1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/param.h> 50 #include <sys/socket.h> 51 #include <sys/isa_defs.h> 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_types.h> 55 #include <net/if_dl.h> 56 #include <net/route.h> 57 #include <sys/sockio.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/icmp6.h> 61 #include <netinet/igmp_var.h> 62 #include <sys/strsun.h> 63 #include <sys/policy.h> 64 #include <sys/ethernet.h> 65 66 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 67 #include <inet/mi.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/mib2.h> 71 #include <inet/ip.h> 72 #include <inet/ip6.h> 73 #include <inet/ip6_asp.h> 74 #include <inet/tcp.h> 75 #include <inet/ip_multi.h> 76 #include <inet/ip_ire.h> 77 #include <inet/ip_ftable.h> 78 #include <inet/ip_rts.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/ip_if.h> 81 #include <inet/ip_impl.h> 82 #include <inet/tun.h> 83 #include <inet/sctp_ip.h> 84 85 #include <net/pfkeyv2.h> 86 #include <inet/ipsec_info.h> 87 #include <inet/sadb.h> 88 #include <inet/ipsec_impl.h> 89 #include <sys/iphada.h> 90 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac.h> 96 97 #include <sys/systeminfo.h> 98 #include <sys/bootconf.h> 99 100 #include <sys/tsol/tndb.h> 101 #include <sys/tsol/tnet.h> 102 103 /* The character which tells where the ill_name ends */ 104 #define IPIF_SEPARATOR_CHAR ':' 105 106 /* IP ioctl function table entry */ 107 typedef struct ipft_s { 108 int ipft_cmd; 109 pfi_t ipft_pfi; 110 int ipft_min_size; 111 int ipft_flags; 112 } ipft_t; 113 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 114 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 115 116 typedef struct ip_sock_ar_s { 117 union { 118 area_t ip_sock_area; 119 ared_t ip_sock_ared; 120 areq_t ip_sock_areq; 121 } ip_sock_ar_u; 122 queue_t *ip_sock_ar_q; 123 } ip_sock_ar_t; 124 125 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 126 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 127 char *value, caddr_t cp, cred_t *ioc_cr); 128 129 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 130 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 131 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 132 mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 134 mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 136 queue_t *q, mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp); 141 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 144 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 145 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 146 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 147 static void ipsq_flush(ill_t *ill); 148 static void ipsq_clean_all(ill_t *ill); 149 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 150 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 151 queue_t *q, mblk_t *mp, boolean_t need_up); 152 static void ipsq_delete(ipsq_t *); 153 154 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 155 boolean_t initialize); 156 static void ipif_check_bcast_ires(ipif_t *test_ipif); 157 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 158 static void ipif_delete_cache_ire(ire_t *, char *); 159 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 160 static void ipif_free(ipif_t *ipif); 161 static void ipif_free_tail(ipif_t *ipif); 162 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 163 static void ipif_multicast_down(ipif_t *ipif); 164 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 165 static void ipif_set_default(ipif_t *ipif); 166 static int ipif_set_values(queue_t *q, mblk_t *mp, 167 char *interf_name, uint_t *ppa); 168 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 169 queue_t *q); 170 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 171 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 172 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 173 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 174 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 175 176 static int ill_alloc_ppa(ill_if_t *, ill_t *); 177 static int ill_arp_off(ill_t *ill); 178 static int ill_arp_on(ill_t *ill); 179 static void ill_delete_interface_type(ill_if_t *); 180 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 181 static void ill_dl_down(ill_t *ill); 182 static void ill_down(ill_t *ill); 183 static void ill_downi(ire_t *ire, char *ill_arg); 184 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 185 static void ill_down_tail(ill_t *ill); 186 static void ill_free_mib(ill_t *ill); 187 static void ill_glist_delete(ill_t *); 188 static boolean_t ill_has_usable_ipif(ill_t *); 189 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 190 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 191 static void ill_phyint_free(ill_t *ill); 192 static void ill_phyint_reinit(ill_t *ill); 193 static void ill_set_nce_router_flags(ill_t *, boolean_t); 194 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 195 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 196 static void ill_stq_cache_delete(ire_t *, char *); 197 198 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 199 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 200 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 201 in6_addr_t *); 202 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 203 ipaddr_t *); 204 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 210 static void ipif_save_ire(ipif_t *, ire_t *); 211 static void ipif_remove_ire(ipif_t *, ire_t *); 212 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 213 static void ip_cgtp_bcast_delete(ire_t *); 214 215 /* 216 * Per-ill IPsec capabilities management. 217 */ 218 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 219 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 220 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 221 static void ill_ipsec_capab_delete(ill_t *, uint_t); 222 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 223 static void ill_capability_proto(ill_t *, int, mblk_t *); 224 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 225 boolean_t); 226 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 227 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 228 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 229 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 230 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 231 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 233 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 234 dl_capability_sub_t *); 235 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 236 237 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 239 static void ill_capability_dls_reset(ill_t *, mblk_t **); 240 static void ill_capability_dls_disable(ill_t *); 241 242 static void illgrp_cache_delete(ire_t *, char *); 243 static void illgrp_delete(ill_t *ill); 244 static void illgrp_reset_schednext(ill_t *ill); 245 246 static ill_t *ill_prev_usesrc(ill_t *); 247 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 248 static void ill_disband_usesrc_group(ill_t *); 249 250 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 251 252 /* 253 * if we go over the memory footprint limit more than once in this msec 254 * interval, we'll start pruning aggressively. 255 */ 256 int ip_min_frag_prune_time = 0; 257 258 /* 259 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 260 * and the IPsec DOI 261 */ 262 #define MAX_IPSEC_ALGS 256 263 264 #define BITSPERBYTE 8 265 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 266 267 #define IPSEC_ALG_ENABLE(algs, algid) \ 268 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 269 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 270 271 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 272 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 273 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 274 275 typedef uint8_t ipsec_capab_elem_t; 276 277 /* 278 * Per-algorithm parameters. Note that at present, only encryption 279 * algorithms have variable keysize (IKE does not provide a way to negotiate 280 * auth algorithm keysize). 281 * 282 * All sizes here are in bits. 283 */ 284 typedef struct 285 { 286 uint16_t minkeylen; 287 uint16_t maxkeylen; 288 } ipsec_capab_algparm_t; 289 290 /* 291 * Per-ill capabilities. 292 */ 293 struct ill_ipsec_capab_s { 294 ipsec_capab_elem_t *encr_hw_algs; 295 ipsec_capab_elem_t *auth_hw_algs; 296 uint32_t algs_size; /* size of _hw_algs in bytes */ 297 /* algorithm key lengths */ 298 ipsec_capab_algparm_t *encr_algparm; 299 uint32_t encr_algparm_size; 300 uint32_t encr_algparm_end; 301 }; 302 303 /* 304 * List of AH and ESP IPsec acceleration capable ills 305 */ 306 typedef struct ipsec_capab_ill_s { 307 uint_t ill_index; 308 boolean_t ill_isv6; 309 struct ipsec_capab_ill_s *next; 310 } ipsec_capab_ill_t; 311 312 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 313 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 314 krwlock_t ipsec_capab_ills_lock; 315 316 /* 317 * The field values are larger than strictly necessary for simple 318 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 319 */ 320 static area_t ip_area_template = { 321 AR_ENTRY_ADD, /* area_cmd */ 322 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 323 /* area_name_offset */ 324 /* area_name_length temporarily holds this structure length */ 325 sizeof (area_t), /* area_name_length */ 326 IP_ARP_PROTO_TYPE, /* area_proto */ 327 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 328 IP_ADDR_LEN, /* area_proto_addr_length */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 330 /* area_proto_mask_offset */ 331 0, /* area_flags */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 333 /* area_hw_addr_offset */ 334 /* Zero length hw_addr_length means 'use your idea of the address' */ 335 0 /* area_hw_addr_length */ 336 }; 337 338 /* 339 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 340 * support 341 */ 342 static area_t ip6_area_template = { 343 AR_ENTRY_ADD, /* area_cmd */ 344 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 345 /* area_name_offset */ 346 /* area_name_length temporarily holds this structure length */ 347 sizeof (area_t), /* area_name_length */ 348 IP_ARP_PROTO_TYPE, /* area_proto */ 349 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 350 IPV6_ADDR_LEN, /* area_proto_addr_length */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 352 /* area_proto_mask_offset */ 353 0, /* area_flags */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 355 /* area_hw_addr_offset */ 356 /* Zero length hw_addr_length means 'use your idea of the address' */ 357 0 /* area_hw_addr_length */ 358 }; 359 360 static ared_t ip_ared_template = { 361 AR_ENTRY_DELETE, 362 sizeof (ared_t) + IP_ADDR_LEN, 363 sizeof (ared_t), 364 IP_ARP_PROTO_TYPE, 365 sizeof (ared_t), 366 IP_ADDR_LEN 367 }; 368 369 static ared_t ip6_ared_template = { 370 AR_ENTRY_DELETE, 371 sizeof (ared_t) + IPV6_ADDR_LEN, 372 sizeof (ared_t), 373 IP_ARP_PROTO_TYPE, 374 sizeof (ared_t), 375 IPV6_ADDR_LEN 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 6, /* xmit_count */ 394 1000, /* (re)xmit_interval in milliseconds */ 395 4 /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 424 static arma_t ip_arma_multi_template = { 425 AR_MAPPING_ADD, 426 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 427 /* Name offset */ 428 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 429 IP_ARP_PROTO_TYPE, 430 sizeof (arma_t), /* proto_addr_offset */ 431 IP_ADDR_LEN, /* proto_addr_length */ 432 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 433 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 434 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 435 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 436 IP_MAX_HW_LEN, /* hw_addr_length */ 437 0, /* hw_mapping_start */ 438 }; 439 440 static ipft_t ip_ioctl_ftbl[] = { 441 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 442 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 443 IPFT_F_NO_REPLY }, 444 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 447 { 0 } 448 }; 449 450 /* Simple ICMP IP Header Template */ 451 static ipha_t icmp_ipha = { 452 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 453 }; 454 455 /* Flag descriptors for ip_ipif_report */ 456 static nv_t ipif_nv_tbl[] = { 457 { IPIF_UP, "UP" }, 458 { IPIF_BROADCAST, "BROADCAST" }, 459 { ILLF_DEBUG, "DEBUG" }, 460 { PHYI_LOOPBACK, "LOOPBACK" }, 461 { IPIF_POINTOPOINT, "POINTOPOINT" }, 462 { ILLF_NOTRAILERS, "NOTRAILERS" }, 463 { PHYI_RUNNING, "RUNNING" }, 464 { ILLF_NOARP, "NOARP" }, 465 { PHYI_PROMISC, "PROMISC" }, 466 { PHYI_ALLMULTI, "ALLMULTI" }, 467 { PHYI_INTELLIGENT, "INTELLIGENT" }, 468 { ILLF_MULTICAST, "MULTICAST" }, 469 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 470 { IPIF_UNNUMBERED, "UNNUMBERED" }, 471 { IPIF_DHCPRUNNING, "DHCP" }, 472 { IPIF_PRIVATE, "PRIVATE" }, 473 { IPIF_NOXMIT, "NOXMIT" }, 474 { IPIF_NOLOCAL, "NOLOCAL" }, 475 { IPIF_DEPRECATED, "DEPRECATED" }, 476 { IPIF_PREFERRED, "PREFERRED" }, 477 { IPIF_TEMPORARY, "TEMPORARY" }, 478 { IPIF_ADDRCONF, "ADDRCONF" }, 479 { PHYI_VIRTUAL, "VIRTUAL" }, 480 { ILLF_ROUTER, "ROUTER" }, 481 { ILLF_NONUD, "NONUD" }, 482 { IPIF_ANYCAST, "ANYCAST" }, 483 { ILLF_NORTEXCH, "NORTEXCH" }, 484 { ILLF_IPV4, "IPV4" }, 485 { ILLF_IPV6, "IPV6" }, 486 { IPIF_MIPRUNNING, "MIP" }, 487 { IPIF_NOFAILOVER, "NOFAILOVER" }, 488 { PHYI_FAILED, "FAILED" }, 489 { PHYI_STANDBY, "STANDBY" }, 490 { PHYI_INACTIVE, "INACTIVE" }, 491 { PHYI_OFFLINE, "OFFLINE" }, 492 }; 493 494 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 495 496 static ip_m_t ip_m_tbl[] = { 497 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_ether_v6intfid }, 499 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid }, 505 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 506 ip_ether_v6intfid }, 507 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 508 ip_ib_v6intfid }, 509 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 510 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 511 ip_nodef_v6intfid } 512 }; 513 514 static ill_t ill_null; /* Empty ILL for init. */ 515 char ipif_loopback_name[] = "lo0"; 516 static char *ipv4_forward_suffix = ":ip_forwarding"; 517 static char *ipv6_forward_suffix = ":ip6_forwarding"; 518 static kstat_t *loopback_ksp = NULL; 519 static sin6_t sin6_null; /* Zero address for quick clears */ 520 static sin_t sin_null; /* Zero address for quick clears */ 521 static uint_t ill_index = 1; /* Used to assign interface indicies */ 522 /* When set search for unused index */ 523 static boolean_t ill_index_wrap = B_FALSE; 524 /* When set search for unused ipif_seqid */ 525 static ipif_t ipif_zero; 526 uint_t ipif_src_random; 527 528 /* 529 * For details on the protection offered by these locks please refer 530 * to the notes under the Synchronization section at the start of ip.c 531 */ 532 krwlock_t ill_g_lock; /* The global ill_g_lock */ 533 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 534 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 535 536 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 537 538 /* 539 * illgrp_head/ifgrp_head is protected by IP's perimeter. 540 */ 541 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 542 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 543 544 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 545 546 /* 547 * ppa arena is created after these many 548 * interfaces have been plumbed. 549 */ 550 uint_t ill_no_arena = 12; 551 552 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 553 static phyint_list_t phyint_g_list; /* start of phyint list */ 554 555 /* 556 * Reflects value of FAILBACK variable in IPMP config file 557 * /etc/default/mpathd. Default value is B_TRUE. 558 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 559 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 560 */ 561 static boolean_t ipmp_enable_failback = B_TRUE; 562 563 /* 564 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 565 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 566 * set through platform specific code (Niagara/Ontario). 567 */ 568 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 569 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 570 571 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 572 573 static uint_t 574 ipif_rand(void) 575 { 576 ipif_src_random = ipif_src_random * 1103515245 + 12345; 577 return ((ipif_src_random >> 16) & 0x7fff); 578 } 579 580 /* 581 * Allocate per-interface mibs. Only used for ipv6. 582 * Returns true if ok. False otherwise. 583 * ipsq may not yet be allocated (loopback case ). 584 */ 585 static boolean_t 586 ill_allocate_mibs(ill_t *ill) 587 { 588 ASSERT(ill->ill_isv6); 589 590 /* Already allocated? */ 591 if (ill->ill_ip6_mib != NULL) { 592 ASSERT(ill->ill_icmp6_mib != NULL); 593 return (B_TRUE); 594 } 595 596 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 597 KM_NOSLEEP); 598 if (ill->ill_ip6_mib == NULL) { 599 return (B_FALSE); 600 } 601 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 602 KM_NOSLEEP); 603 if (ill->ill_icmp6_mib == NULL) { 604 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 605 ill->ill_ip6_mib = NULL; 606 return (B_FALSE); 607 } 608 /* 609 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 610 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 611 * -> ill_phyint_reinit 612 */ 613 return (B_TRUE); 614 } 615 616 /* 617 * Common code for preparation of ARP commands. Two points to remember: 618 * 1) The ill_name is tacked on at the end of the allocated space so 619 * the templates name_offset field must contain the total space 620 * to allocate less the name length. 621 * 622 * 2) The templates name_length field should contain the *template* 623 * length. We use it as a parameter to bcopy() and then write 624 * the real ill_name_length into the name_length field of the copy. 625 * (Always called as writer.) 626 */ 627 mblk_t * 628 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 629 { 630 arc_t *arc = (arc_t *)template; 631 char *cp; 632 int len; 633 mblk_t *mp; 634 uint_t name_length = ill->ill_name_length; 635 uint_t template_len = arc->arc_name_length; 636 637 len = arc->arc_name_offset + name_length; 638 mp = allocb(len, BPRI_HI); 639 if (mp == NULL) 640 return (NULL); 641 cp = (char *)mp->b_rptr; 642 mp->b_wptr = (uchar_t *)&cp[len]; 643 if (template_len) 644 bcopy(template, cp, template_len); 645 if (len > template_len) 646 bzero(&cp[template_len], len - template_len); 647 mp->b_datap->db_type = M_PROTO; 648 649 arc = (arc_t *)cp; 650 arc->arc_name_length = name_length; 651 cp = (char *)arc + arc->arc_name_offset; 652 bcopy(ill->ill_name, cp, name_length); 653 654 if (addr) { 655 area_t *area = (area_t *)mp->b_rptr; 656 657 cp = (char *)area + area->area_proto_addr_offset; 658 bcopy(addr, cp, area->area_proto_addr_length); 659 if (area->area_cmd == AR_ENTRY_ADD) { 660 cp = (char *)area; 661 len = area->area_proto_addr_length; 662 if (area->area_proto_mask_offset) 663 cp += area->area_proto_mask_offset; 664 else 665 cp += area->area_proto_addr_offset + len; 666 while (len-- > 0) 667 *cp++ = (char)~0; 668 } 669 } 670 return (mp); 671 } 672 673 mblk_t * 674 ipif_area_alloc(ipif_t *ipif) 675 { 676 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 677 (char *)&ipif->ipif_lcl_addr)); 678 } 679 680 mblk_t * 681 ipif_ared_alloc(ipif_t *ipif) 682 { 683 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 684 (char *)&ipif->ipif_lcl_addr)); 685 } 686 687 mblk_t * 688 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 689 { 690 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 691 (char *)&addr)); 692 } 693 694 /* 695 * Completely vaporize a lower level tap and all associated interfaces. 696 * ill_delete is called only out of ip_close when the device control 697 * stream is being closed. 698 */ 699 void 700 ill_delete(ill_t *ill) 701 { 702 ipif_t *ipif; 703 ill_t *prev_ill; 704 705 /* 706 * ill_delete may be forcibly entering the ipsq. The previous 707 * ioctl may not have completed and may need to be aborted. 708 * ipsq_flush takes care of it. If we don't need to enter the 709 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 710 * ill_delete_tail is sufficient. 711 */ 712 ipsq_flush(ill); 713 714 /* 715 * Nuke all interfaces. ipif_free will take down the interface, 716 * remove it from the list, and free the data structure. 717 * Walk down the ipif list and remove the logical interfaces 718 * first before removing the main ipif. We can't unplumb 719 * zeroth interface first in the case of IPv6 as reset_conn_ill 720 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 721 * POINTOPOINT. 722 * 723 * If ill_ipif was not properly initialized (i.e low on memory), 724 * then no interfaces to clean up. In this case just clean up the 725 * ill. 726 */ 727 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 728 ipif_free(ipif); 729 730 /* 731 * Used only by ill_arp_on and ill_arp_off, which are writers. 732 * So nobody can be using this mp now. Free the mp allocated for 733 * honoring ILLF_NOARP 734 */ 735 freemsg(ill->ill_arp_on_mp); 736 ill->ill_arp_on_mp = NULL; 737 738 /* Clean up msgs on pending upcalls for mrouted */ 739 reset_mrt_ill(ill); 740 741 /* 742 * ipif_free -> reset_conn_ipif will remove all multicast 743 * references for IPv4. For IPv6, we need to do it here as 744 * it points only at ills. 745 */ 746 reset_conn_ill(ill); 747 748 /* 749 * ill_down will arrange to blow off any IRE's dependent on this 750 * ILL, and shut down fragmentation reassembly. 751 */ 752 ill_down(ill); 753 754 /* Let SCTP know, so that it can remove this from its list. */ 755 sctp_update_ill(ill, SCTP_ILL_REMOVE); 756 757 /* 758 * If an address on this ILL is being used as a source address then 759 * clear out the pointers in other ILLs that point to this ILL. 760 */ 761 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 762 if (ill->ill_usesrc_grp_next != NULL) { 763 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 764 ill_disband_usesrc_group(ill); 765 } else { /* consumer of the usesrc ILL */ 766 prev_ill = ill_prev_usesrc(ill); 767 prev_ill->ill_usesrc_grp_next = 768 ill->ill_usesrc_grp_next; 769 } 770 } 771 rw_exit(&ill_g_usesrc_lock); 772 } 773 774 static void 775 ipif_non_duplicate(ipif_t *ipif) 776 { 777 ill_t *ill = ipif->ipif_ill; 778 mutex_enter(&ill->ill_lock); 779 if (ipif->ipif_flags & IPIF_DUPLICATE) { 780 ipif->ipif_flags &= ~IPIF_DUPLICATE; 781 ASSERT(ill->ill_ipif_dup_count > 0); 782 ill->ill_ipif_dup_count--; 783 } 784 mutex_exit(&ill->ill_lock); 785 } 786 787 /* 788 * ill_delete_tail is called from ip_modclose after all references 789 * to the closing ill are gone. The wait is done in ip_modclose 790 */ 791 void 792 ill_delete_tail(ill_t *ill) 793 { 794 mblk_t **mpp; 795 ipif_t *ipif; 796 797 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 798 ipif_non_duplicate(ipif); 799 ipif_down_tail(ipif); 800 } 801 802 ASSERT(ill->ill_ipif_dup_count == 0 && 803 ill->ill_arp_down_mp == NULL && 804 ill->ill_arp_del_mapping_mp == NULL); 805 806 /* 807 * If polling capability is enabled (which signifies direct 808 * upcall into IP and driver has ill saved as a handle), 809 * we need to make sure that unbind has completed before we 810 * let the ill disappear and driver no longer has any reference 811 * to this ill. 812 */ 813 mutex_enter(&ill->ill_lock); 814 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 815 cv_wait(&ill->ill_cv, &ill->ill_lock); 816 mutex_exit(&ill->ill_lock); 817 818 /* 819 * Clean up polling and soft ring capabilities 820 */ 821 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 822 ill_capability_dls_disable(ill); 823 824 /* 825 * Send the detach if there's one to send (i.e., if we're above a 826 * style 2 DLPI driver). 827 */ 828 if (ill->ill_detach_mp != NULL) { 829 ill_dlpi_send(ill, ill->ill_detach_mp); 830 ill->ill_detach_mp = NULL; 831 } 832 833 if (ill->ill_net_type != IRE_LOOPBACK) 834 qprocsoff(ill->ill_rq); 835 836 /* 837 * We do an ipsq_flush once again now. New messages could have 838 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 839 * could also have landed up if an ioctl thread had looked up 840 * the ill before we set the ILL_CONDEMNED flag, but not yet 841 * enqueued the ioctl when we did the ipsq_flush last time. 842 */ 843 ipsq_flush(ill); 844 845 /* 846 * Free capabilities. 847 */ 848 if (ill->ill_ipsec_capab_ah != NULL) { 849 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 850 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 851 ill->ill_ipsec_capab_ah = NULL; 852 } 853 854 if (ill->ill_ipsec_capab_esp != NULL) { 855 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 856 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 857 ill->ill_ipsec_capab_esp = NULL; 858 } 859 860 if (ill->ill_mdt_capab != NULL) { 861 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 862 ill->ill_mdt_capab = NULL; 863 } 864 865 if (ill->ill_hcksum_capab != NULL) { 866 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 867 ill->ill_hcksum_capab = NULL; 868 } 869 870 if (ill->ill_zerocopy_capab != NULL) { 871 kmem_free(ill->ill_zerocopy_capab, 872 sizeof (ill_zerocopy_capab_t)); 873 ill->ill_zerocopy_capab = NULL; 874 } 875 876 if (ill->ill_dls_capab != NULL) { 877 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 878 ill->ill_dls_capab->ill_unbind_conn = NULL; 879 kmem_free(ill->ill_dls_capab, 880 sizeof (ill_dls_capab_t) + 881 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 882 ill->ill_dls_capab = NULL; 883 } 884 885 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 886 887 while (ill->ill_ipif != NULL) 888 ipif_free_tail(ill->ill_ipif); 889 890 ill_down_tail(ill); 891 892 /* 893 * We have removed all references to ilm from conn and the ones joined 894 * within the kernel. 895 * 896 * We don't walk conns, mrts and ires because 897 * 898 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 899 * 2) ill_down ->ill_downi walks all the ires and cleans up 900 * ill references. 901 */ 902 ASSERT(ilm_walk_ill(ill) == 0); 903 /* 904 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 905 * could free the phyint. No more reference to the phyint after this 906 * point. 907 */ 908 (void) ill_glist_delete(ill); 909 910 rw_enter(&ip_g_nd_lock, RW_WRITER); 911 if (ill->ill_ndd_name != NULL) 912 nd_unload(&ip_g_nd, ill->ill_ndd_name); 913 rw_exit(&ip_g_nd_lock); 914 915 916 if (ill->ill_frag_ptr != NULL) { 917 uint_t count; 918 919 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 920 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 921 } 922 mi_free(ill->ill_frag_ptr); 923 ill->ill_frag_ptr = NULL; 924 ill->ill_frag_hash_tbl = NULL; 925 } 926 if (ill->ill_nd_lla_mp != NULL) 927 freemsg(ill->ill_nd_lla_mp); 928 /* Free all retained control messages. */ 929 mpp = &ill->ill_first_mp_to_free; 930 do { 931 while (mpp[0]) { 932 mblk_t *mp; 933 mblk_t *mp1; 934 935 mp = mpp[0]; 936 mpp[0] = mp->b_next; 937 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 938 mp1->b_next = NULL; 939 mp1->b_prev = NULL; 940 } 941 freemsg(mp); 942 } 943 } while (mpp++ != &ill->ill_last_mp_to_free); 944 945 ill_free_mib(ill); 946 ILL_TRACE_CLEANUP(ill); 947 } 948 949 static void 950 ill_free_mib(ill_t *ill) 951 { 952 if (ill->ill_ip6_mib != NULL) { 953 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 954 ill->ill_ip6_mib = NULL; 955 } 956 if (ill->ill_icmp6_mib != NULL) { 957 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 958 ill->ill_icmp6_mib = NULL; 959 } 960 } 961 962 /* 963 * Concatenate together a physical address and a sap. 964 * 965 * Sap_lengths are interpreted as follows: 966 * sap_length == 0 ==> no sap 967 * sap_length > 0 ==> sap is at the head of the dlpi address 968 * sap_length < 0 ==> sap is at the tail of the dlpi address 969 */ 970 static void 971 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 972 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 973 { 974 uint16_t sap_addr = (uint16_t)sap_src; 975 976 if (sap_length == 0) { 977 if (phys_src == NULL) 978 bzero(dst, phys_length); 979 else 980 bcopy(phys_src, dst, phys_length); 981 } else if (sap_length < 0) { 982 if (phys_src == NULL) 983 bzero(dst, phys_length); 984 else 985 bcopy(phys_src, dst, phys_length); 986 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 987 } else { 988 bcopy(&sap_addr, dst, sizeof (sap_addr)); 989 if (phys_src == NULL) 990 bzero((char *)dst + sap_length, phys_length); 991 else 992 bcopy(phys_src, (char *)dst + sap_length, phys_length); 993 } 994 } 995 996 /* 997 * Generate a dl_unitdata_req mblk for the device and address given. 998 * addr_length is the length of the physical portion of the address. 999 * If addr is NULL include an all zero address of the specified length. 1000 * TRUE? In any case, addr_length is taken to be the entire length of the 1001 * dlpi address, including the absolute value of sap_length. 1002 */ 1003 mblk_t * 1004 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1005 t_scalar_t sap_length) 1006 { 1007 dl_unitdata_req_t *dlur; 1008 mblk_t *mp; 1009 t_scalar_t abs_sap_length; /* absolute value */ 1010 1011 abs_sap_length = ABS(sap_length); 1012 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1013 DL_UNITDATA_REQ); 1014 if (mp == NULL) 1015 return (NULL); 1016 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1017 /* HACK: accomodate incompatible DLPI drivers */ 1018 if (addr_length == 8) 1019 addr_length = 6; 1020 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1021 dlur->dl_dest_addr_offset = sizeof (*dlur); 1022 dlur->dl_priority.dl_min = 0; 1023 dlur->dl_priority.dl_max = 0; 1024 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1025 (uchar_t *)&dlur[1]); 1026 return (mp); 1027 } 1028 1029 /* 1030 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1031 * Return an error if we already have 1 or more ioctls in progress. 1032 * This is used only for non-exclusive ioctls. Currently this is used 1033 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1034 * and thus need to use ipsq_pending_mp_add. 1035 */ 1036 boolean_t 1037 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1038 { 1039 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1040 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1041 /* 1042 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1043 */ 1044 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1045 (add_mp->b_datap->db_type == M_IOCTL)); 1046 1047 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1048 /* 1049 * Return error if the conn has started closing. The conn 1050 * could have finished cleaning up the pending mp list, 1051 * If so we should not add another mp to the list negating 1052 * the cleanup. 1053 */ 1054 if (connp->conn_state_flags & CONN_CLOSING) 1055 return (B_FALSE); 1056 /* 1057 * Add the pending mp to the head of the list, chained by b_next. 1058 * Note down the conn on which the ioctl request came, in b_prev. 1059 * This will be used to later get the conn, when we get a response 1060 * on the ill queue, from some other module (typically arp) 1061 */ 1062 add_mp->b_next = (void *)ill->ill_pending_mp; 1063 add_mp->b_queue = CONNP_TO_WQ(connp); 1064 ill->ill_pending_mp = add_mp; 1065 if (connp != NULL) 1066 connp->conn_oper_pending_ill = ill; 1067 return (B_TRUE); 1068 } 1069 1070 /* 1071 * Retrieve the ill_pending_mp and return it. We have to walk the list 1072 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1073 */ 1074 mblk_t * 1075 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1076 { 1077 mblk_t *prev = NULL; 1078 mblk_t *curr = NULL; 1079 uint_t id; 1080 conn_t *connp; 1081 1082 /* 1083 * When the conn closes, conn_ioctl_cleanup needs to clean 1084 * up the pending mp, but it does not know the ioc_id and 1085 * passes in a zero for it. 1086 */ 1087 mutex_enter(&ill->ill_lock); 1088 if (ioc_id != 0) 1089 *connpp = NULL; 1090 1091 /* Search the list for the appropriate ioctl based on ioc_id */ 1092 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1093 prev = curr, curr = curr->b_next) { 1094 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1095 connp = Q_TO_CONN(curr->b_queue); 1096 /* Match based on the ioc_id or based on the conn */ 1097 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1098 break; 1099 } 1100 1101 if (curr != NULL) { 1102 /* Unlink the mblk from the pending mp list */ 1103 if (prev != NULL) { 1104 prev->b_next = curr->b_next; 1105 } else { 1106 ASSERT(ill->ill_pending_mp == curr); 1107 ill->ill_pending_mp = curr->b_next; 1108 } 1109 1110 /* 1111 * conn refcnt must have been bumped up at the start of 1112 * the ioctl. So we can safely access the conn. 1113 */ 1114 ASSERT(CONN_Q(curr->b_queue)); 1115 *connpp = Q_TO_CONN(curr->b_queue); 1116 curr->b_next = NULL; 1117 curr->b_queue = NULL; 1118 } 1119 1120 mutex_exit(&ill->ill_lock); 1121 1122 return (curr); 1123 } 1124 1125 /* 1126 * Add the pending mp to the list. There can be only 1 pending mp 1127 * in the list. Any exclusive ioctl that needs to wait for a response 1128 * from another module or driver needs to use this function to set 1129 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1130 * the other module/driver. This is also used while waiting for the 1131 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1132 */ 1133 boolean_t 1134 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1135 int waitfor) 1136 { 1137 ipsq_t *ipsq; 1138 1139 ASSERT(IAM_WRITER_IPIF(ipif)); 1140 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1141 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1142 /* 1143 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1144 * M_ERROR/M_HANGUP from driver 1145 */ 1146 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1147 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1148 1149 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1150 if (connp != NULL) { 1151 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1152 /* 1153 * Return error if the conn has started closing. The conn 1154 * could have finished cleaning up the pending mp list, 1155 * If so we should not add another mp to the list negating 1156 * the cleanup. 1157 */ 1158 if (connp->conn_state_flags & CONN_CLOSING) 1159 return (B_FALSE); 1160 } 1161 mutex_enter(&ipsq->ipsq_lock); 1162 ipsq->ipsq_pending_ipif = ipif; 1163 /* 1164 * Note down the queue in b_queue. This will be returned by 1165 * ipsq_pending_mp_get. Caller will then use these values to restart 1166 * the processing 1167 */ 1168 add_mp->b_next = NULL; 1169 add_mp->b_queue = q; 1170 ipsq->ipsq_pending_mp = add_mp; 1171 ipsq->ipsq_waitfor = waitfor; 1172 /* 1173 * ipsq_current_ipif is needed to restart the operation from 1174 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1175 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1176 * been set until now. 1177 */ 1178 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1179 ASSERT(ipsq->ipsq_current_ipif == NULL); 1180 ipsq->ipsq_current_ipif = ipif; 1181 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1182 } 1183 if (connp != NULL) 1184 connp->conn_oper_pending_ill = ipif->ipif_ill; 1185 mutex_exit(&ipsq->ipsq_lock); 1186 return (B_TRUE); 1187 } 1188 1189 /* 1190 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1191 * queued in the list. 1192 */ 1193 mblk_t * 1194 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1195 { 1196 mblk_t *curr = NULL; 1197 1198 mutex_enter(&ipsq->ipsq_lock); 1199 *connpp = NULL; 1200 if (ipsq->ipsq_pending_mp == NULL) { 1201 mutex_exit(&ipsq->ipsq_lock); 1202 return (NULL); 1203 } 1204 1205 /* There can be only 1 such excl message */ 1206 curr = ipsq->ipsq_pending_mp; 1207 ASSERT(curr != NULL && curr->b_next == NULL); 1208 ipsq->ipsq_pending_ipif = NULL; 1209 ipsq->ipsq_pending_mp = NULL; 1210 ipsq->ipsq_waitfor = 0; 1211 mutex_exit(&ipsq->ipsq_lock); 1212 1213 if (CONN_Q(curr->b_queue)) { 1214 /* 1215 * This mp did a refhold on the conn, at the start of the ioctl. 1216 * So we can safely return a pointer to the conn to the caller. 1217 */ 1218 *connpp = Q_TO_CONN(curr->b_queue); 1219 } else { 1220 *connpp = NULL; 1221 } 1222 curr->b_next = NULL; 1223 curr->b_prev = NULL; 1224 return (curr); 1225 } 1226 1227 /* 1228 * Cleanup the ioctl mp queued in ipsq_pending_mp 1229 * - Called in the ill_delete path 1230 * - Called in the M_ERROR or M_HANGUP path on the ill. 1231 * - Called in the conn close path. 1232 */ 1233 boolean_t 1234 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1235 { 1236 mblk_t *mp; 1237 ipsq_t *ipsq; 1238 queue_t *q; 1239 ipif_t *ipif; 1240 1241 ASSERT(IAM_WRITER_ILL(ill)); 1242 ipsq = ill->ill_phyint->phyint_ipsq; 1243 mutex_enter(&ipsq->ipsq_lock); 1244 /* 1245 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1246 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1247 * even if it is meant for another ill, since we have to enqueue 1248 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1249 * If connp is non-null we are called from the conn close path. 1250 */ 1251 mp = ipsq->ipsq_pending_mp; 1252 if (mp == NULL || (connp != NULL && 1253 mp->b_queue != CONNP_TO_WQ(connp))) { 1254 mutex_exit(&ipsq->ipsq_lock); 1255 return (B_FALSE); 1256 } 1257 /* Now remove from the ipsq_pending_mp */ 1258 ipsq->ipsq_pending_mp = NULL; 1259 q = mp->b_queue; 1260 mp->b_next = NULL; 1261 mp->b_prev = NULL; 1262 mp->b_queue = NULL; 1263 1264 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1265 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1266 if (ill->ill_move_in_progress) { 1267 ILL_CLEAR_MOVE(ill); 1268 } else if (ill->ill_up_ipifs) { 1269 ill_group_cleanup(ill); 1270 } 1271 1272 ipif = ipsq->ipsq_pending_ipif; 1273 ipsq->ipsq_pending_ipif = NULL; 1274 ipsq->ipsq_waitfor = 0; 1275 ipsq->ipsq_current_ipif = NULL; 1276 mutex_exit(&ipsq->ipsq_lock); 1277 1278 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1279 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1280 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1281 } else { 1282 /* 1283 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1284 * be just inet_freemsg. we have to restart it 1285 * otherwise the thread will be stuck. 1286 */ 1287 inet_freemsg(mp); 1288 } 1289 return (B_TRUE); 1290 } 1291 1292 /* 1293 * The ill is closing. Cleanup all the pending mps. Called exclusively 1294 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1295 * knows this ill, and hence nobody can add an mp to this list 1296 */ 1297 static void 1298 ill_pending_mp_cleanup(ill_t *ill) 1299 { 1300 mblk_t *mp; 1301 queue_t *q; 1302 1303 ASSERT(IAM_WRITER_ILL(ill)); 1304 1305 mutex_enter(&ill->ill_lock); 1306 /* 1307 * Every mp on the pending mp list originating from an ioctl 1308 * added 1 to the conn refcnt, at the start of the ioctl. 1309 * So bump it down now. See comments in ip_wput_nondata() 1310 */ 1311 while (ill->ill_pending_mp != NULL) { 1312 mp = ill->ill_pending_mp; 1313 ill->ill_pending_mp = mp->b_next; 1314 mutex_exit(&ill->ill_lock); 1315 1316 q = mp->b_queue; 1317 ASSERT(CONN_Q(q)); 1318 mp->b_next = NULL; 1319 mp->b_prev = NULL; 1320 mp->b_queue = NULL; 1321 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1322 mutex_enter(&ill->ill_lock); 1323 } 1324 ill->ill_pending_ipif = NULL; 1325 1326 mutex_exit(&ill->ill_lock); 1327 } 1328 1329 /* 1330 * Called in the conn close path and ill delete path 1331 */ 1332 static void 1333 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1334 { 1335 ipsq_t *ipsq; 1336 mblk_t *prev; 1337 mblk_t *curr; 1338 mblk_t *next; 1339 queue_t *q; 1340 mblk_t *tmp_list = NULL; 1341 1342 ASSERT(IAM_WRITER_ILL(ill)); 1343 if (connp != NULL) 1344 q = CONNP_TO_WQ(connp); 1345 else 1346 q = ill->ill_wq; 1347 1348 ipsq = ill->ill_phyint->phyint_ipsq; 1349 /* 1350 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1351 * In the case of ioctl from a conn, there can be only 1 mp 1352 * queued on the ipsq. If an ill is being unplumbed, only messages 1353 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1354 * ioctls meant for this ill form conn's are not flushed. They will 1355 * be processed during ipsq_exit and will not find the ill and will 1356 * return error. 1357 */ 1358 mutex_enter(&ipsq->ipsq_lock); 1359 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1360 curr = next) { 1361 next = curr->b_next; 1362 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1363 /* Unlink the mblk from the pending mp list */ 1364 if (prev != NULL) { 1365 prev->b_next = curr->b_next; 1366 } else { 1367 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1368 ipsq->ipsq_xopq_mphead = curr->b_next; 1369 } 1370 if (ipsq->ipsq_xopq_mptail == curr) 1371 ipsq->ipsq_xopq_mptail = prev; 1372 /* 1373 * Create a temporary list and release the ipsq lock 1374 * New elements are added to the head of the tmp_list 1375 */ 1376 curr->b_next = tmp_list; 1377 tmp_list = curr; 1378 } else { 1379 prev = curr; 1380 } 1381 } 1382 mutex_exit(&ipsq->ipsq_lock); 1383 1384 while (tmp_list != NULL) { 1385 curr = tmp_list; 1386 tmp_list = curr->b_next; 1387 curr->b_next = NULL; 1388 curr->b_prev = NULL; 1389 curr->b_queue = NULL; 1390 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1391 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1392 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1393 } else { 1394 /* 1395 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1396 * this can't be just inet_freemsg. we have to 1397 * restart it otherwise the thread will be stuck. 1398 */ 1399 inet_freemsg(curr); 1400 } 1401 } 1402 } 1403 1404 /* 1405 * This conn has started closing. Cleanup any pending ioctl from this conn. 1406 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1407 */ 1408 void 1409 conn_ioctl_cleanup(conn_t *connp) 1410 { 1411 mblk_t *curr; 1412 ipsq_t *ipsq; 1413 ill_t *ill; 1414 boolean_t refheld; 1415 1416 /* 1417 * Is any exclusive ioctl pending ? If so clean it up. If the 1418 * ioctl has not yet started, the mp is pending in the list headed by 1419 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1420 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1421 * is currently executing now the mp is not queued anywhere but 1422 * conn_oper_pending_ill is null. The conn close will wait 1423 * till the conn_ref drops to zero. 1424 */ 1425 mutex_enter(&connp->conn_lock); 1426 ill = connp->conn_oper_pending_ill; 1427 if (ill == NULL) { 1428 mutex_exit(&connp->conn_lock); 1429 return; 1430 } 1431 1432 curr = ill_pending_mp_get(ill, &connp, 0); 1433 if (curr != NULL) { 1434 mutex_exit(&connp->conn_lock); 1435 CONN_DEC_REF(connp); 1436 inet_freemsg(curr); 1437 return; 1438 } 1439 /* 1440 * We may not be able to refhold the ill if the ill/ipif 1441 * is changing. But we need to make sure that the ill will 1442 * not vanish. So we just bump up the ill_waiter count. 1443 */ 1444 refheld = ill_waiter_inc(ill); 1445 mutex_exit(&connp->conn_lock); 1446 if (refheld) { 1447 if (ipsq_enter(ill, B_TRUE)) { 1448 ill_waiter_dcr(ill); 1449 /* 1450 * Check whether this ioctl has started and is 1451 * pending now in ipsq_pending_mp. If it is not 1452 * found there then check whether this ioctl has 1453 * not even started and is in the ipsq_xopq list. 1454 */ 1455 if (!ipsq_pending_mp_cleanup(ill, connp)) 1456 ipsq_xopq_mp_cleanup(ill, connp); 1457 ipsq = ill->ill_phyint->phyint_ipsq; 1458 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1459 return; 1460 } 1461 } 1462 1463 /* 1464 * The ill is also closing and we could not bump up the 1465 * ill_waiter_count or we could not enter the ipsq. Leave 1466 * the cleanup to ill_delete 1467 */ 1468 mutex_enter(&connp->conn_lock); 1469 while (connp->conn_oper_pending_ill != NULL) 1470 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1471 mutex_exit(&connp->conn_lock); 1472 if (refheld) 1473 ill_waiter_dcr(ill); 1474 } 1475 1476 /* 1477 * ipcl_walk function for cleaning up conn_*_ill fields. 1478 */ 1479 static void 1480 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1481 { 1482 ill_t *ill = (ill_t *)arg; 1483 ire_t *ire; 1484 1485 mutex_enter(&connp->conn_lock); 1486 if (connp->conn_multicast_ill == ill) { 1487 /* Revert to late binding */ 1488 connp->conn_multicast_ill = NULL; 1489 connp->conn_orig_multicast_ifindex = 0; 1490 } 1491 if (connp->conn_incoming_ill == ill) 1492 connp->conn_incoming_ill = NULL; 1493 if (connp->conn_outgoing_ill == ill) 1494 connp->conn_outgoing_ill = NULL; 1495 if (connp->conn_outgoing_pill == ill) 1496 connp->conn_outgoing_pill = NULL; 1497 if (connp->conn_nofailover_ill == ill) 1498 connp->conn_nofailover_ill = NULL; 1499 if (connp->conn_xmit_if_ill == ill) 1500 connp->conn_xmit_if_ill = NULL; 1501 if (connp->conn_ire_cache != NULL) { 1502 ire = connp->conn_ire_cache; 1503 /* 1504 * ip_newroute creates IRE_CACHE with ire_stq coming from 1505 * interface X and ipif coming from interface Y, if interface 1506 * X and Y are part of the same IPMPgroup. Thus whenever 1507 * interface X goes down, remove all references to it by 1508 * checking both on ire_ipif and ire_stq. 1509 */ 1510 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1511 (ire->ire_type == IRE_CACHE && 1512 ire->ire_stq == ill->ill_wq)) { 1513 connp->conn_ire_cache = NULL; 1514 mutex_exit(&connp->conn_lock); 1515 ire_refrele_notr(ire); 1516 return; 1517 } 1518 } 1519 mutex_exit(&connp->conn_lock); 1520 1521 } 1522 1523 /* ARGSUSED */ 1524 void 1525 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1526 { 1527 ill_t *ill = q->q_ptr; 1528 ipif_t *ipif; 1529 1530 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1531 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1532 ipif_non_duplicate(ipif); 1533 ipif_down_tail(ipif); 1534 } 1535 ill_down_tail(ill); 1536 freemsg(mp); 1537 ipsq->ipsq_current_ipif = NULL; 1538 } 1539 1540 /* 1541 * ill_down_start is called when we want to down this ill and bring it up again 1542 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1543 * all interfaces, but don't tear down any plumbing. 1544 */ 1545 boolean_t 1546 ill_down_start(queue_t *q, mblk_t *mp) 1547 { 1548 ill_t *ill; 1549 ipif_t *ipif; 1550 1551 ill = q->q_ptr; 1552 1553 ASSERT(IAM_WRITER_ILL(ill)); 1554 1555 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1556 (void) ipif_down(ipif, NULL, NULL); 1557 1558 ill_down(ill); 1559 1560 (void) ipsq_pending_mp_cleanup(ill, NULL); 1561 mutex_enter(&ill->ill_lock); 1562 /* 1563 * Atomically test and add the pending mp if references are 1564 * still active. 1565 */ 1566 if (!ill_is_quiescent(ill)) { 1567 /* 1568 * Get rid of any pending mps and cleanup. Call will 1569 * not fail since we are passing a null connp. 1570 */ 1571 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1572 mp, ILL_DOWN); 1573 mutex_exit(&ill->ill_lock); 1574 return (B_FALSE); 1575 } 1576 mutex_exit(&ill->ill_lock); 1577 return (B_TRUE); 1578 } 1579 1580 static void 1581 ill_down(ill_t *ill) 1582 { 1583 /* Blow off any IREs dependent on this ILL. */ 1584 ire_walk(ill_downi, (char *)ill); 1585 1586 mutex_enter(&ire_mrtun_lock); 1587 if (ire_mrtun_count != 0) { 1588 mutex_exit(&ire_mrtun_lock); 1589 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1590 (char *)ill, NULL); 1591 } else { 1592 mutex_exit(&ire_mrtun_lock); 1593 } 1594 1595 /* 1596 * If any interface based forwarding table exists 1597 * Blow off the ires there dependent on this ill 1598 */ 1599 mutex_enter(&ire_srcif_table_lock); 1600 if (ire_srcif_table_count > 0) { 1601 mutex_exit(&ire_srcif_table_lock); 1602 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1603 } else { 1604 mutex_exit(&ire_srcif_table_lock); 1605 } 1606 1607 /* Remove any conn_*_ill depending on this ill */ 1608 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1609 1610 if (ill->ill_group != NULL) { 1611 illgrp_delete(ill); 1612 } 1613 1614 } 1615 1616 static void 1617 ill_down_tail(ill_t *ill) 1618 { 1619 int i; 1620 1621 /* Destroy ill_srcif_table if it exists */ 1622 /* Lock not reqd really because nobody should be able to access */ 1623 mutex_enter(&ill->ill_lock); 1624 if (ill->ill_srcif_table != NULL) { 1625 ill->ill_srcif_refcnt = 0; 1626 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1627 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1628 } 1629 kmem_free(ill->ill_srcif_table, 1630 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1631 ill->ill_srcif_table = NULL; 1632 ill->ill_srcif_refcnt = 0; 1633 ill->ill_mrtun_refcnt = 0; 1634 } 1635 mutex_exit(&ill->ill_lock); 1636 } 1637 1638 /* 1639 * ire_walk routine used to delete every IRE that depends on queues 1640 * associated with 'ill'. (Always called as writer.) 1641 */ 1642 static void 1643 ill_downi(ire_t *ire, char *ill_arg) 1644 { 1645 ill_t *ill = (ill_t *)ill_arg; 1646 1647 /* 1648 * ip_newroute creates IRE_CACHE with ire_stq coming from 1649 * interface X and ipif coming from interface Y, if interface 1650 * X and Y are part of the same IPMP group. Thus whenever interface 1651 * X goes down, remove all references to it by checking both 1652 * on ire_ipif and ire_stq. 1653 */ 1654 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1655 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1656 ire_delete(ire); 1657 } 1658 } 1659 1660 /* 1661 * A seperate routine for deleting revtun and srcif based routes 1662 * are needed because the ires only deleted when the interface 1663 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1664 * we want to keep mobile IP specific code separate. 1665 */ 1666 static void 1667 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1668 { 1669 ill_t *ill = (ill_t *)ill_arg; 1670 1671 ASSERT(ire->ire_in_ill != NULL); 1672 1673 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1674 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1675 ire_delete(ire); 1676 } 1677 } 1678 1679 /* 1680 * Remove ire/nce from the fastpath list. 1681 */ 1682 void 1683 ill_fastpath_nack(ill_t *ill) 1684 { 1685 if (ill->ill_isv6) { 1686 nce_fastpath_list_dispatch(ill, NULL, NULL); 1687 } else { 1688 ire_fastpath_list_dispatch(ill, NULL, NULL); 1689 } 1690 } 1691 1692 /* Consume an M_IOCACK of the fastpath probe. */ 1693 void 1694 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1695 { 1696 mblk_t *mp1 = mp; 1697 1698 /* 1699 * If this was the first attempt turn on the fastpath probing. 1700 */ 1701 mutex_enter(&ill->ill_lock); 1702 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) 1703 ill->ill_dlpi_fastpath_state = IDMS_OK; 1704 mutex_exit(&ill->ill_lock); 1705 1706 /* Free the M_IOCACK mblk, hold on to the data */ 1707 mp = mp->b_cont; 1708 freeb(mp1); 1709 if (mp == NULL) 1710 return; 1711 if (mp->b_cont != NULL) { 1712 /* 1713 * Update all IRE's or NCE's that are waiting for 1714 * fastpath update. 1715 */ 1716 if (ill->ill_isv6) { 1717 /* 1718 * update nce's in the fastpath list. 1719 */ 1720 nce_fastpath_list_dispatch(ill, 1721 ndp_fastpath_update, mp); 1722 } else { 1723 1724 /* 1725 * update ire's in the fastpath list. 1726 */ 1727 ire_fastpath_list_dispatch(ill, 1728 ire_fastpath_update, mp); 1729 /* 1730 * Check if we need to traverse reverse tunnel table. 1731 * Since there is only single ire_type (IRE_MIPRTUN) 1732 * in the table, we don't need to match on ire_type. 1733 * We have to check ire_mrtun_count and not the 1734 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1735 * on the incoming ill and here we are dealing with 1736 * outgoing ill. 1737 */ 1738 mutex_enter(&ire_mrtun_lock); 1739 if (ire_mrtun_count != 0) { 1740 mutex_exit(&ire_mrtun_lock); 1741 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1742 (void (*)(ire_t *, void *)) 1743 ire_fastpath_update, mp, ill); 1744 } else { 1745 mutex_exit(&ire_mrtun_lock); 1746 } 1747 } 1748 mp1 = mp->b_cont; 1749 freeb(mp); 1750 mp = mp1; 1751 } else { 1752 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1753 } 1754 1755 freeb(mp); 1756 } 1757 1758 /* 1759 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1760 * The data portion of the request is a dl_unitdata_req_t template for 1761 * what we would send downstream in the absence of a fastpath confirmation. 1762 */ 1763 int 1764 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1765 { 1766 struct iocblk *ioc; 1767 mblk_t *mp; 1768 1769 if (dlur_mp == NULL) 1770 return (EINVAL); 1771 1772 mutex_enter(&ill->ill_lock); 1773 switch (ill->ill_dlpi_fastpath_state) { 1774 case IDMS_FAILED: 1775 /* 1776 * Driver NAKed the first fastpath ioctl - assume it doesn't 1777 * support it. 1778 */ 1779 mutex_exit(&ill->ill_lock); 1780 return (ENOTSUP); 1781 case IDMS_UNKNOWN: 1782 /* This is the first probe */ 1783 ill->ill_dlpi_fastpath_state = IDMS_INPROGRESS; 1784 break; 1785 default: 1786 break; 1787 } 1788 mutex_exit(&ill->ill_lock); 1789 1790 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1791 return (EAGAIN); 1792 1793 mp->b_cont = copyb(dlur_mp); 1794 if (mp->b_cont == NULL) { 1795 freeb(mp); 1796 return (EAGAIN); 1797 } 1798 1799 ioc = (struct iocblk *)mp->b_rptr; 1800 ioc->ioc_count = msgdsize(mp->b_cont); 1801 1802 putnext(ill->ill_wq, mp); 1803 return (0); 1804 } 1805 1806 void 1807 ill_capability_probe(ill_t *ill) 1808 { 1809 /* 1810 * Do so only if negotiation is enabled, capabilities are unknown, 1811 * and a capability negotiation is not already in progress. 1812 */ 1813 if (ill->ill_capab_state != IDMS_UNKNOWN && 1814 ill->ill_capab_state != IDMS_RENEG) 1815 return; 1816 1817 ill->ill_capab_state = IDMS_INPROGRESS; 1818 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1819 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1820 } 1821 1822 void 1823 ill_capability_reset(ill_t *ill) 1824 { 1825 mblk_t *sc_mp = NULL; 1826 mblk_t *tmp; 1827 1828 /* 1829 * Note here that we reset the state to UNKNOWN, and later send 1830 * down the DL_CAPABILITY_REQ without first setting the state to 1831 * INPROGRESS. We do this in order to distinguish the 1832 * DL_CAPABILITY_ACK response which may come back in response to 1833 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1834 * also handle the case where the driver doesn't send us back 1835 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1836 * requires the state to be in UNKNOWN anyway. In any case, all 1837 * features are turned off until the state reaches IDMS_OK. 1838 */ 1839 ill->ill_capab_state = IDMS_UNKNOWN; 1840 1841 /* 1842 * Disable sub-capabilities and request a list of sub-capability 1843 * messages which will be sent down to the driver. Each handler 1844 * allocates the corresponding dl_capability_sub_t inside an 1845 * mblk, and links it to the existing sc_mp mblk, or return it 1846 * as sc_mp if it's the first sub-capability (the passed in 1847 * sc_mp is NULL). Upon returning from all capability handlers, 1848 * sc_mp will be pulled-up, before passing it downstream. 1849 */ 1850 ill_capability_mdt_reset(ill, &sc_mp); 1851 ill_capability_hcksum_reset(ill, &sc_mp); 1852 ill_capability_zerocopy_reset(ill, &sc_mp); 1853 ill_capability_ipsec_reset(ill, &sc_mp); 1854 ill_capability_dls_reset(ill, &sc_mp); 1855 1856 /* Nothing to send down in order to disable the capabilities? */ 1857 if (sc_mp == NULL) 1858 return; 1859 1860 tmp = msgpullup(sc_mp, -1); 1861 freemsg(sc_mp); 1862 if ((sc_mp = tmp) == NULL) { 1863 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1864 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1865 return; 1866 } 1867 1868 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1869 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1870 } 1871 1872 /* 1873 * Request or set new-style hardware capabilities supported by DLS provider. 1874 */ 1875 static void 1876 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1877 { 1878 mblk_t *mp; 1879 dl_capability_req_t *capb; 1880 size_t size = 0; 1881 uint8_t *ptr; 1882 1883 if (reqp != NULL) 1884 size = MBLKL(reqp); 1885 1886 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1887 if (mp == NULL) { 1888 freemsg(reqp); 1889 return; 1890 } 1891 ptr = mp->b_rptr; 1892 1893 capb = (dl_capability_req_t *)ptr; 1894 ptr += sizeof (dl_capability_req_t); 1895 1896 if (reqp != NULL) { 1897 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1898 capb->dl_sub_length = size; 1899 bcopy(reqp->b_rptr, ptr, size); 1900 ptr += size; 1901 mp->b_cont = reqp->b_cont; 1902 freeb(reqp); 1903 } 1904 ASSERT(ptr == mp->b_wptr); 1905 1906 ill_dlpi_send(ill, mp); 1907 } 1908 1909 static void 1910 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1911 { 1912 dl_capab_id_t *id_ic; 1913 uint_t sub_dl_cap = outers->dl_cap; 1914 dl_capability_sub_t *inners; 1915 uint8_t *capend; 1916 1917 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1918 1919 /* 1920 * Note: range checks here are not absolutely sufficient to 1921 * make us robust against malformed messages sent by drivers; 1922 * this is in keeping with the rest of IP's dlpi handling. 1923 * (Remember, it's coming from something else in the kernel 1924 * address space) 1925 */ 1926 1927 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1928 if (capend > mp->b_wptr) { 1929 cmn_err(CE_WARN, "ill_capability_id_ack: " 1930 "malformed sub-capability too long for mblk"); 1931 return; 1932 } 1933 1934 id_ic = (dl_capab_id_t *)(outers + 1); 1935 1936 if (outers->dl_length < sizeof (*id_ic) || 1937 (inners = &id_ic->id_subcap, 1938 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1939 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1940 "encapsulated capab type %d too long for mblk", 1941 inners->dl_cap); 1942 return; 1943 } 1944 1945 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1946 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1947 "isn't as expected; pass-thru module(s) detected, " 1948 "discarding capability\n", inners->dl_cap)); 1949 return; 1950 } 1951 1952 /* Process the encapsulated sub-capability */ 1953 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1954 } 1955 1956 /* 1957 * Process Multidata Transmit capability negotiation ack received from a 1958 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1959 * DL_CAPABILITY_ACK message. 1960 */ 1961 static void 1962 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1963 { 1964 mblk_t *nmp = NULL; 1965 dl_capability_req_t *oc; 1966 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1967 ill_mdt_capab_t **ill_mdt_capab; 1968 uint_t sub_dl_cap = isub->dl_cap; 1969 uint8_t *capend; 1970 1971 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1972 1973 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1974 1975 /* 1976 * Note: range checks here are not absolutely sufficient to 1977 * make us robust against malformed messages sent by drivers; 1978 * this is in keeping with the rest of IP's dlpi handling. 1979 * (Remember, it's coming from something else in the kernel 1980 * address space) 1981 */ 1982 1983 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1984 if (capend > mp->b_wptr) { 1985 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1986 "malformed sub-capability too long for mblk"); 1987 return; 1988 } 1989 1990 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1991 1992 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1993 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1994 "unsupported MDT sub-capability (version %d, expected %d)", 1995 mdt_ic->mdt_version, MDT_VERSION_2); 1996 return; 1997 } 1998 1999 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 2000 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 2001 "capability isn't as expected; pass-thru module(s) " 2002 "detected, discarding capability\n")); 2003 return; 2004 } 2005 2006 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2007 2008 if (*ill_mdt_capab == NULL) { 2009 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2010 KM_NOSLEEP); 2011 2012 if (*ill_mdt_capab == NULL) { 2013 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2014 "could not enable MDT version %d " 2015 "for %s (ENOMEM)\n", MDT_VERSION_2, 2016 ill->ill_name); 2017 return; 2018 } 2019 } 2020 2021 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2022 "MDT version %d (%d bytes leading, %d bytes trailing " 2023 "header spaces, %d max pld bufs, %d span limit)\n", 2024 ill->ill_name, MDT_VERSION_2, 2025 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2026 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2027 2028 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2029 (*ill_mdt_capab)->ill_mdt_on = 1; 2030 /* 2031 * Round the following values to the nearest 32-bit; ULP 2032 * may further adjust them to accomodate for additional 2033 * protocol headers. We pass these values to ULP during 2034 * bind time. 2035 */ 2036 (*ill_mdt_capab)->ill_mdt_hdr_head = 2037 roundup(mdt_ic->mdt_hdr_head, 4); 2038 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2039 roundup(mdt_ic->mdt_hdr_tail, 4); 2040 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2041 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2042 2043 ill->ill_capabilities |= ILL_CAPAB_MDT; 2044 } else { 2045 uint_t size; 2046 uchar_t *rptr; 2047 2048 size = sizeof (dl_capability_req_t) + 2049 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2050 2051 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2052 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2053 "could not enable MDT for %s (ENOMEM)\n", 2054 ill->ill_name); 2055 return; 2056 } 2057 2058 rptr = nmp->b_rptr; 2059 /* initialize dl_capability_req_t */ 2060 oc = (dl_capability_req_t *)nmp->b_rptr; 2061 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2062 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2063 sizeof (dl_capab_mdt_t); 2064 nmp->b_rptr += sizeof (dl_capability_req_t); 2065 2066 /* initialize dl_capability_sub_t */ 2067 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2068 nmp->b_rptr += sizeof (*isub); 2069 2070 /* initialize dl_capab_mdt_t */ 2071 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2072 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2073 2074 nmp->b_rptr = rptr; 2075 2076 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2077 "to enable MDT version %d\n", ill->ill_name, 2078 MDT_VERSION_2)); 2079 2080 /* set ENABLE flag */ 2081 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2082 2083 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2084 ill_dlpi_send(ill, nmp); 2085 } 2086 } 2087 2088 static void 2089 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2090 { 2091 mblk_t *mp; 2092 dl_capab_mdt_t *mdt_subcap; 2093 dl_capability_sub_t *dl_subcap; 2094 int size; 2095 2096 if (!ILL_MDT_CAPABLE(ill)) 2097 return; 2098 2099 ASSERT(ill->ill_mdt_capab != NULL); 2100 /* 2101 * Clear the capability flag for MDT but retain the ill_mdt_capab 2102 * structure since it's possible that another thread is still 2103 * referring to it. The structure only gets deallocated when 2104 * we destroy the ill. 2105 */ 2106 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2107 2108 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2109 2110 mp = allocb(size, BPRI_HI); 2111 if (mp == NULL) { 2112 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2113 "request to disable MDT\n")); 2114 return; 2115 } 2116 2117 mp->b_wptr = mp->b_rptr + size; 2118 2119 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2120 dl_subcap->dl_cap = DL_CAPAB_MDT; 2121 dl_subcap->dl_length = sizeof (*mdt_subcap); 2122 2123 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2124 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2125 mdt_subcap->mdt_flags = 0; 2126 mdt_subcap->mdt_hdr_head = 0; 2127 mdt_subcap->mdt_hdr_tail = 0; 2128 2129 if (*sc_mp != NULL) 2130 linkb(*sc_mp, mp); 2131 else 2132 *sc_mp = mp; 2133 } 2134 2135 /* 2136 * Send a DL_NOTIFY_REQ to the specified ill to enable 2137 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2138 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2139 * acceleration. 2140 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2141 */ 2142 static boolean_t 2143 ill_enable_promisc_notify(ill_t *ill) 2144 { 2145 mblk_t *mp; 2146 dl_notify_req_t *req; 2147 2148 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2149 2150 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2151 if (mp == NULL) 2152 return (B_FALSE); 2153 2154 req = (dl_notify_req_t *)mp->b_rptr; 2155 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2156 DL_NOTE_PROMISC_OFF_PHYS; 2157 2158 ill_dlpi_send(ill, mp); 2159 2160 return (B_TRUE); 2161 } 2162 2163 2164 /* 2165 * Allocate an IPsec capability request which will be filled by our 2166 * caller to turn on support for one or more algorithms. 2167 */ 2168 static mblk_t * 2169 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2170 { 2171 mblk_t *nmp; 2172 dl_capability_req_t *ocap; 2173 dl_capab_ipsec_t *ocip; 2174 dl_capab_ipsec_t *icip; 2175 uint8_t *ptr; 2176 icip = (dl_capab_ipsec_t *)(isub + 1); 2177 2178 /* 2179 * The first time around, we send a DL_NOTIFY_REQ to enable 2180 * PROMISC_ON/OFF notification from the provider. We need to 2181 * do this before enabling the algorithms to avoid leakage of 2182 * cleartext packets. 2183 */ 2184 2185 if (!ill_enable_promisc_notify(ill)) 2186 return (NULL); 2187 2188 /* 2189 * Allocate new mblk which will contain a new capability 2190 * request to enable the capabilities. 2191 */ 2192 2193 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2194 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2195 if (nmp == NULL) 2196 return (NULL); 2197 2198 ptr = nmp->b_rptr; 2199 2200 /* initialize dl_capability_req_t */ 2201 ocap = (dl_capability_req_t *)ptr; 2202 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2203 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2204 ptr += sizeof (dl_capability_req_t); 2205 2206 /* initialize dl_capability_sub_t */ 2207 bcopy(isub, ptr, sizeof (*isub)); 2208 ptr += sizeof (*isub); 2209 2210 /* initialize dl_capab_ipsec_t */ 2211 ocip = (dl_capab_ipsec_t *)ptr; 2212 bcopy(icip, ocip, sizeof (*icip)); 2213 2214 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2215 return (nmp); 2216 } 2217 2218 /* 2219 * Process an IPsec capability negotiation ack received from a DLS Provider. 2220 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2221 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2222 */ 2223 static void 2224 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2225 { 2226 dl_capab_ipsec_t *icip; 2227 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2228 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2229 uint_t cipher, nciphers; 2230 mblk_t *nmp; 2231 uint_t alg_len; 2232 boolean_t need_sadb_dump; 2233 uint_t sub_dl_cap = isub->dl_cap; 2234 ill_ipsec_capab_t **ill_capab; 2235 uint64_t ill_capab_flag; 2236 uint8_t *capend, *ciphend; 2237 boolean_t sadb_resync; 2238 2239 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2240 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2241 2242 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2243 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2244 ill_capab_flag = ILL_CAPAB_AH; 2245 } else { 2246 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2247 ill_capab_flag = ILL_CAPAB_ESP; 2248 } 2249 2250 /* 2251 * If the ill capability structure exists, then this incoming 2252 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2253 * If this is so, then we'd need to resynchronize the SADB 2254 * after re-enabling the offloaded ciphers. 2255 */ 2256 sadb_resync = (*ill_capab != NULL); 2257 2258 /* 2259 * Note: range checks here are not absolutely sufficient to 2260 * make us robust against malformed messages sent by drivers; 2261 * this is in keeping with the rest of IP's dlpi handling. 2262 * (Remember, it's coming from something else in the kernel 2263 * address space) 2264 */ 2265 2266 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2267 if (capend > mp->b_wptr) { 2268 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2269 "malformed sub-capability too long for mblk"); 2270 return; 2271 } 2272 2273 /* 2274 * There are two types of acks we process here: 2275 * 1. acks in reply to a (first form) generic capability req 2276 * (no ENABLE flag set) 2277 * 2. acks in reply to a ENABLE capability req. 2278 * (ENABLE flag set) 2279 * 2280 * We process the subcapability passed as argument as follows: 2281 * 1 do initializations 2282 * 1.1 initialize nmp = NULL 2283 * 1.2 set need_sadb_dump to B_FALSE 2284 * 2 for each cipher in subcapability: 2285 * 2.1 if ENABLE flag is set: 2286 * 2.1.1 update per-ill ipsec capabilities info 2287 * 2.1.2 set need_sadb_dump to B_TRUE 2288 * 2.2 if ENABLE flag is not set: 2289 * 2.2.1 if nmp is NULL: 2290 * 2.2.1.1 allocate and initialize nmp 2291 * 2.2.1.2 init current pos in nmp 2292 * 2.2.2 copy current cipher to current pos in nmp 2293 * 2.2.3 set ENABLE flag in nmp 2294 * 2.2.4 update current pos 2295 * 3 if nmp is not equal to NULL, send enable request 2296 * 3.1 send capability request 2297 * 4 if need_sadb_dump is B_TRUE 2298 * 4.1 enable promiscuous on/off notifications 2299 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2300 * AH or ESP SA's to interface. 2301 */ 2302 2303 nmp = NULL; 2304 oalg = NULL; 2305 need_sadb_dump = B_FALSE; 2306 icip = (dl_capab_ipsec_t *)(isub + 1); 2307 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2308 2309 nciphers = icip->cip_nciphers; 2310 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2311 2312 if (ciphend > capend) { 2313 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2314 "too many ciphers for sub-capability len"); 2315 return; 2316 } 2317 2318 for (cipher = 0; cipher < nciphers; cipher++) { 2319 alg_len = sizeof (dl_capab_ipsec_alg_t); 2320 2321 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2322 /* 2323 * TBD: when we provide a way to disable capabilities 2324 * from above, need to manage the request-pending state 2325 * and fail if we were not expecting this ACK. 2326 */ 2327 IPSECHW_DEBUG(IPSECHW_CAPAB, 2328 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2329 2330 /* 2331 * Update IPsec capabilities for this ill 2332 */ 2333 2334 if (*ill_capab == NULL) { 2335 IPSECHW_DEBUG(IPSECHW_CAPAB, 2336 ("ill_capability_ipsec_ack: " 2337 "allocating ipsec_capab for ill\n")); 2338 *ill_capab = ill_ipsec_capab_alloc(); 2339 2340 if (*ill_capab == NULL) { 2341 cmn_err(CE_WARN, 2342 "ill_capability_ipsec_ack: " 2343 "could not enable IPsec Hardware " 2344 "acceleration for %s (ENOMEM)\n", 2345 ill->ill_name); 2346 return; 2347 } 2348 } 2349 2350 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2351 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2352 2353 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2354 cmn_err(CE_WARN, 2355 "ill_capability_ipsec_ack: " 2356 "malformed IPsec algorithm id %d", 2357 ialg->alg_prim); 2358 continue; 2359 } 2360 2361 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2362 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2363 ialg->alg_prim); 2364 } else { 2365 ipsec_capab_algparm_t *alp; 2366 2367 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2368 ialg->alg_prim); 2369 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2370 ialg->alg_prim)) { 2371 cmn_err(CE_WARN, 2372 "ill_capability_ipsec_ack: " 2373 "no space for IPsec alg id %d", 2374 ialg->alg_prim); 2375 continue; 2376 } 2377 alp = &((*ill_capab)->encr_algparm[ 2378 ialg->alg_prim]); 2379 alp->minkeylen = ialg->alg_minbits; 2380 alp->maxkeylen = ialg->alg_maxbits; 2381 } 2382 ill->ill_capabilities |= ill_capab_flag; 2383 /* 2384 * indicate that a capability was enabled, which 2385 * will be used below to kick off a SADB dump 2386 * to the ill. 2387 */ 2388 need_sadb_dump = B_TRUE; 2389 } else { 2390 IPSECHW_DEBUG(IPSECHW_CAPAB, 2391 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2392 ialg->alg_prim)); 2393 2394 if (nmp == NULL) { 2395 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2396 if (nmp == NULL) { 2397 /* 2398 * Sending the PROMISC_ON/OFF 2399 * notification request failed. 2400 * We cannot enable the algorithms 2401 * since the Provider will not 2402 * notify IP of promiscous mode 2403 * changes, which could lead 2404 * to leakage of packets. 2405 */ 2406 cmn_err(CE_WARN, 2407 "ill_capability_ipsec_ack: " 2408 "could not enable IPsec Hardware " 2409 "acceleration for %s (ENOMEM)\n", 2410 ill->ill_name); 2411 return; 2412 } 2413 /* ptr to current output alg specifier */ 2414 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2415 } 2416 2417 /* 2418 * Copy current alg specifier, set ENABLE 2419 * flag, and advance to next output alg. 2420 * For now we enable all IPsec capabilities. 2421 */ 2422 ASSERT(oalg != NULL); 2423 bcopy(ialg, oalg, alg_len); 2424 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2425 nmp->b_wptr += alg_len; 2426 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2427 } 2428 2429 /* move to next input algorithm specifier */ 2430 ialg = (dl_capab_ipsec_alg_t *) 2431 ((char *)ialg + alg_len); 2432 } 2433 2434 if (nmp != NULL) 2435 /* 2436 * nmp points to a DL_CAPABILITY_REQ message to enable 2437 * IPsec hardware acceleration. 2438 */ 2439 ill_dlpi_send(ill, nmp); 2440 2441 if (need_sadb_dump) 2442 /* 2443 * An acknowledgement corresponding to a request to 2444 * enable acceleration was received, notify SADB. 2445 */ 2446 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2447 } 2448 2449 /* 2450 * Given an mblk with enough space in it, create sub-capability entries for 2451 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2452 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2453 * in preparation for the reset the DL_CAPABILITY_REQ message. 2454 */ 2455 static void 2456 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2457 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2458 { 2459 dl_capab_ipsec_t *oipsec; 2460 dl_capab_ipsec_alg_t *oalg; 2461 dl_capability_sub_t *dl_subcap; 2462 int i, k; 2463 2464 ASSERT(nciphers > 0); 2465 ASSERT(ill_cap != NULL); 2466 ASSERT(mp != NULL); 2467 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2468 2469 /* dl_capability_sub_t for "stype" */ 2470 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2471 dl_subcap->dl_cap = stype; 2472 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2473 mp->b_wptr += sizeof (dl_capability_sub_t); 2474 2475 /* dl_capab_ipsec_t for "stype" */ 2476 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2477 oipsec->cip_version = 1; 2478 oipsec->cip_nciphers = nciphers; 2479 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2480 2481 /* create entries for "stype" AUTH ciphers */ 2482 for (i = 0; i < ill_cap->algs_size; i++) { 2483 for (k = 0; k < BITSPERBYTE; k++) { 2484 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2485 continue; 2486 2487 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2488 bzero((void *)oalg, sizeof (*oalg)); 2489 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2490 oalg->alg_prim = k + (BITSPERBYTE * i); 2491 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2492 } 2493 } 2494 /* create entries for "stype" ENCR ciphers */ 2495 for (i = 0; i < ill_cap->algs_size; i++) { 2496 for (k = 0; k < BITSPERBYTE; k++) { 2497 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2498 continue; 2499 2500 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2501 bzero((void *)oalg, sizeof (*oalg)); 2502 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2503 oalg->alg_prim = k + (BITSPERBYTE * i); 2504 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2505 } 2506 } 2507 } 2508 2509 /* 2510 * Macro to count number of 1s in a byte (8-bit word). The total count is 2511 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2512 * POPC instruction, but our macro is more flexible for an arbitrary length 2513 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2514 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2515 * stays that way, we can reduce the number of iterations required. 2516 */ 2517 #define COUNT_1S(val, sum) { \ 2518 uint8_t x = val & 0xff; \ 2519 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2520 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2521 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2522 } 2523 2524 /* ARGSUSED */ 2525 static void 2526 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2527 { 2528 mblk_t *mp; 2529 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2530 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2531 uint64_t ill_capabilities = ill->ill_capabilities; 2532 int ah_cnt = 0, esp_cnt = 0; 2533 int ah_len = 0, esp_len = 0; 2534 int i, size = 0; 2535 2536 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2537 return; 2538 2539 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2540 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2541 2542 /* Find out the number of ciphers for AH */ 2543 if (cap_ah != NULL) { 2544 for (i = 0; i < cap_ah->algs_size; i++) { 2545 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2546 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2547 } 2548 if (ah_cnt > 0) { 2549 size += sizeof (dl_capability_sub_t) + 2550 sizeof (dl_capab_ipsec_t); 2551 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2552 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2553 size += ah_len; 2554 } 2555 } 2556 2557 /* Find out the number of ciphers for ESP */ 2558 if (cap_esp != NULL) { 2559 for (i = 0; i < cap_esp->algs_size; i++) { 2560 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2561 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2562 } 2563 if (esp_cnt > 0) { 2564 size += sizeof (dl_capability_sub_t) + 2565 sizeof (dl_capab_ipsec_t); 2566 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2567 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2568 size += esp_len; 2569 } 2570 } 2571 2572 if (size == 0) { 2573 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2574 "there's nothing to reset\n")); 2575 return; 2576 } 2577 2578 mp = allocb(size, BPRI_HI); 2579 if (mp == NULL) { 2580 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2581 "request to disable IPSEC Hardware Acceleration\n")); 2582 return; 2583 } 2584 2585 /* 2586 * Clear the capability flags for IPSec HA but retain the ill 2587 * capability structures since it's possible that another thread 2588 * is still referring to them. The structures only get deallocated 2589 * when we destroy the ill. 2590 * 2591 * Various places check the flags to see if the ill is capable of 2592 * hardware acceleration, and by clearing them we ensure that new 2593 * outbound IPSec packets are sent down encrypted. 2594 */ 2595 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2596 2597 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2598 if (ah_cnt > 0) { 2599 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2600 cap_ah, mp); 2601 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2602 } 2603 2604 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2605 if (esp_cnt > 0) { 2606 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2607 cap_esp, mp); 2608 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2609 } 2610 2611 /* 2612 * At this point we've composed a bunch of sub-capabilities to be 2613 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2614 * by the caller. Upon receiving this reset message, the driver 2615 * must stop inbound decryption (by destroying all inbound SAs) 2616 * and let the corresponding packets come in encrypted. 2617 */ 2618 2619 if (*sc_mp != NULL) 2620 linkb(*sc_mp, mp); 2621 else 2622 *sc_mp = mp; 2623 } 2624 2625 static void 2626 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2627 boolean_t encapsulated) 2628 { 2629 boolean_t legacy = B_FALSE; 2630 2631 /* 2632 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2633 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2634 * instructed the driver to disable its advertised capabilities, 2635 * so there's no point in accepting any response at this moment. 2636 */ 2637 if (ill->ill_capab_state == IDMS_UNKNOWN) 2638 return; 2639 2640 /* 2641 * Note that only the following two sub-capabilities may be 2642 * considered as "legacy", since their original definitions 2643 * do not incorporate the dl_mid_t module ID token, and hence 2644 * may require the use of the wrapper sub-capability. 2645 */ 2646 switch (subp->dl_cap) { 2647 case DL_CAPAB_IPSEC_AH: 2648 case DL_CAPAB_IPSEC_ESP: 2649 legacy = B_TRUE; 2650 break; 2651 } 2652 2653 /* 2654 * For legacy sub-capabilities which don't incorporate a queue_t 2655 * pointer in their structures, discard them if we detect that 2656 * there are intermediate modules in between IP and the driver. 2657 */ 2658 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2659 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2660 "%d discarded; %d module(s) present below IP\n", 2661 subp->dl_cap, ill->ill_lmod_cnt)); 2662 return; 2663 } 2664 2665 switch (subp->dl_cap) { 2666 case DL_CAPAB_IPSEC_AH: 2667 case DL_CAPAB_IPSEC_ESP: 2668 ill_capability_ipsec_ack(ill, mp, subp); 2669 break; 2670 case DL_CAPAB_MDT: 2671 ill_capability_mdt_ack(ill, mp, subp); 2672 break; 2673 case DL_CAPAB_HCKSUM: 2674 ill_capability_hcksum_ack(ill, mp, subp); 2675 break; 2676 case DL_CAPAB_ZEROCOPY: 2677 ill_capability_zerocopy_ack(ill, mp, subp); 2678 break; 2679 case DL_CAPAB_POLL: 2680 if (!SOFT_RINGS_ENABLED()) 2681 ill_capability_dls_ack(ill, mp, subp); 2682 break; 2683 case DL_CAPAB_SOFT_RING: 2684 if (SOFT_RINGS_ENABLED()) 2685 ill_capability_dls_ack(ill, mp, subp); 2686 break; 2687 default: 2688 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2689 subp->dl_cap)); 2690 } 2691 } 2692 2693 /* 2694 * As part of negotiating polling capability, the driver tells us 2695 * the default (or normal) blanking interval and packet threshold 2696 * (the receive timer fires if blanking interval is reached or 2697 * the packet threshold is reached). 2698 * 2699 * As part of manipulating the polling interval, we always use our 2700 * estimated interval (avg service time * number of packets queued 2701 * on the squeue) but we try to blank for a minimum of 2702 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2703 * packet threshold during this time. When we are not in polling mode 2704 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2705 * rr_min_blank_ratio but up the packet cnt by a ratio of 2706 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2707 * possible although for a shorter interval. 2708 */ 2709 #define RR_MAX_BLANK_RATIO 20 2710 #define RR_MIN_BLANK_RATIO 10 2711 #define RR_MAX_PKT_CNT_RATIO 3 2712 #define RR_MIN_PKT_CNT_RATIO 3 2713 2714 /* 2715 * These can be tuned via /etc/system. 2716 */ 2717 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2718 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2719 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2720 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2721 2722 static mac_resource_handle_t 2723 ill_ring_add(void *arg, mac_resource_t *mrp) 2724 { 2725 ill_t *ill = (ill_t *)arg; 2726 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2727 ill_rx_ring_t *rx_ring; 2728 int ip_rx_index; 2729 2730 ASSERT(mrp != NULL); 2731 if (mrp->mr_type != MAC_RX_FIFO) { 2732 return (NULL); 2733 } 2734 ASSERT(ill != NULL); 2735 ASSERT(ill->ill_dls_capab != NULL); 2736 2737 mutex_enter(&ill->ill_lock); 2738 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2739 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2740 ASSERT(rx_ring != NULL); 2741 2742 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2743 time_t normal_blank_time = 2744 mrfp->mrf_normal_blank_time; 2745 uint_t normal_pkt_cnt = 2746 mrfp->mrf_normal_pkt_count; 2747 2748 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2749 2750 rx_ring->rr_blank = mrfp->mrf_blank; 2751 rx_ring->rr_handle = mrfp->mrf_arg; 2752 rx_ring->rr_ill = ill; 2753 rx_ring->rr_normal_blank_time = normal_blank_time; 2754 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2755 2756 rx_ring->rr_max_blank_time = 2757 normal_blank_time * rr_max_blank_ratio; 2758 rx_ring->rr_min_blank_time = 2759 normal_blank_time * rr_min_blank_ratio; 2760 rx_ring->rr_max_pkt_cnt = 2761 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2762 rx_ring->rr_min_pkt_cnt = 2763 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2764 2765 rx_ring->rr_ring_state = ILL_RING_INUSE; 2766 mutex_exit(&ill->ill_lock); 2767 2768 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2769 (int), ip_rx_index); 2770 return ((mac_resource_handle_t)rx_ring); 2771 } 2772 } 2773 2774 /* 2775 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2776 * we have devices which can overwhelm this limit, ILL_MAX_RING 2777 * should be made configurable. Meanwhile it cause no panic because 2778 * driver will pass ip_input a NULL handle which will make 2779 * IP allocate the default squeue and Polling mode will not 2780 * be used for this ring. 2781 */ 2782 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2783 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2784 2785 mutex_exit(&ill->ill_lock); 2786 return (NULL); 2787 } 2788 2789 static boolean_t 2790 ill_capability_dls_init(ill_t *ill) 2791 { 2792 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2793 conn_t *connp; 2794 size_t sz; 2795 2796 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2797 if (ill_dls == NULL) { 2798 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2799 "soft_ring enabled for ill=%s (%p) but data " 2800 "structs uninitialized\n", ill->ill_name, 2801 (void *)ill); 2802 } 2803 return (B_TRUE); 2804 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2805 if (ill_dls == NULL) { 2806 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2807 "polling enabled for ill=%s (%p) but data " 2808 "structs uninitialized\n", ill->ill_name, 2809 (void *)ill); 2810 } 2811 return (B_TRUE); 2812 } 2813 2814 if (ill_dls != NULL) { 2815 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2816 /* Soft_Ring or polling is being re-enabled */ 2817 2818 connp = ill_dls->ill_unbind_conn; 2819 ASSERT(rx_ring != NULL); 2820 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2821 bzero((void *)rx_ring, 2822 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2823 ill_dls->ill_ring_tbl = rx_ring; 2824 ill_dls->ill_unbind_conn = connp; 2825 return (B_TRUE); 2826 } 2827 2828 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2829 return (B_FALSE); 2830 2831 sz = sizeof (ill_dls_capab_t); 2832 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2833 2834 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2835 if (ill_dls == NULL) { 2836 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2837 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2838 (void *)ill); 2839 CONN_DEC_REF(connp); 2840 return (B_FALSE); 2841 } 2842 2843 /* Allocate space to hold ring table */ 2844 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2845 ill->ill_dls_capab = ill_dls; 2846 ill_dls->ill_unbind_conn = connp; 2847 return (B_TRUE); 2848 } 2849 2850 /* 2851 * ill_capability_dls_disable: disable soft_ring and/or polling 2852 * capability. Since any of the rings might already be in use, need 2853 * to call ipsq_clean_all() which gets behind the squeue to disable 2854 * direct calls if necessary. 2855 */ 2856 static void 2857 ill_capability_dls_disable(ill_t *ill) 2858 { 2859 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2860 2861 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2862 ipsq_clean_all(ill); 2863 ill_dls->ill_tx = NULL; 2864 ill_dls->ill_tx_handle = NULL; 2865 ill_dls->ill_dls_change_status = NULL; 2866 ill_dls->ill_dls_bind = NULL; 2867 ill_dls->ill_dls_unbind = NULL; 2868 } 2869 2870 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2871 } 2872 2873 static void 2874 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2875 dl_capability_sub_t *isub) 2876 { 2877 uint_t size; 2878 uchar_t *rptr; 2879 dl_capab_dls_t dls, *odls; 2880 ill_dls_capab_t *ill_dls; 2881 mblk_t *nmp = NULL; 2882 dl_capability_req_t *ocap; 2883 uint_t sub_dl_cap = isub->dl_cap; 2884 2885 if (!ill_capability_dls_init(ill)) 2886 return; 2887 ill_dls = ill->ill_dls_capab; 2888 2889 /* Copy locally to get the members aligned */ 2890 bcopy((void *)idls, (void *)&dls, 2891 sizeof (dl_capab_dls_t)); 2892 2893 /* Get the tx function and handle from dld */ 2894 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2895 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2896 2897 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2898 ill_dls->ill_dls_change_status = 2899 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2900 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2901 ill_dls->ill_dls_unbind = 2902 (ip_dls_unbind_t)dls.dls_ring_unbind; 2903 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2904 } 2905 2906 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2907 isub->dl_length; 2908 2909 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2910 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2911 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2912 ill->ill_name, (void *)ill); 2913 return; 2914 } 2915 2916 /* initialize dl_capability_req_t */ 2917 rptr = nmp->b_rptr; 2918 ocap = (dl_capability_req_t *)rptr; 2919 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2920 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2921 rptr += sizeof (dl_capability_req_t); 2922 2923 /* initialize dl_capability_sub_t */ 2924 bcopy(isub, rptr, sizeof (*isub)); 2925 rptr += sizeof (*isub); 2926 2927 odls = (dl_capab_dls_t *)rptr; 2928 rptr += sizeof (dl_capab_dls_t); 2929 2930 /* initialize dl_capab_dls_t to be sent down */ 2931 dls.dls_rx_handle = (uintptr_t)ill; 2932 dls.dls_rx = (uintptr_t)ip_input; 2933 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2934 2935 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2936 dls.dls_ring_cnt = ip_soft_rings_cnt; 2937 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2938 dls.dls_flags = SOFT_RING_ENABLE; 2939 } else { 2940 dls.dls_flags = POLL_ENABLE; 2941 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2942 "to enable polling\n", ill->ill_name)); 2943 } 2944 bcopy((void *)&dls, (void *)odls, 2945 sizeof (dl_capab_dls_t)); 2946 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2947 /* 2948 * nmp points to a DL_CAPABILITY_REQ message to 2949 * enable either soft_ring or polling 2950 */ 2951 ill_dlpi_send(ill, nmp); 2952 } 2953 2954 static void 2955 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2956 { 2957 mblk_t *mp; 2958 dl_capab_dls_t *idls; 2959 dl_capability_sub_t *dl_subcap; 2960 int size; 2961 2962 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2963 return; 2964 2965 ASSERT(ill->ill_dls_capab != NULL); 2966 2967 size = sizeof (*dl_subcap) + sizeof (*idls); 2968 2969 mp = allocb(size, BPRI_HI); 2970 if (mp == NULL) { 2971 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2972 "request to disable soft_ring\n")); 2973 return; 2974 } 2975 2976 mp->b_wptr = mp->b_rptr + size; 2977 2978 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2979 dl_subcap->dl_length = sizeof (*idls); 2980 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2981 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2982 else 2983 dl_subcap->dl_cap = DL_CAPAB_POLL; 2984 2985 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2986 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2987 idls->dls_flags = SOFT_RING_DISABLE; 2988 else 2989 idls->dls_flags = POLL_DISABLE; 2990 2991 if (*sc_mp != NULL) 2992 linkb(*sc_mp, mp); 2993 else 2994 *sc_mp = mp; 2995 } 2996 2997 /* 2998 * Process a soft_ring/poll capability negotiation ack received 2999 * from a DLS Provider.isub must point to the sub-capability 3000 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 3001 */ 3002 static void 3003 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3004 { 3005 dl_capab_dls_t *idls; 3006 uint_t sub_dl_cap = isub->dl_cap; 3007 uint8_t *capend; 3008 3009 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3010 sub_dl_cap == DL_CAPAB_POLL); 3011 3012 if (ill->ill_isv6) 3013 return; 3014 3015 /* 3016 * Note: range checks here are not absolutely sufficient to 3017 * make us robust against malformed messages sent by drivers; 3018 * this is in keeping with the rest of IP's dlpi handling. 3019 * (Remember, it's coming from something else in the kernel 3020 * address space) 3021 */ 3022 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3023 if (capend > mp->b_wptr) { 3024 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3025 "malformed sub-capability too long for mblk"); 3026 return; 3027 } 3028 3029 /* 3030 * There are two types of acks we process here: 3031 * 1. acks in reply to a (first form) generic capability req 3032 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3033 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3034 * capability req. 3035 */ 3036 idls = (dl_capab_dls_t *)(isub + 1); 3037 3038 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3039 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3040 "capability isn't as expected; pass-thru " 3041 "module(s) detected, discarding capability\n")); 3042 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3043 /* 3044 * This is a capability renegotitation case. 3045 * The interface better be unusable at this 3046 * point other wise bad things will happen 3047 * if we disable direct calls on a running 3048 * and up interface. 3049 */ 3050 ill_capability_dls_disable(ill); 3051 } 3052 return; 3053 } 3054 3055 switch (idls->dls_flags) { 3056 default: 3057 /* Disable if unknown flag */ 3058 case SOFT_RING_DISABLE: 3059 case POLL_DISABLE: 3060 ill_capability_dls_disable(ill); 3061 break; 3062 case SOFT_RING_CAPABLE: 3063 case POLL_CAPABLE: 3064 /* 3065 * If the capability was already enabled, its safe 3066 * to disable it first to get rid of stale information 3067 * and then start enabling it again. 3068 */ 3069 ill_capability_dls_disable(ill); 3070 ill_capability_dls_capable(ill, idls, isub); 3071 break; 3072 case SOFT_RING_ENABLE: 3073 case POLL_ENABLE: 3074 mutex_enter(&ill->ill_lock); 3075 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3076 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3077 ASSERT(ill->ill_dls_capab != NULL); 3078 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3079 } 3080 if (sub_dl_cap == DL_CAPAB_POLL && 3081 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3082 ASSERT(ill->ill_dls_capab != NULL); 3083 ill->ill_capabilities |= ILL_CAPAB_POLL; 3084 ip1dbg(("ill_capability_dls_ack: interface %s " 3085 "has enabled polling\n", ill->ill_name)); 3086 } 3087 mutex_exit(&ill->ill_lock); 3088 break; 3089 } 3090 } 3091 3092 /* 3093 * Process a hardware checksum offload capability negotiation ack received 3094 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3095 * of a DL_CAPABILITY_ACK message. 3096 */ 3097 static void 3098 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3099 { 3100 dl_capability_req_t *ocap; 3101 dl_capab_hcksum_t *ihck, *ohck; 3102 ill_hcksum_capab_t **ill_hcksum; 3103 mblk_t *nmp = NULL; 3104 uint_t sub_dl_cap = isub->dl_cap; 3105 uint8_t *capend; 3106 3107 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3108 3109 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3110 3111 /* 3112 * Note: range checks here are not absolutely sufficient to 3113 * make us robust against malformed messages sent by drivers; 3114 * this is in keeping with the rest of IP's dlpi handling. 3115 * (Remember, it's coming from something else in the kernel 3116 * address space) 3117 */ 3118 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3119 if (capend > mp->b_wptr) { 3120 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3121 "malformed sub-capability too long for mblk"); 3122 return; 3123 } 3124 3125 /* 3126 * There are two types of acks we process here: 3127 * 1. acks in reply to a (first form) generic capability req 3128 * (no ENABLE flag set) 3129 * 2. acks in reply to a ENABLE capability req. 3130 * (ENABLE flag set) 3131 */ 3132 ihck = (dl_capab_hcksum_t *)(isub + 1); 3133 3134 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3135 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3136 "unsupported hardware checksum " 3137 "sub-capability (version %d, expected %d)", 3138 ihck->hcksum_version, HCKSUM_VERSION_1); 3139 return; 3140 } 3141 3142 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3143 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3144 "checksum capability isn't as expected; pass-thru " 3145 "module(s) detected, discarding capability\n")); 3146 return; 3147 } 3148 3149 #define CURR_HCKSUM_CAPAB \ 3150 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3151 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3152 3153 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3154 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3155 /* do ENABLE processing */ 3156 if (*ill_hcksum == NULL) { 3157 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3158 KM_NOSLEEP); 3159 3160 if (*ill_hcksum == NULL) { 3161 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3162 "could not enable hcksum version %d " 3163 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3164 ill->ill_name); 3165 return; 3166 } 3167 } 3168 3169 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3170 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3171 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3172 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3173 "has enabled hardware checksumming\n ", 3174 ill->ill_name)); 3175 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3176 /* 3177 * Enabling hardware checksum offload 3178 * Currently IP supports {TCP,UDP}/IPv4 3179 * partial and full cksum offload and 3180 * IPv4 header checksum offload. 3181 * Allocate new mblk which will 3182 * contain a new capability request 3183 * to enable hardware checksum offload. 3184 */ 3185 uint_t size; 3186 uchar_t *rptr; 3187 3188 size = sizeof (dl_capability_req_t) + 3189 sizeof (dl_capability_sub_t) + isub->dl_length; 3190 3191 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3192 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3193 "could not enable hardware cksum for %s (ENOMEM)\n", 3194 ill->ill_name); 3195 return; 3196 } 3197 3198 rptr = nmp->b_rptr; 3199 /* initialize dl_capability_req_t */ 3200 ocap = (dl_capability_req_t *)nmp->b_rptr; 3201 ocap->dl_sub_offset = 3202 sizeof (dl_capability_req_t); 3203 ocap->dl_sub_length = 3204 sizeof (dl_capability_sub_t) + 3205 isub->dl_length; 3206 nmp->b_rptr += sizeof (dl_capability_req_t); 3207 3208 /* initialize dl_capability_sub_t */ 3209 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3210 nmp->b_rptr += sizeof (*isub); 3211 3212 /* initialize dl_capab_hcksum_t */ 3213 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3214 bcopy(ihck, ohck, sizeof (*ihck)); 3215 3216 nmp->b_rptr = rptr; 3217 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3218 3219 /* Set ENABLE flag */ 3220 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3221 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3222 3223 /* 3224 * nmp points to a DL_CAPABILITY_REQ message to enable 3225 * hardware checksum acceleration. 3226 */ 3227 ill_dlpi_send(ill, nmp); 3228 } else { 3229 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3230 "advertised %x hardware checksum capability flags\n", 3231 ill->ill_name, ihck->hcksum_txflags)); 3232 } 3233 } 3234 3235 static void 3236 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3237 { 3238 mblk_t *mp; 3239 dl_capab_hcksum_t *hck_subcap; 3240 dl_capability_sub_t *dl_subcap; 3241 int size; 3242 3243 if (!ILL_HCKSUM_CAPABLE(ill)) 3244 return; 3245 3246 ASSERT(ill->ill_hcksum_capab != NULL); 3247 /* 3248 * Clear the capability flag for hardware checksum offload but 3249 * retain the ill_hcksum_capab structure since it's possible that 3250 * another thread is still referring to it. The structure only 3251 * gets deallocated when we destroy the ill. 3252 */ 3253 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3254 3255 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3256 3257 mp = allocb(size, BPRI_HI); 3258 if (mp == NULL) { 3259 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3260 "request to disable hardware checksum offload\n")); 3261 return; 3262 } 3263 3264 mp->b_wptr = mp->b_rptr + size; 3265 3266 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3267 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3268 dl_subcap->dl_length = sizeof (*hck_subcap); 3269 3270 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3271 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3272 hck_subcap->hcksum_txflags = 0; 3273 3274 if (*sc_mp != NULL) 3275 linkb(*sc_mp, mp); 3276 else 3277 *sc_mp = mp; 3278 } 3279 3280 static void 3281 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3282 { 3283 mblk_t *nmp = NULL; 3284 dl_capability_req_t *oc; 3285 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3286 ill_zerocopy_capab_t **ill_zerocopy_capab; 3287 uint_t sub_dl_cap = isub->dl_cap; 3288 uint8_t *capend; 3289 3290 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3291 3292 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3293 3294 /* 3295 * Note: range checks here are not absolutely sufficient to 3296 * make us robust against malformed messages sent by drivers; 3297 * this is in keeping with the rest of IP's dlpi handling. 3298 * (Remember, it's coming from something else in the kernel 3299 * address space) 3300 */ 3301 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3302 if (capend > mp->b_wptr) { 3303 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3304 "malformed sub-capability too long for mblk"); 3305 return; 3306 } 3307 3308 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3309 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3310 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3311 "unsupported ZEROCOPY sub-capability (version %d, " 3312 "expected %d)", zc_ic->zerocopy_version, 3313 ZEROCOPY_VERSION_1); 3314 return; 3315 } 3316 3317 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3318 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3319 "capability isn't as expected; pass-thru module(s) " 3320 "detected, discarding capability\n")); 3321 return; 3322 } 3323 3324 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3325 if (*ill_zerocopy_capab == NULL) { 3326 *ill_zerocopy_capab = 3327 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3328 KM_NOSLEEP); 3329 3330 if (*ill_zerocopy_capab == NULL) { 3331 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3332 "could not enable Zero-copy version %d " 3333 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3334 ill->ill_name); 3335 return; 3336 } 3337 } 3338 3339 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3340 "supports Zero-copy version %d\n", ill->ill_name, 3341 ZEROCOPY_VERSION_1)); 3342 3343 (*ill_zerocopy_capab)->ill_zerocopy_version = 3344 zc_ic->zerocopy_version; 3345 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3346 zc_ic->zerocopy_flags; 3347 3348 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3349 } else { 3350 uint_t size; 3351 uchar_t *rptr; 3352 3353 size = sizeof (dl_capability_req_t) + 3354 sizeof (dl_capability_sub_t) + 3355 sizeof (dl_capab_zerocopy_t); 3356 3357 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3358 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3359 "could not enable zerocopy for %s (ENOMEM)\n", 3360 ill->ill_name); 3361 return; 3362 } 3363 3364 rptr = nmp->b_rptr; 3365 /* initialize dl_capability_req_t */ 3366 oc = (dl_capability_req_t *)rptr; 3367 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3368 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3369 sizeof (dl_capab_zerocopy_t); 3370 rptr += sizeof (dl_capability_req_t); 3371 3372 /* initialize dl_capability_sub_t */ 3373 bcopy(isub, rptr, sizeof (*isub)); 3374 rptr += sizeof (*isub); 3375 3376 /* initialize dl_capab_zerocopy_t */ 3377 zc_oc = (dl_capab_zerocopy_t *)rptr; 3378 *zc_oc = *zc_ic; 3379 3380 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3381 "to enable zero-copy version %d\n", ill->ill_name, 3382 ZEROCOPY_VERSION_1)); 3383 3384 /* set VMSAFE_MEM flag */ 3385 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3386 3387 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3388 ill_dlpi_send(ill, nmp); 3389 } 3390 } 3391 3392 static void 3393 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3394 { 3395 mblk_t *mp; 3396 dl_capab_zerocopy_t *zerocopy_subcap; 3397 dl_capability_sub_t *dl_subcap; 3398 int size; 3399 3400 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3401 return; 3402 3403 ASSERT(ill->ill_zerocopy_capab != NULL); 3404 /* 3405 * Clear the capability flag for Zero-copy but retain the 3406 * ill_zerocopy_capab structure since it's possible that another 3407 * thread is still referring to it. The structure only gets 3408 * deallocated when we destroy the ill. 3409 */ 3410 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3411 3412 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3413 3414 mp = allocb(size, BPRI_HI); 3415 if (mp == NULL) { 3416 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3417 "request to disable Zero-copy\n")); 3418 return; 3419 } 3420 3421 mp->b_wptr = mp->b_rptr + size; 3422 3423 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3424 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3425 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3426 3427 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3428 zerocopy_subcap->zerocopy_version = 3429 ill->ill_zerocopy_capab->ill_zerocopy_version; 3430 zerocopy_subcap->zerocopy_flags = 0; 3431 3432 if (*sc_mp != NULL) 3433 linkb(*sc_mp, mp); 3434 else 3435 *sc_mp = mp; 3436 } 3437 3438 /* 3439 * Consume a new-style hardware capabilities negotiation ack. 3440 * Called from ip_rput_dlpi_writer(). 3441 */ 3442 void 3443 ill_capability_ack(ill_t *ill, mblk_t *mp) 3444 { 3445 dl_capability_ack_t *capp; 3446 dl_capability_sub_t *subp, *endp; 3447 3448 if (ill->ill_capab_state == IDMS_INPROGRESS) 3449 ill->ill_capab_state = IDMS_OK; 3450 3451 capp = (dl_capability_ack_t *)mp->b_rptr; 3452 3453 if (capp->dl_sub_length == 0) 3454 /* no new-style capabilities */ 3455 return; 3456 3457 /* make sure the driver supplied correct dl_sub_length */ 3458 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3459 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3460 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3461 return; 3462 } 3463 3464 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3465 /* 3466 * There are sub-capabilities. Process the ones we know about. 3467 * Loop until we don't have room for another sub-cap header.. 3468 */ 3469 for (subp = SC(capp, capp->dl_sub_offset), 3470 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3471 subp <= endp; 3472 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3473 3474 switch (subp->dl_cap) { 3475 case DL_CAPAB_ID_WRAPPER: 3476 ill_capability_id_ack(ill, mp, subp); 3477 break; 3478 default: 3479 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3480 break; 3481 } 3482 } 3483 #undef SC 3484 } 3485 3486 /* 3487 * This routine is called to scan the fragmentation reassembly table for 3488 * the specified ILL for any packets that are starting to smell. 3489 * dead_interval is the maximum time in seconds that will be tolerated. It 3490 * will either be the value specified in ip_g_frag_timeout, or zero if the 3491 * ILL is shutting down and it is time to blow everything off. 3492 * 3493 * It returns the number of seconds (as a time_t) that the next frag timer 3494 * should be scheduled for, 0 meaning that the timer doesn't need to be 3495 * re-started. Note that the method of calculating next_timeout isn't 3496 * entirely accurate since time will flow between the time we grab 3497 * current_time and the time we schedule the next timeout. This isn't a 3498 * big problem since this is the timer for sending an ICMP reassembly time 3499 * exceeded messages, and it doesn't have to be exactly accurate. 3500 * 3501 * This function is 3502 * sometimes called as writer, although this is not required. 3503 */ 3504 time_t 3505 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3506 { 3507 ipfb_t *ipfb; 3508 ipfb_t *endp; 3509 ipf_t *ipf; 3510 ipf_t *ipfnext; 3511 mblk_t *mp; 3512 time_t current_time = gethrestime_sec(); 3513 time_t next_timeout = 0; 3514 uint32_t hdr_length; 3515 mblk_t *send_icmp_head; 3516 mblk_t *send_icmp_head_v6; 3517 zoneid_t zoneid; 3518 3519 ipfb = ill->ill_frag_hash_tbl; 3520 if (ipfb == NULL) 3521 return (B_FALSE); 3522 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3523 /* Walk the frag hash table. */ 3524 for (; ipfb < endp; ipfb++) { 3525 send_icmp_head = NULL; 3526 send_icmp_head_v6 = NULL; 3527 mutex_enter(&ipfb->ipfb_lock); 3528 while ((ipf = ipfb->ipfb_ipf) != 0) { 3529 time_t frag_time = current_time - ipf->ipf_timestamp; 3530 time_t frag_timeout; 3531 3532 if (frag_time < dead_interval) { 3533 /* 3534 * There are some outstanding fragments 3535 * that will timeout later. Make note of 3536 * the time so that we can reschedule the 3537 * next timeout appropriately. 3538 */ 3539 frag_timeout = dead_interval - frag_time; 3540 if (next_timeout == 0 || 3541 frag_timeout < next_timeout) { 3542 next_timeout = frag_timeout; 3543 } 3544 break; 3545 } 3546 /* Time's up. Get it out of here. */ 3547 hdr_length = ipf->ipf_nf_hdr_len; 3548 ipfnext = ipf->ipf_hash_next; 3549 if (ipfnext) 3550 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3551 *ipf->ipf_ptphn = ipfnext; 3552 mp = ipf->ipf_mp->b_cont; 3553 for (; mp; mp = mp->b_cont) { 3554 /* Extra points for neatness. */ 3555 IP_REASS_SET_START(mp, 0); 3556 IP_REASS_SET_END(mp, 0); 3557 } 3558 mp = ipf->ipf_mp->b_cont; 3559 ill->ill_frag_count -= ipf->ipf_count; 3560 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3561 ipfb->ipfb_count -= ipf->ipf_count; 3562 ASSERT(ipfb->ipfb_frag_pkts > 0); 3563 ipfb->ipfb_frag_pkts--; 3564 /* 3565 * We do not send any icmp message from here because 3566 * we currently are holding the ipfb_lock for this 3567 * hash chain. If we try and send any icmp messages 3568 * from here we may end up via a put back into ip 3569 * trying to get the same lock, causing a recursive 3570 * mutex panic. Instead we build a list and send all 3571 * the icmp messages after we have dropped the lock. 3572 */ 3573 if (ill->ill_isv6) { 3574 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3575 if (hdr_length != 0) { 3576 mp->b_next = send_icmp_head_v6; 3577 send_icmp_head_v6 = mp; 3578 } else { 3579 freemsg(mp); 3580 } 3581 } else { 3582 BUMP_MIB(&ip_mib, ipReasmFails); 3583 if (hdr_length != 0) { 3584 mp->b_next = send_icmp_head; 3585 send_icmp_head = mp; 3586 } else { 3587 freemsg(mp); 3588 } 3589 } 3590 freeb(ipf->ipf_mp); 3591 } 3592 mutex_exit(&ipfb->ipfb_lock); 3593 /* 3594 * Now need to send any icmp messages that we delayed from 3595 * above. 3596 */ 3597 while (send_icmp_head_v6 != NULL) { 3598 ip6_t *ip6h; 3599 3600 mp = send_icmp_head_v6; 3601 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3602 mp->b_next = NULL; 3603 if (mp->b_datap->db_type == M_CTL) 3604 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3605 else 3606 ip6h = (ip6_t *)mp->b_rptr; 3607 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3608 ill); 3609 if (zoneid == ALL_ZONES) { 3610 freemsg(mp); 3611 } else { 3612 icmp_time_exceeded_v6(ill->ill_wq, mp, 3613 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3614 B_FALSE, zoneid); 3615 } 3616 } 3617 while (send_icmp_head != NULL) { 3618 ipaddr_t dst; 3619 3620 mp = send_icmp_head; 3621 send_icmp_head = send_icmp_head->b_next; 3622 mp->b_next = NULL; 3623 3624 if (mp->b_datap->db_type == M_CTL) 3625 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3626 else 3627 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3628 3629 zoneid = ipif_lookup_addr_zoneid(dst, ill); 3630 if (zoneid == ALL_ZONES) { 3631 freemsg(mp); 3632 } else { 3633 icmp_time_exceeded(ill->ill_wq, mp, 3634 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid); 3635 } 3636 } 3637 } 3638 /* 3639 * A non-dying ILL will use the return value to decide whether to 3640 * restart the frag timer, and for how long. 3641 */ 3642 return (next_timeout); 3643 } 3644 3645 /* 3646 * This routine is called when the approximate count of mblk memory used 3647 * for the specified ILL has exceeded max_count. 3648 */ 3649 void 3650 ill_frag_prune(ill_t *ill, uint_t max_count) 3651 { 3652 ipfb_t *ipfb; 3653 ipf_t *ipf; 3654 size_t count; 3655 3656 /* 3657 * If we are here within ip_min_frag_prune_time msecs remove 3658 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3659 * ill_frag_free_num_pkts. 3660 */ 3661 mutex_enter(&ill->ill_lock); 3662 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3663 (ip_min_frag_prune_time != 0 ? 3664 ip_min_frag_prune_time : msec_per_tick)) { 3665 3666 ill->ill_frag_free_num_pkts++; 3667 3668 } else { 3669 ill->ill_frag_free_num_pkts = 0; 3670 } 3671 ill->ill_last_frag_clean_time = lbolt; 3672 mutex_exit(&ill->ill_lock); 3673 3674 /* 3675 * free ill_frag_free_num_pkts oldest packets from each bucket. 3676 */ 3677 if (ill->ill_frag_free_num_pkts != 0) { 3678 int ix; 3679 3680 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3681 ipfb = &ill->ill_frag_hash_tbl[ix]; 3682 mutex_enter(&ipfb->ipfb_lock); 3683 if (ipfb->ipfb_ipf != NULL) { 3684 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3685 ill->ill_frag_free_num_pkts); 3686 } 3687 mutex_exit(&ipfb->ipfb_lock); 3688 } 3689 } 3690 /* 3691 * While the reassembly list for this ILL is too big, prune a fragment 3692 * queue by age, oldest first. Note that the per ILL count is 3693 * approximate, while the per frag hash bucket counts are accurate. 3694 */ 3695 while (ill->ill_frag_count > max_count) { 3696 int ix; 3697 ipfb_t *oipfb = NULL; 3698 uint_t oldest = UINT_MAX; 3699 3700 count = 0; 3701 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3702 ipfb = &ill->ill_frag_hash_tbl[ix]; 3703 mutex_enter(&ipfb->ipfb_lock); 3704 ipf = ipfb->ipfb_ipf; 3705 if (ipf != NULL && ipf->ipf_gen < oldest) { 3706 oldest = ipf->ipf_gen; 3707 oipfb = ipfb; 3708 } 3709 count += ipfb->ipfb_count; 3710 mutex_exit(&ipfb->ipfb_lock); 3711 } 3712 /* Refresh the per ILL count */ 3713 ill->ill_frag_count = count; 3714 if (oipfb == NULL) { 3715 ill->ill_frag_count = 0; 3716 break; 3717 } 3718 if (count <= max_count) 3719 return; /* Somebody beat us to it, nothing to do */ 3720 mutex_enter(&oipfb->ipfb_lock); 3721 ipf = oipfb->ipfb_ipf; 3722 if (ipf != NULL) { 3723 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3724 } 3725 mutex_exit(&oipfb->ipfb_lock); 3726 } 3727 } 3728 3729 /* 3730 * free 'free_cnt' fragmented packets starting at ipf. 3731 */ 3732 void 3733 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3734 { 3735 size_t count; 3736 mblk_t *mp; 3737 mblk_t *tmp; 3738 ipf_t **ipfp = ipf->ipf_ptphn; 3739 3740 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3741 ASSERT(ipfp != NULL); 3742 ASSERT(ipf != NULL); 3743 3744 while (ipf != NULL && free_cnt-- > 0) { 3745 count = ipf->ipf_count; 3746 mp = ipf->ipf_mp; 3747 ipf = ipf->ipf_hash_next; 3748 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3749 IP_REASS_SET_START(tmp, 0); 3750 IP_REASS_SET_END(tmp, 0); 3751 } 3752 ill->ill_frag_count -= count; 3753 ASSERT(ipfb->ipfb_count >= count); 3754 ipfb->ipfb_count -= count; 3755 ASSERT(ipfb->ipfb_frag_pkts > 0); 3756 ipfb->ipfb_frag_pkts--; 3757 freemsg(mp); 3758 BUMP_MIB(&ip_mib, ipReasmFails); 3759 } 3760 3761 if (ipf) 3762 ipf->ipf_ptphn = ipfp; 3763 ipfp[0] = ipf; 3764 } 3765 3766 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3767 "obsolete and may be removed in a future release of Solaris. Use " \ 3768 "ifconfig(1M) to manipulate the forwarding status of an interface." 3769 3770 /* 3771 * For obsolete per-interface forwarding configuration; 3772 * called in response to ND_GET. 3773 */ 3774 /* ARGSUSED */ 3775 static int 3776 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3777 { 3778 ill_t *ill = (ill_t *)cp; 3779 3780 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3781 3782 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3783 return (0); 3784 } 3785 3786 /* 3787 * For obsolete per-interface forwarding configuration; 3788 * called in response to ND_SET. 3789 */ 3790 /* ARGSUSED */ 3791 static int 3792 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3793 cred_t *ioc_cr) 3794 { 3795 long value; 3796 int retval; 3797 3798 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3799 3800 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3801 value < 0 || value > 1) { 3802 return (EINVAL); 3803 } 3804 3805 rw_enter(&ill_g_lock, RW_READER); 3806 retval = ill_forward_set(q, mp, (value != 0), cp); 3807 rw_exit(&ill_g_lock); 3808 return (retval); 3809 } 3810 3811 /* 3812 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3813 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3814 * up RTS_IFINFO routing socket messages for each interface whose flags we 3815 * change. 3816 */ 3817 /* ARGSUSED */ 3818 int 3819 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 3820 { 3821 ill_t *ill = (ill_t *)cp; 3822 ill_group_t *illgrp; 3823 3824 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 3825 3826 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3827 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 3828 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 3829 return (EINVAL); 3830 3831 /* 3832 * If the ill is in an IPMP group, set the forwarding policy on all 3833 * members of the group to the same value. 3834 */ 3835 illgrp = ill->ill_group; 3836 if (illgrp != NULL) { 3837 ill_t *tmp_ill; 3838 3839 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3840 tmp_ill = tmp_ill->ill_group_next) { 3841 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3842 (enable ? "Enabling" : "Disabling"), 3843 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3844 tmp_ill->ill_name)); 3845 mutex_enter(&tmp_ill->ill_lock); 3846 if (enable) 3847 tmp_ill->ill_flags |= ILLF_ROUTER; 3848 else 3849 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3850 mutex_exit(&tmp_ill->ill_lock); 3851 if (tmp_ill->ill_isv6) 3852 ill_set_nce_router_flags(tmp_ill, enable); 3853 /* Notify routing socket listeners of this change. */ 3854 ip_rts_ifmsg(tmp_ill->ill_ipif); 3855 } 3856 } else { 3857 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3858 (enable ? "Enabling" : "Disabling"), 3859 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3860 mutex_enter(&ill->ill_lock); 3861 if (enable) 3862 ill->ill_flags |= ILLF_ROUTER; 3863 else 3864 ill->ill_flags &= ~ILLF_ROUTER; 3865 mutex_exit(&ill->ill_lock); 3866 if (ill->ill_isv6) 3867 ill_set_nce_router_flags(ill, enable); 3868 /* Notify routing socket listeners of this change. */ 3869 ip_rts_ifmsg(ill->ill_ipif); 3870 } 3871 3872 return (0); 3873 } 3874 3875 /* 3876 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3877 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3878 * set or clear. 3879 */ 3880 static void 3881 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3882 { 3883 ipif_t *ipif; 3884 nce_t *nce; 3885 3886 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3887 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3888 if (nce != NULL) { 3889 mutex_enter(&nce->nce_lock); 3890 if (enable) 3891 nce->nce_flags |= NCE_F_ISROUTER; 3892 else 3893 nce->nce_flags &= ~NCE_F_ISROUTER; 3894 mutex_exit(&nce->nce_lock); 3895 NCE_REFRELE(nce); 3896 } 3897 } 3898 } 3899 3900 /* 3901 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3902 * for this ill. Make sure the v6/v4 question has been answered about this 3903 * ill. The creation of this ndd variable is only for backwards compatibility. 3904 * The preferred way to control per-interface IP forwarding is through the 3905 * ILLF_ROUTER interface flag. 3906 */ 3907 static int 3908 ill_set_ndd_name(ill_t *ill) 3909 { 3910 char *suffix; 3911 3912 ASSERT(IAM_WRITER_ILL(ill)); 3913 3914 if (ill->ill_isv6) 3915 suffix = ipv6_forward_suffix; 3916 else 3917 suffix = ipv4_forward_suffix; 3918 3919 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3920 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3921 /* 3922 * Copies over the '\0'. 3923 * Note that strlen(suffix) is always bounded. 3924 */ 3925 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3926 strlen(suffix) + 1); 3927 3928 /* 3929 * Use of the nd table requires holding the reader lock. 3930 * Modifying the nd table thru nd_load/nd_unload requires 3931 * the writer lock. 3932 */ 3933 rw_enter(&ip_g_nd_lock, RW_WRITER); 3934 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3935 nd_ill_forward_set, (caddr_t)ill)) { 3936 /* 3937 * If the nd_load failed, it only meant that it could not 3938 * allocate a new bunch of room for further NDD expansion. 3939 * Because of that, the ill_ndd_name will be set to 0, and 3940 * this interface is at the mercy of the global ip_forwarding 3941 * variable. 3942 */ 3943 rw_exit(&ip_g_nd_lock); 3944 ill->ill_ndd_name = NULL; 3945 return (ENOMEM); 3946 } 3947 rw_exit(&ip_g_nd_lock); 3948 return (0); 3949 } 3950 3951 /* 3952 * Intializes the context structure and returns the first ill in the list 3953 * cuurently start_list and end_list can have values: 3954 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3955 * IP_V4_G_HEAD Traverse IPV4 list only. 3956 * IP_V6_G_HEAD Traverse IPV6 list only. 3957 */ 3958 3959 /* 3960 * We don't check for CONDEMNED ills here. Caller must do that if 3961 * necessary under the ill lock. 3962 */ 3963 ill_t * 3964 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 3965 { 3966 ill_if_t *ifp; 3967 ill_t *ill; 3968 avl_tree_t *avl_tree; 3969 3970 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3971 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3972 3973 /* 3974 * setup the lists to search 3975 */ 3976 if (end_list != MAX_G_HEADS) { 3977 ctx->ctx_current_list = start_list; 3978 ctx->ctx_last_list = end_list; 3979 } else { 3980 ctx->ctx_last_list = MAX_G_HEADS - 1; 3981 ctx->ctx_current_list = 0; 3982 } 3983 3984 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3985 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3986 if (ifp != (ill_if_t *) 3987 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3988 avl_tree = &ifp->illif_avl_by_ppa; 3989 ill = avl_first(avl_tree); 3990 /* 3991 * ill is guaranteed to be non NULL or ifp should have 3992 * not existed. 3993 */ 3994 ASSERT(ill != NULL); 3995 return (ill); 3996 } 3997 ctx->ctx_current_list++; 3998 } 3999 4000 return (NULL); 4001 } 4002 4003 /* 4004 * returns the next ill in the list. ill_first() must have been called 4005 * before calling ill_next() or bad things will happen. 4006 */ 4007 4008 /* 4009 * We don't check for CONDEMNED ills here. Caller must do that if 4010 * necessary under the ill lock. 4011 */ 4012 ill_t * 4013 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4014 { 4015 ill_if_t *ifp; 4016 ill_t *ill; 4017 4018 4019 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4020 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4021 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 4022 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4023 AVL_AFTER)) != NULL) { 4024 return (ill); 4025 } 4026 4027 /* goto next ill_ifp in the list. */ 4028 ifp = lastill->ill_ifptr->illif_next; 4029 4030 /* make sure not at end of circular list */ 4031 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 4032 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4033 return (NULL); 4034 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 4035 } 4036 4037 return (avl_first(&ifp->illif_avl_by_ppa)); 4038 } 4039 4040 /* 4041 * Check interface name for correct format which is name+ppa. 4042 * name can contain characters and digits, the right most digits 4043 * make up the ppa number. use of octal is not allowed, name must contain 4044 * a ppa, return pointer to the start of ppa. 4045 * In case of error return NULL. 4046 */ 4047 static char * 4048 ill_get_ppa_ptr(char *name) 4049 { 4050 int namelen = mi_strlen(name); 4051 4052 int len = namelen; 4053 4054 name += len; 4055 while (len > 0) { 4056 name--; 4057 if (*name < '0' || *name > '9') 4058 break; 4059 len--; 4060 } 4061 4062 /* empty string, all digits, or no trailing digits */ 4063 if (len == 0 || len == (int)namelen) 4064 return (NULL); 4065 4066 name++; 4067 /* check for attempted use of octal */ 4068 if (*name == '0' && len != (int)namelen - 1) 4069 return (NULL); 4070 return (name); 4071 } 4072 4073 /* 4074 * use avl tree to locate the ill. 4075 */ 4076 static ill_t * 4077 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4078 ipsq_func_t func, int *error) 4079 { 4080 char *ppa_ptr = NULL; 4081 int len; 4082 uint_t ppa; 4083 ill_t *ill = NULL; 4084 ill_if_t *ifp; 4085 int list; 4086 ipsq_t *ipsq; 4087 4088 if (error != NULL) 4089 *error = 0; 4090 4091 /* 4092 * get ppa ptr 4093 */ 4094 if (isv6) 4095 list = IP_V6_G_HEAD; 4096 else 4097 list = IP_V4_G_HEAD; 4098 4099 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4100 if (error != NULL) 4101 *error = ENXIO; 4102 return (NULL); 4103 } 4104 4105 len = ppa_ptr - name + 1; 4106 4107 ppa = stoi(&ppa_ptr); 4108 4109 ifp = IP_VX_ILL_G_LIST(list); 4110 4111 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4112 /* 4113 * match is done on len - 1 as the name is not null 4114 * terminated it contains ppa in addition to the interface 4115 * name. 4116 */ 4117 if ((ifp->illif_name_len == len) && 4118 bcmp(ifp->illif_name, name, len - 1) == 0) { 4119 break; 4120 } else { 4121 ifp = ifp->illif_next; 4122 } 4123 } 4124 4125 4126 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4127 /* 4128 * Even the interface type does not exist. 4129 */ 4130 if (error != NULL) 4131 *error = ENXIO; 4132 return (NULL); 4133 } 4134 4135 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4136 if (ill != NULL) { 4137 /* 4138 * The block comment at the start of ipif_down 4139 * explains the use of the macros used below 4140 */ 4141 GRAB_CONN_LOCK(q); 4142 mutex_enter(&ill->ill_lock); 4143 if (ILL_CAN_LOOKUP(ill)) { 4144 ill_refhold_locked(ill); 4145 mutex_exit(&ill->ill_lock); 4146 RELEASE_CONN_LOCK(q); 4147 return (ill); 4148 } else if (ILL_CAN_WAIT(ill, q)) { 4149 ipsq = ill->ill_phyint->phyint_ipsq; 4150 mutex_enter(&ipsq->ipsq_lock); 4151 mutex_exit(&ill->ill_lock); 4152 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4153 mutex_exit(&ipsq->ipsq_lock); 4154 RELEASE_CONN_LOCK(q); 4155 *error = EINPROGRESS; 4156 return (NULL); 4157 } 4158 mutex_exit(&ill->ill_lock); 4159 RELEASE_CONN_LOCK(q); 4160 } 4161 if (error != NULL) 4162 *error = ENXIO; 4163 return (NULL); 4164 } 4165 4166 /* 4167 * comparison function for use with avl. 4168 */ 4169 static int 4170 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4171 { 4172 uint_t ppa; 4173 uint_t ill_ppa; 4174 4175 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4176 4177 ppa = *((uint_t *)ppa_ptr); 4178 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4179 /* 4180 * We want the ill with the lowest ppa to be on the 4181 * top. 4182 */ 4183 if (ill_ppa < ppa) 4184 return (1); 4185 if (ill_ppa > ppa) 4186 return (-1); 4187 return (0); 4188 } 4189 4190 /* 4191 * remove an interface type from the global list. 4192 */ 4193 static void 4194 ill_delete_interface_type(ill_if_t *interface) 4195 { 4196 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4197 4198 ASSERT(interface != NULL); 4199 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4200 4201 avl_destroy(&interface->illif_avl_by_ppa); 4202 if (interface->illif_ppa_arena != NULL) 4203 vmem_destroy(interface->illif_ppa_arena); 4204 4205 remque(interface); 4206 4207 mi_free(interface); 4208 } 4209 4210 /* 4211 * remove ill from the global list. 4212 */ 4213 static void 4214 ill_glist_delete(ill_t *ill) 4215 { 4216 if (ill == NULL) 4217 return; 4218 4219 rw_enter(&ill_g_lock, RW_WRITER); 4220 /* 4221 * If the ill was never inserted into the AVL tree 4222 * we skip the if branch. 4223 */ 4224 if (ill->ill_ifptr != NULL) { 4225 /* 4226 * remove from AVL tree and free ppa number 4227 */ 4228 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4229 4230 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4231 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4232 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4233 } 4234 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4235 ill_delete_interface_type(ill->ill_ifptr); 4236 } 4237 4238 /* 4239 * Indicate ill is no longer in the list. 4240 */ 4241 ill->ill_ifptr = NULL; 4242 ill->ill_name_length = 0; 4243 ill->ill_name[0] = '\0'; 4244 ill->ill_ppa = UINT_MAX; 4245 } 4246 ill_phyint_free(ill); 4247 rw_exit(&ill_g_lock); 4248 } 4249 4250 /* 4251 * allocate a ppa, if the number of plumbed interfaces of this type are 4252 * less than ill_no_arena do a linear search to find a unused ppa. 4253 * When the number goes beyond ill_no_arena switch to using an arena. 4254 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4255 * is the return value for an error condition, so allocation starts at one 4256 * and is decremented by one. 4257 */ 4258 static int 4259 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4260 { 4261 ill_t *tmp_ill; 4262 uint_t start, end; 4263 int ppa; 4264 4265 if (ifp->illif_ppa_arena == NULL && 4266 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4267 /* 4268 * Create an arena. 4269 */ 4270 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4271 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4272 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4273 /* allocate what has already been assigned */ 4274 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4275 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4276 tmp_ill, AVL_AFTER)) { 4277 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4278 1, /* size */ 4279 1, /* align/quantum */ 4280 0, /* phase */ 4281 0, /* nocross */ 4282 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4283 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4284 VM_NOSLEEP|VM_FIRSTFIT); 4285 if (ppa == 0) { 4286 ip1dbg(("ill_alloc_ppa: ppa allocation" 4287 " failed while switching")); 4288 vmem_destroy(ifp->illif_ppa_arena); 4289 ifp->illif_ppa_arena = NULL; 4290 break; 4291 } 4292 } 4293 } 4294 4295 if (ifp->illif_ppa_arena != NULL) { 4296 if (ill->ill_ppa == UINT_MAX) { 4297 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4298 1, VM_NOSLEEP|VM_FIRSTFIT); 4299 if (ppa == 0) 4300 return (EAGAIN); 4301 ill->ill_ppa = --ppa; 4302 } else { 4303 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4304 1, /* size */ 4305 1, /* align/quantum */ 4306 0, /* phase */ 4307 0, /* nocross */ 4308 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4309 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4310 VM_NOSLEEP|VM_FIRSTFIT); 4311 /* 4312 * Most likely the allocation failed because 4313 * the requested ppa was in use. 4314 */ 4315 if (ppa == 0) 4316 return (EEXIST); 4317 } 4318 return (0); 4319 } 4320 4321 /* 4322 * No arena is in use and not enough (>ill_no_arena) interfaces have 4323 * been plumbed to create one. Do a linear search to get a unused ppa. 4324 */ 4325 if (ill->ill_ppa == UINT_MAX) { 4326 end = UINT_MAX - 1; 4327 start = 0; 4328 } else { 4329 end = start = ill->ill_ppa; 4330 } 4331 4332 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4333 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4334 if (start++ >= end) { 4335 if (ill->ill_ppa == UINT_MAX) 4336 return (EAGAIN); 4337 else 4338 return (EEXIST); 4339 } 4340 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4341 } 4342 ill->ill_ppa = start; 4343 return (0); 4344 } 4345 4346 /* 4347 * Insert ill into the list of configured ill's. Once this function completes, 4348 * the ill is globally visible and is available through lookups. More precisely 4349 * this happens after the caller drops the ill_g_lock. 4350 */ 4351 static int 4352 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4353 { 4354 ill_if_t *ill_interface; 4355 avl_index_t where = 0; 4356 int error; 4357 int name_length; 4358 int index; 4359 boolean_t check_length = B_FALSE; 4360 4361 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4362 4363 name_length = mi_strlen(name) + 1; 4364 4365 if (isv6) 4366 index = IP_V6_G_HEAD; 4367 else 4368 index = IP_V4_G_HEAD; 4369 4370 ill_interface = IP_VX_ILL_G_LIST(index); 4371 /* 4372 * Search for interface type based on name 4373 */ 4374 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4375 if ((ill_interface->illif_name_len == name_length) && 4376 (strcmp(ill_interface->illif_name, name) == 0)) { 4377 break; 4378 } 4379 ill_interface = ill_interface->illif_next; 4380 } 4381 4382 /* 4383 * Interface type not found, create one. 4384 */ 4385 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4386 4387 ill_g_head_t ghead; 4388 4389 /* 4390 * allocate ill_if_t structure 4391 */ 4392 4393 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4394 if (ill_interface == NULL) { 4395 return (ENOMEM); 4396 } 4397 4398 4399 4400 (void) strcpy(ill_interface->illif_name, name); 4401 ill_interface->illif_name_len = name_length; 4402 4403 avl_create(&ill_interface->illif_avl_by_ppa, 4404 ill_compare_ppa, sizeof (ill_t), 4405 offsetof(struct ill_s, ill_avl_byppa)); 4406 4407 /* 4408 * link the structure in the back to maintain order 4409 * of configuration for ifconfig output. 4410 */ 4411 ghead = ill_g_heads[index]; 4412 insque(ill_interface, ghead.ill_g_list_tail); 4413 4414 } 4415 4416 if (ill->ill_ppa == UINT_MAX) 4417 check_length = B_TRUE; 4418 4419 error = ill_alloc_ppa(ill_interface, ill); 4420 if (error != 0) { 4421 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4422 ill_delete_interface_type(ill->ill_ifptr); 4423 return (error); 4424 } 4425 4426 /* 4427 * When the ppa is choosen by the system, check that there is 4428 * enough space to insert ppa. if a specific ppa was passed in this 4429 * check is not required as the interface name passed in will have 4430 * the right ppa in it. 4431 */ 4432 if (check_length) { 4433 /* 4434 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4435 */ 4436 char buf[sizeof (uint_t) * 3]; 4437 4438 /* 4439 * convert ppa to string to calculate the amount of space 4440 * required for it in the name. 4441 */ 4442 numtos(ill->ill_ppa, buf); 4443 4444 /* Do we have enough space to insert ppa ? */ 4445 4446 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4447 /* Free ppa and interface type struct */ 4448 if (ill_interface->illif_ppa_arena != NULL) { 4449 vmem_free(ill_interface->illif_ppa_arena, 4450 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4451 } 4452 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4453 0) { 4454 ill_delete_interface_type(ill->ill_ifptr); 4455 } 4456 4457 return (EINVAL); 4458 } 4459 } 4460 4461 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4462 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4463 4464 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4465 &where); 4466 ill->ill_ifptr = ill_interface; 4467 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4468 4469 ill_phyint_reinit(ill); 4470 return (0); 4471 } 4472 4473 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4474 static boolean_t 4475 ipsq_init(ill_t *ill) 4476 { 4477 ipsq_t *ipsq; 4478 4479 /* Init the ipsq and impicitly enter as writer */ 4480 ill->ill_phyint->phyint_ipsq = 4481 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4482 if (ill->ill_phyint->phyint_ipsq == NULL) 4483 return (B_FALSE); 4484 ipsq = ill->ill_phyint->phyint_ipsq; 4485 ipsq->ipsq_phyint_list = ill->ill_phyint; 4486 ill->ill_phyint->phyint_ipsq_next = NULL; 4487 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4488 ipsq->ipsq_refs = 1; 4489 ipsq->ipsq_writer = curthread; 4490 ipsq->ipsq_reentry_cnt = 1; 4491 #ifdef ILL_DEBUG 4492 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4493 #endif 4494 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4495 return (B_TRUE); 4496 } 4497 4498 /* 4499 * ill_init is called by ip_open when a device control stream is opened. 4500 * It does a few initializations, and shoots a DL_INFO_REQ message down 4501 * to the driver. The response is later picked up in ip_rput_dlpi and 4502 * used to set up default mechanisms for talking to the driver. (Always 4503 * called as writer.) 4504 * 4505 * If this function returns error, ip_open will call ip_close which in 4506 * turn will call ill_delete to clean up any memory allocated here that 4507 * is not yet freed. 4508 */ 4509 int 4510 ill_init(queue_t *q, ill_t *ill) 4511 { 4512 int count; 4513 dl_info_req_t *dlir; 4514 mblk_t *info_mp; 4515 uchar_t *frag_ptr; 4516 4517 /* 4518 * The ill is initialized to zero by mi_alloc*(). In addition 4519 * some fields already contain valid values, initialized in 4520 * ip_open(), before we reach here. 4521 */ 4522 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4523 4524 ill->ill_rq = q; 4525 ill->ill_wq = WR(q); 4526 4527 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4528 BPRI_HI); 4529 if (info_mp == NULL) 4530 return (ENOMEM); 4531 4532 /* 4533 * Allocate sufficient space to contain our fragment hash table and 4534 * the device name. 4535 */ 4536 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4537 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4538 if (frag_ptr == NULL) { 4539 freemsg(info_mp); 4540 return (ENOMEM); 4541 } 4542 ill->ill_frag_ptr = frag_ptr; 4543 ill->ill_frag_free_num_pkts = 0; 4544 ill->ill_last_frag_clean_time = 0; 4545 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4546 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4547 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4548 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4549 NULL, MUTEX_DEFAULT, NULL); 4550 } 4551 4552 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4553 if (ill->ill_phyint == NULL) { 4554 freemsg(info_mp); 4555 mi_free(frag_ptr); 4556 return (ENOMEM); 4557 } 4558 4559 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4560 /* 4561 * For now pretend this is a v4 ill. We need to set phyint_ill* 4562 * at this point because of the following reason. If we can't 4563 * enter the ipsq at some point and cv_wait, the writer that 4564 * wakes us up tries to locate us using the list of all phyints 4565 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4566 * If we don't set it now, we risk a missed wakeup. 4567 */ 4568 ill->ill_phyint->phyint_illv4 = ill; 4569 ill->ill_ppa = UINT_MAX; 4570 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4571 4572 if (!ipsq_init(ill)) { 4573 freemsg(info_mp); 4574 mi_free(frag_ptr); 4575 mi_free(ill->ill_phyint); 4576 return (ENOMEM); 4577 } 4578 4579 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4580 4581 4582 /* Frag queue limit stuff */ 4583 ill->ill_frag_count = 0; 4584 ill->ill_ipf_gen = 0; 4585 4586 ill->ill_global_timer = INFINITY; 4587 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4588 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4589 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4590 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4591 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4592 4593 /* 4594 * Initialize IPv6 configuration variables. The IP module is always 4595 * opened as an IPv4 module. Instead tracking down the cases where 4596 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4597 * here for convenience, this has no effect until the ill is set to do 4598 * IPv6. 4599 */ 4600 ill->ill_reachable_time = ND_REACHABLE_TIME; 4601 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4602 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4603 ill->ill_max_buf = ND_MAX_Q; 4604 ill->ill_refcnt = 0; 4605 4606 /* Send down the Info Request to the driver. */ 4607 info_mp->b_datap->db_type = M_PCPROTO; 4608 dlir = (dl_info_req_t *)info_mp->b_rptr; 4609 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4610 dlir->dl_primitive = DL_INFO_REQ; 4611 4612 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4613 4614 qprocson(q); 4615 ill_dlpi_send(ill, info_mp); 4616 4617 return (0); 4618 } 4619 4620 /* 4621 * ill_dls_info 4622 * creates datalink socket info from the device. 4623 */ 4624 int 4625 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4626 { 4627 size_t length; 4628 ill_t *ill = ipif->ipif_ill; 4629 4630 sdl->sdl_family = AF_LINK; 4631 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4632 sdl->sdl_type = ipif->ipif_type; 4633 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4634 length = mi_strlen(sdl->sdl_data); 4635 ASSERT(length < 256); 4636 sdl->sdl_nlen = (uchar_t)length; 4637 sdl->sdl_alen = ill->ill_phys_addr_length; 4638 mutex_enter(&ill->ill_lock); 4639 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4640 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4641 ill->ill_phys_addr_length); 4642 } 4643 mutex_exit(&ill->ill_lock); 4644 sdl->sdl_slen = 0; 4645 return (sizeof (struct sockaddr_dl)); 4646 } 4647 4648 /* 4649 * ill_xarp_info 4650 * creates xarp info from the device. 4651 */ 4652 static int 4653 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4654 { 4655 sdl->sdl_family = AF_LINK; 4656 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4657 sdl->sdl_type = ill->ill_type; 4658 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4659 sizeof (sdl->sdl_data)); 4660 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4661 sdl->sdl_alen = ill->ill_phys_addr_length; 4662 sdl->sdl_slen = 0; 4663 return (sdl->sdl_nlen); 4664 } 4665 4666 static int 4667 loopback_kstat_update(kstat_t *ksp, int rw) 4668 { 4669 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4670 4671 if (rw == KSTAT_WRITE) 4672 return (EACCES); 4673 kn[0].value.ui32 = loopback_packets; 4674 kn[1].value.ui32 = loopback_packets; 4675 return (0); 4676 } 4677 4678 4679 /* 4680 * Has ifindex been plumbed already. 4681 */ 4682 static boolean_t 4683 phyint_exists(uint_t index) 4684 { 4685 phyint_t *phyi; 4686 4687 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4688 /* 4689 * Indexes are stored in the phyint - a common structure 4690 * to both IPv4 and IPv6. 4691 */ 4692 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4693 (void *) &index, NULL); 4694 return (phyi != NULL); 4695 } 4696 4697 /* 4698 * Assign a unique interface index for the phyint. 4699 */ 4700 static boolean_t 4701 phyint_assign_ifindex(phyint_t *phyi) 4702 { 4703 uint_t starting_index; 4704 4705 ASSERT(phyi->phyint_ifindex == 0); 4706 if (!ill_index_wrap) { 4707 phyi->phyint_ifindex = ill_index++; 4708 if (ill_index == 0) { 4709 /* Reached the uint_t limit Next time wrap */ 4710 ill_index_wrap = B_TRUE; 4711 } 4712 return (B_TRUE); 4713 } 4714 4715 /* 4716 * Start reusing unused indexes. Note that we hold the ill_g_lock 4717 * at this point and don't want to call any function that attempts 4718 * to get the lock again. 4719 */ 4720 starting_index = ill_index++; 4721 for (; ill_index != starting_index; ill_index++) { 4722 if (ill_index != 0 && !phyint_exists(ill_index)) { 4723 /* found unused index - use it */ 4724 phyi->phyint_ifindex = ill_index; 4725 return (B_TRUE); 4726 } 4727 } 4728 4729 /* 4730 * all interface indicies are inuse. 4731 */ 4732 return (B_FALSE); 4733 } 4734 4735 /* 4736 * Return a pointer to the ill which matches the supplied name. Note that 4737 * the ill name length includes the null termination character. (May be 4738 * called as writer.) 4739 * If do_alloc and the interface is "lo0" it will be automatically created. 4740 * Cannot bump up reference on condemned ills. So dup detect can't be done 4741 * using this func. 4742 */ 4743 ill_t * 4744 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4745 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 4746 { 4747 ill_t *ill; 4748 ipif_t *ipif; 4749 kstat_named_t *kn; 4750 boolean_t isloopback; 4751 ipsq_t *old_ipsq; 4752 4753 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4754 4755 rw_enter(&ill_g_lock, RW_READER); 4756 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4757 rw_exit(&ill_g_lock); 4758 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4759 return (ill); 4760 4761 /* 4762 * Couldn't find it. Does this happen to be a lookup for the 4763 * loopback device and are we allowed to allocate it? 4764 */ 4765 if (!isloopback || !do_alloc) 4766 return (NULL); 4767 4768 rw_enter(&ill_g_lock, RW_WRITER); 4769 4770 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4771 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4772 rw_exit(&ill_g_lock); 4773 return (ill); 4774 } 4775 4776 /* Create the loopback device on demand */ 4777 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4778 sizeof (ipif_loopback_name), BPRI_MED)); 4779 if (ill == NULL) 4780 goto done; 4781 4782 *ill = ill_null; 4783 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4784 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4785 if (ill->ill_phyint == NULL) 4786 goto done; 4787 4788 if (isv6) 4789 ill->ill_phyint->phyint_illv6 = ill; 4790 else 4791 ill->ill_phyint->phyint_illv4 = ill; 4792 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4793 ill->ill_max_frag = IP_LOOPBACK_MTU; 4794 /* Add room for tcp+ip headers */ 4795 if (isv6) { 4796 ill->ill_isv6 = B_TRUE; 4797 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4798 if (!ill_allocate_mibs(ill)) 4799 goto done; 4800 } else { 4801 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4802 } 4803 ill->ill_max_mtu = ill->ill_max_frag; 4804 /* 4805 * ipif_loopback_name can't be pointed at directly because its used 4806 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4807 * from the glist, ill_glist_delete() sets the first character of 4808 * ill_name to '\0'. 4809 */ 4810 ill->ill_name = (char *)ill + sizeof (*ill); 4811 (void) strcpy(ill->ill_name, ipif_loopback_name); 4812 ill->ill_name_length = sizeof (ipif_loopback_name); 4813 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4814 4815 ill->ill_global_timer = INFINITY; 4816 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4817 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4818 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4819 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4820 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4821 4822 /* No resolver here. */ 4823 ill->ill_net_type = IRE_LOOPBACK; 4824 4825 /* Initialize the ipsq */ 4826 if (!ipsq_init(ill)) 4827 goto done; 4828 4829 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4830 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4831 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4832 #ifdef ILL_DEBUG 4833 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4834 #endif 4835 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4836 if (ipif == NULL) 4837 goto done; 4838 4839 ill->ill_flags = ILLF_MULTICAST; 4840 4841 /* Set up default loopback address and mask. */ 4842 if (!isv6) { 4843 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4844 4845 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4846 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4847 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4848 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4849 ipif->ipif_v6subnet); 4850 ill->ill_flags |= ILLF_IPV4; 4851 } else { 4852 ipif->ipif_v6lcl_addr = ipv6_loopback; 4853 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4854 ipif->ipif_v6net_mask = ipv6_all_ones; 4855 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4856 ipif->ipif_v6subnet); 4857 ill->ill_flags |= ILLF_IPV6; 4858 } 4859 4860 /* 4861 * Chain us in at the end of the ill list. hold the ill 4862 * before we make it globally visible. 1 for the lookup. 4863 */ 4864 ill->ill_refcnt = 0; 4865 ill_refhold(ill); 4866 4867 ill->ill_frag_count = 0; 4868 ill->ill_frag_free_num_pkts = 0; 4869 ill->ill_last_frag_clean_time = 0; 4870 4871 old_ipsq = ill->ill_phyint->phyint_ipsq; 4872 4873 if (ill_glist_insert(ill, "lo", isv6) != 0) 4874 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4875 4876 /* Let SCTP know so that it can add this to its list */ 4877 sctp_update_ill(ill, SCTP_ILL_INSERT); 4878 4879 /* Let SCTP know about this IPIF, so that it can add it to its list */ 4880 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 4881 4882 /* 4883 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4884 */ 4885 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4886 /* Loopback ills aren't in any IPMP group */ 4887 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4888 ipsq_delete(old_ipsq); 4889 } 4890 4891 /* 4892 * Delay this till the ipif is allocated as ipif_allocate 4893 * de-references ill_phyint for getting the ifindex. We 4894 * can't do this before ipif_allocate because ill_phyint_reinit 4895 * -> phyint_assign_ifindex expects ipif to be present. 4896 */ 4897 mutex_enter(&ill->ill_phyint->phyint_lock); 4898 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4899 mutex_exit(&ill->ill_phyint->phyint_lock); 4900 4901 if (loopback_ksp == NULL) { 4902 /* Export loopback interface statistics */ 4903 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 4904 KSTAT_TYPE_NAMED, 2, 0); 4905 if (loopback_ksp != NULL) { 4906 loopback_ksp->ks_update = loopback_kstat_update; 4907 kn = KSTAT_NAMED_PTR(loopback_ksp); 4908 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4909 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4910 kstat_install(loopback_ksp); 4911 } 4912 } 4913 4914 if (error != NULL) 4915 *error = 0; 4916 *did_alloc = B_TRUE; 4917 rw_exit(&ill_g_lock); 4918 return (ill); 4919 done: 4920 if (ill != NULL) { 4921 if (ill->ill_phyint != NULL) { 4922 ipsq_t *ipsq; 4923 4924 ipsq = ill->ill_phyint->phyint_ipsq; 4925 if (ipsq != NULL) 4926 kmem_free(ipsq, sizeof (ipsq_t)); 4927 mi_free(ill->ill_phyint); 4928 } 4929 ill_free_mib(ill); 4930 mi_free(ill); 4931 } 4932 rw_exit(&ill_g_lock); 4933 if (error != NULL) 4934 *error = ENOMEM; 4935 return (NULL); 4936 } 4937 4938 /* 4939 * Return a pointer to the ill which matches the index and IP version type. 4940 */ 4941 ill_t * 4942 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4943 ipsq_func_t func, int *err) 4944 { 4945 ill_t *ill; 4946 ipsq_t *ipsq; 4947 phyint_t *phyi; 4948 4949 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4950 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4951 4952 if (err != NULL) 4953 *err = 0; 4954 4955 /* 4956 * Indexes are stored in the phyint - a common structure 4957 * to both IPv4 and IPv6. 4958 */ 4959 rw_enter(&ill_g_lock, RW_READER); 4960 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4961 (void *) &index, NULL); 4962 if (phyi != NULL) { 4963 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4964 if (ill != NULL) { 4965 /* 4966 * The block comment at the start of ipif_down 4967 * explains the use of the macros used below 4968 */ 4969 GRAB_CONN_LOCK(q); 4970 mutex_enter(&ill->ill_lock); 4971 if (ILL_CAN_LOOKUP(ill)) { 4972 ill_refhold_locked(ill); 4973 mutex_exit(&ill->ill_lock); 4974 RELEASE_CONN_LOCK(q); 4975 rw_exit(&ill_g_lock); 4976 return (ill); 4977 } else if (ILL_CAN_WAIT(ill, q)) { 4978 ipsq = ill->ill_phyint->phyint_ipsq; 4979 mutex_enter(&ipsq->ipsq_lock); 4980 rw_exit(&ill_g_lock); 4981 mutex_exit(&ill->ill_lock); 4982 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4983 mutex_exit(&ipsq->ipsq_lock); 4984 RELEASE_CONN_LOCK(q); 4985 *err = EINPROGRESS; 4986 return (NULL); 4987 } 4988 RELEASE_CONN_LOCK(q); 4989 mutex_exit(&ill->ill_lock); 4990 } 4991 } 4992 rw_exit(&ill_g_lock); 4993 if (err != NULL) 4994 *err = ENXIO; 4995 return (NULL); 4996 } 4997 4998 /* 4999 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5000 * that gives a running thread a reference to the ill. This reference must be 5001 * released by the thread when it is done accessing the ill and related 5002 * objects. ill_refcnt can not be used to account for static references 5003 * such as other structures pointing to an ill. Callers must generally 5004 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5005 * or be sure that the ill is not being deleted or changing state before 5006 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5007 * ill won't change any of its critical state such as address, netmask etc. 5008 */ 5009 void 5010 ill_refhold(ill_t *ill) 5011 { 5012 mutex_enter(&ill->ill_lock); 5013 ill->ill_refcnt++; 5014 ILL_TRACE_REF(ill); 5015 mutex_exit(&ill->ill_lock); 5016 } 5017 5018 void 5019 ill_refhold_locked(ill_t *ill) 5020 { 5021 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5022 ill->ill_refcnt++; 5023 ILL_TRACE_REF(ill); 5024 } 5025 5026 int 5027 ill_check_and_refhold(ill_t *ill) 5028 { 5029 mutex_enter(&ill->ill_lock); 5030 if (ILL_CAN_LOOKUP(ill)) { 5031 ill_refhold_locked(ill); 5032 mutex_exit(&ill->ill_lock); 5033 return (0); 5034 } 5035 mutex_exit(&ill->ill_lock); 5036 return (ILL_LOOKUP_FAILED); 5037 } 5038 5039 /* 5040 * Must not be called while holding any locks. Otherwise if this is 5041 * the last reference to be released, there is a chance of recursive mutex 5042 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5043 * to restart an ioctl. 5044 */ 5045 void 5046 ill_refrele(ill_t *ill) 5047 { 5048 mutex_enter(&ill->ill_lock); 5049 ASSERT(ill->ill_refcnt != 0); 5050 ill->ill_refcnt--; 5051 ILL_UNTRACE_REF(ill); 5052 if (ill->ill_refcnt != 0) { 5053 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5054 mutex_exit(&ill->ill_lock); 5055 return; 5056 } 5057 5058 /* Drops the ill_lock */ 5059 ipif_ill_refrele_tail(ill); 5060 } 5061 5062 /* 5063 * Obtain a weak reference count on the ill. This reference ensures the 5064 * ill won't be freed, but the ill may change any of its critical state 5065 * such as netmask, address etc. Returns an error if the ill has started 5066 * closing. 5067 */ 5068 boolean_t 5069 ill_waiter_inc(ill_t *ill) 5070 { 5071 mutex_enter(&ill->ill_lock); 5072 if (ill->ill_state_flags & ILL_CONDEMNED) { 5073 mutex_exit(&ill->ill_lock); 5074 return (B_FALSE); 5075 } 5076 ill->ill_waiters++; 5077 mutex_exit(&ill->ill_lock); 5078 return (B_TRUE); 5079 } 5080 5081 void 5082 ill_waiter_dcr(ill_t *ill) 5083 { 5084 mutex_enter(&ill->ill_lock); 5085 ill->ill_waiters--; 5086 if (ill->ill_waiters == 0) 5087 cv_broadcast(&ill->ill_cv); 5088 mutex_exit(&ill->ill_lock); 5089 } 5090 5091 /* 5092 * Named Dispatch routine to produce a formatted report on all ILLs. 5093 * This report is accessed by using the ndd utility to "get" ND variable 5094 * "ip_ill_status". 5095 */ 5096 /* ARGSUSED */ 5097 int 5098 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5099 { 5100 ill_t *ill; 5101 ill_walk_context_t ctx; 5102 5103 (void) mi_mpprintf(mp, 5104 "ILL " MI_COL_HDRPAD_STR 5105 /* 01234567[89ABCDEF] */ 5106 "rq " MI_COL_HDRPAD_STR 5107 /* 01234567[89ABCDEF] */ 5108 "wq " MI_COL_HDRPAD_STR 5109 /* 01234567[89ABCDEF] */ 5110 "upcnt mxfrg err name"); 5111 /* 12345 12345 123 xxxxxxxx */ 5112 5113 rw_enter(&ill_g_lock, RW_READER); 5114 ill = ILL_START_WALK_ALL(&ctx); 5115 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5116 (void) mi_mpprintf(mp, 5117 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5118 "%05u %05u %03d %s", 5119 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5120 ill->ill_ipif_up_count, 5121 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5122 } 5123 rw_exit(&ill_g_lock); 5124 5125 return (0); 5126 } 5127 5128 /* 5129 * Named Dispatch routine to produce a formatted report on all IPIFs. 5130 * This report is accessed by using the ndd utility to "get" ND variable 5131 * "ip_ipif_status". 5132 */ 5133 /* ARGSUSED */ 5134 int 5135 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5136 { 5137 char buf1[INET6_ADDRSTRLEN]; 5138 char buf2[INET6_ADDRSTRLEN]; 5139 char buf3[INET6_ADDRSTRLEN]; 5140 char buf4[INET6_ADDRSTRLEN]; 5141 char buf5[INET6_ADDRSTRLEN]; 5142 char buf6[INET6_ADDRSTRLEN]; 5143 char buf[LIFNAMSIZ]; 5144 ill_t *ill; 5145 ipif_t *ipif; 5146 nv_t *nvp; 5147 uint64_t flags; 5148 zoneid_t zoneid; 5149 ill_walk_context_t ctx; 5150 5151 (void) mi_mpprintf(mp, 5152 "IPIF metric mtu in/out/forward name zone flags...\n" 5153 "\tlocal address\n" 5154 "\tsrc address\n" 5155 "\tsubnet\n" 5156 "\tmask\n" 5157 "\tbroadcast\n" 5158 "\tp-p-dst"); 5159 5160 ASSERT(q->q_next == NULL); 5161 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5162 5163 rw_enter(&ill_g_lock, RW_READER); 5164 ill = ILL_START_WALK_ALL(&ctx); 5165 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5166 for (ipif = ill->ill_ipif; ipif != NULL; 5167 ipif = ipif->ipif_next) { 5168 if (zoneid != GLOBAL_ZONEID && 5169 zoneid != ipif->ipif_zoneid && 5170 ipif->ipif_zoneid != ALL_ZONES) 5171 continue; 5172 (void) mi_mpprintf(mp, 5173 MI_COL_PTRFMT_STR 5174 "%04u %05u %u/%u/%u %s %d", 5175 (void *)ipif, 5176 ipif->ipif_metric, ipif->ipif_mtu, 5177 ipif->ipif_ib_pkt_count, 5178 ipif->ipif_ob_pkt_count, 5179 ipif->ipif_fo_pkt_count, 5180 ipif_get_name(ipif, buf, sizeof (buf)), 5181 ipif->ipif_zoneid); 5182 5183 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5184 ipif->ipif_ill->ill_phyint->phyint_flags; 5185 5186 /* Tack on text strings for any flags. */ 5187 nvp = ipif_nv_tbl; 5188 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5189 if (nvp->nv_value & flags) 5190 (void) mi_mpprintf_nr(mp, " %s", 5191 nvp->nv_name); 5192 } 5193 (void) mi_mpprintf(mp, 5194 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5195 inet_ntop(AF_INET6, 5196 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5197 inet_ntop(AF_INET6, 5198 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5199 inet_ntop(AF_INET6, 5200 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5201 inet_ntop(AF_INET6, 5202 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5203 inet_ntop(AF_INET6, 5204 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5205 inet_ntop(AF_INET6, 5206 &ipif->ipif_v6pp_dst_addr, 5207 buf6, sizeof (buf6))); 5208 } 5209 } 5210 rw_exit(&ill_g_lock); 5211 return (0); 5212 } 5213 5214 /* 5215 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5216 * driver. We construct best guess defaults for lower level information that 5217 * we need. If an interface is brought up without injection of any overriding 5218 * information from outside, we have to be ready to go with these defaults. 5219 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5220 * we primarely want the dl_provider_style. 5221 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5222 * at which point we assume the other part of the information is valid. 5223 */ 5224 void 5225 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5226 { 5227 uchar_t *brdcst_addr; 5228 uint_t brdcst_addr_length, phys_addr_length; 5229 t_scalar_t sap_length; 5230 dl_info_ack_t *dlia; 5231 ip_m_t *ipm; 5232 dl_qos_cl_sel1_t *sel1; 5233 5234 ASSERT(IAM_WRITER_ILL(ill)); 5235 5236 /* 5237 * Till the ill is fully up ILL_CHANGING will be set and 5238 * the ill is not globally visible. So no need for a lock. 5239 */ 5240 dlia = (dl_info_ack_t *)mp->b_rptr; 5241 ill->ill_mactype = dlia->dl_mac_type; 5242 5243 ipm = ip_m_lookup(dlia->dl_mac_type); 5244 if (ipm == NULL) { 5245 ipm = ip_m_lookup(DL_OTHER); 5246 ASSERT(ipm != NULL); 5247 } 5248 ill->ill_media = ipm; 5249 5250 /* 5251 * When the new DLPI stuff is ready we'll pull lengths 5252 * from dlia. 5253 */ 5254 if (dlia->dl_version == DL_VERSION_2) { 5255 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5256 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5257 brdcst_addr_length); 5258 if (brdcst_addr == NULL) { 5259 brdcst_addr_length = 0; 5260 } 5261 sap_length = dlia->dl_sap_length; 5262 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5263 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5264 brdcst_addr_length, sap_length, phys_addr_length)); 5265 } else { 5266 brdcst_addr_length = 6; 5267 brdcst_addr = ip_six_byte_all_ones; 5268 sap_length = -2; 5269 phys_addr_length = brdcst_addr_length; 5270 } 5271 5272 ill->ill_bcast_addr_length = brdcst_addr_length; 5273 ill->ill_phys_addr_length = phys_addr_length; 5274 ill->ill_sap_length = sap_length; 5275 ill->ill_max_frag = dlia->dl_max_sdu; 5276 ill->ill_max_mtu = ill->ill_max_frag; 5277 5278 ill->ill_type = ipm->ip_m_type; 5279 5280 if (!ill->ill_dlpi_style_set) { 5281 if (dlia->dl_provider_style == DL_STYLE2) 5282 ill->ill_needs_attach = 1; 5283 5284 /* 5285 * Allocate the first ipif on this ill. We don't delay it 5286 * further as ioctl handling assumes atleast one ipif to 5287 * be present. 5288 * 5289 * At this point we don't know whether the ill is v4 or v6. 5290 * We will know this whan the SIOCSLIFNAME happens and 5291 * the correct value for ill_isv6 will be assigned in 5292 * ipif_set_values(). We need to hold the ill lock and 5293 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5294 * the wakeup. 5295 */ 5296 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5297 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5298 mutex_enter(&ill->ill_lock); 5299 ASSERT(ill->ill_dlpi_style_set == 0); 5300 ill->ill_dlpi_style_set = 1; 5301 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5302 cv_broadcast(&ill->ill_cv); 5303 mutex_exit(&ill->ill_lock); 5304 freemsg(mp); 5305 return; 5306 } 5307 ASSERT(ill->ill_ipif != NULL); 5308 /* 5309 * We know whether it is IPv4 or IPv6 now, as this is the 5310 * second DL_INFO_ACK we are recieving in response to the 5311 * DL_INFO_REQ sent in ipif_set_values. 5312 */ 5313 if (ill->ill_isv6) 5314 ill->ill_sap = IP6_DL_SAP; 5315 else 5316 ill->ill_sap = IP_DL_SAP; 5317 /* 5318 * Set ipif_mtu which is used to set the IRE's 5319 * ire_max_frag value. The driver could have sent 5320 * a different mtu from what it sent last time. No 5321 * need to call ipif_mtu_change because IREs have 5322 * not yet been created. 5323 */ 5324 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5325 /* 5326 * Clear all the flags that were set based on ill_bcast_addr_length 5327 * and ill_phys_addr_length (in ipif_set_values) as these could have 5328 * changed now and we need to re-evaluate. 5329 */ 5330 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5331 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5332 5333 /* 5334 * Free ill_resolver_mp and ill_bcast_mp as things could have 5335 * changed now. 5336 */ 5337 if (ill->ill_bcast_addr_length == 0) { 5338 if (ill->ill_resolver_mp != NULL) 5339 freemsg(ill->ill_resolver_mp); 5340 if (ill->ill_bcast_mp != NULL) 5341 freemsg(ill->ill_bcast_mp); 5342 if (ill->ill_flags & ILLF_XRESOLV) 5343 ill->ill_net_type = IRE_IF_RESOLVER; 5344 else 5345 ill->ill_net_type = IRE_IF_NORESOLVER; 5346 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5347 ill->ill_phys_addr_length, 5348 ill->ill_sap, 5349 ill->ill_sap_length); 5350 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5351 5352 if (ill->ill_isv6) 5353 /* 5354 * Note: xresolv interfaces will eventually need NOARP 5355 * set here as well, but that will require those 5356 * external resolvers to have some knowledge of 5357 * that flag and act appropriately. Not to be changed 5358 * at present. 5359 */ 5360 ill->ill_flags |= ILLF_NONUD; 5361 else 5362 ill->ill_flags |= ILLF_NOARP; 5363 5364 if (ill->ill_phys_addr_length == 0) { 5365 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5366 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5367 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5368 } else { 5369 /* pt-pt supports multicast. */ 5370 ill->ill_flags |= ILLF_MULTICAST; 5371 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5372 } 5373 } 5374 } else { 5375 ill->ill_net_type = IRE_IF_RESOLVER; 5376 if (ill->ill_bcast_mp != NULL) 5377 freemsg(ill->ill_bcast_mp); 5378 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5379 ill->ill_bcast_addr_length, ill->ill_sap, 5380 ill->ill_sap_length); 5381 /* 5382 * Later detect lack of DLPI driver multicast 5383 * capability by catching DL_ENABMULTI errors in 5384 * ip_rput_dlpi. 5385 */ 5386 ill->ill_flags |= ILLF_MULTICAST; 5387 if (!ill->ill_isv6) 5388 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5389 } 5390 /* By default an interface does not support any CoS marking */ 5391 ill->ill_flags &= ~ILLF_COS_ENABLED; 5392 5393 /* 5394 * If we get QoS information in DL_INFO_ACK, the device supports 5395 * some form of CoS marking, set ILLF_COS_ENABLED. 5396 */ 5397 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5398 dlia->dl_qos_length); 5399 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5400 ill->ill_flags |= ILLF_COS_ENABLED; 5401 } 5402 5403 /* Clear any previous error indication. */ 5404 ill->ill_error = 0; 5405 freemsg(mp); 5406 } 5407 5408 /* 5409 * Perform various checks to verify that an address would make sense as a 5410 * local, remote, or subnet interface address. 5411 */ 5412 static boolean_t 5413 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5414 { 5415 ipaddr_t net_mask; 5416 5417 /* 5418 * Don't allow all zeroes, all ones or experimental address, but allow 5419 * all ones netmask. 5420 */ 5421 if ((net_mask = ip_net_mask(addr)) == 0) 5422 return (B_FALSE); 5423 /* A given netmask overrides the "guess" netmask */ 5424 if (subnet_mask != 0) 5425 net_mask = subnet_mask; 5426 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5427 (addr == (addr | ~net_mask)))) { 5428 return (B_FALSE); 5429 } 5430 if (CLASSD(addr)) 5431 return (B_FALSE); 5432 5433 return (B_TRUE); 5434 } 5435 5436 /* 5437 * ipif_lookup_group 5438 * Returns held ipif 5439 */ 5440 ipif_t * 5441 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5442 { 5443 ire_t *ire; 5444 ipif_t *ipif; 5445 5446 ire = ire_lookup_multi(group, zoneid); 5447 if (ire == NULL) 5448 return (NULL); 5449 ipif = ire->ire_ipif; 5450 ipif_refhold(ipif); 5451 ire_refrele(ire); 5452 return (ipif); 5453 } 5454 5455 /* 5456 * Look for an ipif with the specified interface address and destination. 5457 * The destination address is used only for matching point-to-point interfaces. 5458 */ 5459 ipif_t * 5460 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5461 ipsq_func_t func, int *error) 5462 { 5463 ipif_t *ipif; 5464 ill_t *ill; 5465 ill_walk_context_t ctx; 5466 ipsq_t *ipsq; 5467 5468 if (error != NULL) 5469 *error = 0; 5470 5471 /* 5472 * First match all the point-to-point interfaces 5473 * before looking at non-point-to-point interfaces. 5474 * This is done to avoid returning non-point-to-point 5475 * ipif instead of unnumbered point-to-point ipif. 5476 */ 5477 rw_enter(&ill_g_lock, RW_READER); 5478 ill = ILL_START_WALK_V4(&ctx); 5479 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5480 GRAB_CONN_LOCK(q); 5481 mutex_enter(&ill->ill_lock); 5482 for (ipif = ill->ill_ipif; ipif != NULL; 5483 ipif = ipif->ipif_next) { 5484 /* Allow the ipif to be down */ 5485 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5486 (ipif->ipif_lcl_addr == if_addr) && 5487 (ipif->ipif_pp_dst_addr == dst)) { 5488 /* 5489 * The block comment at the start of ipif_down 5490 * explains the use of the macros used below 5491 */ 5492 if (IPIF_CAN_LOOKUP(ipif)) { 5493 ipif_refhold_locked(ipif); 5494 mutex_exit(&ill->ill_lock); 5495 RELEASE_CONN_LOCK(q); 5496 rw_exit(&ill_g_lock); 5497 return (ipif); 5498 } else if (IPIF_CAN_WAIT(ipif, q)) { 5499 ipsq = ill->ill_phyint->phyint_ipsq; 5500 mutex_enter(&ipsq->ipsq_lock); 5501 mutex_exit(&ill->ill_lock); 5502 rw_exit(&ill_g_lock); 5503 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5504 ill); 5505 mutex_exit(&ipsq->ipsq_lock); 5506 RELEASE_CONN_LOCK(q); 5507 *error = EINPROGRESS; 5508 return (NULL); 5509 } 5510 } 5511 } 5512 mutex_exit(&ill->ill_lock); 5513 RELEASE_CONN_LOCK(q); 5514 } 5515 rw_exit(&ill_g_lock); 5516 5517 /* lookup the ipif based on interface address */ 5518 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5519 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5520 return (ipif); 5521 } 5522 5523 /* 5524 * Look for an ipif with the specified address. For point-point links 5525 * we look for matches on either the destination address and the local 5526 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5527 * is set. 5528 * Matches on a specific ill if match_ill is set. 5529 */ 5530 ipif_t * 5531 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5532 mblk_t *mp, ipsq_func_t func, int *error) 5533 { 5534 ipif_t *ipif; 5535 ill_t *ill; 5536 boolean_t ptp = B_FALSE; 5537 ipsq_t *ipsq; 5538 ill_walk_context_t ctx; 5539 5540 if (error != NULL) 5541 *error = 0; 5542 5543 rw_enter(&ill_g_lock, RW_READER); 5544 /* 5545 * Repeat twice, first based on local addresses and 5546 * next time for pointopoint. 5547 */ 5548 repeat: 5549 ill = ILL_START_WALK_V4(&ctx); 5550 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5551 if (match_ill != NULL && ill != match_ill) { 5552 continue; 5553 } 5554 GRAB_CONN_LOCK(q); 5555 mutex_enter(&ill->ill_lock); 5556 for (ipif = ill->ill_ipif; ipif != NULL; 5557 ipif = ipif->ipif_next) { 5558 if (zoneid != ALL_ZONES && 5559 zoneid != ipif->ipif_zoneid && 5560 ipif->ipif_zoneid != ALL_ZONES) 5561 continue; 5562 /* Allow the ipif to be down */ 5563 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5564 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5565 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5566 (ipif->ipif_pp_dst_addr == addr))) { 5567 /* 5568 * The block comment at the start of ipif_down 5569 * explains the use of the macros used below 5570 */ 5571 if (IPIF_CAN_LOOKUP(ipif)) { 5572 ipif_refhold_locked(ipif); 5573 mutex_exit(&ill->ill_lock); 5574 RELEASE_CONN_LOCK(q); 5575 rw_exit(&ill_g_lock); 5576 return (ipif); 5577 } else if (IPIF_CAN_WAIT(ipif, q)) { 5578 ipsq = ill->ill_phyint->phyint_ipsq; 5579 mutex_enter(&ipsq->ipsq_lock); 5580 mutex_exit(&ill->ill_lock); 5581 rw_exit(&ill_g_lock); 5582 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5583 ill); 5584 mutex_exit(&ipsq->ipsq_lock); 5585 RELEASE_CONN_LOCK(q); 5586 *error = EINPROGRESS; 5587 return (NULL); 5588 } 5589 } 5590 } 5591 mutex_exit(&ill->ill_lock); 5592 RELEASE_CONN_LOCK(q); 5593 } 5594 5595 /* If we already did the ptp case, then we are done */ 5596 if (ptp) { 5597 rw_exit(&ill_g_lock); 5598 if (error != NULL) 5599 *error = ENXIO; 5600 return (NULL); 5601 } 5602 ptp = B_TRUE; 5603 goto repeat; 5604 } 5605 5606 /* 5607 * Look for an ipif with the specified address. For point-point links 5608 * we look for matches on either the destination address and the local 5609 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5610 * is set. 5611 * Matches on a specific ill if match_ill is set. 5612 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 5613 */ 5614 zoneid_t 5615 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill) 5616 { 5617 zoneid_t zoneid; 5618 ipif_t *ipif; 5619 ill_t *ill; 5620 boolean_t ptp = B_FALSE; 5621 ill_walk_context_t ctx; 5622 5623 rw_enter(&ill_g_lock, RW_READER); 5624 /* 5625 * Repeat twice, first based on local addresses and 5626 * next time for pointopoint. 5627 */ 5628 repeat: 5629 ill = ILL_START_WALK_V4(&ctx); 5630 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5631 if (match_ill != NULL && ill != match_ill) { 5632 continue; 5633 } 5634 mutex_enter(&ill->ill_lock); 5635 for (ipif = ill->ill_ipif; ipif != NULL; 5636 ipif = ipif->ipif_next) { 5637 /* Allow the ipif to be down */ 5638 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5639 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5640 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5641 (ipif->ipif_pp_dst_addr == addr)) && 5642 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 5643 zoneid = ipif->ipif_zoneid; 5644 mutex_exit(&ill->ill_lock); 5645 rw_exit(&ill_g_lock); 5646 /* 5647 * If ipif_zoneid was ALL_ZONES then we have 5648 * a trusted extensions shared IP address. 5649 * In that case GLOBAL_ZONEID works to send. 5650 */ 5651 if (zoneid == ALL_ZONES) 5652 zoneid = GLOBAL_ZONEID; 5653 return (zoneid); 5654 } 5655 } 5656 mutex_exit(&ill->ill_lock); 5657 } 5658 5659 /* If we already did the ptp case, then we are done */ 5660 if (ptp) { 5661 rw_exit(&ill_g_lock); 5662 return (ALL_ZONES); 5663 } 5664 ptp = B_TRUE; 5665 goto repeat; 5666 } 5667 5668 /* 5669 * Look for an ipif that matches the specified remote address i.e. the 5670 * ipif that would receive the specified packet. 5671 * First look for directly connected interfaces and then do a recursive 5672 * IRE lookup and pick the first ipif corresponding to the source address in the 5673 * ire. 5674 * Returns: held ipif 5675 */ 5676 ipif_t * 5677 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5678 { 5679 ipif_t *ipif; 5680 ire_t *ire; 5681 5682 ASSERT(!ill->ill_isv6); 5683 5684 /* 5685 * Someone could be changing this ipif currently or change it 5686 * after we return this. Thus a few packets could use the old 5687 * old values. However structure updates/creates (ire, ilg, ilm etc) 5688 * will atomically be updated or cleaned up with the new value 5689 * Thus we don't need a lock to check the flags or other attrs below. 5690 */ 5691 mutex_enter(&ill->ill_lock); 5692 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5693 if (!IPIF_CAN_LOOKUP(ipif)) 5694 continue; 5695 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 5696 ipif->ipif_zoneid != ALL_ZONES) 5697 continue; 5698 /* Allow the ipif to be down */ 5699 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5700 if ((ipif->ipif_pp_dst_addr == addr) || 5701 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5702 ipif->ipif_lcl_addr == addr)) { 5703 ipif_refhold_locked(ipif); 5704 mutex_exit(&ill->ill_lock); 5705 return (ipif); 5706 } 5707 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5708 ipif_refhold_locked(ipif); 5709 mutex_exit(&ill->ill_lock); 5710 return (ipif); 5711 } 5712 } 5713 mutex_exit(&ill->ill_lock); 5714 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5715 NULL, MATCH_IRE_RECURSIVE); 5716 if (ire != NULL) { 5717 /* 5718 * The callers of this function wants to know the 5719 * interface on which they have to send the replies 5720 * back. For IRE_CACHES that have ire_stq and ire_ipif 5721 * derived from different ills, we really don't care 5722 * what we return here. 5723 */ 5724 ipif = ire->ire_ipif; 5725 if (ipif != NULL) { 5726 ipif_refhold(ipif); 5727 ire_refrele(ire); 5728 return (ipif); 5729 } 5730 ire_refrele(ire); 5731 } 5732 /* Pick the first interface */ 5733 ipif = ipif_get_next_ipif(NULL, ill); 5734 return (ipif); 5735 } 5736 5737 /* 5738 * This func does not prevent refcnt from increasing. But if 5739 * the caller has taken steps to that effect, then this func 5740 * can be used to determine whether the ill has become quiescent 5741 */ 5742 boolean_t 5743 ill_is_quiescent(ill_t *ill) 5744 { 5745 ipif_t *ipif; 5746 5747 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5748 5749 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5750 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5751 return (B_FALSE); 5752 } 5753 } 5754 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 5755 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 5756 ill->ill_mrtun_refcnt != 0) { 5757 return (B_FALSE); 5758 } 5759 return (B_TRUE); 5760 } 5761 5762 /* 5763 * This func does not prevent refcnt from increasing. But if 5764 * the caller has taken steps to that effect, then this func 5765 * can be used to determine whether the ipif has become quiescent 5766 */ 5767 static boolean_t 5768 ipif_is_quiescent(ipif_t *ipif) 5769 { 5770 ill_t *ill; 5771 5772 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5773 5774 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5775 return (B_FALSE); 5776 } 5777 5778 ill = ipif->ipif_ill; 5779 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 5780 ill->ill_logical_down) { 5781 return (B_TRUE); 5782 } 5783 5784 /* This is the last ipif going down or being deleted on this ill */ 5785 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 5786 return (B_FALSE); 5787 } 5788 5789 return (B_TRUE); 5790 } 5791 5792 /* 5793 * This func does not prevent refcnt from increasing. But if 5794 * the caller has taken steps to that effect, then this func 5795 * can be used to determine whether the ipifs marked with IPIF_MOVING 5796 * have become quiescent and can be moved in a failover/failback. 5797 */ 5798 static ipif_t * 5799 ill_quiescent_to_move(ill_t *ill) 5800 { 5801 ipif_t *ipif; 5802 5803 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5804 5805 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5806 if (ipif->ipif_state_flags & IPIF_MOVING) { 5807 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5808 return (ipif); 5809 } 5810 } 5811 } 5812 return (NULL); 5813 } 5814 5815 /* 5816 * The ipif/ill/ire has been refreled. Do the tail processing. 5817 * Determine if the ipif or ill in question has become quiescent and if so 5818 * wakeup close and/or restart any queued pending ioctl that is waiting 5819 * for the ipif_down (or ill_down) 5820 */ 5821 void 5822 ipif_ill_refrele_tail(ill_t *ill) 5823 { 5824 mblk_t *mp; 5825 conn_t *connp; 5826 ipsq_t *ipsq; 5827 ipif_t *ipif; 5828 5829 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5830 5831 if ((ill->ill_state_flags & ILL_CONDEMNED) && 5832 ill_is_quiescent(ill)) { 5833 /* ill_close may be waiting */ 5834 cv_broadcast(&ill->ill_cv); 5835 } 5836 5837 /* ipsq can't change because ill_lock is held */ 5838 ipsq = ill->ill_phyint->phyint_ipsq; 5839 if (ipsq->ipsq_waitfor == 0) { 5840 /* Not waiting for anything, just return. */ 5841 mutex_exit(&ill->ill_lock); 5842 return; 5843 } 5844 ASSERT(ipsq->ipsq_pending_mp != NULL && 5845 ipsq->ipsq_pending_ipif != NULL); 5846 /* 5847 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 5848 * Last ipif going down needs to down the ill, so ill_ire_cnt must 5849 * be zero for restarting an ioctl that ends up downing the ill. 5850 */ 5851 ipif = ipsq->ipsq_pending_ipif; 5852 if (ipif->ipif_ill != ill) { 5853 /* The ioctl is pending on some other ill. */ 5854 mutex_exit(&ill->ill_lock); 5855 return; 5856 } 5857 5858 switch (ipsq->ipsq_waitfor) { 5859 case IPIF_DOWN: 5860 case IPIF_FREE: 5861 if (!ipif_is_quiescent(ipif)) { 5862 mutex_exit(&ill->ill_lock); 5863 return; 5864 } 5865 break; 5866 5867 case ILL_DOWN: 5868 case ILL_FREE: 5869 /* 5870 * case ILL_FREE arises only for loopback. otherwise ill_delete 5871 * waits synchronously in ip_close, and no message is queued in 5872 * ipsq_pending_mp at all in this case 5873 */ 5874 if (!ill_is_quiescent(ill)) { 5875 mutex_exit(&ill->ill_lock); 5876 return; 5877 } 5878 5879 break; 5880 5881 case ILL_MOVE_OK: 5882 if (ill_quiescent_to_move(ill) != NULL) { 5883 mutex_exit(&ill->ill_lock); 5884 return; 5885 } 5886 5887 break; 5888 default: 5889 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 5890 (void *)ipsq, ipsq->ipsq_waitfor); 5891 } 5892 5893 /* 5894 * Incr refcnt for the qwriter_ip call below which 5895 * does a refrele 5896 */ 5897 ill_refhold_locked(ill); 5898 mutex_exit(&ill->ill_lock); 5899 5900 mp = ipsq_pending_mp_get(ipsq, &connp); 5901 ASSERT(mp != NULL); 5902 5903 switch (mp->b_datap->db_type) { 5904 case M_ERROR: 5905 case M_HANGUP: 5906 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 5907 ipif_all_down_tail, CUR_OP, B_TRUE); 5908 return; 5909 5910 case M_IOCTL: 5911 case M_IOCDATA: 5912 (void) qwriter_ip(NULL, ill, 5913 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 5914 ip_reprocess_ioctl, CUR_OP, B_TRUE); 5915 return; 5916 5917 default: 5918 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5919 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5920 } 5921 } 5922 5923 #ifdef ILL_DEBUG 5924 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5925 void 5926 th_trace_rrecord(th_trace_t *th_trace) 5927 { 5928 tr_buf_t *tr_buf; 5929 uint_t lastref; 5930 5931 lastref = th_trace->th_trace_lastref; 5932 lastref++; 5933 if (lastref == TR_BUF_MAX) 5934 lastref = 0; 5935 th_trace->th_trace_lastref = lastref; 5936 tr_buf = &th_trace->th_trbuf[lastref]; 5937 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 5938 } 5939 5940 th_trace_t * 5941 th_trace_ipif_lookup(ipif_t *ipif) 5942 { 5943 int bucket_id; 5944 th_trace_t *th_trace; 5945 5946 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5947 5948 bucket_id = IP_TR_HASH(curthread); 5949 ASSERT(bucket_id < IP_TR_HASH_MAX); 5950 5951 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 5952 th_trace = th_trace->th_next) { 5953 if (th_trace->th_id == curthread) 5954 return (th_trace); 5955 } 5956 return (NULL); 5957 } 5958 5959 void 5960 ipif_trace_ref(ipif_t *ipif) 5961 { 5962 int bucket_id; 5963 th_trace_t *th_trace; 5964 5965 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5966 5967 if (ipif->ipif_trace_disable) 5968 return; 5969 5970 /* 5971 * Attempt to locate the trace buffer for the curthread. 5972 * If it does not exist, then allocate a new trace buffer 5973 * and link it in list of trace bufs for this ipif, at the head 5974 */ 5975 th_trace = th_trace_ipif_lookup(ipif); 5976 if (th_trace == NULL) { 5977 bucket_id = IP_TR_HASH(curthread); 5978 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5979 KM_NOSLEEP); 5980 if (th_trace == NULL) { 5981 ipif->ipif_trace_disable = B_TRUE; 5982 ipif_trace_cleanup(ipif); 5983 return; 5984 } 5985 th_trace->th_id = curthread; 5986 th_trace->th_next = ipif->ipif_trace[bucket_id]; 5987 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 5988 if (th_trace->th_next != NULL) 5989 th_trace->th_next->th_prev = &th_trace->th_next; 5990 ipif->ipif_trace[bucket_id] = th_trace; 5991 } 5992 ASSERT(th_trace->th_refcnt >= 0 && 5993 th_trace->th_refcnt < TR_BUF_MAX -1); 5994 th_trace->th_refcnt++; 5995 th_trace_rrecord(th_trace); 5996 } 5997 5998 void 5999 ipif_untrace_ref(ipif_t *ipif) 6000 { 6001 th_trace_t *th_trace; 6002 6003 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6004 6005 if (ipif->ipif_trace_disable) 6006 return; 6007 th_trace = th_trace_ipif_lookup(ipif); 6008 ASSERT(th_trace != NULL); 6009 ASSERT(th_trace->th_refcnt > 0); 6010 6011 th_trace->th_refcnt--; 6012 th_trace_rrecord(th_trace); 6013 } 6014 6015 th_trace_t * 6016 th_trace_ill_lookup(ill_t *ill) 6017 { 6018 th_trace_t *th_trace; 6019 int bucket_id; 6020 6021 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6022 6023 bucket_id = IP_TR_HASH(curthread); 6024 ASSERT(bucket_id < IP_TR_HASH_MAX); 6025 6026 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6027 th_trace = th_trace->th_next) { 6028 if (th_trace->th_id == curthread) 6029 return (th_trace); 6030 } 6031 return (NULL); 6032 } 6033 6034 void 6035 ill_trace_ref(ill_t *ill) 6036 { 6037 int bucket_id; 6038 th_trace_t *th_trace; 6039 6040 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6041 if (ill->ill_trace_disable) 6042 return; 6043 /* 6044 * Attempt to locate the trace buffer for the curthread. 6045 * If it does not exist, then allocate a new trace buffer 6046 * and link it in list of trace bufs for this ill, at the head 6047 */ 6048 th_trace = th_trace_ill_lookup(ill); 6049 if (th_trace == NULL) { 6050 bucket_id = IP_TR_HASH(curthread); 6051 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6052 KM_NOSLEEP); 6053 if (th_trace == NULL) { 6054 ill->ill_trace_disable = B_TRUE; 6055 ill_trace_cleanup(ill); 6056 return; 6057 } 6058 th_trace->th_id = curthread; 6059 th_trace->th_next = ill->ill_trace[bucket_id]; 6060 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6061 if (th_trace->th_next != NULL) 6062 th_trace->th_next->th_prev = &th_trace->th_next; 6063 ill->ill_trace[bucket_id] = th_trace; 6064 } 6065 ASSERT(th_trace->th_refcnt >= 0 && 6066 th_trace->th_refcnt < TR_BUF_MAX - 1); 6067 6068 th_trace->th_refcnt++; 6069 th_trace_rrecord(th_trace); 6070 } 6071 6072 void 6073 ill_untrace_ref(ill_t *ill) 6074 { 6075 th_trace_t *th_trace; 6076 6077 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6078 6079 if (ill->ill_trace_disable) 6080 return; 6081 th_trace = th_trace_ill_lookup(ill); 6082 ASSERT(th_trace != NULL); 6083 ASSERT(th_trace->th_refcnt > 0); 6084 6085 th_trace->th_refcnt--; 6086 th_trace_rrecord(th_trace); 6087 } 6088 6089 /* 6090 * Verify that this thread has no refs to the ipif and free 6091 * the trace buffers 6092 */ 6093 /* ARGSUSED */ 6094 void 6095 ipif_thread_exit(ipif_t *ipif, void *dummy) 6096 { 6097 th_trace_t *th_trace; 6098 6099 mutex_enter(&ipif->ipif_ill->ill_lock); 6100 6101 th_trace = th_trace_ipif_lookup(ipif); 6102 if (th_trace == NULL) { 6103 mutex_exit(&ipif->ipif_ill->ill_lock); 6104 return; 6105 } 6106 ASSERT(th_trace->th_refcnt == 0); 6107 /* unlink th_trace and free it */ 6108 *th_trace->th_prev = th_trace->th_next; 6109 if (th_trace->th_next != NULL) 6110 th_trace->th_next->th_prev = th_trace->th_prev; 6111 th_trace->th_next = NULL; 6112 th_trace->th_prev = NULL; 6113 kmem_free(th_trace, sizeof (th_trace_t)); 6114 6115 mutex_exit(&ipif->ipif_ill->ill_lock); 6116 } 6117 6118 /* 6119 * Verify that this thread has no refs to the ill and free 6120 * the trace buffers 6121 */ 6122 /* ARGSUSED */ 6123 void 6124 ill_thread_exit(ill_t *ill, void *dummy) 6125 { 6126 th_trace_t *th_trace; 6127 6128 mutex_enter(&ill->ill_lock); 6129 6130 th_trace = th_trace_ill_lookup(ill); 6131 if (th_trace == NULL) { 6132 mutex_exit(&ill->ill_lock); 6133 return; 6134 } 6135 ASSERT(th_trace->th_refcnt == 0); 6136 /* unlink th_trace and free it */ 6137 *th_trace->th_prev = th_trace->th_next; 6138 if (th_trace->th_next != NULL) 6139 th_trace->th_next->th_prev = th_trace->th_prev; 6140 th_trace->th_next = NULL; 6141 th_trace->th_prev = NULL; 6142 kmem_free(th_trace, sizeof (th_trace_t)); 6143 6144 mutex_exit(&ill->ill_lock); 6145 } 6146 #endif 6147 6148 #ifdef ILL_DEBUG 6149 void 6150 ip_thread_exit(void) 6151 { 6152 ill_t *ill; 6153 ipif_t *ipif; 6154 ill_walk_context_t ctx; 6155 6156 rw_enter(&ill_g_lock, RW_READER); 6157 ill = ILL_START_WALK_ALL(&ctx); 6158 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6159 for (ipif = ill->ill_ipif; ipif != NULL; 6160 ipif = ipif->ipif_next) { 6161 ipif_thread_exit(ipif, NULL); 6162 } 6163 ill_thread_exit(ill, NULL); 6164 } 6165 rw_exit(&ill_g_lock); 6166 6167 ire_walk(ire_thread_exit, NULL); 6168 ndp_walk_common(&ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6169 ndp_walk_common(&ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6170 } 6171 6172 /* 6173 * Called when ipif is unplumbed or when memory alloc fails 6174 */ 6175 void 6176 ipif_trace_cleanup(ipif_t *ipif) 6177 { 6178 int i; 6179 th_trace_t *th_trace; 6180 th_trace_t *th_trace_next; 6181 6182 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6183 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6184 th_trace = th_trace_next) { 6185 th_trace_next = th_trace->th_next; 6186 kmem_free(th_trace, sizeof (th_trace_t)); 6187 } 6188 ipif->ipif_trace[i] = NULL; 6189 } 6190 } 6191 6192 /* 6193 * Called when ill is unplumbed or when memory alloc fails 6194 */ 6195 void 6196 ill_trace_cleanup(ill_t *ill) 6197 { 6198 int i; 6199 th_trace_t *th_trace; 6200 th_trace_t *th_trace_next; 6201 6202 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6203 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6204 th_trace = th_trace_next) { 6205 th_trace_next = th_trace->th_next; 6206 kmem_free(th_trace, sizeof (th_trace_t)); 6207 } 6208 ill->ill_trace[i] = NULL; 6209 } 6210 } 6211 6212 #else 6213 void ip_thread_exit(void) {} 6214 #endif 6215 6216 void 6217 ipif_refhold_locked(ipif_t *ipif) 6218 { 6219 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6220 ipif->ipif_refcnt++; 6221 IPIF_TRACE_REF(ipif); 6222 } 6223 6224 void 6225 ipif_refhold(ipif_t *ipif) 6226 { 6227 ill_t *ill; 6228 6229 ill = ipif->ipif_ill; 6230 mutex_enter(&ill->ill_lock); 6231 ipif->ipif_refcnt++; 6232 IPIF_TRACE_REF(ipif); 6233 mutex_exit(&ill->ill_lock); 6234 } 6235 6236 /* 6237 * Must not be called while holding any locks. Otherwise if this is 6238 * the last reference to be released there is a chance of recursive mutex 6239 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6240 * to restart an ioctl. 6241 */ 6242 void 6243 ipif_refrele(ipif_t *ipif) 6244 { 6245 ill_t *ill; 6246 6247 ill = ipif->ipif_ill; 6248 6249 mutex_enter(&ill->ill_lock); 6250 ASSERT(ipif->ipif_refcnt != 0); 6251 ipif->ipif_refcnt--; 6252 IPIF_UNTRACE_REF(ipif); 6253 if (ipif->ipif_refcnt != 0) { 6254 mutex_exit(&ill->ill_lock); 6255 return; 6256 } 6257 6258 /* Drops the ill_lock */ 6259 ipif_ill_refrele_tail(ill); 6260 } 6261 6262 ipif_t * 6263 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6264 { 6265 ipif_t *ipif; 6266 6267 mutex_enter(&ill->ill_lock); 6268 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6269 ipif != NULL; ipif = ipif->ipif_next) { 6270 if (!IPIF_CAN_LOOKUP(ipif)) 6271 continue; 6272 ipif_refhold_locked(ipif); 6273 mutex_exit(&ill->ill_lock); 6274 return (ipif); 6275 } 6276 mutex_exit(&ill->ill_lock); 6277 return (NULL); 6278 } 6279 6280 /* 6281 * TODO: make this table extendible at run time 6282 * Return a pointer to the mac type info for 'mac_type' 6283 */ 6284 static ip_m_t * 6285 ip_m_lookup(t_uscalar_t mac_type) 6286 { 6287 ip_m_t *ipm; 6288 6289 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6290 if (ipm->ip_m_mac_type == mac_type) 6291 return (ipm); 6292 return (NULL); 6293 } 6294 6295 /* 6296 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6297 * ipif_arg is passed in to associate it with the correct interface. 6298 * We may need to restart this operation if the ipif cannot be looked up 6299 * due to an exclusive operation that is currently in progress. The restart 6300 * entry point is specified by 'func' 6301 */ 6302 int 6303 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6304 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6305 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6306 ipsq_func_t func, struct rtsa_s *sp) 6307 { 6308 ire_t *ire; 6309 ire_t *gw_ire = NULL; 6310 ipif_t *ipif = NULL; 6311 boolean_t ipif_refheld = B_FALSE; 6312 uint_t type; 6313 int match_flags = MATCH_IRE_TYPE; 6314 int error; 6315 tsol_gc_t *gc = NULL; 6316 tsol_gcgrp_t *gcgrp = NULL; 6317 boolean_t gcgrp_xtraref = B_FALSE; 6318 6319 ip1dbg(("ip_rt_add:")); 6320 6321 if (ire_arg != NULL) 6322 *ire_arg = NULL; 6323 6324 /* 6325 * If this is the case of RTF_HOST being set, then we set the netmask 6326 * to all ones (regardless if one was supplied). 6327 */ 6328 if (flags & RTF_HOST) 6329 mask = IP_HOST_MASK; 6330 6331 /* 6332 * Prevent routes with a zero gateway from being created (since 6333 * interfaces can currently be plumbed and brought up no assigned 6334 * address). 6335 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6336 */ 6337 if (gw_addr == 0 && src_ipif == NULL) 6338 return (ENETUNREACH); 6339 /* 6340 * Get the ipif, if any, corresponding to the gw_addr 6341 */ 6342 if (gw_addr != 0) { 6343 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6344 &error); 6345 if (ipif != NULL) { 6346 if (IS_VNI(ipif->ipif_ill)) { 6347 ipif_refrele(ipif); 6348 return (EINVAL); 6349 } 6350 ipif_refheld = B_TRUE; 6351 } else if (error == EINPROGRESS) { 6352 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6353 return (EINPROGRESS); 6354 } else { 6355 error = 0; 6356 } 6357 } 6358 6359 if (ipif != NULL) { 6360 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6361 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6362 } else { 6363 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6364 } 6365 6366 /* 6367 * GateD will attempt to create routes with a loopback interface 6368 * address as the gateway and with RTF_GATEWAY set. We allow 6369 * these routes to be added, but create them as interface routes 6370 * since the gateway is an interface address. 6371 */ 6372 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6373 flags &= ~RTF_GATEWAY; 6374 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6375 mask == IP_HOST_MASK) { 6376 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6377 ALL_ZONES, NULL, match_flags); 6378 if (ire != NULL) { 6379 ire_refrele(ire); 6380 if (ipif_refheld) 6381 ipif_refrele(ipif); 6382 return (EEXIST); 6383 } 6384 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6385 "for 0x%x\n", (void *)ipif, 6386 ipif->ipif_ire_type, 6387 ntohl(ipif->ipif_lcl_addr))); 6388 ire = ire_create( 6389 (uchar_t *)&dst_addr, /* dest address */ 6390 (uchar_t *)&mask, /* mask */ 6391 (uchar_t *)&ipif->ipif_src_addr, 6392 NULL, /* no gateway */ 6393 NULL, 6394 &ipif->ipif_mtu, 6395 NULL, 6396 ipif->ipif_rq, /* recv-from queue */ 6397 NULL, /* no send-to queue */ 6398 ipif->ipif_ire_type, /* LOOPBACK */ 6399 NULL, 6400 ipif, 6401 NULL, 6402 0, 6403 0, 6404 0, 6405 (ipif->ipif_flags & IPIF_PRIVATE) ? 6406 RTF_PRIVATE : 0, 6407 &ire_uinfo_null, 6408 NULL, 6409 NULL); 6410 6411 if (ire == NULL) { 6412 if (ipif_refheld) 6413 ipif_refrele(ipif); 6414 return (ENOMEM); 6415 } 6416 error = ire_add(&ire, q, mp, func, B_FALSE); 6417 if (error == 0) 6418 goto save_ire; 6419 if (ipif_refheld) 6420 ipif_refrele(ipif); 6421 return (error); 6422 6423 } 6424 } 6425 6426 /* 6427 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6428 * and the gateway address provided is one of the system's interface 6429 * addresses. By using the routing socket interface and supplying an 6430 * RTA_IFP sockaddr with an interface index, an alternate method of 6431 * specifying an interface route to be created is available which uses 6432 * the interface index that specifies the outgoing interface rather than 6433 * the address of an outgoing interface (which may not be able to 6434 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6435 * flag, routes can be specified which not only specify the next-hop to 6436 * be used when routing to a certain prefix, but also which outgoing 6437 * interface should be used. 6438 * 6439 * Previously, interfaces would have unique addresses assigned to them 6440 * and so the address assigned to a particular interface could be used 6441 * to identify a particular interface. One exception to this was the 6442 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6443 * 6444 * With the advent of IPv6 and its link-local addresses, this 6445 * restriction was relaxed and interfaces could share addresses between 6446 * themselves. In fact, typically all of the link-local interfaces on 6447 * an IPv6 node or router will have the same link-local address. In 6448 * order to differentiate between these interfaces, the use of an 6449 * interface index is necessary and this index can be carried inside a 6450 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6451 * of using the interface index, however, is that all of the ipif's that 6452 * are part of an ill have the same index and so the RTA_IFP sockaddr 6453 * cannot be used to differentiate between ipif's (or logical 6454 * interfaces) that belong to the same ill (physical interface). 6455 * 6456 * For example, in the following case involving IPv4 interfaces and 6457 * logical interfaces 6458 * 6459 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6460 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6461 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6462 * 6463 * the ipif's corresponding to each of these interface routes can be 6464 * uniquely identified by the "gateway" (actually interface address). 6465 * 6466 * In this case involving multiple IPv6 default routes to a particular 6467 * link-local gateway, the use of RTA_IFP is necessary to specify which 6468 * default route is of interest: 6469 * 6470 * default fe80::123:4567:89ab:cdef U if0 6471 * default fe80::123:4567:89ab:cdef U if1 6472 */ 6473 6474 /* RTF_GATEWAY not set */ 6475 if (!(flags & RTF_GATEWAY)) { 6476 queue_t *stq; 6477 queue_t *rfq = NULL; 6478 ill_t *in_ill = NULL; 6479 6480 if (sp != NULL) { 6481 ip2dbg(("ip_rt_add: gateway security attributes " 6482 "cannot be set with interface route\n")); 6483 if (ipif_refheld) 6484 ipif_refrele(ipif); 6485 return (EINVAL); 6486 } 6487 6488 /* 6489 * As the interface index specified with the RTA_IFP sockaddr is 6490 * the same for all ipif's off of an ill, the matching logic 6491 * below uses MATCH_IRE_ILL if such an index was specified. 6492 * This means that routes sharing the same prefix when added 6493 * using a RTA_IFP sockaddr must have distinct interface 6494 * indices (namely, they must be on distinct ill's). 6495 * 6496 * On the other hand, since the gateway address will usually be 6497 * different for each ipif on the system, the matching logic 6498 * uses MATCH_IRE_IPIF in the case of a traditional interface 6499 * route. This means that interface routes for the same prefix 6500 * can be created if they belong to distinct ipif's and if a 6501 * RTA_IFP sockaddr is not present. 6502 */ 6503 if (ipif_arg != NULL) { 6504 if (ipif_refheld) { 6505 ipif_refrele(ipif); 6506 ipif_refheld = B_FALSE; 6507 } 6508 ipif = ipif_arg; 6509 match_flags |= MATCH_IRE_ILL; 6510 } else { 6511 /* 6512 * Check the ipif corresponding to the gw_addr 6513 */ 6514 if (ipif == NULL) 6515 return (ENETUNREACH); 6516 match_flags |= MATCH_IRE_IPIF; 6517 } 6518 ASSERT(ipif != NULL); 6519 /* 6520 * If src_ipif is not NULL, we have to create 6521 * an ire with non-null ire_in_ill value 6522 */ 6523 if (src_ipif != NULL) { 6524 in_ill = src_ipif->ipif_ill; 6525 } 6526 6527 /* 6528 * We check for an existing entry at this point. 6529 * 6530 * Since a netmask isn't passed in via the ioctl interface 6531 * (SIOCADDRT), we don't check for a matching netmask in that 6532 * case. 6533 */ 6534 if (!ioctl_msg) 6535 match_flags |= MATCH_IRE_MASK; 6536 if (src_ipif != NULL) { 6537 /* Look up in the special table */ 6538 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6539 ipif, src_ipif->ipif_ill, match_flags); 6540 } else { 6541 ire = ire_ftable_lookup(dst_addr, mask, 0, 6542 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6543 NULL, match_flags); 6544 } 6545 if (ire != NULL) { 6546 ire_refrele(ire); 6547 if (ipif_refheld) 6548 ipif_refrele(ipif); 6549 return (EEXIST); 6550 } 6551 6552 if (src_ipif != NULL) { 6553 /* 6554 * Create the special ire for the IRE table 6555 * which hangs out of ire_in_ill. This ire 6556 * is in-between IRE_CACHE and IRE_INTERFACE. 6557 * Thus rfq is non-NULL. 6558 */ 6559 rfq = ipif->ipif_rq; 6560 } 6561 /* Create the usual interface ires */ 6562 6563 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6564 ? ipif->ipif_rq : ipif->ipif_wq; 6565 6566 /* 6567 * Create a copy of the IRE_LOOPBACK, 6568 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6569 * the modified address and netmask. 6570 */ 6571 ire = ire_create( 6572 (uchar_t *)&dst_addr, 6573 (uint8_t *)&mask, 6574 (uint8_t *)&ipif->ipif_src_addr, 6575 NULL, 6576 NULL, 6577 &ipif->ipif_mtu, 6578 NULL, 6579 rfq, 6580 stq, 6581 ipif->ipif_net_type, 6582 ipif->ipif_resolver_mp, 6583 ipif, 6584 in_ill, 6585 0, 6586 0, 6587 0, 6588 flags, 6589 &ire_uinfo_null, 6590 NULL, 6591 NULL); 6592 if (ire == NULL) { 6593 if (ipif_refheld) 6594 ipif_refrele(ipif); 6595 return (ENOMEM); 6596 } 6597 6598 /* 6599 * Some software (for example, GateD and Sun Cluster) attempts 6600 * to create (what amount to) IRE_PREFIX routes with the 6601 * loopback address as the gateway. This is primarily done to 6602 * set up prefixes with the RTF_REJECT flag set (for example, 6603 * when generating aggregate routes.) 6604 * 6605 * If the IRE type (as defined by ipif->ipif_net_type) is 6606 * IRE_LOOPBACK, then we map the request into a 6607 * IRE_IF_NORESOLVER. 6608 * 6609 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6610 * routine, but rather using ire_create() directly. 6611 * 6612 */ 6613 if (ipif->ipif_net_type == IRE_LOOPBACK) 6614 ire->ire_type = IRE_IF_NORESOLVER; 6615 6616 error = ire_add(&ire, q, mp, func, B_FALSE); 6617 if (error == 0) 6618 goto save_ire; 6619 6620 /* 6621 * In the result of failure, ire_add() will have already 6622 * deleted the ire in question, so there is no need to 6623 * do that here. 6624 */ 6625 if (ipif_refheld) 6626 ipif_refrele(ipif); 6627 return (error); 6628 } 6629 if (ipif_refheld) { 6630 ipif_refrele(ipif); 6631 ipif_refheld = B_FALSE; 6632 } 6633 6634 if (src_ipif != NULL) { 6635 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6636 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6637 return (EINVAL); 6638 } 6639 /* 6640 * Get an interface IRE for the specified gateway. 6641 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6642 * gateway, it is currently unreachable and we fail the request 6643 * accordingly. 6644 */ 6645 ipif = ipif_arg; 6646 if (ipif_arg != NULL) 6647 match_flags |= MATCH_IRE_ILL; 6648 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6649 ALL_ZONES, 0, NULL, match_flags); 6650 if (gw_ire == NULL) 6651 return (ENETUNREACH); 6652 6653 /* 6654 * We create one of three types of IREs as a result of this request 6655 * based on the netmask. A netmask of all ones (which is automatically 6656 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6657 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6658 * created. Otherwise, an IRE_PREFIX route is created for the 6659 * destination prefix. 6660 */ 6661 if (mask == IP_HOST_MASK) 6662 type = IRE_HOST; 6663 else if (mask == 0) 6664 type = IRE_DEFAULT; 6665 else 6666 type = IRE_PREFIX; 6667 6668 /* check for a duplicate entry */ 6669 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6670 NULL, ALL_ZONES, 0, NULL, 6671 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 6672 if (ire != NULL) { 6673 ire_refrele(gw_ire); 6674 ire_refrele(ire); 6675 return (EEXIST); 6676 } 6677 6678 /* Security attribute exists */ 6679 if (sp != NULL) { 6680 tsol_gcgrp_addr_t ga; 6681 6682 /* find or create the gateway credentials group */ 6683 ga.ga_af = AF_INET; 6684 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 6685 6686 /* we hold reference to it upon success */ 6687 gcgrp = gcgrp_lookup(&ga, B_TRUE); 6688 if (gcgrp == NULL) { 6689 ire_refrele(gw_ire); 6690 return (ENOMEM); 6691 } 6692 6693 /* 6694 * Create and add the security attribute to the group; a 6695 * reference to the group is made upon allocating a new 6696 * entry successfully. If it finds an already-existing 6697 * entry for the security attribute in the group, it simply 6698 * returns it and no new reference is made to the group. 6699 */ 6700 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 6701 if (gc == NULL) { 6702 /* release reference held by gcgrp_lookup */ 6703 GCGRP_REFRELE(gcgrp); 6704 ire_refrele(gw_ire); 6705 return (ENOMEM); 6706 } 6707 } 6708 6709 /* Create the IRE. */ 6710 ire = ire_create( 6711 (uchar_t *)&dst_addr, /* dest address */ 6712 (uchar_t *)&mask, /* mask */ 6713 /* src address assigned by the caller? */ 6714 (uchar_t *)(((src_addr != INADDR_ANY) && 6715 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6716 (uchar_t *)&gw_addr, /* gateway address */ 6717 NULL, /* no in-srcaddress */ 6718 &gw_ire->ire_max_frag, 6719 NULL, /* no Fast Path header */ 6720 NULL, /* no recv-from queue */ 6721 NULL, /* no send-to queue */ 6722 (ushort_t)type, /* IRE type */ 6723 NULL, 6724 ipif_arg, 6725 NULL, 6726 0, 6727 0, 6728 0, 6729 flags, 6730 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 6731 gc, /* security attribute */ 6732 NULL); 6733 /* 6734 * The ire holds a reference to the 'gc' and the 'gc' holds a 6735 * reference to the 'gcgrp'. We can now release the extra reference 6736 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 6737 */ 6738 if (gcgrp_xtraref) 6739 GCGRP_REFRELE(gcgrp); 6740 if (ire == NULL) { 6741 if (gc != NULL) 6742 GC_REFRELE(gc); 6743 ire_refrele(gw_ire); 6744 return (ENOMEM); 6745 } 6746 6747 /* 6748 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6749 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6750 */ 6751 6752 /* Add the new IRE. */ 6753 error = ire_add(&ire, q, mp, func, B_FALSE); 6754 if (error != 0) { 6755 /* 6756 * In the result of failure, ire_add() will have already 6757 * deleted the ire in question, so there is no need to 6758 * do that here. 6759 */ 6760 ire_refrele(gw_ire); 6761 return (error); 6762 } 6763 6764 if (flags & RTF_MULTIRT) { 6765 /* 6766 * Invoke the CGTP (multirouting) filtering module 6767 * to add the dst address in the filtering database. 6768 * Replicated inbound packets coming from that address 6769 * will be filtered to discard the duplicates. 6770 * It is not necessary to call the CGTP filter hook 6771 * when the dst address is a broadcast or multicast, 6772 * because an IP source address cannot be a broadcast 6773 * or a multicast. 6774 */ 6775 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6776 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 6777 if (ire_dst != NULL) { 6778 ip_cgtp_bcast_add(ire, ire_dst); 6779 ire_refrele(ire_dst); 6780 goto save_ire; 6781 } 6782 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 6783 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 6784 ire->ire_addr, 6785 ire->ire_gateway_addr, 6786 ire->ire_src_addr, 6787 gw_ire->ire_src_addr); 6788 if (res != 0) { 6789 ire_refrele(gw_ire); 6790 ire_delete(ire); 6791 return (res); 6792 } 6793 } 6794 } 6795 6796 /* 6797 * Now that the prefix IRE entry has been created, delete any 6798 * existing gateway IRE cache entries as well as any IRE caches 6799 * using the gateway, and force them to be created through 6800 * ip_newroute. 6801 */ 6802 if (gc != NULL) { 6803 ASSERT(gcgrp != NULL); 6804 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES); 6805 } 6806 6807 save_ire: 6808 if (gw_ire != NULL) { 6809 ire_refrele(gw_ire); 6810 } 6811 /* 6812 * We do not do save_ire for the routes added with RTA_SRCIFP 6813 * flag. This route is only added and deleted by mipagent. 6814 * So, for simplicity of design, we refrain from saving 6815 * ires that are created with srcif value. This may change 6816 * in future if we find more usage of srcifp feature. 6817 */ 6818 if (ipif != NULL && src_ipif == NULL) { 6819 /* 6820 * Save enough information so that we can recreate the IRE if 6821 * the interface goes down and then up. The metrics associated 6822 * with the route will be saved as well when rts_setmetrics() is 6823 * called after the IRE has been created. In the case where 6824 * memory cannot be allocated, none of this information will be 6825 * saved. 6826 */ 6827 ipif_save_ire(ipif, ire); 6828 } 6829 if (ioctl_msg) 6830 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 6831 if (ire_arg != NULL) { 6832 /* 6833 * Store the ire that was successfully added into where ire_arg 6834 * points to so that callers don't have to look it up 6835 * themselves (but they are responsible for ire_refrele()ing 6836 * the ire when they are finished with it). 6837 */ 6838 *ire_arg = ire; 6839 } else { 6840 ire_refrele(ire); /* Held in ire_add */ 6841 } 6842 if (ipif_refheld) 6843 ipif_refrele(ipif); 6844 return (0); 6845 } 6846 6847 /* 6848 * ip_rt_delete is called to delete an IPv4 route. 6849 * ipif_arg is passed in to associate it with the correct interface. 6850 * src_ipif is passed to associate the incoming interface of the packet. 6851 * We may need to restart this operation if the ipif cannot be looked up 6852 * due to an exclusive operation that is currently in progress. The restart 6853 * entry point is specified by 'func' 6854 */ 6855 /* ARGSUSED4 */ 6856 int 6857 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6858 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6859 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 6860 { 6861 ire_t *ire = NULL; 6862 ipif_t *ipif; 6863 boolean_t ipif_refheld = B_FALSE; 6864 uint_t type; 6865 uint_t match_flags = MATCH_IRE_TYPE; 6866 int err = 0; 6867 6868 ip1dbg(("ip_rt_delete:")); 6869 /* 6870 * If this is the case of RTF_HOST being set, then we set the netmask 6871 * to all ones. Otherwise, we use the netmask if one was supplied. 6872 */ 6873 if (flags & RTF_HOST) { 6874 mask = IP_HOST_MASK; 6875 match_flags |= MATCH_IRE_MASK; 6876 } else if (rtm_addrs & RTA_NETMASK) { 6877 match_flags |= MATCH_IRE_MASK; 6878 } 6879 6880 /* 6881 * Note that RTF_GATEWAY is never set on a delete, therefore 6882 * we check if the gateway address is one of our interfaces first, 6883 * and fall back on RTF_GATEWAY routes. 6884 * 6885 * This makes it possible to delete an original 6886 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6887 * 6888 * As the interface index specified with the RTA_IFP sockaddr is the 6889 * same for all ipif's off of an ill, the matching logic below uses 6890 * MATCH_IRE_ILL if such an index was specified. This means a route 6891 * sharing the same prefix and interface index as the the route 6892 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 6893 * is specified in the request. 6894 * 6895 * On the other hand, since the gateway address will usually be 6896 * different for each ipif on the system, the matching logic 6897 * uses MATCH_IRE_IPIF in the case of a traditional interface 6898 * route. This means that interface routes for the same prefix can be 6899 * uniquely identified if they belong to distinct ipif's and if a 6900 * RTA_IFP sockaddr is not present. 6901 * 6902 * For more detail on specifying routes by gateway address and by 6903 * interface index, see the comments in ip_rt_add(). 6904 * gw_addr could be zero in some cases when both RTA_SRCIFP and 6905 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 6906 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 6907 * succeed. 6908 */ 6909 if (src_ipif != NULL) { 6910 if (ipif_arg == NULL && gw_addr != 0) { 6911 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 6912 q, mp, func, &err); 6913 if (ipif_arg != NULL) 6914 ipif_refheld = B_TRUE; 6915 } 6916 if (ipif_arg == NULL) { 6917 err = (err == EINPROGRESS) ? err : ESRCH; 6918 return (err); 6919 } 6920 ipif = ipif_arg; 6921 } else { 6922 ipif = ipif_lookup_interface(gw_addr, dst_addr, 6923 q, mp, func, &err); 6924 if (ipif != NULL) 6925 ipif_refheld = B_TRUE; 6926 else if (err == EINPROGRESS) 6927 return (err); 6928 else 6929 err = 0; 6930 } 6931 if (ipif != NULL) { 6932 if (ipif_arg != NULL) { 6933 if (ipif_refheld) { 6934 ipif_refrele(ipif); 6935 ipif_refheld = B_FALSE; 6936 } 6937 ipif = ipif_arg; 6938 match_flags |= MATCH_IRE_ILL; 6939 } else { 6940 match_flags |= MATCH_IRE_IPIF; 6941 } 6942 if (src_ipif != NULL) { 6943 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6944 ipif, src_ipif->ipif_ill, match_flags); 6945 } else { 6946 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6947 ire = ire_ctable_lookup(dst_addr, 0, 6948 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 6949 match_flags); 6950 } 6951 if (ire == NULL) { 6952 ire = ire_ftable_lookup(dst_addr, mask, 0, 6953 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6954 NULL, match_flags); 6955 } 6956 } 6957 } 6958 6959 if (ire == NULL) { 6960 /* 6961 * At this point, the gateway address is not one of our own 6962 * addresses or a matching interface route was not found. We 6963 * set the IRE type to lookup based on whether 6964 * this is a host route, a default route or just a prefix. 6965 * 6966 * If an ipif_arg was passed in, then the lookup is based on an 6967 * interface index so MATCH_IRE_ILL is added to match_flags. 6968 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 6969 * set as the route being looked up is not a traditional 6970 * interface route. 6971 * Since we do not add gateway route with srcipif, we don't 6972 * expect to find it either. 6973 */ 6974 if (src_ipif != NULL) { 6975 if (ipif_refheld) 6976 ipif_refrele(ipif); 6977 return (ESRCH); 6978 } else { 6979 match_flags &= ~MATCH_IRE_IPIF; 6980 match_flags |= MATCH_IRE_GW; 6981 if (ipif_arg != NULL) 6982 match_flags |= MATCH_IRE_ILL; 6983 if (mask == IP_HOST_MASK) 6984 type = IRE_HOST; 6985 else if (mask == 0) 6986 type = IRE_DEFAULT; 6987 else 6988 type = IRE_PREFIX; 6989 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 6990 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags); 6991 if (ire == NULL && type == IRE_HOST) { 6992 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, 6993 IRE_HOST_REDIRECT, ipif_arg, NULL, 6994 ALL_ZONES, 0, NULL, match_flags); 6995 } 6996 } 6997 } 6998 6999 if (ipif_refheld) 7000 ipif_refrele(ipif); 7001 7002 /* ipif is not refheld anymore */ 7003 if (ire == NULL) 7004 return (ESRCH); 7005 7006 if (ire->ire_flags & RTF_MULTIRT) { 7007 /* 7008 * Invoke the CGTP (multirouting) filtering module 7009 * to remove the dst address from the filtering database. 7010 * Packets coming from that address will no longer be 7011 * filtered to remove duplicates. 7012 */ 7013 if (ip_cgtp_filter_ops != NULL) { 7014 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 7015 ire->ire_gateway_addr); 7016 } 7017 ip_cgtp_bcast_delete(ire); 7018 } 7019 7020 ipif = ire->ire_ipif; 7021 /* 7022 * Removing from ipif_saved_ire_mp is not necessary 7023 * when src_ipif being non-NULL. ip_rt_add does not 7024 * save the ires which src_ipif being non-NULL. 7025 */ 7026 if (ipif != NULL && src_ipif == NULL) { 7027 ipif_remove_ire(ipif, ire); 7028 } 7029 if (ioctl_msg) 7030 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 7031 ire_delete(ire); 7032 ire_refrele(ire); 7033 return (err); 7034 } 7035 7036 /* 7037 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7038 */ 7039 /* ARGSUSED */ 7040 int 7041 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7042 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7043 { 7044 ipaddr_t dst_addr; 7045 ipaddr_t gw_addr; 7046 ipaddr_t mask; 7047 int error = 0; 7048 mblk_t *mp1; 7049 struct rtentry *rt; 7050 ipif_t *ipif = NULL; 7051 7052 ip1dbg(("ip_siocaddrt:")); 7053 /* Existence of mp1 verified in ip_wput_nondata */ 7054 mp1 = mp->b_cont->b_cont; 7055 rt = (struct rtentry *)mp1->b_rptr; 7056 7057 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7058 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7059 7060 /* 7061 * If the RTF_HOST flag is on, this is a request to assign a gateway 7062 * to a particular host address. In this case, we set the netmask to 7063 * all ones for the particular destination address. Otherwise, 7064 * determine the netmask to be used based on dst_addr and the interfaces 7065 * in use. 7066 */ 7067 if (rt->rt_flags & RTF_HOST) { 7068 mask = IP_HOST_MASK; 7069 } else { 7070 /* 7071 * Note that ip_subnet_mask returns a zero mask in the case of 7072 * default (an all-zeroes address). 7073 */ 7074 mask = ip_subnet_mask(dst_addr, &ipif); 7075 } 7076 7077 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7078 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL); 7079 if (ipif != NULL) 7080 ipif_refrele(ipif); 7081 return (error); 7082 } 7083 7084 /* 7085 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7086 */ 7087 /* ARGSUSED */ 7088 int 7089 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7090 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7091 { 7092 ipaddr_t dst_addr; 7093 ipaddr_t gw_addr; 7094 ipaddr_t mask; 7095 int error; 7096 mblk_t *mp1; 7097 struct rtentry *rt; 7098 ipif_t *ipif = NULL; 7099 7100 ip1dbg(("ip_siocdelrt:")); 7101 /* Existence of mp1 verified in ip_wput_nondata */ 7102 mp1 = mp->b_cont->b_cont; 7103 rt = (struct rtentry *)mp1->b_rptr; 7104 7105 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7106 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7107 7108 /* 7109 * If the RTF_HOST flag is on, this is a request to delete a gateway 7110 * to a particular host address. In this case, we set the netmask to 7111 * all ones for the particular destination address. Otherwise, 7112 * determine the netmask to be used based on dst_addr and the interfaces 7113 * in use. 7114 */ 7115 if (rt->rt_flags & RTF_HOST) { 7116 mask = IP_HOST_MASK; 7117 } else { 7118 /* 7119 * Note that ip_subnet_mask returns a zero mask in the case of 7120 * default (an all-zeroes address). 7121 */ 7122 mask = ip_subnet_mask(dst_addr, &ipif); 7123 } 7124 7125 error = ip_rt_delete(dst_addr, mask, gw_addr, 7126 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7127 B_TRUE, q, mp, ip_process_ioctl); 7128 if (ipif != NULL) 7129 ipif_refrele(ipif); 7130 return (error); 7131 } 7132 7133 /* 7134 * Enqueue the mp onto the ipsq, chained by b_next. 7135 * b_prev stores the function to be executed later, and b_queue the queue 7136 * where this mp originated. 7137 */ 7138 void 7139 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7140 ill_t *pending_ill) 7141 { 7142 conn_t *connp = NULL; 7143 7144 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7145 ASSERT(func != NULL); 7146 7147 mp->b_queue = q; 7148 mp->b_prev = (void *)func; 7149 mp->b_next = NULL; 7150 7151 switch (type) { 7152 case CUR_OP: 7153 if (ipsq->ipsq_mptail != NULL) { 7154 ASSERT(ipsq->ipsq_mphead != NULL); 7155 ipsq->ipsq_mptail->b_next = mp; 7156 } else { 7157 ASSERT(ipsq->ipsq_mphead == NULL); 7158 ipsq->ipsq_mphead = mp; 7159 } 7160 ipsq->ipsq_mptail = mp; 7161 break; 7162 7163 case NEW_OP: 7164 if (ipsq->ipsq_xopq_mptail != NULL) { 7165 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7166 ipsq->ipsq_xopq_mptail->b_next = mp; 7167 } else { 7168 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7169 ipsq->ipsq_xopq_mphead = mp; 7170 } 7171 ipsq->ipsq_xopq_mptail = mp; 7172 break; 7173 default: 7174 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7175 } 7176 7177 if (CONN_Q(q) && pending_ill != NULL) { 7178 connp = Q_TO_CONN(q); 7179 7180 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7181 connp->conn_oper_pending_ill = pending_ill; 7182 } 7183 } 7184 7185 /* 7186 * Return the mp at the head of the ipsq. After emptying the ipsq 7187 * look at the next ioctl, if this ioctl is complete. Otherwise 7188 * return, we will resume when we complete the current ioctl. 7189 * The current ioctl will wait till it gets a response from the 7190 * driver below. 7191 */ 7192 static mblk_t * 7193 ipsq_dq(ipsq_t *ipsq) 7194 { 7195 mblk_t *mp; 7196 7197 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7198 7199 mp = ipsq->ipsq_mphead; 7200 if (mp != NULL) { 7201 ipsq->ipsq_mphead = mp->b_next; 7202 if (ipsq->ipsq_mphead == NULL) 7203 ipsq->ipsq_mptail = NULL; 7204 mp->b_next = NULL; 7205 return (mp); 7206 } 7207 if (ipsq->ipsq_current_ipif != NULL) 7208 return (NULL); 7209 mp = ipsq->ipsq_xopq_mphead; 7210 if (mp != NULL) { 7211 ipsq->ipsq_xopq_mphead = mp->b_next; 7212 if (ipsq->ipsq_xopq_mphead == NULL) 7213 ipsq->ipsq_xopq_mptail = NULL; 7214 mp->b_next = NULL; 7215 return (mp); 7216 } 7217 return (NULL); 7218 } 7219 7220 /* 7221 * Enter the ipsq corresponding to ill, by waiting synchronously till 7222 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7223 * will have to drain completely before ipsq_enter returns success. 7224 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7225 * and the ipsq_exit logic will start the next enqueued ioctl after 7226 * completion of the current ioctl. If 'force' is used, we don't wait 7227 * for the enqueued ioctls. This is needed when a conn_close wants to 7228 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7229 * of an ill can also use this option. But we dont' use it currently. 7230 */ 7231 #define ENTER_SQ_WAIT_TICKS 100 7232 boolean_t 7233 ipsq_enter(ill_t *ill, boolean_t force) 7234 { 7235 ipsq_t *ipsq; 7236 boolean_t waited_enough = B_FALSE; 7237 7238 /* 7239 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7240 * Since the <ill-ipsq> assocs could change while we wait for the 7241 * writer, it is easier to wait on a fixed global rather than try to 7242 * cv_wait on a changing ipsq. 7243 */ 7244 mutex_enter(&ill->ill_lock); 7245 for (;;) { 7246 if (ill->ill_state_flags & ILL_CONDEMNED) { 7247 mutex_exit(&ill->ill_lock); 7248 return (B_FALSE); 7249 } 7250 7251 ipsq = ill->ill_phyint->phyint_ipsq; 7252 mutex_enter(&ipsq->ipsq_lock); 7253 if (ipsq->ipsq_writer == NULL && 7254 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7255 break; 7256 } else if (ipsq->ipsq_writer != NULL) { 7257 mutex_exit(&ipsq->ipsq_lock); 7258 cv_wait(&ill->ill_cv, &ill->ill_lock); 7259 } else { 7260 mutex_exit(&ipsq->ipsq_lock); 7261 if (force) { 7262 (void) cv_timedwait(&ill->ill_cv, 7263 &ill->ill_lock, 7264 lbolt + ENTER_SQ_WAIT_TICKS); 7265 waited_enough = B_TRUE; 7266 continue; 7267 } else { 7268 cv_wait(&ill->ill_cv, &ill->ill_lock); 7269 } 7270 } 7271 } 7272 7273 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7274 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7275 ipsq->ipsq_writer = curthread; 7276 ipsq->ipsq_reentry_cnt++; 7277 #ifdef ILL_DEBUG 7278 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7279 #endif 7280 mutex_exit(&ipsq->ipsq_lock); 7281 mutex_exit(&ill->ill_lock); 7282 return (B_TRUE); 7283 } 7284 7285 /* 7286 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7287 * certain critical operations like plumbing (i.e. most set ioctls), 7288 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7289 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7290 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7291 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7292 * threads executing in the ipsq. Responses from the driver pertain to the 7293 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7294 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7295 * 7296 * If a thread does not want to reenter the ipsq when it is already writer, 7297 * it must make sure that the specified reentry point to be called later 7298 * when the ipsq is empty, nor any code path starting from the specified reentry 7299 * point must never ever try to enter the ipsq again. Otherwise it can lead 7300 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7301 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7302 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7303 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7304 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7305 * ioctl if the current ioctl has completed. If the current ioctl is still 7306 * in progress it simply returns. The current ioctl could be waiting for 7307 * a response from another module (arp_ or the driver or could be waiting for 7308 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7309 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7310 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7311 * ipsq_current_ipif is clear which happens only on ioctl completion. 7312 */ 7313 7314 /* 7315 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7316 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7317 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7318 * completion. 7319 */ 7320 ipsq_t * 7321 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7322 ipsq_func_t func, int type, boolean_t reentry_ok) 7323 { 7324 ipsq_t *ipsq; 7325 7326 /* Only 1 of ipif or ill can be specified */ 7327 ASSERT((ipif != NULL) ^ (ill != NULL)); 7328 if (ipif != NULL) 7329 ill = ipif->ipif_ill; 7330 7331 /* 7332 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7333 * ipsq of an ill can't change when ill_lock is held. 7334 */ 7335 GRAB_CONN_LOCK(q); 7336 mutex_enter(&ill->ill_lock); 7337 ipsq = ill->ill_phyint->phyint_ipsq; 7338 mutex_enter(&ipsq->ipsq_lock); 7339 7340 /* 7341 * 1. Enter the ipsq if we are already writer and reentry is ok. 7342 * (Note: If the caller does not specify reentry_ok then neither 7343 * 'func' nor any of its callees must ever attempt to enter the ipsq 7344 * again. Otherwise it can lead to an infinite loop 7345 * 2. Enter the ipsq if there is no current writer and this attempted 7346 * entry is part of the current ioctl or operation 7347 * 3. Enter the ipsq if there is no current writer and this is a new 7348 * ioctl (or operation) and the ioctl (or operation) queue is 7349 * empty and there is no ioctl (or operation) currently in progress 7350 */ 7351 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7352 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7353 ipsq->ipsq_current_ipif == NULL))) || 7354 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7355 /* Success. */ 7356 ipsq->ipsq_reentry_cnt++; 7357 ipsq->ipsq_writer = curthread; 7358 mutex_exit(&ipsq->ipsq_lock); 7359 mutex_exit(&ill->ill_lock); 7360 RELEASE_CONN_LOCK(q); 7361 #ifdef ILL_DEBUG 7362 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7363 #endif 7364 return (ipsq); 7365 } 7366 7367 ipsq_enq(ipsq, q, mp, func, type, ill); 7368 7369 mutex_exit(&ipsq->ipsq_lock); 7370 mutex_exit(&ill->ill_lock); 7371 RELEASE_CONN_LOCK(q); 7372 return (NULL); 7373 } 7374 7375 /* 7376 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7377 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7378 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7379 * completion. 7380 * 7381 * This function does a refrele on the ipif/ill. 7382 */ 7383 void 7384 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7385 ipsq_func_t func, int type, boolean_t reentry_ok) 7386 { 7387 ipsq_t *ipsq; 7388 7389 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7390 /* 7391 * Caller must have done a refhold on the ipif. ipif_refrele 7392 * happens on the passed ipif. We can do this since we are 7393 * already exclusive, or we won't access ipif henceforth, Both 7394 * this func and caller will just return if we ipsq_try_enter 7395 * fails above. This is needed because func needs to 7396 * see the correct refcount. Eg. removeif can work only then. 7397 */ 7398 if (ipif != NULL) 7399 ipif_refrele(ipif); 7400 else 7401 ill_refrele(ill); 7402 if (ipsq != NULL) { 7403 (*func)(ipsq, q, mp, NULL); 7404 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7405 } 7406 } 7407 7408 /* 7409 * If there are more than ILL_GRP_CNT ills in a group, 7410 * we use kmem alloc'd buffers, else use the stack 7411 */ 7412 #define ILL_GRP_CNT 14 7413 /* 7414 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7415 * Called by a thread that is currently exclusive on this ipsq. 7416 */ 7417 void 7418 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7419 { 7420 queue_t *q; 7421 mblk_t *mp; 7422 ipsq_func_t func; 7423 int next; 7424 ill_t **ill_list = NULL; 7425 size_t ill_list_size = 0; 7426 int cnt = 0; 7427 boolean_t need_ipsq_free = B_FALSE; 7428 7429 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7430 mutex_enter(&ipsq->ipsq_lock); 7431 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7432 if (ipsq->ipsq_reentry_cnt != 1) { 7433 ipsq->ipsq_reentry_cnt--; 7434 mutex_exit(&ipsq->ipsq_lock); 7435 return; 7436 } 7437 7438 mp = ipsq_dq(ipsq); 7439 while (mp != NULL) { 7440 again: 7441 mutex_exit(&ipsq->ipsq_lock); 7442 func = (ipsq_func_t)mp->b_prev; 7443 q = (queue_t *)mp->b_queue; 7444 mp->b_prev = NULL; 7445 mp->b_queue = NULL; 7446 7447 /* 7448 * If 'q' is an conn queue, it is valid, since we did a 7449 * a refhold on the connp, at the start of the ioctl. 7450 * If 'q' is an ill queue, it is valid, since close of an 7451 * ill will clean up the 'ipsq'. 7452 */ 7453 (*func)(ipsq, q, mp, NULL); 7454 7455 mutex_enter(&ipsq->ipsq_lock); 7456 mp = ipsq_dq(ipsq); 7457 } 7458 7459 mutex_exit(&ipsq->ipsq_lock); 7460 7461 /* 7462 * Need to grab the locks in the right order. Need to 7463 * atomically check (under ipsq_lock) that there are no 7464 * messages before relinquishing the ipsq. Also need to 7465 * atomically wakeup waiters on ill_cv while holding ill_lock. 7466 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7467 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7468 * to grab ill_g_lock as writer. 7469 */ 7470 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7471 7472 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7473 if (ipsq->ipsq_refs != 0) { 7474 /* At most 2 ills v4/v6 per phyint */ 7475 cnt = ipsq->ipsq_refs << 1; 7476 ill_list_size = cnt * sizeof (ill_t *); 7477 /* 7478 * If memory allocation fails, we will do the split 7479 * the next time ipsq_exit is called for whatever reason. 7480 * As long as the ipsq_split flag is set the need to 7481 * split is remembered. 7482 */ 7483 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7484 if (ill_list != NULL) 7485 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7486 } 7487 mutex_enter(&ipsq->ipsq_lock); 7488 mp = ipsq_dq(ipsq); 7489 if (mp != NULL) { 7490 /* oops, some message has landed up, we can't get out */ 7491 if (ill_list != NULL) 7492 ill_unlock_ills(ill_list, cnt); 7493 rw_exit(&ill_g_lock); 7494 if (ill_list != NULL) 7495 kmem_free(ill_list, ill_list_size); 7496 ill_list = NULL; 7497 ill_list_size = 0; 7498 cnt = 0; 7499 goto again; 7500 } 7501 7502 /* 7503 * Split only if no ioctl is pending and if memory alloc succeeded 7504 * above. 7505 */ 7506 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7507 ill_list != NULL) { 7508 /* 7509 * No new ill can join this ipsq since we are holding the 7510 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7511 * ipsq. ill_split_ipsq may fail due to memory shortage. 7512 * If so we will retry on the next ipsq_exit. 7513 */ 7514 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7515 } 7516 7517 /* 7518 * We are holding the ipsq lock, hence no new messages can 7519 * land up on the ipsq, and there are no messages currently. 7520 * Now safe to get out. Wake up waiters and relinquish ipsq 7521 * atomically while holding ill locks. 7522 */ 7523 ipsq->ipsq_writer = NULL; 7524 ipsq->ipsq_reentry_cnt--; 7525 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7526 #ifdef ILL_DEBUG 7527 ipsq->ipsq_depth = 0; 7528 #endif 7529 mutex_exit(&ipsq->ipsq_lock); 7530 /* 7531 * For IPMP this should wake up all ills in this ipsq. 7532 * We need to hold the ill_lock while waking up waiters to 7533 * avoid missed wakeups. But there is no need to acquire all 7534 * the ill locks and then wakeup. If we have not acquired all 7535 * the locks (due to memory failure above) ill_signal_ipsq_ills 7536 * wakes up ills one at a time after getting the right ill_lock 7537 */ 7538 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7539 if (ill_list != NULL) 7540 ill_unlock_ills(ill_list, cnt); 7541 if (ipsq->ipsq_refs == 0) 7542 need_ipsq_free = B_TRUE; 7543 rw_exit(&ill_g_lock); 7544 if (ill_list != 0) 7545 kmem_free(ill_list, ill_list_size); 7546 7547 if (need_ipsq_free) { 7548 /* 7549 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7550 * looked up. ipsq can be looked up only thru ill or phyint 7551 * and there are no ills/phyint on this ipsq. 7552 */ 7553 ipsq_delete(ipsq); 7554 } 7555 /* 7556 * Now start any igmp or mld timers that could not be started 7557 * while inside the ipsq. The timers can't be started while inside 7558 * the ipsq, since igmp_start_timers may need to call untimeout() 7559 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7560 * there could be a deadlock since the timeout handlers 7561 * mld_timeout_handler / igmp_timeout_handler also synchronously 7562 * wait in ipsq_enter() trying to get the ipsq. 7563 * 7564 * However there is one exception to the above. If this thread is 7565 * itself the igmp/mld timeout handler thread, then we don't want 7566 * to start any new timer until the current handler is done. The 7567 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7568 * all others pass B_TRUE. 7569 */ 7570 if (start_igmp_timer) { 7571 mutex_enter(&igmp_timer_lock); 7572 next = igmp_deferred_next; 7573 igmp_deferred_next = INFINITY; 7574 mutex_exit(&igmp_timer_lock); 7575 7576 if (next != INFINITY) 7577 igmp_start_timers(next); 7578 } 7579 7580 if (start_mld_timer) { 7581 mutex_enter(&mld_timer_lock); 7582 next = mld_deferred_next; 7583 mld_deferred_next = INFINITY; 7584 mutex_exit(&mld_timer_lock); 7585 7586 if (next != INFINITY) 7587 mld_start_timers(next); 7588 } 7589 } 7590 7591 /* 7592 * The ill is closing. Flush all messages on the ipsq that originated 7593 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7594 * for this ill since ipsq_enter could not have entered until then. 7595 * New messages can't be queued since the CONDEMNED flag is set. 7596 */ 7597 static void 7598 ipsq_flush(ill_t *ill) 7599 { 7600 queue_t *q; 7601 mblk_t *prev; 7602 mblk_t *mp; 7603 mblk_t *mp_next; 7604 ipsq_t *ipsq; 7605 7606 ASSERT(IAM_WRITER_ILL(ill)); 7607 ipsq = ill->ill_phyint->phyint_ipsq; 7608 /* 7609 * Flush any messages sent up by the driver. 7610 */ 7611 mutex_enter(&ipsq->ipsq_lock); 7612 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7613 mp_next = mp->b_next; 7614 q = mp->b_queue; 7615 if (q == ill->ill_rq || q == ill->ill_wq) { 7616 /* Remove the mp from the ipsq */ 7617 if (prev == NULL) 7618 ipsq->ipsq_mphead = mp->b_next; 7619 else 7620 prev->b_next = mp->b_next; 7621 if (ipsq->ipsq_mptail == mp) { 7622 ASSERT(mp_next == NULL); 7623 ipsq->ipsq_mptail = prev; 7624 } 7625 inet_freemsg(mp); 7626 } else { 7627 prev = mp; 7628 } 7629 } 7630 mutex_exit(&ipsq->ipsq_lock); 7631 (void) ipsq_pending_mp_cleanup(ill, NULL); 7632 ipsq_xopq_mp_cleanup(ill, NULL); 7633 ill_pending_mp_cleanup(ill); 7634 } 7635 7636 /* 7637 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7638 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7639 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7640 * time (possible with one port going down for aggr and someone tearing down the 7641 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7642 * to indicate when the cleanup has started (1 ref) and when the cleanup 7643 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7644 * putting 2 ref on ill_inuse_ref. 7645 */ 7646 static void 7647 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7648 { 7649 conn_t *connp; 7650 squeue_t *sqp; 7651 mblk_t *mp; 7652 7653 ASSERT(rx_ring != NULL); 7654 7655 /* Just clean one squeue */ 7656 mutex_enter(&ill->ill_lock); 7657 /* 7658 * Reset the ILL_SOFT_RING_ASSIGN bit so that 7659 * ip_squeue_soft_ring_affinty() will not go 7660 * ahead with assigning rings. 7661 */ 7662 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 7663 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 7664 /* Some operations pending on the ring. Wait */ 7665 cv_wait(&ill->ill_cv, &ill->ill_lock); 7666 7667 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 7668 /* 7669 * Someone already trying to clean 7670 * this squeue or its already been cleaned. 7671 */ 7672 mutex_exit(&ill->ill_lock); 7673 return; 7674 } 7675 sqp = rx_ring->rr_sqp; 7676 7677 if (sqp == NULL) { 7678 /* 7679 * The rx_ring never had a squeue assigned to it. 7680 * We are under ill_lock so we can clean it up 7681 * here itself since no one can get to it. 7682 */ 7683 rx_ring->rr_blank = NULL; 7684 rx_ring->rr_handle = NULL; 7685 rx_ring->rr_sqp = NULL; 7686 rx_ring->rr_ring_state = ILL_RING_FREE; 7687 mutex_exit(&ill->ill_lock); 7688 return; 7689 } 7690 7691 /* Set the state that its being cleaned */ 7692 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 7693 ASSERT(sqp != NULL); 7694 mutex_exit(&ill->ill_lock); 7695 7696 /* 7697 * Use the preallocated ill_unbind_conn for this purpose 7698 */ 7699 connp = ill->ill_dls_capab->ill_unbind_conn; 7700 mp = &connp->conn_tcp->tcp_closemp; 7701 CONN_INC_REF(connp); 7702 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 7703 7704 mutex_enter(&ill->ill_lock); 7705 while (rx_ring->rr_ring_state != ILL_RING_FREE) 7706 cv_wait(&ill->ill_cv, &ill->ill_lock); 7707 7708 mutex_exit(&ill->ill_lock); 7709 } 7710 7711 static void 7712 ipsq_clean_all(ill_t *ill) 7713 { 7714 int idx; 7715 7716 /* 7717 * No need to clean if poll_capab isn't set for this ill 7718 */ 7719 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 7720 return; 7721 7722 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 7723 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 7724 ipsq_clean_ring(ill, ipr); 7725 } 7726 7727 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 7728 } 7729 7730 /* ARGSUSED */ 7731 int 7732 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7733 ip_ioctl_cmd_t *ipip, void *ifreq) 7734 { 7735 ill_t *ill; 7736 struct lifreq *lifr = (struct lifreq *)ifreq; 7737 boolean_t isv6; 7738 conn_t *connp; 7739 7740 connp = Q_TO_CONN(q); 7741 isv6 = connp->conn_af_isv6; 7742 /* 7743 * Set original index. 7744 * Failover and failback move logical interfaces 7745 * from one physical interface to another. The 7746 * original index indicates the parent of a logical 7747 * interface, in other words, the physical interface 7748 * the logical interface will be moved back to on 7749 * failback. 7750 */ 7751 7752 /* 7753 * Don't allow the original index to be changed 7754 * for non-failover addresses, autoconfigured 7755 * addresses, or IPv6 link local addresses. 7756 */ 7757 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7758 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7759 return (EINVAL); 7760 } 7761 /* 7762 * The new original index must be in use by some 7763 * physical interface. 7764 */ 7765 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7766 NULL, NULL); 7767 if (ill == NULL) 7768 return (ENXIO); 7769 ill_refrele(ill); 7770 7771 ipif->ipif_orig_ifindex = lifr->lifr_index; 7772 /* 7773 * When this ipif gets failed back, don't 7774 * preserve the original id, as it is no 7775 * longer applicable. 7776 */ 7777 ipif->ipif_orig_ipifid = 0; 7778 /* 7779 * For IPv4, change the original index of any 7780 * multicast addresses associated with the 7781 * ipif to the new value. 7782 */ 7783 if (!isv6) { 7784 ilm_t *ilm; 7785 7786 mutex_enter(&ipif->ipif_ill->ill_lock); 7787 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7788 ilm = ilm->ilm_next) { 7789 if (ilm->ilm_ipif == ipif) { 7790 ilm->ilm_orig_ifindex = lifr->lifr_index; 7791 } 7792 } 7793 mutex_exit(&ipif->ipif_ill->ill_lock); 7794 } 7795 return (0); 7796 } 7797 7798 /* ARGSUSED */ 7799 int 7800 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7801 ip_ioctl_cmd_t *ipip, void *ifreq) 7802 { 7803 struct lifreq *lifr = (struct lifreq *)ifreq; 7804 7805 /* 7806 * Get the original interface index i.e the one 7807 * before FAILOVER if it ever happened. 7808 */ 7809 lifr->lifr_index = ipif->ipif_orig_ifindex; 7810 return (0); 7811 } 7812 7813 /* 7814 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 7815 * refhold and return the associated ipif 7816 */ 7817 int 7818 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 7819 { 7820 boolean_t exists; 7821 struct iftun_req *ta; 7822 ipif_t *ipif; 7823 ill_t *ill; 7824 boolean_t isv6; 7825 mblk_t *mp1; 7826 int error; 7827 conn_t *connp; 7828 7829 /* Existence verified in ip_wput_nondata */ 7830 mp1 = mp->b_cont->b_cont; 7831 ta = (struct iftun_req *)mp1->b_rptr; 7832 /* 7833 * Null terminate the string to protect against buffer 7834 * overrun. String was generated by user code and may not 7835 * be trusted. 7836 */ 7837 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 7838 7839 connp = Q_TO_CONN(q); 7840 isv6 = connp->conn_af_isv6; 7841 7842 /* Disallows implicit create */ 7843 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 7844 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 7845 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 7846 if (ipif == NULL) 7847 return (error); 7848 7849 if (ipif->ipif_id != 0) { 7850 /* 7851 * We really don't want to set/get tunnel parameters 7852 * on virtual tunnel interfaces. Only allow the 7853 * base tunnel to do these. 7854 */ 7855 ipif_refrele(ipif); 7856 return (EINVAL); 7857 } 7858 7859 /* 7860 * Send down to tunnel mod for ioctl processing. 7861 * Will finish ioctl in ip_rput_other(). 7862 */ 7863 ill = ipif->ipif_ill; 7864 if (ill->ill_net_type == IRE_LOOPBACK) { 7865 ipif_refrele(ipif); 7866 return (EOPNOTSUPP); 7867 } 7868 7869 if (ill->ill_wq == NULL) { 7870 ipif_refrele(ipif); 7871 return (ENXIO); 7872 } 7873 /* 7874 * Mark the ioctl as coming from an IPv6 interface for 7875 * tun's convenience. 7876 */ 7877 if (ill->ill_isv6) 7878 ta->ifta_flags |= 0x80000000; 7879 *ipifp = ipif; 7880 return (0); 7881 } 7882 7883 /* 7884 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7885 * and return the associated ipif. 7886 * Return value: 7887 * Non zero: An error has occurred. ci may not be filled out. 7888 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7889 * a held ipif in ci.ci_ipif. 7890 */ 7891 int 7892 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 7893 cmd_info_t *ci, ipsq_func_t func) 7894 { 7895 sin_t *sin; 7896 sin6_t *sin6; 7897 char *name; 7898 struct ifreq *ifr; 7899 struct lifreq *lifr; 7900 ipif_t *ipif = NULL; 7901 ill_t *ill; 7902 conn_t *connp; 7903 boolean_t isv6; 7904 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7905 boolean_t exists; 7906 int err; 7907 mblk_t *mp1; 7908 zoneid_t zoneid; 7909 7910 if (q->q_next != NULL) { 7911 ill = (ill_t *)q->q_ptr; 7912 isv6 = ill->ill_isv6; 7913 connp = NULL; 7914 zoneid = ALL_ZONES; 7915 } else { 7916 ill = NULL; 7917 connp = Q_TO_CONN(q); 7918 isv6 = connp->conn_af_isv6; 7919 zoneid = connp->conn_zoneid; 7920 if (zoneid == GLOBAL_ZONEID) { 7921 /* global zone can access ipifs in all zones */ 7922 zoneid = ALL_ZONES; 7923 } 7924 } 7925 7926 /* Has been checked in ip_wput_nondata */ 7927 mp1 = mp->b_cont->b_cont; 7928 7929 7930 if (cmd_type == IF_CMD) { 7931 /* This a old style SIOC[GS]IF* command */ 7932 ifr = (struct ifreq *)mp1->b_rptr; 7933 /* 7934 * Null terminate the string to protect against buffer 7935 * overrun. String was generated by user code and may not 7936 * be trusted. 7937 */ 7938 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7939 sin = (sin_t *)&ifr->ifr_addr; 7940 name = ifr->ifr_name; 7941 ci->ci_sin = sin; 7942 ci->ci_sin6 = NULL; 7943 ci->ci_lifr = (struct lifreq *)ifr; 7944 } else { 7945 /* This a new style SIOC[GS]LIF* command */ 7946 ASSERT(cmd_type == LIF_CMD); 7947 lifr = (struct lifreq *)mp1->b_rptr; 7948 /* 7949 * Null terminate the string to protect against buffer 7950 * overrun. String was generated by user code and may not 7951 * be trusted. 7952 */ 7953 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7954 name = lifr->lifr_name; 7955 sin = (sin_t *)&lifr->lifr_addr; 7956 sin6 = (sin6_t *)&lifr->lifr_addr; 7957 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 7958 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 7959 LIFNAMSIZ); 7960 } 7961 ci->ci_sin = sin; 7962 ci->ci_sin6 = sin6; 7963 ci->ci_lifr = lifr; 7964 } 7965 7966 7967 if (iocp->ioc_cmd == SIOCSLIFNAME) { 7968 /* 7969 * The ioctl will be failed if the ioctl comes down 7970 * an conn stream 7971 */ 7972 if (ill == NULL) { 7973 /* 7974 * Not an ill queue, return EINVAL same as the 7975 * old error code. 7976 */ 7977 return (ENXIO); 7978 } 7979 ipif = ill->ill_ipif; 7980 ipif_refhold(ipif); 7981 } else { 7982 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7983 &exists, isv6, zoneid, 7984 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 7985 if (ipif == NULL) { 7986 if (err == EINPROGRESS) 7987 return (err); 7988 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 7989 iocp->ioc_cmd == SIOCLIFFAILBACK) { 7990 /* 7991 * Need to try both v4 and v6 since this 7992 * ioctl can come down either v4 or v6 7993 * socket. The lifreq.lifr_family passed 7994 * down by this ioctl is AF_UNSPEC. 7995 */ 7996 ipif = ipif_lookup_on_name(name, 7997 mi_strlen(name), B_FALSE, &exists, !isv6, 7998 zoneid, (connp == NULL) ? q : 7999 CONNP_TO_WQ(connp), mp, func, &err); 8000 if (err == EINPROGRESS) 8001 return (err); 8002 } 8003 err = 0; /* Ensure we don't use it below */ 8004 } 8005 } 8006 8007 /* 8008 * Old style [GS]IFCMD does not admit IPv6 ipif 8009 */ 8010 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8011 ipif_refrele(ipif); 8012 return (ENXIO); 8013 } 8014 8015 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8016 name[0] == '\0') { 8017 /* 8018 * Handle a or a SIOC?IF* with a null name 8019 * during plumb (on the ill queue before the I_PLINK). 8020 */ 8021 ipif = ill->ill_ipif; 8022 ipif_refhold(ipif); 8023 } 8024 8025 if (ipif == NULL) 8026 return (ENXIO); 8027 8028 /* 8029 * Allow only GET operations if this ipif has been created 8030 * temporarily due to a MOVE operation. 8031 */ 8032 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8033 ipif_refrele(ipif); 8034 return (EINVAL); 8035 } 8036 8037 ci->ci_ipif = ipif; 8038 return (0); 8039 } 8040 8041 /* 8042 * Return the total number of ipifs. 8043 */ 8044 static uint_t 8045 ip_get_numifs(zoneid_t zoneid) 8046 { 8047 uint_t numifs = 0; 8048 ill_t *ill; 8049 ill_walk_context_t ctx; 8050 ipif_t *ipif; 8051 8052 rw_enter(&ill_g_lock, RW_READER); 8053 ill = ILL_START_WALK_V4(&ctx); 8054 8055 while (ill != NULL) { 8056 for (ipif = ill->ill_ipif; ipif != NULL; 8057 ipif = ipif->ipif_next) { 8058 if (ipif->ipif_zoneid == zoneid || 8059 ipif->ipif_zoneid == ALL_ZONES) 8060 numifs++; 8061 } 8062 ill = ill_next(&ctx, ill); 8063 } 8064 rw_exit(&ill_g_lock); 8065 return (numifs); 8066 } 8067 8068 /* 8069 * Return the total number of ipifs. 8070 */ 8071 static uint_t 8072 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 8073 { 8074 uint_t numifs = 0; 8075 ill_t *ill; 8076 ipif_t *ipif; 8077 ill_walk_context_t ctx; 8078 8079 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8080 8081 rw_enter(&ill_g_lock, RW_READER); 8082 if (family == AF_INET) 8083 ill = ILL_START_WALK_V4(&ctx); 8084 else if (family == AF_INET6) 8085 ill = ILL_START_WALK_V6(&ctx); 8086 else 8087 ill = ILL_START_WALK_ALL(&ctx); 8088 8089 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8090 for (ipif = ill->ill_ipif; ipif != NULL; 8091 ipif = ipif->ipif_next) { 8092 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8093 !(lifn_flags & LIFC_NOXMIT)) 8094 continue; 8095 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8096 !(lifn_flags & LIFC_TEMPORARY)) 8097 continue; 8098 if (((ipif->ipif_flags & 8099 (IPIF_NOXMIT|IPIF_NOLOCAL| 8100 IPIF_DEPRECATED)) || 8101 (ill->ill_phyint->phyint_flags & 8102 PHYI_LOOPBACK) || 8103 !(ipif->ipif_flags & IPIF_UP)) && 8104 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8105 continue; 8106 8107 if (zoneid != ipif->ipif_zoneid && 8108 ipif->ipif_zoneid != ALL_ZONES && 8109 (zoneid != GLOBAL_ZONEID || 8110 !(lifn_flags & LIFC_ALLZONES))) 8111 continue; 8112 8113 numifs++; 8114 } 8115 } 8116 rw_exit(&ill_g_lock); 8117 return (numifs); 8118 } 8119 8120 uint_t 8121 ip_get_lifsrcofnum(ill_t *ill) 8122 { 8123 uint_t numifs = 0; 8124 ill_t *ill_head = ill; 8125 8126 /* 8127 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8128 * other thread may be trying to relink the ILLs in this usesrc group 8129 * and adjusting the ill_usesrc_grp_next pointers 8130 */ 8131 rw_enter(&ill_g_usesrc_lock, RW_READER); 8132 if ((ill->ill_usesrc_ifindex == 0) && 8133 (ill->ill_usesrc_grp_next != NULL)) { 8134 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8135 ill = ill->ill_usesrc_grp_next) 8136 numifs++; 8137 } 8138 rw_exit(&ill_g_usesrc_lock); 8139 8140 return (numifs); 8141 } 8142 8143 /* Null values are passed in for ipif, sin, and ifreq */ 8144 /* ARGSUSED */ 8145 int 8146 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8147 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8148 { 8149 int *nump; 8150 8151 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8152 8153 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8154 nump = (int *)mp->b_cont->b_cont->b_rptr; 8155 8156 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 8157 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8158 return (0); 8159 } 8160 8161 /* Null values are passed in for ipif, sin, and ifreq */ 8162 /* ARGSUSED */ 8163 int 8164 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8165 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8166 { 8167 struct lifnum *lifn; 8168 mblk_t *mp1; 8169 8170 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8171 8172 /* Existence checked in ip_wput_nondata */ 8173 mp1 = mp->b_cont->b_cont; 8174 8175 lifn = (struct lifnum *)mp1->b_rptr; 8176 switch (lifn->lifn_family) { 8177 case AF_UNSPEC: 8178 case AF_INET: 8179 case AF_INET6: 8180 break; 8181 default: 8182 return (EAFNOSUPPORT); 8183 } 8184 8185 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8186 Q_TO_CONN(q)->conn_zoneid); 8187 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8188 return (0); 8189 } 8190 8191 /* ARGSUSED */ 8192 int 8193 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8194 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8195 { 8196 STRUCT_HANDLE(ifconf, ifc); 8197 mblk_t *mp1; 8198 struct iocblk *iocp; 8199 struct ifreq *ifr; 8200 ill_walk_context_t ctx; 8201 ill_t *ill; 8202 ipif_t *ipif; 8203 struct sockaddr_in *sin; 8204 int32_t ifclen; 8205 zoneid_t zoneid; 8206 8207 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8208 8209 ip1dbg(("ip_sioctl_get_ifconf")); 8210 /* Existence verified in ip_wput_nondata */ 8211 mp1 = mp->b_cont->b_cont; 8212 iocp = (struct iocblk *)mp->b_rptr; 8213 zoneid = Q_TO_CONN(q)->conn_zoneid; 8214 8215 /* 8216 * The original SIOCGIFCONF passed in a struct ifconf which specified 8217 * the user buffer address and length into which the list of struct 8218 * ifreqs was to be copied. Since AT&T Streams does not seem to 8219 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8220 * the SIOCGIFCONF operation was redefined to simply provide 8221 * a large output buffer into which we are supposed to jam the ifreq 8222 * array. The same ioctl command code was used, despite the fact that 8223 * both the applications and the kernel code had to change, thus making 8224 * it impossible to support both interfaces. 8225 * 8226 * For reasons not good enough to try to explain, the following 8227 * algorithm is used for deciding what to do with one of these: 8228 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8229 * form with the output buffer coming down as the continuation message. 8230 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8231 * and we have to copy in the ifconf structure to find out how big the 8232 * output buffer is and where to copy out to. Sure no problem... 8233 * 8234 */ 8235 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8236 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8237 int numifs = 0; 8238 size_t ifc_bufsize; 8239 8240 /* 8241 * Must be (better be!) continuation of a TRANSPARENT 8242 * IOCTL. We just copied in the ifconf structure. 8243 */ 8244 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8245 (struct ifconf *)mp1->b_rptr); 8246 8247 /* 8248 * Allocate a buffer to hold requested information. 8249 * 8250 * If ifc_len is larger than what is needed, we only 8251 * allocate what we will use. 8252 * 8253 * If ifc_len is smaller than what is needed, return 8254 * EINVAL. 8255 * 8256 * XXX: the ill_t structure can hava 2 counters, for 8257 * v4 and v6 (not just ill_ipif_up_count) to store the 8258 * number of interfaces for a device, so we don't need 8259 * to count them here... 8260 */ 8261 numifs = ip_get_numifs(zoneid); 8262 8263 ifclen = STRUCT_FGET(ifc, ifc_len); 8264 ifc_bufsize = numifs * sizeof (struct ifreq); 8265 if (ifc_bufsize > ifclen) { 8266 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8267 /* old behaviour */ 8268 return (EINVAL); 8269 } else { 8270 ifc_bufsize = ifclen; 8271 } 8272 } 8273 8274 mp1 = mi_copyout_alloc(q, mp, 8275 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8276 if (mp1 == NULL) 8277 return (ENOMEM); 8278 8279 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8280 } 8281 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8282 /* 8283 * the SIOCGIFCONF ioctl only knows about 8284 * IPv4 addresses, so don't try to tell 8285 * it about interfaces with IPv6-only 8286 * addresses. (Last parm 'isv6' is B_FALSE) 8287 */ 8288 8289 ifr = (struct ifreq *)mp1->b_rptr; 8290 8291 rw_enter(&ill_g_lock, RW_READER); 8292 ill = ILL_START_WALK_V4(&ctx); 8293 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8294 for (ipif = ill->ill_ipif; ipif != NULL; 8295 ipif = ipif->ipif_next) { 8296 if (zoneid != ipif->ipif_zoneid && 8297 ipif->ipif_zoneid != ALL_ZONES) 8298 continue; 8299 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8300 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8301 /* old behaviour */ 8302 rw_exit(&ill_g_lock); 8303 return (EINVAL); 8304 } else { 8305 goto if_copydone; 8306 } 8307 } 8308 (void) ipif_get_name(ipif, 8309 ifr->ifr_name, 8310 sizeof (ifr->ifr_name)); 8311 sin = (sin_t *)&ifr->ifr_addr; 8312 *sin = sin_null; 8313 sin->sin_family = AF_INET; 8314 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8315 ifr++; 8316 } 8317 } 8318 if_copydone: 8319 rw_exit(&ill_g_lock); 8320 mp1->b_wptr = (uchar_t *)ifr; 8321 8322 if (STRUCT_BUF(ifc) != NULL) { 8323 STRUCT_FSET(ifc, ifc_len, 8324 (int)((uchar_t *)ifr - mp1->b_rptr)); 8325 } 8326 return (0); 8327 } 8328 8329 /* 8330 * Get the interfaces using the address hosted on the interface passed in, 8331 * as a source adddress 8332 */ 8333 /* ARGSUSED */ 8334 int 8335 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8336 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8337 { 8338 mblk_t *mp1; 8339 ill_t *ill, *ill_head; 8340 ipif_t *ipif, *orig_ipif; 8341 int numlifs = 0; 8342 size_t lifs_bufsize, lifsmaxlen; 8343 struct lifreq *lifr; 8344 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8345 uint_t ifindex; 8346 zoneid_t zoneid; 8347 int err = 0; 8348 boolean_t isv6 = B_FALSE; 8349 struct sockaddr_in *sin; 8350 struct sockaddr_in6 *sin6; 8351 8352 STRUCT_HANDLE(lifsrcof, lifs); 8353 8354 ASSERT(q->q_next == NULL); 8355 8356 zoneid = Q_TO_CONN(q)->conn_zoneid; 8357 8358 /* Existence verified in ip_wput_nondata */ 8359 mp1 = mp->b_cont->b_cont; 8360 8361 /* 8362 * Must be (better be!) continuation of a TRANSPARENT 8363 * IOCTL. We just copied in the lifsrcof structure. 8364 */ 8365 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8366 (struct lifsrcof *)mp1->b_rptr); 8367 8368 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8369 return (EINVAL); 8370 8371 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8372 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8373 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8374 ip_process_ioctl, &err); 8375 if (ipif == NULL) { 8376 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8377 ifindex)); 8378 return (err); 8379 } 8380 8381 8382 /* Allocate a buffer to hold requested information */ 8383 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8384 lifs_bufsize = numlifs * sizeof (struct lifreq); 8385 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8386 /* The actual size needed is always returned in lifs_len */ 8387 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8388 8389 /* If the amount we need is more than what is passed in, abort */ 8390 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8391 ipif_refrele(ipif); 8392 return (0); 8393 } 8394 8395 mp1 = mi_copyout_alloc(q, mp, 8396 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8397 if (mp1 == NULL) { 8398 ipif_refrele(ipif); 8399 return (ENOMEM); 8400 } 8401 8402 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8403 bzero(mp1->b_rptr, lifs_bufsize); 8404 8405 lifr = (struct lifreq *)mp1->b_rptr; 8406 8407 ill = ill_head = ipif->ipif_ill; 8408 orig_ipif = ipif; 8409 8410 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8411 rw_enter(&ill_g_usesrc_lock, RW_READER); 8412 rw_enter(&ill_g_lock, RW_READER); 8413 8414 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8415 for (; (ill != NULL) && (ill != ill_head); 8416 ill = ill->ill_usesrc_grp_next) { 8417 8418 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8419 break; 8420 8421 ipif = ill->ill_ipif; 8422 (void) ipif_get_name(ipif, 8423 lifr->lifr_name, sizeof (lifr->lifr_name)); 8424 if (ipif->ipif_isv6) { 8425 sin6 = (sin6_t *)&lifr->lifr_addr; 8426 *sin6 = sin6_null; 8427 sin6->sin6_family = AF_INET6; 8428 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8429 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8430 &ipif->ipif_v6net_mask); 8431 } else { 8432 sin = (sin_t *)&lifr->lifr_addr; 8433 *sin = sin_null; 8434 sin->sin_family = AF_INET; 8435 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8436 lifr->lifr_addrlen = ip_mask_to_plen( 8437 ipif->ipif_net_mask); 8438 } 8439 lifr++; 8440 } 8441 rw_exit(&ill_g_usesrc_lock); 8442 rw_exit(&ill_g_lock); 8443 ipif_refrele(orig_ipif); 8444 mp1->b_wptr = (uchar_t *)lifr; 8445 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8446 8447 return (0); 8448 } 8449 8450 /* ARGSUSED */ 8451 int 8452 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8453 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8454 { 8455 mblk_t *mp1; 8456 int list; 8457 ill_t *ill; 8458 ipif_t *ipif; 8459 int flags; 8460 int numlifs = 0; 8461 size_t lifc_bufsize; 8462 struct lifreq *lifr; 8463 sa_family_t family; 8464 struct sockaddr_in *sin; 8465 struct sockaddr_in6 *sin6; 8466 ill_walk_context_t ctx; 8467 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8468 int32_t lifclen; 8469 zoneid_t zoneid; 8470 STRUCT_HANDLE(lifconf, lifc); 8471 8472 ip1dbg(("ip_sioctl_get_lifconf")); 8473 8474 ASSERT(q->q_next == NULL); 8475 8476 zoneid = Q_TO_CONN(q)->conn_zoneid; 8477 8478 /* Existence verified in ip_wput_nondata */ 8479 mp1 = mp->b_cont->b_cont; 8480 8481 /* 8482 * An extended version of SIOCGIFCONF that takes an 8483 * additional address family and flags field. 8484 * AF_UNSPEC retrieve both IPv4 and IPv6. 8485 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8486 * interfaces are omitted. 8487 * Similarly, IPIF_TEMPORARY interfaces are omitted 8488 * unless LIFC_TEMPORARY is specified. 8489 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8490 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8491 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8492 * has priority over LIFC_NOXMIT. 8493 */ 8494 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8495 8496 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8497 return (EINVAL); 8498 8499 /* 8500 * Must be (better be!) continuation of a TRANSPARENT 8501 * IOCTL. We just copied in the lifconf structure. 8502 */ 8503 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8504 8505 family = STRUCT_FGET(lifc, lifc_family); 8506 flags = STRUCT_FGET(lifc, lifc_flags); 8507 8508 switch (family) { 8509 case AF_UNSPEC: 8510 /* 8511 * walk all ILL's. 8512 */ 8513 list = MAX_G_HEADS; 8514 break; 8515 case AF_INET: 8516 /* 8517 * walk only IPV4 ILL's. 8518 */ 8519 list = IP_V4_G_HEAD; 8520 break; 8521 case AF_INET6: 8522 /* 8523 * walk only IPV6 ILL's. 8524 */ 8525 list = IP_V6_G_HEAD; 8526 break; 8527 default: 8528 return (EAFNOSUPPORT); 8529 } 8530 8531 /* 8532 * Allocate a buffer to hold requested information. 8533 * 8534 * If lifc_len is larger than what is needed, we only 8535 * allocate what we will use. 8536 * 8537 * If lifc_len is smaller than what is needed, return 8538 * EINVAL. 8539 */ 8540 numlifs = ip_get_numlifs(family, flags, zoneid); 8541 lifc_bufsize = numlifs * sizeof (struct lifreq); 8542 lifclen = STRUCT_FGET(lifc, lifc_len); 8543 if (lifc_bufsize > lifclen) { 8544 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8545 return (EINVAL); 8546 else 8547 lifc_bufsize = lifclen; 8548 } 8549 8550 mp1 = mi_copyout_alloc(q, mp, 8551 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8552 if (mp1 == NULL) 8553 return (ENOMEM); 8554 8555 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8556 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8557 8558 lifr = (struct lifreq *)mp1->b_rptr; 8559 8560 rw_enter(&ill_g_lock, RW_READER); 8561 ill = ill_first(list, list, &ctx); 8562 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8563 for (ipif = ill->ill_ipif; ipif != NULL; 8564 ipif = ipif->ipif_next) { 8565 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8566 !(flags & LIFC_NOXMIT)) 8567 continue; 8568 8569 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8570 !(flags & LIFC_TEMPORARY)) 8571 continue; 8572 8573 if (((ipif->ipif_flags & 8574 (IPIF_NOXMIT|IPIF_NOLOCAL| 8575 IPIF_DEPRECATED)) || 8576 (ill->ill_phyint->phyint_flags & 8577 PHYI_LOOPBACK) || 8578 !(ipif->ipif_flags & IPIF_UP)) && 8579 (flags & LIFC_EXTERNAL_SOURCE)) 8580 continue; 8581 8582 if (zoneid != ipif->ipif_zoneid && 8583 ipif->ipif_zoneid != ALL_ZONES && 8584 (zoneid != GLOBAL_ZONEID || 8585 !(flags & LIFC_ALLZONES))) 8586 continue; 8587 8588 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8589 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8590 rw_exit(&ill_g_lock); 8591 return (EINVAL); 8592 } else { 8593 goto lif_copydone; 8594 } 8595 } 8596 8597 (void) ipif_get_name(ipif, 8598 lifr->lifr_name, 8599 sizeof (lifr->lifr_name)); 8600 if (ipif->ipif_isv6) { 8601 sin6 = (sin6_t *)&lifr->lifr_addr; 8602 *sin6 = sin6_null; 8603 sin6->sin6_family = AF_INET6; 8604 sin6->sin6_addr = 8605 ipif->ipif_v6lcl_addr; 8606 lifr->lifr_addrlen = 8607 ip_mask_to_plen_v6( 8608 &ipif->ipif_v6net_mask); 8609 } else { 8610 sin = (sin_t *)&lifr->lifr_addr; 8611 *sin = sin_null; 8612 sin->sin_family = AF_INET; 8613 sin->sin_addr.s_addr = 8614 ipif->ipif_lcl_addr; 8615 lifr->lifr_addrlen = 8616 ip_mask_to_plen( 8617 ipif->ipif_net_mask); 8618 } 8619 lifr++; 8620 } 8621 } 8622 lif_copydone: 8623 rw_exit(&ill_g_lock); 8624 8625 mp1->b_wptr = (uchar_t *)lifr; 8626 if (STRUCT_BUF(lifc) != NULL) { 8627 STRUCT_FSET(lifc, lifc_len, 8628 (int)((uchar_t *)lifr - mp1->b_rptr)); 8629 } 8630 return (0); 8631 } 8632 8633 /* ARGSUSED */ 8634 int 8635 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8636 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8637 { 8638 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8639 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8640 return (0); 8641 } 8642 8643 static void 8644 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8645 { 8646 ip6_asp_t *table; 8647 size_t table_size; 8648 mblk_t *data_mp; 8649 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8650 8651 /* These two ioctls are I_STR only */ 8652 if (iocp->ioc_count == TRANSPARENT) { 8653 miocnak(q, mp, 0, EINVAL); 8654 return; 8655 } 8656 8657 data_mp = mp->b_cont; 8658 if (data_mp == NULL) { 8659 /* The user passed us a NULL argument */ 8660 table = NULL; 8661 table_size = iocp->ioc_count; 8662 } else { 8663 /* 8664 * The user provided a table. The stream head 8665 * may have copied in the user data in chunks, 8666 * so make sure everything is pulled up 8667 * properly. 8668 */ 8669 if (MBLKL(data_mp) < iocp->ioc_count) { 8670 mblk_t *new_data_mp; 8671 if ((new_data_mp = msgpullup(data_mp, -1)) == 8672 NULL) { 8673 miocnak(q, mp, 0, ENOMEM); 8674 return; 8675 } 8676 freemsg(data_mp); 8677 data_mp = new_data_mp; 8678 mp->b_cont = data_mp; 8679 } 8680 table = (ip6_asp_t *)data_mp->b_rptr; 8681 table_size = iocp->ioc_count; 8682 } 8683 8684 switch (iocp->ioc_cmd) { 8685 case SIOCGIP6ADDRPOLICY: 8686 iocp->ioc_rval = ip6_asp_get(table, table_size); 8687 if (iocp->ioc_rval == -1) 8688 iocp->ioc_error = EINVAL; 8689 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8690 else if (table != NULL && 8691 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8692 ip6_asp_t *src = table; 8693 ip6_asp32_t *dst = (void *)table; 8694 int count = table_size / sizeof (ip6_asp_t); 8695 int i; 8696 8697 /* 8698 * We need to do an in-place shrink of the array 8699 * to match the alignment attributes of the 8700 * 32-bit ABI looking at it. 8701 */ 8702 /* LINTED: logical expression always true: op "||" */ 8703 ASSERT(sizeof (*src) > sizeof (*dst)); 8704 for (i = 1; i < count; i++) 8705 bcopy(src + i, dst + i, sizeof (*dst)); 8706 } 8707 #endif 8708 break; 8709 8710 case SIOCSIP6ADDRPOLICY: 8711 ASSERT(mp->b_prev == NULL); 8712 mp->b_prev = (void *)q; 8713 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8714 /* 8715 * We pass in the datamodel here so that the ip6_asp_replace() 8716 * routine can handle converting from 32-bit to native formats 8717 * where necessary. 8718 * 8719 * A better way to handle this might be to convert the inbound 8720 * data structure here, and hang it off a new 'mp'; thus the 8721 * ip6_asp_replace() logic would always be dealing with native 8722 * format data structures.. 8723 * 8724 * (An even simpler way to handle these ioctls is to just 8725 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8726 * and just recompile everything that depends on it.) 8727 */ 8728 #endif 8729 ip6_asp_replace(mp, table, table_size, B_FALSE, 8730 iocp->ioc_flag & IOC_MODELS); 8731 return; 8732 } 8733 8734 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8735 qreply(q, mp); 8736 } 8737 8738 static void 8739 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8740 { 8741 mblk_t *data_mp; 8742 struct dstinforeq *dir; 8743 uint8_t *end, *cur; 8744 in6_addr_t *daddr, *saddr; 8745 ipaddr_t v4daddr; 8746 ire_t *ire; 8747 char *slabel, *dlabel; 8748 boolean_t isipv4; 8749 int match_ire; 8750 ill_t *dst_ill; 8751 ipif_t *src_ipif, *ire_ipif; 8752 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8753 zoneid_t zoneid; 8754 8755 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8756 zoneid = Q_TO_CONN(q)->conn_zoneid; 8757 8758 /* 8759 * This ioctl is I_STR only, and must have a 8760 * data mblk following the M_IOCTL mblk. 8761 */ 8762 data_mp = mp->b_cont; 8763 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8764 miocnak(q, mp, 0, EINVAL); 8765 return; 8766 } 8767 8768 if (MBLKL(data_mp) < iocp->ioc_count) { 8769 mblk_t *new_data_mp; 8770 8771 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8772 miocnak(q, mp, 0, ENOMEM); 8773 return; 8774 } 8775 freemsg(data_mp); 8776 data_mp = new_data_mp; 8777 mp->b_cont = data_mp; 8778 } 8779 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8780 8781 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8782 end - cur >= sizeof (struct dstinforeq); 8783 cur += sizeof (struct dstinforeq)) { 8784 dir = (struct dstinforeq *)cur; 8785 daddr = &dir->dir_daddr; 8786 saddr = &dir->dir_saddr; 8787 8788 /* 8789 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8790 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8791 * and ipif_select_source[_v6]() do not. 8792 */ 8793 dir->dir_dscope = ip_addr_scope_v6(daddr); 8794 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 8795 8796 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8797 if (isipv4) { 8798 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8799 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8800 0, NULL, NULL, zoneid, 0, NULL, match_ire); 8801 } else { 8802 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8803 0, NULL, NULL, zoneid, 0, NULL, match_ire); 8804 } 8805 if (ire == NULL) { 8806 dir->dir_dreachable = 0; 8807 8808 /* move on to next dst addr */ 8809 continue; 8810 } 8811 dir->dir_dreachable = 1; 8812 8813 ire_ipif = ire->ire_ipif; 8814 if (ire_ipif == NULL) 8815 goto next_dst; 8816 8817 /* 8818 * We expect to get back an interface ire or a 8819 * gateway ire cache entry. For both types, the 8820 * output interface is ire_ipif->ipif_ill. 8821 */ 8822 dst_ill = ire_ipif->ipif_ill; 8823 dir->dir_dmactype = dst_ill->ill_mactype; 8824 8825 if (isipv4) { 8826 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 8827 } else { 8828 src_ipif = ipif_select_source_v6(dst_ill, 8829 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 8830 zoneid); 8831 } 8832 if (src_ipif == NULL) 8833 goto next_dst; 8834 8835 *saddr = src_ipif->ipif_v6lcl_addr; 8836 dir->dir_sscope = ip_addr_scope_v6(saddr); 8837 slabel = ip6_asp_lookup(saddr, NULL); 8838 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8839 dir->dir_sdeprecated = 8840 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8841 ipif_refrele(src_ipif); 8842 next_dst: 8843 ire_refrele(ire); 8844 } 8845 miocack(q, mp, iocp->ioc_count, 0); 8846 } 8847 8848 8849 /* 8850 * Check if this is an address assigned to this machine. 8851 * Skips interfaces that are down by using ire checks. 8852 * Translates mapped addresses to v4 addresses and then 8853 * treats them as such, returning true if the v4 address 8854 * associated with this mapped address is configured. 8855 * Note: Applications will have to be careful what they do 8856 * with the response; use of mapped addresses limits 8857 * what can be done with the socket, especially with 8858 * respect to socket options and ioctls - neither IPv4 8859 * options nor IPv6 sticky options/ancillary data options 8860 * may be used. 8861 */ 8862 /* ARGSUSED */ 8863 int 8864 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8865 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8866 { 8867 struct sioc_addrreq *sia; 8868 sin_t *sin; 8869 ire_t *ire; 8870 mblk_t *mp1; 8871 zoneid_t zoneid; 8872 8873 ip1dbg(("ip_sioctl_tmyaddr")); 8874 8875 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8876 zoneid = Q_TO_CONN(q)->conn_zoneid; 8877 8878 /* Existence verified in ip_wput_nondata */ 8879 mp1 = mp->b_cont->b_cont; 8880 sia = (struct sioc_addrreq *)mp1->b_rptr; 8881 sin = (sin_t *)&sia->sa_addr; 8882 switch (sin->sin_family) { 8883 case AF_INET6: { 8884 sin6_t *sin6 = (sin6_t *)sin; 8885 8886 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8887 ipaddr_t v4_addr; 8888 8889 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8890 v4_addr); 8891 ire = ire_ctable_lookup(v4_addr, 0, 8892 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8893 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8894 } else { 8895 in6_addr_t v6addr; 8896 8897 v6addr = sin6->sin6_addr; 8898 ire = ire_ctable_lookup_v6(&v6addr, 0, 8899 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8900 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8901 } 8902 break; 8903 } 8904 case AF_INET: { 8905 ipaddr_t v4addr; 8906 8907 v4addr = sin->sin_addr.s_addr; 8908 ire = ire_ctable_lookup(v4addr, 0, 8909 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8910 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8911 break; 8912 } 8913 default: 8914 return (EAFNOSUPPORT); 8915 } 8916 if (ire != NULL) { 8917 sia->sa_res = 1; 8918 ire_refrele(ire); 8919 } else { 8920 sia->sa_res = 0; 8921 } 8922 return (0); 8923 } 8924 8925 /* 8926 * Check if this is an address assigned on-link i.e. neighbor, 8927 * and makes sure it's reachable from the current zone. 8928 * Returns true for my addresses as well. 8929 * Translates mapped addresses to v4 addresses and then 8930 * treats them as such, returning true if the v4 address 8931 * associated with this mapped address is configured. 8932 * Note: Applications will have to be careful what they do 8933 * with the response; use of mapped addresses limits 8934 * what can be done with the socket, especially with 8935 * respect to socket options and ioctls - neither IPv4 8936 * options nor IPv6 sticky options/ancillary data options 8937 * may be used. 8938 */ 8939 /* ARGSUSED */ 8940 int 8941 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8942 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8943 { 8944 struct sioc_addrreq *sia; 8945 sin_t *sin; 8946 mblk_t *mp1; 8947 ire_t *ire = NULL; 8948 zoneid_t zoneid; 8949 8950 ip1dbg(("ip_sioctl_tonlink")); 8951 8952 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8953 zoneid = Q_TO_CONN(q)->conn_zoneid; 8954 8955 /* Existence verified in ip_wput_nondata */ 8956 mp1 = mp->b_cont->b_cont; 8957 sia = (struct sioc_addrreq *)mp1->b_rptr; 8958 sin = (sin_t *)&sia->sa_addr; 8959 8960 /* 8961 * Match addresses with a zero gateway field to avoid 8962 * routes going through a router. 8963 * Exclude broadcast and multicast addresses. 8964 */ 8965 switch (sin->sin_family) { 8966 case AF_INET6: { 8967 sin6_t *sin6 = (sin6_t *)sin; 8968 8969 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8970 ipaddr_t v4_addr; 8971 8972 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8973 v4_addr); 8974 if (!CLASSD(v4_addr)) { 8975 ire = ire_route_lookup(v4_addr, 0, 0, 0, 8976 NULL, NULL, zoneid, NULL, 8977 MATCH_IRE_GW); 8978 } 8979 } else { 8980 in6_addr_t v6addr; 8981 in6_addr_t v6gw; 8982 8983 v6addr = sin6->sin6_addr; 8984 v6gw = ipv6_all_zeros; 8985 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8986 ire = ire_route_lookup_v6(&v6addr, 0, 8987 &v6gw, 0, NULL, NULL, zoneid, 8988 NULL, MATCH_IRE_GW); 8989 } 8990 } 8991 break; 8992 } 8993 case AF_INET: { 8994 ipaddr_t v4addr; 8995 8996 v4addr = sin->sin_addr.s_addr; 8997 if (!CLASSD(v4addr)) { 8998 ire = ire_route_lookup(v4addr, 0, 0, 0, 8999 NULL, NULL, zoneid, NULL, 9000 MATCH_IRE_GW); 9001 } 9002 break; 9003 } 9004 default: 9005 return (EAFNOSUPPORT); 9006 } 9007 sia->sa_res = 0; 9008 if (ire != NULL) { 9009 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9010 IRE_LOCAL|IRE_LOOPBACK)) { 9011 sia->sa_res = 1; 9012 } 9013 ire_refrele(ire); 9014 } 9015 return (0); 9016 } 9017 9018 /* 9019 * TBD: implement when kernel maintaines a list of site prefixes. 9020 */ 9021 /* ARGSUSED */ 9022 int 9023 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9024 ip_ioctl_cmd_t *ipip, void *ifreq) 9025 { 9026 return (ENXIO); 9027 } 9028 9029 /* ARGSUSED */ 9030 int 9031 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9032 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9033 { 9034 ill_t *ill; 9035 mblk_t *mp1; 9036 conn_t *connp; 9037 boolean_t success; 9038 9039 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9040 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9041 /* ioctl comes down on an conn */ 9042 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9043 connp = Q_TO_CONN(q); 9044 9045 mp->b_datap->db_type = M_IOCTL; 9046 9047 /* 9048 * Send down a copy. (copymsg does not copy b_next/b_prev). 9049 * The original mp contains contaminated b_next values due to 'mi', 9050 * which is needed to do the mi_copy_done. Unfortunately if we 9051 * send down the original mblk itself and if we are popped due to an 9052 * an unplumb before the response comes back from tunnel, 9053 * the streamhead (which does a freemsg) will see this contaminated 9054 * message and the assertion in freemsg about non-null b_next/b_prev 9055 * will panic a DEBUG kernel. 9056 */ 9057 mp1 = copymsg(mp); 9058 if (mp1 == NULL) 9059 return (ENOMEM); 9060 9061 ill = ipif->ipif_ill; 9062 mutex_enter(&connp->conn_lock); 9063 mutex_enter(&ill->ill_lock); 9064 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9065 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9066 mp, 0); 9067 } else { 9068 success = ill_pending_mp_add(ill, connp, mp); 9069 } 9070 mutex_exit(&ill->ill_lock); 9071 mutex_exit(&connp->conn_lock); 9072 9073 if (success) { 9074 ip1dbg(("sending down tunparam request ")); 9075 putnext(ill->ill_wq, mp1); 9076 return (EINPROGRESS); 9077 } else { 9078 /* The conn has started closing */ 9079 freemsg(mp1); 9080 return (EINTR); 9081 } 9082 } 9083 9084 static int 9085 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9086 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9087 { 9088 mblk_t *mp1; 9089 mblk_t *mp2; 9090 mblk_t *pending_mp; 9091 ipaddr_t ipaddr; 9092 area_t *area; 9093 struct iocblk *iocp; 9094 conn_t *connp; 9095 struct arpreq *ar; 9096 struct xarpreq *xar; 9097 boolean_t success; 9098 int flags, alength; 9099 char *lladdr; 9100 9101 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9102 connp = Q_TO_CONN(q); 9103 9104 iocp = (struct iocblk *)mp->b_rptr; 9105 /* 9106 * ill has already been set depending on whether 9107 * bsd style or interface style ioctl. 9108 */ 9109 ASSERT(ill != NULL); 9110 9111 /* 9112 * Is this one of the new SIOC*XARP ioctls? 9113 */ 9114 if (x_arp_ioctl) { 9115 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9116 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9117 ar = NULL; 9118 9119 flags = xar->xarp_flags; 9120 lladdr = LLADDR(&xar->xarp_ha); 9121 /* 9122 * Validate against user's link layer address length 9123 * input and name and addr length limits. 9124 */ 9125 alength = ill->ill_phys_addr_length; 9126 if (iocp->ioc_cmd == SIOCSXARP) { 9127 if (alength != xar->xarp_ha.sdl_alen || 9128 (alength + xar->xarp_ha.sdl_nlen > 9129 sizeof (xar->xarp_ha.sdl_data))) 9130 return (EINVAL); 9131 } 9132 } else { 9133 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9134 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9135 xar = NULL; 9136 9137 flags = ar->arp_flags; 9138 lladdr = ar->arp_ha.sa_data; 9139 /* 9140 * Theoretically, the sa_family could tell us what link 9141 * layer type this operation is trying to deal with. By 9142 * common usage AF_UNSPEC means ethernet. We'll assume 9143 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9144 * for now. Our new SIOC*XARP ioctls can be used more 9145 * generally. 9146 * 9147 * If the underlying media happens to have a non 6 byte 9148 * address, arp module will fail set/get, but the del 9149 * operation will succeed. 9150 */ 9151 alength = 6; 9152 if ((iocp->ioc_cmd != SIOCDARP) && 9153 (alength != ill->ill_phys_addr_length)) { 9154 return (EINVAL); 9155 } 9156 } 9157 9158 /* 9159 * We are going to pass up to ARP a packet chain that looks 9160 * like: 9161 * 9162 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9163 * 9164 * Get a copy of the original IOCTL mblk to head the chain, 9165 * to be sent up (in mp1). Also get another copy to store 9166 * in the ill_pending_mp list, for matching the response 9167 * when it comes back from ARP. 9168 */ 9169 mp1 = copyb(mp); 9170 pending_mp = copymsg(mp); 9171 if (mp1 == NULL || pending_mp == NULL) { 9172 if (mp1 != NULL) 9173 freeb(mp1); 9174 if (pending_mp != NULL) 9175 inet_freemsg(pending_mp); 9176 return (ENOMEM); 9177 } 9178 9179 ipaddr = sin->sin_addr.s_addr; 9180 9181 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9182 (caddr_t)&ipaddr); 9183 if (mp2 == NULL) { 9184 freeb(mp1); 9185 inet_freemsg(pending_mp); 9186 return (ENOMEM); 9187 } 9188 /* Put together the chain. */ 9189 mp1->b_cont = mp2; 9190 mp1->b_datap->db_type = M_IOCTL; 9191 mp2->b_cont = mp; 9192 mp2->b_datap->db_type = M_DATA; 9193 9194 iocp = (struct iocblk *)mp1->b_rptr; 9195 9196 /* 9197 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9198 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9199 * cp_private field (or cp_rval on 32-bit systems) in place of the 9200 * ioc_count field; set ioc_count to be correct. 9201 */ 9202 iocp->ioc_count = MBLKL(mp1->b_cont); 9203 9204 /* 9205 * Set the proper command in the ARP message. 9206 * Convert the SIOC{G|S|D}ARP calls into our 9207 * AR_ENTRY_xxx calls. 9208 */ 9209 area = (area_t *)mp2->b_rptr; 9210 switch (iocp->ioc_cmd) { 9211 case SIOCDARP: 9212 case SIOCDXARP: 9213 /* 9214 * We defer deleting the corresponding IRE until 9215 * we return from arp. 9216 */ 9217 area->area_cmd = AR_ENTRY_DELETE; 9218 area->area_proto_mask_offset = 0; 9219 break; 9220 case SIOCGARP: 9221 case SIOCGXARP: 9222 area->area_cmd = AR_ENTRY_SQUERY; 9223 area->area_proto_mask_offset = 0; 9224 break; 9225 case SIOCSARP: 9226 case SIOCSXARP: { 9227 /* 9228 * Delete the corresponding ire to make sure IP will 9229 * pick up any change from arp. 9230 */ 9231 if (!if_arp_ioctl) { 9232 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 9233 break; 9234 } else { 9235 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9236 if (ipif != NULL) { 9237 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 9238 ipif_refrele(ipif); 9239 } 9240 break; 9241 } 9242 } 9243 } 9244 iocp->ioc_cmd = area->area_cmd; 9245 9246 /* 9247 * Before sending 'mp' to ARP, we have to clear the b_next 9248 * and b_prev. Otherwise if STREAMS encounters such a message 9249 * in freemsg(), (because ARP can close any time) it can cause 9250 * a panic. But mi code needs the b_next and b_prev values of 9251 * mp->b_cont, to complete the ioctl. So we store it here 9252 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9253 * when the response comes down from ARP. 9254 */ 9255 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9256 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9257 mp->b_cont->b_next = NULL; 9258 mp->b_cont->b_prev = NULL; 9259 9260 mutex_enter(&connp->conn_lock); 9261 mutex_enter(&ill->ill_lock); 9262 /* conn has not yet started closing, hence this can't fail */ 9263 success = ill_pending_mp_add(ill, connp, pending_mp); 9264 ASSERT(success); 9265 mutex_exit(&ill->ill_lock); 9266 mutex_exit(&connp->conn_lock); 9267 9268 /* 9269 * Fill in the rest of the ARP operation fields. 9270 */ 9271 area->area_hw_addr_length = alength; 9272 bcopy(lladdr, 9273 (char *)area + area->area_hw_addr_offset, 9274 area->area_hw_addr_length); 9275 /* Translate the flags. */ 9276 if (flags & ATF_PERM) 9277 area->area_flags |= ACE_F_PERMANENT; 9278 if (flags & ATF_PUBL) 9279 area->area_flags |= ACE_F_PUBLISH; 9280 if (flags & ATF_AUTHORITY) 9281 area->area_flags |= ACE_F_AUTHORITY; 9282 9283 /* 9284 * Up to ARP it goes. The response will come 9285 * back in ip_wput as an M_IOCACK message, and 9286 * will be handed to ip_sioctl_iocack for 9287 * completion. 9288 */ 9289 putnext(ill->ill_rq, mp1); 9290 return (EINPROGRESS); 9291 } 9292 9293 /* ARGSUSED */ 9294 int 9295 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9296 ip_ioctl_cmd_t *ipip, void *ifreq) 9297 { 9298 struct xarpreq *xar; 9299 boolean_t isv6; 9300 mblk_t *mp1; 9301 int err; 9302 conn_t *connp; 9303 int ifnamelen; 9304 ire_t *ire = NULL; 9305 ill_t *ill = NULL; 9306 struct sockaddr_in *sin; 9307 boolean_t if_arp_ioctl = B_FALSE; 9308 9309 /* ioctl comes down on an conn */ 9310 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9311 connp = Q_TO_CONN(q); 9312 isv6 = connp->conn_af_isv6; 9313 9314 /* Existance verified in ip_wput_nondata */ 9315 mp1 = mp->b_cont->b_cont; 9316 9317 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9318 xar = (struct xarpreq *)mp1->b_rptr; 9319 sin = (sin_t *)&xar->xarp_pa; 9320 9321 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9322 (xar->xarp_pa.ss_family != AF_INET)) 9323 return (ENXIO); 9324 9325 ifnamelen = xar->xarp_ha.sdl_nlen; 9326 if (ifnamelen != 0) { 9327 char *cptr, cval; 9328 9329 if (ifnamelen >= LIFNAMSIZ) 9330 return (EINVAL); 9331 9332 /* 9333 * Instead of bcopying a bunch of bytes, 9334 * null-terminate the string in-situ. 9335 */ 9336 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9337 cval = *cptr; 9338 *cptr = '\0'; 9339 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9340 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9341 &err, NULL); 9342 *cptr = cval; 9343 if (ill == NULL) 9344 return (err); 9345 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9346 ill_refrele(ill); 9347 return (ENXIO); 9348 } 9349 9350 if_arp_ioctl = B_TRUE; 9351 } else { 9352 /* 9353 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9354 * as an extended BSD ioctl. The kernel uses the IP address 9355 * to figure out the network interface. 9356 */ 9357 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9358 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9359 ((ill = ire_to_ill(ire)) == NULL) || 9360 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9361 if (ire != NULL) 9362 ire_refrele(ire); 9363 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9364 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9365 NULL, MATCH_IRE_TYPE); 9366 if ((ire == NULL) || 9367 ((ill = ire_to_ill(ire)) == NULL)) { 9368 if (ire != NULL) 9369 ire_refrele(ire); 9370 return (ENXIO); 9371 } 9372 } 9373 ASSERT(ire != NULL && ill != NULL); 9374 } 9375 9376 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9377 if (if_arp_ioctl) 9378 ill_refrele(ill); 9379 if (ire != NULL) 9380 ire_refrele(ire); 9381 9382 return (err); 9383 } 9384 9385 /* 9386 * ARP IOCTLs. 9387 * How does IP get in the business of fronting ARP configuration/queries? 9388 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9389 * are by tradition passed in through a datagram socket. That lands in IP. 9390 * As it happens, this is just as well since the interface is quite crude in 9391 * that it passes in no information about protocol or hardware types, or 9392 * interface association. After making the protocol assumption, IP is in 9393 * the position to look up the name of the ILL, which ARP will need, and 9394 * format a request that can be handled by ARP. The request is passed up 9395 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9396 * back a response. ARP supports its own set of more general IOCTLs, in 9397 * case anyone is interested. 9398 */ 9399 /* ARGSUSED */ 9400 int 9401 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9402 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9403 { 9404 struct arpreq *ar; 9405 struct sockaddr_in *sin; 9406 ire_t *ire; 9407 boolean_t isv6; 9408 mblk_t *mp1; 9409 int err; 9410 conn_t *connp; 9411 ill_t *ill; 9412 9413 /* ioctl comes down on an conn */ 9414 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9415 connp = Q_TO_CONN(q); 9416 isv6 = connp->conn_af_isv6; 9417 if (isv6) 9418 return (ENXIO); 9419 9420 /* Existance verified in ip_wput_nondata */ 9421 mp1 = mp->b_cont->b_cont; 9422 9423 ar = (struct arpreq *)mp1->b_rptr; 9424 sin = (sin_t *)&ar->arp_pa; 9425 9426 /* 9427 * We need to let ARP know on which interface the IP 9428 * address has an ARP mapping. In the IPMP case, a 9429 * simple forwarding table lookup will return the 9430 * IRE_IF_RESOLVER for the first interface in the group, 9431 * which might not be the interface on which the 9432 * requested IP address was resolved due to the ill 9433 * selection algorithm (see ip_newroute_get_dst_ill()). 9434 * So we do a cache table lookup first: if the IRE cache 9435 * entry for the IP address is still there, it will 9436 * contain the ill pointer for the right interface, so 9437 * we use that. If the cache entry has been flushed, we 9438 * fall back to the forwarding table lookup. This should 9439 * be rare enough since IRE cache entries have a longer 9440 * life expectancy than ARP cache entries. 9441 */ 9442 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9443 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9444 ((ill = ire_to_ill(ire)) == NULL)) { 9445 if (ire != NULL) 9446 ire_refrele(ire); 9447 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9448 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9449 NULL, MATCH_IRE_TYPE); 9450 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9451 if (ire != NULL) 9452 ire_refrele(ire); 9453 return (ENXIO); 9454 } 9455 } 9456 ASSERT(ire != NULL && ill != NULL); 9457 9458 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9459 ire_refrele(ire); 9460 return (err); 9461 } 9462 9463 /* 9464 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9465 * atomically set/clear the muxids. Also complete the ioctl by acking or 9466 * naking it. Note that the code is structured such that the link type, 9467 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9468 * its clones use the persistent link, while pppd(1M) and perhaps many 9469 * other daemons may use non-persistent link. When combined with some 9470 * ill_t states, linking and unlinking lower streams may be used as 9471 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9472 */ 9473 /* ARGSUSED */ 9474 void 9475 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9476 { 9477 mblk_t *mp1; 9478 mblk_t *mp2; 9479 struct linkblk *li; 9480 queue_t *ipwq; 9481 char *name; 9482 struct qinit *qinfo; 9483 struct ipmx_s *ipmxp; 9484 ill_t *ill = NULL; 9485 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9486 int err = 0; 9487 boolean_t entered_ipsq = B_FALSE; 9488 boolean_t islink; 9489 queue_t *dwq = NULL; 9490 9491 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9492 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9493 9494 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9495 B_TRUE : B_FALSE; 9496 9497 mp1 = mp->b_cont; /* This is the linkblk info */ 9498 li = (struct linkblk *)mp1->b_rptr; 9499 9500 /* 9501 * ARP has added this special mblk, and the utility is asking us 9502 * to perform consistency checks, and also atomically set the 9503 * muxid. Ifconfig is an example. It achieves this by using 9504 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9505 * to /dev/udp[6] stream for use as the mux when plinking the IP 9506 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9507 * and other comments in this routine for more details. 9508 */ 9509 mp2 = mp1->b_cont; /* This is added by ARP */ 9510 9511 /* 9512 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9513 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9514 * get the special mblk above. For backward compatibility, we just 9515 * return success. The utility will use SIOCSLIFMUXID to store 9516 * the muxids. This is not atomic, and can leave the streams 9517 * unplumbable if the utility is interrrupted, before it does the 9518 * SIOCSLIFMUXID. 9519 */ 9520 if (mp2 == NULL) { 9521 /* 9522 * At this point we don't know whether or not this is the 9523 * IP module stream or the ARP device stream. We need to 9524 * walk the lower stream in order to find this out, since 9525 * the capability negotiation is done only on the IP module 9526 * stream. IP module instance is identified by the module 9527 * name IP, non-null q_next, and it's wput not being ip_lwput. 9528 * STREAMS ensures that the lower stream (l_qbot) will not 9529 * vanish until this ioctl completes. So we can safely walk 9530 * the stream or refer to the q_ptr. 9531 */ 9532 ipwq = li->l_qbot; 9533 while (ipwq != NULL) { 9534 qinfo = ipwq->q_qinfo; 9535 name = qinfo->qi_minfo->mi_idname; 9536 if (name != NULL && name[0] != NULL && 9537 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9538 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9539 (ipwq->q_next != NULL)) { 9540 break; 9541 } 9542 ipwq = ipwq->q_next; 9543 } 9544 /* 9545 * This looks like an IP module stream, so trigger 9546 * the capability reset or re-negotiation if necessary. 9547 */ 9548 if (ipwq != NULL) { 9549 ill = ipwq->q_ptr; 9550 ASSERT(ill != NULL); 9551 9552 if (ipsq == NULL) { 9553 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9554 ip_sioctl_plink, NEW_OP, B_TRUE); 9555 if (ipsq == NULL) 9556 return; 9557 entered_ipsq = B_TRUE; 9558 } 9559 ASSERT(IAM_WRITER_ILL(ill)); 9560 /* 9561 * Store the upper read queue of the module 9562 * immediately below IP, and count the total 9563 * number of lower modules. Do this only 9564 * for I_PLINK or I_LINK event. 9565 */ 9566 ill->ill_lmod_rq = NULL; 9567 ill->ill_lmod_cnt = 0; 9568 if (islink && (dwq = ipwq->q_next) != NULL) { 9569 ill->ill_lmod_rq = RD(dwq); 9570 9571 while (dwq != NULL) { 9572 ill->ill_lmod_cnt++; 9573 dwq = dwq->q_next; 9574 } 9575 } 9576 /* 9577 * There's no point in resetting or re-negotiating if 9578 * we are not bound to the driver, so only do this if 9579 * the DLPI state is idle (up); we assume such state 9580 * since ill_ipif_up_count gets incremented in 9581 * ipif_up_done(), which is after we are bound to the 9582 * driver. Note that in the case of logical 9583 * interfaces, IP won't rebind to the driver unless 9584 * the ill_ipif_up_count is 0, meaning that all other 9585 * IP interfaces (including the main ipif) are in the 9586 * down state. Because of this, we use such counter 9587 * as an indicator, instead of relying on the IPIF_UP 9588 * flag, which is per ipif instance. 9589 */ 9590 if (ill->ill_ipif_up_count > 0) { 9591 if (islink) 9592 ill_capability_probe(ill); 9593 else 9594 ill_capability_reset(ill); 9595 } 9596 } 9597 goto done; 9598 } 9599 9600 /* 9601 * This is an I_{P}LINK sent down by ifconfig on 9602 * /dev/arp. ARP has appended this last (3rd) mblk, 9603 * giving more info. STREAMS ensures that the lower 9604 * stream (l_qbot) will not vanish until this ioctl 9605 * completes. So we can safely walk the stream or refer 9606 * to the q_ptr. 9607 */ 9608 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9609 if (ipmxp->ipmx_arpdev_stream) { 9610 /* 9611 * The operation is occuring on the arp-device 9612 * stream. 9613 */ 9614 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9615 q, mp, ip_sioctl_plink, &err, NULL); 9616 if (ill == NULL) { 9617 if (err == EINPROGRESS) { 9618 return; 9619 } else { 9620 err = EINVAL; 9621 goto done; 9622 } 9623 } 9624 9625 if (ipsq == NULL) { 9626 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9627 NEW_OP, B_TRUE); 9628 if (ipsq == NULL) { 9629 ill_refrele(ill); 9630 return; 9631 } 9632 entered_ipsq = B_TRUE; 9633 } 9634 ASSERT(IAM_WRITER_ILL(ill)); 9635 ill_refrele(ill); 9636 /* 9637 * To ensure consistency between IP and ARP, 9638 * the following LIFO scheme is used in 9639 * plink/punlink. (IP first, ARP last). 9640 * This is because the muxid's are stored 9641 * in the IP stream on the ill. 9642 * 9643 * I_{P}LINK: ifconfig plinks the IP stream before 9644 * plinking the ARP stream. On an arp-dev 9645 * stream, IP checks that it is not yet 9646 * plinked, and it also checks that the 9647 * corresponding IP stream is already plinked. 9648 * 9649 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9650 * before punlinking the IP stream. IP does 9651 * not allow punlink of the IP stream unless 9652 * the arp stream has been punlinked. 9653 * 9654 */ 9655 if ((islink && 9656 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9657 (!islink && 9658 ill->ill_arp_muxid != li->l_index)) { 9659 err = EINVAL; 9660 goto done; 9661 } 9662 if (islink) { 9663 ill->ill_arp_muxid = li->l_index; 9664 } else { 9665 ill->ill_arp_muxid = 0; 9666 } 9667 } else { 9668 /* 9669 * This must be the IP module stream with or 9670 * without arp. Walk the stream and locate the 9671 * IP module. An IP module instance is 9672 * identified by the module name IP, non-null 9673 * q_next, and it's wput not being ip_lwput. 9674 */ 9675 ipwq = li->l_qbot; 9676 while (ipwq != NULL) { 9677 qinfo = ipwq->q_qinfo; 9678 name = qinfo->qi_minfo->mi_idname; 9679 if (name != NULL && name[0] != NULL && 9680 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9681 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9682 (ipwq->q_next != NULL)) { 9683 break; 9684 } 9685 ipwq = ipwq->q_next; 9686 } 9687 if (ipwq != NULL) { 9688 ill = ipwq->q_ptr; 9689 ASSERT(ill != NULL); 9690 9691 if (ipsq == NULL) { 9692 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9693 ip_sioctl_plink, NEW_OP, B_TRUE); 9694 if (ipsq == NULL) 9695 return; 9696 entered_ipsq = B_TRUE; 9697 } 9698 ASSERT(IAM_WRITER_ILL(ill)); 9699 /* 9700 * Return error if the ip_mux_id is 9701 * non-zero and command is I_{P}LINK. 9702 * If command is I_{P}UNLINK, return 9703 * error if the arp-devstr is not 9704 * yet punlinked. 9705 */ 9706 if ((islink && ill->ill_ip_muxid != 0) || 9707 (!islink && ill->ill_arp_muxid != 0)) { 9708 err = EINVAL; 9709 goto done; 9710 } 9711 ill->ill_lmod_rq = NULL; 9712 ill->ill_lmod_cnt = 0; 9713 if (islink) { 9714 /* 9715 * Store the upper read queue of the module 9716 * immediately below IP, and count the total 9717 * number of lower modules. 9718 */ 9719 if ((dwq = ipwq->q_next) != NULL) { 9720 ill->ill_lmod_rq = RD(dwq); 9721 9722 while (dwq != NULL) { 9723 ill->ill_lmod_cnt++; 9724 dwq = dwq->q_next; 9725 } 9726 } 9727 ill->ill_ip_muxid = li->l_index; 9728 } else { 9729 ill->ill_ip_muxid = 0; 9730 } 9731 9732 /* 9733 * See comments above about resetting/re- 9734 * negotiating driver sub-capabilities. 9735 */ 9736 if (ill->ill_ipif_up_count > 0) { 9737 if (islink) 9738 ill_capability_probe(ill); 9739 else 9740 ill_capability_reset(ill); 9741 } 9742 } 9743 } 9744 done: 9745 iocp->ioc_count = 0; 9746 iocp->ioc_error = err; 9747 if (err == 0) 9748 mp->b_datap->db_type = M_IOCACK; 9749 else 9750 mp->b_datap->db_type = M_IOCNAK; 9751 qreply(q, mp); 9752 9753 /* Conn was refheld in ip_sioctl_copyin_setup */ 9754 if (CONN_Q(q)) 9755 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9756 if (entered_ipsq) 9757 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9758 } 9759 9760 /* 9761 * Search the ioctl command in the ioctl tables and return a pointer 9762 * to the ioctl command information. The ioctl command tables are 9763 * static and fully populated at compile time. 9764 */ 9765 ip_ioctl_cmd_t * 9766 ip_sioctl_lookup(int ioc_cmd) 9767 { 9768 int index; 9769 ip_ioctl_cmd_t *ipip; 9770 ip_ioctl_cmd_t *ipip_end; 9771 9772 if (ioc_cmd == IPI_DONTCARE) 9773 return (NULL); 9774 9775 /* 9776 * Do a 2 step search. First search the indexed table 9777 * based on the least significant byte of the ioctl cmd. 9778 * If we don't find a match, then search the misc table 9779 * serially. 9780 */ 9781 index = ioc_cmd & 0xFF; 9782 if (index < ip_ndx_ioctl_count) { 9783 ipip = &ip_ndx_ioctl_table[index]; 9784 if (ipip->ipi_cmd == ioc_cmd) { 9785 /* Found a match in the ndx table */ 9786 return (ipip); 9787 } 9788 } 9789 9790 /* Search the misc table */ 9791 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9792 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9793 if (ipip->ipi_cmd == ioc_cmd) 9794 /* Found a match in the misc table */ 9795 return (ipip); 9796 } 9797 9798 return (NULL); 9799 } 9800 9801 /* 9802 * Wrapper function for resuming deferred ioctl processing 9803 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9804 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9805 */ 9806 /* ARGSUSED */ 9807 void 9808 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9809 void *dummy_arg) 9810 { 9811 ip_sioctl_copyin_setup(q, mp); 9812 } 9813 9814 /* 9815 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9816 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9817 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9818 * We establish here the size of the block to be copied in. mi_copyin 9819 * arranges for this to happen, an processing continues in ip_wput with 9820 * an M_IOCDATA message. 9821 */ 9822 void 9823 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9824 { 9825 int copyin_size; 9826 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9827 ip_ioctl_cmd_t *ipip; 9828 cred_t *cr; 9829 9830 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9831 if (ipip == NULL) { 9832 /* 9833 * The ioctl is not one we understand or own. 9834 * Pass it along to be processed down stream, 9835 * if this is a module instance of IP, else nak 9836 * the ioctl. 9837 */ 9838 if (q->q_next == NULL) { 9839 goto nak; 9840 } else { 9841 putnext(q, mp); 9842 return; 9843 } 9844 } 9845 9846 /* 9847 * If this is deferred, then we will do all the checks when we 9848 * come back. 9849 */ 9850 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9851 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 9852 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9853 return; 9854 } 9855 9856 /* 9857 * Only allow a very small subset of IP ioctls on this stream if 9858 * IP is a module and not a driver. Allowing ioctls to be processed 9859 * in this case may cause assert failures or data corruption. 9860 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9861 * ioctls allowed on an IP module stream, after which this stream 9862 * normally becomes a multiplexor (at which time the stream head 9863 * will fail all ioctls). 9864 */ 9865 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9866 if (ipip->ipi_flags & IPI_PASS_DOWN) { 9867 /* 9868 * Pass common Streams ioctls which the IP 9869 * module does not own or consume along to 9870 * be processed down stream. 9871 */ 9872 putnext(q, mp); 9873 return; 9874 } else { 9875 goto nak; 9876 } 9877 } 9878 9879 /* Make sure we have ioctl data to process. */ 9880 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9881 goto nak; 9882 9883 /* 9884 * Prefer dblk credential over ioctl credential; some synthesized 9885 * ioctls have kcred set because there's no way to crhold() 9886 * a credential in some contexts. (ioc_cr is not crfree() by 9887 * the framework; the caller of ioctl needs to hold the reference 9888 * for the duration of the call). 9889 */ 9890 cr = DB_CREDDEF(mp, iocp->ioc_cr); 9891 9892 /* Make sure normal users don't send down privileged ioctls */ 9893 if ((ipip->ipi_flags & IPI_PRIV) && 9894 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 9895 /* We checked the privilege earlier but log it here */ 9896 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 9897 return; 9898 } 9899 9900 /* 9901 * The ioctl command tables can only encode fixed length 9902 * ioctl data. If the length is variable, the table will 9903 * encode the length as zero. Such special cases are handled 9904 * below in the switch. 9905 */ 9906 if (ipip->ipi_copyin_size != 0) { 9907 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9908 return; 9909 } 9910 9911 switch (iocp->ioc_cmd) { 9912 case O_SIOCGIFCONF: 9913 case SIOCGIFCONF: 9914 /* 9915 * This IOCTL is hilarious. See comments in 9916 * ip_sioctl_get_ifconf for the story. 9917 */ 9918 if (iocp->ioc_count == TRANSPARENT) 9919 copyin_size = SIZEOF_STRUCT(ifconf, 9920 iocp->ioc_flag); 9921 else 9922 copyin_size = iocp->ioc_count; 9923 mi_copyin(q, mp, NULL, copyin_size); 9924 return; 9925 9926 case O_SIOCGLIFCONF: 9927 case SIOCGLIFCONF: 9928 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9929 mi_copyin(q, mp, NULL, copyin_size); 9930 return; 9931 9932 case SIOCGLIFSRCOF: 9933 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9934 mi_copyin(q, mp, NULL, copyin_size); 9935 return; 9936 case SIOCGIP6ADDRPOLICY: 9937 ip_sioctl_ip6addrpolicy(q, mp); 9938 ip6_asp_table_refrele(); 9939 return; 9940 9941 case SIOCSIP6ADDRPOLICY: 9942 ip_sioctl_ip6addrpolicy(q, mp); 9943 return; 9944 9945 case SIOCGDSTINFO: 9946 ip_sioctl_dstinfo(q, mp); 9947 ip6_asp_table_refrele(); 9948 return; 9949 9950 case I_PLINK: 9951 case I_PUNLINK: 9952 case I_LINK: 9953 case I_UNLINK: 9954 /* 9955 * We treat non-persistent link similarly as the persistent 9956 * link case, in terms of plumbing/unplumbing, as well as 9957 * dynamic re-plumbing events indicator. See comments 9958 * in ip_sioctl_plink() for more. 9959 * 9960 * Request can be enqueued in the 'ipsq' while waiting 9961 * to become exclusive. So bump up the conn ref. 9962 */ 9963 if (CONN_Q(q)) 9964 CONN_INC_REF(Q_TO_CONN(q)); 9965 ip_sioctl_plink(NULL, q, mp, NULL); 9966 return; 9967 9968 case ND_GET: 9969 case ND_SET: 9970 /* 9971 * Use of the nd table requires holding the reader lock. 9972 * Modifying the nd table thru nd_load/nd_unload requires 9973 * the writer lock. 9974 */ 9975 rw_enter(&ip_g_nd_lock, RW_READER); 9976 if (nd_getset(q, ip_g_nd, mp)) { 9977 rw_exit(&ip_g_nd_lock); 9978 9979 if (iocp->ioc_error) 9980 iocp->ioc_count = 0; 9981 mp->b_datap->db_type = M_IOCACK; 9982 qreply(q, mp); 9983 return; 9984 } 9985 rw_exit(&ip_g_nd_lock); 9986 /* 9987 * We don't understand this subioctl of ND_GET / ND_SET. 9988 * Maybe intended for some driver / module below us 9989 */ 9990 if (q->q_next) { 9991 putnext(q, mp); 9992 } else { 9993 iocp->ioc_error = ENOENT; 9994 mp->b_datap->db_type = M_IOCNAK; 9995 iocp->ioc_count = 0; 9996 qreply(q, mp); 9997 } 9998 return; 9999 10000 case IP_IOCTL: 10001 ip_wput_ioctl(q, mp); 10002 return; 10003 default: 10004 cmn_err(CE_PANIC, "should not happen "); 10005 } 10006 nak: 10007 if (mp->b_cont != NULL) { 10008 freemsg(mp->b_cont); 10009 mp->b_cont = NULL; 10010 } 10011 iocp->ioc_error = EINVAL; 10012 mp->b_datap->db_type = M_IOCNAK; 10013 iocp->ioc_count = 0; 10014 qreply(q, mp); 10015 } 10016 10017 /* ip_wput hands off ARP IOCTL responses to us */ 10018 void 10019 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10020 { 10021 struct arpreq *ar; 10022 struct xarpreq *xar; 10023 area_t *area; 10024 mblk_t *area_mp; 10025 struct iocblk *iocp; 10026 mblk_t *orig_ioc_mp, *tmp; 10027 struct iocblk *orig_iocp; 10028 ill_t *ill; 10029 conn_t *connp = NULL; 10030 uint_t ioc_id; 10031 mblk_t *pending_mp; 10032 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10033 int *flagsp; 10034 char *storage = NULL; 10035 sin_t *sin; 10036 ipaddr_t addr; 10037 int err; 10038 10039 ill = q->q_ptr; 10040 ASSERT(ill != NULL); 10041 10042 /* 10043 * We should get back from ARP a packet chain that looks like: 10044 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10045 */ 10046 if (!(area_mp = mp->b_cont) || 10047 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10048 !(orig_ioc_mp = area_mp->b_cont) || 10049 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10050 freemsg(mp); 10051 return; 10052 } 10053 10054 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10055 10056 tmp = (orig_ioc_mp->b_cont)->b_cont; 10057 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10058 (orig_iocp->ioc_cmd == SIOCSXARP) || 10059 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10060 x_arp_ioctl = B_TRUE; 10061 xar = (struct xarpreq *)tmp->b_rptr; 10062 sin = (sin_t *)&xar->xarp_pa; 10063 flagsp = &xar->xarp_flags; 10064 storage = xar->xarp_ha.sdl_data; 10065 if (xar->xarp_ha.sdl_nlen != 0) 10066 ifx_arp_ioctl = B_TRUE; 10067 } else { 10068 ar = (struct arpreq *)tmp->b_rptr; 10069 sin = (sin_t *)&ar->arp_pa; 10070 flagsp = &ar->arp_flags; 10071 storage = ar->arp_ha.sa_data; 10072 } 10073 10074 iocp = (struct iocblk *)mp->b_rptr; 10075 10076 /* 10077 * Pick out the originating queue based on the ioc_id. 10078 */ 10079 ioc_id = iocp->ioc_id; 10080 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10081 if (pending_mp == NULL) { 10082 ASSERT(connp == NULL); 10083 inet_freemsg(mp); 10084 return; 10085 } 10086 ASSERT(connp != NULL); 10087 q = CONNP_TO_WQ(connp); 10088 10089 /* Uncouple the internally generated IOCTL from the original one */ 10090 area = (area_t *)area_mp->b_rptr; 10091 area_mp->b_cont = NULL; 10092 10093 /* 10094 * Restore the b_next and b_prev used by mi code. This is needed 10095 * to complete the ioctl using mi* functions. We stored them in 10096 * the pending mp prior to sending the request to ARP. 10097 */ 10098 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10099 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10100 inet_freemsg(pending_mp); 10101 10102 /* 10103 * We're done if there was an error or if this is not an SIOCG{X}ARP 10104 * Catch the case where there is an IRE_CACHE by no entry in the 10105 * arp table. 10106 */ 10107 addr = sin->sin_addr.s_addr; 10108 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10109 ire_t *ire; 10110 dl_unitdata_req_t *dlup; 10111 mblk_t *llmp; 10112 int addr_len; 10113 ill_t *ipsqill = NULL; 10114 10115 if (ifx_arp_ioctl) { 10116 /* 10117 * There's no need to lookup the ill, since 10118 * we've already done that when we started 10119 * processing the ioctl and sent the message 10120 * to ARP on that ill. So use the ill that 10121 * is stored in q->q_ptr. 10122 */ 10123 ipsqill = ill; 10124 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10125 ipsqill->ill_ipif, ALL_ZONES, 10126 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 10127 } else { 10128 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10129 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 10130 if (ire != NULL) 10131 ipsqill = ire_to_ill(ire); 10132 } 10133 10134 if ((x_arp_ioctl) && (ipsqill != NULL)) 10135 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10136 10137 if (ire != NULL) { 10138 /* 10139 * Since the ire obtained from cachetable is used for 10140 * mac addr copying below, treat an incomplete ire as if 10141 * as if we never found it. 10142 */ 10143 if (ire->ire_nce != NULL && 10144 ire->ire_nce->nce_state != ND_REACHABLE) { 10145 ire_refrele(ire); 10146 ire = NULL; 10147 ipsqill = NULL; 10148 goto errack; 10149 } 10150 *flagsp = ATF_INUSE; 10151 llmp = (ire->ire_nce != NULL ? 10152 ire->ire_nce->nce_res_mp : NULL); 10153 if (llmp != NULL && ipsqill != NULL) { 10154 uchar_t *macaddr; 10155 10156 addr_len = ipsqill->ill_phys_addr_length; 10157 if (x_arp_ioctl && ((addr_len + 10158 ipsqill->ill_name_length) > 10159 sizeof (xar->xarp_ha.sdl_data))) { 10160 ire_refrele(ire); 10161 freemsg(mp); 10162 ip_ioctl_finish(q, orig_ioc_mp, 10163 EINVAL, NO_COPYOUT, NULL, NULL); 10164 return; 10165 } 10166 *flagsp |= ATF_COM; 10167 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10168 if (ipsqill->ill_sap_length < 0) 10169 macaddr = llmp->b_rptr + 10170 dlup->dl_dest_addr_offset; 10171 else 10172 macaddr = llmp->b_rptr + 10173 dlup->dl_dest_addr_offset + 10174 ipsqill->ill_sap_length; 10175 /* 10176 * For SIOCGARP, MAC address length 10177 * validation has already been done 10178 * before the ioctl was issued to ARP to 10179 * allow it to progress only on 6 byte 10180 * addressable (ethernet like) media. Thus 10181 * the mac address copying can not overwrite 10182 * the sa_data area below. 10183 */ 10184 bcopy(macaddr, storage, addr_len); 10185 } 10186 /* Ditch the internal IOCTL. */ 10187 freemsg(mp); 10188 ire_refrele(ire); 10189 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10190 return; 10191 } 10192 } 10193 10194 /* 10195 * Delete the coresponding IRE_CACHE if any. 10196 * Reset the error if there was one (in case there was no entry 10197 * in arp.) 10198 */ 10199 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10200 ipif_t *ipintf = NULL; 10201 10202 if (ifx_arp_ioctl) { 10203 /* 10204 * There's no need to lookup the ill, since 10205 * we've already done that when we started 10206 * processing the ioctl and sent the message 10207 * to ARP on that ill. So use the ill that 10208 * is stored in q->q_ptr. 10209 */ 10210 ipintf = ill->ill_ipif; 10211 } 10212 if (ip_ire_clookup_and_delete(addr, ipintf)) { 10213 /* 10214 * The address in "addr" may be an entry for a 10215 * router. If that's true, then any off-net 10216 * IRE_CACHE entries that go through the router 10217 * with address "addr" must be clobbered. Use 10218 * ire_walk to achieve this goal. 10219 */ 10220 if (ifx_arp_ioctl) 10221 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10222 ire_delete_cache_gw, (char *)&addr, ill); 10223 else 10224 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10225 ALL_ZONES); 10226 iocp->ioc_error = 0; 10227 } 10228 } 10229 errack: 10230 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10231 err = iocp->ioc_error; 10232 freemsg(mp); 10233 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 10234 return; 10235 } 10236 10237 /* 10238 * Completion of an SIOCG{X}ARP. Translate the information from 10239 * the area_t into the struct {x}arpreq. 10240 */ 10241 if (x_arp_ioctl) { 10242 storage += ill_xarp_info(&xar->xarp_ha, ill); 10243 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10244 sizeof (xar->xarp_ha.sdl_data)) { 10245 freemsg(mp); 10246 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 10247 NO_COPYOUT, NULL, NULL); 10248 return; 10249 } 10250 } 10251 *flagsp = ATF_INUSE; 10252 if (area->area_flags & ACE_F_PERMANENT) 10253 *flagsp |= ATF_PERM; 10254 if (area->area_flags & ACE_F_PUBLISH) 10255 *flagsp |= ATF_PUBL; 10256 if (area->area_flags & ACE_F_AUTHORITY) 10257 *flagsp |= ATF_AUTHORITY; 10258 if (area->area_hw_addr_length != 0) { 10259 *flagsp |= ATF_COM; 10260 /* 10261 * For SIOCGARP, MAC address length validation has 10262 * already been done before the ioctl was issued to ARP 10263 * to allow it to progress only on 6 byte addressable 10264 * (ethernet like) media. Thus the mac address copying 10265 * can not overwrite the sa_data area below. 10266 */ 10267 bcopy((char *)area + area->area_hw_addr_offset, 10268 storage, area->area_hw_addr_length); 10269 } 10270 10271 /* Ditch the internal IOCTL. */ 10272 freemsg(mp); 10273 /* Complete the original. */ 10274 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10275 } 10276 10277 /* 10278 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10279 * interface) create the next available logical interface for this 10280 * physical interface. 10281 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10282 * ipif with the specified name. 10283 * 10284 * If the address family is not AF_UNSPEC then set the address as well. 10285 * 10286 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10287 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10288 * 10289 * Executed as a writer on the ill or ill group. 10290 * So no lock is needed to traverse the ipif chain, or examine the 10291 * phyint flags. 10292 */ 10293 /* ARGSUSED */ 10294 int 10295 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10296 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10297 { 10298 mblk_t *mp1; 10299 struct lifreq *lifr; 10300 boolean_t isv6; 10301 boolean_t exists; 10302 char *name; 10303 char *endp; 10304 char *cp; 10305 int namelen; 10306 ipif_t *ipif; 10307 long id; 10308 ipsq_t *ipsq; 10309 ill_t *ill; 10310 sin_t *sin; 10311 int err = 0; 10312 boolean_t found_sep = B_FALSE; 10313 conn_t *connp; 10314 zoneid_t zoneid; 10315 int orig_ifindex = 0; 10316 10317 ip1dbg(("ip_sioctl_addif\n")); 10318 /* Existence of mp1 has been checked in ip_wput_nondata */ 10319 mp1 = mp->b_cont->b_cont; 10320 /* 10321 * Null terminate the string to protect against buffer 10322 * overrun. String was generated by user code and may not 10323 * be trusted. 10324 */ 10325 lifr = (struct lifreq *)mp1->b_rptr; 10326 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10327 name = lifr->lifr_name; 10328 ASSERT(CONN_Q(q)); 10329 connp = Q_TO_CONN(q); 10330 isv6 = connp->conn_af_isv6; 10331 zoneid = connp->conn_zoneid; 10332 namelen = mi_strlen(name); 10333 if (namelen == 0) 10334 return (EINVAL); 10335 10336 exists = B_FALSE; 10337 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10338 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10339 /* 10340 * Allow creating lo0 using SIOCLIFADDIF. 10341 * can't be any other writer thread. So can pass null below 10342 * for the last 4 args to ipif_lookup_name. 10343 */ 10344 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 10345 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 10346 /* Prevent any further action */ 10347 if (ipif == NULL) { 10348 return (ENOBUFS); 10349 } else if (!exists) { 10350 /* We created the ipif now and as writer */ 10351 ipif_refrele(ipif); 10352 return (0); 10353 } else { 10354 ill = ipif->ipif_ill; 10355 ill_refhold(ill); 10356 ipif_refrele(ipif); 10357 } 10358 } else { 10359 /* Look for a colon in the name. */ 10360 endp = &name[namelen]; 10361 for (cp = endp; --cp > name; ) { 10362 if (*cp == IPIF_SEPARATOR_CHAR) { 10363 found_sep = B_TRUE; 10364 /* 10365 * Reject any non-decimal aliases for plumbing 10366 * of logical interfaces. Aliases with leading 10367 * zeroes are also rejected as they introduce 10368 * ambiguity in the naming of the interfaces. 10369 * Comparing with "0" takes care of all such 10370 * cases. 10371 */ 10372 if ((strncmp("0", cp+1, 1)) == 0) 10373 return (EINVAL); 10374 10375 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10376 id <= 0 || *endp != '\0') { 10377 return (EINVAL); 10378 } 10379 *cp = '\0'; 10380 break; 10381 } 10382 } 10383 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10384 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10385 if (found_sep) 10386 *cp = IPIF_SEPARATOR_CHAR; 10387 if (ill == NULL) 10388 return (err); 10389 } 10390 10391 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10392 B_TRUE); 10393 10394 /* 10395 * Release the refhold due to the lookup, now that we are excl 10396 * or we are just returning 10397 */ 10398 ill_refrele(ill); 10399 10400 if (ipsq == NULL) 10401 return (EINPROGRESS); 10402 10403 /* 10404 * If the interface is failed, inactive or offlined, look for a working 10405 * interface in the ill group and create the ipif there. If we can't 10406 * find a good interface, create the ipif anyway so that in.mpathd can 10407 * move it to the first repaired interface. 10408 */ 10409 if ((ill->ill_phyint->phyint_flags & 10410 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10411 ill->ill_phyint->phyint_groupname_len != 0) { 10412 phyint_t *phyi; 10413 char *groupname = ill->ill_phyint->phyint_groupname; 10414 10415 /* 10416 * We're looking for a working interface, but it doesn't matter 10417 * if it's up or down; so instead of following the group lists, 10418 * we look at each physical interface and compare the groupname. 10419 * We're only interested in interfaces with IPv4 (resp. IPv6) 10420 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10421 * Otherwise we create the ipif on the failed interface. 10422 */ 10423 rw_enter(&ill_g_lock, RW_READER); 10424 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10425 for (; phyi != NULL; 10426 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10427 phyi, AVL_AFTER)) { 10428 if (phyi->phyint_groupname_len == 0) 10429 continue; 10430 ASSERT(phyi->phyint_groupname != NULL); 10431 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10432 !(phyi->phyint_flags & 10433 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10434 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10435 (phyi->phyint_illv4 != NULL))) { 10436 break; 10437 } 10438 } 10439 rw_exit(&ill_g_lock); 10440 10441 if (phyi != NULL) { 10442 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10443 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10444 phyi->phyint_illv4); 10445 } 10446 } 10447 10448 /* 10449 * We are now exclusive on the ipsq, so an ill move will be serialized 10450 * before or after us. 10451 */ 10452 ASSERT(IAM_WRITER_ILL(ill)); 10453 ASSERT(ill->ill_move_in_progress == B_FALSE); 10454 10455 if (found_sep && orig_ifindex == 0) { 10456 /* Now see if there is an IPIF with this unit number. */ 10457 for (ipif = ill->ill_ipif; ipif != NULL; 10458 ipif = ipif->ipif_next) { 10459 if (ipif->ipif_id == id) { 10460 err = EEXIST; 10461 goto done; 10462 } 10463 } 10464 } 10465 10466 /* 10467 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10468 * of lo0. We never come here when we plumb lo0:0. It 10469 * happens in ipif_lookup_on_name. 10470 * The specified unit number is ignored when we create the ipif on a 10471 * different interface. However, we save it in ipif_orig_ipifid below so 10472 * that the ipif fails back to the right position. 10473 */ 10474 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10475 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10476 err = ENOBUFS; 10477 goto done; 10478 } 10479 10480 /* Return created name with ioctl */ 10481 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10482 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10483 ip1dbg(("created %s\n", lifr->lifr_name)); 10484 10485 /* Set address */ 10486 sin = (sin_t *)&lifr->lifr_addr; 10487 if (sin->sin_family != AF_UNSPEC) { 10488 err = ip_sioctl_addr(ipif, sin, q, mp, 10489 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10490 } 10491 10492 /* Set ifindex and unit number for failback */ 10493 if (err == 0 && orig_ifindex != 0) { 10494 ipif->ipif_orig_ifindex = orig_ifindex; 10495 if (found_sep) { 10496 ipif->ipif_orig_ipifid = id; 10497 } 10498 } 10499 10500 done: 10501 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10502 return (err); 10503 } 10504 10505 /* 10506 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10507 * interface) delete it based on the IP address (on this physical interface). 10508 * Otherwise delete it based on the ipif_id. 10509 * Also, special handling to allow a removeif of lo0. 10510 */ 10511 /* ARGSUSED */ 10512 int 10513 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10514 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10515 { 10516 conn_t *connp; 10517 ill_t *ill = ipif->ipif_ill; 10518 boolean_t success; 10519 10520 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10521 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10522 ASSERT(IAM_WRITER_IPIF(ipif)); 10523 10524 connp = Q_TO_CONN(q); 10525 /* 10526 * Special case for unplumbing lo0 (the loopback physical interface). 10527 * If unplumbing lo0, the incoming address structure has been 10528 * initialized to all zeros. When unplumbing lo0, all its logical 10529 * interfaces must be removed too. 10530 * 10531 * Note that this interface may be called to remove a specific 10532 * loopback logical interface (eg, lo0:1). But in that case 10533 * ipif->ipif_id != 0 so that the code path for that case is the 10534 * same as any other interface (meaning it skips the code directly 10535 * below). 10536 */ 10537 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10538 if (sin->sin_family == AF_UNSPEC && 10539 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10540 /* 10541 * Mark it condemned. No new ref. will be made to ill. 10542 */ 10543 mutex_enter(&ill->ill_lock); 10544 ill->ill_state_flags |= ILL_CONDEMNED; 10545 for (ipif = ill->ill_ipif; ipif != NULL; 10546 ipif = ipif->ipif_next) { 10547 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10548 } 10549 mutex_exit(&ill->ill_lock); 10550 10551 ipif = ill->ill_ipif; 10552 /* unplumb the loopback interface */ 10553 ill_delete(ill); 10554 mutex_enter(&connp->conn_lock); 10555 mutex_enter(&ill->ill_lock); 10556 ASSERT(ill->ill_group == NULL); 10557 10558 /* Are any references to this ill active */ 10559 if (ill_is_quiescent(ill)) { 10560 mutex_exit(&ill->ill_lock); 10561 mutex_exit(&connp->conn_lock); 10562 ill_delete_tail(ill); 10563 mi_free(ill); 10564 return (0); 10565 } 10566 success = ipsq_pending_mp_add(connp, ipif, 10567 CONNP_TO_WQ(connp), mp, ILL_FREE); 10568 mutex_exit(&connp->conn_lock); 10569 mutex_exit(&ill->ill_lock); 10570 if (success) 10571 return (EINPROGRESS); 10572 else 10573 return (EINTR); 10574 } 10575 } 10576 10577 /* 10578 * We are exclusive on the ipsq, so an ill move will be serialized 10579 * before or after us. 10580 */ 10581 ASSERT(ill->ill_move_in_progress == B_FALSE); 10582 10583 if (ipif->ipif_id == 0) { 10584 /* Find based on address */ 10585 if (ipif->ipif_isv6) { 10586 sin6_t *sin6; 10587 10588 if (sin->sin_family != AF_INET6) 10589 return (EAFNOSUPPORT); 10590 10591 sin6 = (sin6_t *)sin; 10592 /* We are a writer, so we should be able to lookup */ 10593 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10594 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10595 if (ipif == NULL) { 10596 /* 10597 * Maybe the address in on another interface in 10598 * the same IPMP group? We check this below. 10599 */ 10600 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10601 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10602 } 10603 } else { 10604 ipaddr_t addr; 10605 10606 if (sin->sin_family != AF_INET) 10607 return (EAFNOSUPPORT); 10608 10609 addr = sin->sin_addr.s_addr; 10610 /* We are a writer, so we should be able to lookup */ 10611 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10612 NULL, NULL, NULL); 10613 if (ipif == NULL) { 10614 /* 10615 * Maybe the address in on another interface in 10616 * the same IPMP group? We check this below. 10617 */ 10618 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10619 NULL, NULL, NULL, NULL); 10620 } 10621 } 10622 if (ipif == NULL) { 10623 return (EADDRNOTAVAIL); 10624 } 10625 /* 10626 * When the address to be removed is hosted on a different 10627 * interface, we check if the interface is in the same IPMP 10628 * group as the specified one; if so we proceed with the 10629 * removal. 10630 * ill->ill_group is NULL when the ill is down, so we have to 10631 * compare the group names instead. 10632 */ 10633 if (ipif->ipif_ill != ill && 10634 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10635 ill->ill_phyint->phyint_groupname_len == 0 || 10636 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10637 ill->ill_phyint->phyint_groupname) != 0)) { 10638 ipif_refrele(ipif); 10639 return (EADDRNOTAVAIL); 10640 } 10641 10642 /* This is a writer */ 10643 ipif_refrele(ipif); 10644 } 10645 10646 /* 10647 * Can not delete instance zero since it is tied to the ill. 10648 */ 10649 if (ipif->ipif_id == 0) 10650 return (EBUSY); 10651 10652 mutex_enter(&ill->ill_lock); 10653 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10654 mutex_exit(&ill->ill_lock); 10655 10656 ipif_free(ipif); 10657 10658 mutex_enter(&connp->conn_lock); 10659 mutex_enter(&ill->ill_lock); 10660 10661 /* Are any references to this ipif active */ 10662 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10663 mutex_exit(&ill->ill_lock); 10664 mutex_exit(&connp->conn_lock); 10665 ipif_non_duplicate(ipif); 10666 ipif_down_tail(ipif); 10667 ipif_free_tail(ipif); 10668 return (0); 10669 } 10670 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10671 IPIF_FREE); 10672 mutex_exit(&ill->ill_lock); 10673 mutex_exit(&connp->conn_lock); 10674 if (success) 10675 return (EINPROGRESS); 10676 else 10677 return (EINTR); 10678 } 10679 10680 /* 10681 * Restart the removeif ioctl. The refcnt has gone down to 0. 10682 * The ipif is already condemned. So can't find it thru lookups. 10683 */ 10684 /* ARGSUSED */ 10685 int 10686 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10687 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10688 { 10689 ill_t *ill; 10690 10691 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10692 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10693 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10694 ill = ipif->ipif_ill; 10695 ASSERT(IAM_WRITER_ILL(ill)); 10696 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 10697 (ill->ill_state_flags & IPIF_CONDEMNED)); 10698 ill_delete_tail(ill); 10699 mi_free(ill); 10700 return (0); 10701 } 10702 10703 ill = ipif->ipif_ill; 10704 ASSERT(IAM_WRITER_IPIF(ipif)); 10705 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10706 10707 ipif_non_duplicate(ipif); 10708 ipif_down_tail(ipif); 10709 ipif_free_tail(ipif); 10710 10711 ILL_UNMARK_CHANGING(ill); 10712 return (0); 10713 } 10714 10715 /* 10716 * Set the local interface address. 10717 * Allow an address of all zero when the interface is down. 10718 */ 10719 /* ARGSUSED */ 10720 int 10721 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10722 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10723 { 10724 int err = 0; 10725 in6_addr_t v6addr; 10726 boolean_t need_up = B_FALSE; 10727 10728 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10729 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10730 10731 ASSERT(IAM_WRITER_IPIF(ipif)); 10732 10733 if (ipif->ipif_isv6) { 10734 sin6_t *sin6; 10735 ill_t *ill; 10736 phyint_t *phyi; 10737 10738 if (sin->sin_family != AF_INET6) 10739 return (EAFNOSUPPORT); 10740 10741 sin6 = (sin6_t *)sin; 10742 v6addr = sin6->sin6_addr; 10743 ill = ipif->ipif_ill; 10744 phyi = ill->ill_phyint; 10745 10746 /* 10747 * Enforce that true multicast interfaces have a link-local 10748 * address for logical unit 0. 10749 */ 10750 if (ipif->ipif_id == 0 && 10751 (ill->ill_flags & ILLF_MULTICAST) && 10752 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10753 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10754 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10755 return (EADDRNOTAVAIL); 10756 } 10757 10758 /* 10759 * up interfaces shouldn't have the unspecified address 10760 * unless they also have the IPIF_NOLOCAL flags set and 10761 * have a subnet assigned. 10762 */ 10763 if ((ipif->ipif_flags & IPIF_UP) && 10764 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10765 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10766 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10767 return (EADDRNOTAVAIL); 10768 } 10769 10770 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10771 return (EADDRNOTAVAIL); 10772 } else { 10773 ipaddr_t addr; 10774 10775 if (sin->sin_family != AF_INET) 10776 return (EAFNOSUPPORT); 10777 10778 addr = sin->sin_addr.s_addr; 10779 10780 /* Allow 0 as the local address. */ 10781 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10782 return (EADDRNOTAVAIL); 10783 10784 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10785 } 10786 10787 10788 /* 10789 * Even if there is no change we redo things just to rerun 10790 * ipif_set_default. 10791 */ 10792 if (ipif->ipif_flags & IPIF_UP) { 10793 /* 10794 * Setting a new local address, make sure 10795 * we have net and subnet bcast ire's for 10796 * the old address if we need them. 10797 */ 10798 if (!ipif->ipif_isv6) 10799 ipif_check_bcast_ires(ipif); 10800 /* 10801 * If the interface is already marked up, 10802 * we call ipif_down which will take care 10803 * of ditching any IREs that have been set 10804 * up based on the old interface address. 10805 */ 10806 err = ipif_logical_down(ipif, q, mp); 10807 if (err == EINPROGRESS) 10808 return (err); 10809 ipif_down_tail(ipif); 10810 need_up = 1; 10811 } 10812 10813 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10814 return (err); 10815 } 10816 10817 int 10818 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10819 boolean_t need_up) 10820 { 10821 in6_addr_t v6addr; 10822 ipaddr_t addr; 10823 sin6_t *sin6; 10824 int err = 0; 10825 ill_t *ill = ipif->ipif_ill; 10826 boolean_t need_dl_down; 10827 boolean_t need_arp_down; 10828 10829 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10830 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10831 ASSERT(IAM_WRITER_IPIF(ipif)); 10832 10833 /* Must cancel any pending timer before taking the ill_lock */ 10834 if (ipif->ipif_recovery_id != 0) 10835 (void) untimeout(ipif->ipif_recovery_id); 10836 ipif->ipif_recovery_id = 0; 10837 10838 if (ipif->ipif_isv6) { 10839 sin6 = (sin6_t *)sin; 10840 v6addr = sin6->sin6_addr; 10841 } else { 10842 addr = sin->sin_addr.s_addr; 10843 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10844 } 10845 mutex_enter(&ill->ill_lock); 10846 ipif->ipif_v6lcl_addr = v6addr; 10847 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 10848 ipif->ipif_v6src_addr = ipv6_all_zeros; 10849 } else { 10850 ipif->ipif_v6src_addr = v6addr; 10851 } 10852 ipif->ipif_addr_ready = 0; 10853 10854 /* 10855 * If the interface was previously marked as a duplicate, then since 10856 * we've now got a "new" address, it should no longer be considered a 10857 * duplicate -- even if the "new" address is the same as the old one. 10858 * Note that if all ipifs are down, we may have a pending ARP down 10859 * event to handle. This is because we want to recover from duplicates 10860 * and thus delay tearing down ARP until the duplicates have been 10861 * removed or disabled. 10862 */ 10863 need_dl_down = need_arp_down = B_FALSE; 10864 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10865 need_arp_down = !need_up; 10866 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10867 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10868 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10869 need_dl_down = B_TRUE; 10870 } 10871 } 10872 10873 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 10874 !ill->ill_is_6to4tun) { 10875 queue_t *wqp = ill->ill_wq; 10876 10877 /* 10878 * The local address of this interface is a 6to4 address, 10879 * check if this interface is in fact a 6to4 tunnel or just 10880 * an interface configured with a 6to4 address. We are only 10881 * interested in the former. 10882 */ 10883 if (wqp != NULL) { 10884 while ((wqp->q_next != NULL) && 10885 (wqp->q_next->q_qinfo != NULL) && 10886 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 10887 10888 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 10889 == TUN6TO4_MODID) { 10890 /* set for use in IP */ 10891 ill->ill_is_6to4tun = 1; 10892 break; 10893 } 10894 wqp = wqp->q_next; 10895 } 10896 } 10897 } 10898 10899 ipif_set_default(ipif); 10900 mutex_exit(&ill->ill_lock); 10901 10902 if (need_up) { 10903 /* 10904 * Now bring the interface back up. If this 10905 * is the only IPIF for the ILL, ipif_up 10906 * will have to re-bind to the device, so 10907 * we may get back EINPROGRESS, in which 10908 * case, this IOCTL will get completed in 10909 * ip_rput_dlpi when we see the DL_BIND_ACK. 10910 */ 10911 err = ipif_up(ipif, q, mp); 10912 } else { 10913 /* 10914 * Update the IPIF list in SCTP, ipif_up_done() will do it 10915 * if need_up is true. 10916 */ 10917 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10918 } 10919 10920 if (need_dl_down) 10921 ill_dl_down(ill); 10922 if (need_arp_down) 10923 ipif_arp_down(ipif); 10924 10925 return (err); 10926 } 10927 10928 10929 /* 10930 * Restart entry point to restart the address set operation after the 10931 * refcounts have dropped to zero. 10932 */ 10933 /* ARGSUSED */ 10934 int 10935 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10936 ip_ioctl_cmd_t *ipip, void *ifreq) 10937 { 10938 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 10939 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10940 ASSERT(IAM_WRITER_IPIF(ipif)); 10941 ipif_down_tail(ipif); 10942 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 10943 } 10944 10945 /* ARGSUSED */ 10946 int 10947 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10948 ip_ioctl_cmd_t *ipip, void *if_req) 10949 { 10950 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10951 struct lifreq *lifr = (struct lifreq *)if_req; 10952 10953 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 10954 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10955 /* 10956 * The net mask and address can't change since we have a 10957 * reference to the ipif. So no lock is necessary. 10958 */ 10959 if (ipif->ipif_isv6) { 10960 *sin6 = sin6_null; 10961 sin6->sin6_family = AF_INET6; 10962 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 10963 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10964 lifr->lifr_addrlen = 10965 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10966 } else { 10967 *sin = sin_null; 10968 sin->sin_family = AF_INET; 10969 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 10970 if (ipip->ipi_cmd_type == LIF_CMD) { 10971 lifr->lifr_addrlen = 10972 ip_mask_to_plen(ipif->ipif_net_mask); 10973 } 10974 } 10975 return (0); 10976 } 10977 10978 /* 10979 * Set the destination address for a pt-pt interface. 10980 */ 10981 /* ARGSUSED */ 10982 int 10983 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10984 ip_ioctl_cmd_t *ipip, void *if_req) 10985 { 10986 int err = 0; 10987 in6_addr_t v6addr; 10988 boolean_t need_up = B_FALSE; 10989 10990 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10991 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10992 ASSERT(IAM_WRITER_IPIF(ipif)); 10993 10994 if (ipif->ipif_isv6) { 10995 sin6_t *sin6; 10996 10997 if (sin->sin_family != AF_INET6) 10998 return (EAFNOSUPPORT); 10999 11000 sin6 = (sin6_t *)sin; 11001 v6addr = sin6->sin6_addr; 11002 11003 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11004 return (EADDRNOTAVAIL); 11005 } else { 11006 ipaddr_t addr; 11007 11008 if (sin->sin_family != AF_INET) 11009 return (EAFNOSUPPORT); 11010 11011 addr = sin->sin_addr.s_addr; 11012 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11013 return (EADDRNOTAVAIL); 11014 11015 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11016 } 11017 11018 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11019 return (0); /* No change */ 11020 11021 if (ipif->ipif_flags & IPIF_UP) { 11022 /* 11023 * If the interface is already marked up, 11024 * we call ipif_down which will take care 11025 * of ditching any IREs that have been set 11026 * up based on the old pp dst address. 11027 */ 11028 err = ipif_logical_down(ipif, q, mp); 11029 if (err == EINPROGRESS) 11030 return (err); 11031 ipif_down_tail(ipif); 11032 need_up = B_TRUE; 11033 } 11034 /* 11035 * could return EINPROGRESS. If so ioctl will complete in 11036 * ip_rput_dlpi_writer 11037 */ 11038 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11039 return (err); 11040 } 11041 11042 static int 11043 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11044 boolean_t need_up) 11045 { 11046 in6_addr_t v6addr; 11047 ill_t *ill = ipif->ipif_ill; 11048 int err = 0; 11049 boolean_t need_dl_down; 11050 boolean_t need_arp_down; 11051 11052 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11053 ipif->ipif_id, (void *)ipif)); 11054 11055 /* Must cancel any pending timer before taking the ill_lock */ 11056 if (ipif->ipif_recovery_id != 0) 11057 (void) untimeout(ipif->ipif_recovery_id); 11058 ipif->ipif_recovery_id = 0; 11059 11060 if (ipif->ipif_isv6) { 11061 sin6_t *sin6; 11062 11063 sin6 = (sin6_t *)sin; 11064 v6addr = sin6->sin6_addr; 11065 } else { 11066 ipaddr_t addr; 11067 11068 addr = sin->sin_addr.s_addr; 11069 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11070 } 11071 mutex_enter(&ill->ill_lock); 11072 /* Set point to point destination address. */ 11073 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11074 /* 11075 * Allow this as a means of creating logical 11076 * pt-pt interfaces on top of e.g. an Ethernet. 11077 * XXX Undocumented HACK for testing. 11078 * pt-pt interfaces are created with NUD disabled. 11079 */ 11080 ipif->ipif_flags |= IPIF_POINTOPOINT; 11081 ipif->ipif_flags &= ~IPIF_BROADCAST; 11082 if (ipif->ipif_isv6) 11083 ill->ill_flags |= ILLF_NONUD; 11084 } 11085 11086 /* 11087 * If the interface was previously marked as a duplicate, then since 11088 * we've now got a "new" address, it should no longer be considered a 11089 * duplicate -- even if the "new" address is the same as the old one. 11090 * Note that if all ipifs are down, we may have a pending ARP down 11091 * event to handle. 11092 */ 11093 need_dl_down = need_arp_down = B_FALSE; 11094 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11095 need_arp_down = !need_up; 11096 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11097 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11098 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11099 need_dl_down = B_TRUE; 11100 } 11101 } 11102 11103 /* Set the new address. */ 11104 ipif->ipif_v6pp_dst_addr = v6addr; 11105 /* Make sure subnet tracks pp_dst */ 11106 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11107 mutex_exit(&ill->ill_lock); 11108 11109 if (need_up) { 11110 /* 11111 * Now bring the interface back up. If this 11112 * is the only IPIF for the ILL, ipif_up 11113 * will have to re-bind to the device, so 11114 * we may get back EINPROGRESS, in which 11115 * case, this IOCTL will get completed in 11116 * ip_rput_dlpi when we see the DL_BIND_ACK. 11117 */ 11118 err = ipif_up(ipif, q, mp); 11119 } 11120 11121 if (need_dl_down) 11122 ill_dl_down(ill); 11123 11124 if (need_arp_down) 11125 ipif_arp_down(ipif); 11126 return (err); 11127 } 11128 11129 /* 11130 * Restart entry point to restart the dstaddress set operation after the 11131 * refcounts have dropped to zero. 11132 */ 11133 /* ARGSUSED */ 11134 int 11135 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11136 ip_ioctl_cmd_t *ipip, void *ifreq) 11137 { 11138 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11139 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11140 ipif_down_tail(ipif); 11141 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11142 } 11143 11144 /* ARGSUSED */ 11145 int 11146 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11147 ip_ioctl_cmd_t *ipip, void *if_req) 11148 { 11149 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11150 11151 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11152 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11153 /* 11154 * Get point to point destination address. The addresses can't 11155 * change since we hold a reference to the ipif. 11156 */ 11157 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11158 return (EADDRNOTAVAIL); 11159 11160 if (ipif->ipif_isv6) { 11161 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11162 *sin6 = sin6_null; 11163 sin6->sin6_family = AF_INET6; 11164 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11165 } else { 11166 *sin = sin_null; 11167 sin->sin_family = AF_INET; 11168 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11169 } 11170 return (0); 11171 } 11172 11173 /* 11174 * part of ipmp, make this func return the active/inactive state and 11175 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11176 */ 11177 /* 11178 * This function either sets or clears the IFF_INACTIVE flag. 11179 * 11180 * As long as there are some addresses or multicast memberships on the 11181 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11182 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11183 * will be used for outbound packets. 11184 * 11185 * Caller needs to verify the validity of setting IFF_INACTIVE. 11186 */ 11187 static void 11188 phyint_inactive(phyint_t *phyi) 11189 { 11190 ill_t *ill_v4; 11191 ill_t *ill_v6; 11192 ipif_t *ipif; 11193 ilm_t *ilm; 11194 11195 ill_v4 = phyi->phyint_illv4; 11196 ill_v6 = phyi->phyint_illv6; 11197 11198 /* 11199 * No need for a lock while traversing the list since iam 11200 * a writer 11201 */ 11202 if (ill_v4 != NULL) { 11203 ASSERT(IAM_WRITER_ILL(ill_v4)); 11204 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11205 ipif = ipif->ipif_next) { 11206 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11207 mutex_enter(&phyi->phyint_lock); 11208 phyi->phyint_flags &= ~PHYI_INACTIVE; 11209 mutex_exit(&phyi->phyint_lock); 11210 return; 11211 } 11212 } 11213 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11214 ilm = ilm->ilm_next) { 11215 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11216 mutex_enter(&phyi->phyint_lock); 11217 phyi->phyint_flags &= ~PHYI_INACTIVE; 11218 mutex_exit(&phyi->phyint_lock); 11219 return; 11220 } 11221 } 11222 } 11223 if (ill_v6 != NULL) { 11224 ill_v6 = phyi->phyint_illv6; 11225 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11226 ipif = ipif->ipif_next) { 11227 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11228 mutex_enter(&phyi->phyint_lock); 11229 phyi->phyint_flags &= ~PHYI_INACTIVE; 11230 mutex_exit(&phyi->phyint_lock); 11231 return; 11232 } 11233 } 11234 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11235 ilm = ilm->ilm_next) { 11236 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11237 mutex_enter(&phyi->phyint_lock); 11238 phyi->phyint_flags &= ~PHYI_INACTIVE; 11239 mutex_exit(&phyi->phyint_lock); 11240 return; 11241 } 11242 } 11243 } 11244 mutex_enter(&phyi->phyint_lock); 11245 phyi->phyint_flags |= PHYI_INACTIVE; 11246 mutex_exit(&phyi->phyint_lock); 11247 } 11248 11249 /* 11250 * This function is called only when the phyint flags change. Currently 11251 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11252 * that we can select a good ill. 11253 */ 11254 static void 11255 ip_redo_nomination(phyint_t *phyi) 11256 { 11257 ill_t *ill_v4; 11258 11259 ill_v4 = phyi->phyint_illv4; 11260 11261 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11262 ASSERT(IAM_WRITER_ILL(ill_v4)); 11263 if (ill_v4->ill_group->illgrp_ill_count > 1) 11264 ill_nominate_bcast_rcv(ill_v4->ill_group); 11265 } 11266 } 11267 11268 /* 11269 * Heuristic to check if ill is INACTIVE. 11270 * Checks if ill has an ipif with an usable ip address. 11271 * 11272 * Return values: 11273 * B_TRUE - ill is INACTIVE; has no usable ipif 11274 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11275 */ 11276 static boolean_t 11277 ill_is_inactive(ill_t *ill) 11278 { 11279 ipif_t *ipif; 11280 11281 /* Check whether it is in an IPMP group */ 11282 if (ill->ill_phyint->phyint_groupname == NULL) 11283 return (B_FALSE); 11284 11285 if (ill->ill_ipif_up_count == 0) 11286 return (B_TRUE); 11287 11288 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11289 uint64_t flags = ipif->ipif_flags; 11290 11291 /* 11292 * This ipif is usable if it is IPIF_UP and not a 11293 * dedicated test address. A dedicated test address 11294 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11295 * (note in particular that V6 test addresses are 11296 * link-local data addresses and thus are marked 11297 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11298 */ 11299 if ((flags & IPIF_UP) && 11300 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11301 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11302 return (B_FALSE); 11303 } 11304 return (B_TRUE); 11305 } 11306 11307 /* 11308 * Set interface flags. 11309 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11310 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11311 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11312 * 11313 * NOTE : We really don't enforce that ipif_id zero should be used 11314 * for setting any flags other than IFF_LOGINT_FLAGS. This 11315 * is because applications generally does SICGLIFFLAGS and 11316 * ORs in the new flags (that affects the logical) and does a 11317 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11318 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11319 * flags that will be turned on is correct with respect to 11320 * ipif_id 0. For backward compatibility reasons, it is not done. 11321 */ 11322 /* ARGSUSED */ 11323 int 11324 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11325 ip_ioctl_cmd_t *ipip, void *if_req) 11326 { 11327 uint64_t turn_on; 11328 uint64_t turn_off; 11329 int err; 11330 boolean_t need_up = B_FALSE; 11331 phyint_t *phyi; 11332 ill_t *ill; 11333 uint64_t intf_flags; 11334 boolean_t phyint_flags_modified = B_FALSE; 11335 uint64_t flags; 11336 struct ifreq *ifr; 11337 struct lifreq *lifr; 11338 boolean_t set_linklocal = B_FALSE; 11339 boolean_t zero_source = B_FALSE; 11340 11341 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11342 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11343 11344 ASSERT(IAM_WRITER_IPIF(ipif)); 11345 11346 ill = ipif->ipif_ill; 11347 phyi = ill->ill_phyint; 11348 11349 if (ipip->ipi_cmd_type == IF_CMD) { 11350 ifr = (struct ifreq *)if_req; 11351 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11352 } else { 11353 lifr = (struct lifreq *)if_req; 11354 flags = lifr->lifr_flags; 11355 } 11356 11357 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11358 11359 /* 11360 * Has the flags been set correctly till now ? 11361 */ 11362 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11363 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11364 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11365 /* 11366 * Compare the new flags to the old, and partition 11367 * into those coming on and those going off. 11368 * For the 16 bit command keep the bits above bit 16 unchanged. 11369 */ 11370 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11371 flags |= intf_flags & ~0xFFFF; 11372 11373 /* 11374 * First check which bits will change and then which will 11375 * go on and off 11376 */ 11377 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11378 if (!turn_on) 11379 return (0); /* No change */ 11380 11381 turn_off = intf_flags & turn_on; 11382 turn_on ^= turn_off; 11383 err = 0; 11384 11385 /* 11386 * Don't allow any bits belonging to the logical interface 11387 * to be set or cleared on the replacement ipif that was 11388 * created temporarily during a MOVE. 11389 */ 11390 if (ipif->ipif_replace_zero && 11391 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11392 return (EINVAL); 11393 } 11394 11395 /* 11396 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11397 * IPv6 interfaces. 11398 */ 11399 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11400 return (EINVAL); 11401 11402 /* 11403 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11404 * interfaces. It makes no sense in that context. 11405 */ 11406 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11407 return (EINVAL); 11408 11409 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11410 zero_source = B_TRUE; 11411 11412 /* 11413 * For IPv6 ipif_id 0, don't allow the interface to be up without 11414 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11415 * If the link local address isn't set, and can be set, it will get 11416 * set later on in this function. 11417 */ 11418 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11419 (flags & IFF_UP) && !zero_source && 11420 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11421 if (ipif_cant_setlinklocal(ipif)) 11422 return (EINVAL); 11423 set_linklocal = B_TRUE; 11424 } 11425 11426 /* 11427 * ILL cannot be part of a usesrc group and and IPMP group at the 11428 * same time. No need to grab ill_g_usesrc_lock here, see 11429 * synchronization notes in ip.c 11430 */ 11431 if (turn_on & PHYI_STANDBY && 11432 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11433 return (EINVAL); 11434 } 11435 11436 /* 11437 * If we modify physical interface flags, we'll potentially need to 11438 * send up two routing socket messages for the changes (one for the 11439 * IPv4 ill, and another for the IPv6 ill). Note that here. 11440 */ 11441 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11442 phyint_flags_modified = B_TRUE; 11443 11444 /* 11445 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11446 * we need to flush the IRE_CACHES belonging to this ill. 11447 * We handle this case here without doing the DOWN/UP dance 11448 * like it is done for other flags. If some other flags are 11449 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11450 * below will handle it by bringing it down and then 11451 * bringing it UP. 11452 */ 11453 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11454 ill_t *ill_v4, *ill_v6; 11455 11456 ill_v4 = phyi->phyint_illv4; 11457 ill_v6 = phyi->phyint_illv6; 11458 11459 /* 11460 * First set the INACTIVE flag if needed. Then delete the ires. 11461 * ire_add will atomically prevent creating new IRE_CACHEs 11462 * unless hidden flag is set. 11463 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11464 */ 11465 if ((turn_on & PHYI_FAILED) && 11466 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11467 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11468 phyi->phyint_flags &= ~PHYI_INACTIVE; 11469 } 11470 if ((turn_off & PHYI_FAILED) && 11471 ((intf_flags & PHYI_STANDBY) || 11472 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11473 phyint_inactive(phyi); 11474 } 11475 11476 if (turn_on & PHYI_STANDBY) { 11477 /* 11478 * We implicitly set INACTIVE only when STANDBY is set. 11479 * INACTIVE is also set on non-STANDBY phyint when user 11480 * disables FAILBACK using configuration file. 11481 * Do not allow STANDBY to be set on such INACTIVE 11482 * phyint 11483 */ 11484 if (phyi->phyint_flags & PHYI_INACTIVE) 11485 return (EINVAL); 11486 if (!(phyi->phyint_flags & PHYI_FAILED)) 11487 phyint_inactive(phyi); 11488 } 11489 if (turn_off & PHYI_STANDBY) { 11490 if (ipmp_enable_failback) { 11491 /* 11492 * Reset PHYI_INACTIVE. 11493 */ 11494 phyi->phyint_flags &= ~PHYI_INACTIVE; 11495 } else if (ill_is_inactive(ill) && 11496 !(phyi->phyint_flags & PHYI_FAILED)) { 11497 /* 11498 * Need to set INACTIVE, when user sets 11499 * STANDBY on a non-STANDBY phyint and 11500 * later resets STANDBY 11501 */ 11502 phyint_inactive(phyi); 11503 } 11504 } 11505 /* 11506 * We should always send up a message so that the 11507 * daemons come to know of it. Note that the zeroth 11508 * interface can be down and the check below for IPIF_UP 11509 * will not make sense as we are actually setting 11510 * a phyint flag here. We assume that the ipif used 11511 * is always the zeroth ipif. (ip_rts_ifmsg does not 11512 * send up any message for non-zero ipifs). 11513 */ 11514 phyint_flags_modified = B_TRUE; 11515 11516 if (ill_v4 != NULL) { 11517 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11518 IRE_CACHE, ill_stq_cache_delete, 11519 (char *)ill_v4, ill_v4); 11520 illgrp_reset_schednext(ill_v4); 11521 } 11522 if (ill_v6 != NULL) { 11523 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11524 IRE_CACHE, ill_stq_cache_delete, 11525 (char *)ill_v6, ill_v6); 11526 illgrp_reset_schednext(ill_v6); 11527 } 11528 } 11529 11530 /* 11531 * If ILLF_ROUTER changes, we need to change the ip forwarding 11532 * status of the interface and, if the interface is part of an IPMP 11533 * group, all other interfaces that are part of the same IPMP 11534 * group. 11535 */ 11536 if ((turn_on | turn_off) & ILLF_ROUTER) { 11537 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11538 (caddr_t)ill); 11539 } 11540 11541 /* 11542 * If the interface is not UP and we are not going to 11543 * bring it UP, record the flags and return. When the 11544 * interface comes UP later, the right actions will be 11545 * taken. 11546 */ 11547 if (!(ipif->ipif_flags & IPIF_UP) && 11548 !(turn_on & IPIF_UP)) { 11549 /* Record new flags in their respective places. */ 11550 mutex_enter(&ill->ill_lock); 11551 mutex_enter(&ill->ill_phyint->phyint_lock); 11552 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11553 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11554 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11555 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11556 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11557 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11558 mutex_exit(&ill->ill_lock); 11559 mutex_exit(&ill->ill_phyint->phyint_lock); 11560 11561 /* 11562 * We do the broadcast and nomination here rather 11563 * than waiting for a FAILOVER/FAILBACK to happen. In 11564 * the case of FAILBACK from INACTIVE standby to the 11565 * interface that has been repaired, PHYI_FAILED has not 11566 * been cleared yet. If there are only two interfaces in 11567 * that group, all we have is a FAILED and INACTIVE 11568 * interface. If we do the nomination soon after a failback, 11569 * the broadcast nomination code would select the 11570 * INACTIVE interface for receiving broadcasts as FAILED is 11571 * not yet cleared. As we don't want STANDBY/INACTIVE to 11572 * receive broadcast packets, we need to redo nomination 11573 * when the FAILED is cleared here. Thus, in general we 11574 * always do the nomination here for FAILED, STANDBY 11575 * and OFFLINE. 11576 */ 11577 if (((turn_on | turn_off) & 11578 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11579 ip_redo_nomination(phyi); 11580 } 11581 if (phyint_flags_modified) { 11582 if (phyi->phyint_illv4 != NULL) { 11583 ip_rts_ifmsg(phyi->phyint_illv4-> 11584 ill_ipif); 11585 } 11586 if (phyi->phyint_illv6 != NULL) { 11587 ip_rts_ifmsg(phyi->phyint_illv6-> 11588 ill_ipif); 11589 } 11590 } 11591 return (0); 11592 } else if (set_linklocal || zero_source) { 11593 mutex_enter(&ill->ill_lock); 11594 if (set_linklocal) 11595 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11596 if (zero_source) 11597 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11598 mutex_exit(&ill->ill_lock); 11599 } 11600 11601 /* 11602 * Disallow IPv6 interfaces coming up that have the unspecified address, 11603 * or point-to-point interfaces with an unspecified destination. We do 11604 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11605 * have a subnet assigned, which is how in.ndpd currently manages its 11606 * onlink prefix list when no addresses are configured with those 11607 * prefixes. 11608 */ 11609 if (ipif->ipif_isv6 && 11610 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11611 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11612 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11613 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11614 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11615 return (EINVAL); 11616 } 11617 11618 /* 11619 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11620 * from being brought up. 11621 */ 11622 if (!ipif->ipif_isv6 && 11623 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11624 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11625 return (EINVAL); 11626 } 11627 11628 /* 11629 * The only flag changes that we currently take specific action on 11630 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11631 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11632 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11633 * the flags and bringing it back up again. 11634 */ 11635 if ((turn_on|turn_off) & 11636 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11637 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11638 /* 11639 * Taking this ipif down, make sure we have 11640 * valid net and subnet bcast ire's for other 11641 * logical interfaces, if we need them. 11642 */ 11643 if (!ipif->ipif_isv6) 11644 ipif_check_bcast_ires(ipif); 11645 11646 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11647 !(turn_off & IPIF_UP)) { 11648 need_up = B_TRUE; 11649 if (ipif->ipif_flags & IPIF_UP) 11650 ill->ill_logical_down = 1; 11651 turn_on &= ~IPIF_UP; 11652 } 11653 err = ipif_down(ipif, q, mp); 11654 ip1dbg(("ipif_down returns %d err ", err)); 11655 if (err == EINPROGRESS) 11656 return (err); 11657 ipif_down_tail(ipif); 11658 } 11659 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11660 } 11661 11662 static int 11663 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11664 boolean_t need_up) 11665 { 11666 ill_t *ill; 11667 phyint_t *phyi; 11668 uint64_t turn_on; 11669 uint64_t turn_off; 11670 uint64_t intf_flags; 11671 boolean_t phyint_flags_modified = B_FALSE; 11672 int err = 0; 11673 boolean_t set_linklocal = B_FALSE; 11674 boolean_t zero_source = B_FALSE; 11675 11676 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11677 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11678 11679 ASSERT(IAM_WRITER_IPIF(ipif)); 11680 11681 ill = ipif->ipif_ill; 11682 phyi = ill->ill_phyint; 11683 11684 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11685 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11686 11687 turn_off = intf_flags & turn_on; 11688 turn_on ^= turn_off; 11689 11690 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11691 phyint_flags_modified = B_TRUE; 11692 11693 /* 11694 * Now we change the flags. Track current value of 11695 * other flags in their respective places. 11696 */ 11697 mutex_enter(&ill->ill_lock); 11698 mutex_enter(&phyi->phyint_lock); 11699 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11700 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11701 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11702 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11703 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11704 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11705 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11706 set_linklocal = B_TRUE; 11707 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11708 } 11709 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11710 zero_source = B_TRUE; 11711 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11712 } 11713 mutex_exit(&ill->ill_lock); 11714 mutex_exit(&phyi->phyint_lock); 11715 11716 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11717 ip_redo_nomination(phyi); 11718 11719 if (set_linklocal) 11720 (void) ipif_setlinklocal(ipif); 11721 11722 if (zero_source) 11723 ipif->ipif_v6src_addr = ipv6_all_zeros; 11724 else 11725 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11726 11727 if (need_up) { 11728 /* 11729 * XXX ipif_up really does not know whether a phyint flags 11730 * was modified or not. So, it sends up information on 11731 * only one routing sockets message. As we don't bring up 11732 * the interface and also set STANDBY/FAILED simultaneously 11733 * it should be okay. 11734 */ 11735 err = ipif_up(ipif, q, mp); 11736 } else { 11737 /* 11738 * Make sure routing socket sees all changes to the flags. 11739 * ipif_up_done* handles this when we use ipif_up. 11740 */ 11741 if (phyint_flags_modified) { 11742 if (phyi->phyint_illv4 != NULL) { 11743 ip_rts_ifmsg(phyi->phyint_illv4-> 11744 ill_ipif); 11745 } 11746 if (phyi->phyint_illv6 != NULL) { 11747 ip_rts_ifmsg(phyi->phyint_illv6-> 11748 ill_ipif); 11749 } 11750 } else { 11751 ip_rts_ifmsg(ipif); 11752 } 11753 } 11754 return (err); 11755 } 11756 11757 /* 11758 * Restart entry point to restart the flags restart operation after the 11759 * refcounts have dropped to zero. 11760 */ 11761 /* ARGSUSED */ 11762 int 11763 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11764 ip_ioctl_cmd_t *ipip, void *if_req) 11765 { 11766 int err; 11767 struct ifreq *ifr = (struct ifreq *)if_req; 11768 struct lifreq *lifr = (struct lifreq *)if_req; 11769 11770 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11771 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11772 11773 ipif_down_tail(ipif); 11774 if (ipip->ipi_cmd_type == IF_CMD) { 11775 /* 11776 * Since ip_sioctl_flags expects an int and ifr_flags 11777 * is a short we need to cast ifr_flags into an int 11778 * to avoid having sign extension cause bits to get 11779 * set that should not be. 11780 */ 11781 err = ip_sioctl_flags_tail(ipif, 11782 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 11783 q, mp, B_TRUE); 11784 } else { 11785 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 11786 q, mp, B_TRUE); 11787 } 11788 return (err); 11789 } 11790 11791 /* ARGSUSED */ 11792 int 11793 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11794 ip_ioctl_cmd_t *ipip, void *if_req) 11795 { 11796 /* 11797 * Has the flags been set correctly till now ? 11798 */ 11799 ill_t *ill = ipif->ipif_ill; 11800 phyint_t *phyi = ill->ill_phyint; 11801 11802 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11803 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11804 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11805 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11806 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11807 11808 /* 11809 * Need a lock since some flags can be set even when there are 11810 * references to the ipif. 11811 */ 11812 mutex_enter(&ill->ill_lock); 11813 if (ipip->ipi_cmd_type == IF_CMD) { 11814 struct ifreq *ifr = (struct ifreq *)if_req; 11815 11816 /* Get interface flags (low 16 only). */ 11817 ifr->ifr_flags = ((ipif->ipif_flags | 11818 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11819 } else { 11820 struct lifreq *lifr = (struct lifreq *)if_req; 11821 11822 /* Get interface flags. */ 11823 lifr->lifr_flags = ipif->ipif_flags | 11824 ill->ill_flags | phyi->phyint_flags; 11825 } 11826 mutex_exit(&ill->ill_lock); 11827 return (0); 11828 } 11829 11830 /* ARGSUSED */ 11831 int 11832 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11833 ip_ioctl_cmd_t *ipip, void *if_req) 11834 { 11835 int mtu; 11836 int ip_min_mtu; 11837 struct ifreq *ifr; 11838 struct lifreq *lifr; 11839 ire_t *ire; 11840 11841 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11842 ipif->ipif_id, (void *)ipif)); 11843 if (ipip->ipi_cmd_type == IF_CMD) { 11844 ifr = (struct ifreq *)if_req; 11845 mtu = ifr->ifr_metric; 11846 } else { 11847 lifr = (struct lifreq *)if_req; 11848 mtu = lifr->lifr_mtu; 11849 } 11850 11851 if (ipif->ipif_isv6) 11852 ip_min_mtu = IPV6_MIN_MTU; 11853 else 11854 ip_min_mtu = IP_MIN_MTU; 11855 11856 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11857 return (EINVAL); 11858 11859 /* 11860 * Change the MTU size in all relevant ire's. 11861 * Mtu change Vs. new ire creation - protocol below. 11862 * First change ipif_mtu and the ire_max_frag of the 11863 * interface ire. Then do an ire walk and change the 11864 * ire_max_frag of all affected ires. During ire_add 11865 * under the bucket lock, set the ire_max_frag of the 11866 * new ire being created from the ipif/ire from which 11867 * it is being derived. If an mtu change happens after 11868 * the ire is added, the new ire will be cleaned up. 11869 * Conversely if the mtu change happens before the ire 11870 * is added, ire_add will see the new value of the mtu. 11871 */ 11872 ipif->ipif_mtu = mtu; 11873 ipif->ipif_flags |= IPIF_FIXEDMTU; 11874 11875 if (ipif->ipif_isv6) 11876 ire = ipif_to_ire_v6(ipif); 11877 else 11878 ire = ipif_to_ire(ipif); 11879 if (ire != NULL) { 11880 ire->ire_max_frag = ipif->ipif_mtu; 11881 ire_refrele(ire); 11882 } 11883 if (ipif->ipif_flags & IPIF_UP) { 11884 if (ipif->ipif_isv6) 11885 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11886 else 11887 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11888 } 11889 /* Update the MTU in SCTP's list */ 11890 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11891 return (0); 11892 } 11893 11894 /* Get interface MTU. */ 11895 /* ARGSUSED */ 11896 int 11897 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11898 ip_ioctl_cmd_t *ipip, void *if_req) 11899 { 11900 struct ifreq *ifr; 11901 struct lifreq *lifr; 11902 11903 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11904 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11905 if (ipip->ipi_cmd_type == IF_CMD) { 11906 ifr = (struct ifreq *)if_req; 11907 ifr->ifr_metric = ipif->ipif_mtu; 11908 } else { 11909 lifr = (struct lifreq *)if_req; 11910 lifr->lifr_mtu = ipif->ipif_mtu; 11911 } 11912 return (0); 11913 } 11914 11915 /* Set interface broadcast address. */ 11916 /* ARGSUSED2 */ 11917 int 11918 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11919 ip_ioctl_cmd_t *ipip, void *if_req) 11920 { 11921 ipaddr_t addr; 11922 ire_t *ire; 11923 11924 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11925 ipif->ipif_id)); 11926 11927 ASSERT(IAM_WRITER_IPIF(ipif)); 11928 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11929 return (EADDRNOTAVAIL); 11930 11931 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11932 11933 if (sin->sin_family != AF_INET) 11934 return (EAFNOSUPPORT); 11935 11936 addr = sin->sin_addr.s_addr; 11937 if (ipif->ipif_flags & IPIF_UP) { 11938 /* 11939 * If we are already up, make sure the new 11940 * broadcast address makes sense. If it does, 11941 * there should be an IRE for it already. 11942 * Don't match on ipif, only on the ill 11943 * since we are sharing these now. Don't use 11944 * MATCH_IRE_ILL_GROUP as we are looking for 11945 * the broadcast ire on this ill and each ill 11946 * in the group has its own broadcast ire. 11947 */ 11948 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 11949 ipif, ALL_ZONES, NULL, 11950 (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 11951 if (ire == NULL) { 11952 return (EINVAL); 11953 } else { 11954 ire_refrele(ire); 11955 } 11956 } 11957 /* 11958 * Changing the broadcast addr for this ipif. 11959 * Make sure we have valid net and subnet bcast 11960 * ire's for other logical interfaces, if needed. 11961 */ 11962 if (addr != ipif->ipif_brd_addr) 11963 ipif_check_bcast_ires(ipif); 11964 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 11965 return (0); 11966 } 11967 11968 /* Get interface broadcast address. */ 11969 /* ARGSUSED */ 11970 int 11971 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11972 ip_ioctl_cmd_t *ipip, void *if_req) 11973 { 11974 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 11975 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11976 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11977 return (EADDRNOTAVAIL); 11978 11979 /* IPIF_BROADCAST not possible with IPv6 */ 11980 ASSERT(!ipif->ipif_isv6); 11981 *sin = sin_null; 11982 sin->sin_family = AF_INET; 11983 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 11984 return (0); 11985 } 11986 11987 /* 11988 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 11989 */ 11990 /* ARGSUSED */ 11991 int 11992 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11993 ip_ioctl_cmd_t *ipip, void *if_req) 11994 { 11995 int err = 0; 11996 in6_addr_t v6mask; 11997 11998 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 11999 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12000 12001 ASSERT(IAM_WRITER_IPIF(ipif)); 12002 12003 if (ipif->ipif_isv6) { 12004 sin6_t *sin6; 12005 12006 if (sin->sin_family != AF_INET6) 12007 return (EAFNOSUPPORT); 12008 12009 sin6 = (sin6_t *)sin; 12010 v6mask = sin6->sin6_addr; 12011 } else { 12012 ipaddr_t mask; 12013 12014 if (sin->sin_family != AF_INET) 12015 return (EAFNOSUPPORT); 12016 12017 mask = sin->sin_addr.s_addr; 12018 V4MASK_TO_V6(mask, v6mask); 12019 } 12020 12021 /* 12022 * No big deal if the interface isn't already up, or the mask 12023 * isn't really changing, or this is pt-pt. 12024 */ 12025 if (!(ipif->ipif_flags & IPIF_UP) || 12026 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12027 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12028 ipif->ipif_v6net_mask = v6mask; 12029 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12030 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12031 ipif->ipif_v6net_mask, 12032 ipif->ipif_v6subnet); 12033 } 12034 return (0); 12035 } 12036 /* 12037 * Make sure we have valid net and subnet broadcast ire's 12038 * for the old netmask, if needed by other logical interfaces. 12039 */ 12040 if (!ipif->ipif_isv6) 12041 ipif_check_bcast_ires(ipif); 12042 12043 err = ipif_logical_down(ipif, q, mp); 12044 if (err == EINPROGRESS) 12045 return (err); 12046 ipif_down_tail(ipif); 12047 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12048 return (err); 12049 } 12050 12051 static int 12052 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12053 { 12054 in6_addr_t v6mask; 12055 int err = 0; 12056 12057 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12058 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12059 12060 if (ipif->ipif_isv6) { 12061 sin6_t *sin6; 12062 12063 sin6 = (sin6_t *)sin; 12064 v6mask = sin6->sin6_addr; 12065 } else { 12066 ipaddr_t mask; 12067 12068 mask = sin->sin_addr.s_addr; 12069 V4MASK_TO_V6(mask, v6mask); 12070 } 12071 12072 ipif->ipif_v6net_mask = v6mask; 12073 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12074 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12075 ipif->ipif_v6subnet); 12076 } 12077 err = ipif_up(ipif, q, mp); 12078 12079 if (err == 0 || err == EINPROGRESS) { 12080 /* 12081 * The interface must be DL_BOUND if this packet has to 12082 * go out on the wire. Since we only go through a logical 12083 * down and are bound with the driver during an internal 12084 * down/up that is satisfied. 12085 */ 12086 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12087 /* Potentially broadcast an address mask reply. */ 12088 ipif_mask_reply(ipif); 12089 } 12090 } 12091 return (err); 12092 } 12093 12094 /* ARGSUSED */ 12095 int 12096 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12097 ip_ioctl_cmd_t *ipip, void *if_req) 12098 { 12099 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12100 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12101 ipif_down_tail(ipif); 12102 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12103 } 12104 12105 /* Get interface net mask. */ 12106 /* ARGSUSED */ 12107 int 12108 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12109 ip_ioctl_cmd_t *ipip, void *if_req) 12110 { 12111 struct lifreq *lifr = (struct lifreq *)if_req; 12112 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12113 12114 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12115 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12116 12117 /* 12118 * net mask can't change since we have a reference to the ipif. 12119 */ 12120 if (ipif->ipif_isv6) { 12121 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12122 *sin6 = sin6_null; 12123 sin6->sin6_family = AF_INET6; 12124 sin6->sin6_addr = ipif->ipif_v6net_mask; 12125 lifr->lifr_addrlen = 12126 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12127 } else { 12128 *sin = sin_null; 12129 sin->sin_family = AF_INET; 12130 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12131 if (ipip->ipi_cmd_type == LIF_CMD) { 12132 lifr->lifr_addrlen = 12133 ip_mask_to_plen(ipif->ipif_net_mask); 12134 } 12135 } 12136 return (0); 12137 } 12138 12139 /* ARGSUSED */ 12140 int 12141 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12142 ip_ioctl_cmd_t *ipip, void *if_req) 12143 { 12144 12145 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12146 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12147 /* 12148 * Set interface metric. We don't use this for 12149 * anything but we keep track of it in case it is 12150 * important to routing applications or such. 12151 */ 12152 if (ipip->ipi_cmd_type == IF_CMD) { 12153 struct ifreq *ifr; 12154 12155 ifr = (struct ifreq *)if_req; 12156 ipif->ipif_metric = ifr->ifr_metric; 12157 } else { 12158 struct lifreq *lifr; 12159 12160 lifr = (struct lifreq *)if_req; 12161 ipif->ipif_metric = lifr->lifr_metric; 12162 } 12163 return (0); 12164 } 12165 12166 12167 /* ARGSUSED */ 12168 int 12169 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12170 ip_ioctl_cmd_t *ipip, void *if_req) 12171 { 12172 12173 /* Get interface metric. */ 12174 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12175 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12176 if (ipip->ipi_cmd_type == IF_CMD) { 12177 struct ifreq *ifr; 12178 12179 ifr = (struct ifreq *)if_req; 12180 ifr->ifr_metric = ipif->ipif_metric; 12181 } else { 12182 struct lifreq *lifr; 12183 12184 lifr = (struct lifreq *)if_req; 12185 lifr->lifr_metric = ipif->ipif_metric; 12186 } 12187 12188 return (0); 12189 } 12190 12191 /* ARGSUSED */ 12192 int 12193 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12194 ip_ioctl_cmd_t *ipip, void *if_req) 12195 { 12196 12197 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12198 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12199 /* 12200 * Set the muxid returned from I_PLINK. 12201 */ 12202 if (ipip->ipi_cmd_type == IF_CMD) { 12203 struct ifreq *ifr = (struct ifreq *)if_req; 12204 12205 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12206 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12207 } else { 12208 struct lifreq *lifr = (struct lifreq *)if_req; 12209 12210 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12211 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12212 } 12213 return (0); 12214 } 12215 12216 /* ARGSUSED */ 12217 int 12218 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12219 ip_ioctl_cmd_t *ipip, void *if_req) 12220 { 12221 12222 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12223 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12224 /* 12225 * Get the muxid saved in ill for I_PUNLINK. 12226 */ 12227 if (ipip->ipi_cmd_type == IF_CMD) { 12228 struct ifreq *ifr = (struct ifreq *)if_req; 12229 12230 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12231 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12232 } else { 12233 struct lifreq *lifr = (struct lifreq *)if_req; 12234 12235 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12236 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12237 } 12238 return (0); 12239 } 12240 12241 /* 12242 * Set the subnet prefix. Does not modify the broadcast address. 12243 */ 12244 /* ARGSUSED */ 12245 int 12246 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12247 ip_ioctl_cmd_t *ipip, void *if_req) 12248 { 12249 int err = 0; 12250 in6_addr_t v6addr; 12251 in6_addr_t v6mask; 12252 boolean_t need_up = B_FALSE; 12253 int addrlen; 12254 12255 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12256 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12257 12258 ASSERT(IAM_WRITER_IPIF(ipif)); 12259 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12260 12261 if (ipif->ipif_isv6) { 12262 sin6_t *sin6; 12263 12264 if (sin->sin_family != AF_INET6) 12265 return (EAFNOSUPPORT); 12266 12267 sin6 = (sin6_t *)sin; 12268 v6addr = sin6->sin6_addr; 12269 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12270 return (EADDRNOTAVAIL); 12271 } else { 12272 ipaddr_t addr; 12273 12274 if (sin->sin_family != AF_INET) 12275 return (EAFNOSUPPORT); 12276 12277 addr = sin->sin_addr.s_addr; 12278 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12279 return (EADDRNOTAVAIL); 12280 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12281 /* Add 96 bits */ 12282 addrlen += IPV6_ABITS - IP_ABITS; 12283 } 12284 12285 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12286 return (EINVAL); 12287 12288 /* Check if bits in the address is set past the mask */ 12289 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12290 return (EINVAL); 12291 12292 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12293 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12294 return (0); /* No change */ 12295 12296 if (ipif->ipif_flags & IPIF_UP) { 12297 /* 12298 * If the interface is already marked up, 12299 * we call ipif_down which will take care 12300 * of ditching any IREs that have been set 12301 * up based on the old interface address. 12302 */ 12303 err = ipif_logical_down(ipif, q, mp); 12304 if (err == EINPROGRESS) 12305 return (err); 12306 ipif_down_tail(ipif); 12307 need_up = B_TRUE; 12308 } 12309 12310 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12311 return (err); 12312 } 12313 12314 static int 12315 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12316 queue_t *q, mblk_t *mp, boolean_t need_up) 12317 { 12318 ill_t *ill = ipif->ipif_ill; 12319 int err = 0; 12320 12321 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12322 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12323 12324 /* Set the new address. */ 12325 mutex_enter(&ill->ill_lock); 12326 ipif->ipif_v6net_mask = v6mask; 12327 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12328 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12329 ipif->ipif_v6subnet); 12330 } 12331 mutex_exit(&ill->ill_lock); 12332 12333 if (need_up) { 12334 /* 12335 * Now bring the interface back up. If this 12336 * is the only IPIF for the ILL, ipif_up 12337 * will have to re-bind to the device, so 12338 * we may get back EINPROGRESS, in which 12339 * case, this IOCTL will get completed in 12340 * ip_rput_dlpi when we see the DL_BIND_ACK. 12341 */ 12342 err = ipif_up(ipif, q, mp); 12343 if (err == EINPROGRESS) 12344 return (err); 12345 } 12346 return (err); 12347 } 12348 12349 /* ARGSUSED */ 12350 int 12351 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12352 ip_ioctl_cmd_t *ipip, void *if_req) 12353 { 12354 int addrlen; 12355 in6_addr_t v6addr; 12356 in6_addr_t v6mask; 12357 struct lifreq *lifr = (struct lifreq *)if_req; 12358 12359 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12360 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12361 ipif_down_tail(ipif); 12362 12363 addrlen = lifr->lifr_addrlen; 12364 if (ipif->ipif_isv6) { 12365 sin6_t *sin6; 12366 12367 sin6 = (sin6_t *)sin; 12368 v6addr = sin6->sin6_addr; 12369 } else { 12370 ipaddr_t addr; 12371 12372 addr = sin->sin_addr.s_addr; 12373 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12374 addrlen += IPV6_ABITS - IP_ABITS; 12375 } 12376 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12377 12378 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12379 } 12380 12381 /* ARGSUSED */ 12382 int 12383 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12384 ip_ioctl_cmd_t *ipip, void *if_req) 12385 { 12386 struct lifreq *lifr = (struct lifreq *)if_req; 12387 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12388 12389 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12390 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12391 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12392 12393 if (ipif->ipif_isv6) { 12394 *sin6 = sin6_null; 12395 sin6->sin6_family = AF_INET6; 12396 sin6->sin6_addr = ipif->ipif_v6subnet; 12397 lifr->lifr_addrlen = 12398 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12399 } else { 12400 *sin = sin_null; 12401 sin->sin_family = AF_INET; 12402 sin->sin_addr.s_addr = ipif->ipif_subnet; 12403 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12404 } 12405 return (0); 12406 } 12407 12408 /* 12409 * Set the IPv6 address token. 12410 */ 12411 /* ARGSUSED */ 12412 int 12413 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12414 ip_ioctl_cmd_t *ipi, void *if_req) 12415 { 12416 ill_t *ill = ipif->ipif_ill; 12417 int err; 12418 in6_addr_t v6addr; 12419 in6_addr_t v6mask; 12420 boolean_t need_up = B_FALSE; 12421 int i; 12422 sin6_t *sin6 = (sin6_t *)sin; 12423 struct lifreq *lifr = (struct lifreq *)if_req; 12424 int addrlen; 12425 12426 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12427 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12428 ASSERT(IAM_WRITER_IPIF(ipif)); 12429 12430 addrlen = lifr->lifr_addrlen; 12431 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12432 if (ipif->ipif_id != 0) 12433 return (EINVAL); 12434 12435 if (!ipif->ipif_isv6) 12436 return (EINVAL); 12437 12438 if (addrlen > IPV6_ABITS) 12439 return (EINVAL); 12440 12441 v6addr = sin6->sin6_addr; 12442 12443 /* 12444 * The length of the token is the length from the end. To get 12445 * the proper mask for this, compute the mask of the bits not 12446 * in the token; ie. the prefix, and then xor to get the mask. 12447 */ 12448 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12449 return (EINVAL); 12450 for (i = 0; i < 4; i++) { 12451 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12452 } 12453 12454 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12455 ill->ill_token_length == addrlen) 12456 return (0); /* No change */ 12457 12458 if (ipif->ipif_flags & IPIF_UP) { 12459 err = ipif_logical_down(ipif, q, mp); 12460 if (err == EINPROGRESS) 12461 return (err); 12462 ipif_down_tail(ipif); 12463 need_up = B_TRUE; 12464 } 12465 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12466 return (err); 12467 } 12468 12469 static int 12470 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12471 mblk_t *mp, boolean_t need_up) 12472 { 12473 in6_addr_t v6addr; 12474 in6_addr_t v6mask; 12475 ill_t *ill = ipif->ipif_ill; 12476 int i; 12477 int err = 0; 12478 12479 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12480 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12481 v6addr = sin6->sin6_addr; 12482 /* 12483 * The length of the token is the length from the end. To get 12484 * the proper mask for this, compute the mask of the bits not 12485 * in the token; ie. the prefix, and then xor to get the mask. 12486 */ 12487 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12488 for (i = 0; i < 4; i++) 12489 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12490 12491 mutex_enter(&ill->ill_lock); 12492 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12493 ill->ill_token_length = addrlen; 12494 mutex_exit(&ill->ill_lock); 12495 12496 if (need_up) { 12497 /* 12498 * Now bring the interface back up. If this 12499 * is the only IPIF for the ILL, ipif_up 12500 * will have to re-bind to the device, so 12501 * we may get back EINPROGRESS, in which 12502 * case, this IOCTL will get completed in 12503 * ip_rput_dlpi when we see the DL_BIND_ACK. 12504 */ 12505 err = ipif_up(ipif, q, mp); 12506 if (err == EINPROGRESS) 12507 return (err); 12508 } 12509 return (err); 12510 } 12511 12512 /* ARGSUSED */ 12513 int 12514 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12515 ip_ioctl_cmd_t *ipi, void *if_req) 12516 { 12517 ill_t *ill; 12518 sin6_t *sin6 = (sin6_t *)sin; 12519 struct lifreq *lifr = (struct lifreq *)if_req; 12520 12521 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12522 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12523 if (ipif->ipif_id != 0) 12524 return (EINVAL); 12525 12526 ill = ipif->ipif_ill; 12527 if (!ill->ill_isv6) 12528 return (ENXIO); 12529 12530 *sin6 = sin6_null; 12531 sin6->sin6_family = AF_INET6; 12532 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12533 sin6->sin6_addr = ill->ill_token; 12534 lifr->lifr_addrlen = ill->ill_token_length; 12535 return (0); 12536 } 12537 12538 /* 12539 * Set (hardware) link specific information that might override 12540 * what was acquired through the DL_INFO_ACK. 12541 * The logic is as follows. 12542 * 12543 * become exclusive 12544 * set CHANGING flag 12545 * change mtu on affected IREs 12546 * clear CHANGING flag 12547 * 12548 * An ire add that occurs before the CHANGING flag is set will have its mtu 12549 * changed by the ip_sioctl_lnkinfo. 12550 * 12551 * During the time the CHANGING flag is set, no new ires will be added to the 12552 * bucket, and ire add will fail (due the CHANGING flag). 12553 * 12554 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12555 * before it is added to the bucket. 12556 * 12557 * Obviously only 1 thread can set the CHANGING flag and we need to become 12558 * exclusive to set the flag. 12559 */ 12560 /* ARGSUSED */ 12561 int 12562 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12563 ip_ioctl_cmd_t *ipi, void *if_req) 12564 { 12565 ill_t *ill = ipif->ipif_ill; 12566 ipif_t *nipif; 12567 int ip_min_mtu; 12568 boolean_t mtu_walk = B_FALSE; 12569 struct lifreq *lifr = (struct lifreq *)if_req; 12570 lif_ifinfo_req_t *lir; 12571 ire_t *ire; 12572 12573 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12574 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12575 lir = &lifr->lifr_ifinfo; 12576 ASSERT(IAM_WRITER_IPIF(ipif)); 12577 12578 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12579 if (ipif->ipif_id != 0) 12580 return (EINVAL); 12581 12582 /* Set interface MTU. */ 12583 if (ipif->ipif_isv6) 12584 ip_min_mtu = IPV6_MIN_MTU; 12585 else 12586 ip_min_mtu = IP_MIN_MTU; 12587 12588 /* 12589 * Verify values before we set anything. Allow zero to 12590 * mean unspecified. 12591 */ 12592 if (lir->lir_maxmtu != 0 && 12593 (lir->lir_maxmtu > ill->ill_max_frag || 12594 lir->lir_maxmtu < ip_min_mtu)) 12595 return (EINVAL); 12596 if (lir->lir_reachtime != 0 && 12597 lir->lir_reachtime > ND_MAX_REACHTIME) 12598 return (EINVAL); 12599 if (lir->lir_reachretrans != 0 && 12600 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12601 return (EINVAL); 12602 12603 mutex_enter(&ill->ill_lock); 12604 ill->ill_state_flags |= ILL_CHANGING; 12605 for (nipif = ill->ill_ipif; nipif != NULL; 12606 nipif = nipif->ipif_next) { 12607 nipif->ipif_state_flags |= IPIF_CHANGING; 12608 } 12609 12610 mutex_exit(&ill->ill_lock); 12611 12612 if (lir->lir_maxmtu != 0) { 12613 ill->ill_max_mtu = lir->lir_maxmtu; 12614 ill->ill_mtu_userspecified = 1; 12615 mtu_walk = B_TRUE; 12616 } 12617 12618 if (lir->lir_reachtime != 0) 12619 ill->ill_reachable_time = lir->lir_reachtime; 12620 12621 if (lir->lir_reachretrans != 0) 12622 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12623 12624 ill->ill_max_hops = lir->lir_maxhops; 12625 12626 ill->ill_max_buf = ND_MAX_Q; 12627 12628 if (mtu_walk) { 12629 /* 12630 * Set the MTU on all ipifs associated with this ill except 12631 * for those whose MTU was fixed via SIOCSLIFMTU. 12632 */ 12633 for (nipif = ill->ill_ipif; nipif != NULL; 12634 nipif = nipif->ipif_next) { 12635 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12636 continue; 12637 12638 nipif->ipif_mtu = ill->ill_max_mtu; 12639 12640 if (!(nipif->ipif_flags & IPIF_UP)) 12641 continue; 12642 12643 if (nipif->ipif_isv6) 12644 ire = ipif_to_ire_v6(nipif); 12645 else 12646 ire = ipif_to_ire(nipif); 12647 if (ire != NULL) { 12648 ire->ire_max_frag = ipif->ipif_mtu; 12649 ire_refrele(ire); 12650 } 12651 if (ill->ill_isv6) { 12652 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12653 ipif_mtu_change, (char *)nipif, 12654 ill); 12655 } else { 12656 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12657 ipif_mtu_change, (char *)nipif, 12658 ill); 12659 } 12660 } 12661 } 12662 12663 mutex_enter(&ill->ill_lock); 12664 for (nipif = ill->ill_ipif; nipif != NULL; 12665 nipif = nipif->ipif_next) { 12666 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12667 } 12668 ILL_UNMARK_CHANGING(ill); 12669 mutex_exit(&ill->ill_lock); 12670 12671 return (0); 12672 } 12673 12674 /* ARGSUSED */ 12675 int 12676 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12677 ip_ioctl_cmd_t *ipi, void *if_req) 12678 { 12679 struct lif_ifinfo_req *lir; 12680 ill_t *ill = ipif->ipif_ill; 12681 12682 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12683 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12684 if (ipif->ipif_id != 0) 12685 return (EINVAL); 12686 12687 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12688 lir->lir_maxhops = ill->ill_max_hops; 12689 lir->lir_reachtime = ill->ill_reachable_time; 12690 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12691 lir->lir_maxmtu = ill->ill_max_mtu; 12692 12693 return (0); 12694 } 12695 12696 /* 12697 * Return best guess as to the subnet mask for the specified address. 12698 * Based on the subnet masks for all the configured interfaces. 12699 * 12700 * We end up returning a zero mask in the case of default, multicast or 12701 * experimental. 12702 */ 12703 static ipaddr_t 12704 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 12705 { 12706 ipaddr_t net_mask; 12707 ill_t *ill; 12708 ipif_t *ipif; 12709 ill_walk_context_t ctx; 12710 ipif_t *fallback_ipif = NULL; 12711 12712 net_mask = ip_net_mask(addr); 12713 if (net_mask == 0) { 12714 *ipifp = NULL; 12715 return (0); 12716 } 12717 12718 /* Let's check to see if this is maybe a local subnet route. */ 12719 /* this function only applies to IPv4 interfaces */ 12720 rw_enter(&ill_g_lock, RW_READER); 12721 ill = ILL_START_WALK_V4(&ctx); 12722 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12723 mutex_enter(&ill->ill_lock); 12724 for (ipif = ill->ill_ipif; ipif != NULL; 12725 ipif = ipif->ipif_next) { 12726 if (!IPIF_CAN_LOOKUP(ipif)) 12727 continue; 12728 if (!(ipif->ipif_flags & IPIF_UP)) 12729 continue; 12730 if ((ipif->ipif_subnet & net_mask) == 12731 (addr & net_mask)) { 12732 /* 12733 * Don't trust pt-pt interfaces if there are 12734 * other interfaces. 12735 */ 12736 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12737 if (fallback_ipif == NULL) { 12738 ipif_refhold_locked(ipif); 12739 fallback_ipif = ipif; 12740 } 12741 continue; 12742 } 12743 12744 /* 12745 * Fine. Just assume the same net mask as the 12746 * directly attached subnet interface is using. 12747 */ 12748 ipif_refhold_locked(ipif); 12749 mutex_exit(&ill->ill_lock); 12750 rw_exit(&ill_g_lock); 12751 if (fallback_ipif != NULL) 12752 ipif_refrele(fallback_ipif); 12753 *ipifp = ipif; 12754 return (ipif->ipif_net_mask); 12755 } 12756 } 12757 mutex_exit(&ill->ill_lock); 12758 } 12759 rw_exit(&ill_g_lock); 12760 12761 *ipifp = fallback_ipif; 12762 return ((fallback_ipif != NULL) ? 12763 fallback_ipif->ipif_net_mask : net_mask); 12764 } 12765 12766 /* 12767 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12768 */ 12769 static void 12770 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12771 { 12772 IOCP iocp; 12773 ipft_t *ipft; 12774 ipllc_t *ipllc; 12775 mblk_t *mp1; 12776 cred_t *cr; 12777 int error = 0; 12778 conn_t *connp; 12779 12780 ip1dbg(("ip_wput_ioctl")); 12781 iocp = (IOCP)mp->b_rptr; 12782 mp1 = mp->b_cont; 12783 if (mp1 == NULL) { 12784 iocp->ioc_error = EINVAL; 12785 mp->b_datap->db_type = M_IOCNAK; 12786 iocp->ioc_count = 0; 12787 qreply(q, mp); 12788 return; 12789 } 12790 12791 /* 12792 * These IOCTLs provide various control capabilities to 12793 * upstream agents such as ULPs and processes. There 12794 * are currently two such IOCTLs implemented. They 12795 * are used by TCP to provide update information for 12796 * existing IREs and to forcibly delete an IRE for a 12797 * host that is not responding, thereby forcing an 12798 * attempt at a new route. 12799 */ 12800 iocp->ioc_error = EINVAL; 12801 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12802 goto done; 12803 12804 ipllc = (ipllc_t *)mp1->b_rptr; 12805 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12806 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12807 break; 12808 } 12809 /* 12810 * prefer credential from mblk over ioctl; 12811 * see ip_sioctl_copyin_setup 12812 */ 12813 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12814 12815 /* 12816 * Refhold the conn in case the request gets queued up in some lookup 12817 */ 12818 ASSERT(CONN_Q(q)); 12819 connp = Q_TO_CONN(q); 12820 CONN_INC_REF(connp); 12821 if (ipft->ipft_pfi && 12822 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12823 pullupmsg(mp1, ipft->ipft_min_size))) { 12824 error = (*ipft->ipft_pfi)(q, 12825 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12826 } 12827 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12828 /* 12829 * CONN_OPER_PENDING_DONE happens in the function called 12830 * through ipft_pfi above. 12831 */ 12832 return; 12833 } 12834 12835 CONN_OPER_PENDING_DONE(connp); 12836 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12837 freemsg(mp); 12838 return; 12839 } 12840 iocp->ioc_error = error; 12841 12842 done: 12843 mp->b_datap->db_type = M_IOCACK; 12844 if (iocp->ioc_error) 12845 iocp->ioc_count = 0; 12846 qreply(q, mp); 12847 } 12848 12849 /* 12850 * Lookup an ipif using the sequence id (ipif_seqid) 12851 */ 12852 ipif_t * 12853 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12854 { 12855 ipif_t *ipif; 12856 12857 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12858 12859 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12860 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12861 return (ipif); 12862 } 12863 return (NULL); 12864 } 12865 12866 uint64_t ipif_g_seqid; 12867 12868 /* 12869 * Assign a unique id for the ipif. This is used later when we send 12870 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12871 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12872 * IRE is added, we verify that ipif has not disappeared. 12873 */ 12874 12875 static void 12876 ipif_assign_seqid(ipif_t *ipif) 12877 { 12878 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 12879 } 12880 12881 /* 12882 * Insert the ipif, so that the list of ipifs on the ill will be sorted 12883 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 12884 * be inserted into the first space available in the list. The value of 12885 * ipif_id will then be set to the appropriate value for its position. 12886 */ 12887 static int 12888 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 12889 { 12890 ill_t *ill; 12891 ipif_t *tipif; 12892 ipif_t **tipifp; 12893 int id; 12894 12895 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 12896 IAM_WRITER_IPIF(ipif)); 12897 12898 ill = ipif->ipif_ill; 12899 ASSERT(ill != NULL); 12900 12901 /* 12902 * In the case of lo0:0 we already hold the ill_g_lock. 12903 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 12904 * ipif_insert. Another such caller is ipif_move. 12905 */ 12906 if (acquire_g_lock) 12907 rw_enter(&ill_g_lock, RW_WRITER); 12908 if (acquire_ill_lock) 12909 mutex_enter(&ill->ill_lock); 12910 id = ipif->ipif_id; 12911 tipifp = &(ill->ill_ipif); 12912 if (id == -1) { /* need to find a real id */ 12913 id = 0; 12914 while ((tipif = *tipifp) != NULL) { 12915 ASSERT(tipif->ipif_id >= id); 12916 if (tipif->ipif_id != id) 12917 break; /* non-consecutive id */ 12918 id++; 12919 tipifp = &(tipif->ipif_next); 12920 } 12921 /* limit number of logical interfaces */ 12922 if (id >= ip_addrs_per_if) { 12923 if (acquire_ill_lock) 12924 mutex_exit(&ill->ill_lock); 12925 if (acquire_g_lock) 12926 rw_exit(&ill_g_lock); 12927 return (-1); 12928 } 12929 ipif->ipif_id = id; /* assign new id */ 12930 } else if (id < ip_addrs_per_if) { 12931 /* we have a real id; insert ipif in the right place */ 12932 while ((tipif = *tipifp) != NULL) { 12933 ASSERT(tipif->ipif_id != id); 12934 if (tipif->ipif_id > id) 12935 break; /* found correct location */ 12936 tipifp = &(tipif->ipif_next); 12937 } 12938 } else { 12939 if (acquire_ill_lock) 12940 mutex_exit(&ill->ill_lock); 12941 if (acquire_g_lock) 12942 rw_exit(&ill_g_lock); 12943 return (-1); 12944 } 12945 12946 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 12947 12948 ipif->ipif_next = tipif; 12949 *tipifp = ipif; 12950 if (acquire_ill_lock) 12951 mutex_exit(&ill->ill_lock); 12952 if (acquire_g_lock) 12953 rw_exit(&ill_g_lock); 12954 return (0); 12955 } 12956 12957 /* 12958 * Allocate and initialize a new interface control structure. (Always 12959 * called as writer.) 12960 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 12961 * is not part of the global linked list of ills. ipif_seqid is unique 12962 * in the system and to preserve the uniqueness, it is assigned only 12963 * when ill becomes part of the global list. At that point ill will 12964 * have a name. If it doesn't get assigned here, it will get assigned 12965 * in ipif_set_values() as part of SIOCSLIFNAME processing. 12966 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 12967 * the interface flags or any other information from the DL_INFO_ACK for 12968 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 12969 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 12970 * second DL_INFO_ACK comes in from the driver. 12971 */ 12972 static ipif_t * 12973 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 12974 { 12975 ipif_t *ipif; 12976 phyint_t *phyi; 12977 12978 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12979 ill->ill_name, id, (void *)ill)); 12980 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12981 12982 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 12983 return (NULL); 12984 *ipif = ipif_zero; /* start clean */ 12985 12986 ipif->ipif_ill = ill; 12987 ipif->ipif_id = id; /* could be -1 */ 12988 ipif->ipif_zoneid = GLOBAL_ZONEID; 12989 12990 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 12991 12992 ipif->ipif_refcnt = 0; 12993 ipif->ipif_saved_ire_cnt = 0; 12994 12995 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 12996 mi_free(ipif); 12997 return (NULL); 12998 } 12999 /* -1 id should have been replaced by real id */ 13000 id = ipif->ipif_id; 13001 ASSERT(id >= 0); 13002 13003 if (ill->ill_name[0] != '\0') { 13004 ipif_assign_seqid(ipif); 13005 if (ill->ill_phyint->phyint_ifindex != 0) 13006 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 13007 } 13008 /* 13009 * Keep a copy of original id in ipif_orig_ipifid. Failback 13010 * will attempt to restore the original id. The SIOCSLIFOINDEX 13011 * ioctl sets ipif_orig_ipifid to zero. 13012 */ 13013 ipif->ipif_orig_ipifid = id; 13014 13015 /* 13016 * We grab the ill_lock and phyint_lock to protect the flag changes. 13017 * The ipif is still not up and can't be looked up until the 13018 * ioctl completes and the IPIF_CHANGING flag is cleared. 13019 */ 13020 mutex_enter(&ill->ill_lock); 13021 mutex_enter(&ill->ill_phyint->phyint_lock); 13022 /* 13023 * Set the running flag when logical interface zero is created. 13024 * For subsequent logical interfaces, a DLPI link down 13025 * notification message may have cleared the running flag to 13026 * indicate the link is down, so we shouldn't just blindly set it. 13027 */ 13028 if (id == 0) 13029 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13030 ipif->ipif_ire_type = ire_type; 13031 phyi = ill->ill_phyint; 13032 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13033 13034 if (ipif->ipif_isv6) { 13035 ill->ill_flags |= ILLF_IPV6; 13036 } else { 13037 ipaddr_t inaddr_any = INADDR_ANY; 13038 13039 ill->ill_flags |= ILLF_IPV4; 13040 13041 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13042 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13043 &ipif->ipif_v6lcl_addr); 13044 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13045 &ipif->ipif_v6src_addr); 13046 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13047 &ipif->ipif_v6subnet); 13048 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13049 &ipif->ipif_v6net_mask); 13050 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13051 &ipif->ipif_v6brd_addr); 13052 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13053 &ipif->ipif_v6pp_dst_addr); 13054 } 13055 13056 /* 13057 * Don't set the interface flags etc. now, will do it in 13058 * ip_ll_subnet_defaults. 13059 */ 13060 if (!initialize) { 13061 mutex_exit(&ill->ill_lock); 13062 mutex_exit(&ill->ill_phyint->phyint_lock); 13063 return (ipif); 13064 } 13065 ipif->ipif_mtu = ill->ill_max_mtu; 13066 13067 if (ill->ill_bcast_addr_length != 0) { 13068 /* 13069 * Later detect lack of DLPI driver multicast 13070 * capability by catching DL_ENABMULTI errors in 13071 * ip_rput_dlpi. 13072 */ 13073 ill->ill_flags |= ILLF_MULTICAST; 13074 if (!ipif->ipif_isv6) 13075 ipif->ipif_flags |= IPIF_BROADCAST; 13076 } else { 13077 if (ill->ill_net_type != IRE_LOOPBACK) { 13078 if (ipif->ipif_isv6) 13079 /* 13080 * Note: xresolv interfaces will eventually need 13081 * NOARP set here as well, but that will require 13082 * those external resolvers to have some 13083 * knowledge of that flag and act appropriately. 13084 * Not to be changed at present. 13085 */ 13086 ill->ill_flags |= ILLF_NONUD; 13087 else 13088 ill->ill_flags |= ILLF_NOARP; 13089 } 13090 if (ill->ill_phys_addr_length == 0) { 13091 if (ill->ill_media && 13092 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13093 ipif->ipif_flags |= IPIF_NOXMIT; 13094 phyi->phyint_flags |= PHYI_VIRTUAL; 13095 } else { 13096 /* pt-pt supports multicast. */ 13097 ill->ill_flags |= ILLF_MULTICAST; 13098 if (ill->ill_net_type == IRE_LOOPBACK) { 13099 phyi->phyint_flags |= 13100 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13101 } else { 13102 ipif->ipif_flags |= IPIF_POINTOPOINT; 13103 } 13104 } 13105 } 13106 } 13107 mutex_exit(&ill->ill_lock); 13108 mutex_exit(&ill->ill_phyint->phyint_lock); 13109 return (ipif); 13110 } 13111 13112 /* 13113 * If appropriate, send a message up to the resolver delete the entry 13114 * for the address of this interface which is going out of business. 13115 * (Always called as writer). 13116 * 13117 * NOTE : We need to check for NULL mps as some of the fields are 13118 * initialized only for some interface types. See ipif_resolver_up() 13119 * for details. 13120 */ 13121 void 13122 ipif_arp_down(ipif_t *ipif) 13123 { 13124 mblk_t *mp; 13125 ill_t *ill = ipif->ipif_ill; 13126 13127 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13128 ASSERT(IAM_WRITER_IPIF(ipif)); 13129 13130 /* Delete the mapping for the local address */ 13131 mp = ipif->ipif_arp_del_mp; 13132 if (mp != NULL) { 13133 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13134 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13135 putnext(ill->ill_rq, mp); 13136 ipif->ipif_arp_del_mp = NULL; 13137 } 13138 13139 /* 13140 * If this is the last ipif that is going down and there are no 13141 * duplicate addresses we may yet attempt to re-probe, then we need to 13142 * clean up ARP completely. 13143 */ 13144 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13145 13146 /* Send up AR_INTERFACE_DOWN message */ 13147 mp = ill->ill_arp_down_mp; 13148 if (mp != NULL) { 13149 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13150 *(unsigned *)mp->b_rptr, ill->ill_name, 13151 ipif->ipif_id)); 13152 putnext(ill->ill_rq, mp); 13153 ill->ill_arp_down_mp = NULL; 13154 } 13155 13156 /* Tell ARP to delete the multicast mappings */ 13157 mp = ill->ill_arp_del_mapping_mp; 13158 if (mp != NULL) { 13159 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13160 *(unsigned *)mp->b_rptr, ill->ill_name, 13161 ipif->ipif_id)); 13162 putnext(ill->ill_rq, mp); 13163 ill->ill_arp_del_mapping_mp = NULL; 13164 } 13165 } 13166 } 13167 13168 /* 13169 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13170 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13171 * that it wants the add_mp allocated in this function to be returned 13172 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13173 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13174 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13175 * as it does a ipif_arp_down after calling this function - which will 13176 * remove what we add here. 13177 * 13178 * Returns -1 on failures and 0 on success. 13179 */ 13180 int 13181 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13182 { 13183 mblk_t *del_mp = NULL; 13184 mblk_t *add_mp = NULL; 13185 mblk_t *mp; 13186 ill_t *ill = ipif->ipif_ill; 13187 phyint_t *phyi = ill->ill_phyint; 13188 ipaddr_t addr, mask, extract_mask = 0; 13189 arma_t *arma; 13190 uint8_t *maddr, *bphys_addr; 13191 uint32_t hw_start; 13192 dl_unitdata_req_t *dlur; 13193 13194 ASSERT(IAM_WRITER_IPIF(ipif)); 13195 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13196 return (0); 13197 13198 /* 13199 * Delete the existing mapping from ARP. Normally ipif_down 13200 * -> ipif_arp_down should send this up to ARP. The only 13201 * reason we would find this when we are switching from 13202 * Multicast to Broadcast where we did not do a down. 13203 */ 13204 mp = ill->ill_arp_del_mapping_mp; 13205 if (mp != NULL) { 13206 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13207 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13208 putnext(ill->ill_rq, mp); 13209 ill->ill_arp_del_mapping_mp = NULL; 13210 } 13211 13212 if (arp_add_mapping_mp != NULL) 13213 *arp_add_mapping_mp = NULL; 13214 13215 /* 13216 * Check that the address is not to long for the constant 13217 * length reserved in the template arma_t. 13218 */ 13219 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13220 return (-1); 13221 13222 /* Add mapping mblk */ 13223 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13224 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13225 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13226 (caddr_t)&addr); 13227 if (add_mp == NULL) 13228 return (-1); 13229 arma = (arma_t *)add_mp->b_rptr; 13230 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13231 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13232 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13233 13234 /* 13235 * Determine the broadcast address. 13236 */ 13237 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13238 if (ill->ill_sap_length < 0) 13239 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13240 else 13241 bphys_addr = (uchar_t *)dlur + 13242 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13243 /* 13244 * Check PHYI_MULTI_BCAST and length of physical 13245 * address to determine if we use the mapping or the 13246 * broadcast address. 13247 */ 13248 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13249 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13250 bphys_addr, maddr, &hw_start, &extract_mask)) 13251 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13252 13253 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13254 (ill->ill_flags & ILLF_MULTICAST)) { 13255 /* Make sure this will not match the "exact" entry. */ 13256 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13257 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13258 (caddr_t)&addr); 13259 if (del_mp == NULL) { 13260 freemsg(add_mp); 13261 return (-1); 13262 } 13263 bcopy(&extract_mask, (char *)arma + 13264 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13265 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13266 /* Use link-layer broadcast address for MULTI_BCAST */ 13267 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13268 ip2dbg(("ipif_arp_setup_multicast: adding" 13269 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13270 } else { 13271 arma->arma_hw_mapping_start = hw_start; 13272 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13273 " ARP setup for %s\n", ill->ill_name)); 13274 } 13275 } else { 13276 freemsg(add_mp); 13277 ASSERT(del_mp == NULL); 13278 /* It is neither MULTICAST nor MULTI_BCAST */ 13279 return (0); 13280 } 13281 ASSERT(add_mp != NULL && del_mp != NULL); 13282 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13283 ill->ill_arp_del_mapping_mp = del_mp; 13284 if (arp_add_mapping_mp != NULL) { 13285 /* The caller just wants the mblks allocated */ 13286 *arp_add_mapping_mp = add_mp; 13287 } else { 13288 /* The caller wants us to send it to arp */ 13289 putnext(ill->ill_rq, add_mp); 13290 } 13291 return (0); 13292 } 13293 13294 /* 13295 * Get the resolver set up for a new interface address. 13296 * (Always called as writer.) 13297 * Called both for IPv4 and IPv6 interfaces, 13298 * though it only sets up the resolver for v6 13299 * if it's an xresolv interface (one using an external resolver). 13300 * Honors ILLF_NOARP. 13301 * The enumerated value res_act is used to tune the behavior. 13302 * If set to Res_act_initial, then we set up all the resolver 13303 * structures for a new interface. If set to Res_act_move, then 13304 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13305 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13306 * asynchronous hardware address change notification. If set to 13307 * Res_act_defend, then we tell ARP that it needs to send a single 13308 * gratuitous message in defense of the address. 13309 * Returns error on failure. 13310 */ 13311 int 13312 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13313 { 13314 caddr_t addr; 13315 mblk_t *arp_up_mp = NULL; 13316 mblk_t *arp_down_mp = NULL; 13317 mblk_t *arp_add_mp = NULL; 13318 mblk_t *arp_del_mp = NULL; 13319 mblk_t *arp_add_mapping_mp = NULL; 13320 mblk_t *arp_del_mapping_mp = NULL; 13321 ill_t *ill = ipif->ipif_ill; 13322 uchar_t *area_p = NULL; 13323 uchar_t *ared_p = NULL; 13324 int err = ENOMEM; 13325 boolean_t was_dup; 13326 13327 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13328 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13329 ASSERT(IAM_WRITER_IPIF(ipif)); 13330 13331 was_dup = B_FALSE; 13332 if (res_act == Res_act_initial) { 13333 ipif->ipif_addr_ready = 0; 13334 /* 13335 * We're bringing an interface up here. There's no way that we 13336 * should need to shut down ARP now. 13337 */ 13338 mutex_enter(&ill->ill_lock); 13339 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13340 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13341 ill->ill_ipif_dup_count--; 13342 was_dup = B_TRUE; 13343 } 13344 mutex_exit(&ill->ill_lock); 13345 } 13346 if (ipif->ipif_recovery_id != 0) 13347 (void) untimeout(ipif->ipif_recovery_id); 13348 ipif->ipif_recovery_id = 0; 13349 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13350 ipif->ipif_addr_ready = 1; 13351 return (0); 13352 } 13353 /* NDP will set the ipif_addr_ready flag when it's ready */ 13354 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13355 return (0); 13356 13357 if (ill->ill_isv6) { 13358 /* 13359 * External resolver for IPv6 13360 */ 13361 ASSERT(res_act == Res_act_initial); 13362 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13363 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13364 area_p = (uchar_t *)&ip6_area_template; 13365 ared_p = (uchar_t *)&ip6_ared_template; 13366 } 13367 } else { 13368 /* 13369 * IPv4 arp case. If the ARP stream has already started 13370 * closing, fail this request for ARP bringup. Else 13371 * record the fact that an ARP bringup is pending. 13372 */ 13373 mutex_enter(&ill->ill_lock); 13374 if (ill->ill_arp_closing) { 13375 mutex_exit(&ill->ill_lock); 13376 err = EINVAL; 13377 goto failed; 13378 } else { 13379 if (ill->ill_ipif_up_count == 0 && 13380 ill->ill_ipif_dup_count == 0 && !was_dup) 13381 ill->ill_arp_bringup_pending = 1; 13382 mutex_exit(&ill->ill_lock); 13383 } 13384 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13385 addr = (caddr_t)&ipif->ipif_lcl_addr; 13386 area_p = (uchar_t *)&ip_area_template; 13387 ared_p = (uchar_t *)&ip_ared_template; 13388 } 13389 } 13390 13391 /* 13392 * Add an entry for the local address in ARP only if it 13393 * is not UNNUMBERED and the address is not INADDR_ANY. 13394 */ 13395 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13396 area_t *area; 13397 13398 /* Now ask ARP to publish our address. */ 13399 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13400 if (arp_add_mp == NULL) 13401 goto failed; 13402 area = (area_t *)arp_add_mp->b_rptr; 13403 if (res_act != Res_act_initial) { 13404 /* 13405 * Copy the new hardware address and length into 13406 * arp_add_mp to be sent to ARP. 13407 */ 13408 area->area_hw_addr_length = 13409 ill->ill_phys_addr_length; 13410 bcopy((char *)ill->ill_phys_addr, 13411 ((char *)area + area->area_hw_addr_offset), 13412 area->area_hw_addr_length); 13413 } 13414 13415 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13416 ACE_F_MYADDR; 13417 13418 if (res_act == Res_act_defend) { 13419 area->area_flags |= ACE_F_DEFEND; 13420 /* 13421 * If we're just defending our address now, then 13422 * there's no need to set up ARP multicast mappings. 13423 * The publish command is enough. 13424 */ 13425 goto done; 13426 } 13427 13428 if (res_act != Res_act_initial) 13429 goto arp_setup_multicast; 13430 13431 /* 13432 * Allocate an ARP deletion message so we know we can tell ARP 13433 * when the interface goes down. 13434 */ 13435 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13436 if (arp_del_mp == NULL) 13437 goto failed; 13438 13439 } else { 13440 if (res_act != Res_act_initial) 13441 goto done; 13442 } 13443 /* 13444 * Need to bring up ARP or setup multicast mapping only 13445 * when the first interface is coming UP. 13446 */ 13447 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13448 was_dup) { 13449 goto done; 13450 } 13451 13452 /* 13453 * Allocate an ARP down message (to be saved) and an ARP up 13454 * message. 13455 */ 13456 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13457 if (arp_down_mp == NULL) 13458 goto failed; 13459 13460 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13461 if (arp_up_mp == NULL) 13462 goto failed; 13463 13464 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13465 goto done; 13466 13467 arp_setup_multicast: 13468 /* 13469 * Setup the multicast mappings. This function initializes 13470 * ill_arp_del_mapping_mp also. This does not need to be done for 13471 * IPv6. 13472 */ 13473 if (!ill->ill_isv6) { 13474 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13475 if (err != 0) 13476 goto failed; 13477 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13478 ASSERT(arp_add_mapping_mp != NULL); 13479 } 13480 13481 done: 13482 if (arp_del_mp != NULL) { 13483 ASSERT(ipif->ipif_arp_del_mp == NULL); 13484 ipif->ipif_arp_del_mp = arp_del_mp; 13485 } 13486 if (arp_down_mp != NULL) { 13487 ASSERT(ill->ill_arp_down_mp == NULL); 13488 ill->ill_arp_down_mp = arp_down_mp; 13489 } 13490 if (arp_del_mapping_mp != NULL) { 13491 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13492 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13493 } 13494 if (arp_up_mp != NULL) { 13495 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13496 ill->ill_name, ipif->ipif_id)); 13497 putnext(ill->ill_rq, arp_up_mp); 13498 } 13499 if (arp_add_mp != NULL) { 13500 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13501 ill->ill_name, ipif->ipif_id)); 13502 /* 13503 * If it's an extended ARP implementation, then we'll wait to 13504 * hear that DAD has finished before using the interface. 13505 */ 13506 if (!ill->ill_arp_extend) 13507 ipif->ipif_addr_ready = 1; 13508 putnext(ill->ill_rq, arp_add_mp); 13509 } else { 13510 ipif->ipif_addr_ready = 1; 13511 } 13512 if (arp_add_mapping_mp != NULL) { 13513 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13514 ill->ill_name, ipif->ipif_id)); 13515 putnext(ill->ill_rq, arp_add_mapping_mp); 13516 } 13517 if (res_act != Res_act_initial) 13518 return (0); 13519 13520 if (ill->ill_flags & ILLF_NOARP) 13521 err = ill_arp_off(ill); 13522 else 13523 err = ill_arp_on(ill); 13524 if (err != 0) { 13525 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13526 freemsg(ipif->ipif_arp_del_mp); 13527 freemsg(ill->ill_arp_down_mp); 13528 freemsg(ill->ill_arp_del_mapping_mp); 13529 ipif->ipif_arp_del_mp = NULL; 13530 ill->ill_arp_down_mp = NULL; 13531 ill->ill_arp_del_mapping_mp = NULL; 13532 return (err); 13533 } 13534 return ((ill->ill_ipif_up_count != 0 || was_dup || 13535 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13536 13537 failed: 13538 ip1dbg(("ipif_resolver_up: FAILED\n")); 13539 freemsg(arp_add_mp); 13540 freemsg(arp_del_mp); 13541 freemsg(arp_add_mapping_mp); 13542 freemsg(arp_up_mp); 13543 freemsg(arp_down_mp); 13544 ill->ill_arp_bringup_pending = 0; 13545 return (err); 13546 } 13547 13548 /* 13549 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13550 * just gone back up. 13551 */ 13552 static void 13553 ipif_arp_start_dad(ipif_t *ipif) 13554 { 13555 ill_t *ill = ipif->ipif_ill; 13556 mblk_t *arp_add_mp; 13557 area_t *area; 13558 13559 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13560 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13561 ipif->ipif_lcl_addr == INADDR_ANY || 13562 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13563 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13564 /* 13565 * If we can't contact ARP for some reason, that's not really a 13566 * problem. Just send out the routing socket notification that 13567 * DAD completion would have done, and continue. 13568 */ 13569 ipif_mask_reply(ipif); 13570 ip_rts_ifmsg(ipif); 13571 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13572 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13573 ipif->ipif_addr_ready = 1; 13574 return; 13575 } 13576 13577 /* Setting the 'unverified' flag restarts DAD */ 13578 area = (area_t *)arp_add_mp->b_rptr; 13579 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13580 ACE_F_UNVERIFIED; 13581 putnext(ill->ill_rq, arp_add_mp); 13582 } 13583 13584 static void 13585 ipif_ndp_start_dad(ipif_t *ipif) 13586 { 13587 nce_t *nce; 13588 13589 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13590 if (nce == NULL) 13591 return; 13592 13593 if (!ndp_restart_dad(nce)) { 13594 /* 13595 * If we can't restart DAD for some reason, that's not really a 13596 * problem. Just send out the routing socket notification that 13597 * DAD completion would have done, and continue. 13598 */ 13599 ip_rts_ifmsg(ipif); 13600 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13601 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13602 ipif->ipif_addr_ready = 1; 13603 } 13604 NCE_REFRELE(nce); 13605 } 13606 13607 /* 13608 * Restart duplicate address detection on all interfaces on the given ill. 13609 * 13610 * This is called when an interface transitions from down to up 13611 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13612 * 13613 * Note that since the underlying physical link has transitioned, we must cause 13614 * at least one routing socket message to be sent here, either via DAD 13615 * completion or just by default on the first ipif. (If we don't do this, then 13616 * in.mpathd will see long delays when doing link-based failure recovery.) 13617 */ 13618 void 13619 ill_restart_dad(ill_t *ill, boolean_t went_up) 13620 { 13621 ipif_t *ipif; 13622 13623 if (ill == NULL) 13624 return; 13625 13626 /* 13627 * If layer two doesn't support duplicate address detection, then just 13628 * send the routing socket message now and be done with it. 13629 */ 13630 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13631 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13632 ip_rts_ifmsg(ill->ill_ipif); 13633 return; 13634 } 13635 13636 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13637 if (went_up) { 13638 if (ipif->ipif_flags & IPIF_UP) { 13639 if (ill->ill_isv6) 13640 ipif_ndp_start_dad(ipif); 13641 else 13642 ipif_arp_start_dad(ipif); 13643 } else if (ill->ill_isv6 && 13644 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13645 /* 13646 * For IPv4, the ARP module itself will 13647 * automatically start the DAD process when it 13648 * sees DL_NOTE_LINK_UP. We respond to the 13649 * AR_CN_READY at the completion of that task. 13650 * For IPv6, we must kick off the bring-up 13651 * process now. 13652 */ 13653 ndp_do_recovery(ipif); 13654 } else { 13655 /* 13656 * Unfortunately, the first ipif is "special" 13657 * and represents the underlying ill in the 13658 * routing socket messages. Thus, when this 13659 * one ipif is down, we must still notify so 13660 * that the user knows the IFF_RUNNING status 13661 * change. (If the first ipif is up, then 13662 * we'll handle eventual routing socket 13663 * notification via DAD completion.) 13664 */ 13665 if (ipif == ill->ill_ipif) 13666 ip_rts_ifmsg(ill->ill_ipif); 13667 } 13668 } else { 13669 /* 13670 * After link down, we'll need to send a new routing 13671 * message when the link comes back, so clear 13672 * ipif_addr_ready. 13673 */ 13674 ipif->ipif_addr_ready = 0; 13675 } 13676 } 13677 13678 /* 13679 * If we've torn down links, then notify the user right away. 13680 */ 13681 if (!went_up) 13682 ip_rts_ifmsg(ill->ill_ipif); 13683 } 13684 13685 /* 13686 * Wakeup all threads waiting to enter the ipsq, and sleeping 13687 * on any of the ills in this ipsq. The ill_lock of the ill 13688 * must be held so that waiters don't miss wakeups 13689 */ 13690 static void 13691 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13692 { 13693 phyint_t *phyint; 13694 13695 phyint = ipsq->ipsq_phyint_list; 13696 while (phyint != NULL) { 13697 if (phyint->phyint_illv4) { 13698 if (!caller_holds_lock) 13699 mutex_enter(&phyint->phyint_illv4->ill_lock); 13700 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13701 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13702 if (!caller_holds_lock) 13703 mutex_exit(&phyint->phyint_illv4->ill_lock); 13704 } 13705 if (phyint->phyint_illv6) { 13706 if (!caller_holds_lock) 13707 mutex_enter(&phyint->phyint_illv6->ill_lock); 13708 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13709 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13710 if (!caller_holds_lock) 13711 mutex_exit(&phyint->phyint_illv6->ill_lock); 13712 } 13713 phyint = phyint->phyint_ipsq_next; 13714 } 13715 } 13716 13717 static ipsq_t * 13718 ipsq_create(char *groupname) 13719 { 13720 ipsq_t *ipsq; 13721 13722 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13723 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13724 if (ipsq == NULL) { 13725 return (NULL); 13726 } 13727 13728 if (groupname != NULL) 13729 (void) strcpy(ipsq->ipsq_name, groupname); 13730 else 13731 ipsq->ipsq_name[0] = '\0'; 13732 13733 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13734 ipsq->ipsq_flags |= IPSQ_GROUP; 13735 ipsq->ipsq_next = ipsq_g_head; 13736 ipsq_g_head = ipsq; 13737 return (ipsq); 13738 } 13739 13740 /* 13741 * Return an ipsq correspoding to the groupname. If 'create' is true 13742 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13743 * uniquely with an IPMP group. However during IPMP groupname operations, 13744 * multiple IPMP groups may be associated with a single ipsq. But no 13745 * IPMP group can be associated with more than 1 ipsq at any time. 13746 * For example 13747 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13748 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13749 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13750 * 13751 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13752 * status shown below during the execution of the above command. 13753 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13754 * 13755 * After the completion of the above groupname command we return to the stable 13756 * state shown below. 13757 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13758 * hme4 mpk17-85 ipsq2 mpk17-85 1 13759 * 13760 * Because of the above, we don't search based on the ipsq_name since that 13761 * would miss the correct ipsq during certain windows as shown above. 13762 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13763 * natural state. 13764 */ 13765 static ipsq_t * 13766 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 13767 { 13768 ipsq_t *ipsq; 13769 int group_len; 13770 phyint_t *phyint; 13771 13772 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13773 13774 group_len = strlen(groupname); 13775 ASSERT(group_len != 0); 13776 group_len++; 13777 13778 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 13779 /* 13780 * When an ipsq is being split, and ill_split_ipsq 13781 * calls this function, we exclude it from being considered. 13782 */ 13783 if (ipsq == exclude_ipsq) 13784 continue; 13785 13786 /* 13787 * Compare against the ipsq_name. The groupname change happens 13788 * in 2 phases. The 1st phase merges the from group into 13789 * the to group's ipsq, by calling ill_merge_groups and restarts 13790 * the ioctl. The 2nd phase then locates the ipsq again thru 13791 * ipsq_name. At this point the phyint_groupname has not been 13792 * updated. 13793 */ 13794 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13795 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13796 /* 13797 * Verify that an ipmp groupname is exactly 13798 * part of 1 ipsq and is not found in any other 13799 * ipsq. 13800 */ 13801 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 13802 NULL); 13803 return (ipsq); 13804 } 13805 13806 /* 13807 * Comparison against ipsq_name alone is not sufficient. 13808 * In the case when groups are currently being 13809 * merged, the ipsq could hold other IPMP groups temporarily. 13810 * so we walk the phyint list and compare against the 13811 * phyint_groupname as well. 13812 */ 13813 phyint = ipsq->ipsq_phyint_list; 13814 while (phyint != NULL) { 13815 if ((group_len == phyint->phyint_groupname_len) && 13816 (bcmp(phyint->phyint_groupname, groupname, 13817 group_len) == 0)) { 13818 /* 13819 * Verify that an ipmp groupname is exactly 13820 * part of 1 ipsq and is not found in any other 13821 * ipsq. 13822 */ 13823 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 13824 == NULL); 13825 return (ipsq); 13826 } 13827 phyint = phyint->phyint_ipsq_next; 13828 } 13829 } 13830 if (create) 13831 ipsq = ipsq_create(groupname); 13832 return (ipsq); 13833 } 13834 13835 static void 13836 ipsq_delete(ipsq_t *ipsq) 13837 { 13838 ipsq_t *nipsq; 13839 ipsq_t *pipsq = NULL; 13840 13841 /* 13842 * We don't hold the ipsq lock, but we are sure no new 13843 * messages can land up, since the ipsq_refs is zero. 13844 * i.e. this ipsq is unnamed and no phyint or phyint group 13845 * is associated with this ipsq. (Lookups are based on ill_name 13846 * or phyint_group_name) 13847 */ 13848 ASSERT(ipsq->ipsq_refs == 0); 13849 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 13850 ASSERT(ipsq->ipsq_pending_mp == NULL); 13851 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 13852 /* 13853 * This is not the ipsq of an IPMP group. 13854 */ 13855 kmem_free(ipsq, sizeof (ipsq_t)); 13856 return; 13857 } 13858 13859 rw_enter(&ill_g_lock, RW_WRITER); 13860 13861 /* 13862 * Locate the ipsq before we can remove it from 13863 * the singly linked list of ipsq's. 13864 */ 13865 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 13866 if (nipsq == ipsq) { 13867 break; 13868 } 13869 pipsq = nipsq; 13870 } 13871 13872 ASSERT(nipsq == ipsq); 13873 13874 /* unlink ipsq from the list */ 13875 if (pipsq != NULL) 13876 pipsq->ipsq_next = ipsq->ipsq_next; 13877 else 13878 ipsq_g_head = ipsq->ipsq_next; 13879 kmem_free(ipsq, sizeof (ipsq_t)); 13880 rw_exit(&ill_g_lock); 13881 } 13882 13883 static void 13884 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 13885 queue_t *q) 13886 13887 { 13888 13889 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 13890 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 13891 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 13892 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 13893 ASSERT(current_mp != NULL); 13894 13895 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 13896 NEW_OP, NULL); 13897 13898 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 13899 new_ipsq->ipsq_xopq_mphead != NULL); 13900 13901 /* 13902 * move from old ipsq to the new ipsq. 13903 */ 13904 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 13905 if (old_ipsq->ipsq_xopq_mphead != NULL) 13906 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 13907 13908 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 13909 } 13910 13911 void 13912 ill_group_cleanup(ill_t *ill) 13913 { 13914 ill_t *ill_v4; 13915 ill_t *ill_v6; 13916 ipif_t *ipif; 13917 13918 ill_v4 = ill->ill_phyint->phyint_illv4; 13919 ill_v6 = ill->ill_phyint->phyint_illv6; 13920 13921 if (ill_v4 != NULL) { 13922 mutex_enter(&ill_v4->ill_lock); 13923 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13924 ipif = ipif->ipif_next) { 13925 IPIF_UNMARK_MOVING(ipif); 13926 } 13927 ill_v4->ill_up_ipifs = B_FALSE; 13928 mutex_exit(&ill_v4->ill_lock); 13929 } 13930 13931 if (ill_v6 != NULL) { 13932 mutex_enter(&ill_v6->ill_lock); 13933 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13934 ipif = ipif->ipif_next) { 13935 IPIF_UNMARK_MOVING(ipif); 13936 } 13937 ill_v6->ill_up_ipifs = B_FALSE; 13938 mutex_exit(&ill_v6->ill_lock); 13939 } 13940 } 13941 /* 13942 * This function is called when an ill has had a change in its group status 13943 * to bring up all the ipifs that were up before the change. 13944 */ 13945 int 13946 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13947 { 13948 ipif_t *ipif; 13949 ill_t *ill_v4; 13950 ill_t *ill_v6; 13951 ill_t *from_ill; 13952 int err = 0; 13953 13954 13955 ASSERT(IAM_WRITER_ILL(ill)); 13956 13957 /* 13958 * Except for ipif_state_flags and ill_state_flags the other 13959 * fields of the ipif/ill that are modified below are protected 13960 * implicitly since we are a writer. We would have tried to down 13961 * even an ipif that was already down, in ill_down_ipifs. So we 13962 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 13963 */ 13964 ill_v4 = ill->ill_phyint->phyint_illv4; 13965 ill_v6 = ill->ill_phyint->phyint_illv6; 13966 if (ill_v4 != NULL) { 13967 ill_v4->ill_up_ipifs = B_TRUE; 13968 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13969 ipif = ipif->ipif_next) { 13970 mutex_enter(&ill_v4->ill_lock); 13971 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13972 IPIF_UNMARK_MOVING(ipif); 13973 mutex_exit(&ill_v4->ill_lock); 13974 if (ipif->ipif_was_up) { 13975 if (!(ipif->ipif_flags & IPIF_UP)) 13976 err = ipif_up(ipif, q, mp); 13977 ipif->ipif_was_up = B_FALSE; 13978 if (err != 0) { 13979 /* 13980 * Can there be any other error ? 13981 */ 13982 ASSERT(err == EINPROGRESS); 13983 return (err); 13984 } 13985 } 13986 } 13987 mutex_enter(&ill_v4->ill_lock); 13988 ill_v4->ill_state_flags &= ~ILL_CHANGING; 13989 mutex_exit(&ill_v4->ill_lock); 13990 ill_v4->ill_up_ipifs = B_FALSE; 13991 if (ill_v4->ill_move_in_progress) { 13992 ASSERT(ill_v4->ill_move_peer != NULL); 13993 ill_v4->ill_move_in_progress = B_FALSE; 13994 from_ill = ill_v4->ill_move_peer; 13995 from_ill->ill_move_in_progress = B_FALSE; 13996 from_ill->ill_move_peer = NULL; 13997 mutex_enter(&from_ill->ill_lock); 13998 from_ill->ill_state_flags &= ~ILL_CHANGING; 13999 mutex_exit(&from_ill->ill_lock); 14000 if (ill_v6 == NULL) { 14001 if (from_ill->ill_phyint->phyint_flags & 14002 PHYI_STANDBY) { 14003 phyint_inactive(from_ill->ill_phyint); 14004 } 14005 if (ill_v4->ill_phyint->phyint_flags & 14006 PHYI_STANDBY) { 14007 phyint_inactive(ill_v4->ill_phyint); 14008 } 14009 } 14010 ill_v4->ill_move_peer = NULL; 14011 } 14012 } 14013 14014 if (ill_v6 != NULL) { 14015 ill_v6->ill_up_ipifs = B_TRUE; 14016 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14017 ipif = ipif->ipif_next) { 14018 mutex_enter(&ill_v6->ill_lock); 14019 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14020 IPIF_UNMARK_MOVING(ipif); 14021 mutex_exit(&ill_v6->ill_lock); 14022 if (ipif->ipif_was_up) { 14023 if (!(ipif->ipif_flags & IPIF_UP)) 14024 err = ipif_up(ipif, q, mp); 14025 ipif->ipif_was_up = B_FALSE; 14026 if (err != 0) { 14027 /* 14028 * Can there be any other error ? 14029 */ 14030 ASSERT(err == EINPROGRESS); 14031 return (err); 14032 } 14033 } 14034 } 14035 mutex_enter(&ill_v6->ill_lock); 14036 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14037 mutex_exit(&ill_v6->ill_lock); 14038 ill_v6->ill_up_ipifs = B_FALSE; 14039 if (ill_v6->ill_move_in_progress) { 14040 ASSERT(ill_v6->ill_move_peer != NULL); 14041 ill_v6->ill_move_in_progress = B_FALSE; 14042 from_ill = ill_v6->ill_move_peer; 14043 from_ill->ill_move_in_progress = B_FALSE; 14044 from_ill->ill_move_peer = NULL; 14045 mutex_enter(&from_ill->ill_lock); 14046 from_ill->ill_state_flags &= ~ILL_CHANGING; 14047 mutex_exit(&from_ill->ill_lock); 14048 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14049 phyint_inactive(from_ill->ill_phyint); 14050 } 14051 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14052 phyint_inactive(ill_v6->ill_phyint); 14053 } 14054 ill_v6->ill_move_peer = NULL; 14055 } 14056 } 14057 return (0); 14058 } 14059 14060 /* 14061 * bring down all the approriate ipifs. 14062 */ 14063 /* ARGSUSED */ 14064 static void 14065 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14066 { 14067 ipif_t *ipif; 14068 14069 ASSERT(IAM_WRITER_ILL(ill)); 14070 14071 /* 14072 * Except for ipif_state_flags the other fields of the ipif/ill that 14073 * are modified below are protected implicitly since we are a writer 14074 */ 14075 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14076 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14077 continue; 14078 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14079 /* 14080 * We go through the ipif_down logic even if the ipif 14081 * is already down, since routes can be added based 14082 * on down ipifs. Going through ipif_down once again 14083 * will delete any IREs created based on these routes. 14084 */ 14085 if (ipif->ipif_flags & IPIF_UP) 14086 ipif->ipif_was_up = B_TRUE; 14087 /* 14088 * If called with chk_nofailover true ipif is moving. 14089 */ 14090 mutex_enter(&ill->ill_lock); 14091 if (chk_nofailover) { 14092 ipif->ipif_state_flags |= 14093 IPIF_MOVING | IPIF_CHANGING; 14094 } else { 14095 ipif->ipif_state_flags |= IPIF_CHANGING; 14096 } 14097 mutex_exit(&ill->ill_lock); 14098 /* 14099 * Need to re-create net/subnet bcast ires if 14100 * they are dependent on ipif. 14101 */ 14102 if (!ipif->ipif_isv6) 14103 ipif_check_bcast_ires(ipif); 14104 (void) ipif_logical_down(ipif, NULL, NULL); 14105 ipif_non_duplicate(ipif); 14106 ipif_down_tail(ipif); 14107 /* 14108 * We don't do ipif_multicast_down for IPv4 in 14109 * ipif_down. We need to set this so that 14110 * ipif_multicast_up will join the 14111 * ALLHOSTS_GROUP on to_ill. 14112 */ 14113 ipif->ipif_multicast_up = B_FALSE; 14114 } 14115 } 14116 } 14117 14118 #define IPSQ_INC_REF(ipsq) { \ 14119 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14120 (ipsq)->ipsq_refs++; \ 14121 } 14122 14123 #define IPSQ_DEC_REF(ipsq) { \ 14124 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14125 (ipsq)->ipsq_refs--; \ 14126 if ((ipsq)->ipsq_refs == 0) \ 14127 (ipsq)->ipsq_name[0] = '\0'; \ 14128 } 14129 14130 /* 14131 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14132 * new_ipsq. 14133 */ 14134 static void 14135 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 14136 { 14137 phyint_t *phyint; 14138 phyint_t *next_phyint; 14139 14140 /* 14141 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14142 * writer and the ill_lock of the ill in question. Also the dest 14143 * ipsq can't vanish while we hold the ill_g_lock as writer. 14144 */ 14145 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14146 14147 phyint = cur_ipsq->ipsq_phyint_list; 14148 cur_ipsq->ipsq_phyint_list = NULL; 14149 while (phyint != NULL) { 14150 next_phyint = phyint->phyint_ipsq_next; 14151 IPSQ_DEC_REF(cur_ipsq); 14152 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14153 new_ipsq->ipsq_phyint_list = phyint; 14154 IPSQ_INC_REF(new_ipsq); 14155 phyint->phyint_ipsq = new_ipsq; 14156 phyint = next_phyint; 14157 } 14158 } 14159 14160 #define SPLIT_SUCCESS 0 14161 #define SPLIT_NOT_NEEDED 1 14162 #define SPLIT_FAILED 2 14163 14164 int 14165 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 14166 { 14167 ipsq_t *newipsq = NULL; 14168 14169 /* 14170 * Assertions denote pre-requisites for changing the ipsq of 14171 * a phyint 14172 */ 14173 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14174 /* 14175 * <ill-phyint> assocs can't change while ill_g_lock 14176 * is held as writer. See ill_phyint_reinit() 14177 */ 14178 ASSERT(phyint->phyint_illv4 == NULL || 14179 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14180 ASSERT(phyint->phyint_illv6 == NULL || 14181 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14182 14183 if ((phyint->phyint_groupname_len != 14184 (strlen(cur_ipsq->ipsq_name) + 1) || 14185 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14186 phyint->phyint_groupname_len) != 0)) { 14187 /* 14188 * Once we fail in creating a new ipsq due to memory shortage, 14189 * don't attempt to create new ipsq again, based on another 14190 * phyint, since we want all phyints belonging to an IPMP group 14191 * to be in the same ipsq even in the event of mem alloc fails. 14192 */ 14193 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14194 cur_ipsq); 14195 if (newipsq == NULL) { 14196 /* Memory allocation failure */ 14197 return (SPLIT_FAILED); 14198 } else { 14199 /* ipsq_refs protected by ill_g_lock (writer) */ 14200 IPSQ_DEC_REF(cur_ipsq); 14201 phyint->phyint_ipsq = newipsq; 14202 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14203 newipsq->ipsq_phyint_list = phyint; 14204 IPSQ_INC_REF(newipsq); 14205 return (SPLIT_SUCCESS); 14206 } 14207 } 14208 return (SPLIT_NOT_NEEDED); 14209 } 14210 14211 /* 14212 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14213 * to do this split 14214 */ 14215 static int 14216 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 14217 { 14218 ipsq_t *newipsq; 14219 14220 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14221 /* 14222 * <ill-phyint> assocs can't change while ill_g_lock 14223 * is held as writer. See ill_phyint_reinit() 14224 */ 14225 14226 ASSERT(phyint->phyint_illv4 == NULL || 14227 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14228 ASSERT(phyint->phyint_illv6 == NULL || 14229 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14230 14231 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14232 phyint->phyint_illv4: phyint->phyint_illv6)) { 14233 /* 14234 * ipsq_init failed due to no memory 14235 * caller will use the same ipsq 14236 */ 14237 return (SPLIT_FAILED); 14238 } 14239 14240 /* ipsq_ref is protected by ill_g_lock (writer) */ 14241 IPSQ_DEC_REF(cur_ipsq); 14242 14243 /* 14244 * This is a new ipsq that is unknown to the world. 14245 * So we don't need to hold ipsq_lock, 14246 */ 14247 newipsq = phyint->phyint_ipsq; 14248 newipsq->ipsq_writer = NULL; 14249 newipsq->ipsq_reentry_cnt--; 14250 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14251 #ifdef ILL_DEBUG 14252 newipsq->ipsq_depth = 0; 14253 #endif 14254 14255 return (SPLIT_SUCCESS); 14256 } 14257 14258 /* 14259 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14260 * ipsq's representing their individual groups or themselves. Return 14261 * whether split needs to be retried again later. 14262 */ 14263 static boolean_t 14264 ill_split_ipsq(ipsq_t *cur_ipsq) 14265 { 14266 phyint_t *phyint; 14267 phyint_t *next_phyint; 14268 int error; 14269 boolean_t need_retry = B_FALSE; 14270 14271 phyint = cur_ipsq->ipsq_phyint_list; 14272 cur_ipsq->ipsq_phyint_list = NULL; 14273 while (phyint != NULL) { 14274 next_phyint = phyint->phyint_ipsq_next; 14275 /* 14276 * 'created' will tell us whether the callee actually 14277 * created an ipsq. Lack of memory may force the callee 14278 * to return without creating an ipsq. 14279 */ 14280 if (phyint->phyint_groupname == NULL) { 14281 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 14282 } else { 14283 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14284 need_retry); 14285 } 14286 14287 switch (error) { 14288 case SPLIT_FAILED: 14289 need_retry = B_TRUE; 14290 /* FALLTHRU */ 14291 case SPLIT_NOT_NEEDED: 14292 /* 14293 * Keep it on the list. 14294 */ 14295 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14296 cur_ipsq->ipsq_phyint_list = phyint; 14297 break; 14298 case SPLIT_SUCCESS: 14299 break; 14300 default: 14301 ASSERT(0); 14302 } 14303 14304 phyint = next_phyint; 14305 } 14306 return (need_retry); 14307 } 14308 14309 /* 14310 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14311 * and return the ills in the list. This list will be 14312 * needed to unlock all the ills later on by the caller. 14313 * The <ill-ipsq> associations could change between the 14314 * lock and unlock. Hence the unlock can't traverse the 14315 * ipsq to get the list of ills. 14316 */ 14317 static int 14318 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14319 { 14320 int cnt = 0; 14321 phyint_t *phyint; 14322 14323 /* 14324 * The caller holds ill_g_lock to ensure that the ill memberships 14325 * of the ipsq don't change 14326 */ 14327 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 14328 14329 phyint = ipsq->ipsq_phyint_list; 14330 while (phyint != NULL) { 14331 if (phyint->phyint_illv4 != NULL) { 14332 ASSERT(cnt < list_max); 14333 list[cnt++] = phyint->phyint_illv4; 14334 } 14335 if (phyint->phyint_illv6 != NULL) { 14336 ASSERT(cnt < list_max); 14337 list[cnt++] = phyint->phyint_illv6; 14338 } 14339 phyint = phyint->phyint_ipsq_next; 14340 } 14341 ill_lock_ills(list, cnt); 14342 return (cnt); 14343 } 14344 14345 void 14346 ill_lock_ills(ill_t **list, int cnt) 14347 { 14348 int i; 14349 14350 if (cnt > 1) { 14351 boolean_t try_again; 14352 do { 14353 try_again = B_FALSE; 14354 for (i = 0; i < cnt - 1; i++) { 14355 if (list[i] < list[i + 1]) { 14356 ill_t *tmp; 14357 14358 /* swap the elements */ 14359 tmp = list[i]; 14360 list[i] = list[i + 1]; 14361 list[i + 1] = tmp; 14362 try_again = B_TRUE; 14363 } 14364 } 14365 } while (try_again); 14366 } 14367 14368 for (i = 0; i < cnt; i++) { 14369 if (i == 0) { 14370 if (list[i] != NULL) 14371 mutex_enter(&list[i]->ill_lock); 14372 else 14373 return; 14374 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14375 mutex_enter(&list[i]->ill_lock); 14376 } 14377 } 14378 } 14379 14380 void 14381 ill_unlock_ills(ill_t **list, int cnt) 14382 { 14383 int i; 14384 14385 for (i = 0; i < cnt; i++) { 14386 if ((i == 0) && (list[i] != NULL)) { 14387 mutex_exit(&list[i]->ill_lock); 14388 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14389 mutex_exit(&list[i]->ill_lock); 14390 } 14391 } 14392 } 14393 14394 /* 14395 * Merge all the ills from 1 ipsq group into another ipsq group. 14396 * The source ipsq group is specified by the ipsq associated with 14397 * 'from_ill'. The destination ipsq group is specified by the ipsq 14398 * associated with 'to_ill' or 'groupname' respectively. 14399 * Note that ipsq itself does not have a reference count mechanism 14400 * and functions don't look up an ipsq and pass it around. Instead 14401 * functions pass around an ill or groupname, and the ipsq is looked 14402 * up from the ill or groupname and the required operation performed 14403 * atomically with the lookup on the ipsq. 14404 */ 14405 static int 14406 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14407 queue_t *q) 14408 { 14409 ipsq_t *old_ipsq; 14410 ipsq_t *new_ipsq; 14411 ill_t **ill_list; 14412 int cnt; 14413 size_t ill_list_size; 14414 boolean_t became_writer_on_new_sq = B_FALSE; 14415 14416 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14417 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14418 14419 /* 14420 * Need to hold ill_g_lock as writer and also the ill_lock to 14421 * change the <ill-ipsq> assoc of an ill. Need to hold the 14422 * ipsq_lock to prevent new messages from landing on an ipsq. 14423 */ 14424 rw_enter(&ill_g_lock, RW_WRITER); 14425 14426 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14427 if (groupname != NULL) 14428 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 14429 else { 14430 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14431 } 14432 14433 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14434 14435 /* 14436 * both groups are on the same ipsq. 14437 */ 14438 if (old_ipsq == new_ipsq) { 14439 rw_exit(&ill_g_lock); 14440 return (0); 14441 } 14442 14443 cnt = old_ipsq->ipsq_refs << 1; 14444 ill_list_size = cnt * sizeof (ill_t *); 14445 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14446 if (ill_list == NULL) { 14447 rw_exit(&ill_g_lock); 14448 return (ENOMEM); 14449 } 14450 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14451 14452 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14453 mutex_enter(&new_ipsq->ipsq_lock); 14454 if ((new_ipsq->ipsq_writer == NULL && 14455 new_ipsq->ipsq_current_ipif == NULL) || 14456 (new_ipsq->ipsq_writer == curthread)) { 14457 new_ipsq->ipsq_writer = curthread; 14458 new_ipsq->ipsq_reentry_cnt++; 14459 became_writer_on_new_sq = B_TRUE; 14460 } 14461 14462 /* 14463 * We are holding ill_g_lock as writer and all the ill locks of 14464 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14465 * message can land up on the old ipsq even though we don't hold the 14466 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14467 */ 14468 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14469 14470 /* 14471 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14472 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14473 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14474 */ 14475 ill_merge_ipsq(old_ipsq, new_ipsq); 14476 14477 /* 14478 * Mark the new ipsq as needing a split since it is currently 14479 * being shared by more than 1 IPMP group. The split will 14480 * occur at the end of ipsq_exit 14481 */ 14482 new_ipsq->ipsq_split = B_TRUE; 14483 14484 /* Now release all the locks */ 14485 mutex_exit(&new_ipsq->ipsq_lock); 14486 ill_unlock_ills(ill_list, cnt); 14487 rw_exit(&ill_g_lock); 14488 14489 kmem_free(ill_list, ill_list_size); 14490 14491 /* 14492 * If we succeeded in becoming writer on the new ipsq, then 14493 * drain the new ipsq and start processing all enqueued messages 14494 * including the current ioctl we are processing which is either 14495 * a set groupname or failover/failback. 14496 */ 14497 if (became_writer_on_new_sq) 14498 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14499 14500 /* 14501 * syncq has been changed and all the messages have been moved. 14502 */ 14503 mutex_enter(&old_ipsq->ipsq_lock); 14504 old_ipsq->ipsq_current_ipif = NULL; 14505 mutex_exit(&old_ipsq->ipsq_lock); 14506 return (EINPROGRESS); 14507 } 14508 14509 /* 14510 * Delete and add the loopback copy and non-loopback copy of 14511 * the BROADCAST ire corresponding to ill and addr. Used to 14512 * group broadcast ires together when ill becomes part of 14513 * a group. 14514 * 14515 * This function is also called when ill is leaving the group 14516 * so that the ires belonging to the group gets re-grouped. 14517 */ 14518 static void 14519 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14520 { 14521 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14522 ire_t **ire_ptpn = &ire_head; 14523 14524 /* 14525 * The loopback and non-loopback IREs are inserted in the order in which 14526 * they're found, on the basis that they are correctly ordered (loopback 14527 * first). 14528 */ 14529 for (;;) { 14530 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14531 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14532 if (ire == NULL) 14533 break; 14534 14535 /* 14536 * we are passing in KM_SLEEP because it is not easy to 14537 * go back to a sane state in case of memory failure. 14538 */ 14539 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14540 ASSERT(nire != NULL); 14541 bzero(nire, sizeof (ire_t)); 14542 /* 14543 * Don't use ire_max_frag directly since we don't 14544 * hold on to 'ire' until we add the new ire 'nire' and 14545 * we don't want the new ire to have a dangling reference 14546 * to 'ire'. The ire_max_frag of a broadcast ire must 14547 * be in sync with the ipif_mtu of the associate ipif. 14548 * For eg. this happens as a result of SIOCSLIFNAME, 14549 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14550 * the driver. A change in ire_max_frag triggered as 14551 * as a result of path mtu discovery, or due to an 14552 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14553 * route change -mtu command does not apply to broadcast ires. 14554 * 14555 * XXX We need a recovery strategy here if ire_init fails 14556 */ 14557 if (ire_init(nire, 14558 (uchar_t *)&ire->ire_addr, 14559 (uchar_t *)&ire->ire_mask, 14560 (uchar_t *)&ire->ire_src_addr, 14561 (uchar_t *)&ire->ire_gateway_addr, 14562 (uchar_t *)&ire->ire_in_src_addr, 14563 ire->ire_stq == NULL ? &ip_loopback_mtu : 14564 &ire->ire_ipif->ipif_mtu, 14565 (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL), 14566 ire->ire_rfq, 14567 ire->ire_stq, 14568 ire->ire_type, 14569 (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL), 14570 ire->ire_ipif, 14571 ire->ire_in_ill, 14572 ire->ire_cmask, 14573 ire->ire_phandle, 14574 ire->ire_ihandle, 14575 ire->ire_flags, 14576 &ire->ire_uinfo, 14577 NULL, 14578 NULL) == NULL) { 14579 cmn_err(CE_PANIC, "ire_init() failed"); 14580 } 14581 ire_delete(ire); 14582 ire_refrele(ire); 14583 14584 /* 14585 * The newly created IREs are inserted at the tail of the list 14586 * starting with ire_head. As we've just allocated them no one 14587 * knows about them so it's safe. 14588 */ 14589 *ire_ptpn = nire; 14590 ire_ptpn = &nire->ire_next; 14591 } 14592 14593 for (nire = ire_head; nire != NULL; nire = nire_next) { 14594 int error; 14595 ire_t *oire; 14596 /* unlink the IRE from our list before calling ire_add() */ 14597 nire_next = nire->ire_next; 14598 nire->ire_next = NULL; 14599 14600 /* ire_add adds the ire at the right place in the list */ 14601 oire = nire; 14602 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14603 ASSERT(error == 0); 14604 ASSERT(oire == nire); 14605 ire_refrele(nire); /* Held in ire_add */ 14606 } 14607 } 14608 14609 /* 14610 * This function is usually called when an ill is inserted in 14611 * a group and all the ipifs are already UP. As all the ipifs 14612 * are already UP, the broadcast ires have already been created 14613 * and been inserted. But, ire_add_v4 would not have grouped properly. 14614 * We need to re-group for the benefit of ip_wput_ire which 14615 * expects BROADCAST ires to be grouped properly to avoid sending 14616 * more than one copy of the broadcast packet per group. 14617 * 14618 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14619 * because when ipif_up_done ends up calling this, ires have 14620 * already been added before illgrp_insert i.e before ill_group 14621 * has been initialized. 14622 */ 14623 static void 14624 ill_group_bcast_for_xmit(ill_t *ill) 14625 { 14626 ill_group_t *illgrp; 14627 ipif_t *ipif; 14628 ipaddr_t addr; 14629 ipaddr_t net_mask; 14630 ipaddr_t subnet_netmask; 14631 14632 illgrp = ill->ill_group; 14633 14634 /* 14635 * This function is called even when an ill is deleted from 14636 * the group. Hence, illgrp could be null. 14637 */ 14638 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14639 return; 14640 14641 /* 14642 * Delete all the BROADCAST ires matching this ill and add 14643 * them back. This time, ire_add_v4 should take care of 14644 * grouping them with others because ill is part of the 14645 * group. 14646 */ 14647 ill_bcast_delete_and_add(ill, 0); 14648 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14649 14650 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14651 14652 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14653 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14654 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14655 } else { 14656 net_mask = htonl(IN_CLASSA_NET); 14657 } 14658 addr = net_mask & ipif->ipif_subnet; 14659 ill_bcast_delete_and_add(ill, addr); 14660 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14661 14662 subnet_netmask = ipif->ipif_net_mask; 14663 addr = ipif->ipif_subnet; 14664 ill_bcast_delete_and_add(ill, addr); 14665 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14666 } 14667 } 14668 14669 /* 14670 * This function is called from illgrp_delete when ill is being deleted 14671 * from the group. 14672 * 14673 * As ill is not there in the group anymore, any address belonging 14674 * to this ill should be cleared of IRE_MARK_NORECV. 14675 */ 14676 static void 14677 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 14678 { 14679 ire_t *ire; 14680 irb_t *irb; 14681 14682 ASSERT(ill->ill_group == NULL); 14683 14684 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14685 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14686 14687 if (ire != NULL) { 14688 /* 14689 * IPMP and plumbing operations are serialized on the ipsq, so 14690 * no one will insert or delete a broadcast ire under our feet. 14691 */ 14692 irb = ire->ire_bucket; 14693 rw_enter(&irb->irb_lock, RW_READER); 14694 ire_refrele(ire); 14695 14696 for (; ire != NULL; ire = ire->ire_next) { 14697 if (ire->ire_addr != addr) 14698 break; 14699 if (ire_to_ill(ire) != ill) 14700 continue; 14701 14702 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14703 ire->ire_marks &= ~IRE_MARK_NORECV; 14704 } 14705 rw_exit(&irb->irb_lock); 14706 } 14707 } 14708 14709 /* 14710 * This function must be called only after the broadcast ires 14711 * have been grouped together. For a given address addr, nominate 14712 * only one of the ires whose interface is not FAILED or OFFLINE. 14713 * 14714 * This is also called when an ipif goes down, so that we can nominate 14715 * a different ire with the same address for receiving. 14716 */ 14717 static void 14718 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 14719 { 14720 irb_t *irb; 14721 ire_t *ire; 14722 ire_t *ire1; 14723 ire_t *save_ire; 14724 ire_t **irep = NULL; 14725 boolean_t first = B_TRUE; 14726 ire_t *clear_ire = NULL; 14727 ire_t *start_ire = NULL; 14728 ire_t *new_lb_ire; 14729 ire_t *new_nlb_ire; 14730 boolean_t new_lb_ire_used = B_FALSE; 14731 boolean_t new_nlb_ire_used = B_FALSE; 14732 uint64_t match_flags; 14733 uint64_t phyi_flags; 14734 boolean_t fallback = B_FALSE; 14735 14736 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 14737 NULL, MATCH_IRE_TYPE); 14738 /* 14739 * We may not be able to find some ires if a previous 14740 * ire_create failed. This happens when an ipif goes 14741 * down and we are unable to create BROADCAST ires due 14742 * to memory failure. Thus, we have to check for NULL 14743 * below. This should handle the case for LOOPBACK, 14744 * POINTOPOINT and interfaces with some POINTOPOINT 14745 * logicals for which there are no BROADCAST ires. 14746 */ 14747 if (ire == NULL) 14748 return; 14749 /* 14750 * Currently IRE_BROADCASTS are deleted when an ipif 14751 * goes down which runs exclusively. Thus, setting 14752 * IRE_MARK_RCVD should not race with ire_delete marking 14753 * IRE_MARK_CONDEMNED. We grab the lock below just to 14754 * be consistent with other parts of the code that walks 14755 * a given bucket. 14756 */ 14757 save_ire = ire; 14758 irb = ire->ire_bucket; 14759 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14760 if (new_lb_ire == NULL) { 14761 ire_refrele(ire); 14762 return; 14763 } 14764 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14765 if (new_nlb_ire == NULL) { 14766 ire_refrele(ire); 14767 kmem_cache_free(ire_cache, new_lb_ire); 14768 return; 14769 } 14770 IRB_REFHOLD(irb); 14771 rw_enter(&irb->irb_lock, RW_WRITER); 14772 /* 14773 * Get to the first ire matching the address and the 14774 * group. If the address does not match we are done 14775 * as we could not find the IRE. If the address matches 14776 * we should get to the first one matching the group. 14777 */ 14778 while (ire != NULL) { 14779 if (ire->ire_addr != addr || 14780 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14781 break; 14782 } 14783 ire = ire->ire_next; 14784 } 14785 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14786 start_ire = ire; 14787 redo: 14788 while (ire != NULL && ire->ire_addr == addr && 14789 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14790 /* 14791 * The first ire for any address within a group 14792 * should always be the one with IRE_MARK_NORECV cleared 14793 * so that ip_wput_ire can avoid searching for one. 14794 * Note down the insertion point which will be used 14795 * later. 14796 */ 14797 if (first && (irep == NULL)) 14798 irep = ire->ire_ptpn; 14799 /* 14800 * PHYI_FAILED is set when the interface fails. 14801 * This interface might have become good, but the 14802 * daemon has not yet detected. We should still 14803 * not receive on this. PHYI_OFFLINE should never 14804 * be picked as this has been offlined and soon 14805 * be removed. 14806 */ 14807 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 14808 if (phyi_flags & PHYI_OFFLINE) { 14809 ire->ire_marks |= IRE_MARK_NORECV; 14810 ire = ire->ire_next; 14811 continue; 14812 } 14813 if (phyi_flags & match_flags) { 14814 ire->ire_marks |= IRE_MARK_NORECV; 14815 ire = ire->ire_next; 14816 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 14817 PHYI_INACTIVE) { 14818 fallback = B_TRUE; 14819 } 14820 continue; 14821 } 14822 if (first) { 14823 /* 14824 * We will move this to the front of the list later 14825 * on. 14826 */ 14827 clear_ire = ire; 14828 ire->ire_marks &= ~IRE_MARK_NORECV; 14829 } else { 14830 ire->ire_marks |= IRE_MARK_NORECV; 14831 } 14832 first = B_FALSE; 14833 ire = ire->ire_next; 14834 } 14835 /* 14836 * If we never nominated anybody, try nominating at least 14837 * an INACTIVE, if we found one. Do it only once though. 14838 */ 14839 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 14840 fallback) { 14841 match_flags = PHYI_FAILED; 14842 ire = start_ire; 14843 irep = NULL; 14844 goto redo; 14845 } 14846 ire_refrele(save_ire); 14847 14848 /* 14849 * irep non-NULL indicates that we entered the while loop 14850 * above. If clear_ire is at the insertion point, we don't 14851 * have to do anything. clear_ire will be NULL if all the 14852 * interfaces are failed. 14853 * 14854 * We cannot unlink and reinsert the ire at the right place 14855 * in the list since there can be other walkers of this bucket. 14856 * Instead we delete and recreate the ire 14857 */ 14858 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 14859 ire_t *clear_ire_stq = NULL; 14860 mblk_t *fp_mp = NULL, *res_mp = NULL; 14861 14862 bzero(new_lb_ire, sizeof (ire_t)); 14863 if (clear_ire->ire_nce != NULL) { 14864 fp_mp = clear_ire->ire_nce->nce_fp_mp; 14865 res_mp = clear_ire->ire_nce->nce_res_mp; 14866 } 14867 /* XXX We need a recovery strategy here. */ 14868 if (ire_init(new_lb_ire, 14869 (uchar_t *)&clear_ire->ire_addr, 14870 (uchar_t *)&clear_ire->ire_mask, 14871 (uchar_t *)&clear_ire->ire_src_addr, 14872 (uchar_t *)&clear_ire->ire_gateway_addr, 14873 (uchar_t *)&clear_ire->ire_in_src_addr, 14874 &clear_ire->ire_max_frag, 14875 fp_mp, 14876 clear_ire->ire_rfq, 14877 clear_ire->ire_stq, 14878 clear_ire->ire_type, 14879 res_mp, 14880 clear_ire->ire_ipif, 14881 clear_ire->ire_in_ill, 14882 clear_ire->ire_cmask, 14883 clear_ire->ire_phandle, 14884 clear_ire->ire_ihandle, 14885 clear_ire->ire_flags, 14886 &clear_ire->ire_uinfo, 14887 NULL, 14888 NULL) == NULL) 14889 cmn_err(CE_PANIC, "ire_init() failed"); 14890 if (clear_ire->ire_stq == NULL) { 14891 ire_t *ire_next = clear_ire->ire_next; 14892 if (ire_next != NULL && 14893 ire_next->ire_stq != NULL && 14894 ire_next->ire_addr == clear_ire->ire_addr && 14895 ire_next->ire_ipif->ipif_ill == 14896 clear_ire->ire_ipif->ipif_ill) { 14897 clear_ire_stq = ire_next; 14898 14899 bzero(new_nlb_ire, sizeof (ire_t)); 14900 if (clear_ire_stq->ire_nce != NULL) { 14901 fp_mp = 14902 clear_ire_stq->ire_nce->nce_fp_mp; 14903 res_mp = 14904 clear_ire_stq->ire_nce->nce_res_mp; 14905 } else { 14906 fp_mp = res_mp = NULL; 14907 } 14908 /* XXX We need a recovery strategy here. */ 14909 if (ire_init(new_nlb_ire, 14910 (uchar_t *)&clear_ire_stq->ire_addr, 14911 (uchar_t *)&clear_ire_stq->ire_mask, 14912 (uchar_t *)&clear_ire_stq->ire_src_addr, 14913 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 14914 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 14915 &clear_ire_stq->ire_max_frag, 14916 fp_mp, 14917 clear_ire_stq->ire_rfq, 14918 clear_ire_stq->ire_stq, 14919 clear_ire_stq->ire_type, 14920 res_mp, 14921 clear_ire_stq->ire_ipif, 14922 clear_ire_stq->ire_in_ill, 14923 clear_ire_stq->ire_cmask, 14924 clear_ire_stq->ire_phandle, 14925 clear_ire_stq->ire_ihandle, 14926 clear_ire_stq->ire_flags, 14927 &clear_ire_stq->ire_uinfo, 14928 NULL, 14929 NULL) == NULL) 14930 cmn_err(CE_PANIC, "ire_init() failed"); 14931 } 14932 } 14933 14934 /* 14935 * Delete the ire. We can't call ire_delete() since 14936 * we are holding the bucket lock. We can't release the 14937 * bucket lock since we can't allow irep to change. So just 14938 * mark it CONDEMNED. The IRB_REFRELE will delete the 14939 * ire from the list and do the refrele. 14940 */ 14941 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 14942 irb->irb_marks |= IRB_MARK_CONDEMNED; 14943 14944 if (clear_ire_stq != NULL) { 14945 ire_fastpath_list_delete( 14946 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 14947 clear_ire_stq); 14948 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 14949 } 14950 14951 /* 14952 * Also take care of otherfields like ib/ob pkt count 14953 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 14954 */ 14955 14956 /* Add the new ire's. Insert at *irep */ 14957 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 14958 ire1 = *irep; 14959 if (ire1 != NULL) 14960 ire1->ire_ptpn = &new_lb_ire->ire_next; 14961 new_lb_ire->ire_next = ire1; 14962 /* Link the new one in. */ 14963 new_lb_ire->ire_ptpn = irep; 14964 membar_producer(); 14965 *irep = new_lb_ire; 14966 new_lb_ire_used = B_TRUE; 14967 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14968 new_lb_ire->ire_bucket->irb_ire_cnt++; 14969 new_lb_ire->ire_ipif->ipif_ire_cnt++; 14970 14971 if (clear_ire_stq != NULL) { 14972 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 14973 irep = &new_lb_ire->ire_next; 14974 /* Add the new ire. Insert at *irep */ 14975 ire1 = *irep; 14976 if (ire1 != NULL) 14977 ire1->ire_ptpn = &new_nlb_ire->ire_next; 14978 new_nlb_ire->ire_next = ire1; 14979 /* Link the new one in. */ 14980 new_nlb_ire->ire_ptpn = irep; 14981 membar_producer(); 14982 *irep = new_nlb_ire; 14983 new_nlb_ire_used = B_TRUE; 14984 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14985 new_nlb_ire->ire_bucket->irb_ire_cnt++; 14986 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 14987 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 14988 } 14989 } 14990 rw_exit(&irb->irb_lock); 14991 if (!new_lb_ire_used) 14992 kmem_cache_free(ire_cache, new_lb_ire); 14993 if (!new_nlb_ire_used) 14994 kmem_cache_free(ire_cache, new_nlb_ire); 14995 IRB_REFRELE(irb); 14996 } 14997 14998 /* 14999 * Whenever an ipif goes down we have to renominate a different 15000 * broadcast ire to receive. Whenever an ipif comes up, we need 15001 * to make sure that we have only one nominated to receive. 15002 */ 15003 static void 15004 ipif_renominate_bcast(ipif_t *ipif) 15005 { 15006 ill_t *ill = ipif->ipif_ill; 15007 ipaddr_t subnet_addr; 15008 ipaddr_t net_addr; 15009 ipaddr_t net_mask = 0; 15010 ipaddr_t subnet_netmask; 15011 ipaddr_t addr; 15012 ill_group_t *illgrp; 15013 15014 illgrp = ill->ill_group; 15015 /* 15016 * If this is the last ipif going down, it might take 15017 * the ill out of the group. In that case ipif_down -> 15018 * illgrp_delete takes care of doing the nomination. 15019 * ipif_down does not call for this case. 15020 */ 15021 ASSERT(illgrp != NULL); 15022 15023 /* There could not have been any ires associated with this */ 15024 if (ipif->ipif_subnet == 0) 15025 return; 15026 15027 ill_mark_bcast(illgrp, 0); 15028 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15029 15030 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15031 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15032 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15033 } else { 15034 net_mask = htonl(IN_CLASSA_NET); 15035 } 15036 addr = net_mask & ipif->ipif_subnet; 15037 ill_mark_bcast(illgrp, addr); 15038 15039 net_addr = ~net_mask | addr; 15040 ill_mark_bcast(illgrp, net_addr); 15041 15042 subnet_netmask = ipif->ipif_net_mask; 15043 addr = ipif->ipif_subnet; 15044 ill_mark_bcast(illgrp, addr); 15045 15046 subnet_addr = ~subnet_netmask | addr; 15047 ill_mark_bcast(illgrp, subnet_addr); 15048 } 15049 15050 /* 15051 * Whenever we form or delete ill groups, we need to nominate one set of 15052 * BROADCAST ires for receiving in the group. 15053 * 15054 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15055 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15056 * for ill_ipif_up_count to be non-zero. This is the only case where 15057 * ill_ipif_up_count is zero and we would still find the ires. 15058 * 15059 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15060 * ipif is UP and we just have to do the nomination. 15061 * 15062 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15063 * from the group. So, we have to do the nomination. 15064 * 15065 * Because of (3), there could be just one ill in the group. But we have 15066 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15067 * Thus, this function does not optimize when there is only one ill as 15068 * it is not correct for (3). 15069 */ 15070 static void 15071 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15072 { 15073 ill_t *ill; 15074 ipif_t *ipif; 15075 ipaddr_t subnet_addr; 15076 ipaddr_t prev_subnet_addr = 0; 15077 ipaddr_t net_addr; 15078 ipaddr_t prev_net_addr = 0; 15079 ipaddr_t net_mask = 0; 15080 ipaddr_t subnet_netmask; 15081 ipaddr_t addr; 15082 15083 /* 15084 * When the last memeber is leaving, there is nothing to 15085 * nominate. 15086 */ 15087 if (illgrp->illgrp_ill_count == 0) { 15088 ASSERT(illgrp->illgrp_ill == NULL); 15089 return; 15090 } 15091 15092 ill = illgrp->illgrp_ill; 15093 ASSERT(!ill->ill_isv6); 15094 /* 15095 * We assume that ires with same address and belonging to the 15096 * same group, has been grouped together. Nominating a *single* 15097 * ill in the group for sending and receiving broadcast is done 15098 * by making sure that the first BROADCAST ire (which will be 15099 * the one returned by ire_ctable_lookup for ip_rput and the 15100 * one that will be used in ip_wput_ire) will be the one that 15101 * will not have IRE_MARK_NORECV set. 15102 * 15103 * 1) ip_rput checks and discards packets received on ires marked 15104 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15105 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15106 * first ire in the group for every broadcast address in the group. 15107 * ip_rput will accept packets only on the first ire i.e only 15108 * one copy of the ill. 15109 * 15110 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15111 * packet for the whole group. It needs to send out on the ill 15112 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15113 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15114 * the copy echoed back on other port where the ire is not marked 15115 * with IRE_MARK_NORECV. 15116 * 15117 * Note that we just need to have the first IRE either loopback or 15118 * non-loopback (either of them may not exist if ire_create failed 15119 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15120 * always hit the first one and hence will always accept one copy. 15121 * 15122 * We have a broadcast ire per ill for all the unique prefixes 15123 * hosted on that ill. As we don't have a way of knowing the 15124 * unique prefixes on a given ill and hence in the whole group, 15125 * we just call ill_mark_bcast on all the prefixes that exist 15126 * in the group. For the common case of one prefix, the code 15127 * below optimizes by remebering the last address used for 15128 * markng. In the case of multiple prefixes, this will still 15129 * optimize depending the order of prefixes. 15130 * 15131 * The only unique address across the whole group is 0.0.0.0 and 15132 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15133 * the first ire in the bucket for receiving and disables the 15134 * others. 15135 */ 15136 ill_mark_bcast(illgrp, 0); 15137 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15138 for (; ill != NULL; ill = ill->ill_group_next) { 15139 15140 for (ipif = ill->ill_ipif; ipif != NULL; 15141 ipif = ipif->ipif_next) { 15142 15143 if (!(ipif->ipif_flags & IPIF_UP) || 15144 ipif->ipif_subnet == 0) { 15145 continue; 15146 } 15147 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15148 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15149 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15150 } else { 15151 net_mask = htonl(IN_CLASSA_NET); 15152 } 15153 addr = net_mask & ipif->ipif_subnet; 15154 if (prev_net_addr == 0 || prev_net_addr != addr) { 15155 ill_mark_bcast(illgrp, addr); 15156 net_addr = ~net_mask | addr; 15157 ill_mark_bcast(illgrp, net_addr); 15158 } 15159 prev_net_addr = addr; 15160 15161 subnet_netmask = ipif->ipif_net_mask; 15162 addr = ipif->ipif_subnet; 15163 if (prev_subnet_addr == 0 || 15164 prev_subnet_addr != addr) { 15165 ill_mark_bcast(illgrp, addr); 15166 subnet_addr = ~subnet_netmask | addr; 15167 ill_mark_bcast(illgrp, subnet_addr); 15168 } 15169 prev_subnet_addr = addr; 15170 } 15171 } 15172 } 15173 15174 /* 15175 * This function is called while forming ill groups. 15176 * 15177 * Currently, we handle only allmulti groups. We want to join 15178 * allmulti on only one of the ills in the groups. In future, 15179 * when we have link aggregation, we may have to join normal 15180 * multicast groups on multiple ills as switch does inbound load 15181 * balancing. Following are the functions that calls this 15182 * function : 15183 * 15184 * 1) ill_recover_multicast : Interface is coming back UP. 15185 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15186 * will call ill_recover_multicast to recover all the multicast 15187 * groups. We need to make sure that only one member is joined 15188 * in the ill group. 15189 * 15190 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15191 * Somebody is joining allmulti. We need to make sure that only one 15192 * member is joined in the group. 15193 * 15194 * 3) illgrp_insert : If allmulti has already joined, we need to make 15195 * sure that only one member is joined in the group. 15196 * 15197 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15198 * allmulti who we have nominated. We need to pick someother ill. 15199 * 15200 * 5) illgrp_delete : The ill we nominated is leaving the group, 15201 * we need to pick a new ill to join the group. 15202 * 15203 * For (1), (2), (5) - we just have to check whether there is 15204 * a good ill joined in the group. If we could not find any ills 15205 * joined the group, we should join. 15206 * 15207 * For (4), the one that was nominated to receive, left the group. 15208 * There could be nobody joined in the group when this function is 15209 * called. 15210 * 15211 * For (3) - we need to explicitly check whether there are multiple 15212 * ills joined in the group. 15213 * 15214 * For simplicity, we don't differentiate any of the above cases. We 15215 * just leave the group if it is joined on any of them and join on 15216 * the first good ill. 15217 */ 15218 int 15219 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15220 { 15221 ilm_t *ilm; 15222 ill_t *ill; 15223 ill_t *fallback_inactive_ill = NULL; 15224 ill_t *fallback_failed_ill = NULL; 15225 int ret = 0; 15226 15227 /* 15228 * Leave the allmulti on all the ills and start fresh. 15229 */ 15230 for (ill = illgrp->illgrp_ill; ill != NULL; 15231 ill = ill->ill_group_next) { 15232 if (ill->ill_join_allmulti) 15233 (void) ip_leave_allmulti(ill->ill_ipif); 15234 } 15235 15236 /* 15237 * Choose a good ill. Fallback to inactive or failed if 15238 * none available. We need to fallback to FAILED in the 15239 * case where we have 2 interfaces in a group - where 15240 * one of them is failed and another is a good one and 15241 * the good one (not marked inactive) is leaving the group. 15242 */ 15243 ret = 0; 15244 for (ill = illgrp->illgrp_ill; ill != NULL; 15245 ill = ill->ill_group_next) { 15246 /* Never pick an offline interface */ 15247 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15248 continue; 15249 15250 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15251 fallback_failed_ill = ill; 15252 continue; 15253 } 15254 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15255 fallback_inactive_ill = ill; 15256 continue; 15257 } 15258 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15259 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15260 ret = ip_join_allmulti(ill->ill_ipif); 15261 /* 15262 * ip_join_allmulti can fail because of memory 15263 * failures. So, make sure we join at least 15264 * on one ill. 15265 */ 15266 if (ill->ill_join_allmulti) 15267 return (0); 15268 } 15269 } 15270 } 15271 if (ret != 0) { 15272 /* 15273 * If we tried nominating above and failed to do so, 15274 * return error. We might have tried multiple times. 15275 * But, return the latest error. 15276 */ 15277 return (ret); 15278 } 15279 if ((ill = fallback_inactive_ill) != NULL) { 15280 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15281 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15282 ret = ip_join_allmulti(ill->ill_ipif); 15283 return (ret); 15284 } 15285 } 15286 } else if ((ill = fallback_failed_ill) != NULL) { 15287 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15288 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15289 ret = ip_join_allmulti(ill->ill_ipif); 15290 return (ret); 15291 } 15292 } 15293 } 15294 return (0); 15295 } 15296 15297 /* 15298 * This function is called from illgrp_delete after it is 15299 * deleted from the group to reschedule responsibilities 15300 * to a different ill. 15301 */ 15302 static void 15303 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15304 { 15305 ilm_t *ilm; 15306 ipif_t *ipif; 15307 ipaddr_t subnet_addr; 15308 ipaddr_t net_addr; 15309 ipaddr_t net_mask = 0; 15310 ipaddr_t subnet_netmask; 15311 ipaddr_t addr; 15312 15313 ASSERT(ill->ill_group == NULL); 15314 /* 15315 * Broadcast Responsibility: 15316 * 15317 * 1. If this ill has been nominated for receiving broadcast 15318 * packets, we need to find a new one. Before we find a new 15319 * one, we need to re-group the ires that are part of this new 15320 * group (assumed by ill_nominate_bcast_rcv). We do this by 15321 * calling ill_group_bcast_for_xmit(ill) which will do the right 15322 * thing for us. 15323 * 15324 * 2. If this ill was not nominated for receiving broadcast 15325 * packets, we need to clear the IRE_MARK_NORECV flag 15326 * so that we continue to send up broadcast packets. 15327 */ 15328 if (!ill->ill_isv6) { 15329 /* 15330 * Case 1 above : No optimization here. Just redo the 15331 * nomination. 15332 */ 15333 ill_group_bcast_for_xmit(ill); 15334 ill_nominate_bcast_rcv(illgrp); 15335 15336 /* 15337 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15338 */ 15339 ill_clear_bcast_mark(ill, 0); 15340 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15341 15342 for (ipif = ill->ill_ipif; ipif != NULL; 15343 ipif = ipif->ipif_next) { 15344 15345 if (!(ipif->ipif_flags & IPIF_UP) || 15346 ipif->ipif_subnet == 0) { 15347 continue; 15348 } 15349 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15350 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15351 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15352 } else { 15353 net_mask = htonl(IN_CLASSA_NET); 15354 } 15355 addr = net_mask & ipif->ipif_subnet; 15356 ill_clear_bcast_mark(ill, addr); 15357 15358 net_addr = ~net_mask | addr; 15359 ill_clear_bcast_mark(ill, net_addr); 15360 15361 subnet_netmask = ipif->ipif_net_mask; 15362 addr = ipif->ipif_subnet; 15363 ill_clear_bcast_mark(ill, addr); 15364 15365 subnet_addr = ~subnet_netmask | addr; 15366 ill_clear_bcast_mark(ill, subnet_addr); 15367 } 15368 } 15369 15370 /* 15371 * Multicast Responsibility. 15372 * 15373 * If we have joined allmulti on this one, find a new member 15374 * in the group to join allmulti. As this ill is already part 15375 * of allmulti, we don't have to join on this one. 15376 * 15377 * If we have not joined allmulti on this one, there is no 15378 * responsibility to handoff. But we need to take new 15379 * responsibility i.e, join allmulti on this one if we need 15380 * to. 15381 */ 15382 if (ill->ill_join_allmulti) { 15383 (void) ill_nominate_mcast_rcv(illgrp); 15384 } else { 15385 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15386 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15387 (void) ip_join_allmulti(ill->ill_ipif); 15388 break; 15389 } 15390 } 15391 } 15392 15393 /* 15394 * We intentionally do the flushing of IRE_CACHES only matching 15395 * on the ill and not on groups. Note that we are already deleted 15396 * from the group. 15397 * 15398 * This will make sure that all IRE_CACHES whose stq is pointing 15399 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15400 * deleted and IRE_CACHES that are not pointing at this ill will 15401 * be left alone. 15402 */ 15403 if (ill->ill_isv6) { 15404 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15405 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15406 } else { 15407 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15408 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15409 } 15410 15411 /* 15412 * Some conn may have cached one of the IREs deleted above. By removing 15413 * the ire reference, we clean up the extra reference to the ill held in 15414 * ire->ire_stq. 15415 */ 15416 ipcl_walk(conn_cleanup_stale_ire, NULL); 15417 15418 /* 15419 * Re-do source address selection for all the members in the 15420 * group, if they borrowed source address from one of the ipifs 15421 * in this ill. 15422 */ 15423 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15424 if (ill->ill_isv6) { 15425 ipif_update_other_ipifs_v6(ipif, illgrp); 15426 } else { 15427 ipif_update_other_ipifs(ipif, illgrp); 15428 } 15429 } 15430 } 15431 15432 /* 15433 * Delete the ill from the group. The caller makes sure that it is 15434 * in a group and it okay to delete from the group. So, we always 15435 * delete here. 15436 */ 15437 static void 15438 illgrp_delete(ill_t *ill) 15439 { 15440 ill_group_t *illgrp; 15441 ill_group_t *tmpg; 15442 ill_t *tmp_ill; 15443 15444 /* 15445 * Reset illgrp_ill_schednext if it was pointing at us. 15446 * We need to do this before we set ill_group to NULL. 15447 */ 15448 rw_enter(&ill_g_lock, RW_WRITER); 15449 mutex_enter(&ill->ill_lock); 15450 15451 illgrp_reset_schednext(ill); 15452 15453 illgrp = ill->ill_group; 15454 15455 /* Delete the ill from illgrp. */ 15456 if (illgrp->illgrp_ill == ill) { 15457 illgrp->illgrp_ill = ill->ill_group_next; 15458 } else { 15459 tmp_ill = illgrp->illgrp_ill; 15460 while (tmp_ill->ill_group_next != ill) { 15461 tmp_ill = tmp_ill->ill_group_next; 15462 ASSERT(tmp_ill != NULL); 15463 } 15464 tmp_ill->ill_group_next = ill->ill_group_next; 15465 } 15466 ill->ill_group = NULL; 15467 ill->ill_group_next = NULL; 15468 15469 illgrp->illgrp_ill_count--; 15470 mutex_exit(&ill->ill_lock); 15471 rw_exit(&ill_g_lock); 15472 15473 /* 15474 * As this ill is leaving the group, we need to hand off 15475 * the responsibilities to the other ills in the group, if 15476 * this ill had some responsibilities. 15477 */ 15478 15479 ill_handoff_responsibility(ill, illgrp); 15480 15481 rw_enter(&ill_g_lock, RW_WRITER); 15482 15483 if (illgrp->illgrp_ill_count == 0) { 15484 15485 ASSERT(illgrp->illgrp_ill == NULL); 15486 if (ill->ill_isv6) { 15487 if (illgrp == illgrp_head_v6) { 15488 illgrp_head_v6 = illgrp->illgrp_next; 15489 } else { 15490 tmpg = illgrp_head_v6; 15491 while (tmpg->illgrp_next != illgrp) { 15492 tmpg = tmpg->illgrp_next; 15493 ASSERT(tmpg != NULL); 15494 } 15495 tmpg->illgrp_next = illgrp->illgrp_next; 15496 } 15497 } else { 15498 if (illgrp == illgrp_head_v4) { 15499 illgrp_head_v4 = illgrp->illgrp_next; 15500 } else { 15501 tmpg = illgrp_head_v4; 15502 while (tmpg->illgrp_next != illgrp) { 15503 tmpg = tmpg->illgrp_next; 15504 ASSERT(tmpg != NULL); 15505 } 15506 tmpg->illgrp_next = illgrp->illgrp_next; 15507 } 15508 } 15509 mutex_destroy(&illgrp->illgrp_lock); 15510 mi_free(illgrp); 15511 } 15512 rw_exit(&ill_g_lock); 15513 15514 /* 15515 * Even though the ill is out of the group its not necessary 15516 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15517 * We will split the ipsq when phyint_groupname is set to NULL. 15518 */ 15519 15520 /* 15521 * Send a routing sockets message if we are deleting from 15522 * groups with names. 15523 */ 15524 if (ill->ill_phyint->phyint_groupname_len != 0) 15525 ip_rts_ifmsg(ill->ill_ipif); 15526 } 15527 15528 /* 15529 * Re-do source address selection. This is normally called when 15530 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15531 * ipif comes up. 15532 */ 15533 void 15534 ill_update_source_selection(ill_t *ill) 15535 { 15536 ipif_t *ipif; 15537 15538 ASSERT(IAM_WRITER_ILL(ill)); 15539 15540 if (ill->ill_group != NULL) 15541 ill = ill->ill_group->illgrp_ill; 15542 15543 for (; ill != NULL; ill = ill->ill_group_next) { 15544 for (ipif = ill->ill_ipif; ipif != NULL; 15545 ipif = ipif->ipif_next) { 15546 if (ill->ill_isv6) 15547 ipif_recreate_interface_routes_v6(NULL, ipif); 15548 else 15549 ipif_recreate_interface_routes(NULL, ipif); 15550 } 15551 } 15552 } 15553 15554 /* 15555 * Insert ill in a group headed by illgrp_head. The caller can either 15556 * pass a groupname in which case we search for a group with the 15557 * same name to insert in or pass a group to insert in. This function 15558 * would only search groups with names. 15559 * 15560 * NOTE : The caller should make sure that there is at least one ipif 15561 * UP on this ill so that illgrp_scheduler can pick this ill 15562 * for outbound packets. If ill_ipif_up_count is zero, we have 15563 * already sent a DL_UNBIND to the driver and we don't want to 15564 * send anymore packets. We don't assert for ipif_up_count 15565 * to be greater than zero, because ipif_up_done wants to call 15566 * this function before bumping up the ipif_up_count. See 15567 * ipif_up_done() for details. 15568 */ 15569 int 15570 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15571 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15572 { 15573 ill_group_t *illgrp; 15574 ill_t *prev_ill; 15575 phyint_t *phyi; 15576 15577 ASSERT(ill->ill_group == NULL); 15578 15579 rw_enter(&ill_g_lock, RW_WRITER); 15580 mutex_enter(&ill->ill_lock); 15581 15582 if (groupname != NULL) { 15583 /* 15584 * Look for a group with a matching groupname to insert. 15585 */ 15586 for (illgrp = *illgrp_head; illgrp != NULL; 15587 illgrp = illgrp->illgrp_next) { 15588 15589 ill_t *tmp_ill; 15590 15591 /* 15592 * If we have an ill_group_t in the list which has 15593 * no ill_t assigned then we must be in the process of 15594 * removing this group. We skip this as illgrp_delete() 15595 * will remove it from the list. 15596 */ 15597 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15598 ASSERT(illgrp->illgrp_ill_count == 0); 15599 continue; 15600 } 15601 15602 ASSERT(tmp_ill->ill_phyint != NULL); 15603 phyi = tmp_ill->ill_phyint; 15604 /* 15605 * Look at groups which has names only. 15606 */ 15607 if (phyi->phyint_groupname_len == 0) 15608 continue; 15609 /* 15610 * Names are stored in the phyint common to both 15611 * IPv4 and IPv6. 15612 */ 15613 if (mi_strcmp(phyi->phyint_groupname, 15614 groupname) == 0) { 15615 break; 15616 } 15617 } 15618 } else { 15619 /* 15620 * If the caller passes in a NULL "grp_to_insert", we 15621 * allocate one below and insert this singleton. 15622 */ 15623 illgrp = grp_to_insert; 15624 } 15625 15626 ill->ill_group_next = NULL; 15627 15628 if (illgrp == NULL) { 15629 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15630 if (illgrp == NULL) { 15631 return (ENOMEM); 15632 } 15633 illgrp->illgrp_next = *illgrp_head; 15634 *illgrp_head = illgrp; 15635 illgrp->illgrp_ill = ill; 15636 illgrp->illgrp_ill_count = 1; 15637 ill->ill_group = illgrp; 15638 /* 15639 * Used in illgrp_scheduler to protect multiple threads 15640 * from traversing the list. 15641 */ 15642 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 15643 } else { 15644 ASSERT(ill->ill_net_type == 15645 illgrp->illgrp_ill->ill_net_type); 15646 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 15647 15648 /* Insert ill at tail of this group */ 15649 prev_ill = illgrp->illgrp_ill; 15650 while (prev_ill->ill_group_next != NULL) 15651 prev_ill = prev_ill->ill_group_next; 15652 prev_ill->ill_group_next = ill; 15653 ill->ill_group = illgrp; 15654 illgrp->illgrp_ill_count++; 15655 /* 15656 * Inherit group properties. Currently only forwarding 15657 * is the property we try to keep the same with all the 15658 * ills. When there are more, we will abstract this into 15659 * a function. 15660 */ 15661 ill->ill_flags &= ~ILLF_ROUTER; 15662 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 15663 } 15664 mutex_exit(&ill->ill_lock); 15665 rw_exit(&ill_g_lock); 15666 15667 /* 15668 * 1) When ipif_up_done() calls this function, ipif_up_count 15669 * may be zero as it has not yet been bumped. But the ires 15670 * have already been added. So, we do the nomination here 15671 * itself. But, when ip_sioctl_groupname calls this, it checks 15672 * for ill_ipif_up_count != 0. Thus we don't check for 15673 * ill_ipif_up_count here while nominating broadcast ires for 15674 * receive. 15675 * 15676 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 15677 * to group them properly as ire_add() has already happened 15678 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 15679 * case, we need to do it here anyway. 15680 */ 15681 if (!ill->ill_isv6) { 15682 ill_group_bcast_for_xmit(ill); 15683 ill_nominate_bcast_rcv(illgrp); 15684 } 15685 15686 if (!ipif_is_coming_up) { 15687 /* 15688 * When ipif_up_done() calls this function, the multicast 15689 * groups have not been joined yet. So, there is no point in 15690 * nomination. ip_join_allmulti will handle groups when 15691 * ill_recover_multicast is called from ipif_up_done() later. 15692 */ 15693 (void) ill_nominate_mcast_rcv(illgrp); 15694 /* 15695 * ipif_up_done calls ill_update_source_selection 15696 * anyway. Moreover, we don't want to re-create 15697 * interface routes while ipif_up_done() still has reference 15698 * to them. Refer to ipif_up_done() for more details. 15699 */ 15700 ill_update_source_selection(ill); 15701 } 15702 15703 /* 15704 * Send a routing sockets message if we are inserting into 15705 * groups with names. 15706 */ 15707 if (groupname != NULL) 15708 ip_rts_ifmsg(ill->ill_ipif); 15709 return (0); 15710 } 15711 15712 /* 15713 * Return the first phyint matching the groupname. There could 15714 * be more than one when there are ill groups. 15715 * 15716 * Needs work: called only from ip_sioctl_groupname 15717 */ 15718 static phyint_t * 15719 phyint_lookup_group(char *groupname) 15720 { 15721 phyint_t *phyi; 15722 15723 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 15724 /* 15725 * Group names are stored in the phyint - a common structure 15726 * to both IPv4 and IPv6. 15727 */ 15728 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 15729 for (; phyi != NULL; 15730 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 15731 phyi, AVL_AFTER)) { 15732 if (phyi->phyint_groupname_len == 0) 15733 continue; 15734 ASSERT(phyi->phyint_groupname != NULL); 15735 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15736 return (phyi); 15737 } 15738 return (NULL); 15739 } 15740 15741 15742 15743 /* 15744 * MT notes on creation and deletion of IPMP groups 15745 * 15746 * Creation and deletion of IPMP groups introduce the need to merge or 15747 * split the associated serialization objects i.e the ipsq's. Normally all 15748 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 15749 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 15750 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 15751 * is a need to change the <ill-ipsq> association and we have to operate on both 15752 * the source and destination IPMP groups. For eg. attempting to set the 15753 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 15754 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 15755 * source or destination IPMP group are mapped to a single ipsq for executing 15756 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 15757 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 15758 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 15759 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 15760 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 15761 * ipsq has to be examined for redoing the <ill-ipsq> associations. 15762 * 15763 * In the above example the ioctl handling code locates the current ipsq of hme0 15764 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 15765 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 15766 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 15767 * the destination ipsq. If the destination ipsq is not busy, it also enters 15768 * the destination ipsq exclusively. Now the actual groupname setting operation 15769 * can proceed. If the destination ipsq is busy, the operation is enqueued 15770 * on the destination (merged) ipsq and will be handled in the unwind from 15771 * ipsq_exit. 15772 * 15773 * To prevent other threads accessing the ill while the group name change is 15774 * in progres, we bring down the ipifs which also removes the ill from the 15775 * group. The group is changed in phyint and when the first ipif on the ill 15776 * is brought up, the ill is inserted into the right IPMP group by 15777 * illgrp_insert. 15778 */ 15779 /* ARGSUSED */ 15780 int 15781 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15782 ip_ioctl_cmd_t *ipip, void *ifreq) 15783 { 15784 int i; 15785 char *tmp; 15786 int namelen; 15787 ill_t *ill = ipif->ipif_ill; 15788 ill_t *ill_v4, *ill_v6; 15789 int err = 0; 15790 phyint_t *phyi; 15791 phyint_t *phyi_tmp; 15792 struct lifreq *lifr; 15793 mblk_t *mp1; 15794 char *groupname; 15795 ipsq_t *ipsq; 15796 15797 ASSERT(IAM_WRITER_IPIF(ipif)); 15798 15799 /* Existance verified in ip_wput_nondata */ 15800 mp1 = mp->b_cont->b_cont; 15801 lifr = (struct lifreq *)mp1->b_rptr; 15802 groupname = lifr->lifr_groupname; 15803 15804 if (ipif->ipif_id != 0) 15805 return (EINVAL); 15806 15807 phyi = ill->ill_phyint; 15808 ASSERT(phyi != NULL); 15809 15810 if (phyi->phyint_flags & PHYI_VIRTUAL) 15811 return (EINVAL); 15812 15813 tmp = groupname; 15814 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 15815 ; 15816 15817 if (i == LIFNAMSIZ) { 15818 /* no null termination */ 15819 return (EINVAL); 15820 } 15821 15822 /* 15823 * Calculate the namelen exclusive of the null 15824 * termination character. 15825 */ 15826 namelen = tmp - groupname; 15827 15828 ill_v4 = phyi->phyint_illv4; 15829 ill_v6 = phyi->phyint_illv6; 15830 15831 /* 15832 * ILL cannot be part of a usesrc group and and IPMP group at the 15833 * same time. No need to grab the ill_g_usesrc_lock here, see 15834 * synchronization notes in ip.c 15835 */ 15836 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 15837 return (EINVAL); 15838 } 15839 15840 /* 15841 * mark the ill as changing. 15842 * this should queue all new requests on the syncq. 15843 */ 15844 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15845 15846 if (ill_v4 != NULL) 15847 ill_v4->ill_state_flags |= ILL_CHANGING; 15848 if (ill_v6 != NULL) 15849 ill_v6->ill_state_flags |= ILL_CHANGING; 15850 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15851 15852 if (namelen == 0) { 15853 /* 15854 * Null string means remove this interface from the 15855 * existing group. 15856 */ 15857 if (phyi->phyint_groupname_len == 0) { 15858 /* 15859 * Never was in a group. 15860 */ 15861 err = 0; 15862 goto done; 15863 } 15864 15865 /* 15866 * IPv4 or IPv6 may be temporarily out of the group when all 15867 * the ipifs are down. Thus, we need to check for ill_group to 15868 * be non-NULL. 15869 */ 15870 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 15871 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15872 mutex_enter(&ill_v4->ill_lock); 15873 if (!ill_is_quiescent(ill_v4)) { 15874 /* 15875 * ipsq_pending_mp_add will not fail since 15876 * connp is NULL 15877 */ 15878 (void) ipsq_pending_mp_add(NULL, 15879 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15880 mutex_exit(&ill_v4->ill_lock); 15881 err = EINPROGRESS; 15882 goto done; 15883 } 15884 mutex_exit(&ill_v4->ill_lock); 15885 } 15886 15887 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 15888 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15889 mutex_enter(&ill_v6->ill_lock); 15890 if (!ill_is_quiescent(ill_v6)) { 15891 (void) ipsq_pending_mp_add(NULL, 15892 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15893 mutex_exit(&ill_v6->ill_lock); 15894 err = EINPROGRESS; 15895 goto done; 15896 } 15897 mutex_exit(&ill_v6->ill_lock); 15898 } 15899 15900 rw_enter(&ill_g_lock, RW_WRITER); 15901 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15902 mutex_enter(&phyi->phyint_lock); 15903 ASSERT(phyi->phyint_groupname != NULL); 15904 mi_free(phyi->phyint_groupname); 15905 phyi->phyint_groupname = NULL; 15906 phyi->phyint_groupname_len = 0; 15907 mutex_exit(&phyi->phyint_lock); 15908 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15909 rw_exit(&ill_g_lock); 15910 err = ill_up_ipifs(ill, q, mp); 15911 15912 /* 15913 * set the split flag so that the ipsq can be split 15914 */ 15915 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15916 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15917 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15918 15919 } else { 15920 if (phyi->phyint_groupname_len != 0) { 15921 ASSERT(phyi->phyint_groupname != NULL); 15922 /* Are we inserting in the same group ? */ 15923 if (mi_strcmp(groupname, 15924 phyi->phyint_groupname) == 0) { 15925 err = 0; 15926 goto done; 15927 } 15928 } 15929 15930 rw_enter(&ill_g_lock, RW_READER); 15931 /* 15932 * Merge ipsq for the group's. 15933 * This check is here as multiple groups/ills might be 15934 * sharing the same ipsq. 15935 * If we have to merege than the operation is restarted 15936 * on the new ipsq. 15937 */ 15938 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 15939 if (phyi->phyint_ipsq != ipsq) { 15940 rw_exit(&ill_g_lock); 15941 err = ill_merge_groups(ill, NULL, groupname, mp, q); 15942 goto done; 15943 } 15944 /* 15945 * Running exclusive on new ipsq. 15946 */ 15947 15948 ASSERT(ipsq != NULL); 15949 ASSERT(ipsq->ipsq_writer == curthread); 15950 15951 /* 15952 * Check whether the ill_type and ill_net_type matches before 15953 * we allocate any memory so that the cleanup is easier. 15954 * 15955 * We can't group dissimilar ones as we can't load spread 15956 * packets across the group because of potential link-level 15957 * header differences. 15958 */ 15959 phyi_tmp = phyint_lookup_group(groupname); 15960 if (phyi_tmp != NULL) { 15961 if ((ill_v4 != NULL && 15962 phyi_tmp->phyint_illv4 != NULL) && 15963 ((ill_v4->ill_net_type != 15964 phyi_tmp->phyint_illv4->ill_net_type) || 15965 (ill_v4->ill_type != 15966 phyi_tmp->phyint_illv4->ill_type))) { 15967 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15968 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15969 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15970 rw_exit(&ill_g_lock); 15971 return (EINVAL); 15972 } 15973 if ((ill_v6 != NULL && 15974 phyi_tmp->phyint_illv6 != NULL) && 15975 ((ill_v6->ill_net_type != 15976 phyi_tmp->phyint_illv6->ill_net_type) || 15977 (ill_v6->ill_type != 15978 phyi_tmp->phyint_illv6->ill_type))) { 15979 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15980 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15981 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15982 rw_exit(&ill_g_lock); 15983 return (EINVAL); 15984 } 15985 } 15986 15987 rw_exit(&ill_g_lock); 15988 15989 /* 15990 * bring down all v4 ipifs. 15991 */ 15992 if (ill_v4 != NULL) { 15993 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15994 } 15995 15996 /* 15997 * bring down all v6 ipifs. 15998 */ 15999 if (ill_v6 != NULL) { 16000 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16001 } 16002 16003 /* 16004 * make sure all ipifs are down and there are no active 16005 * references. Call to ipsq_pending_mp_add will not fail 16006 * since connp is NULL. 16007 */ 16008 if (ill_v4 != NULL) { 16009 mutex_enter(&ill_v4->ill_lock); 16010 if (!ill_is_quiescent(ill_v4)) { 16011 (void) ipsq_pending_mp_add(NULL, 16012 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16013 mutex_exit(&ill_v4->ill_lock); 16014 err = EINPROGRESS; 16015 goto done; 16016 } 16017 mutex_exit(&ill_v4->ill_lock); 16018 } 16019 16020 if (ill_v6 != NULL) { 16021 mutex_enter(&ill_v6->ill_lock); 16022 if (!ill_is_quiescent(ill_v6)) { 16023 (void) ipsq_pending_mp_add(NULL, 16024 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16025 mutex_exit(&ill_v6->ill_lock); 16026 err = EINPROGRESS; 16027 goto done; 16028 } 16029 mutex_exit(&ill_v6->ill_lock); 16030 } 16031 16032 /* 16033 * allocate including space for null terminator 16034 * before we insert. 16035 */ 16036 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16037 if (tmp == NULL) 16038 return (ENOMEM); 16039 16040 rw_enter(&ill_g_lock, RW_WRITER); 16041 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16042 mutex_enter(&phyi->phyint_lock); 16043 if (phyi->phyint_groupname_len != 0) { 16044 ASSERT(phyi->phyint_groupname != NULL); 16045 mi_free(phyi->phyint_groupname); 16046 } 16047 16048 /* 16049 * setup the new group name. 16050 */ 16051 phyi->phyint_groupname = tmp; 16052 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16053 phyi->phyint_groupname_len = namelen + 1; 16054 mutex_exit(&phyi->phyint_lock); 16055 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16056 rw_exit(&ill_g_lock); 16057 16058 err = ill_up_ipifs(ill, q, mp); 16059 } 16060 16061 done: 16062 /* 16063 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16064 */ 16065 if (err != EINPROGRESS) { 16066 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16067 if (ill_v4 != NULL) 16068 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16069 if (ill_v6 != NULL) 16070 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16071 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16072 } 16073 return (err); 16074 } 16075 16076 /* ARGSUSED */ 16077 int 16078 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16079 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16080 { 16081 ill_t *ill; 16082 phyint_t *phyi; 16083 struct lifreq *lifr; 16084 mblk_t *mp1; 16085 16086 /* Existence verified in ip_wput_nondata */ 16087 mp1 = mp->b_cont->b_cont; 16088 lifr = (struct lifreq *)mp1->b_rptr; 16089 ill = ipif->ipif_ill; 16090 phyi = ill->ill_phyint; 16091 16092 lifr->lifr_groupname[0] = '\0'; 16093 /* 16094 * ill_group may be null if all the interfaces 16095 * are down. But still, the phyint should always 16096 * hold the name. 16097 */ 16098 if (phyi->phyint_groupname_len != 0) { 16099 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16100 phyi->phyint_groupname_len); 16101 } 16102 16103 return (0); 16104 } 16105 16106 16107 typedef struct conn_move_s { 16108 ill_t *cm_from_ill; 16109 ill_t *cm_to_ill; 16110 int cm_ifindex; 16111 } conn_move_t; 16112 16113 /* 16114 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16115 */ 16116 static void 16117 conn_move(conn_t *connp, caddr_t arg) 16118 { 16119 conn_move_t *connm; 16120 int ifindex; 16121 int i; 16122 ill_t *from_ill; 16123 ill_t *to_ill; 16124 ilg_t *ilg; 16125 ilm_t *ret_ilm; 16126 16127 connm = (conn_move_t *)arg; 16128 ifindex = connm->cm_ifindex; 16129 from_ill = connm->cm_from_ill; 16130 to_ill = connm->cm_to_ill; 16131 16132 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16133 16134 /* All multicast fields protected by conn_lock */ 16135 mutex_enter(&connp->conn_lock); 16136 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16137 if ((connp->conn_outgoing_ill == from_ill) && 16138 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16139 connp->conn_outgoing_ill = to_ill; 16140 connp->conn_incoming_ill = to_ill; 16141 } 16142 16143 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16144 16145 if ((connp->conn_multicast_ill == from_ill) && 16146 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16147 connp->conn_multicast_ill = connm->cm_to_ill; 16148 } 16149 16150 /* Change IP_XMIT_IF associations */ 16151 if ((connp->conn_xmit_if_ill == from_ill) && 16152 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16153 connp->conn_xmit_if_ill = to_ill; 16154 } 16155 /* 16156 * Change the ilg_ill to point to the new one. This assumes 16157 * ilm_move_v6 has moved the ilms to new_ill and the driver 16158 * has been told to receive packets on this interface. 16159 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16160 * But when doing a FAILOVER, it might fail with ENOMEM and so 16161 * some ilms may not have moved. We check to see whether 16162 * the ilms have moved to to_ill. We can't check on from_ill 16163 * as in the process of moving, we could have split an ilm 16164 * in to two - which has the same orig_ifindex and v6group. 16165 * 16166 * For IPv4, ilg_ipif moves implicitly. The code below really 16167 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16168 */ 16169 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16170 ilg = &connp->conn_ilg[i]; 16171 if ((ilg->ilg_ill == from_ill) && 16172 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16173 /* ifindex != 0 indicates failback */ 16174 if (ifindex != 0) { 16175 connp->conn_ilg[i].ilg_ill = to_ill; 16176 continue; 16177 } 16178 16179 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16180 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16181 connp->conn_zoneid); 16182 16183 if (ret_ilm != NULL) 16184 connp->conn_ilg[i].ilg_ill = to_ill; 16185 } 16186 } 16187 mutex_exit(&connp->conn_lock); 16188 } 16189 16190 static void 16191 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16192 { 16193 conn_move_t connm; 16194 16195 connm.cm_from_ill = from_ill; 16196 connm.cm_to_ill = to_ill; 16197 connm.cm_ifindex = ifindex; 16198 16199 ipcl_walk(conn_move, (caddr_t)&connm); 16200 } 16201 16202 /* 16203 * ilm has been moved from from_ill to to_ill. 16204 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16205 * appropriately. 16206 * 16207 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16208 * the code there de-references ipif_ill to get the ill to 16209 * send multicast requests. It does not work as ipif is on its 16210 * move and already moved when this function is called. 16211 * Thus, we need to use from_ill and to_ill send down multicast 16212 * requests. 16213 */ 16214 static void 16215 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16216 { 16217 ipif_t *ipif; 16218 ilm_t *ilm; 16219 16220 /* 16221 * See whether we need to send down DL_ENABMULTI_REQ on 16222 * to_ill as ilm has just been added. 16223 */ 16224 ASSERT(IAM_WRITER_ILL(to_ill)); 16225 ASSERT(IAM_WRITER_ILL(from_ill)); 16226 16227 ILM_WALKER_HOLD(to_ill); 16228 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16229 16230 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16231 continue; 16232 /* 16233 * no locks held, ill/ipif cannot dissappear as long 16234 * as we are writer. 16235 */ 16236 ipif = to_ill->ill_ipif; 16237 /* 16238 * No need to hold any lock as we are the writer and this 16239 * can only be changed by a writer. 16240 */ 16241 ilm->ilm_is_new = B_FALSE; 16242 16243 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16244 ipif->ipif_flags & IPIF_POINTOPOINT) { 16245 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16246 "resolver\n")); 16247 continue; /* Must be IRE_IF_NORESOLVER */ 16248 } 16249 16250 16251 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16252 ip1dbg(("ilm_send_multicast_reqs: " 16253 "to_ill MULTI_BCAST\n")); 16254 goto from; 16255 } 16256 16257 if (to_ill->ill_isv6) 16258 mld_joingroup(ilm); 16259 else 16260 igmp_joingroup(ilm); 16261 16262 if (to_ill->ill_ipif_up_count == 0) { 16263 /* 16264 * Nobody there. All multicast addresses will be 16265 * re-joined when we get the DL_BIND_ACK bringing the 16266 * interface up. 16267 */ 16268 ilm->ilm_notify_driver = B_FALSE; 16269 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16270 goto from; 16271 } 16272 16273 /* 16274 * For allmulti address, we want to join on only one interface. 16275 * Checking for ilm_numentries_v6 is not correct as you may 16276 * find an ilm with zero address on to_ill, but we may not 16277 * have nominated to_ill for receiving. Thus, if we have 16278 * nominated from_ill (ill_join_allmulti is set), nominate 16279 * only if to_ill is not already nominated (to_ill normally 16280 * should not have been nominated if "from_ill" has already 16281 * been nominated. As we don't prevent failovers from happening 16282 * across groups, we don't assert). 16283 */ 16284 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16285 /* 16286 * There is no need to hold ill locks as we are 16287 * writer on both ills and when ill_join_allmulti 16288 * is changed the thread is always a writer. 16289 */ 16290 if (from_ill->ill_join_allmulti && 16291 !to_ill->ill_join_allmulti) { 16292 (void) ip_join_allmulti(to_ill->ill_ipif); 16293 } 16294 } else if (ilm->ilm_notify_driver) { 16295 16296 /* 16297 * This is a newly moved ilm so we need to tell the 16298 * driver about the new group. There can be more than 16299 * one ilm's for the same group in the list each with a 16300 * different orig_ifindex. We have to inform the driver 16301 * once. In ilm_move_v[4,6] we only set the flag 16302 * ilm_notify_driver for the first ilm. 16303 */ 16304 16305 (void) ip_ll_send_enabmulti_req(to_ill, 16306 &ilm->ilm_v6addr); 16307 } 16308 16309 ilm->ilm_notify_driver = B_FALSE; 16310 16311 /* 16312 * See whether we need to send down DL_DISABMULTI_REQ on 16313 * from_ill as ilm has just been removed. 16314 */ 16315 from: 16316 ipif = from_ill->ill_ipif; 16317 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16318 ipif->ipif_flags & IPIF_POINTOPOINT) { 16319 ip1dbg(("ilm_send_multicast_reqs: " 16320 "from_ill not resolver\n")); 16321 continue; /* Must be IRE_IF_NORESOLVER */ 16322 } 16323 16324 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16325 ip1dbg(("ilm_send_multicast_reqs: " 16326 "from_ill MULTI_BCAST\n")); 16327 continue; 16328 } 16329 16330 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16331 if (from_ill->ill_join_allmulti) 16332 (void) ip_leave_allmulti(from_ill->ill_ipif); 16333 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16334 (void) ip_ll_send_disabmulti_req(from_ill, 16335 &ilm->ilm_v6addr); 16336 } 16337 } 16338 ILM_WALKER_RELE(to_ill); 16339 } 16340 16341 /* 16342 * This function is called when all multicast memberships needs 16343 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16344 * called only once unlike the IPv4 counterpart where it is called after 16345 * every logical interface is moved. The reason is due to multicast 16346 * memberships are joined using an interface address in IPv4 while in 16347 * IPv6, interface index is used. 16348 */ 16349 static void 16350 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16351 { 16352 ilm_t *ilm; 16353 ilm_t *ilm_next; 16354 ilm_t *new_ilm; 16355 ilm_t **ilmp; 16356 int count; 16357 char buf[INET6_ADDRSTRLEN]; 16358 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16359 16360 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16361 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16362 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16363 16364 if (ifindex == 0) { 16365 /* 16366 * Form the solicited node mcast address which is used later. 16367 */ 16368 ipif_t *ipif; 16369 16370 ipif = from_ill->ill_ipif; 16371 ASSERT(ipif->ipif_id == 0); 16372 16373 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16374 } 16375 16376 ilmp = &from_ill->ill_ilm; 16377 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16378 ilm_next = ilm->ilm_next; 16379 16380 if (ilm->ilm_flags & ILM_DELETED) { 16381 ilmp = &ilm->ilm_next; 16382 continue; 16383 } 16384 16385 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16386 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16387 ASSERT(ilm->ilm_orig_ifindex != 0); 16388 if (ilm->ilm_orig_ifindex == ifindex) { 16389 /* 16390 * We are failing back multicast memberships. 16391 * If the same ilm exists in to_ill, it means somebody 16392 * has joined the same group there e.g. ff02::1 16393 * is joined within the kernel when the interfaces 16394 * came UP. 16395 */ 16396 ASSERT(ilm->ilm_ipif == NULL); 16397 if (new_ilm != NULL) { 16398 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16399 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16400 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16401 new_ilm->ilm_is_new = B_TRUE; 16402 } 16403 } else { 16404 /* 16405 * check if we can just move the ilm 16406 */ 16407 if (from_ill->ill_ilm_walker_cnt != 0) { 16408 /* 16409 * We have walkers we cannot move 16410 * the ilm, so allocate a new ilm, 16411 * this (old) ilm will be marked 16412 * ILM_DELETED at the end of the loop 16413 * and will be freed when the 16414 * last walker exits. 16415 */ 16416 new_ilm = (ilm_t *)mi_zalloc 16417 (sizeof (ilm_t)); 16418 if (new_ilm == NULL) { 16419 ip0dbg(("ilm_move_v6: " 16420 "FAILBACK of IPv6" 16421 " multicast address %s : " 16422 "from %s to" 16423 " %s failed : ENOMEM \n", 16424 inet_ntop(AF_INET6, 16425 &ilm->ilm_v6addr, buf, 16426 sizeof (buf)), 16427 from_ill->ill_name, 16428 to_ill->ill_name)); 16429 16430 ilmp = &ilm->ilm_next; 16431 continue; 16432 } 16433 *new_ilm = *ilm; 16434 /* 16435 * we don't want new_ilm linked to 16436 * ilm's filter list. 16437 */ 16438 new_ilm->ilm_filter = NULL; 16439 } else { 16440 /* 16441 * No walkers we can move the ilm. 16442 * lets take it out of the list. 16443 */ 16444 *ilmp = ilm->ilm_next; 16445 ilm->ilm_next = NULL; 16446 new_ilm = ilm; 16447 } 16448 16449 /* 16450 * if this is the first ilm for the group 16451 * set ilm_notify_driver so that we notify the 16452 * driver in ilm_send_multicast_reqs. 16453 */ 16454 if (ilm_lookup_ill_v6(to_ill, 16455 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16456 new_ilm->ilm_notify_driver = B_TRUE; 16457 16458 new_ilm->ilm_ill = to_ill; 16459 /* Add to the to_ill's list */ 16460 new_ilm->ilm_next = to_ill->ill_ilm; 16461 to_ill->ill_ilm = new_ilm; 16462 /* 16463 * set the flag so that mld_joingroup is 16464 * called in ilm_send_multicast_reqs(). 16465 */ 16466 new_ilm->ilm_is_new = B_TRUE; 16467 } 16468 goto bottom; 16469 } else if (ifindex != 0) { 16470 /* 16471 * If this is FAILBACK (ifindex != 0) and the ifindex 16472 * has not matched above, look at the next ilm. 16473 */ 16474 ilmp = &ilm->ilm_next; 16475 continue; 16476 } 16477 /* 16478 * If we are here, it means ifindex is 0. Failover 16479 * everything. 16480 * 16481 * We need to handle solicited node mcast address 16482 * and all_nodes mcast address differently as they 16483 * are joined witin the kenrel (ipif_multicast_up) 16484 * and potentially from the userland. We are called 16485 * after the ipifs of from_ill has been moved. 16486 * If we still find ilms on ill with solicited node 16487 * mcast address or all_nodes mcast address, it must 16488 * belong to the UP interface that has not moved e.g. 16489 * ipif_id 0 with the link local prefix does not move. 16490 * We join this on the new ill accounting for all the 16491 * userland memberships so that applications don't 16492 * see any failure. 16493 * 16494 * We need to make sure that we account only for the 16495 * solicited node and all node multicast addresses 16496 * that was brought UP on these. In the case of 16497 * a failover from A to B, we might have ilms belonging 16498 * to A (ilm_orig_ifindex pointing at A) on B accounting 16499 * for the membership from the userland. If we are failing 16500 * over from B to C now, we will find the ones belonging 16501 * to A on B. These don't account for the ill_ipif_up_count. 16502 * They just move from B to C. The check below on 16503 * ilm_orig_ifindex ensures that. 16504 */ 16505 if ((ilm->ilm_orig_ifindex == 16506 from_ill->ill_phyint->phyint_ifindex) && 16507 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16508 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16509 &ilm->ilm_v6addr))) { 16510 ASSERT(ilm->ilm_refcnt > 0); 16511 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16512 /* 16513 * For indentation reasons, we are not using a 16514 * "else" here. 16515 */ 16516 if (count == 0) { 16517 ilmp = &ilm->ilm_next; 16518 continue; 16519 } 16520 ilm->ilm_refcnt -= count; 16521 if (new_ilm != NULL) { 16522 /* 16523 * Can find one with the same 16524 * ilm_orig_ifindex, if we are failing 16525 * over to a STANDBY. This happens 16526 * when somebody wants to join a group 16527 * on a STANDBY interface and we 16528 * internally join on a different one. 16529 * If we had joined on from_ill then, a 16530 * failover now will find a new ilm 16531 * with this index. 16532 */ 16533 ip1dbg(("ilm_move_v6: FAILOVER, found" 16534 " new ilm on %s, group address %s\n", 16535 to_ill->ill_name, 16536 inet_ntop(AF_INET6, 16537 &ilm->ilm_v6addr, buf, 16538 sizeof (buf)))); 16539 new_ilm->ilm_refcnt += count; 16540 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16541 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16542 new_ilm->ilm_is_new = B_TRUE; 16543 } 16544 } else { 16545 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16546 if (new_ilm == NULL) { 16547 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 16548 " multicast address %s : from %s to" 16549 " %s failed : ENOMEM \n", 16550 inet_ntop(AF_INET6, 16551 &ilm->ilm_v6addr, buf, 16552 sizeof (buf)), from_ill->ill_name, 16553 to_ill->ill_name)); 16554 ilmp = &ilm->ilm_next; 16555 continue; 16556 } 16557 *new_ilm = *ilm; 16558 new_ilm->ilm_filter = NULL; 16559 new_ilm->ilm_refcnt = count; 16560 new_ilm->ilm_timer = INFINITY; 16561 new_ilm->ilm_rtx.rtx_timer = INFINITY; 16562 new_ilm->ilm_is_new = B_TRUE; 16563 /* 16564 * If the to_ill has not joined this 16565 * group we need to tell the driver in 16566 * ill_send_multicast_reqs. 16567 */ 16568 if (ilm_lookup_ill_v6(to_ill, 16569 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16570 new_ilm->ilm_notify_driver = B_TRUE; 16571 16572 new_ilm->ilm_ill = to_ill; 16573 /* Add to the to_ill's list */ 16574 new_ilm->ilm_next = to_ill->ill_ilm; 16575 to_ill->ill_ilm = new_ilm; 16576 ASSERT(new_ilm->ilm_ipif == NULL); 16577 } 16578 if (ilm->ilm_refcnt == 0) { 16579 goto bottom; 16580 } else { 16581 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16582 CLEAR_SLIST(new_ilm->ilm_filter); 16583 ilmp = &ilm->ilm_next; 16584 } 16585 continue; 16586 } else { 16587 /* 16588 * ifindex = 0 means, move everything pointing at 16589 * from_ill. We are doing this becuase ill has 16590 * either FAILED or became INACTIVE. 16591 * 16592 * As we would like to move things later back to 16593 * from_ill, we want to retain the identity of this 16594 * ilm. Thus, we don't blindly increment the reference 16595 * count on the ilms matching the address alone. We 16596 * need to match on the ilm_orig_index also. new_ilm 16597 * was obtained by matching ilm_orig_index also. 16598 */ 16599 if (new_ilm != NULL) { 16600 /* 16601 * This is possible only if a previous restore 16602 * was incomplete i.e restore to 16603 * ilm_orig_ifindex left some ilms because 16604 * of some failures. Thus when we are failing 16605 * again, we might find our old friends there. 16606 */ 16607 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 16608 " on %s, group address %s\n", 16609 to_ill->ill_name, 16610 inet_ntop(AF_INET6, 16611 &ilm->ilm_v6addr, buf, 16612 sizeof (buf)))); 16613 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16614 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16615 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16616 new_ilm->ilm_is_new = B_TRUE; 16617 } 16618 } else { 16619 if (from_ill->ill_ilm_walker_cnt != 0) { 16620 new_ilm = (ilm_t *) 16621 mi_zalloc(sizeof (ilm_t)); 16622 if (new_ilm == NULL) { 16623 ip0dbg(("ilm_move_v6: " 16624 "FAILOVER of IPv6" 16625 " multicast address %s : " 16626 "from %s to" 16627 " %s failed : ENOMEM \n", 16628 inet_ntop(AF_INET6, 16629 &ilm->ilm_v6addr, buf, 16630 sizeof (buf)), 16631 from_ill->ill_name, 16632 to_ill->ill_name)); 16633 16634 ilmp = &ilm->ilm_next; 16635 continue; 16636 } 16637 *new_ilm = *ilm; 16638 new_ilm->ilm_filter = NULL; 16639 } else { 16640 *ilmp = ilm->ilm_next; 16641 new_ilm = ilm; 16642 } 16643 /* 16644 * If the to_ill has not joined this 16645 * group we need to tell the driver in 16646 * ill_send_multicast_reqs. 16647 */ 16648 if (ilm_lookup_ill_v6(to_ill, 16649 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16650 new_ilm->ilm_notify_driver = B_TRUE; 16651 16652 /* Add to the to_ill's list */ 16653 new_ilm->ilm_next = to_ill->ill_ilm; 16654 to_ill->ill_ilm = new_ilm; 16655 ASSERT(ilm->ilm_ipif == NULL); 16656 new_ilm->ilm_ill = to_ill; 16657 new_ilm->ilm_is_new = B_TRUE; 16658 } 16659 16660 } 16661 16662 bottom: 16663 /* 16664 * Revert multicast filter state to (EXCLUDE, NULL). 16665 * new_ilm->ilm_is_new should already be set if needed. 16666 */ 16667 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16668 CLEAR_SLIST(new_ilm->ilm_filter); 16669 /* 16670 * We allocated/got a new ilm, free the old one. 16671 */ 16672 if (new_ilm != ilm) { 16673 if (from_ill->ill_ilm_walker_cnt == 0) { 16674 *ilmp = ilm->ilm_next; 16675 ilm->ilm_next = NULL; 16676 FREE_SLIST(ilm->ilm_filter); 16677 FREE_SLIST(ilm->ilm_pendsrcs); 16678 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16679 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16680 mi_free((char *)ilm); 16681 } else { 16682 ilm->ilm_flags |= ILM_DELETED; 16683 from_ill->ill_ilm_cleanup_reqd = 1; 16684 ilmp = &ilm->ilm_next; 16685 } 16686 } 16687 } 16688 } 16689 16690 /* 16691 * Move all the multicast memberships to to_ill. Called when 16692 * an ipif moves from "from_ill" to "to_ill". This function is slightly 16693 * different from IPv6 counterpart as multicast memberships are associated 16694 * with ills in IPv6. This function is called after every ipif is moved 16695 * unlike IPv6, where it is moved only once. 16696 */ 16697 static void 16698 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 16699 { 16700 ilm_t *ilm; 16701 ilm_t *ilm_next; 16702 ilm_t *new_ilm; 16703 ilm_t **ilmp; 16704 16705 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16706 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16707 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16708 16709 ilmp = &from_ill->ill_ilm; 16710 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16711 ilm_next = ilm->ilm_next; 16712 16713 if (ilm->ilm_flags & ILM_DELETED) { 16714 ilmp = &ilm->ilm_next; 16715 continue; 16716 } 16717 16718 ASSERT(ilm->ilm_ipif != NULL); 16719 16720 if (ilm->ilm_ipif != ipif) { 16721 ilmp = &ilm->ilm_next; 16722 continue; 16723 } 16724 16725 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 16726 htonl(INADDR_ALLHOSTS_GROUP)) { 16727 /* 16728 * We joined this in ipif_multicast_up 16729 * and we never did an ipif_multicast_down 16730 * for IPv4. If nobody else from the userland 16731 * has reference, we free the ilm, and later 16732 * when this ipif comes up on the new ill, 16733 * we will join this again. 16734 */ 16735 if (--ilm->ilm_refcnt == 0) 16736 goto delete_ilm; 16737 16738 new_ilm = ilm_lookup_ipif(ipif, 16739 V4_PART_OF_V6(ilm->ilm_v6addr)); 16740 if (new_ilm != NULL) { 16741 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16742 /* 16743 * We still need to deal with the from_ill. 16744 */ 16745 new_ilm->ilm_is_new = B_TRUE; 16746 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16747 CLEAR_SLIST(new_ilm->ilm_filter); 16748 goto delete_ilm; 16749 } 16750 /* 16751 * If we could not find one e.g. ipif is 16752 * still down on to_ill, we add this ilm 16753 * on ill_new to preserve the reference 16754 * count. 16755 */ 16756 } 16757 /* 16758 * When ipifs move, ilms always move with it 16759 * to the NEW ill. Thus we should never be 16760 * able to find ilm till we really move it here. 16761 */ 16762 ASSERT(ilm_lookup_ipif(ipif, 16763 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 16764 16765 if (from_ill->ill_ilm_walker_cnt != 0) { 16766 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16767 if (new_ilm == NULL) { 16768 char buf[INET6_ADDRSTRLEN]; 16769 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 16770 " multicast address %s : " 16771 "from %s to" 16772 " %s failed : ENOMEM \n", 16773 inet_ntop(AF_INET, 16774 &ilm->ilm_v6addr, buf, 16775 sizeof (buf)), 16776 from_ill->ill_name, 16777 to_ill->ill_name)); 16778 16779 ilmp = &ilm->ilm_next; 16780 continue; 16781 } 16782 *new_ilm = *ilm; 16783 /* We don't want new_ilm linked to ilm's filter list */ 16784 new_ilm->ilm_filter = NULL; 16785 } else { 16786 /* Remove from the list */ 16787 *ilmp = ilm->ilm_next; 16788 new_ilm = ilm; 16789 } 16790 16791 /* 16792 * If we have never joined this group on the to_ill 16793 * make sure we tell the driver. 16794 */ 16795 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 16796 ALL_ZONES) == NULL) 16797 new_ilm->ilm_notify_driver = B_TRUE; 16798 16799 /* Add to the to_ill's list */ 16800 new_ilm->ilm_next = to_ill->ill_ilm; 16801 to_ill->ill_ilm = new_ilm; 16802 new_ilm->ilm_is_new = B_TRUE; 16803 16804 /* 16805 * Revert multicast filter state to (EXCLUDE, NULL) 16806 */ 16807 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16808 CLEAR_SLIST(new_ilm->ilm_filter); 16809 16810 /* 16811 * Delete only if we have allocated a new ilm. 16812 */ 16813 if (new_ilm != ilm) { 16814 delete_ilm: 16815 if (from_ill->ill_ilm_walker_cnt == 0) { 16816 /* Remove from the list */ 16817 *ilmp = ilm->ilm_next; 16818 ilm->ilm_next = NULL; 16819 FREE_SLIST(ilm->ilm_filter); 16820 FREE_SLIST(ilm->ilm_pendsrcs); 16821 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16822 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16823 mi_free((char *)ilm); 16824 } else { 16825 ilm->ilm_flags |= ILM_DELETED; 16826 from_ill->ill_ilm_cleanup_reqd = 1; 16827 ilmp = &ilm->ilm_next; 16828 } 16829 } 16830 } 16831 } 16832 16833 static uint_t 16834 ipif_get_id(ill_t *ill, uint_t id) 16835 { 16836 uint_t unit; 16837 ipif_t *tipif; 16838 boolean_t found = B_FALSE; 16839 16840 /* 16841 * During failback, we want to go back to the same id 16842 * instead of the smallest id so that the original 16843 * configuration is maintained. id is non-zero in that 16844 * case. 16845 */ 16846 if (id != 0) { 16847 /* 16848 * While failing back, if we still have an ipif with 16849 * MAX_ADDRS_PER_IF, it means this will be replaced 16850 * as soon as we return from this function. It was 16851 * to set to MAX_ADDRS_PER_IF by the caller so that 16852 * we can choose the smallest id. Thus we return zero 16853 * in that case ignoring the hint. 16854 */ 16855 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 16856 return (0); 16857 for (tipif = ill->ill_ipif; tipif != NULL; 16858 tipif = tipif->ipif_next) { 16859 if (tipif->ipif_id == id) { 16860 found = B_TRUE; 16861 break; 16862 } 16863 } 16864 /* 16865 * If somebody already plumbed another logical 16866 * with the same id, we won't be able to find it. 16867 */ 16868 if (!found) 16869 return (id); 16870 } 16871 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 16872 found = B_FALSE; 16873 for (tipif = ill->ill_ipif; tipif != NULL; 16874 tipif = tipif->ipif_next) { 16875 if (tipif->ipif_id == unit) { 16876 found = B_TRUE; 16877 break; 16878 } 16879 } 16880 if (!found) 16881 break; 16882 } 16883 return (unit); 16884 } 16885 16886 /* ARGSUSED */ 16887 static int 16888 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 16889 ipif_t **rep_ipif_ptr) 16890 { 16891 ill_t *from_ill; 16892 ipif_t *rep_ipif; 16893 ipif_t **ipifp; 16894 uint_t unit; 16895 int err = 0; 16896 ipif_t *to_ipif; 16897 struct iocblk *iocp; 16898 boolean_t failback_cmd; 16899 boolean_t remove_ipif; 16900 int rc; 16901 16902 ASSERT(IAM_WRITER_ILL(to_ill)); 16903 ASSERT(IAM_WRITER_IPIF(ipif)); 16904 16905 iocp = (struct iocblk *)mp->b_rptr; 16906 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 16907 remove_ipif = B_FALSE; 16908 16909 from_ill = ipif->ipif_ill; 16910 16911 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16912 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16913 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16914 16915 /* 16916 * Don't move LINK LOCAL addresses as they are tied to 16917 * physical interface. 16918 */ 16919 if (from_ill->ill_isv6 && 16920 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 16921 ipif->ipif_was_up = B_FALSE; 16922 IPIF_UNMARK_MOVING(ipif); 16923 return (0); 16924 } 16925 16926 /* 16927 * We set the ipif_id to maximum so that the search for 16928 * ipif_id will pick the lowest number i.e 0 in the 16929 * following 2 cases : 16930 * 16931 * 1) We have a replacement ipif at the head of to_ill. 16932 * We can't remove it yet as we can exceed ip_addrs_per_if 16933 * on to_ill and hence the MOVE might fail. We want to 16934 * remove it only if we could move the ipif. Thus, by 16935 * setting it to the MAX value, we make the search in 16936 * ipif_get_id return the zeroth id. 16937 * 16938 * 2) When DR pulls out the NIC and re-plumbs the interface, 16939 * we might just have a zero address plumbed on the ipif 16940 * with zero id in the case of IPv4. We remove that while 16941 * doing the failback. We want to remove it only if we 16942 * could move the ipif. Thus, by setting it to the MAX 16943 * value, we make the search in ipif_get_id return the 16944 * zeroth id. 16945 * 16946 * Both (1) and (2) are done only when when we are moving 16947 * an ipif (either due to failover/failback) which originally 16948 * belonged to this interface i.e the ipif_orig_ifindex is 16949 * the same as to_ill's ifindex. This is needed so that 16950 * FAILOVER from A -> B ( A failed) followed by FAILOVER 16951 * from B -> A (B is being removed from the group) and 16952 * FAILBACK from A -> B restores the original configuration. 16953 * Without the check for orig_ifindex, the second FAILOVER 16954 * could make the ipif belonging to B replace the A's zeroth 16955 * ipif and the subsequent failback re-creating the replacement 16956 * ipif again. 16957 * 16958 * NOTE : We created the replacement ipif when we did a 16959 * FAILOVER (See below). We could check for FAILBACK and 16960 * then look for replacement ipif to be removed. But we don't 16961 * want to do that because we wan't to allow the possibility 16962 * of a FAILOVER from A -> B (which creates the replacement ipif), 16963 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 16964 * from B -> A. 16965 */ 16966 to_ipif = to_ill->ill_ipif; 16967 if ((to_ill->ill_phyint->phyint_ifindex == 16968 ipif->ipif_orig_ifindex) && 16969 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 16970 ASSERT(to_ipif->ipif_id == 0); 16971 remove_ipif = B_TRUE; 16972 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 16973 } 16974 /* 16975 * Find the lowest logical unit number on the to_ill. 16976 * If we are failing back, try to get the original id 16977 * rather than the lowest one so that the original 16978 * configuration is maintained. 16979 * 16980 * XXX need a better scheme for this. 16981 */ 16982 if (failback_cmd) { 16983 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 16984 } else { 16985 unit = ipif_get_id(to_ill, 0); 16986 } 16987 16988 /* Reset back to zero in case we fail below */ 16989 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 16990 to_ipif->ipif_id = 0; 16991 16992 if (unit == ip_addrs_per_if) { 16993 ipif->ipif_was_up = B_FALSE; 16994 IPIF_UNMARK_MOVING(ipif); 16995 return (EINVAL); 16996 } 16997 16998 /* 16999 * ipif is ready to move from "from_ill" to "to_ill". 17000 * 17001 * 1) If we are moving ipif with id zero, create a 17002 * replacement ipif for this ipif on from_ill. If this fails 17003 * fail the MOVE operation. 17004 * 17005 * 2) Remove the replacement ipif on to_ill if any. 17006 * We could remove the replacement ipif when we are moving 17007 * the ipif with id zero. But what if somebody already 17008 * unplumbed it ? Thus we always remove it if it is present. 17009 * We want to do it only if we are sure we are going to 17010 * move the ipif to to_ill which is why there are no 17011 * returns due to error till ipif is linked to to_ill. 17012 * Note that the first ipif that we failback will always 17013 * be zero if it is present. 17014 */ 17015 if (ipif->ipif_id == 0) { 17016 ipaddr_t inaddr_any = INADDR_ANY; 17017 17018 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17019 if (rep_ipif == NULL) { 17020 ipif->ipif_was_up = B_FALSE; 17021 IPIF_UNMARK_MOVING(ipif); 17022 return (ENOMEM); 17023 } 17024 *rep_ipif = ipif_zero; 17025 /* 17026 * Before we put the ipif on the list, store the addresses 17027 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17028 * assumes so. This logic is not any different from what 17029 * ipif_allocate does. 17030 */ 17031 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17032 &rep_ipif->ipif_v6lcl_addr); 17033 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17034 &rep_ipif->ipif_v6src_addr); 17035 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17036 &rep_ipif->ipif_v6subnet); 17037 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17038 &rep_ipif->ipif_v6net_mask); 17039 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17040 &rep_ipif->ipif_v6brd_addr); 17041 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17042 &rep_ipif->ipif_v6pp_dst_addr); 17043 /* 17044 * We mark IPIF_NOFAILOVER so that this can never 17045 * move. 17046 */ 17047 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17048 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17049 rep_ipif->ipif_replace_zero = B_TRUE; 17050 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17051 MUTEX_DEFAULT, NULL); 17052 rep_ipif->ipif_id = 0; 17053 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17054 rep_ipif->ipif_ill = from_ill; 17055 rep_ipif->ipif_orig_ifindex = 17056 from_ill->ill_phyint->phyint_ifindex; 17057 /* Insert at head */ 17058 rep_ipif->ipif_next = from_ill->ill_ipif; 17059 from_ill->ill_ipif = rep_ipif; 17060 /* 17061 * We don't really care to let apps know about 17062 * this interface. 17063 */ 17064 } 17065 17066 if (remove_ipif) { 17067 /* 17068 * We set to a max value above for this case to get 17069 * id zero. ASSERT that we did get one. 17070 */ 17071 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17072 rep_ipif = to_ipif; 17073 to_ill->ill_ipif = rep_ipif->ipif_next; 17074 rep_ipif->ipif_next = NULL; 17075 /* 17076 * If some apps scanned and find this interface, 17077 * it is time to let them know, so that they can 17078 * delete it. 17079 */ 17080 17081 *rep_ipif_ptr = rep_ipif; 17082 } 17083 17084 /* Get it out of the ILL interface list. */ 17085 ipifp = &ipif->ipif_ill->ill_ipif; 17086 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17087 if (*ipifp == ipif) { 17088 *ipifp = ipif->ipif_next; 17089 break; 17090 } 17091 } 17092 17093 /* Assign the new ill */ 17094 ipif->ipif_ill = to_ill; 17095 ipif->ipif_id = unit; 17096 /* id has already been checked */ 17097 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17098 ASSERT(rc == 0); 17099 /* Let SCTP update its list */ 17100 sctp_move_ipif(ipif, from_ill, to_ill); 17101 /* 17102 * Handle the failover and failback of ipif_t between 17103 * ill_t that have differing maximum mtu values. 17104 */ 17105 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17106 if (ipif->ipif_saved_mtu == 0) { 17107 /* 17108 * As this ipif_t is moving to an ill_t 17109 * that has a lower ill_max_mtu, its 17110 * ipif_mtu needs to be saved so it can 17111 * be restored during failback or during 17112 * failover to an ill_t which has a 17113 * higher ill_max_mtu. 17114 */ 17115 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17116 ipif->ipif_mtu = to_ill->ill_max_mtu; 17117 } else { 17118 /* 17119 * The ipif_t is, once again, moving to 17120 * an ill_t that has a lower maximum mtu 17121 * value. 17122 */ 17123 ipif->ipif_mtu = to_ill->ill_max_mtu; 17124 } 17125 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17126 ipif->ipif_saved_mtu != 0) { 17127 /* 17128 * The mtu of this ipif_t had to be reduced 17129 * during an earlier failover; this is an 17130 * opportunity for it to be increased (either as 17131 * part of another failover or a failback). 17132 */ 17133 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17134 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17135 ipif->ipif_saved_mtu = 0; 17136 } else { 17137 ipif->ipif_mtu = to_ill->ill_max_mtu; 17138 } 17139 } 17140 17141 /* 17142 * We preserve all the other fields of the ipif including 17143 * ipif_saved_ire_mp. The routes that are saved here will 17144 * be recreated on the new interface and back on the old 17145 * interface when we move back. 17146 */ 17147 ASSERT(ipif->ipif_arp_del_mp == NULL); 17148 17149 return (err); 17150 } 17151 17152 static int 17153 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17154 int ifindex, ipif_t **rep_ipif_ptr) 17155 { 17156 ipif_t *mipif; 17157 ipif_t *ipif_next; 17158 int err; 17159 17160 /* 17161 * We don't really try to MOVE back things if some of the 17162 * operations fail. The daemon will take care of moving again 17163 * later on. 17164 */ 17165 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17166 ipif_next = mipif->ipif_next; 17167 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17168 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17169 17170 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17171 17172 /* 17173 * When the MOVE fails, it is the job of the 17174 * application to take care of this properly 17175 * i.e try again if it is ENOMEM. 17176 */ 17177 if (mipif->ipif_ill != from_ill) { 17178 /* 17179 * ipif has moved. 17180 * 17181 * Move the multicast memberships associated 17182 * with this ipif to the new ill. For IPv6, we 17183 * do it once after all the ipifs are moved 17184 * (in ill_move) as they are not associated 17185 * with ipifs. 17186 * 17187 * We need to move the ilms as the ipif has 17188 * already been moved to a new ill even 17189 * in the case of errors. Neither 17190 * ilm_free(ipif) will find the ilm 17191 * when somebody unplumbs this ipif nor 17192 * ilm_delete(ilm) will be able to find the 17193 * ilm, if we don't move now. 17194 */ 17195 if (!from_ill->ill_isv6) 17196 ilm_move_v4(from_ill, to_ill, mipif); 17197 } 17198 17199 if (err != 0) 17200 return (err); 17201 } 17202 } 17203 return (0); 17204 } 17205 17206 static int 17207 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17208 { 17209 int ifindex; 17210 int err; 17211 struct iocblk *iocp; 17212 ipif_t *ipif; 17213 ipif_t *rep_ipif_ptr = NULL; 17214 ipif_t *from_ipif = NULL; 17215 boolean_t check_rep_if = B_FALSE; 17216 17217 iocp = (struct iocblk *)mp->b_rptr; 17218 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17219 /* 17220 * Move everything pointing at from_ill to to_ill. 17221 * We acheive this by passing in 0 as ifindex. 17222 */ 17223 ifindex = 0; 17224 } else { 17225 /* 17226 * Move everything pointing at from_ill whose original 17227 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17228 * We acheive this by passing in ifindex rather than 0. 17229 * Multicast vifs, ilgs move implicitly because ipifs move. 17230 */ 17231 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17232 ifindex = to_ill->ill_phyint->phyint_ifindex; 17233 } 17234 17235 /* 17236 * Determine if there is at least one ipif that would move from 17237 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17238 * ipif (if it exists) on the to_ill would be consumed as a result of 17239 * the move, in which case we need to quiesce the replacement ipif also. 17240 */ 17241 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17242 from_ipif = from_ipif->ipif_next) { 17243 if (((ifindex == 0) || 17244 (ifindex == from_ipif->ipif_orig_ifindex)) && 17245 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17246 check_rep_if = B_TRUE; 17247 break; 17248 } 17249 } 17250 17251 17252 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17253 17254 GRAB_ILL_LOCKS(from_ill, to_ill); 17255 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17256 (void) ipsq_pending_mp_add(NULL, ipif, q, 17257 mp, ILL_MOVE_OK); 17258 RELEASE_ILL_LOCKS(from_ill, to_ill); 17259 return (EINPROGRESS); 17260 } 17261 17262 /* Check if the replacement ipif is quiescent to delete */ 17263 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17264 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17265 to_ill->ill_ipif->ipif_state_flags |= 17266 IPIF_MOVING | IPIF_CHANGING; 17267 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17268 (void) ipsq_pending_mp_add(NULL, ipif, q, 17269 mp, ILL_MOVE_OK); 17270 RELEASE_ILL_LOCKS(from_ill, to_ill); 17271 return (EINPROGRESS); 17272 } 17273 } 17274 RELEASE_ILL_LOCKS(from_ill, to_ill); 17275 17276 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17277 rw_enter(&ill_g_lock, RW_WRITER); 17278 GRAB_ILL_LOCKS(from_ill, to_ill); 17279 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17280 17281 /* ilm_move is done inside ipif_move for IPv4 */ 17282 if (err == 0 && from_ill->ill_isv6) 17283 ilm_move_v6(from_ill, to_ill, ifindex); 17284 17285 RELEASE_ILL_LOCKS(from_ill, to_ill); 17286 rw_exit(&ill_g_lock); 17287 17288 /* 17289 * send rts messages and multicast messages. 17290 */ 17291 if (rep_ipif_ptr != NULL) { 17292 ip_rts_ifmsg(rep_ipif_ptr); 17293 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17294 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 17295 mi_free(rep_ipif_ptr); 17296 } 17297 17298 conn_move_ill(from_ill, to_ill, ifindex); 17299 17300 return (err); 17301 } 17302 17303 /* 17304 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17305 * Also checks for the validity of the arguments. 17306 * Note: We are already exclusive inside the from group. 17307 * It is upto the caller to release refcnt on the to_ill's. 17308 */ 17309 static int 17310 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17311 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17312 { 17313 int dst_index; 17314 ipif_t *ipif_v4, *ipif_v6; 17315 struct lifreq *lifr; 17316 mblk_t *mp1; 17317 boolean_t exists; 17318 sin_t *sin; 17319 int err = 0; 17320 17321 if ((mp1 = mp->b_cont) == NULL) 17322 return (EPROTO); 17323 17324 if ((mp1 = mp1->b_cont) == NULL) 17325 return (EPROTO); 17326 17327 lifr = (struct lifreq *)mp1->b_rptr; 17328 sin = (sin_t *)&lifr->lifr_addr; 17329 17330 /* 17331 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17332 * specific operations. 17333 */ 17334 if (sin->sin_family != AF_UNSPEC) 17335 return (EINVAL); 17336 17337 /* 17338 * Get ipif with id 0. We are writer on the from ill. So we can pass 17339 * NULLs for the last 4 args and we know the lookup won't fail 17340 * with EINPROGRESS. 17341 */ 17342 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17343 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17344 ALL_ZONES, NULL, NULL, NULL, NULL); 17345 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17346 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17347 ALL_ZONES, NULL, NULL, NULL, NULL); 17348 17349 if (ipif_v4 == NULL && ipif_v6 == NULL) 17350 return (ENXIO); 17351 17352 if (ipif_v4 != NULL) { 17353 ASSERT(ipif_v4->ipif_refcnt != 0); 17354 if (ipif_v4->ipif_id != 0) { 17355 err = EINVAL; 17356 goto done; 17357 } 17358 17359 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17360 *ill_from_v4 = ipif_v4->ipif_ill; 17361 } 17362 17363 if (ipif_v6 != NULL) { 17364 ASSERT(ipif_v6->ipif_refcnt != 0); 17365 if (ipif_v6->ipif_id != 0) { 17366 err = EINVAL; 17367 goto done; 17368 } 17369 17370 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17371 *ill_from_v6 = ipif_v6->ipif_ill; 17372 } 17373 17374 err = 0; 17375 dst_index = lifr->lifr_movetoindex; 17376 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17377 q, mp, ip_process_ioctl, &err); 17378 if (err != 0) { 17379 /* 17380 * There could be only v6. 17381 */ 17382 if (err != ENXIO) 17383 goto done; 17384 err = 0; 17385 } 17386 17387 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17388 q, mp, ip_process_ioctl, &err); 17389 if (err != 0) { 17390 if (err != ENXIO) 17391 goto done; 17392 if (*ill_to_v4 == NULL) { 17393 err = ENXIO; 17394 goto done; 17395 } 17396 err = 0; 17397 } 17398 17399 /* 17400 * If we have something to MOVE i.e "from" not NULL, 17401 * "to" should be non-NULL. 17402 */ 17403 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17404 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17405 err = EINVAL; 17406 } 17407 17408 done: 17409 if (ipif_v4 != NULL) 17410 ipif_refrele(ipif_v4); 17411 if (ipif_v6 != NULL) 17412 ipif_refrele(ipif_v6); 17413 return (err); 17414 } 17415 17416 /* 17417 * FAILOVER and FAILBACK are modelled as MOVE operations. 17418 * 17419 * We don't check whether the MOVE is within the same group or 17420 * not, because this ioctl can be used as a generic mechanism 17421 * to failover from interface A to B, though things will function 17422 * only if they are really part of the same group. Moreover, 17423 * all ipifs may be down and hence temporarily out of the group. 17424 * 17425 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17426 * down first and then V6. For each we wait for the ipif's to become quiescent. 17427 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17428 * have been deleted and there are no active references. Once quiescent the 17429 * ipif's are moved and brought up on the new ill. 17430 * 17431 * Normally the source ill and destination ill belong to the same IPMP group 17432 * and hence the same ipsq_t. In the event they don't belong to the same 17433 * same group the two ipsq's are first merged into one ipsq - that of the 17434 * to_ill. The multicast memberships on the source and destination ill cannot 17435 * change during the move operation since multicast joins/leaves also have to 17436 * execute on the same ipsq and are hence serialized. 17437 */ 17438 /* ARGSUSED */ 17439 int 17440 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17441 ip_ioctl_cmd_t *ipip, void *ifreq) 17442 { 17443 ill_t *ill_to_v4 = NULL; 17444 ill_t *ill_to_v6 = NULL; 17445 ill_t *ill_from_v4 = NULL; 17446 ill_t *ill_from_v6 = NULL; 17447 int err = 0; 17448 17449 /* 17450 * setup from and to ill's, we can get EINPROGRESS only for 17451 * to_ill's. 17452 */ 17453 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17454 &ill_to_v4, &ill_to_v6); 17455 17456 if (err != 0) { 17457 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17458 goto done; 17459 } 17460 17461 /* 17462 * nothing to do. 17463 */ 17464 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17465 goto done; 17466 } 17467 17468 /* 17469 * nothing to do. 17470 */ 17471 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17472 goto done; 17473 } 17474 17475 /* 17476 * Mark the ill as changing. 17477 * ILL_CHANGING flag is cleared when the ipif's are brought up 17478 * in ill_up_ipifs in case of error they are cleared below. 17479 */ 17480 17481 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17482 if (ill_from_v4 != NULL) 17483 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17484 if (ill_from_v6 != NULL) 17485 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17486 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17487 17488 /* 17489 * Make sure that both src and dst are 17490 * in the same syncq group. If not make it happen. 17491 * We are not holding any locks because we are the writer 17492 * on the from_ipsq and we will hold locks in ill_merge_groups 17493 * to protect to_ipsq against changing. 17494 */ 17495 if (ill_from_v4 != NULL) { 17496 if (ill_from_v4->ill_phyint->phyint_ipsq != 17497 ill_to_v4->ill_phyint->phyint_ipsq) { 17498 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17499 NULL, mp, q); 17500 goto err_ret; 17501 17502 } 17503 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17504 } else { 17505 17506 if (ill_from_v6->ill_phyint->phyint_ipsq != 17507 ill_to_v6->ill_phyint->phyint_ipsq) { 17508 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17509 NULL, mp, q); 17510 goto err_ret; 17511 17512 } 17513 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17514 } 17515 17516 /* 17517 * Now that the ipsq's have been merged and we are the writer 17518 * lets mark to_ill as changing as well. 17519 */ 17520 17521 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17522 if (ill_to_v4 != NULL) 17523 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17524 if (ill_to_v6 != NULL) 17525 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17526 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17527 17528 /* 17529 * Its ok for us to proceed with the move even if 17530 * ill_pending_mp is non null on one of the from ill's as the reply 17531 * should not be looking at the ipif, it should only care about the 17532 * ill itself. 17533 */ 17534 17535 /* 17536 * lets move ipv4 first. 17537 */ 17538 if (ill_from_v4 != NULL) { 17539 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 17540 ill_from_v4->ill_move_in_progress = B_TRUE; 17541 ill_to_v4->ill_move_in_progress = B_TRUE; 17542 ill_to_v4->ill_move_peer = ill_from_v4; 17543 ill_from_v4->ill_move_peer = ill_to_v4; 17544 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 17545 } 17546 17547 /* 17548 * Now lets move ipv6. 17549 */ 17550 if (err == 0 && ill_from_v6 != NULL) { 17551 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 17552 ill_from_v6->ill_move_in_progress = B_TRUE; 17553 ill_to_v6->ill_move_in_progress = B_TRUE; 17554 ill_to_v6->ill_move_peer = ill_from_v6; 17555 ill_from_v6->ill_move_peer = ill_to_v6; 17556 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 17557 } 17558 17559 err_ret: 17560 /* 17561 * EINPROGRESS means we are waiting for the ipif's that need to be 17562 * moved to become quiescent. 17563 */ 17564 if (err == EINPROGRESS) { 17565 goto done; 17566 } 17567 17568 /* 17569 * if err is set ill_up_ipifs will not be called 17570 * lets clear the flags. 17571 */ 17572 17573 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17574 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17575 /* 17576 * Some of the clearing may be redundant. But it is simple 17577 * not making any extra checks. 17578 */ 17579 if (ill_from_v6 != NULL) { 17580 ill_from_v6->ill_move_in_progress = B_FALSE; 17581 ill_from_v6->ill_move_peer = NULL; 17582 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 17583 } 17584 if (ill_from_v4 != NULL) { 17585 ill_from_v4->ill_move_in_progress = B_FALSE; 17586 ill_from_v4->ill_move_peer = NULL; 17587 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 17588 } 17589 if (ill_to_v6 != NULL) { 17590 ill_to_v6->ill_move_in_progress = B_FALSE; 17591 ill_to_v6->ill_move_peer = NULL; 17592 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 17593 } 17594 if (ill_to_v4 != NULL) { 17595 ill_to_v4->ill_move_in_progress = B_FALSE; 17596 ill_to_v4->ill_move_peer = NULL; 17597 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 17598 } 17599 17600 /* 17601 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 17602 * Do this always to maintain proper state i.e even in case of errors. 17603 * As phyint_inactive looks at both v4 and v6 interfaces, 17604 * we need not call on both v4 and v6 interfaces. 17605 */ 17606 if (ill_from_v4 != NULL) { 17607 if ((ill_from_v4->ill_phyint->phyint_flags & 17608 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17609 phyint_inactive(ill_from_v4->ill_phyint); 17610 } 17611 } else if (ill_from_v6 != NULL) { 17612 if ((ill_from_v6->ill_phyint->phyint_flags & 17613 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17614 phyint_inactive(ill_from_v6->ill_phyint); 17615 } 17616 } 17617 17618 if (ill_to_v4 != NULL) { 17619 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17620 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17621 } 17622 } else if (ill_to_v6 != NULL) { 17623 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17624 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17625 } 17626 } 17627 17628 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17629 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17630 17631 no_err: 17632 /* 17633 * lets bring the interfaces up on the to_ill. 17634 */ 17635 if (err == 0) { 17636 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 17637 q, mp); 17638 } 17639 17640 if (err == 0) { 17641 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 17642 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 17643 17644 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 17645 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 17646 } 17647 done: 17648 17649 if (ill_to_v4 != NULL) { 17650 ill_refrele(ill_to_v4); 17651 } 17652 if (ill_to_v6 != NULL) { 17653 ill_refrele(ill_to_v6); 17654 } 17655 17656 return (err); 17657 } 17658 17659 static void 17660 ill_dl_down(ill_t *ill) 17661 { 17662 /* 17663 * The ill is down; unbind but stay attached since we're still 17664 * associated with a PPA. 17665 */ 17666 mblk_t *mp = ill->ill_unbind_mp; 17667 17668 ill->ill_unbind_mp = NULL; 17669 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 17670 if (mp != NULL) { 17671 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 17672 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 17673 ill->ill_name)); 17674 mutex_enter(&ill->ill_lock); 17675 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 17676 mutex_exit(&ill->ill_lock); 17677 ill_dlpi_send(ill, mp); 17678 } 17679 17680 /* 17681 * Toss all of our multicast memberships. We could keep them, but 17682 * then we'd have to do bookkeeping of any joins and leaves performed 17683 * by the application while the the interface is down (we can't just 17684 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 17685 * on a downed interface). 17686 */ 17687 ill_leave_multicast(ill); 17688 17689 mutex_enter(&ill->ill_lock); 17690 ill->ill_dl_up = 0; 17691 mutex_exit(&ill->ill_lock); 17692 } 17693 17694 void 17695 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 17696 { 17697 union DL_primitives *dlp; 17698 t_uscalar_t prim; 17699 17700 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17701 17702 dlp = (union DL_primitives *)mp->b_rptr; 17703 prim = dlp->dl_primitive; 17704 17705 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 17706 dlpi_prim_str(prim), prim, ill->ill_name)); 17707 17708 switch (prim) { 17709 case DL_PHYS_ADDR_REQ: 17710 { 17711 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 17712 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 17713 break; 17714 } 17715 case DL_BIND_REQ: 17716 mutex_enter(&ill->ill_lock); 17717 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 17718 mutex_exit(&ill->ill_lock); 17719 break; 17720 } 17721 17722 ill->ill_dlpi_pending = prim; 17723 17724 /* 17725 * Some drivers send M_FLUSH up to IP as part of unbind 17726 * request. When this M_FLUSH is sent back to the driver, 17727 * this can go after we send the detach request if the 17728 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 17729 * to the M_FLUSH in ip_rput and locally generate another 17730 * M_FLUSH for the correctness. This will get freed in 17731 * ip_wput_nondata. 17732 */ 17733 if (prim == DL_UNBIND_REQ) 17734 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 17735 17736 putnext(ill->ill_wq, mp); 17737 } 17738 17739 /* 17740 * Send a DLPI control message to the driver but make sure there 17741 * is only one outstanding message. Uses ill_dlpi_pending to tell 17742 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 17743 * when an ACK or a NAK is received to process the next queued message. 17744 * 17745 * We don't protect ill_dlpi_pending with any lock. This is okay as 17746 * every place where its accessed, ip is exclusive while accessing 17747 * ill_dlpi_pending except when this function is called from ill_init() 17748 */ 17749 void 17750 ill_dlpi_send(ill_t *ill, mblk_t *mp) 17751 { 17752 mblk_t **mpp; 17753 17754 ASSERT(IAM_WRITER_ILL(ill)); 17755 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17756 17757 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 17758 /* Must queue message. Tail insertion */ 17759 mpp = &ill->ill_dlpi_deferred; 17760 while (*mpp != NULL) 17761 mpp = &((*mpp)->b_next); 17762 17763 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 17764 ill->ill_name)); 17765 17766 *mpp = mp; 17767 return; 17768 } 17769 17770 ill_dlpi_dispatch(ill, mp); 17771 } 17772 17773 /* 17774 * Called when an DLPI control message has been acked or nacked to 17775 * send down the next queued message (if any). 17776 */ 17777 void 17778 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 17779 { 17780 mblk_t *mp; 17781 17782 ASSERT(IAM_WRITER_ILL(ill)); 17783 17784 ASSERT(prim != DL_PRIM_INVAL); 17785 if (ill->ill_dlpi_pending != prim) { 17786 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 17787 (void) mi_strlog(ill->ill_rq, 1, 17788 SL_CONSOLE|SL_ERROR|SL_TRACE, 17789 "ill_dlpi_done: unsolicited ack for %s from %s\n", 17790 dlpi_prim_str(prim), ill->ill_name); 17791 } else { 17792 (void) mi_strlog(ill->ill_rq, 1, 17793 SL_CONSOLE|SL_ERROR|SL_TRACE, 17794 "ill_dlpi_done: unexpected ack for %s from %s " 17795 "(expecting ack for %s)\n", 17796 dlpi_prim_str(prim), ill->ill_name, 17797 dlpi_prim_str(ill->ill_dlpi_pending)); 17798 } 17799 return; 17800 } 17801 17802 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 17803 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 17804 17805 if ((mp = ill->ill_dlpi_deferred) == NULL) { 17806 ill->ill_dlpi_pending = DL_PRIM_INVAL; 17807 return; 17808 } 17809 17810 ill->ill_dlpi_deferred = mp->b_next; 17811 mp->b_next = NULL; 17812 17813 ill_dlpi_dispatch(ill, mp); 17814 } 17815 17816 void 17817 conn_delete_ire(conn_t *connp, caddr_t arg) 17818 { 17819 ipif_t *ipif = (ipif_t *)arg; 17820 ire_t *ire; 17821 17822 /* 17823 * Look at the cached ires on conns which has pointers to ipifs. 17824 * We just call ire_refrele which clears up the reference 17825 * to ire. Called when a conn closes. Also called from ipif_free 17826 * to cleanup indirect references to the stale ipif via the cached ire. 17827 */ 17828 mutex_enter(&connp->conn_lock); 17829 ire = connp->conn_ire_cache; 17830 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 17831 connp->conn_ire_cache = NULL; 17832 mutex_exit(&connp->conn_lock); 17833 IRE_REFRELE_NOTR(ire); 17834 return; 17835 } 17836 mutex_exit(&connp->conn_lock); 17837 17838 } 17839 17840 /* 17841 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 17842 * of IREs. Those IREs may have been previously cached in the conn structure. 17843 * This ipcl_walk() walker function releases all references to such IREs based 17844 * on the condemned flag. 17845 */ 17846 /* ARGSUSED */ 17847 void 17848 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 17849 { 17850 ire_t *ire; 17851 17852 mutex_enter(&connp->conn_lock); 17853 ire = connp->conn_ire_cache; 17854 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 17855 connp->conn_ire_cache = NULL; 17856 mutex_exit(&connp->conn_lock); 17857 IRE_REFRELE_NOTR(ire); 17858 return; 17859 } 17860 mutex_exit(&connp->conn_lock); 17861 } 17862 17863 /* 17864 * Take down a specific interface, but don't lose any information about it. 17865 * Also delete interface from its interface group (ifgrp). 17866 * (Always called as writer.) 17867 * This function goes through the down sequence even if the interface is 17868 * already down. There are 2 reasons. 17869 * a. Currently we permit interface routes that depend on down interfaces 17870 * to be added. This behaviour itself is questionable. However it appears 17871 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 17872 * time. We go thru the cleanup in order to remove these routes. 17873 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 17874 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 17875 * down, but we need to cleanup i.e. do ill_dl_down and 17876 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 17877 * 17878 * IP-MT notes: 17879 * 17880 * Model of reference to interfaces. 17881 * 17882 * The following members in ipif_t track references to the ipif. 17883 * int ipif_refcnt; Active reference count 17884 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 17885 * The following members in ill_t track references to the ill. 17886 * int ill_refcnt; active refcnt 17887 * uint_t ill_ire_cnt; Number of ires referencing ill 17888 * uint_t ill_nce_cnt; Number of nces referencing ill 17889 * 17890 * Reference to an ipif or ill can be obtained in any of the following ways. 17891 * 17892 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 17893 * Pointers to ipif / ill from other data structures viz ire and conn. 17894 * Implicit reference to the ipif / ill by holding a reference to the ire. 17895 * 17896 * The ipif/ill lookup functions return a reference held ipif / ill. 17897 * ipif_refcnt and ill_refcnt track the reference counts respectively. 17898 * This is a purely dynamic reference count associated with threads holding 17899 * references to the ipif / ill. Pointers from other structures do not 17900 * count towards this reference count. 17901 * 17902 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 17903 * ipif/ill. This is incremented whenever a new ire is created referencing the 17904 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 17905 * actually added to the ire hash table. The count is decremented in 17906 * ire_inactive where the ire is destroyed. 17907 * 17908 * nce's reference ill's thru nce_ill and the count of nce's associated with 17909 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 17910 * ndp_add() where the nce is actually added to the table. Similarly it is 17911 * decremented in ndp_inactive where the nce is destroyed. 17912 * 17913 * Flow of ioctls involving interface down/up 17914 * 17915 * The following is the sequence of an attempt to set some critical flags on an 17916 * up interface. 17917 * ip_sioctl_flags 17918 * ipif_down 17919 * wait for ipif to be quiescent 17920 * ipif_down_tail 17921 * ip_sioctl_flags_tail 17922 * 17923 * All set ioctls that involve down/up sequence would have a skeleton similar 17924 * to the above. All the *tail functions are called after the refcounts have 17925 * dropped to the appropriate values. 17926 * 17927 * The mechanism to quiesce an ipif is as follows. 17928 * 17929 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 17930 * on the ipif. Callers either pass a flag requesting wait or the lookup 17931 * functions will return NULL. 17932 * 17933 * Delete all ires referencing this ipif 17934 * 17935 * Any thread attempting to do an ipif_refhold on an ipif that has been 17936 * obtained thru a cached pointer will first make sure that 17937 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 17938 * increment the refcount. 17939 * 17940 * The above guarantees that the ipif refcount will eventually come down to 17941 * zero and the ipif will quiesce, once all threads that currently hold a 17942 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 17943 * ipif_refcount has dropped to zero and all ire's associated with this ipif 17944 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 17945 * drop to zero. 17946 * 17947 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 17948 * 17949 * Threads trying to lookup an ipif or ill can pass a flag requesting 17950 * wait and restart if the ipif / ill cannot be looked up currently. 17951 * For eg. bind, and route operations (Eg. route add / delete) cannot return 17952 * failure if the ipif is currently undergoing an exclusive operation, and 17953 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 17954 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 17955 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 17956 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 17957 * change while the ill_lock is held. Before dropping the ill_lock we acquire 17958 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 17959 * until we release the ipsq_lock, even though the the ill/ipif state flags 17960 * can change after we drop the ill_lock. 17961 * 17962 * An attempt to send out a packet using an ipif that is currently 17963 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 17964 * operation and restart it later when the exclusive condition on the ipif ends. 17965 * This is an example of not passing the wait flag to the lookup functions. For 17966 * example an attempt to refhold and use conn->conn_multicast_ipif and send 17967 * out a multicast packet on that ipif will fail while the ipif is 17968 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 17969 * currently IPIF_CHANGING will also fail. 17970 */ 17971 int 17972 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17973 { 17974 ill_t *ill = ipif->ipif_ill; 17975 phyint_t *phyi; 17976 conn_t *connp; 17977 boolean_t success; 17978 boolean_t ipif_was_up = B_FALSE; 17979 17980 ASSERT(IAM_WRITER_IPIF(ipif)); 17981 17982 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 17983 17984 if (ipif->ipif_flags & IPIF_UP) { 17985 mutex_enter(&ill->ill_lock); 17986 ipif->ipif_flags &= ~IPIF_UP; 17987 ASSERT(ill->ill_ipif_up_count > 0); 17988 --ill->ill_ipif_up_count; 17989 mutex_exit(&ill->ill_lock); 17990 ipif_was_up = B_TRUE; 17991 /* Update status in SCTP's list */ 17992 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 17993 } 17994 17995 /* 17996 * Blow away v6 memberships we established in ipif_multicast_up(); the 17997 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 17998 * know not to rejoin when the interface is brought back up). 17999 */ 18000 if (ipif->ipif_isv6) 18001 ipif_multicast_down(ipif); 18002 /* 18003 * Remove from the mapping for __sin6_src_id. We insert only 18004 * when the address is not INADDR_ANY. As IPv4 addresses are 18005 * stored as mapped addresses, we need to check for mapped 18006 * INADDR_ANY also. 18007 */ 18008 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18009 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18010 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18011 int err; 18012 18013 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18014 ipif->ipif_zoneid); 18015 if (err != 0) { 18016 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18017 } 18018 } 18019 18020 /* 18021 * Before we delete the ill from the group (if any), we need 18022 * to make sure that we delete all the routes dependent on 18023 * this and also any ipifs dependent on this ipif for 18024 * source address. We need to do before we delete from 18025 * the group because 18026 * 18027 * 1) ipif_down_delete_ire de-references ill->ill_group. 18028 * 18029 * 2) ipif_update_other_ipifs needs to walk the whole group 18030 * for re-doing source address selection. Note that 18031 * ipif_select_source[_v6] called from 18032 * ipif_update_other_ipifs[_v6] will not pick this ipif 18033 * because we have already marked down here i.e cleared 18034 * IPIF_UP. 18035 */ 18036 if (ipif->ipif_isv6) 18037 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 18038 else 18039 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 18040 18041 /* 18042 * Need to add these also to be saved and restored when the 18043 * ipif is brought down and up 18044 */ 18045 mutex_enter(&ire_mrtun_lock); 18046 if (ire_mrtun_count != 0) { 18047 mutex_exit(&ire_mrtun_lock); 18048 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18049 (char *)ipif, NULL); 18050 } else { 18051 mutex_exit(&ire_mrtun_lock); 18052 } 18053 18054 mutex_enter(&ire_srcif_table_lock); 18055 if (ire_srcif_table_count > 0) { 18056 mutex_exit(&ire_srcif_table_lock); 18057 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 18058 } else { 18059 mutex_exit(&ire_srcif_table_lock); 18060 } 18061 18062 /* 18063 * Cleaning up the conn_ire_cache or conns must be done only after the 18064 * ires have been deleted above. Otherwise a thread could end up 18065 * caching an ire in a conn after we have finished the cleanup of the 18066 * conn. The caching is done after making sure that the ire is not yet 18067 * condemned. Also documented in the block comment above ip_output 18068 */ 18069 ipcl_walk(conn_cleanup_stale_ire, NULL); 18070 /* Also, delete the ires cached in SCTP */ 18071 sctp_ire_cache_flush(ipif); 18072 18073 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18074 nattymod_clean_ipif(ipif); 18075 18076 /* 18077 * Update any other ipifs which have used "our" local address as 18078 * a source address. This entails removing and recreating IRE_INTERFACE 18079 * entries for such ipifs. 18080 */ 18081 if (ipif->ipif_isv6) 18082 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18083 else 18084 ipif_update_other_ipifs(ipif, ill->ill_group); 18085 18086 if (ipif_was_up) { 18087 /* 18088 * Check whether it is last ipif to leave this group. 18089 * If this is the last ipif to leave, we should remove 18090 * this ill from the group as ipif_select_source will not 18091 * be able to find any useful ipifs if this ill is selected 18092 * for load balancing. 18093 * 18094 * For nameless groups, we should call ifgrp_delete if this 18095 * belongs to some group. As this ipif is going down, we may 18096 * need to reconstruct groups. 18097 */ 18098 phyi = ill->ill_phyint; 18099 /* 18100 * If the phyint_groupname_len is 0, it may or may not 18101 * be in the nameless group. If the phyint_groupname_len is 18102 * not 0, then this ill should be part of some group. 18103 * As we always insert this ill in the group if 18104 * phyint_groupname_len is not zero when the first ipif 18105 * comes up (in ipif_up_done), it should be in a group 18106 * when the namelen is not 0. 18107 * 18108 * NOTE : When we delete the ill from the group,it will 18109 * blow away all the IRE_CACHES pointing either at this ipif or 18110 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18111 * should be pointing at this ill. 18112 */ 18113 ASSERT(phyi->phyint_groupname_len == 0 || 18114 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18115 18116 if (phyi->phyint_groupname_len != 0) { 18117 if (ill->ill_ipif_up_count == 0) 18118 illgrp_delete(ill); 18119 } 18120 18121 /* 18122 * If we have deleted some of the broadcast ires associated 18123 * with this ipif, we need to re-nominate somebody else if 18124 * the ires that we deleted were the nominated ones. 18125 */ 18126 if (ill->ill_group != NULL && !ill->ill_isv6) 18127 ipif_renominate_bcast(ipif); 18128 } 18129 18130 /* 18131 * neighbor-discovery or arp entries for this interface. 18132 */ 18133 ipif_ndp_down(ipif); 18134 18135 /* 18136 * If mp is NULL the caller will wait for the appropriate refcnt. 18137 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18138 * and ill_delete -> ipif_free -> ipif_down 18139 */ 18140 if (mp == NULL) { 18141 ASSERT(q == NULL); 18142 return (0); 18143 } 18144 18145 if (CONN_Q(q)) { 18146 connp = Q_TO_CONN(q); 18147 mutex_enter(&connp->conn_lock); 18148 } else { 18149 connp = NULL; 18150 } 18151 mutex_enter(&ill->ill_lock); 18152 /* 18153 * Are there any ire's pointing to this ipif that are still active ? 18154 * If this is the last ipif going down, are there any ire's pointing 18155 * to this ill that are still active ? 18156 */ 18157 if (ipif_is_quiescent(ipif)) { 18158 mutex_exit(&ill->ill_lock); 18159 if (connp != NULL) 18160 mutex_exit(&connp->conn_lock); 18161 return (0); 18162 } 18163 18164 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18165 ill->ill_name, (void *)ill)); 18166 /* 18167 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18168 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18169 * which in turn is called by the last refrele on the ipif/ill/ire. 18170 */ 18171 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18172 if (!success) { 18173 /* The conn is closing. So just return */ 18174 ASSERT(connp != NULL); 18175 mutex_exit(&ill->ill_lock); 18176 mutex_exit(&connp->conn_lock); 18177 return (EINTR); 18178 } 18179 18180 mutex_exit(&ill->ill_lock); 18181 if (connp != NULL) 18182 mutex_exit(&connp->conn_lock); 18183 return (EINPROGRESS); 18184 } 18185 18186 void 18187 ipif_down_tail(ipif_t *ipif) 18188 { 18189 ill_t *ill = ipif->ipif_ill; 18190 18191 /* 18192 * Skip any loopback interface (null wq). 18193 * If this is the last logical interface on the ill 18194 * have ill_dl_down tell the driver we are gone (unbind) 18195 * Note that lun 0 can ipif_down even though 18196 * there are other logical units that are up. 18197 * This occurs e.g. when we change a "significant" IFF_ flag. 18198 */ 18199 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18200 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18201 ill->ill_dl_up) { 18202 ill_dl_down(ill); 18203 } 18204 ill->ill_logical_down = 0; 18205 18206 /* 18207 * Have to be after removing the routes in ipif_down_delete_ire. 18208 */ 18209 if (ipif->ipif_isv6) { 18210 if (ill->ill_flags & ILLF_XRESOLV) 18211 ipif_arp_down(ipif); 18212 } else { 18213 ipif_arp_down(ipif); 18214 } 18215 18216 ip_rts_ifmsg(ipif); 18217 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18218 } 18219 18220 /* 18221 * Bring interface logically down without bringing the physical interface 18222 * down e.g. when the netmask is changed. This avoids long lasting link 18223 * negotiations between an ethernet interface and a certain switches. 18224 */ 18225 static int 18226 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18227 { 18228 /* 18229 * The ill_logical_down flag is a transient flag. It is set here 18230 * and is cleared once the down has completed in ipif_down_tail. 18231 * This flag does not indicate whether the ill stream is in the 18232 * DL_BOUND state with the driver. Instead this flag is used by 18233 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18234 * the driver. The state of the ill stream i.e. whether it is 18235 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18236 */ 18237 ipif->ipif_ill->ill_logical_down = 1; 18238 return (ipif_down(ipif, q, mp)); 18239 } 18240 18241 /* 18242 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18243 * If the usesrc client ILL is already part of a usesrc group or not, 18244 * in either case a ire_stq with the matching usesrc client ILL will 18245 * locate the IRE's that need to be deleted. We want IREs to be created 18246 * with the new source address. 18247 */ 18248 static void 18249 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18250 { 18251 ill_t *ucill = (ill_t *)ill_arg; 18252 18253 ASSERT(IAM_WRITER_ILL(ucill)); 18254 18255 if (ire->ire_stq == NULL) 18256 return; 18257 18258 if ((ire->ire_type == IRE_CACHE) && 18259 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18260 ire_delete(ire); 18261 } 18262 18263 /* 18264 * ire_walk routine to delete every IRE dependent on the interface 18265 * address that is going down. (Always called as writer.) 18266 * Works for both v4 and v6. 18267 * In addition for checking for ire_ipif matches it also checks for 18268 * IRE_CACHE entries which have the same source address as the 18269 * disappearing ipif since ipif_select_source might have picked 18270 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18271 * care of any IRE_INTERFACE with the disappearing source address. 18272 */ 18273 static void 18274 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18275 { 18276 ipif_t *ipif = (ipif_t *)ipif_arg; 18277 ill_t *ire_ill; 18278 ill_t *ipif_ill; 18279 18280 ASSERT(IAM_WRITER_IPIF(ipif)); 18281 if (ire->ire_ipif == NULL) 18282 return; 18283 18284 /* 18285 * For IPv4, we derive source addresses for an IRE from ipif's 18286 * belonging to the same IPMP group as the IRE's outgoing 18287 * interface. If an IRE's outgoing interface isn't in the 18288 * same IPMP group as a particular ipif, then that ipif 18289 * couldn't have been used as a source address for this IRE. 18290 * 18291 * For IPv6, source addresses are only restricted to the IPMP group 18292 * if the IRE is for a link-local address or a multicast address. 18293 * Otherwise, source addresses for an IRE can be chosen from 18294 * interfaces other than the the outgoing interface for that IRE. 18295 * 18296 * For source address selection details, see ipif_select_source() 18297 * and ipif_select_source_v6(). 18298 */ 18299 if (ire->ire_ipversion == IPV4_VERSION || 18300 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18301 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18302 ire_ill = ire->ire_ipif->ipif_ill; 18303 ipif_ill = ipif->ipif_ill; 18304 18305 if (ire_ill->ill_group != ipif_ill->ill_group) { 18306 return; 18307 } 18308 } 18309 18310 18311 if (ire->ire_ipif != ipif) { 18312 /* 18313 * Look for a matching source address. 18314 */ 18315 if (ire->ire_type != IRE_CACHE) 18316 return; 18317 if (ipif->ipif_flags & IPIF_NOLOCAL) 18318 return; 18319 18320 if (ire->ire_ipversion == IPV4_VERSION) { 18321 if (ire->ire_src_addr != ipif->ipif_src_addr) 18322 return; 18323 } else { 18324 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18325 &ipif->ipif_v6lcl_addr)) 18326 return; 18327 } 18328 ire_delete(ire); 18329 return; 18330 } 18331 /* 18332 * ire_delete() will do an ire_flush_cache which will delete 18333 * all ire_ipif matches 18334 */ 18335 ire_delete(ire); 18336 } 18337 18338 /* 18339 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18340 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18341 * 2) when an interface is brought up or down (on that ill). 18342 * This ensures that the IRE_CACHE entries don't retain stale source 18343 * address selection results. 18344 */ 18345 void 18346 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18347 { 18348 ill_t *ill = (ill_t *)ill_arg; 18349 ill_t *ipif_ill; 18350 18351 ASSERT(IAM_WRITER_ILL(ill)); 18352 /* 18353 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18354 * Hence this should be IRE_CACHE. 18355 */ 18356 ASSERT(ire->ire_type == IRE_CACHE); 18357 18358 /* 18359 * We are called for IRE_CACHES whose ire_ipif matches ill. 18360 * We are only interested in IRE_CACHES that has borrowed 18361 * the source address from ill_arg e.g. ipif_up_done[_v6] 18362 * for which we need to look at ire_ipif->ipif_ill match 18363 * with ill. 18364 */ 18365 ASSERT(ire->ire_ipif != NULL); 18366 ipif_ill = ire->ire_ipif->ipif_ill; 18367 if (ipif_ill == ill || (ill->ill_group != NULL && 18368 ipif_ill->ill_group == ill->ill_group)) { 18369 ire_delete(ire); 18370 } 18371 } 18372 18373 /* 18374 * Delete all the ire whose stq references ill_arg. 18375 */ 18376 static void 18377 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18378 { 18379 ill_t *ill = (ill_t *)ill_arg; 18380 ill_t *ire_ill; 18381 18382 ASSERT(IAM_WRITER_ILL(ill)); 18383 /* 18384 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18385 * Hence this should be IRE_CACHE. 18386 */ 18387 ASSERT(ire->ire_type == IRE_CACHE); 18388 18389 /* 18390 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18391 * matches ill. We are only interested in IRE_CACHES that 18392 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18393 * filtering here. 18394 */ 18395 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18396 18397 if (ire_ill == ill) 18398 ire_delete(ire); 18399 } 18400 18401 /* 18402 * This is called when an ill leaves the group. We want to delete 18403 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18404 * pointing at ill. 18405 */ 18406 static void 18407 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18408 { 18409 ill_t *ill = (ill_t *)ill_arg; 18410 18411 ASSERT(IAM_WRITER_ILL(ill)); 18412 ASSERT(ill->ill_group == NULL); 18413 /* 18414 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18415 * Hence this should be IRE_CACHE. 18416 */ 18417 ASSERT(ire->ire_type == IRE_CACHE); 18418 /* 18419 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18420 * matches ill. We are interested in both. 18421 */ 18422 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18423 (ire->ire_ipif->ipif_ill == ill)); 18424 18425 ire_delete(ire); 18426 } 18427 18428 /* 18429 * Initiate deallocate of an IPIF. Always called as writer. Called by 18430 * ill_delete or ip_sioctl_removeif. 18431 */ 18432 static void 18433 ipif_free(ipif_t *ipif) 18434 { 18435 ASSERT(IAM_WRITER_IPIF(ipif)); 18436 18437 if (ipif->ipif_recovery_id != 0) 18438 (void) untimeout(ipif->ipif_recovery_id); 18439 ipif->ipif_recovery_id = 0; 18440 18441 /* Remove conn references */ 18442 reset_conn_ipif(ipif); 18443 18444 /* 18445 * Make sure we have valid net and subnet broadcast ire's for the 18446 * other ipif's which share them with this ipif. 18447 */ 18448 if (!ipif->ipif_isv6) 18449 ipif_check_bcast_ires(ipif); 18450 18451 /* 18452 * Take down the interface. We can be called either from ill_delete 18453 * or from ip_sioctl_removeif. 18454 */ 18455 (void) ipif_down(ipif, NULL, NULL); 18456 18457 rw_enter(&ill_g_lock, RW_WRITER); 18458 /* Remove pointers to this ill in the multicast routing tables */ 18459 reset_mrt_vif_ipif(ipif); 18460 rw_exit(&ill_g_lock); 18461 } 18462 18463 static void 18464 ipif_free_tail(ipif_t *ipif) 18465 { 18466 mblk_t *mp; 18467 ipif_t **ipifp; 18468 18469 /* 18470 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 18471 */ 18472 mutex_enter(&ipif->ipif_saved_ire_lock); 18473 mp = ipif->ipif_saved_ire_mp; 18474 ipif->ipif_saved_ire_mp = NULL; 18475 mutex_exit(&ipif->ipif_saved_ire_lock); 18476 freemsg(mp); 18477 18478 /* 18479 * Need to hold both ill_g_lock and ill_lock while 18480 * inserting or removing an ipif from the linked list 18481 * of ipifs hanging off the ill. 18482 */ 18483 rw_enter(&ill_g_lock, RW_WRITER); 18484 /* 18485 * Remove all multicast memberships on the interface now. 18486 * This removes IPv4 multicast memberships joined within 18487 * the kernel as ipif_down does not do ipif_multicast_down 18488 * for IPv4. IPv6 is not handled here as the multicast memberships 18489 * are based on ill and not on ipif. 18490 */ 18491 ilm_free(ipif); 18492 18493 /* 18494 * Since we held the ill_g_lock while doing the ilm_free above, 18495 * we can assert the ilms were really deleted and not just marked 18496 * ILM_DELETED. 18497 */ 18498 ASSERT(ilm_walk_ipif(ipif) == 0); 18499 18500 18501 IPIF_TRACE_CLEANUP(ipif); 18502 18503 /* Ask SCTP to take it out of it list */ 18504 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 18505 18506 mutex_enter(&ipif->ipif_ill->ill_lock); 18507 /* Get it out of the ILL interface list. */ 18508 ipifp = &ipif->ipif_ill->ill_ipif; 18509 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 18510 if (*ipifp == ipif) { 18511 *ipifp = ipif->ipif_next; 18512 break; 18513 } 18514 } 18515 18516 mutex_exit(&ipif->ipif_ill->ill_lock); 18517 rw_exit(&ill_g_lock); 18518 18519 mutex_destroy(&ipif->ipif_saved_ire_lock); 18520 18521 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 18522 18523 /* Free the memory. */ 18524 mi_free((char *)ipif); 18525 } 18526 18527 /* 18528 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 18529 * "ill_name" otherwise. 18530 */ 18531 char * 18532 ipif_get_name(const ipif_t *ipif, char *buf, int len) 18533 { 18534 char lbuf[32]; 18535 char *name; 18536 size_t name_len; 18537 18538 buf[0] = '\0'; 18539 if (!ipif) 18540 return (buf); 18541 name = ipif->ipif_ill->ill_name; 18542 name_len = ipif->ipif_ill->ill_name_length; 18543 if (ipif->ipif_id != 0) { 18544 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 18545 ipif->ipif_id); 18546 name = lbuf; 18547 name_len = mi_strlen(name) + 1; 18548 } 18549 len -= 1; 18550 buf[len] = '\0'; 18551 len = MIN(len, name_len); 18552 bcopy(name, buf, len); 18553 return (buf); 18554 } 18555 18556 /* 18557 * Find an IPIF based on the name passed in. Names can be of the 18558 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 18559 * The <phys> string can have forms like <dev><#> (e.g., le0), 18560 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 18561 * When there is no colon, the implied unit id is zero. <phys> must 18562 * correspond to the name of an ILL. (May be called as writer.) 18563 */ 18564 static ipif_t * 18565 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 18566 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 18567 mblk_t *mp, ipsq_func_t func, int *error) 18568 { 18569 char *cp; 18570 char *endp; 18571 long id; 18572 ill_t *ill; 18573 ipif_t *ipif; 18574 uint_t ire_type; 18575 boolean_t did_alloc = B_FALSE; 18576 ipsq_t *ipsq; 18577 18578 if (error != NULL) 18579 *error = 0; 18580 18581 /* 18582 * If the caller wants to us to create the ipif, make sure we have a 18583 * valid zoneid 18584 */ 18585 ASSERT(!do_alloc || zoneid != ALL_ZONES); 18586 18587 if (namelen == 0) { 18588 if (error != NULL) 18589 *error = ENXIO; 18590 return (NULL); 18591 } 18592 18593 *exists = B_FALSE; 18594 /* Look for a colon in the name. */ 18595 endp = &name[namelen]; 18596 for (cp = endp; --cp > name; ) { 18597 if (*cp == IPIF_SEPARATOR_CHAR) 18598 break; 18599 } 18600 18601 if (*cp == IPIF_SEPARATOR_CHAR) { 18602 /* 18603 * Reject any non-decimal aliases for logical 18604 * interfaces. Aliases with leading zeroes 18605 * are also rejected as they introduce ambiguity 18606 * in the naming of the interfaces. 18607 * In order to confirm with existing semantics, 18608 * and to not break any programs/script relying 18609 * on that behaviour, if<0>:0 is considered to be 18610 * a valid interface. 18611 * 18612 * If alias has two or more digits and the first 18613 * is zero, fail. 18614 */ 18615 if (&cp[2] < endp && cp[1] == '0') 18616 return (NULL); 18617 } 18618 18619 if (cp <= name) { 18620 cp = endp; 18621 } else { 18622 *cp = '\0'; 18623 } 18624 18625 /* 18626 * Look up the ILL, based on the portion of the name 18627 * before the slash. ill_lookup_on_name returns a held ill. 18628 * Temporary to check whether ill exists already. If so 18629 * ill_lookup_on_name will clear it. 18630 */ 18631 ill = ill_lookup_on_name(name, do_alloc, isv6, 18632 q, mp, func, error, &did_alloc); 18633 if (cp != endp) 18634 *cp = IPIF_SEPARATOR_CHAR; 18635 if (ill == NULL) 18636 return (NULL); 18637 18638 /* Establish the unit number in the name. */ 18639 id = 0; 18640 if (cp < endp && *endp == '\0') { 18641 /* If there was a colon, the unit number follows. */ 18642 cp++; 18643 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 18644 ill_refrele(ill); 18645 if (error != NULL) 18646 *error = ENXIO; 18647 return (NULL); 18648 } 18649 } 18650 18651 GRAB_CONN_LOCK(q); 18652 mutex_enter(&ill->ill_lock); 18653 /* Now see if there is an IPIF with this unit number. */ 18654 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 18655 if (ipif->ipif_id == id) { 18656 if (zoneid != ALL_ZONES && 18657 zoneid != ipif->ipif_zoneid && 18658 ipif->ipif_zoneid != ALL_ZONES) { 18659 mutex_exit(&ill->ill_lock); 18660 RELEASE_CONN_LOCK(q); 18661 ill_refrele(ill); 18662 if (error != NULL) 18663 *error = ENXIO; 18664 return (NULL); 18665 } 18666 /* 18667 * The block comment at the start of ipif_down 18668 * explains the use of the macros used below 18669 */ 18670 if (IPIF_CAN_LOOKUP(ipif)) { 18671 ipif_refhold_locked(ipif); 18672 mutex_exit(&ill->ill_lock); 18673 if (!did_alloc) 18674 *exists = B_TRUE; 18675 /* 18676 * Drop locks before calling ill_refrele 18677 * since it can potentially call into 18678 * ipif_ill_refrele_tail which can end up 18679 * in trying to acquire any lock. 18680 */ 18681 RELEASE_CONN_LOCK(q); 18682 ill_refrele(ill); 18683 return (ipif); 18684 } else if (IPIF_CAN_WAIT(ipif, q)) { 18685 ipsq = ill->ill_phyint->phyint_ipsq; 18686 mutex_enter(&ipsq->ipsq_lock); 18687 mutex_exit(&ill->ill_lock); 18688 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 18689 mutex_exit(&ipsq->ipsq_lock); 18690 RELEASE_CONN_LOCK(q); 18691 ill_refrele(ill); 18692 *error = EINPROGRESS; 18693 return (NULL); 18694 } 18695 } 18696 } 18697 RELEASE_CONN_LOCK(q); 18698 18699 if (!do_alloc) { 18700 mutex_exit(&ill->ill_lock); 18701 ill_refrele(ill); 18702 if (error != NULL) 18703 *error = ENXIO; 18704 return (NULL); 18705 } 18706 18707 /* 18708 * If none found, atomically allocate and return a new one. 18709 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 18710 * to support "receive only" use of lo0:1 etc. as is still done 18711 * below as an initial guess. 18712 * However, this is now likely to be overriden later in ipif_up_done() 18713 * when we know for sure what address has been configured on the 18714 * interface, since we might have more than one loopback interface 18715 * with a loopback address, e.g. in the case of zones, and all the 18716 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 18717 */ 18718 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 18719 ire_type = IRE_LOOPBACK; 18720 else 18721 ire_type = IRE_LOCAL; 18722 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 18723 if (ipif != NULL) 18724 ipif_refhold_locked(ipif); 18725 else if (error != NULL) 18726 *error = ENOMEM; 18727 mutex_exit(&ill->ill_lock); 18728 ill_refrele(ill); 18729 return (ipif); 18730 } 18731 18732 /* 18733 * This routine is called whenever a new address comes up on an ipif. If 18734 * we are configured to respond to address mask requests, then we are supposed 18735 * to broadcast an address mask reply at this time. This routine is also 18736 * called if we are already up, but a netmask change is made. This is legal 18737 * but might not make the system manager very popular. (May be called 18738 * as writer.) 18739 */ 18740 void 18741 ipif_mask_reply(ipif_t *ipif) 18742 { 18743 icmph_t *icmph; 18744 ipha_t *ipha; 18745 mblk_t *mp; 18746 18747 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 18748 18749 if (!ip_respond_to_address_mask_broadcast) 18750 return; 18751 18752 /* ICMP mask reply is IPv4 only */ 18753 ASSERT(!ipif->ipif_isv6); 18754 /* ICMP mask reply is not for a loopback interface */ 18755 ASSERT(ipif->ipif_ill->ill_wq != NULL); 18756 18757 mp = allocb(REPLY_LEN, BPRI_HI); 18758 if (mp == NULL) 18759 return; 18760 mp->b_wptr = mp->b_rptr + REPLY_LEN; 18761 18762 ipha = (ipha_t *)mp->b_rptr; 18763 bzero(ipha, REPLY_LEN); 18764 *ipha = icmp_ipha; 18765 ipha->ipha_ttl = ip_broadcast_ttl; 18766 ipha->ipha_src = ipif->ipif_src_addr; 18767 ipha->ipha_dst = ipif->ipif_brd_addr; 18768 ipha->ipha_length = htons(REPLY_LEN); 18769 ipha->ipha_ident = 0; 18770 18771 icmph = (icmph_t *)&ipha[1]; 18772 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 18773 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 18774 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 18775 if (icmph->icmph_checksum == 0) 18776 icmph->icmph_checksum = 0xffff; 18777 18778 put(ipif->ipif_wq, mp); 18779 18780 #undef REPLY_LEN 18781 } 18782 18783 /* 18784 * When the mtu in the ipif changes, we call this routine through ire_walk 18785 * to update all the relevant IREs. 18786 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18787 */ 18788 static void 18789 ipif_mtu_change(ire_t *ire, char *ipif_arg) 18790 { 18791 ipif_t *ipif = (ipif_t *)ipif_arg; 18792 18793 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 18794 return; 18795 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 18796 } 18797 18798 /* 18799 * When the mtu in the ill changes, we call this routine through ire_walk 18800 * to update all the relevant IREs. 18801 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18802 */ 18803 void 18804 ill_mtu_change(ire_t *ire, char *ill_arg) 18805 { 18806 ill_t *ill = (ill_t *)ill_arg; 18807 18808 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 18809 return; 18810 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 18811 } 18812 18813 /* 18814 * Join the ipif specific multicast groups. 18815 * Must be called after a mapping has been set up in the resolver. (Always 18816 * called as writer.) 18817 */ 18818 void 18819 ipif_multicast_up(ipif_t *ipif) 18820 { 18821 int err, index; 18822 ill_t *ill; 18823 18824 ASSERT(IAM_WRITER_IPIF(ipif)); 18825 18826 ill = ipif->ipif_ill; 18827 index = ill->ill_phyint->phyint_ifindex; 18828 18829 ip1dbg(("ipif_multicast_up\n")); 18830 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 18831 return; 18832 18833 if (ipif->ipif_isv6) { 18834 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 18835 return; 18836 18837 /* Join the all hosts multicast address */ 18838 ip1dbg(("ipif_multicast_up - addmulti\n")); 18839 /* 18840 * Passing B_TRUE means we have to join the multicast 18841 * membership on this interface even though this is 18842 * FAILED. If we join on a different one in the group, 18843 * we will not be able to delete the membership later 18844 * as we currently don't track where we join when we 18845 * join within the kernel unlike applications where 18846 * we have ilg/ilg_orig_index. See ip_addmulti_v6 18847 * for more on this. 18848 */ 18849 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 18850 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18851 if (err != 0) { 18852 ip0dbg(("ipif_multicast_up: " 18853 "all_hosts_mcast failed %d\n", 18854 err)); 18855 return; 18856 } 18857 /* 18858 * Enable multicast for the solicited node multicast address 18859 */ 18860 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18861 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18862 18863 ipv6_multi.s6_addr32[3] |= 18864 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18865 18866 err = ip_addmulti_v6(&ipv6_multi, ill, index, 18867 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 18868 NULL); 18869 if (err != 0) { 18870 ip0dbg(("ipif_multicast_up: solicited MC" 18871 " failed %d\n", err)); 18872 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 18873 ill, ill->ill_phyint->phyint_ifindex, 18874 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18875 return; 18876 } 18877 } 18878 } else { 18879 if (ipif->ipif_lcl_addr == INADDR_ANY) 18880 return; 18881 18882 /* Join the all hosts multicast address */ 18883 ip1dbg(("ipif_multicast_up - addmulti\n")); 18884 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 18885 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18886 if (err) { 18887 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 18888 return; 18889 } 18890 } 18891 ipif->ipif_multicast_up = 1; 18892 } 18893 18894 /* 18895 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 18896 * any explicit memberships are blown away in ill_leave_multicast() when the 18897 * ill is brought down. 18898 */ 18899 static void 18900 ipif_multicast_down(ipif_t *ipif) 18901 { 18902 int err; 18903 18904 ASSERT(IAM_WRITER_IPIF(ipif)); 18905 18906 ip1dbg(("ipif_multicast_down\n")); 18907 if (!ipif->ipif_multicast_up) 18908 return; 18909 18910 ASSERT(ipif->ipif_isv6); 18911 18912 ip1dbg(("ipif_multicast_down - delmulti\n")); 18913 18914 /* 18915 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 18916 * we should look for ilms on this ill rather than the ones that have 18917 * been failed over here. They are here temporarily. As 18918 * ipif_multicast_up has joined on this ill, we should delete only 18919 * from this ill. 18920 */ 18921 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 18922 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 18923 B_TRUE, B_TRUE); 18924 if (err != 0) { 18925 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 18926 err)); 18927 } 18928 /* 18929 * Disable multicast for the solicited node multicast address 18930 */ 18931 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18932 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18933 18934 ipv6_multi.s6_addr32[3] |= 18935 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18936 18937 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 18938 ipif->ipif_ill->ill_phyint->phyint_ifindex, 18939 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18940 18941 if (err != 0) { 18942 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 18943 err)); 18944 } 18945 } 18946 18947 ipif->ipif_multicast_up = 0; 18948 } 18949 18950 /* 18951 * Used when an interface comes up to recreate any extra routes on this 18952 * interface. 18953 */ 18954 static ire_t ** 18955 ipif_recover_ire(ipif_t *ipif) 18956 { 18957 mblk_t *mp; 18958 ire_t **ipif_saved_irep; 18959 ire_t **irep; 18960 18961 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 18962 ipif->ipif_id)); 18963 18964 mutex_enter(&ipif->ipif_saved_ire_lock); 18965 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 18966 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 18967 if (ipif_saved_irep == NULL) { 18968 mutex_exit(&ipif->ipif_saved_ire_lock); 18969 return (NULL); 18970 } 18971 18972 irep = ipif_saved_irep; 18973 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 18974 ire_t *ire; 18975 queue_t *rfq; 18976 queue_t *stq; 18977 ifrt_t *ifrt; 18978 uchar_t *src_addr; 18979 uchar_t *gateway_addr; 18980 mblk_t *resolver_mp; 18981 ushort_t type; 18982 18983 /* 18984 * When the ire was initially created and then added in 18985 * ip_rt_add(), it was created either using ipif->ipif_net_type 18986 * in the case of a traditional interface route, or as one of 18987 * the IRE_OFFSUBNET types (with the exception of 18988 * IRE_HOST_REDIRECT which is created by icmp_redirect() and 18989 * which we don't need to save or recover). In the case where 18990 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 18991 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 18992 * to satisfy software like GateD and Sun Cluster which creates 18993 * routes using the the loopback interface's address as a 18994 * gateway. 18995 * 18996 * As ifrt->ifrt_type reflects the already updated ire_type and 18997 * since ire_create() expects that IRE_IF_NORESOLVER will have 18998 * a valid nce_res_mp field (which doesn't make sense for a 18999 * IRE_LOOPBACK), ire_create() will be called in the same way 19000 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 19001 * the route looks like a traditional interface route (where 19002 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19003 * the saved ifrt->ifrt_type. This means that in the case where 19004 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19005 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19006 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19007 */ 19008 ifrt = (ifrt_t *)mp->b_rptr; 19009 if (ifrt->ifrt_type & IRE_INTERFACE) { 19010 rfq = NULL; 19011 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19012 ? ipif->ipif_rq : ipif->ipif_wq; 19013 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19014 ? (uint8_t *)&ifrt->ifrt_src_addr 19015 : (uint8_t *)&ipif->ipif_src_addr; 19016 gateway_addr = NULL; 19017 resolver_mp = ipif->ipif_resolver_mp; 19018 type = ipif->ipif_net_type; 19019 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19020 /* Recover multiroute broadcast IRE. */ 19021 rfq = ipif->ipif_rq; 19022 stq = ipif->ipif_wq; 19023 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19024 ? (uint8_t *)&ifrt->ifrt_src_addr 19025 : (uint8_t *)&ipif->ipif_src_addr; 19026 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19027 resolver_mp = ipif->ipif_bcast_mp; 19028 type = ifrt->ifrt_type; 19029 } else { 19030 rfq = NULL; 19031 stq = NULL; 19032 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19033 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19034 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19035 resolver_mp = NULL; 19036 type = ifrt->ifrt_type; 19037 } 19038 19039 /* 19040 * Create a copy of the IRE with the saved address and netmask. 19041 */ 19042 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19043 "0x%x/0x%x\n", 19044 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19045 ntohl(ifrt->ifrt_addr), 19046 ntohl(ifrt->ifrt_mask))); 19047 ire = ire_create( 19048 (uint8_t *)&ifrt->ifrt_addr, 19049 (uint8_t *)&ifrt->ifrt_mask, 19050 src_addr, 19051 gateway_addr, 19052 NULL, 19053 &ifrt->ifrt_max_frag, 19054 NULL, 19055 rfq, 19056 stq, 19057 type, 19058 resolver_mp, 19059 ipif, 19060 NULL, 19061 0, 19062 0, 19063 0, 19064 ifrt->ifrt_flags, 19065 &ifrt->ifrt_iulp_info, 19066 NULL, 19067 NULL); 19068 19069 if (ire == NULL) { 19070 mutex_exit(&ipif->ipif_saved_ire_lock); 19071 kmem_free(ipif_saved_irep, 19072 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19073 return (NULL); 19074 } 19075 19076 /* 19077 * Some software (for example, GateD and Sun Cluster) attempts 19078 * to create (what amount to) IRE_PREFIX routes with the 19079 * loopback address as the gateway. This is primarily done to 19080 * set up prefixes with the RTF_REJECT flag set (for example, 19081 * when generating aggregate routes.) 19082 * 19083 * If the IRE type (as defined by ipif->ipif_net_type) is 19084 * IRE_LOOPBACK, then we map the request into a 19085 * IRE_IF_NORESOLVER. 19086 */ 19087 if (ipif->ipif_net_type == IRE_LOOPBACK) 19088 ire->ire_type = IRE_IF_NORESOLVER; 19089 /* 19090 * ire held by ire_add, will be refreled' towards the 19091 * the end of ipif_up_done 19092 */ 19093 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19094 *irep = ire; 19095 irep++; 19096 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19097 } 19098 mutex_exit(&ipif->ipif_saved_ire_lock); 19099 return (ipif_saved_irep); 19100 } 19101 19102 /* 19103 * Used to set the netmask and broadcast address to default values when the 19104 * interface is brought up. (Always called as writer.) 19105 */ 19106 static void 19107 ipif_set_default(ipif_t *ipif) 19108 { 19109 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19110 19111 if (!ipif->ipif_isv6) { 19112 /* 19113 * Interface holds an IPv4 address. Default 19114 * mask is the natural netmask. 19115 */ 19116 if (!ipif->ipif_net_mask) { 19117 ipaddr_t v4mask; 19118 19119 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19120 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19121 } 19122 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19123 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19124 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19125 } else { 19126 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19127 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19128 } 19129 /* 19130 * NOTE: SunOS 4.X does this even if the broadcast address 19131 * has been already set thus we do the same here. 19132 */ 19133 if (ipif->ipif_flags & IPIF_BROADCAST) { 19134 ipaddr_t v4addr; 19135 19136 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19137 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19138 } 19139 } else { 19140 /* 19141 * Interface holds an IPv6-only address. Default 19142 * mask is all-ones. 19143 */ 19144 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19145 ipif->ipif_v6net_mask = ipv6_all_ones; 19146 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19147 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19148 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19149 } else { 19150 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19151 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19152 } 19153 } 19154 } 19155 19156 /* 19157 * Return 0 if this address can be used as local address without causing 19158 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19159 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19160 * Special checks are needed to allow the same IPv6 link-local address 19161 * on different ills. 19162 * TODO: allowing the same site-local address on different ill's. 19163 */ 19164 int 19165 ip_addr_availability_check(ipif_t *new_ipif) 19166 { 19167 in6_addr_t our_v6addr; 19168 ill_t *ill; 19169 ipif_t *ipif; 19170 ill_walk_context_t ctx; 19171 19172 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19173 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 19174 ASSERT(RW_READ_HELD(&ill_g_lock)); 19175 19176 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19177 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19178 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19179 return (0); 19180 19181 our_v6addr = new_ipif->ipif_v6lcl_addr; 19182 19183 if (new_ipif->ipif_isv6) 19184 ill = ILL_START_WALK_V6(&ctx); 19185 else 19186 ill = ILL_START_WALK_V4(&ctx); 19187 19188 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19189 for (ipif = ill->ill_ipif; ipif != NULL; 19190 ipif = ipif->ipif_next) { 19191 if ((ipif == new_ipif) || 19192 !(ipif->ipif_flags & IPIF_UP) || 19193 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19194 continue; 19195 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19196 &our_v6addr)) { 19197 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19198 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19199 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19200 ipif->ipif_flags |= IPIF_UNNUMBERED; 19201 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19202 new_ipif->ipif_ill != ill) 19203 continue; 19204 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19205 new_ipif->ipif_ill != ill) 19206 continue; 19207 else if (new_ipif->ipif_zoneid != 19208 ipif->ipif_zoneid && 19209 ipif->ipif_zoneid != ALL_ZONES && 19210 (ill->ill_phyint->phyint_flags & 19211 PHYI_LOOPBACK)) 19212 continue; 19213 else if (new_ipif->ipif_ill == ill) 19214 return (EADDRINUSE); 19215 else 19216 return (EADDRNOTAVAIL); 19217 } 19218 } 19219 } 19220 19221 return (0); 19222 } 19223 19224 /* 19225 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19226 * IREs for the ipif. 19227 * When the routine returns EINPROGRESS then mp has been consumed and 19228 * the ioctl will be acked from ip_rput_dlpi. 19229 */ 19230 static int 19231 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19232 { 19233 ill_t *ill = ipif->ipif_ill; 19234 boolean_t isv6 = ipif->ipif_isv6; 19235 int err = 0; 19236 boolean_t success; 19237 19238 ASSERT(IAM_WRITER_IPIF(ipif)); 19239 19240 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19241 19242 /* Shouldn't get here if it is already up. */ 19243 if (ipif->ipif_flags & IPIF_UP) 19244 return (EALREADY); 19245 19246 /* Skip arp/ndp for any loopback interface. */ 19247 if (ill->ill_wq != NULL) { 19248 conn_t *connp = Q_TO_CONN(q); 19249 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19250 19251 if (!ill->ill_dl_up) { 19252 /* 19253 * ill_dl_up is not yet set. i.e. we are yet to 19254 * DL_BIND with the driver and this is the first 19255 * logical interface on the ill to become "up". 19256 * Tell the driver to get going (via DL_BIND_REQ). 19257 * Note that changing "significant" IFF_ flags 19258 * address/netmask etc cause a down/up dance, but 19259 * does not cause an unbind (DL_UNBIND) with the driver 19260 */ 19261 return (ill_dl_up(ill, ipif, mp, q)); 19262 } 19263 19264 /* 19265 * ipif_resolver_up may end up sending an 19266 * AR_INTERFACE_UP message to ARP, which would, in 19267 * turn send a DLPI message to the driver. ioctls are 19268 * serialized and so we cannot send more than one 19269 * interface up message at a time. If ipif_resolver_up 19270 * does send an interface up message to ARP, we get 19271 * EINPROGRESS and we will complete in ip_arp_done. 19272 */ 19273 19274 ASSERT(connp != NULL); 19275 ASSERT(ipsq->ipsq_pending_mp == NULL); 19276 mutex_enter(&connp->conn_lock); 19277 mutex_enter(&ill->ill_lock); 19278 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19279 mutex_exit(&ill->ill_lock); 19280 mutex_exit(&connp->conn_lock); 19281 if (!success) 19282 return (EINTR); 19283 19284 /* 19285 * Crank up IPv6 neighbor discovery 19286 * Unlike ARP, this should complete when 19287 * ipif_ndp_up returns. However, for 19288 * ILLF_XRESOLV interfaces we also send a 19289 * AR_INTERFACE_UP to the external resolver. 19290 * That ioctl will complete in ip_rput. 19291 */ 19292 if (isv6) { 19293 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 19294 B_FALSE); 19295 if (err != 0) { 19296 if (err != EINPROGRESS) 19297 mp = ipsq_pending_mp_get(ipsq, &connp); 19298 return (err); 19299 } 19300 } 19301 /* Now, ARP */ 19302 err = ipif_resolver_up(ipif, Res_act_initial); 19303 if (err == EINPROGRESS) { 19304 /* We will complete it in ip_arp_done */ 19305 return (err); 19306 } 19307 mp = ipsq_pending_mp_get(ipsq, &connp); 19308 ASSERT(mp != NULL); 19309 if (err != 0) 19310 return (err); 19311 } else { 19312 /* 19313 * Interfaces without underlying hardware don't do duplicate 19314 * address detection. 19315 */ 19316 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19317 ipif->ipif_addr_ready = 1; 19318 } 19319 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19320 } 19321 19322 /* 19323 * Perform a bind for the physical device. 19324 * When the routine returns EINPROGRESS then mp has been consumed and 19325 * the ioctl will be acked from ip_rput_dlpi. 19326 * Allocate an unbind message and save it until ipif_down. 19327 */ 19328 static int 19329 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19330 { 19331 mblk_t *areq_mp = NULL; 19332 mblk_t *bind_mp = NULL; 19333 mblk_t *unbind_mp = NULL; 19334 conn_t *connp; 19335 boolean_t success; 19336 19337 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19338 ASSERT(IAM_WRITER_ILL(ill)); 19339 19340 ASSERT(mp != NULL); 19341 19342 /* Create a resolver cookie for ARP */ 19343 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19344 areq_t *areq; 19345 uint16_t sap_addr; 19346 19347 areq_mp = ill_arp_alloc(ill, 19348 (uchar_t *)&ip_areq_template, 0); 19349 if (areq_mp == NULL) { 19350 return (ENOMEM); 19351 } 19352 freemsg(ill->ill_resolver_mp); 19353 ill->ill_resolver_mp = areq_mp; 19354 areq = (areq_t *)areq_mp->b_rptr; 19355 sap_addr = ill->ill_sap; 19356 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19357 /* 19358 * Wait till we call ill_pending_mp_add to determine 19359 * the success before we free the ill_resolver_mp and 19360 * attach areq_mp in it's place. 19361 */ 19362 } 19363 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19364 DL_BIND_REQ); 19365 if (bind_mp == NULL) 19366 goto bad; 19367 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19368 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19369 19370 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19371 if (unbind_mp == NULL) 19372 goto bad; 19373 19374 /* 19375 * Record state needed to complete this operation when the 19376 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19377 */ 19378 if (WR(q)->q_next == NULL) { 19379 connp = Q_TO_CONN(q); 19380 mutex_enter(&connp->conn_lock); 19381 } else { 19382 connp = NULL; 19383 } 19384 mutex_enter(&ipif->ipif_ill->ill_lock); 19385 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19386 mutex_exit(&ipif->ipif_ill->ill_lock); 19387 if (connp != NULL) 19388 mutex_exit(&connp->conn_lock); 19389 if (!success) 19390 goto bad; 19391 19392 /* 19393 * Save the unbind message for ill_dl_down(); it will be consumed when 19394 * the interface goes down. 19395 */ 19396 ASSERT(ill->ill_unbind_mp == NULL); 19397 ill->ill_unbind_mp = unbind_mp; 19398 19399 ill_dlpi_send(ill, bind_mp); 19400 /* Send down link-layer capabilities probe if not already done. */ 19401 ill_capability_probe(ill); 19402 19403 /* 19404 * Sysid used to rely on the fact that netboots set domainname 19405 * and the like. Now that miniroot boots aren't strictly netboots 19406 * and miniroot network configuration is driven from userland 19407 * these things still need to be set. This situation can be detected 19408 * by comparing the interface being configured here to the one 19409 * dhcack was set to reference by the boot loader. Once sysid is 19410 * converted to use dhcp_ipc_getinfo() this call can go away. 19411 */ 19412 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 19413 (strcmp(ill->ill_name, dhcack) == 0) && 19414 (strlen(srpc_domain) == 0)) { 19415 if (dhcpinit() != 0) 19416 cmn_err(CE_WARN, "no cached dhcp response"); 19417 } 19418 19419 /* 19420 * This operation will complete in ip_rput_dlpi with either 19421 * a DL_BIND_ACK or DL_ERROR_ACK. 19422 */ 19423 return (EINPROGRESS); 19424 bad: 19425 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19426 /* 19427 * We don't have to check for possible removal from illgrp 19428 * as we have not yet inserted in illgrp. For groups 19429 * without names, this ipif is still not UP and hence 19430 * this could not have possibly had any influence in forming 19431 * groups. 19432 */ 19433 19434 if (bind_mp != NULL) 19435 freemsg(bind_mp); 19436 if (unbind_mp != NULL) 19437 freemsg(unbind_mp); 19438 return (ENOMEM); 19439 } 19440 19441 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19442 19443 /* 19444 * DLPI and ARP is up. 19445 * Create all the IREs associated with an interface bring up multicast. 19446 * Set the interface flag and finish other initialization 19447 * that potentially had to be differed to after DL_BIND_ACK. 19448 */ 19449 int 19450 ipif_up_done(ipif_t *ipif) 19451 { 19452 ire_t *ire_array[20]; 19453 ire_t **irep = ire_array; 19454 ire_t **irep1; 19455 ipaddr_t net_mask = 0; 19456 ipaddr_t subnet_mask, route_mask; 19457 ill_t *ill = ipif->ipif_ill; 19458 queue_t *stq; 19459 ipif_t *src_ipif; 19460 ipif_t *tmp_ipif; 19461 boolean_t flush_ire_cache = B_TRUE; 19462 int err = 0; 19463 phyint_t *phyi; 19464 ire_t **ipif_saved_irep = NULL; 19465 int ipif_saved_ire_cnt; 19466 int cnt; 19467 boolean_t src_ipif_held = B_FALSE; 19468 boolean_t ire_added = B_FALSE; 19469 boolean_t loopback = B_FALSE; 19470 19471 ip1dbg(("ipif_up_done(%s:%u)\n", 19472 ipif->ipif_ill->ill_name, ipif->ipif_id)); 19473 /* Check if this is a loopback interface */ 19474 if (ipif->ipif_ill->ill_wq == NULL) 19475 loopback = B_TRUE; 19476 19477 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19478 /* 19479 * If all other interfaces for this ill are down or DEPRECATED, 19480 * or otherwise unsuitable for source address selection, remove 19481 * any IRE_CACHE entries for this ill to make sure source 19482 * address selection gets to take this new ipif into account. 19483 * No need to hold ill_lock while traversing the ipif list since 19484 * we are writer 19485 */ 19486 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 19487 tmp_ipif = tmp_ipif->ipif_next) { 19488 if (((tmp_ipif->ipif_flags & 19489 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 19490 !(tmp_ipif->ipif_flags & IPIF_UP)) || 19491 (tmp_ipif == ipif)) 19492 continue; 19493 /* first useable pre-existing interface */ 19494 flush_ire_cache = B_FALSE; 19495 break; 19496 } 19497 if (flush_ire_cache) 19498 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 19499 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 19500 19501 /* 19502 * Figure out which way the send-to queue should go. Only 19503 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 19504 * should show up here. 19505 */ 19506 switch (ill->ill_net_type) { 19507 case IRE_IF_RESOLVER: 19508 stq = ill->ill_rq; 19509 break; 19510 case IRE_IF_NORESOLVER: 19511 case IRE_LOOPBACK: 19512 stq = ill->ill_wq; 19513 break; 19514 default: 19515 return (EINVAL); 19516 } 19517 19518 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 19519 /* 19520 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 19521 * ipif_lookup_on_name(), but in the case of zones we can have 19522 * several loopback addresses on lo0. So all the interfaces with 19523 * loopback addresses need to be marked IRE_LOOPBACK. 19524 */ 19525 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 19526 htonl(INADDR_LOOPBACK)) 19527 ipif->ipif_ire_type = IRE_LOOPBACK; 19528 else 19529 ipif->ipif_ire_type = IRE_LOCAL; 19530 } 19531 19532 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 19533 /* 19534 * Can't use our source address. Select a different 19535 * source address for the IRE_INTERFACE and IRE_LOCAL 19536 */ 19537 src_ipif = ipif_select_source(ipif->ipif_ill, 19538 ipif->ipif_subnet, ipif->ipif_zoneid); 19539 if (src_ipif == NULL) 19540 src_ipif = ipif; /* Last resort */ 19541 else 19542 src_ipif_held = B_TRUE; 19543 } else { 19544 src_ipif = ipif; 19545 } 19546 19547 /* Create all the IREs associated with this interface */ 19548 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19549 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19550 19551 /* 19552 * If we're on a labeled system then make sure that zone- 19553 * private addresses have proper remote host database entries. 19554 */ 19555 if (is_system_labeled() && 19556 ipif->ipif_ire_type != IRE_LOOPBACK && 19557 !tsol_check_interface_address(ipif)) 19558 return (EINVAL); 19559 19560 /* Register the source address for __sin6_src_id */ 19561 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 19562 ipif->ipif_zoneid); 19563 if (err != 0) { 19564 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 19565 return (err); 19566 } 19567 19568 /* If the interface address is set, create the local IRE. */ 19569 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 19570 (void *)ipif, 19571 ipif->ipif_ire_type, 19572 ntohl(ipif->ipif_lcl_addr))); 19573 *irep++ = ire_create( 19574 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 19575 (uchar_t *)&ip_g_all_ones, /* mask */ 19576 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 19577 NULL, /* no gateway */ 19578 NULL, 19579 &ip_loopback_mtuplus, /* max frag size */ 19580 NULL, 19581 ipif->ipif_rq, /* recv-from queue */ 19582 NULL, /* no send-to queue */ 19583 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 19584 NULL, 19585 ipif, 19586 NULL, 19587 0, 19588 0, 19589 0, 19590 (ipif->ipif_flags & IPIF_PRIVATE) ? 19591 RTF_PRIVATE : 0, 19592 &ire_uinfo_null, 19593 NULL, 19594 NULL); 19595 } else { 19596 ip1dbg(( 19597 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 19598 ipif->ipif_ire_type, 19599 ntohl(ipif->ipif_lcl_addr), 19600 (uint_t)ipif->ipif_flags)); 19601 } 19602 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19603 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19604 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 19605 } else { 19606 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 19607 } 19608 19609 subnet_mask = ipif->ipif_net_mask; 19610 19611 /* 19612 * If mask was not specified, use natural netmask of 19613 * interface address. Also, store this mask back into the 19614 * ipif struct. 19615 */ 19616 if (subnet_mask == 0) { 19617 subnet_mask = net_mask; 19618 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 19619 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 19620 ipif->ipif_v6subnet); 19621 } 19622 19623 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 19624 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 19625 ipif->ipif_subnet != INADDR_ANY) { 19626 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19627 19628 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19629 route_mask = IP_HOST_MASK; 19630 } else { 19631 route_mask = subnet_mask; 19632 } 19633 19634 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 19635 "creating if IRE ill_net_type 0x%x for 0x%x\n", 19636 (void *)ipif, (void *)ill, 19637 ill->ill_net_type, 19638 ntohl(ipif->ipif_subnet))); 19639 *irep++ = ire_create( 19640 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 19641 (uchar_t *)&route_mask, /* mask */ 19642 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 19643 NULL, /* no gateway */ 19644 NULL, 19645 &ipif->ipif_mtu, /* max frag */ 19646 NULL, 19647 NULL, /* no recv queue */ 19648 stq, /* send-to queue */ 19649 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19650 ill->ill_resolver_mp, /* xmit header */ 19651 ipif, 19652 NULL, 19653 0, 19654 0, 19655 0, 19656 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 19657 &ire_uinfo_null, 19658 NULL, 19659 NULL); 19660 } 19661 19662 /* 19663 * If the interface address is set, create the broadcast IREs. 19664 * 19665 * ire_create_bcast checks if the proposed new IRE matches 19666 * any existing IRE's with the same physical interface (ILL). 19667 * This should get rid of duplicates. 19668 * ire_create_bcast also check IPIF_NOXMIT and does not create 19669 * any broadcast ires. 19670 */ 19671 if ((ipif->ipif_subnet != INADDR_ANY) && 19672 (ipif->ipif_flags & IPIF_BROADCAST)) { 19673 ipaddr_t addr; 19674 19675 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 19676 irep = ire_check_and_create_bcast(ipif, 0, irep, 19677 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19678 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 19679 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19680 19681 /* 19682 * For backward compatibility, we need to create net 19683 * broadcast ire's based on the old "IP address class 19684 * system." The reason is that some old machines only 19685 * respond to these class derived net broadcast. 19686 * 19687 * But we should not create these net broadcast ire's if 19688 * the subnet_mask is shorter than the IP address class based 19689 * derived netmask. Otherwise, we may create a net 19690 * broadcast address which is the same as an IP address 19691 * on the subnet. Then TCP will refuse to talk to that 19692 * address. 19693 * 19694 * Nor do we need IRE_BROADCAST ire's for the interface 19695 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 19696 * interface is already created. Creating these broadcast 19697 * ire's will only create confusion as the "addr" is going 19698 * to be same as that of the IP address of the interface. 19699 */ 19700 if (net_mask < subnet_mask) { 19701 addr = net_mask & ipif->ipif_subnet; 19702 irep = ire_check_and_create_bcast(ipif, addr, irep, 19703 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19704 irep = ire_check_and_create_bcast(ipif, 19705 ~net_mask | addr, irep, 19706 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19707 } 19708 19709 if (subnet_mask != 0xFFFFFFFF) { 19710 addr = ipif->ipif_subnet; 19711 irep = ire_check_and_create_bcast(ipif, addr, irep, 19712 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19713 irep = ire_check_and_create_bcast(ipif, 19714 ~subnet_mask|addr, irep, 19715 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19716 } 19717 } 19718 19719 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19720 19721 /* If an earlier ire_create failed, get out now */ 19722 for (irep1 = irep; irep1 > ire_array; ) { 19723 irep1--; 19724 if (*irep1 == NULL) { 19725 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 19726 err = ENOMEM; 19727 goto bad; 19728 } 19729 } 19730 19731 /* 19732 * Need to atomically check for ip_addr_availablity_check 19733 * under ip_addr_avail_lock, and if it fails got bad, and remove 19734 * from group also.The ill_g_lock is grabbed as reader 19735 * just to make sure no new ills or new ipifs are being added 19736 * to the system while we are checking the uniqueness of addresses. 19737 */ 19738 rw_enter(&ill_g_lock, RW_READER); 19739 mutex_enter(&ip_addr_avail_lock); 19740 /* Mark it up, and increment counters. */ 19741 ill->ill_ipif_up_count++; 19742 ipif->ipif_flags |= IPIF_UP; 19743 err = ip_addr_availability_check(ipif); 19744 mutex_exit(&ip_addr_avail_lock); 19745 rw_exit(&ill_g_lock); 19746 19747 if (err != 0) { 19748 /* 19749 * Our address may already be up on the same ill. In this case, 19750 * the ARP entry for our ipif replaced the one for the other 19751 * ipif. So we don't want to delete it (otherwise the other ipif 19752 * would be unable to send packets). 19753 * ip_addr_availability_check() identifies this case for us and 19754 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 19755 * which is the expected error code. 19756 */ 19757 if (err == EADDRINUSE) { 19758 freemsg(ipif->ipif_arp_del_mp); 19759 ipif->ipif_arp_del_mp = NULL; 19760 err = EADDRNOTAVAIL; 19761 } 19762 ill->ill_ipif_up_count--; 19763 ipif->ipif_flags &= ~IPIF_UP; 19764 goto bad; 19765 } 19766 19767 /* 19768 * Add in all newly created IREs. ire_create_bcast() has 19769 * already checked for duplicates of the IRE_BROADCAST type. 19770 * We want to add before we call ifgrp_insert which wants 19771 * to know whether IRE_IF_RESOLVER exists or not. 19772 * 19773 * NOTE : We refrele the ire though we may branch to "bad" 19774 * later on where we do ire_delete. This is okay 19775 * because nobody can delete it as we are running 19776 * exclusively. 19777 */ 19778 for (irep1 = irep; irep1 > ire_array; ) { 19779 irep1--; 19780 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 19781 /* 19782 * refheld by ire_add. refele towards the end of the func 19783 */ 19784 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 19785 } 19786 ire_added = B_TRUE; 19787 /* 19788 * Form groups if possible. 19789 * 19790 * If we are supposed to be in a ill_group with a name, insert it 19791 * now as we know that at least one ipif is UP. Otherwise form 19792 * nameless groups. 19793 * 19794 * If ip_enable_group_ifs is set and ipif address is not 0, insert 19795 * this ipif into the appropriate interface group, or create a 19796 * new one. If this is already in a nameless group, we try to form 19797 * a bigger group looking at other ills potentially sharing this 19798 * ipif's prefix. 19799 */ 19800 phyi = ill->ill_phyint; 19801 if (phyi->phyint_groupname_len != 0) { 19802 ASSERT(phyi->phyint_groupname != NULL); 19803 if (ill->ill_ipif_up_count == 1) { 19804 ASSERT(ill->ill_group == NULL); 19805 err = illgrp_insert(&illgrp_head_v4, ill, 19806 phyi->phyint_groupname, NULL, B_TRUE); 19807 if (err != 0) { 19808 ip1dbg(("ipif_up_done: illgrp allocation " 19809 "failed, error %d\n", err)); 19810 goto bad; 19811 } 19812 } 19813 ASSERT(ill->ill_group != NULL); 19814 } 19815 19816 /* 19817 * When this is part of group, we need to make sure that 19818 * any broadcast ires created because of this ipif coming 19819 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 19820 * so that we don't receive duplicate broadcast packets. 19821 */ 19822 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 19823 ipif_renominate_bcast(ipif); 19824 19825 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 19826 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 19827 ipif_saved_irep = ipif_recover_ire(ipif); 19828 19829 if (!loopback) { 19830 /* 19831 * If the broadcast address has been set, make sure it makes 19832 * sense based on the interface address. 19833 * Only match on ill since we are sharing broadcast addresses. 19834 */ 19835 if ((ipif->ipif_brd_addr != INADDR_ANY) && 19836 (ipif->ipif_flags & IPIF_BROADCAST)) { 19837 ire_t *ire; 19838 19839 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 19840 IRE_BROADCAST, ipif, ALL_ZONES, 19841 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19842 19843 if (ire == NULL) { 19844 /* 19845 * If there isn't a matching broadcast IRE, 19846 * revert to the default for this netmask. 19847 */ 19848 ipif->ipif_v6brd_addr = ipv6_all_zeros; 19849 mutex_enter(&ipif->ipif_ill->ill_lock); 19850 ipif_set_default(ipif); 19851 mutex_exit(&ipif->ipif_ill->ill_lock); 19852 } else { 19853 ire_refrele(ire); 19854 } 19855 } 19856 19857 } 19858 19859 /* This is the first interface on this ill */ 19860 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 19861 /* 19862 * Need to recover all multicast memberships in the driver. 19863 * This had to be deferred until we had attached. 19864 */ 19865 ill_recover_multicast(ill); 19866 } 19867 /* Join the allhosts multicast address */ 19868 ipif_multicast_up(ipif); 19869 19870 if (!loopback) { 19871 /* 19872 * See whether anybody else would benefit from the 19873 * new ipif that we added. We call this always rather 19874 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 19875 * ipif is for the benefit of illgrp_insert (done above) 19876 * which does not do source address selection as it does 19877 * not want to re-create interface routes that we are 19878 * having reference to it here. 19879 */ 19880 ill_update_source_selection(ill); 19881 } 19882 19883 for (irep1 = irep; irep1 > ire_array; ) { 19884 irep1--; 19885 if (*irep1 != NULL) { 19886 /* was held in ire_add */ 19887 ire_refrele(*irep1); 19888 } 19889 } 19890 19891 cnt = ipif_saved_ire_cnt; 19892 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 19893 if (*irep1 != NULL) { 19894 /* was held in ire_add */ 19895 ire_refrele(*irep1); 19896 } 19897 } 19898 19899 if (!loopback && ipif->ipif_addr_ready) { 19900 /* Broadcast an address mask reply. */ 19901 ipif_mask_reply(ipif); 19902 } 19903 if (ipif_saved_irep != NULL) { 19904 kmem_free(ipif_saved_irep, 19905 ipif_saved_ire_cnt * sizeof (ire_t *)); 19906 } 19907 if (src_ipif_held) 19908 ipif_refrele(src_ipif); 19909 19910 /* 19911 * This had to be deferred until we had bound. Tell routing sockets and 19912 * others that this interface is up if it looks like the address has 19913 * been validated. Otherwise, if it isn't ready yet, wait for 19914 * duplicate address detection to do its thing. 19915 */ 19916 if (ipif->ipif_addr_ready) { 19917 ip_rts_ifmsg(ipif); 19918 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 19919 /* Let SCTP update the status for this ipif */ 19920 sctp_update_ipif(ipif, SCTP_IPIF_UP); 19921 } 19922 return (0); 19923 19924 bad: 19925 ip1dbg(("ipif_up_done: FAILED \n")); 19926 /* 19927 * We don't have to bother removing from ill groups because 19928 * 19929 * 1) For groups with names, we insert only when the first ipif 19930 * comes up. In that case if it fails, it will not be in any 19931 * group. So, we need not try to remove for that case. 19932 * 19933 * 2) For groups without names, either we tried to insert ipif_ill 19934 * in a group as singleton or found some other group to become 19935 * a bigger group. For the former, if it fails we don't have 19936 * anything to do as ipif_ill is not in the group and for the 19937 * latter, there are no failures in illgrp_insert/illgrp_delete 19938 * (ENOMEM can't occur for this. Check ifgrp_insert). 19939 */ 19940 while (irep > ire_array) { 19941 irep--; 19942 if (*irep != NULL) { 19943 ire_delete(*irep); 19944 if (ire_added) 19945 ire_refrele(*irep); 19946 } 19947 } 19948 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 19949 19950 if (ipif_saved_irep != NULL) { 19951 kmem_free(ipif_saved_irep, 19952 ipif_saved_ire_cnt * sizeof (ire_t *)); 19953 } 19954 if (src_ipif_held) 19955 ipif_refrele(src_ipif); 19956 19957 ipif_arp_down(ipif); 19958 return (err); 19959 } 19960 19961 /* 19962 * Turn off the ARP with the ILLF_NOARP flag. 19963 */ 19964 static int 19965 ill_arp_off(ill_t *ill) 19966 { 19967 mblk_t *arp_off_mp = NULL; 19968 mblk_t *arp_on_mp = NULL; 19969 19970 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 19971 19972 ASSERT(IAM_WRITER_ILL(ill)); 19973 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19974 19975 /* 19976 * If the on message is still around we've already done 19977 * an arp_off without doing an arp_on thus there is no 19978 * work needed. 19979 */ 19980 if (ill->ill_arp_on_mp != NULL) 19981 return (0); 19982 19983 /* 19984 * Allocate an ARP on message (to be saved) and an ARP off message 19985 */ 19986 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 19987 if (!arp_off_mp) 19988 return (ENOMEM); 19989 19990 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 19991 if (!arp_on_mp) 19992 goto failed; 19993 19994 ASSERT(ill->ill_arp_on_mp == NULL); 19995 ill->ill_arp_on_mp = arp_on_mp; 19996 19997 /* Send an AR_INTERFACE_OFF request */ 19998 putnext(ill->ill_rq, arp_off_mp); 19999 return (0); 20000 failed: 20001 20002 if (arp_off_mp) 20003 freemsg(arp_off_mp); 20004 return (ENOMEM); 20005 } 20006 20007 /* 20008 * Turn on ARP by turning off the ILLF_NOARP flag. 20009 */ 20010 static int 20011 ill_arp_on(ill_t *ill) 20012 { 20013 mblk_t *mp; 20014 20015 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20016 20017 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20018 20019 ASSERT(IAM_WRITER_ILL(ill)); 20020 /* 20021 * Send an AR_INTERFACE_ON request if we have already done 20022 * an arp_off (which allocated the message). 20023 */ 20024 if (ill->ill_arp_on_mp != NULL) { 20025 mp = ill->ill_arp_on_mp; 20026 ill->ill_arp_on_mp = NULL; 20027 putnext(ill->ill_rq, mp); 20028 } 20029 return (0); 20030 } 20031 20032 /* 20033 * Called after either deleting ill from the group or when setting 20034 * FAILED or STANDBY on the interface. 20035 */ 20036 static void 20037 illgrp_reset_schednext(ill_t *ill) 20038 { 20039 ill_group_t *illgrp; 20040 ill_t *save_ill; 20041 20042 ASSERT(IAM_WRITER_ILL(ill)); 20043 /* 20044 * When called from illgrp_delete, ill_group will be non-NULL. 20045 * But when called from ip_sioctl_flags, it could be NULL if 20046 * somebody is setting FAILED/INACTIVE on some interface which 20047 * is not part of a group. 20048 */ 20049 illgrp = ill->ill_group; 20050 if (illgrp == NULL) 20051 return; 20052 if (illgrp->illgrp_ill_schednext != ill) 20053 return; 20054 20055 illgrp->illgrp_ill_schednext = NULL; 20056 save_ill = ill; 20057 /* 20058 * Choose a good ill to be the next one for 20059 * outbound traffic. As the flags FAILED/STANDBY is 20060 * not yet marked when called from ip_sioctl_flags, 20061 * we check for ill separately. 20062 */ 20063 for (ill = illgrp->illgrp_ill; ill != NULL; 20064 ill = ill->ill_group_next) { 20065 if ((ill != save_ill) && 20066 !(ill->ill_phyint->phyint_flags & 20067 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20068 illgrp->illgrp_ill_schednext = ill; 20069 return; 20070 } 20071 } 20072 } 20073 20074 /* 20075 * Given an ill, find the next ill in the group to be scheduled. 20076 * (This should be called by ip_newroute() before ire_create().) 20077 * The passed in ill may be pulled out of the group, after we have picked 20078 * up a different outgoing ill from the same group. However ire add will 20079 * atomically check this. 20080 */ 20081 ill_t * 20082 illgrp_scheduler(ill_t *ill) 20083 { 20084 ill_t *retill; 20085 ill_group_t *illgrp; 20086 int illcnt; 20087 int i; 20088 uint64_t flags; 20089 20090 /* 20091 * We don't use a lock to check for the ill_group. If this ill 20092 * is currently being inserted we may end up just returning this 20093 * ill itself. That is ok. 20094 */ 20095 if (ill->ill_group == NULL) { 20096 ill_refhold(ill); 20097 return (ill); 20098 } 20099 20100 /* 20101 * Grab the ill_g_lock as reader to make sure we are dealing with 20102 * a set of stable ills. No ill can be added or deleted or change 20103 * group while we hold the reader lock. 20104 */ 20105 rw_enter(&ill_g_lock, RW_READER); 20106 if ((illgrp = ill->ill_group) == NULL) { 20107 rw_exit(&ill_g_lock); 20108 ill_refhold(ill); 20109 return (ill); 20110 } 20111 20112 illcnt = illgrp->illgrp_ill_count; 20113 mutex_enter(&illgrp->illgrp_lock); 20114 retill = illgrp->illgrp_ill_schednext; 20115 20116 if (retill == NULL) 20117 retill = illgrp->illgrp_ill; 20118 20119 /* 20120 * We do a circular search beginning at illgrp_ill_schednext 20121 * or illgrp_ill. We don't check the flags against the ill lock 20122 * since it can change anytime. The ire creation will be atomic 20123 * and will fail if the ill is FAILED or OFFLINE. 20124 */ 20125 for (i = 0; i < illcnt; i++) { 20126 flags = retill->ill_phyint->phyint_flags; 20127 20128 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20129 ILL_CAN_LOOKUP(retill)) { 20130 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20131 ill_refhold(retill); 20132 break; 20133 } 20134 retill = retill->ill_group_next; 20135 if (retill == NULL) 20136 retill = illgrp->illgrp_ill; 20137 } 20138 mutex_exit(&illgrp->illgrp_lock); 20139 rw_exit(&ill_g_lock); 20140 20141 return (i == illcnt ? NULL : retill); 20142 } 20143 20144 /* 20145 * Checks for availbility of a usable source address (if there is one) when the 20146 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20147 * this selection is done regardless of the destination. 20148 */ 20149 boolean_t 20150 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20151 { 20152 uint_t ifindex; 20153 ipif_t *ipif = NULL; 20154 ill_t *uill; 20155 boolean_t isv6; 20156 20157 ASSERT(ill != NULL); 20158 20159 isv6 = ill->ill_isv6; 20160 ifindex = ill->ill_usesrc_ifindex; 20161 if (ifindex != 0) { 20162 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20163 NULL); 20164 if (uill == NULL) 20165 return (NULL); 20166 mutex_enter(&uill->ill_lock); 20167 for (ipif = uill->ill_ipif; ipif != NULL; 20168 ipif = ipif->ipif_next) { 20169 if (!IPIF_CAN_LOOKUP(ipif)) 20170 continue; 20171 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20172 continue; 20173 if (!(ipif->ipif_flags & IPIF_UP)) 20174 continue; 20175 if (ipif->ipif_zoneid != zoneid) 20176 continue; 20177 if ((isv6 && 20178 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20179 (ipif->ipif_lcl_addr == INADDR_ANY)) 20180 continue; 20181 mutex_exit(&uill->ill_lock); 20182 ill_refrele(uill); 20183 return (B_TRUE); 20184 } 20185 mutex_exit(&uill->ill_lock); 20186 ill_refrele(uill); 20187 } 20188 return (B_FALSE); 20189 } 20190 20191 /* 20192 * Determine the best source address given a destination address and an ill. 20193 * Prefers non-deprecated over deprecated but will return a deprecated 20194 * address if there is no other choice. If there is a usable source address 20195 * on the interface pointed to by ill_usesrc_ifindex then that is given 20196 * first preference. 20197 * 20198 * Returns NULL if there is no suitable source address for the ill. 20199 * This only occurs when there is no valid source address for the ill. 20200 */ 20201 ipif_t * 20202 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20203 { 20204 ipif_t *ipif; 20205 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20206 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20207 int index = 0; 20208 boolean_t wrapped = B_FALSE; 20209 boolean_t same_subnet_only = B_FALSE; 20210 boolean_t ipif_same_found, ipif_other_found; 20211 boolean_t specific_found; 20212 ill_t *till, *usill = NULL; 20213 tsol_tpc_t *src_rhtp, *dst_rhtp; 20214 20215 if (ill->ill_usesrc_ifindex != 0) { 20216 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 20217 NULL, NULL, NULL, NULL); 20218 if (usill != NULL) 20219 ill = usill; /* Select source from usesrc ILL */ 20220 else 20221 return (NULL); 20222 } 20223 20224 /* 20225 * If we're dealing with an unlabeled destination on a labeled system, 20226 * make sure that we ignore source addresses that are incompatible with 20227 * the destination's default label. That destination's default label 20228 * must dominate the minimum label on the source address. 20229 */ 20230 dst_rhtp = NULL; 20231 if (is_system_labeled()) { 20232 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20233 if (dst_rhtp == NULL) 20234 return (NULL); 20235 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20236 TPC_RELE(dst_rhtp); 20237 dst_rhtp = NULL; 20238 } 20239 } 20240 20241 /* 20242 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20243 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20244 * After selecting the right ipif, under ill_lock make sure ipif is 20245 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20246 * we retry. Inside the loop we still need to check for CONDEMNED, 20247 * but not under a lock. 20248 */ 20249 rw_enter(&ill_g_lock, RW_READER); 20250 20251 retry: 20252 till = ill; 20253 ipif_arr[0] = NULL; 20254 20255 if (till->ill_group != NULL) 20256 till = till->ill_group->illgrp_ill; 20257 20258 /* 20259 * Choose one good source address from each ill across the group. 20260 * If possible choose a source address in the same subnet as 20261 * the destination address. 20262 * 20263 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20264 * This is okay because of the following. 20265 * 20266 * If PHYI_FAILED is set and we still have non-deprecated 20267 * addresses, it means the addresses have not yet been 20268 * failed over to a different interface. We potentially 20269 * select them to create IRE_CACHES, which will be later 20270 * flushed when the addresses move over. 20271 * 20272 * If PHYI_INACTIVE is set and we still have non-deprecated 20273 * addresses, it means either the user has configured them 20274 * or PHYI_INACTIVE has not been cleared after the addresses 20275 * been moved over. For the former, in.mpathd does a failover 20276 * when the interface becomes INACTIVE and hence we should 20277 * not find them. Once INACTIVE is set, we don't allow them 20278 * to create logical interfaces anymore. For the latter, a 20279 * flush will happen when INACTIVE is cleared which will 20280 * flush the IRE_CACHES. 20281 * 20282 * If PHYI_OFFLINE is set, all the addresses will be failed 20283 * over soon. We potentially select them to create IRE_CACHEs, 20284 * which will be later flushed when the addresses move over. 20285 * 20286 * NOTE : As ipif_select_source is called to borrow source address 20287 * for an ipif that is part of a group, source address selection 20288 * will be re-done whenever the group changes i.e either an 20289 * insertion/deletion in the group. 20290 * 20291 * Fill ipif_arr[] with source addresses, using these rules: 20292 * 20293 * 1. At most one source address from a given ill ends up 20294 * in ipif_arr[] -- that is, at most one of the ipif's 20295 * associated with a given ill ends up in ipif_arr[]. 20296 * 20297 * 2. If there is at least one non-deprecated ipif in the 20298 * IPMP group with a source address on the same subnet as 20299 * our destination, then fill ipif_arr[] only with 20300 * source addresses on the same subnet as our destination. 20301 * Note that because of (1), only the first 20302 * non-deprecated ipif found with a source address 20303 * matching the destination ends up in ipif_arr[]. 20304 * 20305 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20306 * addresses not in the same subnet as our destination. 20307 * Again, because of (1), only the first off-subnet source 20308 * address will be chosen. 20309 * 20310 * 4. If there are no non-deprecated ipifs, then just use 20311 * the source address associated with the last deprecated 20312 * one we find that happens to be on the same subnet, 20313 * otherwise the first one not in the same subnet. 20314 */ 20315 specific_found = B_FALSE; 20316 for (; till != NULL; till = till->ill_group_next) { 20317 ipif_same_found = B_FALSE; 20318 ipif_other_found = B_FALSE; 20319 for (ipif = till->ill_ipif; ipif != NULL; 20320 ipif = ipif->ipif_next) { 20321 if (!IPIF_CAN_LOOKUP(ipif)) 20322 continue; 20323 /* Always skip NOLOCAL and ANYCAST interfaces */ 20324 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20325 continue; 20326 if (!(ipif->ipif_flags & IPIF_UP) || 20327 !ipif->ipif_addr_ready) 20328 continue; 20329 if (ipif->ipif_zoneid != zoneid && 20330 ipif->ipif_zoneid != ALL_ZONES) 20331 continue; 20332 /* 20333 * Interfaces with 0.0.0.0 address are allowed to be UP, 20334 * but are not valid as source addresses. 20335 */ 20336 if (ipif->ipif_lcl_addr == INADDR_ANY) 20337 continue; 20338 20339 /* 20340 * Check compatibility of local address for 20341 * destination's default label if we're on a labeled 20342 * system. Incompatible addresses can't be used at 20343 * all. 20344 */ 20345 if (dst_rhtp != NULL) { 20346 boolean_t incompat; 20347 20348 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20349 IPV4_VERSION, B_FALSE); 20350 if (src_rhtp == NULL) 20351 continue; 20352 incompat = 20353 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20354 src_rhtp->tpc_tp.tp_doi != 20355 dst_rhtp->tpc_tp.tp_doi || 20356 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20357 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20358 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20359 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20360 TPC_RELE(src_rhtp); 20361 if (incompat) 20362 continue; 20363 } 20364 20365 /* 20366 * We prefer not to use all all-zones addresses, if we 20367 * can avoid it, as they pose problems with unlabeled 20368 * destinations. 20369 */ 20370 if (ipif->ipif_zoneid != ALL_ZONES) { 20371 if (!specific_found && 20372 (!same_subnet_only || 20373 (ipif->ipif_net_mask & dst) == 20374 ipif->ipif_subnet)) { 20375 index = 0; 20376 specific_found = B_TRUE; 20377 ipif_other_found = B_FALSE; 20378 } 20379 } else { 20380 if (specific_found) 20381 continue; 20382 } 20383 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20384 if (ipif_dep == NULL || 20385 (ipif->ipif_net_mask & dst) == 20386 ipif->ipif_subnet) 20387 ipif_dep = ipif; 20388 continue; 20389 } 20390 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20391 /* found a source address in the same subnet */ 20392 if (!same_subnet_only) { 20393 same_subnet_only = B_TRUE; 20394 index = 0; 20395 } 20396 ipif_same_found = B_TRUE; 20397 } else { 20398 if (same_subnet_only || ipif_other_found) 20399 continue; 20400 ipif_other_found = B_TRUE; 20401 } 20402 ipif_arr[index++] = ipif; 20403 if (index == MAX_IPIF_SELECT_SOURCE) { 20404 wrapped = B_TRUE; 20405 index = 0; 20406 } 20407 if (ipif_same_found) 20408 break; 20409 } 20410 } 20411 20412 if (ipif_arr[0] == NULL) { 20413 ipif = ipif_dep; 20414 } else { 20415 if (wrapped) 20416 index = MAX_IPIF_SELECT_SOURCE; 20417 ipif = ipif_arr[ipif_rand() % index]; 20418 ASSERT(ipif != NULL); 20419 } 20420 20421 if (ipif != NULL) { 20422 mutex_enter(&ipif->ipif_ill->ill_lock); 20423 if (!IPIF_CAN_LOOKUP(ipif)) { 20424 mutex_exit(&ipif->ipif_ill->ill_lock); 20425 goto retry; 20426 } 20427 ipif_refhold_locked(ipif); 20428 mutex_exit(&ipif->ipif_ill->ill_lock); 20429 } 20430 20431 rw_exit(&ill_g_lock); 20432 if (usill != NULL) 20433 ill_refrele(usill); 20434 if (dst_rhtp != NULL) 20435 TPC_RELE(dst_rhtp); 20436 20437 #ifdef DEBUG 20438 if (ipif == NULL) { 20439 char buf1[INET6_ADDRSTRLEN]; 20440 20441 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20442 ill->ill_name, 20443 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20444 } else { 20445 char buf1[INET6_ADDRSTRLEN]; 20446 char buf2[INET6_ADDRSTRLEN]; 20447 20448 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20449 ipif->ipif_ill->ill_name, 20450 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20451 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20452 buf2, sizeof (buf2)))); 20453 } 20454 #endif /* DEBUG */ 20455 return (ipif); 20456 } 20457 20458 20459 /* 20460 * If old_ipif is not NULL, see if ipif was derived from old 20461 * ipif and if so, recreate the interface route by re-doing 20462 * source address selection. This happens when ipif_down -> 20463 * ipif_update_other_ipifs calls us. 20464 * 20465 * If old_ipif is NULL, just redo the source address selection 20466 * if needed. This happens when illgrp_insert or ipif_up_done 20467 * calls us. 20468 */ 20469 static void 20470 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20471 { 20472 ire_t *ire; 20473 ire_t *ipif_ire; 20474 queue_t *stq; 20475 ipif_t *nipif; 20476 ill_t *ill; 20477 boolean_t need_rele = B_FALSE; 20478 20479 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20480 ASSERT(IAM_WRITER_IPIF(ipif)); 20481 20482 ill = ipif->ipif_ill; 20483 if (!(ipif->ipif_flags & 20484 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20485 /* 20486 * Can't possibly have borrowed the source 20487 * from old_ipif. 20488 */ 20489 return; 20490 } 20491 20492 /* 20493 * Is there any work to be done? No work if the address 20494 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20495 * ipif_select_source() does not borrow addresses from 20496 * NOLOCAL and ANYCAST interfaces). 20497 */ 20498 if ((old_ipif != NULL) && 20499 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20500 (old_ipif->ipif_ill->ill_wq == NULL) || 20501 (old_ipif->ipif_flags & 20502 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20503 return; 20504 } 20505 20506 /* 20507 * Perform the same checks as when creating the 20508 * IRE_INTERFACE in ipif_up_done. 20509 */ 20510 if (!(ipif->ipif_flags & IPIF_UP)) 20511 return; 20512 20513 if ((ipif->ipif_flags & IPIF_NOXMIT) || 20514 (ipif->ipif_subnet == INADDR_ANY)) 20515 return; 20516 20517 ipif_ire = ipif_to_ire(ipif); 20518 if (ipif_ire == NULL) 20519 return; 20520 20521 /* 20522 * We know that ipif uses some other source for its 20523 * IRE_INTERFACE. Is it using the source of this 20524 * old_ipif? 20525 */ 20526 if (old_ipif != NULL && 20527 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 20528 ire_refrele(ipif_ire); 20529 return; 20530 } 20531 if (ip_debug > 2) { 20532 /* ip1dbg */ 20533 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 20534 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 20535 } 20536 20537 stq = ipif_ire->ire_stq; 20538 20539 /* 20540 * Can't use our source address. Select a different 20541 * source address for the IRE_INTERFACE. 20542 */ 20543 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 20544 if (nipif == NULL) { 20545 /* Last resort - all ipif's have IPIF_NOLOCAL */ 20546 nipif = ipif; 20547 } else { 20548 need_rele = B_TRUE; 20549 } 20550 20551 ire = ire_create( 20552 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 20553 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 20554 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 20555 NULL, /* no gateway */ 20556 NULL, 20557 &ipif->ipif_mtu, /* max frag */ 20558 NULL, /* fast path header */ 20559 NULL, /* no recv from queue */ 20560 stq, /* send-to queue */ 20561 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20562 ill->ill_resolver_mp, /* xmit header */ 20563 ipif, 20564 NULL, 20565 0, 20566 0, 20567 0, 20568 0, 20569 &ire_uinfo_null, 20570 NULL, 20571 NULL); 20572 20573 if (ire != NULL) { 20574 ire_t *ret_ire; 20575 int error; 20576 20577 /* 20578 * We don't need ipif_ire anymore. We need to delete 20579 * before we add so that ire_add does not detect 20580 * duplicates. 20581 */ 20582 ire_delete(ipif_ire); 20583 ret_ire = ire; 20584 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 20585 ASSERT(error == 0); 20586 ASSERT(ire == ret_ire); 20587 /* Held in ire_add */ 20588 ire_refrele(ret_ire); 20589 } 20590 /* 20591 * Either we are falling through from above or could not 20592 * allocate a replacement. 20593 */ 20594 ire_refrele(ipif_ire); 20595 if (need_rele) 20596 ipif_refrele(nipif); 20597 } 20598 20599 /* 20600 * This old_ipif is going away. 20601 * 20602 * Determine if any other ipif's is using our address as 20603 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 20604 * IPIF_DEPRECATED). 20605 * Find the IRE_INTERFACE for such ipifs and recreate them 20606 * to use an different source address following the rules in 20607 * ipif_up_done. 20608 * 20609 * This function takes an illgrp as an argument so that illgrp_delete 20610 * can call this to update source address even after deleting the 20611 * old_ipif->ipif_ill from the ill group. 20612 */ 20613 static void 20614 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 20615 { 20616 ipif_t *ipif; 20617 ill_t *ill; 20618 char buf[INET6_ADDRSTRLEN]; 20619 20620 ASSERT(IAM_WRITER_IPIF(old_ipif)); 20621 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 20622 20623 ill = old_ipif->ipif_ill; 20624 20625 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 20626 ill->ill_name, 20627 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 20628 buf, sizeof (buf)))); 20629 /* 20630 * If this part of a group, look at all ills as ipif_select_source 20631 * borrows source address across all the ills in the group. 20632 */ 20633 if (illgrp != NULL) 20634 ill = illgrp->illgrp_ill; 20635 20636 for (; ill != NULL; ill = ill->ill_group_next) { 20637 for (ipif = ill->ill_ipif; ipif != NULL; 20638 ipif = ipif->ipif_next) { 20639 20640 if (ipif == old_ipif) 20641 continue; 20642 20643 ipif_recreate_interface_routes(old_ipif, ipif); 20644 } 20645 } 20646 } 20647 20648 /* ARGSUSED */ 20649 int 20650 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20651 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20652 { 20653 /* 20654 * ill_phyint_reinit merged the v4 and v6 into a single 20655 * ipsq. Could also have become part of a ipmp group in the 20656 * process, and we might not have been able to complete the 20657 * operation in ipif_set_values, if we could not become 20658 * exclusive. If so restart it here. 20659 */ 20660 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20661 } 20662 20663 20664 /* ARGSUSED */ 20665 int 20666 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20667 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20668 { 20669 queue_t *q1 = q; 20670 char *cp; 20671 char interf_name[LIFNAMSIZ]; 20672 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 20673 20674 if (!q->q_next) { 20675 ip1dbg(( 20676 "if_unitsel: IF_UNITSEL: no q_next\n")); 20677 return (EINVAL); 20678 } 20679 20680 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 20681 return (EALREADY); 20682 20683 do { 20684 q1 = q1->q_next; 20685 } while (q1->q_next); 20686 cp = q1->q_qinfo->qi_minfo->mi_idname; 20687 (void) sprintf(interf_name, "%s%d", cp, ppa); 20688 20689 /* 20690 * Here we are not going to delay the ioack until after 20691 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 20692 * original ioctl message before sending the requests. 20693 */ 20694 return (ipif_set_values(q, mp, interf_name, &ppa)); 20695 } 20696 20697 /* ARGSUSED */ 20698 int 20699 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20700 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20701 { 20702 return (ENXIO); 20703 } 20704 20705 /* 20706 * Net and subnet broadcast ire's are now specific to the particular 20707 * physical interface (ill) and not to any one locigal interface (ipif). 20708 * However, if a particular logical interface is being taken down, it's 20709 * associated ire's will be taken down as well. Hence, when we go to 20710 * take down or change the local address, broadcast address or netmask 20711 * of a specific logical interface, we must check to make sure that we 20712 * have valid net and subnet broadcast ire's for the other logical 20713 * interfaces which may have been shared with the logical interface 20714 * being brought down or changed. 20715 * 20716 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 20717 * is tied to the first interface coming UP. If that ipif is going down, 20718 * we need to recreate them on the next valid ipif. 20719 * 20720 * Note: assume that the ipif passed in is still up so that it's IRE 20721 * entries are still valid. 20722 */ 20723 static void 20724 ipif_check_bcast_ires(ipif_t *test_ipif) 20725 { 20726 ipif_t *ipif; 20727 ire_t *test_subnet_ire, *test_net_ire; 20728 ire_t *test_allzero_ire, *test_allone_ire; 20729 ire_t *ire_array[12]; 20730 ire_t **irep = &ire_array[0]; 20731 ire_t **irep1; 20732 20733 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 20734 ipaddr_t test_net_addr, test_subnet_addr; 20735 ipaddr_t test_net_mask, test_subnet_mask; 20736 boolean_t need_net_bcast_ire = B_FALSE; 20737 boolean_t need_subnet_bcast_ire = B_FALSE; 20738 boolean_t allzero_bcast_ire_created = B_FALSE; 20739 boolean_t allone_bcast_ire_created = B_FALSE; 20740 boolean_t net_bcast_ire_created = B_FALSE; 20741 boolean_t subnet_bcast_ire_created = B_FALSE; 20742 20743 ipif_t *backup_ipif_net = (ipif_t *)NULL; 20744 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 20745 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 20746 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 20747 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 20748 20749 ASSERT(!test_ipif->ipif_isv6); 20750 ASSERT(IAM_WRITER_IPIF(test_ipif)); 20751 20752 /* 20753 * No broadcast IREs for the LOOPBACK interface 20754 * or others such as point to point and IPIF_NOXMIT. 20755 */ 20756 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 20757 (test_ipif->ipif_flags & IPIF_NOXMIT)) 20758 return; 20759 20760 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 20761 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20762 20763 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 20764 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20765 20766 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 20767 test_subnet_mask = test_ipif->ipif_net_mask; 20768 20769 /* 20770 * If no net mask set, assume the default based on net class. 20771 */ 20772 if (test_subnet_mask == 0) 20773 test_subnet_mask = test_net_mask; 20774 20775 /* 20776 * Check if there is a network broadcast ire associated with this ipif 20777 */ 20778 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 20779 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 20780 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20781 20782 /* 20783 * Check if there is a subnet broadcast IRE associated with this ipif 20784 */ 20785 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 20786 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 20787 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20788 20789 /* 20790 * No broadcast ire's associated with this ipif. 20791 */ 20792 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 20793 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 20794 return; 20795 } 20796 20797 /* 20798 * We have established which bcast ires have to be replaced. 20799 * Next we try to locate ipifs that match there ires. 20800 * The rules are simple: If we find an ipif that matches on the subnet 20801 * address it will also match on the net address, the allzeros and 20802 * allones address. Any ipif that matches only on the net address will 20803 * also match the allzeros and allones addresses. 20804 * The other criterion is the ipif_flags. We look for non-deprecated 20805 * (and non-anycast and non-nolocal) ipifs as the best choice. 20806 * ipifs with check_flags matching (deprecated, etc) are used only 20807 * if good ipifs are not available. While looping, we save existing 20808 * deprecated ipifs as backup_ipif. 20809 * We loop through all the ipifs for this ill looking for ipifs 20810 * whose broadcast addr match the ipif passed in, but do not have 20811 * their own broadcast ires. For creating 0.0.0.0 and 20812 * 255.255.255.255 we just need an ipif on this ill to create. 20813 */ 20814 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 20815 ipif = ipif->ipif_next) { 20816 20817 ASSERT(!ipif->ipif_isv6); 20818 /* 20819 * Already checked the ipif passed in. 20820 */ 20821 if (ipif == test_ipif) { 20822 continue; 20823 } 20824 20825 /* 20826 * We only need to recreate broadcast ires if another ipif in 20827 * the same zone uses them. The new ires must be created in the 20828 * same zone. 20829 */ 20830 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 20831 continue; 20832 } 20833 20834 /* 20835 * Only interested in logical interfaces with valid local 20836 * addresses or with the ability to broadcast. 20837 */ 20838 if ((ipif->ipif_subnet == 0) || 20839 !(ipif->ipif_flags & IPIF_BROADCAST) || 20840 (ipif->ipif_flags & IPIF_NOXMIT) || 20841 !(ipif->ipif_flags & IPIF_UP)) { 20842 continue; 20843 } 20844 /* 20845 * Check if there is a net broadcast ire for this 20846 * net address. If it turns out that the ipif we are 20847 * about to take down owns this ire, we must make a 20848 * new one because it is potentially going away. 20849 */ 20850 if (test_net_ire && (!net_bcast_ire_created)) { 20851 net_mask = ip_net_mask(ipif->ipif_subnet); 20852 net_addr = net_mask & ipif->ipif_subnet; 20853 if (net_addr == test_net_addr) { 20854 need_net_bcast_ire = B_TRUE; 20855 /* 20856 * Use DEPRECATED ipif only if no good 20857 * ires are available. subnet_addr is 20858 * a better match than net_addr. 20859 */ 20860 if ((ipif->ipif_flags & check_flags) && 20861 (backup_ipif_net == NULL)) { 20862 backup_ipif_net = ipif; 20863 } 20864 } 20865 } 20866 /* 20867 * Check if there is a subnet broadcast ire for this 20868 * net address. If it turns out that the ipif we are 20869 * about to take down owns this ire, we must make a 20870 * new one because it is potentially going away. 20871 */ 20872 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 20873 subnet_mask = ipif->ipif_net_mask; 20874 subnet_addr = ipif->ipif_subnet; 20875 if (subnet_addr == test_subnet_addr) { 20876 need_subnet_bcast_ire = B_TRUE; 20877 if ((ipif->ipif_flags & check_flags) && 20878 (backup_ipif_subnet == NULL)) { 20879 backup_ipif_subnet = ipif; 20880 } 20881 } 20882 } 20883 20884 20885 /* Short circuit here if this ipif is deprecated */ 20886 if (ipif->ipif_flags & check_flags) { 20887 if ((test_allzero_ire != NULL) && 20888 (!allzero_bcast_ire_created) && 20889 (backup_ipif_allzeros == NULL)) { 20890 backup_ipif_allzeros = ipif; 20891 } 20892 if ((test_allone_ire != NULL) && 20893 (!allone_bcast_ire_created) && 20894 (backup_ipif_allones == NULL)) { 20895 backup_ipif_allones = ipif; 20896 } 20897 continue; 20898 } 20899 20900 /* 20901 * Found an ipif which has the same broadcast ire as the 20902 * ipif passed in and the ipif passed in "owns" the ire. 20903 * Create new broadcast ire's for this broadcast addr. 20904 */ 20905 if (need_net_bcast_ire && !net_bcast_ire_created) { 20906 irep = ire_create_bcast(ipif, net_addr, irep); 20907 irep = ire_create_bcast(ipif, 20908 ~net_mask | net_addr, irep); 20909 net_bcast_ire_created = B_TRUE; 20910 } 20911 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 20912 irep = ire_create_bcast(ipif, subnet_addr, irep); 20913 irep = ire_create_bcast(ipif, 20914 ~subnet_mask | subnet_addr, irep); 20915 subnet_bcast_ire_created = B_TRUE; 20916 } 20917 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 20918 irep = ire_create_bcast(ipif, 0, irep); 20919 allzero_bcast_ire_created = B_TRUE; 20920 } 20921 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 20922 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 20923 allone_bcast_ire_created = B_TRUE; 20924 } 20925 /* 20926 * Once we have created all the appropriate ires, we 20927 * just break out of this loop to add what we have created. 20928 * This has been indented similar to ire_match_args for 20929 * readability. 20930 */ 20931 if (((test_net_ire == NULL) || 20932 (net_bcast_ire_created)) && 20933 ((test_subnet_ire == NULL) || 20934 (subnet_bcast_ire_created)) && 20935 ((test_allzero_ire == NULL) || 20936 (allzero_bcast_ire_created)) && 20937 ((test_allone_ire == NULL) || 20938 (allone_bcast_ire_created))) { 20939 break; 20940 } 20941 } 20942 20943 /* 20944 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 20945 * exist. 6 pairs of bcast ires are needed. 20946 * Note - the old ires are deleted in ipif_down. 20947 */ 20948 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 20949 ipif = backup_ipif_net; 20950 irep = ire_create_bcast(ipif, net_addr, irep); 20951 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 20952 net_bcast_ire_created = B_TRUE; 20953 } 20954 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 20955 backup_ipif_subnet) { 20956 ipif = backup_ipif_subnet; 20957 irep = ire_create_bcast(ipif, subnet_addr, irep); 20958 irep = ire_create_bcast(ipif, 20959 ~subnet_mask | subnet_addr, irep); 20960 subnet_bcast_ire_created = B_TRUE; 20961 } 20962 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 20963 backup_ipif_allzeros) { 20964 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 20965 allzero_bcast_ire_created = B_TRUE; 20966 } 20967 if (test_allone_ire != NULL && !allone_bcast_ire_created && 20968 backup_ipif_allones) { 20969 irep = ire_create_bcast(backup_ipif_allones, 20970 INADDR_BROADCAST, irep); 20971 allone_bcast_ire_created = B_TRUE; 20972 } 20973 20974 /* 20975 * If we can't create all of them, don't add any of them. 20976 * Code in ip_wput_ire and ire_to_ill assumes that we 20977 * always have a non-loopback copy and loopback copy 20978 * for a given address. 20979 */ 20980 for (irep1 = irep; irep1 > ire_array; ) { 20981 irep1--; 20982 if (*irep1 == NULL) { 20983 ip0dbg(("ipif_check_bcast_ires: can't create " 20984 "IRE_BROADCAST, memory allocation failure\n")); 20985 while (irep > ire_array) { 20986 irep--; 20987 if (*irep != NULL) 20988 ire_delete(*irep); 20989 } 20990 goto bad; 20991 } 20992 } 20993 for (irep1 = irep; irep1 > ire_array; ) { 20994 int error; 20995 20996 irep1--; 20997 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20998 if (error == 0) { 20999 ire_refrele(*irep1); /* Held in ire_add */ 21000 } 21001 } 21002 bad: 21003 if (test_allzero_ire != NULL) 21004 ire_refrele(test_allzero_ire); 21005 if (test_allone_ire != NULL) 21006 ire_refrele(test_allone_ire); 21007 if (test_net_ire != NULL) 21008 ire_refrele(test_net_ire); 21009 if (test_subnet_ire != NULL) 21010 ire_refrele(test_subnet_ire); 21011 } 21012 21013 /* 21014 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21015 * from lifr_flags and the name from lifr_name. 21016 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21017 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21018 * Returns EINPROGRESS when mp has been consumed by queueing it on 21019 * ill_pending_mp and the ioctl will complete in ip_rput. 21020 */ 21021 /* ARGSUSED */ 21022 int 21023 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21024 ip_ioctl_cmd_t *ipip, void *if_req) 21025 { 21026 int err; 21027 ill_t *ill; 21028 struct lifreq *lifr = (struct lifreq *)if_req; 21029 21030 ASSERT(ipif != NULL); 21031 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21032 ASSERT(q->q_next != NULL); 21033 21034 ill = (ill_t *)q->q_ptr; 21035 /* 21036 * If we are not writer on 'q' then this interface exists already 21037 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21038 * So return EALREADY 21039 */ 21040 if (ill != ipif->ipif_ill) 21041 return (EALREADY); 21042 21043 if (ill->ill_name[0] != '\0') 21044 return (EALREADY); 21045 21046 /* 21047 * Set all the flags. Allows all kinds of override. Provide some 21048 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21049 * unless there is either multicast/broadcast support in the driver 21050 * or it is a pt-pt link. 21051 */ 21052 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21053 /* Meaningless to IP thus don't allow them to be set. */ 21054 ip1dbg(("ip_setname: EINVAL 1\n")); 21055 return (EINVAL); 21056 } 21057 /* 21058 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21059 * ill_bcast_addr_length info. 21060 */ 21061 if (!ill->ill_needs_attach && 21062 ((lifr->lifr_flags & IFF_MULTICAST) && 21063 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21064 ill->ill_bcast_addr_length == 0)) { 21065 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21066 ip1dbg(("ip_setname: EINVAL 2\n")); 21067 return (EINVAL); 21068 } 21069 if ((lifr->lifr_flags & IFF_BROADCAST) && 21070 ((lifr->lifr_flags & IFF_IPV6) || 21071 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21072 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21073 ip1dbg(("ip_setname: EINVAL 3\n")); 21074 return (EINVAL); 21075 } 21076 if (lifr->lifr_flags & IFF_UP) { 21077 /* Can only be set with SIOCSLIFFLAGS */ 21078 ip1dbg(("ip_setname: EINVAL 4\n")); 21079 return (EINVAL); 21080 } 21081 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21082 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21083 ip1dbg(("ip_setname: EINVAL 5\n")); 21084 return (EINVAL); 21085 } 21086 /* 21087 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21088 */ 21089 if ((lifr->lifr_flags & IFF_XRESOLV) && 21090 !(lifr->lifr_flags & IFF_IPV6) && 21091 !(ipif->ipif_isv6)) { 21092 ip1dbg(("ip_setname: EINVAL 6\n")); 21093 return (EINVAL); 21094 } 21095 21096 /* 21097 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21098 * we have all the flags here. So, we assign rather than we OR. 21099 * We can't OR the flags here because we don't want to set 21100 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21101 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21102 * on lifr_flags value here. 21103 */ 21104 /* 21105 * This ill has not been inserted into the global list. 21106 * So we are still single threaded and don't need any lock 21107 */ 21108 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21109 ~IFF_DUPLICATE; 21110 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21111 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21112 21113 /* We started off as V4. */ 21114 if (ill->ill_flags & ILLF_IPV6) { 21115 ill->ill_phyint->phyint_illv6 = ill; 21116 ill->ill_phyint->phyint_illv4 = NULL; 21117 } 21118 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21119 return (err); 21120 } 21121 21122 /* ARGSUSED */ 21123 int 21124 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21125 ip_ioctl_cmd_t *ipip, void *if_req) 21126 { 21127 /* 21128 * ill_phyint_reinit merged the v4 and v6 into a single 21129 * ipsq. Could also have become part of a ipmp group in the 21130 * process, and we might not have been able to complete the 21131 * slifname in ipif_set_values, if we could not become 21132 * exclusive. If so restart it here 21133 */ 21134 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21135 } 21136 21137 /* 21138 * Return a pointer to the ipif which matches the index, IP version type and 21139 * zoneid. 21140 */ 21141 ipif_t * 21142 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21143 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 21144 { 21145 ill_t *ill; 21146 ipsq_t *ipsq; 21147 phyint_t *phyi; 21148 ipif_t *ipif; 21149 21150 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21151 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21152 21153 if (err != NULL) 21154 *err = 0; 21155 21156 /* 21157 * Indexes are stored in the phyint - a common structure 21158 * to both IPv4 and IPv6. 21159 */ 21160 21161 rw_enter(&ill_g_lock, RW_READER); 21162 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 21163 (void *) &index, NULL); 21164 if (phyi != NULL) { 21165 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21166 if (ill == NULL) { 21167 rw_exit(&ill_g_lock); 21168 if (err != NULL) 21169 *err = ENXIO; 21170 return (NULL); 21171 } 21172 GRAB_CONN_LOCK(q); 21173 mutex_enter(&ill->ill_lock); 21174 if (ILL_CAN_LOOKUP(ill)) { 21175 for (ipif = ill->ill_ipif; ipif != NULL; 21176 ipif = ipif->ipif_next) { 21177 if (IPIF_CAN_LOOKUP(ipif) && 21178 (zoneid == ALL_ZONES || 21179 zoneid == ipif->ipif_zoneid || 21180 ipif->ipif_zoneid == ALL_ZONES)) { 21181 ipif_refhold_locked(ipif); 21182 mutex_exit(&ill->ill_lock); 21183 RELEASE_CONN_LOCK(q); 21184 rw_exit(&ill_g_lock); 21185 return (ipif); 21186 } 21187 } 21188 } else if (ILL_CAN_WAIT(ill, q)) { 21189 ipsq = ill->ill_phyint->phyint_ipsq; 21190 mutex_enter(&ipsq->ipsq_lock); 21191 rw_exit(&ill_g_lock); 21192 mutex_exit(&ill->ill_lock); 21193 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21194 mutex_exit(&ipsq->ipsq_lock); 21195 RELEASE_CONN_LOCK(q); 21196 *err = EINPROGRESS; 21197 return (NULL); 21198 } 21199 mutex_exit(&ill->ill_lock); 21200 RELEASE_CONN_LOCK(q); 21201 } 21202 rw_exit(&ill_g_lock); 21203 if (err != NULL) 21204 *err = ENXIO; 21205 return (NULL); 21206 } 21207 21208 typedef struct conn_change_s { 21209 uint_t cc_old_ifindex; 21210 uint_t cc_new_ifindex; 21211 } conn_change_t; 21212 21213 /* 21214 * ipcl_walk function for changing interface index. 21215 */ 21216 static void 21217 conn_change_ifindex(conn_t *connp, caddr_t arg) 21218 { 21219 conn_change_t *connc; 21220 uint_t old_ifindex; 21221 uint_t new_ifindex; 21222 int i; 21223 ilg_t *ilg; 21224 21225 connc = (conn_change_t *)arg; 21226 old_ifindex = connc->cc_old_ifindex; 21227 new_ifindex = connc->cc_new_ifindex; 21228 21229 if (connp->conn_orig_bound_ifindex == old_ifindex) 21230 connp->conn_orig_bound_ifindex = new_ifindex; 21231 21232 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21233 connp->conn_orig_multicast_ifindex = new_ifindex; 21234 21235 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21236 connp->conn_orig_xmit_ifindex = new_ifindex; 21237 21238 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21239 ilg = &connp->conn_ilg[i]; 21240 if (ilg->ilg_orig_ifindex == old_ifindex) 21241 ilg->ilg_orig_ifindex = new_ifindex; 21242 } 21243 } 21244 21245 /* 21246 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21247 * to new_index if it matches the old_index. 21248 * 21249 * Failovers typically happen within a group of ills. But somebody 21250 * can remove an ill from the group after a failover happened. If 21251 * we are setting the ifindex after this, we potentially need to 21252 * look at all the ills rather than just the ones in the group. 21253 * We cut down the work by looking at matching ill_net_types 21254 * and ill_types as we could not possibly grouped them together. 21255 */ 21256 static void 21257 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21258 { 21259 ill_t *ill; 21260 ipif_t *ipif; 21261 uint_t old_ifindex; 21262 uint_t new_ifindex; 21263 ilm_t *ilm; 21264 ill_walk_context_t ctx; 21265 21266 old_ifindex = connc->cc_old_ifindex; 21267 new_ifindex = connc->cc_new_ifindex; 21268 21269 rw_enter(&ill_g_lock, RW_READER); 21270 ill = ILL_START_WALK_ALL(&ctx); 21271 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21272 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21273 (ill_orig->ill_type != ill->ill_type)) { 21274 continue; 21275 } 21276 for (ipif = ill->ill_ipif; ipif != NULL; 21277 ipif = ipif->ipif_next) { 21278 if (ipif->ipif_orig_ifindex == old_ifindex) 21279 ipif->ipif_orig_ifindex = new_ifindex; 21280 } 21281 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21282 if (ilm->ilm_orig_ifindex == old_ifindex) 21283 ilm->ilm_orig_ifindex = new_ifindex; 21284 } 21285 } 21286 rw_exit(&ill_g_lock); 21287 } 21288 21289 /* 21290 * We first need to ensure that the new index is unique, and 21291 * then carry the change across both v4 and v6 ill representation 21292 * of the physical interface. 21293 */ 21294 /* ARGSUSED */ 21295 int 21296 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21297 ip_ioctl_cmd_t *ipip, void *ifreq) 21298 { 21299 ill_t *ill; 21300 ill_t *ill_other; 21301 phyint_t *phyi; 21302 int old_index; 21303 conn_change_t connc; 21304 struct ifreq *ifr = (struct ifreq *)ifreq; 21305 struct lifreq *lifr = (struct lifreq *)ifreq; 21306 uint_t index; 21307 ill_t *ill_v4; 21308 ill_t *ill_v6; 21309 21310 if (ipip->ipi_cmd_type == IF_CMD) 21311 index = ifr->ifr_index; 21312 else 21313 index = lifr->lifr_index; 21314 21315 /* 21316 * Only allow on physical interface. Also, index zero is illegal. 21317 * 21318 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21319 * 21320 * 1) If PHYI_FAILED is set, a failover could have happened which 21321 * implies a possible failback might have to happen. As failback 21322 * depends on the old index, we should fail setting the index. 21323 * 21324 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21325 * any addresses or multicast memberships are failed over to 21326 * a non-STANDBY interface. As failback depends on the old 21327 * index, we should fail setting the index for this case also. 21328 * 21329 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21330 * Be consistent with PHYI_FAILED and fail the ioctl. 21331 */ 21332 ill = ipif->ipif_ill; 21333 phyi = ill->ill_phyint; 21334 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21335 ipif->ipif_id != 0 || index == 0) { 21336 return (EINVAL); 21337 } 21338 old_index = phyi->phyint_ifindex; 21339 21340 /* If the index is not changing, no work to do */ 21341 if (old_index == index) 21342 return (0); 21343 21344 /* 21345 * Use ill_lookup_on_ifindex to determine if the 21346 * new index is unused and if so allow the change. 21347 */ 21348 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 21349 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 21350 if (ill_v6 != NULL || ill_v4 != NULL) { 21351 if (ill_v4 != NULL) 21352 ill_refrele(ill_v4); 21353 if (ill_v6 != NULL) 21354 ill_refrele(ill_v6); 21355 return (EBUSY); 21356 } 21357 21358 /* 21359 * The new index is unused. Set it in the phyint. 21360 * Locate the other ill so that we can send a routing 21361 * sockets message. 21362 */ 21363 if (ill->ill_isv6) { 21364 ill_other = phyi->phyint_illv4; 21365 } else { 21366 ill_other = phyi->phyint_illv6; 21367 } 21368 21369 phyi->phyint_ifindex = index; 21370 21371 connc.cc_old_ifindex = old_index; 21372 connc.cc_new_ifindex = index; 21373 ip_change_ifindex(ill, &connc); 21374 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 21375 21376 /* Send the routing sockets message */ 21377 ip_rts_ifmsg(ipif); 21378 if (ill_other != NULL) 21379 ip_rts_ifmsg(ill_other->ill_ipif); 21380 21381 return (0); 21382 } 21383 21384 /* ARGSUSED */ 21385 int 21386 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21387 ip_ioctl_cmd_t *ipip, void *ifreq) 21388 { 21389 struct ifreq *ifr = (struct ifreq *)ifreq; 21390 struct lifreq *lifr = (struct lifreq *)ifreq; 21391 21392 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21393 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21394 /* Get the interface index */ 21395 if (ipip->ipi_cmd_type == IF_CMD) { 21396 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21397 } else { 21398 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21399 } 21400 return (0); 21401 } 21402 21403 /* ARGSUSED */ 21404 int 21405 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21406 ip_ioctl_cmd_t *ipip, void *ifreq) 21407 { 21408 struct lifreq *lifr = (struct lifreq *)ifreq; 21409 21410 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21411 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21412 /* Get the interface zone */ 21413 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21414 lifr->lifr_zoneid = ipif->ipif_zoneid; 21415 return (0); 21416 } 21417 21418 /* 21419 * Set the zoneid of an interface. 21420 */ 21421 /* ARGSUSED */ 21422 int 21423 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21424 ip_ioctl_cmd_t *ipip, void *ifreq) 21425 { 21426 struct lifreq *lifr = (struct lifreq *)ifreq; 21427 int err = 0; 21428 boolean_t need_up = B_FALSE; 21429 zone_t *zptr; 21430 zone_status_t status; 21431 zoneid_t zoneid; 21432 21433 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21434 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21435 if (!is_system_labeled()) 21436 return (ENOTSUP); 21437 zoneid = GLOBAL_ZONEID; 21438 } 21439 21440 /* cannot assign instance zero to a non-global zone */ 21441 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21442 return (ENOTSUP); 21443 21444 /* 21445 * Cannot assign to a zone that doesn't exist or is shutting down. In 21446 * the event of a race with the zone shutdown processing, since IP 21447 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21448 * interface will be cleaned up even if the zone is shut down 21449 * immediately after the status check. If the interface can't be brought 21450 * down right away, and the zone is shut down before the restart 21451 * function is called, we resolve the possible races by rechecking the 21452 * zone status in the restart function. 21453 */ 21454 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21455 return (EINVAL); 21456 status = zone_status_get(zptr); 21457 zone_rele(zptr); 21458 21459 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21460 return (EINVAL); 21461 21462 if (ipif->ipif_flags & IPIF_UP) { 21463 /* 21464 * If the interface is already marked up, 21465 * we call ipif_down which will take care 21466 * of ditching any IREs that have been set 21467 * up based on the old interface address. 21468 */ 21469 err = ipif_logical_down(ipif, q, mp); 21470 if (err == EINPROGRESS) 21471 return (err); 21472 ipif_down_tail(ipif); 21473 need_up = B_TRUE; 21474 } 21475 21476 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21477 return (err); 21478 } 21479 21480 static int 21481 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21482 queue_t *q, mblk_t *mp, boolean_t need_up) 21483 { 21484 int err = 0; 21485 21486 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21487 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21488 21489 /* Set the new zone id. */ 21490 ipif->ipif_zoneid = zoneid; 21491 21492 /* Update sctp list */ 21493 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21494 21495 if (need_up) { 21496 /* 21497 * Now bring the interface back up. If this 21498 * is the only IPIF for the ILL, ipif_up 21499 * will have to re-bind to the device, so 21500 * we may get back EINPROGRESS, in which 21501 * case, this IOCTL will get completed in 21502 * ip_rput_dlpi when we see the DL_BIND_ACK. 21503 */ 21504 err = ipif_up(ipif, q, mp); 21505 } 21506 return (err); 21507 } 21508 21509 /* ARGSUSED */ 21510 int 21511 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21512 ip_ioctl_cmd_t *ipip, void *if_req) 21513 { 21514 struct lifreq *lifr = (struct lifreq *)if_req; 21515 zoneid_t zoneid; 21516 zone_t *zptr; 21517 zone_status_t status; 21518 21519 ASSERT(ipif->ipif_id != 0); 21520 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21521 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 21522 zoneid = GLOBAL_ZONEID; 21523 21524 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 21525 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21526 21527 /* 21528 * We recheck the zone status to resolve the following race condition: 21529 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 21530 * 2) hme0:1 is up and can't be brought down right away; 21531 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 21532 * 3) zone "myzone" is halted; the zone status switches to 21533 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 21534 * the interfaces to remove - hme0:1 is not returned because it's not 21535 * yet in "myzone", so it won't be removed; 21536 * 4) the restart function for SIOCSLIFZONE is called; without the 21537 * status check here, we would have hme0:1 in "myzone" after it's been 21538 * destroyed. 21539 * Note that if the status check fails, we need to bring the interface 21540 * back to its state prior to ip_sioctl_slifzone(), hence the call to 21541 * ipif_up_done[_v6](). 21542 */ 21543 status = ZONE_IS_UNINITIALIZED; 21544 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 21545 status = zone_status_get(zptr); 21546 zone_rele(zptr); 21547 } 21548 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 21549 if (ipif->ipif_isv6) { 21550 (void) ipif_up_done_v6(ipif); 21551 } else { 21552 (void) ipif_up_done(ipif); 21553 } 21554 return (EINVAL); 21555 } 21556 21557 ipif_down_tail(ipif); 21558 21559 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 21560 B_TRUE)); 21561 } 21562 21563 /* ARGSUSED */ 21564 int 21565 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21566 ip_ioctl_cmd_t *ipip, void *ifreq) 21567 { 21568 struct lifreq *lifr = ifreq; 21569 21570 ASSERT(q->q_next == NULL); 21571 ASSERT(CONN_Q(q)); 21572 21573 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 21574 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21575 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 21576 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 21577 21578 return (0); 21579 } 21580 21581 21582 /* Find the previous ILL in this usesrc group */ 21583 static ill_t * 21584 ill_prev_usesrc(ill_t *uill) 21585 { 21586 ill_t *ill; 21587 21588 for (ill = uill->ill_usesrc_grp_next; 21589 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 21590 ill = ill->ill_usesrc_grp_next) 21591 /* do nothing */; 21592 return (ill); 21593 } 21594 21595 /* 21596 * Release all members of the usesrc group. This routine is called 21597 * from ill_delete when the interface being unplumbed is the 21598 * group head. 21599 */ 21600 static void 21601 ill_disband_usesrc_group(ill_t *uill) 21602 { 21603 ill_t *next_ill, *tmp_ill; 21604 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 21605 next_ill = uill->ill_usesrc_grp_next; 21606 21607 do { 21608 ASSERT(next_ill != NULL); 21609 tmp_ill = next_ill->ill_usesrc_grp_next; 21610 ASSERT(tmp_ill != NULL); 21611 next_ill->ill_usesrc_grp_next = NULL; 21612 next_ill->ill_usesrc_ifindex = 0; 21613 next_ill = tmp_ill; 21614 } while (next_ill->ill_usesrc_ifindex != 0); 21615 uill->ill_usesrc_grp_next = NULL; 21616 } 21617 21618 /* 21619 * Remove the client usesrc ILL from the list and relink to a new list 21620 */ 21621 int 21622 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 21623 { 21624 ill_t *ill, *tmp_ill; 21625 21626 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 21627 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 21628 21629 /* 21630 * Check if the usesrc client ILL passed in is not already 21631 * in use as a usesrc ILL i.e one whose source address is 21632 * in use OR a usesrc ILL is not already in use as a usesrc 21633 * client ILL 21634 */ 21635 if ((ucill->ill_usesrc_ifindex == 0) || 21636 (uill->ill_usesrc_ifindex != 0)) { 21637 return (-1); 21638 } 21639 21640 ill = ill_prev_usesrc(ucill); 21641 ASSERT(ill->ill_usesrc_grp_next != NULL); 21642 21643 /* Remove from the current list */ 21644 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 21645 /* Only two elements in the list */ 21646 ASSERT(ill->ill_usesrc_ifindex == 0); 21647 ill->ill_usesrc_grp_next = NULL; 21648 } else { 21649 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 21650 } 21651 21652 if (ifindex == 0) { 21653 ucill->ill_usesrc_ifindex = 0; 21654 ucill->ill_usesrc_grp_next = NULL; 21655 return (0); 21656 } 21657 21658 ucill->ill_usesrc_ifindex = ifindex; 21659 tmp_ill = uill->ill_usesrc_grp_next; 21660 uill->ill_usesrc_grp_next = ucill; 21661 ucill->ill_usesrc_grp_next = 21662 (tmp_ill != NULL) ? tmp_ill : uill; 21663 return (0); 21664 } 21665 21666 /* 21667 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 21668 * ip.c for locking details. 21669 */ 21670 /* ARGSUSED */ 21671 int 21672 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21673 ip_ioctl_cmd_t *ipip, void *ifreq) 21674 { 21675 struct lifreq *lifr = (struct lifreq *)ifreq; 21676 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 21677 ill_flag_changed = B_FALSE; 21678 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 21679 int err = 0, ret; 21680 uint_t ifindex; 21681 phyint_t *us_phyint, *us_cli_phyint; 21682 ipsq_t *ipsq = NULL; 21683 21684 ASSERT(IAM_WRITER_IPIF(ipif)); 21685 ASSERT(q->q_next == NULL); 21686 ASSERT(CONN_Q(q)); 21687 21688 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 21689 us_cli_phyint = usesrc_cli_ill->ill_phyint; 21690 21691 ASSERT(us_cli_phyint != NULL); 21692 21693 /* 21694 * If the client ILL is being used for IPMP, abort. 21695 * Note, this can be done before ipsq_try_enter since we are already 21696 * exclusive on this ILL 21697 */ 21698 if ((us_cli_phyint->phyint_groupname != NULL) || 21699 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 21700 return (EINVAL); 21701 } 21702 21703 ifindex = lifr->lifr_index; 21704 if (ifindex == 0) { 21705 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 21706 /* non usesrc group interface, nothing to reset */ 21707 return (0); 21708 } 21709 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 21710 /* valid reset request */ 21711 reset_flg = B_TRUE; 21712 } 21713 21714 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 21715 ip_process_ioctl, &err); 21716 21717 if (usesrc_ill == NULL) { 21718 return (err); 21719 } 21720 21721 /* 21722 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 21723 * group nor can either of the interfaces be used for standy. So 21724 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 21725 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 21726 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 21727 * We are already exlusive on this ipsq i.e ipsq corresponding to 21728 * the usesrc_cli_ill 21729 */ 21730 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 21731 NEW_OP, B_TRUE); 21732 if (ipsq == NULL) { 21733 err = EINPROGRESS; 21734 /* Operation enqueued on the ipsq of the usesrc ILL */ 21735 goto done; 21736 } 21737 21738 /* Check if the usesrc_ill is used for IPMP */ 21739 us_phyint = usesrc_ill->ill_phyint; 21740 if ((us_phyint->phyint_groupname != NULL) || 21741 (us_phyint->phyint_flags & PHYI_STANDBY)) { 21742 err = EINVAL; 21743 goto done; 21744 } 21745 21746 /* 21747 * If the client is already in use as a usesrc_ill or a usesrc_ill is 21748 * already a client then return EINVAL 21749 */ 21750 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 21751 err = EINVAL; 21752 goto done; 21753 } 21754 21755 /* 21756 * If the ill_usesrc_ifindex field is already set to what it needs to 21757 * be then this is a duplicate operation. 21758 */ 21759 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 21760 err = 0; 21761 goto done; 21762 } 21763 21764 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 21765 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 21766 usesrc_ill->ill_isv6)); 21767 21768 /* 21769 * The next step ensures that no new ires will be created referencing 21770 * the client ill, until the ILL_CHANGING flag is cleared. Then 21771 * we go through an ire walk deleting all ire caches that reference 21772 * the client ill. New ires referencing the client ill that are added 21773 * to the ire table before the ILL_CHANGING flag is set, will be 21774 * cleaned up by the ire walk below. Attempt to add new ires referencing 21775 * the client ill while the ILL_CHANGING flag is set will be failed 21776 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 21777 * checks (under the ill_g_usesrc_lock) that the ire being added 21778 * is not stale, i.e the ire_stq and ire_ipif are consistent and 21779 * belong to the same usesrc group. 21780 */ 21781 mutex_enter(&usesrc_cli_ill->ill_lock); 21782 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 21783 mutex_exit(&usesrc_cli_ill->ill_lock); 21784 ill_flag_changed = B_TRUE; 21785 21786 if (ipif->ipif_isv6) 21787 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21788 ALL_ZONES); 21789 else 21790 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21791 ALL_ZONES); 21792 21793 /* 21794 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 21795 * and the ill_usesrc_ifindex fields 21796 */ 21797 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 21798 21799 if (reset_flg) { 21800 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 21801 if (ret != 0) { 21802 err = EINVAL; 21803 } 21804 rw_exit(&ill_g_usesrc_lock); 21805 goto done; 21806 } 21807 21808 /* 21809 * Four possibilities to consider: 21810 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 21811 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 21812 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 21813 * 4. Both are part of their respective usesrc groups 21814 */ 21815 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 21816 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21817 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 21818 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21819 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21820 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 21821 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 21822 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21823 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21824 /* Insert at head of list */ 21825 usesrc_cli_ill->ill_usesrc_grp_next = 21826 usesrc_ill->ill_usesrc_grp_next; 21827 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21828 } else { 21829 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 21830 ifindex); 21831 if (ret != 0) 21832 err = EINVAL; 21833 } 21834 rw_exit(&ill_g_usesrc_lock); 21835 21836 done: 21837 if (ill_flag_changed) { 21838 mutex_enter(&usesrc_cli_ill->ill_lock); 21839 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 21840 mutex_exit(&usesrc_cli_ill->ill_lock); 21841 } 21842 if (ipsq != NULL) 21843 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21844 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 21845 ill_refrele(usesrc_ill); 21846 return (err); 21847 } 21848 21849 /* 21850 * comparison function used by avl. 21851 */ 21852 static int 21853 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 21854 { 21855 21856 uint_t index; 21857 21858 ASSERT(phyip != NULL && index_ptr != NULL); 21859 21860 index = *((uint_t *)index_ptr); 21861 /* 21862 * let the phyint with the lowest index be on top. 21863 */ 21864 if (((phyint_t *)phyip)->phyint_ifindex < index) 21865 return (1); 21866 if (((phyint_t *)phyip)->phyint_ifindex > index) 21867 return (-1); 21868 return (0); 21869 } 21870 21871 /* 21872 * comparison function used by avl. 21873 */ 21874 static int 21875 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 21876 { 21877 ill_t *ill; 21878 int res = 0; 21879 21880 ASSERT(phyip != NULL && name_ptr != NULL); 21881 21882 if (((phyint_t *)phyip)->phyint_illv4) 21883 ill = ((phyint_t *)phyip)->phyint_illv4; 21884 else 21885 ill = ((phyint_t *)phyip)->phyint_illv6; 21886 ASSERT(ill != NULL); 21887 21888 res = strcmp(ill->ill_name, (char *)name_ptr); 21889 if (res > 0) 21890 return (1); 21891 else if (res < 0) 21892 return (-1); 21893 return (0); 21894 } 21895 /* 21896 * This function is called from ill_delete when the ill is being 21897 * unplumbed. We remove the reference from the phyint and we also 21898 * free the phyint when there are no more references to it. 21899 */ 21900 static void 21901 ill_phyint_free(ill_t *ill) 21902 { 21903 phyint_t *phyi; 21904 phyint_t *next_phyint; 21905 ipsq_t *cur_ipsq; 21906 21907 ASSERT(ill->ill_phyint != NULL); 21908 21909 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21910 phyi = ill->ill_phyint; 21911 ill->ill_phyint = NULL; 21912 /* 21913 * ill_init allocates a phyint always to store the copy 21914 * of flags relevant to phyint. At that point in time, we could 21915 * not assign the name and hence phyint_illv4/v6 could not be 21916 * initialized. Later in ipif_set_values, we assign the name to 21917 * the ill, at which point in time we assign phyint_illv4/v6. 21918 * Thus we don't rely on phyint_illv6 to be initialized always. 21919 */ 21920 if (ill->ill_flags & ILLF_IPV6) { 21921 phyi->phyint_illv6 = NULL; 21922 } else { 21923 phyi->phyint_illv4 = NULL; 21924 } 21925 /* 21926 * ipif_down removes it from the group when the last ipif goes 21927 * down. 21928 */ 21929 ASSERT(ill->ill_group == NULL); 21930 21931 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 21932 return; 21933 21934 /* 21935 * Make sure this phyint was put in the list. 21936 */ 21937 if (phyi->phyint_ifindex > 0) { 21938 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 21939 phyi); 21940 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 21941 phyi); 21942 } 21943 /* 21944 * remove phyint from the ipsq list. 21945 */ 21946 cur_ipsq = phyi->phyint_ipsq; 21947 if (phyi == cur_ipsq->ipsq_phyint_list) { 21948 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 21949 } else { 21950 next_phyint = cur_ipsq->ipsq_phyint_list; 21951 while (next_phyint != NULL) { 21952 if (next_phyint->phyint_ipsq_next == phyi) { 21953 next_phyint->phyint_ipsq_next = 21954 phyi->phyint_ipsq_next; 21955 break; 21956 } 21957 next_phyint = next_phyint->phyint_ipsq_next; 21958 } 21959 ASSERT(next_phyint != NULL); 21960 } 21961 IPSQ_DEC_REF(cur_ipsq); 21962 21963 if (phyi->phyint_groupname_len != 0) { 21964 ASSERT(phyi->phyint_groupname != NULL); 21965 mi_free(phyi->phyint_groupname); 21966 } 21967 mi_free(phyi); 21968 } 21969 21970 /* 21971 * Attach the ill to the phyint structure which can be shared by both 21972 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 21973 * function is called from ipif_set_values and ill_lookup_on_name (for 21974 * loopback) where we know the name of the ill. We lookup the ill and if 21975 * there is one present already with the name use that phyint. Otherwise 21976 * reuse the one allocated by ill_init. 21977 */ 21978 static void 21979 ill_phyint_reinit(ill_t *ill) 21980 { 21981 boolean_t isv6 = ill->ill_isv6; 21982 phyint_t *phyi_old; 21983 phyint_t *phyi; 21984 avl_index_t where = 0; 21985 ill_t *ill_other = NULL; 21986 ipsq_t *ipsq; 21987 21988 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21989 21990 phyi_old = ill->ill_phyint; 21991 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 21992 phyi_old->phyint_illv6 == NULL)); 21993 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 21994 phyi_old->phyint_illv4 == NULL)); 21995 ASSERT(phyi_old->phyint_ifindex == 0); 21996 21997 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 21998 ill->ill_name, &where); 21999 22000 /* 22001 * 1. We grabbed the ill_g_lock before inserting this ill into 22002 * the global list of ills. So no other thread could have located 22003 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22004 * 2. Now locate the other protocol instance of this ill. 22005 * 3. Now grab both ill locks in the right order, and the phyint lock of 22006 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22007 * of neither ill can change. 22008 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22009 * other ill. 22010 * 5. Release all locks. 22011 */ 22012 22013 /* 22014 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22015 * we are initializing IPv4. 22016 */ 22017 if (phyi != NULL) { 22018 ill_other = (isv6) ? phyi->phyint_illv4 : 22019 phyi->phyint_illv6; 22020 ASSERT(ill_other->ill_phyint != NULL); 22021 ASSERT((isv6 && !ill_other->ill_isv6) || 22022 (!isv6 && ill_other->ill_isv6)); 22023 GRAB_ILL_LOCKS(ill, ill_other); 22024 /* 22025 * We are potentially throwing away phyint_flags which 22026 * could be different from the one that we obtain from 22027 * ill_other->ill_phyint. But it is okay as we are assuming 22028 * that the state maintained within IP is correct. 22029 */ 22030 mutex_enter(&phyi->phyint_lock); 22031 if (isv6) { 22032 ASSERT(phyi->phyint_illv6 == NULL); 22033 phyi->phyint_illv6 = ill; 22034 } else { 22035 ASSERT(phyi->phyint_illv4 == NULL); 22036 phyi->phyint_illv4 = ill; 22037 } 22038 /* 22039 * This is a new ill, currently undergoing SLIFNAME 22040 * So we could not have joined an IPMP group until now. 22041 */ 22042 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22043 phyi_old->phyint_groupname == NULL); 22044 22045 /* 22046 * This phyi_old is going away. Decref ipsq_refs and 22047 * assert it is zero. The ipsq itself will be freed in 22048 * ipsq_exit 22049 */ 22050 ipsq = phyi_old->phyint_ipsq; 22051 IPSQ_DEC_REF(ipsq); 22052 ASSERT(ipsq->ipsq_refs == 0); 22053 /* Get the singleton phyint out of the ipsq list */ 22054 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22055 ipsq->ipsq_phyint_list = NULL; 22056 phyi_old->phyint_illv4 = NULL; 22057 phyi_old->phyint_illv6 = NULL; 22058 mi_free(phyi_old); 22059 } else { 22060 mutex_enter(&ill->ill_lock); 22061 /* 22062 * We don't need to acquire any lock, since 22063 * the ill is not yet visible globally and we 22064 * have not yet released the ill_g_lock. 22065 */ 22066 phyi = phyi_old; 22067 mutex_enter(&phyi->phyint_lock); 22068 /* XXX We need a recovery strategy here. */ 22069 if (!phyint_assign_ifindex(phyi)) 22070 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22071 22072 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 22073 (void *)phyi, where); 22074 22075 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 22076 &phyi->phyint_ifindex, &where); 22077 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 22078 (void *)phyi, where); 22079 } 22080 22081 /* 22082 * Reassigning ill_phyint automatically reassigns the ipsq also. 22083 * pending mp is not affected because that is per ill basis. 22084 */ 22085 ill->ill_phyint = phyi; 22086 22087 /* 22088 * Keep the index on ipif_orig_index to be used by FAILOVER. 22089 * We do this here as when the first ipif was allocated, 22090 * ipif_allocate does not know the right interface index. 22091 */ 22092 22093 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22094 /* 22095 * Now that the phyint's ifindex has been assigned, complete the 22096 * remaining 22097 */ 22098 if (ill->ill_isv6) { 22099 ill->ill_ip6_mib->ipv6IfIndex = 22100 ill->ill_phyint->phyint_ifindex; 22101 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22102 ill->ill_phyint->phyint_ifindex; 22103 } 22104 22105 RELEASE_ILL_LOCKS(ill, ill_other); 22106 mutex_exit(&phyi->phyint_lock); 22107 } 22108 22109 /* 22110 * Notify any downstream modules of the name of this interface. 22111 * An M_IOCTL is used even though we don't expect a successful reply. 22112 * Any reply message from the driver (presumably an M_IOCNAK) will 22113 * eventually get discarded somewhere upstream. The message format is 22114 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22115 * to IP. 22116 */ 22117 static void 22118 ip_ifname_notify(ill_t *ill, queue_t *q) 22119 { 22120 mblk_t *mp1, *mp2; 22121 struct iocblk *iocp; 22122 struct lifreq *lifr; 22123 22124 mp1 = mkiocb(SIOCSLIFNAME); 22125 if (mp1 == NULL) 22126 return; 22127 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22128 if (mp2 == NULL) { 22129 freeb(mp1); 22130 return; 22131 } 22132 22133 mp1->b_cont = mp2; 22134 iocp = (struct iocblk *)mp1->b_rptr; 22135 iocp->ioc_count = sizeof (struct lifreq); 22136 22137 lifr = (struct lifreq *)mp2->b_rptr; 22138 mp2->b_wptr += sizeof (struct lifreq); 22139 bzero(lifr, sizeof (struct lifreq)); 22140 22141 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22142 lifr->lifr_ppa = ill->ill_ppa; 22143 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22144 22145 putnext(q, mp1); 22146 } 22147 22148 static boolean_t ip_trash_timer_started = B_FALSE; 22149 22150 static int 22151 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22152 { 22153 int err; 22154 22155 /* Set the obsolete NDD per-interface forwarding name. */ 22156 err = ill_set_ndd_name(ill); 22157 if (err != 0) { 22158 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22159 err); 22160 } 22161 22162 /* Tell downstream modules where they are. */ 22163 ip_ifname_notify(ill, q); 22164 22165 /* 22166 * ill_dl_phys returns EINPROGRESS in the usual case. 22167 * Error cases are ENOMEM ... 22168 */ 22169 err = ill_dl_phys(ill, ipif, mp, q); 22170 22171 /* 22172 * If there is no IRE expiration timer running, get one started. 22173 * igmp and mld timers will be triggered by the first multicast 22174 */ 22175 if (!ip_trash_timer_started) { 22176 /* 22177 * acquire the lock and check again. 22178 */ 22179 mutex_enter(&ip_trash_timer_lock); 22180 if (!ip_trash_timer_started) { 22181 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 22182 MSEC_TO_TICK(ip_timer_interval)); 22183 ip_trash_timer_started = B_TRUE; 22184 } 22185 mutex_exit(&ip_trash_timer_lock); 22186 } 22187 22188 if (ill->ill_isv6) { 22189 mutex_enter(&mld_slowtimeout_lock); 22190 if (mld_slowtimeout_id == 0) { 22191 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 22192 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22193 } 22194 mutex_exit(&mld_slowtimeout_lock); 22195 } else { 22196 mutex_enter(&igmp_slowtimeout_lock); 22197 if (igmp_slowtimeout_id == 0) { 22198 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 22199 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22200 } 22201 mutex_exit(&igmp_slowtimeout_lock); 22202 } 22203 22204 return (err); 22205 } 22206 22207 /* 22208 * Common routine for ppa and ifname setting. Should be called exclusive. 22209 * 22210 * Returns EINPROGRESS when mp has been consumed by queueing it on 22211 * ill_pending_mp and the ioctl will complete in ip_rput. 22212 * 22213 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22214 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22215 * For SLIFNAME, we pass these values back to the userland. 22216 */ 22217 static int 22218 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22219 { 22220 ill_t *ill; 22221 ipif_t *ipif; 22222 ipsq_t *ipsq; 22223 char *ppa_ptr; 22224 char *old_ptr; 22225 char old_char; 22226 int error; 22227 22228 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22229 ASSERT(q->q_next != NULL); 22230 ASSERT(interf_name != NULL); 22231 22232 ill = (ill_t *)q->q_ptr; 22233 22234 ASSERT(ill->ill_name[0] == '\0'); 22235 ASSERT(IAM_WRITER_ILL(ill)); 22236 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22237 ASSERT(ill->ill_ppa == UINT_MAX); 22238 22239 /* The ppa is sent down by ifconfig or is chosen */ 22240 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22241 return (EINVAL); 22242 } 22243 22244 /* 22245 * make sure ppa passed in is same as ppa in the name. 22246 * This check is not made when ppa == UINT_MAX in that case ppa 22247 * in the name could be anything. System will choose a ppa and 22248 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22249 */ 22250 if (*new_ppa_ptr != UINT_MAX) { 22251 /* stoi changes the pointer */ 22252 old_ptr = ppa_ptr; 22253 /* 22254 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22255 * (they don't have an externally visible ppa). We assign one 22256 * here so that we can manage the interface. Note that in 22257 * the past this value was always 0 for DLPI 1 drivers. 22258 */ 22259 if (*new_ppa_ptr == 0) 22260 *new_ppa_ptr = stoi(&old_ptr); 22261 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22262 return (EINVAL); 22263 } 22264 /* 22265 * terminate string before ppa 22266 * save char at that location. 22267 */ 22268 old_char = ppa_ptr[0]; 22269 ppa_ptr[0] = '\0'; 22270 22271 ill->ill_ppa = *new_ppa_ptr; 22272 /* 22273 * Finish as much work now as possible before calling ill_glist_insert 22274 * which makes the ill globally visible and also merges it with the 22275 * other protocol instance of this phyint. The remaining work is 22276 * done after entering the ipsq which may happen sometime later. 22277 * ill_set_ndd_name occurs after the ill has been made globally visible. 22278 */ 22279 ipif = ill->ill_ipif; 22280 22281 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22282 ipif_assign_seqid(ipif); 22283 22284 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22285 ill->ill_flags |= ILLF_IPV4; 22286 22287 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22288 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22289 22290 if (ill->ill_flags & ILLF_IPV6) { 22291 22292 ill->ill_isv6 = B_TRUE; 22293 if (ill->ill_rq != NULL) { 22294 ill->ill_rq->q_qinfo = &rinit_ipv6; 22295 ill->ill_wq->q_qinfo = &winit_ipv6; 22296 } 22297 22298 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22299 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22300 ipif->ipif_v6src_addr = ipv6_all_zeros; 22301 ipif->ipif_v6subnet = ipv6_all_zeros; 22302 ipif->ipif_v6net_mask = ipv6_all_zeros; 22303 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22304 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22305 /* 22306 * point-to-point or Non-mulicast capable 22307 * interfaces won't do NUD unless explicitly 22308 * configured to do so. 22309 */ 22310 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22311 !(ill->ill_flags & ILLF_MULTICAST)) { 22312 ill->ill_flags |= ILLF_NONUD; 22313 } 22314 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22315 if (ill->ill_flags & ILLF_NOARP) { 22316 /* 22317 * Note: xresolv interfaces will eventually need 22318 * NOARP set here as well, but that will require 22319 * those external resolvers to have some 22320 * knowledge of that flag and act appropriately. 22321 * Not to be changed at present. 22322 */ 22323 ill->ill_flags &= ~ILLF_NOARP; 22324 } 22325 /* 22326 * Set the ILLF_ROUTER flag according to the global 22327 * IPv6 forwarding policy. 22328 */ 22329 if (ipv6_forward != 0) 22330 ill->ill_flags |= ILLF_ROUTER; 22331 } else if (ill->ill_flags & ILLF_IPV4) { 22332 ill->ill_isv6 = B_FALSE; 22333 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22334 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22335 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22336 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22337 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22338 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22339 /* 22340 * Set the ILLF_ROUTER flag according to the global 22341 * IPv4 forwarding policy. 22342 */ 22343 if (ip_g_forward != 0) 22344 ill->ill_flags |= ILLF_ROUTER; 22345 } 22346 22347 ASSERT(ill->ill_phyint != NULL); 22348 22349 /* 22350 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 22351 * be completed in ill_glist_insert -> ill_phyint_reinit 22352 */ 22353 if (ill->ill_isv6) { 22354 /* allocate v6 mib */ 22355 if (!ill_allocate_mibs(ill)) 22356 return (ENOMEM); 22357 } 22358 22359 /* 22360 * Pick a default sap until we get the DL_INFO_ACK back from 22361 * the driver. 22362 */ 22363 if (ill->ill_sap == 0) { 22364 if (ill->ill_isv6) 22365 ill->ill_sap = IP6_DL_SAP; 22366 else 22367 ill->ill_sap = IP_DL_SAP; 22368 } 22369 22370 ill->ill_ifname_pending = 1; 22371 ill->ill_ifname_pending_err = 0; 22372 22373 ill_refhold(ill); 22374 rw_enter(&ill_g_lock, RW_WRITER); 22375 if ((error = ill_glist_insert(ill, interf_name, 22376 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22377 ill->ill_ppa = UINT_MAX; 22378 ill->ill_name[0] = '\0'; 22379 /* 22380 * undo null termination done above. 22381 */ 22382 ppa_ptr[0] = old_char; 22383 rw_exit(&ill_g_lock); 22384 ill_refrele(ill); 22385 return (error); 22386 } 22387 22388 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22389 22390 /* 22391 * When we return the buffer pointed to by interf_name should contain 22392 * the same name as in ill_name. 22393 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22394 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22395 * so copy full name and update the ppa ptr. 22396 * When ppa passed in != UINT_MAX all values are correct just undo 22397 * null termination, this saves a bcopy. 22398 */ 22399 if (*new_ppa_ptr == UINT_MAX) { 22400 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 22401 *new_ppa_ptr = ill->ill_ppa; 22402 } else { 22403 /* 22404 * undo null termination done above. 22405 */ 22406 ppa_ptr[0] = old_char; 22407 } 22408 22409 /* Let SCTP know about this ILL */ 22410 sctp_update_ill(ill, SCTP_ILL_INSERT); 22411 22412 /* and also about the first ipif */ 22413 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 22414 22415 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 22416 B_TRUE); 22417 22418 rw_exit(&ill_g_lock); 22419 ill_refrele(ill); 22420 if (ipsq == NULL) 22421 return (EINPROGRESS); 22422 22423 /* 22424 * Need to set the ipsq_current_ipif now, if we have changed ipsq 22425 * due to the phyint merge in ill_phyint_reinit. 22426 */ 22427 ASSERT(ipsq->ipsq_current_ipif == NULL || 22428 ipsq->ipsq_current_ipif == ipif); 22429 ipsq->ipsq_current_ipif = ipif; 22430 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 22431 error = ipif_set_values_tail(ill, ipif, mp, q); 22432 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22433 if (error != 0 && error != EINPROGRESS) { 22434 /* 22435 * restore previous values 22436 */ 22437 ill->ill_isv6 = B_FALSE; 22438 } 22439 return (error); 22440 } 22441 22442 22443 extern void (*ip_cleanup_func)(void); 22444 22445 void 22446 ipif_init(void) 22447 { 22448 hrtime_t hrt; 22449 int i; 22450 22451 /* 22452 * Can't call drv_getparm here as it is too early in the boot. 22453 * As we use ipif_src_random just for picking a different 22454 * source address everytime, this need not be really random. 22455 */ 22456 hrt = gethrtime(); 22457 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 22458 22459 for (i = 0; i < MAX_G_HEADS; i++) { 22460 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 22461 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 22462 } 22463 22464 avl_create(&phyint_g_list.phyint_list_avl_by_index, 22465 ill_phyint_compare_index, 22466 sizeof (phyint_t), 22467 offsetof(struct phyint, phyint_avl_by_index)); 22468 avl_create(&phyint_g_list.phyint_list_avl_by_name, 22469 ill_phyint_compare_name, 22470 sizeof (phyint_t), 22471 offsetof(struct phyint, phyint_avl_by_name)); 22472 22473 ip_cleanup_func = ip_thread_exit; 22474 } 22475 22476 /* 22477 * This is called by ip_rt_add when src_addr value is other than zero. 22478 * src_addr signifies the source address of the incoming packet. For 22479 * reverse tunnel route we need to create a source addr based routing 22480 * table. This routine creates ip_mrtun_table if it's empty and then 22481 * it adds the route entry hashed by source address. It verifies that 22482 * the outgoing interface is always a non-resolver interface (tunnel). 22483 */ 22484 int 22485 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 22486 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 22487 { 22488 ire_t *ire; 22489 ire_t *save_ire; 22490 ipif_t *ipif; 22491 ill_t *in_ill = NULL; 22492 ill_t *out_ill; 22493 queue_t *stq; 22494 mblk_t *dlureq_mp; 22495 int error; 22496 22497 if (ire_arg != NULL) 22498 *ire_arg = NULL; 22499 ASSERT(in_src_addr != INADDR_ANY); 22500 22501 ipif = ipif_arg; 22502 if (ipif != NULL) { 22503 out_ill = ipif->ipif_ill; 22504 } else { 22505 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 22506 return (EINVAL); 22507 } 22508 22509 if (src_ipif == NULL) { 22510 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 22511 return (EINVAL); 22512 } 22513 in_ill = src_ipif->ipif_ill; 22514 22515 /* 22516 * Check for duplicates. We don't need to 22517 * match out_ill, because the uniqueness of 22518 * a route is only dependent on src_addr and 22519 * in_ill. 22520 */ 22521 ire = ire_mrtun_lookup(in_src_addr, in_ill); 22522 if (ire != NULL) { 22523 ire_refrele(ire); 22524 return (EEXIST); 22525 } 22526 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 22527 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 22528 ipif->ipif_net_type)); 22529 return (EINVAL); 22530 } 22531 22532 stq = ipif->ipif_wq; 22533 ASSERT(stq != NULL); 22534 22535 /* 22536 * The outgoing interface must be non-resolver 22537 * interface. 22538 */ 22539 dlureq_mp = ill_dlur_gen(NULL, 22540 out_ill->ill_phys_addr_length, out_ill->ill_sap, 22541 out_ill->ill_sap_length); 22542 22543 if (dlureq_mp == NULL) { 22544 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 22545 return (ENOMEM); 22546 } 22547 22548 /* Create the IRE. */ 22549 22550 ire = ire_create( 22551 NULL, /* Zero dst addr */ 22552 NULL, /* Zero mask */ 22553 NULL, /* Zero gateway addr */ 22554 NULL, /* Zero ipif_src addr */ 22555 (uint8_t *)&in_src_addr, /* in_src-addr */ 22556 &ipif->ipif_mtu, 22557 NULL, 22558 NULL, /* rfq */ 22559 stq, 22560 IRE_MIPRTUN, 22561 dlureq_mp, 22562 ipif, 22563 in_ill, 22564 0, 22565 0, 22566 0, 22567 flags, 22568 &ire_uinfo_null, 22569 NULL, 22570 NULL); 22571 22572 if (ire == NULL) { 22573 freeb(dlureq_mp); 22574 return (ENOMEM); 22575 } 22576 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 22577 ire->ire_type)); 22578 save_ire = ire; 22579 ASSERT(save_ire != NULL); 22580 error = ire_add_mrtun(&ire, q, mp, func); 22581 /* 22582 * If ire_add_mrtun() failed, the ire passed in was freed 22583 * so there is no need to do so here. 22584 */ 22585 if (error != 0) { 22586 return (error); 22587 } 22588 22589 /* Duplicate check */ 22590 if (ire != save_ire) { 22591 /* route already exists by now */ 22592 ire_refrele(ire); 22593 return (EEXIST); 22594 } 22595 22596 if (ire_arg != NULL) { 22597 /* 22598 * Store the ire that was just added. the caller 22599 * ip_rts_request responsible for doing ire_refrele() 22600 * on it. 22601 */ 22602 *ire_arg = ire; 22603 } else { 22604 ire_refrele(ire); /* held in ire_add_mrtun */ 22605 } 22606 22607 return (0); 22608 } 22609 22610 /* 22611 * It is called by ip_rt_delete() only when mipagent requests to delete 22612 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 22613 */ 22614 22615 int 22616 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 22617 { 22618 ire_t *ire = NULL; 22619 22620 if (in_src_addr == INADDR_ANY) 22621 return (EINVAL); 22622 if (src_ipif == NULL) 22623 return (EINVAL); 22624 22625 /* search if this route exists in the ip_mrtun_table */ 22626 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 22627 if (ire == NULL) { 22628 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 22629 return (ESRCH); 22630 } 22631 ire_delete(ire); 22632 ire_refrele(ire); 22633 return (0); 22634 } 22635 22636 /* 22637 * Lookup the ipif corresponding to the onlink destination address. For 22638 * point-to-point interfaces, it matches with remote endpoint destination 22639 * address. For point-to-multipoint interfaces it only tries to match the 22640 * destination with the interface's subnet address. The longest, most specific 22641 * match is found to take care of such rare network configurations like - 22642 * le0: 129.146.1.1/16 22643 * le1: 129.146.2.2/24 22644 * It is used only by SO_DONTROUTE at the moment. 22645 */ 22646 ipif_t * 22647 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 22648 { 22649 ipif_t *ipif, *best_ipif; 22650 ill_t *ill; 22651 ill_walk_context_t ctx; 22652 22653 ASSERT(zoneid != ALL_ZONES); 22654 best_ipif = NULL; 22655 22656 rw_enter(&ill_g_lock, RW_READER); 22657 ill = ILL_START_WALK_V4(&ctx); 22658 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22659 mutex_enter(&ill->ill_lock); 22660 for (ipif = ill->ill_ipif; ipif != NULL; 22661 ipif = ipif->ipif_next) { 22662 if (!IPIF_CAN_LOOKUP(ipif)) 22663 continue; 22664 if (ipif->ipif_zoneid != zoneid && 22665 ipif->ipif_zoneid != ALL_ZONES) 22666 continue; 22667 /* 22668 * Point-to-point case. Look for exact match with 22669 * destination address. 22670 */ 22671 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 22672 if (ipif->ipif_pp_dst_addr == addr) { 22673 ipif_refhold_locked(ipif); 22674 mutex_exit(&ill->ill_lock); 22675 rw_exit(&ill_g_lock); 22676 if (best_ipif != NULL) 22677 ipif_refrele(best_ipif); 22678 return (ipif); 22679 } 22680 } else if (ipif->ipif_subnet == (addr & 22681 ipif->ipif_net_mask)) { 22682 /* 22683 * Point-to-multipoint case. Looping through to 22684 * find the most specific match. If there are 22685 * multiple best match ipif's then prefer ipif's 22686 * that are UP. If there is only one best match 22687 * ipif and it is DOWN we must still return it. 22688 */ 22689 if ((best_ipif == NULL) || 22690 (ipif->ipif_net_mask > 22691 best_ipif->ipif_net_mask) || 22692 ((ipif->ipif_net_mask == 22693 best_ipif->ipif_net_mask) && 22694 ((ipif->ipif_flags & IPIF_UP) && 22695 (!(best_ipif->ipif_flags & IPIF_UP))))) { 22696 ipif_refhold_locked(ipif); 22697 mutex_exit(&ill->ill_lock); 22698 rw_exit(&ill_g_lock); 22699 if (best_ipif != NULL) 22700 ipif_refrele(best_ipif); 22701 best_ipif = ipif; 22702 rw_enter(&ill_g_lock, RW_READER); 22703 mutex_enter(&ill->ill_lock); 22704 } 22705 } 22706 } 22707 mutex_exit(&ill->ill_lock); 22708 } 22709 rw_exit(&ill_g_lock); 22710 return (best_ipif); 22711 } 22712 22713 22714 /* 22715 * Save enough information so that we can recreate the IRE if 22716 * the interface goes down and then up. 22717 */ 22718 static void 22719 ipif_save_ire(ipif_t *ipif, ire_t *ire) 22720 { 22721 mblk_t *save_mp; 22722 22723 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 22724 if (save_mp != NULL) { 22725 ifrt_t *ifrt; 22726 22727 save_mp->b_wptr += sizeof (ifrt_t); 22728 ifrt = (ifrt_t *)save_mp->b_rptr; 22729 bzero(ifrt, sizeof (ifrt_t)); 22730 ifrt->ifrt_type = ire->ire_type; 22731 ifrt->ifrt_addr = ire->ire_addr; 22732 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 22733 ifrt->ifrt_src_addr = ire->ire_src_addr; 22734 ifrt->ifrt_mask = ire->ire_mask; 22735 ifrt->ifrt_flags = ire->ire_flags; 22736 ifrt->ifrt_max_frag = ire->ire_max_frag; 22737 mutex_enter(&ipif->ipif_saved_ire_lock); 22738 save_mp->b_cont = ipif->ipif_saved_ire_mp; 22739 ipif->ipif_saved_ire_mp = save_mp; 22740 ipif->ipif_saved_ire_cnt++; 22741 mutex_exit(&ipif->ipif_saved_ire_lock); 22742 } 22743 } 22744 22745 22746 static void 22747 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 22748 { 22749 mblk_t **mpp; 22750 mblk_t *mp; 22751 ifrt_t *ifrt; 22752 22753 /* Remove from ipif_saved_ire_mp list if it is there */ 22754 mutex_enter(&ipif->ipif_saved_ire_lock); 22755 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 22756 mpp = &(*mpp)->b_cont) { 22757 /* 22758 * On a given ipif, the triple of address, gateway and 22759 * mask is unique for each saved IRE (in the case of 22760 * ordinary interface routes, the gateway address is 22761 * all-zeroes). 22762 */ 22763 mp = *mpp; 22764 ifrt = (ifrt_t *)mp->b_rptr; 22765 if (ifrt->ifrt_addr == ire->ire_addr && 22766 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 22767 ifrt->ifrt_mask == ire->ire_mask) { 22768 *mpp = mp->b_cont; 22769 ipif->ipif_saved_ire_cnt--; 22770 freeb(mp); 22771 break; 22772 } 22773 } 22774 mutex_exit(&ipif->ipif_saved_ire_lock); 22775 } 22776 22777 22778 /* 22779 * IP multirouting broadcast routes handling 22780 * Append CGTP broadcast IREs to regular ones created 22781 * at ifconfig time. 22782 */ 22783 static void 22784 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 22785 { 22786 ire_t *ire_prim; 22787 22788 ASSERT(ire != NULL); 22789 ASSERT(ire_dst != NULL); 22790 22791 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22792 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 22793 if (ire_prim != NULL) { 22794 /* 22795 * We are in the special case of broadcasts for 22796 * CGTP. We add an IRE_BROADCAST that holds 22797 * the RTF_MULTIRT flag, the destination 22798 * address of ire_dst and the low level 22799 * info of ire_prim. In other words, CGTP 22800 * broadcast is added to the redundant ipif. 22801 */ 22802 ipif_t *ipif_prim; 22803 ire_t *bcast_ire; 22804 22805 ipif_prim = ire_prim->ire_ipif; 22806 22807 ip2dbg(("ip_cgtp_filter_bcast_add: " 22808 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22809 (void *)ire_dst, (void *)ire_prim, 22810 (void *)ipif_prim)); 22811 22812 bcast_ire = ire_create( 22813 (uchar_t *)&ire->ire_addr, 22814 (uchar_t *)&ip_g_all_ones, 22815 (uchar_t *)&ire_dst->ire_src_addr, 22816 (uchar_t *)&ire->ire_gateway_addr, 22817 NULL, 22818 &ipif_prim->ipif_mtu, 22819 NULL, 22820 ipif_prim->ipif_rq, 22821 ipif_prim->ipif_wq, 22822 IRE_BROADCAST, 22823 ipif_prim->ipif_bcast_mp, 22824 ipif_prim, 22825 NULL, 22826 0, 22827 0, 22828 0, 22829 ire->ire_flags, 22830 &ire_uinfo_null, 22831 NULL, 22832 NULL); 22833 22834 if (bcast_ire != NULL) { 22835 22836 if (ire_add(&bcast_ire, NULL, NULL, NULL, 22837 B_FALSE) == 0) { 22838 ip2dbg(("ip_cgtp_filter_bcast_add: " 22839 "added bcast_ire %p\n", 22840 (void *)bcast_ire)); 22841 22842 ipif_save_ire(bcast_ire->ire_ipif, 22843 bcast_ire); 22844 ire_refrele(bcast_ire); 22845 } 22846 } 22847 ire_refrele(ire_prim); 22848 } 22849 } 22850 22851 22852 /* 22853 * IP multirouting broadcast routes handling 22854 * Remove the broadcast ire 22855 */ 22856 static void 22857 ip_cgtp_bcast_delete(ire_t *ire) 22858 { 22859 ire_t *ire_dst; 22860 22861 ASSERT(ire != NULL); 22862 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 22863 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 22864 if (ire_dst != NULL) { 22865 ire_t *ire_prim; 22866 22867 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22868 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 22869 if (ire_prim != NULL) { 22870 ipif_t *ipif_prim; 22871 ire_t *bcast_ire; 22872 22873 ipif_prim = ire_prim->ire_ipif; 22874 22875 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22876 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22877 (void *)ire_dst, (void *)ire_prim, 22878 (void *)ipif_prim)); 22879 22880 bcast_ire = ire_ctable_lookup(ire->ire_addr, 22881 ire->ire_gateway_addr, 22882 IRE_BROADCAST, 22883 ipif_prim, ALL_ZONES, 22884 NULL, 22885 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 22886 MATCH_IRE_MASK); 22887 22888 if (bcast_ire != NULL) { 22889 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22890 "looked up bcast_ire %p\n", 22891 (void *)bcast_ire)); 22892 ipif_remove_ire(bcast_ire->ire_ipif, 22893 bcast_ire); 22894 ire_delete(bcast_ire); 22895 } 22896 ire_refrele(ire_prim); 22897 } 22898 ire_refrele(ire_dst); 22899 } 22900 } 22901 22902 /* 22903 * IPsec hardware acceleration capabilities related functions. 22904 */ 22905 22906 /* 22907 * Free a per-ill IPsec capabilities structure. 22908 */ 22909 static void 22910 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 22911 { 22912 if (capab->auth_hw_algs != NULL) 22913 kmem_free(capab->auth_hw_algs, capab->algs_size); 22914 if (capab->encr_hw_algs != NULL) 22915 kmem_free(capab->encr_hw_algs, capab->algs_size); 22916 if (capab->encr_algparm != NULL) 22917 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 22918 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 22919 } 22920 22921 /* 22922 * Allocate a new per-ill IPsec capabilities structure. This structure 22923 * is specific to an IPsec protocol (AH or ESP). It is implemented as 22924 * an array which specifies, for each algorithm, whether this algorithm 22925 * is supported by the ill or not. 22926 */ 22927 static ill_ipsec_capab_t * 22928 ill_ipsec_capab_alloc(void) 22929 { 22930 ill_ipsec_capab_t *capab; 22931 uint_t nelems; 22932 22933 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 22934 if (capab == NULL) 22935 return (NULL); 22936 22937 /* we need one bit per algorithm */ 22938 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 22939 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 22940 22941 /* allocate memory to store algorithm flags */ 22942 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22943 if (capab->encr_hw_algs == NULL) 22944 goto nomem; 22945 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22946 if (capab->auth_hw_algs == NULL) 22947 goto nomem; 22948 /* 22949 * Leave encr_algparm NULL for now since we won't need it half 22950 * the time 22951 */ 22952 return (capab); 22953 22954 nomem: 22955 ill_ipsec_capab_free(capab); 22956 return (NULL); 22957 } 22958 22959 /* 22960 * Resize capability array. Since we're exclusive, this is OK. 22961 */ 22962 static boolean_t 22963 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 22964 { 22965 ipsec_capab_algparm_t *nalp, *oalp; 22966 uint32_t olen, nlen; 22967 22968 oalp = capab->encr_algparm; 22969 olen = capab->encr_algparm_size; 22970 22971 if (oalp != NULL) { 22972 if (algid < capab->encr_algparm_end) 22973 return (B_TRUE); 22974 } 22975 22976 nlen = (algid + 1) * sizeof (*nalp); 22977 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 22978 if (nalp == NULL) 22979 return (B_FALSE); 22980 22981 if (oalp != NULL) { 22982 bcopy(oalp, nalp, olen); 22983 kmem_free(oalp, olen); 22984 } 22985 capab->encr_algparm = nalp; 22986 capab->encr_algparm_size = nlen; 22987 capab->encr_algparm_end = algid + 1; 22988 22989 return (B_TRUE); 22990 } 22991 22992 /* 22993 * Compare the capabilities of the specified ill with the protocol 22994 * and algorithms specified by the SA passed as argument. 22995 * If they match, returns B_TRUE, B_FALSE if they do not match. 22996 * 22997 * The ill can be passed as a pointer to it, or by specifying its index 22998 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 22999 * 23000 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23001 * packet is eligible for hardware acceleration, and by 23002 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23003 * to a particular ill. 23004 */ 23005 boolean_t 23006 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23007 ipsa_t *sa) 23008 { 23009 boolean_t sa_isv6; 23010 uint_t algid; 23011 struct ill_ipsec_capab_s *cpp; 23012 boolean_t need_refrele = B_FALSE; 23013 23014 if (ill == NULL) { 23015 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23016 NULL, NULL, NULL); 23017 if (ill == NULL) { 23018 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23019 return (B_FALSE); 23020 } 23021 need_refrele = B_TRUE; 23022 } 23023 23024 /* 23025 * Use the address length specified by the SA to determine 23026 * if it corresponds to a IPv6 address, and fail the matching 23027 * if the isv6 flag passed as argument does not match. 23028 * Note: this check is used for SADB capability checking before 23029 * sending SA information to an ill. 23030 */ 23031 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23032 if (sa_isv6 != ill_isv6) 23033 /* protocol mismatch */ 23034 goto done; 23035 23036 /* 23037 * Check if the ill supports the protocol, algorithm(s) and 23038 * key size(s) specified by the SA, and get the pointers to 23039 * the algorithms supported by the ill. 23040 */ 23041 switch (sa->ipsa_type) { 23042 23043 case SADB_SATYPE_ESP: 23044 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23045 /* ill does not support ESP acceleration */ 23046 goto done; 23047 cpp = ill->ill_ipsec_capab_esp; 23048 algid = sa->ipsa_auth_alg; 23049 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23050 goto done; 23051 algid = sa->ipsa_encr_alg; 23052 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23053 goto done; 23054 if (algid < cpp->encr_algparm_end) { 23055 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23056 if (sa->ipsa_encrkeybits < alp->minkeylen) 23057 goto done; 23058 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23059 goto done; 23060 } 23061 break; 23062 23063 case SADB_SATYPE_AH: 23064 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23065 /* ill does not support AH acceleration */ 23066 goto done; 23067 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23068 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23069 goto done; 23070 break; 23071 } 23072 23073 if (need_refrele) 23074 ill_refrele(ill); 23075 return (B_TRUE); 23076 done: 23077 if (need_refrele) 23078 ill_refrele(ill); 23079 return (B_FALSE); 23080 } 23081 23082 23083 /* 23084 * Add a new ill to the list of IPsec capable ills. 23085 * Called from ill_capability_ipsec_ack() when an ACK was received 23086 * indicating that IPsec hardware processing was enabled for an ill. 23087 * 23088 * ill must point to the ill for which acceleration was enabled. 23089 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23090 */ 23091 static void 23092 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23093 { 23094 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23095 uint_t sa_type; 23096 uint_t ipproto; 23097 23098 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23099 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23100 23101 switch (dl_cap) { 23102 case DL_CAPAB_IPSEC_AH: 23103 sa_type = SADB_SATYPE_AH; 23104 ills = &ipsec_capab_ills_ah; 23105 ipproto = IPPROTO_AH; 23106 break; 23107 case DL_CAPAB_IPSEC_ESP: 23108 sa_type = SADB_SATYPE_ESP; 23109 ills = &ipsec_capab_ills_esp; 23110 ipproto = IPPROTO_ESP; 23111 break; 23112 } 23113 23114 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23115 23116 /* 23117 * Add ill index to list of hardware accelerators. If 23118 * already in list, do nothing. 23119 */ 23120 for (cur_ill = *ills; cur_ill != NULL && 23121 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23122 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23123 ; 23124 23125 if (cur_ill == NULL) { 23126 /* if this is a new entry for this ill */ 23127 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23128 if (new_ill == NULL) { 23129 rw_exit(&ipsec_capab_ills_lock); 23130 return; 23131 } 23132 23133 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23134 new_ill->ill_isv6 = ill->ill_isv6; 23135 new_ill->next = *ills; 23136 *ills = new_ill; 23137 } else if (!sadb_resync) { 23138 /* not resync'ing SADB and an entry exists for this ill */ 23139 rw_exit(&ipsec_capab_ills_lock); 23140 return; 23141 } 23142 23143 rw_exit(&ipsec_capab_ills_lock); 23144 23145 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23146 /* 23147 * IPsec module for protocol loaded, initiate dump 23148 * of the SADB to this ill. 23149 */ 23150 sadb_ill_download(ill, sa_type); 23151 } 23152 23153 /* 23154 * Remove an ill from the list of IPsec capable ills. 23155 */ 23156 static void 23157 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23158 { 23159 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23160 23161 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23162 dl_cap == DL_CAPAB_IPSEC_ESP); 23163 23164 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 23165 &ipsec_capab_ills_esp; 23166 23167 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23168 23169 prev_ill = NULL; 23170 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23171 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23172 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23173 ; 23174 if (cur_ill == NULL) { 23175 /* entry not found */ 23176 rw_exit(&ipsec_capab_ills_lock); 23177 return; 23178 } 23179 if (prev_ill == NULL) { 23180 /* entry at front of list */ 23181 *ills = NULL; 23182 } else { 23183 prev_ill->next = cur_ill->next; 23184 } 23185 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23186 rw_exit(&ipsec_capab_ills_lock); 23187 } 23188 23189 23190 /* 23191 * Handling of DL_CONTROL_REQ messages that must be sent down to 23192 * an ill while having exclusive access. 23193 */ 23194 /* ARGSUSED */ 23195 static void 23196 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 23197 { 23198 ill_t *ill = (ill_t *)q->q_ptr; 23199 23200 ill_dlpi_send(ill, mp); 23201 } 23202 23203 23204 /* 23205 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23206 * supporting the specified IPsec protocol acceleration. 23207 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23208 * We free the mblk and, if sa is non-null, release the held referece. 23209 */ 23210 void 23211 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 23212 { 23213 ipsec_capab_ill_t *ici, *cur_ici; 23214 ill_t *ill; 23215 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23216 23217 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 23218 ipsec_capab_ills_esp; 23219 23220 rw_enter(&ipsec_capab_ills_lock, RW_READER); 23221 23222 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23223 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23224 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 23225 23226 /* 23227 * Handle the case where the ill goes away while the SADB is 23228 * attempting to send messages. If it's going away, it's 23229 * nuking its shadow SADB, so we don't care.. 23230 */ 23231 23232 if (ill == NULL) 23233 continue; 23234 23235 if (sa != NULL) { 23236 /* 23237 * Make sure capabilities match before 23238 * sending SA to ill. 23239 */ 23240 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23241 cur_ici->ill_isv6, sa)) { 23242 ill_refrele(ill); 23243 continue; 23244 } 23245 23246 mutex_enter(&sa->ipsa_lock); 23247 sa->ipsa_flags |= IPSA_F_HW; 23248 mutex_exit(&sa->ipsa_lock); 23249 } 23250 23251 /* 23252 * Copy template message, and add it to the front 23253 * of the mblk ship list. We want to avoid holding 23254 * the ipsec_capab_ills_lock while sending the 23255 * message to the ills. 23256 * 23257 * The b_next and b_prev are temporarily used 23258 * to build a list of mblks to be sent down, and to 23259 * save the ill to which they must be sent. 23260 */ 23261 nmp = copymsg(mp); 23262 if (nmp == NULL) { 23263 ill_refrele(ill); 23264 continue; 23265 } 23266 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23267 nmp->b_next = mp_ship_list; 23268 mp_ship_list = nmp; 23269 nmp->b_prev = (mblk_t *)ill; 23270 } 23271 23272 rw_exit(&ipsec_capab_ills_lock); 23273 23274 nmp = mp_ship_list; 23275 while (nmp != NULL) { 23276 /* restore the mblk to a sane state */ 23277 next_mp = nmp->b_next; 23278 nmp->b_next = NULL; 23279 ill = (ill_t *)nmp->b_prev; 23280 nmp->b_prev = NULL; 23281 23282 /* 23283 * Ship the mblk to the ill, must be exclusive. Keep the 23284 * reference to the ill as qwriter_ip() does a ill_referele(). 23285 */ 23286 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 23287 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 23288 23289 nmp = next_mp; 23290 } 23291 23292 if (sa != NULL) 23293 IPSA_REFRELE(sa); 23294 freemsg(mp); 23295 } 23296 23297 23298 /* 23299 * Derive an interface id from the link layer address. 23300 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23301 */ 23302 static boolean_t 23303 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23304 { 23305 char *addr; 23306 23307 if (phys_length != ETHERADDRL) 23308 return (B_FALSE); 23309 23310 /* Form EUI-64 like address */ 23311 addr = (char *)&v6addr->s6_addr32[2]; 23312 bcopy((char *)phys_addr, addr, 3); 23313 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23314 addr[3] = (char)0xff; 23315 addr[4] = (char)0xfe; 23316 bcopy((char *)phys_addr + 3, addr + 5, 3); 23317 return (B_TRUE); 23318 } 23319 23320 /* ARGSUSED */ 23321 static boolean_t 23322 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23323 { 23324 return (B_FALSE); 23325 } 23326 23327 /* ARGSUSED */ 23328 static boolean_t 23329 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23330 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23331 { 23332 /* 23333 * Multicast address mappings used over Ethernet/802.X. 23334 * This address is used as a base for mappings. 23335 */ 23336 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23337 0x00, 0x00, 0x00}; 23338 23339 /* 23340 * Extract low order 32 bits from IPv6 multicast address. 23341 * Or that into the link layer address, starting from the 23342 * second byte. 23343 */ 23344 *hw_start = 2; 23345 v6_extract_mask->s6_addr32[0] = 0; 23346 v6_extract_mask->s6_addr32[1] = 0; 23347 v6_extract_mask->s6_addr32[2] = 0; 23348 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23349 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23350 return (B_TRUE); 23351 } 23352 23353 /* 23354 * Indicate by return value whether multicast is supported. If not, 23355 * this code should not touch/change any parameters. 23356 */ 23357 /* ARGSUSED */ 23358 static boolean_t 23359 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23360 uint32_t *hw_start, ipaddr_t *extract_mask) 23361 { 23362 /* 23363 * Multicast address mappings used over Ethernet/802.X. 23364 * This address is used as a base for mappings. 23365 */ 23366 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23367 0x00, 0x00, 0x00 }; 23368 23369 if (phys_length != ETHERADDRL) 23370 return (B_FALSE); 23371 23372 *extract_mask = htonl(0x007fffff); 23373 *hw_start = 2; 23374 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23375 return (B_TRUE); 23376 } 23377 23378 /* 23379 * Derive IPoIB interface id from the link layer address. 23380 */ 23381 static boolean_t 23382 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23383 { 23384 char *addr; 23385 23386 if (phys_length != 20) 23387 return (B_FALSE); 23388 addr = (char *)&v6addr->s6_addr32[2]; 23389 bcopy(phys_addr + 12, addr, 8); 23390 /* 23391 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23392 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23393 * rules. In these cases, the IBA considers these GUIDs to be in 23394 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23395 * required; vendors are required not to assign global EUI-64's 23396 * that differ only in u/l bit values, thus guaranteeing uniqueness 23397 * of the interface identifier. Whether the GUID is in modified 23398 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23399 * bit set to 1. 23400 */ 23401 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23402 return (B_TRUE); 23403 } 23404 23405 /* 23406 * Note on mapping from multicast IP addresses to IPoIB multicast link 23407 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23408 * The format of an IPoIB multicast address is: 23409 * 23410 * 4 byte QPN Scope Sign. Pkey 23411 * +--------------------------------------------+ 23412 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23413 * +--------------------------------------------+ 23414 * 23415 * The Scope and Pkey components are properties of the IBA port and 23416 * network interface. They can be ascertained from the broadcast address. 23417 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23418 */ 23419 23420 static boolean_t 23421 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23422 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23423 { 23424 /* 23425 * Base IPoIB IPv6 multicast address used for mappings. 23426 * Does not contain the IBA scope/Pkey values. 23427 */ 23428 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23429 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23430 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23431 23432 /* 23433 * Extract low order 80 bits from IPv6 multicast address. 23434 * Or that into the link layer address, starting from the 23435 * sixth byte. 23436 */ 23437 *hw_start = 6; 23438 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23439 23440 /* 23441 * Now fill in the IBA scope/Pkey values from the broadcast address. 23442 */ 23443 *(maddr + 5) = *(bphys_addr + 5); 23444 *(maddr + 8) = *(bphys_addr + 8); 23445 *(maddr + 9) = *(bphys_addr + 9); 23446 23447 v6_extract_mask->s6_addr32[0] = 0; 23448 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23449 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23450 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23451 return (B_TRUE); 23452 } 23453 23454 static boolean_t 23455 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23456 uint32_t *hw_start, ipaddr_t *extract_mask) 23457 { 23458 /* 23459 * Base IPoIB IPv4 multicast address used for mappings. 23460 * Does not contain the IBA scope/Pkey values. 23461 */ 23462 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23463 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23464 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23465 23466 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23467 return (B_FALSE); 23468 23469 /* 23470 * Extract low order 28 bits from IPv4 multicast address. 23471 * Or that into the link layer address, starting from the 23472 * sixteenth byte. 23473 */ 23474 *extract_mask = htonl(0x0fffffff); 23475 *hw_start = 16; 23476 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23477 23478 /* 23479 * Now fill in the IBA scope/Pkey values from the broadcast address. 23480 */ 23481 *(maddr + 5) = *(bphys_addr + 5); 23482 *(maddr + 8) = *(bphys_addr + 8); 23483 *(maddr + 9) = *(bphys_addr + 9); 23484 return (B_TRUE); 23485 } 23486 23487 /* 23488 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23489 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23490 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23491 * the link-local address is preferred. 23492 */ 23493 boolean_t 23494 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23495 { 23496 ipif_t *ipif; 23497 ipif_t *maybe_ipif = NULL; 23498 23499 mutex_enter(&ill->ill_lock); 23500 if (ill->ill_state_flags & ILL_CONDEMNED) { 23501 mutex_exit(&ill->ill_lock); 23502 if (ipifp != NULL) 23503 *ipifp = NULL; 23504 return (B_FALSE); 23505 } 23506 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23507 if (!IPIF_CAN_LOOKUP(ipif)) 23508 continue; 23509 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23510 ipif->ipif_zoneid != ALL_ZONES) 23511 continue; 23512 if ((ipif->ipif_flags & flags) != flags) 23513 continue; 23514 23515 if (ipifp == NULL) { 23516 mutex_exit(&ill->ill_lock); 23517 ASSERT(maybe_ipif == NULL); 23518 return (B_TRUE); 23519 } 23520 if (!ill->ill_isv6 || 23521 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23522 ipif_refhold_locked(ipif); 23523 mutex_exit(&ill->ill_lock); 23524 *ipifp = ipif; 23525 return (B_TRUE); 23526 } 23527 if (maybe_ipif == NULL) 23528 maybe_ipif = ipif; 23529 } 23530 if (ipifp != NULL) { 23531 if (maybe_ipif != NULL) 23532 ipif_refhold_locked(maybe_ipif); 23533 *ipifp = maybe_ipif; 23534 } 23535 mutex_exit(&ill->ill_lock); 23536 return (maybe_ipif != NULL); 23537 } 23538 23539 /* 23540 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23541 */ 23542 boolean_t 23543 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23544 { 23545 ill_t *illg; 23546 23547 /* 23548 * We look at the passed-in ill first without grabbing ill_g_lock. 23549 */ 23550 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23551 return (B_TRUE); 23552 } 23553 rw_enter(&ill_g_lock, RW_READER); 23554 if (ill->ill_group == NULL) { 23555 /* ill not in a group */ 23556 rw_exit(&ill_g_lock); 23557 return (B_FALSE); 23558 } 23559 23560 /* 23561 * There's no ipif in the zone on ill, however ill is part of an IPMP 23562 * group. We need to look for an ipif in the zone on all the ills in the 23563 * group. 23564 */ 23565 illg = ill->ill_group->illgrp_ill; 23566 do { 23567 /* 23568 * We don't call ipif_lookup_zoneid() on ill as we already know 23569 * that it's not there. 23570 */ 23571 if (illg != ill && 23572 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 23573 break; 23574 } 23575 } while ((illg = illg->ill_group_next) != NULL); 23576 rw_exit(&ill_g_lock); 23577 return (illg != NULL); 23578 } 23579 23580 /* 23581 * Check if this ill is only being used to send ICMP probes for IPMP 23582 */ 23583 boolean_t 23584 ill_is_probeonly(ill_t *ill) 23585 { 23586 /* 23587 * Check if the interface is FAILED, or INACTIVE 23588 */ 23589 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 23590 return (B_TRUE); 23591 23592 return (B_FALSE); 23593 } 23594