill_refcnt++; 4957 ILL_TRACE_REF(ill); 4958 } 4959 4960 int 4961 ill_check_and_refhold(ill_t *ill) 4962 { 4963 mutex_enter(&ill->ill_lock); 4964 if (ILL_CAN_LOOKUP(ill)) { 4965 ill_refhold_locked(ill); 4966 mutex_exit(&ill->ill_lock); 4967 return (0); 4968 } 4969 mutex_exit(&ill->ill_lock); 4970 return (ILL_LOOKUP_FAILED); 4971 } 4972 4973 /* 4974 * Must not be called while holding any locks. Otherwise if this is 4975 * the last reference to be released, there is a chance of recursive mutex 4976 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4977 * to restart an ioctl. 4978 */ 4979 void 4980 ill_refrele(ill_t *ill) 4981 { 4982 mutex_enter(&ill->ill_lock); 4983 ASSERT(ill->ill_refcnt != 0); 4984 ill->ill_refcnt--; 4985 ILL_UNTRACE_REF(ill); 4986 if (ill->ill_refcnt != 0) { 4987 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4988 mutex_exit(&ill->ill_lock); 4989 return; 4990 } 4991 4992 /* Drops the ill_lock */ 4993 ipif_ill_refrele_tail(ill); 4994 } 4995 4996 /* 4997 * Obtain a weak reference count on the ill. This reference ensures the 4998 * ill won't be freed, but the ill may change any of its critical state 4999 * such as netmask, address etc. Returns an error if the ill has started 5000 * closing. 5001 */ 5002 boolean_t 5003 ill_waiter_inc(ill_t *ill) 5004 { 5005 mutex_enter(&ill->ill_lock); 5006 if (ill->ill_state_flags & ILL_CONDEMNED) { 5007 mutex_exit(&ill->ill_lock); 5008 return (B_FALSE); 5009 } 5010 ill->ill_waiters++; 5011 mutex_exit(&ill->ill_lock); 5012 return (B_TRUE); 5013 } 5014 5015 void 5016 ill_waiter_dcr(ill_t *ill) 5017 { 5018 mutex_enter(&ill->ill_lock); 5019 ill->ill_waiters--; 5020 if (ill->ill_waiters == 0) 5021 cv_broadcast(&ill->ill_cv); 5022 mutex_exit(&ill->ill_lock); 5023 } 5024 5025 /* 5026 * Named Dispatch routine to produce a formatted report on all ILLs. 5027 * This report is accessed by using the ndd utility to "get" ND variable 5028 * "ip_ill_status". 5029 */ 5030 /* ARGSUSED */ 5031 int 5032 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5033 { 5034 ill_t *ill; 5035 ill_walk_context_t ctx; 5036 5037 (void) mi_mpprintf(mp, 5038 "ILL " MI_COL_HDRPAD_STR 5039 /* 01234567[89ABCDEF] */ 5040 "rq " MI_COL_HDRPAD_STR 5041 /* 01234567[89ABCDEF] */ 5042 "wq " MI_COL_HDRPAD_STR 5043 /* 01234567[89ABCDEF] */ 5044 "upcnt mxfrg err name"); 5045 /* 12345 12345 123 xxxxxxxx */ 5046 5047 rw_enter(&ill_g_lock, RW_READER); 5048 ill = ILL_START_WALK_ALL(&ctx); 5049 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5050 (void) mi_mpprintf(mp, 5051 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5052 "%05u %05u %03d %s", 5053 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5054 ill->ill_ipif_up_count, 5055 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5056 } 5057 rw_exit(&ill_g_lock); 5058 5059 return (0); 5060 } 5061 5062 /* 5063 * Named Dispatch routine to produce a formatted report on all IPIFs. 5064 * This report is accessed by using the ndd utility to "get" ND variable 5065 * "ip_ipif_status". 5066 */ 5067 /* ARGSUSED */ 5068 int 5069 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5070 { 5071 char buf1[INET6_ADDRSTRLEN]; 5072 char buf2[INET6_ADDRSTRLEN]; 5073 char buf3[INET6_ADDRSTRLEN]; 5074 char buf4[INET6_ADDRSTRLEN]; 5075 char buf5[INET6_ADDRSTRLEN]; 5076 char buf6[INET6_ADDRSTRLEN]; 5077 char buf[LIFNAMSIZ]; 5078 ill_t *ill; 5079 ipif_t *ipif; 5080 nv_t *nvp; 5081 uint64_t flags; 5082 zoneid_t zoneid; 5083 ill_walk_context_t ctx; 5084 5085 (void) mi_mpprintf(mp, 5086 "IPIF metric mtu in/out/forward name zone flags...\n" 5087 "\tlocal address\n" 5088 "\tsrc address\n" 5089 "\tsubnet\n" 5090 "\tmask\n" 5091 "\tbroadcast\n" 5092 "\tp-p-dst"); 5093 5094 ASSERT(q->q_next == NULL); 5095 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5096 5097 rw_enter(&ill_g_lock, RW_READER); 5098 ill = ILL_START_WALK_ALL(&ctx); 5099 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5100 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 5101 if (zoneid != GLOBAL_ZONEID && 5102 zoneid != ipif->ipif_zoneid) 5103 continue; 5104 (void) mi_mpprintf(mp, 5105 MI_COL_PTRFMT_STR 5106 "%04u %05u %u/%u/%u %s %d", 5107 (void *)ipif, 5108 ipif->ipif_metric, ipif->ipif_mtu, 5109 ipif->ipif_ib_pkt_count, 5110 ipif->ipif_ob_pkt_count, 5111 ipif->ipif_fo_pkt_count, 5112 ipif_get_name(ipif, buf, sizeof (buf)), 5113 ipif->ipif_zoneid); 5114 5115 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5116 ipif->ipif_ill->ill_phyint->phyint_flags; 5117 5118 /* Tack on text strings for any flags. */ 5119 nvp = ipif_nv_tbl; 5120 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5121 if (nvp->nv_value & flags) 5122 (void) mi_mpprintf_nr(mp, " %s", 5123 nvp->nv_name); 5124 } 5125 (void) mi_mpprintf(mp, 5126 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5127 inet_ntop(AF_INET6, 5128 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5129 inet_ntop(AF_INET6, 5130 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5131 inet_ntop(AF_INET6, 5132 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5133 inet_ntop(AF_INET6, 5134 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5135 inet_ntop(AF_INET6, 5136 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5137 inet_ntop(AF_INET6, 5138 &ipif->ipif_v6pp_dst_addr, 5139 buf6, sizeof (buf6))); 5140 } 5141 } 5142 rw_exit(&ill_g_lock); 5143 return (0); 5144 } 5145 5146 /* 5147 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5148 * driver. We construct best guess defaults for lower level information that 5149 * we need. If an interface is brought up without injection of any overriding 5150 * information from outside, we have to be ready to go with these defaults. 5151 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5152 * we primarely want the dl_provider_style. 5153 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5154 * at which point we assume the other part of the information is valid. 5155 */ 5156 void 5157 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5158 { 5159 uchar_t *brdcst_addr; 5160 uint_t brdcst_addr_length, phys_addr_length; 5161 t_scalar_t sap_length; 5162 dl_info_ack_t *dlia; 5163 ip_m_t *ipm; 5164 dl_qos_cl_sel1_t *sel1; 5165 5166 ASSERT(IAM_WRITER_ILL(ill)); 5167 5168 /* 5169 * Till the ill is fully up ILL_CHANGING will be set and 5170 * the ill is not globally visible. So no need for a lock. 5171 */ 5172 dlia = (dl_info_ack_t *)mp->b_rptr; 5173 ill->ill_mactype = dlia->dl_mac_type; 5174 5175 ipm = ip_m_lookup(dlia->dl_mac_type); 5176 if (ipm == NULL) { 5177 ipm = ip_m_lookup(DL_OTHER); 5178 ASSERT(ipm != NULL); 5179 } 5180 ill->ill_media = ipm; 5181 5182 /* 5183 * When the new DLPI stuff is ready we'll pull lengths 5184 * from dlia. 5185 */ 5186 if (dlia->dl_version == DL_VERSION_2) { 5187 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5188 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5189 brdcst_addr_length); 5190 if (brdcst_addr == NULL) { 5191 brdcst_addr_length = 0; 5192 } 5193 sap_length = dlia->dl_sap_length; 5194 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5195 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5196 brdcst_addr_length, sap_length, phys_addr_length)); 5197 } else { 5198 brdcst_addr_length = 6; 5199 brdcst_addr = ip_six_byte_all_ones; 5200 sap_length = -2; 5201 phys_addr_length = brdcst_addr_length; 5202 } 5203 5204 ill->ill_bcast_addr_length = brdcst_addr_length; 5205 ill->ill_phys_addr_length = phys_addr_length; 5206 ill->ill_sap_length = sap_length; 5207 ill->ill_max_frag = dlia->dl_max_sdu; 5208 ill->ill_max_mtu = ill->ill_max_frag; 5209 5210 ill->ill_type = ipm->ip_m_type; 5211 5212 if (!ill->ill_dlpi_style_set) { 5213 if (dlia->dl_provider_style == DL_STYLE2) 5214 ill->ill_needs_attach = 1; 5215 5216 /* 5217 * Allocate the first ipif on this ill. We don't delay it 5218 * further as ioctl handling assumes atleast one ipif to 5219 * be present. 5220 * 5221 * At this point we don't know whether the ill is v4 or v6. 5222 * We will know this whan the SIOCSLIFNAME happens and 5223 * the correct value for ill_isv6 will be assigned in 5224 * ipif_set_values(). We need to hold the ill lock and 5225 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5226 * the wakeup. 5227 */ 5228 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5229 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5230 mutex_enter(&ill->ill_lock); 5231 ASSERT(ill->ill_dlpi_style_set == 0); 5232 ill->ill_dlpi_style_set = 1; 5233 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5234 cv_broadcast(&ill->ill_cv); 5235 mutex_exit(&ill->ill_lock); 5236 freemsg(mp); 5237 return; 5238 } 5239 ASSERT(ill->ill_ipif != NULL); 5240 /* 5241 * We know whether it is IPv4 or IPv6 now, as this is the 5242 * second DL_INFO_ACK we are recieving in response to the 5243 * DL_INFO_REQ sent in ipif_set_values. 5244 */ 5245 if (ill->ill_isv6) 5246 ill->ill_sap = IP6_DL_SAP; 5247 else 5248 ill->ill_sap = IP_DL_SAP; 5249 /* 5250 * Set ipif_mtu which is used to set the IRE's 5251 * ire_max_frag value. The driver could have sent 5252 * a different mtu from what it sent last time. No 5253 * need to call ipif_mtu_change because IREs have 5254 * not yet been created. 5255 */ 5256 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5257 /* 5258 * Clear all the flags that were set based on ill_bcast_addr_length 5259 * and ill_phys_addr_length (in ipif_set_values) as these could have 5260 * changed now and we need to re-evaluate. 5261 */ 5262 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5263 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5264 5265 /* 5266 * Free ill_resolver_mp and ill_bcast_mp as things could have 5267 * changed now. 5268 */ 5269 if (ill->ill_bcast_addr_length == 0) { 5270 if (ill->ill_resolver_mp != NULL) 5271 freemsg(ill->ill_resolver_mp); 5272 if (ill->ill_bcast_mp != NULL) 5273 freemsg(ill->ill_bcast_mp); 5274 if (ill->ill_flags & ILLF_XRESOLV) 5275 ill->ill_net_type = IRE_IF_RESOLVER; 5276 else 5277 ill->ill_net_type = IRE_IF_NORESOLVER; 5278 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5279 ill->ill_phys_addr_length, 5280 ill->ill_sap, 5281 ill->ill_sap_length); 5282 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5283 5284 if (ill->ill_isv6) 5285 /* 5286 * Note: xresolv interfaces will eventually need NOARP 5287 * set here as well, but that will require those 5288 * external resolvers to have some knowledge of 5289 * that flag and act appropriately. Not to be changed 5290 * at present. 5291 */ 5292 ill->ill_flags |= ILLF_NONUD; 5293 else 5294 ill->ill_flags |= ILLF_NOARP; 5295 5296 if (ill->ill_phys_addr_length == 0) { 5297 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5298 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5299 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5300 } else { 5301 /* pt-pt supports multicast. */ 5302 ill->ill_flags |= ILLF_MULTICAST; 5303 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5304 } 5305 } 5306 } else { 5307 ill->ill_net_type = IRE_IF_RESOLVER; 5308 if (ill->ill_bcast_mp != NULL) 5309 freemsg(ill->ill_bcast_mp); 5310 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5311 ill->ill_bcast_addr_length, ill->ill_sap, 5312 ill->ill_sap_length); 5313 /* 5314 * Later detect lack of DLPI driver multicast 5315 * capability by catching DL_ENABMULTI errors in 5316 * ip_rput_dlpi. 5317 */ 5318 ill->ill_flags |= ILLF_MULTICAST; 5319 if (!ill->ill_isv6) 5320 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5321 } 5322 /* By default an interface does not support any CoS marking */ 5323 ill->ill_flags &= ~ILLF_COS_ENABLED; 5324 5325 /* 5326 * If we get QoS information in DL_INFO_ACK, the device supports 5327 * some form of CoS marking, set ILLF_COS_ENABLED. 5328 */ 5329 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5330 dlia->dl_qos_length); 5331 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5332 ill->ill_flags |= ILLF_COS_ENABLED; 5333 } 5334 5335 /* Clear any previous error indication. */ 5336 ill->ill_error = 0; 5337 freemsg(mp); 5338 } 5339 5340 /* 5341 * Perform various checks to verify that an address would make sense as a 5342 * local, remote, or subnet interface address. 5343 */ 5344 static boolean_t 5345 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5346 { 5347 ipaddr_t net_mask; 5348 5349 /* 5350 * Don't allow all zeroes, all ones or experimental address, but allow 5351 * all ones netmask. 5352 */ 5353 if ((net_mask = ip_net_mask(addr)) == 0) 5354 return (B_FALSE); 5355 /* A given netmask overrides the "guess" netmask */ 5356 if (subnet_mask != 0) 5357 net_mask = subnet_mask; 5358 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5359 (addr == (addr | ~net_mask)))) { 5360 return (B_FALSE); 5361 } 5362 if (CLASSD(addr)) 5363 return (B_FALSE); 5364 5365 return (B_TRUE); 5366 } 5367 5368 /* 5369 * ipif_lookup_group 5370 * Returns held ipif 5371 */ 5372 ipif_t * 5373 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5374 { 5375 ire_t *ire; 5376 ipif_t *ipif; 5377 5378 ire = ire_lookup_multi(group, zoneid); 5379 if (ire == NULL) 5380 return (NULL); 5381 ipif = ire->ire_ipif; 5382 ipif_refhold(ipif); 5383 ire_refrele(ire); 5384 return (ipif); 5385 } 5386 5387 /* 5388 * Look for an ipif with the specified interface address and destination. 5389 * The destination address is used only for matching point-to-point interfaces. 5390 */ 5391 ipif_t * 5392 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5393 ipsq_func_t func, int *error) 5394 { 5395 ipif_t *ipif; 5396 ill_t *ill; 5397 ill_walk_context_t ctx; 5398 ipsq_t *ipsq; 5399 5400 if (error != NULL) 5401 *error = 0; 5402 5403 /* 5404 * First match all the point-to-point interfaces 5405 * before looking at non-point-to-point interfaces. 5406 * This is done to avoid returning non-point-to-point 5407 * ipif instead of unnumbered point-to-point ipif. 5408 */ 5409 rw_enter(&ill_g_lock, RW_READER); 5410 ill = ILL_START_WALK_V4(&ctx); 5411 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5412 GRAB_CONN_LOCK(q); 5413 mutex_enter(&ill->ill_lock); 5414 for (ipif = ill->ill_ipif; ipif != NULL; 5415 ipif = ipif->ipif_next) { 5416 /* Allow the ipif to be down */ 5417 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5418 (ipif->ipif_lcl_addr == if_addr) && 5419 (ipif->ipif_pp_dst_addr == dst)) { 5420 /* 5421 * The block comment at the start of ipif_down 5422 * explains the use of the macros used below 5423 */ 5424 if (IPIF_CAN_LOOKUP(ipif)) { 5425 ipif_refhold_locked(ipif); 5426 mutex_exit(&ill->ill_lock); 5427 RELEASE_CONN_LOCK(q); 5428 rw_exit(&ill_g_lock); 5429 return (ipif); 5430 } else if (IPIF_CAN_WAIT(ipif, q)) { 5431 ipsq = ill->ill_phyint->phyint_ipsq; 5432 mutex_enter(&ipsq->ipsq_lock); 5433 mutex_exit(&ill->ill_lock); 5434 rw_exit(&ill_g_lock); 5435 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5436 ill); 5437 mutex_exit(&ipsq->ipsq_lock); 5438 RELEASE_CONN_LOCK(q); 5439 *error = EINPROGRESS; 5440 return (NULL); 5441 } 5442 } 5443 } 5444 mutex_exit(&ill->ill_lock); 5445 RELEASE_CONN_LOCK(q); 5446 } 5447 rw_exit(&ill_g_lock); 5448 5449 /* lookup the ipif based on interface address */ 5450 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5451 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5452 return (ipif); 5453 } 5454 5455 /* 5456 * Look for an ipif with the specified address. For point-point links 5457 * we look for matches on either the destination address and the local 5458 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5459 * is set. 5460 * Matches on a specific ill if match_ill is set. 5461 */ 5462 ipif_t * 5463 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5464 mblk_t *mp, ipsq_func_t func, int *error) 5465 { 5466 ipif_t *ipif; 5467 ill_t *ill; 5468 boolean_t ptp = B_FALSE; 5469 ipsq_t *ipsq; 5470 ill_walk_context_t ctx; 5471 5472 if (error != NULL) 5473 *error = 0; 5474 5475 rw_enter(&ill_g_lock, RW_READER); 5476 /* 5477 * Repeat twice, first based on local addresses and 5478 * next time for pointopoint. 5479 */ 5480 repeat: 5481 ill = ILL_START_WALK_V4(&ctx); 5482 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5483 if (match_ill != NULL && ill != match_ill) { 5484 continue; 5485 } 5486 GRAB_CONN_LOCK(q); 5487 mutex_enter(&ill->ill_lock); 5488 for (ipif = ill->ill_ipif; ipif != NULL; 5489 ipif = ipif->ipif_next) { 5490 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid) 5491 continue; 5492 /* Allow the ipif to be down */ 5493 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5494 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5495 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5496 (ipif->ipif_pp_dst_addr == addr))) { 5497 /* 5498 * The block comment at the start of ipif_down 5499 * explains the use of the macros used below 5500 */ 5501 if (IPIF_CAN_LOOKUP(ipif)) { 5502 ipif_refhold_locked(ipif); 5503 mutex_exit(&ill->ill_lock); 5504 RELEASE_CONN_LOCK(q); 5505 rw_exit(&ill_g_lock); 5506 return (ipif); 5507 } else if (IPIF_CAN_WAIT(ipif, q)) { 5508 ipsq = ill->ill_phyint->phyint_ipsq; 5509 mutex_enter(&ipsq->ipsq_lock); 5510 mutex_exit(&ill->ill_lock); 5511 rw_exit(&ill_g_lock); 5512 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5513 ill); 5514 mutex_exit(&ipsq->ipsq_lock); 5515 RELEASE_CONN_LOCK(q); 5516 *error = EINPROGRESS; 5517 return (NULL); 5518 } 5519 } 5520 } 5521 mutex_exit(&ill->ill_lock); 5522 RELEASE_CONN_LOCK(q); 5523 } 5524 5525 /* Now try the ptp case */ 5526 if (ptp) { 5527 rw_exit(&ill_g_lock); 5528 if (error != NULL) 5529 *error = ENXIO; 5530 return (NULL); 5531 } 5532 ptp = B_TRUE; 5533 goto repeat; 5534 } 5535 5536 /* 5537 * Look for an ipif that matches the specified remote address i.e. the 5538 * ipif that would receive the specified packet. 5539 * First look for directly connected interfaces and then do a recursive 5540 * IRE lookup and pick the first ipif corresponding to the source address in the 5541 * ire. 5542 * Returns: held ipif 5543 */ 5544 ipif_t * 5545 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5546 { 5547 ipif_t *ipif; 5548 ire_t *ire; 5549 5550 ASSERT(!ill->ill_isv6); 5551 5552 /* 5553 * Someone could be changing this ipif currently or change it 5554 * after we return this. Thus a few packets could use the old 5555 * old values. However structure updates/creates (ire, ilg, ilm etc) 5556 * will atomically be updated or cleaned up with the new value 5557 * Thus we don't need a lock to check the flags or other attrs below. 5558 */ 5559 mutex_enter(&ill->ill_lock); 5560 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5561 if (!IPIF_CAN_LOOKUP(ipif)) 5562 continue; 5563 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid) 5564 continue; 5565 /* Allow the ipif to be down */ 5566 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5567 if ((ipif->ipif_pp_dst_addr == addr) || 5568 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5569 ipif->ipif_lcl_addr == addr)) { 5570 ipif_refhold_locked(ipif); 5571 mutex_exit(&ill->ill_lock); 5572 return (ipif); 5573 } 5574 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5575 ipif_refhold_locked(ipif); 5576 mutex_exit(&ill->ill_lock); 5577 return (ipif); 5578 } 5579 } 5580 mutex_exit(&ill->ill_lock); 5581 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5582 MATCH_IRE_RECURSIVE); 5583 if (ire != NULL) { 5584 /* 5585 * The callers of this function wants to know the 5586 * interface on which they have to send the replies 5587 * back. For IRE_CACHES that have ire_stq and ire_ipif 5588 * derived from different ills, we really don't care 5589 * what we return here. 5590 */ 5591 ipif = ire->ire_ipif; 5592 if (ipif != NULL) { 5593 ipif_refhold(ipif); 5594 ire_refrele(ire); 5595 return (ipif); 5596 } 5597 ire_refrele(ire); 5598 } 5599 /* Pick the first interface */ 5600 ipif = ipif_get_next_ipif(NULL, ill); 5601 return (ipif); 5602 } 5603 5604 /* 5605 * This func does not prevent refcnt from increasing. But if 5606 * the caller has taken steps to that effect, then this func 5607 * can be used to determine whether the ill has become quiescent 5608 */ 5609 boolean_t 5610 ill_is_quiescent(ill_t *ill) 5611 { 5612 ipif_t *ipif; 5613 5614 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5615 5616 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5617 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5618 return (B_FALSE); 5619 } 5620 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 5621 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 5622 ill->ill_mrtun_refcnt != 0) 5623 return (B_FALSE); 5624 return (B_TRUE); 5625 } 5626 5627 /* 5628 * This func does not prevent refcnt from increasing. But if 5629 * the caller has taken steps to that effect, then this func 5630 * can be used to determine whether the ipif has become quiescent 5631 */ 5632 static boolean_t 5633 ipif_is_quiescent(ipif_t *ipif) 5634 { 5635 ill_t *ill; 5636 5637 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5638 5639 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5640 return (B_FALSE); 5641 5642 ill = ipif->ipif_ill; 5643 if (ill->ill_ipif_up_count != 0 || ill->ill_logical_down) 5644 return (B_TRUE); 5645 5646 /* This is the last ipif going down or being deleted on this ill */ 5647 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) 5648 return (B_FALSE); 5649 5650 return (B_TRUE); 5651 } 5652 5653 /* 5654 * This func does not prevent refcnt from increasing. But if 5655 * the caller has taken steps to that effect, then this func 5656 * can be used to determine whether the ipifs marked with IPIF_MOVING 5657 * have become quiescent and can be moved in a failover/failback. 5658 */ 5659 static ipif_t * 5660 ill_quiescent_to_move(ill_t *ill) 5661 { 5662 ipif_t *ipif; 5663 5664 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5665 5666 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5667 if (ipif->ipif_state_flags & IPIF_MOVING) { 5668 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5669 return (ipif); 5670 } 5671 } 5672 } 5673 return (NULL); 5674 } 5675 5676 /* 5677 * The ipif/ill/ire has been refreled. Do the tail processing. 5678 * Determine if the ipif or ill in question has become quiescent and if so 5679 * wakeup close and/or restart any queued pending ioctl that is waiting 5680 * for the ipif_down (or ill_down) 5681 */ 5682 void 5683 ipif_ill_refrele_tail(ill_t *ill) 5684 { 5685 mblk_t *mp; 5686 conn_t *connp; 5687 ipsq_t *ipsq; 5688 ipif_t *ipif; 5689 5690 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5691 5692 if ((ill->ill_state_flags & ILL_CONDEMNED) && 5693 ill_is_quiescent(ill)) { 5694 /* ill_close may be waiting */ 5695 cv_broadcast(&ill->ill_cv); 5696 } 5697 5698 /* ipsq can't change because ill_lock is held */ 5699 ipsq = ill->ill_phyint->phyint_ipsq; 5700 if (ipsq->ipsq_waitfor == 0) { 5701 /* Not waiting for anything, just return. */ 5702 mutex_exit(&ill->ill_lock); 5703 return; 5704 } 5705 ASSERT(ipsq->ipsq_pending_mp != NULL && 5706 ipsq->ipsq_pending_ipif != NULL); 5707 /* 5708 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 5709 * Last ipif going down needs to down the ill, so ill_ire_cnt must 5710 * be zero for restarting an ioctl that ends up downing the ill. 5711 */ 5712 ipif = ipsq->ipsq_pending_ipif; 5713 if (ipif->ipif_ill != ill) { 5714 /* The ioctl is pending on some other ill. */ 5715 mutex_exit(&ill->ill_lock); 5716 return; 5717 } 5718 5719 switch (ipsq->ipsq_waitfor) { 5720 case IPIF_DOWN: 5721 case IPIF_FREE: 5722 if (!ipif_is_quiescent(ipif)) { 5723 mutex_exit(&ill->ill_lock); 5724 return; 5725 } 5726 break; 5727 5728 case ILL_DOWN: 5729 case ILL_FREE: 5730 /* 5731 * case ILL_FREE arises only for loopback. otherwise ill_delete 5732 * waits synchronously in ip_close, and no message is queued in 5733 * ipsq_pending_mp at all in this case 5734 */ 5735 if (!ill_is_quiescent(ill)) { 5736 mutex_exit(&ill->ill_lock); 5737 return; 5738 } 5739 5740 break; 5741 5742 case ILL_MOVE_OK: 5743 if (ill_quiescent_to_move(ill) != NULL) { 5744 mutex_exit(&ill->ill_lock); 5745 return; 5746 } 5747 5748 break; 5749 default: 5750 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 5751 (void *)ipsq, ipsq->ipsq_waitfor); 5752 } 5753 5754 /* 5755 * Incr refcnt for the qwriter_ip call below which 5756 * does a refrele 5757 */ 5758 ill_refhold_locked(ill); 5759 mutex_exit(&ill->ill_lock); 5760 5761 mp = ipsq_pending_mp_get(ipsq, &connp); 5762 ASSERT(mp != NULL); 5763 5764 switch (mp->b_datap->db_type) { 5765 case M_ERROR: 5766 case M_HANGUP: 5767 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 5768 ipif_all_down_tail, CUR_OP, B_TRUE); 5769 return; 5770 5771 case M_IOCTL: 5772 case M_IOCDATA: 5773 (void) qwriter_ip(NULL, ill, 5774 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 5775 ip_reprocess_ioctl, CUR_OP, B_TRUE); 5776 return; 5777 5778 default: 5779 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5780 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5781 } 5782 } 5783 5784 #ifdef ILL_DEBUG 5785 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5786 void 5787 th_trace_rrecord(th_trace_t *th_trace) 5788 { 5789 tr_buf_t *tr_buf; 5790 uint_t lastref; 5791 5792 lastref = th_trace->th_trace_lastref; 5793 lastref++; 5794 if (lastref == TR_BUF_MAX) 5795 lastref = 0; 5796 th_trace->th_trace_lastref = lastref; 5797 tr_buf = &th_trace->th_trbuf[lastref]; 5798 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 5799 } 5800 5801 th_trace_t * 5802 th_trace_ipif_lookup(ipif_t *ipif) 5803 { 5804 int bucket_id; 5805 th_trace_t *th_trace; 5806 5807 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5808 5809 bucket_id = IP_TR_HASH(curthread); 5810 ASSERT(bucket_id < IP_TR_HASH_MAX); 5811 5812 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 5813 th_trace = th_trace->th_next) { 5814 if (th_trace->th_id == curthread) 5815 return (th_trace); 5816 } 5817 return (NULL); 5818 } 5819 5820 void 5821 ipif_trace_ref(ipif_t *ipif) 5822 { 5823 int bucket_id; 5824 th_trace_t *th_trace; 5825 5826 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5827 5828 if (ipif->ipif_trace_disable) 5829 return; 5830 5831 /* 5832 * Attempt to locate the trace buffer for the curthread. 5833 * If it does not exist, then allocate a new trace buffer 5834 * and link it in list of trace bufs for this ipif, at the head 5835 */ 5836 th_trace = th_trace_ipif_lookup(ipif); 5837 if (th_trace == NULL) { 5838 bucket_id = IP_TR_HASH(curthread); 5839 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5840 KM_NOSLEEP); 5841 if (th_trace == NULL) { 5842 ipif->ipif_trace_disable = B_TRUE; 5843 ipif_trace_cleanup(ipif); 5844 return; 5845 } 5846 th_trace->th_id = curthread; 5847 th_trace->th_next = ipif->ipif_trace[bucket_id]; 5848 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 5849 if (th_trace->th_next != NULL) 5850 th_trace->th_next->th_prev = &th_trace->th_next; 5851 ipif->ipif_trace[bucket_id] = th_trace; 5852 } 5853 ASSERT(th_trace->th_refcnt >= 0 && 5854 th_trace->th_refcnt < TR_BUF_MAX -1); 5855 th_trace->th_refcnt++; 5856 th_trace_rrecord(th_trace); 5857 } 5858 5859 void 5860 ipif_untrace_ref(ipif_t *ipif) 5861 { 5862 th_trace_t *th_trace; 5863 5864 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5865 5866 if (ipif->ipif_trace_disable) 5867 return; 5868 th_trace = th_trace_ipif_lookup(ipif); 5869 ASSERT(th_trace != NULL); 5870 ASSERT(th_trace->th_refcnt > 0); 5871 5872 th_trace->th_refcnt--; 5873 th_trace_rrecord(th_trace); 5874 } 5875 5876 th_trace_t * 5877 th_trace_ill_lookup(ill_t *ill) 5878 { 5879 th_trace_t *th_trace; 5880 int bucket_id; 5881 5882 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5883 5884 bucket_id = IP_TR_HASH(curthread); 5885 ASSERT(bucket_id < IP_TR_HASH_MAX); 5886 5887 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 5888 th_trace = th_trace->th_next) { 5889 if (th_trace->th_id == curthread) 5890 return (th_trace); 5891 } 5892 return (NULL); 5893 } 5894 5895 void 5896 ill_trace_ref(ill_t *ill) 5897 { 5898 int bucket_id; 5899 th_trace_t *th_trace; 5900 5901 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5902 if (ill->ill_trace_disable) 5903 return; 5904 /* 5905 * Attempt to locate the trace buffer for the curthread. 5906 * If it does not exist, then allocate a new trace buffer 5907 * and link it in list of trace bufs for this ill, at the head 5908 */ 5909 th_trace = th_trace_ill_lookup(ill); 5910 if (th_trace == NULL) { 5911 bucket_id = IP_TR_HASH(curthread); 5912 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5913 KM_NOSLEEP); 5914 if (th_trace == NULL) { 5915 ill->ill_trace_disable = B_TRUE; 5916 ill_trace_cleanup(ill); 5917 return; 5918 } 5919 th_trace->th_id = curthread; 5920 th_trace->th_next = ill->ill_trace[bucket_id]; 5921 th_trace->th_prev = &ill->ill_trace[bucket_id]; 5922 if (th_trace->th_next != NULL) 5923 th_trace->th_next->th_prev = &th_trace->th_next; 5924 ill->ill_trace[bucket_id] = th_trace; 5925 } 5926 ASSERT(th_trace->th_refcnt >= 0 && 5927 th_trace->th_refcnt < TR_BUF_MAX - 1); 5928 5929 th_trace->th_refcnt++; 5930 th_trace_rrecord(th_trace); 5931 } 5932 5933 void 5934 ill_untrace_ref(ill_t *ill) 5935 { 5936 th_trace_t *th_trace; 5937 5938 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5939 5940 if (ill->ill_trace_disable) 5941 return; 5942 th_trace = th_trace_ill_lookup(ill); 5943 ASSERT(th_trace != NULL); 5944 ASSERT(th_trace->th_refcnt > 0); 5945 5946 th_trace->th_refcnt--; 5947 th_trace_rrecord(th_trace); 5948 } 5949 5950 /* 5951 * Verify that this thread has no refs to the ipif and free 5952 * the trace buffers 5953 */ 5954 /* ARGSUSED */ 5955 void 5956 ipif_thread_exit(ipif_t *ipif, void *dummy) 5957 { 5958 th_trace_t *th_trace; 5959 5960 mutex_enter(&ipif->ipif_ill->ill_lock); 5961 5962 th_trace = th_trace_ipif_lookup(ipif); 5963 if (th_trace == NULL) { 5964 mutex_exit(&ipif->ipif_ill->ill_lock); 5965 return; 5966 } 5967 ASSERT(th_trace->th_refcnt == 0); 5968 /* unlink th_trace and free it */ 5969 *th_trace->th_prev = th_trace->th_next; 5970 if (th_trace->th_next != NULL) 5971 th_trace->th_next->th_prev = th_trace->th_prev; 5972 th_trace->th_next = NULL; 5973 th_trace->th_prev = NULL; 5974 kmem_free(th_trace, sizeof (th_trace_t)); 5975 5976 mutex_exit(&ipif->ipif_ill->ill_lock); 5977 } 5978 5979 /* 5980 * Verify that this thread has no refs to the ill and free 5981 * the trace buffers 5982 */ 5983 /* ARGSUSED */ 5984 void 5985 ill_thread_exit(ill_t *ill, void *dummy) 5986 { 5987 th_trace_t *th_trace; 5988 5989 mutex_enter(&ill->ill_lock); 5990 5991 th_trace = th_trace_ill_lookup(ill); 5992 if (th_trace == NULL) { 5993 mutex_exit(&ill->ill_lock); 5994 return; 5995 } 5996 ASSERT(th_trace->th_refcnt == 0); 5997 /* unlink th_trace and free it */ 5998 *th_trace->th_prev = th_trace->th_next; 5999 if (th_trace->th_next != NULL) 6000 th_trace->th_next->th_prev = th_trace->th_prev; 6001 th_trace->th_next = NULL; 6002 th_trace->th_prev = NULL; 6003 kmem_free(th_trace, sizeof (th_trace_t)); 6004 6005 mutex_exit(&ill->ill_lock); 6006 } 6007 #endif 6008 6009 #ifdef ILL_DEBUG 6010 void 6011 ip_thread_exit(void) 6012 { 6013 ill_t *ill; 6014 ipif_t *ipif; 6015 ill_walk_context_t ctx; 6016 6017 rw_enter(&ill_g_lock, RW_READER); 6018 ill = ILL_START_WALK_ALL(&ctx); 6019 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6020 for (ipif = ill->ill_ipif; ipif != NULL; 6021 ipif = ipif->ipif_next) { 6022 ipif_thread_exit(ipif, NULL); 6023 } 6024 ill_thread_exit(ill, NULL); 6025 } 6026 rw_exit(&ill_g_lock); 6027 6028 ire_walk(ire_thread_exit, NULL); 6029 ndp_walk_impl(NULL, nce_thread_exit, NULL, B_FALSE); 6030 } 6031 6032 /* 6033 * Called when ipif is unplumbed or when memory alloc fails 6034 */ 6035 void 6036 ipif_trace_cleanup(ipif_t *ipif) 6037 { 6038 int i; 6039 th_trace_t *th_trace; 6040 th_trace_t *th_trace_next; 6041 6042 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6043 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6044 th_trace = th_trace_next) { 6045 th_trace_next = th_trace->th_next; 6046 kmem_free(th_trace, sizeof (th_trace_t)); 6047 } 6048 ipif->ipif_trace[i] = NULL; 6049 } 6050 } 6051 6052 /* 6053 * Called when ill is unplumbed or when memory alloc fails 6054 */ 6055 void 6056 ill_trace_cleanup(ill_t *ill) 6057 { 6058 int i; 6059 th_trace_t *th_trace; 6060 th_trace_t *th_trace_next; 6061 6062 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6063 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6064 th_trace = th_trace_next) { 6065 th_trace_next = th_trace->th_next; 6066 kmem_free(th_trace, sizeof (th_trace_t)); 6067 } 6068 ill->ill_trace[i] = NULL; 6069 } 6070 } 6071 6072 #else 6073 void ip_thread_exit(void) {} 6074 #endif 6075 6076 void 6077 ipif_refhold_locked(ipif_t *ipif) 6078 { 6079 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6080 ipif->ipif_refcnt++; 6081 IPIF_TRACE_REF(ipif); 6082 } 6083 6084 void 6085 ipif_refhold(ipif_t *ipif) 6086 { 6087 ill_t *ill; 6088 6089 ill = ipif->ipif_ill; 6090 mutex_enter(&ill->ill_lock); 6091 ipif->ipif_refcnt++; 6092 IPIF_TRACE_REF(ipif); 6093 mutex_exit(&ill->ill_lock); 6094 } 6095 6096 /* 6097 * Must not be called while holding any locks. Otherwise if this is 6098 * the last reference to be released there is a chance of recursive mutex 6099 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6100 * to restart an ioctl. 6101 */ 6102 void 6103 ipif_refrele(ipif_t *ipif) 6104 { 6105 ill_t *ill; 6106 6107 ill = ipif->ipif_ill; 6108 6109 mutex_enter(&ill->ill_lock); 6110 ASSERT(ipif->ipif_refcnt != 0); 6111 ipif->ipif_refcnt--; 6112 IPIF_UNTRACE_REF(ipif); 6113 if (ipif->ipif_refcnt != 0) { 6114 mutex_exit(&ill->ill_lock); 6115 return; 6116 } 6117 6118 /* Drops the ill_lock */ 6119 ipif_ill_refrele_tail(ill); 6120 } 6121 6122 ipif_t * 6123 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6124 { 6125 ipif_t *ipif; 6126 6127 mutex_enter(&ill->ill_lock); 6128 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6129 ipif != NULL; ipif = ipif->ipif_next) { 6130 if (!IPIF_CAN_LOOKUP(ipif)) 6131 continue; 6132 ipif_refhold_locked(ipif); 6133 mutex_exit(&ill->ill_lock); 6134 return (ipif); 6135 } 6136 mutex_exit(&ill->ill_lock); 6137 return (NULL); 6138 } 6139 6140 /* 6141 * TODO: make this table extendible at run time 6142 * Return a pointer to the mac type info for 'mac_type' 6143 */ 6144 static ip_m_t * 6145 ip_m_lookup(t_uscalar_t mac_type) 6146 { 6147 ip_m_t *ipm; 6148 6149 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6150 if (ipm->ip_m_mac_type == mac_type) 6151 return (ipm); 6152 return (NULL); 6153 } 6154 6155 /* 6156 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6157 * ipif_arg is passed in to associate it with the correct interface. 6158 * We may need to restart this operation if the ipif cannot be looked up 6159 * due to an exclusive operation that is currently in progress. The restart 6160 * entry point is specified by 'func' 6161 */ 6162 int 6163 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6164 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6165 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6166 ipsq_func_t func) 6167 { 6168 ire_t *ire; 6169 ire_t *gw_ire = NULL; 6170 ipif_t *ipif = NULL; 6171 boolean_t ipif_refheld = B_FALSE; 6172 uint_t type; 6173 int match_flags = MATCH_IRE_TYPE; 6174 int error; 6175 6176 ip1dbg(("ip_rt_add:")); 6177 6178 if (ire_arg != NULL) 6179 *ire_arg = NULL; 6180 6181 /* 6182 * If this is the case of RTF_HOST being set, then we set the netmask 6183 * to all ones (regardless if one was supplied). 6184 */ 6185 if (flags & RTF_HOST) 6186 mask = IP_HOST_MASK; 6187 6188 /* 6189 * Prevent routes with a zero gateway from being created (since 6190 * interfaces can currently be plumbed and brought up no assigned 6191 * address). 6192 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6193 */ 6194 if (gw_addr == 0 && src_ipif == NULL) 6195 return (ENETUNREACH); 6196 /* 6197 * Get the ipif, if any, corresponding to the gw_addr 6198 */ 6199 if (gw_addr != 0) { 6200 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6201 &error); 6202 if (ipif != NULL) { 6203 if (IS_VNI(ipif->ipif_ill)) { 6204 ipif_refrele(ipif); 6205 return (EINVAL); 6206 } 6207 ipif_refheld = B_TRUE; 6208 } else if (error == EINPROGRESS) { 6209 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6210 return (EINPROGRESS); 6211 } else { 6212 error = 0; 6213 } 6214 } 6215 6216 if (ipif != NULL) { 6217 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6218 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6219 } else { 6220 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6221 } 6222 6223 /* 6224 * GateD will attempt to create routes with a loopback interface 6225 * address as the gateway and with RTF_GATEWAY set. We allow 6226 * these routes to be added, but create them as interface routes 6227 * since the gateway is an interface address. 6228 */ 6229 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) 6230 flags &= ~RTF_GATEWAY; 6231 6232 /* 6233 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6234 * and the gateway address provided is one of the system's interface 6235 * addresses. By using the routing socket interface and supplying an 6236 * RTA_IFP sockaddr with an interface index, an alternate method of 6237 * specifying an interface route to be created is available which uses 6238 * the interface index that specifies the outgoing interface rather than 6239 * the address of an outgoing interface (which may not be able to 6240 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6241 * flag, routes can be specified which not only specify the next-hop to 6242 * be used when routing to a certain prefix, but also which outgoing 6243 * interface should be used. 6244 * 6245 * Previously, interfaces would have unique addresses assigned to them 6246 * and so the address assigned to a particular interface could be used 6247 * to identify a particular interface. One exception to this was the 6248 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6249 * 6250 * With the advent of IPv6 and its link-local addresses, this 6251 * restriction was relaxed and interfaces could share addresses between 6252 * themselves. In fact, typically all of the link-local interfaces on 6253 * an IPv6 node or router will have the same link-local address. In 6254 * order to differentiate between these interfaces, the use of an 6255 * interface index is necessary and this index can be carried inside a 6256 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6257 * of using the interface index, however, is that all of the ipif's that 6258 * are part of an ill have the same index and so the RTA_IFP sockaddr 6259 * cannot be used to differentiate between ipif's (or logical 6260 * interfaces) that belong to the same ill (physical interface). 6261 * 6262 * For example, in the following case involving IPv4 interfaces and 6263 * logical interfaces 6264 * 6265 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6266 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6267 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6268 * 6269 * the ipif's corresponding to each of these interface routes can be 6270 * uniquely identified by the "gateway" (actually interface address). 6271 * 6272 * In this case involving multiple IPv6 default routes to a particular 6273 * link-local gateway, the use of RTA_IFP is necessary to specify which 6274 * default route is of interest: 6275 * 6276 * default fe80::123:4567:89ab:cdef U if0 6277 * default fe80::123:4567:89ab:cdef U if1 6278 */ 6279 6280 /* RTF_GATEWAY not set */ 6281 if (!(flags & RTF_GATEWAY)) { 6282 queue_t *stq; 6283 queue_t *rfq = NULL; 6284 ill_t *in_ill = NULL; 6285 6286 /* 6287 * As the interface index specified with the RTA_IFP sockaddr is 6288 * the same for all ipif's off of an ill, the matching logic 6289 * below uses MATCH_IRE_ILL if such an index was specified. 6290 * This means that routes sharing the same prefix when added 6291 * using a RTA_IFP sockaddr must have distinct interface 6292 * indices (namely, they must be on distinct ill's). 6293 * 6294 * On the other hand, since the gateway address will usually be 6295 * different for each ipif on the system, the matching logic 6296 * uses MATCH_IRE_IPIF in the case of a traditional interface 6297 * route. This means that interface routes for the same prefix 6298 * can be created if they belong to distinct ipif's and if a 6299 * RTA_IFP sockaddr is not present. 6300 */ 6301 if (ipif_arg != NULL) { 6302 if (ipif_refheld) { 6303 ipif_refrele(ipif); 6304 ipif_refheld = B_FALSE; 6305 } 6306 ipif = ipif_arg; 6307 match_flags |= MATCH_IRE_ILL; 6308 } else { 6309 /* 6310 * Check the ipif corresponding to the gw_addr 6311 */ 6312 if (ipif == NULL) 6313 return (ENETUNREACH); 6314 match_flags |= MATCH_IRE_IPIF; 6315 } 6316 ASSERT(ipif != NULL); 6317 /* 6318 * If src_ipif is not NULL, we have to create 6319 * an ire with non-null ire_in_ill value 6320 */ 6321 if (src_ipif != NULL) { 6322 in_ill = src_ipif->ipif_ill; 6323 } 6324 6325 /* 6326 * We check for an existing entry at this point. 6327 * 6328 * Since a netmask isn't passed in via the ioctl interface 6329 * (SIOCADDRT), we don't check for a matching netmask in that 6330 * case. 6331 */ 6332 if (!ioctl_msg) 6333 match_flags |= MATCH_IRE_MASK; 6334 if (src_ipif != NULL) { 6335 /* Look up in the special table */ 6336 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6337 ipif, src_ipif->ipif_ill, match_flags); 6338 } else { 6339 ire = ire_ftable_lookup(dst_addr, mask, 0, 6340 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6341 match_flags); 6342 } 6343 if (ire != NULL) { 6344 ire_refrele(ire); 6345 if (ipif_refheld) 6346 ipif_refrele(ipif); 6347 return (EEXIST); 6348 } 6349 6350 if (src_ipif != NULL) { 6351 /* 6352 * Create the special ire for the IRE table 6353 * which hangs out of ire_in_ill. This ire 6354 * is in-between IRE_CACHE and IRE_INTERFACE. 6355 * Thus rfq is non-NULL. 6356 */ 6357 rfq = ipif->ipif_rq; 6358 } 6359 /* Create the usual interface ires */ 6360 6361 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6362 ? ipif->ipif_rq : ipif->ipif_wq; 6363 6364 /* 6365 * Create a copy of the IRE_LOOPBACK, 6366 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6367 * the modified address and netmask. 6368 */ 6369 ire = ire_create( 6370 (uchar_t *)&dst_addr, 6371 (uint8_t *)&mask, 6372 (uint8_t *)&ipif->ipif_src_addr, 6373 NULL, 6374 NULL, 6375 &ipif->ipif_mtu, 6376 NULL, 6377 rfq, 6378 stq, 6379 ipif->ipif_net_type, 6380 ipif->ipif_resolver_mp, 6381 ipif, 6382 in_ill, 6383 0, 6384 0, 6385 0, 6386 flags, 6387 &ire_uinfo_null); 6388 if (ire == NULL) { 6389 if (ipif_refheld) 6390 ipif_refrele(ipif); 6391 return (ENOMEM); 6392 } 6393 6394 /* 6395 * Some software (for example, GateD and Sun Cluster) attempts 6396 * to create (what amount to) IRE_PREFIX routes with the 6397 * loopback address as the gateway. This is primarily done to 6398 * set up prefixes with the RTF_REJECT flag set (for example, 6399 * when generating aggregate routes.) 6400 * 6401 * If the IRE type (as defined by ipif->ipif_net_type) is 6402 * IRE_LOOPBACK, then we map the request into a 6403 * IRE_IF_NORESOLVER. 6404 * 6405 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6406 * routine, but rather using ire_create() directly. 6407 */ 6408 if (ipif->ipif_net_type == IRE_LOOPBACK) 6409 ire->ire_type = IRE_IF_NORESOLVER; 6410 error = ire_add(&ire, q, mp, func); 6411 if (error == 0) 6412 goto save_ire; 6413 6414 /* 6415 * In the result of failure, ire_add() will have already 6416 * deleted the ire in question, so there is no need to 6417 * do that here. 6418 */ 6419 if (ipif_refheld) 6420 ipif_refrele(ipif); 6421 return (error); 6422 } 6423 if (ipif_refheld) { 6424 ipif_refrele(ipif); 6425 ipif_refheld = B_FALSE; 6426 } 6427 6428 if (src_ipif != NULL) { 6429 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6430 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6431 return (EINVAL); 6432 } 6433 /* 6434 * Get an interface IRE for the specified gateway. 6435 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6436 * gateway, it is currently unreachable and we fail the request 6437 * accordingly. 6438 */ 6439 ipif = ipif_arg; 6440 if (ipif_arg != NULL) 6441 match_flags |= MATCH_IRE_ILL; 6442 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6443 ALL_ZONES, 0, match_flags); 6444 if (gw_ire == NULL) 6445 return (ENETUNREACH); 6446 6447 /* 6448 * We create one of three types of IREs as a result of this request 6449 * based on the netmask. A netmask of all ones (which is automatically 6450 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6451 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6452 * created. Otherwise, an IRE_PREFIX route is created for the 6453 * destination prefix. 6454 */ 6455 if (mask == IP_HOST_MASK) 6456 type = IRE_HOST; 6457 else if (mask == 0) 6458 type = IRE_DEFAULT; 6459 else 6460 type = IRE_PREFIX; 6461 6462 /* check for a duplicate entry */ 6463 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6464 NULL, ALL_ZONES, 0, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 6465 if (ire != NULL) { 6466 ire_refrele(gw_ire); 6467 ire_refrele(ire); 6468 return (EEXIST); 6469 } 6470 6471 /* Create the IRE. */ 6472 ire = ire_create( 6473 (uchar_t *)&dst_addr, /* dest address */ 6474 (uchar_t *)&mask, /* mask */ 6475 /* src address assigned by the caller? */ 6476 (uchar_t *)(((src_addr != INADDR_ANY) && 6477 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6478 (uchar_t *)&gw_addr, /* gateway address */ 6479 NULL, /* no in-srcaddress */ 6480 &gw_ire->ire_max_frag, 6481 NULL, /* no Fast Path header */ 6482 NULL, /* no recv-from queue */ 6483 NULL, /* no send-to queue */ 6484 (ushort_t)type, /* IRE type */ 6485 NULL, 6486 ipif_arg, 6487 NULL, 6488 0, 6489 0, 6490 0, 6491 flags, 6492 &gw_ire->ire_uinfo); /* Inherit ULP info from gw */ 6493 if (ire == NULL) { 6494 ire_refrele(gw_ire); 6495 return (ENOMEM); 6496 } 6497 6498 /* 6499 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6500 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6501 */ 6502 6503 /* Add the new IRE. */ 6504 error = ire_add(&ire, q, mp, func); 6505 if (error != 0) { 6506 /* 6507 * In the result of failure, ire_add() will have already 6508 * deleted the ire in question, so there is no need to 6509 * do that here. 6510 */ 6511 ire_refrele(gw_ire); 6512 return (error); 6513 } 6514 6515 if (flags & RTF_MULTIRT) { 6516 /* 6517 * Invoke the CGTP (multirouting) filtering module 6518 * to add the dst address in the filtering database. 6519 * Replicated inbound packets coming from that address 6520 * will be filtered to discard the duplicates. 6521 * It is not necessary to call the CGTP filter hook 6522 * when the dst address is a broadcast or multicast, 6523 * because an IP source address cannot be a broadcast 6524 * or a multicast. 6525 */ 6526 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6527 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 6528 if (ire_dst != NULL) { 6529 ip_cgtp_bcast_add(ire, ire_dst); 6530 ire_refrele(ire_dst); 6531 goto save_ire; 6532 } 6533 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 6534 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 6535 ire->ire_addr, 6536 ire->ire_gateway_addr, 6537 ire->ire_src_addr, 6538 gw_ire->ire_src_addr); 6539 if (res != 0) { 6540 ire_refrele(gw_ire); 6541 ire_delete(ire); 6542 return (res); 6543 } 6544 } 6545 } 6546 6547 save_ire: 6548 if (gw_ire != NULL) { 6549 ire_refrele(gw_ire); 6550 } 6551 /* 6552 * We do not do save_ire for the routes added with RTA_SRCIFP 6553 * flag. This route is only added and deleted by mipagent. 6554 * So, for simplicity of design, we refrain from saving 6555 * ires that are created with srcif value. This may change 6556 * in future if we find more usage of srcifp feature. 6557 */ 6558 if (ipif != NULL && src_ipif == NULL) { 6559 /* 6560 * Save enough information so that we can recreate the IRE if 6561 * the interface goes down and then up. The metrics associated 6562 * with the route will be saved as well when rts_setmetrics() is 6563 * called after the IRE has been created. In the case where 6564 * memory cannot be allocated, none of this information will be 6565 * saved. 6566 */ 6567 ipif_save_ire(ipif, ire); 6568 } 6569 if (ioctl_msg) 6570 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 6571 if (ire_arg != NULL) { 6572 /* 6573 * Store the ire that was successfully added into where ire_arg 6574 * points to so that callers don't have to look it up 6575 * themselves (but they are responsible for ire_refrele()ing 6576 * the ire when they are finished with it). 6577 */ 6578 *ire_arg = ire; 6579 } else { 6580 ire_refrele(ire); /* Held in ire_add */ 6581 } 6582 if (ipif_refheld) 6583 ipif_refrele(ipif); 6584 return (0); 6585 } 6586 6587 /* 6588 * ip_rt_delete is called to delete an IPv4 route. 6589 * ipif_arg is passed in to associate it with the correct interface. 6590 * src_ipif is passed to associate the incoming interface of the packet. 6591 * We may need to restart this operation if the ipif cannot be looked up 6592 * due to an exclusive operation that is currently in progress. The restart 6593 * entry point is specified by 'func' 6594 */ 6595 /* ARGSUSED4 */ 6596 int 6597 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6598 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6599 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 6600 { 6601 ire_t *ire = NULL; 6602 ipif_t *ipif; 6603 boolean_t ipif_refheld = B_FALSE; 6604 uint_t type; 6605 uint_t match_flags = MATCH_IRE_TYPE; 6606 int err = 0; 6607 6608 ip1dbg(("ip_rt_delete:")); 6609 /* 6610 * If this is the case of RTF_HOST being set, then we set the netmask 6611 * to all ones. Otherwise, we use the netmask if one was supplied. 6612 */ 6613 if (flags & RTF_HOST) { 6614 mask = IP_HOST_MASK; 6615 match_flags |= MATCH_IRE_MASK; 6616 } else if (rtm_addrs & RTA_NETMASK) { 6617 match_flags |= MATCH_IRE_MASK; 6618 } 6619 6620 /* 6621 * Note that RTF_GATEWAY is never set on a delete, therefore 6622 * we check if the gateway address is one of our interfaces first, 6623 * and fall back on RTF_GATEWAY routes. 6624 * 6625 * This makes it possible to delete an original 6626 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6627 * 6628 * As the interface index specified with the RTA_IFP sockaddr is the 6629 * same for all ipif's off of an ill, the matching logic below uses 6630 * MATCH_IRE_ILL if such an index was specified. This means a route 6631 * sharing the same prefix and interface index as the the route 6632 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 6633 * is specified in the request. 6634 * 6635 * On the other hand, since the gateway address will usually be 6636 * different for each ipif on the system, the matching logic 6637 * uses MATCH_IRE_IPIF in the case of a traditional interface 6638 * route. This means that interface routes for the same prefix can be 6639 * uniquely identified if they belong to distinct ipif's and if a 6640 * RTA_IFP sockaddr is not present. 6641 * 6642 * For more detail on specifying routes by gateway address and by 6643 * interface index, see the comments in ip_rt_add(). 6644 * gw_addr could be zero in some cases when both RTA_SRCIFP and 6645 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 6646 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 6647 * succeed. 6648 */ 6649 if (src_ipif != NULL) { 6650 if (ipif_arg == NULL && gw_addr != 0) { 6651 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 6652 q, mp, func, &err); 6653 if (ipif_arg != NULL) 6654 ipif_refheld = B_TRUE; 6655 } 6656 if (ipif_arg == NULL) { 6657 err = (err == EINPROGRESS) ? err : ESRCH; 6658 return (err); 6659 } 6660 ipif = ipif_arg; 6661 } else { 6662 ipif = ipif_lookup_interface(gw_addr, dst_addr, 6663 q, mp, func, &err); 6664 if (ipif != NULL) 6665 ipif_refheld = B_TRUE; 6666 else if (err == EINPROGRESS) 6667 return (err); 6668 else 6669 err = 0; 6670 } 6671 if (ipif != NULL) { 6672 if (ipif_arg != NULL) { 6673 if (ipif_refheld) { 6674 ipif_refrele(ipif); 6675 ipif_refheld = B_FALSE; 6676 } 6677 ipif = ipif_arg; 6678 match_flags |= MATCH_IRE_ILL; 6679 } else { 6680 match_flags |= MATCH_IRE_IPIF; 6681 } 6682 if (src_ipif != NULL) { 6683 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6684 ipif, src_ipif->ipif_ill, match_flags); 6685 } else { 6686 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6687 ire = ire_ctable_lookup(dst_addr, 0, 6688 IRE_LOOPBACK, ipif, ALL_ZONES, match_flags); 6689 } 6690 if (ire == NULL) { 6691 ire = ire_ftable_lookup(dst_addr, mask, 0, 6692 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6693 match_flags); 6694 } 6695 } 6696 } 6697 6698 if (ire == NULL) { 6699 /* 6700 * At this point, the gateway address is not one of our own 6701 * addresses or a matching interface route was not found. We 6702 * set the IRE type to lookup based on whether 6703 * this is a host route, a default route or just a prefix. 6704 * 6705 * If an ipif_arg was passed in, then the lookup is based on an 6706 * interface index so MATCH_IRE_ILL is added to match_flags. 6707 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 6708 * set as the route being looked up is not a traditional 6709 * interface route. 6710 * Since we do not add gateway route with srcipif, we don't 6711 * expect to find it either. 6712 */ 6713 if (src_ipif != NULL) { 6714 if (ipif_refheld) 6715 ipif_refrele(ipif); 6716 return (ESRCH); 6717 } else { 6718 match_flags &= ~MATCH_IRE_IPIF; 6719 match_flags |= MATCH_IRE_GW; 6720 if (ipif_arg != NULL) 6721 match_flags |= MATCH_IRE_ILL; 6722 if (mask == IP_HOST_MASK) 6723 type = IRE_HOST; 6724 else if (mask == 0) 6725 type = IRE_DEFAULT; 6726 else 6727 type = IRE_PREFIX; 6728 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 6729 ipif_arg, NULL, ALL_ZONES, 0, match_flags); 6730 if (ire == NULL && type == IRE_HOST) { 6731 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, 6732 IRE_HOST_REDIRECT, ipif_arg, NULL, 6733 ALL_ZONES, 0, match_flags); 6734 } 6735 } 6736 } 6737 6738 if (ipif_refheld) 6739 ipif_refrele(ipif); 6740 6741 /* ipif is not refheld anymore */ 6742 if (ire == NULL) 6743 return (ESRCH); 6744 6745 if (ire->ire_flags & RTF_MULTIRT) { 6746 /* 6747 * Invoke the CGTP (multirouting) filtering module 6748 * to remove the dst address from the filtering database. 6749 * Packets coming from that address will no longer be 6750 * filtered to remove duplicates. 6751 */ 6752 if (ip_cgtp_filter_ops != NULL) { 6753 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 6754 ire->ire_gateway_addr); 6755 } 6756 ip_cgtp_bcast_delete(ire); 6757 } 6758 6759 ipif = ire->ire_ipif; 6760 /* 6761 * Removing from ipif_saved_ire_mp is not necessary 6762 * when src_ipif being non-NULL. ip_rt_add does not 6763 * save the ires which src_ipif being non-NULL. 6764 */ 6765 if (ipif != NULL && src_ipif == NULL) { 6766 ipif_remove_ire(ipif, ire); 6767 } 6768 if (ioctl_msg) 6769 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 6770 ire_delete(ire); 6771 ire_refrele(ire); 6772 return (err); 6773 } 6774 6775 /* 6776 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6777 */ 6778 /* ARGSUSED */ 6779 int 6780 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6781 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6782 { 6783 ipaddr_t dst_addr; 6784 ipaddr_t gw_addr; 6785 ipaddr_t mask; 6786 int error = 0; 6787 mblk_t *mp1; 6788 struct rtentry *rt; 6789 ipif_t *ipif = NULL; 6790 6791 ip1dbg(("ip_siocaddrt:")); 6792 /* Existence of mp1 verified in ip_wput_nondata */ 6793 mp1 = mp->b_cont->b_cont; 6794 rt = (struct rtentry *)mp1->b_rptr; 6795 6796 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6797 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6798 6799 /* 6800 * If the RTF_HOST flag is on, this is a request to assign a gateway 6801 * to a particular host address. In this case, we set the netmask to 6802 * all ones for the particular destination address. Otherwise, 6803 * determine the netmask to be used based on dst_addr and the interfaces 6804 * in use. 6805 */ 6806 if (rt->rt_flags & RTF_HOST) { 6807 mask = IP_HOST_MASK; 6808 } else { 6809 /* 6810 * Note that ip_subnet_mask returns a zero mask in the case of 6811 * default (an all-zeroes address). 6812 */ 6813 mask = ip_subnet_mask(dst_addr, &ipif); 6814 } 6815 6816 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, 6817 NULL, NULL, NULL, B_TRUE, q, mp, ip_process_ioctl); 6818 if (ipif != NULL) 6819 ipif_refrele(ipif); 6820 return (error); 6821 } 6822 6823 /* 6824 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6825 */ 6826 /* ARGSUSED */ 6827 int 6828 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6829 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6830 { 6831 ipaddr_t dst_addr; 6832 ipaddr_t gw_addr; 6833 ipaddr_t mask; 6834 int error; 6835 mblk_t *mp1; 6836 struct rtentry *rt; 6837 ipif_t *ipif = NULL; 6838 6839 ip1dbg(("ip_siocdelrt:")); 6840 /* Existence of mp1 verified in ip_wput_nondata */ 6841 mp1 = mp->b_cont->b_cont; 6842 rt = (struct rtentry *)mp1->b_rptr; 6843 6844 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6845 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6846 6847 /* 6848 * If the RTF_HOST flag is on, this is a request to delete a gateway 6849 * to a particular host address. In this case, we set the netmask to 6850 * all ones for the particular destination address. Otherwise, 6851 * determine the netmask to be used based on dst_addr and the interfaces 6852 * in use. 6853 */ 6854 if (rt->rt_flags & RTF_HOST) { 6855 mask = IP_HOST_MASK; 6856 } else { 6857 /* 6858 * Note that ip_subnet_mask returns a zero mask in the case of 6859 * default (an all-zeroes address). 6860 */ 6861 mask = ip_subnet_mask(dst_addr, &ipif); 6862 } 6863 6864 error = ip_rt_delete(dst_addr, mask, gw_addr, 6865 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 6866 B_TRUE, q, mp, ip_process_ioctl); 6867 if (ipif != NULL) 6868 ipif_refrele(ipif); 6869 return (error); 6870 } 6871 6872 /* 6873 * Enqueue the mp onto the ipsq, chained by b_next. 6874 * b_prev stores the function to be executed later, and b_queue the queue 6875 * where this mp originated. 6876 */ 6877 void 6878 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6879 ill_t *pending_ill) 6880 { 6881 conn_t *connp = NULL; 6882 6883 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6884 ASSERT(func != NULL); 6885 6886 mp->b_queue = q; 6887 mp->b_prev = (void *)func; 6888 mp->b_next = NULL; 6889 6890 switch (type) { 6891 case CUR_OP: 6892 if (ipsq->ipsq_mptail != NULL) { 6893 ASSERT(ipsq->ipsq_mphead != NULL); 6894 ipsq->ipsq_mptail->b_next = mp; 6895 } else { 6896 ASSERT(ipsq->ipsq_mphead == NULL); 6897 ipsq->ipsq_mphead = mp; 6898 } 6899 ipsq->ipsq_mptail = mp; 6900 break; 6901 6902 case NEW_OP: 6903 if (ipsq->ipsq_xopq_mptail != NULL) { 6904 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6905 ipsq->ipsq_xopq_mptail->b_next = mp; 6906 } else { 6907 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6908 ipsq->ipsq_xopq_mphead = mp; 6909 } 6910 ipsq->ipsq_xopq_mptail = mp; 6911 break; 6912 default: 6913 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6914 } 6915 6916 if (CONN_Q(q) && pending_ill != NULL) { 6917 connp = Q_TO_CONN(q); 6918 6919 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6920 connp->conn_oper_pending_ill = pending_ill; 6921 } 6922 } 6923 6924 /* 6925 * Return the mp at the head of the ipsq. After emptying the ipsq 6926 * look at the next ioctl, if this ioctl is complete. Otherwise 6927 * return, we will resume when we complete the current ioctl. 6928 * The current ioctl will wait till it gets a response from the 6929 * driver below. 6930 */ 6931 static mblk_t * 6932 ipsq_dq(ipsq_t *ipsq) 6933 { 6934 mblk_t *mp; 6935 6936 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6937 6938 mp = ipsq->ipsq_mphead; 6939 if (mp != NULL) { 6940 ipsq->ipsq_mphead = mp->b_next; 6941 if (ipsq->ipsq_mphead == NULL) 6942 ipsq->ipsq_mptail = NULL; 6943 mp->b_next = NULL; 6944 return (mp); 6945 } 6946 if (ipsq->ipsq_current_ipif != NULL) 6947 return (NULL); 6948 mp = ipsq->ipsq_xopq_mphead; 6949 if (mp != NULL) { 6950 ipsq->ipsq_xopq_mphead = mp->b_next; 6951 if (ipsq->ipsq_xopq_mphead == NULL) 6952 ipsq->ipsq_xopq_mptail = NULL; 6953 mp->b_next = NULL; 6954 return (mp); 6955 } 6956 return (NULL); 6957 } 6958 6959 /* 6960 * Enter the ipsq corresponding to ill, by waiting synchronously till 6961 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6962 * will have to drain completely before ipsq_enter returns success. 6963 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 6964 * and the ipsq_exit logic will start the next enqueued ioctl after 6965 * completion of the current ioctl. If 'force' is used, we don't wait 6966 * for the enqueued ioctls. This is needed when a conn_close wants to 6967 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6968 * of an ill can also use this option. But we dont' use it currently. 6969 */ 6970 #define ENTER_SQ_WAIT_TICKS 100 6971 boolean_t 6972 ipsq_enter(ill_t *ill, boolean_t force) 6973 { 6974 ipsq_t *ipsq; 6975 boolean_t waited_enough = B_FALSE; 6976 6977 /* 6978 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 6979 * Since the <ill-ipsq> assocs could change while we wait for the 6980 * writer, it is easier to wait on a fixed global rather than try to 6981 * cv_wait on a changing ipsq. 6982 */ 6983 mutex_enter(&ill->ill_lock); 6984 for (;;) { 6985 if (ill->ill_state_flags & ILL_CONDEMNED) { 6986 mutex_exit(&ill->ill_lock); 6987 return (B_FALSE); 6988 } 6989 6990 ipsq = ill->ill_phyint->phyint_ipsq; 6991 mutex_enter(&ipsq->ipsq_lock); 6992 if (ipsq->ipsq_writer == NULL && 6993 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 6994 break; 6995 } else if (ipsq->ipsq_writer != NULL) { 6996 mutex_exit(&ipsq->ipsq_lock); 6997 cv_wait(&ill->ill_cv, &ill->ill_lock); 6998 } else { 6999 mutex_exit(&ipsq->ipsq_lock); 7000 if (force) { 7001 (void) cv_timedwait(&ill->ill_cv, 7002 &ill->ill_lock, 7003 lbolt + ENTER_SQ_WAIT_TICKS); 7004 waited_enough = B_TRUE; 7005 continue; 7006 } else { 7007 cv_wait(&ill->ill_cv, &ill->ill_lock); 7008 } 7009 } 7010 } 7011 7012 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7013 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7014 ipsq->ipsq_writer = curthread; 7015 ipsq->ipsq_reentry_cnt++; 7016 #ifdef ILL_DEBUG 7017 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7018 #endif 7019 mutex_exit(&ipsq->ipsq_lock); 7020 mutex_exit(&ill->ill_lock); 7021 return (B_TRUE); 7022 } 7023 7024 /* 7025 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7026 * certain critical operations like plumbing (i.e. most set ioctls), 7027 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7028 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7029 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7030 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7031 * threads executing in the ipsq. Responses from the driver pertain to the 7032 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7033 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7034 * 7035 * If a thread does not want to reenter the ipsq when it is already writer, 7036 * it must make sure that the specified reentry point to be called later 7037 * when the ipsq is empty, nor any code path starting from the specified reentry 7038 * point must never ever try to enter the ipsq again. Otherwise it can lead 7039 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7040 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7041 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7042 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7043 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7044 * ioctl if the current ioctl has completed. If the current ioctl is still 7045 * in progress it simply returns. The current ioctl could be waiting for 7046 * a response from another module (arp_ or the driver or could be waiting for 7047 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7048 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7049 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7050 * ipsq_current_ipif is clear which happens only on ioctl completion. 7051 */ 7052 7053 /* 7054 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7055 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7056 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7057 * completion. 7058 */ 7059 ipsq_t * 7060 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7061 ipsq_func_t func, int type, boolean_t reentry_ok) 7062 { 7063 ipsq_t *ipsq; 7064 7065 /* Only 1 of ipif or ill can be specified */ 7066 ASSERT((ipif != NULL) ^ (ill != NULL)); 7067 if (ipif != NULL) 7068 ill = ipif->ipif_ill; 7069 7070 /* 7071 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7072 * ipsq of an ill can't change when ill_lock is held. 7073 */ 7074 GRAB_CONN_LOCK(q); 7075 mutex_enter(&ill->ill_lock); 7076 ipsq = ill->ill_phyint->phyint_ipsq; 7077 mutex_enter(&ipsq->ipsq_lock); 7078 7079 /* 7080 * 1. Enter the ipsq if we are already writer and reentry is ok. 7081 * (Note: If the caller does not specify reentry_ok then neither 7082 * 'func' nor any of its callees must ever attempt to enter the ipsq 7083 * again. Otherwise it can lead to an infinite loop 7084 * 2. Enter the ipsq if there is no current writer and this attempted 7085 * entry is part of the current ioctl or operation 7086 * 3. Enter the ipsq if there is no current writer and this is a new 7087 * ioctl (or operation) and the ioctl (or operation) queue is 7088 * empty and there is no ioctl (or operation) currently in progress 7089 */ 7090 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7091 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7092 ipsq->ipsq_current_ipif == NULL))) || 7093 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7094 /* Success. */ 7095 ipsq->ipsq_reentry_cnt++; 7096 ipsq->ipsq_writer = curthread; 7097 mutex_exit(&ipsq->ipsq_lock); 7098 mutex_exit(&ill->ill_lock); 7099 RELEASE_CONN_LOCK(q); 7100 #ifdef ILL_DEBUG 7101 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7102 #endif 7103 return (ipsq); 7104 } 7105 7106 ipsq_enq(ipsq, q, mp, func, type, ill); 7107 7108 mutex_exit(&ipsq->ipsq_lock); 7109 mutex_exit(&ill->ill_lock); 7110 RELEASE_CONN_LOCK(q); 7111 return (NULL); 7112 } 7113 7114 /* 7115 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7116 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7117 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7118 * completion. 7119 * 7120 * This function does a refrele on the ipif/ill. 7121 */ 7122 void 7123 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7124 ipsq_func_t func, int type, boolean_t reentry_ok) 7125 { 7126 ipsq_t *ipsq; 7127 7128 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7129 /* 7130 * Caller must have done a refhold on the ipif. ipif_refrele 7131 * happens on the passed ipif. We can do this since we are 7132 * already exclusive, or we won't access ipif henceforth, Both 7133 * this func and caller will just return if we ipsq_try_enter 7134 * fails above. This is needed because func needs to 7135 * see the correct refcount. Eg. removeif can work only then. 7136 */ 7137 if (ipif != NULL) 7138 ipif_refrele(ipif); 7139 else 7140 ill_refrele(ill); 7141 if (ipsq != NULL) { 7142 (*func)(ipsq, q, mp, NULL); 7143 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7144 } 7145 } 7146 7147 /* 7148 * If there are more than ILL_GRP_CNT ills in a group, 7149 * we use kmem alloc'd buffers, else use the stack 7150 */ 7151 #define ILL_GRP_CNT 14 7152 /* 7153 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7154 * Called by a thread that is currently exclusive on this ipsq. 7155 */ 7156 void 7157 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7158 { 7159 queue_t *q; 7160 mblk_t *mp; 7161 ipsq_func_t func; 7162 int next; 7163 ill_t **ill_list = NULL; 7164 size_t ill_list_size = 0; 7165 int cnt = 0; 7166 boolean_t need_ipsq_free = B_FALSE; 7167 7168 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7169 mutex_enter(&ipsq->ipsq_lock); 7170 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7171 if (ipsq->ipsq_reentry_cnt != 1) { 7172 ipsq->ipsq_reentry_cnt--; 7173 mutex_exit(&ipsq->ipsq_lock); 7174 return; 7175 } 7176 7177 mp = ipsq_dq(ipsq); 7178 while (mp != NULL) { 7179 again: 7180 mutex_exit(&ipsq->ipsq_lock); 7181 func = (ipsq_func_t)mp->b_prev; 7182 q = (queue_t *)mp->b_queue; 7183 mp->b_prev = NULL; 7184 mp->b_queue = NULL; 7185 7186 /* 7187 * If 'q' is an conn queue, it is valid, since we did a 7188 * a refhold on the connp, at the start of the ioctl. 7189 * If 'q' is an ill queue, it is valid, since close of an 7190 * ill will clean up the 'ipsq'. 7191 */ 7192 (*func)(ipsq, q, mp, NULL); 7193 7194 mutex_enter(&ipsq->ipsq_lock); 7195 mp = ipsq_dq(ipsq); 7196 } 7197 7198 mutex_exit(&ipsq->ipsq_lock); 7199 7200 /* 7201 * Need to grab the locks in the right order. Need to 7202 * atomically check (under ipsq_lock) that there are no 7203 * messages before relinquishing the ipsq. Also need to 7204 * atomically wakeup waiters on ill_cv while holding ill_lock. 7205 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7206 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7207 * to grab ill_g_lock as writer. 7208 */ 7209 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7210 7211 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7212 if (ipsq->ipsq_refs != 0) { 7213 /* At most 2 ills v4/v6 per phyint */ 7214 cnt = ipsq->ipsq_refs << 1; 7215 ill_list_size = cnt * sizeof (ill_t *); 7216 /* 7217 * If memory allocation fails, we will do the split 7218 * the next time ipsq_exit is called for whatever reason. 7219 * As long as the ipsq_split flag is set the need to 7220 * split is remembered. 7221 */ 7222 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7223 if (ill_list != NULL) 7224 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7225 } 7226 mutex_enter(&ipsq->ipsq_lock); 7227 mp = ipsq_dq(ipsq); 7228 if (mp != NULL) { 7229 /* oops, some message has landed up, we can't get out */ 7230 if (ill_list != NULL) 7231 ill_unlock_ills(ill_list, cnt); 7232 rw_exit(&ill_g_lock); 7233 if (ill_list != NULL) 7234 kmem_free(ill_list, ill_list_size); 7235 ill_list = NULL; 7236 ill_list_size = 0; 7237 cnt = 0; 7238 goto again; 7239 } 7240 7241 /* 7242 * Split only if no ioctl is pending and if memory alloc succeeded 7243 * above. 7244 */ 7245 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7246 ill_list != NULL) { 7247 /* 7248 * No new ill can join this ipsq since we are holding the 7249 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7250 * ipsq. ill_split_ipsq may fail due to memory shortage. 7251 * If so we will retry on the next ipsq_exit. 7252 */ 7253 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7254 } 7255 7256 /* 7257 * We are holding the ipsq lock, hence no new messages can 7258 * land up on the ipsq, and there are no messages currently. 7259 * Now safe to get out. Wake up waiters and relinquish ipsq 7260 * atomically while holding ill locks. 7261 */ 7262 ipsq->ipsq_writer = NULL; 7263 ipsq->ipsq_reentry_cnt--; 7264 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7265 #ifdef ILL_DEBUG 7266 ipsq->ipsq_depth = 0; 7267 #endif 7268 mutex_exit(&ipsq->ipsq_lock); 7269 /* 7270 * For IPMP this should wake up all ills in this ipsq. 7271 * We need to hold the ill_lock while waking up waiters to 7272 * avoid missed wakeups. But there is no need to acquire all 7273 * the ill locks and then wakeup. If we have not acquired all 7274 * the locks (due to memory failure above) ill_signal_ipsq_ills 7275 * wakes up ills one at a time after getting the right ill_lock 7276 */ 7277 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7278 if (ill_list != NULL) 7279 ill_unlock_ills(ill_list, cnt); 7280 if (ipsq->ipsq_refs == 0) 7281 need_ipsq_free = B_TRUE; 7282 rw_exit(&ill_g_lock); 7283 if (ill_list != 0) 7284 kmem_free(ill_list, ill_list_size); 7285 7286 if (need_ipsq_free) { 7287 /* 7288 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7289 * looked up. ipsq can be looked up only thru ill or phyint 7290 * and there are no ills/phyint on this ipsq. 7291 */ 7292 ipsq_delete(ipsq); 7293 } 7294 /* 7295 * Now start any igmp or mld timers that could not be started 7296 * while inside the ipsq. The timers can't be started while inside 7297 * the ipsq, since igmp_start_timers may need to call untimeout() 7298 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7299 * there could be a deadlock since the timeout handlers 7300 * mld_timeout_handler / igmp_timeout_handler also synchronously 7301 * wait in ipsq_enter() trying to get the ipsq. 7302 * 7303 * However there is one exception to the above. If this thread is 7304 * itself the igmp/mld timeout handler thread, then we don't want 7305 * to start any new timer until the current handler is done. The 7306 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7307 * all others pass B_TRUE. 7308 */ 7309 if (start_igmp_timer) { 7310 mutex_enter(&igmp_timer_lock); 7311 next = igmp_deferred_next; 7312 igmp_deferred_next = INFINITY; 7313 mutex_exit(&igmp_timer_lock); 7314 7315 if (next != INFINITY) 7316 igmp_start_timers(next); 7317 } 7318 7319 if (start_mld_timer) { 7320 mutex_enter(&mld_timer_lock); 7321 next = mld_deferred_next; 7322 mld_deferred_next = INFINITY; 7323 mutex_exit(&mld_timer_lock); 7324 7325 if (next != INFINITY) 7326 mld_start_timers(next); 7327 } 7328 } 7329 7330 /* 7331 * The ill is closing. Flush all messages on the ipsq that originated 7332 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7333 * for this ill since ipsq_enter could not have entered until then. 7334 * New messages can't be queued since the CONDEMNED flag is set. 7335 */ 7336 static void 7337 ipsq_flush(ill_t *ill) 7338 { 7339 queue_t *q; 7340 mblk_t *prev; 7341 mblk_t *mp; 7342 mblk_t *mp_next; 7343 ipsq_t *ipsq; 7344 7345 ASSERT(IAM_WRITER_ILL(ill)); 7346 ipsq = ill->ill_phyint->phyint_ipsq; 7347 /* 7348 * Flush any messages sent up by the driver. 7349 */ 7350 mutex_enter(&ipsq->ipsq_lock); 7351 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7352 mp_next = mp->b_next; 7353 q = mp->b_queue; 7354 if (q == ill->ill_rq || q == ill->ill_wq) { 7355 /* Remove the mp from the ipsq */ 7356 if (prev == NULL) 7357 ipsq->ipsq_mphead = mp->b_next; 7358 else 7359 prev->b_next = mp->b_next; 7360 if (ipsq->ipsq_mptail == mp) { 7361 ASSERT(mp_next == NULL); 7362 ipsq->ipsq_mptail = prev; 7363 } 7364 inet_freemsg(mp); 7365 } else { 7366 prev = mp; 7367 } 7368 } 7369 mutex_exit(&ipsq->ipsq_lock); 7370 (void) ipsq_pending_mp_cleanup(ill, NULL); 7371 ipsq_xopq_mp_cleanup(ill, NULL); 7372 ill_pending_mp_cleanup(ill); 7373 } 7374 7375 /* 7376 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7377 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7378 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7379 * time (possible with one port going down for aggr and someone tearing down the 7380 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7381 * to indicate when the cleanup has started (1 ref) and when the cleanup 7382 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7383 * putting 2 ref on ill_inuse_ref. 7384 */ 7385 static void 7386 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7387 { 7388 conn_t *connp; 7389 squeue_t *sqp; 7390 mblk_t *mp; 7391 7392 ASSERT(rx_ring != NULL); 7393 7394 /* Just clean one squeue */ 7395 mutex_enter(&ill->ill_lock); 7396 /* 7397 * Reset the ILL_SOFT_RING_ASSIGN bit so that 7398 * ip_squeue_soft_ring_affinty() will not go 7399 * ahead with assigning rings. 7400 */ 7401 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 7402 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 7403 /* Some operations pending on the ring. Wait */ 7404 cv_wait(&ill->ill_cv, &ill->ill_lock); 7405 7406 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 7407 /* 7408 * Someone already trying to clean 7409 * this squeue or its already been cleaned. 7410 */ 7411 mutex_exit(&ill->ill_lock); 7412 return; 7413 } 7414 sqp = rx_ring->rr_sqp; 7415 7416 if (sqp == NULL) { 7417 /* 7418 * The rx_ring never had a squeue assigned to it. 7419 * We are under ill_lock so we can clean it up 7420 * here itself since no one can get to it. 7421 */ 7422 rx_ring->rr_blank = NULL; 7423 rx_ring->rr_handle = NULL; 7424 rx_ring->rr_sqp = NULL; 7425 rx_ring->rr_ring_state = ILL_RING_FREE; 7426 mutex_exit(&ill->ill_lock); 7427 return; 7428 } 7429 7430 /* Set the state that its being cleaned */ 7431 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 7432 ASSERT(sqp != NULL); 7433 mutex_exit(&ill->ill_lock); 7434 7435 /* 7436 * Use the preallocated ill_unbind_conn for this purpose 7437 */ 7438 connp = ill->ill_dls_capab->ill_unbind_conn; 7439 mp = &connp->conn_tcp->tcp_closemp; 7440 CONN_INC_REF(connp); 7441 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 7442 7443 mutex_enter(&ill->ill_lock); 7444 while (rx_ring->rr_ring_state != ILL_RING_FREE) 7445 cv_wait(&ill->ill_cv, &ill->ill_lock); 7446 7447 mutex_exit(&ill->ill_lock); 7448 } 7449 7450 static void 7451 ipsq_clean_all(ill_t *ill) 7452 { 7453 int idx; 7454 7455 /* 7456 * No need to clean if poll_capab isn't set for this ill 7457 */ 7458 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 7459 return; 7460 7461 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 7462 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 7463 ipsq_clean_ring(ill, ipr); 7464 } 7465 7466 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 7467 } 7468 7469 /* ARGSUSED */ 7470 int 7471 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7472 ip_ioctl_cmd_t *ipip, void *ifreq) 7473 { 7474 ill_t *ill; 7475 struct lifreq *lifr = (struct lifreq *)ifreq; 7476 boolean_t isv6; 7477 conn_t *connp; 7478 7479 connp = Q_TO_CONN(q); 7480 isv6 = connp->conn_af_isv6; 7481 /* 7482 * Set original index. 7483 * Failover and failback move logical interfaces 7484 * from one physical interface to another. The 7485 * original index indicates the parent of a logical 7486 * interface, in other words, the physical interface 7487 * the logical interface will be moved back to on 7488 * failback. 7489 */ 7490 7491 /* 7492 * Don't allow the original index to be changed 7493 * for non-failover addresses, autoconfigured 7494 * addresses, or IPv6 link local addresses. 7495 */ 7496 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7497 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7498 return (EINVAL); 7499 } 7500 /* 7501 * The new original index must be in use by some 7502 * physical interface. 7503 */ 7504 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7505 NULL, NULL); 7506 if (ill == NULL) 7507 return (ENXIO); 7508 ill_refrele(ill); 7509 7510 ipif->ipif_orig_ifindex = lifr->lifr_index; 7511 /* 7512 * When this ipif gets failed back, don't 7513 * preserve the original id, as it is no 7514 * longer applicable. 7515 */ 7516 ipif->ipif_orig_ipifid = 0; 7517 /* 7518 * For IPv4, change the original index of any 7519 * multicast addresses associated with the 7520 * ipif to the new value. 7521 */ 7522 if (!isv6) { 7523 ilm_t *ilm; 7524 7525 mutex_enter(&ipif->ipif_ill->ill_lock); 7526 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7527 ilm = ilm->ilm_next) { 7528 if (ilm->ilm_ipif == ipif) { 7529 ilm->ilm_orig_ifindex = lifr->lifr_index; 7530 } 7531 } 7532 mutex_exit(&ipif->ipif_ill->ill_lock); 7533 } 7534 return (0); 7535 } 7536 7537 /* ARGSUSED */ 7538 int 7539 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7540 ip_ioctl_cmd_t *ipip, void *ifreq) 7541 { 7542 struct lifreq *lifr = (struct lifreq *)ifreq; 7543 7544 /* 7545 * Get the original interface index i.e the one 7546 * before FAILOVER if it ever happened. 7547 */ 7548 lifr->lifr_index = ipif->ipif_orig_ifindex; 7549 return (0); 7550 } 7551 7552 /* 7553 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 7554 * refhold and return the associated ipif 7555 */ 7556 int 7557 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 7558 { 7559 boolean_t exists; 7560 struct iftun_req *ta; 7561 ipif_t *ipif; 7562 ill_t *ill; 7563 boolean_t isv6; 7564 mblk_t *mp1; 7565 int error; 7566 conn_t *connp; 7567 7568 /* Existence verified in ip_wput_nondata */ 7569 mp1 = mp->b_cont->b_cont; 7570 ta = (struct iftun_req *)mp1->b_rptr; 7571 /* 7572 * Null terminate the string to protect against buffer 7573 * overrun. String was generated by user code and may not 7574 * be trusted. 7575 */ 7576 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 7577 7578 connp = Q_TO_CONN(q); 7579 isv6 = connp->conn_af_isv6; 7580 7581 /* Disallows implicit create */ 7582 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 7583 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 7584 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 7585 if (ipif == NULL) 7586 return (error); 7587 7588 if (ipif->ipif_id != 0) { 7589 /* 7590 * We really don't want to set/get tunnel parameters 7591 * on virtual tunnel interfaces. Only allow the 7592 * base tunnel to do these. 7593 */ 7594 ipif_refrele(ipif); 7595 return (EINVAL); 7596 } 7597 7598 /* 7599 * Send down to tunnel mod for ioctl processing. 7600 * Will finish ioctl in ip_rput_other(). 7601 */ 7602 ill = ipif->ipif_ill; 7603 if (ill->ill_net_type == IRE_LOOPBACK) { 7604 ipif_refrele(ipif); 7605 return (EOPNOTSUPP); 7606 } 7607 7608 if (ill->ill_wq == NULL) { 7609 ipif_refrele(ipif); 7610 return (ENXIO); 7611 } 7612 /* 7613 * Mark the ioctl as coming from an IPv6 interface for 7614 * tun's convenience. 7615 */ 7616 if (ill->ill_isv6) 7617 ta->ifta_flags |= 0x80000000; 7618 *ipifp = ipif; 7619 return (0); 7620 } 7621 7622 /* 7623 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7624 * and return the associated ipif. 7625 * Return value: 7626 * Non zero: An error has occurred. ci may not be filled out. 7627 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7628 * a held ipif in ci.ci_ipif. 7629 */ 7630 int 7631 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 7632 cmd_info_t *ci, ipsq_func_t func) 7633 { 7634 sin_t *sin; 7635 sin6_t *sin6; 7636 char *name; 7637 struct ifreq *ifr; 7638 struct lifreq *lifr; 7639 ipif_t *ipif = NULL; 7640 ill_t *ill; 7641 conn_t *connp; 7642 boolean_t isv6; 7643 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7644 boolean_t exists; 7645 int err; 7646 mblk_t *mp1; 7647 zoneid_t zoneid; 7648 7649 if (q->q_next != NULL) { 7650 ill = (ill_t *)q->q_ptr; 7651 isv6 = ill->ill_isv6; 7652 connp = NULL; 7653 zoneid = ALL_ZONES; 7654 } else { 7655 ill = NULL; 7656 connp = Q_TO_CONN(q); 7657 isv6 = connp->conn_af_isv6; 7658 zoneid = connp->conn_zoneid; 7659 if (zoneid == GLOBAL_ZONEID) { 7660 /* global zone can access ipifs in all zones */ 7661 zoneid = ALL_ZONES; 7662 } 7663 } 7664 7665 /* Has been checked in ip_wput_nondata */ 7666 mp1 = mp->b_cont->b_cont; 7667 7668 7669 if (cmd_type == IF_CMD) { 7670 /* This a old style SIOC[GS]IF* command */ 7671 ifr = (struct ifreq *)mp1->b_rptr; 7672 /* 7673 * Null terminate the string to protect against buffer 7674 * overrun. String was generated by user code and may not 7675 * be trusted. 7676 */ 7677 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7678 sin = (sin_t *)&ifr->ifr_addr; 7679 name = ifr->ifr_name; 7680 ci->ci_sin = sin; 7681 ci->ci_sin6 = NULL; 7682 ci->ci_lifr = (struct lifreq *)ifr; 7683 } else { 7684 /* This a new style SIOC[GS]LIF* command */ 7685 ASSERT(cmd_type == LIF_CMD); 7686 lifr = (struct lifreq *)mp1->b_rptr; 7687 /* 7688 * Null terminate the string to protect against buffer 7689 * overrun. String was generated by user code and may not 7690 * be trusted. 7691 */ 7692 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7693 name = lifr->lifr_name; 7694 sin = (sin_t *)&lifr->lifr_addr; 7695 sin6 = (sin6_t *)&lifr->lifr_addr; 7696 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 7697 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 7698 LIFNAMSIZ); 7699 } 7700 ci->ci_sin = sin; 7701 ci->ci_sin6 = sin6; 7702 ci->ci_lifr = lifr; 7703 } 7704 7705 7706 if (iocp->ioc_cmd == SIOCSLIFNAME) { 7707 /* 7708 * The ioctl will be failed if the ioctl comes down 7709 * an conn stream 7710 */ 7711 if (ill == NULL) { 7712 /* 7713 * Not an ill queue, return EINVAL same as the 7714 * old error code. 7715 */ 7716 return (ENXIO); 7717 } 7718 ipif = ill->ill_ipif; 7719 ipif_refhold(ipif); 7720 } else { 7721 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7722 &exists, isv6, zoneid, 7723 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 7724 if (ipif == NULL) { 7725 if (err == EINPROGRESS) 7726 return (err); 7727 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 7728 iocp->ioc_cmd == SIOCLIFFAILBACK) { 7729 /* 7730 * Need to try both v4 and v6 since this 7731 * ioctl can come down either v4 or v6 7732 * socket. The lifreq.lifr_family passed 7733 * down by this ioctl is AF_UNSPEC. 7734 */ 7735 ipif = ipif_lookup_on_name(name, 7736 mi_strlen(name), B_FALSE, &exists, !isv6, 7737 zoneid, (connp == NULL) ? q : 7738 CONNP_TO_WQ(connp), mp, func, &err); 7739 if (err == EINPROGRESS) 7740 return (err); 7741 } 7742 err = 0; /* Ensure we don't use it below */ 7743 } 7744 } 7745 7746 /* 7747 * Old style [GS]IFCMD does not admit IPv6 ipif 7748 */ 7749 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 7750 ipif_refrele(ipif); 7751 return (ENXIO); 7752 } 7753 7754 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7755 name[0] == '\0') { 7756 /* 7757 * Handle a or a SIOC?IF* with a null name 7758 * during plumb (on the ill queue before the I_PLINK). 7759 */ 7760 ipif = ill->ill_ipif; 7761 ipif_refhold(ipif); 7762 } 7763 7764 if (ipif == NULL) 7765 return (ENXIO); 7766 7767 /* 7768 * Allow only GET operations if this ipif has been created 7769 * temporarily due to a MOVE operation. 7770 */ 7771 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 7772 ipif_refrele(ipif); 7773 return (EINVAL); 7774 } 7775 7776 ci->ci_ipif = ipif; 7777 return (0); 7778 } 7779 7780 /* 7781 * Return the total number of ipifs. 7782 */ 7783 static uint_t 7784 ip_get_numifs(zoneid_t zoneid) 7785 { 7786 uint_t numifs = 0; 7787 ill_t *ill; 7788 ill_walk_context_t ctx; 7789 ipif_t *ipif; 7790 7791 rw_enter(&ill_g_lock, RW_READER); 7792 ill = ILL_START_WALK_V4(&ctx); 7793 7794 while (ill != NULL) { 7795 for (ipif = ill->ill_ipif; ipif != NULL; 7796 ipif = ipif->ipif_next) { 7797 if (ipif->ipif_zoneid == zoneid) 7798 numifs++; 7799 } 7800 ill = ill_next(&ctx, ill); 7801 } 7802 rw_exit(&ill_g_lock); 7803 return (numifs); 7804 } 7805 7806 /* 7807 * Return the total number of ipifs. 7808 */ 7809 static uint_t 7810 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 7811 { 7812 uint_t numifs = 0; 7813 ill_t *ill; 7814 ipif_t *ipif; 7815 ill_walk_context_t ctx; 7816 7817 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7818 7819 rw_enter(&ill_g_lock, RW_READER); 7820 if (family == AF_INET) 7821 ill = ILL_START_WALK_V4(&ctx); 7822 else if (family == AF_INET6) 7823 ill = ILL_START_WALK_V6(&ctx); 7824 else 7825 ill = ILL_START_WALK_ALL(&ctx); 7826 7827 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7828 for (ipif = ill->ill_ipif; ipif != NULL; 7829 ipif = ipif->ipif_next) { 7830 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7831 !(lifn_flags & LIFC_NOXMIT)) 7832 continue; 7833 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7834 !(lifn_flags & LIFC_TEMPORARY)) 7835 continue; 7836 if (((ipif->ipif_flags & 7837 (IPIF_NOXMIT|IPIF_NOLOCAL| 7838 IPIF_DEPRECATED)) || 7839 (ill->ill_phyint->phyint_flags & 7840 PHYI_LOOPBACK) || 7841 !(ipif->ipif_flags & IPIF_UP)) && 7842 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7843 continue; 7844 7845 if (zoneid != ipif->ipif_zoneid && 7846 (zoneid != GLOBAL_ZONEID || 7847 !(lifn_flags & LIFC_ALLZONES))) 7848 continue; 7849 7850 numifs++; 7851 } 7852 } 7853 rw_exit(&ill_g_lock); 7854 return (numifs); 7855 } 7856 7857 uint_t 7858 ip_get_lifsrcofnum(ill_t *ill) 7859 { 7860 uint_t numifs = 0; 7861 ill_t *ill_head = ill; 7862 7863 /* 7864 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7865 * other thread may be trying to relink the ILLs in this usesrc group 7866 * and adjusting the ill_usesrc_grp_next pointers 7867 */ 7868 rw_enter(&ill_g_usesrc_lock, RW_READER); 7869 if ((ill->ill_usesrc_ifindex == 0) && 7870 (ill->ill_usesrc_grp_next != NULL)) { 7871 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7872 ill = ill->ill_usesrc_grp_next) 7873 numifs++; 7874 } 7875 rw_exit(&ill_g_usesrc_lock); 7876 7877 return (numifs); 7878 } 7879 7880 /* Null values are passed in for ipif, sin, and ifreq */ 7881 /* ARGSUSED */ 7882 int 7883 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7884 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7885 { 7886 int *nump; 7887 7888 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7889 7890 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7891 nump = (int *)mp->b_cont->b_cont->b_rptr; 7892 7893 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 7894 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7895 return (0); 7896 } 7897 7898 /* Null values are passed in for ipif, sin, and ifreq */ 7899 /* ARGSUSED */ 7900 int 7901 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7902 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7903 { 7904 struct lifnum *lifn; 7905 mblk_t *mp1; 7906 7907 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7908 7909 /* Existence checked in ip_wput_nondata */ 7910 mp1 = mp->b_cont->b_cont; 7911 7912 lifn = (struct lifnum *)mp1->b_rptr; 7913 switch (lifn->lifn_family) { 7914 case AF_UNSPEC: 7915 case AF_INET: 7916 case AF_INET6: 7917 break; 7918 default: 7919 return (EAFNOSUPPORT); 7920 } 7921 7922 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7923 Q_TO_CONN(q)->conn_zoneid); 7924 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7925 return (0); 7926 } 7927 7928 /* ARGSUSED */ 7929 int 7930 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7931 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7932 { 7933 STRUCT_HANDLE(ifconf, ifc); 7934 mblk_t *mp1; 7935 struct iocblk *iocp; 7936 struct ifreq *ifr; 7937 ill_walk_context_t ctx; 7938 ill_t *ill; 7939 ipif_t *ipif; 7940 struct sockaddr_in *sin; 7941 int32_t ifclen; 7942 zoneid_t zoneid; 7943 7944 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7945 7946 ip1dbg(("ip_sioctl_get_ifconf")); 7947 /* Existence verified in ip_wput_nondata */ 7948 mp1 = mp->b_cont->b_cont; 7949 iocp = (struct iocblk *)mp->b_rptr; 7950 zoneid = Q_TO_CONN(q)->conn_zoneid; 7951 7952 /* 7953 * The original SIOCGIFCONF passed in a struct ifconf which specified 7954 * the user buffer address and length into which the list of struct 7955 * ifreqs was to be copied. Since AT&T Streams does not seem to 7956 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7957 * the SIOCGIFCONF operation was redefined to simply provide 7958 * a large output buffer into which we are supposed to jam the ifreq 7959 * array. The same ioctl command code was used, despite the fact that 7960 * both the applications and the kernel code had to change, thus making 7961 * it impossible to support both interfaces. 7962 * 7963 * For reasons not good enough to try to explain, the following 7964 * algorithm is used for deciding what to do with one of these: 7965 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7966 * form with the output buffer coming down as the continuation message. 7967 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7968 * and we have to copy in the ifconf structure to find out how big the 7969 * output buffer is and where to copy out to. Sure no problem... 7970 * 7971 */ 7972 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7973 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7974 int numifs = 0; 7975 size_t ifc_bufsize; 7976 7977 /* 7978 * Must be (better be!) continuation of a TRANSPARENT 7979 * IOCTL. We just copied in the ifconf structure. 7980 */ 7981 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7982 (struct ifconf *)mp1->b_rptr); 7983 7984 /* 7985 * Allocate a buffer to hold requested information. 7986 * 7987 * If ifc_len is larger than what is needed, we only 7988 * allocate what we will use. 7989 * 7990 * If ifc_len is smaller than what is needed, return 7991 * EINVAL. 7992 * 7993 * XXX: the ill_t structure can hava 2 counters, for 7994 * v4 and v6 (not just ill_ipif_up_count) to store the 7995 * number of interfaces for a device, so we don't need 7996 * to count them here... 7997 */ 7998 numifs = ip_get_numifs(zoneid); 7999 8000 ifclen = STRUCT_FGET(ifc, ifc_len); 8001 ifc_bufsize = numifs * sizeof (struct ifreq); 8002 if (ifc_bufsize > ifclen) { 8003 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8004 /* old behaviour */ 8005 return (EINVAL); 8006 } else { 8007 ifc_bufsize = ifclen; 8008 } 8009 } 8010 8011 mp1 = mi_copyout_alloc(q, mp, 8012 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8013 if (mp1 == NULL) 8014 return (ENOMEM); 8015 8016 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8017 } 8018 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8019 /* 8020 * the SIOCGIFCONF ioctl only knows about 8021 * IPv4 addresses, so don't try to tell 8022 * it about interfaces with IPv6-only 8023 * addresses. (Last parm 'isv6' is B_FALSE) 8024 */ 8025 8026 ifr = (struct ifreq *)mp1->b_rptr; 8027 8028 rw_enter(&ill_g_lock, RW_READER); 8029 ill = ILL_START_WALK_V4(&ctx); 8030 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8031 for (ipif = ill->ill_ipif; ipif; 8032 ipif = ipif->ipif_next) { 8033 if (zoneid != ipif->ipif_zoneid) 8034 continue; 8035 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8036 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8037 /* old behaviour */ 8038 rw_exit(&ill_g_lock); 8039 return (EINVAL); 8040 } else { 8041 goto if_copydone; 8042 } 8043 } 8044 (void) ipif_get_name(ipif, 8045 ifr->ifr_name, 8046 sizeof (ifr->ifr_name)); 8047 sin = (sin_t *)&ifr->ifr_addr; 8048 *sin = sin_null; 8049 sin->sin_family = AF_INET; 8050 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8051 ifr++; 8052 } 8053 } 8054 if_copydone: 8055 rw_exit(&ill_g_lock); 8056 mp1->b_wptr = (uchar_t *)ifr; 8057 8058 if (STRUCT_BUF(ifc) != NULL) { 8059 STRUCT_FSET(ifc, ifc_len, 8060 (int)((uchar_t *)ifr - mp1->b_rptr)); 8061 } 8062 return (0); 8063 } 8064 8065 /* 8066 * Get the interfaces using the address hosted on the interface passed in, 8067 * as a source adddress 8068 */ 8069 /* ARGSUSED */ 8070 int 8071 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8072 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8073 { 8074 mblk_t *mp1; 8075 ill_t *ill, *ill_head; 8076 ipif_t *ipif, *orig_ipif; 8077 int numlifs = 0; 8078 size_t lifs_bufsize, lifsmaxlen; 8079 struct lifreq *lifr; 8080 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8081 uint_t ifindex; 8082 zoneid_t zoneid; 8083 int err = 0; 8084 boolean_t isv6 = B_FALSE; 8085 struct sockaddr_in *sin; 8086 struct sockaddr_in6 *sin6; 8087 8088 STRUCT_HANDLE(lifsrcof, lifs); 8089 8090 ASSERT(q->q_next == NULL); 8091 8092 zoneid = Q_TO_CONN(q)->conn_zoneid; 8093 8094 /* Existence verified in ip_wput_nondata */ 8095 mp1 = mp->b_cont->b_cont; 8096 8097 /* 8098 * Must be (better be!) continuation of a TRANSPARENT 8099 * IOCTL. We just copied in the lifsrcof structure. 8100 */ 8101 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8102 (struct lifsrcof *)mp1->b_rptr); 8103 8104 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8105 return (EINVAL); 8106 8107 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8108 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8109 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8110 ip_process_ioctl, &err); 8111 if (ipif == NULL) { 8112 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8113 ifindex)); 8114 return (err); 8115 } 8116 8117 8118 /* Allocate a buffer to hold requested information */ 8119 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8120 lifs_bufsize = numlifs * sizeof (struct lifreq); 8121 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8122 /* The actual size needed is always returned in lifs_len */ 8123 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8124 8125 /* If the amount we need is more than what is passed in, abort */ 8126 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8127 ipif_refrele(ipif); 8128 return (0); 8129 } 8130 8131 mp1 = mi_copyout_alloc(q, mp, 8132 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8133 if (mp1 == NULL) { 8134 ipif_refrele(ipif); 8135 return (ENOMEM); 8136 } 8137 8138 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8139 bzero(mp1->b_rptr, lifs_bufsize); 8140 8141 lifr = (struct lifreq *)mp1->b_rptr; 8142 8143 ill = ill_head = ipif->ipif_ill; 8144 orig_ipif = ipif; 8145 8146 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8147 rw_enter(&ill_g_usesrc_lock, RW_READER); 8148 rw_enter(&ill_g_lock, RW_READER); 8149 8150 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8151 for (; (ill != NULL) && (ill != ill_head); 8152 ill = ill->ill_usesrc_grp_next) { 8153 8154 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8155 break; 8156 8157 ipif = ill->ill_ipif; 8158 (void) ipif_get_name(ipif, 8159 lifr->lifr_name, sizeof (lifr->lifr_name)); 8160 if (ipif->ipif_isv6) { 8161 sin6 = (sin6_t *)&lifr->lifr_addr; 8162 *sin6 = sin6_null; 8163 sin6->sin6_family = AF_INET6; 8164 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8165 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8166 &ipif->ipif_v6net_mask); 8167 } else { 8168 sin = (sin_t *)&lifr->lifr_addr; 8169 *sin = sin_null; 8170 sin->sin_family = AF_INET; 8171 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8172 lifr->lifr_addrlen = ip_mask_to_plen( 8173 ipif->ipif_net_mask); 8174 } 8175 lifr++; 8176 } 8177 rw_exit(&ill_g_usesrc_lock); 8178 rw_exit(&ill_g_lock); 8179 ipif_refrele(orig_ipif); 8180 mp1->b_wptr = (uchar_t *)lifr; 8181 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8182 8183 return (0); 8184 } 8185 8186 /* ARGSUSED */ 8187 int 8188 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8189 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8190 { 8191 mblk_t *mp1; 8192 int list; 8193 ill_t *ill; 8194 ipif_t *ipif; 8195 int flags; 8196 int numlifs = 0; 8197 size_t lifc_bufsize; 8198 struct lifreq *lifr; 8199 sa_family_t family; 8200 struct sockaddr_in *sin; 8201 struct sockaddr_in6 *sin6; 8202 ill_walk_context_t ctx; 8203 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8204 int32_t lifclen; 8205 zoneid_t zoneid; 8206 STRUCT_HANDLE(lifconf, lifc); 8207 8208 ip1dbg(("ip_sioctl_get_lifconf")); 8209 8210 ASSERT(q->q_next == NULL); 8211 8212 zoneid = Q_TO_CONN(q)->conn_zoneid; 8213 8214 /* Existence verified in ip_wput_nondata */ 8215 mp1 = mp->b_cont->b_cont; 8216 8217 /* 8218 * An extended version of SIOCGIFCONF that takes an 8219 * additional address family and flags field. 8220 * AF_UNSPEC retrieve both IPv4 and IPv6. 8221 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8222 * interfaces are omitted. 8223 * Similarly, IPIF_TEMPORARY interfaces are omitted 8224 * unless LIFC_TEMPORARY is specified. 8225 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8226 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8227 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8228 * has priority over LIFC_NOXMIT. 8229 */ 8230 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8231 8232 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8233 return (EINVAL); 8234 8235 /* 8236 * Must be (better be!) continuation of a TRANSPARENT 8237 * IOCTL. We just copied in the lifconf structure. 8238 */ 8239 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8240 8241 family = STRUCT_FGET(lifc, lifc_family); 8242 flags = STRUCT_FGET(lifc, lifc_flags); 8243 8244 switch (family) { 8245 case AF_UNSPEC: 8246 /* 8247 * walk all ILL's. 8248 */ 8249 list = MAX_G_HEADS; 8250 break; 8251 case AF_INET: 8252 /* 8253 * walk only IPV4 ILL's. 8254 */ 8255 list = IP_V4_G_HEAD; 8256 break; 8257 case AF_INET6: 8258 /* 8259 * walk only IPV6 ILL's. 8260 */ 8261 list = IP_V6_G_HEAD; 8262 break; 8263 default: 8264 return (EAFNOSUPPORT); 8265 } 8266 8267 /* 8268 * Allocate a buffer to hold requested information. 8269 * 8270 * If lifc_len is larger than what is needed, we only 8271 * allocate what we will use. 8272 * 8273 * If lifc_len is smaller than what is needed, return 8274 * EINVAL. 8275 */ 8276 numlifs = ip_get_numlifs(family, flags, zoneid); 8277 lifc_bufsize = numlifs * sizeof (struct lifreq); 8278 lifclen = STRUCT_FGET(lifc, lifc_len); 8279 if (lifc_bufsize > lifclen) { 8280 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8281 return (EINVAL); 8282 else 8283 lifc_bufsize = lifclen; 8284 } 8285 8286 mp1 = mi_copyout_alloc(q, mp, 8287 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8288 if (mp1 == NULL) 8289 return (ENOMEM); 8290 8291 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8292 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8293 8294 lifr = (struct lifreq *)mp1->b_rptr; 8295 8296 rw_enter(&ill_g_lock, RW_READER); 8297 ill = ill_first(list, list, &ctx); 8298 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8299 for (ipif = ill->ill_ipif; ipif != NULL; 8300 ipif = ipif->ipif_next) { 8301 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8302 !(flags & LIFC_NOXMIT)) 8303 continue; 8304 8305 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8306 !(flags & LIFC_TEMPORARY)) 8307 continue; 8308 8309 if (((ipif->ipif_flags & 8310 (IPIF_NOXMIT|IPIF_NOLOCAL| 8311 IPIF_DEPRECATED)) || 8312 (ill->ill_phyint->phyint_flags & 8313 PHYI_LOOPBACK) || 8314 !(ipif->ipif_flags & IPIF_UP)) && 8315 (flags & LIFC_EXTERNAL_SOURCE)) 8316 continue; 8317 8318 if (zoneid != ipif->ipif_zoneid && 8319 (zoneid != GLOBAL_ZONEID || 8320 !(flags & LIFC_ALLZONES))) 8321 continue; 8322 8323 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8324 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8325 rw_exit(&ill_g_lock); 8326 return (EINVAL); 8327 } else { 8328 goto lif_copydone; 8329 } 8330 } 8331 8332 (void) ipif_get_name(ipif, 8333 lifr->lifr_name, 8334 sizeof (lifr->lifr_name)); 8335 if (ipif->ipif_isv6) { 8336 sin6 = (sin6_t *)&lifr->lifr_addr; 8337 *sin6 = sin6_null; 8338 sin6->sin6_family = AF_INET6; 8339 sin6->sin6_addr = 8340 ipif->ipif_v6lcl_addr; 8341 lifr->lifr_addrlen = 8342 ip_mask_to_plen_v6( 8343 &ipif->ipif_v6net_mask); 8344 } else { 8345 sin = (sin_t *)&lifr->lifr_addr; 8346 *sin = sin_null; 8347 sin->sin_family = AF_INET; 8348 sin->sin_addr.s_addr = 8349 ipif->ipif_lcl_addr; 8350 lifr->lifr_addrlen = 8351 ip_mask_to_plen( 8352 ipif->ipif_net_mask); 8353 } 8354 lifr++; 8355 } 8356 } 8357 lif_copydone: 8358 rw_exit(&ill_g_lock); 8359 8360 mp1->b_wptr = (uchar_t *)lifr; 8361 if (STRUCT_BUF(lifc) != NULL) { 8362 STRUCT_FSET(lifc, lifc_len, 8363 (int)((uchar_t *)lifr - mp1->b_rptr)); 8364 } 8365 return (0); 8366 } 8367 8368 /* ARGSUSED */ 8369 int 8370 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8371 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8372 { 8373 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8374 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8375 return (0); 8376 } 8377 8378 static void 8379 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8380 { 8381 ip6_asp_t *table; 8382 size_t table_size; 8383 mblk_t *data_mp; 8384 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8385 8386 /* These two ioctls are I_STR only */ 8387 if (iocp->ioc_count == TRANSPARENT) { 8388 miocnak(q, mp, 0, EINVAL); 8389 return; 8390 } 8391 8392 data_mp = mp->b_cont; 8393 if (data_mp == NULL) { 8394 /* The user passed us a NULL argument */ 8395 table = NULL; 8396 table_size = iocp->ioc_count; 8397 } else { 8398 /* 8399 * The user provided a table. The stream head 8400 * may have copied in the user data in chunks, 8401 * so make sure everything is pulled up 8402 * properly. 8403 */ 8404 if (MBLKL(data_mp) < iocp->ioc_count) { 8405 mblk_t *new_data_mp; 8406 if ((new_data_mp = msgpullup(data_mp, -1)) == 8407 NULL) { 8408 miocnak(q, mp, 0, ENOMEM); 8409 return; 8410 } 8411 freemsg(data_mp); 8412 data_mp = new_data_mp; 8413 mp->b_cont = data_mp; 8414 } 8415 table = (ip6_asp_t *)data_mp->b_rptr; 8416 table_size = iocp->ioc_count; 8417 } 8418 8419 switch (iocp->ioc_cmd) { 8420 case SIOCGIP6ADDRPOLICY: 8421 iocp->ioc_rval = ip6_asp_get(table, table_size); 8422 if (iocp->ioc_rval == -1) 8423 iocp->ioc_error = EINVAL; 8424 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8425 else if (table != NULL && 8426 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8427 ip6_asp_t *src = table; 8428 ip6_asp32_t *dst = (void *)table; 8429 int count = table_size / sizeof (ip6_asp_t); 8430 int i; 8431 8432 /* 8433 * We need to do an in-place shrink of the array 8434 * to match the alignment attributes of the 8435 * 32-bit ABI looking at it. 8436 */ 8437 /* LINTED: logical expression always true: op "||" */ 8438 ASSERT(sizeof (*src) > sizeof (*dst)); 8439 for (i = 1; i < count; i++) 8440 bcopy(src + i, dst + i, sizeof (*dst)); 8441 } 8442 #endif 8443 break; 8444 8445 case SIOCSIP6ADDRPOLICY: 8446 ASSERT(mp->b_prev == NULL); 8447 mp->b_prev = (void *)q; 8448 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8449 /* 8450 * We pass in the datamodel here so that the ip6_asp_replace() 8451 * routine can handle converting from 32-bit to native formats 8452 * where necessary. 8453 * 8454 * A better way to handle this might be to convert the inbound 8455 * data structure here, and hang it off a new 'mp'; thus the 8456 * ip6_asp_replace() logic would always be dealing with native 8457 * format data structures.. 8458 * 8459 * (An even simpler way to handle these ioctls is to just 8460 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8461 * and just recompile everything that depends on it.) 8462 */ 8463 #endif 8464 ip6_asp_replace(mp, table, table_size, B_FALSE, 8465 iocp->ioc_flag & IOC_MODELS); 8466 return; 8467 } 8468 8469 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8470 qreply(q, mp); 8471 } 8472 8473 static void 8474 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8475 { 8476 mblk_t *data_mp; 8477 struct dstinforeq *dir; 8478 uint8_t *end, *cur; 8479 in6_addr_t *daddr, *saddr; 8480 ipaddr_t v4daddr; 8481 ire_t *ire; 8482 char *slabel, *dlabel; 8483 boolean_t isipv4; 8484 int match_ire; 8485 ill_t *dst_ill; 8486 ipif_t *src_ipif, *ire_ipif; 8487 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8488 zoneid_t zoneid; 8489 8490 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8491 zoneid = Q_TO_CONN(q)->conn_zoneid; 8492 8493 /* 8494 * This ioctl is I_STR only, and must have a 8495 * data mblk following the M_IOCTL mblk. 8496 */ 8497 data_mp = mp->b_cont; 8498 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8499 miocnak(q, mp, 0, EINVAL); 8500 return; 8501 } 8502 8503 if (MBLKL(data_mp) < iocp->ioc_count) { 8504 mblk_t *new_data_mp; 8505 8506 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8507 miocnak(q, mp, 0, ENOMEM); 8508 return; 8509 } 8510 freemsg(data_mp); 8511 data_mp = new_data_mp; 8512 mp->b_cont = data_mp; 8513 } 8514 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8515 8516 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8517 end - cur >= sizeof (struct dstinforeq); 8518 cur += sizeof (struct dstinforeq)) { 8519 dir = (struct dstinforeq *)cur; 8520 daddr = &dir->dir_daddr; 8521 saddr = &dir->dir_saddr; 8522 8523 /* 8524 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8525 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8526 * and ipif_select_source[_v6]() do not. 8527 */ 8528 dir->dir_dscope = ip_addr_scope_v6(daddr); 8529 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 8530 8531 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8532 if (isipv4) { 8533 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8534 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8535 0, NULL, NULL, zoneid, 0, match_ire); 8536 } else { 8537 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8538 0, NULL, NULL, zoneid, 0, match_ire); 8539 } 8540 if (ire == NULL) { 8541 dir->dir_dreachable = 0; 8542 8543 /* move on to next dst addr */ 8544 continue; 8545 } 8546 dir->dir_dreachable = 1; 8547 8548 ire_ipif = ire->ire_ipif; 8549 if (ire_ipif == NULL) 8550 goto next_dst; 8551 8552 /* 8553 * We expect to get back an interface ire or a 8554 * gateway ire cache entry. For both types, the 8555 * output interface is ire_ipif->ipif_ill. 8556 */ 8557 dst_ill = ire_ipif->ipif_ill; 8558 dir->dir_dmactype = dst_ill->ill_mactype; 8559 8560 if (isipv4) { 8561 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 8562 } else { 8563 src_ipif = ipif_select_source_v6(dst_ill, 8564 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 8565 zoneid); 8566 } 8567 if (src_ipif == NULL) 8568 goto next_dst; 8569 8570 *saddr = src_ipif->ipif_v6lcl_addr; 8571 dir->dir_sscope = ip_addr_scope_v6(saddr); 8572 slabel = ip6_asp_lookup(saddr, NULL); 8573 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8574 dir->dir_sdeprecated = 8575 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8576 ipif_refrele(src_ipif); 8577 next_dst: 8578 ire_refrele(ire); 8579 } 8580 miocack(q, mp, iocp->ioc_count, 0); 8581 } 8582 8583 8584 /* 8585 * Check if this is an address assigned to this machine. 8586 * Skips interfaces that are down by using ire checks. 8587 * Translates mapped addresses to v4 addresses and then 8588 * treats them as such, returning true if the v4 address 8589 * associated with this mapped address is configured. 8590 * Note: Applications will have to be careful what they do 8591 * with the response; use of mapped addresses limits 8592 * what can be done with the socket, especially with 8593 * respect to socket options and ioctls - neither IPv4 8594 * options nor IPv6 sticky options/ancillary data options 8595 * may be used. 8596 */ 8597 /* ARGSUSED */ 8598 int 8599 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8600 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8601 { 8602 struct sioc_addrreq *sia; 8603 sin_t *sin; 8604 ire_t *ire; 8605 mblk_t *mp1; 8606 zoneid_t zoneid; 8607 8608 ip1dbg(("ip_sioctl_tmyaddr")); 8609 8610 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8611 zoneid = Q_TO_CONN(q)->conn_zoneid; 8612 8613 /* Existence verified in ip_wput_nondata */ 8614 mp1 = mp->b_cont->b_cont; 8615 sia = (struct sioc_addrreq *)mp1->b_rptr; 8616 sin = (sin_t *)&sia->sa_addr; 8617 switch (sin->sin_family) { 8618 case AF_INET6: { 8619 sin6_t *sin6 = (sin6_t *)sin; 8620 8621 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8622 ipaddr_t v4_addr; 8623 8624 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8625 v4_addr); 8626 ire = ire_ctable_lookup(v4_addr, 0, 8627 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8628 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8629 } else { 8630 in6_addr_t v6addr; 8631 8632 v6addr = sin6->sin6_addr; 8633 ire = ire_ctable_lookup_v6(&v6addr, 0, 8634 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8635 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8636 } 8637 break; 8638 } 8639 case AF_INET: { 8640 ipaddr_t v4addr; 8641 8642 v4addr = sin->sin_addr.s_addr; 8643 ire = ire_ctable_lookup(v4addr, 0, 8644 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8645 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8646 break; 8647 } 8648 default: 8649 return (EAFNOSUPPORT); 8650 } 8651 if (ire != NULL) { 8652 sia->sa_res = 1; 8653 ire_refrele(ire); 8654 } else { 8655 sia->sa_res = 0; 8656 } 8657 return (0); 8658 } 8659 8660 /* 8661 * Check if this is an address assigned on-link i.e. neighbor, 8662 * and makes sure it's reachable from the current zone. 8663 * Returns true for my addresses as well. 8664 * Translates mapped addresses to v4 addresses and then 8665 * treats them as such, returning true if the v4 address 8666 * associated with this mapped address is configured. 8667 * Note: Applications will have to be careful what they do 8668 * with the response; use of mapped addresses limits 8669 * what can be done with the socket, especially with 8670 * respect to socket options and ioctls - neither IPv4 8671 * options nor IPv6 sticky options/ancillary data options 8672 * may be used. 8673 */ 8674 /* ARGSUSED */ 8675 int 8676 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8677 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8678 { 8679 struct sioc_addrreq *sia; 8680 sin_t *sin; 8681 mblk_t *mp1; 8682 ire_t *ire = NULL; 8683 zoneid_t zoneid; 8684 8685 ip1dbg(("ip_sioctl_tonlink")); 8686 8687 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8688 zoneid = Q_TO_CONN(q)->conn_zoneid; 8689 8690 /* Existence verified in ip_wput_nondata */ 8691 mp1 = mp->b_cont->b_cont; 8692 sia = (struct sioc_addrreq *)mp1->b_rptr; 8693 sin = (sin_t *)&sia->sa_addr; 8694 8695 /* 8696 * Match addresses with a zero gateway field to avoid 8697 * routes going through a router. 8698 * Exclude broadcast and multicast addresses. 8699 */ 8700 switch (sin->sin_family) { 8701 case AF_INET6: { 8702 sin6_t *sin6 = (sin6_t *)sin; 8703 8704 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8705 ipaddr_t v4_addr; 8706 8707 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8708 v4_addr); 8709 if (!CLASSD(v4_addr)) { 8710 ire = ire_route_lookup(v4_addr, 0, 0, 0, 8711 NULL, NULL, zoneid, MATCH_IRE_GW); 8712 } 8713 } else { 8714 in6_addr_t v6addr; 8715 in6_addr_t v6gw; 8716 8717 v6addr = sin6->sin6_addr; 8718 v6gw = ipv6_all_zeros; 8719 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8720 ire = ire_route_lookup_v6(&v6addr, 0, 8721 &v6gw, 0, NULL, NULL, zoneid, 8722 MATCH_IRE_GW); 8723 } 8724 } 8725 break; 8726 } 8727 case AF_INET: { 8728 ipaddr_t v4addr; 8729 8730 v4addr = sin->sin_addr.s_addr; 8731 if (!CLASSD(v4addr)) { 8732 ire = ire_route_lookup(v4addr, 0, 0, 0, 8733 NULL, NULL, zoneid, MATCH_IRE_GW); 8734 } 8735 break; 8736 } 8737 default: 8738 return (EAFNOSUPPORT); 8739 } 8740 sia->sa_res = 0; 8741 if (ire != NULL) { 8742 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 8743 IRE_LOCAL|IRE_LOOPBACK)) { 8744 sia->sa_res = 1; 8745 } 8746 ire_refrele(ire); 8747 } 8748 return (0); 8749 } 8750 8751 /* 8752 * TBD: implement when kernel maintaines a list of site prefixes. 8753 */ 8754 /* ARGSUSED */ 8755 int 8756 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8757 ip_ioctl_cmd_t *ipip, void *ifreq) 8758 { 8759 return (ENXIO); 8760 } 8761 8762 /* ARGSUSED */ 8763 int 8764 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8765 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8766 { 8767 ill_t *ill; 8768 mblk_t *mp1; 8769 conn_t *connp; 8770 boolean_t success; 8771 8772 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 8773 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 8774 /* ioctl comes down on an conn */ 8775 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8776 connp = Q_TO_CONN(q); 8777 8778 mp->b_datap->db_type = M_IOCTL; 8779 8780 /* 8781 * Send down a copy. (copymsg does not copy b_next/b_prev). 8782 * The original mp contains contaminated b_next values due to 'mi', 8783 * which is needed to do the mi_copy_done. Unfortunately if we 8784 * send down the original mblk itself and if we are popped due to an 8785 * an unplumb before the response comes back from tunnel, 8786 * the streamhead (which does a freemsg) will see this contaminated 8787 * message and the assertion in freemsg about non-null b_next/b_prev 8788 * will panic a DEBUG kernel. 8789 */ 8790 mp1 = copymsg(mp); 8791 if (mp1 == NULL) 8792 return (ENOMEM); 8793 8794 ill = ipif->ipif_ill; 8795 mutex_enter(&connp->conn_lock); 8796 mutex_enter(&ill->ill_lock); 8797 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 8798 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 8799 mp, 0); 8800 } else { 8801 success = ill_pending_mp_add(ill, connp, mp); 8802 } 8803 mutex_exit(&ill->ill_lock); 8804 mutex_exit(&connp->conn_lock); 8805 8806 if (success) { 8807 ip1dbg(("sending down tunparam request ")); 8808 putnext(ill->ill_wq, mp1); 8809 return (EINPROGRESS); 8810 } else { 8811 /* The conn has started closing */ 8812 freemsg(mp1); 8813 return (EINTR); 8814 } 8815 } 8816 8817 static int 8818 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 8819 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 8820 { 8821 mblk_t *mp1; 8822 mblk_t *mp2; 8823 mblk_t *pending_mp; 8824 ipaddr_t ipaddr; 8825 area_t *area; 8826 struct iocblk *iocp; 8827 conn_t *connp; 8828 struct arpreq *ar; 8829 struct xarpreq *xar; 8830 boolean_t success; 8831 int flags, alength; 8832 char *lladdr; 8833 8834 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8835 connp = Q_TO_CONN(q); 8836 8837 iocp = (struct iocblk *)mp->b_rptr; 8838 /* 8839 * ill has already been set depending on whether 8840 * bsd style or interface style ioctl. 8841 */ 8842 ASSERT(ill != NULL); 8843 8844 /* 8845 * Is this one of the new SIOC*XARP ioctls? 8846 */ 8847 if (x_arp_ioctl) { 8848 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8849 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8850 ar = NULL; 8851 8852 flags = xar->xarp_flags; 8853 lladdr = LLADDR(&xar->xarp_ha); 8854 /* 8855 * Validate against user's link layer address length 8856 * input and name and addr length limits. 8857 */ 8858 alength = ill->ill_phys_addr_length; 8859 if (iocp->ioc_cmd == SIOCSXARP) { 8860 if (alength != xar->xarp_ha.sdl_alen || 8861 (alength + xar->xarp_ha.sdl_nlen > 8862 sizeof (xar->xarp_ha.sdl_data))) 8863 return (EINVAL); 8864 } 8865 } else { 8866 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8867 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8868 xar = NULL; 8869 8870 flags = ar->arp_flags; 8871 lladdr = ar->arp_ha.sa_data; 8872 /* 8873 * Theoretically, the sa_family could tell us what link 8874 * layer type this operation is trying to deal with. By 8875 * common usage AF_UNSPEC means ethernet. We'll assume 8876 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8877 * for now. Our new SIOC*XARP ioctls can be used more 8878 * generally. 8879 * 8880 * If the underlying media happens to have a non 6 byte 8881 * address, arp module will fail set/get, but the del 8882 * operation will succeed. 8883 */ 8884 alength = 6; 8885 if ((iocp->ioc_cmd != SIOCDARP) && 8886 (alength != ill->ill_phys_addr_length)) { 8887 return (EINVAL); 8888 } 8889 } 8890 8891 /* 8892 * We are going to pass up to ARP a packet chain that looks 8893 * like: 8894 * 8895 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 8896 * 8897 * Get a copy of the original IOCTL mblk to head the chain, 8898 * to be sent up (in mp1). Also get another copy to store 8899 * in the ill_pending_mp list, for matching the response 8900 * when it comes back from ARP. 8901 */ 8902 mp1 = copyb(mp); 8903 pending_mp = copymsg(mp); 8904 if (mp1 == NULL || pending_mp == NULL) { 8905 if (mp1 != NULL) 8906 freeb(mp1); 8907 if (pending_mp != NULL) 8908 inet_freemsg(pending_mp); 8909 return (ENOMEM); 8910 } 8911 8912 ipaddr = sin->sin_addr.s_addr; 8913 8914 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 8915 (caddr_t)&ipaddr); 8916 if (mp2 == NULL) { 8917 freeb(mp1); 8918 inet_freemsg(pending_mp); 8919 return (ENOMEM); 8920 } 8921 /* Put together the chain. */ 8922 mp1->b_cont = mp2; 8923 mp1->b_datap->db_type = M_IOCTL; 8924 mp2->b_cont = mp; 8925 mp2->b_datap->db_type = M_DATA; 8926 8927 iocp = (struct iocblk *)mp1->b_rptr; 8928 8929 /* 8930 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 8931 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 8932 * cp_private field (or cp_rval on 32-bit systems) in place of the 8933 * ioc_count field; set ioc_count to be correct. 8934 */ 8935 iocp->ioc_count = MBLKL(mp1->b_cont); 8936 8937 /* 8938 * Set the proper command in the ARP message. 8939 * Convert the SIOC{G|S|D}ARP calls into our 8940 * AR_ENTRY_xxx calls. 8941 */ 8942 area = (area_t *)mp2->b_rptr; 8943 switch (iocp->ioc_cmd) { 8944 case SIOCDARP: 8945 case SIOCDXARP: 8946 /* 8947 * We defer deleting the corresponding IRE until 8948 * we return from arp. 8949 */ 8950 area->area_cmd = AR_ENTRY_DELETE; 8951 area->area_proto_mask_offset = 0; 8952 break; 8953 case SIOCGARP: 8954 case SIOCGXARP: 8955 area->area_cmd = AR_ENTRY_SQUERY; 8956 area->area_proto_mask_offset = 0; 8957 break; 8958 case SIOCSARP: 8959 case SIOCSXARP: { 8960 /* 8961 * Delete the corresponding ire to make sure IP will 8962 * pick up any change from arp. 8963 */ 8964 if (!if_arp_ioctl) { 8965 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 8966 break; 8967 } else { 8968 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8969 if (ipif != NULL) { 8970 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 8971 ipif_refrele(ipif); 8972 } 8973 break; 8974 } 8975 } 8976 } 8977 iocp->ioc_cmd = area->area_cmd; 8978 8979 /* 8980 * Before sending 'mp' to ARP, we have to clear the b_next 8981 * and b_prev. Otherwise if STREAMS encounters such a message 8982 * in freemsg(), (because ARP can close any time) it can cause 8983 * a panic. But mi code needs the b_next and b_prev values of 8984 * mp->b_cont, to complete the ioctl. So we store it here 8985 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 8986 * when the response comes down from ARP. 8987 */ 8988 pending_mp->b_cont->b_next = mp->b_cont->b_next; 8989 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 8990 mp->b_cont->b_next = NULL; 8991 mp->b_cont->b_prev = NULL; 8992 8993 mutex_enter(&connp->conn_lock); 8994 mutex_enter(&ill->ill_lock); 8995 /* conn has not yet started closing, hence this can't fail */ 8996 success = ill_pending_mp_add(ill, connp, pending_mp); 8997 ASSERT(success); 8998 mutex_exit(&ill->ill_lock); 8999 mutex_exit(&connp->conn_lock); 9000 9001 /* 9002 * Fill in the rest of the ARP operation fields. 9003 */ 9004 area->area_hw_addr_length = alength; 9005 bcopy(lladdr, 9006 (char *)area + area->area_hw_addr_offset, 9007 area->area_hw_addr_length); 9008 /* Translate the flags. */ 9009 if (flags & ATF_PERM) 9010 area->area_flags |= ACE_F_PERMANENT; 9011 if (flags & ATF_PUBL) 9012 area->area_flags |= ACE_F_PUBLISH; 9013 9014 /* 9015 * Up to ARP it goes. The response will come 9016 * back in ip_wput as an M_IOCACK message, and 9017 * will be handed to ip_sioctl_iocack for 9018 * completion. 9019 */ 9020 putnext(ill->ill_rq, mp1); 9021 return (EINPROGRESS); 9022 } 9023 9024 /* ARGSUSED */ 9025 int 9026 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9027 ip_ioctl_cmd_t *ipip, void *ifreq) 9028 { 9029 struct xarpreq *xar; 9030 boolean_t isv6; 9031 mblk_t *mp1; 9032 int err; 9033 conn_t *connp; 9034 int ifnamelen; 9035 ire_t *ire = NULL; 9036 ill_t *ill = NULL; 9037 struct sockaddr_in *sin; 9038 boolean_t if_arp_ioctl = B_FALSE; 9039 9040 /* ioctl comes down on an conn */ 9041 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9042 connp = Q_TO_CONN(q); 9043 isv6 = connp->conn_af_isv6; 9044 9045 /* Existance verified in ip_wput_nondata */ 9046 mp1 = mp->b_cont->b_cont; 9047 9048 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9049 xar = (struct xarpreq *)mp1->b_rptr; 9050 sin = (sin_t *)&xar->xarp_pa; 9051 9052 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9053 (xar->xarp_pa.ss_family != AF_INET)) 9054 return (ENXIO); 9055 9056 ifnamelen = xar->xarp_ha.sdl_nlen; 9057 if (ifnamelen != 0) { 9058 char *cptr, cval; 9059 9060 if (ifnamelen >= LIFNAMSIZ) 9061 return (EINVAL); 9062 9063 /* 9064 * Instead of bcopying a bunch of bytes, 9065 * null-terminate the string in-situ. 9066 */ 9067 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9068 cval = *cptr; 9069 *cptr = '\0'; 9070 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9071 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9072 &err, NULL); 9073 *cptr = cval; 9074 if (ill == NULL) 9075 return (err); 9076 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9077 ill_refrele(ill); 9078 return (ENXIO); 9079 } 9080 9081 if_arp_ioctl = B_TRUE; 9082 } else { 9083 /* 9084 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9085 * as an extended BSD ioctl. The kernel uses the IP address 9086 * to figure out the network interface. 9087 */ 9088 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES); 9089 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9090 ((ill = ire_to_ill(ire)) == NULL)) { 9091 if (ire != NULL) 9092 ire_refrele(ire); 9093 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9094 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9095 MATCH_IRE_TYPE); 9096 if ((ire == NULL) || 9097 ((ill = ire_to_ill(ire)) == NULL)) { 9098 if (ire != NULL) 9099 ire_refrele(ire); 9100 return (ENXIO); 9101 } 9102 } 9103 ASSERT(ire != NULL && ill != NULL); 9104 } 9105 9106 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9107 if (if_arp_ioctl) 9108 ill_refrele(ill); 9109 if (ire != NULL) 9110 ire_refrele(ire); 9111 9112 return (err); 9113 } 9114 9115 /* 9116 * ARP IOCTLs. 9117 * How does IP get in the business of fronting ARP configuration/queries? 9118 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9119 * are by tradition passed in through a datagram socket. That lands in IP. 9120 * As it happens, this is just as well since the interface is quite crude in 9121 * that it passes in no information about protocol or hardware types, or 9122 * interface association. After making the protocol assumption, IP is in 9123 * the position to look up the name of the ILL, which ARP will need, and 9124 * format a request that can be handled by ARP. The request is passed up 9125 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9126 * back a response. ARP supports its own set of more general IOCTLs, in 9127 * case anyone is interested. 9128 */ 9129 /* ARGSUSED */ 9130 int 9131 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9132 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9133 { 9134 struct arpreq *ar; 9135 struct sockaddr_in *sin; 9136 ire_t *ire; 9137 boolean_t isv6; 9138 mblk_t *mp1; 9139 int err; 9140 conn_t *connp; 9141 ill_t *ill; 9142 9143 /* ioctl comes down on an conn */ 9144 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9145 connp = Q_TO_CONN(q); 9146 isv6 = connp->conn_af_isv6; 9147 if (isv6) 9148 return (ENXIO); 9149 9150 /* Existance verified in ip_wput_nondata */ 9151 mp1 = mp->b_cont->b_cont; 9152 9153 ar = (struct arpreq *)mp1->b_rptr; 9154 sin = (sin_t *)&ar->arp_pa; 9155 9156 /* 9157 * We need to let ARP know on which interface the IP 9158 * address has an ARP mapping. In the IPMP case, a 9159 * simple forwarding table lookup will return the 9160 * IRE_IF_RESOLVER for the first interface in the group, 9161 * which might not be the interface on which the 9162 * requested IP address was resolved due to the ill 9163 * selection algorithm (see ip_newroute_get_dst_ill()). 9164 * So we do a cache table lookup first: if the IRE cache 9165 * entry for the IP address is still there, it will 9166 * contain the ill pointer for the right interface, so 9167 * we use that. If the cache entry has been flushed, we 9168 * fall back to the forwarding table lookup. This should 9169 * be rare enough since IRE cache entries have a longer 9170 * life expectancy than ARP cache entries. 9171 */ 9172 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES); 9173 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9174 ((ill = ire_to_ill(ire)) == NULL)) { 9175 if (ire != NULL) 9176 ire_refrele(ire); 9177 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9178 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9179 MATCH_IRE_TYPE); 9180 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9181 if (ire != NULL) 9182 ire_refrele(ire); 9183 return (ENXIO); 9184 } 9185 } 9186 ASSERT(ire != NULL && ill != NULL); 9187 9188 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9189 ire_refrele(ire); 9190 return (err); 9191 } 9192 9193 /* 9194 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9195 * atomically set/clear the muxids. Also complete the ioctl by acking or 9196 * naking it. Note that the code is structured such that the link type, 9197 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9198 * its clones use the persistent link, while pppd(1M) and perhaps many 9199 * other daemons may use non-persistent link. When combined with some 9200 * ill_t states, linking and unlinking lower streams may be used as 9201 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9202 */ 9203 /* ARGSUSED */ 9204 void 9205 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9206 { 9207 mblk_t *mp1; 9208 mblk_t *mp2; 9209 struct linkblk *li; 9210 queue_t *ipwq; 9211 char *name; 9212 struct qinit *qinfo; 9213 struct ipmx_s *ipmxp; 9214 ill_t *ill = NULL; 9215 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9216 int err = 0; 9217 boolean_t entered_ipsq = B_FALSE; 9218 boolean_t islink; 9219 queue_t *dwq = NULL; 9220 9221 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9222 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9223 9224 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9225 B_TRUE : B_FALSE; 9226 9227 mp1 = mp->b_cont; /* This is the linkblk info */ 9228 li = (struct linkblk *)mp1->b_rptr; 9229 9230 /* 9231 * ARP has added this special mblk, and the utility is asking us 9232 * to perform consistency checks, and also atomically set the 9233 * muxid. Ifconfig is an example. It achieves this by using 9234 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9235 * to /dev/udp[6] stream for use as the mux when plinking the IP 9236 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9237 * and other comments in this routine for more details. 9238 */ 9239 mp2 = mp1->b_cont; /* This is added by ARP */ 9240 9241 /* 9242 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9243 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9244 * get the special mblk above. For backward compatibility, we just 9245 * return success. The utility will use SIOCSLIFMUXID to store 9246 * the muxids. This is not atomic, and can leave the streams 9247 * unplumbable if the utility is interrrupted, before it does the 9248 * SIOCSLIFMUXID. 9249 */ 9250 if (mp2 == NULL) { 9251 /* 9252 * At this point we don't know whether or not this is the 9253 * IP module stream or the ARP device stream. We need to 9254 * walk the lower stream in order to find this out, since 9255 * the capability negotiation is done only on the IP module 9256 * stream. IP module instance is identified by the module 9257 * name IP, non-null q_next, and it's wput not being ip_lwput. 9258 * STREAMS ensures that the lower stream (l_qbot) will not 9259 * vanish until this ioctl completes. So we can safely walk 9260 * the stream or refer to the q_ptr. 9261 */ 9262 ipwq = li->l_qbot; 9263 while (ipwq != NULL) { 9264 qinfo = ipwq->q_qinfo; 9265 name = qinfo->qi_minfo->mi_idname; 9266 if (name != NULL && name[0] != NULL && 9267 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9268 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9269 (ipwq->q_next != NULL)) { 9270 break; 9271 } 9272 ipwq = ipwq->q_next; 9273 } 9274 /* 9275 * This looks like an IP module stream, so trigger 9276 * the capability reset or re-negotiation if necessary. 9277 */ 9278 if (ipwq != NULL) { 9279 ill = ipwq->q_ptr; 9280 ASSERT(ill != NULL); 9281 9282 if (ipsq == NULL) { 9283 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9284 ip_sioctl_plink, NEW_OP, B_TRUE); 9285 if (ipsq == NULL) 9286 return; 9287 entered_ipsq = B_TRUE; 9288 } 9289 ASSERT(IAM_WRITER_ILL(ill)); 9290 /* 9291 * Store the upper read queue of the module 9292 * immediately below IP, and count the total 9293 * number of lower modules. Do this only 9294 * for I_PLINK or I_LINK event. 9295 */ 9296 ill->ill_lmod_rq = NULL; 9297 ill->ill_lmod_cnt = 0; 9298 if (islink && (dwq = ipwq->q_next) != NULL) { 9299 ill->ill_lmod_rq = RD(dwq); 9300 9301 while (dwq != NULL) { 9302 ill->ill_lmod_cnt++; 9303 dwq = dwq->q_next; 9304 } 9305 } 9306 /* 9307 * There's no point in resetting or re-negotiating if 9308 * we are not bound to the driver, so only do this if 9309 * the DLPI state is idle (up); we assume such state 9310 * since ill_ipif_up_count gets incremented in 9311 * ipif_up_done(), which is after we are bound to the 9312 * driver. Note that in the case of logical 9313 * interfaces, IP won't rebind to the driver unless 9314 * the ill_ipif_up_count is 0, meaning that all other 9315 * IP interfaces (including the main ipif) are in the 9316 * down state. Because of this, we use such counter 9317 * as an indicator, instead of relying on the IPIF_UP 9318 * flag, which is per ipif instance. 9319 */ 9320 if (ill->ill_ipif_up_count > 0) { 9321 if (islink) 9322 ill_capability_probe(ill); 9323 else 9324 ill_capability_reset(ill); 9325 } 9326 } 9327 goto done; 9328 } 9329 9330 /* 9331 * This is an I_{P}LINK sent down by ifconfig on 9332 * /dev/arp. ARP has appended this last (3rd) mblk, 9333 * giving more info. STREAMS ensures that the lower 9334 * stream (l_qbot) will not vanish until this ioctl 9335 * completes. So we can safely walk the stream or refer 9336 * to the q_ptr. 9337 */ 9338 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9339 if (ipmxp->ipmx_arpdev_stream) { 9340 /* 9341 * The operation is occuring on the arp-device 9342 * stream. 9343 */ 9344 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9345 q, mp, ip_sioctl_plink, &err, NULL); 9346 if (ill == NULL) { 9347 if (err == EINPROGRESS) { 9348 return; 9349 } else { 9350 err = EINVAL; 9351 goto done; 9352 } 9353 } 9354 9355 if (ipsq == NULL) { 9356 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9357 NEW_OP, B_TRUE); 9358 if (ipsq == NULL) { 9359 ill_refrele(ill); 9360 return; 9361 } 9362 entered_ipsq = B_TRUE; 9363 } 9364 ASSERT(IAM_WRITER_ILL(ill)); 9365 ill_refrele(ill); 9366 /* 9367 * To ensure consistency between IP and ARP, 9368 * the following LIFO scheme is used in 9369 * plink/punlink. (IP first, ARP last). 9370 * This is because the muxid's are stored 9371 * in the IP stream on the ill. 9372 * 9373 * I_{P}LINK: ifconfig plinks the IP stream before 9374 * plinking the ARP stream. On an arp-dev 9375 * stream, IP checks that it is not yet 9376 * plinked, and it also checks that the 9377 * corresponding IP stream is already plinked. 9378 * 9379 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9380 * before punlinking the IP stream. IP does 9381 * not allow punlink of the IP stream unless 9382 * the arp stream has been punlinked. 9383 * 9384 */ 9385 if ((islink && 9386 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9387 (!islink && 9388 ill->ill_arp_muxid != li->l_index)) { 9389 err = EINVAL; 9390 goto done; 9391 } 9392 if (islink) { 9393 ill->ill_arp_muxid = li->l_index; 9394 } else { 9395 ill->ill_arp_muxid = 0; 9396 } 9397 } else { 9398 /* 9399 * This must be the IP module stream with or 9400 * without arp. Walk the stream and locate the 9401 * IP module. An IP module instance is 9402 * identified by the module name IP, non-null 9403 * q_next, and it's wput not being ip_lwput. 9404 */ 9405 ipwq = li->l_qbot; 9406 while (ipwq != NULL) { 9407 qinfo = ipwq->q_qinfo; 9408 name = qinfo->qi_minfo->mi_idname; 9409 if (name != NULL && name[0] != NULL && 9410 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9411 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9412 (ipwq->q_next != NULL)) { 9413 break; 9414 } 9415 ipwq = ipwq->q_next; 9416 } 9417 if (ipwq != NULL) { 9418 ill = ipwq->q_ptr; 9419 ASSERT(ill != NULL); 9420 9421 if (ipsq == NULL) { 9422 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9423 ip_sioctl_plink, NEW_OP, B_TRUE); 9424 if (ipsq == NULL) 9425 return; 9426 entered_ipsq = B_TRUE; 9427 } 9428 ASSERT(IAM_WRITER_ILL(ill)); 9429 /* 9430 * Return error if the ip_mux_id is 9431 * non-zero and command is I_{P}LINK. 9432 * If command is I_{P}UNLINK, return 9433 * error if the arp-devstr is not 9434 * yet punlinked. 9435 */ 9436 if ((islink && ill->ill_ip_muxid != 0) || 9437 (!islink && ill->ill_arp_muxid != 0)) { 9438 err = EINVAL; 9439 goto done; 9440 } 9441 ill->ill_lmod_rq = NULL; 9442 ill->ill_lmod_cnt = 0; 9443 if (islink) { 9444 /* 9445 * Store the upper read queue of the module 9446 * immediately below IP, and count the total 9447 * number of lower modules. 9448 */ 9449 if ((dwq = ipwq->q_next) != NULL) { 9450 ill->ill_lmod_rq = RD(dwq); 9451 9452 while (dwq != NULL) { 9453 ill->ill_lmod_cnt++; 9454 dwq = dwq->q_next; 9455 } 9456 } 9457 ill->ill_ip_muxid = li->l_index; 9458 } else { 9459 ill->ill_ip_muxid = 0; 9460 } 9461 9462 /* 9463 * See comments above about resetting/re- 9464 * negotiating driver sub-capabilities. 9465 */ 9466 if (ill->ill_ipif_up_count > 0) { 9467 if (islink) 9468 ill_capability_probe(ill); 9469 else 9470 ill_capability_reset(ill); 9471 } 9472 } 9473 } 9474 done: 9475 iocp->ioc_count = 0; 9476 iocp->ioc_error = err; 9477 if (err == 0) 9478 mp->b_datap->db_type = M_IOCACK; 9479 else 9480 mp->b_datap->db_type = M_IOCNAK; 9481 qreply(q, mp); 9482 9483 /* Conn was refheld in ip_sioctl_copyin_setup */ 9484 if (CONN_Q(q)) 9485 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9486 if (entered_ipsq) 9487 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9488 } 9489 9490 /* 9491 * Search the ioctl command in the ioctl tables and return a pointer 9492 * to the ioctl command information. The ioctl command tables are 9493 * static and fully populated at compile time. 9494 */ 9495 ip_ioctl_cmd_t * 9496 ip_sioctl_lookup(int ioc_cmd) 9497 { 9498 int index; 9499 ip_ioctl_cmd_t *ipip; 9500 ip_ioctl_cmd_t *ipip_end; 9501 9502 if (ioc_cmd == IPI_DONTCARE) 9503 return (NULL); 9504 9505 /* 9506 * Do a 2 step search. First search the indexed table 9507 * based on the least significant byte of the ioctl cmd. 9508 * If we don't find a match, then search the misc table 9509 * serially. 9510 */ 9511 index = ioc_cmd & 0xFF; 9512 if (index < ip_ndx_ioctl_count) { 9513 ipip = &ip_ndx_ioctl_table[index]; 9514 if (ipip->ipi_cmd == ioc_cmd) { 9515 /* Found a match in the ndx table */ 9516 return (ipip); 9517 } 9518 } 9519 9520 /* Search the misc table */ 9521 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9522 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9523 if (ipip->ipi_cmd == ioc_cmd) 9524 /* Found a match in the misc table */ 9525 return (ipip); 9526 } 9527 9528 return (NULL); 9529 } 9530 9531 /* 9532 * Wrapper function for resuming deferred ioctl processing 9533 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9534 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9535 */ 9536 /* ARGSUSED */ 9537 void 9538 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9539 void *dummy_arg) 9540 { 9541 ip_sioctl_copyin_setup(q, mp); 9542 } 9543 9544 /* 9545 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9546 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9547 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9548 * We establish here the size of the block to be copied in. mi_copyin 9549 * arranges for this to happen, an processing continues in ip_wput with 9550 * an M_IOCDATA message. 9551 */ 9552 void 9553 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9554 { 9555 int copyin_size; 9556 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9557 ip_ioctl_cmd_t *ipip; 9558 cred_t *cr; 9559 9560 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9561 if (ipip == NULL) { 9562 /* 9563 * The ioctl is not one we understand or own. 9564 * Pass it along to be processed down stream, 9565 * if this is a module instance of IP, else nak 9566 * the ioctl. 9567 */ 9568 if (q->q_next == NULL) { 9569 goto nak; 9570 } else { 9571 putnext(q, mp); 9572 return; 9573 } 9574 } 9575 9576 /* 9577 * If this is deferred, then we will do all the checks when we 9578 * come back. 9579 */ 9580 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9581 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 9582 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9583 return; 9584 } 9585 9586 /* 9587 * Only allow a very small subset of IP ioctls on this stream if 9588 * IP is a module and not a driver. Allowing ioctls to be processed 9589 * in this case may cause assert failures or data corruption. 9590 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9591 * ioctls allowed on an IP module stream, after which this stream 9592 * normally becomes a multiplexor (at which time the stream head 9593 * will fail all ioctls). 9594 */ 9595 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9596 if (ipip->ipi_flags & IPI_PASS_DOWN) { 9597 /* 9598 * Pass common Streams ioctls which the IP 9599 * module does not own or consume along to 9600 * be processed down stream. 9601 */ 9602 putnext(q, mp); 9603 return; 9604 } else { 9605 goto nak; 9606 } 9607 } 9608 9609 /* Make sure we have ioctl data to process. */ 9610 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9611 goto nak; 9612 9613 /* 9614 * Prefer dblk credential over ioctl credential; some synthesized 9615 * ioctls have kcred set because there's no way to crhold() 9616 * a credential in some contexts. (ioc_cr is not crfree() by 9617 * the framework; the caller of ioctl needs to hold the reference 9618 * for the duration of the call). 9619 */ 9620 cr = DB_CREDDEF(mp, iocp->ioc_cr); 9621 9622 /* Make sure normal users don't send down privileged ioctls */ 9623 if ((ipip->ipi_flags & IPI_PRIV) && 9624 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 9625 /* We checked the privilege earlier but log it here */ 9626 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 9627 return; 9628 } 9629 9630 /* 9631 * The ioctl command tables can only encode fixed length 9632 * ioctl data. If the length is variable, the table will 9633 * encode the length as zero. Such special cases are handled 9634 * below in the switch. 9635 */ 9636 if (ipip->ipi_copyin_size != 0) { 9637 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9638 return; 9639 } 9640 9641 switch (iocp->ioc_cmd) { 9642 case O_SIOCGIFCONF: 9643 case SIOCGIFCONF: 9644 /* 9645 * This IOCTL is hilarious. See comments in 9646 * ip_sioctl_get_ifconf for the story. 9647 */ 9648 if (iocp->ioc_count == TRANSPARENT) 9649 copyin_size = SIZEOF_STRUCT(ifconf, 9650 iocp->ioc_flag); 9651 else 9652 copyin_size = iocp->ioc_count; 9653 mi_copyin(q, mp, NULL, copyin_size); 9654 return; 9655 9656 case O_SIOCGLIFCONF: 9657 case SIOCGLIFCONF: 9658 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9659 mi_copyin(q, mp, NULL, copyin_size); 9660 return; 9661 9662 case SIOCGLIFSRCOF: 9663 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9664 mi_copyin(q, mp, NULL, copyin_size); 9665 return; 9666 case SIOCGIP6ADDRPOLICY: 9667 ip_sioctl_ip6addrpolicy(q, mp); 9668 ip6_asp_table_refrele(); 9669 return; 9670 9671 case SIOCSIP6ADDRPOLICY: 9672 ip_sioctl_ip6addrpolicy(q, mp); 9673 return; 9674 9675 case SIOCGDSTINFO: 9676 ip_sioctl_dstinfo(q, mp); 9677 ip6_asp_table_refrele(); 9678 return; 9679 9680 case I_PLINK: 9681 case I_PUNLINK: 9682 case I_LINK: 9683 case I_UNLINK: 9684 /* 9685 * We treat non-persistent link similarly as the persistent 9686 * link case, in terms of plumbing/unplumbing, as well as 9687 * dynamic re-plumbing events indicator. See comments 9688 * in ip_sioctl_plink() for more. 9689 * 9690 * Request can be enqueued in the 'ipsq' while waiting 9691 * to become exclusive. So bump up the conn ref. 9692 */ 9693 if (CONN_Q(q)) 9694 CONN_INC_REF(Q_TO_CONN(q)); 9695 ip_sioctl_plink(NULL, q, mp, NULL); 9696 return; 9697 9698 case ND_GET: 9699 case ND_SET: 9700 /* 9701 * Use of the nd table requires holding the reader lock. 9702 * Modifying the nd table thru nd_load/nd_unload requires 9703 * the writer lock. 9704 */ 9705 rw_enter(&ip_g_nd_lock, RW_READER); 9706 if (nd_getset(q, ip_g_nd, mp)) { 9707 rw_exit(&ip_g_nd_lock); 9708 9709 if (iocp->ioc_error) 9710 iocp->ioc_count = 0; 9711 mp->b_datap->db_type = M_IOCACK; 9712 qreply(q, mp); 9713 return; 9714 } 9715 rw_exit(&ip_g_nd_lock); 9716 /* 9717 * We don't understand this subioctl of ND_GET / ND_SET. 9718 * Maybe intended for some driver / module below us 9719 */ 9720 if (q->q_next) { 9721 putnext(q, mp); 9722 } else { 9723 iocp->ioc_error = ENOENT; 9724 mp->b_datap->db_type = M_IOCNAK; 9725 iocp->ioc_count = 0; 9726 qreply(q, mp); 9727 } 9728 return; 9729 9730 case IP_IOCTL: 9731 ip_wput_ioctl(q, mp); 9732 return; 9733 default: 9734 cmn_err(CE_PANIC, "should not happen "); 9735 } 9736 nak: 9737 if (mp->b_cont != NULL) { 9738 freemsg(mp->b_cont); 9739 mp->b_cont = NULL; 9740 } 9741 iocp->ioc_error = EINVAL; 9742 mp->b_datap->db_type = M_IOCNAK; 9743 iocp->ioc_count = 0; 9744 qreply(q, mp); 9745 } 9746 9747 /* ip_wput hands off ARP IOCTL responses to us */ 9748 void 9749 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 9750 { 9751 struct arpreq *ar; 9752 struct xarpreq *xar; 9753 area_t *area; 9754 mblk_t *area_mp; 9755 struct iocblk *iocp; 9756 mblk_t *orig_ioc_mp, *tmp; 9757 struct iocblk *orig_iocp; 9758 ill_t *ill; 9759 conn_t *connp = NULL; 9760 uint_t ioc_id; 9761 mblk_t *pending_mp; 9762 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 9763 int *flagsp; 9764 char *storage = NULL; 9765 sin_t *sin; 9766 ipaddr_t addr; 9767 int err; 9768 9769 ill = q->q_ptr; 9770 ASSERT(ill != NULL); 9771 9772 /* 9773 * We should get back from ARP a packet chain that looks like: 9774 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9775 */ 9776 if (!(area_mp = mp->b_cont) || 9777 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 9778 !(orig_ioc_mp = area_mp->b_cont) || 9779 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 9780 freemsg(mp); 9781 return; 9782 } 9783 9784 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 9785 9786 tmp = (orig_ioc_mp->b_cont)->b_cont; 9787 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 9788 (orig_iocp->ioc_cmd == SIOCSXARP) || 9789 (orig_iocp->ioc_cmd == SIOCDXARP)) { 9790 x_arp_ioctl = B_TRUE; 9791 xar = (struct xarpreq *)tmp->b_rptr; 9792 sin = (sin_t *)&xar->xarp_pa; 9793 flagsp = &xar->xarp_flags; 9794 storage = xar->xarp_ha.sdl_data; 9795 if (xar->xarp_ha.sdl_nlen != 0) 9796 ifx_arp_ioctl = B_TRUE; 9797 } else { 9798 ar = (struct arpreq *)tmp->b_rptr; 9799 sin = (sin_t *)&ar->arp_pa; 9800 flagsp = &ar->arp_flags; 9801 storage = ar->arp_ha.sa_data; 9802 } 9803 9804 iocp = (struct iocblk *)mp->b_rptr; 9805 9806 /* 9807 * Pick out the originating queue based on the ioc_id. 9808 */ 9809 ioc_id = iocp->ioc_id; 9810 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 9811 if (pending_mp == NULL) { 9812 ASSERT(connp == NULL); 9813 inet_freemsg(mp); 9814 return; 9815 } 9816 ASSERT(connp != NULL); 9817 q = CONNP_TO_WQ(connp); 9818 9819 /* Uncouple the internally generated IOCTL from the original one */ 9820 area = (area_t *)area_mp->b_rptr; 9821 area_mp->b_cont = NULL; 9822 9823 /* 9824 * Restore the b_next and b_prev used by mi code. This is needed 9825 * to complete the ioctl using mi* functions. We stored them in 9826 * the pending mp prior to sending the request to ARP. 9827 */ 9828 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 9829 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 9830 inet_freemsg(pending_mp); 9831 9832 /* 9833 * We're done if there was an error or if this is not an SIOCG{X}ARP 9834 * Catch the case where there is an IRE_CACHE by no entry in the 9835 * arp table. 9836 */ 9837 addr = sin->sin_addr.s_addr; 9838 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 9839 ire_t *ire; 9840 dl_unitdata_req_t *dlup; 9841 mblk_t *llmp; 9842 int addr_len; 9843 ill_t *ipsqill = NULL; 9844 9845 if (ifx_arp_ioctl) { 9846 /* 9847 * There's no need to lookup the ill, since 9848 * we've already done that when we started 9849 * processing the ioctl and sent the message 9850 * to ARP on that ill. So use the ill that 9851 * is stored in q->q_ptr. 9852 */ 9853 ipsqill = ill; 9854 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9855 ipsqill->ill_ipif, ALL_ZONES, 9856 MATCH_IRE_TYPE | MATCH_IRE_ILL); 9857 } else { 9858 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9859 NULL, ALL_ZONES, MATCH_IRE_TYPE); 9860 if (ire != NULL) 9861 ipsqill = ire_to_ill(ire); 9862 } 9863 9864 if ((x_arp_ioctl) && (ipsqill != NULL)) 9865 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 9866 9867 if (ire != NULL) { 9868 *flagsp = ATF_INUSE; 9869 llmp = ire->ire_dlureq_mp; 9870 if (llmp != NULL && ipsqill != NULL) { 9871 uchar_t *macaddr; 9872 9873 addr_len = ipsqill->ill_phys_addr_length; 9874 if (x_arp_ioctl && ((addr_len + 9875 ipsqill->ill_name_length) > 9876 sizeof (xar->xarp_ha.sdl_data))) { 9877 ire_refrele(ire); 9878 freemsg(mp); 9879 ip_ioctl_finish(q, orig_ioc_mp, 9880 EINVAL, NO_COPYOUT, NULL, NULL); 9881 return; 9882 } 9883 *flagsp |= ATF_COM; 9884 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 9885 if (ipsqill->ill_sap_length < 0) 9886 macaddr = llmp->b_rptr + 9887 dlup->dl_dest_addr_offset; 9888 else 9889 macaddr = llmp->b_rptr + 9890 dlup->dl_dest_addr_offset + 9891 ipsqill->ill_sap_length; 9892 /* 9893 * For SIOCGARP, MAC address length 9894 * validation has already been done 9895 * before the ioctl was issued to ARP to 9896 * allow it to progress only on 6 byte 9897 * addressable (ethernet like) media. Thus 9898 * the mac address copying can not overwrite 9899 * the sa_data area below. 9900 */ 9901 bcopy(macaddr, storage, addr_len); 9902 } 9903 /* Ditch the internal IOCTL. */ 9904 freemsg(mp); 9905 ire_refrele(ire); 9906 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9907 return; 9908 } 9909 } 9910 9911 /* 9912 * Delete the coresponding IRE_CACHE if any. 9913 * Reset the error if there was one (in case there was no entry 9914 * in arp.) 9915 */ 9916 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 9917 ipif_t *ipintf = NULL; 9918 9919 if (ifx_arp_ioctl) { 9920 /* 9921 * There's no need to lookup the ill, since 9922 * we've already done that when we started 9923 * processing the ioctl and sent the message 9924 * to ARP on that ill. So use the ill that 9925 * is stored in q->q_ptr. 9926 */ 9927 ipintf = ill->ill_ipif; 9928 } 9929 if (ip_ire_clookup_and_delete(addr, ipintf)) { 9930 /* 9931 * The address in "addr" may be an entry for a 9932 * router. If that's true, then any off-net 9933 * IRE_CACHE entries that go through the router 9934 * with address "addr" must be clobbered. Use 9935 * ire_walk to achieve this goal. 9936 */ 9937 if (ifx_arp_ioctl) 9938 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 9939 ire_delete_cache_gw, (char *)&addr, ill); 9940 else 9941 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 9942 ALL_ZONES); 9943 iocp->ioc_error = 0; 9944 } 9945 } 9946 9947 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 9948 err = iocp->ioc_error; 9949 freemsg(mp); 9950 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 9951 return; 9952 } 9953 9954 /* 9955 * Completion of an SIOCG{X}ARP. Translate the information from 9956 * the area_t into the struct {x}arpreq. 9957 */ 9958 if (x_arp_ioctl) { 9959 storage += ill_xarp_info(&xar->xarp_ha, ill); 9960 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9961 sizeof (xar->xarp_ha.sdl_data)) { 9962 freemsg(mp); 9963 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 9964 NO_COPYOUT, NULL, NULL); 9965 return; 9966 } 9967 } 9968 *flagsp = ATF_INUSE; 9969 if (area->area_flags & ACE_F_PERMANENT) 9970 *flagsp |= ATF_PERM; 9971 if (area->area_flags & ACE_F_PUBLISH) 9972 *flagsp |= ATF_PUBL; 9973 if (area->area_hw_addr_length != 0) { 9974 *flagsp |= ATF_COM; 9975 /* 9976 * For SIOCGARP, MAC address length validation has 9977 * already been done before the ioctl was issued to ARP 9978 * to allow it to progress only on 6 byte addressable 9979 * (ethernet like) media. Thus the mac address copying 9980 * can not overwrite the sa_data area below. 9981 */ 9982 bcopy((char *)area + area->area_hw_addr_offset, 9983 storage, area->area_hw_addr_length); 9984 } 9985 9986 /* Ditch the internal IOCTL. */ 9987 freemsg(mp); 9988 /* Complete the original. */ 9989 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9990 } 9991 9992 /* 9993 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9994 * interface) create the next available logical interface for this 9995 * physical interface. 9996 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9997 * ipif with the specified name. 9998 * 9999 * If the address family is not AF_UNSPEC then set the address as well. 10000 * 10001 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10002 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10003 * 10004 * Executed as a writer on the ill or ill group. 10005 * So no lock is needed to traverse the ipif chain, or examine the 10006 * phyint flags. 10007 */ 10008 /* ARGSUSED */ 10009 int 10010 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10011 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10012 { 10013 mblk_t *mp1; 10014 struct lifreq *lifr; 10015 boolean_t isv6; 10016 boolean_t exists; 10017 char *name; 10018 char *endp; 10019 char *cp; 10020 int namelen; 10021 ipif_t *ipif; 10022 long id; 10023 ipsq_t *ipsq; 10024 ill_t *ill; 10025 sin_t *sin; 10026 int err = 0; 10027 boolean_t found_sep = B_FALSE; 10028 conn_t *connp; 10029 zoneid_t zoneid; 10030 int orig_ifindex = 0; 10031 10032 ip1dbg(("ip_sioctl_addif\n")); 10033 /* Existence of mp1 has been checked in ip_wput_nondata */ 10034 mp1 = mp->b_cont->b_cont; 10035 /* 10036 * Null terminate the string to protect against buffer 10037 * overrun. String was generated by user code and may not 10038 * be trusted. 10039 */ 10040 lifr = (struct lifreq *)mp1->b_rptr; 10041 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10042 name = lifr->lifr_name; 10043 ASSERT(CONN_Q(q)); 10044 connp = Q_TO_CONN(q); 10045 isv6 = connp->conn_af_isv6; 10046 zoneid = connp->conn_zoneid; 10047 namelen = mi_strlen(name); 10048 if (namelen == 0) 10049 return (EINVAL); 10050 10051 exists = B_FALSE; 10052 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10053 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10054 /* 10055 * Allow creating lo0 using SIOCLIFADDIF. 10056 * can't be any other writer thread. So can pass null below 10057 * for the last 4 args to ipif_lookup_name. 10058 */ 10059 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 10060 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 10061 /* Prevent any further action */ 10062 if (ipif == NULL) { 10063 return (ENOBUFS); 10064 } else if (!exists) { 10065 /* We created the ipif now and as writer */ 10066 ipif_refrele(ipif); 10067 return (0); 10068 } else { 10069 ill = ipif->ipif_ill; 10070 ill_refhold(ill); 10071 ipif_refrele(ipif); 10072 } 10073 } else { 10074 /* Look for a colon in the name. */ 10075 endp = &name[namelen]; 10076 for (cp = endp; --cp > name; ) { 10077 if (*cp == IPIF_SEPARATOR_CHAR) { 10078 found_sep = B_TRUE; 10079 /* 10080 * Reject any non-decimal aliases for plumbing 10081 * of logical interfaces. Aliases with leading 10082 * zeroes are also rejected as they introduce 10083 * ambiguity in the naming of the interfaces. 10084 * Comparing with "0" takes care of all such 10085 * cases. 10086 */ 10087 if ((strncmp("0", cp+1, 1)) == 0) 10088 return (EINVAL); 10089 10090 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10091 id <= 0 || *endp != '\0') { 10092 return (EINVAL); 10093 } 10094 *cp = '\0'; 10095 break; 10096 } 10097 } 10098 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10099 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10100 if (found_sep) 10101 *cp = IPIF_SEPARATOR_CHAR; 10102 if (ill == NULL) 10103 return (err); 10104 } 10105 10106 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10107 B_TRUE); 10108 10109 /* 10110 * Release the refhold due to the lookup, now that we are excl 10111 * or we are just returning 10112 */ 10113 ill_refrele(ill); 10114 10115 if (ipsq == NULL) 10116 return (EINPROGRESS); 10117 10118 /* 10119 * If the interface is failed, inactive or offlined, look for a working 10120 * interface in the ill group and create the ipif there. If we can't 10121 * find a good interface, create the ipif anyway so that in.mpathd can 10122 * move it to the first repaired interface. 10123 */ 10124 if ((ill->ill_phyint->phyint_flags & 10125 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10126 ill->ill_phyint->phyint_groupname_len != 0) { 10127 phyint_t *phyi; 10128 char *groupname = ill->ill_phyint->phyint_groupname; 10129 10130 /* 10131 * We're looking for a working interface, but it doesn't matter 10132 * if it's up or down; so instead of following the group lists, 10133 * we look at each physical interface and compare the groupname. 10134 * We're only interested in interfaces with IPv4 (resp. IPv6) 10135 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10136 * Otherwise we create the ipif on the failed interface. 10137 */ 10138 rw_enter(&ill_g_lock, RW_READER); 10139 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10140 for (; phyi != NULL; 10141 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10142 phyi, AVL_AFTER)) { 10143 if (phyi->phyint_groupname_len == 0) 10144 continue; 10145 ASSERT(phyi->phyint_groupname != NULL); 10146 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10147 !(phyi->phyint_flags & 10148 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10149 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10150 (phyi->phyint_illv4 != NULL))) { 10151 break; 10152 } 10153 } 10154 rw_exit(&ill_g_lock); 10155 10156 if (phyi != NULL) { 10157 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10158 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10159 phyi->phyint_illv4); 10160 } 10161 } 10162 10163 /* 10164 * We are now exclusive on the ipsq, so an ill move will be serialized 10165 * before or after us. 10166 */ 10167 ASSERT(IAM_WRITER_ILL(ill)); 10168 ASSERT(ill->ill_move_in_progress == B_FALSE); 10169 10170 if (found_sep && orig_ifindex == 0) { 10171 /* Now see if there is an IPIF with this unit number. */ 10172 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 10173 if (ipif->ipif_id == id) { 10174 err = EEXIST; 10175 goto done; 10176 } 10177 } 10178 } 10179 10180 /* 10181 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10182 * of lo0. We never come here when we plumb lo0:0. It 10183 * happens in ipif_lookup_on_name. 10184 * The specified unit number is ignored when we create the ipif on a 10185 * different interface. However, we save it in ipif_orig_ipifid below so 10186 * that the ipif fails back to the right position. 10187 */ 10188 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10189 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10190 err = ENOBUFS; 10191 goto done; 10192 } 10193 10194 /* Return created name with ioctl */ 10195 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10196 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10197 ip1dbg(("created %s\n", lifr->lifr_name)); 10198 10199 /* Set address */ 10200 sin = (sin_t *)&lifr->lifr_addr; 10201 if (sin->sin_family != AF_UNSPEC) { 10202 err = ip_sioctl_addr(ipif, sin, q, mp, 10203 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10204 } 10205 10206 /* Set ifindex and unit number for failback */ 10207 if (err == 0 && orig_ifindex != 0) { 10208 ipif->ipif_orig_ifindex = orig_ifindex; 10209 if (found_sep) { 10210 ipif->ipif_orig_ipifid = id; 10211 } 10212 } 10213 10214 done: 10215 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10216 return (err); 10217 } 10218 10219 /* 10220 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10221 * interface) delete it based on the IP address (on this physical interface). 10222 * Otherwise delete it based on the ipif_id. 10223 * Also, special handling to allow a removeif of lo0. 10224 */ 10225 /* ARGSUSED */ 10226 int 10227 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10228 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10229 { 10230 conn_t *connp; 10231 ill_t *ill = ipif->ipif_ill; 10232 boolean_t success; 10233 10234 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10235 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10236 ASSERT(IAM_WRITER_IPIF(ipif)); 10237 10238 connp = Q_TO_CONN(q); 10239 /* 10240 * Special case for unplumbing lo0 (the loopback physical interface). 10241 * If unplumbing lo0, the incoming address structure has been 10242 * initialized to all zeros. When unplumbing lo0, all its logical 10243 * interfaces must be removed too. 10244 * 10245 * Note that this interface may be called to remove a specific 10246 * loopback logical interface (eg, lo0:1). But in that case 10247 * ipif->ipif_id != 0 so that the code path for that case is the 10248 * same as any other interface (meaning it skips the code directly 10249 * below). 10250 */ 10251 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10252 if (sin->sin_family == AF_UNSPEC && 10253 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10254 /* 10255 * Mark it condemned. No new ref. will be made to ill. 10256 */ 10257 mutex_enter(&ill->ill_lock); 10258 ill->ill_state_flags |= ILL_CONDEMNED; 10259 for (ipif = ill->ill_ipif; ipif != NULL; 10260 ipif = ipif->ipif_next) { 10261 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10262 } 10263 mutex_exit(&ill->ill_lock); 10264 10265 ipif = ill->ill_ipif; 10266 /* unplumb the loopback interface */ 10267 ill_delete(ill); 10268 mutex_enter(&connp->conn_lock); 10269 mutex_enter(&ill->ill_lock); 10270 ASSERT(ill->ill_group == NULL); 10271 10272 /* Are any references to this ill active */ 10273 if (ill_is_quiescent(ill)) { 10274 mutex_exit(&ill->ill_lock); 10275 mutex_exit(&connp->conn_lock); 10276 ill_delete_tail(ill); 10277 mi_free(ill); 10278 return (0); 10279 } 10280 success = ipsq_pending_mp_add(connp, ipif, 10281 CONNP_TO_WQ(connp), mp, ILL_FREE); 10282 mutex_exit(&connp->conn_lock); 10283 mutex_exit(&ill->ill_lock); 10284 if (success) 10285 return (EINPROGRESS); 10286 else 10287 return (EINTR); 10288 } 10289 } 10290 10291 /* 10292 * We are exclusive on the ipsq, so an ill move will be serialized 10293 * before or after us. 10294 */ 10295 ASSERT(ill->ill_move_in_progress == B_FALSE); 10296 10297 if (ipif->ipif_id == 0) { 10298 /* Find based on address */ 10299 if (ipif->ipif_isv6) { 10300 sin6_t *sin6; 10301 10302 if (sin->sin_family != AF_INET6) 10303 return (EAFNOSUPPORT); 10304 10305 sin6 = (sin6_t *)sin; 10306 /* We are a writer, so we should be able to lookup */ 10307 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10308 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10309 if (ipif == NULL) { 10310 /* 10311 * Maybe the address in on another interface in 10312 * the same IPMP group? We check this below. 10313 */ 10314 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10315 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10316 } 10317 } else { 10318 ipaddr_t addr; 10319 10320 if (sin->sin_family != AF_INET) 10321 return (EAFNOSUPPORT); 10322 10323 addr = sin->sin_addr.s_addr; 10324 /* We are a writer, so we should be able to lookup */ 10325 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10326 NULL, NULL, NULL); 10327 if (ipif == NULL) { 10328 /* 10329 * Maybe the address in on another interface in 10330 * the same IPMP group? We check this below. 10331 */ 10332 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10333 NULL, NULL, NULL, NULL); 10334 } 10335 } 10336 if (ipif == NULL) { 10337 return (EADDRNOTAVAIL); 10338 } 10339 /* 10340 * When the address to be removed is hosted on a different 10341 * interface, we check if the interface is in the same IPMP 10342 * group as the specified one; if so we proceed with the 10343 * removal. 10344 * ill->ill_group is NULL when the ill is down, so we have to 10345 * compare the group names instead. 10346 */ 10347 if (ipif->ipif_ill != ill && 10348 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10349 ill->ill_phyint->phyint_groupname_len == 0 || 10350 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10351 ill->ill_phyint->phyint_groupname) != 0)) { 10352 ipif_refrele(ipif); 10353 return (EADDRNOTAVAIL); 10354 } 10355 10356 /* This is a writer */ 10357 ipif_refrele(ipif); 10358 } 10359 10360 /* 10361 * Can not delete instance zero since it is tied to the ill. 10362 */ 10363 if (ipif->ipif_id == 0) 10364 return (EBUSY); 10365 10366 mutex_enter(&ill->ill_lock); 10367 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10368 mutex_exit(&ill->ill_lock); 10369 10370 ipif_free(ipif); 10371 10372 mutex_enter(&connp->conn_lock); 10373 mutex_enter(&ill->ill_lock); 10374 10375 /* Are any references to this ipif active */ 10376 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10377 mutex_exit(&ill->ill_lock); 10378 mutex_exit(&connp->conn_lock); 10379 ipif_down_tail(ipif); 10380 ipif_free_tail(ipif); 10381 return (0); 10382 } 10383 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10384 IPIF_FREE); 10385 mutex_exit(&ill->ill_lock); 10386 mutex_exit(&connp->conn_lock); 10387 if (success) 10388 return (EINPROGRESS); 10389 else 10390 return (EINTR); 10391 } 10392 10393 /* 10394 * Restart the removeif ioctl. The refcnt has gone down to 0. 10395 * The ipif is already condemned. So can't find it thru lookups. 10396 */ 10397 /* ARGSUSED */ 10398 int 10399 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10400 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10401 { 10402 ill_t *ill; 10403 10404 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10405 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10406 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10407 ill = ipif->ipif_ill; 10408 ASSERT(IAM_WRITER_ILL(ill)); 10409 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 10410 (ill->ill_state_flags & IPIF_CONDEMNED)); 10411 ill_delete_tail(ill); 10412 mi_free(ill); 10413 return (0); 10414 } 10415 10416 ill = ipif->ipif_ill; 10417 ASSERT(IAM_WRITER_IPIF(ipif)); 10418 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10419 10420 ipif_down_tail(ipif); 10421 ipif_free_tail(ipif); 10422 10423 ILL_UNMARK_CHANGING(ill); 10424 return (0); 10425 } 10426 10427 /* 10428 * Set the local interface address. 10429 * Allow an address of all zero when the interface is down. 10430 */ 10431 /* ARGSUSED */ 10432 int 10433 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10434 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10435 { 10436 int err = 0; 10437 in6_addr_t v6addr; 10438 boolean_t need_up = B_FALSE; 10439 10440 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10441 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10442 10443 ASSERT(IAM_WRITER_IPIF(ipif)); 10444 10445 if (ipif->ipif_isv6) { 10446 sin6_t *sin6; 10447 ill_t *ill; 10448 phyint_t *phyi; 10449 10450 if (sin->sin_family != AF_INET6) 10451 return (EAFNOSUPPORT); 10452 10453 sin6 = (sin6_t *)sin; 10454 v6addr = sin6->sin6_addr; 10455 ill = ipif->ipif_ill; 10456 phyi = ill->ill_phyint; 10457 10458 /* 10459 * Enforce that true multicast interfaces have a link-local 10460 * address for logical unit 0. 10461 */ 10462 if (ipif->ipif_id == 0 && 10463 (ill->ill_flags & ILLF_MULTICAST) && 10464 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10465 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10466 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10467 return (EADDRNOTAVAIL); 10468 } 10469 10470 /* 10471 * up interfaces shouldn't have the unspecified address 10472 * unless they also have the IPIF_NOLOCAL flags set and 10473 * have a subnet assigned. 10474 */ 10475 if ((ipif->ipif_flags & IPIF_UP) && 10476 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10477 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10478 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10479 return (EADDRNOTAVAIL); 10480 } 10481 10482 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10483 return (EADDRNOTAVAIL); 10484 } else { 10485 ipaddr_t addr; 10486 10487 if (sin->sin_family != AF_INET) 10488 return (EAFNOSUPPORT); 10489 10490 addr = sin->sin_addr.s_addr; 10491 10492 /* Allow 0 as the local address. */ 10493 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10494 return (EADDRNOTAVAIL); 10495 10496 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10497 } 10498 10499 10500 /* 10501 * Even if there is no change we redo things just to rerun 10502 * ipif_set_default. 10503 */ 10504 if (ipif->ipif_flags & IPIF_UP) { 10505 /* 10506 * Setting a new local address, make sure 10507 * we have net and subnet bcast ire's for 10508 * the old address if we need them. 10509 */ 10510 if (!ipif->ipif_isv6) 10511 ipif_check_bcast_ires(ipif); 10512 /* 10513 * If the interface is already marked up, 10514 * we call ipif_down which will take care 10515 * of ditching any IREs that have been set 10516 * up based on the old interface address. 10517 */ 10518 err = ipif_logical_down(ipif, q, mp); 10519 if (err == EINPROGRESS) 10520 return (err); 10521 ipif_down_tail(ipif); 10522 need_up = 1; 10523 } 10524 10525 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10526 return (err); 10527 } 10528 10529 int 10530 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10531 boolean_t need_up) 10532 { 10533 in6_addr_t v6addr; 10534 ipaddr_t addr; 10535 sin6_t *sin6; 10536 int err = 0; 10537 10538 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10539 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10540 ASSERT(IAM_WRITER_IPIF(ipif)); 10541 if (ipif->ipif_isv6) { 10542 sin6 = (sin6_t *)sin; 10543 v6addr = sin6->sin6_addr; 10544 } else { 10545 addr = sin->sin_addr.s_addr; 10546 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10547 } 10548 mutex_enter(&ipif->ipif_ill->ill_lock); 10549 ipif->ipif_v6lcl_addr = v6addr; 10550 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 10551 ipif->ipif_v6src_addr = ipv6_all_zeros; 10552 } else { 10553 ipif->ipif_v6src_addr = v6addr; 10554 } 10555 10556 if ((ipif->ipif_isv6) && IN6_IS_ADDR_6TO4(&v6addr) && 10557 (!ipif->ipif_ill->ill_is_6to4tun)) { 10558 queue_t *wqp = ipif->ipif_ill->ill_wq; 10559 10560 /* 10561 * The local address of this interface is a 6to4 address, 10562 * check if this interface is in fact a 6to4 tunnel or just 10563 * an interface configured with a 6to4 address. We are only 10564 * interested in the former. 10565 */ 10566 if (wqp != NULL) { 10567 while ((wqp->q_next != NULL) && 10568 (wqp->q_next->q_qinfo != NULL) && 10569 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 10570 10571 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 10572 == TUN6TO4_MODID) { 10573 /* set for use in IP */ 10574 ipif->ipif_ill->ill_is_6to4tun = 1; 10575 break; 10576 } 10577 wqp = wqp->q_next; 10578 } 10579 } 10580 } 10581 10582 ipif_set_default(ipif); 10583 mutex_exit(&ipif->ipif_ill->ill_lock); 10584 10585 if (need_up) { 10586 /* 10587 * Now bring the interface back up. If this 10588 * is the only IPIF for the ILL, ipif_up 10589 * will have to re-bind to the device, so 10590 * we may get back EINPROGRESS, in which 10591 * case, this IOCTL will get completed in 10592 * ip_rput_dlpi when we see the DL_BIND_ACK. 10593 */ 10594 err = ipif_up(ipif, q, mp); 10595 } else { 10596 /* 10597 * Update the IPIF list in SCTP, ipif_up_done() will do it 10598 * if need_up is true. 10599 */ 10600 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10601 } 10602 10603 return (err); 10604 } 10605 10606 10607 /* 10608 * Restart entry point to restart the address set operation after the 10609 * refcounts have dropped to zero. 10610 */ 10611 /* ARGSUSED */ 10612 int 10613 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10614 ip_ioctl_cmd_t *ipip, void *ifreq) 10615 { 10616 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 10617 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10618 ASSERT(IAM_WRITER_IPIF(ipif)); 10619 ipif_down_tail(ipif); 10620 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 10621 } 10622 10623 /* ARGSUSED */ 10624 int 10625 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10626 ip_ioctl_cmd_t *ipip, void *if_req) 10627 { 10628 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10629 struct lifreq *lifr = (struct lifreq *)if_req; 10630 10631 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 10632 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10633 /* 10634 * The net mask and address can't change since we have a 10635 * reference to the ipif. So no lock is necessary. 10636 */ 10637 if (ipif->ipif_isv6) { 10638 *sin6 = sin6_null; 10639 sin6->sin6_family = AF_INET6; 10640 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 10641 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10642 lifr->lifr_addrlen = 10643 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10644 } else { 10645 *sin = sin_null; 10646 sin->sin_family = AF_INET; 10647 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 10648 if (ipip->ipi_cmd_type == LIF_CMD) { 10649 lifr->lifr_addrlen = 10650 ip_mask_to_plen(ipif->ipif_net_mask); 10651 } 10652 } 10653 return (0); 10654 } 10655 10656 /* 10657 * Set the destination address for a pt-pt interface. 10658 */ 10659 /* ARGSUSED */ 10660 int 10661 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10662 ip_ioctl_cmd_t *ipip, void *if_req) 10663 { 10664 int err = 0; 10665 in6_addr_t v6addr; 10666 boolean_t need_up = B_FALSE; 10667 10668 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10669 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10670 ASSERT(IAM_WRITER_IPIF(ipif)); 10671 10672 if (ipif->ipif_isv6) { 10673 sin6_t *sin6; 10674 10675 if (sin->sin_family != AF_INET6) 10676 return (EAFNOSUPPORT); 10677 10678 sin6 = (sin6_t *)sin; 10679 v6addr = sin6->sin6_addr; 10680 10681 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10682 return (EADDRNOTAVAIL); 10683 } else { 10684 ipaddr_t addr; 10685 10686 if (sin->sin_family != AF_INET) 10687 return (EAFNOSUPPORT); 10688 10689 addr = sin->sin_addr.s_addr; 10690 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10691 return (EADDRNOTAVAIL); 10692 10693 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10694 } 10695 10696 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10697 return (0); /* No change */ 10698 10699 if (ipif->ipif_flags & IPIF_UP) { 10700 /* 10701 * If the interface is already marked up, 10702 * we call ipif_down which will take care 10703 * of ditching any IREs that have been set 10704 * up based on the old pp dst address. 10705 */ 10706 err = ipif_logical_down(ipif, q, mp); 10707 if (err == EINPROGRESS) 10708 return (err); 10709 ipif_down_tail(ipif); 10710 need_up = B_TRUE; 10711 } 10712 /* 10713 * could return EINPROGRESS. If so ioctl will complete in 10714 * ip_rput_dlpi_writer 10715 */ 10716 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10717 return (err); 10718 } 10719 10720 static int 10721 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10722 boolean_t need_up) 10723 { 10724 in6_addr_t v6addr; 10725 ill_t *ill = ipif->ipif_ill; 10726 int err = 0; 10727 10728 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", 10729 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10730 if (ipif->ipif_isv6) { 10731 sin6_t *sin6; 10732 10733 sin6 = (sin6_t *)sin; 10734 v6addr = sin6->sin6_addr; 10735 } else { 10736 ipaddr_t addr; 10737 10738 addr = sin->sin_addr.s_addr; 10739 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10740 } 10741 mutex_enter(&ill->ill_lock); 10742 /* Set point to point destination address. */ 10743 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10744 /* 10745 * Allow this as a means of creating logical 10746 * pt-pt interfaces on top of e.g. an Ethernet. 10747 * XXX Undocumented HACK for testing. 10748 * pt-pt interfaces are created with NUD disabled. 10749 */ 10750 ipif->ipif_flags |= IPIF_POINTOPOINT; 10751 ipif->ipif_flags &= ~IPIF_BROADCAST; 10752 if (ipif->ipif_isv6) 10753 ipif->ipif_ill->ill_flags |= ILLF_NONUD; 10754 } 10755 10756 /* Set the new address. */ 10757 ipif->ipif_v6pp_dst_addr = v6addr; 10758 /* Make sure subnet tracks pp_dst */ 10759 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10760 mutex_exit(&ill->ill_lock); 10761 10762 if (need_up) { 10763 /* 10764 * Now bring the interface back up. If this 10765 * is the only IPIF for the ILL, ipif_up 10766 * will have to re-bind to the device, so 10767 * we may get back EINPROGRESS, in which 10768 * case, this IOCTL will get completed in 10769 * ip_rput_dlpi when we see the DL_BIND_ACK. 10770 */ 10771 err = ipif_up(ipif, q, mp); 10772 } 10773 return (err); 10774 } 10775 10776 /* 10777 * Restart entry point to restart the dstaddress set operation after the 10778 * refcounts have dropped to zero. 10779 */ 10780 /* ARGSUSED */ 10781 int 10782 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10783 ip_ioctl_cmd_t *ipip, void *ifreq) 10784 { 10785 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10786 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10787 ipif_down_tail(ipif); 10788 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10789 } 10790 10791 /* ARGSUSED */ 10792 int 10793 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10794 ip_ioctl_cmd_t *ipip, void *if_req) 10795 { 10796 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10797 10798 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10799 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10800 /* 10801 * Get point to point destination address. The addresses can't 10802 * change since we hold a reference to the ipif. 10803 */ 10804 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10805 return (EADDRNOTAVAIL); 10806 10807 if (ipif->ipif_isv6) { 10808 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10809 *sin6 = sin6_null; 10810 sin6->sin6_family = AF_INET6; 10811 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10812 } else { 10813 *sin = sin_null; 10814 sin->sin_family = AF_INET; 10815 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10816 } 10817 return (0); 10818 } 10819 10820 /* 10821 * part of ipmp, make this func return the active/inactive state and 10822 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 10823 */ 10824 /* 10825 * This function either sets or clears the IFF_INACTIVE flag. 10826 * 10827 * As long as there are some addresses or multicast memberships on the 10828 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 10829 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 10830 * will be used for outbound packets. 10831 * 10832 * Caller needs to verify the validity of setting IFF_INACTIVE. 10833 */ 10834 static void 10835 phyint_inactive(phyint_t *phyi) 10836 { 10837 ill_t *ill_v4; 10838 ill_t *ill_v6; 10839 ipif_t *ipif; 10840 ilm_t *ilm; 10841 10842 ill_v4 = phyi->phyint_illv4; 10843 ill_v6 = phyi->phyint_illv6; 10844 10845 /* 10846 * No need for a lock while traversing the list since iam 10847 * a writer 10848 */ 10849 if (ill_v4 != NULL) { 10850 ASSERT(IAM_WRITER_ILL(ill_v4)); 10851 for (ipif = ill_v4->ill_ipif; ipif != NULL; 10852 ipif = ipif->ipif_next) { 10853 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10854 mutex_enter(&phyi->phyint_lock); 10855 phyi->phyint_flags &= ~PHYI_INACTIVE; 10856 mutex_exit(&phyi->phyint_lock); 10857 return; 10858 } 10859 } 10860 for (ilm = ill_v4->ill_ilm; ilm != NULL; 10861 ilm = ilm->ilm_next) { 10862 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10863 mutex_enter(&phyi->phyint_lock); 10864 phyi->phyint_flags &= ~PHYI_INACTIVE; 10865 mutex_exit(&phyi->phyint_lock); 10866 return; 10867 } 10868 } 10869 } 10870 if (ill_v6 != NULL) { 10871 ill_v6 = phyi->phyint_illv6; 10872 for (ipif = ill_v6->ill_ipif; ipif != NULL; 10873 ipif = ipif->ipif_next) { 10874 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10875 mutex_enter(&phyi->phyint_lock); 10876 phyi->phyint_flags &= ~PHYI_INACTIVE; 10877 mutex_exit(&phyi->phyint_lock); 10878 return; 10879 } 10880 } 10881 for (ilm = ill_v6->ill_ilm; ilm != NULL; 10882 ilm = ilm->ilm_next) { 10883 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10884 mutex_enter(&phyi->phyint_lock); 10885 phyi->phyint_flags &= ~PHYI_INACTIVE; 10886 mutex_exit(&phyi->phyint_lock); 10887 return; 10888 } 10889 } 10890 } 10891 mutex_enter(&phyi->phyint_lock); 10892 phyi->phyint_flags |= PHYI_INACTIVE; 10893 mutex_exit(&phyi->phyint_lock); 10894 } 10895 10896 /* 10897 * This function is called only when the phyint flags change. Currently 10898 * called from ip_sioctl_flags. We re-do the broadcast nomination so 10899 * that we can select a good ill. 10900 */ 10901 static void 10902 ip_redo_nomination(phyint_t *phyi) 10903 { 10904 ill_t *ill_v4; 10905 10906 ill_v4 = phyi->phyint_illv4; 10907 10908 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 10909 ASSERT(IAM_WRITER_ILL(ill_v4)); 10910 if (ill_v4->ill_group->illgrp_ill_count > 1) 10911 ill_nominate_bcast_rcv(ill_v4->ill_group); 10912 } 10913 } 10914 10915 /* 10916 * Heuristic to check if ill is INACTIVE. 10917 * Checks if ill has an ipif with an usable ip address. 10918 * 10919 * Return values: 10920 * B_TRUE - ill is INACTIVE; has no usable ipif 10921 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 10922 */ 10923 static boolean_t 10924 ill_is_inactive(ill_t *ill) 10925 { 10926 ipif_t *ipif; 10927 10928 /* Check whether it is in an IPMP group */ 10929 if (ill->ill_phyint->phyint_groupname == NULL) 10930 return (B_FALSE); 10931 10932 if (ill->ill_ipif_up_count == 0) 10933 return (B_TRUE); 10934 10935 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 10936 uint64_t flags = ipif->ipif_flags; 10937 10938 /* 10939 * This ipif is usable if it is IPIF_UP and not a 10940 * dedicated test address. A dedicated test address 10941 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 10942 * (note in particular that V6 test addresses are 10943 * link-local data addresses and thus are marked 10944 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 10945 */ 10946 if ((flags & IPIF_UP) && 10947 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 10948 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 10949 return (B_FALSE); 10950 } 10951 return (B_TRUE); 10952 } 10953 10954 /* 10955 * Set interface flags. 10956 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 10957 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 10958 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 10959 * 10960 * NOTE : We really don't enforce that ipif_id zero should be used 10961 * for setting any flags other than IFF_LOGINT_FLAGS. This 10962 * is because applications generally does SICGLIFFLAGS and 10963 * ORs in the new flags (that affects the logical) and does a 10964 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10965 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10966 * flags that will be turned on is correct with respect to 10967 * ipif_id 0. For backward compatibility reasons, it is not done. 10968 */ 10969 /* ARGSUSED */ 10970 int 10971 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10972 ip_ioctl_cmd_t *ipip, void *if_req) 10973 { 10974 uint64_t turn_on; 10975 uint64_t turn_off; 10976 int err; 10977 boolean_t need_up = B_FALSE; 10978 phyint_t *phyi; 10979 ill_t *ill; 10980 uint64_t intf_flags; 10981 boolean_t phyint_flags_modified = B_FALSE; 10982 uint64_t flags; 10983 struct ifreq *ifr; 10984 struct lifreq *lifr; 10985 boolean_t set_linklocal = B_FALSE; 10986 boolean_t zero_source = B_FALSE; 10987 10988 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10989 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10990 10991 ASSERT(IAM_WRITER_IPIF(ipif)); 10992 10993 ill = ipif->ipif_ill; 10994 phyi = ill->ill_phyint; 10995 10996 if (ipip->ipi_cmd_type == IF_CMD) { 10997 ifr = (struct ifreq *)if_req; 10998 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10999 } else { 11000 lifr = (struct lifreq *)if_req; 11001 flags = lifr->lifr_flags; 11002 } 11003 11004 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11005 11006 /* 11007 * Has the flags been set correctly till now ? 11008 */ 11009 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11010 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11011 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11012 /* 11013 * Compare the new flags to the old, and partition 11014 * into those coming on and those going off. 11015 * For the 16 bit command keep the bits above bit 16 unchanged. 11016 */ 11017 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11018 flags |= intf_flags & ~0xFFFF; 11019 11020 /* 11021 * First check which bits will change and then which will 11022 * go on and off 11023 */ 11024 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11025 if (!turn_on) 11026 return (0); /* No change */ 11027 11028 turn_off = intf_flags & turn_on; 11029 turn_on ^= turn_off; 11030 err = 0; 11031 11032 /* 11033 * Don't allow any bits belonging to the logical interface 11034 * to be set or cleared on the replacement ipif that was 11035 * created temporarily during a MOVE. 11036 */ 11037 if (ipif->ipif_replace_zero && 11038 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11039 return (EINVAL); 11040 } 11041 11042 /* 11043 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11044 * IPv6 interfaces. 11045 */ 11046 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11047 return (EINVAL); 11048 11049 /* 11050 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11051 * interfaces. It makes no sense in that context. 11052 */ 11053 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11054 return (EINVAL); 11055 11056 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11057 zero_source = B_TRUE; 11058 11059 /* 11060 * For IPv6 ipif_id 0, don't allow the interface to be up without 11061 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11062 * If the link local address isn't set, and can be set, it will get 11063 * set later on in this function. 11064 */ 11065 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11066 (flags & IFF_UP) && !zero_source && 11067 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11068 if (ipif_cant_setlinklocal(ipif)) 11069 return (EINVAL); 11070 set_linklocal = B_TRUE; 11071 } 11072 11073 /* 11074 * ILL cannot be part of a usesrc group and and IPMP group at the 11075 * same time. No need to grab ill_g_usesrc_lock here, see 11076 * synchronization notes in ip.c 11077 */ 11078 if (turn_on & PHYI_STANDBY && 11079 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11080 return (EINVAL); 11081 } 11082 11083 /* 11084 * If we modify physical interface flags, we'll potentially need to 11085 * send up two routing socket messages for the changes (one for the 11086 * IPv4 ill, and another for the IPv6 ill). Note that here. 11087 */ 11088 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11089 phyint_flags_modified = B_TRUE; 11090 11091 /* 11092 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11093 * we need to flush the IRE_CACHES belonging to this ill. 11094 * We handle this case here without doing the DOWN/UP dance 11095 * like it is done for other flags. If some other flags are 11096 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11097 * below will handle it by bringing it down and then 11098 * bringing it UP. 11099 */ 11100 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11101 ill_t *ill_v4, *ill_v6; 11102 11103 ill_v4 = phyi->phyint_illv4; 11104 ill_v6 = phyi->phyint_illv6; 11105 11106 /* 11107 * First set the INACTIVE flag if needed. Then delete the ires. 11108 * ire_add will atomically prevent creating new IRE_CACHEs 11109 * unless hidden flag is set. 11110 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11111 */ 11112 if ((turn_on & PHYI_FAILED) && 11113 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11114 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11115 phyi->phyint_flags &= ~PHYI_INACTIVE; 11116 } 11117 if ((turn_off & PHYI_FAILED) && 11118 ((intf_flags & PHYI_STANDBY) || 11119 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11120 phyint_inactive(phyi); 11121 } 11122 11123 if (turn_on & PHYI_STANDBY) { 11124 /* 11125 * We implicitly set INACTIVE only when STANDBY is set. 11126 * INACTIVE is also set on non-STANDBY phyint when user 11127 * disables FAILBACK using configuration file. 11128 * Do not allow STANDBY to be set on such INACTIVE 11129 * phyint 11130 */ 11131 if (phyi->phyint_flags & PHYI_INACTIVE) 11132 return (EINVAL); 11133 if (!(phyi->phyint_flags & PHYI_FAILED)) 11134 phyint_inactive(phyi); 11135 } 11136 if (turn_off & PHYI_STANDBY) { 11137 if (ipmp_enable_failback) { 11138 /* 11139 * Reset PHYI_INACTIVE. 11140 */ 11141 phyi->phyint_flags &= ~PHYI_INACTIVE; 11142 } else if (ill_is_inactive(ill) && 11143 !(phyi->phyint_flags & PHYI_FAILED)) { 11144 /* 11145 * Need to set INACTIVE, when user sets 11146 * STANDBY on a non-STANDBY phyint and 11147 * later resets STANDBY 11148 */ 11149 phyint_inactive(phyi); 11150 } 11151 } 11152 /* 11153 * We should always send up a message so that the 11154 * daemons come to know of it. Note that the zeroth 11155 * interface can be down and the check below for IPIF_UP 11156 * will not make sense as we are actually setting 11157 * a phyint flag here. We assume that the ipif used 11158 * is always the zeroth ipif. (ip_rts_ifmsg does not 11159 * send up any message for non-zero ipifs). 11160 */ 11161 phyint_flags_modified = B_TRUE; 11162 11163 if (ill_v4 != NULL) { 11164 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11165 IRE_CACHE, ill_stq_cache_delete, 11166 (char *)ill_v4, ill_v4); 11167 illgrp_reset_schednext(ill_v4); 11168 } 11169 if (ill_v6 != NULL) { 11170 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11171 IRE_CACHE, ill_stq_cache_delete, 11172 (char *)ill_v6, ill_v6); 11173 illgrp_reset_schednext(ill_v6); 11174 } 11175 } 11176 11177 /* 11178 * If ILLF_ROUTER changes, we need to change the ip forwarding 11179 * status of the interface and, if the interface is part of an IPMP 11180 * group, all other interfaces that are part of the same IPMP 11181 * group. 11182 */ 11183 if ((turn_on | turn_off) & ILLF_ROUTER) { 11184 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11185 (caddr_t)ill); 11186 } 11187 11188 /* 11189 * If the interface is not UP and we are not going to 11190 * bring it UP, record the flags and return. When the 11191 * interface comes UP later, the right actions will be 11192 * taken. 11193 */ 11194 if (!(ipif->ipif_flags & IPIF_UP) && 11195 !(turn_on & IPIF_UP)) { 11196 /* Record new flags in their respective places. */ 11197 mutex_enter(&ill->ill_lock); 11198 mutex_enter(&ill->ill_phyint->phyint_lock); 11199 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11200 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11201 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11202 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11203 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11204 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11205 mutex_exit(&ill->ill_lock); 11206 mutex_exit(&ill->ill_phyint->phyint_lock); 11207 11208 /* 11209 * We do the broadcast and nomination here rather 11210 * than waiting for a FAILOVER/FAILBACK to happen. In 11211 * the case of FAILBACK from INACTIVE standby to the 11212 * interface that has been repaired, PHYI_FAILED has not 11213 * been cleared yet. If there are only two interfaces in 11214 * that group, all we have is a FAILED and INACTIVE 11215 * interface. If we do the nomination soon after a failback, 11216 * the broadcast nomination code would select the 11217 * INACTIVE interface for receiving broadcasts as FAILED is 11218 * not yet cleared. As we don't want STANDBY/INACTIVE to 11219 * receive broadcast packets, we need to redo nomination 11220 * when the FAILED is cleared here. Thus, in general we 11221 * always do the nomination here for FAILED, STANDBY 11222 * and OFFLINE. 11223 */ 11224 if (((turn_on | turn_off) & 11225 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11226 ip_redo_nomination(phyi); 11227 } 11228 if (phyint_flags_modified) { 11229 if (phyi->phyint_illv4 != NULL) { 11230 ip_rts_ifmsg(phyi->phyint_illv4-> 11231 ill_ipif); 11232 } 11233 if (phyi->phyint_illv6 != NULL) { 11234 ip_rts_ifmsg(phyi->phyint_illv6-> 11235 ill_ipif); 11236 } 11237 } 11238 return (0); 11239 } else if (set_linklocal || zero_source) { 11240 mutex_enter(&ill->ill_lock); 11241 if (set_linklocal) 11242 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11243 if (zero_source) 11244 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11245 mutex_exit(&ill->ill_lock); 11246 } 11247 11248 /* 11249 * Disallow IPv6 interfaces coming up that have the unspecified address, 11250 * or point-to-point interfaces with an unspecified destination. We do 11251 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11252 * have a subnet assigned, which is how in.ndpd currently manages its 11253 * onlink prefix list when no addresses are configured with those 11254 * prefixes. 11255 */ 11256 if (ipif->ipif_isv6 && 11257 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11258 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11259 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11260 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11261 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11262 return (EINVAL); 11263 } 11264 11265 /* 11266 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11267 * from being brought up. 11268 */ 11269 if (!ipif->ipif_isv6 && 11270 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11271 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11272 return (EINVAL); 11273 } 11274 11275 /* 11276 * The only flag changes that we currently take specific action on 11277 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11278 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11279 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11280 * the flags and bringing it back up again. 11281 */ 11282 if ((turn_on|turn_off) & 11283 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11284 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11285 /* 11286 * Taking this ipif down, make sure we have 11287 * valid net and subnet bcast ire's for other 11288 * logical interfaces, if we need them. 11289 */ 11290 if (!ipif->ipif_isv6) 11291 ipif_check_bcast_ires(ipif); 11292 11293 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11294 !(turn_off & IPIF_UP)) { 11295 need_up = B_TRUE; 11296 if (ipif->ipif_flags & IPIF_UP) 11297 ill->ill_logical_down = 1; 11298 turn_on &= ~IPIF_UP; 11299 } 11300 err = ipif_down(ipif, q, mp); 11301 ip1dbg(("ipif_down returns %d err ", err)); 11302 if (err == EINPROGRESS) 11303 return (err); 11304 ipif_down_tail(ipif); 11305 } 11306 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11307 } 11308 11309 static int 11310 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11311 boolean_t need_up) 11312 { 11313 ill_t *ill; 11314 phyint_t *phyi; 11315 uint64_t turn_on; 11316 uint64_t turn_off; 11317 uint64_t intf_flags; 11318 boolean_t phyint_flags_modified = B_FALSE; 11319 int err = 0; 11320 boolean_t set_linklocal = B_FALSE; 11321 boolean_t zero_source = B_FALSE; 11322 11323 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11324 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11325 11326 ASSERT(IAM_WRITER_IPIF(ipif)); 11327 11328 ill = ipif->ipif_ill; 11329 phyi = ill->ill_phyint; 11330 11331 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11332 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11333 11334 turn_off = intf_flags & turn_on; 11335 turn_on ^= turn_off; 11336 11337 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11338 phyint_flags_modified = B_TRUE; 11339 11340 /* 11341 * Now we change the flags. Track current value of 11342 * other flags in their respective places. 11343 */ 11344 mutex_enter(&ill->ill_lock); 11345 mutex_enter(&phyi->phyint_lock); 11346 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11347 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11348 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11349 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11350 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11351 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11352 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11353 set_linklocal = B_TRUE; 11354 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11355 } 11356 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11357 zero_source = B_TRUE; 11358 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11359 } 11360 mutex_exit(&ill->ill_lock); 11361 mutex_exit(&phyi->phyint_lock); 11362 11363 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11364 ip_redo_nomination(phyi); 11365 11366 if (set_linklocal) 11367 (void) ipif_setlinklocal(ipif); 11368 11369 if (zero_source) 11370 ipif->ipif_v6src_addr = ipv6_all_zeros; 11371 else 11372 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11373 11374 if (need_up) { 11375 /* 11376 * XXX ipif_up really does not know whether a phyint flags 11377 * was modified or not. So, it sends up information on 11378 * only one routing sockets message. As we don't bring up 11379 * the interface and also set STANDBY/FAILED simultaneously 11380 * it should be okay. 11381 */ 11382 err = ipif_up(ipif, q, mp); 11383 } else { 11384 /* 11385 * Make sure routing socket sees all changes to the flags. 11386 * ipif_up_done* handles this when we use ipif_up. 11387 */ 11388 if (phyint_flags_modified) { 11389 if (phyi->phyint_illv4 != NULL) { 11390 ip_rts_ifmsg(phyi->phyint_illv4-> 11391 ill_ipif); 11392 } 11393 if (phyi->phyint_illv6 != NULL) { 11394 ip_rts_ifmsg(phyi->phyint_illv6-> 11395 ill_ipif); 11396 } 11397 } else { 11398 ip_rts_ifmsg(ipif); 11399 } 11400 } 11401 return (err); 11402 } 11403 11404 /* 11405 * Restart entry point to restart the flags restart operation after the 11406 * refcounts have dropped to zero. 11407 */ 11408 /* ARGSUSED */ 11409 int 11410 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11411 ip_ioctl_cmd_t *ipip, void *if_req) 11412 { 11413 int err; 11414 struct ifreq *ifr = (struct ifreq *)if_req; 11415 struct lifreq *lifr = (struct lifreq *)if_req; 11416 11417 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11418 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11419 11420 ipif_down_tail(ipif); 11421 if (ipip->ipi_cmd_type == IF_CMD) { 11422 /* 11423 * Since ip_sioctl_flags expects an int and ifr_flags 11424 * is a short we need to cast ifr_flags into an int 11425 * to avoid having sign extension cause bits to get 11426 * set that should not be. 11427 */ 11428 err = ip_sioctl_flags_tail(ipif, 11429 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 11430 q, mp, B_TRUE); 11431 } else { 11432 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 11433 q, mp, B_TRUE); 11434 } 11435 return (err); 11436 } 11437 11438 /* ARGSUSED */ 11439 int 11440 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11441 ip_ioctl_cmd_t *ipip, void *if_req) 11442 { 11443 /* 11444 * Has the flags been set correctly till now ? 11445 */ 11446 ill_t *ill = ipif->ipif_ill; 11447 phyint_t *phyi = ill->ill_phyint; 11448 11449 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11450 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11451 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11452 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11453 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11454 11455 /* 11456 * Need a lock since some flags can be set even when there are 11457 * references to the ipif. 11458 */ 11459 mutex_enter(&ill->ill_lock); 11460 if (ipip->ipi_cmd_type == IF_CMD) { 11461 struct ifreq *ifr = (struct ifreq *)if_req; 11462 11463 /* Get interface flags (low 16 only). */ 11464 ifr->ifr_flags = ((ipif->ipif_flags | 11465 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11466 } else { 11467 struct lifreq *lifr = (struct lifreq *)if_req; 11468 11469 /* Get interface flags. */ 11470 lifr->lifr_flags = ipif->ipif_flags | 11471 ill->ill_flags | phyi->phyint_flags; 11472 } 11473 mutex_exit(&ill->ill_lock); 11474 return (0); 11475 } 11476 11477 /* ARGSUSED */ 11478 int 11479 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11480 ip_ioctl_cmd_t *ipip, void *if_req) 11481 { 11482 int mtu; 11483 int ip_min_mtu; 11484 struct ifreq *ifr; 11485 struct lifreq *lifr; 11486 ire_t *ire; 11487 11488 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11489 ipif->ipif_id, (void *)ipif)); 11490 if (ipip->ipi_cmd_type == IF_CMD) { 11491 ifr = (struct ifreq *)if_req; 11492 mtu = ifr->ifr_metric; 11493 } else { 11494 lifr = (struct lifreq *)if_req; 11495 mtu = lifr->lifr_mtu; 11496 } 11497 11498 if (ipif->ipif_isv6) 11499 ip_min_mtu = IPV6_MIN_MTU; 11500 else 11501 ip_min_mtu = IP_MIN_MTU; 11502 11503 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11504 return (EINVAL); 11505 11506 /* 11507 * Change the MTU size in all relevant ire's. 11508 * Mtu change Vs. new ire creation - protocol below. 11509 * First change ipif_mtu and the ire_max_frag of the 11510 * interface ire. Then do an ire walk and change the 11511 * ire_max_frag of all affected ires. During ire_add 11512 * under the bucket lock, set the ire_max_frag of the 11513 * new ire being created from the ipif/ire from which 11514 * it is being derived. If an mtu change happens after 11515 * the ire is added, the new ire will be cleaned up. 11516 * Conversely if the mtu change happens before the ire 11517 * is added, ire_add will see the new value of the mtu. 11518 */ 11519 ipif->ipif_mtu = mtu; 11520 ipif->ipif_flags |= IPIF_FIXEDMTU; 11521 11522 if (ipif->ipif_isv6) 11523 ire = ipif_to_ire_v6(ipif); 11524 else 11525 ire = ipif_to_ire(ipif); 11526 if (ire != NULL) { 11527 ire->ire_max_frag = ipif->ipif_mtu; 11528 ire_refrele(ire); 11529 } 11530 if (ipif->ipif_flags & IPIF_UP) { 11531 if (ipif->ipif_isv6) 11532 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11533 else 11534 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11535 } 11536 /* Update the MTU in SCTP's list */ 11537 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11538 return (0); 11539 } 11540 11541 /* Get interface MTU. */ 11542 /* ARGSUSED */ 11543 int 11544 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11545 ip_ioctl_cmd_t *ipip, void *if_req) 11546 { 11547 struct ifreq *ifr; 11548 struct lifreq *lifr; 11549 11550 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11551 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11552 if (ipip->ipi_cmd_type == IF_CMD) { 11553 ifr = (struct ifreq *)if_req; 11554 ifr->ifr_metric = ipif->ipif_mtu; 11555 } else { 11556 lifr = (struct lifreq *)if_req; 11557 lifr->lifr_mtu = ipif->ipif_mtu; 11558 } 11559 return (0); 11560 } 11561 11562 /* Set interface broadcast address. */ 11563 /* ARGSUSED2 */ 11564 int 11565 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11566 ip_ioctl_cmd_t *ipip, void *if_req) 11567 { 11568 ipaddr_t addr; 11569 ire_t *ire; 11570 11571 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11572 ipif->ipif_id)); 11573 11574 ASSERT(IAM_WRITER_IPIF(ipif)); 11575 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11576 return (EADDRNOTAVAIL); 11577 11578 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11579 11580 if (sin->sin_family != AF_INET) 11581 return (EAFNOSUPPORT); 11582 11583 addr = sin->sin_addr.s_addr; 11584 if (ipif->ipif_flags & IPIF_UP) { 11585 /* 11586 * If we are already up, make sure the new 11587 * broadcast address makes sense. If it does, 11588 * there should be an IRE for it already. 11589 * Don't match on ipif, only on the ill 11590 * since we are sharing these now. Don't use 11591 * MATCH_IRE_ILL_GROUP as we are looking for 11592 * the broadcast ire on this ill and each ill 11593 * in the group has its own broadcast ire. 11594 */ 11595 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 11596 ipif, ALL_ZONES, (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 11597 if (ire == NULL) { 11598 return (EINVAL); 11599 } else { 11600 ire_refrele(ire); 11601 } 11602 } 11603 /* 11604 * Changing the broadcast addr for this ipif. 11605 * Make sure we have valid net and subnet bcast 11606 * ire's for other logical interfaces, if needed. 11607 */ 11608 if (addr != ipif->ipif_brd_addr) 11609 ipif_check_bcast_ires(ipif); 11610 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 11611 return (0); 11612 } 11613 11614 /* Get interface broadcast address. */ 11615 /* ARGSUSED */ 11616 int 11617 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11618 ip_ioctl_cmd_t *ipip, void *if_req) 11619 { 11620 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 11621 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11622 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11623 return (EADDRNOTAVAIL); 11624 11625 /* IPIF_BROADCAST not possible with IPv6 */ 11626 ASSERT(!ipif->ipif_isv6); 11627 *sin = sin_null; 11628 sin->sin_family = AF_INET; 11629 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 11630 return (0); 11631 } 11632 11633 /* 11634 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 11635 */ 11636 /* ARGSUSED */ 11637 int 11638 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11639 ip_ioctl_cmd_t *ipip, void *if_req) 11640 { 11641 int err = 0; 11642 in6_addr_t v6mask; 11643 11644 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 11645 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11646 11647 ASSERT(IAM_WRITER_IPIF(ipif)); 11648 11649 if (ipif->ipif_isv6) { 11650 sin6_t *sin6; 11651 11652 if (sin->sin_family != AF_INET6) 11653 return (EAFNOSUPPORT); 11654 11655 sin6 = (sin6_t *)sin; 11656 v6mask = sin6->sin6_addr; 11657 } else { 11658 ipaddr_t mask; 11659 11660 if (sin->sin_family != AF_INET) 11661 return (EAFNOSUPPORT); 11662 11663 mask = sin->sin_addr.s_addr; 11664 V4MASK_TO_V6(mask, v6mask); 11665 } 11666 11667 /* 11668 * No big deal if the interface isn't already up, or the mask 11669 * isn't really changing, or this is pt-pt. 11670 */ 11671 if (!(ipif->ipif_flags & IPIF_UP) || 11672 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 11673 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 11674 ipif->ipif_v6net_mask = v6mask; 11675 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11676 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 11677 ipif->ipif_v6net_mask, 11678 ipif->ipif_v6subnet); 11679 } 11680 return (0); 11681 } 11682 /* 11683 * Make sure we have valid net and subnet broadcast ire's 11684 * for the old netmask, if needed by other logical interfaces. 11685 */ 11686 if (!ipif->ipif_isv6) 11687 ipif_check_bcast_ires(ipif); 11688 11689 err = ipif_logical_down(ipif, q, mp); 11690 if (err == EINPROGRESS) 11691 return (err); 11692 ipif_down_tail(ipif); 11693 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 11694 return (err); 11695 } 11696 11697 static int 11698 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 11699 { 11700 in6_addr_t v6mask; 11701 int err = 0; 11702 11703 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11704 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11705 11706 if (ipif->ipif_isv6) { 11707 sin6_t *sin6; 11708 11709 sin6 = (sin6_t *)sin; 11710 v6mask = sin6->sin6_addr; 11711 } else { 11712 ipaddr_t mask; 11713 11714 mask = sin->sin_addr.s_addr; 11715 V4MASK_TO_V6(mask, v6mask); 11716 } 11717 11718 ipif->ipif_v6net_mask = v6mask; 11719 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11720 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11721 ipif->ipif_v6subnet); 11722 } 11723 err = ipif_up(ipif, q, mp); 11724 11725 if (err == 0 || err == EINPROGRESS) { 11726 /* 11727 * The interface must be DL_BOUND if this packet has to 11728 * go out on the wire. Since we only go through a logical 11729 * down and are bound with the driver during an internal 11730 * down/up that is satisfied. 11731 */ 11732 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11733 /* Potentially broadcast an address mask reply. */ 11734 ipif_mask_reply(ipif); 11735 } 11736 } 11737 return (err); 11738 } 11739 11740 /* ARGSUSED */ 11741 int 11742 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11743 ip_ioctl_cmd_t *ipip, void *if_req) 11744 { 11745 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11746 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11747 ipif_down_tail(ipif); 11748 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11749 } 11750 11751 /* Get interface net mask. */ 11752 /* ARGSUSED */ 11753 int 11754 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11755 ip_ioctl_cmd_t *ipip, void *if_req) 11756 { 11757 struct lifreq *lifr = (struct lifreq *)if_req; 11758 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11759 11760 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11761 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11762 11763 /* 11764 * net mask can't change since we have a reference to the ipif. 11765 */ 11766 if (ipif->ipif_isv6) { 11767 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11768 *sin6 = sin6_null; 11769 sin6->sin6_family = AF_INET6; 11770 sin6->sin6_addr = ipif->ipif_v6net_mask; 11771 lifr->lifr_addrlen = 11772 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11773 } else { 11774 *sin = sin_null; 11775 sin->sin_family = AF_INET; 11776 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11777 if (ipip->ipi_cmd_type == LIF_CMD) { 11778 lifr->lifr_addrlen = 11779 ip_mask_to_plen(ipif->ipif_net_mask); 11780 } 11781 } 11782 return (0); 11783 } 11784 11785 /* ARGSUSED */ 11786 int 11787 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11788 ip_ioctl_cmd_t *ipip, void *if_req) 11789 { 11790 11791 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11792 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11793 /* 11794 * Set interface metric. We don't use this for 11795 * anything but we keep track of it in case it is 11796 * important to routing applications or such. 11797 */ 11798 if (ipip->ipi_cmd_type == IF_CMD) { 11799 struct ifreq *ifr; 11800 11801 ifr = (struct ifreq *)if_req; 11802 ipif->ipif_metric = ifr->ifr_metric; 11803 } else { 11804 struct lifreq *lifr; 11805 11806 lifr = (struct lifreq *)if_req; 11807 ipif->ipif_metric = lifr->lifr_metric; 11808 } 11809 return (0); 11810 } 11811 11812 11813 /* ARGSUSED */ 11814 int 11815 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11816 ip_ioctl_cmd_t *ipip, void *if_req) 11817 { 11818 11819 /* Get interface metric. */ 11820 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11821 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11822 if (ipip->ipi_cmd_type == IF_CMD) { 11823 struct ifreq *ifr; 11824 11825 ifr = (struct ifreq *)if_req; 11826 ifr->ifr_metric = ipif->ipif_metric; 11827 } else { 11828 struct lifreq *lifr; 11829 11830 lifr = (struct lifreq *)if_req; 11831 lifr->lifr_metric = ipif->ipif_metric; 11832 } 11833 11834 return (0); 11835 } 11836 11837 /* ARGSUSED */ 11838 int 11839 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11840 ip_ioctl_cmd_t *ipip, void *if_req) 11841 { 11842 11843 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11844 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11845 /* 11846 * Set the muxid returned from I_PLINK. 11847 */ 11848 if (ipip->ipi_cmd_type == IF_CMD) { 11849 struct ifreq *ifr = (struct ifreq *)if_req; 11850 11851 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 11852 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 11853 } else { 11854 struct lifreq *lifr = (struct lifreq *)if_req; 11855 11856 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 11857 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 11858 } 11859 return (0); 11860 } 11861 11862 /* ARGSUSED */ 11863 int 11864 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11865 ip_ioctl_cmd_t *ipip, void *if_req) 11866 { 11867 11868 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11869 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11870 /* 11871 * Get the muxid saved in ill for I_PUNLINK. 11872 */ 11873 if (ipip->ipi_cmd_type == IF_CMD) { 11874 struct ifreq *ifr = (struct ifreq *)if_req; 11875 11876 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11877 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11878 } else { 11879 struct lifreq *lifr = (struct lifreq *)if_req; 11880 11881 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11882 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11883 } 11884 return (0); 11885 } 11886 11887 /* 11888 * Set the subnet prefix. Does not modify the broadcast address. 11889 */ 11890 /* ARGSUSED */ 11891 int 11892 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11893 ip_ioctl_cmd_t *ipip, void *if_req) 11894 { 11895 int err = 0; 11896 in6_addr_t v6addr; 11897 in6_addr_t v6mask; 11898 boolean_t need_up = B_FALSE; 11899 int addrlen; 11900 11901 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11902 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11903 11904 ASSERT(IAM_WRITER_IPIF(ipif)); 11905 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11906 11907 if (ipif->ipif_isv6) { 11908 sin6_t *sin6; 11909 11910 if (sin->sin_family != AF_INET6) 11911 return (EAFNOSUPPORT); 11912 11913 sin6 = (sin6_t *)sin; 11914 v6addr = sin6->sin6_addr; 11915 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11916 return (EADDRNOTAVAIL); 11917 } else { 11918 ipaddr_t addr; 11919 11920 if (sin->sin_family != AF_INET) 11921 return (EAFNOSUPPORT); 11922 11923 addr = sin->sin_addr.s_addr; 11924 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11925 return (EADDRNOTAVAIL); 11926 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11927 /* Add 96 bits */ 11928 addrlen += IPV6_ABITS - IP_ABITS; 11929 } 11930 11931 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11932 return (EINVAL); 11933 11934 /* Check if bits in the address is set past the mask */ 11935 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11936 return (EINVAL); 11937 11938 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11939 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11940 return (0); /* No change */ 11941 11942 if (ipif->ipif_flags & IPIF_UP) { 11943 /* 11944 * If the interface is already marked up, 11945 * we call ipif_down which will take care 11946 * of ditching any IREs that have been set 11947 * up based on the old interface address. 11948 */ 11949 err = ipif_logical_down(ipif, q, mp); 11950 if (err == EINPROGRESS) 11951 return (err); 11952 ipif_down_tail(ipif); 11953 need_up = B_TRUE; 11954 } 11955 11956 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11957 return (err); 11958 } 11959 11960 static int 11961 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11962 queue_t *q, mblk_t *mp, boolean_t need_up) 11963 { 11964 ill_t *ill = ipif->ipif_ill; 11965 int err = 0; 11966 11967 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11968 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11969 11970 /* Set the new address. */ 11971 mutex_enter(&ill->ill_lock); 11972 ipif->ipif_v6net_mask = v6mask; 11973 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11974 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11975 ipif->ipif_v6subnet); 11976 } 11977 mutex_exit(&ill->ill_lock); 11978 11979 if (need_up) { 11980 /* 11981 * Now bring the interface back up. If this 11982 * is the only IPIF for the ILL, ipif_up 11983 * will have to re-bind to the device, so 11984 * we may get back EINPROGRESS, in which 11985 * case, this IOCTL will get completed in 11986 * ip_rput_dlpi when we see the DL_BIND_ACK. 11987 */ 11988 err = ipif_up(ipif, q, mp); 11989 if (err == EINPROGRESS) 11990 return (err); 11991 } 11992 return (err); 11993 } 11994 11995 /* ARGSUSED */ 11996 int 11997 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11998 ip_ioctl_cmd_t *ipip, void *if_req) 11999 { 12000 int addrlen; 12001 in6_addr_t v6addr; 12002 in6_addr_t v6mask; 12003 struct lifreq *lifr = (struct lifreq *)if_req; 12004 12005 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12006 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12007 ipif_down_tail(ipif); 12008 12009 addrlen = lifr->lifr_addrlen; 12010 if (ipif->ipif_isv6) { 12011 sin6_t *sin6; 12012 12013 sin6 = (sin6_t *)sin; 12014 v6addr = sin6->sin6_addr; 12015 } else { 12016 ipaddr_t addr; 12017 12018 addr = sin->sin_addr.s_addr; 12019 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12020 addrlen += IPV6_ABITS - IP_ABITS; 12021 } 12022 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12023 12024 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12025 } 12026 12027 /* ARGSUSED */ 12028 int 12029 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12030 ip_ioctl_cmd_t *ipip, void *if_req) 12031 { 12032 struct lifreq *lifr = (struct lifreq *)if_req; 12033 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12034 12035 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12036 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12037 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12038 12039 if (ipif->ipif_isv6) { 12040 *sin6 = sin6_null; 12041 sin6->sin6_family = AF_INET6; 12042 sin6->sin6_addr = ipif->ipif_v6subnet; 12043 lifr->lifr_addrlen = 12044 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12045 } else { 12046 *sin = sin_null; 12047 sin->sin_family = AF_INET; 12048 sin->sin_addr.s_addr = ipif->ipif_subnet; 12049 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12050 } 12051 return (0); 12052 } 12053 12054 /* 12055 * Set the IPv6 address token. 12056 */ 12057 /* ARGSUSED */ 12058 int 12059 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12060 ip_ioctl_cmd_t *ipi, void *if_req) 12061 { 12062 ill_t *ill = ipif->ipif_ill; 12063 int err; 12064 in6_addr_t v6addr; 12065 in6_addr_t v6mask; 12066 boolean_t need_up = B_FALSE; 12067 int i; 12068 sin6_t *sin6 = (sin6_t *)sin; 12069 struct lifreq *lifr = (struct lifreq *)if_req; 12070 int addrlen; 12071 12072 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12073 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12074 ASSERT(IAM_WRITER_IPIF(ipif)); 12075 12076 addrlen = lifr->lifr_addrlen; 12077 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12078 if (ipif->ipif_id != 0) 12079 return (EINVAL); 12080 12081 if (!ipif->ipif_isv6) 12082 return (EINVAL); 12083 12084 if (addrlen > IPV6_ABITS) 12085 return (EINVAL); 12086 12087 v6addr = sin6->sin6_addr; 12088 12089 /* 12090 * The length of the token is the length from the end. To get 12091 * the proper mask for this, compute the mask of the bits not 12092 * in the token; ie. the prefix, and then xor to get the mask. 12093 */ 12094 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12095 return (EINVAL); 12096 for (i = 0; i < 4; i++) { 12097 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12098 } 12099 12100 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12101 ill->ill_token_length == addrlen) 12102 return (0); /* No change */ 12103 12104 if (ipif->ipif_flags & IPIF_UP) { 12105 err = ipif_logical_down(ipif, q, mp); 12106 if (err == EINPROGRESS) 12107 return (err); 12108 ipif_down_tail(ipif); 12109 need_up = B_TRUE; 12110 } 12111 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12112 return (err); 12113 } 12114 12115 static int 12116 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12117 mblk_t *mp, boolean_t need_up) 12118 { 12119 in6_addr_t v6addr; 12120 in6_addr_t v6mask; 12121 ill_t *ill = ipif->ipif_ill; 12122 int i; 12123 int err = 0; 12124 12125 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12126 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12127 v6addr = sin6->sin6_addr; 12128 /* 12129 * The length of the token is the length from the end. To get 12130 * the proper mask for this, compute the mask of the bits not 12131 * in the token; ie. the prefix, and then xor to get the mask. 12132 */ 12133 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12134 for (i = 0; i < 4; i++) 12135 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12136 12137 mutex_enter(&ill->ill_lock); 12138 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12139 ill->ill_token_length = addrlen; 12140 mutex_exit(&ill->ill_lock); 12141 12142 if (need_up) { 12143 /* 12144 * Now bring the interface back up. If this 12145 * is the only IPIF for the ILL, ipif_up 12146 * will have to re-bind to the device, so 12147 * we may get back EINPROGRESS, in which 12148 * case, this IOCTL will get completed in 12149 * ip_rput_dlpi when we see the DL_BIND_ACK. 12150 */ 12151 err = ipif_up(ipif, q, mp); 12152 if (err == EINPROGRESS) 12153 return (err); 12154 } 12155 return (err); 12156 } 12157 12158 /* ARGSUSED */ 12159 int 12160 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12161 ip_ioctl_cmd_t *ipi, void *if_req) 12162 { 12163 ill_t *ill; 12164 sin6_t *sin6 = (sin6_t *)sin; 12165 struct lifreq *lifr = (struct lifreq *)if_req; 12166 12167 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12168 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12169 if (ipif->ipif_id != 0) 12170 return (EINVAL); 12171 12172 ill = ipif->ipif_ill; 12173 if (!ill->ill_isv6) 12174 return (ENXIO); 12175 12176 *sin6 = sin6_null; 12177 sin6->sin6_family = AF_INET6; 12178 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12179 sin6->sin6_addr = ill->ill_token; 12180 lifr->lifr_addrlen = ill->ill_token_length; 12181 return (0); 12182 } 12183 12184 /* 12185 * Set (hardware) link specific information that might override 12186 * what was acquired through the DL_INFO_ACK. 12187 * The logic is as follows. 12188 * 12189 * become exclusive 12190 * set CHANGING flag 12191 * change mtu on affected IREs 12192 * clear CHANGING flag 12193 * 12194 * An ire add that occurs before the CHANGING flag is set will have its mtu 12195 * changed by the ip_sioctl_lnkinfo. 12196 * 12197 * During the time the CHANGING flag is set, no new ires will be added to the 12198 * bucket, and ire add will fail (due the CHANGING flag). 12199 * 12200 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12201 * before it is added to the bucket. 12202 * 12203 * Obviously only 1 thread can set the CHANGING flag and we need to become 12204 * exclusive to set the flag. 12205 */ 12206 /* ARGSUSED */ 12207 int 12208 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12209 ip_ioctl_cmd_t *ipi, void *if_req) 12210 { 12211 ill_t *ill = ipif->ipif_ill; 12212 ipif_t *nipif; 12213 int ip_min_mtu; 12214 boolean_t mtu_walk = B_FALSE; 12215 struct lifreq *lifr = (struct lifreq *)if_req; 12216 lif_ifinfo_req_t *lir; 12217 ire_t *ire; 12218 12219 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12220 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12221 lir = &lifr->lifr_ifinfo; 12222 ASSERT(IAM_WRITER_IPIF(ipif)); 12223 12224 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12225 if (ipif->ipif_id != 0) 12226 return (EINVAL); 12227 12228 /* Set interface MTU. */ 12229 if (ipif->ipif_isv6) 12230 ip_min_mtu = IPV6_MIN_MTU; 12231 else 12232 ip_min_mtu = IP_MIN_MTU; 12233 12234 /* 12235 * Verify values before we set anything. Allow zero to 12236 * mean unspecified. 12237 */ 12238 if (lir->lir_maxmtu != 0 && 12239 (lir->lir_maxmtu > ill->ill_max_frag || 12240 lir->lir_maxmtu < ip_min_mtu)) 12241 return (EINVAL); 12242 if (lir->lir_reachtime != 0 && 12243 lir->lir_reachtime > ND_MAX_REACHTIME) 12244 return (EINVAL); 12245 if (lir->lir_reachretrans != 0 && 12246 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12247 return (EINVAL); 12248 12249 mutex_enter(&ill->ill_lock); 12250 ill->ill_state_flags |= ILL_CHANGING; 12251 for (nipif = ill->ill_ipif; nipif != NULL; 12252 nipif = nipif->ipif_next) { 12253 nipif->ipif_state_flags |= IPIF_CHANGING; 12254 } 12255 12256 mutex_exit(&ill->ill_lock); 12257 12258 if (lir->lir_maxmtu != 0) { 12259 ill->ill_max_mtu = lir->lir_maxmtu; 12260 ill->ill_mtu_userspecified = 1; 12261 mtu_walk = B_TRUE; 12262 } 12263 12264 if (lir->lir_reachtime != 0) 12265 ill->ill_reachable_time = lir->lir_reachtime; 12266 12267 if (lir->lir_reachretrans != 0) 12268 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12269 12270 ill->ill_max_hops = lir->lir_maxhops; 12271 12272 ill->ill_max_buf = ND_MAX_Q; 12273 12274 if (mtu_walk) { 12275 /* 12276 * Set the MTU on all ipifs associated with this ill except 12277 * for those whose MTU was fixed via SIOCSLIFMTU. 12278 */ 12279 for (nipif = ill->ill_ipif; nipif != NULL; 12280 nipif = nipif->ipif_next) { 12281 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12282 continue; 12283 12284 nipif->ipif_mtu = ill->ill_max_mtu; 12285 12286 if (!(nipif->ipif_flags & IPIF_UP)) 12287 continue; 12288 12289 if (nipif->ipif_isv6) 12290 ire = ipif_to_ire_v6(nipif); 12291 else 12292 ire = ipif_to_ire(nipif); 12293 if (ire != NULL) { 12294 ire->ire_max_frag = ipif->ipif_mtu; 12295 ire_refrele(ire); 12296 } 12297 if (ill->ill_isv6) { 12298 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12299 ipif_mtu_change, (char *)nipif, 12300 ill); 12301 } else { 12302 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12303 ipif_mtu_change, (char *)nipif, 12304 ill); 12305 } 12306 } 12307 } 12308 12309 mutex_enter(&ill->ill_lock); 12310 for (nipif = ill->ill_ipif; nipif != NULL; 12311 nipif = nipif->ipif_next) { 12312 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12313 } 12314 ILL_UNMARK_CHANGING(ill); 12315 mutex_exit(&ill->ill_lock); 12316 12317 return (0); 12318 } 12319 12320 /* ARGSUSED */ 12321 int 12322 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12323 ip_ioctl_cmd_t *ipi, void *if_req) 12324 { 12325 struct lif_ifinfo_req *lir; 12326 ill_t *ill = ipif->ipif_ill; 12327 12328 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12329 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12330 if (ipif->ipif_id != 0) 12331 return (EINVAL); 12332 12333 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12334 lir->lir_maxhops = ill->ill_max_hops; 12335 lir->lir_reachtime = ill->ill_reachable_time; 12336 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12337 lir->lir_maxmtu = ill->ill_max_mtu; 12338 12339 return (0); 12340 } 12341 12342 /* 12343 * Return best guess as to the subnet mask for the specified address. 12344 * Based on the subnet masks for all the configured interfaces. 12345 * 12346 * We end up returning a zero mask in the case of default, multicast or 12347 * experimental. 12348 */ 12349 static ipaddr_t 12350 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 12351 { 12352 ipaddr_t net_mask; 12353 ill_t *ill; 12354 ipif_t *ipif; 12355 ill_walk_context_t ctx; 12356 ipif_t *fallback_ipif = NULL; 12357 12358 net_mask = ip_net_mask(addr); 12359 if (net_mask == 0) { 12360 *ipifp = NULL; 12361 return (0); 12362 } 12363 12364 /* Let's check to see if this is maybe a local subnet route. */ 12365 /* this function only applies to IPv4 interfaces */ 12366 rw_enter(&ill_g_lock, RW_READER); 12367 ill = ILL_START_WALK_V4(&ctx); 12368 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12369 mutex_enter(&ill->ill_lock); 12370 for (ipif = ill->ill_ipif; ipif != NULL; 12371 ipif = ipif->ipif_next) { 12372 if (!IPIF_CAN_LOOKUP(ipif)) 12373 continue; 12374 if (!(ipif->ipif_flags & IPIF_UP)) 12375 continue; 12376 if ((ipif->ipif_subnet & net_mask) == 12377 (addr & net_mask)) { 12378 /* 12379 * Don't trust pt-pt interfaces if there are 12380 * other interfaces. 12381 */ 12382 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12383 if (fallback_ipif == NULL) { 12384 ipif_refhold_locked(ipif); 12385 fallback_ipif = ipif; 12386 } 12387 continue; 12388 } 12389 12390 /* 12391 * Fine. Just assume the same net mask as the 12392 * directly attached subnet interface is using. 12393 */ 12394 ipif_refhold_locked(ipif); 12395 mutex_exit(&ill->ill_lock); 12396 rw_exit(&ill_g_lock); 12397 if (fallback_ipif != NULL) 12398 ipif_refrele(fallback_ipif); 12399 *ipifp = ipif; 12400 return (ipif->ipif_net_mask); 12401 } 12402 } 12403 mutex_exit(&ill->ill_lock); 12404 } 12405 rw_exit(&ill_g_lock); 12406 12407 *ipifp = fallback_ipif; 12408 return ((fallback_ipif != NULL) ? 12409 fallback_ipif->ipif_net_mask : net_mask); 12410 } 12411 12412 /* 12413 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12414 */ 12415 static void 12416 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12417 { 12418 IOCP iocp; 12419 ipft_t *ipft; 12420 ipllc_t *ipllc; 12421 mblk_t *mp1; 12422 cred_t *cr; 12423 int error = 0; 12424 conn_t *connp; 12425 12426 ip1dbg(("ip_wput_ioctl")); 12427 iocp = (IOCP)mp->b_rptr; 12428 mp1 = mp->b_cont; 12429 if (mp1 == NULL) { 12430 iocp->ioc_error = EINVAL; 12431 mp->b_datap->db_type = M_IOCNAK; 12432 iocp->ioc_count = 0; 12433 qreply(q, mp); 12434 return; 12435 } 12436 12437 /* 12438 * These IOCTLs provide various control capabilities to 12439 * upstream agents such as ULPs and processes. There 12440 * are currently two such IOCTLs implemented. They 12441 * are used by TCP to provide update information for 12442 * existing IREs and to forcibly delete an IRE for a 12443 * host that is not responding, thereby forcing an 12444 * attempt at a new route. 12445 */ 12446 iocp->ioc_error = EINVAL; 12447 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12448 goto done; 12449 12450 ipllc = (ipllc_t *)mp1->b_rptr; 12451 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12452 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12453 break; 12454 } 12455 /* 12456 * prefer credential from mblk over ioctl; 12457 * see ip_sioctl_copyin_setup 12458 */ 12459 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12460 12461 /* 12462 * Refhold the conn in case the request gets queued up in some lookup 12463 */ 12464 ASSERT(CONN_Q(q)); 12465 connp = Q_TO_CONN(q); 12466 CONN_INC_REF(connp); 12467 if (ipft->ipft_pfi && 12468 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12469 pullupmsg(mp1, ipft->ipft_min_size))) { 12470 error = (*ipft->ipft_pfi)(q, 12471 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12472 } 12473 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12474 /* 12475 * CONN_OPER_PENDING_DONE happens in the function called 12476 * through ipft_pfi above. 12477 */ 12478 return; 12479 } 12480 12481 CONN_OPER_PENDING_DONE(connp); 12482 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12483 freemsg(mp); 12484 return; 12485 } 12486 iocp->ioc_error = error; 12487 12488 done: 12489 mp->b_datap->db_type = M_IOCACK; 12490 if (iocp->ioc_error) 12491 iocp->ioc_count = 0; 12492 qreply(q, mp); 12493 } 12494 12495 /* 12496 * Lookup an ipif using the sequence id (ipif_seqid) 12497 */ 12498 ipif_t * 12499 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12500 { 12501 ipif_t *ipif; 12502 12503 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12504 12505 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12506 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12507 return (ipif); 12508 } 12509 return (NULL); 12510 } 12511 12512 uint64_t ipif_g_seqid; 12513 12514 /* 12515 * Assign a unique id for the ipif. This is used later when we send 12516 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12517 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12518 * IRE is added, we verify that ipif has not disappeared. 12519 */ 12520 12521 static void 12522 ipif_assign_seqid(ipif_t *ipif) 12523 { 12524 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 12525 } 12526 12527 /* 12528 * Insert the ipif, so that the list of ipifs on the ill will be sorted 12529 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 12530 * be inserted into the first space available in the list. The value of 12531 * ipif_id will then be set to the appropriate value for its position. 12532 */ 12533 static int 12534 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 12535 { 12536 ill_t *ill; 12537 ipif_t *tipif; 12538 ipif_t **tipifp; 12539 int id; 12540 12541 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 12542 IAM_WRITER_IPIF(ipif)); 12543 12544 ill = ipif->ipif_ill; 12545 ASSERT(ill != NULL); 12546 12547 /* 12548 * In the case of lo0:0 we already hold the ill_g_lock. 12549 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 12550 * ipif_insert. Another such caller is ipif_move. 12551 */ 12552 if (acquire_g_lock) 12553 rw_enter(&ill_g_lock, RW_WRITER); 12554 if (acquire_ill_lock) 12555 mutex_enter(&ill->ill_lock); 12556 id = ipif->ipif_id; 12557 tipifp = &(ill->ill_ipif); 12558 if (id == -1) { /* need to find a real id */ 12559 id = 0; 12560 while ((tipif = *tipifp) != NULL) { 12561 ASSERT(tipif->ipif_id >= id); 12562 if (tipif->ipif_id != id) 12563 break; /* non-consecutive id */ 12564 id++; 12565 tipifp = &(tipif->ipif_next); 12566 } 12567 /* limit number of logical interfaces */ 12568 if (id >= ip_addrs_per_if) { 12569 if (acquire_ill_lock) 12570 mutex_exit(&ill->ill_lock); 12571 if (acquire_g_lock) 12572 rw_exit(&ill_g_lock); 12573 return (-1); 12574 } 12575 ipif->ipif_id = id; /* assign new id */ 12576 } else if (id < ip_addrs_per_if) { 12577 /* we have a real id; insert ipif in the right place */ 12578 while ((tipif = *tipifp) != NULL) { 12579 ASSERT(tipif->ipif_id != id); 12580 if (tipif->ipif_id > id) 12581 break; /* found correct location */ 12582 tipifp = &(tipif->ipif_next); 12583 } 12584 } else { 12585 if (acquire_ill_lock) 12586 mutex_exit(&ill->ill_lock); 12587 if (acquire_g_lock) 12588 rw_exit(&ill_g_lock); 12589 return (-1); 12590 } 12591 12592 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 12593 12594 ipif->ipif_next = tipif; 12595 *tipifp = ipif; 12596 if (acquire_ill_lock) 12597 mutex_exit(&ill->ill_lock); 12598 if (acquire_g_lock) 12599 rw_exit(&ill_g_lock); 12600 return (0); 12601 } 12602 12603 /* 12604 * Allocate and initialize a new interface control structure. (Always 12605 * called as writer.) 12606 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 12607 * is not part of the global linked list of ills. ipif_seqid is unique 12608 * in the system and to preserve the uniqueness, it is assigned only 12609 * when ill becomes part of the global list. At that point ill will 12610 * have a name. If it doesn't get assigned here, it will get assigned 12611 * in ipif_set_values() as part of SIOCSLIFNAME processing. 12612 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 12613 * the interface flags or any other information from the DL_INFO_ACK for 12614 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 12615 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 12616 * second DL_INFO_ACK comes in from the driver. 12617 */ 12618 static ipif_t * 12619 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 12620 { 12621 ipif_t *ipif; 12622 phyint_t *phyi; 12623 12624 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12625 ill->ill_name, id, (void *)ill)); 12626 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12627 12628 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 12629 return (NULL); 12630 *ipif = ipif_zero; /* start clean */ 12631 12632 ipif->ipif_ill = ill; 12633 ipif->ipif_id = id; /* could be -1 */ 12634 ipif->ipif_zoneid = GLOBAL_ZONEID; 12635 12636 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 12637 12638 ipif->ipif_refcnt = 0; 12639 ipif->ipif_saved_ire_cnt = 0; 12640 12641 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 12642 mi_free(ipif); 12643 return (NULL); 12644 } 12645 /* -1 id should have been replaced by real id */ 12646 id = ipif->ipif_id; 12647 ASSERT(id >= 0); 12648 12649 if (ill->ill_name[0] != '\0') { 12650 ipif_assign_seqid(ipif); 12651 if (ill->ill_phyint->phyint_ifindex != 0) 12652 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 12653 } 12654 /* 12655 * Keep a copy of original id in ipif_orig_ipifid. Failback 12656 * will attempt to restore the original id. The SIOCSLIFOINDEX 12657 * ioctl sets ipif_orig_ipifid to zero. 12658 */ 12659 ipif->ipif_orig_ipifid = id; 12660 12661 /* 12662 * We grab the ill_lock and phyint_lock to protect the flag changes. 12663 * The ipif is still not up and can't be looked up until the 12664 * ioctl completes and the IPIF_CHANGING flag is cleared. 12665 */ 12666 mutex_enter(&ill->ill_lock); 12667 mutex_enter(&ill->ill_phyint->phyint_lock); 12668 /* 12669 * Set the running flag when logical interface zero is created. 12670 * For subsequent logical interfaces, a DLPI link down 12671 * notification message may have cleared the running flag to 12672 * indicate the link is down, so we shouldn't just blindly set it. 12673 */ 12674 if (id == 0) 12675 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 12676 ipif->ipif_ire_type = ire_type; 12677 phyi = ill->ill_phyint; 12678 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 12679 12680 if (ipif->ipif_isv6) { 12681 ill->ill_flags |= ILLF_IPV6; 12682 } else { 12683 ipaddr_t inaddr_any = INADDR_ANY; 12684 12685 ill->ill_flags |= ILLF_IPV4; 12686 12687 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12688 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12689 &ipif->ipif_v6lcl_addr); 12690 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12691 &ipif->ipif_v6src_addr); 12692 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12693 &ipif->ipif_v6subnet); 12694 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12695 &ipif->ipif_v6net_mask); 12696 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12697 &ipif->ipif_v6brd_addr); 12698 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12699 &ipif->ipif_v6pp_dst_addr); 12700 } 12701 12702 /* 12703 * Don't set the interface flags etc. now, will do it in 12704 * ip_ll_subnet_defaults. 12705 */ 12706 if (!initialize) { 12707 mutex_exit(&ill->ill_lock); 12708 mutex_exit(&ill->ill_phyint->phyint_lock); 12709 return (ipif); 12710 } 12711 ipif->ipif_mtu = ill->ill_max_mtu; 12712 12713 if (ill->ill_bcast_addr_length != 0) { 12714 /* 12715 * Later detect lack of DLPI driver multicast 12716 * capability by catching DL_ENABMULTI errors in 12717 * ip_rput_dlpi. 12718 */ 12719 ill->ill_flags |= ILLF_MULTICAST; 12720 if (!ipif->ipif_isv6) 12721 ipif->ipif_flags |= IPIF_BROADCAST; 12722 } else { 12723 if (ill->ill_net_type != IRE_LOOPBACK) { 12724 if (ipif->ipif_isv6) 12725 /* 12726 * Note: xresolv interfaces will eventually need 12727 * NOARP set here as well, but that will require 12728 * those external resolvers to have some 12729 * knowledge of that flag and act appropriately. 12730 * Not to be changed at present. 12731 */ 12732 ill->ill_flags |= ILLF_NONUD; 12733 else 12734 ill->ill_flags |= ILLF_NOARP; 12735 } 12736 if (ill->ill_phys_addr_length == 0) { 12737 if (ill->ill_media && 12738 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 12739 ipif->ipif_flags |= IPIF_NOXMIT; 12740 phyi->phyint_flags |= PHYI_VIRTUAL; 12741 } else { 12742 /* pt-pt supports multicast. */ 12743 ill->ill_flags |= ILLF_MULTICAST; 12744 if (ill->ill_net_type == IRE_LOOPBACK) { 12745 phyi->phyint_flags |= 12746 (PHYI_LOOPBACK | PHYI_VIRTUAL); 12747 } else { 12748 ipif->ipif_flags |= IPIF_POINTOPOINT; 12749 } 12750 } 12751 } 12752 } 12753 mutex_exit(&ill->ill_lock); 12754 mutex_exit(&ill->ill_phyint->phyint_lock); 12755 return (ipif); 12756 } 12757 12758 /* 12759 * If appropriate, send a message up to the resolver delete the entry 12760 * for the address of this interface which is going out of business. 12761 * (Always called as writer). 12762 * 12763 * NOTE : We need to check for NULL mps as some of the fields are 12764 * initialized only for some interface types. See ipif_resolver_up() 12765 * for details. 12766 */ 12767 void 12768 ipif_arp_down(ipif_t *ipif) 12769 { 12770 mblk_t *mp; 12771 12772 ip1dbg(("ipif_arp_down(%s:%u)\n", 12773 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12774 ASSERT(IAM_WRITER_IPIF(ipif)); 12775 12776 /* Delete the mapping for the local address */ 12777 mp = ipif->ipif_arp_del_mp; 12778 if (mp != NULL) { 12779 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12780 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12781 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12782 putnext(ipif->ipif_ill->ill_rq, mp); 12783 ipif->ipif_arp_del_mp = NULL; 12784 } 12785 12786 /* 12787 * If this is the last ipif that is going down, we need 12788 * to clean up ARP completely. 12789 */ 12790 if (ipif->ipif_ill->ill_ipif_up_count == 0) { 12791 12792 /* Send up AR_INTERFACE_DOWN message */ 12793 mp = ipif->ipif_ill->ill_arp_down_mp; 12794 if (mp != NULL) { 12795 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12796 dlpi_prim_str(*(int *)mp->b_rptr), 12797 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12798 ipif->ipif_id)); 12799 putnext(ipif->ipif_ill->ill_rq, mp); 12800 ipif->ipif_ill->ill_arp_down_mp = NULL; 12801 } 12802 12803 /* Tell ARP to delete the multicast mappings */ 12804 mp = ipif->ipif_ill->ill_arp_del_mapping_mp; 12805 if (mp != NULL) { 12806 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12807 dlpi_prim_str(*(int *)mp->b_rptr), 12808 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12809 ipif->ipif_id)); 12810 putnext(ipif->ipif_ill->ill_rq, mp); 12811 ipif->ipif_ill->ill_arp_del_mapping_mp = NULL; 12812 } 12813 } 12814 } 12815 12816 /* 12817 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 12818 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 12819 * that it wants the add_mp allocated in this function to be returned 12820 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 12821 * just re-do the multicast, it wants us to send the add_mp to ARP also. 12822 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 12823 * as it does a ipif_arp_down after calling this function - which will 12824 * remove what we add here. 12825 * 12826 * Returns -1 on failures and 0 on success. 12827 */ 12828 int 12829 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 12830 { 12831 mblk_t *del_mp = NULL; 12832 mblk_t *add_mp = NULL; 12833 mblk_t *mp; 12834 ill_t *ill = ipif->ipif_ill; 12835 phyint_t *phyi = ill->ill_phyint; 12836 ipaddr_t addr, mask, extract_mask = 0; 12837 arma_t *arma; 12838 uint8_t *maddr, *bphys_addr; 12839 uint32_t hw_start; 12840 dl_unitdata_req_t *dlur; 12841 12842 ASSERT(IAM_WRITER_IPIF(ipif)); 12843 if (ipif->ipif_flags & IPIF_POINTOPOINT) 12844 return (0); 12845 12846 /* 12847 * Delete the existing mapping from ARP. Normally ipif_down 12848 * -> ipif_arp_down should send this up to ARP. The only 12849 * reason we would find this when we are switching from 12850 * Multicast to Broadcast where we did not do a down. 12851 */ 12852 mp = ill->ill_arp_del_mapping_mp; 12853 if (mp != NULL) { 12854 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12855 dlpi_prim_str(*(int *)mp->b_rptr), 12856 *(int *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 12857 putnext(ill->ill_rq, mp); 12858 ill->ill_arp_del_mapping_mp = NULL; 12859 } 12860 12861 if (arp_add_mapping_mp != NULL) 12862 *arp_add_mapping_mp = NULL; 12863 12864 /* 12865 * Check that the address is not to long for the constant 12866 * length reserved in the template arma_t. 12867 */ 12868 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 12869 return (-1); 12870 12871 /* Add mapping mblk */ 12872 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 12873 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 12874 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 12875 (caddr_t)&addr); 12876 if (add_mp == NULL) 12877 return (-1); 12878 arma = (arma_t *)add_mp->b_rptr; 12879 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 12880 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 12881 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 12882 12883 /* 12884 * Determine the broadcast address. 12885 */ 12886 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 12887 if (ill->ill_sap_length < 0) 12888 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 12889 else 12890 bphys_addr = (uchar_t *)dlur + 12891 dlur->dl_dest_addr_offset + ill->ill_sap_length; 12892 /* 12893 * Check PHYI_MULTI_BCAST and length of physical 12894 * address to determine if we use the mapping or the 12895 * broadcast address. 12896 */ 12897 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 12898 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 12899 bphys_addr, maddr, &hw_start, &extract_mask)) 12900 phyi->phyint_flags |= PHYI_MULTI_BCAST; 12901 12902 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 12903 (ill->ill_flags & ILLF_MULTICAST)) { 12904 /* Make sure this will not match the "exact" entry. */ 12905 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 12906 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 12907 (caddr_t)&addr); 12908 if (del_mp == NULL) { 12909 freemsg(add_mp); 12910 return (-1); 12911 } 12912 bcopy(&extract_mask, (char *)arma + 12913 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 12914 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 12915 /* Use link-layer broadcast address for MULTI_BCAST */ 12916 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 12917 ip2dbg(("ipif_arp_setup_multicast: adding" 12918 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 12919 } else { 12920 arma->arma_hw_mapping_start = hw_start; 12921 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 12922 " ARP setup for %s\n", ill->ill_name)); 12923 } 12924 } else { 12925 freemsg(add_mp); 12926 ASSERT(del_mp == NULL); 12927 /* It is neither MULTICAST nor MULTI_BCAST */ 12928 return (0); 12929 } 12930 ASSERT(add_mp != NULL && del_mp != NULL); 12931 ill->ill_arp_del_mapping_mp = del_mp; 12932 if (arp_add_mapping_mp != NULL) { 12933 /* The caller just wants the mblks allocated */ 12934 *arp_add_mapping_mp = add_mp; 12935 } else { 12936 /* The caller wants us to send it to arp */ 12937 putnext(ill->ill_rq, add_mp); 12938 } 12939 return (0); 12940 } 12941 12942 /* 12943 * Get the resolver set up for a new interface address. 12944 * (Always called as writer.) 12945 * Called both for IPv4 and IPv6 interfaces, 12946 * though it only sets up the resolver for v6 12947 * if it's an xresolv interface (one using an external resolver). 12948 * Honors ILLF_NOARP. 12949 * The boolean value arp_just_publish, if B_TRUE, indicates that 12950 * it only needs to send an AR_ENTRY_ADD message up to ARP for 12951 * IPv4 interfaces. Currently, B_TRUE is only set when this 12952 * function is called by ip_rput_dlpi_writer() to handle 12953 * asynchronous hardware address change notification. 12954 * Returns error on failure. 12955 */ 12956 int 12957 ipif_resolver_up(ipif_t *ipif, boolean_t arp_just_publish) 12958 { 12959 caddr_t addr; 12960 mblk_t *arp_up_mp = NULL; 12961 mblk_t *arp_down_mp = NULL; 12962 mblk_t *arp_add_mp = NULL; 12963 mblk_t *arp_del_mp = NULL; 12964 mblk_t *arp_add_mapping_mp = NULL; 12965 mblk_t *arp_del_mapping_mp = NULL; 12966 ill_t *ill = ipif->ipif_ill; 12967 uchar_t *area_p = NULL; 12968 uchar_t *ared_p = NULL; 12969 int err = ENOMEM; 12970 12971 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12972 ipif->ipif_ill->ill_name, ipif->ipif_id, 12973 (uint_t)ipif->ipif_flags)); 12974 ASSERT(IAM_WRITER_IPIF(ipif)); 12975 12976 if ((ill->ill_net_type != IRE_IF_RESOLVER) || 12977 (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))) { 12978 return (0); 12979 } 12980 12981 if (ill->ill_isv6) { 12982 /* 12983 * External resolver for IPv6 12984 */ 12985 ASSERT(!arp_just_publish); 12986 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12987 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 12988 area_p = (uchar_t *)&ip6_area_template; 12989 ared_p = (uchar_t *)&ip6_ared_template; 12990 } 12991 } else { 12992 /* 12993 * IPv4 arp case. If the ARP stream has already started 12994 * closing, fail this request for ARP bringup. Else 12995 * record the fact that an ARP bringup is pending. 12996 */ 12997 mutex_enter(&ill->ill_lock); 12998 if (ill->ill_arp_closing) { 12999 mutex_exit(&ill->ill_lock); 13000 err = EINVAL; 13001 goto failed; 13002 } else { 13003 if (ill->ill_ipif_up_count == 0) 13004 ill->ill_arp_bringup_pending = 1; 13005 mutex_exit(&ill->ill_lock); 13006 } 13007 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13008 addr = (caddr_t)&ipif->ipif_lcl_addr; 13009 area_p = (uchar_t *)&ip_area_template; 13010 ared_p = (uchar_t *)&ip_ared_template; 13011 } 13012 } 13013 13014 /* 13015 * Add an entry for the local address in ARP only if it 13016 * is not UNNUMBERED and the address is not INADDR_ANY. 13017 */ 13018 if (((ipif->ipif_flags & IPIF_UNNUMBERED) == 0) && area_p != NULL) { 13019 /* Now ask ARP to publish our address. */ 13020 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13021 if (arp_add_mp == NULL) 13022 goto failed; 13023 if (arp_just_publish) { 13024 /* 13025 * Copy the new hardware address and length into 13026 * arp_add_mp to be sent to ARP. 13027 */ 13028 area_t *area = (area_t *)arp_add_mp->b_rptr; 13029 area->area_hw_addr_length = 13030 ill->ill_phys_addr_length; 13031 bcopy((char *)ill->ill_phys_addr, 13032 ((char *)area + area->area_hw_addr_offset), 13033 area->area_hw_addr_length); 13034 } 13035 13036 ((area_t *)arp_add_mp->b_rptr)->area_flags = 13037 ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 13038 13039 if (arp_just_publish) 13040 goto arp_setup_multicast; 13041 13042 /* 13043 * Allocate an ARP deletion message so we know we can tell ARP 13044 * when the interface goes down. 13045 */ 13046 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13047 if (arp_del_mp == NULL) 13048 goto failed; 13049 13050 } else { 13051 if (arp_just_publish) 13052 goto done; 13053 } 13054 /* 13055 * Need to bring up ARP or setup multicast mapping only 13056 * when the first interface is coming UP. 13057 */ 13058 if (ill->ill_ipif_up_count != 0) 13059 goto done; 13060 13061 /* 13062 * Allocate an ARP down message (to be saved) and an ARP up 13063 * message. 13064 */ 13065 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13066 if (arp_down_mp == NULL) 13067 goto failed; 13068 13069 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13070 if (arp_up_mp == NULL) 13071 goto failed; 13072 13073 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13074 goto done; 13075 13076 arp_setup_multicast: 13077 /* 13078 * Setup the multicast mappings. This function initializes 13079 * ill_arp_del_mapping_mp also. This does not need to be done for 13080 * IPv6. 13081 */ 13082 if (!ill->ill_isv6) { 13083 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13084 if (err != 0) 13085 goto failed; 13086 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13087 ASSERT(arp_add_mapping_mp != NULL); 13088 } 13089 13090 done:; 13091 if (arp_del_mp != NULL) { 13092 ASSERT(ipif->ipif_arp_del_mp == NULL); 13093 ipif->ipif_arp_del_mp = arp_del_mp; 13094 } 13095 if (arp_down_mp != NULL) { 13096 ASSERT(ill->ill_arp_down_mp == NULL); 13097 ill->ill_arp_down_mp = arp_down_mp; 13098 } 13099 if (arp_del_mapping_mp != NULL) { 13100 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13101 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13102 } 13103 if (arp_up_mp != NULL) { 13104 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13105 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13106 putnext(ill->ill_rq, arp_up_mp); 13107 } 13108 if (arp_add_mp != NULL) { 13109 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13110 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13111 putnext(ill->ill_rq, arp_add_mp); 13112 } 13113 if (arp_add_mapping_mp != NULL) { 13114 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13115 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13116 putnext(ill->ill_rq, arp_add_mapping_mp); 13117 } 13118 if (arp_just_publish) 13119 return (0); 13120 13121 if (ill->ill_flags & ILLF_NOARP) 13122 err = ill_arp_off(ill); 13123 else 13124 err = ill_arp_on(ill); 13125 if (err) { 13126 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13127 freemsg(ipif->ipif_arp_del_mp); 13128 if (arp_down_mp != NULL) 13129 freemsg(ill->ill_arp_down_mp); 13130 if (ill->ill_arp_del_mapping_mp != NULL) 13131 freemsg(ill->ill_arp_del_mapping_mp); 13132 ipif->ipif_arp_del_mp = NULL; 13133 ill->ill_arp_down_mp = NULL; 13134 ill->ill_arp_del_mapping_mp = NULL; 13135 return (err); 13136 } 13137 return (ill->ill_ipif_up_count != 0 ? 0 : EINPROGRESS); 13138 13139 failed:; 13140 ip1dbg(("ipif_resolver_up: FAILED\n")); 13141 freemsg(arp_add_mp); 13142 freemsg(arp_del_mp); 13143 freemsg(arp_add_mapping_mp); 13144 freemsg(arp_up_mp); 13145 freemsg(arp_down_mp); 13146 ill->ill_arp_bringup_pending = 0; 13147 return (err); 13148 } 13149 13150 /* 13151 * Wakeup all threads waiting to enter the ipsq, and sleeping 13152 * on any of the ills in this ipsq. The ill_lock of the ill 13153 * must be held so that waiters don't miss wakeups 13154 */ 13155 static void 13156 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13157 { 13158 phyint_t *phyint; 13159 13160 phyint = ipsq->ipsq_phyint_list; 13161 while (phyint != NULL) { 13162 if (phyint->phyint_illv4) { 13163 if (!caller_holds_lock) 13164 mutex_enter(&phyint->phyint_illv4->ill_lock); 13165 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13166 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13167 if (!caller_holds_lock) 13168 mutex_exit(&phyint->phyint_illv4->ill_lock); 13169 } 13170 if (phyint->phyint_illv6) { 13171 if (!caller_holds_lock) 13172 mutex_enter(&phyint->phyint_illv6->ill_lock); 13173 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13174 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13175 if (!caller_holds_lock) 13176 mutex_exit(&phyint->phyint_illv6->ill_lock); 13177 } 13178 phyint = phyint->phyint_ipsq_next; 13179 } 13180 } 13181 13182 static ipsq_t * 13183 ipsq_create(char *groupname) 13184 { 13185 ipsq_t *ipsq; 13186 13187 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13188 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13189 if (ipsq == NULL) { 13190 return (NULL); 13191 } 13192 13193 if (groupname != NULL) 13194 (void) strcpy(ipsq->ipsq_name, groupname); 13195 else 13196 ipsq->ipsq_name[0] = '\0'; 13197 13198 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13199 ipsq->ipsq_flags |= IPSQ_GROUP; 13200 ipsq->ipsq_next = ipsq_g_head; 13201 ipsq_g_head = ipsq; 13202 return (ipsq); 13203 } 13204 13205 /* 13206 * Return an ipsq correspoding to the groupname. If 'create' is true 13207 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13208 * uniquely with an IPMP group. However during IPMP groupname operations, 13209 * multiple IPMP groups may be associated with a single ipsq. But no 13210 * IPMP group can be associated with more than 1 ipsq at any time. 13211 * For example 13212 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13213 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13214 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13215 * 13216 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13217 * status shown below during the execution of the above command. 13218 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13219 * 13220 * After the completion of the above groupname command we return to the stable 13221 * state shown below. 13222 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13223 * hme4 mpk17-85 ipsq2 mpk17-85 1 13224 * 13225 * Because of the above, we don't search based on the ipsq_name since that 13226 * would miss the correct ipsq during certain windows as shown above. 13227 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13228 * natural state. 13229 */ 13230 static ipsq_t * 13231 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 13232 { 13233 ipsq_t *ipsq; 13234 int group_len; 13235 phyint_t *phyint; 13236 13237 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13238 13239 group_len = strlen(groupname); 13240 ASSERT(group_len != 0); 13241 group_len++; 13242 13243 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 13244 /* 13245 * When an ipsq is being split, and ill_split_ipsq 13246 * calls this function, we exclude it from being considered. 13247 */ 13248 if (ipsq == exclude_ipsq) 13249 continue; 13250 13251 /* 13252 * Compare against the ipsq_name. The groupname change happens 13253 * in 2 phases. The 1st phase merges the from group into 13254 * the to group's ipsq, by calling ill_merge_groups and restarts 13255 * the ioctl. The 2nd phase then locates the ipsq again thru 13256 * ipsq_name. At this point the phyint_groupname has not been 13257 * updated. 13258 */ 13259 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13260 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13261 /* 13262 * Verify that an ipmp groupname is exactly 13263 * part of 1 ipsq and is not found in any other 13264 * ipsq. 13265 */ 13266 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 13267 NULL); 13268 return (ipsq); 13269 } 13270 13271 /* 13272 * Comparison against ipsq_name alone is not sufficient. 13273 * In the case when groups are currently being 13274 * merged, the ipsq could hold other IPMP groups temporarily. 13275 * so we walk the phyint list and compare against the 13276 * phyint_groupname as well. 13277 */ 13278 phyint = ipsq->ipsq_phyint_list; 13279 while (phyint != NULL) { 13280 if ((group_len == phyint->phyint_groupname_len) && 13281 (bcmp(phyint->phyint_groupname, groupname, 13282 group_len) == 0)) { 13283 /* 13284 * Verify that an ipmp groupname is exactly 13285 * part of 1 ipsq and is not found in any other 13286 * ipsq. 13287 */ 13288 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 13289 == NULL); 13290 return (ipsq); 13291 } 13292 phyint = phyint->phyint_ipsq_next; 13293 } 13294 } 13295 if (create) 13296 ipsq = ipsq_create(groupname); 13297 return (ipsq); 13298 } 13299 13300 static void 13301 ipsq_delete(ipsq_t *ipsq) 13302 { 13303 ipsq_t *nipsq; 13304 ipsq_t *pipsq = NULL; 13305 13306 /* 13307 * We don't hold the ipsq lock, but we are sure no new 13308 * messages can land up, since the ipsq_refs is zero. 13309 * i.e. this ipsq is unnamed and no phyint or phyint group 13310 * is associated with this ipsq. (Lookups are based on ill_name 13311 * or phyint_group_name) 13312 */ 13313 ASSERT(ipsq->ipsq_refs == 0); 13314 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 13315 ASSERT(ipsq->ipsq_pending_mp == NULL); 13316 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 13317 /* 13318 * This is not the ipsq of an IPMP group. 13319 */ 13320 kmem_free(ipsq, sizeof (ipsq_t)); 13321 return; 13322 } 13323 13324 rw_enter(&ill_g_lock, RW_WRITER); 13325 13326 /* 13327 * Locate the ipsq before we can remove it from 13328 * the singly linked list of ipsq's. 13329 */ 13330 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 13331 if (nipsq == ipsq) { 13332 break; 13333 } 13334 pipsq = nipsq; 13335 } 13336 13337 ASSERT(nipsq == ipsq); 13338 13339 /* unlink ipsq from the list */ 13340 if (pipsq != NULL) 13341 pipsq->ipsq_next = ipsq->ipsq_next; 13342 else 13343 ipsq_g_head = ipsq->ipsq_next; 13344 kmem_free(ipsq, sizeof (ipsq_t)); 13345 rw_exit(&ill_g_lock); 13346 } 13347 13348 static void 13349 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 13350 queue_t *q) 13351 13352 { 13353 13354 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 13355 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 13356 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 13357 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 13358 ASSERT(current_mp != NULL); 13359 13360 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 13361 NEW_OP, NULL); 13362 13363 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 13364 new_ipsq->ipsq_xopq_mphead != NULL); 13365 13366 /* 13367 * move from old ipsq to the new ipsq. 13368 */ 13369 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 13370 if (old_ipsq->ipsq_xopq_mphead != NULL) 13371 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 13372 13373 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 13374 } 13375 13376 void 13377 ill_group_cleanup(ill_t *ill) 13378 { 13379 ill_t *ill_v4; 13380 ill_t *ill_v6; 13381 ipif_t *ipif; 13382 13383 ill_v4 = ill->ill_phyint->phyint_illv4; 13384 ill_v6 = ill->ill_phyint->phyint_illv6; 13385 13386 if (ill_v4 != NULL) { 13387 mutex_enter(&ill_v4->ill_lock); 13388 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13389 ipif = ipif->ipif_next) { 13390 IPIF_UNMARK_MOVING(ipif); 13391 } 13392 ill_v4->ill_up_ipifs = B_FALSE; 13393 mutex_exit(&ill_v4->ill_lock); 13394 } 13395 13396 if (ill_v6 != NULL) { 13397 mutex_enter(&ill_v6->ill_lock); 13398 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13399 ipif = ipif->ipif_next) { 13400 IPIF_UNMARK_MOVING(ipif); 13401 } 13402 ill_v6->ill_up_ipifs = B_FALSE; 13403 mutex_exit(&ill_v6->ill_lock); 13404 } 13405 } 13406 /* 13407 * This function is called when an ill has had a change in its group status 13408 * to bring up all the ipifs that were up before the change. 13409 */ 13410 int 13411 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13412 { 13413 ipif_t *ipif; 13414 ill_t *ill_v4; 13415 ill_t *ill_v6; 13416 ill_t *from_ill; 13417 int err = 0; 13418 13419 13420 ASSERT(IAM_WRITER_ILL(ill)); 13421 13422 /* 13423 * Except for ipif_state_flags and ill_state_flags the other 13424 * fields of the ipif/ill that are modified below are protected 13425 * implicitly since we are a writer. We would have tried to down 13426 * even an ipif that was already down, in ill_down_ipifs. So we 13427 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 13428 */ 13429 ill_v4 = ill->ill_phyint->phyint_illv4; 13430 ill_v6 = ill->ill_phyint->phyint_illv6; 13431 if (ill_v4 != NULL) { 13432 ill_v4->ill_up_ipifs = B_TRUE; 13433 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13434 ipif = ipif->ipif_next) { 13435 mutex_enter(&ill_v4->ill_lock); 13436 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13437 IPIF_UNMARK_MOVING(ipif); 13438 mutex_exit(&ill_v4->ill_lock); 13439 if (ipif->ipif_was_up) { 13440 if (!(ipif->ipif_flags & IPIF_UP)) 13441 err = ipif_up(ipif, q, mp); 13442 ipif->ipif_was_up = B_FALSE; 13443 if (err != 0) { 13444 /* 13445 * Can there be any other error ? 13446 */ 13447 ASSERT(err == EINPROGRESS); 13448 return (err); 13449 } 13450 } 13451 } 13452 mutex_enter(&ill_v4->ill_lock); 13453 ill_v4->ill_state_flags &= ~ILL_CHANGING; 13454 mutex_exit(&ill_v4->ill_lock); 13455 ill_v4->ill_up_ipifs = B_FALSE; 13456 if (ill_v4->ill_move_in_progress) { 13457 ASSERT(ill_v4->ill_move_peer != NULL); 13458 ill_v4->ill_move_in_progress = B_FALSE; 13459 from_ill = ill_v4->ill_move_peer; 13460 from_ill->ill_move_in_progress = B_FALSE; 13461 from_ill->ill_move_peer = NULL; 13462 mutex_enter(&from_ill->ill_lock); 13463 from_ill->ill_state_flags &= ~ILL_CHANGING; 13464 mutex_exit(&from_ill->ill_lock); 13465 if (ill_v6 == NULL) { 13466 if (from_ill->ill_phyint->phyint_flags & 13467 PHYI_STANDBY) { 13468 phyint_inactive(from_ill->ill_phyint); 13469 } 13470 if (ill_v4->ill_phyint->phyint_flags & 13471 PHYI_STANDBY) { 13472 phyint_inactive(ill_v4->ill_phyint); 13473 } 13474 } 13475 ill_v4->ill_move_peer = NULL; 13476 } 13477 } 13478 13479 if (ill_v6 != NULL) { 13480 ill_v6->ill_up_ipifs = B_TRUE; 13481 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13482 ipif = ipif->ipif_next) { 13483 mutex_enter(&ill_v6->ill_lock); 13484 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13485 IPIF_UNMARK_MOVING(ipif); 13486 mutex_exit(&ill_v6->ill_lock); 13487 if (ipif->ipif_was_up) { 13488 if (!(ipif->ipif_flags & IPIF_UP)) 13489 err = ipif_up(ipif, q, mp); 13490 ipif->ipif_was_up = B_FALSE; 13491 if (err != 0) { 13492 /* 13493 * Can there be any other error ? 13494 */ 13495 ASSERT(err == EINPROGRESS); 13496 return (err); 13497 } 13498 } 13499 } 13500 mutex_enter(&ill_v6->ill_lock); 13501 ill_v6->ill_state_flags &= ~ILL_CHANGING; 13502 mutex_exit(&ill_v6->ill_lock); 13503 ill_v6->ill_up_ipifs = B_FALSE; 13504 if (ill_v6->ill_move_in_progress) { 13505 ASSERT(ill_v6->ill_move_peer != NULL); 13506 ill_v6->ill_move_in_progress = B_FALSE; 13507 from_ill = ill_v6->ill_move_peer; 13508 from_ill->ill_move_in_progress = B_FALSE; 13509 from_ill->ill_move_peer = NULL; 13510 mutex_enter(&from_ill->ill_lock); 13511 from_ill->ill_state_flags &= ~ILL_CHANGING; 13512 mutex_exit(&from_ill->ill_lock); 13513 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 13514 phyint_inactive(from_ill->ill_phyint); 13515 } 13516 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 13517 phyint_inactive(ill_v6->ill_phyint); 13518 } 13519 ill_v6->ill_move_peer = NULL; 13520 } 13521 } 13522 return (0); 13523 } 13524 13525 /* 13526 * bring down all the approriate ipifs. 13527 */ 13528 /* ARGSUSED */ 13529 static void 13530 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 13531 { 13532 ipif_t *ipif; 13533 13534 ASSERT(IAM_WRITER_ILL(ill)); 13535 13536 /* 13537 * Except for ipif_state_flags the other fields of the ipif/ill that 13538 * are modified below are protected implicitly since we are a writer 13539 */ 13540 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13541 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 13542 continue; 13543 if (index == 0 || index == ipif->ipif_orig_ifindex) { 13544 /* 13545 * We go through the ipif_down logic even if the ipif 13546 * is already down, since routes can be added based 13547 * on down ipifs. Going through ipif_down once again 13548 * will delete any IREs created based on these routes. 13549 */ 13550 if (ipif->ipif_flags & IPIF_UP) 13551 ipif->ipif_was_up = B_TRUE; 13552 /* 13553 * If called with chk_nofailover true ipif is moving. 13554 */ 13555 mutex_enter(&ill->ill_lock); 13556 if (chk_nofailover) { 13557 ipif->ipif_state_flags |= 13558 IPIF_MOVING | IPIF_CHANGING; 13559 } else { 13560 ipif->ipif_state_flags |= IPIF_CHANGING; 13561 } 13562 mutex_exit(&ill->ill_lock); 13563 /* 13564 * Need to re-create net/subnet bcast ires if 13565 * they are dependent on ipif. 13566 */ 13567 if (!ipif->ipif_isv6) 13568 ipif_check_bcast_ires(ipif); 13569 (void) ipif_logical_down(ipif, NULL, NULL); 13570 ipif_down_tail(ipif); 13571 /* 13572 * We don't do ipif_multicast_down for IPv4 in 13573 * ipif_down. We need to set this so that 13574 * ipif_multicast_up will join the 13575 * ALLHOSTS_GROUP on to_ill. 13576 */ 13577 ipif->ipif_multicast_up = B_FALSE; 13578 } 13579 } 13580 } 13581 13582 #define IPSQ_INC_REF(ipsq) { \ 13583 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13584 (ipsq)->ipsq_refs++; \ 13585 } 13586 13587 #define IPSQ_DEC_REF(ipsq) { \ 13588 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13589 (ipsq)->ipsq_refs--; \ 13590 if ((ipsq)->ipsq_refs == 0) \ 13591 (ipsq)->ipsq_name[0] = '\0'; \ 13592 } 13593 13594 /* 13595 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13596 * new_ipsq. 13597 */ 13598 static void 13599 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 13600 { 13601 phyint_t *phyint; 13602 phyint_t *next_phyint; 13603 13604 /* 13605 * To change the ipsq of an ill, we need to hold the ill_g_lock as 13606 * writer and the ill_lock of the ill in question. Also the dest 13607 * ipsq can't vanish while we hold the ill_g_lock as writer. 13608 */ 13609 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13610 13611 phyint = cur_ipsq->ipsq_phyint_list; 13612 cur_ipsq->ipsq_phyint_list = NULL; 13613 while (phyint != NULL) { 13614 next_phyint = phyint->phyint_ipsq_next; 13615 IPSQ_DEC_REF(cur_ipsq); 13616 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 13617 new_ipsq->ipsq_phyint_list = phyint; 13618 IPSQ_INC_REF(new_ipsq); 13619 phyint->phyint_ipsq = new_ipsq; 13620 phyint = next_phyint; 13621 } 13622 } 13623 13624 #define SPLIT_SUCCESS 0 13625 #define SPLIT_NOT_NEEDED 1 13626 #define SPLIT_FAILED 2 13627 13628 int 13629 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 13630 { 13631 ipsq_t *newipsq = NULL; 13632 13633 /* 13634 * Assertions denote pre-requisites for changing the ipsq of 13635 * a phyint 13636 */ 13637 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13638 /* 13639 * <ill-phyint> assocs can't change while ill_g_lock 13640 * is held as writer. See ill_phyint_reinit() 13641 */ 13642 ASSERT(phyint->phyint_illv4 == NULL || 13643 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13644 ASSERT(phyint->phyint_illv6 == NULL || 13645 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13646 13647 if ((phyint->phyint_groupname_len != 13648 (strlen(cur_ipsq->ipsq_name) + 1) || 13649 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 13650 phyint->phyint_groupname_len) != 0)) { 13651 /* 13652 * Once we fail in creating a new ipsq due to memory shortage, 13653 * don't attempt to create new ipsq again, based on another 13654 * phyint, since we want all phyints belonging to an IPMP group 13655 * to be in the same ipsq even in the event of mem alloc fails. 13656 */ 13657 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 13658 cur_ipsq); 13659 if (newipsq == NULL) { 13660 /* Memory allocation failure */ 13661 return (SPLIT_FAILED); 13662 } else { 13663 /* ipsq_refs protected by ill_g_lock (writer) */ 13664 IPSQ_DEC_REF(cur_ipsq); 13665 phyint->phyint_ipsq = newipsq; 13666 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 13667 newipsq->ipsq_phyint_list = phyint; 13668 IPSQ_INC_REF(newipsq); 13669 return (SPLIT_SUCCESS); 13670 } 13671 } 13672 return (SPLIT_NOT_NEEDED); 13673 } 13674 13675 /* 13676 * The ill locks of the phyint and the ill_g_lock (writer) must be held 13677 * to do this split 13678 */ 13679 static int 13680 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 13681 { 13682 ipsq_t *newipsq; 13683 13684 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13685 /* 13686 * <ill-phyint> assocs can't change while ill_g_lock 13687 * is held as writer. See ill_phyint_reinit() 13688 */ 13689 13690 ASSERT(phyint->phyint_illv4 == NULL || 13691 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13692 ASSERT(phyint->phyint_illv6 == NULL || 13693 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13694 13695 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 13696 phyint->phyint_illv4: phyint->phyint_illv6)) { 13697 /* 13698 * ipsq_init failed due to no memory 13699 * caller will use the same ipsq 13700 */ 13701 return (SPLIT_FAILED); 13702 } 13703 13704 /* ipsq_ref is protected by ill_g_lock (writer) */ 13705 IPSQ_DEC_REF(cur_ipsq); 13706 13707 /* 13708 * This is a new ipsq that is unknown to the world. 13709 * So we don't need to hold ipsq_lock, 13710 */ 13711 newipsq = phyint->phyint_ipsq; 13712 newipsq->ipsq_writer = NULL; 13713 newipsq->ipsq_reentry_cnt--; 13714 ASSERT(newipsq->ipsq_reentry_cnt == 0); 13715 #ifdef ILL_DEBUG 13716 newipsq->ipsq_depth = 0; 13717 #endif 13718 13719 return (SPLIT_SUCCESS); 13720 } 13721 13722 /* 13723 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13724 * ipsq's representing their individual groups or themselves. Return 13725 * whether split needs to be retried again later. 13726 */ 13727 static boolean_t 13728 ill_split_ipsq(ipsq_t *cur_ipsq) 13729 { 13730 phyint_t *phyint; 13731 phyint_t *next_phyint; 13732 int error; 13733 boolean_t need_retry = B_FALSE; 13734 13735 phyint = cur_ipsq->ipsq_phyint_list; 13736 cur_ipsq->ipsq_phyint_list = NULL; 13737 while (phyint != NULL) { 13738 next_phyint = phyint->phyint_ipsq_next; 13739 /* 13740 * 'created' will tell us whether the callee actually 13741 * created an ipsq. Lack of memory may force the callee 13742 * to return without creating an ipsq. 13743 */ 13744 if (phyint->phyint_groupname == NULL) { 13745 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 13746 } else { 13747 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 13748 need_retry); 13749 } 13750 13751 switch (error) { 13752 case SPLIT_FAILED: 13753 need_retry = B_TRUE; 13754 /* FALLTHRU */ 13755 case SPLIT_NOT_NEEDED: 13756 /* 13757 * Keep it on the list. 13758 */ 13759 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 13760 cur_ipsq->ipsq_phyint_list = phyint; 13761 break; 13762 case SPLIT_SUCCESS: 13763 break; 13764 default: 13765 ASSERT(0); 13766 } 13767 13768 phyint = next_phyint; 13769 } 13770 return (need_retry); 13771 } 13772 13773 /* 13774 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 13775 * and return the ills in the list. This list will be 13776 * needed to unlock all the ills later on by the caller. 13777 * The <ill-ipsq> associations could change between the 13778 * lock and unlock. Hence the unlock can't traverse the 13779 * ipsq to get the list of ills. 13780 */ 13781 static int 13782 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 13783 { 13784 int cnt = 0; 13785 phyint_t *phyint; 13786 13787 /* 13788 * The caller holds ill_g_lock to ensure that the ill memberships 13789 * of the ipsq don't change 13790 */ 13791 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13792 13793 phyint = ipsq->ipsq_phyint_list; 13794 while (phyint != NULL) { 13795 if (phyint->phyint_illv4 != NULL) { 13796 ASSERT(cnt < list_max); 13797 list[cnt++] = phyint->phyint_illv4; 13798 } 13799 if (phyint->phyint_illv6 != NULL) { 13800 ASSERT(cnt < list_max); 13801 list[cnt++] = phyint->phyint_illv6; 13802 } 13803 phyint = phyint->phyint_ipsq_next; 13804 } 13805 ill_lock_ills(list, cnt); 13806 return (cnt); 13807 } 13808 13809 void 13810 ill_lock_ills(ill_t **list, int cnt) 13811 { 13812 int i; 13813 13814 if (cnt > 1) { 13815 boolean_t try_again; 13816 do { 13817 try_again = B_FALSE; 13818 for (i = 0; i < cnt - 1; i++) { 13819 if (list[i] < list[i + 1]) { 13820 ill_t *tmp; 13821 13822 /* swap the elements */ 13823 tmp = list[i]; 13824 list[i] = list[i + 1]; 13825 list[i + 1] = tmp; 13826 try_again = B_TRUE; 13827 } 13828 } 13829 } while (try_again); 13830 } 13831 13832 for (i = 0; i < cnt; i++) { 13833 if (i == 0) { 13834 if (list[i] != NULL) 13835 mutex_enter(&list[i]->ill_lock); 13836 else 13837 return; 13838 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13839 mutex_enter(&list[i]->ill_lock); 13840 } 13841 } 13842 } 13843 13844 void 13845 ill_unlock_ills(ill_t **list, int cnt) 13846 { 13847 int i; 13848 13849 for (i = 0; i < cnt; i++) { 13850 if ((i == 0) && (list[i] != NULL)) { 13851 mutex_exit(&list[i]->ill_lock); 13852 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13853 mutex_exit(&list[i]->ill_lock); 13854 } 13855 } 13856 } 13857 13858 /* 13859 * Merge all the ills from 1 ipsq group into another ipsq group. 13860 * The source ipsq group is specified by the ipsq associated with 13861 * 'from_ill'. The destination ipsq group is specified by the ipsq 13862 * associated with 'to_ill' or 'groupname' respectively. 13863 * Note that ipsq itself does not have a reference count mechanism 13864 * and functions don't look up an ipsq and pass it around. Instead 13865 * functions pass around an ill or groupname, and the ipsq is looked 13866 * up from the ill or groupname and the required operation performed 13867 * atomically with the lookup on the ipsq. 13868 */ 13869 static int 13870 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 13871 queue_t *q) 13872 { 13873 ipsq_t *old_ipsq; 13874 ipsq_t *new_ipsq; 13875 ill_t **ill_list; 13876 int cnt; 13877 size_t ill_list_size; 13878 boolean_t became_writer_on_new_sq = B_FALSE; 13879 13880 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 13881 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 13882 13883 /* 13884 * Need to hold ill_g_lock as writer and also the ill_lock to 13885 * change the <ill-ipsq> assoc of an ill. Need to hold the 13886 * ipsq_lock to prevent new messages from landing on an ipsq. 13887 */ 13888 rw_enter(&ill_g_lock, RW_WRITER); 13889 13890 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 13891 if (groupname != NULL) 13892 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 13893 else { 13894 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 13895 } 13896 13897 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 13898 13899 /* 13900 * both groups are on the same ipsq. 13901 */ 13902 if (old_ipsq == new_ipsq) { 13903 rw_exit(&ill_g_lock); 13904 return (0); 13905 } 13906 13907 cnt = old_ipsq->ipsq_refs << 1; 13908 ill_list_size = cnt * sizeof (ill_t *); 13909 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 13910 if (ill_list == NULL) { 13911 rw_exit(&ill_g_lock); 13912 return (ENOMEM); 13913 } 13914 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 13915 13916 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 13917 mutex_enter(&new_ipsq->ipsq_lock); 13918 if ((new_ipsq->ipsq_writer == NULL && 13919 new_ipsq->ipsq_current_ipif == NULL) || 13920 (new_ipsq->ipsq_writer == curthread)) { 13921 new_ipsq->ipsq_writer = curthread; 13922 new_ipsq->ipsq_reentry_cnt++; 13923 became_writer_on_new_sq = B_TRUE; 13924 } 13925 13926 /* 13927 * We are holding ill_g_lock as writer and all the ill locks of 13928 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 13929 * message can land up on the old ipsq even though we don't hold the 13930 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 13931 */ 13932 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 13933 13934 /* 13935 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 13936 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 13937 * assocs. till we release the ill_g_lock, and hence it can't vanish. 13938 */ 13939 ill_merge_ipsq(old_ipsq, new_ipsq); 13940 13941 /* 13942 * Mark the new ipsq as needing a split since it is currently 13943 * being shared by more than 1 IPMP group. The split will 13944 * occur at the end of ipsq_exit 13945 */ 13946 new_ipsq->ipsq_split = B_TRUE; 13947 13948 /* Now release all the locks */ 13949 mutex_exit(&new_ipsq->ipsq_lock); 13950 ill_unlock_ills(ill_list, cnt); 13951 rw_exit(&ill_g_lock); 13952 13953 kmem_free(ill_list, ill_list_size); 13954 13955 /* 13956 * If we succeeded in becoming writer on the new ipsq, then 13957 * drain the new ipsq and start processing all enqueued messages 13958 * including the current ioctl we are processing which is either 13959 * a set groupname or failover/failback. 13960 */ 13961 if (became_writer_on_new_sq) 13962 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 13963 13964 /* 13965 * syncq has been changed and all the messages have been moved. 13966 */ 13967 mutex_enter(&old_ipsq->ipsq_lock); 13968 old_ipsq->ipsq_current_ipif = NULL; 13969 mutex_exit(&old_ipsq->ipsq_lock); 13970 return (EINPROGRESS); 13971 } 13972 13973 /* 13974 * Delete and add the loopback copy and non-loopback copy of 13975 * the BROADCAST ire corresponding to ill and addr. Used to 13976 * group broadcast ires together when ill becomes part of 13977 * a group. 13978 * 13979 * This function is also called when ill is leaving the group 13980 * so that the ires belonging to the group gets re-grouped. 13981 */ 13982 static void 13983 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 13984 { 13985 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 13986 ire_t **ire_ptpn = &ire_head; 13987 13988 /* 13989 * The loopback and non-loopback IREs are inserted in the order in which 13990 * they're found, on the basis that they are correctly ordered (loopback 13991 * first). 13992 */ 13993 for (;;) { 13994 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 13995 ALL_ZONES, MATCH_IRE_TYPE | MATCH_IRE_ILL); 13996 if (ire == NULL) 13997 break; 13998 13999 /* 14000 * we are passing in KM_SLEEP because it is not easy to 14001 * go back to a sane state in case of memory failure. 14002 */ 14003 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14004 ASSERT(nire != NULL); 14005 bzero(nire, sizeof (ire_t)); 14006 /* 14007 * Don't use ire_max_frag directly since we don't 14008 * hold on to 'ire' until we add the new ire 'nire' and 14009 * we don't want the new ire to have a dangling reference 14010 * to 'ire'. The ire_max_frag of a broadcast ire must 14011 * be in sync with the ipif_mtu of the associate ipif. 14012 * For eg. this happens as a result of SIOCSLIFNAME, 14013 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14014 * the driver. A change in ire_max_frag triggered as 14015 * as a result of path mtu discovery, or due to an 14016 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14017 * route change -mtu command does not apply to broadcast ires. 14018 * 14019 * XXX We need a recovery strategy here if ire_init fails 14020 */ 14021 if (ire_init(nire, 14022 (uchar_t *)&ire->ire_addr, 14023 (uchar_t *)&ire->ire_mask, 14024 (uchar_t *)&ire->ire_src_addr, 14025 (uchar_t *)&ire->ire_gateway_addr, 14026 (uchar_t *)&ire->ire_in_src_addr, 14027 ire->ire_stq == NULL ? &ip_loopback_mtu : 14028 &ire->ire_ipif->ipif_mtu, 14029 ire->ire_fp_mp, 14030 ire->ire_rfq, 14031 ire->ire_stq, 14032 ire->ire_type, 14033 ire->ire_dlureq_mp, 14034 ire->ire_ipif, 14035 ire->ire_in_ill, 14036 ire->ire_cmask, 14037 ire->ire_phandle, 14038 ire->ire_ihandle, 14039 ire->ire_flags, 14040 &ire->ire_uinfo) == NULL) { 14041 cmn_err(CE_PANIC, "ire_init() failed"); 14042 } 14043 ire_delete(ire); 14044 ire_refrele(ire); 14045 14046 /* 14047 * The newly created IREs are inserted at the tail of the list 14048 * starting with ire_head. As we've just allocated them no one 14049 * knows about them so it's safe. 14050 */ 14051 *ire_ptpn = nire; 14052 ire_ptpn = &nire->ire_next; 14053 } 14054 14055 for (nire = ire_head; nire != NULL; nire = nire_next) { 14056 int error; 14057 ire_t *oire; 14058 /* unlink the IRE from our list before calling ire_add() */ 14059 nire_next = nire->ire_next; 14060 nire->ire_next = NULL; 14061 14062 /* ire_add adds the ire at the right place in the list */ 14063 oire = nire; 14064 error = ire_add(&nire, NULL, NULL, NULL); 14065 ASSERT(error == 0); 14066 ASSERT(oire == nire); 14067 ire_refrele(nire); /* Held in ire_add */ 14068 } 14069 } 14070 14071 /* 14072 * This function is usually called when an ill is inserted in 14073 * a group and all the ipifs are already UP. As all the ipifs 14074 * are already UP, the broadcast ires have already been created 14075 * and been inserted. But, ire_add_v4 would not have grouped properly. 14076 * We need to re-group for the benefit of ip_wput_ire which 14077 * expects BROADCAST ires to be grouped properly to avoid sending 14078 * more than one copy of the broadcast packet per group. 14079 * 14080 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14081 * because when ipif_up_done ends up calling this, ires have 14082 * already been added before illgrp_insert i.e before ill_group 14083 * has been initialized. 14084 */ 14085 static void 14086 ill_group_bcast_for_xmit(ill_t *ill) 14087 { 14088 ill_group_t *illgrp; 14089 ipif_t *ipif; 14090 ipaddr_t addr; 14091 ipaddr_t net_mask; 14092 ipaddr_t subnet_netmask; 14093 14094 illgrp = ill->ill_group; 14095 14096 /* 14097 * This function is called even when an ill is deleted from 14098 * the group. Hence, illgrp could be null. 14099 */ 14100 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14101 return; 14102 14103 /* 14104 * Delete all the BROADCAST ires matching this ill and add 14105 * them back. This time, ire_add_v4 should take care of 14106 * grouping them with others because ill is part of the 14107 * group. 14108 */ 14109 ill_bcast_delete_and_add(ill, 0); 14110 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14111 14112 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14113 14114 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14115 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14116 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14117 } else { 14118 net_mask = htonl(IN_CLASSA_NET); 14119 } 14120 addr = net_mask & ipif->ipif_subnet; 14121 ill_bcast_delete_and_add(ill, addr); 14122 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14123 14124 subnet_netmask = ipif->ipif_net_mask; 14125 addr = ipif->ipif_subnet; 14126 ill_bcast_delete_and_add(ill, addr); 14127 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14128 } 14129 } 14130 14131 /* 14132 * This function is called from illgrp_delete when ill is being deleted 14133 * from the group. 14134 * 14135 * As ill is not there in the group anymore, any address belonging 14136 * to this ill should be cleared of IRE_MARK_NORECV. 14137 */ 14138 static void 14139 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 14140 { 14141 ire_t *ire; 14142 irb_t *irb; 14143 14144 ASSERT(ill->ill_group == NULL); 14145 14146 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14147 ALL_ZONES, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14148 14149 if (ire != NULL) { 14150 /* 14151 * IPMP and plumbing operations are serialized on the ipsq, so 14152 * no one will insert or delete a broadcast ire under our feet. 14153 */ 14154 irb = ire->ire_bucket; 14155 rw_enter(&irb->irb_lock, RW_READER); 14156 ire_refrele(ire); 14157 14158 for (; ire != NULL; ire = ire->ire_next) { 14159 if (ire->ire_addr != addr) 14160 break; 14161 if (ire_to_ill(ire) != ill) 14162 continue; 14163 14164 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14165 ire->ire_marks &= ~IRE_MARK_NORECV; 14166 } 14167 rw_exit(&irb->irb_lock); 14168 } 14169 } 14170 14171 /* 14172 * This function must be called only after the broadcast ires 14173 * have been grouped together. For a given address addr, nominate 14174 * only one of the ires whose interface is not FAILED or OFFLINE. 14175 * 14176 * This is also called when an ipif goes down, so that we can nominate 14177 * a different ire with the same address for receiving. 14178 */ 14179 static void 14180 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 14181 { 14182 irb_t *irb; 14183 ire_t *ire; 14184 ire_t *ire1; 14185 ire_t *save_ire; 14186 ire_t **irep = NULL; 14187 boolean_t first = B_TRUE; 14188 ire_t *clear_ire = NULL; 14189 ire_t *start_ire = NULL; 14190 ire_t *new_lb_ire; 14191 ire_t *new_nlb_ire; 14192 boolean_t new_lb_ire_used = B_FALSE; 14193 boolean_t new_nlb_ire_used = B_FALSE; 14194 uint64_t match_flags; 14195 uint64_t phyi_flags; 14196 boolean_t fallback = B_FALSE; 14197 14198 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 14199 MATCH_IRE_TYPE); 14200 /* 14201 * We may not be able to find some ires if a previous 14202 * ire_create failed. This happens when an ipif goes 14203 * down and we are unable to create BROADCAST ires due 14204 * to memory failure. Thus, we have to check for NULL 14205 * below. This should handle the case for LOOPBACK, 14206 * POINTOPOINT and interfaces with some POINTOPOINT 14207 * logicals for which there are no BROADCAST ires. 14208 */ 14209 if (ire == NULL) 14210 return; 14211 /* 14212 * Currently IRE_BROADCASTS are deleted when an ipif 14213 * goes down which runs exclusively. Thus, setting 14214 * IRE_MARK_RCVD should not race with ire_delete marking 14215 * IRE_MARK_CONDEMNED. We grab the lock below just to 14216 * be consistent with other parts of the code that walks 14217 * a given bucket. 14218 */ 14219 save_ire = ire; 14220 irb = ire->ire_bucket; 14221 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14222 if (new_lb_ire == NULL) { 14223 ire_refrele(ire); 14224 return; 14225 } 14226 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14227 if (new_nlb_ire == NULL) { 14228 ire_refrele(ire); 14229 kmem_cache_free(ire_cache, new_lb_ire); 14230 return; 14231 } 14232 IRB_REFHOLD(irb); 14233 rw_enter(&irb->irb_lock, RW_WRITER); 14234 /* 14235 * Get to the first ire matching the address and the 14236 * group. If the address does not match we are done 14237 * as we could not find the IRE. If the address matches 14238 * we should get to the first one matching the group. 14239 */ 14240 while (ire != NULL) { 14241 if (ire->ire_addr != addr || 14242 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14243 break; 14244 } 14245 ire = ire->ire_next; 14246 } 14247 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14248 start_ire = ire; 14249 redo: 14250 while (ire != NULL && ire->ire_addr == addr && 14251 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14252 /* 14253 * The first ire for any address within a group 14254 * should always be the one with IRE_MARK_NORECV cleared 14255 * so that ip_wput_ire can avoid searching for one. 14256 * Note down the insertion point which will be used 14257 * later. 14258 */ 14259 if (first && (irep == NULL)) 14260 irep = ire->ire_ptpn; 14261 /* 14262 * PHYI_FAILED is set when the interface fails. 14263 * This interface might have become good, but the 14264 * daemon has not yet detected. We should still 14265 * not receive on this. PHYI_OFFLINE should never 14266 * be picked as this has been offlined and soon 14267 * be removed. 14268 */ 14269 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 14270 if (phyi_flags & PHYI_OFFLINE) { 14271 ire->ire_marks |= IRE_MARK_NORECV; 14272 ire = ire->ire_next; 14273 continue; 14274 } 14275 if (phyi_flags & match_flags) { 14276 ire->ire_marks |= IRE_MARK_NORECV; 14277 ire = ire->ire_next; 14278 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 14279 PHYI_INACTIVE) { 14280 fallback = B_TRUE; 14281 } 14282 continue; 14283 } 14284 if (first) { 14285 /* 14286 * We will move this to the front of the list later 14287 * on. 14288 */ 14289 clear_ire = ire; 14290 ire->ire_marks &= ~IRE_MARK_NORECV; 14291 } else { 14292 ire->ire_marks |= IRE_MARK_NORECV; 14293 } 14294 first = B_FALSE; 14295 ire = ire->ire_next; 14296 } 14297 /* 14298 * If we never nominated anybody, try nominating at least 14299 * an INACTIVE, if we found one. Do it only once though. 14300 */ 14301 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 14302 fallback) { 14303 match_flags = PHYI_FAILED; 14304 ire = start_ire; 14305 irep = NULL; 14306 goto redo; 14307 } 14308 ire_refrele(save_ire); 14309 14310 /* 14311 * irep non-NULL indicates that we entered the while loop 14312 * above. If clear_ire is at the insertion point, we don't 14313 * have to do anything. clear_ire will be NULL if all the 14314 * interfaces are failed. 14315 * 14316 * We cannot unlink and reinsert the ire at the right place 14317 * in the list since there can be other walkers of this bucket. 14318 * Instead we delete and recreate the ire 14319 */ 14320 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 14321 ire_t *clear_ire_stq = NULL; 14322 bzero(new_lb_ire, sizeof (ire_t)); 14323 /* XXX We need a recovery strategy here. */ 14324 if (ire_init(new_lb_ire, 14325 (uchar_t *)&clear_ire->ire_addr, 14326 (uchar_t *)&clear_ire->ire_mask, 14327 (uchar_t *)&clear_ire->ire_src_addr, 14328 (uchar_t *)&clear_ire->ire_gateway_addr, 14329 (uchar_t *)&clear_ire->ire_in_src_addr, 14330 &clear_ire->ire_max_frag, 14331 clear_ire->ire_fp_mp, 14332 clear_ire->ire_rfq, 14333 clear_ire->ire_stq, 14334 clear_ire->ire_type, 14335 clear_ire->ire_dlureq_mp, 14336 clear_ire->ire_ipif, 14337 clear_ire->ire_in_ill, 14338 clear_ire->ire_cmask, 14339 clear_ire->ire_phandle, 14340 clear_ire->ire_ihandle, 14341 clear_ire->ire_flags, 14342 &clear_ire->ire_uinfo) == NULL) 14343 cmn_err(CE_PANIC, "ire_init() failed"); 14344 if (clear_ire->ire_stq == NULL) { 14345 ire_t *ire_next = clear_ire->ire_next; 14346 if (ire_next != NULL && 14347 ire_next->ire_stq != NULL && 14348 ire_next->ire_addr == clear_ire->ire_addr && 14349 ire_next->ire_ipif->ipif_ill == 14350 clear_ire->ire_ipif->ipif_ill) { 14351 clear_ire_stq = ire_next; 14352 14353 bzero(new_nlb_ire, sizeof (ire_t)); 14354 /* XXX We need a recovery strategy here. */ 14355 if (ire_init(new_nlb_ire, 14356 (uchar_t *)&clear_ire_stq->ire_addr, 14357 (uchar_t *)&clear_ire_stq->ire_mask, 14358 (uchar_t *)&clear_ire_stq->ire_src_addr, 14359 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 14360 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 14361 &clear_ire_stq->ire_max_frag, 14362 clear_ire_stq->ire_fp_mp, 14363 clear_ire_stq->ire_rfq, 14364 clear_ire_stq->ire_stq, 14365 clear_ire_stq->ire_type, 14366 clear_ire_stq->ire_dlureq_mp, 14367 clear_ire_stq->ire_ipif, 14368 clear_ire_stq->ire_in_ill, 14369 clear_ire_stq->ire_cmask, 14370 clear_ire_stq->ire_phandle, 14371 clear_ire_stq->ire_ihandle, 14372 clear_ire_stq->ire_flags, 14373 &clear_ire_stq->ire_uinfo) == NULL) 14374 cmn_err(CE_PANIC, "ire_init() failed"); 14375 } 14376 } 14377 14378 /* 14379 * Delete the ire. We can't call ire_delete() since 14380 * we are holding the bucket lock. We can't release the 14381 * bucket lock since we can't allow irep to change. So just 14382 * mark it CONDEMNED. The IRB_REFRELE will delete the 14383 * ire from the list and do the refrele. 14384 */ 14385 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 14386 irb->irb_marks |= IRE_MARK_CONDEMNED; 14387 14388 if (clear_ire_stq != NULL) { 14389 ire_fastpath_list_delete( 14390 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 14391 clear_ire_stq); 14392 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 14393 } 14394 14395 /* 14396 * Also take care of otherfields like ib/ob pkt count 14397 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 14398 */ 14399 14400 /* Add the new ire's. Insert at *irep */ 14401 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 14402 ire1 = *irep; 14403 if (ire1 != NULL) 14404 ire1->ire_ptpn = &new_lb_ire->ire_next; 14405 new_lb_ire->ire_next = ire1; 14406 /* Link the new one in. */ 14407 new_lb_ire->ire_ptpn = irep; 14408 membar_producer(); 14409 *irep = new_lb_ire; 14410 new_lb_ire_used = B_TRUE; 14411 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14412 new_lb_ire->ire_bucket->irb_ire_cnt++; 14413 new_lb_ire->ire_ipif->ipif_ire_cnt++; 14414 14415 if (clear_ire_stq != NULL) { 14416 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 14417 irep = &new_lb_ire->ire_next; 14418 /* Add the new ire. Insert at *irep */ 14419 ire1 = *irep; 14420 if (ire1 != NULL) 14421 ire1->ire_ptpn = &new_nlb_ire->ire_next; 14422 new_nlb_ire->ire_next = ire1; 14423 /* Link the new one in. */ 14424 new_nlb_ire->ire_ptpn = irep; 14425 membar_producer(); 14426 *irep = new_nlb_ire; 14427 new_nlb_ire_used = B_TRUE; 14428 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14429 new_nlb_ire->ire_bucket->irb_ire_cnt++; 14430 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 14431 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 14432 } 14433 } 14434 rw_exit(&irb->irb_lock); 14435 if (!new_lb_ire_used) 14436 kmem_cache_free(ire_cache, new_lb_ire); 14437 if (!new_nlb_ire_used) 14438 kmem_cache_free(ire_cache, new_nlb_ire); 14439 IRB_REFRELE(irb); 14440 } 14441 14442 /* 14443 * Whenever an ipif goes down we have to renominate a different 14444 * broadcast ire to receive. Whenever an ipif comes up, we need 14445 * to make sure that we have only one nominated to receive. 14446 */ 14447 static void 14448 ipif_renominate_bcast(ipif_t *ipif) 14449 { 14450 ill_t *ill = ipif->ipif_ill; 14451 ipaddr_t subnet_addr; 14452 ipaddr_t net_addr; 14453 ipaddr_t net_mask = 0; 14454 ipaddr_t subnet_netmask; 14455 ipaddr_t addr; 14456 ill_group_t *illgrp; 14457 14458 illgrp = ill->ill_group; 14459 /* 14460 * If this is the last ipif going down, it might take 14461 * the ill out of the group. In that case ipif_down -> 14462 * illgrp_delete takes care of doing the nomination. 14463 * ipif_down does not call for this case. 14464 */ 14465 ASSERT(illgrp != NULL); 14466 14467 /* There could not have been any ires associated with this */ 14468 if (ipif->ipif_subnet == 0) 14469 return; 14470 14471 ill_mark_bcast(illgrp, 0); 14472 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14473 14474 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14475 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14476 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14477 } else { 14478 net_mask = htonl(IN_CLASSA_NET); 14479 } 14480 addr = net_mask & ipif->ipif_subnet; 14481 ill_mark_bcast(illgrp, addr); 14482 14483 net_addr = ~net_mask | addr; 14484 ill_mark_bcast(illgrp, net_addr); 14485 14486 subnet_netmask = ipif->ipif_net_mask; 14487 addr = ipif->ipif_subnet; 14488 ill_mark_bcast(illgrp, addr); 14489 14490 subnet_addr = ~subnet_netmask | addr; 14491 ill_mark_bcast(illgrp, subnet_addr); 14492 } 14493 14494 /* 14495 * Whenever we form or delete ill groups, we need to nominate one set of 14496 * BROADCAST ires for receiving in the group. 14497 * 14498 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 14499 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 14500 * for ill_ipif_up_count to be non-zero. This is the only case where 14501 * ill_ipif_up_count is zero and we would still find the ires. 14502 * 14503 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 14504 * ipif is UP and we just have to do the nomination. 14505 * 14506 * 3) When ill_handoff_responsibility calls us, some ill has been removed 14507 * from the group. So, we have to do the nomination. 14508 * 14509 * Because of (3), there could be just one ill in the group. But we have 14510 * to nominate still as IRE_MARK_NORCV may have been marked on this. 14511 * Thus, this function does not optimize when there is only one ill as 14512 * it is not correct for (3). 14513 */ 14514 static void 14515 ill_nominate_bcast_rcv(ill_group_t *illgrp) 14516 { 14517 ill_t *ill; 14518 ipif_t *ipif; 14519 ipaddr_t subnet_addr; 14520 ipaddr_t prev_subnet_addr = 0; 14521 ipaddr_t net_addr; 14522 ipaddr_t prev_net_addr = 0; 14523 ipaddr_t net_mask = 0; 14524 ipaddr_t subnet_netmask; 14525 ipaddr_t addr; 14526 14527 /* 14528 * When the last memeber is leaving, there is nothing to 14529 * nominate. 14530 */ 14531 if (illgrp->illgrp_ill_count == 0) { 14532 ASSERT(illgrp->illgrp_ill == NULL); 14533 return; 14534 } 14535 14536 ill = illgrp->illgrp_ill; 14537 ASSERT(!ill->ill_isv6); 14538 /* 14539 * We assume that ires with same address and belonging to the 14540 * same group, has been grouped together. Nominating a *single* 14541 * ill in the group for sending and receiving broadcast is done 14542 * by making sure that the first BROADCAST ire (which will be 14543 * the one returned by ire_ctable_lookup for ip_rput and the 14544 * one that will be used in ip_wput_ire) will be the one that 14545 * will not have IRE_MARK_NORECV set. 14546 * 14547 * 1) ip_rput checks and discards packets received on ires marked 14548 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 14549 * broadcast packets. We need to clear IRE_MARK_NORECV on the 14550 * first ire in the group for every broadcast address in the group. 14551 * ip_rput will accept packets only on the first ire i.e only 14552 * one copy of the ill. 14553 * 14554 * 2) ip_wput_ire needs to send out just one copy of the broadcast 14555 * packet for the whole group. It needs to send out on the ill 14556 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 14557 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 14558 * the copy echoed back on other port where the ire is not marked 14559 * with IRE_MARK_NORECV. 14560 * 14561 * Note that we just need to have the first IRE either loopback or 14562 * non-loopback (either of them may not exist if ire_create failed 14563 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 14564 * always hit the first one and hence will always accept one copy. 14565 * 14566 * We have a broadcast ire per ill for all the unique prefixes 14567 * hosted on that ill. As we don't have a way of knowing the 14568 * unique prefixes on a given ill and hence in the whole group, 14569 * we just call ill_mark_bcast on all the prefixes that exist 14570 * in the group. For the common case of one prefix, the code 14571 * below optimizes by remebering the last address used for 14572 * markng. In the case of multiple prefixes, this will still 14573 * optimize depending the order of prefixes. 14574 * 14575 * The only unique address across the whole group is 0.0.0.0 and 14576 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 14577 * the first ire in the bucket for receiving and disables the 14578 * others. 14579 */ 14580 ill_mark_bcast(illgrp, 0); 14581 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14582 for (; ill != NULL; ill = ill->ill_group_next) { 14583 14584 for (ipif = ill->ill_ipif; ipif != NULL; 14585 ipif = ipif->ipif_next) { 14586 14587 if (!(ipif->ipif_flags & IPIF_UP) || 14588 ipif->ipif_subnet == 0) { 14589 continue; 14590 } 14591 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14592 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14593 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14594 } else { 14595 net_mask = htonl(IN_CLASSA_NET); 14596 } 14597 addr = net_mask & ipif->ipif_subnet; 14598 if (prev_net_addr == 0 || prev_net_addr != addr) { 14599 ill_mark_bcast(illgrp, addr); 14600 net_addr = ~net_mask | addr; 14601 ill_mark_bcast(illgrp, net_addr); 14602 } 14603 prev_net_addr = addr; 14604 14605 subnet_netmask = ipif->ipif_net_mask; 14606 addr = ipif->ipif_subnet; 14607 if (prev_subnet_addr == 0 || 14608 prev_subnet_addr != addr) { 14609 ill_mark_bcast(illgrp, addr); 14610 subnet_addr = ~subnet_netmask | addr; 14611 ill_mark_bcast(illgrp, subnet_addr); 14612 } 14613 prev_subnet_addr = addr; 14614 } 14615 } 14616 } 14617 14618 /* 14619 * This function is called while forming ill groups. 14620 * 14621 * Currently, we handle only allmulti groups. We want to join 14622 * allmulti on only one of the ills in the groups. In future, 14623 * when we have link aggregation, we may have to join normal 14624 * multicast groups on multiple ills as switch does inbound load 14625 * balancing. Following are the functions that calls this 14626 * function : 14627 * 14628 * 1) ill_recover_multicast : Interface is coming back UP. 14629 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 14630 * will call ill_recover_multicast to recover all the multicast 14631 * groups. We need to make sure that only one member is joined 14632 * in the ill group. 14633 * 14634 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 14635 * Somebody is joining allmulti. We need to make sure that only one 14636 * member is joined in the group. 14637 * 14638 * 3) illgrp_insert : If allmulti has already joined, we need to make 14639 * sure that only one member is joined in the group. 14640 * 14641 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 14642 * allmulti who we have nominated. We need to pick someother ill. 14643 * 14644 * 5) illgrp_delete : The ill we nominated is leaving the group, 14645 * we need to pick a new ill to join the group. 14646 * 14647 * For (1), (2), (5) - we just have to check whether there is 14648 * a good ill joined in the group. If we could not find any ills 14649 * joined the group, we should join. 14650 * 14651 * For (4), the one that was nominated to receive, left the group. 14652 * There could be nobody joined in the group when this function is 14653 * called. 14654 * 14655 * For (3) - we need to explicitly check whether there are multiple 14656 * ills joined in the group. 14657 * 14658 * For simplicity, we don't differentiate any of the above cases. We 14659 * just leave the group if it is joined on any of them and join on 14660 * the first good ill. 14661 */ 14662 int 14663 ill_nominate_mcast_rcv(ill_group_t *illgrp) 14664 { 14665 ilm_t *ilm; 14666 ill_t *ill; 14667 ill_t *fallback_inactive_ill = NULL; 14668 ill_t *fallback_failed_ill = NULL; 14669 int ret = 0; 14670 14671 /* 14672 * Leave the allmulti on all the ills and start fresh. 14673 */ 14674 for (ill = illgrp->illgrp_ill; ill != NULL; 14675 ill = ill->ill_group_next) { 14676 if (ill->ill_join_allmulti) 14677 (void) ip_leave_allmulti(ill->ill_ipif); 14678 } 14679 14680 /* 14681 * Choose a good ill. Fallback to inactive or failed if 14682 * none available. We need to fallback to FAILED in the 14683 * case where we have 2 interfaces in a group - where 14684 * one of them is failed and another is a good one and 14685 * the good one (not marked inactive) is leaving the group. 14686 */ 14687 ret = 0; 14688 for (ill = illgrp->illgrp_ill; ill != NULL; 14689 ill = ill->ill_group_next) { 14690 /* Never pick an offline interface */ 14691 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 14692 continue; 14693 14694 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 14695 fallback_failed_ill = ill; 14696 continue; 14697 } 14698 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 14699 fallback_inactive_ill = ill; 14700 continue; 14701 } 14702 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14703 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14704 ret = ip_join_allmulti(ill->ill_ipif); 14705 /* 14706 * ip_join_allmulti can fail because of memory 14707 * failures. So, make sure we join at least 14708 * on one ill. 14709 */ 14710 if (ill->ill_join_allmulti) 14711 return (0); 14712 } 14713 } 14714 } 14715 if (ret != 0) { 14716 /* 14717 * If we tried nominating above and failed to do so, 14718 * return error. We might have tried multiple times. 14719 * But, return the latest error. 14720 */ 14721 return (ret); 14722 } 14723 if ((ill = fallback_inactive_ill) != NULL) { 14724 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14725 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14726 ret = ip_join_allmulti(ill->ill_ipif); 14727 return (ret); 14728 } 14729 } 14730 } else if ((ill = fallback_failed_ill) != NULL) { 14731 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14732 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14733 ret = ip_join_allmulti(ill->ill_ipif); 14734 return (ret); 14735 } 14736 } 14737 } 14738 return (0); 14739 } 14740 14741 /* 14742 * This function is called from illgrp_delete after it is 14743 * deleted from the group to reschedule responsibilities 14744 * to a different ill. 14745 */ 14746 static void 14747 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 14748 { 14749 ilm_t *ilm; 14750 ipif_t *ipif; 14751 ipaddr_t subnet_addr; 14752 ipaddr_t net_addr; 14753 ipaddr_t net_mask = 0; 14754 ipaddr_t subnet_netmask; 14755 ipaddr_t addr; 14756 14757 ASSERT(ill->ill_group == NULL); 14758 /* 14759 * Broadcast Responsibility: 14760 * 14761 * 1. If this ill has been nominated for receiving broadcast 14762 * packets, we need to find a new one. Before we find a new 14763 * one, we need to re-group the ires that are part of this new 14764 * group (assumed by ill_nominate_bcast_rcv). We do this by 14765 * calling ill_group_bcast_for_xmit(ill) which will do the right 14766 * thing for us. 14767 * 14768 * 2. If this ill was not nominated for receiving broadcast 14769 * packets, we need to clear the IRE_MARK_NORECV flag 14770 * so that we continue to send up broadcast packets. 14771 */ 14772 if (!ill->ill_isv6) { 14773 /* 14774 * Case 1 above : No optimization here. Just redo the 14775 * nomination. 14776 */ 14777 ill_group_bcast_for_xmit(ill); 14778 ill_nominate_bcast_rcv(illgrp); 14779 14780 /* 14781 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 14782 */ 14783 ill_clear_bcast_mark(ill, 0); 14784 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 14785 14786 for (ipif = ill->ill_ipif; ipif != NULL; 14787 ipif = ipif->ipif_next) { 14788 14789 if (!(ipif->ipif_flags & IPIF_UP) || 14790 ipif->ipif_subnet == 0) { 14791 continue; 14792 } 14793 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14794 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14795 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14796 } else { 14797 net_mask = htonl(IN_CLASSA_NET); 14798 } 14799 addr = net_mask & ipif->ipif_subnet; 14800 ill_clear_bcast_mark(ill, addr); 14801 14802 net_addr = ~net_mask | addr; 14803 ill_clear_bcast_mark(ill, net_addr); 14804 14805 subnet_netmask = ipif->ipif_net_mask; 14806 addr = ipif->ipif_subnet; 14807 ill_clear_bcast_mark(ill, addr); 14808 14809 subnet_addr = ~subnet_netmask | addr; 14810 ill_clear_bcast_mark(ill, subnet_addr); 14811 } 14812 } 14813 14814 /* 14815 * Multicast Responsibility. 14816 * 14817 * If we have joined allmulti on this one, find a new member 14818 * in the group to join allmulti. As this ill is already part 14819 * of allmulti, we don't have to join on this one. 14820 * 14821 * If we have not joined allmulti on this one, there is no 14822 * responsibility to handoff. But we need to take new 14823 * responsibility i.e, join allmulti on this one if we need 14824 * to. 14825 */ 14826 if (ill->ill_join_allmulti) { 14827 (void) ill_nominate_mcast_rcv(illgrp); 14828 } else { 14829 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14830 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14831 (void) ip_join_allmulti(ill->ill_ipif); 14832 break; 14833 } 14834 } 14835 } 14836 14837 /* 14838 * We intentionally do the flushing of IRE_CACHES only matching 14839 * on the ill and not on groups. Note that we are already deleted 14840 * from the group. 14841 * 14842 * This will make sure that all IRE_CACHES whose stq is pointing 14843 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 14844 * deleted and IRE_CACHES that are not pointing at this ill will 14845 * be left alone. 14846 */ 14847 if (ill->ill_isv6) { 14848 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14849 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14850 } else { 14851 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14852 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14853 } 14854 14855 /* 14856 * Some conn may have cached one of the IREs deleted above. By removing 14857 * the ire reference, we clean up the extra reference to the ill held in 14858 * ire->ire_stq. 14859 */ 14860 ipcl_walk(conn_cleanup_stale_ire, NULL); 14861 14862 /* 14863 * Re-do source address selection for all the members in the 14864 * group, if they borrowed source address from one of the ipifs 14865 * in this ill. 14866 */ 14867 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14868 if (ill->ill_isv6) { 14869 ipif_update_other_ipifs_v6(ipif, illgrp); 14870 } else { 14871 ipif_update_other_ipifs(ipif, illgrp); 14872 } 14873 } 14874 } 14875 14876 /* 14877 * Delete the ill from the group. The caller makes sure that it is 14878 * in a group and it okay to delete from the group. So, we always 14879 * delete here. 14880 */ 14881 static void 14882 illgrp_delete(ill_t *ill) 14883 { 14884 ill_group_t *illgrp; 14885 ill_group_t *tmpg; 14886 ill_t *tmp_ill; 14887 14888 /* 14889 * Reset illgrp_ill_schednext if it was pointing at us. 14890 * We need to do this before we set ill_group to NULL. 14891 */ 14892 rw_enter(&ill_g_lock, RW_WRITER); 14893 mutex_enter(&ill->ill_lock); 14894 14895 illgrp_reset_schednext(ill); 14896 14897 illgrp = ill->ill_group; 14898 14899 /* Delete the ill from illgrp. */ 14900 if (illgrp->illgrp_ill == ill) { 14901 illgrp->illgrp_ill = ill->ill_group_next; 14902 } else { 14903 tmp_ill = illgrp->illgrp_ill; 14904 while (tmp_ill->ill_group_next != ill) { 14905 tmp_ill = tmp_ill->ill_group_next; 14906 ASSERT(tmp_ill != NULL); 14907 } 14908 tmp_ill->ill_group_next = ill->ill_group_next; 14909 } 14910 ill->ill_group = NULL; 14911 ill->ill_group_next = NULL; 14912 14913 illgrp->illgrp_ill_count--; 14914 mutex_exit(&ill->ill_lock); 14915 rw_exit(&ill_g_lock); 14916 14917 /* 14918 * As this ill is leaving the group, we need to hand off 14919 * the responsibilities to the other ills in the group, if 14920 * this ill had some responsibilities. 14921 */ 14922 14923 ill_handoff_responsibility(ill, illgrp); 14924 14925 rw_enter(&ill_g_lock, RW_WRITER); 14926 14927 if (illgrp->illgrp_ill_count == 0) { 14928 14929 ASSERT(illgrp->illgrp_ill == NULL); 14930 if (ill->ill_isv6) { 14931 if (illgrp == illgrp_head_v6) { 14932 illgrp_head_v6 = illgrp->illgrp_next; 14933 } else { 14934 tmpg = illgrp_head_v6; 14935 while (tmpg->illgrp_next != illgrp) { 14936 tmpg = tmpg->illgrp_next; 14937 ASSERT(tmpg != NULL); 14938 } 14939 tmpg->illgrp_next = illgrp->illgrp_next; 14940 } 14941 } else { 14942 if (illgrp == illgrp_head_v4) { 14943 illgrp_head_v4 = illgrp->illgrp_next; 14944 } else { 14945 tmpg = illgrp_head_v4; 14946 while (tmpg->illgrp_next != illgrp) { 14947 tmpg = tmpg->illgrp_next; 14948 ASSERT(tmpg != NULL); 14949 } 14950 tmpg->illgrp_next = illgrp->illgrp_next; 14951 } 14952 } 14953 mutex_destroy(&illgrp->illgrp_lock); 14954 mi_free(illgrp); 14955 } 14956 rw_exit(&ill_g_lock); 14957 14958 /* 14959 * Even though the ill is out of the group its not necessary 14960 * to set ipsq_split as TRUE as the ipifs could be down temporarily 14961 * We will split the ipsq when phyint_groupname is set to NULL. 14962 */ 14963 14964 /* 14965 * Send a routing sockets message if we are deleting from 14966 * groups with names. 14967 */ 14968 if (ill->ill_phyint->phyint_groupname_len != 0) 14969 ip_rts_ifmsg(ill->ill_ipif); 14970 } 14971 14972 /* 14973 * Re-do source address selection. This is normally called when 14974 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 14975 * ipif comes up. 14976 */ 14977 void 14978 ill_update_source_selection(ill_t *ill) 14979 { 14980 ipif_t *ipif; 14981 14982 ASSERT(IAM_WRITER_ILL(ill)); 14983 14984 if (ill->ill_group != NULL) 14985 ill = ill->ill_group->illgrp_ill; 14986 14987 for (; ill != NULL; ill = ill->ill_group_next) { 14988 for (ipif = ill->ill_ipif; ipif != NULL; 14989 ipif = ipif->ipif_next) { 14990 if (ill->ill_isv6) 14991 ipif_recreate_interface_routes_v6(NULL, ipif); 14992 else 14993 ipif_recreate_interface_routes(NULL, ipif); 14994 } 14995 } 14996 } 14997 14998 /* 14999 * Insert ill in a group headed by illgrp_head. The caller can either 15000 * pass a groupname in which case we search for a group with the 15001 * same name to insert in or pass a group to insert in. This function 15002 * would only search groups with names. 15003 * 15004 * NOTE : The caller should make sure that there is at least one ipif 15005 * UP on this ill so that illgrp_scheduler can pick this ill 15006 * for outbound packets. If ill_ipif_up_count is zero, we have 15007 * already sent a DL_UNBIND to the driver and we don't want to 15008 * send anymore packets. We don't assert for ipif_up_count 15009 * to be greater than zero, because ipif_up_done wants to call 15010 * this function before bumping up the ipif_up_count. See 15011 * ipif_up_done() for details. 15012 */ 15013 int 15014 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15015 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15016 { 15017 ill_group_t *illgrp; 15018 ill_t *prev_ill; 15019 phyint_t *phyi; 15020 15021 ASSERT(ill->ill_group == NULL); 15022 15023 rw_enter(&ill_g_lock, RW_WRITER); 15024 mutex_enter(&ill->ill_lock); 15025 15026 if (groupname != NULL) { 15027 /* 15028 * Look for a group with a matching groupname to insert. 15029 */ 15030 for (illgrp = *illgrp_head; illgrp != NULL; 15031 illgrp = illgrp->illgrp_next) { 15032 15033 ill_t *tmp_ill; 15034 15035 tmp_ill = illgrp->illgrp_ill; 15036 ASSERT(tmp_ill != NULL && tmp_ill->ill_phyint != NULL); 15037 phyi = tmp_ill->ill_phyint; 15038 /* 15039 * Look at groups which has names only. 15040 */ 15041 if (phyi->phyint_groupname_len == 0) 15042 continue; 15043 /* 15044 * Names are stored in the phyint common to both 15045 * IPv4 and IPv6. 15046 */ 15047 if (mi_strcmp(phyi->phyint_groupname, 15048 groupname) == 0) { 15049 break; 15050 } 15051 } 15052 } else { 15053 /* 15054 * If the caller passes in a NULL "grp_to_insert", we 15055 * allocate one below and insert this singleton. 15056 */ 15057 illgrp = grp_to_insert; 15058 } 15059 15060 ill->ill_group_next = NULL; 15061 15062 if (illgrp == NULL) { 15063 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15064 if (illgrp == NULL) { 15065 return (ENOMEM); 15066 } 15067 illgrp->illgrp_next = *illgrp_head; 15068 *illgrp_head = illgrp; 15069 illgrp->illgrp_ill = ill; 15070 illgrp->illgrp_ill_count = 1; 15071 ill->ill_group = illgrp; 15072 /* 15073 * Used in illgrp_scheduler to protect multiple threads 15074 * from traversing the list. 15075 */ 15076 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 15077 } else { 15078 ASSERT(ill->ill_net_type == 15079 illgrp->illgrp_ill->ill_net_type); 15080 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 15081 15082 /* Insert ill at tail of this group */ 15083 prev_ill = illgrp->illgrp_ill; 15084 while (prev_ill->ill_group_next != NULL) 15085 prev_ill = prev_ill->ill_group_next; 15086 prev_ill->ill_group_next = ill; 15087 ill->ill_group = illgrp; 15088 illgrp->illgrp_ill_count++; 15089 /* 15090 * Inherit group properties. Currently only forwarding 15091 * is the property we try to keep the same with all the 15092 * ills. When there are more, we will abstract this into 15093 * a function. 15094 */ 15095 ill->ill_flags &= ~ILLF_ROUTER; 15096 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 15097 } 15098 mutex_exit(&ill->ill_lock); 15099 rw_exit(&ill_g_lock); 15100 15101 /* 15102 * 1) When ipif_up_done() calls this function, ipif_up_count 15103 * may be zero as it has not yet been bumped. But the ires 15104 * have already been added. So, we do the nomination here 15105 * itself. But, when ip_sioctl_groupname calls this, it checks 15106 * for ill_ipif_up_count != 0. Thus we don't check for 15107 * ill_ipif_up_count here while nominating broadcast ires for 15108 * receive. 15109 * 15110 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 15111 * to group them properly as ire_add() has already happened 15112 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 15113 * case, we need to do it here anyway. 15114 */ 15115 if (!ill->ill_isv6) { 15116 ill_group_bcast_for_xmit(ill); 15117 ill_nominate_bcast_rcv(illgrp); 15118 } 15119 15120 if (!ipif_is_coming_up) { 15121 /* 15122 * When ipif_up_done() calls this function, the multicast 15123 * groups have not been joined yet. So, there is no point in 15124 * nomination. ip_join_allmulti will handle groups when 15125 * ill_recover_multicast is called from ipif_up_done() later. 15126 */ 15127 (void) ill_nominate_mcast_rcv(illgrp); 15128 /* 15129 * ipif_up_done calls ill_update_source_selection 15130 * anyway. Moreover, we don't want to re-create 15131 * interface routes while ipif_up_done() still has reference 15132 * to them. Refer to ipif_up_done() for more details. 15133 */ 15134 ill_update_source_selection(ill); 15135 } 15136 15137 /* 15138 * Send a routing sockets message if we are inserting into 15139 * groups with names. 15140 */ 15141 if (groupname != NULL) 15142 ip_rts_ifmsg(ill->ill_ipif); 15143 return (0); 15144 } 15145 15146 /* 15147 * Return the first phyint matching the groupname. There could 15148 * be more than one when there are ill groups. 15149 * 15150 * Needs work: called only from ip_sioctl_groupname 15151 */ 15152 static phyint_t * 15153 phyint_lookup_group(char *groupname) 15154 { 15155 phyint_t *phyi; 15156 15157 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 15158 /* 15159 * Group names are stored in the phyint - a common structure 15160 * to both IPv4 and IPv6. 15161 */ 15162 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 15163 for (; phyi != NULL; 15164 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 15165 phyi, AVL_AFTER)) { 15166 if (phyi->phyint_groupname_len == 0) 15167 continue; 15168 ASSERT(phyi->phyint_groupname != NULL); 15169 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15170 return (phyi); 15171 } 15172 return (NULL); 15173 } 15174 15175 15176 15177 /* 15178 * MT notes on creation and deletion of IPMP groups 15179 * 15180 * Creation and deletion of IPMP groups introduce the need to merge or 15181 * split the associated serialization objects i.e the ipsq's. Normally all 15182 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 15183 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 15184 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 15185 * is a need to change the <ill-ipsq> association and we have to operate on both 15186 * the source and destination IPMP groups. For eg. attempting to set the 15187 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 15188 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 15189 * source or destination IPMP group are mapped to a single ipsq for executing 15190 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 15191 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 15192 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 15193 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 15194 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 15195 * ipsq has to be examined for redoing the <ill-ipsq> associations. 15196 * 15197 * In the above example the ioctl handling code locates the current ipsq of hme0 15198 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 15199 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 15200 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 15201 * the destination ipsq. If the destination ipsq is not busy, it also enters 15202 * the destination ipsq exclusively. Now the actual groupname setting operation 15203 * can proceed. If the destination ipsq is busy, the operation is enqueued 15204 * on the destination (merged) ipsq and will be handled in the unwind from 15205 * ipsq_exit. 15206 * 15207 * To prevent other threads accessing the ill while the group name change is 15208 * in progres, we bring down the ipifs which also removes the ill from the 15209 * group. The group is changed in phyint and when the first ipif on the ill 15210 * is brought up, the ill is inserted into the right IPMP group by 15211 * illgrp_insert. 15212 */ 15213 /* ARGSUSED */ 15214 int 15215 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15216 ip_ioctl_cmd_t *ipip, void *ifreq) 15217 { 15218 int i; 15219 char *tmp; 15220 int namelen; 15221 ill_t *ill = ipif->ipif_ill; 15222 ill_t *ill_v4, *ill_v6; 15223 int err = 0; 15224 phyint_t *phyi; 15225 phyint_t *phyi_tmp; 15226 struct lifreq *lifr; 15227 mblk_t *mp1; 15228 char *groupname; 15229 ipsq_t *ipsq; 15230 15231 ASSERT(IAM_WRITER_IPIF(ipif)); 15232 15233 /* Existance verified in ip_wput_nondata */ 15234 mp1 = mp->b_cont->b_cont; 15235 lifr = (struct lifreq *)mp1->b_rptr; 15236 groupname = lifr->lifr_groupname; 15237 15238 if (ipif->ipif_id != 0) 15239 return (EINVAL); 15240 15241 phyi = ill->ill_phyint; 15242 ASSERT(phyi != NULL); 15243 15244 if (phyi->phyint_flags & PHYI_VIRTUAL) 15245 return (EINVAL); 15246 15247 tmp = groupname; 15248 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 15249 ; 15250 15251 if (i == LIFNAMSIZ) { 15252 /* no null termination */ 15253 return (EINVAL); 15254 } 15255 15256 /* 15257 * Calculate the namelen exclusive of the null 15258 * termination character. 15259 */ 15260 namelen = tmp - groupname; 15261 15262 ill_v4 = phyi->phyint_illv4; 15263 ill_v6 = phyi->phyint_illv6; 15264 15265 /* 15266 * ILL cannot be part of a usesrc group and and IPMP group at the 15267 * same time. No need to grab the ill_g_usesrc_lock here, see 15268 * synchronization notes in ip.c 15269 */ 15270 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 15271 return (EINVAL); 15272 } 15273 15274 /* 15275 * mark the ill as changing. 15276 * this should queue all new requests on the syncq. 15277 */ 15278 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15279 15280 if (ill_v4 != NULL) 15281 ill_v4->ill_state_flags |= ILL_CHANGING; 15282 if (ill_v6 != NULL) 15283 ill_v6->ill_state_flags |= ILL_CHANGING; 15284 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15285 15286 if (namelen == 0) { 15287 /* 15288 * Null string means remove this interface from the 15289 * existing group. 15290 */ 15291 if (phyi->phyint_groupname_len == 0) { 15292 /* 15293 * Never was in a group. 15294 */ 15295 err = 0; 15296 goto done; 15297 } 15298 15299 /* 15300 * IPv4 or IPv6 may be temporarily out of the group when all 15301 * the ipifs are down. Thus, we need to check for ill_group to 15302 * be non-NULL. 15303 */ 15304 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 15305 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15306 mutex_enter(&ill_v4->ill_lock); 15307 if (!ill_is_quiescent(ill_v4)) { 15308 /* 15309 * ipsq_pending_mp_add will not fail since 15310 * connp is NULL 15311 */ 15312 (void) ipsq_pending_mp_add(NULL, 15313 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15314 mutex_exit(&ill_v4->ill_lock); 15315 err = EINPROGRESS; 15316 goto done; 15317 } 15318 mutex_exit(&ill_v4->ill_lock); 15319 } 15320 15321 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 15322 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15323 mutex_enter(&ill_v6->ill_lock); 15324 if (!ill_is_quiescent(ill_v6)) { 15325 (void) ipsq_pending_mp_add(NULL, 15326 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15327 mutex_exit(&ill_v6->ill_lock); 15328 err = EINPROGRESS; 15329 goto done; 15330 } 15331 mutex_exit(&ill_v6->ill_lock); 15332 } 15333 15334 rw_enter(&ill_g_lock, RW_WRITER); 15335 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15336 mutex_enter(&phyi->phyint_lock); 15337 ASSERT(phyi->phyint_groupname != NULL); 15338 mi_free(phyi->phyint_groupname); 15339 phyi->phyint_groupname = NULL; 15340 phyi->phyint_groupname_len = 0; 15341 mutex_exit(&phyi->phyint_lock); 15342 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15343 rw_exit(&ill_g_lock); 15344 err = ill_up_ipifs(ill, q, mp); 15345 15346 /* 15347 * set the split flag so that the ipsq can be split 15348 */ 15349 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15350 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15351 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15352 15353 } else { 15354 if (phyi->phyint_groupname_len != 0) { 15355 ASSERT(phyi->phyint_groupname != NULL); 15356 /* Are we inserting in the same group ? */ 15357 if (mi_strcmp(groupname, 15358 phyi->phyint_groupname) == 0) { 15359 err = 0; 15360 goto done; 15361 } 15362 } 15363 15364 rw_enter(&ill_g_lock, RW_READER); 15365 /* 15366 * Merge ipsq for the group's. 15367 * This check is here as multiple groups/ills might be 15368 * sharing the same ipsq. 15369 * If we have to merege than the operation is restarted 15370 * on the new ipsq. 15371 */ 15372 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 15373 if (phyi->phyint_ipsq != ipsq) { 15374 rw_exit(&ill_g_lock); 15375 err = ill_merge_groups(ill, NULL, groupname, mp, q); 15376 goto done; 15377 } 15378 /* 15379 * Running exclusive on new ipsq. 15380 */ 15381 15382 ASSERT(ipsq != NULL); 15383 ASSERT(ipsq->ipsq_writer == curthread); 15384 15385 /* 15386 * Check whether the ill_type and ill_net_type matches before 15387 * we allocate any memory so that the cleanup is easier. 15388 * 15389 * We can't group dissimilar ones as we can't load spread 15390 * packets across the group because of potential link-level 15391 * header differences. 15392 */ 15393 phyi_tmp = phyint_lookup_group(groupname); 15394 if (phyi_tmp != NULL) { 15395 if ((ill_v4 != NULL && 15396 phyi_tmp->phyint_illv4 != NULL) && 15397 ((ill_v4->ill_net_type != 15398 phyi_tmp->phyint_illv4->ill_net_type) || 15399 (ill_v4->ill_type != 15400 phyi_tmp->phyint_illv4->ill_type))) { 15401 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15402 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15403 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15404 rw_exit(&ill_g_lock); 15405 return (EINVAL); 15406 } 15407 if ((ill_v6 != NULL && 15408 phyi_tmp->phyint_illv6 != NULL) && 15409 ((ill_v6->ill_net_type != 15410 phyi_tmp->phyint_illv6->ill_net_type) || 15411 (ill_v6->ill_type != 15412 phyi_tmp->phyint_illv6->ill_type))) { 15413 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15414 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15415 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15416 rw_exit(&ill_g_lock); 15417 return (EINVAL); 15418 } 15419 } 15420 15421 rw_exit(&ill_g_lock); 15422 15423 /* 15424 * bring down all v4 ipifs. 15425 */ 15426 if (ill_v4 != NULL) { 15427 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15428 } 15429 15430 /* 15431 * bring down all v6 ipifs. 15432 */ 15433 if (ill_v6 != NULL) { 15434 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15435 } 15436 15437 /* 15438 * make sure all ipifs are down and there are no active 15439 * references. Call to ipsq_pending_mp_add will not fail 15440 * since connp is NULL. 15441 */ 15442 if (ill_v4 != NULL) { 15443 mutex_enter(&ill_v4->ill_lock); 15444 if (!ill_is_quiescent(ill_v4)) { 15445 (void) ipsq_pending_mp_add(NULL, 15446 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15447 mutex_exit(&ill_v4->ill_lock); 15448 err = EINPROGRESS; 15449 goto done; 15450 } 15451 mutex_exit(&ill_v4->ill_lock); 15452 } 15453 15454 if (ill_v6 != NULL) { 15455 mutex_enter(&ill_v6->ill_lock); 15456 if (!ill_is_quiescent(ill_v6)) { 15457 (void) ipsq_pending_mp_add(NULL, 15458 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15459 mutex_exit(&ill_v6->ill_lock); 15460 err = EINPROGRESS; 15461 goto done; 15462 } 15463 mutex_exit(&ill_v6->ill_lock); 15464 } 15465 15466 /* 15467 * allocate including space for null terminator 15468 * before we insert. 15469 */ 15470 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 15471 if (tmp == NULL) 15472 return (ENOMEM); 15473 15474 rw_enter(&ill_g_lock, RW_WRITER); 15475 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15476 mutex_enter(&phyi->phyint_lock); 15477 if (phyi->phyint_groupname_len != 0) { 15478 ASSERT(phyi->phyint_groupname != NULL); 15479 mi_free(phyi->phyint_groupname); 15480 } 15481 15482 /* 15483 * setup the new group name. 15484 */ 15485 phyi->phyint_groupname = tmp; 15486 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 15487 phyi->phyint_groupname_len = namelen + 1; 15488 mutex_exit(&phyi->phyint_lock); 15489 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15490 rw_exit(&ill_g_lock); 15491 15492 err = ill_up_ipifs(ill, q, mp); 15493 } 15494 15495 done: 15496 /* 15497 * normally ILL_CHANGING is cleared in ill_up_ipifs. 15498 */ 15499 if (err != EINPROGRESS) { 15500 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15501 if (ill_v4 != NULL) 15502 ill_v4->ill_state_flags &= ~ILL_CHANGING; 15503 if (ill_v6 != NULL) 15504 ill_v6->ill_state_flags &= ~ILL_CHANGING; 15505 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15506 } 15507 return (err); 15508 } 15509 15510 /* ARGSUSED */ 15511 int 15512 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 15513 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15514 { 15515 ill_t *ill; 15516 phyint_t *phyi; 15517 struct lifreq *lifr; 15518 mblk_t *mp1; 15519 15520 /* Existence verified in ip_wput_nondata */ 15521 mp1 = mp->b_cont->b_cont; 15522 lifr = (struct lifreq *)mp1->b_rptr; 15523 ill = ipif->ipif_ill; 15524 phyi = ill->ill_phyint; 15525 15526 lifr->lifr_groupname[0] = '\0'; 15527 /* 15528 * ill_group may be null if all the interfaces 15529 * are down. But still, the phyint should always 15530 * hold the name. 15531 */ 15532 if (phyi->phyint_groupname_len != 0) { 15533 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 15534 phyi->phyint_groupname_len); 15535 } 15536 15537 return (0); 15538 } 15539 15540 15541 typedef struct conn_move_s { 15542 ill_t *cm_from_ill; 15543 ill_t *cm_to_ill; 15544 int cm_ifindex; 15545 } conn_move_t; 15546 15547 /* 15548 * ipcl_walk function for moving conn_multicast_ill for a given ill. 15549 */ 15550 static void 15551 conn_move(conn_t *connp, caddr_t arg) 15552 { 15553 conn_move_t *connm; 15554 int ifindex; 15555 int i; 15556 ill_t *from_ill; 15557 ill_t *to_ill; 15558 ilg_t *ilg; 15559 ilm_t *ret_ilm; 15560 15561 connm = (conn_move_t *)arg; 15562 ifindex = connm->cm_ifindex; 15563 from_ill = connm->cm_from_ill; 15564 to_ill = connm->cm_to_ill; 15565 15566 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 15567 15568 /* All multicast fields protected by conn_lock */ 15569 mutex_enter(&connp->conn_lock); 15570 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 15571 if ((connp->conn_outgoing_ill == from_ill) && 15572 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 15573 connp->conn_outgoing_ill = to_ill; 15574 connp->conn_incoming_ill = to_ill; 15575 } 15576 15577 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 15578 15579 if ((connp->conn_multicast_ill == from_ill) && 15580 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 15581 connp->conn_multicast_ill = connm->cm_to_ill; 15582 } 15583 15584 /* Change IP_XMIT_IF associations */ 15585 if ((connp->conn_xmit_if_ill == from_ill) && 15586 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 15587 connp->conn_xmit_if_ill = to_ill; 15588 } 15589 /* 15590 * Change the ilg_ill to point to the new one. This assumes 15591 * ilm_move_v6 has moved the ilms to new_ill and the driver 15592 * has been told to receive packets on this interface. 15593 * ilm_move_v6 FAILBACKS all the ilms successfully always. 15594 * But when doing a FAILOVER, it might fail with ENOMEM and so 15595 * some ilms may not have moved. We check to see whether 15596 * the ilms have moved to to_ill. We can't check on from_ill 15597 * as in the process of moving, we could have split an ilm 15598 * in to two - which has the same orig_ifindex and v6group. 15599 * 15600 * For IPv4, ilg_ipif moves implicitly. The code below really 15601 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 15602 */ 15603 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 15604 ilg = &connp->conn_ilg[i]; 15605 if ((ilg->ilg_ill == from_ill) && 15606 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 15607 /* ifindex != 0 indicates failback */ 15608 if (ifindex != 0) { 15609 connp->conn_ilg[i].ilg_ill = to_ill; 15610 continue; 15611 } 15612 15613 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 15614 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 15615 connp->conn_zoneid); 15616 15617 if (ret_ilm != NULL) 15618 connp->conn_ilg[i].ilg_ill = to_ill; 15619 } 15620 } 15621 mutex_exit(&connp->conn_lock); 15622 } 15623 15624 static void 15625 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 15626 { 15627 conn_move_t connm; 15628 15629 connm.cm_from_ill = from_ill; 15630 connm.cm_to_ill = to_ill; 15631 connm.cm_ifindex = ifindex; 15632 15633 ipcl_walk(conn_move, (caddr_t)&connm); 15634 } 15635 15636 /* 15637 * ilm has been moved from from_ill to to_ill. 15638 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 15639 * appropriately. 15640 * 15641 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 15642 * the code there de-references ipif_ill to get the ill to 15643 * send multicast requests. It does not work as ipif is on its 15644 * move and already moved when this function is called. 15645 * Thus, we need to use from_ill and to_ill send down multicast 15646 * requests. 15647 */ 15648 static void 15649 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 15650 { 15651 ipif_t *ipif; 15652 ilm_t *ilm; 15653 15654 /* 15655 * See whether we need to send down DL_ENABMULTI_REQ on 15656 * to_ill as ilm has just been added. 15657 */ 15658 ASSERT(IAM_WRITER_ILL(to_ill)); 15659 ASSERT(IAM_WRITER_ILL(from_ill)); 15660 15661 ILM_WALKER_HOLD(to_ill); 15662 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15663 15664 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 15665 continue; 15666 /* 15667 * no locks held, ill/ipif cannot dissappear as long 15668 * as we are writer. 15669 */ 15670 ipif = to_ill->ill_ipif; 15671 /* 15672 * No need to hold any lock as we are the writer and this 15673 * can only be changed by a writer. 15674 */ 15675 ilm->ilm_is_new = B_FALSE; 15676 15677 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 15678 ipif->ipif_flags & IPIF_POINTOPOINT) { 15679 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 15680 "resolver\n")); 15681 continue; /* Must be IRE_IF_NORESOLVER */ 15682 } 15683 15684 15685 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15686 ip1dbg(("ilm_send_multicast_reqs: " 15687 "to_ill MULTI_BCAST\n")); 15688 goto from; 15689 } 15690 15691 if (to_ill->ill_isv6) 15692 mld_joingroup(ilm); 15693 else 15694 igmp_joingroup(ilm); 15695 15696 if (to_ill->ill_ipif_up_count == 0) { 15697 /* 15698 * Nobody there. All multicast addresses will be 15699 * re-joined when we get the DL_BIND_ACK bringing the 15700 * interface up. 15701 */ 15702 ilm->ilm_notify_driver = B_FALSE; 15703 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 15704 goto from; 15705 } 15706 15707 /* 15708 * For allmulti address, we want to join on only one interface. 15709 * Checking for ilm_numentries_v6 is not correct as you may 15710 * find an ilm with zero address on to_ill, but we may not 15711 * have nominated to_ill for receiving. Thus, if we have 15712 * nominated from_ill (ill_join_allmulti is set), nominate 15713 * only if to_ill is not already nominated (to_ill normally 15714 * should not have been nominated if "from_ill" has already 15715 * been nominated. As we don't prevent failovers from happening 15716 * across groups, we don't assert). 15717 */ 15718 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15719 /* 15720 * There is no need to hold ill locks as we are 15721 * writer on both ills and when ill_join_allmulti 15722 * is changed the thread is always a writer. 15723 */ 15724 if (from_ill->ill_join_allmulti && 15725 !to_ill->ill_join_allmulti) { 15726 (void) ip_join_allmulti(to_ill->ill_ipif); 15727 } 15728 } else if (ilm->ilm_notify_driver) { 15729 15730 /* 15731 * This is a newly moved ilm so we need to tell the 15732 * driver about the new group. There can be more than 15733 * one ilm's for the same group in the list each with a 15734 * different orig_ifindex. We have to inform the driver 15735 * once. In ilm_move_v[4,6] we only set the flag 15736 * ilm_notify_driver for the first ilm. 15737 */ 15738 15739 (void) ip_ll_send_enabmulti_req(to_ill, 15740 &ilm->ilm_v6addr); 15741 } 15742 15743 ilm->ilm_notify_driver = B_FALSE; 15744 15745 /* 15746 * See whether we need to send down DL_DISABMULTI_REQ on 15747 * from_ill as ilm has just been removed. 15748 */ 15749 from: 15750 ipif = from_ill->ill_ipif; 15751 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 15752 ipif->ipif_flags & IPIF_POINTOPOINT) { 15753 ip1dbg(("ilm_send_multicast_reqs: " 15754 "from_ill not resolver\n")); 15755 continue; /* Must be IRE_IF_NORESOLVER */ 15756 } 15757 15758 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15759 ip1dbg(("ilm_send_multicast_reqs: " 15760 "from_ill MULTI_BCAST\n")); 15761 continue; 15762 } 15763 15764 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15765 if (from_ill->ill_join_allmulti) 15766 (void) ip_leave_allmulti(from_ill->ill_ipif); 15767 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 15768 (void) ip_ll_send_disabmulti_req(from_ill, 15769 &ilm->ilm_v6addr); 15770 } 15771 } 15772 ILM_WALKER_RELE(to_ill); 15773 } 15774 15775 /* 15776 * This function is called when all multicast memberships needs 15777 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 15778 * called only once unlike the IPv4 counterpart where it is called after 15779 * every logical interface is moved. The reason is due to multicast 15780 * memberships are joined using an interface address in IPv4 while in 15781 * IPv6, interface index is used. 15782 */ 15783 static void 15784 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 15785 { 15786 ilm_t *ilm; 15787 ilm_t *ilm_next; 15788 ilm_t *new_ilm; 15789 ilm_t **ilmp; 15790 int count; 15791 char buf[INET6_ADDRSTRLEN]; 15792 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 15793 15794 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 15795 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 15796 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 15797 15798 if (ifindex == 0) { 15799 /* 15800 * Form the solicited node mcast address which is used later. 15801 */ 15802 ipif_t *ipif; 15803 15804 ipif = from_ill->ill_ipif; 15805 ASSERT(ipif->ipif_id == 0); 15806 15807 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15808 } 15809 15810 ilmp = &from_ill->ill_ilm; 15811 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 15812 ilm_next = ilm->ilm_next; 15813 15814 if (ilm->ilm_flags & ILM_DELETED) { 15815 ilmp = &ilm->ilm_next; 15816 continue; 15817 } 15818 15819 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 15820 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 15821 ASSERT(ilm->ilm_orig_ifindex != 0); 15822 if (ilm->ilm_orig_ifindex == ifindex) { 15823 /* 15824 * We are failing back multicast memberships. 15825 * If the same ilm exists in to_ill, it means somebody 15826 * has joined the same group there e.g. ff02::1 15827 * is joined within the kernel when the interfaces 15828 * came UP. 15829 */ 15830 ASSERT(ilm->ilm_ipif == NULL); 15831 if (new_ilm != NULL) { 15832 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 15833 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15834 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15835 new_ilm->ilm_is_new = B_TRUE; 15836 } 15837 } else { 15838 /* 15839 * check if we can just move the ilm 15840 */ 15841 if (from_ill->ill_ilm_walker_cnt != 0) { 15842 /* 15843 * We have walkers we cannot move 15844 * the ilm, so allocate a new ilm, 15845 * this (old) ilm will be marked 15846 * ILM_DELETED at the end of the loop 15847 * and will be freed when the 15848 * last walker exits. 15849 */ 15850 new_ilm = (ilm_t *)mi_zalloc 15851 (sizeof (ilm_t)); 15852 if (new_ilm == NULL) { 15853 ip0dbg(("ilm_move_v6: " 15854 "FAILBACK of IPv6" 15855 " multicast address %s : " 15856 "from %s to" 15857 " %s failed : ENOMEM \n", 15858 inet_ntop(AF_INET6, 15859 &ilm->ilm_v6addr, buf, 15860 sizeof (buf)), 15861 from_ill->ill_name, 15862 to_ill->ill_name)); 15863 15864 ilmp = &ilm->ilm_next; 15865 continue; 15866 } 15867 *new_ilm = *ilm; 15868 /* 15869 * we don't want new_ilm linked to 15870 * ilm's filter list. 15871 */ 15872 new_ilm->ilm_filter = NULL; 15873 } else { 15874 /* 15875 * No walkers we can move the ilm. 15876 * lets take it out of the list. 15877 */ 15878 *ilmp = ilm->ilm_next; 15879 ilm->ilm_next = NULL; 15880 new_ilm = ilm; 15881 } 15882 15883 /* 15884 * if this is the first ilm for the group 15885 * set ilm_notify_driver so that we notify the 15886 * driver in ilm_send_multicast_reqs. 15887 */ 15888 if (ilm_lookup_ill_v6(to_ill, 15889 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15890 new_ilm->ilm_notify_driver = B_TRUE; 15891 15892 new_ilm->ilm_ill = to_ill; 15893 /* Add to the to_ill's list */ 15894 new_ilm->ilm_next = to_ill->ill_ilm; 15895 to_ill->ill_ilm = new_ilm; 15896 /* 15897 * set the flag so that mld_joingroup is 15898 * called in ilm_send_multicast_reqs(). 15899 */ 15900 new_ilm->ilm_is_new = B_TRUE; 15901 } 15902 goto bottom; 15903 } else if (ifindex != 0) { 15904 /* 15905 * If this is FAILBACK (ifindex != 0) and the ifindex 15906 * has not matched above, look at the next ilm. 15907 */ 15908 ilmp = &ilm->ilm_next; 15909 continue; 15910 } 15911 /* 15912 * If we are here, it means ifindex is 0. Failover 15913 * everything. 15914 * 15915 * We need to handle solicited node mcast address 15916 * and all_nodes mcast address differently as they 15917 * are joined witin the kenrel (ipif_multicast_up) 15918 * and potentially from the userland. We are called 15919 * after the ipifs of from_ill has been moved. 15920 * If we still find ilms on ill with solicited node 15921 * mcast address or all_nodes mcast address, it must 15922 * belong to the UP interface that has not moved e.g. 15923 * ipif_id 0 with the link local prefix does not move. 15924 * We join this on the new ill accounting for all the 15925 * userland memberships so that applications don't 15926 * see any failure. 15927 * 15928 * We need to make sure that we account only for the 15929 * solicited node and all node multicast addresses 15930 * that was brought UP on these. In the case of 15931 * a failover from A to B, we might have ilms belonging 15932 * to A (ilm_orig_ifindex pointing at A) on B accounting 15933 * for the membership from the userland. If we are failing 15934 * over from B to C now, we will find the ones belonging 15935 * to A on B. These don't account for the ill_ipif_up_count. 15936 * They just move from B to C. The check below on 15937 * ilm_orig_ifindex ensures that. 15938 */ 15939 if ((ilm->ilm_orig_ifindex == 15940 from_ill->ill_phyint->phyint_ifindex) && 15941 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 15942 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 15943 &ilm->ilm_v6addr))) { 15944 ASSERT(ilm->ilm_refcnt > 0); 15945 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 15946 /* 15947 * For indentation reasons, we are not using a 15948 * "else" here. 15949 */ 15950 if (count == 0) { 15951 ilmp = &ilm->ilm_next; 15952 continue; 15953 } 15954 ilm->ilm_refcnt -= count; 15955 if (new_ilm != NULL) { 15956 /* 15957 * Can find one with the same 15958 * ilm_orig_ifindex, if we are failing 15959 * over to a STANDBY. This happens 15960 * when somebody wants to join a group 15961 * on a STANDBY interface and we 15962 * internally join on a different one. 15963 * If we had joined on from_ill then, a 15964 * failover now will find a new ilm 15965 * with this index. 15966 */ 15967 ip1dbg(("ilm_move_v6: FAILOVER, found" 15968 " new ilm on %s, group address %s\n", 15969 to_ill->ill_name, 15970 inet_ntop(AF_INET6, 15971 &ilm->ilm_v6addr, buf, 15972 sizeof (buf)))); 15973 new_ilm->ilm_refcnt += count; 15974 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15975 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15976 new_ilm->ilm_is_new = B_TRUE; 15977 } 15978 } else { 15979 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 15980 if (new_ilm == NULL) { 15981 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 15982 " multicast address %s : from %s to" 15983 " %s failed : ENOMEM \n", 15984 inet_ntop(AF_INET6, 15985 &ilm->ilm_v6addr, buf, 15986 sizeof (buf)), from_ill->ill_name, 15987 to_ill->ill_name)); 15988 ilmp = &ilm->ilm_next; 15989 continue; 15990 } 15991 *new_ilm = *ilm; 15992 new_ilm->ilm_filter = NULL; 15993 new_ilm->ilm_refcnt = count; 15994 new_ilm->ilm_timer = INFINITY; 15995 new_ilm->ilm_rtx.rtx_timer = INFINITY; 15996 new_ilm->ilm_is_new = B_TRUE; 15997 /* 15998 * If the to_ill has not joined this 15999 * group we need to tell the driver in 16000 * ill_send_multicast_reqs. 16001 */ 16002 if (ilm_lookup_ill_v6(to_ill, 16003 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16004 new_ilm->ilm_notify_driver = B_TRUE; 16005 16006 new_ilm->ilm_ill = to_ill; 16007 /* Add to the to_ill's list */ 16008 new_ilm->ilm_next = to_ill->ill_ilm; 16009 to_ill->ill_ilm = new_ilm; 16010 ASSERT(new_ilm->ilm_ipif == NULL); 16011 } 16012 if (ilm->ilm_refcnt == 0) { 16013 goto bottom; 16014 } else { 16015 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16016 CLEAR_SLIST(new_ilm->ilm_filter); 16017 ilmp = &ilm->ilm_next; 16018 } 16019 continue; 16020 } else { 16021 /* 16022 * ifindex = 0 means, move everything pointing at 16023 * from_ill. We are doing this becuase ill has 16024 * either FAILED or became INACTIVE. 16025 * 16026 * As we would like to move things later back to 16027 * from_ill, we want to retain the identity of this 16028 * ilm. Thus, we don't blindly increment the reference 16029 * count on the ilms matching the address alone. We 16030 * need to match on the ilm_orig_index also. new_ilm 16031 * was obtained by matching ilm_orig_index also. 16032 */ 16033 if (new_ilm != NULL) { 16034 /* 16035 * This is possible only if a previous restore 16036 * was incomplete i.e restore to 16037 * ilm_orig_ifindex left some ilms because 16038 * of some failures. Thus when we are failing 16039 * again, we might find our old friends there. 16040 */ 16041 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 16042 " on %s, group address %s\n", 16043 to_ill->ill_name, 16044 inet_ntop(AF_INET6, 16045 &ilm->ilm_v6addr, buf, 16046 sizeof (buf)))); 16047 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16048 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16049 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16050 new_ilm->ilm_is_new = B_TRUE; 16051 } 16052 } else { 16053 if (from_ill->ill_ilm_walker_cnt != 0) { 16054 new_ilm = (ilm_t *) 16055 mi_zalloc(sizeof (ilm_t)); 16056 if (new_ilm == NULL) { 16057 ip0dbg(("ilm_move_v6: " 16058 "FAILOVER of IPv6" 16059 " multicast address %s : " 16060 "from %s to" 16061 " %s failed : ENOMEM \n", 16062 inet_ntop(AF_INET6, 16063 &ilm->ilm_v6addr, buf, 16064 sizeof (buf)), 16065 from_ill->ill_name, 16066 to_ill->ill_name)); 16067 16068 ilmp = &ilm->ilm_next; 16069 continue; 16070 } 16071 *new_ilm = *ilm; 16072 new_ilm->ilm_filter = NULL; 16073 } else { 16074 *ilmp = ilm->ilm_next; 16075 new_ilm = ilm; 16076 } 16077 /* 16078 * If the to_ill has not joined this 16079 * group we need to tell the driver in 16080 * ill_send_multicast_reqs. 16081 */ 16082 if (ilm_lookup_ill_v6(to_ill, 16083 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16084 new_ilm->ilm_notify_driver = B_TRUE; 16085 16086 /* Add to the to_ill's list */ 16087 new_ilm->ilm_next = to_ill->ill_ilm; 16088 to_ill->ill_ilm = new_ilm; 16089 ASSERT(ilm->ilm_ipif == NULL); 16090 new_ilm->ilm_ill = to_ill; 16091 new_ilm->ilm_is_new = B_TRUE; 16092 } 16093 16094 } 16095 16096 bottom: 16097 /* 16098 * Revert multicast filter state to (EXCLUDE, NULL). 16099 * new_ilm->ilm_is_new should already be set if needed. 16100 */ 16101 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16102 CLEAR_SLIST(new_ilm->ilm_filter); 16103 /* 16104 * We allocated/got a new ilm, free the old one. 16105 */ 16106 if (new_ilm != ilm) { 16107 if (from_ill->ill_ilm_walker_cnt == 0) { 16108 *ilmp = ilm->ilm_next; 16109 ilm->ilm_next = NULL; 16110 FREE_SLIST(ilm->ilm_filter); 16111 FREE_SLIST(ilm->ilm_pendsrcs); 16112 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16113 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16114 mi_free((char *)ilm); 16115 } else { 16116 ilm->ilm_flags |= ILM_DELETED; 16117 from_ill->ill_ilm_cleanup_reqd = 1; 16118 ilmp = &ilm->ilm_next; 16119 } 16120 } 16121 } 16122 } 16123 16124 /* 16125 * Move all the multicast memberships to to_ill. Called when 16126 * an ipif moves from "from_ill" to "to_ill". This function is slightly 16127 * different from IPv6 counterpart as multicast memberships are associated 16128 * with ills in IPv6. This function is called after every ipif is moved 16129 * unlike IPv6, where it is moved only once. 16130 */ 16131 static void 16132 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 16133 { 16134 ilm_t *ilm; 16135 ilm_t *ilm_next; 16136 ilm_t *new_ilm; 16137 ilm_t **ilmp; 16138 16139 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16140 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16141 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16142 16143 ilmp = &from_ill->ill_ilm; 16144 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16145 ilm_next = ilm->ilm_next; 16146 16147 if (ilm->ilm_flags & ILM_DELETED) { 16148 ilmp = &ilm->ilm_next; 16149 continue; 16150 } 16151 16152 ASSERT(ilm->ilm_ipif != NULL); 16153 16154 if (ilm->ilm_ipif != ipif) { 16155 ilmp = &ilm->ilm_next; 16156 continue; 16157 } 16158 16159 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 16160 htonl(INADDR_ALLHOSTS_GROUP)) { 16161 /* 16162 * We joined this in ipif_multicast_up 16163 * and we never did an ipif_multicast_down 16164 * for IPv4. If nobody else from the userland 16165 * has reference, we free the ilm, and later 16166 * when this ipif comes up on the new ill, 16167 * we will join this again. 16168 */ 16169 if (--ilm->ilm_refcnt == 0) 16170 goto delete_ilm; 16171 16172 new_ilm = ilm_lookup_ipif(ipif, 16173 V4_PART_OF_V6(ilm->ilm_v6addr)); 16174 if (new_ilm != NULL) { 16175 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16176 /* 16177 * We still need to deal with the from_ill. 16178 */ 16179 new_ilm->ilm_is_new = B_TRUE; 16180 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16181 CLEAR_SLIST(new_ilm->ilm_filter); 16182 goto delete_ilm; 16183 } 16184 /* 16185 * If we could not find one e.g. ipif is 16186 * still down on to_ill, we add this ilm 16187 * on ill_new to preserve the reference 16188 * count. 16189 */ 16190 } 16191 /* 16192 * When ipifs move, ilms always move with it 16193 * to the NEW ill. Thus we should never be 16194 * able to find ilm till we really move it here. 16195 */ 16196 ASSERT(ilm_lookup_ipif(ipif, 16197 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 16198 16199 if (from_ill->ill_ilm_walker_cnt != 0) { 16200 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16201 if (new_ilm == NULL) { 16202 char buf[INET6_ADDRSTRLEN]; 16203 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 16204 " multicast address %s : " 16205 "from %s to" 16206 " %s failed : ENOMEM \n", 16207 inet_ntop(AF_INET, 16208 &ilm->ilm_v6addr, buf, 16209 sizeof (buf)), 16210 from_ill->ill_name, 16211 to_ill->ill_name)); 16212 16213 ilmp = &ilm->ilm_next; 16214 continue; 16215 } 16216 *new_ilm = *ilm; 16217 /* We don't want new_ilm linked to ilm's filter list */ 16218 new_ilm->ilm_filter = NULL; 16219 } else { 16220 /* Remove from the list */ 16221 *ilmp = ilm->ilm_next; 16222 new_ilm = ilm; 16223 } 16224 16225 /* 16226 * If we have never joined this group on the to_ill 16227 * make sure we tell the driver. 16228 */ 16229 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 16230 ALL_ZONES) == NULL) 16231 new_ilm->ilm_notify_driver = B_TRUE; 16232 16233 /* Add to the to_ill's list */ 16234 new_ilm->ilm_next = to_ill->ill_ilm; 16235 to_ill->ill_ilm = new_ilm; 16236 new_ilm->ilm_is_new = B_TRUE; 16237 16238 /* 16239 * Revert multicast filter state to (EXCLUDE, NULL) 16240 */ 16241 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16242 CLEAR_SLIST(new_ilm->ilm_filter); 16243 16244 /* 16245 * Delete only if we have allocated a new ilm. 16246 */ 16247 if (new_ilm != ilm) { 16248 delete_ilm: 16249 if (from_ill->ill_ilm_walker_cnt == 0) { 16250 /* Remove from the list */ 16251 *ilmp = ilm->ilm_next; 16252 ilm->ilm_next = NULL; 16253 FREE_SLIST(ilm->ilm_filter); 16254 FREE_SLIST(ilm->ilm_pendsrcs); 16255 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16256 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16257 mi_free((char *)ilm); 16258 } else { 16259 ilm->ilm_flags |= ILM_DELETED; 16260 from_ill->ill_ilm_cleanup_reqd = 1; 16261 ilmp = &ilm->ilm_next; 16262 } 16263 } 16264 } 16265 } 16266 16267 static uint_t 16268 ipif_get_id(ill_t *ill, uint_t id) 16269 { 16270 uint_t unit; 16271 ipif_t *tipif; 16272 boolean_t found = B_FALSE; 16273 16274 /* 16275 * During failback, we want to go back to the same id 16276 * instead of the smallest id so that the original 16277 * configuration is maintained. id is non-zero in that 16278 * case. 16279 */ 16280 if (id != 0) { 16281 /* 16282 * While failing back, if we still have an ipif with 16283 * MAX_ADDRS_PER_IF, it means this will be replaced 16284 * as soon as we return from this function. It was 16285 * to set to MAX_ADDRS_PER_IF by the caller so that 16286 * we can choose the smallest id. Thus we return zero 16287 * in that case ignoring the hint. 16288 */ 16289 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 16290 return (0); 16291 for (tipif = ill->ill_ipif; tipif != NULL; 16292 tipif = tipif->ipif_next) { 16293 if (tipif->ipif_id == id) { 16294 found = B_TRUE; 16295 break; 16296 } 16297 } 16298 /* 16299 * If somebody already plumbed another logical 16300 * with the same id, we won't be able to find it. 16301 */ 16302 if (!found) 16303 return (id); 16304 } 16305 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 16306 found = B_FALSE; 16307 for (tipif = ill->ill_ipif; tipif != NULL; 16308 tipif = tipif->ipif_next) { 16309 if (tipif->ipif_id == unit) { 16310 found = B_TRUE; 16311 break; 16312 } 16313 } 16314 if (!found) 16315 break; 16316 } 16317 return (unit); 16318 } 16319 16320 /* ARGSUSED */ 16321 static int 16322 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 16323 ipif_t **rep_ipif_ptr) 16324 { 16325 ill_t *from_ill; 16326 ipif_t *rep_ipif; 16327 ipif_t **ipifp; 16328 uint_t unit; 16329 int err = 0; 16330 ipif_t *to_ipif; 16331 struct iocblk *iocp; 16332 boolean_t failback_cmd; 16333 boolean_t remove_ipif; 16334 int rc; 16335 16336 ASSERT(IAM_WRITER_ILL(to_ill)); 16337 ASSERT(IAM_WRITER_IPIF(ipif)); 16338 16339 iocp = (struct iocblk *)mp->b_rptr; 16340 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 16341 remove_ipif = B_FALSE; 16342 16343 from_ill = ipif->ipif_ill; 16344 16345 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16346 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16347 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16348 16349 /* 16350 * Don't move LINK LOCAL addresses as they are tied to 16351 * physical interface. 16352 */ 16353 if (from_ill->ill_isv6 && 16354 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 16355 ipif->ipif_was_up = B_FALSE; 16356 IPIF_UNMARK_MOVING(ipif); 16357 return (0); 16358 } 16359 16360 /* 16361 * We set the ipif_id to maximum so that the search for 16362 * ipif_id will pick the lowest number i.e 0 in the 16363 * following 2 cases : 16364 * 16365 * 1) We have a replacement ipif at the head of to_ill. 16366 * We can't remove it yet as we can exceed ip_addrs_per_if 16367 * on to_ill and hence the MOVE might fail. We want to 16368 * remove it only if we could move the ipif. Thus, by 16369 * setting it to the MAX value, we make the search in 16370 * ipif_get_id return the zeroth id. 16371 * 16372 * 2) When DR pulls out the NIC and re-plumbs the interface, 16373 * we might just have a zero address plumbed on the ipif 16374 * with zero id in the case of IPv4. We remove that while 16375 * doing the failback. We want to remove it only if we 16376 * could move the ipif. Thus, by setting it to the MAX 16377 * value, we make the search in ipif_get_id return the 16378 * zeroth id. 16379 * 16380 * Both (1) and (2) are done only when when we are moving 16381 * an ipif (either due to failover/failback) which originally 16382 * belonged to this interface i.e the ipif_orig_ifindex is 16383 * the same as to_ill's ifindex. This is needed so that 16384 * FAILOVER from A -> B ( A failed) followed by FAILOVER 16385 * from B -> A (B is being removed from the group) and 16386 * FAILBACK from A -> B restores the original configuration. 16387 * Without the check for orig_ifindex, the second FAILOVER 16388 * could make the ipif belonging to B replace the A's zeroth 16389 * ipif and the subsequent failback re-creating the replacement 16390 * ipif again. 16391 * 16392 * NOTE : We created the replacement ipif when we did a 16393 * FAILOVER (See below). We could check for FAILBACK and 16394 * then look for replacement ipif to be removed. But we don't 16395 * want to do that because we wan't to allow the possibility 16396 * of a FAILOVER from A -> B (which creates the replacement ipif), 16397 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 16398 * from B -> A. 16399 */ 16400 to_ipif = to_ill->ill_ipif; 16401 if ((to_ill->ill_phyint->phyint_ifindex == 16402 ipif->ipif_orig_ifindex) && 16403 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 16404 ASSERT(to_ipif->ipif_id == 0); 16405 remove_ipif = B_TRUE; 16406 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 16407 } 16408 /* 16409 * Find the lowest logical unit number on the to_ill. 16410 * If we are failing back, try to get the original id 16411 * rather than the lowest one so that the original 16412 * configuration is maintained. 16413 * 16414 * XXX need a better scheme for this. 16415 */ 16416 if (failback_cmd) { 16417 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 16418 } else { 16419 unit = ipif_get_id(to_ill, 0); 16420 } 16421 16422 /* Reset back to zero in case we fail below */ 16423 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 16424 to_ipif->ipif_id = 0; 16425 16426 if (unit == ip_addrs_per_if) { 16427 ipif->ipif_was_up = B_FALSE; 16428 IPIF_UNMARK_MOVING(ipif); 16429 return (EINVAL); 16430 } 16431 16432 /* 16433 * ipif is ready to move from "from_ill" to "to_ill". 16434 * 16435 * 1) If we are moving ipif with id zero, create a 16436 * replacement ipif for this ipif on from_ill. If this fails 16437 * fail the MOVE operation. 16438 * 16439 * 2) Remove the replacement ipif on to_ill if any. 16440 * We could remove the replacement ipif when we are moving 16441 * the ipif with id zero. But what if somebody already 16442 * unplumbed it ? Thus we always remove it if it is present. 16443 * We want to do it only if we are sure we are going to 16444 * move the ipif to to_ill which is why there are no 16445 * returns due to error till ipif is linked to to_ill. 16446 * Note that the first ipif that we failback will always 16447 * be zero if it is present. 16448 */ 16449 if (ipif->ipif_id == 0) { 16450 ipaddr_t inaddr_any = INADDR_ANY; 16451 16452 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 16453 if (rep_ipif == NULL) { 16454 ipif->ipif_was_up = B_FALSE; 16455 IPIF_UNMARK_MOVING(ipif); 16456 return (ENOMEM); 16457 } 16458 *rep_ipif = ipif_zero; 16459 /* 16460 * Before we put the ipif on the list, store the addresses 16461 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 16462 * assumes so. This logic is not any different from what 16463 * ipif_allocate does. 16464 */ 16465 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16466 &rep_ipif->ipif_v6lcl_addr); 16467 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16468 &rep_ipif->ipif_v6src_addr); 16469 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16470 &rep_ipif->ipif_v6subnet); 16471 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16472 &rep_ipif->ipif_v6net_mask); 16473 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16474 &rep_ipif->ipif_v6brd_addr); 16475 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16476 &rep_ipif->ipif_v6pp_dst_addr); 16477 /* 16478 * We mark IPIF_NOFAILOVER so that this can never 16479 * move. 16480 */ 16481 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 16482 rep_ipif->ipif_flags &= ~IPIF_UP; 16483 rep_ipif->ipif_replace_zero = B_TRUE; 16484 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 16485 MUTEX_DEFAULT, NULL); 16486 rep_ipif->ipif_id = 0; 16487 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 16488 rep_ipif->ipif_ill = from_ill; 16489 rep_ipif->ipif_orig_ifindex = 16490 from_ill->ill_phyint->phyint_ifindex; 16491 /* Insert at head */ 16492 rep_ipif->ipif_next = from_ill->ill_ipif; 16493 from_ill->ill_ipif = rep_ipif; 16494 /* 16495 * We don't really care to let apps know about 16496 * this interface. 16497 */ 16498 } 16499 16500 if (remove_ipif) { 16501 /* 16502 * We set to a max value above for this case to get 16503 * id zero. ASSERT that we did get one. 16504 */ 16505 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 16506 rep_ipif = to_ipif; 16507 to_ill->ill_ipif = rep_ipif->ipif_next; 16508 rep_ipif->ipif_next = NULL; 16509 /* 16510 * If some apps scanned and find this interface, 16511 * it is time to let them know, so that they can 16512 * delete it. 16513 */ 16514 16515 *rep_ipif_ptr = rep_ipif; 16516 } 16517 16518 /* Get it out of the ILL interface list. */ 16519 ipifp = &ipif->ipif_ill->ill_ipif; 16520 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 16521 if (*ipifp == ipif) { 16522 *ipifp = ipif->ipif_next; 16523 break; 16524 } 16525 } 16526 16527 /* Assign the new ill */ 16528 ipif->ipif_ill = to_ill; 16529 ipif->ipif_id = unit; 16530 /* id has already been checked */ 16531 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 16532 ASSERT(rc == 0); 16533 /* Let SCTP update its list */ 16534 sctp_move_ipif(ipif, from_ill, to_ill); 16535 /* 16536 * Handle the failover and failback of ipif_t between 16537 * ill_t that have differing maximum mtu values. 16538 */ 16539 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 16540 if (ipif->ipif_saved_mtu == 0) { 16541 /* 16542 * As this ipif_t is moving to an ill_t 16543 * that has a lower ill_max_mtu, its 16544 * ipif_mtu needs to be saved so it can 16545 * be restored during failback or during 16546 * failover to an ill_t which has a 16547 * higher ill_max_mtu. 16548 */ 16549 ipif->ipif_saved_mtu = ipif->ipif_mtu; 16550 ipif->ipif_mtu = to_ill->ill_max_mtu; 16551 } else { 16552 /* 16553 * The ipif_t is, once again, moving to 16554 * an ill_t that has a lower maximum mtu 16555 * value. 16556 */ 16557 ipif->ipif_mtu = to_ill->ill_max_mtu; 16558 } 16559 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 16560 ipif->ipif_saved_mtu != 0) { 16561 /* 16562 * The mtu of this ipif_t had to be reduced 16563 * during an earlier failover; this is an 16564 * opportunity for it to be increased (either as 16565 * part of another failover or a failback). 16566 */ 16567 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 16568 ipif->ipif_mtu = ipif->ipif_saved_mtu; 16569 ipif->ipif_saved_mtu = 0; 16570 } else { 16571 ipif->ipif_mtu = to_ill->ill_max_mtu; 16572 } 16573 } 16574 16575 /* 16576 * We preserve all the other fields of the ipif including 16577 * ipif_saved_ire_mp. The routes that are saved here will 16578 * be recreated on the new interface and back on the old 16579 * interface when we move back. 16580 */ 16581 ASSERT(ipif->ipif_arp_del_mp == NULL); 16582 16583 return (err); 16584 } 16585 16586 static int 16587 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 16588 int ifindex, ipif_t **rep_ipif_ptr) 16589 { 16590 ipif_t *mipif; 16591 ipif_t *ipif_next; 16592 int err; 16593 16594 /* 16595 * We don't really try to MOVE back things if some of the 16596 * operations fail. The daemon will take care of moving again 16597 * later on. 16598 */ 16599 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 16600 ipif_next = mipif->ipif_next; 16601 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 16602 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 16603 16604 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 16605 16606 /* 16607 * When the MOVE fails, it is the job of the 16608 * application to take care of this properly 16609 * i.e try again if it is ENOMEM. 16610 */ 16611 if (mipif->ipif_ill != from_ill) { 16612 /* 16613 * ipif has moved. 16614 * 16615 * Move the multicast memberships associated 16616 * with this ipif to the new ill. For IPv6, we 16617 * do it once after all the ipifs are moved 16618 * (in ill_move) as they are not associated 16619 * with ipifs. 16620 * 16621 * We need to move the ilms as the ipif has 16622 * already been moved to a new ill even 16623 * in the case of errors. Neither 16624 * ilm_free(ipif) will find the ilm 16625 * when somebody unplumbs this ipif nor 16626 * ilm_delete(ilm) will be able to find the 16627 * ilm, if we don't move now. 16628 */ 16629 if (!from_ill->ill_isv6) 16630 ilm_move_v4(from_ill, to_ill, mipif); 16631 } 16632 16633 if (err != 0) 16634 return (err); 16635 } 16636 } 16637 return (0); 16638 } 16639 16640 static int 16641 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 16642 { 16643 int ifindex; 16644 int err; 16645 struct iocblk *iocp; 16646 ipif_t *ipif; 16647 ipif_t *rep_ipif_ptr = NULL; 16648 ipif_t *from_ipif = NULL; 16649 boolean_t check_rep_if = B_FALSE; 16650 16651 iocp = (struct iocblk *)mp->b_rptr; 16652 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 16653 /* 16654 * Move everything pointing at from_ill to to_ill. 16655 * We acheive this by passing in 0 as ifindex. 16656 */ 16657 ifindex = 0; 16658 } else { 16659 /* 16660 * Move everything pointing at from_ill whose original 16661 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 16662 * We acheive this by passing in ifindex rather than 0. 16663 * Multicast vifs, ilgs move implicitly because ipifs move. 16664 */ 16665 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 16666 ifindex = to_ill->ill_phyint->phyint_ifindex; 16667 } 16668 16669 /* 16670 * Determine if there is at least one ipif that would move from 16671 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 16672 * ipif (if it exists) on the to_ill would be consumed as a result of 16673 * the move, in which case we need to quiesce the replacement ipif also. 16674 */ 16675 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 16676 from_ipif = from_ipif->ipif_next) { 16677 if (((ifindex == 0) || 16678 (ifindex == from_ipif->ipif_orig_ifindex)) && 16679 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 16680 check_rep_if = B_TRUE; 16681 break; 16682 } 16683 } 16684 16685 16686 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 16687 16688 GRAB_ILL_LOCKS(from_ill, to_ill); 16689 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 16690 (void) ipsq_pending_mp_add(NULL, ipif, q, 16691 mp, ILL_MOVE_OK); 16692 RELEASE_ILL_LOCKS(from_ill, to_ill); 16693 return (EINPROGRESS); 16694 } 16695 16696 /* Check if the replacement ipif is quiescent to delete */ 16697 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 16698 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 16699 to_ill->ill_ipif->ipif_state_flags |= 16700 IPIF_MOVING | IPIF_CHANGING; 16701 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 16702 (void) ipsq_pending_mp_add(NULL, ipif, q, 16703 mp, ILL_MOVE_OK); 16704 RELEASE_ILL_LOCKS(from_ill, to_ill); 16705 return (EINPROGRESS); 16706 } 16707 } 16708 RELEASE_ILL_LOCKS(from_ill, to_ill); 16709 16710 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 16711 rw_enter(&ill_g_lock, RW_WRITER); 16712 GRAB_ILL_LOCKS(from_ill, to_ill); 16713 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 16714 16715 /* ilm_move is done inside ipif_move for IPv4 */ 16716 if (err == 0 && from_ill->ill_isv6) 16717 ilm_move_v6(from_ill, to_ill, ifindex); 16718 16719 RELEASE_ILL_LOCKS(from_ill, to_ill); 16720 rw_exit(&ill_g_lock); 16721 16722 /* 16723 * send rts messages and multicast messages. 16724 */ 16725 if (rep_ipif_ptr != NULL) { 16726 ip_rts_ifmsg(rep_ipif_ptr); 16727 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 16728 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 16729 mi_free(rep_ipif_ptr); 16730 } 16731 16732 ilm_send_multicast_reqs(from_ill, to_ill); 16733 16734 conn_move_ill(from_ill, to_ill, ifindex); 16735 16736 return (err); 16737 } 16738 16739 /* 16740 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 16741 * Also checks for the validity of the arguments. 16742 * Note: We are already exclusive inside the from group. 16743 * It is upto the caller to release refcnt on the to_ill's. 16744 */ 16745 static int 16746 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 16747 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 16748 { 16749 int dst_index; 16750 ipif_t *ipif_v4, *ipif_v6; 16751 struct lifreq *lifr; 16752 mblk_t *mp1; 16753 boolean_t exists; 16754 sin_t *sin; 16755 int err = 0; 16756 16757 if ((mp1 = mp->b_cont) == NULL) 16758 return (EPROTO); 16759 16760 if ((mp1 = mp1->b_cont) == NULL) 16761 return (EPROTO); 16762 16763 lifr = (struct lifreq *)mp1->b_rptr; 16764 sin = (sin_t *)&lifr->lifr_addr; 16765 16766 /* 16767 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 16768 * specific operations. 16769 */ 16770 if (sin->sin_family != AF_UNSPEC) 16771 return (EINVAL); 16772 16773 /* 16774 * Get ipif with id 0. We are writer on the from ill. So we can pass 16775 * NULLs for the last 4 args and we know the lookup won't fail 16776 * with EINPROGRESS. 16777 */ 16778 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 16779 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 16780 ALL_ZONES, NULL, NULL, NULL, NULL); 16781 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 16782 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 16783 ALL_ZONES, NULL, NULL, NULL, NULL); 16784 16785 if (ipif_v4 == NULL && ipif_v6 == NULL) 16786 return (ENXIO); 16787 16788 if (ipif_v4 != NULL) { 16789 ASSERT(ipif_v4->ipif_refcnt != 0); 16790 if (ipif_v4->ipif_id != 0) { 16791 err = EINVAL; 16792 goto done; 16793 } 16794 16795 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 16796 *ill_from_v4 = ipif_v4->ipif_ill; 16797 } 16798 16799 if (ipif_v6 != NULL) { 16800 ASSERT(ipif_v6->ipif_refcnt != 0); 16801 if (ipif_v6->ipif_id != 0) { 16802 err = EINVAL; 16803 goto done; 16804 } 16805 16806 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 16807 *ill_from_v6 = ipif_v6->ipif_ill; 16808 } 16809 16810 err = 0; 16811 dst_index = lifr->lifr_movetoindex; 16812 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 16813 q, mp, ip_process_ioctl, &err); 16814 if (err != 0) { 16815 /* 16816 * There could be only v6. 16817 */ 16818 if (err != ENXIO) 16819 goto done; 16820 err = 0; 16821 } 16822 16823 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 16824 q, mp, ip_process_ioctl, &err); 16825 if (err != 0) { 16826 if (err != ENXIO) 16827 goto done; 16828 if (*ill_to_v4 == NULL) { 16829 err = ENXIO; 16830 goto done; 16831 } 16832 err = 0; 16833 } 16834 16835 /* 16836 * If we have something to MOVE i.e "from" not NULL, 16837 * "to" should be non-NULL. 16838 */ 16839 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 16840 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 16841 err = EINVAL; 16842 } 16843 16844 done: 16845 if (ipif_v4 != NULL) 16846 ipif_refrele(ipif_v4); 16847 if (ipif_v6 != NULL) 16848 ipif_refrele(ipif_v6); 16849 return (err); 16850 } 16851 16852 /* 16853 * FAILOVER and FAILBACK are modelled as MOVE operations. 16854 * 16855 * We don't check whether the MOVE is within the same group or 16856 * not, because this ioctl can be used as a generic mechanism 16857 * to failover from interface A to B, though things will function 16858 * only if they are really part of the same group. Moreover, 16859 * all ipifs may be down and hence temporarily out of the group. 16860 * 16861 * ipif's that need to be moved are first brought down; V4 ipifs are brought 16862 * down first and then V6. For each we wait for the ipif's to become quiescent. 16863 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 16864 * have been deleted and there are no active references. Once quiescent the 16865 * ipif's are moved and brought up on the new ill. 16866 * 16867 * Normally the source ill and destination ill belong to the same IPMP group 16868 * and hence the same ipsq_t. In the event they don't belong to the same 16869 * same group the two ipsq's are first merged into one ipsq - that of the 16870 * to_ill. The multicast memberships on the source and destination ill cannot 16871 * change during the move operation since multicast joins/leaves also have to 16872 * execute on the same ipsq and are hence serialized. 16873 */ 16874 /* ARGSUSED */ 16875 int 16876 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16877 ip_ioctl_cmd_t *ipip, void *ifreq) 16878 { 16879 ill_t *ill_to_v4 = NULL; 16880 ill_t *ill_to_v6 = NULL; 16881 ill_t *ill_from_v4 = NULL; 16882 ill_t *ill_from_v6 = NULL; 16883 int err = 0; 16884 16885 /* 16886 * setup from and to ill's, we can get EINPROGRESS only for 16887 * to_ill's. 16888 */ 16889 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 16890 &ill_to_v4, &ill_to_v6); 16891 16892 if (err != 0) { 16893 ip0dbg(("ip_sioctl_move: extract args failed\n")); 16894 goto done; 16895 } 16896 16897 /* 16898 * nothing to do. 16899 */ 16900 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 16901 goto done; 16902 } 16903 16904 /* 16905 * nothing to do. 16906 */ 16907 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 16908 goto done; 16909 } 16910 16911 /* 16912 * Mark the ill as changing. 16913 * ILL_CHANGING flag is cleared when the ipif's are brought up 16914 * in ill_up_ipifs in case of error they are cleared below. 16915 */ 16916 16917 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 16918 if (ill_from_v4 != NULL) 16919 ill_from_v4->ill_state_flags |= ILL_CHANGING; 16920 if (ill_from_v6 != NULL) 16921 ill_from_v6->ill_state_flags |= ILL_CHANGING; 16922 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 16923 16924 /* 16925 * Make sure that both src and dst are 16926 * in the same syncq group. If not make it happen. 16927 * We are not holding any locks because we are the writer 16928 * on the from_ipsq and we will hold locks in ill_merge_groups 16929 * to protect to_ipsq against changing. 16930 */ 16931 if (ill_from_v4 != NULL) { 16932 if (ill_from_v4->ill_phyint->phyint_ipsq != 16933 ill_to_v4->ill_phyint->phyint_ipsq) { 16934 err = ill_merge_groups(ill_from_v4, ill_to_v4, 16935 NULL, mp, q); 16936 goto err_ret; 16937 16938 } 16939 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 16940 } else { 16941 16942 if (ill_from_v6->ill_phyint->phyint_ipsq != 16943 ill_to_v6->ill_phyint->phyint_ipsq) { 16944 err = ill_merge_groups(ill_from_v6, ill_to_v6, 16945 NULL, mp, q); 16946 goto err_ret; 16947 16948 } 16949 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 16950 } 16951 16952 /* 16953 * Now that the ipsq's have been merged and we are the writer 16954 * lets mark to_ill as changing as well. 16955 */ 16956 16957 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 16958 if (ill_to_v4 != NULL) 16959 ill_to_v4->ill_state_flags |= ILL_CHANGING; 16960 if (ill_to_v6 != NULL) 16961 ill_to_v6->ill_state_flags |= ILL_CHANGING; 16962 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 16963 16964 /* 16965 * Its ok for us to proceed with the move even if 16966 * ill_pending_mp is non null on one of the from ill's as the reply 16967 * should not be looking at the ipif, it should only care about the 16968 * ill itself. 16969 */ 16970 16971 /* 16972 * lets move ipv4 first. 16973 */ 16974 if (ill_from_v4 != NULL) { 16975 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 16976 ill_from_v4->ill_move_in_progress = B_TRUE; 16977 ill_to_v4->ill_move_in_progress = B_TRUE; 16978 ill_to_v4->ill_move_peer = ill_from_v4; 16979 ill_from_v4->ill_move_peer = ill_to_v4; 16980 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 16981 } 16982 16983 /* 16984 * Now lets move ipv6. 16985 */ 16986 if (err == 0 && ill_from_v6 != NULL) { 16987 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 16988 ill_from_v6->ill_move_in_progress = B_TRUE; 16989 ill_to_v6->ill_move_in_progress = B_TRUE; 16990 ill_to_v6->ill_move_peer = ill_from_v6; 16991 ill_from_v6->ill_move_peer = ill_to_v6; 16992 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 16993 } 16994 16995 err_ret: 16996 /* 16997 * EINPROGRESS means we are waiting for the ipif's that need to be 16998 * moved to become quiescent. 16999 */ 17000 if (err == EINPROGRESS) { 17001 goto done; 17002 } 17003 17004 /* 17005 * if err is set ill_up_ipifs will not be called 17006 * lets clear the flags. 17007 */ 17008 17009 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17010 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17011 /* 17012 * Some of the clearing may be redundant. But it is simple 17013 * not making any extra checks. 17014 */ 17015 if (ill_from_v6 != NULL) { 17016 ill_from_v6->ill_move_in_progress = B_FALSE; 17017 ill_from_v6->ill_move_peer = NULL; 17018 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 17019 } 17020 if (ill_from_v4 != NULL) { 17021 ill_from_v4->ill_move_in_progress = B_FALSE; 17022 ill_from_v4->ill_move_peer = NULL; 17023 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 17024 } 17025 if (ill_to_v6 != NULL) { 17026 ill_to_v6->ill_move_in_progress = B_FALSE; 17027 ill_to_v6->ill_move_peer = NULL; 17028 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 17029 } 17030 if (ill_to_v4 != NULL) { 17031 ill_to_v4->ill_move_in_progress = B_FALSE; 17032 ill_to_v4->ill_move_peer = NULL; 17033 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 17034 } 17035 17036 /* 17037 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 17038 * Do this always to maintain proper state i.e even in case of errors. 17039 * As phyint_inactive looks at both v4 and v6 interfaces, 17040 * we need not call on both v4 and v6 interfaces. 17041 */ 17042 if (ill_from_v4 != NULL) { 17043 if ((ill_from_v4->ill_phyint->phyint_flags & 17044 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17045 phyint_inactive(ill_from_v4->ill_phyint); 17046 } 17047 } else if (ill_from_v6 != NULL) { 17048 if ((ill_from_v6->ill_phyint->phyint_flags & 17049 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17050 phyint_inactive(ill_from_v6->ill_phyint); 17051 } 17052 } 17053 17054 if (ill_to_v4 != NULL) { 17055 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17056 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17057 } 17058 } else if (ill_to_v6 != NULL) { 17059 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17060 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17061 } 17062 } 17063 17064 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17065 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17066 17067 no_err: 17068 /* 17069 * lets bring the interfaces up on the to_ill. 17070 */ 17071 if (err == 0) { 17072 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 17073 q, mp); 17074 } 17075 done: 17076 17077 if (ill_to_v4 != NULL) { 17078 ill_refrele(ill_to_v4); 17079 } 17080 if (ill_to_v6 != NULL) { 17081 ill_refrele(ill_to_v6); 17082 } 17083 17084 return (err); 17085 } 17086 17087 static void 17088 ill_dl_down(ill_t *ill) 17089 { 17090 /* 17091 * The ill is down; unbind but stay attached since we're still 17092 * associated with a PPA. 17093 */ 17094 mblk_t *mp = ill->ill_unbind_mp; 17095 17096 ill->ill_unbind_mp = NULL; 17097 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 17098 if (mp != NULL) { 17099 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 17100 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 17101 ill->ill_name)); 17102 ill_dlpi_send(ill, mp); 17103 } 17104 17105 /* 17106 * Toss all of our multicast memberships. We could keep them, but 17107 * then we'd have to do bookkeeping of any joins and leaves performed 17108 * by the application while the the interface is down (we can't just 17109 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 17110 * on a downed interface). 17111 */ 17112 ill_leave_multicast(ill); 17113 17114 mutex_enter(&ill->ill_lock); 17115 ill->ill_dl_up = 0; 17116 mutex_exit(&ill->ill_lock); 17117 } 17118 17119 void 17120 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 17121 { 17122 union DL_primitives *dlp; 17123 t_uscalar_t prim; 17124 17125 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17126 17127 dlp = (union DL_primitives *)mp->b_rptr; 17128 prim = dlp->dl_primitive; 17129 17130 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 17131 dlpi_prim_str(prim), prim, ill->ill_name)); 17132 17133 switch (prim) { 17134 case DL_PHYS_ADDR_REQ: 17135 { 17136 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 17137 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 17138 break; 17139 } 17140 case DL_BIND_REQ: 17141 mutex_enter(&ill->ill_lock); 17142 ill->ill_state_flags &= ~ILL_DL_UNBIND_DONE; 17143 mutex_exit(&ill->ill_lock); 17144 break; 17145 } 17146 17147 ill->ill_dlpi_pending = prim; 17148 17149 /* 17150 * Some drivers send M_FLUSH up to IP as part of unbind 17151 * request. When this M_FLUSH is sent back to the driver, 17152 * this can go after we send the detach request if the 17153 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 17154 * to the M_FLUSH in ip_rput and locally generate another 17155 * M_FLUSH for the correctness. This will get freed in 17156 * ip_wput_nondata. 17157 */ 17158 if (prim == DL_UNBIND_REQ) 17159 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 17160 17161 putnext(ill->ill_wq, mp); 17162 } 17163 17164 /* 17165 * Send a DLPI control message to the driver but make sure there 17166 * is only one outstanding message. Uses ill_dlpi_pending to tell 17167 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 17168 * when an ACK or a NAK is received to process the next queued message. 17169 * 17170 * We don't protect ill_dlpi_pending with any lock. This is okay as 17171 * every place where its accessed, ip is exclusive while accessing 17172 * ill_dlpi_pending except when this function is called from ill_init() 17173 */ 17174 void 17175 ill_dlpi_send(ill_t *ill, mblk_t *mp) 17176 { 17177 mblk_t **mpp; 17178 17179 ASSERT(IAM_WRITER_ILL(ill)); 17180 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17181 17182 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 17183 /* Must queue message. Tail insertion */ 17184 mpp = &ill->ill_dlpi_deferred; 17185 while (*mpp != NULL) 17186 mpp = &((*mpp)->b_next); 17187 17188 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 17189 ill->ill_name)); 17190 17191 *mpp = mp; 17192 return; 17193 } 17194 17195 ill_dlpi_dispatch(ill, mp); 17196 } 17197 17198 /* 17199 * Called when an DLPI control message has been acked or nacked to 17200 * send down the next queued message (if any). 17201 */ 17202 void 17203 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 17204 { 17205 mblk_t *mp; 17206 17207 ASSERT(IAM_WRITER_ILL(ill)); 17208 17209 ASSERT(prim != DL_PRIM_INVAL); 17210 if (ill->ill_dlpi_pending != prim) { 17211 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 17212 (void) mi_strlog(ill->ill_rq, 1, 17213 SL_CONSOLE|SL_ERROR|SL_TRACE, 17214 "ill_dlpi_done: unsolicited ack for %s from %s\n", 17215 dlpi_prim_str(prim), ill->ill_name); 17216 } else { 17217 (void) mi_strlog(ill->ill_rq, 1, 17218 SL_CONSOLE|SL_ERROR|SL_TRACE, 17219 "ill_dlpi_done: unexpected ack for %s from %s " 17220 "(expecting ack for %s)\n", 17221 dlpi_prim_str(prim), ill->ill_name, 17222 dlpi_prim_str(ill->ill_dlpi_pending)); 17223 } 17224 return; 17225 } 17226 17227 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 17228 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 17229 17230 if ((mp = ill->ill_dlpi_deferred) == NULL) { 17231 ill->ill_dlpi_pending = DL_PRIM_INVAL; 17232 return; 17233 } 17234 17235 ill->ill_dlpi_deferred = mp->b_next; 17236 mp->b_next = NULL; 17237 17238 ill_dlpi_dispatch(ill, mp); 17239 } 17240 17241 void 17242 conn_delete_ire(conn_t *connp, caddr_t arg) 17243 { 17244 ipif_t *ipif = (ipif_t *)arg; 17245 ire_t *ire; 17246 17247 /* 17248 * Look at the cached ires on conns which has pointers to ipifs. 17249 * We just call ire_refrele which clears up the reference 17250 * to ire. Called when a conn closes. Also called from ipif_free 17251 * to cleanup indirect references to the stale ipif via the cached ire. 17252 */ 17253 mutex_enter(&connp->conn_lock); 17254 ire = connp->conn_ire_cache; 17255 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 17256 connp->conn_ire_cache = NULL; 17257 mutex_exit(&connp->conn_lock); 17258 IRE_REFRELE_NOTR(ire); 17259 return; 17260 } 17261 mutex_exit(&connp->conn_lock); 17262 17263 } 17264 17265 /* 17266 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 17267 * of IREs. Those IREs may have been previously cached in the conn structure. 17268 * This ipcl_walk() walker function releases all references to such IREs based 17269 * on the condemned flag. 17270 */ 17271 /* ARGSUSED */ 17272 void 17273 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 17274 { 17275 ire_t *ire; 17276 17277 mutex_enter(&connp->conn_lock); 17278 ire = connp->conn_ire_cache; 17279 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 17280 connp->conn_ire_cache = NULL; 17281 mutex_exit(&connp->conn_lock); 17282 IRE_REFRELE_NOTR(ire); 17283 return; 17284 } 17285 mutex_exit(&connp->conn_lock); 17286 } 17287 17288 /* 17289 * Take down a specific interface, but don't lose any information about it. 17290 * Also delete interface from its interface group (ifgrp). 17291 * (Always called as writer.) 17292 * This function goes through the down sequence even if the interface is 17293 * already down. There are 2 reasons. 17294 * a. Currently we permit interface routes that depend on down interfaces 17295 * to be added. This behaviour itself is questionable. However it appears 17296 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 17297 * time. We go thru the cleanup in order to remove these routes. 17298 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 17299 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 17300 * down, but we need to cleanup i.e. do ill_dl_down and 17301 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 17302 * 17303 * IP-MT notes: 17304 * 17305 * Model of reference to interfaces. 17306 * 17307 * The following members in ipif_t track references to the ipif. 17308 * int ipif_refcnt; Active reference count 17309 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 17310 * The following members in ill_t track references to the ill. 17311 * int ill_refcnt; active refcnt 17312 * uint_t ill_ire_cnt; Number of ires referencing ill 17313 * uint_t ill_nce_cnt; Number of nces referencing ill 17314 * 17315 * Reference to an ipif or ill can be obtained in any of the following ways. 17316 * 17317 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 17318 * Pointers to ipif / ill from other data structures viz ire and conn. 17319 * Implicit reference to the ipif / ill by holding a reference to the ire. 17320 * 17321 * The ipif/ill lookup functions return a reference held ipif / ill. 17322 * ipif_refcnt and ill_refcnt track the reference counts respectively. 17323 * This is a purely dynamic reference count associated with threads holding 17324 * references to the ipif / ill. Pointers from other structures do not 17325 * count towards this reference count. 17326 * 17327 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 17328 * ipif/ill. This is incremented whenever a new ire is created referencing the 17329 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 17330 * actually added to the ire hash table. The count is decremented in 17331 * ire_inactive where the ire is destroyed. 17332 * 17333 * nce's reference ill's thru nce_ill and the count of nce's associated with 17334 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 17335 * ndp_add() where the nce is actually added to the table. Similarly it is 17336 * decremented in ndp_inactive where the nce is destroyed. 17337 * 17338 * Flow of ioctls involving interface down/up 17339 * 17340 * The following is the sequence of an attempt to set some critical flags on an 17341 * up interface. 17342 * ip_sioctl_flags 17343 * ipif_down 17344 * wait for ipif to be quiescent 17345 * ipif_down_tail 17346 * ip_sioctl_flags_tail 17347 * 17348 * All set ioctls that involve down/up sequence would have a skeleton similar 17349 * to the above. All the *tail functions are called after the refcounts have 17350 * dropped to the appropriate values. 17351 * 17352 * The mechanism to quiesce an ipif is as follows. 17353 * 17354 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 17355 * on the ipif. Callers either pass a flag requesting wait or the lookup 17356 * functions will return NULL. 17357 * 17358 * Delete all ires referencing this ipif 17359 * 17360 * Any thread attempting to do an ipif_refhold on an ipif that has been 17361 * obtained thru a cached pointer will first make sure that 17362 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 17363 * increment the refcount. 17364 * 17365 * The above guarantees that the ipif refcount will eventually come down to 17366 * zero and the ipif will quiesce, once all threads that currently hold a 17367 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 17368 * ipif_refcount has dropped to zero and all ire's associated with this ipif 17369 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 17370 * drop to zero. 17371 * 17372 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 17373 * 17374 * Threads trying to lookup an ipif or ill can pass a flag requesting 17375 * wait and restart if the ipif / ill cannot be looked up currently. 17376 * For eg. bind, and route operations (Eg. route add / delete) cannot return 17377 * failure if the ipif is currently undergoing an exclusive operation, and 17378 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 17379 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 17380 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 17381 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 17382 * change while the ill_lock is held. Before dropping the ill_lock we acquire 17383 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 17384 * until we release the ipsq_lock, even though the the ill/ipif state flags 17385 * can change after we drop the ill_lock. 17386 * 17387 * An attempt to send out a packet using an ipif that is currently 17388 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 17389 * operation and restart it later when the exclusive condition on the ipif ends. 17390 * This is an example of not passing the wait flag to the lookup functions. For 17391 * example an attempt to refhold and use conn->conn_multicast_ipif and send 17392 * out a multicast packet on that ipif will fail while the ipif is 17393 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 17394 * currently IPIF_CHANGING will also fail. 17395 */ 17396 int 17397 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17398 { 17399 ill_t *ill = ipif->ipif_ill; 17400 phyint_t *phyi; 17401 conn_t *connp; 17402 boolean_t success; 17403 boolean_t ipif_was_up = B_FALSE; 17404 17405 ASSERT(IAM_WRITER_IPIF(ipif)); 17406 17407 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 17408 17409 if (ipif->ipif_flags & IPIF_UP) { 17410 mutex_enter(&ill->ill_lock); 17411 ipif->ipif_flags &= ~IPIF_UP; 17412 ASSERT(ill->ill_ipif_up_count > 0); 17413 --ill->ill_ipif_up_count; 17414 mutex_exit(&ill->ill_lock); 17415 ipif_was_up = B_TRUE; 17416 /* Update status in SCTP's list */ 17417 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 17418 } 17419 17420 /* 17421 * Blow away v6 memberships we established in ipif_multicast_up(); the 17422 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 17423 * know not to rejoin when the interface is brought back up). 17424 */ 17425 if (ipif->ipif_isv6) 17426 ipif_multicast_down(ipif); 17427 /* 17428 * Remove from the mapping for __sin6_src_id. We insert only 17429 * when the address is not INADDR_ANY. As IPv4 addresses are 17430 * stored as mapped addresses, we need to check for mapped 17431 * INADDR_ANY also. 17432 */ 17433 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 17434 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 17435 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 17436 int err; 17437 17438 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 17439 ipif->ipif_zoneid); 17440 if (err != 0) { 17441 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 17442 } 17443 } 17444 17445 /* 17446 * Before we delete the ill from the group (if any), we need 17447 * to make sure that we delete all the routes dependent on 17448 * this and also any ipifs dependent on this ipif for 17449 * source address. We need to do before we delete from 17450 * the group because 17451 * 17452 * 1) ipif_down_delete_ire de-references ill->ill_group. 17453 * 17454 * 2) ipif_update_other_ipifs needs to walk the whole group 17455 * for re-doing source address selection. Note that 17456 * ipif_select_source[_v6] called from 17457 * ipif_update_other_ipifs[_v6] will not pick this ipif 17458 * because we have already marked down here i.e cleared 17459 * IPIF_UP. 17460 */ 17461 if (ipif->ipif_isv6) 17462 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17463 else 17464 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17465 17466 /* 17467 * Need to add these also to be saved and restored when the 17468 * ipif is brought down and up 17469 */ 17470 mutex_enter(&ire_mrtun_lock); 17471 if (ire_mrtun_count != 0) { 17472 mutex_exit(&ire_mrtun_lock); 17473 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 17474 (char *)ipif, NULL); 17475 } else { 17476 mutex_exit(&ire_mrtun_lock); 17477 } 17478 17479 mutex_enter(&ire_srcif_table_lock); 17480 if (ire_srcif_table_count > 0) { 17481 mutex_exit(&ire_srcif_table_lock); 17482 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 17483 } else { 17484 mutex_exit(&ire_srcif_table_lock); 17485 } 17486 17487 /* 17488 * Cleaning up the conn_ire_cache or conns must be done only after the 17489 * ires have been deleted above. Otherwise a thread could end up 17490 * caching an ire in a conn after we have finished the cleanup of the 17491 * conn. The caching is done after making sure that the ire is not yet 17492 * condemned. Also documented in the block comment above ip_output 17493 */ 17494 ipcl_walk(conn_cleanup_stale_ire, NULL); 17495 /* Also, delete the ires cached in SCTP */ 17496 sctp_ire_cache_flush(ipif); 17497 17498 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 17499 nattymod_clean_ipif(ipif); 17500 17501 /* 17502 * Update any other ipifs which have used "our" local address as 17503 * a source address. This entails removing and recreating IRE_INTERFACE 17504 * entries for such ipifs. 17505 */ 17506 if (ipif->ipif_isv6) 17507 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 17508 else 17509 ipif_update_other_ipifs(ipif, ill->ill_group); 17510 17511 if (ipif_was_up) { 17512 /* 17513 * Check whether it is last ipif to leave this group. 17514 * If this is the last ipif to leave, we should remove 17515 * this ill from the group as ipif_select_source will not 17516 * be able to find any useful ipifs if this ill is selected 17517 * for load balancing. 17518 * 17519 * For nameless groups, we should call ifgrp_delete if this 17520 * belongs to some group. As this ipif is going down, we may 17521 * need to reconstruct groups. 17522 */ 17523 phyi = ill->ill_phyint; 17524 /* 17525 * If the phyint_groupname_len is 0, it may or may not 17526 * be in the nameless group. If the phyint_groupname_len is 17527 * not 0, then this ill should be part of some group. 17528 * As we always insert this ill in the group if 17529 * phyint_groupname_len is not zero when the first ipif 17530 * comes up (in ipif_up_done), it should be in a group 17531 * when the namelen is not 0. 17532 * 17533 * NOTE : When we delete the ill from the group,it will 17534 * blow away all the IRE_CACHES pointing either at this ipif or 17535 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 17536 * should be pointing at this ill. 17537 */ 17538 ASSERT(phyi->phyint_groupname_len == 0 || 17539 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 17540 17541 if (phyi->phyint_groupname_len != 0) { 17542 if (ill->ill_ipif_up_count == 0) 17543 illgrp_delete(ill); 17544 } 17545 17546 /* 17547 * If we have deleted some of the broadcast ires associated 17548 * with this ipif, we need to re-nominate somebody else if 17549 * the ires that we deleted were the nominated ones. 17550 */ 17551 if (ill->ill_group != NULL && !ill->ill_isv6) 17552 ipif_renominate_bcast(ipif); 17553 } 17554 17555 if (ipif->ipif_isv6) 17556 ipif_ndp_down(ipif); 17557 17558 /* 17559 * If mp is NULL the caller will wait for the appropriate refcnt. 17560 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 17561 * and ill_delete -> ipif_free -> ipif_down 17562 */ 17563 if (mp == NULL) { 17564 ASSERT(q == NULL); 17565 return (0); 17566 } 17567 17568 if (CONN_Q(q)) { 17569 connp = Q_TO_CONN(q); 17570 mutex_enter(&connp->conn_lock); 17571 } else { 17572 connp = NULL; 17573 } 17574 mutex_enter(&ill->ill_lock); 17575 /* 17576 * Are there any ire's pointing to this ipif that are still active ? 17577 * If this is the last ipif going down, are there any ire's pointing 17578 * to this ill that are still active ? 17579 */ 17580 if (ipif_is_quiescent(ipif)) { 17581 mutex_exit(&ill->ill_lock); 17582 if (connp != NULL) 17583 mutex_exit(&connp->conn_lock); 17584 return (0); 17585 } 17586 17587 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 17588 ill->ill_name, (void *)ill)); 17589 /* 17590 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 17591 * drops down, the operation will be restarted by ipif_ill_refrele_tail 17592 * which in turn is called by the last refrele on the ipif/ill/ire. 17593 */ 17594 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 17595 if (!success) { 17596 /* The conn is closing. So just return */ 17597 ASSERT(connp != NULL); 17598 mutex_exit(&ill->ill_lock); 17599 mutex_exit(&connp->conn_lock); 17600 return (EINTR); 17601 } 17602 17603 mutex_exit(&ill->ill_lock); 17604 if (connp != NULL) 17605 mutex_exit(&connp->conn_lock); 17606 return (EINPROGRESS); 17607 } 17608 17609 static void 17610 ipif_down_tail(ipif_t *ipif) 17611 { 17612 ill_t *ill = ipif->ipif_ill; 17613 17614 /* 17615 * Skip any loopback interface (null wq). 17616 * If this is the last logical interface on the ill 17617 * have ill_dl_down tell the driver we are gone (unbind) 17618 * Note that lun 0 can ipif_down even though 17619 * there are other logical units that are up. 17620 * This occurs e.g. when we change a "significant" IFF_ flag. 17621 */ 17622 if (ipif->ipif_ill->ill_wq != NULL) { 17623 if (!ill->ill_logical_down && (ill->ill_ipif_up_count == 0) && 17624 ill->ill_dl_up) { 17625 ill_dl_down(ill); 17626 } 17627 } 17628 ill->ill_logical_down = 0; 17629 17630 /* 17631 * Have to be after removing the routes in ipif_down_delete_ire. 17632 */ 17633 if (ipif->ipif_isv6) { 17634 if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) 17635 ipif_arp_down(ipif); 17636 } else { 17637 ipif_arp_down(ipif); 17638 } 17639 17640 ip_rts_ifmsg(ipif); 17641 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 17642 } 17643 17644 /* 17645 * Bring interface logically down without bringing the physical interface 17646 * down e.g. when the netmask is changed. This avoids long lasting link 17647 * negotiations between an ethernet interface and a certain switches. 17648 */ 17649 static int 17650 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17651 { 17652 /* 17653 * The ill_logical_down flag is a transient flag. It is set here 17654 * and is cleared once the down has completed in ipif_down_tail. 17655 * This flag does not indicate whether the ill stream is in the 17656 * DL_BOUND state with the driver. Instead this flag is used by 17657 * ipif_down_tail to determine whether to DL_UNBIND the stream with 17658 * the driver. The state of the ill stream i.e. whether it is 17659 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 17660 */ 17661 ipif->ipif_ill->ill_logical_down = 1; 17662 return (ipif_down(ipif, q, mp)); 17663 } 17664 17665 /* 17666 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 17667 * If the usesrc client ILL is already part of a usesrc group or not, 17668 * in either case a ire_stq with the matching usesrc client ILL will 17669 * locate the IRE's that need to be deleted. We want IREs to be created 17670 * with the new source address. 17671 */ 17672 static void 17673 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 17674 { 17675 ill_t *ucill = (ill_t *)ill_arg; 17676 17677 ASSERT(IAM_WRITER_ILL(ucill)); 17678 17679 if (ire->ire_stq == NULL) 17680 return; 17681 17682 if ((ire->ire_type == IRE_CACHE) && 17683 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 17684 ire_delete(ire); 17685 } 17686 17687 /* 17688 * ire_walk routine to delete every IRE dependent on the interface 17689 * address that is going down. (Always called as writer.) 17690 * Works for both v4 and v6. 17691 * In addition for checking for ire_ipif matches it also checks for 17692 * IRE_CACHE entries which have the same source address as the 17693 * disappearing ipif since ipif_select_source might have picked 17694 * that source. Note that ipif_down/ipif_update_other_ipifs takes 17695 * care of any IRE_INTERFACE with the disappearing source address. 17696 */ 17697 static void 17698 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 17699 { 17700 ipif_t *ipif = (ipif_t *)ipif_arg; 17701 ill_t *ire_ill; 17702 ill_t *ipif_ill; 17703 17704 ASSERT(IAM_WRITER_IPIF(ipif)); 17705 if (ire->ire_ipif == NULL) 17706 return; 17707 17708 /* 17709 * For IPv4, we derive source addresses for an IRE from ipif's 17710 * belonging to the same IPMP group as the IRE's outgoing 17711 * interface. If an IRE's outgoing interface isn't in the 17712 * same IPMP group as a particular ipif, then that ipif 17713 * couldn't have been used as a source address for this IRE. 17714 * 17715 * For IPv6, source addresses are only restricted to the IPMP group 17716 * if the IRE is for a link-local address or a multicast address. 17717 * Otherwise, source addresses for an IRE can be chosen from 17718 * interfaces other than the the outgoing interface for that IRE. 17719 * 17720 * For source address selection details, see ipif_select_source() 17721 * and ipif_select_source_v6(). 17722 */ 17723 if (ire->ire_ipversion == IPV4_VERSION || 17724 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 17725 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 17726 ire_ill = ire->ire_ipif->ipif_ill; 17727 ipif_ill = ipif->ipif_ill; 17728 17729 if (ire_ill->ill_group != ipif_ill->ill_group) { 17730 return; 17731 } 17732 } 17733 17734 17735 if (ire->ire_ipif != ipif) { 17736 /* 17737 * Look for a matching source address. 17738 */ 17739 if (ire->ire_type != IRE_CACHE) 17740 return; 17741 if (ipif->ipif_flags & IPIF_NOLOCAL) 17742 return; 17743 17744 if (ire->ire_ipversion == IPV4_VERSION) { 17745 if (ire->ire_src_addr != ipif->ipif_src_addr) 17746 return; 17747 } else { 17748 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 17749 &ipif->ipif_v6lcl_addr)) 17750 return; 17751 } 17752 ire_delete(ire); 17753 return; 17754 } 17755 /* 17756 * ire_delete() will do an ire_flush_cache which will delete 17757 * all ire_ipif matches 17758 */ 17759 ire_delete(ire); 17760 } 17761 17762 /* 17763 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 17764 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 17765 * 2) when an interface is brought up or down (on that ill). 17766 * This ensures that the IRE_CACHE entries don't retain stale source 17767 * address selection results. 17768 */ 17769 void 17770 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 17771 { 17772 ill_t *ill = (ill_t *)ill_arg; 17773 ill_t *ipif_ill; 17774 17775 ASSERT(IAM_WRITER_ILL(ill)); 17776 /* 17777 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17778 * Hence this should be IRE_CACHE. 17779 */ 17780 ASSERT(ire->ire_type == IRE_CACHE); 17781 17782 /* 17783 * We are called for IRE_CACHES whose ire_ipif matches ill. 17784 * We are only interested in IRE_CACHES that has borrowed 17785 * the source address from ill_arg e.g. ipif_up_done[_v6] 17786 * for which we need to look at ire_ipif->ipif_ill match 17787 * with ill. 17788 */ 17789 ASSERT(ire->ire_ipif != NULL); 17790 ipif_ill = ire->ire_ipif->ipif_ill; 17791 if (ipif_ill == ill || (ill->ill_group != NULL && 17792 ipif_ill->ill_group == ill->ill_group)) { 17793 ire_delete(ire); 17794 } 17795 } 17796 17797 /* 17798 * Delete all the ire whose stq references ill_arg. 17799 */ 17800 static void 17801 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 17802 { 17803 ill_t *ill = (ill_t *)ill_arg; 17804 ill_t *ire_ill; 17805 17806 ASSERT(IAM_WRITER_ILL(ill)); 17807 /* 17808 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17809 * Hence this should be IRE_CACHE. 17810 */ 17811 ASSERT(ire->ire_type == IRE_CACHE); 17812 17813 /* 17814 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17815 * matches ill. We are only interested in IRE_CACHES that 17816 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 17817 * filtering here. 17818 */ 17819 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 17820 17821 if (ire_ill == ill) 17822 ire_delete(ire); 17823 } 17824 17825 /* 17826 * This is called when an ill leaves the group. We want to delete 17827 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 17828 * pointing at ill. 17829 */ 17830 static void 17831 illgrp_cache_delete(ire_t *ire, char *ill_arg) 17832 { 17833 ill_t *ill = (ill_t *)ill_arg; 17834 17835 ASSERT(IAM_WRITER_ILL(ill)); 17836 ASSERT(ill->ill_group == NULL); 17837 /* 17838 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17839 * Hence this should be IRE_CACHE. 17840 */ 17841 ASSERT(ire->ire_type == IRE_CACHE); 17842 /* 17843 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17844 * matches ill. We are interested in both. 17845 */ 17846 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 17847 (ire->ire_ipif->ipif_ill == ill)); 17848 17849 ire_delete(ire); 17850 } 17851 17852 /* 17853 * Initiate deallocate of an IPIF. Always called as writer. Called by 17854 * ill_delete or ip_sioctl_removeif. 17855 */ 17856 static void 17857 ipif_free(ipif_t *ipif) 17858 { 17859 ASSERT(IAM_WRITER_IPIF(ipif)); 17860 17861 /* Remove conn references */ 17862 reset_conn_ipif(ipif); 17863 17864 /* 17865 * Make sure we have valid net and subnet broadcast ire's for the 17866 * other ipif's which share them with this ipif. 17867 */ 17868 if (!ipif->ipif_isv6) 17869 ipif_check_bcast_ires(ipif); 17870 17871 /* 17872 * Take down the interface. We can be called either from ill_delete 17873 * or from ip_sioctl_removeif. 17874 */ 17875 (void) ipif_down(ipif, NULL, NULL); 17876 17877 rw_enter(&ill_g_lock, RW_WRITER); 17878 /* Remove pointers to this ill in the multicast routing tables */ 17879 reset_mrt_vif_ipif(ipif); 17880 rw_exit(&ill_g_lock); 17881 } 17882 17883 static void 17884 ipif_free_tail(ipif_t *ipif) 17885 { 17886 mblk_t *mp; 17887 ipif_t **ipifp; 17888 17889 /* 17890 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 17891 */ 17892 mutex_enter(&ipif->ipif_saved_ire_lock); 17893 mp = ipif->ipif_saved_ire_mp; 17894 ipif->ipif_saved_ire_mp = NULL; 17895 mutex_exit(&ipif->ipif_saved_ire_lock); 17896 freemsg(mp); 17897 17898 /* 17899 * Need to hold both ill_g_lock and ill_lock while 17900 * inserting or removing an ipif from the linked list 17901 * of ipifs hanging off the ill. 17902 */ 17903 rw_enter(&ill_g_lock, RW_WRITER); 17904 /* 17905 * Remove all multicast memberships on the interface now. 17906 * This removes IPv4 multicast memberships joined within 17907 * the kernel as ipif_down does not do ipif_multicast_down 17908 * for IPv4. IPv6 is not handled here as the multicast memberships 17909 * are based on ill and not on ipif. 17910 */ 17911 ilm_free(ipif); 17912 17913 /* 17914 * Since we held the ill_g_lock while doing the ilm_free above, 17915 * we can assert the ilms were really deleted and not just marked 17916 * ILM_DELETED. 17917 */ 17918 ASSERT(ilm_walk_ipif(ipif) == 0); 17919 17920 17921 IPIF_TRACE_CLEANUP(ipif); 17922 17923 /* Ask SCTP to take it out of it list */ 17924 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 17925 17926 mutex_enter(&ipif->ipif_ill->ill_lock); 17927 /* Get it out of the ILL interface list. */ 17928 ipifp = &ipif->ipif_ill->ill_ipif; 17929 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17930 if (*ipifp == ipif) { 17931 *ipifp = ipif->ipif_next; 17932 break; 17933 } 17934 } 17935 17936 mutex_exit(&ipif->ipif_ill->ill_lock); 17937 rw_exit(&ill_g_lock); 17938 17939 mutex_destroy(&ipif->ipif_saved_ire_lock); 17940 /* Free the memory. */ 17941 mi_free((char *)ipif); 17942 } 17943 17944 /* 17945 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 17946 * "ill_name" otherwise. 17947 */ 17948 char * 17949 ipif_get_name(ipif_t *ipif, char *buf, int len) 17950 { 17951 char lbuf[32]; 17952 char *name; 17953 size_t name_len; 17954 17955 buf[0] = '\0'; 17956 if (!ipif) 17957 return (buf); 17958 name = ipif->ipif_ill->ill_name; 17959 name_len = ipif->ipif_ill->ill_name_length; 17960 if (ipif->ipif_id != 0) { 17961 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 17962 ipif->ipif_id); 17963 name = lbuf; 17964 name_len = mi_strlen(name) + 1; 17965 } 17966 len -= 1; 17967 buf[len] = '\0'; 17968 len = MIN(len, name_len); 17969 bcopy(name, buf, len); 17970 return (buf); 17971 } 17972 17973 /* 17974 * Find an IPIF based on the name passed in. Names can be of the 17975 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 17976 * The <phys> string can have forms like <dev><#> (e.g., le0), 17977 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 17978 * When there is no colon, the implied unit id is zero. <phys> must 17979 * correspond to the name of an ILL. (May be called as writer.) 17980 */ 17981 static ipif_t * 17982 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 17983 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 17984 mblk_t *mp, ipsq_func_t func, int *error) 17985 { 17986 char *cp; 17987 char *endp; 17988 long id; 17989 ill_t *ill; 17990 ipif_t *ipif; 17991 uint_t ire_type; 17992 boolean_t did_alloc = B_FALSE; 17993 ipsq_t *ipsq; 17994 17995 if (error != NULL) 17996 *error = 0; 17997 17998 /* 17999 * If the caller wants to us to create the ipif, make sure we have a 18000 * valid zoneid 18001 */ 18002 ASSERT(!do_alloc || zoneid != ALL_ZONES); 18003 18004 if (namelen == 0) { 18005 if (error != NULL) 18006 *error = ENXIO; 18007 return (NULL); 18008 } 18009 18010 *exists = B_FALSE; 18011 /* Look for a colon in the name. */ 18012 endp = &name[namelen]; 18013 for (cp = endp; --cp > name; ) { 18014 if (*cp == IPIF_SEPARATOR_CHAR) 18015 break; 18016 } 18017 18018 if (*cp == IPIF_SEPARATOR_CHAR) { 18019 /* 18020 * Reject any non-decimal aliases for logical 18021 * interfaces. Aliases with leading zeroes 18022 * are also rejected as they introduce ambiguity 18023 * in the naming of the interfaces. 18024 * In order to confirm with existing semantics, 18025 * and to not break any programs/script relying 18026 * on that behaviour, if<0>:0 is considered to be 18027 * a valid interface. 18028 * 18029 * If alias has two or more digits and the first 18030 * is zero, fail. 18031 */ 18032 if (&cp[2] < endp && cp[1] == '0') 18033 return (NULL); 18034 } 18035 18036 if (cp <= name) { 18037 cp = endp; 18038 } else { 18039 *cp = '\0'; 18040 } 18041 18042 /* 18043 * Look up the ILL, based on the portion of the name 18044 * before the slash. ill_lookup_on_name returns a held ill. 18045 * Temporary to check whether ill exists already. If so 18046 * ill_lookup_on_name will clear it. 18047 */ 18048 ill = ill_lookup_on_name(name, do_alloc, isv6, 18049 q, mp, func, error, &did_alloc); 18050 if (cp != endp) 18051 *cp = IPIF_SEPARATOR_CHAR; 18052 if (ill == NULL) 18053 return (NULL); 18054 18055 /* Establish the unit number in the name. */ 18056 id = 0; 18057 if (cp < endp && *endp == '\0') { 18058 /* If there was a colon, the unit number follows. */ 18059 cp++; 18060 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 18061 ill_refrele(ill); 18062 if (error != NULL) 18063 *error = ENXIO; 18064 return (NULL); 18065 } 18066 } 18067 18068 GRAB_CONN_LOCK(q); 18069 mutex_enter(&ill->ill_lock); 18070 /* Now see if there is an IPIF with this unit number. */ 18071 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 18072 if (ipif->ipif_id == id) { 18073 if (zoneid != ALL_ZONES && 18074 zoneid != ipif->ipif_zoneid) { 18075 mutex_exit(&ill->ill_lock); 18076 RELEASE_CONN_LOCK(q); 18077 ill_refrele(ill); 18078 if (error != NULL) 18079 *error = ENXIO; 18080 return (NULL); 18081 } 18082 /* 18083 * The block comment at the start of ipif_down 18084 * explains the use of the macros used below 18085 */ 18086 if (IPIF_CAN_LOOKUP(ipif)) { 18087 ipif_refhold_locked(ipif); 18088 mutex_exit(&ill->ill_lock); 18089 if (!did_alloc) 18090 *exists = B_TRUE; 18091 /* 18092 * Drop locks before calling ill_refrele 18093 * since it can potentially call into 18094 * ipif_ill_refrele_tail which can end up 18095 * in trying to acquire any lock. 18096 */ 18097 RELEASE_CONN_LOCK(q); 18098 ill_refrele(ill); 18099 return (ipif); 18100 } else if (IPIF_CAN_WAIT(ipif, q)) { 18101 ipsq = ill->ill_phyint->phyint_ipsq; 18102 mutex_enter(&ipsq->ipsq_lock); 18103 mutex_exit(&ill->ill_lock); 18104 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 18105 mutex_exit(&ipsq->ipsq_lock); 18106 RELEASE_CONN_LOCK(q); 18107 ill_refrele(ill); 18108 *error = EINPROGRESS; 18109 return (NULL); 18110 } 18111 } 18112 } 18113 RELEASE_CONN_LOCK(q); 18114 18115 if (!do_alloc) { 18116 mutex_exit(&ill->ill_lock); 18117 ill_refrele(ill); 18118 if (error != NULL) 18119 *error = ENXIO; 18120 return (NULL); 18121 } 18122 18123 /* 18124 * If none found, atomically allocate and return a new one. 18125 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 18126 * to support "receive only" use of lo0:1 etc. as is still done 18127 * below as an initial guess. 18128 * However, this is now likely to be overriden later in ipif_up_done() 18129 * when we know for sure what address has been configured on the 18130 * interface, since we might have more than one loopback interface 18131 * with a loopback address, e.g. in the case of zones, and all the 18132 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 18133 */ 18134 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 18135 ire_type = IRE_LOOPBACK; 18136 else 18137 ire_type = IRE_LOCAL; 18138 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 18139 if (ipif != NULL) 18140 ipif_refhold_locked(ipif); 18141 else if (error != NULL) 18142 *error = ENOMEM; 18143 mutex_exit(&ill->ill_lock); 18144 ill_refrele(ill); 18145 return (ipif); 18146 } 18147 18148 /* 18149 * This routine is called whenever a new address comes up on an ipif. If 18150 * we are configured to respond to address mask requests, then we are supposed 18151 * to broadcast an address mask reply at this time. This routine is also 18152 * called if we are already up, but a netmask change is made. This is legal 18153 * but might not make the system manager very popular. (May be called 18154 * as writer.) 18155 */ 18156 static void 18157 ipif_mask_reply(ipif_t *ipif) 18158 { 18159 icmph_t *icmph; 18160 ipha_t *ipha; 18161 mblk_t *mp; 18162 18163 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 18164 18165 if (!ip_respond_to_address_mask_broadcast) 18166 return; 18167 18168 /* ICMP mask reply is IPv4 only */ 18169 ASSERT(!ipif->ipif_isv6); 18170 /* ICMP mask reply is not for a loopback interface */ 18171 ASSERT(ipif->ipif_ill->ill_wq != NULL); 18172 18173 mp = allocb(REPLY_LEN, BPRI_HI); 18174 if (mp == NULL) 18175 return; 18176 mp->b_wptr = mp->b_rptr + REPLY_LEN; 18177 18178 ipha = (ipha_t *)mp->b_rptr; 18179 bzero(ipha, REPLY_LEN); 18180 *ipha = icmp_ipha; 18181 ipha->ipha_ttl = ip_broadcast_ttl; 18182 ipha->ipha_src = ipif->ipif_src_addr; 18183 ipha->ipha_dst = ipif->ipif_brd_addr; 18184 ipha->ipha_length = htons(REPLY_LEN); 18185 ipha->ipha_ident = 0; 18186 18187 icmph = (icmph_t *)&ipha[1]; 18188 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 18189 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 18190 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 18191 if (icmph->icmph_checksum == 0) 18192 icmph->icmph_checksum = 0xffff; 18193 18194 put(ipif->ipif_wq, mp); 18195 18196 #undef REPLY_LEN 18197 } 18198 18199 /* 18200 * When the mtu in the ipif changes, we call this routine through ire_walk 18201 * to update all the relevant IREs. 18202 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18203 */ 18204 static void 18205 ipif_mtu_change(ire_t *ire, char *ipif_arg) 18206 { 18207 ipif_t *ipif = (ipif_t *)ipif_arg; 18208 18209 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 18210 return; 18211 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 18212 } 18213 18214 /* 18215 * When the mtu in the ill changes, we call this routine through ire_walk 18216 * to update all the relevant IREs. 18217 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18218 */ 18219 void 18220 ill_mtu_change(ire_t *ire, char *ill_arg) 18221 { 18222 ill_t *ill = (ill_t *)ill_arg; 18223 18224 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 18225 return; 18226 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 18227 } 18228 18229 /* 18230 * Join the ipif specific multicast groups. 18231 * Must be called after a mapping has been set up in the resolver. (Always 18232 * called as writer.) 18233 */ 18234 void 18235 ipif_multicast_up(ipif_t *ipif) 18236 { 18237 int err, index; 18238 ill_t *ill; 18239 18240 ASSERT(IAM_WRITER_IPIF(ipif)); 18241 18242 ill = ipif->ipif_ill; 18243 index = ill->ill_phyint->phyint_ifindex; 18244 18245 ip1dbg(("ipif_multicast_up\n")); 18246 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 18247 return; 18248 18249 if (ipif->ipif_isv6) { 18250 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 18251 return; 18252 18253 /* Join the all hosts multicast address */ 18254 ip1dbg(("ipif_multicast_up - addmulti\n")); 18255 /* 18256 * Passing B_TRUE means we have to join the multicast 18257 * membership on this interface even though this is 18258 * FAILED. If we join on a different one in the group, 18259 * we will not be able to delete the membership later 18260 * as we currently don't track where we join when we 18261 * join within the kernel unlike applications where 18262 * we have ilg/ilg_orig_index. See ip_addmulti_v6 18263 * for more on this. 18264 */ 18265 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 18266 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18267 if (err != 0) { 18268 ip0dbg(("ipif_multicast_up: " 18269 "all_hosts_mcast failed %d\n", 18270 err)); 18271 return; 18272 } 18273 /* 18274 * Enable multicast for the solicited node multicast address 18275 */ 18276 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18277 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18278 18279 ipv6_multi.s6_addr32[3] |= 18280 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18281 18282 err = ip_addmulti_v6(&ipv6_multi, ill, index, 18283 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 18284 NULL); 18285 if (err != 0) { 18286 ip0dbg(("ipif_multicast_up: solicited MC" 18287 " failed %d\n", err)); 18288 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 18289 ill, ill->ill_phyint->phyint_ifindex, 18290 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18291 return; 18292 } 18293 } 18294 } else { 18295 if (ipif->ipif_lcl_addr == INADDR_ANY) 18296 return; 18297 18298 /* Join the all hosts multicast address */ 18299 ip1dbg(("ipif_multicast_up - addmulti\n")); 18300 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 18301 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18302 if (err) { 18303 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 18304 return; 18305 } 18306 } 18307 ipif->ipif_multicast_up = 1; 18308 } 18309 18310 /* 18311 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 18312 * any explicit memberships are blown away in ill_leave_multicast() when the 18313 * ill is brought down. 18314 */ 18315 static void 18316 ipif_multicast_down(ipif_t *ipif) 18317 { 18318 int err; 18319 18320 ASSERT(IAM_WRITER_IPIF(ipif)); 18321 18322 ip1dbg(("ipif_multicast_down\n")); 18323 if (!ipif->ipif_multicast_up) 18324 return; 18325 18326 ASSERT(ipif->ipif_isv6); 18327 18328 ip1dbg(("ipif_multicast_down - delmulti\n")); 18329 18330 /* 18331 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 18332 * we should look for ilms on this ill rather than the ones that have 18333 * been failed over here. They are here temporarily. As 18334 * ipif_multicast_up has joined on this ill, we should delete only 18335 * from this ill. 18336 */ 18337 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 18338 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 18339 B_TRUE, B_TRUE); 18340 if (err != 0) { 18341 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 18342 err)); 18343 } 18344 /* 18345 * Disable multicast for the solicited node multicast address 18346 */ 18347 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18348 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18349 18350 ipv6_multi.s6_addr32[3] |= 18351 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18352 18353 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 18354 ipif->ipif_ill->ill_phyint->phyint_ifindex, 18355 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18356 18357 if (err != 0) { 18358 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 18359 err)); 18360 } 18361 } 18362 18363 ipif->ipif_multicast_up = 0; 18364 } 18365 18366 /* 18367 * Used when an interface comes up to recreate any extra routes on this 18368 * interface. 18369 */ 18370 static ire_t ** 18371 ipif_recover_ire(ipif_t *ipif) 18372 { 18373 mblk_t *mp; 18374 ire_t **ipif_saved_irep; 18375 ire_t **irep; 18376 18377 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 18378 ipif->ipif_id)); 18379 18380 mutex_enter(&ipif->ipif_saved_ire_lock); 18381 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 18382 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 18383 if (ipif_saved_irep == NULL) { 18384 mutex_exit(&ipif->ipif_saved_ire_lock); 18385 return (NULL); 18386 } 18387 18388 irep = ipif_saved_irep; 18389 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 18390 ire_t *ire; 18391 queue_t *rfq; 18392 queue_t *stq; 18393 ifrt_t *ifrt; 18394 uchar_t *src_addr; 18395 uchar_t *gateway_addr; 18396 mblk_t *resolver_mp; 18397 ushort_t type; 18398 18399 /* 18400 * When the ire was initially created and then added in 18401 * ip_rt_add(), it was created either using ipif->ipif_net_type 18402 * in the case of a traditional interface route, or as one of 18403 * the IRE_OFFSUBNET types (with the exception of 18404 * IRE_HOST_REDIRECT which is created by icmp_redirect() and 18405 * which we don't need to save or recover). In the case where 18406 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 18407 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 18408 * to satisfy software like GateD and Sun Cluster which creates 18409 * routes using the the loopback interface's address as a 18410 * gateway. 18411 * 18412 * As ifrt->ifrt_type reflects the already updated ire_type and 18413 * since ire_create() expects that IRE_IF_NORESOLVER will have 18414 * a valid ire_dlureq_mp field (which doesn't make sense for a 18415 * IRE_LOOPBACK), ire_create() will be called in the same way 18416 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 18417 * the route looks like a traditional interface route (where 18418 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 18419 * the saved ifrt->ifrt_type. This means that in the case where 18420 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 18421 * ire_create() will be an IRE_LOOPBACK, it will then be turned 18422 * into an IRE_IF_NORESOLVER and then added by ire_add(). 18423 */ 18424 ifrt = (ifrt_t *)mp->b_rptr; 18425 if (ifrt->ifrt_type & IRE_INTERFACE) { 18426 rfq = NULL; 18427 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 18428 ? ipif->ipif_rq : ipif->ipif_wq; 18429 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18430 ? (uint8_t *)&ifrt->ifrt_src_addr 18431 : (uint8_t *)&ipif->ipif_src_addr; 18432 gateway_addr = NULL; 18433 resolver_mp = ipif->ipif_resolver_mp; 18434 type = ipif->ipif_net_type; 18435 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 18436 /* Recover multiroute broadcast IRE. */ 18437 rfq = ipif->ipif_rq; 18438 stq = ipif->ipif_wq; 18439 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18440 ? (uint8_t *)&ifrt->ifrt_src_addr 18441 : (uint8_t *)&ipif->ipif_src_addr; 18442 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18443 resolver_mp = ipif->ipif_bcast_mp; 18444 type = ifrt->ifrt_type; 18445 } else { 18446 rfq = NULL; 18447 stq = NULL; 18448 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18449 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 18450 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18451 resolver_mp = NULL; 18452 type = ifrt->ifrt_type; 18453 } 18454 18455 /* 18456 * Create a copy of the IRE with the saved address and netmask. 18457 */ 18458 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 18459 "0x%x/0x%x\n", 18460 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 18461 ntohl(ifrt->ifrt_addr), 18462 ntohl(ifrt->ifrt_mask))); 18463 ire = ire_create( 18464 (uint8_t *)&ifrt->ifrt_addr, 18465 (uint8_t *)&ifrt->ifrt_mask, 18466 src_addr, 18467 gateway_addr, 18468 NULL, 18469 &ifrt->ifrt_max_frag, 18470 NULL, 18471 rfq, 18472 stq, 18473 type, 18474 resolver_mp, 18475 ipif, 18476 NULL, 18477 0, 18478 0, 18479 0, 18480 ifrt->ifrt_flags, 18481 &ifrt->ifrt_iulp_info); 18482 18483 if (ire == NULL) { 18484 mutex_exit(&ipif->ipif_saved_ire_lock); 18485 kmem_free(ipif_saved_irep, 18486 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 18487 return (NULL); 18488 } 18489 18490 /* 18491 * Some software (for example, GateD and Sun Cluster) attempts 18492 * to create (what amount to) IRE_PREFIX routes with the 18493 * loopback address as the gateway. This is primarily done to 18494 * set up prefixes with the RTF_REJECT flag set (for example, 18495 * when generating aggregate routes.) 18496 * 18497 * If the IRE type (as defined by ipif->ipif_net_type) is 18498 * IRE_LOOPBACK, then we map the request into a 18499 * IRE_IF_NORESOLVER. 18500 */ 18501 if (ipif->ipif_net_type == IRE_LOOPBACK) 18502 ire->ire_type = IRE_IF_NORESOLVER; 18503 /* 18504 * ire held by ire_add, will be refreled' towards the 18505 * the end of ipif_up_done 18506 */ 18507 (void) ire_add(&ire, NULL, NULL, NULL); 18508 *irep = ire; 18509 irep++; 18510 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 18511 } 18512 mutex_exit(&ipif->ipif_saved_ire_lock); 18513 return (ipif_saved_irep); 18514 } 18515 18516 /* 18517 * Used to set the netmask and broadcast address to default values when the 18518 * interface is brought up. (Always called as writer.) 18519 */ 18520 static void 18521 ipif_set_default(ipif_t *ipif) 18522 { 18523 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18524 18525 if (!ipif->ipif_isv6) { 18526 /* 18527 * Interface holds an IPv4 address. Default 18528 * mask is the natural netmask. 18529 */ 18530 if (!ipif->ipif_net_mask) { 18531 ipaddr_t v4mask; 18532 18533 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 18534 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 18535 } 18536 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18537 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18538 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18539 } else { 18540 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18541 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18542 } 18543 /* 18544 * NOTE: SunOS 4.X does this even if the broadcast address 18545 * has been already set thus we do the same here. 18546 */ 18547 if (ipif->ipif_flags & IPIF_BROADCAST) { 18548 ipaddr_t v4addr; 18549 18550 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 18551 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 18552 } 18553 } else { 18554 /* 18555 * Interface holds an IPv6-only address. Default 18556 * mask is all-ones. 18557 */ 18558 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 18559 ipif->ipif_v6net_mask = ipv6_all_ones; 18560 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18561 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18562 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18563 } else { 18564 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18565 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18566 } 18567 } 18568 } 18569 18570 /* 18571 * Return 0 if this address can be used as local address without causing 18572 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 18573 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 18574 * Special checks are needed to allow the same IPv6 link-local address 18575 * on different ills. 18576 * TODO: allowing the same site-local address on different ill's. 18577 */ 18578 int 18579 ip_addr_availability_check(ipif_t *new_ipif) 18580 { 18581 in6_addr_t our_v6addr; 18582 ill_t *ill; 18583 ipif_t *ipif; 18584 ill_walk_context_t ctx; 18585 18586 ASSERT(IAM_WRITER_IPIF(new_ipif)); 18587 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 18588 ASSERT(RW_READ_HELD(&ill_g_lock)); 18589 18590 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 18591 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 18592 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 18593 return (0); 18594 18595 our_v6addr = new_ipif->ipif_v6lcl_addr; 18596 18597 if (new_ipif->ipif_isv6) 18598 ill = ILL_START_WALK_V6(&ctx); 18599 else 18600 ill = ILL_START_WALK_V4(&ctx); 18601 18602 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18603 for (ipif = ill->ill_ipif; ipif != NULL; 18604 ipif = ipif->ipif_next) { 18605 if ((ipif == new_ipif) || 18606 !(ipif->ipif_flags & IPIF_UP) || 18607 (ipif->ipif_flags & IPIF_UNNUMBERED)) 18608 continue; 18609 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 18610 &our_v6addr)) { 18611 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 18612 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 18613 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 18614 ipif->ipif_flags |= IPIF_UNNUMBERED; 18615 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 18616 new_ipif->ipif_ill != ill) 18617 continue; 18618 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 18619 new_ipif->ipif_ill != ill) 18620 continue; 18621 else if (new_ipif->ipif_zoneid != 18622 ipif->ipif_zoneid && 18623 (ill->ill_phyint->phyint_flags & 18624 PHYI_LOOPBACK)) 18625 continue; 18626 else if (new_ipif->ipif_ill == ill) 18627 return (EADDRINUSE); 18628 else 18629 return (EADDRNOTAVAIL); 18630 } 18631 } 18632 } 18633 18634 return (0); 18635 } 18636 18637 /* 18638 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 18639 * IREs for the ipif. 18640 * When the routine returns EINPROGRESS then mp has been consumed and 18641 * the ioctl will be acked from ip_rput_dlpi. 18642 */ 18643 static int 18644 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 18645 { 18646 ill_t *ill = ipif->ipif_ill; 18647 boolean_t isv6 = ipif->ipif_isv6; 18648 int err = 0; 18649 boolean_t success; 18650 18651 ASSERT(IAM_WRITER_IPIF(ipif)); 18652 18653 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18654 18655 /* Shouldn't get here if it is already up. */ 18656 if (ipif->ipif_flags & IPIF_UP) 18657 return (EALREADY); 18658 18659 /* Skip arp/ndp for any loopback interface. */ 18660 if (ill->ill_wq != NULL) { 18661 conn_t *connp = Q_TO_CONN(q); 18662 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18663 18664 if (!ill->ill_dl_up) { 18665 /* 18666 * ill_dl_up is not yet set. i.e. we are yet to 18667 * DL_BIND with the driver and this is the first 18668 * logical interface on the ill to become "up". 18669 * Tell the driver to get going (via DL_BIND_REQ). 18670 * Note that changing "significant" IFF_ flags 18671 * address/netmask etc cause a down/up dance, but 18672 * does not cause an unbind (DL_UNBIND) with the driver 18673 */ 18674 return (ill_dl_up(ill, ipif, mp, q)); 18675 } 18676 18677 /* 18678 * ipif_resolver_up may end up sending an 18679 * AR_INTERFACE_UP message to ARP, which would, in 18680 * turn send a DLPI message to the driver. ioctls are 18681 * serialized and so we cannot send more than one 18682 * interface up message at a time. If ipif_resolver_up 18683 * does send an interface up message to ARP, we get 18684 * EINPROGRESS and we will complete in ip_arp_done. 18685 */ 18686 18687 ASSERT(connp != NULL); 18688 ASSERT(ipsq->ipsq_pending_mp == NULL); 18689 mutex_enter(&connp->conn_lock); 18690 mutex_enter(&ill->ill_lock); 18691 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18692 mutex_exit(&ill->ill_lock); 18693 mutex_exit(&connp->conn_lock); 18694 if (!success) 18695 return (EINTR); 18696 18697 /* 18698 * Crank up IPv6 neighbor discovery 18699 * Unlike ARP, this should complete when 18700 * ipif_ndp_up returns. However, for 18701 * ILLF_XRESOLV interfaces we also send a 18702 * AR_INTERFACE_UP to the external resolver. 18703 * That ioctl will complete in ip_rput. 18704 */ 18705 if (isv6) { 18706 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 18707 B_FALSE); 18708 if (err != 0) { 18709 mp = ipsq_pending_mp_get(ipsq, &connp); 18710 return (err); 18711 } 18712 } 18713 /* Now, ARP */ 18714 if ((err = ipif_resolver_up(ipif, B_FALSE)) == 18715 EINPROGRESS) { 18716 /* We will complete it in ip_arp_done */ 18717 return (err); 18718 } 18719 mp = ipsq_pending_mp_get(ipsq, &connp); 18720 ASSERT(mp != NULL); 18721 if (err != 0) 18722 return (err); 18723 } 18724 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 18725 } 18726 18727 /* 18728 * Perform a bind for the physical device. 18729 * When the routine returns EINPROGRESS then mp has been consumed and 18730 * the ioctl will be acked from ip_rput_dlpi. 18731 * Allocate an unbind message and save it until ipif_down. 18732 */ 18733 static int 18734 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18735 { 18736 mblk_t *areq_mp = NULL; 18737 mblk_t *bind_mp = NULL; 18738 mblk_t *unbind_mp = NULL; 18739 conn_t *connp; 18740 boolean_t success; 18741 18742 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 18743 ASSERT(IAM_WRITER_ILL(ill)); 18744 18745 ASSERT(mp != NULL); 18746 18747 /* Create a resolver cookie for ARP */ 18748 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 18749 areq_t *areq; 18750 uint16_t sap_addr; 18751 18752 areq_mp = ill_arp_alloc(ill, 18753 (uchar_t *)&ip_areq_template, 0); 18754 if (areq_mp == NULL) { 18755 return (ENOMEM); 18756 } 18757 freemsg(ill->ill_resolver_mp); 18758 ill->ill_resolver_mp = areq_mp; 18759 areq = (areq_t *)areq_mp->b_rptr; 18760 sap_addr = ill->ill_sap; 18761 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 18762 /* 18763 * Wait till we call ill_pending_mp_add to determine 18764 * the success before we free the ill_resolver_mp and 18765 * attach areq_mp in it's place. 18766 */ 18767 } 18768 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 18769 DL_BIND_REQ); 18770 if (bind_mp == NULL) 18771 goto bad; 18772 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 18773 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 18774 18775 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 18776 if (unbind_mp == NULL) 18777 goto bad; 18778 18779 /* 18780 * Record state needed to complete this operation when the 18781 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 18782 */ 18783 if (WR(q)->q_next == NULL) { 18784 connp = Q_TO_CONN(q); 18785 mutex_enter(&connp->conn_lock); 18786 } else { 18787 connp = NULL; 18788 } 18789 mutex_enter(&ipif->ipif_ill->ill_lock); 18790 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18791 mutex_exit(&ipif->ipif_ill->ill_lock); 18792 if (connp != NULL) 18793 mutex_exit(&connp->conn_lock); 18794 if (!success) 18795 goto bad; 18796 18797 /* 18798 * Save the unbind message for ill_dl_down(); it will be consumed when 18799 * the interface goes down. 18800 */ 18801 ASSERT(ill->ill_unbind_mp == NULL); 18802 ill->ill_unbind_mp = unbind_mp; 18803 18804 ill_dlpi_send(ill, bind_mp); 18805 /* Send down link-layer capabilities probe if not already done. */ 18806 ill_capability_probe(ill); 18807 18808 /* 18809 * Sysid used to rely on the fact that netboots set domainname 18810 * and the like. Now that miniroot boots aren't strictly netboots 18811 * and miniroot network configuration is driven from userland 18812 * these things still need to be set. This situation can be detected 18813 * by comparing the interface being configured here to the one 18814 * dhcack was set to reference by the boot loader. Once sysid is 18815 * converted to use dhcp_ipc_getinfo() this call can go away. 18816 */ 18817 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 18818 (strcmp(ill->ill_name, dhcack) == 0) && 18819 (strlen(srpc_domain) == 0)) { 18820 if (dhcpinit() != 0) 18821 cmn_err(CE_WARN, "no cached dhcp response"); 18822 } 18823 18824 /* 18825 * This operation will complete in ip_rput_dlpi with either 18826 * a DL_BIND_ACK or DL_ERROR_ACK. 18827 */ 18828 return (EINPROGRESS); 18829 bad: 18830 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 18831 /* 18832 * We don't have to check for possible removal from illgrp 18833 * as we have not yet inserted in illgrp. For groups 18834 * without names, this ipif is still not UP and hence 18835 * this could not have possibly had any influence in forming 18836 * groups. 18837 */ 18838 18839 if (bind_mp != NULL) 18840 freemsg(bind_mp); 18841 if (unbind_mp != NULL) 18842 freemsg(unbind_mp); 18843 return (ENOMEM); 18844 } 18845 18846 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 18847 18848 /* 18849 * DLPI and ARP is up. 18850 * Create all the IREs associated with an interface bring up multicast. 18851 * Set the interface flag and finish other initialization 18852 * that potentially had to be differed to after DL_BIND_ACK. 18853 */ 18854 int 18855 ipif_up_done(ipif_t *ipif) 18856 { 18857 ire_t *ire_array[20]; 18858 ire_t **irep = ire_array; 18859 ire_t **irep1; 18860 ipaddr_t net_mask = 0; 18861 ipaddr_t subnet_mask, route_mask; 18862 ill_t *ill = ipif->ipif_ill; 18863 queue_t *stq; 18864 ipif_t *src_ipif; 18865 ipif_t *tmp_ipif; 18866 boolean_t flush_ire_cache = B_TRUE; 18867 int err = 0; 18868 phyint_t *phyi; 18869 ire_t **ipif_saved_irep = NULL; 18870 int ipif_saved_ire_cnt; 18871 int cnt; 18872 boolean_t src_ipif_held = B_FALSE; 18873 boolean_t ire_added = B_FALSE; 18874 boolean_t loopback = B_FALSE; 18875 18876 ip1dbg(("ipif_up_done(%s:%u)\n", 18877 ipif->ipif_ill->ill_name, ipif->ipif_id)); 18878 /* Check if this is a loopback interface */ 18879 if (ipif->ipif_ill->ill_wq == NULL) 18880 loopback = B_TRUE; 18881 18882 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18883 /* 18884 * If all other interfaces for this ill are down or DEPRECATED, 18885 * or otherwise unsuitable for source address selection, remove 18886 * any IRE_CACHE entries for this ill to make sure source 18887 * address selection gets to take this new ipif into account. 18888 * No need to hold ill_lock while traversing the ipif list since 18889 * we are writer 18890 */ 18891 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 18892 tmp_ipif = tmp_ipif->ipif_next) { 18893 if (((tmp_ipif->ipif_flags & 18894 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 18895 !(tmp_ipif->ipif_flags & IPIF_UP)) || 18896 (tmp_ipif == ipif)) 18897 continue; 18898 /* first useable pre-existing interface */ 18899 flush_ire_cache = B_FALSE; 18900 break; 18901 } 18902 if (flush_ire_cache) 18903 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 18904 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 18905 18906 /* 18907 * Figure out which way the send-to queue should go. Only 18908 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 18909 * should show up here. 18910 */ 18911 switch (ill->ill_net_type) { 18912 case IRE_IF_RESOLVER: 18913 stq = ill->ill_rq; 18914 break; 18915 case IRE_IF_NORESOLVER: 18916 case IRE_LOOPBACK: 18917 stq = ill->ill_wq; 18918 break; 18919 default: 18920 return (EINVAL); 18921 } 18922 18923 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 18924 /* 18925 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 18926 * ipif_lookup_on_name(), but in the case of zones we can have 18927 * several loopback addresses on lo0. So all the interfaces with 18928 * loopback addresses need to be marked IRE_LOOPBACK. 18929 */ 18930 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 18931 htonl(INADDR_LOOPBACK)) 18932 ipif->ipif_ire_type = IRE_LOOPBACK; 18933 else 18934 ipif->ipif_ire_type = IRE_LOCAL; 18935 } 18936 18937 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 18938 /* 18939 * Can't use our source address. Select a different 18940 * source address for the IRE_INTERFACE and IRE_LOCAL 18941 */ 18942 src_ipif = ipif_select_source(ipif->ipif_ill, 18943 ipif->ipif_subnet, ipif->ipif_zoneid); 18944 if (src_ipif == NULL) 18945 src_ipif = ipif; /* Last resort */ 18946 else 18947 src_ipif_held = B_TRUE; 18948 } else { 18949 src_ipif = ipif; 18950 } 18951 18952 /* Create all the IREs associated with this interface */ 18953 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 18954 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18955 /* Register the source address for __sin6_src_id */ 18956 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 18957 ipif->ipif_zoneid); 18958 if (err != 0) { 18959 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 18960 return (err); 18961 } 18962 /* If the interface address is set, create the local IRE. */ 18963 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 18964 (void *)ipif, 18965 ipif->ipif_ire_type, 18966 ntohl(ipif->ipif_lcl_addr))); 18967 *irep++ = ire_create( 18968 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 18969 (uchar_t *)&ip_g_all_ones, /* mask */ 18970 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 18971 NULL, /* no gateway */ 18972 NULL, 18973 &ip_loopback_mtuplus, /* max frag size */ 18974 NULL, 18975 ipif->ipif_rq, /* recv-from queue */ 18976 NULL, /* no send-to queue */ 18977 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 18978 NULL, 18979 ipif, 18980 NULL, 18981 0, 18982 0, 18983 0, 18984 (ipif->ipif_flags & IPIF_PRIVATE) ? 18985 RTF_PRIVATE : 0, 18986 &ire_uinfo_null); 18987 } else { 18988 ip1dbg(( 18989 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 18990 ipif->ipif_ire_type, 18991 ntohl(ipif->ipif_lcl_addr), 18992 (uint_t)ipif->ipif_flags)); 18993 } 18994 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 18995 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18996 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 18997 } else { 18998 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 18999 } 19000 19001 subnet_mask = ipif->ipif_net_mask; 19002 19003 /* 19004 * If mask was not specified, use natural netmask of 19005 * interface address. Also, store this mask back into the 19006 * ipif struct. 19007 */ 19008 if (subnet_mask == 0) { 19009 subnet_mask = net_mask; 19010 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 19011 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 19012 ipif->ipif_v6subnet); 19013 } 19014 19015 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 19016 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 19017 ipif->ipif_subnet != INADDR_ANY) { 19018 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19019 19020 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19021 route_mask = IP_HOST_MASK; 19022 } else { 19023 route_mask = subnet_mask; 19024 } 19025 19026 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 19027 "creating if IRE ill_net_type 0x%x for 0x%x\n", 19028 (void *)ipif, (void *)ill, 19029 ill->ill_net_type, 19030 ntohl(ipif->ipif_subnet))); 19031 *irep++ = ire_create( 19032 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 19033 (uchar_t *)&route_mask, /* mask */ 19034 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 19035 NULL, /* no gateway */ 19036 NULL, 19037 &ipif->ipif_mtu, /* max frag */ 19038 NULL, 19039 NULL, /* no recv queue */ 19040 stq, /* send-to queue */ 19041 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19042 ill->ill_resolver_mp, /* xmit header */ 19043 ipif, 19044 NULL, 19045 0, 19046 0, 19047 0, 19048 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 19049 &ire_uinfo_null); 19050 } 19051 19052 /* 19053 * If the interface address is set, create the broadcast IREs. 19054 * 19055 * ire_create_bcast checks if the proposed new IRE matches 19056 * any existing IRE's with the same physical interface (ILL). 19057 * This should get rid of duplicates. 19058 * ire_create_bcast also check IPIF_NOXMIT and does not create 19059 * any broadcast ires. 19060 */ 19061 if ((ipif->ipif_subnet != INADDR_ANY) && 19062 (ipif->ipif_flags & IPIF_BROADCAST)) { 19063 ipaddr_t addr; 19064 19065 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 19066 irep = ire_check_and_create_bcast(ipif, 0, irep, 19067 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19068 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 19069 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19070 19071 /* 19072 * For backward compatibility, we need to create net 19073 * broadcast ire's based on the old "IP address class 19074 * system." The reason is that some old machines only 19075 * respond to these class derived net broadcast. 19076 * 19077 * But we should not create these net broadcast ire's if 19078 * the subnet_mask is shorter than the IP address class based 19079 * derived netmask. Otherwise, we may create a net 19080 * broadcast address which is the same as an IP address 19081 * on the subnet. Then TCP will refuse to talk to that 19082 * address. 19083 * 19084 * Nor do we need IRE_BROADCAST ire's for the interface 19085 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 19086 * interface is already created. Creating these broadcast 19087 * ire's will only create confusion as the "addr" is going 19088 * to be same as that of the IP address of the interface. 19089 */ 19090 if (net_mask < subnet_mask) { 19091 addr = net_mask & ipif->ipif_subnet; 19092 irep = ire_check_and_create_bcast(ipif, addr, irep, 19093 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19094 irep = ire_check_and_create_bcast(ipif, 19095 ~net_mask | addr, irep, 19096 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19097 } 19098 19099 if (subnet_mask != 0xFFFFFFFF) { 19100 addr = ipif->ipif_subnet; 19101 irep = ire_check_and_create_bcast(ipif, addr, irep, 19102 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19103 irep = ire_check_and_create_bcast(ipif, 19104 ~subnet_mask|addr, irep, 19105 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19106 } 19107 } 19108 19109 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19110 19111 /* If an earlier ire_create failed, get out now */ 19112 for (irep1 = irep; irep1 > ire_array; ) { 19113 irep1--; 19114 if (*irep1 == NULL) { 19115 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 19116 err = ENOMEM; 19117 goto bad; 19118 } 19119 } 19120 19121 /* 19122 * Need to atomically check for ip_addr_availablity_check 19123 * under ip_addr_avail_lock, and if it fails got bad, and remove 19124 * from group also.The ill_g_lock is grabbed as reader 19125 * just to make sure no new ills or new ipifs are being added 19126 * to the system while we are checking the uniqueness of addresses. 19127 */ 19128 rw_enter(&ill_g_lock, RW_READER); 19129 mutex_enter(&ip_addr_avail_lock); 19130 /* Mark it up, and increment counters. */ 19131 ill->ill_ipif_up_count++; 19132 ipif->ipif_flags |= IPIF_UP; 19133 err = ip_addr_availability_check(ipif); 19134 mutex_exit(&ip_addr_avail_lock); 19135 rw_exit(&ill_g_lock); 19136 19137 if (err != 0) { 19138 /* 19139 * Our address may already be up on the same ill. In this case, 19140 * the ARP entry for our ipif replaced the one for the other 19141 * ipif. So we don't want to delete it (otherwise the other ipif 19142 * would be unable to send packets). 19143 * ip_addr_availability_check() identifies this case for us and 19144 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 19145 * which is the expected error code. 19146 */ 19147 if (err == EADDRINUSE) { 19148 freemsg(ipif->ipif_arp_del_mp); 19149 ipif->ipif_arp_del_mp = NULL; 19150 err = EADDRNOTAVAIL; 19151 } 19152 ill->ill_ipif_up_count--; 19153 ipif->ipif_flags &= ~IPIF_UP; 19154 goto bad; 19155 } 19156 19157 /* 19158 * Add in all newly created IREs. ire_create_bcast() has 19159 * already checked for duplicates of the IRE_BROADCAST type. 19160 * We want to add before we call ifgrp_insert which wants 19161 * to know whether IRE_IF_RESOLVER exists or not. 19162 * 19163 * NOTE : We refrele the ire though we may branch to "bad" 19164 * later on where we do ire_delete. This is okay 19165 * because nobody can delete it as we are running 19166 * exclusively. 19167 */ 19168 for (irep1 = irep; irep1 > ire_array; ) { 19169 irep1--; 19170 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 19171 /* 19172 * refheld by ire_add. refele towards the end of the func 19173 */ 19174 (void) ire_add(irep1, NULL, NULL, NULL); 19175 } 19176 ire_added = B_TRUE; 19177 /* 19178 * Form groups if possible. 19179 * 19180 * If we are supposed to be in a ill_group with a name, insert it 19181 * now as we know that at least one ipif is UP. Otherwise form 19182 * nameless groups. 19183 * 19184 * If ip_enable_group_ifs is set and ipif address is not 0, insert 19185 * this ipif into the appropriate interface group, or create a 19186 * new one. If this is already in a nameless group, we try to form 19187 * a bigger group looking at other ills potentially sharing this 19188 * ipif's prefix. 19189 */ 19190 phyi = ill->ill_phyint; 19191 if (phyi->phyint_groupname_len != 0) { 19192 ASSERT(phyi->phyint_groupname != NULL); 19193 if (ill->ill_ipif_up_count == 1) { 19194 ASSERT(ill->ill_group == NULL); 19195 err = illgrp_insert(&illgrp_head_v4, ill, 19196 phyi->phyint_groupname, NULL, B_TRUE); 19197 if (err != 0) { 19198 ip1dbg(("ipif_up_done: illgrp allocation " 19199 "failed, error %d\n", err)); 19200 goto bad; 19201 } 19202 } 19203 ASSERT(ill->ill_group != NULL); 19204 } 19205 19206 /* 19207 * When this is part of group, we need to make sure that 19208 * any broadcast ires created because of this ipif coming 19209 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 19210 * so that we don't receive duplicate broadcast packets. 19211 */ 19212 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 19213 ipif_renominate_bcast(ipif); 19214 19215 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 19216 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 19217 ipif_saved_irep = ipif_recover_ire(ipif); 19218 19219 if (!loopback) { 19220 /* 19221 * If the broadcast address has been set, make sure it makes 19222 * sense based on the interface address. 19223 * Only match on ill since we are sharing broadcast addresses. 19224 */ 19225 if ((ipif->ipif_brd_addr != INADDR_ANY) && 19226 (ipif->ipif_flags & IPIF_BROADCAST)) { 19227 ire_t *ire; 19228 19229 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 19230 IRE_BROADCAST, ipif, ALL_ZONES, 19231 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19232 19233 if (ire == NULL) { 19234 /* 19235 * If there isn't a matching broadcast IRE, 19236 * revert to the default for this netmask. 19237 */ 19238 ipif->ipif_v6brd_addr = ipv6_all_zeros; 19239 mutex_enter(&ipif->ipif_ill->ill_lock); 19240 ipif_set_default(ipif); 19241 mutex_exit(&ipif->ipif_ill->ill_lock); 19242 } else { 19243 ire_refrele(ire); 19244 } 19245 } 19246 19247 } 19248 19249 19250 /* This is the first interface on this ill */ 19251 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 19252 /* 19253 * Need to recover all multicast memberships in the driver. 19254 * This had to be deferred until we had attached. 19255 */ 19256 ill_recover_multicast(ill); 19257 } 19258 /* Join the allhosts multicast address */ 19259 ipif_multicast_up(ipif); 19260 19261 if (!loopback) { 19262 /* 19263 * See whether anybody else would benefit from the 19264 * new ipif that we added. We call this always rather 19265 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 19266 * ipif is for the benefit of illgrp_insert (done above) 19267 * which does not do source address selection as it does 19268 * not want to re-create interface routes that we are 19269 * having reference to it here. 19270 */ 19271 ill_update_source_selection(ill); 19272 } 19273 19274 for (irep1 = irep; irep1 > ire_array; ) { 19275 irep1--; 19276 if (*irep1 != NULL) { 19277 /* was held in ire_add */ 19278 ire_refrele(*irep1); 19279 } 19280 } 19281 19282 cnt = ipif_saved_ire_cnt; 19283 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 19284 if (*irep1 != NULL) { 19285 /* was held in ire_add */ 19286 ire_refrele(*irep1); 19287 } 19288 } 19289 19290 /* 19291 * This had to be deferred until we had bound. 19292 * tell routing sockets that this interface is up 19293 */ 19294 ip_rts_ifmsg(ipif); 19295 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 19296 19297 if (!loopback) { 19298 /* Broadcast an address mask reply. */ 19299 ipif_mask_reply(ipif); 19300 } 19301 if (ipif_saved_irep != NULL) { 19302 kmem_free(ipif_saved_irep, 19303 ipif_saved_ire_cnt * sizeof (ire_t *)); 19304 } 19305 if (src_ipif_held) 19306 ipif_refrele(src_ipif); 19307 /* Let SCTP update the status for this ipif */ 19308 sctp_update_ipif(ipif, SCTP_IPIF_UP); 19309 return (0); 19310 19311 bad: 19312 ip1dbg(("ipif_up_done: FAILED \n")); 19313 /* 19314 * We don't have to bother removing from ill groups because 19315 * 19316 * 1) For groups with names, we insert only when the first ipif 19317 * comes up. In that case if it fails, it will not be in any 19318 * group. So, we need not try to remove for that case. 19319 * 19320 * 2) For groups without names, either we tried to insert ipif_ill 19321 * in a group as singleton or found some other group to become 19322 * a bigger group. For the former, if it fails we don't have 19323 * anything to do as ipif_ill is not in the group and for the 19324 * latter, there are no failures in illgrp_insert/illgrp_delete 19325 * (ENOMEM can't occur for this. Check ifgrp_insert). 19326 */ 19327 while (irep > ire_array) { 19328 irep--; 19329 if (*irep != NULL) { 19330 ire_delete(*irep); 19331 if (ire_added) 19332 ire_refrele(*irep); 19333 } 19334 } 19335 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 19336 19337 if (ipif_saved_irep != NULL) { 19338 kmem_free(ipif_saved_irep, 19339 ipif_saved_ire_cnt * sizeof (ire_t *)); 19340 } 19341 if (src_ipif_held) 19342 ipif_refrele(src_ipif); 19343 19344 ipif_arp_down(ipif); 19345 return (err); 19346 } 19347 19348 /* 19349 * Turn off the ARP with the ILLF_NOARP flag. 19350 */ 19351 static int 19352 ill_arp_off(ill_t *ill) 19353 { 19354 mblk_t *arp_off_mp = NULL; 19355 mblk_t *arp_on_mp = NULL; 19356 19357 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 19358 19359 ASSERT(IAM_WRITER_ILL(ill)); 19360 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19361 19362 /* 19363 * If the on message is still around we've already done 19364 * an arp_off without doing an arp_on thus there is no 19365 * work needed. 19366 */ 19367 if (ill->ill_arp_on_mp != NULL) 19368 return (0); 19369 19370 /* 19371 * Allocate an ARP on message (to be saved) and an ARP off message 19372 */ 19373 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 19374 if (!arp_off_mp) 19375 return (ENOMEM); 19376 19377 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 19378 if (!arp_on_mp) 19379 goto failed; 19380 19381 ASSERT(ill->ill_arp_on_mp == NULL); 19382 ill->ill_arp_on_mp = arp_on_mp; 19383 19384 /* Send an AR_INTERFACE_OFF request */ 19385 putnext(ill->ill_rq, arp_off_mp); 19386 return (0); 19387 failed: 19388 19389 if (arp_off_mp) 19390 freemsg(arp_off_mp); 19391 return (ENOMEM); 19392 } 19393 19394 /* 19395 * Turn on ARP by turning off the ILLF_NOARP flag. 19396 */ 19397 static int 19398 ill_arp_on(ill_t *ill) 19399 { 19400 mblk_t *mp; 19401 19402 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 19403 19404 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19405 19406 ASSERT(IAM_WRITER_ILL(ill)); 19407 /* 19408 * Send an AR_INTERFACE_ON request if we have already done 19409 * an arp_off (which allocated the message). 19410 */ 19411 if (ill->ill_arp_on_mp != NULL) { 19412 mp = ill->ill_arp_on_mp; 19413 ill->ill_arp_on_mp = NULL; 19414 putnext(ill->ill_rq, mp); 19415 } 19416 return (0); 19417 } 19418 19419 /* 19420 * Called after either deleting ill from the group or when setting 19421 * FAILED or STANDBY on the interface. 19422 */ 19423 static void 19424 illgrp_reset_schednext(ill_t *ill) 19425 { 19426 ill_group_t *illgrp; 19427 ill_t *save_ill; 19428 19429 ASSERT(IAM_WRITER_ILL(ill)); 19430 /* 19431 * When called from illgrp_delete, ill_group will be non-NULL. 19432 * But when called from ip_sioctl_flags, it could be NULL if 19433 * somebody is setting FAILED/INACTIVE on some interface which 19434 * is not part of a group. 19435 */ 19436 illgrp = ill->ill_group; 19437 if (illgrp == NULL) 19438 return; 19439 if (illgrp->illgrp_ill_schednext != ill) 19440 return; 19441 19442 illgrp->illgrp_ill_schednext = NULL; 19443 save_ill = ill; 19444 /* 19445 * Choose a good ill to be the next one for 19446 * outbound traffic. As the flags FAILED/STANDBY is 19447 * not yet marked when called from ip_sioctl_flags, 19448 * we check for ill separately. 19449 */ 19450 for (ill = illgrp->illgrp_ill; ill != NULL; 19451 ill = ill->ill_group_next) { 19452 if ((ill != save_ill) && 19453 !(ill->ill_phyint->phyint_flags & 19454 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 19455 illgrp->illgrp_ill_schednext = ill; 19456 return; 19457 } 19458 } 19459 } 19460 19461 /* 19462 * Given an ill, find the next ill in the group to be scheduled. 19463 * (This should be called by ip_newroute() before ire_create().) 19464 * The passed in ill may be pulled out of the group, after we have picked 19465 * up a different outgoing ill from the same group. However ire add will 19466 * atomically check this. 19467 */ 19468 ill_t * 19469 illgrp_scheduler(ill_t *ill) 19470 { 19471 ill_t *retill; 19472 ill_group_t *illgrp; 19473 int illcnt; 19474 int i; 19475 uint64_t flags; 19476 19477 /* 19478 * We don't use a lock to check for the ill_group. If this ill 19479 * is currently being inserted we may end up just returning this 19480 * ill itself. That is ok. 19481 */ 19482 if (ill->ill_group == NULL) { 19483 ill_refhold(ill); 19484 return (ill); 19485 } 19486 19487 /* 19488 * Grab the ill_g_lock as reader to make sure we are dealing with 19489 * a set of stable ills. No ill can be added or deleted or change 19490 * group while we hold the reader lock. 19491 */ 19492 rw_enter(&ill_g_lock, RW_READER); 19493 if ((illgrp = ill->ill_group) == NULL) { 19494 rw_exit(&ill_g_lock); 19495 ill_refhold(ill); 19496 return (ill); 19497 } 19498 19499 illcnt = illgrp->illgrp_ill_count; 19500 mutex_enter(&illgrp->illgrp_lock); 19501 retill = illgrp->illgrp_ill_schednext; 19502 19503 if (retill == NULL) 19504 retill = illgrp->illgrp_ill; 19505 19506 /* 19507 * We do a circular search beginning at illgrp_ill_schednext 19508 * or illgrp_ill. We don't check the flags against the ill lock 19509 * since it can change anytime. The ire creation will be atomic 19510 * and will fail if the ill is FAILED or OFFLINE. 19511 */ 19512 for (i = 0; i < illcnt; i++) { 19513 flags = retill->ill_phyint->phyint_flags; 19514 19515 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 19516 ILL_CAN_LOOKUP(retill)) { 19517 illgrp->illgrp_ill_schednext = retill->ill_group_next; 19518 ill_refhold(retill); 19519 break; 19520 } 19521 retill = retill->ill_group_next; 19522 if (retill == NULL) 19523 retill = illgrp->illgrp_ill; 19524 } 19525 mutex_exit(&illgrp->illgrp_lock); 19526 rw_exit(&ill_g_lock); 19527 19528 return (i == illcnt ? NULL : retill); 19529 } 19530 19531 /* 19532 * Checks for availbility of a usable source address (if there is one) when the 19533 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 19534 * this selection is done regardless of the destination. 19535 */ 19536 boolean_t 19537 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 19538 { 19539 uint_t ifindex; 19540 ipif_t *ipif = NULL; 19541 ill_t *uill; 19542 boolean_t isv6; 19543 19544 ASSERT(ill != NULL); 19545 19546 isv6 = ill->ill_isv6; 19547 ifindex = ill->ill_usesrc_ifindex; 19548 if (ifindex != 0) { 19549 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 19550 NULL); 19551 if (uill == NULL) 19552 return (NULL); 19553 mutex_enter(&uill->ill_lock); 19554 for (ipif = uill->ill_ipif; ipif != NULL; 19555 ipif = ipif->ipif_next) { 19556 if (!IPIF_CAN_LOOKUP(ipif)) 19557 continue; 19558 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19559 continue; 19560 if (!(ipif->ipif_flags & IPIF_UP)) 19561 continue; 19562 if (ipif->ipif_zoneid != zoneid) 19563 continue; 19564 if ((isv6 && 19565 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 19566 (ipif->ipif_lcl_addr == INADDR_ANY)) 19567 continue; 19568 mutex_exit(&uill->ill_lock); 19569 ill_refrele(uill); 19570 return (B_TRUE); 19571 } 19572 mutex_exit(&uill->ill_lock); 19573 ill_refrele(uill); 19574 } 19575 return (B_FALSE); 19576 } 19577 19578 /* 19579 * Determine the best source address given a destination address and an ill. 19580 * Prefers non-deprecated over deprecated but will return a deprecated 19581 * address if there is no other choice. If there is a usable source address 19582 * on the interface pointed to by ill_usesrc_ifindex then that is given 19583 * first preference. 19584 * 19585 * Returns NULL if there is no suitable source address for the ill. 19586 * This only occurs when there is no valid source address for the ill. 19587 */ 19588 ipif_t * 19589 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 19590 { 19591 ipif_t *ipif; 19592 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 19593 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 19594 int index = 0; 19595 boolean_t wrapped = B_FALSE; 19596 boolean_t same_subnet_only = B_FALSE; 19597 boolean_t ipif_same_found, ipif_other_found; 19598 ill_t *till, *usill = NULL; 19599 19600 if (ill->ill_usesrc_ifindex != 0) { 19601 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 19602 NULL, NULL, NULL, NULL); 19603 if (usill != NULL) 19604 ill = usill; /* Select source from usesrc ILL */ 19605 else 19606 return (NULL); 19607 } 19608 19609 /* 19610 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 19611 * can be deleted. But an ipif/ill can get CONDEMNED any time. 19612 * After selecting the right ipif, under ill_lock make sure ipif is 19613 * not condemned, and increment refcnt. If ipif is CONDEMNED, 19614 * we retry. Inside the loop we still need to check for CONDEMNED, 19615 * but not under a lock. 19616 */ 19617 rw_enter(&ill_g_lock, RW_READER); 19618 19619 retry: 19620 till = ill; 19621 ipif_arr[0] = NULL; 19622 19623 if (till->ill_group != NULL) 19624 till = till->ill_group->illgrp_ill; 19625 19626 /* 19627 * Choose one good source address from each ill across the group. 19628 * If possible choose a source address in the same subnet as 19629 * the destination address. 19630 * 19631 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 19632 * This is okay because of the following. 19633 * 19634 * If PHYI_FAILED is set and we still have non-deprecated 19635 * addresses, it means the addresses have not yet been 19636 * failed over to a different interface. We potentially 19637 * select them to create IRE_CACHES, which will be later 19638 * flushed when the addresses move over. 19639 * 19640 * If PHYI_INACTIVE is set and we still have non-deprecated 19641 * addresses, it means either the user has configured them 19642 * or PHYI_INACTIVE has not been cleared after the addresses 19643 * been moved over. For the former, in.mpathd does a failover 19644 * when the interface becomes INACTIVE and hence we should 19645 * not find them. Once INACTIVE is set, we don't allow them 19646 * to create logical interfaces anymore. For the latter, a 19647 * flush will happen when INACTIVE is cleared which will 19648 * flush the IRE_CACHES. 19649 * 19650 * If PHYI_OFFLINE is set, all the addresses will be failed 19651 * over soon. We potentially select them to create IRE_CACHEs, 19652 * which will be later flushed when the addresses move over. 19653 * 19654 * NOTE : As ipif_select_source is called to borrow source address 19655 * for an ipif that is part of a group, source address selection 19656 * will be re-done whenever the group changes i.e either an 19657 * insertion/deletion in the group. 19658 * 19659 * Fill ipif_arr[] with source addresses, using these rules: 19660 * 19661 * 1. At most one source address from a given ill ends up 19662 * in ipif_arr[] -- that is, at most one of the ipif's 19663 * associated with a given ill ends up in ipif_arr[]. 19664 * 19665 * 2. If there is at least one non-deprecated ipif in the 19666 * IPMP group with a source address on the same subnet as 19667 * our destination, then fill ipif_arr[] only with 19668 * source addresses on the same subnet as our destination. 19669 * Note that because of (1), only the first 19670 * non-deprecated ipif found with a source address 19671 * matching the destination ends up in ipif_arr[]. 19672 * 19673 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 19674 * addresses not in the same subnet as our destination. 19675 * Again, because of (1), only the first off-subnet source 19676 * address will be chosen. 19677 * 19678 * 4. If there are no non-deprecated ipifs, then just use 19679 * the source address associated with the last deprecated 19680 * one we find that happens to be on the same subnet, 19681 * otherwise the first one not in the same subnet. 19682 */ 19683 for (; till != NULL; till = till->ill_group_next) { 19684 ipif_same_found = B_FALSE; 19685 ipif_other_found = B_FALSE; 19686 for (ipif = till->ill_ipif; ipif != NULL; 19687 ipif = ipif->ipif_next) { 19688 if (!IPIF_CAN_LOOKUP(ipif)) 19689 continue; 19690 /* Always skip NOLOCAL and ANYCAST interfaces */ 19691 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19692 continue; 19693 if (!(ipif->ipif_flags & IPIF_UP)) 19694 continue; 19695 if (ipif->ipif_zoneid != zoneid) 19696 continue; 19697 /* 19698 * Interfaces with 0.0.0.0 address are allowed to be UP, 19699 * but are not valid as source addresses. 19700 */ 19701 if (ipif->ipif_lcl_addr == INADDR_ANY) 19702 continue; 19703 if (ipif->ipif_flags & IPIF_DEPRECATED) { 19704 if (ipif_dep == NULL || 19705 (ipif->ipif_net_mask & dst) == 19706 ipif->ipif_subnet) 19707 ipif_dep = ipif; 19708 continue; 19709 } 19710 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 19711 /* found a source address in the same subnet */ 19712 if (same_subnet_only == B_FALSE) { 19713 same_subnet_only = B_TRUE; 19714 index = 0; 19715 } 19716 ipif_same_found = B_TRUE; 19717 } else { 19718 if (same_subnet_only == B_TRUE || 19719 ipif_other_found == B_TRUE) 19720 continue; 19721 ipif_other_found = B_TRUE; 19722 } 19723 ipif_arr[index++] = ipif; 19724 if (index == MAX_IPIF_SELECT_SOURCE) { 19725 wrapped = B_TRUE; 19726 index = 0; 19727 } 19728 if (ipif_same_found == B_TRUE) 19729 break; 19730 } 19731 } 19732 19733 if (ipif_arr[0] == NULL) { 19734 ipif = ipif_dep; 19735 } else { 19736 if (wrapped) 19737 index = MAX_IPIF_SELECT_SOURCE; 19738 ipif = ipif_arr[ipif_rand() % index]; 19739 ASSERT(ipif != NULL); 19740 } 19741 19742 if (ipif != NULL) { 19743 mutex_enter(&ipif->ipif_ill->ill_lock); 19744 if (!IPIF_CAN_LOOKUP(ipif)) { 19745 mutex_exit(&ipif->ipif_ill->ill_lock); 19746 goto retry; 19747 } 19748 ipif_refhold_locked(ipif); 19749 mutex_exit(&ipif->ipif_ill->ill_lock); 19750 } 19751 19752 rw_exit(&ill_g_lock); 19753 if (usill != NULL) 19754 ill_refrele(usill); 19755 19756 #ifdef DEBUG 19757 if (ipif == NULL) { 19758 char buf1[INET6_ADDRSTRLEN]; 19759 19760 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 19761 ill->ill_name, 19762 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 19763 } else { 19764 char buf1[INET6_ADDRSTRLEN]; 19765 char buf2[INET6_ADDRSTRLEN]; 19766 19767 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 19768 ipif->ipif_ill->ill_name, 19769 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 19770 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 19771 buf2, sizeof (buf2)))); 19772 } 19773 #endif /* DEBUG */ 19774 return (ipif); 19775 } 19776 19777 19778 /* 19779 * If old_ipif is not NULL, see if ipif was derived from old 19780 * ipif and if so, recreate the interface route by re-doing 19781 * source address selection. This happens when ipif_down -> 19782 * ipif_update_other_ipifs calls us. 19783 * 19784 * If old_ipif is NULL, just redo the source address selection 19785 * if needed. This happens when illgrp_insert or ipif_up_done 19786 * calls us. 19787 */ 19788 static void 19789 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 19790 { 19791 ire_t *ire; 19792 ire_t *ipif_ire; 19793 queue_t *stq; 19794 ipif_t *nipif; 19795 ill_t *ill; 19796 boolean_t need_rele = B_FALSE; 19797 19798 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 19799 ASSERT(IAM_WRITER_IPIF(ipif)); 19800 19801 ill = ipif->ipif_ill; 19802 if (!(ipif->ipif_flags & 19803 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 19804 /* 19805 * Can't possibly have borrowed the source 19806 * from old_ipif. 19807 */ 19808 return; 19809 } 19810 19811 /* 19812 * Is there any work to be done? No work if the address 19813 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 19814 * ipif_select_source() does not borrow addresses from 19815 * NOLOCAL and ANYCAST interfaces). 19816 */ 19817 if ((old_ipif != NULL) && 19818 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 19819 (old_ipif->ipif_ill->ill_wq == NULL) || 19820 (old_ipif->ipif_flags & 19821 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 19822 return; 19823 } 19824 19825 /* 19826 * Perform the same checks as when creating the 19827 * IRE_INTERFACE in ipif_up_done. 19828 */ 19829 if (!(ipif->ipif_flags & IPIF_UP)) 19830 return; 19831 19832 if ((ipif->ipif_flags & IPIF_NOXMIT) || 19833 (ipif->ipif_subnet == INADDR_ANY)) 19834 return; 19835 19836 ipif_ire = ipif_to_ire(ipif); 19837 if (ipif_ire == NULL) 19838 return; 19839 19840 /* 19841 * We know that ipif uses some other source for its 19842 * IRE_INTERFACE. Is it using the source of this 19843 * old_ipif? 19844 */ 19845 if (old_ipif != NULL && 19846 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 19847 ire_refrele(ipif_ire); 19848 return; 19849 } 19850 if (ip_debug > 2) { 19851 /* ip1dbg */ 19852 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 19853 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 19854 } 19855 19856 stq = ipif_ire->ire_stq; 19857 19858 /* 19859 * Can't use our source address. Select a different 19860 * source address for the IRE_INTERFACE. 19861 */ 19862 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 19863 if (nipif == NULL) { 19864 /* Last resort - all ipif's have IPIF_NOLOCAL */ 19865 nipif = ipif; 19866 } else { 19867 need_rele = B_TRUE; 19868 } 19869 19870 ire = ire_create( 19871 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 19872 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 19873 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 19874 NULL, /* no gateway */ 19875 NULL, 19876 &ipif->ipif_mtu, /* max frag */ 19877 NULL, /* fast path header */ 19878 NULL, /* no recv from queue */ 19879 stq, /* send-to queue */ 19880 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19881 ill->ill_resolver_mp, /* xmit header */ 19882 ipif, 19883 NULL, 19884 0, 19885 0, 19886 0, 19887 0, 19888 &ire_uinfo_null); 19889 19890 if (ire != NULL) { 19891 ire_t *ret_ire; 19892 int error; 19893 19894 /* 19895 * We don't need ipif_ire anymore. We need to delete 19896 * before we add so that ire_add does not detect 19897 * duplicates. 19898 */ 19899 ire_delete(ipif_ire); 19900 ret_ire = ire; 19901 error = ire_add(&ret_ire, NULL, NULL, NULL); 19902 ASSERT(error == 0); 19903 ASSERT(ire == ret_ire); 19904 /* Held in ire_add */ 19905 ire_refrele(ret_ire); 19906 } 19907 /* 19908 * Either we are falling through from above or could not 19909 * allocate a replacement. 19910 */ 19911 ire_refrele(ipif_ire); 19912 if (need_rele) 19913 ipif_refrele(nipif); 19914 } 19915 19916 /* 19917 * This old_ipif is going away. 19918 * 19919 * Determine if any other ipif's is using our address as 19920 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 19921 * IPIF_DEPRECATED). 19922 * Find the IRE_INTERFACE for such ipifs and recreate them 19923 * to use an different source address following the rules in 19924 * ipif_up_done. 19925 * 19926 * This function takes an illgrp as an argument so that illgrp_delete 19927 * can call this to update source address even after deleting the 19928 * old_ipif->ipif_ill from the ill group. 19929 */ 19930 static void 19931 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 19932 { 19933 ipif_t *ipif; 19934 ill_t *ill; 19935 char buf[INET6_ADDRSTRLEN]; 19936 19937 ASSERT(IAM_WRITER_IPIF(old_ipif)); 19938 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 19939 19940 ill = old_ipif->ipif_ill; 19941 19942 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 19943 ill->ill_name, 19944 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 19945 buf, sizeof (buf)))); 19946 /* 19947 * If this part of a group, look at all ills as ipif_select_source 19948 * borrows source address across all the ills in the group. 19949 */ 19950 if (illgrp != NULL) 19951 ill = illgrp->illgrp_ill; 19952 19953 for (; ill != NULL; ill = ill->ill_group_next) { 19954 for (ipif = ill->ill_ipif; ipif != NULL; 19955 ipif = ipif->ipif_next) { 19956 19957 if (ipif == old_ipif) 19958 continue; 19959 19960 ipif_recreate_interface_routes(old_ipif, ipif); 19961 } 19962 } 19963 } 19964 19965 /* ARGSUSED */ 19966 int 19967 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19968 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19969 { 19970 /* 19971 * ill_phyint_reinit merged the v4 and v6 into a single 19972 * ipsq. Could also have become part of a ipmp group in the 19973 * process, and we might not have been able to complete the 19974 * operation in ipif_set_values, if we could not become 19975 * exclusive. If so restart it here. 19976 */ 19977 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 19978 } 19979 19980 19981 /* ARGSUSED */ 19982 int 19983 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19984 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19985 { 19986 queue_t *q1 = q; 19987 char *cp; 19988 char interf_name[LIFNAMSIZ]; 19989 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 19990 19991 if (!q->q_next) { 19992 ip1dbg(( 19993 "if_unitsel: IF_UNITSEL: no q_next\n")); 19994 return (EINVAL); 19995 } 19996 19997 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 19998 return (EALREADY); 19999 20000 do { 20001 q1 = q1->q_next; 20002 } while (q1->q_next); 20003 cp = q1->q_qinfo->qi_minfo->mi_idname; 20004 (void) sprintf(interf_name, "%s%d", cp, ppa); 20005 20006 /* 20007 * Here we are not going to delay the ioack until after 20008 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 20009 * original ioctl message before sending the requests. 20010 */ 20011 return (ipif_set_values(q, mp, interf_name, &ppa)); 20012 } 20013 20014 /* ARGSUSED */ 20015 int 20016 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20017 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20018 { 20019 return (ENXIO); 20020 } 20021 20022 /* 20023 * Net and subnet broadcast ire's are now specific to the particular 20024 * physical interface (ill) and not to any one locigal interface (ipif). 20025 * However, if a particular logical interface is being taken down, it's 20026 * associated ire's will be taken down as well. Hence, when we go to 20027 * take down or change the local address, broadcast address or netmask 20028 * of a specific logical interface, we must check to make sure that we 20029 * have valid net and subnet broadcast ire's for the other logical 20030 * interfaces which may have been shared with the logical interface 20031 * being brought down or changed. 20032 * 20033 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 20034 * is tied to the first interface coming UP. If that ipif is going down, 20035 * we need to recreate them on the next valid ipif. 20036 * 20037 * Note: assume that the ipif passed in is still up so that it's IRE 20038 * entries are still valid. 20039 */ 20040 static void 20041 ipif_check_bcast_ires(ipif_t *test_ipif) 20042 { 20043 ipif_t *ipif; 20044 ire_t *test_subnet_ire, *test_net_ire; 20045 ire_t *test_allzero_ire, *test_allone_ire; 20046 ire_t *ire_array[12]; 20047 ire_t **irep = &ire_array[0]; 20048 ire_t **irep1; 20049 20050 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 20051 ipaddr_t test_net_addr, test_subnet_addr; 20052 ipaddr_t test_net_mask, test_subnet_mask; 20053 boolean_t need_net_bcast_ire = B_FALSE; 20054 boolean_t need_subnet_bcast_ire = B_FALSE; 20055 boolean_t allzero_bcast_ire_created = B_FALSE; 20056 boolean_t allone_bcast_ire_created = B_FALSE; 20057 boolean_t net_bcast_ire_created = B_FALSE; 20058 boolean_t subnet_bcast_ire_created = B_FALSE; 20059 20060 ipif_t *backup_ipif_net = (ipif_t *)NULL; 20061 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 20062 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 20063 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 20064 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 20065 20066 ASSERT(!test_ipif->ipif_isv6); 20067 ASSERT(IAM_WRITER_IPIF(test_ipif)); 20068 20069 /* 20070 * No broadcast IREs for the LOOPBACK interface 20071 * or others such as point to point and IPIF_NOXMIT. 20072 */ 20073 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 20074 (test_ipif->ipif_flags & IPIF_NOXMIT)) 20075 return; 20076 20077 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 20078 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20079 20080 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 20081 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20082 20083 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 20084 test_subnet_mask = test_ipif->ipif_net_mask; 20085 20086 /* 20087 * If no net mask set, assume the default based on net class. 20088 */ 20089 if (test_subnet_mask == 0) 20090 test_subnet_mask = test_net_mask; 20091 20092 /* 20093 * Check if there is a network broadcast ire associated with this ipif 20094 */ 20095 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 20096 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 20097 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20098 20099 /* 20100 * Check if there is a subnet broadcast IRE associated with this ipif 20101 */ 20102 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 20103 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 20104 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20105 20106 /* 20107 * No broadcast ire's associated with this ipif. 20108 */ 20109 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 20110 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 20111 return; 20112 } 20113 20114 /* 20115 * We have established which bcast ires have to be replaced. 20116 * Next we try to locate ipifs that match there ires. 20117 * The rules are simple: If we find an ipif that matches on the subnet 20118 * address it will also match on the net address, the allzeros and 20119 * allones address. Any ipif that matches only on the net address will 20120 * also match the allzeros and allones addresses. 20121 * The other criterion is the ipif_flags. We look for non-deprecated 20122 * (and non-anycast and non-nolocal) ipifs as the best choice. 20123 * ipifs with check_flags matching (deprecated, etc) are used only 20124 * if good ipifs are not available. While looping, we save existing 20125 * deprecated ipifs as backup_ipif. 20126 * We loop through all the ipifs for this ill looking for ipifs 20127 * whose broadcast addr match the ipif passed in, but do not have 20128 * their own broadcast ires. For creating 0.0.0.0 and 20129 * 255.255.255.255 we just need an ipif on this ill to create. 20130 */ 20131 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 20132 ipif = ipif->ipif_next) { 20133 20134 ASSERT(!ipif->ipif_isv6); 20135 /* 20136 * Already checked the ipif passed in. 20137 */ 20138 if (ipif == test_ipif) { 20139 continue; 20140 } 20141 20142 /* 20143 * We only need to recreate broadcast ires if another ipif in 20144 * the same zone uses them. The new ires must be created in the 20145 * same zone. 20146 */ 20147 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 20148 continue; 20149 } 20150 20151 /* 20152 * Only interested in logical interfaces with valid local 20153 * addresses or with the ability to broadcast. 20154 */ 20155 if ((ipif->ipif_subnet == 0) || 20156 !(ipif->ipif_flags & IPIF_BROADCAST) || 20157 (ipif->ipif_flags & IPIF_NOXMIT) || 20158 !(ipif->ipif_flags & IPIF_UP)) { 20159 continue; 20160 } 20161 /* 20162 * Check if there is a net broadcast ire for this 20163 * net address. If it turns out that the ipif we are 20164 * about to take down owns this ire, we must make a 20165 * new one because it is potentially going away. 20166 */ 20167 if (test_net_ire && (!net_bcast_ire_created)) { 20168 net_mask = ip_net_mask(ipif->ipif_subnet); 20169 net_addr = net_mask & ipif->ipif_subnet; 20170 if (net_addr == test_net_addr) { 20171 need_net_bcast_ire = B_TRUE; 20172 /* 20173 * Use DEPRECATED ipif only if no good 20174 * ires are available. subnet_addr is 20175 * a better match than net_addr. 20176 */ 20177 if ((ipif->ipif_flags & check_flags) && 20178 (backup_ipif_net == NULL)) { 20179 backup_ipif_net = ipif; 20180 } 20181 } 20182 } 20183 /* 20184 * Check if there is a subnet broadcast ire for this 20185 * net address. If it turns out that the ipif we are 20186 * about to take down owns this ire, we must make a 20187 * new one because it is potentially going away. 20188 */ 20189 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 20190 subnet_mask = ipif->ipif_net_mask; 20191 subnet_addr = ipif->ipif_subnet; 20192 if (subnet_addr == test_subnet_addr) { 20193 need_subnet_bcast_ire = B_TRUE; 20194 if ((ipif->ipif_flags & check_flags) && 20195 (backup_ipif_subnet == NULL)) { 20196 backup_ipif_subnet = ipif; 20197 } 20198 } 20199 } 20200 20201 20202 /* Short circuit here if this ipif is deprecated */ 20203 if (ipif->ipif_flags & check_flags) { 20204 if ((test_allzero_ire != NULL) && 20205 (!allzero_bcast_ire_created) && 20206 (backup_ipif_allzeros == NULL)) { 20207 backup_ipif_allzeros = ipif; 20208 } 20209 if ((test_allone_ire != NULL) && 20210 (!allone_bcast_ire_created) && 20211 (backup_ipif_allones == NULL)) { 20212 backup_ipif_allones = ipif; 20213 } 20214 continue; 20215 } 20216 20217 /* 20218 * Found an ipif which has the same broadcast ire as the 20219 * ipif passed in and the ipif passed in "owns" the ire. 20220 * Create new broadcast ire's for this broadcast addr. 20221 */ 20222 if (need_net_bcast_ire && !net_bcast_ire_created) { 20223 irep = ire_create_bcast(ipif, net_addr, irep); 20224 irep = ire_create_bcast(ipif, 20225 ~net_mask | net_addr, irep); 20226 net_bcast_ire_created = B_TRUE; 20227 } 20228 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 20229 irep = ire_create_bcast(ipif, subnet_addr, irep); 20230 irep = ire_create_bcast(ipif, 20231 ~subnet_mask | subnet_addr, irep); 20232 subnet_bcast_ire_created = B_TRUE; 20233 } 20234 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 20235 irep = ire_create_bcast(ipif, 0, irep); 20236 allzero_bcast_ire_created = B_TRUE; 20237 } 20238 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 20239 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 20240 allone_bcast_ire_created = B_TRUE; 20241 } 20242 /* 20243 * Once we have created all the appropriate ires, we 20244 * just break out of this loop to add what we have created. 20245 * This has been indented similar to ire_match_args for 20246 * readability. 20247 */ 20248 if (((test_net_ire == NULL) || 20249 (net_bcast_ire_created)) && 20250 ((test_subnet_ire == NULL) || 20251 (subnet_bcast_ire_created)) && 20252 ((test_allzero_ire == NULL) || 20253 (allzero_bcast_ire_created)) && 20254 ((test_allone_ire == NULL) || 20255 (allone_bcast_ire_created))) { 20256 break; 20257 } 20258 } 20259 20260 /* 20261 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 20262 * exist. 6 pairs of bcast ires are needed. 20263 * Note - the old ires are deleted in ipif_down. 20264 */ 20265 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 20266 ipif = backup_ipif_net; 20267 irep = ire_create_bcast(ipif, net_addr, irep); 20268 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 20269 net_bcast_ire_created = B_TRUE; 20270 } 20271 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 20272 backup_ipif_subnet) { 20273 ipif = backup_ipif_subnet; 20274 irep = ire_create_bcast(ipif, subnet_addr, irep); 20275 irep = ire_create_bcast(ipif, 20276 ~subnet_mask | subnet_addr, irep); 20277 subnet_bcast_ire_created = B_TRUE; 20278 } 20279 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 20280 backup_ipif_allzeros) { 20281 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 20282 allzero_bcast_ire_created = B_TRUE; 20283 } 20284 if (test_allone_ire != NULL && !allone_bcast_ire_created && 20285 backup_ipif_allones) { 20286 irep = ire_create_bcast(backup_ipif_allones, 20287 INADDR_BROADCAST, irep); 20288 allone_bcast_ire_created = B_TRUE; 20289 } 20290 20291 /* 20292 * If we can't create all of them, don't add any of them. 20293 * Code in ip_wput_ire and ire_to_ill assumes that we 20294 * always have a non-loopback copy and loopback copy 20295 * for a given address. 20296 */ 20297 for (irep1 = irep; irep1 > ire_array; ) { 20298 irep1--; 20299 if (*irep1 == NULL) { 20300 ip0dbg(("ipif_check_bcast_ires: can't create " 20301 "IRE_BROADCAST, memory allocation failure\n")); 20302 while (irep > ire_array) { 20303 irep--; 20304 if (*irep != NULL) 20305 ire_delete(*irep); 20306 } 20307 goto bad; 20308 } 20309 } 20310 for (irep1 = irep; irep1 > ire_array; ) { 20311 int error; 20312 20313 irep1--; 20314 error = ire_add(irep1, NULL, NULL, NULL); 20315 if (error == 0) { 20316 ire_refrele(*irep1); /* Held in ire_add */ 20317 } 20318 } 20319 bad: 20320 if (test_allzero_ire != NULL) 20321 ire_refrele(test_allzero_ire); 20322 if (test_allone_ire != NULL) 20323 ire_refrele(test_allone_ire); 20324 if (test_net_ire != NULL) 20325 ire_refrele(test_net_ire); 20326 if (test_subnet_ire != NULL) 20327 ire_refrele(test_subnet_ire); 20328 } 20329 20330 /* 20331 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 20332 * from lifr_flags and the name from lifr_name. 20333 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 20334 * since ipif_lookup_on_name uses the _isv6 flags when matching. 20335 * Returns EINPROGRESS when mp has been consumed by queueing it on 20336 * ill_pending_mp and the ioctl will complete in ip_rput. 20337 */ 20338 /* ARGSUSED */ 20339 int 20340 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20341 ip_ioctl_cmd_t *ipip, void *if_req) 20342 { 20343 int err; 20344 ill_t *ill; 20345 struct lifreq *lifr = (struct lifreq *)if_req; 20346 20347 ASSERT(ipif != NULL); 20348 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 20349 ASSERT(q->q_next != NULL); 20350 20351 ill = (ill_t *)q->q_ptr; 20352 /* 20353 * If we are not writer on 'q' then this interface exists already 20354 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 20355 * So return EALREADY 20356 */ 20357 if (ill != ipif->ipif_ill) 20358 return (EALREADY); 20359 20360 if (ill->ill_name[0] != '\0') 20361 return (EALREADY); 20362 20363 /* 20364 * Set all the flags. Allows all kinds of override. Provide some 20365 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 20366 * unless there is either multicast/broadcast support in the driver 20367 * or it is a pt-pt link. 20368 */ 20369 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 20370 /* Meaningless to IP thus don't allow them to be set. */ 20371 ip1dbg(("ip_setname: EINVAL 1\n")); 20372 return (EINVAL); 20373 } 20374 /* 20375 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 20376 * ill_bcast_addr_length info. 20377 */ 20378 if (!ill->ill_needs_attach && 20379 ((lifr->lifr_flags & IFF_MULTICAST) && 20380 !(lifr->lifr_flags & IFF_POINTOPOINT) && 20381 ill->ill_bcast_addr_length == 0)) { 20382 /* Link not broadcast/pt-pt capable i.e. no multicast */ 20383 ip1dbg(("ip_setname: EINVAL 2\n")); 20384 return (EINVAL); 20385 } 20386 if ((lifr->lifr_flags & IFF_BROADCAST) && 20387 ((lifr->lifr_flags & IFF_IPV6) || 20388 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 20389 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 20390 ip1dbg(("ip_setname: EINVAL 3\n")); 20391 return (EINVAL); 20392 } 20393 if (lifr->lifr_flags & IFF_UP) { 20394 /* Can only be set with SIOCSLIFFLAGS */ 20395 ip1dbg(("ip_setname: EINVAL 4\n")); 20396 return (EINVAL); 20397 } 20398 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 20399 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 20400 ip1dbg(("ip_setname: EINVAL 5\n")); 20401 return (EINVAL); 20402 } 20403 /* 20404 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 20405 */ 20406 if ((lifr->lifr_flags & IFF_XRESOLV) && 20407 !(lifr->lifr_flags & IFF_IPV6) && 20408 !(ipif->ipif_isv6)) { 20409 ip1dbg(("ip_setname: EINVAL 6\n")); 20410 return (EINVAL); 20411 } 20412 20413 /* 20414 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 20415 * we have all the flags here. So, we assign rather than we OR. 20416 * We can't OR the flags here because we don't want to set 20417 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 20418 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 20419 * on lifr_flags value here. 20420 */ 20421 /* 20422 * This ill has not been inserted into the global list. 20423 * So we are still single threaded and don't need any lock 20424 */ 20425 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS; 20426 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 20427 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 20428 20429 /* We started off as V4. */ 20430 if (ill->ill_flags & ILLF_IPV6) { 20431 ill->ill_phyint->phyint_illv6 = ill; 20432 ill->ill_phyint->phyint_illv4 = NULL; 20433 } 20434 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 20435 return (err); 20436 } 20437 20438 /* ARGSUSED */ 20439 int 20440 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20441 ip_ioctl_cmd_t *ipip, void *if_req) 20442 { 20443 /* 20444 * ill_phyint_reinit merged the v4 and v6 into a single 20445 * ipsq. Could also have become part of a ipmp group in the 20446 * process, and we might not have been able to complete the 20447 * slifname in ipif_set_values, if we could not become 20448 * exclusive. If so restart it here 20449 */ 20450 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20451 } 20452 20453 /* 20454 * Return a pointer to the ipif which matches the index, IP version type and 20455 * zoneid. 20456 */ 20457 ipif_t * 20458 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 20459 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 20460 { 20461 ill_t *ill; 20462 ipsq_t *ipsq; 20463 phyint_t *phyi; 20464 ipif_t *ipif; 20465 20466 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 20467 (q != NULL && mp != NULL && func != NULL && err != NULL)); 20468 20469 if (err != NULL) 20470 *err = 0; 20471 20472 /* 20473 * Indexes are stored in the phyint - a common structure 20474 * to both IPv4 and IPv6. 20475 */ 20476 20477 rw_enter(&ill_g_lock, RW_READER); 20478 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 20479 (void *) &index, NULL); 20480 if (phyi != NULL) { 20481 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 20482 if (ill == NULL) { 20483 rw_exit(&ill_g_lock); 20484 if (err != NULL) 20485 *err = ENXIO; 20486 return (NULL); 20487 } 20488 GRAB_CONN_LOCK(q); 20489 mutex_enter(&ill->ill_lock); 20490 if (ILL_CAN_LOOKUP(ill)) { 20491 for (ipif = ill->ill_ipif; ipif != NULL; 20492 ipif = ipif->ipif_next) { 20493 if (IPIF_CAN_LOOKUP(ipif) && 20494 (zoneid == ALL_ZONES || 20495 zoneid == ipif->ipif_zoneid)) { 20496 ipif_refhold_locked(ipif); 20497 mutex_exit(&ill->ill_lock); 20498 RELEASE_CONN_LOCK(q); 20499 rw_exit(&ill_g_lock); 20500 return (ipif); 20501 } 20502 } 20503 } else if (ILL_CAN_WAIT(ill, q)) { 20504 ipsq = ill->ill_phyint->phyint_ipsq; 20505 mutex_enter(&ipsq->ipsq_lock); 20506 rw_exit(&ill_g_lock); 20507 mutex_exit(&ill->ill_lock); 20508 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 20509 mutex_exit(&ipsq->ipsq_lock); 20510 RELEASE_CONN_LOCK(q); 20511 *err = EINPROGRESS; 20512 return (NULL); 20513 } 20514 mutex_exit(&ill->ill_lock); 20515 RELEASE_CONN_LOCK(q); 20516 } 20517 rw_exit(&ill_g_lock); 20518 if (err != NULL) 20519 *err = ENXIO; 20520 return (NULL); 20521 } 20522 20523 typedef struct conn_change_s { 20524 uint_t cc_old_ifindex; 20525 uint_t cc_new_ifindex; 20526 } conn_change_t; 20527 20528 /* 20529 * ipcl_walk function for changing interface index. 20530 */ 20531 static void 20532 conn_change_ifindex(conn_t *connp, caddr_t arg) 20533 { 20534 conn_change_t *connc; 20535 uint_t old_ifindex; 20536 uint_t new_ifindex; 20537 int i; 20538 ilg_t *ilg; 20539 20540 connc = (conn_change_t *)arg; 20541 old_ifindex = connc->cc_old_ifindex; 20542 new_ifindex = connc->cc_new_ifindex; 20543 20544 if (connp->conn_orig_bound_ifindex == old_ifindex) 20545 connp->conn_orig_bound_ifindex = new_ifindex; 20546 20547 if (connp->conn_orig_multicast_ifindex == old_ifindex) 20548 connp->conn_orig_multicast_ifindex = new_ifindex; 20549 20550 if (connp->conn_orig_xmit_ifindex == old_ifindex) 20551 connp->conn_orig_xmit_ifindex = new_ifindex; 20552 20553 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 20554 ilg = &connp->conn_ilg[i]; 20555 if (ilg->ilg_orig_ifindex == old_ifindex) 20556 ilg->ilg_orig_ifindex = new_ifindex; 20557 } 20558 } 20559 20560 /* 20561 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 20562 * to new_index if it matches the old_index. 20563 * 20564 * Failovers typically happen within a group of ills. But somebody 20565 * can remove an ill from the group after a failover happened. If 20566 * we are setting the ifindex after this, we potentially need to 20567 * look at all the ills rather than just the ones in the group. 20568 * We cut down the work by looking at matching ill_net_types 20569 * and ill_types as we could not possibly grouped them together. 20570 */ 20571 static void 20572 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 20573 { 20574 ill_t *ill; 20575 ipif_t *ipif; 20576 uint_t old_ifindex; 20577 uint_t new_ifindex; 20578 ilm_t *ilm; 20579 ill_walk_context_t ctx; 20580 20581 old_ifindex = connc->cc_old_ifindex; 20582 new_ifindex = connc->cc_new_ifindex; 20583 20584 rw_enter(&ill_g_lock, RW_READER); 20585 ill = ILL_START_WALK_ALL(&ctx); 20586 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20587 if ((ill_orig->ill_net_type != ill->ill_net_type) || 20588 (ill_orig->ill_type != ill->ill_type)) { 20589 continue; 20590 } 20591 for (ipif = ill->ill_ipif; ipif != NULL; 20592 ipif = ipif->ipif_next) { 20593 if (ipif->ipif_orig_ifindex == old_ifindex) 20594 ipif->ipif_orig_ifindex = new_ifindex; 20595 } 20596 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 20597 if (ilm->ilm_orig_ifindex == old_ifindex) 20598 ilm->ilm_orig_ifindex = new_ifindex; 20599 } 20600 } 20601 rw_exit(&ill_g_lock); 20602 } 20603 20604 /* 20605 * We first need to ensure that the new index is unique, and 20606 * then carry the change across both v4 and v6 ill representation 20607 * of the physical interface. 20608 */ 20609 /* ARGSUSED */ 20610 int 20611 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20612 ip_ioctl_cmd_t *ipip, void *ifreq) 20613 { 20614 ill_t *ill; 20615 ill_t *ill_other; 20616 phyint_t *phyi; 20617 int old_index; 20618 conn_change_t connc; 20619 struct ifreq *ifr = (struct ifreq *)ifreq; 20620 struct lifreq *lifr = (struct lifreq *)ifreq; 20621 uint_t index; 20622 ill_t *ill_v4; 20623 ill_t *ill_v6; 20624 20625 if (ipip->ipi_cmd_type == IF_CMD) 20626 index = ifr->ifr_index; 20627 else 20628 index = lifr->lifr_index; 20629 20630 /* 20631 * Only allow on physical interface. Also, index zero is illegal. 20632 * 20633 * Need to check for PHYI_FAILED and PHYI_INACTIVE 20634 * 20635 * 1) If PHYI_FAILED is set, a failover could have happened which 20636 * implies a possible failback might have to happen. As failback 20637 * depends on the old index, we should fail setting the index. 20638 * 20639 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 20640 * any addresses or multicast memberships are failed over to 20641 * a non-STANDBY interface. As failback depends on the old 20642 * index, we should fail setting the index for this case also. 20643 * 20644 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 20645 * Be consistent with PHYI_FAILED and fail the ioctl. 20646 */ 20647 ill = ipif->ipif_ill; 20648 phyi = ill->ill_phyint; 20649 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 20650 ipif->ipif_id != 0 || index == 0) { 20651 return (EINVAL); 20652 } 20653 old_index = phyi->phyint_ifindex; 20654 20655 /* If the index is not changing, no work to do */ 20656 if (old_index == index) 20657 return (0); 20658 20659 /* 20660 * Use ill_lookup_on_ifindex to determine if the 20661 * new index is unused and if so allow the change. 20662 */ 20663 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 20664 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 20665 if (ill_v6 != NULL || ill_v4 != NULL) { 20666 if (ill_v4 != NULL) 20667 ill_refrele(ill_v4); 20668 if (ill_v6 != NULL) 20669 ill_refrele(ill_v6); 20670 return (EBUSY); 20671 } 20672 20673 /* 20674 * The new index is unused. Set it in the phyint. 20675 * Locate the other ill so that we can send a routing 20676 * sockets message. 20677 */ 20678 if (ill->ill_isv6) { 20679 ill_other = phyi->phyint_illv4; 20680 } else { 20681 ill_other = phyi->phyint_illv6; 20682 } 20683 20684 phyi->phyint_ifindex = index; 20685 20686 connc.cc_old_ifindex = old_index; 20687 connc.cc_new_ifindex = index; 20688 ip_change_ifindex(ill, &connc); 20689 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 20690 20691 /* Send the routing sockets message */ 20692 ip_rts_ifmsg(ipif); 20693 if (ill_other != NULL) 20694 ip_rts_ifmsg(ill_other->ill_ipif); 20695 20696 return (0); 20697 } 20698 20699 /* ARGSUSED */ 20700 int 20701 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20702 ip_ioctl_cmd_t *ipip, void *ifreq) 20703 { 20704 struct ifreq *ifr = (struct ifreq *)ifreq; 20705 struct lifreq *lifr = (struct lifreq *)ifreq; 20706 20707 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 20708 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20709 /* Get the interface index */ 20710 if (ipip->ipi_cmd_type == IF_CMD) { 20711 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20712 } else { 20713 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20714 } 20715 return (0); 20716 } 20717 20718 /* ARGSUSED */ 20719 int 20720 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20721 ip_ioctl_cmd_t *ipip, void *ifreq) 20722 { 20723 struct lifreq *lifr = (struct lifreq *)ifreq; 20724 20725 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 20726 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20727 /* Get the interface zone */ 20728 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20729 lifr->lifr_zoneid = ipif->ipif_zoneid; 20730 return (0); 20731 } 20732 20733 /* 20734 * Set the zoneid of an interface. 20735 */ 20736 /* ARGSUSED */ 20737 int 20738 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20739 ip_ioctl_cmd_t *ipip, void *ifreq) 20740 { 20741 struct lifreq *lifr = (struct lifreq *)ifreq; 20742 int err = 0; 20743 boolean_t need_up = B_FALSE; 20744 zone_t *zptr; 20745 zone_status_t status; 20746 zoneid_t zoneid; 20747 20748 /* cannot assign instance zero to a non-global zone */ 20749 if (ipif->ipif_id == 0) 20750 return (ENOTSUP); 20751 20752 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20753 zoneid = lifr->lifr_zoneid; 20754 20755 /* 20756 * Cannot assign to a zone that doesn't exist or is shutting down. In 20757 * the event of a race with the zone shutdown processing, since IP 20758 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 20759 * interface will be cleaned up even if the zone is shut down 20760 * immediately after the status check. If the interface can't be brought 20761 * down right away, and the zone is shut down before the restart 20762 * function is called, we resolve the possible races by rechecking the 20763 * zone status in the restart function. 20764 */ 20765 if ((zptr = zone_find_by_id(zoneid)) == NULL) 20766 return (EINVAL); 20767 status = zone_status_get(zptr); 20768 zone_rele(zptr); 20769 20770 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 20771 return (EINVAL); 20772 20773 if (ipif->ipif_flags & IPIF_UP) { 20774 /* 20775 * If the interface is already marked up, 20776 * we call ipif_down which will take care 20777 * of ditching any IREs that have been set 20778 * up based on the old interface address. 20779 */ 20780 err = ipif_logical_down(ipif, q, mp); 20781 if (err == EINPROGRESS) 20782 return (err); 20783 ipif_down_tail(ipif); 20784 need_up = B_TRUE; 20785 } 20786 20787 err = ip_sioctl_slifzone_tail(ipif, zoneid, q, mp, need_up); 20788 return (err); 20789 } 20790 20791 static int 20792 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 20793 queue_t *q, mblk_t *mp, boolean_t need_up) 20794 { 20795 int err = 0; 20796 20797 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 20798 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20799 20800 /* Set the new zone id. */ 20801 ipif->ipif_zoneid = zoneid; 20802 20803 /* Update sctp list */ 20804 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 20805 20806 if (need_up) { 20807 /* 20808 * Now bring the interface back up. If this 20809 * is the only IPIF for the ILL, ipif_up 20810 * will have to re-bind to the device, so 20811 * we may get back EINPROGRESS, in which 20812 * case, this IOCTL will get completed in 20813 * ip_rput_dlpi when we see the DL_BIND_ACK. 20814 */ 20815 err = ipif_up(ipif, q, mp); 20816 } 20817 return (err); 20818 } 20819 20820 /* ARGSUSED */ 20821 int 20822 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20823 ip_ioctl_cmd_t *ipip, void *if_req) 20824 { 20825 struct lifreq *lifr = (struct lifreq *)if_req; 20826 zoneid_t zoneid; 20827 zone_t *zptr; 20828 zone_status_t status; 20829 20830 ASSERT(ipif->ipif_id != 0); 20831 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20832 zoneid = lifr->lifr_zoneid; 20833 20834 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 20835 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20836 20837 /* 20838 * We recheck the zone status to resolve the following race condition: 20839 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 20840 * 2) hme0:1 is up and can't be brought down right away; 20841 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 20842 * 3) zone "myzone" is halted; the zone status switches to 20843 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 20844 * the interfaces to remove - hme0:1 is not returned because it's not 20845 * yet in "myzone", so it won't be removed; 20846 * 4) the restart function for SIOCSLIFZONE is called; without the 20847 * status check here, we would have hme0:1 in "myzone" after it's been 20848 * destroyed. 20849 * Note that if the status check fails, we need to bring the interface 20850 * back to its state prior to ip_sioctl_slifzone(), hence the call to 20851 * ipif_up_done[_v6](). 20852 */ 20853 status = ZONE_IS_UNINITIALIZED; 20854 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 20855 status = zone_status_get(zptr); 20856 zone_rele(zptr); 20857 } 20858 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 20859 if (ipif->ipif_isv6) { 20860 (void) ipif_up_done_v6(ipif); 20861 } else { 20862 (void) ipif_up_done(ipif); 20863 } 20864 return (EINVAL); 20865 } 20866 20867 ipif_down_tail(ipif); 20868 20869 return (ip_sioctl_slifzone_tail(ipif, zoneid, q, mp, B_TRUE)); 20870 } 20871 20872 /* ARGSUSED */ 20873 int 20874 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20875 ip_ioctl_cmd_t *ipip, void *ifreq) 20876 { 20877 struct lifreq *lifr = ifreq; 20878 20879 ASSERT(q->q_next == NULL); 20880 ASSERT(CONN_Q(q)); 20881 20882 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 20883 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20884 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 20885 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 20886 20887 return (0); 20888 } 20889 20890 20891 /* Find the previous ILL in this usesrc group */ 20892 static ill_t * 20893 ill_prev_usesrc(ill_t *uill) 20894 { 20895 ill_t *ill; 20896 20897 for (ill = uill->ill_usesrc_grp_next; 20898 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 20899 ill = ill->ill_usesrc_grp_next) 20900 /* do nothing */; 20901 return (ill); 20902 } 20903 20904 /* 20905 * Release all members of the usesrc group. This routine is called 20906 * from ill_delete when the interface being unplumbed is the 20907 * group head. 20908 */ 20909 static void 20910 ill_disband_usesrc_group(ill_t *uill) 20911 { 20912 ill_t *next_ill, *tmp_ill; 20913 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 20914 next_ill = uill->ill_usesrc_grp_next; 20915 20916 do { 20917 ASSERT(next_ill != NULL); 20918 tmp_ill = next_ill->ill_usesrc_grp_next; 20919 ASSERT(tmp_ill != NULL); 20920 next_ill->ill_usesrc_grp_next = NULL; 20921 next_ill->ill_usesrc_ifindex = 0; 20922 next_ill = tmp_ill; 20923 } while (next_ill->ill_usesrc_ifindex != 0); 20924 uill->ill_usesrc_grp_next = NULL; 20925 } 20926 20927 /* 20928 * Remove the client usesrc ILL from the list and relink to a new list 20929 */ 20930 int 20931 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 20932 { 20933 ill_t *ill, *tmp_ill; 20934 20935 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 20936 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 20937 20938 /* 20939 * Check if the usesrc client ILL passed in is not already 20940 * in use as a usesrc ILL i.e one whose source address is 20941 * in use OR a usesrc ILL is not already in use as a usesrc 20942 * client ILL 20943 */ 20944 if ((ucill->ill_usesrc_ifindex == 0) || 20945 (uill->ill_usesrc_ifindex != 0)) { 20946 return (-1); 20947 } 20948 20949 ill = ill_prev_usesrc(ucill); 20950 ASSERT(ill->ill_usesrc_grp_next != NULL); 20951 20952 /* Remove from the current list */ 20953 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 20954 /* Only two elements in the list */ 20955 ASSERT(ill->ill_usesrc_ifindex == 0); 20956 ill->ill_usesrc_grp_next = NULL; 20957 } else { 20958 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 20959 } 20960 20961 if (ifindex == 0) { 20962 ucill->ill_usesrc_ifindex = 0; 20963 ucill->ill_usesrc_grp_next = NULL; 20964 return (0); 20965 } 20966 20967 ucill->ill_usesrc_ifindex = ifindex; 20968 tmp_ill = uill->ill_usesrc_grp_next; 20969 uill->ill_usesrc_grp_next = ucill; 20970 ucill->ill_usesrc_grp_next = 20971 (tmp_ill != NULL) ? tmp_ill : uill; 20972 return (0); 20973 } 20974 20975 /* 20976 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 20977 * ip.c for locking details. 20978 */ 20979 /* ARGSUSED */ 20980 int 20981 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20982 ip_ioctl_cmd_t *ipip, void *ifreq) 20983 { 20984 struct lifreq *lifr = (struct lifreq *)ifreq; 20985 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 20986 ill_flag_changed = B_FALSE; 20987 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 20988 int err = 0, ret; 20989 uint_t ifindex; 20990 phyint_t *us_phyint, *us_cli_phyint; 20991 ipsq_t *ipsq = NULL; 20992 20993 ASSERT(IAM_WRITER_IPIF(ipif)); 20994 ASSERT(q->q_next == NULL); 20995 ASSERT(CONN_Q(q)); 20996 20997 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 20998 us_cli_phyint = usesrc_cli_ill->ill_phyint; 20999 21000 ASSERT(us_cli_phyint != NULL); 21001 21002 /* 21003 * If the client ILL is being used for IPMP, abort. 21004 * Note, this can be done before ipsq_try_enter since we are already 21005 * exclusive on this ILL 21006 */ 21007 if ((us_cli_phyint->phyint_groupname != NULL) || 21008 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 21009 return (EINVAL); 21010 } 21011 21012 ifindex = lifr->lifr_index; 21013 if (ifindex == 0) { 21014 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 21015 /* non usesrc group interface, nothing to reset */ 21016 return (0); 21017 } 21018 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 21019 /* valid reset request */ 21020 reset_flg = B_TRUE; 21021 } 21022 21023 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 21024 ip_process_ioctl, &err); 21025 21026 if (usesrc_ill == NULL) { 21027 return (err); 21028 } 21029 21030 /* 21031 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 21032 * group nor can either of the interfaces be used for standy. So 21033 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 21034 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 21035 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 21036 * We are already exlusive on this ipsq i.e ipsq corresponding to 21037 * the usesrc_cli_ill 21038 */ 21039 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 21040 NEW_OP, B_TRUE); 21041 if (ipsq == NULL) { 21042 err = EINPROGRESS; 21043 /* Operation enqueued on the ipsq of the usesrc ILL */ 21044 goto done; 21045 } 21046 21047 /* Check if the usesrc_ill is used for IPMP */ 21048 us_phyint = usesrc_ill->ill_phyint; 21049 if ((us_phyint->phyint_groupname != NULL) || 21050 (us_phyint->phyint_flags & PHYI_STANDBY)) { 21051 err = EINVAL; 21052 goto done; 21053 } 21054 21055 /* 21056 * If the client is already in use as a usesrc_ill or a usesrc_ill is 21057 * already a client then return EINVAL 21058 */ 21059 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 21060 err = EINVAL; 21061 goto done; 21062 } 21063 21064 /* 21065 * If the ill_usesrc_ifindex field is already set to what it needs to 21066 * be then this is a duplicate operation. 21067 */ 21068 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 21069 err = 0; 21070 goto done; 21071 } 21072 21073 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 21074 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 21075 usesrc_ill->ill_isv6)); 21076 21077 /* 21078 * The next step ensures that no new ires will be created referencing 21079 * the client ill, until the ILL_CHANGING flag is cleared. Then 21080 * we go through an ire walk deleting all ire caches that reference 21081 * the client ill. New ires referencing the client ill that are added 21082 * to the ire table before the ILL_CHANGING flag is set, will be 21083 * cleaned up by the ire walk below. Attempt to add new ires referencing 21084 * the client ill while the ILL_CHANGING flag is set will be failed 21085 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 21086 * checks (under the ill_g_usesrc_lock) that the ire being added 21087 * is not stale, i.e the ire_stq and ire_ipif are consistent and 21088 * belong to the same usesrc group. 21089 */ 21090 mutex_enter(&usesrc_cli_ill->ill_lock); 21091 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 21092 mutex_exit(&usesrc_cli_ill->ill_lock); 21093 ill_flag_changed = B_TRUE; 21094 21095 if (ipif->ipif_isv6) 21096 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21097 ALL_ZONES); 21098 else 21099 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21100 ALL_ZONES); 21101 21102 /* 21103 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 21104 * and the ill_usesrc_ifindex fields 21105 */ 21106 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 21107 21108 if (reset_flg) { 21109 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 21110 if (ret != 0) { 21111 err = EINVAL; 21112 } 21113 rw_exit(&ill_g_usesrc_lock); 21114 goto done; 21115 } 21116 21117 /* 21118 * Four possibilities to consider: 21119 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 21120 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 21121 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 21122 * 4. Both are part of their respective usesrc groups 21123 */ 21124 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 21125 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21126 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 21127 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21128 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21129 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 21130 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 21131 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21132 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21133 /* Insert at head of list */ 21134 usesrc_cli_ill->ill_usesrc_grp_next = 21135 usesrc_ill->ill_usesrc_grp_next; 21136 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21137 } else { 21138 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 21139 ifindex); 21140 if (ret != 0) 21141 err = EINVAL; 21142 } 21143 rw_exit(&ill_g_usesrc_lock); 21144 21145 done: 21146 if (ill_flag_changed) { 21147 mutex_enter(&usesrc_cli_ill->ill_lock); 21148 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 21149 mutex_exit(&usesrc_cli_ill->ill_lock); 21150 } 21151 if (ipsq != NULL) 21152 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21153 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 21154 ill_refrele(usesrc_ill); 21155 return (err); 21156 } 21157 21158 /* 21159 * comparison function used by avl. 21160 */ 21161 static int 21162 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 21163 { 21164 21165 uint_t index; 21166 21167 ASSERT(phyip != NULL && index_ptr != NULL); 21168 21169 index = *((uint_t *)index_ptr); 21170 /* 21171 * let the phyint with the lowest index be on top. 21172 */ 21173 if (((phyint_t *)phyip)->phyint_ifindex < index) 21174 return (1); 21175 if (((phyint_t *)phyip)->phyint_ifindex > index) 21176 return (-1); 21177 return (0); 21178 } 21179 21180 /* 21181 * comparison function used by avl. 21182 */ 21183 static int 21184 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 21185 { 21186 ill_t *ill; 21187 int res = 0; 21188 21189 ASSERT(phyip != NULL && name_ptr != NULL); 21190 21191 if (((phyint_t *)phyip)->phyint_illv4) 21192 ill = ((phyint_t *)phyip)->phyint_illv4; 21193 else 21194 ill = ((phyint_t *)phyip)->phyint_illv6; 21195 ASSERT(ill != NULL); 21196 21197 res = strcmp(ill->ill_name, (char *)name_ptr); 21198 if (res > 0) 21199 return (1); 21200 else if (res < 0) 21201 return (-1); 21202 return (0); 21203 } 21204 /* 21205 * This function is called from ill_delete when the ill is being 21206 * unplumbed. We remove the reference from the phyint and we also 21207 * free the phyint when there are no more references to it. 21208 */ 21209 static void 21210 ill_phyint_free(ill_t *ill) 21211 { 21212 phyint_t *phyi; 21213 phyint_t *next_phyint; 21214 ipsq_t *cur_ipsq; 21215 21216 ASSERT(ill->ill_phyint != NULL); 21217 21218 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21219 phyi = ill->ill_phyint; 21220 ill->ill_phyint = NULL; 21221 /* 21222 * ill_init allocates a phyint always to store the copy 21223 * of flags relevant to phyint. At that point in time, we could 21224 * not assign the name and hence phyint_illv4/v6 could not be 21225 * initialized. Later in ipif_set_values, we assign the name to 21226 * the ill, at which point in time we assign phyint_illv4/v6. 21227 * Thus we don't rely on phyint_illv6 to be initialized always. 21228 */ 21229 if (ill->ill_flags & ILLF_IPV6) { 21230 phyi->phyint_illv6 = NULL; 21231 } else { 21232 phyi->phyint_illv4 = NULL; 21233 } 21234 /* 21235 * ipif_down removes it from the group when the last ipif goes 21236 * down. 21237 */ 21238 ASSERT(ill->ill_group == NULL); 21239 21240 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 21241 return; 21242 21243 /* 21244 * Make sure this phyint was put in the list. 21245 */ 21246 if (phyi->phyint_ifindex > 0) { 21247 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 21248 phyi); 21249 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 21250 phyi); 21251 } 21252 /* 21253 * remove phyint from the ipsq list. 21254 */ 21255 cur_ipsq = phyi->phyint_ipsq; 21256 if (phyi == cur_ipsq->ipsq_phyint_list) { 21257 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 21258 } else { 21259 next_phyint = cur_ipsq->ipsq_phyint_list; 21260 while (next_phyint != NULL) { 21261 if (next_phyint->phyint_ipsq_next == phyi) { 21262 next_phyint->phyint_ipsq_next = 21263 phyi->phyint_ipsq_next; 21264 break; 21265 } 21266 next_phyint = next_phyint->phyint_ipsq_next; 21267 } 21268 ASSERT(next_phyint != NULL); 21269 } 21270 IPSQ_DEC_REF(cur_ipsq); 21271 21272 if (phyi->phyint_groupname_len != 0) { 21273 ASSERT(phyi->phyint_groupname != NULL); 21274 mi_free(phyi->phyint_groupname); 21275 } 21276 mi_free(phyi); 21277 } 21278 21279 /* 21280 * Attach the ill to the phyint structure which can be shared by both 21281 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 21282 * function is called from ipif_set_values and ill_lookup_on_name (for 21283 * loopback) where we know the name of the ill. We lookup the ill and if 21284 * there is one present already with the name use that phyint. Otherwise 21285 * reuse the one allocated by ill_init. 21286 */ 21287 static void 21288 ill_phyint_reinit(ill_t *ill) 21289 { 21290 boolean_t isv6 = ill->ill_isv6; 21291 phyint_t *phyi_old; 21292 phyint_t *phyi; 21293 avl_index_t where = 0; 21294 ill_t *ill_other = NULL; 21295 ipsq_t *ipsq; 21296 21297 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21298 21299 phyi_old = ill->ill_phyint; 21300 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 21301 phyi_old->phyint_illv6 == NULL)); 21302 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 21303 phyi_old->phyint_illv4 == NULL)); 21304 ASSERT(phyi_old->phyint_ifindex == 0); 21305 21306 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 21307 ill->ill_name, &where); 21308 21309 /* 21310 * 1. We grabbed the ill_g_lock before inserting this ill into 21311 * the global list of ills. So no other thread could have located 21312 * this ill and hence the ipsq of this ill is guaranteed to be empty. 21313 * 2. Now locate the other protocol instance of this ill. 21314 * 3. Now grab both ill locks in the right order, and the phyint lock of 21315 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 21316 * of neither ill can change. 21317 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 21318 * other ill. 21319 * 5. Release all locks. 21320 */ 21321 21322 /* 21323 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 21324 * we are initializing IPv4. 21325 */ 21326 if (phyi != NULL) { 21327 ill_other = (isv6) ? phyi->phyint_illv4 : 21328 phyi->phyint_illv6; 21329 ASSERT(ill_other->ill_phyint != NULL); 21330 ASSERT((isv6 && !ill_other->ill_isv6) || 21331 (!isv6 && ill_other->ill_isv6)); 21332 GRAB_ILL_LOCKS(ill, ill_other); 21333 /* 21334 * We are potentially throwing away phyint_flags which 21335 * could be different from the one that we obtain from 21336 * ill_other->ill_phyint. But it is okay as we are assuming 21337 * that the state maintained within IP is correct. 21338 */ 21339 mutex_enter(&phyi->phyint_lock); 21340 if (isv6) { 21341 ASSERT(phyi->phyint_illv6 == NULL); 21342 phyi->phyint_illv6 = ill; 21343 } else { 21344 ASSERT(phyi->phyint_illv4 == NULL); 21345 phyi->phyint_illv4 = ill; 21346 } 21347 /* 21348 * This is a new ill, currently undergoing SLIFNAME 21349 * So we could not have joined an IPMP group until now. 21350 */ 21351 ASSERT(phyi_old->phyint_ipsq_next == NULL && 21352 phyi_old->phyint_groupname == NULL); 21353 21354 /* 21355 * This phyi_old is going away. Decref ipsq_refs and 21356 * assert it is zero. The ipsq itself will be freed in 21357 * ipsq_exit 21358 */ 21359 ipsq = phyi_old->phyint_ipsq; 21360 IPSQ_DEC_REF(ipsq); 21361 ASSERT(ipsq->ipsq_refs == 0); 21362 /* Get the singleton phyint out of the ipsq list */ 21363 ASSERT(phyi_old->phyint_ipsq_next == NULL); 21364 ipsq->ipsq_phyint_list = NULL; 21365 phyi_old->phyint_illv4 = NULL; 21366 phyi_old->phyint_illv6 = NULL; 21367 mi_free(phyi_old); 21368 } else { 21369 mutex_enter(&ill->ill_lock); 21370 /* 21371 * We don't need to acquire any lock, since 21372 * the ill is not yet visible globally and we 21373 * have not yet released the ill_g_lock. 21374 */ 21375 phyi = phyi_old; 21376 mutex_enter(&phyi->phyint_lock); 21377 /* XXX We need a recovery strategy here. */ 21378 if (!phyint_assign_ifindex(phyi)) 21379 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 21380 21381 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 21382 (void *)phyi, where); 21383 21384 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 21385 &phyi->phyint_ifindex, &where); 21386 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 21387 (void *)phyi, where); 21388 } 21389 21390 /* 21391 * Reassigning ill_phyint automatically reassigns the ipsq also. 21392 * pending mp is not affected because that is per ill basis. 21393 */ 21394 ill->ill_phyint = phyi; 21395 21396 /* 21397 * Keep the index on ipif_orig_index to be used by FAILOVER. 21398 * We do this here as when the first ipif was allocated, 21399 * ipif_allocate does not know the right interface index. 21400 */ 21401 21402 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 21403 /* 21404 * Now that the phyint's ifindex has been assigned, complete the 21405 * remaining 21406 */ 21407 if (ill->ill_isv6) { 21408 ill->ill_ip6_mib->ipv6IfIndex = 21409 ill->ill_phyint->phyint_ifindex; 21410 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 21411 ill->ill_phyint->phyint_ifindex; 21412 } 21413 21414 RELEASE_ILL_LOCKS(ill, ill_other); 21415 mutex_exit(&phyi->phyint_lock); 21416 } 21417 21418 /* 21419 * Notify any downstream modules of the name of this interface. 21420 * An M_IOCTL is used even though we don't expect a successful reply. 21421 * Any reply message from the driver (presumably an M_IOCNAK) will 21422 * eventually get discarded somewhere upstream. The message format is 21423 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 21424 * to IP. 21425 */ 21426 static void 21427 ip_ifname_notify(ill_t *ill, queue_t *q) 21428 { 21429 mblk_t *mp1, *mp2; 21430 struct iocblk *iocp; 21431 struct lifreq *lifr; 21432 21433 mp1 = mkiocb(SIOCSLIFNAME); 21434 if (mp1 == NULL) 21435 return; 21436 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 21437 if (mp2 == NULL) { 21438 freeb(mp1); 21439 return; 21440 } 21441 21442 mp1->b_cont = mp2; 21443 iocp = (struct iocblk *)mp1->b_rptr; 21444 iocp->ioc_count = sizeof (struct lifreq); 21445 21446 lifr = (struct lifreq *)mp2->b_rptr; 21447 mp2->b_wptr += sizeof (struct lifreq); 21448 bzero(lifr, sizeof (struct lifreq)); 21449 21450 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 21451 lifr->lifr_ppa = ill->ill_ppa; 21452 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 21453 21454 putnext(q, mp1); 21455 } 21456 21457 static boolean_t ip_trash_timer_started = B_FALSE; 21458 21459 static int 21460 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 21461 { 21462 int err; 21463 21464 /* Set the obsolete NDD per-interface forwarding name. */ 21465 err = ill_set_ndd_name(ill); 21466 if (err != 0) { 21467 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 21468 err); 21469 } 21470 21471 /* Tell downstream modules where they are. */ 21472 ip_ifname_notify(ill, q); 21473 21474 /* 21475 * ill_dl_phys returns EINPROGRESS in the usual case. 21476 * Error cases are ENOMEM ... 21477 */ 21478 err = ill_dl_phys(ill, ipif, mp, q); 21479 21480 /* 21481 * If there is no IRE expiration timer running, get one started. 21482 * igmp and mld timers will be triggered by the first multicast 21483 */ 21484 if (!ip_trash_timer_started) { 21485 /* 21486 * acquire the lock and check again. 21487 */ 21488 mutex_enter(&ip_trash_timer_lock); 21489 if (!ip_trash_timer_started) { 21490 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 21491 MSEC_TO_TICK(ip_timer_interval)); 21492 ip_trash_timer_started = B_TRUE; 21493 } 21494 mutex_exit(&ip_trash_timer_lock); 21495 } 21496 21497 if (ill->ill_isv6) { 21498 mutex_enter(&mld_slowtimeout_lock); 21499 if (mld_slowtimeout_id == 0) { 21500 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 21501 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21502 } 21503 mutex_exit(&mld_slowtimeout_lock); 21504 } else { 21505 mutex_enter(&igmp_slowtimeout_lock); 21506 if (igmp_slowtimeout_id == 0) { 21507 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 21508 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21509 } 21510 mutex_exit(&igmp_slowtimeout_lock); 21511 } 21512 21513 return (err); 21514 } 21515 21516 /* 21517 * Common routine for ppa and ifname setting. Should be called exclusive. 21518 * 21519 * Returns EINPROGRESS when mp has been consumed by queueing it on 21520 * ill_pending_mp and the ioctl will complete in ip_rput. 21521 * 21522 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 21523 * the new name and new ppa in lifr_name and lifr_ppa respectively. 21524 * For SLIFNAME, we pass these values back to the userland. 21525 */ 21526 static int 21527 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 21528 { 21529 ill_t *ill; 21530 ipif_t *ipif; 21531 ipsq_t *ipsq; 21532 char *ppa_ptr; 21533 char *old_ptr; 21534 char old_char; 21535 int error; 21536 21537 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 21538 ASSERT(q->q_next != NULL); 21539 ASSERT(interf_name != NULL); 21540 21541 ill = (ill_t *)q->q_ptr; 21542 21543 ASSERT(ill->ill_name[0] == '\0'); 21544 ASSERT(IAM_WRITER_ILL(ill)); 21545 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 21546 ASSERT(ill->ill_ppa == UINT_MAX); 21547 21548 /* The ppa is sent down by ifconfig or is chosen */ 21549 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 21550 return (EINVAL); 21551 } 21552 21553 /* 21554 * make sure ppa passed in is same as ppa in the name. 21555 * This check is not made when ppa == UINT_MAX in that case ppa 21556 * in the name could be anything. System will choose a ppa and 21557 * update new_ppa_ptr and inter_name to contain the choosen ppa. 21558 */ 21559 if (*new_ppa_ptr != UINT_MAX) { 21560 /* stoi changes the pointer */ 21561 old_ptr = ppa_ptr; 21562 /* 21563 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 21564 * (they don't have an externally visible ppa). We assign one 21565 * here so that we can manage the interface. Note that in 21566 * the past this value was always 0 for DLPI 1 drivers. 21567 */ 21568 if (*new_ppa_ptr == 0) 21569 *new_ppa_ptr = stoi(&old_ptr); 21570 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 21571 return (EINVAL); 21572 } 21573 /* 21574 * terminate string before ppa 21575 * save char at that location. 21576 */ 21577 old_char = ppa_ptr[0]; 21578 ppa_ptr[0] = '\0'; 21579 21580 ill->ill_ppa = *new_ppa_ptr; 21581 /* 21582 * Finish as much work now as possible before calling ill_glist_insert 21583 * which makes the ill globally visible and also merges it with the 21584 * other protocol instance of this phyint. The remaining work is 21585 * done after entering the ipsq which may happen sometime later. 21586 * ill_set_ndd_name occurs after the ill has been made globally visible. 21587 */ 21588 ipif = ill->ill_ipif; 21589 21590 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 21591 ipif_assign_seqid(ipif); 21592 21593 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 21594 ill->ill_flags |= ILLF_IPV4; 21595 21596 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 21597 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 21598 21599 if (ill->ill_flags & ILLF_IPV6) { 21600 21601 ill->ill_isv6 = B_TRUE; 21602 if (ill->ill_rq != NULL) { 21603 ill->ill_rq->q_qinfo = &rinit_ipv6; 21604 ill->ill_wq->q_qinfo = &winit_ipv6; 21605 } 21606 21607 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 21608 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 21609 ipif->ipif_v6src_addr = ipv6_all_zeros; 21610 ipif->ipif_v6subnet = ipv6_all_zeros; 21611 ipif->ipif_v6net_mask = ipv6_all_zeros; 21612 ipif->ipif_v6brd_addr = ipv6_all_zeros; 21613 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 21614 /* 21615 * point-to-point or Non-mulicast capable 21616 * interfaces won't do NUD unless explicitly 21617 * configured to do so. 21618 */ 21619 if (ipif->ipif_flags & IPIF_POINTOPOINT || 21620 !(ill->ill_flags & ILLF_MULTICAST)) { 21621 ill->ill_flags |= ILLF_NONUD; 21622 } 21623 /* Make sure IPv4 specific flag is not set on IPv6 if */ 21624 if (ill->ill_flags & ILLF_NOARP) { 21625 /* 21626 * Note: xresolv interfaces will eventually need 21627 * NOARP set here as well, but that will require 21628 * those external resolvers to have some 21629 * knowledge of that flag and act appropriately. 21630 * Not to be changed at present. 21631 */ 21632 ill->ill_flags &= ~ILLF_NOARP; 21633 } 21634 /* 21635 * Set the ILLF_ROUTER flag according to the global 21636 * IPv6 forwarding policy. 21637 */ 21638 if (ipv6_forward != 0) 21639 ill->ill_flags |= ILLF_ROUTER; 21640 } else if (ill->ill_flags & ILLF_IPV4) { 21641 ill->ill_isv6 = B_FALSE; 21642 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 21643 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 21644 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 21645 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 21646 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 21647 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 21648 /* 21649 * Set the ILLF_ROUTER flag according to the global 21650 * IPv4 forwarding policy. 21651 */ 21652 if (ip_g_forward != 0) 21653 ill->ill_flags |= ILLF_ROUTER; 21654 } 21655 21656 ASSERT(ill->ill_phyint != NULL); 21657 21658 /* 21659 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 21660 * be completed in ill_glist_insert -> ill_phyint_reinit 21661 */ 21662 if (ill->ill_isv6) { 21663 /* allocate v6 mib */ 21664 if (!ill_allocate_mibs(ill)) 21665 return (ENOMEM); 21666 } 21667 21668 /* 21669 * Pick a default sap until we get the DL_INFO_ACK back from 21670 * the driver. 21671 */ 21672 if (ill->ill_sap == 0) { 21673 if (ill->ill_isv6) 21674 ill->ill_sap = IP6_DL_SAP; 21675 else 21676 ill->ill_sap = IP_DL_SAP; 21677 } 21678 21679 ill->ill_ifname_pending = 1; 21680 ill->ill_ifname_pending_err = 0; 21681 21682 ill_refhold(ill); 21683 rw_enter(&ill_g_lock, RW_WRITER); 21684 if ((error = ill_glist_insert(ill, interf_name, 21685 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 21686 ill->ill_ppa = UINT_MAX; 21687 ill->ill_name[0] = '\0'; 21688 /* 21689 * undo null termination done above. 21690 */ 21691 ppa_ptr[0] = old_char; 21692 rw_exit(&ill_g_lock); 21693 ill_refrele(ill); 21694 return (error); 21695 } 21696 21697 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 21698 21699 /* 21700 * When we return the buffer pointed to by interf_name should contain 21701 * the same name as in ill_name. 21702 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 21703 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 21704 * so copy full name and update the ppa ptr. 21705 * When ppa passed in != UINT_MAX all values are correct just undo 21706 * null termination, this saves a bcopy. 21707 */ 21708 if (*new_ppa_ptr == UINT_MAX) { 21709 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 21710 *new_ppa_ptr = ill->ill_ppa; 21711 } else { 21712 /* 21713 * undo null termination done above. 21714 */ 21715 ppa_ptr[0] = old_char; 21716 } 21717 21718 /* Let SCTP know about this ILL */ 21719 sctp_update_ill(ill, SCTP_ILL_INSERT); 21720 21721 /* and also about the first ipif */ 21722 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 21723 21724 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 21725 B_TRUE); 21726 21727 rw_exit(&ill_g_lock); 21728 ill_refrele(ill); 21729 if (ipsq == NULL) 21730 return (EINPROGRESS); 21731 21732 /* 21733 * Need to set the ipsq_current_ipif now, if we have changed ipsq 21734 * due to the phyint merge in ill_phyint_reinit. 21735 */ 21736 ASSERT(ipsq->ipsq_current_ipif == NULL || 21737 ipsq->ipsq_current_ipif == ipif); 21738 ipsq->ipsq_current_ipif = ipif; 21739 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 21740 error = ipif_set_values_tail(ill, ipif, mp, q); 21741 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21742 if (error != 0 && error != EINPROGRESS) { 21743 /* 21744 * restore previous values 21745 */ 21746 ill->ill_isv6 = B_FALSE; 21747 } 21748 return (error); 21749 } 21750 21751 21752 extern void (*ip_cleanup_func)(void); 21753 21754 void 21755 ipif_init(void) 21756 { 21757 hrtime_t hrt; 21758 int i; 21759 21760 /* 21761 * Can't call drv_getparm here as it is too early in the boot. 21762 * As we use ipif_src_random just for picking a different 21763 * source address everytime, this need not be really random. 21764 */ 21765 hrt = gethrtime(); 21766 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 21767 21768 for (i = 0; i < MAX_G_HEADS; i++) { 21769 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 21770 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 21771 } 21772 21773 avl_create(&phyint_g_list.phyint_list_avl_by_index, 21774 ill_phyint_compare_index, 21775 sizeof (phyint_t), 21776 offsetof(struct phyint, phyint_avl_by_index)); 21777 avl_create(&phyint_g_list.phyint_list_avl_by_name, 21778 ill_phyint_compare_name, 21779 sizeof (phyint_t), 21780 offsetof(struct phyint, phyint_avl_by_name)); 21781 21782 ip_cleanup_func = ip_thread_exit; 21783 } 21784 21785 /* 21786 * This is called by ip_rt_add when src_addr value is other than zero. 21787 * src_addr signifies the source address of the incoming packet. For 21788 * reverse tunnel route we need to create a source addr based routing 21789 * table. This routine creates ip_mrtun_table if it's empty and then 21790 * it adds the route entry hashed by source address. It verifies that 21791 * the outgoing interface is always a non-resolver interface (tunnel). 21792 */ 21793 int 21794 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 21795 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 21796 { 21797 ire_t *ire; 21798 ire_t *save_ire; 21799 ipif_t *ipif; 21800 ill_t *in_ill = NULL; 21801 ill_t *out_ill; 21802 queue_t *stq; 21803 mblk_t *dlureq_mp; 21804 int error; 21805 21806 if (ire_arg != NULL) 21807 *ire_arg = NULL; 21808 ASSERT(in_src_addr != INADDR_ANY); 21809 21810 ipif = ipif_arg; 21811 if (ipif != NULL) { 21812 out_ill = ipif->ipif_ill; 21813 } else { 21814 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 21815 return (EINVAL); 21816 } 21817 21818 if (src_ipif == NULL) { 21819 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 21820 return (EINVAL); 21821 } 21822 in_ill = src_ipif->ipif_ill; 21823 21824 /* 21825 * Check for duplicates. We don't need to 21826 * match out_ill, because the uniqueness of 21827 * a route is only dependent on src_addr and 21828 * in_ill. 21829 */ 21830 ire = ire_mrtun_lookup(in_src_addr, in_ill); 21831 if (ire != NULL) { 21832 ire_refrele(ire); 21833 return (EEXIST); 21834 } 21835 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 21836 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 21837 ipif->ipif_net_type)); 21838 return (EINVAL); 21839 } 21840 21841 stq = ipif->ipif_wq; 21842 ASSERT(stq != NULL); 21843 21844 /* 21845 * The outgoing interface must be non-resolver 21846 * interface. 21847 */ 21848 dlureq_mp = ill_dlur_gen(NULL, 21849 out_ill->ill_phys_addr_length, out_ill->ill_sap, 21850 out_ill->ill_sap_length); 21851 21852 if (dlureq_mp == NULL) { 21853 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 21854 return (ENOMEM); 21855 } 21856 21857 /* Create the IRE. */ 21858 21859 ire = ire_create( 21860 NULL, /* Zero dst addr */ 21861 NULL, /* Zero mask */ 21862 NULL, /* Zero gateway addr */ 21863 NULL, /* Zero ipif_src addr */ 21864 (uint8_t *)&in_src_addr, /* in_src-addr */ 21865 &ipif->ipif_mtu, 21866 NULL, 21867 NULL, /* rfq */ 21868 stq, 21869 IRE_MIPRTUN, 21870 dlureq_mp, 21871 ipif, 21872 in_ill, 21873 0, 21874 0, 21875 0, 21876 flags, 21877 &ire_uinfo_null); 21878 21879 if (ire == NULL) 21880 return (ENOMEM); 21881 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 21882 ire->ire_type)); 21883 save_ire = ire; 21884 ASSERT(save_ire != NULL); 21885 error = ire_add_mrtun(&ire, q, mp, func); 21886 /* 21887 * If ire_add_mrtun() failed, the ire passed in was freed 21888 * so there is no need to do so here. 21889 */ 21890 if (error != 0) { 21891 return (error); 21892 } 21893 21894 /* Duplicate check */ 21895 if (ire != save_ire) { 21896 /* route already exists by now */ 21897 ire_refrele(ire); 21898 return (EEXIST); 21899 } 21900 21901 if (ire_arg != NULL) { 21902 /* 21903 * Store the ire that was just added. the caller 21904 * ip_rts_request responsible for doing ire_refrele() 21905 * on it. 21906 */ 21907 *ire_arg = ire; 21908 } else { 21909 ire_refrele(ire); /* held in ire_add_mrtun */ 21910 } 21911 21912 return (0); 21913 } 21914 21915 /* 21916 * It is called by ip_rt_delete() only when mipagent requests to delete 21917 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 21918 */ 21919 21920 int 21921 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 21922 { 21923 ire_t *ire = NULL; 21924 21925 if (in_src_addr == INADDR_ANY) 21926 return (EINVAL); 21927 if (src_ipif == NULL) 21928 return (EINVAL); 21929 21930 /* search if this route exists in the ip_mrtun_table */ 21931 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 21932 if (ire == NULL) { 21933 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 21934 return (ESRCH); 21935 } 21936 ire_delete(ire); 21937 ire_refrele(ire); 21938 return (0); 21939 } 21940 21941 /* 21942 * Lookup the ipif corresponding to the onlink destination address. For 21943 * point-to-point interfaces, it matches with remote endpoint destination 21944 * address. For point-to-multipoint interfaces it only tries to match the 21945 * destination with the interface's subnet address. The longest, most specific 21946 * match is found to take care of such rare network configurations like - 21947 * le0: 129.146.1.1/16 21948 * le1: 129.146.2.2/24 21949 * It is used only by SO_DONTROUTE at the moment. 21950 */ 21951 ipif_t * 21952 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 21953 { 21954 ipif_t *ipif, *best_ipif; 21955 ill_t *ill; 21956 ill_walk_context_t ctx; 21957 21958 ASSERT(zoneid != ALL_ZONES); 21959 best_ipif = NULL; 21960 21961 rw_enter(&ill_g_lock, RW_READER); 21962 ill = ILL_START_WALK_V4(&ctx); 21963 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21964 mutex_enter(&ill->ill_lock); 21965 for (ipif = ill->ill_ipif; ipif != NULL; 21966 ipif = ipif->ipif_next) { 21967 if (!IPIF_CAN_LOOKUP(ipif)) 21968 continue; 21969 if (ipif->ipif_zoneid != zoneid) 21970 continue; 21971 /* 21972 * Point-to-point case. Look for exact match with 21973 * destination address. 21974 */ 21975 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 21976 if (ipif->ipif_pp_dst_addr == addr) { 21977 ipif_refhold_locked(ipif); 21978 mutex_exit(&ill->ill_lock); 21979 rw_exit(&ill_g_lock); 21980 if (best_ipif != NULL) 21981 ipif_refrele(best_ipif); 21982 return (ipif); 21983 } 21984 } else if (ipif->ipif_subnet == (addr & 21985 ipif->ipif_net_mask)) { 21986 /* 21987 * Point-to-multipoint case. Looping through to 21988 * find the most specific match. If there are 21989 * multiple best match ipif's then prefer ipif's 21990 * that are UP. If there is only one best match 21991 * ipif and it is DOWN we must still return it. 21992 */ 21993 if ((best_ipif == NULL) || 21994 (ipif->ipif_net_mask > 21995 best_ipif->ipif_net_mask) || 21996 ((ipif->ipif_net_mask == 21997 best_ipif->ipif_net_mask) && 21998 ((ipif->ipif_flags & IPIF_UP) && 21999 (!(best_ipif->ipif_flags & IPIF_UP))))) { 22000 ipif_refhold_locked(ipif); 22001 mutex_exit(&ill->ill_lock); 22002 rw_exit(&ill_g_lock); 22003 if (best_ipif != NULL) 22004 ipif_refrele(best_ipif); 22005 best_ipif = ipif; 22006 rw_enter(&ill_g_lock, RW_READER); 22007 mutex_enter(&ill->ill_lock); 22008 } 22009 } 22010 } 22011 mutex_exit(&ill->ill_lock); 22012 } 22013 rw_exit(&ill_g_lock); 22014 return (best_ipif); 22015 } 22016 22017 22018 /* 22019 * Save enough information so that we can recreate the IRE if 22020 * the interface goes down and then up. 22021 */ 22022 static void 22023 ipif_save_ire(ipif_t *ipif, ire_t *ire) 22024 { 22025 mblk_t *save_mp; 22026 22027 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 22028 if (save_mp != NULL) { 22029 ifrt_t *ifrt; 22030 22031 save_mp->b_wptr += sizeof (ifrt_t); 22032 ifrt = (ifrt_t *)save_mp->b_rptr; 22033 bzero(ifrt, sizeof (ifrt_t)); 22034 ifrt->ifrt_type = ire->ire_type; 22035 ifrt->ifrt_addr = ire->ire_addr; 22036 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 22037 ifrt->ifrt_src_addr = ire->ire_src_addr; 22038 ifrt->ifrt_mask = ire->ire_mask; 22039 ifrt->ifrt_flags = ire->ire_flags; 22040 ifrt->ifrt_max_frag = ire->ire_max_frag; 22041 mutex_enter(&ipif->ipif_saved_ire_lock); 22042 save_mp->b_cont = ipif->ipif_saved_ire_mp; 22043 ipif->ipif_saved_ire_mp = save_mp; 22044 ipif->ipif_saved_ire_cnt++; 22045 mutex_exit(&ipif->ipif_saved_ire_lock); 22046 } 22047 } 22048 22049 22050 static void 22051 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 22052 { 22053 mblk_t **mpp; 22054 mblk_t *mp; 22055 ifrt_t *ifrt; 22056 22057 /* Remove from ipif_saved_ire_mp list if it is there */ 22058 mutex_enter(&ipif->ipif_saved_ire_lock); 22059 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 22060 mpp = &(*mpp)->b_cont) { 22061 /* 22062 * On a given ipif, the triple of address, gateway and 22063 * mask is unique for each saved IRE (in the case of 22064 * ordinary interface routes, the gateway address is 22065 * all-zeroes). 22066 */ 22067 mp = *mpp; 22068 ifrt = (ifrt_t *)mp->b_rptr; 22069 if (ifrt->ifrt_addr == ire->ire_addr && 22070 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 22071 ifrt->ifrt_mask == ire->ire_mask) { 22072 *mpp = mp->b_cont; 22073 ipif->ipif_saved_ire_cnt--; 22074 freeb(mp); 22075 break; 22076 } 22077 } 22078 mutex_exit(&ipif->ipif_saved_ire_lock); 22079 } 22080 22081 22082 /* 22083 * IP multirouting broadcast routes handling 22084 * Append CGTP broadcast IREs to regular ones created 22085 * at ifconfig time. 22086 */ 22087 static void 22088 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 22089 { 22090 ire_t *ire_prim; 22091 22092 ASSERT(ire != NULL); 22093 ASSERT(ire_dst != NULL); 22094 22095 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22096 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 22097 if (ire_prim != NULL) { 22098 /* 22099 * We are in the special case of broadcasts for 22100 * CGTP. We add an IRE_BROADCAST that holds 22101 * the RTF_MULTIRT flag, the destination 22102 * address of ire_dst and the low level 22103 * info of ire_prim. In other words, CGTP 22104 * broadcast is added to the redundant ipif. 22105 */ 22106 ipif_t *ipif_prim; 22107 ire_t *bcast_ire; 22108 22109 ipif_prim = ire_prim->ire_ipif; 22110 22111 ip2dbg(("ip_cgtp_filter_bcast_add: " 22112 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22113 (void *)ire_dst, (void *)ire_prim, 22114 (void *)ipif_prim)); 22115 22116 bcast_ire = ire_create( 22117 (uchar_t *)&ire->ire_addr, 22118 (uchar_t *)&ip_g_all_ones, 22119 (uchar_t *)&ire_dst->ire_src_addr, 22120 (uchar_t *)&ire->ire_gateway_addr, 22121 NULL, 22122 &ipif_prim->ipif_mtu, 22123 NULL, 22124 ipif_prim->ipif_rq, 22125 ipif_prim->ipif_wq, 22126 IRE_BROADCAST, 22127 ipif_prim->ipif_bcast_mp, 22128 ipif_prim, 22129 NULL, 22130 0, 22131 0, 22132 0, 22133 ire->ire_flags, 22134 &ire_uinfo_null); 22135 22136 if (bcast_ire != NULL) { 22137 22138 if (ire_add(&bcast_ire, NULL, NULL, NULL) == 0) { 22139 ip2dbg(("ip_cgtp_filter_bcast_add: " 22140 "added bcast_ire %p\n", 22141 (void *)bcast_ire)); 22142 22143 ipif_save_ire(bcast_ire->ire_ipif, 22144 bcast_ire); 22145 ire_refrele(bcast_ire); 22146 } 22147 } 22148 ire_refrele(ire_prim); 22149 } 22150 } 22151 22152 22153 /* 22154 * IP multirouting broadcast routes handling 22155 * Remove the broadcast ire 22156 */ 22157 static void 22158 ip_cgtp_bcast_delete(ire_t *ire) 22159 { 22160 ire_t *ire_dst; 22161 22162 ASSERT(ire != NULL); 22163 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 22164 NULL, NULL, MATCH_IRE_TYPE); 22165 if (ire_dst != NULL) { 22166 ire_t *ire_prim; 22167 22168 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22169 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 22170 if (ire_prim != NULL) { 22171 ipif_t *ipif_prim; 22172 ire_t *bcast_ire; 22173 22174 ipif_prim = ire_prim->ire_ipif; 22175 22176 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22177 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22178 (void *)ire_dst, (void *)ire_prim, 22179 (void *)ipif_prim)); 22180 22181 bcast_ire = ire_ctable_lookup(ire->ire_addr, 22182 ire->ire_gateway_addr, 22183 IRE_BROADCAST, 22184 ipif_prim, 22185 NULL, 22186 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 22187 MATCH_IRE_MASK); 22188 22189 if (bcast_ire != NULL) { 22190 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22191 "looked up bcast_ire %p\n", 22192 (void *)bcast_ire)); 22193 ipif_remove_ire(bcast_ire->ire_ipif, 22194 bcast_ire); 22195 ire_delete(bcast_ire); 22196 } 22197 ire_refrele(ire_prim); 22198 } 22199 ire_refrele(ire_dst); 22200 } 22201 } 22202 22203 /* 22204 * IPsec hardware acceleration capabilities related functions. 22205 */ 22206 22207 /* 22208 * Free a per-ill IPsec capabilities structure. 22209 */ 22210 static void 22211 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 22212 { 22213 if (capab->auth_hw_algs != NULL) 22214 kmem_free(capab->auth_hw_algs, capab->algs_size); 22215 if (capab->encr_hw_algs != NULL) 22216 kmem_free(capab->encr_hw_algs, capab->algs_size); 22217 if (capab->encr_algparm != NULL) 22218 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 22219 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 22220 } 22221 22222 /* 22223 * Allocate a new per-ill IPsec capabilities structure. This structure 22224 * is specific to an IPsec protocol (AH or ESP). It is implemented as 22225 * an array which specifies, for each algorithm, whether this algorithm 22226 * is supported by the ill or not. 22227 */ 22228 static ill_ipsec_capab_t * 22229 ill_ipsec_capab_alloc(void) 22230 { 22231 ill_ipsec_capab_t *capab; 22232 uint_t nelems; 22233 22234 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 22235 if (capab == NULL) 22236 return (NULL); 22237 22238 /* we need one bit per algorithm */ 22239 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 22240 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 22241 22242 /* allocate memory to store algorithm flags */ 22243 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22244 if (capab->encr_hw_algs == NULL) 22245 goto nomem; 22246 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22247 if (capab->auth_hw_algs == NULL) 22248 goto nomem; 22249 /* 22250 * Leave encr_algparm NULL for now since we won't need it half 22251 * the time 22252 */ 22253 return (capab); 22254 22255 nomem: 22256 ill_ipsec_capab_free(capab); 22257 return (NULL); 22258 } 22259 22260 /* 22261 * Resize capability array. Since we're exclusive, this is OK. 22262 */ 22263 static boolean_t 22264 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 22265 { 22266 ipsec_capab_algparm_t *nalp, *oalp; 22267 uint32_t olen, nlen; 22268 22269 oalp = capab->encr_algparm; 22270 olen = capab->encr_algparm_size; 22271 22272 if (oalp != NULL) { 22273 if (algid < capab->encr_algparm_end) 22274 return (B_TRUE); 22275 } 22276 22277 nlen = (algid + 1) * sizeof (*nalp); 22278 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 22279 if (nalp == NULL) 22280 return (B_FALSE); 22281 22282 if (oalp != NULL) { 22283 bcopy(oalp, nalp, olen); 22284 kmem_free(oalp, olen); 22285 } 22286 capab->encr_algparm = nalp; 22287 capab->encr_algparm_size = nlen; 22288 capab->encr_algparm_end = algid + 1; 22289 22290 return (B_TRUE); 22291 } 22292 22293 /* 22294 * Compare the capabilities of the specified ill with the protocol 22295 * and algorithms specified by the SA passed as argument. 22296 * If they match, returns B_TRUE, B_FALSE if they do not match. 22297 * 22298 * The ill can be passed as a pointer to it, or by specifying its index 22299 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 22300 * 22301 * Called by ipsec_out_is_accelerated() do decide whether an outbound 22302 * packet is eligible for hardware acceleration, and by 22303 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 22304 * to a particular ill. 22305 */ 22306 boolean_t 22307 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 22308 ipsa_t *sa) 22309 { 22310 boolean_t sa_isv6; 22311 uint_t algid; 22312 struct ill_ipsec_capab_s *cpp; 22313 boolean_t need_refrele = B_FALSE; 22314 22315 if (ill == NULL) { 22316 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 22317 NULL, NULL, NULL); 22318 if (ill == NULL) { 22319 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 22320 return (B_FALSE); 22321 } 22322 need_refrele = B_TRUE; 22323 } 22324 22325 /* 22326 * Use the address length specified by the SA to determine 22327 * if it corresponds to a IPv6 address, and fail the matching 22328 * if the isv6 flag passed as argument does not match. 22329 * Note: this check is used for SADB capability checking before 22330 * sending SA information to an ill. 22331 */ 22332 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 22333 if (sa_isv6 != ill_isv6) 22334 /* protocol mismatch */ 22335 goto done; 22336 22337 /* 22338 * Check if the ill supports the protocol, algorithm(s) and 22339 * key size(s) specified by the SA, and get the pointers to 22340 * the algorithms supported by the ill. 22341 */ 22342 switch (sa->ipsa_type) { 22343 22344 case SADB_SATYPE_ESP: 22345 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 22346 /* ill does not support ESP acceleration */ 22347 goto done; 22348 cpp = ill->ill_ipsec_capab_esp; 22349 algid = sa->ipsa_auth_alg; 22350 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 22351 goto done; 22352 algid = sa->ipsa_encr_alg; 22353 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 22354 goto done; 22355 if (algid < cpp->encr_algparm_end) { 22356 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 22357 if (sa->ipsa_encrkeybits < alp->minkeylen) 22358 goto done; 22359 if (sa->ipsa_encrkeybits > alp->maxkeylen) 22360 goto done; 22361 } 22362 break; 22363 22364 case SADB_SATYPE_AH: 22365 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 22366 /* ill does not support AH acceleration */ 22367 goto done; 22368 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 22369 ill->ill_ipsec_capab_ah->auth_hw_algs)) 22370 goto done; 22371 break; 22372 } 22373 22374 if (need_refrele) 22375 ill_refrele(ill); 22376 return (B_TRUE); 22377 done: 22378 if (need_refrele) 22379 ill_refrele(ill); 22380 return (B_FALSE); 22381 } 22382 22383 22384 /* 22385 * Add a new ill to the list of IPsec capable ills. 22386 * Called from ill_capability_ipsec_ack() when an ACK was received 22387 * indicating that IPsec hardware processing was enabled for an ill. 22388 * 22389 * ill must point to the ill for which acceleration was enabled. 22390 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 22391 */ 22392 static void 22393 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 22394 { 22395 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 22396 uint_t sa_type; 22397 uint_t ipproto; 22398 22399 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 22400 (dl_cap == DL_CAPAB_IPSEC_ESP)); 22401 22402 switch (dl_cap) { 22403 case DL_CAPAB_IPSEC_AH: 22404 sa_type = SADB_SATYPE_AH; 22405 ills = &ipsec_capab_ills_ah; 22406 ipproto = IPPROTO_AH; 22407 break; 22408 case DL_CAPAB_IPSEC_ESP: 22409 sa_type = SADB_SATYPE_ESP; 22410 ills = &ipsec_capab_ills_esp; 22411 ipproto = IPPROTO_ESP; 22412 break; 22413 } 22414 22415 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22416 22417 /* 22418 * Add ill index to list of hardware accelerators. If 22419 * already in list, do nothing. 22420 */ 22421 for (cur_ill = *ills; cur_ill != NULL && 22422 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 22423 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 22424 ; 22425 22426 if (cur_ill == NULL) { 22427 /* if this is a new entry for this ill */ 22428 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 22429 if (new_ill == NULL) { 22430 rw_exit(&ipsec_capab_ills_lock); 22431 return; 22432 } 22433 22434 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 22435 new_ill->ill_isv6 = ill->ill_isv6; 22436 new_ill->next = *ills; 22437 *ills = new_ill; 22438 } else if (!sadb_resync) { 22439 /* not resync'ing SADB and an entry exists for this ill */ 22440 rw_exit(&ipsec_capab_ills_lock); 22441 return; 22442 } 22443 22444 rw_exit(&ipsec_capab_ills_lock); 22445 22446 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 22447 /* 22448 * IPsec module for protocol loaded, initiate dump 22449 * of the SADB to this ill. 22450 */ 22451 sadb_ill_download(ill, sa_type); 22452 } 22453 22454 /* 22455 * Remove an ill from the list of IPsec capable ills. 22456 */ 22457 static void 22458 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 22459 { 22460 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 22461 22462 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 22463 dl_cap == DL_CAPAB_IPSEC_ESP); 22464 22465 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 22466 &ipsec_capab_ills_esp; 22467 22468 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22469 22470 prev_ill = NULL; 22471 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 22472 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 22473 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 22474 ; 22475 if (cur_ill == NULL) { 22476 /* entry not found */ 22477 rw_exit(&ipsec_capab_ills_lock); 22478 return; 22479 } 22480 if (prev_ill == NULL) { 22481 /* entry at front of list */ 22482 *ills = NULL; 22483 } else { 22484 prev_ill->next = cur_ill->next; 22485 } 22486 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 22487 rw_exit(&ipsec_capab_ills_lock); 22488 } 22489 22490 22491 /* 22492 * Handling of DL_CONTROL_REQ messages that must be sent down to 22493 * an ill while having exclusive access. 22494 */ 22495 /* ARGSUSED */ 22496 static void 22497 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 22498 { 22499 ill_t *ill = (ill_t *)q->q_ptr; 22500 22501 ill_dlpi_send(ill, mp); 22502 } 22503 22504 22505 /* 22506 * Called by SADB to send a DL_CONTROL_REQ message to every ill 22507 * supporting the specified IPsec protocol acceleration. 22508 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 22509 * We free the mblk and, if sa is non-null, release the held referece. 22510 */ 22511 void 22512 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 22513 { 22514 ipsec_capab_ill_t *ici, *cur_ici; 22515 ill_t *ill; 22516 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 22517 22518 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 22519 ipsec_capab_ills_esp; 22520 22521 rw_enter(&ipsec_capab_ills_lock, RW_READER); 22522 22523 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 22524 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 22525 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 22526 22527 /* 22528 * Handle the case where the ill goes away while the SADB is 22529 * attempting to send messages. If it's going away, it's 22530 * nuking its shadow SADB, so we don't care.. 22531 */ 22532 22533 if (ill == NULL) 22534 continue; 22535 22536 if (sa != NULL) { 22537 /* 22538 * Make sure capabilities match before 22539 * sending SA to ill. 22540 */ 22541 if (!ipsec_capab_match(ill, cur_ici->ill_index, 22542 cur_ici->ill_isv6, sa)) { 22543 ill_refrele(ill); 22544 continue; 22545 } 22546 22547 mutex_enter(&sa->ipsa_lock); 22548 sa->ipsa_flags |= IPSA_F_HW; 22549 mutex_exit(&sa->ipsa_lock); 22550 } 22551 22552 /* 22553 * Copy template message, and add it to the front 22554 * of the mblk ship list. We want to avoid holding 22555 * the ipsec_capab_ills_lock while sending the 22556 * message to the ills. 22557 * 22558 * The b_next and b_prev are temporarily used 22559 * to build a list of mblks to be sent down, and to 22560 * save the ill to which they must be sent. 22561 */ 22562 nmp = copymsg(mp); 22563 if (nmp == NULL) { 22564 ill_refrele(ill); 22565 continue; 22566 } 22567 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 22568 nmp->b_next = mp_ship_list; 22569 mp_ship_list = nmp; 22570 nmp->b_prev = (mblk_t *)ill; 22571 } 22572 22573 rw_exit(&ipsec_capab_ills_lock); 22574 22575 nmp = mp_ship_list; 22576 while (nmp != NULL) { 22577 /* restore the mblk to a sane state */ 22578 next_mp = nmp->b_next; 22579 nmp->b_next = NULL; 22580 ill = (ill_t *)nmp->b_prev; 22581 nmp->b_prev = NULL; 22582 22583 /* 22584 * Ship the mblk to the ill, must be exclusive. Keep the 22585 * reference to the ill as qwriter_ip() does a ill_referele(). 22586 */ 22587 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 22588 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 22589 22590 nmp = next_mp; 22591 } 22592 22593 if (sa != NULL) 22594 IPSA_REFRELE(sa); 22595 freemsg(mp); 22596 } 22597 22598 22599 /* 22600 * Derive an interface id from the link layer address. 22601 * Knows about IEEE 802 and IEEE EUI-64 mappings. 22602 */ 22603 static boolean_t 22604 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22605 { 22606 char *addr; 22607 22608 if (phys_length != ETHERADDRL) 22609 return (B_FALSE); 22610 22611 /* Form EUI-64 like address */ 22612 addr = (char *)&v6addr->s6_addr32[2]; 22613 bcopy((char *)phys_addr, addr, 3); 22614 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 22615 addr[3] = (char)0xff; 22616 addr[4] = (char)0xfe; 22617 bcopy((char *)phys_addr + 3, addr + 5, 3); 22618 return (B_TRUE); 22619 } 22620 22621 /* ARGSUSED */ 22622 static boolean_t 22623 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22624 { 22625 return (B_FALSE); 22626 } 22627 22628 /* ARGSUSED */ 22629 static boolean_t 22630 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22631 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22632 { 22633 /* 22634 * Multicast address mappings used over Ethernet/802.X. 22635 * This address is used as a base for mappings. 22636 */ 22637 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 22638 0x00, 0x00, 0x00}; 22639 22640 /* 22641 * Extract low order 32 bits from IPv6 multicast address. 22642 * Or that into the link layer address, starting from the 22643 * second byte. 22644 */ 22645 *hw_start = 2; 22646 v6_extract_mask->s6_addr32[0] = 0; 22647 v6_extract_mask->s6_addr32[1] = 0; 22648 v6_extract_mask->s6_addr32[2] = 0; 22649 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22650 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 22651 return (B_TRUE); 22652 } 22653 22654 /* 22655 * Indicate by return value whether multicast is supported. If not, 22656 * this code should not touch/change any parameters. 22657 */ 22658 /* ARGSUSED */ 22659 static boolean_t 22660 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22661 uint32_t *hw_start, ipaddr_t *extract_mask) 22662 { 22663 /* 22664 * Multicast address mappings used over Ethernet/802.X. 22665 * This address is used as a base for mappings. 22666 */ 22667 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 22668 0x00, 0x00, 0x00 }; 22669 22670 if (phys_length != ETHERADDRL) 22671 return (B_FALSE); 22672 22673 *extract_mask = htonl(0x007fffff); 22674 *hw_start = 2; 22675 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 22676 return (B_TRUE); 22677 } 22678 22679 /* 22680 * Derive IPoIB interface id from the link layer address. 22681 */ 22682 static boolean_t 22683 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22684 { 22685 char *addr; 22686 22687 if (phys_length != 20) 22688 return (B_FALSE); 22689 addr = (char *)&v6addr->s6_addr32[2]; 22690 bcopy(phys_addr + 12, addr, 8); 22691 /* 22692 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 22693 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 22694 * rules. In these cases, the IBA considers these GUIDs to be in 22695 * "Modified EUI-64" format, and thus toggling the u/l bit is not 22696 * required; vendors are required not to assign global EUI-64's 22697 * that differ only in u/l bit values, thus guaranteeing uniqueness 22698 * of the interface identifier. Whether the GUID is in modified 22699 * or proper EUI-64 format, the ipv6 identifier must have the u/l 22700 * bit set to 1. 22701 */ 22702 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 22703 return (B_TRUE); 22704 } 22705 22706 /* 22707 * Note on mapping from multicast IP addresses to IPoIB multicast link 22708 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 22709 * The format of an IPoIB multicast address is: 22710 * 22711 * 4 byte QPN Scope Sign. Pkey 22712 * +--------------------------------------------+ 22713 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 22714 * +--------------------------------------------+ 22715 * 22716 * The Scope and Pkey components are properties of the IBA port and 22717 * network interface. They can be ascertained from the broadcast address. 22718 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 22719 */ 22720 22721 static boolean_t 22722 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22723 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22724 { 22725 /* 22726 * Base IPoIB IPv6 multicast address used for mappings. 22727 * Does not contain the IBA scope/Pkey values. 22728 */ 22729 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22730 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 22731 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22732 22733 /* 22734 * Extract low order 80 bits from IPv6 multicast address. 22735 * Or that into the link layer address, starting from the 22736 * sixth byte. 22737 */ 22738 *hw_start = 6; 22739 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 22740 22741 /* 22742 * Now fill in the IBA scope/Pkey values from the broadcast address. 22743 */ 22744 *(maddr + 5) = *(bphys_addr + 5); 22745 *(maddr + 8) = *(bphys_addr + 8); 22746 *(maddr + 9) = *(bphys_addr + 9); 22747 22748 v6_extract_mask->s6_addr32[0] = 0; 22749 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 22750 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 22751 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22752 return (B_TRUE); 22753 } 22754 22755 static boolean_t 22756 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22757 uint32_t *hw_start, ipaddr_t *extract_mask) 22758 { 22759 /* 22760 * Base IPoIB IPv4 multicast address used for mappings. 22761 * Does not contain the IBA scope/Pkey values. 22762 */ 22763 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22764 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 22765 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22766 22767 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 22768 return (B_FALSE); 22769 22770 /* 22771 * Extract low order 28 bits from IPv4 multicast address. 22772 * Or that into the link layer address, starting from the 22773 * sixteenth byte. 22774 */ 22775 *extract_mask = htonl(0x0fffffff); 22776 *hw_start = 16; 22777 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 22778 22779 /* 22780 * Now fill in the IBA scope/Pkey values from the broadcast address. 22781 */ 22782 *(maddr + 5) = *(bphys_addr + 5); 22783 *(maddr + 8) = *(bphys_addr + 8); 22784 *(maddr + 9) = *(bphys_addr + 9); 22785 return (B_TRUE); 22786 } 22787 22788 /* 22789 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 22790 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 22791 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 22792 * the link-local address is preferred. 22793 */ 22794 boolean_t 22795 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22796 { 22797 ipif_t *ipif; 22798 ipif_t *maybe_ipif = NULL; 22799 22800 mutex_enter(&ill->ill_lock); 22801 if (ill->ill_state_flags & ILL_CONDEMNED) { 22802 mutex_exit(&ill->ill_lock); 22803 if (ipifp != NULL) 22804 *ipifp = NULL; 22805 return (B_FALSE); 22806 } 22807 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 22808 if (!IPIF_CAN_LOOKUP(ipif)) 22809 continue; 22810 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid) 22811 continue; 22812 if ((ipif->ipif_flags & flags) != flags) 22813 continue; 22814 22815 if (ipifp == NULL) { 22816 mutex_exit(&ill->ill_lock); 22817 ASSERT(maybe_ipif == NULL); 22818 return (B_TRUE); 22819 } 22820 if (!ill->ill_isv6 || 22821 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 22822 ipif_refhold_locked(ipif); 22823 mutex_exit(&ill->ill_lock); 22824 *ipifp = ipif; 22825 return (B_TRUE); 22826 } 22827 if (maybe_ipif == NULL) 22828 maybe_ipif = ipif; 22829 } 22830 if (ipifp != NULL) { 22831 if (maybe_ipif != NULL) 22832 ipif_refhold_locked(maybe_ipif); 22833 *ipifp = maybe_ipif; 22834 } 22835 mutex_exit(&ill->ill_lock); 22836 return (maybe_ipif != NULL); 22837 } 22838 22839 /* 22840 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 22841 */ 22842 boolean_t 22843 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22844 { 22845 ill_t *illg; 22846 22847 /* 22848 * We look at the passed-in ill first without grabbing ill_g_lock. 22849 */ 22850 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 22851 return (B_TRUE); 22852 } 22853 rw_enter(&ill_g_lock, RW_READER); 22854 if (ill->ill_group == NULL) { 22855 /* ill not in a group */ 22856 rw_exit(&ill_g_lock); 22857 return (B_FALSE); 22858 } 22859 22860 /* 22861 * There's no ipif in the zone on ill, however ill is part of an IPMP 22862 * group. We need to look for an ipif in the zone on all the ills in the 22863 * group. 22864 */ 22865 illg = ill->ill_group->illgrp_ill; 22866 do { 22867 /* 22868 * We don't call ipif_lookup_zoneid() on ill as we already know 22869 * that it's not there. 22870 */ 22871 if (illg != ill && 22872 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 22873 break; 22874 } 22875 } while ((illg = illg->ill_group_next) != NULL); 22876 rw_exit(&ill_g_lock); 22877 return (illg != NULL); 22878 } 22879 22880 /* 22881 * Check if this ill is only being used to send ICMP probes for IPMP 22882 */ 22883 boolean_t 22884 ill_is_probeonly(ill_t *ill) 22885 { 22886 /* 22887 * Check if the interface is FAILED, or INACTIVE 22888 */ 22889 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 22890 return (B_TRUE); 22891 22892 return (B_FALSE); 22893 } 22894